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Preface to the Second Edition

In this second edition, the outline of chapters and sections has been preserved. The
subtitle “An Introduction”, as suggested by several reviewers, has been deleted. The
content, however, is brought up to date, both in the text and in the notes. Many
passages in the text have been either corrected or improved. Some biographical
notes have been added as well as a few exercises and computer assignments. The
typographical appearance has also been improved by printing vectors and matrices
consistently in boldface types.

With regard to computer language in illustrations and exercises, we now adopt
uniformly Matlab. For readers not familiar with Matlab, there are a number of
introductory texts available, some, like Moler [2004], Otto and Denier [2005],
Stanoyevitch [2005] that combine Matlab with numerical computing, others, like
Knight [2000], Higham and Higham [2005], Hunt, Lipsman and Rosenberg [2006],
and Driscoll [2009], more exclusively focused on Matlab.

The major novelty, however, is a complete set of detailed solutions to all exercises
and machine assignments. The solution manual is available to instructors upon
request at the publisher’s website http://www.birkhauser-science.com/978-0-8176-
8258-3. Selected solutions are also included in the text to give students an idea of
what is expected. The bibliography has been expanded to reflect technical advances
in the field and to include references to new books and expository accounts. As a
result, the text has undergone an expansion in size of about 20%.

West Lafayette, Indiana Walter Gautschi
November 2011
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Preface to the First Edition

The book is designed for use in a graduate program in Numerical Analysis that
is structured so as to include a basic introductory course and subsequent more
specialized courses. The latter are envisaged to cover such topics as numerical
linear algebra, the numerical solution of ordinary and partial differential equations,
and perhaps additional topics related to complex analysis, to multidimensional
analysis, in particular optimization, and to functional analysis and related functional
equations. Viewed in this context, the first four chapters of our book could serve as
a text for the basic introductory course, and the remaining three chapters (which
indeed are at a distinctly higher level) could provide a text for an advanced course
on the numerical solution of ordinary differential equations. In a sense, therefore,
the book breaks with tradition in that it does no longer attempt to deal with all
major topics of numerical mathematics. It is felt by the author that some of the
current subdisciplines, particularly those dealing with linear algebra and partial
differential equations, have developed into major fields of study that have attained
a degree of autonomy and identity that justifies their treatment in separate books
and separate courses on the graduate level. The term “Numerical Analysis” as
used in this book, therefore, is to be taken in the narrow sense of the numerical
analogue of Mathematical Analysis, comprising such topics as machine arithmetic,
the approximation of functions, approximate differentiation and integration, and the
approximate solution of nonlinear equations and of ordinary differential equations.

What is being covered, on the other hand, is done so with a view toward
stressing basic principles and maintaining simplicity and student-friendliness as far
as possible. In this sense, the book is “An Introduction”. Topics that, even though
important and of current interest, require a level of technicality that transcends the
bounds of simplicity striven for, are referenced in detailed bibliographic notes at the
end of each chapter. It is hoped, in this way, to place the material treated in proper
context and to help, indeed encourage, the reader to pursue advanced modern topics
in more depth.

A significant feature of the book is the large collection of exercises that
are designed to help the student develop problem-solving skills and to provide
interesting extensions of topics treated in the text. Particular attention is given to
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x Preface to the First Edition

machine assignments, where the student is encouraged to implement numerical
techniques on the computer and to make use of modern software packages.

The author has taught the basic introductory course and the advanced course on
ordinary differential equations regularly at Purdue University for the last 30 years
or so. The former, typically, was offered both in the fall and spring semesters, to a
mixed audience consisting of graduate (and some good undergraduate) students in
mathematics, computer science, and engineering, while the latter was taught only in
the fall, to a smaller but also mixed audience. Written notes began to materialize in
the 1970s, when the author taught the basic course repeatedly in summer courses on
Mathematics held in Perugia, Italy. Indeed, for some time, these notes existed only
in the Italian language. Over the years, they were progressively expanded, updated,
and transposed into English, and along with that, notes for the advanced course were
developed. This, briefly, is how the present book evolved.

A long gestation period such as this, of course, is not without dangers, the
most notable one being a tendency for the material to become dated. The author
tried to counteract this by constantly updating and revising the notes, adding newer
developments when deemed appropriate. There are, however, benefits as well: over
time, one develops a sense for what is likely to stand the test of time and what
may only be of temporary interest, and one selects and deletes accordingly. Another
benefit is the steady accumulation of exercises and the opportunity to have them
tested on a large and diverse student population.

The purpose of academic teaching, in the author’s view, is twofold: to transmit
knowledge, and, perhaps more important, to kindle interest and even enthusiasm
in the student. Accordingly, the author did not strive for comprehensiveness –
even within the boundaries delineated – but rather tried to concentrate on what is
essential, interesting and intellectually pleasing, and teachable. In line with this,
an attempt has been made to keep the text uncluttered with numerical examples and
other illustrative material. Being well aware, however, that mastery of a subject does
not come from studying alone but from active participation, the author provided
many exercises, including machine projects. Attributions of results to specific
authors and citations to the literature have been deliberately omitted from the body
of the text. Each chapter, as already mentioned, has a set of appended notes that
help the reader to pursue related topics in more depth and to consult the specialized
literature. It is here where attributions and historical remarks are made, and where
citations to the literature – both textbook and research – appear.

The main text is preceded by a prologue, which is intended to place the book in
proper perspective. In addition to other textbooks on the subject, and information
on software, it gives a detailed list of topics not treated in this book, but definitely
belonging to the vast area of computational mathematics, and it provides ample
references to relevant texts. A list of numerical analysis journals is also included.

The reader is expected to have a good background in calculus and advanced
calculus. Some passages of the text require a modest degree of acquaintance with
linear algebra, complex analysis, or differential equations. These passages, however,
can easily be skipped, without loss of continuity, by a student who is not familiar
with these subjects.
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It is a pleasure to thank the publisher for showing interest in this book and
cooperating in producing it. The author is also grateful to Soren Jensen and Manil
Suri, who taught from this text, and to an anonymous reader; they all made many
helpful suggestions on improving the presentation. He is particularly indebted to
Prof. Jensen for substantially helping in preparing the exercises to Chap. 7. The
author further acknowledges assistance from Carl de Boor in preparing the notes to
Chap. 2 and to Werner C. Rheinboldt for helping with the notes to Chap. 4. Last but
not least, he owes a measure of gratitude to Connie Wilson for typing a preliminary
version of the text and to Adam Hammer for assisting the author with the more
intricate aspects of LaTeX.

West Lafayette, Indiana Walter Gautschi
January 1997
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Prologue

P1 Overview

Numerical Analysis is the branch of mathematics that provides tools and methods
for solving mathematical problems in numerical form. The objective is to develop
detailed computational procedures, capable of being implemented on electronic
computers, and to study their performance characteristics. Related fields are Sci-
entific Computation, which explores the application of numerical techniques and
computer architectures to concrete problems arising in the sciences and engineering;
Complexity Theory, which analyzes the number of “operations” and the amount of
computer memory required to solve a problem; and Parallel Computation, which
is concerned with organizing computational procedures in a manner that allows
running various parts of the procedures simultaneously on different processors.

The problems dealt with in computational mathematics come from virtually
all branches of pure and applied mathematics. There are computational aspects
in number theory, combinatorics, abstract algebra, linear algebra, approximation
theory, geometry, statistics, optimization, complex analysis, nonlinear equations,
differential and other functional equations, and so on. It is clearly impossible
to deal with all these topics in a single text of reasonable size. Indeed, the
tendency today is to develop specialized texts dealing with one or the other
of these topics. In the present text we concentrate on subject matters that are
basic to problems in approximation theory, nonlinear equations, and differential
equations. Accordingly, we have chapters on machine arithmetic, approximation
and interpolation, numerical differentiation and integration, nonlinear equations,
one-step and multistep methods for ordinary differential equations, and boundary
value problems in ordinary differential equations. Important topics not covered
in this text are computational number theory, algebra, and geometry; constructive
methods in optimization and complex analysis; numerical linear algebra; and the
numerical solution of problems involving partial differential equations and integral
equations. Selected texts for these areas are enumerated in Sect. P3.

xix
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We now describe briefly the topics treated in this text. Chapter 1 deals with
the basic facts of life regarding machine computation. It recognizes that, although
present-day computers are extremely powerful in terms of computational speed,
reliability, and amount of memory available, they are less than ideal – unless
supplemented by appropriate software – when it comes to the precision available,
and accuracy attainable, in the execution of elementary arithmetic operations. This
raises serious questions as to how arithmetic errors, either present in the input
data of a problem or committed during the execution of a solution algorithm,
affect the accuracy of the desired results. Concepts and tools required to answer
such questions are put forward in this introductory chapter. In Chap. 2, the central
theme is the approximation of functions by simpler functions, typically polynomials
and piecewise polynomial functions. Approximation in the sense of least squares
provides an opportunity to introduce orthogonal polynomials, which are relevant
also in connection with problems of numerical integration treated in Chap. 3. A large
part of the chapter, however, deals with polynomial interpolation and associated
error estimates, which are basic to many numerical procedures for integrating
functions and differential equations. Also discussed briefly is inverse interpolation,
an idea useful in solving equations.

First applications of interpolation theory are given in Chap. 3, where the tasks
presented are the computation of derivatives and definite integrals. Although the
formulae developed for derivatives are subject to the detrimental effects of machine
arithmetic, they are useful, nevertheless, for purposes of discretizing differential
operators. The treatment of numerical integration includes routine procedures, such
as the trapezoidal and Simpson’s rules, appropriate for well-behaved integrands, as
well as the more sophisticated procedures based on Gaussian quadrature to deal
with singularities. It is here where orthogonal polynomials reappear. The method of
undetermined coefficients is another technique for developing integration formulae.
It is applied to approximate general linear functionals, the Peano representation
of linear functionals providing an important tool for estimating the error. The
chapter ends with a discussion of extrapolation techniques; although applicable to
more general problems, they are inserted here since the composite trapezoidal rule
together with the Euler–Maclaurin formula provides the best-known application –
Romberg integration.

Chapter 4 deals with iterative methods for solving nonlinear equations and
systems thereof, the pièce de résistance being Newton’s method. The emphasis here
lies in the study of, and the tools necessary to analyze, convergence. The special
case of algebraic equations is also briefly given attention.

Chapter 5 is the first of three chapters devoted to the numerical solution of
ordinary differential equations. It concerns itself with one-step methods for solving
initial value problems, such as the Runge–Kutta method, and gives a detailed
analysis of local and global errors. Also included is a brief introduction to stiff
equations and special methods to deal with them. Multistep methods and, in
particular, Dahlquist’s theory of stability and its applications, is the subject of
Chap. 6. The final chapter (Chap. 7) is devoted to boundary value problems and their
solution by shooting methods, finite difference techniques, and variational methods.
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P2 Numerical Analysis Software

There are many software packages available, both in the public domain and dis-
tributed commercially, that deal with numerical analysis algorithms. A widely used
source of numerical software is Netlib, accessible at http://www.netlib.org.

Large collections of general-purpose numerical algorithms are contained in
sources such as Slatec (http://www.netlib.org/slatec) and TOMS
(ACM Transactions on Mathematical Software). Specialized packages relevant
to the topics in the chapters ahead are identified in the “Notes” to each chapter.
Likewise, specific files needed to do some of the machine assignments in the
Exercises are identified as part of the exercise.

Among the commercial software packages we mention the Visual Numerics
(formerly IMSL) and NAG libraries. Interactive systems include HiQ, Macsyma,
Maple, Mathcad, Mathematica, and Matlab. Many of these packages, in addition
to numerical computation, have symbolic computation and graphics capabilities.
Further information is available in the Netlib file commercial. For more libraries,
and for interactive systems, also see Lozier and Olver [1994, Sect. 3].

In this text we consistently use Matlab as a vehicle for describing algorithms
and as the software tool for carrying out some of the exercises and all machine
assignments.

P3 Textbooks and Monographs

We provide here an annotated list (ordered alphabetically with respect to authors)
of other textbooks on numerical analysis, written at about the same, or higher, level
as the present one. Following this, we also mention books and monographs dealing
with topics in computational mathematics not covered in our (and many other) books
on numerical analysis. Additional books dealing with specialized subject areas, as
well as other literature, are referenced in the “Notes” to the individual chapters. We
generally restrict ourselves to books written in English and, with a few exceptions,
published within the last 25 years or so. Even so, we have had to be selective. (No
value judgment is to be implied by our selections or omissions.) A reader with access
to the AMS (American Mathematical Society) MathSci Net homepage will have no
difficulty in retrieving a more complete list of relevant items, including older texts.

P3.1 Selected Textbooks on Numerical Analysis

Atkinson [1989] A comprehensive in-depth treatment of standard topics short of
partial differential equations; includes an appendix describing some of the better-
known software packages.
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Atkinson and Han [2009] An advanced text on theoretical (as opposed to com-
putational) aspects of numerical analysis, making extensive use of functional
analysis.

Bruce, Giblin, and Rippon [1990] A collection of interesting mathematical prob-
lems, ranging from number theory and computer-aided design to differential
equations, that require the use of computers for their solution.

Cheney and Kincaid [1994] Although an undergraduate text, it covers a broad
area, has many examples from science and engineering as well as computer
programs; there are many exercises, including machine assignments.

Conte and de Boor [1980] A widely used text for upper-division undergraduate
students; written for a broad audience, with algorithmic concerns in the fore-
ground; has Fortran subroutines for many algorithms discussed in the text.

Dahlquist and Björck [2003, 2008] The first (2003) text – a reprint of the 1974
classic – provides a comprehensive introduction to all major fields of numerical
analysis, striking a good balance between theoretical issues and more practical
ones. The second text expands substantially on the more elementary topics
treated in the first and represents the first volume of more to come.

Deuflhard and Hohmann [2003] An introductory text with emphasis on machine
computation and algorithms; includes discussions of three-term recurrence
relations and stochastic eigenvalue problems (not usually found in textbooks),
but no differential equations.

Fröberg [1985] A thorough and exceptionally lucid exposition of all major topics
of numerical analysis exclusive of algorithms and computer programs.

Hämmerlin and Hoffmann [1991] Similar to Stoer and Bulirsch [2002] in its
emphasis on mathematical theory; has more on approximation theory and
multivariate interpolation and integration, but nothing on differential equations.

Householder [2006] A reissue of one of the early mathematical texts on the
subject, with coverage limited to systems of linear and nonlinear equations and
topics in approximation.

Isaacson and Keller [1994] One of the older but still eminently readable texts,
stressing the mathematical analysis of numerical methods.

Kincaid and Cheney [1996] Related to Cheney and Kincaid [1994] but more
mathematically oriented and unusually rich in exercises and bibliographic items.

Kress [1998] A rather comprehensive text with a strong functional analysis
component.

Neumaier [2001] A text emphasizing robust computation, including interval
arithmetic.

Rutishauser [1990] An annotated translation from the German of an older text
based on posthumous notes by one of the pioneers of numerical analysis;
although the subject matter reflects the state of the art in the early 1970s, the
treatment is highly original and is supplemented by translator’s notes to each
chapter pointing to more recent developments.

Schwarz [1989] A mathematically oriented treatment of all major areas of numer-
ical analysis, including ordinary and partial differential equations.
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Stoer and Bulirsch [2002] Fairly comprehensive in coverage; written in a style
appealing more to mathematicians than engineers and computer scientists; has
many exercises and bibliographic references; serves not only as a textbook but
also as a reference work.

Todd [1979, 1977] Rather unique books, emphasizing problem-solving in areas
often not covered in other books on numerical analysis.

P3.2 Monographs and Books on Specialized Topics

A collection of outstanding survey papers on specialized topics in numerical
analysis is being assembled by Ciarlet and Lions [1990–2003] in handbooks of
numerical analysis; nine volumes have appeared so far. Another source of surveys
on a variety of topics is Acta numerica, an annual series of books edited by Iserles
[1992–2010], of which 19 volumes have been published so far. For an authoritative
account of the history of numerical analysis from the 16th through the 19th century,
the reader is referred to the book by Goldstine [1977]. For more recent history, see
Bultheel and Cools, eds. [2010].

The related areas of Scientific Computing and Parallel Computing are rather
more recent fields of study. Basic introductory texts are Scott et al. [2005]
and Tveito and Winter [2009]. Texts relevant to linear algebra and differential
equations are Schendel [1984], Ortega and Voigt [1985], Ortega [1989], Golub
and Ortega [1992], [1993], Van de Velde [1994], Burrage [1995], Heath [1997],
Deuflhard and Bornemann [2002], O’Leary [2009], and Quarteroni et al. [2010].
Other texts address topics in optimization, Pardalos et al. [1992] and Gonnet
and Scholl [2009]; computational geometry, Akl and Lyons [1993]; and other
miscellaneous areas, Crandall [1994], [1996], Köckler [1994], Bellomo and Preziosi
[1995], Danaila et al. [2007], and Farin and Hansford [2008]. Interesting historical
essays are contained in Nash, ed. [1990]. Matters regarding the Complexity of
numerical algorithms are discussed in an abstract framework in books by Traub and
Woźniakowski [1980] and Traub, Wasilkowski, and Woźniakowski [1983], [1988],
with applications to the numerical integration of functions and nonlinear equations,
and similarly, applied to elliptic partial differential equations and integral equations,
in the book by Werschulz [1991]. Other treatments are those by Kronsjö [1987], Ko
[1991], Bini and Pan [1994], Wang et al. [1994], Traub and Werschulz [1998], Ritter
[2000], and Novak et al. [2009]. For an in-depth complexity analysis of Newton’s
method, the reader is encouraged to study Smale’s [1987] lecture.

Material on Computational Number Theory can be found, at the undergraduate
level, in the book by Rosen [2000], which also contains applications to cryptography
and computer science, and in Allenby and Redfern [1989], and at a more advanced
level in the books by Niven et al. [1991], Cohen [1993], and Bach and Shallit
[1996]. Computational methods of factorization are dealt with in the book by
Riesel [1994]. Other useful sources are the set of lecture notes by Pohst [1993]
on algebraic number theory algorithms, and the proceedings volumes edited by
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Pomerance [1990] and Gautschi [1994a, Part II]. For algorithms in Combinatorics,
see the books by Nijenhuis and Wilf [1978], Hu and Shing [2002], and Cormen et
al. [2009]. Various aspects of Computer Algebra are treated in the books by Geddes
et al. [1992], Mignotte [1992], Davenport et al. [1993], Mishra [1993], Heck [2003],
and Cox et al. [2007].

Other relatively new disciplines are Computational Geometry and Geometric
Modeling, Computer-Aided Design, and Computational Topology, for which rel-
evant texts are, respectively, Preparata and Shamos [1985], Edelsbrunner [1987],
Mäntylä [1988], Taylor [1992], McLeod and Baart [1998], Gallier [2000], Cohen et
al. [2001], and Salomon [2006]; Hoschek and Lasser [1993], Farin [1997], [1999],
and Prautsch et al. [2002]; Edelsbrunner [2006], and Edelsbrunner and Harer [2010].
Statistical Computing is covered in general textbooks such as Kennedy and Gentle
[1980], Anscombe [1981], Maindonald [1984], Thisted [1988], Monahan [2001],
Gentle [2009], and Lange [2010]. More specialized texts are Devroye [1986] and
Hörmann et al. [2004] on the generation of nonuniform random variables, Späth
[1992] on regression analysis, Heiberger [1989] on the design of experiments,
Stewart [1994] on Markov chains, Xiu [2010] on stochastic computing and uncer-
tainty quantification, and Fang and Wang [1994], Manno [1999], Gentle [2003],
Liu [2008], Shonkwiler and Mendivil [2009], and Lemieux [2009] on Monte Carlo
and number-theoretic methods. Numerical techniques in Optimization (including
optimal control problems) are discussed in Evtushenko [1985]. An introductory
book on unconstrained optimization is Wolfe [1978]; among more advanced and
broader texts on optimization techniques we mention Gill et al. [1981], Ciarlet
[1989], and Fletcher [2001]. Linear programming is treated in Nazareth [1987] and
Panik [1996], linear and quadratic problems in Sima [1996], and the application of
conjugate direction methods to problems in optimization in Hestenes [1980]. The
most comprehensive text on (numerical and applied) Complex Analysis is the three-
volume treatise by Henrici [1988, 1991, 1986]. Numerical methods for conformal
mapping are also treated in Kythe [1998], Schinzinger and Laura [2003], and
Papamichael and Stylianopoulos [2010]. For approximation in the complex domain,
the standard text is Gaier [1987]; Stenger [1993] deals with approximation by
sinc functions, Stenger [2011] providing some 450 Matlab programs. The book by
Iserles and Nørsett [1991] contains interesting discussions on the interface between
complex rational approximation and the stability theory of discretized differential
equations. The impact of high-precision computation on problems and conjectures
involving complex approximation is beautifully illustrated in the set of lectures by
Varga [1990].

For an in-depth treatment of many of the preceding topics, also see the four-
volume work of Knuth [1975, 1981, 1973, 2005–2006].

Perhaps the most significant topic omitted in our book is numerical linear algebra
and its application to solving partial differential equations by finite difference or
finite element methods. Fortunately, there are many treatises available that address
these areas. For Numerical Linear Algebra, we refer to the classic work of Wilkinson
[1988] and the book by Golub and Van Loan [1996]. Links and applications
of matrix computation to orthogonal polynomials and quadrature are the subject
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of Golub and Meurant [2010]. Other general texts are Jennings and McKeown
[1992], Watkins [2002], [2007], Demmel [1997], Trefethen and Bau [1997], Stewart
[1973], [1998], Meurant [1999], White [2007], Allaire and Kaber [2008], and
Datta [2010]; Higham [2002], [2008] has a comprehensive treatment of error and
stability analyses and the first, equally extensive, treatment of the numerics of matrix
functions. Solving linear systems on vector and shared memory parallel computers
and the use of linear algebra packages on high-performance computers are discussed
in Dongarra et al. [1991], [1998]. The solution of sparse linear systems and the
special data structures and pivoting strategies required in direct methods are treated
in Østerby and Zlatev [1983], Duff et al. [1989], Zlatev [1991], and Davis [2006],
whereas iterative techniques are discussed in the classic texts by Young [2003]
and Varga [2000], and in Il’in [1992], Hackbusch [1994], Weiss [1996], Fischer
[1996], Brezinski [1997], Greenbaum [1997], Saad [2003], Broyden and Vespucci
[2004], Hageman and Young [2004], Meurant [2006], Chan and Jin [2007], Byrne
[2008], and Woźnicki [2009]. The books by Branham [1990] and Björck [1996]
are devoted especially to least squares problems. For eigenvalues, see Chatelin
[1983], [1993], and for a good introduction to the numerical analysis of symmetric
eigenvalue problems, see Parlett [1998]. The currently very active investigation of
large sparse symmetric and nonsymmetric eigenvalue problems and their solution
by Lanczos-type methods has given rise to many books, for example, Cullum and
Willoughby [1985], [2002], Meyer [1987], Sehmi [1989], and Saad [1992]. For
structured and symplectic eigenvalue problems, see Fassbender [2000] and Kressner
[2005], and for inverse eigenvalue problems, Xu [1998] and Chu and Golub [2005].
For readers wishing to test their algorithms on specific matrices, the collection of
test matrices in Gregory and Karney [1978] and the “matrix market” on the Web
(http://math.nist.gov./MatrixMarket) are useful sources.
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et al. [2000], Toselli and Widlund [2005], and Mathew [2008]. Problems in potential
theory and elasticity are often approached via boundary element methods, for which
representative texts are Brebbia and Dominguez [1992], Chen and Zhou [1992],
Hall [1994], and Steinbach [2008]. A discussion of conservation laws is given in the
classic monograph by Lax [1973] and more recently in LeVeque [1992], Godlewski
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Chapter 1
Machine Arithmetic and Related Matters

The questions addressed in this first chapter are fundamental in the sense that
they are relevant in any situation that involves numerical machine computation,
regardless of the kind of problem that gave rise to these computations. In the first
place, one has to be aware of the rather primitive type of number system available
on computers. It is basically a finite system of numbers of finite length, thus a far cry
from the idealistic number system familiar to us from mathematical analysis. The
passage from a real number to a machine number entails rounding, and thus small
errors, called roundoff errors. Additional errors are introduced when the individual
arithmetic operations are carried out on the computer. In themselves, these errors
are harmless, but acting in concert and propagating through a lengthy computation,
they can have significant – even disastrous – effects.

Most problems involve input data not representable exactly on the computer.
Therefore, even before the solution process starts, simply by storing the input in
computer memory, the problem is already slightly perturbed, owing to the necessity
of rounding the input. It is important, then, to estimate how such small perturbations
in the input affect the output, the solution of the problem. This is the question of
the (numerical) condition of a problem: the problem is called well conditioned if the
changes in the solution of the problem are of the same order of magnitude as the
perturbations in the input that caused those changes. If, on the other hand, they
are much larger, the problem is called ill conditioned. It is desirable to measure by
a single number – the condition number of the problem – the extent to which the
solution is sensitive to perturbations in the input. The larger this number, the more
ill conditioned the problem.

Once the solution process starts, additional rounding errors will be committed,
which also contaminate the solution. The resulting errors, in contrast to those
caused by input errors, depend on the particular solution algorithm. It makes sense,
therefore, to also talk about the condition of an algorithm, although its analysis is
usually quite a bit harder. The quality of the computed solution is then determined
by both (essentially the product of) the condition of the problem and the condition
of the algorithm.

W. Gautschi, Numerical Analysis, DOI 10.1007/978-0-8176-8259-0 1,
© Springer Science+Business Media, LLC 1997, 2012
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2 1 Machine Arithmetic and Related Matters

1.1 Real Numbers, Machine Numbers, and Rounding

We begin with the number system commonly used in mathematical analysis and
confront it with the more primitive number system available to us on any particular
computer. We identify the basic constant (the machine precision) that determines
the level of precision attainable on such a computer.

1.1.1 Real Numbers

One can introduce real numbers in many different ways. Mathematicians favor
the axiomatic approach, which leads them to define the set of real numbers as a
“complete Archimedean ordered field.” Here we adopt a more pedestrian attitude
and consider the set of real numbers R to consist of positive and negative numbers
represented in some appropriate number system and manipulated in the usual
manner known from elementary arithmetic. We adopt here the binary number
system, since it is the one most commonly used on computers. Thus,

x 2 R iff x D ˙ .bn2
n C bn�12n�1 C � � � C b0 C b�12�1 C b�22�2 C � � � /: (1.1)

Here n � 0 is some integer, and the “binary digits” bi are either 0 or 1,

bi D 0 or bi D 1 for all i: (1.2)

It is important to note that in general we need infinitely many binary digits to
represent a real number. We conveniently write such a number in the abbreviated
form (familiar from the decimal number system)

x D ˙ .bnbn�1 � � �b0 : b�1b�2b�3 � � � /2; (1.3)

where the subscript 2 at the end is to remind us that we are dealing with a binary
number. (Without this subscript, the number could also be read as a decimal number,
which would be a source of ambiguity.) The dot in (1.3) – appropriately called the
binary point – separates the integer part on the left from the fractional part on the
right. Note that representation (1.3) is not unique, for example, .0:0111 : : :/2 D
.0:1/2. We regain uniqueness if we always insist on a finite representation, if one
exists.

Examples. 1. .10011:01/2 D 24 C 21 C 20 C 2�2 = 16C 2C 1C 1

4
D .19:25/10

2. .:010101 : : :/2 D
1X

kD2
.k even/

2�k D
1X

mD1
2�2m D 1

4

1X

mD0

�
1

4

�m

D 1

4
1

1� 1
4

D 1

3
D .0:333 : : :/10
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3.
1

5
D .0:2/10 D .0:00110011 : : :/2

To determine the binary digits on the right, one keeps multiplying by 2 and
observing the integer part in the result; if it is zero, the binary digit in question
is 0, otherwise 1. In the latter case, the integral part is removed and the process
repeated.

The last example is of interest insofar as it shows that to a finite decimal number
there may correspond a (nontrivial) infinite binary representation. One cannot
assume, therefore, that a finite decimal number is exactly representable on a binary
computer. Conversely, however, to a finite binary number there always corresponds
a finite decimal representation. (Why?)

1.1.2 Machine Numbers

There are two kinds of machine numbers: floating point and fixed point. The first
corresponds to the “scientific notation” in the decimal system, whereby a number is
written as a decimal fraction times an integral power of 10. The second allows only
for fractions. On a binary computer, one consistently uses powers of 2 instead of 10.
More important, the number of binary digits, both in the fraction and in the exponent
of 2 (if any), is finite and cannot exceed certain limits that are characteristics of the
particular computer at hand.

1.1.2.1 Floating-Point Numbers

We denote by t the number of binary digits allowed by the computer in the fractional
part and by s the number of binary digits in the exponent. Then the set of (real)
floating-point numbers on that computer will be denoted by R.t; s/. Thus,

x 2 R.t; s/ iff x D f � 2e; (1.4)

where, in the notation of (1.3),

f D ˙ .: b�1b�2 � � �b�t /2; e D ˙ .cs�1cs�2 � � � c0:/2: (1.5)

Here all bi and cj are binary digits, that is, either zero or one. The binary fraction
f is usually referred to as the mantissa of x and the integer e as the exponent of x.
The number x in (1.4) is said to be normalized if in its fraction f we have b�1 D 1.
We assume that all numbers in R.t; s/ are normalized (with the exception of x D 0,
which is treated as a special number). If x ¤ 0 were not normalized, we could
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ef

± b−1 b−2 · · · b−t ± cs−1 cs−2 · · · c0

t bits s bits

Fig. 1.1 Packing of a floating-point number in a machine register

multiply f by an appropriate power of 2, to normalize it, and adjust the exponent
accordingly. This is always possible as long as the adjusted exponent is still in the
admissible range.

We can think of a floating-point number (1.4) as being accommodated in a
machine register as shown in Fig. 1.1. The figure does not quite correspond to reality,
but is close enough to it for our purposes.

Note that the set (1.4) of normalized floating-point numbers is finite and is thus
represented by a finite set of points on the real line. What is worse, these points are
not uniformly distributed (cf. Ex. 1). This, then, is all we have to work with!

It is immediately clear from (1.4) and (1.5) that the largest and smallest
magnitude of a (normalized) floating-point number is given, respectively, by

max
x2R.t;s/

jxj D .1 � 2�t / 22s�1; min
x2R.t;s/jxj D 2�2s : (1.6)

On a Sun Sparc workstation, for example, one has t D 23, s D 7, so that the
maximum and minimum in (1.6) are 1:70 � 1038 and 2:94 � 10�39, respectively.
(Because of an asymmetric internal hardware representation of the exponent on
these computers, the true range of floating-point numbers is slightly shifted, more
like from 1:18 � 10�38 to 3:40 � 1038.) Matlab arithmetic, essentially double
precision, uses t D 53 and s D 10, which greatly expands the number range from
something like 10�308 to 10C308.

A real nonzero number whose modulus is not in the range determined by (1.6)
cannot be represented on this particular computer. If such a number is produced
during the course of a computation, one says that overflow has occurred if its
modulus is larger than the maximum in (1.6) and underflow if it is smaller than
the minimum in (1.6). The occurrence of overflow is fatal, and the machine (or its
operating system) usually prompts the computation to be interrupted. Underflow
is less serious, and one may get away with replacing the delinquent number by
zero. However, this is not foolproof. Imagine that at the next step the number that
underflowed is to be multiplied by a huge number. If the replacement by zero has
been made, the result will always be zero.

To increase the precision, one can use two machine registers to represent a
machine number. In effect, one then embeds R.t; s/ � R.2t; s/, and calls x 2
R.2t; s/ a double-precision number.
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± b−1 b−2 · · · b− t b− (t+1) · · · b− (t+s)

Fig. 1.2 Packing of a fixed-point number in a machine register

1.1.2.2 Fixed-Point Numbers

This is the case (1.4) where e = 0. That is, fixed-point numbers are binary fractions,
x D f , hence jf j < 1. We can therefore only deal with numbers that are in
the interval (–1,1). This, in particular, requires extensive scaling and rescaling to
make sure that all initial data, as well as all intermediate and final results, lie in that
interval. Such a complication can only be justified in special circumstances where
machine time and/or precision is at a premium. Note that on the same computer as
considered before, we do not need to allocate space for the exponent in the machine
register, and thus have in effect sC t binary digits available for the fraction f , hence
more precision; cf. Fig. 1.2.

1.1.2.3 Other Data Structures for Numbers

Complex floating-point numbers consist of pairs of real floating-point numbers,
the first of the pair representing the real part and the second the imaginary part.
To avoid rounding errors in arithmetic operations altogether, one can employ
rational arithmetic, in which each (rational) number is represented by a pair
of extended-precision integers – the numerator and denominator of the rational
number. The Euclidean algorithm is used to remove common factors. A device
that allows keeping track of error propagation and the influence of data errors is
interval arithmetic involving intervals guaranteed to contain the desired numbers. In
complex arithmetic, one employs rectangular or circular domains.

1.1.3 Rounding

A machine register acts much like the infamous Procrustes bed in Greek mythology.
Procrustes was the innkeeper whose inn had only beds of one size. If a fellow came
along who was too tall to fit into his beds, he cut off his feet. If the fellow was too
short, he stretched him. In the same way, if a real number comes along that is too
long, its tail end (not the head) is cutoff; if it is too short, it is padded by zeros at
the end.
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More specifically, let

x 2 R; x D ˙
 1X

kD1
b�k2�k

!
2e (1.7)

be the “exact” real number (in normalized floating-point form) and

x� 2 R.t; s/; x� D ˙
 

tX

kD1
b��k2�k

!
2e�

(1.8)

the rounded number. One then distinguishes between two methods of rounding, the
first being Procrustes’ method.

(a) Chopping. One takes

x� D chop.x/; e� D e; b��k D b�k for k D 1; 2; : : : ; t: (1.9)

(b) Symmetric rounding. This corresponds to the familiar rounding up or rounding
down in decimal arithmetic, based on the first discarded decimal digit: if it is
larger than or equal to 5, one rounds up; if it is less than 5, one rounds down. In
binary arithmetic, the procedure is somewhat simpler, since there are only two
possibilities: either the first discarded binary digit is 1, in which case one rounds
up, or it is 0, in which case one rounds down. We can write the procedure very
simply in terms of the chop operation in (1.9):

x� D rd.x/; rd.x/ WD chop

�
x C 1

2
� 2�t � 2e

�
: (1.10)

There is a small error incurred in rounding, which is most easily estimated in the
case of chopping. Here the absolute error jx � x�j is

jx � chop.x/j D
ˇ̌
ˇ̌
ˇ˙

1X

kDtC1
b�k2�k

ˇ̌
ˇ̌
ˇ 2

e

�
1X

kDtC1
2�k � 2e D 2�t � 2e:

It depends on e (i.e., the magnitude of x), which is the reason why one prefers the
relative error j.x� x�/=xj (if x ¤ 0), which, for normalized x, can be estimated as

ˇ̌
ˇ̌x � chop.x/

x

ˇ̌
ˇ̌ � 2�t � 2eˇ̌

ˇ̌
ˇ˙

1X

kD1
b�k2�k

ˇ̌
ˇ̌
ˇ 2

e

� 2�t � 2e
1
2

� 2e D 2 � 2�t : (1.11)
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Similarly, in the case of symmetric rounding, one finds (cf. Ex. 6)

ˇ̌
ˇ̌x � rd.x/

x

ˇ̌
ˇ̌ � 2�t : (1.12)

The number on the right is an important, machine-dependent quantity, called the
machine precision (or unit roundoff),

eps D 2�t I (1.13)

it determines the level of precision of any large-scale floating-point computation.
In Matlab double-precision arithmetic, one has t = 53, so that eps � 1:11 � 10�16
(cf. Ex. 5), corresponding to a precision of 15–16 significant decimal digits.

Since it is awkward to work with inequalities, one prefers writing (1.12)
equivalently as an equality,

rd.x/ D x.1C "/; j"j � eps; (1.14)

and defers dealing with the inequality (for ") to the very end.

1.2 Machine Arithmetic

The arithmetic used on computers unfortunately does not respect the laws of
ordinary arithmetic. Each elementary floating-point operation, in general, generates
a small error that may then propagate through subsequent machine operations. As
a rule, this error propagation is harmless, except in the case of subtraction, where
cancellation effects may seriously compromise the accuracy of the results.

1.2.1 A Model of Machine Arithmetic

Any of the four basic arithmetic operations, when applied to two machine numbers,
may produce a result no longer representable on the computer. We have therefore
errors also associated with arithmetic operations. Barring the occurrence of overflow
or underflow, we may assume as a model of machine arithmetic that each arithmetic
operation ı .D C;�;�; =/ produces a correctly rounded result. Thus, if x; y 2
R.t; s/ are floating-point machine numbers, and fl.xıy/ denotes the machine-
produced result of the arithmetic operation xıy, then

fl.xıy/ D xıy .1C "/; j"j � eps: (1.15)
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This can be interpreted in a number of ways, for example, in the case of
multiplication,

fl.x � y/ D Œx.1C "/� � y D x � Œy.1C "/� D .x
p
1C "/ � .yp

1C "/ D � � � :

In each equation we identify the computed result as the exact result on data that are
slightly perturbed, whereby the respective relative perturbations can be estimated,
for example, by j"j � eps in the first two equations, and

p
1C � � 1C 1

2
",
ˇ̌
1
2
"
ˇ̌ �

1
2
eps in the third. These are elementary examples of backward error analysis, a

powerful tool for estimating errors in machine computation (cf. also Sect. 1.3).
Even though a single arithmetic operation causes a small error that can be

neglected, a succession of arithmetic operations can well result in a significant error,
owing to error propagation. It is like the small microorganisms that we all carry in
our bodies: if our defense mechanism is in good order, the microorganisms cause no
harm, in spite of their large presence. If for some reason our defenses are weakened,
then all of a sudden they can play havoc with our health. The same is true in machine
computation: the rounding errors, although widespread, will cause little harm unless
our computations contain some weak spots that allow rounding errors to take over
to the point of completely invalidating the results. We learn about one such weak
spot (indeed the only one) in the next section.1

1.2.2 Error Propagation in Arithmetic Operations:
Cancellation Error

We now study the extent to which the basic arithmetic operations propagate
errors already present in their operands. Previously, in Sect. 1.2.1, we assumed the

1Rounding errors can also have significant implications in real life. One example, taken from
politics, concerns the problem of apportionment: how should the representatives in an assembly,
such as the US House of Representatives or the Electoral College, be constituted to fairly reflect
the size of population in the various states? If the total number of representatives in the assembly
is given, say, A, the total population of the US is P , and the population of State i is pi , then State
i should be allocated

ri D pi

P
A

representatives. The problem is that ri is not an integer, in general. How then should ri be rounded
to an integer r�

i ? One can think of three natural criteria to be imposed: (1) r�

i should be one
of the two integers closest to ri (“quota condition”). (2) If A is increased, all other things being
the same, then r�

i should not decrease (“house monotonicity”). (3) If pi is increased, the other pj
remaining constant, then r�

i should not decrease (“population monotonicity”). Unfortunately, there
is no apportionment method that satisfies all three criteria. There is indeed a case in US history
when Samuel J. Tilden lost his bid for the presidency in 1876 in favor of Rutherford B. Hayes,
purely on the basis of the apportionment method adopted on that occasion (which, incidentally,
was not the one prescribed by law at the time).
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operands to be exact machine-representable numbers and discussed the errors due to
imperfect execution of the arithmetic operations by the computer. We now change
our viewpoint and assume that the operands themselves are contaminated by errors,
but the arithmetic operations are carried out exactly. (We already know what to do,
cf. (1.15), when we are dealing with machine operations.) Our interest is in the
errors in the results caused by errors in the data.

(a) Multiplication. We consider values x.1 C "x/ and y.1 C "y/ of x and y

contaminated by relative errors "x and "y , respectively. What is the relative error
in the product? We assume "x, "y sufficiently small so that quantities of second
order, "2x, "x"y , "2y – and even more so, quantities of still higher order – can be
neglected against the epsilons themselves. Then

x.1C "x/ � y.1C "y/ D x � y .1C "x C "y C "x"y/ � x � y .1C "x C "y/:

Thus, the relative error "x�y in the product is given (at least approximately) by

"x�y D "x C "y; (1.16)

that is, the (relative) errors in the data are being added to produce the (relative)
error in the result. We consider this to be acceptable error propagation, and in
this sense, multiplication is a benign operation.

(b) Division. Here we have similarly (if y ¤ 0)

x.1C "x/

y.1C "y/
D x

y
.1C "x/.1 � "y C "2y � C � � � /

� x

y
.1C "x � "y/;

that is,
"x=y D "x � "y: (1.17)

Also division is a benign operation.
(c) Addition and subtraction. Since x and y can be numbers of arbitrary signs, it

suffices to look at addition. We have

x.1C "x/C y.1C "y/ D x C y C x"x C y"y

D .x C y/

�
1C x"x C y"y

x C y

�
;

assuming x C y ¤ 0. Therefore,

"xCy D x

x C y
"x C y

x C y
"y: (1.18)
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↓
x = 1 0 1 1 0 0 1 0 1 b b g g g g e

y = 1 0 1 1 0 0 1 0 1 b b g g g g e

x − y = 0 0 0 0 0 0 0 0 0 b b g g g g e

= b b g g g g ? ? ? ? ? ? ? ? ? e − 9
↑

Fig. 1.3 The cancellation phenomenon

As before, the error in the result is a linear combination of the errors in the
data, but now the coefficients are no longer ˙1 but can assume values that are
arbitrarily large. Note first, however, that when x and y have the same sign, then
both coefficients are positive and bounded by 1, so that

j"xCyj � j"xj C j"yj .x � y > 0/I (1.19)

addition, in this case, is again a benign operation. It is only when x and y have
opposite signs that the coefficients in (1.18) can be arbitrarily large, namely, when
jxC yj is arbitrarily small compared to jxj and jyj. This happens when x and y are
almost equal in absolute value, but opposite in sign. The large magnification of error
then occurring in (1.18) is referred to as cancellation error. It is the only serious
weakness – the Achilles heel, as it were – of numerical computation, and it should
be avoided whenever possible. In particular, one should be prepared to encounter
cancellation effects not only in single devastating amounts, but also repeatedly over
a long period of time involving “small doses” of cancellation. Either way, the end
result can be disastrous.

We illustrate the cancellation phenomenon schematically in Fig. 1.3, where b,
b0, b00 stand for binary digits that are reliable, and the g represent binary digits
contaminated by error; these are often called “garbage” digits. Note in Fig. 1.3 that
“garbage – garbage D garbage,” but, more importantly, that the final normalization
of the result moves the first garbage digit from the 12th position to the 3rd.

Cancellation is such a serious matter that we wish to give a number of elementary
examples, not only of its occurrence, but also of how it might be avoided.

Examples. 1. An algebraic identity: .a � b/2 D a2 � 2ab C b2. Although this is
a valid identity in algebra, it is no longer valid in machine arithmetic. Thus, on
a 2-decimal-digit computer, with a D 1.8, b D 1.7, we get, using symmetric
rounding,

fl.a2 � 2ab C b2/ D 3:2 � 6:2C 2:9 D �0:10
instead of the true result 0.010, which we obtain also on our 2-digit computer
if we use the left-hand side of the identity. The expanded form of the square
thus produces a result which is off by one order of magnitude and on top has
the wrong sign.
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2. Quadratic equation: x2�56xC1 D 0. The usual formula for a quadratic gives,
in 5-decimal arithmetic,

x1 D 28� p
783 D 28� 27:982 D 0:018000;

x2 D 28C p
783 D 28C 27:982 D 55:982:

This should be contrasted with the exact roots 0.0178628. . . and 55.982137. . . .
As can be seen, the smaller of the two is obtained to only two correct decimal
digits, owing to cancellation. An easy way out, of course, is to compute x2 first,
which involves a benign addition, and then to compute x1 D 1=x2 by Vieta’s
formula, which again involves a benign operation – division. In this way we
obtain both roots to full machine accuracy.

3. Compute y D p
x C ı –

p
x, where x > 0 and jıj is very small. Clearly, the

formula as written causes severe cancellation errors, since each square root has
to be rounded. Writing instead

y D ıp
x C ı C p

x

completely removes the problem.
4. Compute y D cos.x C ı/ � cosx, where jıj is very small. Here cancellation

can be avoided by writing y in the equivalent form

y D �2 sin
ı

2
sin

�
x C ı

2

�
:

5. Compute y D f .xCı/�f .x/, where jıj is very small and f a given function.
Special tricks, such as those used in the two preceding examples, can no longer
be played, but if f is sufficiently smooth in the neighborhood of x, we can use
Taylor expansion:

y D f 0.x/ı C 1

2
f 00.x/ı2 C � � � :

The terms in this series decrease rapidly when jıj is small so that cancellation
is no longer a problem.

Addition is an example of a potentially ill-conditioned function (of two vari-
ables). It naturally leads us to study the condition of more general functions.

1.3 The Condition of a Problem

A problem typically has an input and an output. The input consists of a set of
data, say, the coefficients of some equation, and the output of another set of
numbers uniquely determined by the input, say, all the roots of the equation in some
prescribed order. If we collect the input in a vector x 2 R

m (assuming the data
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Px y

Fig. 1.4 Black box representation of a problem

consist of real numbers), and the output in the vector y 2 R
n (also assumed real),

we have the black box situation shown in Fig. 1.4, where the box P accepts some
input x and then solves the problem for this input to produce the output y .

We may thus think of a problem as a map f , given by

f W R
m ! R

n; y D f .x/: (1.20)

(One or both of the spaces Rm, Rn could be complex spaces without changing in any
essential way the discussion that follows.) What we are interested in is the sensitivity
of the map f at some given point x to a small perturbation of x, that is, how much
bigger (or smaller) the perturbation in y is compared to the perturbation in x. In
particular, we wish to measure the degree of sensitivity by a single number – the
condition number of the map f at the point x. We emphasize that, as we perturb
x, the function f is always assumed to be evaluated exactly, with infinite precision.
The condition of f , therefore, is an inherent property of the map f and does not
depend on any algorithmic considerations concerning its implementation.

This is not to say that knowledge of the condition of a problem is irrelevant
to any algorithmic solution of the problem. On the contrary, the reason is that
quite often the computed solution y� of (1.20) (computed in floating-point machine
arithmetic, using a specific algorithm) can be demonstrated to be the exact solution
to a “nearby” problem, that is,

y� D f .x�/; (1.21)

where x� is a vector close to the given data x,

x� D x C ı; (1.22)

and moreover, the distance kık of x� to x can be estimated in terms of the machine
precision. Therefore, if we know how strongly (or weakly) the map f reacts to a
small perturbation, such as ı in (1.22), we can say something about the error y� �y

in the solution caused by this perturbation. This, indeed, is an important technique
of error analysis – known as backward error analysis – which was pioneered in the
1950s by J. W. Givens, C. Lanczos, and, above all, J. H. Wilkinson.

Maps f between more general spaces (in particular, function spaces) have also
been considered from the point of view of conditioning, but eventually, these spaces
have to be reduced to finite-dimensional spaces for practical implementation of the
maps in question.
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1.3.1 Condition Numbers

We start with the simplest case of a single function of one variable.
The case m D n D 1: y D f .x/. Assuming first x ¤ 0, y ¤ 0, and denoting

by�x a small perturbation of x, we have for the corresponding perturbation�y by
Taylor’s formula

�y D f .x C�x/� f .x/ � f 0.x/�x; (1.23)

assuming that f is differentiable at x. Since our interest is in relative errors, we
write this in the form

�y

y
� xf 0.x/

f .x/
� �x
x
: (1.24)

The approximate equality becomes a true equality in the limit as �x ! 0. This
suggests that the condition of f at x be defined by the quantity

.condf /.x/ WD
ˇ̌
ˇ̌xf

0.x/
f .x/

ˇ̌
ˇ̌ : (1.25)

This number tells us how much larger the relative perturbation in y is compared to
the relative perturbation in x.

If x D 0 and y ¤ 0, it is more meaningful to consider the absolute error
measure for x and for y still the relative error. This leads to the condition number
jf 0.x/=f .x/j. Similarly for y D 0, x ¤ 0. If x D y D 0, the condition number by
(1.23) would then simply be jf 0.x/j.

The case of arbitrary m; n: here we write

x D Œx1; x2; : : : ; xm�
T 2 R

m; y D Œy1; y2; : : : ; yn�
T 2 R

n

and exhibit the map f in component form

y� D f�.x1; x2; : : : ; xm/; � D 1; 2; : : : ; n: (1.26)

We assume again that each function f� has partial derivatives with respect to all m
variables at the point x. Then the most detailed analysis departs from considering
each component y� as a function of one single variable, x�. In other words, we
subject only one variable, x�, to a small change and observe the resulting change in
just one component, y� . Then we can apply (1.25) and obtain

���.x/ WD .cond��f /.x/ WD
ˇ̌
ˇ̌
ˇ̌
x�

@f�
@x�

f�.x/

ˇ̌
ˇ̌
ˇ̌ : (1.27)
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This gives us a whole matrix �.x/ D Œ���.x/� 2 R
n�mC of condition numbers.

To obtain a single condition number, we can take any convenient measure of the
“magnitude” of the matrix �.x/ such as one of the matrix norms defined in (1.30),

.cond f /.x/ D k�.x/k; �.x/ D Œ���.x/�: (1.28)

The condition so defined, of course, depends on the choice of norm, but the order
of magnitude (and that is all that counts) should be more or less the same for any
reasonable norm.

If a component of x, or of y , vanishes, one modifies (1.27) as discussed earlier.
A less-refined analysis can be modeled after the one-dimensional case by

defining the relative perturbation of x 2 R
m to mean

k�xkRm
kxkRm ; �x D Œ�x1;�x2; : : : ; �xm�

T; (1.29)

where �x is a perturbation vector whose components �x� are small compared to
x�, and where k � kRm is some vector norm in R

m. For the perturbation�y caused by
�x, one defines similarly the relative perturbation k�ykRn=kykRn , with a suitable
vector norm k � kRn in R

n. One then tries to relate the relative perturbation in y to
the one in x.

To carry this out, one needs to define a matrix norm for matrices A 2 R
n�m. We

choose the so-called “operator norm,”

kAkRn�m WD max
x2Rm

x¤0

kAxkRn
kxkRm : (1.30)

In the following we take for the vector norms the “uniform” (or infinity) norm,

kxkRm D max
1���m jx�j DW kxk1; kykRn D max

1���n jy� j DW kyk1 : (1.31)

It is then easy to show that (cf. Ex. 32)

kAkRn�m D kAk1 WD max
1���n

mX

�D1
ja��j; A D Œa��� 2 R

n�m: (1.32)

Now in analogy to (1.23), we have

�y� D f�.x C�x/ � f�.x/ �
mX

�D1

@f�

@x�
�x�



1.3 The Condition of a Problem 15

with the partial derivatives evaluated at x. Therefore, at least approximately,

j�y� j �
mX

�D1

ˇ̌
ˇ̌ @f�
@x�

ˇ̌
ˇ̌ j�x�j � max

�
j�x�j �

mX

�D1

ˇ̌
ˇ̌ @f�
@x�

ˇ̌
ˇ̌

� max
�

j�x�j � max
�

mX

�D1

ˇ̌
ˇ̌ @f�
@x�

ˇ̌
ˇ̌ :

Since this holds for each � D 1; 2; : : : ; n, it also holds for max
�

j�y�j, giving, in

view of (1.31) and (1.32),

k�yk1 � k�xk1
����
@f

@x

����1
: (1.33)

Here,

@f

@x
D

2

6666666666664

@f1

@x1

@f1

@x2
� � � @f1

@xm

@f2

@x1

@f2

@x2
� � � @f2

@xm

� � � � � �
@fn

@x1

@fn

@x2
� � � @fn

@xm

3

7777777777775

2 R
n�m (1.34)

is the Jacobian matrix of f . (This is the analogue of the first derivative for systems
of functions of several variables.) From (1.33) one now immediately obtains for the
relative perturbations

k�yk1
kyk1

� kxk1 k@f =@xk1
kf .x/k1

� k�xk1
kxk1

:

Although this is an inequality, it is sharp in the sense that equality can be achieved
for a suitable perturbation �x. We are justified, therefore, in defining a global
condition number by

.cond f /.x/ WD kxk1k@f =@xk1
kf .x/k1

: (1.35)

Clearly, in the case m D n D 1, definition (1.35) reduces precisely to definition
(1.25) (as well as (1.28)) given earlier. In higher dimensions (m and/or n larger than
1), however, the condition number in (1.35) is much cruder than the one in (1.28).
This is because norms tend to destroy detail: if x, for example, has components
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of vastly different magnitudes, then kxk1 is simply equal to the largest of these
components, and all the others are ignored. For this reason, some caution is required
when using (1.35).

To give an example, consider

f .x/ D

2

6664

1

x1
C 1

x2

1

x1
� 1

x2

3

7775 ; x D

2

664
x1

x2

3

775 :

The components of the condition matrix �.x/ in (1.27) are then

�11 D
ˇ̌
ˇ̌ x2

x1 C x2

ˇ̌
ˇ̌ ; �12 D

ˇ̌
ˇ̌ x1

x1 C x2

ˇ̌
ˇ̌ ; �21 D

ˇ̌
ˇ̌ x2

x2 � x1

ˇ̌
ˇ̌ ; �22 D

ˇ̌
ˇ̌ x1

x2 � x1

ˇ̌
ˇ̌ ;

indicating ill-conditioning if either x1 � x2 or x1 � �x2 and jx1j (hence also jx2j)
is not small. The global condition number (1.35), on the other hand, since

@f

@x
.x/ D � 1

x21x
2
2

2

664
x22 x21

x22 �x21

3

775 ;

becomes, when L1 vector and matrix norms are used (cf. Ex. 33),

.cond f /.x/ D
kxk1 � 2

x21x
2
2

max.x21 ; x
2
2/

1

jx1x2j .jx1 C x2j C jx1 � x2j/
D 2

jx1j C jx2j
jx1x2j

max.x21 ; x
2
2/

jx1 C x2j C jx1 � x2j :

Here x1 � x2 or x1 � �x2 yields .cond f /.x/ � 2, which is obviously misleading.

1.3.2 Examples

We illustrate the idea of numerical condition in a number of examples, some of
which are of considerable interest in applications.

1. Compute In D
Z 1

0

tn

t C 5
dt for some fixed integer n � 1. As it stands, the

example here deals with a map from the integers to reals and therefore does
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y
0

fn yn

Fig. 1.5 Black box for recursion (1.38)

not fit our concept of “problem” in (1.20). However, we propose to compute In
recursively by relating Ik to Ik�1 and noting that

I0 D
Z 1

0

dt

t C 5
D ln.t C 5/

ˇ̌
ˇ̌
1

0

D ln
6

5
: (1.36)

To find the recursion, observe that

t

t C 5
D 1 � 5

t C 5
:

Thus, multiplying both sides by tk�1 and integrating from 0 to 1 yields

Ik D �5Ik�1 C 1

k
; k D 1; 2; : : : ; n: (1.37)

We see that Ik is a solution of the (linear, inhomogeneous, first-order) difference
equation

yk D �5yk�1 C 1

k
; k D 1; 2; 3; : : : : (1.38)

We now have what appears to be a practical scheme to compute In: start with
y0 D I0 given by (1.36) and then apply in succession (1.38) for k D 1; 2; : : : ; n;
then yn D In. Recursion (1.38), for any starting value y0, defines a function,

yn D fn.y0/: (1.39)

We have the black box in Fig. 1.5 and thus a problem fn W R ! R. (Here n
is a parameter.) We are interested in the condition of fn at the point y0 D I0
given by (1.36). Indeed, I0 in (1.36) is not machine representable and must be
rounded to I�

0 before recursion (1.38) can be employed. Even if no further errors
are introduced during the recursion, the final result will not be exactly In, but
some approximation I�

n D fn.I
�
0 /, and we have, at least approximately (actually

exactly; see the remark after (1.46)),

ˇ̌
ˇ̌I

�
n � In
In

ˇ̌
ˇ̌ D .condfn/.I0/

ˇ̌
ˇ̌I

�
0 � I0

I0

ˇ̌
ˇ̌ : (1.40)



18 1 Machine Arithmetic and Related Matters

To compute the condition number, note that fn is a linear function of y0.
Indeed, if n D 1, then

y1 D f1.y0/ D �5y0 C 1:

If n D 2, then

y2 D f2.y0/ D �5y1 C 1

2
D .�5/2y0 � 5C 1

2
;

and so on. In general,

yn D fn.y0/ D .�5/ny0 C pn;

where pn is some number (independent of y0). There follows

.condfn/.y0/ D
ˇ̌
ˇ̌y0f

0
n.y0/

yn

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌y0.�5/n

yn

ˇ̌
ˇ̌ : (1.41)

Now, if y0 D I0, then yn D In, and from the definition of In as an integral it is
clear that In decreases monotonically in n (and indeed converges monotonically
to zero as n ! 1). Therefore,

.condfn/.I0/ D I0 � 5n
In

>
I0 � 5n
I0

D 5n: (1.42)

We see that fn.y0/ is severely ill-conditioned at y0 D I0, the more so the
larger n.

We could have anticipated this result by just looking at the recursion (1.38):
we keep multiplying by (–5), which tends to make things bigger, whereas
they should get smaller. Thus, there will be continuous cancellation occurring
throughout the recursion.

How can we avoid this ill-conditioning? The clue comes from the remark
just made: instead of multiplying by a large number, we would prefer dividing
by a large number, especially if the results get bigger at the same time. This is
accomplished by reversing recurrence (1.38), that is, by choosing an � > n and
computing

yk�1 D 1

5

�
1

k
� yk

�
; k D �; � � 1; : : : ; nC 1: (1.43)

The problem then, of course, is how to compute the starting value y� . Before we
deal with this, let us observe that we now have a new black box, as shown in
Fig. 1.6.

As before, the function involved, gn, is a linear function of y� , and an
argument similar to the one leading to (1.41) then gives
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yv yngn (v > n)

Fig. 1.6 Black box for the recursion (1.43)

.condgn/.y�/ D
ˇ̌
ˇ̌
ˇ
y�
�� 1

5

���n

yn

ˇ̌
ˇ̌
ˇ; � > n: (1.44)

For y� D I� , we get, again by the monotonicity of In,

.condgn/.I�/ <

�
1

5

���n
; � > n: (1.45)

In analogy to (1.40), we now have

ˇ̌
ˇ̌I

�
n � In
In

ˇ̌
ˇ̌ D .condgn/.I�/

ˇ̌
ˇ̌I

�
� � I�

I�

ˇ̌
ˇ̌ <

�
1

5

���n ˇ̌
ˇ̌I

�
� � I�

I�

ˇ̌
ˇ̌; (1.46)

where I�
� is some approximation of I� . Actually, I�

� does not even have to be
close to I� for (1.46) to hold, since the function gn is linear. Thus, we may take
I�
� D 0, committing a 100% error in the starting value, yet obtaining I�

n with a
relative error ˇ̌

ˇ̌I
�
n � In

In

ˇ̌
ˇ̌ <

�
1

5

���n
; � > n: (1.47)

The bound on the right can be made arbitrarily small, say, � ", if we choose �
large enough, for example,

� � nC ln 1
"

ln 5
: (1.48)

The final procedure, therefore, is: given the desired relative accuracy ", choose �
to be the smallest integer satisfying (1.48) and then compute

I�
� D 0;

I�
k�1 D 1

5

�
1

k
� I�

k

�
; k D �; � � 1; : : : ; nC 1:

(1.49)

This will produce a sufficiently accurate I�
n � In, even in the presence of

rounding errors committed in (1.49): they, too, will be consistently attenuated.
Similar ideas can be applied to the more important problem of computing

solutions to second-order linear recurrence relations such as those satisfied by
Bessel functions and many other special functions of mathematical physics.
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The procedure of backward recurrence is then closely tied up with the theory
of continued fractions.

2. Algebraic equations: these are equations involving a polynomial of given
degree n,

p.x/ D 0; p.x/ D xn C an�1xn�1 C � � � C a1x C a0; a0 ¤ 0: (1.50)

Let � be some fixed root of the equation, which we assume to be simple,

p.�/ D 0; p0.�/ ¤ 0: (1.51)

The problem then is to find �, given p. The data vector a D Œa0; a1; : : : ; an�1�T
2 R

n consists of the coefficients of the polynomial p, and the result is �, a real
or complex number. Thus, we have

� W R
n ! C; � D �.a0; a1; : : : ; an�1/: (1.52)

What is the condition of �? We adopt the detailed approach of (1.27) and first
define

�� D .cond� �/.a/ D
ˇ̌
ˇ̌
ˇ
a�

@�

@a�

�

ˇ̌
ˇ̌
ˇ; � D 0; 1; : : : ; n � 1: (1.53)

Then we take a convenient norm, say, the L1 norm k�k1 WD Pn�1
�D0 j��j of the

vector � D Œ�0; : : : ; �n�1�T, to define

.cond �/.a/ D
n�1X

�D0
.cond� �/.a/: (1.54)

To determine the partial derivative of � with respect to a� , observe that we have
the identity

Œ�.a0; a1; : : : ; an/�
n C an�1Œ�.� � � /�n�1 C � � � C a�Œ�.� � � /�� C � � � C a0 	 0:

Differentiating this with respect to a� , we get

nŒ�.a0; a1; : : : ; an/�
n�1 @�

@a�
C an�1.n � 1/Œ�.� � � /�n�2 @�

@a�
C � � �

C a��Œ�.� � � /���1 @�
@a�

C � � � C a1
@�

@a�
C Œ�.� � � /�� 	 0;

where the last term comes from differentiating the first factor in the product a��� .
The last identity can be written as
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p0.�/
@�

@a�
C �� D 0:

Since p0.�/ ¤ 0, we can solve for @�=@a� and insert the result in (1.53) and
(1.54) to obtain

.cond �/.a/ D 1

j�p0.�/j
n�1X

�D0
ja� j j�j�: (1.55)

We illustrate (1.55) by considering the polynomial p of degree n that has the
zeros 1; 2; : : : ; n,

p.x/ D
nY

�D1
.x � �/ D xn C an�1xn�1 C � � � C a0: (1.56)

This is a famous example due to J. H. Wilkinson, who discovered the ill-
conditioning of some of the zeros almost by accident. If we let �� D �,
� D 1; 2; : : : ; n, it can be shown that

min
�

cond �� D cond �1 
 n2 as n ! 1;

max
�

cond �� 
 1�
2 � p

2
�
	n

 p
2C 1p
2 � 1

!n
as n ! 1:

The worst-conditioned root is ��0 with �0 the integer closest to n=
p
2, when n is

large. Its condition number grows like .5:828 : : : /n, thus exponentially fast in n.
For example, when n D 20, then cond ��0 D 0:540 � 1014.

The example teaches us that the roots of an algebraic equation written in the
form (1.50) can be extremely sensitive to small changes in the coefficients a� . It
would, therefore, be ill-advised to express every polynomial in terms of powers,
as in (1.56) and (1.50). This is particularly true for characteristic polynomials of
matrices. It is much better here to work with the matrices themselves and try to
reduce them (by similarity transformations) to a form that allows the eigenvalues
– the roots of the characteristic equation – to be read off relatively easily.

3. Systems of linear algebraic equations: given a nonsingular square matrix A 2
R
n�n, and a vector b 2 R

n, the problem now discussed is solving the system

Ax D b: (1.57)

Here the data are the elements of A and b, and the result the vector x. The map in
question is thus Rn

2Cn ! R
n. To simplify matters, let us assume that A is a fixed

matrix not subject to change, and only the vector b is undergoing perturbations.
We then have a map f W R

n ! R
n given by

x D f .b/ WD A�1b:
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It is in fact a linear map. Therefore, @f =@b D A�1, and we get, using (1.35),

.cond f /.b/ D kbk kA�1k
kA�1bk ; (1.58)

where we may take any vector norm in R
n and associated matrix norm

(cf. (1.30)). We can write (1.58) alternatively in the form

.cond f /.b/ D kAxk kA�1k
kxk .where Ax D b/;

and since there is a one-to-one correspondence between x and b, we find for the
worst condition number

max
b2Rn

b¤0

.cond f /.b/ D max
x2Rn

x¤0

kAxk
kxk � kA�1k D kAk � kA�1k ;

by definition of the norm of A. The number on the far right no longer depends on
the particular system (i.e., on b) and is called the condition number of the matrix
A. We denote it by

cond A WD kAk � kA�1k : (1.59)

It should be clearly understood, though, that it measures the condition of a linear
system with coefficient matrix A, and not the condition of other quantities that
may depend on A, such as eigenvalues.

Although we have considered only perturbations in the right-hand vector b, it
turns out that the condition number in (1.59) is also relevant when perturbations
in the matrix A are allowed, provided they are sufficiently small (so small, for
example, that k�Ak � kA�1k < 1).

We illustrate (1.59) by several examples.

(a) Hilbert2 matrix:

2David Hilbert (1862–1943) was the most prominent member of the Göttingen school of mathe-
matics. Hilbert’s fundamental contributions to almost all parts of mathematics – algebra, number
theory, geometry, integral equations, calculus of variations, and foundations – and in particular the
23 now famous problems he proposed in 1900 at the International Congress of Mathematicians
in Paris gave a new impetus, and new directions, to 20th-century mathematics. Hilbert is also
known for his work in mathematical physics, where among other things he formulated a variationl
principle for Einstein’s equations in the theory of relativity.
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H n D

2

666666666664

1
1

2
� � � 1

n

1

2

1

3
� � � 1

nC 1

� � � � � � � � � � � �
1

n

1

nC 1
� � � 1

2n � 1

3

777777777775

2 R
n�n: (1.60)

This is clearly a symmetric matrix, and it is also positive definite. Some
numerical values for the condition number of H n, computed with the
Euclidean norm,3 are shown in Table 1.1. Their rapid growth is devastating.

Table 1.1 The condition of
Hilbert matrices

n cond2H n

10 1:60 � 1013

20 2:45 � 1028

40 7:65 � 1058

A system of order nD 10, for example, cannot be solved with any reliability
in single precision on a 14-decimal computer. Double precision will be
“exhausted” by the time we reach nD 20. The Hilbert matrix thus is a
prototype of an ill-conditioned matrix. From a result of G. Szegő it can be
seen that

cond2H n 

�p

2C 1
�4nC4

215=4
p
	n

as n ! 1:

(b) Vandermonde4 matrices: these are matrices of the form

3We have cond2H n D 
max.H n/ � 
max.H
�1
n /, where 
max.A/ denotes the largest eigenvalue of

the (symmetric, positive definite) matrix A. The eigenvalues of H n and H �1
n are easily computed

by the Matlab routine eig, provided that the inverse of H n is computed directly from well-known
formulae (not by inversion); see MA 9.
4Alexandre Théophile Vandermonde (1735–1796), a musician by training, but through acquain-
tance with Fontaine turned mathematician (temporarily), and even elected to the French Academy
of Sciences, produced a total of four mathematical papers within 3 years (1770–1772). Though
written by a novice to mathematics, they are not without interest. The first, e.g., made notable
contributions to the then emerging theory of equations. By virtue of his fourth paper, he is
regarded as the founder of the theory of determinants. What today is referred to as “Vandermonde
determinant,” however, does not appear anywhere in his writings. As a member of the Academy,
he sat in a committee (together with Lagrange, among others) that was to define the unit of length –
the meter. Later in his life, he became an ardent supporter of the French revolution.
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V n D

2
66666664

1 1 � � � 1

t1 t2 � � � tn

� � �
� � �
� � �

tn�1
1 tn�1

2 � � � tn�1
n

3
77777775

2 R
n�n; (1.61)

where t1, t2; : : : ; tn are parameters, here assumed real. The condition number
of these matrices, in the 1-norm, has been studied at length. Here are some
sample results: if the parameters are equally spaced in [–1,1], that is,

t� D 1 � 2.� � 1/
n � 1 ; � D 1; 2; : : : ; n;

then

cond1V n 
 1

	
e�	=4en. 	4 C 1

2 ln 2/; n ! 1:

Numerical values are shown in Table 1.2. They are not growing quite as
fast as those for the Hilbert matrix, but still exponentially fast. Worse than
exponential growth is observed if one takes harmonic numbers as parameters,

Table 1.2 The condition of
Vandermonde matrices

n cond
1

V n

10 1:36 � 104

20 1:05 � 109

40 6:93 � 1018

80 3:15 � 1038

t� D 1

�
; � D 1; 2; : : : ; n:

Then indeed
cond1V n > n

nC1:

Fortunately, there are not many matrices occurring naturally in applications
that are that ill-conditioned, but moderately to severely ill-conditioned
matrices are no rarity in real-life applications.

1.4 The Condition of an Algorithm

We again assume that we are dealing with a problem f given by

f W R
m ! R

n; y D f .x/: (1.62)
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Along with the problem f , we are also given an algorithm A that “solves” the
problem. That is, given a machine vector x 2 R

m.t; s/, the algorithm A produces
a vector yA (in machine arithmetic) that is supposed to approximate y D f .x/.
Thus, we have another map fA describing how the problem f is solved by the
algorithm A,

fA W R
m.t; s/ ! R

n.t; s/; yA D fA.x/: (1.63)

In order to be able to analyze fA in these general terms, we must make a basic
assumption, namely, that

for every x 2 R
m.t; s/; there holds

fA.x/ D f .xA/ for some xA 2 R
m:

(1.64)

That is, the computed solution corresponding to some input x is the exact solution
for some different input xA (not necessarily a machine vector and not necessarily
uniquely determined) that we hope is close to x. The closer we can find an xA to
x, the more confidence we should place in the algorithm A. We therefore define
the condition of A in terms of the xA closest to x (if there is more than one), by
comparing its relative error with the machine precision eps:

.condA/.x/ D inf
xA

kxA � xk
kxk =eps: (1.65)

Here the infimum is over all xA satisfying yA D f .xA/. In practice, one can take
any such xA and then obtain an upper bound for the condition number:

.condA/.x/ � kxA � xk
kxk =eps: (1.66)

The vector norm in (1.65), respectively, (1.66), can be chosen as seems convenient.
Here are some very elementary examples.

1. Suppose a library routine for the logarithm function y D lnx, for any positive
machine number x, produces a yA satisfying yA D Œln x�.1 C "/, j"j � 5 eps.
What can we say about the condition of the underlying algorithm A? We clearly
have

yA D ln xA; where xA D x1C" .uniquely/:

Consequently,

ˇ̌
ˇ
xA � x

x

ˇ̌
ˇ D

ˇ̌
ˇ̌x

1C" � x

x

ˇ̌
ˇ̌ D jx" � 1j D ˇ̌

e" ln x � 1
ˇ̌ � j" lnxj � 5 jlnxj � eps;
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and, therefore, .condA/.x/ � 5 jlnxj. The algorithm A is well conditioned,
except in the immediate right-hand vicinity of x D 0 and for x very large. (In
the latter case, however, x is likely to overflow before A becomes seriously ill-
conditioned.)

2. Consider the problem

f W R
n ! R; y D x1x2 � � �xn:

We solve the problem by the obvious algorithm

p1 D x1;

A W pk D fl.xkpk�1/; k D 2; 3; : : : ; n;

yA D pn:

Note that x1 is machine representable, since for the algorithm A we assume x 2
R
n.t; s/.
Now using the basic law of machine arithmetic (cf. (1.15)), we get

p1 D x1;

pk D xkpk�1.1C "k/; k D 2; 3; : : : ; n; j"kj � eps;

from which

pn D x1x2 � � �xn.1C "2/.1C "3/ � � � .1C "n/:

Therefore, we can take for example (there is no uniqueness),

xA D Œx1; x2.1C "2/; : : : ; xn.1C "n/�
T:

This gives, using the 1-norm,

kxA � xk1
kxk1eps

D kŒ0; x2"2; : : : ; xn"n�Tk1
kxk1eps

� kxk1eps

kxk1eps
D 1;

and so, by (1.66), .condA/.x/ � 1 for any x 2 R
n.t; s/. Our algorithm, to nobody’s

surprise, is perfectly well conditioned.
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1.5 Computer Solution of a Problem; Overall Error

The problem to be solved is again

f W R
m ! R

n; y D f .x/: (1.67)

This is the mathematical (idealized) problem, where the data are exact real numbers,
and the solution is the mathematically exact solution.

When solving such a problem on a computer, in floating-point arithmetic with
precision eps, and using some algorithmA, one first of all rounds the data, and then
applies to these rounded data not f , but fA:

x� D rounded data;
kx� � xk

kxk D ";

y�
A D fA.x

�/:
(1.68)

Here " represents the rounding error in the data. (The error " could also be due to
sources other than rounding, e.g., measurement.) The total error that we wish to
estimate is then ky�

A � yk
kyk : (1.69)

By the basic assumption (1.64) made on the algorithm A, and choosing x�
A

optimally, we have

fA.x
�/ D f .x�

A/;
kx�

A � x�k
kx�k D .condA/.x�/ � eps: (1.70)

Let y� D f .x�/. Then, using the triangle inequality, we have

ky�
A � yk
kyk � ky�

A � y�k
kyk C ky� � yk

kyk � ky�
A � y�k
ky�k C ky� � yk

kyk ;

where we have used the (harmless) approximation kyk � ky�k. By virtue of (1.70),
we now have for the first term on the right,

ky�
A � y�k
ky�k D kfA.x

�/ � f .x�/k
kf .x�/k D kf .x�

A/ � f .x�/k
kf .x�/k

� .cond f /.x�/ � kx�
A � x�k
kx�k

D .cond f /.x�/ � .condA/.x�/ � eps:
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For the second term we have

ky� � yk
kyk D kf .x�/� f .x/k

kf .x/k � .cond f /.x/ � kx� � xk
kxk D .cond f /.x/ � ":

Assuming finally that .cond f /.x�/ � .cond f /.x/, we get

ky�
A � yk
kyk � .cond f /.x/f"C .condA/.x�/ � epsg: (1.71)

This shows how the data error and machine precision contribute toward the total
error: both are amplified by the condition of the problem, but the latter is further
amplified by the condition of the algorithm.

1.6 Notes to Chapter 1

In addition to rounding errors in the data and those committed during the execution
of arithmetic operations, there may be other sources of errors not considered in this
introductory chapter. One such source of error, which is not entirely dismissible, is
a faulty design of the computer chip that executes arithmetic operations. This was
brought home in an incident several years ago, when it was discovered (by Thomas
Nicely in the course of number-theoretic computations involving reciprocals of
twin primes) that the Pentium floating-point divide chip manufactured by Intel can
produce erroneous results for certain (extremely rare) bit patterns in the divisor. The
incident – rightly so – has stirred up considerable concern and prompted not only
remedial actions but also careful analysis of the phenomenon; some relevant articles
are those by Coe et al. [1995] and Edelman [1997].

Neither should the occurrence of overflow and proper handling thereof be taken
lightly, especially not in real-time applications. Again, a case in point is the failure of
the French rocket Ariane 5, which on June 4, 1996, less than a minute into its flight,
self-destructed. The failure was eventually traced to an overflow in a floating-point
to integer conversion and lack of protection against this occurrence in the rocket’s
on-board software (cf. Anonymous [1996]).

Many of the topics covered in this chapter, but also the effect of finite precision
computation on convergence and stability of mathematical processes, and issues of
error analyses are dealt with in Chaitin-Chatelin and Frayssé [1996].

Section 1.1.1. The abstract notion of the real number system is discussed in most
texts on real analysis, for example, Hewitt and Stromberg [1975, Chap. 1, Sect. 1.5]
or Rudin [1976, Chap. 1]. The development of the concept of real (and complex)
numbers has had a long and lively history, extending from pre-Hellenic times to the
recent past. Many of the leading thinkers over time contributed to this development.
A reader interested in a detailed historical account (and who knows German) is
referred to the monograph by Gericke [1970].
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Section 1.1.2.1. The notion of the floating-point number system and associated
arithmetic, including interval arithmetic, can also be phrased in abstract algebraic
terms; see, for example, Kulisch and Miranker [1981]. For a comprehensive treat-
ment of computer arithmetic, including questions of validation, see Kulisch [2008].
A more elementary, but detailed, discussion of floating-point numbers and arith-
metic is given in Sterbenz [1974]. There the reader will learn, for example, that
computing the average of two floating-point numbers, or solving a quadratic
equation, can be fairly intricate tasks if they are to be made foolproof. The
quadratic equation problem is also considered at some length in Young and
Gregory [1988, Sect. 3.4], where further references are given to earlier work of
W. Kahan and G. E. Forsythe.

The basic standard for binary floating-point arithmetic, used on all contemporary
computers, is the ANSI/IEEE Standard 754 established in IEEE [1985]. It provides
for t D 23 bits in the mantissa and s D 7 bits in the exponent, in single-
precision arithmetic, and has t D 52, s D 11 in double precision. There is also
an “extended precision” for which t D 63, s D 14, allowing for a number range
of approx. 10�4964 to 10C4964. A good source for IEEE floating-point arithmetic is
Overton [2001].

Section 1.1.2.3. Rational arithmetic is available in all major symbolic computation
packages such as Mathematica and Macsyma.

Interval arithmetic has evolved to become an important tool in computations that
strive at obtaining guaranteed and sharp inclusion regions for the results of mathe-
matical problems. Basic texts on (real) interval analysis are Moore [1966], [1979],
Alefeld and Herzberger [1983], and Moore et al. [2009], whereas complex interval
arithmetic is treated in Petković and Petković [1998]. For the newly evolving field
of validated numerics we refer to Tucker [2011]. Specific applications such as
computing inclusions of the range of functions, of global extrema of functions
of one and several variables, and of solutions to systems of linear and nonlinear
equations are studied, respectively, in Ratschek and Rokne [1984], [1988], Hansen
and Walster [2004], and Neumaier [1990]. Other applications, e.g., to parameter
estimation, robust control, and robotics can be found in Jaulin et al. [2001].
Concrete algorithms and codes (in Pascal and CCC) for “verified computing” are
contained in Hammer et al. [1993], [1995]. Interval arithmetic has been most widely
used in processes involving finite-dimensional spaces; for applications to infinite-
dimensional problems, notably differential equations, see, however, Eijgenraam
[1981] and Kaucher and Miranker [1984]. For a recent expository account, see also
Rump [2010].

Section 1.2. For floating-point arithmetic, see the handbook by Muller et al. [2010].
The fact that thoughtless use of mathematical formulae and numerical methods, or
inherent sensitivities in a problem, can lead to disastrous results has been known
since the early days of computers; see, for example, the old but still relevant
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papers by Stegun and Abramowitz [1956] and Forsythe [1970]. Nearby singularities
can also cause the accuracy to deteriorate unless corrective measures are taken;
Forsythe [1958] has an interesting discussion of this.

Section 1.2.1. For the implications of rounding in the problem of apportion-
ment, mentioned in footnote 1, a good reference is Garfunkel and Steen,
eds. [1988, Chap. 12, pp.230–249].

Section 1.3.1. An early but basic reference for ideas of conditioning and error anal-
ysis in algebraic processes is Wilkinson [1994]. An impressive continuation of this
work, containing copious references to the literature, is Higham [2002]. It analyzes
the behavior in floating-point arithmetic of virtually all the algebraic processes
in current use. Problems of conditioning specifically involving polynomials are
discussed in Gautschi [1984]. The condition of general (differentiable) maps has
been studied as early as 1966 in Rice [1966].

Section 1.3.2. 1. For a treatment of stability aspects of more general difference
equations, and systems thereof, including nonlinear ones, the reader is referred to
the monograph by Wimp [1984]. This also contains many applications to special
functions. Other relevant texts are Lakshmikantham and Trigiante [2002] and
Elaydi [2005].

2. The condition of algebraic equations, although considered already in 1963 by
Wilkinson, has been further analyzed by Gautschi [1973]. The circumstances
that led to Wilkinson’s example (1.56), which he himself describes as “the
most traumatic experience in [his] career as a numerical analyst,” are related
in the essay Wilkinson [1984, Sect. 2]. This reference also deals with errors
committed in the evaluation and deflation of polynomials. For the latter, also
see Cohen [1994]. The asymptotic estimates for the best- and worst-conditioned
roots in Wilkinson’s example are from Gautschi [1973]. For the computation
of eigenvalues of matrices, the classic treatment is Wilkinson [1988]; more
recent accounts are Parlett [1998] for symmetric matrices and Golub and Van
Loan [1996, Chap. 7–9] for general matrices.

3. A more complete analysis of the condition of linear systems that also allows for
perturbations of the matrix can be found, for example, in the very readable books
by Forsythe and Moler [1967, Chap. 8] and Stewart [1973, Chap. 4, Sect. 3]. The
asymptotic result of Szegő cited in connection with the Euclidean condition
number of the Hilbert matrix is taken from Szegő [1936]. For the explicit inverse
of the Hilbert matrix, referred to in footnote 3, see Todd [1954]. The condition
of Vandermonde and Vandermonde-like matrices has been studied in a series of
papers by the author; for a summary, see Gautschi [1990], and Gautschi [2011b]
for optimally scaled and optimally conditioned Vandermonde and Vandermonde-
like matrices.

Sections 1.4 and 1.5. The treatment of the condition of algorithms and of the overall
error in computer solutions of problems, as given in these sections, seems to be more
or less original. Similar ideas, however, can be found in the book by Dahlquist and
Björck [2008, Sect. 2.4].
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Exercises and Machine Assignments to Chapter 1

Exercises

1. Represent all elements of RC.3; 2/ D fx 2 R.3; 2/ W x > 0; x normalizedg as
dots on the real axis. For clarity, draw two axes, one from 0 to 8, the other from
0 to 1

2
.

2. (a) What is the distance d.x/ of a positive normalized floating-point number
x 2 R.t; s/ to its next larger floating-point number:

d.x/ D min
y2R.t;s/
y>x

.y � x/ ‹

(b) Determine the relative distance r.x/ D d.x/=x, with x as in (a), and give
upper and lower bounds for it.

3. The identity fl.1Cx/ D 1, x � 0, is true for x D 0 and for x sufficiently small.
What is the largest machine number x for which the identity still holds?

4. Consider a miniature binary computer whose floating-point words consist of
four binary digits for the mantissa and three binary digits for the exponent (plus
sign bits). Let

x D .0:1011/2 � 20; y D .0:1100/2 � 20:

Mark in the following table whether the machine operation indicated (with
the result z assumed normalized) is exact, rounded (i.e., subject to a nonzero
rounding error), overflows, or underflows.

Operation Exact Rounded Overflow Underflow

z D fl.x � y/
z D fl..y � x/10/

z D fl.x C y/

z D fl.y C .x=4//

z D fl.x C .y=4//

5. The Matlab “machine precision” eps is twice the unit roundoff (2 � 2�t ,
t D 53; cf. Sect. 1.1.3). It can be computed by the following Matlab program
(attributed to CLEVE MOLER):
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%EI_5 Matlab machine precision
%
a=4/3;
b=a-1;
c=b+b+b;
eps0=abs(c-1)

Run the program and prove its validity.
6. Prove (1.12).
7. A set S of real numbers is said to possess a metric if there is defined a

distance function d.x; y/ for any two elements x; y 2 S that has the following
properties:

(i) d.x; y/ � 0 and d.x; y/ D 0 if and only if x D y (positive definiteness);
(ii) d.x; y/ D d.y; x/ (symmetry);

(iii) d.x; y/ � d.x; z/C d.z; y/ (triangle inequality).

Discuss which of the following error measures is, or is not, a distance function
on what set S of real numbers:

(a) absolute error: ae.x; y/ D jx � yj;
(b) relative error: re.x; y/ D ˇ̌

x�y
x

ˇ̌
;

(c) relative precision (F.W.J. Olver, 1978): rp.x; y/ D j ln jxj � ln jyj j.
If y D x.1C "/, show that rp.x; y/ D O."/ as " ! 0.

8. Assume that x�
1 , x�

2 are approximations to x1, x2 with relative errors E1 and
E2, respectively, and that jEi j � E , i D 1; 2. Assume further that x1 ¤ x2.

(a) How small must E (in dependence of x1 and x2) be to ensure
that x�

1 ¤ x�
2 ?

(b) Taking 1
x�

1 �x�

2
to approximate 1

x1�x2 , obtain a bound on the relative error

committed, assuming (1) exact arithmetic; (2) machine arithmetic with
machine precision eps. (In both cases, neglect higher-order terms in E1,
E2, eps.)

9. Consider the quadratic equation x2 CpxC q D 0 with roots x1, x2. As seen in
the second Example of Sect. 1.2.2, the absolutely larger root must be computed
first, whereupon the other can be accurately obtained from x1x2 D q. Suppose
one incorporates this idea in a program such as

x1=abs(p/2)+sqrt(p*p/4-q);
if p>0, x1=-x1; end
x2=q/x1;

Find two serious flaws with this program as a “general-purpose quadratic
equation solver.” Take into consideration that the program will be executed in
floating-point machine arithmetic. Be specific and support your arguments by
examples, if necessary.
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10. Suppose, for jxj small, one has an accurate value of y D ex � 1 (obtained, e.g.,
by Taylor expansion). Use this value to compute accurately sinhx D 1

2
.ex �

e�x/ for small jxj.
11. Let f .x/ D p

1C x2 � 1.

(a) Explain the difficulty of computing f .x/ for a small value of jxj and show
how it can be circumvented.

(b) Compute .condf /.x/ and discuss the conditioning of f .x/ for small jxj.
(c) How can the answers to (a) and (b) be reconciled?

12. The nth power of some positive (machine) number x can be computed

(i) either by repeated multiplication by x, or
(ii) as xn D en ln x .

In each case, derive bounds for the relative error due to machine arithmetic,
neglecting higher powers of the machine precision against the first power.
(Assume that exponentiation and taking logarithms both involve a relative error
" with j"j � eps.) Based on these bounds, state a criterion (involving x and n)
for (i) to be more accurate than (ii).

13. Let f .x/ D .1 � cos x/=x, x ¤ 0.

(a) Show that direct evaluation of f is inaccurate if jxj is small; assume
fl.f .x// D fl..1 � fl.cos x//=x/, where fl.cos x/ D .1 C "c/ cos x, and
estimate the relative error "f of fl.f .x// as x ! 0.

(b) A mathematically equivalent form of f is f .x/ D sin2 x=.x.1C cosx//.
Carry out a similar analysis as in (a), based on fl.f .x// D fl.Œfl.sin x/�2=
fl.x.1 C fl.cosx////, assuming fl.cosx/ D .1 C "c/ cos x, fl.sin x/ D
.1 C "s/ sin x and retaining only first-order terms in "s and "c . Discuss
the result.

(c) Determine the condition of f .x/. Indicate for what values of x (if any)
f .x/ is ill-conditioned. (jxj is no longer small, necessarily.)

14. If z D x C iy, then
p

z D �
rCx
2

�1=2 C i
�
r�x
2

�1=2
, where r D .x2 C y2/1=2.

Alternatively,
p

z D u C iv, u D �
rCx
2

�1=2
, v D y=2u. Discuss the

computational merits of these two (mathematically equivalent) expressions.
Illustrate with z D 4:5 C 0:025i, using eight significant decimal places. fHint:
you may assume x > 0 without restriction of generality. Why?g

15. Consider the numerical evaluation of

f .t/ D
1X

nD0

1

1C n4.t � n/2.t � n � 1/2
;

say, for t D 20, and 7-digit accuracy. Discuss the danger involved.
16. Let XC be the largest positive machine representable number, and X� the

absolute value of the smallest negative one (so that �X� � x � XC for any
machine number x). Determine, approximately, all intervals on R on which the
tangent function overflows.
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17. (a) Use Matlab to determine the first value of the integer n for which nŠ

overflows. fHint: use Stirling’s formula for nŠ.g
(b) Do the same as (a), but for xn, x D 10; 20; : : : ; 100.
(c) Discuss how xne�x=nŠ can be computed for large x and n without

unnecessarily incurring overflow. fHint: use logarithms and an asymptotic
formula for ln nŠ.g

18. Consider a decimal computer with three (decimal) digits in the floating-point
mantissa.

(a) Estimate the relative error committed in symmetric rounding.
(b) Let x1 D 0:982, x2 D 0:984 be two machine numbers. Calculate in

machine arithmetic the mean m D 1
2
.x1 C x2/. Is the computed number

between x1 and x2?
(c) Derive sufficient conditions for x1 < fl.m/ < x2 to hold, where x1, x2 are

two machine numbers with 0 < x1 < x2.

19. For this problem, assume a binary computer with 12 bits in the floating-point
mantissa.

(a) What is the machine precision eps?
(b) Let x D 6=7 and x� be the correctly rounded machine approximation to x

(symmetric rounding). Exhibit x and x� as binary numbers.
(c) Determine (exactly) the relative error " of x� as an approximation to x, and

calculate the ratio j"j=eps.

20. The distributive law of algebra states that

.a C b/c D ac C bc:

Discuss to what extent this is violated in machine arithmetic. Assume a
computer with machine precision eps and assume that a, b, c are machine-
representable numbers.

(a) Let y1 be the floating-point number obtained by evaluating .a C b/c (as
written) in floating-point arithmetic, and let y1 D .aCb/c.1Ce1/. Estimate
je1j in terms of eps (neglecting second-order terms in eps).

(b) Let y2 be the floating-point number obtained by evaluating ac C bc (as
written) in floating-point arithmetic, and let y2 D .aCb/c.1Ce2/. Estimate
je2j (neglecting second-order terms in eps) in terms of eps (and a, b, and
c).

(c) Identify conditions (if any) under which one of the two yi is significantly
less accurate than the other.

21. Let x1, x2; : : : ; xn, n > 1, be machine numbers. Their product can be computed
by the algorithm

p1 D x1;

pk D fl.xkpk�1/; k D 2; 3; : : : ; n:
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(a) Find an upper bound for the relative error .pn � x1x2 � � �xn/=
.x1x2 � � �xn/ in terms of the machine precision eps and n.

(b) For any integer r � 1 not too large so as to satisfy r � eps < 1
10

, show that

.1C eps/r � 1 < 1:06 � r � eps:

Hence, for n not too large, simplify the answer given in (a). fHint: use the
binomial theorem.g

22. Analyze the error propagation in exponentiation, x˛ .x > 0/:

(a) assuming x exact and ˛ subject to a small relative error "˛;
(b) assuming ˛ exact and x subject to a small relative error "x.

Discuss the possibility of any serious loss of accuracy.
23. Indicate how you would accurately compute

.x C y/1=4 � y1=4; x > 0; y > 0:

24. (a) Let a D 0:23371258� 10�4, b D 0:33678429� 102, c D �0:33677811�
102. Assuming an 8-decimal-digit computer, determine the sum s D a C
bCc either as (1) fl.s/ D fl.fl.aCb/Cc/ or as (2) fl.s/ D fl.aCfl.bCc/).
Explain the discrepancy between the two answers.

(b) For arbitrary machine numbers a, b, c on a computer with machine
precision eps, find a criterion on a, b, c for the result of (2) in (a) to be
more accurate than the result of (1). fHint: compare bounds on the relative
errors, neglecting higher-order terms in eps and assuming aC bC c ¤ 0;
see also MA 7.g

25. Write the expression a2 � 2ab cos � C b2 (a > 0; b > 0) as the sum of two
positive terms to avoid cancellation errors. Illustrate the advantage gained in
the case a D 16:5, b D 15:7, � D 5ı, using 3-decimal-digit arithmetic. Is the
method foolproof?

26. Determine the condition number for the following functions:

(a) f .x/ D lnx; x > 0;
(b) f .x/ D cos x; jxj < 1

2
	;

(c) f .x/ D sin�1 x; jxj < 1;

(d) f .x/ D sin�1 xp
1C x2

.

Indicate the possibility of ill-conditioning.
27. Compute the condition number of the following functions, and discuss any

possible ill-conditioning:

(a) f .x/ D x1=n .x > 0; n > 0 an integer);
(b) f .x/ D x � p

x2 � 1 .x > 1/;

(c) f .x1; x2/ D
q
x21 C x22 ;

(d) f .x1; x2/ D x1 C x2.
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28. (a) Consider the composite function h.t/ D g.f .t//. Express the condition of
h in terms of the condition of g and f . Be careful to state at which points
the various condition numbers are to be evaluated.

(b) Illustrate (a) with h.t/ D 1Csin t
1�sin t ; t D 1

4
	 .

29. Show that .condf � g/.x/ � .condf /.x/ C .condg/.x/. What can be said
about .condf=g/.x/?

30. Let f W R
2 ! R be given by y D x1 C x2. Define (cond f )(x) =

(cond11f )(x)+ (cond12f )(x), where x D Œx1; x2�
T (cf. (1.27)).

(a) Derive a formula for �.x1; x2/ D .cond f /.x/.
(b) Show that �.x1; x2/ as a function of x1; x2 is symmetric with respect to

both bisectors b1 and b2 (see figure).

x
2

b
1

x
1

b
2

(c) Determine the lines in R
2 on which �.x1; x2/ D c, c � 1 a constant.

(Simplify the analysis by using symmetry; cf. part (b).)

31. Let k � k be a vector norm in R
n and denote by the same symbol the associated

matrix norm. Show for arbitrary matrices A, B 2 R
n�n that

(a) kABk � kAk kBk ;
(b) cond.AB/ � cond A � cond B.

32. Prove (1.32). fHint: let m1 D max�
P

� ja��j. Show that kAk1 � m1 as
well as kAk1 � m1, the latter by taking a special vector x in (1.30).g

33. Let the L1 norm of a vector y D Œy
� be defined by kyk1 D P

 jy
j. For a

matrix A 2 R
n�m, show that

kAk1 WD max
x2Rm

x¤0

kAxk1
kxk1 D max

�

X

�

ja��j;

that is, kAk1 is the “maximum column sum.” fHint: let m1 D max�
P

� ja��j.
Show that kAk1 � m1 as well as kAk1 � m1, the latter by taking for x in
(1.30) an appropriate coordinate vector.g

34. Let a, q be linearly independent vectors in R
n of (Euclidean) length 1. Define

b.�/ 2 R
n as follows:

b.�/ D a � �q; � 2 R:
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Compute the condition number of the angle ˛.�/ between b.�/ and q at the
value � D �0 D qTa. (Then b.�0/ ? q; see figure.) Discuss the answer.

b ρ0( ) a

q

35. The area � of a triangle ABC is given by � D 1
2
ab sin � (see figure). Discuss

the numerical condition of �.

γ

36. Define, for x ¤ 0,

fn D fn.x/ D .�1/n dn

dxn

�
e�x

x

�
; n D 0; 1; 2; : : : :

(a) Show that ffng satisfies the recursion

yk D k

x
yk�1 C e�x

x
; k D 1; 2; 3; : : : I y0 D e�x

x
:

fHint: differentiate k times the identity e�x D x � .e�x=x/.g
(b) Why do you expect the recursion in (a), without doing any analysis, to be

numerically stable if x > 0 ? How about x < 0 ?
(c) Support and discuss your answer to (b) by considering yn as a function of

y0 (which for y0 D f0.x/ yields fn D fn.x/) and by showing that the
condition number of this function at f0 is

.condyn/.f0/ D 1

jen.x/j ;

where en.x/ D 1C x C x2=2ŠC � � � C xn=nŠ is the nth partial sum of the
exponential series. fHint: use Leibniz’s formula to evaluate fn.x/.g

37. Consider the algebraic equation

xn C ax � 1 D 0; a > 0; n � 2:
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(a) Show that the equation has exactly one positive root �.a/.
(b) Obtain a formula for (cond �)(a).
(c) Obtain (good) upper and lower bounds for (cond �)(a).

38. Consider the algebraic equation

xn C xn�1 � a D 0; a > 0; n � 2:

(a) Show that there is exactly one positive root �.a/.
(b) Show that �.a/ is well conditioned as a function of a. Indeed, prove

.cond �/.a/ <
1

n � 1 :

39. Consider Lambert’s equation
xex D a

for real values of x and a.

(a) Show graphically that the equation has exactly one root �.a/ � 0 if a � 0,
exactly two roots �2.a/ < �1.a/ < 0 if �1=e < a < 0, a double root �1 if
a D �1=e, and no root if a < �1=e.

(b) Discuss the condition of �.a/, �1.a/, �2.a/ as a varies in the respective
intervals.

40. Given the natural number n, let � D �.a/ be the unique positive root of
the equation xn D ae�x .a > 0/. Determine the condition of � as a
function of a; simplify the answer as much as possible. In particular, show that
(cond �/.a/ < 1=n.

41. Let f .x1; x2/ D x1 C x2 and consider the algorithm A given as follows:

fA W R
2.t; s/ ! R.t; s/ yA D fl.x1 C x2/:

Estimate �.x1; x2/ D .condA/.x/, using any of the norms

kxk1 D jx1j C jx2j; kxk2 D
q
x21 C x22 ; kxk1 D max .jx1j; jx2j/:

Discuss the answer in the light of the conditioning of f .
42. This problem deals with the function f .x/ D p

1 � x � 1, �1 < x < 1.

(a) Compute the condition number .condf /.x/.
(b) Let A be the algorithm that evaluates f .x/ in floating-point arithmetic on

a computer with machine precision eps, given an (error-free) floating-point
number x. Let "1, "2, "3 be the relative errors due, respectively, to the
subtraction in 1�x, to taking the square root, and to the final subtraction of
1. Assume j"i j � eps (i D 1; 2; 3). Letting fA.x/ be the value of f .x/ so
computed, write fA.x/ D f .xA/ and xA D x.1C "A/. Express "A in terms
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of x, "1, "2, "3 (neglecting terms of higher order in the "i ). Then determine
an upper bound for j"Aj in terms of x and eps and finally an estimate of
.condA/.x/.

(c) Sketch a graph of .condf /.x/ (found in (a)) and a graph of the estimate
of .condA/.x/ (found in (b)) as functions of x on .�1; 1/. Discuss your
results.

43. Consider the function f .x/ D 1 � e�x on the interval 0 � x � 1.

(a) Show that (cond f ).x/ � 1 on [0,1].
(b) Let A be the algorithm that evaluates f .x/ for the machine number x in

floating-point arithmetic (with machine precision eps). Assume that the ex-
ponential routine returns a correctly rounded answer. Estimate .condA/.x/
for 0 � x � 1, neglecting terms of O.eps2/. fPoint of information:
ln.1C "/ D "CO."2/, " ! 0.g

(c) Plot .condf /.x/ and your estimate of .condA/.x/ as functions of x on
[0,1]. Comment on the results.

44. (a) Suppose A is an algorithm that computes the (smooth) function f .x/ for a
given machine number x, producing fA.x/ D f .x/.1C "f /, where j"f j �
'.x/eps (eps D machine precision). If 0 < .condf /.x/ < 1, show that

.condA/.x/ � '.x/

.condf /.x/

if second-order terms in eps are neglected. fHint: set fA.x/ D f .xA/,
xA D x.1C "A/, and expand in powers of "A, keeping only the first.g

(b) Apply the result of (a) to f .x/ D 1�cos x
sinx ; 0 < x < 1

2
	 , when evaluated

as shown. (You may assume that cosx and sin x are computed within a
relative error of eps.) Discuss the answer.

(c) Do the same as (b), but for the (mathematically equivalent) function
f .x/ D sin x

1Ccosx ; 0 < x <
1
2
	 .

Machine Assignments

1. Let x D 1C	=106. Compute the nth power of x for nD 100;000;200;000; : : : ;

1;000;000 once in single and once in double Matlab precision. Let the two
results be pn and dpn. Use the latter to determine the relative errors rn of the
former. Print n; pn; dpn; rn; rn=.n � eps0/, where eps0 is the single-precision
eps. What should xn be, approximately, when n D 1;000;000? Comment on
the results.

2. Compute the derivative dy=dx of the exponential function y D ex at x D 0

from the difference quotients d.h/ D .eh � 1/=h with decreasing h. Use

(a) h D h1 WD 2�i , i D 5 W 5 W 50;
(b) h D h2 WD .2:2/�i , i D 5 W 5 W 50.
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Print the quantities i; h1; h2; d1 WD d.h1/; d2 WD d.h2/, the first and two last
ones in f-format, the others in e-format. Explain what you observe.

3. Consider the following procedure for determining the limit lim
h!0

.eh � 1/=h on a

computer. Let

dn D fl

�
e2

�n � 1
2�n

�
for n D 0; 1; 2; : : :

and accept as the machine limit the first value satisfying dn D dn�1
.n � 1/.

(a) Write and run a Matlab routine implementing the procedure.
(b) In R.t; s/-floating-point arithmetic, with rounding by chopping, for what

value of n will the correct limit be reached, assuming no underflow (of
2�n) occurs? fHint: use eh D 1 C h C 1

2
h2 C � � � .g Compare with the

experiment made in (a).
(c) On what kind of computer (i.e., under what conditions on s and t) will

underflow occur before the limit is reached?

4. Euler’s constant � D 0:57721566490153286 : : : is defined as the limit

� D lim
n!1�n; where �n D 1C 1

2
C 1

3
C � � � C 1

n
� lnn:

Assuming that � � �n 
 cn�d , n ! 1, for some constants c and d > 0, try to
determine c and d experimentally on the computer.

5. Letting �un D unC1 � un, one has the easy formula

NX

nD1
�un D uNC1 � u1:

With un D ln.1Cn/, compute each side (as it stands) forN D 1; 000 W 1; 000 W
10;000, the left-hand side in Matlab single precision and the right-hand side in
double precision. Print the relative discrepancy of the two results. Repeat withPN

nD1 un: compute the sum in single and double precision and compare the
results. Try to explain what you observe.

6. (a) Write a program to compute

SN D
NX

nD1

	
1

n
� 1

nC 1



D

NX

nD1

1

n.nC 1/
;

once using the first summation and once using the (mathematically equiv-
alent) second summation. For N D 10k, k D 1 W 7, print the respective
absolute errors. Comment on the results.
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(b) Write a program to compute

pN D
NY

nD1

n

nC 1
:

For the same values of N as in part (a), print the relative errors. Comment
on the results.

7. (a) Prove: based on best possible relative error bounds, the floating-point
addition fl.fl.x C y/ C z/ is more accurate than fl.x C fl.y C z// if and
only if jx C yj < jy C zj. As applications, formulate addition rules in the
cases

(a1) 0 < x < y < z;
(a2) x > 0, y < 0, z > 0;
(a3) x < 0, y > 0, z < 0.

(b) Consider the nth partial sums of the series defining the zeta function .s/,
resp., eta function �.s/,

zn D
nX

kD1

1

ks
; en D

nX

kD1
.�1/k�1 1

ks
:

For s D 2; 11=3; 5; 7:2; 10 and n D 50; 100; 200; 500; 1000, compute these
sums in Matlab single precision, once in forward direction and once in
backward direction, and compare the results with Matlab double-precision
evaluations. Interpret the results in the light of your answers to part (a),
especially (a2) and (a3).

8. Let n D 106 and

s D 1011nC
nX

kD1
ln k:

(a) Determine s analytically and evaluate to 16 decimal digits.
(b) The following Matlab program computes s in three different (but mathe-

matically equivalent) ways:

%MAI_8B
%
n=10ˆ6; s0=10ˆ11*n;
s1=s0;
for k=1:n
s1=s1+log(k);

end
s2=0;
for k=1:n

s2=s2+log(k);
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end
s2=s2+s0;
i=1:n;
s3=s0+sum(log(i));
[s1 s2 s3]’

Run the program and discuss the results.

9. Write a Matlab program that computes the Euclidean condition number of the
Hilbert matrix H n following the prescription given in footnote 3 of the text.

(a) The inverse of the Hilbert matrix H n has elements

�
H �1

n

�
ij

D .�1/iCj .i C j � 1/
 
nC i � 1

n � j

! 
nC j � 1
n � i

! 
i C j � 2

i � 1

!2

(cf. Note 3 to Sect. 1.3.2). Simplify the expression to avoid factorials of
large numbers. fHint: express all binomial coefficients in terms of factorials
and simplify.g

(b) Implement in Matlab the formula obtained in (a) and reproduce Table 1.1
of the text.

10. The (symmetrically truncated) cardinal series of a function f is defined by

CN .f; h/.x/ D
NX

kD�N
f .kh/ sinc

�
x � kh
h

�
;

where h > 0 is the spacing of the data and the sinc function is defined by

sinc.u/ D

8
ˆ̂<

ˆ̂:

sin.	u/

	u
if u ¤ 0;

1 if u D 0:

Under appropriate conditions, CN .f; h/.x/ approximates f .x/ on Œ�Nh;Nh�.

(a) Show that

CN .f; h/.x/ D h

	
sin

	x

h

NX

kD�N

.�1/k
x � kh f .kh/:

Since this requires the evaluation of only one value of the sine function,
it provides a more efficient way to evaluate the cardinal series than the
original definition.
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(b) While the form of CN given in (a) may be more efficient, it is numerically
unstable when x is near one of the abscissae kh. Why?

(c) Find a way to stabilize the formula in (a). fHint: introduce the integer k0
and the real number t such that x D .k0 C t/h, jt j � 1

2
.g

(d) Write a program to compute CN .f; h/.x/ according to the formula in (a)
and the one developed in (c) for N D 100, h D 0:1, f .x/ D x exp.�x2/,
and x D 0:55, x D 0:5C10�8, x D 0:5C10�15. Print CN .f; h/.x/, f .x/,
and the error jCN .f; h/.x/ � f .x/j in either case. Compare the results.

11. In the theory of Fourier series, the numbers


n D 1

2nC 1
C 2

	

nX

kD1

1

k
tan

k	

2nC 1
; n D 1; 2; 3; : : : ;

known as Lebesgue constants, are of some importance.

(a) Show that the terms in the sum increase monotonically with k. How do the
terms for k near n behave when n is large?

(b) Compute 
n for n D 1; 10; 102; : : : ; 105 in Matlab single and double
precision and compare the results. Do the same with n replaced by dn=2e.
Explain what you observe.

12. Sum the series

(a)
1X

nD0
.�1/n=nŠ2; (b)

1X

nD0
1=nŠ2

until there is no more change in the partial sums to within the machine
precision. Generate the terms recursively. Print the number of terms required
and the value of the sum. (Answers in terms of Bessel functions: (a) J0.2/;
cf. Abramowitz and Stegun [1964, (9.1.18)] or Olver et al. [2010, (10.9.1)] and
(b) I0.2/; cf. Abramowitz and Stegun [1964, (9.6.16)] or Olver et al. [2010,
(10.32.1)].)

13. (P.J. Davis, 1993) Consider the series
P1

kD1 1

k3=2Ck1=2 . Try to compute the sum
to three correct decimal digits.

14. We know from calculus that

lim
n!1

�
1C 1

n

�n
D e:

What is the “machine limit”? Explain.
15. Let f .x/ D .nC 1/x � 1. The iteration

xk D f .xk�1/; k D 1; 2; : : : ; KI x0 D 1=n;

in exact arithmetic converges to the fixed point 1=n in one step (Why?). What
happens in machine arithmetic? Run a program with n D 1 W 5 and K D 10 W
10 W 50 and explain quantitatively what you observe.
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16. Compute the integral
R 1
0

exdx from Riemann sums with n equal subintervals,
evaluating the integrand at the midpoint of each. Print the Riemann sums for
n D 5;000 W 5;000 W 100;000 (to 15 decimal digits after the decimal point),
together with absolute errors. Comment on the results.

17. Let yn D R 1
0
tne�tdt , n D 0; 1; 2; : : : .

(a) Use integration by parts to obtain a recurrence formula relating yk to yk�1
for k D 1; 2; 3; : : : ; and determine the starting value y0.

(b) Write and run a Matlab program that generates y0; y1; : : : ; y20, using the
recurrence of (a), and print the results to 15 decimal digits after the decimal
point. Explain in detail (quantitatively, using mathematical analysis) what
is happening.

(c) Use the recursion of (a) in reverse order, starting (arbitrarily) with yN D
0. Place into five consecutive columns of a (21 � 5) matrix Y the values
y
.N/
0 ; y

.N/
1 ; : : : ; y

.N/
20 thus obtained for N D 22; 24; 26; 28; 30. Determine

how much consecutive columns of Y differ from one another by printing

ei D max j .Y.W; i C 1/� Y.W; i // :=Y.W; i C 1/j; i D 1; 2; 3; 4:

Print the last column Y.W; 5/ of Y and explain why this represents accurately
the column vector of the desired quantities y0; y1; : : : ; y20.

Selected Solutions to Exercises

14. We may assume x > 0, since otherwise we could multiply z by �1 and the
result by �i.

In the first expression for
p

z there will be a large cancellation error in
the imaginary part when jyj is very small, whereas in the second expression
all arithmetic operations are benign. Illustration: z D 4:5 C 0:025i (in eight
significant digits)

r D 4:5000694;

v D
� r � x

2

�1=2 D 5:8906706� 10�3;

v D y

2
�
rCx
2

�1=2 D 5:8925338� 10�3:

The last five digits in the first evaluation of v are in error!
21. (a) We have

p1 D x1;

pk D xkpk�1.1C "k/; j"kj � eps; k D 2; 3; : : : ; n:
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Therefore,

p2 D x1x2.1C "2/;

p3 D x1x2x3.1C "2/.1C "3/;

� � � � � � � � � � � � � � � � � � �
pn D x1x2 � � �xn.1C "2/.1C "3/ � � � .1C "n/;

so that

pn � x1x2 � � �xn
x1x2 � � �xn D .1C "2/.1C "3/ � � � .1C "n/ � 1 DW E:

If E � 0, then jEj � .1C eps/n�1 � 1; otherwise, jEj � 1� .1� eps/n�1.
Since the first bound is larger than the second, we get

jEj � .1C eps/n�1 � 1:

(b) Using the binomial theorem, one has

.1C eps/r � 1 D
�
1C

�r
1

�
eps C

� r
2

�
eps2 C � � � C epsr

�
� 1

D r � eps

�
1C r � 1

2
eps C .r � 1/.r � 2/

3Š
eps2 C � � �

C .r � 1/.r � 2/ � � �1
rŠ

epsr�1
�
:

Since r � eps <
1

10
, one has also

.r � k/ eps <
1

10
; k D 1; 2; : : : ; r � 1;

and so

.1C eps/r � 1 < r � eps

�
1C 1

2Š
10�1 C 1

3Š
10�2 C � � � C 1

rŠ
10�.r�1/

�

< r � eps � 10
�
1

1Š
10�1 C 1

2Š
10�2 C � � �

�

D r � eps � 10fe10
�1 � 1g D 1:051709 : : : r � eps

< 1:06 � r � eps:
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Hence, if .n � 1/eps < 1=10, the result in (a) can be simplified to

jEj � 1:06.n� 1/eps:

34. We have

cos ˛.�/ D qTb.�/

kqk � kb.�/k D qT.a � �q/

Œ.a � �q/T.a � �q/�1=2

D �0 � �
.1 � 2�0�C �2/1=2

DW R.�/;

˛.�/ D cos�1 R.�/; R.�0/ D 0 if j�0j < 1;

˛0.�/ D �1
p
1 � R2.�/

R0.�/

D �1p
1 � R2.�/

��.1 � 2�0�C �2/1=2 � .�0 � �/Œ.1 � 2�0�C �2/1=2�0

.1� 2�0�C �2/
:

For � D �0, therefore, assuming j�0j < 1, we get

˛0.�0/ D .1 � �20/
1=2

1 � �20
D 1

.1 � �20/1=2
;

.cond˛/.�0/ D
j�0j 1

.1��20/1=2
1
2
	

D 2

	

j�0j
.1 � �20/1=2

:

If �0 D 0, i.e., a is already orthogonal to q, hence b D a, then .cond˛/.�0/ D
0, as expected. If j�0j " 1, then .cond˛/.�0/ " 1, since in the limit, a is
parallel to q and cannot be orthogonalized. In practice, if j�0j is close to 1, the
problem of ill-conditioning can be overcome by a single, or possibly repeated,
reorthogonalization.

44. (a) Following the Hint, we have

fA.x/ D f .x/.1C "f / D f .xA/

D f .x.1C "A// D f .x C x"A/

D f .x/C x"Af
0.x/CO."2A/:
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Neglecting the O."2A/ term, one gets

x"Af
0.x/ D f .x/"f ;

hence

ˇ̌
ˇ
xA � x

x

ˇ̌
ˇ D j"Aj D

ˇ̌
ˇ̌ f .x/
xf 0.x/

ˇ̌
ˇ̌ j"f j � '.x/

.condf /.x/
eps;

which proves the assertion.
(b) One easily computes

.condf /.x/ D x

sinx
; 0 < x <

	

2
:

Furthermore,

fA.x/ D .1 � .cos x/.1C "1//.1C "2/

.sin x/.1C "3/
.1C "4/; j"i j � eps;

where "1, "2, "3, "4 are the relative errors committed, respectively, in evaluating
the cosine function, the difference in the numerator, the sine function, and the
quotient. Neglecting terms of O."2i /, one obtains by a simple computation that

fA.x/ D 1 � cos x

sin x

n
1C "2 C "4 � "3 � "1 cos x

1 � cos x

o
;

that is,

j"f j D
ˇ̌
ˇ"2 C "4 � "3 � "1 cos x

1 � cos x

ˇ̌
ˇ �

�
3C cos x

1 � cosx

�
eps:

Therefore,

'.x/ D 3C cos x

1 � cos x
;

and one gets

.condA/.x/ � sinx

x

�
3C cos x

1 � cos x

�
; 0 < x <

	

2
:

Obviously, .condA/.x/ ! 1 as x ! 0, whereas .condA/.x/ ! 6=	 as
x ! 	=2. The algorithm is ill-conditioned near x D 0 (cancellation error), but
well conditioned near 	=2. The function itself is quite well conditioned,

1 � .condf /.x/ � 	

2
:
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(c) In this case (the condition of f being of course the same),

fA.x/ D .sinx/.1C "1/

.1C .cos x/.1C "2//.1C "3/
.1C "4/; j"i j � eps;

giving

fA.x/ D sinx

1C cosx

�
1C "1 � "3 C "4 � "2 cosx

1C cosx

�
;

that is,

j"f j D
ˇ̌
ˇ̌"1 � "3 C "4 � "2

cos x

1C cos x

ˇ̌
ˇ̌ �

�
3C cosx

1C cosx

�
eps;

and

.condA/.x/ � sin x

x

�
3C cosx

1C cosx

�
:

Now, A is entirely well conditioned,

6

	
� .condA/.x/ � 7

2
; 0 < x <

	

2
:

Selected Solutions to Machine Assignments

7. (a) For arbitrary real x, y, z, the first addition can be written as

fl.fl.x C y/C z/ D ..x C y/.1C "1/C z/.1C "2/

� x C y C z C .x C y/"1 C .x C y C z/"2

D .x C y C z/

�
1C x C y

x C y C z
"1 C "2

�
;

where the "i are bounded in absolute value by eps. The best bound for the
relative error is

jrel:err:j �
� jx C yj

jx C y C zj C 1

�
eps:
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Likewise, for the second addition, there holds (interchange x and z)

jrel:err:j �
� jy C zj

jx C y C zj C 1

�
eps:

Based on these two error bounds, the first addition is more accurate than
the second if and only if jx C yj < jy C zj, as claimed.

Examples

(a1) 0 < x < y < z. Here,

jx C yj D x C y < y C z D jy C zj:

Thus, addition in increasing order is more accurate.
(a2) x > 0, y < 0, z > 0. Here,

jx C yj D jx � jyjj ; jy C zj D jz � jyjj ;

and adding to the negative number y the positive number closer to jyj
first is more accurate.

(a3) x < 0, y > 0, z < 0. Here,

jx C yj D j�jxj C yj D jjxj � yj ;
jy C zj D jy � jzjj D jjzj � yj ;

and adding to the positive number y the negative number first whose
modulus is closer to y is more accurate.

(b) PROGRAM

%MAI_7B
%
f0=’%6.4f %8.1e %9.2e %9.2e %9.2e %9.2e\n’;
disp(’ zeta eta’)
disp(’ s n forw backw forw backw’)
for s=[2 11/3 5 7.2 10]
for n=[50 100 200 500 1000]

k=1:n;
z=sum(1./k.ˆs);
e=sum((-1).ˆ(k-1)./k.ˆs);
zf=single(0); ef=single(0);
for kf=1:n

zf=zf+single(1/kfˆs);
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ef=ef+single((-1)ˆ(kf-1)/kfˆs);
end
zf0=zf; ef0=ef;
zb=single(0); eb=single(0);
for kb=n:-1:1

zb=zb+single(1/kbˆs);
eb=eb+single((-1)ˆ(kb-1)/kbˆs);

end
zb0=zb; eb0=eb;
errzf=abs((zf0-z)/z);
errzb=abs((zb0-z)/z);
erref=abs((ef0-e)/e);
erreb=abs((eb0-e)/e);
fprintf(f0,s,n,errzf,errzb,erref,erreb)

end
fprintf(’\n’)

end

OUTPUT

>> MAI_7B
zeta eta

s n forw backw forw backw
2.0000 5.0e+01 1.14e-07 3.30e-08 5.16e-08 2.09e-08
2.0000 1.0e+02 7.11e-08 1.82e-09 4.35e-08 4.35e-08
2.0000 2.0e+02 9.34e-08 5.20e-08 1.16e-07 2.94e-08
2.0000 5.0e+02 4.52e-08 4.52e-08 3.92e-07 3.01e-08
2.0000 1.0e+03 1.70e-07 4.77e-08 3.85e-07 2.23e-08

3.6667 5.0e+01 2.48e-07 3.30e-08 2.84e-08 3.54e-08
3.6667 1.0e+02 1.26e-07 1.82e-08 5.97e-08 4.07e-09
3.6667 2.0e+02 1.43e-06 3.15e-08 8.21e-08 1.84e-08
3.6667 5.0e+02 1.65e-06 4.06e-08 8.40e-08 2.02e-08
3.6667 1.0e+03 1.67e-06 4.88e-08 8.41e-08 2.03e-08

5.0000 5.0e+01 2.46e-07 1.61e-08 4.04e-08 2.09e-08
5.0000 1.0e+02 2.81e-07 5.08e-08 3.89e-08 2.24e-08
5.0000 2.0e+02 2.83e-07 5.30e-08 3.88e-08 2.25e-08
5.0000 5.0e+02 2.83e-07 5.31e-08 3.88e-08 2.25e-08
5.0000 1.0e+03 2.83e-07 5.31e-08 3.88e-08 2.25e-08

7.2000 5.0e+01 7.20e-09 7.20e-09 5.45e-08 5.52e-09
7.2000 1.0e+02 7.20e-09 7.20e-09 5.45e-08 5.52e-09
7.2000 2.0e+02 7.20e-09 7.20e-09 5.45e-08 5.52e-09
7.2000 5.0e+02 7.20e-09 7.20e-09 5.45e-08 5.52e-09
7.2000 1.0e+03 7.20e-09 7.20e-09 5.45e-08 5.52e-09

10.0000 5.0e+01 1.20e-08 1.20e-08 2.32e-08 2.32e-08
10.0000 1.0e+02 1.20e-08 1.20e-08 2.32e-08 2.32e-08
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10.0000 2.0e+02 1.20e-08 1.20e-08 2.32e-08 2.32e-08
10.0000 5.0e+02 1.20e-08 1.20e-08 2.32e-08 2.32e-08
10.0000 1.0e+03 1.20e-08 1.20e-08 2.32e-08 2.32e-08
>>

Interpretation

Rather consistently, backward summation gives more accurate results than
forward summation, by as much as two decimal orders (for s D 11=3 and
n D 200 in the case of .s/). For large s (for example s D 10) there is no
noticeable difference in accuracy. All this (and more) is consistent with the
answers given in part (a). Indeed, the series for the zeta function has terms that
are all positive and strictly decreasing, so that by (a1) summation in increasing
order of the terms, i.e., backward summation, is more accurate. In the case of
the eta series, consider

x D 1

ks
; y D � 1

.k C 1/s
; z D 1

.k C 2/s
:

Then

jx C yj D 1

ks
� 1

.k C 1/s
D 1

ks

�
1 �

�
k

k C 1

�s�
;

jy C zj D 1

.k C 1/s
� 1

.k C 2/s
D 1

.k C 1/s

�
1 �

�
k C 1

k C 2

�s�
:

Since the function x=.xC 1/ for x > 0 increases monotonically, it follows that
jxCyj > jyC zj for all k > 0, and backward summation is more accurate than
forward summation. Moreover,

jx C yj D 1

ks

�
1 �

�
1C 1

k

��s�

 s

ksC1
; k ! 1;

jy C zj D 1

ks

�
1C 1

k

��s �
1 �

�
1C 1

k

�s �
1C 2

k

��s�

 s

ksC1
; k ! 1;

so that the improvement jyCzj
jxCyj of backward over forward summation disappears

asymptotically as k ! 1. Also, for large s, the improvement is relatively
small, even for only moderately large k.

The same discussion holds for

x D � 1

ks
; y D 1

.k C 1/s
; z D � 1

.k C 2/s
:
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11. (a) Let x D k	
2nC1 , so that 0 < x < 	

2
if 1 � k � n. Then, up to a positive

constant factor, the general term of the sum is

f .x/ D 1

x
tan x:

We show that f increases monotonically: we have

Œxf .x/�0 D 1

cos2 x
;

hence

xf 0.x/ D 1

cos2 x
� f .x/ D 1

cos2 x
� sinx

x cos x

D 1

cos2 x

�
1� 1

x
� sin x cosx

�

D 1

cos2 x

�
1� sin 2x

2x

�
> 0:

Thus, the terms in the sum increase monotonically. For n very large, say
n D 105, most terms of the sum are negligibly small except for a few very
near n, where they sharply increase to the maximum value � 4

	
. This can

be seen by letting k D n � r for some fixed (small) integer r and large n.
Then

n � r

2nC 1
D 1

2
� 2r C 1

2.2nC 1/
;

and, as n ! 1,

tan
.n � r/	
2nC 1

D tan

�
	

2
� 	

2

2r C 1

2nC 1

�
D cos

�
	
2
2rC1
2nC1

�

sin
�
	
2
2rC1
2nC1

� 
 4

	

n

2r C 1
:

Therefore,

1

n � r tan
.n � r/	

2nC 1

 4

	

1

2r C 1
as n ! 1:

(b) PROGRAM

%MAI_11B
%
f0=’%10.0f %12.8f %19.16f %12.4e\n’;
disp(’ n Lebesgue Lebesgue double diff’)

% disp(’ n truncated single and double Lebesgue’)
for n=[1 10 100 1000 10000 100000]

den0=single(1/(2*n+1));
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den=1/(2*n+1);
k=1:n;

% k=1:ceil(n/2);
s0=sum(single(tan(k*pi*den0)./k));
s=sum(tan(k*pi*den)./k);
s0=den0+single(2*s0/pi);
s=den+2*s/pi;
diff=abs(s-s0);
fprintf(f0,n,subs(s0),s,diff)

end

OUTPUT

>> MAI_11B
n Lebesgue Lebesgue double diff

1 1.43599117 1.4359911241769170 4.3845e-08
10 2.22335672 2.2233569241536819 2.0037e-07

100 3.13877344 3.1387800926548395 6.6513e-06
1000 4.07023430 4.0701636043524356 7.0694e-05
10000 5.00332785 5.0031838616314577 1.4398e-04

100000 5.92677021 5.9363682125234796 9.5980e-03
>>

Comments

Because of the behavior of the terms in the sum, when n is large, the
accuracy of the sum is largely determined by the accuracy of the terms
very near to n. But there, the argument of the tangent is very close to 	=2.
Since

.cond tan/.x/ D x.1C tan2 x/

tanx
; 0 < x < 	=2;

the tangent is very ill-conditioned for x near 	=2. In fact, for " > 0

very small,

.cond tan/
�	
2

� "
�


 	

2
tan
�	
2

� "
�

D 	

2

cos "

sin "

 	

2"
:

Since k D n corresponds to 	
2

� " D n
2nC1 	 , that is, " D 	

2.2nC1/ 
 	
4n

,
one has

.cond tan/
�	
2

� "
�


 	

2	=.4n/
D 2n; n ! 1:

So, for n D 105, for example, we must expect a loss of about five decimal
digits. This is confirmed by the numerical results shown above.

The inaccuracy observed cannot be ascribed merely to the large volume
of computation. In fact, if we extended the sum only to, say, k D n=2, we
would escape the ill-conditioning of the tangent and, even for n D 105,
would get more accurate answers. This is shown by the numerical results
below.
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>> MAI_11B
n truncated single and double Lebesgue

1 1.43599117 1.4359911241769170 4.3845e-08
10 0.57060230 0.5706023117647347 1.3982e-08
100 0.54363489 0.5436349730685069 8.1558e-08
1000 0.54078776 0.5407873971420362 3.5930e-07

10000 0.54050153 0.5405010907553436 4.4418e-07
100000 0.54047358 0.5404724445910691 1.1358e-06

>>



Chapter 2
Approximation and Interpolation

The present chapter is basically concerned with the approximation of functions. The
functions in question may be functions defined on a continuum – typically a finite
interval – or functions defined only on a finite set of points. The first instance arises,
for example, in the context of special functions (elementary or transcendental) that
one wishes to evaluate as a part of a subroutine. Since any such evaluation must be
reduced to a finite number of arithmetic operations, we must ultimately approximate
the function by means of a polynomial or a rational function. The second instance
is frequently encountered in the physical sciences when measurements are taken
of a certain physical quantity as a function of some other physical quantity (such
as time). In either case one wants to approximate the given function “as well as
possible” in terms of other simpler functions.

The general scheme of approximation can be described as follows. We are
given the function f to be approximated, along with a class ˆ of “approximating
functions” ' and a “norm” k � k measuring the overall magnitude of functions. We
are looking for an approximation O' 2 ˆ of f such that

kf � O'k � kf � 'k for all ' 2 ˆ: (2.1)

The function O' is called the best approximation to f from the class ˆ, relative to
the norm k � k.

The class ˆ is called a (real) linear space if with any two functions '1,
'2 2 ˆ it also contains '1 C '2 and c'1 for any c 2 R, hence also any (finite)
linear combination of functions 'i 2 ˆ. Given n “basis functions” 	j 2 ˆ,
j D 1; 2; : : : ; n, we can define a linear space of finite dimension n by

ˆ D ˆn D
8
<

:' W '.t/ D
nX

jD1
cj 	j .t/; cj 2 R

9
=

; : (2.2)

Examples of linear spaces ˚ . 1. ˆ D Pm: polynomials of degree � m. A basis for
Pm is, for example, 	j .t/ D t j�1, j D 1; 2; : : : ; m C 1, so that n D m C 1.
Polynomials are the most frequently used “general-purpose” approximants for

W. Gautschi, Numerical Analysis, DOI 10.1007/978-0-8176-8259-0 2,
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55



56 2 Approximation and Interpolation

dealing with functions on bounded domains (finite intervals or finite sets of
points). One reason is Weierstrass’s theorem, which states that any continuous
function can be approximated on a finite interval as closely as one wishes by a
polynomial of sufficiently high degree.

2. ˆ D S
k
m.�/: (polynomial) spline functions of degree m and smoothness class k

on the subdivision

� W a D t1 < t2 < t3 < � � � < tN�1 < tN D b

of the interval [a; b]. These are piecewise polynomials of degree � m pieced
together at the “joints” t2; : : : ; tN�1 in such a way that all derivatives up to and
including the kth are continuous on the whole interval [a; b], including the joints:

S
k
m.�/ D fs 2 CkŒa; b� W s

ˇ̌
Œti ;tiC1�

2 Pm; i D 1; 2; : : : ; N � 1g:

We assume here 0 � k < m; otherwise, we are back to polynomials Pm (see
Ex. 68). We set k D �1 if we allow discontinuities at the joints. The dimension
of Skm.�/ is n D .m� k/ � .N � 2/CmC 1 (see Ex. 71), but to find a basis is a
nontrivial task; form D 1, see Sect. 2.3.2.

3. ˆ D Tm Œ0; 2	�: trigonometric polynomials of degree � m on [0, 2	]. These
are linear combinations of the basic harmonics up to and including the mth one,
that is,

	k.t/ D cos .k � 1/t; k D 1; 2; : : : ; mC 1I
	mC1Ck.t/ D sin kt; k D 1; 2; : : : ; m;

where now n D 2m C 1. Such approximants are a natural choice when the
function f to be approximated is periodic with period 2	 . (If f has period p,
one makes a preliminary change of variables t 7! t � p=2	 .)

4. ˆ D En: exponential sums. For given distinct ˛j > 0, one takes 	j .t/ D e�˛j t ,
j D 1; 2; : : : ; n. Exponential sums are often employed on the half-infinite
interval RC: 0 � t < 1, especially if one knows that f decays exponentially as
t ! 1.

Note that the important class of rational functions,

ˆ D Rr;s D f' W ' D p=q; p 2 Pr ; q 2 Psg;

is not a linear space. (Why not?)
Possible choices of norm – both for continuous and discrete functions –

and the type of approximation they generate are summarized in Table 2.1. The
continuous case involves an interval [a; b] and a “weight function” w.t/ (possibly
w.t/ 	 1) defined on [a; b] and positive except for isolated zeros. The discrete case
involves a set of N distinct points t1, t2; : : : ; tN along with positive weight factors



2 Approximation and Interpolation 57

Table 2.1 Types of approximation and associated norms

Continuous norm Approximation Discrete norm

kuk
1

D max
a�t�b

ju.t /j L
1

kuk
1

D max
1�i�N

ju.ti /j
Uniform
Chebyshev

kuk1 D
Z b

a

ju.t /jdt L1 kuk1 D
NX

iD1

ju.ti /j

kuk1;w D
Z b

a

ju.t /jw.t /dt Weighted L1 kuk1;w D
NX

iD1

wi ju.ti /j

kuk2;w D
 Z b

a

ju.t /j2w.t /dt
! 1

2

Weighted L2 kuk2;w D
 

NX

iD1

wi ju.ti /j2
! 1

2

Least squares

w1;w2; : : : ;wN (possibly all equal to 1). The interval [a; b] may be unbounded if
the weight function w is such that the integral extended over [a; b], which defines
the norm, makes sense.

Hence, we may take any one of the norms in Table 2.1 and combine it with any of
the preceding linear spacesˆ to arrive at a meaningful best approximation problem
(2.1). In the continuous case, the given function f , and the functions ' of the class
ˆ, of course, must be defined on [a; b] and such that the norm kf �'k makes sense.
Likewise, f and ' must be defined at the points ti in the discrete case.

Note that if the best approximant O' in the discrete case is such that kf � O'k D 0,
then O'.ti / D f .ti / for i D 1; 2; : : : ; N . We then say that O' interpolates f at
the points ti and we refer to this kind of approximation problem as an interpola-
tion problem.

The simplest approximation problems are the least squares problem and the in-
terpolation problem, and the easiest space ˆ to work with the space of polynomials
of given degree. These are indeed the problems we concentrate on in this chapter.
In the case of the least squares problem, however, we admit general linear spaces
ˆ of approximants, and also in the case of the interpolation problem, we include
polynomial splines in addition to straight polynomials.

Before we start with the least squares problem, we introduce a notational device
that allows us to treat the continuous and the discrete case simultaneously. We
define, in the continuous case,


.t/ D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

0 if t < a .whenever � 1 < a/;

Z t

a

w.�/d� if a � t � b;

Z b

a

w.�/d� if t > b .whenever b < 1/:

(2.3)
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Then we can write, for any (say, continuous) function u,

Z

R

u.t/d
.t/ D
Z b

a

u.t/w.t/dt; (2.4)

since d
.t/ 	 0 “outside” [a; b], and d
.t/ D w.t/dt inside. We call d
 a
continuous (positive) measure. The discrete measure (also called “Dirac measure”)
associated with the point set ft1; t2; : : : ; tN g is a measure d
 that is nonzero only at
the points ti and has the value wi there. Thus, in this case,

Z

R

u.t/d
.t/ D
NX

iD1
wiu.ti /: (2.5)

(A more precise definition can be given in terms of Stieltjes integrals, if we define

.t/ to be a step function having jump wi at ti .) In particular, we can define the L2
norm as

kuk2;d
 D
�Z

R

ju.t/j2d
.t/
� 1

2

; (2.6)

and obtain the continuous or the discrete norm depending on whether 
 is taken to
be as in (2.3), or a step function, as in (2.5).

We call the support of d
 – and denote it by supp d
 – the interval [a; b] in the
continuous case (assuming w positive on [a; b] except for isolated zeros), and the
set ft1; t2; : : : ; tN g in the discrete case. We say that the set of functions 	j .t/ in (2.2)
is linearly independent on the support of d
 if

nX

jD1
cj 	j .t/ 	 0 for all t 2 supp d
 implies c1 D c2 D � � � D cn D 0: (2.7)

ExampleW the powers 	j .t/ D t j�1, j D 1; 2; : : : ; n.

Here
nX

jD1
cj 	j .t/ D pn�1.t/ is a polynomial of degree � n � 1. Suppose, first,

that supp d
 = [a; b]. Then the identity in (2.7) says that pn�1.t/ 	 0 on [a; b].
Clearly, this implies c1 D c2 D � � � D cn D 0, so that the powers are linearly
independent on supp d
 = [a; b]. If, on the other hand, supp d
 D ft1; t2; : : : ; tN g,
then the premise in (2.7) says that pn�1.ti / D 0, i D 1; 2; : : : ; N ; that is, pn�1 has
N distinct zeros ti . This implies pn�1 	 0 only if N � n. Otherwise, pn�1.t/ DQN
iD1.t � ti / 2 Pn�1 would satisfy pn�1.ti / D 0, i D 1; 2; : : : ; N , without being

identically zero. Thus, we have linear independence on supp d
 D ft1; t2; : : : ; tN g if
and only if N � n.
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2.1 Least Squares Approximation

We specialize the best approximation problem (2.1) by taking as norm the L2 norm

kuk2;d
 D
�Z

R

ju.t/j2d
.t/
� 1

2

; (2.8)

where d
 is either a continuous measure (cf. (2.3)) or a discrete measure (cf. (2.5)),
and by using approximants ' from an n-dimensional linear space

ˆ D ˆn D
8
<

:' W '.t/ D
nX

jD1
cj 	j .t/; cj 2 R

9
=

;: (2.9)

Here the basis functions 	j are assumed linearly independent on supp d
 (cf. (2.7)).
We furthermore assume, of course, that the integral in (2.8) is meaningful whenever
u D 	j or u D f , the given function to be approximated.

The solution of the least squares problem is most easily expressed in terms of
orthogonal systems 	j relative to an appropriate inner product. We therefore begin
with a discussion of inner products.

2.1.1 Inner Products

Given a continuous or discrete measure d
, as introduced earlier, and given any two
functions u; v having a finite norm (2.8), we can define the inner product

.u; v/ D
Z

R

u.t/v.t/d
.t/: (2.10)

(Schwarz’s inequality j.u; v/j � kuk2;d
 � kvk2;d
, cf. Ex. 6, tells us that the integral
in (2.10) is well defined.) The inner product (2.10) has the following obvious (but
useful) properties:

1. symmetry: .u; v/ D .v; u/;
2. homogeneity: .˛u; v/ D ˛.u; v/, ˛ 2 R;
3. additivity: .u C v;w/ D .u;w/C .v;w/; and
4. positive definiteness: .u; u/ � 0, with equality holding if and only if u 	 0 on

supp d
.

Homogeneity and additivity together give linearity,

.˛1u1 C ˛2u2; v/ D ˛1.u1; v/C ˛2.u2; v/ (2.11)
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Fig. 2.1 Orthogonal vectors and their sum

in the first variable and, by symmetry, also in the second. Moreover, (2.11) easily
extends to linear combinations of arbitrary finite length. Note also that

kuk22; d
 D .u; u/: (2.12)

We say that u and v are orthogonal if

.u; v/ D 0: (2.13)

This is always trivially true if either u or v vanishes identically on supp d
.
It is now a simple exercise, for example, to prove the Theorem of Pythagoras:

if .u; v/ D 0; then ku C vk2 D kuk2 C kvk2; (2.14)

where k � k D k � k2;d
. (From now on we use this abbreviated notation for the
norm.) Indeed,

ku C vk2 D .u C v; u C v/ D .u; u/C .u; v/C .v; u/C .v; v/

D kuk2 C 2.u; v/C kvk2 D kuk2 C kvk2;

where the first equality is a definition, the second follows from additivity, the
third from symmetry, and the last from orthogonality. Interpreting functions u; v
as “vectors,” we can picture the configuration of u; v (orthogonal) and u C v as in
Fig. 2.1.

More generally, we may consider an orthogonal systems fukgnkD1:

.ui ; uj / D 0 if i ¤ j; uk 6	 0 on supp d
I
i; j D 1; 2; : : : ; nI k D 1; 2; : : : ; n: (2.15)
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For such a system we have the Generalized Theorem of Pythagoras,
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

nX

kD1
˛kuk

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

2

D
nX

kD1
j˛kj2kukk2: (2.16)

The proof is essentially the same as before. An important consequence of (2.16) is
that every orthogonal system is linearly independent on the support of d
. Indeed,
if the left-hand side of (2.16) vanishes, then so does the right-hand side, and this,
since kukk2 > 0 by assumption, implies ˛1 D ˛2 D � � � D ˛n D 0.

2.1.2 The Normal Equations

We are now in a position to solve the least squares approximation problem. By
(2.12), we can write the L2 error, or rather its square, in the form:

E2Œ'� WD k' � f k2 D .' � f; ' � f / D .'; '/ � 2.'; f /C .f; f /:

Inserting ' here from (2.9) gives

E2Œ'�D
Z

R

0

@
nX

jD1
cj 	j .t/

1

A
2

d
.t/�2
Z

R

0

@
nX

jD1
cj 	j .t/

1

Af .t/d
.t/C
Z

R

f 2.t/d
.t/:

(2.17)

The squared L2 error, therefore, is a quadratic function of the coefficients c1,
c2; : : : ; cn of '. The problem of best L2 approximation thus amounts to minimizing
a quadratic function of n variables. This is a standard problem of calculus and is
solved by setting all partial derivatives equal to zero. This yields a system of linear
algebraic equations. Indeed, differentiating partially with respect to ci under the
integral sign in (2.17) gives

@

@ci
E2Œ'� D 2

Z

R

0

@
nX

jD1
cj 	j .t/

1

A	i .t/d
.t/ � 2

Z

R

	i .t/f .t/d
.t/;

and setting this equal to zero, interchanging integration and summation in the
process, we get

nX

jD1
.	i ; 	j /cj D .	i ; f /; i D 1; 2; : : : ; n: (2.18)

These are called the normal equations for the least squares problem. They form a
linear system of the form

Ac D b; (2.19)

where the matrix A and the vector b have elements
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A D Œaij �; aij D .	i ; 	j /I b D Œbi �; bi D .	i ; f /: (2.20)

By symmetry of the inner product, A is a symmetric matrix. Moreover, A is positive
definite; that is,

xTAx D
nX

iD1

nX

jD1
aij xi xj > 0 if x ¤ Œ0; 0; : : : ; 0�T: (2.21)

The quadratic function in (2.21) is called a quadratic form (since it is homogeneous
of degree 2). Positive definiteness of A thus says that the quadratic form whose
coefficients are the elements of A is always nonnegative, and zero only if all
variables xi vanish.

To prove (2.21), all we have to do is insert the definition of the aij and use the
elementary properties 1–4 of the inner product:

xTAx D
nX

iD1

nX

jD1
xixj .	i ; 	j / D

nX

iD1

nX

jD1
.xi	i ; xj 	j / D

�����

nX

iD1
xi	i

�����

2

:

This clearly is nonnegative. It is zero only if
Pn

iD1 xi	i 	 0 on supp d
, which, by
the assumption of linear independence of the 	i , implies x1 D x2 D � � � D xn D 0.

Now it is a well-known fact of linear algebra that a symmetric positive definite
matrix A is nonsingular. Indeed, its determinant, as well as all its leading principal
minor determinants, are strictly positive. It follows that the system (2.18) of normal
equations has a unique solution. Does this solution correspond to a minimum of
EŒ'� in (2.17)? Calculus tells us that for this to be the case, the Hessian matrix H D
Œ@2E2=@ci@cj � has to be positive definite. But H D 2A, since E2 is a quadratic
function. Therefore, H , with A, is indeed positive definite, and the solution of the
normal equations gives us the desired minimum. The least squares approximation
problem thus has a unique solution, given by

O'.t/ D
nX

jD1
Ocj 	j .t/; (2.22)

where Oc D Œ Oc1; Oc2; : : : ; Ocn�T is the solution vector of the normal equation (2.18).
This completely settles the least squares approximation problem in theory. How

about in practice?
Assuming a general set of (linearly independent) basis functions, we can see the

following possible difficulties.

1. The system (2.18) may be ill-conditioned. A simple example is provided by
supp d
 D Œ0; 1�, d
.t/ D dt on [0,1], and 	j .t/ D t j�1, j D 1; 2; : : : ; n.
Then

.	i ; 	j / D
Z 1

0

t iCj�2 dt D 1

i C j � 1
; i; j D 1; 2; : : : ; nI



2.1 Least Squares Approximation 63

that is, the matrix A in (2.18) is precisely the Hilbert matrix (cf. Chap. 1, (1.60)).
The resulting severe ill-conditioning of the normal equations in this example
is entirely due to an unfortunate choice of basis functions – the powers. These
become almost linearly dependent, more so the larger the exponent (cf. Ex. 38).
Another source of degradation lies in the element bj D R 1

0
	j .t/f .t/dt of the

right-hand vector b in (2.18). When j is large, the power 	j D t j�1 behaves
very much like a discontinuous function on [0,1]: it is practically zero for much
of the interval until it shoots up to the value 1 at the right endpoint. This has
the unfortunate consequence that a good deal of information about f is lost
when one forms the integral defining bj . A polynomial 	j that oscillates rapidly
on [0,1] would seem to be preferable from this point of view, since it would
“engage” the function f more vigorously over all of the interval [0,1].

2. The second disadvantage is the fact that all coefficients Ocj in (2.22) depend on

n; that is, Ocj D Oc.n/j , j D 1; 2; : : : ; n. Increasing n, for example, will give an
enlarged system of normal equations with a completely new solution vector. We
refer to this as the nonpermanence of the coefficients Ocj .

Both defects 1 and 2 can be eliminated (or at least attenuated in the case of 1)
in one stroke: select for the basis functions 	j an orthogonal system,

.	i ; 	j / D 0 if i ¤ j I .	j ; 	j / D k	j k2 > 0: (2.23)

Then the system of normal equations becomes diagonal and is solved immedi-
ately by

Ocj D .	j ; f /

.	j ; 	j /
; j D 1; 2; : : : ; n: (2.24)

Clearly, each of these coefficients Ocj is independent of n, and once com-
puted, remains the same for any larger n. We now have permanence of
the coefficients. Also, we do not have to go through the trouble of solv-
ing a linear system of equations, but instead can use the formula (2.24)
directly. This does not mean that there are no numerical problems associ-
ated with (2.24). Indeed, it is typical that the denominators k	j k2 in (2.24)
decrease rapidly with increasing j , whereas the integrand in the numera-
tor (or the individual terms in the case of a discrete inner product) are of
the same magnitude as f . Yet the coefficients Ocj also are expected to de-
crease rapidly. Therefore, cancellation errors must occur when one computes
the inner product in the numerator. The cancellation problem can be alleviated
somewhat by computing Ocj in the alternative form

Ocj D 1

.	j ; 	j /

 
f �

j�1X

kD1
Ock	k; 	j

!
; j D 1; 2; : : : ; n; (2.25)

where the empty sum (when j D 1) is taken to be zero, as usual. Clearly, by
orthogonality of the 	j , (2.25) is equivalent to (2.24) mathematically, but not
necessarily numerically.
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An algorithm for computing Ocj from (2.25), and at the same time O'.t/, is as
follows:

s0 D 0;

for j D 1; 2; : : : ; n do
2

4 Ocj D 1

k	j k2 .f � sj�1; 	j /

sj D sj�1 C Ocj 	j .t/:
This produces the coefficients Oc1; Oc2; : : : ; Ocn as well as O'.t/ D sn.
Any system f O	j g that is linearly independent on the support of d
 can be

orthogonalized (with respect to the measure d
) by a device known as the
Gram1–Schmidt 2procedure. One takes

	1 D O	1
and, for j D 2; 3; : : : , recursively forms

	j D O	j �
j�1X

kD1
ck	k; ck D . O	j ; 	k/

.	k; 	k/
:

Then each 	j so determined is orthogonal to all preceding ones.

2.1.3 Least Squares Error; Convergence

We have seen in Sect. 2.1.2 that if the class ˆ D ˆn consists of n functions 	j ,
j D 1; 2; : : : ; n, that are linearly independent on the support of some measure d
,
then the least squares problem for this measure,

min
'2ˆn

kf � 'k2;d
 D kf � O'k2;d
; (2.26)

1Jórgen Pedersen Gram (1850–1916) was a farmer’s son who studied at the University of
Copenhagen. After graduation, he entered an insurance company as computer assistant and,
moving up the ranks, eventually became its director. He was interested in series expansions of
special functions and also contributed to Chebyshev and least squares approximation. The “Gram
determinant” was introduced by him in connection with his study of linear independence.
2Erhard Schmidt (1876–1959), a student of Hilbert, became a prominent member of the Berlin
School of Mathematics, where he founded the Institute of Applied Mathematics. He is considered
one of the originators of Functional Analysis, having contributed substantially to the theory of
Hilbert spaces. His work on linear and nonlinear integral equations is of lasting interest, as is his
contribution to linear algebraic systems of infinite dimension. He is also known for his proof of the
Jordan curve theorem. His procedure of orthogonalization was published in 1907 and today also
carries the name of Gram. It was known, however, already to Laplace.
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Fig. 2.2 Least squares approximation as orthogonal projection

has a unique solution O' D O'n given by (2.22). There are many ways we can select
a basis 	j in ˆn and, therefore, many ways the solution O'n can be represented.
Nevertheless, it is always one and the same function. The least squares error – the
quantity on the right-hand side of (2.26) – therefore is independent of the choice of
basis functions (although the calculation of the least squares solution, as mentioned
previously, is not). In studying this error, we may thus assume, without restricting
generality, that the basis 	j is an orthogonal system. (Every linearly independent
system can be orthogonalized by the Gram–Schmidt orthogonalization procedure;
cf. Sect. 2.1.2.) We then have (cf. (2.24))

O'n.t/ D
nX

jD1
Ocj	j .t/; Ocj D .	j ; f /

.	j ; 	j /
: (2.27)

We first note that the error f � O'n is orthogonal to the space ˆn; that is,

.f � O'n; '/ D 0 for all ' 2 ˆn; (2.28)

where the inner product is the one in (2.10). Since ' is a linear combination of the
	k , it suffices to show (2.28) for each ' D 	k , k D 1; 2; : : : ; n. Inserting O'n from
(2.27) in the left-hand side of (2.28), and using orthogonality, we find indeed

.f � O'n; 	k/ D
0

@f �
nX

jD1
Ocj	j ; 	k

1

A D .f; 	k/� Ock.	k; 	k/ D 0;

the last equation following from the formula for Ock in (2.27). The result (2.28) has
a simple geometric interpretation. If we picture functions as vectors, and the space
ˆn as a plane, then for any f that “sticks out” of the plane ˆn, the least squares
approximant O'n is the orthogonal projection of f onto ˆn; see Fig. 2.2.

In particular, choosing ' D O'n in (2.28), we get

.f � O'n; O'n/ D 0
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and, therefore, since f D .f � O'n/C O'n, by the Theorem of Pythagoras (cf. (2.14))
and its generalization (cf. (2.16)),

kf k2 D kf � O'nk2 C k O'nk2

D kf � O'nk2 C
������

nX

jD1
Ocj 	j

������

2

D kf � O'nk2 C
nX

jD1
j Ocj j2k	j k2:

Solving for the first term on the right-hand side, we get

kf � O'nk D
8
<

:kf k2 �
nX

jD1
j Ocj j2k	j k2

9
=

;

1
2

; Ocj D .	j ; f /

.	j ; 	j /
: (2.29)

Note that the expression in braces must necessarily be nonnegative.
The formula (2.29) for the error is interesting theoretically, but of limited

practical use. Note, indeed, that as the error approaches the level of the machine
precision eps, computing the error from the right-hand side of (2.29) cannot produce
anything smaller than

p
eps because of inevitable rounding errors committed during

the subtraction in the radicand. (They may even produce a negative result for the
radicand.) Using instead the definition,

kf � O'nk D
�Z

R

Œf .t/ � O'n.t/�2d
.t/
� 1
2

;

along, perhaps, with a suitable (positive) quadrature rule (cf. Chap. 3, Sect. 3.2),
is guaranteed to produce a nonnegative result that may potentially be as small as
O.eps/.

If we are now given a sequence of linear spaces ˆn, n D 1; 2; 3; : : : ; as defined
in (2.2), then clearly

kf � O'1k � kf � O'2k � kf � O'3k � � � � ;

which follows not only from (2.29), but more directly from the fact thatˆ1 � ˆ2 �
ˆ3 � � � � : If there are infinitely many such spaces, then the sequence of L2 errors,
being monotonically decreasing, must converge to a limit. Is this limit zero? If so, we
say that the least squares approximation process converges (in the mean) as n ! 1.
It is obvious from (2.29) that a necessary and sufficient condition for this is

1X

jD1
j Ocj j2k	j k2 D kf k2: (2.30)
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An equivalent way of stating convergence is as follows: given any f with kf k <
1, that is, any f in theL2;d
 space, and given any " > 0, no matter how small, there
exists an integer n D n" and a function '� 2 ˆn such that kf � '�k � ". A class
of spaces ˆn having this property is said to be complete with respect to the norm
k � k D k � k2;d
. One therefore calls (2.30) also the completeness relation.

For a finite interval [a; b], one can define completeness of fˆng also for the
uniform norm k � k D k � k1 on [a; b]. One then assumes f 2 C Œa; b� and also
	j 2 C Œa; b� for all basis functions in all classes ˆn, and one calls fˆng complete
in the norm k � k1 if for any f 2 C Œa; b� and any " > 0 there is an n D n" and a
'� 2 ˆn such that kf � '�k1 � ". It is easy to see that completeness of fˆng in
the norm k � k1 (on [a; b]) implies completeness of fˆng in the L2 norm k � k2;d
,
where supp d
 D Œa; b�, and hence convergence of the least squares approximation
process. Indeed, let " > 0 be arbitrary and let n and '� 2 ˆn be such that

kf � '�k1 � "
�Z

R

d
.t/

� 1
2

:

This is possible by assumption. Then

kf � '�k2;d
 D
�Z

R

Œf .t/ � '�.t/�2d
.t/
� 1

2

� kf � '�k1
�Z

R

d
.t/

� 1
2

� "
�Z

R

d
.t/

� 1
2

�Z

R

d
.t/

� 1
2

D ";

as claimed.

ExampleW ˆn D Pn�1.
Here completeness of fˆng in the norm k � k1 (on a finite interval [a; b]) is

a consequence of Weierstrass’s Approximation Theorem. Thus, polynomial least
squares approximation on a finite interval always converges (in the mean).

2.1.4 Examples of Orthogonal Systems

There are many orthogonal systems in use. The prototype of them all is the system
of trigonometric functions known from Fourier analysis. Other widely used systems
involve algebraic polynomials. We restrict ourselves here to these two particular
examples of orthogonal systems.
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1. Trigonometric functions: 1, cos t , cos 2t , cos 3t ; : : : ; sin t , sin 2t , sin 3t , : : : .
These are the basic harmonics; they are mutually orthogonal on the interval
[0; 2	] with respect to the equally weighted measure on [0,2	],

d
.t/ D

8
ˆ̂<

ˆ̂:

dt on Œ0; 2	�;

0 otherwise:

(2.31)

We verify this for the sine functions: for k, ` D 1; 2; 3; : : : we have

Z 2	

0

sin kt � sin `t dt D �1
2

Z 2	

0

Œcos.k C `/t � cos.k � `/t� dt:

The right-hand side is equal to

�1
2

	
sin.k C `/t

k C `
� sin.k � `/t

k � `

2	

0

D 0;

when k ¤ `, and equal to 	 otherwise. Thus,

Z 2	

0

sin kt � sin `t dt D

8
ˆ̂<

ˆ̂:

0 if k ¤ `;

	 if k D `;

k; ` D 1; 2; 3; : : : : (2.32)

Similarly, one shows that

Z 2	

0

cos kt � cos `t dt D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

0 if k ¤ `;

2	 if k D ` D 0;

	 if k D ` > 0;

k; ` D 0; 1; 2; : : : (2.33)

and

Z 2	

0

sin kt � cos `t dt D 0; k D 1; 2; 3; : : : ; ` D 0; 1; 2; : : : : (2.34)

The theory of Fourier series is concerned with the expansion of a given 2	-
periodic function in terms of these trigonometric functions,

f .t/ D
1X

kD0
ak coskt C

1X

kD1
bk sin kt: (2.35)
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Using (2.32)–(2.34), one formally obtains

a0 D 1

2	

Z 2	

0

f .t/ dt; ak D 1

	

Z 2	

0

f .t/ cos kt dt; k D 1; 2; : : : ;

bk D 1

	

Z 2	

0

f .t/ sin kt dt; k D 1; 2; : : : ; (2.36)

which are known as Fourier coefficients of f . They are precisely the coefficients
(2.24) for the system 	j consisting of our trigonometric functions. By extension,
one therefore calls the coefficients Ocj in (2.24), for any orthogonal system 	j , the
Fourier coefficients of f relative to this system. In particular, we now recognize
the truncated Fourier series (the series on the right-hand side of (2.35) truncated
at k D m, with ak , bk given by (2.36)) as the bestL2 approximation to f from the
class of trigonometric polynomials of degree � m relative to the norm (cf. (2.31))

kuk2 D
�Z 2	

0

ju.t/j2dt
� 1

2

:

2. Orthogonal polynomials: given a measure d
 as introduced in (2.3)–(2.5), we
know from the example immediately following (2.7) that any finite number of
consecutive powers 1, t , t2; : : : are linearly independent on [a; b], if supp d
 D
Œa; b�, whereas the finite set 1, t; : : : ; tN�1 is linearly independent on supp d
 D
ft1; t2; : : : ; tN g. Since a linearly independent set can be orthogonalized by Gram–
Schmidt (cf. Sect. 2.1.2), any measure d
 of the type considered generates
a unique set of (monic) polynomials 	j .t/ D 	j .t I d
/, j D 0; 1; 2; : : : ;

satisfying

deg	j D j; j D 0; 1; 2; : : : ;
Z

R

	k.t/	`.t/d
.t/ D 0 if k ¤ `: (2.37)

These are called orthogonal polynomials relative to the measure d
. (We slightly
deviate from the notation in Sects. 2.1.2 and 2.1.3 by letting the index j start
from zero.) The set 	j is infinite if supp d
 D Œa; b�, and consists of exactly N
polynomials 	0, 	1; : : : ; 	N�1 if supp d
 D ft1; t2; : : : ; tN g. The latter are referred
to as discrete orthogonal polynomials.

It is an important fact that three consecutive orthogonal polynomials are linearly
related. Specifically, there are real constants ˛k D ˛k.d
/ and positive constants
ˇk D ˇk.d
/ (depending on the measure d
) such that

	kC1.t/ D .t � ˛k/	k.t/ � ˇk	k�1.t/; k D 0; 1; 2; : : : ;

	�1.t/ D 0; 	0.t/ D 1: (2.38)
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(It is understood that (2.38) holds for all integers k � 0 if supp d
 D Œa; b�, and
only for 0 � k < N � 1 if supp d
 = ft1; t2; : : : ; tN g.)

To prove (2.38) and, at the same time identify the coefficients ˛k , ˇk , we note
that

	kC1.t/ � t	k.t/

is a polynomial of degree � k, since the leading terms cancel (the polynomials 	j
are assumed monic). Since an orthogonal system is linearly independent (cf. the
remark after (2.16)), we can express this polynomial as a linear combination of 	0,
	1; : : : ; 	k . We choose to write this linear combination in the form:

	kC1.t/ � t	k.t/ D �˛k	k.t/ � ˇk	k�1.t/C
k�2X

jD0
�k;j 	j .t/ (2.39)

(with the understanding that empty sums are zero). Now multiply both sides
of (2.39) by 	k in the sense of the inner product (� , �) defined in (2.10). By
orthogonality, this gives .�t	k; 	k/ D �˛k.	k; 	k/; that is,

˛k D .t	k; 	k/

.	k; 	k/
; k D 0; 1; 2; : : : : (2.40)

Similarly, forming the inner product of (2.39) with 	k�1 gives .�t	k; 	k�1/ =
�ˇk.	k�1; 	k�1/. Since .t	k; 	k�1/ = .	k; t	k�1/ and t	k�1 differs from 	k by
a polynomial of degree < k, we obtain by orthogonality .t	k; 	k�1/ = .	k; 	k/;
hence

ˇk D .	k; 	k/

.	k�1; 	k�1/
; k D 1; 2; : : : : (2.41)

Finally, multiplication of (2.39) by 	`, ` < k � 1, yields

�k;` D 0; ` D 0; 1; : : : ; k � 2: (2.42)

Solving (2.39) for 	kC1 then establishes (2.38), with ˛k , ˇk defined by (2.40)
and (2.41), respectively. Clearly, ˇk > 0. By convention, ˇ0 D R

R
d
.t/ DR

R
	20 .t/d
.t/.
The recursion (2.38) provides us with a practical scheme of generating orthogo-

nal polynomials. Indeed, since 	0 D 1, we can compute ˛0 by (2.40) with k D 0.
This allows us to compute	1.t/ for any t , using (2.38) with k D 0. Knowing 	0, 	1,
we can go back to (2.40) and (2.41) and compute, respectively,˛1 and ˇ1. This gives
us access to 	2 via (2.38) with k D 1. Proceeding in this fashion, using alternately
(2.40), (2.41), and (2.38), we can generate as many orthogonal polynomials as are
desired. This procedure – called Stieltjes’s procedure – is particularly well suited
for discrete orthogonal polynomials, since the inner product is then a finite sum,
.u; v/ =

PN
iD1 wiu.ti /v.ti / (cf. (2.5)), so that the computation of the ˛k , ˇk from
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(2.40) and (2.41) is straightforward. In the continuous case, the computation of the
inner product requires integration, which complicates matters. Fortunately, for many
important special measures d
.t/ D w.t/dt , the recursion coefficients are explicitly
known (cf. Chap. 3, Table 3.1). In these cases, it is again straightforward to generate
the orthogonal polynomials by (2.38).

The special case of symmetry (i.e., d
.t/ D w.t/dt with w.�t/ D w.t/ and
supp(d
) symmetric with respect to the origin) deserves special mention. In this
case, defining pk.t/ D .�1/k	k.�t/, one obtains by a simple change of variables
that .pk; p`/ D .�1/kC`.	k; 	`/ D 0 if k ¤ `. Since pk is monic, it follows by
uniqueness that pk.t/ 	 	k.t/; that is,

.�1/k	k.�t/ 	 	k.t/ .d
 symmetric/: (2.43)

Thus, if k is even, then 	k is an even polynomial, that is, a polynomial in t2.
Likewise, when k is odd, 	k contains only odd powers of t . As a consequence,

˛k D 0 for all k � 0 .d
 symmetric/; (2.44)

which also follows from (2.40), since the numerator on the right-hand side of this
equation is an integral of an odd function over a symmetric set of points.

ExampleW Legendre3 polynomials.
We may introduce the monic Legendre polynomials by

	k.t/ D .�1/k kŠ

.2k/Š

dk

dtk
.1 � t2/k; k D 0; 1; 2; : : : ; (2.45)

which is known as the Rodrigues formula.
We first verify orthogonality on the interval Œ�1; 1� relative to the measure

d
.t/ D dt . For any ` with 0 � ` < k, repeated integration by parts gives

Z 1

�1
dk

dtk
.1 � t2/k � t `dt D

X̀

mD0
.�1/m`.` � 1/ � � � .` �mC 1/t`�m

� dk�m�1

dtk�m�1 .1 � t2/k
ˇ̌
ˇ̌
1

�1
D 0;

the last equation since 0 � k �m � 1 < k. Thus,

.	k; p/ D 0 for every p 2 Pk�1;

3Adrien Marie Legendre (1752–1833) was a French mathematician active in Paris, best known
not only for his treatise on elliptic integrals but also famous for his work in number theory and
geometry. He is considered as the originator (in 1805) of the method of least squares, although
Gauss had already used it in 1794, but published it only in 1809.
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proving orthogonality. Writing (by symmetry)

	k.t/ D tk C �kt
k�2 C � � � ; k � 2;

and noting (again by symmetry) that the recurrence relation has the form

	kC1.t/ D t	k.t/ � ˇk	k�1.t/;

we obtain

ˇk D t	k.t/ � 	kC1.t/
	k�1.t/

;

which is valid for all t . In particular, as t ! 1,

ˇk D lim
t!1

t	k.t/ � 	kC1.t/
	k�1.t/

D lim
t!1

.�k � �kC1/tk�1 C � � �
tk�1 C � � � D �k � �kC1:

(If k D 1, set �1 D 0.) From Rodrigues’s formula, however, we find

	k.t/ D kŠ

.2k/Š

dk

dtk
.t2k � kt2k�2 C � � � / D kŠ

.2k/Š

�
2k.2k � 1/ � � � .k C 1/tk

� k � .2k � 2/.2k � 3/ � � � .k � 1/tk�2 C � � � �

D tk � k.k � 1/
2.2k � 1/ t

k�2 C � � � ;

so that

�k D � k.k � 1/

2.2k � 1/
; k � 2:

Therefore,

ˇk D �k � �kC1 D � k.k � 1/
2.2k � 1/ C .k C 1/k

2.2k C 1/
D k

2

2k

.2k C 1/.2k � 1/
I

that is, since �1 D 0,

ˇk D 1

4 � k�2 ; k � 1: (2.46)

We conclude with two remarks concerning discrete measures d
 with supp d
 D
ft1; t2; : : : ; tN g. As before, the L2 errors decrease monotonically, but the last one is
now zero, since there is a polynomial of degree � N � 1 that interpolates f at the
N points t1; t2; : : : ; tN (cf. Sect. 2.1.2). Thus,

kf � O'0k � kf � O'1k � � � � � kf � O'N�1k D 0; (2.47)
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where O'n is the L2 approximant of degree � n,

O'n.t/ D
nX

jD0
Ocj 	j .t I d
/; Ocj D .	j ; f /

.	j ; 	j /
: (2.48)

We see that the polynomial O'N�1 solves the interpolation problem for PN�1. Using
(2.48) with n D N � 1 to obtain the interpolation polynomial, however, is a
roundabout way of solving the interpolation problem. We learn of more direct ways
in the next section.

2.2 Polynomial Interpolation

We now wish to approximate functions by matching their values at given points.
Using polynomials as approximants gives rise to the following problem: given nC1
distinct points x0, x1; : : : ; xn and values fi D f .xi / of some function f at these
points, find a polynomial p 2 Pn such that

p.xi / D fi ; i D 0; 1; 2; : : : ; n:

Since we have to satisfy nC 1 conditions, and have at our disposal nC 1 degrees of
freedom – the coefficients of p – we expect the problem to have a unique solution.
Other questions of interest, in addition to existence and uniqueness, are different
ways of representing and computing the polynomial p, what can be said about the
error e.x/ D f .x/ � p.x/ when x ¤ xi , i D 0; 1; : : : ; n, and the quality of
approximation f .x/ � p.x/ when the number of points, and hence the degree of
p, is allowed to increase indefinitely. Although these questions are not of the utmost
interest in themselves, the results discussed here are widely used in the development
of approximate methods for more important practical tasks such as solving initial
and boundary value problems for ordinary and partial differential equations. It is in
view of these and other applications that we study polynomial interpolation.

The simplest example is linear interpolation, that is, the case n D 1. Here, it is
obvious from Fig. 2.3 that the interpolation problem has a unique solution. It is also
clear that the error e.x/ can be as large as one likes (or dislikes) if nothing is known
about f other than its two values at x0 and x1.

One way of writing down the linear interpolant p is as a weighted average of f0
and f1 (already taught in high school),

p.x/ D x � x1

x0 � x1 f0 C x � x0

x1 � x0 f1:
This is the way Lagrange expressed p in the general case (cf. Sect. 2.1.2). However,
we can write p also in Taylor’s form, noting that its derivative at x0 is equal to the
“difference quotient,”

p.x/ D f0 C f1 � f0
x1 � x0 .x � x0/:
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Fig. 2.3 Linear interpolation

This indeed is a prototype of Newton’s form of the interpolation polynomial
(cf. Sect. 2.2.6).

Interpolating to function values is referred to as Lagrange interpolation. More
generally, we may wish to interpolate to function and consecutive derivative values
of some function. This is called Hermite interpolation. It turns out that the latter can
be solved as a limit case of the former (cf. Sect. 2.2.7).

2.2.1 Lagrange Interpolation Formula: Interpolation Operator

We prove the existence of the interpolation polynomial by simply writing it down.
It is clear, indeed, that

`i .x/ D
nY

jD0
j¤i

x � xj

xi � xj
; i D 0; 1; : : : ; n; (2.49)

is a polynomial of degree n that interpolates to 1 at x D xi and to 0 at all the other
points. Multiplying it by fi produces the correct value at xi , and then adding up the
resulting polynomials,

p.x/ D
nX

iD0
fi `i .x/;

produces a polynomial, still of degree � n, that has the desired interpolation
properties. To prove this formally, note that
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`i .xk/ D ıik D

8
ˆ̂<

ˆ̂:

1 if i D k;

0 if i ¤ k;

i; k D 0; 1; : : : ; n: (2.50)

Therefore,

p.xk/ D
nX

iD0
fi `i .xk/ D

nX

iD0
fi ıik D fk; k D 0; 1; : : : ; n:

This establishes the existence of the interpolation polynomial. To prove uniqueness,
assume that there are two polynomials of degree � n, say, p and p�, both
interpolating to f at xi , i D 0; 1; : : : ; n. Then

d.x/ D p.x/ � p�.x/

is a polynomial of degree � n that satisfies

d.xi / D fi � fi D 0; i D 0; 1; : : : ; n:

In other words, d has n C 1 distinct zeros xi . There is only one polynomial in Pn

with that many zeros, namely, d.x/ 	 0. Therefore, p�.x/ 	 p.x/.
We denote the unique polynomial p 2 Pn interpolating f at the (distinct) points

x0, x1; : : : ; xn by
pn.f I x0; x1; : : : ; xnI x/ D pn.f I x/; (2.51)

where we use the long form on the left-hand side if we want to place in evidence the
points at which interpolation takes place, and the short form on the right-hand side
if the choice of these points is clear from the context. We thus have what is called
the Lagrange4 interpolation formula

pn.f I x/ D
nX

iD0
f .xi /`i .x/; (2.52)

with the `i .x/ – the elementary Lagrange interpolation polynomials – defined in
(2.49).

4Joseph Louis Lagrange (1736–1813), born in Turin, became, through correspondence with Euler,
his protégé. In 1766 he indeed succeeded Euler in Berlin. He returned to Paris in 1787. Clairaut
wrote of the young Lagrange: “ : : : a young man, no less remarkable for his talents than for
his modesty; his temperament is mild and melancholic; he knows no other pleasure than study.”
Lagrange made fundamental contributions to the calculus of variations and to number theory, and
worked also on many problems in analysis. He is widely known for his representation of the
remainder term in Taylor’s formula. The interpolation formula appeared in 1794. His Mécanique
Analytique, published in 1788, made him one of the founders of analytic mechanics.
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It is useful to look at Lagrange interpolation in terms of a (linear) operator Pn
from (say) the space of continuous functions to the space of polynomials Pn,

Pn W C Œa; b� ! Pn; p. � / D pn.f I � /: (2.53)

The interval [a; b] here is any interval containing all points xi , i D 0; 1; : : : ; n. The
operator Pn has the following properties:

1. Pn. f̨ / D ˛Pnf; ˛ 2 R (homogeneity);
2. Pn.f C g/ D Pnf C Png (additivity).

Combining 1 and 2 shows that Pn is a linear operator,

Pn. f̨ C ˇg/ D ˛Pnf C ˇPng; ˛; ˇ 2 R:

3. Pnf D f for all f 2 Pn.

The last property – an immediate consequence of uniqueness of the interpolation
polynomial – says that Pn leaves polynomials of degree � n unchanged, and hence
is a projection operator.

A norm of the linear operator Pn can be defined (similarly as for matrices,
cf. Chap. 1, (1.30)) by

kPnk D max
f 2CŒa;b�

kPnf k
kf k ; (2.54)

where on the right-hand side one takes any convenient norm for functions. Taking
the L1 norm (cf. Table 2.1), one obtains from Lagrange’s formula (2.52)

kpn.f I � /k1 D max
a�x�b

ˇ̌
ˇ̌
ˇ

nX

iD0
f .xi /`i .x/

ˇ̌
ˇ̌
ˇ

� kf k1 max
a�x�b

nX

iD0
j`i .x/j: (2.55)

Indeed, equality holds for some continuous function f ; cf. Ex. 30. Therefore,

kPnk1 D ƒn; (2.56)

where

ƒn D k
nk1; 
n.x/ D
nX

iD0
j`i .x/j: (2.57)
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The function 
n.x/ and its maximum ƒn are called, respectively, the Lebesgue5

function and Lebesgue constant for Lagrange interpolation. They provide a first
estimate for the interpolation error: let En.f / be the best (uniform) approximation
of f on [a; b] by polynomials of degree � n,

En.f / D min
p2Pn

kf � pk1 D kf � Opnk1; (2.58)

where Opn is the nth-degree polynomial of best uniform approximation to f . Then,
using the basic properties 1–3 of Pn, in particular, the projection property 3, and
(2.55) and (2.57), one finds

kf � pn.f I � /k1 D kf � Opn � pn.f � OpnI � /k1

� kf � Opnk1 Cƒnkf � Opnk1I

that is,

kf � pn.f I � /k1 � .1Cƒn/En.f /: (2.59)

Thus, the better f can be approximated by polynomials of degree � n, the smaller
the interpolation error. Unfortunately,ƒn is not uniformly bounded: no matter how
one chooses the nodes xi D x

.n/
i , i D 0; 1; : : : ; n, one can show that always ƒn >

O.logn/ as n ! 1. It is not possible, therefore, to conclude from Weierstrass’s
approximation theorem (i.e., from En.f / ! 0, n ! 1) that Lagrange interpolation
converges uniformly on [a; b] for any continuous function, not even for judiciously
selected nodes; indeed, one knows that it does not.

2.2.2 Interpolation Error

As noted earlier, we need to make some assumptions about the function f in order
to be able to estimate the error of interpolation, f .x/�pn.f I x/, for any x ¤ xi in
[a; b]. In (2.59) we made an assumption in terms of how well f can be approximated
on [a; b] by polynomials of degree � n. Now we make an assumption on the
magnitude of some appropriate derivative of f .

5Henri Leon Lebesgue (1875–1941) was a French mathematician best known for his work on the
theory of real functions, notably the concepts of measure and integral that now bear his name. These
became fundamental in many areas of mathematics such as functional analysis, Fourier analysis,
and probability theory. He has also made interesting contributions to the calculus of variations, the
theory of dimension, and set theory.
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It is not difficult to guess how the formula for the error should look: since the
error is zero at each xi , i D 0; 1; : : : ; n, we ought to see a factor of the form .x�x0/
.x � x1/ � � � .x � xn/. On the other hand, by the projection property 3 in Sect. 2.2.1,
the error is also zero (even identically so) if f 2 Pn, which suggests another factor
– the .n C 1/st derivative of f . But evaluated where? Certainly not at x, since
f would then have to satisfy a differential equation. So let us say that f .nC1/ is
evaluated at some point � D �.x/, which is unknown but must be expected to
depend on x. Now if we test the formula so far conjectured on the simplest nontrivial
polynomial, f .x/ D xnC1, we discover that a factor 1=.nC 1/! is missing. So, our
final (educated) guess is the formula

f .x/ � pn.f I x/ D f .nC1/.�.x//
.nC 1/Š

nY

iD0
.x � xi /; x 2 Œa; b�: (2.60)

Here �.x/ is some number in the open interval (a; b), but otherwise unspecified,

a < �.x/ < b: (2.61)

The statement (2.60) and (2.61) is, in fact, correct if we assume that f 2
CnC1Œa; b�. An elegant proof of it, due to Cauchy,6 goes as follows. We can assume
x ¤ xi for i D 0; 1; : : : ; n, since otherwise (2.60) would be trivially true for any
�.x/. So, fix x 2 Œa; b� in this manner, and define a function F of the new variable
t as follows:

F.t/ D f .t/ � pn.f I t/ � f .x/ � pn.f I x/
nY

iD0
.x � xi /

nY

iD0
.t � xi /: (2.62)

Clearly, F 2 CnC1Œa; b�. Furthermore,

F.xi / D 0; i D 0; 1; : : : ; nI F.x/ D 0:

Thus, F has n C 2 distinct zeros in [a; b]. Applying repeatedly Rolle’s Theorem,
we conclude that

6Augustin Louis Cauchy (1789–1857), active in Paris, is truly the father of modern analysis. He
provided a firm foundation for analysis by basing it on a rigorous concept of limit. He is also
the creator of complex analysis, of which “Cauchy’s formula” (cf. (2.70)) is a centerpiece. In
addition, Cauchy’s name is attached to pioneering contributions to the theory of ordinary and partial
differential equations, in particular, regarding questions of existence and uniqueness. As with
many great mathematicians of the eighteenth and nineteenth centuries, his work also encompasses
geometry, algebra, number theory, and mechanics, as well as theoretical physics.
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F 0 has at least nC 1 distinct zeros in .a; b/

F 00 has at least n distinct zeros in .a; b/

F 000 has at least n� 1 distinct zeros in .a; b/

� � � � � � � � � � � � � � � � � � � � � � � � � � �

F .nC1/ has at least 1 zero in .a; b/

since F .nC1/ is still continuous on [a; b]. Denote by �.x/ a zero of F .nC1/ whose
existence we just established. It certainly satisfies (2.61) and, of course, will depend
on x. Now differentiating F in (2.62) nC 1 times with respect to t , and then setting
t D �.x/, we get

0 D f .nC1/.�.x// � f .x/ � pn.f I x/
nY

iD0
.x � xi /

� .nC 1/Š;

which, when solved for f .x/� pn.f I x/, gives precisely (2.60). Actually, what we
have shown is that �.x/ is contained in the span of x0; x1; : : : ; xn, x, that is, in the
interior of the smallest closed interval containing x0; x1; : : : ; xn and x.

Examples. 1. Linear interpolation (n D 1). Assume that x0 � x � x1; that is,
[a; b] = [x0; x1], and let h D x1 � x0. Then by (2.60) and (2.61),

f .x/ � p1.f I x/ D .x � x0/.x � x1/
f 00.�/
2

; x0 < � < x1;

and an easy computation gives

kf � p1.f I �/k1 � M2

8
h2; M2 D kf 00k1: (2.63)

Here the 1-norm refers to the interval [x0; x1]. Thus, on small intervals of length
h, the error for linear interpolation is O.h2/.

2. Quadratic interpolation (n D 2) on equally spaced points x0, x1 D x0 C h,
x2 D x0 C 2h. We now have, for x 2 Œx0; x2�,

f .x/ � p2.f I x/ D .x � x0/.x � x1/.x � x2/f
000.�/
6

; x0 < � < x2;
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Fig. 2.4 Interpolation error for eight equally spaced points

and (cf. Ex. 43(a))

kf � p2.f I �/k1 � M3

9
p
3
h3; M3 D kf 000k1;

giving an error ofO.h3/.

3. nth-degree interpolation on equally spaced points xi D x0 C ih, i D 0; 1; : : : ; n.
When h is small, and x0 � x � xn, then �.x/ in (2.60) is constrained to a
relatively small interval and f .nC1/.�.x// cannot vary a great deal. The behavior
of the error, therefore, is mainly determined by the product

Qn
iD0.x � xi /, the

graph of which, for n D 7, is shown in Fig. 2.4. We clearly have symmetry
with respect to the midpoint .x0 C xn/=2. It can also be shown that the relative
extrema decrease monotonically in modulus as one moves from the endpoints to
the center (cf. Ex. 29(c)).

It is evident that the oscillations become more violent as n increases. In
particular, the curve is extremely steep at the endpoints, and takes off to 1
rapidly as x moves away from the interval [x0; xn]. Although it is true that the
curve representing the interpolation error is scaled by a factor of O.hnC1/, it
is also clear that one ought to interpolate near the center zone of the interval
[x0; xn], if at all possible, and should avoid interpolation near the end zones, or
even extrapolation outside the interval. The highly oscillatory nature of the error
curve, when n is large, also casts some legitimate doubts about convergence of
the interpolation process as n ! 1. This is studied in the next section.
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2.2.3 Convergence

We first must define what we mean by “convergence.” We assume that we are given
a triangular array of interpolation nodes xi D x

.n/
i , exactly nC 1 distinct nodes for

each n D 0; 1; 2; : : : :

x
.0/
0

x
.1/
0 x

.1/
1

x
.2/
0 x

.2/
1 x

.2/
2

� � � � � � � � � � �
x
.n/
0 x

.n/
1 x

.n/
2 � � � x.n/n

� � � � � � � � � � � � � � � �

(2.64)

We further assume that all nodes x.n/i are contained in some finite interval [a; b].
Then, for each n, we define

pn.x/ D pn.f I x.n/0 ; x
.n/
1 ; : : : ; x.n/n I x/; x 2 Œa; b�: (2.65)

We say that Lagrange interpolation based on the triangular array of nodes (2.64)
converges if

pn.x/ ! f .x/ as n ! 1; (2.66)

uniformly for x 2 Œa; b�.
Convergence clearly depends on the behavior of the kth derivative f .k/ of f as

k ! 1. We assume that f 2 C1Œa; b�, and that

jf .k/.x/j � Mk for a � x � b; k D 0; 1; 2; : : : : (2.67)

Since jx � x.n/i j � b � a whenever x 2 Œa; b� and x.n/i 2 Œa; b�, we have

j.x � x
.n/
0 /.x � x

.n/
1 / � � � .x � x.n/n /j � .b � a/nC1; (2.68)

so that by (2.60)

jf .x/ � pn.x/j � .b � a/nC1 MnC1
.nC 1/Š

; x 2 Œa; b�:

We therefore have convergence if

lim
k!1

.b � a/k

kŠ
Mk D 0: (2.69)
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Fig. 2.5 The circular disk Cr

We now show that (2.69) is true if f is analytic in a sufficiently large region in
the complex plane containing the interval [a; b]. Specifically, let Cr be the circular
(closed) disk with center at the midpoint of [a; b] and radius r , and assume, for the
time being, that r > 1

2
.b � a/, so that Œa; b� � Cr . Assume f analytic in Cr . Then

we can estimate the derivative in (2.67) by Cauchy’s Formula,

f .k/.x/ D kŠ

2	i

I

@Cr

f .z/

.z � x/kC1 dz; x 2 Œa; b�: (2.70)

Noting that jz � xj � r � 1
2
.b � a/ (cf. Fig. 2.5), we obtain

jf .k/.x/j � kŠ

2	

max
z2@Cr

jf .z/j
Œr � 1

2
.b � a/�kC1 � 2	r:

Therefore, we can take for Mk in (2.67)

Mk D r

r � 1
2
.b � a/

max
z2@Cr

jf .z/j � kŠ

Œr � 1
2
.b � a/�k

; (2.71)

and (2.69) holds if

 
b � a

r � 1
2
.b � a/

!k
! 0 as k ! 1;

that is, if b � a < r � 1
2
.b � a/, or, equivalently,

r > 3
2
.b � a/: (2.72)
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We have shown that Lagrange interpolation converges (uniformly on [a; b]) for an
arbitrary triangular set of nodes (2.64) (all contained in [a; b]) if f is analytic in
the circular disk Cr centered at .a C b/=2 and having radius r sufficiently large so
that (2.72) holds.

Since our derivation of this result used rather crude estimates (see, in particular,
(2.68)), the required domain of analyticity for f that we found is certainly not sharp.
Using more refined methods, one can prove the following. Let d�.t/ be the “limit
distribution” of the interpolation nodes, that is, let

Z x

a

d�.t/; a < x � b;

be the ratio of the number of nodes x.n/i in [a; x] to the total number, n C 1, of
nodes, asymptotically as n ! 1. (When the nodes are uniformly distributed over
the interval [a; b], then d�.t/ D dt=.b � a/.) A curve of constant logarithmic
potential is the locus of all complex z 2 C such that

u.z/ D �; u.z/ D
Z b

a

ln
1

jz � t j d�.t/;

where � is a constant. For large negative � , these curves look like circles with large
radii and center at .aCb/=2. As � increases, the curves “shrink” toward the interval
[a; b]. Let

� D sup �;

where the supremum is taken over all curves u.z/ D � containing [a; b] in their
interior. The important domain (replacing Cr ) is then the domain

C� D fz 2 C W u.z/ � �g; (2.73)

in the sense that if f is analytic in any domain C containing C� in its interior (no
matter how closely C covers C� ), then

jf .z/ � pn.f I z/j ! 0 as n ! 1 (2.74)

uniformly for z 2 C� .

Examples. 1. Equally distributed nodes: d�.t/ D dt=.b � a/, a � t � b. In this
case, C� is a lens-shaped domain with tips at a and b, as shown in Fig. 2.6. Thus,
we have uniform convergence in C� (not just on [a; b], as before) provided f is
analytic in a region slightly larger than C� .

2. Arc sine distribution on [–1,1]: d�.t/ D 1

	

dtp
1 � t2

. Here the nodes are more

densely distributed near the endpoints of the interval [–1,1]. It turns out that in
this case C� = [–1,1], so that Lagrange interpolation converges uniformly on
[–1,1] if f is “analytic on [1,1],” that is, analytic in any region, no matter how
thin, that contains the interval [–1,1] in its interior.
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Fig. 2.6 The domain C� for uniformly distributed nodes

3. Runge’s7 example:

f .x/ D 1

1C x2
; � 5 � x � 5;

x
.n/

k D �5C k
10

n
; k D 0; 1; 2; : : : ; n: (2.75)

Here the nodes are equally spaced, hence asymptotically equally distributed.
Note that f .z/ has poles at z D ˙ i. These poles lie definitely inside the region
C� in Fig. 2.6 for the interval [–5,5], so that f is not analytic in C� . For this
reason, we can no longer expect convergence on the whole interval [–5,5]. It has
been shown, indeed, that

lim
n!1 jf .x/ � pn.f I x/j D

8
<

:
0 if jxj < 3:633 : : : ;
1 if jxj > 3:633 : : : :

(2.76)

We have convergence in the central zone of the interval [–5,5], but divergence in
the lateral zones. With Fig. 2.4 kept in mind, this is perhaps not all that surprising
(cf. MA 7(b)).

4. Bernstein’s8 example:

f .x/ D jxj; � 1 � x � 1;

x
.n/

k D �1C 2k

n
; k D 0; 1; 2; : : : ; n: (2.77)

7Carl David Tolme Runge (1856–1927) was active in the famous Göttingen school of mathematics
and is one of the early pioneers of numerical mathematics. He is best known for the Runge–Kutta
formula in ordinary differential equations (cf. Chap. 5, Sect. 5.6.5), for which he provided the basic
idea. He made also notable contributions to approximation theory in the complex plane.
8Sergei Natanovič Bernštein (1880–1968) made major contributions to polynomial approximation,
continuing in the tradition of his countryman Chebyshev. He is also known for his work on partial
differential equations and probability theory.
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Here analyticity of f is completely gone, f being not even differentiable at
x D 0. Accordingly, one finds that

lim
n!1jf .x/ � pn.f I x/j D 1 for every x 2 Œ�1; 1�;

except x D �1; x D 0; and x D 1: (2.78)

The fact that x D ˙ 1 are exceptional points is trivial, since they are interpolation
nodes, where the error is zero. The same is true for x D 0 when n is even, but
not if n is odd.

The failure of convergence in the last two examples can only in part be blamed
on insufficient regularity of f . Another culprit is the equidistribution of the
nodes. There are indeed better distributions, for example, the arc sine distribution
of Example 2. An instance of the latter is discussed in the next section.

We add one more example, which involves complex nodes, and for which the
preceding theory, therefore, no longer applies. We prove convergence directly.

5. Interpolation at the roots of unity (Fejér9): zk D exp.k2	i=n/, k D 1; 2; : : : ; n.
We show that

pn�1.f I z/ ! f .z/; n ! 1; for any jzj < 1; (2.79)

uniformly in any disk jzj � � < 1, provided f is analytic in jzj < 1 and
continuous on jzj � 1.

We have

!n.z/ WD
nY

kD1
.z � zk/ D zn � 1; !0

n.zk/ D nzn�1
k D n

zk
;

so that the elementary Lagrange polynomials are

`k.z/ D !n.z/

!0
n.zk/.z � zk/

D zn � 1
n
zk
.z � zk/

D zk
n

1

zk � z
C zn

zk
.z � zk/n

:

9Leopold Fejér (1880–1959) was a leading Hungarian mathematician of the twentieth century.
Interestingly, Fejér had great difficulties in mathematics at the elementary and lower secondary
school level, and even required private tutoring. It was an inspiring teacher in the upper-level
secondary school who awoke Fejér’s interest and passion for mathematics. He went on to discover
– still a university student – an important result on the summability of Fourier series, which made
him famous overnight. He continued to make further contributions to the theory of Fourier series,
but also occupied himself with problems of approximation and interpolation in the real as well
as complex domain. He in turn was an inspiring teacher to the next generation of Hungarian
mathematicians.
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Therefore,

pn�1.f I z/ D
nX

kD1

f .zk/

zk � z

zk
n

C zn
nX

kD1

f .zk/

z � zk

zk
n
: (2.80)

We interpret the first sum as a Riemann sum of an integral extended over the unit
circle:

nX

kD1

f .zk/

zk � z

zk
n

D 1

2	i

nX

kD1

f .eik2	=n/

eik2	=n � z
ieik2	=n � 2	

n

! 1

2	i

Z 2	

0

f .ei� /

ei� � z
iei�d� D 1

2	i

I

jjD1
f ./d

 � z
as n ! 1:

The last expression, by Cauchy’s Formula, however, is precisely f .z/. The
second term in (2.80), being just �zn times the first, converges to zero, uniformly
in jzj � � < 1.

2.2.4 Chebyshev Polynomials and Nodes

The choice of nodes, as we saw in the previous section, distinctly influences
the convergence character of the interpolation process. We now discuss a choice
of points – the Chebyshev points – which leads to very favorable convergence
properties. These points are useful, not only for interpolation, but also for other
purposes (integration, collocation, etc.). We consider them on the canonical interval
[–1,1], but they can be defined on any finite interval [a; b] by means of a linear
transformation of variables that maps [–1,1] onto [a; b].

We begin with developing the Chebyshev polynomials. They arise from the fact
that the cosine of a multiple argument is a polynomial in the cosine of the simple
argument; more precisely,

cosn� D Tn.cos �/; Tn 2 Pn: (2.81)

This is a consequence of the well-known trigonometric identity

cos.k C 1/� C cos.k � 1/� D 2 cos � cos k�;

which, when solved for the first term, gives

cos.k C 1/� D 2 cos� cos k� � cos.k � 1/�: (2.82)

Therefore, if cosm� is a polynomial of degree m in cos � for all m � k, then the
same is true form D kC1. Mathematical induction then proves (2.81). At the same
time, it follows from (2.81) and (2.82), if we set cos � D x, that
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TkC1.x/ D 2xTk.x/ � Tk�1.x/; k D 1; 2; 3; : : : ;

T0.x/ D 1; T1.x/ D x: (2.83)

The polynomials Tm so defined are called the Chebyshev polynomials (of the first
kind). Thus, for example,

T2.x/ D 2x2 � 1;

T3.x/ D 4x3 � 3x;

T4.x/ D 8x4 � 8x2 C 1;

and so on.
Clearly, these polynomials are defined not only for x in [–1,1], but also for

arbitrary real or complex x. It is only that on the interval [–1,1] they satisfy the
identity (2.81) (where � is real).

It is evident from (2.83) that the leading coefficient of Tn is 2n�1 (if n � 1); the
monic Chebyshev polynomial of degree n, therefore, is

ı
T n.x/ D 1

2n�1 Tn.x/; n � 1I ı
T 0 D T0: (2.84)

The basic identity (2.81) allows us to immediately obtain the zeros xk D x
.n/

k of
Tn: indeed, cosn� D 0 if n� D .2k � 1/	=2, so that

x
.n/

k D cos �.n/k ; �
.n/

k D 2k � 1
2n

	; k D 1; 2; : : : ; n: (2.85)

All zeros of Tn are thus real, distinct, and contained in the open interval (–1,1). They
are the projections onto the real line of equally spaced points on the unit circle;
cf. Fig. 2.7 for the case n D 4.

In terms of the zeros x.n/k of Tn, we can write the monic polynomial in factored
form as

ı
T n.x/ D

nY

kD1

�
x � x.n/k

�
: (2.86)

As we let � increase from 0 to 	 , hence x D cos � decrease from C1 to �1,
(2.81) shows that Tn.x/ oscillates between +1 and –1, attaining these extreme
values at

y
.n/

k D cos �.n/k ; �
.n/

k D k
	

n
; k D 0; 1; 2; : : : ; n: (2.87)
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Fig. 2.7 The Chebyshev polynomial y D T4.x/

In summary, then,

Tn

�
x
.n/

k

�
D 0 for x.n/k D cos

2k � 1

2n
	; k D 1; 2; : : : ; nI (2.88)

Tn

�
y
.n/

k

�
D .�1/k for y.n/k D cos

k

n
	; k D 0; 1; 2; : : : ; n: (2.89)

Chebyshev polynomials owe their importance and usefulness to the following
theorem, due to Chebyshev.10

Theorem 2.2.1. For an arbitrary monic polynomial
ı
pn of degree n, there holds

max�1�x�1 j ı
pn.x/j � max�1�x�1 j ı

T n.x/j D 1

2n�1 ; n � 1; (2.90)

where
ı
T n is the monic Chebyshev polynomial (2.84) of degree n.

10Pafnuti Levovich Chebyshev (1821–1894) was the most prominent member of the St. Petersburg
school of mathematics. He made pioneering contributions to number theory, probability theory,
and approximation theory. He is regarded as the founder of constructive function theory, but also
worked in mechanics, notably the theory of mechanisms, and in ballistics.
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Proof (by contradiction). Assume, contrary to (2.90), that

max�1�x�1 j ı
pn.x/j <

1

2n�1 : (2.91)

Then the polynomial dn.x/ D ı
T n.x/ � ı

pn.x/ (a polynomial of degree � n � 1),
satisfies

dn

�
y
.n/
0

�
> 0; dn

�
y
.n/
1

�
< 0; dn

�
y
.n/
2

�
> 0; : : : ; .�1/ndn

�
y.n/n

�
> 0: (2.92)

Thus dn changes sign at least n times, and hence has at least n distinct real zeros.
But having degree �n � 1, it must vanish identically, dn.x/ 	 0. This contradicts
(2.92); thus (2.91) cannot be true. ut

The result (2.90) can be given the following interesting interpretation: the best
uniform approximation (on the interval [–1,1]) to f .x/ D xn from polynomials in

Pn�1 is given by xn� ı
T n.x/, that is, by the aggregate of terms of degree � n�1 in

ı
T n

taken with the minus sign. From the theory of uniform polynomial approximation it
is known that the best approximant is unique. Therefore, equality in (2.90) can only

hold if
ı
pn D ı

T n.
What is the significance of Chebyshev polynomials for interpolation? Recall

(cf. (2.60)) that the interpolation error (on [–1,1], for a function f 2 CnC1Œ�1; 1�),
is given by

f .x/ � pn.f I x/ D f .nC1/.�.x//
.nC 1/Š

�
nY

iD0
.x � xi /; x 2 Œ�1; 1�: (2.93)

The first factor is essentially independent of the choice of the nodes xi . It is true
that �.x/ does depend on the xi , but we usually estimate f .nC1/ by kf .nC1/k1,
which removes this dependence. On the other hand, the product in the second factor,
including its norm

�����

nY

iD0
.� � xi /

�����
1
; (2.94)

depends strongly on the xi . It makes sense, therefore, to try to minimize (2.94) over
all xi 2 Œ�1; 1�. Since the product in (2.94) is a monic polynomial of degree nC1, it
follows from Theorem 2.2.1 that the optimal nodes xi D Ox.n/i in (2.93) are precisely
the zeros of TnC1; that is,

Ox.n/i D cos
2i C 1

2nC 2
	; i D 0; 1; 2; : : : ; n: (2.95)
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For these nodes, we then have (cf. (2.90))

kf .�/ � pn.f I �/k1 � kf .nC1/k1
.nC 1/Š

� 1
2n
: (2.96)

One ought to compare the last factor in (2.96) with the much cruder bound given in
(2.68), which, in the case of the interval [–1,1], is 2nC1.

Since by (2.93) the error curve y D f � pn.f I �/ for Chebyshev points (2.95)
is essentially equilibrated (modulo the variation in the factor f .nC1/), and thus
free of the violent oscillations we saw for equally spaced points, we would expect
more favorable convergence properties for the triangular array (2.64) consisting of
Chebyshev nodes. Indeed, one can prove, for example, that

pn.f I Ox.n/0 ; Ox.n/1 ; : : : ; Ox.n/n I x/ ! f .x/ as n ! 1; (2.97)

uniformly on [–1,1], provided only that f 2 C1Œ�1; 1�. Thus we do not need
analyticity of f for (2.97) to hold.

We finally remark – as already suggested by the recurrence relation (2.83) – that
Chebyshev polynomials are a special case of orthogonal polynomials. Indeed, the
measure in question is precisely (up to an unimportant constant factor) the arc sine
measure

d
.x/ D dxp
1 � x2

on Œ�1; 1� (2.98)

already mentioned in Example 2 of Sect. 2.1.4. This is easily verified from (2.81)
and the orthogonality of the cosines (cf. Sect. 2.1.4, (2.33)):

Z 1

�1
Tk.x/T`.x/

dxp
1� x2

D
Z 	

0

Tk.cos �/T`.cos �/d�

D
Z 	

0

cos k� cos `�d� D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

0 if k ¤ `;

	 if k D ` D 0;

1
2
	 if k D ` > 0:

(2.99)

The Fourier expansion in Chebyshev polynomials (essentially the Fourier cosine
expansion) is therefore given by

f .x/ D
1X0

jD1
cj Tj .x/ D 1

2
c0 C

1X

jD1
cj Tj .x/; (2.100)
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where

cj D 2

	

Z 1

�1
f .x/Tj .x/

dxp
1 � x2

; j D 0; 1; 2; : : : : (2.101)

Truncating (2.100) with the term of degree n gives a useful polynomial approxi-
mation of degree n,

�n.x/ D
nX0

jD0
cj Tj .x/;

having an error

f .x/ � �n.x/ D
1X

jDnC1
cj Tj .x/ � cnC1TnC1.x/: (2.102)

The approximation on the far right is better the faster the Fourier coefficients cj
tend to zero. The error (2.102), therefore, essentially oscillates between CcnC1 and
�cnC1 as x varies on the interval [–1,1], and thus is of “uniform” size. This is in
stark contrast to Taylor’s expansion at x D 0, where the nth-degree partial sum has
an error proportional to xnC1 on [–1,1].

2.2.5 Barycentric Formula

Lagrange’s formula (2.52) is attractive more for theoretical purposes than for
practical computational work. It can be rewritten, however, in a form that makes
it efficient computationally, and that also allows additional interpolation nodes to
be added with ease. Having the latter feature in mind, we now assume a sequential
set x0, x1, x2; : : : of interpolation nodes and denote by pn.f I � / the polynomial of
degree � n interpolating to f at the first nC 1 of them. We do not assume that the
xi are in any particular order, as long as they are mutually distinct.

We introduce a triangular array of auxiliary quantities defined by



.0/
0 D 1; 


.n/
i D

nY

jD0
j¤i

1

xi � xj
; i D 0; 1; : : : ; nI n D 1; 2; 3; : : : : (2.103)

The elementary Lagrange interpolation polynomials of degree n, (2.49), can then be
written in the form

`i .x/ D 

.n/
i

x � xi !n.x/; i D 0; 1; : : : ; nI !n.x/ D
nY

jD0
.x � xj /: (2.104)
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Dividing Lagrange’s formula through by 1 	 Pn
iD0 `i .x/, one finds

pn.f I x/ D
nX

iD0
fi `i .x/ D

nX

iD0
fi `i .x/

nX

iD0
`i .x/

D

nX

iD0
fi



.n/
i

x � xi
!n.x/

nX

iD0



.n/
i

x � xi
!n.x/

;

that is,

pn.f I x/ D

nX

iD0



.n/
i

x � xi
fi

nX

iD0



.n/
i

x � xi

; x ¤ xi for i D 0; 1; : : : ; n: (2.105)

This expresses the interpolation polynomial as a weighted average of the function
values fi D f .xi / and is, therefore, called the barycentric formula – a slight
misnomer, since the weights are not necessarily all positive. The auxiliary quantities


.n/
i involved in (2.105) are those in the row numbered n of the triangular array

(2.103). Once they have been calculated, the evaluation of pn.f I x/ by (2.105), for
any fixed x, is straightforward and cheap. Note, however, that when x is sufficiently
close to some xi , the right-hand side of (2.105) should be replaced by fi .

Comparison with (2.52) shows that

`i .x/ D


.n/
i

x � xi
nX

jD0



.n/
j

x � xj

; i D 0; 1; : : : ; n: (2.106)

In order to arrive at an efficient algorithm for computing the required quantities


.n/
i , we first note that, for k � 1,



.k/
i D 


.k�1/
i

xi � xk
; i D 0; 1; : : : ; k � 1: (2.107)

The last quantity 

.k/

k missing in (2.107) is best computed directly from the
definition (2.103),



.k/

k D 1
Qk�1
jD0.xk � xj /

; k � 1:
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We thus arrive at the following algorithm:



.0/
0 D 1;

for k D 1; 2; : : : ; n do
2

666664



.k/
i D 


.k�1/
i

xi � xk
; i D 0; 1; : : : ; k � 1;



.k/

k D 1
Qk�1
jD0.xk � xj /

:

(2.108)

This requires 1
2
n.nC 1/ subtractions, 1

2
.n � 1/n multiplications, and 1

2
n.nC 3/

divisions for computing the nC1 quantities 
.n/0 ; 

.n/
1 ; : : : ; 


.n/
n in (2.105). Therefore,

(2.106) in combination with (2.108) is more efficient than (2.49), which requires
O.n3/ operations to evaluate. It is also quite stable, since only benign arithmetic
operations are involved (disregarding the formation of differences such as x � xi ,
which occur in both formulae).

If we decide to incorporate the next data point .xnC1, fnC1/, all we need to do is
extend the k-loop in (2.108) through nC1, that is, generate the next row of auxiliary
quantities 
.nC1/

0 , 
.nC1/
1 ; : : : ; 


.nC1/
nC1 . We are then ready to compute pnC1.f I x/

from (2.105) with n replaced by nC 1.

2.2.6 Newton’s11 Formula

This is another way of organizing the work in Sect. 2.2.5. Although the compu-
tational effort remains essentially the same, it becomes easier to treat “confluent”
interpolation points, that is, multiple points in which not only the function values,
but also consecutive derivative values, are given (cf. Sect. 2.2.7).

Using the same setup as in Sect. 2.2.5, we denote

pn.x/ D pn.f I x0; x1; : : : ; xnI x/; n D 0; 1; 2; : : : : (2.109)

11Sir Isaac Newton (1643–1727) was an eminent figure of seventeenth century mathematics and
physics. Not only did he lay the foundations of modern physics, but he was also one of the
coinventors of differential calculus. Another was Leibniz, with whom he became entangled in
a bitter and life-long priority dispute. His most influential work was the Philosophiae Naturalis
Principia Mathematica, often called simply the Principia, one of the greatest work on physics
and astronomy ever written. Therein one finds not only his ideas on interpolation, but also
his suggestion to use the interpolating polynomial for purposes of integration (cf. Chap. 3,
Sect. 3.2.2).
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We clearly have

p0.x/ D a0;

pn.x/ D pn�1.x/C an.x � x0/.x � x1/ � � � .x � xn�1/;

n D 1; 2; 3; : : : ; (2.110)

for some constants a0, a1, a2; : : :. This gives rise to a new form of the interpolation
polynomial,

pn.f I x/ D a0 C a1.x � x0/C a2.x � x0/.x � x1/

C � � � C an.x � x0/.x � x1/ � � � .x � xn�1/; (2.111)

which is called Newton’s form. The constants involved can be determined, in
principle, by the interpolation conditions

f0 D a0;

f1 D a0 C a1.x1 � x0/;

f2 D a0 C a1.x2 � x0/C a2.x2 � x0/.x2 � x1/;

and so on, which represent a triangular, nonsingular (why?) system of linear
algebraic equations. This uniquely determines the constants; for example,

a0 D f0;

a1 D f1 � f0
x1 � x0 ;

a2 D f2 � a0 � a1.x2 � x0/
.x2 � x0/.x2 � x1/ ;

and so on. Evidently, an is a linear combination of f0, f1; : : : ; fn, with coefficients
that depend on x0, x1; : : : ; xn. We use the notation

an D Œx0; x1; : : : ; xn�f; n D 0; 1; 2; : : : ; (2.112)

for this linear combination, and call the right-hand side the nth divided difference of
f relative to the nodes x0, x1; : : : ; xn. Considered as a function of these n C 1

variables, the divided difference is a symmetric function; that is, permuting the
variables in any way does not affect the value of the function. This is a direct
consequence of the fact that an in (2.111) is the leading coefficient of pn.f I x/:
the interpolation polynomial pn.f I � / surely does not depend on the order in which
we write down the interpolation conditions.
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The name “divided difference” comes from the useful property

Œx0; x1; x2; : : : ; xk�f D Œx1; x2; : : : ; xk�f � Œx0; x1; : : : ; xk�1�f
xk � x0 (2.113)

expressing the kth divided difference as a difference of (k�1)st divided differences,
divided by a difference of the xi . Since we have symmetry, the order in which the
variables are written down is immaterial; what is important is that the two divided
differences (of the same order k � 1) in the numerator have k � 1 of the xi in
common. The “extra” one in the first term, and the “extra” one in the second, are
precisely the xi that appear in the denominator, in the same order.

To prove (2.113), let

r.x/ D pk�1.f I x1; x2; : : : ; xk I x/

and
s.x/ D pk�1.f I x0; x1; : : : ; xk�1I x/:

Then

pk.f I x0; x1; : : : ; xk I x/ D r.x/C x � xk

xk � x0 Œr.x/ � s.x/�: (2.114)

Indeed, the polynomial on the right-hand side has clearly degree � k and takes on
the correct value fi at xi , i D 0; 1; : : : ; k. For example, if i ¤ 0 and i ¤ k,

r.xi /C xi � xk
xk � x0

Œr.xi / � s.xi /� D fi C xi � xk

xk � x0 Œfi � fi � D fi ;

and similarly for i D 0 and for i D k. By uniqueness of the interpolation
polynomial, this implies (2.114). Now equating the leading coefficients on both
sides of (2.114) immediately gives (2.113).

Equation (2.113) can be used to generate the table of divided differences:

x f

x0 f0

�

� ��

x1 f1 Œx0; x1�f

x2 f2 Œx1; x2�f Œx0; x1; x2�f

x3 f3 Œx2; x3�f Œx1; x2; x3�f Œx0; x1; x2; x3�f

: : : : : : : : : : :

(2.115)

The divided differences are here arranged in such a manner that their computation
proceeds according to one single rule: each entry is the difference of the entry
immediately to the left and the one above it, divided by the difference of the x-value
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horizontally to the left and the one opposite the f-value found by going diagonally
up. Each entry, therefore, is calculated from its two neighbors immediately to the
left, which is expressed by the computing stencil in (2.115).

The divided differences a0, a1; : : : ; an (cf. (2.112)) that occur in Newton’s
formula (2.111) are precisely the first n C 1 diagonal entries in the table of
divided differences. Their computation requires n.nC 1/ additions and 1

2
n.n C 1/

divisions, essentially the same effort that was required in computing the auxiliary
quantities 
.n/i in the barycentric formula (cf. Ex. 61). Adding another data point
.xnC1, fnC1/ requires the generation of the next line of divided differences. The
last entry of this line is anC1, and we can update pn.f I x/ by adding to it the term
anC1.x � x0/.x � x1/ � � � .x � xn/ to get pnC1 (cf. (2.110)).

Example.
x f

0 3

1 4 (4–3)/(1–0) D 1

2 7 (7–4)/(2–1) D 3 (3–1)/(2–0) D 1

4 19 (19–7)/(4–2) D 6 (6–3)/(4–1) D 1 (1–1)/(4–0) D 0

The cubic interpolation polynomial is

p3.f I x/ D 3C 1 � .x � 0/C 1 � .x � 0/.x � 1/C 0 � .x � 0/.x � 1/.x � 2/

D 3C x C x.x � 1/ D 3C x2;

which indeed is the function tabulated. Note that the leading coefficient of p3.f I � /
is zero, which is why the last divided difference turned out to be 0.

Newton’s formula also yields a new representation for the error term in Lagrange
interpolation. Let t temporarily denote an arbitrary “node” not equal to any of the
x0, x1; : : : ; xn. Then we have,

pnC1.f I x0; x1; : : : ; xn; t I x/

D pn.f I x/C Œx0; x1; : : : ; xn; t �f �
nY

iD0
.x � xi /:

Now put x D t ; since the polynomial on the left-hand side interpolates to f at t ,
we get

f .t/ D pn.f I t/C Œx0; x1; : : : ; xn; t �f �
nY

iD0
.t � xi /:

Writing again x for t (which was arbitrary, after all), we find

f .x/ � pn.f I x/ D Œx0; x1; : : : ; xn; x�f �
nY

iD0
.x � xi /: (2.116)



2.2 Polynomial Interpolation 97

This is the new formula for the interpolation error. Note that it involves no derivative
of f , only function values. The trouble is, that f .x/ is one of them. Indeed, (2.116)
is basically a tautology since, when everything is written out explicitly, the formula
evaporates to 0 D 0, which is correct, but not overly exciting.

In spite of this seeming emptiness of (2.116), we can draw from it an interesting
and very useful conclusion. (For another application, see Chap. 3, Ex. 2.) Indeed,
compare it with the earlier formula (2.60); one obtains

Œx0; x1; : : : ; xn; x�f D f .nC1/.�.x//
.nC 1/Š

;

where x0, x1; : : : ; xn, x are arbitrary distinct points in [a; b] and f 2 CnC1Œa; b�.
Moreover, �.x/ is strictly between the smallest and largest of these points (cf. the
proof of (2.60)). We can now write x D xnC1, and then replace nC 1 by n to get

Œx0; x1; : : : ; xn�f D 1

nŠ
f .n/.�/: (2.117)

Thus, for any n C 1 distinct points in [a; b] and any f 2 CnŒa; b�, the divided
difference of f of order n is the nth scaled derivative of f at some (unknown)
intermediate point. If we now let all xi , i � 1, tend to x0, then �, being trapped
between them, must also tend to x0, and, since f .n/ is continuous at x0, we obtain

Œx0; x0; : : : ; x0„ ƒ‚ …
nC1 times

�f D 1

nŠ
f .n/.x0/: (2.118)

This suggests that the nth divided difference at n+1 “confluent” (i.e., identical)
points be defined to be the nth derivative at this point divided by n!. This allows
us, in the next section, to solve the Hermite interpolation problem.

2.2.7 Hermite12 Interpolation

The general Hermite interpolation problem consists of the following: given K C 1

distinct points x0, x1; : : : ; xK in [a; b] and corresponding integers mk � 1, and
given a function f 2 CM�1Œa; b�, with M D max

k
mk , find a polynomial p of

lowest degree such that, for k D 0; 1; : : : ; K ,

p.�/.xk/ D f
.�/

k ; � D 0; 1; : : : ; mk � 1; (2.119)

where f .�/

k D f .�/.xk/ is the �th derivative of f at xk .

12Charles Hermite (1822–1901) was a leading French mathematician. An Academician in Paris,
known for his extensive work in number theory, algebra, and analysis, he is famous for his
proof in 1873 of the transcendental nature of the number e. He was also a mentor of the Dutch
mathematician Stieltjes.
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The problem can be thought of as a limiting case of Lagrange interpolation if
we consider xk to be a point of multiplicity mk , that is, obtained by a confluence
of mk distinct points into a single point xk . We can imagine setting up the table of
divided differences, and Newton’s interpolation formula, just before the confluence
takes place, and then simply “go to the limit.” To do this in practice requires that
each point xk be entered exactlymk times in the first column of the table of divided
differences. The formula (2.118) then allows us to initialize the divided differences
for these points. For example, if mk D 4, then

x f

� � � � �
xk fk

xk fk f 0
k

xk fk f 0
k

1
2
f 00
k

xk fk f 0
k

1
2
f 00
k

1
6
f 000
k

� � � � �

(2.120)

Doing this initialization for each k, we are then ready to complete the table of
divided differences in the usual way. (There will be no zero divisors; they have been
taken care of during the initialization.) We obtain a table with m0 Cm1 C � � � CmK

entries in the first column, and hence an interpolation polynomial of degree � n D
m0 C m1 C � � � C mK � 1, which, as in the Lagrange case, is unique. The n C 1

diagonal entries in the table give us the coefficients in Newton’s formula, as before,
except that in the product terms of the formula, some of the factors are repeated.
Also the error term of interpolation remains in force, with the repetition of factors
properly accounted for.

We illustrate the procedure with two simple examples.

1. Find p 2 P3 such that

p.x0/ D f0; p
0.x0/ D f 0

0 ; p
00.x0/ D f 00

0 ; p
000.x0/ D f 000

0 :

Here K D 0, m0 D 4, that is, we have a single quadruple point. The table of
divided differences is precisely the one in (2.120) (with k D 0); hence Newton’s
formula becomes

p.x/ D f0 C .x � x0/f
0
0 C 1

2
.x � x0/

2f 00
0 C 1

6
.x � x0/

3f 000
0 ;

which is nothing but the Taylor polynomial of degree 3. Thus Taylor’s polyno-
mial is a special case of a Hermite interpolation polynomial. The error term of
interpolation, furthermore, gives us

f .x/ � p.x/ D 1

24
.x � x0/4f .4/.�/; � between x0 and x;

which is Lagrange’s form of the remainder term in Taylor’s formula.
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Fig. 2.8 A Hermite interpolation problem

2. Find p 2 P3 such that

p.x0/ D f0; p.x1/ D f1; p
0.x1/ D f 0

1 ; p.x2/ D f2;

where x0 < x1 < x2 (cf. Fig. 2.8).
The table of divided differences now has the form:

x f

x0 f0

x1 f1 Œx0; x1�f

x1 f1 f 0
1 Œx0; x1; x1�f

x2 f2 Œx1; x2�f Œx1; x1; x2�f Œx0; x1; x1; x2�f .

If we denote the diagonal entries, as before, by a0, a1, a2, a3, Newton’s
formula takes the form

p.x/ D a0 C a1.x � x0/C a2.x � x0/.x � x1/C a3.x � x0/.x � x1/
2;

and the error formula becomes

f .x/ � p.x/ D .x � x0/.x � x1/2.x � x2/
f .4/.�/

4Š
; x0 < � < x2:

For equally spaced points, say, x0 D x1�h, x2 D x1Ch, we have, if x D x1Cth,
�1 � t � 1,

j.x � x0/.x � x1/
2.x � x2/j D j.t2 � 1/t2 � h4j � 1

4
h4;
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and so

kf � pk1 � 1

4
h4

kf .4/k1
24

D h4

96
kf .4/k1;

with the 1-norm referring to the interval [x0; x2].

2.2.8 Inverse Interpolation

An interesting application of interpolation – and, in particular, of Newton’s formula
– is to the solution of a nonlinear equation,

f .x/ D 0: (2.121)

Here f is a given (nonlinear) function, and we are interested in a root ˛ of the
equation for which we already have two approximations,

x0 � ˛; x1 � ˛:

We assume further that near the root ˛, the function f is monotone, so that

y D f .x/ has an inverse x D f �1.y/:

Denote, for short,
g.y/ D f �1.y/:

Since ˛ D g.0/, our problem is to evaluate g.0/. From our two approximations, we
can compute y0 D f .x0/ and y1 D f .x1/, giving x0 D g.y0/, x1 D g.y1/. Hence,
we can start a table of divided differences for the inverse function g:

y g

y0 x0

y1 x1 Œy0; y1�g

Wanting to compute g.0/, we can get a first improved approximation by linear
interpolation,

x2 D x0 C .0 � y0/Œy0; y1�g D x0 � y0Œy0; y1�g:

Now evaluating y2 D f .x2/, we get x2 D g.y2/. Hence, the table of divided
differences can be updated and becomes
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y g

y0 x0

y1 x1 Œy0; y1�g

y2 x2 Œy1; y2�g Œy0; y1; y2�g

This allows us to use quadratic interpolation to get, again with Newton’s formula,

x3 D x2 C .0 � y0/.0 � y1/Œy0; y1; y2�g D x2 C y0y1Œy0; y1; y2�g

and then
y3 D f .x3/; and x3 D g.y3/:

Since y0, y1 are small, the product y0y1 is even smaller, making the correction term
added to the linear interpolant x2 quite small. If necessary, we can continue updating
the difference table,

y g

y0 x0

y1 x1 Œy0; y1�g

y2 x2 Œy1; y2�g Œy0; y1; y2�g

y3 x3 Œy2; y3�g Œy1; y2; y3�g Œy0; y1; y2; y3�g

and computing

x4 D x3 � y0y1y2Œy0; y1; y2; y3�g; y4 D f .x4/; x4 D g.y4/;

giving us another data point to generate the next row of divided differences, and so
on. In general, the process will converge rapidly: xk ! ˛ as k ! 1. The precise
analysis of convergence, however, is not simple because of the complicated structure
of the successive derivatives of the inverse function g D f �1.

2.3 Approximation and Interpolation by Spline Functions

Our concern in Sect. 2.1.1 was with approximation of functions by a single
polynomial over a finite interval [a,b]. When more accuracy was wanted, we
simply increased the degree of the polynomial, and under suitable assumptions the
approximation indeed can be made as accurate as one wishes by choosing the degree
of the approximating polynomial sufficiently large.
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However, there are other ways to control accuracy. One is to impose a subdivision
� upon the interval [a,b],

� W a D x1 < x2 < x3 < � � � < xn�1 < xn D b; (2.122)

and use low-degree polynomials on each subinterval Œxi ; xiC1� (i D 1; 2; : : : ;

n�1) to approximate the given function. The rationale behind this is the recognition
that on a sufficiently small interval, functions can be approximated arbitrarily
well by polynomials of low degree, even degree 1, or zero, for that matter. Thus,
measuring the “fineness” of the subdivision� by

j�j D max
1�i�n�1�xi ; �xi D xiC1 � xi ; (2.123)

we try to control (increase) the accuracy by varying (decreasing) j�j, keeping the
degrees of the polynomial pieces uniformly low.

To discuss these approximation processes, we make use of the class of functions
(cf. Example 2 at the beginning of Chap. 2)

S
k
m.�/ D

n
s W s 2 CkŒa; b�; s

ˇ̌
Œxi ;xiC1�

2 Pm; i D 1; 2; : : : ; n � 1
o
; (2.124)

wherem � 0, k � 0 are given nonnegative integers. We refer to S
k
m.�/ as the spline

functions of degree m and smoothness class k relative to the subdivision �. (If the
subdivision is understood from the context, we omit � in the notation on the left-
hand side of (2.124).) The point in the continuity assumption of (2.124), of course,
is that the kth derivative of s is to be continuous everywhere on [a,b], in particular,
also at the subdivision points xi (i D 2; : : : ; n � 1) of �. One extreme case is
k D m, in which case s 2 S

m
m necessarily consists of just one single polynomial of

degreem on the whole interval [a,b]; that is, Smm D Pm (see Ex. 68). Since we want
to get away from Pm, we assume k < m. The other extreme is the case where no
continuity at all (at the subdivision points xi ) is required; we then put k D �1. Thus
S

�1
m .�/ is the class of piecewise polynomials of degree �m, where the polynomial

pieces can be completely disjoint (see Fig. 2.9).
We begin with the simplest case – piecewise linear approximation – that is, the

case m D 1 (hence k D 0).

2.3.1 Interpolation by Piecewise Linear Functions

The problem here is to find an s 2 S
0
1.�/ such that, for a given function f defined

on [a,b], we have

s.xi / D fi where fi D f .xi /; i D 1; 2; : : : ; n: (2.125)
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Fig. 2.9 A function s 2 S
�1
m

Fig. 2.10 Piecewise linear interpolation.

We conveniently let the interpolation nodes coincide with the points xi of the
subdivision � in (2.122). This simplifies matters, but is not necessary (cf. Ex. 75).
The solution then indeed is trivial; see Fig. 2.10. If we denote the (obviously unique)
interpolant by s. � / D s1.f I � /, then the formula of linear interpolation gives

s1.f I x/ D fi C .x � xi /Œxi ; xiC1�f for xi � x � xiC1; i D 1; 2; : : : ; n � 1:

(2.126)

A bit more interesting is the analysis of the error. This, too, however, is quite
straightforward, once we note that s1.f I � / on Œxi ; xiC1� is simply the linear
interpolant to f . Thus, from the theory of (linear) interpolation,

f .x/ � s1.f I x/ D .x � xi /.x � xiC1/Œxi ; xiC1; x�f for x 2 Œxi ; xiC1�I

hence, if f 2 C2Œa; b�,

jf .x/ � s1.f I x/j � .�xi /
2

8
max

Œxi ;xiC1�
jf 00j; x 2 Œxi ; xiC1�:
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It then follows immediately that

kf . � /� s1.f I � /k1 � 1
8

j�j2kf 00k1; (2.127)

where the maximum norms are those on [a,b]; that is, kgk1 D max
Œa;b�

jgj. This

shows that the error indeed can be made arbitrarily small, uniformly on [a,b], by
taking j�j sufficiently small. Making j�j smaller, of course, increases the number
of polynomial pieces, and with it, the volume of data.

It is easy to show (see Ex. 80(b)) that

dist1.f;S01/ � kf . � /� s1.f I � /k1 � 2 dist1.f;S01/; (2.128)

where, for any set of functions S,

dist1.f;S/ WD inf
s2S kf � sk1:

In other words, the piecewise linear interpolant s1.f I � / is a nearly optimal
approximation, its error differing from the error of the best approximant to f from
S
0
1 by at most a factor of 2.

2.3.2 A Basis for S0
1
.�/

What is the dimension of the space S
0
1.�/? In other words, how many degrees of

freedom do we have? If, for the moment, we ignore the continuity requirement (i.e.,
if we look at S�1

1 .�/), then each linear piece has two degrees of freedom, and there
are n � 1 pieces; so dim S

�1
1 .�/ D 2n � 2. Each continuity requirement imposes

one equation, and hence reduces the degree of freedom by 1. Since continuity must
be enforced only at the interior subdivision points xi , i D 2; : : : ; n� 1, we find that
dim S

0
1.�/ D 2n�2�.n�2/D n. So we expect that a basis of S

0
1.�/must consist

of exactly n basis functions.
We now define n such functions. For notational convenience, we let x0 D x1 and

xnC1 D xn; then, for i D 1; 2; : : : ; n, we define

Bi.x/ D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

x � xi�1
xi � xi�1

if xi�1 � x � xi ;

xiC1 � x
xiC1 � xi

if xi � x � xiC1;

0 otherwise:

(2.129)



2.3 Approximation and Interpolation by Spline Functions 105

Fig. 2.11 The functions Bi

Note that the first equation, when i D 1, and the second, when i D n, are to be
ignored, since x in both cases is restricted to a single point and the ratio in question
has the meaningless form 0/0. (It is the other ratio that provides the necessary
information in these cases.) The functions Bi may be referred to as “hat functions”
(Chinese hats), but note that the first and last hat is cut in half. The functions Bi are
depicted in Fig. 2.11. We expect these functions to form a basis of S01.�/. To prove
this, we must show:

(a) the functions fBigniD1 are linearly independent and
(b) they span the space S01.�/.

Both these properties follow from the basic fact that

Bi.xj / D ıij D

8
ˆ̂<

ˆ̂:

1 if i D j;

0 if i ¤ j;

(2.130)

which one easily reads from Fig. 2.11. To show (a), assume there is a linear
combination of the Bi that vanishes identically on [a,b],

s.x/ D
nX

iD1
ciBi .x/; s.x/ 	 0 on Œa; b�: (2.131)

Putting x D xj in (2.131) and using (2.130) then gives cj D 0. Since this holds
for each j D 1; 2; : : : ; n, we see that only the trivial linear combination (with all
ci D 0) can vanish identically. To prove (b), let s 2 S

0
1.�/ be given arbitrarily. We

must show that s can be represented as a linear combination of the Bi . We claim
that, indeed,

s.x/ D
nX

iD1
s.xi /Bi .x/: (2.132)
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This is so, because the function on the right-hand side has the same values as s at
each xj , and therefore, being in S

0
1.�/, must coincide with s.

Equation (2.132), which holds for every s 2 S
0
1.�/, may be thought of as the

analogue of the Lagrange interpolation formula for polynomials. The role of the
elementary Lagrange polynomials `i is now played by the Bi .

2.3.3 Least Squares Approximation

As an application of the basis fBi g, we consider the problem of least squares
approximation on [a,b] by functions in S

0
1.�/. The discrete L2 approximation

problem with data given at the points xi (i D 1; 2; : : : ; n), of course, has the trivial
solution s1.f I � /, which drives the error to zero at each data point. We therefore
consider only the continuous problem: given f 2 C Œa; b�, find Os1.f I � / 2 S

0
1.�/

such that

Z b

a

Œf .x/ � Os1.f I x/�2dx �
Z b

a

Œf .x/ � s.x/�2dx for all s 2 S
0
1.�/: (2.133)

Writing

Os1.f I x/ D
nX

iD1
OciBi .x/; (2.134)

we know from the general theory of Sect. 2.1 that the coefficients Oci must satisfy the
normal equations

nX

jD1

"Z b

a

Bi .x/Bj .x/dx

#
Ocj D

Z b

a

Bi .x/f .x/dx; i D 1; 2; : : : ; n: (2.135)

Now the fact that Bi is nonzero only on (xi�1; xiC1) implies that
Z b

a

Bi .x/

�Bj .x/dx D 0 if ji � j j > 1; that is, the system (2.135) is tridiagonal. An easy
computation (cf. Ex. 77) indeed yields

1

6
�xi�1 � Oci�1C 1

3
.�xi�1C�xi/ Oci C 1

6
�xi � OciC1 D bi ; i D 1; 2; : : : ; n; (2.136)

where bi D R b
a Bi .x/f .x/dx =

R xiC1

xi�1
Bi .x/f .x/dx. Note, by our convention, that

�x0 D 0 and �xn D 0, so that (2.136) is in fact a tridiagonal system for the
unknowns Oc1, Oc2; : : : ; Ocn. Its matrix is given by
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2

66666666664

1
3
�x1

1
6
�x1 0

1
6
�x1

1
3
.�x1 C�x2/

1
6
�x2

1
6
�x2

: : :

: : :
: : : 1

6
�xn�1

0 1
6
�xn�1 1

3
�xn�1

3

77777777775

:

As it must be, by the general theory of Sect. 2.1, the matrix is symmetric
and positive definite, but it is also diagonally dominant, each diagonal element
exceeding by a factor of 2 the sum of the (positive) off-diagonal elements in the
same row. The system (2.136) can therefore be solved easily, rapidly, and accurately
by the Gauss elimination procedure, and there is no need for pivoting.

Like the interpolant s1.f I � /, the least squares approximant Os1.f I � /, too, can be
shown to be nearly optimal, in that

dist1.f;S01/ � kf . � /� Os1.f I � /k1 � 4 dist1.f;S01/: (2.137)

The spread is now by a factor of 4, rather than 2, as in (2.128).

2.3.4 Interpolation by Cubic Splines

The most widely used splines are cubic splines, in particular, cubic spline inter-
polants. We first discuss the interpolation problem for splines s 2 S

1
3.�/. Continuity

of the first derivative of any cubic spline interpolant s3.f I � / can be enforced by
prescribing the values of the first derivative at each point xi , i D 1; 2; : : : ; n. Thus
let m1, m2; : : : ; mn be arbitrary given numbers, and denote

s3.f I � /jŒxi ;xiC1�
D pi .x/; i D 1; 2; : : : ; n � 1: (2.138)

Then, we enforce s0
3.f I xi / D mi , i D 1; 2; : : : ; n, by selecting each piece pi of

s3.f I � / to be the (unique) solution of a Hermite interpolation problem, namely,

pi .xi / D fi ; pi .xiC1/ D fiC1;

p0
i .xi / D mi ; p0

i .xiC1/ D miC1;
i D 1; 2; : : : ; n � 1: (2.139)

We solve (2.139) by Newton’s interpolation formula. The required divided differ-
ences are:
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xi fi

xi fi mi

xiC1 fiC1 Œxi ; xiC1�f
Œxi ; xiC1�f �mi

�xi

xiC1 fiC1 miC1
miC1 � Œxi ; xiC1�f

�xi

miC1 Cmi � 2Œxi ; xiC1�f
.�xi /2

and the interpolation polynomial (in Newton’s form) is

pi.x/ D fi C .x � xi /mi C .x � xi /2 Œxi ; xiC1�f �mi

�xi

C .x � xi /
2.x � xiC1/

miC1 Cmi � 2Œxi ; xiC1�f
.�xi /2

:

Alternatively, in Taylor’s form, we can write

pi .x/ D ci;0 C ci;1.x � xi /C ci;2.x � xi /2 C ci;3.x � xi /
3;

xi � x � xiC1; (2.140)

where, by noting that x � xiC1 D x � xi ��xi ,
ci;0 D fi ;

ci;1 D mi ;

ci;2 D Œxi ; xiC1�f �mi

�xi
� ci;3 ��xi ;

ci;3 D miC1 Cmi � 2Œxi ; xiC1�f
.�xi/2

: (2.141)

Thus to compute s3.f I x/ for any given x 2 Œa; b� that is not an interpolation
node, one first locates the interval Œxi ; xiC1� containing x and then computes the
corresponding piece (2.138) by (2.140) and (2.141).

We now discuss some possible choices of the parametersm1, m2; : : : ; mn.

(a) Piecewise cubic Hermite interpolation. Here one selects mi D f 0.xi /, assum-
ing that these derivative values are known. This gives rise to a strictly local
scheme, in that each piece pi can be determined independently from the others.
Furthermore, the error of interpolation is easily estimated, since from the theory
of interpolation,

f .x/ � pi.x/ D .x � xi /
2.x � xiC1/2Œxi ; xi ; xiC1; xiC1; x�f; xi � x � xiC1I
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hence, if f 2 C4Œa; b�,

jf .x/ � pi .x/j �
�
1

2
�xi

�4
max

Œxi ;xiC1�

jf .4/j
4Š

; xi � x � xiC1:

There follows:

kf . � /� s3.f I � /k1 � 1
384

j�j4 kf .4/k1: (2.142)

In the case of equally spaced points xi , one has j�j D .b � a/=.n � 1/ and,
therefore,

kf . � /� s3.f I � /k1 D O.n�4/ as n ! 1: (2.143)

This is quite satisfactory, but note that the derivative of f must be known at
each point xi , and the interpolant is only in C1Œa; b�.

As to the derivative values, one could approximate them by the derivatives
of p2.f I xi�1; xi ; xiC1I x/ at x D xi , which requires only function values of
f , except at the endpoints, where again the derivatives of f are involved, the
points a D x0 D x1 and b D xn D xnC1 being double points (cf. Ex. 78). It can
be shown that this degrades the accuracy to O.j�j3/.

(b) Cubic spline interpolation. Here we require s3.f I � / 2 S
2
3.�/, that is,

continuity of the second derivative. In terms of the pieces (2.138) of s3.f I � /,
this means that

p00
i�1.xi / D p00

i .xi /; i D 2; 3; : : : ; n � 1; (2.144)

and translates into a condition for the Taylor coefficients in (2.140), namely,

2 ci�1;2 C 6 ci�1;3 ��xi�1 D 2 ci;2; i D 2; 3; : : : ; n � 1:

Plugging in the explicit values (2.141) for these coefficients, we arrive at the
linear system

.�xi/mi�1 C 2.�xi�1 C�xi/mi C .�xi�1/miC1 D bi ; i D 2; 3; : : : ; n� 1;
(2.145)

where
bi D 3f.�xi/Œxi�1; xi �f C .�xi�1/Œxi ; xiC1�f g: (2.146)

These are n � 2 linear equations in the n unknownsm1, m2; : : : ; mn. Once m1

and mn have been chosen in some way, the system again becomes tridiagonal
in the remaining unknowns and hence is readily solved by Gauss elimination.
Here are some possible choices of m1 and mn.
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(b.1) Complete splines: m1 D f 0.a/, mn D f 0.b/. It is known that for this spline

kf .r/. � /�s.r/.f I � /k1 � cr j�j4�rkf .4/k1; r D 0; 1; 2; 3; if f 2 C4Œa; b�;

(2.147)

where c0 D 5
384

, c1 D 1
24

, c2 D 3
8
, and c3 is a constant depending on the mesh

ratio j�j
mini �xi

. Rather remarkably, the bound for r D 0 is only five times larger
than the bound (2.142) for the piecewise cubic Hermite interpolant, which
requires derivative values of f at all interpolation nodes xi , not just at the
endpoints a and b.

(b.2) Matching of the second derivatives at the endpoints: s00
3 .f I a/ D f 00.a/,

s00
3 .f I b/ D f 00.b/. Each of these conditions gives rise to an additional

equation, namely,

2m1 Cm2 D 3Œx1; x2�f � 1

2
f 00.a/�x1;

mn�1 C 2mn D 3Œxn�1; xn�f C 1

2
f 00.b/�xn�1: (2.148)

One conveniently adjoins the first equation to the top of the system (2.145),
and the second to the bottom, thereby preserving the tridiagonal structure of
the system.

(b.3) Natural cubic spline: s00.f I a/ D s00.f I b/ D 0. This again produces two
additional equations, which can be obtained from (2.148) by putting there
f 00.a/ D f 00.b/ D 0. They are adjoined to the system (2.145) as described in
(b.2). The nice thing about this spline is that it requires only function values
of f – no derivatives! – but the price one pays is a degradation of the accuracy
to O.j�j2/ near the endpoints (unless indeed f 00.a/ D f 00.b/ D 0).

(b.4) “Not-a-knot spline” (C. de Boor): here we require p1.x/ 	 p2.x/ and
pn�2.x/ 	 pn�1.x/; that is, the first two pieces of the spline should be the
same polynomial, and similarly for the last two pieces. In effect, this means
that the first interior knot x2, and the last one xn�1, both are inactive (hence
the name). This again gives rise to two supplementary equations expressing
continuity of s000

3 .f I x/ at x D x2 and x D xn�1 (cf. Ex. 79).

2.3.5 Minimality Properties of Cubic Spline Interpolants

The complete and natural splines defined in (b.1) and (b.3) of the preceding
section have interesting optimality properties. To formulate them, it is convenient
to consider not only the subdivision� in (2.122), but also the subdivision

�0 W a D x0 D x1 < x2 < x3 < � � � < xn�1 < xn D xnC1 D b; (2.149)

in which the endpoints are double knots. This means that whenever we interpolate
on�0, we interpolate not only to function values at all interior points but also to the
function as well as first derivative values at the endpoints.
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The first of the two theorems relates to the complete cubic spline interpolant,
scompl.f I � /.
Theorem 2.3.1. For any function g 2 C2Œa; b� that interpolates f on �0, there
holds

Z b

a

Œg00.x/�2dx �
Z b

a

Œs00
compl.f I x/�2dx; (2.150)

with equality if and only if g. � / D scompl.f I � /.
Note that scompl.f I � / in Theorem 2.3.1 also interpolates f on�0, and among all

such interpolants its second derivative has the smallest L2 norm.

Proof of Theorem 2.3.1. We write (for short) scompl D s. The theorem follows, once
we have shown that

Z b

a

Œg00.x/�2dx D
Z b

a

Œg00.x/ � s00.x/�2dx C
Z b

a

Œs00.x/�2dx: (2.151)

Indeed, this immediately implies (2.150), and equality in (2.150) holds if and only if
g00.x/� s00.x/ 	 0, which, integrating twice from a to x and using the interpolation
properties of s and g at x D a gives g.x/ 	 s.x/.

To complete the proof, note that (2.151) is equivalent to
Z b

a

s00.x/Œg00.x/ � s00.x/�dx D 0: (2.152)

Integrating by parts, we get

Z b

a

s00.x/Œg00.x/ � s00.x/�dx

D s00.x/Œg0.x/ � s0.x/�
ˇ̌b
a

�
Z b

a

s000.x/Œg0.x/ � s0.x/�dx

D �
Z b

a

s000.x/Œg0.x/ � s0.x/�dx; (2.153)

since s0.b/Dg0.b/Df 0.b/, and similarly at xD a. But s000 is piecewise constant, so
Z b

a

s000.x/Œg0.x/ � s0.x/�dx

D
n�1X

�D1
s000.x� C 0/

Z x�C1

x�

Œg0.x/ � s0.x/�dx

D
n�1X

�D1
s000.x� C 0/Œg.x�C1/� s.x�C1/ � .g.x�/� s.x�//� D 0;
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since both s and g interpolate to f on �. This proves (2.152) and hence the
theorem. ut

For interpolation on �, the distinction of being optimal goes to the natural cubic
spline interpolant snat.f I � /. This is the content of the second theorem.

Theorem 2.3.2. For any function g 2 C2Œa; b� that interpolates f on � (not �0),
there holds

Z b

a

Œg00.x/�2dx �
Z b

a

Œs00
nat.f I x/�2dx; (2.154)

with equality if and only if g. � / D snat.f I � /.
The proof of Theorem 2.3.2 is virtually the same as that of Theorem 2.3.1, since

(2.153) holds again, this time because s00.b/ D s00.a/ D 0. ut
Putting g. � / D scompl.f I � / in Theorem 2.3.2 immediately gives

Z b

a

Œs00
compl.f I x/�2dx �

Z b

a

Œs00
nat.f I x/�2dx: (2.155)

Therefore, in a sense, the natural cubic spline is the “smoothest” interpolant.
The property expressed in Theorem 2.3.2 is the origin of the name “spline.”

A spline is a flexible strip of wood used in drawing curves. If its shape is given by
the equation y D g.x/, a � x � b, and if the spline is constrained to pass through
the points .xi ; gi /, then it assumes a form that minimizes the bending energy

Z b

a

Œg00.x/�2dx
.1C Œg0.x/�2/3

over all functions g similarly constrained. For slowly varying g (kg0k1 � 1), this
is nearly the same as the minimum property of Theorem 2.3.2.

2.4 Notes to Chapter 2

There are many excellent texts on the general problem of best approximation as
exemplified by (2.1). One that emphasizes uniform approximation by polynomials
is Feinerman and Newman [1974]; apart from the basic theory of best polynomial
approximation, it also contains no fewer than four proofs of the fundamental
theorem of Weierstrass. For approximation in the L1 and L1 norm, which is
related to linear programming, a number of constructive methods, notably the
Remez algorithms and exchange algorithms, are known, both for polynomial and
rational approximation. Early, but still very readable, expositions are given in
Cheney [1998] and Rivlin [1981], and more recent accounts in Watson [1980]
and Powell [1981]. Nearly-best polynomial and rational approximations are widely
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used in computer routines for special functions; for a survey of work in this
area, up to about 1975, see Gautschi [1975a], and for subsequent work, van der
Laan and Temme [1984] and Németh [1992]. Much relevant material is also
contained in the books by Luke [1975] and [1977]. The numerical approximation
and software for special functions is the subject of Gil et al. [2007]; exhaustive
documentation can also be found in Lozier and Olver [1994]. A package for some
of the more esoteric functions is described in MacLeod [1996]. For an extensive
(and mathematically demanding) treatment of rational approximation, the reader is
referred to Petrushev and Popov [1987], and forL1 approximation, to Pinkus [1989].
Methods of nonlinear approximation, including approximation by exponential sums,
are studied in Braess [1986]. Other basic texts on approximation and interpolation
are Natanson [1964, 1965, 1965] and Davis [1975] from the 1960s, and the more
recent books by DeVore and Lorentz [1993] and its sequel, Lorentz et al. [1996]. A
large variety of problems of interpolation and approximation by rational functions
(including polynomials) in the complex plane is studied in Walsh [1969]. An
example of a linear space ˆ containing a denumerable set of nonrational basis
functions are the sinc functions – scaled translates of sin	t

	t
. They are of importance

in the Shannon sampling and interpolation theory (see, e.g., Zayed [1993]) and are
also useful for approximation on infinite or semi-infinite domains in the complex
plane; see Stenger [1993], [2000] and Kowalski et al. [1995] for an extensive
discussion of this. A reader interested in issues of current interest related to
multivariate approximation can get a good start by consulting Cheney [1986].

Rich and valuable sources on polynomials and their numerous properties
of interest in applied analysis are Milovanović et al. [1994] and Borwein and
Erdélyi [1995]. Spline functions – in name and as a basic tool of approximation –
were introduced in 1946 by Schoenberg [1946]; also see Schoenberg [1973]. They
have generated enormous interest, owing both to their interesting mathematical
theory and practical usefulness. There are now many texts available, treating
splines from various points of view. A selected list is Ahlberg et al. [1967],
Nürnberger [1989], and Schumaker [2007] for the basic theory, de Boor [2001] and
Späth [1995] for more practical aspects including algorithms, Atteia [1992] for an
abstract treatment based on Hilbert kernels, Bartels et al. [1987] and Dierckx [1993]
for applications to computer graphics and geometric modeling, and Chui [1988], de
Boor et al. [1993], and Bojanov et al. [1993] for multivariate splines. The standard
text on trigonometric series still is Zygmund [2002] .

Section 2.1. Historically, the least squares principle evolved in the context of
discrete linear approximation. The principle was first enunciated by Legendre in
1805 in a treatise on celestial mechanics (Legendre [1805]), although Gauss used it
earlier in 1794, but published the method only in 1809 (in a paper also on celestial
mechanics). For Gauss’s subsequent treatises, published in 1821–1826, see the
English translation in Gauss [1995]. The statistical justification of least squares as
a minimum variance (unbiased) estimator is due to Gauss. If one were to disregard
probabilistic arguments, then, as Gauss already remarked (Goldstine [1977, p. 212]),



114 2 Approximation and Interpolation

one could try to minimize the sum of any even (positive) power of the errors, and
even let this power go to infinity, in which case one would minimize the maximum
error. But by these principles “ : : : we should be led into the most complicated
calculations.” Interestingly, Laplace at about the same time also proposed discrete
L1 approximation (under the side condition that all errors add up to zero). A reader
interested in the history of least squares may wish to consult the article by
Sheynin [1993].

The choice of weights wi in the discrete L2 norm k � k2;w can be motivated on
statistical grounds if one assumes that the errors in the data f .xi / are uncorrelated
and have zero mean and variances �2i ; an appropriate choice then is wi D ��2

i .
The discrete problem of minimizing kf � 'k2;w over functions ' in ˆ as given

by (2.2) can be rephrased in terms of an overdetermined system of linear equations,
Pc D f , where P D Œ	j .xi /� is a rectangular matrix of size N � n, and
f D Œf .xi /� the data vector of dimensionN . If r D f � Pc, r D Œri � denotes the
residual vector, one tries to find the coefficient vector c 2 R

n such that
P

i wi r2i is
as small as possible. There is a vast literature dealing with overdetermined systems
involving more general (full or sparse) matrices and their solution by the method
of least squares. A large arsenal of modern techniques of matrix computation
can be brought to bear on this problem; see, for example, Björck [1996] for an
extensive discussion. In the special case considered here, the method of (discrete)
orthogonal polynomials, however, is more efficient. It has its origin in the work of
Chebyshev [1859]; a more contemporary exposition, including computational and
statistical issues, is given in Forsythe [1957].

There are interesting variations on the theme of polynomial least squares
approximation. One is to minimize kf � pk2;d
 among all polynomials in Pn

subject to interpolatory constraints at m C 1 given points, where m < n. It turns
out that this can be reduced to an unconstrained least squares problem, but for
a different measure d
 and a different function f ; cf. Gautschi [1996, Sect. 2.1].
Something similar is true for approximation by rational functions with a prescribed
denominator polynomial. A more substantial variation consists in wanting to ap-
proximate simultaneously a function f and its first s derivatives. In the most general
setting, this would require the minimization of

R
R

Ps
�D0Œf .�/.t/ � p.�/.t/�2d
�.t/

among all polynomials p 2 Pn, where d
� are given (continuous or discrete)
positive measures. The problem can be solved, as in Sect. 2.1.2, by orthogonal
polynomials, but they are now orthogonal with respect to the inner product
.u; v/Hs D Ps

�D0
R
R

u.�/.t/v.�/.t/d
�.t/ – a so-called Sobolev inner product. This
gives rise to Sobolev orthogonal polynomials; see Gautschi [2004, Sect. 1.7] for
some history on this problem and relevant literature.

Section 2.1.2. The alternative form (2.25) of computing the coefficients Ocj was
suggested in the 1972 edition of Conte and de Boor [1980] and is further discussed
by Shampine [1975]. The Gram–Schmidt procedure described at the end of this
section is now called the classical Gram–Schmidt procedure. There are other,
modified, versions of Gram–Schmidt that are computationally more effective; see,
for example, Björck [1996, pp. 61ff].
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Section 2.1.4. The standard text on Fourier series, as already mentioned, is
Zygmund [2002], and on orthogonal polynomials, Szegö [1975]. Not only is it true
that orthogonal polynomials satisfy a three-term recurrence relation (2.38), but the
converse is also true: any system f	kg of monic polynomials satisfying (2.38) for all
k � 0, with real coefficients ˛k and ˇk > 0, is necessarily orthogonal with respect
to some (in general unknown) positive measure. This is known as Favard’s Theorem
(cf., e.g., Natanson [1965], Vol. 2, Chap. 8, Sect. 6]). The computation of orthogonal
polynomials, when the recursion coefficients are not known explicitly, is not an easy
task; a number of methods are surveyed in Gautschi [1996]; see also Gautschi [2004,
Chap. 2]. Orthogonal systems in L2.R/ that have become prominent in recent
years are wavelets, which are functions of the form  j;k.t/ D 2j=2 .2j t � k/,
j; k D 0;˙1;˙2; : : : , with  a “mother wavelet” – square integrable on
R and (usually) satisfying

R
R
 .t/dt D 0. Among the growing textbook and

monograph literature on this subject, we mention Chui [1992], Daubechies [1992],
Walter [1994], Wickerhauser [1994], Hernández and Weiss [1996], Resnikoff and
Wells [1998], Burrus et al. [1998], and Novikov et al. [2010].

Section 2.2. Although interpolation by polynomials and spline functions is most
common, it is sometimes appropriate to use other systems of approximants for in-
terpolation, for example, trigonometric polynomials or rational functions. Trigono-
metric interpolation at equally spaced points is closely related to discrete Fourier
analysis and hence accessible to the Fast Fourier Transform (FFT). For this, and
also for rational interpolation algorithms, see, for example, Stoer and Bulirsch
[2002, Sects. 2.1.1 and 2.2]. For the fast Fourier transform and some of its important
applications, see Henrici [1979a] and Van Loan [1992].

Besides Lagrange and Hermite interpolation, other types of interpolation
processes have been studied in the literature. Among these are Fejér–Hermite
interpolation, where one interpolates to given function values and requires
the derivative to vanish at these points, and Birkhoff (also called lacunary)
interpolation, which is similar to Hermite interpolation, but derivatives of only
preselected orders are being interpolated. Remarkably, Fejér–Hermite interpolation
at the Chebyshev points (defined in Sect. 2.2.4) converges for every continuous
function f 2 C Œ�1; 1�. The convergence theory of Lagrange and Fejér–Hermite
interpolation is the subject of a monograph by Szabados and Vértesi [1990].
The most comprehensive work on Birkhoff interpolation is the book by G. G.
Lorentz et al. [1983]. A more recent monograph by R. A. Lorentz [1992] deals with
multivariate Birkhoff interpolation.

Section 2.2.1. The growth of the Lebesgue constants ƒn is at least O.logn/ as
n ! 1; specifically, ƒn >

2
	

logn C c for any triangular array of interpolation
nodes (cf. Sect. 2.1.4), where the constant c can be expressed in terms of Euler’s
constant � (cf. Chap. 1, MA 4) by c D 2

	

�
log 8

	
C �

� D 0:9625228 : : : ; see
Rivlin [1990, Theorem 1.2]. The Chebyshev points achieve the optimal order
O.logn/; for them, ƒn � 2

	
logn C 1 (Rivlin [1990, Theorem 1.2]). Equally

spaced nodes, on the other hand, lead to exponential growth of the Lebesgue
constants inasmuch as ƒn 
 2nC1=.en logn/ for n ! 1; see Trefethen and
Weideman [1991] for some history on this result and Brutman [1997a] for a recent
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survey on Lebesgue constants. The very last statement of Sect. 2.1.2 is the content
of Faber’s Theorem (see, e.g., Natanson [1965, Vol. 3, Chap. 2, Theorem 2]), which
says that, no matter how one chooses the triangular array of nodes (2.64) in
Œa; b�, there is always a continuous function f 2 C Œa; b� for which the Lagrange
interpolation process does not converge uniformly to f . Indeed, there is an f 2
C Œa; b� for which Lagrange interpolation diverges almost everywhere in Œa; b�; see
Erdös and Vértesi [1980]. Compare this with Fejér–Hermite interpolation.

Section 2.2.3. A more complete discussion of how the convergence domain of
Lagrange interpolation in the complex plane depends on the limit distribution of
the interpolation nodes can be found in Krylov [1962, Chap. 12, Sect. 2].

Runge’s example is further elucidated in Epperson [1987]. For an analysis
of Bernstein’s example, we refer to Natanson [1965, Vol. 3, Chap. 2, Sect. 2]. The
same divergence phenomenon, incidentally, is exhibited also for a large class of
nonequally spaced nodes; see Brutman and Passow [1995]. The proof of Example 5
follows Fejér [1918].

Section 2.2.4. The Chebyshev polynomial arguably is one of the most interesting
polynomials from the point of view not only of approximation theory, but also of
algebra and number theory. In Rivlin’s words, it “ : : : is like a fine jewel that
reveals different characteristics under illumination from various positions.” In his
text, Rivlin [1990] gives ample testimony in support of this view. Another text,
unfortunately available only in Russian (or Polish), is Paszkowski [1983], which
has an exhaustive account of analytic properties of Chebyshev polynomials as well
as numerical applications.

The convergence result stated in (2.97) follows from (2.59) and the logarithmic
growth ofƒn, since En.f / logn ! 0 for f 2 C1Œ�1; 1� by Jackson’s theorems (cf.
Cheney [1998, p. 147]). A more rigorous estimate for the error in (2.102) is En.f / �
k�n�f k1 � �

4C 4
	2

logn
� En.f / (Rivlin [1990, Theorem 3.3]), where the infinity

norm refers to the interval Œ�1; 1� and En.f / is the best uniform approximation of
f on Œ�1; 1� by polynomials of degree n.

Section 2.2.5. A precursor of the algorithm (2.108) expressing 
.k/k in the form of
a sum rather than a product, and thus susceptible to serious cancellation errors, was
proposed in Werner [1984]. The more stable algorithm given in the text is due to
Berrut and Trefethen [2004]. Barycentric formulae have been developed also for
trigonometric interpolation (see Henrici [1979b] for uniform, and Salzer [1949] and
Berrut [1984] for nonuniform distributions of the nodes), and for cardinal (sinc-)
interpolation (Berrut [1989]); for the latter, see also Gautschi [2001] and Chap. 1,
MA 10.

Section 2.2.7. There are explicit formulae, analogous to Lagrange’s formula,
for Hermite interpolation in the most general case; see, for example, Stoer and
Bulirsch [2002, Sect. 2.1.5]. For the important special case mk D 2, see also
Chap. 3, Ex. 34(a).

Section 2.2.8. To estimate the error of inverse interpolation, using an appropriate
version of (2.60), one needs the derivatives of the inverse function f �1. A general
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expression for the nth derivative of f �1 in terms of the first n derivatives of f is
derived in Ostrowski [1973, Appendix C].

Section 2.3. The definition of the class of spline functions Skm.�/ can be refined to
S

k

m.�/, where kT D Œk2; k3; : : : ; kn�1� is a vector with integer components ki � �1
specifying the degree of smoothness at the interior knots xi ; that is, s.j /.xi C 0/ �
s.j /.xi � 0/ D 0 for j D 0; 1; : : : ; ki . Then S

k
m.�/ as defined in (2.124) becomes

S
k

m.�/ with k D Œk; k; : : : ; k�.

Section 2.3.1. As simple as the procedure of piecewise linear interpolation may
seem, it can be applied to advantage in numerical Fourier analysis, for example. In
trying to compute the (complex) Fourier coefficients cn.f / D 1

2	

R 2	
0 f .x/e�inxdx

of a 2	-periodic function f , one often approximates them by the “discrete Fourier
transform” Ocn.f / D 1

N

PN�1
kD0 f .xk/e�inxk , where xk D k 2	

N
. This can be computed

efficiently (for large N ) by the Fast Fourier Transform. Note, however, that Ocn.f /
is periodic in n with period N , whereas the true Fourier coefficients cn.f / tend
to zero as n ! 1. To remove this deficiency, one can approximate f by some
(simple) function ' and thereby approximate cn.f / by cn.'/. Then cn.'/ will
indeed tend to zero as n ! 1. The simplest choice for ' is precisely the piecewise
linear interpolant ' D s1.f I � / (relative to the uniform partition of Œ0; 2	� into N
subintervals). One then finds, rather remarkably (see Chap. 3, Ex. 14), that cn.'/ is
a multiple of the discrete Fourier transform, namely, cn.f / D �n Ocn.f /, where �n D�

sin.n	=N/
n	=N

�2
; this still allows the application of the FFT but corrects the behavior

of Ocn.f / at infinity. The same modification of the discrete Fourier transform by an
“attenuation factor” �n occurs for many other approximation processes f � '; see
Gautschi [1971/1972] for a general theory (and history) of attenuation factors.

The near optimality of the piecewise linear interpolant s1.f I � /, as expressed by
the inequalities in (2.128), is noted by de Boor [2001, p. 31].

Section 2.3.2. The basis (2.129) for S
0
1.�/ is a special case of a B-spline basis

that can be defined for any space of spline functions Sk

m.�/ previously introduced
(cf. de Boor [2001, Theorem IX(44)]. The B-splines are formed by means of divided
differences of order mC 1 applied to the truncated power .t � x/mC (considered as
a function of t). Like the basis in (2.129), each basis function of a B-spline basis is
supported on at mostmC1 consecutive intervals of� and is positive on the interior
of the support.

Section 2.3.3. A proof of the near optimality of the piecewise linear least squares
approximant Os1.f I � /, as expressed by the inequalities (2.137), can be found in
de Boor [2001, p. 32]. For smoothing and least squares approximation procedures
involving cubic splines, see, for example, de Boor [2001, Chap. XIV].

Section 2.3.4. (a) For the remark in the last paragraph of (a), see de Boor [2001,
Chap. 4, Problem 3].

(b.1) The error bounds in (2.147), which for r D 0 and r D 1 are asymptotically
sharp, are due to Hall and Meyer [1976].

(b.2) The cubic spline interpolant matching second derivatives at the endpoints
satisfies the same error bounds as in (2.147) for r D 0, 1, 2, with constants c0 D 3

64
,
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c1 D 3
16

, and c2 D 3
8
; see Kershaw [1971, Theorem 2]. The same is shown also for

periodic spline interpolants s, satisfying s.r/.a/ D s.r/.b/ for r D 0, 1, 2.
(b.3) Even though the natural spline interpolant, in general, converges only with

order j�j2 (e.g., for uniform partitions �), it has been shown by Atkinson [1968]
that the order of convergence is j�j4 on any compact interval contained in the open
interval .a; b/, and by Kershaw [1971] even on intervals extending (in a sense
made precise) to Œa; b� as j�j ! 0. On such intervals, in fact, the natural spline
interpolant s provides approximations to any f 2 C4Œa; b� with errors satisfying
kf .r/ � s.r/k1 � 8crKj�j4�r , where K D 2 C 3

8
kf .4/k1 and c0 D 1

8
, c1 D 1

2
,

and c2 D 1.
(b.4) The error of the “not-a-knot” spline interpolant is of the same order as

the error of the complete spline; it follows from Beatson [1986, (2.49)] that for
functions f 2 C4Œa; b�, one has kf .r/ � s.r/k1 � cr j�j4�rkf .4/k1, r D 0,
1, 2 (at least when n � 6), where cr are constants independent of f and �. The
same bounds are valid for other schemes that depend only on function values,
for example, the scheme with m1 equal to the first (or second) derivative of
p3.f I x1; x2; x3; x4I � / at x D a, and similarly for mn. The first of these schemes
(using first-order derivatives of p3) is in fact the one recommended by Beatson and
Chacko [1989, 1992] for general-purpose interpolation. Numerical experiments in
Beatson and Chacko [1989] suggest values of approximately 1 for the constants cr
in the preceding error estimates. In Beatson and Chacko [1992] further comparisons
are made among many other cubic spline interpolation schemes.

Section 2.3.5. The minimum norm property of natural splines (Theorem 2.3.1)
and its proof based on the identity (2.151), called “the first integral relation” in
Ahlberg et al. [1967], is due to Holladay [1957], who derived it in the context of
numerical quadrature. “Much of the present-day theory of splines began with this
theorem” (Ahlberg et al. [1967, p. 3]). An elegant alternative proof of (2.152), and
hence of the theorem, can be based (cf. de Boor [2001, pp. 64–66]) on the Peano
representation (see Chap. 3, Sect. 3.2.6) of the second divided difference of g � s,
that is, Œxi�1; xi ; xiC1�.g� s/ D R

R
K.t/.g00.t/� s00.t//dt , by noting that the Peano

kernelK , up to a constant, is the B-spline Bi defined in (2.129). Since the left-hand
side is zero by the interpolation properties of g and s, it follows from the preceding
equation that g00 � s00 is orthogonal to the span of the Bi , hence to s00, which lies in
this span.

Exercises and Machine Assignments to Chapter 2

Exercises

1. Suppose you want to approximate the function

f .t/ D
8
<

:

�1 if �1 � t < 0;

0 if t D 0;

1 if 0 < t � 1
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by a constant function '.x/ D c:

(a) on [–1,1] in the continuousL1 norm,
(b) on ft1; t2; : : : ; tN g in the discrete L1 norm,
(c) on [–1,1] in the continuousL2 norm,
(d) on ft1; t2; : : : ; tN g in the discrete L2 norm,
(e) on [–1,1] in the 1-norm,
(f) on ft1; t2; : : : ; tN g in the discrete 1-norm.

The weighting in all norms is uniform (i.e., w.t/ 	 1, wi D 1) and ti D
�1C 2.i�1/

N�1 , i D 1; 2; : : : ; N . Determine the best constant c (or constants c, if
there is nonuniqueness) and the minimum error.

2. Consider the data

f .ti / D 1; i D 1; 2; : : : ; N � 1I f .tN / D y � 1:

(a) Determine the discrete L1 approximant to f by means of a constant c
(polynomial of degree zero).

(b) Do the same for discrete (equally weighted) least square approximation.
(c) Compare and discuss the results, especially as N ! 1.

3. Let x0, x1; : : : ; xn be pairwise distinct points in [a; b], �1 < a < b < 1, and
f 2 C1Œa; b�. Show that, given any " > 0, there exists a polynomialp such that
kf � pk1 < " and, at the same time, p.xi / D f .xi /, i D 0; 1; : : : ; n. Here
kuk1 D maxa�x�b ju.x/j. fHint: write p D pn.f I � /C !nq, where pn.f I � /
is the interpolation polynomial of degree n (cf. Sect. 2.2.1, (2.51)), !n.x/ DQn
iD0.x � xi /, q 2 P, and apply Weierstrass’s approximation theorem.g

4. Consider the function f .t/ D t˛ on 0 � t � 1, where ˛ > 0. Suppose we
want to approximate f best in the Lp norm by a constant c, 0 < c < 1, that is,
minimize the Lp error

Ep.c/ D kt˛ � ckp D
�Z 1

0

jt˛ � cjpdt

�1=p

as a function of c. Find the optimal c D cp for p D 1; p D 2, and p D 1,
and determine Ep.cp/ for each of these p-values.

5. Taylor expansion yields the simple approximation ex � 1 C x, 0 � x � 1.
Suppose you want to improve this by seeking an approximation of the form
ex � 1C cx, 0 � x � 1, for some suitable c.

(a) How must c be chosen if the approximation is to be optimal in the
(continuous, equally weighted) least squares sense?

(b) Sketch the error curves e1.x/ := ex�.1Cx/ and e2.x/ := ex�.1Ccx/ with
c as obtained in (a) and determine max0�x�1 je1.x/j and max0�x�1 je2.x/j.

(c) Solve the analogous problem with three instead of two terms in the
modified Taylor expansion: ex � 1C c1xC c2x

2, and provide error curves
for e1.x/ D ex � 1 � x � 1

2
x2 and e2.x/ D ex � 1 � c1x � c2x2.
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6. Prove Schwarz’s inequality

j.u; v/j � kuk � kvk

for the inner product (2.10). fHint: use the nonnegativity of ku C tvk2, t 2 R.g
7. Discuss uniqueness and nonuniqueness of the least squares approximant to a

function f in the case of a discrete set T D ft1; t2g (i.e., N D 2) and ˆn D
Pn�1 (polynomials of degree � n� 1). In case of nonuniqueness, determine all
solutions.

8. Determine the least squares approximation

'.t/ D c1

1C t
C c2

.1C t/2
; 0 � t � 1;

to the exponential function f .t/ D e�t , assuming d
.t/ D dt on [0,1].
Determine the condition number cond1A D kAk1kA�1k1 of the coefficient
matrix A of the normal equations. Calculate the error f .t/�'.t/ at t D 0, t D
1=2, and t D 1. fPoint of information: the integral

R1
1
t�me�xtdt D Em.x/

is known as the “mth exponential integral”; cf. Abramowitz and Stegun [1964,
(5.1.4)] or Olver et al. [2010, (8.19.3)].g

9. Approximate the circular quarter arc � given by the equation y.t/ D p
1 � t2,

0 � t � 1 (see figure) by a straight line ` in the least squares sense, using either
the weight function w.t/ D .1 � t2/�1=2, 0 � t � 1, or w.t/ D 1, 0 � t � 1.
Where does ` intersect the coordinate axes in these two cases?
fPoints of information:

R 	=2
0

cos2 �d� D 	
4

,
R 	=2
0

cos3 �d� D 2
3
.g

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

γ

t

y

10. (a) Let the class ˆn of approximating functions have the following properties.
Each ' 2 ˆn is defined on an interval Œa; b� symmetric with respect to the
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origin (i.e., a D �b), and '.t/ 2 ˆn implies '.�t/ 2 ˆn. Let d
.t/ D
!.t/dt , with !.t/ an even function on Œa; b� (i.e., !.�t/ D !.t/). Show: if
f is an even function on Œa; b�, then so is its least squares approximant, O'n,
on Œa; b� from ˆn.

(b) Consider the “hat function” f .t/ D
�
1 � t if 0 � t � 1;

1C t if �1 � t � 0:

Determine its least squares approximation on [–1,1] by a polynomial of
degree �2. (Use d
.t/ D dt .) Simplify your calculation by using part (a).
Determine where the error vanishes.

11. Suppose you want to approximate the step function

f .t/ D
�
1 if 0 � t � 1;

0 if t > 1

on the positive line RC by a linear combination of exponentials 	j .t/ D
e�jt ; j D 1; 2; : : : ; n, in the (continuous, equally weighted) least squares
sense.

(a) Derive the normal equations. How is the matrix related to the Hilbert
matrix?

(b) Use Matlab to solve the normal equations for n D 1; 2; : : : ; 8. Print n, the
Euclidean condition number of the matrix (supplied by the Matlab function
cond.m), along with the solution. Plot the approximations vs. the exact
function for 1 � n � 4.

12. Let 	j .t/ D .t � aj /
�1, j D 1; 2; : : : ; n, where aj are distinct real numbers

with jaj j > 1, j D 1; 2; : : : ; n. For d
.t/ D dt on �1 � t � 1 and d
.t/ D 0,
t 62 Œ�1; 1�, determine the matrix of the normal equations for the least squares
problem

R
R
.f � '/2d
.t/ D min, ' D Pn

jD1 cj 	j . Can the sytem f	j gnjD1,
n > 1, be an orthogonal system for suitable choices of the constants aj ?
Explain.

13. Given an integer n � 1, consider the subdivision �n of the interval Œ0; 1� into
n equal subintervals of length 1=n. Let 	j .t/, j D 0; 1; : : : ; n, be the function
having the value 1 at t D j=n, decreasing on either side linearly to zero at the
neighboring subdivision points (if any), and being zero elsewhere.

(a) Draw a picture of these functions. Describe in words the meaning of a linear
combination 	.t/ D Pn

jD0 cj 	j .t/.
(b) Determine 	j .k=n/ for j , k D 0; 1; : : : ; n.
(c) Show that the system f	j .t/gnjD0 is linearly independent on the interval

0 � t � 1. Is it also linearly independent on the set of subdivision points 0,
1
n

, 2
n
; : : : ; n�1

n
, 1 of �n? Explain.

(d) Compute the matrix of the normal equations for f	j g, assuming d
.t/ D dt
on [0,1]. That is, compute the .nC 1/ � .nC 1/ matrix A D Œaij �, where

aij D R 1
0 	i .t/	j .t/dt .
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14. Even though the function f .t/ D ln.1=t/ becomes infinite as t ! 0, it can
be approximated on [0,1] arbitrarily well by polynomials of sufficiently high
degree in the (continuous, equally weighted) least squares sense. Show this by
proving

en;2 WD min
p2Pn

kf � pk2 D 1

nC 1
:

fHint: use the following known facts about the “shifted” Legendre polynomial
	j .t/ of degree j (orthogonal on [0,1] with respect to the weight function w 	
1 and normalized to satisfy 	j .1/ D 1):

Z 1

0

	2j .t/dt D 1

2j C 1
; j � 0I

Z 1

0

	j .t/ ln.1=t/dt D
8
<

:
1 if j D 0;

.�1/j
j.jC1/ if j > 0:

The first relation is well known from the theory of orthogonal polynomials (see,
e.g., Sect. 1.5.1, p. 27 of Gautschi [2004]); the second is due to Blue [1979].g

15. Let d
 be a continuous (positive) measure on Œa; b� and n � 1 a given integer.
Assume f continuous on Œa; b� and not a polynomial of degree � n � 1. Let
Opn�1 2 Pn�1 be the least squares approximant to f on Œa; b� from polynomials

of degree � n � 1:

Z b

a

Œ Opn�1.t/ � f .t/�2d
.t/ �
Z b

a

Œp.t/ � f .t/�2d
.t/; all p 2 Pn�1:

Prove: the error en.t/ D Opn�1.t/ � f .t/ changes sign at least n times in Œa; b�.
fHint: assume the contrary and develop a contradiction.g

16. Let f be a given function on [0,1] satisfying f .0/ D 0; f .1/ D 1.

(a) Reduce the problem of approximating f on [0,1] in the (continuous,
equally weighted) least squares sense by a quadratic polynomial p satis-
fying p.0/ D 0; p.1/ D 1 to an unconstrained least squares problem (for
a different function).

(b) Apply the result of (a) to f .t/ D t r ; r > 2. Plot the approximation against
the exact function for r D 3.

17. Suppose you want to approximate f .t/ on Œa; b� by a function of the form
r.t/ D 	.t/=q.t/ in the least squares sense with weight function w, where
	 2 Pn and q is a given function (e.g., a polynomial) such that q.t/ > 0 on
Œa; b�. Formulate this problem as an ordinary polynomial least squares problem
for an appropriate new function f and new weight function w.

18. The Bernstein polynomials of degree n are defined by

Bn
j .t/ D

�
n

j

�
t j .1 � t/n�j ; j D 0; 1; : : : ; n;

and are usually employed on the interval 0 � t � 1.
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(a) Show that Bn
0 .0/ D 1, and for j D 1; 2; : : : ; n

dr

dt r
Bn
j .t/

ˇ̌
ˇ̌
tD0

D 0; r D 0; 1; : : : ; j � 1I dj

dt j
Bn
j .t/

ˇ̌
ˇ̌
tD0

¤ 0:

(b) What are the analogous properties at t D 1, and how are they most easily
derived?

(c) Prepare a plot of the fourth-degree polynomials B4
j .t/; j D 0; 1; : : : ; 4,

0 � t � 1.
(d) Use (a) to show that the system fBn

j .t/gnjD0 is linearly independent on [0,1]
and spans the space Pn.

(e) Show that
Pn

jD0 Bn
j .t/ 	 1. fHint: use the binomial theorem.g

19. Prove that, if f	j gnjD1 is linearly dependent on the support of d
, then the
matrix A D Œaij �, where aij D .	i ; 	j /d
 D R

R
	i .t/	j .t/d
.t/, is singular.

20. Given the recursion relation 	kC1.t/ D .t � ˛k/	k.t/ � ˇk	k�1.t/, k D
0; 1; 2; : : : ; for the (monic) orthogonal polynomials f	j . � I d
/g, and defining
ˇ0 D R

R
d
.t/, show that k	kk2 = ˇ0ˇ1 � � �ˇk , k D 0; 1; 2; : : : :

21. (a) Derive the three-term recurrence relation

p
ˇkC1 Q	kC1.t/ D .t � ˛k/ Q	k.t/ �

p
ˇk Q	k�1; k D 0; 1; 2; : : : ;

Q	�1.t/ D 0; Q	0 D 1=
p
ˇ0

for the orthonormal polynomials Q	k D 	k=k	kk, k D 0; 1; 2; : : : .
(b) Use the result of (a) to derive the Christoffel–Darboux formula

nX

kD0
Q	k.x/ Q	k.t/ D p

ˇnC1
Q	nC1.x/ Q	n.t/ � Q	n.x/ Q	nC1.t/

x � t
:

22. (a) Let 	n. � / D 	n. � I d
/ be the (monic) orthogonal polynomial of degree n
relative to the positive measure d
 on R. Show:

Z

R

	2n.t I d
/d
.t/ �
Z

R

p2.t/d
.t/; all p 2 ı
Pn;

where
ı
Pn is the class of monic polynomials of degree n. Discuss the case

of equality. fHint: represent p in terms of 	j . � I d
/; j D 0; 1; : : : ; n.g
(b) If d
.t/ D d
N .t/ is a discrete measure with exactly N support points

t1; t2; : : : ; tN , and 	j .t/ D 	j . � I d
N/; j D 0; 1; : : : ; N �1, are the corre-
sponding (monic) orthogonal polynomials, let 	N .t/ D .t�˛N�1/	N�1.t/
� ˇN�1	N�2.t/, with ˛N�1; ˇN�1 defined as in Sect. 2.1.4(2). Show that
	N .tj / D 0 for j D 1; 2; : : : ; N .
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23. Let f	j gnjD0 be a system of orthogonal polynomials, not necessarily monic,
relative to the (positive) measure d
. For some aij , define

pi.t/ D
nX

jD0
aij 	j .t/; i D 1; 2; : : : ; n;

(a) Derive conditions on the matrix A D Œaij � which ensure that the system
fpigniD0 is also a system of orthogonal polynomials.

(b) Assuming all 	j monic and fpigniD0 an orthogonal system, show that each
pi is monic if and only if A D I is the identity matrix.

(c) Prove the same as in (b), with “monic” replaced by “orthonormal” through-
out.

24. Let .u; v/ D PN
kD1 wku.tk/v.tk/ be a discrete inner product on the interval [–

1,1] with �1 � t1 < t2 < � � � < tN � 1, and let ˛k , ˇk be the recursion
coefficients for the (monic) orthogonal polynomials f	k.t/gN�1

kD0 associated with
(u, v):

8
ˆ̂̂
<

ˆ̂̂
:

	kC1.t/ D .t � ˛k/	k.t/ � ˇk	k�1.t/;

k D 0; 1; 2; : : : ; N � 2;

	0.t/ D 1; 	�1.t/ D 0:

Let x D b�a
2
t C aCb

2
map the interval [–1,1] to [a, b], and the points

tk 2 Œ�1; 1� to xk 2 Œa; b�. Define .u; v/� D PN
kD1 wku.xk/v.xk/, and let

f	�
k .x/gN�1

kD0 be the (monic) orthogonal polynomials associated with .u; v/�.
Express the recursion coefficients ˛�

k , ˇ�
k for the f	�

k g in terms of those for
f	kg. fHint: first show that 	�

k .x/ D . b�a
2
/k	k.

2
b�a .x � aCb

2
//.g

25. Let

.?/

8
ˆ̂̂
<

ˆ̂̂
:

	kC1.t/ D .t � ˛k/	k.t/ � ˇk	k�1.t/;

k D 0; 1; 2; : : : ; n � 1;

	0.t/ D 1; 	�1.t/ D 0

and consider

pn.t/ D
nX

jD0
cj 	j .t/:

Show that pn can be computed by the following algorithm (Clenshaw’s
algorithm):
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.??/

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

un D cn; unC1 D 0;

uk D .t � ˛k/ukC1 � ˇkC1ukC2 C ck;

k D n � 1; n� 2; : : : ; 0;

pn D u0:

fHint: write (?) in matrix form in terms of the vector �T D Œ	0; 	1; : : : ; 	n�

and a unit triangular matrix. Do likewise for (??).g
26. Show that the elementary Lagrange interpolation polynomials `i .x/ are invari-

ant with respect to any linear transformation of the independent variable.
27. Use Matlab to prepare plots of the Lebesgue function for interpolation,


n.x/, �1 � x � 1, for n D 5; 10; 20, with the interpolation nodes xi being
given by

(a) xi D �1C 2i
n

, i D 0; 1; 2; : : : ; n;

(b) xi D cos 2iC1
2nC2	 , i D 0; 1; 2; : : : ; n.

Compute 
n.x/ on a grid obtained by dividing each interval Œxi�1; xi �, i D
1; 2; : : : ; n, into 20 equal subintervals. Plot log10 
n.x/ in case (a), and 
n.x/
in case (b). Comment on the results.

28. Let !n.x/ D Qn
kD0 .x � k/ and denote by xn the location of the extremum of

!n on [0,1], that is, the unique x in [0,1], where !0
n.x/ D 0.

(a) Prove or disprove that xn ! 0 as n ! 1.
(b) Investigate the monotonicity of xn as n increases.

29. Consider equidistant sampling points xk D k .k D 0; 1; : : : ; n) and !n.x/ DQn
kD0 .x � k/, 0 � x � n.

(a) Show that !n.x/ D .�1/nC1!n.n � x/. What kind of symmetry does this
imply?

(b) Show that j!n.x/j < j!n.x C 1/j for nonintegral x > .n � 1/=2.
(c) Show that the relative maxima of j!n.x/j increase monotonically (from the

center of Œ0; n� outward).

30. Let


n.x/ D
nX

iD0
j`i .x/j

be the Lebesgue function for polynomial interpolation at the distinct points
xi 2 Œa; b�; i D 0; 1; : : : ; n, and ƒn D k
nk1 D maxa�x�b j
n.x/j the
Lebesgue constant. Let pn.f I � / be the polynomial of degree � n interpolating
f at the nodes xi . Show that in the inequality

kpn.f I � /k1 � ƒnkf k1; f 2 C Œa; b�;
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equality can be attained for some f D ' 2 C Œa; b�. fHint: let k
nk1 D

n.x1/; take ' 2 C Œa; b� piecewise linear and such that '.xi / D sgn `i .x1/;
i D 0; 1; : : : ; n.g

31. (a) Let x0, x1; : : : ; xn be n C 1 distinct points in [a; b] and fi D f .xi /, i D
0; 1; : : : ; n, for some function f . Let f �

i D fi C "i , where j"i j � ". Use
the Lagrange interpolation formula to show that jpn.f �I x/� pn.f I x/j �
"
n.x/, a � x � b, where 
n.x/ is the Lebesgue function (cf. Ex. 30).

(b) Show: 
n.xj / D 1 for j D 0; 1; : : : ; n.
(c) For quadratic interpolation at three equally spaced points, show that


2.x/ � 1:25 for any x between the three points.
(d) Obtain 
2.x/ for x0 D 0, x1 D 1, x2 D p, where p � 1, and determine

max1�x�p 
2.x/. How fast does this maximum grow with p? fHint: to
simplify the algebra, note from (b) that 
2.x/ on 1 � x � p must be
of the form 
2.x/ D 1C c.x � 1/.p � x/ for some constant c.g

32. In a table of the Bessel function J0.x/ D 1
	

R 	
0

cos.x sin �/d� , where x is
incremented in steps of size h, how small must h be chosen if the table is to
be “linearly interpolable” with error less that 10�6 in absolute value? fPoint of
information:

R 	=2
0

sin2 �d� D 	
4

.g
33. Suppose you have a table of the logarithm function lnx for positive integer

values of x, and you compute ln 11:1 by quadratic interpolation at x0 D 10,
x1 D 11, x2 D 12. Estimate the relative error incurred.

34. The “Airy function” y.x/ D Ai.x/ is a solution of the differential equation
y00 D xy satisfying appropriate initial conditions. It is known that Ai.x/ on
Œ0;1/ is monotonically decreasing to zero and Ai0.x/monotonically increasing
to zero. Suppose you have a table of Ai and Ai0 (with tabular step h) and you
want to interpolate

(a) linearly between x0 and x1,
(b) quadratically between x0, x1, and x2,

where x0, x1 D x0 C h, x2 D x0 C 2h are (positive) tabular arguments.
Determine close upper bounds for the respective errors in terms of quantities
yk D y.xk/; y

0
k D y0.xk/; k D 0; 1; 2, contained in the table.

35. The error in linear interpolation of f at x0, x1 is known to be

f .x/ � p1.f I x/ D .x � x0/.x � x1/ f
00.�.x//
2

; x0 < x < x1;

if f 2 C2Œx0; x1�. Determine �.x/ explicitly in the case f .x/ D 1
x

, x0 D 1,
x1 D 2, and find max1�x�2 �.x/ and min1�x�2 �.x/.

36. (a) Let pn.f I x/ be the interpolation polynomial of degree � n interpolating
f .x/ D ex at the points xi D i=n; i D 0; 1; 2; : : : ; n. Derive an upper
bound for

max
0�x�1je

x � pn.f I x/j
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and determine the smallest n guaranteeing an error less than 10�6 on
[0, 1]. fHint: first show that for any integer i with 0 � i � n one has
max0�x�1 j.x � i

n
/.x � n�i

n
/j � 1

4
.g

(b) Solve the analogous problem for the nth-degree Taylor polynomial tn.x/ D
1C x C x2

2Š
C � � � C xn

nŠ
, and compare the result with the one in (a).

37. Let x0 < x1 < x2 < � � � < xn and H D max0�i�n�1.xiC1 � xi /. Defining
!n.x/ D Qn

iD0.x�xi /, find an upper bound for k!nk1 D maxx0�x�xn j!n.x/j
in terms of H and n. fHint: assume xj � x � xjC1 for some 0 � j < n and
estimate .x � xj /.x � xjC1/ and

Q
i¤j

i¤jC1

.x � xi / separately.g
38. Show that the power xn on the interval �1 � x � 1 can be uniformly

approximated by a linear combination of powers 1; x; x2; : : : ; xn�1 with error
� 2�.n�1/. In this sense, the powers of x become “less and less linearly
independent” on [–1,1] with growing exponent n.

39. Determine

min max
a�x�b ja0xn C a1x

n�1 C � � � C anj; n � 1;

where the minimum is taken over all real a0; a1; : : : ; an with a0 ¤ 0. fHint: use
Theorem 2.2.1.g

40. Let a > 1 and P
a
n D fp 2 Pn W p.a/ D 1g. Define Opn 2 P

a
n by Opn.x/ D Tn.x/

Tn.a/
,

where Tn is the Chebyshev polynomial of degree n, and let k � k1 denote the
maximum norm on the interval Œ�1; 1�. Prove:

k Opnk1 � kpk1 for all p 2 P
a
n:

fHint: imitate the proof of Theorem 2.2.1.g
41. Let

f .x/ D
Z 1

5

e�t

t � x dt; � 1 � x � 1;

and let pn�1.f I � / be the polynomial of degree � n�1 interpolating f at the n
Chebyshev points x� D cos. 2��1

2n
	/; � D 1; 2; : : : ; n. Derive an upper bound

for max�1�x�1 jf .x/ � pn�1.f; x/j.
42. Let f be a positive function defined on Œa; b� and assume

min
a�x�b jf .x/j D m0; max

a�x�b jf .k/.x/j D Mk; k D 0; 1; 2; : : : :

(a) Denote by pn�1.f I � / the polynomial of degree � n � 1 interpolating
f at the n Chebyshev points (relative to the interval Œa; b�). Estimate the
maximum relative error rn D maxa�x�b j.f .x/ � pn�1.f I x//=f .x/j.

(b) Apply the result of (a) to f .x/ D ln x on Ir D fer � x � erC1g; r � 1 an
integer. In particular, show that rn � ˛.r; n/cn, where 0 < c < 1 and ˛ is
slowly varying. Exhibit c.
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(c) (This relates to the function f .x/ D lnx of part (b).) How does one
compute f .x/; x 2 Is , from f .x/; x 2 Ir?

43. (a) For quadratic interpolation on equally spaced points x0, x1 D x0 C h,
x2 D x0 C 2h, derive an upper bound for kf � p2.f I � /k1 involving
kf 000k1 and h. (Here kuk1 D maxx0�x�x2 ju.x/j.)

(b) Compare the bound obtained in (a) with the analogous one for interpolation
at the three Chebyshev points on [x0; x2].

44. (a) Suppose the function f .x/ D ln.2C x/, �1 � x � 1, is interpolated by a
polynomial pn of degree � n at the Chebyshev points xk D cos

�
2kC1
2nC2	

�
,

k D 0; 1; : : : ; n. Derive a bound for the maximum error kf � pnk1 D
max�1�x�1 jf .x/ � pn.x/j.

(b) Compare the result of (a) with bounds for kf � tnk1, where tn.x/ is the
nth-degree Taylor polynomial of f and where either Lagrange’s form of
the remainder is used or the full Taylor expansion of f .

45. Consider f .t/ D cos�1 t; �1 � t � 1. Obtain the least squares approximation
O'n 2 Pn of f relative to the weight function w.t/ D .1 � t/� 1

2 ; that is, find the
solution ' D O'n of

minimize

�Z 1

�1
Œf .t/ � '.t/�2

dtp
1 � t2 W ' 2 Pn

�
:

Express O'n in terms of Chebyshev polynomials 	j .t/ D Tj .t/.
46. Compute T 0

n.0/, where Tn is the Chebyshev polynomial of degree n.
47. Prove that the system of Chebyshev polynomials fTk W 0 � k < ng is

orthogonal with respect to the discrete inner product .u; v/ D Pn
�D1 u.x�/v.x�/,

where x� are the Chebyshev points x� D cos 2��1
2n
	 .

48. Let Tk.x/ denote the Chebyshev polynomial of degree k. Clearly, Tn.Tm.x// is
a polynomial of degree n �m. Identify it.

49. Let Tn denote the Chebyshev polynomial of degree n � 2. The equation

x D Tn.x/

is an algebraic equation of degree n and hence has exactly n roots. Identify
them.

50. For any x with 0 � x � 1 show that Tn.2x � 1/ D T2n.
p
x/.

51. Let f .x/ be defined for all x 2 R and infinitely often differentiable on R.
Assume further that

jf .m/.x/j � 1; all x 2 R; m D 1; 2; 3; : : : :

Let h > 0 and p2n�1 be the polynomial of degree < 2n interpolating f at the
2n points x D kh, k D ˙1;˙2; : : : ;˙n. For what values of h is it true that

lim
n!1p2n�1.0/ D f .0/ ‹
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(Note that x D 0 is not an interpolation node.) Explain why the convergence
theory discussed in Sect. 2.2.3 does not apply here. fPoint of information: nŠ 
p
2	n.n=e/n as n ! 1 (Stirling’s formula).g

52. (a) Let xCi D cos
�
2iC1
2nC2	

�
, i D 0; 1; : : : ; n, be Chebyshev points on Œ�1; 1�.

Obtain the analogous Chebyshev points tCi on [a; b] (where a < b) and
find an upper bound of

Qn
iD0.t � tCi / for a � t � b.

(b) Consider f .t/ D ln t on [a; b], 0 < a < b, and let pn.t/ D pn.f I t .n/0 ,

t
.n/
1 ; : : : ; t

.n/
n I t). Given a > 0, how large can b be chosen such that

limn!1 pn.t/ D f .t/ for arbitrary nodes t .n/i 2 Œa; b� and arbitrary t 2
Œa; b�?

(c) Repeat (b), but with t .n/i D tCi (see (a)).
53. Let PC

m be the set of all polynomials of degree � m that are nonnegative on the
real line,

P
C
m D fp W p 2 Pm; p.x/ � 0 for all x 2 Rg:

Consider the following interpolation problem: find p 2 P
C
m such that p.xi / D

fi ; i D 0; 1; : : : ; n, where fi � 0 and xi are distinct points on R.

(a) Show that, if m D 2n, the problem admits a solution for arbitrary fi � 0.
(b) Prove: if a solution is to exist for arbitrary fi � 0, then, necessarily,

m � 2n. fHint: consider f0 D 1; f1 D f2 D � � � D fn D 0.g
54. Defining forward differences by �f.x/ D f .x C h/ � f .x/; �2f .x/ D

�.�f .x// D f .x C 2h/� 2f .x C h/C f .x/, and so on, show that

�kf .x/ D kŠhkŒx0; x1; : : : ; xk�f;

where xj D xCjh; j D 0; 1; 2; : : : : Prove an analogous formula for backward
differences.

55. Let f .x/ D x7. Compute the fifth divided difference [0,1,1,1,2,2]f of f . It is
known that this divided difference is expressible in terms of the fifth derivative
of f evaluated at some �, 0 < � < 2 (cf. (2.117)). Determine �.

56. In this problem f .x/ D ex throughout.

(a) Prove: for any real number t , one has

Œt; t C 1; : : : ; t C n�f D .e � 1/n
nŠ

et :

fHint: use induction on n.g
(b) From (2.117) we know that

Œ0; 1; : : : ; n�f D f .n/.�/

nŠ
; 0 < � < n:

Use the result in (a) to determine �. Is � located to the left or to the right of
the midpoint n=2?
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57. (Euler, 1734) Let xk D 10k, k D 0; 1; 2; 3; : : :, and f .x/ D log10 x.

(a) Show that

Œx0; x1; : : : ; xn�f D .�1/n�1

10n.n�1/=2.10n � 1/
; n D 1; 2; 3; : : : :

fHint: prove more generally

Œxr ; xrC1; : : : ; xrCn�f D .�1/n�1

10rnCn.n�1/=2.10n � 1/ ; r � 0;

by induction on n.g
(b) Use Newton’s interpolation formula to determine pn.x/ D pn.f I x0; x1;

: : : ; xnI x/. Show that limn!1 pn.x/ exists for 1 � x < 10. Is the limit
equal to log10 x? (Check, e.g., for x D 9.)

58. Show that
@

@x0
Œx0; x1; : : : ; xn�f D Œx0; x0; x1; : : : ; xn�f;

assuming f is differentiable at x0. What about the partial derivative with respect
to one of the other variables?

59. (a) For nC 1 distinct nodes x� , show that

Œx0; x1; : : : ; xn�f D
nX

�D0

f .x�/Q
�¤�.x� � x�/

:

(b) Show that

Œx0; x1; : : : ; xn�.fgj / D Œx0; x1; : : : ; xj�1; xjC1; : : : ; xn�f;

where gj .x/ D x � xj .
60. (Mikeladze, 1941) Assuming x0; x1; : : : ; xn mutually distinct, show that

Œx0; x0; : : : ; x0„ ƒ‚ …
m times

; x1; x2; : : : ; xn�f

D Œ

m times‚ …„ ƒ
x0; : : : ; x0�f
nY

�D1
.x0 � x�/

C
nX

�D1

Œ

.m�1/ times‚ …„ ƒ
x0; : : : ; x0; x� �f

nY

�D0
�¤�

.x� � x�/
:

fHint: use induction on m.g
61. Determine the number of additions and the number of multiplications/divisions

required

(a) to compute all divided differences for nC 1 data points,
(b) to compute all auxiliary quantities 
.n/i in (2.103), and
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(c) to compute pn.f I � / (efficiently) from Newton’s formula (2.111), once
the divided differences are available. Compare with the analogous count
for the barycentric formula (2.105), assuming all auxiliary quantities
available. Overall, which, if any, of the two formulae can be computed more
economically?

62. Consider the data f .0/ D 5, f .1/ D 3, f .3/ D 5, f .4/ D 12.

(a) Obtain the appropriate interpolation polynomial p3.f I x/ in Newton’s
form.

(b) The data suggest that f has a minimum between x D 1 and x D 3. Find
an approximate value for the location xmin of the minimum.

63. Let f .x/ D .1Ca/x; jaj < 1. Show that pn.f I 0; 1; : : : ; nI x/ is the truncation
of the binomial series for f to n C 1 terms. fHint: use Newton’s form of the
interpolation polynomial.g

64. Suppose f is a function on [0,3] for which one knows that

f .0/ D 1; f .1/ D 2; f 0.1/ D �1; f .3/ D f 0.3/ D 0:

(a) Estimate f .2/, using Hermite interpolation.
(b) Estimate the maximum possible error of the answer given in (a) if one

knows, in addition, that f 2 C5Œ0; 3� and jf .5/.x/j � M on [0,3]. Express
the answer in terms of M .

65. (a) Use Hermite interpolation to find a polynomial of lowest degree satisfying
p.�1/ D p0.�1/ D 0, p.0/ D 1, p.1/ D p0.1/ D 0. Simplify your
expression for p as much as possible.

(b) Suppose the polynomial p of (a) is used to approximate the function
f .x/ D Œcos.	x=2/�2 on �1 � x � 1.

(b1) Express the error e.x/ D f .x/ � p.x/ (for some fixed x in Œ�1; 1�/
in terms of an appropriate derivative of f .

(b2) Find an upper bound for je.x/j (still for a fixed x 2 Œ�1; 1�).
(b3) Estimate max�1�x�1 je.x/j.

66. Consider the problem of finding a polynomial p 2 Pn such that

p.x0/ D f0; p
0.xi / D f 0

i ; i D 1; 2; : : : ; n;

where xi , i D 1; 2; : : : ; n, are distinct nodes. (It is not excluded that x1 D x0.)
This is neither a Lagrange nor a Hermite interpolation problem (why not?).
Nevertheless, show that the problem has a unique solution and describe how it
can be obtained.

67. Let

f .t/ D
8
<

:
0 if 0 � t � 1

2
;

1 if 1
2

� t � 1:
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(a) Find the linear least squares approximant Op1 to f on Œ0; 1�, that is, the
polynomial p1 2 P1 for which

Z 1

0

Œp1.t/ � f .t/�2dt D min:

Use the normal equations with 	0.t/ D 1; 	1.t/ D t .
(b) Can you do better with continuous piecewise linear functions (relative to

the partition Œ0; 1� D Œ0; 1
2
� [ Œ 1

2
; 1�) ? Use the normal equations for the

B-spline basis B0; B1; B2 (cf. Sect. 2.2.2 and Ex. 13).

68. Show that Smm.�/ D Pm.
69. Let � be the subdivision

� D Œ0; 1� [ Œ1; 2� [ Œ2; 3�
of the interval [0,3]. Define the function s by

s.x/ D

8
ˆ̂̂
<

ˆ̂̂
:

2 � x.3 � 3x C x2/ if 0 � x � 1;

1 if 1 � x � 2;

1
4
x2.3 � x/ if 2 � x � 3:

To which class Skm.�/ does s belong?
70. In

s.x/ D
8
<

:
p.x/ if 0 � x � 1;

.2 � x/3 if 1 � x � 2

determine p 2 P3 such that s.0/ D 0 and s is a cubic spline in S
2
3.�/ on the

subdivision� D Œ0; 1�[ Œ1; 2� of the interval [0,2]. Do you get a natural spline?
71. Let �: a D x1 < x2 < x3 < � � � < xn D b be a subdivision of [a; b] into

n � 1 subintervals. What is the dimension of the space S
k
m D fs 2 CkŒa; b�:

sjŒxi ;xiC1� 2 Pm, i D 1; 2; : : : ; n � 1g ?
72. Given the subdivision � W a D x1 < x2 < � � � < xn D b of Œa; b�, determine a

basis of “hat functions” for the space S D fs 2 S
0
1 W s.a/ D s.b/ D 0g.

73. Let � W a D x1 < x2 < x3 < � � � < xn�1 < xn D b be a subdivision of
Œa; b� into n� 1 subintervals. Suppose we are given values fi D f .xi / of some
function f .x/ at the points x D xi , i D 1; 2; : : : ; n. In this problem s 2 S

1
2

is a quadratic spline in C1Œa; b� that interpolates f on �, that is, s.xi / D fi ,
i D 1; 2; : : : ; n.

(a) Explain why one expects an additional condition to be required in order to
determine s uniquely.

(b) Define mi D s0.xi /, i D 1; 2; : : : ; n � 1. Determine pi WD s
ˇ̌
Œxi ;xiC1� ,

i D 1; 2; : : : ; n � 1, in terms of fi ; fiC1, andmi .
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(c) Suppose one takes m1 D f 0.a/. (According to (a), this determines s
uniquely.) Show how m2;m3; : : : ; mn�1 can be computed.

74. Let the subdivision� of [a; b] be given by

� W a D x1 < x2 < x3 < � � � < xn�1 < xn D b; n � 2;

and let fi D f .xi /, i D 1; 2; : : : ; n, for some function f . Suppose you
want to interpolate this data by a quintic spline s5.f I � / (a piecewise fifth-
degree polynomial of smoothness class C4Œa; b�). By counting the number of
parameters at your disposal and the number of conditions imposed, state how
many additional conditions (if any) you expect are needed to make s5.f I � /
unique.

75. Let

� W a D x1 < x2 < x3 < � � � < xn�1 < xn D b:

Consider the following problem: given n � 1 numbers f� and n � 1 points ��
with x� < �� < x�C1 (� D 1; 2; : : : ; n � 1), find a piecewise linear function
s 2 S

0
1.�/ such that

s.��/ D f� .� D 1; 2; : : : ; n � 1/; s.x1/ D s.xn/:

Representing s in terms of the basis B1, B2; : : : ; Bn of “hat functions,”
determine the structure of the linear system of equations that you obtain for
the coefficients cj in s.x/ D Pn

jD1 cjBj .x/. Describe how you would solve
the system.

76. Let s1.x/ D 1 C c.x C 1/3, �1 � x � 0, where c is a (real) parameter.
Determine s2.x/ on 0 � x � 1 so that

s.x/ WD
�
s1.x/ if �1 � x � 0;

s2.x/ if 0 � x � 1

is a natural cubic spline on Œ�1; 1�with knots at �1, 0, 1. How must c be chosen
if one wants s.1/ D �1?

77. Derive (2.136).
78. Determine the quantities mi in the variant of piecewise cubic Hermite interpo-

lation mentioned at the end of Sect. 2.3.4(a).
79. (a) Derive the two extra equations for m1, m2; : : : ; mn that result from the

“not-a-knot” condition (Sect. 2.3.4, (b.4)) imposed on the cubic spline
interpolant s 2 S

2
3.�/ (with � as in Ex. 73).

(b) Adjoin the first of these equations to the top and the second to the bottom
of the system of n � 2 equations derived in Sect. 2.3.4(b). Then apply
elementary row operations to produce a tridiagonal system. Display the
new matrix elements in the first and last equations, simplified as much as
possible.
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(c) Is the tridiagonal system so obtained diagonally dominant?
80. Let S01.�/ be the class of continuous piecewise linear functions relative to the

subdivision a D x1 < x2 < � � � < xn D b. Let kgk1 D maxa�x�b jg.x/j, and
denote by s1.gI � / the piecewise linear interpolant (from S

0
1.�// to g.

(a) Show: ks1.gI � /k1 � kgk1 for any g 2 C Œa; b�.
(b) Show: kf �s1.f I � /k1 � 2kf �sk1 for any s 2 S

0
1, f 2 C Œa; b�. fHint:

use additivity of s1.f I � / with respect to f .g
(c) Interpret the result in (b) when s is the best uniform spline approximant

to f .

81. Consider the interval Œa; b� D Œ�1; 1� and its subdivision � D Œ�1; 0� [ Œ0; 1�,
and let f .x/ D cos 	

2
x, �1 � x � 1.

(a) Determine the natural cubic spline interpolant to f on �.
(b) Illustrate Theorem 2.3.2 by taking in turn g.x/ D p2.f I �1; 0; 1I x/ and

g.x/ D f .x/.
(c) Discuss analogously the complete cubic spline interpolant to f on �0

(cf. (2.149)) and the choices g.x/ D p3.f I �1; 0; 1; 1I x/ and g.x/ D
f .x/.

Machine Assignments

1. (a) A simple-minded approach to best uniform approximation of a function
f .x/ on [0,1] by a linear function ax C b is to first discretize the problem
and then, for various (appropriate) trial values of a, solve the problem of
(discrete) uniform approximation of f .x/ � ax by a constant b (which
admits an easy solution). Write a program to implement this idea.

(b) Run your program for f .x/ D ex; f .x/ D 1=.1 C x/; f .x/ D
sin 	

2
x; f .x/ D x˛ .˛ D 2; 3; 4; 5/. Print the respective optimal values of

a and b and the associated minimum error. What do you find particularly
interesting in the results (if anything)?

(c) Give a heuristic explanation (and hence exact values) for the results, using
the known fact that the error curve for the optimal linear approximation
attains its maximum modulus at three consecutive points 0 � x0 < x1 <

x2 � 1 with alternating signs (Principle of Alternation).
2. (a) Determine the .nC 1/ � .nC 1/ matrix A D Œaij �, aij D .Bn

i ; B
n
j /, of the

normal equations relative to the Bernstein basis

Bn
j .t/ D

�
n

j

�
t j .1 � t/n�j ; j D 0; 1; : : : ; n;

and weight function w.t/ 	 1 on [0,1]. fPoint of information:
R 1
0
tk

.1 � t/`dt D kŠ`Š=.k C `C 1/Šg.
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(b) Use Matlab to solve the normal equations of (a) for n D 5 W 5 W 25, when
the function to be approximated is f .t/ 	 1. What should the exact answer
be? For each n, print the infinity norm of the error vector and an estimate
of the condition number of A. Comment on your results.

3. Compute discrete least squares approximations to the function f .t/ D sin
�
	
2
t
�

on 0 � t � 1 by polynomials of the form

'n.t/ D t C t.1 � t/

nX

jD1
cj t

j�1; n D 1.1/5;

using N abscissae tk D k=.N C 1/, k D 1; 2; : : : ; N , and equal weights 1.
Note that 'n.0/ D 0, 'n.1/ D 1 are the exact values of f at t D 0 and t D 1,
respectively. fHint: approximate f .t/ � t by a linear combination of 	j .t/ D
t j .1 � t/; j D 1; 2; : : : ; n.g Write a Matlab program for solving the normal
equations Ac D b, A D Œ.	i ; 	j /�, b D Œ.	i ; f � t/�, c D Œcj �, that does
the computation in both single and double precision. For each n D 1; 2; : : : ; 5

output the following:

• the condition number of the system (computed in double precision);
• the maximum relative error in the coefficients, max1�j�n j.csj � cdj /=cdj j,

where csj are the single-precision values of cj and cdj the double-precision
values;

• the minimum and maximum error (computed in double precision),

emin D min
1�k�N j'n.tk/� f .tk/j; emax D max

1�k�N j'n.tk/� f .tk/j:

Make two runs:

(a) N D 5; 10; 20; (b) N D 4.

Comment on the results.
4. Write a program for discrete polynomial least squares approximation of a

function f defined on [–1,1], using the inner product

.u; v/ D 2

N C 1

NX

iD0
u.ti /v.ti /; ti D �1C 2i

N
:

Follow these steps.

(a) The recurrence coefficients for the appropriate (monic) orthogonal polyno-
mials f	k.t/g are known explicitly:

˛k D 0; k D 0; 1; : : : ; N I ˇ0 D 2;

ˇk D
�
1C 1

N

�2  
1 �

�
k

N C 1

�2!�
4 � 1

k2

��1
; k D 1; 2; : : : ; N:
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(You do not have to prove this.) Define �k D k	kk2 D .	k; 	k/, which is
known to be equal to ˇ0ˇ1 � � �ˇk (cf. Ex. 20).

(b) Using the recurrence formula with coefficients ˛k , ˇk given in (a), generate
an array � of dimension .N C 2;N C 1/ containing 	k.t`/, k D
0; 1; : : : ; NC1; ` D 0; 1; : : : ; N . (Here k is the row index and ` the column
index.) Define�k D max0�`�N j	k.t`/j, k D 1; 2; : : : ; N C1. Print ˇk , �k ,
and �kC1 for k D 0; 1; 2; : : : ; N , where N D 10. Comment on the results.

(c) With Opn.t/ D Pn
kD0 Ock	k.t/, n D 0; 1; : : : ; N , denoting the least squares

approximation of degree � n to the function f on [–1,1], define

kenk2 D k Opn � f k D . Opn � f; Opn � f /1=2;

kenk1 D max
0�i�N j Opn.ti /� f .ti /j:

Using the array � generated in part (b), compute Ocn, kenk2, kenk1, n D
0; 1; : : : ; N , for the following four functions:

f .t/ D e�t ; f .t/ D ln.2C t/; f .t/ D p
1C t ; f .t/ D jt j:

Be sure you compute kenk2 as accurately as possible. For N D 10 and
for each f , print Ocn, kenk2, and kenk1 for n D 0; 1; 2; : : : ; N . Comment
on your results. In particular, from the information provided in the output,
discuss to what extent the computed coefficients Ock may be corrupted by
rounding errors.

5. (a) A Sobolev-type least squares approximation problem results if the inner
product is defined by

.u; v/ D
Z

R

u.t/v.t/d
0.t/C
Z

R

u0.t/v0.t/d
1.t/;

where d
0; d
1 are positive measures. What does this type of approxima-
tion try to accomplish?

(b) Letting d
0.t/ D dt; d
1.t/ D 
dt on [0,2], where 
 > 0 is a parameter,
set up the normal equations for the Sobolev-type approximation in (a) of
the function f .t/ D e�t 2 on [0,2] by means of a polynomial of degree
n � 1. Use the basis 	j .t/ D t j�1; j D 1; 2; : : : ; n. fHint: express the
components bi of the right-hand vector of the normal equations in terms
of the “incomplete gamma function” �.a; x/ D R x

0 t
a�1e�tdt with x D 4,

a D i=2.g
(c) Use Matlab to solve the normal equations for n D 2 W 5 and 
 D 0; :5; 1; 2.

Print

k O'n � f k1 and k O' 0
n � f 0k1; n D 2; 3; 4; 5

(or a suitable approximation thereof) along with the condition numbers of
the normal equations. fUse the following values for the incomplete gamma
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function: �. 1
2
; 4/D 1:764162781524843, �.1; 4/D 0:9816843611112658,

�.3
2
; 4/D 0:8454501129849537, �.2; 4/D0:9084218055563291,�.5

2
; 4/D

1:121650058367554.g Comment on the results.
6. With !n.x/ D Qn

kD0.x�k/, letMn be the largest, andmn the smallest, relative
maximum of j!n.x/j. For n D 5 W 5 W 30 calculate Mn, mn, andMn=mn, using
Newton’s method (cf. Chap 4, Sect. 4.6), and print also the respective number
of iterations.

7. (a) Write a subroutine that produces the value of the interpolation polynomial
pn.f I x0; x1; : : : ; xnI t/ at any real t , where n � 0 is a given integer,
xi are n C 1 distinct nodes, and f is any function available in the
form of a function subroutine. Use Newton’s interpolation formula and
exercise frugality in the use of memory space when generating the divided
differences. It is possible, indeed, to generate them “in place” in a single
array of dimension n C 1 that originally contains the values f .xi /; i D
0; 1; : : : ; n. fHint: generate the divided differences from the bottom up.g

(b) Run your routine on the function f .t/ D 1
1Ct 2 ; � 5 � t � 5, using

xi D �5 C 10 i
n
; i D 0; 1; : : : ; n, and n D 2 W 2 W 8 (Runge’s example).

Plot the polynomials against the exact function.
8. (a) Write a Matlab function y=tridiag(n,a,b,c,v) for solving a tridi-

agonal (nonsymmetric) system

2
66666666664

a1 c1 0

b1 a2 c2

b2 a3 c3

: : :
: : :

: : :

cn�1
0 bn�1 an

3
77777777775

2
66666666664

y1

y2

y3

:::

yn�1
yn

3
77777777775

D

2
66666666664

v1

v2

v3
:::

vn�1
vn

3
77777777775

by Gauss elimination without pivoting. Keep the program short.
(b) Write a program for computing the natural spline interpolant snat.f I � / on

an arbitrary partition a D x1 < x2 < x3 < � � � < xn�1 < xn D b of Œa; b�.
Print fi , errmax(i ); i D 1; 2; : : : ; n � 1g, where

errmax.i/ D max
1�j�N

ˇ̌
snat.f I xi;j / � f .xi;j /

ˇ̌
; xi;j D xi C j � 1

N � 1
�xi :

(You will need the functiontridiag.) Test the program for cases in which
the error is zero (what are these, and why?).

(c) Write a second program for computing the complete cubic spline inter-
polant scompl.f I � / by modifying the program in (b) with a minimum of
changes. Highlight the changes in the program listing. Apply (and justify)
a test similar to that of (b).
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(d) Run the programs in (b) and (c) for Œa; b� = Œ0; 1�, n D 11, N D 51, and

(i) xi D i�1
n�1 , i D 1; 2; : : : ; n; f .x/ D e�x and f .x/ D x5=2;

(ii) xi D �
i�1
n�1

�2
, i D 1; 2; : : : ; n; f .x/ D x5=2.

Comment on the results.

Selected Solutions to Exercises

11. (a) We have

.	r ; 	s/ D
Z 1

0

e�.rCs/tdt D � 1

r C s
e�.rCs/t

ˇ̌
ˇ̌
1

0

D 1

r C s
;

.	r ; f / D
Z 1

0

e�rtdt D �1
r

e�rt
ˇ̌
ˇ̌
1

0

D 1

r
.1 � e�r /:

The normal equations, therefore, are

nX

sD1

1

r C s
cs D 1

r
.1 � e�r /; r D 1; 2; : : : ; n:

The matrix is the Hilbert matrix of order n C 1 with the first column and
last row removed.

(b) PROGRAM

%EXII_11B
%
f0=’%8.0f %12.4e\n’;
f1=’%45.14e\n’;
disp(’ n cond solution’)
for n=1:8

A=hilb(n+1);
A(:,1)=[];
A(n+1,:)=[];
x=(1:n)’;
b=(1-exp(-x))./x;
c=A\b;
cd=cond(A);
fprintf(f0,n,cd)
fprintf(f1,c)
for i=1:201
t=.01*(i-1);
fa(i,n)=sum(c.*exp(-x*t));

end



Selected Solutions to Exercises 139

end
for i=1:11

tf(i)=.1*(i-1);
f(i)=1;

end
for i=1:201

tfa(i)=.01*(i-1);
end
plot(tf,f);
hold on
plot(ones(size(tf)),tf);
plot(tfa,fa(:,1),’:’);
plot(tfa,fa(:,2),’-.’);
plot(tfa,fa(:,3),’--’);
plot(tfa,fa(:,4),’-’);
axis([0 2 0 1.5]);
hold off

OUTPUT

>> EXII_11B
n cond solution
1 1.0000e+00

1.26424111765712e+00
2 3.8474e+01

1.00219345775339e+00
3.93071489855589e-01

3 1.3533e+03
-1.23430987802214e+00
9.33908483295774e+00
-7.45501111925180e+00

4 4.5880e+04
-2.09728726098036e+00
1.58114152051443e+01
-2.03996718636248e+01
7.55105210088422e+00

5 1.5350e+06
2.95960905289307e-01
-1.29075627900844e+01
8.01167511196597e+01
-1.26470845210147e+02
6.03098537899591e+01

6 5.1098e+07
2.68879580265092e+00
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-5.47821734938751e+01
3.03448008206274e+02
-6.28966173654415e+02
5.62805182233655e+02
-1.84248287095832e+02

7 1.6978e+09
1.19410815562677e+00
-1.89096699709436e+01
3.44042318216034e+01
2.67846414188988e+02
-9.16935587561045e+02
9.99544328640241e+02
-3.66412000082403e+02

8 5.6392e+10
-2.39677086853911e+00
9.42030165764484e+01
-1.09672261269167e+03
5.45217770865201e+03
-1.33593305457727e+04
1.71746576145770e+04
-1.11498207678274e+04
2.88841304234284e+03

>>

The condition numbers here are even a bit larger than the condition numbers
of the Hilbert matrices of the same order (cf. Chap. 1, MA 9).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

PLOTS

dotted line: n=1, dashdotted line: n D 2, dashed line: n=3,
solid line n=4
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16. (a) Let p.t/ D a0 C a1t C a2t
2. Then p satisfies the constraints if and only if

a0 D 0; a0 C a1 C a2 D 1, that is,

p.t/ D t2 C a1t.1 � t/:

Therefore, we need to minimize

Z 1

0

Œf .t/ � p.t/�2dt D
Z 1

0

Œf .t/ � t2 � a1t.1 � t/�2dt:

This is an unconstrained least squares problem for approximating the
function f .t/�t2 by a multiple of 	1.t/ D t.1�t/. The normal equation is

a1

Z 1

0

Œt.1 � t/�2dt D
Z 1

0

.f .t/ � t2/t.1 � t/dt;

and yields the solution

Op.t/ D t2 C Oa1t.1 � t/;

where

Oa1 D
R 1
0
.f .t/ � t2/t.1 � t/dt
R 1
0
Œt.1 � t/�2dt

D 30

Z 1

0

f .t/t.1 � t/dt � 3

2
:

(b) If f .t/ D t r , then

Oa1 D 30

Z 1

0

t rC1.1 � t/dt � 3

2
D 30

.r C 2/.r C 3/
� 3

2

and

Op.t/ D t2 C
�

30

.r C 2/.r C 3/
� 3

2

�
t.1 � t/

D t

�
30

.r C 2/.r C 3/
� 3

2
C
�
5

2
� 30

.r C 2/.r C 3/

�
t

�
:

For r D 3, this gives Op.t/ D 1
2
t.3t � 1/.
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Plot:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

t

y

solid line: y D t3

dashed line: y D :5t.3t � 1/

27. PROGRAM

%EXII_27 Lebesgue functions
%
n=5;
%n=10;
%n=20;
i=1:n+1; mu=1:n+1;
% equally spaced points
x=-1+2*(i-1)/n;
%
% Chebyshev points
%x=cos((2*(i-1)+1)*pi/(2*n+2));
%
iplot=0;
for k=2:n+1
%for k=1:n+2

for j=1:21
iplot=iplot+1;
t(iplot)=x(k-1)+(j-1)*(x(k)-x(k-1))/20;

% if k==1
% t(iplot)=1+(j-1)*(x(1)-1)/20;
% elseif k<=n+1
% t(iplot)=x(k-1)+(j-1)*(x(k)-x(k-1))/20;
% else
% t(iplot)=x(n+1)+(j-1)*(-1-x(n+1))/20;
% end



Selected Solutions to Exercises 143

s=0;
for nu=1:n+1
mu0=find(mu-nu);
p=prod((t(iplot)-x(mu0))./(x(nu)-x(mu0)));
s=s+abs(p);

end
leb(iplot)=s;

end
end
plot(t,log10(leb))
%plot(t,leb)
axis([-1.2 1.2 -.05 .55])
%axis([-1.2 1.2 -.1 1.6])
%axis([-1.2 1.2 -.25 4.25])
%axis([-1.1 1.1 .9 2.4])
%axis([-1.1 1.1 .9 2.6])
%axis([-1.1 1.1 .9 3])
title(’equally spaced points; n=5’,

’Fontsize’,14)
%title(’equally spaced points; n=10’,

’Fontsize’,14)
%title(’equally spaced points; n=20’,

’Fontsize’,14)
%title(’Chebyshev points; n=5’,’Fontsize’,14)
%title(’Chebyshev points; n=10’,’Fontsize’,14)
ylabel(’log lambda’,’Fontsize’,14)
%ylabel(’lambda’,’Fontsize’,14)

OUTPUT
(on the next page)

At the interpolation nodes xi , one clearly has 
n.xi / D 1. The local maxima
of 
n between successive interpolation nodes are almost equal, and relatively
small, in case (b), but become huge near the endpoints of Œ�1; 1� in case (a). In
case (b), the global maxima occur at the endpoints ˙1.

36. We first prove the assertion of the Hint. One easily verifies that the functionˇ̌�
x � i

n

� �
x � n�i

n

�ˇ̌
on Œ0; 1� is symmetric with respect to the midpoint 1

2
.

Being quadratic, its maximum must occur either at x D 0 or at x D 1
2
, and

hence is the larger of i.n�i /
n2

and .n�2i/2
4n2

. The former attains its maximum at
i D n

2
, the latter at i D 0 (and i D n). Either one equals 1

4
. Thus,

max
0�x�1

ˇ̌
ˇ̌
�
x � i

n

��
x � n � i

n

�ˇ̌
ˇ̌ � 1

4
for i D 0; 1; : : : ; n;

as claimed.
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(a) We have

ex � pn.f I x/ D e�.x/

.nC 1/Š

nY

kD0

�
x � k

n

�
; 0 < �.x/ < 1:

Here we use
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nY

kD0

ˇ̌
ˇ̌x � k

n

ˇ̌
ˇ̌ D

vuut
nY

iD0

ˇ̌
ˇ̌x � i

n

ˇ̌
ˇ̌
ˇ̌
ˇ̌x � n � i

n

ˇ̌
ˇ̌

along with the assertion of the Hint to obtain

max
0�x�1je

x � pn.f I x/j � e

.nC 1/Š

�
1

4

� nC1
2

D e

2nC1.nC 1/Š
:

The smallest n making the upper bound � 10�6 is n D 7.
(b) From Taylor’s formula,

ex � tn.x/ D e�.x/

.nC 1/Š
xnC1; 0 < �.x/ < 1:

Thus,

jex � tn.x/j � e

.nC 1/Š
:

This bound is larger than the one in (a) by a factor of 2nC1. Accordingly,
for it to be � 10�6 now requires n D 9.

47. We have, for 0 � k; ` < n,

.Tk; T`/ D
nX

�D1
Tk.x�/T`.x�/ D

nX

�D1
cos

�
k
2� � 1

2n
	

�
cos

�
`
2� � 1

2n
	

�

D 1

2

nX

�D1

	
cos

�
.k C `/

2� � 1
2n

	

�
C cos

�
.k � `/2� � 1

2n
	

�


D 1

2
Re

(
nX

�D1
ei.kC`/ 2��1

2n 	 C
nX

�D1
ei.k�`/ 2��1

2n 	

)

D 1

2
Re

(
ei.kC`/ 	2n

nX

�D1
ei.kC`/ ��1

n 	 C ei.k�`/ 	2n
nX

�D1
ei.k�`/ ��1

n 	

)
:

Assume k ¤ `. Both sums in the last equation are finite geometric series and
can thus be summed explicitly. One gets

.Tk; T`/ D 1

2
Re

�
ei.kC`/ 	2n 1 � ei.kC`/	

1 � ei
kC`
n 	

C ei.k�`/ 	2n 1 � ei.k�`/	

1� ei k�`
n 	

�

D 1

2
Re

(
i Œ1 � ei.kC`/	�
2 sin kC`

2n
	

C i Œ1 � ei.k�`/	�
2 sin k�`

2n
	

)
;
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where the denominators are not zero by the assumption on k and `. Now if kC`
(and hence also k � `) is even, both expressions in brackets are zero. If k C `

(and hence also k � `) is odd, the numerators are both 2i , hence the real part
equals zero. In either case, .Tk; T`/ D 0, as claimed.

An easy argument also shows that the value of the inner product is n
2

if
k D ` > 0, and n if k D ` D 0.

The result follows more easily from the continuous orthogonality
(cf. Sect. 2.2.4, (2.99)) by applying the Gauss–Chebyshev quadrature formula
(cf. Chap. 3, Sect. 3.2.3 and Ex. 36).

57. (a) For n D 1, the assertion of the Hint is true for all r � 0 since

Œxr ; xrC1� D log10 xrC1 � log10 xr
xrC1 � xr D .r C 1/� r

10r.10 � 1/ D 1

9 � 10r :

Thus, assume the assertion to be true for some n and all r � 0. Then, by
the property (2.113) of divided differences,

Œxr ; xrC1; : : : ; xrCn; xrCnC1�f

D ŒxrC1; xrC2; : : : ; xrCnC1�f � Œxr ; xrC1; : : : ; xrCn�f
xrCnC1 � xr

D .�1/n�1

10rnCn.n�1/=2.10n � 1/
1 � 10n

10n.10rCnC1 � 10r/

D .�1/n
10rnCn.n�1/=2 10nCr .10nC1 � 1/

D .�1/n
10r.nC1/Cn.nC1/=2 .10nC1 � 1/

;

which is precisely the assumed assertion with n replaced by nC 1.
(b) Let ak D Œx0; x1; : : : ; xk�f . By Newton’s formula, noting that a0 D

log10 1 D 0, we have

pn.x/ D
nX

kD1
ak.x � 1/.x � 10/ � � � .x � 10k�1/

D
nX

kD1

.�1/k�1

10k.k�1/=2.10k � 1/

k�1Y

`D0
.x � 10`/

D �
nX

kD1

1

10k.k�1/=2.10k � 1/

k�1Y

`D0
.10` � x/
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D �
nX

kD1

1

10k � 1
k�1Y

`D0
.1� x=10`/

D �
nX

kD1
tk.x/;

where

tk.x/ WD 1

10k � 1
k�1Y

`D0
.1 � x=10`/:

For 1 � x < 10, we have

jtk.x/j <
ˇ̌
ˇ̌ .1� x/.1 � x=10k�1/

10k � 1
ˇ̌
ˇ̌ < 9

10k � 1

�
1 � 1

10k�1

�
<

9

10k
:

Thus, the infinite series
P1

kD1 tk.x/ is majorized by the convergent geomet-
ric series 9

P1
kD1 10�k and therefore also converges. However, for x D 9,

one computes

�
1X

kD1
tk.9/ D

1X

kD1

8

10k � 1

k�1Y

`D1
.1 � 9=10k/

D 0:89777 : : : < log10.9/ D 0:95424 : : : :

(For an analysis of the discrepancy, see Gautschi [2008].)
75. Let s.x/ D Pn

jD1cjBj .x/. Then, with points �� as defined, the first n � 1

conditions imposed on s can be written as

c1B1.�1/C c2B2.�1/ D f1;

c2B2.�2/C c3B3.�2/ D f2;

� � � � � � � � � � � � � � � � � �
cn�1Bn�1.�n�1/C cnBn.�n�1/ D fn�1:

The last condition imposed is, since B1.x1/ D Bn.xn/ D 1,

c1 � cn D 0:
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The matrix of the system has the following structure:

2

66666666664

� �
� �

� �
: : :

: : :

� �
1 �1

3

77777777775

Note that Bj .�j / ¤ 0 for j D 1; 2; : : : ; n � 1.

SolutionW .1/ Subtract a suitable multiple of the first equation from the last
equation to create a zero in position .n; 1/. This produces a fill-in in position
.n; 2/. (2) Subtract a suitable multiple of the second equation from the last to
create a zero in position .n; 2/. This produces a fill-in in position .n; 3/, etc.
After n�1 such operations one obtains a nonsingular upper bidiagonal system,
which is quickly solved by back substitution.

79. (a) From Sect. 2.2.4, (2.140) and (2.141), the spline on Œxi ; xiC1� is

./ pi .x/ D ci;0 C ci;1.x � xi /C ci;2.x � xi /
2 C ci;3.x � xi /3;

where

.�
� /

ci;0 D fi ; ci;1 D mi; ci;2 D Œxi ; xiC1�f �mi

�xi
� ci;3�xi ;

ci;3 D miC1 Cmi � 2Œxi ; xiC1�f
.�xi /2

:

The two “not-a-knot” conditions are p000
1 .x2/ D p000

2 .x2/, p
000
n�2.xn�1/ D

p000
n�1.xn�1/. By (*), this yields

c1;3 D c2;3; cn�2;3 D cn�1;3:

Substituting from ( �
� ) , the first equality becomes

m2 Cm1 � 2Œx1; x2�f
.�x1/2

D m3 Cm2 � 2Œx2; x3�f
.�x2/2

;

or, after some elementary manipulations,
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.1/

m1 C
 
1 �

�
�x1

�x2

�2!
m2 �

�
�x1

�x2

�2
m3

D 2

 
Œx1; x2�f �

�
�x1

�x2

�2
Œx2; x3�f

!
DW b1:

Similarly, the second equality becomes

.n/

mn�2 C
 
1 �

�
�xn�2
�xn�1

�2!
mn�1 �

�
�xn�2
�xn�1

�2
mn

D 2

 
Œxn�2; xn�1�f �

�
�xn�2
�xn�1

�2
Œxn�1; xn�f

!
DW bn:

(b) The first equation (for i D 2) from Sect. 2.2.4, (2.145), is

.2/ �x2 m1 C 2.�x1 C�x2/m2 C�x1 m3 D b2:

Multiply (2) by
�x1

.�x2/2
and add to (1) to get the new pair of equations

8
<̂

:̂

�
1C �x1

�x2

�
m1 C

�
1C �x1

�x2

�2
m2 D b1 C �x1

.�x2/2
b2;

�x2 m1 C 2.�x1 C�x2/m2 C�x1 m3 D b2:

This is the beginning of a tridiagonal system.

Similarly, the last equation (for i D n � 1) from Sect. 2.2.4, (2.145), is

.n � 1/ �xn�1 mn�2 C 2.�xn�2 C�xn�1/mn�1 C�xn�2 mn D bn�1:

Multiply Eq. .n � 1/ by 1
�xn�1

and subtract from .n/; then the last two
equations become

8
ˆ̂<

ˆ̂:

�xn�1 mn�2 C 2.�xn�2 C�xn�1/mn�1 C�xn�2 mn D bn�1

�
�
1C �xn�2

�xn�1

�2
mn�1 � �xn�2

�xn�1

�
1C �xn�2

�xn�1

�
mn D bn � 1

�xn�1

bn�1:

This is the end of the tridiagonal system.
(c) No: the system is not diagonally dominant, since in the first equation

the diagonal element 1 C �x1
�x2

is less than the other remaining element
�
1C �x1

�x2

�2
.
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4. (a), (b) and (c)

PROGRAMS

%MAII_4ABC
%
%(a)
%
function [beta,gamma,mu,coeff,L2err, ...

maxerr]=MAII_4ABC(N)
P=zeros(N+2,N+1); i=0:N; t=-1+2*i/N;
beta(1)=2; b=(1+1/N)ˆ2; gamma(1)=2;
for k=1:N
beta(k+1)=b*(1-(k/(N+1))ˆ2) ...

/(4-1/kˆ2);
gamma(k+1)=beta(k+1)*gamma(k);

end
%
%(b) and (c)
%
P(1,:)=1; P(2,:)=t; mu(1)=max(abs(t));
for k=2:N+1
P(k+1,:)=t.*P(k,:)-beta(k)*P(k-1,:);
mu(k)=max(abs(P(k+1,:)));

end
for n=0:N
coeff(n+1)=2*sum(P(n+1,:) ...

.*f(t))/((N+1)*gamma(n+1));
end
for n=0:N
emax=0; e2=0;
for k=1:N+1

e=abs(sum(coeff(1:n+1)’ ...
.*P(1:n+1,k))-f(t(k)));

if e>emax, emax=e; end
e2=e2+eˆ2;

end
L2err(n+1)=sqrt(2*e2/(N+1));
maxerr(n+1)=emax;

end

function y=f(x)
y=exp(-x);
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%y=log(2+x);
%y=sqrt(1+x);
%y=abs(x);

%RUNMAII_4ABC Driver program for
% MAII_4ABC
%
f0=’%4.0f %20.15f %23.15e %23.15e\n’;
f1=’%12.0f %23.15e %12.4e %12.4e\n’;
disp([’ k beta(k)’ ...
’ gamma(k)’ ...
’ mu(k+1)’])

N=10;
[beta,gamma,mu,coeff,L2err,maxerr] ...
=MAII_4ABC(N);

for k=1:N+1
fprintf(f0,k-1,beta(k),gamma(k), ...
mu(k))

end
fprintf(’\n’)
disp([’ n coefficients’ ...
’ L2 error max error’])

for k=1:N+1
fprintf(f1,k-1,coeff(k),L2err(k), ...
maxerr(k))

end

OUTPUT

>> runMAII_4ABC
k beta(k) gamma(k) mu(k+1)
0 2.000000000000000 2.000000000000000e+00 1.000000000000000e+00
1 0.400000000000000 8.000000000000002e-01 5.999999999999999e-01
2 0.312000000000000 2.496000000000001e-01 2.879999999999998e-01
3 0.288000000000000 7.188480000000004e-02 1.152000000000001e-01
4 0.266666666666667 1.916928000000001e-02 7.680000000000001e-02
5 0.242424242424242 4.647098181818186e-03 3.351272727272728e-02
6 0.213986013986014 9.944140165289268e-04 1.488738461538463e-02
7 0.180923076923077 1.799124436058489e-04 5.269231888111895e-03
8 0.143058823529412 2.573806252055439e-05 1.834253163307282e-03
9 0.100309597523220 2.581774692464279e-06 5.068331109138542e-04
10 0.052631578947368 1.358828785507516e-07 3.771414197649772e-17

n coefficients L2 error max error
0 1.212203623058161e+00 1.0422e+00 1.5061e+00 f(t)=exp(-t)
1 -1.123748299778268e+00 2.7551e-01 3.8233e-01
2 5.430255798492442e-01 4.7978e-02 5.6515e-02
3 -1.774967744700318e-01 6.0942e-03 5.7637e-03
4 4.380735440218084e-02 5.9354e-04 7.1705e-04
5 -8.681309127655327e-03 4.5392e-05 5.0328e-05
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6 1.436822757642024e-03 2.7410e-06 3.1757e-06
7 -2.041262174764023e-04 1.2894e-07 1.3676e-07
8 2.539983220653184e-05 4.5185e-09 5.2244e-09
9 -2.811356175489033e-06 1.0329e-10 1.4201e-10
10 2.800374538854939e-07 6.2576e-14 7.9492e-14

n coefficients L2 error max error
0 6.379455015198038e-01 4.8331e-01 6.3795e-01 f(t)=ln(2+t)
1 5.341350646266596e-01 7.3165e-02 1.0381e-01
2 -1.436962628313260e-01 1.4112e-02 1.7593e-02
3 5.149163971020859e-02 2.9261e-03 3.2053e-03
4 -2.066713722106771e-02 6.1199e-04 8.2444e-04
5 8.790920250468457e-03 1.2409e-04 1.4929e-04
6 -3.863610725685766e-03 2.3550e-05 3.0261e-05
7 1.730112538790927e-03 4.0112e-06 4.5316e-06
8 -7.825109066954439e-04 5.7410e-07 6.9079e-07
9 3.553730415235034e-04 5.9485e-08 8.1789e-08
10 -1.613718817644612e-04 2.1657e-14 2.7534e-14

n coefficients L2 error max error
0 9.134654065768736e-01 5.7547e-01 9.1347e-01 f(t)=sqrt(1+t)
1 6.165636213969754e-01 1.6444e-01 2.9690e-01
2 -2.799173478370132e-01 8.6512e-02 1.2895e-01
3 2.654751232178156e-01 4.9173e-02 7.8888e-02
4 -2.969055755002559e-01 2.6985e-02 4.4684e-02
5 3.416320385824934e-01 1.3632e-02 1.8447e-02
6 -3.862066935480817e-01 6.1238e-03 9.0935e-03
7 4.215059528049150e-01 2.3530e-03 3.0774e-03
8 -4.411293520434504e-01 7.2661e-04 9.1223e-04
9 4.416771232533437e-01 1.5591e-04 2.1437e-04
10 -4.229517654415031e-01 2.7984e-14 3.5305e-14

n coefficients L2 error max error
0 5.454545454545454e-01 4.5272e-01 5.4545e-01 f(t)=|t|
1 5.046468293750710e-17 4.5272e-01 5.4545e-01
2 8.741258741258736e-01 1.1933e-01 1.9580e-01
3 0.000000000000000e+00 1.1933e-01 1.9580e-01
4 -7.284382284382317e-01 6.3786e-02 1.1189e-01
5 -5.429698379835253e-16 6.3786e-02 1.1189e-01
6 1.531862745098003e+00 4.1655e-02 6.9107e-02
7 -3.506197370654419e-15 4.1655e-02 6.9107e-02
8 -6.118812656642364e+00 2.7776e-02 3.8191e-02
9 2.061545898679865e-13 2.7776e-02 3.8191e-02
10 7.535204475298005e+01 3.9494e-14 5.0709e-14

>>

Comments

• Note that the last entry in themu column vanishes, confirming that 	NC1
vanishes at all the N C 1 nodes t` (cf. Ex. 22(b)).

• The calculation of Ocn is subject to severe cancellation errors as n
increases. Indeed, from the formula for the coefficient Ocn (cf. (2.24)),

Ocn D 2

NX

`D0
f .t`/	n.t`/=..N C 1/�n//;
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one expects �n � Ocn, being a “mean value” of the quantities 	n.t`/, to
have the order of magnitude of these quantitites, i.e., of �n, unless there
is considerable cancellation in the summation, in which case �n � Ocn is
much smaller in absolute value than�n. That, in fact, is clearly observed
in our output when n gets large.

• The maximum error for n D N should be zero since 	N interpolates.
This is confirmed reasonably well in the output.

• e�t : Note the rapid convergence. This is because the exponential
function is an entire function, hence very smooth.

• ln.2 C t/: Remarkably good convergence in spite of the logarithmic
singularity at t D �2, a distance of 1 from the left endpoint of [–1,1].

•
p
1C t : Slow convergence because of f 0.t/ ! 1 as t ! �1. There

is a branch-point singularity at t D �1.
• jt j W Extremely slow convergence since f is not differentiable at t D 0.

Since f is even, the approximation for n odd is exactly the same as the
one for the preceding even n. This is evident from theL2 and maximum
errors and from the vanishing of the odd-numbered coefficients.

7. (a) PROGRAM

%MAII_7AB
%
hold on
it=(0:100)’; t=-5+it/10;
y=1./(1+t.ˆ2);
plot(t,y,’k*’)
axis([-5.5 5.5 -1.2 1.2])
for n=2:2:8;

i=(0:n)’; it=(0:100)’;
x=-5+10*i/n; t=-5+it/10;
y=pnewt(n,x,t);
plot(t,y)

end
hold off

%PNEWT
%
function y=pnewt(n,x,t)
d=zeros(n+1,1);
d=f(x);
if n==0

y=d(1);
return

end
for j=1:n
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for i=n:-1:j
d(i+1)=(d(i+1)-d(i))/(x(i+1)-x(i+1-j));

end
end
y=d(n+1);
for i=n:-1:1

y=d(i)+(t-x(i)).*y;
end

function y=f(x)
y=1./(1+x.ˆ2);

(b)
OUTPUT

The interpolation polynomials are drawn as solid lines, the exact function
as black stars.
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The “Runge phenomenon”, i.e., the violent oscillations of the interpolants
near the end points, is clearly evident.
8. (a)

PROGRAM

%TRIDIAG

%

% Gauss elimination without pivoting for a nxn (not

% necessarily symmetric) tridiagonal system with nonzero

% diagonal elements a, subdiagonal elements b, superdiagonal

% element c, and right-hand vector v. The solution vector

% is y. The vectors a and v will undergo changes by the

% routine.

%
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function y=tridiag(n,a,b,c,v)

y=zeros(n,1);

for i=2:n

r=b(i-1)/a(i-1);

a(i)=a(i)-r*c(i-1);

v(i)=v(i)-r*v(i-1);

end

y(n)=v(n)/a(n);

for i=n-1:-1:1

y(i)=(v(i)-c(i)*y(i+1))/a(i);

end

(b) The natural spline on the interval Œxi ; xiC1� is (cf. (2.140), (2.141))

snat.x/ D ci;0Cci;1.x�xi/Cci;2.x�xi /2Cci;3.x�xi /3; xi � x � xiC1;

where

ci;0 D fi ;

ci;1 D mi ;

ci;2 D Œxi ; xiC1�f �mi

�xi
� ci;3�xi ;

ci;3 D miC1 Cmi � 2Œxi ; xiC1�f
.�xi/2

;

and the vector m D Œm1;m2; : : : ; mn�
T satisfies the tridiagonal system of

equations (cf. Sect. 2.2.4, (b.3))

2m1 Cm2 D b1

.�x2/m1 C 2.�x1 C�x2/m2 C .�x1/m3 D b2

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

.�xn�1/mn�2 C 2.�xn�2 C�xn�1/mn�1 C .�xn�2/mn D bn�1
mn�1 C 2mn D bn

where

b1 D 3Œx1; x2�f

b2 D 3fŒ.�x2/Œx1; x2�f C .�x1/Œx2; x3�f g
: : : : : : : : : : : :

bn�1 D 3f.�xn�1/Œxn�2; xn�1�f C .�xn�2/ŒxnC1; xn�f g
bn D 3Œxn�1; xn�f
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PROGRAM (for natural spline)

%MAII_8B

%

f0=’%8.0f %12.4e\n’;

n=11; N=51;

a=zeros(n,1); b=zeros(n-1,1); c=b;

i=(1:n)’; j=(1:N)’;

x=(i-1)/(n-1);

%x=((i-1)/(n-1)).ˆ2;

f=exp(-x);

%f=sqrt(x).ˆ5;

dx=x(2:n)-x(1:n-1); df=(f(2:n)-f(1:n-1))./dx;

a(1)=2; a(n)=2; b(n-1)=1; c(1)=1;

v(1)=3*df(1); v(n)=3*df(n-1);

a(2:n-1)=2*(dx(1:n-2)+dx(2:n-1));

b(1:n-2)=dx(2:n-1); c(2:n-1)=dx(1:n-2);

v(2:n-1)=3*(dx(2:n-1).*df(1:n-2)+dx(1:n-2).*df(2:n-1));

m=tridiag(n,a,b,c,v);

c0=f(1:n-1); c1=m(1:n-1);

c3=(m(2:n)+m(1:n-1)-2*df)./(dx.ˆ2);

c2=(df-m(1:n-1))./dx-c3.*dx;

emax=zeros(n-1,1);

for i=1:n-1

xx=x(i)+((j-1)/(N-1))*dx(i);

t=xx-x(i);

s=c3(i);

s=t.*s+c2(i);

s=t.*s+c1(i);

s=t.*s+c0(i);

emax(i)=max(abs(s-exp(-xx)));

% emax(i)=max(abs(s-sqrt(xx).ˆ5));

fprintf(f0,i,emax(i))

end

(c) For the complete spline, only two small changes need to be made, as
indicated by comment lines in the program below.

PROGRAM (for complete spline)

%MAII_8C

%

f0=’%8.0f %12.4e\n’;

n=11; N=51;

a=zeros(n,1); b=zeros(n-1,1); c=b;

i=(1:n)’; j=(1:N)’;

x=(i-1)/(n-1);

% x=((i-1)/(n-1)).ˆ2;

f=exp(-x);
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%f=sqrt(x).ˆ5;

%

% The next statement is new and does not occur in the

% program of (b)

%

fder_1=-1; fder_n=-exp(-1);

%fder_1=0; fder_n=5/2;

dx=x(2:n)-x(1:n-1); df=(f(2:n)-f(1:n-1))./dx;

%

% The next two lines differ from the corresponding lines

% in the program of (b)

%

a(1)=1; a(n)=1; b(n-1)=0; c(1)=0;

v(1)=fder_1; v(n)=fder_n;

a(2:n-1)=2*(dx(1:n-2)+dx(2:n-1));

b(1:n-2)=dx(2:n-1); c(2:n-1)=dx(1:n-2);

v(2:n-1)=3*(dx(2:n-1).*df(1:n-2)+dx(1:n-2).*df(2:n-1));

m=tridiag(n,a,b,c,v);

c0=f(1:n-1); c1=m(1:n-1);

c3=(m(2:n)+m(1:n-1)-2*df)./(dx.ˆ2);

c2=(df-m(1:n-1))./dx-c3.*dx;

emax=zeros(n-1,1);

for i=1:n-1

xx=x(i)+((j-1)/(N-1))*dx(i);

t=xx-x(i);

s=c3(i);

s=t.*s+c2(i);

s=t.*s+c1(i);

s=t.*s+c0(i);

emax(i)=max(abs(s-exp(-xx)));

% emax(i)=max(abs(s-sqrt(xx).ˆ5));

fprintf(f0,i,emax(i))

end

(d) OUTPUT

>> MAII_8B >> MAII_8C

1 4.9030e-04 f(x)=exp(-x) 2.5589e-07 f(x)=exp(-x)

2 1.3163e-04 natural 2.2123e-07 complete

3 3.5026e-05 spline 2.0294e-07 spline

4 9.5467e-06 uniform 1.8288e-07 uniform

5 2.2047e-06 partition 1.6568e-07 partition

6 4.2094e-07 1.4984e-07

7 3.4559e-06 1.3568e-07

8 1.2809e-05 1.2247e-07

9 4.8441e-05 1.1190e-07

10 1.8036e-04 9.7227e-08

>> >>

>> MAII_8B >> MAII_8C
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1 2.0524e-04 f(x)=xˆ(5/2) 4.4346e-05 f(x)=xˆ(5/2)

2 5.3392e-05 natural 9.9999e-06 complete

3 1.6192e-05 spline 4.7121e-06 spline

4 2.7607e-06 uniform 3.9073e-07 uniform

5 1.2880e-06 partition 9.8538e-07 partition

6 9.8059e-06 5.2629e-07

7 3.4951e-05 4.7131e-07

8 1.3252e-04 3.6500e-07

9 4.9310e-04 3.1193e-07

10 1.8416e-03 2.4850e-07

>> >>

>> MAII_8B >> MAII_8C

1 6.6901e-07 f(x)=xˆ(5/2) 1.0809e-07 f(x)=xˆ(5/2)

2 2.3550e-07 natural 6.0552e-07 complete

3 1.1749e-06 spline 9.1261e-07 spline

4 1.6950e-06 nonuniform 1.3558e-06 nonuniform

5 1.5853e-06 partition 1.7319e-06 partition

6 1.6441e-05 2.1329e-06

7 6.8027e-05 2.5242e-06

8 3.2950e-04 2.9138e-06

9 1.4755e-03 3.3225e-06

10 6.5448e-03 3.6393e-06

>> >>

Comments

• Testing: For the natural spline, the error should be exactly zero if f is
any linear function. (Not for arbitrary cubics, since f 00 does not vanish at
x D 0 and x D 1, unless f is linear.) For the complete spline, the error
is zero for any cubic, if one sets m1 D f 0.0/ and mn D f 0.1/. Example:
f .x/ D x3; m1 D 0; mn D 3.

• The natural spline for the uniform partition is relatively inaccurate near
the endpoints, as expected.

• The complete spline is uniformly accurate for f .x/ D e�x but still
relatively inaccurate near x D 0 for f .x/ D x5=2 on account of the
“square root” singularity (of f 000) at x D 0.

• Nonuniform partition (for f .x/ D x5=2): The natural spline is accurate
near x D 0 because of the nodes being more dense there, but is still
inaccurate at the other end. The complete spline is remarkably accurate at
both ends, as well as elsewhere.



Chapter 3
Numerical Differentiation and Integration

Differentiation and integration are infinitary concepts of calculus; that is, they are
defined by means of a limit process – the limit of the difference quotient in the first
instance, the limit of Riemann sums in the second. Since limit processes cannot be
carried out on the computer, we must replace them by finite processes. The tools to
do so come from the theory of polynomial interpolation (Chap. 2, Sect. 2.2). They
not only provide us with approximate formulae for the limits in question, but also
permit us to estimate the errors committed and discuss convergence.

3.1 Numerical Differentiation

For simplicity, we consider only the first derivative; analogous techniques apply to
higher-order derivatives.

The problem can be formulated as follows: for a given differentiable function f ,
approximate the derivative f 0.x0/ in terms of the values of f at x0 and at nearby
points x1, x2; : : : ; xn (not necessarily equally spaced or in natural order). Estimate
the error of the approximation obtained.

In Sect. 3.1.1, we solve this problem by means of interpolation. Examples are
given in Sect. 3.1.2, and the problematic nature of numerical differentiation in the
presence of rounding errors is briefly discussed in Sect. 3.1.3.

3.1.1 A General Differentiation Formula for Unequally
Spaced Points

The idea is simply to differentiate not f . � /, but its interpolation polynomial
pn.f I x0; : : : ; xnI � /. By carrying along the error term of interpolation, we can
analyze the error committed.

W. Gautschi, Numerical Analysis, DOI 10.1007/978-0-8176-8259-0 3,
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Thus, recall from Chap. 2, Sect. 2.2, that, given the n C 1 distinct points x0,
x1; : : : ; xn, we have

f .x/ D pn.f I x/C rn.x/; (3.1)

where the interpolation polynomial can be written in Newton’s form

pn.f I x/ D f0 C .x � x0/Œx0; x1�f C .x � x0/.x � x1/Œx0; x1; x2�f C � � �
C .x � x0/.x � x1/ � � � .x � xn�1/Œx0; x1; : : : ; xn�f; (3.2)

and the error term in the form

rn.x/ D .x � x0/.x � x1/ � � � .x � xn/
f .nC1/.�.x//
.nC 1/Š

; (3.3)

assuming (as we do) that f has a continuous .nC 1/st derivative in an interval that
contains all xi and x. Differentiating (3.2) with respect to x and then putting x D x0
gives

p0
n.f I x0/ D Œx0; x1�f C .x0 � x1/Œx0; x1; x2�f C � � �

C .x0 � x1/.x0 � x2/ � � � .x0 � xn�1/Œx0; x1; : : : ; xn�f: (3.4)

Similarly, from (3.3) (assuming that f has in fact n C 2 continuous derivatives in
an appropriate interval), we get

r 0
n.x0/ D .x0 � x1/.x0 � x2/ � � � .x0 � xn/

f .nC1/.�.x0//
.nC 1/Š

: (3.5)

Therefore, differentiating (3.1), we find

f 0.x0/ D p0
n.f I x0/C en; (3.6)

where the first term on the right, given by (3.4), represents the desired approxima-
tion, and the second,

en D r 0
n.x0/; (3.7)

given by (3.5), the respective error. If H D max
i

jx0 � xi j, we clearly obtain from

(3.5) that

en D O.Hn/ as H ! 0: (3.8)

We can thus get approximation formulae of arbitrarily high order, but those with
large n are of limited practical use; cf. Sect. 3.1.3.
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3.1.2 Examples

The most important uses of differentiation formulae are made in the discretization
of differential equations – ordinary or partial. In these applications, the spacing of
the points is usually uniform, but unequally distributed points arise when partial
differential operators are to be discretized near the boundary of the domain of
interest.

1. n D 1, x1 D x0 C h. Here,

p0
1.f I x0/ D Œx0; x1�f D f1 � f0

h
;

and (3.6) in conjunction with (3.7) and (3.5) gives

f 0.x0/ D f1 � f0

h
C e1; e1 D �h f

00.�/
2

; (3.9)

provided f 2 C3Œx0; x1�. (Taylor’s formula, actually, shows that f 2 C2Œx0; x1�

suffices.) Thus, the error is of O.h/ as h ! 0.
2. n D 2, x1 D x0Ch, x2 D x0�h. We also use the suggestive notation x2 D x�1,
f2 D f�1. Here,

p0
2.f I x0/ D Œx0; x1�f C .x0 � x1/Œx0; x1; x2�f: (3.10)

The table of divided differences is:

x�1 f�1
x0 f0

f0 � f�1
h

x1 f1
f1 � f0
h

f1 � 2f0 C f�1
2h2

:

Therefore,

p0
2.f I x0/ D f1 � f0

h
� h

f1 � 2f0 C f�1
2h2

D f1 � f�1
2h

;

and (3.6), (3.7), and (3.5) give, if f 2 C3Œx�1; x1�,

f 0.x0/ D f1 � f�1
2h

C e2; e2 D �h2 f
000.�/
6

: (3.11)

Both approximations (3.9) and (3.11) are difference quotients; the former,
however, is “one-sided” whereas the latter is “symmetric.” As can be seen, the
symmetric difference quotient is one order more accurate than the one-sided
difference quotient.
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PB

B

P0 P1

Fig. 3.1 Partial derivative near the boundary

3. n D 2, x1 D x0 C h, x2 D x0 C 2h. In this case, we have the following table of
divided differences,

x0 f0

x1 f1
f1 � f0
h

x2 f2
f2 � f1
h

f2 � 2f1 C f0

2h2

and (3.10) now gives

p0
2.f I x0/ D f1 � f0

h
� h f2 � 2f1 C f0

2h2
D �f2 C 4f1 � 3f0

2h
I

hence, by (3.7) and (3.5),

f 0.x0/ D �f2 C 4f1 � 3f0

2h
C e2; e2 D h2

f 000.�/
3

: (3.12)

Compared to (3.11), this formula also is accurate to O.h2/, but the error is now
about twice as large, in modulus, than before. One always pays for destroying
symmetry!

4. For a function u D u.x; y/ of two variables, approximate @u=@x “near the
boundary.”

Consider the points P0.x0; y0/, P1.x0 C h; y0/, PB.x0 � ˇh; y0/, 0 < ˇ <

1 (see Fig. 3.1); the problem is to approximate .@u=@x/.P0/ in terms of u0 D
u.P0/, u1 D u.P1/, uB D u.PB/.

The relevant table of divided differences is:

xB uB

x0 u0
u0 � uB
ˇh

x1 u1
u1 � u0
h

ˇ.u1 � u0/� .u0 � uB/

ˇh.1C ˇ/h
:
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Thus,

p0
2.uIP0/ D u1 � u0

h
� h

ˇ.u1 � u0/� .u0 � uB/

ˇh.1C ˇ/h
D ˇ2u1 C .1 � ˇ2/u0 � uB

ˇ.1C ˇ/h
;

and the error is given by

e2 D �ˇ
6
h2
@3u

@x3
.�; y0/:

3.1.3 Numerical Differentiation with Perturbed Data

Formulae for numerical differentiation become more accurate as the spacing h
between evaluation points is made smaller, provided the function to be differentiated
is sufficiently smooth. This, however, is true only in theory, since in practice the
data are usually inaccurate, if for no other reason than rounding, and the problem
of cancellation becomes more acute as h gets smaller. There will be a point of
diminishing returns, beyond which the errors increase rather than decrease.

To give a simple analysis of this, take the symmetric differentiation formula
(3.11),

f 0.x0/ D f1 � f�1
2h

C e2; e2 D �h2 f
000.�/
6

: (3.13)

Suppose now that what are known are not the exact values f˙1 D f .x0 ˙ h/, but
slight perturbations of them, say,

f �
1 D f1 C "1; f

��1 D f�1 C "�1; j"˙1j � ": (3.14)

Then our formula (3.13) becomes

f 0.x0/ D f �
1 � f ��1
2h

� "1 � "�1
2h

C e2: (3.15)

Here, the first term on the right is what we actually compute (assuming, for
simplicity, that h is machine-representable and roundoff errors in forming the
difference quotient are neglected). The corresponding error, therefore, is

E2 D f 0.x0/� f �
1 � f ��1
2h

D �"1 � "�1
2h

C e2

and can be estimated by

jE2j � "

h
C M3

6
h2; M3 D max

Œx
�1;x1�

jf 000j: (3.16)
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noise

truncation

h

Fig. 3.2 Truncation and noise error in numerical differentiation

The bound on the right is best possible. It consists of two parts, the term "=h, which
is due to noise in the data, and 1

6
M3h

2, which is the truncation error introduced by
replacing the derivative by a finite difference expression. Their behavior is shown in
Fig. 3.2.

If we denote the bound in (3.16) by E.h/,

E.h/ D "

h
C M3

6
h2; (3.17)

then by determining its minimum, one finds

E.h/ � E.h0/; h0 D
�
3"

M3

�1=3
;

and

E.h0/ D 3

2

�
M3

3

�1=3
"2=3: (3.18)

This shows that even in the best of circumstances, the error is O."2=3/, not O."/, as
one would hope. This represents a significant loss of accuracy.

The same problem persists, indeed is more severe, in higher-order formulae.
The only way one can escape from this dilemma is to use not difference formulae,
but summation formulae, that is, integration. But to do this, one has to go into the
complex plane and assume that the definition of f can be extended into a domain
of the complex plane containing x0. Then one can use Cauchy’s theorem,

f 0.x0/ D 1

2	i

I

C

f .z/

.z � x0/2 dz D 1

2	r

Z 2	

0

e�i�f .x0 C rei� /d�; (3.19)

in combination with numerical integration (cf. Sect. 3.2). Here, C was taken to be
a circular contour about x0 with radius r , with r chosen such that z D x0 C rei�

remains in the domain of analyticity of f . Since the result is real, one can replace
the integrand by its real part.
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3.2 Numerical Integration

The basic problem is to calculate the definite integral of a given function f ,
extended over a finite interval [a,b]. If f is well behaved, this is a routine problem
for which the simplest integration rules, such as the composite trapezoidal or
Simpson’s rule (Sect. 3.2.1) will be quite adequate, the former having an edge over
the latter if f is periodic with period b�a. Complications arise if f has an integrable
singularity, or the interval of integration extends to infinity (which is just another
manifestation of singular behavior). By breaking up the integral, if necessary, into
several pieces, it can be assumed that the singularity, if its location is known, is at
one (or both) ends of the interval [a, b]. Such “improper” integrals can usually be
treated by weighted quadrature; that is, one incorporates the singularity into a weight
function, which then becomes one factor of the integrand, leaving the other factor
well behaved. The most important example of this is Gaussian quadrature relative
to such a weight function (Sects. 3.2.2–3.2.4). Finally, it is possible to accelerate the
convergence of quadrature schemes by suitable recombinations. The best-known
example of this is Romberg integration (Sect. 3.2.7).

3.2.1 The Composite Trapezoidal and Simpson’s Rules

These may be regarded as the workhorses of numerical integration. They will do the
job when the interval is finite and the integrand unproblematic. The trapezoidal rule
is sometimes surprisingly effective even on infinite intervals.

Both rules are obtained by applying the simplest kind of interpolation on
subintervals of the decomposition

a D x0 < x1 < x2 < � � � < xn�1 < xn D b; xk D a C kh; h D b � a

n
(3.20)

of the interval [a,b]. In the trapezoidal rule, one interpolates linearly on each
subinterval Œxk; xkC1�, and obtains

Z xkC1

xk

f .x/dx D
Z xkC1

xk

p1.f I x/dx C
Z xkC1

xk

R1.x/dx; (3.21)

where

p1.f I x/ D fk C .x � xk/Œxk; xkC1�f;

R1.x/ D .x � xk/.x � xkC1/
f 00.�.x//

2
: (3.22)

Here, fk D f .xk/, and we assumed that f 2 C2Œa; b�. The first integral on the
right of (3.21) is easily obtained as the area of a trapezoid with “bases” fk , fkC1 and
“height” h, or else by direct integration of p1.f I � / in (3.22). To the second integral,
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we can apply the Mean Value Theorem of integration, since .x�xk/.x�xkC1/ has
constant (negative) sign on Œxk; xkC1�. The result is

Z xkC1

xk

f .x/dx D h

2
.fk C fkC1/� 1

12
h3f 00.�k/; (3.23)

where xk < �k < xkC1. This is the elementary trapezoidal rule. Summing over all
subintervals gives the composite trapezoidal rule

Z b

a

f .x/dx D h

�
1

2
f0 C f1 C � � � C fn�1 C 1

2
fn

�
C ET

n .f /; (3.24)

with error term

ET
n .f / D � 1

12
h3

n�1X

kD0
f 00.�k/:

This is not a particularly elegant expression for the error. We can simplify it by
writing

ET
n .f / D � 1

12
h2 � .b � a/

"
1

n

n�1X

kD0
f 00.�k/

#

and noting that the expression in brackets is a mean value of second-derivative
values, hence certainly contained between the algebraically smallest and largest
value of the second derivative f 00 on [a,b]. Since the function f 00 was assumed
continuous on [a,b], it takes on every value between its smallest and largest, in
particular, the bracketed value in question, at some interior point, say, �, of [a,b].
Consequently,

ET
n .f / D � 1

12
.b � a/ h2f 00.�/; a < � < b: (3.25)

Since f 00 is bounded in absolute value on [a,b], this shows that ET
n .f / D O.h2/

as h ! 0. In particular, the composite trapezoidal rule converges as h ! 0 (or,
equivalently, n ! 1) in (3.24), provided f 2 C2Œa; b�.

It should be noted that (3.25) holds only for real-valued functions f and cannot
be applied to complex-valued functions; cf. (3.29).

One expects an improvement if instead of linear interpolation one uses quadratic
interpolation over two consecutive subintervals. This gives rise to the composite
Simpson’s formula.1 Its “elementary” version, analogous to (3.23), is
Z xkC2

xk

f .x/dx D h

3
.fkC4fkC1CfkC2/� 1

90
h5f .4/.�k/; xk < �k < xkC2; (3.26)

1Thomas Simpson (1710–1761) was an English mathematician, self-educated, and author of many
textbooks popular at the time. Simpson published his formula in 1743, but it was already known to
Cavalieri [1639], Gregory [1668], and Cotes [1722], among others.
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where it has been assumed that f 2 C4Œa; b�. The remainder term shown in (3.26)
does not come about as easily as before in (3.23), since the Mean Value Theorem is
no longer applicable, the factor .x�xk/ .x�xkC1/ .x�xkC2/ changing sign at the
midpoint of Œxk; xkC2�. However, an alternative derivation of (3.26), using Hermite
interpolation (cf. Ex. 9), not only produces the desired error term, but also explains
its unexpectedly large orderO.h5/. If n is even, we can sum up all n=2 contributions
in (3.26) and obtain the composite Simpson’s rule,

Z b

a

f .x/dx D h

3
.f0 C 4f1 C 2f2 C 4f3 C 2f4 C � � � C 4fn�1 C fn/C ES

n.f /;

ES
n.f / D � 1

180
.b � a/ h4f .4/.�/; a < � < b: (3.27)

The error term in (3.27) is the result of a simplification similar to the one previously
carried out for the trapezoidal rule (cf. Ex. 9(c)). Comparing it with the one in (3.25),
we see that we gained two orders of accuracy without any appreciable increase in
work (same number of function evaluations). This is the reason why Simpson’s
rule has long been, and continues to be, one of the most popular general-purpose
integration methods.

The composite trapezoidal rule, nevertheless, has its own advantages. Although
it integrates exactly polynomials of degree 1 only, it does much better with
trigonometric polynomials. Suppose, indeed (for simplicity), that the interval [a,b]
is [0,2	], and denote by TmŒ0; 2	� the class of trigonometric polynomials of
degreem,

TmŒ0; 2	� D ft.x/ W t.x/ D a0 C a1 cos x C a2 cos 2x C � � � C am cosmx

C b1 sin x C b2 sin 2x C � � � C bm sinmxg :
Then

ET
n .f / D 0 for all f 2 Tn�1Œ0; 2	�: (3.28)

This is most easily verified by taking for f the complex exponential e�.x/ D ei�x

.D cos �x C i sin �x/; � D 0; 1; 2; : : : W

ET
n .e�/ D

Z 2	

0

e�.x/dx � 2	

n

"
1

2
e�.0/C

n�1X

kD1
e�.k � 2	=n/C 1

2
e�.2	/

#

D
Z 2	

0

ei�xdx � 2	

n

n�1X

kD0
ei�k�2	=n:

When � D 0, this is clearly zero, and otherwise, since
R 2	
0

ei�xdx D .i�/�1

� ei�x
ˇ̌2	
0

D 0,

ET
n .e�/ D

8
<̂

:̂

�2	 if � D 0 .mod n/; � > 0;

� 2	

n

1 � ei�n�2	=n

1 � ei��2	=n D 0 if � ¤ 0 .mod n/:
(3.29)
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In particular, ET
n .e�/ D 0 for � D 0; 1; : : : ; n � 1, which proves (3.28). Taking real

and imaginary parts in (3.29) gives

ET
n .cos � �/ D

( �2	; � D 0 .mod n/; � ¤ 0;

0 otherwise;

)
; ET

n .sin � �/ D 0:

Therefore, if f is 2	-periodic and has a uniformly convergent Fourier expansion

f .x/ D
1X

�D0
Œa�.f / cos �x C b�.f / sin �x�; (3.30)

where a�.f /, b�.f / are the “Fourier coefficients” of f , then

ET
n .f / D

1X

�D0


a�.f /E

T
n .cos � �/C b�.f /E

T
n .sin � �/�

D �2	
1X

`D1
a`�n.f /: (3.31)

From the theory of Fourier series, it is known that the Fourier coefficients of f go to
zero faster the smoother f is. More precisely, if f 2 C rŒR�, then a�.f / D O.��r /
as � ! 1 (and similarly for b�.f /). Since by (3.31), ET

n .f / � �2	an.f /, it
follows that

ET
n .f / D O.n�r / as n ! 1 .f 2 C rŒR�; 2	�periodic/; (3.32)

which, if r > 2, is better thanET
n .f / D O.n�2/, valid for nonperiodic functions f .

In particular, if r D 1, then the trapezoidal rule converges faster than any power of
n�1. It should be noted, however, that f must be smooth on the whole real line R.
(See (3.19) for an example.) Starting with a function f 2 C rŒ0; 2	� and extending
it periodically to R will not in general produce a function f 2 C rŒR�.

Another instance in which the composite trapezoidal rule excels is for functions
f defined on R and having the following properties for some r � 1,

f 2 C2rC1ŒR�;
Z

R

jf .2rC1/.x/jdx < 1;

lim
x!�1 f .2��1/.x/ D lim

x!1f .2��1/.x/ D 0; � D 1; 2; : : : ; r: (3.33)

In this case, it can be shown that

Z

R

f .x/dx D h

1X

kD�1
f .kh/C E.f Ih/ (3.34)
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has an error E.f Ih/ satisfying E.f Ih/ D O.h2rC1/, h ! 0. Therefore, again, if
(3.33) holds for all r D 1; 2; 3; : : : ; then the error goes to zero faster than any power
of h.

3.2.2 (Weighted) Newton–Cotes and Gauss Formulae

A weighted quadrature formula is a formula of the type

Z b

a

f .t/w.t/dt D
nX

kD1
wkf .tk/CEn.f /; (3.35)

where w is a positive (or at least nonnegative) “weight function,” assumed integrable
over (a,b). The interval (a,b) may now be finite or infinite. If it is infinite, we must
make sure that the integral in (3.35) is well defined, at least when f is a polynomial.
We achieve this by requiring that all moments of the weight function,

�s D
Z b

a

t sw.t/dt; s D 0; 1; 2; : : : ; (3.36)

exist and be finite.
We say that the quadrature formula (3.35) has (polynomial) degree of exactness

d if
En.f / D 0 for all f 2 Pd I (3.37)

that is, the formula has zero error whenever f is a polynomial of degree � d . We
call (3.35) interpolatory, if it has degree of exactness d D n � 1. Interpolatory
formulae are precisely those “obtained by interpolation,” that is, for which

nX

kD1
wkf .tk/ D

Z b

a

pn�1.f I t1; : : : ; tnI t/w.t/dt; (3.38)

or, equivalently,

wk D
Z b

a

`k.t/w.t/dt; k D 1; 2; : : : ; n; (3.39)

where

`k.t/ D
nY

`D1
`¤k

t � t`
tk � t` (3.40)

are the elementary Lagrange interpolation polynomials associated with the nodes
t1, t2; : : : ; tn. The fact that (3.35) with wk given by (3.39) has degree of exactness
d D n � 1 is evident, since for any f 2 Pn�1 we have pn�1.f I � / 	 f . � / in
(3.38). Conversely, if (3.35) has degree of exactness d D n�1, then putting f .t/ D
`r .t/ in (3.35) gives

R b
a
`r.t/w.t/dt D Pn

kD1 wk`r.tk/ D wr , r D 1; 2; : : : ; n, that
is, (3.39).
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We see, therefore, that given any n distinct nodes t1, t2; : : : ; tn, it is always
possible to construct a formula of type (3.35), which is exact for all polynomials
of degree � n � 1. In the case w.t/ 	 1 on [–1,1], and tk equally spaced on [–
1,1], the feasibility of such a construction was already alluded to by Newton in
1687 and implemented in detail by Cotes2 around 1712. By extension, we call the
formula (3.35), with the tk prescribed and the wk given by (3.39), a Newton–Cotes
formula.

The question naturally arises whether we can do better, that is, whether we
can achieve d > n � 1 by a judicious choice of the nodes tk (the weights wk
being necessarily given by (3.39)). The answer is surprisingly simple and direct.
To formulate it, we introduce the node polynomial

!n.t/ D
nY

kD1
.t � tk/: (3.41)

Theorem 3.2.1. Given an integer k with 0 � k � n, the quadrature formula (3.35)
has degree of exactness d D n�1Ck if and only if both of the following conditions
are satisfied.

(a) The formula (3.35) is interpolatory.
(b) The node polynomial !n in (3.41) satisfies

R b
a
!n.t/p.t/w.t/dt D 0 for all

p 2 Pk�1.

The condition in (b) imposes k conditions on the nodes t1, t2; : : : ; tn of (3.35). (If
k D 0, there is no restriction since, as we know, we can always get d D n � 1.) In
effect,!n must be orthogonal to Pk�1 relative to the weight function w. Since w.t/ �
0, we have necessarily k � n; otherwise, !n would have to be orthogonal to Pn, in
particular, orthogonal to itself, which is impossible. Thus, k D n is optimal, giving
rise to a quadrature rule of maximum degree of exactness dmax D 2n�1. Condition
(b) then amounts to orthogonality of !n to all polynomials of lower degree; that is,
!n. � / D 	n. � I w/ is precisely the nth-degree orthogonal polynomial belonging to
the weight function w (cf. Chap. 2, Sect. 2.1.4(2)). This optimal formula is called
the Gaussian quadrature formula associated with the weight function w. Its nodes,
therefore, are the zeros of 	n. � I w/, and the weights wk are given as in (3.39); thus,

	n.tk I w/ D 0;

wk D
Z b

a

	n.t I w/

.t � tk/	 0
n.tk I w/

w.t/dt;

k D 1; 2; : : : ; n: (3.42)

2Roger Cotes (1682–1716), precocious son of an English country pastor, was entrusted with the
preparation of the second edition of Newton’s Principia. He worked out in detail Newton’s idea
of numerical integration and published the coefficients – now known as Cotes numbers – of the
n-point formula for all n < 11. Upon his death at the early age of 33, Newton said of him: “If he
had lived, we might have known something.”
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The formula was developed in 1814 by Gauss3 for the special case w.t/ 	 1 on
[–1,1], and extended to more general weight functions by Christoffel4 in 1877. It is,
therefore, also referred to as the Gauss–Christoffel quadrature formula.

Proof of Theorem 3.2.1. We first prove the necessity of (a) and (b). Since, by
assumption, the degree of exactness is d D n � 1 C k � n � 1, condition (a) is
trivial. Condition (b) also follows immediately, since, for any p 2 Pk�1, the product
!np is in Pn�1Ck ; hence,

Z b

a

!n.t/p.t/w.t/dt D
nX

kD1
wk!n.tk/p.tk/;

which vanishes, since !n.tk/ D 0 for k D 1; 2; : : : ; n.
To prove the sufficiency of (a), (b), we must show that for any p 2 Pn�1Ck we

have En.p/ D 0 in (3.35). Given any such p, divide it by !n, so that

p D q!n C r; q 2 Pk�1; r 2 Pn�1;

where q is the quotient and r the remainder. There follows

Z b

a

p.t/w.t/dt D
Z b

a

q.t/!n.t/w.t/dt C
Z b

a

r.t/w.t/dt:

The first integral on the right, by (b), is zero, since q 2 Pk�1, whereas the second,
by (a), since r 2 Pn�1, equals

nX

kD1
wkr.tk/ D

nX

kD1
wkŒp.tk/� q.tk/!n.tk/� D

nX

kD1
wkp.tk/;

the last equality following again from !n.tk/ D 0, k D 1; 2; : : : ; n. This completes
the proof. ut

3Carl Friedrich Gauss (1777–1855) was one of the greatest mathematicians of the 19th century –
and perhaps of all time. He spent almost his entire life in Göttingen, where he was director of the
observatory for some 40 years. Already as a student in Göttingen, Gauss discovered that the regular
17-gon can be constructed by compass and ruler, thereby settling a problem that had been open
since antiquity. His dissertation gave the first proof of the Fundamental Theorem of Algebra (that an
algebraic equation of degree n has exactly n roots). He went on to make fundamental contributions
to number theory, differential and non-Euclidean geometry, elliptic and hypergeometric functions,
celestial mechanics, geodesy, and various branches of physics, notably magnetism and optics. His
computational efforts in celestial mechanics and geodesy, based on the principle of least squares,
required the solution (by hand) of large systems of linear equations, for which he used what today
are known as Gauss elimination and relaxation methods. Gauss’s work on quadrature builds upon
the earlier work of Newton and Cotes.
4Elvin Bruno Christoffel (1829–1900) was active for short periods of time in Berlin and Zurich
and, for the rest of his life, in Strasbourg. He is best known for his work in geometry, in particular,
tensor analysis, which became important in Einstein’s theory of relativity.
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The case k D n of Theorem 3.2.1 (i.e., the Gauss quadrature rule) is discussed
further in Sect. 3.2.3. Here, we still mention two special cases with k < n, which
are of some practical interest. The first is the Gauss–Radau5 quadrature formula in
which one endpoint, say, a, is finite and serves as a quadrature node, say, t1 D a.
The maximum degree of exactness attainable then is d D 2n�2 and corresponds to
k D n�1 in Theorem 3.2.1. Part (b) of that theorem tells us that the remaining nodes
t2; : : : ; tn must be the zeros of 	n�1. � I wa/, where wa.t/ D .t � a/w.t/. Similarly,
in the Gauss–Lobatto6 formula, both endpoints are finite and serve as nodes, say,
t1 D a, tn D b, and the remaining nodes t2; : : : ; tn�1 are taken to be the zeros of
	n�2. � I wa;b/, wa;b.t/ D .t � a/.b � t/w.t/, thus achieving maximum degree of
exactness d D 2n� 3.

Example: Two-point Newton–Cotes vs. two-point Gauss
We compare the Newton–Cotes with the Gauss formula in the case n D 2 and

for the weight function w.t/ D t�1=2 on [0,1]. The two prescribed nodes in the
Newton–Cotes formula are taken to be the endpoints; thus,

Z 1

0

t�1=2f .t/dt �
8
<

:

wNC
1 f .0/C wNC

2 f .1/ (Newton-Cotes);

wG
1 f .t1/C wG

2 f .t2/ (Gauss):

To get the coefficients in the Newton–Cotes formula, we use (3.39), where

`1.t/ D t � 1
0 � 1

D 1 � t; `2.t/ D t � 0

1 � 0 D t:

This gives

wNC
1 D

Z 1

0

t�1=2`1.t/dt D
Z 1

0

.t�1=2 � t1=2/dt D
�
2t1=2 � 2

3
t3=2

�ˇ̌
ˇ̌
1

0

D 4

3
;

wNC
2 D

Z 1

0

t�1=2`2.t/dt D
Z 1

0

t1=2dt D 2

3
t3=2

ˇ̌
ˇ̌
1

0

D 2

3
:

5Jean-Charles-Rodolphe Radau (1835–1911) was born in Germany but spent most of his life in
France. He was strongly attracted to classical music (the French composer Jaques Offenbach was
one of his acquaintances) as he was to celestial mechanics. A gifted writer, he composed many
popular articles on topics of scientific interest. He was a person working quietly by himself and
staying away from the spotlight.
6Rehuel Lobatto (1797–1866), a Dutch mathematician of Portuguese ancestry, although very gifted
in his youth, stopped short of attaining an academic degree at the University of Amsterdam. He had
to wait, and be satisfied with a low-level government position, until 1842 when he was appointed a
professor of mathematics at the Technical University of Delft. His mathematical work is relatively
unknown, but he has written several textbooks, one of which, on calculus, published in 1851,
contains the quadrature rule now named after him.
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Thus,

Z 1

0

t�1=2f .t/dt D 2

3
.2f .0/C f .1//C ENC

2 .f /: (3.43)

Note how the square root singularity at the origin causes the value f .0/ to receive a
weight twice as large as that of f .1/.

To develop the Gauss formula, we first construct the required orthogonal
polynomial

	2.t/ D t2 � p1t C p2:

Since it is orthogonal to the constant 1, and to t , we get

0 D
Z 1

0

t�1=2	2.t/dt D
Z 1

0

�
t3=2 � p1t

1=2 C p2t
�1=2� dt

D
�
2

5
t5=2 � 2

3
p1t

3=2 C 2p2t
1=2

�ˇ̌
ˇ̌
1

0

D 2

5
� 2

3
p1 C 2p2;

0 D
Z 1

0

t�1=2 � t	2.t/dt D
Z 1

0

�
t5=2 � p1t

3=2 C p2t
1=2
�

dt

D
�
2

7
t7=2 � 2

5
p1t

5=2 C 2

3
p2t

3=2

�ˇ̌
ˇ̌
1

0

D 2

7
� 2

5
p1 C 2

3
p2;

that is, the linear system

1

3
p1 � p2 D 1

5
;

1

5
p1 � 1

3
p2 D 1

7
:

The solution is p1 D 6
7
, p2 D 3

35
; thus,

	2.t/ D t2 � 6

7
t C 3

35
:

The Gauss nodes – the zeros of 	2 – are therefore, to ten decimal places,

t1 D 1

7

 
3 � 2

r
6

5

!
D 0:1155871100; t2 D 1

7

 
3C 2

r
6

5

!
D 0:7415557471:
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For the weights wG
1 , wG

2 , we could use again (3.39), but it is simpler to set up a linear
system of equations, which expresses the fact that the formula is exact for f .t/ 	 1

and f .t/ 	 t :

wG
1 C wG

2 D
Z 1

0

t�1=2dt D 2;

t1wG
1 C t2wG

2 D
Z 1

0

t�1=2 � tdt D 2

3
:

This yields

wG
1 D �2t2 C 2

3

t1 � t2 ; wG
2 D 2t1 � 2

3

t1 � t2
;

or, with the values of t1, t2 substituted from the preceding,

wG
1 D 1C 1

3

r
5

6
D 1:3042903097; wG

2 D 1 � 1

3

r
5

6
D 0:6957096903:

Again, wG
1 is larger than wG

2 , this time by a factor 1.87476. . . .
Summarizing, we obtain the Gauss formula

Z 1

0

t�1=2f .t/dt D
 
1C 1

3

r
5

6

!
f

 
1

7

 
3 � 2

r
6

5

!!
C
 
1 � 1

3

r
5

6

!

�f
 
1

7

 
3C 2

r
6

5

!!
C EG

2 .f /: (3.44)

To illustrate, consider f .t/ D cos
�
1
2
	t
�
; that is,

I D
Z 1

0

t�1=2 cos

�
1

2
	t

�
dt D 2C.1/ D 1:5597868008 : : : :

�
C.x/ is the Fresnel integral

R x
0 cos

�
1
2
	t2

�
dt:
�

Newton–Cotes and Gauss give the
following approximations,

INC D 4

3
D 1:3333 : : : ;

IG D 1:2828510665C 0:2747384931D 1:5575895596:

The respective errors are

ENC
2 D 0:226453 : : : ; EG

2 D 0:002197 : : : ;

demonstrating the superiority of the Gauss formula even for n D 2.
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3.2.3 Properties of Gaussian Quadrature Rules

The Gaussian quadrature rule (3.35) and (3.42), in addition to being optimal, has
some interesting and useful properties. The more important ones are now listed,
with most of the proofs relegated to the exercises.

(a) All nodes tk are real, distinct, and contained in the open interval (a,b). This
is a well-known property satisfied by the zeros of orthogonal polynomials
(cf. Ex. 32).

(b) All weights wk are positive. The formula (3.39) for the weights gives no clue as
to their signs; however, an ingenious observation of Stieltjes7 proves it almost
immediately. Indeed,

0 <

Z b

a

`2j .t/w.t/dt D
nX

kD1
wk`

2
j .tk/ D wj ; j D 1; 2; : : : ; n;

the first equality following since `2j 2 P2n�2 and the degree of exactness is
d D 2n � 1.

(c) If [a,b] is a finite interval, then the Gauss formula converges for any continuous
function; that is, En.f / ! 0 as n ! 1 whenever f 2 C Œa; b�. This is
basically a consequence of the Weierstrass Approximation Theorem, which
implies that, if Op2n�1.f I � / denotes the polynomial of degree 2n � 1 that
approximates f best on [a,b] in the uniform norm, then

lim
n!1 kf . � /� Op2n�1.f I � /k1 D 0:

Since En. Op2n�1/ D 0 (polynomial degree of exactness d D 2n � 1), it follows
that

jEn.f /j D jEn.f � Op2n�1/j

D
ˇ̌
ˇ̌
ˇ

Z b

a

Œf .t/ � Op2n�1.f I t/�w.t/dt �
nX

kD1
wkŒf .tk/� Op2n�1.f I tk/�

ˇ̌
ˇ̌
ˇ

7Thomas Jan Stieltjes (1856–1894), born in the Netherlands, studied at the Technical Institute
of Delft, but never finished to get his degree because of a deep-seated aversion to examinations.
He nevertheless got a job at the Observatory of Leiden as a “computer assistant for astronomical
calculations.” His early publications caught the attention of Hermite, who was able to eventually
secure a university position for Stieltjes in Toulouse. A life-long friendship evolved between these
two great men, of which two volumes of their correspondence (see Hermite and Stieltjes [1905])
gives vivid testimony (and still makes fascinating reading). Stieltjes is best known for his work on
continued fractions and the moment problem, which, among other things, led him to invent a new
concept of integral, which now bears his name. He died of tuberculosis at the young age of 38.
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�
Z b

a

jf .t/ � Op2n�1.f I t/jw.t/dt C
nX

kD1
wkjf .tk/ � Op2n�1.f I tk/j

� kf .�/ � Op2n�1.f I �/k1

"Z b

a

w.t/dt C
nX

kD1
wk

#
:

Here, the positivity of the weight wk has been used crucially. Noting that

nX

kD1
wk D

Z b

a

w.t/dt D �0 .cf: .3.36//;

we thus conclude

jEn.f /j � 2�0kf � Op2n�1k1 ! 0 as n ! 1:

(d) The nodes in the n-point Gauss formula separate those of the (n C 1)-point
formula. (Cf. Ex. 33).

The next property forms the basis of an efficient algorithm for computing
Gaussian quadrature formulae.

(e) Let ˛k D ˛k.w/, ˇk D ˇk.w/ be the recurrence coefficients for the orthogonal
polynomials 	k. � / D 	k. � I w/; that is (cf. Chap. 2, Sect. 2.1.4(2)),

	kC1.t/ D .t � ˛k/	k.t/ � ˇk	k�1.t/; k D 0; 1; 2 : : : ;

	0.t/ D 1; 	�1.t/ D 0; (3.45)

with ˇ0 (as is customary) defined by ˇ0 D R b
a

w.t/dt (= �0). The nth-order
Jacobi matrix for the weight function w is a tridiagonal symmetric matrix
defined by

Jn D Jn.w/ D

2

666666664

˛0
p
ˇ1 0

p
ˇ1 ˛1

p
ˇ2

p
ˇ2

: : :

: : :
: : :

p
ˇn�1

0
p
ˇn�1 ˛n�1

3

777777775

:

Then the nodes tk are the eigenvalues of Jn (cf. Ex. 44(a)),

Jnvk D tkvk; vT
kvk D 1; k D 1; 2; : : : ; n; (3.46)
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and the weights wk expressible in terms of the first component vk;1 of the
corresponding (normalized) eigenvectors vk by (cf. Ex. 44(b))

wk D ˇ0v
2
k;1; k D 1; 2; : : : ; n: (3.47)

Thus, to compute the Gauss formula, we must solve an eigenvalue/eigenvector
problem for a symmetric tridiagonal matrix. This is a routine problem in
numerical linear algebra, and very efficient methods (the QR algorithm, for
example) are known for solving it.

(f) Markov8 observed in 1885 that the Gauss quadrature formula can also be
obtained by Hermite interpolation on the nodes tk , each counting as a double
node, if one requires that after integration all coefficients of the derivative
terms should be zero (cf. Ex. 34). An interesting consequence of this new
interpretation is the following expression for the remainder term, which follows
directly from the error term of Hermite interpolation (cf. Chap. 2, Sect. 2.2.7)
and the Mean Value Theorem of integration,

En.f / D f .2n/.�/

.2n/Š

Z b

a

Œ	n.t I w/�2w.t/dt; a < � < b: (3.48)

Here, 	n. � I w/ is the orthogonal polynomial, with leading coefficient 1, relative
to the weight function w. It is assumed, of course, that f 2 C2nŒa; b�.

We conclude this section with a table of some classical weight functions, their
corresponding orthogonal polynomials, and the recursion coefficients ˛k , ˇk for
generating the orthogonal polynomials as in (3.45) (see Table 3.1 on the next page).
We also include the standard notations for these polynomials (these usually do not
refer to the monic polynomials). Note that the recurrence coefficients ˛k are all
zero for even weight functions on intervals symmetric with respect to the origin
(cf. Chap. 2, Sect. 2.1.4(2)). For Jacobi polynomials, the recursion coefficients are
explicitly known, but the formulae are a bit lengthy and are not given here (they can
be found, e.g., in Gautschi [2004], Table 1.1).

8Andrey Andreyevich Markov (1856–1922), a student of Chebyshev, was active in St. Petersburg.
While his early work was in number theory and analysis, he is best known for his work in
probability theory, where he studied certain discrete random processes now known as Markov
chains.
9Carl Gustav Jacob Jacobi (1804–1851) was a contemporary of Gauss and with him one of the most
important 19th-century mathematicians in Germany. His name is connected with elliptic functions,
partial differential equations of dynamics, calculus of variations, celestial mechanics; functional
determinants also bear his name. In his work on celestial mechanics he invented what is now
called the Jacobi method for solving linear algebraic system.
10Edmond Laguerre (1834–1886) was a French mathematician active in Paris, who made essential
contributions to geometry, algebra, and analysis.
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Table 3.1 Classical orthogonal polynomials

w.t / [a,b] Orth. Pol. Notation ˛k ˇk

1 [–1,1] Legendre Pn 0 2 .k D 0/

.4� k�2/�1.k > 0/

.1� t 2/�
1
2 [–1,1] Chebyshev #1 Tn 0 	 .k D 0/

1

2
.k D 1/

1

4
.k > 1/

.1� t 2/
1
2 [–1,1] Chebyshev #2 Un 0

1

2
	 .k D 0/

1

4
.k > 0/

.1� t /˛ .1C t /ˇ [–1,1] Jacobi9 P
.˛;ˇ/
n known known

˛ > �1, ˇ > �1
t˛e�t , ˛ > �1 [0, 1] Laguerre10 L

.˛/
n 2k C ˛ C 1 �.1C ˛/ .k D 0/

k.k C ˛/ .k > 0/

e�t2 [–1;1] Hermite Hn 0
p
	 .k D 0/

1

2
k .k > 0/

3.2.4 Some Applications of the Gauss Quadrature Rule

In many applications, the integrals to be computed have the weight function w
already built in. In others, one has to figure out for oneself what the most appropriate
weight function should be. Several examples of this are given in this section. We
begin, however, with the easy exercise of transforming the Gauss–Jacobi quadrature
rule from an arbitrary finite interval to the canonical interval [–1,1].

(a) The Gauss–Jacobi formula for the interval [a,b]. We assume [a,b] a finite
interval. What is essential about the weight function in the Jacobi case is the
fact that it has an algebraic singularity (with exponent ˛) at the right endpoint,
and an algebraic singularity (with exponent ˇ) at the left endpoint. The integral
in question, therefore, is

Z b

a

.b � x/˛.x � a/ˇg.x/dx:

A linear transformation of variables

x D 1

2
.b � a/t C 1

2
.b C a/; dx D 1

2
.b � a/dt;
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maps the x-interval [a,b] onto the t-interval [–1,1], and the integral becomes

Z 1

�1

�
1

2
.b � a/.1 � t/

�˛ �
1

2
.b � a/.1C t/

�ˇ

� g
�
1

2
.b � a/t C 1

2
.b C a/

�
1

2
.b � a/dt

D
�
1

2
.b � a/

�˛CˇC1 Z 1

�1
.1 � t/˛.1C t/ˇf .t/dt;

where we have set

f .t/ D g

�
1

2
.b � a/t C 1

2
.b C a/

�
; � 1 � t � 1:

The last integral is now in standard form for the application of the Gauss–Jacobi
quadrature formula. One thus finds

Z b

a

.b � x/˛.x � a/ˇg.x/dx

D
�
1

2
.b � a/

�˛CˇC1 nX

kD1
wJ
kg

�
1

2
.b � a/t Jk C 1

2
.b C a/

�
CEn.g/;

(3.49)

where t Jk , wJ
k are the (standard) Gauss–Jacobi nodes and weights. Since with g,

also f is a polynomial, and both have the same degree, the formula (3.49) is
exact for all g 2 P2n�1.

(b) Iterated integrals. Let I denote the integral operator

.Ig/.t/ WD
Z t

0

g.�/d�;

and Ip its pth power (the identity operator if p D 0). Then

.I pC1g/.1/ D
Z 1

0

.I pg/.t/dt

is the pth iterated integral of g. It is a well-known fact from calculus that an
iterated integral can be written as a simple integral, namely,

.I pC1g/.1/ D
Z 1

0

.1 � t/p

pŠ
g.t/dt: (3.50)

Thus, to the integral on the right of (3.50) we could apply any of the standard
integration procedures, such as the composite trapezoidal or Simpson’s rule.
If g is smooth, this works well for p relatively small. As p gets larger, the
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factor .1 � t/p becomes rather unpleasant, since as p ! 1 it approaches the
discontinuous function equal to 1 at t D 0, and 0 elsewhere on (0,1]. This
adversely affects the performance of any standard quadrature scheme. However,
noting that .1 � t/p is a Jacobi weight on the interval [0,1], with parameters
˛ D p, ˇ D 0, we can apply (3.49); that is,

.I pC1g/.1/ D 1

2pC1pŠ

nX

kD1
wJ
kg

�
1

2
.1C t Jk/

�
C En.g/; (3.51)

and get accurate results with moderate values of n, even when p is quite large
(cf. MA 5).

(c) Integration over R. Compute
R1

�1F.x/dx, assuming that, for some a > 0,

F.x/ 
 e�ax2 ; x ! ˙1: (3.52)

Instead of a weight function we are given here information about the asymptotic
behavior of the integrand. It is natural, then, to introduce the new function

f .t/ D et
2

F

�
tp
a

�
; (3.53)

which tends to 1 as t ! ˙1. The change of variables x D t=
p
a then gives

Z 1

�1
F.x/dx D 1p

a

Z 1

�1
F

�
tp
a

�
dt D 1p

a

Z 1

�1
e�t 2f .t/dt:

The last integral is now in a form suitable for the application of the Gauss–
Hermite formula. There results

Z 1

�1
F.x/dx D 1p

a

nX

kD1
wH
k e.t

H
k /
2

F

�
tHkp
a

�
C En.f /; (3.54)

where tHk , wH
k are the Gauss–Hermite nodes and weights. The remainderEn.f /

vanishes whenever f is a polynomial of degree �2n � 1; that is,

F.x/ D e�ax2p.x/; p 2 P2n�1:

Since the coefficients in (3.54) involve the products wH
k � exp..tHk /

2/, some tables
of Gauss–Hermite formulae also provide these products, in addition to the nodes
and weights.

(d) Integration over RC. Compute
R1
0 F.x/dx, assuming that

F.x/ 

(
xp as x # 0 .p > �1/;
x�q as x ! 1 .q > 1/:

(3.55)
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Similarly as in (c), we now define f by

F.x/ D xp

.1C x/pCq f .x/; x 2 RC; (3.56)

so as to again have f .x/ ! 1 as x # 0 and x ! 1. The change of variables

x D 1C t

1� t
; dx D 2dt

.1 � t/2

then yields

Z 1

0

F.x/dx D
Z 1

�1

�
1C t

1 � t
�p �

2

1 � t

��.pCq/
f

�
1C t

1 � t
�

2dt

.1 � t/2

D 1

2pCq�1

Z 1

�1
.1 � t/q�2.1C t/pg.t/dt;

where

g.t/ D f

�
1C t

1 � t

�
:

This calls for Gauss–Jacobi quadrature with parameters ˛ D q � 2, ˇ D p:

Z 1

0

F.x/dx D 1

2pCq�1

 
nX

kD1
wJ
kg.t

J
k/C En.g/

!
:

It remains to re-express g in terms of f , and f in terms of F , to obtain the final
formula

Z 1

0

F.x/dx D2
nX

kD1
wJ
k

�
1C t Jk

��p �
1 � t Jk

��q
F

�
1C t Jk

1 � t Jk

�

C 2�p�qC1En.g/: (3.57)

This is exact whenever g.t/ is a polynomial of degree �2n � 1, for example a
polynomial of that degree in the variable 1 � t ; hence, since f .x/ D g

�
x�1
xC1

�
,

for any F.x/ of the form

F.x/ D xp

.1C x/pCqC
 ; 
 D 0; 1; 2; : : : ; 2n � 1:
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3.2.5 Approximation of Linear Functionals: Method
of Interpolation vs. Method of Undetermined Coefficients

Up until now, we heavily relied on interpolation to obtain approximations to
derivatives, integrals, and the like. This is not the only possible approach, however,
to construct approximation formulae, and indeed not usually the simplest one.
Another is the method of undetermined coefficients. Both approaches can be
described in a vastly more general setting, in which a given linear functional is to be
approximated by other linear functionals so as to have exactness on a suitable finite-
dimensional function space. Although both approaches yield the same formulae, the
mechanics involved are quite different.

Before stating the general approximation problem, we illustrate the two methods
on some simple examples.

Example. Obtain an approximation formula of the type

Z 1

0

f .x/dx � a1f .0/C a2f .1/: (3.58)

Method of interpolation. Instead of integrating f , we integrate the (linear)
polynomial interpolating f at x D 0 and x D 1. This gives

Z 1

0

f .x/dx �
Z 1

0

p1.f I 0; 1I x/dx

D
Z 1

0

Œ.1 � x/f .0/C xf .1/�dx D 1

2
Œf .0/C f .1/�;

the trapezoidal rule, to nobody’s surprise.
Method of undetermined coefficients. We simply require (3.58) to be exact for all

linear functions. This is the same as requiring equality in (3.58) when f .x/ D 1

and f .x/ D x. (Then by linearity, one gets equality also for f .x/ D c0 C c1x for
arbitrary constants c0, c1.) This immediately produces the linear system

1 D a1 C a2;
1

2
D a2;

hence a1 D a2 D 1
2
, as before.

Example. Find a formula of the type

Z 1

0

p
xf .x/dx � a1f .0/C a2

Z 1

0

f .x/dx: (3.59)
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Such a formula may come in handy if we already know the integral on the right and
want to use this information, together with the value of f at x D 0, to approximate
the weighted integral on the left.

Method of interpolation. “Interpolation” here means interpolation to the given
data – the value of f at x D 0 and the integral of f from 0 to 1. We are thus
seeking a polynomial p 2 P1 such that

p.0/ D f .0/;

Z 1

0

p.x/dx D
Z 1

0

f .x/dx; (3.60)

which we then substitute in place of f in the left-hand integral of (3.59). If we let
p.x/ D c0 C c1x, the interpolation conditions (3.60) give

c0 D f .0/;

c0 C 1

2
c1 D

Z 1

0

f .x/dxI

hence

c0 D f .0/; c1 D 2

�Z 1

0

f .x/dx � f .0/
�
:

Therefore,

Z 1

0

p
xf .x/dx �

Z 1

0

p
xp.x/dx D

Z 1

0

p
x.c0 C c1x/dx

D 2

3
c0 C 2

5
c1 D 2

3
f .0/C 2

5
� 2
�Z 1

0

f .x/dx � f .0/

�
I

that is, Z 1

0

p
xf .x/dx � � 2

15
f .0/C 4

5

Z 1

0

f .x/dx: (3.61)

Method of undetermined coefficients. Equality in (3.59) for f .x/ D 1 and
f .x/ D x immediately yields

2

3
D a1 C a2;

2

5
D 1

2
a2I

hence a1 D � 2
15

, a2 D 4
5
, the same result as in (3.61), but produced incomparably

faster.
In both examples, we insisted on exactness for polynomials (of degree 1). In

place of polynomials, we could have chosen other classes of functions, as long as
we make sure that their dimension matches the number of “free parameters.”
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The essence of the two examples consists of showing how a certain linear
functional can be approximated in terms of other (presumably simpler) linear
functionals by forming a suitable linear combination of the latter. We recall that
a linear functionalL on a function space F is a map

L W F ! R; (3.62)

which satisfies the conditions of additivity and homogeneity:

L.f C g/ D Lf C Lg; all f; g 2 F; (3.63)

and
L.cf / D cLf; all c 2 R; f 2 F: (3.64)

The function class F, of course, must be a linear space, that is, closed under addition
and multiplication by a scalar: f; g 2 F implies f C g 2 F, and f 2 F implies
cf 2 F for any c 2 R.

Here are some examples of linear functionals and appropriate spaces F on which
they live:

(a) Lf D f .0/; F D ff W f is defined at x D 0g.
(b) Lf D f 00� 1

2

�
; F D ˚

f W f has a second derivative at x D 1
2

�
.

(c) Lf D R 1
0
f .x/dx; F D C Œ0; 1� (or, more generally, f is Riemann integrable,

or Lebesgue integrable).
(d) Lf D R 1

0
f .x/w.x/dx, where w is a given (integrable) “weight function;” F D

C Œ0; 1�.
(e) Any linear combination (with constant coefficients) of the preceding linear

functionals.

Examples of nonlinear functionals are

(a0) Kf D jf .0/j.
(b0) Kf D

Z 1

0

Œf .x/�2dx, and so on.

We are now ready to formulate the general approximation problem: given a linear
functionalL on F (to be approximated), n special linear functionalsL1;L2; : : : ; Ln
on F and their values (the “data”) `i D Lif , i D 1; 2; : : : ; n, applied to some
function f , and given a linear subspaceˆ � F with dimˆ D n, we want to find an
approximation formula of the type

Lf �
nX

iD1
aiLif (3.65)

that is exact (i.e., holds with equality) whenever f 2 ˆ.
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It is natural (since we want to “interpolate”) to make the following.
Assumption: the “interpolation problem”

find ' 2 ˆ such that Li' D si ; i D 1; 2; : : : ; n; (3.66)

has a unique solution, '. � / D '.sI � /, for arbitrary s D Œs1; s2; : : : ; sn�
T.

We can express our assumption more explicitly in terms of a given basis
'1; '2; : : : ; 'n of ˆ and the associated “Gram matrix”

G D ŒLi'j � D

2

66666664

L1'1 L1'2 � � � L1'n

L2'1 L2'2 � � � L2'n

� � � � � � � � � � � �
Ln'1 Ln'2 � � � Ln'n

3

77777775

2 R
n�n: (3.67)

What we require is that
det G ¤ 0: (3.68)

It is easily seen (cf. Ex. 49) that this condition is independent of the particular choice
of basis. To show that unique solvability of (3.66) and (3.68) are equivalent, we
express ' in (3.66) as a linear combination of the basis functions,

' D
nX

jD1
cj 'j (3.69)

and note that the interpolation conditions

Li

0

@
nX

jD1
cj 'j

1

A D si ; i D 1; 2; : : : ; n;

by the linearity of the functionals Li , can be written in the form

nX

jD1
cjLi'j D si ; i D 1; 2; : : : ; nI

that is,

Gc D s; c D Œc1; c2; : : : ; cn�
T; s D Œs1; s2; : : : ; sn�

T: (3.70)

This has a unique solution for arbitrary s if and only if (3.68) holds.
Method of interpolation. We solve the general approximation problem “by

interpolation,”

Lf � L'.`I � /; ` D Œ`1; `2; : : : ; `n�
T; `i D Lif: (3.71)



186 3 Numerical Differentiation and Integration

In other words, we applyL not to f , but to '.`I � / – the solution of the interpolation
problem (3.66) in which s D `, the given “data.” Our assumption guarantees that
'.`I � / is uniquely determined. In particular, if f 2 ˆ, then (3.71) holds with
equality, since trivially '.`I � / 	 f . � / in this case. Thus, our approximation (3.71)
already satisfies the exactness condition required for (3.65). It remains only to show
that (3.71) indeed produces an approximation of the form (3.65). To do so, observe
that the interpolant in (3.71) is

'.`I � / D
nX

jD1
cj 'j . � /;

where the vector c D Œc1; c2; : : : ; cn�
T satisfies (3.70) with s D `,

Gc D `; ` D ŒL1f;L2f; : : : ; Lnf �
T:

Writing

j D L'j ; j D 1; 2; : : : ; nI � D Œ
1; 
2; : : : ; 
n�

T; (3.72)

we have by the linearity of L,

L'.`I � / D
nX

jD1
cjL'j D �Tc D �TG �1` D 

.G T/�1�
�T

`I

that is,

L'.`I � / D
nX

iD1
aiLif; a D Œa1; a2; : : : ; an�

T D .G T/�1�: (3.73)

Method of undetermined coefficients. Here, we determine the coefficients ai in
(3.65) such that equality holds for all f 2 ˆ, which, by the linearity of both L and
Li is equivalent to equality for f D '1, f D '2; : : : ; f D 'n; that is,

0

@
nX

jD1
ajLj

1

A 'i D L'i ; i D 1; 2; : : : ; n;

or, by (3.72),
nX

jD1
ajLj 'i D 
i ; i D 1; 2; : : : ; n:

Evidently, the matrix of this system is G T, so that

a D Œa1; a2; : : : ; an�
T D .G T/�1�;
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in agreement with (3.73). Thus, the method of interpolation and the method of
undetermined coefficients are mathematically equivalent – they produce exactly the
same approximation.

3.2.6 Peano Representation of Linear Functionals

It may be argued that the method of interpolation, at least in the case of polynomials
(i.e., ˆ D Pd ), is more powerful than the method of undetermined coefficients
because it also yields an expression for the error term (if we carry along the
remainder term of interpolation). The method of undetermined coefficients, in
contrast, generates only the coefficients in the approximation and gives no clue as
to the approximation error.

There is, however, a device due to Peano11 that allows us to discuss the error after
the approximation has been found. The point is that the error,

Ef D Lf �
nX

iD1
aiLif; (3.74)

is itself a linear functional, one that annihilates all polynomials, say, of degree d ,

Ep D 0; all p 2 Pd : (3.75)

Now suppose that F consists of all functions f having a continuous .r C 1/st
derivative on the finite interval Œa; b�, F D C rC1Œa; b�, r � d . Then by Taylor’s
theorem with the remainder in integral form , we have

f .x/ Df .a/C .x � a/
f 0.a/
1Š

C � � � C .x � a/r f
.r/.a/

rŠ

C 1

rŠ

Z x

a

.x � t/rf .rC1/.t/dt: (3.76)

The last integral can be extended to t D b if we replace x � t by 0 when t > x:

.x � t/C D
�
x � t if x � t � 0;

0 if x � t < 0:

11Giuseppe Peano (1858–1932), an Italian mathematician active in Turin, made fundamental
contributions to mathematical logic, set theory, and the foundations of mathematics. General
existence theorems in ordinary differential equations also bear his name. He created his own
mathematical language, using symbols of the algebra of logic, and even promoted (and used) a
simplified Latin (his “latino”) as a world language for scientific publication.
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Thus,
Z x

a

.x � t/rf .rC1/.t/dt D
Z b

a

.x � t/rCf .rC1/.t/dt: (3.77)

Now by applying the linear functional E to both sides of (3.76), with the integral
written as in (3.77), yields by linearity of E and (3.75)

Ef D 1

rŠ
E

(Z b

a

.x � t/rCf .rC1/.t/dt
)

D 1

rŠ

Z b

a

ŒE.x/.x � t/rC�f .rC1/.t/dt;

provided the interchange of E with the integral is legitimate. (For most functionals
it is.) The subscript x in E.x/ is to indicate that E acts on the variable x (not t).
Defining

Kr.t/ D 1

rŠ
E.x/.x � t/rC; t 2 R; (3.78)

we thus have the following representation for the error E ,

Ef D
Z b

a

Kr.t/f
.rC1/.t/dt: (3.79)

This is called the Peano representation of the functional E , and Kr the r th Peano
kernel for E .

If the functional E makes reference only to values of x in [a; b] (e.g., Ef may
involve values of f or of a derivative of f at some points in Œa; b�, or integration
over [a; b�), then it follows from (3.78) that Kr.t/ D 0 for t 62 Œa; b� (cf. Ex. 50). In
this case, the integral in (3.79) can be extended over the whole real line.

The functionalE is called definite of order r if its Peano kernelKr is of the same
sign. (We then also say that Kr is definite.) For such functionals E , we can use the
Mean Value Theorem of integration to write (3.79) in the form

Ef D f .rC1/.�/
Z b

a

Kr.t/dt; a < � < b .E definite of order r/:

The integral on the right is easily evaluated by putting f .t/ D t rC1=.r C 1/Š in
(3.79). This gives

Ef D erC1f .rC1/.�/; erC1 D E
trC1

.r C 1/Š
.E definite of order r/: (3.80)

Since erC1 ¤ 0 by definiteness of Kr , we must have r D d by virtue of (3.75),
and so

jEf j � jedC1j kf .dC1/k1: (3.81)
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Conversely, a functionalE satisfying (3.80) with erC1 ¤ 0 is necessarily definite of
order r (see Ex. 51). For nondefinite functionals E , we must estimate by

jEf j � kf .rC1/k1
Z b

a

jKr.t/jdt; (3.82)

which, in view of the form (3.78) of Kr , can be rather laborious.
As an example, consider the formula obtained in (3.61); here

Ef D
Z 1

0

p
xf .x/dx C 2

15
f .0/ � 4

5

Z 1

0

f .x/dx;

and Ef D 0 for all f 2 P1 (d D 1). Assuming that f 2 C2Œ0; 1� (r D d D 1), we
thus have by (3.79),

Ef D
Z 1

0

K1.t/f
00.t/dt; K1.t/ D E.x/.x � t/C:

Furthermore,

K1.t/ D
Z 1

0

p
x.x � t/Cdx C 2

15
� 0 � 4

5

Z 1

0

.x � t/Cdx

D
Z 1

t

p
x.x � t/dx � 4

5

Z 1

t

.x � t/dx

D 2

5
x
5
2

ˇ̌
ˇ̌
1

t

� t � 2
3
x
3
2

ˇ̌
ˇ̌
1

t

� 4

5

 
1

2
x2
ˇ̌
ˇ̌
1

t

� t.1 � t/
!

D 2

5

�
1 � t 52

�
� 2

3
t
�
1 � t 32

�
� 2

5
.1 � t2/C 4

5
t.1 � t/

D 4

15
t
5
2 � 2

5
t2 C 2

15
t

D 2

15
t
�
2t

3
2 � 3t C 1

�
:

Now the function in parentheses, say, q.t/, satisfies q.0/ D 1, q.1/ D 0, q0.t/ D
�3.1� t1=2/ < 0 for 0 < t < 1. There follows q.t/ � 0 on [0,1], and the kernelK1

is (positive) definite. Furthermore,

e2 D E

�
t2

2Š

�
D
Z 1

0

p
x
x2

2
dx C 2

15
� 0 � 4

5

Z 1

0

x2

2
dx

D 1

2

2

7
x
7
2

ˇ̌
ˇ̌
1

0

� 2

5

1

3
x3
ˇ̌
ˇ̌
1

0

D 1

7
� 2

15
D 1

105
;
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so that finally, by (3.80),

Ef D 1

105
f 00.�/; 0 < � < 1:

3.2.7 Extrapolation Methods

Many methods of approximation depend on a positive parameter, say, h, which
controls the accuracy of the method. As h # 0, the approximations typically
converge to the exact solution. An example of this is the composite trapezoidal rule
of integration, where h is the spacing of the quadrature nodes. Other important ex-
amples are finite difference methods in ordinary and partial differential equations. In
practice, one usually computes several approximations to a solution, corresponding
to different values of the parameter h. It is then natural to try “extrapolating to the
limit h D 0,” that is, constructing a linear combination of these approximations that
is more accurate than either of them. This is the basic idea behind extrapolation
methods. We apply it here to the composite trapezoidal rule, which gives rise to an
interesting and powerful integration technique known as Romberg integration.

To develop the general principle, suppose the approximation in question is A.h/,
a scalar-valued function of h, and thus A.0/ the exact solution. The approximation
may be defined only for a set of discrete values of h, which, however, have h D 0

as a limit point (e.g., h D .b � a/=n, n D 1; 2; 3; : : : ; in the case of the composite
trapezoidal rule). We call these admissible values of h. When in the following we
write h ! 0, we mean that h goes to zero over these admissible values. About the
approximation A.h/, we first assume that there exist constants a1, a2 independent
of h, and two positive numbers p, p0 with p0 > p, such that

A.h/ D a0 C a1h
p CO.hp

0

/; h ! 0; a1 ¤ 0: (3.83)

The order term here has the usual meaning of a quantity bounded (for all sufficiently
small h) by a constant times hp

0

, where the constant does not depend on h. We only
assume the existence of such constants a0, a1; their values are usually not known.
Indeed, a0 D A.0/, for example, is the exact solution. The value p, on the other
hand, is assumed to be known.

Now let q < 1 be a fixed positive number, and h and q�1h admissible parameters.
Then we have

A.h/ D a0 C a1h
p CO.hp

0

/;

A.q�1h/ D a0 C a1q
�php CO.hp

0

/;
h ! 0:

Eliminating the middle terms on the right, we find

a0 D A.0/ D A.h/C A.h/ �A.q�1h/
q�p � 1

CO.hp
0

/; h ! 0:
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Thus, from two approximations, A.h/, A.q�1h/, whose errors are both O.hp/, we
obtain an improved approximation,

Aimpr.h/ D A.h/C A.h/ � A.q�1h/
q�p � 1 ; (3.84)

with a smaller error of O.hp
0

/. The passage from A to Aimpr is called Richardson12

extrapolation.
If we want to repeat this process, we have to know more about the approximation

A.h/; there must be more terms to be eliminated. This leads to the idea of an
asymptotic expansion: we say that A.h/ admits an asymptotic expansion

A.h/ D a0 C a1h
p1 C a2h

p2 C � � � ; 0 < p1 < p2 < � � � ; h ! 0 (3.85)

(with coefficients ai independent of h), if for each k D 1; 2; : : :

A.h/ � .a0 C a1h
p1 C � � � C akh

pk / D O.hpkC1 /; h ! 0: (3.86)

We emphasize that (3.85) need not (and in fact usually does not) converge for any
fixed h > 0; all that is required is (3.86). If (3.86) holds only for finitely many k,
say, k D 1; 2; : : : ; K , then the expansion (3.85) is finite and is referred to as an
asymptotic approximation to K C 1 terms.

It is now clear that if A.h/ admits an asymptotic expansion (or approximation),
we can successively eliminate the terms of the expansion exactly as we did
for a 2-term approximation, thereby obtaining a (finite or infinite) sequence of
successively improved approximations. We formulate this in the form of a theorem.

Theorem 3.2.2. (Repeated Richardson extrapolation). Let A.h/ admit the asymp-
totic expansion (3.85) and define, for some fixed positive q < 1,

A1.h/ D A.h/;

AkC1.h/ D Ak.h/C Ak.h/ �Ak.q�1h/
q�pk � 1

; k D 1; 2; : : : : (3.87)

12Lewis Fry Richardson (1881–1953), born, educated, and active in England, did pioneering work
in numerical weather prediction, proposing to solve the hydrodynamical and thermodynamical
equations of meteorology by finite difference methods. Although this was the precomputer age,
Richardson envisaged that the job could be done “with tier upon tier of human computers fitted
into an Albert Hall structure” (P.S. Sheppard in Nature, vol. 172, 1953, p. 1127). He also did a
penetrating study of atmospheric turbulence, where a nondimensional quantity introduced by him
is now called “Richardson’s number.” At the age of 50, he earned a degree in psychology and
began to develop a scientific theory of international relations. He was elected a Fellow of the Royal
Society in 1926.
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A0,0 computing stencil

A1,0 A1,1 •
A2,0 A2,1 A2,2 • •
A3,0 A3,1 A3,2 A3,3

Fig. 3.3 Extrapolation algorithm

Then for each n D 1; 2; 3; : : : ; An.h/ admits an asymptotic expansion

An.h/ D a0 C a.n/n h
pn C a

.n/
nC1h

pnC1 C � � � ; h ! 0; (3.88)

with certain coefficients a.n/n , a.n/nC1; : : : not depending on h.

We remark that if (3.85) is only an approximation to K C 1 terms, then the
recursion (3.87) is applicable only for k D 1; 2; : : : ; K , and (3.88) holds for n D
1; 2; : : : ; K , whereas for n D K C 1 one has AKC1.h/ D a0 CO.hpKC1 /.

It is easily seen from (3.87) that AkC1.h/ is a linear combination of A.h/,
A.q�1h/, A.q�2h/; : : : ; A.q�kh/, where it was tacitly assumed that h, q�1h,
q�2h; : : : are admissible values of the parameter.

We now rework Theorem 3.2.2 into a practical algorithm. To do so, we assume
that we initially compute A.h/ for a succession of parameter values

h0; qh0; q
2h0; : : : .q < 1/;

all being admissible. Then we define

Am;k D AkC1.qmh0/; m; k D 0; 1; 2; : : : : (3.89)

The idea behind (3.89) is to provide two mechanisms for improving the accuracy:
one is to increasem, which reduces the parameter h, the other is increasing k, which
engages a more accurate approximation. Ideally, one employs both mechanisms
simultaneously, which suggests that the diagonal entries Am;m are the ones of most
interest.

Putting h D qmh0 in (3.87) produces the extrapolation algorithm

Am;k D Am;k�1 C Am;k�1 � Am�1;k�1
q�pk � 1

; m � k � 1;

Am;0 D A.qmh0/: (3.90)

This allows us to compute the triangular scheme of approximations shown in
Fig. 3.3.
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Each entry is computed in terms of its neighbors horizontally, and diagonally above,
to the left, as indicated in the computing stencil of Fig. 3.3. The entries in the first
column are the approximations initially computed. The generation of the triangular
scheme, once the first column has been computed, is extremely cheap, yet can
dramatically improve the accuracy, especially down the diagonal. If (3.85) is a finite
asymptotic approximation toKC1 terms, then the array in Fig. 3.3 has a trapezoidal
shape, consisting of K C 1 columns (including the one with k D 0).

We now apply (3.90) and Theorem 3.2.2 to the case of the composite trapezoidal
rule,

a0 D
Z b

a

f .x/dx; (3.91)

A.h/ D h

(
1

2
f .a/C

n�1X

kD1
f .a C kh/C 1

2
f .b/

)
; h D b � a

n
: (3.92)

The development of an asymptotic expansion for A.h/ in (3.92) is far from trivial.
In fact, the result is the content of a well-known formula due to Euler13 and
Maclaurin.14

Before stating it, we need to define the Bernoulli15 numbers Bk ; these are the
coefficients in the expansion

z

ez � 1 D
1X

kD0

Bk

kŠ
zk; jzj < 2	: (3.93)

13Leonhard Euler (1707–1783) was the son of a minister interested in mathematics who followed
lectures of Jakob Bernoulli at the University of Basel. Euler himself was allowed to see Johann
Bernoulli on Saturday afternoons for private tutoring. At the age of 20, after he was unsuccessful
in obtaining a professorship in physics at the University of Basel, anectodically because of a lottery
system then in use (Euler lost), he emigrated to St. Petersburg; later, he moved on to Berlin, and
then back again to St. Petersburg. Euler unquestionably was the most prolific mathematician of
the 18th century, working in virtually all branches of the differential and integral calculus and, in
particular, being one of the founders of the calculus of variations. He also did pioneering work in
the applied sciences, notably hydrodynamics, mechanics of deformable materials and rigid bodies,
optics, astronomy, and the theory of the spinning top. Not even his blindness at the age of 59
managed to break his phenomenal productivity. Euler’s collected works are still being edited, 71
volumes having already been published.
14Colin Maclaurin (1698–1764) was a Scottish mathematician who applied the new infinitesimal
calculus to various problems in geometry. He is best known for his power series expansion, but
also contributed to the theory of equations.
15Jakob Bernoulli (1654–1705), the elder brother of Johann Bernoulli, was active in Basel. He was
one of the first to appreciate Leibniz’s and Newton’s differential and integral calculus and enriched
it by many original contributions of his own, often in (not always amicable) competition with his
younger brother. He is also known in probability theory for his “law of large numbers.”
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It is known that

B0 D 1; B2 D 1

6
; B4 D � 1

30
; B6 D 1

42
; : : : ;

B1 D �1
2
; B3 D B5 D � � � D 0:

(3.94)

Furthermore,

jBkj 
 2
kŠ

.2	/k
as k (even) ! 1: (3.95)

We now state without proof16

Theorem 3.2.3. (Euler–Maclaurin formula). Let A.h/ be defined by (3.92), where
f 2 C2KC1Œa; b� for some integerK � 1. Then

A.h/ D a0 C a1h
2 C a2h

4 C � � � C aKh
2K CO.h2KC1/; h ! 0; (3.96)

16A heuristic derivation of the formal expansion (3.96) and (3.97), very much in the spirit of Euler,
may proceed as follows. We start from Taylor’s expansion (where x; x C h 2 Œa; b�)

f .x C h/� f .x/ D
1X

kD1

hkDk

kŠ
f .x/ D .ehD � 1/f .x/; D D d

dx
:

Solving formally for f .x/, we get, using (3.93),

f .x/ D .ehD � 1/�1Œf .x C h/� f .x/� D
1X

rD0

Br

rŠ
.hD/r�1Œf .x C h/� f .x/�I

that is, in view of (3.94),

f .x/ D Œ.hD/�1 � 1

2
C

1X

rD2

Br

rŠ
.hD/r�1�Œf .x C h/� f .x/�

D .hD/�1Œf .xCh/�f .x/�� 1

2
Œf .xCh/�f .x/�C

1X

rD2

Br

rŠ
hr�1Œf .r�1/.xCh/�f .r�1/.x/�

D 1

h

Z xCh

x

f .t/dt � 1

2
Œf .x C h/� f .x/�C

1X

kD1

B2k

.2k/Š
h2k�1Œf .2k�1/.x C h/� f .2k�1/.x/�:

Therefore, bringing the second term to the left-hand side, and multiplying through by h,

h

2
Œf .x C h/C f .x/� D

Z xCh

x

f .t/dt C
1X

kD1

B2k

.2k/Š
h2kŒf .2k�1/.x C h/� f .2k�1/.x/�:

Now letting x D aC ih and summing over i from 0 to n� 1 gives

A.h/ D
Z b

a

f .t/dt C
1X

kD1

B2k

.2k/Š
h2kŒf .2k�1/.b/� f .2k�1/.a/�:
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where a0 is given by (3.91) and

ak D B2k

.2k/Š
Œf .2k�1/.b/ � f .2k�1/.a/�; k D 1; 2; : : : ; K: (3.97)

Thus, under the assumption of Theorem 3.2.3, we have in (3.96) an asymptotic
approximation to K C 1 terms for A.h/, with

pk D 2k; k D 1; 2; : : : ; K; pKC1 D 2K C 1; (3.98)

and an asymptotic expansion, if K D 1 (i.e., if f has continuous derivatives of
any order). Choosing h0 D b � a, q D 1

2
in (3.89), which is certainly permissible,

the scheme (3.90) becomes

Am;k D Am;k�1 C Am;k�1 � Am�1;k�1
4k � 1

; m � k � 1;

and is known as the Romberg integration scheme. The choice q D 1
2

is particularly
convenient here, since in the generation ofAm;0 we can reuse function values already
computed (cf. MA 6).

There is an important instance in which the application of Romberg integration
would be pointless, namely, when all coefficients a1, a2; : : : in (3.96) are zero.
This is the case when f is periodic with period b � a, and smooth on R. Indeed,
we already know that the composite trapezoidal rule is then exceptionally accurate
(cf. Sect. 3.2.1, (3.32)).

3.3 Notes to Chapter 3

Section 3.1. Here we are dealing strictly with numerical differentiation, that is,
with the problem of obtaining approximations to derivatives that can be used for
numerical evaluation. The problem of symbolic differentiation, where the goal is
to obtain analytic expressions for derivatives of functions given in analytic form, is
handled by most computer algebra systems such as Mathematica and Macsyma,
and we refer to texts in this area cited in Sect. P3.2 under Computer Algebra.
Another important approach to differentiation is what is referred to as automatic
differentiation. Here, the objective is to create a program (i.e., a piece of software)
for computing the derivatives of a function given in the form of a program or
algorithm. Notable applications are to optimization (calculation of Jacobian and
Hessian matrices) and to the solution of ordinary differential equations by Taylor
expansion. For an early paper on this subject, see Kedem [1980], for a good
cross-section of current activity, Griewank and Corliss [1991] and a more recent
exposition, Griewank and Walther [2008]. Automatic differentiation in the context
of Matlab object-oriented programming is discussed in Neidinger [2010].
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Section 3.1.1. The interpolatory formulae for differentiation derived here are
analogous to the Newton–Cotes formulae for integration (cf. Sect. 3.2.2) in the sense
that one fixes n C 1 distinct nodes x0; x1; : : : ; xn and interpolates on them by a
polynomial of degree n to ensure polynomial degree of exactness n. In analogy
to Gauss quadrature formulae, one might well ask whether by a suitable choice of
nodes one could substantially increase the degree of precision. If x0 is the point at
which f 0 is to be approximated, there is actually no compelling reason for including
it among the points where f is evaluated. One may thus consider approximating
f 0.x0/ by L.f I x0; h/ D h�1Pn

iD0 wi f .x0 C ti h/ and choosing the (real) numbers
wi , ti so that the integer d for which Ef D f 0.x0/� L.f I x0; h/ D 0, all f 2 Pd ,
is as large as possible. This, however, is where the analogy with Gauss ends. For
one thing, the ti need to be normalized somehow, since multiplying all ti by a
constant c and dividing wi by c yields essentially the same formula. One way of
normalization is to require that jti � tj j � 1 for all i ¤ j . More important,
the possible improvement over d D n (which is achievable by interpolation) is
disappointing: the best we can do is obtain d D nC1. This can be shown by a simple
matrix argument; see Ash et al. [1984]. Among the formulae with d D nC1 (which
are not unique), one may define an optimal one that minimizes the absolute value
of the coefficient in the leading term of the truncation error Ef . These have been
derived for each n in Ash et al. [1984], not only for the first, but also for the second
derivative. They seem to be optimal also in the presence of noise (for n D 2, see Ash
and Jones [1981, Theorem 3.2.3]), but are still subject to the magnification of noise
as exemplified in (3.18). To strike a balance between errors due to truncation and
those due to noise, an appropriate step hmay be found adaptively; see, for example,
Stepleman and Winarsky [1979] and Oliver [1980].

For the sth derivative and its approximation by a formula L as in the preceding
paragraph, where h�1 is to be replaced by h�s , one may alternatively wish to
minimize the “condition mumber”

Pn
iD0 jwi j. Interestingly, if n and s have the same

parity, the optimum is achieved by the extreme points of the nth-degree Chebyshev
polynomial Tn; see Rivlin [1975] and Miel and Mooney [1985].

One can do better, especially for high-order derivatives, if one allows the ti and
wi to be complex and assumes analyticity for f . For the sth derivative, it is then
possible (cf. Lyness [1968]) to achieve degree of exactness n C s by choosing the
ti to be the n C 1 roots of unity; specifically, one applies the trapezoidal rule to
Cauchy’s integral for the sth derivative (see (3.19) for s D 1). A more sophisticated
use of these trapezoidal sums is made in Lyness and Moler [1967]. For practical
implementations of these ideas, and algorithms, see Lyness and Sande [1971] and
Fornberg [1981].

Considering the derivative of a function f on some interval, say, Œ0; 1�, as the
solution on this interval of the (trivial) integral equation

R x
0

u.t/dt D f .x/, one
can try to combat noise in the data by applying “Tikhonov regularization” to this
operator equation; this approach is studied, for example, in King and Murio [1986].

Section 3.2. The standard text on the numerical evaluation of integrals – simple
as well as multiple – is Davis and Rabinowitz [2007]. It contains a valuable
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bibliography of over 1500 items. Other useful texts are Krylov [1962], Brass [1977],
Engels [1980], and Evans [1993], the last being more practical and application-
oriented than the others and containing a detailed discussion of oscillatory integrals.
A broadly based, but concise, text is Krommer and Ueberhuber [1998]. Most
quadrature rules are designed to integrate exactly polynomials up to some degree
d , that is, all solutions of the differential equation u.dC1/ D 0. One can generalize
and require the rules to be exact for all solutions of a linear homogeneous differential
equation of order d C 1. This is the approach taken in the book by Ghizzetti and
Ossicini [1970]. There are classes of quadrature rules, perhaps more of theoretical
than practical interest, that are not covered in our text. One such concerns rules, first
studied by Chebyshev, whose weights are all equal (which minimizes the effects of
small random errors in the function values), or whose weights have small variance.
Surveys on these are given in Gautschi [1976a] and Förster [1993]. Another class
includes optimal quadrature formulae, which minimize, for prescribed or variable
nodes, the supremum of the modulus of the remainder term taken over some suitable
class of functions. For these, and their close relationship to “monosplines,” we refer
to Nikol’skiı̆ [1988] or Levin and Girshovich [1979].

Symbolic integration is inherently more difficult than symbolic differentiation
since integrals are often not expressible in analytic form, even if the integrand is an
elementary function. A great amount of attention, however, has been given to the
problem of automatic integration. Here, the user is required to specify the limits of
integration, to provide a routine for evaluating the integrand function, and to indicate
an error tolerance (absolute, relative, or mixed) and an upper bound for the number
of function evaluations to be performed. The automatic integrator is then expected
either to return an answer satisfying the user’s criteria, or to report that the error
criterion could not be satisfied within the desired volume of computation. In the
latter event, a user-friendly integrator will offer a best-possible estimate for the value
of the integral along with an estimate of the error. A popular collection of automatic
integrators is Quadpack (see Piessens et al. [1983]), and a good description of
the internal workings of automatic integration routines can be found in Davis and
Rabinowitz [2007, Chap. 6].

For the important (and difficult) problem of multiple integration and related
computational tools, we must refer to special texts, for example, Stroud [1971],
Mysovskikh [1981] (for readers familiar with Russian), Sloan and Joe [1994], and
Sobolev and Vaskevich [1997]. An update to Stroud [1971] is available in Cools
and Rabinowitz [1993]. Monte Carlo methods are widely used in statistical physics
and finance to compute high-dimensional integrals; texts discussing these methods
are Niederreiter [1992], Sobol’ [1994], Evans and Swartz [2000], and Kalos and
Whitlock [2008].

In dealing with definite integrals, one should never lose sight of the many
analytical tools available that may help in evaluating or approximating integrals. The
reader will find the old, but still pertinent, essay of Abramowitz [1954] informative
in this respect, and may also wish to consult Zwillinger [1992a].
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Section 3.2.1. The result relating to (3.34), in a slightly different form, is proved
in Davis and Rabinowitz [2007, p. 209]. Their proof carries over to integrals of the
form

R
R
f .x/dx, if one first lets n ! 1, and then a ! �1, in their proof.

Section 3.2.2. The classical Newton–Cotes formulae (3.35) involve equally spaced
nodes (on Œ�1; 1�) and weight function w 	 1. They are useful only for relatively
small values of n, since for large n the weights become large and oscillatory in
sign. Choosing Chebyshev points instead removes this obstacle and gives rise to
the Fejér quadrature rule. Close relatives are the Filippi rule, which uses the local
extreme points of TnC1, and the Clenshaw–Curtis rule, which uses all extreme points
(including ˙1) of Tn�1 as nodes. All three quadrature rules have weights that can
be explicitly expressed in terms of trigonometric functions, and they are all positive.
The latter has been proved for the first two rules by Fejér [1933], and for the last
by Imhof [1963]. Formulas with Chebyshev points of the third and fourth kind,
with or without the endpoints, are studied in Notaris [1997], [1998]. Algorithms for
accurately computing weighted Newton–Cotes formulae are discussed in Kautsky
and Elhay [1982] and Gautschi [1997] (see also Gautschi [2011a, Sect.4.1] for an
improvement); for a computer program, see Elhay and Kautsky [1987].

It is difficult to trace the origin of Theorem 3.2.1, but in essence, Jacobi already
was aware of it in 1826, and the idea of the proof, using division by the node
polynomial, is his (Jacobi [1826]). There are other noteworthy applications of
Theorem 3.2.1. One is to quadrature rules with 2nC 1 points, where n of them are
Gauss points and the remaining nC1 are to be selected, together with all the weights,
so as to make the degree of exactness as large as possible. These are called Gauss–
Kronrod formulae (cf. Ex. 19) and have found use in automatic integration routines.
Interest has focused on the polynomial of degree n C 1 – the Stieltjes polynomial
– whose zeros are the n C 1 nodes added to the Gauss nodes. In particular, this
polynomial must be orthogonal to all polynomials of lower degree with respect to
the “weight function”	n.t I w/w.t/. The oscillatory character of this weight function
poses intriguing questions regarding the location relative to the Gauss nodes, or even
the reality, of the added nodes. For a discussion of these and related matters, see the
surveys in Gautschi [1988] and Notaris [1994].

There is a theorem analogous to Theorem 3.2.1 that deals with quadrature
rules having multiple nodes. The simplest one, first studied by Turán [1950],
has constant multiplicity 2s C 1 (s � 0) for each node; that is, on the right
of (3.35), there are also terms involving derivatives up to order 2s for each
node tk (cf. Ex. 20 for s D 1). If one applies Gauss’s principle of maximum
algebraic degree of exactness to them, one is led to define the tk as the zeros
of a polynomial of degree n whose (2s C 1)st power is orthogonal to all lower-
degree polynomials (cf. Gautschi [1981, Sect. 2.2.1]). This gives rise to what
are called s-orthogonal polynomials and to generalizations thereof pertaining to
multiplicities that vary from node to node; a good reference for this is Ghizzetti and
Ossicini [1970, Chap. 3, Sect. 3.9]; see also Gautschi [1981, Sect. 2.2] and Chap. 4,
Sect. 4.1.4.

Another class of Gauss-type formulae, where exactness is required not only for
polynomials (if at all), but also for rational functions (with prescribed poles), has
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been developed by Van Assche and Vanherwegen [1993] and Gautschi [1993]. They
are particularly useful if the integrand has poles near the interval of integration. One
can, of course, require exactness for still other systems of functions; for literature
on this, see Gautschi [1981, Sect. 2.3.3]. Exactness of Gauss formulae for parabolic
splines is dicussed in Nikolov and Simian [2011].

Section 3.2.3. (c) The convergence theory for Gauss formulae on infinite
intervals is more delicate. Some general results can be found in the book by
Freud [1971, Chap. 3, Sect. 3.1].

(e) The importance for Gauss quadrature rules of eigenvalues and eigenvectors
of the Jacobi matrix and related computational algorithms was first elaborated by
Golub and Welsch [1969], although the idea is older. Similar eigenvalue techniques
apply to Gauss–Radau and Gauss–Lobatto formulae (Golub [1973]), and indeed to
Gauss–Kronrod formulae as well (Laurie [1997]).

A list of published tables of Gauss formulae for various classical and nonclassical
weight functions is contained in Gautschi [1981, Sect. 5.4], where one also finds
a detailed history of Gauss–Christoffel quadrature rules and extensions thereof.
A table of recurrence coefficients, in particular, also for Jacobi weight functions,
can be found in the Appendix to Chihara [1978] and in Gautschi [2004, Sect. 1.5].
For practical purposes, it is important to be able to automatically generate Gauss
formulae as needed, even if the Jacobi matrix for them is unknown (and must itself
be computed). A major first step in this direction is the Fortran computer package
in Gautschi [1994b] based on earlier work of the author in Gautschi [1982], and
the more recent Matlab packages OPQ, SOPQ on the Web at the URL cited in
Gautschi [2004, Preface].

Section 3.2.4. Other applications of classical Gaussian quadrature rules, notably to
product integration of multiple integrals, are described in the book by Stroud and
Secrest [1966], which also contains extensive high-precision tables of Gauss formu-
lae. Prominent use of Gaussian quadrature, especially with Jacobi weight functions,
is made in the evaluation of Cauchy principal value integrals in connection with
singular integral equations; for this, see, for example, Gautschi [1981, Sect. 3.2].
A number of problems in approximation theory that can be solved by nonclassical
Gaussian quadrature rules are discussed in Gautschi [1996].

Section 3.2.7. A classical account of Romberg integration – one that made this
procedure popular – is Bauer et al. [1963]. The basic idea, however, can be traced
back to nineteenth-century mathematics, and even beyond. An extensive survey not
only of the history, but also of the applications and modifications of extrapolation
methods, is given in Joyce [1971] and supplemented in Rabinowitz [1992]. See
also Engels [1979] and Dutka [1984] for additional historical accounts. Romberg
schemes for other sequences of composite trapezoidal rules are discussed in
Fischer [2002].

Richardson extrapolation is just one of many techniques to accelerate the conver-
gence of sequences. For others, we refer to the books by Wimp [1981], Brezinski
and Redivo-Zaglia [1991] (containing also computer programs), and Sidi [2003].
A book with emphasis on linear extrapolation methods and the existence of related
asymptotic expansions is Walz [1996].
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Exercises and Machine Assignments to Chapter 3

Exercises

1. From (3.4)–(3.6) with n D 3 we know that

f 0.x0/ DŒx0; x1�f C .x0 � x1/Œx0; x1; x2�f
C .x0 � x1/.x0 � x2/Œx0; x1; x2; x3�f C e3;

where e3 D .x0 � x1/.x0 � x2/.x0 � x3/ f .4/.�/4Š
. Apply this to

x0 D 0; x1 D 1

8
; x2 D 1

4
; x3 D 1

2

and express f 0.0/ as a linear combination of fk D f .xk/; k D 0; 1; 2; 3, and
e3. Also, estimate the error e3 in terms of M4 D max0�x� 1

2
jf .4/.x/j.

2. Derive a formula for the error term r 0
n.x/ of numerical differentiation analogous

to (3.5) but for x ¤ x0. fHint: use Chap. 2, (2.116) in combination with Chap. 2,
Ex. 58.g

3. Let xi ; i D 0; 1; : : : ; n, be nC 1 distinct points with H D max1�i�n jxi � x0j
small.

(a) Show that for k D 0; 1; : : : ; n one has

dk

dxk

nY

iD1
.x � xi /

ˇ̌
ˇ̌
ˇ
xDx0

D O.Hn�k/ as H ! 0:

(b) Prove that
f .n/.x0/ D nŠ Œx0; x1; : : : ; xn�f C en;

where

en D

8
<̂

:̂
O.H2/ if x0 D 1

n

nX

iD1
xi ;

O.H/ otherwise;

assuming that f is sufficiently often (how often?) differentiable in the
interval spanned by the xi . fHint: use the Newton interpolation formula
with remainder, in combination with Leibniz’s rule of differentiation.g

(c) Specialize the formula in (b) to equally spaced points xi with spacing h
and express the result in terms of either the nth forward difference �nf0
or the nth backward difference rnfn of the values fi D f .xi /. fHere,
�f0 D f1 � f0; �

2f0 D �.�f0/ D �f1 � �f0 D f2 � 2f1 C f0, etc.,
and similarly for rf1; r2f2, and so on.g
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4. Approximate @u=@xjP1 in terms of u0 D u.P0/, u1 D u.P1/, u2 D u.P2/ (see
figure, where the curve represents a quarter arc of the unit circle). Estimate the
error.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ooo
P2P1P0

5. (a) Use the central difference quotient approximation f 0.x/ � Œf .x C h/ �
f .x � h/�=.2h/ of the first derivative to obtain an approximation of
@2u

@x@y
.x; y/ for a function u of two variables.

(b) Use Taylor expansion of a function of two variables to show that the error
of the approximation derived in (a) is O.h2/.

6. Consider the integral I D R 1
�1 jxjdx, whose exact value is evidently 1. Suppose

I is approximated (as it stands) by the composite trapezoidal rule T .h/ with
h D 2=n, n D 1; 2; 3; : : : :

(a) Show (without any computation) that T .2=n/ = 1 if n is even.
(b) Determine T .2=n/ for n odd and comment on the speed of convergence.

7. Let

I.h/ D
Z h

0

f .x/dx; T .h/ D h

2
Œf .0/C f .h/�:

(a) Evaluate I.h/, T .h/, and E.h/ D I.h/� T .h/ explicitly for f .x/ D x2 C
x5=2.

(b) Repeat for f .x/ D x2Cx1=2. Explain the discrepancy that you will observe
in the order of the error terms.
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8. (a) Derive the “midpoint rule” of integration

Z xkCh

xk

f .x/dx D hf

�
xk C 1

2
h

�
C 1

24
h3f 00.�/; xk < � < xk C h:

fHint: use Taylor’s theorem centered at xk C 1
2
h:g

(b) Obtain the composite midpoint rule for
R b
a
f .x/dx, including the error

term, subdividing Œa; b� into n subintervals of length h D b�a
n

.
9. (a) Show that the elementary Simpson’s rule can be obtained as follows:

Z 1

�1
y.t/dt D

Z 1

�1
p3.yI �1; 0; 0; 1I t/dt C ES.y/:

(b) Obtain a formula for the remainder ES.y/, assuming y 2 C4Œ�1; 1�.
(c) Using (a) and (b), derive the composite Simpson’s rule for

R b
a
f .x/dx,

including the remainder term.
10. Let ES

n.f / be the remainder term of the composite Simpson’s rule forR 2	
0
f .x/dx using n subintervals (n even). Evaluate ES

n.f / for f .x/ D eimx

(m D 0; 1; : : : ). Hence determine for what values of d Simpson’s rule
integrates exactly (on [0, 2	]) trigonometric polynomials of degree d .

11. Estimate the number of subintervals required to obtain
R 1
0

e�x2dx to 6 correct
decimal places (absolute error � 1

2
� 10�6)

(a) by means of the composite trapezoidal rule,
(b) by means of the composite Simpson’s rule.

12. Let f be an arbitrary (continuous) function on [0,1] satisfying
f .x/C f .1 � x/ 	 1 for 0 � x � 1.

(a) Show that
R 1
0 f .x/dx D 1

2
.

(b) Show that the composite trapezoidal rule for computing
R 1
0
f .x/dx is

exact.
(c) Show, with as little computation as possible, that the composite Simpson’s

rule and more general symmetric rules are also exact.

13. (a) Construct a trapezoidal-like formula

Z h

0

f .x/dx D af .0/C bf .h/C E.f /; 0 < h < 	;

which is exact for f .x/ D cosx and f .x/ D sinx. Does this formula
integrate constants exactly?

(b) Show that a similar formula holds for
R cCh
c

g.t/dt .
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14. Given the subdivision � of Œ0; 2	� into N equal subintervals, 0 D x0 <

x1 < x2 < � � � < xN�1 < xN D 2	 , xk D kh, h D 2	=N , and a (2	)-
periodic function f , construct a quadrature rule for the mth (complex) Fourier
coefficients of f ,

1

2	

Z 2	

0

f .x/e�imxdx;

by approximating f by the spline interpolant s1.f I � / from S
0
1.�/. Write the

result in the form of a “modified” composite trapezoidal approximation. fHint:
express s1.f I � / in terms of the hat functions defined in Chap. 2, (2.129).g

15. The composite trapezoidal rule for computing
R 1
0
f .x/dx can be generalized to

subdivisions

� W 0 D x0 < x1 < x2 < � � � < xn�1 < xn D 1

of the interval [0,1] in subintervals of arbitrary length �xi D xiC1 � xi , i D
0; 1; : : : ; n � 1, by approximating

Z 1

0

f .x/dx �
Z 1

0

s1.f I x/dx;

where s1.f I � / 2 S
0
1.�/ is the piecewise linear continuous spline interpolating

f at x0, x1; : : : ; xn.

(a) Use the basis of hat functions B0, B1; : : : ; Bn to represent s1.f I � / and
calculate

R 1
0
s1.f I x/dx.

(b) Discuss the errorE.f / D R 1
0
f .x/dx�R 1

0
s1.f I x/dx. In particular, find a

formula of the type E.f / D const � f 00.�/, 0 < � < 1, where the constant
depends only on �.

16. (a) Construct the weighted Newton–Cotes formula

Z 1

0

f .x/x˛dx D a0f .0/C a1f .1/C E.f /; ˛ > �1:

Explain why the formula obtained makes good sense.
(b) Derive an expression for the error term E.f / in terms of an appropriate

derivative of f .
(c) From the formulae in (a) and (b) derive an approximate integration formula

for
R h
0 g.t/t

˛dt (h > 0 small), including an expression for the error term.
17. (a) Construct the weighted Newton–Cotes formula

Z 1

0

f .x/ � x ln.1=x/dx � a0f .0/C a1f .1/:

fHint: use
R 1
0
xr ln.1=x/dx D .r C 1/�2, r D 0; 1; 2; : : : .g
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(b) Discuss how the formula in (a) can be used to approximate
R h
0
g.t/ �

t ln.1=t/dt for small h > 0. fHint: make a change of variables.g
18. Let s be the function defined by

s.x/ D
�
.x C 1/3 if � 1 � x � 0;

.1 � x/3 if 0 � x � 1:

(a) With� denoting the subdivision of Œ�1; 1� into the two subintervals Œ�1; 0�
and Œ0; 1�, to what class Skm.�/ does the spline s belong?

(b) Estimate the error of the composite trapezoidal rule applied to
R 1

�1 s.x/dx,
when Œ�1; 1� is divided into n subintervals of equal length h D 2=n and n
is even.

(c) What is the error of the composite Simpson’s rule applied to
R 1

�1 s.x/dx,
with the same subdivision of Œ�1; 1� as in (b)?

(d) What is the error resulting from applying the 2-point Gauss–Legendre rule
to
R 0

�1 s.x/dx and
R 1
0
s.x/dx separately and summing?

19. (Gauss–Kronrod rule) Let 	n. � I w/ be the (monic) orthogonal polynomial of
degree n relative to a nonnegative weight function w on [a; b], and t .n/k its zeros.
Use Theorem 3.2.1 to determine conditions on wk , w�

k , t�k for the quadrature rule

Z b

a

f .t/w.t/dt D
nX

kD1
wkf .t

.n/

k /C
nC1X

kD1
w�
kf .t

�
k /C En.f /

to have degree of exactness at least 3nC1; that is,En.f / D 0 for all f 2 P3nC1.
20. (Turán quadrature formula) Let w be a nonnegative weight function on Œa; b�.

Prove: the quadrature formula
Z b

a

f .t/w.t/dt D
nX

kD1
Œwkf .tk/C w0

kf
0.tk/C w00

kf
00.tk/�C En.f /

has degree of exactness d D 4n � 1 if and only if the following conditions are
satisfied:

(a) The formula is (Hermite-) interpolatory; that is, En.f / D 0 if f 2 P3n�1.
(b) The node polynomial !n.t/ D …n

kD1.t � tk/ satisfies
Z b

a

Œ!n.t/�
3p.t/w.t/dt D 0 for all p 2 Pn�1:

fHint: simulate the proof of Theorem 3.2.1.g
21. Consider s > 1 weight functions w� .t/; � D 1; 2; : : : ; s, integersm� such thatPs

�D1 m� D n, and s quadrature rules

Q� W
Z b

a

f .t/w� .t/dt D
nX

kD1
wk;�f .tk/CEn;� .f /; � D 1; 2; : : : ; s;
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which share n common nodes tk but have individual weights wk;� . State
necessary and sufficient conditions for Q� to have degree of exactness n C
m� � 1; � D 1; 2; : : : ; s, and explain why this is likely to be optimal.

22. Consider a quadrature formula of the form

Z 1

0

f .x/dx � a0f .0/C a1f
0.0/C

nX

kD1
wkf .xk/C b0f .1/:

(a) Call the formula “Hermite-interpolatory” if the right-hand side is obtained
by integrating on the left instead of f the (Hermite) interpolation polyno-
mial p satisfying

p.0/ D f .0/; p0.0/ D f 0.0/; p.1/ D f .1/;

p.xk/ D f .xk/; k D 1; 2; : : : ; n:

What degree of exactness does the formula have in this case (regardless
of how the nodes xk are chosen, as long as they are mutually distinct and
strictly inside the interval Œ0; 1�)?

(b) What is the maximum degree of exactness expected to be if all coefficients
and nodes xk are allowed to be freely chosen?

(c) Show that for the maximum degree of exactness to be achieved, it is
necessary that fxkg are the zeros of the polynomial 	n of degree n which is
orthogonal on Œ0; 1� with respect to the weight function w.x/ D x2.1 � x/.
Identify this polynomial in terms of one of the classical orthogonal
polynomials.

(d) Show that the choice of the xk in (c) together with the requirement of
the quadrature formula to be Hermite-interpolatory is sufficient for the
maximum degree of exactness to be attained.

23. Show that the Gauss–Radau as well as the Gauss–Lobatto formulae are positive
if the weight function w is nonnegative and not identically zero. fHint:
modify the proof given for the Gauss formula in Sect. 3.2.3(b).g What are the
implications with regard to convergence as n ! 1 of the formulae?

24. (Fejér, 1933). Let tk , k D 1; 2; : : : ; n, be the zeros of

!n.t/ D Pn.t/C ˛Pn�1.t/C ˇPn�2.t/; n � 2;

where fPkg are the Legendre polynomials, and assume ˛ 2 R, ˇ � 0, and the
zeros tk real and pairwise distinct. Show that the Newton–Cotes formula

Z 1

�1
f .t/dt D

nX

kD1
wkf .tk/C En.f /; En.Pn�1/ D 0;

has all weights positive: wk > 0 for k D 1; 2; : : : ; n. fHint: define �k.t/ D
Œ`k.t/�

2 � `k.t/ and show that
R 1

�1 �k.t/dt � 0.g
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25. (a) Determine by Newton’s interpolation formula the quadratic polynomial p
interpolating f at x D 0 and x D 1 and f 0 at x D 0. Also, express the
error in terms of an appropriate derivative (assumed continuous on [0,1]).

(b) Based on the result of (a), derive an integration formula of the type

Z 1

0

f .x/dx D a0f .0/C a1f .1/C b0f
0.0/C E.f /:

Determine a0, a1, b0 and an appropriate expression for E.f /.
(c) Transform the result of (b) to obtain an integration rule, with remainder, forR cCh

c
y.t/dt , where h > 0. fDo not rederive this rule from scratch.g

26. Imitate the procedures used in the Example of Chap. 2, Sect. 2.1.4(2) for monic
Legendre polynomials to show orthogonality on Œ0;1/ relative to the Laguerre
measure d
.t/ D t˛e�tdt , ˛ > �1, of the (monic) polynomials

	k.t/ D .�1/kt�˛et
dk

dtk
.t˛Cke�t /; k D 0; 1; 2; : : : ;

and to derive explicit formulae for the recursion coefficients ˛k , ˇk . fHint:
express ˛k and ˇk in terms of the coefficients 
k , �k in 	k.t/ D tk C
kt

k�1 C
�kt

k�2 C � � � .g
27. Show that

	k.t/ D .�1/k
2k

et
2 dk

dtk
.e�t 2 /; k D 0; 1; 2; : : : ;

are the monic orthogonal polynomials on R relative to the Hermite measure
d
.t/ D e�t 2dt . Use this “Rodrigues formula” directly to derive the recurrence
relation for the (monic) Hermite polynomials.

28. (a) Construct the quadratic (monic) polynomial 	2. � I w/ orthogonal on .0;1/

with respect to the weight function w.t/ D e�t . fHint: use
R1
0
tme�tdt

D mŠ.g
(b) Obtain the two-point Gauss–Laguerre quadrature formula,

Z 1

0

f .t/e�tdt D w1f .t1/C w2f .t2/CE2.f /;

including a representation for the remainderE2.f /.
(c) Apply the formula in (b) to approximate I D R1

0
e�tdt=.t C 1/. Use the

remainder term E2.f / to estimate the error, and compare your estimate
with the true error fuse I D 0:596347361 : : :g. Knowing the true error,
identify the unknown quantity � > 0 contained in the error term E2.f /.

29. Derive the 2-point Gauss–Hermite quadrature formula,
Z 1

�1
f .t/e�t 2dt D w1f .t1/C w2f .t2/C E2.f /;

including an expression for the remainder E2.f /. fHint: use
R1
0
t2ne�t 2dt D

.2n/Š

nŠ22n

p
	

2
, n D 0; 1; 2; : : :.g
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30. Let 	n. � I w/ be the nth-degree orthogonal polynomial with respect to the
weight function w on [a; b], t1; t2; : : : ; tn its n zeros, and w1, w2; : : : ;wn the
n Gauss weights.

(a) Assuming n > 1, show that the n polynomials 	0, 	1; : : : ; 	n�1 are
also orthogonal with respect to the discrete inner product .u; v/ DPn

�D1 w�u.t�/v.t�/.
(b) With `i .t/ D Q

k¤i Œ.t � tk/=.ti � tk/�, i D 1; 2; : : : ; n, denoting the
elementary Lagrange interpolation polynomials associated with the nodes
t1, t2; : : : ; tn, show that

Z b

a

`i .t/`k.t/w.t/dt D 0 if i ¤ k:

31. Consider a quadrature formula of the type
Z 1

0

e�xf .x/dx D af .0/C bf .c/C E.f /:

(a) Find a, b, c such that the formula has degree of exactness d D 2. Can
you identify the formula so obtained? fPoint of information:

R1
0

e�xxrdx
D rŠg

(b) Let p2.x/ D p2.f I 0; 2; 2I x/ be the Hermite interpolation polynomial
interpolating f at the (simple) point x D 0 and the double point x D 2.
Determine

R1
0

e�xp2.x/dx and compare with the result in (a).
(c) Obtain the remainderE.f / in the form E.f / D const � f 000.�/, � > 0.

32. In this problem,	j . � I w/ denotes the monic polynomial of degree j orthogonal
on the interval Œa; b� relative to a weight function w � 0.

(a) Show that 	n. � I w/, n > 0, has at least one real zero in the interior of Œa; b�
at which 	n changes sign.

(b) Prove that all zeros of 	n. � I w/ are real, simple, and contained in the
interior of Œa; b�. fHint: put r0 D maxfr � 1: t .n/k1

, t .n/k2
; : : : ; t

.n/

kr
are distinct

real zeros of 	n in .a; b/ at each of which 	n changes signg. Show that
r0 D n.g

33. Prove that the zeros of 	n. � I w/ interlace with those of 	nC1. � I w/.
34. Consider the Hermite interpolation problem: Find p 2 P2n�1 such that

./ p.��/ D f�; p
0.��/ D f 0

� ; � D 1; 2; : : : ; n:

There are “elementary Hermite interpolation polynomials” h� , k� such that the
solution of (*) can be expressed (in analogy to Lagrange’s formula) in the form

p.t/ D
nX

�D1
Œh�.t/f� C k�.t/f

0
� �:
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(a) Seek h� and k� in the form

h�.t/ D .a� C b�t/`
2
�.t/; k�.t/ D .c� C d�t/l

2
� .t/;

where `� are the elementary Lagrange polynomials. Determine the con-
stants a� , b� , c� , d� .

(b) Obtain the quadrature rule

Z b

a

f .t/w.t/dt D
nX

�D1
Œ
�f .��/C ��f

0.��/�C En.f /

with the property that En.f / D 0 for all f 2 P2n�1.
(c) What conditions on the node polynomial !n.t/ D Qn

�D1.t � ��/ (or on the
nodes ��) must be imposed in order that �� D 0 for � D 1; 2; : : : ; n?

35. Show that
R 1
0
.1� t/�1=2f .t/dt , when f is smooth, can be computed accurately

by Gauss–Legendre quadrature. fHint: substitute 1 � t D x2.g
36. The Gaussian quadrature rule for the (Chebyshev) weight function w.t/ D .1�

t2/�1=2 is known to be

Z 1

�1
f .t/.1 � t2/�1=2dt � 	

n

nX

kD1
f .tCk /; tCk D cos

�
2k � 1
2n

	

�
:

(The nodes tCk are the n Chebyshev points.) Use this fact to show that the unit
disk has area 	 .

37. Assuming f is a well-behaved function, discuss how the following integrals can
be approximated by standard Gauss-type rules (i.e., with canonical intervals
and weight functions).

(a)
R b
a
f .x/dx .a < b/.

(b)
R1
1

e�axf .x/dx .a > 0/.

(c)
R1

�1 e�.ax2Cbx/f .x/dx .a > 0). fHint: complete the square.g
(d)

R1
0

e�xt

yCt dt; x > 0; y > 0. Is the approximation you get for the integral
too small or too large? Explain.

38. (a) Let w.t/ be an even weight function on Œa; b�, a < b, a C b D 0, i.e.,
w.�t/ D w.t/ on Œa; b�. Show that .�1/n	n.�t I w/ 	 	n.t I w/, i.e., the
(monic) nth-degree orthogonal polynomial relative to the weight function
w is even [odd] for n even [odd].

(b) Show that the Gauss formula

Z b

a

f .t/w.t/dt D
nX

�D1
w�f .t�/C En.f /
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for an even weight function w is symmetric, i.e.,

tnC1�� D �t�; wnC1�� D w�; � D 1; 2; : : : ; n:

(c) Let w be the “hat function”

w.t/ D
(
1C t if � 1 � t � 0;

1 � t if 0 � t � 1:

Obtain the 2-point Gaussian quadrature formula
R 1

�1 f .t/w.t/dt D
w1f .t1/ C w2f .t2/ C E2.f / for this weight function w, including an
expression for the error term under a suitable regularity assumption on f .
fHint: use (a) and (b) to simplify the calculations.g

39. Let t .2n/k be the nodes, ordered monotonically, of the .2n/-point Gauss–

Legendre quadrature rule and w.2n/k the associated weights. Show that, for any
p 2 P2n�1, one has

Z 1

0

t�1=2p.t/dt D 2

nX

kD1
w.2n/k p.Œt

.2n/

k �2/:

40. Let f be a smooth function on Œ0; 	�. Explain how best to evaluate

I˛;ˇ.f / D
Z 	

0

f .�/

	
cos

1

2
�


˛ 	
sin

1

2
�


ˇ
d�; ˛ > �1; ˇ > �1:

41. Let Qnf , Qn�f be n-point, resp. n�-point quadrature rules for If DR b
a
f .t/w.t/dt andQn�f at least twice as accurate as Qnf , i.e.,

jQn�f � If j � 1

2
jQnf � If j:

Show that the error of Qn�f then satisfies

jQn�f � If j � jQnf �Qn�f j:
42. Given a nonnegative weight function w on Œ�1; 1� and x > 1, let

.G/

Z 1

�1
f .t/

w.t/

x2 � t2 dt D
nX

kD1
wG
k f .t

G
k /C EG

n .f /

be the n-point Gaussian quadrature formula for the weight function w.t/
x2�t 2 . (Note

that tGk ; wG
k both depend on n and x.) Consider the quadrature rule

Z 1

�1
g.t/w.t/dt D

nX

kD1
wkg.tk/C En.g/;
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where tk D tGk ; wk D Œx2 � .tGk /2�wG
k . Prove:

(a) En.g/ D 0 if g.t/ D 1
t˙x .

(b) If n � 2, then En.g/ D 0 whenever g is a polynomial of degree � 2n � 3.

43. Let �� , � D 1; 2; : : : ; 2n, be 2n preassigned distinct numbers satisfying �1 <
�� < 1, and let w be a positive weight function on [–1,1]. Define !2n.x/ DQ2n
�D1 .1C ��x/. (Note that !2n is positive on [–1,1].) Let xG

k , wG
k be the nodes

and weights of the n-point Gauss formula for the weight function w�.x/ D
w.x/
!2n.x/

:

Z 1

�1
p.x/w�.x/dx D

nX

kD1
wG
k p.x

G
k /; p 2 P2n�1:

Define x�
k D xG

k , w�
k D wG

k !2n.x
G
k /. Show that the quadrature formula

Z 1

�1
f .x/w.x/dx D

nX

kD1
w�
kf .x

�
k /C E�

n .f /

is exact for the 2n rational functions

f .x/ D 1

1C ��x
; � D 1; 2; : : : ; 2n:

44. (a) Prove (3.46).
(b) Prove (3.47). fHint: use the Christoffel–Darboux formula of Chap. 2,

Ex. 21(b).g
45. Prove (3.50). fHint: prove, more generally, .I pC1g/.s/ D R s

0
.s�t /p
pŠ

g.t/dt .g
46. (a) Use the method of undetermined coefficients to obtain an integration rule

(having degree of exactness d D 2) of the form

Z 1

0

y.s/ds � ay.0/C by.1/ � cŒy0.1/� y0.0/�:

(b) Transform the rule in (a) into one appropriate for approximatingR xCh
x f .t/dt .

(c) Obtain a composite integration rule based on the formula in (b) for
approximating

R b
a
f .t/dt . Interpret the result.

47. Determine the quadrature formula of the type

Z 1

�1
f .t/dt D ˛�1

Z �1=2

�1
f .t/dt C ˛0f .0/C ˛1

Z 1

1=2

f .t/dt C E.f /

having maximum degree of exactness d . What is the value of d ?
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48. (a) Determine the quadratic spline s2.x/ on Œ�1; 1� with a single knot at x D 0

and such that s2.x/ 	 0 on Œ�1; 0� and s2.1/ D 1.
(b) Consider a function s.x/ of the form

s.x/ D c0 C c1x C c2x
2 C c3s2.x/; ci D const;

where s2.x/ is as defined in (a). What kind of function is s? Determine s
such that

s.�1/ D f�1; s.0/ D f0; s
0.0/ D f 0

0 ; s.1/ D f1;

where f�1 D f .�1/; f0 D f .0/; f 0
0 D f 0.0/; f1 D f .1/ for some

function f on Œ�1; 1�.
(c) What quadrature rule does one obtain if one approximates

R 1
�1 f .x/dx byR 1

�1 s.x/dx, with s as obtained in (b)?
49. Prove that the condition (3.68) does not depend on the choice of the basis

'1; '2; : : : ; 'n.
50. Let E be a linear functional that annihilates all polynomials of degree d � 0.

Show that the Peano kernel Kr.t/, r � d , of E vanishes for t 62 Œa; b�, where
Œa; b� is the interval of function values referenced by E .

51. Show that a linear functional E satisfying Ef D erC1f .rC1/.t/, t 2 Œa; b�,
erC1 ¤ 0, for any f 2 C rC1Œa; b�, is necessarily definite of order r if it has a
continuous Peano kernelKr .

52. Let E be a linear functional that annihilates all polynomials of degree d . Show
that none of the Peano kernelsK0, K1; : : : ; Kd�1 of E can be definite.

53. Suppose in (3.61) the function f is known to be only once continuously
differentiable, i.e., f 2 C1Œ0; 1�.

(a) Derive the appropriate Peano representation of the error functionalEf .
(b) Obtain an estimate of the form jEf j � c0kf 0k1.

54. Assume, in Simpson’s rule

Z 1

�1
f .x/dx D 1

3
Œf .�1/C 4f .0/C f .1/�C ES.f /;

that f is only of class C2Œ�1; 1� instead of class C4Œ�1; 1� as normally
assumed.

(a) Find an error estimate of the type

jES.f /j � const � kf 00k1; kf 00k1 D max�1�x�1 jf 00.x/j:

fHint: apply the appropriate Peano representation of ES.f /.g
(b) Transform the result in (a) to obtain Simpson’s formula, with remainder

estimate, for the integral
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Z cCh

c�h
g.t/dt; g 2 C2Œc � h; c C h�; h > 0:

(c) How does the estimate in (a) compare with the analogous error estimate for
two applications of the trapezoidal rule,

Z 1

�1
f .x/dx D 1

2
Œf .�1/C 2f .0/C f .1/�C ET

2 .f /‹

55. Determine the Peano kernel K1.t/ on Œa; b� of the error functional for the
composite trapezoidal rule over the interval Œa; b� subdivided into n subintervals
of equal length.

56. Consider the trapezoidal formula “with mean values,”

Z 1

0

f .x/dx D 1

2

	
1

"

Z "

0

f .x/dx C 1

"

Z 1

1�"
f .x/dx



C E.f /; 0 < " <

1

2
:

(a) Determine the degree of exactness of this formula.
(b) Express the remainder E.f / by means of its Peano kernel K1 in terms of

f 00, assuming f 2 C2Œ0; 1�.
(c) Show that the Peano kernel K1 is definite, and thus express the remainder

in the form E.f / D e2f
00.�/, 0 < � < 1.

(d) Consider (and explain) the limit cases " # 0 and " ! 1
2
.

57. (a) Use the method of undetermined coefficients to construct a quadrature
formula of the type

Z 1

0

f .x/dx D af .0/C bf .1/C cf 00.�/C E.f /

having maximum degree of exactness d , the variables being a, b, c, and � .
(b) Show that the Peano kernel Kd of the error functional E of the formula

obtained in (a) is definite, and hence express the remainder in the form
E.f / D edC1f .dC1/.�/, 0 < � < 1.

58. (a) Use the method of undetermined coefficients to construct a quadrature
formula of the type

Z 1

0

f .x/dx D � f̨ 0.0/C f̌

�
1

2

�
C f̨ 0.1/CE.f /

that has maximum degree of exactness.
(b) What is the precise degree of exactness of the formula obtained in (a)?
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(c) Use the Peano kernel of the error functionalE to expressE.f / in terms of
the appropriate derivative of f reflecting the result of (b).

(d) Transform the formula in (a) to one that is appropriate to evaluateR cCh
c g.t/dt , and then obtain the corresponding composite formula forR b
a g.t/dt , using n subintervals of equal length, and derive an error term.

Interpret your result.
59. Consider a quadrature rule of the form

Z 1

0

x˛f .x/dx � Af .0/C B

Z 1

0

f .x/dx; ˛ > �1; ˛ ¤ 0:

(a) Determine A and B such that the formula has degree of exactness d D 1.
(b) Let E.f / be the error functional of the rule determined in (a). Show that

the Peano kernelK1.t/ D E.x/..x� t/C/ ofE is positive definite if ˛ > 0,
and negative definite if ˛ < 0.

(c) Based on the result of (b), determine the constant e2 in E.f / D e2f
00.�/,

0 < � < 1.

60. (a) Consider a quadrature formula of the type

.�/
Z 1

0

f .x/dx D f̨ .x1/C ˇŒf .1/ � f .0/�C E.f /

and determine ˛; ˇ; x1 such that the degree of exactness is as large as
possible. What is the maximum degree attainable?

(b) Use interpolation theory to obtain a bound on jE.f /j in terms of
kf .r/k1 D max0�x�1 jf .r/.x/j for some suitable r .

(c) Adapt (�), including the bound on jE.f /j, to an integral of the formR cCh
c

f .t/dt , where c is some constant and h > 0.

(d) Apply the result of (c) to develop a composite quadrature rule for
R b
a
f .t/dt

by subdividing Œa; b� into n subintervals of equal length h D b�a
n

. Find a
bound for the total error.

61. Construct a quadrature rule
Z 1

0

x˛f .x/dx � a1

Z 1

0

f .x/dx C a2

Z 1

0

xf .x/dx; 0 < ˛ < 1;

(a) which is exact for all polynomials p of degree � 1;
(b) which is exact for all f .x/ D x1=2p.x/, p 2 P1.

62. Let

a D x0 < x1 < x2 < � � � < xn�1 < xn D b; xk D a C kh; h D b � a

n
;

be a subdivision of [a; b] into n equal subintervals.
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(a) Derive an elementary quadrature formula for the integral
R xkC1

xk
f .x/ dx,

including a remainder term, by approximating f by the cubic Hermite in-
terpolation polynomial p3.f I xk; xk; xkC1; xkC1I x/ and then integrating
over [xk; xkC1]. Interpret the result.

(b) Develop the formula obtained in (a) into a composite quadrature rule, with
remainder term, for the integral

R b
a
f .x/dx.

63. (a) Given a function g.x; y/ on the unit square 0 � x � 1, 0 � y � 1,
determine a “bilinear polynomial” p.x; y/ D a C bx C cy C dxy such
that p has the same values as g at the four corners of the square.

(b) Use (a) to obtain a cubature formula for
R 1
0

R 1
0 g.x; y/dxdy that involves

the values of g at the four corners of the unit square. What rule does this
reduce to if g is a function of x only (i.e., does not depend on y)?

(c) Use (b) to find a “composite cubature rule” for
R 1
0

R 1
0
g.x; y/dxdy involv-

ing the values gi;j D g.ih; jh/, i; j D 0; 1; : : : ; n, where h D 1=n.
64. (a) Let d1.h/ D .f .h/ � f .0//=h, h > 0, be the difference quotient of f

at the origin. Describe how the extrapolation method based on a suitable
expansion of d1.h/ can be used to approximatef 0.0/ to successively higher
accuracy.

(b) Develop a similar method for calculating f 00.0/, based on d2.h/ D Œf .h/�
2f .0/C f .�h/�=h2.

Machine Assignments

1. Let f .x/ D 1
1�	x and fi D f .ih/; i D �2;�1; 0; 1; 2. In terms of the four

backward differences

rf1 D f1 � f0; r2f1 D f1 � 2f0 C f�1;

r3f2 D f2 � 3f1 C 3f0 � f�1; r4f2 D f2 � 4f1 C 6f0 � 4f�1 C f�2;

define

en.h/ D f .n/.0/� 1

hn
rnfb nC1

2 c; n D 1; 2; 3; 4:

Try to determine the order of convergence of en.h/ as h ! 0 by printing, for
n D 1; : : : ; 4,

en.hk/ and rk WD en.hk/

en.hk�1/
; k D 1; 2; : : : ; 10;

where hk D 1

4
� 2�k , k � 0. Comment on the results.
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2. Let

f .z/ D tan z; jzj < 1

2
	:

(a) Express

ym.�/ D Re fe�im�f .x0 C rei� /g; 0 < r < 1

2
	; m D 1; 2; 3; : : :

explicitly as a function of � . fHint: use Euler’s identities sin z D .eiz �
e�iz/=.2i/, cos z D .eiz C e�iz/=2, valid for arbitrary complex z.g

(b) Obtain the analogue to (3.19) for the mth derivative and thus write f .m/.x0/

as a definite integral over Œ0; 2	�.
(c) Use Matlab to compute f .m/.0/ for m D 1 W 5 using the integral in (b) in

conjunction with the composite trapezoidal rule (cf. Sect. 3.2.1) relative to a
subdivision of Œ0; 2	� into n subintervals. Use r D 1

12
�	 , � D 1; 2; 3; 4; 5,

and n D 5 W 5 W 50. For each m print a table whose columns contain r ,
n, the trapezoidal approximation t

.m/
n , and the (absolute) error, in this

order. Comment on the results; in particular, try to explain the convergence
behavior as r increases and the difference in behavior for n even and n
odd. fHint: prepare plots of the integrand; you may use the Matlab routine
spline for cubic spline interpolation to do this.g

(d) Do the same as (c), but for f .m/. 7
16
	/ and r D 1

32
	 .

(e) Write and run a Matlab program for approximating f .m/.0/, m D 1 W 5, by
central difference formulae with steps h D 1; 1

5
; 1
25
; 1
125
; 1
625

. Comment on
the results.

(f) Do the same as (e), but for f .m/. 7
16
	/ and h D 1

32
	; 1

160
	; 1

800
	; 1

4000
	 .

3. Given n distinct real nodes xk D x
.n/

k , the interpolatory quadrature rule

.WNCn/
Z b

a

f .x/w.x/dx D
nX

kD1
w.n/k f .x

.n/

k /; all f 2 Pn�1;

is called a weighted (by the weight function w) Newton–Cotes formula
(cf. Sect. 3.2.2). The weights w.n/k can be generated by ng-point Gauss
integration, ng D b.n C 1/=2c, of the elementary Lagrange interpolation
polynomials (see (3.39)),

.Wn/ w.n/k D
Z b

a

`k.x/w.x/dx; `k.x/ D
nY

`D1

`¤k

x � x`
xk � x` :

This is implemented in the OPQ routine NewtCotes.m downloadable from the
web site mentioned in MA 4. For reasons of economy, it uses the barycentric
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form (see Chap. 2, Sect. 2.2.5, (2.106)) of the Lagrange polynomials and the
algorithm (ibid., (2.108)) to compute the auxiliary quantities 
.k/i . Use the

routine NewtCotes.m to explore the positivity of (WNCn), i.e., w.n/k > 0,
k D 1; 2; : : : ; n.

(a) Write a Matlab function y=posNC(n,ab,ab0,eps0), which checks
the positivity of the n-point Newton–Cotes formula with the abscissae
being the zeros of the Jacobi polynomial P .˛;ˇ/

n with parameters ˛, ˇ,
and using integration relative to the Jacobi weight function w D w.˛0;ˇ0/

with other parameters ˛0, ˇ0. The former are selected by the OPQ routine
ab=r jacobi(n,alpha,beta), from which the Jacobi abscissae can
be obtained via the OPQ function xw=gauss(n,ab) as the first column
of the n � 2 array xw. The weight function w is provided by the routine
ab0=r jacobi(floor((n+1)/2),alpha0,beta0), which allows
us to generate the required ng-point Gaussian quadrature rule by the routine
xw=gauss(ng,ab0). The input parameter eps0, needed in the routine
NewtCotes.m, is a number close to, but larger than, the machine precision
eps, for example "0 D 0:5 � 10�14. Arrange the output parameter y to
have the value 1 if all n weights of the Newton–Cotes formula (WNCn) are
positive, and the value 0 otherwise.

Use your routine for all n � N D 50, ˛0 D ˇ0 D 0;�1=2; 1=2, and
˛ D �1 C h W h W ˛C, ˇ D ˛ W h W ˇC, where ˛C D ˇC D 3; 1:5; 4 and
h D 0:05; 0:025; 0:05 for the three values of ˛0, ˇ0, respectively. Prepare
plots in which a red plus sign is placed at the point .˛; ˇ/ of the .˛; ˇ/-
plane if positivity holds for all n � N , and a blue dot otherwise. Explain
why it suffices to consider only ˇ � ˛. fHint: use the reflection formula
P
.ˇ;˛/
n .x/ D .�1/nP .˛;ˇ/

n .�x/ for Jacobi polynomials.g In a second set of
plots show the exact upper boundary of the positivity domain created in the
first plots; compute it by a bisection-type method (cf. Chap. 4, Sect. 4.3.1).
(Running the programs for N D 50 may take a while. You may want to
experiment with smaller values ofN to see how the positivity domains vary.)

(b) The plots in (a) suggest that n-point Newton–Cotes formulae are positive for
all n � N D 50 on the line 0 � ˇ D ˛ up to a point ˛ D ˛max. Use the
same bisection-type method as in (a) to determine ˛max for the three values
of ˛0, ˇ0 and for N D 20; 50; 100 in each case.

(c) Repeat (a) with ˛ D ˇ D 0;�1=2; 1=2 (Gauss–Legendre and Chebyshev
abscissae of the first and second kinds) and ˛0 D �0:95 W 0:05 W ˛C

0 , ˇ0 D
˛0 W 0:05 W ˇC

0 , where ˛C
0 D ˇC

0 D 3:5; 3; 4.
(d) Repeat (a) with ˛C D ˇC D 6; 4; 6, but for weighted .nC2/-point Newton–

Cotes formulae that contain as nodes the points ˙1 in addition to the n Jacobi
abscissae.

(e) The plots in (d) suggest that the closed .nC2/-point Newton–Cotes formulae
are positive for all n � N D 50 on some line ˛min < ˛ D ˇ < ˛max.
Determine ˛min and ˛max similarly as ˛max in (b).
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(f) Repeat (c) for the weighted closed .nC 2/-point Newton–Cotes formula of
(d) with ˛0 D �1 C h W h W ˛C

0 , ˇ0 D ˛0 W h W ˇC
0 , where ˛C

0 D ˇC
0 D

0:5;�0:2; 1 and h D 0:01; 0:01; 0:02 for the three values of ˛; ˇ.

4. Below are a number of suggestions as to how the following integrals may be
computed,

Ic D
Z 1

0

cosxp
x

dx; Is D
Z 1

0

sin xp
x

dx:

(a) Use the composite trapezoidal rule with n intervals of equal length h D 1=n,
“ignoring” the singularity at x D 0 (i.e., arbitrarily using zero as the value
of the integrand at x D 0).

(b) Use the composite trapezoidal rule over the interval Œh; 1�with n�1 intervals
of length h D 1=n in combination with a weighted Newton–Cotes rule with
weight function w.x/ D x�1=2 over the interval Œ0; h�. fAdapt the formula
(3.43) to the interval Œ0; h�.g

(c) Make the change of variables x D t2 and apply the composite trapezoidal
rule to the resulting integrals.

(d) Use Gauss–Legendre quadrature on the integrals obtained in (c).
(e) Use Gauss–Jacobi quadrature with parameters ˛ D 0 and ˇ D � 1

2
directly

on the integrals Ic and Is .

fAs a point of information, Ic D p
2	 C

�q
2
	

�
D 1:809048475800 : : : ,

Is D p
2	 S

�q
2
	

�
D 0:620536603446 : : : , whereC.x/; S.x/ are the Fresnel

integrals.g
Implement and run the proposed methods for n D 100 W 100 W 1000 in (a) and

(b), for n D 20 W 20 W 200 in (c), and for n D 1 W 10 in (d) and (e). Try to explain
the results you obtain. fTo get the required subroutines for Gaussian quadrature,
download the OPQ routines r jacobi.m and gauss.m from the web
site http://www.cs.purdue.edu/archives/2002/wxg/codes/
OPQ.html.g

5. For a natural number p let

Ip D
Z 1

0

.1 � t/pf .t/dt

be (except for the factor 1=pŠ) the pth iterated integral of f ; cf. (3.50). Compare
the composite trapezoidal rule based on n subintervals with the n-point Gauss–
Jacobi rule on Œ0; 1� with parameters ˛ D p and ˇ D 0. Take, for example,
f .t/ D tan t and p D 5 W 5 W 20, and let n D 10 W 10 W 50 in the case of
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the trapezoidal rule, and n D 2 W 2 W 10 for the Gauss rule. fSee MA 4 for
instructions on how to download routines for generating the Gaussian quadrature
rules.g

6. (a) Let hk D .b � a/=2k, k D 0; 1; 2; : : :. Denote by

Thk .f / D hk

0

@1
2
f .a/C

2k�1X

rD1
f .a C rhk/C 1

2
f .b/

1

A

the composite trapezoidal rule and by

Mhk.f / D hk

2kX

rD1
f

�
a C

�
r � 1

2

�
hk

�

the composite midpoint rule, both relative to a subdivision of Œa; b� into 2k

subintervals. Show that the first column Tk;0 of the Romberg array fTk;mg
can be generated recursively as follows:

T0;0 D b � a
2

Œf .a/C f .b/�;

TkC1;0 D 1

2
ŒTk;0 CMhk .f /�; k D 0; 1; 2; : : : :

(b) Write a Matlab function for computing
R b
a f .x/dx by the Romberg integra-

tion scheme, with hk D .b � a/=2k, k D 0; 1; : : : ; n � 1.
Formal parameters: a, b, n; include f as a subfunction.
Output variable: the n � n Romberg array T.
Order of computation: Generate T row by row; generate the trapezoidal sums
recursively as in part (a).
Program size: Keep it down to about 20 lines of Matlab code.
Output: Tk;0, Tk;k , k D 0; 1; : : : ; n � 1.

(c) Call your subroutine (with n D 10) to approximate the following integrals.

1.
Z 2

1

ex

x
dx (“exponential integral”)

2.
Z 1

0

sin x

x
dx (“sine integral”)

3.
1

	

Z 	

0

cos.yx/dx; y D 1:7

4.
1

	

Z 	

0

cos.y sin x/dx; y D 1:7

5.
Z 1

0

p
1 � x2 dx
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6.
Z 2

0

f .x/dx; f .x/ D

8
ˆ̂̂
<

ˆ̂̂
:

x; 0 � x � p
2;

p
2

2 � p
2
.2 � x/;

p
2 � x � 2

7.
Z 2

0

f .x/dx; f .x/ D

8
ˆ̂<

ˆ̂:

x; 0 � x � 3

4
;

3

5
.2� x/;

3

4
� x � 2

(d) Comment on the behavior of the Romberg scheme in each of the seven cases
in part (c).

Selected Solutions to Exercises

3. (a) The kth derivative of
Qn
iD1.x � xi / is a sum of products, each containing

n � k factors x � xi . Thus, if x D x0, each term of the sum is O.Hn�k/,
hence also the sum itself.

(b) By Lagrange interpolation, we have

f .x/ D pn.f I x/CRn.x/;

where pn.f I x/ D pn.f I x0; x1; : : : ; xnI x/, in Newton’s form, is given by

pn.f I x/ Df0 C .x � x0/Œx0; x1�f C � � �

C
n�1Y

iD0
.x � xi / � Œx0; x1; : : : ; xn�f;

and

Rn.x/ D
nY

iD0
.x � xi /

f .nC1/.�.x//
.nC 1/Š

;

assuming f 2 CnC1 in the span I of x0; x1; : : : ; xn; x. Differentiating n
times at x D x0 gives

./ f .n/.x0/ D dn

dxn
pn.f I x/

ˇ̌
ˇ̌
xDx0

CR.n/n .x0/:

Clearly,

./ dn

dxn
pn.f I x/

ˇ̌
ˇ̌
xDx0

D nŠ Œx0; x1; : : : ; xn�:
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Assuming that f 2 C2nC1.I /, we can apply Leibniz’s rule of differentiat-
ing n times the product

Rn.x/ D .x � x0/ �
(

nY

iD1
.x � xi /f

.nC1/.�.x//
.nC 1/Š

)
:

If we evaluate the result at x D x0, we get

R.n/n .x0/ D n
dn�1

dxn�1

(
nY

iD1
.x � xi /f

.nC1/.�.x//
.nC 1/Š

) ˇ̌
ˇ̌
ˇ
xDx0

:

Using Leibniz’s rule again, and the result of (a), we obtain

R.n/n .x0/ D n
dn�1

dxn�1
nY

iD1
.x � xi /

ˇ̌
ˇ̌
ˇ
xDx0

� f
.nC1/.�0/
.nC 1/Š

CO.H2/;

where �0 D �.x0/. Since

nY

iD1
.x � xi / D xn � �1x

n�1 C � � � ; �1 D
nX

iD1
xi ;

we have

dn�1

dxn�1
nY

iD1
.x � xi /

ˇ̌
ˇ̌
ˇ
xDx0

D nŠ x0 � .n � 1/Š �1 D .n � 1/Š .nx0 � �1/;

so that

.  / R.n/n .x0/ D nŠ .nx0 � �1/f
.nC1/.�0/
.nC 1/Š

CO.H2/:

Since

nx0 � �1 D
nX

iD1
.x0 � xi / D O.H/ if nx0 ¤ �1;

the assertion follows by combining (*)–(***).
(c) One has

Œx0; x1; : : : ; xn�f D 1

nŠhn
�nf0 D 1

nŠhn
rnfn:

This is proved by induction on n. We show it for the forward difference
only; for the backward difference the proof is analogous. Since the claim is
obviously true for n D 1, suppose it is true for some n. Then by definition
of divided differences, and the induction hypothesis,
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Œx0; x1; : : : ; xn; xnC1�f D Œx1; : : : ; xnC1�f � Œx0; : : : ; xn�f
xnC1 � x0

D 1

nŠhn
�nf1 ��nf0

.nC 1/h

D 1

.nC 1/ŠhnC1 �
nC1f0;

which is the claim for n C 1. Therefore, since 1
n

Pn
iD1 xi D x0 C

.nC 1/h=2 ¤ x0, we get

f .n/.x0/ D 1

hn
�nf0 CO.h/ D 1

hn
rnfn CO.h/:

14. With a slight difference in notation, one has from (2.129) of Chap. 2 that

hB0.x/ D x1 � x; x0 � x � x1I

hBk.x/ D
8
<

:
x � xk�1 if xk�1 � x � xk;

xkC1 � x if xk � x � xkC1;
k D 1; 2; : : : ; N � 1I

hBN .x/ D x � xN�1; xN�1 � x � xN :

From this, one gets, with obvious changes of variables,

Z x1

x0

B0.x/e�imxdx C
Z xN

xN�1

BN .x/e�imxdx

D h

Z 1

0

.1 � t/e�imthdt C h

Z 1

0

.1 � t/e�im.2	�th/dt

D 2h

Z 1

0

.1 � t/ cos.mth/dt;

and, for k D 1; 2; : : : ; N � 1,

Z xkC1

xk�1

Bk.x/e�imxdx

D 1

h

Z xk

xk�1

.x � xk�1/e�imxdx C 1

h

Z xkC1

xk

.xkC1 � x/e�imxdx
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D h

Z 1

0

.1 � t/e�im.xk�th/dt C h

Z 1

0

.1 � t/e�im.xkCth/dt

D 2he�imxk

Z 1

0

.1 � t/ cos.mth/dt:

Since (cf. Chap. 2, (2.132)), with fk D f .xk/,

s1.f I x/ D f0B0.x/C
N�1X

kD1
fkBk.x/C fNBN .x/;

and fN D f0, we get

1

2	

Z 2	

0

s1.f I x/e�imxdx

D 1

2	
f0

�Z x1

x0

B0.x/e
�imxdx C

Z xN

xN�1

BN .x/e
�imxdx

�

C 1

2	

N�1X

kD1
fk

Z xkC1

xk�1

Bk.x/e�imxdx

D 2h

2	

N�1X

kD0
fke�imxk

Z 1

0

.1 � t/ cos.mth/dt

D �m � 1
N

N�1X

kD0
fke�imxk ;

where

�m D 2

Z 1

0

.1� t/ cos.mth/dt :

Integration by parts yields

�m D 2

.mh/2
.1 � cosmh/ D sin2

�
1
2
mh
�

�
1
2
mh
�2 ;

hence,

�m D
	

sin.m	=N/

m	=N


2
:
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The factor �m, which modifies the composite trapezoidal sum, may be inter-
preted as an “attenuation factor,” since as m ! 1 it tends to zero, whereas
the composite trapezoidal sums, being periodic in m with period N , cycle
through N values. For a theory of attenuation factors in Fourier analysis, see
Gautschi [1971/1972].

22. (a) Since the Hermite interpolant reproducesf exactly if f 2 PnC2, the formula
has degree of exactness d D nC 2.

(b) There are 2nC3 free parameters available to make the formula exact for the
the first 2nC3 powers xr , r D 0; 1; : : : ; 2nC2. Thus, the maximum degree
of exactness is expected to be d D 2nC 2.

(c) Letting !n.x/ D Qn
kD1.x � xk/, we have, for any p 2 Pn�1,
Z 1

0

!n.x/p.x/x
2.1 � x/dx D 0;

since the integrand is a polynomial of degree � 2n C 2, and hence the
integral is equal to the quadrature sum. The latter, however, vanishes, since
the integrand vanishes together with its first derivative at x D 0 and also
vanishes at x D 1, and !n.xk/ D 0 for k D 1; 2; : : : ; n. This shows that
!n. � / D 	n. � I x2.1 � x/dx/, the Jacobi polynomial relative to the interval
Œ0; 1�, with parameters ˛ D 1; ˇ D 2.

(d) Let f .x/ 2 P2nC2. Divide f .x/ by x2.1 � x/!n.x/:
f .x/ D x2.1 � x/!n.x/q.x/C r.x/; q 2 Pn�1; r 2 PnC2:

Then
Z 1

0

f .x/dx D
Z 1

0

!n.x/q.x/x
2.1 � x/dx C

Z 1

0

r.x/dx:

By the orthogonality assumption and the fact that q 2 Pn�1, the first integral
vanishes. For the second integral, since r 2 PnC2 and the quadrature formula
is Hermite interpolatory, we have

Z 1

0

r.x/dx D a0r.0/C a1r
0.0/C

nX

kD1
wkr.xk/C b0r.1/;

and using

r.0/ D f .0/; r 0.0/ D f 0.0/; r.1/ D f .1/;

r.xk/ D f .xk/� x2k.1 � xk/!n.xk/q.xk/ D f .xk/;

since again, !n.xk/ D 0, we get

Z 1

0

f .x/dx D a0f .0/C a1f
0.0/C

nX

kD1
wkf .xk/C b0f .1/:
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This shows that the formula has degree of exactness 2nC 2.
54. (a) Putting

E.f / D
Z 1

�1
f .x/dx � 1

3
Œf .�1/C 4f .0/C f .1/�;

one has, if f 2 C2Œ�1; 1�, the Peano representation

E.f / D
Z 1

�1
K1.t/f

00.t/dt ;

where, for �1 � t � 1,

K1.t/ D E.x/..x � t/C/

D
Z 1

t

.x � t/dx � 1

3
Œ.�1 � t/C C 4.�t/C C .1 � t/C�

D 1

2
.1 � t/2 � 1

3
� 0 � 4

3

8
<

:
0 if t � 0

�t if t < 0

9
=

; � 1

3
.1 � t/

D

8
ˆ̂<

ˆ̂:

1

6
.1 � t/.1 � 3t/ if t � 0;

1

6
.1C t/.1C 3t/ if t < 0:

It can be seen that K1.�t/ D K1.t/ and K.1
3
/ D K.1/ D 0 (see figure on

the next page). Therefore, jE.f /j � kf 00k1
R 1

�1 jK1.t/jdt .
Now,

Z 1

�1
jK1.t/jdt D 2

Z 1

0

jK1.t/jdt D 2

 Z 1=3

0

K1.t/dt �
Z 1

1=3

K1.t/dt

!

D 1

3

 Z 1=3

0

.1 � t/.1 � 3t/dt C
Z 1

1=3

.1 � t/.3t � 1/dt

!

D 1

3

 Z 1=3

0

.1 � 4t C 3t2/dt C
Z 1

1=3

.�1C 4t � 3t2/dt
!

D 1

3

�
1

3
� 2

9
C 1

27

�
C 1

3

�
�1C 1

3
C 2 � 2

9
� 1C 1

27

�
D 8

81
:

Thus,

jE.f /j � 8

81
kf 00k1:



Selected Solutions to Exercises 225

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

1/3

K1(t)

t

(b) With the substitution t D c C xh, and applying (a), one obtains
Z cCh

c�h
g.t/dt D h

Z 1

�1
g.c C xh/dx

D h

3
Œg.c � h/C 4g.c/C g.c C h/�C Eh.g/;

so that

jEh.g/j � 8

81
h max�1�x�1

ˇ̌
ˇ̌ d2

dx2
g.c C xh/

ˇ̌
ˇ̌:

Since
d2

dx2
g.c C xh/ D h2g00.c C xh/, one gets

jEh.g/j � 8

81
h3kg00k1Œc�h;cCh�:

(c) The Peano kernelK1.t/ in this case is (negative) definite, namely

K1.t/ D

8
ˆ̂<

ˆ̂:

1

2
t.1C t/ if � 1 � t � 0;

�1
2
t.1 � t/ if 0 � t � 1;

giving

ET
2 .f / D f 00.�/

Z 1

�1
K1.t/dt D �1

6
f 00.�/;
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hence

jET
2 .f /j � 1

6
kf 00k1:

This is only a little worse than the bound in (a).
56. (a) An easy calculation shows that E.f / D 0 if f .x/ 	 1 and f .x/ 	 x. For

f .x/ 	 x2, one obtains E.f / D � 1
6
.1 � "/.1 � 2"/ < 0 if 0 < " < 1

2
. It

follows that d D 1.
(b) With

E.f / D
Z 1

0

f .x/dx � 1

2"

Z "

0

f .x/dx � 1

2"

Z 1

1�"
f .x/dx;

one has

K1.t/ D E.x/..x � t/C/ D
Z 1

t

.x � t/dx � 1

2"

Z "

0

.x � t/Cdx

� 1

2"

Z 1

1�"
.x � t/Cdx:

Now

Z 1

t

.x � t/dx D 1

2
.1 � t/2;

Z "

0

.x � t/Cdx D

8
<̂

:̂

0 if t > "

R "
t
.x � t/dx if 0 � t � "

D

8
<̂

:̂

0

1

2
." � t/2;

Z 1

1�"
.x � t/Cdx D

8
<

:

R 1
t
.x � t/dx if t > 1 � "

R 1
1�".x � t/dx if t � 1� "

D

8
<̂

:̂

1

2
.1 � t/2

1

2
Œ.1 � t/2 � .1 � " � t/2�

D

8
<̂

:̂

1

2
.1 � t/2

"

�
1 � t � 1

2
"

�
:

Therefore, if 0 � t � ", then

K1.t/ D 1

2
.1 � t/2 � 1

2"
� 1
2
." � t/2 � 1

2"
� "
�
1 � t � 1

2
"

�
;
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which, after some algebra, reduces to

.1/ K1.t/ D 1

2
t2
�
1 � 1

2"

�
; 0 � t � ":

If " � t � 1 � ", then

K1.t/ D 1

2
.1 � t/2 � 1

2"
� "
�
1 � t � 1

2
"

�
;

that is,

.2/ K1.t/ D �1
2
t.1 � t/C 1

4
"; " � t � 1 � ":

Finally, if t � 1 � ", then

K1.t/ D 1

2
.1 � t/2 � 1

2"
� 1
2
.1 � t/2;

that is,

.3/ K1.t/ D 1

2
.1 � t/2

�
1 � 1

2"

�
; 1 � " � t � 1:

Therefore,

.4/ E.f / D
Z 1

0

K1.t/f
00.t/dt ;

with K1 as above in (1)–(3).
(c) Since 1 � 1

2"
< 0 when 0 < " < 1

2
, it follows from (1) and (3) that

K1.t/ � 0 if 0 � t � " or 1 � " � t � 1:

For " � t � 1 � ", one has from (2) that

K1.t/ D �1
2
t.1 � t/C 1

4
" � �1

2
".1 � "/C 1

4
" D �1

4
".1� 2"/ < 0;

since 0 < " <
1

2
. Altogether, therefore,

K1.t/ � 0 for 0 � t � 1;

and K1 is negative definite. Consequently,

E.f / D e2f
00.�/; 0 < � < 1;
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with

e2 D E

�
x2

2

�
D � 1

12
.1� 2"/.1� "/;

as follows by an elementary calculation.
(d) The limit case " # 0 gives us the known results for the (ordinary) trapezoidal

formula. If " ! 1
2

, then e2 ! 0, that is, E.f / ! 0. This is consistent with
the fact that, for " ! 1

2
,

1

2

	
1

"

Z "

0

f .x/dx C 1

"

Z 1

1�"
f .x/dx



!
Z 1

0

f .x/dx:

60. (a) The remainder vanishes for the first three powers 1; x; x2 of x if

˛ D 1;

x1 C ˇ D 1

2
;

x21 C ˇ D 1

3
:

Eliminating ˇ from the last two equations gives the quadratic equation x21 �
x1 C 1

6
D 0, which has two solutions,

x1 D 1

2

�
1˙ 1p

3

�
;

both located in .0; 1/. Thus,

˛ D 1; x1 D 1

2

�
1˙ 1p

3

�
; ˇ D � 1

2
p
3
:

With these values one gets, since x1 D 1
2

� ˇ, x21 D 1
3

� ˇ, and ˇ2 D 1
12

,

E.x3/D1

4
�x31�ˇ D 1

4
�
�
1

2
� ˇ

��
1

3
� ˇ

�
�ˇ D �1

6
ˇ D ˙ 1

12

1p
3

¤ 0;

so the maximum attainable degree of exactness is d D 2.
(b) Each of the two quadrature formulae obtained in (a) (having three nodes and

degree of exactness 2) is interpolatory. Therefore, if f 2 C3Œ0; 1�, then

E.f /D
Z 1

0

Œf .x/�p2.f I 0; x1; 1I x/�dxD
Z 1

0

x.x�1/.x�x1/f
.3/.�.x//

6
dx:

There follows

jE.f /j � 1

6
� � � kf .3/k1; where � D

Z 1

0

x.1 � x/jx � x1jdx:
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The numerical factor � can be written as

� D
Z x1

0

x.1 � x/.x1 � x/dx C
Z 1

x1

x.1 � x/.x � x1/dx;

where the first integral evaluates to

1

6
x31 � 1

12
x41

and the second to
1

12
� 1

6
x1 C 1

6
x31 � 1

12
x41:

Thus,

� D 1

12
� 1

6
x1 C 1

3
x31 � 1

6
x41:

Using repeatedly the equation x21 D x1 � 1

6
, one can eliminate all higher

powers of x1:

� D 1

12
� 1

6
x1 C 1

3
x31 � 1

6
x21

�
x1 � 1

6

�

D 1

12
� 1

6
x1 C 1

36
x21 C 1

6
x31

D 1

12
� 1

6
x1 C 1

36

�
x1 � 1

6

�
C 1

6
x1

�
x1 � 1

6

�

D 1

12
� 1

6
x1 C 1

6
x21 � 1

216

D 1

12
� 1

6
x1 C 1

6

�
x1 � 1

6

�
� 1

216

D 1

12
� 1

36
� 1

216

D 11

216
:

The value of � , being independent of x1, holds for both choices of x1. Thus,

jE.f /j � 11

1296
kf .3/k:
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(c) By the work in (a),
Z cCh

c

f .t/dt D h

Z 1

0

f .c C xh/dx

D hff .c C x1h/C ˇŒf .c C h/� f .c/�g C Eh.f /.c/;

with ˇ and x1 as determined in (a). From the result in (b),

jEh.f /.c/j � 11

1296
h4kf .3/k1Œc;cCh�:

(d) Letting h D .b � a/=n; tk D a C kh; fk D f .tk/; k D 0; 1; 2; : : : ; n, we
have

Z b

a

f .t/dt D
n�1X

kD0

Z tkCh

tk

f .t/dt

D hŒf .t0 C x1h/C ˇ.f1 � f0/C f .t1 C x1h/C ˇ.f2 � f1/C � � �

C f .tn�1 C x1h/C ˇ.fn � fn�1/�C
n�1X

kD0
Eh.f /.tk/

D h

(
n�1X

kD0
f .tk C x1h/C ˇŒf .b/ � f .a/�

)
C En.f /;

where, by the result in (c),

jEn.f /j �
n�1X

kD0
jEh.f /.tk/j � 11

1296

n�1X

kD0
h4kf .3/k1Œtk ;tkC1�

� 11

1296
nh � h3

 
1

n

n�1X

kD0
kf .3/k1Œtk ;tkC1�

!

D 11

1296
.b � a/h3kf .3/k1:

63. (a) If p.x; y/ D g.x; y/ is to hold at the four corner points of the square, we
must have

a D g.0; 0/;

a C b D g.1; 0/;

a C c D g.0; 1/;

a C b C c C d D g.1; 1/:
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Solving for a; b; c, and d gives

a D g.0; 0/;

b D g.1; 0/� g.0; 0/;

c D g.0; 1/� g.0; 0/;

d D g.1; 1/� g.1; 0/� g.0; 1/C g.0; 0/:

(b) If instead of g we integrate p (as determined in (a)), we get the
approximation

Z 1

0

Z 1

0

g.x; y/dxdy � a

Z 1

0

Z 1

0

dxdy C b

Z 1

0

dy
Z 1

0

xdx

C c

Z 1

0

dx
Z 1

0

ydy C d

Z 1

0

xdx
Z 1

0

ydy D a C 1

2
b C 1

2
c C 1

4
d;

hence, substituting from (a),

Z 1

0

Z 1

0

g.x; y/dxdy � g.0; 0/C 1

2
Œg.1; 0/� g.0; 0/�

C 1

2
Œg.0; 1/ � g.0; 0/�C 1

4
Œg.1; 1/� g.1; 0/� g.0; 1/C g.0; 0/�;

that is,

Z 1

0

Z 1

0

g.x; y/dxdy � 1

4
Œg.0; 0/C g.1; 0/C g.0; 1/C g.1; 1/�:

If g.x; y/ D g.x/, this reduces to the trapezoidal rule.
(c) The grid square

Qij D f.x; y/ W ih � x � .i C 1/h; jh � y � .j C 1/hg

is mapped by

x D h.i C u/;

y D h.j C v/

onto the unit square 0 � u � 1, 0 � v � 1. Since

@.x; y/

@.u; v/
D
ˇ̌
ˇ̌h
0

0

h

ˇ̌
ˇ̌ D h2;
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we get

Z Z

Qi;j

g.x; y/dxdy D
Z 1

0

Z 1

0

g.h.i C u/; h.j C v// � h2dudv

� h2

4
Œgi;j C giC1;j C gjC1;i C gjC1;jC1�:

Summing over all grid squares gives

Z 1

0

Z 1

0

g.x; y/dxdy � h2

8
<

:
X

.i;j /2S
gi;j C 1

2

X

.i;j /2B
gi;j C 1

4

X

.i;j /2C
gi;j

9
=

; ;

where S, B, C denote, respectively, the sets of interior grid points, interior
boundary points, and (four) corner points.

Selected Solutions to Machine Assignments

3.(a) PROGRAMS

%MAIII_3A Boundary of positivity domain
%
N=50;
eps0=.5e-14;
[abound,bbound]=posdomainNC(N);
ab0=r_jacobi(floor((N+1)/2));
%ab0=r_jacobi(floor((N+1)/2),-1/2);
%ab0=r_jacobi(floor((N+1)/2),1/2);
ib=find(bbound-abound);
for i=1:size(ib,1)
ap(i)=abound(i);
bhigh=bbound(i); blow=abound(i);
while bhigh-blow>.5e-5

bm=(bhigh+blow)/2;
ab=r_jacobi(N,abound(i),bm);
y=1;
for n=1:N

pos=posNC(n,ab,ab0,eps0);
if pos==0
y=0;
break

end
end
if y==0

bhigh=bm;
else

blow=bm;
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end
end
bp(i)=bm;

end
figure
hold on
plot(ap,bp)
axis(’square’)
plot([-1 3],[-1 3])
%plot([-1 1.5],[-1 1.5])
%plot([-1 4],[-1 4])
hold off

% POSDOMAINNC
%
% Positivity domain for Newton-Cotes formulae with
% Jacobi abscissae and integration relative to the
% weight function 1 and Chebyshev weight functions
% of the first and second kind.
%
function [abound,bbound]=posdomainNC(N)
hold on
abound=zeros(80,1); bbound=zeros(80,1);
%abound=zeros(100,1); bbound=zeros(100,1);
%abound=zeros(100,1); bbound=zeros(100,1);
eps0=.5e-14; i=0;
for a=-.95:.05:3
%for a=-.975:.025:1.5
%for a=-.95:.05:4
i=i+1; abound(i)=a; k=0;
for b=a:.05:3

% for b=a:.025:1.5
% for b=a:.05:4

ab=r_jacobi(N,a,b);
ab0=r_jacobi(floor((N+1)/2));

% ab0=r_jacobi(floor((N+1)/2),-1/2);
% ab0=r_jacobi(floor((N+1)/2),1/2);

y=1;
for n=1:N

pos=posNC(n,ab,ab0,eps0);
if pos==0
y=0;
break

end
end
if y==0

plot(a,b,’:’)
axis(’square’)
k=k+1;
if k==1, bbound(i)=b; end

else
plot(a,b,’r+’)

end
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end
end
hold off

% POSNC
%
% Positivity of the n-point Newton-Cotes formula
% with abscissae equal to the zeros of the orthogonal
% polynomial associated with the nx2 recurrence matrix
% ab and integration being with respect to the measure
% identified by the floor((n+1)/2)x2 recurrence matrix
% ab0. The input parameter eps0, required in the routine
% NewtCotes.m, is a number larger than, but close to,
% the machine precision.
%
function y=posNC(n,ab,ab0,eps0)
y=0;
xw=gauss(n,ab); zn=zeros(n,1);
w=NewtCotes(n,xw(:,1),ab0,eps0);
if w>zn, y=1; end

Why does ˇ � ˛ suffice? To simplify notation, let

pn.x/ WD P
.˛;ˇ/
n .x/; w.x/ D .1 � x/˛.1C x/ˇI

Pn.x/ D P
.ˇ;˛/
n .x/; W.x/ D .1 � x/ˇ.1C x/˛:

If x� denote the zeros of pn, and X� those of Pn, one has X� D �x� by the
reflection formula for Jacobi polynomials (see Hint). With

`�.x/ D pn.x/

.x � x�/p0
n.x�/

; L�.x/ D Pn.x/

.x � X�/P 0
n.X�/

;

there follows

W� D
Z 1

�1
L�.x/W.x/ D

Z 1

�1
Pn.x/

.x � X�/P 0
n.X�/

W.x/dx

D
Z 1

�1
.�1/npn.�x/

.x C x�/.�1/nC1p0
n.x�/

.1 � x/ˇ.1C x/˛dx

D �
Z 1

�1
pn.�x/

.x C x�/p0
n.x�/

.1 � x/ˇ.1C x/˛dx

D
Z �1

1

pn.t/

.�t C x�/p0
n.x�/

.1 � t/˛.1C t/ˇdt

D �
Z 1

�1
pn.t/

�.t � x�/p0
n.x�/

.1 � t/˛.1C t/ˇdt D w�;

showing that the two Newton–Cotes weights are the same.
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For relevant literature, see Askey and Fitch [1968], Askey [1972], [1979],
Micchelli [1980], Sottas [1982], [1988], [1989], and Gautschi [2011a,
Sect. 4.1].

In the case of constant weight function D 1, it appears that with increasing
N the slanted portion of the upper boundary of the positivity domain slightly
turns downward, and the horizontal portion slowly moves down. It is likely
that in the limit N ! 1 the slope of the slanted portion tends to 1 and
the height of the horizontal portion to 3/2, which would be consistent with a
conjecture of Askey (1979) (except for the slanted portion of the boundary).
On the line ˇ D 1:55, for example, spotchecking with a D �0:4; 0 W 0:5 W 1:5
revealed nonpositivity of the n-point Newton–Cotes formula when n D 800

(but not when n D 700).
In the case of the Chebyshev weight function of the first kind, the height of

the upper boundary is practically constant equal to 1/2 (already for N D 10

and more so for larger values of N ). This is in agreement with a result proved
by Micchelli (1980) in the case of Gegenbauer abscissae, ˛ D ˇ.

In the case of the Chebyshev weight function of the second kind, the slope
of the slanted portion of the boundary curve, as in the first case, seems to tend
(slowly) to 1, and the height of the horizontal portion to 2.5. (Cf. also the third
column in the output to MAIII 3B, which seems to confirm this, given the
slowness of convergence as N ! 1.)

(b) PROGRAM

%MAIII_3B Upper bound of Gegenbauer positivity
interval

%
f0=’%8.0f %11.6f\n’;
disp(’ N alpha_max’)
eps0=.5e-14;
ab0=r_jacobi(50);
%ab0=r_jacobi(50,-1/2);
%ab0=r_jacobi(50,1/2);
for N=[20 50 100]

ahigh=2; alow=1.5;
% ahigh=0.6; alow=0.4;
% ahigh=3.3; alow=2.6;

while ahigh-alow>.5e-6
a=(ahigh+alow)/2;
ab=r_jacobi(N,a);
y=1;
for n=1:N

pos=posNC(n,ab,ab0,eps0);
if pos==0

y=0;
break
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Chebyshev weight function of the second kind

Chebyshev weight function of the first kind

Weight function = 1
PLOTS (N=50) for 3(a)
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end
end
if y==0

ahigh=a;
else

alow=a;
end

end
fprintf(f0,N,a)

end

OUTPUT

>> MAIII_3B
weight function = 1 Chebyshev #1 Chebyshev #2

N alpha_max alpha_max alpha_max
20 1.700560 0.500000 2.863848
50 1.643718 0.500000 2.750502

100 1.617770 0.500000 2.700881
>>

(c) PROGRAMS

%MAIII_3C Boundary of positivity domain
%
N=50;
eps0=.5e-14;
[a0bound,b0bound]=posdomainNC0(N);
ab=r_jacobi(N);
%ab=r_jacobi(N,-1/2);
%ab=r_jacobi(N,1/2);
ib0=find(b0bound-a0bound);
for i=ib0(1):ib0(1)+size(ib0,1)-1
a0p(i)=a0bound(i);
b0high=b0bound(i); b0low=a0bound(i);
while b0high-b0low>.5e-5

b0m=(b0high+b0low)/2;
ab0=r_jacobi(floor((N+1)/2),a0bound(i),b0m);
y=1;
for n=1:N

pos=posNC(n,ab,ab0,eps0);
if pos==0
y=0;
break

end
end
if y==0
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b0high=b0m;
else

b0low=b0m;
end

end
b0p(i)=b0m;

end
figure
hold on
plot([a0p(ib0(1)) a0p(ib0(1))],[a0p(ib0(1))
b0p(ib0(1))])
axis(’square’)
plot(a0p(ib0(1):size(a0p,2)),b0p(ib0(1):size(b0p,2)))
plot([-1 3.5],[-1 3.5])
%plot([-1 3],[-1 3])
%plot([-1 4],[-1 4])
hold off

%POSDOMAINNC0
%
%Positivity domain for Newton-Cotes
%formulae with Gauss-Legendre and Chebyshev abscissae
%and integration relative to Jacobi weight functions.
%
function [a0bound,b0bound]=posdomainNC0(N)
hold on
a0bound=zeros(90,1); b0bound=zeros(90,1);
%a0bound=zeros(80,1); b0bound=zeros(80,1);
%a0bound=zeros(100,1); b0bound=zeros(100,1);
eps0=.5e-14; i=0;
ab=r_jacobi(N);
%ab=r_jacobi(N,-1/2);
%ab=r_jacobi(N,1/2);
for a0=-.95:.05:3.5
%for a0=-.95:.05:3
%for a0=-.95:.05:4
i=i+1; a0bound(i)=a0; k=0;
for b0=a0:.05:3.5

% for b0=a0:.05:3
% for b0=a0:.05:4

ab0=r_jacobi(floor((N+1)/2),a0,b0);
y=1;
for n=1:N

pos=posNC(n,ab,ab0,eps0);
if pos==0
y=0;
break

end
end
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if y==0
plot(a0,b0,’:’)
axis(’square’)
k=k+1;
if k==1, b0bound(i)=b0; end

else
plot(a0,b0,’r+’)

end
end

end
hold off

(d) PROGRAMS

%MAIII_3D Boundary of positivity domain
%
N=50;
eps0=.5e-14;
[abound,bbound]=posdomainNC1(N);
ab0=r_jacobi(floor((N+3)/2));
%ab0=r_jacobi(floor((N+3)/2),-1/2);
%ab0=r_jacobi(floor((N+3)/2),1/2);
ib=find(bbound-abound);
for i=ib(1):size(ib,1)
ap(i-ib(1)+1)=abound(i);
bhigh=bbound(i); blow=abound(i);
while bhigh-blow>.5e-5

bm=(bhigh+blow)/2;
ab=r_jacobi(N,abound(i),bm);
y=1;
for n=1:N

pos=posNC1(n,ab,ab0,eps0);
if pos==0
y=0;
break

end
end
if y==0

bhigh=bm;
else

blow=bm;
end

end
bp(i-ib(1)+1)=bm;

end
figure
hold on
plot(ap,bp)
axis(’square’)
plot([0 0],[0 bp(1)])
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bpf=bp(size(ib,1)-ib(1)+1);
plot([ap(size(ib,1)-ib(1)+1),bpf],[bpf,bpf])
plot([-1 6],[-1 6])
%plot([-1 4],[-1 4])
%plot([-1 6],[-1 6])
hold off

%POSDOMAINNC1
%
% Positivity domain for closed Newton-Cotes formulae
% with Jacobi abscissae and integration relative to
% the weight function 1 and Chebyshev weight functions
% of the first and second kind.
%
function [abound,bbound]=posdomainNC1(N)
hold on
abound=zeros(140,1); bbound=zeros(140,1);
%abound=zeros(100,1); bbound=zeros(100,1);
%abound=zeros(140,1); bbound=zeros(140,1);
eps0=.5e-14; i=0;
for a=-.95:.05:6
%for a=-.95:.05:4
%for a=-.95:.05:6
i=i+1; abound(i)=a; k=0;
for b=a:.05:6

% for b=a:.05:4
% for b=a:.05:6

ab=r_jacobi(N,a,b);
ab0=r_jacobi(floor((N+3)/2));

% ab0=r_jacobi(floor((N+3)/2),-1/2);
% ab0=r_jacobi(floor((N+3)/2),1/2);

y=1;
for n=1:N

pos=posNC1(n,ab,ab0,eps0);
if pos==0
y=0;
break

end
end
if y==0

plot(a,b,’:’)
axis(’square’)
k=k+1;
if k==1, bbound(i)=b; end

else
plot(a,b,’r+’)

end
end

end
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hold off

%POSNC1
%
% Positivity of the (n+2)-point Newton-Cotes formula
% with abscissae equal to +- 1 and the n zeros of the
% orthogonal polynomial associated with the nx2
% recurrence matrix ab and integration being with
% respect to the measure identified by the floor
% ((n+3)/2)x2 recurrence matrix ab0. The input
% parameter eps0, required in the routione
% NewtCotes.m, is a number larger than, but close to,
% the machine precision.
%
function y=posNC1(n,ab,ab0,eps0)
y=0;
xw=gauss(n,ab); zn=zeros(n+2,1);
xw1=[-1;xw(:,1);1];
w1=NewtCotes(n+2,xw1,ab0,eps0);
if w1>zn, y=1; end

For relevant literature, see Notaris [2002], [2003].

(e) PROGRAM

%MAIII_3E Bounds for the Gegenbauer
positivity intervals

%
f0=’%8.0f %11.6f\n’;
disp(’ N alpha_max’)
%disp(’ N alpha_min’)
eps0=.5e-14;
ab0=r_jacobi(51);
%ab0=r_jacobi(51,-1/2);
%ab0=r_jacobi(51,1/2);
for N=[20 50 100]

ahigh=4.5; alow=3.5;
% ahigh=3; alow=2.5;
% ahigh=5.3; alow=4.5;
% ahigh=.1; alow=-.1;
% ahigh=-.4; alow=-.6;
% ahigh=.6; alow=.4;

while ahigh-alow>.5e-6
a=(ahigh+alow)/2;
ab=r_jacobi(N,a);
y=1;
for n=1:N

pos=posNC1(n,ab,ab0,eps0);
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if pos==0
y=0;
break

end
end
if y==0

ahigh=a;
% alow=a;

else
alow=a;

% ahigh=a;
end

end
fprintf(f0,N,a)

end

In the case of constant weight function D 1 and Gegenbauer abscissae,
one has positivity of the closed Newton–Cotes formulae when 0 � ˛ D ˇ �
3:5 by a result of Kütz (cf. Notaris [2002, p. 144]). This is consistent with
our plot on the previous page and the output of MAIII 3E below. Also the
positivity domain proved in Notaris [2002, Theorem 2.1(a),(b)] is indeed a
small subdomain of the respective domain in our plot.

OUTPUT

>> MAIII_3E

weight function = 1 Chebyshev #1 Chebyshev #2

N alpha_min/max alpha_min/max alpha_min/max

20 0.000000 4.012030 -0.500000 2.863848 0.500000 5.152099

50 0.000000 3.841891 -0.500000 2,750502 0.500000 4.924714

100 0.000000 3.769501 -0.500000 2.700881 0.500000 4.829984

>>

(f) PROGRAMS

%MAIII_3F Boundary of positivity domain

%

N=50;

eps0=.5e-14;

[a0bound,b0bound]=posdomainNC01(N);

ab=r_jacobi(N);

%ab=r_jacobi(N,-1/2);

%ab=r_jacobi(N,1/2);

ib0=find(b0bound-a0bound);

for i=ib0(1):ib0(1)+size(ib0,1)-1

a0p(i)=a0bound(i);

b0high=b0bound(i); b0low=a0bound(i);
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Gauss–Legendre abscissae
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while b0high-b0low>.5e-5

b0m=(b0high+b0low)/2;

ab0=r_jacobi(floor((N+3)/2),a0bound(i),b0m);

y=1;

for n=1:N

pos=posNC1(n,ab,ab0,eps0);

if pos==0

y=0;

break

end

end

if y==0

b0high=b0m;

else

b0low=b0m;

end

end

b0p(i)=b0m;

end

figure

hold on

plot(a0p(ib0(1):size(a0p,2)),b0p(ib0(1):size(b0p,2)))

axis(’square’)

plot([-1 .5],[-1 .5])

%plot([-1 -.2],[-1 -.2])

%plot([-1 1],[-1 1])

hold off

%POSDOMAINNC01

%

% Positivity domain for closed Newton-Cotes formulae with

% Gauss--Legendre and Chebyshev abscissae and integration

% relative to Jacobi weight functions.

%

function [a0bound,b0bound]=posdomainNC01(N)

hold on

a0bound=zeros(150,1); b0bound=zeros(150,1);

%a0bound=zeros(80,1); b0bound=zeros(80,1);

%a0bound=zeros(100,1); b0bound=zeros(100,1);

eps0=.5e-14; i=0;

ab=r_jacobi(N);

%ab=r_jacobi(N,-1/2);

%ab=r_jacobi(N,1/2);

for a0=-.99:.01:.5

%for a0=-.99:.01:-.2

%for a0=-.98:.02:1

i=i+1; a0bound(i)=a0; k=0;

for b0=a0:.01:.5
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% for b0=a0:.01:-.2

% for b0=a0:.02:1

ab0=r_jacobi(floor((N+3)/2),a0,b0);

y=1;

for n=1:N

pos=posNC1(n,ab,ab0,eps0);

if pos==0

y=0;

break

end

end

if y==0

plot(a0,b0,’:’)

axis(’square’)

k=k+1;

if k==1, b0bound(i)=b0; end

else

plot(a0,b0,’r+’)

end

end

end

hold off

6.(a) It suffices to derive the second relation:

TkC1;0 D hkC1

8
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Mhk .f /:

(b)–(d) PROGRAM

%MAIII_6BC

%

f0=’%6.0f %19.15f %19.15f\n’;

disp(’ i T(i,1) T(i,i)’)

n=10;

a=1; b=2;

%a=0; b=1;

%a=0; b=pi;

%a=0; b=1;

%a=0; b=2;

T=romberg(a,b,n);

for i=1:n

fprintf(f0,i,T(i,1),T(i,i))

end

function T=romberg(a,b,n)

T=zeros(1:n);

h=b-a; m=1; T(1,1)=h*(f(a)+f(b))/2;

for i=2:n

h=h/2; m=2*m; mm1=m-1;

k=(1:2:mm1)’;

T(i,1)=T(i-1,1)/2+h*sum(f(a+h*k));

l=1;

for k=2:i

l=4*l;

T(i,k)=T(i,k-1)+(T(i,k-1)-T(i-1,k-1))/(l-1);

end

end

function y=f(x)

y=exp(x)./x;

%y=1;

%if x˜=zeros(size(x,1),1)

% y=sin(x)./x;

%end

%y=cos(1.7*x)/pi;

%y=cos(1.7*sin(x))/pi;

%y=sqrt(1-x.ˆ2);

%y=zeros(size(x,1),1);

%for i=1:size(x,1)
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% if x(i)<=sqrt(2)

% y(i)=x(i);

% else

% y(i)=sqrt(2)*(2-x(i))/(2-sqrt(2));

% end

%end

%y=zeros(size(x,1),1);

%for i=1:size(x,1)

% if x(i)<=3/4

% y(i)=x(i);

% else

% y(i)=3*(2-x(i))/5;

% end

%end

OUTPUT

>> MAIII_6BC

i T(i,1) T(i,i)

1 3.206404938962185 3.206404938962185 (i) Ei(2)-Ei(1)

2 3.097098826260448 3.060663455359868

3 3.068704101194839 3.059144242004954

4 3.061519689433579 3.059116836818692

5 3.059717728013521 3.059116541002761

6 3.059266861956402 3.059116539648306

7 3.059154121802282 3.059116539645955

8 3.059125935283745 3.059116539645953

9 3.059118888561571 3.059116539645952

10 3.059117126875243 3.059116539645953

>>

>> MAIII_6BC

i T(i,1) T(i,i)

1 0.920735492403948 0.920735492403948 (ii) SI(1)

2 0.939793284806177 0.946145882273587

3 0.944513521665390 0.946083004063674

4 0.945690863582701 0.946083070387223

5 0.945985029934386 0.946083070367181

6 0.946058560962768 0.946083070367183

7 0.946076943060063 0.946083070367183

8 0.946081538543152 0.946083070367183

9 0.946082687411347 0.946083070367183

10 0.946082974628235 0.946083070367183

>>

>> MAIII_6BC

i T(i,1) T(i,i)

1 0.793892626146237 0.793892626146237 (iii) sin(1.7*pi)/pi

2 -0.048556949021066 -0.329373474076833

3 -0.128279145629103 -0.143218526971000

4 -0.145813060666924 -0.151575238486816
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5 -0.150072135492423 -0.151480973833174

6 -0.151129454951574 -0.151481239834844

7 -0.151393324105836 -0.151481239647168

8 -0.151459262675203 -0.151481239647201

9 -0.151475745523767 -0.151481239647201

10 -0.151479866123815 -0.151481239647201

>>

>> MAIII_6BC

i T(i,1) T(i,i)

1 1.000000000000000 1.000000000000000 (iv) J_0(1.7)

2 0.435577752852238 0.247437003802984

3 0.397997329127638 0.394672755713868

4 0.397984859446116 0.398880460382129

5 0.397984859446110 0.397968405925570

6 0.397984859446110 0.397984921711269

7 0.397984859446110 0.397984859403064

8 0.397984859446110 0.397984859446102

9 0.397984859446109 0.397984859446109

10 0.397984859446110 0.397984859446110

>>

>> MAIII_6BC

i T(i,1) T(i,i)

1 0.500000000000000 0.500000000000000 (v) pi/4

2 0.683012701892219 0.744016935856292

3 0.748927267025610 0.772690912262104

4 0.772454786089293 0.781054541057592

5 0.780813259456935 0.783876545840612

6 0.783775605719283 0.784861687334472

7 0.784824228194921 0.785208669629317

8 0.785195198099154 0.785331191417285

9 0.785326395739308 0.785374488842346

10 0.785372788179914 0.785389793759148

>>

>> MAIII_6BC

i T(i,1) T(i,i)

1 0.000000000000000 0.000000000000000 (vi) sqrt(2)

2 1.000000000000000 1.333333333333333

3 1.353553390593274 1.480609266621545

4 1.390165042944955 1.396451590456853

5 1.408470869120796 1.415741434555130

6 1.412654727760896 1.413984394417376

7 1.413896991372851 1.414335276603458

8 1.414109407799875 1.414168137287926

9 1.414211586644613 1.414251685496006

10 1.414212593986806 1.414209909989944

>>

>> MAIII_6BC

i T(i,1) T(i,i)

1 0.000000000000000 0.000000000000000 (vii) 3/4
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2 0.600000000000000 0.800000000000000

3 0.700000000000000 0.728888888888889

4 0.750000000000000 0.769523809523810

5 0.750000000000000 0.748489262371615

6 0.750000000000000 0.750024807644598

7 0.750000000000000 0.749999901904365

8 0.750000000000000 0.750000000096088

9 0.750000000000000 0.749999999999976

10 0.750000000000000 0.750000000000000

>>

Comments

1. The Romberg scheme is effective here, since integration is over a smooth
nonperiodic function.

2. Same as (i).
3. Same as (i).
4. Romberg is worse than the trapezoidal rule, because the integrand is a

smooth periodic function with period 	 , and integration is over the full
period.

5. Romberg only slightly better than the trapezoidal rule, and both converge
slowly. The reason is the singularity at x D 1 (where the derivative is
infinite).

6. Romberg does not provide any improvement, since the derivative of f is
discontinuous at an irrational point (

p
2).

7. The trapezoidal rule, in contrast to the Romberg scheme, is exact after the
third step, because 3/4 then becomes, and remains, a meshpoint, separating
two linear pieces of f . Romberg, however, eventually catches up.



Chapter 4
Nonlinear Equations

The problems discussed in this chapter may be written generically in the form

f .x/ D 0; (4.1)

but allow different interpretations depending on the meaning of x and f . The
simplest case is a single equation in a single unknown, in which case f is a given
function of a real or complex variable, and we are trying to find values of this
variable for which f vanishes. Such values are called roots of the equation (4.1), or
zeros of the function f . If x in (4.1) is a vector, say, x D Œx1; x2; : : : ; xd �

T 2 R
d ,

and f is also a vector, each component of which is a function of d variables
x1; x2; : : : ; xd , then (4.1) represents a system of equations. It is said to be a
nonlinear system if at least one component of f depends nonlinearly on at least
one of the variables x1, x2; : : : ; xd . If all components of f are linear functions of
x1; x2; : : : ; xd , then we call (4.1) a system of linear algebraic equations, which (if
d > 1) is of considerable interest in itself, but is not discussed in this chapter. Still
more generally, (4.1) could represent a functional equation, if x is an element in
some function space and f a (linear or nonlinear) operator acting on this space. In
each of these interpretations, the zero on the right of (4.1), of course, has a different
meaning: the number zero in the first case, the zero vector in the second, and the
function identically equal to zero in the last case.

Much of this chapter is devoted to single nonlinear equations. Such equations are
often encountered in the analysis of vibrating systems, where the roots correspond
to critical frequencies (resonance). The special case of algebraic equations, where
f in (4.1) is a polynomial, is also of considerable importance and merits special
treatment. Systems of nonlinear equations are briefly considered at the end of the
chapter.

W. Gautschi, Numerical Analysis, DOI 10.1007/978-0-8176-8259-0 4,
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4.1 Examples

4.1.1 A Transcendental Equation

Nonalgebraic equations are referred to as being “transcendental.” An example is

cos x coshx � 1 D 0 (4.2)

and is typical for equations arising in problems of resonance. Before one starts
computing roots, it is helpful to gather some qualitative properties about them:
are there any symmetries among the roots? How many roots are there? Where
approximately are they located? With regard to symmetry, one notes immediately
from (4.2) that the roots are located symmetrically with respect to the origin: if ˛ is
a root, so is �˛. Also, ˛ D 0 is a trivial root (which is uninteresting in applications).
It suffices therefore to consider positive roots.

A quick way to get insight into the number and location of roots of (4.2) is to
divide the equation by cosx and to rewrite it in the form

coshx D 1

cosx
: (4.3)

No roots are being lost by this transformation, since clearly cosx ¤ 0 at any root
x D ˛. Now one graphs the function on the right and the function on the left and
observes where the two graphs intersect. The respective abscissae of intersection are
the desired (real) roots of (4.2). This is illustrated in Fig. 4.1 (not drawn to scale).
It is evident from this figure that there are infinitely many positive roots. Indeed,
each interval Œ.2n � 1

2
/	; .2n C 1

2
/	�, n D 1; 2; 3; : : : ; has exactly two roots,

˛n < ˇn, with ˛n rapidly approaching the left endpoint, and ˇn the right endpoint,
as n increases. These account for all positive roots and thus, by symmetry, for all
nonvanishing real roots. In applications, it is likely that only the smallest positive
root, ˛1, will be of interest.

4.1.2 A Two-Point Boundary Value Problem

Here we are looking for a function y 2 C2Œ0; 1� satisfying the differential equation

y00 D g.x; y; y0/; 0 � x � 1 (4.4)

and the boundary conditions

y.0/ D y0; y.1/ D y1; (4.5)
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Fig. 4.1 Graphical interpretation of (4.3)

where g is a given (typically nonlinear) function on Œ0; 1� � R � R, and y0, y1 are
given numbers. At first sight, this does not look like a problem of the form (4.1), but
it can be reduced to it if one introduces the associated initial value problem

u00 D g.x; u; u0/; 0 � x � 1;

u.0/ D y0; u0.0/ D s; (4.6)

where s (for “slope”) is an unknown to be determined. Suppose, indeed, that for
each s, (4.6) has a unique solution that exists on the whole interval [0,1]. Denote it
by u.x/ D u.xI s/. Then problem (4.4), (4.5) is equivalent to problem

u.1I s/� y1 D 0 (4.7)

in the sense that to each solution of (4.7) there corresponds a solution of (4.4), (4.5)
and vice versa (cf. Chap. 7, Sect. 7.1.2). Thus, by defining

f .s/ WD u.1I s/� y1; (4.8)

we have precisely a problem of the form (4.1). It is to be noted, however, that f .s/
is not given explicitly as a function of s; rather, to evaluate f .s/ for any s, one has
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to solve the initial value problem (4.6) over the whole interval [0,1] to find the value
of u.xI s/ at x D 1, and hence of f .s/ in (4.8).

A very natural way to go about solving (4.4), (4.5) is to evaluate f .s/ for some
initial guess s. If f .s/ is, say, positive, we lower the value of s until we find one
for which f .s/ is negative. Then we have two slopes s: one that “overshoots” the
target and one that “undershoots” it. We now take as our next aim the average
of these slopes and “shoot” again. Depending on whether we hit above the target
or below, we discard the first or second initial slope and continue to repeat the
same procedure. In the terminology of boundary value problems, this is called the
shooting method. To shoot is tantamount to solving an initial value problem for a
second-order differential equation, which in fact is the equation of the trajectory a
bullet would traverse if it were fired from a gun. In the terminology of this chapter,
it is called the bisection method (cf. Sect. 4.3.1).

4.1.3 A Nonlinear Integral Equation

Suppose we want to find a solution y 2 C Œ0; 1� of the integral equation

y.x/ �
Z 1

0

K.x; t/f .t; y.t//dt D a.x/; 0 � x � 1; (4.9)

where K , the “kernel” of the equation, is a given (integrable) function on Œ0; 1� �
Œ0; 1�, f a given function on Œ0; 1� � R, typically nonlinear in the second argument,
and a also a given function on [0, 1]. One way to approximately solve (4.9) is to
approximate the kernel by a degenerate kernel,

K.x; t/ � kn.x; t/; kn.x; t/ D
nX

iD1
ci .t/	i .x/: (4.10)

We may think of the degenerate kernel as coming from truncating (to n terms) an
infinite expansion ofK.x; t/ in a system of basis functions f	i .x/g, with coefficients
ci depending only on t . Replacing K in (4.9) by kn then yields an approximate
solution yn, which is to satisfy

yn.x/ �
Z 1

0

kn.x; t/f .t; yn.t//dt D a.x/; 0 � x � 1: (4.11)

If we substitute (4.10) into (4.11) and define

˛i D
Z 1

0

ci .t/f .t; yn.t//dt; i D 1; 2; : : : ; n; (4.12)
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we can write yn in the form

yn.x/ D a.x/C
nX

iD1
˛i	i .x/: (4.13)

All that remains to be done is to compute the coefficients ˛i in this representation.
It is at this point where one is led to a system of nonlinear equations. Indeed, by
(4.12), the ˛i must satisfy

˛i �
Z 1

0

ci .t/f .t; a.t/C
nX

jD1
˛j 	j .t//dt D 0; i D 1; 2; : : : ; n; (4.14)

where the left-hand sides are functions fi of ˛1; ˛2; : : : ; ˛n which can be evaluated
by numerical integration. It is seen how techniques of approximation (to obtain
kn) discussed in Chap. 2, and techniques of integration (to compute the integrals
in (4.14) discussed in Chap. 3, usefully combine to provide an approximate solution
of (4.9).

4.1.4 s-Orthogonal Polynomials

In Ex. 20(b) of Chap. 3 we encountered an instance (s D 1) of “power orthogonal-
ity,” that is, a (monic) polynomial 	n of degree n satisfying

Z

R

Œ	n.t/�
2sC1p.t/d
.t/ D 0; all p 2 Pn�1: (4.15)

This is called an s-orthogonal polynomial relative to the (positive) measure d
. We
can reinterpret power orthogonality as ordinary orthogonality

.	n; p/d
sn WD
Z

R

	n.t/p.t/	
2s
n .t/d
.t/ D 0;

but relative to the (positive) measure d
sn.t/ D 	2sn .t/d
.t/ depending on 	n. Thus,
orthogonality is defined implicitly. The point, however, is that if we denote by
f	k;ngnkD0 the first nC1 orthogonal polynomials relative to d
sn, we have 	n D 	n;n,
and we can formally generate 	n;n by a three-term recurrence relation:

	kC1;n.t/ D .t � ˛k/	k;n � ˇk	k�1;n; k D 0; 1; : : : ; n � 1; (4.16)

where 	�1;n.t/ D 0, 	0;n.t/ D 1. The coefficients ˛0; ˛1; : : : ; ˛n�1; ˇ0, ˇ1, : : : ;
ˇn�1 are unknown and must be determined. Here is how a system of 2n nonlinear
equations can be constructed for them:
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From Chap. 2, (2.40) and (2.41), one has

˛k D .t	k;n; 	k;n/d
sn
.	k;n; 	k;n/d
sn

; k D 0; 1; : : : ; n � 1;

ˇ0 D .1; 1/d
sn ; ˇk D .	k;n; 	k;n/d
sn
.	k�1;n; 	k�1;n/d
sn

; k D 1; : : : ; n � 1:

Consequently, clearing denominators,

f0 WD ˇ0 �
Z

R

	2sn;n.t/d
.t/ D 0;

f2�C1 WD
Z

R

.˛� � t/	2�;n.t/	
2s
n;n.t/d
.t/ D 0; � D 0; 1; : : : ; n � 1;

f2� WD
Z

R

Œˇ�	
2
��1;n.t/ � 	2�;n.t/�	2sn;n.t/d
.t/ D 0; � D 1; : : : ; n � 1: (4.17)

Each of the 	�;n, � D 1; 2; : : : ; n; depends on ˛0; : : : ; ˛��1Iˇ1; : : : ; ˇ��1 via the
three-term recurrence relation (4.16). Therefore, we have 2n equations depending
nonlinearly on the 2n unknowns ˛0; : : : ; ˛n�1Iˇ0; : : : ; ˇn�1:

f .�/ D 0; �T D Œ˛0; : : : ; ˛n�1Iˇ0; : : : ; ˇn�1�:

Since the components of f are integrals of polynomials of degree at most
2.sC1/n�1, they can be computed exactly by an .sC1/n-point Gauss quadrature
rule relative to the measure d
 (cf. MA 9).

4.2 Iteration, Convergence, and Efficiency

Even the simplest of nonlinear equations – for example, algebraic equations – are
known to not admit solutions that are expressible rationally in terms of the data. It is
therefore impossible, in general, to compute roots of nonlinear equations in a finite
number of arithmetic operations. What is required is an iterative method, that is, a
procedure that generates an infinite sequence of approximations, fxng1

nD0, such that

lim
n!1 xn D ˛ (4.18)
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for some root ˛ of the equation. In case of a system of equations, both xn and ˛ are
vectors of appropriate dimension, and convergence is to be understood in the sense
of componentwise convergence.

Although convergence of an iterative process is certainly desirable, it takes more
than just convergence to make it practical. What one wants is fast convergence. A
basic concept to measure the speed of convergence is the order of convergence.

Definition 4.2.1. Linear convergence. One says that xn converges to ˛ (at least)
linearly if

jxn � ˛j � "n; (4.19)

where f"ng is a positive sequence satisfying

lim
n!1

"nC1
"n

D c; 0 < c < 1: (4.20)

If (4.19) and (4.20) hold with the inequality in (4.19) replaced by an equality,
then c is called the asymptotic error constant.

The phrase “at least” in this definition relates to the fact that we have only
inequality in (4.19), which in practice is all we can usually ascertain. So, strictly
speaking, it is the bounds "n that converge linearly, meaning that eventually (e.g.,
for n large enough) each of these error bounds is approximately a constant fraction
of the preceding one.

For linearly convergent sequences there is a simple device, called Aitken’s �2-
process, that can be used to speed up convergence. One defines

x0
n D xn � .�xn/

2

�2xn
; (4.21)

where �xn D xnC1 � xn, �2xn D �.�xn/ D xnC2 � 2xnC1 C xn. The sequence
fx0
ng then converges faster than fxng in the sense that

x0
n � ˛
xn � ˛ ! 0 as n ! 1; (4.22)

where ˛ D limn!1 xn (cf. Ex. 6).

Definition 4.2.2. Convergence of order p. One says that xn converges to ˛ with (at
least) order p � 1 if (4.19) holds with

lim
n!1

"nC1
"
p
n

D c; c > 0: (4.23)

(If p D 1, one must assume, in addition, c < 1.)

Thus, convergence of order 1 is the same as linear convergence, whereas
convergence of order p > 1 is faster. Note that in this latter case there is no
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restriction on the constant c: once "n is small enough, it will be the exponent p
that takes care of convergence. The constant c is again referred to as the asymptotic
error constant if we have equality in (4.19).

The same definitions apply also to vector-valued sequences; one only needs to
replace absolute values in (4.19) by (any) vector norm.

The classification of convergence with respect to order is still rather crude, as
there are types of convergence that “fall between the cracks.” Thus, a sequence f"ng
may converge to 0 more slowly than linearly, for example, such that c D 1 in (4.20).
We may call this type of convergence sublinear. Likewise, c D 0 in (4.20) gives rise
to superlinear convergence, if (4.23) does not hold for any p > 1 (cf. also Ex. 4).

It is instructive to examine the behavior of "n if instead of the limit relations
(4.20) and (4.23) we had strict equality from some n on, say,

"nC1
"
p
n

D c; n D n0; n0 C 1; n0 C 2; : : : : (4.24)

For n0 large enough, this is almost true. A simple induction argument then shows
that

"n0Ck D c
pk�1
p�1 "p

k

n0
; k D 0; 1; 2; : : : ; (4.25)

which certainly holds for p > 1, but also for p D 1 in the limit as p # 1:

"n0Ck D ck"n0; k D 0; 1; 2; : : : .p D 1/: (4.26)

Assuming then "n0 sufficiently small so that the approximation xn0 has several
correct decimal digits, we write "n0Ck D 10�ık "n0 . Then ık , according to (4.19),
approximately represents the number of additional correct decimal digits in the
approximation xn0Ck (as compared to xn0). Taking logarithms in (4.26) and (4.25)
gives

ık D

8
ˆ̂<

ˆ̂:

k log
1

c
if p D 1;

pk
	
1 � p�k

p � 1
log

1

c
C .1 � p�k/ log

1

"n0



if p > 1I

hence, as k ! 1,

ık 
 C1 k .p D 1/; ık 
 Cpp
k .p > 1/; (4.27)

where C1 D log 1
c
> 0 if p D 1 and Cp D 1

p�1 log 1
c

C log 1
"n0

. (We assume here
that n0 is large enough, and hence "n0 small enough, to have Cp > 0.) This shows
that the number of correct decimal digits increases linearly with k, when p D 1, but
exponentially when p > 1. In the latter case, ıkC1=ık 
 p, meaning that ultimately
(for large k) the number of correct decimal digits increases, per iteration step, by a
factor of p.
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If each iteration step requires m units of work (a “unit of work” typically is the
work involved in computing a function value or a value of one of its derivatives),
then the efficiency index of the iteration may be defined by limk!1ŒıkC1=ık�1=m D
p1=m. It provides a common basis on which to compare different iterative methods
with one another (cf. Ex. 7). Methods that converge linearly have efficiency index 1.

Practical computation requires the employment of a stopping rule that terminates
the iteration once the desired accuracy is (or is believed to be) attained. Ideally, one
stops as soon as the absolute value (or norm) of the error xn � ˛ is smaller than a
prescribed error tolerance. Since ˛ is not known, one commonly replaces xn � ˛ by
xn � xn�1 and requires

kxn � xn�1k � tol; (4.28)

where

tol D kxnk�r C �a (4.29)

with �r, �a prescribed tolerances. As a safety measure, one might require (4.28) not
just for one but for a few consecutive values of n. Choosing �r D 0 or �a D 0 will
make (4.29) an absolute resp. relative error tolerance. It is prudent, however, to use
a “mixed error tolerance,” say, �r D �a D �. Then, if kxnk is small or moderately
large, one effectively controls the absolute error, whereas for kxnk very large, it is
in effect the relative error that is controlled.

4.3 The Methods of Bisection and Sturm Sequences

Both these methods generate a sequence of nested intervals Œan; bn�, n D
0; 1; 2; : : : ; whereby each interval is guaranteed to contain at least one root of
the equation. As n ! 1, the length of these intervals tends to 0, so that in the limit
exactly one (isolated) root is captured. The first method applies to any equation (4.1)
with f a continuous function, but has no built-in control of steering the iteration to
any particular (real) root if there is more than one. The second method does have
such a control mechanism, but applies only to a restricted class of equations, for
example, the characteristic equation of a symmetric tridiagonal matrix.

4.3.1 Bisection Method

We assume that two numbers a; b with a < b are known such that

f 2 C Œa; b�; f .a/ < 0; f .b/ > 0: (4.30)
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What is essential here is that f has opposite signs at the endpoints of Œa; b�; the
particular sign combination in (4.30) is not essential as it can always be obtained,
if necessary, by multiplying f by �1. Assumptions (4.30), in particular, guarantee
that f has at least one 0 in .a; b/.

By repeatedly bisecting the interval and discarding endpoints in such a manner
that the sign property in (4.30) remains preserved, it is possible to generate a
sequence of nested intervals whose lengths are continuously halved and each of
which contains a zero of f .

Specifically, the procedure is as follows. Define a1 D a, b1 D b. Then

for n D 1; 2; 3; : : : do

666664

xn D 1
2
.an C bn/

if f .xn/ < 0 then anC1 D xn; bnC1 D bn else

anC1 D an; bnC1 D xn:

Since bn � an D 2�.n�1/.b � a/, n D 1; 2; 3; : : :, and xn is the midpoint of
Œan; bn�, if ˛ is the root eventually captured, we have

jxn � ˛j � 1

2
.bn � an/ D b � a

2n
: (4.31)

Thus, (4.19) holds with "n D 2�n.b � a/ and

"nC1
"n

D 1

2
; all n: (4.32)

This shows that the bisection method converges (at least) linearly with asymp-
totic error constant (for the bound "n) equal to 1

2
.

Given an (absolute) error tolerance tol > 0, the error in (4.31) will be less than
or equal to tol if

b � a

2n
� tol:

Solved explicitly for n, this will be satisfied if

n D
&

log b�a
tol

log 2

'
; (4.33)

where dxe denotes the “ceiling” of x (i.e., the smallest integer � x). Thus, we know
a priori how many steps are necessary to achieve a prescribed accuracy.
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It should be noted that when f .xn/ approaches the level of machine precision, its
sign may be computed incorrectly, hence the wrong half of the current interval may
be chosen. Normally, this should be of little concern since by this time, the interval
has already become sufficiently small. In this sense, bisection is a method that is
robust at the level of machine precision. Problems may occur when f is very flat
near the root ˛, in which case, however, the root is numerically not well determined
(cf. MA 1).

When implementing the procedure on a computer, it is clearly unnecessary to
provide arrays to store an, bn, xn; one simply keeps overwriting. Assuming a and b
have been initialized and tol assigned, one could use the following Matlab program
(in symbolic/variable-precision mode to allow for high accuracies):

%SBISEC Symbolic bisection method
%
function [ntol,x]=sbisec(dig,a,b,tol)
ntol=ceil(log((b-a)/tol)/log(2));
digits(dig);
a=vpa(a); b=vpa(b);
for n=1:ntol
x=vpa((a+b)/2);
fx=subs(f(x));
if fx<0

a=x;
else

b=x;
end

end

function y=f(x)
y=cos(x)*cosh(x)-1;

As an example, we run the program to compute the smallest positive root of (4.2)
that is, of f .x/ D 0 with f .x/ D cosx coshx � 1 (see the subfunction appended
to sbisec.m). By taking a D 3

2
	 , b D 2	 (cf. Fig. 4.1), we enclose exactly

one root, ˛1, from the start, and bisection is guaranteed to converge to ˛1. This
is implemented in the program TABLE4 3 1.m for tolerances tol D 1

2
� 10�7,

1
2

� 10�15, and 1
2

� 10�33; the results, rounded to the appropriate number of digits,

%TABLE4_3_1 Bisection method to solve Eq.(4.2)
%
a=3*pi/2; b=2*pi; dig=35;
for tol=[.5e-7 .5e-15 .5e-33]
[n,x]=sbisec(dig,a,b,tol)

end
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Table 4.1 The bisection method applied to (4.2)

n ˛1

25 4.7300408
52 4.730040744862704
112 4.730040744862704026024048100833885

are shown in Table 4.11. As can be seen, bisection requires a fair amount of work
(over a 100 iterations) to obtain ˛1 to high precision. Had we run the program with
initial interval Œa; b�, a D 3

2
	 , b D 4	 , which contains three roots, we would have

converged to the third root, ˛2, with about the same amount of work.

4.3.2 Method of Sturm Sequences

There are situations in which it is desirable to be able to select one particular
root among many and have the iterative scheme converge to it. This is the case,
for example, in orthogonal polynomials, where we know that all zeros are real
and distinct (cf. Chap. 3, Sect. 3.2.3(a)). It may well be that we are interested in
the second-largest or third-largest zero and should be able to compute it without
computing any of the others. This is indeed possible if we combine bisection with
the theorem of Sturm.2

Thus, consider
f .x/ D 	d .x/; (4.34)

where 	d is a polynomial of degree d orthogonal with respect to some positive mea-
sure. We know (cf. Chap. 3, Sect. 3.2.3(e)) that 	d is the characteristic polynomial
of a symmetric tridiagonal matrix and can be computed recursively by a three-term
recurrence relation

	0.x/ D 1; 	1.x/ D x � ˛0;
	kC1.x/ D .x � ˛k/	k.x/ � ˇk	k�1.x/; k D 1; 2; : : : ; d � 1; (4.35)

with all ˇk positive. Recursion (4.35) not only is useful to compute 	d .x/ for any
fixed x, but also has the following interesting property due to Sturm: Let �.x/ be
the number of sign changes (zeros do not count) in the sequence of numbers

1The 33-digit result given in the first edition of this text is erroneous, being accurate only to 19
digits after the decimal point.
2Jacques Charles François Sturm(1803–1855), a Swiss analyst and theoretical physicist of Alsatian
parentage, is best known for his theorem on Sturm sequences, discovered in 1829, and his theory
of Sturm–Liouville differential equations, published in 1834, which earned him the Grand Prix des
Sciences Mathématiques. He also contributed significantly to differential and projective geometry.
A member of the French Academy of Sciences since 1836, he succeeded Poisson in the chair of
mechanics at the École Polytechnique in Paris in 1839.
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Fig. 4.2 Sturm’s theorem

	d .x/; 	d�1.x/; : : : ; 	1.x/; 	0.x/: (4.36)

Then, for any two numbers a; b with a < b, the number of real zeros of 	d in the
interval a < x � b is equal to �.a/ � �.b/.

Since 	k.x/ D xk C � � � , it is clear that �.�1/ D d , �.C1/ D 0, so that
indeed the number of real zeros of 	d is �.�1/ � �.C1/ D d . Moreover, if
�1 > �2 > � � � > �d denote the zeros of 	d in decreasing order, we have the behavior
of �.x/ as shown in Fig. 4.2.

It is now easy to see that

�.x/ � r � 1 iff x � �r : (4.37)

Indeed, suppose that x � �r . Then f#zeros � xg � d C 1� r ; hence, by Sturm’s
theorem, �.�1/ � �.x/ D d � �.x/ D f#zeros � xg � d C 1 � r ; that is,
�.x/ � r � 1. Conversely, if �.x/ � r � 1, then, again by Sturm’s theorem, f#zeros
� xg = d � �.x/ � d C 1 � r , which implies x � �r (cf. Fig. 4.2).

The basic idea now is to control the bisection process not, as before, by checking
the sign of 	d .x/, but rather, by checking the inequality (4.37) to see whether we
are on the right or left side of the zero �r . To initialize the procedure, we need
two values a1 D a, b1 D b such that a < �d and b > �1. These are trivially
obtained as the endpoints of the interval of orthogonality for 	d , if it is finite. More
generally, one can apply Gershgorin’s theorem3 to the Jacobi matrix Jd associated
with (4.35) (cf. Chap. 3, Sect. 3.2.3(e)) by recalling that the zeros of 	d are precisely
the eigenvalues of Jd . In this way, a can be chosen to be the smallest and b the
largest of the numbers ˛0 ˙ p

ˇ1, ˛1 ˙ .
p
ˇ1 +

p
ˇ2/; : : : ; ˛d�2˙ .

p
ˇd�2 +p

ˇd�1/, ˛d�1˙p
ˇd�1. The method of Sturm sequences then proceeds as follows,

for any given r with 1 � r � d :

for n D 1; 2; 3; : : : do

666664

xn D 1
2
.an C bn/

if �.xn/ > r � 1 then anC1 D xn; bnC1 D bn else

anC1 D an; bnC1 D xn:

3Gershgorin’s theorem states that the eigenvalues of a matrix A D Œaij � of order d are located in
the union of the disks fz 2 C W jz � aii j � rig, i D 1; 2; : : : d , where ri D P

j¤i jaij j.
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Since initially �.a/ D d > r � 1, �.b/ D 0 � r � 1, it follows by construction that

�.an/ > r � 1; �.bn/ � r � 1; all n D 1; 2; 3; : : : ; (4.38)

meaning that �r 2 Œan; bn� for all n D 1; 2; 3; : : : : Moreover, as in the bisection
method, bn � an D 2�.n�1/.b � a/, so that jxn � �r j � "n with "n D 2�n.b � a/.
The method converges (at least) linearly to the root �r . A computer implementation
can be modeled after the one for the bisection method by modifying the if--else
statement appropriately.

4.4 Method of False Position

As in the method of bisection, we assume two numbers a < b such that

f 2 C Œa; b�; f .a/f .b/ < 0 (4.39)

and generate a sequence of nested intervals Œan; bn�, n D 1; 2; 3; : : : ; with a1 D a,
b1 D b, such that f .an/f .bn/ < 0. Unlike the bisection method, however, we
are not taking the midpoint of Œan; bn� to determine the next interval, but rather the
solution x D xn of the linear equation

p1.f I an; bnI x/ D 0; (4.40)

where p1.f I an; bnI � / is the linear interpolant of f at an and bn. This would appear
to be more flexible than bisection, as xn will come to lie closer to the endpoint at
which jf j is smaller. Also, if f is a linear function, we obtain the root in one step
rather than in an infinite number of steps. This explains the somewhat strange name
given to this method (cf. Notes to Section 4.4).

More explicitly, the method proceeds as follows: define a1 D a, b1 D b. Then,

for n D 1; 2; 3; : : : do

666664

xn D an � an�bn
f .an/�f .bn/ f .an/

if f .xn/f .an/ > 0 then anC1 D xn; bnC1 D bn else

anC1 D an; bnC1 D xn:

One may terminate the iteration as soon as bn � an � tol or jf .xn/j � tol, where
tol is a prescribed error tolerance.

As in the bisection method, when implementing the method on a computer, the a
and b can be overwritten. On the other hand, it is no longer known a priori how many
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iterations it takes to achieve the desired accuracy. It is prudent, then, to put a limit
on the number of iterations. An implementation in (symbolic/variable-precision)
Matlab may look as follows.

%SFALSEPOS Symbolic method of false position
%
function [n,x]=sfalsepos(dig,a,b,tol,nmax)
n=0;
digits(dig);
a=vpa(a); b=vpa(b);
fa=f(a); fb=f(b);
while subs(b-a)>=tol

n=n+1;
if n>nmax
fprintf(’n exceeds nmax’)
return

end
x=a-(a-b)*fa/(fa-fb);
fx=f(x);
if abs(subs(fx))<tol, return; end
if subs(fx*fa)>0
a=x; fa=fx;

else
b=x; fb=fx;

end
end

The convergence behavior is most easily analyzed if we assume that f is convex
or concave on Œa; b�. To fix ideas, suppose f is convex, say,

f 00.x/ > 0 for a � x � b and f .a/ < 0; f .b/ > 0: (4.41)

Then f has exactly one zero, ˛, in Œa; b�. Moreover, the secant connecting f .a/
and f .b/ lies entirely above the graph of y D f .x/ and hence intersects the
real line to the left of ˛. This will be the case for all subsequent secants, which
means that the point x D b remains fixed while the other endpoint a gets contin-
uously updated, producing a monotonically increasing sequence of approximations
defined by

xnC1 D xn � xn � b
f .xn/� f .b/ f .xn/; n D 1; 2; 3; : : : ; (4.42)
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where x1 D a. Any such sequence, being bounded from above by ˛, necessarily
converges, and letting n ! 1 in (4.42) shows immediately that f .xn/ ! 0, that
is, xn ! ˛. To determine the speed of convergence, we subtract ˛ from both sides
of (4.42) and use the fact that f .˛/ D 0:

xnC1 � ˛ D xn � ˛ � xn � b

f .xn/� f .b/
Œf .xn/ � f .˛/�:

Now divide by xn � ˛ to get

xnC1 � ˛

xn � ˛
D 1 � xn � b

f .xn/ � f .b/
f .xn/ � f .˛/

xn � ˛ :

Letting here n ! 1 and using the fact that xn ! ˛, we obtain

lim
n!1

xnC1 � ˛

xn � ˛ D 1 � .b � ˛/ f
0.˛/
f .b/

: (4.43)

Thus, we have linear convergence with asymptotic error constant equal to

c D 1 � .b � ˛/ f
0.˛/
f .b/

: (4.44)

It is clear on geometric grounds that 0 < c < 1 under the assumptions made.
An analogous result will hold, with a constant jcj < 1, provided f is either convex
or concave on Œa; b� and has opposite signs at the endpoints a and b. One of these
endpoints then remains fixed while the other moves monotonically to the root ˛.

If f does not satisfy these convexity properties on the whole interval but is such
that f 2 C2Œa; b� and f 00.˛/ ¤ 0 at the root ˛ eventually approached, then the
convergence behavior described sets in for n large enough, since f 00 has constant
sign in a neighborhood of ˛, and xn will eventually come to lie in this neighborhood.

The fact that one of the “false positions” remains at a fixed point from some n
on may speak against this method, especially if this occurs early in the iteration, or
even from the beginning, as under the assumptions (4.41) made previously. Thus,
in the case of (4.2), for example, when a D 3

2
	 and b D 2	 , we have f 00.x/ D

�2 sinx sinh x > 0 on Œa; b�, and f .a/ D �1, f .b/ D cosh.2	/ � 1 > 0, so that
we are precisely in a case where (4.41) holds. Accordingly, we have found that to
compute the root ˛1 to within a tolerance of 0:5�10�7, 0:5�10�15, and 0:5�10�33,
we now need respectively, 42, 87, and 188 iterations, as compared to 25, 52, and 112
in the case of the bisection method.

Exceptionally slow convergence is likely to occur when f is very flat near ˛,
the point a is nearby, and b further away. In this case, b will typically remain fixed
while a is slowly creeping toward ˛ (cf. MA 1).
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4.5 Secant Method

The secant method is a simple variant of the method of false position in which it is
no longer required that the function f has opposite signs at the end points of each
interval generated, not even the initial interval. In other words, one starts with two
arbitrary initial approximations x0 ¤ x1 and continues with

xnC1 D xn � xn � xn�1
f .xn/� f .xn�1/

f .xn/; n D 1; 2; 3; : : : : (4.45)

This precludes the formation of a fixed false position, as in the method of false
positions, and hence suggests potentially faster convergence. On the other hand, we
can no longer be sure that each interval Œxn�1; xn� contains at least one root. It will
turn out that, if the method converges, it does so with an order of convergence larger
than 1 (but less than 2). However, it converges only “locally,” that is, only if the
initial approximations x0, x1 are sufficiently close to a root.

This can be seen by relating the three consecutive errors of xnC1, xn, and xn�1 as
follows. Subtract ˛ on both sides of (4.45), and use f .˛/ D 0, to get

xnC1 � ˛ D xn � ˛ � f .xn/

Œxn�1; xn�f

D .xn � ˛/
�
1 � f .xn/ � f .˛/

.xn � ˛/Œxn�1; xn�f

�

D .xn � ˛/
�
1 � Œxn; ˛�f

Œxn�1; xn�f

�

D .xn � ˛/ Œxn�1; xn�f � Œxn; ˛�f

Œxn�1; xn�f
I

hence, by the definition of divided differences,

xnC1 � ˛ D .xn � ˛/.xn�1 � ˛/ Œxn�1; xn; ˛�f
Œxn�1; xn�f

; n D 1; 2; : : : : (4.46)

This is the fundamental relation holding between three consecutive errors.
From (4.46) it follows immediately that if ˛ is a simple root,

f .˛/ D 0; f 0.˛/ ¤ 0; (4.47)

and if xn ! ˛, then convergence is faster than linear, at least if f 2 C2 near ˛.
Indeed,

lim
n!1

xnC1 � ˛

xn � ˛
D 0;
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since the divided differences in the numerator and denominator of (4.46) converge
to 1

2
f 00.˛/ and f 0.˛/, respectively. But just how fast is convergence?

We can discover the order of convergence (assuming convergence) by a simple
heuristic argument: we replace the ratio of divided differences in (4.46) by a
constant, which is almost true if n is large. Letting then ek D jxk � ˛j, we have

enC1 D enen�1 � C; C > 0:

Multiplying both sides by C and defining En D Cen gives

EnC1 D EnEn�1; En ! 0:

Taking logarithms on both sides, and defining yn D log 1
En

, we get

ynC1 D yn C yn�1; (4.48)

the well-known difference equation for the Fibonacci sequence. Its characteristic
equation is t2 � t � 1 D 0, which has the two roots t1, t2 with

t1 D 1

2
.1C p

5/; t2 D 1

2
.1 � p

5/;

and t1 > 1, jt2j < 1. The general solution of (4.48), therefore, is

yn D c1t
n
1 C c2t

n
2 ; c1; c2 constant:

Since yn ! 1, we have c1 ¤ 0 and yn 
 c1t
n
1 as n ! 1, which translates into

1
En


 ec1t
n
1 , 1

en

 C ec1t

n
1 , and thus

enC1
e
t1
n


 C t1ec1t
n
1 �t1

C ec1t
nC1
1

D C t1�1; n ! 1:

The order of convergence, therefore, is t1 D 1
2
.1C p

5/ D 1.61803: : : (the golden
ratio).

We now give a rigorous proof of this and begin with a proof of local convergence.

Theorem 4.5.1. Let ˛ be a simple zero of f. Let I" D fx 2 R W jx � ˛j � "g and
assume f 2 C2ŒI"�. Define, for sufficiently small ",

M."/ D max
s2I"
t2I"

ˇ̌
ˇ̌ f

00.s/
2f 0.t/

ˇ̌
ˇ̌: (4.49)

Assume " so small that

"M."/ < 1: (4.50)
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Then the secant method converges to the unique root ˛ 2 I" for any starting values
x0 ¤ x1 with x0 2 I", x1 2 I".

Note that lim"!0 M."/ D
ˇ̌
ˇ f

00.˛/

2f 0.˛/

ˇ̌
ˇ < 1, so that (4.50) can certainly be satisfied

for " small enough. The local nature of convergence is thus quantified by the
requirement x0; x1 2 I".
Proof of Theorem 4.5.1. First of all, observe that ˛ is the only zero of f in I". This
follows from Taylor’s formula applied at x D ˛:

f .x/ D f .˛/C .x � ˛/f 0.˛/C .x � ˛/2

2
f 00.�/;

where f .˛/ D 0 and � is between x and ˛. Thus, if x 2 I", then so is �, and we
have

f .x/ D .x � ˛/f 0.˛/
�
1C x � ˛

2

f 00.�/
f 0.˛/

�
; � 2 I":

Here, if x ¤ ˛, all three factors are different from zero, the last one since by
assumption ˇ̌

ˇ̌x � ˛

2

f 00.�/
f 0.˛/

ˇ̌
ˇ̌ � "M."/ < 1:

Thus, f on I" can only vanish at x D ˛.
Next we show that all xn 2 I" and two consecutive iterates are distinct, unless

f .xn/ D 0 for some n, in which case xn D ˛ and the method converges in a finite
number of steps. We prove this by induction: assume that xn�1 2 I", xn 2 I" for
some n and xn ¤ xn�1. (By assumption, this is true for n D 1.) Then, from known
properties of divided differences, and by our assumption that f 2 C2ŒI"�, we have

Œxn�1; xn�f D f 0.�1/; Œxn�1; xn; ˛�f D 1

2
f 00.�2/; �i 2 I"; i D 1; 2:

Therefore, by (4.46),

jxnC1 � ˛j � "2
ˇ̌
ˇ̌ f

00.�2/
2f 0.�1/

ˇ̌
ˇ̌ � " � "M."/ < ";

showing that xnC1 2 I". Furthermore, by (4.45), xnC1 ¤ xn, unless f .xn/ D 0,
hence xn D ˛.

Finally, again using (4.46), we have

jxnC1 � ˛j � jxn � ˛j "M."/; n D 1; 2; 3; : : : ;
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which, applied repeatedly, yields

jxn � ˛j � Œ"M."/�n�1jx1 � ˛j:

Since "M."/ < 1, it follows that xn ! ˛ as n ! 1. ut
We next prove that the order of convergence is indeed what we derived it to be

heuristically.

Theorem 4.5.2. The secant method is locally convergent with order of convergence
(at least) p D 1

2
.1C p

5/ D 1:61803 : : : :

Proof. Local convergence is the content of Theorem 4.5.1 and so needs no further
proof. We assume that x0, x1 2 I", where " satisfies (4.50), and that all xn are
distinct. Then we know that xn ¤ ˛ for all n, and xn ! ˛ as n ! 1.

Now the number p in the theorem satisfies

p2 D p C 1: (4.51)

From (4.46), we have

jxnC1 � ˛j � jxn � ˛j jxn�1 � ˛j �M; (4.52)

where we write simply M for M."/. Define

En D M jxn � ˛j: (4.53)

Then, multiplying (4.52) byM , we get

EnC1 � EnEn�1:

It follows easily by induction that

En � Epn; E D max .E0;E
1=p
1 /: (4.54)

Indeed, this is trivially true for n D 0 and n D 1. Suppose (4.54) holds for n as well
as for n � 1. Then

EnC1 � EnEn�1 � EpnEpn�1 D Epn�1.pC1/ D Epn�1�p2 D EpnC1

;

where (4.51) has been used. This proves (4.54) for nC1, and hence for all n. It now
follows from (4.53) that

jxn � ˛j � "n; "n D 1

M
Epn :
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Since E0 D M jx0 � ˛j � "M."/ < 1, and the same holds for E1, we have E < 1.
Now it suffices to note that

"nC1
"
p
n

D Mp�1 EpnC1

Epn�p D Mp�1; all n;

to establish the theorem. ut
The method is easily programmed for a computer. In (symbolic/variable-

precision) Matlab, for example, we could use the following program:

%SSECANT Symbolic secant method
%
function [n,x]=ssecant(dig,a,b,tol,nmax)
n=0;
digits(dig);
a=vpa(a); b=vpa(b);
fa=f(a);
x=b;
while subs(abs(x-a))>=tol
n=n+1;
if n>nmax

fprintf(’n exceeds nmax’)
return

end
b=a;
fb=fa;
a=x;
fa=f(x);
x=a-(a-b)*f(a)/(fa-fb);

end

It is assumed here that a D x0, b D x1 and that the iteration (4.45) is terminated
as soon as jxnC1 � xnj < tol or n > nmax. The routine produces not only the
approximation x to the root but also the number n of iterations required to obtain it
to within an error of tol.

Since only one evaluation of f is required in each iteration step (the statement
fa=f(x) in the preceding program), the secant method has efficiency index p D
1:61803 : : : (cf. Sect. 4.2).

To illustrate the considerable gain in speed attainable by the secant method, we
again apply the routine to the equation (4.2) with x0 D 3

2
	 , x1 D 2	 . In view

of the convexity of f , both x2 and x3 come to lie to the left of the root ˛ D ˛1.
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Let " D ˛ � 3
2
	 and I" be the interval defined in Theorem 4.5.1. Its right endpoint

is 2˛ � 3
2
	 , which is <7

4
	 . Indeed, 7

4
	 � .2˛ � 3

2
	/ D 2. 7

8
	 � ˛ C 3

4
	/ D

2. 13
8
	 � ˛/ > 0, since ˛ < 13

8
	 on account of f .13

8
	/ D 30:545 : : : > 0. On the

interval Œ 3
2
	; 7

4
	�, and hence also on I", we have

ˇ̌
ˇ̌ f

00.s/
2f 0.t/

ˇ̌
ˇ̌ � sinh

�
7
4
	
�

2 cosh
�
3
2
	
� D 1:0965 : : : ;

which, multiplied by 1
4
	 – the length of the interval – is 0.86121: : : < 1. All the

more, therefore, "M."/ < 1. By Theorem 4.5.1 and its proof, it follows that all
subsequent approximations x3; x4; : : : remain in this interval and converge to ˛1,
the order of convergence being p D 1

2
.1 C p

5/ by Theorem 4.5.2. To obtain
the root ˛1 to within the three tolerances used earlier, we find that 6, 7, and 9
iterations, respectively, suffice. This should be contrasted with 25, 52, and 112
iterations (cf. Sect. 4.3.1) for the bisection method.

In contrast to bisection, the secant method is not robust at the level of machine
precision and may even fail if fa happens to become equal to fb. The method is,
therefore, rarely used on its own, but more often in combination with the method of
bisection,; see, for example, Dekker [1969] and Brent [2002, Chap. 4].

4.6 Newton’s Method

Newton’s method can be thought of as a limit case of the secant method (4.45) if we
let there xn�1 move into xn. The result is

xnC1 D xn � f .xn/

f 0.xn/
; n D 0; 1; 2; : : : ; (4.55)

where x0 is some appropriate initial approximation. Another more fruitful in-
terpretation is that of linearization of the equation f .x/ D 0 at x D xn. In
other words, we replace f .x/ for x near xn by the linear approximation f .x/ �
fa.x/ WD f .xn/C .x � xn/f

0.xn/ obtained by truncating the Taylor expansion of
f centered at xn after the linear term and then solve the resulting linear equation,
fa.x/ D 0, calling the solution xnC1. This again leads to (4.55). Viewed in this
manner, Newton’s method can be vastly generalized to nonlinear equations of all
kinds, not only single equations as in (4.55), but also systems of nonlinear equations
(cf. Sect. 4.9.2) and even functional equations, in which case the derivative f 0 is to
be understood as a Fréchet derivative.

It is useful to begin with a few simple examples of single equations to get a feel
for how Newton’s method may behave.
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Fig. 4.3 A cycle in Newton’s method

Example. The square root ˛ D p
a, a > 0. The equation here is f .x/ D 0 with

f .x/ D x2 � a: (4.56)

Equation (4.55) then immediately gives

xnC1 D 1

2

�
xn C a

xn

�
; n D 0; 1; 2; : : : (4.57)

(a method already used by the Babylonians long before Newton). Because of the
convexity of f it is clear that iteration (4.57) converges to the positive square root
for each x0 > 0 and is monotonically decreasing (except for the first step in the case
0 < x0 < ˛). We have here an elementary example of global convergence.

Example. f .x/ D sin x, jxj < 1
2
	 . There is exactly one root in this interval, the

trivial root ˛ D 0. Newton’s method becomes

xnC1 D xn � tanxn; n D 0; 1; 2; : : : : (4.58)

It exhibits the following amusing phenomenon (cf. Fig. 4.3). If x0 D x�, where

tanx� D 2x�; (4.59)

then x1 D �x�, x2 D x�, that is, after two steps of Newton’s method we end up
where we started. This is called a cycle.

For this starting value, Newton’s method does not converge, let alone to ˛ D 0.
It does converge, however, for any starting value x0 with jx0j < x�, generating
a sequence of alternately increasing and decreasing approximations xn converging
necessarily to ˛ D 0. The value of the critical number x� can itself be computed by
Newton’s method applied to (4.59). The result is x� D 1:16556 : : : : In a sense, we
have here an example of local convergence, since convergence cannot hold for all
x0 2 Œ� 1

2
	; 1

2
	�. (If x0 D 1

2
	 , we even get thrown off to 1.)
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Example. f .x/ D x20�1, x > 0. This has exactly one positive (simple) root ˛ D 1.
Newton’s method yields the iteration

xnC1 D 19

20
xn C 1

20x19n
; n D 0; 1; 2; : : : ; (4.60)

which provides a good example to illustrate one of the dangers in Newton’s method:
unless one starts sufficiently close to the desired root, it may take a long while to
approach it. Thus, suppose we take x0 D 1

2
, then x1 � 219

20
D 2:62144� 104, a huge

number. What is worse, it is going to be a slow ride back to the vicinity of ˛ D 1,
since for xn very large, one has

xnC1 � 19

20
xn; xn � 1:

At each step the approximation is reduced only by a fraction 19
20

D 0:95. It takes
about 200 steps to get back to near the desired root. But once we come close to
˛ D 1, the iteration speeds up dramatically and converges to the root quadratically
(see Theorem 4.6.1). Since f is again convex, we actually have global convergence
on RC, but, as we have seen, this is of little comfort.

Example. Let f 2 C2Œa; b� be such that

8
ˆ̂<

ˆ̂:

f is convex .or concave/ on Œa; b�I
f .a/f .b/ < 0I
the tangents at the endpoints of Œa; b�

intersect the real line within Œa; b�:

(4.61)

In this case, it is clear on geometric grounds that Newton’s method converges
globally, that is, for any x0 2 Œa; b�. Note that the tangent condition in (4.61) is
automatically satisfied at one of the endpoints.

The following is a (symbolic/variable-precision) Matlab routine implementing
Newton’s method and returning not only an approximation x to the root, but also
the number n of iterations required to obtain it. The initial approximation is input
by a, and tol is the error tolerance. For reasons of safety, we limit the number of
iterations to nmax. Two function routines f,fd evaluating f and f 0 have to be
appended as subfunctions.

%SNEWTON Symbolic Newton’s method
%
function [n,x]=snewton(dig,a,tol,nmax)
n=0;
digits(dig);
a=vpa(a);
x0=a+1; x=a;
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while subs(abs(x-x0))>=tol
n=n+1;
if n>nmax

fprintf(’n exceeds nmax’)
return

end
x0=x;
x=x0-f(x0)/fd(x0);

end

function y=f(x)
y=cos(x)*cosh(x)-1;

function y=fd(x)
y=-sin(x)*cosh(x)+cos(x)*sinh(x);

Our test equation (4.2) provides a good illustration for (4.61). The function
f .x/ D cosx coshx � 1 is convex on Œ 3

2
	; 2	� and the tangents at both endpoints

intersect the real line inside the interval Œ 3
2
	; 2	�. This is obvious, by convexity, for

the right endpoint, and for the left endpoint the tangent intersects the real line at
x` D 3

2
	 C 1

cosh.3	=2/ D 4:7303 : : : < 2	 . Moreover, since the point of intersection

of the tangent at the right endpoint xr D 2	 sinh 2	�cosh 2	C1
sinh 2	 D 5:2869 : : : is to

the right of x` Newton’s method converges faster if started at the left endpoint and
yields ˛1 in 4, 5, and 6 iterations for the three tolerances 0:5 � 10�7, 0:5 � 10�15,
and 0:5 � 10�33, respectively. This is slightly, but not much, faster than the secant
method. We see shortly, however, that the efficiency index is smaller for Newton’s
method than for the secant method.

To study the error in Newton’s iteration, subtract ˛ – a presumed simple root of
the equation – from both sides of (4.55) to get

xnC1 � ˛ D xn � ˛ � f .xn/

f 0.xn/

D .xn � ˛/

�
1 � f .xn/ � f .˛/

.xn � ˛/f 0.xn/

�

D .xn � ˛/

�
1 � Œxn; ˛�f

Œxn; xn�f

�

D .xn � ˛/2
Œxn; xn; ˛�f

Œxn; xn�f
: (4.62)

Therefore, if xn ! ˛, then

lim
n!1

xnC1 � ˛
.xn � ˛/2

D f 00.˛/
2f 0.˛/

; (4.63)
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that is, Newton’s method converges quadratically if f 00.˛/ ¤ 0. Since it requires at
each step one function evaluation and one derivative evaluation, the efficiency index
is

p
2 D 1:41421 : : : ; which is less than the one for the secant method. Formula

(4.63) suggests writing the equation f .x/ D 0 in alternative, but equivalent, ways
so as to reduce the asymptotic error constant on the right of (4.63).

The proof of local convergence of Newton’s method is virtually the same as the
one for the secant method (cf. Theorem 4.5.1). We only state the result and refer to
Ex. 28 for a proof

Theorem 4.6.1. Let ˛ be a simple root of the equation f .x/ D 0 and let I" D fx 2
R W jx � ˛j � "g. Assume that f 2 C2ŒI"�. Define

M."/ D max
s2I"
t2I"

ˇ̌
ˇ̌ f

00.s/
2f 0.t/

ˇ̌
ˇ̌: (4.64)

If " is so small that

2"M."/ < 1; (4.65)

then for every x0 2 I", Newton’s method is well defined and converges quadratically
to the only root ˛ 2 I". (The extra factor 2 in (4.65) comes from the requirement
that f 0.x/ ¤ 0 for x 2 I".)

An interesting variant of Newton’s method is Steffensen’s method

xnC1 D xn � f .xn/

g.xn/
; g.xn/ D f .xn C f .xn//� f .xn/

f .xn/
; (4.66)

which shares with Newton’s method the property of second-order convergence but
does not require the derivative of f . Instead, it replaces f 0.xn/ in (4.55) by the
difference quotient g.xn/ D Œf .xn C hn/� f .xn/�=hn, where hn D f .xn/.

4.7 Fixed Point Iteration

Often, in applications, a nonlinear equation presents itself in the form of a fixed
point problem: find x such that

x D '.x/: (4.67)

A number ˛ satisfying this equation is called a fixed point of '. Any equation
f .x/ D 0, in fact, can (in many different ways) be written equivalently in the form
(4.67). For example, if f 0.x/ ¤ 0 in the interval of interest, we can take

'.x/ D x � f .x/

f 0.x/
: (4.68)
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If x0 is an initial approximation of a fixed point ˛ of (4.67), the fixed point
iteration generates a sequence of approximants by

xnC1 D '.xn/; n D 0; 1; 2; : : : : (4.69)

If it converges, it clearly converges to a fixed point of ' if ' is continuous. Note
that (4.69) is precisely Newton’s method for solving f .x/ D 0 if ' is defined by
(4.68). So Newton’s method can be viewed as a fixed point iteration, but not the
secant method (why not?).

For any iteration of the form (4.69), assuming that xn ! ˛ as n ! 1, it is
straightforward to determine the order of convergence. Suppose, indeed, that at the
fixed point ˛ we have

' 0.˛/ D ' 00.˛/ D � � � D '.p�1/.˛/ D 0; '.p/.˛/ ¤ 0: (4.70)

(We tacitly assume ' 2 Cp near ˛.) This defines the integer p � 1. We then have
by Taylor’s theorem

'.xn/ D '.˛/C .xn � ˛/' 0.˛/C � � � C .xn � ˛/p�1

.p � 1/Š
'.p�1/.˛/

C .xn � ˛/p
pŠ

'.p/.�n/ D '.˛/C .xn � ˛/p

pŠ
'.p/.�n/;

where �n is between ˛ and xn. Since '.xn/ D xnC1 and '.˛/ D ˛, we get

xnC1 � ˛

.xn � ˛/p
D 1

pŠ
'.p/.�n/:

As xn ! ˛, since �n is trapped between xn and ˛, we conclude, by the continuity
of '.p/ at ˛, that

lim
n!1

xnC1 � ˛

.xn � ˛/p
D 1

pŠ
'.p/.˛/ ¤ 0: (4.71)

This shows that convergence is exactly of the order p, and

c D 1

pŠ
'.p/.˛/ (4.72)

is the asymptotic error constant. Combining this with the usual local convergence
argument, we obtain the following result.

Theorem 4.7.1. Let ˛ be a fixed point of ' and I" D fx 2 R: jx�˛j � "g. Assume
' 2 CpŒI"� satisfies (4.70). If

M."/ WD max
t2I"

j' 0.t/j < 1; (4.73)
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then the fixed point iteration (4.69) converges to ˛ for any x0 2 I". The order of
convergence is p and the asymptotic error constant given by (4.72).

Applying the theorem to (4.68) recovers second-order convergence of Newton’s
method. Indeed, with ' given in (4.68), we have

' 0.x/ D 1 � Œf 0.x/�2 � f .x/f 00.x/
Œf 0.x/�2

D f .x/
f 00.x/
Œf 0.x/�2

I

hence ' 0.˛/ D 0 (if f 0.˛/ ¤ 0), and

' 00.x/ D f .x/

�
f 00.x/
Œf 0.x/�2

�0
C f 00.x/
f 0.x/

I

hence ' 00.˛/ D f 00.˛/

f 0.˛/
¤ 0, unless f 00.˛/ D 0. In the exceptional case f 00.˛/ D 0,

Newton’s method converges cubically (at least).

4.8 Algebraic Equations

There are many iterative methods specifically designed to solve algebraic equations.
Here we only describe how Newton’s method applies in this context, essentially
confining ourselves to a discussion of an efficient way to evaluate simultaneously
the value of a polynomial and its first derivative. In the special case where all zeros
of the polynomial are known to be real and simple, we describe an improved variant
of Newton’s method.

4.8.1 Newton’s Method Applied to an Algebraic Equation

We consider an algebraic equation of degree d ,

f .x/ D 0; f .x/ D xd C ad�1xd�1 C � � � C a0; (4.74)

where the leading coefficient is assumed (without restricting generality) to be 1 and
where we may also assume a0 ¤ 0 without loss of generality. For simplicity we
assume all coefficients to be real.

To apply Newton’s method to (4.74), one needs good methods for evaluating a
polynomial and its derivative. Underlying such methods are division algorithms for
polynomials. Let t be some parameter and suppose we want to divide f .x/ by x� t .
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We write

f .x/ D .x � t/.xd�1 C bd�1xd�2 C � � � C b1/C b0 (4.75)

and compare coefficients of powers of x on both sides. This leads immediately to
the equations

bd D 1;

bk D tbkC1 C ak; k D d � 1; d � 2; : : : ; 0: (4.76)

The coefficients bk so determined of course depend on t ; indeed, bk is a polynomial
in t of degree d � k. We now make three useful observations:

(a) From (4.75), we note that b0 D f .t/. Thus, in (4.76), we have an algorithm
to evaluate f .t/ for any given t . It is known as Horner’s scheme, although
Newton already knew it. It requires d multiplications and d additions, which
is more efficient than the naive way of computing f , which would be to first
form the successive powers of t and then multiply them into their coefficients.
This would require twice as many multiplies as Horner’s scheme, but the same
number of additions. It is an interesting question of complexity whether the
number of multiplications can be further reduced. (It is known by a theorem of
Ostrowski that the number d of additions is optimal.) This indeed is possible,
and schemes using less than d multiplications have been developed by Pan
and others. Unfortunately, the reduction in complexity comes with a price of
increased numerical instability. Horner’s scheme, therefore, is still the most
widely used technique for evaluating a polynomial.

(b) Suppose t D ˛, where ˛ is a zero of f . Then b0 D 0, and (4.75) allows division
by x � ˛ without remainder:

xd�1 C bd�1xd�2 C � � � C b1 D f .x/

x � ˛ : (4.77)

This is the deflated polynomial, in which the zero ˛ has been “removed” from f .
To compute its coefficients, therefore, all we need to do is apply Horner’s
scheme with t D ˛. This comes in very handy in Newton’s method when
f is evaluated by Horner’s scheme: once the method has converged to a root
˛, the final evaluation of f at (or very near) ˛ automatically provides us
with the coefficients of the deflated polynomial, and we are ready to reapply
Newton’s method to this deflated polynomial to compute the remaining zeros
of f .

(c) By differentiating (4.75) with respect to x and then putting x D t , we obtain

f 0.t/ D td�1 C bd�1td�2 C � � � C b1: (4.78)
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Thus, we can apply Horner’s scheme again to this polynomial to evaluate
f 0.t/. Both applications of Horner’s scheme are conveniently combined into the
following double Horner scheme:

bd D 1; cd D 1

bk D tbkC1 C ak

ck D tckC1 C bk

)
k D d � 1; d � 2; : : : ; 1; 0:

(4.79)

Then

f .t/ D b0; f 0.t/ D c1: (4.80)

The last step in (4.79) for c0 is actually redundant, but it does not seem worth the
complication in programming to eliminate this extra step.

We now have a convenient way to compute f .xn/ and f 0.xn/ in each Newton
step xnC1 D xn � f .xn/

f 0.xn/
: apply the algorithm (4.79) with t D xn and use (4.80).

Once xn has converged to ˛, the b generated in (4.79) give us the coefficients of
the deflated polynomial (4.77) and we are ready to reapply Newton’s method to the
deflated polynomial.

It is clear that any real initial approximation x0 generates a sequence of real
iterates xn and, therefore, can only be applied to compute real zeros of f (if any).
For complex zeros one must start with a complex x0, and the whole computation
proceeds in complex arithmetic. It is possible, however, to use division algorithms
with quadratic divisors to compute quadratic factors of f entirely in real arithmetic
(Bairstow’s method). See Ex. 44 for details.

One word of caution is in order when one tries to compute all zeros of f
successively by Newton’s method. It is true that Newton’s method combined with
Horner’s scheme has a built-in mechanism of deflation, but this mechanism is valid
only if one assumes convergence to the exact roots. This of course is impossible,
partly because of rounding errors and partly because of the stopping criterion used
to terminate the iteration prematurely. Thus, there is a build-up of errors in the
successively deflated polynomials, which may well have a significant effect on
the accuracy of the respective roots (cf. Chap. 1, Sect. 1.3.2(2)). It is therefore
imperative, once all roots have been computed, to “purify” them by applying
Newton’s method one more time to the original polynomial f in (4.74), using the
computed roots as initial approximations.

4.8.2 An Accelerated Newton Method for Equations
with Real Roots

If (4.74) has only real distinct roots,

f .˛�/ D 0; ˛d < ˛d�1 < � � � < ˛2 < ˛1; (4.81)
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one can try to speed up Newton’s method by approaching each root from the right
with double the Newton steps until it is overshot, at which time one switches back
to the ordinary Newton iteration to finish off the root.

Underlying this method is the following interesting theorem.

Theorem 4.8.1. Let f be a polynomial having only real zeros as in (4.81), and let
˛0
1 be the largest zero of f 0. Then for every z > ˛1, defining

z0 WD z � f .z/

f 0.z/
; y WD z � 2 f .z/

f 0.z/
; y0 WD y � f .y/

f 0.y/
; (4.82)

one has

˛0
1 < y; ˛1 � y0 � z0: (4.83)

The theorem suggests the following algorithm: start with some x0 > ˛1 and
apply

xkC1 D xk � 2
f .xk/

f 0.xk/
; k D 0; 1; 2; : : : : (4.84)

Then there are the following possibilities.

(i) We have x0 > x1 > x2 > � � � > ˛1 and xk # ˛1 as k ! 1. Since we use
double Newton steps in (4.84), convergence in this case is faster than for the
ordinary Newton iteration. Note also that f .xk/ > 0 for all k.

(ii) There exists a first index k D k0 such that

f .x0/f .xk/ > 0 for 0 � k < k0; f .x0/f .xk0 / < 0:

Then y WD xk0 is to the left of ˛1 (we overshot) but, by (4.83), to the right of ˛0
1.

Using now y as the starting value in the ordinary Newton iteration,

y0 D y; ykC1 D yk � f .yk/

f 0.yk/
; k D 0; 1; 2 : : : ;

brings us back to the right of ˛1 in the first step and then monotonically down
to ˛1.

In either case, having obtained ˛1, we apply the same procedure to the deflated
polynomial f1.x/ D f .x/

x�˛1 to compute the next smaller zero. As starting value
we can take ˛1, or better, if case (ii) has occurred, y D xk0 . The procedure can
obviously be continued until all roots have been computed.
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4.9 Systems of Nonlinear Equations

Although most of the methods discussed earlier allow extensions to systems of
nonlinear equations,

f .x/ D 0; f W R
d ! R

d ; (4.85)

we consider here only two such methods: the fixed point iteration and Newton’s
method.

4.9.1 Contraction Mapping Principle

We write (4.85) in fixed point form, f .x/ D x � '.x/, and consider the fixed point
iteration

xnC1 D '.xn/; n D 0; 1; 2; : : : : (4.86)

We say that ' W R
d ! R

d is a contraction map (or is contractive) on a set D � R
d

if there exists a constant � with 0 < � < 1 such that, in some appropriate vector
norm,

k'.x/ � '.x�/k � �kx � x�k for all x 2 D; x� 2 D: (4.87)

Theorem 4.9.1. (Contraction Mapping Principle). Let D � R
d be a complete

subset of Rd (i.e., either bounded and closed, or all of Rd ). If ' W R
d ! R

d is
contractive in the sense of (4.87) and maps D into D, then

(i) iteration (4.86) is well defined for any x0 2 D and converges to a unique fixed
point ˛ 2 D,

lim
n!1 xn D ˛I (4.88)

(ii) for n D 1; 2; 3; : : : there holds

kxn � ˛k � �n

1 � �
kx1 � x0k (4.89)

and

kxn � ˛k � �nkx0 � ˛k: (4.90)

Proof. (i) Since '.D/ � D, iteration (4.86) is well defined. We have, for
n D 1; 2; 3; : : : ;

kxnC1 � xnk D k'.xn/� '.xn�1/k � �kxn � xn�1k:
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Repeated application of this yields

kxnC1 � xnk � �nkx1 � x0k;

and hence, since

xnCp � xn D .xnCp � xnCp�1/C .xnCp�1 � xnCp�2/C � � � C .xnC1 � xn/;

more generally,

kxnCp � xnk �
pX

kD1
kxnCk � xnCk�1k �

pX

kD1
�nCk�1kx1 � x0k

� �n
1X

kD1
�k�1kx1 � x0k D �n

1 � �
kx1 � x0k: (4.91)

Since �n ! 0, it follows that fxng is a Cauchy sequence in D, and hence, since
D is complete, converges to some ˛ 2 D,

lim
n!1 xn ! ˛:

The limit ˛ must be a fixed point of ' since

kxn � '.˛/k D k'.xn�1/� '.˛/k � �kxn�1 � ˛k; (4.92)

hence ˛ D limn!1 xn D '.˛/. Moreover, there can be only one fixed point in
D, since ˛ D '.˛/; ˛� D '.˛�/, and ˛ 2 D; ˛� 2 D imply k˛ � ˛�k D
k'.˛/�'.˛�/k � �k˛�˛�k, that is, .1��/k˛�˛�k � 0, and hence ˛ D ˛�,
since 1 � � > 0.

(ii) Letting p ! 1 in (4.91) yields the first inequality in Theorem 4.9.1(ii). The
second follows by a repeated application of (4.92), since '.˛/ D ˛. �

Inequality (4.90) shows that the fixed point iteration converges (at least) linearly,
with an error bound having asymptotic error constant equal to � .

4.9.2 Newton’s Method for Systems of Equations

As we mentioned earlier, Newton’s method can be easily adapted to deal with
systems of nonlinear equations, reducing the nonlinear problem to an infinite
sequence of linear problems, that is, systems of linear algebraic equations. The tool
is linearization at the current approximation.
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Thus, given the equation (4.85), written more explicitly as

f i .x1; x2; : : : ; xd / D 0; i D 1; 2; : : : ; d (4.93)

(where components are indexed by superscripts), and given an approximation x0 to
a solution ˛ 2 R

d , the i th equation in (4.93) is linearized at x D x0 by truncating
the Taylor expansion of f i at x0 after the linear terms. This gives

f i.x0/C
dX

jD1

@f i

@xj
.x0/.xj � xj0 / D 0; i D 1; 2; : : : ; d;

or, written in vector form,

f .x0/C @f

@x
.x0/.x � x0/ D 0; (4.94)

where

@f

@x
.x/ WD

	
@f i

@xj
.x/


d

i;jD1
(4.95)

is the Jacobian matrix of f . This is the natural generalization of the first derivative
of a single function to systems of functions. The solution x of (4.94) – a system
of linear algebraic equations – will be taken to be the next approximation. Thus, in
general, starting with an initial approximation x0, Newton’s method will generate a
sequence of approximations xn 2 R

d by means of

@f

@x
.xn/�n D �f .xn/;

xnC1 D xn C �n;
n D 0; 1; 2; : : : ; (4.96)

where we assume that the matrix .@f =@x/.xn/ in the first equation is nonsingular
for each n. This will be the case if .@f =@x/.˛/ is nonsingular and x0 is sufficiently
close to ˛, in which case one can prove as in the one-dimensional case d D 1 that
Newton’s method converges quadratically to ˛, that is, kxnC1�˛k D O.kxn�˛k2/
as n ! 1.

Writing (4.96) in the form

xnC1 D xn �
	
@f

@x
.xn/


�1
f .xn/; n D 0; 1; 2; : : : ; (4.97)

brings out the formal analogy with Newton’s method (4.55) for a single equation.
However, it is not necessary to compute the inverse of the Jacobian at each step; it
is more efficient to solve the linear system directly as in (4.96).
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There are many ways to modify the initial stages of Newton’s method (for
systems of nonlinear equations) to force the iteration to make good progress toward
approaching a solution. These usually go under the name quasi-Newton methods
and they all share the idea of employing a suitable approximate inverse of the
Jacobian rather than the exact one. For these, and also for generalizations of the
secant method and the method of false position to systems of nonlinear equations,
we refer to specialized texts (cf. the Notes to Chap. 4).

4.10 Notes to Chapter 4

Texts dealing largely with single nonlinear equations are Traub [1964], House-
holder [1970], and Brent [2002]. Traub’s book provides a systematic treatment
of iterative methods, both old and new. Although it deals also with questions of
convergence, the emphasis is on the derivation, classification, and cataloguing of
iterative methods. Householder’s book is strong on algebraic and analytic tools
(often rooted in nineteenth-century mathematics) underlying numerical methods
and less so on the methods themselves. Brent’s book, although mainly devoted
to optimization, gives a detailed account, and a computer program, of an algo-
rithm essentially due to Dekker, combining the secant method with bisection.
Other well-tested algorithms available in software are, for example, the IMSL
routine zreal, implementing Muller’s method (Muller [1956]), and zporc for
(real) algebraic equations, implementing the Jenkins–Traub three-stage algorithm
(Jenkins and Traub [1970]). The routine zplrc, based on Laguerre’s method
(cf., e.g., Fröberg [1985, Sect. 11.5]), also finds complex roots. The computation
of zeros of analytic functions is treated in Kravanja and Van Barel [2000].

For the solution of systems of nonlinear equations, the books by Ortega and
Rheinboldt [2000] and Rheinboldt [1998] give well-organized, and perhaps the
most comprehensive, descriptions and mathematical analyses of nonlinear iterative
methods. A less exhaustive, but mathematically penetrating, text, also dealing
with operator equations in Banach space, is Ostrowski [1973]. At a lower level
of mathematical sophistication, but richer in algorithmic details, is the book by
Dennis and Schnabel [1996], which gives equal treatment to nonlinear equations
and optimization. The books by Kelley [1995, 1999] dealing with iterative methods
for linear and nonlinear systems of equations and for optimization, as well as
Kelley [2003] specifically for Newton-type methods, provide e-mail and Web
site addresses for respective Matlab codes. Complexity issues are discussed in
Sikorski [2001] and iterative regularization methods for nonlinear inverse problems
in Kaltenbacher et al. [2008]. A useful guide on available software for problems in
optimization (including nonlinear equations) is Moré and Wright [1993]. For older
precomputer literature, the two-volume treatise by Durand [1960, 1961] is still a
valuable source.
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Section 4.1. A sampling of typical systems of nonlinear equations occurring in
applied analysis is given in Ortega and Rheinboldt [2000, Chap. 1]. Many nonlinear
equation problems arise from minimization problems, where one tries to find a
minimum of a function of several variables. If it occurs at an interior point, then
indeed the gradient of the function must vanish.

Section 4.1.2. For more on shooting methods, see Chap. 7, Sect. 7.2.

Section 4.1.3. Another, even simpler, way of approximating the solution y of (4.9)
by yn is to apply an n-point quadrature rule to the integral on the left, thus writing
yn.x/ D a.x/ C Pn

kD1 wkK.x; tk/f .tk ; yn.tk//; 0 � x � 1, and determining
fyn.tk/gnkD1 by putting x D ti , i D 1; 2; : : : ; n, in this equation. Again, we are led
to a system of nonlinear equations.

Section 4.1.4. This example is taken from Gautschi and Milovanović [1997], where
one also finds a discussion on how to compute the Turán-type quadrature rule
associated with an s-orthogonal polynomial 	n. This is the quadrature rule of
maximum degree of exactness that involves a function and its derivatives up to order
2s evaluated at the zeros of 	n.

Section 4.2. More refined measures for the speed of convergence are defined in
Brent [2002, p. 21] and, especially, in Ortega and Rheinboldt [2000, Chap. 9], where
the concepts of Q-order and R-order of convergence are introduced, the former
relating to quotients of errors, as in (4.23), the latter to nth roots "1=nn . Also see
Potra [1989]. These are quantities that characterize the asymptotic behavior of the
error as n ! 1; they say nothing about the initial behavior of the error. If one
wants to describe the overall behavior of the iteration, one needs a function, not a
number, to define the rate of convergence, for example, a function (if one exists)
that relates kxnC1 � xnk to kxn � xn�1k (cf. Ex. 25(b)). This is the approach taken
in Potra and Pták [1984] to describe the convergence behavior of iterative processes
in complete metric spaces. For similar ideas in connection with the convergence
behavior of continued fractions, also see Gautschi [1983].

The efficiency index was introduced by Ostrowski [1973, Chap. 3, Sect. 11], who
also coined the word “horner” for a unit of work.

Aitken’s �2-process is a special case of a more general nonlinear acceleration
method, the Shanks transformation, or, in Wynn’s recursive implementation, the
epsilon algorithm, see Brezinski and Redivo-Zaglia (1991, pp. 78–95).

Section 4.3.2. For Sturm sequences and Sturm’s theorem see, for example,
Henrici [1988, p. 444ff], and for Gershgorin’s theorem, Golub and Van Loan
[1996, p. 320]. The bisection method based on Sturm sequences, in the context
of eigenvalues of a symmetric tridiagonal matrix, is implemented in the Eispack
routine BISECT (Smith et al. [1976, p. 211]).

Section 4.4. The method of false position is very old, originating in medieval Arabic
mathematics, and even earlier in fifth-century Indian texts (Plofker [1996, p. 254]).
Leonardo Pisano (better known as “Fibonacci”), in the thirteenth century, calls



4.10 Notes to Chapter 4 289

it “regula duarum falsarum positionum,” which, in the sixteenth and seventeenth
centuries, became abbreviated to “regula positionum” or also “regula falsi.” Peter
Bienewitz (1527), obviously having a linear equation in mind, explains the method
in these (old German) words: “Vnd heisst nit darum falsi dass sie falsch vnd unrecht
wehr, sunder, dass sie auss zweyen falschen vnd vnwahrhaftigen zalen, vnd zweyen
lügen die wahrhaftige vnd begehrte zal finden lernt.” (Cf. Maas [1985]).

In the form (4.42), the regula falsi can be thought of as a discretized Newton’s
method, if in the latter, (4.55), one replaces the derivative f 0.xn/ by the difference
quotient .f .xn/ � f .b//=.xn � b/. This suggests one (of many) possible extension
to systems of equations in R

d (cf. Ortega and Rheinboldt [2000, p. 205]): define
vector difference quotients �n;i D .xin � bi/�1Œf .xn/ � f .xn C .bi � xin/ei /�,
i D 1; 2; : : : ; d , where ei is the i th coordinate vector, xT

n D Œx1n; : : : ; x
d
n � and bT D

Œb1; : : : ; bd � a fixed vector. (Note that the arguments in the two f -vectors are the
same except for the i th one, which is xin in the first, and bi in the second.) If we let
�n D Œ�n;1; : : : ;�n;d �, a “difference quotient matrix” of order d , the regula falsi
becomes xnC1 D xn � ��1

n f .xn/. As in the one-dimensional case, the method
converges no faster than linearly, if at all (Ortega and Rheinboldt [2000, p. 366]).

Section 4.5. The secant method is also rather old; it has been used, for example, in
fifteenth-century Indian texts to compute the sine function (Plofker [1996]).

The heuristic motivation of Theorem 4.5.1 uses some simple facts from the theory
of linear difference equations with constant coefficients. A reader not familiar with
these may wish to consult Henrici [1988, Sect. 7.4 and Notes to Sect. 7.4 on p. 663].

Like the method of false position, the secant method, too, can be extended to R
d

in many different ways (see, e.g., Ortega and Rheinboldt [2000, Sect. 7.2], Dennis
and Schnabel [1996, Chap. 8]), one of which is to replace the vector b (in the Notes
to Sect. 4.4) by the vector xn�1. Theorem 4.5.2 then remains in force (Ortega and
Rheinboldt [2000, Sect. 11.2.9]).

Examples of combined methods mentioned at the end of this section are Dekker’s
method (Dekker [1969]) and its modification by Brent (Brent [2002]). The latter is
implemented in the Matlab function fzero.

Section 4.6. The history of Newton’s method is somewhat shrouded in obscurity.
Newton’s original ideas on the subject, around 1669, were considerably more
complicated and not even remotely similar to what is now conceived to be his
method. Raphson in approximately 1690 gave a simplified version of Newton’s
algorithm, possibly without knowledge of Newton’s work. In the English literature,
the method is therefore often called the Newton–Raphson method. According to
Kollerstrom [1992] and Ypma [1995], Newton’s and Raphson’s procedures are both
purely algebraic without mention of derivatives (or fluxions, as it were). They credit
Simpson with being the first to give a calculus description of Newton’s method
in 1740, without referring either to Newton or to Raphson. As noted by Ypma
[loc. cit.], Simpson applied Newton’s method even to a 2 � 2 system of nonlinear
equations. The modern version of Newton’s iteration seems to appear first in a paper
by Fourier published posthumously in 1831. See also Alexander [1996] for further
historical comments.
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Global convergence results for Newton’s method analogous to the one in
Example 4.6.4 exist also in higher dimension; see, for example, Ortega and
Rheinboldt [2000, Sects. 13.3.4 and 13.3.7]. Local convergence, including its
quadratic order, is now well established; see Ortega and Rheinboldt [2000, Sect.
12.6 and NR 12.6-1] for precise statements and for a brief but informative history.
Crucial in this development was the work of Kantorovich, who studied Newton’s
method not only in finite-dimensional, but also in infinite-dimensional spaces. A
good reference for the latter is Kantorovich and Akilov [1982, Chap. 18]. For a
modification of Newton’s method which is cubically convergent but requires an
extra evaluation of f , see Ortega and Rheinboldt [2000, p. 315].

Section 4.7. Ostrowski [1973, Chap. 4, Sect. 2] calls ˛ a point of attraction for
iteration (4.69) if for any x0 in a sufficiently close neighborhood of ˛ one has
xn ! ˛, and a point of repulsion otherwise. Theorem 4.7.1 tells us that ˛ is a
point of attraction if j' 0.˛/j < 1; it is clearly a point of repulsion if j' 0.˛/j > 1.
An analogous situation holds in R

d (Ostrowski [loc. cit., Chap. 22]): if the Jacobian
matrix @'=@x at x D ˛ has spectral radius <1, then ˛ is a point of attraction and
hence the fixed point iteration is locally convergent. If the spectral radius is>1, then
˛ is a point of repulsion.

Section 4.8. An unusually detailed treatment of algebraic equations and their
numerical solution, especially by older methods, is given in the French work by
Durand [1960]. More recent texts are McNamee [2007] and Kyurkchiev [1998], the
latter focusing more specifically on iterative methods for computing all roots of an
algebraic equation simultaneously and in particular studying “critical” regions in the
complex plane that give rise to divergence if the initial approximations are contained
therein. Also focusing on simultaneous computation of all the roots is the book by
Petković [2008]. Algebraic equations are special enough that detailed information
can be had about the location of their roots, and a number of methods can be
devised specifically tailored to them. Good accounts of localization theorems can
be found in Householder [1970, Chap. 2] and Marden [1966]. Among the classical
methods appropriate for algebraic equations, the best known is Graeffe’s method,
which basically attempts to separate the moduli of the roots by successive squaring.
Another is Cauchy’s method – a quadratic extension of Newton’s method – which
requires second derivatives and is thus applied more readily to polynomial equations
than to general nonlinear equations. Combined with the more recent method of
Muller [1956] – a quadratic extension of the secant method – it can be made
the basis of a reliable rootfinder (Young and Gregory [1988, Vol. 1, Sect. 5.4]).
Among contemporary methods, mention should be made of the Lehmer–Schur
method (Lehmer [1961], Henrici [1988, Sect. 6.10]), which constructs a sequence
of shrinking circular disks in the complex plane eventually capturing a root, and of
Rutishauser’s QD algorithm (Rutishauser [1957], Henrici [1988, Sect. 7.6]), which
under appropriate separation assumptions allows all zeros of a polynomial to be
computed simultaneously. The same global character is shared by the Durand–
Kerner method, which is basically Newton’s method applied to the system of
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equations ai D �d�i .˛1; : : : ; ˛d /, i D 0; 1; : : : ; d � 1, expressing the coefficients
of the polynomial in terms of the elementary symmetric functions in the zeros. (The
same method, incidentally, was already used by Weierstrass [1891] to prove the
fundamental theorem of algebra.) For other global methods, see Werner [1982].
Iterative methods carried out in complex interval arithmetic (based on circular disks
or rectangles) are studied in Petković [1989]. From a set of initial complex intervals,
each containing a zero of the polynomial, they generate a sequence of complex
intervals encapsulating the respective zeros ever more closely. The midpoints of
these intervals, taken to approximate the zeros, then come equipped with ready-
made error estimates.

Section 4.8.1 (a). For Ostrowski’s theorem, see Ostrowski [1954], and for literature
on the numerical properties of Horner’s scheme and more efficient schemes,
Gautschi [1975a, Sect. 1.5.1(vi)].

The adverse accumulation of error in polynomial deflation can be mitigated
somewhat by a more careful deflation algorithm, which depends on the relative
magnitude of the zero being removed; see Peters and Wilkinson [1971] and
Cohen [1994].

Section 4.8.2. The accelerated Newton method is due independently to Kahan and
Maehly (cf. Wilkinson [1988, p. 480]). A proof of Theorem 4.8.1 can be found in
Stoer and Bulirsch [2002, Sect. 5.5].

Section 4.9. Among the many other iterative methods for solving systems of
nonlinear equations, we mention the nonlinear analogues of the well-known iterative
methods for solving linear systems. Thus, for example, the nonlinear Gauss–
Seidel method consists of solving the d single equations f i .x1nC1; : : : ; xi�1nC1; t;
xiC1n ; : : : ; xdn / D 0, i D 1; 2; : : : ; d , for t and letting xinC1 D t . The solution of each
of these equations will in turn involve some one-dimensional iterative method, for
example, Newton’s method, which would constitute “inner iterations” in the “outer
iteration” defined by Gauss–Seidel. Evidently, any pair of iterative methods can be
so combined. Indeed, the roles can also be reversed, for example, by combining
Newton’s method for systems of nonlinear equations with the Gauss–Seidel method
for solving the linear systems in Newton’s method. Newton’s method then becomes
the outer iteration and Gauss–Seidel the inner iteration. Still other methods involve
homotopies (or continuation), embedding the given system of nonlinear equations
in a one-parameter family of equations and approaching the desired solution
via a sequence of intermediate solutions corresponding to appropriately chosen
values of the parameter. Each of these intermediate solutions serves as an initial
approximation to the next solution. Although the basic idea of such methods is
simple, many implementational details must be worked out to make it successful;
for a discussion of these, see Allgower and Georg [2003]. The application of
continuation methods to polynomial systems arising in engineering and scientific
problems is considered in Morgan [1987]. Both texts contain computer programs.
Also see Watson et al. [1987] for a software implementation.



292 4 Nonlinear Equations

Section 4.9.1. If one is interested in individual components, rather than just
in norms, one can refine the contraction property by defining a map ' to
be �-contractive on D if there exists a nonnegative matrix � 2 R

d�d , with
spectral radius <1, such that j'.x/ � '.x�/j � � jx � x�j (componentwise)
for all x;x� 2 D. The contraction mapping principle then extends naturally
to �-contractive maps (cf. Ortega and Rheinboldt [2000, Chap. 13]). Other
generalizations of the contraction mapping principle involve perturbations of the
map ' (Ortega and Rheinboldt [2000, Chap. 12, Sect. 2]).

Section 4.9.2. For quasi-Newton methods (also called modification, or update,
methods), see, for example, Ortega and Rheinboldt [2000, Chap. 7, Sect. 3], Dennis
and Schnabel [1996, Chap. 6]. As with any iterative method, the increment vector
(e.g., the modified Newton increment) may be multiplied at each step by an
appropriate scalar to ensure that kf .xnC1/k < kf .xn/k. This is particularly
advisable during the initial stages of the iteration.

Exercises and Machine Assignments to Chapter 4

Exercises

1. The following sequences all converge to zero as n ! 1:

vn D n�10; wn D 10�n; xn D 10�n2; yn D n10 � 3�n; zn D 10�3�2n :

Indicate the type of convergence by placing a check mark in the appropriate
position in the following table.

Type of Convergence v w x y z

Sublinear
Linear
Superlinear
Quadratic
Cubic
None of the above

2. Suppose a positive sequence f"ng converges to zero with order p > 0. Does it
then also converge to zero with order p0 for any 0 < p0 < p?

3. The sequence "n D e�en , n D 0; 1; : : : ; clearly converges to 0 as n ! 1.
What is the order of convergence?

4. Give an example of a positive sequence f"ng converging to zero in such a way
that limn!1 "nC1

"
p
n

D 0 for some p > 1, but not converging (to zero) with any

order p0 > p.
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5. Suppose fxng converges linearly to ˛ in the sense that limn!1 xnC1�˛
xn�˛ D

c; 0 < jcj < 1.

(a) Define x�
n D 1

2
.xn C xn�1/; n D 1; 2; 3; : : : : Clearly, x�

n ! ˛. Does
fx�
n g converge appreciably faster than fxng? Explain by determining the

asymptotic error constant.
(b) Do the same for x�

n D p
xnxn�1, assuming xn > 0 for all n and ˛ > 0.

6. Let fxng be a sequence converging to ˛ linearly with asymptotic error con-
stant c,

lim
n!1

xnC1 � ˛

xn � ˛
D c; jcj < 1;

and assume that xn ¤ ˛ for all n.

(a) Derive Aitken’s �2-process (4.21) by assuming two consecutive ratios in
the above limit relation (say, for n and nC 1) to be equal to c.

(b) Show that the sequence fx0
ng in Aitken’s �2-process is well defined for n

sufficiently large.
(c) Prove (4.22).

7. Given an iterative method of order p and asymptotic error constant c ¤ 0,
define a new iterative method consisting of m consecutive steps of the given
method. Determine the order of this new iterative method and its asymptotic
error constant. Hence justify the definition of the efficiency index given near
the end of Sect. 4.2.

8. Consider the equation

1

x � 1
C 2

x C 3
C 4

x � 5
� 1 D 0:

(a) Discuss graphically the number of real roots and their approximate loca-
tion.

(b) Are there any complex roots?

9. Consider the equation x tanx D 1.

(a) Discuss the real roots of this equation: their number, approximate location,
and symmetry properties. Use appropriate graphs.

(b) How many bisections would be required to find the smallest positive root
to within an error of 1

2
�10�8? (Indicate the initial approximations.) Is your

answer valid for all roots?
(c) Are there any complex roots? Explain.

10. Consider the quadratic equation x2 � p D 0, p > 0. Suppose its positive root
˛ D p

p is computed by the method of false position starting with two numbers
a, b satisfying 0 < a < ˛ < b. Determine the asymptotic error constant c as a
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function of b and ˛. What are the conditions on b for 0 < c < 1
2

to hold, that is,
for the method of false position to be (asymptotically) faster than the bisection
method?

11. The equation x2 � a D 0 (for the square root ˛ D p
a) can be written

equivalently in the form

x D '.x/

in many different ways, for example,

'.x/ D 1

2

�
x C a

x

�
; '.x/ D a

x
; '.x/ D 2x � a

x
:

Discuss the convergence (or nonconvergence) behavior of the iteration xnC1 D
'.xn/, n D 0; 1; 2; : : : ; for each of these three iteration functions. In case of
convergence, determine the order of convergence.

12. Under the assumptions of Theorem 4.5.1, show that the secant method cannot
converge faster than with order p D 1

2
.1 C p

5/ if the (simple) root ˛ of
f .x/ D 0 satisfies f 00.˛/ ¤ 0.

13. Let fxng be a sequence converging to ˛. Suppose the errors en D jxn � ˛j
satisfy enC1 � Me2nen�1 for some constantM > 0. What can be said about the
order of convergence?

14. Suppose the equation f .x/ D 0 has a simple root ˛, and f 00.˛/ D 0, f 000.˛/ ¤
0. Provide heuristics in the manner of the text preceding Theorem 4.5.1 showing
that the secant method in this case converges quadratically.

15. (a) Consider the iteration xnC1 D x3n. Give a detailed discussion of the
behavior of the sequence fxng in dependence of x0.

(b) Do the same as (a), but for xnC1 D x
1=3
n , x0 > 0.

16. Consider the iteration

xnC1 D '.xn/; '.x/ D p
2C x:

(a) Show that for any positive x0 the iterates xn remain on the same side of
˛ D 2 as x0 and converge monotonically to ˛.

(b) Show that the iteration converges globally, that is, for any x0 > 0, and not
faster than linearly (unless x0 D 2).

(c) If 0 < x0 < 2, how many iteration steps are required to obtain ˛ with an
error less than 10�10?

17. Consider the equation x D cosx.

(a) Show graphically that there exists a unique positive root ˛. Indicate,
approximately, where it is located.

(b) Prove local convergence of the iteration xnC1 D cos xn.
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(c) For the iteration in (b) prove: if xn 2 Œ0; 	
2
�, then

jxnC1 � ˛j <
�

sin
˛ C 	=2

2

�
jxn � ˛j:

In particular, one has global convergence on [0; 	
2
�.

(d) Show that Newton’s method applied to f .x/ D 0, f .x/ D x � cos x, also
converges globally on Œ0; 	

2
�.

18. Consider the equation

x D e�x:

(a) Show that there is a unique real root ˛ and determine an interval
containing it.

(b) Show that the fixed point iteration xnC1 D e�xn , n D 0; 1; 2; : : : ; converges
locally to ˛ and determine the asymptotic error constant.

(c) Illustrate graphically that the iteration in (b) actually converges globally,
that is, for arbitrary x0 > 0. Then prove it.

(d) An equivalent equation is
x D ln 1

x
:

Does the iteration xnC1 D ln 1
xn

also converge locally? Explain.

19. Consider the equation

tanx C 
x D 0; 0 < 
 < 1:

(a) Show graphically, as simply as possible, that in the interval Œ 1
2
	; 	� there is

exactly one root ˛.
(b) Does Newton’s method converge to the root ˛ 2 Œ 1

2
	; 	� if the initial

approximation is taken to be x0 D 	? Justify your answer.

20. Consider the equation

f .x/ D 0; f .x/ D ln2 x � x � 1; x > 0:

(a) Graphical considerations suggest that there is exactly one positive root ˛,
and that 0 < ˛ < 1. Prove this.

(b) What is the largest positive b � 1 such that Newton’s method, started with
x0 D b, converges to ˛?

21. Consider “Kepler’s equation”

f .x/ D 0; f .x/ D x � " sinx � �; 0 < j"j < 1; � 2 R;

where ", � are parameters constrained as indicated.
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(a) Show that for each ", � there is exactly one real root ˛ D ˛."; �/.
Furthermore, � � j"j � ˛."; �/ � �C j"j.

(b) Writing the equation in fixed point form

x D '.x/; '.x/ D " sinx C �;

show that the fixed point iteration xnC1 D '.xn/ converges for arbitrary
starting value x0.

(c) Let m be an integer such that m	 < � < .m C 1/	 . Show that Newton’s
method with starting value

x0 D
(
.mC 1/	 if .�1/m" > 0;
m	 otherwise

is guaranteed to converge (monotonically) to ˛."; �/.
(d) Estimate the asymptotic error constant c of Newton’s method.

22. (a) Devise an iterative scheme, using only addition and multiplication, for
computing the reciprocal 1

a
of some positive number a. fHint: use Newton’s

method. For a cubically convergent scheme, see Ex. 40.g
(b) For what positive starting values x0 does the algorithm in (a) converge?

What happens if x0 < 0 ?
(c) Since in (binary) floating-point arithmetic it suffices to find the reciprocal

of the mantissa, assume 1
2

� a < 1. Show, in this case, that the iterates xn
satisfy

ˇ̌
ˇ̌ xnC1 � 1

a

ˇ̌
ˇ̌ <

ˇ̌
ˇ̌ xn � 1

a

ˇ̌
ˇ̌
2

; all n � 0:

(d) Using the result of (c), estimate how many iterations are required, at most,
to obtain 1=a with an error less than 2�48, if one takes x0 D 3

2
.

23. (a) If A > 0, then ˛ D p
A is a root of either equation

x2 �A D 0;
A

x2
� 1 D 0:

Explain why Newton’s method applied to the first equation converges for
arbitrary starting value x0 > 0, whereas the same method applied to the
second equation produces positive iterates xn converging to ˛ only if x0 is
in some interval 0 < x0 < b. Determine b.

(b) Do the same as (a), but for the cube root 3
p
A and the equations

x3 �A D 0;
A

x3
� 1 D 0:
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24. (a) Show that Newton’s iteration

xnC1 D 1

2

�
xn C a

xn

�
; a > 0;

for computing the square root ˛ D p
a satisfies

xnC1 � ˛

.xn � ˛/2 D 1

2xn
:

Hence, directly obtain the asymptotic error constant.
(b) What is the analogous formula for the cube root?

25. Consider Newton’s method

xnC1 D 1

2

�
xn C a

xn

�
; a > 0;

for computing the square root ˛ D p
a. Let dn D xnC1 � xn.

(a) Show that

xn D a

dn Cp
d2n C a

:

(b) Use (a) to show that

jdnj D d2n�1
2

q
d2n�1 C a

; n D 1; 2; : : : :

Discuss the significance of this result with regard to the overall behavior of
Newton’s iteration.

26. (a) Derive the iteration that results by applying Newton’s method to f .x/ WD
x3 � a D 0 to compute the cube root ˛ D a

1
3 of a > 0.

(b) Consider the equivalent equation f
.x/ D 0, where f
.x/ D x3�
�ax�
,
and determine 
 so that Newton’s method converges cubically. Write down
the resulting iteration in its simplest form.

27. Consider the two (equivalent) equations

.A/ x lnx � 1 D 0; .B/ lnx � 1

x
D 0:

(a) Show that there is exactly one positive root and find a rough interval
containing it.



298 4 Nonlinear Equations

(b) For both (A) and (B), determine the largest interval on which Newton’s
method converges. fHint: investigate the convexity of the functions in-
volved.g

(c) Which of the two Newton iterations converges asymptotically faster?

28. Prove Theorem 4.6.1.
29. Consider the equation

f .x/ D 0; where f .x/ D tanx � cx; 0 < c < 1:

(a) Show that the smallest positive root ˛ is in the interval .	; 3
2
	/.

(b) Show that Newton’s method started at x0 D 	 is guaranteed to converge to
˛ if c is small enough. Exactly how small does c have to be?

30. We saw in Sect. 4.1.1 that the equation

cosx coshx � 1 D 0

has exactly two roots ˛n < ˇn in each interval Œ�	
2

C 2n	; 	
2

C 2n	�; n D
1; 2; 3 : : : : Show that Newton’s method applied to this equation converges to
˛n when initialized by x0 D �	

2
C 2n	 and to ˇn when initialized by x0 D

	
2

C 2n	 .
31. In the engineering of circular shafts the following equation is important for

determining critical angular velocities:

f .x/ D 0; f .x/ D tan x C tanhx; x > 0:

(a) Show that there are infinitely many positive roots, exactly one, ˛n, in each
interval Œ.n � 1

2
/	; n	�, n D 1; 2; 3; : : : :

(b) Determine limn!1.n	 � ˛n/.
(c) Discuss the convergence of Newton’s method when started at x0 D n	 .

32. The equation

f .x/ WD x tanx � 1 D 0;

if written as tanx D 1=x and each side plotted separately, can be seen to have
infinitely many positive roots, one, ˛n, in each interval Œn	; .n C 1

2
/	�, n D

0; 1; 2; : : : .

(a) Show that the smallest positive root˛0 can be obtained by Newton’s method
started at x0 D 	

4
.

(b) Show that Newton’s method started with x0 D .n C 1
4
/	 converges

monotonically decreasing to ˛n if n � 1.
(c) Expanding ˛n (formally) in inverse powers of 	n,

˛n D 	nC c0 C c1.	n/
�1 C c2.	n/

�2 C c3.	n/
�3 C � � � ;

determine c0; c1; c2; : : : ; c9. fHint: use the Maple series command.g
(d) Use the Matlab function fzero to compute ˛n for n D 1 W 10 and compare

the results with the approximation furnished by the expansion in (c).
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33. Consider the equation

f .x/ D 0; f .x/ D x sinx � 1; 0 � x � 	:

(a) Show graphically (as simply as possible) that there are exactly two roots in
the interval Œ0; 	� and determine their approximate locations.

(b) What happens with Newton’s method when it is started with x0 D 1
2
	?

Does it converge, and if so, to which root? Where do you need to start
Newton’s method to get the other root?

34. (Gregory, 1672) For an integer n � 1, consider the equation

f .x/ D 0; f .x/ D xnC1 � bnx C abn; a > 0; b > 0:

(a) Prove that the equation has exactly two distinct positive roots if and only if

a <
n

.nC 1/1C 1
n

b:

fHint: analyze the convexity of f .g
(b) Assuming that the condition in (a) holds, show that Newton’s method

converges to the smaller positive root, when started at x0 D a, and to the
larger one, when started at x0 D b.

35. Suppose the equation f .x/ D 0 has the root ˛ with exact multiplicity m � 2,
and Newton’s method converges to this root. Show that convergence is linear,
and determine the asymptotic error constant.

36. (a) Let ˛ be a double root of the equation f .x/ D 0, where f is sufficiently
smooth near ˛. Show that the “doubly relaxed” Newton’s method

xnC1 D xn � 2
f .xn/

f 0.xn/
;

if it converges to ˛, does so at least quadratically. Obtain the condition
under which the order of convergence is exactly 2, and determine the
asymptotic error constant c in this case.

(b) What are the analogous statements in the case of an m-fold root?
37. Consider the equation x ln x D a.

(a) Show that for each a > 0 the equation has a unique positive root, x D x.a/.
(b) Prove that

x.a/ 
 a

ln a
as a ! 1

(i.e., lima!1 x.a/ ln a
a

D 1). fHint: use the rule of Bernoulli–L’Hospital.g
(c) For large a improve the approximation given in (b) by applying one step of

Newton’s method.
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38. The equation x2 � 2 D 0 can be written as a fixed point problem in different
ways, for example,

.a/ x D 2

x
; .b/ x D x2 C x � 2; .c/ x D x C 2

x C 1
:

How does the fixed point iteration perform in each of these three cases? Be as
specific as you can.

39. Show that

xnC1 D xn.x
2
n C 3a/

3x2n C a
; n D 0; 1; 2; : : : ;

is a method for computing ˛ D p
a, a > 0, which converges cubically to ˛ (for

suitable x0). Determine the asymptotic error constant. (Cf. also Ex. 43(e) with

 D 2.)

40. Consider the fixed point iteration

xnC1 D '.xn/; n D 0; 1; 2; : : : ;

where

'.x/ D Ax C Bx2 C Cx3:

(a) Given a positive number ˛, determine the constants A, B , C such that the
iteration converges locally to 1=˛ with order p D 3. fThis will give a
cubically convergent method for computing the reciprocal 1=˛ of ˛ which
uses only addition, subtraction, and multiplication.g

(b) Determine the precise condition on the initial error "0 D x0 � 1
˛

for the
iteration to converge.

41. The equation f .x/ WD x2 � 3x C 2 D 0 has the roots 1 and 2. Written in fixed
point form x D 1

!
.x2 � .3 � !/x C 2/, ! ¤ 0, it suggests the iteration

xnC1 D 1

!
.x2n � .3 � !/xn C 2/; n D 0; 1; 2; : : : .! ¤ 0/:

(a) Identify as large an !-interval as possible such that for any! in this interval
the iteration converges to 1 (when x0 ¤ 1 is suitably chosen).

(b) Do the same as (a), but for the root 2 (and x0 ¤ 2).
(c) For what value(s) of ! does the iteration converge quadratically to 1?
(d) Interpret the algorithm produced in (c) as a Newton iteration for some

equation F.x/ D 0, and exhibit F . Hence discuss for what initial values x0
the method converges.

42. Let ˛ be a simple zero of f and f 2 Cp near ˛, where p � 3. Show: if
f 00.˛/ D � � � D f .p�1/.˛/ D 0, f .p/.˛/ ¤ 0, then Newton’s method applied
to f .x/ D 0 converges to ˛ locally with order p. Determine the asymptotic
error constant.
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43. The iteration

xnC1 D xn � f .xn/

f 0.xn/� 1
2
f 00.xn/ f .xn/f 0.xn/

; n D 0; 1; 2; : : : ;

for solving the equation f .x/ D 0 is known as Halley’s method.

(a) Interpret Halley’s method geometrically as the intersection with the x-
axis of a hyperbola with asymptotes parallel to the x- and y-axes that is
osculatory to the curve y D f .x/ at x D xn (i.e., is tangent to the curve at
this point and has the same curvature there).

(b) Show that the method can, alternatively, be interpreted as applying
Newton’s method to the equation g.x/ D 0, g.x/ WD f .x/=

p
f 0.x/.

(c) Assuming ˛ is a simple root of the equation, and xn ! ˛ as n ! 1, show
that convergence is exactly cubic, unless the “Schwarzian derivative”

.Sf /.x/ WD f 000.x/
f 0.x/

� 3

2

�
f 00.x/
f 0.x/

�2

vanishes at x D ˛, in which case the order of convergence is larger than 3.
(d) Is Halley’s method more efficient than Newton’s method as measured in

terms of the efficiency index?
(e) How does Halley’s method look in the case f .x/ D x
 � a, a > 0?

(Compare with Ex. 39.)

44. Let f .x/ D xd C ad�1xd�1 C � � � C a0 be a polynomial of degree d � 2 with
real coefficients ai .

(a) In analogy to (4.75), let

f .x/ D .x2 � tx � s/.xd�2 C bd�1xd�3 C � � � C b2/C b1.x � t/C b0:

Derive a recursive algorithm for computing bd�1; bd�2; : : : ; b1; b0 in this
order.

(b) Suppose ˛ is a complex zero of f . How can f be deflated to remove the
pair of zeros ˛, ˛?

(c) (Bairstow’s method) Devise a method based on the division algorithm of (a)
to compute a quadratic factor of f . Use Newton’s method for a system of
two equations in the two unknowns t and s and exhibit recurrence formulae
for computing the elements of the 2 � 2 Jacobian matrix of the system.

45. Let p.t/ be a monic polynomial of degree n. Let x 2 C
n and define

f�.x/ D Œx1; x2; : : : ; x�� p; � D 1; 2; : : : ; n;
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to be the divided differences of p relative to the coordinates x� of x. Consider
the system of equations

f .x/ D 0; Œf .x/�T D Œf1.x/; f2.x/; : : : ; fn.x/�:

(a) Let ˛T D Œ˛1; ˛2; : : : ; ˛n� be the zeros of p, assumed mutually distinct.
Show that ˛ is, except for a permutation of the components, the unique
solution of f .x/ D 0. fHint: use Newton’s formula of interpolation.g

(b) Describe the application of Newton’s iterative method to the preceding
system of nonlinear equations, f .x/ D 0. fHint: use Chap. 2, Ex. 58.g

(c) Discuss to what extent the procedure in (a) and (b) is valid for nonpolyno-
mial functions p.

46. For the equation f .x/ D 0 define

yŒ0�.x/ D x;

yŒ1�.x/ D 1

f 0.x/
;

� � � � � � � � � � � � � � � � � � � � � � � �

yŒm�.x/ D 1

f 0.x/
d

dx
yŒm�1�.x/; m D 2; 3; : : ::

Consider the iteration function

'r.x/ WD
rX

mD0
.�1/m y

Œm�.x/

mŠ
Œf .x/�m:

(When r D 1 this is the iteration function for Newton’s method.) Show that
'r.x/ defines an iteration xnC1 D 'r.xn/; n D 0; 1; 2; : : : ; converging locally
with exact order p D r C 1 to a root ˛ of the equation if yŒrC1�.˛/f 0.˛/ ¤ 0.

Machine Assignments

1.(a) Write a Matlab program that computes (in Matlab double precision) the
expanded form p.x/ D x5 � 5x4 C 10x3 � 10x2 C 5x � 1 of the polynomial
.x�1/5. Run the program to print p.x/=prec for 200 equally spaced x-values
in a small neighborhood of x D 1 (say, 0:9986 � x � 1:0014), where prec =
eps is the Matlab (double-precision) machine precision. Prepare a piecewise
linear plot of the results. Explain what you observe. What is the “uncertainty
interval” for the numerical root corresponding to the mathematical root
x D 1?
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(b) Do the same as (a), but for the polynomial p.x/ D x5 � 100x4 C 3995x3 �
79700x2C794004x�3160080, the expanded form of .x�18/.x�19/.x�20/
.x � 21/.x � 22/. Do the computation in Matlab single precision and take
for prec the respective machine precision. Examine a small interval around
x D 22 (say, 21:675 � x � 22:2).

2. Consider the equation

1

2
x � sinx D 0:

(a) Show that the only positive root is located in the interval Œ 1
2
	; 	�.

(b) Compute the root to 7, 15, and 33 decimal places

(b1) by the method of bisection, using the Matlab function sbisec of
Sect. 4.3.1 with starting values a D 1

2
	 , b D 	;

(b2) by the method of false position, using the Matlab function sfalsepos
of Sect. 4.4 with the same starting values as in (b1);

(b3) by the secant method, using the Matlab function ssecant of Sect. 4.5
with the same starting values as in (b1);

(b4) by Newton’s method, using the Matlab function snewton of Sect. 4.6
with an appropriate starting value a.

In all cases print the number of iterations required.

3. For an integer n � 2, consider the equation

x C x�1

xn C x�n D 1

n
:

(a) Write the equation equivalently as a polynomial equation, pn.x/ D 0.
(b) Use Descartes’ rule of sign4 (applied to pn.x/ D 0) to show that there are

exactly two positive roots, one in (0,1), the other in (1,1). How are they
related? Denote the larger of the two roots by ˛n .>1/. It is known (you do
not have to prove this) that

1 < ˛nC1 < ˛n < 3; n D 2; 3; 4; : : : :

(c) Write and run a program applying the bisection method to compute ˛n; n D
2; 3; : : : ; 20, to six correct decimal places after the decimal point, using Œ1; 3�
as initial interval for ˛2, and Œ1; ˛n� as initial interval for ˛nC1 .n � 2/. For
each n, count the number of iterations required. Similarly, apply Newton’s
method (to the equation pn.x/ D 0) to compute ˛n to the same accuracy,
using the initial value 3 for ˛2 and the initial value ˛n for ˛nC1 .n � 2/.

4Descartes’ rule of sign says that if a real polynomial has s sign changes in the sequence of its
nonzero coefficients, then it has s positive zeros or a (nonnegative) even number less.
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(Justify these choices.) Again, for each n, count the number of iterations
required. In both cases, print n, ˛n, and the number of iterations. Use a do
while loop to program either method.

4. Consider the equation
x D e�x:

(a) Implement the fixed-point iteration xnC1 D e�xn on the computer, starting
with x0 D 1 and stopping at the first n for which xnC1 agrees with xn to
within the machine precision. Print this value of n and the corresponding
xnC1.

(b) If the equation is multiplied by ! (¤ 0 and ¤ �1) and x is added on both
sides, one gets the equivalent equation

x D !e�x C x

1C !
:

Under what condition on ! does the fixed-point iteration for this equation
converge faster (ultimately) than the iteration in (a)? fThis condition involves
the root ˛ of the equation.g

(c) What is the optimal choice of !? Verify it by a machine computation in a
manner analogous to (a).

5. Consider the boundary value problem

y00 C siny D 0; 0 � x � 1

4
	;

y.0/ D 0; y

�
1

4
	

�
D 1;

which describes the angular motion of a pendulum.

(a) Use the Matlab integrator ode45.m to compute and plot the solution u.xI s/
of the associated initial value problem

u00 C sin u D 0; 0 � x � 1

4
	;

u.0/ D 0; u0.0/ D s

for s D :2.:2/2.
(b) Write and run a Matlab program that applies the method of bisection,

with tolerance 0.5e�12, to the equation f .s/ D 0, f .s/ D u.1I s/ � 1.
Use the plots of (a) to choose starting values s0, s1 such that f .s0/ < 0,
f .s1/ > 0. Print the number of bisections and the value of s so ob-
tained. fSuggestion: use a nonsymbolic version bisec.m of the program
sbisec.m of Sect. 4.3.1.g

(c) Plot the solution curve y.x/ D u.xI s/ of the boundary value problem, with
s as obtained in (b).
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6. The boundary value problem

y00 D g.x; y; y0/; 0 � x � 1;

y.0/ D y0; y.1/ D y1

may be discretized by replacing the first and second derivatives by centered
difference quotients relative to a grid of equally spaced points xk D k

nC1 ,
k D 0; 1; : : : ; n; nC 1.

(a) Interpret the resulting equations as a fixed point problem in R
n and formulate

the respective fixed point iteration.
(b) Write a Matlab program that applies the fixed point iteration of (a) to the

problem

y00 � y D 0; y.0/ D 0; y.1/ D 1

(cf. the first Example of Chap. 7, Sect. 7.1.1). Run the program for n D
10; 100; 1000; 10000, stopping the iteration the first time two successive iter-
ates differ by less than .5e�14 in the 1-norm. Print the number of iterations
required and the maximum error of the final iterate as an approximation to the
exact solution vector. Assuming this error is O.hp/, determine numerically
the values of p and of the constant implied in the order term. fSuggestion: for
solving tridiagonal systems of equations, use the Matlab routine tridiag.m
of Chap. 2, MA 8(a).g

(c) Apply the fixed point iteration of (a) to the boundary value problem of MA
5. Show that the iteration function is contractive. fHint: use the fact that the
symmetric n � n tridiagonal matrix A with elements �2 on the diagonal and
1 on the two side diagonals has an inverse satisfying kA�1k1 � .nC1/2=8.g

7. (a) Solve the finite difference equations obtained in MA 6(c) by Newton’s
method, using n D 10; 100; 1000, and an error tolerance of 0.5e�14. Print
the number of iterations in each case and plot the respective solution curves.
fSuggestion: same as in MA 6(b).g

(b) Do the same as in (a) for the boundary value problem

y00 D yy0; y.0/ D 0; y.1/ D 1;

but with n D 10; 50; 100, and error tolerance 0.5e�6. How would you check
your program for correctness?

(c) Show that the fixed point iteration applied to the finite difference equations
for the boundary value problem of (b) does not converge. fHint: use n2=8 �
kA�1k1 � .nC 1/2=8 for the n � n tridiagonal matrix A of MA 6(c).g
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8. (a) The Littlewood–Salem–Izumi constant ˛0, defined as the unique solution in
0 < ˛ < 1 of

Z 3	=2

0

cos t

t˛
dt D 0;

is of interest in the theory of positive trigonometric sums (cf., e.g.,
Koumandos [2011, Theorem 2]). Use Newton’s method in conjunction
with Gaussian quadrature to compute ˛0. fHint: you need the Matlab
routine gauss.m along with the routines r jacobi01.m, r jacobi.m,
r jaclog.m, and mm log.m to do the integrations required. All these
routines are available on the Web at http://www.cs.purdue.edu/
archives/2002/wxg/codes/SOPQ.html.g

(b) Do the same as in (a) for the constant ˛1, the unique solution in 0 < ˛ < 1 of

Z 5	=4

0

cos.t C 	=4/

t˛
dt D 0

(cf. ibid, Theorem 4).
9. (a) Discuss how to simplify the system of nonlinear equations (4.17) for

the recurrence coefficients of the polynomials f	k;ngnkD0, generating the
s-orthogonal polynomials 	n D 	n;n, when the measure d
.t/ D w.t/dt
is symmetric, i.e., the support of d
 is an interval Œ�a; a�, 0 < a � 1, and
w.�t/ D w.t/ for all t with 0 < t � a. fHint: first show that the respective
monic s-orthogonal polynomial 	n satisfies 	n.�t/ D .�1/n	n.t/, t 2
Œ�a; a� and similarly 	k;n.�t/ D .�1/k	k;n.t/.g

(b) For n D 2, s D 1, and s D 2, explain how the recurrence coefficients ˇ0,
ˇ1 can be obtained analytically in terms of the moments �k D R

R
tkd
.t/,

k D 0; 1; 2; : : : ; of the measure. Provide numerical answers in the case of
the Legendre measure d
.t/ D dt , t 2 Œ�1; 1�.

(c) Write a Matlab program for solving the system of nonlinear equations in
(a), using the program fsolve of the Matlab Optimization Toolbox. Run
the program for the Legendre measure and for n D 2 W 10 and s D 1 and
s D 2 for each n. Choose initial approximations as deemed useful and apply
appropriate .s C 1/n-point Gaussian quadrature rules to do the necessary
integrations. Print ˇ0; ˇ1; : : : ; ˇn�1 and the zeros of 	n.

Selected Solutions to Exercises

6. (a) From

xnC1 � ˛ D c.xn � ˛/;
xnC2 � ˛ D c.xnC1 � ˛/;
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solving the first equation for c and substituting the result into the second
equation gives

.xn � ˛/.xnC2 � ˛/ D .xnC1 � ˛/2:

Solving for ˛, one finds

˛ D xnxnC2 � x2nC1
xnC2 � 2xnC1 C xn

D xn � .xnC1 � xn/
2

xnC2 � 2xnC1 C xn
:

Raplacing ˛ by x0
n yields Aitken’s�2-process.

(b) We need to show that �2xn ¤ 0 for n sufficiently large. Let "n D xn � ˛.
We have

�2xn

"n
D �2"n

"n
D "nC2
"nC1

"nC1
"n

� 2
"nC1
"n

C 1 ! .c � 1/2 as n ! 1;

from which the assertion follows.
(c) Let "0

n D x0
n � ˛. Subtracting ˛ from both sides of

x0
n D xn � .�xn/

2

�2xn

and dividing by "n, we get

"0
n

"n
D 1 � .�"n/

2

"n�2xn
D 1 �

�
�"n

"n

�2
1

�2xn="n
:

Thus, by assumption and the result of (b),

lim
n!1

"0
n

"n
D 1 � .c � 1/2

1

.c � 1/2
D 0;

as claimed.
9. (a) Clearly, with ˛, also �˛ is a root of the equation. It suffices, therefore,

to look at positive roots. Writing the equation in the form tan x D 1=x

and plotting both sides as functions of x for x > 0 (see figure on the next
page), one sees that there is exactly one root ˛k in each of the intervals
Ik D Œk	; .k C 1

2
/	�, k D 0; 1; 2; : : : : Moreover, as k ! 1, the root ˛k

approaches k	 from the right. (Cf. also Ex. 32.)
(b) Let f .x/ D x tanx � 1. As initial interval, we may take (for example)

the interval Œ0; 3	
8
�, since f .0/ D �1 and f .3	

8
/ D 3	

8
tan 3	

8
� 1 D

1:8441 : : : > 0. We then want n; the number of bisections, such that (cf.
(4.33))

3	

8 � 2n � 1

2
� 10�8;
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that is,

n �
&
8C log 3	

4

log 2

'
D 28:

This holds for all roots, since f .k	/ D �1 < 0 and f .k	 C 3	
8
/ D

.k	 C 3	
8
/ tan 3	

8
� 1 > 0; k D 1; 2; 3; : : : :

0 5 10 15

−15

−10

−5

0

5

10

15

(c) We first apply the addition theorem for the tangent function to write

tan.x C iy/ D tanx C tan.iy/

1 � tanx tan.iy/
D tan x C i tanhy

1 � i tanx tanhy
;

or, using the definition of the trigonometric and hyperbolic tangents,

tan.x C iy/ D sinx coshy C i cos x sinhy

cosx coshy � i sin x sinh y
:

Multiplying numerator and denominator by cosx coshy C i sin x sinhy
gives

tan.x C iy/ D sin 2x C i sinh 2y

2.cos2 x cosh2 y C sin2 x sinh2 y/
:
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Use the identities 2 cos2 x D cos 2x C 1, 2 sin2 x D 1 � cos 2x in the
denominator, along with cosh2 y � sinh2 y D 1, cosh2 y C sinh2 y D
cosh 2y, to obtain the pretty formula

tan.x C iy/ D sin 2x C i sinh 2y

cos 2x C cosh 2y
:

Now suppose that

.x C iy/ tan.x C iy/ � 1 D 0:

Then both the real and imaginary part must vanish, which gives the two
equations

x sin 2x � y sinh 2y � cos 2x � cosh 2y D 0;

x sinh 2y C y sin 2x D 0:

The second can be written as

xy

�
sin 2x

x
C sinh 2y

y

�
D 0:

Since the function in parentheses is always positive, this implies either x D
0 or y D 0. The latter yields real roots, and the former is impossible, since
by the first equation above it would imply y sinh 2y C 1 C cosh 2y D 0,
which is clearly impossible, the left-hand side being>2. Thus, there are no
complex roots.

32. (a) We have

f 0.x/ D tanx C x.1C tan2 x/;

f 00.x/ D 2.1C tan2 x/C 2x tanx.1C tan2 x/

D 2.1C tan2 x/.1C x tanx/:

On the interval Œ0; 	
2
�, the function f increases from �1 to C1 and is

convex. Furthermore, f .	
4
/ D 	

4
� 1 < 0. We thus need to show that

one step of Newton’s method with x0 D 	
4

produces x1 such that x1 < 	
2

.
Since, by convexity,x1 > ˛0, from then on, Newton’s method will converge
monotonically decreasing to ˛0. Now,

x1 D x0 � f .x0/

f 0.x0/
D 	

4
�

	
4

� 1

1C 2 � 	
4

D 1C 	2

8

1C 	
2

;
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which is indeed less than 	
2

, since

1C 	2

8
<
	

2

�
1C 	

2

�
:

(b) Again, f increases from �1 to C1 on Œn	; .n C 1
2
/	� and is convex.

Since

f

��
nC 1

4

�
	

�
D
�
nC 1

4

�
	 � 1 > 0 for n � 1;

Newton’s method started at .nC 1
4
/	 converges monotonically decreasing

to ˛n.
(c) We have

˛n tan˛n � 1 D 0;

and therefore, inserting the expansion for ˛n and noting that tan. � C	n/ D
tan.�/,

.	nC c0 C c1.	n/
�1 C c2.	n/

�2 C � � � /
� tan.c0 C c1.	n/

�1 C c2.	n/
�2 C � � � /� 1 D 0:

Evidently, c0 D 0. Letting x D .	n/�1 and multiplying through by x gives

.1C c1x
2 C c2x

3 C � � � / tan.c1x C c2x
2 C � � � / � x D 0:

Using Maple’s series command, we can find the power series expansion
of the left-hand side up to terms of order x9. Maple produces the coeffi-
cients explicitly as functions of c1; c2; : : : ; c9. Setting these functions equal
to zero and solving successively for the unknowns c1; c2; : : : ; c9 yields,
after a little bit of algebra, that c2 D c4 D c6 D � � � D 0 and

c1 D 1; c3 D �4
3
; c5 D 53

15
;

c7 D �1226
105

; c9 D 13597

315
:

Thus,

˛n D 	nC .	n/�1 � 4

3
.	n/�3 C 53

15
.	n/�5 � 1226

105
.	n/�7

C 13597

315
.	n/�9 CO

�
.	n/�11

�
:
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(d) PROGRAMS

%EXIV_32D
%
f0=’%5.0f %19.15f %19.15f %10.2e\n’;
disp([’ n alpha_n ’ ...
’alpha_n_approx error’])
for n=1:10
a0=(n+1/4)*pi;
a=fzero(’equ32’,a0);
x=1/(pi*n);
an=1/x+x-4*xˆ3/3+53*xˆ5/15-1226*xˆ7/105 ...

+13597*xˆ9/315;
err=an-a;
fprintf(f0,n,a,an,err)

end

%EQU32 The equation of EXIV_32
%
function y=equ32(x)
y=x*tan(x)-1;

OUTPUT

>> EXIV_32D
n alpha_n alpha_n_approx error
1 3.425618459481728 3.426028729631524 4.10e-04
2 6.437298179171947 6.437298435880711 2.57e-07
3 9.529334405361963 9.529334408494419 3.13e-09
4 12.645287223856643 12.645287223991568 1.35e-10
5 15.771284874815885 15.771284874827579 1.17e-11
6 18.902409956860023 18.902409956861607 1.58e-12
7 22.036496727938566 22.036496727938854 2.88e-13
8 25.172446326646664 25.172446326646728 6.39e-14
9 28.309642854452012 28.309642854452026 1.42e-14
10 31.447714637546234 31.447714637546238 3.55e-15

>>

34. (a) We have f .0/ D abn, f .1/ D 1, and

f 0.x/ D .nC 1/xn � bn; f 00.x/ D n.nC 1/xn�1 > 0 for x > 0:

Thus, f 0.0/ < 0 and f is convex on Œ0;1�, so that f has a unique
minimum, say at x D �. Then there are two distinct positive roots precisely
when f .�/ < 0. Since

� D b

.nC 1/
1
n
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and

f .�/ D bnC1

.nC 1/
nC1
n

� bn
b

.nC 1/
1
n

C abn

D bn

(
b

.nC 1/1C 1
n

Œ1 � .nC 1/�C a

)

D bn

(
�nb

.nC 1/1C 1
n

C a

)
;

the condition amounts to

a <
nb

.nC 1/1C 1
n

:

(b) At the point x D a, we have

f .a/ D anC1 � bna C abn D anC1 > 0;

f 0.a/ D .nC 1/an � bn < .nC 1/
nn

.nC 1/nC1 b
n � bn

D
	�

n

nC 1

�n
� 1



bn < 0;

where on the second line the condition in (a) has been used. Since by
assumption a < n

nC1� < �, this means that a must be to the left of the
smaller root, ˛1. By convexity of f , Newton’s method started at x D a

therefore converges monotonically increasing to ˛1. Similarly,

f .b/ D bnC1 � bnC1 C abn D abn > 0;

f 0.b/ D .nC 1/bn � bn D nbn > 0;

and b D .n C 1/
1
n � > �, implying that b > ˛2, where ˛2 is the larger

root. By convexity of f , Newton’s method started at x0 D b then converges
monotonically decreasing to ˛2.

40. (a) Convergence to 1
˛

requires that

1

˛
D '

�
1

˛

�
D A

˛
C B

˛2
C C

˛3
;

that is,

˛2AC ˛B C C D ˛2:
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Cubic convergence requires, in addition, ' 0. 1
˛
/ D ' 00. 1

˛
/ D 0, that is,

˛2AC 2˛B C 3C D 0;

2˛B C 6C D 0:

We thus have three linear equations in the three unknownsA, B , C . Solving
them yields

A D 3; B D �3˛; C D ˛2;

giving

'.x/ D 3x � 3˛x2 C ˛2x3:

(b) Letting

"n D xn � 1

˛
;

we have from the general theory of fixed point iterations (cf. (4.71)) that

"nC1
"3n

D 1

6
' 000

�
1

˛

�

(since ' 000 is constant), that is,

"nC1 D ˛2"3n; n D 0; 1; 2; : : : :

An easy inductive argument shows that

"n D 1

˛
.˛"0/

3n :

Thus, we have convergence precisely if ˛j"0j < 1.
43. (a) A hyperbola with the lines x D X0 and y D Y0 as asymptotes has the

equation

.x � X0/.y � Y0/ � 1
2
a2 D 0:

It intersects the x-axis at

xnC1 D X0 �
1
2
a2

Y0
:
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The osculatory requirement of the hyperbola at the point (xn; fn) (where
fn D f .xn/, etc.) is expressed by the following three equations:

.xn � X0/.fn � Y0/ � 1

2
a2 D 0;

fn � Y0 C .xn � X0/f
0
n D 0;

2f 0
n C .xn �X0/f 00

n D 0:

The unknowns are X0, Y0 and a; the first is obtained immediately from the
last equation,

X0 D xn C 2
f 0
n

f 00
n

:

The second equation then gives

Y0 D fn � 2 f
0
n
2

f 00
n

and the first

1

2
a2 D �4 f

0
n
3

f 00
n
2
:

Therefore,

xnC1 D X0 �
1
2
a2

Y0
D xn C 2

f 0
n

f 00
n

C 4 f 0
n
3

f 00
n
2
�
fn � 2

f 0

n
2

f 00

n

�

D xn C 2
f 0
n

f 00
n

�
2
f 0

n
2

f 00

n

f 0
n � 1

2
f 00
n
fn
f 0

n

D xn �
�2 f 0

n

f 00

n

�
f 0
n � 1

2
f 00
n
fn
f 0

n

�
C 2

f 0

n
2

f 00

n

f 0
n � 1

2
f 00
n
fn
f 0

n

D xn � fn

f 0
n � 1

2
f 00
n
fn
f 0

n

;

as claimed.
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(b) Newton’s method applied to g D 0 is (in obvious notations)

xnC1 D xn � gn

g0
n

D xn � fnp
f 0
n

f 0
np

f 0
nf

0
n � 1

2
fn

1p
f 0

n

f 00
n

D xn � fnf
0
n

f 0
n
2 � 1

2
f 00
n fn

D xn � fn

f 0
n � 1

2
f 00
n
fn
f 0

n

:

(c) We have

xnC1 D '.xn/; where '.x/ D x � f .x/

f 0.x/ � 1
2
f 00.x/ f .x/

f 0.x/

:

Thus (dropping the argument x throughout),

.f 02 � 1

2
f 00f /' D x.f 02 � 1

2
f 00f / � ff 0:

Differentiating with respect to x gives

�
3

2
f 0f 00 � 1

2
f 000f

�
' C

�
f 02 � 1

2
f 00f

�
' 0

D f 02 � 1

2
f 00f C x

�
3

2
f 0f 00 � 1

2
f 000f

�
� f 02 � ff 00

D �3
2
f 00f C x

�
3

2
f 0f 00 � 1

2
f 000f

�
:

Since '.˛/ D ˛, putting x D ˛, one sees that the first term on the left and
the last term on the far right cancel each other. What remains simplifies, in
view of f .˛/ D 0, to

f 02.˛/' 0.˛/ D 0;

hence, since f 0.˛/ ¤ 0, to ' 0.˛/ D 0. Differentiating again, we get

�
3

2
f 002 C f 000f 0 � 1

2
f .4/f

�
' C .3f 0f 00 � f 000f /' 0 C

�
f 02 � 1

2
f 00f

�
' 00

D �2f 000f C x

�
3

2
f 002 C f 0f 000 � 1

2
f .4/f

�
:
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Again putting x D ˛ and using '.˛/ D ˛, ' 0.˛/ D 0, f .˛/ D 0, we obtain

�
3

2
Œf 00.˛/�2 C f 000.˛/f 0.˛/

�
˛ C Œf 0.˛/�2' 00.˛/

D
�
3

2
Œf 00.˛/�2 C f 0.˛/f 000.˛/

�
˛;

that is, Œf 0.˛/�2' 00.˛/ D 0, hence ' 00.˛/ D 0. Thus, the order of
convergence is at least p D 3. To obtain ' 000.˛/, we must differentiate once
more and get, when x D ˛,

�
4f 00f 000 C 1

2
f .4/f 0

�

xD˛
� ˛ C Œf 0.˛/�2' 000.˛/

D
�

�f 000f 0 C 3

2
f 002

�

xD˛
C
�
4f 00f 000 C 1

2
f .4/f 0

�

xD˛
� ˛;

hence

' 000.˛/ D �
"
f 000

f 0 � 3

2

�
f 00

f 0

�2#

xD˛
D �.Sf /.˛/:

Thus, if .Sf /.˛/ ¤ 0, the order of convergence is exactly equal to 3.
(d) Yes, slightly. Recall from Sect. 4.2 that the efficiency index is p1=m, where

p is the order of the method and m the number of “units of work.” For
Newton’s method this is

p
2 D 1:4142 : : :, whereas for Halley’s method it

is 3
1
3 D 1:4422 : : : :

(e) In the case f .x/ D x
 � a, we get

xnC1 D xn � x
n � a

x
�1

n � 1
2

.
 � 1/x
�2

n
x
n�a

x
�1

n

D 
x
n � 1
2
.
 � 1/x
n C 1

2
.
 � 1/a � x
n C a


x
n � 1
2
.
 � 1/.x
n � a/

xn

D .
 � 1/x
n C .
C 1/a

.
C 1/x
n C .
 � 1/a
xn:

45. (a) By Newton’s interpolation formula with remainder term, interpolating the
nth-degree polynomial p by a polynomial of degree n � 1, we can write

p.t/ D
nX

�D1
f�.x/

��1Y

�D1
.t � x�/C p.n/.�/

nŠ

nY

�D1
.t � x�/:
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Since p is monic of degree n, we have p.n/.�/ D nŠ, and so

p.t/ D
nX

�D1
f�.x/

��1Y

�D1
.t � x�/C

nY

�D1
.t � x�/:

Suppose ˛T D Œ˛1; ˛2; : : : ; ˛n� is a solution of f .x/ D 0. Then f�.˛/ D 0

for � D 1; 2; : : : ; n, hence

p.t/ D
nY

�D1
.t � ˛�/;

showing that ˛� are the zeros of p, which are unique up to permutation.
Conversely, let ˛T D Œ˛1; ˛2; : : : ; ˛n� be the zeros of p in some order. Then,
identically in t ,

p.t/ D
nX

�D1
f�.˛/

��1Y

�D1
.t � ˛�/C

nY

�D1
.t � ˛�/;

that is, since
Qn
�D1.t � ˛�/ D p.t/,

0 D
nX

�D1
f�.˛/

��1Y

�D1
.t � ˛�/:

Letting t ! ˛1 gives f1.˛/ D 0. Dividing the remaining equation by t � ˛1
and letting t ! ˛2 gives f2.˛/ D 0. Continuing in this manner yields
f3.˛/ D 0; : : : ; fn.˛/ D 0 in this order.

(b) The Jacobian of f is a lower triangular matrix, namely

@f

@x
.x/ D

2

6664

[x1; x1�p 0 � � � 0

[x1; x1; x2�p Œx1; x2; x2�p � � � 0

� � � � � � � � � � � �
[x1; x1; x2; : : : ; xn�p Œx1; x2; x2; : : : ; xn�p � � � Œx1; x2; : : : ; xn; xn�p

3

7775

(cf. Ch. 2, Ex. 58). Given an approximation ˛Œi � to the root vector ˛,
Newton’s method requires the solution by forward substitution of the lower
triangular system

@f

@x
.˛Œi �/�Œi � D �f .˛Œi �/

to get the next approximation vector

˛ŒiC1� D ˛Œi � C �Œi �:
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(c) The arguments in (a), (b) extend to functions p that are sufficiently
smooth, for example, p 2 CnŒR�. Then, if f�.˛/ D 0 for some ˛T D
Œ˛1; ˛2; : : : ; ˛n�, the ˛1; ˛2; : : : ; ˛n are zeros of p and vice versa. The first
statement is an immediate consequence of the first identity above in (a). The
converse follows similarly as before by taking limits t ! ˛� followed by
division of both sides of the identity by t � ˛�.

Selected Solutions to Machine Assignments

6.(a) The discretization of the boundary value problem amounts to solving the
system of nonlinear equations

ukC1 � 2uk C uk�1 D h2g
�
xk; uk;

ukC1 � uk�1
2h

�
;

k D 1; 2; : : : ; n;

u0 D y0; unC1 D y1;

where h D 1=.nC 1/. With

A D

2
666666664

�2 1 0

1 �2 1

: : :
: : :

: : :

: : :
: : : 1

0 1 �2

3
777777775

; u D

2

66664

u1
u2
:::

un

3

77775
;

F .u/ D

2
66664

g
�
x1; u1;

u2�y0
2h

�

g
�
x2; u2;

u3�u1
2h

�

:::

g
�
xn; un;

y1�un�1

2h

�

3
77775
;

this can be written as a fixed point problem

Au D h2F .u/� b or u D A�1.h2F .u/� b/;

where

b D y0e1 C y1en; e1 D Œ1; 0; : : : ; 0�T 2 R
n; en D Œ0; 0; : : : ; 1�T 2 R

n:
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The corresponding fixed point iteration is

AuŒiC1� D h2F .uŒi �/� b; i D 0; 1; 2; : : : I
uŒ0� D initial approximation:

(b) PROGRAM

%MAIV_6B
%
f0=’%8.0f %4.0f %12.4e %12.4e\n’;
disp(’ n it err order’)
eps0=.5e-14;
for n=[10 100 1000 10000]

h=1/(n+1); h2=hˆ2;
a=-2*ones(n,1); b=ones(n-1,1); c=b;
en=eye(n); en=en(:,n);
x=linspace(h,1-h,n)’; y=sinh(x)/sinh(1);
it=0; u0=zeros(n,1); u1=ones(n,1);
while max(abs(u1-u0))>eps0
it=it+1;
u0=u1;
u1=tridiag(n,a,b,c,h2*u0-en);

end
err=max(abs(u1-y)); ord=err/h2;
fprintf(f0,n,k,err,ord)

end

OUTPUT

>> MAIV_6B
n it err order
10 16 3.6185e-05 4.3784e-03

100 16 4.3345e-07 4.4217e-03
1000 16 4.4131e-09 4.4219e-03
10000 16 5.0103e-11 5.0113e-03

>>

Since the central difference approximations of the derivatives have errors
of O.h2/, the same can be expected for the errors in the solution. This is
confirmed in the last column of the OUTPUT, suggesting also that the constant
involved is about 5 � 10�3.

(c) The system of nonlinear equations is

Au D �h2 sin u � en; h D 	

4.nC 1/
;
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where sin u D Œsin u1; sin u2; : : : ; sin un�T. The iteration function is

'.u/ D �A�1.h2 sin u C en/:

We have, using the Mean Value Theorem applied to the sine function,

'.u/� '.u�/ D �h2A�1.sin u � sin u�/ D �h2A�1diag.cos.	//.u � u�/;

where the elements of 	 are on the line segment between u and u�. Therefore,

k'.u/� '.u�/k1 � h2kA�1k1ku � u�k1:

Here we have, using the Hint,

h2kA�1k1 � h2 � 1
8
.nC 1/2 D 	2

128
D :077106 : : : < 1;

so that ' is strongly contractive and we have rapid convergence of the fixed
point iteration (cf. Theorem 4.9.1).

8.(a) Let

f .˛/ D
Z 3	=2

0

cos t

t˛
dt; 0 < ˛ < 1:

Clearly, f .0/ D sin.3	=2/ D �1 and f .1/ D 1. A graph of the function
reveals that f is monotonically increasing and convex, and thus has a unique
zero in .0; 1/; it is located near 0.3. Any initial approximation to the right of
this zero will guarantee convergence of Newton’s method, owing to convexity.
We choose 0.4 as initial approximation.

To transform to a standard interval, we make the change of variables t D
3	
2
x and have

f .˛/ D
�
3	

2

�1�˛ Z 1

0

cos

�
3	

2
x

�
x�˛dx:

Differentiating, we get

f 0.˛/ D
�
3	

2

�1�˛ �Z 1

0

cos

�
3	

2
x

�
x�˛ ln.1=x/dx

� ln
3	

2

Z 1

0

cos

�
3	

2
x

�
x�˛dx

�
;

and Newton’s method becomes

˛ŒiC1� D ˛Œi� � f .˛Œi �/

f 0.˛Œi �/
; i D 0; 1; 2; : : : I ˛Œ0� D :4:
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The integral defining f , and the second integral in the formula for f 0, call for
Gauss–Jacobi quadrature with Jacobi parameters 0 and �˛. The first integral
in f 0 requires Gauss quadrature relative to the weight function x�˛ ln.1=x/
on Œ0; 1�. The OPQ routines providing the recurrence coefficients for the
respective orthogonal polynomials are r jacobi01.m and r jaclog.m,
respectively, while the routine gauss.m generates the Gaussian quadrature
formulae from the recurrence coefficients. The program below also deter-
mines, and prints, the respective numbers n and n0 of quadrature points
required for 14 decimal digit accuracy:

PROGRAM

%MAIV_8A
%
nmax=50; eps0=.5e-14;
a1=.4; a=0;
while abs(a1-a)> eps0

a=a1;
ab=r_jacobi01(nmax,0,-a);
ab0=r_jaclog(nmax,-a);
n=1; sg1=0; sg=1;
while abs(sg1-sg)>eps0
n=n+1; sg=sg1;
xw=gauss(n,ab);
sg1=sum(xw(:,2).*cos(3*pi*xw(:,1)/2));

end
f=(3*pi/2)ˆ(1-a)*sg1;
n0=1; sg01=0; sg0=1;
while abs(sg01-sg0)>eps0
n0=n0+1;
sg0=sg01;
xw0=gauss(n0,ab0);
sg01=sum(xw0(:,2).*cos(3*pi*xw0(:,1)/2));

end
fd=(3*pi/2)ˆ(1-a)*(sg01-log(3*pi/2)*sg1);
a1=a-f/fd;

end
fprintf(’ n=%2.0f, n0=%2.0f,

alpha0=%17.15f\n’,n,n0,a1)

OUTPUT

>> MAIV_8A
n=10, n0=10, alpha0=0.308443779561986

>>
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A high-precision value of ˛0 (to 1, 120 digits) can be found in Arias de Reyna
and Van de Lune [2009, Sect. 5].

(b) Letting

g.˛/ D
Z 5	=4

0

cos.t C 	=4/

t˛
dt; 0 < ˛ < 1;

a similar calculation as in (a) yields

g.˛/ D
�
5	

4

�1�˛ Z 1

0

cos..5x C 1/	=4/

x˛
dx;

g0.˛/ D
�
5	

4

�1�˛ �Z 1

0

cos..5x C 1/	=4/x�˛ ln.1=x/dx

� ln
5	

4

Z 1

0

cos..5x C 1/	=4/

x˛
dx

�
:

PROGRAM

%MAIV_8B
%
nmax=50; eps0=.5e-14;
a1=.7; a=0;
while abs(a1-a)> eps0

a=a1;
ab=r_jacobi01(nmax,0,-a);
ab0=r_jaclog(nmax,-a);
n=1; sg1=0; sg=1;
while abs(sg1-sg)>eps0
n=n+1; sg=sg1;
xw=gauss(n,ab);
sg1=sum(xw(:,2).*cos(pi*(5*xw(:,1)+1)/4));

end
g=(5*pi/4)ˆ(1-a)*sg1;
n0=1; sg01=0; sg0=1;
while abs(sg01-sg0)>eps0
n0=n0+1;
sg0=sg01;
xw0=gauss(n0,ab0);
sg01=sum(xw0(:,2).*cos(pi*(5*xw0

(:,1)+1)/4));
end
gd=(5*pi/4)ˆ(1-a)*(sg01-log(5*pi/4)*sg1);
a1=a-g/gd;

end
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fprintf(’ n=%2.0f, n0=%2.0f,
alpha1=%17.15f\n’,n,n0,a1)

OUTPUT

>> MAIV_8B
n=10, n0=10, alpha1=0.614433447526100

>>



Chapter 5
Initial Value Problems for ODEs:
One-Step Methods

Initial value problems for ordinary differential equations (ODEs) occur in almost
all the sciences, notably in mechanics (including celestial mechanics), where the
motion of particles (resp., planets) is governed by Newton’s second law – a system
of second-order differential equations. It is no wonder, therefore, that astronomers
such as Adams, Moulton, and Cowell were instrumental in developing numerical
techniques for their integration.1 Also in quantum mechanics – the analogue of
celestial mechanics in the realm of atomic dimensions – differential equations are
fundamental; this time it is Schrödinger’s equation that reigns, actually a linear
partial differential equation involving the Laplace operator. Still, when separated in
polar coordinates, it reduces to an ordinary second-order linear differential equation.
Such equations are at the heart of the theory of special functions of mathematical
physics. Coulomb wave functions, for example, are solutions of Schrödinger’s
equation when the potential is a Coulomb field.

Within mathematics, ordinary differential equations play an important role in the
calculus of variations, where optimal trajectories must satisfy the Euler equations, or
in optimal control problems, where they satisfy the Pontryagin maximum principle.
In both cases, one is led to boundary value problems for ordinary differential
equations. This type of problem is discussed in Chap. 7. In the present and next
chapter, we concentrate on initial value problems.

We begin with some examples of ordinary differential equations as they arise in
the context of numerical analysis.

1In fact, it was by means of computational methods that Le Verrier in 1846 predicted the existence
of the eighth planet Neptune, based on observed (and unaccounted for) irregularities in the orbit of
the next inner planet. Soon thereafter, the planet was indeed discovered at precisely the predicted
location. (Some calculations were done previously by Adams, then an undergraduate at Cambridge,
but were not published in time.)

W. Gautschi, Numerical Analysis, DOI 10.1007/978-0-8176-8259-0 5,
© Springer Science+Business Media, LLC 1997, 2012
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5.1 Examples

Our first example is rather trivial: suppose we want to compute the integral

I D
Z b

a

f .t/dt (5.1)

for some given function f on Œa; b�. Letting y.x/ D
Z x

a

f .t/dt , we get immediately

dy

dx
D f .x/; y.a/ D 0: (5.2)

This is an initial value problem for a first-order differential equation, but a very
special one in which y does not appear on the right-hand side. By solving (5.2) on
Œa; b�, one obtains I D y.b/. This example, as elementary as it seems to be, is not
entirely without interest, because when we integrate (5.2) by modern techniques of
solving ODEs, we can take advantage of step control mechanisms, taking smaller
steps where f changes more rapidly, and larger ones elsewhere. This gives rise to
what may be called adaptive integration.

A more interesting extension of this idea is exemplified by the following
integral,

I D
Z 1

0

J0.t
2/e�tdt ; (5.3)

containing the Bessel function J0.x2/, one of the special functions of mathematical
physics. It satisfies the linear second-order differential equation

d2y

dx2
C
�
2 � 1

x

�
dy

dx
C 4x2y D 0; x > 0; (5.4)

with initial conditions

y.0/ D 1; y0.0/ D 0: (5.5)

As is often the case with special functions arising in physics, the associated
differential equation has a singularity at the origin x D 0, even though the solution
y.x/ D J0.x

2/ is perfectly regular at x D 0. (The singular term in (5.4) has limit 0
at x D 0.) Here, we let

y1.x/ D
Z x

0

J0.t
2/e�tdt; y2.x/ D J0.x

2/; y3.x/ D y0
2.x/ (5.6)
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and obtain

dy1
dx

D e�xy2; y1.0/ D 0;

dy2
dx

D y3; y2.0/ D 1;

dy3
dx

D �
�
2 � 1

x

�
y3 � 4x2y2; y3.0/ D 0; (5.7)

an initial value problem for a system of three (linear) first-order differential equa-
tions. We need to integrate this on .0;1/ to find I D y1.1/. An advantage of this
approach is that the Bessel function need not be calculated explicitly; it is calculated
implicitly (as component y2) through the integration of the differential equation
that it satisfies. Another advantage over straightforward numerical integration is
again the possibility of automatic error control through appropriate step change
techniques. We could equally well get rid of the exponential e�x in (5.7) by calling
it y4 and adding the differential equation dy4=dx D �y4 and initial condition
y4.0/ D 1. (The difficulty with the singularity at x D 0 can be handled, e.g., by
introducing initially, say, for 0 � x � 1

3
, a new dependent variable Qy3, setting

Qy3 D .2 � 1
x
/y0
2 D .2 � 1

x
/y3. Then Qy3.0/ D 0, and the second and third equations

in (5.7) can be replaced by

dy2
dx

D � x

1 � 2x
Qy3;

d Qy3
dx

D �4.1 � x/
1 � 2x

Qy3 C 4x.1 � 2x/y2:

Here, the coefficients are now well-behaved functions near x D 0. Once x D 1
3

has been reached, one can switch back to (5.7), using for y3 the initial condition
y3.

1
3
/ D � Qy3. 13 /.)

Another example is the method of lines in partial differential equations, where
one discretizes partial derivatives with respect to all variables but one, thereby
obtaining a system of ordinary differential equations. This may be illustrated by
the heat equation on a rectangular domain,

@u

@t
D @2u

@x2
; 0 � x � 1; 0 � t � T ; (5.8)

where the temperature u D u.x; t/ is to satisfy the initial condition

u.x; 0/ D '.x/; 0 � x � 1; (5.9)

and the boundary conditions

u.0; t/ D 
.t/; u.1; t/ D �.t/; 0 � t � T: (5.10)
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Here, ' is a given function of x, and 
, � given functions of t . We discretize in the
x-variable by placing a grid fxngNC1

nD0 with xn D nh, h D 1
NC1 , on the interval 0 �

x � 1 and approximating the second derivative by the second divided difference
(cf. Chap. 2, (2.117) for n D 2, putting � � x1),

@2u

@x2

ˇ̌
ˇ̌
xDxn

� unC1 � 2un C un�1
h2

; n D 1; 2; : : : ; N ; (5.11)

where
un D un.t/ WD u.xn; t/; n D 0; 1; : : : ; N C 1: (5.12)

Writing down (5.8) for x D xn, n D 1; 2; : : : ; N , and using (5.11), we get
approximately

dun
dt

D 1

h2
.unC1 � 2un C un�1/;

un.0/ D '.xn/;

n D 1; 2; : : : ; N; (5.13)

an initial value problem for a system of N differential equations in the N unknown
functions u1; u2; : : : ; uN . The boundary functions 
.t/, �.t/ enter into (5.13) when
reference is made to u0 or uNC1 on the right-hand side of the differential equation.
By making the grid finer and finer, hence h smaller, one expects to obtain better and
better approximations for u.xn; t/. Unfortunately, this comes at a price: the system
(5.13) becomes more and more “stiff” as h decreases, calling for special methods
designed especially for stiff equations (cf. Sect. 5.9; Chap. 6, Sect. 6.5).

5.2 Types of Differential Equations

The standard initial value problem involves a system of first-order differential
equations

dyi

dx
D f i .x; y1; y2; : : : ; yd /; i D 1; 2; : : : ; d ; (5.14)

which is to be solved on an interval Œa; b�, given the initial values

yi .a/ D yi0; i D 1; 2; : : : ; d: (5.15)

Here, the component functions are indexed by superscripts, and subscripts are
reserved to indicate step numbers, the initial step having index 0. We use vector
notation throughout by letting

yT D Œy1; y2; : : : ; yd �; f T D Œf 1; f 2; : : : ; f d �; yT
0 D Œy10 ; y

2
0 ; : : : ; y

d
0 �
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and writing (5.14), (5.15) in the form

dy

dx
D f .x;y/; a � x � bI y.a/ D y0: (5.16)

We are thus seeking a vector-valued function y.x/ 2 C1Œa; b� that satisfies (5.16)
identically on Œa; b� and has the starting value y0 at x D a. About f .x;y/, we
assume that it is defined for x 2 Œa; b� and all y 2 R

d :2

We note some important special cases of (5.16).

1. d D 1, y0 D f .x; y/: a single first-order differential equation.
2. d > 1, u.d/ D g.x; u; u0; : : : ; u.d�1//: a single d th-order differential equation.

The initial conditions here take the form u.i/.a/ D ui0, i D 0; 1; : : : ; d � 1. This
problem is easily brought into the form (5.16) by defining

yi D u.i�1/; i D 1; 2; : : : ; d:

Then

dy1

dx
D y2; y1.a/ D u00;

dy2

dx
D y3; y2.a/ D u10;

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
dyd�1

dx
D yd ; yd�1.a/ D ud�2

0 ;

dyd

dx
D g.x; y1; y2; : : : ; yd /; yd .a/ D ud�1

0 ; (5.17)

which has the form (5.16) with very special (linear) functions f 1, f 2; : : : ; f d�1,
and f d .x;y/ D g.x;y/.

Although this is the canonical way of transforming a single equation of order d
into a system of first-order equations, there are other ways of doing this, which are
sometimes more natural. Consider, for example, the Sturm–Liouville equation

d

dx

�
p.x/

du

dx

�
C q.x/u D 0; a � x � b; (5.18)

2That is, each component function f i .x;y/ is defined on Œa; b��R
d . In some problems, f .x;y/

is defined only on Œa; b� � D, where D � R
d is a compact domain. In such cases, the solution

y.x/ must be required to remain in D as x varies in Œa; b�. This causes complications, which we
avoid by assuming D D R

d :
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where p.x/ ¤ 0 on Œa; b�. Here, the substitution

y1 D u; y2 D p.x/
du

dx
(5.19)

is more appropriate (and also physically more meaningful), leading to the system

dy1

dx
D 1

p.x/
y2;

dy2

dx
D �q.x/y1: (5.20)

Mathematically, (5.20) has the advantage over (5.18) of not requiring that p be
differentiable on Œa; b�.

3. dy=dx D f .y/, y 2 R
d : an autonomous system of differential equations. Here,

f does not depend explicitly on x. This can always be trivially achieved by
introducing, if necessary, y0.x/ D x and writing (5.16) as

d

dx

	
y

y0



D
	

f .y0;y/

1



; a � x � bI

	
y

y0



.a/ D

	
y0

a



: (5.21)

Many ODE software packages indeed assume that the system is autonomous.
4. Second-order system

d2ui

dx2
D gi

�
x; u1; : : : ; ud ;

du1

dx
; : : : ;

dud

dx

�
; i D 1; 2; : : : ; d: (5.22)

Newton’s law in mechanics is of this form, with d D 3. The canonical
transformation here introduces

y1 D u1; : : : ; yd D ud IydC1 D du1

dx
; : : : ; y2d D dud

dx

and yields a system of 2d first-order equations,

dy1

dx
D ydC1;

� � � � � � � � � � � �
dyd

dx
D y2d ;

dydC1

dx
D g1.x; y1; : : : ; yd ; ydC1; : : : ; y2d /;

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
dy2d

dx
D gd .x; y1; : : : ; yd ; ydC1; : : : ; y2d /: (5.23)
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5. Implicit system of first-order differential equations:

F i

�
x;u;

du

dx

�
D 0; i D 1; 2; : : : ; d I u 2 R

d : (5.24)

Here, F i D F i .x;u; v/ are given functions of 2d C 1 variables, which again we
combine into a vector F D ŒF i �. We denote by Fx the partial derivative of F

with respect to x, and by Fu, Fv the Jacobian matrices

Fu.x;u; v/ D
	
@F i

@uj



; Fv.x;u; v/ D

	
@F i

@vj



:

Assuming that these Jacobians exist and that Fv is nonsingular on Œa; b��Rd�Rd ,
the implicit system (5.24) may be dealt with by differentiating it totally with
respect to x. This yields (in vector notation)

Fx C Fu
du

dx
C Fv

d2u

dx2
D 0; (5.25)

where the arguments in Fx , Fu, Fv are x, u, u0 D du=dx. By assumption, this
can be solved for the second derivative,

d2u

dx2
D F �1

v .x;u;u0/
�

�Fx.x;u;u
0/� Fu.x;u;u

0/
du

dx

�
; (5.26)

yielding an (explicit) system of second-order differential equations (cf. (iv)). If
we are to solve the initial value problem for (5.24) on Œa; b�, with u.a/ D u0
prescribed, we need for (5.26) the additional initial data .du=dx/.a/ D u0

0. This
must be obtained by solving F .a;u0;u

0
0/ D 0 for u0

0, which in general is a
nonlinear system of equations (unless F .x;u; v/ depends linearly on v). But from
then on, when integrating (5.26) (or the equivalent first-order system), only linear
systems (5.25) need to be solved at each step to compute d2u=dx2 for given
x;u;u0, since the numerical method automatically updates x;u;u0 from step to
step.

5.3 Existence and Uniqueness

We recall from the theory of differential equations the following basic existence and
uniqueness theorem.

Theorem 5.3.1. Assume that f .x;y/ is continuous in the first variable for x 2
Œa; b� and with respect to the second satisfies a uniform Lipschitz condition

kf .x;y/ � f .x;y�/k � Lky � y�k; x 2 Œa; b�;y ;y� 2 R
d ; (5.27)
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where k � k is some vector norm. Then the initial value problem (5.16) has a unique
solution y.x/, a � x � b, for arbitrary y0 2 R

d . Moreover, y.x/ depends
continuously on x0 and y0.

The Lipschitz condition (5.27) certainly holds if all functions @f i

@yj
.x;y/,

i; j D 1; 2; : : : ; d , are continuous in the y-variables and bounded on Œa; b� � R
d .

This is the case for linear systems of differential equations, where

f i .x;y/ D
dX

jD1
aij .x/y

j C bi.x/; i D 1; 2; : : : ; d ; (5.28)

and aij .x/, bi.x/ are continuous functions on Œa; b�. In nonlinear problems, it is
rarely the case, however, that a Lipschitz condition is valid uniformly in all of Rd ;
it more often holds in some compact and convex domain D � R

d . In this case, one
can assert the existence of a unique solution only in some neighborhood of x0 in
which y.x/ remains in D. To avoid this complication, we assume in this chapter
that D is so large that y.x/ exists on the whole interval Œa; b� and that all numerical
approximations are also contained in D. Bounds on partial derivatives of f .x;y/

are assumed to hold uniformly in Œa; b� � D , if not in Œa; b� � R
d , and it is tacitly

understood that the bounds may depend on D but not on x and y .

5.4 Numerical Methods

One can distinguish between analytic approximation methods and discrete-variable
methods. In the former, one tries to find approximations ya.x/ � y.x/ to the
exact solution, valid for all x 2 Œa; b�. These usually take the form of a truncated
series expansion, either in powers of x, in Chebyshev polynomials, or in some
other system of basis functions. In discrete-variable methods, on the other hand,
one attempts to find approximations un 2 R

d of y.xn/ only at discrete points xn 2
Œa; b�. The abscissas xn may be predetermined (e.g., equally spaced on Œa; b�) or,
more likely, are generated dynamically as part of the integration process. If desired,
one can from these discrete approximations fung again obtain an approximation
ya.x/ defined for all x 2 Œa; b� either by interpolation or, more naturally, by
a continuation mechanism built into the approximation method itself. We are
concerned here only with discrete-variable methods.

Depending on how the discrete approximations are generated, one distinguishes
between one-step methods and multistep methods. In the former, unC1 is determined
solely from a knowledge of xn, un and the step h to proceed from xn to xnC1 D xnC
h. In a k-step method .k > 1/, knowledge of k � 1 additional points .xn�� ;un��/,
� D 1; 2; : : : ; k � 1, is required to advance the solution. This chapter is devoted to
one-step methods; multistep methods are discussed in Chap. 6.



5.5 Local Description of One-Step Methods 333

When describing a single step of a one-step method, it suffices to show how
one proceeds from a generic point .x;y/, x 2 Œa; b�, y 2 R

d , to the “next” point
.x C h;ynext). We refer to this as the local description of the one-step method. This
also includes a discussion of the local accuracy, that is, how closely ynext agrees at
xChwith the solution (passing through the point .x;y/) of the differential equation.
A one-step method for solving the initial value problem (5.16) effectively generates
a grid function fung, un 2 R

d , on a grid a D x0 < x1 < x2 < � � � < xN�1 <
xN D b covering the interval Œa; b�, whereby un is intended to approximate the
exact solution y.x/ at x D xn. The point .xnC1;unC1/ is obtained from the point
(xn;un) by applying a one-step method with an appropriate step hn D xnC1 � xn.
This is referred to as the global description of a one-step method. Questions of
interest here are the behavior of the global error un � y.xn/, in particular stability
and convergence, and the choice of hn to proceed from one grid point xn to the next,
xnC1 D xn Chn. Finally, we address special difficulties arising from the stiffness of
the given differential equation problem.

5.5 Local Description of One-Step Methods

Given a generic point x 2 Œa; b�, y 2 R
d , we define a single step of the one-step

method by

ynext D y C hˆ.x;y Ih/; h > 0: (5.29)

The function ˆ: Œa; b� � R
d � RC ! R

d may be thought of as the approximate
increment per unit step, or the approximate difference quotient, and it defines the
method. Along with (5.29), we consider the solution u.t/ of the differential equation
(5.16) passing through the point (x;y), that is, the local initial value problem

du

dt
D f .t;u/; x � t � x C hI u.x/ D y: (5.30)

We call u.t/ the reference solution. The vector ynext in (5.29) is intended to
approximate u.x C h/. How successfully this is done is measured by the truncation
error defined as follows.

Definition 5.5.1. The truncation error of the method ˆ at the point .x;y/ is
defined by

T .x;y Ih/ D 1

h
Œynext � u.x C h/�: (5.31)

The truncation error thus is a vector-valued function of d C 2 variables. Using
(5.29) and (5.30), we can write for it, alternatively,

T .x;y Ih/ D ˆ.x;y Ih/ � 1

h
Œu.x C h/� u.x/�; (5.32)
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showing that T is the difference between the approximate and exact increment per
unit step.

An increasingly finer description of local accuracy is provided by the following
definitions, all based on the concept of truncation error.

Definition 5.5.2. The method ˆ is called consistent if

T .x;y Ih/ ! 0 as h ! 0; (5.33)

uniformly for .x;y/ 2 Œa; b� � R
d :3

By (5.32) and (5.30) we have consistency if and only if

ˆ.x;y I 0/ D f .x;y/; x 2 Œa; b�; y 2 R
d : (5.34)

Definition 5.5.3. The method ˆ is said to have order p if, for some vector norm
k � k,

kT .x;y Ih/k � Chp; (5.35)

uniformly on Œa; b� � R
d , with a constant C not depending on x, y and h.4

We express this property briefly as

T .x;y Ih/ D O.hp/; h ! 0: (5.36)

Note that p > 0 implies consistency. Usually, p is an integer � 1. It is called the
exact order, if (5.35) does not hold for any larger p.

Definition 5.5.4. A function 
: Œa; b� � R
d ! R

d that satisfies 
.x;y/ 6	 0 and

T .x;y Ih/ D 
.x;y/hp CO.hpC1/; h ! 0; (5.37)

is called the principal error function.

The principal error function determines the leading term in the truncation error.
The number p in (5.37) is the exact order of the method since 
 6	 0.

All the preceding definitions are made with the idea in mind that h > 0 is a small
number. Then the larger p, the more accurate the method. This can (and should)
always be arranged by a proper scaling of the independent variable x; we tacitly
assume that such a scaling has already been made.

3More realistically, one should require uniformity on Œa; b� � D, where D � R
d is a sufficiently

large compact domain; cf. Sect. 5.3.
4If uniformity of (5.35) is required only on Œa; b� � D, D � R

d compact, then C may depend on
D; cf. Sect. 5.3.
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5.6 Examples of One-Step Methods

Some of the oldest methods are motivated by simple geometric considerations based
on the slope field defined by the right-hand side of the differential equation. These
include the Euler and modified Euler methods. More accurate and sophisticated
methods are based on Taylor expansion.

5.6.1 Euler’s Method

Euler proposed his method in 1768, in the early days of calculus. It consists
of simply following the slope at the generic point .x;y/ over an interval of
length h:

ynext D y C hf .x;y/: (5.38)

Thus, ˆ.x;y Ih/ D f .x;y/ does not depend on h, and by (5.34) the method is
evidently consistent. For the truncation error, we have by (5.32)

T .x;y Ih/ D f .x;y/ � 1

h
Œu.x C h/� u.x/�; (5.39)

where u.t/ is the reference solution defined in (5.30). Since u0.x/ D f .x;u.x// D
f .x;y/, we can write, using Taylor’s theorem,

T .x;y Ih/ D u0.x/ � 1

h
Œu.x C h/ � u.x/�

D u0.x/ � 1

h

	
u.x/C hu0.x/C 1

2
h2u00.�/ � u.x/




D �1
2
hu00.�/; x < � < x C h; (5.40)

assuming u 2 C2Œx; x C h�. This is certainly true if f 2 C1 on Œa; b� � R
d , as we

assume. Note the slight abuse of notation in the last two equations, where � is to be
understood to differ from component to component but to be always in the interval
shown. We freely use this notation later on without further comment.

Now differentiating (5.30) totally with respect to t and then setting t D �

yields

T .x;y Ih/ D �1
2
hŒfx C fyf �.�;u.�//; (5.41)
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where fx is the partial derivative of f with respect to x and fy the Jacobian of f

with respect to the y-variables. If, in the spirit of Theorem 5.3.1, we assume that f

and all its first partial derivatives are uniformly bounded in Œa; b� � R
d , there exists

a constant C independent of x;y , and h such that

kT .x;y Ih/k � C � h: (5.42)

Thus, Euler’s method has order p D 1. If we make the same assumption about
all second-order partial derivatives of f , we have u00.�/ D u00.x/ C O.h/ and,
therefore, from (5.40),

T .x;y Ih/ D � 1
2
h Œfx C fyf �.x;y/CO.h2/; h ! 0; (5.43)

showing that the principal error function is given by


.x;y/ D � 1
2
Œfx C fyf �.x;y/: (5.44)

Unless fx C fyf 	 0, the order of Euler’s method is exactly p D 1.

5.6.2 Method of Taylor Expansion

We have seen that Euler’s method basically amounts to truncating the Taylor
expansion of the reference solution after its second term. It is a natural idea, already
proposed by Euler, to use more terms of the Taylor expansion. This requires the
computation of successive “total derivatives” of f ,

f Œ0�.x;y/ D f .x;y/;

f ŒkC1�.x;y/ D f Œk�
x .x;y/C f Œk�

y .x;y/f .x;y/; k D 0; 1; 2; : : : ; (5.45)

which determine (see Ex. 2) the successive derivatives of the reference solution u.t/

of (5.30) by virtue of

u.kC1/.t/ D f Œk�.t;u.t//; k D 0; 1; 2; : : : : (5.46)

These, for t D x, become

u.kC1/.x/ D f Œk�.x;y/; k D 0; 1; 2; : : : ; (5.47)

and are used to form the Taylor series approximation according to

ynext D y C h

	
f Œ0�.x;y/C 1

2
hf Œ1�.x;y/C � � � C 1

pŠ
hp�1f Œp�1�.x;y/



I

(5.48)
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that is,

ˆ.x;y Ih/ D f Œ0�.x;y/C 1

2
hf Œ1�.x;y/C � � � C 1

pŠ
hp�1f Œp�1�.x;y/: (5.49)

For the truncation error, assuming f 2 Cp on Œa; b� � R
d and using (5.47) and

(5.49), we obtain from Taylor’s theorem

T .x;y Ih/ D ˆ.x;y Ih/� 1

h
Œu.x C h/ � u.x/�

D ˆ.x;y Ih/�
p�1X

kD0
u.kC1/.x/

hk

.k C 1/Š
� u.pC1/.�/

hp

.p C 1/Š

D �u.pC1/.�/
hp

.p C 1/Š
; x < � < x C h;

so that

kT .x;y Ih/k � Cp

.p C 1/Š
hp; (5.50)

where Cp is a bound on the pth total derivative of f . Thus, the method has exact
order p (unless f Œp�.x;y/ 	 0), and the principal error function is


.x;y/ D � 1

.p C 1/Š
f Œp�.x;y/: (5.51)

The necessity of computing many partial derivatives in (5.45) was a discouraging
factor in the past, when this had to be done by hand. But nowadays, this labor
can be delegated to computers, so that the method has become again a viable
option.

5.6.3 Improved Euler Methods

There is too much inertia in Euler’s method: one should not follow the same initial
slope over the whole interval of length h, since along this line segment the slope
defined by the slope field of the differential equation changes. This suggests several
alternatives. For example, we may wish to reevaluate the slope halfway through the
line segment – retake the pulse of the differential equation, as it were – and then
follow this revised slope over the whole interval (cf. Fig. 5.1). In formula,

ynext D y C hf

�
x C 1

2
h;y C 1

2
hf .x;y/

�
; (5.52)
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Fig. 5.1 Modified Euler method

or

ˆ.x;y Ih/ D f

�
x C 1

2
h;y C 1

2
hf .x;y/

�
: (5.53)

Note the characteristic “nesting” of f that is required here. For programming
purposes, it may be desirable to undo the nesting and write

k1.x;y/ D f .x;y/;

k2.x;y Ih/ D f

�
x C 1

2
h;y C 1

2
hk1

�
;

ynext D y C hk2: (5.54)

In other words, we are taking two trial slopes, k1 and k2, one at the initial point and
the other nearby, and then taking the latter as the final slope.

We could equally well take the second trial slope at (x C h, y C hf .x;y//, but
then, having waited too long before reevaluating the slope, take now as the final
slope the average of the two slopes:

k1.x;y/ D f .x;y/;

k2.x;y Ih/ D f .x C h;y C hk1/;

ynext D y C 1

2
h.k1 C k2/: (5.55)

This is sometimes referred to as Heun’s method or the trapezoidal rule.
The effect of both modifications is to raise the order by 1, as is shown in the next

section.



5.6 Examples of One-Step Methods 339

5.6.4 Second-Order Two-Stage Methods

We may take a more systematic approach toward modifying Euler’s method, by
letting

ˆ.x;y Ih/ D ˛1k1 C ˛2k2; (5.56)

where

k1.x;y/ D f .x;y/;

k2.x;y Ih/ D f .x C �h;y C �hk1/: (5.57)

We have now three parameters, ˛1, ˛2, and �, at our disposal, and we can try to
choose them so as to maximize the order p. A systematic way of determining the
maximum order p is to expand both ˆ.x;y Ih/ and h�1Œu.xCh/�u.x/� in powers
of h and to match as many terms as we can.

To expand ˆ, we need Taylor’s expansion for (vector-valued) functions of several
variables,

f .x C�x;y C�y/ Df C fx�x C fy�y C 1

2


fxx.�x/

2 C 2fxy�x�y

C .�y/Tfyy.�y/
�C � � � ; (5.58)

where fy denotes the Jacobian of f and fyy D Œf i
yy � the vector of Hessian

matrices of f . In (5.58), all functions and partial derivatives are understood to be
evaluated at .x;y/. Letting�x D �h, �y D �hf then gives

k2.x;y Ih/ D f C �h.fx C fyf /C 1

2
�2h2.fxx C 2fxyf C f Tfyyf /

CO.h3/: (5.59)

Similarly (cf. (5.47)),

1

h
Œu.x C h/ � u.x/� D u0.x/C 1

2
hu00.x/C 1

6
h2u000.x/CO.h3/; (5.60)

where

u0.x/ D f ;

u00.x/ D f Œ1� D fx C fyf ;

u000.x/ D f Œ2� D f Œ1�
x C f Œ1�

y f

D fxx C fxyf C fyfx C .fxy C .fyf /y/f

D fxx C 2fxyf C f Tfyyf C fy.fx C fyf /;
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and where in the last equation we have used (see Ex. 3)

.fyf /yf D f Tfyyf C f 2
y f :

Now,

T .x;y Ih/ D ˛1k1 C ˛2k2 � 1

h
Œu.x C h/� u.x/�;

wherein we substitute the expansions (5.59) and (5.60). We find

T .x;y Ih/ D .˛1 C ˛2 � 1/f C
�
˛2� � 1

2

�
h.fx C fyf /C 1

2
h2
	�
˛2�

2 � 1

3

�

� .fxx C 2fxyf C f Tfyyf / � 1

3
fy.fx C fyf /



CO.h3/:

(5.61)

We can see now that, however we choose the parameters ˛1, ˛2, �, we cannot
make the coefficient of h2 equal to zero unless severe restrictions are placed on f

(cf. Ex. 6(c)). Thus, the maximum possible order is p D 2, and we achieve it by
satisfying

˛1 C ˛2 D 1;

˛2� D 1

2
: (5.62)

This has a one-parameter family of solutions,

˛1 D 1 � ˛2;

� D 1

2˛2
;

.˛2 ¤ 0 arbitrary/: (5.63)

We recognize the improved Euler method contained therein with ˛2 D 1, and
Heun’s method with ˛2 D 1

2
. There are other natural choices; one such would be to

look at the principal error function


.x;y/ D 1

2

	�
1

4˛2
� 1

3

�
.fxx C 2fxyf C f Tfyyf / � 1

3
fy.fx C fyf /




(5.64)

and to note that it consists of a linear combination of two aggregates of partial
derivatives. We may wish to minimize some norm of the coefficients, say, the sum of
their absolute values. In (5.64), this gives trivially .4˛2/�1 � 1

3
D 0, that is, ˛2 D 3

4
,

and hence suggests a method with

˛1 D 1
4
; ˛2 D 3

4
; � D 2

3
: (5.65)
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5.6.5 Runge–Kutta Methods

Runge–Kutta methods are a straightforward extension of two-stage methods to r-
stage methods:

ˆ.x;y Ih/ D
rX

sD1
˛sks;

k1.x;y/ D f .x;y/;

ks.x;y Ih/ D f

0

@x C �sh;y C h

s�1X

jD1

sjkj

1

A ; s D 2; 3; : : : ; r : (5.66)

It is natural in (5.66) to impose the conditions (cf. Ex. 10 for the first)

�s D
s�1X

jD1

sj ; s D 2; 3; : : : ; r I

rX

sD1
˛s D 1; (5.67)

where the last one is nothing but the consistency condition (cf. (5.34)). We call
(5.66) an explicit r-stage Runge–Kutta method; it requires r evaluations of the right-
hand side f of the differential equation. More generally, we can consider implicit
r-stage Runge–Kutta methods

ˆ.x;y Ih/ D
rX

sD1
˛sks.x;y Ih/;

ks D f

0

@x C �sh;y C h

rX

jD1

sjkj

1

A; s D 1; 2; : : : ; r; (5.68)

in which the last r equations form a system of (in general nonlinear) equations in the
unknowns k1, k2; : : : ;kr . Since each of these is a vector in R

d , we have a system of
rd equations in rd unknowns that must be solved before we can form the approx-
imate increment ˆ. Less work is required in semi-implicit Runge–Kutta methods,
where the summation in the formula for ks extends from j D 1 to j D s only. This
yields r systems of equations, each having only d unknowns, the components of ks .
The considerable computational expense involved in implicit and semi-implicit
methods can only be justified in special circumstances, for example, stiff problems.
The reason is that implicit methods not only can be made to have higher order than
explicit methods, but also have better stability properties (cf. Sect. 5.9).

Already in the case of explicit Runge–Kutta methods, and even more so in
implicit methods, we have at our disposal a large number of parameters which we
can choose to achieve the maximum possible order for all sufficiently smooth f .
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The approach is analogous to the one taken in Sect. 5.2.4, only technically much
more involved, as the partial-derivative aggregates that are going to appear in the
principal error function are becoming much more complicated and numerous as r
increases. In fact, a satisfactory solution of this problem has become possible only
through the employment of graph-theoretical tools, specifically, the theory of rooted
trees. This was systematically developed by J.C. Butcher, the principal researcher
in this area. A description of these techniques is beyond the scope of this book. We
briefly summarize, however, some of the results that can be obtained.

Denote by p�.r/ the maximum attainable order (for arbitrary sufficiently smooth
f ) of an explicit r-stage Runge–Kutta method. Then Kutta5 has already shown in
1901 that

p�.r/ D r for 1 � r � 4; (5.69)

and has derived many concrete examples of methods having these orders. Butcher,
in the 1960s, established that

p�.r/ D r � 1 for 5 � r � 7;

p�.r/ D r � 2 for 8 � r � 9;

p�.r/ � r � 2 for r � 10: (5.70)

Specific examples of higher-order Runge–Kutta formulae are used later in con-
nection with error monitoring procedures. Here, we mention only the classical
Runge–Kutta formula6 of order p D 4:

ˆ.x;y Ih/ D 1

6
.k1 C 2k2 C 2k3 C k4/;

k1.x;y/ D f .x;y/;

k2.x;y Ih/ D f

�
x C 1

2
h;y C 1

2
hk1

�
;

k3.x;y Ih/ D f

�
x C 1

2
h;y C 1

2
hk2

�
;

k4.x;y Ih/ D f .x C h;y C hk3/: (5.71)

5Wilhelm Martin Kutta (1867–1944) was a German applied mathematician, active at the Technical
University of Stuttgart from 1911 until his retirement. In addition to his work on the numerical
solution of ODEs, he did important work on the application of conformal mapping to hydro- and
aerodynamical problems. Best known is his formula for the lift exerted on an airfoil, now known
as the Kutta–Joukowski formula. For Runge, see footnote 7 in Chap. 2, Sect. 2.2.3
6Runge’s idea, in 1895, was to generalize Simpson’s quadrature formula (cf. Chap. 3, Sect. 3.2.1)
to ordinary differential equations. He succeeded only partially in that the generalization he gave
had stage number r D 4 but only order p D 3. The method (5.71) of order p D 4 was discovered
in 1901 by Kutta through a systematic search.
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When f does not depend on y , and thus we are in the case of a numerical quadrature
problem (cf. (5.2)), then (5.71) reduces to Simpson’s formula.

5.7 Global Description of One-Step Methods

We now turn to the numerical solution of the initial value problem (5.16) with the
help of one-step formulae such as those developed in Sect. 5.6. The description of
such one-step methods is best done in terms of grids and grid functions. A grid on
the interval Œa; b� is a set of points fxngNnD0 such that

a D x0 < x1 < x2 < � � � < xN�1 < xN D b; (5.72)

with grid lengths hn defined by

hn D xnC1 � xn; n D 0; 1; : : : ; N � 1: (5.73)

The fineness of the grid is measured by

jhj D max
0�n�N�1 hn: (5.74)

We often use the letter h to designate the collection of lengths h D fhng. If
h1 D h2 D � � � D hN�1 D .b � a/=N , we call (5.72) a uniform grid, otherwise
a nonuniform grid. For uniform grids, we use the letter h also to designate the
common grid length h D .b � a/=N . A vector-valued function v D fvng, vn 2 R

d ,
defined on the grid (5.72) is called a grid function. Thus, vn is the value of v at
the gridpoint xn. Every function v.x/ defined on Œa; b� induces a grid function by
restriction. We denote the set of grid functions on Œa; b� by �hŒa; b�, and for each
grid function v D fvng define its norm by

kvk1 D max
0�n�N kvnk; v 2 �hŒa; b�: (5.75)

A one-step method – indeed, any discrete-variable method – is a method
producing a grid function u D fung such that u � y , where y D fyng is the
grid function induced by the exact solution y.x/ of the initial value problem (5.16).
The grid (5.72) may be predetermined, for example, a uniform grid, or, as is more
often the case in practice, be produced dynamically as part of the method (cf.
Sect. 5.8.3). The most general scheme involving one-step formulae is a variable-
method variable-step method. Given a sequence fˆng of one-step formulae, the
method proceeds as follows,

xnC1 D xn C hn;

unC1 D un C hnˆn.xn;unIhn/;
n D 0; 1; : : : ; N � 1; (5.76)
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where x0 D a, u0 D y0. For simplicity, we only consider single-method schemes
involving a single method ˆ, although the extension to variable-method schemes
would not cause any essential difficulties (just more writing).

To bring out the analogy between (5.16) and (5.76), we introduce operatorsR and
Rh acting on C1Œa; b� and �hŒa; b�, respectively. These are the residual operators

.Rv/.x/ WD v0.x/ � f .x; v.x//; v 2 C1Œa; b�; (5.77)

.Rhv/n WD 1

hn
.vnC1 � vn/� ˆ.xn; vnIhn/; n D 0; 1; : : : ; N � 1I

v D fvng 2 �hŒa; b�: (5.78)

(The grid function f.Rhv/ng is not defined for n D N , but we may arbitrarily set
.Rhv/N D .Rhv/N�1.) Then the problem (5.16) and its discrete analogue (5.76) can
be written transparently as

Ry D 0 on Œa; b�; y.a/ D y0; (5.79)

Rhu D 0 on Œa; b�; u0 D y0: (5.80)

Note that the discrete residual operator (5.78) is closely related to the truncation
error (5.32) when we apply the operator at a point .xn;y.xn// on the exact solution
trajectory. Then indeed the reference solution u.t/ coincides with the solution y.t/,
and

.Rhy/n D 1

hn
Œy.xnC1/ � y.xn/� � ˆ.xn;y.xn/Ihn/ D �T .xn;y.xn/Ihn/:

(5.81)

5.7.1 Stability

Stability is a property of the numerical scheme (5.76) alone and a priori has
nothing to do with its approximation power. It characterizes the robustness of the
scheme with respect to small perturbations. Nevertheless, stability combined with
consistency yields convergence of the numerical solution to the true solution.

We define stability in terms of the discrete residual operators Rh in (5.78). As
usual, we assume ˆ.x;y Ih/ to be defined on Œa; b�� R

d � Œ0; h0�, where h0 > 0 is
some suitable positive number.

Definition 5.7.1. The method (5.76) is called stable on Œa; b� if there exists a
constant K > 0 not depending on h such that for an arbitrary grid h on Œa; b�,
and for arbitrary two grid functions v;w 2 �hŒa; b�, there holds

kv � wk1 � K.kv0 � w0k C kRhv �Rhwk1/; v;w 2 �hŒa; b�; (5.82)
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for all h with jhj sufficiently small. In (5.82), the infinity norm for grid functions is
the norm defined in (5.75).

We refer to (5.82) as the stability inequality. The motivation for it is as follows.
Suppose we have two grid functions u, w satisfying

Rhu D 0; u0 D y0; (5.83)

Rhw D "; w0 D y0 C 	0; (5.84)

where " D f"ng 2 �hŒa; b� is a grid function with small k"nk, and k	0k is also
small. We may interpret u 2 �hŒa; b� as the result of applying the numerical scheme
(5.76) in infinite precision, whereas w 2 �hŒa; b� could be the solution of (5.76) in
floating-point arithmetic. Then if stability holds, we have

ku � wk1 � K.k	0k C k"k1/I (5.85)

that is, the global change in u is of the same order of magnitude as the local
residual errors f"ng and initial error 	0. It should be appreciated, however, that the
first equation in (5.84) says wnC1 � wn � hnˆ.xn;wnIhn/ D hn"n, meaning that
“rounding errors” must go to zero as jhj ! 0.

Interestingly enough, a Lipschitz condition on ˆ is all that is required for
stability.

Theorem 5.7.1. If ˆ.x;y Ih/ satisfies a Lipschitz condition with respect to the
y-variables,

kˆ.x;y Ih/ � ˆ.x;y�Ih/k � M ky � y�k on Œa; b� � R
d � Œ0; h0�; (5.86)

then the method (5.76) is stable.

We precede the proof with the following useful lemma.

Lemma 5.7.1. Let feng be a sequence of numbers en 2 R satisfying

enC1 � anen C bn; n D 0; 1; : : : ; N � 1; (5.87)

where an > 0 and bn 2 R. Then

en � En; En D
 
n�1Y

kD0
ak

!
e0 C

n�1X

kD0

 
n�1Y

`DkC1
a`

!
bk; n D 0; 1; : : : ; N : (5.88)

We adopt here the usual convention that an empty product has the value 1, and
an empty sum the value 0.

Proof of Lemma 5.7.1. It is readily verified that

EnC1 D anEn C bn; n D 0; 1; : : : ; N � 1I E0 D e0:
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Subtracting this from the inequality in (5.87), we get

enC1 �EnC1 � an.en � En/; n D 0; 1; : : : ; N � 1:
Now, e0�E0 D 0, so that e1�E1 � 0. Therefore, e2�E2 � a1.e1�E1/, implying
e2 � E2 � 0 since a1 > 0. In the same way, by induction, en � En � 0. �

Proof of Theorem 5.7.1. Let h D fhng be an arbitrary grid on Œa; b�, and v;w 2
�hŒa; b� two arbitrary (vector-valued) grid functions. By definition of Rh, we can
write

vnC1 D vn C hnˆ.xn; vnIhn/C hn.Rhv/n; n D 0; 1; : : : ; N � 1;

and similarly for wnC1. Subtraction then gives

vnC1 � wnC1 Dvn � wn C hnŒˆ.xn; vnIhn/ � ˆ.xn;wnIhn/�
C hnŒ.Rhv/n � .Rhw/n�; n D 0; 1; : : : ; N � 1: (5.89)

Now define

en D kvn � wnk; dn D k.Rhv/n � .Rhw/nk; ı D max
n
dn: (5.90)

Then using the triangle inequality in (5.89) and the Lipschitz condition (5.86) for
ˆ, we obtain

enC1 � .1C hnM/en C hnı; n D 0; 1; : : : ; N � 1: (5.91)

This is inequality (5.87) with an D 1ChnM , bn D hnı. Since for k D 0; 1; : : : ; n�1
and n � N , we have

n�1Y

`DkC1
a` �

N�1Y

`D0
a` D

N�1Y

`D0
.1C h`M/ �

N�1Y

`D0
eh`M

D e.h0Ch1C���ChN�1/M D e.b�a/M ;

where 1 C x � ex has been used in the second inequality, we obtain from
Lemma 5.7.1 that

en � e.b�a/M e0 C e.b�a/M
n�1X

kD0
hkı

� e.b�a/M .e0 C .b � a/ı/; n D 0; 1; : : : ; N � 1:

Taking the maximum over n and recalling the definition of en and ı, we get

kv � wk1 � e.b�a/M .kv0 � w0k C .b � a/kRhv �Rhwk1/;

which is (5.82) with K D e.b�a/M maxf1; b � ag. �
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We have actually proved stability for all jhj � h0, not only for jhj sufficiently
small. The proof is virtually the same for a variable-method algorithm involving a
family of one-step formulae fˆng, if we assume a Lipschitz condition for each ˆn

with a constantM independent of n.
All one-step methods used in practice satisfy a Lipschitz condition if f does,

and the constant M for ˆ can be expressed in terms of the Lipschitz constant L
for f . This is obvious for Euler’s method, and not difficult to prove for others (see
Ex. 13). It is useful to note that ˆ need not be continuous in x; piecewise continuity
suffices, as long as (5.86) holds for all x 2 Œa; b�, taking one-sided limits at points
of discontinuity.

For later use, we state another application of Lemma 5.7.1, relative to a grid
function v 2 �hŒa; b� satisfying

vnC1 D vn C hn.Anvn C bn/; n D 0; 1; : : : ; N � 1; (5.92)

where An 2 R
d�d , bn 2 R

d , and h D fhng is an arbitrary grid on Œa; b�.

Lemma 5.7.2. Suppose in (5.92) that

kAnk � M; kbnk � ı; n D 0; 1; : : : ; N � 1; (5.93)

where the constants M, ı do not depend on h. Then there exists a constant K > 0

independent of h, but depending on kv0k, such that

kvk1 � K: (5.94)

Proof. The lemma follows at once by observing that

kvnC1k � .1C hnM/kvnk C hnı; n D 0; 1; : : : ; N � 1;

which is precisely the inequality (5.91) in the proof of Theorem 5.7.1, hence

kvnk � e.b�a/M fkv0k C .b � a/ıg: (5.95)

ut

5.7.2 Convergence

Stability is a rather powerful concept; it implies almost immediately convergence,
and is also instrumental in deriving asymptotic global error estimates. We begin by
defining precisely what we mean by convergence.

Definition 5.7.2. Let a D x0 < x1 < x2 < � � � < xN D b be a grid on Œa; b� with
grid length jhj D max

1�n�N.xn � xn�1/. Let u D fung be the grid function defined by
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applying the method (5.76) (with ˆn D ˆ) on Œa; b�, and y D fyng the grid function
induced by the exact solution of the initial value problem (5.16). The method (5.76)
is said to converge on Œa; b� if there holds

ku � yk1 ! 0 as jhj ! 0: (5.96)

Theorem 5.7.2. If the method (5.76) is consistent and stable on Œa; b�, then it
converges. Moreover, if ˆ has order p, then

ku � yk1 D O.jhjp/ as jhj ! 0: (5.97)

Proof. By the stability inequality (5.82) applied to the grid functions v D u and
w D y of Definition 5.7.2, we have, for jhj sufficiently small,

ku � yk1 � K.ku0 � y.x0/k C kRhu �Rhyk1/

D KkRhyk1; (5.98)

since u0 D y.x0/ and Rhu D 0 by (5.76). But, by (5.81),

kRhyk1 D kT . � ;y Ih/k1; (5.99)

where T is the truncation error of the method ˆ. By definition of consistency,

kT . � ;y Ih/k1 ! 0 as jhj ! 0;

which proves the first part of the theorem. The second part follows immediately
from (5.98) and (5.99), since order p means, by definition, that

kT . � ;y Ih/k1 D O.jhjp/ as jhj ! 0: (5.100)

�
Since, as we already observed, practically all one-step methods are stable and of

order p � 1 (under reasonable smoothness assumptions on f ), it follows that they
are all convergent as well.

5.7.3 Asymptotics of Global Error

Just as the principal error function describes the leading contribution to the local
truncation error, it is of interest to identify the leading term in the global error un �
y.xn/. To simplify matters, we assume a constant grid length h, although it would
not be difficult to deal with variable grid lengths of the form hn D #.xn/h, where
#.x/ is piecewise continuous and 0 < #.x/ � ‚ for a � x � b. Thus, we consider
our one-step method to have the form
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xnC1 D xn C h;

unC1 D un C hˆ.xn;unIh/; n D 0; 1; : : : ; N � 1;
x0 D a; u0 D y0; (5.101)

defining a grid function u D fung on a uniform grid over Œa; b�. We are interested in
the asymptotic behavior of un � y.xn/ as h ! 0, where y.x/ is the exact solution
of the initial value problem

dy

dx
D f .x;y/; a � x � bI y.a/ D y0: (5.102)

Theorem 5.7.3. Assume that

(1) ˆ.x;y Ih/ 2 C2 on Œa; b� � R
d � Œ0; h0�;

(2) ˆ is a method of order p � 1 admitting a principal error function 
.x;y/ 2 C
on Œa; b� � R

d ;
(3) e.x/ is the solution of the linear initial value problem

de

dx
D fy.x;y.x//e C 
.x;y.x//; a � x � b;

e.a/ D 0: (5.103)

Then, for n D 0; 1; : : : ; N ,

un � y.xn/ D e.xn/h
p CO.hpC1/ as h ! 0: (5.104)

Before we prove the theorem, we make the following remarks.

1. The precise meaning of (5.104) is

ku � y � hpek1 D O.hpC1/ as h ! 0; (5.105)

where u, y , e are the grid functions u D fung, y D fy.xn/g, e D fe.xn/g and
k � k1 is the norm defined in (5.75).

2. Since by consistency ˆ.x;y I 0/ D f .x;y/, assumption (1) implies f 2 C2 on
Œa; b��R

d , which is more than enough to guarantee the existence and uniqueness
of the solution e.x/ of (5.103) on the whole interval Œa; b�.

3. The fact that some, but not all, components of 
.x;y/ may vanish identically
does not imply that the corresponding components of e.x/ also vanish, since
(5.103) is a coupled system of differential equations.

Proof of Theorem 5.7.3. We begin with an auxiliary computation, an estimate for

ˆ.xn;unIh/ � ˆ.xn;y.xn/Ih/: (5.106)
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By Taylor’s theorem (for functions of several variables), applied to the i th compo-
nent of (5.106), we have

ˆi.xn;unIh/�ˆi.xn;y.xn/Ih/ D
dX

jD1
ˆi
yj
.xn;y.xn/Ih/Œujn � yj .xn/�

C 1

2

dX

j;kD1
ˆi
yj yk

.xn;unIh/Œujn � yj .xn/�Œu
k
n � yk.xn/�; (5.107)

where un is on the line segment connecting un and y.xn/. Using Taylor’s theorem
once more, in the variable h, we can write

ˆi
yj
.xn;y.xn/Ih/ D ˆi

yj
.xn;y.xn/I 0/C hˆi

yj h
.xn;y.xn/Ih/;

where 0 < h < h. Since by consistency ˆ.x;y I 0/ 	 f .x;y/ on Œa; b� � R
d , we

have

ˆi
yj
.x;y I 0/ D f i

yj
.x;y/; x 2 Œa; b�; y 2 R

d ;

and assumption (1) allows us to write

ˆi
yj
.xn;y.xn/Ih/ D f i

yj
.xn;y.xn//CO.h/; h ! 0: (5.108)

Now observing that un � y.xn/ D O.hp/ by virtue of Theorem 5.7.2, and using
(5.108) in (5.107), we get, again by assumption (1),

ˆi.xn;unIh/�ˆi.xn;y.xn/Ih/

D
dX

jD1
f i
yj
.xn;y.xn//Œu

j
n � yj .xn/�CO.hpC1/CO.h2p/:

But O.h2p/ is also of orderO.hpC1/, since p � 1. Thus, in vector notation,

ˆ.xn;unIh/ � ˆ.xn;y.xn/Ih/ D fy.xn;y.xn//Œun � y.xn/�CO.hpC1/:
(5.109)

Now, to highlight the leading term in the global error, we define the grid function
r D frng by

r D h�p.u � y/: (5.110)
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Then

1

h
.rnC1 � rn/ D 1

h
Œh�p.unC1 � y.xnC1// � h�p.un � y.xn//�

D h�p
	
1

h
.unC1 � un/ � 1

h
.y.xnC1/ � y.xn//




D h�pŒˆ.xn;unIh/� fˆ.xn;y.xn/Ih/ � T .xn;y.xn/Ih/g�;

where we have used (5.101) and the relation (5.81) for the truncation error T .
Therefore, expressing T in terms of the principal error function 
, we get

1

h
.rnC1 � rn/ Dh�pŒˆ.xn;unIh/� ˆ.xn;y.xn/Ih/

C 
.xn;y.xn//h
p CO.hpC1/�:

For the first two terms in brackets, we use (5.109) and the definition of r in (5.110)
to obtain

1

h
.rnC1 � rn/ D fy.xn;y.xn//rn C 
.xn;y.xn//CO.h/;

n D 0; 1; : : : ; N � 1;
r0 D 0: (5.111)

Now letting

g.x;y/ WD fy.x;y.x//y C 
.x;y.x//; (5.112)

we can interpret (5.111) by writing

�
R

Euler;g
h r

�

n
D "n .n D 0; 1; : : : ; N � 1/; "n D O.h/;

where REuler;g
h is the discrete residual operator (5.78) that goes with Euler’s method

applied to e0 D g.x; e/, e.a/ D 0. Since Euler’s method is stable on Œa; b� and g

(being linear in y) certainly satisfies a uniform Lipschitz condition, we have by the
stability inequality (5.82)

kr � ek1 D O.h/;

and hence, by (5.110),

ku � y � hpek1 D O.hpC1/;

as was to be shown. �
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5.8 Error Monitoring and Step Control

Most production codes currently available for solving ODEs monitor local
truncation errors and control the step length on the basis of estimates for these
errors. Here, we attempt to monitor the global error, at least asymptotically,
by implementing the asymptotic result of Theorem 5.7.3. This necessitates the
evaluation of the Jacobian matrix fy.x;y/ along or near the solution trajectory;
but this is only natural, since fy , in a first approximation, governs the effect
of perturbations via the variational differential equation (5.103). This equation is
driven by the principal error function evaluated along the trajectory, so that estimates
of local truncation errors (more precisely, of the principal error function) are needed
also in this approach. For simplicity, we again assume constant grid length.

5.8.1 Estimation of Global Error

The idea of our estimation is to integrate the “variational equation” (5.103) along
with the main equation (5.102). Since we need e.xn/ in (5.104) only to within an
accuracy of O.h/ (any O.h/ error term in e.xn/, multiplied by hp , being absorbed
by the O.hpC1/ term), we can use Euler’s method for that purpose, which will
provide the desired approximation vn � e.xn/.

Theorem 5.8.1. Assume that

(1) ˆ.x;y Ih/ 2 C2 on Œa; b� � R
d � Œ0; h0�;

(2) ˆ is a method of orderp � 1 admitting a principal error function 
.x;y/ 2 C1

on Œa; b� � R
d ;

(3) an estimate r.x;y Ih/ is available for the principal error function that satisfies

r.x;y Ih/ D 
.x;y/CO.h/; h ! 0; (5.113)

uniformly on Œa; b� � R
d ;

(4) along with the grid function u D fung we generate the grid function v D fvng
in the following manner,

xnC1 D xn C h;

unC1 D un C hˆ.xn;unIh/;
vnC1 D vn C hŒfy.xn;un/vn C r.xn;unIh/�;
x0 D a;u0 D y0; v0 D 0: (5.114)

Then, for n D 0; 1; : : : ; N ,

un � y.xn/ D vnhp CO.hpC1/ as h ! 0: (5.115)
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Proof. The proof consists of establishing the following estimates,

fy.xn;un/ D fy.xn;y.xn//CO.h/; (5.116)

r.xn;unIh/ D 
.xn;y.xn//CO.h/: (5.117)

Once this has been done, we can argue as follows. Let (cf. (5.114))

g.x;y/ WD fy.x;y.x//y C 
.x;y.x//: (5.118)

The equation for vnC1 in (5.114) has the form

vnC1 D vn C h.Anvn C bn/;

where An are bounded matrices and bn bounded vectors. By Lemma 5.7.2, we have
boundedness of vn,

vn D O.1/; h ! 0: (5.119)

Substituting (5.116) and (5.117) into the equation for vnC1, and noting (5.119), we
obtain

vnC1 D vn C hŒfy.xn;y.xn//vn C 
.xn;y.xn//CO.h/�

D vn C hg.xn; vn/CO.h2/:

Thus, in the notation used in the proof of Theorem 5.7.3,

.R
Euler;g
h v/n D O.h/; v0 D 0:

Since Euler’s method is stable, we conclude

vn � e.xn/ D O.h/;

where e.x/ is, as before, the solution of e0 D g.x; e/, e.a/ D 0. Therefore, by
(5.104),

un � y.xn/ D e.xn/h
p CO.hpC1/ D vnhp CO.hpC1/;

as was to be shown.
It remains to prove (5.116) and (5.117). From assumption (1) we note, first of all,

that f .x;y/ 2 C2 on Œa; b� � R
d , since by consistency f .x;y/ D ˆ.x;y I 0/. By

virtue of un D y.xn/CO.hp/ (cf. Theorem 5.7.2), we therefore have

fy.xn;un/ D fy.xn;y.xn//CO.hp/;

which implies (5.116), since p � 1.
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Next, since 
.x;y/ 2 C1 by assumption (2), we have


.xn;un/ D 
.xn;y.xn//C 
y.xn;un/.un � y.xn//

D 
.xn;y.xn//CO.hp/;

so that by assumption (3),

r.xn;unIh/ D 
.xn;un/CO.h/ D 
.xn;y.xn//CO.hp/CO.h/;

from which (5.117) follows at once. This completes the proof of Theorem 5.8.1. �

5.8.2 Truncation Error Estimates

In order to apply Theorem 5.8.1, we need estimates r.x;y Ih/ of the principal error
function 
.x;y/ which are O.h/ accurate. A number of them, in increasing order
of efficiency, are now described.

1. Local Richardson extrapolation to zero: This works for any one-step method ˆ,
but is usually considered to be too expensive. If ˆ has order p, the procedure is
as follows.

yh D y C hˆ.x;y Ih/;

yh=2 D y C 1

2
hˆ

�
x;y I 1

2
h

�
;

y�
h D yh=2 C 1

2
hˆ

�
x C 1

2
h;yh=2I 1

2
h

�
;

r.x;y Ih/ D 1

1 � 2�p
1

hpC1 .yh � y�
h /: (5.120)

Note that y�
h is the result of applying ˆ over two consecutive steps of length 1

2
h

each, whereas yh is the result of one application over the whole step of length h.
We now verify that r.x;y Ih/ in (5.120) is an acceptable estimator. To do this,

we need to assume that 
.x;y/ 2 C1 on Œa; b� � R
d . In terms of the reference

solution u.t/ through .x;y/, we have (cf. (5.32) and (5.37))

ˆ.x;y Ih/ D 1

h
Œu.x C h/ � u.x/�C 
.x;y/hp CO.hpC1/: (5.121)

Furthermore,

1

h
.yh � y�

h / D 1

h
.y � yh=2/C ˆ.x;y Ih/� 1

2
ˆ

�
x C 1

2
h;yh=2I 1

2
h

�

D ˆ.x;y Ih/� 1

2
ˆ

�
x;y I 1

2
h

�
� 1

2
ˆ

�
x C 1

2
h;yh=2I 1

2
h

�
:
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Applying (5.121) to each of the three terms on the right, we find

1

h
.yh � y�

h / D 1

h
Œu.x C h/� u.x/�C 
.x;y/hp CO.hpC1/

� 1

2

1

h=2

	
u

�
x C 1

2
h

�
� u.x/



� 1

2

.x;y/

�
1

2
h

�p
CO.hpC1/

� 1

2

1

h=2

	
u.x C h/� u

�
x C 1

2
h

�


� 1

2



�
x C 1

2
h;y CO.h/

��
1

2
h

�p

CO.hpC1/ D 
.x;y/.1 � 2�p/hp CO.hpC1/:

Consequently,

1

1 � 2�p
1

h
.yh � y�

h / D 
.x;y/hp CO.hpC1/ (5.122)

as required.
Subtracting (5.122) from (5.121) shows, incidentally, that

ˆ�.x;y Ih/ WD ˆ.x;y Ih/ � 1

1 � 2�p
1

h
.yh � y�

h / (5.123)

defines a one-step method of order p C 1.
The procedure in (5.120) is rather expensive. For a fourth-order Runge–Kutta

process, it requires a total of 11 evaluations of f per step, almost three times
the effort for a single Runge–Kutta step. Therefore, Richardson extrapolation is
normally used only after every two steps of ˆ; that is, one proceeds according to

yh D y C hˆ.x;y Ih/;
y�
2h D yh C hˆ.x C h;yhIh/;

y2h D y C 2hˆ.x;y I 2h/: (5.124)

Then (5.122) gives

1

2.2p � 1/

1

hpC1 .y2h � y�
2h/ D 
.x;y/CO.h/; (5.125)

so that the expression on the left is an acceptable estimator r.x;y Ih/. If the two
steps in (5.124) yield acceptable accuracy (cf. Sect. 5.8.3), then, again for a fourth-
order Runge–Kutta process, the procedure requires only three additional evaluations
of f , since yh and y�

2h would have to be computed anyhow. We show, however, that
there are still more efficient schemes.
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2. Embedded methods: The basic idea of this approach is very simple: if the given
method ˆ has order p, take any one-step method ˆ� of order p� D p C 1 and
define

r.x;y Ih/ D 1

hp
Œˆ.x;y Ih/ � ˆ�.x;y Ih/�: (5.126)

This is indeed an acceptable estimator, as follows by subtracting the two relations

ˆ.x;y Ih/� 1

h
Œu.x C h/ � u.x/� D 
.x;y/hp CO.hpC1/;

ˆ�.x;y Ih/� 1

h
Œu.x C h/ � u.x/� D O.hpC1/

and dividing the result by hp .
The tricky part is making this procedure efficient. Following an idea of Fehlberg,

one can try to do this by embedding one Runge–Kutta process (of order p) into
another (of order p C 1). Specifically, let ˆ be some explicit r-stage Runge–Kutta
method,

k1.x;y/ D f .x;y/;

ks.x;y Ih/ D f

0

@x C �sh;y C h

s�1X

jD1

sjkj

1

A ; s D 2; 3; : : : ; r;

ˆ.x;y Ih/ D
rX

sD1
˛sks:

Then for ˆ� choose a similar r�-stage process, with r� > r , in such a way that

��
s D �s; 


�
sj D 
sj for s D 2; 3; : : : ; r:

The estimate (5.126) then costs only r� � r extra evaluations of f . If r� D r C 1,
one might even attempt to save the additional evaluation by selecting (if possible)

�r� D 1; 
r� j D ˛j for j D 1; 2; : : : ; r� � 1 .r� D r C 1/: (5.127)

Then indeed, kr� will be identical with k1 for the next step.
Pairs of such embedded .p; p C 1/ Runge–Kutta formulae have been developed

in the late 1960s by E. Fehlberg. There is a considerable degree of freedom in
choosing the parameters. Fehlberg’s choices were guided by an attempt to reduce
the magnitude of the coefficients of all the partial derivative aggregates that enter
into the principal error function 
.x;y/ of ˆ (cf. the end of Sect. 5.6.4 for an
elementary example of this technique). He succeeded in obtaining pairs with the
following values of parameters p, r , r� (Table 5.1).
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Table 5.1 Embedded
Runge–Kutta formulae

p r r�

3 4 5
4 5 6
5 6 8
6 8 10
7 11 13
8 15 17

For the third-order process (and only for that one), one can also arrange for (5.127)
to hold (cf. Ex. 15 for a second-order process).

5.8.3 Step Control

Any estimate r.x;y Ih/ of the principal error function 
.x;y/ implies an estimate

hpr.x;y Ih/ D T .x;y Ih/CO.hpC1/ (5.128)

for the truncation error, which can be used to monitor the local truncation error
during the integration process. However, one has to keep in mind that the local
truncation error is quite different from the global error, the error that one really
wants to control. To get more insight into the relationship between these two errors,
we recall the following theorem, which quantifies the continuity of the solution of
an initial value problem with respect to initial values.

Theorem 5.8.2. Let f .x;y/ be continuous in x for a � x � b and satisfy a
Lipschitz condition uniformly on Œa; b� � R

d with Lipschitz constant L (cf. (5.27)).
Then the initial value problem

dy

dx
D f .x;y/; a � x � b;

y.c/ D yc ; (5.129)

has a unique solution on Œa; b� for any c with a � c � b and for any yc 2 R
d .

Let y.xI s/ and y.xI s�/ be the solutions of (5.129) corresponding to yc D s and
yc D s�, respectively. Then, for any vector norm k � k,

ky.xI s/ � y.xI s�/k � eLjx�cjks � s�k: (5.130)

Solving the given initial value problem (5.102) numerically by a one-step method
(not necessarily with constant step) in reality means that one follows a sequence of
“solution tracks,” whereby at each grid point xn one jumps from one track to the
next by an amount determined by the truncation error at xn (cf. Fig. 5.2). This is
so by the very definition of truncation error, the reference solution being one of the
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Fig. 5.2 Error accumulation in a one-step method

solution tracks. Specifically, the nth track, n D 0; 1; : : : ; N , is given by the solution
of the initial value problem

dvn
dx

D f .x; vn/; xn � x � b;

vn.xn/ D un; (5.131)

and

unC1 D vn.xnC1/C hnT .xn;unIhn/; n D 0; 1; : : : ; N � 1: (5.132)

Since by (5.131) we have unC1 D vnC1.xnC1/, we can apply Theorem 5.8.2 to the
solutions vnC1 and vn, letting c D xnC1, s D unC1, s� D unC1 � hnT .xn;unIhn/
(by (5.132)), and thus obtain

kvnC1.x/ � vn.x/k � hneLjx�xnC1jkT .xn;unIhn/k; n D 0; 1; : : : ; N � 1: (5.133)

Now

N�1X

nD0
ŒvnC1.x/ � vn.x/� D vN .x/ � v0.x/ D vN .x/ � y.x/; (5.134)

and since vN .xN / D uN , letting x D xN , we get from (5.133) and (5.134) that

kuN � y.xN /k �
N�1X

nD0
kvnC1.xN /� vn.xN /k

�
N�1X

nD0
hneLjxN�xnC1jkT .xn;unIhn/k:
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Therefore, if we make sure that

kT .xn;unIhn/k � "T ; n D 0; 1; 2; : : : ; N � 1; (5.135)

then

kuN � y.xN /k � "T

N�1X

nD0
.xnC1 � xn/eLjxN�xnC1j:

Interpreting the sum on the right as a Riemann sum for a definite integral, we finally
obtain, approximately,

kuN � y.xN /k � "T

Z b

a

eL.b�x/dx D "T

L
.eL.b�a/ � 1/:

Thus, knowing an estimate for L would allow us to set an appropriate "T ,
namely,

"T D L

eL.b�a/ � 1 "; (5.136)

to guarantee an error kuN �y.xN /k � ". What holds for the whole grid on Œa; b�, of
course, holds for any grid on a subinterval Œa; x�, a < x � b. So, in principle, given
the desired accuracy " for the solution y.x/, we can determine a “local tolerance
level” "T by (5.136) and achieve the desired accuracy by keeping the local truncation
error below "T (cf. (5.135)). Note that as L ! 0 we have "T ! "=.b � a/. This
limit value of "T would be appropriate for a quadrature problem but definitely not
for a true differential equation problem, where "T , in general, has to be chosen
considerably smaller than the target error tolerance ".

Considerations such as these motivate the following step control mechanism:
each integration step (from xn to xnC1 D xn C hn) consists of these parts:

1. Estimate hn.
2. Compute unC1 D un C hnˆ.xn;unIhn/ and r.xn;unIhn/.
3. Test hpnkr.xn;unIhn/k � "T (cf. (5.128) and (5.135)). If the test passes, proceed

with the next step; if not, repeat the step with a smaller hn, say, half as large, until
the test passes.

To estimate hn, assume first that n � 1, so that the estimator from the previous
step, r.xn�1;un�1Ihn�1/ (or at least its norm), is available. Then, neglecting terms
of O.h/,

k
.xn�1;un�1/k � kr.xn�1;un�1Ihn�1/k;

and since 
.xn;un/ � 
.xn�1;un�1/, likewise

k
.xn;un/k � kr.xn�1;un�1Ihn�1/k:
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What we want is

k
.xn;un/khpn � �"T ;

where � is “safety factor,” say, � D 0:8. Eliminating 
.xn;un/, we find

hn �
�

�"T

kr.xn�1;un�1Ihn�1/k
� 1=p

:

Note that from the previous step we have hpn�1kr.xn�1;un�1Ihn�1/k � "T , so that

hn � �1=phn�1;

and the tendency is toward increasing the step.
If n D 0, we proceed similarly, using some initial guess h.0/0 of h0 and associated

r.x0;y0Ih.0/0 / to obtain

h
.1/
0 D

(
�"T

kr.x0; y0Ih.0/0 /k

) 1=p
:

The process may be repeated once or twice to get the final estimate of h0 and
kr.x0;y0Ih0k.

5.9 Stiff Problems

Although there is no generally accepted definition of stiffness7 of differential
equations, a characteristic feature of stiffness is the presence of rapidly changing
transients. This manifests itself mathematically in the Jacobian matrix fy having
eigenvalues with very large negative real parts along with others of normal
magnitude. Standard (in particular explicit) numerical ODE methods are unable
to cope with such solutions unless they use unrealistically small step lengths.
What is called for are methods enjoying a special stability property called A-
stability. We introduce this concept in the context of linear homogeneous systems
of differential equations with constant coefficient matrix. Padé approximants to the
exponential function turn out to be instrumental in constructing A-stable one-step
methods.

7The word “stiffness” comes from the differential equation governing the oscillation of a “stiff”
spring, that is, a spring with a large spring constant.
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5.9.1 A-Stability

A model problem exhibiting stiffness is the linear initial value problem

dy

dx
D Ay ; 0 � x < 1I y.a/ D y0; (5.137)

where A 2 R
d�d is a constant matrix of order d having all its eigenvalues in the

left half-plane,

Re
i .A/ < 0; i D 1; 2; : : : ; d: (5.138)

It is well known that all solutions of the differential system in (5.137) then decay
exponentially as x ! 1. Those corresponding to eigenvalues with very large
negative parts do so particularly fast, giving rise to the phenomenon of stiffness.
In particular, for the solution y.x/ of (5.137), we have

y.x/ ! 0 as x ! 1: (5.139)

How does a one-step method ˆ behave when applied to (5.137)? First of all, a
generic step of the one-step method will now have the form

ynext D y C hˆ.x;y Ih/ D '.hA/y ; (5.140)

where ' is some function, called the stability function of the method. In what follows
we assume that the matrix function '.hA/ is well defined; minimally, we require
that ': C ! C is analytic in a neighborhood of the origin. Since the reference
solution through the point .x;y/ is given by u.t/ D eA.t�x/y , we have for the
truncation error of ˆ at .x;y/ (cf. (5.31))

T .x;y Ih/ D 1

h
Œynext � u.x C h/� D 1

h
Œ'.hA/ � ehA�y : (5.141)

In particular, the method ˆ in this case has order p if and only if

ez D '.z/CO.zpC1/; z ! 0: (5.142)

This shows the relevance of approximations to the exponential function in the
context of one-step methods applied to the model problem (5.137).

The approximate solution u D fung to the initial value problem (5.137),
assuming for simplicity a constant grid length h, is given by

unC1 D '.hA/un; n D 0; 1; 2; : : : I u0 D y0I
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hence

un D Œ'.hA/�ny0; n D 0; 1; 2; : : : : (5.143)

This will simulate the behavior (5.139) of the exact solution if and only if

lim
n!1Œ'.hA/�n D 0: (5.144)

A necessary and sufficient condition for (5.144) to hold is that all eigenvalues of the
matrix '.hA/ be strictly within the unit circle. This in turn is equivalent to

j'.h
i .A//j < 1 for i D 1; 2; : : : ; d; (5.145)

where 
i .A/ are the eigenvalues of A. In view of (5.138), this gives rise to the
following definition.

Definition 5.9.1. A one-step method ˆ is called A-stable if the function ' associ-
ated with ˆ according to (5.140) is defined in the left half of the complex plane and
satisfies

j'.z/j < 1 for all z with Re z < 0: (5.146)

We are led to the problem of constructing a function ' (and with it, a one-
step method ˆ), which is analytic in the left-half plane, approximates well the
exponential function near the origin (cf. (5.142)), and satisfies (5.146). An important
tool for this is Padé approximation to the exponential function.

5.9.2 Padé8 Approximation

For any function g.z/ analytic in a neighborhood of z D 0, one defines its Padé
approximants as follows.

Definition 5.9.2. The Padé approximant RŒn;m�.z/ to the function g.z/ is the
rational function

RŒn;m�.z/ D P.z/

Q.z/
; P 2 Pm; Q 2 Pn; (5.147)

satisfying

g.z/Q.z/ � P.z/ D O.znCmC1/ as z ! 0: (5.148)

8Henri Eugène Padé (1863–1953), a French mathematician, was educated partly in Germany and
partly in France, where he wrote his thesis under Hermite’s supervision. Although much of his
time was consumed by high administrative duties, he managed to write many papers on continued
fractions and rational approximation. His thesis and related papers became widely known after
Borel referred to them in his 1901 book on divergent series.
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Thus, when expanding the left-hand side of (5.148) in powers of z, all initial
terms should drop out up to (and including) the one with power znCm. It is known
that the rational function RŒn;m� is uniquely determined by this definition, even
though in exceptional cases P and Q may have common factors. If this is not the
case, that is, P andQ are irreducible over the complex numbers, we assume without
loss of generality that Q.0/ D 1.

Our interest here is in the function g.z/ D ez. In this case, P D P Œn;m� and
Q D QŒn;m� in (5.147) and (5.148) can be explicitly determined.

Theorem 5.9.1. The Padé approximantRŒn;m� to the exponential function g.z/ D
ez is given by

P Œn;m�.z/ D
mX

kD0

mŠ.nCm � k/Š
.m � k/Š.nCm/Š

zk

kŠ
; (5.149)

QŒn;m�.z/ D
nX

kD0
.�1/k nŠ.nCm � k/Š

.n � k/Š.nCm/Š

zk

kŠ
: (5.150)

Moreover,

ez � P Œn;m�.z/

QŒn;m�.z/
D Cn;mznCmC1 C � � � ;

where

Cn;m D .�1/n nŠmŠ

.nCm/Š.nCmC 1/Š
: (5.151)

Proof. Let
v.t/ WD tn.1 � t/m:

By Leibniz’s rule, one finds

v.r/.t/ D
rX

kD0

 
r

k

!
Œtn�.k/Œ.1 � t/m�.r�k/

D
rX

kD0

 
r

k

! 
n

k

!
kŠtn�k

 
m

r � k

!
.r � k/Š.1 � t/m�rCk.�1/r�kI

hence, in particular,

v.r/.0/ D .�1/r�n
 

m

r � n

!
rŠ if r � nI v.r/.0/ D 0 if r < nI

v.r/.1/ D .�1/m
 

n

r �m

!
rŠ if r � mI v.r/.1/ D 0 if r < m: (5.152)
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Given any integer q � 0, repeated integration by parts yields

Z 1

0

etzv.t/dt D ez
qX

rD0
.�1/r v.r/.1/

zrC1
�

qX

rD0
.�1/r v.r/.0/

zrC1

C .�1/qC1

zqC1

Z 1

0

etzv.qC1/.t/dt: (5.153)

Putting here q D n C m, so that v.qC1/.t/ 	 0, and multiplying by .�1/qzqC1
gives

.�1/qez
qX

rD0
.�1/rv.r/.1/zq�r � .�1/q

qX

rD0
.�1/rv.r/.0/zq�r

CO.znCmC1/; z ! 0;

where the O-term comes from multiplying the integral on the left of (5.153) (which
is O.1/ as z ! 0) by zqC1 D znCmC1. In the first sum it suffices, by (5.152), to
sum over r � m, and in the second, to sum over r � n. Using the new variable of
summation k defined by q � r D k, we find

ez
nX

kD0
.�1/kv.nCm�k/.1/zk �

mX

kD0
.�1/kv.nCm�k/.0/zk D O.znCmC1/;

which clearly is (5.148) for g.z/ D ez. It now suffices to substitute the values (5.152)
for the derivatives of v at 0 and 1 to obtain (5.149) and (5.150), after multiplication
of numerator and denominator by .�1/m=.nCm/Š Tracing the constants, one readily
checks (5.151). �

The Padé approximants to the exponential function have some very useful and
important properties. Here are those of interest in connection with A-stability:

1. P Œn;m�.z/ D QŒm; n�.�z/: The numerator polynomial is the denominator
polynomial with indices interchanged and z replaced by �z. This reflects the
property 1=ez D e�z of the exponential function. The proof follows immediately
from (5.149) and (5.150).

2. For each n D 0; 1; 2; : : : ; all zeros of QŒn; n� have positive real parts (hence,
by (1), all zeros of P Œn; n� have negative real parts). A proof can be given by
applying the Routh–Hurwitz criterion9 for stable polynomials.

9The Routh–Hurwitz criterion states that a real polynomial a0xn C a1x
n�1 C � � � C an, a0 > 0,

has all its zeros in the left half of the complex plane if and only if all leading principal minors
of the nth-order Hurwitz matrix H are positive. Here the elements in the i th row of H are
a2�i ; a4�i ; : : : ; a2n�i (where ak D 0 if k < 0 or k > n).
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3. For real t 2 R, and n D 0; 1; 2; : : : ; there holds

ˇ̌
ˇ̌P Œn; n�.i t/
QŒn; n�.i t/

ˇ̌
ˇ̌ D 1:

Indeed, by property (1), one has P Œn; n�.i t/ D QŒn; n�.i t/.
4. There holds

ˇ̌
ˇ̌P Œn C 1; n�.i t/

QŒnC 1; n�.i t/

ˇ̌
ˇ̌ < 1 for t 2 R; t ¤ 0; n D 0; 1; 2; : : : :

The proof follows from the basic property (5.148) of the Padé approximant:

ei tQŒnC 1; n�.i t/ � P ŒnC 1; n�.i t/ D O.jt j2nC2/; t ! 0:

Taking absolute values, and using the triangle inequality, gives

j jQŒnC 1; n�.i t/j � jP ŒnC 1; n�.i t/j j � jei tQŒnC 1; n�.i t/

� P ŒnC 1; n�.i t/j D O.jt j2nC2/I

that is,

jQŒnC 1; n�.i t/j � jP ŒnC 1; n�.i t/j D O.jt j2nC2/:

Multiply this by jQŒnC 1; n�.i t/j C jP ŒnC 1; n�.i t/j to obtain

jQŒnC 1; n�.i t/j2 � jP ŒnC 1; n�.i t/j2 D O.jt j2nC2/; t ! 0; (5.154)

where the order term is unaffected since both Q and P have the value 1 at
t D 0 (cf. (5.149) and (5.150)). But jP Œn C 1; n�.i t/j2 D P Œn C 1; n�.i t/ �
P Œn C 1; n�.�i t/ is a polynomial of degree n in t2, and similarly,
jQŒn C 1; n�.i t/j2 a polynomial of degree n C 1 in t2. Thus, (5.154) can hold
only if

jQŒnC 1; n�.i t/j2 � jP ŒnC 1; n�.i t/j2 D at2nC2;

where at2nC2 is the leading term in jQŒnC 1; n�.i t/j2, hence a > 0. From this,
the assertion follows immediately.

5. For each n D 0; 1; 2; : : : ; all zeros of QŒn C 1; n� have positive real parts. We
sketch the proof. From (5.149) and (5.150), one notes that

QŒnC 1; n�.z/C P ŒnC 1; n�.�z/ D 2QŒnC 1; nC 1�.z/:

We now use Rouché’s theorem to show that QŒn C 1; n� and QŒn C 1; n C 1�

have the same number of zeros with negative real part (namely, none according to
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Fig. 5.3 The contour CR

property (2)). For this, one must show that on the contour CR: fz D i t; jt j � R,
t ¤ 0g [ fjzj D R, Re z < 0g (see Fig. 5.3) one has, when R is sufficiently
large,

jP ŒnC 1; n�.�z/j < jQŒnC 1; n�.z/j; QŒnC 1; n�.0/ ¤ 0:

For z D i t , since P Œn C 1; n�.�i t/ D P ŒnC 1; n�.i t/, the inequality follows
from property (4). For jzj D R, the inequality holds for R ! 1, since deg
P Œn C 1; n� < deg QŒnC 1; n�. Finally QŒnC 1; n�.0/ D 1.

Note also from (4) thatQŒnC1; n� cannot have purely imaginary zeros, since
jQŒnC 1; n�.i t/j > jP ŒnC 1; n�.i t/j � 0 for t ¤ 0.

6. A rational function R satisfies jR.z/j < 1 for Re z < 0 if and only if R is analytic
in Re z < 0 and jR.z/j � 1 for Re z D 0.

Necessity. If jR.z/j < 1 in Re z < 0, there can be no pole in Re z � 0 or at
z D 1. By continuity, therefore, jR.z/j � 1 on Re z D 0.

Sufficiency. R must be analytic in Re z � 0 and at z D 1. Clearly,
lim

z!1 jR.z/j � 1 and jR.z/j � 1 on the imaginary axis. Then, by the maximum

principle, jR.z/j < 1 for Re z < 0.
7. As a corollary of property (6), we state the following important properties.

For each n D 0; 1; 2; : : : ; there holds

ˇ̌
ˇ̌P Œn; n�.z/
QŒn; n�.z/

ˇ̌
ˇ̌ < 1 for Re z < 0; (5.155)

ˇ̌
ˇ̌P ŒnC 1; n�.z/

QŒnC 1; n�.z/

ˇ̌
ˇ̌ < 1 for Re z � 0; z ¤ 0: (5.156)

The first of these inequalities follows from properties (1) through (3), the second
from properties (4) and (5).

Property (7) immediately yields the following theorem.
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Theorem 5.9.2. If the function ' associated with the one-step method ˆ according
to (5.140) is either the Padé approximant '.z/ D RŒn; n�.z/ of ez, or the Padé
approximant '.z/ D RŒn C 1; n�.z/ of ez; n D 0; 1; 2; : : : , then the method ˆ is
A-stable.

5.9.3 Examples of A-Stable One-Step Methods

1. Implicit Euler method: Also called the backward Euler method, this is the one-
step method defined by

unC1 D un C hf .xnC1;unC1/: (5.157)

It requires, at each step, the solution of a system of (in general) nonlinear
equations for unC1 2 R

d . In the case of the model problem (5.137), this becomes
unC1 D unChAunC1 and can be solved explicitly: unC1 D .I�hA/�1un. Thus,
the associated function ' here is

'.z/ D 1

1 � z
D 1C z C z2 : : : ; (5.158)

the Padé approximant RŒ1; 0�.z/ of ez. Since '.z/ � ez D O.z2/ as z ! 0, the
method has order p D 1 (cf. (5.142)), and by Theorem 5.9.2 is A-stable. (This
could easily be confirmed directly.)

2. Trapezoidal rule: Here

unC1 D un C 1

2
h Œf .xn;un/C f .xnC1;unC1/�; (5.159)

again a nonlinear equation in unC1. For the model problem (5.137),
this becomes unC1 D �

I C 1
2
hA

�
un C 1

2
hAunC1, hence unC1 D

�
I � 1

2
hA

��1 �
I C 1

2
hA

�
un, and

'.z/ D 1C 1
2
z

1� 1
2
z

D 1C z C 1

2
z2 C 1

4
z3 C � � � : (5.160)

This is the Padé approximant '.z/ D RŒ1; 1�.z/ of ez and '.z/ � ez D O.z3/, so
that again the method is A-stable, but now of order p D 2.

3. Implicit Runge–Kutta formulae: As mentioned in Sect. 5.6.5, an r-stage implicit
Runge–Kutta formula has the form (cf. (5.68))

ˆ.x;y Ih/ D
rX

sD1
˛sks.x;y Ih/;

ks D f

0

@x C �sh;y C h

rX

jD1

sjkj

1

A ; s D 1; 2; : : : ; r: (5.161)
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It is possible to show (cf. Notes to Sect. 5.6.5) that (5.161) is a method of order
p, r � p � 2r , if f 2 Cp on Œa; b� � R

d and

rX

jD1

sj �

k
j D �kC1

s

k C 1
; k D 0; 1; : : : ; r � 1I s D 1; 2; : : : ; r; (5.162)

rX

sD1
˛s�

k
s D 1

k C 1
; k D 0; 1; : : : ; p � 1: (5.163)

For any set of distinct �j , and for each s D 1; 2; : : : ; r , the equations (5.162)
represent a system of linear equations for f
sj grjD1, whose coefficient matrix is
a Vandermonde matrix, hence nonsingular. It thus can be solved uniquely for the
f
sj g. Both conditions (5.162) and (5.163) can be viewed more naturally in terms
of quadrature formulae. Indeed, (5.162) is equivalent to

Z �s

0

p.t/dt D
rX

jD1

sj p.�j /; all p 2 Pr�1; (5.164)

whereas (5.163) means

Z 1

0

q.t/dt D
rX

sD1
˛sq.�s/; all q 2 Pp�1: (5.165)

We know from Chap. 3, Sect. 3.2.2, that in (5.165) we can indeed have r �
p � 2r , the extreme values corresponding to Newton–Cotes formulae (with
prescribed �s) and to the Gauss–Legendre formula on [0,1], where the �s are
the zeros of the (shifted) Legendre polynomial of degree r . In the latter case, we
obtain a unique r-stage Runge–Kutta formula of order p D 2r . We now show
that this Runge–Kutta method of maximum order 2r is also A-stable.

Instead of the system (5.137), we may as well consider a scalar equation

dy

dx
D 
y; (5.166)

to which (5.137) can be reduced by spectral decomposition (i.e., 
 represents
one of the eigenvalues of A). Applied to (5.166), the ks corresponding to (5.161)
must satisfy the linear system

ks D 


0

@y C h

rX

jD1

sj kj

1

AI

that is (with z D 
h),

ks � z
rX

jD1

sj kj D 
y; s D 1; 2; : : : ; r:
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Let

dr.z/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 � z
11 �z
12 � � � �z
1r
�z
21 1 � z
22 � � � �z
2r
. . . . . . . . . . . . . . . . . . . . . . .
�z
r1 �z
r2 � � � 1 � z
rr

ˇ̌
ˇ̌
ˇ̌
ˇ̌
;

dr;s.z/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 � z
11 � � � 1 � � � �z
1r
�z
21 � � � 1 � � � �z
2r
. . . . . . . . . . . . . . . . . . .
�z
r1 � � � 1 � � � 1 � z
rr

ˇ̌
ˇ̌
ˇ̌
ˇ̌
; s D 1; 2; : : : ; r;

where the column of ones is the sth column of the determinant. Clearly, dr and
dr;s are polynomials of degree r and r � 1, respectively. By Cramer’s rule,

ks D dr;s.z/

dr.z/

y; s D 1; 2; : : : ; r;

so that

ynext D y C h

rX

sD1
˛sks D

(
1C z

rX

sD1
˛s
dr;s.z/

dr .z/

)
y:

Thus, the function ' associated with the method ˆ corresponding to (5.161) is

'.z/ D
dr.z/C z

rX

sD1
˛sdr;s.z/

dr.z/
: (5.167)

We see that ' is a rational function of type Œr; r� and, the method ˆ having order
p D 2r , we have (cf. (5.142))

ez D '.z/CO.z2rC1/; z ! 0:

It follows that ' in (5.167) is the Padé approximant RŒr; r� to the exponential
function, and hence ˆ is A-stable by Theorem 5.9.2.

4. Ehle’s method This is a method involving total derivatives of f (cf. (5.45)),

ˆ.x;y Ih/ D k.x;y Ih/;

k D
rX

sD1
hs�1Œ˛sf Œs�1�.x;y/ � ˇsf Œs�1�.x C h;y C hk/�: (5.168)
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It is also implicit, as it requires the solution of the second equation in (5.168) for
the vector k 2 R

d . A little computation (see Ex. 21) will show that the function
' associated with ˆ in (5.168) is given by

'.z/ D
1C

rX

sD1
˛sz

s

1C
rX

sD1
ˇsz

s

: (5.169)

By choosing this ' to be a Padé approximant to ez, either RŒr; r� or RŒr; r � 1�

(by letting ˛r D 0), we again obtain two A-stable methods. The latter has the
additional property of being strongly A-stable (or L-stable), in the sense that

'.z/ ! 0 as Re z ! �1: (5.170)

This means, in view of (5.143), that convergence un ! 0 as n ! 1 is faster
for components corresponding to eigenvalues further to the left in the complex
plane.

5.9.4 Regions of Absolute Stability

For methods ˆ that are not A-stable, it is important to know the region of absolute
stability,

DA D fz 2 C W j'.z/j < 1g: (5.171)

If the method ˆ applied to the model problem (5.137) is to produce an approximate
solution u D fung with lim

n!1 un D 0, it is necessary that h
i .A/ 2 DA for all

eigenvalues 
i .A/ of A. If some of these have very large negative real parts, then
this condition imposes a severe restriction on the step length h, unless DA contains a
large portion of the left-hand plane. For many classical methods, unfortunately, this
is not the case. For Euler’s method:, for example, we have '.z/ D 1C z, hence

DA D fz 2 C W j1C zj < 1g .Euler/; (5.172)

and the region of absolute stability is the unit disk in C centered at �1. More
generally, for the Taylor expansion method of order p � 1, and also for any p-
stage explicit Runge–Kutta method of order p, 1 � p � 4, one has (see Ex. 18)

'.z/ D 1C 1

1Š
z C 1

2Š
z2 C � � � C 1

pŠ
zp: (5.173)
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−10 −8 −6 −4 −2 0

Fig. 5.4 Regions of absolute stability for pth-order methods with ' as in (5.173),
p D 1; 2; : : : ; 21

To compute the contour line j'.z/j D 1, which delineates the region DA, one can
find a differential equation for this line and use a one-step method to solve it (see
MA 4). That is, we can use a method ˆ to analyze its own stability region – a case
of self-analysis, as it were. The results for ' in (5.173) and p D 1; 2; : : : ; 21 are
plotted in Fig. 5.410. Because of symmetry, only the parts of the regions in the upper
half-plane are shown.

5.10 Notes to Chapter 5

The classic text on the numerical solution of nonstiff ordinary differential equations
is Henrici [1962]. It owes much to the pioneering work of Dahlquist [1956] a
few years earlier. Numerous texts have since been written with varying areas of
emphasis, but all paying attention to stiff problems. We mention only a few of
the more recent ones: the balanced exposition in Lambert [1991], the two-volume
work of Hairer et al. [1993] and Hairer and Wanner [2010], which is especially

10Figure 5.4 is reproduced, with permission, from W. Gautschi and J. Waldvogel, Contour plots of
analytic functions, in Solving problems in scientific computing using Maple and MATLAB, Walter
Gander and Jiřı́ Hřebı́ček, eds., 4th ed., Springer, Berlin, 2004.
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rich in historical references, interesting examples, and numerical experimentation,
Shampine [1994] emphasizing software issues, Iserles [2009] including also topics
in numerical partial differential equations, Ascher and Petzold [1998] treating also
differential algebraic equations, Bellen and Zennaro [2003] focusing on delay
differential equations, Shampine et al. [2003] using Matlab as a problem solving
environment, Butcher [2008], and Atkinson et al. [2009], which also provides access
to Matlab codes.

An authoritative work on Runge–Kutta methods is Butcher [1987]. Error and sta-
bility analyses of Runge–Kutta methods in the context of stiff nonlinear differential
equations are the subject of the monograph by Dekker and Verwer [1984].

Section 5.1. The example (5.3) is from Klopfenstein [1965]. The technique de-
scribed therein is widely used in codes calculating trajectories of space vehicles.
For a detailed presentation of the method of lines, including Fortran programs, see
Schiesser [1991].

Section 5.2. There are still other important types of differential equations, for
example, singularly perturbed equations and related differential algebraic equations
(DAEs), and differential equations with delayed arguments. For the former, we refer
to Griepentrog and März [1986], Brenan et al. [1996], Hairer et al. [1989], and
Hairer and Wanner [2010, Chaps. 6–7], for the latter to Pinney [1958], Bellman and
Cooke [1963], Cryer [1972], Driver [1977], and Kuang [1993].

Section 5.3. For a proof of the existence and uniqueness part of Theorem 5.3.1, see
Henrici [1962, Sect. 1.2]. The proof is given for a scalar initial value problem, but
it extends readily to systems. Continuity with respect to initial data is proved, for
example, in Coddington and Levinson [1955, Chap. 1, Sect. 7]. Also see Butcher
[1987, Sect. 112].

A strengthened version of Theorem 5.3.1 involves a one-sided Lipschitz
condition,

Œf .x;y/ � f .x;y�/�T.y � y�/ � 
 ky � y�k2; all x � a; all y ;y� 2 R
d ;

where 
 is some constant – the one-sided Lipschitz constant. If this holds, and f is
continuous in x, then the initial value problem (5.16) has a unique solution on any
interval Œa; b�, b > a (cf. Butcher [1987, Sect. 112]).

Section 5.4. The numerical solution of differential equations can sometimes benefit
from a preliminary transformation of variables. Many examples are given in Daniel
and Moore [1970, Part 3]; an important example used in celestial mechanics to
regularize and linearize the Newtonian equations of motion are the transformations
of Levi–Civita, and of Kustaanheimo and Stiefel, for which we refer to Stiefel and
Scheifele [1971] for an extensive treatment. The reader may wish to also consult
Zwillinger [1992b] for a large number of other analytical tools that may be helpful
in the numerical solution of differential equations.
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The distinction between one-step and multistep methods may be artificial, as
there are theories that allow treating them both in a unified manner; see, for example,
Stetter [1973, Chap. 5], Butcher [1987, Chap. 4], or Hairer et al. [1993, Chap. 3,
Sect. 8]. We chose, however, to cover them separately for didactical reasons.

There are many numerical methods in use that are not discussed in our text.
Among the more important ones are the extrapolation methods of Gragg and of
Gragg, Bulirsch, and Stoer, which extend the ideas in Chap. 3, Sect. 3.2.7, to
differential equations. For these, we refer to Stetter [1973, Sect. 6.3] and Hairer
et al. [1993, Chap. 2, Sects. 8, 9]. (Extrapolation methods for stiff problems are
discussed in Hairer and Wanner [2010, Chap. 4, Sect. 9].) Both these texts also
contain accounts of multistep methods involving derivatives, and of Nordsieck-
type methods, which carry along not only function values but also derivative values
from one step to the next. There are also methods tailored to higher-order systems
of differential equations; for second-order systems, for example, see Hairer et al.
[1993, Chap. 2, Sect. 14]. Very recently, so-called symplectic methods have created
a great deal of interest, especially in connection with Hamiltonian systems. These
are numerical methods that preserve invariants of the given differential system; cf.
Sanz-Serna and Calvo [1994], Hairer et al. [2006].

Section 5.5. A nonstiff initial value problem (5.16) on Œa; b�, where b is very large,
is likely one that also has a very small Lipschitz constant. The problem, in this case,
is not properly scaled, and one should transform the independent variable x, for
example by letting x D .1 � t/a C tb, to get an initial value problem on Œ0; 1�,
namely, dz=dt D g.t; z/, 0 � t � 1, z.0/ D y0, where z.t/ D y..1� t/aC tb/ and
g.t; z/ WD .b � a/f ..1� t/aC tb; z/. If f has a (very small) Lipschitz constantL,
then g has the Lipschitz constant .b � a/L, which may well be of more reasonable
size.

Section 5.6.1. In the spirit of Laplace’s exhortation “Lisez Euler, lisez Euler, c’est
notre maı̂tre à tous!,” the reader is encouraged to look at Euler’s original account of
his method in Euler [1768, Sect. 650]. Even though it is written in Latin, Euler’s use
of this language is plain and simple.

Section 5.6.2. The method of Taylor expansion was also proposed by Euler [op.cit.,
Sect. 656]. It has long been perceived as being too cumbersome in practice, but
recent advances in automatic differentiation helped to revive interest in this method.
Codes have been written that carry out the necessary differentiations systematically
by recursion (Gibbons [1960] and Barton et al. [1971]). Combining these techniques
with interval arithmetic, as in Moore [1979, Sect. 3.4], also provides rigorous error
bounds.

Section 5.6.5. For the results in (5.70), see Butcher [1965]. Actually, p�.10/ D 7,
as was shown more recently in Butcher [1985]. The highest orders of an explicit
Runge–Kutta method ever constructed are p D 12 with 17 stages, and p D 14 with
35 stages (Feagin [2011]).



374 5 Initial Value Problems for ODEs: One-Step Methods

It has become customary to associate with the general r-stage Runge–Kutta
method (5.68) the array

�1 
11 
12 � � � 
1r

�2 
21 
22 � � � 
2r
:::

:::
:::

:::

�r 
r1 
r2 � � � 
rr

˛1 ˛2 � � � ˛r

 
in matrix form:

� �

˛T

!
,

called the Butcher array. For an explicit method, �1 D 0 and � is lower triangular
with zeros on the diagonal. With the first r rows of the Butcher array, we may
associate the quadrature rules

R �s
0

u.t/dt � Pr
jD1 
sju.�j /, s D 1; 2; : : : ; r , and

with the last row the rule
R 1
0

u.t/dt � Pr
sD1 ˛su.�s/. If the respective degrees of

exactness are ds D qs � 1, 1 � s � r C 1 (ds D 1 if �s D 0 and all 
sj D 0), then
by the Peano representation of error functionals (cf. Chap. 3, (3.79)) the remainder
terms involve derivatives of u of order qs , and hence, setting u.t/ D y0.x C th/,
one gets

y.x C �sh/ � y.x/
h

�
rX

jD1

sj y

0.x C �j h/ D O.hqs /; s D 1; 2; : : : ; r;

and

y.x C h/ � y.x/
h

�
rX

sD1
˛sy

0.x C �sh/ D O.hqrC1 /:

The quantity q D min.q1; q2; : : : ; qr / is called the stage order of the Runge–Kutta
formula, and qrC1 the quadrature order.

High-order r-stage implicit Runge–Kutta methods have the property that, when
f .x;y/ D f .x/, they reduce to r-point Gauss-type quadrature formulae, either
the Gauss formula proper, or the Gauss–Radau (�1 D 0 or �r D 1) or Gauss–
Lobatto (�1 D 0 and �r D 1) formula; see, for example, Dekker and Verwer [1984,
Sect. 3.3], Butcher [1987, Sect. 34], Lambert [1991, Sect. 5.11], and Hairer and
Wanner [2010, Chap. 4, Sect. 5]. They can be constructed to have order 2r , and (in a
variety of ways) orders 2r�1 and 2r�2, respectively; cf. also Sect. 5.9.3(3). Another
interesting way ofconstructing implicit Runge–Kutta methods is by collocation:
define p 2 Pr to be such that p.x/ D y, p0.x C�sh/ D f .x C�sh; p.x C�sh//,
s D 1; 2; : : : ; r (cf. Chap. 2, Ex. 66), and let ynext D p.x C h/. It has been shown
by Wright [1970] (also cf. Butcher [1987, Sect. 346]) that this indeed is an implicit
r-stage method – a collocation method, as it is called. For such methods, the
stage orders are at least r . This property characterizes collocation methods of
orders � r (with distinct �s); see Hairer et al. [1993, Theorem 7.8, p. 212]. The
order of the method is p D r C k, k � 0, if the quadrature order is p (cf.
[loc.cit., Chap. 2, Theorem 7.9] and Chap. 3, Theorem 3.2.1). Some (but not all)
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of the Gauss-type methods previously mentioned are collocation methods. If the
polynomial p.x C th/ is determined explicitly (not just p.x C h/), it provides a
means of computing intermediate approximations for arbitrary t with 0 < t < 1,
giving rise to a “continuous” implicit Runge–Kutta method.

Semi-implicit Runge–Kutta methods with all diagonal elements of � in the
Butcher array being the same nonzero real number are called DIRK methods
(Diagonally Implicit Runge-Kutta); see Nørsett [1974], Crouzeix [1976], and
Alexander [1977]. SIRK methods (Singly-Implicit Runge-Kutta) are fully implicit
methods which share with DIRK methods the property that the matrix� (though not
triangular) has one single real eigenvalue of multiplicity r . These were derived by
Nørsett [1976] and Burrage [1978a], [1978b], [1982]. DIRK methods with r stages
have maximum order r C 1, but these are difficult to derive for large r , in contrast
to SIRK methods (see Dekker and Verwer [1984, Sects. 3.5 and 3.6]).

The best source for Butcher’s theory of Runge–Kutta methods and their at-
tainable orders is Butcher [1987, Chap. 3, Sects. 30–34]. A simplified version of
this theory can be found in Lambert [1991, Chap. 5] and an alternative approach
in Albrecht [1987, 1996]. It may be worth noting that the order conditions for a
system of differential equations are not necessarily identical with those for a single
differential equation. Indeed, a Runge–Kutta method for a scalar equation may
have order p > 4, whereas the same method applied to a system has order < p.
(For p � 4 this phenomenon does not occur.) Examples of explicit Runge–Kutta
formulae of orders 5–8 are given in Butcher [1987, Sect. 33].

An informative cross-section of contemporary work on the Runge–Kutta method,
as well as historical essays, celebrating the centenary of Runge’s 1895 paper, can be
found in Butcher [1996].

Section 5.7.1. The concept of stability as defined in this section is from Keller
[1992, Sect. 1.3]. It is also known as zero-stability (relating to h ! 0) to distinguish
it from other stability concepts used in the context of stiff differential equations; for
the latter, see the Notes to Sect. 5.9.1.

Section 5.7.2. Theorem 5.7.2 admits a converse if one assumes ˆ continuous and
satisfying a Lipschitz condition (5.86); that is, consistency is then also necessary for
convergence (cf. Henrici [1962, Theorem 3.2]).

Section 5.7.3. Theorem 5.7.3 is due independently to Henrici [1962, Theorem 3.4]
and Tihonov and Gorbunov [1963, 1964]. Henrici deals also with variable steps in
the form alluded to at the beginning of this section, whereas Tihonov and Gorbunov
[1964] deal with arbitrary nonuniform grids.

Section 5.8.1. Although the idea of getting global error estimates by integrating
the variational equation along with the main differential equation has already been
expressed by Henrici [1962, p.81], its precise implementation as in Theorem 5.8.1
is carried out in Gautschi [1975b].

Section 5.8.2.2/: Fehlberg’s embedded 4(5) method with r� D 6 (cf. Fehlberg
[1969, 1970]) appears to be a popular method. (It is one of two options provided in
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Matlab, the other being a 2(3) pair.) A similar method due to England [1969/1970]
has the advantage of possessing coefficients ˛5 D ˛6 D 0, which makes occasional
error monitoring more efficient. All of Fehlberg’s methods of orders p � 5 have the
(somewhat disturbing) peculiarity of yielding zero error estimates in cases, where
f does not depend on y . High-order pairs of methods not suffering from this defect
have been derived in Verner [1978]. Variable-method codes developed, for example,
in Shampine and Wisniewski [1978], use pairs ranging from 3(4)–7(8). Instead of
optimizing the truncation error in the lower-order method of a pair, as was done
by Fehlberg, one can do the same with the higher-order method and use the other
only for step control. This is the approach taken by Dormand and Prince [1980] and
Prince and Dormand [1981]. Their 4(5) and 7(8) pairs appear to be among current
state-of-the-art choices (cf. Hairer et al. [1993, Chap. 2, Sect. 10] and the appendix
of this reference for codes).

Section 5.8.3. For a proof of Theorem 5.8.2, see, for example, Butcher [1987,
Theorem 112J].

Section 5.9. The major text on stiff problems is Hairer and Wanner [2010]. For
Runge–Kutta methods, also see Dekker and Verwer [1984].

Section 5.9.1. The function '.z/ for a general Runge–Kutta method can be
expressed in terms of the associated Butcher array as '.z/ D 1 C z˛T.I �
z�/�1e, where eT D Œ1; 1; : : : ; 1� or, alternatively, as det.I � z� C ze˛T/=

det.I � z�/; see, for example, Dekker and Verwer [1984, Sect. 3.4],
Lambert [1991, Sect. 5.12], and Hairer and Wanner [2010, Chap. 4, Sect. 3]. Thus, '
is a rational function if the method is (semi-) implicit, and a polynomial otherwise.

The concept of A-stability, which was introduced by Dahlquist [1963], can be
relaxed by requiring j'.z/j � 1 to hold only in an unbounded subregion S of the
left half-plane. Widlund [1967], in the context of multistep methods (cf. Chap. 6,
Sect. 6.5.2), for example, takes for S an angular region j arg.�z/j � ˛, where
˛ < 1

2
	 , and speaks of A(˛)-stability, whereas Gear [1971a, Sect. 11.1] takes the

union of some half-plane Re z � � < 0 and a rectangle � � Re z � 0, jIm zj � � ,
and speaks of stiff stability. Other stability concepts relate to more general test
problems, some linear and some nonlinear. Of particular interest among the latter
are initial value problems (5.16) with f satisfying a one-sided Lipschitz condition
with constant 
 D 0. These systems are dissipative in the sense that ky.x/ � z.x/k
is nonincreasing for x > a for any two solutions y , z of the differential equation.
Requiring the same to hold for any two numerical solutions u, v generated by the
one-step method, that is, requiring that kunC1 � vnC1k � kun � vnk for all n � 0,
gives rise to the concept of B-stability (or BN-stability with the “N” standing for
“nonautonomous”). The implicit r-stage Runge–Kutta method of order p D 2r (cf.
Sect. 5.9.3(3)), for example, is B-stable,and so are some of the other Gauss-type
Runge–Kutta methods; see Dekker and Verwer [1984, Sect. 4.1], Butcher [1987,
Sect. 356], and Hairer and Wanner [2010, Chap. 4, Sects. 12 and 13]. Another
family of Runge–Kutta methods that are B-stable are the so-called algebraically
stable methods, that is, methods which satisfy D D diag.˛1; ˛2; : : : ; ˛r / � 0 and
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D� C �TD � ˛˛T nonnegative definite (Dekker and Verwer [1984, Sect. 4.2],
Butcher [1987, Sect. 356], and Hairer and Wanner [2010, Chap. 4, Sects. 12
and 13]). Similar stability concepts can also be associated with test equations
satisfying one-sided Lipschitz conditions with constants 
 ¤ 0 (Dekker and
Verwer [1984, Sect. 5.11], Butcher [1987, Sect. 357], and Hairer and Wanner
[2010, Chap. 4, pp. 193ff]).

Section 5.9.2. Standard texts on Padé approximation are Baker [1975] and Baker
and Graves-Morris [1996]. The proof of Theorem 5.9.1 follows Perron [1957, Sect.
42], who in turn took it from Padé. For a derivation of the Routh–Hurwitz criterion
mentioned in (2), see, for example, Marden [1966, Corollary 40,2], and for Rouché’s
theorem, Henrici [1988, p.280]. The elegant argument used in the proof of Property
(4) is due to Axelsson [1969].

Section 5.9.3. For the study of A-stability, it is easier to work with the “relative
stability function” '.z/e�z than with '.z/ directly. This gives rise to the “order star”
theory of Wanner et al. [1978], which, among other things, made it possible to prove
that the only Padé approximants to ez that yield A-stable methods are '.z/ D RŒnC
k; n�.z/, n D 0; 1; 2; : : :, with 0 � k � 2. All Gauss-type Runge–Kutta methods
in current use have stability functions given by such Padé approximants and are
thus A-stable (Dekker and Verwer [1984, Sect. 3.4]). Also, see Iserles and Nørsett
[1991], and Hairer and Wanner [2010, Chap. 4, Sect. 4 for further applications of
order stars.

In addition to the implicit Gauss-type Runge–Kutta methods mentioned in (3),
there are also A-stable DIRK and SIRK methods; for their construction, see Butcher
[1987, Sect. 353] and Hairer and Wanner [2010, Chap. 4, Sect. 6]. Another class
of methods that are A-stable, or nearly so, are basically explicit Runge–Kutta
methods that make use of the Jacobian matrix and inverse matrices involving it.
They are collectively called Runge–Kutta–Rosenbrock methods; see, for example,
Dekker and Verwer [1984, Chap. 9] and Hairer and Wanner [2010, Chap. 4, Sect. 7].
A criterion for A-stability of methods belonging to the function ' in (5.169) can be
found in Crouzeix and Ruamps (1977).

In all the results previously described, it was tacitly assumed that the nonlinear
systems of equations to be solved in an implicit Runge–Kutta method have a unique
solution. This is not necessarily the case, not even for linear differential equations
with constant coefficient matrix. Such questions of existence and uniqueness are
considered in Dekker and Verwer [1984, Chap. 5], where one also finds a discussion
of, and references to, the efficient implementation of implicit Runge–Kutta methods.
Also see Hairer and Wanner [2010, Chap. 4, Sects. 14, 8].

The theory of consistency and convergence developed in Sect. 5.7 for nonstiff
problems must be modified when dealing with stiff sytems of nonlinear differential
equations. One-sided Lipschitz conditions are then the natural vehicles, and B-
consistency and B-convergence the relevant concepts; see Dekker and Verwer
[1984, Chap. 7] and Hairer and Wanner [2010, Chap. 4, Sect. 15].
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Section 5.9.4. Regions of absolute stability for the embedded Runge–Kutta pairs
4(5) and the 7(8) pairs of Dormand and Prince (cf. Notes to Sect. 5.8.2(2)), and
for the Gragg, Bulirsch, and Stoer extrapolation method (cf. Notes to Sect. 5.4),
are displayed in Hairer and Wanner [2010, Chap. 4, Sect. 2]. Attempts to construct
explicit Runge–Kutta formulae whose regions of absolute stability, along the
negative real axis, extend to the left as far as possible lead to interesting applications
of Chebyshev polynomials; see Hairer and Wanner [2010, pp. 31–36].

Exercises and Machine Assignments to Chapter 5

Exercises

1. Consider the initial value problem

dy

dx
D �.y C y3/; 0 � x � 1I y.0/ D s;

where � > 0 (in fact, � � 1) and s > 0. Under what conditions on s does
the solution y.x/ D y.xI s/ exist on the whole interval Œ0; 1�? fHint: find y
explicitly.g

2. Prove (5.46).
3. Prove

.fyf /yf D f Tfyyf C f 2
y f :

4. Let

f .x;y/ D

2

66664

f 1.x;y/

f 2.x;y/
:::

f d .x;y/

3

77775

be a C1 map from Œa; b� � R
d to R

d . Assume that

ˇ̌
ˇ̌@f

i .x;y/

@yj

ˇ̌
ˇ̌ � Mij on Œa; b� � R

d ; i; j D 1; 2; : : : ; d;

where Mij are constants independent of x and y , and let M D ŒMij � 2 R
d�dC .

Determine a Lipschitz constant L of f :

(a) in the `1 vector norm;
(b) in the `2 vector norm;
(c) in the `1 vector norm.

Express L, if possible, in terms of a matrix norm of M :
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5. (a) Write the system of differential equations

u000 D x2uu00 � uv0;

v00 D xvv0 C 4u0

as a first-order system of differential equations, y 0 D f .x;y/.
(b) Determine the Jacobian matrix fy.x;y/ for the system in (a).
(c) Determine a Lipschitz constantL for f on Œ0; 1��D, where D D fy 2 R

d W
kyk1 � 1g, using, respectively, the `1, `2, and `1 norm (cf. Ex. 4).

6. For the (scalar) differential equation

dy

dx
D y
; 
 > 0;

(a) determine the principal error function of the general explicit two-stage
Runge–Kutta method (5.56), (5.57);

(b) compare the local accuracy of the modified Euler method with that of
Heun’s method;

(c) determine a 
-interval such that for each 
 in this interval, there is a two-
stage explicit Runge–Kutta method of order p D 3 having parameters
0 < ˛1 < 1, 0 < ˛2 < 1, and 0 < � < 1.

7. For the implicit Euler method

ynext D y C hf .x C h;ynext/;

(a) state a condition under which ynext is uniquely defined;
(b) determine the order and principal error function.

8. Show that any explicit two-stage Runge–Kutta method of order p D 2

integrates the special scalar differential equation dy=dx D f .x/, f 2 P1,
exactly.

9. The (scalar) second-order differential equation

d2z

dx2
D g.x; z/;

in which g does not depend on dz=dx, can be written as a first-order system

d

dx

"
y1

y2

#
D
	

y2

g.x; y1/
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by letting, as usual, y1 D z, y2 D dz=dx. For this system, consider a one-step
method unC1 D un C hˆ.xn;unIh/ with

ˆ.x;y Ih/ D
	
y2 C 1

2
hk.x;y Ih/

k.x;y Ih/


; k D g.xC�h; y1C�hy2/; y D

	
y1

y2



:

(Note that this method requires only one evaluation of g per step.)

(a) Can the method be made to have order p D 2, and if so, for what value(s)
of �?

(b) Determine the principal error function of any method obtained in (a).

10. Show that the first condition in (5.67) is equivalent to the condition that

ks.x;y Ih/ D u0.x C �sh/CO.h2/; s � 2;

where u.t/ is the reference solution through the point .x;y/.
11. Suppose that

Z xCh

x

z.t/dt D h

�X

kD1
wkz.x C #kh/C ch�C1z.�/.�/

is a quadrature formula with wk 2 R, #k 2 Œ0; 1�, c ¤ 0, and � 2 .x; xCh/, for
z sufficiently smooth. Given increment functions ˆk.x;y Ih/ defining methods
of order pk , k D 1; 2; : : : ; �, show that the one-step method defined by

ˆ.x;y Ih/ D
�X

kD1
wkf .x C #kh;y C #khˆk.x;y I#kh//

has order p at least equal to min(�;p C 1), where p D minpk .
12. Let g.x;y/ D .fx C fyf /.x;y/. Show that the one-step method defined by

the increment function

ˆ.x;y Ih/ D f .x;y/C 1
2
hg.x C 1

3
h;y C 1

3
hf .x;y//

has order p D 3. Express the principal error function in terms of g and its
derivatives.

13. Let f .x;y/ satisfy a Lipschitz condition in y on Œa; b� � R
d , with Lipschitz

constant L.

(a) Show that the increment function ˆ of the second-order Runge–Kutta
method

k1 D f .x;y/;

k2 D f .x C h;y C hk1/;

ˆ.x;y Ih/ D 1

2
.k1 C k2/
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also satisfies a Lipschitz condition whenever xC h 2 Œa; b�, and determine
a respective Lipschitz constant M:

(b) What would the result be for the classical Runge–Kutta method?
(c) What would it be for the general implicit Runge–Kutta method?

14. Describe the application of Newton’s method to implement the implicit Runge–
Kutta method.

15. Consider the following scheme of constructing an estimator r.x;y Ih/ for the
principal error function 
.x;y/ of Heun’s method:

k1 D f .x;y/;

k2 D f .x C h;y C hk1/;

yh D y C 1

2
h.k1 C k2/;

k3 D f .x C h;yh/;

k4 D f .x C hC �h;yh C �hk3/;

r.x;y Ih/ D h�2.ˇ1k1 C ˇ2k2 C ˇ3k3 C ˇ4k4/:

(Note that this scheme requires one additional function evaluation, k4, beyond
what would be required anyhow to carry out Heun’s method.) Obtain the
conditions on the parameters �, ˇ1, ˇ2, ˇ3, ˇ4 in order that

r.x;y Ih/ D 
.x;y/CO.h/:

Show, in particular, that there is a unique set of ˇs for any�with �.�C1/ ¤ 0.
What is a good choice of the parameters, and why?

16. Apply the asymptotic error formula (5.104) to the (scalar) initial value problem
dy=dx D 
y, y.0/ D 1, on Œ0; 1�, when solved by the classical fourth-order
Runge–Kutta method. In particular, determine

lim
h!0

h�4 uN � y.1/

y.1/
;

where uN is the Runge–Kutta approximation to y.1/ obtained with step
h D 1=N .

17. Consider y0 D 
y on Œ0;1/ for complex 
 with Re
 < 0. Let fung be
the approximations to fy.xn/g obtained by the classical fourth-order Runge–
Kutta method with the step h held fixed. (That is, xn D nh, h > 0, and
n D 0; 1; 2; : : : .)

(a) Show that y.x/ ! 0 as x ! 1, for any initial value y0.
(b) Under what condition on h can we assert that un ! 0 as n ! 1? In

particular, what is the condition if 
 is real (negative)?
(c) What is the analogous result for Euler’s method?
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(d) Generalize to systems y 0 D Ay , where A is a constant matrix all of whose
eigenvalues have negative real parts.

18. Show that any one-step method of order p, which, when applied to the model
problem y 0 D Ay , yields

ynext D '.hA/y ; ' a polynomial of degree q � p;

must have
'.z/ D 1C z C 1

2Š
z2 C � � � C 1

pŠ
zp C zpC1�.z/;

where � is identically 0 if q D p, and a polynomial of degree q � p � 1

otherwise. In particular, show that � 	 0 for a p-stage explicit Runge–Kutta
method of order p, 1 � p � 4, and for the Taylor expansion method of order
p � 1.

19. Consider the linear homogeneous system

./ y 0 D Ay ; y 2 R
d ;

with constant coefficient matrix A 2 R
d�d .

(a) For Euler’s method applied to (*), determine '.z/ (cf. (5.140)) and the
principal error function.

(b) Do the same for the classical fourth-order Runge–Kutta method.

20. Consider the model equation

dy

dx
D a.x/Œy � b.x/�; 0 � x < 1;

where a.x/, b.x/ are continuous and bounded on RC, and a.x/ negative with
ja.x/j large, say,

a � ja.x/j � A on RC; a � 1:

For the explicit and implicit Euler methods, derive a condition (if any) on the
step length h that ensures boundedness of the respective approximations un as
xn D nh ! 1 for h > 0 fixed. (Assume, in the case of the explicit Euler
method, that a is so large that ah > 1.)

21. Consider the implicit one-step method

ˆ.x;y Ih/ D k.x;y Ih/;
where k W Œa; b� � R

d � .0; h0� ! R
d is implicitly defined, in terms of total

derivatives of f , by

k D
rX

sD1
hs�1Œ˛sf Œs�1�.x;y/� ˇsf

Œs�1�.x C h;y C hk/�;

with suitable constants ˛s and ˇs (Ehle’s method; cf. Sect. 5.9.3(4)).
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(a) Show how the method works on the model problem dy=dx D 
y. What
is the maximum possible order in this case? Is the resulting method (of
maximal order) A-stable?

(b) We may associate with the one-step method the quadrature rule

Z xCh

x

g.t/dt D
rX

sD1
hsŒ˛sg

.s�1/.x/ � ˇsg.s�1/.x C h/�C E.g/:

Given any p with r � p � 2r , show that ˛s , ˇs can be chosen so as to have
E.g/ D O.hpC1/ when g.t/ D et�x .

(c) With ˛s , ˇs chosen as in (b), prove that E.g/ D O.hpC1/ for any
g 2 Cp (not just for g.t/ D et�x). fHint: expand E.g/ in powers of h
through hp inclusive; then specialize to g.t/ D et�x and draw appropriate
conclusions.g

(d) With ˛s , ˇs chosen as in (b), show that the implicit one-step method has
order p if f 2 Cp. fHint: use the definition of truncation error and
Lipschitz conditions on the total derivatives f Œs�1�.g

(e) Work out the optimal one-step method with r D 2 and order p D 4.
(f) How can you make the method L-stable (cf. (5.170)) and have maximum

possible order? Illustrate with r D 2.

Machine Assignments

1. (a) Write Matlab routines implementing the basic step .x;y/ 7! .x C h;ynext/

in the case of Euler’s method and the classical fourth-order Runge–Kutta
method, entering the function f of the differential equation y 0 D f .x;y/

as an input function.
(b) Consider the initial value problem

y 0 D Ay ; 0 � x � 1; y.0/ D 1;

where

A D 1

2

2

4

2 C 
3 
3 � 
1 
2 � 
1

3 � 
2 
1 C 
3 
1 � 
2

2 � 
3 
1 � 
3 
1 C 
2

3

5 ; 1 D
2

4
1

1

1

3

5 :

The exact solution is

y.x/ D
2

4
y1

y2

y3

3

5 ;
y1 D �e
1x C e
2x C e
3x;
y2 D e
1x � e
2x C e
3x;
y3 D e
1x C e
2x � e
3x:
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Integrate the initial value problem with constant step length h D 1=N by

(i) Euler’s method (order p D 1);
(ii) the classical Runge–Kutta method (order p D 4),

using the programs written in (a). In each case, along with the approxi-
mation vectors un 2 R

3, n D 1; 2; : : : ; N , generate vectors vn 2 R
3,

n D 1; 2; : : : ; N , that approximate the solution of the variational equation
according to Theorem 5.8.1. (For the estimate r.x;y Ih/ of the principal
error function take the true value r.x;y Ih/ D 
.x;y/ according to Ex. 19.)
In this way obtain estimates Qen D hpvn (p = order of the method) of the
global errors en D un � y.xn/. Use N D 5; 10; 20; 40; 80, and print xn,
kenk1, and k Qenk1 for xn D :2 W :2 W 1.

Suggested 
-values are

(i) 
1 D �1; 
2 D 0; 
3 D 1;
(ii) 
1 D 0; 
2 D �1; 
3 D �10;

(iii) 
1 D 0; 
2 D �1; 
3 D �40;
(iv) 
1 D 0; 
2 D �1; 
3 D �160.

Summarize what you learn from these examples and from others that you
may wish to run.

2. Consider the initial value problem

y00 D cos.xy/; y.0/ D 1; y0.0/ D 0; 0 � x � 1:

(a) Does the solution y.x/ exist on the whole interval 0 � x � 1? Explain.
(b) Use a computer algebra system, for example Maple, to determine the

Maclaurin expansion of the solution y.x/ up to, and including, the term with
x50. Evaluate the expansion to 15 decimal digits for x D 0:25 W 0:25 W 1:0.

(c) Describe in detail the generic step of the classical fourth-order Runge–Kutta
method applied to this problem.

(d) Use the fourth-order Runge–Kutta routine RK4.m of MA1(a), in conjunction
with a function fMAV 2.m appropriate for this assignment, to produce
approximations un � y.xn/ at xn D n=N , n D 0; 1; 2; : : : ; N , for
N D Œ4; 16; 64; 256�. Print the results y.xn/; y0.xn/ to 12 decimal places
for xn D :25 W :25 W 1:0, including the errors en D ju1n � y.xn/j. (Use the
Taylor expansion of (b) to compute y.xn/.) Plot the solution y, y0 obtained
with N D 256.

3. On the interval Œ2
p
q; 2

p
q C 1�, q � 0 an integer, consider the initial value

problem (Fehlberg, 1968)

d2c

dx2
D �	2x2c � 	 sp

c2 C s2
;

d2s

dx2
D �	2x2s C 	

cp
c2 C s2

;
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with initial conditions at x D 2
p
q given by

c D 1;
dc

dx
D 0; s D 0;

ds

dx
D 2	

p
q:

(a) Show that the exact solution is

c.x/ D cos
�	
2
x2
�
; s.x/ D sin

�	
2
x2
�
:

(b) Write the problem as an initial value problem for a system of first-order
differential equations.

(c) Consider the Runge–Kutta–Fehlberg (3, 4) pair ˆ, ˆ� given by

k1 D f .x;y/;

k2 D f

�
x C 2

7
h;y C 2

7
hk1

�
;

k3 D f

�
x C 7

15
h;y C 77

900
hk1 C 343

900
hk2

�
;

k4 D f

�
x C 35

38
h;y C 805

1444
hk1 � 77175

54872
hk2 C 97125

54872
hk3

�
;

ˆ.x;y Ih/ D 79

490
k1 C 2175

3626
k3 C 2166

9065
k4;

respectively

k1;k2;k3;k4 as previously;

k5 D f .x C h;y C hˆ.x;y Ih//;

ˆ�.x;y Ih/ D 229

1470
k1 C 1125

1813
k3 C 13718

81585
k4 C 1

18
k5:

Solve the initial value problem in (b) for q = 0(1)3 by the method ˆ, using
constant step length h D 0:2. Repeat the integration with half the step length,
and keep repeating (and halving the step) until maxn kun � y.xn/k1 �
:5 � 10�6, where un, y.xn/ are the approximate resp. exact solution vectors
at xn D 2

p
q C nh. For each run print

q; h; max
n

kun � y.xn/k1; max
n

jc2n C s2n � 1j;

where cn, sn are the approximate values obtained for c.xn/ resp. s.xn/, and
the maxima are taken over n D 1; 2; : : : ; N with N such that Nh D 1.
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(d) For the same values of q as in (c) and h D 0:2; 0:1; 0:05; 0:025; 0:0125, print
the global and (estimated) local errors,

q; h; kunC1 � y.xnC1/k1; hkˆ.xn;unIh/ � ˆ�.xn;unIh/k1;

for xn D 0.:2/:8.
(e) Implement Theorem 5.8.1 on global error estimation, using the Runge–

Kutta–Fehlberg .3; 4/ method ˆ, ˆ� of (c) and the estimator r.x;y Ih/ D
h�3Œˆ.x;y Ih/ � ˆ�.x;y Ih/� of the principal error function of ˆ. For the
same values of q as in (d), and for h D 0:05; 0:025; 0:0125, print the exact
and estimated global errors,

q; h; kunC1 � y.xnC1/k1; h3kvnC1k1 for xn D 0 W :2 W :8:

4. (a) Let f .z/ D 1C 1
1Š

zC 1
2Š

z2C� � �C 1
pŠ

zp . Forp D 1.1/4write a Matlab program,
using the contour command, to plot the lines along which jf .z/j D r ,
r D 0:1.0:1/1 (level lines of f ) and the lines along which arg f .z/ D � ,
� D 0. 1

8
	/2	 � 1

8
	 (phase lines of f ).

(b) For any analytic function f , derive differential equations for the level and
phase lines of f . fHint: write f .z/ D r exp.i�/ and use � as the independent
variable for the level lines, and r as the independent variable for the phase
lines. In each case, introduce arc length as the final independent variable.g

(c) Use the Matlab function ode45 to compute from the differential equation of
(b) the level lines jf .z/j D 1 of the function f given in (a), for p D 1.1/21;
these determine the regions of absolute stability of the Taylor expansion
method (cf. Ex. 18). fHint: use initial conditions at the origin. Produce only
those parts of the curves that lie in the upper half-plane (why?). To do so in
Matlab, let ode45 run sufficiently long, interpolate between the first pair of
points lying on opposite sides of the real axis to get a point on the axis, and
then delete the rest of the data before plotting.g

5. Newton’s equations for the motion of a particle on a planar orbit (with eccentric-
ity ", 0 < " < 1) are

x00 D � x

r3
; x.0/ D 1 � "; x0.0/ D 0;

t � 0;

y00 D � y

r3
; y.0/ D 0; y0.0/ D

r
1C "

1 � " ;

where
r2 D x2 C y2:

(a) Verify that the solution can be written in the form x.t/ D cos u � ",
y.t/ D p

1 � "2 sin u, where u D u.t/ is the solution of Kepler’s equation
u � " sin u � t D 0.
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(b) Reformulate the problem as an initial value problem for a system of first-
order differential equations.

(c) Write a Matlab program for solving the initial value problem in (b) on the in-
terval Œ0; 20� by the classical Runge–Kutta method, for " D 0:3; 0:5; and 0:7.
Use step lengths h D 1=N , N D Œ40; 80; 120� and, along with the approx-
imate solution u.t Ih/, v.t Ih/, compute and plot the approximate principal
error functions r.t Ih/ D h�4Œu.t Ih/ � x.t/�, s.t Ih/ D h�4Œv.t Ih/ � y.t/�

when N D 120 (i.e., h D :008333 : : : ). Compute the exact solution
from the formula given in (a), using Newton’s method to solve Kepler’s
equation.

Selected Solutions to Exercises

15. We know from (5.64) (where ˛2 D 1=2) that


.x;y/ D 1

2

	
1

6
.fxx C 2fxyf C f Tfyyf / � 1

3
fy.fx C fyf /



;

and from (5.59) (where � D 1) that

k2 D f C h.fx C fyf /C 1

2
h2.fxx C 2fxyf C f Tfyyf /CO.h3/:

For k3 and k4, one finds similarly that

k3 D f C h.fx C fyf /C 1

2
h2Œfxx C 2fxyf C f Tfyyf

C fy.fx C fyf /�CO.h3/;

k4 D f C .�C 1/h.fx C fyf /C 1

2
h2Œ.�C 1/2.fxx C 2fxyf C f Tfyyf /

C .2�C 1/fy.fx C fyf /�CO.h3/:

For h�2.ˇ1k1 Cˇ2k2 Cˇ3k3 Cˇ4k4/ to approximate 
.x;y/ to within O.h/,
that is,

h�2.ˇ1 C ˇ2 C ˇ3 C ˇ4/f C h�1Œˇ2 C ˇ3 C .�C 1/ˇ4�.fx C fyf /

C 1

2
Œ.ˇ2 C ˇ3 C .�C 1/2ˇ4/.fxx C 2fxyf C f Tfyyf /

C .ˇ3 C .2�C 1/ˇ4/fy.fx C fyf /�CO.h/ D 
.x;y/CO.h/;
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requires that

ˇ1 C ˇ2 C ˇ3 C ˇ4 D 0;

ˇ2 C ˇ3 C .�C 1/ˇ4 D 0;

ˇ2 C ˇ3 C .�C 1/2ˇ4 D 1

6
;

ˇ3 C .2�C 1/ˇ4 D �1
3
:

The determinant of this system is

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 1 1 1

0 1 1 �C 1

0 1 1 .�C 1/2

0 0 1 2�C 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 1 1 1

0 1 1 �C 1

0 0 0 �.�C 1/

0 0 1 2�C 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D ��.�C 1/;

so that the condition�.�C1/ ¤ 0 ensures a unique solution. A good solution is
the one corresponding to � D 1, since then no extra evaluation of f is needed,
k3 and k4 being the evaluations needed anyhow to execute the second step of
Heun’s method. In this case, we get

� D 1; ˇ1 D 1

12
; ˇ2 D 5

12
; ˇ3 D � 7

12
; ˇ4 D 1

12
:

(For literature, see L.F. Shampine and H.A. Watts, Computing error estimates
for Runge–Kutta methods, Math. Comp. 25 (1971), 445–455.)

21. (a) If y0 D 
y, then f .x; y/ D 
y, f Œs�1�.x; y/ D 
sy, and

k D
rX

sD1
hs�1Œ˛s
sy � ˇs


s.y C hk/�

D 1

h

rX

sD1
.˛s � ˇs/.
h/sy �

rX

sD1
ˇs.
h/

sk:

Thus,
 
1C

rX

sD1
ˇs.
h/

s

!
k D 1

h

rX

sD1
.˛s � ˇs/.
h/sy:

Letting z D 
h, we get

k.x; yIh/ D 1

h

Pr
sD1.˛s � ˇs/zs
1CPr

sD1 ˇszs
y:
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There follows

ynext D y C hk.x; yIh/ D
�
1C

Pr
sD1.˛s � ˇs/zs
1CPr

sD1 ˇszs

�
y

D 1CPr
sD1 ˛szs

1CPr
sD1 ˇszs

y;

that is,

'.z/ D 1CPr
sD1 ˛szs

1CPr
sD1 ˇszs

:

The method has order p if and only if

ez D 1CPr
sD1 ˛szs

1CPr
sD1 ˇszs

CO.zpC1/; z ! 0:

The maximum possible order is p D 2r and is obtained by choosing the ˛s
and ˇs so that ' is the Padé approximantRŒr; r� to the exponential function.
The resulting method is A-stable by Theorem 5.9.2.

(b) For g.t/ D et�x, we have g.s�1/.t/ D et�x , so that the quadrature formula
becomes

Z xCh

x

et�xdt D eh � 1 D
rX

sD1
hs.˛s � ˇseh/C E.g/:

Therefore,

E.g/ D eh � 1 �
rX

sD1
˛sh

s C eh
rX

sD1
ˇsh

s

D
 
1C

rX

sD1
ˇsh

s

!
eh �

 
1C

rX

sD1
˛sh

s

!

D
 
1C

rX

sD1
ˇsh

s

!�
eh � 1CPr

sD1 ˛shs

1CPr
sD1 ˇshs

�
:

Given any p with r � p � 2r , we can always choose nonnegative
integers m � r and n � r such that p D n C m. Setting ˛mC1 D
� � � D ˛r D 0, ˇnC1 D � � � D ˇr D 0, and choosing the remaining
parameters so that the rational function in braces becomes the RŒn;m�-
Padé approximant to the exponential function makes the expression in
braces of order O.hnCmC1/ D O.hpC1/, that is, E.g/ D O.hpC1/.
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Clearly, p D 2r is optimal, in which casem D n D r , and we get uniquely
the RŒr; r�-Padé approximant. If p < 2r , there are more than one choice
for m and n.

(c) Assuming g 2 Cp , we have the expansions

Z xCh

x

g.t/dt D hg.x/C h2

2Š
g0.x/C � � � C hp

pŠ
g.p�1/.x/CO.hpC1/;

hsg.s�1/.x C h/ D hsg.s�1/.x/C hsC1

1Š
g.s/.x/

C � � � C hp

.p � s/Š
g.p�1/.x/CO.hpC1/:

Substitution into the quadrature formula yields an expansion of the type

E.g/ D e1hg.x/C e2h
2g0.x/C � � � C eph

pg.p�1/.x/CO.hpC1/;

with certain constants ei independent of h and g. Now put g.t/ D et�x .
Since g.i/.x/ D 1 for all i � 0, we get

E.et�x/ D e1hC e2h
2 C � � � C eph

p CO.hpC1/:

Since the quadrature rule has been chosen such that E.et�x/ D O.hpC1/
(cf. (b)), it follows that, necessarily, e1 D e2 D � � � D ep D 0. Hence,
E.g/ D O.hpC1/ for any g 2 CpŒx; x C h�.

(d) We have for the truncation error of the method,

T .x;y Ih/ D k.x;y Ih/ � 1

h
Œu.x C h/� u.x/�;

with u.t/ the reference solution through .x;y/. Since by assumption f 2
Cp , we have u 2 CpC1. Put g.t/ D u0.t/ in the quadrature formula, divide
by h, and use (c) to get

1

h
Œu.x C h/ � u.x/� D

rX

sD1
hs�1


˛su

.s/.x/ � ˇsu.s/.x C h/
�CO.hp/:

Therefore, since f Œs�1�.x;y/ D u.s/.x/ (cf. (5.47)), we obtain

T .x;y Ih/ D
rX

sD1
hs�1Œ˛su.s/.x/ � ˇsf Œs�1�.x C h;y C hk/�

�
rX

sD1
hs�1Œ˛su.s/.x/ � ˇsu.s/.x C h/�CO.hp/
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D �
rX

sD1
hs�1ˇsŒf Œs�1�.x C h;y C hk/

� f Œs�1�.x C h;u.x C h//�CO.hp/;

where we have used u.s/.t/ D f Œs�1�.t;u.t// (cf. (5.46)). With Ls�1
denoting a Lipschitz constant for f Œs�1�, the expression in brackets is
bounded in norm by

Ls�1ky C hk.x;y Ih/� u.x C h/k

D hLs�1kk.x;y Ih/ � 1

h
Œu.x C h/� u.x/�k D hLs�1kT .x;y Ih/k

since u.x/ D y . There follows

kT .x;y Ih/k �
 

rX

sD1
hsjˇs jLs�1

!
kT .x;y Ih/k CO.hp/;

that is,

Œ1 �O.h/�kT .x;y Ih/k D O.hp/; kT .x;y Ih/k D O.hp/:

(e) The [2,2]-Padé approximant to the exponential function is (cf. (5.149),
(5.150))

RŒ2; 2�.z/ D 1C 1
2
z C 1

12
z2

1� 1
2
z C 1

12
z2
:

Therefore, according to (b),

˛1 D 1

2
; ˛2 D 1

12
I ˇ1 D �1

2
; ˇ2 D 1

12
:

(f) Choose for '.z/ the Padé approximantRŒr; r�1�.z/ by setting ˛r D 0. The
(maximum) order is then p D 2r � 1. For r D 2, this becomes

RŒ2; 1� D 1C 1
3
z

1 � 2
3
z C 1

6
z2
;

so that

˛1 D 1

3
; ˛2 D 0I ˇ1 D �2

3
; ˇ2 D 1

6
:
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Selected Solutions to Machine Assignments

2. (a) Write y0 D z, so that the initial value problem can be written in vector form
as

d

dx

	
y

z



D
	

z
cos.xy/



;

	
y

z



.0/ D

	
1

0



; 0 � x � 1:

We claim that the right-hand side of the system satisfies a uniform Lipschitz
condition on Œ0; 1� � R

2 in the L1-norm, with Lipschitz constant L D 1.
Indeed,

����
z � z�

cos.xy/ � cos.xy�/

����
1

D
�����

z � z�

�2 sin.x yCy�

2
/ sin.x y�y�

2
/

�����
1

� jz � z�j C 2jxj jy � y�j
2

� jy � y�j C jz � z�j D
����
y � y�
z � z�

����
1

;

as claimed. By Theorem 5.3.1, therefore, the initial value problem has a
unique solution, which exists on all of Œ0:1�.

(b) The following Maple program produces the Taylor expansion of the solution
at x D 0 to 50 terms and evaluates it for x D :25 W :25 W 1 to 15 digits.

eq:=diff(y(x),x,x)-cos(x*y(x))=0;
ini:=y(0)=1, D(y)(0)=0;
Order:=50;
sol:=dsolve({eq,ini},{y(x)},type=series);
p:=convert(sol,polynom);
Digits:=15;
for x from .25 to 1 by .25 do p(x) od;

The result

y.:25/ D 1:03108351021039;

y.:50/ D 1:12215798572506;

y.:75/ D 1:26540089160147;

y.1:0/ D 1:44401698100709;

confirmed by another Maple run with 60 terms, is used to determine the error
in the Matlab routine MAV 2D below.
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(c) The classical fourth-order Runge–Kutta method, for the first-order system,

emanating at the generic point

�
x;

	
y

z


�
, proceeds as follows:

"
k1

`1

#
D
"

z

cos.xy/

#
;

"
k2

`2

#
D
"

z C 1
2
h`1

cos..x C 1
2
h/.y C 1

2
hk1//

#
;

"
k3

`3

#
D
"

z C 1
2
h`2

cos..x C 1
2
h/.y C 1

2
hk2//

#
;

"
k4

`4

#
D
"

z C h`3

cos..x C h/.y C hk3//

#
;

"
y

z

#

next

D
"
y

z

#
C 1

6
h

 "
k1

`1

#
C 2

"
k2

`2

#
C 2

"
k3

`3

#
C
"
k4

`4

#!
:

(d) PROGRAM

For the routine RK4.m, see the answer to MA 1(a).

%MAV_2D
%
f0=’%8.2f %16.12f %15.12f %12.4e N=%3.0f\n’;
f1=’%8.2f %16.12f %15.12f %12.4e\n’;
exact=[1.03108351021039;1.12215798572506; ...
1.26540089160147;1.44401698100709];
disp([’ x y dy/dx’ ...
’ error’])
for N=[4 16 64 256]

h=1/N;
y=zeros(N+1,1); y1=zeros(N+1,1);
y(1)=1; y1(1)=0; u=[1;0];
ip=0;
for n=1:N
x=(n-1)/N;
u=RK4(@fMAV_2,x,u,h);
y(n+1)=u(1); y1(n+1)=u(2);
if 4*n/N-fix(4*n/N)==0

ip=ip+1;
yexact=exact(ip); err=abs(u(1)-yexact);
if n==N/4
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fprintf(f0,n/N,u(1),u(2),err,N)
else

fprintf(f1,n/N,u(1),u(2),err)
end

end
end
fprintf(’\n’)
if N==256
x=(0:N)’/N;
hold on
plot(x,y); plot(x,y1,’--’);
xlabel(’x’)
text(.5,1.2,’y’,’FontSize’,14)
text(.7,.75,’dy/dx’,’FontSize’,14)
hold off

end
end

%FMAV_2 Differential equation for MAV_2
%
function yprime=fMAV_2(x,y)
yprime=[y(2);cos(x*y(1))];

OUTPUT

>> MAV_2D
x y dy/dx error
0.25 1.031084895175 0.247302726779 1.3850e-06 N= 4
0.50 1.122162986649 0.476315286524 5.0009e-06
0.75 1.265408064509 0.658662664483 7.1729e-06
1.00 1.444014056895 0.751268242944 2.9241e-06

0.25 1.031083515581 0.247306326743 5.3703e-09 N= 16
0.50 1.122158005046 0.476319854529 1.9320e-08
0.75 1.265400918802 0.658656442176 2.7201e-08
1.00 1.444016971240 0.751230496912 9.7675e-09

0.25 1.031083510231 0.247306340242 2.1031e-11 N= 64
0.50 1.122157985801 0.476319869139 7.5974e-11
0.75 1.265400891710 0.658656406501 1.0847e-10
1.00 1.444016980977 0.751230324680 3.0409e-11

0.25 1.031083510210 0.247306340295 8.1268e-14 N=256
0.50 1.122157985725 0.476319869194 2.9399e-13
0.75 1.265400891602 0.658656406353 4.2588e-13
1.00 1.444016981007 0.751230323984 1.1346e-13

>>
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dy/dx

y

PLOT

5. (a) First differentiate

u.t/ � " sin u.t/ � t D 0

to obtain

u0.t/ D 1

1 � " cos u
:

Letting x.t/ D cos u � ", y.t/ D p
1 � "2 sin u, we then have

x0.t/ D � sin u

1 � " cos u
; x00.t/ D � cos u C "

.1 � " cos u/3
D � x.t/

.1 � " cos u/3
;

y0.t/ D
p
1 � "2

cos u

1 � " cos u
; y00.t/ D �

p
1 � "2 sin u

.1 � " cos u/3
D � y.t/

1 � " cos u/3
:

Since, on the other hand,

x2.t/C y2.t/ D .cos u � "/2 C .1 � "2/ sin2 u D .1 � " cos u/2;
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we have r D 1 � " cos u, and thus

x00 C x

r3
D � x

r3
C x

r3
D 0;

y00 C y

r3
D � y

r3
C y

r3
D 0;

showing that the differential equations are satisfied. So are the initial
conditions, since u.0/ D 0, and thus

x.0/ D 1 � "; x0.0/ D 0I y.0/ D 0; y0.0/ D
p
1 � "2
1 � "

D
r
1C "

1 � "
:

(b) Let u D x; v D x0;w D y; z D y0. Then the first-order system is

du

dt
D v; u.0/ D 1 � ";

dv

dt
D � u

r3
; v.0/ D 0;

dw

dt
D z; w.0/ D 0;

dz

dt
D � w

r3
; z.0/ D

r
1C "

1 � "
;

where r2 D u2 C w2.

(c) PROGRAM

%MAV_5C
%
e=.3;
%e=.5;
%e=.7;
eps0=.5e-12;
for N=[40 80 120]

h=1/N; u1=[1-e;0;0;sqrt((1+e)/(1-e))]; v1=0;
r=zeros(20*N,1); s=zeros(20*N,1);
for n=0:20*N-1

u=u1; v=v1; t=n*h; t1=t+h;
u1=RK4(@fMAV_5C,t,u,h);
v1=kepler(t1,v,e,eps0);
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y=[cos(v1)-e;sqrt(1-eˆ2)*sin(v1)];
pr=hˆ(-4)*(u1(1:2)-y);
x(n+1)=t1; r(n+1)=pr(1); s(n+1)=pr(2);

end
if N==120

hold on
plot(x,r);
plot(x,s,’--’);
axis([0 20 -5 5]) % for e=.3

% axis([0 20 -60 80]) % for e=.5
% axis([0 20 -4000 7000]) % for e=.7

xlabel(’t’)
ylabel(’r, s’)
text(9.5,2,’r(t)’) % for e=.3

% text(10.75,-2,’s(t)’) % for e=.5
% text(10.5,1500,’r(t)’) % for e=.7

text(9.5,20,’r(t)’) % for e=.3
% text(8.2,-25,’s(t)’) % for e=.5
% text(9,-1000,’s(t)’) % for e=.7

hold off
end

end
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Chapter 6
Initial Value Problems for ODEs:
Multistep Methods

We saw in Chap. 5 that (explicit) one-step methods are increasingly difficult to
construct as one upgrades the order requirement. This is no longer true for multistep
methods, where an increase in order is straightforward but comes with a price: a
potential danger of instability. In addition, there are other complications such as the
need for an initialization procedure and considerably more complicated procedures
for changing the grid length. Yet, in terms of work involved, multistep methods are
still among the most attractive methods. We discuss them along lines similar to one-
step methods, beginning with a local description and examples and proceeding to
the global description and problems of stiffness. By the very nature of multistep
methods, the discussion of stability is now more extensive.

6.1 Local Description of Multistep Methods

6.1.1 Explicit and Implicit Methods

We consider as before the initial value problem for a first-order system of differential
equations

dy

dx
D f .x;y/; a � x � bI y.a/ D y0 (6.1)

(cf. Chap. 5, (5.14)–(5.16)). Our task is again to determine a vector-valued grid
function u 2 �hŒa; b� (cf. Chap. 5, Sect. 5.7) such that un � y.xn/ at the nth grid
point xn.

A k-step method .k > 1/ obtains unCk in terms of k preceding approximations
unCk�1, unCk�2; : : : ;un. We call k the step number (or index) of the method.

W. Gautschi, Numerical Analysis, DOI 10.1007/978-0-8176-8259-0 6,
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We consider only linear k-step methods, which, in their most general form, but
assuming a constant grid length h, can be written as

unCk C ˛k�1unCk�1 C � � � C ˛0un

D hŒˇkfnCk C ˇk�1fnCk�1 C � � � C ˇ0fn�; n D 0; 1; 2; : : : ; N � k; (6.2)

where

xr D a C rh; fr D f .xr ;ur /; r D 0; 1; : : : ; N; (6.3)

and the ˛ and ˇ are given (scalar) coefficients. The relation (6.2) is linear in the
function values fr (in contrast to Runge–Kutta methods); nevertheless, we are still
dealing with a nonlinear difference equation for the grid function u.

The definition (6.2) must be supplemented by a starting procedure for obtaining
the approximations to y.xs/,

us D us.h/; s D 0; 1; : : : ; k � 1: (6.4)

These normally depend on the grid length h, so may also the coefficients ˛s , ˇs in
(6.2). The method (6.2) is called explicit if ˇk D 0 and implicit otherwise.

Implicit methods require the solution of a system of nonlinear equations,

unCk D hˇkf .xnCk;unCk/C gn; (6.5)

where

gn D h

k�1X

sD0
ˇsfnCs �

k�1X

sD0
˛sunCs (6.6)

is a known vector. Fortunately, the nonlinearity in (6.5) is rather weak and in fact
disappears in the limit as h ! 0. This suggests the use of successive iteration on
(6.5),

u
Œ��

nCk D hˇkf
�
xnCk;uŒ��1�

nCk
�

C gn; � D 1; 2; : : : ; (6.7)

where u
Œ0�

nCk is a suitable initial approximation for unCk . By a simple application
of the contraction mapping principle (cf. Chap. 4, Sect. 4.9.1), one shows that (6.7)
indeed converges as � ! 1, for arbitrary initial approximation, provided h is small
enough.

Theorem 6.1.1. Suppose f satisfies a uniform Lipschitz condition on Œa; b� � R
d

(cf. Chap. 5, Sect. 5.3),

kf .x;y/ � f .x;y�/k � Lky � y�k; x 2 Œa; b�; y ;y� 2 R
d ; (6.8)

and assume that


 WD hjˇkjL < 1: (6.9)



6.1 Local Description of Multistep Methods 401

Then (6.5) has a unique solution unCk. Moreover, for arbitrary u
Œ0�

nCk,

unCk D lim
�!1 u

Œ��

nCk; (6.10)

and
���u

Œ��

nCk � unCk
��� � 
�

1 � 


���u
.1/

nCk � u
.0/

nCk
��� ; � D 1; 2; 3; : : : (6.11)

Proof. We define the map ': Rd ! R
d by

'.y/ WD hˇkf .xnCk;y/C gn: (6.12)

Then, for any y , y� 2 R
d , we have

k'.y/� '.y�/k D hjˇkjkf .xnCk;y/� f .xnCk;y�/k
� hjˇkjLky � y�k;

showing, in view of (6.9), that ' is a contraction operator on R
d . By the contraction

mapping principle, there is a unique fixed point of ', that is, a vector y D unCk
satisfying '.y/ D y . This proves the first part of the theorem. The second part is
also a consequence of the contraction mapping principle if one notes that (6.7) is
just the fixed point iteration u

Œ��

nCk D '.u
Œ��1�
nCk /. �

Strictly speaking, an implicit multistep method requires “iteration to conver-
gence” in (6.7), that is, iteration until the required fixed point is obtained to machine
accuracy. This may well entail too many iterations to make the method competitive,
since each iteration step costs one evaluation of f . In practice, one often terminates
the iteration after the first or second step, having selected the starting value u

Œ0�

nCk
judiciously (cf. Sect. 6.2.3). It should also be noted that stiff systems, for which L
may be quite large, would require unrealistically small steps h to satisfy (6.9). In
such cases, Newton’s method (see Ex. 1), rather than fixed point iteration, would be
preferable.

6.1.2 Local Accuracy

In analogy with one-step methods (cf. Chap. 5, (5.77) and (5.78)), we define residual
operators by

.Rv/.x/ WD v0.x/ � f .x; v.x//; v 2 C1Œa; b�; (6.13)

.Rhv/n WD 1

h

kX

sD0
˛svnCs �

kX

sD0
ˇsf .xnCs; vnCs/; v 2 �hŒa; b�;

n D 0; 1; : : : ; N � k: (6.14)
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(We may arbitrarily define .Rhv/N D � � � D .Rhv/N�kC1 D .Rhv/N�k to obtain a
grid function Rhv defined on the entire grid.) In (6.14) and throughout this chapter,
we adopt the convention ˛k D 1. Since there is no longer a natural “generic” point
.x;y/ in which to define our method, we take the analogue of Chap. 5, (5.81) (except
for sign) as our definition of truncation error:

.Th/n D .Rhy/n; n D 0; 1; : : : ; N; (6.15)

where y.x/ is the exact solution of (6.1). This defines a grid function Th on a
uniform grid on Œa; b�. We define consistency, order, and principal error function
as before in Chap. 5, that is, the method (6.2) is consistent if

kThk1 ! 0 as h ! 0; (6.16)

has order p if

kThk1 D O.hp/ as h ! 0; (6.17)

and admits a principal error function 
 2 C Œa; b� if


.x/ 6	 0 and .Th/n D 
.xn/h
p CO.hpC1/ as h ! 0 (6.18)

in the usual sense that kTh�hp
k1 D O.hpC1/. The infinity norm of grid functions
in (6.16)–(6.18) is as defined in Chap. 5, (5.75).

Note that (6.15) can be written in the simple form

kX

sD0
˛sy.xnCs/� h

kX

sD0
ˇsy

0.xnCs/ D h.Th/n; (6.19)

since f .xnCs;y.xnCs// D y 0.xnCs/ by virtue of the differential equation (6.1).
Although (6.19) is a relation for vector-valued functions, the relationship is ex-
actly the same for each component. This suggests defining a linear operator
Lh: C1ŒR� ! C ŒR� on scalar functions by letting

.Lhz/.x/ WD
kX

sD0
Œ˛sz.x C sh/ � hˇsz

0.x C sh/�; z 2 C1ŒR�: (6.20)

If Lhz were identically 0 for all z 2 C1ŒR�, then so would be the truncation
error, and our method would produce exact answers if started with exact initial
values. This is unrealistic, however; nevertheless, we would like Lh to annihiliate as
many functions as possible. This motivates the following concept of degree. Given
a set of linearly independent “gauge functions” f!r.x/g1

rD0 (usually complete on
compact intervals), we say that the method (6.2) has �-degree p if its associated
linear operator Lh satisfies

Lh! 	 0 for all ! 2 �p; all h > 0: (6.21)
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Here, �p is the set of functions spanned by the first p C 1 gauge functions
!0, !1; : : : ; !p , hence

�0 � �1 � �2 � � � � ; dim �m D mC 1: (6.22)

We say that �m is closed under translation if !.x/ 2 �m implies !.x C c/ 2 �m

for arbitrary real c. Similarly, �m is said to be closed under scaling if !.x/ 2
�m implies !.cx/ 2 �m for arbitrary real c. For example, algebraic polynomials
�m D Pm are closed under translation as well as scaling, trigonometric polynomials
�m D TmŒ0; 2	� and exponential sums �m D Em (cf. Chap. 2, Examples to (2.2))
only under translation, and spline functions Skm.�/ (for fixed partition) neither under
scaling nor under translation.

The following theorem is no more than a simple observation.

Theorem 6.1.2. (a) If �p is closed under translation, then the method (6.2) has
�-degree p if and only if

.Lh!/.0/ D 0 for all ! 2 �p; all h > 0: (6.23)

(b) If �p is closed under translation and scaling, then the method (6.2) has
�-degree p if and only if

.L1!/.0/ D 0 for all ! 2 �p; (6.24)

where L1 D Lh for h D 1.

Proof. (a) The necessity of (6.23) is trivial. To prove its sufficiency, it is enough to
show that for any x0 2 R,

.Lh!/.x0/ D 0; all ! 2 �p; all h > 0:

Take any ! 2 �p and define !0.x/ D !.x C x0/. Then, by assumption, !0 2 �p;
hence, for all h > 0,

0 D .Lh!0/.0/ D
kX

sD0
Œ˛s!.x0 C sh/� hˇs!

0.x0 C sh/� D .Lh!/.x0/:

(b) The necessity of (6.24) is trivial. For the sufficiency, let !0.x/ D !.x0 C xh/

for any given ! 2 �p. Then, by assumption, !0 2 �p and

0 D .L1!0/.0/ D
kX

sD0
Œ˛s!0.s/ � ˇs!0

0.s/�

D
kX

sD0
Œ˛s!.x0 C sh/ � hˇs!0.x0 C sh/� D .Lh!/.x0/:

Since x0 2 R and h > 0 are arbitrary, the assertion follows. �
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Case (b) of Theorem 6.1.2 suggests the introduction of the linear functional
L: C1ŒR� ! R associated with the method (6.2),

Lu WD
kX

sD0
Œ˛su.s/� ˇsu

0.s/�; u 2 C1ŒR�: (6.25)

For �m D Pm we refer to �-degree as the algebraic (or polynomial ) degree. Thus,
(6.2) has algebraic degree p if Lu D 0 for all u 2 Pp. By linearity, this is equivalent
to

Ltr D 0; r D 0; 1; : : : ; p: (6.26)

Example. Determine all explicit two-step methods

unC2 C ˛1unC1 C ˛0un D h.ˇ1fnC1 C ˇ0fn/ (6.27)

having polynomial degree p D 0; 1; 2; 3.
Here

Lu D u.2/C ˛1u.1/C ˛0u.0/� ˇ1u
0.1/� ˇ0u

0.0/:
The first four equations in (6.26) are

1C ˛1 C ˛0 D 0;

2C ˛1 � ˇ1 � ˇ0 D 0;

4C ˛1 � 2ˇ1 D 0;

8C ˛1 � 3ˇ1 D 0: (6.28)

We have algebraic degree 0, 1, 2, 3 if, respectively, the first, the first two, the first
three, and all four equations in (6.28) are satisfied. Thus,

˛1 D �˛0 � 1; ˇ0; ˇ1 arbitrary .p D 0/;

˛1 D �˛0 � 1; ˇ1 D �˛0 � ˇ0 C 1 .p D 1/;

˛1 D �˛0 � 1; ˇ1 D �1
2
˛0 C 3

2
; ˇ0 D �1

2
˛0 � 1

2
.p D 2/;

˛1 D 4; ˛0 D �5; ˇ1 D 4; ˇ0 D 2 .p D 3/ (6.29)

yield .3 � p/-parameter families of methods of degree p. Since Lt4 D 16C ˛1 �
4ˇ1 D 4 ¤ 0, degreep D 4 is impossible. This means that the last method in (6.29),

unC2 C 4unC1 � 5un D 2h.2fnC1 C fn/; (6.30)

is optimal as far as algebraic degree is concerned. Other special cases include the
midpoint rule

unC2 D un C 2hfnC1 .˛0 D �1I p D 2/
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and the Adams–Bashforth second-order method (cf. Sect. 6.2.1),

unC2 D unC1 C 1

2
h.3fnC1 � fn/ .˛0 D 0I p D 2/:

The “optimal” method (6.30) is nameless – and for good reason. Suppose, indeed,
that we apply it to the trivial (scalar) initial value problem

y0 D 0; y.0/ D 0 on 0 � x � 1;

which has the exact solution y.x/ 	 0. Assume u0 D 0 but u1 D " (to account for
a small rounding error in the second starting value). Even if (6.30) is applied with
infinite precision, we then get

un D 1

6
"Œ1C .�1/nC15n�; n D 0; 1; : : : ; N:

Assuming further that " D hpC1 (pth-order one-step method), we will have, at the
end of the interval [0,1],

uN D 1

6
hpC1Œ1C .�1/NC15N � 
 1

6
.�1/NC1 N�p�15N as N ! 1:

Thus, juN j ! 1 exponentially fast and highly oscillating on top of it. We have here
an example of “strong instability”; this is analyzed later in more detail (cf. Sect. 6.3).

6.1.3 Polynomial Degree vs. Order

We recall from (6.19) and (6.20) that for the truncation error Th of (6.2), we have

h.Th/n D
kX

sD0
Œ˛sy.xn C sh/� hˇsy

0.xn C sh/� D .Lhy/.xn/;

n D 0; 1; 2; : : : ; N � k: (6.31)

Let

u.t/ WD y.xn C th/; 0 � t � k: (6.32)

(More precisely, we should write un;h.t/.) Then

h.Th/n D
kX

sD0
Œ˛su.s/ � ˇsu0.s/� D Lu; (6.33)
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where L on the right is to be applied componentwise to each component of the
vector u. If Th is the truncation error of a method of algebraic degree p, then the
linear functional L in (6.33) annihilates all polynomials of degree p and thus, if
u 2 CpC1Œ0; k�, can be represented in terms of the Peano kernel


p.�/ D L.t/.t � �/
p
C (6.34)

by

Lu D 1

pŠ

Z k

0


p.�/u
.pC1/.�/d� (6.35)

(cf. Chap. 3, Sect. 3.2.6). From the explicit formula


p.�/ D
kX

sD0
Œ˛s.s � �/

p
C � ˇsp.s � �/p�1

C �; p � 1; (6.36)

it is easily seen that 
p 2 S
p�2
p .�/, where � is the subdivision of Œ0; k� into

subintervals of length 1. Outside the interval Œ0; k� we have 
p 	 0. Moreover,
if L is definite of order p, then, and only then (cf. Chap. 3, (3.80) and Ex. 51),

Lu D `pC1u.pC1/.�/; 0 < � < kI `pC1 D L
tpC1

.p C 1/Š
: (6.37)

The Peano representation (6.35) of L in combination with (6.33) allows us to
identify the polynomial degree of a multistep method with its order as defined in
Sect. 6.1.2.

Theorem 6.1.3. A multistep method (6.2) of polynomial degree p has order p
whenever the exact solution y.x/ of (6.1) is in the smoothness class CpC1Œa; b�.
If the associated functional L is definite, then

.Th/n D `pC1y .pC1/.xn/hp; xn < xn < xnCk; (6.38)

where `pC1 is as given in (6.37). Moreover, for the principal error function 
 of the
method, whether definite or not, we have, if y 2 CpC2Œa; b�,


.x/ D `pC1y .pC1/.x/: (6.39)

Proof. By (6.32) and (6.33), we have

h.Th/n D Lu; u.t/ D y.xn C th/; n D 0; 1; 2; : : : ; N � kI
hence, by (6.35),

h.Th/n D 1

pŠ

Z k

0


p.�/u
.pC1/.�/d� D hpC1

pŠ

Z k

0


p.�/y
.pC1/.xn C �h/d�:

(6.40)
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Therefore,

k.Th/nk D hp

pŠ

�����

Z k

0


p.�/y
.pC1/.xn C �h/d�

�����

� hp

pŠ

Z k

0

j
p.�/jky .pC1/.xn C �h/kd�

� hp

pŠ
ky .pC1/k1

Z k

0

j
p.�/jd�;

and we see that

kThk1 � Chp; C D 1

pŠ
ky .pC1/k1

Z k

0

j
p.�/jd�: (6.41)

This proves the first part of the theorem.
IfL is definite, then (6.38) follows directly from (6.33) and from (6.37) applied to

the vector-valued function u in (6.32). Finally, (6.39) follows from (6.40) by noting
that y .pC1/.xnC�h/ D y .pC1/.xn/CO.h/ and the fact that 1

pŠ

R k
0

p.�/d� D `pC1

(cf. Chap. 3, (3.80)). �

The proof of Theorem 6.1.3 also exhibits, in (6.41), an explicit bound on the local
truncation error. For methods with definite functional L, there is the even simpler
bound (6.41) with

C D j`pC1jky .pC1/k1 .L definite/; (6.42)

which follows from (6.38). It is seen later in Sect. 6.3.4 that for the global
discretization error it is not `pC1 which is relevant, but rather

Ck;p D `pC1
Pk

sD0 ˇs
; (6.43)

which is called the error constant of the k-step method (6.2) (of order p). The de-
nominator in (6.43) is positive if the method is stable and consistent (cf. Sect. 6.4.3).

As a simple example, consider the midpoint rule

unC2 D un C 2hfn

for which

Lu D u.2/� u.0/� 2u0.1/:

We already know that it has order p D 2. The Peano kernel is


2.�/ D .2 � �/2C � 4.1� �/C;
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210

1

Fig. 6.1 Peano kernel of the midpoint rule

so that


2.�/ D
(
.2 � �/2 � 4.1� �/ D �2 if 0 < � < 1;

.2 � �/2 if 1 < � < 2:

It consists of two parabolic arcs as shown in Fig. 6.1. Evidently, L is positive
definite; hence by (6.38) and (6.37),

.Th/n D `3y
.3/.xn/h

2; `3 D L
t3

6
D 1

3
:

6.2 Examples of Multistep Methods

An alternative way of deriving multistep formulae, which does not require the
solution of linear algebraic systems (as does the method of Sect. 6.1.2), starts from
the fundamental theorem of calculus,

y.xnCk/ D y.xnCk�1/C
Z xnCk

xnCk�1

y 0.x/dx: (6.44)

(Instead of xnCk�1 on the right, we could take any other grid point xnC� ,
0 � � < k � 1, but we limit ourselves to the case shown in (6.44).) A multistep
formula results from (6.44) if the integral is expressed (approximately) by a linear
combination of derivative values at some grid points selected from the set fxnC� :
� D 0; 1; : : : ; kg. Those selected may be called the “active” grid points. A simple
way to do this is to approximate y 0 by the unique polynomial interpolating y 0 at
the active grid points. If we carry along the remainder term, we will also get an
expression for the truncation error.

We implement this in the two most important cases where the active grid points
are xn, xnC1; : : : ; xnCk�1 and xnC1, xnC2; : : : ; xnCk , respectively, giving rise to the
family of Adams-type multistep methods.
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6.2.1 Adams1–Bashforth Method

Replace y 0 in (6.44) by the interpolation polynomial pk�1.y 0I xn; xnC1; : : : ; xnCk�1I
x/ of degree � k � 1 interpolating y 0 at the grid points xn, xnC1; : : : ; xnCk�1
(cf. Chap. 2, Sect. 2.2.1). If we include the remainder term (cf. Chap. 2, Sect. 2.2.2),
assuming that y 2 CkC1, and make the change of variable x D xnCk�1 C th in the
integral of (6.44), we obtain

y.xnCk/ D y.xnCk�1/C h

k�1X

sD0
ˇk;sy

0.xnCs/C hrn; (6.45)

where

ˇk;s D
Z 1

0

k�1Y

rD0
r¤s

�
t C k � 1 � r

s � r
�

dt; s D 0; 1; : : : ; k � 1; (6.46)

and

rn D �kh
ky .kC1/.xn/; xn < xn < xnCk�1I �k D

Z 1

0

 
t C k � 1

k

!
dt: (6.47)

The formula (6.45) suggests the multistep method

unCk D unCk�1 C h

k�1X

sD0
ˇk;sf .xnCs;unCs/; (6.48)

which is called the kth-order Adams–Bashforth method. It is called kth-order, since
comparison of (6.45) with (6.19) shows that in fact rn is the truncation error
of (6.48),

rn D .Th/n; (6.49)

and (6.47) shows that Th D O.hk/. In view of the form (6.47) of the truncation error,
we can infer, as mentioned in Sect. 6.1.3, that the linear functionalL associated with

1John Couch Adams (1819–1892), son of a tenant farmer, studied at Cambridge University where,
in 1859, he became professor of astronomy and geometry and, from 1861 on, director of the
observatory. His calculations, while still a student at Cambridge, predicted the existence of the
then unknown planet Neptune, based on irregularities in the orbit of the next inner planet Uranus.
Unfortunately, publication of his findings was delayed and it was Le Verrier, who did similar
calculations (and managed to publish them), and young astronomers in Berlin who succeeded
in locating the planet at the position predicted, who received credit for this historical discovery.
Understandably, this led to a prolonged dispute of priority. Adams is also known for his work
on lunar theory and magnetism. Later in his life, he turned to computational problems in number
theory. An ardent admirer of Newton, he took it upon himself to catalogue a large body of scientific
papers left behind by Newton after his death.
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(6.48) is definite. We prove later in Sect. 6.4 (cf. Ex. 11(b)) that there is no stable
explicit k-step method that has order p > k. In this sense, (6.48) with ˇk;s given by
(6.46) is optimal.

If y 2 CkC2, it also follows from (6.47) and (6.49) that

.Th/n D �kh
ky .kC1/.xn/CO.hkC1/; h ! 0;

that is, the Adams–Bashforth method (6.48) has the principal error function


.x/ D �ky
.kC1/.x/: (6.50)

The constant �k (defined in (6.47) is therefore the same as the constant `kC1 defined
earlier in (6.37).

Had we used Newton’s form of the interpolation polynomial (cf. Chap. 2,
Sect. 2.2.6) and observed that the divided differences required for equally spaced
points are (cf. Chap. 2, Ex. 54)

ŒxnCk�1; xnCk�2; : : : ; xnCk�s�1�f D 1

sŠhs
rsfnCk�1; (6.51)

where rfnCk�1 D fnCk�1 � fnCk�2, r2fnCk�1 D r.rfnCk�1/; : : : are ordinary
(backward) differences, we would have obtained (6.48) in the form

unCk D unCk�1 C h

k�1X

sD0
�srsfnCk�1; (6.52)

where

�s D
Z 1

0

 
t C s � 1

s

!
dt; s D 0; 1; 2; : : : : (6.53)

The difference form (6.52) of the Adams–Bashforth method has important
practical advantages over the Lagrange form (6.48). For one thing, the coefficients in
(6.52) do not depend on the step number k. Adding more terms in the sum of (6.52)
thus increases the order (and step number) of the method. Related to this is the fact
that the first omitted term in the summation of (6.52) is a good approximation of the
truncation error. Indeed, by Chap. 2, (2.117), we know that

y .kC1/.xn/ � kŠŒxnCk�1; xnCk�2; : : : ; xn; xn�1�y 0I

hence, by (6.47), (6.49), and (6.51),

.Th/n D �kh
ky .kC1/.xn/ � �kh

kkŠ
rkfnCk�1
kŠhk

D �krkfnCk�1:
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When implementing the method (6.52), one needs to set up a table of (backward)
differences for each component of f . By adding an extra column of differences at
the end of the table (the kth differences), we are thus able to monitor the local
truncation errors by simply multiplying these differences by �k . No such easy
procedure is available for the Lagrange form of the method.

It is, therefore, of some importance to have an effective method for calculating the
coefficients �s, s D 0; 1; 2; : : : : Such a method can be derived from the generating
function �.z/ D P1

sD0 �szs of the coefficients. We have

�.z/ D
1X

sD0
zs
Z 1

0

 
t C s � 1

s

!
dt D

1X

sD0
zs.�1/s

Z 1

0

 
�t
s

!
dt

D
Z 1

0

1X

sD0

 
�t
s

!
.�z/sdt D

Z 1

0

.1 � z/�tdt

D
Z 1

0

e�t ln.1�z/dt D �e�t ln.1�z/

ln.1 � z/

ˇ̌
ˇ̌
tD1

tD0

D � z

.1 � z/ ln.1 � z/
:

Thus, the �s are the coefficients in the Maclaurin expansion of

�.z/ D � z

.1 � z/ ln.1 � z/
: (6.54)

In particular,

z

1 � z
D � ln.1 � z/

1X

sD0
�sz

s I

that is,

z C z2 C z3 C � � � D
�

z C 1

2
z2 C 1

3
z3 C � � �

�
.�0 C �1z C �2z

2 C � � � /;

which, on comparing coefficients of like powers on the left and right, yields

�0 D 1;

�s D 1 � 1

2
�s�1 � 1

3
�s�2 � � � � � 1

s C 1
�0;

s D 1; 2; 3; : : : : (6.55)

It is, therefore, easy to compute as many of the coefficients �s as desired, for
example,

�0 D 1; �1 D 1

2
; �2 D 5

12
; �3 D 3

8
; : : :

Note that they are all positive, as they must be in view of (6.53).
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6.2.2 Adams–Moulton2 Method

This is the implicit analogue of the Adams–Bashforth method, that is, the point
xnCk is included among the active grid points. To obtain again a method of
order k, we need, as before, k active points and therefore select them to be
xnCk; xnCk�1; : : : ; xnC1. The derivation of the method is then entirely analogous
to the one in Sect. 6.2.1, and we limit ourselves to simply stating the results.

The Lagrange form of the method is now

unCk D unCk�1 C h

kX

sD1
ˇ�
k;sf .xnCs;unCs/ (6.56)

with

ˇ�
k;s D

Z 1

0

kY

rD1
r¤s

�
t C k � 1 � r

s � r

�
dt; s D 1; 2; : : : ; k; (6.57)

whereas Newton’s form becomes

unCk D unCk�1 C h

k�1X

sD0
��
s rsfnCk (6.58)

with

��
s D

Z 0

�1

 
t C s � 1

s

!
dt; s D 0; 1; 2; : : : : (6.59)

The truncation error and principal error function are

.T �
h /n D ��

k h
ky .kC1/.x�

n/; xnC1 < x�
n < xnCk I 
�.x/ D ��

k y .kC1/.x/; (6.60)

and the generating function for the ��
s is

��.z/ D
1X

sD0
��
s zs D � z

ln.1 � z/
: (6.61)

From this, one finds as before,

��
0 D 1;

��
s D �1

2
��
s�1 � 1

3
��
s�2 � � � � � 1

s C 1
��
0 ;

s D 1; 2; 3; : : : : (6.62)

2Forest Ray Moulton (1872–1952) was professor of Astronomy at the University of Chicago and,
from 1927 to 1936, director of the Utilities Power and Light Corp. of Chicago. He used his method
during World War I and thereafter to integrate the equations of exterior ballistics. He made also
contributions to celestial mechanics.
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So, for example,

��
0 D 1; ��

1 D �1
2
; ��

2 D � 1

12
; ��

3 D � 1

24
; : : : :

It follows again from (6.60) that the truncation error is approximately the first
omitted term in the sum of (6.58),

.T �
h /n � ��

k rkfnCk: (6.63)

Since the formula (6.58) is implicit, however, it has to be solved by itera-
tion. A common procedure is to get a first approximation by assuming the last,
.k � 1/th, difference retained to be constant over the step from xnCk�1 to xnCk ,
which allows one to generate the lower-order differences backward until one obtains
(an approximation to) fnCk. We then compute unCk from (6.58) and a new fnCk
in terms of it. Then we revise all the differences required in (6.58) and reevaluate
unCk. The process can be repeated until it converges to the desired accuracy. In
effect, this is the fixed point iteration of Sect. 6.1.1, with a special choice of the
initial approximation.

6.2.3 Predictor–Corrector Methods

These are pairs of an explicit and an implicit multistep method, usually of the same
order, where the explicit formula is used to predict the next approximation and the
implicit formula to correct it. Suppose we use an explicit k-step method of order k,
with coefficients ˛s , ˇs , for the predictor, and an implicit (k � 1)-step method of
order k with coefficients ˛�

s , ˇ�
s , for the corrector. Assume further, for simplicity,

that both methods are definite (in the sense of (6.37)). Then, in Lagrange form, if
ı
unCk is the predicted approximation, one proceeds as follows:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

ı
unCk D �

k�1X

sD0
˛sunCs C h

k�1X

sD0
ˇsfnCs;

unCk D �
k�1X

sD1
˛�
s unCs C h

(
ˇ�
kf .xnCk;

ı
unCk/C

k�1X

sD1
ˇ�
s fnCs

)
;

fnCk D f .xnCk;unCk/:

(6.64)

This requires exactly two evaluations of f per step and is often referred to as
a PECE method, where “P” stands for “predict,” “E” for “evaluate,” and “C”
for “correct.” One could of course correct once more, and then either quit, or



414 6 Initial Value Problems for ODEs: Multistep Methods

reevaluate f , and so on. Thus there are methods of type P(EC)2, P(EC)2E, and the
like. Each additional reevaluation costs another function evaluation and, therefore,
the most economic methods are those of type PECE.

Let us analyze the truncation error of the PECE method (6.64). It is natural to
define it by

�
T PECE
h

�
n

D 1

h

kX

sD1
˛�
s y.xnCs/ �

(
ˇ�
kf .xnCk;

ı
ynCk/C

k�1X

sD1
ˇ�
s y 0.xnCs/

)
;

where ˛�
k D 1 and

ı
ynCk D �

k�1X

sD0
˛sy.xnCs/C h

k�1X

sD0
ˇsy

0.xnCs/I

that is, we apply (6.64) on exact values unCs D y.xnCs/, s D 0; 1; : : : ; k � 1. We
can write

�
T PECE
h

�

n
D 1

h

kX

sD1
˛�
s y.xnCs/ �

kX

sD1
ˇ�
s y 0.xnCs/

C ˇ�
k Œy

0.xnCk/� f .xnCk;
ı
ynCk/�

D `�
kC1hky.kC1/.x�

n/C ˇ�
k Œf .xnCk;y.xnCk//� f .xnCk;

ı
ynCk/�; (6.65)

having used the truncation error .T �
h /n (in (6.38)) of the corrector formula. Since

y.xnCk/� ı
ynCk D `kC1hkC1y .kC1/.xn/ (6.66)

is h times the truncation error of the predictor formula, the Lipschitz condition on
f yields

kf .xnCk;y.xnCk//� f .xnCk;
ı
ynCk/k � Lj`kC1jhkC1ky .kC1/k1; (6.67)

and hence, from (6.65), we obtain

kT PECE
h k1 � .j`�

kC1j C hLj`kC1ˇ�
k j/ky .kC1/k1hk � Chk;

where

C D .j`�
kC1j C .b � a/Lj`kC1ˇ�

k j/ky .kC1/k1:

Thus, the PECE method also has order k, and its principal error function is identical
with that of the corrector formula, as follows immediately from (6.65) and (6.67).
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The local truncation error .T PECE
h /n can be estimated in terms of the difference

between the (locally) predicted approximation
ı
ynCk and the (locally) corrected

approximation unCk. One has, indeed, by definition of the truncation error,

unCk D �
k�1X

sD1
˛�
s y.xnCs/C h

(
ˇ�
kf .xnCk;

ı
ynCk/C

k�1X

sD1
ˇ�
s y 0.xnCs/

)

D y.xnCk/� h
�
T PECE
h

�
n
;

that is,

unCk � y.xnCk/ D �`�
kC1hkC1y .kC1/.xn/CO.hkC2/;

whereas, from (6.66),

ı
ynCk � y.xnCk/ D �`kC1hkC1y .kC1/.xn/CO.hkC2/;

assuming that y.x/ 2 CkC2 [a; b]. Upon subtraction, one gets

unCk � ı
ynCk D �.`�

kC1 � `kC1/hkC1y .kC1/.xn/CO.hkC2/;

and thus,

y .kC1/.xn/ D � 1

`�
kC1 � `kC1

1

hkC1 .unCk � ı
ynCk/CO.h/:

Since, by (6.65) and (6.67),
�
T PECE
h

�
n

D `�
kC1hky .kC1/.xn/CO.hkC1/;

we obtain

�
T PECE
h

�
n

D � `�
kC1

`�
kC1 � `kC1

1

h
.unCk � ı

ynCk/CO.hkC1/: (6.68)

The first term on the right of (6.68) is called the Milne estimator of the PECE
truncation error.

The most popular choice for the predictor is a kth-order Adams–Bashforth
formula, and for the corrector, the corresponding Adams–Moulton formula. Here,

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

ı
unCk D unCk�1 C h

k�1X

sD0
ˇk;sfnCs;

unCk D unCk�1 C h

(
ˇ�
k;kf .xnCk;

ı
unCk/C

k�1X

sD1
ˇ�
k;sfnCs

)
;

fnCk D f .xnCk;unCk/;

(6.69)

with coefficients ˇk;s , ˇ�
k;s as defined in (6.46) and (6.57), respectively.
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A predictor–corrector scheme is meaningful only if the corrector formula is more
accurate than the predictor formula, not necessarily in terms of order but in terms
of error coefficients. Since the principal error functions of the kth-order predictor
and corrector are identical except for a multiplicative constant, `kC1 in the case of
the predictor, and `�

kC1 in the case of the corrector, we want jC �
k;kj < jCk;kj, which,

assuming Sect. 6.3.5, (6.117), is the same as

j`�
kC1j < j`kC1j: (6.70)

For the pair of Adams formulae, we have `kC1 D �k and `�
kC1 D ��

k (cf. (6.50),
(6.60)), and it is easy to show (see Ex. 4) that

j��
k j < 1

k � 1 �k; k � 2; (6.71)

so that indeed the corrector has a smaller error constant than the predictor. More
precisely, it can be shown (see Ex. 5) that

�k 
 1

ln k
; ��

k 
 � 1

k ln2 k
as k ! 1; (6.72)

although both approximations are not very accurate (unless k is extremely large),
the relative errors being of order O.1= lnk/.

6.3 Global Description of Multistep Methods

We already commented in Sect. 6.1.1 on the fact that a linear multistep method
such as (6.2) represents a system of nonlinear difference equations. To study its
properties, one inevitably has to deal with the theory of difference equations. Since
nonlinearities are hidden behind a (small) factor h, it turns out that the theory of
linear difference equations with constant coefficients will suffice to carry through
the analysis. We therefore begin with recalling the basic facts of this theory. We then
define stability in a manner similar to that of Chap. 5, Sect. 5.7.1, and identify a root
condition for the characteristic equation of the difference equation as the true source
of stability. This, together with consistency, then immediately implies convergence,
as for one-step methods.

6.3.1 Linear Difference Equations

With notations close to those adopted in Sect. 6.1 we consider a (scalar) linear
difference equation of order k,

vnCk C ˛k�1vnCk�1 C � � � C ˛0vn D 'nCk; n D 0; 1; 2; : : : ; (6.73)
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where ˛s are given real numbers not depending on n and not necessarily with
˛0 ¤ 0, and f'nCkg1

nD0 is a given sequence. Any sequence fvng1
nD0 satisfying

(6.73) is called a solution of the difference equation. It is uniquely determined by
the starting values v0; v1; : : : ; vk�1. (If ˛0 D ˛1 D � � � D ˛`�1 D 0, 1 � ` < k, then
fvngn	k is not affected by v0; v1; : : : ; v`�1.) Equation (6.73) is called homogeneous
if 'nCk D 0 for all n � 0 and inhomogeneous otherwise. It has exact order k if
˛0 ¤ 0.

6.3.1.1 Homogeneous Equation

We begin with the homogeneous equation

vnCk C ˛k�1vnCk�1 C � � � C ˛0vn D 0; n D 0; 1; 2; : : : : (6.74)

We call

˛.t/ D
kX

sD0
˛st

s .˛k D 1/ (6.75)

the characteristic polynomial of (6.74) and

˛.t/ D 0 (6.76)

its characteristic equation. If ts , s D 1; 2; : : : ; k0 (k0 � k), denote the distinct roots
of (6.76) and ms their multiplicities, then the general solution of (6.74) is given by

vn D
k0X

sD1

 
ms�1X

rD0
crsn

r

!
tns ; n D 0; 1; 2; : : : ; (6.77)

where crs are arbitrary (real or complex) constants. There is a one-to-one correspon-
dence between these k constants and the k starting values v0; v1; : : : ; vk�1.

We remark that if ˛0 D 0, then one of the roots ts is zero, which contributes an
identically vanishing solution (except for n D 0, where by convention t0s D 00 D 1).
If additional coefficients ˛1 D � � � D ˛`�1, ` < k, are zero, this further restricts the
solution manifold. Note also that a complex root ts D �ei� contributes a complex
solution component in (6.77). However, since the ˛s are assumed real, then with ts
also t s D �e�i� is a root of (6.76), and we can combine the two complex solutions
nr tns and nr tns to form a pair of real solutions,

1

2
nr.tns C t

n
s / D nr�n cosn�;

1

2i
nr .tns � t

n
s / D nr�n sin n�:

If we do this for each complex root ts and select all coefficients in (6.77) real, we
obtain the general solution in real form.
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The following is a simple but important observation.

Theorem 6.3.1. We have jvnj � M , all n � 0, for every solution fvng of
the homogeneous equation (6.74), with M depending only on the starting values
v0; v1; : : : ; vk�1 (but not on n) if and only if

˛.ts/ D 0 implies

�
either jtsj < 1
or jtsj D 1; ms D 1:

(6.78)

Proof. Sufficiency of (6.78). If (6.78) holds for every root ts of (6.76), then
every term nr tns is bounded for all n � 0 (going to zero as n ! 1 in the first case of
(6.78) and being equal to 1 in absolute value in the second case). Since the constants
crs in (6.77) are uniquely determined by the starting values v0; v1; : : : ; vk�1, the
assertion jvnj � M follows.
Necessity of (6.78). If jvnj � M , we cannot have jtsj > 1, since we can

always arrange to have crs ¤ 0 for a corresponding term in (6.77) and select all
other constants to be 0. This singles out an unbounded solution of (6.74). Nor can
we have, for the same reason, jtsj D 1 andms > 1. �

Condition (6.78) is referred to as the root condition for the difference equation
(6.74) (and also for (6.73)).

Representation (6.77) of the general solution is inconvenient insofar as it does
not explicitly exhibit its dependence on the starting values. A representation that
does can be obtained by defining k special solutions fhn;sg, s D 0; 1; : : : ; k � 1, of
(6.74), having as starting values those of the unit matrix, that is,

hn;s D ın;s for n D 0; 1; : : : ; k � 1; (6.79)

with ın;s the Kronecker delta. Then indeed, the general solution of (6.74) is

vn D
k�1X

sD0
vshn;s: (6.80)

(Note that if ˛0 D 0, then h0;0 D 1 and hn;0 D 0 for all n � 1; similarly, if
˛0 D ˛1 D 0, and so on.)

6.3.1.2 Inhomogeneous Equation

To deal with the general inhomogeneous equation (6.73), we define for eachm D k,
k C 1, k C 2; : : : the solution fgn;mg1

nD0 of the “initial value problem”

kX

sD0
˛sgnCs;m D ın;m�k; n D 0; 1; 2; : : : ;

g0;m D g1;m D � � � D gk�1;m D 0: (6.81)
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Here the difference equation is a very special case of (6.73), namely, with 'nCk D
ın;m�k D

�
0 if n ¤ m � k

1 if n D m � k
an “impulse function.” We can then superimpose

these special solutions to form the solution

vn D
nX

mDk
gn;m'm (6.82)

of the initial value problem v0 D v1 D � � � D vk�1 D 0 for (6.73) (Duhamel’s
Principle). This is easily verified by observing first that gn;m D 0 for n < m, so that
(6.82) can be written in the form

vn D
1X

mDk
gn;m'm: (6.83)

We then have

kX

sD0
˛svnCs D

kX

sD0
˛s

1X

mDk
gnCs;m'm

D
1X

mDk
'm

kX

sD0
˛sgnCs;m D 'nCk;

where the last equation follows from (6.81).
Since effectively (6.81) is a “delayed” initial value problem for a homogeneous

difference equation with k starting values 0; 0; : : : ; 0; 1, we can express gn;m in
(6.83) alternatively as hn�mCk�1;k�1 (cf. (6.79)). The general solution of the
inhomogeneous equation (6.73) is the general solution of the homogeneous equation
plus the special solution (6.82) of the inhomogeneous equation; thus, in view
of (6.80),

vn D
k�1X

sD0
vshn;s C

nX

mDk
hn�mCk�1;k�1'm: (6.84)

Theorem 6.3.2. There exists a constantM > 0, independent of n, such that

jvnj � M

(
max

0�s�k�1
jvsj C

nX

mDk
j'mj

)
; n D 0; 1; 2; : : : ; (6.85)

for every solution fvng of (6.73) and for every f'nCkg, if and only if the character-
istic polynomial ˛.t/ of (6.73) satisfies the root condition (6.78).
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Proof. Sufficiency of (6.78). By Theorem 6.3.1 the inequality (6.85) follows
immediately from (6.84), with M the constant of Theorem 6.3.1.
Necessity of (6.78). Take 'm D 0, all m � k, in which case fvng is a

bounded solution of the homogeneous equation, and hence, by Theorem 6.3.1, the
root condition must hold. �

As an application of Theorems 6.3.1 and 6.3.2, we take vn D hn;s (cf. (6.79)) and
vn D gn;m (cf. (6.81)). The former is bounded by M , by Theorem 6.3.1, and so is
the latter, by (6.85), since gn;s D 0 for 0 � s � k � 1 and all 'm are 0 except one,
which is 1. Thus, if the root condition is satisfied, then

jhn;sj � M; jgn;mj � M; all n � 0: (6.86)

Note that, since hs;s D 1, we must have M � 1.

6.3.2 Stability and Root Condition

We now return to the general multistep method (6.2) for solving the initial value
problem (6.1). In terms of the residual operator Rh of (6.14) we define stability,
similarly as for one-step methods (cf. Chap. 5, Sect. 5.7.1), as follows.

Definition 6.3.1. Method (6.2) is called stable on [a; b] if there exists a constant
K > 0 not depending on h such that for an arbitrary (uniform) grid h on [a; b] and
for arbitrary two grid functions v, w 2 �hŒa; b�, there holds

kv � wk1 � K

�
max

0�s�k�1 kvs � wsk C kRhv � Rhwk1
�
; v;w 2 �hŒa; b�;

(6.87)

for all h sufficiently small.

The motivation for this “stability inequality” is much the same as for one-step
methods (Chap. 5, (5.83)–(5.85)), and we do not repeat it here.

Let F be the family of functions f satisfying a uniform Lipschitz condition

kf .x;y/� f .x;y�/k � Lky � y�k; x 2 Œa; b�; y ;y� 2 R
d ; (6.88)

with Lipschitz constant L D Lf depending on f :

Theorem 6.3.3. The multistep method (6.2) is stable for every f 2 F if and only
if its characteristic polynomial (6.75) satisfies the root condition (6.78).

Proof. Necessity of (6.78). Consider f .x;y/ 	 0, which is certainly in F ,
and for which

.Rhv/n D 1

h

kX

sD0
˛svnCs:
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Take v D u and w D 0 in (6.87), where u is a grid function satisfying

kX

sD0
˛sunCs D 0; n D 0; 1; 2; : : : : (6.89)

Since (6.87) is to hold for arbitrarily fine grids, the integer n in (6.89) can assume
arbitrarily large values, and it follows from (6.87) and Rhu D 0 that u is uniformly
bounded,

kuk1 � K max
0�s�k�1

kusk; (6.90)

the bound depending only on the starting values. Since u is a solution of the
homogeneous difference equation (6.74), its characteristic polynomial must satisfy
the root condition by Theorem 6.3.1.
Sufficiency of (6.78). Let f 2 F and v, w 2 �hŒa; b� be arbitrary grid

functions. By definition of Rh, we have

kX

sD0
˛svnCs D h

kX

sD0
ˇsf .xnCs; vnCs/C h.Rhv/n; n D 0; 1; 2; : : : ; N � k;

and similarly for w. Subtraction then gives

kX

sD0
˛s.vnCs � wnCs/ D 'nCk; n D 0; 1; 2; : : : ; N � k;

where

'nCk D h

hX

sD0
ˇsŒf .xnCs; vnCs/� f .xnCs;wnCs/�C hŒ.Rhv/n � .Rhw/n�:

(6.91)

Therefore, v � w is formally a solution of the inhomogeneous difference equation
(6.73) (the forcing function 'nCk, though, depending also on v and w), so that by
(6.80) and (6.83) we can write

vn � wn D
k�1X

sD0
hn;s.vs � ws/C

nX

mDk
gn;m'm:

Since the root condition is satisfied, we have by (6.86)

jhn;sj � M; jgn;mj � M

for some constant M � 1, uniformly in n and m. Therefore,

kvn � wnk � M

(
k max
0�s�k�1

kvs � wsk C
nX

mDk
k'mk

)
;

n D 0; 1; 2; : : : ; N: (6.92)
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By (6.91) we can estimate

k'mk D
����h

kX

sD0
ˇsŒf .xm�kCs; vm�kCs/� f .xm�kCs;wm�kCs/�

C hŒ.Rhv/m�k � .Rhw/m�k�
����

� hˇL

kX

sD0
kvm�kCs � wm�kCsk C hkRhv � Rhwk1; (6.93)

where

ˇ D max
0�s�k jˇsj:

Letting e D v � w and rh D Rhv � Rhw, we obtain from (6.92) and (6.93)

kenk � M

(
k max
0�s�k�1 kesk C hˇL

nX

mDk

kX

sD0
kem�kCsk CNhkrhk1

)
:

Noting that

nX

mDk

kX

sD0
kem�kCsk D

kX

sD0

nX

mDk
kem�kCsk �

kX

sD0

nX

mD0
kemk

D .k C 1/

nX

mD0
kemk

and using Nh D b � a, we get

kenk � M

(
k max
0�s�k�1 kesk C h.k C 1/ˇL

nX

mD0
kemk C .b � a/krhk1

)
: (6.94)

Now let h be so small that

1 � h.k C 1/ˇLM � 1

2
:

Then, splitting off the term with kenk on the right of (6.94) and moving it to the left,
we obtain

.1 � h.k C 1/ˇLM/kenk

� M

(
k max
0�s�k�1 kesk C h.k C 1/ˇL

n�1X

mD0
kemk C .b � a/krhk1

)
;
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or

kenk � 2M

(
h.k C 1/ˇL

n�1X

mD0
kemk C k max

0�s�k�1 kesk C .b � a/krhk1

)
:

Thus,

kenk � hA

n�1X

mD0
kemk C B; (6.95)

where

A D 2.k C 1/ˇLM; B D 2M

�
k max
0�s�k�1 kesk C .b � a/krhk1

�
: (6.96)

Consider, along with (6.95), the difference equation

En D hA

n�1X

mD0
Em C B; E0 D B: (6.97)

It is easily seen by induction that

En D B.1C hA/n; n D 0; 1; 2; : : : : (6.98)

Subtracting (6.97) from (6.95), we get

kenk �En � hA

n�1X

mD0
.kemk � Em/: (6.99)

Clearly, ke0k �B D E0. Thus, by (6.99), ke1k �E1 � 0, and by induction on n,

kenk � En; n D 0; 1; 2; : : : :

Thus, by (6.98),

kenk � B.1C hA/n � BenhA � Be.b�a/A:

Recalling the definition of B in (6.96), we find

kenk � 2M e.b�a/A
�
k max
0�s�k�1 kesk C .b � a/kRhv � Rhwk1

�
;
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which is the stability inequality (6.87) with

K D 2M e.b�a/A maxfk; b � ag: ut

Theorem 6.3.3 in particular shows that all Adams methods are stable, since
for them

˛.t/ D tk � tk�1 D tk�1.t � 1/;

and the root condition is trivially satisfied.
Theorem 6.3.3 also holds for predictor–corrector methods of the type considered

in (6.64), if one defines the residual operator RPECE
h in the definition of stability in

the obvious way:

.RPECE
h v/n D 1

h

kX

sD1
˛�
s vnCs �

(
ˇ�
kf .xnCk;

ı
vnCk/C

k�1X

sD1
ˇ�
s f .xnCs; vnCs/

)
;

(6.100)

with

ı
vnCk D �

k�1X

sD0
˛svnCs C h

k�1X

sD0
ˇsf .xnCs; vnCs/; (6.101)

and considers the characteristic polynomial to be that of the corrector formula
(see Ex. 7).

The problem of constructing stable multistep methods of maximum order is
considered later in Sect. 6.4.

6.3.3 Convergence

With the powerful property of stability at hand, the convergence of multistep
methods follows almost immediately as a corollary. We first define what we mean
by convergence.

Definition 6.3.2. Consider a uniform grid on Œa; b�with grid length h. Let u D fung
be the grid function obtained by applying the multistep method (6.2) on Œa; b�, with
starting approximations us.h/ as in (6.4). Let y D fyng be the grid function induced
by the exact solution of the initial value problem on Œa; b�. Method (6.2) is said to
converge on Œa; b� if there holds

ku � yk1 ! 0 as h ! 0 (6.102)

whenever

us.h/ ! y0 as h ! 0; s D 0; 1; : : : ; k � 1: (6.103)
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Theorem 6.3.4. The multistep method (6.2) converges for all f 2 F (cf. (6.88))
if and only if it is consistent and stable. If, in addition, (6.2) has order p and
us.h/ � y.xs/ D O.hp/, s D 0; 1; : : : ; k � 1, then

ku � yk1 D O.hp/ as h ! 0: (6.104)

Proof. Necessity. Let f 	 0 (which is certainly in F ) and y0 D 0. Then
y.x/ 	 0 and (6.2) reduces to (6.89). Since the same relations hold for each
component of y and u, we may as well consider a scalar problem. (This holds for
the rest of the necessity part of the proof.) Assume first, by way of contradiction,
that (6.2) is not stable. Then, by Theorem 6.3.3, there is a root ts of the characteristic
equation ˛.t/ D 0 for which either jtsj > 1, or jtsj D 1 andms > 1. In the first case,
(6.89) has a solution un D htns for which junj D hjtsjn. Clearly, the starting values
u0; u1; : : : ; uk�1 all tend to y0 D 0 as h ! 0, but junj ! 1 as n ! 1. Since for
h sufficiently small we can have n arbitrarily large, this contradicts convergence of
fung to the solution fyng, yn 	 0. The same argument applies in the second case if
we consider (say) un D h

1
2 nms�1tns , where now jtsj D 1, ms > 1. This proves the

necessity of stability.
To prove consistency, we must show that ˛.1/ D 0 and ˛0.1/ D ˇ.1/, where

(anticipating (6.122)) we define ˇ.t/ D Pk
sD0 ˇst s . For the former, we consider

f 	 0, y0 D 1, which has the exact solution y.x/ 	 1 and the numerical
solution still satisfying (6.89). If we take us D 1, s D 0; 1; : : : ; k � 1, the assumed
convergence implies that unCs ! 1 as h ! 0, hence 0 D Pk

sD0 ˛sunCs ! ˛.1/.
For the latter, we consider f 	 1 and y0 D 0, that is, y.x/ 	 x � a. The multistep
method now generates a grid function u D fung satisfying

kX

sD0
˛sunCs � ˇ.1/h D 0:

A particular solution is given by un D ˇ.1/

˛0.1/
nh. Indeed, since ˛.1/ D 0, as already

shown, we have

kX

sD0
˛sunCs � ˇ.1/h D ˇ.1/

˛0.1/
h

kX

sD0
˛s.nC s/� ˇ.1/h

D ˇ.1/

˛0.1/
hŒn˛.1/C ˛0.1/�� ˇ.1/h

D ˇ.1/

˛0.1/
h˛0.1/� ˇ.1/h D 0:

Since also us ! y0 D 0 for h ! 0, s D 0; 1; : : : ; k � 1, and since by assumption
fung converges to fyng, yn D nh, we must have ˇ.1/

˛0.1/
D 1, that is, ˛0.1/ D ˇ.1/.
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Sufficiency. Letting v D u and w D y in the stability inequality (6.87), and
noting that Rhu D 0 and Rhy D Th, the grid function f.Th/ng of the truncation
errors (cf. (6.15)), we get

ku � yk1 � K

�
max

0�s�k�1 kus � y.xs/k C kThk1
�
: (6.105)

If method (6.2) is consistent, the second term in braces tends to zero and, therefore,
also the term on the left, if (6.103) holds, that is, if us � y.xs/! 0 as h! 0. This
completes the proof of the first part of the theorem. The second part follows likewise,
since by assumption both terms between braces in (6.105) are of O.hp/. �

In view of the remark near the end of Sect. 6.3.2, Theorem 6.3.4 holds also for
the kth-order predictor–corrector method (6.64) with p D k. The proof is the same,
since for the truncation error, kT PECE

h k1 D O.hk/, as was shown in Sect. 6.2.3.

6.3.4 Asymptotics of Global Error

A refinement of Theorem 6.3.4, (6.104), exhibiting the leading term in the global
discretization error, is given by the following theorem.

Theorem 6.3.5. Assume that

(1) f .x;y/ 2 C2 on Œa; b� � R
d ;

(2) the multistep method (6.2) is stable (i.e., satisfies the root condition) and has
order p � 1;

(3) the exact solution y.x/ of (6.1) is of class CpC2Œa; b�;
(4) the starting approximations (6.4) satisfy

us � y.xs/ D O.hpC1/ as h ! 0; s D 0; 1; : : : ; k � 1I

(5) e.x/ is the solution of the linear initial value problem

de

dx
D fy.x;y.x//e � y .pC1/.x/; e.a/ D 0: (6.106)

Then, for n D 0; 1; 2; : : : ; N ,

un � y.xn/ D Ck;ph
pe.xn/CO.hpC1/ as h ! 0; (6.107)

where Ck;p is the error constant of (6.2), that is,

Ck;p D `pC1Pk
sD0 ˇs

; `pC1 D L
tpC1

.p C 1/Š
: (6.108)
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Before proving the theorem, we make the following remarks:

1. Under the assumptions made in (1) and (3), the solution e of (6.106) exists
uniquely on Œa; b�. It is the same for all multistep methods of order p.

2. The error constant Ck;p depends only (through the coefficients ˛s , ˇs) on the
multistep method and not on the initial value problem to be solved.

3. For a given differential system (6.1), the asymptotically best k-step method of
order p would be one for which jCk;pj is smallest. Unfortunately, as we see later
in Sect. 6.4.3, the minimum of jCk;pj over all stable k-step methods of order p
cannot be generally attained.

4. Stability and p � 1 implies
Pk

sD0 ˇs ¤ 0. In fact, ˛.1/ D Pk
sD0 ˛s D 0, since

L1 D 0, and Lt D Pk
sD0 s˛s �Pk

kD0 ˇs D 0 since p � 1. Consequently,

kX

sD0
ˇs D

kX

sD0
s˛s D ˛0.1/ ¤ 0 (6.109)

by the root condition. Actually,
Pk

sD0 ˇs > 0, as we show later in Sect. 6.4.3.

Proof of Theorem 6.3.5. Define the grid function r D frng by

r D h�p.u � y/: (6.110)

Then

1

h

kX

sD0
˛srnCs D h�p

"
1

h

kX

sD0
˛sunCs � 1

h

kX

sD0
˛sy.xnCs/

#

D h�p
"

kX

sD0
ˇsf .xnCs;unCs/�

kX

sD0
ˇsy

0.xnCs/� .Th/n

#
;

where Th is the truncation error defined in (6.19). Expanding f about the exact
solution trajectory and noting the form of the principal error function given in
Theorem 6.1.3, we obtain

1

h

kX

sD0
˛srnCs D h�p

"
kX

sD0
ˇs
˚
f .xnCs;y.xnCs//

C fy.xnCs;y.xnCs//.unCs � y.xnCs//CO.h2p/
�

�
kX

sD0
ˇsy

0.xnCs/ � `pC1y .pC1/.xn/hp CO.hpC1/
#
;

having used Assumption (1) and the fact that unCs � y.xnCs/ D O.hp/ by
Theorem 6.3.4. Now the sums over f and y 0 cancel, since y is the solution of
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the differential system (6.1). Furthermore,O.h2p/ is of O.hpC1/ since p � 1, and
making use of the definition (6.110) of r , we can simplify the preceding to

1

h

kX

sD0
˛srnCs D h�p

"
kX

sD0
ˇsfy.xnCs;y.xnCs//hprnCs

� `pC1y .pC1/.xn/hp CO.hpC1/
#

D
kX

sD0
ˇsfy.xnCs;y.xnCs//rnCs � `pC1y .pC1/.xn/CO.h/:

Now

kX

sD0
ˇsy

.pC1/.xnCs/ D
kX

sD0
ˇs

y .pC1/.xn/CO.h/

�

D
 

kX

sD0
ˇs

!
y .pC1/.xn/CO.h/;

so that

`pC1y .pC1/.xn/ D `pC1Pk
sD0 ˇs

kX

sD0
ˇsy

.pC1/.xnCs/CO.h/

D Ck;p

kX

sD0
ˇsy

.pC1/.xnCs/CO.h/;

by the definition (6.108) of the error constant Ck;p . Thus,

1

h

kX

sD0
˛srnCs �

kX

sD0
ˇsŒfy.xnCs;y.xnCs//rnCs � Ck;py .pC1/.xnCs/� D O.h/:

Defining

ı
r D 1

Ck;p
r; (6.111)

we finally get

1

h

kX

sD0
˛s

ı
rnCs �

kX

sD0
ˇsŒfy.xnCs;y.xnCs//

ı
rnCs � y .pC1/.xnCs/� D O.h/:

(6.112)
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The left-hand side can now be viewed as the residual operatorRgh of the multistep

method (6.2) applied to the grid function
ı
r , not for the original differential system

(6.1), however, but for the linear system (6.106) with right-hand side

g.x; e/ WD fy.x;y.x//e � y .pC1/.x/; a � x � b; e 2 R
d : (6.113)

That is,

kRgh
ı
rk1 D O.h/: (6.114)

For the exact solution e.x/ of (6.106), we have likewise

kRgh ek1 D O.h/; (6.115)

since by (6.15) (applied to the linear system e0 D g.x; e/) Rgh is the truncation error
of the multistep method (6.2), and its order is p � 1. Since by Assumption (2) the
multistep method (6.2) is stable, we can apply the stability inequality (6.87) (for the

system e0 D g.x; e// to the two grid functions v D ı
r and w D e, giving

kı
r � ek1 � K

�
max

0�s�k�1
kı
r s � e.xs/k C kRgh

ı
r �Rgh ek1

�

D K

�
max

0�s�k�1
kı
r s � e.xs/k CO.h/

�
: (6.116)

It remains to observe that, for 0 � s � k � 1,

ı
r s � e.xs/ D 1

Ck;p
rs � e.xs/ D 1

Ck;p
h�pŒus � y.xs/� � e.xs/;

and hence, by Assumption (4) and e.a/ D 0,

ı
r s � e.xs/ D O.h/ � Œe.a/C she0.�s/� D O.h/;

to conclude

max
0�s�k�1

kı
r s � e.xs/k D O.h/

and, therefore, by (6.116), (6.111), and (6.110),

ku � y � Ck;ph
pek1 D O.hpC1/;

as was to be shown. �

The proof of Theorem 6.3.5 applies to the predictor–corrector method (6.64)
with Ck;p replaced by C �

k;k D `�
kC1=

Pk
sD0 ˇ�

s , the error constant for the corrector

formula, once one has shown that
ı
unCk � unCk D O.hkC1/ in (6.64), and
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ı
ynCk�y.xnCk/ D O.hkC1/. The first relation is true for special predictor–corrector
schemes (cf. (6.17), (6.120)), whereas the second says that h times the truncation
error of the predictor formula has the order shown (cf. Sect. 6.2.3).

6.3.5 Estimation of Global Error

It is natural to try, similarly as with one-step methods (cf. Chap. 5, Sect. 5.8.1), to
estimate the leading term in the asymptotic formula (6.107) of the global error by
integrating with Euler’s method the “variational equation” (6.106) along with the
multistep integration of the principal equation (6.1). The main technical difficulty is
to correctly estimate the driving function y .pC1/ in the linear system (6.106). It turns
out, however, that Milne’s procedure (cf. (6.68)) for estimating the local truncation
error in predictor–corrector schemes can be extended to estimate the global error
as well, provided the predictor and corrector formulae have the same characteristic
polynomial, more precisely, if in the predictor–corrector scheme (6.64) there holds

˛�
s D ˛s for s D 1; 2; : : : ; kI ˛0 D 0: (6.117)

This is true, in particular, for the Adams predictor–corrector scheme (6.69). We
formulate the procedure in the following theorem.

Theorem 6.3.6. Assume that

(1) f .x;y/ 2 C2 on Œa; b� � R
d ;

(2) the predictor–corrector scheme (6.64) is based on a pair of kth-order formulae
.k � 1/ satisfying (6.117) and having local error constants `kC1, `�

kC1 for the
predictor and corrector, respectively;

(3) the exact solution y.x/ of (6.1) is of class CkC2Œa; b�;
(4) the starting approximations (6.4) satisfy

us � y.xs/ D O.hkC1/ as h ! 0; s D 0; 1; : : : ; k � 1I
(5) along with the grid function u D fung constructed by the predictor–corrector

scheme, we generate the grid function v D fvng in the following manner (where
ı
unCk is defined as in (6.64)):

vs D 0; s D 0; 1; : : : ; k � 1I

vnCk D vnCk�1 C h

(
fy.xn;un/vn C h�.kC1/

`�
kC1 � `kC1

.
ı
unCk � unCk/

)
;

n D 0; 1; 2; : : : ; N � k:
(6.118)

Then, for n D 0; 1; : : : ; N ,

un � y.xn/ D C �
k;kh

kvn CO.hkC1/ as h ! 0; (6.119)

where C �
k;k is the (global) error constant for the corrector formula.
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Proof. The proof is the same as that of Theorem 5.8.1, once it has been shown, in
place of Chap. 5, (5.117), that

h�.kC1/

`�
kC1 � `kC1

.
ı
unCk � unCk/ D y .kC1/.xn/CO.h/: (6.120)

We now proceed to establish (6.120).
By (6.64), we have

ı
unCk � unCk D

k�1X

sD1
˛�
s unCs �

k�1X

sD0
˛sunCs

Ch

(
k�1X

sD0
ˇsf .xnCs;unCs/� ˇ�

kf .xnCk;
ı
unCk/�

k�1X

sD1
ˇ�
s f .xnCs;unCs/

)
:

The first two sums on the right cancel because of (6.117). (It is here where ˛0 D 0 is
used.) In the expression between braces, we expand each f about the exact solution
trajectory to obtain

f� � � g D
k�1X

sD0
ˇs

f .xnCs;y.xnCs//C fy.xnCs;y.xnCs//.unCs � y.xnCs//

C O.h2k/
�

�ˇ�
k

h
f .xnCk;y.xnCk//C fy.xnCk;y.xnCk//.

ı
unCk � y.xnCk//C O.h2k/

i

�
k�1X

sD1
ˇ�
s


f .xnCs;y.xnCs//Cfy.xnCs;y.xnCs//.unCs�y.xnCs//CO.h2k/

�

D
k�1X

sD0
ˇsy

0.xnCs/ �
kX

sD1
ˇ�
s y 0.xnCs/

C
k�1X

sD0
ˇsfy.xnCs;y.xnCs//.unCs � y.xnCs//

�ˇ�
kfy.xnCk;y.xnCk//.

ı
unCk � y.xnCk//

�
k�1X

sD1
ˇ�
s fy.xnCs;y.xnCs//.unCs � y.xnCs//CO.hkC1/; (6.121)

since O.h2k/ is of O.hkC1/ when k � 1.
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Now from the definition of truncation error, we have for the predictor and
corrector formulae

1

h

"
y.xnCk/C

k�1X

sD0
˛sy.xnCs/

#
�

k�1X

sD0
ˇsy

0.xnCs/ D .Th/n;

1

h

"
y.xnCk/C

k�1X

sD1
˛�
s y.xnCs/

#
�

kX

sD1
ˇ�
s y 0.xnCs/ D .T �

h /n:

Upon subtraction, and using (6.117), we find

k�1X

sD0
ˇsy

0.xnCs/�
kX

sD1
ˇ�
s y 0.xnCs/ D .T �

h /n � .Th/n

D .`�
kC1 � `kC1/hky .kC1/.xn/CO.hkC1/:

It suffices to show that the remaining terms in (6.121) together are O.hkC1/. This
we do by expanding fy about the point .xn;y.xn// and by using, from (6.107)
and (6.108),

unCs � y.xnCs/ D C �
k;kh

ke.xn/CO.hkC1/

as well as

ı
unCk � y.xnCk/ D �

k�1X

sD0
˛s.unCs � y.xnCs//C h

k�1X

sD0
ˇsŒf .xnCs;unCs/

� f .xnCs;y.xnCs//�� h.Th/n

D �
k�1X

sD0
˛sŒC

�
k;kh

ke.xnCs/CO.hkC1/�CO.hkC1/

D �
 
k�1X

sD0
˛s

!
C �
k;kh

ke.xn/CO.hkC1/ D C �
k;kh

ke.xn/CO.hkC1/;

where in the last equation we have used that
Pk

sD0 ˛s D 1CPk�1
sD0 ˛s D 0. We see

that the terms in question add up to

hkC �
k;kfy.xn;y.xn//e.xn/

(
k�1X

sD0
ˇs � ˇ�

k �
k�1X

sD1
ˇ�
s

)
CO.hkC1/:

Since k � 1, we have Lt D L�t D 0 for the functionals L and L� associated with
the predictor and corrector formula so that the expression in braces is

k�1X

sD0
ˇs �

kX

sD1
ˇ�
s D

kX

sD0
s˛s �

kX

sD1
s˛�

s D
kX

sD1
s.˛s � ˛�

s / D 0;

again by (6.117). This completes the proof of Theorem 6.3.6. �
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The formula (6.120) can also be used to estimate the local truncation error
in connection with step control procedures such as those discussed for one-step
methods in Chap. 5, Sect. 5.8.3. Changing the grid length in multistep methods,
however, is more complicated than in one-step methods, and for this we refer to
the specialized literature.

6.4 Analytic Theory of Order and Stability

We now turn our attention to the following problems.

(1) Construct a multistep formula of maximum algebraic degree, given its char-
acteristic polynomial ˛.t/. Normally, the latter is chosen to satisfy the root
condition.

(2) Determine the maximum algebraic degree among all k-step methods whose
characteristic polynomials ˛.t/ satisfy the root condition.

Once we have solved problem (1), it is in principle straightforward to solve (2).
We let ˛.t/ vary over all polynomials of degree k satisfying the root condition and
for each ˛ construct the multistep formula of maximum degree. We then simply
observe the maximum order so attainable.

To deal with problem (1), it is useful to begin with an analytic characterization
of algebraic degree – or order – of a multistep formula.

6.4.1 Analytic Characterization of Order

With the k-step method (6.2) we associate two polynomials,

˛.t/ D
kX

sD0
˛st

s; ˇ.t/ D
kX

sD0
ˇst

s .˛k D 1/; (6.122)

the first being the characteristic polynomial already introduced in Sect. 6.3.1, (6.75).
We define

ı./ D ˛./

ln 
� ˇ./;  2 C; (6.123)

which, since ˛.1/ D 0, is a function holomorphic in the disk j � 1j < 1.

Theorem 6.4.1. The multistep method (6.2) has (exact) polynomial degree p if and
only if ı./ has a zero of (exact) multiplicity p at  D 1.

Proof. In terms of the linear functional

Lu D
kX

sD0
Œ˛su.s/� ˇsu

0.s/�; (6.124)
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method (6.2) has exact polynomial degree p if and only if (cf. Sect. 6.1.3, (6.35),
where, without restriction of generality, we may assume scalar functions u)

Lu D 1

pŠ

Z k

0


p.�/u
.pC1/.�/d�;

1

pŠ

Z k

0


p.�/d� D `pC1 ¤ 0; (6.125)

for every u 2 CpC1Œ0; k�. Choose u.t/ D etz, where z is a complex parameter. Then
(6.125) implies

kX

sD0
Œ˛sesz � ˇszesz� D zpC1

pŠ

Z k

0


p.�/e�zd�;

that is,

˛.ez/

z
� ˇ.ez/ D zp

pŠ

Z k

0


p.�/e
�zd�: (6.126)

Since the coefficient of zp on the right, when z D 0, equals `pC1 ¤ 0, the function
on the left – an entire function – has a zero of exact multiplicity p at z D 0. Thus,
exact polynomial degree p of L implies that the function ı.ez/ has a 0 of exact
multiplicity p at z D 0. The converse is also true, since otherwise, (6.125) and
(6.126) would hold with a different value of p. The theorem now follows readily by
applying the conformal map

 D ez; z D ln ; (6.127)

and by observing that the multiplicity of a zero remains unchanged under such
a map. �

Based on Theorem 6.4.1, the first problem mentioned now allows an easy
solution. Suppose we are given the characteristic polynomial ˛.t/ of degree k and
we want to find ˇ.t/ of degree k0 .� k/ such that the method (6.2) has maximum
order. (Typically, k0 D k�1 for an explicit method, and k0 D k for an implicit one.)
We simply expand in (6.123) the first term of ı./ in a power series about  D 1,

˛./

ln 
D c0 C c1. � 1/C c2. � 1/2 C � � � ; (6.128)

and then have no other choice for ˇ than to take

ˇ./ D c0 C c1. � 1/C � � � C ck0. � 1/k
0

: (6.129)

In this way, ı./ has a zero of maximum multiplicity at  D 1, given ˛.t/ and the
degree k0 of ˇ. In fact,

ı./ D ck0C1. � 1/k0C1 C � � � ;
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and we get order p � k0 C 1. The order could be larger than k0 C 1 if by chance
ck0C1 D 0. If p is the exact order so attained, then

ı./ D cp. � 1/p C � � � ; cp ¤ 0; p � k0 C 1: (6.130)

It is interesting to compare this with (6.126):

ı./ D .ln /p

pŠ

Z k

0


p.�/
�d�

D Œ � 1 � 1
2
. � 1/2 C � � � �p
pŠ

Z k

0


p.�/

"
1C

 
�

1

!
. � 1/C � � �

#
d�

D
 
1

pŠ

Z k

0


p.�/d�

!
. � 1/p C � � �

D `pC1. � 1/p C � � � :
Thus,

`pC1 D cp: (6.131)

Similarly, if the method is stable, then

Ck;p D `pC1
Pk

sD0 ˇs
D `pC1
ˇ.1/

D cp

c0
: (6.132)

We see that the local and global error constants can be found directly from expansion
(6.128). It must be observed, however, that (6.131) and (6.132) hold only for the
k-step methods of maximum degree. If the degree p is not maximal, then

`pC1 D dp (6.133)

and

Ck;p D dp

c0
; (6.134)

where

ı./ D dp. � 1/p C � � � ; dp ¤ 0: (6.135)

It seems appropriate, at this point, to observe that if ˛./ and ˇ./ have a
common factor !./,

˛./ D !./˛0./; ˇ./ D !./ˇ0./;

and !.1/ ¤ 0, then

ı./ D !./ı0./; ı0./ D ˛0./

ln 
� ˇ0./;
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and ı0./ vanishes at  D 1 with the same order as ı./. The multistep method
f˛; ˇg and the “reduced” multistep method f˛0; ˇ0g therefore have the same order
and indeed the same error constants (6.133) and (6.134). On the other hand,
!.1/ D 0 would imply ˇ.1/ D 0, and the method f˛; ˇg would not be stable
(cf. Sect. 6.3.4, (6.109)). Since, on top of that, a solution of the difference equation
(6.2) corresponding to f˛0; ˇ0g is also a solution of (6.2) for f˛; ˇg (cf. Ex. 8),
it would be pointless to consider the method f˛; ˇg. For these reasons it is no
restriction to assume that the polynomials ˛./, ˇ./ are irreducible.

Example. Construct all stable implicit two-step methods of maximum order.
Here,

˛./ D . � 1/. � 
/; � 1 � 
 < 1;

since 1 is always a zero of ˛./ and the second zero 
must satisfy the root condition.
For the expansion (6.128) we have

˛./

ln 
D . � 1/2 C .1 � 
/. � 1/

 � 1 � 1
2
. � 1/2 C � � � D 1 � 
C . � 1/

1 � 1
2
. � 1/C 1

3
. � 1/2 � � � �

D c0 C c1. � 1/C c2. � 1/2 C � � � :
An easy calculation gives

c0 D 1 � 
; c1 D 1

2
.3� 
/; c2 D 1

12
.5C 
/;

c3 D � 1

24
.1C 
/; c4 D 1

720
.11C 19
/ :

Thus,

ˇ./ D c0 C c1. � 1/C c2. � 1/2 D 5C 


12
2 C 2� 2


3
 � 1C 5


12
;

giving the desired method

unC2 � .1C 
/unC1 C 
un D h

�
5C 


12
fnC2 C 2 � 2


3
fnC1 � 1C 5


12
fn

�
:

If c3 ¤ 0 (i.e., 
 ¤ �1), the order is exactly p D 3, and the error constant is

C2;3 D c3

c0
D � 1

24

1C 


1 � 
 .
 ¤ �1/:

The case 
 D �1 is exceptional, giving exact order p D 4 (since c4 D � 1
90

¤ 0);
in fact,

unC2 � un D h

3
.fnC2 C 4fnC1 C fn/ .
 D �1/

is precisely Simpson’s rule. This is an example of an “optimal” method – a stable
k-step method of order k C 2 for k even (cf. Sect. 6.4.2, Theorem 6.4.2(b)).
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Example. Construct a pair of two-step methods, one explicit, the other implicit, both
having ˛./ D 2 �  and order p D 2, but global error constants that are equal in
modulus and opposite in sign.

Let ˇ./ and ˇ�./ be the ˇ-polynomials for the explicit and implicit formula,
respectively, and C2;2, C �

2;2 the corresponding error constants. We have

˛./

ln 
D . � 1/
 � 1 � 1

2
. � 1/2 C � � � D 1C 3

2
. � 1/C 5

12
. � 1/2 C � � � :

Thus,

ˇ./ D 1C 3

2
. � 1/ D 3

2
 � 1

2
;

giving

C2;2 D
5
12

1
D 5

12
:

For ˇ�, we try

ˇ�./ D 1C 3

2
. � 1/C b. � 1/2:

As we are not aiming for optimal degree, we must use (6.134) and (6.135) and find

C �
2;2 D

5
12

� b
1

D 5

12
� b:

Since we want C �
2;2 D �C2;2, we get

5

12
� b D � 5

12
; b D 5

6
;

and so,

ˇ�./ D 1C 3

2
. � 1/C 5

6
. � 1/2 D 5

6
2 � 1

6
 C 1

3
:

The desired pair of methods, therefore, is
8
ˆ̂<

ˆ̂:

unC2 D unC1 C h

2
.3fnC1 � fn/;

u�
nC2 D u�

nC1 C h

6
.5f �

nC2 � f �
nC1 C 2f �

n /:

(6.136)

The interest in such pairs of formulae is rather evident: if both formulae are used
independently (i.e., not in a predictor–corrector mode, but the corrector formula
being iterated to convergence), then by Theorem 6.3.5, (6.107), we have

un � y.xn/ D C2;2h
2e.xn/CO.h3/;

u�
n � y.xn/ D �C2;2h2e.xn/CO.h3/I (6.137)

that is, asymptotically for h ! 0, the exact solution is halfway between un and
u�
n . This generates upper and lower bounds for each solution component and built-

in error bounds 1
2

ju�
n � unj (absolute value taken componentwise). A break-down
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occurs in the i th component if ei .xn/ � 0; if ei .x/ changes sign across xn, the
bounds switch from an upper to a lower one and vice versa.

Naturally, it would not be difficult to generate such “equilibrated” pairs of
formulae having orders much larger than 2 (cf. Ex. 9).

Example. Given ˛.t/, construct an explicit k-step method of maximum order in
Newton’s form (involving backward differences).

Here we want L in the form

Lu D
kX

sD0
˛su.s/�

k�1X

sD0
�srsu0.k � 1/:

The mapping  D ez used previously in (6.127) is no longer appropriate here,
since we do not want the coefficients of ˇ./. The principle used in the proof of
Theorem 6.4.1, however, remains the same: we want 1

z L.t/e
tz to vanish at z D 0

with multiplicity as large as possible. Now

1

z
L.t/etz D 1

z

kX

sD0
˛sesz �

k�1X

sD0
�sŒrs

.t/e
tz�tDk�1

and

r.t/e
tz D etz � e.t�1/z D etz

�
ez � 1

ez

�
;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rs
.t/e

tz D etz
�

ez � 1
ez

�s
:

Therefore,

1

z
L.t/etz D ˛.ez/

z
� e.k�1/z

k�1X

sD0
�s

�
ez � 1

ez

�s
: (6.138)

This suggests the mapping

 D ez � 1

ez
; z D � ln .1 � /;

which maps a neighborhood of z D 0 conformally onto a neighborhood of  D 0.
Thus, (6.138) has a zero at z D 0 of maximal multiplicity if and only if

˛

�
1

1 � 

�

� ln.1 � /
� 1

.1 � /k�1
k�1X

sD0
�s

s

D 1

.1 � /k�1

8
ˆ̂<

ˆ̂:

.1 � /k�1˛
�

1

1 � 
�

� ln.1� /
�

k�1X

sD0
�s

s

9
>>=

>>;
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has a zero at  D 0 of maximal multiplicity. Thus, we have to expand

.1 � /k�1˛
�

1

1 � 
�

� ln.1 � / D
1X

sD0
�ks

s (6.139)

and take

�s D �ks; s D 0; 1; : : : ; k � 1: (6.140)

To illustrate, for Adams–Bashforth methods we have

˛.t/ D tk � tk�1;

hence

.1 � /k�1˛
�

1

1 � 

�

� ln.1 � / D 

�.1 � / ln.1 � /
DW �./;

which is the generating function

�./ D
1X

sD0
�s

s

obtained earlier in Sect. 6.2.1, (6.54). We now see more clearly why the coefficients
�s are independent of k.

Example. Given ˛.t/, construct an implicit k-step method of maximum order in
Newton’s form.

Here,

Lu D
kX

sD0
Œ˛su.s/� ��

s rsu0.k/�;

and a calculation similar to the one in the previous Example yields

��
s D ��

ks; s D 0; 1; : : : ; k; (6.141)

where

.1 � /k˛

�
1

1 � 

�

� ln.1 � /
D

1X

sD0
��
ks

s: (6.142)

Again, for Adams–Moulton methods,

.1 � /k˛

�
1

1 � 
�

� ln.1 � /
D 

� ln.1 � /
DW ��./;
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with

��./ D
1X

sD0
��
s 

s

the generating function found earlier.

Example. Given ˇ.t/, construct a k-step method of maximum order in Newton’s
form.

In all previous examples we were given ˛.t/ and could thus choose it to satisfy
the root condition. There is no intrinsic reason why we should not start with ˇ.t/
and determine ˛.t/ so as to maximize the order. It then needs to be checked, of
course, whether the ˛.t/ thus found satisfies the root condition. Thus, in the example
at hand,

Lu D
kX

sD0
�srsu.k/�

kX

sD0
ˇsu

0.s/: (6.143)

Following the procedure used previously, we get

1

z
L.t/etz D ekz

z

kX

sD0
�s

�
ez � 1

ez

�s
� ˇ.ez/

D 1

�.1 � /k ln.1 � /
kX

sD0
�s

s � ˇ

�
1

1 � 
�
;

and we want this to vanish at  D 0 with maximum order. Clearly, �0 D 0, and if

�.1 � /k ln.1 � / ˇ

�
1

1 � 
�

D
1X

sD1
dks

s; (6.144)

we must take the remaining coefficients to be

�s D dks; s D 1; 2; : : : ; k; (6.145)

to achieve order p � k.
A particularly simple example obtains if ˇ.t/ D tk , in which case

�.1 � /k ln.1 � / ˇ

�
1

1 � 
�

D � ln.1 � / D  C 1

2
2 C 1

3
3 C � � � ;

so that

�0 D 0; �s D 1

s
; s D 1; 2; : : : ; k: (6.146)

The method

runCk C 1

2
r2unCk C � � � C 1

k
rkunCk D hfnCk (6.147)
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of order k so obtained is called the backward differentiation method and is of
some interest in connection with stiff problems (cf. Sect. 6.5.2). Its characteris-
tic polynomial ˛.t/ is easily obtained from (6.143) by noting that rsu.k/ DPs

rD0 .�1/r
�
s
r

�
u.k � r/. One finds

˛.t/ D
kX

sD0
˛st

s; ˇ.t/ D tk; ˛k D
kX

rD1

1

r
;

˛s D .�1/k�s
sX

rD0

 
k � s C r

k � s

!
1

k � s C r
; s D 0; 1; : : : ; k � 1: (6.148)

Note here that ˛k ¤ 1, but we can normalize (6.143) by dividing both sides by ˛k .
It turns out that ˛.t/ in (6.148) satisfies the root condition for k D 1; 2; : : : ; 6 but
not for k D 7, in which case one root of ˛ lies outside the unit circle (cf. Ex. 10(a)).

We remark that computer algebra systems such as Maple are very useful to
implement series expansions of the type considered in this section; see, e.g., MA 3.

6.4.2 Stable Methods of Maximum Order

We now give an answer to problem (2) stated at the beginning of Sect. 6.4.

Theorem 6.4.2. (a) If k is odd, then every stable k-step method has order p �
k C 1.

(b) If k is even, then every stable k-step method has order p � k C 2, the order
being k C 2 if and only if ˛.t/ has all its zeros on the circumference of the unit
circle.

Before we prove this theorem, we make the following remarks.

1. In case (a), we can attain order p D k C 1 for any given ˛.t/ satisfying the root
condition; cf. Sect. 6.4.1, (6.130) with k0 D k.

2. Since ˛.t/ is a real polynomial, all complex zeros of ˛ occur in conjugate pairs.
It follows from part (b) of Theorem 6.4.2 that p D k C 2 if and only if ˛.t/ has
zeros at t D 1 and t D �1, and all other zeros (if any) are located on jt j D 1 in
conjugate complex pairs.

3. The maximum order among all k-step methods (stable or not) is known to be
p D 2k. The stability requirement thus reduces this maximum possible order to
roughly one-half.

Proof of Theorem 6.4.2. We want to determine ˛.t/, subject to the root condition,
such that

ı./ D ˛./

ln 
� ˇ./ (6.149)
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has a zero at  D 1 of maximum multiplicity (cf. Theorem 6.4.1). We map the unit
disk jj � 1 conformally onto the left half-plane Re z � 0 (which is easier to deal
with) by means of

 D 1C z

1 � z
; z D  � 1

 C 1
: (6.150)

This maps the point  D 1 to the origin z D 0 and preserves multiplicities of zeros
at these two points. The function ı./ in (6.149) is transformed to

d.z/ D

8
ˆ̂<

ˆ̂:

˛

�
1C z

1 � z

�

ln
1C z

1� z

� ˇ
�
1C z

1 � z

�
9
>>=

>>;

�
1 � z

2

�k
;

except for the factor Œ.1�z/=2�k which, however, does not vanish at z D 0. We write

d.z/ D a.z/

ln
1C z

1 � z

� b.z/; (6.151)

where

a.z/ D
�
1 � z

2

�k
˛

�
1C z

1 � z

�
; b.z/ D

�
1 � z

2

�k
ˇ

�
1C z

1� z

�
(6.152)

are both polynomials of degree � k.
Our problem thus reduces to the following purely analytical problem: How many

initial terms of the Maclaurin expansion of d.z/ in (6.151) can be made to vanish if
a.z/ is to have all its zeros in Re z � 0, and those with Re z D 0 are to be simple?

To solve this problem, we need some preliminary facts:

(i) We have a.1/ D 1 and a.0/ D 0. This follows trivially from (6.152), since
˛.t/ has leading coefficient 1 and ˛.1/ D 0.

(ii) The polynomial a.z/ has exact degree k, unless  D �1 is a zero of ˛./,
in which case a.z/ has degree k � �, where � is the multiplicity of the zero
 D �1. (If the root condition is satisfied, then, of course, � D 1.) This also
follows straightforwardly from (6.152).

(iii) Let

a.z/ D a1z C a2z
2 C � � � C akzk;

where a1 ¤ 0 by the root condition. If a.z/ has all its zeros in Re z � 0, then
as � 0 for s D 1; 2; : : : ; k. (The converse is not true.) This is easily seen if we
factor a.z/ with respect to its real and complex zeros:

a.z/ D a`z
Y

�

.z � r�/
Y

�

Œz � .x� C iy�/�Œz � .x� � iy�/�; a` ¤ 0:



6.4 Analytic Theory of Order and Stability 443

Simplifying, we can write

a.z/ D a`z
Y

�

.z � r�/
Y

�

Œz � x�/
2 C y2� �:

Since by assumption, r� � 0, x� � 0, all nonzero coefficients of a.z/ have the
sign of a`, and a` > 0 since a.1/ D 1.

(iv) Let
z

ln
1C z

1� z

D 
0 C 
2z
2 C 
4z

4 C � � � :

Then


0 D 1
2
; 
2� < 0 for � D 1; 2; 3; : : : :

The proof of this is deferred to the end of this section.

Suppose now that

z

ln
1C z

1 � z

a.z/

z
D b0 C b1z C b2z

2 C � � � : (6.153)

For maximum order p, we must take

b.z/ D b0 C b1z C � � � C bkzk (6.154)

in (6.151). The problem at hand then amounts to determining how many of the
coefficients bkC1, bkC2; : : : in (6.153) can vanish simultaneously if a.z/ is restricted
to have all its zeros in Re z � 0 and only simple zeros on Re z D 0.

Expansion (6.153), in view of (iv), is equivalent to

.
0 C 
2z
2 C 
4z

4 C � � � /.a1 C a2z C a3z
2 C � � � C akzk�1/

D b0 C b1z C b2z
2 C � � � :

Comparing coefficients of like power on the right and left, we get

b0 D 
0a1;

b1 D 
0a2;

b2� D 
0a2�C1 C 
2a2��1 C � � � C 
2�a1

b2�C1 D 
0a2�C2 C 
2a2� C � � � C 
2�a2

)
� D 1; 2; 3; : : : ; (6.155)

where for convenience we assume a� D 0 if � > k. We distinguish two cases.

Case 1. k is odd. Then by (6.155),

bkC1 D 
0akC2 C 
2ak C 
4ak�2 C � � � C 
kC1a1:
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Since akC2 D 0 by convention, 
2� < 0 by (iv), and as � 0, a1 > 0 by (iii), it
follows that bkC1 < 0. Thus, p D k C 1 is the maximum possible order.

Case 2. k is even. Here (6.155) gives

bkC1 D 
0akC2 C 
2ak C 
4ak�2 C � � � C 
ka2:

Again, akC2 D 0, 
2� < 0, and as � 0, so that bkC1 � 0. We have bkC1 D 0 if and
only if a2 D a4 D � � � D ak D 0, that is,

a.�z/ D �a.z/: (6.156)

Since ak D 0, we conclude from (ii) that ˛./ has a zero at  D �1. A trivial
zero is  D 1. In view of (6.156), the polynomial a.z/ cannot have zeros off the
imaginary axis without violating the root condition. Therefore, a.z/ has all its zeros
on Re z D 0, hence ˛./ all its zeros on jj D 1. Conversely, if ˛./ has zeros at
 D ˙1 and all other zeros on jj D 1, then ak D 0, and

a.z/ D ak�1z
Y

�

Œ.z � iy�/.z C iy�/� D ak�1z
Y

�

.z2 C y2� /I

that is, a.z/ is an odd polynomial and, therefore, bkC1 D 0.
This proves the second half of part (b) of Theorem 6.4.2. To complete the proof,

we have to show that bkC2 D 0 is impossible. This follows again from (6.155), if
we note that (for k even)

bkC2 D 
0akC3 C 
2akC1 C 
4ak�1 C � � � C 
kC2a1
D 
4ak�1 C � � � C 
kC2a1 < 0

for the same reason as in Case 1. �
It remains to prove the crucial property (iv). Let

f .z/ WD z

ln
1C z

1� z

D 
0 C 
2z
2 C 
4z

4 C � � � : (6.157)

The fact that 
0 D 1
2

follows easily by taking the limit of f .z/ as z ! 0. By
Cauchy’s formula,


2� D 1

2	i

I

C

f .z/dz

z2�C1 D 1

2	i

I

C

dz

z2� ln
1C z

1� z

; � > 1;

whereC is a contour encircling the origin in the positive sense of direction anywhere
in the complex plane cut along .�1;�1/ and .1;1/ (where f in (6.157) is one-
valued analytic). To get a negativity result for the 
2� one would like to push the



6.4 Analytic Theory of Order and Stability 445

contour as close to the cuts as possible. This is much easier to do after a change of
variables according to

u D 1

z
:

Then


2� D � 1

2	i

I

�

u2��2
	

ln
u C 1

u � 1


�1
du; (6.158)

where the cut in the u-plane now runs from �1 to 1, and � is a contour encircling
this cut in the negative sense of direction. By letting � shrink onto the cut and
noting that

ln
u C 1

u � 1
! ln

x C 1

1 � x � i	 as u ! x C i0; � 1 < x < 1;

whereas

ln
u C 1

u � 1
! ln

x C 1

1 � x C i	 as u ! x � i0; � 1 < x < 1;

we find in the limit


2� D � 1

2	i

( Z 1

�1
x2��2 dx

ln xC1
1�x � i	

C
Z �1

1

x2��2 dx

ln xC1
1�x C i	

)

D �
Z 1

�1
x2��2

	2 C ln2 xC1
1�x

dx < 0; � � 1; (6.159)

as was to be shown.
We also note from (6.159) that

j
2�j < 1

	2

Z 1

�1
x2��2dx D 2

	2
1

2� � 1 ; � D 1; 2; 3; : : : ;

that is,


2� D O

�
1

�

�
as � ! 1:

We now recall a theorem of Littlewood, which says that if

f .z/ D
1X

nD0

nz

n

is convergent in jzj < 1 and satisfies

f .x/ ! s as x " 1; 
n D O

�
1

n

�
as n ! 1;
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then
1X

nD0

n D s:

In our case,

f .x/ D x

ln
1C x

1 � x
! 0 as x " 1

and so
1X

�D0

2� D 0; that is;

1X

�D1

2� D � 1

2
: (6.160)

For an application of (6.160), see Ex. 11(b).

6.4.3 Applications

Theorem 6.4.2 and its proof technique have a number of interesting consequences,
which we now discuss.

Theorem 6.4.3. For every stable k-step method of maximum order p .D k C 1 or
k C 2), we have that

`pC1 < 0; Ck;p D `pC1Pk
sD0 ˇs

< 0: (6.161)

Proof. We recall from (6.131) and (6.132) that

`pC1 D cp; Ck;p D cp

c0
;

where c0 D ˇ.1/ and

ı./ D ˛./

ln 
� ˇ./ D cp. � 1/p C � � � ; cp ¤ 0:

With the transformation

 D 1C z

1� z
;  � 1 D 2z

1 � z
D 2z C � � �

used in the proof of Theorem 6.4.2, we get for the function d.z/ in (6.151)

�
1 � z

2

��k
d.z/ D 2pcpzp C � � � ;
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or

d.z/ D 2p�kcpzp C � � � :
On the other hand, by (6.153) and (6.154),

d.z/ D bpzp C � � � :
Therefore, cp D 2k�pbp, and

`pC1 D 2k�pbp; Ck;p D 2k�p bp

ˇ.1/
: (6.162)

From the proof of Theorem 6.4.2, we know that bp < 0. This proves the first relation
in (6.161).

To prove the second, we must show that

ˇ.1/ > 0: (6.163)

Since p � 1, we have

ˇ.1/ D
kX

sD0
ˇs D

kX

sD0
s˛s D ˛0.1/:

By the root condition, ˛0.1/ ¤ 0. If we had ˛0.1/ < 0, then ˛.1/ D 0 in conjunction
with ˛.t/ 
 tk as t ! 1 would imply that ˛.t/ vanishes for some t > 1,
contradicting the root condition. Thus, ˛0.1/ > 0, proving (6.163). �

We note, incidentally, from (6.162), since ˇ.1/ D 2kb.0/ D 2kb0 (cf. (6.152)
and (6.154)), that

Ck;p D 2�p bp
b0
: (6.164)

Theorem 6.4.4. (a) Let k � 3 be odd, and

ck D inf jCk;kC1j; (6.165)

where the infimum is taken over all stable k-step methods of (maximum) order
p D k C 1. If k � 5, there is no such method for which the infimum in (6.165)
is attained. If k D 3, all three-step methods of order p D 4 with ˛./ D
. � 1/. C 1/. � 
/, �1 < 
 < 1, have jC3;4j D c3 D 1

180
.

(b) Let k � 2 be even, and

c�
k D inf jCk;kC2j; (6.166)

where the infimum is taken over all stable k-step methods of (maximum) order
p D k C 2. If k � 4, there is no such method for which the infimum in (6.166)
is attained. If k D 2, Simpson’s rule is the only two-step method of order p D 4

with jC2;4j D c�
2 D 1

180
.
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Proof. (a) By (6.164) we have

Ck;kC1 D 2�.kC1/ bkC1
b0

:

From the proof of Theorem 6.4.2 (cf. (6.155)), we have

b0 D 
0a1 D 1
2
a1; bkC1 D 
2ak C 
4ak�2 C � � � C 
kC1a1 < 0:

So,

jCk;kC1j D 1

2ka1
.j
2jak C j
4jak�2 C � � � C j
kC1ja1/ � j
kC1j

2k
: (6.167)

We claim that

ck D inf jCk;kC1j D j
kC1j
2k

:

Indeed, take

a.z/ D z
.z � x1/.z � x2/ � � � .z � xk�1/
.1� x1/.1 � x2/ � � � .1� xk�1/

;

where the xi are distinct negative numbers. Then a.1/ D 1 (as must be), and a.z/
satisfies the root condition. Now let xi ! �1 (all i ), then a.z/ ! z, that is,

a1 ! 1; as ! 0 for s D 2; 3; : : : ; k:

Therefore, by (6.167),

jCk;kC1j ! j
kC1j
2k

:

Now suppose that jCk;kC1j D ck for some stable method. Then, necessarily,

ak D ak�2 D � � � D a3 D 0;

that is,

a.z/ D a1z C a2z
2 C a4z

4 C � � � C ak�1zk�1: (6.168)

In particular (cf. Sect. 6.4.2, (ii)),  D �1 is a zero of ˛./ and ak�1 ¤ 0 by the
stability requirement. We distinguish two cases:

Case 1. k D 3. Here,

a.z/ D a1z C a2z
2 D z.a1 C a2z/:

By stability, a.z/ has a zero anywhere on the negative real axis and a zero at z D 0.
Transforming back to  in the usual way (cf. Sect. 6.4.2, (6.150)), this means that

˛./ D . � 1/. C 1/. � 
/; � 1 < 
 < 1:
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All these methods (of order p D 4) by construction have

jC3;4j D c3 D j
4j
8

D 1

180
:

Case 2. k � 5. If zi are the zeros of a.z/ in (6.168), then by Vieta’s rule,

k�1X

iD1
zi D � ak�2

ak�1
D 0I

hence
k�1X

iD1
Re zi D 0:

Since by stability, Re zi � 0 for all i , we must have Re zi D 0 for all i . This means
that

a.z/ D const � z
Y

j

.z2 C y2j /

is an odd polynomial, so a2 D a4 D � � � D ak�1 D 0, contradicting stability
( D �1 is a multiple zero).

(b) The proof is similar to the one in case (a), and we leave it as an exercise for the
reader (see Ex. 13). �

It is interesting to observe that if in the infimum (6.165) of Theorem 6.4.4 we
admit only methods whose characteristic polynomials ˛./ have the zero 1 D 1

and all other zeros bounded in absolute value by � < 1 (and hence are stable), then
it can be shown that the infimum is attained precisely when

˛./ D . � 1/. C �/k�1; (6.169)

that is, all zeros other than  D 1 are placed at the point  D �� farthest away from
 D 1. Moreover, there are explicit expressions for the minimum error constant. For
example, if k is odd, then (cf. Ex. 12)

min jCk;kC1j D 2�k
(

j
kC1j C
 
k � 1

2

!
j
k�1j!2 C

 
k � 1

4

!
j
k�3j!4

C � � � C j
2j!k�1
)
; (6.170)

where

! D 1 � �
1C �

(6.171)

and 
2, 
4; : : : are the expansion coefficients in (iv) of the proof of Theorem 6.4.2.
If � D 0, we of course recover the Adams–Moulton formulae.
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6.5 Stiff Problems

In Sect. 6.4 we were concerned with multistep methods applied to problems on
a finite interval; however, the presence of “stiffness” (i.e., of rapidly decaying
solutions) requires consideration of infinite intervals and related stability concepts.
These again, as in the case of one-step methods, are developed in connection with
a simple model problem exhibiting exponentially decaying solutions. The relevant
concepts of stability then describe to what extent multistep methods are able to
simulate such solutions, especially those decaying at a rapid rate. It turns out that
multistep methods are much more limited in their ability to effectively deal with
such solutions than are one-step methods. This is particularly so if one requires
A-stability, as defined in the next section, and to a lesser extent if one weakens the
stability requirement in a manner described briefly in Sect. 6.5.2.

6.5.1 A-Stability

For simplicity we consider the scalar model problem (cf. Chap. 5, (5.166))

dy

dx
D 
y; 0 � x < 1; Re
 < 0; (6.172)

all of whose solutions decay exponentially at infinity. In particular,

y.x/ ! 0 as x ! 1 (6.173)

for every solution of (6.172).

Definition 6.5.1. A multistep method (6.2) is called A-stable if, when applied to
(6.172), it produces a grid function fung1

nD0 satisfying

un ! 0 as n ! 1; (6.174)

regardless of the choice of starting values (6.4). (It is assumed that the method is
applied with constant grid length h > 0.)

We may assume (cf. Sect. 6.4.1) that the multistep method is irreducible; that is,
the polynomials ˛.t/ and ˇ.t/ defined in (6.122) have no common zeros.

Application of (6.2) to (6.172) yields

kX

sD0
˛sunCs � h


kX

sD0
ˇsunCs D 0; (6.175)

a constant-coefficient difference equation of order k whose characteristic polyno-
mial is (cf. Sect. 6.3.1)

Q̨ .t/ D ˛.t/ � Qhˇ.t/; Qh D h
 2 C: (6.176)
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All solutions of (6.175) will tend to 0 as n ! 1 if the zeros of Q̨ are all strictly less
than 1 in absolute value. The multistep method, therefore, is A-stable if and only if

f Q̨ ./ D 0; Re
 < 0g implies jj < 1:

This is the same as saying that

f Q̨ ./ D 0; jj � 1g implies Re
 � 0:

But Q̨ ./ D 0 implies ˇ./ ¤ 0 (since otherwise ˛./ D ˇ./ D 0, contrary to the
assumed irreducibility of the method). Thus Q̨ ./ D 0 implies

Qh D h
 D ˛./

ˇ./
;

and A-stability is characterized by the condition

Re
˛./

ˇ./
� 0 if jj � 1: (6.177)

Theorem 6.5.1. If the multistep method (6.2) is A-stable, then it has order p D 2

and error constant Ck;p � � 1
12

. The trapezoidal rule is the only A-stable method
for which p D 2 and Ck;p D � 1

12
.

Proof. From (6.135) and (6.134) we have for any k-step method of order p

˛./

ln 
� ˇ./ D c0Ck;p. � 1/p C � � � ;

which, after division by ˛./ D ˛0.1/. � 1/ C � � � D ˇ.1/. � 1/ C � � � D
c0. � 1/C � � � gives

1

ln 
� ˇ./

˛./
D Ck;p. � 1/p�1 C � � � : (6.178)

For the trapezoidal rule, having ˛T ./ D  � 1 and ˇT ./ D 1
2
. C 1/, one

easily finds

1

ln 
� ˇT ./

˛T ./
D � 1

12
. � 1/C � � � : (6.179)

Letting

�./ D ˇ./

˛./
� ˇT ./

˛T ./
; (6.180)

one obtains from (6.178) and (6.179) by subtraction

�./ D �
�
c C 1

12

�
. � 1C � � � /; (6.181)
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where

c D
(
Ck;p if p D 2;

0 if p > 2:
(6.182)

Given that our method is A-stable, we have from (6.177) that ReŒ˛./=ˇ./� � 0 if
jj � 1, or equivalently,

Re
ˇ./

˛./
� 0 if jj � 1:

On the other hand,

Re
ˇT ./

˛T ./
D 0 if jj D 1:

It follows from (6.180) that Re�./ � 0 on jj D 1, and by the maximum principle
applied to the real part of �./, since �./ is analytic in jj > 1 (there are no zeros
of ˛./ outside the unit circle), that

Re �./ � 0 for jj > 1: (6.183)

Now putting  D 1 C ", Re " > 0, we have that jj > 1, and therefore, by (6.181)
and (6.183), for j"j sufficiently small, that

c C 1
12

� 0:

If p > 2, this is clearly impossible in view of (6.182), whereas for p D 2 we
must have Ck;p � � 1

12
. This proves the first part of Theorem 6.5.1. To prove the

second part, we note that p D 2 and Ck;p D � 1
12

imply �./ D O.. � 1/2/, and
taking  D 1 C " as previously, the real part of . � 1/2, and in fact of any power
. � 1/q , q � 2, can take on either sign if Re " > 0. Consequently, by (6.183),
�./ 	 0 and, therefore, the method being irreducible, it follows that ˛./ D ˛T ./

and ˇ./ D ˇT ./. �

6.5.2 A.˛/-Stability

According to Theorem 6.5.1, asking for A-stability puts multistep methods into a
straitjacket. One can loosen it by weakening the demands on the region of absolute
stability, that is, the region

DA D f Qh 2 C W Q̨ ./ D 0 implies jj < 1g: (6.184)

A-stability requires the left half-plane Re Qh < 0 to be contained in DA. In many
applications, however, it is sufficient that only part of the left half-plane be contained
in DA, for example, the wedge-like region

W˛ D f Qh 2 C W jarg.� Qh/j < ˛; Qh ¤ 0g; 0 < ˛ < 1

2
	: (6.185)

This gives rise to the following definition.
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Table 6.1 A.˛/-stable kth-order backward differentiation methods

k 1 2 3 4 5 6

˛ 90ı 90ı 86.03ı 73.35ı 51.84ı 17.84ı

Definition 6.5.2. The multistep method (6.2) is said to be A.˛/-stable, 0 < ˛ <
1
2
	 , if W˛ � DA.

There are now multistep methods that have order p > 2 and are A.˛/-stable
for suitable ˛, the best known being the kth-order backward differentiation method
(6.147). This one is known (cf. Ex. 10) to be stable in the sense of Sect. 6.3.2 for
1 � k � 6 (but not for k > 6) and for these values of k turn out to be also
A.˛/-stable with angles ˛ as shown in Table 6.1. They can therefore be effectively
employed for problems whose stiffness is such that the responsible eigenvalues are
relatively close to the negative real axis.

In principle, for any given ˛ < 1
2
	 , there exist A.˛/-stable k-step methods of

order k for every k D 1; 2; 3; : : : ; but their error constants may be so large as to
make them practically useless.

6.6 Notes to Chapter 6

Most texts mentioned in the Notes to Chap. 5 also contain discussions of multistep
methods. A book specifically devoted to the convergence and stability theory of
multistep methods is Henrici [1977]. It also applies the statistical theory of roundoff
errors to such methods, something that is rarely found elsewhere in this context. A
detailed treatment of variable-step/variable-order Adams-type methods is given in
the book by Shampine and Gordon [1975].

Section 6.1.2. The choice of exponential sums as gauge functions in �p is
made in Brock and Murray [1952]; trigonometric polynomials are considered in
Quade [1951] and Gautschi [1961], and products, respectively sums, of ordinary
and trigonometric polynomials in Stiefel and Bettis [1969] and Bettis [1969/1970]
(also see Stiefel and Scheifele [1971], Chap. 7, Sect. 24].

Section 6.2.1. Adams described his method in a chapter of the book Bashforth and
Adams [1883] on capillary action. He not only derived both the explicit and implicit
formulae (6.52) and (6.58) but also proposed a scheme of prediction and correction.

He did not predict
ı
unCk by the first formula in (6.64) but rather by the backtracking

scheme described at the end of Sect. 6.2.2. He then solved the implicit equation by
what amounts to Newton’s method, the preferred method nowadays of dealing with
(mildly) stiff problems.

Section 6.2.2. Moulton describes his predictor–corrector method in Moulton
[1926]. He predicts exactly as Adams did, and then iterates on the corrector formula
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as described in the text, preferably only once, by taking the step sufficiently small.
No reference is made to Adams, but then, according to the preface, the history of
the subject is not one of the concerns of the book.

Section 6.2.3. Milne’s suggestion of estimating the truncation error in terms of the
difference of the corrected and predicted value is made in Milne [1926].

The first asymptotic formula in (6.72) is due to Spital and Trench, the second to
Steffensen; for literature and an elementary derivation, see Gautschi [1976b].

Section 6.3.1. A basic and elegant text on linear difference equations is
Miller [1968]. Scalar difference equations such as those encountered in this
paragraph are viewed there as special cases of first-order systems of difference
equations. A more extensive account of difference equations is Agarwal [2000].
Readers who wish to learn about practical aspects of difference equations,
including applications to numerical analysis and the sciences, are referred to
Wimp [1984], Goldberg [1986], Lakshmikantham and Trigiante [2002], and Kelley
and Peterson [2001].

Section 6.3.2. As in the case of one-step methods, the stability concept of
Definition 6.3.1, taken from Keller [1992, Sect. 1.3], is also referred to as zero
stability (i.e., for h ! 0), to distinguish it from other stability concepts used
in connection with stiff problems (cf. Sect. 6.5). The phenomenon of (strong)
instability (i.e., lack of zero stability) was first noted by Todd [1950]. Simple roots
ts ¤ 1 of the characteristic equation (6.78) with jtsj D 1, although not violating
the root condition, may give rise to “weak” stability (cf. Henrici [1962, p. 242]).
This was first observed by Rutishauser [1952] in connection with Milne’s method
– the implicit fourth-order method with ˛.t/ D t2 � 1 (Simpson’s rule) – although
Dahlquist was aware of it independently; see the interesting historical account of
Dahlquist [1985] on the evolution of concepts of numerical (in)stability.

Theorem 6.3.3 is due to Dahlquist [1956]. The proof given here follows, with
minor deviations, the presentation in Hull and Luxemburg [1960].

Section 6.3.3. There is a stability and convergence theory also for linear multistep
methods on nonuniform grids. The coefficients ˛s D ˛s;n, ˇs D ˇs;n in the k-step
method (6.2) then depend on the grid size ratios !i D hi=hi�1, i D n C k � 1;

nC k � 2; : : : ; nC 1. If the coefficients ˛s;n, ˇs;n are uniformly bounded, the basic
stability and convergence results of Sects. 6.3.2 and 6.3.3 carry over to grids that are
quasiuniform in the sense of having ratios hn=hn�1 uniformly bounded and bounded
away from zero; see, for example, Hairer et al. [1993, Chap. 3, Sect. 5].

Section 6.3.4. Theorem 6.3.5 is due to Salihov [1962] and, independently, with
a refined form of the O.hpC1/ term in (6.107), to Henrici [1962, Theorem 5.12],
[1977, Theorem 4.2].

Result (6.107) may be interpreted as providing the first term in an asymptotic
expansion of the error in powers of h. The existence of a full expansion has been
investigated by Gragg [1964]. In Gragg [1965], a modified midpoint rule is defined
which has an expansion in even powers of h and serves as a basis of Gragg’s
extrapolation method.
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Section 6.3.5. The global validity of the Milne estimator, under the assumptions
stated, is proved by Henrici [1962, Theorem 5.13]. The idea of Theorem 6.3.6(5) is
also suggested there, but not carried out.

Practical codes based on Adams predictor–corrector type methods use variable
steps and variable order in an attempt to obtain the solution to a prescribed accuracy
with a minimum amount of computational work. In addition to sound strategies
of when and how to change the step and the order of the method, this requires
either interpolation to provide the necessary values of f relative to the new step,
or extensions of Adams multistep formulae to nonuniform grids. The former was
already suggested by both Adams and Moulton. It is the latter approach that is
usually adopted nowadays. A detailed discussion of the many technical and practical
issues involved in it can be found in Chaps. 5–7, and well-documented Fortran
programs in Chap. 10, of Shampine and Gordon [1975]. Such codes are “self-
starting” in the sense that they start off with Euler’s method and a very small step,
and from then on let the control mechanisms take over to arrive at a proper order and
proper step size. A more recent version of Shampine and Gordon’s code is described
in Hairer et al. [1993, Chap. 3, Sect. 7]. So are two other codes, available on Netlib,
both based on Nordsieck’s formulation (cf. Notes to Chap. 5, Sect. 5.4) of the Adams
method, one originally due to Brown et al. [1989] and the other to Gear [1971c].

Section 6.4.1. Pairs of multistep methods, such as those considered in the second
Example of this section, having the same global error constants except for sign,
are called polar pairs in Rakitskiı̆ [1961, Sect. 2]. They are studied further in
Salihov [1962]. The backward differentiation formula (6.147), with k D 1 or k D 2,
was proposed by Curtiss and Hirschfelder [1952] to integrate stiff equations. The
method with values of k up to 6, for which it is stiffly stable (Gear [1969]), is
implemented as part of the code DIFSUB in Gear [1971b,c] and subsequently in the
“Livermore solver” LSODE in Hindmarsh [1980]. For a variable-step version of the
backward differentiation formulae, see Hairer et al. [1993, p. 400].

Section 6.4.2. Theorem 6.4.2 is a celebrated result of Dahlquist proved in
Dahlquist [1956] and extended to higher-order systems of differential equations
in his thesis, Dahlquist [1959]. The k-step method of maximum order p D 2k is
derived in Dahlquist [1956, Sect. 2.4]. The proof of (iv) based on Cauchy’s formula
is from Dahlquist [1956, p. 51]. A more algebraic proof is given in Henrici [1962,
p. 233]. For the theorem of Littlewood, see Titchmarsh [1939, Sect. 7.66].

Section 6.4.3. The result of Theorem 6.4.4(a) was announced in Gautschi [1963];
case (b) follows from Problem 37 in Henrici [1962, p. 286]. For the remark at the
end of this paragraph, see Gautschi and Montrone [1980].

Section 6.5. The standard text on multistep methods for stiff problems is again
Hairer and Wanner [2010, Chap. 5]. It contains, in Chap. 5, Sect. 5, references to,
and numerical experiments with, a number of multistep codes.

Section 6.5.1. Theorem 6.5.1 is due to Dahlquist [1963]. The proof follows Hairer
and Wanner [2010, Chap. 5, Sect. 1]. There are basically two ways to get around
the severe limitations imposed by Theorem 6.5.1. One is to weaken the stability
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requirement, the other to strengthen the method. An example of the former is A(˛)-
stability defined in Sect. 6.5.2; various possibilities for the latter are discussed in
Hairer and Wanner [2010, Chap. 5, Sect. 3]. Order star theory [ibid., Sect. 4], this
time on Riemann surfaces, is again an indispensable tool for studying the attainable
order, subject to A-stability.

Section 6.5.2. The concept of A(˛)-stability was introduced by Widlund [1967].
For Table 6.1 as well as for the remark in the final paragraph, see Hairer and
Wanner [2010, Chap. 5, Sect. 2].

The regions DA of absolute stability for explicit and implicit k-step Adams
methods, as well as for the respective predictor–corrector methods, are depicted for
k D 1; 2; : : : ; 6 in Hairer and Wanner [2010, Chap. 5, Sect. 1]. As one would expect,
they become rapidly small, more so for the explicit method than for the others. More
favorable are the stability domains for the backward differentiation methods, which
are also shown in the cited reference and nicely illustrate the results of Table 6.1.

As in the case of one-step methods, there is a theory of nonlinear stability
and convergence also for multistep methods and their “one-legged” companions
Pk

sD0 ˛sunCs D hf
�Pk

sD0 ˇsxnCs;
Pk

sD0 ˇsunCs
�

. The theory is extremely rich

in technical results, involving yet another concept of stability, G-stability, for which
we refer again to Hairer and Wanner [2010, Chap. 5, Sects. 6–9].

Exercises and Machine Assignments to Chapter 6

Exercises

1. Describe how Newton’s method is applied to solve the system of nonlinear
equations

unCk D hˇkf .xnCk;unCk/C gn; gn D h

k�1X

sD0
ˇsfnCs �

k�1X

sD0
˛sunCs

for the next approximation, unCk .
2. The system of nonlinear equations

unCk D hˇkf .xnCk;unCk/C gn; ˇk ¤ 0;

arising in each step of an implicit multistep method (cf. (6.5)) may be solved
by

• Newton’s method;
• the modified Newton method (with the Jacobian held fixed at its value at the

initial approximation);
• the method of successive approximations (fixed point iteration).
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Assume that f has continuous second partial derivatives with respect to the
u-variables and the initial approximation u

Œ0�

nCk satisfies u
Œ0�

nCk D unCk CO.hg/

for some g > 0.

(a) Show that the �th iterate u
Œ��

nCk in Newton’s method has the property that

u
Œ��

nCk � unCk D O.hr� /, where r� D 2�.g C 1/ � 1. Derive analogous
statements for the other two methods.

(b) Show that g D 1, if one takes u
Œ0�

nCk D unCk�1.
(c) Suppose one adopts the following stopping criterion: quit the iteration after

� iterations, where � is the smallest integer � such that r� > pC1, where p
is the order of the method. For each of the three iterations, determine � for
p D 2; 3; : : : ; 10. (Assume g D 1 for simplicity.)

(d) If g D p, what would � be in (c)?

3. (a) Consider an explicit multistep method of the form

unC2 � un�2 C ˛.unC1 � un�1/ D hŒˇ.fnC1 C fn�1/C �fn�:

Show that the parameters ˛, ˇ, � can be chosen uniquely so that the
method has order p D 6. fHint: to preserve symmetry, and thus algebraic
simplicity, define the associated linear functional on the interval Œ�2; 2�
rather than Œ0; 4� as in Sect. 6.1.2. Why is this permissible?g

(b) Discuss the stability properties of the method obtained in (a).
4. For the local error constants �k, ��

k of, respectively, the Adams–Bashforth and
Adams–Moulton method, prove that

j��
k j < 1

k � 1
�k for k � 2:

5. For the local error constants �k, ��
k of, respectively, the Adams–Bashforth and

Adams–Moulton method, show that, as k ! 1,

�k D 1

ln k

	
1CO

�
1

ln k

�

; ��

k D � 1

k ln2 k

	
1CO

�
1

ln k

�

:

fHint: express the constants in terms of the gamma function, use

�.k C t/

�.k C 1/
D kt�1

	
1CO

�
1

k

�

; k ! 1;

and integrate by parts.g
6. Consider the predictor–corrector method using the Adams–Bashforth formula

as predictor and the Adams–Moulton formula (once) as corrector, both in
difference form:
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ı
unCk D unCk�1 C h

k�1X

sD0
�srsfnCk�1;

unCk D unCk�1 C h

k�1X

sD0
��
s rs

ı
fnCk;

fnCk D f .xnCk;unCk/;

where
ı
fnCk D f .xnCk;

ı
unCk/, r ı

fnCk D ı
fnCk � fnCk�1, and so on.

(a) Show that

unCk D ı
unCk C h�k�1rk

ı
fnCk:

fHint: first show that ��
s D �s � �s�1 for s D 0; 1; 2; : : : , where ��1 is

defined to be zero.g
(b) Show that

rk
ı
fnCk D ı

fnCk �
k�1X

sD0
rsfnCk�1:

fHint: use the binomial identity
Pm

�D0
�
�Cj
�

� D �
mCjC1
jC1

�
.g

7. Prove that the predictor–corrector method

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

ı
unCk D �

k�1X

sD0
˛sunCs C h

k�1X

sD0
ˇsfnCs;

unCk D �
k�1X

sD1
˛�
s unCs C h

(
ˇ�
kf .xnCk;

ı
unCk/C

k�1X

sD1
ˇ�
s fnCs

)
;

fnCk D f .xnCk;unCk/

is stable for every f 2 F (cf. (6.87), (6.88)), if and only if its characteristic
polynomial ˛�.t/ D Pk

sD0 ˛�
s t
s , ˛�

0 D 0, satisfies the root condition.
8. Let ˛./ D !./˛0./, ˇ./ D !./ˇ0./, and suppose fung is a solution of

the difference equation (6.2) corresponding to f˛0; ˇ0g. Show that fung also
satisfies the difference equation (6.2) corresponding to f˛; ˇg.

9. Construct a pair of four-step methods, one explicit, the other implicit, both
having ˛./ D 4 � 3 and order p D 4, but global error constants that are
equal in modulus and opposite in sign.

10. (a) Compute the zeros of the characteristic polynomial ˛.t/ of the k-step
backward differentiation method (6.147) for k D 1.1/7 and the modulus of
the absolutely largest zero other than 1. Hence, confirm the statement made
at the end of Sect. 6.4.1.

(b) Compare the error constant of the k-step backward differentiation method
with that of the k-step Adams–Moulton method for k D 1.1/7.

11. (a) Show that the polynomial b.z/ in (6.152), for an explicit k-step method,
must satisfy b.1/ D 0.
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(b) Use the proof techniques of Theorem 6.4.2 to show that every stable explicit
k-step method has order p � k. fHint: make use of (6.160).g

12. Determine min jCk;kC1j, where the minimum is taken over all k-step methods
of order k C 1 whose characteristic polynomials have all their zeros i (except
1 D 1) in the disk �� D fz 2 C W jzj � �g, where � is a prescribed number
with 0 � � < 1. fHint: use the theory developed in Sects. 6.4.2 and 6.4.3.g

13. Prove Theorem 6.4.4(b).

Machine Assignments

1. This assignment pertains to an initial value problem for a scalar first-order
differential equation.

(a) A kth-order Adams–Bashforth predictor step amounts to adding h times
a linear combination

Pk�1
sD0 �srsfnCk�1 of k backward differences to the

last approximation ulast D unCk�1. Write a Matlab routine AB.m imple-
menting this step for k D 1 W 10. Use Maple to generate the required
coefficients �s . Take as input variables the number ulast, the k-vector
F D Œfn; fnC1; : : : ; fnCk�1� of k successive function values, k, and h.

(b) Do the same as in (a) for the kth-order Adams–Moulton corrector step (in
Newton’s form), writing a routine AM.m whose input is ulast D unCk�1, the

vector F 0 D ŒfnC1; fnC2; : : : ; fnCk�1;
ı
f nCk�, k, and h.

(c) Use the routines in (a) and (b) to write a routine PECE.m implementing
the PECE predictor/corrector scheme (6.64) based on the pair of Adams
predictor and corrector formulae:

P W ı
unCk D unCk�1 C h

k�1X

sD0
�srsfnCk�1;

E W
ı
f D f .xnCk;

ı
unCk/;

C W unCk D unCk�1 C h

k�1X

sD0
��
s rs

ı
f nCk;

E W fnCk D f .xnCk; unCk/;

where r
ı
f nCk D

ı
f nCk � fnCk�1, r2

ı
f nCk D r.r

ı
f nCk/ D

ı
f nCk �

2fnCk�1 C fnCk�2, etc. As input parameters include the function f , the
initial and final values of x, the k initial approximations, the order k, the
number N of (equally spaced) grid intervals, and the values of n C k at
which printout is to occur.

2. (a) Consider the initial value problem

dy

dx
D 1

1 � " cosy
; y.0/ D 0; 0 � x � 2	; 0 < " < 1:
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Show that the exact solution y D y.x/ is the solution of Kepler’s equation
y�" siny�x D 0 (cf. Chap. 4, Ex. 21 and Chap. 5, MA 5(a) and (c)). What
is y.	/? What is y.2	/?

(b) Use the routine AB.m of MA 1(a) to solve the initial value problem by the
Adams–Bashforth methods of orders k D 2; 4; 6, with N D 40; 160; 640

integration steps of length h D 2	=N . At x D 1
2
	; 	; 3

2
	; 2	 , i.e., for n C

k D 1
4
N; 1

2
N; 3

4
N;N , print the approximations unCk obtained, along with

the errors err = unCk � y.x/ and the scaled errors err/hk . Compute y.x/ by
applying Newton’s method to solve Kepler’s equation.

(c) Do the same as in (b) with the PECE.m routine of MA 1(c).

In both programs start with “exact” initial values. According to (6.107) and
the remarks at the end of Sect. 6.3.4, the scaled errors in the printout should
be approximately equal to Ck;ke.x/ resp. C �

k;ke.x/, where Ck;k , C �
k;k are the

global error constants of the kth-order Adams–Bashforth resp. the kth-order
Adams predictor/corrector scheme, and x D 1

2
	; 	; 3

2
	; 2	 . Thus, the errors

of the predictor/corrector scheme should be approximately equal to .C �
k;k=Ck;k/

times the errors in the Adams–Bashforth method. Examine to what extent this is
confirmed by your numerical results.

3. Use the analytic characterization of order given in Theorem 6.4.1, in conjunction
with Maple’s series expansion capabilities, to:

(a) determine the coefficients fˇk;sgk�1
sD0 of the kth-order Adams–Bashforth

method (6.48) for k D 1 W 10;
(b) determine the coefficients fˇ�

k;sgksD1 of the kth-order Adams–Moulton
method (6.56) for k D 1 W 10.

4. (a) Write a Matlab routine for plotting the regions DA of absolute stability
for the kth-order Adams–Moulton methods, k D 3 W 10. fHint: seek the
boundaries of the regions DA in polar coordinates.g In particular, compute
the abscissae of absolute stability on the negative real axis.

(b) Do the same for the Adams (PECE) predictor/corrector method. Compare
the stability properties of this predictor/corrector method with those of the
corrector alone.

5. Consider the (slightly modified) model problem

dy

dx
D �!Œy � a.x/�; 0 � x � 1I y.0/ D y0;

where ! > 0 and (i) a.x/ D x2, y0 D 0; (ii) a.x/ D e�x , y0 D 1; (iii) a.x/ D
ex , y0 D 1.

(a) In each of the cases (i)–(iii), obtain the exact solution y.x/.
(b) In each of the cases (i)–(iii), apply the kth-order Adams predictor/corrector

method, for k D 2 W 5, using exact starting values and step lengths h D
1
20
; 1
40
; 1
80
; 1
160

. Print the exact values yn and the errors un � yn for xn D
0:25; 0:5; 0:75; 1. Try ! D 1, ! D 10, and ! D 50. Summarize your results.
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(c) Repeat (b), but using the k-step backward differentiation method (6.147) (in
Lagrangian form).

6. Consider the nonlinear system

dy1
dx

D 2y1.1 � y2/; y1.0/ D 1;

0 � x � 10;
dy2
dx

D �y2.1 � y1/; y2.0/ D 3;

of interest in population dynamics.

(a) Use Matlab’s ode45 routine to plot the solution y D Œy1; y2�
T of the system

to get an idea of its behavior. Also plot the norm of the Jacobian matrix fy

along the solution curve to check on the stiffness of the system.
(b) Determine a step length h, or the corresponding number N of steps, in

the classical Runge–Kutta method that would produce about eight correct
decimal digits. fHint: forN D 10; 20; 40; 80; : : : compute the solution with
N steps and 2N steps and stop as soon as the two solutions agree to within
eight decimal places at all grid points common to both solutions. For the
basic Runge–Kutta step, use the routine RK4 from Chap. 5, MA 1(a).g

(c) Apply N D 640 steps of the pair of fourth-order methods constructed
in Ex. 9 to obtain asymptotically upper and lower bounds to the solution.
Plot suitably scaled errors un � yn, u�

n � yn, n D 1.1/N , where yn is
the solution computed in (b) by the Runge–Kutta method. For the required
initial approximations, use the classical Runge–Kutta method. Use Newton’s
method to solve the implicit equation for u�

n .

Selected Solutions to Exercises

2. Write the system of equations more simply as

u D '.u/; '.u/ D hˇkf .xnCk;u/C gn;

where gn is a constant vector not depending on u, and denote the solution
by u�.

(a) Newton’s method applied to u � '.u/ D 0 can be written as

uŒ�C1� D uŒ�� � �
I � 'u.u

Œ��/
��1 �

uŒ�� � '.uŒ��/
�
; � D 0; 1; 2; : : : ;

where 'u is the Jacobian of '. Multiplying through by I � 'u.u
Œ��/ and

rearranging gives

uŒ�C1� D '
�
uŒ��

�C 'u

�
uŒ��

��
uŒ�C1� � uŒ��

�
.Newton/:
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Likewise, for modified Newton,

uŒ�C1� D '
�
uŒ��

�C 'u

�
uŒ0�
��

uŒ�C1� � uŒ��
�
.modified Newton/:

Successive approximations, finally, gives simply

uŒ�C1� D '.uŒ��/ .successive approximations/:

Now, by Taylor expansion at u� (cf. Chap. 5, Sect. 5.6.4, (5.58)), we have

'.uŒ��/ D '.u�/C 'u.u
�/"� C 1

2
"T
�'uu.u/"�;

'u.u
Œ��/ D 'u.u

�/C
X

k

@

@uk
Œ'u�.u

�/"k� ;

where

.3/ "� D uŒ�� � u�

and "k� is the kth component of "� .
Consider first Newton’s method. Write it in terms of the " as

u� C "�C1 D '.u�/C 'u.u
�/"� C 1

2
"T
�'uu.u/"�

C
 

'u.u
�/C

X

k

@

@uk
Œ'u�.u

�/"k�

!
."�C1 � "�/;

or, simplifying, noting that u� D '.u�/,
 

I � 'u.u
�/�

X

k

@

@uk
Œ'u�.u

�/"k�

!
"�C1 D 1

2
"T� 'uu.u/"�

�
X

k

@

@uk
Œ'u�.u

�/"k� � "�:

Now recall from the definition of ', and our smoothness assumptions, that
'u.u/ D O.h/ and also 'uu.u/ D O.h/. Suppose "� D O.hr� /. By
assumption, r0 D g > 0, and from the relation above we see that the
left-hand side is O.hr�C1 /, while the right-hand side is O.h2r�C1/, so that

r�C1 D 2r� C 1:

The solution of this difference equation, with starting value r0 D g, is
readily seen to be

r� D 2�.g C 1/� 1 .Newton/:
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For the modified Newton’s method, one gets similarly

�
I � 'u.u

Œ0�/
�

"�C1 D 1

2
"T� 'uu.u/"� �

X

k

@

@uk
Œ'u�.u

Œ0�/"k0 � "�;

so that
r�C1 D min .2r� C 1; g C r� C 1/; r0 D g:

For � D 0 this gives r1 D 2g C 1. Using induction on �, suppose
r� D �.g C 1/C g for some � � 1 (true when � D 1). Then, since

min.2r�C1; gCr� C 1/ D min..2�C1/.g C 1/Cg; .� C 1/.g C 1/Cg/

D .� C 1/.g C 1/C g;

we obtain r�C1 D .� C 1/.g C 1/C g, which is the induction hypothesis
with � replaced by � C 1. Therefore,

r� D �.g C 1/C g .modified Newton/:

Finally, in the case of fixed point iteration, from

"�C1 D 'u.u
�/"� C 1

2
"T
�'uu.u/"�;

one gets
r�C1 D r� C 1; r0 D g;

hence

r� D � C g .successive approximations/:

(b) If uŒ0� D unCk�1, then, since u� D unCk,

"0 D uŒ0� � u� D unCk�1 � unCk:

From the multistep formula

unCk C
k�1X

sD0
˛sunCs D h

kX

sD0
ˇsfnCs D O.h/;

one obtains

"0 D unCk�1 C
k�1X

sD0
˛sunCs CO.h/;

which, in view of unCs D un CO.h/ and ˛k D 1, yields

"0 D un

kX

sD0
˛s CO.h/ D O.h/;

by consistency. Thus, g D 1.
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(c) Solve r
 D p C 1 and take � D d
e if 
 is not an integer, and � D 
C 1

otherwise. For Newton’s method, this gives (when g D 1)


 D log.p C 2/

log 2
� 1; � D 2 for 2 � p � 5; � D 3 for 6 � p < 14:

For modified Newton,


 D p

2
; � D

8
<̂

:̂

p C 2

2
; p even;

p C 1

2
; p odd:

Finally, for successive approximation,


 D p; � D p C 1:

(d) If g D p, then, from the results in (a), for Newton’s method,


 D
log

�
1C 1

pC1
�

log 2
< 1; � D 1I

for modified Newton,


 D 1

p C 1
< 1; � D 1I

and for successive approximations,


 D 1; � D 2:

10. (a) From (6.148), after some calculation or with the help of Maple, one finds
the following characteristic polynomials:

˛.t/ D t � 1 for k D 1;

D t2 � 4
3
t C 1

3
for k D 2;

D t3 � 18
11
t2 C 9

11
t � 2

11
for k D 3;

D t4 � 48
25
t3 C 36

25
t2 � 16

25
t C 3

25
for k D 4;

D t5 � 300
137
t4 C 300

137
t3 � 200

137
t2 C 75

137
t � 12

137
for k D 5;

D t6 � 120
49
t5 C 150

49
t4 � 400

147
t3 C 75

49
t2 � 24

49
t C 10

147
for k D 6;

D t7 � 980
363
t6 C 490

121
t5 � 4900

1089
t4C 1225

363
t3 � 196

121
t2C 490

1089
t � 20

363
for kD 7:
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Matlab gives for the roots:

k roots �i ; i D 1; 2; : : : ; k maxi¤1 j�i j
1 1 � � �
2 1, .3333 .3333
3 1, .3182 ˙ .2839i .4264
4 1, .2693 ˙ .4920i , .3815 .5609
5 1, .2100 ˙ .6769i , .3848 ˙ .1621i .7087
6 1, .1453 ˙ .8511i , .3762 ˙ .2885i , .4061 .8634
7 1, .0768 ˙ 1.0193i , .3628 ˙ .3988i , .4103 ˙ .1143i 1.0222

It is seen that the root condition is satisfied for 1 � k � 6, but not for
k D 7.

(b) From the discussion following (6.143), the local error constant `kC1 is the
coefficient of k in the expansion of 1

˛k
z�1L.t/etz (ez D .1 � /�1), hence

`kC1 D � 1
˛k
dk;kC1. The global error constant, therefore, is

Ck;kC1 D �dk;kC1
˛2k

:

In the particular case of (6.146), one gets

Ck;kC1 D ��kC1
˛2k

D � 1

.k C 1/˛2k
; ˛k D

kX

rD1

1

r
:

For Adams–Moulton (cf. (6.60)), one has

C �
k;kC1 D ��

k ;

since
Pk

sD0 ˇ�
k D 1 by consistency. Below is a table of ˛k , Ck;kC1, and

C �
k;kC1 for k D 1 W 7:

k ˛k Ck;kC1 C�

k;kC1

1 1 � 1
2

D �:500 � 1
2

D �:500
2 3

2
� 4
27

D �:148 � 1
12

D �:0833
3 11

6
� 9
121

D �:0744 � 1
24

D �:0417
4 25

12
� 144
3125

D �:0461 � 19
720

D �:0264
5 137

60
� 600
18769

D �:0320 � 3
160

D �:0188
6 49

20
� 400
16807

D �:0238 � 863
60480

D �:0143
7 363

140
� 2450
131769

D �:0186 � 275
24192

D �:0114

Both error constants are negative for all k, those for Adams–Moulton
consistently smaller in absolute value (for 2 � k � 7) than those for
backward differentiation, by a factor of about 0.6.
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Selected Solutions to Machine Assignments

6. (a)
PROGRAMS

%MAVI_6A
%
y0=[1;3]; xspan=[0 10];
[x,y]=ode45(@fMAVI_6,xspan,y0);
figure
plot(x,y)
sy=size(y,1);
normJ=zeros(sy,1);
for i=1:sy

z=[y(i,1);y(i,2)];
normJ(i)=norm(JfMAVI_6(x(i),z),inf);

end;
figure
plot(x,normJ)

%FMAVI_6 Differential equation for MAVI_6
%
function yprime=fMAVI_6(x,y)
yprime=[2*y(1)*(1-y(2));-y(2)*(1-y(1))];

%JfMAVI_6 Jacobian matrix of fMAVI_6
%
function J=JfMAVI_6(x,y)
J=[2*(1-y(2)) -2*y(1);y(2) -(1-y(1))];
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The graph on the right shows that the differential equation is definitely
nonstiff.

(b) For the Matlab program pertaining to this part (b), see the beginning of the
program shown in part (c).

OUTPUT

>> MAVI_6BC
h=0.00390625 N=2560

>>

(c) The pair of fourth-order methods is (cf. Ex. 9)

unC4 D unC3 C h

3X

sD0
ˇsfnCs;

u�
nC4 D u�

nC3 C h

4X

sD0
ˇ�
s f �

nCs;

where fnCs D f .xnCs;unCs/, f �
nCs D f .xnCs;u�

nCs/, and the coefficients
ˇs , ˇ�

s are given by

s 24ˇs 360ˇ�

s

0 �9 116
1 37 �449
2 �59 621
3 55 �179
4 251

To compute u�
nC4 in the implicit method, we write the latter in the form

F .u�
nC4/ WD u�

nC4�hˇ�
4 f .xnC4;u�

nC4/�g D 0; g D u�
nC3Ch

3X

sD0
ˇ�
s f �

nCs

and apply to it Newton’s method,

JF .u
Œi �/�i D uŒi � � hˇ�

4f .xnC4;uŒi �/� g;

uŒiC1� D uŒi � � �i ;

where

JF .u/ D I � hˇ�
4 fy.xnC4;u/; fy.y/ D

	
2.1� y2/ �2y1

y2 �.1 � y1/


:

If we take uŒ0� D unC4–the approximation obtained from the explicit
formula–we find that never more than three iterations (mostly 2) are required
to iterate to an accuracy of about eight decimal digits.
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PROGRAM

%MAVI_6BC
%
% Part (b)
%
N=10; Y2=zeros(2,N); maxerr=1;
while maxerr>.5e-8
N=2*N; h=10/N; Y=Y2;
err=zeros(1,N/2);
y1=[1;3];
for n=1:N

x=(n-1)*h;
y=y1;
y1=RK4(@fMAVI_6,x,y,h);
Y2(:,n)=y1;
if floor(n/2)==n/2
err(n/2)=norm(Y(:,n/2)-Y2(:,n),inf);

end
end
maxerr=max(err);

end
fprintf(’ h=%10.8f N=%3.0f\n’,2*h,N/2)
%
% Part (c)
%
g=zeros(2,1); err=zeros(2,1);
N=640;
h=10/N; fac=5120/N; U=zeros(2,N); ...
Ustar=zeros(2,N);

F=zeros(2,N); Fstar=zeros(2,N); u0=[1;3];
U(:,1)=RK4(@fMAVI_6,0,u0,h); F(:,1) ...
=fMAVI_6(h,U(:,1));

Ustar(:,1)=U(:,1); Fstar(:,1)=F(:,1);
for s=2:3
U(:,s)=RK4(@fMAVI_6,h,U(:,s-1),h); ...

F(:,s)=fMAVI_6(s*h,U(:,s));
Ustar(:,s)=U(:,s); Fstar(:,s)=F(:,s);

end
U(:,4)=U(:,3)+(h/24)*(55*F(:,3)-59 ...

*F(:,2)+37*F(:,1)-9*fMAVI_6(0,u0));
F(:,4)=fMAVI_6(4*h,U(:,4));
g=Ustar(:,3)+(h/360)*(-179*Fstar(:,3) ...
+621*Fstar(:,2)-449*Fstar(:,1) ...
+116*fMAVI_6(0,u0));
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u4new=U(:,4); d=[1;1];
while norm(d,inf)>.5e-8
u4=u4new;
J=eye(2)-(251/360)*h*JfMAVI_6(4*h,u4);
d=J\(u4-(251/360)*h*fMAVI_6(4*h,u4)-g);
u4new=u4-d;

end
Ustar(:,4)=u4new; Fstar(:,4) ...
=fMAVI_6(4*h,Ustar(:,4));

for n=5:N
U(:,n)=U(:,n-1)+(h/24)*(55*F(:,n-1) ...

-59*F(:,n-2)+37*F(:,n-3)-9*F(:,n-4));
F(:,n)=fMAVI_6(n*h,U(:,n));
g=Ustar(:,n-1)+(h/360)*(-179 ...

*Fstar(:,n-1)+621*Fstar(:,n-2) ...
-449*Fstar(:,n-3)+116*Fstar(:,n-4));

unnew=U(:,n); d=[1;1];
while norm(d,inf)>.5e-8

un=unnew;
J=eye(2)-(251/360)*h*JfMAVI_6(n*h,un);
d=J\(un-(251/360)*h*fMAVI_6(n*h,un)-g);
unnew=un-d;

end
Ustar(:,n)=unnew; Fstar(:,n) ...

=fMAVI_6(n*h,Ustar(:,n));
end
f1N=fac*(1:N); xp=h*(1:N)’;
erru1=hˆ(-4)*(U(1,:)-Y2(1,f1N))’;
erru1star=hˆ(-4)*(Ustar(1,:)-Y2(1,f1N))’;
erru2=hˆ(-4)*(U(2,:)-Y2(2,f1N))’;
erru2star=hˆ(-4)*(Ustar(2,:)-Y2(2,f1N))’;
figure
hold on
plot(xp,erru1)
plot(xp,erru1star)
plot([0 10],[0 0])
text(2.5,400,’hˆ{-4} erru1’, ...

’FontSize’,14)
text(2.5,-400,’hˆ{-4} erru1ˆ*’, ...

’FontSize’,14)
hold off
figure
hold on
plot(xp,erru2)
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plot(xp,erru2star)
plot([0 10],[0 0])
text(3.2,500,’hˆ{-4} erru2’, ...

’FontSize’,14)
text(3.2,-500,’hˆ{-4} erru2ˆ*’, ...

’FontSize’,14)
hold off
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The graphs on the left show the first components h�4.u1n�y1n/, h�4.u�1
n �y1n/

of the scaled errors, those on the right the second components h�4.u2n � y2n/,
h�4.u�2

n � y2n/. They are approximately proportional to the respective global
error constants C4;4 and C �

4;4 of the explicit and implicit method, where
C �
4;4 D �C4;4 by construction. Thus the graphs are essentially symmetric

with respect to the real axis. It can also be seen that the error bounds
switch their roles from upper to lower bounds, and vice versa, several
times during the integration (three times for the first component, four times
for the second component). Evidently, these are the places where the first
resp. second component of the solution e.x/ of the variational differential
equation crosses the real axis (cf. Theorem 6.3.5, (6.107)).



Chapter 7
Two-Point Boundary Value Problems for ODEs

Many problems in applied mathematics require solutions of differential equations
specified by conditions at more than one point of the independent variable.
These are called boundary value problems; they are considerably more difficult
to deal with than initial value problems, largely because of their global nature.
Unlike (local) existence and uniqueness theorems known for initial value problems
(cf. Theorem 5.3.1), there are no comparably general theorems for boundary value
problems. Neither existence nor uniqueness is, in general, guaranteed.

We concentrate here on two-point boundary value problems, in which the system
of differential equations

dy

dx
D f .x;y/; f W Œa; b� � R

d ! R
d ; d � 2; (7.1)

is supplemented by conditions at the two endpoints a and b. In the most general
case they take the form

g.y.a/;y.b// D 0; (7.2)

where g is a nonlinear mapping g: Rd �R
d ! R

d . Often, however, they are linear
and even of the very special kind in which some components of y are prescribed at
one endpoint, and some (other or the same) components at the other endpoint, the
total number of conditions being equal to the dimension d of the system.

There are other important problems, such as eigenvalue problems and problems
with free boundary, that can be transformed to two-point boundary value problems
and, therefore, also solved numerically in this manner.

An eigenvalue problem is an overdetermined problem containing a parameter

, say,

dy

dx
D f .x;y I
/; a � x � b; (7.3)
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with f as in (7.1), but depending on an additional scalar parameter 
, and d C 1

boundary conditions (instead of d ) of the form

g.y.a/;y.b/I
/ D 0; g W Rd � R
d � R ! R

dC1: (7.4)

The best-known example of an eigenvalue problem is the Sturm–Liouville
problem, where one seeks a nontrivial solution u of

d

dx

�
p.x/

du

dx

�
C q.x/u D 
u; a � x � b; (7.5)

subject to homogeneous boundary conditions

u.a/ D 0; u.b/ D 0: (7.6)

Since with any solution of (7.5) and (7.6) every constant multiple of it is also a
solution, we may specify, in addition to (7.6), that (for example)

u0.a/ D 1; (7.7)

and in this way also make sure that u 6	 0. The problem then becomes of the form
(7.3), (7.4), if (7.5) is written as a system of two first-order equations (cf. (5.18)–
(5.20) of Chap. 5). In this particular case, f in (7.3) is linear homogeneous, and g

in (7.4) is also linear and independent of 
. Normally, (7.5) will have no solution
satisfying all three boundary conditions (7.6) and (7.7), except for special values of

; these are called eigenvalues of the problem (7.5)–(7.7). Similarly, there will be
exceptional values of 
 – again called eigenvalues – for which (7.3) and (7.4) admit
a solution.

To write (7.3) and (7.4) as a two-point boundary value problem, we introduce an
additional component and associated (trivial) differential equation,

ydC1 D 
;
dydC1

dx
D 0

and simply adjoin this to (7.3). That is, we let

Y D
	

y

ydC1



2 R
dC1

and write (7.3) and (7.4) in the form

dY

dx
D F .x;Y /; a � x � bI G .Y .a/;Y .b// D 0; (7.8)
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where

F .x;Y / D
"

f .x;y IydC1/
0

#
; G .Y .a/;Y .b// D g.y.a/;y.b/IydC1.a//:

(7.9)

Thus, for example, the Sturm–Liouville problem (7.5) and (7.6), with

y1 D u; y2 D p.x/
du

dx
; y3 D 
;

becomes the standard two-point boundary value problem

dy1
dx

D 1

p.x/
y2;

dy2
dx

D �q.x/y1 C y3y1;

dy3
dx

D 0; (7.10)

subject to

y1.a/ D 0; y1.b/ D 0; y2.a/ D p.a/: (7.11)

If one of the boundary points, say, b, is unknown, then the problem (7.1) and
(7.2), where now g W R

d � R
d ! R

dC1, is a problem with free boundary. This too
can be reduced to an ordinary two-point boundary value problem if one sets

zdC1 D b � a;

which is a constant as far as dependence on x is concerned, and introduces a new
independent variable t by

x D a C tzdC1; 0 � t � 1:

Letting then

z.t/ D y.aC tzdC1/; Z .t/ D
	

z.t/
zdC1



;

gives

dZ

dt
D
2

4 zdC1f .a C tzdC1; z/

0

3

5 ; 0 � t � 1;

g.z.0/; z.1// D 0;

(7.12)
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a two-point boundary value problem on a fixed interval, [0,1]. Once it is solved, one
recovers b D a C zdC1 and y.x/ D z..x � a/=zdC1/, a � x � b.

We begin with the problem of existence and uniqueness, both for linear and for
nonlinear boundary value problems. We then show how initial value techniques
can be employed to solve boundary value problems and discuss some of the
practical difficulties associated with that. Approaches relying more on systems of
linear or nonlinear equations are those based on finite difference or variational
approximations, and we give a brief account of these as well.

7.1 Existence and Uniqueness

Before dealing with general considerations on existence and uniqueness (or
nonuniqueness) of solutions to boundary value problems, it may be useful to
look at some very simple but instructive examples.

7.1.1 Examples

For linear problems the breakdown of uniqueness or existence is exceptional and
occurs, if at all, only for some “critical” intervals, often denumerably infinite in
number. For nonlinear problems, the situation can be more complex.

Example. y00 � y D 0, y.0/ D 0, y.b/ D ˇ.
The general solution here is made up of the hyperbolic cosine and sine. Since the

hyperbolic cosine is ruled out by the first boundary condition, one obtains from the
second boundary condition uniquely

y.x/ D ˇ
sinhx

sinh b
; 0 � x � b: (7.13)

There are no exceptional (critical) intervals here.

Example. y00 C y D 0, y.0/ D 0, y.b/ D ˇ.
Although this problem differs only slightly from the one in the previous Example,

the structure of the solution is fundamentally different because of the oscillatory
nature of the general solution, consisting of the trigonometric cosine and sine. If b
is not an integer multiple of 	 , there is a unique solution as before,

y.x/ D ˇ
sin x

sin b
; b ¤ n	 .n D 1; 2; 3; : : :/: (7.14)

If, however, b D n	 , then there are infinitely many solutions, or none, accordingly
as ˇ D 0 or ˇ ¤ 0. In the former case, all solutions have the form y.x/ D c sinx,
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with c an arbitrary constant. In the latter case, the second boundary condition cannot
be satisfied since every solution candidate must necessarily vanish at b. In either
case, b D n	 is a critical point.

We now minimally modify these examples to make them nonlinear.

Example. y00 C jyj D 0, y.0/ D 0, y.b/ D ˇ.
As a preliminary consideration, suppose y.x0/ D 0 for a solution of the

differential equation. What can we say about y.x/ for x > x0?
We distinguish three cases: (1) y0.x0/< 0. In this case, y becomes

negative to the right of x0, and hence the first Example applies: the solution
becomes, and remains, a negative hyperbolic sine, y.x/ D c sinh.x � x0/;

c < 0. (2) y0.x0/ D 0. By the uniqueness of the initial value problem (the differential
equation satisfies a uniform Lipschitz condition with Lipschitz constant 1), we get
y.x/ 	 0 for x >x0. (3) y0.x0/> 0. Now y is positive on a right neighborhood of
x0, so that by the second Example, y.x/ D c sin.x�x0/, c > 0, for x0 � x � x0C	 .
At x D x0 C 	 , however, y.x0 C 	/ D 0, y0.x0 C 	/ D �c < 0, and by what was
said in Case (1), from then on we have y.x/ D �c sinh.x�x0�	/ (which ensures
continuity of the first derivative of y at x D x0 C 	). Thus, in this third case, the
solution y.x/, x >x0, consists of two arcs, a trigonometric sine arc followed by a
hyperbolic sine arc.

To discuss the solution of the boundary value problem at hand, we distinguish
again three cases. In each case (and subcase) one arrives at the solution by
considering all three possibilities y0.0/ < 0, y0.0/ D 0, y0.0/ > 0, and eliminating
all but one.

Case I: b < 	 . Here we have the unique solution

y.x/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

0 if ˇ D 0;

ˇ
sinx

sin b
if ˇ > 0;

ˇ
sinhx

sinh b
if ˇ < 0:

(7.15)

Case II: b D 	 .

(a) ˇ D 0: infinitely many solutions y.x/ D c sin x, c � 0 arbitrary.
(b) ˇ > 0: no solution.

(c) ˇ < 0: unique solution y.x/ D ˇ
sinhx

sinh	
.

Case III: b > 	 .

(a) ˇ D 0: unique solution y.x/ 	 0.
(b) ˇ > 0: no solution.



476 7 Two-Point Boundary Value Problems for ODEs

Table 7.1 Number of solutions of the
boundary value problem in Example 7.3

b ˇ > 0 ˇ D 0 ˇ < 0

< 	 1 1 1
D 	 0 1 1
> 	 0 1 2

(c) ˇ < 0: exactly two solutions,

y1.x/ D ˇ
sinhx

sinh b
; 0 � x � b; (7.16)

y2.x/ D

8
ˆ̂̂
<

ˆ̂̂
:

�ˇ sin x

sinh.b � 	/
; 0 � x � 	;

ˇ
sinh.x � 	/

sinh.b � 	/
; 	 � x � b:

(7.17)

In summary, we indicate the number of solutions in Table 7.1. It is rather remarkable
how the seemingly innocuous modification of changing y to jyj produces such a
profound change in the qualitative behavior of the solution.

7.1.2 A Scalar Boundary Value Problem

A problem of some importance is the two-point boundary value problem for a scalar
nonlinear second-order differential equation

y00 D f .x; y; y0/; a � x � b; (7.18)

with linear boundary conditions

a0y.a/ � a1y
0.a/ D ˛;

b0y.b/C b1y
0.b/ D ˇ; (7.19)

where we assume, of course, that not both a0 and a1 are zero, and similarly for
b0 and b1. We further assume that f is continuous on Œa; b� � R � R and satisfies
uniform Lipschitz conditions

jf .x; u�
1 ; u2/� f .x; u1; u2/j � L1ju�

1 � u1j;
jf .x; u1; u�

2 /� f .x; u1; u2/j � L2ju�
2 � u2j (7.20)
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for all x 2 Œa; b� and all real u1, u2, u�
1 , u�

2 . These assumptions are sufficient to
ensure that each initial value problem for (7.18) has a unique solution on the whole
interval Œa; b� (cf. Theorem 5.3.1).

We associate with (7.18) and (7.19) the initial value problem

u00 D f .x; u; u0/; a � x � b; (7.21)

subject to

a0u.a/ � a1u
0.a/ D ˛;

c0u.a/ � c1u0.a/ D s: (7.22)

For the two initial conditions in (7.22) to be linearly independent, we must
assume that

det

	
a0 � a1
c0 � c1



¤ 0I that is; c0a1 � c1a0 ¤ 0:

Since we are otherwise free to choose the constants c0, c1 as we please, we may as
well take them to satisfy

c0a1 � c1a0 D 1: (7.23)

Then the initial conditions become

u.a/ D a1s � c1˛;
u0.a/ D a0s � c0˛: (7.24)

We consider c0, c1 to be fixed from now on, and s a parameter to be determined.
The solution of the initial value problem (7.21) and (7.24) is denoted by u.xI s/.

If it is to solve the boundary value problem (7.18) and (7.19), we must have

�.s/ D 0; �.s/ WD b0u.bI s/C b1u
0.bI s/� ˇ: (7.25)

Here and in the following, the prime in u0.xI s/ always indicates differentiation with
respect to the first variable, x. Clearly, (7.25) is a nonlinear equation in the unknown
s (cf. Chap. 4).

Theorem 7.1.1. The boundary value problem (7.18) and (7.19) has as many
distinct solutions as �.s/ has distinct zeros.

Proof. (a) If �.s1/ D 0, then clearly u.xI s1/ is a solution of the boundary value
problem (7.18) and (7.19). If s2 ¤ s1 is another zero of �.s/, then by (7.24)
either u.aI s2/ ¤ u.a; s1/ (if a1 ¤ 0) or u0.aI s2/ ¤ u0.aI s1/ (if a0 ¤ 0); that
is, u.xI s2/ 6	 u.xI s1/. Thus, to two distinct zeros of �.s/ there correspond two
distinct solutions of (7.18) and (7.19).
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(b) If y.x/ is a solution of the boundary value problem (7.18) and (7.19), then
defining s WD c0y.a/ � c1y

0.a/, we have that y.x/ D u.xI s/; hence �.s/ D 0.
Thus, to every solution of (7.18) and (7.19) there corresponds a zero of �. ut

Theorem 7.1.1 is the basis for solving (7.18) and (7.19) numerically. Solve
�.s/ D 0 by any of the standard methods for solving nonlinear equations. We
discuss this in more detail in Sect. 7.2.

For a certain class of boundary value problems (7.18) and (7.19) one can show
that �.s/ D 0 has exactly one solution.

Theorem 7.1.2. Assume that

(1) f .x; u1; u2/ is continuous on Œa; b� � R � R.
(2) Both fu1 and fu2 are continuous and satisfy

0 < fu1 .x; u1; u2/ � L1; jfu2 .x; u1; u2/j � L2 on Œa; b� � R � R:

(3) a0a1 � 0; b0b1 � 0; ja0j C jb0j > 0.

Then the boundary value problem (7.18) and (7.19) has a unique solution.

Note that Assumption (2) implies (7.20), hence unique solvability on Œa; b� of
initial value problems for (7.18). Assumption (3) requires that a0 and a1 be of the
same sign, as well as b0 and b1, and that not both a0 and b0 vanish. We may assume,
by multiplying one or both of the boundary conditions (7.19) by –1 if necessary, that

(30) a0 � 0; a1 � 0I b0 � 0; b1 � 0I a0 C b0 > 0:

Proof of Theorem 7.1.2. The idea of the proof is to show that

�0.s/ � c > 0 for all s 2 R: (7.26)

The function �.s/ then increases monotonically from �1 to C1, and hence
vanishes for exactly one value of s.

We have

�0.s/ D b0
@

@s
u.bI s/C b1

@

@s
u0.bI s/:

It is convenient to denote

v.x/ D @

@s
u.xI s/;

where the dependence on s is suppressed in the notation for v. Since differentiation
with respect to x and s may be interchanged under the assumptions made, we can
write

�0.s/ D b0v.b/C b1v
0.b/: (7.27)
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Furthermore, u.xI s/ satisfies, identically in s,

u00.xI s/ D f .x; u.xI s/; u0.xI s//; a � x � b;

u.aI s/ D a1s � c1˛; u0.aI s/ D a0s � c0˛;

from which, by differentiation with respect to s and interchange with differentiation
in x where necessary, one gets

v00.x/ D fu1 .x; u.xI s/; u0.xI s//v.x/C fu2 .x; u.xI s/; u0.xI s//v0.x/;

v.a/ D a1; v0.a/ D a0: (7.28)

Thus, v is the solution of a “linear” boundary value problem,

v00 D p.x/v0 C q.x/v; a � x � b;

v.a/ D a1; v0.a/ D a0; (7.29)

where

jp.x/j � L2; 0 < q.x/ � L1 on Œa; b�: (7.30)

We are going to show that, on a � x � b,

v.x/ > a1 C a0
1 � e�L2.x�a/

L2
; v0.x/ > a0e�L2.x�a/: (7.31)

From this, (7.26) will follow. Indeed, since not both a0 and a1 can vanish and by (30)
at least one is positive, it follows from (7.31) that v.b/ > 0. If b0 > 0, then (7.27)
shows, since b1 � 0 and v0.b/ > 0 by (7.31), that �0.s/ is positive and bounded
away from 0 (as a function of s). The same conclusion follows if b0 D 0, since then
b1 > 0 and �0.s/ D b1v0.b/ > 0 in (7.27).

To prove (7.31), we first show that v.x/ > 0 for a < x � b. This is certainly true
in a small right neighborhood of a, since by (7.29) either v.a/ > 0 or v.a/ D 0 and
v0.a/ > 0. If the assertion were false, we would therefore have v.x0/ D 0 for some
x0 in .a; b�. But then v must have a local maximum at some x1 with a < x1 < x0.
This is clear in the cases where v.a/ D 0, v0.a/ > 0, and v.a/ > 0, v0.a/ > 0. In the
remaining case v.a/ > 0, v0.a/ D 0, it follows from the fact that then v00.a/ > 0 by
virtue of the differential equation in (7.29) and the positivity of q (cf. (7.30)). Thus,

v.x1/ > 0; v0.x1/ D 0; v00.x1/ < 0:

But this contradicts the differential equation (7.29) at x D x1, since
q.x1/ > 0. This establishes the positivity of v on .a; b�. We thus have, using
again the positivity of q,

v00.x/ � p.x/v0.x/ > 0 for a < x � b:
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Multiplication by the “integrating factor” exp
�� R xa p.t/dt

�
yields

d

dx

h
e� R x

a p.t/dtv0.x/
i
> 0;

and upon integration from a to x,

e� R x
a p.t/dtv0.x/ � v0.a/ > 0:

This, in turn, by the second initial condition in (7.29), gives

v0.x/ > a0e
R x
a p.t/dt ;

from which the second inequality in (7.31) follows by virtue of p.t/ � �L2
(cf. (7.30)). The first inequality in (7.31) follows by integrating the second from
a to x. ut

Theorem 7.1.2 has an immediate application to the Sturm–Liouville problem

Ly D r.x/; a � x � bI Bay D ˛; Bby D ˇ; (7.32)

where

Ly WD �y00 C p.x/y0 C q.x/y;

Bay D a0y.a/� a1y
0.a/; Bby D b0y.b/C b1y

0.b/: (7.33)

Corollary 7.1.1. If p, q, and r are continuous on [a; b] with

q.x/ > 0 for a � x � b; (7.34)

and if a0, a1, b0, b1 satisfy the condition (3) of Theorem 7.1.2, then (7.32) has a
unique solution.

We remark that the differential equation in (7.32) can be written equivalently in
“self-adjoint form” if we multiply both sides by P.x/ D exp.� R pdx/. This yields

� d

dx

�
P.x/

dy

dx

�
CQ.x/y D R.x/; a � x � b; (7.35)

with

Q.x/ D P.x/q.x/; R.x/ D P.x/r.x/:
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Note that P in (7.35) is positive and not only continuous, but also continuously
differentiable on Œa; b�. Furthermore, the positivity of q is equivalent to the positivity
of Q.

The following is a result of a somewhat different nature, providing an alternative.

Theorem 7.1.3. The boundary value problem (7.32) has a unique solution for
arbitrary ˛ and ˇ if and only if the corresponding homogeneous problem (with
r 	 0, ˛ D ˇ D 0) has only the trivial solution y 	 0.

Proof. Define u1 and u2 by

Lu1 D r.x/; a � x � bI u1.a/ D �c1˛; u0
1.a/ D �c0˛;

and

Lu2 D 0; a � x � bI u2.a/ D a1; u0
2.a/ D a0;

with c0, c1 as defined in (7.23). Then one easily verifies that Bau1 D ˛, Bau2 D 0,
so that

u.x/ D u1.x/C su2.x/ (7.36)

satisfies both the inhomogeneous differential equation and the first boundary
condition of (7.32). The inhomogeneous boundary value problem therefore has a
unique solution if and only if

Bbu2 ¤ 0; (7.37)

so that the second boundary condition Bbu D ˇ can be solved uniquely for s in
(7.36). On the other hand, for the homogeneous boundary value problem to have
only the trivial solution, we must have (7.37), since otherwise Lu2 D 0, Bau2 D 0,
and Bbu2 D 0, whereas one of u2.a/ and u0

2.a/ must be different from zero, since
not both a1 and a0 can vanish. ut

7.1.3 General Linear and Nonlinear Systems

The two-point boundary value problem for the general nonlinear system (7.1), with
linear boundary conditions, takes the form

dy

dx
D f .x;y/; a � x � b;

Ay.a/C By.b/ D �; (7.38)

where A, B are square matrices of order d with constant elements, and � is a given
d -vector. For linear independence and consistency we assume that

rank ŒA;B� D d: (7.39)
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In this general form, the associated initial value problem is

du

dx
D f .x;u/; a � x � b;

u.a/ D s; (7.40)

where s 2 R
d is a “trial” initial vector. If we denote by u.xI s/ the solution of (7.40)

and assume it to exist on Œa; b�, then (7.38) is equivalent to a problem of solving a
nonlinear system of equations,

�.s/ D 0; �.s/ D As C Bu.bI s/� ”: (7.41)

Again, the boundary value problem (7.38) has as many distinct solutions as the
nonlinear system (7.41) has distinct solution vectors. By imposing sufficiently
strong – but often unrealistic – conditions on f , A, and B, it is possible to prove
that (7.41), and hence (7.38), has a unique solution, but we do not pursue this any
further.

For linear systems, we have

f .x;y/ D C .x/y C d.x/; a � x � b; (7.42)

in which case the initial value problem (7.40) is known to have the solution

u.x/ D Y .x/s C v.x/; (7.43)

where Y .x/ 2 R
d�d is a fundamental solution of the homogeneous system

dY =dx D C .x/Y with initial value Y .a/ D I , and v.x/ a particular solution
of the inhomogeneous system dv=dx D C .x/v C d.x/ satisfying v.a/ D 0. The
boundary value problem (7.38) is then equivalent to the system of linear algebraic
equations

ŒA C BY .b/�s D � � Bv.b/ (7.44)

and has a unique solution if and only if the matrix of this system is nonsingular.
We remark that if some components of y.a/ are prescribed as part of the

boundary conditions in (7.38), then of course they are incorporated in the vector
s, and one obtains a smaller system of nonlinear (resp., linear) equations in the
remaining (unknown) components of s.

7.2 Initial Value Techniques

The techniques used in Sects. 7.1.2 and 7.1.3 are also of computational interest
in that they lend themselves to the application of numerical methods for solving
nonlinear equations or systems of equations. We show, for example, how Newton’s
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method can be used in this context, first for a scalar second-order boundary value
problem, and then for a general problem involving a first-order system of differential
equations.

7.2.1 Shooting Method for a Scalar Boundary Value Problem

We have seen in Sect. 7.1.2 that the boundary value problem (7.18) and (7.19) leads
to the nonlinear equation (7.25) via the initial value problem (7.21) and (7.24).
Solving the initial value problem is referred to, in this context, as “shooting.” One
aims by means of trial initial conditions to satisfy the second boundary condition,
which is the “target.” A mechanism of readjusting the aim, based on the amount by
which the target has been missed, is provided by Newton’s method. Specifically, one
starts with an initial approximation s.0/ for s in (7.25), and then iterates according to

s.�C1/ D s.�/ � �.s.�//

�0.s.�//
; � D 0; 1; 2; : : : ; (7.45)

until, it is hoped, s.�/ ! s1 as � ! 1. If that occurs, then y.x/ D u.xI s1/ will
be a solution of the boundary value problem. If there is more than one solution, the
process (7.45) needs to be repeated, perhaps several times, with different starting
values s.0/.

For any given s, the values of �.s/ and �0.s/ needed in (7.45) are computed
simultaneously by “shooting,” that is, by solving the initial value problem (7.21)
and (7.24) together with the one in (7.28) obtained by differentiation with respect to
s. If both are written as first-order systems, by letting

y1.x/ D u.xI s/; y2.x/ D u0.xI s/; y3.x/ D v.x/; y4.x/ D v0.x/;

one solves on [a; b] the initial value problem

dy1
dx

D y2; y1.a/ D a1s � c1˛;
dy2
dx

D f .x; y1; y2/; y2.a/ D a0s � c0˛;
dy3
dx

D y4; y3.a/ D a1;

dy4
dx

D fu1 .x; y1; y2/y3 C fu2 .x; y1; y2/y4; y4.a/ D a0;

(7.46)

with c0; c1 as chosen in (7.23), and then computes

�.s/ D b0y1.b/C b1y2.b/ � ˇ; �0.s/ D b0y3.b/C b1y4.b/: (7.47)

Thus, each Newton step (7.45) requires the solution on [a; b] of an initial value
problem (7.46) with s D s.�/.
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Example. y00 D �e�y , 0 � x � 1, y.0/ D y.1/ D 0.
We first show that this problem has a unique solution. To do this, we “embed”

the problem into the following problem:

y00 D f .y/; 0 � x � 1I y.0/ D y.1/ D 0; (7.48)

where

f .y/ D
8
<

:
�e�y if y � 0;

ey � 2 if y � 0:

(7.49)

Then fy.y/ D e�y if y � 0 and fy.y/ D ey if y � 0, so that 0 < fy.y/ � 1

for all real y. Thus, Assumption (2) of Theorem 7.1.2 is satisfied, and so are
(trivially) the other two assumptions. It follows that (7.48) has a unique solution,
and since clearly this solution cannot become negative (the second derivative being
necessarily negative), it also solves the problem in our Example.

Since a0 D b0 D 1, a1 D b1 D ˛ D ˇ D 0 in this example, the system (7.46)
becomes, for 0 � x � 1,

dy1
dx

D y2; y1.a/ D 0;

dy2
dx

D �e�y1 ; y2.0/ D s;

dy3
dx

D y4; y3.0/ D 0;

dy4
dx

D e�y1y3; y4.0/ D 1;

and (7.47) simplifies to

�.s/ D y1.1/; �0.s/ D y3.1/:

Newton’s method (7.45), of course, has to be started with a positive initial
approximation s.0/. If we use s.0/ D 1 and an error tolerance of 1

2
10�12, it produces,

with the help of Matlab routine ode45, the results shown in Table 7.2 (cf. also
Ex. 3).

Example. y00 D 
 sinh.
y/, 0 � x � 1, y.0/ D y.1/ D 0.
If y0.0/ D s, s ¤ 0, the solution y of the differential equation has the sign of

s in a right neighborhood of x D 0, and so does y00. Thus, jyj is monotonically
increasing and cannot attain the value zero at x D 1. It follows that y.x/ 	 0 is
the unique solution of the boundary value problem. Moreover, it can be shown (see
Ex. 8(c)) that for y0.0/ D s the modulus jyj of the solution tends to infinity at a
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Table 7.2 Numerical results for the
first Example

� s.�/

0 1.0
1 0.45
2 0.463630
3 0.463632593668

finite value x1 of x, where

x1 
 1



ln

8

jsj ; s ! 0: (7.50)

Thus, if we apply shooting with y0.0/ D s, we can reach the end point x D 1

without the solution blowing up on us only if x1 > 1, that is, approximately, if

jsj < 8e�
: (7.51)

This places a severe restriction on the permissible initial slope; for example, jsj <
3:63 : : :�10�4 if 
 D 10 and jsj < 1:64 : : :�10�8 if 
 D 20. It is indeed one of the
limitations of “ordinary” shooting that rather accurate initial data must be known in
order to succeed.

7.2.2 Linear and Nonlinear Systems

For linear systems, the shooting method amounts to solving the linear system of
algebraic equations (7.44), which requires the numerical solution of d C 1 initial
value problems to obtain Y .b/ and v.b/, and possibly one more final integration,
with the starting vector found, to determine the solution y.x/ at the desired values of
x. It is strictly a superposition method and no iteration is required, but the procedure
often suffers from ill-conditioning of the matrix involved.

For the general nonlinear boundary value problem (7.38), there is no difficulty,
formally, in defining a shooting method. One simply has to solve the system of
nonlinear equations (7.41), for example by Newton’s method,

s.�C1/ D s.�/ C ��

@�

@s
.s.�//�� D ��.s.�//

9
>=

>;
� D 0; 1; 2; : : : ; (7.52)

where @�=@s is the Jacobian of �,

@�

@s
.s/ D A C B

@u.bI s/

@s
:
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With u.xI s/ denoting, as before, the solution of (7.40), we let V .x/ be its Jacobian
(with respect to s),

V .x/ D @u.xI s/

@s
; a � x � b:

Then, in order to simultaneously compute �.s/ and .@�=@s/.s/, we can integrate
the initial value problem (7.40) adjoined with that for its Jacobian,

du

dx
D f .x;u/

dV

dx
D fy.x;u/V

u.a/ D s; V .a/ D I

9
>>>>>>>=

>>>>>>>;

a � x � b; (7.53)

and get

�.s/ D As C Bu.bI s/� �;
@�

@s
.s/ D A C BV .b/: (7.54)

Although the procedure is formally straightforward, it is difficult to implement.
For one thing, we may not be able to integrate (7.53) on the whole interval Œa; b�;
some component may blow up before we reach the endpoint b (cf. the second
Example of Sect. 7.2.1). Another problem has to do with the convergence of
Newton’s method (7.52). Typically, this requires s in (7.53) to be very close to
s1 – the true initial vector for one of the possible solutions of the boundary
value problem. A good illustration of these difficulties is provided by the following
example.

Example.

dy1
dx

D y21
y2

dy2
dx

D y22
y1

9
>>>=

>>>;
0 � x � 1; (7.55)

y1.0/ D 1; y1.1/ D �e .D 2:718 : : : /:

This is really a linear system in disguise, namely, the one for the reciprocal functions
y�1
1 and y�1

2 . Hence it is easily seen that an exact solution to (7.55) is (cf. Ex. 4)

y1.x/ D y2.x/ D ex; 0 � x � 1: (7.56)

We write the system in this complicated nonlinear form to bring out the difficulties
inherent in the shooting method.
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Since y1 is known at x D 0, we have only one unknown, s D y2.0/. We thus
define u1.xI s/, u2.xI s/ to be the solution of the initial value problem

d

dx

	
u1
u2



D

2

6664

u21
u2
u22
u1

3

7775 ; 0 � x � 1I
	

u1
u2



.0/ D

	
1

s



: (7.57)

The equation to be solved then is

�.s/ D 0; �.s/ D u1.1I s/� e: (7.58)

We denote @u1.xIs/
@s

D v1.x/,
@u2.xIs/
@s

D v2.x/, differentiate (7.57) with respect to s,
and note that the Jacobian of (7.57) is

fy.u1; u2/ D

2
6664

2u1
u2

�u21
u22

�u22
u21

2u2
u1

3
7775 ; y D

	
u1
u2



:

If we append the differentiated system to the original one, we get

du1
dx

D u21
u2
; u1.0/ D 1;

du2
dx

D u22
u1
; u2.0/ D s;

dv1
dx

D 2u1
u2

v1 � u21
u22

v2; v1.0/ D 0;

dv2
dx

D �u22
u21

v1 C 2u2
u1

v2; v2.0/ D 1:

(7.59)

Assuming this can be solved on [0,1], we will have

�.s/ D u1.1I s/� e; �0.s/ D v1.1/; (7.60)

and can thus apply Newton’s method,

s.�C1/ D s.�/ � �.s.�//

�0.s.�//
; (7.61)

taking s D s.�/ in (7.59).
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Because of the elementary nature of the system (7.57), we can solve the initial
value problem (7.57) in closed form (cf. Ex. 4),

u1.xI s/ D s

s coshx � sinh x
; u2.xI s/ D s

coshx � s sinhx
: (7.62)

It is convenient to look at the solutions of (7.57) as curves in the phase plane .u1; u2/.
The desired solution, by (7.56), is then given by u1 D u2.

Clearly, s has to be positive in (7.57), since otherwise u1 would initially decrease
and, to meet the condition at x D 1, would have to turn around and have a vanishing
derivative at some point in (0,1). That would cause a problem in (7.57), since either
u1 D 0 or u2 D 1 at that point.

For u1 to remain bounded on [0,1], it then follows from the first relation in (7.62)
that we must have s > tanhx for 0 � x � 1; that is,

s > tanh 1 D 0:76159 : : : :

At s D tanh 1, we have

lim
x!1

u1.xI tanh 1/ D 1; lim
x!1

u2.xI tanh 1/ D sinh 1 D 1:1752 : : : :

This solution, in the phase plane, has a horizontal asymptote.
Similarly, for u2 to remain bounded on [0,1], we must have

s < coth 1 D 1:3130 : : : :

When s D coth 1, then

lim
x!1

u1.xI coth 1/ D cosh 1 D 1:5430 : : : ; lim
x!1

u2.xI coth 1/ D 1;

giving a solution with a vertical asymptote. The locus of points Œu1.1I s/;
u2.1I s/� as tanh 1 < s < coth 1 is easily found to be the hyperbola

u2 D u1 sinh 1

u1 � cosh 1
:

From this, we get a complete picture in the phase plane of all solutions of (7.57); see
Fig. 7.1. Thus, only in a relatively small s-interval, 0:76159 : : : < s < 1:3130 : : : ,
it is possible to shoot from the initial point to the endpoint without one component
of the solution blowing up in between.

What about the convergence of Newton’s method (7.61)? The equation to be
solved is (7.58), that is,

�.s/ D 0; �.s/ D s

s cosh 1 � sinh 1
� e:
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Fig. 7.1 The solutions of (7.57) in the phase plane. The solid lines are solutions for fixed s in
tanh 1 � s � coth 1 and x varying between 0 and 1. The dashed line is the locus of points

Œu1.1I s/; u2.1I s/�, tanh 1 < s < coth 1

Fig. 7.2 The graph of �.s/ and convergence of Newton’s method

From the graph of �.s/ (see Fig. 7.2), in particular, the convexity of �, it follows
that Newton’s method converges precisely if

tanh 1 < s < s0; (7.63)
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where s0 is such that

s0 � �.s0/

�0.s0/
D tanh 1: (7.64)

It can be shown (see Ex. 5(a)) that s0 < coth 1, so that the convergence of Newton’s
method imposes an additional restriction on the choice of s.

7.2.3 Parallel Shooting

To circumvent the difficulties inherent in ordinary shooting, as indicated in
Examples of Sects. 7.2.1 and 7.2.2, one may divide the interval Œa; b� into N

subintervals,
a D x0 < x1 < x2 < � � � < xN�1 < xN D b; (7.65)

and apply shooting concurrently on each subinterval. The hope is that if the intervals
are sufficiently small, not only does the appropriate boundary value problem have a
unique solution, but also the solution is not given a chance to grow excessively. We
say “appropriate” boundary value problem since in addition to the two boundary
conditions, there are now also continuity conditions at the interior subdivision
points. This, of course, enlarges considerably the problem size. To enhance the
prospects of success, it is advisable to generate the subdivision (7.65) dynamically,
as described further on, rather than to choose it artificially without regard to the
particular features of the problem at hand.

To describe the procedure in more detail, consider the boundary value problem
for a general nonlinear system,

dy

dx
D f .x;y/; a � x � bI Ay.a/C By.b/ D �: (7.66)

Let hn D xn � xn�1, n D 1; 2; : : : ; N , and define

yn.t/ D y.xn�1 C thn/; 0 � t � 1: (7.67)

Clearly,

dyn

dt
D hny

0.xn�1 C thn/ D hnf .xn�1 C thn;yn.t//; 0 � t � 1:

Thus, by letting

fn.t; z/ D hnf .xn�1 C thn; z/; (7.68)
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we have for the (vector-valued) functions yn the following system of, as yet
uncoupled, differential equations

dyn

dt
D fn.t;yn/; n D 1; 2; : : : ; N I 0 � t � 1: (7.69)

The coupling comes about through the boundary and interface (continuity)
conditions

Ay1.0/C ByN .1/ D � ;

ynC1.0/� yn.1/ D 0; n D 1; 2; : : : ; N � 1: (7.70)

Introducing “supervectors” and “supermatrices,”

Y .t/ D
2

4
y1.t/
:::

yN .t/

3

5 ; F .t;Y / D
2

4
f1.t;y1/

:::
fN .t;yN /

3

5 ; � D

2

664

�
0
:::
0

3

775 ;

P D

2
66664

A 0 0 � � � 0
0 I 0 � � � 0
0 0 I � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � I

3
77775
; Q D

2
66664

0 0 � � � 0 B
�I 0 � � � 0 0
0 � I � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � � I 0

3
77775
;

(7.71)

we can write (7.69) and (7.70) compactly as

dY

dt
D F .t;Y /; 0 � t � 1I PY .0/C QY .1/ D � I (7.72)

this has the same form as (7.66) but is much bigger in size. Parallel shooting consists
of applying ordinary shooting to the big system (7.72). Thus, we solve on 0 � t � 1

dU

dt
D F .t;U /; U .0/ D S ; (7.73)

to obtain U .t/ D U .t I S / and try to determine the vector S 2 R
Nd such that

ˆ.S / D PS C QU .1I S /� � D 0: (7.74)

If we use Newton’s method, this is done by the iteration

S .�C1/ D S .�/ C ��;

ŒP C QV .1I S .�//��� D �ˆ.S .�//

9
=

; � D 0; 1; 2; : : : ; (7.75)
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u 1 (t) u 2 (t) u 3 (t) u N (t)

a = x0 x1 x 2 xN

x

− 1 xN = b

u1(0)=s1 u2 (0)=s2 u3(0)=s3 uN(0)=sN

Fig. 7.3 Parallel shooting (one-sided)

where

V .t I S / D @U

@S
.t I S /; 0 � t � 1: (7.76)

If we partition U T D ŒuT
1 ; : : : ;u

T
N �, S T D ŒsT

1 ; : : : ; s
T
N � in accordance with (7.69),

then, since (7.69) by itself is uncoupled, we find that un D un.t I sn/ depends only
on sn. As a consequence, the “big” Jacobian V in (7.76) is block diagonal,

V D

2
666664

v1 0 � � � 0

0 v2 � � � 0
:::

::: : : :
:::

0 0 � � � vN

3
777775
; vn.t I sn/ D @un

@sn
.t I sn/; n D 1; 2; : : : ; N;

and so is the Jacobian FY .t;U / of F in (7.73). This means that U in (7.73) and V

in (7.76) can be computed by solving uncoupled systems of initial value problems
on 0 � t � 1,

dun

dt
D fn.t;un/; un.0/ D sn

dvn
dt

D @fn

@yn
.t;un/vn; vn.0/ D In

9
>>>=

>>>;
n D 1; 2; : : : ; N: (7.77)

This can be done in parallel – hence the name “parallel shooting.”
The procedure may be summarized schematically as in Fig. 7.3. Alternatively, if

N is even, one may shoot both forward and backward, as indicated in Fig. 7.4 for
N D 4. This reduces the size of the big system by one-half.

Even though multiple shooting can be quite effective, there are many practical
problems associated with it. Perhaps the major problems are related to obtaining
good initial approximations (recall, we have to choose a reasonable vector S in
(7.73)) and to constructing a natural subdivision (7.65). With regard to the latter,
suppose we have some rough approximation 	.x/ � y.x/ on a � x � b.
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u1( t ) u1( t ) u2( t ) u2( t )

a =x0 x1 x2 x3 x4

x

= b

u1(0)=s1 u2(0)= s2

Fig. 7.4 Parallel shooting (two-sided), N D 4

a = x 0 x 1 x 2 x 3 x 4 b

Fig. 7.5 Construction of subdivision

Then, taking x0 D a, we may construct x1, x2; : : : recursively as follows. For
i D 0; 1; 2; : : : solve the initial value problem

dzi
dx

D f .x; zi /; zi .xi / D 	.xi /; x � xi ; (7.78)

and take for xiC1 the smallest x > xi such that (say) kzi .x/k � 2k	.x/k. In other
words, we do not allow the solution of (7.78) to increase more than twice in size;
see Fig. 7.5. Thus, (7.78) are strictly auxiliary integrations whose sole purpose is to
produce an appropriate subdivision of Œa; b�.

There are circumstances in which reasonable initial approximations may be
readily available, for example, if one solves the given boundary value problem (7.66)
by a homotopy method. Basically, this means that the problem is embedded in a
family of problems,

P! W dy

dx
D f!.x;y/; a � x � bI Ay.a/C By.b/ D �;

where ! is a (usually physically meaningful) parameter, say, in the interval 0 �
! � 1. This is done in such a way that for ! D 0 the solution of P! is easy, and
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for ! D 1, we have f!.x;y/ D f .x;y/. One then solves a sequence of boundary
value problems P!� corresponding to parameter values 0 D !0 < !1 < !2 < � � � <
!m D 1 which are chosen sufficiently close to one another so that the solution of
P!� differs relatively little from the solution of P!��1 . When ! D !1, one takes for
	.x/ the easy solution of P!0 , constructs the appropriate subdivision as before, and
then solves P!1 by parallel shooting based on the subdivision generated. One next
solvesP!2 , using for 	.x/ the solution ofP!1 , and proceeds as withP!1 . Continuing
in this way, we will eventually have solved P!m D P1, the given problem (7.66).
Although the procedure is rather labor-intensive, it has the potential of providing
accurate solutions to very difficult problems.

7.3 Finite Difference Methods

A more static approach toward solving boundary value problems is via direct
discretization. One puts a grid on the interval of interest, replaces derivatives by
finite difference expressions, and requires the discrete version of the problem to
hold at all interior grid points. This gives rise to a system of linear or nonlinear
equations for the unknown values of the solution at the grid points.

We consider and analyze only the simplest finite difference schemes. We assume
throughout a uniform grid, say,

a D x0 < x1 < x2 < � � � < xN < xNC1 D b; xn D aC nh; h D b � a

N C 1
; (7.79)

and we continue to use the terminology of grid functions introduced in Chap. 5,
Sect. 5.7.

7.3.1 Linear Second-Order Equations

We consider the Sturm–Liouville problem (cf. (7.32) and (7.33))

Ly D r.x/; a � x � b; (7.80)

where

Ly WD �y00 C p.x/y0 C q.x/y; (7.81)

with the simplest boundary conditions

y.a/ D ˛; y.b/ D ˇ: (7.82)
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If p, q, r are continuous and q positive on [a; b], then (7.80) and (7.82) by
Corollary 7.1.1 have a unique solution. Under these assumptions, there are positive
constants p, q, and q such that

jp.x/j � p; 0 < q � q.x/ � q for a � x � b: (7.83)

A simple finite difference operator, acting on a grid function u 2 �hŒa; b�, which
approximates the operator L in (7.81) is

.Lhu/n D �unC1 � 2un C un�1
h2

C p.xn/
unC1 � un�1

2h
C q.xn/un;

n D 1; 2; : : : ; N: (7.84)

For any smooth function v on [a; b], we define the grid function of the truncation
error Th by

.Thv/n D .Lhv/n � .Lv/.xn/; n D 1; 2; : : : ; N: (7.85)

If v D y is the exact solution of (7.80) and (7.82), this reduces to an earlier definition
in Chap. 6, Sect. 6.1.2. By Taylor’s formula one easily finds that for v 2 C4Œa; b�,

.Thv/n D � h2

12
Œv.4/.�1/� 2p.xn/v

000.�2/�; �1; �2 2 Œxn � h; xn C h�; (7.86)

and more precisely, if v 2 C6Œa; b�, since Lh is an even function of h,

.Thv/n D � h2

12
Œv.4/.xn/ � 2p.xn/v000.xn/�CO.h4/; h ! 0: (7.87)

In analogy to terminology introduced in Chap. 5, we call the difference operator
Lh stable if there exists a constant M independent of h such that for h sufficiently
small, one has for any grid function v D fvng

kvk1 � M fmax.jv0j; jvNC1j/C kLhvk1g; v 2 �hŒa; b�; (7.88)

where kvk1 D max0�n�NC1 jvnj and kLhvk1 D max1�n�N j.Lhv/nj. The follow-
ing theorem gives a sufficient condition for stability.

Theorem 7.3.1. If hp � 2, then Lh is stable. Indeed, (7.88) holds for M D
max.1; 1=q/. (Here p; q are the constants defined in (7.83).)

Proof. From (7.84) one computes

1
2
h2 .Lhv/n D anvn�1 C bnvn C cnvnC1; (7.89)
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where

an D �1
2

	
1C 1

2
hp.xn/



;

bn D 1C 1

2
h2q.xn/;

cn D �1
2

	
1 � 1

2
hp.xn/



: (7.90)

Since, by assumption, 1
2
hjp.xn/j � 1

2
hp � 1, we have an � 0, cn � 0, and

janj C jcnj D 1

2

	
1C 1

2
hp.xn/



C 1

2

	
1 � 1

2
hp.xn/



D 1: (7.91)

Also,

bn � 1C 1
2
h2q: (7.92)

Now by (7.89), we have

bnvn D �anvn�1 � cnvnC1 C 1

2
h2.Lhv/n;

which, upon taking absolute values and using (7.91) and (7.92), yields

�
1C 1

2
h2q

�
jvnj � kvk1 C 1

2
h2kLhvk1; n D 1; 2; : : : ; N: (7.93)

We distinguish two cases.

Case I: kvk1 D jvn0 j, 1 � n0 � N . Here (7.93) gives

�
1C 1

2
h2q

�
jvn0 j � jvn0 j C 1

2
h2kLhvk1I

hence

jvn0 j � 1

q
kLhvk1 ;

and (7.88) follows since by assumption 1
q

� M .

Case II: kvk1 D jvn0 j, n0 D 0 or n0 D N C 1. In this case, (7.88) is trivial, since
M � 1. ut
The method of finite differences now consists of replacing (7.80) and (7.82) by

.Lhu/n D r.xn/; n D 1; 2; : : : ; N I u0 D ˛; uNC1 D ˇ: (7.94)
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In view of (7.89), this is the same as

anun�1 C bnun C cnunC1 D 1

2
h2r.xn/; n D 1; 2; : : : ; N; u0 D ˛; uNC1 D ˇ;

and gives rise to the system of linear equations

2

666664

b1 c1 0

a2 b2 c2
: : :

: : :
: : :

aN�1 bN�1 cN�1
0 aN bN

3

777775

2

666664

u1
u2
:::

uN�1
uN

3

777775
D 1

2
h2

2

666664

r.x1/

r.x2/
:::

r.xN�1/
r.xN /

3

777775
�

2

666664

a1˛

0
:::

0

cN ˇ

3

777775
: (7.95)

The matrix of the system is tridiagonal and strictly diagonally dominant, since
janj C jcnj D 1 and bn > 1 by (7.92). In particular, it is nonsingular, so that
the system (7.95) has a unique solution. (Uniqueness follows also from the stability
of Lh: the homogeneous system with r.xn/ D ˛ D ˇ D 0 can have only the trivial
solution, since Lhu D 0, u0 D uNC1 D 0 implies kuk1 D 0 by (7.88).)

Now that we know that the difference method defines a unique approximation,
the next question is: how good is it? An answer to that is given in the next two
theorems.

Theorem 7.3.2. If hp � 2, then

ku � yk1 � M kThyk1; M D max.1; 1=q/; (7.96)

where u D fung is the solution of (7.95), y D fyng the grid function induced by the
exact solution y.x/ of (7.80) and (7.82), and Thy the grid function of the truncation
errors defined in (7.85), where v D y. If y 2 C4Œa; b�, then

ku � yk1 � 1
12
h2M.ky.4/k1 C 2 p ky.3/k1/; (7.97)

where ky.k/k1 D maxa�x�b jy.k/.x/j, k D 3; 4.

Proof. From

.Lhu/n D r.xn/; u0 D ˛; uNC1 D ˇ;

.Ly/.xn/ D r.xn/; y.x0/ D ˛; y.xNC1/ D ˇ;

we obtain, letting vn D un � y.xn/,

.Lhv/n D .Lhu/n � .Lhy/n
D r.xn/� Œ.Ly/.xn/C .Lhy/n � .Ly/.xn/�
D r.xn/� r.xn/� .Thy/n

D �.Thy/n;
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so that

kLhvk1 D kThyk1: (7.98)

By Theorem 7.3.1, Lh is stable with the stability constant M as defined in (7.96).
Since v0 D vNC1 D 0, there follows kvk1 � M kLhvk1, which in view of (7.98)
and the definition of v is (7.96). The second assertion (7.97) follows directly from
(7.86). ut

In the spirit of Chap. 5, Sect. 5.7.3 and Chap. 6, Sect. 6.3.4, the result (7.97) of
Theorem 7.3.2 can be refined as follows.

Theorem 7.3.3. Let p; q 2 C2Œa; b�, y 2 C6Œa; b�, and hp � 2. Then

un � y.xn/ D h2e.xn/CO.h4/; n D 0; 1; : : : ; N C 1; (7.99)

where e.x/ is the solution of

Le D �.x/; a � x � bI e.a/ D 0; e.b/ D 0; (7.100)

with

�.x/ D 1

12
Œy.4/.x/ � 2p.x/y000.x/�: (7.101)

Proof. We first note that our assumptions are such that � 2 C2Œa; b�, which, by
(7.100), implies that e 2 C4Œa; b�.

Let
ı
vn D 1

h2
.un � y.xn//:

We want to show that

ı
vn D e.xn/CO.h2/: (7.102)

As in the proof of Theorem 7.3.2, we have

.Lhı
v/n D � 1

h2
.Thy/n:

By (7.87) with v D y, this gives

.Lhı
v/n D �.xn/CO.h2/: (7.103)

Furthermore,

.Lhe/n D .Le/.xn/C .Lhe/n � .Le/.xn/ D �.xn/C .The/n; (7.104)
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by (7.100) and the definition (7.85) of truncation error. Since e 2 C4Œa; b�, we have
from (7.86) that

.The/n D O.h2/: (7.105)

Subtracting (7.104) from (7.103), therefore, yields

.Lhv/n D O.h2/; where vn D ı
vn � e.xn/:

Since v0 D vNC1 D 0 and Lh is stable, by assumption, there follows from the
stability inequality that jvnj � M kLhvk1 D O.h2/, which is (7.102). ut

Theorem 7.3.3 could be used as a basis for Richardson extrapolation (cf. Chap. 3,
Sect. 3.2.7). Another application is the method of difference correction due to L. Fox.
A “difference correction” is any quantity En such that

En D e.xn/CO.h2/; n D 1; 2; : : : ; N: (7.106)

It then follows from (7.99) that

un � h2En D y.xn/CO.h4/I (7.107)

that is, Oun D un � h2En is an improved approximation having order of accuracy
O.h4/. Fox’s idea is to construct a difference correction En by applying the basic
difference method to the boundary value problem (7.100) in which �.xn/ is replaced
by a suitable difference approximation‚n:

.LhE/n D ‚n; n D 1; 2; : : : ; N I E0 D 0; ENC1 D 0: (7.108)

Letting vn D En � e.xn/, we then find

.Lhv/n D .LhE/n � .Lhe/n D ‚n � �.xn/CO.h2/;

by virtue of (7.108), (7.104), and (7.105). Since v0 D vNC1 D 0, stability then
yields

jvnj D jEn � e.xn/j � M k‚ � �k1 CO.h2/;

so that for (7.106) to hold, all we need is to make sure that

‚n � �.xn/ D O.h2/; n D 1; 2; : : : ; N: (7.109)

This can be achieved by replacing the derivatives on the right of (7.101) by suitable
finite difference approximations (see Ex. 10).
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7.3.2 Nonlinear Second-Order Equations

A natural nonlinear extension of the linear problem (7.80) and (7.82) is

Ky D 0; y.a/ D ˛; y.b/ D ˇ; (7.110)

where

Ky WD �y00 C f .x; y; y0/ (7.111)

and f .x; y; z/ is a given function of class C1 defined on Œa; b��R�R, now assumed
to be nonlinear in y and/or z. In analogy to (7.83) we make the assumption that

jfzj � p; 0 < q � fy � q on Œa; b� � R � R: (7.112)

Then, by Theorem 7.1.2, the problem (7.110) has a unique solution.
We use again the simplest difference approximation Kh to K,

.Khu/n D �unC1 � 2un C un�1
h2

C f
�
xn; un;

unC1 � un�1
2h

�
; (7.113)

and define the truncation error as before by

.Thv/n D .Khv/n � .Kv/.xn/; n D 1; 2; : : : ; N; (7.114)

for any smooth function v on [a; b]. If v 2 C4Œa; b�, then by Taylor’s theorem,
applied at x D xn, y D v.xn/, z D v0.xn/,

.Thv/n D �
	

v.xn C h/ � 2v.xn/C v.xn � h/

h2
� v00.xn/




C f

�
xn; v.xn/;

v.xn C h/� v.xn � h/

2h

�
� f .xn; v.xn/; v

0.xn//

D � h2

12
v.4/.�1/C fz.xn; v.xn/; zn/

	
v.xn C h/ � v.xn � h/

2h
� v0.xn/




D � h2

12
v.4/.�1/C fz.xn; v.xn/; zn/

h2

6
v000.�2/;

where �i 2 Œxn � h; xn C h�, i D 1; 2, and zn is between v0.xn/ and .2h/�1Œv.xn C
h/� v.xn � h/�. Thus,

.Thv/n D � h2

12
Œv.4/.�1/� 2fz.xn; v.xn/; zn/v

000.�2/�: (7.115)



7.3 Finite Difference Methods 501

Since Kh is nonlinear, the definition of stability needs to be slightly modified. We
call Kh stable if for h sufficiently small, and for any two grid functions v D fvng,
w D fwng, there is a constantM such that

kv � wk1 � M fmax.jv0 � w0j; jvNC1 � wNC1j/C kKhv � Khwk1g;
v;w 2 �hŒa; b�: (7.116)

If Kh is linear, this reduces to the previous definition (7.88), since v � w, just like v,
is an arbitrary grid function.

Theorem 7.3.4. If hp � 2, then Kh is stable. Indeed, (7.116) holds withM D max
(1,1/q). (Here, p, q are the constants defined in (7.112).)

Proof. Much the same as the proof of Theorem 7.3.1 See Ex. 11. ut
The method of finite differences now takes on the following form:

.Khu/n D 0; n D 1; 2; : : : ; N I u0 D ˛; uNC1 D ˇ: (7.117)

This is a system of N nonlinear equations in the N unknowns u1, u2; : : : ; uN . We
show shortly that under the assumptions made, the system (7.117) has a unique
solution. Its error can be estimated exactly as in Theorem 7.3.2 Indeed, by applying
the stability inequality (7.116) with v D u and w D y, where u is the grid function
satisfying (7.117) and y the grid function induced by the exact solution y.x/ of
(7.110), we get, with M as defined in Theorem 7.3.4,

ku � yk1 � M kKhu � Khyk1 D M kKhyk1
D M kKy C .Khy � Ky/k1
D M kKhy � Kyk1
D M kThyk1;

which is (7.96). The same error estimate as in (7.97) then again follows immediately
from (7.115) and the first assumption in (7.112).

In order to show that (7.117) has a unique solution, we write the system in fixed
point form and apply the contraction mapping principle. It is convenient to introduce
a parameter ! in the process – a “relaxation parameter” as it were – by writing
(7.117) equivalently in the form

u D g.u/; g.u/ D u � 1

1C !

1

2
h2Khu .! ¤ �1/;

u0 D ˛; uNC1 D ˇ: (7.118)

Here we think of g as a mapping R
NC2 ! R

NC2, by defining g0.u/ D ˛,
gNC1.u/ D ˇ. We want to show that g is a contraction map on R

NC2 if h satisfies
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the condition of Theorem 7.3.4 and ! is suitably chosen. This then will prove
(cf. Theorem 4.9.1) the existence and uniqueness of the solution of (7.118), and
hence of (7.117).

Given any two grid functions v D fvng, w D fwng, we can write by Taylor’s
theorem, after a simple calculation,

gn.v/� gn.w/ D 1

1C !
Œan.vn�1 � wn�1/C .1C ! � bn/.vn � wn/

C cn.vnC1 � wnC1/�; 1 � n � N; (7.119)

whereas for n D 0 or n D N C 1 the difference on the left, of course, is zero; here

an D 1

2

	
1C 1

2
hfz.zn; yn; zn/



;

bn D 1C 1

2
h2fy.xn; yn; zn/;

cn D 1

2

	
1 � 1

2
hfz.xn; yn; zn/



;

with yn, zn suitable intermediate values. Since hp � 2, we have

an � 0; cn � 0; an C cn D 1: (7.120)

Assuming, furthermore, that

! � 1

2
h2q; (7.121)

we have

1C ! � bn � 1C ! �
�
1C 1

2
h2q

�
D ! � 1

2
h2q � 0:

Hence, all coefficients on the right of (7.119) are nonnegative, and since

0 � 1C ! � bn � 1C ! �
�
1C 1

2
h2q

�
D ! � 1

2
h2q;

we obtain, upon taking norms and noting (7.120),

jgn.v/ � gn.w/j � 1

1C !

�
an C ! � 1

2
h2q C cn

�
kv � wk1

D 1

1C !

�
1C ! � 1

2
h2q

�
kv � wk1I
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that is,

kg.v/� g.w/k1 � �.!/ kv � wk1; �.!/ WD 1 �
1
2
h2q

1C !
: (7.122)

Clearly, �.!/ < 1, showing that g is a contraction map on R
NC2, as claimed.

In principle, one could apply the method of successive iteration to (7.118), and
it would converge for arbitrary initial approximation. Faster convergence can be
expected, however, by applying Newton’s method directly on (7.117); for details,
see Ex. 12.

7.4 Variational Methods

Variational methods take advantage of the fact that the solution of important types
of boundary value problems satisfies certain extremal properties. This then suggests
solving the respective extremal problems – at least approximately – in place of the
boundary value problems. This can be done by classical methods. We illustrate the
method for a linear second-order boundary value problem with simplified (Dirichlet)
boundary conditions.

7.4.1 Variational Formulation

Without restriction of generality (cf. (7.35)), we can assume that the problem is in
self-adjoint form:

Ly D r.x/; a � x � bI y.a/ D ˛; y.b/ D ˇ; (7.123)

where

Ly WD � d

dx

�
p.x/

dy

dx

�
C q.x/y; a � x � b: (7.124)

We assume p 2 C1Œa; b� and q, r continuous on [a; b], and

p.x/ � p > 0; q.x/ > 0 on Œa; b�: (7.125)

Under these assumptions, the problem (7.123) has a unique solution (cf.
Corollary 7.1.1).

If `.x/ is a linear function having the same boundary values as y in (7.123), then
z.x/ D y.x/ � `.x/ satisfies Lz D r.x/ � .L`/.x/, z.a/ D z.b/ D 0, which is a
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problem of the same type as (7.123), but with homogeneous boundary conditions.
We may assume, therefore, that ˛ D ˇ D 0, and thus consider

Ly D r.x/; a � x � bI y.a/ D y.b/ D 0: (7.126)

Denoting by C2
0 Œa; b� the linear space C2

0 Œa; b� = fu 2 C2Œa; b�: u.a/ D u.b/ D 0g,
we may write (7.126) in operator form as

Ly D r; y 2 C2
0 Œa; b�: (7.127)

Note that L W C2Œa; b� ! C Œa; b� is a linear operator. It is convenient to enlarge the
space C2

0 somewhat and define

V0 D fv 2 C Œa; b� W v0 piecewise continuous

and bounded on Œa; b�; v.a/ D v.b/ D 0g:

On V0 we can define the usual inner product

.u; v/ WD
Z b

a

u.x/v.x/dx; u; v 2 V0: (7.128)

Theorem 7.4.1. The operator L in (7.124) is symmetric on C2
0 Œa; b� relative to the

inner product (7.128); that is,

.Lu; v/ D .u;Lv/; all u; v 2 C2
0 Œa; b�: (7.129)

Proof. Use integration by parts to obtain

.Lu; v/ D
Z b

a

Œ�.p.x/u0/0 C q.x/u�v.x/dx

D �.pu0v/
ˇ̌b
a

C
Z b

a

Œp.x/u0.x/v0.x/C q.x/u.x/v.x/�dx

D
Z b

a

Œp.x/u0.x/v0.x/C q.x/u.x/v.x/�dx:

Since the last integral is symmetric in u and v, it is also equal to .Lv; u/, which in
turn, by the symmetry of .� ; �/, proves the theorem. ut

Note that the last integral in the proof of Theorem 7.4.1 is defined not only on
C2
0 Œa; b�, but also on V0. It suggests an alternative inner product,

Œu; v� WD
Z b

a

Œp.x/u0.x/v0.x/C q.x/u.x/v.x/�dx; u; v 2 V0; (7.130)
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and the proof of Theorem 7.4.1 shows that

.Lu; v/ D Œu; v� if u 2 C2
0 Œa; b�; v 2 V0: (7.131)

In particular, if u D y is a solution of (7.126), then

Œy; v� D .r; v/; all v 2 V0I (7.132)

this is the variational, or weak, form of (7.126).

Theorem 7.4.2. Under the assumptions made on p; q, and r (cf. (7.125)), there
exist positive constants c and c such that

c kuk21 � Œu; u� � c ku0k21; all u 2 V0: (7.133)

In fact,

c D p

b � a ; c D .b � a/kpk1 C .b � a/3kqk1: (7.134)

Proof. For any u 2 V0, since u.a/ D 0, we have

u.x/ D
Z x

a

u0.t/dt; x 2 Œa; b�:

By Schwarz’s inequality,

u2.x/ �
Z x

a

1dt �
Z x

a

Œu0.t/�2dt � .b � a/

Z b

a

Œu0.t/�2dt; x 2 Œa; b�;

and, therefore,

kuk21 � .b � a/
Z b

a

Œu0.t/�2dt � .b � a/2ku0k21: (7.135)

Using the assumption (7.125), we get

Œu; u� D
Z b

a

.p.x/Œu0.x/�2 C q.x/u2.x//dx � p

Z b

a

Œu0.x/�2dx � p

b � a kuk21;

where the last inequality follows from the left inequality in (7.135). This proves the
lower bound in (7.133). The upper bound is obtained by observing that

Œu; u� � .b � a/kpk1 ku0k21 C .b � a/kqk1kuk21 � c ku0k21;

where (7.135) has been used in the last step. ut
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We remark that (7.133) implies the uniqueness of solutions of (7.126). In fact, if

Ly D r; Ly� D r; y; y� 2 C2
0 Œa; b�;

then L.y � y�/ D 0, hence, by (7.131) and (7.133),

0 D .L.y � y�/; y � y�/ D Œy � y�; y � y�� � c ky � y�k21;
and it follows that y 	 y�.

7.4.2 The Extremal Problem

We define the quadratic functional

F.u/ WD Œu; u� � 2.r; u/; u 2 V0; (7.136)

where r is the right-hand function in (7.126). The extremal property for the solution
y of (7.127) is expressed in the following theorem.

Theorem 7.4.3. Let y be the solution of (7.127). Then

F.u/ > F.y/; all u 2 V0; u 6	 y: (7.137)

Proof. By (7.132), .r; u/ D Œy; u�, so that

F.u/ D Œu; u� � 2.r; u/ D Œu; u� � 2Œy; u�C Œy; y� � Œy; y�
D Œy � u; y � u�� Œy; y� > �Œy; y�;

where strict inequality holds in view of (7.133) and y � u 6	 0. On the other hand,
since Œy; y� D .Ly; y/ D .r; y/, by (7.131), we have

F.y/ D Œy; y� � 2.r; y/ D .r; y/ � 2.r; y/ D �.r; y/ D �Œy; y�;
which, combined with the previous inequality, proves the theorem. ut

Theorem 7.4.3 thus expresses the following extremal property of the solution
of (7.127):

F.y/ D min
u2V0

F.u/: (7.138)

We view (7.138) as an extremal problem for determining y, and in the next sec-
tion solve it approximately by determining a function uS from a finite-dimensional
subset S � V0 that minimizes F.u/ on S . In this connection, it is useful to note the
identity

Œy � u; y � u� D F.u/C Œy; y�; u 2 V0; (7.139)

satisfied by the solution y, which was established in the course of the proof of
Theorem 7.4.3
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7.4.3 Approximate Solution of the Extremal Problem

Let S � V0 be a finite-dimensional subspace of V0 and dim S D n its dimension.
Let u1, u2; : : : ; un be a basis of S , so that

u 2 S if and only if u D
nX

�D1
��u�; �� 2 R: (7.140)

We approximate the solution y of (7.138) by uS 2 S , which satisfies

F.uS / D min
u2S F.u/: (7.141)

Before we analyze the quality of the approximation uS � y, let us explain the
mechanics of the method.

We have, for any u 2 S ,

F.u/ D
2

4
nX

�D1
��u�;

nX

�D1
��u�

3

5 � 2
 
r;

nX

�D1
��u�

!

D
nX

�;�D1
Œu�; u������ � 2

nX

�D1
.r; u�/�� :

Define

U D

2
6664

Œu1; u1� Œu1; u2� � � � Œu1; un�

Œu2; u1� Œu2; u2� � � � Œu2; un�

� � � � � � � � � � � �
Œun; u1� Œun; u2� � � � Œun; un�

3
7775 ; � D

2
6664

�1
�2
:::

�n

3
7775 ; � D

2
6664

.r; u1/

.r; u2/
:::

.r; un/

3
7775 :

(7.142)

In early applications of the method to structural mechanics, and ever since, the
matrix U is called the stiffness matrix, and � the load vector. In terms of these,
the functional F can be written in matrix form as

F.u/ D �TU � � 2�T�; � 2 R
n: (7.143)

The matrix U is not only symmetric, but also positive definite, since �TU � D
Œu; u� > 0, unless u 	 0 (i.e., � D 0).

Our approximate extremal problem (7.141) thus takes the form

�.�/ D min;
�.�/ WD �TU � � 2�T�; � 2 R

n; (7.144)

an unconstrained quadratic minimization problem in R
n. Since U is positive

definite, the problem (7.144) has a unique solution O� given by the solution of the
linear system
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U � D �: (7.145)

It is easily verified that

�.�/ > �. O�/; all � 2 R
n; � ¤ O�I (7.146)

indeed, since � D U O�, and thus �T D O�T
U T D O�T

U , we have

�.�/ D �TU � � 2�T� D �TU � � 2 O�T
U �

D �TU � � 2 O�T
U � C O�T

U O� � O�T
U O�

D .� � O�/TU .� � O�/C �. O�/;

where �O�T
U O� D �O�T

� D O�T
� � 2�T O� D O�T

U O� � 2�T O� D �. O�/ has been used in
the last step. From this, (7.146) follows immediately. Thus,

uS D
nX

�D1
O��u�; O� D  O�1; O�2; : : : ; O�n

�T
where U O� D �: (7.147)

In practice, the basis functions of S are chosen to have small support, which
results in a matrix U having a band structure.

It is now straightforward to establish the optimal approximation property of uS
in the norm [ � ; � ]; that is,

Œy � uS ; y � uS � D min
u2S Œy � u; y � u�: (7.148)

Indeed, by (7.139) and (7.141), the left-hand side is equal to F.uS/ C Œy; y� D
minu2S fF.u/ C Œy; y�g, which, again by (7.139), equals the right-hand side of
(7.148).

The approximation property (7.148) gives rise to the following error estimate.

Theorem 7.4.4. There holds

ky � uSk1 � p
c=c ky0 � u0k1; all u 2 S; (7.149)

where c and c are the constants defined in (7.134). In particular,

ky � uSk1 � p
c=c inf

u2S ky0 � u0k1: (7.150)

Proof. By (7.133) and (7.148), we have

c ky � uSk21 � Œy � uS ; y � uS � � Œy � u; y � u� � c ky0 � u0k21;
from which (7.149) follows. ut
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The point of Theorem 7.4.4 is that, in order to get a good error bound, we have to
use an approximation process y � u, u 2 S , which approximates the first derivative
of y as well as possible. Note that this approximation process is independent of the
one yielding uS ; its sole purpose is to provide a good error bound for uS .

Example. Let � be a subdivision of Œa; b�, say,

a D x1 < x2 < x3 < � � � < xn�1 < xn D b; (7.151)

and take (see Chap. 2, Sect. 2.3.4 for notation)

S D fs 2 S
2
3.�/ W s.a/ D s.b/ D 0g: (7.152)

Here S is a subspace not only of V0, but even of C2
0 Œa; b�. Its dimension is easily

seen to be n. Given the solution y of (7.127), there is a unique scompl 2 S such that

scompl.xi / D y.xi /; i D 1; 2; : : : ; n;

s0
compl.a/ D y0.a/; s0

compl.b/ D y0.b/;
(7.153)

the “complete cubic spline interpolant” to y (cf. Chap. 2, Sect. 2.3.4 (b.1)). From
Chap. 2, (2.147), we know that

ks0
compl � y0k1 � 1

24
j�j3ky.4/k1 if y 2 C4Œa; b�:

Combining this with the result of Theorem 7.4.4 (in which u D scompl/, we get the
error bound

ky � uSk1 � 1
24

p
c=c j�j3ky.4/k1 D O.j�j3/; (7.154)

which is one order of magnitude better than the one for the ordinary finite difference
method (cf. (7.97)). However, there is more work involved in computing the stiffness
matrix (many integrals!), and also in solving the linear system (7.145). Even with
a basis of S that has small support (extending over at most four consecutive
subintervals of �), one still has to deal with a banded matrix U having bandwidth
7 (not 3, as in (7.95)).

7.5 Notes to Chapter 7

Background material on the theory of boundary value problems can be found
in most textbooks on ordinary differential equations. Specialized texts are Bailey
et al. [1968], Bernfeld and Lakshmikantham [1974], and Agarwal [1986]; all three,
but especially the first, also contain topics on the numerical solution of boundary
value problems and applications. An early book strictly devoted to numerical
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methods for solving boundary value problems is Fox [1990], an eminently practical
account still noteworthy for its consistent use of “difference correction,” that is, the
incorporation of remainder terms into the solution process. Subsequent books and
monographs are Keller [1992], Na [1979], and Ascher et al. [1995]. The books by
Keller and Na complement each other in that the former gives a mathematically
rigorous treatment of the major methods in use, with some applications provided in
the final chapter, and the latter a more informal presentation intended for engineers,
and containing a wealth of engineering applications. Na’s book also discusses
methods less familiar to numerical analysts, such as the ����� �����	
�

developed by Russian scientists, here translated as the “method of chasing,” and
interesting methods based on transformation of variables. The book by Ascher et al.
is currently the major reference work in this area. One of its special features is an
extensive discussion of the numerical condition and associated condition numbers
for boundary value problems. In its first chapter, it also contains a large sampling of
boundary value problems occurring in real-life applications.

Sturm–Liouville eigenvalue problems – both regular and singular – and their
numerical solution are given a thorough treatment in Pryce [1993]. A set of 60 test
problems is included in one of the appendices, and references to available software
in another.

Section 7.1.1. The third Example is from Bailey et al. [1968, Chap. 1, Sect. 4].

Section 7.1.2. The exposition in this section, in particular, the proof of
Theorem 7.1.2, follows Keller [1992, Sect. 1.2].

Section 7.1.3. An example of an existence and uniqueness theorem for the general
boundary value problem (7.38) is Theorem 1.2.6 in Keller [1992]. The remark at the
end of this section can be generalized to “partially separated” boundary conditions,
which give rise to a “reduced” superposition method; see Ascher et al. [1995,
Sect. 4.2.4].

Section 7.2. In this section, we give only a bare outline and some of the key
ideas involved in shooting methods. To make shooting a viable method, even for
linear boundary value problems, requires attention to many practical and technical
details. For these, we must refer to the relevant literature, for example, Roberts and
Shipman [1972] or, especially, Ascher et al. [1995, Chap. 4]. The latter reference
also contains two computer codes, one for linear, the other for nonlinear (nonstiff)
boundary value problems.

Shooting basically consists of solving a finite-dimensional system of equations
generated by solutions of initial value problems, which is then solved iteratively, for
example, by Newton’s method. Alternatively, one could apply Newton’s method, or
more precisely, the Newton–Kantorovich method, directly to the boundary value
problem in question, considered as an operator equation in a Banach space of
smooth functions on Œa; b� satisfying homogeneous boundary conditions. This is the
method of quasilinearization originally proposed by Bellman and Kalaba [1965].

Yet another approach is “invariant imbedding,” where the endpoint b of the
interval Œa; b� is made a variable with respect to which one differentiates to obtain
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an auxiliary nonlinear initial value problem of the Riccati type. See, for example,
Ascher et al. [1995, Sect. 4.5]. A different view of invariant imbedding based on a
system of first-order partial differential equations and associated characteristics is
developed in Meyer [1973].

Section 7.2.1. Instead of Newton’s method (7.45) one could, of course, use other
iterative methods for solving the equation �.s/ D 0 in (7.25), for example, a fixed
point iteration based on the equivalent equation s D s � m�.s/, m ¤ 0, which is
analyzed in Keller [1992, Sect. 2.2], or Steffensen’s method (cf. Chap. 4, Sect. 4.6,
(4.66)).

For the origin of the second Example in this section, see Troesch [1976]. The
analytic solution of the associated initial value problem is given, for example, in
Stoer and Bulirsch [2002, pp. 514–516]; also cf. Ex. 8(c),(d).

Section 7.2.2. It is relatively straightforward to analyze the effect, in superposition
methods, of the errors committed in the numerical integration of the initial
value problems involved; see, for example, Keller [1992, Sect. 2.1] and Ascher
et al. [1995, Sect. 4.2.2]. More important, and potentially more disastrous, are the
effects of rounding errors; see, for example, Ascher et al. [1995, Sect. 4.2.3].

In place of (7.52), other iterative methods could be used to solve the equation
�.s/ D 0 in (7.41), for example, one of the quasi-Newton methods (cf. Chap. 4,
Notes to Sect. 4.9.2), or, as in the scalar case, a fixed point iteration based on s D
s�M�.s/, with M a nonsingular matrix chosen such that the map s 7! s�M�.s/

is contractive.
The Example in this section is from Morrison et al. [1962], where the term

“shooting” appears to have been used for the first time in the context of boundary
value problems.

Section 7.2.3. Parallel shooting is important also for linear boundary value prob-
lems of the type (7.38), (7.42), since without it, numerical linear dependencies may
be developing that could render the method of simple shooting useless. There are
various versions of parallel shooting, some involving reorthogonalization of solution
vectors; see Ascher et al. [1995, Sects. 4.3 and 4.4]. For a discussion of homotopy
methods, including numerical examples, see Roberts and Shipman [1972, Chap. 7].

Sections 7.3.1 and 7.3.2. The treatment in these sections closely follows
Keller [1992, Sects. 3.1 and 3.2]. Maintaining second-order accuracy on
nonuniform grids is not entirely straightforward; see, for example, Ascher
et al. [1995, Sect. 5.6.1].

Extensions of the method of finite differences to linear and nonlinear systems
of the type (7.38) can be based on the local use of the trapezoidal or midpoint
rule. This is discussed in Keller [1992, Sect. 3.3] and Ascher et al. [1995, Sects. 5.1
and 5.2]. Local use of implicit Runge–Kutta methods afford more accuracy, and so
do the methods of extrapolation and “deferred corrections”; for these, see Ascher
et al. [1995, Sects. 5.3, 5.4, 5.5.2 and 5.5.3].

Boundary value problems for single higher-order differential equations are often
solved by collocation methods using spline functions; a discussion of this is given
in Ascher et al. [1995, Sects. 5.6.2–5.6.4].
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Section 7.4. The treatment of variational methods in this section is along the lines
of Stoer and Bulirsch [2002, Sect. 7.5]. There are many related methods, collectively
called projection methods, whose application to two-point boundary value problems
and convergence analysis is the subject of a survey by Reddien [1980] containing
extensive references to the literature.

Exercises and Machine Assignments to Chapter 7

Exercises

1. Consider the nonlinear boundary value problem (Blasius equation)

y000 C 1
2
yy00 D 0; 0 � x < 1;

y.0/ D y0.0/ D 0; y0.1/ D 1:

(a) Letting y00.0/ D 
 and z.t/ D 
� 1
3 y.
� 1

3 t/ (assuming 
 > 0), derive an
initial value problem for z on 0 � t < 1.

(b) Explain, and illustrate numerically and graphically, how the solution of the
initial value problem in (a) can be used to obtain the solution y.x/ of the
given boundary value problem.

2. The boundary value problem

y00 D � 1
x
yy0; 0 < x � 1I y.0/ D 0; y.1/ D 1;

although it has a singularity at x D 0 and certainly does not satisfy (7.112), has
the smooth solution y.x/ D 2x=.1C x/.

(a) Determine analytically the s-interval for which the initial value problem

u00 D � 1
x

uu0; 0 < x � 1I u.0/ D 0; u0.0/ D s

has a smooth solution u.xI s/ on 0 � x � 1.
(b) Determine the s-interval for which Newton’s method applied to

u.1I s/� 1 D 0 converges.

3. Use Matlab to reproduce the results in Table 7.2 and to prepare plots of the four
solution components.

4. Derive (7.56) and (7.62).
5. Let

�.s/ D s

s cosh 1 � sinh 1
� e
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and s0 be the solution of

s0 � �.s0/

�0.s0/
D tanh 1

(cf. the Example in Sect. 7.2.2, in particular (7.58), (7.62)).

(a) Show that s0 < coth 1. fHint: consider what s0 < t0 means in terms of one
Newton step at t0 for the equation �.s/ D 0.g

(b) Use the bisection method to compute s0 to six decimal places. What are
appropriate initial approximations?

6. Generalizing the Example in Sect. 7.2.2, let � > 0 and consider the boundary
value problem

dy1
dx

D y�C1
1

y�2

dy2
dx

D y�C1
2

y�1

9
>>>>=

>>>>;

0 � x � 1;

y1.0/ D 1; y1.1/ D e:

(a) Determine the exact solution.
(b) Solve the initial value problem

d

dx

	
u1
u2



D
	

u�C1
1 =u�2

u�C1
2 =u�1



; 0 � x � 1I

	
u1
u2



.0/ D

	
1

s




in closed form.
(c) Find the conditions on s > 0 guaranteeing that u1.x/, u2.x/ both remain

positive and finite on Œ0; 1�. In particular, show that, as � ! 1, the interval
in which s must lie shrinks to the point s D 1. What happens when � ! 0?

7. Suppose the Example in Sect. 7.2.2 is modified by multiplying the right-hand
sides of the differential equation by 
, and by replacing the second boundary
condition by y1.1/ D e�
, where 
 > 0 is a large parameter.

(a) What is the exact solution?
(b) What are the conditions on s for the associated initial value problem to have

positive and bounded solutions? What happens as 
 ! 1? As 
 ! 0?

8. The Jacobian elliptic functions sn and cn are defined by

sn.ujk/ D sin'; cn.ujk/ D cos'; 0 < k < 1;

where ' is uniquely determined by

u D
Z '

0

d�

.1 � k2 sin2 �/
1
2

:
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(a) Show that K.k/ WD R 1
2 	

0 .1 � k2 sin2 �/� 1
2 d� is the smallest positive zero

of cn.
(b) Show that

d

du
sn.ujk/ D cn.ujk/

p
1 � k2Œsn.ujk/�2 ;

d

du
cn.ujk/ D �sn.ujk/

p
1 � k2Œsn.ujk/�2 :

(c) Show that the initial value problem

y00 D 
 sinh.
y/; y.0/ D 0; y0.0/ D s .jsj < 2/

has the exact solution

y.xI s/ D 2



sinh�1

�
s

2

sn.
xjk/
cn.
xjk/

�
; k2 D 1 � s2

4
:

Hence show that y.xI s/, x > 0, becomes singular for the first time when
x D x1, where

x1 D K.k/



:

(d) From the known expansion (see Radon [1950], p. 76 and Sect. 7, (Ib))

K.k/ D ln
4p
1 � k2

C 1

4

�
ln

4p
1 � k2

� 1
�
.1 � k2/C � � � ; k ! 1;

conclude that

x1 
 1



ln

8

jsj as s ! 0:

9. It has been shown in the first Example of Sect. 7.2.1 that the boundary value
problem

y00 C e�y D 0; 0 � x � 1; y.0/ D y.1/ D 0

has a unique solution that is nonnegative on Œ0; 1�.

(a) Set up a finite difference method for solving the problem numerically. (Use
a uniform grid xn D n

NC1 , n D 0; 1; : : : ; N C 1, and the simplest of finite
difference approximations to y00.)

(b) Write the equations for the approximate vector uT D Œu1; u2; : : : ; uN � in
fixed point form u D '.u/ and find a compact domain D � R

N such that
' W R

N ! R
N maps D into D and is contractive in D. fHint: use the fact

that the tridiagonal matrix A D triŒ1;�2; 1� has a nonpositive inverse A�1
satisfying kA�1k1 � 1

8
.N C 1/2.g
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(c) Discuss the convergence of the fixed point iteration applied to the system
of finite difference equations.

10. Given the grid fxngNC1
nD0 of (7.79), construct finite difference approximations‚n

for �.xn/, where �.x/ D 1
12
Œy.4/.x/ � 2p.x/y000.x/�, such that ‚n � �.xn/ D

O.h2/ (cf. (7.109)). fHint: distinguish the cases 2 � n � N � 1 and n D 1

resp. n D N .g
11. Prove Theorem 7.3.4.
12. Describe the application of Newton’s method for solving the nonlinear finite

difference equations Khu D 0 of (7.117).
13. Let � be the subdivision

a D x0 < x1 < � � � < xn < xnC1 D b

and S D fs 2 S
0
1.�/ W s.a/ D s.b/ D 0g.

(a) With Œ � ; � � the inner product defined in (7.130), find an expression for
Œu�; u�� in terms of the basis of hat functions (cf. Chap. 2, Ex. 72, but note
the difference in notation) and in terms of the integrals involved; do this in
a similar manner for �� D .r; u�/, where . � ; � / is the inner product defined
in (7.128).

(b) Suppose that each integral is split into a sum of integrals over each
subinterval of � and the trapezoidal rule is employed to approximate the
values of the integrals. Obtain the resulting approximations for the stiffness
matrix U and the load vector �. Interpret the linear system (7.145) thus
obtained as a finite difference method.

14. Apply the approximate variational method of Sect. 7.4.3 to the boundary value
problem

�y00 D r.x/; 0 � x � 1I y.0/ D y.1/ D 0;

using for S a space of continuous piecewise quadratic functions. Specifically,
take a uniform subdivision

� W 0 D x0 < x1 < x2 < � � � < xn�1 < xn D 1; x� D �h;

of Œ0; 1� into n subintervals of length h D 1=n and let S D fs 2 S
0
2 W s.0/ D

s.1/ D 0g.

(a) How many basis functions is S expected to have? Explain.
(b) Construct a basis for S . fHint: for � D 1; 2; : : : ; n take u� D A��1 to be

the quadratic function on Œx��1; x� � having values u�.x��1/ D u�.x�/ D 0,
u�.x�� 1

2
/ D 1 and define A��1 to be zero outside of Œx��1; x� �. Add to

these functions the basis of hat functions B� for S01.�/.g
(c) Compute the stiffness matrix U (in (7.142)) for the basis constructed in (b).
(d) Interpret the resulting system U � D � as a finite difference method

applied to the given boundary value problem. What are the meanings of
the components of �?
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15. (a) Show that the solution uS of (7.141) is the orthogonal projection of the
exact solution y of (7.138) onto the space S relative to the inner product
Œ � ; � �; that is,

Œy � uS ; v� D 0 for all v 2 S:
(b) With kukE denoting the energy norm of u (i.e., kuk2E D Œu; u�), show that

ky � uSk2E D kyk2E � kuSk2E:
16. Consider the boundary value problem (7.127) and (7.124). Define the energy

norm by kuk2E D Œu; u�. Let �1 and �2 be two subdivisions of Œa; b� and Si D
fs 2 S

k
m.�i/; s.a/ D s.b/ D 0g; i D 1; 2, for some integers m, k with

0 � k < m.

(a) With y denoting the exact solution of the boundary value problem, and �1

being a refinement of �2, show that

ky � uS1kE � ky � uS2kE:
(b) Let �2 be an arbitrary subdivision of Œa; b� with all grid points (including

the endpoints) being rational numbers. Prove that there exists a uniform
subdivision�1 of Œa; b�, with j�1j D h sufficiently small, such that

ku � uS1kE � ky � uS2kE;
where Si are as defined at the beginning of the exercise.

17. Apply the variational method to the boundary value problem

Ly WD �py00 C qy D r.x/; 0 � x � 1I
y.0/ D y.1/ D 0;

where p and q are constants with p > 0, q � 0. Use approximants from the
space S D spanfu�.x/ D sin.�	x/; � D 1; 2; : : : ; ng, and interpret LuS . Find
an explicit form for uS in the case of constant r .

18. Let y be the exact solution of the boundary value problem (7.123)–(7.125) and
uS the approximate solution of the associated extremal problem with S D fs 2
S
0
1.�/ W s.a/ D s.b/ D 0g and � W a D x0 < x1 < � � � < xn < xnC1 D b.

Prove that

ky � uSk1 � 1

2

s
c

c
max
0���n oscŒx� ;x�C1�.y

0/;

where oscŒc;d �.f / WD maxŒc;d � f � minŒc;d � f and c, c are the constants defined
in (7.134). In particular, show that

ky � uSk1 � 1
2

q
c
c

j�jky00k1:

fHint: apply Theorem 7.4.4, in particular, (7.150).g
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19. Consider the boundary value problem (7.127) and (7.124) with p.x/ and q.x/
being positive constants,

p.x/ D p > 0; q.x/ D q > 0:

Let S D fs 2 S
0
1.�/ W s.a/ D s.b/ D 0g, where the subdivision�: a D x0 <

x1 < x2 < � � � < xn < xnC1 D b is assumed to be quasi uniform; that is,

�x� WD x�C1 � x� � ˇj�j; � D 0; 1; : : : ; n;

for some positive constant ˇ. (Recall that j�j WD max0���n �x� .) Let U be
the stiffness matrix (cf. (7.142)) for the basis u� D B� , � D 1; 2; : : : ; n, of
hat functions (cf. Chap. 2, Ex. 72, but note the difference in notation). Write
u.x/ D Pn

�D1 ��u�.x/ for any u 2 S , and �T D Œ�1; �2; : : : ; �n�.

(a) Show that �TU � D Œu; u�.
(b) Show that ku0k2L2 D �TT1�, where T1 is a symmetric tridiagonal matrix

with

.T1/�;� D 1

�x��1
C 1

�x�
; � D 1; 2; : : : ; nI

.T1/�C1;� D .T1/�;�C1 D � 1

�x�
; � D 1; : : : ; n � 1:

fHint: use integration by parts, being careful to observe that u0 is only
piecewise continuous.g

(c) Show that kuk2L2 D �TT0�, where T0 is a symmetric tridiagonal matrix
with

.T0/�;� D 1

3
.�x��1 C�x�/; � D 1; 2; : : : ; nI

.T0/�C1;� D .T0/�;�C1 D 1

6
�x�; � D 1; : : : ; n � 1:

(d) Combine (a)–(c) to compute Œu; u� and hence to estimate the Euclidean
condition number cond2 U . fHint: use Gershgorin’s theorem to estimate
the eigenvalues of U .g

(e) The analysis in (d) fails if q D 0. Show, however, in the case of a uniform
grid, that when q D 0 then cond2 U � 1= sin2 	

4n
.

(f) Indicate how the argument in (d) can be extended to variable p.x/, q.x/
satisfying 0 < p.x/ � Np; 0 < q � q.x/ � Nq on Œa; b�.

20. The method of collocation for solving a boundary value problem

Ly D r.x/; 0 � x � 1I y.0/ D y.1/ D 0;

consists of selecting an n-dimensional subspace S � V0 and determining uS 2
S such that .LuS/.x�/ D r.x�/ for a discrete set of points 0 < x1 < x2 <
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� � � < xn < 1. Apply this method to the problem of Ex. 17, with S as defined
there. Discuss the solvability of the system of linear equations involved in the
method. fHint: use the known fact that the only trigonometric sine polynomialPn

�D1 �� sin.�	x/ of degree n that vanishes at n distinct points in .0; 1/ is the
one identically zero.g

Machine Assignments

1. The following eigenvalue problem arises in the physics of gas discharges.
Determine the smallest positive 
 > 0 such that

' 00 C 1

r
' 0 C 
2'.1� '/ D 0; 0 < r � 1;

'.0/ D a; ' 0.0/ D 0; '.1/ D 0;

where a is given, 0 < a < 1.

(a) Explain why 
 D 0 cannot be an eigenvalue.
(b) Reduce the problem to an initial value problem. fHint: make a change of

variables, x D 
r , y.x/ D '.x=
/.g
(c) Use Maple to determine the Taylor expansion up to the power x8 of the

solution y.x; a/ to the initial value problem of (b).
(d) Integrate the initial value problem starting at x D :1, using the Taylor

expansion of (c) to determine the initial data y.:1; a/ and dy
dx .:1; a/. Use the

classical Runge–Kutta method (for example, the Matlab routine of Chap. 5,
MA 1(a)) and integrate until the solution y becomes negative. Then apply
interpolation to compute an approximation to 
, the solution of y. � ; a/ D 0,
to an accuracy of about five decimal digits. Prepare a table of the 
 so
obtained for a D :1 W :1 W :9, including the values of the integration step
h required.

(e) For a D :1 W :1 W :9 use Matlab to produce graphs of the solutions y.x; a/ on
intervals from x D 0 to x D 
, the zero of y. (Determine the endpoints of
these intervals from the results of (d).) Use the Matlab routine ode45 to do
the integration from .1 to 
 and connect the points .0; a/ and .:1; y.:1; a// by
a straight line segment. (Compute y.:1; a// by the Taylor expansion of (c).)

2. The shape of an ideal flexible chain of length L, hung from two points .0; 0/ and
.1; 1/, is determined by the solution of the eigenvalue problem

y00 D 

p
1C .y0/2; y.0/ D 0; y.1/ D 1;

Z 1

0

p
1C .y0/2dx D L:
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Strictly speaking, this is not a problem of the form (7.3), (7.4), but nevertheless
can be solved analytically as well as numerically.

(a) On physical grounds, what condition must L satisfy for the problem to have
a solution?

(b) Derive three equations in three unknowns: the two constants of integration
and the eigenvalue 
. Obtain a transcendental equation for 
 by eliminating
the other two unknowns. Solve the equation numerically and thus find, and
plot, the solution for L D 2; 4; 8, and 16.

(c) If one approximately solves the problem by a finite difference method over
a uniform grid x0 D 0 < x1 < x2 < � � � < xN < xNC1 D 1, xn D n

NC1 ,
approximating the integral in the third boundary condition by the composite
trapezoidal rule, a system of N C 1 nonlinear equations in N C 1 unknowns
results. Solve the system by a homotopy method, using L as the homotopy
parameter. Since for L D p

2 the solution is trivial, select a sequence of
parameter values L0 D p

2 < L1 < � � � < Lm and solve the finite difference
equations for Li using the solution for Li�1 as the initial approximation.
Implement this for the values ofL given in (b), taking a sequence fLig which
contains these values. Compare the numerical results for the eigenvalues
with the analytic ones for N D 10; 20; 40. (Use the routine fsolve from
the Matlab optimization toolbox to solve the system of nonlinear equations.)

3. Change the boundary value problem of the first Example of Sect. 7.2.1 to

y00 D �ey; 0 � x � 1; y.0/ D y.1/ D 0:

Then Theorem 7.1.2 no longer applies (why not?). In fact, it is known that the
problem has two solutions. Use Matlab to compute the respective initial slopes
y0.0/ to 12 significant digits by Newton’s method, as indicated in the text. fHint:
use approximations s.0/ D 1 and s.0/ D 15 to the initial slopes.g

4. Consider the boundary value problem

.BVP/ y00 D y2; 0 � x � bI y.0/ D 0; y.b/ D ˇ;

and the associated initial value problem

.IVP/ u00 D u2; u.0/ D 0; u0.0/ D s:

Denote the solution of (IVP) by u.x/ D u.xI s/.
(a) Let v.x/ D u.xI �1/. Show that

v0.x/ D �
q

2
3
v3.x/C 1;

and thus the function v, being convex (i.e., v00 > 0), has a minimum at some
x0 > 0 with value vmin D �.3=2/1=3 D �1:1447142 : : : . Show that v is
symmetric with respect to the line x D x0.
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(b) Compute x0 numerically in terms of the beta integral. fPoint of information:
the beta integral is B.p; q/ D R 1

0 t
p�1.1 � t/q�1dt and has the value

�.p/�.q/

�.pCq/ .g
(c) Use Matlab to compute v by solving the initial value problem

v00 D v2; x0 � x � 3x0I v.x0/ D vmin; v0.x0/ D 0:

Plot the solution (and its symmetric part) on �x0 � x � 3x0.
(d) In terms of the function v defined in (a), show that

u.xI �s3/ D s2v.sx/; all s 2 R:

As s ranges over all the reals, the solution manifold fs2v.sx/g thus encom-
passes all the solutions of (IVP). Prepare a plot of this solution manifold.
Note that there exists an envelope of the manifold, located in the lower half-
plane. Explain why, in principle, this envelope must be the solution of a
first-order differential equation.

(e) Based on the plot obtained in (d), discuss the number of possible solutions
to the original boundary value problem (BVP). In particular, determine for
what values of b and ˇ there does not exist any solution.

(f) Use the method of finite differences on a uniform grid to compute the two
solutions of (BVP) for b D 3x0, ˇ D v0, where v0 D v.3x0/ is a quantity
already computed in (c). Solve the systems of nonlinear difference equations
by Newton’s method. In trying to get the first solution, approximate the
solution v of (a) on 0 � x � 3x0 by a quadratic function Qv satisfying
Qv.0/ D 0, Qv0.0/ D �1, Qv.3x0/ D v0, and then use its restriction to the grid
as the initial approximation to Newton’s method. For the second solution,
try the initial approximation obtained from the linear approximation v.x/ D
v0x=.3x0/. In both cases, plot initial approximations as well as the solutions
to the difference equations. What happens if Newton’s method is replaced
by the method of successive approximations?

5. The following boundary value problem occurs in soil engineering. Determine
y.r/, 1 � r < 1, such that

1

r

d

dr

�
ry

dy

dr

�
C �.1� y/ D 0; y.1/ D �; y.1/ D 1;

where �, � are parameters satisfying � > 0, 0 < � < 1. The quantity of interest

is � D dy
dr

ˇ̌
ˇ
rD1.

(a) Let z.x/ D Œy.ex/�2. Derive the boundary value problem and the quantity of
interest in terms of z.
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(b) Consider the initial value problem associated with the boundary value
problem in (a), having initial conditions

z.0/ D �2; z0.0/ D s:

Discuss the qualitative behavior of its solutions for real values of s.
fHint: suggested questions may be: admissible domain in the .x; z/-plane,
convexity and concavity of the solutions, the role of the line z D 1.g

(c) From your analysis in (b), devise an appropriate shooting procedure for
solving the boundary value problem numerically and for computing the
quantity � . Run your procedure on the computer for various values of � and
�. In particular, prepare a five-decimal table showing the values of s and �
for � D 0:1.0:1/:9 and � D 0:5; 1; 2; 5; 10, and plot � versus �.

Selected Solutions to Exercises

1. (a) We have z0.t/ D 
� 2
3 y0.
� 1

3 t/, z00.t/ D 
�1y00.
� 1
3 t/, z000.t/ D


� 4
3 y000.
� 1

3 t/. Put x D 
� 1
3 t in the given boundary value problem to

obtain 

4
3 z000 C 1

2


1
3 z � 
z00 D 0, that is,

z000 C 1
2
zz00 D 0; 0 � t < 1:

The initial conditions for z follow from those for y and the definition of 
:

z.0/ D z0.0/ D 0; z00.0/ D 1:

(b) The boundary condition at 1 for y0 transforms to z0.1/ D 
� 2
3 , so that


 D Œz0.1/�� 3
2 . Thus, solving the initial value problem of (a) on Œ0;1/,

we obtain z0.1/, hence 
, hence y.x/ as the solution of the initial value
problem

y000 C 1
2
yy00 D 0;

y.0/ D y0.0/ D 0; y00.0/ D 


To explore the convergence of z0.t/ as t ! 1, we run the small Matlab
program

%EXVII_1B1
%
f0=’%8.2f %12.8f\n’;
disp(’ t zprime’)
z0=[0;0;1]; tspan=[0 5 10 15];
options=odeset(’AbsTol’,.5e-8);
[t,z]=ode45(@fEXVII_1,tspan,z0,options);
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for i=1:4
fprintf(f0,t(i,1),z(i,2))

end

%FEXVII_1
%
function yprime=fEXVII_1(x,y)
yprime=[y(2);y(3);-y(1)*y(3)/2];

The results

>> EXVII_1B1
t zprime

0.00 0.00000000
5.00 2.08544470

10.00 2.08553204
15.00 2.08553204

>>

show that, for graphical purposes, z0.1/ D 2:0855 is an acceptable value
for the limit. Thus, 
 D Œz0.1/�� 3

2 D :33204. We can now solve the initial
value problem of interest. The program below plots the three components
of the solution y.x/ D Œy.x/; y0.x/; y00.x/� on the interval Œ0; 5�.

%EXVII_1B2
%
global lambda
lambda=.33204;
y0=[0;0;lambda]; xspan=[0 5];
[x,y]=ode45(@fEXVII_1,xspan,y0);
plot(x,y)
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14. (a) The space S02.�/ has degree of freedom 3n� .n�1/ D 2nC1, since there
are n quadratics having three degrees of freedom each, and n�1 continuity
requirements at the n�1 interior grid points. Since the boundary conditions
reduce the degree of freedom by two, S has 2n�1 degrees of freedom, and
we expect this to be the number of basis functions in S .

(b) Following the Hint, let A��1.x/, � D 1; 2; : : : ; n, be supported on
Œx��1; x�� and a quadratic function there, vanishing at the endpoints of
the support interval and having the value 1 at the midpoint. Let B�.x/,
� D 1; 2; : : : ; n � 1, be the interior hat functions of those forming a basis
of S01.�/ (cf. Chap. 2, Sect. 2.3.2, but note the difference in notation). We
claim that

u�.x/ D A��1.x/; � D 1; : : : ; nI unC�.x/ D B�.x/; � D 1; : : : ; n � 1;

is a basis of S (it has the correct number of functions). To prove this, we
must show that span.u1; u2; : : : ; u2n�1/ D S and that the u� are linearly
independent. Let

u.x/ D
nX

�D1
c�A��1.x/C

n�1X

�D1
cnC�B�.x/:

It is clear that u 2 S (note thatA0.0/ D B1.0/ D 0,An�1.1/ D Bn�1.1/ D
0), so that span.u1; : : : ; u2n�1/ � S . Conversely, let s 2 S be an arbitrary
member of S . Then it can be represented in the form above, i.e., S �
span.u1; : : : ; u2n�1/. Indeed, note that for � D 1; 2; : : : ; n; � D 0; 1; : : : ; n

A��1.x�/ D 0; A��1.x�C 1
2
/ D ı�;�C1;

B�.x�/ D ı��; B�.x�C 1
2
/ D 1

2
.ı�� C ı�;�C1/:

Thus, putting x D x�, we find s.x�/ D cnC� for � D 1; 2; : : : ; n � 1,
and putting x D x�C 1

2
, we get s.x�C 1

2
/ D c�C1 C 1

2
.cnC� C cnC�C1/

for � D 0; 1; : : : ; n � 1 (where c2n D 0). The first set of equations
determines cnC1; cnC2; : : : ; c2n�1, and the second set (written in reverse
order) determines cn; cn�1; : : : ; c1. This proves span.u1; : : : ; u2n�1/ D S .
The linear independence follows likewise (put s.x/ 	 0 in the argument
above).
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(c) Straightforward interpolation gives

A��1.x/ D 2

h
.x � x��1/

	
1 � 2

h
.x � x�� 1

2
/



on Œx��1; x� �;

� D 1; 2; : : : ; n;

whereas

B�.x/ D

8
ˆ̂<

ˆ̂:

x � x��1
h

on Œx��1; x� �;

x�C1 � x

h
on Œx�; x�C1�;

� D 1; 2; : : : ; n � 1:

Hence,

A0
��1.x/ D 4

h2
Œ.2� � 1/h� 2x� on Œx��1; x��;

B 0
�.x/ D

8
ˆ̂<

ˆ̂:

1

h
on Œx��1; x� �;

�1
h

on Œx�; x�C1�:

It is clear that the leading n � n diagonal block of U is a diagonal matrix,
since

R 1
0
A0
��1.x/A0

��1.x/dx D 0 if � ¤ � and p D 1; q D 0 in (7.130).
Its diagonal elements are

Z 1

0

ŒA0
��1.x/�2dx D

Z x�

x��1

16

h4
Œ.2� � 1/h� 2x�2dx

D 16

h4
Œ.2� � 1/h� 2x�3

3 � .�2/
ˇ̌
ˇ̌
x�

x��1

D 16

3h
; � D 1; 2; : : : ; n:

The n � .n � 1/ block of U consisting of the first n rows and last n � 1

columns is the zero matrix (and hence also the block symmetric to it). This
is so because

Z 1

0

A0
��1.x/B 0

�.x/dx D 0 if j�� �j > 1;

on the next page the integrand being identically zero, and since by
symmetry (see the figure for � D 2 and h D 1=4),
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.2

0.4

0.6

0.8

1

xν−2 xν−1 xν
xν+1

Bν−1 Bν

Aν−1

Z 1

0

A0
��1.x/B 0

��1.x/dx D
Z 1

0

A0
��1.x/B 0

�.x/dx

D
Z x�

x��1

4

h2
Œ.2� � 1/h� 2x�

1

h
dx

D 4

h3
Œ.2� � 1/h� 2x�2

2 � .�2/
ˇ̌
ˇ̌
x�

x��1

D 0:

Finally, the last .n � 1/ � .n� 1/ diagonal block is tridiagonal, since

Z 1

0

B 0
�.x/B

0
�.x/dx D 0 if j�� �j > 1;

and
Z 1

0

ŒB 0
�.x/�

2dx D 2

h
;

Z 1

0

B 0
�.x/B

0
�C1.x/dx D �1

h
:

Thus,

U D 1

h

	
D 0

0 T



; D D 16

3
I ; T D tri.�1; 2;�1/:

(d) The first n components of the load vector � (cf. (7.142)) are

�� D
Z 1

0

r.x/A��1.x/dxD
Z x�

x��1

r.x/
2

h
.x�x��1/

	
1 � 2

h
.x � x�� 1

2
/



dx:
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With the change of variable x D x��1 C th, this becomes

�� D 4h

Z 1

0

r.x��1 C th/t.1 � t/dt; � D 1; 2; : : : ; n:

The remaining components are

�nC� D
Z 1

0

r.x/B�.x/dxD
Z x�

x��1

r.x/
x � x��1

h
dxC

Z x�C1

x�

r.x/
x�C1 � x

h
dx;

which, by the change of variable x D x� C th, becomes

�nC� D h

�Z 0

�1
r.x� C th/.1C t/dt C

Z 1

0

r.x� C th/.1 � t/dt

�
;

� D 1; 2; : : : ; n � 1:

They can readily be interpreted in terms of weighted averages of r over
one or two consecutive subintervals. Indeed, if we introduce the weight
functions

w0.t/ D t.1 � t/; 0 � t � 1I w1.t/ D
�
1C t; � 1 � t � 0;

1 � t; 0 � t � 1;

then, since
R 1
0 w0.t/dt D 1

6
and

R 1
�1 w1.t/dt D 1, we can write

�� D 2

3
hQr�; Qr� D

Z 1

0

r.x��1 C th/w0.t/dt

Z 1

0

w0.t/dt

; � D 1; 2; : : : ; n;

and

�nC� D hNr�; Nr� D

Z 1

�1
r.x� C th/w1.t/dt

Z 1

�1
w1.t/dt

; � D 1; 2; : : : ; n � 1:

We can now interpret the system of linear equations U � D � as follows.
First note that in

u.x/ D
nX

�D1
��A��1.x/C

n�1X

�D1
�nC�B�.x/
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we have from (b) that

u.x�/ D �nC�; � D 1; 2; : : : ; n � 1;
and

u
�
x�C 1

2

�
D ��C1 C 1

2
.�nC� C �nC�C1/

D ��C1 C 1

2
.u.x�/C u.x�C1//; � D 0; 1; : : : ; n � 1:

Thus, writing u
 D u.x
/, the meaning of the �-components is

�� D u�� 1
2

� 1

2
.u��1 C u�/; � D 1; 2; : : : ; nI

�nC� D u�; � D 1; 2; : : : ; n � 1:

By Taylor’s formula centered at x��1=2,

�� D �h
2

8
u00.x�� 1

2
/CO.h4/:

The first n equations of the system U � D � thus are

16

3h
�� D 2

3
hQr�;

that is,

�u00.x�� 1
2
/ D Qr� CO.h2/; � D 1; 2; : : : ; n:

The remaining equations are the standard finite difference equations

�.u��1 � 2u� C u�C1/ D h2 Nr� CO.h2/; � D 1; 2; : : : ; n � 1;

where u0 D un D 0.
19. (a) We have

Œu; u� D
2

4
nX

�D1
��u�;

nX

�D1
��u�

3

5 D
nX

�;�D1
Œu�; u������ D �TU �:

(b) We have

ku0k2L2 D
Z b

a

Œu0.x/�2dx D
nX

�D0

Z x�C1

x�

Œu0.x/�2dx:
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To each integral in the summation on the right, we apply integration by
parts:

Z x�C1

x�

u0.x/u0.x/dx D u0u
ˇ̌x�C1

x�
�
Z x�C1

x�

u00.x/u.x/dx

D u0.x�C1 � 0/u.x�C1/� u0.x� C 0/u.x�/;

since u00.x/ 	 0 on .x�; x�C1/. On the interval Œx0; x1� one has u.x/ D
�1B1.x/, hence

u.x0/ D 0; u.x1/ D �1I u0.x0 C 0/ D u0.x1 � 0/ D 1

�x0
�1:

On the interval Œx� ; x�C1� (1 � � � n � 1), one has u.x/ D ��B�.x/ C
��C1B�C1.x/, hence

u.x�/D ��; u.x�C1/ D ��C1I u0.x�C0/D u0.x�C1�0/ D 1

�x�
.��C1���/:

Finally, on Œxn; xnC1�, one has u.x/ D �nBn.x/, hence

u.xn/ D �n; u.xnC1/ D 0I u0.xn C 0/ D u0.xnC1 � 0/ D � 1

�xn
�n:

There follows

ku0k2L2 D 1

�x0
�21C

n�1X

�D1

	
1

�x�
.��C1 � ��/��C1 � 1

�x�
.��C1 � ��/��



C 1

�xn
�2n

D 1

�x0
�21 C

n�1X

�D1

1

�x�
.�2�C1 � 2����C1 C �2� /C 1

�xn
�2n

D
nX

�D1

�
1

�x��1
C 1

�x�

�
�2� � 2

n�1X

�D1

1

�x�
����C1

D �TT1�:
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(c) We have

kuk2L2 D
Z b

a

Œu.x/�2dx D
Z b

a

nX

�D1
��B�.x/

nX

�D1
��B�.x/dx

D
nX

�;�D1
����

Z b

a

B�.x/B�.x/dx:

Since
R b
a B�.x/B�.x/dx D 0 if j� � �j > 1, the matrix of this quadratic

form is tridiagonal, and clearly symmetric. One computes

Z b

a

B2
� .x/dx D

Z x�

x��1

�
x � x��1
�x��1

�2
dx C

Z x�C1

x�

�
x�C1 � x

�x�

�2
dx

D �x��1
Z 1

0

t2dt C�x�

Z 1

0

.1 � t/2dt

D 1

3
.�x��1 C�x�/; � D 1; 2; : : : ; n;

and

Z b

a

B�.x/B�C1.x/dx D
Z x�C1

x�

x�C1 � x

�x�

x � x�
�x�

dx

D �x�

Z 1

0

.1 � t/tdt D 1

6
�x�; � D 1; 2; : : : ; n � 1:

There follows
kuk2L2 D �TT0�;

as claimed.
(d) We have by (7.130) and the results in (b) and (c),

Œu; u� D pku0k2L2 C qkuk2L2 D �T.pT1 C qT0/�:

Comparison with (a) shows that U D pT1 C qT0. The Gershgorin disks of
the tridiagonal matrix U have centers at

p

�
1

�x��1
C 1

�x�

�
C 1

3
q .�x��1 C�x�/; � D 1; 2; : : : ; n;
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with respective radii

p
1

�x1
C 1

6
q�x1;

p

�
1

�x��1
C 1

�x�

�
C 1

6
q .�x��1 C�x�/; � D 2; : : : ; n � 1;

p
1

�xn�1
C 1

6
q�xn�1:

Since by Gershgorin’s theorem all eigenvalues 
� of U are contained in the
union of these disks, and are real, we have


max � max

�
2p

�
1

2

1

�x0
C 1

�x1

�
C 1

2
q

�
2

3
�x0 C�x1

�
I

2p

�
1

�x��1
C 1

�x�

�
C 1

2
q .�x��1 C�x�/; � D 2; : : : ; n � 1I

2p

�
1

�xn�1
C 1

2

1

�xn

�
C 1

2
q

�
�xn�1 C 2

3
�xn

��
:

By the quasi uniformity of the grid, we have

1

�x�
� 1

ˇ

1

j�j ; � D 0; 1: : : : ; n;

and therefore


max � 4p

ˇj�j C qj�j:

Similarly,


min � min

�
p

1

�x0
C 1

6
q .2�x0 C�x1/I

1

6
q .�x��1 C�x�/; � D 2; : : : ; n � 1I

p
1

�xn
C 1

6
q .�n�1 C 2�xn/

�
:

By the quasiuniformity of the grid and p > 0, we get


min � 1

3
qˇj�j:

There follows

cond2 U D 
max


min
� 12p

qˇ2j�j2 C 3

ˇ
:
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(e) It is clear from (d) that in the case q D 0 one has U D pT1, and for a
uniform grid with j�j D h D b�a

nC1 , by the definition of T1,

Œu; u� D �Tp

h
T �; U D p

h
T ;

where T D tri.�1; 2;�1/ is a tridiagonal matrix of order n with elements
2 on the diagonal and �1 on the two side diagonals. Thus, cond2 U D
cond2 T . To find the eigenvalues of T , note that the characteristic polyno-
mial 	n.
/ D det.T � 
I/ satisfies

	kC1.
/ D .2�
/	k.
/� 	k�1.
/; k D 0; 1; : : : ; n � 1;

	�1.
/ D 0; 	0.
/ D 1:

Hence, in terms of the Chebyshev polynomial Tn, one has (cf. Chap. 2,
Sect. 2.2.4, (2.83))

	n.
/ D Tn

�
1 � 1

2



�
; n � 2I 	1.
/ D 2T1

�
1 � 1

2



�
:

For the eigenvalues 
� we therefore have 1 � 1
2

� D cos 2��1

2n
	 , thus,


� D 2

�
1 � cos

2� � 1

2n
	

�
D 4 sin2

2� � 1

2n

	

2
; � D 1; 2; : : : ; n:

It follows that


max D 4 sin2
2n � 1

2n

	

2
D 4 cos2

	

4n
; 
min D 4 sin2

	

4n
;

and

cond2 U D cot2
	

4n
:

In particular, cond2 U � 1= sin2 	
4n

.
(f) In (7.130) use the mean value theorem of integration to write

Œu; u� D p.�/ku0k2L2 C q.�/kuk2L2 :

Hence, p and q, throughout the argument in (d), can be replaced by p.�/
and q.�/, respectively. The result is

cond2 U � 12p

qˇ2j�j2 C 3

ˇ
:
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Selected Solutions to Machine Assignments

1. (a) If 
 D 0, then

' 00 C 1

r
' 0 D 0;

giving

'.r/ D c1 ln r C c2

with constants c1, c2. The first condition '.0/ D a requires c1 D 0, c2 D a,
hence '.r/ D a. This contradicts the third condition, '.1/ D 0, since a > 0.

(b) With the suggested change of variables x D 
r , y.x/ D '.x=
/, we have

dy

dx
D 1



' 0.x=
/;

d2y

dx2
D 1


2
' 00.x=
/:

Putting r D x=
 in the boundary value problem, we get


2
d2y

dx2
C 


x
� 
dy

dx
C 
2y.1 � y/ D 0;

y.0/ D a;
dy

dx
.0/ D 0; y.
/ D 0;

that is,

d2y

dx2
C 1

x

dy

dx
C y.1 � y/ D 0;

y.0/ D a;
dy

dx
.0/ D 0:

Thus, we need to integrate this initial value problem until the solution y
vanishes for the first time. The corresponding value of x is the desired
eigenvalue.

(c)

PROGRAM (Maple)

eq:=diff(y(x),x,x)+(1/x)*diff(y(x),x)+y(x)*(1-y(x))=0;
ini:=y(0)=a, D(y)(0)=0;
Order:=10;
sol:=dsolve({eq,ini},{y(x)},type=series);
p:=convert(sol,polynom);
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The results produced for the coefficients c0; c1; c2; : : : in y.x; a/ D c0 C
c1x C c2x

2 : : : are

c1 D c3 D c5 D c7 D 0;

c0 D a;

c2 D �1
4
a.1 � a/;

c4 D 1

64
a.1 � a/.1 � 2a/;

c6 D � 1

2304
a.1 � a/.1 � 8aC 8a2/;

c8 D 1

147456
a.1 � a/.1 � 2a/.1 � 26aC 26a2/:

(d) We use cubic interpolation (which has the same order O.h4/ of error as the
Runge–Kutta method) and add one more integration step after the solution
has become negative to make the interpolation problem more symmetric.

PROGRAMS

%MAVII_1D
%
f0=’%6.2f %9.5f %11.4e\n’;
disp(’ a lambda h’)
y=zeros(4,1);
for a=.1:.1:.9
h=.01; lam1=0; errlam=1;
while errlam>.5e-5

h=h/2; lam0=lam1; x=.1;
y(2)=yMAVII_1(x-2*h,a);
y(3)=yMAVII_1(x-h,a);
[y(4),y1]=yMAVII_1(x,a);
u1=[y(4);y1]; u=1;
while u>0

u0=u1; y(1:3)=y(2:4);
u1=RK4(@fMAVII_1,x,u0,h);
y(4)=u1(1); u=y(4); x=x+h;

end
y(1:3)=y(2:4);
u2=RK4(@fMAVII_1,x,u1,h);
y(4)=u2(1); p=[(-y(1)+3*y(2) ...

-3*y(3)+y(4))/6 (2*y(1)-5*y(2) ...
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+4*y(3)-y(4))/2 (-11*y(1) ...
+18*y(2)-9*y(3)+2*y(4))/6 y(1)];

r=roots(p); lam1=0;
for k=1:3

if 1<r(k) & r(k)<2
lam1=x+(r(k)-3)*h ;

end
end
if lam1==0

fprintf([’interpolant not in’ ...
’range for a=%5.2f\n’],a)

return
end
errlam=abs(lam1-lam0);

end
fprintf(f0,a,lam1,h)

end

%FMAVII_1

%

function yprime=fMAVII_1(x,y)

yprime=[y(2);-y(2)/x-y(1)*(1-y(1))];

%YMAVII_1

%

function [y,y1]=yMAVII_1(x,a)

y=a-(1/4)*a*(1-a)*xˆ2+(1/64)*a*(1-a)*(1-2*a)*xˆ4-(1/2304) ...

*a*(1-a)*(1-8*a+8*aˆ2)*xˆ6+(1/147456)*a*(1-a)*(1-2*a) ...

*(1-26*a+26*aˆ2)*xˆ8;

y1=-(1/2)*a*(1-a)*x+(1/16)*a*(1-a)*(1-2*a)*xˆ3-(1/384) ...

*a*(1-a)*(1-8*a+8*aˆ2)*xˆ5+(1/18432)*a*(1-a)*(1-2*a) ...

*(1-26*a+26*aˆ2)*xˆ7;

OUTPUT

>> MAVII_1D

a lambda h

0.10 2.49725 4.8828e-06

0.20 2.60240 4.8828e-06

0.30 2.72378 4.8828e-06

0.40 2.86654 4.8828e-06

0.50 3.03864 4.8828e-06

0.60 3.25347 4.8828e-06

0.70 3.53610 4.8828e-06

0.80 3.94284 4.8828e-06

0.90 4.65326 4.8828e-06

>>
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(e)

PROGRAM

%MAVII_1E
%
endpoint=[2.497;2.602;2.724;2.867; ...

3.039;3.253;3.536;3.943;4.653];
hold on
for ia=1:9

a=ia*.1;
[y,y1]=yMAVII_1(.1,a);
u0=[y;y1]; xspan=[.1 endpoint(ia)];
[x,u]=ode45(@fMAVII_1,xspan,u0);
plot(x,u(:,1))
plot([0 .1],[a y])

end
plot([0 5],[0 0])
axis([0 5 -.1 1])
hold off
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4. (a) The function v.x/ D u.xI �1/ satisfies

1

2

d

dx
.v0/2 D 1

3

d

dx
v3;

which, when integrated from 0 to x, and using v.0/ D 0, v0.0/ D �1, gives

Œv0.x/�2 � 1 D 2

3
v3.x/;
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that is,

v0.x/ D ˙
q

2
3

v3.x/C 1:

Since v has a negative slope at x D 0, and v.0/ D 0, it initially decreases and
becomes negative. Therefore, in the formula above, we must take the square
root with the minus sign. This proves the assertion. Let v.x0 ˙ t/ D z˙.t/.
Both functions z˙ satisfy the same differential equation z00 D z2 with the
same initial conditions z.0/ D vmin, z0.0/ D 0. Hence, they are the same,
zC.t/ 	 z�.t/, proving symmetry of v with respect to the line x D x0.

(b) From part (a) we have

dv

dx
D �

q
2
3

v3 C 1;
dx

dv
D � 1q

2
3
v3 C 1

;

from which there follows, since x D 0 for v D 0,

x D x.v/ WD �
Z v

0

dtq
2
3
t3 C 1

:

Since x0 D x.vmin/, we get

x0 D �
Z vmin

0

dt
q

2
3
t3 C 1

D
Z jvminj

0

d�
q
1 � 2

3
�3
; jvminj D

�
3

2

�1=3
:

The change of variables 2
3
�3 D t , d� D .18/�1=3t�2=3dt yields

x0 D .18/�1=3
Z 1

0

t�2=3.1�t/�1=2dt D .18/�1=3B. 1
3
; 1
2
/ D

p
	

.18/1=3
�.1=3/

�.5=6/
;

since �.1=2/ D p
	 . With the Matlab command

x0=sqrt(pi)*gamma(1/3)/(18ˆ(1/3)*gamma(5/6))

one computes
x0 D 1:605097826619464:

(c)

PROGRAM

%MAVII_4C
%
x0=1.6050978; vmin=-(3/2)ˆ(1/3);
vspan=[x0 3*x0]; v0=[vmin;0];
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options=odeset(’AbsTol’,.5e-8);
[x,v]=ode45(@fMAVII_4C,vspan,v0,options);
v(size(v,1),1)
hold on
plot(x,v(:,1))
plot(2*x0-x,v(:,1))
hold off

%fMAVII_4C
%
function vprime=fMAVII_4C(x,v)
vprime=[v(2);v(1)ˆ2];
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(d) Let u.x/ D s2v.sx/. Then

d2

dx2
u D s4v00.sx/ D s4v2.sx/ D u2;

showing that u satisfies the differential equation of (IVP). Furthermore,

u.0/ D 0;
d

dx
u.x/

ˇ̌
ˇ̌
xD0

D s3 v0.sx/
ˇ̌
xD0 D �s3:

Therefore, u.x/ D u.xI �s3/ as claimed.
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PROGRAM

% MAVII_4D
%
x0=1.6050978; xf=3*x0;
vspan=[x0 3*x0]; vmin=-(3/2)ˆ(1/3);
v0=[vmin;0]; options=odeset(’AbsTol’,.5e-8);
[x,v]=ode45(@fMAVII_4C,vspan,v0,options);
hold on
for s=-2:.2:-.2
sx=x0:.01:xf;
vsx=interp1(x,v(:,1),sx,spline);
xs=sx/s;
plot(xs,(sˆ2)*vsx);
sx=x0:-.01:-x0;
xs=sx/s;
plot(xs,(sˆ2)*vsx);
axis([-15 15 -6 10])

end
for s=.2:.2:2
sx=x0:.01:xf;
vsx=interp1(x,v(:,1),sx,spline);
xs=sx/s;
plot(xs,(sˆ2)*vsx)
sx=x0:-.01:-x0;
xs=sx/s;
plot(xs,(sˆ2)*vsx);
axis([-15 15 -6 10])

end
hold off
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If y D e.x/ is the equation of the envelope, and v.xI s/ WD s2v.sx/, then for
each x 2 R there must exist an s such that

e.x/ D v.xI s/ and e0.x/ D v0.xI s/;

where prime means differentiation with respect to x. If the first equation is
solved (in principle) for s as a function of x and e, and the result s D s.x; e/

substituted into the second equation, there results the (rather complicated)
differential equation

e0 D v0.xI s.x; e//:
(e) If the point .b; ˇ/ lies in the domain above the envelope, there are exactly

two solutions of (BVP), one touching the right-hand border of the envelope,
the other the left-hand border. If .b; ˇ/ lies on the envelope, there is exactly
one solution, the one touching the envelope at the point .b; ˇ/. If .b; ˇ/ lies
in the domain below the envelope, there cannot exist any solution.

(f) Given the uniform grid � W x0 D 0 < x1 < � � � < xN < xNC1 D 3x0, with
j�j D h D 3x0=.N C 1/, the simplest difference equations are

un�1 � 2un C unC1 D h2u2n; n D 1; 2; : : : ; N;

u0 D 0; uNC1 D v0:

Writing u D Œu1; u2; : : : ; uN �T and letting A D tri.1;�2; 1/ be the
tridiagonal matrix of order N with elements �2 on the diagonal and 1 on
the side diagonals, the system of difference equations can be written as

f .u/ D 0; f .u/ WD Au � h2u2 C v0eN ;

where u2 D Œu21; u
2
2; : : : ; u

2
N �

T and eN D Œ0; 0; : : : ; 0; 1�T. The Jacobian of f

is
fu.u/ D A � 2h2diag.u/;

where diag.u/ is the diagonal matrix with diagonal elements u1; u2; : : : ; uN .
Newton’s method therefore takes the form

uŒiC1� D uŒi � � d Œi �; fu.u
Œi �/d Œi � D f .uŒi �/; i D 0; 1; 2; : : : ;

where uŒ0� D ŒuŒ0�1 ; u
Œ0�
2 ; : : : ; u

Œ0�
N �

T, uŒ0�n D Qv.xn/ resp. uŒ0�n D v.xn/. The
functions Qv, v determining the two initial approximations are

Qv.x/ D v0 C 3x0

.3x0/2
x2 � x; v.x/ D v0

3x0
x:
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The program implementing this method with N D 50 and accuracy
tolerance "0 D :5 � 10�8, and with initial approximations as suggested, is
shown below.

PROGRAM

% MAVII_4F
%
N=50; eps0=.5e-8;
x0=1.6050978; v0=2.2893929;
h=3*x0/(N+1); h2=hˆ2;
u0=zeros(N,1);
A=zeros(N);
e=eye(N);
eN=e(:,N);
hold on
for i=1:2
for n=1:N

if(i==1)
u0(n)=n*h*(-1+((n*h)/(3*x0)) ...

*(1+v0/(3*x0)));
else
u0(n)=n*h*v0/(3*x0);

end
A(n,n)=-2;
if(n<N)
A(n,n+1)=1;
A(n+1,n)=1;
end

end
u0p=[0;u0;v0];
plot(u0p,’--’);
axis([0 55 -1.5 2.5])
plot([0 55],[0 0])
u1=u0; u0=zeros(N,1);
it=0;
while(norm(u1-u0,inf)>eps0 & it<20)
it=it+1;
u0=u1;
u2=u0.ˆ2;
f=A*u0-h2*u2+v0*eN;
J=A-2*h2*diag(u0);
d=J\f;
u1=u0-d;

end



Selected Solutions to Machine Assignments 541

u1p=[0;u1;v0];
plot(u1p);
text(26,-1,’1st solution’,’FontSize’,14)
text(21,.6,’2nd solution’,’FontSize’,14)

end
hold off

When applying this routine, we get rapid convergence (within five to six
iterations). Plots of the answers are shown below. The dashed lines are initial
approximations.
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The method of successive approximations, described by

uŒiC1� D A�1.h2.uŒi �/2 � v0eN /; i D 0; 1; 2; : : : ;

does not converge, neither for N D 50 nor for N D 20; 10, or 5.
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Bettis, D. G. [1969/1970]. Numerical integration of products of Fourier and ordinary polynomials,
Numer. Math. 14, 421–434.

Bini, Dario and Pan, Victor Y. [1994]. Polynomial and matrix computations, v. 1: Fundamental
algorithms, Progr. Theoret. Comput. Sci., Birkhäuser, Boston, MA.
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Sci. St. Petersbourg (7) 1, no. 15, 1–24. [Œuvres, v. 1, 473–498.]

Chen, Goong and Zhou, Jian-Xin [1992]. Boundary element methods, Comput. Math. Appl.,
Academic Press, London.

Chen, Zhangxin [2005]. Finite element methods and their applications, Scient. Comput., Springer,
Berlin.

Cheney, E. W. [1998]. Introduction to approximation theory, reprint of the second (1982) edition,
AMS Chelsea Publishing, Providence, RI.

Cheney, E. W. [1986]. Multivariate approximation theory: Selected topics, CBMS-NSF Regional
Conf. Ser. Appl. Math., no. 51, SIAM, Philadelphia, PA.

Cheney, Ward and Kincaid, David [1994]. Numerical mathematics and computing, 3d ed.,
Brooks/Cole, Pacific Grove, CA.

Chihara, T. S. [1978]. An introduction to orthogonal polynomials, Math. Appl., v. 13, Gordon and
Breach, New York.



548 References

Chu, Moody T. and Golub, Gene H. [2005]. Inverse eigenvalue problems: Theory, algorithms, and
applications, Numer. Math. Scient. Comput., Oxford University Press, New York.

Chui, Charles K. [1988]. Multivariate splines, with an appendix by Harvey Diamond, CBMS-NSF
Regional Conf. Ser. Appl. Math., no. 54, SIAM, Philadelphia, PA.

Chui, Charles K. [1992]. An introduction to wavelets, Wavelet Analysis and Its Applications, v. 1,
Academic Press, Boston, MA.

Ciarlet, Philippe G. [2002]. The finite element method for elliptic problems, reprint of the 1978
original, Classics Appl. Math., v. 40, SIAM, Philadelphia, PA.

Ciarlet, Philippe G. [1989]. Introduction to numerical linear algebra and optimisation, with the
assistance of Bernadette Miara and Jean-Marie Thomas; translated from the French by A.
Buttigieg, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge.

Ciarlet, P. G. and Lions, J.-L., eds. [1990–2003]. Handbook of numerical analysis, vols. 1–9,
North-Holland, Amsterdam.

Coddington, Earl A. and Levinson, Norman [1955]. Theory of ordinary differential equations,
Internat. Ser. Pure Appl. Math., McGraw-Hill, New York.

Coe, Tim, Mathisen, Terje, Moler, Cleve, and Pratt, Vaughan [1995]. Computational aspects of the
Pentium affair, IEEE Comput. Sci. Engrg. 2, no. 1, 18–30.

Cohen, A. M. [1994]. Is the polynomial so perfidious?, Numer. Math. 68, 225–238.
Cohen, Elaine, Riesenfeld, Richard F., and Elber, Gershon [2001]. Geometrix modeling with

splines: An introduction, with a foreword by Tom Lyche, A K Peters, Natick, MA.
Cohen, Henri [1993]. A course in computational algebraic number theory, Grad. Texts Math.,

v. 138, Springer, Berlin.
Conte, Samuel D. and de Boor, Carl [1980]. Elementary numerical analysis: An algorithmic

approach, 3d ed., McGraw-Hill, New York.
Cools, Ronald and Rabinowitz, Philip [1993]. Monomial cubature rules since “Stroud”: A compi-

lation, J. Comput. Appl. Math. 48, 309–326.
Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., and Stein, Clifford [2009].

Introduction to algorithms, 3d ed., MIT Press, Cambridge, MA.
Cox, David, Little, John, and O’Shea, Donal [2007]. Ideals, varieties, and algorithms: An introduc-

tion to computational algebraic geometry and commutative algebra, 3d ed., Undergrad. Texts
Math., Springer, New York.

Crandall, Richard E. [1994]. Projects in scientific computation, Springer, New York.
Crandall, Richard E. [1996]. Topics in advanced scientific computation, Springer,

New York.
Crouzeix, Michel [1976]. Sur les méthodes de Runge–Kutta pour l’approximation des problèmes
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matrices, Masson, Paris.

Dutka, Jacques [1984]. Richardson extrapolation and Romberg integration, Historia Math. 11,
3–21.

Edelman, Alan [1997]. The mathematics of the Pentium division bug, SIAM Rev. 39, 54–67.
Edelsbrunner, Herbert [1987]. Algorithms in combinatorial geometry, EATCS Monographs Theo-

ret. Comput. Sci., v. 10, Springer, Berlin.
Edelsbrunner, Herbert [2006]. Geometry and topology for mesh generation, reprint of the 2001

original, Cambridge Monographs Appl. Comput. Math., v. 7, Cambridge University Press,
Cambridge.

Edelsbrunner, Herbert and Harer, John L. [2010]. Computational topology: An introduction, Amer.
Math. Soc., Providence, RI.

Efendiev, Yalchin and Hou, Thomas Y. [2009]. Multiscale finite element methods: Theory and
applications, Surveys Tutor. Appl. Math. Sci., v. 4, Springer, New York.

Ehle, Byron L. [1968]. High order A-stable methods for the numerical solution of systems of D.
E.’s, BIT 8, 276–278.

Ehle, Byron L. [1973]. A-stable methods and Padé approximations to the exponential, SIAM J.
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4th ed., Chapter 1 by P. Bézier; Chapters 11 and 22 by W. Boehm, Comput. Sci. Scient.
Comput., Academic Press, San Diego, CA.

Farin, Gerald E. [1999]. NURBS: From projective geometry to practical use, 2d ed., A K Peters,
Natick, MA.

Farin, Gerald and Hansford, Dianne [2008]. Mathematical principles for scientific computing and
visualization, A K Peters, Wellesley, MA.

Fassbender, Heike [2000]. Symplectic methods for the symplectic eigenproblem, Kluwer Aca-
demic/Plenum Publ., New York.

Feagin, Terry [2011]. Personal communication, email, June 28. For coefficients, see http://sce.uhcl.
edu/rungekutta.

Fehlberg, E. [1969]. Klassische Runge–Kutta-Formeln fünfter und siebenter Ordnung mit
Schrittweiten-Kontrolle, Computing 4, 93–106. [Corrigendum: ibid. 5, 184.]

Fehlberg, E. [1970]. Klassische Runge–Kutta-Formeln vierter und niedrigerer Ordnung mit
Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungs-probleme, Computing 6,
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Birkhäuser, Boston, MA.
Kythe, Prem K. and Wei, Dongming [2004]. An introduction to linear and nonlinear finite element

analysis: A computational approach, Birkhäuser, Boston, MA.
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and Gabor Szegö, eds., 40–48, Academic Press, New York. [Collected Math. Papers, v. 2,
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v. 2: Analytisch-funktionentheoretische Kettenbrüche, Teubner, Stuttgart.
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Szegö, Gabor [1975]. Orthogonal polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., v. 23,
Amer. Math. Soc., Providence, RI.

Taylor, Walter F. [1992]. The geometry of computer graphics, The Wadsworth & Brooks/Cole
Math. Ser., Wadsworth & Brooks/Cole, Pacific Grove, CA.

Thisted, Ronald A. [1988]. Elements of statistical computing: Numerical computation, Chapman
& Hall, New York.

Thomas, J. W. [1995]. Numerical partial differential equations: Finite difference methods, Texts in
Appl. Math., v. 22, Springer, New York.

Thomas, J. W. [1999]. Numerical partial differential equations: Conservation laws and elliptic
equations, Texts in Appl. Math., v. 33, Springer, New York.



References 567

Thomée, Vidar [2006]. Galerkin finite element methods for parabolic problems, 2d ed., Springer
Ser. Comput. Math., v. 25, Springer, Berlin.

Tihonov, A. N. and Gorbunov, A. D. [1963]. Asymptotic error bounds for the Runge–Kutta method
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general solution of, 417

difference equations
linear

delayed initial value problem for, 419
homogeneous, 417
inhomogeneous, 417
initial value problem for, 418
of exact order k, 417
of order k, 416
root condition for, 418
solution of, 417
solution of the initial value

problem with zero starting
values for, 419

starting values of, 417
with constant coefficients, 416

linear kth-order
with constant coefficients, 450

linear first-order, 17
linear homogeneous

characteristic equation of, 417
characteristic polynomial of, 417, 421
complex solutions of, 417
criterion for boundedness of all

solutions of, 418
general solution in real form of, 417
general solution in terms of

starting values of, 418
linear inhomogeneous

criterion for boundedness of all
solution of, 419

general solution of, 419
stability aspects of, 30
texts on, 454
theory of, 416
with constant coefficients

theory of, 289
difference quotient, 73, 159

approximate, 333
one-sided, 161
symmetric, 161

difference quotient matrix, 289
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difference-correction, 499, 510
differences

backward, 129, 410
forward, 129

differential algebraic equations, 372
differential equations

autonomous system of, 330
higher-order systems of

methods tailored to, 373
implicit system of first-order, 331
linear systems of, 332
numerical solution of

analytical tools helpful in the, 372
preliminary transformation of

variables in the, 372
single d th-order, 329
single first-order, 329
singularly perturbed, 372
system of

second-order, 330, 331
with delayed arguments, 372

differentiation
automatic, 195, 373

literature on, 195
formula

adaptive determination of a, 196
formulae for the sth derivative

complex, 196
optimal, 196

interpolatory formulae for, 196
numerical, 159

truncation and noise error in, 164
with perturbed data, 163

optimal formulae for, 196
symbolic, 195
total, 331, 335

differentiation formula
symmetric, 163

Dirac measure, 58
DIRK methods, 375

A-stable, 377
discrete-variable methods, 332, 343
distance function, 32
divided differences, 94, 95, 96, 107,

269
as derivatives, 97
at confluent points, 97

initialization of, 98
explanation of the name for, 95
for equally spaced points, 410
generation in place of, 137
occurring in Newton ’s formula, 96
second

Peano representation of, 118

table of, 95, 98, 99, 161, 162
for the inverse function, 100

double Horner scheme, 282
double precision, 4
Duhamel’s principle, 419
Durand–Kerner method, 290

E
efficiency index, 261, 288
Ehle’s method, 369, 382

A-stability of, 370
eigenvalue problems

for differential equations, 471
as two-point boundary value

problems, 472
eigenvalues

of a differential equation, 472
epsilon algorithm, 288
equations

algebraic, 253, 280, 290
localization theorems for, 290
location of the zeros of, 290

functional, 253
linearization of, 274, 286
nonlinear integral, 256
nonlinear system of, 253, 331
roots of, 253
single

in one unknown, 253
single nonlinear, 253

texts on, 287
system of, 253
systems of linear algebraic, 253
systems of nonlinear, 257, 284

for recurrence coefficients of
s-orthogonal polynomials, 257

transcendental, 254
error control

automatic, 327
error propagation, 8

in arithmetic operations, 8
error tolerance, 261, 266, 276

absolute, 261, 262
mixed, 261
relative, 261

eta function, 41
Euclidean algorithm, 5
Euclidean norm, 23
Euler equations, 325
Euler’s constant, 40, 115
Euler’s method, 335, 336, 337, 347, 351–353

backward, 367
consistency of, 335
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Euler’s method (cont.)
implicit, 367

A-stability of, 367
order of, 367

improved, 337
order of, 340

modified, 335, 337
order of, 336
original source for, 373
principal error function of, 336
region of absolute stability for, 370
truncation error of, 335

Euler–Maclaurin formula, 194
heuristic derivation of the, 194

evaluation of polynomials
errors committed in, 30

exchange algorithms, 112
explicit methods, 341
exponential

complex, 167
exponential integral, 120
exponential sums, 56

as gauge functions in ˝p , 453
extrapolation, 80

to the limit h D 0, 190
extrapolation algorithm, 192
extrapolation methods, 190

applications and modifications
of, 199

for stiff problems, 373
history of, 199
local use of

in finite difference methods, 511
of Gragg, 454
of Gragg, Bulirsch, and Stoer, 373

regions of absolute stability for,
378

F
Faber’s theorem, 116
fast Fourier transform (FFT), 115, 117
Favard’s theorem, 115
Fehlberg embedded 4(5) method, 375
Fejér quadrature rule, 198
Fejér–Hermite interpolation, 115, 116

at the Chebyshev points, 115
convergence theory of, 115

Fibonacci, 288
Fibonacci sequence, 270
Filippi quadrature rule, 198
finite difference methods

extensions to linear and nonlinear systems
of, 511

for linear second-order boundary
value problems, 496

asymptotic estimate of the global error
of, 498

global error of, 497
for nonlinear second-order boundary value

problems, 501
global error of, 501

in ordinary and partial
differential equations, 190

finite difference operator
linear second-order, 495

stability of, 495
nonlinear second-order, 500

stability of, 501
fixed point, 278, 401
fixed point iteration, 279, 401, 413, 511

asymptotic error constant for, 279, 285
for systems of equations, 284
linear convergence of, 285
local convergence of, 279
order of convergence of, 279
point of attraction for, 290
point of repulsion for, 290

fixed point problem, 278
fixed-point number

packing of a
in a machine register, 5

floating-point number
exponent of, 3
mantissa of, 3
normalized, 3

largest magnitude of a, 4
smallest magnitude of a, 4

packing of a
in a machine register, 4

floating-point number system
abstract algebraic notion of, 29

floating-point numbers
complex, 5

Fourier analysis
discrete, 115
numerical, 117

Fourier coefficients, 69, 91, 168
complex, 117, 203

Fourier cosine expansion, 90
Fourier expansion, 168
Fourier series, 68

standard text on, 115
theory of, 168
truncated, 69

as best approximation, 69
Fourier transform

discrete, 117
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Fréchet derivative, 274
free boundary value problem, 473

as a two-point boundary value
problem, 473

free boundary value problems, 471
Fresnel integral, 174, 217
functions

rational, 56
symmetric, 94
zeros of, 253

fundamental theorem of calculus, 408

G
G-stability, 456
garbage digits, 10
gauge functions, 402
Gauss formula, 173, 174

convergence of, 175
on infinite intervals

convergence theory of, 199
Gauss nodes, 173
Gauss quadrature formulae, 196

automatic generation of, 199
exact for parabolic splines, 199
high-precision tables of, 199
with classical and nonclassical

weight functions
tables of, 199

Gauss quadrature rules, 172
classical

applications of, 199
properties of, 175
with Jacobi weight functions

use of, 199
Gauss’s principle

of maximum algebraic degree of
exactness, 198

Gauss–Chebyshev quadrature
formula, 208

Gauss–Christoffel quadrature formulae, 171
history of, 199

Gauss–Kronrod formulae, 198, 199, 204
Gauss–Legendre formula, 368
Gauss–Lobatto quadrature formula, 172, 199,

374
positivity of, 205

Gauss–Radau quadrature formula, 172, 199,
374

positivity of, 205
Gauss–Seidel method, 291

nonlinear, 291
Gauss–Turán quadrature formula, 204
Gauss-type quadrature formulae, 374

for rational functions, 198

Gaussian quadrature, 165
Gaussian quadrature formula

algorithm for computing, 176
associated with the weight

function w, 170
error term of, 177
two-point, 172

Gaussian quadrature rules, 258
applications of, 178
nonclassical, 199

generating function, 411, 412
Gershgorin’s theorem, 265, 288
golden mean, 270
Graeffe’s method, 290
Gram matrix, 185
Gram–Schmidt orthogonalization

procedure, 64, 65, 69
modified, 114

grid, 328, 333, 343
fineness of, 343
nonuniform, 343, 375

maintaining second-order
accuracy on a, 511

predetermined, 343
produced dynamically, 343
quasi-uniform, 454
uniform, 343

grid function, 333
infinity norm of, 345, 402
norm of, 343
vector-valued, 343, 399

grid lengths, 343, 400
collection of, 343
variable, 348

grid points
active, 408

grid size ratio, 454

H
Halley’s method, 301
Hamiltonian systems, 373
harmonics

basic, 68
hat functions, 105
heat equation, 327
Hermite interpolant

piecewise cubic, 110
Hermite interpolation, 74, 97,

167
error term of, 98, 177
explicit formulae for, 116
piecewise cubic, 108

error of, 108
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Hermite interpolation polynomials
elementary, 207

Hermite interpolation problem, 97, 97, 107
Hermite polynomials

monic, 206
Hessian matrix, 339

calculation of, 195
Heun’s method, 338

order of, 340
Hilbert matrix, 22, 24, 63

condition number of, 23
condition of, 23
Euclidean condition number of, 42
explicit inverse of, 30, 42

HiQ, xxi
homotopy method, 291, 493, 511
horner, 288
Horner’s scheme, 281

as a deflation algorithm, 281
numerical properties of, 291

I
(in)stability

evolution of concepts of, 454
implicit methods, 341
impulse function, 419
incomplete gamma function, 136
increment per unit step

approximate, 333, 334
exact, 334

initial value problems, 325
continuity of the solution with respect to

initial values, 357, 372
for ordinary differential equations, 325
of Riccati type, 511
solution tracks in the numerical

solution of, 357
standard, 328

inner product, 59, 504
discrete, 124
for Sturm–Liouville problems, 504
homogeneity of, 59
linearity of, 59
of Sobolev type, 114
positive definiteness of, 59
symmetry of, 59

integral equations
nonlinear, 256

degenerate kernel of, 256
kernel of, 256

numerical solution of
texts on, xxvi

singular, 199

integrals
improper, 165
iterated, 179, 217
oscillatory, 197
the numerical evaluation of

standard text on, 196
integrating factor, 480
integration

adaptive, 326
automatic, 197, 198
multiple, 197

texts on, 197
numerical, 165, 257

analytic tools available for,
197

over R, 180
over R

C
, 180

symbolic, 197
interactive systems, xxi
interpolant

piecewise linear
near optimality of, 117

interpolation
nth-degree

at equally spaced
points, 80

at the roots of unity, 85
convergence of, 85

by cubic splines, 107
by piecewise linear functions, 117
by positive polynomials, 129
convergence of, 81, 82
error of, 77, 78

for equally spaced points, 80
inverse, 100
linear, 73, 100, 103
nodes

confluent, 93, 98
sequential set of, 91

operator, 76
additivity of, 76
homogeneity of, 76
projection property of, 76

polynomial, 73
error term of, 160
in Newton’s form, 108, 160
in Taylor’s form, 108
leading coefficient of, 94, 96

quadratic, 79, 101
rational, 115

algorithms for, 115
applications of, 115

trigonometric, 115
at equally spaced points, 115
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interpolation and approximation
by rational functions

in the complex plane, 113
interpolation nodes

limit distribution of, 83
triangular array of, 81

interpolation polynomial
existence of, 75
in Newton’s form, 94
uniqueness of, 75

interpolation problem, 57
for splines, 107

interval arithmetic, 5, 29
invariant imbedding, 510, 511
inverse function

derivatives of, 101, 116
inverse interpolation, 100

error of, 116
iteration

efficiency index of, 261
inner, 291
outer, 291
stopping rule for an, 261
to convergence, 401

iterative methods, 258
in complex interval arithmetic, 291

J
Jackson’s theorems, 116
Jacobi matrix, 265

for the weight function w, 176
importance of eigenvalues and

eigenvectors of
for Gauss quadrature rules, 199

Jacobian elliptic functions, 513
Jacobian matrix, 15, 286, 290, 331, 336, 339,

352, 360, 485–487, 492
calculation of, 195

Jenkins–Traub three-stage
algorithm, 287

K
k-step method

of maximum order p D 2k, 455
k-step methods, 332, 399
kth-order A(˛)-stable, 453
linear, 400
maximum algebraic degree among all

stable, 433
of order p

asymptotically best, 427
stable of maximum order, 441

infimum of global error constant taken
over all, 447

negativity of error constants of, 446
kth-order Adams–Bashforth method, 409

principal error function of, 410
truncation error of, 409

Kepler’s equation, 295
Kronecker delta, 418
Kutta–Joukowski formula, 342

L
L1 approximation, 113

discrete, 114
L1 norm

for functions, 57
of a matrix, 16
of a vector, 16, 20

L2 norm
discrete

choice of weights in, 114
for functions, 57, 58, 59

L
1

norm
for functions, 57
of a matrix, 14
of a vector, 14

L-stability, 370
lacunary interpolation, 115
Lagrange interpolation, 74

convergence of
for analytic functions, 83
for Chebyshev nodes, 90

convergence theory of, 115
divergence almost everywhere

of, 116
error term of

derivative-free, 96
in the complex plane

convergence domain for
nodes with arcsine
distribution on Œ�1; 1�, 83

convergence domain for
uniformly distributed
nodes, 83

convergence domain of, 83, 116
limiting case of, 98

Lagrange interpolation formula, 74, 75, 76, 91,
106

Lagrange interpolation polynomial
elementary, 75, 91, 106, 169

for the roots of unity, 85
Laguerre polynomials

monic, 206
Laguerre’s method, 287
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Lambert’s equation, 38
Laplace operator, 325
least squares

history of, 113
least squares approximant, 65

near optimality of piecewise
linear, 107, 117

least squares approximation
as orthogonal projection, 65
by functions in S

0
1.�/, 106

by rational functions
with prescribed denominator

polynomial, 114, 122
discrete polynomial, 135
involving cubic splines, 117
of functions and their derivatives,

114
polynomial

subject to interpolatory
constraints, 114, 122, 141

least squares approximation problem, 59
of Sobolev type, 136
solution of, 61
unique solution of, 62

nonpermanence of the coefficients
in the, 63

permanence of the coefficients
in the, 63

least squares approximation process
convergence of, 66

least squares error, 65, 66
least squares principle

history of the, 113
least squares problem, 57
Lebesgue constants, 125

for Fourier series, 43
for Lagrange interpolation, 77
growth of, 115
survey on, 116

Lebesgue function, 125, 126
for Lagrange interpolation, 77

Legendre polynomials, 71
monic, 71
Rodrigues formula for, 71
shifted, 122, 368

Lehmer–Schur method, 290
Leibniz’s rule, 363
linear convergence, 259

asymptotic error constant for, 259
linear functionals, 182, 184

approximation of, 182
definite, 406
definite of order r , 188
examples of, 184

nondefinite, 189
Peano representation of, 187, 188

linear independence
of a set of functions, 58
of the powers, 58

linear interpolation
error of, 79

linear operator
norm of, 76

linear programming, 112
linear space, 55

of finite dimension n, 55
linear spaces, 184
Lipschitz condition, 332, 345–347, 357, 375,

414
one-sided, 372, 376, 377
uniform, 331, 351, 400, 420, 475, 476

Lipschitz constant, 357, 420
one-sided, 372
problems with very small, 373

Littlewood’s theorem, 445, 455
Littlewood–Salem–Izumi constant, 306
load vector, 507
logarithmic potential

curve of constant, 83

M
machine arithmetic, 7

a model of, 7, 7
machine numbers, 3

fixed-point, 3, 5
floating-point, 3

machine precision, 2, 7
machine register, 4
Maclaurin expansion, 411, 442
Macsyma, xxi, 29, 195
map

�-contractive, 292
contractive, 284, 511

Maple, xxi, 441
Mathcad, xxi
Mathematica, xxi, 29, 195
Matlab, xxi

double precision, 7
matrix

condition number of a, 22
diagonally dominant, 107
eigenvalues

computation of, 30
of condition numbers, 14
symmetric tridiagonal

charateristic equation of a, 261
charateristic polynomial of a, 264

matrix norm, 14
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maximum principle, 452
mean value theorem, 167

of integration, 166, 177, 188
measure

continuous, 58, 59
Dirac, 58
discrete, 58, 59, 72, 123
support of, 58
symmetric, 71

mechanics, 325
method

of bisection, 261, 274
of false position, 266

asymptotic error constant for, 268
linear convergence of, 268
Matlab program for, 267

of interpolation, 182, 183, 185, 187
of Sturm sequences, 261, 264, 265

linear convergence of the, 266
of undetermined coefficients, 182, 183, 186
robust

at the level of machine precision, 263
method of chasing, 510
method of deferred corrections

local use of
in finite difference methods, 511

method of difference-correction, 499
method of false position, 269

exceptionally slow convergence of, 268
extension to systems of equations, 289
generalizations to systems of equations,

287
history of, 288

method of lines, 327
text on the

with Fortran programs, 372
method of quasi-linearization, 510
method of successive iteration, 503
METOD PROGONKI, 510
metric, 32
midpoint rule

for differential equations, 404, 407
Peano kernel of, 407
truncation error of, 408

local use of
in finite difference methods, 511

modified
for differential equations, 454

of integration, 202
Milne estimator, 415, 454

global validity of, 455
Milne’s method, 454
minimization problem

unconstrained quadratic in R
n, 507

minimization problems, 288
model problem, 361, 450

scalar, 450
monosplines, 197
Monte Carlo methods, 197

texts on, 197
mother wavelet, 115
Moulton’s predictor–corrector method, 453
Muller’s method, 287, 290
multistep formulae

of maximum algebraic degree, given their
characteristic polynomials, 433

pairs of equilibrated, 438
multistep methods, 332, 399, 450

˝-degree of, 402
A(˛)-stability of, 452, 456
A-stability of, 450, 451
Adams-type, 408
algebraic degree of, 404
algebraic degree vs. order of, 406
asymptotic global error estimates of,

426
characteristic equation of, 425
characteristic polynomial of, 420
consistency of, 402
convergence and stability theory of

text on, 453
convergence criterion for, 424
convergence of, 424
error constant of, 407, 426, 427

analytic determination of the
local, 435

analytic determination of the global,
435

example of strong instability of, 405
examples of, 408
explicit, 400
for stiff problems

codes of, 455
text on, 455

global description of, 416
global error of

asymptotic behavior of the, 426
asymptotic expansion of the, 454

implicit, 400, 401
successive iteration in, 400

index of, 399
involving derivatives, 373
irreducible, 450
linear functional L associated with, 404,

433
represented in terms of its Peano kernel,

406
linear operator Lh associated with, 402
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multistep methods (cont.)
local description of, 399
local truncation error of

bounds for the, 407
nonlinear stability and convergence of, 456
of algebraic degree p

truncation error of, 406
of order p

order estimate of the global error of,
425

on nonuniform grids
stability and convergence theory of, 454

one-legged, 456
order of, 402
polar pairs of, 455
polynomial degree of, 404

analytic characterization of the, 433
principal error function of, 402

explicit formula for the, 406
reduced, 436
region of absolute stability for, 452
residual operator Rh of, 401, 420
stability of, 420

criterion for the, 420
starting procedure for, 400
step number of, 399
strong instability of

concept of, 454
truncation error of, 402, 405

when the associated functional L is
definite, 406

variatinal differential equation for, 430
weak stability of, 454

N
NAG library, xxi
Netlib, xxi
Newton increment

modified, 292
Newton step, 282, 483

double, 283
Newton’s formula, 93, 96, 98–101

coefficients in
for Hermite interpolation, 98

error of, 99
Newton’s interpolation formula, 98, 107
Newton’s iteration

error in, 277
Newton’s law, 330
Newton’s method, 274, 275, 279, 281, 282,

291, 401, 453, 483, 484, 503, 510,
511

accelerated, 282, 291
applied to algebraic equations, 280

asymptotic error constant of, 278
complexity analysis of, xxiii
criterion for global convergence of, 276
cubically convergent modification of, 290
cycle in, 275
discretized, 289
doubly-relaxed, 299
efficiency index of, 278
example of global convergence of, 275
example of local convergenc of, 275
example of slow convergence of, 276
for systems of equations, 284, 285, 286

quadratic convergence of, 286
for systems of nonlinear equations, 291
global convergence results for

in higher dimension, 290
history of, 289
in infinite-dimensional spaces, 290
in parallel shooting, 491
in shooting methods, 483, 485, 487
local convergence of, 278
Matlab program for, 276
quadratic convergence of, 278
second-order convergence of, 280

Newton’s second law, 325
Newton–Cotes formula, 170, 196, 368

classical, 198
computer program for, 198
weighted

algorithms for computing the, 198
positivity of the, 216, 232–247

Newton–Cotes quadrature formula
two-point, 172

Newton–Kantorovich method, 510
Newton–Raphson method, 289
node polynomial, 170
nodes

limit distribution of, 116
nonlinear functionals

examples of, 184
Nordsieck-type methods, 373
normal equations, 106

algorithm for computing
the solution of, 64

cancellation problem in the
solution of, 63

for the least squares problem, 61
ill-conditiioning of, 63

number system
binary, 2

numerical algorithms
collection of general-purpose, xxi

numerical analysis
handbooks of, xxiii
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history of, xxiii
journals in, xxvi
software for, xxi
surveys on, xxiii
texts on, xxi

numerical linear algebra
texts on, xxiv

O
ODE, see ordinary differential equations
one-step and multistep methods

unified treatment of, 373
one-step methods, 332, 343, 399, 450

A-stability of, 362
criterion of, 366

A-stable, 360
applied to the model problem, 361
asymptotic global error estimates of, 347
consistency of, 334, 344, 348

necessary and sufficient condition for,
334

convergence of, 333, 344, 347, 348
embedded, 356
error accumulation in, 358
exact order of, 334
global description of, 333, 343
global error of, 333

asymptotic behavior of the, 349
estimates of the, 352

local description of, 333
local tolerance level in, 359
local truncation error vs global

error in, 357
monitoring the global error of, 352
order of, 334
principal error function of, 334, 348, 352

estimates of the, 354
region of absolute stability for, 370
residual operator Rh of, 344
second-order two-stage, 339

principal error function of, 340
single step of, 333, 333
stability criterion for, 345
stability inequality for, 345
stability of, 333, 344
step control in, 352, 359
truncation error of, 333
variable-method codes for, 376
variational differential equation for, 352,

375
operator

linear symmetric, 504
operator norm, 14

optimal control problems, 325
optimization, 195

texts on, xxiv
order of convergence, 259
order star theory, 377

on Riemann surfaces, 456
order stars

applications of, 377
order term O. � /, 190, 402
ordinary differential equations

initial value problems for, 325
numerical solution of

texts on, 371
solution by Taylor expansion of, 195

orthogonal polynomials, 69, 69
computation of, 115
discrete, 69

as interpolation polynomials, 73
method of, 114

discrete orthogonality property of,
207

interlacing property of the zeros of, 207
of Sobolev type, 114
reality and simplicity of the zeros of, 207
recurrence coefficients for, 70, 176
standard text on, 115
Sturm property of, 264
symmetric, 71
table of some classical, 177
three-term recurrence relation for, 70

orthogonal systems, 59, 60, 63, 65
examples of, 67
linear independence of, 61

orthogonality
defined implicitly, 257
of functions, 60

orthonormal polynomials
three-term recurrence relation for, 123

Ostrowski’s theorem, 281, 291
overflow, 4, 28

P
Padé approximation

texts on, 377
Padé approximants, 362

to the exponential function, 360
explicit formulae for, 363
properties of, 364

Padé approximation
to the exponential function, 362

parallel computation, xix
parallel computing

texts on, xxiii
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partial differential equations
numerical solution of

texts on, xxv
Peano kernel, 188

definite of order r , 188
of the functional L associated with a

multistep method, 406
PECE method, 413

characteristic polynomial of, 424
local truncation error of, 415

estimate of, 415
order of, 414
principal error function of, 414
residual operator Rh of, 424
truncation error of, 414

Milne estimator of, 415
phase plane, 488
polynomial interpolation, 73

theory of, 159
polynomials
s-orthogonal, 198, 257

with respect to a positive measure,
257

algebraic, 67
algorithm for evaluating, 281
algorithm for evaluating the

derivative of, 282
and trigonometric functions

as gauge functions in˝p , 453
completeness in the L

1
norm of, 67

deflated
coefficients of, 282

deflation algorithm for, 281
discrete orthogonal, 69
division algorithms for, 280

with quadratic divisors, 282
orthogonal, 69, 69
problems of conditioning

involving, 30
properties of interest in applied

analysis of, 113
trigonometric, 167

Pontryagin maximum principle, 325
positive definiteness

of a matrix, 62
power

truncated, 117
power orthogonality, 257
power series expansion

truncated, 332
predictor–corrector methods, 413

Adams-type
Nordsieck’s formulation of, 455
practical codes based on, 455

strategies for step and
order control of, 455

convergence criterion for, 426
error constant for the corrector

formula of, 429, 430
global error of

asymptotic behavior of the, 430
asymptotic estimate of the, 430
Milne estimator for the, 430

regions of absolute stability of, 456
self-starting Adams-type, 455
stability of, 424

problem
computer solution of a, 30
initial value

associated with a boundary
value problem, 255

of apportionment, 8, 30
of resonance, 254
two-point boundary value, 254

product integration
of multiple integrals, 199

projection methods
application of

to two-point boundary value
problems, 512

convergence analysis of, 512

Q
QD algorithm, 290
QR algorithm, 177
quadature formulae

optimal, 197
Quadpack, 197
quadratic equation, 32

solving a, 29
quadratic form, 62

positive definiteness of, 62
quadratic interpolation

on equally spaced points
error of, 79

quadrature
weighted, 165

quadrature formula
degree of exactness of, 169
interpolatory, 169
of maximum degree of exactness, 170
weighted, 169

exact for rational functions, 210
quadrature rules

exact for all solutions of a linear
homogeneous differential
equation, 197
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with multiple nodes, 198
quadrature schemes

convergence acceleration of, 165
quantum mechanics, 325
quasi-Newton methods, 287, 292, 511

R
rational arithmetic, 5
rational functions, 56
real numbers, 2

abstract notion of, 28
axiomatic approach to, 2
development of the concept of, 28

recurrence coefficients
table of, 199

reference solution, 333, 344, 357
derivatives of, 336

regula falsi, 289
relative error, 6
relaxation parameter, 501
Remez algorithms, 112
reorthogonalization, 511
residual operator R, 344, 401
residual operator Rh, 420, 429

in terms of the truncation error, 344
of multistep methods, 401
of one-step methods, 344

Richardson extrapolation, 191, 199, 499
local, 354
repeated, 191

Riemann sums, 44, 86, 159, 359
Rodrigues formula, 71, 72
Rolle’s theorem, 78
Romberg integration, 190, 195, 218

a classical account of, 199
Romberg schemes

for other sequences of composite
trapezoidal rules, 199

root condition, 416, 419–421, 424, 427,
440–442, 444, 447

for linear difference equations, 418
roots

qualitative properties of, 254
roots of unity, 196
Rouché’s theorem, 365

derivation of, 377
rounding, 1, 5

by chopping, 6
symmetric, 6, 7

roundoff errors, 1
statistical theory of, 453

Routh–Hurwitz criterion, 364
derivation of, 377

Runge phenomenon, 154
Runge’s example, 84, 116
Runge–Kutta formula

classical, 342
implicit r-stage of maximum

order 2r , 368
A-stability of, 368

Runge–Kutta formulae
4(5) and 7(8) pairs of

regions of absolute stability for, 378
embedded, 356

4(5) and 7(8) pairs of, 376
implicit, 367
pairs of, 356

Runge–Kutta method, 341
r-stage, 341

Butcher array for, 374
consistency of, 341
quadrature order of, 374
stage order of, 374

algebraically stable, 376
contemporary work and history of the,

375
explicit

maximum attainable order of, 342
of orders twelve and fourteen, 373

explicit p-stage of order p, 1 � p � 4

region of absolute stability for, 370
explicit r-stage, 341
Gauss-type, 377
implicit

constructed by collocation, 374
continuous, 375
efficient implementation of, 377

implicit r-stage, 341
of order p, 368

implicit Gauss-type, 377
semi-implicit, 375
semi-implicit r-stage, 341
stability function for a general, 376

Runge–Kutta methods, 400
Butcher’s theory of, 375

simplified version of, 375
local use of

in finte difference methods, 511
Runge–Kutta–Fehlberg formulae, 356
Runge–Kutta–Rosenbrock methods, 377

S
S
0
1, 105

basis of, 104
dimension of, 104

S
k
m.�/, 102
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s-orthogonal polynomials, 198, 257
with respect to a positive measure, 257

scaling
of the independent variable, 334

Schrödinger’s equation, 325
Schwarz’s inequality, 59, 505
Schwarzian derivative, 301
scientific computation, xix
scientific computing

texts on, xxiii
scientific notation, 3
secant method, 269, 277

efficiency index of, 273
extension to systems of equations, 289
generalizations to systems of

equations, 287
history of, 289
local convergence of, 270
Matlab program for, 273
order of convergence of, 272

series expansion
truncated, 332

Shanks transformation, 288
Shannon sampling and interpolation

theory, 113
shooting, 483, 485, 510

backward, 492
forward, 492
multiple, 492
one-sided, 492
ordinary, 491

difficulties inherent in, 490
limitations of, 485

origin of the term, 511
parallel, 491, 494, 511

motivation for the name of, 492
various versions of, 511

simple, 511
two-sided, 493

shooting methods, 256, 288, 510
difficulties inherent in, 486

an example for the, 486
for linear systems, 485
for nonlinear systems, 485

Simpson’s formula, 342, 343
composite, 166

Simpson’s rule, 165, 167
composite, 167
elementary, 166
for differential equations, 436, 447, 454

sinc functions, 42, 113
single-method schemes, 344
SIRK methods, 375

A-stable, 377

Slatec, xxi
smoothing

involving cubic splines, 117
Sobolev inner product, 114, 136
Sobolev orthogonal polynomials, 114
software packages

for ordinary differential equations, 330
special functions, 326

numerical approximation
and software for, 113

theory of, 325
spline functions

as a basic tool of approximation, 113
of degree m

and smoothness class k, 56, 102
spline interpolant

complete cubic, 137, 509
convergence of natural, 118
natural cubic, 137
not-a-knot

error of, 118
periodic

error bounds of, 118
splines

complete
error bounds of, 117

cubic, 107
multivariate, 113
natural

minimum norm property of, 118
origin of the name, 112
texts on, 113

spring
with large spring constant, 360

stability
concept of, 454
of multistep methods, 420
of one-step methods, 344

stability function, 361
relative, 377

stability inequality, 345, 348, 351, 420, 424,
429

statistical computing
texts on, xxiv

Steffensen’s method, 278
step control mechanisms, 326
Stieltjes integral, 58
Stieltjes polynomial, 198
Stieltjes procedure, 70
stiff equations, 328, 455
stiff problems, 341, 441, 450, 453, 454

text on, 376
stiff stability, 376
stiff systems, 401
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stiffness, 450, 453
of a differential equation

problem, 333
of differential equations, 360
phenomenon of, 361

stiffness matrix, 507, 509
Stirling’s formula, 34, 129
stopping rule, 261
Sturm sequences, 261, 264, 288
Sturm’s theorem, 264, 264, 288
Sturm–Liouville boundary value problem, 473
Sturm–Liouville differential equations, 264
Sturm–Liouville eigenvalue problems

regular, 510
singular, 510

Sturm–Liouville equation, 329
Sturm–Liouville problem, 472, 494

approximate solution of the extremal
problem for the, 506

mechanics of the, 507
criterion for the existence of a unique

solution of the, 481
discrete approximation of the, 495
error estimate for the solution of the

extremal problem of the, 508
extremal problem for the solution of the,

506
in operator form, 504
in self-adjoint form, 480, 503
optimal approximation property

of the solution of the, 508
unique solution of the, 480
uniqueness of the solution of a, 506
variational form of the, 505
weak form of the, 505

subdivision �
of an interval, 56, 102

fineness of, 102
subdivision �0

of an interval, 110
sublinear convergence, 260
Sun Sparc workstation, 4
superlinear convergence, 260
superposition method, 485

effects of rounding errors in the, 511
errors involved in the, 511
reduced, 510

symbolic computation packages, 29
symplectic methods

for the numerical solution of
differential equations, 373

system
tridiagonal

with dominant diagonal, 497

systems
dissipative, 376
of first-order differential equations

existence and uniqueness theorem for,
331, 372

of linear algebraic equations, 285
of nonlinear equations, 253, 284, 341

texts on the solution of, 287
overdetermined, 114
vibrating

analysis of, 253

T
TmŒ0; 2	�, 167
Taylor expansion, 33, 91, 119

modified, 119
Taylor polynomial

as Hermite interpolation
polynomial, 98

Taylor series expansion method, 335, 336, 336
codes for, 373
combined with interval arithmetic, 373
of order p

region of absolute stability for, 370
order of, 337
principal error function of, 337
truncation error of, 337

Taylor’s expansion, 194
for vector-valued functions of

several variables, 339
Taylor’s formula, 161, 271, 495

remainder term in
Lagrange’s form of the, 98

Taylor’s theorem, 279, 335, 337, 350, 500, 502
for functions of several variables, 350
with remainder in integral form, 187

theorem of Pythagoras, 66
for functions, 60
generalized, 61

three-term recurrence relation, 257
Tikhonov regularization, 196
TOMS, xxi
total derivatives, 336
transformations

of Kustaanheimo and Stiefel, 372
of Levi–Civita, 372

trapezoidal rule, 165, 167, 182
composite, 165, 166, 190, 193

advantages of, 167
convergence of, 166, 168
error term of, 166
for functions on R, 168
on nonuniform grid, 203
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trapezoidal rule (cont.)
elementary, 166
for differential equations, 451
for ordinary differential equations, 338, 367

A-stability of, 367
local use of

in finite difference methods, 511
with mean values, 212

trees
theory of rooted, 342

trial slopes, 338
trigonometric functions, 67, 198
trigonometric polynomials

as gauge functions in ˝p , 453
of degree m on Œ0; 2	�, 56

trigonometric series
standard text on, 113

truncation error, 495, 500
Turán-type quadrature rule

computation of, 288

U
underflow, 4
unit of work, 261
unit roundoff, 7

V
Vandermonde matrix, 23, 368

condition number of, 24

condition of, 24, 30
optimally conditioned, 30
optimally scaled, 30

variable-method algorithm, 347
variable-method variable-step method,

343
variational differential equation, 352

integration of the, 352
variational methods, 503, 512

for linear second-order boundary value
problems, 503

verified computing, 29
Vieta’s rule, 449
Visual Numerics library, xxi

W
wavelets, 115

texts and monographs on, 115
Weierstrass’s approximation theorem, 56, 67,

77, 119, 175
four proofs of, 112

weight functions, 169
moments of, 169
table of some classical, 177

Wilkinson’s example, 21, 30

Z
zero-stability, 375, 454
zeta function, 41
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