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Preface

Grand visions in mathematics can begin with simple observations. It is hardly
more than a homework exercise to prove that what we nowadays call the
Poincaré metric on the unit disc is invariant under the biholomorphic maps of
the unit disc to itself. But this easily established fact, when combined with the
(profound) uniformization theorem of Poincaré and Koebe, yields the striking
conclusion that, with a small number of exceptions, every Riemann surface
has a canonical complete Hermitian metric of constant Gauss curvature −1.
This result became a basic tool for the study of Riemann surfaces. From this
result also grew the whole subject of canonical metrics, an area which has
become central in transcendental algebraic geometry and in the topology of
low-dimensional manifolds.

It is natural to ask what analogue there might be in higher complex dimen-
sions of the Poincaré metric on the unit disc. Indeed, this was asked not long
after the era in the early 1900s of the uniformization theorem (Theorem 2.5.1)
and the canonical metric idea for Riemann surfaces. The higher dimensional
situation is inevitably different from the situation in complex dimension 1
because the Riemann mapping theorem fails in higher dimensions. It was
Poincaré again who showed that the unit ball in C2 was not biholomorphic to
the product of the unit disc with itself. In a similar vein, it was understood
around the same time that uniformization of algebraic surfaces was not possi-
ble in the same form as the Riemann surface result: there is no single simply
connected cover for all the algebraic surfaces with only a few exceptions, no
analogue to the unit disc being the universal cover of all but a few Riemann
surfaces. But quite early on, in the 1920s, Stefan Bergman showed how to
attach to each bounded domain in Cn, n ≥ 1, a canonical metric with the
biholomorphic invariance properties of the Poincaré metric on the unit disc:
each biholomorphic mapping of a bounded domain to itself was an isometry
of the metric, and moreover, any biholomorphic mapping of one bounded do-
main to another was an isometry of their respective metrics. Uniformization
was a failure, but invariant metrics were successful indeed.
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The Bergman metric is only numerically computable in most instances, not
given by formulas, and for some time it remained primarily an intriguing gen-
eral idea rather than a specifically useful one. But the development of the de-
tailed theory of the ∂ operator by Hörmander, Andreotti-Vesentini, Kohn, and
many others made accessible information about the behavior of the Bergman
kernel and metric, especially on strongly pseudoconvex bounded domains with
smooth boundary. The Bergman kernel is expressible directly in terms of the
solutions of ∂ that are orthogonal to holomorphic functions, and this expres-
sion means that the kernel and hence the metric can be analyzed in ∂ terms.
In particular, Fefferman’s asymptotic expansion of the Bergman kernel (1974)
near the boundary of a C∞ bounded, strongly pseudoconvex domain opened
up the possibility of realizing the grand vision of unifying complex function
theory and geometry in this case.

This unification of function theory and geometry for domains in Cn is
the subject of this book—hence its title. In particular, the use of geometric
methods yields many results about biholomorphic mappings in general and
especially about automorphisms, that is, biholomorphic maps of a domain to
itself. The fact that a biholomorphic map is an isometry means that the curva-
ture invariants of differential geometry are preserved by biholomorphic maps,
and this provides a powerful method of studying the biholomorphic mappings
themselves.

While the Bergman metric has become over the years a familiar item in
several complex variables that occurs in many texts on the subject, the study
via curvature of the geometry of the Bergman metric has been largely confined
to research papers up to now. Thus it seemed to the authors that the body
of information on this and related topics was both large enough and coherent
enough to justify its treatment in a book. That it was large enough is clear
from the length of this book. The question of being coherent we leave to the
reader, with hope for the best.

This book is not self-contained: on occasion we use, without apology and
sometimes without proof, standard results of several complex variables and
in particular of the theory of the ∂ operator. Even so, we have tried to make
the book as accessible as possible to the nonspecialist. Most of the arguments
can be followed convincingly by simply taking the unproved background re-
sults on faith, these being usually very specific and easily stated, if not easily
proven. In this sense, the book will be accessible, we hope, to anyone with
a basic background in complex analysis and differential geometry. We have
also separated out the more technical aspects of the differential geometry so
that the complex analyst can most appreciate the shape of the arguments
involving curvature by simply knowing that somehow curvature attaches dif-
ferential invariants to each point that must be preserved under isometries and
hence preserved under biholomorphic maps. Really detailed information on
differential geometry is rather seldom needed. Geodesics, for example, hardly
occur in the book at all. We have tried, in short, to make almost everything
accessible to as many readers as possible without short-changing the readers
with more specific expertise. Brave words, but we did try.
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This book is wide-ranging, though all the topics are related. And a de-
scription of the mathematical prerequisites of the book as a whole and of
the various chapters specifically may be useful. All of the book presumes ba-
sic knowledge of complex analysis in several variables, with the exception of
Chapter 2, which concerns one variable only. Especially important is some
working knowledge of normal families. A quick summary of what is needed
is given in Chapter 1. Chapter 1 also provides a summary of what is known
and needed about automorphism groups being Lie groups. These results can
be taken on faith if need be. Chapter 1 also begins to talk about Rieman-
nian metrics. Not much depth is needed here nor will be needed later about
Riemannian geometry, but the reader is presumed to have in mind what a Rie-
mannian metric is, at least. Chapter 2 is about automorphisms of Riemann
surfaces. The results there provide motivation for later developments, but as
it happens, the contents of this chapter are not explicitly used anywhere else
in the book. Again, metric concepts are used but at a quite elementary level—
Gauss curvature and some ideas about geodesics suffice. In Chapter 3, the idea
of the Bergman metric is introduced, and the geometry of the Bergman metric
is systematically exploited. The Bergman metric is by nature a Kähler metric,
but rather little is needed here about Kähler geometry in detail. Indeed, it
is not really necessary to know what a Kähler metric is. What is needed is
the realization that attached to a metric structure, a Riemannian metric in
general, are some second-order differential invariants which are preserved by
mappings that preserve the metric itself. Of course, the deeper meaning of
these curvature invariants, if known, will enhance the reader’s appreciation
of the power and elegance of their application to complex analysis. But in
the strictly logical sense, one could think of them as simply formulas, which
happened to have certain important invariance properties. The same remarks
apply to the continuation of these developments in Chapter 4.

Chapter 5 involves some considerable background in Lie group theory, es-
pecially in its second half, on the Bedford–Dadok argument. But Chapter 5
is not needed for the later parts of the book, and the reader who is so in-
clined can simply take as answered the question of which compact Lie groups
occur as the automorphism group of a smoothly bounded strongly pseudocon-
vex domain in Euclidean space—first all of them do—and skip this chapter
altogether.

Chapter 6 is similarly not needed for subsequent developments. It answers
a natural and interesting (in the authors’ view) question, and the argument
in the noncompact case is not far outside the usual ways of thinking in several
complex variables. The compact case involves some ideas from further afield,
in algebraic geometry, and can be omitted without penalty if desired.

Chapter 7 reviews some metric ideas more general than the smooth Rie-
mannian metrics that were used earlier. These more general metrics are of
fundamental importance in several complex variables and are likely somewhat
familiar to complex analysts in any case. References are given to further details
about these metrics. This material is of central importance to the whole sub-
ject, though it is not needed in subsequent chapters as such. Automorphisms
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of Reinhardt domains, the subject of Chapter 8, require some information
about Lie algebras if they are to be studied in detail, but the reader can gain
a good impression without this.

Chapters 9 and 10 are in fact the natural continuation of Chapters 3 and 4
and can be read effectively immediately after Chapter 4, with the intervening
chapters skipped. Chapters 9 and 10 introduce what is known as the scaling
method at a rather more leisurely pace than is followed in the rest of the
book, since this material is both very important and not so widely available
in systematic form. Indeed some of the material here is new. Chapter 11 looks
back on the whole book and discusses where the results could have been
stated and proved more generally. For ease of reading, many of the results in
the earlier parts of the book were stated in special cases—e.g., for domains
in Euclidean spaces rather than complex manifolds—and Chapter 11 clarifies
what additional generality holds without the introduction of fundamentally
new arguments.

This book has been under construction for some considerable time. The
authors have benefited during this effort from interactions with many col-
leagues. We thank them all. In particular, the third named author (Krantz)
thanks Alexander Isaev for his collaboration and for many helpful ideas over
the years. Several institutions have offered us mathematical hospitality during
the writing. In addition to our home institutions, we thank MSRI, the Tech-
nical University of Denmark, the American Institute of Mathematics, and
l’École Polytechnique de France (Palaiseau). We thank Ms. Ae-Ryoung Seo
of POSTECH and Mr. Felipe Garcia Hernandez of UCLA, who each read the
whole manuscript and made helpful suggestions. It goes without saying that
any remaining errors are the authors’ sole responsibility.

Some mathematical subjects begin slowly, by accumulation of many small
contributions, like a river forming from many small streams. The general idea
of the deep relationship between function theory and geometry does indeed
have many historical sources in the nineteenth century, as indicated briefly
in the opening paragraphs of this preface. But the specific subject of this
book began definitely and quite suddenly with the work of Stefan Bergman.
Without his work, this book would not have existed. We dedicate it to his
memory.

Robert E. Greene
Kang-Tae Kim

Steven G. Krantz
Los Angeles, Pohang, Saint Louis



1

Preliminaries

1.1 Automorphism Groups

A subset Ω ⊆ Cn will be called a domain if it is connected and open. The
automorphism group Aut (Ω) of Ω is by definition the set of all holomorphic
mappings f : Ω → Ω with inverse map f−1 existing and also holomorphic. The
group operation is the composition of mappings, and it is easy to check that
this binary operation makes Aut (Ω) into a group. When n = 1, it is well
known and easy to prove that f−1 will be automatically holomorphic when it
is defined. This follows from the argument principle because a locally injective
holomorphic function has nowhere zero first derivative. This result is also true
in several complex variables, but requires more effort to prove. One must show
that a locally injective, equi-dimensional holomorphic mapping has nowhere
vanishing holomorphic Jacobian determinant; from this it follows immediately
that f−1 is holomorphic. This result is conceptually fundamental, but plays
little explicit role in what follows and will not be discussed further. [See, e.g.,
[Narasimhan 1971] for a proof.]

The definition of automorphism group can obviously be extended to the
case where Ω is replaced by a complex manifold M . The same observation
applies to the redundancy of the hypothesis that f−1 be holomorphic since the
proof of that result can be performed in local coordinates. Much of the theory
of automorphism groups of domains in space can be transferred, without any
extra work, directly to the complex manifold case; we shall often treat the two
situations simultaneously. Other results are quite different for manifolds than
for domains in Cn, and we shall indicate some of these distinctions later.

Just as, in one complex variable, the study of Riemann surfaces can clarify
basic function-theoretic questions, the study of manifolds in higher dimen-
sions can clarify the situation for domains in space. However, little detailed
knowledge of complex manifold theory will be needed for the reading of this
book.

The subject of the geometry of open sets in Cn and of the geometry of
open complex manifolds in general divides itself rather naturally into two

R. E. Greene et al., The Geometry of Complex Domains, Progress in Mathematics, 
DOI 10.1007/978-0-8176-4622-6_1, © Springer Science+Business Media, LLC 2011



2 1 Preliminaries

parts. It is really two subjects. In one of these, the domains and manifolds
are such that their automorphism groups are finite dimensional and indeed
are Lie groups. In the other, the automorphism groups involve infinitely many
parameters. The one-variable, Riemann surface situation (for example) is de-
ceptively simple. The group Aut (M) when M is a Riemann surface is always
a Lie group, as we shall prove in Chapter 2. By contrast, if one takes Ω = C2,
then the group Aut (Ω) is not a Lie group but rather is infinite dimensional
in a certain sense. For example, if f : C → C is any entire function, then
(z1, z2) �→ (z1 + f(z2), z2) is an automorphism of C2.

The present book is primarily about the situations in which Aut (Ω) is a
(finite-dimensional) Lie group and satisfies an additional condition that the
action is proper in the following sense: the action map A : Aut (Ω)×Ω → Ω×Ω
defined by (ϕ, z) �→ (ϕ(z), z) is proper. That is, A−1(C) is compact for each
compact subset C of Ω × Ω. In particular, the isotropy group Ip × {p} :=
{ϕ ∈ Aut (Ω) : ϕ(p) = p} is compact for any p ∈ Ω since Ip = A−1(p, p). For
a statement like this to make sense, we need to define a topology on Aut (Ω).
The appropriate topology, which will be used throughout, is the compact-open
topology, equivalently the topology of uniform convergence on compact sets.
[It should be noted that all the complex manifolds that we shall consider in
the sequel will be paracompact; thus no topological pathologies will arise. In
particular, the compact-open topology is metrizable in this case.]

If Ω is a bounded domain in Cn, then Aut (Ω) is necessarily a Lie group.
This was proved specifically by H. Cartan ([Cartan 1935]). Our approach to
this will be via normal families and the Bochner–Montgomery theorem (The-
orem 1.3.11 below), which characterizes the subgroups of the diffeomorphism
group which are Lie groups. Our approach will also yield the properness of
the action of Aut (Ω) on Ω (Theorem 1.3.12).

Any covering-space quotient of a manifold M with Aut (M) acting prop-
erly, and in particular any covering-space quotient of a bounded domain, also
has its automorphism group acting properly. Also, any Riemann surface except
the Riemann sphere C ∪ {∞} and C itself has this proper-action property.1

In addition to bounded domains in Cn and their quotients, there are other
classes of complex manifolds for which the automorphism group action is
proper. Some aspects of this phenomenon will be considered in Chapter 7.

The role of proper action can be made explicit even at this early stage of
our development. This condition is necessary for the existence of a (smooth)
Riemannian metric for which all the elements of the automorphism group are
isometries. Actually, the condition of proper action is also sufficient for the

1That the property holds for tori and for C with one point removed is, in a sense,
accidental: for these Riemann surfaces are both covered by C, which itself does not
have the desired property that the action of the automorphism group is proper. But
all other Riemann surfaces (except the sphere and the cylinder) are quotients of the
unit disc D = {ζ ∈ C : |ζ| < 1}, and for these the general principle applies.
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existence of such an “invariant metric” [Palais 1961].2 This will be discussed
in more detail in Section 1.3.

Thus, for the domains and manifolds that we shall consider, the automor-
phism group, which is at first sight a function-theoretic object, will turn out
to be also a geometric one via the existence of an invariant metric. These mat-
ters will usually be treated here by constructing explicitly an invariant metric
rather than by appealing to the general results of Lie group theory.

In Riemann surface theory, this idea of relating function theory to geom-
etry goes back at least to Poincaré and even Riemann. In higher dimensions,
some aspects of the idea also have a long history, but many developments have
occurred in recent times as well. It is this interaction between function theory
and geometry that makes the whole subject so varied and interesting. And
while we begin with the function theory, geometry soon takes center stage and
plays a major role thereafter.

1.2 Some Fundamentals from Complex Analysis
of Several Variables

We shall use systematically the standard notational conventions for coordi-
nates in Cn, first

z = (z1, . . . , zn) and w = (w1, . . . , wn).

We shall also write

|z| =
⎛⎝ n∑

j=1

|zj |2
⎞⎠ 1

2

.

Thus a mapping from an open subset of Cn into Cm is given by an m-tuple
of complex-valued functions of n complex variables:

w = (w1, . . . , wn) = f(z) = (f1(z1, . . . , zn), . . . , fm(z1, . . . , zn)).

Such a map is, by definition, holomorphic if each of the functions fj , j =
1, . . . ,m, is holomorphic in one and hence any of the various equivalent senses
of the word “holomorphic.”

Here and elsewhere we take for granted basic elements of the theory of
functions of several complex variables, for which see [Grauert/Fritzsche 1976],
[Hörmander 1990], or [Krantz 2001] for instance. In particular, we assume that

2It is a familiar fact that the group of isometries of a (smooth) Riemannian
manifold acts properly. But the partial converse, that a properly-acting subgroup
of the group of diffeomorphisms acts as isometries for some smooth metric, is not
obvious.
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the reader is aware that, for C-valued functions f(z1, . . . , zn) defined on an
open subset of Cn, the following ideas are equivalent:

• The function f is holomorphic in each variable separately; 3

• The function f is real-continuously differentiable (C1) and satisfies the
Cauchy–Riemann equations in each variable separately;

• The function f has at each point p = (p1, p2, . . . , pn) of its domain a power
series expansion

f(z) =
∑

i1,i2,...,in≥0

ai1i2···in(z1 − p1)i1(z2 − p2)i2 · · · (zn − pn)in

which converges absolutely to f for all (z1, z2, . . . , zn) in some open neigh-
borhood of p.

As will be taken for granted here, many of the ideas of one complex variable
have more or less automatic extensions to several variables. These include the
Cauchy integral formula in several variables: recall that the polydisc Dn(p, r)
of polyradius r = (r1, . . . , rn) with rj > 0 for every j is defined to be

Dn(p, r) := {(z1, . . . , zn) ∈ Cn : |zj − pj | < rj for every j}.

If the closure cl(Dn(p, r)) of this polydisc is contained in the (open) domain of
definition of a holomorphic function f then, for each (z1, . . . , zn) in the open
polydisc,

f(z1, . . . , zn)

=
1

(2πi)n

∮
|ζ1−p1|=r1

· · ·
∮

|ζn−pn|=rn

f(ζ1, . . . , ζn)
(ζ1 − z1) · · · (ζn − zn)

dζn · · · dζ1,

where the integral is an iterated line integral. This reconstructs the power
series expansion of f around (p1, . . . , pn), by expansion of the integrand and
integration term-by-term. Differentiation of this formula under the integral
sign together with obvious estimates also yields the following, which we shall
apply repeatedly: if a sequence {fj} of C-valued holomorphic functions on an
open subset U of Cn converges uniformly on each compact subset of U , then
every derivative (of any order) of the sequence also converges uniformly on
each compact subset, and the derivative of the limit is equal to the limit of
the derivative.

This last result, which is a direct analogue of a familiar fact about one-
variable theory, will be especially important to us since, in effect, it says
that the compact-open topology for holomorphic functions is the same as the
C∞ topology. Thus sets or groups of holomorphic mappings have a natural,
unique topology. This means that the subtle questions associated to the phrase

3In the background here is the famous theorem of Hartogs that a function holo-
morphic in each variable separately is automatically continuous, indeed real analytic.
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“Hilbert’s fifth problem” play no role here; such matters are automatically
straightforward.

Hurwitz’s theorem in one variable on limits of zero-free functions has a
direct generalization to several variables: first, if fj : Ω → C, j = 1, 2, 3, . . .,
are holomorphic functions from a domain (i.e., a connected open set) in Cn

with 0 	∈ fj(Ω), and if the sequence {fj} converges uniformly on compact
subsets of Ω to a (necessarily holomorphic) limit f0 : Ω → C, then either
f0(Ω) = {0}, i.e., f0 ≡ 0, or 0 	∈ f0(Ω), i.e., f0 is nowhere zero. The proof
is obtained by observing that, if f0(z0) = 0 for some z0 ∈ Ω, then, by the
one-variable Hurwitz theorem, the function ζ �→ f0(z0 + aζ), for ζ ∈ C with
|ζ| small and for a ∈ Cn with ‖a‖ = 1, is defined and identically zero. Then
that f0 ≡ 0 follows by analytic continuation.

Since one of the main subjects of this book is self-mappings of domains
in Cn or, on occasion, complex manifolds, we have some special interest in
holomorphic mappings where domain and range have equal dimension; first,
n-tuples (f1(z1, . . . , zn), . . . , fn(z1, . . . , zn)) of holomorphic functions of n vari-
ables. Attached to this situation is the holomorphic Jacobian determinant J ,
first, the ordinary determinant of the n× n complex matrix⎛⎜⎜⎝

∂f1
∂z1

· · · ∂f1
∂zn

...
...

∂fn

∂z1
· · · ∂fn

∂zn

⎞⎟⎟⎠ .

A linear algebra calculation shows that the Jacobian determinant of the map-
ping considered as a real mapping from an open subset of R2n to R2n is |J |2.
This is a generalization of the familiar fact from one variable that the real
differential of a holomorphic function is a rotation followed by dilation by a
factor of |f ′|, so that its action on the area element is multiplication by |f ′|2.

Returning to the Cn situation in general, we see that the holomorphic
mapping from an open subset into Cn again is nonsingular as a real mapping at
a given point if and only if its holomorphic Jacobian determinant J is nonzero
at that point. Combining this observation with Hurwitz’s theorem, we see that
the limit (uniformly on compact sets) of everywhere nonsingular mappings of a
connected open set in Cn to Cn is either everywhere nonsingular or everywhere
singular. In the latter case, the limit mapping has image with empty interior
(by Sard’s theorem (Theorem 5.3.2)). This line of thought is associated to the
idea that the limit of biholomorphic mappings is either biholomorphic or in
some sense “degenerate.” This point will be explored in detail in later sections.

It is of interest to characterize holomorphic mappings in terms of their real
differentials. This is done in effect by way of the Cauchy–Riemann equations.
Let (f1(z1, . . . , zn), . . . , fm(z1, . . . , zn)) be a holomorphic mapping into Cm

defined on an open subset of Cn. Then we write fj = uj +
√−1vj , where uj ,

vj are real-valued. The Cauchy–Riemann equations are as usual

∂uj

∂x�
=

∂vj

∂y�
and

∂uj

∂y�
= −∂vj

∂x�
, j = 1, . . . ,m, � = 1, . . . , n.
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We write here, by convention, z� = x� +
√−1y�. This can be thought of

in a less coordinate-dependent fashion as follows. Identify Cn with R2n by
sending (z1, . . . , zn) to (x1, y1, . . . , xn, yn). Define an R-linear map J2n of R2n

to itself by sending (x1, y1, . . . , xn, yn) to (−y1, x1, . . . ,−yn, xn). Then the
Cauchy–Riemann equations for a map F : U → Cm, with U open in Cn, are
equivalent to

J2m ◦ dF = dF ◦ J2n,

where dF is the real differential of F considered as a C∞ function from R2n

to R2m.
This characterization of holomorphicity has an immediate consequence

that is important for the theory of complex manifolds. first, if two complex
local coordinate systems (z1, . . . , zn) and (w1, . . . , wn) are holomorphically
related, then the J operator determined from the z-coordinates is the same
operator as the J operator determined from the w-coordinates. The meaning
of this assertion is familiar in Riemann surface theory: J is rotation by 90◦

counterclockwise in the orientation determined by the Riemann surface struc-
ture. The meaning of this is the same in any holomorphic coordinate system
because the real differential of the coordinate change is orientation-preserving
and conformal. In higher dimensions, there is again a coordinate-invariant op-
erator J on the real tangent space at each point of a complex manifold. This
operator corresponds to the J operator in any coordinate system, and the ob-
servation in the previous paragraph shows that it is independent of coordinate
choice.

The J operator thus obtained provides a way to connect real Rieman-
nian geometry with complex behavior, since J is a real (1, 1) tensor but it
completely determines which (locally defined) functions are holomorphic. This
approach to the geometry of complex manifolds is presented systematically
in, e.g., [Greene 1987], [Wells 1979]; see also [Kobayashi/Nomizu 1963].

1.3 Normal Families and Automorphisms

Let D ⊂ C denote the open unit disc {ζ ∈ C : |ζ| < 1}. Also D(p, r) ⊂ C
denotes the open disc with radius r centered at p. For r > 0 we let

Dn(0, r) ≡ D(0, r)× · · · ×D(0, r)︸ ︷︷ ︸
n times

.

Further, if p = (p1, . . . , pn) ∈ Cn and r > 0, then

Dn(p, r) ≡ D(p1, r)× · · · ×D(pn, r).

If f : D → D ⊂ C is a holomorphic function with f(0) = 0 and |f ′(0)| = 1,
then f has the form f(z) = f ′(0)z. In particular, if f ∈ Aut (D) and if such
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an f has f ′(0) = 1, then f(z) = z. This is part of the classical Schwarz
lemma. The following result is a direct generalization to several variables, and
to arbitrary bounded domains. There are many possible generalizations of the
Schwarz lemma, some of which will be discussed later on in this book, but
this one is the one that will play the most direct role in our investigations.
For example, it will enable us to see that, if Ω is a bounded domain, then
Aut (Ω) has compact isotropy group at each point.

Theorem 1.3.1 (H. Cartan). Suppose that Ω is a bounded domain in Cn.
Let φ : Ω → Ω be holomorphic and suppose that, for some p ∈ Ω, φ(p) = p
and dφ(p) = id. [Here dφ is the n-dimensional complex differential.] Then φ
is the identity mapping from Ω to itself.

Boundedness of Ω is an essential hypothesis: consider the automorphism
of C2 given by (z1, z2) �→ (z1 + z2

2 , z2).

Proof of Theorem 1.3.1. We may assume that p = 0 (the origin). For proof
by contradiction, assume that φ does not coincide with the identity mapping.
Expanding φ in a power series about p = 0 (and remembering that φ is
vector-valued, hence so is the expansion) yields

φ(z) = z + Pk(z) + O(|z|k+1),

where Pk is the first nonvanishing homogeneous polynomial (of degree k)
of order exceeding 1 in the Taylor expansion. Defining φj(z) = φ ◦ · · · ◦ φ
(j times); direct computation then gives that

φ2(z) = z + 2Pk(z) + O(|z|k+1)
φ3(z) = z + 3Pk(z) + O(|z|k+1)

...
φj(z) = z + jPk(z) + O(|z|k+1).

Choose polydiscs Dn(0, a) ⊆ Ω ⊆ Dn(0, b). The Cauchy estimates imply
then that, for any multi-index α = (α1, . . . , αn) with |α| := α1 + · · ·+αn = k,

j ·
∣∣∣∣( ∂

∂z

)α

φ
∣∣∣
0

∣∣∣∣ =
∣∣∣∣( ∂

∂z

)α

φj
∣∣∣
0

∣∣∣∣ ≤ n · b · α!
ak

,

where (
∂

∂z

)α

=
∂α1

∂zα1
1
· · · ∂

αn

∂zαn
n

.

Note that the rightmost item in this estimate is independent of j. Hence,
for each such multi-index α with |α| = k, (∂/∂z)αφ

∣∣
0 = 0. Thus Pk = 0,

a contradiction. ��
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This argument in particular applies when the dimension n = 1 and the
domain Ω is the unit disc. There it gives a conceptually direct proof of the
corresponding part of the classical Schwarz lemma.

Cartan’s result has some further immediate but surprising consequences.

Corollary 1.3.2. Suppose that Ω is a bounded, circular domain in Cn, that
is (eiθz1, e

iθz2, . . . , e
iθzn) ∈ Ω whenever (z1, z2, . . . , zn) ∈ Ω for every θ ∈ R.

If 0 ∈ Ω and f ∈ Aut (Ω) with f(0) = 0, then f is a linear mapping.

Proof. For θ ∈ R and z ∈ Ω, let F (z) = e−iθf(eiθz). Then F ∈ Aut (Ω),
since Ω is circular. By the chain rule it follows that

d(f−1 ◦ F )
∣∣
0 = id.

Hence

f−1 ◦ F = id

on Ω, or equivalently f = F . If we write f = (f1, . . . , fn), F = (F1, . . . , Fn),
and

fj(z) =
+∞∑

|N |=1

aNzN

is the Taylor expansion of fj , then the Taylor expansion of Fj is, by definition
of F and by substitution,

Fj =
+∞∑

|N |=1

e−iθaNei|N |θzN .

But Fj = fj . Therefore ei(|N |−1)θaN = aN for all multi-indices N and all
θ ∈ R. This implies that aN = 0 for |N | ≥ 2.4 Thus each fj is linear. ��

It is easy to modify this argument to show that, if Ω1, Ω2 are two bounded,
circular domains containing the origin 0 and if F : Ω1 → Ω2 is biholomorphic
with F (0) = 0, then F is linear. This immediately implies that, when n ≥ 2,
the unit ball {(z1, . . . , zn) : |z1|2 + · · · + |zn|2 < 1} and the unit polydisc
{(z1, . . . , zn) : |zj | < 1, j = 1, . . . , n} are not biholomorphic: If there were a
biholomorphic map between them, then applying suitable biholomorphic maps
to each variable in the unit polydisc separately would produce a biholomorphic
map that took 0 to 0. This would then have to be linear, which is not possible,
since, e.g., the ball has smooth boundary and the polydisc does not (when
n ≥ 2). Thus the direct analogue of the Riemann mapping theorem fails
in Cn, n ≥ 2: (bounded) domains can be homeomorphic to the ball without
being biholomorphic to it. This failure, even for small perturbations of the
ball, will be explained in much more detail in later chapters.

4Here N = (n1, . . . , nn) and |N | = n1 + · · · + nn.
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The second corollary will play an important role in what follows.

Corollary 1.3.3. If Ω is a bounded domain in Cn and p ∈ Ω, then the
mapping

f �−→ df
∣∣
p

is an injective homomorphism of the group

Ip ≡ {f ∈ Aut (Ω) : f(p) = p}
into GL(n,C).

Proof. If df
∣∣
p

= dg
∣∣
p

for f, g ∈ Ip, then the chain rule gives that d(f−1◦g)∣∣
p

=
id, where the identity map id is given by the n × n identity matrix In ∈
GL(n,C). By Theorem 1.3.1, f−1 ◦ g : Ω → Ω is the identity mapping. Hence
f ≡ g. We conclude that f �→ df

∣∣
p

is injective on Ip. The homomorphism
property is a special case of the chain rule. ��

If a group G acts on a space X through an action G × X → X, and
if x ∈ X, then the orbit Ox of the point x is the set {gx : g ∈ G}. In a
natural sense the orbit is the image of the group G. Indeed, Ox is naturally
identified with the quotient G/Ix, where Ix = {g ∈ G : gx = x}. We shall
be particularly interested in boundary points that are accumulation points of
some orbit for the action of the automorphism group Aut (Ω) on Ω. If the
orbit Ox ⊆ Ω, considered as a point set, has a boundary point p ∈ ∂Ω as an
accumulation point then we call p a boundary orbit accumulation point. These
will be discussed in detail in Section 1.5.

Corollary 1.3.3 immediately yields the following observation. Fix p0 ∈ Ω.
Then each f ∈ Aut (Ω) is uniquely determined by f(p0) and df |p0 . Now the
possibilities for f(p0) range at most over Ω and for df |p0 over Cn2

(identifying
df |p0 with its complex n × n matrix). So in a general sense Aut (Ω) is pa-
rameterized by a subset of Cn ×Cn2

. Thus one might expect Aut (Ω) to be a
finite-dimensional group, and hence a Lie group. This expectation turns out to
be justified. But of course this depends on adding the topology into the picture
of Aut (Ω): as it stands, this “parameterization” is only set-theoretic. We have
already discussed the appropriate topology for Aut (Ω), first the compact-open
topology. Clearly the association f �→ (f(p0), df |p0) ∈ Cn ×Cn2

is continuous
(for the second factor, by Cauchy estimates). To pursue this matter further,
we shall need some results from normal families, to which we shall turn next.

Among results also associated to normal families and the closure properties
of the group Aut (Ω), when Ω is a bounded domain in Cn, the following
principle will in particular play an important role in our later considerations.
While in a sense this is just an application of standard normal families ideas,
the details are surprisingly subtle in this general, multi-variable situation.

Theorem 1.3.4 (Normal Families of Automorphisms). Let Ω be a
bounded domain in Cn. If {fj} is a sequence in Aut (Ω) which converges
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uniformly on compact subsets of Ω and if, for some p0 ∈ Ω, the limit
limj→∞ fj(p0) is a point of Ω, then the limit holomorphic mapping f0 ≡
lim fj : Ω → cl(Ω) has image equal precisely to Ω and f0 ∈ Aut (Ω).

Without the hypothesis about the point p0, the conclusion can fail. For
example, if Ω = D = {z ∈ C : |z| < 1} and

fj(z) =
z − (1− 1/j)
1− (1− 1/j)z

,

then fj ∈ Aut (Ω), but

lim fj = the constant function −1.

In one complex variable, such “degenerate limits,” where lim fj(p0) ∈ cl(Ω)\Ω
for some p0 and hence (by the theorem) all p0 ∈ Ω, are necessarily constant
functions. This is an easy consequence of Hurwitz’s theorem on the limits
of sequences of zero-free holomorphic functions. For, suppose to the contrary
that lim fj(p0) = q ∈ cl(Ω) \ Ω. Then the limit of the zero-free functions
fj(z)− q for z ∈ Ω has a zero at p0 and is hence ≡ 0 on Ω.

This argument indeed shows that, under the hypotheses of the theorem,
lim fj is “interior,” i.e., (lim fj)(Ω) ⊂ Ω, in the one-variable case. But the
argument needed in general (i.e., higher dimensions) is much more intricate—
even though Hurwitz’s theorem on limits of sequences of zero-free holomorphic
functions continues to play a role.

Proof of Theorem 1.3.4. Let Jfj be the holomorphic Jacobian determinant
of fj as discussed earlier. Then Jfj is zero-free on Ω. Write f0 for the limit
of the fj . By Hurwitz’s theorem, Jf0 is either identically 0 or is zero-free. To
rule out the first possibility, we show that Jf0(p0) 	= 0. For this, note that

Jf0(p0) = lim
j→∞

Jfj (p0) = lim
j→∞

1
Jgj (fj(p0))

,

where gj ≡ f−1
j .

Since lim fj(p0) exists by hypothesis and belongs to Ω, it follows that
the set {fj(p0)} belongs to a compact subset of Ω. Indeed it belongs to
{limj fj(p0)}∪{fj(p0)}, which is surely compact. By Cauchy estimates, Jgj is
bounded on this compact set. Thus limj 1/Jgj (fj(p0)) 	= 0, and that is what
we wanted.

It would be pleasant if the fact that we just established, first that Jf0 is
zero-free on Ω, implied immediately that f0(Ω) ⊂ Ω. In the special case that
Ω has a “nice boundary” (e.g., a regularly embedded C2 hypersurface in Cn),
the result would actually follow. For in that case Jf0 being nowhere zero
implies that f0(Ω) is open in Cn and for a domain Ω with smooth boundary,
every subset of the closure cl(Ω) of Ω that is open in Cn is contained in Ω. But
of course in a more general setting, wherein the boundary of Ω is not smooth,
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cl(Ω) can in fact contain points of cl(Ω) \Ω in its interior (e.g., consider the
case of Ω a punctured open ball). Thus a more refined argument is needed.

Fix a point p ∈ Ω. Then Jf0(p) 	= 0 and of course the entire holomor-
phic Jacobian matrix of first derivatives of fj at p converges to the matrix
for f0, which is nonsingular. Moreover, the second derivatives of the fj on
any fixed, closed ball cl(Bn(p, ε)) ⊂ Ω, ε > 0, are bounded uniformly in j by
Cauchy estimates. Now it follows from the inverse function theorem (see, e.g.,
[Krantz/Parks 2002]) that there is a δ > 0 such that fj(Ω) contains an open
ball of radius δ around fj(p). Here δ can be taken to be independent of j. In
particular, since fj(Ω) = Ω, the distance of fj(p) to Cn\Ω is at least δ for all j.
It follows that limj fj(p) = f0(p) is in Ω, not in cl(Ω) \Ω. Thus, f0(Ω) ⊂ Ω.

Now that we know that f0 is “interior,” i.e., it maps the interior points
to the interior points and hence no interior points are mapped to a boundary
point, we want to show that f0 ∈ Aut (Ω), i.e., that f0 : Ω → Ω is one-to-one
and onto. Passing to a subsequence if necessary, we can suppose that {gj} =
{f−1

j } converges uniformly on compact subsets to a limit g0 : Ω → cl(Ω). Our
next goal is to show that g0 is interior. By the argument used to show that f0
was interior, it suffices to show that g0(f0(p0)) belongs to Ω, not to cl(Ω)\Ω.

For this, choose λ > 0 such that the closed ball cl
(
Bn(f0(p0), 2λ)

) ⊂ Ω.
Notice that fj(p0) ∈ cl

(
Bn(f0(p0), λ)

)
whenever j is sufficiently large. Hence,

by Cauchy estimates, there is a constant M > 0, independent of j, such that

‖gj(fj(p0))− gj(f0(p0))‖ ≤M‖fj(p0)− f0(p0)‖
for all j sufficiently large. But gj(fj(p0)) = p0. Hence

‖p0 − gj(f0(p0))‖ ≤M‖fj(p0)− f0(p0)‖.
Since the righthand side goes to 0 as j → +∞, so does the lefthand side and
hence

g0(f0(p0)) = lim
j→∞

gj(f0(p0)) = p0.

We conclude that g0(f0(p0)) ∈ Ω and therefore g0 is interior.
We now must show that f0 ◦ g0 : Ω → Ω and g0 ◦ f0 : Ω → Ω are both

identity maps of Ω to Ω. This of course will establish that f0 ∈ Aut (Ω). This
final result is a consequence of the next lemma.

Lemma 1.3.5. If {fj : Ω → Ω} and {gj : Ω → Ω} are sequences of holomor-
phic mappings which converge uniformly on compact subsets of Ω to interior
limits f0 : Ω → Ω and g0 : Ω → Ω, then the sequence {gj ◦ fj : Ω → Ω}
converges uniformly on compact subsets of Ω to g0 ◦ f0 : Ω → Ω.

Assuming this lemma for the moment, we may apply it to fj and gj as
before. Since gj ◦ fj is the identity map of Ω to Ω, for all j, it follows that
g0 ◦ f0 is also the identity map. Applying the lemma again with the roles of f
and g interchanged gives that f0 ◦ g0 is the identity. This completes the proof
of the theorem. Thus, it remains to prove the lemma.
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Proof of Lemma 1.3.5. Suppose that K ⊂ Ω is a compact subset. Then choose
ε > 0 such that

Lε ≡ {z ∈ Ω : ‖z − w‖ ≤ ε for some w ∈ f0(K)}

is a compact subset of Ω. This choice is possible since f0(K) is a compact
subset of Ω. For all j sufficiently large, fj(K) ⊂ Lε. Furthermore, the mem-
bers of {gj} are uniformly Lipschitz continuous on Lε by Cauchy estimates.
Thus, for z ∈ K and j large, there is a j-independent constant M such that

‖gj(fj(z))− g0(f0(z))‖ ≤ ‖gj(fj(z))− gj(f0(z))‖+ ‖gj(f0(z))− g0(f0(z))‖
≤ M‖fj(z)− f0(z)‖+ ‖gj(f0(z))− g0(f0(z))‖.

Now ‖fj(z) − f0(z)‖ → 0 uniformly for z ∈ K. Also, since {f0(z) : z ∈
K} is compact, ‖gj(f0(z)) − g0(f0(z))‖ → 0 uniformly for z ∈ K. Thus
limj gj(fj(z)) = g0(f0(z)) uniformly for z ∈ K as required. ��

The proof of Theorem 1.3.4 is now complete. ��
Corollary 1.3.6. For each p ∈ Ω, the orbit Op := {f(p) : f ∈ Aut (Ω)} is
closed in Ω.

Proof. We need to show that, if {fj(p)} converges to q ∈ Ω, then q ∈ Op,
i.e., that q = f(p) for some f ∈ Aut (Ω). Choose a subsequence of {fj}
which converges uniformly on compact subsets of Ω to f : Ω → cl(Ω).5 By
Theorem 1.3.4, f ∈ Aut (Ω) and clearly f(p) = limj fj(p) = q. ��
Corollary 1.3.7. The injective homomorphism f �→ df |p of Ip (the isotropy
group {f ∈ Aut (Ω) : f(p) = p}) onto dIp is a homeomorphism of Ip (in the
compact-open topology) onto a compact subgroup of GL(n,C).

Proof. That f �→ df |p is an injective homomorphism of Ip onto dIp has al-
ready been established (Corollary 1.3.3). The continuity is an immediate con-
sequence of the Cauchy estimates for first derivatives. For the compactness,
note that a sequence {dfj |p : fj ∈ Ip} has a subsequence {dfjk

|p : fjk
∈ Ip}

for which {fjk
} converges uniformly on compact subsets of Ω and, by The-

orem 1.3.4, to an element f0 ∈ Aut (Ω) that fixes p. Again by the Cauchy
estimates, dfjk

|p converges in GL(n,C) to df0|p ∈ dIp. ��
The compactness part of Corollary 1.3.7 is a special case of a more general

result which has essentially the same proof.

Corollary 1.3.8. If K is a compact subset of Ω and p ∈ Ω, then {f ∈
Aut (Ω) : f(p) ∈ K} is a compact subset of Aut (Ω).

5We shall use the notation cl(Ω) for the closure of Ω, instead of the more famil-
iar Ω, to avoid confusion with the complex conjugate.
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Proof. Let {fj} be a sequence in Aut (Ω) with fj(p) ∈ K for all j. Since K is
compact, we see by passing to a subsequence (still called fj) that limj fj(p)
exists and lies in K. By normal families considerations, a further passage to a
subsequence yields a sequence that converges uniformly on compact sets. By
Theorem 1.3.4, this sequential limit is itself an automorphism. Obviously this
limit takes p to some point in K. ��

Corollary 1.3.9. If, for some p ∈ Ω, {f(p) : f ∈ Aut (Ω)} is compact, then
Aut (Ω) is compact.

Proof. In the corollary before this one, we simply take K = {f(p) : f ∈
Aut (Ω)}. ��

For all p ∈ Ω, {f(p) : f ∈ Aut (Ω)} is compact if Aut (Ω) is compact, just
because for a given p the mapping

F : Aut (Ω)→ Ω

f �→ f(p)

is continuous. Thus we have proved the following result.

Proposition 1.3.10. If one orbit of Aut (Ω) is compact, then Aut (Ω) is com-
pact and all of its orbits are compact.

We know from Corollary 1.3.6 that any orbit of Aut (Ω) is closed in Ω.
Thus the only way that an orbit of Aut (Ω) can be noncompact is to “run out
to the boundary” of Ω, i.e., the closure must contain an element of cl(Ω) \Ω.
One of the main points of the present book is to study what happens when
Aut (Ω) is noncompact. And one of the main approaches will be to study
cl(Ω) \Ω in a neighborhood of such a “boundary orbit accumulation point,”
that is, an element of cl(Ω) \ Ω that lies in the closure of some orbit of the
automorphism group action.

We now see that the automorphism group of a bounded domain is a (finite-
dimensional) Lie group. For this we shall use the following general theorem.

Theorem 1.3.11 ([Bochner/Montgomery 1946]). Let G be a subgroup
of the diffeomorphism group of a smooth manifold. If it is locally compact,
then G is a Lie group.

When the action of the automorphism group is proper, the group is neces-
sarily locally compact. first, as before, we define the action map A : Aut (Ω)×
Ω → Ω×Ω by A(ϕ, z) = (ϕ(z), z). Then A−1 of a compact-closure neighbor-
hood of (z, z) for any z ∈ Ω has compact closure in Aut (Ω) × Ω, when A is
a proper map. This gives a compact-closure neighborhood of the identity in
Aut (Ω), by projection to the first factor of Aut (Ω)× Ω. Thus to show that
Aut (Ω) is a Lie group when Ω is a bounded domain in Cn, it suffices, in the
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presence of the Bochner–Montgomery theorem (Theorem 1.3.11), to show:

Theorem 1.3.12. If Ω is a bounded domain in Cn, then the action of Aut (Ω)
on Ω is proper, i.e., the map (ϕ, z) �→ (ϕ(z), z) : Aut (Ω) × Ω → Ω × Ω is
proper.

Proof. Properness means explicitly that, if C ⊂ Ω × Ω is a compact set,
then {(ϕ, z) : (ϕ(z), z) ∈ C} is a compact set in Aut (Ω) × Ω. To check this
property for Aut (Ω), suppose that {(ϕj , zj) : j = 1, 2, . . .} is a sequence
with (ϕj(zj), zj) ∈ C for all j. Passing to a subsequence if necessary, one can
assume that {zj} converges to a point z0 ∈ Ω and that the sequence {ϕj(zj)}
converges to w0 ∈ Ω.

Since Ω is bounded, Cauchy estimates imply that ϕj(z0) converges to w0:
in more detail, this follows by noting from the Cauchy estimates that, for some
ε > 0, B(z0, 2ε) ⊂ Ω, so that there is a constant M > 0 independent of j such
that the norm of the (real) differential of ϕj is less than M at each point of
B(z0, ε). Thus the distance from ϕj(zj) to ϕj(z0) is bounded by M‖zj − z0‖,
and hence goes to 0.

Since ϕj(z0) converges now to w0 ∈ Ω, it follows from Corollary 1.3.8 that
{ϕj} has a subsequence that converges to some ϕ0 ∈ Aut (Ω). The compact-
ness of {(ϕ, z) : (ϕ(z), z) ∈ C} has thus been established. ��

Corollary 1.3.13. If Ω is a bounded domain in Cn, then Aut (Ω) is a Lie
group.

Proof. Combine Theorem 1.3.12 with the Bochner–Montgomery theorem
(Theorem 1.3.11). ��

As already noted at the end of Section 1.1, this result implies, from the
result of Palais [Palais 1961], the existence of a smooth Riemannian metric
on Ω invariant under Aut (Ω). Averaging this with respect to the almost
complex structure produces a Hermitian metric on Ω invariant under Aut (Ω).
In Chapter 3, an explicit construction of such a metric will be presented, but
it is worth noting that the existence of such an invariant metric is guaranteed
by the general principles we have discussed.

The general situation just described gives at least a philosophical idea of
why Aut (Ω) is a Lie group when Ω is a bounded domain. The precise version
of this idea is Theorem 1.3.11 by Bochner and Montgomery. The main point
is to describe the elements of G := Aut (Ω) locally, in a neighborhood of the
identity element, by a finite number of parameters so as to make the group
itself a manifold (of finite dimension). A way to think of this is to look for a
point of minimal isotropy dimension. This idea makes sense because all the
isotropy groups are closed subgroups of GL(n,C) (actually U(n)), so the idea
of dimension is just submanifold dimension. If p is such a point, and its orbit
Op := {γ(p) : γ ∈ G}, then elements γ near the identity can be determined by
specifying γ(p), which is near p, and dγ

∣∣
p
, which is near the “identity map,”
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where the “identity map” is just the map from the tangent space at p to the
tangent space at γ(p) arising from the coordinates in Cn. The set of such dγ
in Euclidean coordinates is a submanifold of GL(n,C), although it is not in
general a subgroup (if γ(p) 	= p). Using submanifold coordinates from that
observation and submanifold-of-Cn coordinates of Op near p gives a local
parameterization of G = Aut (Ω) near the identity.

This picture will be clearer if one thinks of the case of Ω the unit disc and
p = 0. Let γ be an element of Aut (Ω). Near the identity, we can parameterize
Aut (Ω) by the image γ(0) together with dγ

∣∣
0. The set of such dγ

∣∣
0 (when

γ(0) is near 0) is a submanifold of GL(1,C) = C \ {0}. It generally is not a
subgroup:

{dγ∣∣0 : γ(0) = a} = {ωT−a

∣∣
0 : |ω| = 1},

where T−a ∈ Aut (Ω) is defined by T−a(z) = (z+a)/(1+az). But we still get
a legitimate smooth parameterization of Aut (Ω) near the identity.

The reader is invited to consider the corresponding local parameterization
of Aut (Ω) when Ω is the unit ball in C2—after this group is discussed in
some detail in the next section.

Note that one obtains here a view of the general fact that, for G = Aut (Ω),

dimOp + dim (Ip) = dim G,

when

Op = orbit of p = {γ(p) : γ ∈ G}.

[This holds in general: the restriction to minimal isotropy, maximal orbit di-
mensions we made was just for convenience of visualization purposes.]

A closed subgroup of GL(n,C) which acts on Cn isometrically is necessarily
a closed subgroup of U(n) and is hence compact. Conversely, if a subgroup of
GL(n,C) is compact, then there is a Hermitian metric on GL(n,C) for which
the subgroup acts isometrically and hence belongs to the U(n) associated to
the Hermitian metric. This follows from a standard argument using averaging
of the standard metric with respect to the group action of the given subgroup
of GL(n,C).

The fact that every compact subgroup of GL(n,C) acts isometrically rela-
tive to some Hermitian metric combined with Corollary 1.3.7 implies that, at
each point p ∈ Ω, there is a Hermitian metric for which Ip acts isometrically
on the tangent space at p. This strongly suggests that one ought to seek a
Hermitian metric on Ω which is Aut (Ω)-invariant. In other words, one ought
to look for a C∞ family hp, p ∈ Ω, of Hermitian metrics such that, for all
γ ∈ Aut (Ω) and p ∈ Ω, the map dγ

∣∣
p

from the tangent space at p with metric
hp is an isometry onto the tangent space at γ(p) with metric hγ(p). Indeed,
it even suggests a way to do this: for some selection of distinguished points
p, one in each orbit, choose hp more or less arbitrarily except that in some
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sense it varies nicely with the choices of orbit. Then, for q in the orbit of such
a point p, determine hq by the requirement that dγ

∣∣
p

must be isometric for
a γq with γq(p) = q. This is well defined by Corollary 1.3.7, independently of
which γq is chosen. Thus the only question is whether this can be done so that
the resulting metric on all of Ω is C∞. This involves finding smooth “slices”
for orbits. This is the point addressed in [Palais 1961]. But since we shall
construct such Aut (Ω)-invariant metrics directly later on, we leave Palais’s
general construction as a philosophical observation.

1.4 The Basic Examples

In this section we shall collect a number of examples for which the auto-
morphism groups are obtained explicitly. Some of these are well known and
elementary, and the derivations of their automorphism groups need be out-
lined only briefly. But it will be convenient to have them all in one place; and
looking at them all at once will suggest various paths of exploration that we
follow later.

(1) Aut (C) = {z �→ az + b : a, b ∈ C, a 	= 0}.
If f : C→ C is injective, then the only possible singularity of f at∞ is a
simple pole. If instead ∞ were a removable singularity, then f would be
constant by Liouville’s theorem. If∞ were an essential singularity, then f
would not be injective in any neighborhood of∞. Similarly, a pole at ∞
of higher order than 1 would preclude injectivity in a neighborhood of∞.
Thus the nonconstant injective function f is a polynomial of degree one.
That any polynomial of degree one is an automorphism is clear. ��

(2) Aut (D) = {z �→ ω · (z − a)/(1− az) : a, ω ∈ C, |ω| = 1, |a| < 1}.
That

Ta : z �−→ z − a

1− az

is defined and injective from D to D is easy algebra. Also Ta(T−a(z)) = z;
hence Ta is surjective.

Conversely, suppose that f ∈ Aut (D). Let a = f−1(0). Then g :=
f/Ta is holomorphic and zero-free on D and

lim
|ζ|→1

|g(ζ)| = lim
|ζ|→1

∣∣∣∣ f(ζ)
Ta(ζ)

∣∣∣∣ = 1.

By the maximum principle applied to both g and 1/g, we see that
|Ta/f | ≡ 1 on D, hence f = ωTa for some constant ω with |ω| = 1.6 ��

6An alternative argument is to note that Ta ◦ f maps the disc to the disc and
fixes 0. Then Schwarz’s lemma implies that |(Ta ◦ f)(z)| ≤ |z|. Applying the same
reasoning to the inverse of this mapping gives |(Ta ◦f)(z)| ≥ |z|. Hence |Ta ◦f(z)| ≡
|z| on D, and Ta ◦ f equals w · id on D for some ω with |ω| = 1.



1.4 The Basic Examples 17

(3) Aut (C \ {0}) = {z �→ azε : ε = ±1, a ∈ C, a 	= 0}.
If f ∈ Aut (C\{0}), then a connectivity argument shows that limz→0 f(z)
= 0 or limz→0 |f(z)| = +∞. Composing with an inversion, we may as-
sume that the first alternative holds. But then f , considered as a holo-
morphic function, has a removable singularity at the origin. Thus the
extension f(0) = 0 makes f an entire function that is an automor-
phism of the entire plane. From part (1), f(z) = az, for some a 	= 0.
In case limz→0 f(z) = ∞, the same reasoning applied to 1/f gives
1/f(z) = az. ��

(4) Aut ({z ∈ C : 0 < r1 < |z| < r2}) = {z �→ ωz : ω ∈ C, |ω| = 1} ∪ {z �→
ωr1r2/z : ω ∈ C, |ω| = 1}.
Denote the annulus by A. By a connectivity argument, for each f ∈
Aut (A), either
(a) lim|z|→r2 |f(z)| = r2 and lim|z|→r1 |f(z)| = r1;

or

(b) lim|z|→r2 |f(z)| = r1 and lim|z|→r1 |f(z)| = r2.
In either case, repeated application of Schwarz reflection to the

boundary circles extends f to an automorphism f̂ : C \ {0} → C \ {0}
of C \ {0}. Thus, by Example (3), f(z) = az or f(z) = a/z for some
nonzero a ∈ C. The condition f(A) = A tells us then that a = ω in the
first instance and that a = ωr1r2 in the second instance. ��

(5) Aut ({(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1}).
The set

B2 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1}

is of course the unit ball in C2. First notice that I(0,0) = U(2) ⊂ GL(2,C).
Obviously U(2) ⊂ I(0,0). If f ∈ I(0,0), then f is C-linear according to
Corollary 1.3.2. Since f has to preserve the unit sphere (the boundary
of B2), it is immediate that f ∈ U(2).

Now a direct calculation, analogous to that for the disc, shows
that the mapping

T(a,0)(z1, z2) ≡
(

z1 − a

1− az1
,

√
1− |a|2 z2

1− az1

)

sends the ball B2 into itself. Furthermore, the inverse mapping to T(a,0)
is T(−a,0). Thus T(a,0) is an automorphism.

If (z1, z2) is any point of B2, then there is an element λ ∈ U(2) that
takes (z1, z2) to a point of the form (a, 0). Also T(a,0)(a, 0) = (0, 0). These
two pieces of information combined tell us that Aut (B2) acts transitively
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on B2: this means that any point of B2 may be moved to any other by
some element of the automorphism group. first, B2 is homogeneous.

Let G denote the subgroup of Aut (B2) generated by U(2) together
with {T(a,0) : a ∈ C, |a| < 1}. Then the isotropy subgroup of G at the
origin obviously contains U(2). Thus it equals U(2). It follows that G is
the full automorphism group, by Theorem 1.3.1.7 For future reference,
note that if ϕ ∈ Aut (B2), then one can always express ϕ in the form
μ1◦T(b,0)◦μ2, where μ1, μ2 are unitary rotations. first, let λ2 = a unitary
rotation taking ϕ−1((0, 0)) to a point of the form (b, 0). Then T(b,0) ◦ λ2
takes ϕ−1((0, 0)) to (0, 0). Hence T(b,0) ◦λ2 ◦ϕ takes (0, 0) to (0, 0). Thus,
from our earlier observations, T(b,0) ◦λ2 ◦ϕ is a unitary rotation, say λ1.
Hence ϕ = λ−1

2 ◦ T(b,0) ◦ λ1, which has the desired form. ��
(6) Aut ({(z1, z2) ∈ C2 : |z1|4 + |z2|4 < 1}).

By Corollary 1.3.2, the elements of I0 (the isotropy group at 0 = (0, 0))
are C-linear. Such a map must take a point of the boundary of the form
(α, 0) or (0, α) to another point with one coordinate 0. This is so because
boundary points with one coordinate 0 are exactly those boundary points
where ∂Ω makes higher than first-order contact with its complex tangent
plane, a condition preserved by invertible complex linear maps. Thus

I0 =
{
(z1, z2) �→ (ω1z1, ω2z2) : ω1, ω2 ∈ C, |ω1| = |ω2| = 1

}
∪{(z1, z2) �→ (ω1z2, ω2z1) : ω1, ω2 ∈ C, |ω1| = |ω2| = 1

}
.

Next, we claim that any element of Aut (Ω) must in fact fix the
origin. Let φ be an automorphism. By standard results in several complex
variables, φ and φ−1 are C∞ up to the boundary of Ω (see [Bell 1981]).
Weakly pseudoconvex boundary points must consequently be mapped
only to weakly pseudoconvex boundary points. So φ must take the union
of the two circles to itself. Thus φ must (after composition with the map
permuting the coordinates if necessary) preserve the circle {(α, 0) ∈ ∂Ω},
and it must also preserve the circle {(0, α) ∈ ∂Ω}. By the Cauchy integral
formula and continuity of φ at the boundary, it follows that φ preserves
the entire discs {(α, 0) : |α| ≤ 1} and {(0, α) : |α| ≤ 1}. We conclude that
φ(0) = 0. Hence φ is linear and in fact φ ∈ I0. So we have completely
identified all elements of Aut (Ω), and this verifies that Aut (Ω) = I0. ��

(7) Aut (Ω) for Ω = {(z1, z2) ∈ C2 : 0 < α < |z1|2 + |z2|2 < 1}.
By the Hartogs extension phenomenon, each element f ∈ Aut (Ω) ex-
tends uniquely to a holomorphic mapping f̂ : B2 → B2, where B2 is the
unit ball in C2 as usual. These extensions must all be invertible since

7Determining the automorphism group of B2 as a recognizable Lie group requires
additional work. It turns out that it is PSL(2, C). See [Helgason 1962] for more on
this matter.
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clearly f̂ ◦ g = f̂ ◦ ĝ for all f, g ∈ Aut (Ω) (and of course the extension
of the identity map is the identity map). Each such f̂ , f ∈ Aut (Ω), is
a unitary rotation. To see this, note that, by the remark at the end of
Example (5), f̂ = μ1 ◦ T(a,0) ◦ μ2 for some unitary rotations μ1, μ2 with
T(a,0), as in the discussion there. Both μ1 and μ2 preserve Ω, but T(a,0)
definitely does not preserve Ω if a 	= 0. This point is simple to check
algebraically by looking at points of the form ta/|a| with −1 < t < 1.
Thus f̂ can preserve Ω only if a = 0 and, hence, f̂ is a unitary rota-
tion. Consequently, Aut (Ω) consists of the restrictions to Ω of the set of
unitary rotations around the origin (0, 0). ��

(8) Aut (Ω) for

Ω = {(z1, z2) ∈ C2 : 1/100 < |z1|2 + |z2|2 < 1}
\
[
{(z1, z2) ∈ C2 : |z1 − 3/4|2 + |z2|2 ≤ r1}

∪ {(z1, z2) ∈ C2 : |z1|2 + |z2 − 7/8|2 ≤ r2}
]
,

with some small positive numbers r1 and r2.
Notice first that each element of Aut (Ω) again extends uniquely to

an element of Aut (B2), by the Hartogs extension theorem. Then each
automorphism of Ω must either preserve the sphere Σ = {(z1, z2) :
|z1|2 + |z2|2 = 1/100} or map this sphere to one of the other deleted
spheres, by topological considerations. Algebraic considerations show
that the image of a Euclidean sphere around the origin under an au-
tomorphism of B2 is a Euclidean sphere only if the automorphism fixes
the origin and hence is a rotation.

The algebraic determination that the image of a sphere with a center
at the origin is again a sphere only if the origin is fixed can be done con-
veniently as follows. Consider T(a,0), for −1 < a < 1, acting on S(r) =
the sphere of radius 0 < r < 1 around the origin (0, 0). Then T(a,0)(r, 0)
and T(a,0)(−r, 0) are diametrically opposite on the image sphere. Again,
if the image is a sphere, it then follows that the vector from T(a,0)(0, r) to
T(a,0)(−r, 0) is perpendicular to the vector from T(a,0)(0, r) to T(a,0)(r, 0).
But direct calculation shows that the inner product of these two vectors
is 0 if and only if a = 0.

As in the arguments for Example (7) above, f is now an automor-
phism of B2 preserving the origin, that is the center of Σ. Consequently,
any automorphisms of this Ω must be elements of U(2). Since the el-
ements of U(2) are Euclidean isometries, and since the removed balls
around (3/4, 0) and (0, 7/8) have centers that are at different distances
from the origin, each of these balls must be mapped to itself. It follows
that the automorphism which is an element of U(2) must in fact be the
identity mapping. Thus Aut (Ω) = {id}: the automorphism group has
just the single element, which is the identity. In this circumstance, we
say that the domain Ω is rigid. ��
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(9) Aut (Ω) for

Ω = {(z1, z2) ∈ C2 : |z1|2 + |z2|2k < 1} , k > 1 .

First we note that I0 is linear from Corollary 1.3.3. Also this isotropy
group clearly contains all linear maps of the form

(z1, z2) �→ (eiθ1z1, e
iθ2z2) , θ1, θ2 ∈ R.

By the same logic as in Example (6), the set {(α, 0) ∈ Ω} must be
mapped to itself by any element of this isotropy group. This and the com-
pactness of I0 imply that

I0 = {(z1, z2) �→ (eiθ1z1, e
iθ2z2) : θ1, θ2 ∈ R},

as follows. The invariance of the disc {(α, 0) ∈ Ω} implies that the ma-
trices in I0 have the form (

α11 α12
0 α22

)
with α11 	= 0 and α22 	= 0. If also α12 were not zero, then the powers
of this matrix (which arise under multiple compositions of the map-
ping) would not be contained in a compact set in GL(n,C). Thus in fact
α12 = 0.

For a ∈ C, |a| < 1, consider the mapping

Sa : (z1, z2) �−→
(

z1 − a

1− az1
,
(1− |a|2)1/2k

(1− az1)1/2k
z2

)
.

We see that Sa belongs to Aut (Ω). This assertion can be easily checked
by direct calculation. Also S−a is the inverse mapping of Sa. The or-
bit of 0 under Aut (Ω) consequently contains {(α, 0) ∈ Ω}. Again, by
the logic of Example (6) using [Bell 1981] etc., it follows that the set
{(α, 0) ∈ Ω} is preserved by elements of Aut (Ω). Hence the Aut (Ω)-
orbit of 0 is equal to {(α, 0) ∈ Ω}. This information then completely
determines the automorphism group. ��

(10) Aut (D2), where D2 = {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1}.
We write τa(z) = (z − a)/(1− āz) for z ∈ D ⊆ C. The maps of the form
(z1, z2) �→ (τa1(z1), τa2(z2)) act transitively on D2. Also the isotropy
subgroup I0 at the origin (0, 0) consists of linear maps only by Corol-
lary 1.3.2. These linear maps must have the form (z1, z2) �→ (ω1z1, ω2z2)
or (z1, z2) �→ (ω2z2, ω1z1) with |ω1| = |ω2| = 1, since they must pre-
serve the distinguished boundary {(z1, z2) : |z1| = 1, |z2| = 1}: this set
is exactly the points where ∂D2 is not smooth, and the property of be-
ing not smooth is preserved by linear maps. It follows that Aut (D2) is
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exactly the group generated by the maps (z1, z2) �→ (τa1(z1), τa2(z2)),
(z1, z2) �→ (ω1z1, ω2z2) with |ω1| = |ω2| = 1, and (z1, z2) �→ (z2, z1).

Examples (5) and (10) yield the following historical theorem of Poincaré,
which, as already discussed, shows that the Riemann mapping theorem does
not hold in complex dimension higher than 1. The proof of this theorem by
Poincaré (see below) demonstrated that automorphism groups could play an
important role—especially in complex dimensions greater than 1. Of course we
have already shown in the remarks after Corollary 1.3.2 that the ball and the
polydisc are not biholomorphic, but Poincaré’s proof is of historical interest.

Theorem 1.4.1 (Poincaré). In complex dimension 2, the ball and the bidisc
are not biholomorphic to each other.

Proof. Suppose that there exists a biholomorphic map f : B2 → D2 = D×D.
Composing with an automorphism of D2, we may assume without loss of gen-
erality that f maps the origin to itself. Then the map f∗ : Aut (B2) →
Aut (D2) defined by f∗(γ) ≡ f−1◦γ◦f is a continuous group isomorphism. So,
this map generates a group isomorphism between the identity components of
the isotropy subgroups at the origin. Note that the identity component of the
isotropy subgroup of Aut (B2) at the origin contains U(2), the group of 2× 2
unitary matrices (and indeed = U(2)). On the other hand, the identity com-
ponent of the isotropy subgroup of Aut (D2) at the origin is the torus group
consisting of rotations in each variable separately. But the torus group is com-
mutative, while U(2) is noncommutative. This is a contradiction. Therefore
the desired conclusion follows immediately. ��

1.5 Orbit Accumulation Boundary Points
Are Pseudoconvex

In the preceding section, we have rather few examples in higher dimensions
(i.e., Cn, n ≥ 2) of domains Ω with Aut (Ω) noncompact. But the examples
that we do have—numbers (5), (9), (10) in the last section—all have the
notable property that they are convex and hence pseudoconvex. It turns out
that if Ω is a bounded domain and p is a point of the boundary with the
boundary smooth near p, then accumulation of an Aut (Ω)-orbit at p implies
pseudoconvexity at p. More precisely:

Theorem 1.5.1 (Greene/Krantz [Greene/Krantz 1991]). If p0 ∈ ∂Ω is
a boundary point of a bounded domain Ω in Cn whose boundary is C2 smooth
in a neighborhood of p0, and if there exists a sequence ϕj ∈ Aut (Ω) such that
limj→∞ ϕj(x0) = p0 for some x0 ∈ Ω, then ∂Ω is Levi pseudoconvex at p0.

Proof. Assume the contrary, that ∂Ω is not pseudoconvex at p0. Then there
exists a compact set K contained in Ω such that the holomorphic hull K̂
of K contains a set of the form Ω ∩ U where U is an open set in Cn
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Fig. 1.1. The Hartogs figure and its holomorphic hull.

containing p0.8 [Recall that the holomorphic hull K̂ of a compact set K is by
definition the set {p ∈ Ω : |f(p)| ≤ maxK |f |,∀f : Ω → C holomorphic}.] ��

Now choose an ε > 0 such that Bn(x0, 3ε) ⊂ Ω. Let AM be the set of
ϕ ∈ Aut (Ω) such that ‖dϕ−1|ϕ(x0)‖ ≤ M , where ‖ · ‖ here represents the
usual operator norm. Then we show:

Lemma 1.5.2. There exists δ > 0 such that ϕ(Bn(x0, ε)) contains Bn(ϕ(x0),
δ) for every ϕ ∈ AM .

Proof of the lemma. Since dϕ−1|ϕ(x0) = (dϕ|x0)
−1, we see that ‖(dϕ|x0)

−1‖ ≤
M whenever ϕ ∈ AM . Consider the map

T (z) := (dϕ|x0)
−1 ◦ ϕ(z), z ∈ Bn(x0, ε).

The differential at x0 of this map is equal to the identity. And its second
derivatives on Bn(x0, ε) are bounded (Cauchy estimates on ϕ) by a constant
depending only on M and the bound on ‖(dϕ|x0)

−1‖ (and Ω and ε) but
not on ϕ ∈ AM . Hence, by standard information about the inverse function
theorem, T (Bn(x0, ε)) contains a ball of radius α > 0 centered at x0, where α
is independent of which ϕ is chosen from AM : here α depends only on M (and
ε and Ω). Thus the image of the map ϕ = dϕ|x0 ◦ T contains a ball of radius
δ > 0 centered at ϕ(x0), with δ independent of the choice of ϕ. [The radius δ
depends only on M, ε, and Ω for the following reason: since dϕ|x0 is a linear
transformation with its inverse bounded above in operator norm, no such ϕ

8The usual construction of a compact set in Ω with holomorphic hull running
out to a nonpseudoconvex boundary is casually called a “Hartogs tin can” in several
complex variables (Figure 1.1). See [Grauert/Fritzsche 1976] for example. In case
one “Hartogs tin can” does not provide a U of the sort we are after, one can perturb
it and take the set K as the union of the perturbations to get the desired situation.
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can take a given radius ball to a set not containing a definite radius ball. In
fact, it cannot contract anything by more than a factor of 1/M .] Thus the
assertion of the lemma follows.

Altogether, one obtains that, if ϕj(x0) → p0 ∈ ∂Ω as j → ∞, then
‖dϕ−1

j |ϕj(x0)‖ → ∞. Let ψj = (ψ1
j , . . . , ψ

n
j ) be the component representation

of ϕ−1
j for a moment. Passing to a subsequence, we may assume that∣∣∣∣∣ ∂ψ�

j

∂zm

∣∣∣
ϕj(z0)

∣∣∣∣∣→∞
for some �,m ∈ {1, . . . ,m}. [Otherwise these ϕjs would belong to AM for some
M > 0, and hence the image of ϕj contains a ball of radius δ, independent of j.
A contradiction.] However, this is impossible, because |∂ψ�

j/∂zm| is bounded
near p0 by its absolute value on the compact Hartogs figure K, and that is
bounded by a constant independent of j, by Cauchy estimates. This completes
the proof. ��

We shall return to related considerations later in Chapter 7 (Proposi-
tion 7.6.2), using somewhat different, albeit related, methods.

1.6 Holomorphic Vector Fields and Their Flows

From the viewpoint of the Lie theory of transformation groups, it is natural
to ask which (real) vector fields have the property that their flows consist of
holomorphic mappings. We shall have explicit use for these ideas later (e.g.,
in Chapter 6), in addition to their general interest. To explore the matter in
some detail, we recall first the general viewpoint.

Suppose that V : U → RN is a “vector field” (at this state, it is just a
vector-valued function) on an open set U ⊂ RN . If V has suitable regularity—
even Lipschitz continuity will suffice—then, for each p ∈ U , there are an ε > 0
and a neighborhood W of p, p ∈ W ⊂ U , such that, for each q ∈ W , there is
a differentiable function γq : (−ε, ε)→ U with

dγq

dt

∣∣∣
t
= V(γq(t))

for each t ∈ (−ε, ε). Such a γq is called an integral curve of V with initial
point q. Integral curves are unique up to the domain of definition in t if their
initial point is given.

Such a vector field V : U → RN thus defines a (local) flow q �→ γq(t). We
call this function ϕt so that ϕt : W → U is defined for all t ∈ (−ε, ε). Also,
ϕ0 = the identity map. Uniqueness of integral curves shows that

ϕt1 ◦ ϕt2 = ϕt1+t2

for all t1, t2 with both |t1| and |t2| small enough that the ϕ-maps are defined.
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This all makes sense for vector fields defined on an open subset of a man-
ifold M of dimension n. In this case, the vector field V is a function from
M into the tangent bundle TM :=

⋃
p∈M TpM , where TpM is the tangent

space of M at p, and it is required that V(p) ∈ TpM for every p ∈ M . The
definitions of properties are the same as for the Euclidean space case, mutatis
mutandis.

Now we are interested specifically in the question, either for Cn = R2n, or
on a complex manifold (locally the same as Cn), of which vector fields V have
the property that the associated local flows ϕt are holomorphic functions.
Such a flow is called holomorphic, that is, a flow of a vector field is called
holomorphic, if for each t, ϕt is holomorphic (where it is defined).

The answer to this question is straightforward, but it will be most easily
explainable if we introduce some notation.

First we identify Cn with R2n by setting zj = xj + iyj , j = 1, . . . , n, and
then identifying (z1, . . . , zn) ∈ Cn with (x1, y1, . . . , xn, yn). We set ∂

∂xj
= the

R2n vector with the (2j − 1)-th component 1 and all other components 0,
and then ∂

∂yj
= the R2n vector with (2j)-th component 1 and all other com-

ponents 0, for j = 1, 2, . . . , n. [This notation makes sense because the di-
rectional derivative of a function along one such vector just considered is
equal to the corresponding partial derivative, e.g., ∂

∂x1
of a function is its

directional derivative along the vector (1, 0, . . . , 0) ∈ R2n.] As usual, we set
∂

∂zj
= 1

2

(
∂

∂xj
− i ∂

∂yj

)
as a differential operator.

If V is a real vector field on U ⊂ Cn = R2n, then V has the form
n∑

j=1

aj
∂

∂xj
+

n∑
j=1

bj
∂

∂yj

for some real-valued functions aj and bj and these are uniquely determined.
We define

JV =
n∑

j=1

aj
∂

∂yj
−

n∑
j=1

bj
∂

∂xj
.

One can easily verify that

V − iJV = 2

⎛⎝ n∑
j=1

(aj + ibj)
∂

∂zj

⎞⎠ .

We define the real vector field V to be holomorphic if, for each j, the function
aj + ibj is holomorphic. Thus a real vector field V is holomorphic if and only
if V is the real part of a complex vector field of the form

∑n
j=1 fj

∂
∂zj

where
the fj are holomorphic functions. In these terms, we can answer the question
about which real vector fields have (local) flows that are holomorphic.

Theorem 1.6.1 (Lie Theory Lemma). A C1 real vector field V has holo-
morphic local flows ϕt if and only if V is a holomorphic vector field in the
sense just defined.
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If one is willing to use the standard methods of “Lie derivatives,” then
this assertion is easy to check. We shall present that proof first. Then we shall
recast it in more concrete form in which the concept of Lie derivative is not
used explicitly.

Proof of the lemma using Lie derivatives. The local flow ϕt for a fixed t value
is holomorphic if and only if dϕt commutes with the J-mapping already de-
fined. (This latter is just a restatement of the Cauchy–Riemann equations.)
Here dϕt denotes the real differential of ϕt. Since ϕ0 = the identity map, to
check that dϕt ◦J = J ◦dϕt for all t, we need only check that LVJ = 0 where
LVJ denotes the Lie derivative of the tensor J with respect to V. Thus we
need only check that, for each j = 1, . . . , n,

(LVJ)
∂

∂xj
= 0 and (LVJ)

∂

∂yj
= 0.

Now

(LVJ)
∂

∂xj
= LV

(
J

∂

∂xj

)
− J

(
LV

(
∂

∂xj

))
by the Leibniz rule for Lie derivatives. But

LV

(
J

∂

∂xj

)
= LV

(
∂

∂yj

)
= −

n∑
�=1

∂a�

∂yj

∂

∂x�
−

n∑
�=1

∂b�

∂yj

∂

∂y�

while

J

(
LV

(
∂

∂xj

))
= −J

(
n∑

�=1

∂a�

∂xj

∂

∂x�
+

n∑
�=1

∂b�

∂xj

∂

∂y�

)

=
n∑

�=1

∂b�

∂xj

∂

∂x�
− ∂a�

∂xj

∂

∂y�
.

Thus, LV
(
J ∂

∂xj

)
= J

(
LV
(

∂
∂xj

))
if and only if

∂a�

∂yj
= − ∂b�

∂xj
and

∂a�

∂xj
=

∂b�

∂yj

for � = 1, . . . , n, in both cases. But these are precisely the Cauchy–Riemann
equations for a� + ib� to be holomorphic in the zj variable. It is clear that if
these hold, then (LVJ)

(
∂

∂yj

)
is also 0 since

J

(
LV

(
J

∂

∂xj

)
− JLV

(
∂

∂xj

))
= LV

(
∂

∂xj

)
+ J

(
LV

(
∂

∂yj

))
= −LV

(
J

(
∂

∂yj

))
+ J

(
LV

(
∂

∂yj

))
.
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For the converse direction, just trace the steps backwards. The conclusion
follows.

To carry out essentially the same proof without introducing the Lie deriva-
tives explicitly, we compute first, for each j = 1, . . . , n,

∂

∂t

(
Jdϕt|p,0

(
∂

∂xj

)
− dϕt|p,0

(
∂

∂yj

))
.

For this, note that p = ϕ0(p) and write, for all q near p,

ϕt(q) = (x1,t(q), y1,t(q), . . . , xn,t(q), yn,t(q)).

Then

dϕt

(
∂

∂xj

)
=
(
∂x1,t

∂xj
,
∂y1,t

∂xj
, . . . ,

∂xn,t

∂xj
,
∂yn,t

∂xj

)
and

dϕt

(
∂

∂yj

)
=
(
∂x1,t

∂yj
,
∂y1,t

∂yj
, . . . ,

∂xn,t

∂yj
,
∂yn,t

∂yj

)
,

while

J

(
dϕt

(
∂

∂xj

))
=
(
∂y1,t

∂xj
, −∂x1,t

∂xj
, . . .

)
.

So

∂

∂t
J

(
dϕt

(
∂

∂xj

))
=
(
∂2y1,t

∂t∂xj
, −∂2x1,t

∂t∂xj
, . . .

)
=
(

∂

∂xj

(
∂y1,t

∂t

)
, . . .

)
and

∂

∂t
dϕt

(
∂

∂yj

)
=
(
∂2x1,t

∂t∂yj
, . . .

)
=
(

∂

∂yj

(
∂x1,t

∂t

)
, . . .

)
.

Note that

∂x�,t

∂t

∣∣∣
t=0,p

= a�(p) and
∂y�,t

∂t

∣∣∣
t=0,p

= b�(p).

Translating the Cauchy–Riemann equations for the functions a� + ib� back
into the x, y notation gives

∂

∂t

{
J

(
dϕt

(
∂

∂xj

))
− dϕt

(
J

(
∂

∂xj

))}
= 0

when t = 0.
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Working through the details of this calculation gives that this implication
goes in both directions.

Now note that dϕt+h(·) = dϕt(dϕh(·)) for small h and so dϕt+h − dϕt =
dϕt(dϕh − dϕ0). Hence limh→0

1
h (dϕt+h − dϕt) = 0, if limh→0

1
h (dϕh −

identity) = 0. Thus, if V is holomorphic then Jdϕt( ∂
∂yj

)− dϕt(J( ∂
∂yj

)) = 0.
first, ϕt is holomorphic. These calculations also work in the opposite
direction. ��

This proof is essentially the same as the Lie derivative one: the Lie deriva-
tive concept has been replaced by equality of mixed partials, in effect.

Corollary 1.6.2. If the local flow functions ϕt of a real vector field V are
holomorphic, then so are the local flow functions of JV.

Proof. If V − iJV is a holomorphic linear combination of ∂
∂z vector fields,

then so is i(V − iJV). But Re (i(V − iJV)) = JV. ��
If V is a (real) vector field defined on an open set U ⊂ RN (or on a manifold

M), and if q ∈ U (or, q ∈M , respectively), then it may not be the case that
the integral curve γq(t) of V with γq(0) = q is defined for all t ∈ R. So the
local flow functions ϕt of V may not be defined on all U for all t.

Note, however, that if there is an ε > 0 such that ϕt(q) is defined for all
t ∈ (−ε, ε) and all q ∈ U (or q ∈M), then ϕt is defined for all t ∈ R: this result
follows by “patching together” via uniqueness of integral curves the local flows
for |t| < ε/2. That is, one notes that ϕt should equal ϕt/k ◦ · · · ◦ϕt/k (k-times)
for any positive integer k and that, if k is large enough, then |t/k| ≤ ε/2.
Then one uses ϕt/k ◦ · · · ◦ ϕt/k as the definition of ϕt and verifies easily that
this indeed has the defining property that d

dtϕt(q) = V(ϕt(q)).
Consequently, if M is a compact manifold and V a vector field on it, then

the ϕt flows associated to V are defined for all t ∈ R since the existence of
an ε uniform over M follows from the basic local existence result for ordinary
differential equations and the compactness of M .

In noncompact complex instances, it can happen that a holomorphic vec-
tor field V has integral curves and flow functions ϕt defined for all t ∈ R
but JV, also a holomorphic vector field, does not. Consider, for instance, the
vector field V(x, y) = (y,−x) on U := {z ∈ C | |z| < 1}. The vector field V is
the“infinitesimal generator” of rotations around the origin, and its flow ϕt, de-
fined for all t ∈ R, is the rotation clockwise around the origin through angle t.
As guaranteed by the fact that V is holomorphic (V = Re (−2iz ∂

∂z )), these ϕt

are indeed holomorphic. The vector field JV is (x, y). This too is holomorphic:
JV = Re 2z ∂

∂z . Its local flow functions ϕt are given by ϕt(x, y) = (etx, ety),
as is easily verified. But of course these are not defined for all t: when t is
large positive, (etx, ety) no longer lies in U , unless (x, y) = (0, 0), the origin
(0, 0) being a fixed point of the flow since JV(0, 0) = (0, 0).

But, when one passes to the compact case, things change. The vector
field V extends to be a vector field on C ∪ {∞}, the “Riemann sphere”: it
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is again the infinitesimal generator of the one-parameter group of rota-
tions around the origin (in the clockwise direction). Since this is a group
of holomorphic mappings, it must be that V extended is holomorphic on
C ∪ {∞}. (One can of course check directly that V is holomorphic at∞, using
w = 1/z as a local coordinate around ∞.) But now the flow of JV is defined
for all t: the point (etx, ety) is in C for all (x, y) ∈ R2 with (x, y) 	= (0, 0), and
the flow has (0, 0) and∞ as fixed points, with t going to −∞ corresponding to
motion towards 0. Thus one sees in action the important difference between
the compact and noncompact cases. These themes will reappear in Chapter 6.



2

Riemann Surfaces and Covering Spaces

In this chapter, we shall discuss the automorphisms of Riemann surfaces as
a preview of the higher-dimensional results to come later. In no sense are we
going to try to survey completely the enormous collection of results on the
subject obtained in the nineteenth century (cf. [Farkas/Kra 1992], and his-
torically [Fricke/Klein 1897]) nor the continuing investigation of the subject
up to our own time. Even less shall we explore the interaction of the theory
of Riemann surface automorphisms with number theory, dynamical systems,
and so on. Rather, we are going to focus concretely on the circle of ideas in-
volving invariant metrics, since that subject will be one of our major themes
in higher dimensions.

The Riemann surface situation has the attractive property that explicit
determination of automorphism-invariant metrics is possible, when they exist,
as they do in almost all instances. In particular, when a Riemann surface is a
quotient of the unit disc, then the “push-down” of the Poincaré metric will be
invariant, as we shall see.

It is worth noting, however, that this particular method of constructing
automorphism-invariant metrics on (almost all) Riemann surfaces does not
extend to higher dimensions. In particular, the celebrated uniformization the-
orem (Theorem 2.5.1) of Poincaré and Koebe does not really have a higher-
dimensional analogue, as already noted in Chapter 1. Thus the ideas in the
chapter are suggestive of the power and attractiveness of invariant metrics,
but the extension to higher dimensions requires an alternative construction. It
is interesting in this regard that when the higher-dimensional construction is
applied to the case of bounded domains in C, it gives different results, except
in the case of the unit disc and its biholomorphic images: first, the Bergman
metric of a bounded domain in C is complete and has constant Gauss cur-
vature if and only if the domain is biholomorphic to the disc. (This will be
proved for all dimensions in Chapter 4.) But the invariant metrics we con-
struct on bounded domains in C in this present Chapter 2 are all complete
and of constant Gauss curvature. This is of course possible because in gen-
eral the automorphism group of a bounded domain is not so large that the

R. E. Greene et al., The Geometry of Complex Domains, Progress in Mathematics, 
DOI 10.1007/978-0-8176-4622-6_2, © Springer Science+Business Media, LLC 2011
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invariance of a metric under automorphisms implies anything like the essen-
tial uniqueness of the metric (up to a constant factor). Invariance does imply
the uniqueness of the metric up to a constant multiple for the unit disc (and
its biholomorphic images): every automorphism-invariant metric is a constant
multiple of the Poincaré metric. But, in other cases, the automorphism group
is too small to force such uniqueness.

2.1 Coverings of Riemann Surfaces

Let M be a Riemann surface.1 As a topological surface, M has a “univer-
sal covering space.” That is, there is a simply connected surface M̃ and a
“projection” π : M̃ → M that is a covering space in the topological sense of
the word. This means by definition that every point p ∈ M has a neighbor-
hood Up with π−1(Up) equaling a disjoint union of open sets {Vj} such that
π|Vj : Vj →M is a homeomorphism onto Up. One says here that Up is evenly
covered.

The topological surface M̃ can be given a Riemann surface structure by
“pullback,” that is, by declaring π|Vj

to be holomorphic. Thus M̃ becomes a
simply connected Riemann surface and π : M̃ →M is a holomorphic mapping.
Koebe’s celebrated uniformization theorem (Theorem 2.5.1) asserts that M̃
can only be one of three things (up to biholomorphic equivalence): the plane,
the unit disc, or the Riemann sphere. And, as we shall see, the plane and the
sphere arise only in a few special cases. So the uniformization theorem says
that all but a finite number (topologically) of Riemann surfaces have simply
connected covering space biholomorphic to the disc.

It is a standard and easily-checked fact from topological covering space
theory (for which see, e.g., [Gamelin/Greene 1999], [Greenberg/Harper 1981],
[Spanier 1966]) that the projection π : M̃ → M can be interpreted as a
quotient by a group action. There is a group Γ , the group of covering trans-
formations, acting as homeomorphisms on M̃ , such that M is the orbit
space of the action of Γ . In the Riemann surface case, Γ consists of homeo-
morphisms which are holomorphic, i.e., elements of Aut (M̃).

The possibilities M̃ = C and M̃ = C∪{∞} yield few Riemann surfaces. It
is again part of general covering space theory that the (nonidentity) elements
of Γ act without fixed points, that is, if σ ∈ Γ and σ(p) = p for some p ∈ M̃ ,
then σ is the identity map of M̃ to M̃ . Now direct calculation shows that
the linear fractional transformations that are automorphisms of C ∪ {∞} all
have fixed points—this is just elementary algebra. Thus C ∪ {∞} has no
covering-space quotients except itself. In other words, in the language of the
uniformization theorem, the sphere can cover only the sphere.

When M̃ = C, quotients are possible. The automorphisms of C, {z �→
az + b : a 	= 0, a, b ∈ C}, do include maps without fixed points. Specifically,

1A Riemann surface, by definition, is a one-dimensional complex manifold.
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any map of the form z �→ z + b has no fixed point; these are in fact the only
ones, since, if a 	= 1, then z = b/(1 − a) is a fixed point. A familiar analysis
shows that the possible Riemann surface quotients that can thus arise are
C \ {0}, topologically a cylinder, and surfaces of genus 1, topologically tori.
And these possibilities do indeed occur. But these are the only topological
possibilities.

All other Riemann surfaces must be quotients of the disc D. Clearly the
possibilities for groups acting on D to yield Riemann surface covering quo-
tients must be many and varied. But, as we shall see, much can be said about
this situation in spite of its generality.

2.2 Covering Spaces and Invariant Metrics, I:
Quotients of C

The examples in Section 1.4 suggest at least two themes that will be promi-
nent in what follows. First, topological complexity tends to make the auto-
morphism group small. The “holes” in Examples (4), (7), and (8) made the
group compact; in Example (8), in fact, the group was the identity alone. Sec-
ond, Example (6) illustrates the fact that, in complex dimension 2 or greater,
the structure of the boundary can restrict the group even when the topology
is as simple as possible. In that case, the isotropy subgroup I0 at 0 had to be
a relatively small subgroup of U(n) because the boundary of the domain had
some special boundary points that had to be taken only to other boundary
points with the same geometry. Later, we shall see that domains in Cn, n ≥ 2,
can be homeomorphic to the ball but have no automorphisms other than the
identity.

The examples of Section 1.4, however, did not really show anything like
the full potential of the idea of invariant metrics. Of course, in accord with
general principles described in Section 1.3 (see the discussion that follows
Theorem 1.3.12), invariant metrics exist for bounded domains. These will be
constructed explicitly in generality later, without use of [Palais 1961]. But, in
the examples considered, the invariant metrics, and the automorphism groups
themselves, appeared in rather ad hoc and case-specific ways.

In the present section we shall describe a much more general construction
for invariant metrics in the Riemann surface cases for which such metrics exist.
This will be achieved by the systematic use of the uniformization theorem
(Theorem 2.5.1) and covering-space techniques. Since uniformization as such
has no analogue in higher dimensions, we shall need other constructions there,
as noted in the introduction to this chapter. But the Riemann surface cases
are even so of interest.

As already noted earlier, almost all Riemann surfaces are quotients of the
unit disc D rather than of C or C ∪ {∞}. But, as it happens, it will be best
to dispose of the latter two possibilities first; this illustrates the general idea
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in a couple of specific situations in which the calculations are as simple as
possible.

First it should be noted that the cases of C and C ∪ {∞} do not fit into
the invariant metric picture.2 This is clear without any generalities since the
maps {z �→ az : a ∈ C} belong to Aut (C) and, interpreted as taking∞ to∞,
they also lie in Aut (C ∪ {∞}). These maps fix 0, but obviously preserve no
metric at 0 (since they dilate without bound in the infinitesimal sense).

Now let us return to Example (3) of Section 1.4—the punctured plane
C \ {0}. This time around we shall analyze it from the viewpoint of uni-
formization and covering spaces.

The mapping exp : z �→ ez takes C to C \ {0}. It is easy to see that
this is a covering map in the topological sense: For if z0 ∈ C \ {0}, then
exp−1({z : |z − z0| < |z0|}) consists of disjoint connected open sets, on each
of which exp is a homeomorphism onto the disc {z : |z − z0| < |z0|}. This is
simply a geometric expression of the familiar fact that the logarithm function
has well-defined holomorphic “branches” on discs in C \ {0}.

Now suppose that f : C \ {0} → C \ {0} is an automorphism of C \ {0}.
We shall prove that there exists a holomorphic function f∗ : C→ C such that

f ◦ exp = exp ◦f∗. (2.1)

The meaning of (2.1) is clearest if we think of it in terms of a commutative
diagram:

C
f∗
−→ C

exp ↓ ↘ ↓ exp

C \ {0} f−→ C \ {0}
In topological language, f∗ is a “lift” of f .

Proof of (2.1). Set f∗(0) = L(f(1)), where L is a “holomorphic branch of
the logarithm” defined on a neighborhood of f(1), i.e., exp(L(z)) ≡ z on
that neighborhood. The function L ◦ f ◦ exp is defined and holomorphic on
a neighborhood of 0. And it is easily seen to admit unrestricted analytic
continuation (along every curve with initial point 0) in C. By the monodromy
theorem, there is a global holomorphic function f∗ : C → C such that, in a
neighborhood of 0, f∗ ≡ L ◦ f ◦ exp. In that neighborhood,

exp ◦f∗ = (exp ◦L) ◦ f ◦ exp = f ◦ exp .

Hence exp ◦f∗ = f ◦ exp on all of C. ��

2By an invariant metric, we mean a metric that is invariant under the action of
the automorphism group.
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Remark. We gave the proof of (2.1) in terms of function theory and the mon-
odromy theorem out of respect for tradition and familiarity. But actually the
best way to think of it is in terms of pure topology. The mapping

f ◦ exp : C→ C \ {0}

lifts because C is simply connected, and every map of a simply connected
space lifts to any covering.

Next we want to show that the lift f∗ is an automorphism of C. To prove
this statement, we first obtain from (2.1) that

C
f∗
−→ C

exp ↓ ↘ ↓ exp

C \ {0} f−→ C \ {0}

and

C
f−1∗
−→ C

exp ↓ ↘ ↓ exp

C \ {0} f−1

−→ C \ {0}

Clearly f∗ ◦ (f−1)∗ is a lift of the identity map, i.e.,

C
f∗◦(f−1)∗
−→ C

exp ↓ ↘ ↓ exp

C \ {0} id−→ C \ {0}

This means that, for each z, we have

exp(f∗ ◦ (f−1)∗(z)) = exp(z).

It follows that, for each z, f∗ ◦ (f−1)∗(z) − z ∈ 2πiZ. By continuity,
f∗ ◦ (f−1)∗(z) = z + 2πik for some fixed integer k and all z ∈ C. Simi-
larly, (f−1)∗ ◦f∗ is also a translation. We then have that f∗ is one-to-one and
onto. Hence f∗ ∈ Aut (C). ��

Note that the lift f∗ : C → C of a given f ∈ Aut (C \ {0}) is far from
unique: we were free to choose the “branch” L of the logarithm in the proof
of (2.1) arbitrarily. The set of all lifts of the identity map of C\{0} to C\{0}
forms a subgroup of Aut (C). This subgroup is called the group of cover-
ing transformations of the covering space C

exp→ C \ {0}. Note that a covering
transformation is uniquely determined by the image of 0 (or of any pre-chosen
point). Moreover, every element of exp−1(1) is obtainable as an image under a
covering transformation of the point 0. These general statements from cover-
ing space theory are easy here: The covering transformations are exactly the
translation mappings z �→ z + 2πik, k ∈ Z, and obviously there is one and
only one of these taking 0 to a given element of exp−1(1) = 2πiZ.
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Next we want to see which elements of Aut (C) actually arise as lifts of
elements of Aut (C \ {0}). One condition for this to happen is clear: an f∗ ∈
Aut (C) must have the property that

exp(f∗(z + 2πik)) = exp(f∗(z)),

for all z ∈ C, in order for f∗ to arise as the “lift” of some holomorphic map of
C \ {0} to itself. This necessary condition is also almost sufficient: an element
F ∈ Aut (C) with exp(F (z + 2πik)) = exp(F (z)) does give rise to some
mapping f : C \ {0} → C \ {0} by setting f(w) = exp(F (z)) for some z ∈
exp−1(w). The condition on F makes this f well defined, i.e., independent of
the choice of z in exp−1(w). And f∗ = F . But the resulting f may not be an
automorphism of C \ {0}. For instance, if F is the function z �→ 2z, then the
associated f is z �→ z2. The answer to this small conundrum is as follows.

Lemma 2.2.1. An element F ∈ Aut (C) is of the form f∗ for some f ∈
Aut (C \ {0}) if and only if F maps each set of the form {z + 2πik : k ∈ Z}
in a one-to-one, onto fashion onto another set of the same form.

Proof. Under the condition given in the lemma, F = f∗ for some (not neces-
sarily biholomorphic) f : C \ {0} → C \ {0}. And F−1 = g∗ for some g. Then
(F ◦ F−1) = (f ◦ g)∗ and (F−1 ◦ F ) = (g ◦ f)∗. From this, f ◦ g and g ◦ f are
both the identity on C \ {0}. ��

Now the automorphisms z �→ az + b, a, b ∈ C, a 	= 0, that preserve sets of
the form {z + 2πik : k ∈ Z}, as required by Lemma 2.2.1, are easily checked
to be exactly those of the forms

z �→ z + b, b ∈ C

or

z �→ −z + b, b ∈ C.

The corresponding automorphisms of C \ {0} are z �→ ebz and z �→ eb/z.
These are all the automorphisms of C \ {0}. Note that this agrees with the
result already obtained in Section 1.4, Example (3).

Since the mappings z �→ z+b and z �→ −z+b preserve a metric on C (first,
the standard Euclidean metric), it follows that we can obtain an invariant
metric on C \ {0} by declaring exp to be a local isometry. [This gives a well-
defined metric on C \ {0} since, in particular, the covering transformations
act as isometries.] Since it is Hermitian, this metric on C \ {0} is a multiple
of the Euclidean metric, first, at z ∈ C \ {0},

‖v‖ =
(

1
|z|
)
· ‖v‖euclid.



2.3 Covering Spaces and Invariant Metrics, II 35

(This can be checked by direct calculation.) If we express this in terms of
(length)2, then the new metric on C\{0} becomes, in polar coordinates (r, θ),

1
r2 (dr2 + r2dθ2) =

1
r2 dr

2 + dθ2.

If we reparameterize C \ {0} by R = ln r and θ, then dR = (1/r)dr, so the
metric becomes dR2 + dθ2 for R ∈ (−∞,+∞), θ ∈ [0, 2π). Thus C \ {0} in
the new metric is isometric to a right circular cylinder of radius 1.

The automorphism z �→ (r0eiθ0)z corresponds to translation of R by ln r0
and rotation in θ by θ0, i.e., the map (R, θ) �→ (R + ln r0, θ + θ0). The auto-
morphism z �→ (r0eiθ0)/z corresponds to (R, θ) �→ (−R + ln r0,−θ + θ0) (the
two minus signs make it an orientation-preserving map as required). Thus the
automorphisms of C\{0} are visualized in an explicit geometric form as isome-
tries of the cylinder. Moreover, the covering map C→ C \ {0} is visualized as
just wrapping the plane around the cylinder.

The other Riemann surfaces covered by C are the torus family, the Rie-
mann surfaces obtained as quotients by translations in two different directions.
Specifically, one defines z ∼ w, z, w ∈ C, if z − w ∈ {mω1 + nω2 : m,n ∈ Z},
where ω1, ω2 are (fixed) complex numbers linearly independent over R. Then
the torus T is obtained as C modulo this equivalence relation ∼. The sit-
uation here is much as before: the covering transformations are the maps
z �→ z + mω1 + nω2, m,n ∈ Z fixed. Automorphisms of T lift to automor-
phisms of C which preserve the covering-transformation orbits, i.e., preserve
the equivalence classes. These automorphisms of C are exactly the translations
z �→ z + b and the negation-translations z �→ −z + b, together with, possibly,
some additional elements that arise when there is a C-linear mapping other
than z �→ −z which takes the lattice {nω1 + mω2 : m,n ∈ Z} in a one-to-one
fashion onto itself. Such maps (if any) must be rotations since, if |c| 	= 1,
then the powers of z �→ cz or its inverse would move lattice points 	= 0 + 0i
arbitrarily close to 0+0i, a contradiction. The set of lifts of T -automorphisms
to C thus preserves the standard, Euclidean metric on C so that this met-
ric, pushed down to T , is Aut (T )-invariant. As before, the push-down is well
defined because the covering transformations act as isometries.

2.3 Covering Spaces and Invariant Metrics, II:
Quotients of D

The construction in the previous section of automorphism-invariant metrics
on C \ {0} and on 2-tori involved a certain delicate point: while C has no
automorphism-invariant metrics itself, it does possess a metric which is in-
variant under all the fixed-point-free automorphisms that can potentially
be covering transformations for nontrivial covering-space quotients. For the
unit disc D, this subtlety does not arise: There is a Riemannian (actually
Hermitian) metric on D which is invariant under every element of Aut (D),
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fixed-point-free or not. This is of course the well-known Poincaré metric3

(cf. [Kobayashi 1970])

ρ =
4

(1− |z|2)2 (dx2 + dy2).

In the context of the ideas developed in Section 1.3, the existence of an
automorphism-invariant metric on D is anything but a surprise. Indeed, in
that context the Poincaré metric arises all but automatically, as follows. Since
I0 = {z �→ ω : |ω| = 1, ω ∈ C}, there is, up to a constant factor, only one
I0-invariant Riemannian metric at 0—first the Euclidean metric dx2 + dy2.
This metric is of course Hermitian. Now, if there is to be an Aut (D)-invariant
metric on all of D, then it must be that

Ta : D → D

z �→ z − a

1− az

is an isometry for all a ∈ D.4 In particular, the length of the real vector
(1, 0) at a must be equal to the length of (dTa)|a(1, 0) at 0. Now the vector
(dTa)(1, 0) has length equal to |T ′

a(a)| since the real differential of a holomor-
phic function f on an open subset of C acts as a rotation composed with a
dilation by the factor |f ′|. Note that

T ′
a(a) =

1
1− |a|2 .

Hence the invariant-metric length of (1, 0) at a ∈ D must be(
1

1− |a|2
)
× (the length of a Euclidean unit vector at 0).

In other words, the invariant metric in (length)2 form must be, at a ∈ D,
given by

c

(1− |a|2)2 (dx2 + dy2).

With c = 4 we obtain the usual Poincaré metric.
The argument just given shows at first only what the invariant metric must

be if it exists. But a similar and more detailed analysis shows that in fact the
metric obtained must be invariant. Think of it this way: if F ∈ Aut (D) and

3The constant factor 4 is chosen for geometric convenience: it gives the metric’s
Gaussian curvature the constant value of −1. For our present purposes, the factor
4 can be regarded as simply historically motivated.

4These mappings are often, in the context of function theory, called Möbius
transformations.
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F (z) = w, then F can be written as T−1
w ◦ r ◦ Tz, where r is some element

of I0. This is just group-theoretic formalism since T−1
w ◦ F ◦ Tz(0) = 0. Since

Tz, r, and Tw are by construction isometries at z, 0, and w, then so is F .
This is of course related to the general proper-action concepts introduced

in Chapter 1.
Meanwhile, the following result follows easily from the existence of the

Aut (D)-invariant metric and the covering-space ideas introduced in the pre-
vious section.

Proposition 2.3.1 (Invariant Metrics on Quotients of D). Let M be
a Riemann surface. If π : D → M is a covering map with π holomorphic,
then there is an Hermitian metric H on M such that π is a local isometry
(here D is equipped with the Poincaré metric). Moreover, the metric H, which
is uniquely determined by the condition that π be a local isometry, has the
property that Aut (M) acts on M as orientation-preserving isometries of H.
And every orientation-preserving isometry of M with metric H is an element
of Aut (M).

Outline of the proof. Since M is the quotient of D by a subgroup Γ of Aut (D)
and since Aut (D) acts as isometries of the Poincaré metric, the Poincaré
metric pushes down to M , as in the earlier discussion. Here we use also the
fact that π is a local holomorphic diffeomorphism, and in particular dπ is
nonsingular. An automorphism f of M can be lifted to an automorphism f∗

of D, also as before. And since f∗ is isometric for the Poincaré metric on D,
the original element f must be isometric for H. The final statement follows
from the fact that H is Hermitian. ��

We turn now to some specific examples.

Example 1 M = D\{0}. An explicit universal covering space ofM is given by

π : {z ∈ C : Re z < 0} → M

z �→ exp z.

Calculation via the standard biholomorphic map from the half-plane {z ∈
C : Re z < 0} to D shows that the Poincaré metric on D transferred to
{z ∈ C : Re z < 0} is (1/|Re z|) (the Euclidean metric). first, the usual
biholomorphic map of {z ∈ C : Re z < 0} to D is the composition of z �→ −iz
(left half-plane to upper half-plane) and z �→ (z− i)/(z + i) (upper half-plane
to D). So F : z �→ (z + 1)/(z − 1). The derivative of this map is −2/(z − 1)2.
For F to be an isometry, the Poincaré-induced length of (1, 0) at z must be

2|F ′(z)|
1− |F (z)|2 =

2
−z − z

=
1

−Re z

=
1

|Re z| .
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For a similar direct calculation of the induced metric on D \ {0}, note
that the length at exp z of the dπ-image of the real Euclidean vector (1, 0)
is (exp z)(1, 0). Since the Poincaré length of (1, 0) at z ∈ {ζ ∈ C : Re ζ < 0}
is 1/|Re z|, the induced-metric H-length of (1, 0) at exp z ∈ M must be
(1/| exp z|) · (1/|Re z|). Expressed in terms of z itself,

H-length =
1

|z| · ∣∣ ln |z|∣∣ · (Euclidean length)

=
−1

|z| · ln |z| · (Euclidean length).

In polar coordinates z = reiθ:

H-length at z =
[
− 1
r ln r

]
· (Euclidean length).

Readers may check directly for themselves that the H-metric has Gauss
curvature ≡ −1 using the standard formula5

Gauss curvature of e2σ(dx2 + dy2) = −Δσ

e2σ
.

Here e2σ = (1/r2 ln2 r) so that σ = − ln r−ln(| ln r|). Of course, since Gaussian
curvature is preserved by local isometry, the fact that the H-metric has Gauss
curvature ≡ −1 follows from the fact that the Poincaré metric on Δ has
Gauss curvature −1. This latter fact can be verified with the same formula
but with σ = ln(1−|z|2)+ ln 2 on D. This corresponds to the Poincaré metric
[4/(1− |z|2)2](dx2 + dy2). ��
Example 2 Let M = {z ∈ C : e−α < |z| < eα}, some α > 0. Here the
covering map requires a bit more effort to construct. The exponential z �→ ez

maps U1 = {z ∈ C : −α < Re z < α} onto M , and this is a covering. On
the other hand, z �→ (πi/2α)z maps U1 biholomorphically onto U2 = {z ∈
C : −πi/2 < Im z < πi/2}, and z �→ exp z takes U2 biholomorphically to
{z ∈ C : Re z > 0}. The Poincaré-induced metric for this last region is

Poincaré length =
(

1
Re z

)
· (Euclidean length).

Tracing through the derivatives of these maps as in Example 1 gives the
H-metric on M :

H-length =
(

π/[2α]
r cos([π ln r]/[2α])

)
· Euclidean length

5See [Kobayashi/Nomizu 1963], Volume II, p. 184.
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or, in length2 notation,

H =
(

(π/[2α])2

r2 cos2([π ln r]/[2α])

)
· (dx2 + dy2).

It is instructive to write this metric in polar coordinates, where dx2+dy2 =
dr2 + r2dθ2. Thus

H =
(

(π/[2α])2

r2 cos2((π ln r)/(2α))

)
dr2 +

(
(π/[2α])2

cos2((π ln r)/(2α))

)
dθ2.

The homology generator of M which goes once around the point 0 counter-
clockwise has as representatives closed curves along which the total change
of θ is +2π. For such a curve that is, say, piecewise C1 and is written in the
form (r(t), θ(t)), t ∈ [0, 1], one has∫ 1

0

dθ

dt
dt = 2π.

Now the H-length of the curve is, with β = π/(2α),

∫ 1

0

√(
β2

r2 cos2(β ln r)

)(
dr

dt

)2

+
(

β2

cos2(β ln r)

)(
dθ

dt

)2

dt

≥
∫ 1

0

β

cos(β ln r)
·
∣∣∣dθ
dt

∣∣∣ dt
≥
∫ 1

0
β · dθ

dt
dt

= 2πβ.

When (r(t), θ(t)) ≡ (1, 2πt), the inequalities become equalities and that
is, up to parameterization, the only case when they do. Thus the “central
circle” r = 1 is the unique minimum-length curve in its homology class. As
such, by standard geometry, it must be a geodesic for the H-metric. Refer to
Figure 2.1.

In particular, this central circle must be taken to itself by an automor-
phism, except of course its direction may be reversed, since the circle traversed
clockwise is the other homology generator.

Now we are able to interpret the automorphisms of {z ∈ C : e−α < |z| <
e+α}, α > 0, as determined in Example (4) of Section 1.4. The automor-
phisms, being isometries, come in two classes. The first is that in which the
central circle and its orientation are preserved. These are rotations z �→ ωz,
|ω| = 1, and these act as isometries since the expression for the H-metric has
no θ-dependence of its coefficients.

The second class of isometries that preserve orientation and are hence
automorphisms is that in which the central circle is mapped to itself with
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r=1

r=e

r=e-

0

Fig. 2.1. The central geodesic.

opposite direction. For orientation to be preserved, the outward directions
perpendicular to the circle must be mapped to inward directions. The maps
have the form (r, θ) �→ (1/r,−θ + θ0) or, equivalently, z �→ ω/z, |ω| = 1.
That these are isometries arises from the θ-independence of the H-metric
coefficients together with the observations that

β

(1/r) cos2
(

π
2α · ln 1

r

) = r2 · β

r cos2
(

π
2α · ln r

)
while |(1/z)′| = 1/|z|2. The reader is invited to trace through the logic to see
that consequently z �→ 1/z is length-preserving for the H-metric.

One first observes (with β = π/[2α] as before) that∫ eα

1

β

r cos(β ln r)
dr = +∞.

This follows from elementary estimates. Similarly,∫ 1

e−α

β

r cos(β ln r)
dr = +∞.

From this information, and from the H-metric in polar form, it follows that
any curve γ : [0, 1) → Ω = {z ∈ C : e−α < |z| < e+α} with |γ(0)| = 1 and
limt↑1 |γ(t)| = eα has infinite length. Similarly, if limt↑1 |γ(t)| = e−α, then
γ has infinite length. In an obvious sense, it is “infinite H-distance” to the
boundary of Ω from one (and hence any) interior point of Ω. This property
is (equivalent to) the domain being complete in the H-metric in the sense
of Riemann-geometric completeness. This completeness property holds for all
the metrics that arise in the situation of Proposition 2.3.1. This matter will be
discussed in more detail and in greater generality later in the book. Meanwhile,
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one can check that the H-metric on {z ∈ C : 0 < |z| < 1} also gives infinite
distance to the boundary from each interior point.

It is reassuring to be able to visualize the covering maps of Examples 1
and 2 geometrically, analogous to visualizing the covering C → C \ {0} as
mapping a plane onto a cylinder. This visualization is in fact almost exactly
analogous to the cylinder case.

In detail, the curve in polar coordinates with θ = 0 and r varying from e−α

to e+α is, up to parameterization, a geodesic. This is clear since it is a short-
est curve joining any two of its points (cf. the argument for why it is infinite
distance to the boundary). Alternatively, one can see that this curve is a com-
ponent of the fixed-point set of the (orientation-reversing, nonholomorphic)
isometry (r, θ) �→ (r,−θ) and hence must be a geodesic. As in basic Riemann
surface theory for function elements, we can use this geodesic as a “cut” and
obtain the simply connected covering space of {z ∈ C : e−α < |z| < e+α}
by connected “sheets” along the cut. Translated into the unit disc D, this
process “develops” {z ∈ C : e−α < |z| < e+α} on D isometrically. A funda-
mental domain, analogous to the strip with parallel sides glued together to
form a cylinder, is given by the region between two Poincaré-metric geodesics
in D, each perpendicular to a third geodesic, with the points of intersection
separated by Poincaré distance 2πβ = π/α. This is of course the length of the
“central circle” geodesic {z ∈ C : |z| = 1} of {z ∈ C : e−α < |z| < e+α} in the
H-metric.

Without loss of generality, we can take the third geodesic in D to be the
x-axis and the points of intersection to be −a + i0 and a + i0, where a > 0.
Here a must satisfy ∫ a

−a

2
1− t2

dt =
π2

α
.

Therefore a = (eπ2/[2α] − 1)/(eπ2/[2α] + 1). In this situation, the group Γ of
covering transformations is generated by T−a ◦ T−a, which takes −a + 0i to
a+0i. [Note also that the map T−a ◦T−a takes z to (z+b)/(1+bz), where b =
2a/(1+a2).] Then D/Γ becomes the fundamental domain (the region between
the two geodesics perpendicular to the x-axis) with its edges glued together
via the identification map T−a ◦ T−a. As noted, this is truly the analogue of
the flat cylinder situation C → C \ {0}. In this setup, the generators of the
cylinder, the parallel lines that form the cylinder, are replaced by H-geodesics
from the inner edge of the annulus to the outer edge, first those of constant
θ value (lying in rays from the origin). And these H-geodesics are images of
the Poincaré metric geodesics perpendicular to the x-axis. The boundary of
our fundamental domain, consisting of two Poincaré metrics, has each of these
Poincaré metric geodesic mapping onto the H-metric geodesic re−iπ in {z ∈
C : e−α < |z| < e+α}, where r varies from e−α to e+α. Refer to Figure 2.2.

The situation of D → D \ {0} in Example 1 is conceptually similar but
different in that there is no geodesic “central circle.” As before, we can use the
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Fig. 2.2. The mapping D → A ≡ {z ∈ C : e−α < |z| < eα}.
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Fig. 2.3. Fundamental domain for D → D \ {0}.

θ = 0, r ∈ (0, 1) curve (which is a geodesic for the same reasons as before) as
a “branch cut.” We can begin our development map unwrapping the universal
cover of D \ {0} onto D by sending the θ = π geodesic to the y-axis, with
r → 1 corresponding to y → 1: to normalize the precise correspondence, we
could, for instance, send r = 1/2, θ = −π, to 0 + i0 ∈ D. The fundamental
domain becomes the region between the two geodesics σ1, σ2 as shown, where
the distance between the two goes to 0 at the boundary point. See Figure 2.3.

The two geodesics σ1, σ2 in D are each a lift of the θ = 0 geodesic in
D \ {0} with r varying. The fact that they approach each other in the limit
corresponding to r → 0+ is a consequence of the fact that the H-length of a
(Euclidean) circle of radius r around 0+i0 goes to 0 as r → 0+. The H-length
of the circle is 2π/| ln r|.

The group of covering transformations Γ on D needs to have as generator
the mapping that moves σ1 to σ2 while fixing the boundary point 1 ∈ ∂D at
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Fig. 2.4. Half-plane model vs. disc model for the covering of D \ {0}.

which σ1 and σ2 “meet.” Thus Γ should be a cyclic subgroup of the classical
horocycle transformations at 1.

The form of the transformations, which are supposed to be automorphisms
of D, is determined by requiring that z �→ ω · (z−a)/(1−az) should fix 1, i.e.,

1 = ω · −i− a

1 + ai
or ω =

1 + ai

−i− a
.

Since |ω| = 1, it must follow that a is real. Furthermore, for each real a with
|a| < 1, there is one and only one possible ω value. It is easy to check that
there is exactly one such transformation taking σ1 to σ2 with 1 fixed, and
this transformation “glues” the edges of the fundamental domain (between
σ1 and σ2) to yield D \ {0} with its H-metric. This whole situation is even
easier to visualize if one looks at the upper half-plane version of the Poincaré
metric: the geodesics σ1, σ2 become vertical half-lines emanating from points
on the x-axis and meeting “at infinity,” and the covering transformation group
is generated by a translation z �→ z + c, c real. This picture really does look
cylindrical. The reader is invited to explore this matter in more detail. Refer
to Figure 2.4.

It is also intriguing to move the situation of Example 2 over to the upper
half-plane model. Take the unwrapping of the central circle (which is the x-
axis in the D-model) to the (geodesic) x-axis. Then the two perpendicular
geodesics which bound the fundamental domain in our D-model become half-
circles around the origin. And the group of covering transformations, again of
course a cyclic group, is now generated by z �→ cz, c > 0, where c is the ratio
of the radii of the two half-circles. Again the reader is invited to explore the
details.

2.4 Covering Spaces and Automorphisms in General

While much of the material of the previous two sections was very specific,
underlying the considerations there and illustrated by them were some general
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principles. In this section, we shall make these principles explicit. This is
well worthwhile in spite of the tedium of the notation involved because these
principles have wide applications.

Proposition 2.4.1. Suppose that M̃ and M are complex manifolds with M̃
simply connected and further suppose that π : M̃ →M is a holomorphic map-
ping which is also a covering in the sense of topology so that, in particular,
π is a local holomorphic diffeomorphism. Let Γ be the subgroup of Aut (M̃)
consisting of the covering transformations of M̃ over M . In this case these
transformations are necessarily holomorphic. Then:

(a) For each f ∈ Aut (M), there is an element f̂ of Aut (M̃) such that f ◦π ≡
π◦ f̂ . Any such f̂ maps each orbit of Γ bijectively onto another orbit of Γ .
Moreover, given p ∈ M , p̂ ∈ M̃ with π(p̂) = p, and q̂ ∈ M̃ with π(q̂) =
f(p), there is exactly one such f̂ with f̂(p̂) = q̂.

(b) Conversely, if F ∈ Aut (M̃) and if F maps each orbit of Γ bijectively
onto another orbit of Γ , then there is exactly one f ∈ Aut (M) such that
π ◦ F ≡ f ◦ π.

Proof. If f : M → M is a holomorphic mapping, whether an automorphism
or not, then there is exactly one continuous mapping f̂ : M̃ → M̃ with f ◦π =
π ◦ f̂ and f̂(p̂) = q̂. This is just the standard lifting argument for covering
spaces M̃ → M with M̃ simply connected. Since π is a holomorphic local
diffeomorphism, it follows that f̂ must be holomorphic. To see that such an
f̂ is an automorphism of M̃ , let ĝ be the lift to M̃ of f−1 : M → M with
ĝ(q̂) = p̂, i.e., π ◦ ĝ = f−1 ◦π. Now, since π is a local diffeomorphism and since
g◦f is the identity, it follows that ĝ◦f̂ is the identity in a neighborhood of p̂. By
uniqueness of analytic continuation, ĝ◦ f̂ is the identity on all of M̃ . Similarly,
(f̂ ◦ ĝ)(q̂) = f̂(p̂) = q̂ and f̂ ◦ ĝ is also the identity on M̃ . So f̂ ∈ Aut (M̃).

Now, for x ∈ M̃ and γ ∈ Γ ,

πf̂(γ(x)) = fπ(γ(x)) = f(π(x)).

So f̂(γ(x)) is in the Γ -orbit of f̂(x) since the orbits of Γ are exactly the sets
of the form π−1({points of M}). Now, with ĝ as given, the same holds for ĝ

since ĝ is a lift of f−1: the map ĝ sends Γ -orbits to Γ -orbits. Since f̂ and ĝ
are inverses, the maps by f̂ of Γ -orbits to Γ -orbits must each be bijective.

For the second statement, note that under the hypothesis that F : M̃ → M̃
maps Γ -orbits (that is, sets of the form π−1({p}) to other sets of the same
form), set-theoretic considerations show that F induces a map on M . first, set
f(x) = π◦F (x̂) for any x̂ ∈ π−1({x}); this f is well defined by hypothesis. The
full hypothesis on F , including the bijectivity on inverse image sets, means
that F−1 also pushes down to a well-defined map g : M → M . It is easy to
check that f ◦ g and g ◦ f are the identity on M , so that f ∈ Aut (M). ��
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This “general nonsense” argument becomes clearer if one thinks of it in
terms of the orbits of the covering transformation group Γ acting on M̃ .
The hypothesis of the second statement says then that F maps each Γ -orbit
bijectively onto another Γ -orbit, and so does F−1. The latter condition is
needed, since the orbits are in general infinite sets. As an instance, the map
z �→ 2z maps orbits of Γ for exp : C→ C\{0} into themselves: if z1−z2 = 2πik
then 2z1 − 2z2 ∈ 2πiZ. But the induced map on C \ {0} is z �→ z2, which has
no inverse (see Section 2.2).

Now the set of all F ∈ Aut (M̃) such that both F and F−1 map orbits to
orbits is a subgroup of Aut (M̃). Moreover, this subgroup is closed. One can
see this from the definition of covering space and the group Γ . Suppose that
the sequence {Fj} converges uniformly on compact sets to some F0. For fixed
γ0 ∈ Γ and p0 ∈ M̃ , the images Fj(γ0(p0)) by hypothesis belong to the same
orbit of Fj(p0) so that Fj(γ0(p0)) = γj(Fj(p0)) for some unique γj ∈ Γ .
Now choose a neighborhood of F0(γ0(p0)), say U , (sufficiently small) so that
the conditions σ1(U) ∩ σ2(U) 	= ∅ and σ1, σ2 ∈ Γ imply σ1 = σ2. This is
possible by the definition of covering space. Then, for j0 so large that j ≥ j0
implies that Fj(γ0(p0)) ∈ U , it must be that γj is independent of j. For clearly
F0(p0) ∈ γ−1

j1
(U)∩γ−1

j2
(U) for any j1, j2 > j0. Thus F0(γ0(p0)) = γ∞(F0(p0)),

where γ∞ is the eventually constant value of γj . In particular, F0 maps orbits
to orbits. (A similar argument applies to F−1 to show that F−1 also maps
orbits to orbits.)

Proposition 2.4.2. With π : M̃ → M as in Proposition 2.4.1, let G be
the subset of Aut (M̃) consisting of those F ∈ Aut (M̃) such that F maps
each orbit of Γ bijectively to another orbit of Γ . The covering transformation
group Γ of M̃ over M is a closed, normal subgroup of G; and Aut (M) is
homeomorphically isomorphic to G/Γ .

Proof. Almost everything follows from arguments already presented. We
check only the normality of Γ in G. Suppose that F ∈ G and γ ∈ Γ .
We need to see that F ◦ γ ◦ F−1 is a covering transformation. Obviously
F ◦ γ ◦ F−1 ∈ Aut (M̃), so we need only check that π ◦ (F ◦ γ ◦ F−1) = π.
Now, for p ∈ M̃ , we see that γ ◦F−1(p) is an element of the set of Γ -orbits of
F−1(p), and hence F (γ(F−1(p)) is an element of the Γ -orbit of F (F−1(p)).
This is so because F applied to a point of an orbit of q ∈ M̃ is equal to the
orbit of the point F (q) by hypothesis. Note that

π(Γ -orbit of F (F−1(p))) = π(Γ -orbit of p) = {π(p)}.

The remainder of the proof of the proposition, which follows the patterns
already established, is left to the reader. ��

Corollary 2.4.3. If Aut (M̃) is a Lie group, then Aut (M) is a Lie group.
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Proof. Let G be the same as in Proposition 2.4.2. Since a closed subgroup of
a Lie group is a Lie group, G is a Lie group. A quotient of a Lie group by a
closed, normal subgroup is again a Lie group. Hence G/Γ is a Lie group. ��
Proposition 2.4.4. If Aut (M̃) has compact isotropy subgroups, then so does
Aut (M).

Proof. Given p ∈ M , choose p̂ ∈ M̃ such that π(p̂) = p. By Proposition
2.4.1(a), we see that, for each f ∈ Ip, there is exactly one f̂ ∈ Ip̂ with π ◦ f̂ =
f ◦ π. And f̂ maps each orbit of Γ bijectively onto another orbit. Also, by
2.4.1(b), the set of all F ∈ Ip̂ that map each Γ -orbit bijectively to a Γ -orbit is
exactly the set of such f̂ . Moreover, this set of F is a closed subgroup, say Gp̂

of Ip̂, by the proof of Proposition 2.4.2. Gp̂ is compact since Ip̂ is, by hypoth-
esis. And with G as in Proposition 2.4.2, Gp̂ ⊂ G maps, under the continuous
map G→ G/Γ , onto a subgroup corresponding to Ip under the isomorphism
Aut (M) ∼= G/Γ . Indeed Gp̂ maps isomorphically onto the subgroup of G/Γ
corresponding to Ip. In particular, since G → G/Γ is continuous and Gp̂ is
compact, it follows that Ip is compact. ��

In the case when M has an Aut (M)-invariant metric, all the previous
considerations become considerably simplified.

Theorem 2.4.5. Let M be a compact, complex manifold. Suppose that d :
M×M → R is a metric space structure on M , with the property that the metric
space topology for d is the same as the manifold topology. If d is Aut (M)-
invariant in the sense that d(f(p), f(q)) = d(p, q) for all f ∈ Aut (M) and all
p, q ∈M , then Aut (M) is a compact Lie group.

Proof. If {fj} is a sequence in Aut (M) then, by the invariance of d, the se-
quence is d-equicontinuous and indeed d-Lipschitz continuous with constant 1.
By the Arzela–Ascoli theorem and the compactness of M , there is a subse-
quence {fjk

} that converges uniformly on M to a continuous d-isometric map
f0 : M → M . Passing again to a subsequence if necessary, we can suppose
that the sequence {f−1

jk
}, which is also d-equicontinuous, converges uniformly

on M to a limit g0 : M → M , also d-isometric. It is now elementary to see
that f0 ◦ g0 and g0 ◦ f0 are both the identity map of M to M . Also, d-uniform
convergence implies uniform-on-compact-subsets convergence in local coordi-
nates, since the d-topology is equivalent to the manifold topology. So f0 is
holomorphic and invertible, and f0 ∈ Aut (M).

Since Aut (M) is compact, it is certainly locally compact. By the Bochner–
Montgomery theorem (Theorem 1.3.11), Aut (M) is a Lie group. ��

We turn now to some general circumstances under which a complex man-
ifold M has an Aut (M)-invariant metric.

Proposition 2.4.6. If π : M̃ → M is a holomorphic covering space with M̃
simply connected and if H̃ is an Hermitian metric on M̃ that is invariant



2.4 Covering Spaces and Automorphisms in General 47

under the subgroup Γ of Aut (M̃) consisting of the covering transformations
of π : M̃ →M , then there is a Hermitian metric H on M such that π is a local
isometry, and H is uniquely determined by this condition. If, in addition, H̃ is
Aut (M̃)-invariant, then H is Aut (M)-invariant.

Proof. The proof of the existence and uniqueness of H follows a by-now-
familiar pattern. To determine H at p ∈ M , choose p̂ with π(p̂) = p. Then
define H at p by requiring dπ|p̂ to be isometric from H̃ at p̂ to H at p. Since
dπ|p̂ is a vector space isomorphism, this gives one and only one H at p. The
metric H is well defined since any other element of π−1(p) has the form γ(p̂)
for some γ ∈ Γ and γ is an isometry of H̃.

For the second statement, it suffices to apply Proposition 2.4.1. To wit, if
f ∈ Aut (M), then there is an f̂ ∈ Aut (M̃) with f ◦ π = f̂ ◦ π. Since f̂ is
H̃-isometric and since π is locally H̃-to-H isometric, we see that f must be
H-isometric. ��

Proposition 2.4.6 was more or less obvious after our experience with the
examples of Sections 2.1 and 2.2. What is somewhat less obvious is that the
completeness of H̃ and of H happen together. An even more general result
holds:

Proposition 2.4.7. Let M̃ and M be Riemannian manifolds equipped with
metrics H̃ and H, respectively. Suppose that π : M̃ → M is a covering, and
that π is locally isometric. Then the M̃ metric H̃ is complete if and only if
the M metric is complete.

Remark. This is a standard result in Riemannian geometry.

Sketch of the proof. Use the fact that completeness in the Cauchy sense is
equivalent for a Riemannian manifold to infinite extendibility of geodesics
(see [Kobayashi/Nomizu 1963]). Geodesics in M can be lifted to geodesics in
M̃ because continuous curves can always be lifted. It is also the case that the
image under π of a geodesic in M̃ is a geodesic in M . Thus infinite extendibility
in M̃ happens precisely when it does so in M . ��

The most obvious application of Proposition 2.4.7 is to quotients of D with
its Poincaré metric.

Corollary 2.4.8. If π : D → M is a holomorphic covering space of a Rie-
mann surface M , then the H-metric (in our previous terminology) on M is
complete.

The Poincaré metric on the disc D is of course complete. To check the
corollary by hand, from the geodesic extendibility viewpoint, it is enough to
deal with geodesics through 0. These are, up to parameter, straight lines:
the form of the metric in polar coordinates shows immediately that these are
minimal-length connections, hence geodesics. With Poincaré metric arc length
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parameter, they have the form in polar coordinates given6 by

σθ0(t) =
(
et − 1
et + 1

, θ0

)
, θ0 ∈ [0, 2π).

In particular, the geodesics σθ0 are defined on (−∞,+∞). So D is com-
plete. This completeness is also clear from the compactness of closed metric
balls (the equivalence of all these different notions of completeness is the fa-
mous Hopf–Rinow theorem, treated in all Riemannian geometry texts, e.g.,
[Petersen 2006], [Kobayashi/Nomizu 1963], [Helgason 1962]). Explicitly

{z ∈ C : dis
˜H(0, z) ≤ r} = {z ∈ C : |z| ≤ (er − 1)/(er + 1)},

which is compact in D. So the (quotient) H-metrics on Riemann surfaces
covered by D are necessarily complete.

2.5 Compact Quotients of D and Their Automorphisms

In this section, we shall investigate the automorphism groups of compact
Riemann surfaces. We have already discussed the situation for the Riemann
sphere and for the torus quotients of C. In actuality, all other compact Rie-
mann surfaces are quotients of D or, in other words, their universal covering
space is biholomorphic to D. We almost have this result already, but not quite.
The “not quite” arises from the fact that we need to show that a torus can
only arise as a quotient of C; it cannot have D as a (holomorphic) universal
cover. Before proving this statement, we quickly remind the reader of some
basic results about the topology of compact surfaces (see, e.g., [Massey 1967]).

According to nineteenth century work of Jordan and Möbius, every com-
pact orientable surface M (i.e., topological 2-manifold) is homeomorphic ei-
ther to the 2-sphere S2 or or to the 2-sphere with g handles attached (here g
is a finite, positive integer). The number g is uniquely determined; g is called
the genus of the surface.7 The homology groups of the surface M are:

• H0(M,Z) ∼= Z;
• H1(M,Z) ∼= Z⊕ · · · ⊕ Z (2g times);

6To check for arc length parameterization, calculate

dr

dt
=

d

dt

(
et − 1
et + 1

)
=

2et

(1 + et)2
;

hence, at the point
(
(et − 1)/(et + 1), θ0

)
, the length of the vector σ′(t) is(

2et

(1 + et)2

)/(
2

1 − (
et−1
et+1

)2

)
= 1.

7By convention, the sphere S2, having no handles, is considered to have genus 0.
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• H2(M,Z) ∼= Z;
• Hk(M,Z) = 0 if k > 2.

In particular, the Euler characteristic of M is 2 − 2g.8 No two surfaces of
different genus are homeomorphic or even of the same homotopy type. This
assertion follows immediately from the homology results, e.g., because the
first homology group is the abelianization of the first homotopy group (i.e., the
fundamental group) and that group is clearly a homotopy type invariant. Or,
one can use directly the homotopy type invariance of homology. If g = 0 then
the fundamental group of a surface M of genus g is the one-element group
{0}. If g ≥ 1, then the fundamental group has 2g generators a1, b1, . . . , ag, bg

subject to the one relation

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · agbga
−1
g b−1

g = 1.

The group π1(M) is noncommutative if g ≥ 2.
We now turn to the result which shows the relationship between the topol-

ogy of the surface and the complex structure of the universal cover.

Theorem 2.5.1 (Uniformization of Compact Riemann Surfaces:
Poincaré and Koebe). Let M be a compact Riemann surface of genus g

and π : M̃ →M its (holomorphic) universal cover. Then:

(1) If g = 0, then M̃ = M and M is conformally equivalent to the Riemann
sphere C ∪ {∞};

(2) If g = 1, then M̃ is conformally equivalent to C and M is obtained from
C by quotienting out by a group of the form Γ = {mω1 +nω2 : m,n ∈ Z},
with ω1 and ω2 being R-linearly independent complex numbers.

(3) If g ≥ 2, then M̃ is conformally equivalent to D and M is D/Γ . Here Γ
is a subgroup of Aut (D).

Proof. We have already covered all the issues involved with this argument
save one: We need to show that a surface of genus 1 cannot arise as a quotient
of D. This can be established by working with the geometry of D and its holo-
morphic quotients in terms of the group actions of covering transformations,
but it is much quicker to use a result of classical differential geometry.

The torus, the topological surface of genus 1, has Euler characteristic equal
to 0. The Gauss–Bonnet theorem thus yields that

∫
K dA = 0 for any Rie-

mannian metric on the torus, where K is the Gauss curvature and dA denotes
integration with respect to the Riemannian metric area element. Now the
Gauss curvature of the Poincaré metric is ≡ −1, and hence so is the Gauss
curvature of the H-metric on any covering space quotient of D. Thus no topo-
logical torus admits such an H-metric. ��

8Note that when g = 0, or M is the sphere, then H1(M, Z) = 0, so the formulae
still apply.
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covering
map

1 1

1 11

Fig. 2.5. The covering of the torus.

The sudden incursion of a result from pure Riemannian geometry may
at first be startling. So we outline how the impossibility of covering a torus
holomorphically by the unit disc D can be proved using only direct ideas
about the quotienting possibilities that could arise. Refer to Figure 2.5.

Specifically, if M is a Riemann surface that is topologically S1×S1, then as-
sociated to this situation we could find a surface M̃ covering S1×S1 where M̃
is topologically R×S1. This is done simply by “unwinding” the first S1 factor
and leaving the second factor alone. Now if M were holomorphically covered
by D, then M̃ could also be taken to be holomorphically covered by D, and
the covering M̃ →M to be holomorphic as well. Both coverings would be iso-
metric for the “H-metrics” as usual. Now choose a sequence {pj} diverging to
infinity in one end of the topological cylinder M̃ and {qj} diverging to infinity
in the other end. Choose a closed curve C in M̃ going around the cylinder
in the obvious sense of those words so that M̃ \C has two components, both
unbounded. Let, for each j, γj be an H-metric geodesic from pj to qj with
minimal length. Then γj intersects C at least once. Let ξj be one such point of
intersection. Now parameterize γj by arc length with γj(0) = ξj . By compact-
ness of C, there is an arc-length parameter geodesic γ0 : (−∞,+∞)→ M̃ with
γ0(0) a point of C which is minimizing between any two of its points. It is in a
sense a minimal connection between the two ends of M̃ . [Note: To get γ0, pass
to a subsequence γjk

of the γjs with ξj converging and with γ′
j(0) converging.

Then let γ0 be the geodesic with γ0(0) = lim γj(0) and γ′
0(0) = lim γ′

j(0).]
Then M̃ \ {γ0(t) : t ∈ (−∞,+∞)} is isometric to an open subset of D (in
the Poincaré metric) bounded by two nonintersecting geodesics, say σ and τ :
M̃ is obtained by gluing the two geodesics together in the same way that a
circular cylinder is obtained by gluing together two parallel lines that bound
a strip in the plane. We can parameterize σ and τ so that σ(t) is glued to τ(t)
to give γ0(t). See Figure 2.6.

Two such nonintersecting (Poincaré metric) geodesics in D can be related
in only one of two ways: the geodesics diverge from each other at both ends,
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Fig. 2.6. Behavior of geodesics on S1 × R.

or they converge at one end but diverge at the other. These cases corre-
spond to the Euclidean circles perpendicular to the boundary, which are the
Poincaré metric geodesics on D having distinct boundary endpoints or having
one boundary endpoint in common. [Two boundary endpoints in common is
not possible: the geodesics then coincide.] In the convergence-at-one-end case,
one gets an immediate contradiction of our situation: in this case, one obtains
arbitrarily short curves from one point far out on the geodesic (near the com-
mon boundary point) to the corresponding point on the “other side” of M̃ cut
open. This corresponds on M to arbitrarily short curves representing the free
homotopy class of “once around” the first factor S1. Such an eventuality is
impossible: such a curve cannot be shorter than the injectivity radius of M .

The case of divergence of the pair of geodesics at both ends is also impossi-
ble, but the reason is slightly more subtle. Note that, by a simple compactness
argument, no covering spaces needed, there is a number L such that, for each
p ∈ M , there is a curve starting and ending at p with length ≤ L which lies
in the free homotopy class of “once around the first factor” of S1 × S1. Now
choose p very far out on the geodesic γ0 in the direction of divergence of the
two copies σ, τ of γ0 bounding the region in D that glues together at the edge
to give M̃ . Choose a closed curve of length ≤ L at the projection of p into M
in the free-homotopy class of “once around” the first S1 factor. The lift of this
curve to M̃ that starts at a point σ(t) projecting to p must end at τ(t) (or vice
versa depending on direction). But this lift has length ≤ L. This is impossible
if p is sufficiently far out on γ since σ and τ diverge from each other. [Note:
One could use this argument twice to show convergence of σ and τ at both
ends and detour around the argument we have used for the impossibility of
the convergence-at-one-end case.] See Figure 2.7.

These arguments are intricate to express in words. But if the reader will
consider suitable pictorial representations, then the ideas will become clear.

The geometric analysis of possible groups Γ of holomorphic covering trans-
formations acting on D can be pushed much further. It can be shown that,
for such a Γ , every abelian subgroup is cyclic. This recovers the part of The-
orem 2.5.1 ruling out the covering by D of a topological torus. For if M were
a torus and π : D →M a holomorphic covering, then the fundamental group



52 2 Riemann Surfaces and Covering Spaces

Fig. 2.7. The behavior of geodesics in D.

π1(M) would be isomorphic to the group Γ of covering transformations. But
π1 of a torus is Z ⊕ Z, abelian but not cyclic. The cyclic nature of abelian
subgroups actually holds in much more general situations: it applies to sub-
groups of the fundamental group of a compact Riemannian manifold of any
dimension having negative Riemannian sectional curvature (see Preissmann’s
theorem [Preissmann 1943]), or, for a recent treatment, see [Petersen 2006].

It is not difficult to see by direct construction using hyperbolic geometry
that, for each g = 2, 3, 4, . . . , there is a (compact) covering-space quotient
of D with genus g. This amounts just to realizing in hyperbolic geometry
the representation of the topological surface of genus g via a polygon of 4g
sides with suitable identifications. However, this is far from showing that every
Riemann surface of genus g ≥ 2 is holomorphically a covering space quotient
of D. There are infinitely many complex structures on a compact surface of
genus g ≥ 2 (or indeed g ≥ 1). The direct geometric construction of some
of them does not a priori guarantee that all are obtained by that means.
To see that all are uniformized by D requires the uniformization theorem
(Theorem 2.5.1), or at least some method beyond pure hyperbolic geometry.9

We turn now to the subject of the automorphism groups Aut (M) for
compact Riemann surfaces M of genus ≥ 2.

Proposition 2.5.2. If M is a compact Riemann surface of genus g ≥ 2, then
Aut (M) is a finite group.

9Proofs that use differential equations without appeal to uniformization are also
known—see [Berger 1971], [Kazdan/Warner 1974].
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Remark. A compact Riemann surface can certainly have an infinite automor-
phism group; even a compact surface with an automorphism-invariant metric
can have such a group. For instance, the quotient T of C by the integer lattice
{m+ni : m,n ∈ Z}, which is topologically a torus, has a positive-dimensional
automorphism group induced by the translations z �→ z +α, α ∈ C. Thus the
condition that the genus be at least 2 in the proposition is essential.

Proof of the proposition. By Theorem 2.4.5 and the existence of the invariant
H-metric on M (Proposition 2.4.6 with M̃ = D), Aut (M) is a compact Lie
group. Thus Aut (M) is a finite group if and only if the identity component of
Aut (M) consists of the identity element alone (i.e., the group must be topo-
logically discrete). By standard Lie group theory, this happens if and only if M
contains no nontrivial one-parameter subgroup. For a proof by contradiction,
suppose that {ϕt} is a nontrivial one-parameter subgroup of Aut (M). Then
X(p) = dϕt(p)/dt|t=0 for all p ∈ M is a C∞ vector field on M . [It is a part
of the Bochner–Montgomery theorem (Theorem 1.3.11) that the action of the
Lie group Aut (M) on M is smooth, so that X is indeed defined and C∞.] The
vector field X on M lifts to a C∞ vector field X̂ on D by setting X̂(w) equal
to the unique vector v at w such that dπ|w(v) = X(π(w)), where π : D →M

is the universal covering of M . The vector field X̂ generates a one-parameter
group {ψt} of diffeomorphisms of D; indeed, one obtains (complete) integral
curves for X̂ by lifting the integral curves of X. Clearly the elements of the
group {ψt} are isometries of D. In particular, the vector field X̂ can have at
most one zero. For if X̂(w0) = 0, then {ψt} consists of a one-parameter group
of Poincaré rotations around the fixed point w0, and such a one-parameter
group has generator that vanishes only at w0—as one sees by writing it out
explicitly (setting w0 = 0 without loss of generality). On the other hand, if
X̂(w0) = 0, then X̂(γ(w0)) = 0 for all γ ∈ Γ . Since Γ is infinite by the com-
pactness of M , it must be that X̂, having at most one zero, has in fact no zeros
at all. Thus X itself has no zeros. But a compact manifold with a nowhere
vanishing vector field has Euler characteristic 0 (by the Poincaré–Hopf theo-
rem, (cf. [Munkres 1966])), while M has Euler characteristic 2− 2g < 0. That
is a contradiction. ��

In the next section, we shall obtain an explicit estimate for the number of
elements in the finite group Aut (M). But some work is required.

2.6 The Automorphism Group of a Riemann Surface
of Genus at Least 2

The proof in Section 2.5 that the automorphism group Aut (M) of a compact
Riemann surface M of genus g ≥ 2 is necessarily a finite group involved very
general considerations: the group Aut (M) was compact because the univer-
sal cover of M was D and hence M inherited an Aut (M)-invariant metric
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from the Aut (D)-invariant Poincaré metric of D. The identity component of
Aut (M) was the identity map alone because otherwise M would have had
a zero-free vector field, contradicting the fact that its Euler characteristic
2− 2g was nonzero. The specific structure of M played no role in these con-
siderations, and the result was correspondingly general: finiteness of Aut (M)
with no explicit estimate of the number of elements in Aut (M). It is quite
surprising in this context that an explicit estimate is possible in the same
generality.

Theorem 2.6.1 (Hurwitz). If M is a compact Riemann surface of genus
g ≥ 2, then the order of the finite group Aut (M) does not exceed 84(g − 1).

This theorem seems mysterious at first sight. And the apparent mystery
is deepened by the fact that the estimate is sharp. In fact there are Riemann
surfaces with genus g > 2 for which the order of Aut (M) is precisely equal to
84(g − 1) (see, for instance, [Farkas/Kra 1992], p. 325, VII.3.10). The exact
origin of the specific number 84 will become apparent from the proof that
follows.

The proof of the Hurwitz theorem that we shall present is closely related
to Hurwitz’s original argument. The subject has tended meanwhile to become
burdened with abstract Riemann surface theory. In our treatment we shall,
like Hurwitz himself, stick to the basics. However, we shall use our metric
viewpoint rather than Hurwitz’s analogous pure function theory. The theorem
will then turn out to be completely geometric in nature.

Before beginning the proof itself, we need to develop some general ideas
about quotients by group actions. Specifically, we want to consider the orbit
space of Aut (M) on M . An orbit of Aut (M) is as usual, by definition, for
a given point p, the set {γ(p) : γ ∈ Aut (M)}. The manifold M is a disjoint
union of orbits, because Aut (M) is a group, and “being in the same orbit” is
an equivalence relation, with each orbit an equivalence class.

Let M be the collection of orbits. Then M has a natural topology: the
quotient topology. In other words, a set of orbits is said to be open if and only
if the union of the orbits as sets is an open subset of M . For an arbitrary group
action on a manifold, the topological orbit space can be a mess. But in our
case, where Aut (M) is finite,M is a decent topological space; in particular, it
is necessarily a Hausdorff space, as is easily checked. This is a special property
of orbit spaces for finite groups acting on manifolds (or even just on Hausdorff
topological spaces).10

Lemma 2.6.2. If M is a compact, orientable Riemannian 2-manifold and if
Γ is a finite group of orientation-preserving isometries of M , then the orbit
space M/Γ is an orientable 2-manifold.

10However, for a general finite group action on a manifold, the quotient need not
be a manifold. For example, the orbit space of the action {x �→ x, x �→ −x} on R is
homeomorphic to {x ∈ R : x ≥ 0}. This is not a manifold. This difficulty does not
arise in our situation.
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Proof. If two points p, q ∈ M lie in the same Γ -orbit, then Ip = {γ ∈ Γ :
γ(p) = p} and Iq = {γ ∈ Γ : γ(q) = q} are conjugate subgroups of Γ . first, if
σ(p) = q, σ ∈ Γ , then σ ◦ γ ◦ σ−1 ∈ Iq if and only if γ ∈ Ip. With this idea in
mind, we divide the orbits of Γ (that is to say, the points of M/Γ ) into two
classes:

(a) nonsingular orbits O: For these, Ip = {idM} if p ∈ O;
(b) singular orbits O: For these, Ip 	= {idM} if p ∈ O.

Similarly, we call points of M itself singular or nonsingular according to
whether they belong to singular or nonsingular orbits. These ideas are all
well defined by our conjugacy observation made at first.

The next step in the proof of Lemma 2.6.2 is the following subsidiary
result.

Sublemma 2.6.3. The singular orbits of M/Γ and the set of singular points
of M are both finite sets.

Proof of Sublemma 2.6.3. By standard results from Riemannian geometry,
there is an ε > 0 such that, for any two points p, q ∈M with distM (p, q) < ε,
there is a unique geodesic from p to q of length distM (p, q). Now suppose that
p1, p2, . . . were an infinite sequence of distinct singular points of M . Since Γ
is finite, we can suppose, by passing to a subsequence, that there is a fixed
nonidentity element γ0 ∈ Γ such that γ0 ∈ Ipj

for all j. By the compactness
of M , there are two points pj1 and pj2 with distM (pj1 , pj2) < ε. Clearly γ fixes
the (short) geodesic c(t) from pj1 to pj2 . But the only nonidentity isometry
that fixes every point of a geodesic segment in dimension 2 is locally given by
reflection in that geodesic. Such an isometry is orientation-reversing. Thus by
contradiction the set of singular points of Γ in M is finite, and hence so is the
set of singular orbits. ��

Returning now to the proof of Lemma 2.6.2, we need to exhibit a Euclidean
neighborhood of each point ofM, that is, a neighborhood that is homeomor-
phic to an open subset of R2. For a nonsingular orbit O, this is easy: Choose
a point p ∈ O ⊂ M and choose a Euclidean neighborhood U of p in M with
every point of U nonsingular (this is possible by Sublemma 2.6.3) and with the
natural map U →M injective. The latter choice is possible by the finiteness of
Γ and the fact that p is nonsingular. For if {(pj , qj)} were Γ -equivalent pairs
of distinct points with limj pj = limj qj = p, then there would be an element
γ 	= idM in Ip.11 Thus U maps homeomorphically onto a neighborhood of O,
giving a Euclidean neighborhood as required.

The situation is more complicated when we want to find a Euclidean neigh-
borhood of a singular orbit O; but it is only a little more complicated. Let
p ∈ O. The group Ip, being a group of orientation-preserving isometries that

11More precisely, if qj = γj(pj), γj 	= idM , then by the finiteness of Γ , and passing
to a subsequence if necessary, γj is independent of j and (by continuity) γj ∈ Ip.
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all fix the point p, has a simple structure—both as a group and as a space
acting on a neighborhood of p. Choose a small ball B around p, and let (r, θ)
be a geodesic polar coordinate system centered at p on this ball. The Ip acts in
this coordinate system as a finite group of Euclidean rotations. In particular,
Ip is cyclic, say of order mp.

Recall from Sublemma 2.6.3 that, if the ball B around p is small enough,
then every point of the ball except p is nonsingular. Moreover, B → M/Γ is
exactly mp-to-1, except on the orbit O corresponding to p (which has only
the pre-image p). The same limit argument as in the nonsingular case shows
that, for B small enough, no quotienting occurs on B except via Ip. But it
is then clear by Euclidean geometry that O has a Euclidean neighborhood,
since a disc modulo a finite group of rotations around its center is locally
Euclidean—it is a one-nappe circular cone with p as vertex.

The orientability is clear since Γ contains only orientation-preserving
transformations, and the singular orbits do not separate the collection of or-
bits M, even locally. ��

Geometrically,M is a C∞ manifold with C∞ metric pushed down from M
except for a finite number of cone-point singularities of the structure already
described. Topologically, M remains a compact, orientable manifold as indi-
cated, although it is likely to be a quite different manifold from M itself. Let
g∗ denote the genus of M.

Now we want to describe a relationship between the genus g of M , the
genus g∗ on M, and the action of Γ . To express this idea, we need some
notation. Write |Γ | for the order of Γ , let O1, . . . ,Om be the singular orbits
(finite in number by Sublemma 2.6.3) of Γ , and let k1, . . . , km be the orders of
the corresponding isotropy subgroups Ip1 , . . . , Ipm for p1 ∈ O1, p2 ∈ O2, . . . ,
pm ∈ Om. [The groups Ipj

are determined only up to conjugacy, but their
orders are of course uniquely determined.]

Lemma 2.6.4. In the notation just given,

2− 2g = |Γ | · (2− 2g∗)− |Γ | ·
m∑

j=1

(
1− 1

kj

)
.

Lemma 2.6.4, which will turn out to be the crucial ingredient for the
proof of Theorem 2.6.1, is a special case of the well-known Riemann–Hurwitz
formula for branched coverings. But an exact description of the Riemann–
Hurwitz general setup would be almost as long as the proof in our case. So
we give the direct proof instead. In fact, we shall give two proofs. The first
one is a bit disingenuous, since we shall assume without proof the existence
of a triangulation of M of a certain type; but it is still quite instructive. The
second proof uses the Gauss–Bonnet theorem and is completely self-contained:
we push the triangulation question back to the corresponding difficulty in the
proof of the Gauss–Bonnet theorem.
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Proof I of Lemma 2.6.4. Choose a triangulation of M such that the singu-
lar orbits O1, . . . ,Om (thought of as points of M) occur as vertices of the
triangulation. This triangulation pulls back to a triangulation of M . In this
triangulation of M , every edge of the M-triangulation gives rise to |Γ | edges
and every face from M to |Γ | faces. Let FM denote the number of faces, EM

the number of edges, and VM the number of vertices for the M -triangulation.
We have similar notation for the M-triangulation. Then

EM = |Γ | · EM

and

FM = |Γ | · FM.

However, the pre-image π−1(Oj) contains not |Γ | points but rather |Γ |/kj

points. Of course pre-images of vertices of the M-triangulation that are non-
singular still contain |Γ | points. Clearly the errors arising from the singular
orbits are accounted for correctly by

VM = |Γ | · VM −
m∑

j=1

(
|Γ | − |Γ |

kj

)
.

Thus the Euler characteristic χ(M) = VM − EM + FM is related to χ(M) =
VM − EM + FM by

χ(M) = |Γ | · χ(M)−
m∑

j=1

(
|Γ | − |Γ |

kj

)
or

2− 2g = |Γ | · (2− 2g∗)− |Γ | ·
m∑

j=1

(
1− 1

kj

)
. ��

Proof II of Lemma 2.6.4. We cannot apply the Gauss–Bonnet theorem di-
rectly to M because of the “cone point” singularities of the metric at
O1, . . . ,Om. We instead set Mε equal to the image under the mapping M →
M/Γ of M \⋃p singular B(p, ε). Then Mε is, for ε > 0 small enough, an ori-
entable, compact, C∞ manifold with boundary having a C∞ metric inherited
from M (we use here the fact that the elements of Γ are isometries). The
manifold with boundary Mε is in effect M with the cone points and ε-discs
around them removed. The Gauss–Bonnet theorem does apply to Mε as a
manifold with boundary. Thus

2πχ(Mε) =
∫

Mε

K dA−
∫

∂Mε

Kg ds,

where Kg is the geodesic curvature of the boundary (with Kg > 0 in our
situation).
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Now χ(Mε) = χ(M) − m by standard topology. Also write Cj
ε for the

component of ∂Mε at Oj and Ĉj
ε for its pre-image in M at a particular point

pj ∈ Oj ; then

lim
ε→0+

∫
C

Kg ds =
1
kj

lim
ε→0+

∫
̂C

Kg ds = 2π · 1
kj

.

Here, for typographical convenience, C = Cj
ε and Ĉ = Ĉj

ε . Combining these
results gives

χ(M) = m−
m∑

j=1

1
kj

+ lim
ε→0+

1
2π

∫
Mε

K dA

or

χ(M) =
m∑

j=1

(
1− 1

kj

)
+ lim

ε→0+

1
2π

∫
Mε

K dA.

But

lim
ε→0+

1
2π

∫
Mε

K dA =
1

2π|Γ |
∫

M

K dA =
1
|Γ | · χ(M).

Thus

χ(M) = |Γ | · χ(M)− |Γ |
m∑

j=1

(
1− 1

kj

)
. ��

With Lemma 2.6.4 now in hand, we are ready to prove Hurwitz’s theorem.

Proof of Hurwitz’s Theorem 2.6.1. Using the notation already introduced,

2− 2g
|Γ | = (2− 2g∗)−

m∑
j=1

(
1− 1

kj

)
or

2g − 2
|Γ | = (2g∗ − 2) +

m∑
j=1

(
1− 1

kj

)
.

To get an upper bound for |Γ |, we need a lower bound for the righthand side
of this last equation (for g fixed). Now 2g − 2 > 0 by hypothesis. So the
righthand side is required to be positive. If g∗ ≥ 2, then the righthand side is
at least 2. If g∗ = 1, then 2g∗ − 2 = 0 and there must be at least one term
of the form 1− 1/kj , with kj a positive integer greater than 1. Hence, in this
case, the righthand side is at least 1/2. Finally, if g∗ = 0, so that 2g∗−2 = −2,
then there must be at least three terms of the form 1 − 1/kj with kj ≥ 2.



2.6 The Case of Genus at Least 2 59

If there are five or more of these, then the righthand side would be at least
−2 + 5(1/2) = 1/2. If there are four, then the righthand side—in order to be
positive—must be at least −2 + 3(1/2) + 2/3 = 1/6. Finally if there are three
terms of the form 1− 1/kj , then only one of these can have kj = 1/2. A little
further experimentation shows that −2 + 3 − (1/k1 + 1/k2 + 1/k3) has the
minimum possible value 1/42, obtained when k1 = 2, k2 = 3, and k3 = 7.

Thus the minimum possible positive value in all cases for the righthand
side is 1/42, from which

|Γ | ≤ 42(2g − 2) = 84(g − 1). ��
As already noted earlier in this section, the number 84 is sharp: the Klein

quartic is a Riemann surfaces of genus 3 with 168 = 84(3−1) automorphisms.
There is a considerable literature on the subject of when the 84(g− 1) bound
is attained (cf. [Lucchini/Tamburini/Wilson 2000] and [Wilson 2001]). Since
the automorphism group of a Riemann surface of genus g > 1 is precisely the
group of orientation-preserving automorphisms of the “push-down” metric
from its uniformization by the unit disc (Proposition 2.3.1), the examples
where the order of the automorphism group has order 84(g − 1) also serve
as examples for the sharpness of the bound for the order of the group of
orientation-preserving isometries.

Another application of the idea that geometric quotients give rise to holo-
morphic ones is to the question of which compact Riemann surfaces cover oth-
ers in the sense of covering spaces. This corresponds essentially to Lemma 2.6.4
without branch points. Specifically, one can see either by the triangular argu-
ment of Proof I of Lemma 2.6.4 or via the Gauss–Bonnet argument used in
Proof II that the following holds:

If π : M →M ′ is a covering map from one compact Riemann surface
to another, then, with g denoting the genus of M and g′ denoting the
genus of M ′,

2− 2g = k · (2− 2g′).

Here k is a positive integer, and indeed k is the “sheeting number”
of π, i.e., the number of points in π−1({p}) for each p ∈M .

The necessary condition that, when g′ ≥ 2, then g′ − 1 is a divisor of
g − 1, is in fact also sufficient. This is clear geometrically: consider M as
a torus of revolution in R3 with g − 1 tubes smoothly attached in such a
way that rotation by 2π/(g − 1) takes each one to the next. Let Γ be the
group of rotations by multiples of 2π/[(g − 1)/k]. Then M → M/Γ is a
covering onto a surface with (g − 1)/k = g∗ − 1 tubes attached. That is a
Riemann surface of genus 1 + (g∗ − 1) = g∗. This geometric construction is
then, according to the principle of associating complex structures to metrics,
holomorphic in suitable complex structures. first, there is a unique complex
structure for which the metric of M as a surface in R3 is Hermitian. Since
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Γ acts as orientation-preserving isometries on M , it acts holomorphically for
this complex structure. And thus M →M/Γ is a holomorphic covering space.

2.7 Automorphisms of Multiply Connected Domains

A simply connected, bounded domain in the plane C is biholomorphic to the
unit disc D—this is the Riemann mapping theorem. A bounded domain U in
C such that C \ U has exactly two connected components is biholomorphic
to D \ {z : |z| ≤ r} for some r ∈ [0, 1). This assertion follows by a Dirichlet
problem argument using boundary values of the absolute value of the desired
biholomorphic mapping f . One notes that log |f | is harmonic with boundary
value 0 on one component of the boundary of U and constant value α to be
determined on the other component of the boundary of U . Let h be the har-
monic function with these boundary values. Choosing this value α correctly,
one can arrange that ∗ dh has integral 2π around an oriented homology gener-
ator of U , from which it follows that the associated map z �→ exp(h+ i

∮ ∗ dh)
is well defined and one-to-one onto D\{z : |z| ≤ r}, where r = eα (α being the
boundary value noted above). Strictly speaking, one needs some regularity of
the boundary of U to solve the Dirichlet problem here, but this technical diffi-
culty is easily disposed of by approximating U from the inside by domains with
smooth boundary and the same connectivity as U (cf. [Greene/Krantz 2002]
or [Ahlfors 1978] for further details).

More generally, one can show that any bounded domain U in C such that
C \ U has finitely many connected components is biholomorphic to D with
a finite number of closed discs removed (the closed discs can, in principle,
be arcs). This result holds even in the case of countably many components
of the complement—see [He/Schramm 1993]. As is standard, we say that the
domain has connectivity k if its complement has k+1 connected components.

Understanding the automorphisms of these discs with holes that serve as
models is certainly a reasonable goal in itself, and it is treated in detail in
[Remmert 1998]. But these interesting one-dimensional results are not a very
good indication of what to expect in higher dimensions. The reason for this is
very simple: as discussed in Section 2.3, the unit ball in Cn, for n ≥ 2, with a
finite number of closed balls removed (call this domain Ω), has the property
(by the Hartogs extension phenomenon) that every automorphism of Ω arises
from an automorphism of the entire ball (restricted to Ω). This property holds
by the same argument for any connected open set obtained by removing a
finite number of compact subsets from an open ball. So the theory of the
automorphisms of such open sets—“balls with holes”—is subsumed by the
knowledge of the automorphisms of the ball. What we shall discover instead,
as the book develops, is that the boundary geometry is the deciding feature
in studying automorphism groups of domains; basic topology tells us little.

In spite of all this, there are aspects of the planar situation that offer clues
to the higher-dimensional study in general. We now discuss some of these.
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Theorem 2.7.1. If Ω is a bounded planar domain of finite connectivity that
is not simply connected, then Aut (Ω) is compact.

Actually, we have already proved this result for connectivity 1 by explicit
determination of the automorphism group in that case, so the interesting
consideration will be for higher connectivity.

Proof of Theorem 2.7.1. Suppose that Ω has connectivity k ≥ 1 and that
Aut (Ω) is noncompact. Choose q ∈ Ω. Then the orbit {f(q) : f ∈ Aut (Ω)} is
noncompact by Proposition 1.3.10. So there is a sequence {fj} ⊆ Aut (Ω) such
that fj(q) converges to a point p ∈ ∂Ω. Passing to a subsequence if necessary,
we can assume that {fj} converges uniformly on compact subsets of Ω to
some limit function f0 : Ω → (closure of Ω). The functions z �→ fj(z) − p
have no zeros in Ω but their limit f0 − p is 0 at p. By Hurwitz’s theorem,
f0−p is identically 0. Thus {fj} converges uniformly to the constant function
with value 0 on each compact subset of Ω.

Now choose a collection of k closed curves, k = connectivity of Ω, k ≥ 1,
which form a generating set for the homology of Ω. For example, we could
choose C1, C2, . . . , Ck where each C�, � = 1, 2, . . . , k, winds once around points
of the �th bounded component of C \ Ω and does not wind around points of
the other bounded components. To choose these conveniently, we can and do
assume that Ω has the “standard form” D \ (k closed discs or points). The
image, for each j, fj(C�), � = 1, . . . , k, is again a homology basis for Ω. But
when j is large enough, these images all lie in an arbitrarily small neighbor-
hood of p. In particular, if p is not in the �th bounded component of C\Ω, then
none of these images wind around any point of the �th bounded component
when j is large.

Clearly this situation is impossible if k > 1. When k = 1, it is possible
only if the one bounded component of Ω (with Ω in “standard form”) is
a point, since to wind around points of a closed disc, a curve cannot lie in
an arbitrarily small neighborhood of any given point. But we have already
determined that Aut (Ω), where Ω is the disc D with one point removed, is
compact. first, Aut (Ω) = {T−a ◦Rω ◦ Ta : |ω| = 1} if a is the removed point,
where Rω is the map from D to D defined by Rω(z) = ωz and Ta is the map
z �→ (z − a)/(1− az) already discussed. ��

We shall have occasion frequently in the sequel to use this type of argu-
ment: an automorphism sequence which pushes one interior point to a given
boundary point will tend to push all interior points to that same boundary
point, and this will yield topological restrictions. Note, however, that in higher
dimensions this idea does not apply automatically as it does in one dimension.
Consider, for example, a sequence of automorphisms of D×D in C2 acting on
the first variable only and converging in that first variable to the constant 1.
The accumulation set in the boundary is the whole set {1} ×D.

Just as genus 1 Riemann surfaces and those of genus g > 1 differ as to
possible automorphism behavior, so do domains of connectivity 1 (which have
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an infinite group of automorphisms) differ from those of connectivity > 1.
But the reason is now different. For compact surfaces, the difference arises
from change of the universal cover—from C to D. But connectivity 1 bounded
domains are covered by D just as those of connectivity 2 are. So the difference
lies elsewhere.

Theorem 2.7.2. If Ω is a bounded, planar domain of connectivity > 1, then
Aut (Ω) is finite.

This result was proved, for instance, by Heins [Heins 1946]. The proof here
is different, being more geometric and topological, as preparation for later use
of the ideas involved.

Proof of the theorem. Suppose to the contrary that Aut (Ω) is in fact infinite.
Since Aut (Ω) is compact (and a Lie group), as already shown, the identity
component must be positive dimensional. In particular, the identity compo-
nent of Aut (Ω) must contain a subgroup G that is isomorphic to the circle,
that is, the group {ω ∈ C : |ω| = 1} with multiplication as the binary group
operation. This is standard Lie group theory: the closure of any nontrivial
one-parameter subgroup is a compact abelian subgroup of positive dimension
and hence contains a circle subgroup.

The remainder of the proof consists of formalizing the intuition that Ω
cannot be a union of the kinds of orbits—circles or points—that would arise
in this situation, except in case of connectivity 0 or 1.

We begin by noting that, since the action of G is via orientation-preserving
isometries of Ω relative to what we are calling the H-metric of Ω, the fixed
points of the action are isolated. That is, the associated vector field that
generates the circle action has isolated zeros. [This can also be seen function-
theoretically without reference to metrics.]

For each p ∈ Ω, we define a continuous map γp : G = S1 → Ω by γp(g) =
g(p). This collection of closed curves in Ω is parameterized continuously by p.
In particular, they all belong to the same free homotopy class. Note that any
two such curves, say γp1 and γp2 , have either disjoint images in Ω or the same
image in Ω, and in the latter case, they are the same curve up to a rotation
of the circle in itself.

Suppose that, for some p0 ∈ Ω, the image γp0(G) consists of the point
p0 alone. Since G acts by isometries (of the H-metric), and acts nontrivially,
it follows that, for p near p0 but unequal to p0, the curve γp represents a
nontrivial element of the free homotopy classes of curves in C \ {p0}. Indeed,
γp is the (possibly multiple) transversal of an H-metric circle around p0 in a
fixed direction, the associated G-action near p0 being rotation when expressed
in H-metric geodesic polar coordinates.

The previous paragraphs imply immediately that there is at most one point
p0 such that the image of γp0 is p0 alone. For if there were two such points,
say p0 and q0, then, for q near q0 and p near p0, the curves γp and γq would be
freely homotopic in the G-invariant set Ω \{p0, q0} (since this set is connected
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and γx depends continuously on x in this set). Note that the image of γx lies
in Ω \ {p0, q0} for each x ∈ Ω \ {p0, q0}. But clearly this free homotopy is not
the case: γp winds around p0 but not around q0 and γq winds around q0 but
not around p0.

We now consider the two (exhaustive) cases: (1) γp does not have a one-
point image for any p ∈ Ω and (2) there is exactly one p0 ∈ Ω such that the
image of γp0 is p0 alone.

Looking at case (2) first, consider a neighborhood of an orbit Op, that is
in fact equal to image γp, for some fixed p. Nearby orbits are labelled uniquely
by their (unique) point of intersection with a (short) H-metric geodesic γ per-
pendicular to Op at p: here we use the fact that Op is a smooth curve. That
G acts by isometries shows that the G-action on a neighborhood of Op is a
tubular-neighborhood product action; diffeomorphically it is exactly the rota-
tion action of S1 on an annulus around the origin (possibly multiply covered):
once around G may rotate the annulus multiple times but the multiplicity is
constant—the same for each orbit. This gives the space of orbits the struc-
ture of a 1-manifold, hence an open interval here (since it is connected and
open). It follows that the domain Ω is homeomorphic to (0, 1)×S1 and hence
that the fundamental group of Ω is the same as that of S1, first Z. So Ω has
connectivity 1. This is a contradiction.

For the first case, one applies the same reasoning to Ω \ {p0}, which is G-
invariant, to conclude that Ω \ {p0} has connectivity 1. But this is impossible
since Ω already has connectivity at least 1 and removing p0 adds 1 to the con-
nectivity. [Note here that rotation is an S1 action on D with a single “degen-
erate” orbit. So case (1) occurs—but only when Ω is simply connected.] ��

The reader approaching this subject from the strictly analytical viewpoint
may find the great use of geometry and topology in these proofs a bit over-
whelming. But, for our purposes, it illustrates well the utility of the ideas of
metric geometry in this subject. That G operates as isometries gives useful
information in determining the possibilities for its action. This way of under-
standing key ideas will continue to be important in our later development.
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The Bergman Kernel and Metric

The subject of this chapter is a remarkable construction developed by Stefan
Bergman that produces an explicit, smooth, automorphism-invariant Hermi-
tian metric on each bounded domain in Cn. These metrics are in fact bi-
holomorphic invariants in the sense that, if Ω1 and Ω2 are bounded domains
in Cn and if F : Ω1 → Ω2 is a biholomorphic mapping, then F is an isometry
relative to the Bergman metrics of Ω1 and Ω2.

The construction is based on the observation that the set of holomor-
phic functions on a domain in Cn that have finite integral for the squares
of their absolute value (casually called square-integrable functions) form a
Hilbert space with the usual L2 inner product 〈f, g〉 =

∫
fḡ. This fact is a

straightforward consequence of Cauchy estimates, which also imply that, for
each point of the domain, evaluation at that point is a continuous linear func-
tional on this Hilbert space. If the domain is bounded, this Hilbert space is
infinite dimensional since it contains all polynomials. For each point w in the
domain, there is, by Riesz representation, an L2 holomorphic function kw(z),
the “Bergman kernel,” such that for each L2 holomorphic function f(z), the
value f(w) is the L2 inner product of f(z) and kw(z) (conjugated). It turns out
that the function log kz(z) is, when the domain is bounded, strictly plurisub-
harmonic, so the Levi form of log kz(z) is the complex form of an Hermitian,
indeed Kähler, metric. This is the Bergman metric of the domain. The de-
tails of this construction and the proof of the biholomorphic invariance of the
metrics occupy the beginning sections of this chapter.

While the construction is explicit, it is at first sight not readily computable
since it seems to involve knowledge of the entire Hilbert space of L2 holomor-
phic functions. But, in actuality, it can be expressed in terms of certain solu-
tions of the ∂ operator. This process brings in some powerful machinery for
analyzing the behavior of the Bergman kernel kw(z) and hence of the metric.
This culminates in the Fefferman asymptotic expansion when the bounded
domain is strongly pseudoconvex; this expansion yields in turn information
about the geometry of the Bergman metric near the boundary of a bounded
strongly pseudoconvex domain. This will be discussed in the latter part of
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the chapter, and applications of the geometric information will be presented.
This development represents a profound extension of the geometric methods
that were discussed in Chapter 2. In this more general setting, one does not
in general have constancy of the curvature in any sense. But one does have
“asymptotic constancy” of holomorphic sectional curvature as the boundary
of the strongly pseudoconvex domain is approached. From this, much infor-
mation about automorphism and biholomorphic maps in general can and will
be derived later in this chapter and in Chapter 4.

3.1 The Bergman Space and Kernel

Let Ω ⊆ Cn be a bounded domain. Let dV denote Euclidean volume measure.
We define

A2(Ω) =
{
f holomorphic on Ω :

∫
Ω

|f(z)|2 dV (z) <∞
}
.

It follows from elementary inequalities that A2(Ω) is a vector space. Also, the
Hermitian inner product

〈f, g〉 ≡
∫

Ω

f(z)g(z) dV (z)

is well defined; the integral is bounded (by Schwarz’s inequality). These def-
initions make A2(Ω) into a pre-Hilbert space. We check next that A2(Ω) is
complete, and thus is a genuine Hilbert space.

We define the L2 or square norm on A2(Ω) as usual:

‖f‖A2 ≡
[∫

Ω

|f(ζ)|2 dV (ζ)
]1/2

.

If K ⊆ Ω is a compact set, δ = dist(K, ∂Ω), z ∈ K, and f ∈ A2(Ω), then for
λ ∈ (0, δ),

|f(z)| =
∣∣∣∣∣ 1
V (B(z, λ))

∫
B(z,λ)

f(ζ) dV (ζ)

∣∣∣∣∣
≤ 1

[V (B(z, λ))]1/2

(∫
B(z,λ)

|f(ζ)|2 dV (ζ)

)1/2

≤ [V (B(z, λ))]−1/2 · ‖f‖A2 .

In particular,

max
z∈K

|f(z)| ≤ CK · ‖f‖. (3.1)
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From this inequality it follows that a sequence in A2(Ω) that is Cauchy
in norm will also converge uniformly on compact sets. It is straightforward to
check that this sequence converges in L2 norm to this same uniform-on-
compact-sets limit, which is of course a holomorphic function. So A2 is indeed
complete and is thus a Hilbert space.

The particular case of the estimate (3.1) with K being the singleton
set {p}, with p ∈ Ω, tells us that the linear functional

φp : A2(Ω) � f �−→ f(p)

is bounded. By the Riesz representation theorem, there is an element kp ∈
A2(Ω) such that

f(p) = φp(f) = 〈f, kp〉
for every f ∈ A2(Ω). This says that

f(p) =
∫

Ω

f(ζ)kp(ζ) dV (ζ).

Following tradition, we write kp(ζ) = K(p, ζ), so that our formula becomes

f(p) =
∫

Ω

f(ζ)K(p, ζ) dV (ζ). (3.2)

This is the Bergman reproducing formula. The function K(p, ζ) is called the
Bergman kernel. This kernel function can be used to construct a very useful
Aut (Ω)-invariant metric, called the Bergman metric, as follows.

The Bergman space A2(Ω) is separable, since L2(Ω) is. Observe that if
{φj}∞j=1 is any complete orthonormal basis for A2(Ω), then

K(z, ζ) =
∑

j

φj(z) φj(ζ). (3.3)

This representation comes immediately from the reproducing property (3.2)
as follows. Since kp(ζ) is in A2(Ω) as a function of ζ, we see that

kp(ζ) =
∑

j

aj(p)φj(ζ)

for some coefficients aj(p) ∈ C, with
∑

j |aj(p)|2 < +∞. Putting f = φj in
the reproducing formula (3.2) yields aj(p) = φj(p); hence aj(p) = φj(p). From
this we see that kp(ζ) =

∑
j φj(p)φj(ζ) so that K(z, ζ) =

∑
j φj(z) · φj(ζ).

Notice that one can begin the orthonormal basis starting with φ1 =
Volume (Ω)−1/2. It follows that K(z, z) > 0 for any z ∈ Ω. Now we define
functions gjk(z), k = 1, . . . , n, by

gjk(z) =
∂2

∂zj∂zk
logK(z, z).
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We would now like to define the Bergman metric on Ω to be the Hermitian
form with value at p given by

n∑
j,k=1

gjk(p)dzj ⊗ dzk.

This will be geometrically useful only if this form is positive definite or, equiv-
alently, if the Hermitian matrix gjk is positive definite for all p ∈ Ω.

This wish is in fact realized for all bounded domains Ω ⊆ Cn and for all
p ∈ Ω. To check this assertion, one makes a clever choice of orthonormal basis
{φj} for A2(Ω).

First, notice that it is enough to check that g11 > 0 since the whole con-
struction is invariant under unitary rotation of the standard coordinates on
Cn. With this point in mind, we choose the elements of the basis {φj : j =
0, 1, 2, . . . } for A2(Ω) as follows.

φ0 =
ψ0

‖ψ0‖ ,

where ψ0 has minimal norm among all ψ ∈ A2(Ω) with ψ(p) = 1. Such a ψ0
exists because {‖ψ‖ : ψ ∈ A2(Ω), ψ(p) = 1} is closed and convex. Note that,
in this situation, every element of {φ0}⊥ = {ψ0}⊥ has value 0 at p. To see this,
suppose not. Then 〈η, ψ0〉 = 0 and η(p) 	= 0 for some η ∈ A2(Ω). Without loss
of generality, we may suppose that η(p) is positive and (after normalization)
equal to 1. For small ε > 0, let h = ψ0 + εη. Then h(p) = 1 + εη(p). Also

‖h‖ =
√
‖ψ0‖2 + ε2‖η‖2.

If we set

k =
h

1 + εη(p)
,

then k(p) = 1 and

‖k‖ =

√‖ψ0‖2 + ε2‖η‖2
|1 + εη(p)| .

When ε is sufficiently small, we see then that ‖k‖ < ‖ψ0‖ and hence the
minimality of ψ0 is contradicted.

Next we choose

φ1 =
ψ1

‖ψ1‖ ,

where ψ1 has minimal norm in the closed, convex set{
ψ : ψ ∈ (ψ0)⊥ ⊆ A2(Ω),

∂

∂z1
ψ

∣∣∣∣
p

= 1
}
.
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Reasoning as before shows that if ψ is orthogonal to φ0 and to φ1, then
ψ(p) = 0 and ∂

∂z1
ψ
∣∣
p

= 0.
Complete the orthonormal set {φ0, φ1} to an orthonormal basis φ0, φ1,

φ2, . . . of A2(Ω). Then computing directly gives that

g11(p) =
∂2

∂z1∂z1
log

⎛⎝ ∞∑
j=0

φj(z)φj(z)

⎞⎠∣∣∣∣∣∣
p

=
1

2
(∑∞

j=0 φj(p)φj(p)
)2

∞∑
j,k=0

∣∣∣∣φj(p)
∂φk

∂z1
− φk(p)

∂φj

∂z1

∣∣∣∣2 .
Now ∣∣∣∣φj(p)

∂φk

∂z1
− φk(p)

∂φj

∂z1

∣∣∣∣ ≥ 0

for all j, k. Also, it is positive when j = 0 and k = 1 since φ0(p) > 0 and
∂φk

∂z1
> 0 while φ1(p) = 0. Thus g11 > 0.

For later applications (Chapter 10 as well as intrinsic interest), it is worth
noting that the construction of φ0 and φ1 can be extended inductively to
find an orthonormal basis for A2(Ω) with special properties relative to a
given point p ∈ Ω: First, list all the z-coordinate derivative operators be-
ginning with the value (no derivative), then the first z1-derivative, the first
z2-derivative, . . . , the first zn-derivative, followed by the second derivatives in
lexicographic order (∂2/∂z2

1 , ∂2/∂z1∂z2, . . . , ∂2/∂z2
n), then the third deriva-

tives in lexicographic order, and so forth. With φ0, φ1 as already defined, we
describe the inductive step to define φ�+1 given φ0, φ1, . . . , φ�: choose among
the elements of A2(Ω) orthogonal to φ0, . . . , φ� the element of ψ�+1 which
has maximum positive real value at p for the (� + 1)-th differential (in its
lexicographic order) in the derivative list. By the argument already given to
show that φ1(p) = 0, it follows that ψ�+1(p) = 0 and all derivative operators
at or before the �-th spot in the list equal 0 at p. Set φ�+1 = ψn�+1/‖ψ�+1‖.
Then of course φ�+1 also has this vanishing-at-p property. This special basis is
sometimes useful in terms of estimating the behavior of differential geometric
invariants of the Bergman kernel and metric at p, since differentiations up to
a given order k involve only the φj with j less than or equal to some com-
putable upper bound: all higher j values give φj ’s which vanish at p and have
derivatives of order k or less equaling 0 at p.

The preceding discussion shows that the Hermitian form defined by

∞∑
j,k=1

gjkdzj ⊗ dzk

is positive definite at each point of Ω. It is called the Bergman metric of Ω.
It is a Kähler metric. It is an important and remarkable fact that this Kähler
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metric and its associated, real-part Riemannian metric, are Aut (Ω)-invariant.
At first sight, there seems to be no reason why this invariance should occur.
But this fact turns out to be a consequence of a familiar basic fact about
holomorphic mappings, already noted in Chapter 1. Recall:

Jacobian Identity: If f : U → Cn is a holomorphic mapping of an open set
U in Cn into Cn, then for each p ∈ U ,

JR

f = |J |2,

where JR

f is the Jacobian of f considered as a real mapping from an open
subset of R2n to R2n and J is the holomorphic Jacobian (determinant)

det
(
∂fj

∂zk

)
j,k=1,...,n

.

From this, the general transformation property of the Bergman kernel
follows.

Proposition 3.1.1. If Ω1 and Ω2 are bounded domains in Cn and if F : Ω1 →
Ω2 is a biholomorphic mapping, then

KΩ1(z, ζ) = JF (z)JF (ζ)KΩ2(F (z), F (ζ)).

Proof. First note that, since the Jacobian of F as a real mapping is |JF |2, it
holds, for f, g ∈ A2(Ω2), that∫

z∈Ω1

JF (z)f(F (z))JF (z)g(F (z)) dV (z)

=
∫

z∈Ω1

f(F (z))g(F (z))|JF (z)|2 dV (z)

=
∫

w∈Ω2

f(w)g(w) dV (w).

Thus

f
I→ JF (z)f(F (z)), z ∈ Ω1

is an isometry of A2(Ω2) into A2(Ω1). Similar considerations applied to F−1

give an inverse isometry of A2(Ω1) into A2(Ω2). In particular, I is bijective.
This argument shows that if {φj} is a complex orthonormal basis for

A2(Ω2), then

{I(φj)} = {JF (z)φj(F (z))}
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is a complete orthonormal basis for A2(Ω1). The formula of the proposition
now follows from formula (3.3) for KΩ1 and KΩ2 in terms of orthonormal
bases. ��

The transformation property just established of the Bergman kernel un-
der biholomorphic mappings leads to the isometry property for the Bergman
metric, by linear algebra. To express this fact precisely, we write BΩ1(·, ·)

∣∣
p

and BΩ2(·, ·)
∣∣
q

for the Bergman metrics of Ω1 and Ω2, respectively, at p ∈ Ω1

and at q ∈ Ω2. Thus, for example, with α = (α1, . . . , αn) and β = (β1, . . . , βn)
in Cn, we have

BΩ1(α, β)
∣∣∣∣
p

=
n∑

j,k=1

αjβk

(
∂2

∂zj∂zk
logKΩ1

)∣∣∣∣
p

.

Again at p ∈ Ω1, and with F : Ω1 → Ω2 given by F (z) = (F1(z), . . . , Fn(z)),
we see that

dF (α) =

⎛⎝ n∑
j=1

∂F1

∂zj
αj , . . . ,

n∑
j=1

∂Fn

∂zj
αj

⎞⎠ .

Proposition 3.1.2. If F : Ω1 → Ω2 is a biholomorphic mapping, and if p ∈
Ω, α, β ∈ Cn, then

BΩ1(α, β)
∣∣∣
p

= BΩ2

(
dF
∣∣
p
(α), dF

∣∣
p
(β)
)∣∣∣

F (p)
.

Proof. By the previous proposition,

BΩ1(α, β) =
∑
j,k

αjβk
∂2

∂zj∂zk
logKΩ1(z, z)

∣∣∣∣
p

=
∑
j,k

αjβk
∂2

∂zj∂zk
logJF (z)JF (z)KΩ2

(
F (z), F (z)

)∣∣∣∣
p

=
∑
j,k

αjβk
∂2

∂zj∂zk

(
logJF (z)

+ logJF (z) + logKΩ2

(
F (z), F (z)

))∣∣∣∣
p

=
∑
j,k

αjβk
∂2

∂zj∂zk
logKΩ2

(
F (z), F (z)

)∣∣∣∣
p

,

where the logarithms in the third equality are taken locally. The last equality
follows because logJF (z) is a holomorphic function and logJF (z) is conjugate
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holomorphic, so that both are annihilated by ∂2/∂zj∂zk. Now, by the chain
rule, ∑

j,k

αjβk
∂2

∂zjzk
logKΩ2

(
F (z), F (z)

)∣∣∣∣
p

=
∑

j,k,�,m

αjβk
∂F�

∂zj

(
∂Fm

∂zk

)
∂2

∂w�∂wm
logKΩ2(w,w)

∣∣∣∣
F (p)

= BΩ2

(
dF (α), dF (β)

)∣∣∣∣
F (p)

. ��

This straightforward calculation can be put in a more conceptual frame-
work using differential forms. That approach is explained in the next section.

3.2 The Bergman Metric on Complex Manifolds

The construction of the Bergman metric given in the previous section makes
overt use of Euclidean coordinates. Thus the fact that automorphisms act as
isometries of the Bergman metric comes as a surprise. Since automorphisms
do not in general have any particular relationship to Euclidean coordinates
beyond holomorphicity and nonsingularity, it was really not expected in ad-
vance that a metric construction involving Euclidean coordinates would end
up invariant under automorphisms.

In this section, we provide a different construction, originally introduced in
[Kobayashi 1970], which explains the automorphism invariance conceptually
and has the additional useful property of constructing automorphism-invariant
metrics on complex manifolds in many cases.

The basic idea is to replace the space A2(Ω) of functions by a space of dif-
ferential forms. Specifically, suppose that Mn is a complex manifold of com-
plex dimension n. Recall that a (complex) differential form of degree n is said
to be of type (n, 0) if, in local holomorphic coordinates (z1, . . . , zn), it is ex-
pressible as f(z1, . . . , zn) dz1 ∧ · · · ∧dzn. On an open subset of Cn, there is an
obvious association of functions to (n, 0) forms: f ↔ f dz1 ∧ · · · ∧ dzn. But,
for general complex manifolds, where global coordinates are not expected to
exist, the (n, 0) forms have such a one-to-one correspondence with functions
only locally.

If ω is a (complex) differential form of type (n, 0), then the form ω ∧ ω,
where ω is the complex conjugate of ω, is a top-degree differential form on M .
In particular, the value of ∫

M

ω ∧ ω

is well defined and does not depend on any metric or coordinate choices. Thus
we can consider a (pre)-Hilbert space here analogous to A2(D), first the set
of holomorphic differential forms ω of type (n, 0) such that
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M

ω ∧ ω

∣∣∣∣ < +∞.

[Note that, for an (n, 0) form, the concept of being holomorphic is well defined,
corresponding to ω = f dz1 ∧ · · · ∧ dzn, f holomorphic in local coordinates.]
In case M is a domain in Cn, this new space, denoted by A2(M), is the same
as our previous A2 space: If ω = f dz1 ∧ · · · ∧ dzn, then

ω ∧ ω = |f |2 dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn

and dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn equals the Euclidean volume form
dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ · · · ∧ dxn ∧ dyn up to a constant factor. For con-
venience, we assimilate this constant factor once and for all: we define the
inner product on A2(M) to be

〈ω, φ〉 = c

∫
M

ω ∧ φ,

where c is chosen so that 〈ω, ω〉 ≥ 0 is real and so that 〈ω, φ〉 coincides with the
Euclidean volume integral

∫
fg if ω = f dz1∧· · ·∧dzn and φ = g dz1∧· · ·∧dzn.

[In fact, one computes that

dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn = (−2)nin
2
(dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn) ,

which gives c, but this exact value is of no interest.]
Note that it is possible that A2(M) consists of the 0-form alone: for ex-

ample, if M = C, then A2(M) is {0}, since a holomorphic (1, 0) form f(z) dz
on C cannot be L2 unless it is 0. This follows easily from the mean value
property for the holomorphic function f2 on larger and larger discs around
any point of C.

In any case, Cauchy estimates show, as in the previous section, that A2(M)
is a Hilbert space: sequences that are L2 Cauchy have limits which are them-
selves L2 holomorphic (n, 0) forms.

Now choose a point p ∈ M . The evaluation map ω �→ ω(p) is continuous
from A2(M) to the possible values at p, as before. But, to apply the Riesz
representation theorem, we need to have a map to C.

For this, choose a holomorphic local coordinate system around p0, say
(z1, . . . , zn), and consider the map (for p near p0)

ω �−→ fω(p) ∈ C,

where fω(p) is determined by the equation ω(p) = fω(p) dz1∧· · ·∧dzn. By the
Riesz representation theorem, there is a holomorphic (n, 0) differential form,
with values at each point z ∈M denoted by kp(z), such that

〈ω, kp〉 = fω(p).
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Define functions fj by φj = fjdz1 ∧ · · · ∧ dzn. Then, as before, one sees that

kp(z) =
∑

j

fj(p)φj(z).

Here, of course, {φj} is a basis for A2(M) that is orthonormal relative to 〈, 〉.
We are interested, for metric considerations, in Kp(p) when p is near p0.

Notice that

kp(z) =
(∑

j

fj(p)fj(z)
)
dz1 ∧ · · · ∧ dzn.

The function
∑

j fj(p)fj(p) is a C∞ function which is nonnegative. We call
this function B(p). It depends on the choice of local coordinates (z1, . . . , zn)
near p0, but this dependence is of a simple sort: if one changes coordinates,
to (w1, . . . , wn) say, then B(p) is transformed into a function J (p)J (p)B(p),
where J is holomorphic. This is an immediate algebraic consequence of the
fact that

dz1 ∧ · · · ∧ dzn = J dw1 ∧ · · · ∧ dwn,

where J = det(∂zi/∂wj) is the holomorphic Jacobian (determinant) of the
coordinate change.

Now recall that, for any C∞ function ρ on a complex manifold M , the
Levi form Lρ of ρ defined in local coordinates (z1, . . . , zn) by∑

i,j

∂2ρ

∂zi∂zj
dzi ⊗ dzj

is a Hermitian form that is independent of the choice of local coordinates.
The form Lρ is a Hermitian-symmetric form on the holomorphic tangent
space of M , i.e., on the span of ∂/∂z1, . . . , ∂/∂zn in the complexification
of the real tangent space of M . The independence of coordinate choice is a
straightforward and standard calculation using the holomorphic chain rule
(cf. [Greene 1987] or [Krantz 2001]).

Now consider, in a neighborhood of p0, Llog B, supposing that logB(p0) > 0.
This Hermitian form is independent of all coordinate choices. The possibilities
for different logB under change of coordinates are of the form

log(BJJ ) = logB + logJ + logJ
(local logarithms), and the Levi form of this function is the same as the Levi
form of B itself, logJ being annihilated by ∂/∂zj and logJ being annihi-
lated by ∂/∂zj . The Levi form itself is, as already noted, coordinate-choice
independent.

Thus we may set the Bergman metric of M equal to Llog B, wherever B > 0,
to get a coordinate-invariant nonnegative semidefinite Hermitian quadratic
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form. This leads of course algebraically to a nonnegative real metric on M ,
which is also independent of coordinate choices.

What is intriguing here is that this metric is obviously invariant under
automorphisms of M . This invariance is indeed metamathematical: the con-
struction depended only on the complex structure of M and the intrinsically
defined space A2(M), which is invariant under automorphisms. None of the lo-
cal coordinate choices turned out to matter. Thus a diffeomorphic map which
preserves the complex structure has to act isometrically: in the metric con-
struction, there is no way to distinguish the geometry after the application of
the map from the geometry before the map is applied. The reader is invited to
consider carefully how these philosophical remarks in fact constitute a proof
of the invariance of the metric under automorphisms.

It is of course of interest to know when the B functions are in fact positive
everywhere on a given manifold. This is so on the unit disc or, more generally,
on any bounded domain in Cn. But the B functions are identically 0 on C
or on Cn for n ≥ 2. Thus the positivity of B and the positive definiteness of
the Bergman metric Llog B are in a sense indicators of similarity to bounded
domains as opposed to the whole of Euclidean space.

It is a longstanding idea of geometric function theory (see for instance
[Greene/Wu 1977]) that similarity to a bounded domain versus all of Cn is
associated to the existence of Hermitian or Kähler metrics of negative cur-
vature. In the case of the manifold Bergman metric, this general expectation
was given specific form by [Greene/Wu 1977]. In particular, the following were
proved there, using L2 methods of the ∂ problem.

Theorem 3.2.1 (Greene/Wu, [Greene/Wu 1977], p. 144). Let M be a
complex Kähler manifold that is simply connected and has nonpositive Rie-
mannian sectional curvature everywhere. Denote by r the distance from a fixed
point p ∈M . Then

(1) If there are positive constants ε and A such that the inequality

(sectional curvature) ≤ −A
r2(log r)1−ε

holds outside some compact set containing p, then the Bergman kernel of
M is nowhere 0 and the Bergman metric is positive definite.

(2) If there are positive constants A and B such that, outside a compact set
containing p,

−B
r2 ≤ (sectional curvature) ≤ −A

r2 ,

then there is a positive constant C1 such that the Bergman metric is
≥ (C1/[1 + r2]) · G, where G is the Kähler metric of M . In particular,
the Bergman metric is complete.
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(3) If there are positive constants A and B such that

−B ≤ (sectional curvature) ≤ −A

everywhere on M , then there is a positive constant C2 such that the
Bergman metric is ≥ C2G, where G is the Kähler metric of M , as in (2).
In particular, the Bergman metric is complete. In this situation, there are
positive constants A1 and A2 such that the Bergman kernel form K(p, p)
satisfies A1Ω ≤ K ≤ A2Ω, where Ω is the volume form determined by the
Kähler metric G.

This result gives that Aut (M) is a Lie group under the hypotheses given.
Whenever the Bergman metric exists, then the biholomorphic mappings are a
closed subgroup of the isometry group of the Bergman metric, and the isom-
etry group is a Lie group. This latter is part of the circle of ideas surrounding
the Bochner–Montgomery theorem (in Chapter 1, Theorem 1.3.11): the isom-
etry group of any Riemannian metric is easily checked to be locally compact
and the Bochner–Montgomery theorem gives that it is a Lie group. Since a
closed subgroup of a Lie group is a Lie group, the automorphism group of
a complex manifold with a positive definite Bergman metric is a Lie group.
But weaker curvature conditions in Theorem 3.2.1 will imply this Lie group
conclusion: these are obtained by considering the Kobayashi metric, rather
than the Bergman metric. This matter will be discussed in Section 7.2.

3.3 Examples of Bergman Kernels and Metrics

In general, it is difficult to calculate the Bergman kernel of a domain or a com-
plex manifold. Indeed, it is often impossible to do so in any reasonable sense
with formulas, although it is always possible in principle via numerical analy-
sis methods, in the sense that K(z, p) can be found to any desired accuracy for
z, p given in the domain.1 This latter process can be carried out, for instance,
using the characterization of K(z, p) as a function of z in terms of a special
basis. The holomorphic function φ0 (constructed by extending the technique
we used to show that the Bergman metric is positive definite) with positive,
real value at p, that value being maximal among all holomorphic functions
on the given domain with L2 norm 1, is computable numerically. One chooses
some countable collection of functions {fj} with⋃

N

span {f1, . . . , fN}

1This circle of ideas is particularly well developed in the one-variable setting. For
a full development of some of this work, see Bell’s book [Bell 1992] and the papers
of Kerzman and Stein [Kerzman/Stein 1978]. There is very little explicit literature
in the several variables setting.
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dense in A2(Ω) and then finds φ1 as the limit of a succession of finite-
dimensional maximization problems (much as in the finite element method).
first, one maximizes |∑N

1 αjfj | at p subject to the constraint ‖∑N
1 αjfj‖ = 1.

Alternatively, one could apply the Gram–Schmidt orthogonalization process
to {fj} and use formula (3.3) in Section 3.1.

That such a construction exists in principle is interesting. But to actually
carry it out is usually computationally very tedious, and not particularly il-
luminating. When the domain has a great deal of symmetry, that is to say, a
large automorphism group, then the whole picture is made much simpler by
the transformation formula of Proposition 3.1.1 and often the Bergman kernel
and metric are explicitly computable. For certain specific classes of domains
(e.g., strongly pseudoconvex [Fefferman 1974] as already mentioned, or finite
type in C2 [Nagel/Rosay/Stein/Wainger 1989]), an asymptotic expansion for
the Bergman kernel may be calculated. In many applications, such an ex-
pansion is every bit as good as (and in some ways provides more structured
information than) an explicit formula.

In this section we give some relatively simple but important instances of
how to do the sorts of calculations indicated, for domains with “symmetry.”

Kernel Functions

(1) The unit disc D = {ζ ∈ C : |z| < 1}.
The space A2(D) has an orthonormal basis that one can write explicitly:

1√
π
,

√
2z√
π
, . . . ,

√
n + 1zn

√
π

, . . . .

The orthogonality is immediate by writing the integral in polar coordinates,
and the fact that each has L2 norm 1 also follows by integration in polar
coordinates. Thus

K(z, ζ) =
1
π

+
2
π

(zζ) +
3
π

(zζ)2 + · · ·

so that (summing the geometric series)

KD(z, ζ) =
1
π

1
(1− zζ)2

.

This formula can also be derived from the transformation law of Proposi-
tion 3.1.1 and the use of suitable Möbius transformations.

We can carry out the first of these programs as follows. First note that the
largest absolute value at 0 for a holomorphic function of L2 norm 1 is 1/

√
π,

attained by the constant function. For this, note that

f2(0) =
1
π

∫∫
f2(x + iy) dxdy
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by the mean value property so that

|f(0)|2 ≤ 1
π
‖f‖2

with equality only for constant functions. Hence, from the special basis con-
struction for K(z, z), we see that

KD(0, 0) =
1
π
.

To find KD(z0, z0), z0 ∈ D, we apply Proposition 3.1.1 with F (z) = (z +
z0)/(1 + z0z), F : D → D being biholomorphic (conformal) with F (0) = z0.
Thus we have:

KD(0, 0) =
1
π

= JF (0)JF (0)KD(z0, z0).

Now JF (0) = F ′(0) = 1− z0z0. Thus

KD(z0, z0) =
1
π

(1− z0z0)−2.

The function KD(z, ζ) is holomorphic in z and conjugate holomorphic in ζ.
It must be that

KD(z, ζ) =
1
π

(1− zζ)−2 ,

because the difference between these two functions is 0 on the maximal-
dimensional totally real subspace {(z, z) : z ∈ D} in D ×D.

(2) The product D ×D.
If {φj} is an orthonormal basis for A2(D), then

Φj,k(z1, z2) ≡ φj(z1)φk(z2) , j, k = 1, 2, . . .

is an orthonormal basis for A2(D ×D). Thus

KD×D

(
(z1, z2), (ζ1, ζ2)

)
=

1
π2

1
(1− z1ζ1)2

· 1
(1− z2ζ2)2

.

More generally, the Bergman kernel for Ω1 × Ω2 is the product of the
kernels for Ω1 and Ω2 in an obvious sense, for any bounded domains Ω1, Ω2
in Cn1 , Cn2 respectively. The proof is just the same.

(3) The unit ball in Cn: B = {(z1, . . . , zn) :
∑

j |zj |2 < 1}.
While it is possible to compute an explicit orthonormal basis of monomi-

als in z1, . . . , zn, the calculation involves tedious integrals (see [Krantz 2001]).
While any two such monomials are clearly orthogonal (just by averaging con-
siderations), it is not at all clear what their L2 norms are. The one point that
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is obvious is, by the same logic as for the disc, that

KB(0, 0) =
1

vol (B)
=

n!
πn

.

Now, to find KB(z, z), note that there is a unitary rotation (i.e., an element
of U(n)) which takes z to ((

∑
j |zj |2)1/2, 0, . . . , 0). If we set r = (

∑
j |zj |2)1/2

then r ≥ 0 and we have rotated z to r = (r, 0, . . . , 0). This rotation is an
automorphism of B with Jacobian of absolute value 1, so

KB(z, z) = KB(r, r).

Also

T ((z1, . . . , zn)) =

(
z1 + r

1 + rz1
,
z2
√

1− r2

1 + rz1
, . . . ,

zn

√
1− r2

1 + rz1

)

is an automorphism of B which takes 0 to r. At 0, the holomorphic Jacobian

JT (0) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− r2 √
1− r2 0

. . .
. . .

0 √
1− r2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

So

JT (0)JT (0) = (1− r2)n+1.

Thus

KB(z, z) =
n!
πn

(
1− |z|2)−(n+1)

,

where |z| = r =
(∑n

j=1 |zj |2
)1/2. Finally, by the same logic as for D,

KB(z, ζ) =
n!
πn

(1− z · ζ)−(n+1),

where

z · ζ =
n∑

j=1

zjζj .
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3.3.1 Bergman Metrics

(1) The unit disc.
By direct calculation,

∂2

∂z∂z
logKD(z, z) =

2
(1− zz)2

.

Thus the Bergman metric is [2/(1− zz)2] dz dz. Since

dz dz = (dx + idy)(dx− idy)
= dx2 + dy2 + i(dydx− dxdy),

the real part, or equivalently, the symmetric part, of the Bergman metric is

2(dx2 + dy2)
(1− zz)2

.

This is of course (up to a constant factor) equal to the Poincaré metric.
For another point of view, the Bergman metric for D is determined up

to a constant factor by Proposition 3.1.2 alone: since the Bergman metric is
Hermitian, its real part must be a multiple of dx2 +dy2 at 0, say c(dx2 +dy2).
The image under dFη with Fη = (z + η)/(1 + ηz) of the vector (1, 0) at 0
must have length2 = c since Fη ∈ Aut (D) must act as an isometry. But
(dFη|0)((1, 0)) has (Euclidean length)2 = (1 − ηη)2 by calculation. So the
Bergman metric at η must be c(1− ηη)−2(dx2 + dy2).

Again, since the members of Aut (D) act as isometries and, since Aut (D)
acts transitively on D, the (real part of the) Bergman metric of D must have
constant Gaussian curvature. Moreover, this real Riemannian metric, which
we shall also call the Bergman metric, is complete, because every homoge-
neous Riemannian manifold is complete (see [Kobayashi/Nomizu 1963] for
example). We can now deduce that the Gauss curvature is constant negative
as follows. If it were constant positive, then D would be compact by Bon-
net’s theorem (see [Petersen 2006] for example). If it were zero, then D with
the Bergman metric would be isometric to R2 in the Euclidean metric, and
hence D would be conformally equivalent to C. Thus constant negativity is
the only possibility.

Of course the negativity of the constant curvature of the Bergman met-
ric on the disc can also be established by direct calculation. Recall that the
Gaussian curvature of a metric of the form e2u(dx2 + dy2) is

− u

e2u
.
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Thus the Gaussian curvature of 2(1− zz)−2(dx2 + dy2) is[
−4 ∂2

∂z∂z log(1− zz)−1
]

[2(1− zz)−2]
= −2.

In order to arrange for Gaussian curvature −1, the metric is sometimes taken
to be 2 times the one we have given here: the metric 4(1 − zz)−2(dx2 + dy2)
has curvature ≡ −1.

Note for future reference that the formula above implies that the Gauss
curvature of λg, λ a positive constant, is 1

λ (Gauss curvature of g). This is
a general fact, valid in all dimensions: the sectional curvatures of λg are
1
λ (sectional curvature of g) for the same 2-plane (cf. [Kobayashi/Nomizu 1963]
or [Petersen 2006]).

(2) Product domains of the form Ω1 × Ω2, and the bidisc in partic-
ular.

Since the Bergman kernel for a product domain is the product kernel, as
already discussed, it follows immediately that the Bergman metric of Ω1×Ω2 is
the product metric, in the usual sense of Riemannian and Hermitian geometry,
of the Bergman metrics of Ω1 and Ω2, respectively.

(3) The unit ball Bn ⊆ Cn, n ≥ 2.
The only Hermitian inner products on T0B

n = Cn that are U(n)-invariant
are the constant multiples of the standard Euclidean metric. Since U(n) ⊆
Aut (Bn), it follows that the Bergman metric of Bn at the origin is a multiple
of the Euclidean metric. This is also apparent from the formula:

∂2

∂zj∂zk
log(1− |z|2)−(n+1)

∣∣∣∣
0

= (n + 1)δjk.

The metric elsewhere is easy enough to compute explicitly, but more insight
is derived from the following reasoning: if (z1, . . . , zn) ∈ Bn, (z1, . . . , zn) 	= 0,
then there is an element of U(n) that takes (z1, . . . , zn) to (r, 0, . . . , 0) with
r = (

∑
j |zj |2)1/2 as before. Also, as before, the automorphism

(z1, . . . , zn) �→
(

z1 + r

1 + rz1
,
z2
√

1− r2

1 + rz1
, . . . ,

zn

√
1− r2

1 + rz1

)

has holomorphic Jacobian at 0 given by the diagonal matrix⎛⎜⎜⎜⎜⎜⎝
1− r2 √

1− r2

. . .

√
1− r2

⎞⎟⎟⎟⎟⎟⎠ .
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Thus its real Jacobian at 0 relative to the real coordinate system denoted by
(x1, y1, x2, y2, . . . , xn, yn) is the 2n× 2n diagonal matrix⎛⎜⎜⎜⎜⎜⎜⎜⎝

1− r2

1− r2 √
1− r2 √

1− r2

. . . √
1− r2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The associated linear transformation maps any orthonormal basis at 0 (rel-
ative to the Bergman metric) to an orthonormal basis at (r, 0, . . . , 0). Now,
using the identification

∂

∂x1
= (1, 0, . . . , 0) ∈ R2n

and

∂

∂y1
= (0, 1, . . . , 0) ∈ R2n,

the vectors

1√
n + 1

∂

∂x1
,

1√
n + 1

∂

∂y1
, . . . ,

1√
n + 1

∂

∂yn

are a Bergman-metric-orthonormal basis at 0. Thus

1− r2
√
n + 1

∂

∂x1
,

1− r2
√
n + 1

∂

∂y1
,

√
1− r2
√
n + 1

∂

∂x2
,

√
1− r2
√
n + 1

∂

∂y2
, . . . ,

√
1− r2
√
n + 1

∂

∂xn
,

√
1− r2
√
n + 1

∂

∂yn

are Bergman-metric orthonormal at (r, 0, . . . , 0). This result gives the geomet-
ric picture that the Bergman measurement of the length squared of a vector
in the radial direction and of one in the i× radial direction (or, more formally,
the J(radial direction)) is equal to(√

n + 1
1− r2

)
× (Euclidean metric length squared).

Also, the (2n − 2)-dimensional (Euclidean) orthogonal complement of the
span of the radial and the i× radial directions is also the Bergman orthogonal
complement. And on this orthogonal complement, the Bergman metric length
squared of a vector is equal to
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n + 1√
1− r2

)
× (Euclidean metric length squared).

In particular, when r is close to 1, the Bergman metric on this orthogonal com-
plement is much smaller than the radial metric, so that Bergman unit vectors
are comparatively much larger. In Euclidean terms, as r → 1, Bergman unit
vectors get small, but radial (and i times them) vectors shrink faster than
tangential ones. This is the distinction between complex normal and complex
tangential directions as far as the Bergman metric is concerned.

Since U(n) ⊆ Aut (Bn) acts transitively on complex lines through the ori-
gin (i.e., real 2-dimensional J-invariant subspaces—see [Wells 1979]), it fol-
lows from Proposition 3.1.2 that the Riemannian sectional curvatures of such
2-planes in the Bergman metric are all equal to some constant c. That is,
the holomorphic sectional curvatures2 at 0 are all equal to c. Since Aut (Bn)
acts on Bn transitively as a group of isometries, it follows that Bn has every-
where constant holomorphic sectional curvature c. And in the case of the unit
disc, we can see without calculation that c must be negative: the Bergman
metric is complete because Aut (Bn) is transitive and every homogeneous Rie-
mannian manifold is complete. Also the Riemannian sectional curvatures lie
between c/4 and c, inclusive. So, if c were positive, then the sectional cur-
vatures would be bounded away from 0 by the positive constant c, and, by
Myers’s theorem, Bn would be compact. If c were 0, then Bn equipped with its
Bergman metric would be holomorphically isometric to Cn. This conclusion
is of course impossible. Thus it must be that c < 0.

To evaluate c explicitly, note that P = {(z1, 0, . . . , 0) ∈ Bn} is a totally
geodesic 2-dimensional submanifold since P is the fixed point set of the iso-
metric involution of Bn given by

(z1, z2, . . . , zn) �→ (z1,−z2,−z3, . . . ,−zn).

So the holomorphic sectional curvature c is equal to the Gaussian curvature
of the Bergman metric restricted to P . This metric is clearly equal to

n + 1
2
· (the Bergman metric of P considered as a disc in C).

Thus c = −4/(n+1) from our discussion in (1) on metrics in one variable and
their scaling of curvature when multiplied by a constant (cf. the end of (1)).

2The basic ideas for holomorphic sectional curvature and related matters can be
found in, for example, [Greene 1987] or [Kobayashi/Nomizu 1963] as well as many
other places. For many of our purposes, it will suffice simply to know that holomor-
phic sectional curvature is a “differential invariant” that attaches a number to each
J-invariant 2-plane in the real tangent space of a complex manifold with a Kähler
metric and that this number is preserved by holomorphic isometries of the Kähler
metric.
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3.4 The Bergman Metric on Strongly
Pseudoconvex Domains

When a domain has a large automorphism group, the transformation prop-
erties of the Bergman kernel under automorphisms (Proposition 3.1.1) can
make it easier to determine the Bergman kernel and metric than the defini-
tions alone of the kernel and metric would suggest. This was discussed in the
previous section, and there we saw this principle in action in the determina-
tion, for example, of the kernel and metric for the unit ball in Cn. But, for
domains which lack such symmetry, the explicit calculation of the Bergman
kernel and metric is likely to be difficult.

However, in many cases, the asymptotic behavior of the kernel and metric
as the boundary is approached can be estimated quite effectively by using
“globalization” techniques obtained by solving the ∂ problem, even when the
kernel and the metric over the whole domain are not known explicitly.

There are several different ways to approach this issue. One natural one is
to use this fact discussed in Section 3.1: K(z, w), w fixed, is ϕ0(z)ϕ0(w) where
ϕ0 is a function which maximizes |ϕ(z)| among all holomorphic functions ϕ
with ‖ϕ‖2 = 1. Thus estimates on K(z, w) and in particular K(z, z) can be
obtained by exhibiting candidates for ϕ0, so to speak. first, K(z, z) ≥ |ϕ(z)|2
for any ϕ : Ω → C holomorphic with ‖ϕ‖2 = 1.

To see how this idea can be combined in practice with ∂ techniques, it
is instructive to look at a special example. Suppose that Ω is a bounded do-
main with C∞ boundary and that ∂Ω coincides with the boundary of the
unit ball in a neighborhood of 1 = (1, 0, . . . , 0), so that (Ω ∪∂Ω)∩Bn(1, ε) =
cl(Bn(0, 1))∩Bn(1, ε) for some ε > 0. For z ∈ Ω∩Bn(1, ε), we have a possible
“candidate” function ϕ, first, the Bergman kernel of the ball KBn(z, w) re-
stricted to Ω ∩Bn(1, ε), where w is a point of Ω ∩Bn(1, ε) which we consider
to be approaching 1 = (1, 0, . . . , 0) along the real part of the z1-axis. The
function KBn(z, w) is of course known explicitly to be cn(1 − z · w̄)−(n+1),
cn = n!/πn: see Section 3.3.

Now the restriction of KBn(z, w) described above is not really a qualified
“candidate” function. First of all, it need not be holomorphic on all of Ω: Ω
may contain points z where z · w̄ = 1. While this does not happen for z near
(1, 0, . . . , 0), it can certainly happen at remote points of Ω. Secondly, even if
KBn(z, w) is (for a fixed w) holomorphic on all of Ω, it need not have L2-norm
equal to 1.

The first of these difficulties is more fundamental—the second one would
just change the candidate by some estimatable constant factor. Dealing with
the first difficulty, however, fits nicely into the standard ideas of ∂ estimates.

For the purposes of our present example, we now assume that Ω is C∞

strongly pseudoconvex: it is in this context that the strongest general results
about ∂ solvability hold.

The function KBn(z, w), with w near (1, 0, . . . , 0) on the Re z1-axis, can
be extended as a C∞ function to all of Ω by the usual method of multiplying
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by a “bump function.” Specifically, let ρ : Bn(1, ε) → R be a C∞ function
with values in [0, 1], identically 1 on Bn(1, ε/2) and identically 0 on Bn(1, ε)\
Bn(1, (3ε)/4). Then ρ(z)KBn(z, w) extended by 0 on Ω \Bn(1, ε) is C∞ and
is identical with KBn(z, w) on Bn(1, ε/2). Call this extended function Fw(z).
Now Fw(z) is clearly not in general holomorphic. However, for each k = 1, 2,
3, . . ., Fw is bounded in real Ck-norm as a function of z, uniformly as w ap-
proaches (1, 0, . . . , 0) along the Re z1-axis. This is easily checked from the fact
that 1 − z · w̄ is bounded away from 0 on the set where ∂Fw(z) is nonzero:
note for this that ∂Fw(z) ≡ 0 for z ∈ Ω ∩Bn(1, ε/2).

If uw is a C∞ function on Ω with ∂uw(z) = ∂Fw(z), then of course Fw(z)−
uw(z) is holomorphic. And if uw of this sort can be chosen to be in a suit-
able sense small compared to Fw(z) (when w is close to (1, 0, . . . , 0) and z is
close to w), then Fw(z)− uw(z) would have the same kind of growth behav-
ior as KBn(z, w). Since (Fw(z) − uw(z))/‖Fw − uw‖2 has L2-norm 1, it is a
“candidate” function to estimate KΩ(w,w) from below:

KΩ(w,w) ≥
∣∣∣Fw(w)− uw(w)
‖Fw − uw‖2

∣∣∣2.
Thus if a suitable uw can be found, suitable in terms of having L2-norm
bounded and having uw(w) small compared to KB(w,w) where w is near
(1, 0, . . . , 0) on the Re z1-axis, then indeed we see that KΩ(w,w) grows as w
approaches (1, 0, . . . , 0) with the same order of growth as KB(w,w).

The solution of the ∂-Neumann problem obtained by J.J. Kohn (see
[Folland/Kohn 1972]) provides the function uw needed. Since ∂Fw is bounded
uniformly in C2-norm on the closure of Ω, uniformly as w goes to (1, 0, . . . , 0),
the “∂-Neumann solution” of ∂uw = ∂Fw has the needed boundedness prop-
erties. first, according to Kohn’s results, there is a unique solution uw of
∂uw = ∂Fw such that uw is perpendicular to A2(Ω) and this solution uw has
the desired properties; in particular, its C0-norm (i.e., the supremum norm)
on Ω is bounded uniformly as w approaches (1, 0, . . . , 0).

The construction just given provides only a lower bound on KΩ(w,w). But
the roles of Ω and Bn can be interchanged, with KΩ transferred to Bn and
“corrected” by ∂ on the unit ball Bn. This will give, clearly, an estimate from
above on KΩ(w,w). It follows that KΩ(w,w) is bounded above and below
by constant multiples of KBn(w,w) as w approaches (1, 0, . . . , 0) along the
Re z1-axis.

The literal coincidence of the boundary ∂Ω of Ω and the boundary ∂Bn

of the ball Bn near the point around which estimation is occurring was not
really required in the discussion just given. It would have sufficed to have ∂Ω
making a sufficiently high order of contact with a biholomorphic image of
(part of) ∂Ω. The “transfer” of KBn to an open subset of Ω would then have
been by a map which was not quite holomorphic, since one would need to
move the image of ∂Bn to coincide with ∂Ω locally. But this would involve
only estimable errors: one would use ∂ estimates simultaneously to extend
the function Fw and to make it holomorphic near the distinguished point.
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The details of this assertion would need checking, but the possibility clearly
will be realized if there is sufficiently high order of contact between ∂Ω and
some biholomorphic image of ∂Bn.

In fact, it turns out that, when Ω is C∞ strongly pseudoconvex, then every
point p ∈ ∂Ω has the property that a sufficiently high order of contact can be
obtained at a strongly psuedoconvex point—actually up to fourth order—by a
biholomorphic image of the ball (cf. [Fefferman 1974], for example). Carrying
out the extension of the reasoning of our example yields this:

If Ω is a bounded, C∞ strongly pseudoconvex domain, then there are
positive constants C1 and C2 such that

C1[dis (w, ∂Ω)]−(n+1) ≤ KΩ(w,w) ≤ C2[dis (w, ∂Ω)]−(n+1)

for all w ∈ Ω.

This is of significance, of course, only for w near ∂Ω.
This kind of estimation began with L. Hörmander ([Hörmander 1965]; see

also [Hörmander 1990] for example) and reached its culmination with the com-
plete asymptotic expansion of KΩ obtained by C. Fefferman [Fefferman 1974],
which we shall discuss in more detail momentarily. Important intermediate re-
sults were obtained by K. Diederich in [Diederich 1973]. There has also been
extensive work on domains of “finite type,” a condition less restrictive than
strong pseudoconvexity. Our concern here is primarily with the strongly pseu-
doconvex case; the interested reader should consult, e.g., [McNeal 1992] for
information on the finite type situation.

At first sight, the “globalization” method we have been discussing might
not seem to readily yield information about the Bergman metric, since the
metric involves differentiation of the kernel function. However, a closer con-
nection arises than might at first appear between the metric and holomorphic
function globalization as follows. Choose the first two elements of an orthonor-
mal basis of A2(Ω) by setting ϕ0 = 1/

√
Vol(Ω), ϕ1 a holomorphic function

orthogonal to ϕ0 with L2-norm 1, and then complete ϕ0, ϕ1 to an orthonor-
mal basis ϕ0, ϕ1, ϕ2, . . .. Since KΩ(z, w) =

∑
ϕj(z)ϕj(w), direct computation

yields

Bergman length squared of
∂

∂z1
=

∂2

∂z1∂z̄1
logKΩ(z, z)

≥ 1
2KΩ(z, z)2

∣∣∣∣ϕ0(z)
∂ϕ1

∂z1

∣∣∣∣2 .
(Here, we use the fact that ∂ϕ0

∂z1
≡ 0.) Thus estimating from below the Bergman

length of the vector ∂
∂z1

at w ∈ Ω can be accomplished by finding a holomor-
phic function ϕw(z) with L2-norm 1 and with ∂

∂z1
ϕw

∣∣
w

bounded from below in
absolute value, compared to the size of KΩ(z, z), which we have already esti-
mated. This falls into the same pattern as our previous globalization approach
to estimating KΩ(w,w).
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From the viewpoint of applying the usual methods of Riemannian geom-
etry, the crucial question is the completeness of the Bergman metric. Recall
that if M is a connected Riemannian manifold and p, q ∈M , then the distance
dis (p, q) from p to q is defined to be the infimum of the length of piecewise C1

curves from p to q. This definition of distance makes M a metric space with the
metric space topology being the same as the manifold topology. The given Rie-
mannian metric on M is said to be complete if the metric space (M,dis (·, ·))
is complete in the usual Cauchy sense: Cauchy sequences converge. It is a
well-known result in Riemannian geometry (the Hopf–Rinow theorem) that
completeness of M is equivalent to closed bounded subsets of M being com-
pact and either of these conditions is equivalent to all geodesics on M being
infinitely extendible.

In the context of the Bergman metric on a bounded domain in Cn, com-
pleteness is implied by “distance to the boundary being infinite” in the sense
that any piecewise C1 curve γ : [0, 1)→ Ω with finite total length must lie in a
compact subset of Ω. (A suitable version of this implication holds for any Rie-
mannian manifold, as does a suitable converse.) So one can deduce that Ω is
complete in its Bergman metric if one can show that the Bergman length of
vectors of unit Euclidean length goes to infinity sufficiently rapidly as the
boundary of Ω is approached. Indeed one needs to show this only for vectors
that are essentially normal to the boundary in a suitable sense. In this context,
one now sees how the “globalization” technique already described could be
used to establish completeness of the Bergman metric for C∞ strongly pseu-
doconvex domains. This was carried out in detail in [Diederich 1973], where
indeed detailed estimates of both kernel and metric were obtained:

Theorem 3.4.1 (Diederich). The Bergman metric of a bounded, C∞ strongly
pseudoconvex domain in Cn is complete.

This result was extended to domains satisfying successively weaker hy-
potheses over a period of years. This development culminated in the following
result of Ohsawa, based on earlier work of Pflug ([Ohsawa 1981], [Pflug 1975]).

Theorem 3.4.2 (Ohsawa). If Ω is a bounded, pseudoconvex domain in Cn

with C1 boundary, then the Bergman metric of Ω is complete.

The “globalization” technique using ∂ theory that we have been discussing
is conceptually appealing, but it requires rather ad hoc specifics in each case.
A more systematic and unified approach to the relationship between bound-
ary shape at a point and the behavior of the Bergman kernel and metric near
the point will be presented in Chapter 10. This “scaling method” is clearly
related to the ∂ results we have been discussing, but it considerably simplifies
the technical details involved. We shall prove the preceding theorem (Theo-
rem 3.4.1) of Diederich by this method there.

For strongly pseudoconvex domains, the idea that the behavior of the
Bergman kernel near the boundary is predictable via “globalization” and
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∂ methods achieved its ultimate form in an asymptotic expansion obtained
by Fefferman ([Fefferman 1974]). The singular part of this expansion at a
given point p in the boundary is determined by differential invariants of the
boundary at p. The global structure of Ω thus appears only in the smooth,
nonsingular part. To express this remarkable result precisely, we need some
preliminary notation as follows.

Let Ω0 be a bounded, strongly pseudoconvex domain in Cn having C∞

boundary given by

Ω0 = {z ∈ Cn : ρΩ0(z) < 0}.
Here ρΩ0 is a “C∞ defining function” on Cn in the sense that ∇ρΩ0 	= 0 on
∂Ω0. For a specific and useful instance of a defining function, let ‘dis’ denote
Euclidean distance. Then the function

ρ(z) =
{−dis(z, ∂Ω) if z ∈ Ω0

dis(z, ∂Ω) if z ∈ Cn \Ω0

is C∞ near ∂Ω and satisfies ∇ρ 	= 0 on ∂Ω. One can obtain a defining function
by extending ρ to all of Cn to be smooth everywhere, negative on Ω and
positive on the complement of the closure of Ω, leaving ρ as defined near ∂Ω.

Now, for δ > 0 small, define

Eδ
Ω0

= {(z, w) ∈ cl(Ω0)× cl(Ω0) : dis(z, w) + dis(z, ∂Ω0) + dis(w, ∂Ω0) < δ}.
Set

Xρ0(z, ζ) = ρΩ0(ζ) +
∑

�

(
∂ρΩ0

∂z�

∣∣∣∣
ζ

)
· (z� − ζ�)

+
1
2

∑
�,m

(
∂2ρΩ0

∂z�∂zm

∣∣∣∣
ζ

)
· (z� − ζ�)(zm − ζm).

The function X is commonly called the Levi polynomial of Ω.
In this notation, Fefferman’s asymptotic expansion ([Fefferman 1974])

can be expressed as follows. There exist smooth functions φΩ0 and φ̃Ω0 on
cl(Ω0)×cl(Ω0)—where cl(Ω0) = the closure of Ω0 as usual—such that, for all
(z, ζ) ∈ Eδ

Ω0
,

KΩ0(z, ζ) =
φΩ0(z, ζ)

[−XρΩ0
(z, ζ)]n+1 + φ̃Ω0(z, ζ) · log[−XρΩ0

](z, ζ). (3.4)

Here, as usual, functions are considered to be smooth on the closed set
cl(Ω0) × cl(Ω0) if they are restrictions to the closed set of a smooth func-
tion on some open neighborhood of cl(Ω0)× cl(Ω0) in Cn × Cn.

The asymptotic expansion implies by direct calculation that the Bergman
metric “blows up” at the boundary of Ω in essentially the same way as it does
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for the unit ball. Calculation with this expansion will recover the result that
the Bergman metric of Ω0 is complete: the metric grows near ∂Ω0 in such
a way that curves of finite Bergman length must remain in compact subsets
of Ω0 (cf. our earlier discussion of completeness in this section).

More surprisingly, the asymptotic expansion (3.4) is also sufficient to es-
tablish a strong result about the curvature of the Bergman metric of a strongly
pseudoconvex domain.3

Theorem 3.4.3 ([Klembeck 1978]). Let Ω be a smoothly bounded, strongly
pseudoconvex domain in Cn. Then the holomorphic sectional curvatures of the
Bergman metric of Ω converge uniformly to the constant −4/(n + 1) as the
boundary is approached.

More formally, one could express the conclusion as follows. Given ε > 0,
there is a δ > 0 such that, if x ∈ Ω and dis(x,Cn \ Ω) < δ and if P is a
J-invariant 2-plane at x, then the (holomorphic) sectional curvature κ(P ) of
the Bergman metric for the 2-plane P satisfies

−δ − 4
n + 1

< κ(P ) < +δ − 4
n + 1

.

We recall that holomorphic sectional curvature has a very intuitively ap-
pealing geometric meaning. In the notation we have been using, given a
J-invariant 2-plane P at x ∈ Ω (or in a complex manifold), consider all
nonsingular holomorphic images F (u) with F mapping a neighborhood U
in C into Ω. Here, with F (0) = x and with F (U) tangent to P at x, i.e.,
dF
∣∣
0(tangent space of C) = P , we think of F (U) as a piece of Riemann surface

through x. Such a “local surface” has a metric induced from the Bergman met-
ric of Ω. Let κF be the Gauss curvature of this induced metric at x. Then the
holomorphic sectional curvature κ(P ) is the maximum possible value of κF .
This maximum is in fact always attained by any such surface which has second
fundamental form 0 at x.

The asymptotic constancy result (Theorem 3.4.3) was obtained originally
as part of P. Klembeck’s Ph.D. dissertation research under the direction of
one of the authors (Greene). We shall give a proof by the “scaling method”
(to a more general statement, in fact) later in Chapter 10.

The asymptotic constancy result as stated actually implies the seemingly
stronger result that the whole curvature tensor of the Bergman metric con-
verges uniformly at the boundary to the standard curvature tensor of con-
stant holomorphic sectional curvature −4/(n + 1). This and related matters
of Kähler geometry are discussed in Section 3.6. But we have stated the result
in terms of holomorphic sectional curvature rather than in terms of curvature
tensor convergence because of the appealing directly geometric interpretation

3It is enlightening to consider this in the special instance of formula (3.4) when
the domain in question is the unit ball. In that case the asymptotic formula (3.2)
reduces to the standard formula for the Bergman kernel of the ball.
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of holomorphic sectional curvature just noted. For almost all our later pur-
poses, the Kähler geometric formalities of Section 3.6 can be ignored or, when
needed, taken for granted, if desired.

At first sight, this asymptotic constancy result appears surprising. But
actually it arises very logically. Let δBn(z) denote the distance of the point z
to the boundary of the unit ball. Now, on the unit ball, the Levi form of
log(δBn(z)) on the unit ball has asymptotically constant sectional curvature.
This is not surprising at all: up to the constant n + 1, the Bergman metric is
the Levi form of − log(1−∑j |zj |2), and

− log
(

1−
∑

j

|zj |2
)

= − log

⎛⎝1−
√∑

j

|zj |2
⎞⎠− log

⎛⎝1 +
√∑

j

|zj |2
⎞⎠ .

The first term is − log(δBn(z)) while the second term is C∞ at the boundary
and hence could be expected to be negligible compared to the first term,
which blows up at the boundary. Since the Bergman metric of the unit ball
has constant holomorphic sectional curvature, the metric (near the boundary)
arising from the Levi form of − log(δBn(z)) is thus expected to have—and
does have—asymptotically constant holomorphic sectional curvature as the
boundary is approached. Of course, in this case of the unit ball, this assertion
can be verified by explicit computation.

Now any strongly pseudoconvex domain matches the boundary of a biholo-
morphic image of the ball quite well in a neighborhood of a given boundary
point (cf. [Fefferman 1974]). So it is natural to expect that the Levi form of
− log(δBn(z)) again has asymptotically constant sectional curvature. After
all, the situation looks like the ball as far as the highest order terms are con-
cerned. This is in fact true: this Levi form, which is positive definite, does
give a metric of asymptotically constant sectional curvature as the boundary
is approached.

Finally, according to the Fefferman expansion restricted to the case z = ζ,
the Bergman metric is obtained as the Levi form of the logarithm of a (pos-
itive) function, the highest order term of which is the (n + 1)-st power of
δBn(z). Write δΩ for “distance to the boundary” for domain Ω in general.
Then the Levi form of logK(z, z) is

Llog K(z,z) = (n + 1) · (Levi form of a function having − log δΩ as
the highest order term of its asymptotic expansion).

The holomorphic sectional curvature of −Llog δΩ
is asymptotically con-

stant, by our previous discussion of approximation by the unit ball. It is in
fact asymptotically −4, as one sees from comparison to the Bergman met-
ric of the ball and the usual curvature scaling under constant factors. So, to
check that the Bergman metric has asymptotically constant sectional cur-
vature −4/(n + 1), one need only check that the lower order terms of the
Fefferman expansion do not disturb the situation asymptotically. Again, this
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is not surprising. [To follow the constant factors, recall that the curvature of
λg, g a metric, is (1/λ)(curvature of g).]

While this all sounds plausible, one has to check it. In principle, higher or-
der terms might be canceling out in the curvature calculation, making lower
order terms significant! This in fact does not happen, and the outline given be-
comes a precise proof. The reader is referred to [Klembeck 1978] for the details
of this (which we omit here), since we shall give a separate proof in Section 10.1
as noted above. This proof will actually give the result where the boundary
is only assumed to be C2 (so that the Fefferman expansion does not apply).

The asymptotic sectional curvature of the Bergman metric gives an inter-
esting geometric view of the C∞ case of the well-known result of Bun Wong
[Wong 1977] that a C2 strongly pseudoconvex bounded domain with noncom-
pact automorphism group is necessarily biholomorphic to the unit ball. (This
result was later extended by Rosay to remove the hypothesis of global strong
pseudoconvexity; cf. [Rosay 1979].) In particular, the following corollary fol-
lows from the asymptotic constancy result:

Corollary 3.4.4. Let Ω be a C∞ strongly pseudoconvex domain. Suppose that
Aut (Ω) is noncompact. Then Ω is biholomorphic to the unit ball.

We restrict our attention for the moment to the C∞ case of this result,
since we want to apply Theorem 3.4.3, which is for C∞ domains only. Later
Theorem 3.4.3 itself will be extended to the C2 case (Theorem 10.1.1). The
curvature proof that follows will then yield the C2 version of Corollary 3.4.4.

To deduce this corollary, we first show that the Bergman metric of Ω has
constant holomorphic sectional curvature. For this, suppose that H is a holo-
morphic (J-invariant) 2-plane in TpΩ. By Proposition 1.3.10 and the remarks
immediately following it, the noncompactness of Aut (Ω) implies that there is
a sequence of automorphisms φj such that {φj(p)} diverges to the boundary,
that is, it does not have a subsequence converging to an interior point of Ω.
Passing to a subsequence, we can assume that φj(p) converges to a bound-
ary point q. Since the automorphisms of Ω act as isometries of the Bergman
metric, the holomorphic sectional curvature κ(H) is equal to the holomor-
phic sectional curvature κ(dφj |p(H)) of the 2-plane at φj(p) that is the image
under dφj |p of H. Since φj(p) converges to q, Theorem 3.4.3 implies that
κ(dφj |p(H)) converges to −4/(n + 1) as j → +∞. Thus κ(H) = −4/(n + 1).

Recall that (by Theorem 3.4.1) the Bergman metric is complete. So Ω has
a complete (Bergman) metric of constant holomorphic sectional curvature
−4/(n + 1).

By standard Riemannian geometry, the metric universal cover of Ω is the
unit ball with its Bergman metric. But it remains to be seen that Ω is simply
connected. This can be established by one of several methods.

First, one could appeal to the theorem of Lu Qi-Keng (Theorem 4.2.2) that
a domain with complete Bergman metric of constant holomorphic sectional
curvature is automatically simply connected, and hence biholomorphic to the
ball (the constant being necessarily negative). This result is proved using
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Bergman representative coordinates. It will be discussed in relation to that
topic in Section 4.2.

Second, the information in Section 3.4 on the boundary behavior of the
Bergman metric will show that, for any fixed R > 0, point q in the boundary
of Ω, and Euclidean neighborhood U of q, there is an ε > 0 such that if
the Euclidean distance from q to a point p ∈ Ω is less than ε, then the
Bergman metric ball of radius R around p is contained in U . This is an aspect
of the Bergman metric “blowing up” at the boundary of Ω. [Note: This is not
implied by the completeness of the Bergman metric as such. It involves the
fact that the metric also blows up in directions parallel to the boundary, while
completeness is guaranteed if one has sufficient blow-up in directions normal
to the boundary.] Now suppose that γ is a loop (i.e., a closed curve) at p, with
p, φj , and q as earlier. Then, if ε is chosen sufficiently small as above, it follows
that, for j large, φj(γ) lies in a simply connected open set. This is because
the smoothness of the boundary of Ω implies that, for ε > 0 sufficiently small,
the ε-radius Euclidean ball around q intersects Ω in a simply connected set,
while if R is large enough, then the Bergman metric ball of radius R around
p contains γ (by completeness of the Bergman metric). Since φj(γ) is freely
homotopic to a constant loop, and since φj is a homeomorphism of Ω, γ is
freely homotopic to a constant in Ω. Thus every loop in Ω is freely homotopic
to a constant and Ω is simply connected.

A third, final, possible argument for simple connectivity is to use a
peak-point argument to show that φj(γ) lies in a small Euclidean neighbor-
hood of q, with the argument concluding then as in the previous paragraph
(cf. [Rosay 1979] for the peak-point argument).

All three methods have been discussed here because each has further utility
in other contexts.

Thus the simple connectivity of Ω follows from any one of these three
methods, and hence Ω is biholomorphic to the unit ball in Cn. This completes
the proof of Corollary 3.4.4.

3.5 Stability of the Geometry of the Bergman Metric

Strong pseudoconvexity is an open condition: a C2 small perturbation of a
strongly pseudoconvex domain yields a domain that is again strongly pseudo-
convex. This makes it natural to consider the question of stability under small
perturbations of the geometry of the Bergman metrics of strongly pseudocon-
vex domains. Such a consideration turns out to produce interesting results
about automorphism groups in particular.

The first step in making such general ideas precise is to define exactly what
one means by a “small” perturbation. To do this, one needs in effect to define
a topology on bounded domains. We shall be especially interested in the C∞

topology on bounded domains with C∞ boundary. The corresponding ideas for
Ck, k finite, topologies are analogous and will not be discussed here explicitly.
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To define the C∞ topology, let Ω0 be a bounded domain with C∞ bound-
ary ∂Ω0. In this setting, Ω0∪∂Ω0 is a C∞ manifold-with-boundary in the usual
sense (see [Hirsch 1976] for instance). We define a neighborhood of Ω0 in the
C∞ topology to be the set of all bounded domains Ω obtained as F (Ω0) where
F : Ω0 ∪∂Ω0 → Cn is restricted to lie in some C∞ neighborhood of the injec-
tion map ι : Ω0∪∂Ω0 → Cn. Here we are taking for granted the C∞ topology
of C∞ mappings of compact manifolds-with-boundary into Cn ∼= R2n. This
topology in turn arises from the C∞ topology on C∞ functions since a map
into R2n is simply a 2n-tuple of C∞ functions.

The C∞ topology on bounded domains with C∞ boundary thus defined is
equivalent to various other perhaps more easily envisioned possible definitions.
In fact, all reasonable ideas of “C∞ close” are equivalent. For example, one
could say that Ω was C∞ close to Ω0 if Ω admits a defining function close to
a given defining function for Ω0 (close on some fixed neighborhood of ∂Ω0).
Or one could consider Ω to be C∞ close to Ω0 if ∂Ω arises in the form {p +
f(p)N(p) : p ∈ ∂Ω0}, where N is the (C∞) exterior unit normal to ∂Ω0 and
f : ∂Ω0 → R is a C∞ function which lies in some specified C∞ neighborhood
of the 0-function: Thus we say that f is “C∞ small”.

Note that in all cases we consider only Ω which have the property that
Ω ∪∂Ω is diffeomorphic to Ω0 ∪∂Ω0. This is surely a natural requirement for
Ω to be C∞ close to Ω0.

Our first “stability” result about the Bergman geometry of strongly pseu-
doconvex domains is a version of asymptotic constancy of holomorphic sec-
tional curvature that is locally uniform over variation of the domain:

Theorem 3.5.1 ([Greene/Krantz 1982]). Let Ω0 be a C∞ strongly pseu-
doconvex, bounded domain in Cn. For each ε > 0, there is a δ > 0 and a
neighborhood U of Ω0 in the C∞ topology of bounded domains such that if
Ω ∈ U and x ∈ Ω with dis (x,Cn \ Ω) < δ, then, for every J-invariant 2-
plane P at x, the holomorphic sectional curvature κ(P ) of P in the Bergman
metric of Ω satisfies

− 4
n + 1

− ε < κ(P ) < − 4
n + 1

+ ε.

As we have already explored in our discussion of Theorem 3.4.3, the asymp-
totic constancy of holomorphic sectional curvature provides a geometric way
of distinguishing points near the boundary from at least some of the more
interior points, when the domain is not the ball. To make this distinction
“stable,” we need the following result on the interior stability to supplement
the boundary stability in the theorem just stated.

Theorem 3.5.2 ([Greene/Krantz 1982]). Let Ω0 be a C∞ bounded, stron-
gly pseudoconvex domain in Cn and let A be a compact subset of Ω0. Then,
for each ε > 0, there is a neighborhood U of Ω0 in the C∞ topology such that

(a) For each Ω ∈ U , A ⊂ Ω;
and



94 3 The Bergman Kernel and Metric

(b) For each z ∈ A and each Ω ∈ U , and for each J-invariant 2-plane P at
z, the holomorphic sectional curvatures κΩ(P ) and κΩ0(P ) satisfy

|κΩ(P )− κΩ0(P )| < ε.

Here κΩ(P ) (resp. κΩ0(P )) are the holomorphic sectional curvatures attached
to P in the Bergman metric of Ω (resp. Ω0).

We have stated this result specifically for holomorphic sectional curvatures
to emphasize its relationship to Theorem 3.4.3. But in fact the theorem just
stated is a special case of a much more general fact: It is actually the case
that the Bergman kernel and all its derivatives at points of A are stable under
small perturbations of Ω0. Not just the curvature, but the Bergman metric
itself and all its derivatives at points of A are continuous functions as the
domain Ω is varied (near Ω0) in the C∞ topology.

This latter stability can be put in a philosophically convincing context.
Choose λ > 0 such that the distance of each point of A to any point of ∂Ω is at
least 10λ, let us say. Choose a real-valued, C∞, nonnegative “bump” function
ϕ on Cn with support contained in a ball of radius λ around the origin such
that ϕ(z) depends only on |z|, z ∈ Cn, and such that

∫
Cn ϕ(z) dz = 1.

By the mean value theorem, f(z) =
∫
ϕ(w − z)f(w) dV (w) for each f ∈

A2(Ω0), or indeed for any analytic function on Ω0, whether the function is L2

or not.
Now define ϕz(w) = ϕ(w− z). Let uz be the C∞ solution of the equation

∂uz = ∂ϕz (in w-variables only) which has uz ∈ L2 and uz orthogonal to the
space A2(Ω0) in L2(Ω0). That is to say, uz is the “canonical” solution of the
∂ equation ∂v = ∂ϕz so that

∫
Ω0

fuz =
∫

Ω0
fuz = 0 if f ∈ A2(Ω0). Clearly, if

f ∈ A2(Ω0), then

f(z) =
∫

Ω0

f(w)ϕz(w) =
∫

Ω0

f(w)[ϕz(w)− uz(w)].

Thus the function of w given by ϕz(w)−uz(w) has the “reproducing property”
for the point z. Since ∂w(ϕz−uz) = 0 and ϕz−uz is L2, it follows that ϕz−uz

is in fact the Bergman kernel K(z, w).
Thus the Bergman kernel is obtained from the canonical solution of

the ∂ equation. [This idea was the starting point for the development in
[Fefferman 1974].] In particular, the interior stability results for perturbations
of the domain Ω0 can be established by proving C∞ stability of the canonical
solution. This stability is perhaps not surprising, and indeed seems almost to
be taken for granted in [Folland/Kohn 1972], e.g., in the discussion of how
to prove the Newlander–Nirenberg theorem by ∂ methods. In any case, it is
checked in detail in [Greene/Krantz 1982].

The boundary stability result Theorem 3.5.1 is an altogether more dif-
ficult matter. Here one needs stability of the “coefficient functions” in the
Fefferman expansion with respect to the perturbation of the boundary. Then
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it is not hard to see that the computations of [Klembeck 1978] will give the
theorem as stated. The details of the stability of the Fefferman expansion are
lengthy and intricate. The sufficiently determined reader is invited to con-
sult [Greene/Krantz 1982]. But it does not seem worthwhile to repeat those
arguments here.

The C∞ interior stability of the Bergman kernel can be established under
quite general conditions not involving strong, or even weak, pseudoconvexity.
For this, note first that the issue is really only one of C0 stability: Think of
K(z, w) as a holomorphic function of variables z, w on Ω0 × Ω0. If A is a
compact set in Ω0, then Cauchy estimates control the Bergman kernel K on
A×A in the C∞ sense if C0 control is known.

On the other hand, the function K(z, w) is known rather explicitly: if the
holomorphic function φ : Ω → C is such that its L2-norm ‖φ‖2 is minimal
among all holomorphic functions in A2(Ω) and that φ(z) = 1 for z ∈ Ω
(momentarily fixed), then

K(z, w) =
φ(z)φ(w)
‖φ‖2 .

In the case of an expanding sequence of domains, this suffices to analyze the
limiting behavior.

Theorem 3.5.3 ([Ramadanov 1967]). Suppose that Ωj, j = 1, 2, . . . , is
a sequence of bounded domains such that the closure of Ωj is contained in
Ωj+1 for all j = 1, 2, . . . and suppose that Ω0 = ∪jΩj is bounded. Then, the
Bergman kernel KΩj

(z, w) converges uniformly for z, w in any given compact
subset of Ω0 ×Ω0 to KΩ0(z, w). Consequently, KΩj converges C∞ uniformly
to KΩ0 on compact subsets of Ω0 ×Ω0.

For the proof, we refer to Sections 10.1.6. In fact, a slightly more general
theorem is introduced there. See Theorem 10.1.4.

3.6 Further Observations on the Geometric Stability
of the Bergman Curvature

Note to the Reader:The differential geometric details in this section
are not needed in the remainder of the book except for the statement of
Theorem 3.6.2. The remainder of the section can be omitted if desired
as far as the rest of the book is concerned, if Theorem 3.6.2 is accepted
as stated.

The stability of curvature behavior near the boundary for the Bergman
metrics of strongly pseudoconvex domains was presented in the previous sec-
tion in terms of holomorphic sectional curvature. But, for some geometric ap-
plications, one really wants information on Riemannian sectional curvatures
in general, not just the sectional curvatures attached to J-invariant 2-planes.
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In the case of holomorphic sectional curvature close to a (negative) constant,
information about sectional curvature follows on strictly algebraic grounds,
from the algebra of Kähler curvature tensors.

In particular, we can apply the following result:

Proposition 3.6.1. Suppose that A > 0 and that, at a point x in a Kähler
manifold, there is a δ > 2/3 such that the holomorphic sectional curvatures
κh all satisfy −A ≤ κh ≤ −δA. Then all sectional curvatures κ at x satisfy

−A ≤ κ ≤ −1
4
(3δ − 2)A.

References for this result include [Bishop/Goldberg 1963], [Berger 1967] and
[Kobayashi/Nomizu 1963] vol. II, note 23, p. 369. This shows in particular
that, if a Kähler manifold has at a point all holomorphic sectional curvatures
sufficiently close to, say, −4/(n+1), then at that point all sectional curvatures
are negative and lie nearly in the interval [−4/(n + 1),−1/(n + 1)]. We shall
use this result to establish the following.

Theorem 3.6.2. There is a neighborhood U of the unit ball in Cn in the C∞

topology of bounded domains in Cn such that, if Ω ∈ U , then the Bergman
metric of Ω has all sectional curvatures negative at every point. More precisely,
given ε > 0, there is a neighborhood Uε such that if Ω ∈ Uε, x ∈ Ω, and P is
a 2-plane at x, then the sectional curvature κ(P ) satisfies

− 4
n + 1

− ε < κ(P ) < − 1
n + 1

+ ε.

Proof. It suffices to prove the second statement. For this, choose a C∞ neigh-
borhood V of the unit ball and a number λ > 0 such that, if Ω ∈ V and
dis (x, ∂Ω) < λ, x ∈ Ω, then the sectional curvatures of the Bergman metric
of Ω at x lie in the interval (−ε − 4/(n + 1), ε − 1/(n + 1)). This is possible
by Theorem 3.5.1 and the “δ-pinching” remarks just prior to the statement
of the theorem. Now set C = {z : |z| ≤ 1−λ/3}. By Theorem 3.5.2, there is a
neighborhood W (in the C∞ topology of domains) of the unit ball such that
if Ω ∈ W, then C ⊂ Ω, and the sectional curvatures of the Bergman metric of
Ω at points of C lie in the interval (−ε−4/(n+1), ε−1/(n+1)). We can and
will also assume that if Ω ∈ W then Ω lies in {z : 1 − λ/3 < |z| < 1 + λ/3}.
Then U = V ∩ W satisfies the conditions required in the theorem since if
x ∈ Ω ∈ U , then either x ∈ C or dis(x, ∂Ω) < λ. ��

The Bishop/Goldberg/Berger result on “δ-holomorphic-pinching” is a
quantitative aspect of a general convergence statement:

(∗) If x is a point of a Kähler manifold and c is a positive number then, given
ε > 0, there is a δ > 0 with the following property. If all holomorphic
sectional curvatures at x belong to the interval (−c− δ,−c + δ), then

‖R−Rc‖ < ε,
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where R is the Riemann curvature tensor at x and Rc is the unique cur-
vature tensor of holomorphic sectional curvature −c, and the norm is the
usual Riemannian norm on tensors.

[Note: Rc can of course be given explicitly. It is

Rc(X,Y, Z,W ) = − c

4

{
g(X,Y )g(Z,W )− g(X,W )g(Y, Z)

+g(X, JZ)g(Y, JW )− g(X, JW )g(Y, JZ)

+2g(X, JY )g(Z, JW )
}
.

See [Kobayashi/Nomizu 1963], vol. II, pp. 166–167.]
The convergence statement (∗) is established by making two polariza-

tion arguments quantitative. The first is the argument that if R − Rc van-
ishes on 4-tuples X, JX,X, JX then it vanishes on 4-tuples X,Y,X, Y (see
[Kobayashi/Nomizu 1963], p. 166). Second is the standard polarization ex-
pressing R(X,Y, Z,W ) in terms of 4-tuples R(U, V, U, V ). See for instance
[Kobayashi/Nomizu 1963], vol. I. We omit straightforward details of making
these arguments for the constant holomorphic sectional curvature case (imply-
ing that R−Rc = 0) work to show that nearly constant holomorphic sectional
curvature implies ‖R−Rc‖ small.

It is now clear that Theorem 3.6.2 implies a version dealing with curvature
tensors.

Theorem 3.6.3. Let Ω be a C∞, strongly pseudoconvex, bounded domain
in Cn. Then given ε > 0, there is a δ > 0 such that, if x ∈ Ω, dis(x,Cn \Ω) < δ,
and X,Y, Z,W are vectors at x of unit length in the Bergman metric of Ω,
then

|R(X,Y, Z,W )−R−4/(n+1)(X,Y, Z,W )| < ε,

where R−4/(n+1) is the curvature-like tensor of constant holomorphic sectional
curvature −4/(n + 1) defined earlier and R is the Riemann curvature tensor
of the Bergman metric of Ω at x.

Similarly, Theorem 3.6.2 implies a stable result about curvature tensor
convergence at the boundary.

Theorem 3.6.4. Let Ω0 be a C∞ strongly pseudoconvex, bounded domain
in Cn. Then, given ε > 0, there is a neighborhood U of Ω0 in the C∞ topology
on domains and a δ > 0 such that, if Ω ∈ U and x ∈ Ω with dis(x,Cn\Ω) < δ,
and if X,Y, Z,W are vectors at x with unit length in the Bergman metric of Ω
at x, then

|RΩ(X,Y, Z,W )−R−4/(n+1)(X,Y, Z,W )| < ε,
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where RΩ is the Riemann curvature tensor of the Bergman metric of Ω at x
and R−4/(n+1) is again the standard curvature tensor of holomorphic sectional
curvature −4/(n + 1).

Theorem 3.6.2 again implies Theorem 3.6.4 without appeal to the Berger
and/or Bishop–Goldberg pinching results: the convergence statement (∗) on
the previous page applies, as for Theorem 3.6.3.



4

Applications of Bergman Geometry

In this chapter, results will be presented that arise by combining geometric
arguments with the asymptotic curvature constancy at the boundary (dis-
cussed in the previous chapter) and other aspects of the geometry of the
Bergman metric. The completeness of the Bergman metric of strongly pseu-
doconvex domains (Theorem 3.4.2) fits the whole situation into the framework
of global Riemannian geometry, the basic idea of which is that the global geom-
etry of a complete Riemannian manifold is controlled by curvature. Without
completeness, this property fails entirely (cf. [Gromov 1969]). But, with com-
pleteness in hand, one expects curvature information to control the geometry
in many respects.

4.1 Applications of Stability near the Boundary

The first result to be discussed has to do with small perturbations of the unit
ball in Cn, n ≥ 2. A perturbation of the unit disc in C that is small in the C∞

sense produces a domain that is still biholomorphic to the unit disc, by the
Riemann mapping theorem. But in Cn, n ≥ 2, perturbations of the unit ball
are generically not biholomorphic to the unit ball. This can be seen from
Tanaka-Chern–Moser theory, but it can also be established by using more el-
ementary arguments involving only counting the parameters in biholomor-
phic mappings and in representations of the boundary. There are, at high jet
levels, more parameters in boundary choice than in germs of biholomorphic
mappings. Details of this idea, which goes back to Poincaré, can be found in
[Fefferman 1974] or [Greene/Krantz 1981].

Theorem 4.1.1. There is a neighborhood U of the unit ball in Cn in the C∞

topology on domains such that every Ω ∈ U is either

(1)biholomorphic to the unit ball

R. E. Greene et al., The Geometry of Complex Domains, Progress in Mathematics, 
DOI 10.1007/978-0-8176-4622-6_4, © Springer Science+Business Media, LLC 2011
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or else

(2)Aut(Ω) has a fixed point, which is to say, there is an x ∈ Ω such that
γ(x) = x for every γ ∈ Aut(Ω).

Proof. To begin with, choose U so that if Ω ∈ U , then Ω is (C∞) strongly
pseudoconvex. By Corollary 3.4.4, Ω is biholomorphic to the unit ball if
Aut(Ω) is noncompact. Now impose on U the additional conditions (via The-
orem 3.6.2) that, if Ω ∈ U , then the Bergman metric has negative sectional
curvatures and that, if Ω ∈ U , then Ω is diffeomorphic to the ball and hence
simply connected. [This latter condition is taken for granted in general by our
discussion of C∞ topology. We reiterate it here for emphasis.]

With U satisfying these conditions, if Ω ∈ U and Ω is not biholomorphic
to the unit ball, then Aut(Ω) is a compact group of isometries of a com-
plete, simply connected manifold of everywhere negative sectional curvature—
first, Ω with its Bergman metric. It is a standard theorem of E. Cartan
(cf. [Klingenberg 1982], for example) that a compact group of isometries of a
complete manifold of nonpositive sectional curvature has a fixed point. [The
fixed point is obtained as the “center of gravity” of the orbit of any arbitrary
point.] ��

The fixed point theorem of E. Cartan that was applied to establish The-
orem 4.1.1 is usually proved using the strict convexity of the square of the
distance function. first, on a complete, simply connected Riemannian mani-
fold with all sectional curvatures nonpositive, the function dis2(·, p0) is C∞,
strongly convex for each point p0 ∈M . Indeed, its second derivative along each
arclength-parameter geodesic is ≥2. This is an aspect of the Hessian compar-
ison ideas developed in a more general context in [Greene/Wu 1977]. [It is also
related to H. Karcher’s proof ([Karcher 1989]; see also, e.g., [Klingenberg 1982],
p. 226 ff) of the Toponogov comparison theorem ([Toponogov 1959]). But there
the inequalities go the other way: nonnegative sectional curvature implies sec-
ond derivatives ≤2.] But in the specific instance at hand, a direct proof by
the second variation Formula is easy and standard.

With this convexity in mind, one establishes the existence of a fixed point
for a compact group G of isometries of M as follows. Choose p0 in M arbitrar-
ily. Define F : M → R by, for each p ∈M , F (p) =

∫
g∈G

dis2(g(p), p0) dg, where
dg is the invariant measure on G. The function F is C∞ and strongly convex;
indeed, its second derivative along each arclength-parameter geodesic is ≥2,
as one sees by differentiation under the integral sign. Moreover, completeness,
the compactness of G, and the triangle inequality combine to show that F
is proper. If p is far from p0, then F (p) is large because p is far from the
compact set {g(p0) : g ∈ G}. So F goes to infinity as p tends to infinity. Thus
F has a unique minimum, say at the point q0. But, because the function F is
G-invariant—F (g(x)) = F (x) for all x ∈M , g ∈ G—this unique minimum is
fixed by the elements of G. [Note that there is no claim that q0 is the unique
fixed point of the G action. A different choice of p0 could potentially yield a
different fixed point, and indeed the G action might have many fixed points.]
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This argument admits a variant in which differentiability is brought less
to the fore. This is a considerable digression, but it will make possible in a
moment an equally considerable generalization of Theorem 4.1.1. In this vari-
ant, one considers, instead of the function F , convex sets associated to the
situation.

Each closed ball cl(B(p0, r)) ≡ {q : dis(q, p0) ≤ r}, p0 ∈M , is convex, be-
cause dis2(·, p0) is a convex function. [The notion of convexity is unambiguous
here since geodesic connections are unique on such manifolds.] Now, if G is
not the one-element group, then, for small r, the set

⋂
g∈G cl(B(g(p0), r)) is

empty. On the other hand, if r is large, then, since G is compact, this inter-
section is definitely nonempty. Thus there is an r0 > 0 such that the inter-
section is empty for r < r0 and nonempty for r > r0. One sees easily that⋂

g∈G cl(B(g(p0), r0)) is nonempty but has empty interior. This set is clearly
G-invariant.

At this point, one can bring into play a familiar “trick” of Riemannian
geometry (cf. [Cheeger/Gromoll 1971]): a closed, convex set with empty inte-
rior (as a subset with possibly nonempty boundary) lies in a totally geodesic
submanifold of M of lower dimension, which dimension can be chosen to be
minimal. The group G acts on this unique, minimal-dimensional submanifold,
so the argument can be repeated. Repetition yields eventually (since dimen-
sion drops at each stage) a compact, G-invariant, totally geodesic submanifold
of M . But, for our particular M , such a submanifold must be a point: This
follows from the strong convexity of dis2(·, q) for any point q chosen arbitrarily
in M . [Detail: If N is a compact, totally geodesic submanifold of M with no
boundary, then, for any q ∈ M , dis2(·, q) has a maximum value on N , say at
x ∈ N . But then dis2(·, q) has a maximum at x along each geodesic through x.
Thus dis2(·, q) is constant along such geodesics, contradicting strong convexity
of dis2(·, q). This contradiction can be averted only if N consists of the point
x alone.] We have gone into this matter in some detail because in fact this
alternative line of reasoning enables Theorem 4.1.1 to be extended consider-
ably. first, L. Lempert has proved the following (personal communication to
the third author).

Theorem 4.1.2 (Lempert). If G is a compact group of automorphisms of a
convex, bounded, open domain Ω (convex in the usual Euclidean sense of the
word), then G has a fixed point.

The proof of this result is obtained by first showing that the balls
in Ω relative to the Kobayashi metric are convex in the Euclidean sense
([Lempert 1981]). Then one can apply the geometric reasoning just discussed.
In more detail: On a strongly convex domain with C6 boundary, consider the
convex sum of two extremal discs for the Kobayashi metric. The sum defines a
holomorphic disc contained in the domain due to convexity. From this follows
the Euclidean convexity of the Kobayashi distance ball for the strongly convex
domain. Then the exhaustion of a bounded convex domain by strongly convex
domains implies the Euclidean convexity for the Kobayashi distance ball for
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general convex domains. To obtain a fixed point of the compact subgroup G,
consider the G-orbit of a point. As before in the Riemannian case, for a posi-
tive number r, the intersection, say Sr, of the closed balls of radius r centered
at a point in the orbit is nonempty for some sufficiently large r. Take the
smallest r for which Sr is nonempty. Then this Sr is convex and has empty
interior. Thus it has dimension strictly less than that of the original domain.
Equip Sr with the restricted Kobayashi distance. Then continue this process
with Sr. This ends with a G-invariant 0-dimensional set which is convex and
hence a single point. This is a fixed point of G.

To put Theorems 4.1.1 and 4.1.2 into context, one needs to know that, in
general, a compact group of automorphisms of a C∞ strongly pseudoconvex
domain can be free of fixed points, even when the domain is homeomorphic
or diffeomorphic to the ball. This is not obvious! Most compact topological
group actions on balls that come to mind are conjugate to linear actions and
hence have fixed points. And, a fortiori, examples of compact automorphism
groups of domains homeomorphic to balls without fixed points are even less
accessible.

Here, however, is a way to produce examples:
There is a finite group, say Γ , acting smoothly on S7 with exactly one fixed

point ([Stein 1976]; see also, for more on the general situation, [Petrie 1982]).
This action can in fact be taken to be real analytic: this possibility is a general
feature, once the existence of such a smooth action is known ([Illman 1994]).
For any such (real analytic) action by Γ , a Γ -invariant Riemannian metric g0
can be found by the usual averaging process. Then the complement in S7 of
every sufficiently small closed g0-ball around the fixed point is real analytically
diffeomorphic to a (standard) ball in R7 on which the finite group Γ acts real
analytically and acts without fixed point. In this way, one obtains a bounded
domain W in R7, diffeomorphic to the ball, such that W is real analytically
acted upon by the finite group, without fixed points, and the closure of W is
contained in a larger bounded domain V to which the group action extends
real analytically, also without fixed points. The domain W (as well as V at
the same time) can be taken to be real analytically equivalent to a standard
ball. In fact, W can be taken to be a standard ball in R7.

By averaging, there is a group-invariant function F : V → R such that F
is real analytic and W = {p ∈ V : F (p) < 1} and such that dF is nowhere
zero on {p ∈ V : F (p) = 1}.

Now each element γ of the finite group Γ extends to be a biholomorphic
map of some neighborhood Vγ of the closure of W in C7 into some open neigh-
borhood of the closure of V . The intersection Ŵ :=

⋂
γ∈Γ Vγ is a neighborhood

in C7 of the closure of W .
Consider the function y2

1 +y2
2 + · · ·+y2

7 on C7, where zj = xj +
√−1yj . By

averaging and shrinking Ŵ if necessary (while still keeping it a neighborhood
of the closure of W ), we obtain a group-invariant C∞ function ϕ : Ŵ → R,
say, such that ϕ ≥ 0 and {p ∈ Ŵ : ϕ(p) = 0} is the set where yj = 0 for all
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j = 1, . . . , 7 and such that ϕ is strictly plurisubharmonic (since y2
1+y2

2+· · ·+y2
7

is). Here, “group-invariant” does not mean that the set Ŵ is invariant under
the action by Γ but only that ϕ(p) = ϕ(γ(p)) for each γ ∈ Γ and each p ∈ Ŵ .

Next, note that we can also average the function

(z1, . . . , z7) �→ F (x1, . . . , x7)

over the Γ -action, when z = (z1, . . . , z7) is in a neighborhood in C7 of the
closure of W . This yields a group-invariant function F̂ on a small enough such
neighborhood in R7 ⊂ C7.

Now consider F̂ + Mϕ, where M is a (large) positive constant to be de-
termined and let

W̃M := {p : F̂ (p) + Mϕ(p) < 1}.

Then W ⊂ W̃M , since F = F̂ < 1 on W and ϕ = 0 on W . Moreover,
for M large enough, W̃M is C∞ strongly pseudoconvex because ϕ is C∞

strictly plurisubharmonic. The nonvanishing of the gradient of F̂ + Mϕ at
the boundary of W̃M is easily checked. Finally, the domain W̃M is group-
invariant—the group Γ acts on it—because the defining function is group-
invariant.

When M again is large enough, the group action on W̃M is without fixed
point. For, otherwise a limiting argument would produce a fixed point for the
group action on W , since, as M → +∞, the domains W̃M collapse to W .

This construction is of course quite general. It would apply to any finite
group acting smoothly on a sphere with exactly one fixed point: the specific
reference to S7 is only an historical tribute to [Stein 1976]. Indeed, one could
similarly deal with compact groups in general acting smooth on a sphere with
one fixed point. Note also that the domain W̃M cannot be biholomorphic to
the ball, since every finite (or indeed compact) subgroup of automorphism
group of the ball has a fixed point. Thus Aut (W̃M ) is a compact group (see
Corollary 3.4.4) acting without fixed points on W̃M .

Now we explore results from the paper [Greene/Krantz 1981] that are
based on Theorem 3.5.1, on the stability of Bergman metric curvature near
the boundary of a C∞ strongly pseudoconvex domain.

The following lemma will be pivotal to the considerations in this subsection.

Lemma 4.1.3. Let Ω0 be a fixed strongly pseudoconvex domain with C∞

boundary that is not biholomorphic to the ball. Then there are a neighbor-
hood U of Ω0 in the C∞ topology on domains, a number δ > 0, and a point
p ∈ Ω0 such that if Ω ∈ U then p ∈ Ω and

dis(f(p), ∂Ω) ≥ δ

for all f ∈ Aut (Ω).
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Proof. According to Theorem 4.2.2, the holomorphic sectional curvature of
the Bergman metric of Ω0 is not constant. (Theorem 4.2.2 will be proved later
by an argument independent of the present Lemma 4.1.3.) In particular, there
is a constant λ > 0, a point p ∈ Ω0 and a J-invariant 2-plane P such that the
sectional curvature κ(P ) of the Bergman metric of Ω0 at p satisfies∣∣∣κ(P ) +

4
n + 1

∣∣∣ > λ.

From the stability result Theorem 3.5.2, there is a neighborhood U1 of Ω0 in
the C∞ topology on domains such that p ∈ Ω if Ω ∈ U1 and∣∣∣κΩ(P ) +

4
n + 1

∣∣∣ > λ

2

for all Ω ∈ U1, where κ(P ) = the sectional curvature of the 2-plane P at
p for the Bergman metric of Ω. By Theorem 3.5.1, there is a C∞ neighbor-
hood U2 of Ω0 and a constant δ > 0 such that if Ω ∈ U2, if q ∈ Ω with
dis (q,Cn \Ω) < δ, and if Q is a J-invariant 2-plane at q, then∣∣∣κΩ(Q) +

4
n + 1

∣∣∣ > λ

2
.

Now sectional curvature is invariant under isometries, and hence sectional cur-
vatures of a Bergman metric are invariant under biholomorphic maps. More-
over, (the differentials of) biholomorphic maps take J-invariant 2-planes to
J-invariant 2-planes. It follows that if Ω ∈ U1 ∩ U2, then the orbit of the
point p under Aut (Ω) contains no points x with dis (x, ∂Ω) < δ. ��

Let Ω ⊆ Cn be a domain. We say that Ω is rigid if Aut (Ω) = {id}. In
other words, Ω is rigid if the only biholomorphic mapping of Ω to itself is the
identity mapping.

Theorem 4.1.4. Let Ω0 be a smoothly bounded, strongly pseudoconvex do-
main that is rigid. Then any sufficiently small C∞ perturbation of Ω0 is also
rigid. In other words, the set of rigid, strongly pseudoconvex domains in Cn

with smooth boundary is open in the C∞ topology of domains.

Remark. It follows from [Burns/Shnider/Wells 1978] (which uses the theory of
Tanaka/Chern/Moser invariants [Chern/Moser 1974], [Tanaka 1965]) that the
collection of all smoothly bounded, rigid, strongly pseudoconvex domains is
dense in the collection of all smoothly bounded, strongly pseudoconvex do-
mains. Actually, this density can be established without the use of invariant
theory, just by parameter counting, by using systematically that the number of
parameters at a given jet level for a hypersurface is larger than the number
of parameters for local biholomorphic maps, as already discussed. Coupled
with the result of the theorem, this implies that the collection of smoothly
bounded strongly pseudoconvex domains with nontrivial automorphism group
is residual—in the sense of the Baire category theory. The rigid domains are
an open dense set (in the C∞ topology on domains). Rigidity is “generic.”
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Proof of Theorem 4.1.4. The proof will be by contradiction: Suppose there is
a sequence {Ωj}∞j=1 of C∞ strongly pseudoconvex domains converging in the
C∞ topology to a C∞ strongly pseudoconvex domain Ω0 with Aut (Ω0) = {id}
but such that, for each j ≥ 1, Aut (Ωj) 	= {id}. Observe that if αj : Ωj → Ωj

is a sequence of holomorphic mappings then, by standard normal families
arguments, there is a subsequential limit mapping α0 : Ω0 → cl(Ω0). Choose,
for each j, αj ∈ Aut (Ωj), αj 	= idΩj

.
The domain Ω0 is certainly not biholomorphic to the ball. So Lemma 4.1.3

tells us that there is a point p ∈ Ω0 and a number δ > 0 such that the points
{αj(p)} lie in {z ∈ Ωj : dis(z, ∂Ωj) > δ} for all sufficiently large j. In partic-
ular, we can be sure that {αj(p)} lie in {z ∈ Ω0 : dis(z, ∂Ω0) > δ} as long as
j is sufficiently large. As a result, the mapping α0 : Ω0 → cl(Ω0) must itself
be an automorphism. (See Theorem 1.3.4.)

Since Aut (Ω0) = {id}, we conclude that α0 = id. In order for us to
obtain a contradiction, it suffices to show that the sequence {αj} could have
been selected to be bounded away from the identity, for all large j, on some
compact subset of Ω0. In so constructing the sequence αj , we will (discarding
a finite number of domains and mappings if necessary) take p ∈ Ωj and
dis(p, ∂Ωj) > δ for all j.

We first claim that there is an ε > 0 such that, if the orbit of p under
Aut (Ωj) is contained in the Bergman metric ball on Ωj of size ε around p, then
there is a fixed point of Aut (Ωj) contained in this ball. To prove this claim,
notice that the group Aut (Ωj) will be compact if the orbit of p is bounded in
the Bergman metric; and if the orbit of p is contained in a sufficiently small
ball about p, then that compact orbit will also have a unique Riemannian
center of mass in the ball, which will be a fixed point of the group action. The
required smallness of this ball is stable under C∞ perturbation of the metric,
hence under C∞ perturbation of the domain. Hence that smallness can be
chosen uniformly in j. This stability and consequent uniformity comes from
the C∞ interior stability of the Bergman metric and the usual conditions for
existence of a unique Riemannian center of mass (cf. [Grove/Karcher 1973]).

Now, suppose that it is not possible to select αj ∈ Aut (Ωj) which are
bounded away from the identity on the Euclidean ball of radius δ/4 around p.
Passing to a subsequence if necessary, we may assume that Aut (Ωj) restricted
to this ball converges to the identity. Then, as we have previously noted, for
all large j there will be a fixed point—call it pj—for Aut (Ωj) with pj in the
Bergman metric ball of radius ε about p. [Here we are assuming, without loss
of generality, that the Bergman metric balls of radius 2ε around p for the
Bergman metrics of the Ωj are all contained in the Euclidean ball of radius
δ/4 about p.]

Thus, for all large j, Aut (Ωj) is isomorphic to a subgroup Hj of the
unitary group via the mapping α �→ dα|pj

, as usual. Now here is the crux of the
argument: since the unitary group does not contain arbitrarily small nontrivial
subgroups, there is a positive constant η > 0 such that, for each sufficiently
large j, there is an element βj ∈ Aut (Ωj) with the distance of dβj

∣∣
pj

to
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the identity exceeding η (where distance is relative to some fixed bi-invariant
metric on the unitary group). But this fact, together with the facts that the
Bergman metrics of the Ωj converge C∞ to that of Ω0 uniformly on the
Euclidean ball of radius 3δ/8 about p and that the pj lie in the fixed compact
closed ball of Euclidean radius δ/4 about p, implies that the action of the
elements βj does not converge to the identity on the Euclidean ball about p
of radius 3δ/8. This contradiction completes the proof. ��

A similar, but simpler, argument establishes the following result. We refer
the reader to [Greene/Krantz 1981] for the details.

Theorem 4.1.5. Each biholomorphic equivalence class is closed in the C∞

topology on the set of C∞ strongly pseudoconvex domains.

4.2 Bergman Representative Coordinates

The Bergman kernel function gives rise not only to the Bergman metric, as
already discussed, but also to some special local holomorphic coordinate sys-
tems which play a significant role in the study of biholomorphic mappings and
in particular will be heavily used here. These local coordinate systems, known
as Bergman representative coordinates, share certain properties with the
geodesic normal coordinates of Riemannian geometry. In particular, biholo-
morphic mappings are linear when expressed in representative coordinates,
in analogy with isometries being linear in geodesic normal coordinates. But
geodesic normal coordinates are never holomorphic unless the (Kähler) met-
ric is flat, that is, locally isometric to Cn, while the Bergman representative
coordinates are holomorphic in all cases where they are defined.

As we shall see, the Bergman representative coordinates provide a natu-
ral way to analyze, among other things, smoothness to the boundary of bi-
holomorphic mappings. But this possibility was overlooked for some time by
the mathematical community as a whole. Bergman himself suggested this use
for representative coordinates at the 1975 AMS Summer Institute on Several
ComplexVariables inWilliamstown,Massachusetts.This suggestionwas treated
with respect by the several hundred people who heard it there, as befitted
Bergman’s venerable age and his stature in the field. But the remark was almost,
it seems, completely misunderstood. This is somewhat surprising in view of the
great interest at that time in simplifying the latter part of Fefferman’s then new
paper [Fefferman 1974], in which the asymptotic expansion for the Bergman
kernel obtained in the first part is shown by an intricate argument involving
geodesics to imply boundary smoothness. As we shall see below, Bergman’s
suggested use of representative coordinates was exactly a propos: these coordi-
nates provide precisely the right tool to obviate the analysis of geodesics and
to go directly to smoothness to the boundary. [The later paper [Webster 1979]
gives one method for implementing Bergman’s idea, though without attribu-
tion to Bergman and hence, one supposes, independently.]



4.2 Bergman Representative Coordinates 107

Bergman’s representative coordinates are also involved in the proof of Lu
Qi-Keng’s theorem (Theorem 4.2.2) on bounded domains with Bergman met-
rics of constant holomorphic sectional curvature. This result will be stated in
detail and proved in the present section.

We turn first to the definition of Bergman representative coordinates.
Let Ω be a bounded domain in Cn and let q be a point of Ω. The “diagonal”

Bergman kernel KΩ(q, q) is of course real and positive so that there is a
neighborhood of q such that, for all z, w in the neighborhood, KΩ(z, w) 	= 0.
Then for all z, w in that neighborhood, we define

bj(z) = bj,q(z) =
∂

∂wj
log

K(z, w)
K(w,w)

∣∣∣∣
w=q

.

It is actually certain constant-coefficient linear combinations of these that will
be the ultimate “Bergman representative coordinates,” but we begin with the
functions just defined. Note that these coordinates are well defined, indepen-
dent of the choice of logarithmic “branches.” Each bj(z) is clearly a holomor-
phic function of z.

Notice that some restriction on z to be in a neighborhood of q may be
actually necessary, since it may be that KΩ(z, w) vanishes for some pairs
(z, w) ∈ Ω ×Ω.1 In any event, the mapping

z �−→ (
b1(z), . . . , bn(z)

) ∈ Cn

is defined and holomorphic in a neighborhood of the point q. Note also that
(b1(q), . . . , bn(q)) = (0, . . . , 0).

We are hoping to use these functions, and later certain special linear com-
binations of them, as holomorphic local coordinates in a neighborhood of q.
By the holomorphic inverse function theorem, these functions give local coor-
dinates if the holomorphic Jacobian

det
(
∂bj

∂zk

)
j,k=1,...,n

is nonzero at q.
But in fact the nonvanishing of this determinant at q is an immediate

consequence of a fact that we have established already, first, that the Bergman
metric is positive definite. To see this relationship, notice that

∂bj

∂zk

∣∣∣∣
z=q

=
∂

∂zk

(
∂

∂wj
logK(z, w)

)∣∣∣∣
z=w=q

=
∂2

∂zk∂zj
logK(z, z)

∣∣∣∣
z=q

.

1The point w is involved only very near q, but variation of z over all of Ω might
lead to zeros of K(z, w). In fact the zeros of KΩ(z, w) do actually arise, even when
Ω is required to be topologically a ball; see, e.g., [Boas 1986].
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This last term is of course the Hermitian inner product
〈

∂
∂zk

, ∂
∂zj

〉∣∣
q

with
respect to the Bergman metric. Thus the expression

det
(
∂bj

∂zk

)∣∣∣∣
q

is the determinant of the inner product matrix of a positive definite Hermitian
inner product. Hence this determinant is positive and, in particular, nonzero.

The utility of the new coordinates in studying biholomorphic mappings
comes from the following lemma.

Lemma 4.2.1. Let Ω1 and Ω2 be two bounded domains in Cn with q1 ∈ Ω1
and q2 ∈ Ω2. Denote by b11, . . . , b

1
n the Bergman coordinates as defined near

q1 in Ω1 (using the Bergman kernel for Ω1) and b21, . . . , b
2
n the Bergman co-

ordinates defined in the same way near q2 in Ω2 (using the Bergman kernel
for Ω2). Suppose that there is a biholomorphic mapping F : Ω1 → Ω2 with
F (q1) = q2. Then the function defined near 0 ∈ Cn by

(α1, . . . , αn) �−→ the b2-coordinates of the F -image of the point
of Ω1 with b1-coordinates (α1, . . . , αn)

is a C-linear transformation.

In short form, we say that biholomorphic mappings are linear when ex-
pressed in the Bergman representative coordinates bj .

Proof of the lemma. Toavoid confusion,wewrite (z1, . . . , zn) and (w1, . . . , wn)
for the Cn-coordinates in Ω1 and (Z1, . . . , Zn) and (W1, . . . ,Wn) for the Cn-
coordinates in Ω2. In addition, we write K1 for KΩ1 and K2 for KΩ2 . Now
observe that, for each j = 1, . . . , n,

∂

∂wj
log

K2(F (z), F (w))
K2(F (w), F (w))

=
∂

∂wj
log

K1(z, w)
K1(w,w)

.

The reason for this identity is

K2(F (z), F (w))
K2(F (w), F (w))

=
K1(z, w)
K1(w,w)

× (a holomorphic function of z)

×(a holomorphic function of w).

This last follows from the transformation law—the factors that are conjugate
holomorphic in w cancel out, since they are the same in numerator and de-
nominator. Thus we obtain (from the complex chain rule) that

b1j (z)
def=

∂

∂wj
log

K1(z, w)
K1(w,w)

∣∣∣∣
w=q1

=
∂

∂wj
logK2(F (z), F (w))− logK2(F (w), F (w))

∣∣∣∣∣
w=q1

=
∑

k

[
∂F

k

∂wj
· ∂

∂W k

· log
K2(F (z),W )
K2(W,W )

] ∣∣∣∣∣
W=F (q1)

,
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where F k is the k-th coordinate of F (w1, . . . , wk). But this last expression is
exactly

∑
k

∂F
k

∂wj

∣∣∣∣
w=q1

· b2k(F (z)).

Hence

b1j (z) =
∑

k

∂F
k

∂wj

∣∣∣∣
w=q1

· b2k(F (z)).

Since the Jacobian matrix (∂F k/∂wj) of F is invertible at q, it follows that
the b2k(F (w)) are linear functions of the b1j (z) coordinates, as required. ��

The lemma is sufficiently surprising to justify looking at an explicit ex-
ample. Let Ω1 = Ω2 = the unit disc in C. Set q1 = a in the disc, and take
q2 = 0. Define

F (z) = λ · z − a

1− az

for some complex λ of unit modulus. Then the b1-coordinates at q = a are
the evaluation at w = a of

∂

∂w
log

1/(1− zw)2

1/(1− ww)2
= −2

∂

∂w
[log(1− zw)− log(1− ww)]

= −2
( −z

1− zw
+

w

1− ww

)
.

Therefore

b1(z) = 2
(

z

1− za
− a

1− aa

)
= 2

(
z − zaa− a + zaa

(1− za)(1− aa)

)
=
(

z − a

1− az

)
· 2
1− aa

.

To get b2-coordinates, we do the same calculations, but evaluate at 0 to obtain

b2(z) = 2z.

Thus the biholomorphic map F takes the point z with b1-coordinate α (equal-
ing 2(z−a)/[(1−az)(1−aa)]) to the point with z-coordinate λ(z−a)/(1−az)
and hence with b2-coordinate 2λ(z − a)/(1− az) = (1− aa)λ · b1(z).

The mapping is indeed linear. The computationally inclined reader is in-
vited now to see how the b1-, b2-coordinate setup enables one to regener-
ate the formula for the automorphisms (found in Section 3.3) of the ball
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in Cn that take, e.g., (a, 0, . . . , 0) to (0, . . . , 0); one need only be armed
with the knowledge that the Bergman kernel for the unit ball in Cn is
cn(1− z ·w)−(n+1). Of course, in practice, we used these biholomorphic map-
pings originally to actually compute the Bergman kernel, but it is still a matter
of some interest to watch this regeneration of the maps in action.

The coordinates we have been discussing can be pushed one step further
towards being truly “canonical,” that is, dependent only on the complex struc-
ture. Let q ∈ Ω and let V1, . . . , Vn denote holomorphic vector fields defined in
an open neighborhood of q satisfying

〈
Vj , Vk

〉∣∣∣
q

=

{
1 if j = k

0 if j 	= k.

Then for each fixed z ∈ Ω, we define

βj = Vj log
KΩ(z, w)
KΩ(w,w)

∣∣∣
w=q

.

[Hence the Vjs act as differential operators only on the w-variables.] The
proof that (b1, . . . , bn) defines a coordinate system at q can be easily modified
to show that this map z �→ (β1(z), . . . , βn(z)) is a well-defined holomorphic
coordinate system at q.

Again, given a biholomorphic mapping F : Ω → Ω̃ and the respec-
tive Bergman representative coordinate systems (β1, . . . , βn) at q ∈ Ω and
(β̃1, . . . , β̃n) at F (q) ∈ Ω̃, the map F takes expression in these coordinate
systems as follows: there is a nonsingular complex matrix Ajk such that

β̃j =
n∑

k=1

Ajkβk.

There are further properties. At the “center” q, the β-coordinate vector fields
are orthonormal relative to the Bergman metric. (The same holds, of course,
for β̃-coordinates at F (q).) It is these coordinates that we shall hereinafter
call the Bergman representative coordinates of Ω at q. It of course remains true
that biholomorphic mappings are linear in these coordinates. But in addition
they are unitary linear mappings!2

Notice that these coordinates themselves are unique up to a unitary rota-
tion. Generally, one could not expect any further canonical aspect than that:
Since unitary rotations act as biholomorphic maps on the unit ball, one cannot
expect coordinates that are canonical beyond up-to-a-unitary-rotation. The
Bergman representative coordinates are as canonical as holomorphic coordi-
nates could be.

2On the other hand, the ordinary holomorphic (but nonbiholomorphic) mappings
do not show any particular characteristic property in this coordinate system.
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The Bergman representative coordinates are, as already noted, in some
ways similar to geodesic normal coordinates, but with the additional property
of being holomorphic. Further extraordinary properties will develop as we
continue our discussion. Note, meanwhile, that the whole concept of repre-
sentative coordinates extends essentially automatically to complex manifolds
for which the Bergman metric construction for (n, 0) forms already discussed
above yields a positive definite metric. The construction can still be done lo-
cally, using general local holomorphic coordinates, and it remains true that
the Bergman coordinates linearize holomorphic mappings. And again, the
coordinates can be made more nearly canonical by using a basis for the dif-
ferentiation that is orthonormal relative to the Bergman metric. A new point
arises in that the quotient K(z, w)/K(w,w) is not defined as such: it becomes
defined only after a local coordinate choice around w and separately around z,
if z is far from w. This turns out not to matter: this whole matter is discussed
further in Chapter 11.

Our first application of Bergman representative coordinates is to the proof
of a remarkable theorem of Lu Qi-Keng on domains with a Bergman metric
of constant holomorphic sectional curvature.

Theorem 4.2.2 (Lu Qi-Keng). If Ω is a bounded domain in Cn, the Berg-
man metric of which is complete and has constant holomorphic sectional cur-
vature, then Ω is biholomorphic to the unit ball.

Notice that this result is certainly specific to the Bergman metric. For
example, the annulus {ζ ∈ C : 1 < |ζ| < R}, R > 1, admits a complete metric
of constant (holomorphic) sectional curvature (see Section 2.3). But it is not
even homeomorphic to the unit disc, much less biholomorphic to it.

This theorem has a complex manifold generalization: this is presented in
Chapter 11.

Proof of Theorem 4.2.2. We first observe that the holomorphic sectional cur-
vature, say c, must be negative. For, if c were positive, then Ω would be
a complete Riemannian manifold with all sectional curvatures greater than
or equal to c/4 > 0 (see Section 3.5).3 Hence Ω would be compact by stan-
dard Riemannian geometry. [This is Myers’s theorem: A complete Riemannian
manifold with sectional curvature everywhere ≥ε > 0 has diameter ≤π/√ε
and is hence compact (cf. e.g., [Petersen 2006]).]

If c were zero, then the universal cover of Ω would be a complete, simply
connected Kähler manifold of sectional curvature 0 and hence would be bi-
holomorphically isometric to Cn. But then, since Ω is bounded, the covering
map into Ω would be constant by Liouville’s theorem. This would contradict
surjectivity of the covering map (to say the least!).

3This follows by the formula for Riemannian sectional curvature in case the
holomorphic sectional curvature is constant. See Section 3.6 for the negative case:
the positive case is the same up to the sign change.



112 4 Applications of Bergman Geometry

It remains to discuss the case c < 0. If gΩ is the Bergman metric of Ω
(with constant negative holomorphic sectional curvature c), then the metric

g := −c(n + 1)
4

gΩ

has constant (negative) holomorphic sectional curvature −4/(n + 1) (cf. the
remarks on scaling by constant factors at the end of Subsection 3.3.1). Thus
the simply connected covering space Ω̂ of Ω with the pullback ĝ of the
metric g is a complete simply connected Kähler manifold with constant
holomorphic sectional curvature −4/(n + 1). By standard Kähler geome-
try (cf. [Kobayashi/Nomizu 1963]), (Ω̂, ĝ) is biholomorphically isometric to
Bn with its Bergman metric. Thus we obtain a holomorphic covering map
F : Bn → Ω which is locally isometric for the Bergman metric on Bn and g
on Ω, respectively.

To prove the theorem, we need only show that F is in fact injective.
For this let q = F (0). Since F is a covering map, it is locally invertible.

first, there exists an open neighborhood U of q and a neighborhood V of 0
such that F |V : V → U is a biholomorphism. Denote by H0 the inverse of F |V .

With z, w ∈ U , let

K0(z, w) := KBn(H0(z), H0(w)).

Then

∂2

∂zj∂z̄k
logK0(z, z) = gjk̄ = λ gΩjk̄

by the condition on F above, where λ = − c(n+1)
4 . This implies that

∂2

∂zj∂z̄k
logK0(z, z)− ∂2

∂zj∂z̄k
λ logKΩ(z, z) = 0

for every z ∈ U , and furthermore that

logK0(z, w)− λ logKΩ(z, w) = ϕ(z) + ϕ(w)

for every z, w ∈ U , for some holomorphic function ϕ : U → C. Actually for
this one may need to replace U by a smaller, simply connected neighborhood;
but that can be done without loss of generality, here and in what follows.
Consequently one obtains

∂

∂w̄j
log

K0(z, w)
K0(w,w)

− ∂

∂w̄j
λ log

KΩ(z, w)
KΩ(w,w)

= 0

for every z, w ∈ U .
This last gives rise to the direct computation with Bergman’s representa-

tive coordinate systems b1 : V → Cn and b2 : U → Cn. As in the introduction
for Bergman’s representative coordinate systems, one obtains that
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H0(ζ) = (F |V )−1 = (b1)−1 ◦A ◦ b2(ζ) (�)

for every ζ ∈ U . Here, of course, A is the linear map represented by the matrix
with the (j, k)-th entry

λ
∂Fk

∂zj

∣∣∣
0
.

Now look at the expressions in (�). The map b1 is in fact a constant
multiple of the Euclidean coordinate system. Therefore it extends to all of Cn

holomorphically, needless to say. So does the linear map A. The map ζ → b2(ζ)
extends to a holomorphic mapping of Ω \ Zq, where

Zq = {ζ ∈ Ω | KΩ(ζ, q) = 0}.

Since KΩ(·, q) is a holomorphic function on Ω with KΩ(q, q) 	= 0, the set Zq

is an analytic variety whose complex codimension in Ω is 1. Hence Ω \ Zq is
a connected, dense, and open subset of Ω. Therefore, using the expression of
H0 in (�), the map H0 extends to a holomorphic mapping of Ω \ Zq into Cn.
Let H denote this extension.

Now, let X := F−1(Zq). Then one immediately sees that

X = {z ∈ Bn | KΩ(F (z), q) = 0}.

Since KΩ(F (0), q) = KΩ(q, q) 	= 0, we see that X is again a complex analytic
subvariety of Bn with complex codimension 1. Thus Bn \X is a connected,
dense, and open subset of Bn. Furthermore, H ◦ F : Bn \ X → Cn is holo-
morphic with H ◦ F (z) = z for every z ∈ V , as H = H0 on V . This means
that H ◦ F (z) = z for every z ∈ Bn \X. Now, for every ζ ∈ Ω \ Zq, choose
x ∈ Bn such that F (x) = ζ. Then

H(ζ) = H(F (x)) = x.

This implies that H(Ω \ Zq) ⊂ Bn.
We see that H is holomorphic on Ω\Zq. The removable singularity theorem

for bounded holomorphic maps (the Riemann extension theorem) yields that
H extends to a holomorphic mapping of Ω into Cn. Since H continues to play
the role of left inverse of F , it follows easily that F has to be injective. This
completes the proof. ��

It is worthwhile to look back to see the exact role of completeness in this
proof. Completeness in fact played no role in the construction of the local
inverse which turned out to be a global, one-sided inverse. But completeness
was used to get the holomorphic, locally isometric covering map from B to Ω
in the first place. Without completeness, one would have only a locally defined
covering map, and the subsequent arguments would not apply to inverting this
map, it not being defined on all of B.
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4.3 Equivariant Embedding and Concrete Realization
of Abstract Complex Structures

Suppose that Ω is a bounded domain in Cn that contains the origin 0. There
may be (nonidentity) elements of Aut (Ω) that act on Ω as the restrictions
to Ω of unitary linear transformations of Cn, that is, as elements of U(n).
The set of such elements of Aut (Ω) is clearly the set of restrictions to Ω of
those elements α of U(n) such that α(Ω) = Ω. If every element of the isotropy
group I0 = {f ∈ Aut (Ω) : f(0) = 0} arises in this fashion, then we say that
Ω is equivariantly embedded in Cn at 0.

In this case, the mapping of I0 into U(n) defined by f �→ df |0, with f ∈ I0,
is an injective, continuous isomorphism of I0 into a compact subgroup of U(n),
with each element of this subgroup mapping Ω to itself. Thus the isomorphism
of Corollary 1.3.7 becomes a concrete matter: the group of differentials, al-
ways isomorphic for any bounded Ω to the isotropy at a point, is literally the
group of mappings itself. The obvious examples of this kind of behavior are
balls and polydiscs centered at the origin. In fact, by Corollary 1.3.2, any com-
plete circular domain has this equivariant embedding property. The following
surprising result gives in effect an equivariant “re-embedding” of any domain
close to the ball.

Theorem 4.3.1 (Greene–Krantz). There is a neighborhood U , in the C∞

topology on domains, of the unit ball in Cn such that, for every Ω ∈ U , there is
a biholomorphic map F : Ω → Cn with F (0) = 0 and with F (Ω) equivariantly
embedded at 0.

In the case n = 1, this result expresses the familiar fact (the Riemann
mapping theorem) that a domain that is C∞ close to the disc is biholomorphic
to the disc via a biholomorphic mapping taking 0 to 0. The disc itself is of
course equivariantly embedding at 0. But, for n ≥ 2, the theorem is startling,
just because the Riemann mapping theorem fails entirely even for domains C∞

close to the ball. In general, Ω will definitely not be biholomorphic to the ball;
also F (Ω) will be not the ball but some other domain that somehow exhibits
the “abstract” symmetries of Ω around 0 as concrete geometric symmetries
of F (Ω) that extend to be unitary rotations of Cn itself.

Proof of Theorem 4.3.1. It has already been observed that the expression
of an automorphism in Bergman representative coordinates (around a point
and its image) is a unitary linear transformation. Thus, taking F to be the
Bergman representative coordinate map at 0 of Ω will do the job for the theo-
rem, provided that the Bergman representative map is defined on all of Ω and
is injective and nonsingular everywhere. These properties are not automatic;
for example, for general bounded domains Ω, KΩ(z, w) can have zeros even in
cases where Ω is homeomorphic to the ball ([Boas 1986]). However, it turns
out that the Bergman representative coordinate map FΩ : Ω → Cn at 0 ∈ Ω
is in fact an everywhere-defined holomorphic diffeomorphism onto a bounded,
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open set in Cn for all Ω that are sufficiently close in the C∞ sense to the unit
ball Bn.

To establish this last fact, note first that FBn is indeed a diffeomorphism.
Indeed, it is the identity map of the ball to the ball (up to a dilation constant).
This one checks by direct calculation. In particular, FBn extends to be a
diffeomorphism of the closed ball cl(Bn) into Cn, in the sense that it extends
to the closure to be an injective C∞ map with everywhere nonzero (real)
Jacobian determinant.

The next step of the proof is to recall from basic differential topology
(cf. [Munkres 1966]) that the property of being a diffeomorphism of a compact
manifold-with-boundary into a Euclidean space is stable in the C1 topology.
In particular, a C∞ mapping of the closed unit ball that is C1 close to the
identity will be such a diffeomorphism.

In our case, we are interested in a C∞ mapping, the mapping via Bergman
representative coordinates, not of the ball but of a domain Ω that is C∞ close
to the ball. But, following the usual terminology of differential topology, we
say that a map F : cl(Ω)→ Cn is C1 (or C∞) close to a map G : cl(Bn)→ Cn

if there is a diffeomorphism H : cl(Bn)→ cl(Ω), H itself close to the identity,
with F ◦ H close to the map G on Bn. Then it remains true that if F is
C1 close to a diffeomorphism in this sense, then it is itself a diffeomorphism
(of cl(Ω)) into Cn.

Thus the question of F : Ω → Cn being a diffeomorphism can be dealt
with by showing that F extends C∞ to cl(Ω) and that F : cl(Ω)→ Cn is C1

close to the G on Bn in the sense indicated.
At first sight this might seem difficult to establish: There are two direct ap-

proaches to the Bergman kernel. One is by its definition via the “reproducing
property”, that inner product with K(z, w) gives the value at w for elements
of A2(Ω). The other is the formula for K(z, w) in terms of an orthonormal ba-
sis for A2(Ω). But neither of these seems amenable to producing information
on the behavior of K(z, w) with w fixed, z approaching the boundary. Interior
behavior is more reasonably expected to be stable. (See Theorem 3.5.3, as well
as Theorem 10.1.4.) But it turns out that the behavior of KΩ(z, w), with w
fixed in Ω, and z going to the boundary, can be effectively analyzed via the
solution of the ∂ problem as follows.

With w ∈ Ω fixed, let r be a positive number that is less than the distance
of w to Cn\Ω. Choose a nonnegative function ρ : Cn → R with ρ(z) depending
on ‖z‖ only, and with ρ(z) = 0 if ‖z‖ ≥ r and finally with

∫
Cn ρ(z) dV (z) = 1.

Then by the mean value property for each f ∈ A2(Ω) this formula holds:

f(w) =
∫

Ω

f(z)ρ(z − w) dV (z).

In particular, the reproducing (Bergman) kernel K(z, w) with defining property

f(w) =
∫

Ω

f(z)K(z, w) dV (z)
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is the L2 projection of ρ(z −w) onto A2(Ω), with z being the variable and w
fixed. This projection can be thought of as obtained via the solution of a ∂
problem. first, let u be the solution (in L2(Ω)) of ∂u(z) = ∂(ρ(z − w)) which
is orthogonal in L2(Ω) to A2(Ω). Then K(z, w) = ρ(z − w)− u(z).

The solutions of ∂u = f , where ∂f = 0, with u orthogonal in L2(Ω) to
A2(Ω), are of course the standard topics in the study of the ∂-Neumann prob-
lem. In particular, in our case, when Ω is C∞ close to B and hence strongly
pseudoconvex, the indicated solution u of ∂u(z) = ∂(ρ(z−w)) is C∞ on cl(Ω).
This is the usual smoothness-to-the-boundary result ([Folland/Kohn 1972]):
note that ∂(ρ(z−w)) is compactly supported in Ω and hence is itself obviously
smooth on cl(Ω).

Of course this method of finding K(z, w) applies when Ω = B in particu-
lar. Thus the kind of C1 closeness of KΩ(z, w) to KB(z, w) that we are looking
for can be considered from the viewpoint of the stability of the solution for
the ∂-Neumann problem under variation of the domain on which the solution
is occurring. This stability seems eminently plausible. Indeed, it is assumed
without further comment in Kohn’s classic work on the ∂-Neumann problem
[Folland/Kohn 1972], where it is used to deduce the Newlander–Nirenberg the-
orem on integrable almost complex structures. But a completely explicit dis-
cussion of the stability issue can be found in [Greene/Krantz 1981], as part of
the general discussion of the stability of the nondiagonal Bergman kernel and
of the asymptotic expansion of the diagonal kernel function at the boundary.

There it is shown that, if Ω is sufficiently C∞ close to a fixed, strongly
pseudoconvex domain Ω0, and if a (0, 1) form ω on cl(Ω) with ∂ω = 0 is
sufficiently C∞ close to a (fixed) (0, 1) form ω0 on cl(Ω0) with ∂ω0 = 0, then
the ∂-Neumann solution of ∂u = ω on Ω is C∞ close on cl(Ω) (i.e., in a given
C∞ neighborhood of) to the ∂-Neumann solution of ∂u0 = ω0 on cl(Ω0). This
is established via a detailed study of the standard proof of the regularity of
the ∂-Neumann problem.

This result implies the needed C1 stability of Bergman representative co-
ordinates to show that the Bergman map F : Ω → Cn via representative
coordinates is a diffeomorphism. For Ω close to the unit ball and w close
to 0, the (0, 1) form ∂Ω(ρ(z − w)), w fixed, ∂ calculated relative to z, is C∞

close to ∂Bn(ρ(z)) if w is sufficiently close to 0. Our previous observation
on the relationship between the ∂ solution and the Bergman kernel implies
that KΩ(z, w) is uniformly C∞ close to KBn(z, w) for Ω which is C∞ close
to Bn and w in some fixed neighborhood of 0. Since KΩ(z, w) is conjugate
holomorphic in w, Cauchy estimates give that

∂

∂w
logKΩ(w,w)

∣∣∣∣
w=0

is uniformly close to
∂

∂w
logKBn(w,w)

∣∣∣∣
w=0

and that

∂

∂w
logKΩ(z, w)

∣∣∣∣
w=0

is C∞ close to
∂

∂w
logKBn(z, w)

∣∣∣∣
w=0

on cl(Ω).
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Thus the Bergman representative coordinate map FΩ for Ω at 0 is C1 close
to the Bergman representative coordinate map for the ball Bn, which is the
identity (up to a constant factor). Thus the Bergman representative coordinate
map FΩ is a holomorphic diffeomorphism of cl(Ω) into Cn, and the proof of
the theorem is complete. ��

The stability of the ∂-Neumann solution under perturbation of the bound-
ary of a strongly pseudoconvex bounded domain is a special case of a more
general situation: Suppose that Ω0 ∪ ∂Ω0 is a C∞ manifold-with-boundary
and that J0 is an almost complex structure that is C∞ on Ω0 ∪ ∂Ω0 and
integrable on Ω0. In this situation, it makes sense to take as an hypothesis
that ∂Ω0 is strongly pseudoconvex (cf. [Folland/Kohn 1972])—assume now
that ∂Ω0 is indeed C∞ strongly pseudoconvex. Suppose also that Ω0 ∪ ∂Ω0
is given a C∞ Hermitian metric. Then, if f is a C∞ function on Ω0 ∪ ∂Ω0,
we may conclude that there is a unique function u : Ω0 → C with ∂u = ∂f
on Ω and with u orthogonal to A2(Ω) (in the inner product relative to the
given Hermitian metric). Also u is C∞ on Ω0 ∪ ∂Ω0. [One can in fact so solve
∂u = ω, where ω is a (0, 1) form satisfying ∂ω = 0 and with ω having 0 har-
monic representative. But the special situation where ω = ∂f , as indicated,
suffices for our purposes, the harmonic representative being 0 following auto-
matically in this instance.]

This setup has, as shown in [Greene/Krantz 1981] (and implied already
in [Folland/Kohn 1972]), a stability similar to the stability associated to the
stability under perturbation of a strongly pseudoconvex domain in Cn already
discussed. first, let J be another almost complex structure on Ω0 ∪ ∂Ω0 and
let f be a C∞ function on Ω0 ∪ ∂Ω0 and J an almost complex structure
tensor that is C∞ close to J0. If now f is C∞ close to f0 on Ω0 ∪ ∂Ω0,
then the ∂-Neumann solution of ∂Ju = ∂Jf is C∞ close to the ∂-Neumann
solution of ∂J0u0 = ∂J0f0, provided that the ∂J solution is determined for a
J-Hermitian metric which is C∞ close to the given J0-Hermitian metric on
Ω0 ∪ ∂Ω0. This latter condition can always be arranged by setting h = the
J-symmetrization of h0, i.e.,

h(·, ··) =
1
2

(h0(·, ··) + h0 (J(·), J(··))) .

One could add into this picture the C∞ perturbation of Ω0 ∪ ∂Ω0 itself,
but this would not actually increase the generality, since such a perturbation
could be absorbed into perturbation of J0 and f0.

This more abstract form of ∂-stability has an important application: it
yields a proof of the perturbation result of Hamilton asserting that all pertur-
bations of the complex structure of a bounded, strongly pseudoconvex domain
can be realized by embedding ([Hamilton 1977]). This result was originally es-
tablished by Hamilton using the Nash–Moser implicit function theorem. But
the proof based on ∂-stability in [Greene/Krantz 1981] is easier and more
natural, and is also rather brief.
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Theorem 4.3.2 ([Hamilton 1977]; cf. [Greene/Krantz 1981]). If Ω0 is
a C∞ bounded domain in Cn with strongly pseudoconvex boundary and if J
is an almost complex structure defined and C∞ on cl(Ω0) which is integrable
on Ω0 and C∞ close to the almost complex structure J0 of Cn on Ω0 ∪ ∂Ω0,
then there is a domain Ω, C∞ close to Ω0 in the C∞ topology on domains,
such that (Ω0, J) is biholomorphic to (Ω, J0).

In particular, every “abstract” perturbation of the ball is realized by a
perturbation of the ball as a geometric object in Cn.

Proof of Theorem 4.3.2. Let f1, . . . , fn be the coordinate functions on Ω0, i.e.,

fj(z) = the zj coordinate function in Cn evaluated at the point z.

Then ∂J0fj ≡ 0 for each j = 1, . . . , n. If J is C∞ close to J0, then ∂Jfj is
C∞ small on Ω0. The stable ∂ estimates then give that, if ∂Juj = ∂Jfj and
uj is the ∂J -Neumann solution of this equation, then each uj is C1 small in
particular. [Here we use the construction described earlier for the automatic
manufacture of a stably varying Hermitian metric for (Ω0, J).] In particular,
the n-tuple of functions fj − uj , j = 1, . . . , n, gives a mapping which is C1

close on Ω0∪∂Ω0 to the mapping given by the fjs themselves, first the identity
injection of Ω0 into Cn. In particular, the fj−uj , j = 1, . . . , n, are coordinates
of a diffeomorphism of Ω0∪∂Ω0 onto an open set with smooth boundary in Cn,
by the C1 stability of diffeomorphisms.

But the function fj − uj , each j, is J-holomorphic since ∂J(fj − uj) =
∂Jfj − ∂Juj ≡ 0 on Ω0. ��
The idea of this last proof was originally proposed by M. Kuranishi and com-
municated to the first author (Greene) by J. Eells (private communication).

The uniqueness of the ∂-Neumann solution, once a Hermitian metric is
chosen, together with the proof method just used, makes possible an equiv-
ariant extension of Hamilton’s embedding theorem. This result generalizes
Theorem 4.3.1 to cases where equivariant embedding via Bergman represen-
tative coordinates cannot in general be obtained.

Theorem 4.3.3 ([Greene/Krantz 1982]). Suppose that Ω0 is a C∞

strongly pseudoconvex domain in Cn and that G is a compact subgroup of
Aut (Ω0). Suppose further that Ω0 is equivariantly embedded for G in the sense
that G acts on Ω0 as the restrictions of holomorphic isometries of Cn. Let J be
an almost complex structure on Ω0∪∂Ω0 which is integrable on Ω0 and is C∞

close to the Cn complex structure J0 on Ω0∪∂Ω0 and let Γ : G×Ω0 → Ω0 be a
G-action on Ω0 which is J-holomorphic and C∞ close to the original G-action
on Ω0. Then there is a diffeomorphism F : Ω0 ∪ ∂Ω0 → Cn such that:

(1) The mapping F is holomorphic as a map from (Ω0, J) to (Cn, J0).
(2) The mapping F is C∞ close to the injection of Ω0 into Cn.
(3) The mapping F ◦Γ ◦F−1, which is the G-action on F (Ω0), is the restric-

tion to F (Ω0) of a G-action on Cn by holomorphic isometries of Cn.
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(4) The G-action on Cn given in (3) is C∞ close to the original G-action on
Cn attached to that equivariant embedding of Ω0.

Proof (outline). Let h0 be the Cn Hermitian metric restricted to Ω0 so that
h0 is invariant under the original G-action, say Γ0 × Ω0 → Cn, on Ω0. Since
Γ is C∞ close to this original G-action, the average ĥ of h0 with respect to
the Γ -action is C∞ close to h0. Note that this is also C∞ close to h0 since Γ
is C∞ close to an action isometric for h0. Observe further that ĥ may not be
J-Hermitian, even though Γ acts by J-holomorphic maps, since h0 is likely
not J-Hermitian. but the J-symmetrization of ĥ already discussed, call it h,
is J-Hermitian, and it is C∞ close to h0 since J is C∞ close to J0. This metric
h is thus Γ -invariant, J-Hermitian, and C∞ close to h0.

Now let f1, . . . , fn be the coordinate functions on Ω0 so that G acts lin-
early on them, if we choose a suitable new origin in Cn (a compact group
of isometries of Cn has a fixed point and we choose such a fixed point as
origin). Let uj be the ∂-Neumann solution of ∂Juj = ∂Jfj determined by the
Γ -invariant metric h. Since Γ acts almost linearly on the fjs, the mapping Γ
acts almost linearly on the uj s as well, because the ∂J solution process is
Γ -invariant. So Γ acts almost linearly on the holomorphic functions fj − uj

which, moreover, determine an embedding of Ω0 ∪ ∂Ω0.
A standard process of making an almost-linear action linear, which will

preserve J-holomorphicity, completes the construction of the desired equivari-
ant J-holomorphic embedding. [The process involves replacing the functions
Fj = fj − uj by functions, which are C∞ close, defined by(

F̂1(z), . . . , F̂n(z)
)

=
∫

G

Γ0
(
g−1, (F1(gz), . . . , Fn(gz))

)
dg,

where
∫

G
is the invariant (Haar) integral with total measure 1.]4 ��

4.4 Semicontinuity of Automorphism Groups

Symmetry is easily destroyed but not so easily created. To make the straight
crooked requires only an arbitrarily small effort, while to make the crooked
straight requires a definite action.

These intuitions, that symmetry is unstable but an increase in symmetry
requires a substantial change, holds with precision in a variety of circum-
stances. The goal of this section is a result of this type for the automorphism
groups of C∞ strongly pseudoconvex domains. This result will depend for its

4The reader unfamiliar with this process of converting close-to-linear to actually
linear actions by way of re-embedding might find it instructive to consider the exam-
ple in which G is the two-element group {1, g} and F (g(z)) is close to −F (z). Then
the map F̂ defined by z �→ [1/2](F (z)−F (g(z))) satisfies precisely F̂ (g(z)) = −F (z)
so that G acts linearly indeed on the F̂ embedding, which really is an embedding
since F̂ is in fact close to F .
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proof on a theorem similar in spirit concerning compact Riemannian mani-
folds ([Ebin 1968]).

Theorem 4.4.1 (Ebin). If (M, g0) is a C∞ compact Riemannian manifold,
then there is a neighborhood G of g0 in the C∞ topology on C∞ Riemannian
metrics such that: If g ∈ G then there is a diffeomorphism F : M → M (C∞

close to the identity) such that the set{
F ◦ α ◦ F−1 : α : M →M is an isometry for g

}
is a subset of, and hence a subgroup of

{β : β : M →M is an isometry for g0} .
In particular, the group of isometries of M relative to g is isomorphic to a
subgroup of the group of isometries of g0.

Ebin’s original proof of the theorem just stated involved infinite-
dimensional manifolds and the construction of “slices” in the Lie group sense
for the action of the diffeomorphism group on the manifold M . However, the
result can in fact be established by finite-dimensional methods and ordinary
Lie group theory. We outline the argument now.

Let

VΛ = the finite-dimensional linear span of all eigenfunctions of the
Laplacian for g0with eigenvalues < Λ.

[We use here the differential geometer’s Laplacian −∑j ∂
2/∂x2

j at the center
of a geodesic normal coordinate system, so that the spectrum of the Lapla-
cian is nonnegative.] If we equip VΛ with the standard L2 inner product on
functions determined by the measure M for g0, then the compact group of
isometries for g0 acts on VΛ orthogonally. Moreover, if we choose an orthonor-
mal basis f1, . . . , fN for VΛ, then the map E0 : M → RN defined by

M � p �→ (f1(p), . . . fN (p))

is an embedding if Λ is chosen sufficiently large. This is an historic theorem
of S. Bochner ([Bochner 1937], cf. [Greene/Wu 1975a] and [Greene/Wu 1975b]
for a contemporary context and the noncompact manifold situation). With
Λ so chosen, the embedding E0 is equivariant in the sense that there is an
injective homomorphism H0 : [Isometry group of g0] → O(N) such that, for
each isometry α of g0 and p ∈M , H0(α) applied to E0(p) equals E0(α(p)).

Now assume further that Λ is not in the spectrum of the Laplacian Δ0 of
g0: this choice of course is possible consistently with the sufficient largeness
of Λ of the previous paragraph, since the spectrum of Δ0 is discrete. With
Λ thus chosen, both sufficiently large and not in the spectrum of Δ0, there
is a “spectral stability” property of the equivariant embedding situation as
follows.
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Let gj , j = 1, 2, 3, . . . be a sequence of C∞ Riemannian metrics converg-
ing to g0 in the C∞ topology. Let VΛ,j = (the span of the eigenfunctions for
the gj-Laplacian Δj with eigenvalues < Λ). Then, for all j sufficiently large,
the dimension of the finite-dimensional vector space VΛ,j = the dimension N
of the space VΛ defined earlier. Moreover, again for each j sufficiently large,
there is a basis (f j

1 , . . . , f
j
N ) for VΛ,j , orthogonal with respect to the gj-measure

on M . These bases can be chosen so that, for each fixed k ∈ {1, . . . , N}, the
function f j

k , j = 1, 2, 3, . . . converges to the function fk in the C∞ topology.
This “spectral stability” result is part of the perturbation theory of linear op-
erators; it is proved in detail in Kato’s well-known book [Kato 1966] on that
subject. [At first sight, these spectral stability results seem not only appeal-
ing but almost obvious, since the eigenfunctions of Δj are competitors, after
suitable correction, for the minimization of Dirichlet integrals—the Rayleigh
method—that gives eigenfunctions of Δ. But subtleties arise in any attempt to
reason in the opposite direction, to control the eigenfunctions of Δj from those
of Δ. These difficulties are treated in [Kato 1966] by the method of resolvents.]

From this we obtain embeddings Ej : M → RN , for each j sufficiently
large, which are equivariant for the isometry group of gj . Moreover, the Ej ’s
as constructed converge to E0 in the C∞ topology.

Let G0 (the isometry group of g0) be equal to the subgroup of O(N)
obtained by the equivariant embedding E0, and Gj = the subgroup arising in
the same way from the isometry group of gj and the equivariant embedding Ej .

Now, for any sequence {αj : M → M} such that αj is an isometry of gj

for each j = 1, 2, 3, . . ., there is a subsequence {αjk
} which converges in the

C∞ topology to an isometry of g0: this follows from a standard normal fam-
ilies argument. [Convergence to a g0-distance-preserving map is immediate,
and the limit must be a C∞ isometry for g0 by the Myers–Steenrod theo-
rem [Myers/Steenrod 1939]. That the convergence is then in the C∞ topology
is a matter of standard differential geometry, using the facts that the isome-
tries are determined by a single point image and differential at that point and
that geodesics, which are preserved, depend C∞ on the metric.] Thus, com-
bining this with the C∞ convergence of the Ej to E0, we obtain the following.

If U is a neighborhood in O(N) of G0, then Gj ⊂ U for all j sufficiently
large. By a standard result in Lie group theory ([Montgomery/Zippin 1942]),
Gj is isomorphic to a subgroup of G0 for each j sufficiently large, and this
isomorphism is given by conjugation by an element Aj of O(N). Here the Aj ’s
can be taken to converge to the identity. Modifying the Ej ’s themselves by con-
jugation, we can assume that the Aj ’s are equal to the identity and Gj ⊂ G0.
Since Ej and E0 are equivariant embeddings into O(N), the desired diffeo-
morphism of M to M (to conjugate isometries of gj into isometries of g0) can
be obtained by sending p ∈M to the RN -closest point to Ej(p) in E0(M). ��

The possibility of averaging over compact groups gives a useful corollary
about group actions as such. For the statement of the corollary, we say that a
sequence of C∞ group actions Gj×M →M sub-converges in the C∞ topology
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to an action G0 ×M → M if every sequence αj of Gj-action elements has a
subsequence αjk

which converges in the C∞ topology to a G0-action element.

Corollary 4.4.2. If Gj × M → M is a sequence of actions on a compact
manifold M by compact Lie groups Gj and if the Gj-actions sub-converge
in the C∞ topology to a compact Lie group action G0 ×M → M , then for
all j sufficiently large, there is a diffeomorphism Fj : M → M such that the
conjugation by Fj of the Gj-action is a subgroup of the G0-action. Moreover,
the Fj may be chosen to converge to the identity map of M in the C∞ topology.

This corollary follows from the proof of Ebin’s theorem (Theorem 4.4.1)
by averaging a fixed Riemannian metric over the group actions to produce
Gj-invariant metrics gj converging in C∞ topology to a G0-invariant met-
ric g0.

Generically, that is for a dense open set of metrics, the isometry group is
in fact the identity alone (see [Ebin 1968]). Our interest here, however, is in
the metrics which have a nontrivial isometry group.

The main goal of this section is to prove the statement analogous to Ebin’s
theorem (Theorem 4.4.1) for C∞, strongly pseudoconvex domains.

Theorem 4.4.3 ([Greene/Krantz 1982a]). If Ω0 is a bounded, C∞,
strongly pseudoconvex domain in Cn that is not biholomorphic to the ball,
then there is a neighborhood U of Ω0 in the C∞ topology (on bounded domains
with C∞ boundary) such that, if Ω ∈ U , then there is a real diffeomorphism
F : Ω → Ω0 such that F is C∞ close to the identity and{

F ◦ α ◦ F−1 : α ∈ Aut(Ω)
} ⊂ Aut (Ω0).

In particular, Aut(Ω) is isomorphic to a subgroup of Aut(Ω0).

The essential idea of the proof of this theorem is to note, from Lu Qi-
Keng’s theorem (Theorem 4.2.2), that the Bergman metric of Ω0 does not
have constant holomorphic sectional curvature, while at the same time the
holomorphic sectional curvature is asymptotically constant at the boundary.
So far, this is just a recapitulation of the curvature proof of Bun Wong’s the-
orem (Corollary 3.4.4, Theorem 9.2.1). Noting further that these curvature
estimates are stable under C∞ perturbations of ∂Ω0, one expects to find that
the smooth extension to the closure cl(Ω0) of Aut (Ω0), guaranteed by Fef-
ferman’s result on smoothness to the boundary ([Fefferman 1974]) will also
be stable under perturbation of ∂Ω0 in the following sense: If Ω is C∞ close
to Ω0, then Aut (Ω) on cl(Ω) is C∞ close to Aut (Ω0) on cl(Ω0) in the sense
that each element of Aut (Ω) belongs to some pre-chosen C∞ neighborhood of
Aut (Ω) on cl(Ω0). Of course cl(Ω0) is a compact manifold with boundary so
that Ebin’s theorem (Theorem 4.4.1) as just stated and proved (for manifolds
without boundary) does not apply as such. But, by passing to the “metric
double” and introducing suitable automorphism-invariant metrics, we can ap-
ply Ebin’s theorem on manifolds without boundary. We now turn to a more
detailed version of the outline just given.
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The detailed proof will be based on two propositions:

Proposition 4.4.4. If Ω0 is a C∞ strongly pseudoconvex domain and if Ω0
is not biholomorphic to the ball, then there are a point p in Ω0, a compact set
K0 ⊂ Ω0, and a C∞ neighborhood V of Ω0 in the C∞ topology on domains
such that, if Ω ∈ V, then Ω ⊃ K0 ∪{p} and the Aut (Ω)-orbit of p lies in K0.

This proposition has already been in effect established and is restated here
only for convenience and clarity.

Proposition 4.4.5. If Ω0 is a C∞ strongly pseudoconvex domain not biholo-
morphic to the unit ball then, for each � = 1, 2, . . . , there are a C∞ neighbor-
hood V of Ω0 and a positive constant C� such that, for each Ω ∈ V and each
f ∈ Aut (Ω), the Euclidean derivatives of order ≤ � of f at points p ∈ Ω have
absolute value ≤ C�.

For brevity, we shall summarize this last statement by saying that

The derivatives of order ≤ � of elements in Aut (Ω) are stably uni-
formly bounded.

(where “stably” refers to variation of Ω near Ω0 and “uniformly” refers to
variation over the points of the domain Ω).

This proposition, which is in effect a stable version of the smoothness-to-
the-boundary theorem by Fefferman, will be established later.

Armed with these propositions, we can now establish the following lemma
of normal families type.

Lemma 4.4.6. If Ωj, j = 1, 2, . . . , converge in the C∞ topology to Ω0 (with
Ω0 being C∞, strongly pseudoconvex, and not biholomorphic to the ball), and
if gj ∈ Aut (Ωj), then there are subsequences Ωjk

, gjk
, k = 1, 2, . . . , such that

gjk
converges in the C∞ topology to an element g0 ∈ Aut (Ω0).

See the definition in Section 3.5 for C∞ topology on the collection of
domains in Cn. Hereinafter, we write Gj = Aut (Ωj) and G0 = Aut (Ω0). The
lemma then says in effect that, for j large, the action of each element of Gj

is close to the action of an element of G0.

Proof of the lemma. Fix a point p and a compact set K0 as in Proposition
4.4.4. Then, for j large, gj(p) ∈ K0 ⊂ Ωj . By normal families, there is a
subsequence gjk

which converges uniformly on each compact subset of Ω0,
and the limit of this subsequence is an element g0 of G0 (this follows from a
straightforward modification of Theorem 1.3.4). Proposition 4.4.5 then implies
the C∞ convergence of {gjk

} on cl(Ωjk
) (respectively to g0 on cl(Ω0)).

To check this last assertion in detail, it suffices to show that {gjk
} on cl(Ωjk

)
is a Cauchy sequence in the C�+1 norm for each fixed � = 1, 2, . . . . For this,
suppose that ε > 0 is given. Choose a compact set K ⊂ Ω0 such that, for
all Ω which are C∞ close enough to Ω0 and x ∈ ∂Ω, there is a polygonal
arc in Ω, of length not exceeding ε/[3C�+1], from some point s ∈ K to the
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point x. [Here C�+1 is the constant from Proposition 4.4.5.] The possibility of
choosing K in this fashion is elementary: Simply let the set K be the ε/[4C�]
normal “push-in” of Ω0.

Now choose k0 so large that (from Cauchy estimates), gjk1
−g0 and gjk2

−g0

have C�-norm on K bounded above by ε/3 if k1, k2 ≥ k0. For such k1, k2, the
C�-norm of the difference gjk1

− gjk2
is ≤ ε on cl(Ωk1), cl(Ωk2) provided that

k1, k2 are also required to be so large that Ωk1 , Ωk2 are sufficiently C∞ close
to Ω0 and hence to each other. ��
Lemma 4.4.7. There is a neighborhood V of Ω0 in the C∞ topology on do-
mains and a family gΩ, Ω ∈ V, with gΩ a C∞ Riemannian metric on cl(Ω)
such that, (1) if Aut (Ω) acts isometrically on gΩ and (2) if {Ωj} is a se-
quence in V converging C∞ to Ω0, then {gΩj} converges C∞ to gΩ0 .

Proof. Set gΩ0 equal to the average with respect to Aut (Ω0) of the Euclidean
metric on cl(Ω0). For each Ω 	= Ω0, choose diffeomorphisms FΩ : cl(Ω) →
cl(Ω0) such that FΩ converges as Ω tends to Ω0 in the C∞ topology. Set gΩ

equal to the average over the compact (for V small enough) group Aut (Ω)
of the pullback metric F ∗

ΩgΩ0 . By Lemma 4.4.6, each element of Aut (Ω) acts
nearly isometrically on F ∗

ΩgΩ0 , in the C∞ sense of “nearly,” on cl(Ω). This is
because gΩ0 is Aut (Ω0)-invariant and each element of Aut (Ω) is C∞ close to
an element of Aut (Ω0). The conclusion of the lemma concerning convergence
follows. ��
Lemma 4.4.8. The metrics gΩ in Lemma 4.4.7 can be chosen to be product
metrics near the boundary.

Here “the product metric” near the boundary of Ω means precisely that,
for each boundary point x of cl(Ω), there is a real local coordinate system
(x1, x2, . . . , x2n) in a neighborhood of x with

• the boundary cl(Ω) \Ω equaling {(x1, x2, . . . , x2n−1, 0)};
• the points of Ω in the neighborhood of x satisfying x2n < 0 (and vice

versa);
• the metric in the given neighborhood having at (x1, x2, . . . , x2n) the form

dx2
2n +

(
a positive definite quadratic formin dx1, dx2, . . . , dx2n−1

with coefficients depending only on (x1, x2, . . . , x2n−1)
)
.

Proof of the lemma. An Aut (Ω) product metric of this sort at and near the
boundary is easily obtained using the map

∂Ω × [0, δ)→ Ω

defined by

(b, t) �→ expp(tN),

where N is the inward-pointing normal at b relative to the previous gΩ-metric
and expp is the gΩ-exponential map. Choose δ so small that the map is a
diffeomorphism and define the metric by declaring this diffeomorphism to be
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isometric for (the metric on ∂Ω)+dt2. This construction is Aut (Ω)-invariant.
Using an Aut (Ω)-invariant partition of unity to make a transition to the
previous gΩ will provide all properties: the partition of unity function is taken
to depend only on the t variable. ��

The proof of Theorem 4.4.3 can now be completed as follows: With the
metrics gΩ chosen as in Lemma 4.4.8, in particular as product metrics near
the boundary, we form compact Riemannian manifolds (Ω̂, ĝΩ) by taking Ω̂

to be the manifold “double” of Ω and ĝΩ to be the natural metric on Ω̂, equal
to gΩ on each copy of Ω and fitting together to form a C∞ metric across the
(one copy of) ∂Ω on account of the product metric. Let GΩ be the group
generated by Aut (Ω) and the interchange operation IΩ that interchanges the
two copies of Ω that are “glued” to form Ω̂. We now apply Ebin’s theorem
(Theorem 4.4.1) to deduce that the isometry group of Ω̂ is diffeomorphism-
conjugate (via a diffeomorphism close to the identity) to a subgroup HΩ of the
isometry group of Ω̂0. Now, by our previous analysis via normal families, HΩ

lies in a small neighborhood of GΩ0 in the isometry group of Ω̂0. This isometry
group is a compact Lie group and GΩ0 is a compact, hence closed, subgroup
and HΩ is also compact and therefore closed. Standard Lie group theory
yields that HΩ is conjugate to a subgroup of G

̂Ω0
by way of an isometry of Ω̂0

close to the identity. Thus the diffeomorphism conjugation together with this
second conjugation gives a close-to-the-identity diffeomorphism F : Ω → Ω0
conjugating G

̂Ω to G
̂Ω0

.
Now G

̂Ω0
contains IΩ0 . Also, the only possible fixed points of an element

of G
̂Ω that is not preserving each copy of Ω are lying in ∂Ω. It follows that

F in fact maps ∂Ω diffeomorphically to ∂Ω, and thus F , being close to the
identity, maps Ω to Ω0. As a result,

F
∣∣
cl(Ω) : cl(Ω)→ cl(Ω0)

is the conjugating diffeomorphism called for in the theorem. ��

The reader with a mind towards maximum generality will have noticed
that complex analysis really played no role in the latter part of this proof. In
particular, the proof technique gives rise to the following results.

Theorem 4.4.9 (Ebin’s Theorem for Manifolds with Boundary). If
(M, g0) is a compact, C∞ Riemannian manifold with boundary, then there is
a neighborhood U of g0 in the C∞ topology on Riemannian metrics such that,
for each g ∈ U , there is a diffeomorphism F : M → M (which can be chosen
to be C∞ close to the identity) such that, for each g-isometry f : M → M ,
the mapping F−1 ◦ f ◦ F is a g0-isometry.

Theorem 4.4.10. If G0 is a compact subgroup of the diffeomorphism group
of a compact manifold (possibly with boundary), then there is a neighborhood
V of G0 in the C∞ topology on the diffeomorphism group such that every
compact subgroup G of the diffeomorphism group, with G ⊂ V, is conjugate to
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a subgroup of G0 via a diffeomorphism (which may be taken C∞ close to the
identity).

The proofs of these results are obtained by extracting suitable portions of
the proof of Theorem 4.4.3.

4.5 Obtaining a Stable Extension

Let K be a compact subset of Ω0. Let � be a positive integer. The Cauchy
estimates then imply that there is a constant C > 0 such that∣∣∇jα(z)

∣∣ ≤ C

for all α ∈ Aut (Ω0) and all z ∈ K. Thus the essential point in establishing
Proposition 4.4.4 is to consider points near the boundary of Ω0.

Lemma 4.5.1. Let ε > 0 be a positive number. Then

inf{dis(α(q), ∂Ω0) : α ∈ Aut (Ω0), q ∈ Ω0, dis(q, ∂Ω0) ≥ ε}
is a positive number. [Here, as usual, dis denotes Euclidean distance.]

Proof. Suppose the contrary. Then there are a sequence {qj} of points in Ω0
with dis(qj , ∂Ω0) ≥ ε and a sequence of automorphisms αj ∈ Aut (Ω0) with

lim
j→∞

dis(αj(qj), ∂Ω0) = 0.

The sequence {αj} is a normal family. By reasoning that has already been
explained in detail, there is a subsequence {αjk

} that converges normally to
an automorphism α0 ∈ Aut (Ω0). Passing again to a subsequence, we may
assume that {qjk

} converges to a point q0 ∈ Ω0.
But clearly dis(q0, ∂Ω0) ≥ ε, so q0 actually lies in Ω0 itself. As a result,

α0(q0) is in Ω0. But α0(q0) is the limit of the sequence αjk
(qjk

) and also
limk→∞ dis(αjk

(qjk
), ∂Ω0) = 0. In conclusion, dis(α0(q0), ∂Ω0) = 0 (since the

distance function is continuous). This last statement contradicts the fact that
α0(q0) lies in the interior of Ω0. That is a contradiction. ��
Lemma 4.5.2. If ε is a positive number, then there is a δ > 0 such that

sup{dis(α(q), ∂Ω0) : α ∈ Aut (Ω0), q ∈ Ω0, dis(q, ∂Ω0) ≤ δ} < ε.

Proof. The proof is similar to that of the last lemma, with a normal families
argument now being applied to the inverses of the automorphisms. The details
are left to the reader. ��
Lemma 4.5.3. Let Ω0 be a strongly pseudoconvex domain with C∞ boundary.
Fix a point p0 ∈ ∂Ω0. Then there are numbers ε, η > 0 such that if z, w ∈ Ω0,
dis(z, w) < ε, and dis(w, p0) < ε, then |KΩ0(z, w)| ≥ η.
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Proof. This is an immediate consequence of the Fefferman asymptotic expan-
sion (3.4) in Section 3.4. The details are again left to the reader. ��

In the next lemma JΦ(z) denotes the complex Jacobian determinant of
the mapping Φ at the point z.

Lemma 4.5.4. If Ω0 is a smoothly bounded, strongly pseudoconvex domain
in Cn, then there is a constant C > 0 such that

sup{|Jα(z)| : α ∈ Aut (Ω0), z ∈ Ω0} ≤ C

and

inf{|Jα(z)| : α ∈ Aut (Ω0), z ∈ Ω0} ≥ C−1.

Proof. The first estimate follows from the second by applying the result to α−1.
So we concentrate on the second.

Suppose that no such C exists. Then there are a sequence of auto-
morphisms αj ∈ Aut (Ω0) and a sequence of points qj ∈ Ω0 such that
limj→∞ Jαj

(qj) = 0. Passing to a subsequence if necessary, we may assume
that the qj converge to a point q0 ∈ Ω0.

We claim that q0 ∈ ∂Ω0. For, if it were the case that q0 ∈ Ω0, then Lemma
4.5.1 tells us that {αj(qj)} is bounded away from ∂Ω0. Hence, by the Cauchy
estimates, {|Jα−1

j
(αj(qj))|} is bounded as j → +∞. This last is impossible

since Jα−1
j

(αj(qj)) = 1/Jαj
(qj) and limJαj

(qj) = 0.
So q0 ∈ ∂Ω0, and there are, by Lemma 4.5.3, positive numbers ε and η

such that |KΩ0(z, w)| ≥ η if z, w ∈ Ω0 are within distance η of q0. Therefore
|KΩ0(q0, r0)| ≥ η for any r0 ∈ Ω0 with dis(q0, r0) < ε. Choose a fixed such r0.
It follow from Lemma 4.5.1 that lim infj→∞ dis(αj(r0), ∂Ω0) > 0. Then, by
the Cauchy estimates, it follows that lim supj→∞ |Jαj (r0)| is finite. But we
also know that lim supj→∞ |KΩ0(αj(qj), αj(r0))| is finite.

Now KΩ0(qj , r0) = Jαj
(qj)Jαj

(r0)KΩ0(αj(qj), αj(r0)). Since limj→∞
Jαj

(qj) = 0, the finiteness of the two limits-suprema just established now
implies that limKΩ0(qj , r0) = 0. But limj→∞ KΩ0(qj , r0) = KΩ0(q0, r0) 	= 0.
This contradiction completes the proof of the lemma. ��

Lemma 4.5.5. If Ω0 is a bounded strongly pseudoconvex domain in Cn with
C∞ boundary, then there exist ε, η > 0 such that: If w ∈ Ω0 and dis(w, ∂Ω0) <
ε and if z ∈ Ω0 and dis(z, w) < [3/2]dis(w, ∂Ω0), then |KΩ0(z, w)| ≥ η and
|det(∂bi,w/∂zj)| ≥ η, where the determinant is that of the complex Jacobian
of the Bergman representative coordinate map (b1,w, . . . , bn,w) at w.

Proof. The basic bound |KΩ0(z, w)| ≥ η can be deduced from Lemma 4.5.3
by a compactness argument. For the moment, it guarantees that the functions
bi,w(z) are in fact defined for the z-values in question.
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In order to study the Jacobian determinant det(∂bi,w/∂zj), notice first that

∂

∂zj
bi,w =

∂2

∂zj∂wi

[
log

KΩ0(z, w)
KΩ0(w,w)

]
=

∂2

∂zj∂wi
[log(KΩ0(z, w)],

because the expression KΩ0(w,w) has no z-dependence. Thus the relevant
quantities can be calculated by substituting the asymptotic expansion for
KΩ0(z, w) into the formula given. The following version of this substitution,
and the subsequent calculations, is motivated by the somewhat simpler cal-
culation when Ω0 is the unit ball.

In order to calculate the boundary behavior of det[∂bi,w/∂zj ] for a gen-
eral strongly pseudoconvex domain Ω0, and thus to complete the proof of
Lemma 4.5.5, we shall use some standard notation as follows.

• ψ : Cn → R is a C∞ function such that Ω0 = {z ∈ Cn : ψ(z) > 0} and ∇ψ
is nonzero at every point of ∂Ω0,

• X(z, w) represents the “Levi polynomial” of ψ, first,

X(z, w) := ψ(w) +
n∑

j=1

∂ψ

∂wj

∣∣∣
w

(zj − wj)

+
1
2

n∑
j,k=1

∂2ψ

∂wj∂wk

∣∣∣
w

(zj − wj)(zk − wk),

and
• δ(w) := dis(w, ∂Ω0).

Let p0 ∈ ∂Ω0. For the moment, we restrict ourselves to the situation that
z, w ∈ Ω satisfy:

|w − p0| < ε

and

|z − w| < 3
2
δ(w).

Note that this implies |z − p0| ≤ 3ε. Choose ε sufficiently small so that, by a
complex affine linear change of the coordinates in Cn,

p0 = (0, . . . , 0);
∂ψ

∂x1

∣∣∣∣
p0

= 1,

∂ψ

∂y1

∣∣∣∣
p0

=
∂ψ

∂yi

∣∣∣∣
p0

=
∂ψ

∂xi

∣∣∣∣
p0

= 0, i ≥ 2,

and

∂2ψ

∂wi∂wj

∣∣∣∣
w=p0

=

{
−1 if i = j

0 if i 	= j
,
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where i = 1, . . . , n. (first, ψ(w) = Re w1 − |w1|2 − . . . − |wn|2+ higher order
terms.)

A term which has its absolute value not exceeding Cδr for some constant C,
as δ → 0, will be written � δr. A term which is uniformly comparable in
absolute value to δr (i.e., which has absolute value ≤ Cδr and ≥ C−1δr for
some positive constant C) as δ → 0 will be written ∼ δr. And, if the limit (as
δ → 0) of the term divided by δ is 1, then the term will be written ∼= δ.

With this notation and δ = δ(w):

1. ψ(w) = (∼=δ) = (∼=Re w1);
2. ∂ψ

∂w1
= 1

2 + (�δ);

3. ∂ψ
∂wi

= (�δ), i ≥ 2.

Therefore, for such w and z in Ω0 with |z − w| < 3
2δ(w), we see that

|X(z, w)| = |(∼=δ) +
1
2
(z1 − w1) + (�δ2)|

≥ |(∼=δ)| − 3
4
δ − |(�δ2)|

≥ 1
4
|(∼=δ)| − |(�δ2)|.

In particular, X(z, w) = (∼δ) (the bound above is obvious).
The determinant det(∂2bi,w/∂zj∂wi) becomes, upon substitution of the

expansion

X−(n+1)(z, w)[ϕ(z, w) + X(n+1)(z, w) · ϕ̃(z, w) logX(z, w)]

for KΩ0(z, w),

(−1)n(n + 1)ndet
[

∂2

∂zj∂wi
(logX(z, w))

−(n + 1)−1 ∂2

∂zj∂wi
log(ϕ + Xn+1(z, w)ϕ̃ logX(z, w))

]n

i,j=1
.

Now

∂2

∂zj∂wi
logX(z, w) = X−1 · ∂2X

∂zj∂wi
− ∂X

∂zj

∂X

∂wi
·X−2.

Thus, up to a nonvanishing absolute constant factor, the determinant to be
evaluated is

X−2ndet
[
X · ∂2X

∂zj∂wi
− ∂X

∂zj

∂X

∂wi

− (n + 1)−1X2 · ∂2

∂zj∂wi
log(ϕ + Xn+1ϕ̃ logX)

]n

i,j=1
. (4.5.2)
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The terms in the determinant can be easily checked to have the following
order-of-magnitude behavior:

X2 ∂2

∂zj∂wi
log(ϕ + Xn+1ϕ̃ logX) = (�δ2)

[since ϕ(p0, p0) 	= 0]. Also,

X
∂2X

∂zj∂wi
= (�δ2), i 	= j

X
∂2X

∂zi∂wi
= −X + (�δ2) = (∼δ), i = 1, . . . , n

∂X

∂z1

∂X

∂w1
= (∼1)

∂X

∂z1

∂X

∂wi
= (�δ), i 	= 1

∂X

∂zj

∂X

∂w1
= (�δ), j 	= 1

∂X

∂zj

∂X

∂wi
= (�δ2), i 	= 1, j 	= 1.

Thus the entire expression (4.5.2) becomes

(∼ δ)−2ndet

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(∼1) (�δ) · · · · · · · · · (�δ)
(�δ) (∼δ)

... (∼δ) (�δ2)

...
. . .

... (�δ2)
. . .

(�δ) (∼δ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[The diagonal entries are of size (∼δ) except the (1, 1)-entry; the off-diagonal
entries except the first row and the first column are of size (�δ2).] Thus, the
determinant of the Jacobian of the Bergman representative coordinate map
at w p0 is of (∼δ(w)−(n+1)).

It is time to establish Lemma 4.5.5. By compactness of ∂Ω0, one can choose
finitely many boundary points and associated ε-balls around them and corre-
sponding ws from each ball to end up with an ε-neighborhood of the boundary
∂Ω0 for which the Jacobian determinant of the Bergman representative coor-
dinate map is bounded away from zero. ��
Proof of Proposition 4.4.5. Now we give (at long last) the proof of Proposi-
tion 4.4.5. The basic idea is to exploit the fact that, in Bergman representative
coordinates, an automorphism is given by a linear map. Thus estimation of its
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derivatives can be accomplished by estimating (1) its differential and (2) the
relationship between representative coordinates and Euclidean coordinates.

Now the proof proceeds by contradiction. If the conclusion is false, then
there are

(i) a sequence of domains Ων converging in the C∞ topology to a limit
domain Ω0;

(ii) a sequence {αν : Ων → Ων} of automorphisms;

and

(iii) a sequence of points {pν ∈ Ων} and a Euclidean differential operator

D =
(

∂

∂z1

)j1 ( ∂

∂z2

)j2

· · ·
(

∂

∂zn

)jn

, j1, . . . , jk > 0,

with

lim
ν→∞ |Dαν(pν)| = +∞.

Passing to a subsequence, we may assume that the sequences {pν} and
{αν(pν)} converge to points p0, q0 ∈ cl(Ω0), respectively. We also may assume
that both {αν} and {α−1

ν }, respectively, converge uniformly on compact sub-
sets of Ω0 to an automorphism α0 of Ω0 and its inverse α−1

0 , respectively (the
possibility of establishing this last assertion was treated in Section 4.1 as well
as in [Greene/Krantz 1981]). Now repeat the reasoning used in the proof of
Lemma 4.5.4 to show that p0 ∈ ∂Ω0. The same reasoning implies (because
the inverse sequence {α−1

ν } converges to α−1
0 ) that q0 is also in ∂Ω0.

Select, by Lemma 4.5.5, a point w0 ∈ Ω0 with these properties:

(A) KΩ0(p0, w0) 	= 0;
(B) If d0(z) = the Jacobian determinant det(∂bj,w0/∂zk)

∣∣
z
, j, k = 1, . . . , n,

then

lim inf
z→p0

|d0(z)| > 0.

[Here bj,w0 are the Bergman representative coordinate functions that we
introduced earlier.]

Because KΩ0(·, w0) extends to be a C∞ function on the set{
z ∈ cl(Ω0) : dis(z, w) <

3
2
dis(w0, ∂Ω0)

}
,

property (A) implies that the Bergman representative coordinate functions
bj,w0 have C∞ extensions to a neighborhood of p0 in cl(Ω0). Property (B)
is thus equivalent to the assertion that d0(p0) 	= 0. In particular, there is a
number ε > 0 such that the functions bj,w0 , j = 1, . . . , n, form a C∞ coordinate
system (holomorphic in Ω0) on

cl(Ω0) ∩ {z ∈ Cn : dis(z, p0) ≤ ε}.
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[Notice that we are not claiming that the functions bj,w0 are holomorphic
across ∂Ω0; rather, these functions extend to be C∞ across ∂Ω0 in the sense
that their real and imaginary parts are C∞ as real functions. In general they
will only be holomorphic on Ω0 itself.]

By Lemma 4.5.5, the Bergman representative coordinate functions bν
j,w0

,
for Ων , j = 1, . . . , n, and ν = 1, 2, . . . ,∞, on

cl(Ων) ∩ {z ∈ Cn : dis(z, p0) ≤ ε}

converge in the C∞ sense to the bj,w0 on

cl(Ω0) ∩ {z ∈ Cn : dis(z, p0) ≤ ε}.

In particular, for all ν sufficiently large, the functions bν
j,w0

, j = 1, . . . , n form
a C∞ coordinate system on

cl(Ω0) ∩ {z ∈ Cn : dis(z, p0) ≤ ε}.

Let Ω ⊆ Cn be a bounded domain, α : Ω → Ω be an automorphism with
Euclidean components (α1, . . . , αn), and Jα(z) denote the Jacobian determi-
nant of α at z. Recall the following transformation formulas:

KΩ(z, w) = Jα(w) · Jα(z) ·KΩ(α(z), α(w)), (1)

bj,w(z) =
n∑

�=1

(
∂α�

∂wj

)∣∣∣∣
w

b�,α(w)(α(z)), (2)

(
∂bj,w

∂zk

) ∣∣∣∣
z

=
n∑

�,m=1

(
∂α�

∂wj

)∣∣∣∣
w

·
(
∂αm

∂zk

) ∣∣∣∣
z

·
(
∂b�,α(w)

∂zm

) ∣∣∣∣
α(z)

, (3)

det
(
∂bj,w

∂zk

) ∣∣∣∣
z

= Jα(w) · Jα(z) · det
(
∂b�,α(w)

∂zm

) ∣∣∣∣
α(z)

. (4)

Formula (1) is the standard transformation formula for the Bergman kernel;
formulas (2) and (3) follow from (1) by differentiation; and formula (4) can
by derived from (2) by using a little algebra.

The next observation is that det(∂bj,α0(w0)/∂zk)
∣∣
w0
	= 0. To prove this

assertion, notice that, by Lemma 4.5.5, the determinant equals

lim
ν→∞ det(∂bν

j,αν(w0)/∂zk)
∣∣
αν(pν);

this expression in turn equals, by formula (4),

lim
ν→∞

(Jαν
(w0)

)−1 · (Jαν
(pν)

)−1 · det
(
∂bν

j,w0
/∂zk

)∣∣
pν
.
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Since, by Lemma 4.5.4, the expression |Jαν | is bounded above on cl(Ων) (uni-
formly in ν) and since

lim
ν→∞ det

(
∂bν

j,w0

∂zk

)∣∣∣∣
pν

= det
(
∂bj,w0

∂zk

)∣∣∣∣
p0

	= 0,

it follows that indeed det
(
∂bj,α0(w0)/∂zk

)∣∣
q0
	= 0.

From the nonvanishing of this last determinant, it follows that the func-
tions bj,α(w0) form a C∞ coordinate system in some neighborhood in cl(Ω0) of
q0. In particular, there is a positive number η such that these functions form
a C∞ coordinate system on cl(Ω0) ∩ {z ∈ Cn : dis(z, q0) ≤ η}. Lemma 4.5.5
then implies that, for all sufficiently large ν, the functions bν

j,α(w0) form a C∞

coordinate system on cl(Ω0) ∩ {z ∈ Cn : dis(z, ν0) ≤ η}; moreover, this coor-
dinate system converges in the C∞ topology to the coordinate system bj,α(w0)
on cl(Ω0) ∩ {z ∈ Cn : dis(z, q0) ≤ η}.

For any ν sufficiently large, dis(pν , p0) ≤ ε and dis(α(pν), q0) ≤ η. Thus, for
all sufficiently large ν, the mapping αν in a neighborhood of pν is completely
determined—in w0-Bergman coordinates (of Ων) going to αν(w0)-Bergman
coordinates (of Ων)—by formula (3). This mapping is linear with bounded
differential. But, since both w0-Bergman coordinates (of Ων) and αν(w0)-
Bergman coordinates of Ων are converging in the C∞ topology to C∞ coordi-
nate systems (independent of ν), it follows by the chain rule that the Euclidean
derivatives of each fixed order αν at αν(pν) are bounded above uniformly in
ν as ν →∞. This contradiction completes the proof of Proposition 4.4.5. ��
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Lie Groups Realized as Automorphism Groups

5.1 Introduction

If Ω is a bounded domain in a complex Euclidean space, then the group
Aut (Ω) of its holomorphic automorphisms is a finite-dimensional Lie group,
as already discussed (Theorems 1.3.11, 1.3.12). It is natural to ask:

Question. Which Lie groups occur as the automorphism group of a
bounded domain?

Quite satisfactory answers are known. Bounded domains with noncompact
automorphism group are in a sense unusual (cf. Corollary 3.4.4). Therefore
it is natural to focus upon the compact Lie groups in asking which groups
appear. In fact, every compact Lie group occurs as the automorphism group
of a bounded domain in some complex Euclidean space, indeed a strictly pseu-
doconvex domain with real analytic boundary. This fact was proved indepen-
dently and by different methods in [Bedford/Dadok 1987] and [Saerens/Zame
1987]. These proofs are the subject of this chapter.

In more detail:

Theorem 5.1.1 (Bedford–Dadok, Saerens–Zame). Let G be a compact
Lie group. Then there exist a positive integer N and a bounded strongly pseu-
doconvex domain Ω in CN with a smooth (C∞) boundary such that Aut (Ω)
is Lie isomorphic to G.

The semicontinuity theorem of Greene–Krantz (Theorem 4.4.3) makes it
possible to choose the boundary of the domain in the theorem to be real
analytic, as already stated. This will be discussed after the proof of the C∞

result as stated.

5.2 General Philosophy

Before introducing the proofs, let us discuss the general philosophy underlying
this theorem. Let G be a compact Lie group. It is a basic fact of Lie group

R. E. Greene et al., The Geometry of Complex Domains, Progress in Mathematics, 
DOI 10.1007/978-0-8176-4622-6_5, © Springer Science+Business Media, LLC 2011
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theory that G can be Lie isomorphically embedded into a unitary group U(n),
for some n > 0. (This fact is an aspect of the famous Peter–Weyl theo-
rem. cf. [Chevalley 1946].) Therefore it is automatic to construct a bounded
strongly pseudoconvex domain whose automorphism group contains a sub-
group that is isomorphic to the given group G: the unit ball Bn suffices,
since U(n) is a subgroup of its automorphism group. On the other hand, it
is a general principle that perturbation of the boundary of the domain in the
smooth category will lose some of the automorphisms. [This was discussed
earlier, in Chapter 4, in connection with the semicontinuity theorem (The-
orem 4.4.3).] Hence the key issue here is how to perturb the ball—or some
other domain with G contained in its automorphism group—so that G is kept
while the other unwanted automorphisms are eliminated.

We first present the proof by Saerens and Zame and then the proof by
Bedford and Dadok. The techniques are so different that both proofs are worth
considering carefully.

5.3 The Saerens/Zame Proof

5.3.1 Unitary Representation

Start with the injective Lie group homomorphism ι : G→ U(n) of G into some
unitary group U(n) already mentioned. In order for such a faithful unitary
representation to exist, n of course needs to be sufficiently large.

5.3.2 G-action by Left Multiplication

Consider the group GL(n,C) of nonsingular n × n matrices with complex
entries. Let G act on GL(n,C)× Cm as follows.

G× (GL(n,C)× Cm) −→ GL(n,C)× Cm

(g, (z, w)) �→ g(z, w) := (g · z, w),

where:

• the action of g on (z, w) ∈ GL(n,C)× Cm is only on the first component
z ∈ GL(n,C) by left multiplication.

• the positive integer m will be determined later, and the role of Cm will
also be clarified at the same time.

5.3.3 Averaging a Plurisubharmonic Exhaustion

Now consider the following real-valued function ϕ : GL(n,C) × Cm → R
defined by

ϕ(z, w) = |det z|−2 +
n∑

i,j=1

|zij |2 +
m∑

k=1

|wk|2.
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This function is a smooth (in fact real analytic), strictly plurisubharmonic
(psh for shorthand) exhaustion function for GL(n,C)×Cm, which is an open
connected subset of Cn2+m.

Take a bi-invariant measure ν of total mass 1 on the compact Lie group
G (the Haar measure), and consider the averaged function

ϕG(z, w) =
∫

G

ϕ(g · z, w) dν(g).

This new function is also a real analytic, strictly psh exhaustion function for
GL(n,C)× Cm and is obviously G-invariant.

5.3.4 A G-Invariant Strongly Pseudoconvex Domain

Now take a regular value T ∈ R, that is, a real number T such that dϕG is
nowhere singular on (ϕG)−1(T ). [Such T are dense in R, by the Morse-Sard
theorem (Theorem 5.3.2); see Section 5.3.7 for more details on this matter.]
One can take T to be sufficiently large that (ϕG)−1(−∞, T ) contains the set
U(n)×{0}. Denote by DG the connected component of (ϕG)−1(−∞, T ) that
contains the set U(n)×{0}. By its construction, DG is a G-invariant, bounded
domain in Cn2+m with a C∞ smooth boundary. It has in fact real analytic
boundary, by construction.

5.3.5 Preparation for Perturbation of the Boundary

Since dϕG is nonsingular at each point of ∂DG, there exists an open neigh-
borhood W of ∂DG on which dϕG is nonsingular. Choose r > 0 such that
(ϕG)−1(−r + T, T + r) ⊂ W ; such an r > 0 exists because ∂DG is compact.
Replacing W by (ϕG)−1(−r + T, T + r), we may assume that W itself is a
G-invariant open neighborhood of ∂DG, consisting of only regular points of ϕG.

Now consider the quotient by the G-action. By construction, the G-action
is a fixed-point-free, properly discontinuous action. Therefore the quotient
spaces W/G and ∂DG/G are smooth manifolds.

5.3.6 Scalar Invariants

Finding a suitable perturbation of the boundary of DG uses an idea from the
theory of curvature invariants in the sense of Tanaka–Chern–Moser. Here is a
brief summary.

This concerns the local CR-invariants of the real hypersurfaces that will
play an important role in the perturbation step. Consider a smooth real-valued
function φ : Cn+1 → R that defines a smooth hypersurface M = {φ = 0} pass-
ing through the origin 0. In case M is strongly pseudoconvex, the function φ
can be written, after a suitable change of coordinate system, say (z1, . . . , zn, ζ)
with ζ = u+ iv about 0, in what is called the Chern–Moser normal form (see
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pp. 241–243 of [Burns/Shnider/Wells 1978] for further details and precise ter-
minology). In this “normal form,”

φ(z1, . . . , zn, ζ) = v −
n∑

α=1

|zα|2 −
∑

p,q≥2

Np,q

where each Np,q is a polynomial in the multi-variables z, z̄ of type (p, q), first p
of zs and q of zs, with coefficients that are formal power series in the variable
u as follows.

Np,q =
∑

Na1···ap;b̄1···b̄q
(u) za1

1 · · · zap
p z̄b1

1 · · · z̄bq
q

and

Na1···ap;b̄1···b̄q
(u) =

∞∑
j=0

N
(j)
a1···ap;b̄1···b̄q

uj .

The origin 0 in M is called spherical (or umbilical in [Burns/Shnider/Wells
1978]; for the original introduction and developments, see [Chern/Moser 1974])
if the coordinates can be chosen so that N

(0)
a1a2b̄1b̄2

= 0 for any a1a2b̄1b̄2. Oth-
erwise, 0 is called nonspherical. This notion is independent of the choice of
the normal form and is in fact preserved by biholomorphic transformations.

At a nonspherical point, further normalization, called the restricted nor-
mal form, is available (see Lemma 3.1 of [Burns/Shnider/Wells 1978]). In
[Burns/Shnider/Wells 1978], “curvature invariants” for j ≥ 0, p ≥ q ≥ 2, p ≥ 3
are given by

Kj
p,q :=

∑
|N (j)

a1···ap;b̄1···b̄q
|2

at the origin. (The curvature invariants make sense only at nonspherical
points.) These are local CR invariants, meaning that the CR equivalences pre-
serve the value of these terms.

5.3.7 Jets and Multi-Jets

The proof also involves the concept of jets. Again a brief summary.

Jets

Let X,Y be smooth manifolds and let f, g : X → Y be smooth maps with
f(x) = y = g(x) for some x ∈ X and y ∈ Y . Then f and g are said to have
first-order contact at x if every first-order partial derivative of f coincides
with the corresponding derivative of g at x in some local coordinates around
x and y in X and Y respectively. Notice that this concept does not depend
upon the choices for local coordinate systems for X at x and for Y at y.
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Likewise, f and g are said to have k-th order contact if they have the same
partial derivatives at p of order up to and including k. Again, for every k, this
concept does not depend upon the choices for local coordinate systems for X
at x and for Y at y. For each k, it is obvious that this defines an equivalence
relation; denote it by ∼=k, for the germs of smooth mappings. For a smooth
map f : X → Y satisfying f(x) = y, denote by jkf |x,y the equivalence class
of the germ of f at x with respect to the relation ∼=k.

Denote by Jk(X,Y )x,y the collection of all the equivalence classes just
defined. This is not in general a vector space as it does not have any obvious
addition or scalar multiplication. However, in case Y is a Euclidean space,
it is a vector space in an obvious way. In particular, J1(X,R)x,y is naturally
isomorphic to the cotangent space of X at x.

It is customary to call Jk(X,Y )x,y the space of k-th order jets (or simply
k-th jets) of maps from X to Y at (x, y) and to consider the space

Jk(X,Y ) =
⋃

(x,y)∈X×Y

Jk(X,Y )x,y (disjoint union).

This union is usually called the jet bundle for smooth maps from X to Y .
Notice that the space of k-th jets and the k-jet bundle are finite-dimensional
smooth manifolds for each k = 1, 2, 3, . . ..

Likewise, it makes sense to consider the map

jkf : X → Jk(X,Y ) : x �→ jkf |x,f(x)

which is usually called the k-jet of the smooth map f : X → Y . It is a smooth
map with respect to the obvious smooth structure on Jk(X,Y ).

Multi-Jets

Now we shall introduce the concept of “multi-jets” (although, for our exposi-
tion here we only need double-jets).

First, we define

X(s) :=
{

(x1, . . . , xs) ∈
s∏

X | xj 	= xk if j 	= k

}
and let α : Jk(X,Y )→ X be the projection defined by α(σ) = x if and only
if σ = jkf |x,y for some y ∈ Y and some germ of a smooth f : X → Y with
f(x) = y. Then let αs :=

∏s
α :
∏s

�=1 J
k(X,Y )→∏s

X be the product map.
Then one can consider the space of s-fold k-th jets defined by

Jk
(s)(X,Y ) := (αs)−1(X(s)).

This is what is called in [Saerens/Zame 1987] a multi-jet. One can easily gen-
eralize this formalism to define the concept of the s-fold multi-jet bundle
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Jk
(s)(X,Y ) and the map jk

(s)f : X(s) → Jk
(s)(X,Y ), where the last is noth-

ing but

jk
(s)f(x1, . . . , xs) = (jkf(x1), . . . , jkf(xs))

for every (x1, . . . , xs) ∈ X(s).

Transversality

The transversality concept in differential topology is also needed for the proof.
The idea of transversality grew out of the idea of regular value, already used
in Section 5.3.4. For completeness and motivation, we discuss this first. Let
f : M → N be a smooth map from a smooth manifold M to another smooth
manifold N . Then one would like to know when the pre-image f−1(y) is
necessarily a smooth submanifold of M for y ∈ N . A satisfactory answer
comes of course from the implicit function theorem:

A point y ∈ N is called a regular value of the smooth map f : M → N
if, for any x ∈ f−1(y), the differential dfx : TxM → TyN is surjective. The
implicit function theorem then implies:

Theorem 5.3.1. Let M and N be smooth manifolds and let f : M → N be a
smooth mapping. If y ∈ N is a regular value for f , then the pre-image f−1(y)
is an embedded submanifold of M .

One notices that, due to the logic involving the empty set, any point y ∈
N \ f(M) becomes a regular value. Of course in such a case f−1(y) coincides
with the empty set, and that is surely a submanifold. (The dimension of empty
submanifold is usually understood to be −1.) One might like to disregard such
a “pathological” case, but in fact there is no particular reason to do so; in fact
it will play an important role in many cases, including our current discussion.

Do regular values exist? The following familiar theorem guarantees their
abundance.

Theorem 5.3.2 (Sard’s Theorem; cf. e.g., [Munkres 1966]). The set of
regular values for a smooth map f : M → N is dense in N .

In fact, if we denote the set of regular values by R, then N \R is of measure
zero. Note that the concept “measure zero” in differential topology does not
have to involve any specific choice of a measure. A set is measure zero if and
only if it has measure zero in every local coordinate system in the sense that
its intersection with each coordinate domain has measure zero in Rn when
mapped to Rn by the local coordinate map.

The following notion of transversality grew out of the concept of regular
values.

Definition 5.3.3. Let M,N be smooth manifolds and let Z be a submanifold
of N . Let f : M → N be a smooth mapping. Then we say that f is transversal
to Z, if the equality
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dfx(TxM) + Tf(x)Z = Tf(x)N

for any x ∈ f−1(Z). It is customary to denote transversality by f � Z.

The following is a well-known result in differential topology (cf. e.g., [Hirsch
1976]).

Theorem 5.3.4 (Transversality). Let M,N be smooth manifolds and Z a
submanifold of N . Let f : M → N be a smooth mapping. If f is transversal
to Z, then f−1(Z) is an embedded submanifold of M .

The reader must have noticed, by the logic involving the empty set, that f
is transversal to Z whenever f(M)∩Z = ∅. On the other hand, if it happens
to be the case that dimN > dimM +dimZ, then f can be transversal to Z if
and only if f(M)∩Z = ∅. Again, this seemingly somewhat pathological logic
is going to play an important role in what follows.

Now what about the generalization of Sard’s theorem (Theorem 5.3.2)?
The Saerens/Zame proof uses the following standard theorems on this subject
(cf. e.g., [Golubitsky/Guillemin 1973]):

Theorem 5.3.5. Let X and Y be smooth manifolds.

(1) [Thom transversality theorem] Let W be a submanifold of Jk(X,Y ) and
let TW := {f ∈ C∞(X,Y ) | jkf � W}. Then TW is a dense Gδ-subset of
C∞(X,Y ) in the C∞ topology.

(2) [Multi-jet transversality theorem] Let W be a submanifold of Jk
(s)(X,Y )

and let TW := {f ∈ C∞(X,Y ) | jk
(s)f � W}. Then TW is a dense Gδ-

subset of C∞(X,Y ) in the C∞ topology.

5.3.8 Application of Transversality to ∂DG

We now return to the actual proof of Theorem 5.1.1 at the point where we had
a G-invariant domain DG with a smooth strongly pseudoconvex boundary, and
the regular G-invariant neighborhood W of ∂DG (end of Subsection 5.3.5).

Consider Ψ the set of all smooth, strictly psh, G-invariant, proper func-
tions defined on GL(n,C) × Cm that are nonsingular at every point of W ,
with W as in Subsection 5.3.5. This set is nonempty as we constructed such
a function ϕG by an averaging method. However, unlike what is claimed
in [Saerens/Zame 1987] by Saerens and Zame, it is actually not true that
Ψ is an open subset of C∞(GL(n,C) × Cm,R), since G-invariance is not an
open condition.

Fortunately, this incorrect claim is not essential for the rest of the argu-
ments. Here is a way to fix the situation. Consider the subset

D := {h ∈ C∞(GL(n,C)× Cm,R) | h(g · x) = h(x),
∀x ∈ GL(n,C)× Cm and ∀g ∈ G}.
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This is a closed linear subspace of the Fréchet (i.e., complete, semi-normed)
space C∞(GL(n,C)× Cm,R). Consider now the set

ΨG = {φ ∈ C∞(GL(n,C)/G× Cm,R) | φ ◦ π ∈ Ψ}.

Here, π : GL(n,C)×Cm → GL(n,C)/G×Cm is the standard quotient map.
Since G is compact, the map π is proper. It then follows by the chain rule
that the map π∗ : C∞(GL(n,C)×Cm,R)→ D defined by π∗(ψ) := ψ ◦π is a
continuous mapping. Since the function space Ψ is an open subset of D in the
inherited topology from C∞(GL(n,C) × Cm,R), and since ΨG = [π∗]−1(Ψ),
we see immediately that Ψ/G is an open subset of C∞(GL(n,C) × Cm,R).
This is what we need for the rest of the argument.

Let the correspondence φ �→ φG : Ψ → ΨG be defined by φ/G(G·x) = φ(x).
This gives rise to the natural map

π∗
k : JkΨ → JkΨG,

defined by π∗
k

(
jkφG

∣∣
Gx

)
= jkφ|x for every x ∈ GL(n,C)× Cm.

5.3.9 Elimination of Spherical Jets by Perturbation

Recall the definition of spherical (boundary) point in Section 5.3.6. The con-
cept of spherical point depends only upon the jet of order at most 4. Therefore
it makes sense to define the concept of spherical jets (of normalized defining
functions) following the obvious method, instead of the concept of spherical
point associated with the (normalized) defining function. Denote by Sk the
set of spherical jets in JkΨ and let Σk := π∗

k(Sk). Furthermore, for p, q with
p > q ≥ 3 and p+q ≤ k, the scalar curvature invariant functions K̃0

p,q are also
defined on JkΨG \Σk, analogously to the curvature functions for Ψ . Also, let

Sk
p,q = {ψ ∈ JkΨ | K0

p,q(ψ) = 0}

and

Σk
p,q = {ψ ∈ JkΨG | K0

p,q(ψ) = 0}.

Lemma 5.3.6. There exists � > 0 such that, for every m ≥ �, the following
estimates hold:

codim (Σ4 in J4ΨG) ≥ 2(n2 + m)

and

codim (Σ4
p,q in J4ΨG) ≥ 2(n2 + m)

whenever the positive integers p, q satisfy the conditions p > q ≥ 3 and
p + q ≤ m.
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Notice that 2n2+2m = dimR W . The proof of this lemma uses only general
facts on the jets and the curvature invariants introduced in [Burns/Shnider/
Wells 1978]. The proof we sketch here is reorganized by B.-L. Min in his thesis
([Min, B.-L. 2009]; see also [Min, B.-L. 2009a]). We refer to this last paper for
further details.

A sketch of the proof of Lemma 5.3.6. The proof is a direct computation.
In [Burns/Shnider/Wells 1978], the codimension of the space S4 of spheri-
cal jet in J4Ψ was computed to be t2(t− 1)2/4− (t− 1)2 where t = n2 +m =
dimC W . On the other hand, dimR J4Ψ = dimR W + 1 + dimR A4

2n2+2m where
Ak

r is the vector space of polynomials of degree ≤ k in r variables without
constant terms.

Note that dimR G ≤ n2 as G ∈ U(n). Consequently, dimR J4Ψ/G ≥
n2 + 2m + 1 + dimA4

n2+2m, and this eventually gives rise to

Codim (Σ4 in J4ΨG) ≥ 1
4
m4 − lower order terms in m.

As n is fixed, and m can be chosen sufficiently large, one can see (due to the
remarks in the first paragraph of this proof) that the assertion of the lemma
follows. ��

On the other hand, let m ≥ � be an integer as in the preceding lemma,
and let

Σ = S4 ∪

⎛⎜⎝ ⋃
p>q≥3
p+q≤m

Σ4
p,q

⎞⎟⎠ .

Now apply the transversality theorem (Theorem 5.3.5) on jets and multi-
jets introduced above. Recall the special neighborhood W for the boundary of
the domain DG defined earlier. For such a W , there exists a dense Gδ-subset
of Ψ/G such that ψ in the Gδ-subset has the following two properties:

(1) If a map j4ψ : W/G→ J4ΨG is transversal to Σ4 and, at the same time,
to Σ4

p,q, then j4ψ(y) 	∈ Σ4 ∪Σ4
p,q for any y ∈W/G.

(2) If

J4ΨG
× := {nonspherical jets in J4ΨG}

and

J4Ψ× := {nonspherical jets in J4Ψ},
then there exists a set Q of 4(n2 + m) + 1 distinct curvature functions
K̃1, . . . , K̃Q, where K̃� = K̃p�,q�

for p� and q� satisfying p� > q� ≥ 3 and
p� + q� ≤ m, such that the map

K̃ := (K̃1, . . . , K̃Q) : J4ΨG
× → RQ
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has maximal rank. Let Δ denote the diagonal of RQ × RQ. Then the
inverse image (K̃, K̃)−1(Δ) is a submanifold of J4ΨG

× × J4ΨG
×. The

function ψ has its double jet j4
(2)ψ : (W/G)(2) → J4

(2)Ψ/G, transversal to

(K̃, K̃)−1(Δ).

Property (1) holds on a dense Gδ by the codimension estimates in the pre-
vious lemma. Property (2) holds on a dense Gδ by the multijet transversality
theorem, Theorem 5.3.5 (2). Thus properties (1) and (2) hold simultaneously
on a dense Gδ-set.

5.3.10 Construction of Ω

It may be useful to summarize what has been done up to this point. We started
with the embedding of the given compact Lie group G into the unitary group
U(n) of some sufficiently large n. Then we considered the real analytic strictly
psh function

ϕ(z, w) = |det z|−2 +
∑
|zjk|2 +

∑
|w�|2

defined on GL(n,C)×Cm. Then, exploiting the compactness of the given Lie
group G, we have used the averaging process

ϕG(z, w) :=
∫

G

ϕ(g · z, w) dν(g)

so that the new function ϕG is invariant under the G-action and is strictly
psh and real analytic. Then we choose a regular value T so that DG :=
(ϕG)−1(−∞, T ) is defined to be a G-invariant, bounded, strongly pseudocon-
vex domain with a real analytic boundary. Furthermore, we observed that
there exists a special G-invariant open neighborhood W of ∂DG such that
dϕG is nonsingular at every point of W .

Then, using jets and transversality theorems, we were able to perturb ϕG

as follows.
Construct first φ : GL(n,C)/G × Cm → R by φ(G · x) = ϕG(x). Then

perturb φ to obtain ψ : GL(n,C)/G×Cm so that ψ̃ := ψ ◦π is still arbitrarily
close to φ on compact subsets (and hence in particular on W ). Notice that
here one needs to take m sufficiently large. Of course ψ̃ is still strictly psh and
smooth of class C∞, and dψ̃ is nonsingular at any point of W . Furthermore,
if we now let

Ω = ψ̃−1(−∞, T ),

then Ω is a bounded strongly pseudoconvex domain in Cn2+m that has the
following properties:

(i) G ⊂ Aut (Ω).
(ii) ∂Ω has no point at which the jet of ψ is spherical.
(iii) If x, y ∈ ∂Ω such that x 	∈ G · y, then K(j4ψ(x)) 	= K(j4ψ(y)).
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Now to continue the proof, we wish to show that G = Aut (Ω). Let h ∈
Aut (Ω). Since the scalar curvature invariant function is a CR invariant, and
since h extends to a diffeomorphism of cl(Ω) by Fefferman’s extension theo-
rem, h(x) = y implies that x ∈ G · y.

Thus h(x) = gx · x for some gx ∈ G that is a priori depending on x. But
recall that the elements x and h(x) are in GL(n,C)×Cm. Hence we may write
x = (z, w) and h(x) = h(z, w) = (h1(z, w), h2(z, w)). Now gx ·x = h(x) means

g(z,w) = h1(z, w)z−1 and h2(z, w) = w.

Therefore the map g : ∂Ω → G, g(z, w) = g(z,w), defines a CR-function.
However, U(n) inside GL(n,C) is totally real. Therefore the differential of
this map has to vanish identically. This means that g = g(z,w) is independent
of x = (z, w) ∈ ∂Ω and hence depends only on h. first, for every h ∈ Aut (Ω)
there exists g ∈ G such that h(z, w) = (g · z, w) for any (z, w) ∈ Ω. Hence
G = Aut (Ω) as desired. This completes the construction and the proof of
Theorem 5.1.1.

5.4 The Bedford/Dadok Proof

An alternative approach to the realization of a given compact Lie group as
the automorphism group of a bounded domain was given by E. Bedford and
J. Dadok ([Bedford/Dadok 1987]). Their essential idea was to realize the given
group as the isometry group of a perturbation of the unit ball in some real
Euclidean space Rn and then pass to the complex setting by considering a
suitable modification of the “tube domain” in Cn over the domain in Rn.
Their paper also considers the question of realizing a given compact Lie group
as the automorphism group of a compact-closure (and strongly pseudoconvex)
domain in a Stein manifold, rather than in a complex Euclidean space: the
point here is that this realization is possible in rather lower dimensions than
if one requires a domain in Cn. We shall outline the approaches in the two
cases, the Cn case first. Complete details are given in [Bedford/Dadok 1987]
for both.

5.4.1 Structure of the Proof

Suppose that G is a compact Lie group and that (following the notation
of [Bedford/Dadok 1987]) ω is a bounded domain in some Euclidean space
Rn with the following properties:

(a) there is an injective homomorphism of G into O(n), the image of which
we again denote by G, such that ω is invariant under G;

(b) if g : Rn → Rn is an affine transformation with g(ω) = ω, then g ∈ G.
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(We shall see later that, for suitable n, such an ω can be obtained as a C∞

small perturbation of the unit ball in Rn.) Now let

Ω = (ω + iRn) \ V ⊂ Cn

where V = {(z1, . . . , zn) ∈ Cn : z2
1 + · · · + z2

n = 1
2}. The role of removing V

from the “tube domain” ω + iRn will become apparent momentarily. Note
that each g ∈ G takes Ω to itself if G is taken to act on Cn by complex
linear extension of its action on ω ⊂ Rn: this is clear since g takes ω + iRn to
itself and g takes V to itself—because g on Ω maps the set {(x1, . . . , xn) ∈
Rn : x2

1 + · · ·+ x2
n = 1

2} to itself, since g ∈ O(n).1

The domain Ω is of course unbounded, but it is biholomorphic to a
bounded open set (since it is contained in a proper cone). This immediately
implies, using the fact that bounded holomorphic functions extend across
deleted subvarieties, that any automorphism of Ω extends to be an automor-
phism of the tube domain ω + iRn. Now automorphisms of tube domains are
completely understood. In particular it is shown in [Yang 1982] that every
automorphism of ω + iRn has the form z �→ Az + b + ic for some b, c ∈ Rn

and some A ∈ GL(n,R). Here Az + b must map ω to itself, so from property
(b) of ω above, b = 0 and A ∈ G ⊂ O(n). Now, for z �→ Az + ic to map
V to itself, it must be that c = 0: this is so because A maps V to itself but
V 	= V + ic if c 	= 0. Hence the original automorphism z �→ Az + b + ic is in
fact an element of G.

5.4.2 How to Obtain a Bounded Domain

The domain Ω does not as such answer the question of realizing G as the
automorphism group of a bounded domain with a smooth boundary, since Ω
is neither bounded nor smooth (because of the removal of V , which has real
codimension 2). However one can modify Ω as follows: the domain Ω is pseu-
doconvex so it admits a C∞ strictly plurisubharmonic exhaustion function
ϕ : Ω → R. By averaging with respect to the action of the compact group
G on Ω, one can obtain such a ϕ that is G-invariant, so that its c-sublevel
sets Ωϕ,c := {z ∈ Ω : ϕ(z) < c} are C∞, bounded and G-invariant, for generic
choice of c (by Sard’s theorem (Theorem 5.3.2)), first for c regular values
of ϕ. For each fixed c, there is an arbitrarily small (in the C∞ sense) pertur-
bation, to be denoted Ω̂ϕ,c, which guarantees that Ω̂ϕ,c is still contained in
Ω, G-invariant and strongly pseudoconvex, and has the further property that
Aut (Ω̂ϕ,c) preserves the function

∑n
j=1 z

2
j . This follows from the arguments

discussed earlier (Section 5.4.1; see also Sections 5.3.3, 5.3.4, and 5.3.8.) about
introducing orbit-stabilizing perturbations. Since G itself preserves

∑n
j=1 z

2
j ,

1The inclusion relation g(V ) ⊂ V follows by the “persistence of identities” upon
passing from a totally real maximal dimension submanifold to a whole connected
open set in C

n.
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the possibility of carrying this perturbation process in a G-equivariant way fol-
lows easily. By choosing the perturbations sufficiently small (for each cj), the
property can be retained that for some fixed increasing sequence cj → +∞,
the Ω̂ϕ,cj are increasing (i.e., Ω̂ϕ,cj ⊂ Ω̂ϕ,cj+1 and

⋃+∞
j=1 Ω̂ϕ,cj = Ω.

With these choices made, it follows that, for j sufficiently large, Aut (Ω̂ϕ,cj
)

must be exactly G.
To see this, it suffices to show that if cj → +∞, cj a regular (i.e., noncrit-

ical) value for ϕ, and αj ∈ Aut (Ω̂ϕ,cj ), then there is a subsequence αjk
of the

αjs which converges uniformly on compact subsets of Ω to an automorphism
of Ω, first to an element of G. For, if this is known, then Aut (Ω̂ϕ,cj

) restricted
to some fixed (nonempty) Ω̂ϕ,c lies, when j is large enough, in a small neigh-
borhood of G

∣∣
Ωϕ,c

and hence, by the results of Chapter 4, in fact = G (since
it contains G).

To check the indicated convergence result for a subsequence of the αj ,
note first that some subsequence αjk

of the αjs converges uniformly on com-
pact subsets of Ω to some holomorphic function α0 : Ω → Ω ∪ ∂Ω. This
follows from standard normal families arguments since Ω is biholomorphic to
a bounded domain. Note that we need not worry about possible “divergence to
infinity” for this reason: Re (

∑
z2

j ) is preserved by Aut (Ω̂ϕ,c) by construction.
And, the real parts of the zjs are bounded on Ω̂ϕ,c. It follows that the imagi-
nary parts of the coordinates of ϕj(0, . . . , 0) are bounded for ϕj ∈ Aut (Ω̂ϕ,cj

),
the bound being uniform in j. The limit α0 is in Aut (Ω) = G, provided it
does not “degenerate,” i.e., provided that α0(Ω) ⊂ Ω, for which it suffices to
show that α0(Ω) 	⊂ ∂Ω.

Now α0(Ω) cannot contain points of ∂ω+ iRn that are not in V since such
points are strongly pseudoconvex, by the standard argument about strongly
pseudoconvex boundary points of domains not biholomorphic to the ball
(cf. [Rosay 1979]) and the “scaling version” of Rosay’s argument presented
in Chapter 9 (see Theorem 9.2.1). On the other hand, it cannot be that
α0(Ω) ⊂ V since this would give a retraction of Ω ∪V onto V , which is impos-
sible for homological reasons: Ω ∪V is contractible, but V ∩ (ω+iRn) is homo-
logically nontrivial in dimension n since {(x1, . . . , xn) ∈ Rn : x2

1+. . .+x2
n = 1

2}
is not homologically trivial in V .

5.4.3 Construction of ω

Turning now to the construction of a suitable ω as a C∞ small perturbation of
the unit ball in some Rn, we note first a general idea of metric perturbations
and group actions: Suppose that (M, g0) is a Riemannian manifold with metric
g0 invariant under a faithful action on M of a compact Lie group G. (By
faithful, we mean here that only the identity in G acts as the identity map
of M .) Thus, in effect, G can be thought of as a subgroup of the isometry
group Isom (M, g0) of M with respect to the metric g0. Now, in general, it is
not necessarily the case that there is a metric g on M that is C∞ close to g0
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such that Isom (M, g) = G. For example, if a metric of the k-dimensional
sphere Sk is invariant under the standard SO(k + 1) action on Sk, then it
is necessarily a multiple of the standard Sk metric, and hence its isometry
group is O(k + 1), not just SO(k + 1). However, what is true is that there is
always a metric g on M , C∞ close to g0, such that the metric g is invariant
under the G-action and Isom (M, g) has the same orbits as the G-action.
Such an orbit-stabilizing perturbation of g0 is obtained by making G-invariant
alterations of the g0-metric in tubular neighborhoods of sufficiently many
G-orbits of maximal dimension. Then the detailed argument is similar to but
easier than the corresponding ideas in the Saerens–Zame argument already
presented, so we omit the details at this time. In summary, one can stabilize
a given G-orbit by making a high-order derivative of the metric g in normal
directions to the orbit larger than for other (remote) orbits: this will stabilize
a neighborhood of the orbit. This process can be successively adjusted to
stabilize smaller neighborhoods and the limit orbit itself. Then a dense set of
other orbits can be stabilized, by the Baire category theorem. Hence all orbits
can be stabilized.

Thus the problem of finding a suitable ω as above can be solved if it can
be converted to an orbit stabilization situation. As pointed out in [Bedford/
Dadok 1987], this can be arranged by choosing first a diagonal embedding. Sup-
pose that the group G has a faithful representation as a subgroup of O(n) for
some n. Then G has an action on Rn2 ∼= Rn ⊕ · · · ⊕ Rn (n summands) by
letting G act on each summand by its O(n) representation. The G can be
considered as a subgroup of O(n2), and this faithful representation of G has
the following property: If a subgroup H of O(n2) has the same orbits as G,
i.e., Hx = Gx for all x ∈ Rn2

, then H = G.
The role of the diagonal embedding process can be made more vivid by

constructing a concrete example. Consider the action of SO(3) on S2 ⊂ R3,
S2 = {(x, y, z) : x2 + y2 + z2 = 1} as usual, and the action of O(3) on S2.
The 2-sphere is itself an orbit for both actions, and, moreover, any metric
invariant under SO(3) has to be a multiple of the standard metric on S2 and
hence must be invariant under O(3). No process of orbit stabilization—indeed
no process whatever—can produce a metric on S2 which is SO(3) invariant
but not O(3) invariant: it cannot be arranged that Isom (S2, g) = SO(3)
exactly with SO(3) acting in the standard way as indicated. In fact it cannot
be arranged that Isom (S2, g) = SO(3), acting any way at all. The reason is
that a faithful SO(3) action must a priori have an orbit of dimension =
dimSO(3)− maximum isotropy dimension = 3 − 1 = 2. Thus every faithful
SO(3) action on S2 must make S2 homogeneous so that an invariant metric
must have constant Gauss curvature; and then S2 with that metric must be
isometric to S2 with a multiple of its standard metric. But such a metric has
isometry group O(3), not just SO(3).

All this difficulty of distinguishing SO(3) from O(3) by orbits can be re-
paired, as it were, by considering the diagonal action. first we let SO(3) act on
R9 as follows. Consider A ∈ SO(3), a 3×3 orthogonal matrix. Then associate
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to A a diagonal-associate Â ∈ O(9), first the 9 × 9 matrix with three 3 × 3
diagonal blocks being A, and all other matrix elements 0:

Âij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Aij if 1 ≤ i, j ≤ 3,
Ai−3,j−3 if 4 ≤ i, j ≤ 6,
Ai−6,j−6 if 7 ≤ i, j ≤ 9,
0 otherwise.

The transformation Â, constructed from A ∈ SO(3), gives an orthogonal
action on R9.

The crucial point that makes this construction of interest is this: if H is a
subgroup of O(9) the action of which on S8 (or, equivalently on R9) has each
H-orbit contained in some orbit of the diagonal action (action by {Â : A ∈
SO(3)}), then each element h ∈ H has the form Â for some A ∈ SO(3).
This will be checked momentarily. Note that this means that if a Riemannian
metric g on S8 is invariant under the action of {Â : A ∈ SO(3)} and also
has the orbit stabilization property that Isom (g) has the same orbits as the
orbits of {Â : A ∈ SO(3)}, then Isom (g) = {Â : A ∈ SO(3)} ∼= SO(3). Since
such orbit stabilization can always be induced by a small perturbation of S8,
by making {A}-invariant perturbations normal to enough {Â : A ∈ SO(3)}-
orbits, one finds then a metric on S8 with its isometry group isomorphic to
SO(3). The O(3) versus SO(3) difficulty for the actions on S2 is eliminated
by moving up to S8. [Here we use implicitly the rigidity of small perturbations
of S8: for such, isometries of the metric are always realized as the restriction of
a rigid motion of R9, hence, changing the origin if need be, by O(9) elements.
See the end of Subsection 5.4.4 for details of this idea.]

It remains to see why a subgroup H of O(9) which has orbits contained
in {Â}-orbits must itself consist of elements of Â form. For this consider a
9× 9 matrix h ∈ H ⊂ O(9). We write images as column vectors here, so the
first column of the matrix h is the image under h of e1 = (1, 0, . . . , 0), this
image written in column form. This image is of course in the H-orbit of e1 =
(1, 0, . . . , 0) and hence by hypothesis is in the {Â} orbit of e1 = (1, 0, . . . , 0):
it equals Âe1 for some A ∈ SO(3). In particular, this column has its bottom
six entries = 0. Similarly, the fourth column of the h-matrix has its top three
and bottom three entries = 0. The seventh column has its top six entries = 0.

Now we wish to see that the top three entries of column 1 of the h matrix =
the middle three entries of column 4 = the bottom three entries of column 7
(same order, top to bottom, in the three cases). For this, we consider the
h-image of e1 + e4 + e7 where ei = the vector with 1 in the i-th position,
all other components = 0. This h-image is (written as a column) the sum of
the first, fourth and seventh columns. And, noting the forms of these columns
already shown, this is the top three entries of the first column followed by
the middle three of the fourth column followed by the bottom three of the
seventh column. On the other hand h(e1 + e4 + e7) belongs to the H-orbit
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of e1 + e4 + e7, and hence by hypothesis to the {Â}-orbit of e1 + e4 + e7. So
h(e1 + e4 + e7) = Â(e1 + e4 + e7) for some A ∈ SO(3). But Â(e1 + e4 + e7)
(as a column vector) consists of its top three entries repeated in order two
additional times. This shows that the h-matrix has the correct form to be an
Â-matrix as far as the first, fourth, and seventh columns are concerned.

Similar reasoning applied to e2, e5 and e8 together with e2 + e5 + e8 and
e3, e6 and e9 together with e3 +e6 +e9 completes the proof that the H-matrix
has repeated block-diagonal form. The block, call it B, must belong to O(3),
since h ∈ O(9). To see that B ∈ SO(3), consider h(e1+e5+e9). This (column)
vector is, from top to bottom, first column of B, second column of B, third
column of B. Therefore, in order for the element B̂(e1 + e5 + e9) to coincide
with the element Â(e1 +e5 +e9), for some A ∈ SO(3), it must be that B = A.
So h = B̂ for some B ∈ SO(3).

Note that the map of SO(3) onto the orbit of e1 + e5 + e9 is injective:
Â1(e1 + e5 + e9) = Â2(e1 + e5 + e9) implies that A1 = A2. It follows from
general considerations that this is true generically: A �→ Âv is injective for
generic vectors v ∈ R9, i.e., the set of v for which this is true is dense and
open in R9.

Thus one is indeed in the situation where orbit stabilization suffices. The
orbit stabilization process is in fact simpler in this case than for a general
Riemannian action. And one sees that there is a G-invariant C∞-small per-
turbation of the unit sphere which lies in the unit sphere except for a set of
small measure and which stabilizes G-orbits in the sense that the (abstract)
isometry group for the perturbation ω has the same orbits as G acting on the
perturbation ω. It follows then that any affine mapping of Rn2

that preserves
this perturbed domain ω is in fact in O(n2) and hence in G: the reason is
that, because of the coincidence of the perturbation ω with the unit sphere
everywhere but on a set of small measure, such an affine mapping must carry
some open subset of the unit sphere to itself and hence be in O(n2). Further
details can be found in [Bedford/Dadok 1987].

5.4.4 Isometry Group of a Riemannian Manifold

Note that, with ω so chosen, G is in fact the full isometry group of ∂ω, the
boundary of ω. This follows from the fact that ∂ω, being C∞ close to the
unit sphere, is thus rigid in the sense that all its intrinsic (abstract) isome-
tries extend to be isometries of Rn2

. This rigidity follows from E. Cartan’s
“type number” local rigidity theorem: the unit sphere has maximal type num-
ber and hence so does every hypersurface C∞ close enough to it. (Refer
to [Hermann 1968] for these matters. See also [Spivak 1975], Volume 5, Chap-
ter 12, p. 244 ff and the discussion on type numbers and rigidity.) From another
only slightly different viewpoint, ∂ω, being C∞ close to the unit sphere, has
positive sectional curvature and thus is rigid, again by E. Cartan’s result.
Thus any isometry of ∂ω extends to an isometry of Rn2

so that G = the
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isometry group of ∂ω considered as an abstract Riemannian manifold. Thus
one obtains: if G is a compact Lie group, then there is a compact Riemannian
manifold (M, g) such that Isom (M, g) ∼= G.

Curiously, the natural question in geometry that this result answers was
never considered successfully in the context of pure Riemannian geometry it-
self, prior to its arising in the present context of complex analysis in [Bedford/
Dadok 1987] and [Saerens/Zame 1987].

5.4.5 Stein Domains

The second major line of thought in [Bedford/Dadok 1987] concerns realiza-
tion of compact Lie groups as automorphism groups of bounded domains (i.e.,
domains with compact closure) in Stein manifolds which are not necessarily
biholomorphic to bounded domains in Cn. This more general class of domains
yields a possible realization in lower dimensions. In effect, one can go from
complex dimension n2 for the Euclidean space case if G ⊂ O(n) to dimension
equal to that of G itself, clearly much lower when n is large.

Theorem 5.4.1 (Bedford–Dadok). If G is a connected compact Lie group
the dimension of whose center is not 1, then there is a strongly pseudoconvex
domain Ω with the real analytic boundary contained in the complexification
GC of G and with G ⊂ Ω such that Aut (Ω) ∼= G and Aut (Ω) consists exactly
of the action of G on itself by translation extended holomorphically to Ω.

If the dimension of the center of G is 1, then a similar domain Ω exists
in GC × C.

This result is established by using the decomposition of G into the product
of its center and simply connected simple factors, up to a finite quotient. The
essential point is then to use the result of H. Cartan showing that, under quite
general circumstances, the automorphism group of a product is the product
of the automorphism groups of the factors. (This will be discussed in more
detail later.)

5.4.6 Decomposition of G into T × Gs

The product decomposition result is a standard part of Lie group theory
(cf. [Helgason 1962]): Every connected compact Lie group G has the form (T k×
G1 × . . .×G�)/H where T k is a k-dimensional torus (k = 0 is allowed), the
Gis are simply connected compact simple groups, and H is a finite subgroup.
While the result is usually considered only in a Lie-group-theoretic context, it
actually has an illuminating differential-geometric interpretation (and, indeed,
proof).

This arises as follows: any left-invariant metric on the compact Lie group
can be averaged with respect to the Haar measure on right translations of G.
This produces a bi-invariant metric 〈 , 〉 on G. For this bi-invariant metric,
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the covariant derivative DXY , where X and Y are left-invariant vector fields,
is 1

2 [X,Y ]. And, again for left-invariant vector fields, the Riemann curva-
ture tensor R(X,Y, Z,W ) is −1

4 〈[X,Y ], [Z,W ]〉 (cf. [Milnor 1963]; note that
the sign convention for R in that reference is opposite to ours). This cur-
vature tensor is parallel. Moreover, the Riemann sectional curvatures at-
tached to it are all nonnegative, as follows immediately from the formula:
the sectional curvature of the 2-plane spanned by an orthonormal pair X,Y
is −R(X,Y,X, Y ) = 〈[X,Y ], [X,Y ]〉 ≥ 0.

Let I be the set of all left-invariant vector fields X such that [X,Y ] = 0 for
all left-invariant vector fields Y and set Ip = {X(p) : X ∈ I}, p ∈ G. If X ∈ I,
then X is globally parallel, since DY X = 1

2 [Y,X] = 0 for every (left-invariant)
Y so DX ≡ 0. Thus the family of subspaces Ip ⊂ TpG, ∀p ∈ G, is a parallel
family (i.e., invariant under parallel translation). The parallel nature of the
family Ip can be interpreted in terms of the curvature tensor R: I is exactly
the set of all left-invariant vector fields X such that R(X,Y, Z,W ) = 0 for all
left-invariant vector fields Y, Z,W . So the parallel nature of R implies that of
the family Ip.

The de Rham decomposition theorem (cf. [Kobayashi/Nomizu 1963], The-
orem 6.2, p. 192, Vol. I) now implies that the universal cover Ĝ of G splits as
a product T ×Gs where the tangent space of the torus T at each point is the
lift of I at the image of the point under the covering projection. And thus,
for the pullback to Ĝ of the metric of G, the torus T is flat. Moreover Gs

is necessarily compact. (In the notation Gs, “s” stands for semi-simple, for
reasons that will appear later.)

The group Gs is compact because, if Gs were noncompact, then there
would be a geodesic ray γ : [0,+∞)→ Gx emanating from a pre-image of the
identity. [Recall that a ray is a curve γ on [0,+∞) with dis(γ(0), γ(t)) = t
for all t ≥ 0.] But if v is the tangent vector γ′(0) and V the associated left-
invariant vector field on G, then there is a left-invariant vector field on G
with [V,W ] 	= 0. This would mean that −R(V,W, V,W ) would be a positive
constant along the ray, implying the existence of a conjugate point to the
initial point of the ray, a contradiction. Alternatively, one could show that
Gs is compact by noting that it is complete and has positive Ricci curvature
bounded away from 0: this follows by noting that, at a pre-image of the iden-
tity, there is at least one 2-plane of positive sectional curvature containing a
given vector v 	= 0, associated, as above, to W such that [V,W ] 	= 0. So the
Ricci curvature of v is positive. Since curvature is parallel, the Ricci curvature
is positive and bounded away from 0 everywhere. The compactness of Gs of
course implies that any covering-space quotient of it is finite-to-one.

5.4.7 Decomposition of Gs

There is potentially a further decomposition of Gs that arises as follows. Since
the metric is bi-invariant, its Lie derivative as a tensor with respect to a left-
invariant vector field Y must be 0. This gives



5.4 The Bedford/Dadok Proof 153

0 = Y 〈X,Z〉 − 〈[Y,X], Z〉 − 〈X, [Y, Z]〉

for X,Y, Z left-invariant vector fields, using the usual Leibniz property to
compute the LY Lie derivative of 〈 , 〉 as a tensor. But 〈X,Z〉 is constant so
that Y 〈X,Z〉 = 0. It follows that 〈[X,Y ], Z〉 = 〈X, [Y, Z]〉. This same formula
holds if we consider the lifts of left-invariant vector fields on G to vector
fields on Ĝ. Let L = the Lie algebra of such lifts. Then the relationship
〈[X,Y ], Z〉 = 〈X, [Y, Z]〉 implies that the orthogonal complement of an ideal
in L is again an ideal, as one sees immediately. From this viewpoint, the space
of vector fields in L tangent to Gs is exactly the orthogonal complement of the
ideal in L consisting of vector fields tangent to T . Now the fact that orthogonal
complements of ideals are again ideals implies that the tangent ideal of Gs can
be successively decomposed into, finally, an orthogonal direct sum of simple
ideals. Since Gs is simply connected, this implies a corresponding product
decomposition of Gs into a product: the ideal decomposition is parallel by
bi-invariance, so the de Rham decomposition theorem again applies. Thus, in
outline, one arrives at the Lie group decomposition result as stated. Of course,
the argument just discussed can be considered exclusively in Lie group terms:
the appeal to the de Rham decomposition theorem is used just to give a
differential geometric perspective.

The irreducibility of the ideals arising in this final decomposition implies
that the positive Ricci curvature on each irreducible factor is in fact constant:
the bi-invariant metrics are Einstein. Thus the Ricci curvature tensor itself
can be thought of as being the original bi-invariant metric up to a constant
factor. The R(X,Y, Z,W ) = −〈[X,Y ], [Z,W ]〉 formula shows that this Ricci
curvature is in fact, again up to a constant, equal to the traditional “Killing
form” K(X,Y ) = −tr (ad(X)ad(Y )), where ad(X) is the map on the tangent
space determined by Lie bracketing with X. Thus the original metric and the
Killing form metric are themselves Einstein metrics. The uniqueness (up to
constant factors) of bi-invariant metrics on the simple factors can of course
be seen directly from the irreducibility of the tangent ideals.

The decomposition of Ĝ into T×Gs, and the associated information about
G itself, can also be viewed in the context of the Toponogov splitting theorem
for complete manifolds of nonnegative sectional curvature, at least as far as
the T×Gs decomposition is concerned. (The further decomposition of Gs into
simple factors does not fit into this picture, however.) The reader is invited
to consult [Cheeger/Ebin 1975] or [Petersen 2006] for further details of this
perspective on decomposition.

5.4.8 Torus Group Case

We now begin constructing domains in the complexification of a compact
connected Lie group G with automorphism group = G.

As already noted, the product decomposition of a compact connected Lie
group offers a natural approach to finding domains with automorphism group



154 5 Lie Groups as Automorphism Groups

equal to the given compact Lie group. If such domains can be found for each
factor in the product then, under quite general and rather easily arranged
circumstances, the product of these domains will serve for the whole (product)
group. We now turn to this situation in more detail.

The first case to consider is that of a k-dimensional torus T = {(α1, . . . ,
αk) ∈ Ck : |αi| = 1, ∀i}. Recall the classical concept of a Reinhardt domain: an
open and connected set Ω ⊂ Ck such that Ω is invariant under the mappings
(z1, . . . , zk) �→ (α1z1, . . . , αkzk) where each αi has modulus 1. The torus T
acts on such a domain, by definition.

A Reinhardt domain, say Ω, is completely specified by its “log profile”

Log (Ω) := {(log |z1|, . . . , log |zk|) ∈ R ∪ {−∞} : (z1, . . . , zk) ∈ Ω}.
We allow −∞ values to accommodate the possibility that U contains points
with some or all coordinates = 0. We write Log (z1, . . . , zk) for the k-tuple
(log |z1|, . . . , log |zk|), including the possible −∞ values.

Note that Log−1(1, . . . , 1) = T ⊂ Ck. Thus Log−1(V ), where V is
some neighborhood of (1, . . . , 1) in Rk, is a tubular neighborhood of the real
n-dimensional submanifold T of Ck. Note also that T is a totally real sub-
manifold of Ck in the sense that the tangent space of T and the J-image
of this tangent space intersect in the 0-vector only. (Here J is the stan-
dard almost complex structure on R2k = Ck.) That T is totally real is
clear at the point (1, 1, . . . , 1) ∈ Ck, since the tangent space in R2k coor-
dinates (x1, y1, . . . , xk, yk), xj + iyj = zj , is the set of vectors of the form
(0, b1, 0, b2, . . . , 0, bk), each bj ∈ R. The same holds at other points of T since
these arise from (1, 1, . . . , 1) by a complex linear map which preserves T .
Thus we can identify, for each (sufficiently small) neighborhood V in Rk of
(1, 1, . . . , 1), the set Log−1(V ) with a tubular neighborhood of T in its own
complexification: TC is characterized in a neighborhood of T by being a com-
plex k-dimensional manifold containing T as a totally real submanifold.

Suppose now that Ω is a Reinhardt domain and Log (Ω) is a bounded
convex domain in Rk. Then, by [Bedford 1980], the automorphisms of Ω must
have the form:

(z1, . . . , zk) �→ (c1zm1 , . . . , ckz
mk),

where we are using multi-index notation

zmj = z
m1

j

1 · · · zmk
j

k ,

and where it is required that the matrix (m�
j) ∈ GL(k,Z). A mapping of this

form maps Ω to Ω if and only if the affine mapping z �→Mz+log |c| is an affine
mapping of Log (Ω) to itself. Here M = the matrix (m�

j), z = (z1, . . . , zk) ∈ Ck

and c = (c1, . . . , ck) ∈ Ck.
Now, if k ≥ 2, then, generically, domains in Rk have no nontrivial affine

self-mappings. In particular, there are domains V in Rk that are small pertur-
bations of a (small) ball around the origin in Rk. For such V , as before, the
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domain Log−1(V ) is a tubular neighborhood of T in its complexification TC,
where as earlier we identify T with a totally real submanifold of Ck. And, for
such V (which have no nonidentity affine self-mapping), the automorphism
group of Log−1(V ) is exactly T .

In case k = 1, any connected bounded open neighborhood of 0 in Rk = R1

has an affine self-mapping that is not the identity, first reflection at its mid-
point, the neighborhood being of course an open interval. Thus, in this case,
for any V , Log−1(V ) has an automorphism other than those in T . (One such
automorphism which is associated to the affine “inversion” indicated is the
automorphism z �→ R1R2/z of {z : R1 < |z| < R2}, 0 < R1 < R2 < +∞
to itself.) So special consideration and indeed an extra dimension (as stated
in the theorem) is needed in this case. Indeed no Riemann surface has auto-
morphism group isomorphic to {z ∈ C : |z| = 1} (cf. Chapter 2): the extra
dimension is definitely required.

The reader can find an explicit construction dealing with this special case
in [Bedford/Dadok 1987].

In summary form: set Ω = {(z, w) ∈ ω×C : r1(z) < |w| < r2(z)}, where ω
is a smoothly bounded, triply-connected domain in C with Aut (ω) being the
identity alone, and r1, r2 are continuous functions on the closure of ω, smooth
on ω itself, with 0 < r1 < r2 on the closure of ω. Then, if r1(z)r2(z) is not
the modulus of a holomorphic function on ω, then Aut (Ω) is isomorphic to
{α ∈ C : |α| = 1} = T . The proof can be found in [Bedford/Dadok 1987].
Note that it is not hard to see that there are, for example, perturbations of
the unit ball in C2 for which the automorphisms group is exactly the set of
maps (isomorphic to T )

(z1, z2) �→ (αz1, αz2), α ∈ C, |α| = 1.

The point of the more intricate construction of Bedford/Dadok is that the
above Ω lies in TC × C.

5.4.9 The Case of Simple Lie Groups

The next stage in the application of the product decomposition to finding
domains in GC with specified automorphism group is to consider the case G =
a compact simple group. In this case the usual representation of G acting on
its own Lie algebra is faithful up to a finite kernel. In more detail, if v is a
vector in the tangent space of G at the identity and γ(t) is the corresponding
one-parameter subgroup, then we define Ad g, g ∈ G acting on v, by

(Ad g)(v) =
d

dt
g−1γ(t)g

∣∣∣
t=0

,

this being again a tangent vector to G at the identity. This gives a represen-
tation

G→ linear endomorphism of the tangent space of G at the identity.
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The simplicity of G implies that the kernel of this representation is finite.
Indeed, to check this one needs only check that the kernel contains no
1-parameter subgroup, since the kernel is a closed subgroup of G. This follows
from the simplicity of G and the associated nondegeneracy of the Killing form.

Thus, up to a finite quotient, G can be considered to be a matrix group.
The image of the Ad representation is in fact a subgroup of the orthogonal
group of linear transformations of the tangent space at the identity, orthog-
onal relative to the bi-invariant metric (which is the Killing form, as already
discussed).

This gives an explicit way to construct a neighborhood basis of G in-
side GC; first, if ω is a neighborhood of zero in the tangent space of G at the
identity, then we can set Ωω = G · exp(iω) (ignoring the quotienting, which
is easily handled by “lifting”), where exp is the usual exponentiation of ma-
trices. Of course one can handle this matter “intrinsically”: since exp in the
1-parameter subgroup sense is defined on ω, and since G is totally real in GC

and exp is real analytic, there is a unique way to define exp holomorphically
on a sufficiently small neighborhood of the identity in GC. In particular, if w is
sufficiently small, then exp(iω) is defined in this way, simply from holomorphic
function theory.

Note that such a tubular neighborhood is G-invariant (for left multiplica-
tion action of G), and that this G-action is holomorphic on this G-invariant
neighborhood of G in GC. The final step in completing the construction is to
show that, for some suitable choice of ω, these G-induced automorphisms are
the only automorphisms of the tubular neighborhood.

To begin with, we restrict the neighborhood ω of 0 in the Lie algebra of G
(which we identify as usual with the tangent space of G at the identity) to be
a perturbation of a small ball around 0 in the Lie algebra in the bi-invariant
metric. As far back as Grauert’s proof of the existence of real analytic embed-
ding of real analytic manifolds [Grauert 1958], it was noted that for such ω,
the associated tubular neighborhood Ωω is C∞ strongly pseudoconvex. This
is a general phenomenon, not involving the fact that G is a Lie group: every
compact real analytic manifold has a neighborhood basis of smooth strongly
pseudoconvex domain inside its own complexification (again [Grauert 1958]).
In particular, such tubular neighborhoods are Stein manifolds, by Grauert’s
solution of the Levi problem since they have no compact positive-dimensional
subvarieties. Each of these Stein tubular neighborhoods has compact closure in
a slightly larger tubular neighborhood which is also a Stein manifold. Then it
follows that a given such tubular neighborhood has a defined, positive definite
Bergman metric in the manifold sense. This Bergman metric is constructed
from the Bergman kernel obtained from the space of L2 holomorphic (k, 0)
forms, k = the complex dimension of the complexification, as discussed in
Section 3.2. This follows easily from embedding in complex Euclidean space
the slightly larger Stein manifold in which the given tubular neighborhood has
compact closure. The given tubular neighborhood thus inherits holomorphic
L2 forms from the ambient Euclidean space; these restrictions/pullbacks to
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the tubular neighborhood in the submanifold (of CN ) are automatically L2,
and there are enough of them to guarantee a positive definite Bergman met-
ric. This argument is a straightforward generalization of the argument showing
that a bounded domain in CN has a defined and positive definite Bergman
metric.

Returning to the specific situation of an Ωω in GC with ω so chosen as
above, note that Aut (Ωω) contains G in the sense that (left) multiplication
by elements of G acts as biholomorphic maps on Ωω. A priori, it could be that
Aut (Ωω) is larger than G, or even that the connected component of the iden-
tity in Aut (Ωω) was larger than G. [Note that Aut (Ωω) is a Lie group here and
indeed a Lie group with the isotropy of points of Ωω compact, since Aut (Ωω)
is a closed subgroup of the isometry group of the Bergman metric of Ωω.]

Now the homology group Hd(Ωω,Z) is isomorphic to Hd(G,Z), since ω is
convex; thus Ωω has a strong deformation retract onto G ⊂ Ωω by linearly
contracting ω to 0 in the Lie algebra. Since Hd(G,Z) = Z, d = dimR G, it
follows by topological considerations that there is an orbit of Aut (Ωω) in Ωω

with dimension at most d ([Bedford 1983a]). Since Aut (Ωω) contains G in
the sense mentioned, such an Aut (Ωω)-orbit of dimension at most d must in
fact be a finite union of G-orbits (of dimension exactly d). And any one of
these must be stable under the identity component Aut 0(Ωω) of Aut (Ωω),
by continuity.

Let Gx0 (following the notation of [Bedford/Dadok 1987]) be such an
Aut 0(Ωω)-stable orbit. Then Aut 0(Ωω) acts as isometries on Gx0, when Gx0
is equipped with the restriction of the Bergman metric of Ωω. Identifying
Gx0 with G (since left multiplication by “elements of G” is a simply transi-
tive action on Gx0), one obtains that Aut 0(Ωω) is in effect a subgroup of the
identity component of the isometry group of G with the left-invariant metric
obtained by restricting the Bergman metric to Gx0 (identified with G). Note
that this need not be the bi-invariant metric of G itself (if x0 	∈ G ⊂ GC),
but it is left invariant. The form of such isometries was determined in
[Ochiai/Takahashi 1976]: for each f ∈ Aut 0(Ωω), there are elements a, b ∈ G
such that f(g · x0) = agb · x0, where · denotes the G-action operation.

Since G is transitive on Gx0, an “extra” automorphism in Aut 0(Ωω), that
is one that is not in G, can be obtained as an automorphism ϕ fixing x0
followed by one in G. Such an automorphism ϕ fixing x0, and stabilizing the
orbit Gx0 at x0, acts on the tangent space Tx0(Gx0) of Gx0 at x0. The Cauchy–
Riemann equations then determine an action on J(Tx0(Gx0)). Thus, since ϕ
is a Bergman metric isometry, this determines the action of ϕ on geodesics
with tangent vectors in J(Tx0(Gx0)).

The domain ω determines the domain Ωω as far as its transversal-to-G
nature is concerned. So, in this situation, it is natural to suppose that a
suitable choice of ω will rule out the possibility of any nontrivial such action
of dϕ on the J(Tx0(Gx0)). And then, again by Cauchy–Riemann equations,
the action dϕ along G would also be necessarily trivial. Then no “extra”
automorphisms in Aut 0(Ωω) would exist.
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This intuitive expectation is in fact correct. In [Bedford/Dadok 1987], it
is shown that for this it suffices to choose ω so that (i) ω = −ω and (ii) the
only σ ∈ automorphisms of the Lie algebra of G with σ(ω) = ω is the iden-
tity. (Note here that multiplication by −1 is not an automorphism of the
Lie algebra so the conditions are consistent.) Of course, ω continues to be
chosen so that G · exp(iω) is strongly pseudoconvex and smoothly bounded
in GC. For the sufficiency of this genericity condition, the reader is referred
to [Bedford/Dadok 1987].

5.4.10 Connected Lie Group Case with Product Decomposition

Once the situation is in hand for the torus factor and the simple group factors
in the product decomposition G = T×G1×· · ·×G�/H, H finite, the group G as
a whole is treated as follows. A domain in the complexification GC of G written
as G · exp(iω), some ω, can be obtained in particular with ω = ω0 × · · · × ω�

in obvious notation. By a result of H. Cartan

Aut (Ωω) = T ×Aut (Ω1)× · · · ×Aut (Ω�),

(where T = Aut (Ω0) and Ωj = Ωωj ) provided that the ws are chosen so that
no permutation-of-factors automorphisms arise: this choice of ws is always pos-
sible. A lifting argument disposes of the H-quotienting (see [Bedford/Dadok
1987] for details), and one obtains a pseudoconvex product domain in GC with
automorphism group G.

We replace this domain with a bounded strongly pseudoconvex domain
with smooth boundary by considering sub-level sets of a C∞ strictly plurisub-
harmonic exhaustion function ϕ, first {z : ϕ(z) < λ}, λ a noncritical value
of ϕ. The normal families method of [Greene/Krantz 1985b] can be applied
to obtain a bounded, strongly pseudoconvex domain with smooth boundary
which is clearly G-invariant and has no “extra” automorphisms so that its
automorphism group is G. By using a real analytic ϕ, one can in fact make
this final domain have real analytic boundary.

5.4.11 Some Remarks

If one is not restricted to bounded strongly pseudoconvex domains, for in-
stance if one is interested in constructing complex manifolds with prescribed
automorphism group, there is more recent work, even when the given Lie
group is noncompact. See for instance [Winkelmann 2004], [Kan, S.-J. 2007].

On the other hand, the following question was posed by Greene and Krantz
some years ago:

Question ([Greene/Krantz 1982a]). Let Ω be a bounded, strongly pseudocon-
vex domain in Cn with C∞ boundary, whose automorphism group is compact.
Let H be a closed subgroup of the automorphism group. Then, for any open
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neighborhood U of Ω in the C∞ topology, does there exist Ω′ ∈ U such that
Aut (Ω) is Lie-group-isomorphic to H?

A significant partial answer is reported recently: see [Min, B.-L. 2009]. the
result is as follows.

Theorem 5.4.2 ([Min, B.-L. 2009]). Let Ω be a bounded, strongly pseu-
doconvex domain in CN with C∞ boundary, with its automorphism group G
compact. If N > 5 dimR G + 4, then, for any closed subgroup H of G and
any open neighborhood U (in the C∞ topology on domains) of Ω, there exists
Ω′ ∈ U such that Aut (Ω′) is Lie-group-isomorphic to H.

Whether the codimension condition N > 5 dimR G+4 is sharp is not known
at this writing. Of course some restriction on the dimension is clearly required;
see for example the discussion on O(3) and SO(3) actions in Section 5.4.3.



6

The Significance of Large Isotropy Groups

Two facts about isotropy groups have played a central role up to now in our
study of automorphism groups of bounded domains: First, that assigning to
each element of the isotropy its differential at the fixed point gives an injective
isomorphism onto a subgroup of the linear group of invertible linear maps of
the tangent space at the point to itself (Corollary 1.3.3). Second, that this
injective isomorphism is a homeomorphism onto a compact subgroup so that
in particular the isotropy group itself is compact (Corollary 1.3.7). As noted
already in the Preface, these facts about the automorphisms of bounded do-
mains represent a fundamental difference between bounded domains and Cn

itself, for instance. This difference is at bottom derived from the even more ba-
sic difference—that maps into a bounded domain form a normal family while
maps into Cn do not.

The compactness of isotropy groups and the related properness of the
action of the automorphism group (Theorem 1.3.12) are closely associated to
the question of the existence of automorphism-invariant metrics, which have
played such an important role in our developments. Indeed, the properness of
the automorphism group action is equivalent logically to the existence of an
invariant Riemannian (or Hermitian) metric (cf. the discussion at the end of
Section 1.1 and the discussion immediately after the proof of Theorem 1.3.12).

Given this central role of isotropy subgroups, it is natural to ask about
them in more detail as groups and, in particular, what conclusions one can
draw if the isotropy at a point is large in some sense. Of course the most typ-
ical case is that in which the isotropy group consists of the identity alone:
the whole automorphism group of a bounded strongly pseudoconvex domain
consists “generically” of the identity alone (Theorem 4.1.4). But, in Rieman-
nian geometry, there is a long history of considering manifolds with metrics
for which the isometry group is large in one sense or another, and it is natural
to consider the analogous sort of problem in the complex case. In Rieman-
nian geometry, the classical conditions of homogeneity—the isometry group is
transitive—and of “free mobility”—the isometry group is transitive and the
isotropy is the full orthogonal group—come to mind. One can also consider
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manifolds which are homogeneous and for which the isotropy is transitive
on directions but not necessarily the full orthogonal group. (These exist—
see [Besse 1987]). Thus, the general situation of considering the consequences
of a “large” group of isometries is a familiar one.

The subject of this chapter is the consequences of assuming specifically
that the isotropy is large at one single point in a sense that will be made pre-
cise later. The Riemannian analogue of the particular condition involved also
has a history in Riemannian geometry: the Riemannian manifolds satisfying
the corresponding Riemannian condition are the “weak models” in the sense
of [Greene/Wu 1977]. But here we operate in the complex situation, though
we soon reduce it to the metric one.

The Riemann surface version of this general question of large isotropy at
one point has a definitive and straightforward answer that has been known for
a long time (cf. [Aumann/Carathéodory 1934]).

Theorem (Bruné, Aumann, Carathéodory et al.). If Ω is a bounded
domain in C and if, for some p ∈ Ω, Ip is infinite, then Ω is biholomorphic to
the unit disc.

This actually holds for hyperbolic Riemann surfaces (that is, those Rie-
mann surfaces covered holomorphically by the unit disc), not just for bounded
domains, as the following arguments will show.

We shall discuss the proof of this result in a moment. But first we note
that the natural generalization of this question to higher dimensions arises not
directly from the theorem as stated. but from a peripheral observation about
the theorem’s hypothesis. first, if the isotropy at a point of a bounded domain
in C, or more generally of a Riemann surface that admits an automorphism-
invariant metric, is infinite, then in fact the isotropy at that point is as large
as possible: expressed in terms of the differentials of the elements of the group
at the point, it is the full “circle group” {z ∈ C : |z| = 1}, which we shall
hereafter denote by T .

Indeed, the simplest way to prove the theorem of Bruné et al. is to establish
this preliminary fact first. It is this more or less immediate consequence of the
infinity of the isotropy that leads to a natural generalization to higher dimen-
sions: [Greene/Krantz 1985a] in the noncompact case, [Oeljeklaus E. 1970] in
the compact case; cf. [Bland/Duchamp/Kalka 1987] also. It turns out that the
natural hypothesis for higher dimensions can be weaker than having the largest
possible isotropy U(n), n = dimension of the manifold. It suffices for complete
information to suppose that the isotropy at one point should be transitive on
real directions at that point: given any two nonzero vectors v and w at the
point, there should be an isotropy element the differential of which takes v to
a multiple of w. These higher-dimensional results are the main subject of this
chapter and will be covered in detail in later sections.

But let us first explore the situation of complex dimension 1 more explic-
itly from a viewpoint that will lead to the higher-dimensional situation most
naturally. If Ω is a bounded domain, or more generally a hyperbolic Riemann
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surface, and if p is a point of Ω, then the differential map ι : f �→ df , f ∈ Ip, is
an injective continuous isomorphism onto a necessarily compact subgroup, as
already discussed (Corollary 1.3.7 for bounded domains; hyperbolic Riemann
surfaces, from Proposition 2.4.4). In the case of complex dimension 1, it is an
isomorphism onto a subgroup of C× = C \ {0} as a multiplicative group, if
we interpret the differential in complex terms. And since the only compact
subgroups of C× are subgroups of the circle group T , the image of ι must lie
in T . [In the bounded domain case, this is of course apparent from Cauchy
estimates directly: if df were not in T , then either df or df−1 would have
absolute value larger than 1, and the differentials of powers of f or f−1 would
then go to infinity in absolute value, contradicting Cauchy estimates.]

Now it is easy to see that any infinite subgroup of T is dense in T : given
any (small) ε > 0, there would necessarily be two distinct elements with an-
gular separation less than ε, i.e., two elements of the form eθ1 and eθ2 with
|θ1 − θ2| < ε. But then the elements arising as powers of eiθ1 · e−iθ2 would be
ε-dense in T . Since this is so for all positive ε, the group would be dense in T .

Now, in our case, the subgroup of T is not only infinite and hence dense,
it is also compact and hence closed. Thus it is all of T , as we claimed above.

Now suppose that M is a Riemann surface with a point p having the
following property:

(†) There is a smooth complete Hermitian metric h on M such that, for each
pair of nonzero vectors v and w tangent to M at p, there is an element
of Ip which takes v to a multiple of w and which is an isometry for the
Hermitian metric.

Of course, if M has an automorphism-invariant metric, and in particular
if M is a hyperbolic Riemann surface (or a bounded domain in particular),
then this property (†) is equivalent to Ip acting transitively on real directions
in the sense defined above, which is in turn equivalent to ι(Ip) being the whole
circle group, with ι the injection onto differentials as above. But the property
we are now assuming can hold even when M does not have an invariant metric,
nor even a metric invariant for all of Ip, e.g., if M is the Riemann sphere.

Now consider the arc length parameter geodesics emanating from p. These
are all isometry-equivalent, in the obvious sense, according to the hypothesis
assumed in the previous paragraph. Hence either all are minimizing to infinity
or all have a cut point (first point beyond which they are not minimizing) at
the same distance from p. In the first case, the geodesic exponential map is a
diffeomorphism onto M . In the second case, the Riemann surface M must be
compact, and it is not hard to see that in fact it must be homeomorphic to a
sphere. [This point will be treated in detail later on.]

In the case of a bounded domain, first the situation of the theorem of
Bruné et al., the compact case is of course not relevant. We shall return to the
general hyperbolic case in a moment. Restricting our attention to the bounded
domain case, M must be diffeomorphic to a disc and, since it is hyperbolic in
the Riemann surface sense, it must be biholomorphic to the disc.
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In the more general hyperbolic Riemann surface case of the Theorem of
Brune et al., the compact case is again irrelevant: one does not even need to
prove that the Riemann surface would be a sphere and hence not hyperbolic,
but rather it suffices to note that a compact hyperbolic Riemann surface has
a finite automorphism group (Proposition 2.5.2) so that its isotropy cannot
be transitive on real directions at any point.

However, it is possible for a nonhyperbolic Riemann surface to have prop-
erty (†) above: as noted, the Riemann sphere has this property. It is easy to see
from the discussion at the end of Section 2.2 that a torus has finite isotropy,
though it has infinite automorphism group. So the Riemann sphere is in fact
the only compact example with property (†) that is not hyperbolic. The only
noncompact, nonhyperbolic Riemann surface with property (†) is of course C
itself since, by the argument given, it would have to be diffeomorphic to the
plane, but not biholomorphic to the unit disc.

These lines of development suggest that there might be generalizations to
higher dimensions concerning manifolds with isotropy that is transitive on real
directions, or more precisely, for which some compact subgroup of the isotropy
is transitive on real directions. The compact subgroup condition is used to
guarantee via averaging a suitably invariant metric h as above.

These expectations are in fact fulfilled, as this chapter continues.

6.1 Complex Manifolds with Large Isotropy
at One Point

In this section, precise formulations will be presented of the general idea just
discussed, that a compact subisotropy transitive on real directions at one point
controls a complex manifold almost completely in both the compact and non-
compact cases.

In the noncompact case, only Cn and the ball Bn can have this property,
and in the compact case only CPn. While it was relatively easy to check these
conclusions for Riemann surfaces, as in the previous paragraphs, the results
are much more subtle in higher complex dimensions, and the proof involves
an extended sequence of steps in both the noncompact and compact cases.
We discuss the noncompact case first.

Theorem 6.1.1. Let M be a noncompact complex manifold of complex di-
mension n. Let p ∈ M . Assume that there is a compact subgroup H of the
isotropy group Ip of p with the following property: for any two real tangent
vectors η, ξ at p there is an element h ∈ H such that dh|p(η) = λξ for some
real number λ.

Then M is either biholomorphic to the unit ball in Cn or biholomorphic
to Cn.

The hypothesis of compactness of the subgroup H is essential. An example
is provided by C2 \ {(1, 0)}, p = (0, 0). Here the group Ip acts transitively
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on real directions at p, though no compact subgroup of Ip does—so there
is no inconsistency with Theorem 6.1.1. To see that Ip does act with this
transitivity, let v, w be nonzero tangent vectors at p = (0, 0). Choose a complex
nonsingular linear transformation A : C2 → C2 with Av = w. Of course A may
not induce a map of C2\{(1, 0)} into itself since A((1, 0)) may not equal (1, 0).
However a biholomorphic map Â from C2 \ {(1, 0)} to itself fixing (0, 0) and
having dÂ

∣∣
(0,0) = A can be obtained by composing A : C2 → C2 with suitable

“shears” of the forms (z, w) �→ (z, w + f(z)) and (z, w) �→ (z + g(w), w),
where f, g : C → C are holomorphic functions. In particular, we can require
f(0) = g(0) = 0 and df |0 = dg|0 = 0 and still have compositions of such “first-
order constant” shears acting transitively on C2\{(0, 0)}. Then a composition
F : C2 → C2 of such shears has F ((0, 0)) = (0, 0), dF |(0,0) = identity, and
F (A((1, 0))) = (1, 0). The map Â defined by (z, w) �→ F (A((z, w))) then
takes C2 \ {(1, 0)} biholomorphically to itself, takes (0, 0) to (0, 0), and has
differential at (0, 0) taking v to w.

We return now to the direct consideration of Theorem 6.1.1. Since the el-
ements of H are holomorphic, one can think of the action of H as “complex”
and the differentials at p of elements of H as being not just real linear maps
on the real tangent space at p, but as complex linear maps on the complex
(holomorphic) tangent space at p. To make this more explicit, we write as
usual (z1, . . . , zn) for the complex coordinates (local holomorphic coordinates
around p in the manifold case). As usual, the holomorphic tangent space is de-
fined at p as the span over C of the vectors ∂/∂zj ; these vectors belong to the
complexification of the real tangent space at p. This space is independent of the
choice of holomorphic local coordinates. Also, as usual, we set zj = xj + iyj ,
j = 1, . . . , n, and xj , yj real. As a real mapping, the differential of an ele-
ment h ∈ H has matrix representation given by the real 2n × 2n Jacobian
matrix with elements ∂uj/∂xk, ∂uj/∂yk, ∂vj/∂xk, ∂vj/∂yk, j, k = 1, . . . , n,
where uj , vj are the real component functions of h(x1, y1, . . . , xn, yn). Associ-
ated to this situation is the complex n×n Jacobian matrix (∂hj/∂zk), where
h = (h1, . . . , hn) is the complex component expression of h(z1, . . . , zn). We
think of this matrix as giving a C-linear map of the holomorphic tangent
space at p to itself. Of course the real Jacobian and the complex Jacobian are
each determined by the other, via the Cauchy–Riemann equations.

Theorem 6.1.1 as stated deals with the situation wherein the real differen-
tials at p of elements of H act transitively on the real vectors at p up to scalar
multiples. It is natural to ask whether the same result holds if one assumes
not this “real transitivity” up to scalar multiples, but rather transitivity of
the action of the complex differentials up to scalar multiples. Precisely, one
could take as hypothesis that, for each pair of nonzero vectors v, w ∈ Cn,
there should be an element h ∈ H such that the complex Jacobian of h takes
v to λw for some λ ∈ C with λ 	= 0. This complex transitivity up to scalars is
clearly implied by real transitivity up to scalars.

When n = 1, this complex condition is satisfied automatically. But real-up-
to-scalars transitivity is not. Thus the complex condition is strictly weaker in
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case n = 1. But as pointed out in [Bland/Duchamp/Kalka 1987], when n ≥ 2,
the complex condition, seemingly weaker, in fact implies the real condition.
The argument for this is topological, as follows.

Complex transitivity up to complex scalars is equivalent to transitivity of
the complex projective space CPn−1 associated to the holomorphic tangent
space at p. Now we can assume that the real differentials at p of elements
of H are isometric relative to some Hermitian metric (at p) because H is
compact, so we can average an arbitrary Hermitian metric to obtain this result.
Then we can show in effect that transitivity on CPn−1 implies transitivity on
the unit sphere S2n−1 relative to the Hermitian metric. Again, since H is
compact and hence has closed orbits, transitivity on this S2n−1 is equivalent
to some orbit having an interior point. For then every point of the orbit is
interior so the orbit is both open and closed, and is hence all of S2n−1. So
suppose, for proof by contradiction, that no orbit of H acting on S2n−1 is open.
Transitivity on CPn−1 then shows that, for each point v ∈ S2n−1, there is a
unit vector w tangent to S2n−1 at v (i.e., w is perpendicular to v) such that
w has zero projection on CPn−1 under the usual projection of the tangent
space at v on the tangent space to CPn−1 at the equivalence class of v in
CPn−1. Since the kernel on tangent vectors of this projection is codimension 1,
simple connectivity of S2n−1, when n ≥ 2, implies that w can be chosen
as a continuous function of v. This gives a continuous section of the Hopf
fibration S2n−1 → CPn−1. This is a contradiction to the nontriviality of the
Hopf fibration. Thus, again as pointed out in [Bland/Duchamp/Kalka 1987],
Theorem 6.1.1 has the following consequence.

Corollary 6.1.2. If M is a noncompact complex manifold of dimension n ≥ 2
and there is a point p ∈M and a compact subgroup H of Ip which has differ-
entials acting on the complex holomorphic tangent space at p transitively up
to complex scalar multiples, then M is biholomorphic to the unit ball in Cn,
or to Cn itself.

In the case of a compact, complex manifold M which is directionally com-
plex transitive at a point p in the sense we have been discussing, there is
again a natural “model” manifold, first, CPn. And it is actually true that this
is the only case that occurs. But the argument here, used in the original proof
in [Oeljeklaus E. 1970], is somewhat different. The case n = 1 follows from
uniformization as discussed in Chapter 2. When n ≥ 2, one again deduces, as
discussed, real transitivity. Moreover, the infinitesimal generators of H acting
on real differentials, considered as vector fields of S2n−1, must be of dimension
at least 2n − 1, by the transitivity. It follows that the space of these vector
fields together with the J-image of each of these vector fields must be of di-
mension 2n when evaluated at points near p but not equal to p. (At p, all
vector fields vanish.) Note that these holomorphic vector fields that arise as
J(τ), τ an infinitesimal generator of H, are themselves holomorphic and have
integral curves defined for all times t ∈ (−∞,+∞). It follows that some orbit
of Ip, albeit not of a compact subgroup of Ip, is an open neighborhood of p
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with p deleted. The example that makes this idea clearer is rotation around 0
of the Riemann sphere C ∪ {∞}, with J of its infinitesimal generator being
the generator of (exponential) dilation z → etz, t ∈ (−∞,+∞), as already
discussed (see Section 1.6).

The compact case (Theorem 6.1.3 below) now follows from [Oeljeklaus E.
1970]. This result was obtained later in the incisive paper of [Bland/Duchamp/
Kalka 1987] by using Theorem 6.1.1 as already shown by [Greene/Krantz
1985a] and considering the cut locus of the exponential map for an H-invariant
metric. Note that, in the noncompact case, the reduction to the case where
M \{p} is homogeneous does not apply: the unit ball with the origin removed
is not homogeneous since automorphisms extend to be automorphisms of the
whole unit ball taking the origin 0 to 0. Hence Aut (Bn \{0}) consists only of
unitary rotations about the origin and is therefore not transitive on Bn \ {0}.

To state explicitly the result for the compact case:

Theorem 6.1.3 ([Oeljeklaus E. 1970], later [Bland/Duchamp/Kalka
1987]). If M is a compact complex manifold of dimension n and if there are a
point p ∈M and a compact subgroup H of Ip such that H acts transitively on
the holomorphic tangent spaces of M at p up to (complex) scalar multipliers,
then M is biholomorphic to CPn.

We turn now to the proof of Theorem 6.1.1. The proof via the methods of
[Bland/Duchamp/Kalka 1987] for the theorem in the compact case just stated
will be summarized in Section 6.7.

6.2 Proof of Theorem 6.1.1: An Invariant Metric

For simplicity of exposition, we first present the proof in the case that the
manifold M is biholomorphic to a domain in Cn, i.e., wherein M admits
global coordinates. Later we shall describe the modifications needed to make
the proof apply to noncompact complex manifolds in general.

Let Ω be a domain in Theorem 6.1.1 so that there is a compact subgroup
H of Ix for some x ∈ Ω which has the transitivity property stated in the the-
orem. The first step of the argument is to construct a special metric invariant
under H.

Step 1. Construction of an Invariant Metric. There is a Hermitian metric
h0 on Ω that is invariant under the action of elements of H.

Proof. Let g = (gij) be the Euclidean metric on Ω. Set

h0 =
∫

α∈H

α∗g dα,

where integration is with respect to the bi-invariant Haar measure on H. Then
h0 is an H-invariant Hermitian metric on M . ��
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Step 2. Construction of an Invariant Exhaustion Function. There is an ex-
haustion function for Ω that is invariant under the action of H.

Proof. Select a C∞ function F1 : Ω → R such that, for each t ∈ R, the set
F−1

1 ((−∞, t]) has compact closure in Ω. The existence of such a C∞ “exhaus-
tion function” on any noncompact manifold is a standard result of differential
topology.

Then, for each q ∈ Ω, set

F (q) =
∫

α∈H

F1(α(q)) dα.

This function F has the required properties. ��
Step 3. Construction of a Complete Invariant Metric. There is a complete
metric on Ω which is invariant under the action of H.

Proof. Let h0 be as in Step 1 and F be as in Step 2. For any C∞ function
χ : R→ R, we set

hχ =
(
eχ◦F

) · h0.

This metric is C∞ Hermitian and is also, by construction, invariant under the
action of H. If χ is selected so that it increases sufficiently rapidly as t→∞,
in particular so that

dishχ

(
F−1((−∞, t]), F−1([t + 1,+∞))

) ≥ 1,

then the metric hχ will be complete. ��
In what follows, h = hχ will always denote a complete H-invariant metric as
in Step 3.

Step 4. Global Regularity of the h-Exponential Map. Let p be the fixed point
for H of Ω. The (geodesic) exponential map

expp : TΩp → Ω,

for the invariant metric h, is a global diffeomorphism of the tangent space
TΩp

∼= R2n onto Ω.

Proof. Since Ω is complete under the metric h, but noncompact, there is at
least one half-infinite geodesic emanating from p, call it C0 : [0,+∞) → Ω,
such that C0(0) = p and such that dis(p, C0(t)) = t for all t ≥ 0. [One calls
such a curve a geodesic ray emanating from p.] This assertion is proved by a
standard limiting process (see, for instance, [Gromoll/Meyer 1969]).

Since the metric is H-invariant, we know that the map t �→ α(C0(t)) is,
for each α ∈ H, a geodesic ray. Because H acts transitively on real tangent
directions at p (here is one place that we use our hypothesis), it follows that
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every arc length parameter geodesic C : [0,∞) → Ω emanating from p is in
fact a geodesic ray: every arc length parameter geodesic from p is the image
of C0 under some α. One need only take α ∈ H such that(

Dα
∣∣
p

)
(C ′

0(0)) = C ′(0).

It is a standard result of Riemannian geometry (p. 100, vol. II, [Kobayashi/
Nomizu 1963]) that, if every arc length parameter geodesic from a point
of a Riemannian manifold is a ray, then the exponential map is a global
diffeomorphism. ��

6.3 Proof of Theorem 6.1.1: Biholomorphisms
of Metric Balls

Throughout this section, we continue to fix p ∈ Ω as in the statement of the
theorem, and choose an invariant metric h as in Step 3 of the last section.

The principal result of the present section is that any metric ball cen-
tered at p is biholomorphic to the unit ball in Cn. It follows that Ω is the
increasing union of domains biholomorphic to the ball. It does not then follow
automatically that Ω is biholomorphic to the ball—even in the case that Ω is
bounded ([Fornæss 1976]). But, since we have the point p fixed at the center
of each ball, we shall in fact be able to extract a normal family of mappings
that converges to a biholomorphism of Ω to the unit ball Bn in Cn (or to a
biholomorphism with all of Cn).

Our proof proceeds by the continuity method. We set

R0 = {r > 0 : B(p, r) is biholomorphic to Bn}.

The argument has four steps:

Step 1. Nonemptiness of R0: The set R0 contains at least one element.

Proof. We construct equivariant coordinates by averaging over the group ac-
tion. In detail, choose r > 0 so small that the metric ball B(p, r) has a holo-
morphic coordinate system. Denote that system by w1, . . . , wn, and suppose
that wj(p) = 0, j = 1, . . . , n. Let

S = {q : α(q) ∈ B(p, r) for all α ∈ H}.

In what follows, if α ∈ H then let Aα denote the Jacobian matrix of α at p in
the w1, . . . , wn coordinates. We will let A−1

α act on the vector (w1(α(q)), . . . ,
wn(α(q))) by matrix multiplication.

Define a map F of S into Cn by

F : q �−→
∫

α∈H

A−1
α (w1(α(q)), . . . , wn(α(q))) dα.
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The map F is defined on a neighborhood U of p because
⋂

α∈H α(B(p, r))
contains a neighborhood of p by the compactness of H. In addition, F is
holomorphic on U and has nonsingular Jacobian at p; in fact, the Jacobian
of F at p is the identity matrix in w1, . . . , wn coordinates.

Thus there is an r0 > 0 such that F is a holomorphic coordinate system on
B(p, 2r0) (that is to say, the component functions F1, . . . , Fn form a coordinate
frame, with nondegenerate Jacobian matrix). Furthermore, the action of H on
B(p, 2r0) is linear when expressed in the F -coordinates. By assigning to Cn a
suitable Hermitian metric—that is, a complex linear change of coordinates—
the action of H can be taken to be unitary in the F -coordinates.

We conclude that the F -image ofB(p, r0) must be a standard Euclidean ball{
(z1, . . . , zn) ∈ Cn :

∑
j

|zj |2 < ρ

}
for some ρ > 0 because F (S(p, r0)) is a (2n − 1)-dimensional orbit of a sub-
group of the unitary group and is thus a sphere. Hence B(p, r0) is biholomor-
phic to the unit ball Bn of Cn. ��
Step 2. Connectivity of R0: If r1 ∈ R0 and if 0 < r2 < r1, then r2 ∈ R0.

Proof. By hypothesis, there is a biholomorphic map

f : B(p, r1)→ Bn.

Without loss of generality, we may suppose that f(p) = 0. Then the map

H � α→ f ◦ α ◦ f−1

takes H isomorphically to a subgroup H0 of the unitary group U(n) (the
unitary group being the isotropy group of the origin in the domain the ball).

If 0 < r2 < r1, then the sphere S(p, r2) (in the h-metric) is the orbit under
H of each point q ∈ S(p, r2) (see also what was said on this matter in the
proof of Step 1). Thus f(S(p, r2)) is the orbit under H0 of f(q). In particular,
f(S(p, r2)) is a sphere in Bn with center at 0 ∈ Cn. That is to say,

f(S(p, r2)) = {z ∈ Cn : ‖z‖ = s}

for some s < 1. Since f(p) = (0, . . . , 0), connectivity considerations show that

f(B(p, r2)) = {z ∈ Cn : ‖z‖ < s}.

Hence the mapping

q �→ 1
s
f(q)

sends B(p, r2) biholomorphically onto the unit ball Bn. ��
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Step 3. Openness of R0: If r1 ∈ R0 then there is an ε > 0 such that
[r1, r1 + ε) ⊆ R0.

Proof. Let r1 ∈ R0. Suppose for the moment the following:

Lemma A. The sphere S(p, r1) is a strongly pseudoconvex hyper-
surface.

This lemma will be proved in Section 6.5. Assume it for now. Then there is an
ε > 0 and a C∞ strictly increasing convex function χ : (r1−ε, r1+ε)→ R such
that χ ◦ (dis(p, ·)) is C∞ plurisubharmonic on {q ∈ Ω : r1 − ε < dis(p, q) <
r1 + ε}. This is a standard fact about strongly pseudoconvex domains: any
defining function can be made strictly plurisubharmonic in some neighborhood
of the boundary by such a composition with a suitable convex increasing
function.

Then, for each r ∈ [r1, r1 + ε), the sphere S(p, r) is C∞ strongly pseu-
doconvex, since it has a strictly plurisubharmonic defining function: the level
sets of χ ◦ dis(p, ·) are of course the same as those of dis(p, ·) itself, first the
spheres around p. In other words, the ball B(p, r) is a strongly pseudoconvex
domain. Therefore the ∂ problem can be solved on B(p, r) by the methods
of [Folland/Kohn 1972]. We shall solve such a problem in a moment.

Let F : B(p, r1) → Bn be a biholomorphic mapping onto the unit ball
in Cn and F1, . . . Fn the component functions of F . The action of H expressed
in F1, . . . , Fn coordinates is then linear and, in fact, unitary. If r > r1, then
there is a diffeomorphism Dr of the closure of B(p, r) onto the closure of
B(p, r1) that commutes with elements of H; that is, Dr ◦ α = α ◦Dr for all
α ∈ H. Such a diffeomorphism Dr can be obtained by deformation along the
radial geodesics from p, for instance. Also, the Dr can be chosen so that, when
r is close to r1, the corresponding Dr is close to the identity on the closure of
B(p, r) in the C∞ topology.

The functions Fi ◦Dr need not be holomorphic on B(p, r)—after all, Dr

itself is not holomorphic. However Dr was selected to be C∞ close to the
identity. Thus ∂(Fi ◦ Dr) is C∞ small. Let gi : B(p, r) → C be the Kohn
solution of the equation ∂gi = ∂(Fi ◦ Dr); that is, gi is orthogonal in the
L2 sense to holomorphic functions on B(p, r) relative to the Hermitian met-
ric h. By standard estimates for the canonical solution of the ∂ problem
(see [Greiner/Stein 1977]), each function gi will be small in the uniform topol-
ogy and hence have small derivatives.

Now, for r near to r1, the gi will be C1 close to 0 on the closure of B(p, r)
and the functions

F1 ◦Dr − g1, . . . , Fn ◦Dr − gn (6.1)

will form a holomorphic coordinate system on B(p, r). [See [Greene/Krantz
1981], as well as our discussion in Sections 3.5–3.6, for another example of
this type of argument.]

The action of H on B(p, r) in the coordinates (6.1) is again linear. In fact,
it is the same linear action as that of H on B(p, r1) in F1, . . . , Fn coordinates.
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To see this, let α ∈ H and let Aα be the matrix that represents the action of
α on the coordinates Fi. By this we mean

Aα(F1, . . . , Fn) = (F1 ◦ α, . . . , Fn ◦ α).

Also note that

(F1 ◦Dr ◦ α, . . . , Fn ◦Dr ◦ α) = ((F1 ◦ α)Dr, . . . , (Fn ◦ α)Dr)
= Aα(F1 ◦Dr, . . . , Fn ◦Dr).

Taking ∂ of both sides of this last identity yields

Aα(∂(F1 ◦Dr), . . . , ∂(Fn ◦Dr)) = ∂(F1 ◦Dr ◦ α, . . . , Fα ◦Dr ◦ α).

Thus

∂(Aα(g1, . . . , gn)) = Aα(∂g1, . . . , ∂gn)
= Aα(∂(F1 ◦Dr), . . . , ∂(Fn ◦Dr))
= (∂(F1 ◦Dr ◦ α), . . . , ∂(Fn ◦Dr ◦ α)).

Since α is holomorphic and is also isometric for the metric h, it also holds that

∂(g1 ◦ α, . . . , gn ◦ α) = (∂(F1 ◦Dr ◦ α), . . . , ∂(Fn ◦Dr ◦ α))

and that the gj ◦ α are h-orthogonal to the space of holomorphic func-
tions. By the uniqueness of the Kohn solution of the ∂ problem, we see that
(g1 ◦ α, . . . , gn ◦ α) = Aα(g1, . . . , gn). The linearity of the action of H, when
expressed in the coordinate system (6.1), then follows.

Since H acts linearly on B(p, r) (in suitable coordinates) for all r suffi-
ciently close to r1, it follows by the same argument as in Step 1 that B(p, r)
is in fact biholomorphic to the unit ball. ��

Step 4. Closedness of R0: If r ∈ R0 for all 0 < r < r1 then r1 ∈ R0.

Proof. As already noted, there are no general results about increasing unions
of balls that make our result automatic (cf. [Fornæss 1976]).

We first consider the relationship between two metric balls B(p, r1) and
B(p, r2) in Ω when 0 < r1 < r2. Let frj : B(p, rj) → Bn, for j = 1, 2, be bi-
holomorphic mappings of these two balls into the unit ball of Cn. By an argu-
ment that was already used in the proof of Step 2, the map fr2 sends B(p, r1)
biholomorphically onto a ball B(0, s) ⊆ Cn, some 0 < s < 1. Then the map
[1/s]fr2 and the map fr1 are both biholomorphisms of B(p, r1) onto Bn which
take p to 0. Therefore there is an ω ∈ U(n) such that

1
s
· ω−1 ◦ fr2

∣∣∣∣
B(p,r1)

= fr1 .
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It follows from the repeated application of this argument that if r1 <
r2 < · · · and if limrk→∞ rk = r∞, then there is a sequence of biholomorphic
mappings Fj of B(p, rj) onto balls about 0 in Cn (not necessarily unit balls)
with the property that

Fj+1
∣∣
B(p,rj)

= Fj , j = 2, 3, . . . .

Taken together, these maps determine a biholomorphic mapping of B(p, r∞) =⋃
j B(p, rj) onto an open ball around (0, . . . , 0) or onto Cn. In particular, it

follows that r∞ ∈ R0 provided that
⋃

j Fj(B(p, rj)) is not equal to Cn.
To prove that the union is not equal to Cn requires estimation of the

radial derivatives of the map determined by the Fj . This estimate is a natural
byproduct of the proof of Lemma A and related ideas. This matter will be
treated in Section 6.5. ��

6.4 Proof of Theorem 6.1.1, Assuming Lemma A

Again let Ω be a domain in Cn and let p be a point in Ω such that there is
a compact subgroup H of the isotropy group Ip that acts transitively on real
directions as in the statement of the theorem. Let h be the complete invariant
metric as constructed in the previous section. By the argument given at the
end of that section, each h-metric ball B(p, r), r > 0, is biholomorphic to the
unit ball Bn ⊆ Cn. From the proof of this fact, these biholomorphisms are
closely related to each other (when r varies). In particular, a biholomorphism
F : B(p, r) → Bn ⊆ Cn with F (p) = 0 necessarily has the property that, for
each positive 0 < r1 < r, the restriction F

∣∣
B(p,r1)

is a biholomorphic map
onto a ball in Cn centered at 0.

Now select a biholomorphic map F1 of B(p, 1) onto the unit ball Bn ⊆ Cn.
With F1 so fixed, choose next a map F2 of B(p, 2) into Cn such that

(i) F2(p) = 0;
(ii) dF2

∣∣
p

= dF1
∣∣
p
;

(iii) F2 : B(p, 2)→ Bn(0, r2) ⊆ Cn for some r2 > 0.

Such an F2 can be obtained from a biholomorphic map G2 : B(p, 2) → Bn

with G2(p) = 0 simply by applying a unitary rotation and a dilation.
With F2 so chosen, write F2(B(p, 1)) = Bn(0, r) ⊆ Cn. Then F2◦F−1

1 ≡ G
maps Bn(0, 1) = Bn ⊆ Cn biholomorphically onto Bn(0, r) ⊆ Cn. Moreover,
G(0) = 0 and dG

∣∣
0 = id. It follows now from elementary analysis (or from

Schwarz’s lemma) that r = 1 and F2
∣∣
B(p,1) = F1.

The construction that we have just presented can be iterated: Choose F3 :
B(p, 3) → Cn such that (i)–(iii) hold with the index 2 replaced by the in-
dex 3 and the index 1 replaced by the index 2. Then it follows, just as above,
that F3

∣∣
B(p,2) = F2. Continuing in this fashion, we obtain a sequence of bi-

holomorphic maps onto balls Fk : B(p, k) → Cn such that Fk

∣∣
B(p,k1)

= Fk1
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whenever 0 < k1 < k. These maps together yield a biholomorphism of Ω
onto

⋃
k Fk(B(p, k)). Since each Fk(B(p, k)) is a ball centered at zero, and

since the maps Fk agree on the intersections of their domains, it follows that⋃
k Fk(B(p, k)) is either a ball centered at 0 or is Cn. ��

6.5 Statement and Discussion of Lemma A

In order to complete the proof of Theorem 6.1.1, it remains to establish
Lemma A. Recall what this lemma said.

Lemma A.For any r1 ∈ R0, S(p, r1) ≡ ∂(B(p, r1)) is a strongly pseudoconvex
hypersurface.

Now we discuss the proof. The proof repeats ideas that we have already
seen earlier, and so it will be only summarized now. (The reader may consult
[Greene/Krantz 1985a] for all the details.)

Suppose that F : B(p, r0) → Cn is a holomorphic embedding with the
property that, for each 0 < r < r0, F (B(p, r)) is a Euclidean ball centered
at 0. Assume further that F commutes with the action of the compact group
H in Ip that acts transitively on directions. Observe that, for each α ∈ H,
the map F ◦α ◦F−1 is a biholomorphic map of Euclidean balls that fixes the
origin and is therefore linear.

Now we define a norm

‖F‖1 ≡ sup{‖dF ∣∣
q
(v)‖ : v ∈ TMq, ‖v‖h = 1,dis(p, q) < r0}.

Here ‖ ‖h is the length of a vector with respect to the Hermitian metric h.

Sublemma 6.5.1. The quantity ‖F‖1 is finite.

Sketch of the proof. The concept of the proof is as follows: F commutes
with H, and H acts in the tangential direction to the spheres. And of course
a Lie group (such as H) is smooth, so F automatically satisfies a smoothness
estimate in tangential directions. The size of that estimate will, by scaling,
depend in a natural way on the radius. If we let s(r) denote the Euclidean
distance from 0 ∈ Cn to any point F (q) where dis(p, q) = r, then this quantity
is independent of the choice of q in the sphere of radius r. And we have the
estimate (with s = s(r))

‖dF ∣∣
q
(v)‖ ≤ C0 · s · dis(p, q) (6.2)

for any vector v that is tangent to the h-metric sphere of radius r about p.
Now we use the complex structure. By the Cauchy–Riemann equations (or,

more formally, by using the complex structure tensor J), we know that the nor-
mal vector ν = νq at any point q of the sphere of radius r is just i times a (real)
tangent vector (first, the tangent vector that is usually designated as “complex
normal”). Thus, essentially for free, we obtain from (6.2) the estimate
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‖dF ∣∣
q
(ν)‖ ≤ C0 · s · dis(p, q). (6.3)

Combining (6.2) and (6.3) yields the uniform bound on first derivatives of F
that is required by the sublemma. ��

A similar argument allows us to estimate any number of derivatives of F
on a metric ball in Ω. This yields the following.

Proposition 6.5.2. If F : B(p, r0) → Bn is a biholomorphic mapping that
commutes with the action of H, then F extends to a C∞ map on B(p, r0) ∪
S(p, r0) and F−1 : Bn → B(p, r0) extends to a C∞ map on the closed unit ball
cl(Bn) ⊆ Cn.

Lemma A now follows immediately because S(p, r1) corresponds, under
a C2 diffeomorphism induced by a biholomorphic mapping, to the unit sphere
in Euclidean space (which itself is strongly pseudoconvex).

6.6 Alternative Viewpoints and the Modification
for the Theorem in the Manifold Case

The process of averaging with respect to the action of the compact group H
was crucial to the proof just discussed (when M was a domain in Cn) of Theo-
rem 6.1.1. But, outside of this basic construction, the use of Lie group theory
was minimized, at the price of using rather powerful results from complex
analysis.

It is worth noting, however, that another viewpoint illuminates the picture
in a different light. Let us return to the situation of the H-invariant com-
plete Hermitian metric h and the associated spheres S(p, r), r > 0. These are
smooth (real) hypersurfaces, since expp is a C∞ diffeomorphism: S(p, r) =
{expp v : ‖v‖ = r, v ∈ TpM}, by standard Riemannian geometry. [The
metric h has infinite injectivity radius,1 etc.; see [Kobayashi/Nomizu 1963]
or [Petersen 2006].]

As such, these spheres inherit a CR-structure of hypersurface type from the
complex structure of M . This would also be true in the general case of M being
an open complex manifold, not just in the case of M being a domain in Cn.

Now, by the hypothesis about the transitivity in directions of H, H acts on
each S(p, r), r > 0, transitively. And, since the elements of H are holomorphic
maps of M , the induced actions on S(p, r) are via CR-diffeomorphisms.

The reason for considering the situation is this: a homogeneous CR-
manifold of hypersurface type which is homeomorphic to S2n−1, n ≥ 3 is

1The injectivity radius ιp of a Riemannian manifold from a point, say p, is the
supremum of positive radii within which no two distinct geodesic rays emanating
from p meet away from p. Then the injectivity radius of the manifold is the infimum
of all these ιp, over all p. Hence, if ι = +∞, no two geodesics emanating from the
same point meet except at their initial point.
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CR-diffeomorphic to S2n−1 with its standard Cauchy-Riemann structure
([Lehmann/Feldmueller 1987]). Thus, for complex dimension n ≥ 3, one has
an alternative approach to Theorem 6.1.1: each h-metric ball B(p, r) is an
open set with smooth boundary and its boundary is CR-equivalent to a stan-
dard ball. In particular, it is then quite easy to show that each B(p, r) is
H-equivariantly biholomorphic to the unit ball in Cn, obviating for example
the use of fairly delicate ∂ methods. In particular, the conclusion of Lemma A
is immediate, since a CR-hypersurface that is intrinsically CR-diffeomorphic
to a CR-strongly pseudoconvex hypersurface—the boundary of the ball in this
case—is necessarily strongly pseudoconvex in the usual sense, of embedding
strong pseudoconvexity.

The proof we gave was needed, however. For n = 2, the homogeneity of a
CR-structure on S2n−1 = S3 definitely does not imply CR-equivalence to the
standard S3 ⊂ C4 structure. This was discovered long ago, by E. Cartan. So
the alternative approach just outlined does not apply.

The modifications of the proof given for M = a domain in Cn to make
it apply to a general noncompact complex manifold are relatively straight-
forward. First note that the H. Cartan result that shows that elements of H
with equal differentials at p are equal extends immediately to the manifold
case, because H is compact. The compactness means that if ϕ : U → Cn,
p ∈ U is a local coordinate system, then there is a neighborhood V of p
such that g(V ) ⊂ U for all g ∈ H. In this situation, the argument given for
Lemma A applies immediately. The constructions for invariant metrics and
exhaustions and the behavior of the equivariant exponential map remain as
given. So does the proof of openness of R0, except that one must make the
additional observation that B(p, r), the interior of S(p, r), r > r0 but close to
r0, is a Stein manifold so that ∂ is solvable. This follows from the strong pseu-
doconvexity of the boundary together with the absence of nontrivial compact
subvarieties. This latter point is disposed of as follows. By the maximum prin-
ciple for the strictly plurisubharmonic function ψ, such a variety would have
to lie in B(p, r0). But this is impossible since B(p, r0) is itself a Stein mani-
fold, or easier, biholomorphic to an open subset of Cn. The interested reader
can consult [Greene/Krantz 1985a] for complete details of the argument in
the manifold case.

6.7 The Compact Manifold Case

Now we shall give an outline of the proof of Theorem 6.1.3, that a compact
complex manifold with directional homogeneity at one point must be a com-
plex projective space. We shall discuss the proof given in [Bland/Duchamp/
Kalka 1987] rather than the original proof given in [Oeljeklaus E. 1970], since
the former is closer to the noncompact argument already given.

As in the noncompact case, one begins with an Hermitian metric h that
is invariant under the action of the compact group H. Such a metric can be
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obtained by averaging, with respect to the action of H, an arbitrary Hermi-
tian metric, as before. Also, as in the noncompact case, the map that sends
g ∈ H to dg|p (real differential) is an injective homomorphism of H into linear
maps on TpM to TpM which are isometric for h|p and are “complex linear”
on TpM in the sense of commuting with the almost complex structure tensor
J : TpM → TpM . The injectivity of the homomorphism follows either from
the argument in the style of the Cartan lemma as in Section 1.3 or more sim-
ply from the fact that isometries of h are determined by their differentials at
a fixed point.

The existence of a compact group of isometries fixing a point p of a
compact Riemannian manifold M and having differentials that are transi-
tive on (real) tangent directions at that point already imposes severe restric-
tions on the manifold, independently of any complex structure considerations.
In particular, the Riemannian exponential map expp : TpM → M has to be-
have as follows. There is an r0 > 0 such that expp is a diffeomorphism of
{v ∈ TpM : ‖v‖ < r0} into M and M = expp({v ∈ TpM : ‖v‖ ≤ r0}). Here
every geodesic from p of length ≤r0 is minimizing, but no geodesic from p of
length >r0 is minimizing. This follows immediately from transitivity of isome-
tries of h on directions at p: the cut distance along a geodesic from p must be
independent of which geodesic is chosen.2

In this situation, the “cut points” at distance r0 from 0 in TpM must be
conjugate points, that is d expp |v must be singular for each v ∈ TpM with
‖v‖ = r0. This follows easily: if d expp |v were nonsingular for one and hence
every such v, one can see that M would have to be nonorientable (e.g., RP2k)
whereas M , a complex manifold, must be orientable (cf. [Bland/Duchamp/
Kalka 1987] for details). Thus the image under expp of {v ∈ TpM : ‖v‖ = r0}
must be of real codimension at least 2 in M .

Now, by Corollary 6.1.2, the complement in M of expp({v ∈ TpM : ‖v‖ =
r0}), which is expp({v ∈ TpM : ‖v‖ < r0}), is biholomorphic to the unit
ball in Cn or to Cn itself. In either case, this complement admits noncon-
stant holomorphic functions. So expp({v ∈ TpM : ‖v‖ = r0}) must have real
codimension no more than 2, hence exactly 2. From now on, we denote this
submanifold by Cp, following the notation of [Bland/Duchamp/Kalka 1987].

Also, the complement M \ Cp cannot be biholomorphic to the unit ball.
For then it would admit bounded nonconstant holomorphic functions. These
would extend to all of M holomorphically, a contradiction, since M is compact
and hence admits no bounded, nonconstant holomorphic functions.

2In general, geodesics need not be shortest connections, although they are in
short ranges. When one considers a geodesic ray emanating from, say, a point p,
the first point at which the geodesic stops being the shortest connection (in Rie-
mannian geometry, it is said in such a case that the geodesic stops “minimizing”)
is called a cut point. Considering all possible geodesic rays from p, one may con-
sider the collection of cut points—this is the cut locus of p. See [Petersen 2006],
[Kobayashi/Nomizu 1963] for detail.
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Thus M is a compactification of Cn. It is a general fact (cf. [Peternell/
Schneider 1991]) that, for any compactification of Cn as a compact complex
manifold M , M \Cn is a complex subvariety of pure codimension 1, agreeing
with the result already obtained that expp({v ∈ TpM : ‖v‖ = r0}) has real
codimension 2.

Transitivity on directions shows that the space Cp = M \ Cn in our case
is in fact a smooth, complex hypersurface. (This result is proved explicitly in
[Bland/Duchamp/Kalka 1987] without appeal to the general result on com-
pactification of Cn.)

In complex dimension n ≤ 6, every smooth compactification M of Cn

is biholomorphic to CPn, with M \ Cn going to Cn−1 ⊂ Cn (cf. [Peternell/
Schneider 1991]). Whether this is true for n ≥ 7 seems to be unknown. So
a separate argument in our directionally homogeneous case is required for
n ≥ 7.

Now M \ Cp is biholomorphic to Cn, via a biholomorphism to Cn via a
biholomorphism which is equivariant with respect to the H-action on M \Cp

and a compact, complex-linear group action on Cn. This latter action can be
taken to be a subgroup of U(n). Thus the natural fibration of Cn \{(0, . . . , 0)}
by complex lines through the origin can be transferred to M \Cp as a foliation
of M \Cp \ {p} which is acted on by H in the sense that the H-image of such
a leaf is another leaf. To complete the proof, one shows that each leaf meets
Cp transversally in a single point: this gives a map of complex lines through
the origin in Cn into Cp and identifies M into Cn compactified by CPn−1.
The details of this follow the methods of [Brenton/Morrow 1978].

A subtlety arises in this approach from the fact that the group H need not
be the full unitary group (here, we interpret H via identification with the linear
group of differentials at p as before). These are compact groups of complex lin-
ear mappings of Cn which are transitive on the sphere but smaller than U(n).
These groups are, however, classified (cf. [Besse 1987]). They have the follow-
ing property: For each real vector v 	= 0, let Iv be the set of H such that
g(v) = v. Then let F (v) be the set of w such that g(w) = w for all g ∈ Iv.
For the unitary group, F (v) is the 2-dimensional subspace Span(v, Jv). For
general compact groups H acting complex linearly and transitively on the
unit sphere, F (v) is either of dimension 2 or 4. This dimension is of course
independent of the choice of v by the transitivity of H on directions. This
follows from the classification mentioned. It can also be established directly;
this is done in [Bland/Duchamp/Kalka 1987] by noting that if the dimension
of F (v) is k, then a group structure is induced on Sk−1, so k = 2 or 4 are the
only possibilities.

In the case k = 2, [Brenton/Morrow 1978] applies directly. In the case
of k = 4, a second application of [Brenton/Morrow 1978] is required: the 4-
dimensional F (v)-subspace when compactified by the “points at infinity” of
Cp becomes CP2 by [Brenton/Morrow 1978], and the structure of M as CPn

follows from that. The reader is referred to [Bland/Duchamp/Kalka 1987] for
full details.
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Some Other Invariant Metrics

Chapters 3 and 4 explored extensively the use of the Bergman metric in
studying the function theory of bounded domains and in particular their au-
tomorphism groups. The Bergman metric also played a role in Chapter 5 in
the Bedford/Dadok proof of the realizability of every compact Lie group as
an automorphism group. In all these instances, the invariance of the Bergman
metric made it possible to bring to bear powerful differential geometric meth-
ods that would not have been otherwise available. But there are other invariant
metrics that also deserve attention for their utility in such investigations. The
purpose of this chapter is to give a quick survey of some of them.

We denote throughout by Hol (M,N) the set of holomorphic mappings
from a complex manifold M into another complex manifold N .

7.1 The Carathéodory Metric

7.1.1 The Carathéodory Metric and Distance

Let Ω be a domain in Cn and let D denote the unit open disc in C as before.
Then what is known as the infinitesimal Carathéodory metric is defined as
follows:

Definition 7.1.1. For p ∈ Ω and v ∈ Cn the (infinitesimal) Carathéodory
metric of v at p is defined to be

CΩ(p; v) := sup{|dhp(v)| : h ∈ Hol (Ω,D), h(p) = 0},

where dh is the differential of h considered as a map from Cn to C.

R. E. Greene et al., The Geometry of Complex Domains, Progress in Mathematics, 
DOI 10.1007/978-0-8176-4622-6_7, © Springer Science+Business Media, LLC 2011
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The following lemma is immediate.

Lemma 7.1.2. If Ω is a (not necessarily bounded) domain in Cn, then

(1) CΩ(p, v) ≥ 0,
(2) CΩ(p, λv) = |λ|CΩ(p, v),
(3) CΩ(p, v + w) ≤ CΩ(p, v) + CΩ(p, w),

for any p ∈ Ω and any v, w ∈ Cn.

Thus the infinitesimal Carathéodory metric CΩ is a semi-norm on Cn, for
each point p ∈ Ω. Note that the definition of CΩ depends only upon the set
Hol (Ω,D) and is thus a holomorphic invariant for Ω. Moreover, there is a
general distance-nonincreasing property:

Proposition 7.1.3. Let f : Ω → Ω′ be a holomorphic mapping from a do-
main Ω ⊂ Cn into another domain Ω′ ⊂ Cm. Then

CΩ′(f(p), dfp(v)) ≤ CΩ(p, v)

for every p ∈ Ω and every v ∈ Cn. In particular, if f is a biholomorphism, so
that necessarily n = m, then

CΩ′(f(p), dfp(v)) = CΩ(p, v)

for every p ∈ Ω and every v ∈ Cn.

There is a related and even more easily defined idea of “Carathéodory
distance” defined as follows: set

δC
Ω(p, q) = sup{dD(f(p), f(q)) : f ∈ Hol (Ω,D)},

where dD denotes the Poincaré distance on the unit open disc D. (Earlier
this was called the Carathéodory metric on Ω, and the semi-norm on tangent
vectors was referred to as the infinitesimal Carathéodory metric.) If F : Ω1 →
Ω2 and f : Ω2 → D are holomorphic, then f ◦ F is of course a holomorphic
map of Ω1 to D. It follows immediately that δC

Ω1
(p, q) ≥ δC

Ω2
(F (p), F (q)):

holomorphic maps are distance-nonincreasing relative to the Carathéodory
distance.

One can also define the integrated distance from the Carathéodory metric
on tangent vectors. first, the distance between two given points p, q ∈ Ω is
defined by

dC
Ω(p, q) = inf

∫
γ

CΩ(z, dz) := inf
∫ 1

0
CΩ(γ(t), dγ|t(d/dt)) dt

where the infimum is taken over all piecewise C1 curves γ : [0, 1] → Ω with
γ(0) = p, γ(1) = q. Then this pseudodistance (in the sense that it is not
in general positive definite) also has the distance-decreasing property under



7.1 The Carathéodory Metric 181

the action of holomorphic mappings. Call it the integrated Carathéodory dis-
tance of Ω.

In general, these two distances do not coincide (see [Barth 1977] and also
[Sibony 1972]); the integrated distance is generally larger. We shall not explore
this matter any further since it plays no role in our later considerations.

7.1.2 C-Hyperbolicity

The Schwarz lemma in classical complex analysis implies immediately that

CD(p, v) =
|v|

1− |p|2

for every p ∈ D and every v ∈ C: the Carathéodory metric coincides with the
Poincaré metric on the unit disc, up to a constant multiple. This, together
with the distance-decreasing property (the preceding proposition), in partic-
ular implies that the Carathéodory metric CΩ is positive definite whenever
Ω is a bounded domain in Cn. The Carathéodory distance on the unit disc
equals the Poincaré distance, essentially by definition.

Readers must have noticed already that the exposition on the Carathéodory
distance does not have to be restricted to domains in the complex Euclidean
space Cn. The definition has an obvious analogue for a complex manifold. The
same applies to the Carathéodory metric; We can define, for M a compact
manifold, p ∈M and v ∈ the holomorphic tangent space of M at p:

CM (p, v) := sup{|dhp(v)| : h ∈ Hol (M,D), h(p) = 0},
where dh is the differential of h considered as taking the holomorphic tangent
C-linearly to C. However, little is known in generality on the question of which
complex manifolds possess positive definite Carathéodory metric. In general,
the construction of nonconstant bounded holomorphic functions lies outside
the realm of the usual L2 ∂-theory, for example (see [Greene/Wu 1977] for a
general discussion of these questions).

The classic papers by Carathéodory and by Reiffen (See [Wu H. 1993] for
an extensive survey on various metrics including the Carathéodory metric,
and references.) show further properties also: the Carathéodory metric is a
continuous metric defined on every complex manifold. The distance-decreasing
property is the most prominent of all, in that it produces useful applications.
On the other hand, since the definition of this metric depends on the bounded
holomorphic functions, it is identically zero on any compact complex manifold,
or compact complex manifolds with subsets taken away, when the set (that was
removed) happens to be necessarily a removable singularity set for bounded
holomorphic functions.

S. Kobayashi presented the following extended definition for the Carathéo-
dory metric on compact manifolds ([Kobayashi 1976]): first, call a complex
manifold M C-hyperbolic if, for the universal covering π : M̃ → M , C

˜M
is
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positive definite. In this case, Kobayashi defines the C-metric (i.e., the ex-
tended Carathéodory metric) on M by

ĈM (q, ξ) := C
˜M

(q̃, dπ|q̃−1(ξ)).

Notice that CM can be identically zero while ĈM is positive definite. The
compact Riemann surfaces with genus at least 2 give standard examples. Note
that, if π̂ : M̂ → M is a holomorphic covering such that M̂ has positive def-
inite Carathéodory metric, then the universal cover M̃ of M has positive
definite Carathéodory metric. This follows because there is a holomorphic
covering π

̂M
: M̃ → M̂ so that holomorphic maps of M̂ into D give rise to

holomorphic maps of M̃ into D by composition. Thus C-hyperbolicity of M
could have been defined equivalently in terms of positive definiteness of the
Carathéodory metric on some holomorphic covering of M , rather than the uni-
versal cover as such. This concept will be considered further in Section 7.5.4.

7.2 The Kobayashi Metric and Distance

It is natural to consider a construction that is in a sense dual to the famil-
iar Carathéodory metric, looking at the infimum over maps from D into a
domain or manifold, rather than the supremum over maps from the domain
or manifold into D. S. Kobayashi’s introduction of the Kobayashi (pseudo-)
distance followed such an idea.

7.2.1 Kobayashi Distance

Specifically let Ω be a domain in Cn or more generally a complex manifold. Set

δK
Ω(p, q) = inf{dD(a, b) : h ∈ Hol (D,Ω), h(a) = p, h(b) = q}.

The following is clear by considering compositions of holomorphic maps
h : D → Ω1 and f : Ω1 → Ω2.

Proposition 7.2.1. If f : Ω1 → Ω2 is a holomorphic map from one domain
into another, then

δK
Ω2

(f(z), f(w)) ≤ δK
Ω1

(z, w)

for every z, w ∈ Ω1.

It is obvious that δK
Ω ≥ 0, but there is no apparent reason why it has to

satisfy the triangle inequality; in fact the triangle inequality is known to fail
in some cases.1

1If Ω is a bounded Reinhardt domain in C
n containing the origin 0, then the set

of unit tangent vectors in T0Ω (identified with C
n here) is similar (i.e., homothetic)

to Ω. Thus one only needs to take a nonconvex Reinhardt domain to see the failure
of the triangle inequality: e.g., {(z, w) ∈ C

2 : |z|2 +
√|w| < 1}.
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But the concept of Kobayashi distance can be refined to obtain a pseudo-
metric space structure (i.e., the triangle inequality will hold, but the distance
of distinct points may be 0). Here is how it can be done: let p, q ∈ Ω. Then
take a set {p0, . . . , pN} of finitely many points in Ω such that p = p0 and
q = pN . Call such a finite set a partition. Then define

dK
Ω(p, q) = inf

N∑
j=1

δK
Ω(pj−1, pj),

where the infimum is taken over all possible partitions with p = p0, . . . , pN = q.
This dK

Ω is the Kobayashi (pseudo-)distance of Ω. For this, the triangle inequal-
ity is clear, since such a chain from p to q together with a chain from q to r
gives a chain from p to r: this is analogous to the proof of the triangle in-
equality for Riemannian distance and associated concepts of “length spaces”
in metric space theory.

Proposition 7.2.2 (Kobayashi). The Kobayashi pseudodistance dK satisfies:

(i) dK
D coincides with the Poincaré distance for the unit open disc D.

(ii) dK satisfies the triangle inequality.
(iii) dK is distance-nonincreasing, i.e., dK

Ω2
(f(z), f(w)) ≤ dK

Ω1
(z, w) for any

z, w ∈ Ω1 whenever f is a holomorphic mapping from Ω1 into Ω2. In
particular, biholomorphic mappings preserve the Kobayashi distance.

Corollary 7.2.3. The Kobayashi distance is positive definite on every bounded
domain.

The corollary follows from the distance-nonincreasing property since if p, q
are in a bounded domain and p 	= q, then there is a coordinate function z�

such that z�(p) 	= z�(q), when the z�-image of Ω is contained in some disc
around 0. As Kobayashi himself explained in seminar lectures many times,
this distance was developed in his mind as a geometric principle for the “little
Picard theorem.” We refer to [Kobayashi 1970] (and [Kobayashi 1998]) for
detailed discussions. Also, note that dk

B1 is positive definite (here, B1 is of
course the same as the unit open disc D) as one sees easily from the geometry
of the Poincaré metric: the minimum over chains from p to q is realized by a
single map of the unit disc and dK

B1 = δK
B1 . Also dk

C
= 0, since δK

C
= 0. This

implies Liouville’s theorem as follows. Let f : C→ B1 be holomorphic. Then,
for any z ∈ C, by the distance-decreasing property,

dK
B1(f(z), f(0)) ≤ dK

C(z, 0) = 0.

Since dK
B1 is positive definite, this implies that f(z) = f(0) for every z.

A complex manifold (or a domain in Cn) is called Kobayashi hyperbolic
if its Kobayashi distance is positive definite. It is called complete Kobayashi
hyperbolic if the manifold equipped with the Kobayashi distance (positive
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definite) is Cauchy complete. Kobayashi hyperbolicity is a reasonable gener-
alization of the boundedness of domains for many purposes. In particular the
following normal families result holds.

Theorem 7.2.4. If M,N are complex manifolds and if N is complete
Kobayashi hyperbolic, then the set of holomorphic mappings from M into N
is a normal family; i.e., every sequence of holomorphic mappings from M into
N either has a subsequence that converges uniformly on compact subsets or
has a compactly divergent subsequence.

The concept of compact divergence here is as usual: a sequence of maps
fj : M → N is called compactly divergent if, for every compact subset K of
M and K ′ of N , respectively, there exists j0 > 0 such that fj(K) ⊂ N \K ′

whenever j > j0. For the history and credits associated with this theorem as
well as its proof, see pages 73–74 of [Kobayashi 1970].

7.2.2 Royden’s Infinitesimal Kobayashi Metric

The infinitesimal version of the Kobayashi distance was developed by
H. L. Royden ([Royden 1971]) shortly after Kobayashi’s definition of the dis-
tance function dK.

Definition 7.2.5. Let Ω be a domain in Cn, or more generally a complex
manifold. Identify T0D with C. Then the infinitesimal Kobayashi metric (the
Kobayashi–Royden pseudometric) is a real-valued function KΩ from the holo-
morphic tangent bundle TΩ of Ω defined to be

KΩ(p, v) = inf{|λ| : f ∈ Hol (D,Ω), f(0) = p, df |0(λ) = v}.
It is not clear from the definition alone whether this would present a func-

tion that gives arc length of piecewise C1 curves. For that, Royden established
the following.

Proposition 7.2.6 ([Royden 1971]). KΩ : TΩ→R is upper semicontinuous.

Hence one can define arc length as follows: let Ω ⊆ Cn be open and
γ : [0, 1] → Ω a piecewise C1 curve. The Kobayashi–Royden length of γ is
defined to be

LK(γ) =
∫ 1

0
KΩ(γ(t), γ′(t))dt.

Royden also proved the following.

Proposition 7.2.7 ([Royden 1971]). Denote by ΓΩ(p, q) the set of all piece-
wise C1 curves in Ω joining p and q. Then

dK
Ω(p, q) = inf

γ∈ΓΩ(p,q)
LK(γ).
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Thus in effect the infinitesimal metric has the same relationship to the
Kobayashi distance function as the Riemannian metric has to the Riemannian
distance function on a Riemannian manifold. The difference here is that the
Kobayashi distance has an independent definition, whereas the Riemannian
distance function is definable only in terms of lengths of curves.

7.2.3 The Automorphism Group of a Kobayashi
Hyperbolic Manifold

The Lie-group-theoretic properties of Aut (Ω), Ω a bounded domain in Cn,
were deduced in Section 1.3 using normal families arguments. Specifically,
these arguments showed that Aut (Ω) was a Lie group and that the action
map of Aut (Ω) on Ω was proper (Theorem 1.3.12). From this, it was con-
cluded that a C∞ Hermitian metric on Ω existed that was invariant under
Aut (Ω); i.e., the elements of Aut (Ω) acted as isometries of the metric, fol-
lowing [Palais 1961].

Theorem 7.2.4 suggests that similar lines of reasoning and similar conclu-
sions should apply to complex manifolds that are complete hyperbolic, since
normal families work in that case essentially as they do for bounded domains:
this is effectively what Theorem 7.2.4 says. But as it happens, the com-
pleteness is not actually needed for the Lie-group-theoretic conclusions, even
though it is needed for Theorem 7.2.4 as stated. Specifically, the following
theorem and its corollaries give the full Lie group picture even in the absence
of the completeness hypothesis.

Theorem 7.2.8. If M is a connected Kobayashi hyperbolic complex manifold,
then Aut (M) is a Lie group and, for each p ∈M , the isotropy subgroup at p
is compact.

Proof. Let G be the group of isometries of the metric space M with its
Kobayashi metric. Give G the compact-open topology as usual. Then the fact
that a sequence of holomorphic mappings that converges uniformly on com-
pact subsets of M has a holomorphic limit implies that Aut (M) is a closed
subgroup of G.

Now M with its Kobayashi metric is a connected locally compact met-
ric space since, in fact, the Kobayashi metric topology is the same as the
manifold topology ([Barth 1972]). Thus a theorem of van Dantzig and van
der Waerden from the classical period of metric space topology applies. first,
in [v. Dantzig/v. d. Waerden 1928] it is shown that: If X is a connected locally
compact metric space, then the group of isometries of X is locally compact in
the compact-open topology and its isotropy subgroup at p ∈ X is compact for
each p ∈ X. And, if X is compact, then the whole isometry group is compact.
Applying this result to the group G together with the Bochner–Montgomery
theorem (Theorem 1.3.11) yields that G is a Lie group. This, together with
the fact that Aut (M) is a closed subgroup of G, yields that Aut (M) is a
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Lie group, by the well-known result that a closed subgroup of a Lie group is
a Lie group. (See, for instance, [Warner 1971], p. 110, 3.42 Theorem.) ��

For such an M , as in the theorem, the action of Aut (M) is actually proper.
This matter will be discussed in detail shortly.

Corollary 7.2.9. Let M be a connected hyperbolic manifold and let p ∈ M .
Denote by E the set of R-linear endomorphisms of the real tangent space of M
at p that commute with the almost complex structure J . Define a map D from
the isotropy subgroup Ip of Aut (M) at p into E by

D(α) = the real differential of α at p.

Then D is a continuous, injective homomorphism.

Proof. The map D is a homomorphism by the chain rule. The map is con-
tinuous by Cauchy estimates. To see that D is injective, note that, for each
ε > 0, α(B(p, ε)) = B(p, ε) where B(p, ε) is the ball of radius ε around p in the
Kobayashi metric. Let Uε be the connected component of B(p, ε) that con-
tains p. (Actually, B(p, ε) is connected so Uε = B(p, ε), but this is not needed
for the argument.) Then α(Uε) = Uε. Moreover, for ε > 0 sufficiently small, Uε

is biholomorphic to a bounded domain in Cn because M is a complex mani-
fold U and the Kobayashi metric topology is the same as the manifold topol-
ogy. The injectivity of D now follows from the corresponding injectivity for
bounded domains (Corollary 1.3.3) applied to the Ip-invariant open set Uε. ��
Theorem 7.2.10. Let M be a connected hyperbolic complex manifold. Then
the action map A : Aut (M)×M →M ×M defined by A(α, p) = (α(p), p) is
a proper mapping.

Theorem 7.2.10 should be regarded as an extension of the compact isotropy
assertion of Theorem 7.2.8: Ip is the pre-image A−1{(p, p)} of the one-point
set {(p, p)} in M ×M , so that properness of A implies in particular that Ip

is compact for each p ∈ M . But the arguments used to prove Theorem 7.2.8
need to be strengthened to prove Theorem 7.2.10, though the essential points
are mostly implicit in [Kobayashi 1970], p. 70 and [Kobayashi/Nomizu 1963],
pp. 46 ff.

Proof of Theorem 7.2.10. The essential preliminary observation is the stan-
dard theorem of metric space topology that a connected, locally compact met-
ric space is necessarily separable. Let S be a countable dense subset, S =
{s1, s2, . . .}. If {ϕj} is a sequence of isometries of the space such that, for
each i, {ϕj(si) : j = 1, 2, 3, . . .} converges, then it is clear that {ϕj} converges
to an isometry of the space. Thus, by the usual normal families diagonal
process, a sequence {ϕj} of isometries will have a subsequence {ϕjk

} which
converges (uniformly on compact sets) to an isometry ϕ0 provided that, for
each i, there is a compact set Ki such that ϕj(si) ∈ Ki for all j = 1, 2, . . ..
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A connectedness argument shows that this happens provided that there is at
least one point x in the space X such that {ϕj(x)} is a convergent sequence
([Kobayashi/Nomizu 1963], Lemma 3, p. 47).

This last result is closely related to properness of the action, but does not
quite imply properness of the action directly. To deduce properness of the
action, one needs to know the following:

(∗) Suppose X is a locally compact, connected metric space. Suppose
also that {ϕj} is a sequence of isometries of X and that {pj} is a
convergent sequence in X with limit p0. If {ϕj(pj)} is convergent
to, say, q0 in X, then there are subsequences {ϕjk

} and {pjk
}

such that {ϕjk
} converges uniformly on compact subsets of X and

(hence) limϕjk
(pjk

) = q0.

If, as in the theorem, A : Isom (X) × X → X × X is the action map de-
fined by A(ϕ, x) = (ϕ(x), x), then the statement (∗) is exactly the assertion
that, for each compact set K in X × X, A−1(K) is sequentially compact in
Isom (X)×X. This is the same as properness of A since Isom (X) is second
countable (in the usual compact-open topology); see [Kobayashi/Nomizu 1963],
p. 46, so that sequential compactness implies compactness. ��
Proof of statement (∗). Choose ε > 0 such that the closed balls cl(B(p0, ε))
and cl(B(q0, ε)) are compact. Choose j0 so large that, for all j ≥ j0, dX(pj ,
p0) < ε/10 and dX(ϕj(pj), q0) < ε/10. Then

cl(B(p0, ε/10)) ⊂ cl(B(pj , ε/3)) ⊂ cl(B(p0, ε))

by the triangle inequality. Similarly,

cl(B(q0, ε/10)) ⊂ cl(B(ϕj(pj), ε/3)) ⊂ cl(B(q0, ε)).

Now cl(B(ϕj(pj), ε/3)) = ϕj(cl(B(pj , ε/3))) since ϕj is an isometry. From
this, ϕj(cl(B(p0, ε/10))) ⊂ cl(B(q0, ε)) for all j ≥ j0. In particular, since
ϕj(p0) belongs to the compact set cl(B(q0, ε)) for all j ≥ j0, there is a
subsequence {ϕjk

} such that {ϕjk
(p0)} converges. By Lemma 3, p. 47 of

[Kobayashi/Nomizu 1963], there is a subsequence of {ϕjk
} which converges

uniformly on compact subsets of X to an isometry ϕ0 : X → X. Uniform
convergence gives ϕ0(p0) = q0 and the proof of statement (∗) is complete. ��
Corollary 7.2.11. If M is a connected hyperbolic complex manifold, then
there is a C∞ Hermitian metric on M such that every element of Aut (M)
acts as an isometry of the metric.

Proof. This follows from Theorem 7.2.10 and the result of [Palais 1961] al-
ready discussed in Section 1.3, that every Lie group of diffeomorphisms that
acts properly has a C∞ Riemannian metric, invariant under the action of the
group. If g0( , ) is such an Aut (M)-invariant Riemannian metric, then the
metric g0 defined by

g0(v, w) = g(v, w) + g(Jv, Jw), v, w ∈ TpM,
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(here TpM denotes the real tangent space of M at p ∈ M) is C∞ Hermitian
and Aut (M)-invariant. ��

Corollary 7.2.11 gives a second proof of the injectivity part of Corol-
lary 7.2.9 since Riemannian metric isometries that fix a point are determined
by their differential at that point.

Of course Aut (M) acts as isometries of the (infinitesimal) Kobayashi
“metric,” but this metric is seldom C∞ Hermitian. The Wu metrics to be
discussed later (Section 7.5) are Hermitian but not in general C∞. The
Bergman metric, when defined, is C∞ Hermitian, indeed Kählerian, and also
automorphism-invariant, but the Bergman metric may not exist on a hyper-
bolic complex manifold. For example, C−{0, 1} is hyperbolic (see Section 7.3),
but every L2-holomorphic (1, 0)-form there extends to be holomorphic (and
L2) on C and hence vanishes identically; so the Bergman kernel is identically
zero and the Bergman metric is undefined. Thus Corollary 7.2.11 really does
add something new to the invariant metric picture.

It is worthwhile to round out these considerations by noting that the rea-
soning used to prove Theorem 7.2.10 also shows that, for any Riemannian
manifold M , the group Isom (M) acts properly (cf. [Yau 1977b]). Thus the
properness-of-action condition in [Palais 1961] for the existence of an invari-
ant Riemannian metric is not only sufficient but is also necessary (for group
actions closed in the compact-open topology on the diffeomorphism group).

7.3 Riemann Surfaces and Curvature Conditions
for Kobayashi Hyperbolicity

In classical Riemann surface theory, a Riemann surface is called hyperbolic if
its simply connected covering surface is biholomorphic to the unit disc {z ∈ C :
|z| < 1}. In this section, we shall see that this terminology is consistent with
the idea of hyperbolicity in the sense of Kobayashi: a Riemann surface is
hyperbolic in the classical sense if and only if it is Kobayashi hyperbolic. We
shall also interpret this in terms of the curvature of naturally arising metrics
and consider the extension of this relationship to curvature conditions for
Kobayashi hyperbolicity for higher-dimensional complex manifolds.

To discuss first the Riemann surface case, note that if M is a Riemann
surface such that there is a nonconstant holomorphic mapping f : C → M ,
then M cannot be Kobayashi hyperbolic. (This is actually true for a complex
manifold of arbitrary dimension.) Thus C and the Riemann sphere CP1 = C∪
{∞} are not Kobayashi hyperbolic, nor is C\{0}. Also, a compact surface M of
genus 1, that is, a torus, is not hyperbolic in the Kobayashi sense, because the
simply connected cover M̂ of M is biholomorphic to C, according to Chapter 2;
and of course the holomorphic covering map M̂ →M is nonconstant. All these
examples are of course also not hyperbolic in the classical sense, because their
simply connected covers are: Ĉ = C, ĈP1 = CP1, (C \ {0})̂ = C, and M̂ = C
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if M is a compact Riemann surface of genus 1, all these being either truly
obvious or discussed in Chapter 2.

Now, according again to Chapter 2, all other Riemann surfaces are covered
by the unit disc. A few of these are topologically the same as one of the non-
hyperbolic examples, first the unit disc itself (which is topologically the same
as C) and regions in C that are biholomorphic to {z ∈ C : 0 < |z| < 1}
or {z ∈ C : 0 < r1 < |z| < r2}. These are topologically the same as
C \ {0}, which is holomorphically covered by C via exponentiation. All other
hyperbolic surfaces are, one might say, topologically hyperbolic: for exam-
ple, no complex structure on a compact surface of genus 2 can fail to be
hyperbolic.

To complete the proof of the equivalence of classical hyperbolicity of
Riemann surfaces and Kobayashi hyperbolicity of such surfaces, it remains
only to see that these classically hyperbolic surfaces are Kobayashi hyperbolic.
This result follows from the following about complex manifolds in general.

Theorem 7.3.1. If π : M1 → M2 is a holomorphic covering map of a con-
nected complex manifold M1, onto a (connected) complex manifold M2, then
π is an isometry for the infinitesimal Kobayashi metrics of M1 and M2.

Proof. Let D represent the unit disc as usual. If F : D →M1 is a holomorphic
mapping with F (0) = p, then π ◦ F is a holomorphic mapping of D into M2
with (π ◦ F )(0) = π(p). Every holomorphic mapping G : D → M2 with
G(0) = π(p) arises in this way. This follows from the simple connectivity of D
and the standard “lifting” or “monodromy” argument. That π acts as a local
isometry now follows by tracing through the definition of the infinitesimal
Kobayashi (Kobayashi–Royden) metric. ��

This result should be contrasted with the Bergman metric situation: While
the pullback of a holomorphic (n, 0)-form by a holomorphic covering map is a
holomorphic (n, 0)-form, the pullback of an L2-form need not be L2 so nothing
like Theorem 7.3.1 holds for the Bergman metric situation.

It follows that, if a Riemann surface is covered by D, it must be Kobayashi
hyperbolic. Actually, it also follows that, if a Riemann surface is
Kobayashi hyperbolic, then its simply connected cover must be D, not C or
CP1. So we could have omitted the earlier explicit enumeration of nonhyper-
bolic examples if we had wished to do so.

We noted in Chapter 2 that hyperbolic Riemann surfaces inherited Hermi-
tian metrics of constant Gauss curvature −1 by “pushing down” the Poincaré
metric of D. But CP1 cannot have an Hermitian metric of curvature ≤ 0; this
follows from the Gauss–Bonnet theorem or, alternatively from the Cartan–
Hadamard theorem and the simple connectivity of CP1 (cf. [Petersen 2006]).
And C, while it can have an Hermitian metric of negative curvature ev-
erywhere, cannot have an Hermitian metric of curvature everywhere ≤ −1.
This latter follows from Ahlfors’s well-known generalization of the Schwarz
lemma ([Ahlfors 1938]).
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Theorem 7.3.2 (Ahlfors’s Schwarz Lemma). If M is a Riemann surface
with an Hermitian metric H of Gauss curvature ≤ −1 everywhere, then every
holomorphic mapping f : D → M is length-nonincreasing for the Poincaré
metric on D and the Hermitian metric H on M .

This Ahlfors’s Schwarz lemma (for Riemann surfaces) is proved by a
straightforward maximum principle argument: let h be the pullback by f of H,
and consider the quotient Q = h/(Poincaré metric). This quotient makes sense
as an R-valued function because both metrics have the form

(function) · (coordinate metric dx2 + dy2)

in a local coordinate z = x + iy. Suppose that p0 in D is a point where Q
has a maximum. If Q(p0) = 0, then the conclusion of the Schwarz lemma is
obvious: Q ≡ 0 in this case. Assume that Q(p0) > 0; the maximum principle
then gives that Δ(logQ)|p0 ≤ 0, where Δ represents the ordinary Laplacian
in some holomorphic coordinate system z = x+ iy around p0. Now the Gauss
curvature of a metric λ(x, y)2(dx2 + dy2) is, by a classical formula, equal to
− 1

λ2Δ log λ (cf. Chapter 2).
Write h = h1(dx2+dy2) and the Poincaré metric = h2(dx2+dy2). So, at p0,

0 ≥ Δ logQ
= Δ log h1 −Δ log h2.

Hence

1
2h1

Δ log h1 ≤ h2

h1
·
(

1
2h2

Δ log h2

)
.

Now the condition on the curvatures implies that Q ≤ 1 at p0. Since Q attains
its maximum at p0, Q ≤ 1 everywhere.

If Q has no maximum, one applies the same argument to a slightly
shrunken disc with Poincaré-type (constant negative curvature) metric that
goes to +∞ at radius r < 1, getting a similar estimate by the maximum
principle. Then let r ↗ 1. Details can be found in, e.g., [Ahlfors 1973],
[Kobayashi 1970], [Greene/Wu 1977], [Krantz 2004], or [Kim/Lee 2010]. ��

This actually holds for Hermitian metrics on complex manifolds of any
dimension, provided that the holomorphic sectional curvature2 of the Hermi-
tian metric is everywhere ≤ −1. The proof is essentially the same as before
(cf. [Kobayashi 1970]). The Ahlfors’ Schwarz lemma in this generalized form
immediately implies:

Corollary 7.3.3 (Kobayashi). If M is a complex manifold which admits an
Hermitian metric of holomorphic section curvature ≤ −1 everywhere, then M
is hyperbolic.

2See Section 3.4 for the concept of holomorphic sectional curvature.
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There has been considerable investigation in Riemann surface theory of
what curvature conditions on Hermitian metrics suffice to force the Riemann
surface to be hyperbolic: curvature ≤−1 is a considerably stronger condition
than is actually required. The natural “boundary” between hyperbolic and
nonhyperbolic behavior for Riemann surfaces, e.g., according to the classical
work of Huber and Blanc/Fiala (See [Huber 1957]; cf. [Milnor 1977]), is more
along the lines of negative with decay of the absolute value of curvature at
distance r on the order of 1/r2, i.e., curvature≤−C/r2 for large r, C a positive
constant. This classical line of thought was extended in [Greene/Wu 1977]
to hyperbolicity conditions for complex manifolds of arbitrary distance, the
following result illustrating the essential point. (See [Greene/Wu 1977] also for
detailed references to the classical Riemann surface literature on this subject.)

Theorem 7.3.4 ([Greene/Wu 1977], Theorem E, p. 83). Suppose that
M is a complex manifold with an Hermitian metric G, the holomorphic sec-
tional curvature K of which satisfies, for some p0 ∈M and constant A > 0:

K(q) ≤ −A(1 + dis (p0, q)
)−2

,

where the inequality is to be satisfied by every holomorphic sectional curvature
at q. Then there is a positive constant B such that, for every x ∈ M , the
infinitesimal Kobayashi metric F (x, v), v ∈ TxM , satisfies

F (x, v) ≥ B√
1 + dis (x, p0)2

‖v‖G,

where ‖ ‖G is the norm for the Hermitian metric G. In particular, M is hy-
perbolic and, if the Hermitian metric is complete, then M is complete in the
Kobayashi metric, i.e., complete hyperbolic.

This result is effectively the best possible: quadratic decay in this sense is
the “boundary” between hyperbolic and nonhyperbolic, as already mentioned.
A detailed discussion of this matter can be found in [Greene/Wu 1977].

It is interesting to note that, in Riemannian geometry, quadratic decay of
(sectional) curvature’s negative part is also a boundary between two funda-
mentally different types of topological behavior. Suppose, for some ε, C > 0
and some point p0 in a complete Riemannian manifold M , the sectional cur-
vature K at each p ∈M satisfies

max(0,−K) ≤ C(
1 + dis (p, p0)

)2+ε .

We say for short that the negative part of the sectional curvature decays faster
than quadratically. Then the manifold M has finite topology in the sense that
M is homeomorphic (actually even diffeomorphic) to the interior of a compact
manifold-with-boundary. This result of [Abresch 1985] is a generalization of
Greene and Wu ([Greene/Wu 1974]) that a complete Riemannian manifold
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with sectional curvature nonnegative outside a compact set has finite topology.
This latter result was in turn an extension of the well-known “Soul theorem”
of [Cheeger/Gromoll 1972] that a complete manifold of nonnegative sectional
curvature is diffeomorphic to the total space of a vector bundle over a compact
manifold. On the other hand, there are complete noncompact manifolds with
the negative part of the sectional curvature decaying quadratically which do
not have finite topology. Indeed, even in dimension 2, there is a complete
Riemannian manifold M such that, for each fixed p0 ∈M , there is a constant
C > 0 such that the sectional curvature K(p) at each p ∈M satisfies

|K(p)| ≤ C(
1 + dis (p, p0)

)2
and yet M fails to have finite topology. Such a manifold can be constructed
as follows: start with the (half) cone {(x, y, z) ∈ R3 : z ≥ 0, x2 +y2 = z2} and
round off the vertex (0, 0, 0) to give a smooth surface without altering the cone
at points where z > 1/2. Next add a “tube,” a cylinder, connecting a small disc
removed around (0, 3/2, 3/2) to a small disc removed around (0,−3/2, 3/2)
and smooth out the connections. Thus the points with 1 ≤ z ≤ 2 form,
topologically, a torus with two discs removed, the discs being the points with
z = 1 and the points with z = 2. Next do similar tube constructions on the
point with 2k ≤ z ≤ 2k+1, k = 1, 2, 3, . . ., in such a way that one finally
obtains a C∞ surface S such that, for each k = 1, 2, 3, . . ., {(x, y, z) ∈ S : 2k ≤
z ≤ 2k+1} is congruent exactly to the set {(x, y, z) ∈ S : 1 ≤ z ≤ 2} scaled
by the fact 2k; first, for each k = 1, 2, . . ., {(x, y, z) ∈ S : 2k ≤ z ≤ 2k+1} =
{(2kx, 2ky, 2kz) ∈ S : 1 ≤ z ≤ 2}. This surface is clearly complete and it
is easily checked to have quadratic decay of the absolute value of sectional
curvature and hence also quadratic decay of the negative part of sectional
curvature. But S does not have finite topology since there are infinitely many
of the tube connections across the cone. See Figure 7.1.

The fundamental significance of quadratic decay has to do with curva-
ture itself being quadratic in scaling of the metric—cf. [Greene/Wu 1982],
[Greene/Wu 1982a], [Greene/Petersen/Zhu 1994] for another situation involv-
ing this principle in the Riemannian case and [Greene/Wu 1977] (cf. Chapter 3)

Fig. 7.1. Infinite topology with quadratic curvature decay.
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on the significance of quadratic decay for the existence of the Bergman metric.
(See also the remarks in [Greene 1987a] for more on curvature decay examples
in general in the Riemannian setting.)

Finally, it should be noted that, somewhat surprisingly, a compact complex
manifold M is Kobayashi hyperbolic if every holomorphic map of C into M is
constant ([Brody 1978]). But this does not hold in general for M noncompact.
For example, the domain

Ω := {(w1, w2) ∈ C2 : |w2|(1 + |w1|2) < 1} \ {(1, 0), (2, 0)}

admits no nonconstant holomorphic map f : C→ Ω: if f(z) = (f1(z), f2(z)),
then f2(z) is bounded, hence constant, hence ≡ 0, and f1 : C → C \ {1, 2}
must also be constant. But f(z) = (kz, z2/(1 + k2)) maps the unit disc into
Ω for every k > 0, and has f∗

(
∂
∂z

)
= k ∂

∂w1
at 0, so that the Kobayashi length

of ∂/∂w1 at 0 is 0.

7.4 Remarks on Finsler Metrics and the CRF System

Considerable research has been devoted to Finsler geometry recently. On a
smooth differentiable manifold M , a Finsler metric is a function F : TM → R
that satisfies:

(1) F ≥ 0,
(2) F (p, λv) = |λ|F (p, v),
(3) F is smooth on TM except at the points on the zero section of TM , and
(4) In each tangent space the set of unit vectors forms a strongly convex

smooth hypersurface.

The infinitesimal Kobayashi metric of Royden is not a Finsler metric in
general. Property (4) does not hold in general: the Kobayashi–Royden met-
ric is not necessarily even subadditive. However, in case the manifold M is
a bounded strongly convex domain in Cn with C∞ boundary, the infinitesi-
mal Kobayashi metric (=the Kobayashi–Royden metric) is indeed Finsler, but
not Hermitian: if the Kobayashi metric of a bounded strongly convex domain
with C∞ boundary is Hermitian, then the inverse map of the Lempert rep-
resentation map (cf. [Lempert 1981]) defines a C∞ diffeomorphism from the
unit ball onto the domain that is holomorphic along each complex disc pass-
ing through the origin, and hence is a biholomorphism by Forelli’s theorem
([Patrizio 1983]). In this sense the bounded, strongly convex domains with
C∞ boundary, not biholomorphic to the ball, equipped with their Kobayashi–
Royden metric are good examples for Finsler geometry ([Bao 2004]).

The concept of CRF metric system has also been considered by some re-
searchers. First consider functions F : TM → R satisfying only the conditions
(1) and (2) above. Such a function F that is also upper semicontinuous is
called a length function. Then a CRF system is an assignment of a length
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function μM to each complex manifold M satisfying the following additional
conditions:

(1) μM coincides with the Poincaré metric if M is the unit disc D

and

(2) μN (f(p), df |p(v))≤μM (p, v) for any f ∈Hol (M,N), p∈M and v ∈TpM .

Not only do the infinitesimal Carathéodory metric and the infinitesimal
Kobayashi metric belong to the collection of CRF systems,3 they are known
to be extremal in the following sense.

Proposition 7.4.1. The Carathéodory metric is the smallest of CRF systems,
whereas the Kobayashi metric is the largest. first, CM ≤ μM ≤ KM whenever
μ is a CRF system.

Other CRF systems have been discovered, including infinitesimal pseudo-
metrics defined by Azukawa and Sibony. We refer the interested reader to
[Jarnicki/Pflug 1993].

7.5 The Wu Metric

Several invariant metrics have already been introduced. The reader may won-
der whether it is necessary at this point to introduce yet another metric such
as the Wu metric. Would the list of Bergman, Carathéodory, and Kobayashi
metrics not be sufficient?

The reasonable answer is that it depends upon what one needs to use
the metrics for. In contrast to their distinctive merits, each invariant metric
discussed so far has weaknesses. The Bergman metric as well as the canon-
ical Einstein–Kähler metric (which is the Calabi–Yau metric), which will
be discussed later, are Kählerian and smooth, but they do not possess the
distance-nonincreasing properties with respect to arbitrary holomorphic map-
pings. On the other hand, the Carathéodory and Kobayashi metrics enjoy the
distance-nonincreasing property but neither of them is Hermitian in general.
The Kobayashi-Royden metric typically does not even satisfy subadditivity
(property (4) of the previous section).

Here enters the Wu metric, introduced by H. Wu in 1987 in a conference
at the Mittag-Leffler Institute, although the first paper [Wu H. 1993] on this
metric did not appear until 1993 in the conference proceedings volume. This
metric is defined on all complex manifolds, is Hermitian, and is distance-
nonincreasing up to a constant multiplier depending only on the dimension of
the domain manifold. In fact, we are going to discuss two types of Wu metrics
here with some separate analysis of their properties.

3In the terminology CRF, C = Carathéodory, R = Reiffen, and F = Finsler.
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7.5.1 The Wu Metric of the First Kind

Although the original definition of this metric given by Wu in [Wu H. 1993]
depends only upon the complex linear structure of the complex tangent space
of the complex manifold (and hence the metric is automatically invariant
under the action of biholomorphic mappings), here we choose to deal with
the complex manifolds that are Kobayashi hyperbolic in the sense that the
Kobayashi–Royden (infinitesimal) metric is positive definite at every point.

Let M be a complex manifold, and let kM (p, v) denote the Kobayashi–
Royden length of the vector v ∈ TpM . The notation TpM denotes the complex
tangent space of M at p.

Fix the point p momentarily. Then consider the set

I(M,p) := {v ∈ TpM : kM (p, v) ≤ 1}

that is often called the Kobayashi indicatrix. Introduce a basis {u1, . . . , un} for
the complex vector space TpM and then identify TpM with Cn via this basis.
Then consider a complex ellipsoid, say Eg, in Cn defined by the inequality

n∑
α,β=1

gαβ̄uαuβ ≤ 1

for a positive definite Hermitian n× n matrix g = (gαβ̄).
Staying with such a basis-dependent setting, we shall consider the unique

ellipsoid with the minimum volume (i.e., the value of det g is the greatest)
among such Egs with I(M,p) ⊂ Eg, following F. John’s theorem of 1948
([John 1948]), a result which has become well known in Banach space the-
ory and control theory. For completeness, we present the argument for the
existence and uniqueness of this ellipsoid explicitly here. This re-working of
John’s theorem will also be useful later, when we discuss the Wu metric of
the second kind.

Lemma 7.5.1. Let A,B be n × n positive definite Hermitian matrices with
detA = detB. Then, for every t with 0 < t < 1, det [tA + (1− t)B] ≥ detA.
Moreover, equality holds here if and only if A = B.

Proof. Choose a nonsingular matrix W such that A = W ∗ W , where W ∗ rep-
resents the conjugate transpose of W . Let I denote the identity matrix. Let
V = W−1, y = −1 + 1

t and H = V ∗BV . Then

det[tA + (1− t)B] = detA · det[tI + (1− t)V ∗BV ]

= tn detA · det
[
I +

(
1
t
− 1
)
H

]
= (1 + y)−n · detA · det[I + yH].
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Hence the claim that det[tA+ (1− t)B] ≥ detA for 0 < t < 1 follows as soon
as we establish:

(†) Let H be a positive definite n × n Hermitian matrix. Then the
inequality det(I + yH) ≥ (1 + y)n holds for every y > 0.

We verify this statement. Let λ1, . . . , λn be the eigenvalues of H. These
are positive numbers with λ1 · · ·λn = 1.

Now consider the symmetric function sk of degree k in n variables de-
fined by

sk(x1, . . . , xn) =
∑

σ∈S(k,n)

xσ(1) · · ·xσ(k)

where S(k, n) denotes the set of injective maps from {1, . . . , k} into {1, . . . , n}.
Then observe that the product of all monomial terms in the expression of
sk(λ1, . . . , λn) is equal to 1, since it is a power of λ1 · · ·λn. Therefore one
deduces from the obvious comparison of arithmetic and geometric means that

sk(λ1, . . . , λn) ≥
(n
k

)
for every k = 0, 1, . . . , n. Now, comparing the coefficients, one immediately
obtains

det(I + yH) = (1 + λ1y) · · · (1 + λny)
≥ (1 + y)n

as desired.
Finally, consider the case when equality holds. The equality means, in the

argument above, that λ1 = · · · = λn = 1. Hence H has to be similar to I.
Since the only matrix similar to I is actually I, we must have H = I. This
implies A = B, which completes the proof. ��

As a consequence, one realizes that the minimum ellipsoid is uniquely
determined. On the other hand, our argument so far is still dependent on the
choice of basis, at least in its construction. That dependence is what we are
going to treat now.

For two complex ellipsoids Eg and Eh associated with the positive definite
Hermitian forms g and h, respectively, suppose that the volume of Eg is larger
than the volume of Eh. This means that

det (g(uα, uβ)) ≤ det (h(uα, uβ)) (7.1)

with a choice of basis u1, . . . , un for TpM . What about with another choice of
basis? Let v1, . . . , vn be another set of basis vectors for TpM . Then of course
there is a nonsingular n × n matrix Q ∈ GL(n,C) such that Q(uα) = vα for
every α = 1, . . . , n. But then we know that, as matrices,

(g(vα, vβ)) = Q (g(uα, uβ))Q∗.
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This shows that (7.1) above holds regardless of the choice of the basis by
the multiplicative property of determinant. Thus it is clear that, for every
bounded set containing an open ball centered at the origin, the minimum vol-
ume ellipsoid containing this bounded set exists and is unique. This ellipsoid
is often called the best fitting ellipsoid.

We are now ready to introduce the definition of the Wu metric of the first
kind on a Kobayashi hyperbolic complex manifold M . For each point p ∈M ,
let hp be the positive definite Hermitian form on TpM that defines the best fit-
ting complex ellipsoid for the Kobayashi indicatrix. Then the correspondence

p �→ hp

is the Wu metric of the first kind on M .

7.5.2 Properties of the Wu Metric of the First Kind

The Wu metric of the first kind is essentially automatically invariant under
biholomorphic mappings: let M,N be complex manifolds and suppose that
they admit a biholomorphism f : M → N . Denote by hM , hN the Wu metric
of the first kind on M,N respectively. Then

f∗hN = hM .

The proof is straightforward: as the Kobayashi metric is invariant under
biholomorphisms, the Kobayashi indicatrices are preserved. Then the unique
best fitting ellipsoids that define the Wu metrics are preserved. Hence the
invariance statement follows.

On account of the distance-nonincreasing property of the Kobayashi met-
ric, for a holomorphic map f : M → N from a Kobayashi hyperbolic complex
manifold M into another such N , we see that

df |p(I(M,p)) ⊂ I(N, f(p)).

On the other hand, the best fitting ellipsoids need not in general satisfy a
similar inclusion. The Wu metric of the first kind, however, turns out to be
distance-nonincreasing for holomorphic mappings up to a constant factor with
this fact depending only on dimension.

According to [John 1948], the best fitting ellipsoid E and the closed convex
set V containing 0 in Cm share the property that

V ⊂ E ⊂ √m + 1 V.

In case V is circular in each coordinate direction, then E ⊂ √mV . Therefore
in the case of the Wu metric

df |p(EhM |p) ⊂ df |p
(√

dimC M I(M,p)
)

=
√

dimC M df |p(I(M,p))

⊂
√

dimC M I(N, f(p)) ⊂
√

dimC M EhN |f(p)
.
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This implies the following distance-nonincreasing property of the Wu metric
up to factors.4

In summary:

Proposition 7.5.2 (Wu). Let M and N be complex Kobayashi hyperbolic
manifolds, and let hM and hN represent their Wu metrics of the first kind.
Then:

(i) For every biholomorphic mapping f : M → N , f∗hN = hM .
(ii) If f : M → N is a holomophic mapping, then f∗hN ≤ (dimM) hM .

As already noted, the Wu metric of the first kind can be defined indepen-
dently of the Kobayashi metric. The Wu metric will then be only nonnega-
tive instead of being positive definite. However, we choose not to introduce
the full details here. Interested readers should consult [Wu H. 1993] for more
properties.

One of the distinctive merits of the Kobayashi metric is that its infinites-
imal metric is preserved by holomorphic covering mappings (Theorem 7.3.1).
As before, if f : M → N is a holomorphic mapping that is also a covering map
in the algebraic topological sense, then the Kobayashi–Royden metrics satisfy

f∗kN = kM .

There is a corresponding result for the Kobayashi distance which says in effect
that the distance of two points in the base is the infimum of the distances of
their respective pre-images in the covering space ([Kobayashi 1998], p. 61):
this follows by a similar lifting argument.

The uniqueness of the minimum volume ellipsoid immediately implies:

Proposition 7.5.3. If f : M → N is a holomorphic covering map from
a Kobayashi hyperbolic complex manifold M onto another Kobayashi hyper-
bolic complex manifold N , then f is an isometry of their Wu metrics, i.e.,
f∗hN = hM .

This type of theorem plays an important role later when we characterize
generic analytic polyhedra in C2 with non compact automorphism group (see
Section 9.4).

As already noted, the Kobayashi metric is upper semicontinuous. The
Carathéodory metric is always continuous ([Royden 1971]). The Cheng–Yau
metric on domains, which will be discussed later in this chapter, is always
smooth. The Bergman metric is always real analytic. Then what about the Wu
metric of the first kind? Contrary to what Wu says in his article [Wu H. 1993],
this metric turns out not to even be upper semicontinuous on some complex
manifolds. On the other hand, it is always continuous whenever the Kobayashi
metric is continuous (cf. [Jarnicki/Pflug 1993]). In case the manifold is homo-
geneous under the action of a Lie group, the Wu metric is automatically real
analytic, as is any invariant Hermitian metric in this case.

4The Wu metric is not a CRF system.
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7.5.3 The Wu Metric of the Second Kind

The original Carathéodory metric was constructed from the family of holomor-
phic mappings into the unit disc. Thus any compact complex manifold should
have Carathéodory metric identically zero. Because of the Riemann removable
singularities theorem, the situation is as poor even if a finite number of punc-
tures are made. Thus we recall the concept of (generalized) C-hyperbolicity
from Section 7.1.2: a complex manifold M is called C-hyperbolic if its univer-
sal covering space M̃ has a positive definite Carathéodory metric.

Thus a complex manifold M of complex dimension n is C-hyperbolic if and
only if every point p̃ in the universal covering space M̃ of M admits a holomor-
phic mapping f̃ : M̃ → Bn such that df̃ |p̃ is nonsingular (cf. [Wu H. 1993]).

Given a complex manifold M of complex dimension n, let π : M̃ →M be
the holomorphic covering map from its universal covering space M̃ onto M ,
and let x̃ ∈ M̃ . Denote by

Qx̃ the set of positive semidefinite Hermitian inner products on the
complex tangent space Tx̃M̃ ,

Fx̃ the set of holomorphic maps f : M̃ → Bn with f(x̃) = 0,
β0 the Bergman metric of the unit ball Bn at the origin normalized

so that its holomorphic sectional curvature is identically −1,
Φx̃ = {f∗β0 | f ∈ Fx̃}.
In case M is C-hyperbolic, the covering map π̃ : M̃ →M has the property

that Φx̃ contains an interior point of Qx̃, with respect to the induced subspace
topology from the set of Hermitian symmetric bilinear forms.

As before, the concept of the element of Φx̃ having determinant greater
than or equal determinant to another is independent of basis choice. Applying
Lemma 7.5.1 (in fact, applying the proof of John’s theorem mentioned above)
to the elements of Φx̃ one obtains the unique element of Φx̃ having the maximal
determinant value. Denoting this element by γ̃x̃, the assignment

x̃ �→ γ̃x̃

defines a continuous Hermitian metric γ̃ on M̃ . This is the Wu metric of
the second kind on M̃ . Since the definition of this metric depends only upon
the complex structure of the complex tangent space, it is invariant under
biholomorphisms. Thus one may push down the metric using the covering
map to M . Call this metric γ; this is the Wu metric of the second kind on M .

Proposition 7.5.4. The Wu metric γ of the second kind for C-hyperbolic
complex manifolds satisfies the following properties:

(i) x→ γx is a continuous, positive definite Hermitian metric;
(ii) The metric is invariant under biholomorphic mappings.
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7.5.4 An Inequality Property and Why C-hyperbolic Manifolds
Are Algebraic

Any “metric”—an assignment to each point of a complex manifold M a pos-
itive definite Hermitian form h—induces an Hermitian metric H on the dual
of the canonical bundle of M , where the canonical bundle is the holomorphic
line bundle of forms of type (n, 0) on M . first, if v1, . . . , vn is an h-orthonormal
basis for the holomorphic tangent space at p, one defines v1 ∧ · · · ∧ vn to have
length 1 at p. Informally, H is the “determinant” of h. In the situation where
h is the Wu metric of the second kind, so that h need not be smooth as a
function of the point of M , the line bundle metric H need not be smooth and
hence need not have the usual “curvature” form defined. Recall that, when H
is smooth, this curvature form ΘH is globally defined via a local construction:
first, if (z1, . . . , zn) is a local holomorphic coordinate system, then the real
(1, 1)-form

i ∂∂ logH
( ∂

∂z1
∧ · · · ∧ ∂

∂zn
,

∂

∂z1
∧ · · · ∧ ∂

∂zn

)
is in fact independent of the local coordinate choice, since ∂

∂z1
∧ · · · ∧ ∂

∂zn

changes, under a local coordinate change, by a holomorphic Jacobian factor
(cf. [Greene 1987]).

In case H is not smooth—which can happen if h is not smooth—then the
curvature form ΘH is not as such defined, since it is defined by differentiation
(twice). But it is defined in a distribution sense, as a “current” of type (1, 1).
(See, for example, [Harvey/Lawson 1975] for details of this concept.) In par-
ticular, there is a well-defined distributional sense in which ΘH or −ΘH can be
positive definite: this amounts to ΘH or −ΘH being distribution-subharmonic
on each (smooth) complex submanifold of complex dimension 1.

In practice, as was pointed out in [Wu H. 1993], the (distributional) cur-
vature form ΘH attached to the Hermitian metric on the dual of the canonical
bundle already discussed, is always positive definite in the distributional sense
already indicated in the case of the metric h arising on a C-hyperbolic mani-
fold. This is proved by a support-function argument (we continue the notation
of the previous section here): without loss of generality we consider the case
that M is simply connected so that M̃ = M . Note that each x ∈M admits a
holomorphic mapping f : M → Bn with df |x nonsingular. For each q ∈ Bn,
choose μq ∈ Aut (Bn) with μq(q) = 0. Then, for the Bergman metric β,
βy = μ∗

yβ0. Therefore, for an arbitrary holomorphic mapping g : M → Bn,

det g∗βg(x) = det(μg(x) ◦ g)∗β0 ≤ det γx

for every x ∈M .
Let p ∈ M . By a standard normal families argument, one may choose a

holomorphic mapping f : M → Bn such that f(p) = 0 and γp = f∗β0. Since
df |p is nonsingular, one can use f as a local coordinate system at p. Then, in
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an open neighborhood, say U , of p in the coordinate system:

p = 0, log
detβ
det γ

∣∣∣
0

= 0 and log
detβ
det γ

∣∣∣
x
≤ 0, ∀x ∈ U.

Thus H is supported at p by a smooth Hermitian metric with strictly positive
curvature form, as desired. See [Wu H. 1993] for details.

The characterization of the positivity of ΘH by distribution subharmonic-
ity on complex 1-manifolds shows that the positivity is preserved by convo-
lution smoothing in holomorphic local coordinates. It then follows that, in
the C-hyperbolic situation, the (possibly nonsmooth) metric H on the dual
of the canonical bundle gives rise to a C∞ Hermitian metric Ĥ which has Θ

̂H
a C∞ positive form (cf. [Greene/Wu 1979]). It is a famous result of Kodaira
that a compact complex manifold with a line bundle with signed curvature is
algebraic (cf. [Miyaoka 1977]).

Therefore one obtains:

Theorem 7.5.5 ([Wu H. 1993]). A compact C-hyperbolic complex manifold
is necessarily algebraic.

There is a related result in which C-hyperbolicity is replaced as a hypoth-
esis by a Bergman metric condition. first:

(*) If M is a compact complex manifold such that some normal cov-
ering M̃ of M has a positive definite Bergman metric, then M is
projective algebraic.

Here we are saying, as in Section 3.2, that a complex manifold has a positive
definite Bergman metric if the space of L2 holomorphic (n, 0)-forms, n = the
complex dimension, has its associated (n, n)-form K(z, z) nowhere vanishing
and if the Levi form of logK(z, z) (which is well defined) is positive definite
everywhere. These definitions were discussed in detail in Section 3.2. (By
normal covering we mean as usual that M is a quotient of M̃ by the covering
transformations of M̃ over M .)

The proof of the result (∗) is obtained again by applying the Kodaira
embedding theorem as in the proof of the C hyperbolicity result, as follows.
With M and M̃ as in (∗) and for each p ∈ M̃ , a pointwise Hermitian inner
product on (n, 0)-forms at p can be defined by

〈ω, θ〉 :=
ω ∧ θ

K(p, p)
.

This is clearly invariant under automorphisms of M̃ and hence “pushes down”
to the normal covering quotient M to give an Hermitian metric H on the
canonical line bundle (of (n, 0)-forms) on M . This metric H exhibits the
canonical bundle of M as a positive line bundle: for this, recall that a line
bundle is positive if it admits a metric G such that the Levi form of logG
(which is well defined independent of local holomorphic trivialization) is neg-
ative definite (cf. [Greene 1987] for details). The Levi form of logH = − the
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Levi form of logK(p, p), and the Levi form of logK(p, p) is positive definite by
the hypothesis in (∗) on the existence and positive definiteness of the Bergman
metric.

Thus M admits a positive line bundle and hence, by the Kodaira embed-
ding theorem, is algebraic. ��

This result (∗) of course applies in particular if some normal cover is a
bounded domain in Cn. Theorem 7.5.5 also applies, but the proof of (∗) is
easier. [For the application of Theorem 7.5.5, note that, as in Section 7.1, if
any holomorphic covering of M has positive definite Carathéodory distance,
then so does the universal covering by composition of mappings.]

7.6 The Cheng–Yau Invariant Einstein–Kähler Metric

If Ω is a bounded domain in Cn with C∞ strongly pseudoconvex boundary,
then the Bergman metric of Ω is a complete Kähler metric on Ω with holo-
morphic sectional curvatures that approach the negative constant −4/(n+ 1)
near the boundary of Ω. This was discussed in detail in Chapter 3 (cf. also
Chapter 10). In particular, the results in Section 3.6 show that this metric has
negative Ricci curvature near the boundary of Ω, and indeed is asymptoti-
cally Ricci-negative Einstein–Kähler in the obvious sense that the eigenvalues
of the Ricci tensor converge to a negative constant (cf. Theorem 3.6.3).

It is natural to ask whether such an Ω admits some complete metric for
which the curvature in some sense is negative over the whole of Ω. It cannot
be expected in general that Ω would admit even a Riemannian metric that
was complete and had negative sectional curvature: For a complete Rieman-
nian manifold with nonpositive sectional curvature that is simply connected
must be real diffeomorphic to a Euclidean space, while, for example, a small
enough tubular neighborhood of the 2-dimensional sphere S2 (⊂ R3 ⊂ C3)
defines a C∞ strongly pseudoconvex and simply connected domain in C3.
But this domain is not diffeomorphic to a Euclidean space; it is not even
homeomorphic.

On the other hand, it is rather easy to modify the Bergman metric of a
smoothly bounded strongly pseudoconvex domain so that the modified met-
ric has negative, bounded-from-zero, holomorphic sectional curvature over all
of Ω, with the modified metric equal to the Bergman metric near the boundary
so that the modified metric remains complete. This is an immediate conse-
quence of the usual formula for the holomorphic sectional curvature of the sum
of two Hermitian metrics (cf. [Grauert/Reckziegel 1965]): if gb is the (constant
negative holomorphic sectional curvature) Bergman metric of a large ball con-
taining Ω and gΩ is the Bergman metric of Ω, then λgb + gΩ , for sufficiently
large positive number λ, will do the job (cf. [Klembeck 1978]).

Between these two extremes—the generally not achievable negative sec-
tional curvature and the always achievable (strictly bounded from 0) negative
holomorphic sectional curvature—lies then a natural intermediate question: Is
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there a complete Kähler metric with constant negative Ricci curvature, that
is, a negative Einstein–Kähler metric?

For later purposes, we introduce specific notation and a normalization con-
vention: if g is a Kähler metric and (z1, . . . , zn) is a holomorphic local coordi-
nate system, then we write g =

∑n
i,j=1 gij̄ dzi ⊗ dz̄j , where gij̄ = g

(
∂

∂zi
, ∂

∂z̄j

)
.

Then the (Hermitian) Ricci tensor Rij̄ is given by the standard formula

Rij̄ = − ∂2

∂zi∂z̄j
log det(gαβ̄)

(cf. [Kobayashi/Nomizu 1963], Vol. II, Chapter XI. It is worth noting that
this formula is very much a matter of complex geometry: there is no genuine
analogue in Riemannian geometry in general.) If a Kähler metric g is negative
Einstein–Kähler in the sense that Rij̄ = −c gij̄ for some constant c > 0,
then the metric hij̄ :=

√
cgij̄ has Ricci tensor Sij̄ satisfying Sij̄ = −hij̄. This

is an immediate consequence of the usual scaling properties of curvature:
multiplication of the metric by a constant b > 0 multiplies sectional (and
hence Ricci) curvature by 1/b. We shall hereafter call such a Kähler metric,
with Ricci tensor = the negative of a metric tensor, a normalized Ricci-negative
Einstein–Kähler metric. [A similar normalization is made for the positive Ricci
case. Normalization in this sense is of course not applicable for the Ricci flat,
Ricci ≡ 0, case.]

No obvious topological restriction arises here from negativity of the Ricci
curvature. All manifolds of real dimension > 2 admit complete Riemannian
metrics of negative Ricci curvature ([Lohkamp 1994]). The Chern class condi-
tion that occurs in the compact case (the Calabi conjecture situation) is not
an obstruction for domains in Cn: the “canonical bundle” of (n, 0)-forms is
trivial since Ω ⊂ Cn, but on an open manifold there is no reason why a nega-
tive closed (1, 1)-form cannot be cohomologous to 0. And in fact, the answer
to the question about the existence of complete negative-constant Einstein–
Kähler metrics is “yes,” not only for C∞ strongly pseudoconvex domains but
for bounded domains of holomorphy in general.

Theorem 7.6.1 ([Cheng/Yau 1980], extended in [Mok/Yau 1983]). If
Ω is a bounded domain of holomorphy in Cn (i.e., a bounded, connected pseu-
doconvex open subset of Cn), then there is a C∞ complete Einstein–Kähler
metric on Ω, which necessarily has constant negative Ricci curvature. And this
metric is unique if the metric is normalized by multiplication by a constant to
have the eigenvalue(s) of the Ricci tensor identically −1.

This result was proved by Cheng and Yau in [Cheng/Yau 1980] for do-
mains with C2 boundary and for intersections of such domains. This was
extended to bounded domains of holomorphy in [Mok/Yau 1983]. The proof
in [Cheng/Yau 1980] involves solution by the continuity method of a Monge–
Ampère equation, similarly to the proof of the negative-curvature Calabi
conjecture proof but with compactness replaced by suitable conditions “at
infinity” for the case of an open set Ω. Even an outline of this result would be
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somewhat beyond the intended scope of this book—and rather long if carried
out in detail—so the reader is simply referred to [Cheng/Yau 1980].

The uniqueness part of the theorem immediately implies the automor-
phism invariance of the normalized complete Ricci-negative Einstein–Kähler
metric under biholomorphic maps.

As already discussed in the C-hyperbolic and Bergman cases, special in-
terest is attached to cases in which a pseudoconvex Ω admits a compact
(normal) covering-space quotient, and in particular when Ω is the universal
cover of some compact complex manifold. For a normal covering space in
general, the covering transformations are (by definition) transitive on the pre-
images of such points in the quotient. Automorphism invariance then gives
that the negative-constant Einstein–Kähler metric “pushes down” to the com-
pact manifold that is covered. The compact manifold is then again algebraic
with c1 < 0 (c1 denotes the first Chern class), and the push-down of the
covering space’s Einstein–Kähler metric is exactly the Einstein–Kähler met-
ric on the compact manifold, the existence of which is guaranteed by the
affirmative solution of the negative-case Calabi conjecture by [Aubin 1976]
and [Yau 1977a] (cf. [Yau 1978]).

We have of course already observed at the end of the last section that this
quotient has in fact positive canonical bundle and hence has c1 < 0: this came
from Bergman kernel considerations.

It is worth noting that, if Ω is a bounded domain with a compact covering-
space quotient, then Ω is automatically a domain of holomorphy. This need
not be assumed separately, and thus Theorem 7.6.1 automatically applies, to
give the existence of a canonical Einstein–Kähler metric to be pushed down.

Proposition 7.6.2. If Ω is a bounded domain in Cn such that, for some com-
pact complex manifold M , there is a holomorphic covering map F : Ω →M ,
then Ω is a domain of holomorphy.

In case Ω has C1 boundary, the fact that Ω is a domain of holomorphy
follows from Ohsawa’s result (Theorem 3.4.2): the Bergman metric of Ω is nec-
essarily complete because any locally isometric covering space of a compact
manifold is complete (cf. [Kobayashi/Nomizu 1963]). [One sees this immedi-
ately from lifting geodesics.] The fact that the Bergman metric is invariant
yields that it can be pushed down to the compact quotient so that the covering
is then locally isometric.

But in fact, Ω is necessarily a domain of holomorphy whether or not it has
C1 boundary; this holds independently of any boundary smoothness at all.
The idea to be used here is essentially the same as that used in Section 1.5,
but in this case it is most efficient to apply the behavior of the Jacobian to
the Bergman kernel (cf. e.g., [Akhiezer 1995], pp. 61–62).

Proof of Proposition 7.6.2. By the solution of the Levi problem, it suffices
to show that the C∞ strictly plurisubharmonic function K(z, z), z ∈ Ω, is
proper, that is, that it goes to +∞ at the boundary of Ω. Here K(z, z) is
the diagonal Bergman kernel function as usual. For this, choose a compact
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set C ⊂ Ω such that every point of the compact quotient is the covering
map image of some point of C. Suppose a sequence {pj} in Ω “diverges to
infinity.” Choose zj ∈ C and covering transformations ϕj : Ω → Ω such that
ϕj(zj) = pj . Passing to a subsequence if necessary, we can assume by normal
families that the sequence ϕj converges uniformly on compact subsets of Ω
to a map ϕ0 : Ω → cl(Ω), where cl(Ω) is the closure of Ω. Again passing
to a subsequence, we can suppose that {pj} converges to some point p0 ∈
cl(Ω) \ Ω. It follows then from Theorem 1.3.4 that ϕ0(Ω) ⊂ cl(Ω) \ Ω. In
particular, the Jacobian determinant Jϕ0 is identically zero, since cl(Ω) \ Ω
has empty interior. Hence Jϕ0 converges uniformly on compact subsets of Ω
to 0. Now,

K(pj , pj) = K(ϕj(zj), ϕj(zj)) = |Jϕj
(zj)|−2K(zj , zj)

by Proposition 3.1.1. Since {Jϕj
} goes to 0 uniformly on C, since zj ∈ C, and

since K(z, z) is bounded away from 0 uniformly for z ∈ C, it follows that
K(pj , pj) goes to +∞, as required. ��

Thus, Theorem 7.6.1 does indeed apply to every bounded domain which
has a compact quotient.

It is worth noting that Ricci-negative is the only possibility for a com-
plete Einstain-Kähler metric on a complex manifold covered by any bounded
domain in Cn. For this, it is enough to show that Ricci-negative is the only
possibility for a complete Einstein–Kähler metric on any bounded domain,
say Ω, in Cn. (This is the “necessarily negative” part of Theorem 7.6.1.) This
can be seen as follows.

Completeness and constant Ricci-positive would imply compactness of Ω
by Myers’s theorem [Petersen 2006], a contradiction. Ricci-zero is also not
possible, for the following reason. The real part of a holomorphic function
is a harmonic function relative to any Kähler metric. Thus with any com-
plete Kähler metric, Einstein or not, Ω admits many nonconstant harmonic
functions, since Ω is a bounded domain in Cn. But on a complete manifold
of nonnegative Ricci curvature, every harmonic function is constant accord-
ing to [Yau 1975]. [Of course this second argument rules out a Ricci-positive
Einstein–Kähler metric for bounded domains as well, but the earlier argument
involving Myers’s theorem for this case is more elementary. It is also worth
noting that, in any case where a Ricci-negative complete Einstein-Kahler met-
ric exists, Yau’s Schwarz lemma [Yau 1978a] in its volume version implies that
there is no Ricci-nonnegative complete Kähler metric possible. This follows
from Theorem 3 of [Yau 1978a], since that theorem yields in this case that the
identity map from the Ricci-nonnegative to the Ricci-negative metrics would
be volume-degenerate: the Jacobian would be everywhere zero, a contradic-
tion. The volume behavior given by this Theorem 3 is also the vital point in
the establishment of uniqueness for the negative case (Proposition 7.6.3).]

We turn now to a detailed statement and the proof of the general unique-
ness result that in particular yields the uniqueness part of Theorem 7.6.1
(see [Cheng/Yau 1980], Proposition 5.5).
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Proposition 7.6.3. If M1 and M2 are two complex manifolds with a complete
normalized Ricci-negative Einstein–Kähler metric and if F : M1 → M2 is a
biholomorphic mapping, then F is an isometry.

Proof. According to Yau’s generalization of Schwarz’s lemma for volume
forms ([Yau 1978a], Theorem 3), the map F is volume-preserving, in the sense
that the pullback of the volume form M2 to M1 by F equals the volume form
of M1. (Apply the theorem to F and F−1.)

Now, for Riemannian metrics in general, it is of course very far from
true that a volume-preserving diffeomorphism is necessarily an isometry
(cf. [Moser 1965], [Greene/Shiohama 1979] for the full extent to which this
fails). But, for Einstein–Kähler metrics, the volume form determines the met-
ric and such a result does apply.

To see this, note first that, if ω is a nowhere-zero form of type (n, n)
on a complex manifold of complex dimension n, then there is an Hermitian
form Lω as follows: in holomorphic local coordinates (z1, . . . , zn), write ω =
f dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · dzn and set

Lω :=
n∑

i,j=1

∂2(log f)
∂zi∂zj

dzi ⊗ dzj .

This is easily checked to be independent of choice of local coordinate systems
(and of choice of local branch of log): this is analogous to the calculations
earlier for why the Bergman metric for the manifold is well defined (see Sec-
tion 3.2). In a different coordinate system, f is replaced by fJJ where J is a
“holomorphic Jacobian” factor so that log f is replaced by log f+logJ +logJ
and the latter two terms are annihilated by the zi- and zj-derivatives. We call
the form Lω the Levi form of ω. In this terminology, the Ricci tensor Rαβ̄ of a
Kähler metric gαβ̄ is in fact (interpreting Rαβ̄ as an Hermitian form) exactly
equal to the negative of the Levi form of the volume form ω of g: R = −g.
This is simply a restatement of the standard formula already noted:

Rij̄ = − ∂2

∂zi∂z̄j
log det(gαβ̄).

Now let g be the metric of M1 and h the metric of M2, R and S their respective
Ricci tensors, and ω1 and ω2 respective volume forms. Then g = −R = Lω1

while h = −S = Lω2 . But it is just in effect a restatement of coordinate
invariance of the Levi form that

F ∗Lω2 = LF ∗ω2 .

Thus, from the volume-preserving formula F ∗ω2 = ω1, it follows that

F ∗h = F ∗Lω2 = LF ∗ω2 = Lω1 = g.

Hence F is an isometry as desired. ��
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This general uniqueness result, Proposition 7.6.3, makes it possible to
extend the “push-down” considerations that were discussed just after The-
orem 7.6.1. In particular, the normality of the coverings there can be dis-
pensed with.

Corollary 7.6.4. If π : M1 →M2 is a holomorphic covering map of one com-
plex manifold M1 to another M2 with complex dimension ≥2, and if M1 has
a complete Ricci-negative Einstein–Kähler metric g1, then there is a complete
Ricci-negative Einstein–Kähler metric g2 on M2 with the property that π is a
local isometry relative to g1 and g2.

In particular, every compact complex manifold M that is covered by some
bounded (necessarily pseudoconvex) domain Ω in Cn, n ≥ 2, admits a Ricci-
negative Einstein–Kähler metric.

Proof. Let π0 : M0 →M1 be the universal holomorphic covering of M1. Then
g0 := π∗

0g1 is a complete Ricci-negative Einstein–Kähler metric on M0, and
by Proposition 7.6.3, every biholomorphic map γ : M0 → M0 is an isometry
of π∗

0g1. The composition, call it F , of π0 followed by π1 taking M0 to M2 is the
universal covering of M2. Thus M2 is the quotient space of M0 by the group of
holomorphic covering transformations of M0 over M2. For each p ∈ M2, this
group is transitive on the pre-image F−1({p}) in M0. Since the group consists
of biholomorphic mappings which are, as noted, necessarily isometries of g0,
the metric g0 “pushes down” to M2. first, given p ∈ M2, choose any q ∈
F−1({p}) and assign a metric g2 to TpM2 by declaring dF |q : TqM0 → TpM2
to be isometric for g0 at q (and g2 at p). The transitivity of the group of
(isometric) covering transformations on the points of F−1({p}) shows that
this is well defined. That this metric “factors” through π0 : M0 →M1 is clear
since π0 is already locally g0 isometric to g1. That the push-down metric
g2 thus defined is Ricci-negative Einstein–Kähler is clear since the condition
of Ricci-negative Einstein–Kähler is a local-isometry invariant. Completeness
of the push-down follows from standard Riemannian geometry: geodesics for
g2 are the π1-images of the infinitely extendable geodesics in M1 and hence
themselves infinitely extendable. ��

The second aspect of Corollary 7.6.4, that a compact complex manifold
covered by a bounded domain admits a Ricci-negative Einstein–Kähler met-
ric, is of course also deducible from the affirmative solution of the Ricci-
negative Calabi conjecture ([Aubin 1976], [Yau 1977a]). As was already dis-
cussed in connection with Theorem 7.5.5 and the statement (∗) thereafter,
a compact complex manifold arising in this way has necessarily a positive
canonical line bundle. Thus, by the solution of the Calabi conjecture in the
case of negative curvature, it admits a Ricci-negative Einstein–Kähler met-
ric. Thus, this part of Corollary 7.6.4 is simply an independent verification, a
different way from the Calabi conjecture solution itself, to find the Einstein–
Kähler metric. This relationship is also reflected in the similar general methods
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of [Cheng/Yau 1980] and [Yau 1978]. The compact and noncompact cases are
clearly related, though by no means equivalent.

These ideas of the relationship between pullback and push-down of com-
plete Einstein–Kähler metrics in the presence of uniqueness will play an in-
teresting explicit role later, at the end of Chapter 10 (Theorem 10.4.3).

In complex dimension 1, the natural analogue of Einstein–Kähler metrics
will be the metrics of constant Gauss curvature. [It is a classical theorem of
I. Schur that, in higher dimensions, the Ricci tensor being at each point a
multiple of the metric tensor implies that the multiple is constant from point
to point. This of course does not apply in real dimension 2, so one assumes
constancy as the natural analogue of the higher dimensional case.] In this
sense, the “Einstein–Kähler metric” for bounded domains in C should be
thought of as the metric (up to a constant multiple) obtained by “pushing
down” the Poincaré metric of the disc from the universal cover of the domain
by the disc, as discussed in Chapter 2. Lu Qi-Keng’s result (Theorem 4.2.2)
shows that this coincides (up to a constant multiple) with the Bergman metric
(if and) only if the domain in biholomorphic to the unit disc.

It is natural to ask if some corresponding result holds for domains in Cn,
n ≥ 2. In particular, it is natural to ask whether the Bergman metric of a
C∞ strongly pseudoconvex bounded domain in Cn can be Einstein–Kähler if
the domain is not biholomorphic to the ball. The affirmative answer to this
question is sometimes called the Cheng conjecture.5 For n = 2, the affirma-
tive answer is known to be correct: the Bergman metric is Einstein–Kähler (if
and) only if the domain is biholomorphic to the ball B2 (see [Fu/Wong 1997]
for the simply connected 2-dimensional case, [Nemirovskii/Shafikov 2006] for
the general 2-dimensional case). The proof involves careful analysis of the
Fefferman expansion and its relationship to the Tanaka–Chern–Moser bound-
ary invariants of the domain. The corresponding question for n > 2 seems to
involve considerable additional difficulties.

5Sometimes also attributed to S.T. Yau.



8

Automorphism Groups and Classification
of Reinhardt Domains

This chapter will give a brief survey of results about the automorphisms of
domains that possess circular symmetries. They are a rich source of examples
in the study of invariant geometry and automorphism groups.

8.1 Reinhardt Domains

We begin with definitions. A domain D in Cn is called circular if it is invariant
under the rotations

(z1, . . . , zn) �→ (eiϕz1, . . . , e
iϕzn), ϕ ∈ R.

It is possible for a domain to possess further circular symmetries. A domain
D in Cn is called a Reinhardt domain if it is invariant under the rotations

(z1, . . . , zn) �→ (eiϕ1z1, . . . , e
iϕnzn), (ϕ1, . . . , ϕn) ∈ Rn.

A domain D in Cn is called a complete Reinhardt domain if, whenever
the point z = (z1, . . . , zn) ∈ D, then (α1z1, . . . , αnzn) ∈ D for all complex
constants αj satisfying |αj | ≤ 1 for all j = 1, . . . , n.

Originally, the concept of Reinhardt domain arose together with the con-
cept of region of convergence: for a (formal) power series

∑
β aβz

β (about the
origin) in several complex variables, its region of convergence is the unique
open set R such that the power series converges on R and diverges outside
the closure cl(R). It is well known and easy to check that, for any formal
power series, the region of convergence is a complete Reinhardt domain. (See
for instance Theorem 1.4, page 7 of [Grauert/Fritzsche 1976].)

8.2 Sunada’s Work

A classification of Reinhardt domains (up to a biholomorphic equiva-
lence) with a description of their automorphism groups was established in

R. E. Greene et al., The Geometry of Complex Domains, Progress in Mathematics, 
DOI 10.1007/978-0-8176-4622-6_8, © Springer Science+Business Media, LLC 2011
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[Sunada 1974] (further detaila can be found in [Sunada 1978]) for the case
when the Reinhardt domains in Cn under consideration are bounded and con-
tain the origin. Then the case of Reinhardt domains that do not contain the
origin was treated in [Shimizu 1987] (further details are in [Shimizu 1989]).

The work of Sunada which is about to be discussed was based upon Lie-
theoretic understanding of (the Lie algebra of) the automorphism groups of
Reinhardt domains. One might wonder how this method can be successful in
establishing a classification because, in general, holomorphically inequivalent
domains can have the same automorphism group. So what is special about
Reinhardt domains?

We give a heuristic explanation. Since we are dealing with bounded
Reinhardt domains, the rotations in each variable separately already tell us
that one single boundary point gives rise to a real n-dimensional “round”
torus in the boundary. If there were other automorphisms that create a real
k-dimensional set (in the boundary) transverse to the torus just mentioned,
then one obtains an (n+k)-dimensional subset of the boundary. Thus one can
imagine that the matter boils down to understanding what kinds of automor-
phism groups are possible. Sunada tells us that the crucial part can be largely
understood from the structure theory of Lie algebras of the automorphisms
group of Reinhardt domains, because the Reinhardt property gives a good
place to start.

8.2.1 Theorem of Thullen in Complex Dimension 2

In complex dimension 1, the only Kobayashi hyperbolic Reinhardt domains
containing the origin are discs. It should be mentioned that, in complex di-
mension 2, P. Thullen classified the Reinhardt domains containing the origin.

Theorem 8.2.1 ([Thullen 1931]). Let Ω be a bounded Reinhardt domain
in C2 containing the origin. Then it is biholomorphic to one of the following
types of domains:

(i) The bidisc {(z, w) ∈ C2 : |z| < 1, |w| < 1};
(ii) The Thullen domain {(z, w) ∈ C2 : |z|2 + |w|r < 1} for some r > 0;
(iii) A domain whose automorphism orbit of the origin consists of the origin

only.

8.2.2 Decomposition of the Lie Algebra of Aut0(Ω)

Sunada’s work generalizes the preceding theorem of Thullen (Theorem 8.2.1)
to all dimensions. We shall sketch this work now. The details can be found
in [Sunada 1978].

Recall that Aut (Ω) is a (finite-dimensional) Lie group, since our domain
Ω is bounded (see Section 1.3). More generally, the automorphism groups of
Kobayashi hyperbolic domains are (finite-dimensional) Lie groups (cf. Sec-
tion 7.2.3).
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Let D be a Kobayashi hyperbolic Reinhardt domain in Cn containing
the origin. Denote by G the identity component (=the connected component
Aut 0(Ω) of Aut (Ω) that contains the identity) of Aut (Ω). So both G and
Aut (Ω) are Lie groups of the same dimension. The Reinhardt property implies
that G contains the n-dimensional torus subgroup consisting of coordinate-
by-coordinate rotations, as in the preceding section.

Sunada considers the Lie algebra g of the Lie group G, and then studies
its structure. The results from this study give normal forms for the Reinhardt
domains containing the origin, and this provides a description of their auto-
morphism groups. In outline:

Notice that g consists of complete holomorphic vector fields on D. Thus it
is natural to consider the subalgebra k consisting of vector fields vanishing at
the origin. This subalgebra k is of course isomorphic to the Lie algebra of the
isotropy subgroup hereafter denoted by K of G at the origin (cf. Section 1.6).
In particular, the complex Euler vector field

E :=
n∑

j=1

√−1 zj
∂

∂zj

is an element of k and corresponds to the 1-parameter subgroup of automor-
phisms

kθ(z1, . . . , zn) = (eiθz1, . . . , e
iθzn), θ ∈ R.

Notice that every element of K must be complex linear by Cartan’s result
Corollary 1.3.2. Furthermore, the 1-parameter subgroup just mentioned is
contained in the center of the group K, again by Corollary 1.3.2.

In case G = K, there is not much one can do. However, if K � G, then
one may try further, using the structure theory of Lie algebras, to understand
the situation. One notices that every X ∈ g has a Taylor expansion

X =
∞∑

λ=0

Xλ,

where the coefficients of each Xλ are homogeneous polynomials of total de-
gree λ. (Here we use the standard Euclidean coordinate system of Cn.) Sunada
uses the methods developed by [Kaup/Matsushima/Ochiai 1970] and consid-
ers the Lie algebra automorphism J(X) = [E,X] where E is the complex
Euler vector field introduced above. Then the kernel of J is actually k. Define

p := {X ∈ g : J2(X) = −X};
then p is a subalgebra of g and the decomposition

g = k + p

holds ([Kaup/Upmeier 1976]). Then Sunada goes on to decompose p and try
to understand what the structure of g can be. First he proves that Xλ = 0
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for λ > 2, whenever X ∈ p. This is where the bounded circularity of D enters
again. Then p⊗ C decomposes naturally by J , as

X0 ∈ p− := {X ∈ p⊗ C : JX = −√−1X},
X1 ∈ k,

X2 ∈ p+ := {X ∈ p⊗ C : JX =
√−1X}.

Sunada then investigates how the Lie bracket multiplication table can “tra-
verse” between the elements of k,p,p±. Such an investigation is important
for understanding which automorphism groups are possible for a Reinhardt
domain, because much of the Lie group structure of G can be understood from
the structures of its Lie algebra.

Further understanding of the structure of g, from the Reinhardt property
of D, turns out to be obtained by considering the polynomial vector fields
izk(∂/∂zk) (k = 1, . . . , n) and the vector space of linear combinations of these
vector fields with coefficients in R. Denote this space by h0; this is the maximal
abelian Lie subalgebra of g. Its complexification h := h0 ⊗ C is a maximal
abelian subalgebra of gC := g⊗C such that, for each element H of h, ad H is a
semi-simple endomorphism of h. (Such a subalgebra is usually called a Cartan
subalgebra.) This allows application of the concept called the root system in
Lie algebra theory,1 and we arrive eventually at a stage where understanding
the possibilities for the automorphism group reduces to understanding the
possibilities for the (complexified) Lie algebra of the identity component of the
automorphism group (Lemmas 2–16, in Sections 2, 3 and 4 of [Sunada 1978]).
For instance,

gC = h +
∑
α∈Δ

gα (direct sum)

and each gα is contained in k, p+ or p−. (Here Δ is the root system.) Further-
more, the generators of each root space are described rather explicitly. This
determines the complete possibilities for the normal forms for Reinhardt do-
mains, and their automorphism groups.

In case the root system (i.e., the set of nonzero roots) is nonempty, and
gC � h, then the gαs give rise to a vector field (that in turn gives rise to a
family of automorphisms). A typical (complexified) vector field turns into a
differential equation ⎧⎪⎪⎨⎪⎪⎩

dxi

dt
= 1− x2

i

dxk

dt
= −ai

kxixk

1The roots are defined as follows: for a Cartan subalgebra h, let H ∈ h. Then
the map adH is semi-simple. Now consider α : h → C a linear functional and set
gα := {Y ∈ gC : ad H(Y ) = α(H)Y, ∀H ∈ h}. If gα is nontrivial, then the functional
α is called a root. Thus one can see that the collection of nonzero roots (called the
root system) will result in a decomposition (called the root decomposition of gC).
The Jacobi identity implies that [gα,gβ ] ⊂ gα+β .
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which defines a real curve (with parameter t) in

Dik := {(zi, zk) ∈ C2 : (0, . . . , 0, zi, 0, . . . , 0, zk, 0, . . . , 0) ∈ D}.

The Kobayashi hyperbolicity of D implies that xk(t) has to be bounded for
all t, and hence ak > 0. Furthermore, this gives rise to

Dik =
{

(zi, zk) ∈ C2 : |zi| < 1,
zk

(1− |zi|2)ak/2 ∈ Dk

}
,

where Dk is a disc of bounded radius. We shall not go into the detailed analysis
in Sunada’s work any further, but we hope that this discussion gives some fla-
vor of Sunada’s analysis to the reader. Instead, while we refer to [Sunada 1978]
for details, we simply jump to Sunada’s main theorems in the next section.

8.2.3 Sunada’s Theorems

Let

Zi = (zn1+···+ni−1+1, . . . , zn1+···+ni−1+ni
)

and

|Zi|2 = |zn1+···+ni−1+1|2 + · · ·+ |zn1+···+ni−1+ni
|2,

where i ∈ {1, . . . , s} with n1 + · · ·+ ns = n.

Theorem 8.2.2 (Sunada). Let D be a bounded (or Kobayashi hyperbolic)
Reinardt domain containing the origin. Then there are positive integers n1, . . . ,
ns with n1+· · ·+ns = n, a number r with 1 ≤ r ≤ s and a matrix (pi

j) such that
D is biholomorphic (by a biholomorphism of type z �→ (r1zσ(1), . . . , rnzσ(n)),
where σ is a permutation of indices and ri > 0) to a Reinhardt domain

D̃ =
{

(Z1, . . . , Zs) ∈ Cn : |Z1| < 1, . . . , |Zr| < 1;(
Zr+1∏r

i=1(1− |Zi|2)pi
r+1/2

, . . . ,
Zs∏r

i=1(1− |Zi|2)pi
s/2

)
∈ D̃1

}
.

Here

D̃1 = D̃ ∩ (Cp × 0) = {(Z1, . . . , Zs) ∈ Cn :

|Z1|2 < 1, . . . , |Zr|2 < 1, Zr+1 = 0, . . . , Zs = 0}

(with p = n1 + · · ·+ nr) and D̃ ∩ {(0, . . . , 0)} ×Cn−p is a bounded Reinhardt
domain in Cn−p (when projected).
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This theorem in the case n = 2 recovers Thullen’s theorem (Theo-
rem 8.2.1). Let us see how that follows. Since n = 2, there are only four cases.

Case 1. s = 1: One sees immediately that D is equivalent to the ball.
Case 2. s = 2 and r = 2: D is equivalent to the bidisc.
Case 3. s = 2 and r = 1: D is biholomorphic to

D̃ =
{

(z1, z2) ∈ C2 : |z1| < 1,
z2

(1− |z1|2)p/2 ∈ D̃1

}
.

Since any bounded Reinhardt domain in C containing the origin is a disc,
the second condition is simply |z2| < (1−|z1|2)p/2, and hence D̃ is defined
by |z1|2 + |z2|2/p < 1.

Case 4. The generic case: all automorphisms are linear.

The following theorem describes the structure of the identity component G
of the automorphism group of the Reinhardt domain D̃ (of course isomorphic
to G for the original D). In what follows, tA denotes the transpose of the
matrix A. The automorphisms of the unit ball Bn in Cn can be written as
follows.

z → t
(
(Atz + b)(ctz + d)−1),

where A, b, c, d are matrices of type n×n, n× 1, 1×n, and 1× 1, respectively,
satisfying the relations

tĀA− tc̄c = I, tbb− d2 = −1, tb̄A = d̄c, det
(
A b
c d

)
= 1.

For short-hand notation, let Zi = tZi.

Theorem 8.2.3 (Sunada). The identity component G of the automorphism
group of D̃ consists of transformations of the following type:{

Zi �→ (AiZi + bi)(ciZi + di)−1, i = 1, . . . , r,

Zj �→ Bj

∏r
i=1(ciZi + di)−pj

iZj , j = r + 1, . . . , s,

where
(

Ai bi

ci di

)
is an ni+1 × ni+1 matrix satisfying the relation above, and Bj

is a unitary nj × nj matrix.

8.3 Shimizu’s Theorems

There are of course Reinhardt domains that do not contain the origin.
In [Shimizu 1987], S. Shimizu obtained a general result encompassing Sunada’s
work sketched above and also dealing with Reinhardt domains not containing
the origin. When the Reinhardt domain does not contain the origin, Cartan’s
uniqueness theorem (Theorem 1.3.1) is not available. Hence an alternative is
needed. One of the key facts Shimizu uses is the following.
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Proposition 8.3.1 (Shimizu). Let ϕ : D → D′ be a biholomorphic mapping
of bounded Reinhardt domains D and D′ in Cn. Then ϕ is equivariant with
respect to the n-dimensional torus action (i.e., for every rotation ρ of D there
exists a rotation ρ′ of D′ such that ϕ ◦ ρ ◦ ϕ−1 = ρ′) if and only if

ϕ(z1, . . . , zn) = (. . . , αiz
a1i
1 · . . . · zani

n , . . .),

where (aij) ∈ GL(n,Z), and where α1, . . . , αn are nonzero complex numbers.

It is shown in [Shimizu 1988] that every automorphism of a bounded Rein-
hardt domain can be written as the composition of automorphisms of the
above type and an element of the identity component. Since the arguments
of [Shimizu 1988] are purely Lie-group-theoretic, the result naturally extends
to Kobayashi hyperbolic Reinhardt domains.

Theorem 8.3.2 (Shimizu). To each bounded (or Kobayashi hyperbolic) Rein-
hardt domain D in Cn, there is an associated Reinhardt domain D̃ in Cn

which is the image of D under an algebraic biholomorphism in the preceding
proposition for which, with the block decomposition

z = (Z1, . . . , Zr, Zr+1, . . . , Zs, . . . , Zt) ∈ Cn

= Cn1 × · · · × Cnr × Cnr+1 × · · · × Cns × Cns+1 × · · · × Cnt ,

the following hold:

(i) D̃1 = π(D̃) = Bn1 × · · · × Bnr × Cnr+1 × · · · × Cns , where π : Cn →
Cn1 ×· · ·×Cnr ×Cnr+1 ×· · ·×Cns is the obvious projection. (Of course,
Bk denotes the open unit ball in Ck.)

(ii) D̃2 = D̃ ∩ {0} × · · · × {0} × Cns+1 × · · · × Cnt .
(iii) D̃ can be written in the form

D̃ =
{
z ∈ Cn : (Z1, . . . , Zs) ∈ D̃1,(

Zs+1∏r
i=1(1− |Zi|2)ps+1

i /2∏s
j=r+1 exp(−qs+1

j |Zj |2)
,

. . . ,
Zt∏r

i=1(1− |Zi|2)pt
i/2∏s

j=r+1 exp(−qt
j |Zj |2)

)
∈ D̃2

}
,

where P k
j , q

k
j , i = 1, . . . , r, j = r+1, . . . , s, k = s+1, . . . , t are nonnegative

real constants, and for each index j with r + 1 ≤ j ≤ s, there is an index
k with s + 1 ≤ k ≤ t such that qk

j > 0, nk = 1, and D̃ ∩ {Zk = 0} = ∅.

There is an associated characterization of the automorphism groups as
follows (with the same notation as above).
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Theorem 8.3.3 (Shimizu). The identity component G of Aut (D̃) consists
of the transformations (Z1, . . . , Zt)→ (W1, . . . ,Wt) of the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Wi = (AiZi + bi)(ciZi + di)−1, i = 1, . . . , r
Wj = BjZj + ej , j = r + 1, . . . , s
Wk = Ck

∏r
i=1(ciZi + di)−pk

i

·∏s
j=r+1 exp[−qk

j {2tējBjZj + |ej |2}]Zk, k = s + 1, . . . , t,

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
Ai bi

ci di

)
∈ SU(n, 1), i = 1, . . . , r,

Bj ∈ U(nj), ej ∈ Cnj , j = r + 1, . . . , s,
Ck ∈ U(nk), k = s + 1, . . . , t.

The detailed arguments can be found in [Shimizu 1987], [Shimizu 1988]
and [Shimizu 1989].

8.4 Non-Reinhardt Circular Domains

A natural question that can arise is whether there are circular domains that
cannot be holomorphically equivalent to any Reinhardt domain.

This question was studied by [Fu/Isaev/Krantz 1996]. They came up with
the following

Example 1 The domain

D = {(z1, z2, z3) ∈ C3 : |z1|2 + |z2|4 + |z3|4 + (z2z̄3 + z̄2z3)2 < 1}
is not biholomorphic to any Reinhardt domain.

This domain is circular, but not a Reinhardt domain as defined. But the
question is whether it is or is not biholomorphic to some Reinhardt domain.
For this purpose Fu, Isaev and Krantz computed the automorphism group.
They started with the observation that D is a bounded, pseudoconvex domain
with a real analytic boundary. Therefore, by [Diederich/Fornæss 1978] for
instance, every automorphism of D extends to a diffeomorphism (in fact a
holomorphic mapping defined on an open neighborhood) of the closure of D.
In particular, this shows that the maximal order of contact by smooth analytic
varieties to each boundary point (related to, though not the same as the
D’Angelo type) has to be preserved. With this information, together with
Cartan’s theorem (Corollary 1.3.2), they were able to compute the entire
automorphism group which is generated by the rotations of type

(z1, z2, z3) �→ (eitz1, e
isz2,±eisz3), s, t ∈ R,
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and the Möbius-type transform

(z1, z2, z3) �→
(

z1 − α

1− ᾱz1
,

(√
1− |α|2

1− ᾱz1

)1/2

z2,

(√
1− |α|2

1− ᾱz1

)1/2

z3

)
,

where α is a complex number with modulus less than 1. Thus the automor-
phism group has dimension 4. They then appeal to Sunada’s classification
theory which implies that the automorphism group of a Kobayashi hyperbolic
Reinhardt domain is always odd dimensional. Thus the assertion follows.

This conclusion can be obtained without Sunada’s theory. Since the
Möbius-type transform has no fixed points, it is easy to see that the isotropy
subgroup at any point of D is of dimension 2 or smaller. So one immediately
realizes that it cannot be biholomorphic to any Reinhardt domain in C3, as
they possess a (at least) 3-dimensional isotropy subgroup at the origin. (Notice
that the above example has a noncompact automorphism group.)

It is not so difficult to find other examples. Consider for instance

Ω = {(z, w) ∈ C2 : |z|4 + |w|8 + (zw̄ + z̄w)8 < 1}.

This is also a pseudoconvex bounded domain with a real analytic boundary.
Now the circle {(eit, 0) : t ∈ R} has to be preserved by its automorphisms,
and so does the circle (0, eis) : s ∈ R}, due to the type considerations already
discussed. Thus the linear discs bounded by these circles, being the only holo-
morphic discs bounded by them, respectively, must also be preserved. Thus
the origin, the unique intersection point of these two discs, must be preserved
and all automorphisms must thus be linear maps (Corollary 1.3.2). Then it is
easy to see that these linear maps can be only

(z, w) �→ (eitz, eitw)

so that dimR Aut (Ω) = 1. But the automorphism group of a Reinhardt do-
main in C2 contains a real 2-dimensional torus. This implies that Ω is (bi-
holomorphically) a non-Reinhardt circular domain.
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The Scaling Method, I

If a bounded domain Ω in Cn has a noncompact automorphism group, then all
the orbits of the automorphism group are noncompact (Proposition 1.3.10).
Thus each orbit must “go out to the boundary” of the domain Ω, since orbits
are closed in Ω (Corollary 1.3.6). Such boundary orbit accumulation points
are pseudoconvex, when they are “one-sided,” e.g., when the boundary is C1

smooth near the point (Theorem 1.5.1, cf. also the discussion in Chapter 7
following Theorem 7.6.1). Under some reasonable hypothesis on the domain as
a whole, e.g., that it is a domain of holomorphy, one expects in general terms
that localization properties of the ∂ operator would imply that the essen-
tials of the situation would be localized. first, if a sequence of automorphisms
ϕj ∈ Aut (Ω), j = 1, 2, . . ., has, for some p ∈ Ω, limϕj(p) = q0 ∈ ∂Ω, then
the structure of Ω as a whole should be controlled by the nature of ∂Ω near
q0. The guiding principle is “What’s behind is not important” ([Bail 1976]),
what’s behind in this case being anywhere except near q0.

It has been conjectured (by two of the authors, Greene and Krantz—see
Section 9.5 and [Greene/Krantz 1991]) that, when such a q0 is a C∞ bound-
ary point, it must be of “finite type” in the sense of D’Angelo. In this case,
rather precise information on ∂ localization is available (cf. [Catlin 1983];
also [Catlin 1989]).

It has turned out that for many purposes the “What’s behind is not im-
portant” principle can be made explicit more easily and efficiently by a kind
of re-normalized normal families process rather than by looking at ∂ results as
such. The collection of techniques and results of this sort has become known
as the scaling method. This chapter and the following one are devoted to ex-
ploring this method and its results in some detail. In particular, we shall
present a scaling-method proof of a new result, the asymptotic constancy of
holomorphic sectional curvature for C2 strongly pseudoconvex domains. This
result improves Theorem 3.4.3 of Klembeck [Klembeck 1978], which used the
Fefferman expansion and hence required C∞ boundary. This C2 result (see
Section 10.1) is also shown to be stable in an appropriate sense extending The-
orem 3.5.1. As discussed in Chapters 3 and 4, this stable asymptotic constancy

R. E. Greene et al., The Geometry of Complex Domains, Progress in Mathematics, 
DOI 10.1007/978-0-8176-4622-6_9, © Springer Science+Business Media, LLC 2011
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yields important consequences about automorphism groups. The extension of
these results to more general situations will be presented in Section 10.2,
Chapter 10.

Although we shall not discuss any of its details, a theorem of Kodama
should be mentioned—it also follows a similar principle but is an even more
striking example of the localization idea. For example his result implies

Theorem ([Kodama 1999]). If a bounded domain Ω in C2 has a boundary
point p = (1, 0) satisfying

(1) Ω ∩ U = E ∩ U for some open neighborhood of p, where E = {(z, w) ∈
C2 : |z|2 + |w|2m < 1} for some integer m > 0, and

(2) there exists ϕj ∈ Aut (Ω) and q ∈ Ω such that limj→∞ ϕj(q) = p,

then E = Ω as sets.

See also [Dini/Selvaggi 1997] for related results.
Since the scaling method thus occupies a central place in our overall picture

and since it is not widely available in a systematic form, the original develop-
ments being somewhat scattered in the literature, we shall give a somewhat
leisurely presentation beginning with the case of complex dimension 1. Refer-
ences to the literature will be provided as we go along.

9.1 A Basic Example: Scaling Method in Dimension 1

9.1.1 The Scaling of the Unit Disc

Let D be the open unit disc in the complex plane C. Choose a sequence aj

in D satisfying the conditions

0 < aj < aj+1 < 1, ∀j = 1, 2, . . . ,

and

lim
j→∞

aj = 1.

Consider the sequence of dilations

Lj(z) =
1

1− aj
(z − 1).

Let us write λj = 1− aj for a moment. Then one sees immediately that

Lj(D) =
{
ζ ∈ C | (1 + λjζ)(1 + λj ζ̄) < 1

}
=
{
ζ ∈ C | 2 Re ζ < −λj |ζ|2

}
.

It follows that the sequence of sets Lj(D) converges to the left half-plane
H = {ζ ∈ C | Re ζ < 0} in the sense that

Lj(D) ⊂ Lj+1(D), ∀j = 1, 2, . . . ,
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and
∞⋃

j=1

Lj(D) = H.

Now we combine this simple observation with the fact that there exists a
sequence of maps

ϕj(z) =
z + aj

1 + ajz

that are automorphisms of D satisfying ϕj(0) = aj . Consider the sequence of
composite maps

σj ≡ Lj ◦ ϕj : D → C.

A direct computation yields that

Lj ◦ ϕj(z) =
1

1− aj

(
z + aj

1 + ajz
− 1
)

=
z − 1

1 + ajz
.

Hence in fact we see that the sequence of holomorphic mappings Lj ◦ ϕj

converges uniformly on compact subsets of D to the mapping

σ̂(z) =
z − 1
z + 1

which is a biholomorphic mapping from the open unit disc D onto the left
half-plane H. (We have exhibited a means to discover the Cayley map by way
of scaling.)

9.1.2 A Generalization

We now expand the simple observations of the preceding subsection to yield
the statement and the proof of the following one-dimensional version of the
Wong–Rosay theorem (Theorem 9.2.1).

Proposition 9.1.1. Let Ω be a domain in the complex plane C admitting a
boundary point p such that

(i) there exists an open neighborhood U of p in C such that U ∩ ∂Ω is a C1

curve, and
(ii) there exists a sequence fj of automorphisms of Ω and a point q ∈ Ω such

that
lim

j→∞
fj(q) = p.

Then Ω is biholomorphic to the open unit disc.
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Note that we proved this result in an earlier part of the book by a different
technique (cf. Theorem 2.7.1 combined with the Riemann mapping theorem).
The point now is just to illustrate the technique of scaling.

Plan of the proof. Let qj = fj(q) for each j. Choose the closest point in the
boundary to qj and call it pj . If the closest boundary point pj to qj is not
unique, then choose one arbitrarily. As j tends to infinity, pj converges to p
because qj converges to p. Then we select θj and apply the map rj(z) ≡
eiθj (z − pj) so that

rj(pj) = 0 and rj(qj) > 0

for each j. Now consider the sequence of mappings

σj(z) =
1

rj(qj)
(rj ◦ fj(z)).

Notice that σj(Ω) = 1
r(qj)

rj(Ω) for each j. Thus we expect that σj(Ω) is
almost the right half-plane as j becomes very large. At least every σj(Ω) is
contained in C \ � for some line segment of positive length � and for every j.
(Note that � can be chosen independently of j.) Therefore one can select a
subsequence from {σj} that converges uniformly on compact subsets of Ω.
Let σ̂ be the limit mapping. Then we expect σ̂ : Ω → C to be an injective
holomorphic mapping, and furthermore σ̂(Ω) is equal to the right half-plane.
Thus we hope to conclude that Ω is biholomorphic to the right half-plane,
which in turn is biholomorphic to the open unit disc. See Figure 9.1. ��

This plan actually works, but it is evident that there are several points
that need clarification. We shall now present the precise proof, which will
show much of the essence of the scaling method. We shall use the common
notation z = x + iy for the complex variable z and its real and imaginary
parts x and y.

i

0

f (q)
j

p
j

Tp
j

j

Fig. 9.1. The scaling process.
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Proof of Proposition 9.1.1. Keeping the “plan of the proof” in mind, we
present the precise proof in several steps. Let p ∈ ∂Ω be as in the hypothesis
of the proposition. Write D(p, r) = {z ∈ C | |z − p| < r}. Transforming Ω by
a biholomorphic map z �→ eiα(z − p), we may assume the following with no
loss of generality:

(a) p = 0
(b) Ω∩D(p, r) = {z = x+ iy | y > ψ(x), |z−p| < r} and ∂Ω∩D(p, r) = {z |

y = ψ(x), |z− p| < r} for a real-valued C1 function ψ in one real variable
satisfying ψ(0) = 0 and ψ′(0) = 0.

Step 1. Construction of the Scaling Map. Notice that the sequence fj(q) now
converges to 0 as j → ∞. For each j, we choose a point pj ∈ ∂Ω that is the
closest to fj(q). Since pj also converges to 0, replacing fj by a subsequence if
necessary, we may assume that every pj ∈ D(p, r/4). Now, for each j, set

Aj(z) = i
|fj(q)− pj |
fj(q)− pj

(z − pj).

Notice that fj(q)− pj is a positive scalar multiple of the inward unit normal
vector to ∂Ω at pj . Thus fj(q)−pj

|fj(q)−pj | converges to the inward unit normal vec-
tor to ∂Ω at 0. This implies that Aj in fact converges to the identity map.
Consequently, there exist positive constants r1, r2 independent of j such that,
for each j, there exists a C1 function ψj(x) defined for |x| < r1 satisfying

Aj(z) ∩ ([−r1, r1]× [−r2, r2]) = {x + iy | |x| < r1, |y| < r2, y > ψj(x)}.
Furthermore, for each ε > 0, there exists δ > 0 such that

ψj(x) < ε|x| whenever |x| < δ

regardless of j.
Next, let λj = |fj(q)− pj | for each j. Consider the dilation map

Lj(z) =
z

λj
.

Then the sequence of holomorphic mappings we want to construct is given by

σj ≡ Lj ◦Aj ◦ fj : Ω → C.

Before starting the next step, we make a few remarks. The automorphism
fj preserves the domain Ω but moves q to fj(q) so that fj(q) converges to
the origin—recall that we made changes so that p became the origin at the
beginning of the proof. Then the affine map Aj adjusts Ω so that the direc-
tion vector fj(q)−pj

|fj(q)−pj | is transformed to a purely imaginary number. The final

component Lj in the construction simply magnifies the domain Aj(Ω), while
the map Lj itself diverges.
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Step 2. Convergence of σj. We shall actually choose a subsequence from {σj}
that converges uniformly on compact subsets of Ω. Observe first that

σj(Ω) = Lj ◦Aj ◦ fj(Ω) = Lj ◦Aj(Ω)

since fj(Ω) = Ω. Choosing a subsequence of σj we may assume that λj < 1
for every j. Then, since Lj is a simple dilation by a positive number, and since
Aj(Ω) will miss a line segment

E = {−iy | 0 ≤ y ≤ b}
for some constant b independent of j, we see immediately that

σj(Ω) ⊂ C \ E
for every j = 1, 2, . . .. Therefore Montel’s theorem implies that every subse-
quence of {σj} admits a subsequence, which we again (by an abuse of notation)
denote by σj , that converges uniformly on compact subsets of Ω. Denote by σ̂
the limit of the sequence σj .

Step 3. Analysis of σ̂(Ω). We want to establish that

σ̂(Ω) = S,
where S ≡ {z ∈ C | Im z > 0}.

Let ε be a positive real number and let K be an arbitrary compact subset
of Ω. We will show that σ̂(K) ⊂ Cε, where Cε ≡ {z ∈ C : − ε < arg z < π + ε}.

Choose R > 0 such that σ̂(K) is contained in the disc D(0, R) of radius R
centered at 0.

The sequence fj : Ω → Ω is a normal family since C \ Ω contains a line
segment with a positive length. Every subsequence of fj contains a subse-
quence that converges uniformly on compact subsets, since fj(q) converges
to p. Let g : Ω → cl(Ω) be a subsequential limit map. Then g(q) = p. Recall
that p ∈ ∂Ω. Hence the open mapping theorem yields that g(z) = p for every
z ∈ Ω. Thus the sequence fj itself converges uniformly on compact subsets
to the constant map with value p. Therefore we may choose N > 0 such that
fj(K) is contained in a sufficiently small neighborhood of the origin for ev-
ery j > N , and hence Aj ◦ fj(K) ⊂ Cε for every j > N . Then it follows
immediately that σj(K) ⊂ Cε for every j > N , and consequently that

σ̂(K) ⊂ Cε.

Since K is an arbitrary compact subset of Ω, it follows that σ̂(Ω) ⊂ cl(S).
We also have σ̂(q) = i, since σj(q) = Lj ◦Aj ◦ fj(q) = i for every j = 1, 2, . . ..
Therefore σ̂(Ω) ⊂ S.

Step 4. Convergence of σ−1
j . Let K̃ be an arbitrary compact subset of the

upper half-plane S. Then choose ε > 0 so that K̃ ⊂ Cε. Choose then r > 0
such that

D(0, r) ∩ Cε ⊂ Ω ∩D(0, r).
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Shrinking r > 0 if necessary, since Aj converges to the identity map uniformly
on compact subsets of C, there exists N > 0 such that

D(0, r) ∩ Cε ⊂ Aj(Ω) ∩D(0, r)

for every j > N . Hence we see that σ−1
j maps K into Ω. Since Ω ⊂ C \ E

as observed before, we may again choose a subsequence of σj , which we again
denote by σj , so that σ−1

j converges to a holomorphic map, say τ : S → cl(Ω).
Since τ is holomorphic and τ(i) = q, we see that τ maps the upper half-plane
S into Ω.

Step 5. Synthesis. We are ready to complete the proof. By the Cauchy esti-
mates, the derivatives dσj of σj as well as the derivatives d[σ−1

j ] both converge.
Therefore, dσ̂(q) · dτ̂(i) = 1. This means that σ̂ ◦ τ : S → S is a holomorphic
mapping satisfying σ̂ ◦τ(i) = i and (σ̂ ◦τ)′(i) = 1. Then, by Schwarz’s lemma,
one concludes that σ̂ ◦ τ = id, where id is the identity mapping. Likewise, the
same reasoning applied to τ ◦ σ̂ : Ω → Ω implies that τ ◦ σ̂ = id. So σ̂ : Ω → S
is a biholomorphic mapping. ��
Remark 9.1.2. The sequence of mappings σj constructed above is often called
a scaling sequence. It is constructed from a composition of

(1) the automorphisms carrying one fixed interior point successively to a
boundary point,

(2) certain affine adjustments, and
(3) the stretching dilation map.

The proof given above is a good example of the scaling technique. The main
thrust of the method is that the image of the limit mapping is determined
solely by the affine adjustments and the dilations, while the scaling sequence
converges to a biholomorphic mapping.

Remark 9.1.3. As observed earlier, Proposition 9.1.1 can be proved in a much
simpler way. first, one may conclude immediately from the argument on the
shrinking of fj(K) into a simply connected subset of Ω, that Ω must be simply
connected. Then the conclusion follows by the Riemann mapping theorem.
However, we chose not to do so, because the goal of this section is to provide
a basis for the scaling method which can be applied to the higher dimensional
cases. We shall see further developments in higher dimensions in subsequent
sections.

9.2 Higher Dimensional Scaling and
the Wong–Rosay Theorem

9.2.1 Nonisotropic Scaling

We now continue our discussion in complex dimension 2. It appears to be
appropriate to demonstrate the scaling of the complex two-dimensional ball
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B2 =
{
(z1, z2) ∈ C2 | |z1|2 + |z2|2 < 1

}
at the boundary point (1, 0).

Denote by aj a sequence of real numbers satisfying

0 < aj < aj+1 < 1 ∀j = 1, 2, . . .

and

lim
j→∞

aj = 1,

and let qj = (aj , 0) for each j = 1, 2, . . .. Then consider the translation

T (z1, z2) = (z1 − 1, z2).

The domain T (B2) is now defined by the inequality

|ζ1 + 1|2 + |ζ2|2 < 1

or, equivalently, by

2 Re ζ1 < −|ζ1|2 − |ζ2|2.
Notice that the mapping

ϕj(z1, z2) =

(
z1 + aj

1 + ajz1
,

√
1− |aj |2

1 + ajz1
z2

)

is an automorphism of B2 satisfying ϕj(0) = qj for every j. Finally consider

Lj(z1, z2) =

(
z1

λj
,

z2√
λj

)
where λj = 1− aj for each j. Imitating the one-dimensional case, we consider
the scaling sequence

σj(z1, z2) = Lj ◦ T ◦ ϕj(z1, z2).

Notice here that Lj is a dilation but, unlike the one-dimensional case, it is
nonisotropic in the sense that the eigenvalues are not uniformly comparable.

We now compute the limit map σ̂(z1, z2) ≡ limj→∞ σj(z1, z2), and the set
σ̂(B2). A direct computation yields the following:

σj(z1, z2) =

(
1
λj

(
z1 + aj

1 + ajz1
− 1
)
,

1√
λj

·
√

1− aj
2

1 + ajz1
· z2

)

=

(
z1 − 1

1 + ajz1
,

√
1 + aj z2

1 + ajz1

)
.
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Fig. 9.2. Scaling of the ball B2.

Therefore we see immediately that

σ̂(z1, z2) =

(
z1 − 1
z1 + 1

,

√
2 z2

z1 + 1

)

and that σj converges to σ̂ uniformly on compact subsets of B2.
Observe that the map σ̂ : B2 → C2 is an injective holomorphic mapping,

and that its image coincides with the Siegel upper half-space

S =
{
(z1, z2) ∈ C2 | 2 Re z1 < −|z2|2

}
.

Therefore σ̂ : B2 → S is in fact a biholomorphic mapping. Refer to Figure 9.2.
Observe also that one can see the convergence of the sets σj(B2) here. A

direct argument yields

σj(B2) = Lj ◦Aj ◦ ϕj(B2)
= Lj ◦Aj(B2)
= Lj

({
z ∈ C2 | |z1 + 1|2 < 1− |z2|2

})
= Lj

({
z ∈ C2 | 2 Re z1 < −|z1|2 − |z2|2

})
=
{
z ∈ C2 | 2 Reλjz1 < −λj

2|z1|2 − λj |z2|2
}

=
{
z ∈ C2 | 2 Re z1 < −λj |z1|2 − |z2|2

}
.

Since λj ↘ 0, it follows immediately that

σj(B2) ⊂ σj+1(B2) ∀j = 1, 2, . . .
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and
∞⋃

j=1

σj(B2) = S.

In this sense, it seems sensible to say that σ̂(B2) is in fact the limit domain
of the sequence of domain σj(B2).

This simple example already illustrates an important aspect of the scaling
technique in complex dimension 2, as well as in higher complex dimensions.

In light of the exposition of the one-dimensional scaling, the following
theorem may come now with no surprise.

Theorem 9.2.1 (Wong 1977, Rosay 1979). Let Ω be a bounded domain
in Cn with a boundary point p ∈ ∂Ω satisfying the following:

(i) ∂Ω is C2 smooth and strongly pseudoconvex near p, and
(ii) there exists a sequence ϕj ∈ AutΩ and an interior point q ∈ Ω such that

limj→∞ ϕj(q) = p.

Then the domain Ω is biholomorphic to the unit ball in Cn.

We shall present a proof of this result, which illustrates the scaling method
in detail, in subsequent sections. First we shall present a detailed exposition
starting with the notion of normal set-convergence.

9.2.2 Normal Convergence of Sets

We first describe the concept of normal convergence of domains.

Definition 9.2.2. Let Ωj be domains in Cn for each j = 1, 2, . . .. The se-
quence Ωj is said to converge normally to a domain Ω̂ if the following two
conditions hold:

(i) For any compact set K contained in the interior (i.e., the largest open
subset) of

⋂
j>m Ωj for some positive integer m, K ⊂ Ω̂.

(ii) For any compact subset K ′ of Ω̂, there exists a constant m > 0 such that
K ′ ⊂ ⋂j>m Ωj for every j > m.

This notion of normal convergence is essentially equivalent to the notion of
the Carathéodory kernel convergence ([Carathéodory 1912]; cf. [Duren 1983],
p. 77): for a sequence {Ωj : j = 1, 2, . . .} of domains in Cn with p0 ∈

⋂∞
j=1 Ωj ,

the Carathéodory kernel is defined to be the largest subdomain containing p0
of
⋂∞

j=1 Ωj , when it is nonempty. If p0 is not an interior point of
⋂∞

j=1 Ωj , then
the Carathéodory kernel is defined to be {p0}. Then the sequence {Ωj : j =
1, 2, . . .} is said to converge in the sense of Carathéodory kernel convergence
if every subsequence admits the same Carathéodory kernel.

The reason for introducing such notions of convergence of sets is because
they are used for the scaling methods and normal families with source and
target domains varying.
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Proposition 9.2.3. If Ωj is a sequence of domains in Cn that converges nor-
mally to the domain Ω̂, then:

(1) If a sequence of holomorphic mappings fj : Ωj → Ω′ from Ωj to another
domain Ω′ converges uniformly on compact subsets of Ω̂, then its limit
is a holomorphic mapping from Ω̂ into the closure of the domain Ω′.

(2) If a sequence of holomorphic mappings gj : Ω′ → Ωj converges uniformly
on compact subsets of G, then its limit is a holomorphic mapping from
the domain Ω′ into the closure of Ω̂.

9.2.3 Localization

Local Holomorphic Peak Functions

Definition 9.2.4. Let Ω be a domain in Cn. A boundary point p ∈ ∂Ω is
said to admit a holomorphic peak function if there exists a continuous function
h : cl(Ω)→ C that satisfies the following properties:

(i) h is holomorphic on Ω,
(ii) h(p) = 1, and
(iii) |h(z)| < 1 for every z ∈ cl(Ω) \ {p}.
Such a function h is called a holomorphic peak function for Ω at p.

Furthermore, we say that a boundary point p of Ω admits a local holo-
morphic peak function if there exists an open neighborhood U of p such that
there exists a holomorphic peak function for Ω ∩ U at p.

Proposition 9.2.5. Let Ω be a bounded domain in Cn with a C2 smooth,
strongly pseudoconvex boundary point p. Let Bn be the unit open ball in Cn.
Let η be a positive real number satisfying 0 < η < 1. Then, for every ε > 0,
there exists δ > 0 such that

|f(z)− p| < ε, ∀z with |z| < η,

for every holomorphic mapping f : Bn → Ω with |f(0)− p| < δ.

Proof. Assume to the contrary that there exist holomorphic mappings fj :
Bn → Ω satisfying the following two conditions:

(a) limj→∞ fj(0) = p.
(b) ∃ε > 0 for which there exists a sequence zj ∈ Bn such that |zj | < η and

|fj(zj)− p| ≥ ε for every j = 1, 2, . . ..

Let U be an open neighborhood of p such that there exists a local holo-
morphic peak function h : cl(Ω) ∩ U → C at p. [Here we use the fact that
a strongly pseudoconvex boundary point always admit a local holomorphic
peak function—see [Graham 1975].]

Since Ω is bounded, Montel’s theorem yields that fj admits a subsequence
that converges uniformly on compact subsets. By an abuse of notation, we
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Fig. 9.3. The localization argument.

denote the subsequence by the same notation fj , and then the subsequential
limit mapping by F : Bn → cl(Ω).

Take an open neighborhood V of 0 sufficiently small so that it satisfies the
properties:

(1) cl(V ) ⊂ Bn.
(2) There exists N > 0 such that fj(cl(V )) ⊂ U ∩Ω for every j > N .

Consider the sequence of mappings h◦fj |V : V → D, where D is the open
unit disc in C. Apply Montel’s Theorem again to this sequence. Choosing a
subsequence from fj again, we may assume that h ◦ fj |V converges uniformly
on compact subsets of V to a holomorphic map G : V → cl(D). Since G(0) = 1
and |G(ζ)| < 1 for every ζ ∈ V , the maximum principle implies that G(ζ) ≡ 1
for every ζ ∈ V .

By the properties of the local holomorphic peak function h at p, this implies
that F (ζ) = p for every ζ ∈ V . Since V is open, and since F is holomorphic,
it follows that F (z) = p for every z ∈ Bn. Since the convergence of fj to F is
uniform on compact subsets, it is impossible to have zj with |zj | ≤ η such that
fj(zj) stays away from p for every j. (Refer to Figure 9.3.) This contradiction
completes the proof. ��

Plurisubharmonic Peak Functions

There is an effective method of localization in a more general setting (Sibony
1981). A main point of this method is that it avoids Montel’s theorem alto-
gether. Thus, for instance, the assumption that Ω is bounded is no longer
needed.

Definition 9.2.6. Let Ω be a domain in Cn and let p be a boundary point.
If there exists a continuous function h : cl(Ω)→ R satisfying:
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(i) h is plurisubharmonic on Ω, and
(ii) h(p) = 0 and h(z) < 0 for every z ∈ cl(Ω) \ {0},
then we call h a plurisubharmonic peak function at p for Ω. In such a case,
p is called a plurisubharmonic peak point for Ω.

Likewise, a boundary point p of the domain Ω is called a local plurisub-
harmonic peak point if there exists an open neighborhood of p in Cn such that
p is a plurisubharmonic peak point for Ω ∩ U .

We present first the following lower bound estimate for the Kobayashi met-
ric near a local plurisubharmonic peak boundary point.

Proposition 9.2.7 ([Sibony 1981]). Let Ω be a bounded domain in Cn with
a boundary point p ∈ ∂Ω which admits a local plurisubharmonic peak function
for Ω. Then, for every open neighborhood U of p in Cn, there exists an open
neighborhood V with p ∈ V ⊂ U such that we have the inequality

kΩ(z, ξ) ≥ 1
2
kΩ∩U (z, ξ), ∀(z, ξ) ∈ (Ω ∩ V )× Cn,

where kΩ denotes the infinitesimal Kobayashi pseudo-metric of a domain Ω.

Proof. Denote by Dr the open disc in C of radius r centered at the origin. For
the unit open disc, write D = D1.

By the definition of the Kobayashi metric, it suffices to prove the following
statement:

(†) It is possible to choose V so that the following holds: given (z, ξ) ∈
(Ω ∩ V ) × Cn, every holomorphic mapping f : D → Ω from the
unit disc D into Ω satisfying f(0) = z, df

∣∣
0(λ) = ξ for some λ > 0

enjoys the property that f(D1/2) ⊂ U .

Replacing U by a smaller neighborhood of p if necessary, let ψ1 : U ∩cl(Ω)
be a local plurisubharmonic peak function at p. Choose an open neighborhood
U1 of p inside U and a constant c1 > 0 such that

sup {ψ1(z) | z ∈ cl(Ω) ∩ ∂U1} = −c1.
Choose a neighborhood V1 of p inside U1 such that

V1 =
{
z ∈ Ω ∩ U1 | ψ1(z) > −c1

2

}
.

Then we can extend ψ1 to a new function ψ2 : cl(Ω)→ R by

ψ2(z) =

⎧⎪⎨⎪⎩
ψ1(z) if z ∈ cl(Ω) ∩ cl(V1)
max{ψ1(z),−3c1/2} if z ∈ cl(Ω) ∩ (U1 \ cl(V1))
−3c1/2 if z ∈ cl(Ω) \ U1.

Notice that ψ2 is a global plurisubharmonic peak function for Ω at p.
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Toward the proof of (†), there is no harm in assuming (by a simple dilation)
that the analytic disc f is holomorphic in a neighborhood of the closed unit
disc cl(D).

Let a > 0 be such that ψ2 ◦ f(0) > −a. Consider

Ea =
{
θ ∈ [0, 2π] | ψ2 ◦ f(eiθ) ≥ −2a

}
.

By the sub-mean value inequality, we see that

−a < ψ2 ◦ f(0)

≤ 1
2π

∫
[0,2π]

ψ2 ◦ f(eiθ) dθ

≤ 1
2π

∫
[0,2π]\Ea

(−2a) dθ

≤ −a

π
(2π − |Ea|),

where |Ea| denotes the Lebesgue measure of Ea. Hence we see that

|Ea| > π.

Now consider a plurisubharmonic function at p given by

υε(z) = ε log ‖z − p‖,
where ε is a certain positive constant to be chosen shortly. This is often called
an anti-peak function as it satisfies υε(p) = −∞.

Let

inf {ψ1(z) + υε(z) | z ∈ cl(Ω) ∩ ∂V1} = −c2,
and

sup {ψ1(z) + υε(z) | z ∈ cl(Ω) ∩ ∂U1} = −c3.
Choose ε > 0 so that

−c3 < −c2 < 0.

Extend ψ1 + υε to the plurisubharmonic function Υ : cl(Ω)→ R defined by

Υ (z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ1(z) + υε(z) if z ∈ cl(Ω) ∩ cl(V1)

max
{
ψ1(z) + υε(z),−c2 + c3

2

}
if z ∈ cl(Ω) ∩ (cl(U1) \ cl(V1))

−c2 + c3
2

if z ∈ cl(Ω) \ cl(U1).

Observe that Υ−1(−∞) = {p}.
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For each ζ ∈ D1/2, apply the Poisson integral formula to obtain

Υ ◦ f(ζ) ≤ 1
10π

∫ 2π

0
Υ ◦ f(eiθ) dθ.

We now focus upon the peak function ψ2 and the anti-peak function Υ .
Since the sets

Gk = {z ∈ cl(Ω) | ψ2(z) ≥ −1/k} ,
for k = 1, 2, . . ., form a neighborhood basis for p in cl(Ω), we see that for each
L > 0 there exists a > 0 with a arbitrarily small such that

{z ∈ cl(Ω) | ψ2(z) ≥ −2a} ⊂ {z ∈ cl(Ω) | Υ (z) < −L} .
Then we present:

Claim. If a holomorphic function f : cl(D) → Ω satisfies ψ2 ◦ f(0) > −a,
then Υ ◦ f(ζ) ≤ −L/10 for every ζ ∈ D1/2.

The proof is immediate; simply check for each ζ ∈ D1/2 that

Υ ◦ f(ζ) ≤ 1
10π

∫ 2π

0
Υ ◦ f(eiθ) dθ

≤ 1
10π

∫
Ea

(−L) dθ +
1

10π

∫
[0,2π]\Ea

0 dθ

= − L

10
.

Finally we are ready to finish the proof. Observe that the sets

Uk =
{
z ∈ cl(Ω) | Υ (z) < − k

10

}
for k = 10, 11, . . . also form a neighborhood basis for p in cl(Ω). By the claim
above, for each k we may choose ak > 0 such that

(1) Υ (z) > −k whenever ψ2(z) > −2ak, and
(2) a10 > a11 > · · · → 0.

Consequently, if we choose Vk = {z ∈ cl(Ω) | ψ2 > −ak} for each k, then it
follows immediately that

f(0) ∈ Vk ⇒ f(D1/2) ⊂ Uk

for every k = 10, 11, . . .. This completes the proof. ��
Proposition 9.2.8. Let Ω be a bounded domain in Cn with a boundary point
p ∈ ∂Ω which admits a local holomorphic peak function for Ω. Let K be a
compact subset of Ω and let q ∈ Ω. Then, for every open neighborhood U of
p in Cn, there exists an open set V with p ∈ V ⊂ U such that f(K) ⊂ U
whenever f : Ω → Ω is a holomorphic mapping satisfying f(q) ∈ V .
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Proof. Note first that a local holomorphic peak function h at p generates the
local plurisubharmonic peak function log |h| at p.

Since the Kobayashi pseudodistance dM : M ×M → R is continuous for
any complex manifold M , we may select R > 0 such that the Kobayashi dis-
tance ball

BK
Ω (q,R) = {z ∈ Ω | dΩ(z, q) < R}

contains K.
Then use the local holomorphic peak function h : U ∩ cl(Ω) → D at p.

The distance-decreasing property implies that

lim
Ω∩U�pj→p

dΩ∩U (z, pj) ≥ lim
Ω�pj→p

dD(h(z), h(pj)) =∞.

Moreover, the local holomorphic peak function and the distance-decreasing
property guarantee the existence of an open set U ′ with p ∈ U ′ ⊂ cl(U ′) ⊂ U
and an open neighborhood V with p ∈ V ∈ U ′ such that

dΩ∩U (z, w) > 3R

for every z ∈ V and every w ∈ ∂U ′ ∩Ω.
Now let ζ ∈ Ω \U . Then, by the definition of the Kobayashi metric, there

exists a piecewise smooth “almost-the-shortest” connector γ : [0, 1]→ Ω with
γ(0) = z, γ(1) = ζ induced from the holomorphic chain in the definition of
the Kobayashi metric such that

LK
Ω (γ)− R

2
< dΩ(z, ζ) < LK

Ω (γ),

where LK
Ω (γ) denotes the length of γ measured by the Kobayashi metric of Ω.

Since γ([0, 1]) has to cross ∂U ′∩Ω, we let t ∈ (0, 1) such that γ([0, t)) ⊂ U ′∩Ω
and γ(t) ∈ ∂U ′ ∩Ω. Then it follows that

LK
Ω (γ) > LK

Ω (γ|[0,t]) >
1
2
LK

Ω∩U (γ|[0,t]) >
1
2
dΩ∩U (z, γ(t)) >

3
2
R.

This therefore implies that

dΩ(z, ζ) >
3
2
R− R

2
= R.

In particular, BK
Ω (z,R) ⊂ U whenever z ∈ V .

Since f given in the hypothesis is a holomorphic mapping, the distance-
decreasing property of the Kobayashi distance yields that

f(K) ⊂ f(BK
Ω (q,R)) ⊂ BK

Ω (f(q), R) ⊂ U.

Since f(q) ∈ V , we see that BK
Ω (f(q), R) ⊂ U . This is what we wanted to

establish. ��
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Remark 9.2.9. This argument avoiding Montel’s theorem is also useful in in-
finite dimensions.

9.2.4 Application: the Wong–Rosay Theorem

Here we state the most general version of the Wong–Rosay Theorem in Cn,
which is due to Efimov ([Efimov 1995]).

Theorem 9.2.10. Let Ω be a domain in Cn. If Ω has a C2 strongly pseudo-
convex boundary point p for which there exist a sequence fj of automorphisms
of Ω and a point q ∈ Ω such that limj→∞ fj(q) = p, then Ω is biholomorphic
to the unit open ball in Cn.

Notice that, unlike the original Wong–Rosay theorem (Theorem 9.2.1),
there are no restrictions on Ω in this version; Ω is assumed neither bounded
nor Kobayashi hyperbolic.

Proof. By what is called Narasimhan’s lemma, there exists an open neigh-
borhood U of p and a biholomorphic mapping G : U → Bn(0, r) from U onto
the open ball Bn(0, r) in Cn of radius r centered at the origin such that

Op = 1 ≡ (1, 0, . . . , 0)

and

G(Ω ∩ U) =
{
z ∈ Bn(0, r) | ‖z‖2 + E(z) < 1

}
where

E(z) = o(‖z‖2).
Let ε be an arbitrarily given positive number. Then we may choose a

smaller value for r such that G(Ω ∩ U) is contained in the set{
z ∈ Cn | |z1 + ε|2 + |z2|2 + · · ·+ |zn|2 < (1 + ε)2

}
.

Hence, if we apply the translation τ(z1, . . . , zn) = (z1 − 1, z2, . . . , zn), then

τ ◦G(Ω ∩ U) =
{
z ∈ Bn(0, r) | 2 Re z1 < −‖z‖2 + Ẽ(z)

}
,

where Ẽ(z) = o(‖z‖2) as z → 0.
Define the domain

Eε = {z ∈ Cn | 2(1 + ε) Re z1 < |z2|2 + . . . + |zn|2}
and write

ΩU ≡ τ ◦G(Ω ∩ U).

Then ΩU ⊂ Eε.
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Let K be an arbitrary compact subdomain of Ω. Since fj(q) converges
to p, we may choose, by virtue of the localization methods of Section 9.2.3,
a neighborhood V of p in Cn such that

(a) p ∈ V ⊂ U ,

and

(b) fj(K) ⊂ U whenever fj(q) ∈ V .

We now introduce the appropriate scaling method. Write q̃j ≡ τ ◦G◦fj(q).
Notice that q̃j approaches 0 as j →∞. Choose p̃j ∈ ∂ΩU in such a way that
it satisfies:

−q̃j + p̃j = (λj , 0, . . . , 0).

Note that λj > 0 for every j.
Taking a subsequence, one can arrange that p̃j ∈ τ ◦G(∂Ω∩U) for every j.

Write p̃j = (p̃j,1, . . . , p̃j,n) and q̃j = (q̃j,1, . . . , q̃j,n) in components. Then p̃j,� =
q̃j,� for � = 2, . . . , n.

Now we perform the process called “centering” of the orbit. (Refer to
Figure 9.4.)

For θj ∈ R and αj,k ∈ C (k = 2, . . . , n), define the complex affine trans-
formation Ψj : Cn → Cn by

Ψj :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζ1 = eiθj (z1 − p̃j,1) + αj,2(z2 − p̃j,2) + · · ·+ αj,n(zn − p̃j,n)
ζ2 = z2 − p̃j,2
...
ζn = zn − p̃j,n

.
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Fig. 9.4. The concept of centering.
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It is possible to select the constants θj ∈ R and αj,k ∈ C (k = 2, . . . , n,
j = 1, 2, . . .) so that

(c) Ψj converges to the identity uniformly on compact subsets of Cn,

and

(d) Ψj(ΩU ) is specified by the defining inequality

Re ζ1 < −Qj(ζ2, . . . , ζn) + Ê(ζ),

where Qj is a positive, quadratic, real analytic polynomial that converges
to |ζ2|2 + · · ·+ |ζn|2, and where Ê(ζ) = o(|ζ1|+ |ζ2|2 + · · ·+ |ζn|2) for ζ ∼ 0.

Therefore, selecting a smaller value again for r > 0 if necessary, we may
actually find a positive constant N > 0 such that

Ψj(ΩU ) ⊂ Eε

for every j > N . Then apply the stretching map

Lj(z) =
(
z1

λj
,

z2√
λj

, . . . ,
zn√
λj

)
to arrive at the scaling sequence

σj ≡ Lj ◦ Ψj ◦ τ ◦G ◦ fj ,

which maps K injectively into Cn.
Observe that σj(K) ⊂ Lj(Eε) according to our construction. On the other

hand, Lj(Eε) = Eε for every j. Since Eε is biholomorphic to the ball by an
explicit linear fractional transformation, it follows that σj |K : K → Eε is a
normal family. Furthermore, notice that

σj(q) = −1 ∈ Eε.

Since Eε is pseudoconvex, it follows that σj admits a subsequence that con-
verges uniformly on K to a holomorphic mapping σ̂ that maps K into Eε.
By an abuse of notation, denote this convergent subsequence by the same
notation σj .

Since K is an arbitrarily chosen compact subdomain of Ω, we may select
a subsequence again to conclude that the sequence σj converges uniformly on
compact subsets to the holomorphic mapping

σ̂ : Ω → Eε.

Since ε > 0 is also arbitrary, we see that σ̂(Ω) ⊂ cl(E0), where

E0 =
{
z ∈ Cn | 2 Re z1 < −(|z2|2 + · · ·+ |zn|2)

}
.

Since σ̂(q) = −1 ∈ E0 and since E0 is pseudoconvex, it follows that σ̂(Ω) ⊂ E0.
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The final step is to show that the mapping σ̂ : Ω → E0 is a biholomorphism.
For this, let K̃ be an arbitrarily given compact subdomain of E0. Then we

may choose a subsequence of σj , which we denote again by the same notation,
such that

L−1
j (K̃) ⊂ Ψj ◦ τ ◦G(ΩU ).

This is possible because K̃ is a subset of

E−δ =
{
z ∈ Cn | 2(1− δ) Re z1 < −(|z2|2 + · · ·+ |zn|2)

}
for some sufficiently small δ > 0. Thus, extracting a subsequence again if
necessary, we are given the sequence

σ−1
j | ˜K : K̃ → Ω

of well-defined holomorphic mappings. At this stage, we need

Claim. The sequence σ−1
j : K̃ → Ω admits a subsequence that converges

uniformly to a mapping from K̃ into Ω.

We will present the proof assuming that this claim is true. By a similar
convergence argument to that above, we arrive at the limit holomorphic map-
ping ω̃ : E0 → Ω, with ω̃(−1) = q.

By the Cauchy estimates, both the sequences dσj(q) and dσ−1
j (−1), which

are inverse to each other, converge. They must converge to nonsingular matri-
ces. Indeed, we arrive at the conclusion that dσ̂(q) and dω̃(−1) are inverse to
each other. By the claim above, it follows from Cartan’s uniqueness theorem
(Theorem 1.3.1) that σ̂◦ω̃ = idE0 and ω̃◦σ̂ = idΩ . This shows that σ̂ : Ω → E0
is a biholomorphism. Since E0 is biholomorphic to the unit open ball in Cn,
the desired conclusion follows.

To complete the proof, we need only prove the claim. Denote by

cl(BK(q,R)) = {z ∈ Ω | dΩ(q, z) ≤ R}

the closed Kobayashi distance ball of radius R centered at q. It suffices to
show that this is a compact set for every positive number R. Let U be the
open neighborhood of p in Cn chosen above. On the other hand, recall that
the only condition imposed on U by far was that U ∩Ω was convexifiable. So
it is obvious that we may require one more condition, using the argument in
the proof of Proposition 9.2.8, that U satisfies that

cl(BK(q,R)) ⊂ Ω ∩ U,

and

dΩ(q, z) > R
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for every z ∈ cl(∂U ∩Ω). Therefore it follows that cl(BK(fj(q), R))∩ cl(∂U ∩
Ω) = ∅. At the same time, cl(∂U∩Ω)∩U∩∂Ω = ∅ since every point in ∂Ω∩U
admits a local holomorphic peak function for Ω ∩ U . So cl(BK(fj(q), R)) is
compact. Since cl(BK(q,R)) = f−1

j (cl(BK(fj(q), R))), the closed Kobayashi
distance ball cl(BK(q,R)) is compact. The proof is now complete. ��
Corollary 9.2.11. Let Ω in Cn be a domain with a C2 strongly pseudoconvex
boundary point. If Ω is not biholomorphic to the unit open ball in Cn, then it
cannot be a holomorphic covering space of a compact variety.

9.2.5 What Is the Scaling Method?

The scaling method introduced in the preceding sections can be summarized
roughly as follows.

Given a domain Ω in Cn with an interior point q and a sequence fj of
automorphisms of Ω such that limj→∞ fj(q) = p, for some boundary point
p ∈ ∂Ω, one follows the steps below.

Step 1. Localization: Translate Ω if necessary so that p becomes the origin.
Establish that, for any compact subset K of Ω, the sequence of sets fj(K)
shrinks successively to the boundary point p = 0.

Step 2. Centering: Adjust the domain Ω by a sequence of complex affine
maps, say Ψj , so that the new point sequence Ψj(qj) behaves as if it converges
nontangentially to the boundary of the limit domain.

Step 3. Stretching: Find a divergent sequence of complex linear maps, say Lj ,
so that σj = Lj ◦Ψj ◦fj converges uniformly on compact subsets of Ω into Cn.

Step 4. Analysis of the Limit Domain: Since fj(Ω) = Ω, it follows that
σj(Ω) = Lj ◦ Ψj(Ω) for every j. Since the maps Lj and Ψj are often ex-
plicit, take the limit domain Ω̂ of σj(Ω) in the sense of normal convergence
of domains.

Step 5. Synthesis: In case all the pieces are put together, it usually fol-
lows that σj converges to a map σ̂ that turns into a biholomorphic mapping
from Ω onto Ω̂.

The localization followed by centering and stretching constitutes the scal-
ing method. The main thrust is that the limit domain becomes much simpler.
For example, the Siegel upper half-space is biholomorphic to the ball in the
case when p is a C2 strongly pseudoconvex boundary point.

9.2.6 Another Illustration for Scaling

The centering procedure was somewhat mysterious even to the experts when
the scaling method was first developed. We give another illustration through
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the following real two-dimensional example. We are indebted to Eric Bedford
for this illustration.

An Illustration. In R2, consider the domain

Ω =
{
(x, y) ∈ R2 | y > ρ(x)

}
with ρ(0) = 0, ρ′(0) = 0. Keeping the Wong–Rosay theorem (Theorem 9.2.1)
in mind, we take a specific function ρ(x) = x2 + x4.

Let qj = (aj , bj) be a sequence in Ω that converges to the origin (0, 0).
Then the centering (originally, complex affine) mapping is constructed as fol-
lows: freeze the index j momentarily and take pj = (aj , ρ(aj)). Then it follows
that

pj ∈ ∂Ω and qj − pj = (0, λj)

where λj = bj − ρ(aj) > 0. Thus the centering map (u, v) = Ψj(x, y) should
be given by {

u = x− aj

v = y − ρ(aj)− ρ′(aj) · (x− aj).

Then the stretching map in this case will be

Lj(x, y) =

(
x√
λj

,
y

λj

)
.

We now compute Lj ◦ Ψj(Ω). First, the domain Ψj(Ω) is represented in
the (u, v)-coordinates by the inequality

v + ρ(aj) + ρ′(aj)u > ρ(u + aj).

Rewriting this we obtain

v > ρ(u + aj)− ρ(aj)− ρ′(aj)u.

Thus the domain Lj ◦ Ψj(Ω) is represented by

λjv > ρ(
√

λj u + aj)− ρ(aj)− ρ′(aj)
√

λj u.

Notice that the right-hand side of this inequality has neither constant term
nor linear term in the u-variable since the situation is the same with the
right-hand side of the preceding inequality. For the current case of explicit
ρ(x) = x2 + x4, one can actually compute the whole thing as follows.

v > ρ(u + aj)− ρ(aj)− ρ′(aj)u
> (u + aj)2 + (u + aj)4 − aj

2 − aj
4 − 2aju− 4aj

3u

> u2 + u4 + 4aju
3 + 6a2

ju
2.
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Thus Lj ◦ Ψj(Ω) is represented by

λjv > ρ(
√

λj u + aj)− ρ(aj)− ρ′(aj)
√

λj u

> (
√

λj u)2 + (
√

λj u)4 + 4aj(
√

λj u)3 + 6a2
j (
√

λj u)2.

first,

v > u2 + λju
4 + 4aj

√
λj u3 + 6a2

jλju
2.

Since aj , bj , and λj converge to 0 as j tends to ∞, it is evident that the limit
domain in the sense of local normal convergence should be represented by

v > u2.

This set-convergence is analogous to what we observed in the proof of the
Wong–Rosay theorem (Theorem 9.2.1). This is the end of the illustration.

Remark 9.2.12 (On the “centering” maps). We would like to discuss the role
of Ψj : Would it not be better if we apply Lj alone, with appropriate choices for
the stretching factors? Surely Lj(Ω) converges locally normally to the same
limit, and it is even much easier.

Such queries and the answers are important for the scaling method. While
it is true that Lj(Ω) converges to the domain represented by v > u2,
the limit limj→∞ Lj(qj) can be in the boundary of the limit domain Ω̂ ={
(u, v) | v > u2

}
, in case qj approaches the origin very tangentially to the

boundary. For example, consider the case

qj =
(

1
j
,

1
j2 +

2
j4

)
.

This is clearly a sequence in Ω approaching the origin. With Lj(x, y) =
(
√

λjx, λjy), one observes that

Lj(qj) =
(√

λj

j
,
λj

j2 +
2λj

j4

)
.

Notice that, in order for Lj(qj) to admit a bounded limit, one has no other

choice but to implement the condition that both sequences
√

λj

j and λj

j2 admit
convergent sequences with bounded limits. Then it is clear that the limit is
always of the form (a, a2). Thus, Lj(qj) can only converge to a boundary
point of Ω̂.

This is not desirable for the scaling method, as the limit map from the
complex scaling in the preceding proof of the Wong–Rosay theorem (Theo-
rem 9.2.1) then has to be degenerate.

On the other hand, with Ψj , one observes immediately that Lj ◦ Ψj(qj) =
Lj(0, λj) = (0, 1), which is an interior point of Ω̂. This simple adjustment
provides a base for the proof of the biholomorphicity of the limit map σ̂ in
the proof of the Wong–Rosay theorem.
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Remark 9.2.13. As one may have already observed, this centering map Ψj

is not needed when the point sequence qj approaches the boundary point
nontangentially to the boundary ∂Ω. However, in case the point sequence
approaches the boundary tangentially, then the centering procedure is quite
essential. Roughly speaking, the affine adjustment Ψj centers the orbit qj

to Ψj , even though in this case the domain Ω also transforms to Ψj(Ω). This
adjustment is effective because the effect of Ψj on the point sequence qj is
much more decisive than its effect upon the domain Ω. The reader shall see
this observation returning whenever the scaling method is exploited.

9.3 A Theorem of Bedford and Pinchuk

The next result takes the significant step of being able to go beyond strong
pseudoconvexity.

Theorem 9.3.1 ([Bedford/Pinchuk 1989]). Let Ω be a bounded domain
with real analytic (Cω) pseudoconvex boundary in C2. If its automorphism
group is noncompact, then there exists a positive integer m such that Ω is
biholomorphic to the domain

Em = {(z, w) ∈ C2 : |z|2m + |w|2 < 1}.
The rest of the section is devoted to presenting a sketch of the proof,

broken up into four subsections below.
This section is entirely based upon [Bedford/Pinchuk 1989], but we also

use some observations and results from [Berteloot 1994] and [Berteloot/Cœuré
1991].

9.3.1 Initial Scaling

The first step of the proof is an application of the scaling method. Since the
automorphism group of Ω is noncompact and since Ω is bounded, there exist
a boundary point p ∈ ∂Ω and an automorphism orbit {ϕν(q)}, where q ∈ Ω
and ϕν ∈ Aut Ω for every ν = 1, 2, . . . , with ϕν(q)→ p.

After a coordinate change, we may take p to be the origin. Since the
domain Ω is bounded, and since its boundary is real analytic, then another
holomorphic change (call it Γ for instance) of local coordinates at p gives that
the defining function of the domain in a neighborhood, say U , of p can be
rewritten as follows.

Re z1 + P2m(z2) +R(Im z1, z2) = 0,

where P2m is a homogeneous subharmonic, but not harmonic, polynomial
of degree � in z2, z̄2 without harmonic terms, and where R(x) = o(‖x‖2m).
(See [Catlin 1989].)



9.3 A Theorem of Bedford and Pinchuk 243

Write zν = ϕν(q). Fix ν momentarily. Choose εν > 0 so that εν > 0 is
the smallest positive number such that zν + (εν , 0) is a boundary point, call
it ζν , of Ω. This boundary point will be unique. Then consider the “centered”
equation given by the affine transformation Ψν that satisfies:

(i) Ψν(ζν) = (0, 0),
(ii) Ψν(zν) = (−εν , 0),
(iii) Ψν(∂Ω) near (0, 0) is tangent to the real hyperplane defined by Re z1 = 0.

Then the local defining function near the origin of Ψν ◦G(Ω ∩ U) is given by

Re z1 +
2m∑
�=2

P�,(ν)(z2) +Rν(Im z1, z2) < 0,

where Rν = o(|z1|+ |z2|2m). Here the P�,(ν) are homogeneous polynomials of
degree � without harmonic terms. Then choose τν > 0 by requiring that

max
1
εν
·
∣∣∣coefficient of each monomial term of P�,(ν)(τνz2)

∣∣∣ = 1,

where the maximum is taken over all monomial terms of
∑2m

�=2 P�,(ν).
Now, with τν to be selected (for each ν), we shall use the stretching map

of Pinchuk given by

Λν(z1, z2) =
(
z1

εν
,
z2

τν

)
.

We shall not include all the details, but it is important to notice that the
sequence of holomorphic embedding mappings

σν := Λν ◦ Ψν ◦ Γ ◦ ϕν

gives rise to a subsequential limit map, say σ̂, defined on Ω and mapping Ω
into C2 so that the following holds:

• σ̂ : Ω → σ̂(Ω) is a biholomorphic mapping,

and

• σ̂(Ω) = {(z1, z2) ∈ C2 | Re z1 + P̂ (z2) < 0}, where P (z2) is a real-valued
subharmonic polynomial of degree ≤ 2m.

In any event, the conclusion of this particular step is that Aut (Ω̂) contains
the obvious 1-parameter family

γt := (z1, z2) �→ (z1 + it, z2)

of automorphisms parameterized by t ∈ R. Consequently, Aut (Ω) admits the
1-parameter family

Υ := {σ̂−1 ◦ γt ◦ σ̂ | t ∈ R}.
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The details pertaining to this part can be found in pp. 142–144 of [Bedford/
Pinchuk 1989]. But a cleaner and better exposition on this part of scaling and
other arguments can be found in pp. 620–624 of [Berteloot 1994]. [This has all
so far been strongly analogous to the scaling method that we demonstrated
in Section 9.2.4 to prove the Wong–Rosay theorem (Theorem 9.2.1). But the
scalings in slightly different context show subtleties, which are often significant
and in fact essential.]

9.3.2 Parabolic Flow

The next step is to analyze the 1-parameter family Υ acting on Aut (Ω).

Proposition 9.3.2 (Proposition 2.4, p. 145, [Bedford/Pinchuk 1989]).
Let ht := σ̂−1 ◦ γt ◦ σ̂ for every t ∈ R. Then

lim
t→−∞ht(z1, z2) = lim

t→∞ht(z1, z2) = p′

for some p′ ∈ ∂Ω.

The readers may consult the statement and the proof of Lemma 4.3, p. 629
of [Berteloot 1994].

At this juncture, the following reformulation of a theorem of Bochner and
Montgomery plays a crucial role (cf. Theorem 1.3.11.):

Theorem 9.3.3 (Bochner–Montgomery). Let G and G̃ be open subsets
of RN . Let {Ft | −1 < t < 1} be a family of mappings defined on G such that

(1) Ft : G→ Ft(G) ⊂ G̃ is a C∞ diffeomorphism for every t with |t| < 1,
(2) (−1, 1)×G � (t, x) �→ Ft(x) is continuous,
(3) F0(x) = x for every x ∈ G,
(4) Ft+s = Ft ◦ Fs whenever |t|+ |s| is small enough.

Then there exists r > 0 such that the correspondence

(−r, r)×G � (t, x) �→ Ft(x)

is C∞ smooth.

Thanks to the well-known reflection principle for holomorphic automor-
phisms of a bounded pseudoconvex domain with real analytic boundary
([Diederich/Fornæss 1978], [Bedford 1985], [Bell/Ligocka 1980]), every auto-
morphism of Ω extends to a holomorphic mapping on an open neighborhood
of the closure cl(Ω). Hence we may deduce now that the mapping

(t; z1, z2) �→ ht(z1, z2)

is a smooth map from (−1, 1)× cl(Ω) to cl(Ω) and is holomorphic in (z1, z2)
on an open neighborhood of cl(Ω).
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Therefore it makes sense to consider the vector field X on cl(Ω) defined by
the equation

Xψ(z1, z2) =
d

dt

∣∣∣
t=0

ψ ◦ ht(z1, z2)

that should hold for any smooth function ψ : cl(Ω)→ R. One notices now that
X = Re H, where

H =
2∑

j=1

aj(z1, z2)
∂

∂zj

and where each aj is holomorphic in both variables z1 and z2.

9.3.3 Analysis with a Parabolic Vector Field

Let ρ denote a real analytic defining function of Ω. Notice that the flow of
the vector field X constructed above is parabolic in the following sense.

(1) Xρ(z1, z2) = 0 whenever z = (z1, z2) ∈ ∂Ω. first, X is tangent to the
boundary of Ω.

(2) X = Re H, where H is a holomorphic vector field defined on an open
neighborhood containing cl(Ω).

(3) X(p′) = 0, where p′ = limt→−∞ ht(z1, z2) = limt→∞ ht(z1, z2).
(4) The action of X is parabolic, in the sense that it is neither expanding nor

attracting at p′.

Then, with elementary but quite involved and clever computations, Bed-
ford and Pinchuk proved the following:

Lemma 9.3.4 (Corollary 3.5, p. 147 [Bedford/Pinchuk 1989]). If one
expands the defining function ρ at p′, up to a holomorphic change of coordi-
nates at p′, it follows that

ρ(z, z̄) = 2 Re z2 + |z|2m + o(|z1|2m) + Im z2b(z1, z̄1Im z2),

where:

(1) m is a positive integer

and

(2) b is a real analytic function.

9.3.4 Final Scaling and End of Proof

Notice that the 1-parameter family ht generates a noncompact automorphism
orbit accumulating at p′.
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At this point, one can apply the scaling sequence in Section 9.3.1. Following
the arguments given by [Berteloot 1994], pp. 620–627, one deduces that Ω is
biholomorphic to the domain in C2 defined by the inequality

Re z2 + |z1|2m < 0.

Via a Cayley-type transformation, it is known that this domain is biholomor-
phic to the domain defined by

|z1|2m + |z2|2 < 1

as desired. This ends our sketch of the proof of Theorem 9.3.1.

9.4 Analytic Polyhedra with Noncompact
Automorphism Group

So far we have considered domains in which the automorphism group admits
boundary orbit accumulation points that are not Levi flat. But one of the most
standard examples, the polydisc in Cn, has the property that every bound-
ary point is an orbit accumulation point. Now every boundary point is either
singular or is Levi flat. Therefore there should be a result about domains ad-
mitting a Levi flat boundary orbit accumulation point. This section presents
the characterization of bounded domains that possess piecewise smooth Levi
flat boundary and noncompact automorphism group. This is a result of Kim,
Krantz, and Spiro. For the details, see [Kim/Krantz/Spiro 2005] and refer-
ences therein.

9.4.1 Analytic Polyhedra

The typical domains whose boundary geometry is modeled after the polydisc
are the objects called analytic polyhedra. They constitute an important class
of regions to study in the complex analysis and geometry of several variables
and are defined as follows.

Definition 9.4.1. A bounded domain P in Cn is said to be an analytic poly-
hedron if there is an open neighborhood U of the closure cl(P ) of P and finitely
many holomorphic functions

f1, . . . , fs : U → C

such that P = {z ∈ U : |f1(z)| < 1, . . . , |fs(z)| < 1}.
Notice that the boundary of such a domain is, in general, singular. More-

over the boundary is Levi flat at every smooth point. Needless to say, the
n-dimensional polydisc Δn is a prime example of an analytic polyhedron.1

1From here on, we will use the notation Δ = {z ∈ C : |z| < 1}, and Δn =
Δ × · · · × Δ (n times).
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9.4.2 Characteristic Decomposition

Since the analytic polyhedron is not in general defined by a single equation,
there is always an unpleasant possibility that the list of inequalities in its
definition may include unnecessary and inessential functions. In other words,
there could be redundancies. An efficient way of handling this problem is
known, by way of the concept of the characteristic foliations.

For each function fα in the definition of analytic polyhedron P above,
consider

Lα(t) := {z ∈ U : fα(z) = t} ∩ P, t ∈ C.

Denote by ωα the set whose elements are nonempty, connected components of
Lα(t) for some t ∈ C. Call this set the characteristic decomposition of P by fα.
The same characteristic decomposition may be shared by several functions in
the definition of the analytic polyhedron P .

Let T = {f1, . . . , fs} be the tuple of functions given above in the defini-
tion of P . For a characteristic decomposition ω, let Tω denote the collection
of functions in T whose characteristic decomposition coincides with ω. It is
known that, given an analytic polyhedron, the characteristic decomposition
does not depend on the choice of the set of defining functions.

Hence, even though we do not discuss the matter in detail, it is possible
to restrict oneself to a reasonable subclass of analytic polyhedron if there is a
need for choosing a minimal set of defining functions for analytic polyhedra.
See for instance [Fridman 1979].

9.4.3 Generic Analytic Polyhedra with Noncompact
Automorphism Group

Our goal is to identify and classify the analytic polyhedra with noncompact
automorphism group. But that situation in full generality is yet to be fully
understood. A reasonable class of analytic polyhedra may be the generic poly-
hedra, defined as follows.

Definition 9.4.2. Let P be an analytic polyhedron in Cn defined by the
inequalities

|f1| < 1, . . . , |fs| < 1.

Call P generic if the defining system {f1, . . . , fs} of holomorphic functions
defined on an open neighborhood of the closure of P satisfies the following
condition:

(∗) The gradient vectors ∇fi1(p), . . . ,∇fik
(p) are linearly indepen-

dent over C for every p ∈ ∂P satisfying |fi1(p)| = · · · = |fik
(p)| =

1 whenever {i1, . . . , ik} ⊂ {1, . . . , s} is a set of unrepeated indices.
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Then we have the following theorem in dimension 2:

Theorem 9.4.3 ([Kim/Krantz/Spiro 2005]). Let P be a generic analytic
polyhedron in C2 with noncompact automorphism group. Then:

(i) If an automorphism orbit accumulates at a singular boundary point, then
P is biholomorphic to the bidisc.

(ii) If an automorphism orbit accumulates at a smooth boundary point, then
P is biholomorphic to the product of the unit open disc and the maximal
analytic variety in the boundary ∂P passing through the orbit accumulating
boundary point.

For the case of n dimensions, n > 2, we do have a result but only for convex
domains.

Theorem 9.4.4 ([Kim K.-T. 1992]). Let P be a convex generic analytic
polyhdron in Cn admitting a noncompact automorphism group. Then there
exists a positive integer k and a convex domain D′ in Cn−k such that P is
biholomorphic to the product domain Δk ×D′.

9.4.4 Sketch of the Proof of Theorem 9.4.4

The proof is again an application of the scaling method. Since the automor-
phism group is noncompact and since P is a bounded domain, there exists a
sequence of automorphisms ϕν ∈ Aut (P ) such that

lim
ν→∞ϕν(q) = p

for some q ∈ P and p ∈ ∂P . It is important to understand the geometry of
the boundary ∂P in a neighborhood of p.

Convex Levi Flat Hypersurfaces

Let f denote one of the holomorphic functions in the defining system of the
convex, generic analytic polyhedron P . Then let Σf be the surface defined by
the equation |f | = 1. Since ∇|f | is nowhere zero on Σf , the surface S is a
smooth hypersurface in Cn by the implicit function theorem.

Let p ∈ Σf . Then consider the set Vp = {z ∈ U | f(z) = f(p)}. (Recall
that U is the open neighborhood of the closure of P on which the functions
f1, . . . , fs constituting the defining system of P are defined.) Since f is holo-
morphic, Vp is a smooth analytic variety and obviously Vp ⊂ Σp. When P is
convex, there is a very special phenomenon. In particular, we see the following:

Lemma 9.4.5. The variety Vp is flat, in the sense that it is an open subdo-
main of a complex n− 1 dimensional affine subspace of Cn.
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Proof. Apply a complex affine change of coordinates of Cn so that the gradi-
ent ∇|f | at p is parallel to the Re z1-axis. Furthermore one can arrange that p
becomes the origin. Let u = Re z1. Then one sees that

u(z) ≤ 0, ∀z ∈ Σf and u(p) = 0.

Now apply the maximum modulus principle to ez1 restricted to the variety Vp.
Then it follows immediately that ez1 is constant on Vp and hence z1 = 0
identically on Vp. Hence we have

Vp ⊂ {(0, z2, . . . , zn) | z2, . . . , zn ∈ C}.

Since Vp is a smooth (n−1)-dimensional manifold, the assertion of the lemma
follows. ��

Therefore, for a convex analytic polyhedron P , we see that for every bound-
ary point p, any analytic variety in ∂P passing through p must be an open
subdomain (convex!) contained in some complex affine subspace of Cn.

Scaling Sequences

With the preceding discussion, one learns how to apply the scaling method in
order to generate the proof of Theorem 9.4.4.

Case 1. There is no nontrivial variety in ∂P through p.

In this case, there will be n functions in the defining system with their
gradients at p linearly independent over C. Let those functions be f1, . . . , fn.
Then there exists an open neighborhood W of p such that the mapping F =
(f1, . . . , fn) maps W ∩cl(P ) biholomorphically onto W̃ ∩cl(Δ)n for some open
neighborhood W̃ of some point, say (eiθ1 , . . . , eiθn), in the Šilov boundary of
the polydisc Δn. Now, consider the sequence

q̃ν := F ◦ ϕν(q) (ν = 1, 2, . . .)

in W̃ .
Apply the usual linear fractional transformation, say G, sending

(eiθ1 , . . . , eiθn) to the origin and mapping the polydisc Δn biholomorphically
onto the domain defined by

Re z1 > 0, . . . ,Re zn > 0.

Then let

ε�,ν = the real part of the �-th component of G(q̃ν)

for every � ∈ {1, . . . , n} and for every ν = 1, 2, . . ..
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Now consider the linear mapping

Λν(z1, . . . , zn) =
(

z1

ε1,ν
, . . . ,

zn

εn,ν

)
.

Then it is routine to check that the maps

σν := Λν ◦G ◦ F ◦ ϕν

give rise to a biholomorphic mapping from P onto Δn.

Case 2. There is a nontrivial complex analytic variety in ∂P passing through p.

Let n − k be the dimension (hence 0 < k < n) of the variety Vp in
∂P passing through p. Then there exist k functions f1, . . . , fk in the defin-
ing system with C-linearly independent gradient vectors at p and where
|f1(p)| = · · · = |fk(p)| = 1. It is possible to find a local biholomorphic map-
ping H that sends an open neighborhood W1 of Vp such that its image H(W1)
satisfies the following:

(i) H(p) = 0.
(ii) H(Vp) is a subdomain of {(0, . . . , 0; zk+1, . . . , zn) | zk+1, . . . , zn ∈ C}.
(iii) dHp(∇f�(p)) is parallel to the Rez�-axis, for every � ∈ {1, . . . , k}.

Choose the point, for each �, that is the closest intersection point p�,ν

of the real line parallel to the Rez�-axis passing through H(ϕν(q)) and the
hypersurface H(Σf�

). Then define the mapping Λν by

Λν(z1, . . . , zn)

=
(

z1

‖p1,ν −H ◦ ϕν(q)‖ , . . . ,
zk

‖pk,ν −H ◦ ϕν(q)‖ , zk+1, . . . , zn

)
.

Then again, it is not hard to check that the sequence Λν ◦H ◦ϕν gives rise to
a biholomorphic map from P onto the product domain

{(z1, . . . , zn) | Re z1 > 0, . . . ,Re zk > 0; (0, . . . , 0; zk+1, . . . , zn) ∈ H(Vp)}.
From these two cases, the proof follows immediately. ��

9.4.5 Sketch of the Proof of Theorem 9.4.3

Now we will consider the general generic analytic polyhedron that is not nec-
essarily convex. In this case, the situation is more complicated, and in fact,
the theorem we prove is valid only in complex dimension 2.

Scaling at a Singular Point

In this situation analysis near the singular point is simpler. In fact, this sit-
uation is essentially the same as the convex case. The end result by scaling
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is that the domain P is biholomorphic to the domain in C2 defined by two
inequalities:

Re z1 > 0, Re z2 > 0

that is in turn biholomorphic to the bidisc. We shall not include any further
details. The reader can fill in the particulars, or can find a detailed proof
in [Kim/Krantz/Spiro 2005].

Scaling at a Smooth Point

The reason that this theorem restricts its validity to complex dimension 2
lies in this particular: in case the automorphism orbit accumulation point
p = limν→∞ ϕν(q) is a smooth boundary point, let f1 be the holomorphic
function in the defining system of P satisfying |f1(p)| = 1. Then of course
there exists a maximal complex analytic variety Vp defined by the equation
f1(z) = f1(p). If Vp is disconnected, we shall replace Vp by its connected
component that contains p.

Now Vp is a smooth 1-dimensional variety. Since Vp ⊂ ∂P and since P
is a bounded domain, there exists a holomorphic covering map π : Δ → Vp

from the open unit disc Δ onto Vp, by the uniformization theorem of Riemann
surfaces (Theorem 2.5.1). (This particular argument works because Vp is 1-
dimensional; and this follows because dimP = 2.)

Here we shall present an intuitive approach. This is not the actual proof,
but it will give the reader a very good idea of how the verification unfolds.

Since |∇f1| is bounded away from zero, there is an open neighborhood
W of the closure of Vp in C2 such that W ∩ P is biholomorphic, say by
the biholomorphism ψ, to an open neighborhood of Vp × {0} in the open set
Vp×Δr, where Δr = {z ∈ C | |z| < r} for some r > 0. It can still be arranged,
roughly speaking, that W ∩ P still contains Vp ×Δr′ . Now consider the map
ψ̃ := ψ−1 ◦ π × id from Δ×Δr′ into W (see Figure 9.5).

Once this is done, choose a lifted point-orbit accumulating at the ori-
gin selected from ψ̃−1(ϕν(q)) and then scale in such a way that the scaled
map converges to a holomorphic mapping that sends {(z, w) ∈ C2 | |z| < 1,
Re w > 0} into P . It is important to analyze this limit mapping.

The Wu metric and the Theorem of Kim–Pagano

Continuing from above, let h be the holomorphic mapping obtained as a sub-
sequential limit of the scaling procedure previously described. Then this map
is not only holomorphic, but it preserves the Wu metric of the first kind. (This
uses the covering property of the Wu metric!) Notice that the Wu metric of
the bidisc is a constant multiple of the Bergman metric, and hence is real
analytic and Kähler.
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Fig. 9.5. Scaling of a normal polyhedron in C
2.

Readers who are familiar with Riemannian geometry will recall the proof
of the Cartan–Hadamard Theorem. That argument proves at this point that
h is onto, and is actually a holomorphic covering map. Thus the analytic
polyhedron P under current consideration has the bidisc as its holomorphic
universal covering manifold. By the way, this was the conclusion of the the-
orem of Kim–Pagano ([Kim/Pagano 2001]). However, one sees that the con-
clusion of the theorem of Kim–Pagano is clearly not sufficient for the proof of
Theorem 9.4.3. So we shall continue with the sketch.

Further Analysis and the Conclusion

In order to obtain more precise information from the holomorphic covering
map, one needs to understand the structure of the small piece of the boundary
of P near Vp. Thus Kim, Krantz, and Spiro analyze the set in an elementary
but careful way, and they scale again with special care. (See pages 6–10,
[Kim/Krantz/Spiro 2005] for details.) After this careful analysis, they were
able to conclude that P is indeed biholomorphic to the product Vp × Δ as
desired. ��

9.5 The Greene–Krantz Conjecture

A recurring theme in this book has been the role of finite type. A natural
generalization of the concept of strong pseudoconvexity, finite type has served
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as the right geometric condition to make the scaling method converge, and
to force other geometric constructs to behave in a tractable fashion. The
Bedford–Pinchuk theorem (Theorem 9.3.1) discussed earlier in the present
chapter depends crucially on finite type.

It is natural to wonder whether finite type is crucial to the theory. Are the
most natural boundary points (of a bounded domain with smooth boundary
at which an automorphism orbits accumulate) that we may study perforce of
finite type? These considerations lead to an important conjecture which we
treat briefly here.

First we review a definition that has arisen earlier in various contexts.

Definition 9.5.1. Let Ω ⊆ Cn be a bounded domain and p ∈ ∂Ω. We say
that p is a boundary orbit accumulation point if there are a point q ∈ Ω and
automorphisms ϕj of Ω such that ϕj(q)→ p as j →∞.

We have offered considerable evidence in this book that the (Levi) geome-
try of a boundary orbit accumulation point can yield considerable information
about the global geometry of the domain in question. Now we have the fol-
lowing conjecture of Greene and Krantz (see [Greene/Krantz 1991]):

Conjecture: Let Ω be a smoothly bounded domain in Cn and p ∈ ∂Ω.
If p is a boundary orbit accumulation point, then p is a point of finite
type.

If this conjecture is true, then one can see right away that the Bed-
ford/Pinchuk theorems will take a much more simple, natural, and elegant
form. Many other parts of the subject will fit together very naturally. There
are several partial results that lend credence to the Greene–Krantz conjec-
ture. We describe a few of them here. The next theorem is contained in
[Kim K.-T. 1992].

Theorem 9.5.2 (Kim). Let Ω be a smoothly bounded, convex domain in C2.
Suppose that p ∈ ∂Ω and that a 1-dimensional complex analytic manifold
containing p lies in ∂Ω. If p is a boundary orbit accumulation point, then Ω
is biholomorphic to the bidisc.

Since the bidisc is not smoothly bounded, this theorem supports the
Greene–Krantz conjecture. See [Kim/Krantz 2001] for the next result, and
for relevant examples as well.

Theorem 9.5.3 (Kim–Krantz). Let Ω be a smoothly bounded, convex do-
main in C2. If p ∈ ∂Ω is a boundary orbit accumulation point, then p cannot
be exponentially flat.

Several researchers have contributed to the study of the Greene–Krantz
conjecture and related topics. In addition to Bedford/Pinchuk, Greene/Krantz,
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and Kim, we should mention Berteloot, Bland, Catlin, Fu, Gaussier, Isaev,
and Kodama. References to their work appear in our Bibliography, and also
in the survey article [Isaev/Krantz 1999].

Scaling is one of the principal tools for studying the Greene–Krantz
conjecture. Although the Bedford–Pinchuk theorems do not literally sup-
port or imply the conjecture, they certainly lend evidence to its probable
correctness.
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The Scaling Method, II

In the preceding chapter, we discussed theorems concerning the characteriza-
tion of bounded domains in Cn by their boundary geometry and the noncom-
pactness of their automorphism groups. There, the scaling method served as
a medium that produces the “best” holomorphic re-embedding of the domain
into Cn. Thus the scaling method replaced the role of the study of asymptotic
boundary behavior of holomorphic invariants.

But it has turned out that the stretching feature of the scaling alone (with-
out the presence of boundary-approaching automorphism orbits) plays an
important role for the study of asymptotic boundary behavior of holomor-
phic invariants. This chapter will present this particular aspect of the scaling
method—without the presence of automorphism orbits.

10.1 Klembeck’s Theorem with Stability
in the C2 Topology

10.1.1 The Main Goal

The current goal is to present Klembeck’s theorem (Theorem 3.4.3) with sta-
bility in the C2 topology.

The precise target should be described first. Denote by Dn the collection of
all bounded domains in Cn with C2 smooth, strongly pseudoconvex boundary.
We impose the C2 topology on Dn by invoking the C2 topology on defining
functions. See Section 3.5 for the definition in detail.

The result we seek is a strengthening of Theorem 3.4.3. first, denote by
SΩ(p; ξ) the holomorphic sectional curvature at p in the holomorphic 2-plane
direction ξ of the Bergman metric of the domain Ω.

Theorem 10.1.1. Let Ω̂ be a bounded strongly pseudoconvex domain with
C2 boundary in Cn. Then, for every ε > 0, there exist δ > 0 and an open
neighborhood U of Ω̂ in Dn such that, whenever Ω ∈ U ,

R. E. Greene et al., The Geometry of Complex Domains, Progress in Mathematics, 
DOI 10.1007/978-0-8176-4622-6_10, © Springer Science+Business Media, LLC 2011
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sup
{∣∣∣∣SΩ(p; ξ)−

(
− 4

n + 1

)∣∣∣∣ : Ω ∈ U , ξ ∈ Cn \ {0}
}

< ε

whenever p ∈ Ω satisfies dis(p, ∂Ω) < δ.

We will present the proof by contradiction. To be more precise, we shall
show that the following statement cannot hold:

(†) ∃ε0 > 0, ∃Ων ∈ Dn such that Ων → Ω̂ in the C2 topology as
ν → ∞ and a sequence {pν ∈ Ων} with limν→∞ dis(pν , ∂Ων) = 0
such that ∣∣∣SΩν

(pν , ξν) +
4

n + 1

∣∣∣ ≥ ε0,

for every ν = 1, 2, . . ..

10.1.2 Essential Components of the Proof

The method we are introducing here is due to K.T. Kim and J. Yu [Kim/Yu
1996]. This flexible method of proof that can be applied to a broader collection
of domains consists of the following three components:

COMPONENT 1. LOCALIZATION

Let Ω̂, Ων , pν be as in Subsection 10.1.1. Since the goal is to show that

lim
ν→∞

∣∣∣SΩν
(pν , ξν) +

4
n + 1

∣∣∣ = 0,

we may assume without loss of generality that limν→∞ pν exists. Denote this
limit by p̂. Notice that p̂ ∈ ∂Ω̂.

Let qν ∈ ∂Ων be the closest boundary point of Ων to pν for every ν =
1, 2, . . .. Then consider a sequence Rν : Cn → Cn of complex rigid motions
(i.e., unitary maps followed by translations) in Cn and another rigid motion
R̂ satisfying:

(1) R̂(p̂) = 0 and Rν(qν) = 0 for every ν;
(2) Rν(∂Ων), for every ν, and R̂(∂Ω̂) are tangent at 0 to the hyperplane de-

fined by Re z1 = 0;

and

(3) limν→∞ ‖Rν − R̂‖C2 = 0 where the norm here is the C2-norm of mappings
on an open neighborhood of the closure of Ω̂ in Cn.

Notice that Rν(Ων) converges to R̂(Ω̂) in the C2 topology on bounded do-
mains with smooth boundaries. Therefore, without loss of generality, we may
also assume the following:

(1′) 0 ∈ ∂Ω̂ ∩
(⋂∞

ν=1 ∂Ων

)
.
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(2′) ∂Ω̂ and ∂Ων (for every ν = 1, 2, . . .) share the same outward normal
vector n = (−1, 0, . . . , 0) at the origin.

(3′) pν = (rν , 0, . . . , 0) with rν > 0 for every ν.

The following gives in effect the localization of Bergman metric holomor-
phic sectional curvature.

Theorem 10.1.2. There exists an open neighborhood U of the origin in Cn

such that

lim
ν→∞ sup

ξ∈Cn,|ξ|=1

∣∣∣∣2− SΩν∩U (pν ; ξ)
2− SΩν

(pν ; ξ)
− 1
∣∣∣∣ = 0.

The conclusion of this statement implies: as soon as limν→∞ SΩν∩U (pν ; ξ)
exists, it will coincide with limν→∞ SΩν (pν ; ξ). This theorem will be proved
later.

COMPONENT 2. CONVERSION BY SCALING

We now demonstrate how the problem on boundary asymptotic behavior
of the Bergman curvature (generally considered difficult) can be converted to
the problem on the stability of the Bergman kernel function in the interior
under perturbation of the boundaries (which is generally easier). This is done
by the scaling method, and this conversion is the important, second component
of the proof.

Theorem 10.1.3. Let the sequence {(pν ; ξν) ∈ Ων × (Cn \ {0})} be chosen as
above. Let Bn denote the open unit ball in Cn. Then there exists a sequence
of injective holomorphic mappings σν : Ων ∩ U → Cn satisfying the following
properties:

(i) σν(pν) = 0 (the origin of Cn).
(ii) For every r > 0, there exists N > 0 such that

(1− r)Bn ⊂ σν(Ων ∩ U) ⊂ (1 + r)Bn

for every ν > N .

COMPONENT 3. INTERIOR STABILITY

The third component is the following theorem of Ramadanov.

Theorem 10.1.4 ([Ramadanov 1967]). Let D be a bounded domain in Cn

containing the origin 0. Let Dν denote a sequence of bounded domains in Cn

that satisfies the following convergence condition:

given ε > 0, there exists N > 0 such that

(1− ε)D ⊂ Dν ⊂ (1 + ε)D

for every ν > N .
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Then, for every compact subset F of D, the sequence of Bergman kernel func-
tions KDν of Dν converges uniformly to the Bergman kernel function KD of
D on F × F .

10.1.3 Proof of Theorem 10.1.1

Assuming Theorems 10.1.2, 10.1.3, and 10.1.4, we prove Theorem 10.1.1.
Let qν , ξν , Ω̂, Ων be as above. Let U be an open neighborhood of the origin

as in Theorem 10.1.2. Taking a subsequence, we may assume that qν ∈ Ων ∩U
for every ν. Select σν as in Theorem 10.1.3.

We now apply Theorem 10.1.4 to our setting, with Dν = σν(Ων ∩ U)
and D = Bn. The conclusion of Theorem 10.1.4 merely states that the se-
quence KDν (z, ζ) converges uniformly to KD(z, ζ) on F × F . This of course
implies that the sequence KDν

(z, ζ̄) converges to KD(z, ζ̄). Notice that the
functions now involved are holomorphic functions in the z and ζ variables to-
gether. Therefore Cauchy estimates imply that KDν

(z, ζ) converges uniformly
to KD(z, ζ) on F × F in the Ck sense for any positive integer k. Since the
holomorphic sectional curvature of the Bergman metric involves derivatives
of the Bergman kernel function up to the fourth order, we may conclude that
Sσν(Ων∩U)(0; ·) converges uniformly to SBn(0; ·) on {ξ ∈ Cn : ‖ξ‖ = 1}. Notice
that the latter is the constant function with value −4/(n + 1).

Combining this result with Theorem 10.1.2, Theorem 10.1.3, and the fact
that every biholomorphism is an isometry for the Bergman metric, we see
that:

− 4
n + 1

= lim
ν→∞Sσν(Ων∩U)(0; dσν

∣∣
qν

(ξν))

= lim
ν→∞Sσν(Ων∩U)(σν(qν); dσν

∣∣
qν

(ξν))

= lim
ν→∞SΩν∩U (qν ; ξν)

= lim
ν→∞SΩν

(qν ; ξν).

This proves the desired conclusion. ��
It now remains to present the proofs of Theorems 10.1.2, 10.1.3, and 10.1.4.

We do that in the subsequent sections.

10.1.4 Localization: Proof of the Theorem 10.1.2

Take a sufficiently small open neighborhood U of the origin in Cn so that there
exists a holomorphic function h : U → C such that h(0) = 1 and |h(ζ)| < 1
for every ζ ∈ (cl(Ω̂) ∪⋃∞

ν=1 cl(Ων)
) ∩ (U \ {0}). This is possible by taking a

subsequence of Ων , because the domains Ων converge in the C2 sense to Ω̂,
and because Ω̂ is a bounded strongly pseudoconvex domain.

In general, for every bounded domain Ω in Cn, the following holds: let
p ∈ Ω and ξ = (ξ1, . . . , ξn) ∈ Cn with ‖ξ‖ = 1. Let μ denote the standard
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Lebesgue measure of Cn. It is necessary to exploit the following formula by
Bergman and Fuks (see [Bergman 1970], Chapter III) for the holomorphic
sectional curvature:

SΩ(p; ξ) = 2− (IΩ
1 (p; ξ))2

IΩ
0 (p)IΩ

2 (p; ξ)
,

where

IΩ
0 (p) := inf

{∫
Ω

|f |2dμ : f ∈ A2(Ω), f(p) = 1
}
,

IΩ
1 (p; ξ) := inf

{∫
Ω

|f |2dμ : f ∈ A2(Ω), f(p) = 0,
n∑

j=1

ξj
∂f

∂zj
(p) = 1

}
,

and

IΩ
2 (p; ξ) := inf

{∫
Ω

|f |2dμ : f ∈ A2(Ω),

f(p) = 0, df
∣∣
p

= 0,
n∑

j,k=1

ξjξk
∂2f

∂zj∂zk
(p) = 1

}
.

In general, if two domains D1 and D2 in Cn are related by D1 ⊂ D2,
it follows by definition that ID1

k ≤ ID2
k . The quantities Ij above are often

called the minimum integrals, and the property we just observed is called the
monotonicity of minimum integrals.

Notice that the proof will be completed as soon as we show that the quo-
tients IΩ

0 (p)
IΩ∩U
0 (p) ,

IΩ
1 (p;ξ)

IΩ∩U
1 (p;ξ) , and IΩ

2 (p;ξ)
IΩ∩U
2 (p;ξ) converge to 1 uniformly on unit vec-

tors ξ, independent of choices of domains Ω from the sequence {Ων : ν =
1, 2, . . .}, as p tends to the origin 0.

Since the justification of the convergence of the preceding quotients follows
similar arguments, we choose to establish that

lim sup
p→0

IΩ
2 (p; ξ)

IΩ∩U
2 (p; ξ)

≤ 1.

Notice that, with the monotonicity observed above, this implies that IΩ
2 (p;ξ)

IΩ∩U
2 (p;ξ)

converges to 1. Along the way, the uniformity of the convergence will be
obtained as well.

Now let k > 1 be an integer. Take an open neighborhood V of 0 satisfying
0 ∈ V ⊂⊂ U so that h is nowhere zero in V . Let a be a constant satisfying
0 < a < 1 and |h| < a on (U \ V ) ∩ cl(Ω). Choose a smooth bump function
χ ∈ C∞

0 (U) such that χ = 1 on V and 0 ≤ χ ≤ 1 on U . Furthermore let
ϕ(z) = (2n + 4) log |z − p|.

Taking p to be sufficiently close to 0, there is no loss of generality to assume
that q ∈ V .
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Let f ∈ A2(Ω ∩ U) be such that

f(p) = 0, df(p) = 0,
n∑

j,�=1

ξjξ�
∂2f

∂zj∂z�
(p) = 1

and ‖f‖2L2(Ω∩U) = IΩ∩U
2 (p; ξ).

We apply now a theorem of Hörmander (Theorem 4.4.2, p. 94, [Hörmander
1990]). There exists a locally integrable function u on Ω satisfying

∂u = ∂(χfhk)

with the estimate∫
Ω

|u(z)|2e−ϕ(z)dμ ≤ C

∫
Ω

|∂(χ(z)f(z)h(z)k)|2e−ϕ(z)dμ

for some constant depending only on Ω. Simplifying the estimate, one obtains∫
Ω

|u(z)|2
|z − p|2n+4 dμ ≤ C

∫
Ω∩(U\V )

|∂χ(z)|2|f(z)|2|h(z)|2k

|z − p|2n+4 dμ.

Since the righthand side is bounded, we see that u vanishes to order 2 at p.
Moreover, one deduces that

‖u‖L2(Ω) ≤ C ′ak‖f‖L2(Ω∩U)

for some constant C ′ > 0 depending only on Ω and χ. We point out that all
the constants here can be taken independent of Ων , as {Ων} converges to the
bounded domain Ω̂.

Now let Fk = χfhk − u. Then, for every k > 1, the function gk(z) ≡
Fk(z)(h(p))−k satisfies the conditions:

gk(p) = 0, dgk(p) = 0, and
n∑

j,�=1

ξjξ�
∂2gk

∂zj∂z�
(p) = 1.

Thus the definition of the minimum integral I2 implies that

IΩ
2 (p; ξ) ≤ ‖gk‖2L2(Ω)

=
‖Fk‖2L2(Ω)

|h(p)|2k

≤ (‖χfhk‖L2(Ω) + ‖u‖L2(Ω))2

|h(p)|2k

≤ (‖f‖L2(Ω∩U) + C ′ak‖f‖L2(Ω∩U))2

|h(p)|2k

=
(1 + C ′ak)2

|h(p)|2k
IΩ∩U
2 (p; ξ).
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Notice that the quotient (1+C′ak)2

|h(p)|2k approaches 1, letting p converge to 0 first
and then allowing k to tend to +∞. Notice also that this convergence does
not depend on the unit vector ξ, or the choice of domain Ω from the family
{Ων : ν = 1, 2, . . .}. Hence we obtain

lim sup
p→0

IΩν
2 (p; ξ)

IΩν∩U
2 (p; ξ)

≤ 1,

with the uniformity in ξ and Ων as desired. For I0 and I1 one needs simply
to change the weight ϕ slightly. This completes the proof. ��

Remark 10.1.5. This localization process is of course stable under the pertur-
bation of the boundary, because the choices for h, U, V, C,C ′, and χ are inde-
pendent of the index ν: for instance the constant C, that is from Theorem 4.4.2
of [Hörmander 1990], can actually be chosen to be max{(1 + |z|2)2 : z ∈
Ω ∪⋃Ων}.

10.1.5 Conversion of the Problem by Scaling:
Proof of the Theorem 10.1.3

We now show how to convert the asymptotic boundary behavior problem for the
holomorphic sectional curvature of the Bergman metric to the interior stability
problem of the Bergman metric under a perturbation of the boundaries of
domains.

In our case the situation is simple, because the point sequence {pν} under
consideration is located on the Re z1-axis.

Let δ be a positive number smaller than 1, to be chosen later. Let

Eδ = {z = (z1, . . . , zn) ∈ Cn |
Re z1 > (1− δ)(|z1|2 + · · ·+ |zn|2)}

and

Sδ = {z ∈ Cn | Re z1 > (1 + δ)(|z1|2 + · · ·+ |zn|2)}.

Since Ω̂ is a domain with C2 smooth, strongly pseudoconvex boundary,
there exists an open neighborhood U of the origin in Cn and a biholomorphism-
into Ψ : U → Cn such that

Ψ(Ω̂ ∩ U) = {z ∈ Ψ(U) | Re z1 > |z1|2 + · · ·+ |zn|2 + R2(z)},

where R2(z) = o(|z1|2 + · · ·+ |zn|2). Let V = Ψ(U). Shrinking the neighbor-
hood U if necessary, one obtains that

Sδ ∩ V ⊂ Ψ(Ω̂ ∩ U) ⊂ Eδ.
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Due to the C2 convergence, and by (1′)–(3′), one deduces that there exists
N > 0 such that

Sδ ∩ V ⊂ Ψ(Ων ∩ U) ⊂ Eδ

for every ν > N . Now let λν ≡ |Ψ(pν)| for every ν. Consider the dilatation
maps

Λν(z1, . . . , zn) ≡
( z1

λν
,

z2√
λν

, . . . ,
zn√
λν

)
.

(Notice here that the point sequence Ψ(pν) approaches the origin nontangen-
tially to the hypersurface defined by Re z1 = 0, that is, tangent to Ψ(∂Ω̂) at
the origin.) Finally let

Φ(z1, . . . , zn) =
(z1 − 1
z1 + 1

,
2z2

z1 + 1
, . . . ,

2zn

z1 + 1

)
.

Then set

σν = Φ ◦ Λν ◦ Ψ
for every ν. Now it is simple to check that, with a composition for each ν by
a Möbius transformation adjusting σν(pν) to the origin (while preserving the
unit ball), {σν} yields a sequence of holomorphic maps satisfying the desired
conclusion. ��

10.1.6 Interior Stability: Proof of Theorem 10.1.4

The proof is based upon the monotonicity of the Bergman kernel function on
the diagonal, which is:

KΩ1(z, z) ≥ KΩ2(z, z) for every z ∈ Ω1 whenever two domains Ω1
and Ω2 in Cn satisfy Ω1 ⊂ Ω2.

This follows from the “special basis” characterization of the Bergman ker-
nel in Section 3.1. For simplicity, let us use the notation: Kν = KDν , K = KD,
Kε− = K(1−ε)D, Kε+ = K(1+ε)D.

Let F̃ be a compact subset of D which contains F in its interior. Choose
N > 0 so that F̃ ⊂ (1− ε)D and (1− ε)D ⊂ Dν ⊂ (1 + ε)D for every ν > N .

Fix ζ ∈ F̃ momentarily and allow z ∈ F̃ to vary. Then we get the estimate

‖Kν(z, ζ)−Kε+(z, ζ)‖2L2(F )

≤
∫

Dν

(Kν(w, ζ)−Kε+(w, ζ))(Kν(w, ζ)−Kε+(w, ζ)) dμ(w)

= Kν(ζ, ζ)−Kε+(ζ, ζ)−
∫

(1+ε)D\Dν

Kε+(w, ζ)Kε+(w, ζ)dμ(w)

≤ Kε−(ζ, ζ)−Kε+(ζ, ζ).
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Notice that the calculation above has used the reproducing property and the
monotonicity on the diagonal of the Bergman kernel function.

Recall that the Bergman kernel function is holomorphic in the first n vari-
ables zj and conjugate-holomorphic in the last n variables ζj . Thus Kν(z, ζ)
is holomorphic in both the z and ζ variables. Notice also that the above es-
timate yields the L2 convergence of Kν(z, ζ) to K(z, ζ) on F̃ × F̃ . One may
now use the Cauchy estimates to conclude that Kν converges uniformly to K
on F × F . ��

10.1.7 The Bergman Metric near Strongly Pseudoconvex
Boundary Points

As an additional application of the arguments introduced thus far, we will now
deduce the boundary behavior estimate for the Bergman metric of a bounded,
C2 smooth strongly pseudoconvex domain, establishing the completeness of
the Bergman metric there.

Let Ω be a bounded domain in Cn with C2 smooth, strongly pseudoconvex
boundary. Let v ∈ C \ {0}. Then, for any p ∈ Ω, the Bergman metric length
‖v‖Ω,p at p has the following representation by minimum integrals:

‖v‖2Ω,p =
1

IΩ
0 (p)IΩ

1 (p; v)
.

Note that this follows from the exposition in Section 3.1, where Bergman’s
special orthonormal system for A2(Ω) was introduced.

Thus the localization arguments in 10.1.4 imply the following:

For any p̂ ∈ ∂Ω, any open neighborhood U of p̂ in Cn, and any positive
constant C > 1, there exists an open set V satisfying p̂ ∈ V ⊂⊂ U
such that

1
C
‖v‖2Ω∩U,p ≤ ‖v‖2Ω,p ≤ C‖v‖2Ω∩U,p

for any p ∈ V and any v ∈ Cn.

This, together with the scaling method arguments similar to 10.1.5 and 10.1.6
implies immediately the following.

Let p be as above. Then let p̃ ∈ ∂Ω be the closest point to p. (Such a p̃ is
uniquely determined if V is chosen sufficiently small.) Write v ∈ Cn as

v = v′ + v′′

so that v′ is complex tangent to ∂Ω at p̃ whereas v′′ is complex normal. Then
there exists a constant C ′ > 0 such that

‖v‖2Ω,p ≥ C ′
( ‖v′‖2
‖p− p̃‖ +

‖v′′‖2
‖p− p̃‖2

)
,
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where the norm ‖ · ‖ on the right-hand side is the Euclidean norm, which is in
fact the Bergman metric of the unit ball in Cn at the origin up to a constant
multiple.

Notice that this in particular implies the completeness of the Bergman
metric of the bounded strongly pseudoconvex domains, which was used in the
exposition of Chapter 3.

10.2 Separating Boundary and Interior Points

An important general theme that emerged in the first four chapters was the
idea of finding geometric invariants that distinguished interior points of a
strongly pseudoconvex domain that was not biholomorphic to the ball from
points near the boundary. Such domains have compact automorphism groups
by the general result of Wong–Rosay; but, more explicitly, the compactness
of their automorphism groups can be explained and indeed established by
considering geometric invariants of the Bergman metric.

Recall the exact setting: By Lu Qi-Keng’s theorem (Theorem 4.2.2), if
Ω is a bounded domain not biholomorphic to the ball, but with complete
Bergman metric, then there is a point p0 ∈ Ω and a holomorphic 2-plane
P such that the holomorphic sectional curvature κ(P ) of the Bergman met-
ric of Ω is not equal to −4/(n + 1). If Ω is a C∞ strongly pseudoconvex
domain, the Bergman metric is necessarily complete (Theorem 3.4.1; more
generally, see Theorem 3.4.2). And for such Ω, there is also a neighborhood of
the boundary of Ω such that every holomorphic sectional curvature κ at every
point of this neighborhood satisfies |κ+ 4/(n+ 1)| < |κ(P ) + 4/(n+ 1)|. This
gives an intrinsic geometric reason why the Aut (Ω)-orbit of p0 cannot inter-
sect the neighborhood of the boundary. Moreover, all this can be arranged
stably with respect to C∞ small perturbations of Ω (Theorem 3.5.1). From
this, a considerable body of results followed by various normal families argu-
ments in Chapters 3 and 4, results about C∞ domains and C∞ perturbations
thereof.

In the previous section, the asymptotic constancy of the holomorphic sec-
tional curvature of the Bergman metric near the boundary has been estab-
lished not just for C∞ strongly pseudoconvex domains but also for C2 strongly
pseudoconvex domains (Theorem 10.1.1). The Bergman metric is also com-
plete in this case (Theorem 3.4.2) or by the remarks of the previous section.
Thus one might expect to extend the results of Chapters 3 and 4 that applied
to the C∞ stability to the more general C2 situation. This expectation is in
fact valid.

In this section, some of the extended results will be indicated.
These extensions to the C2 situation are of considerable interest: C2 is

the natural home of the concept of strong pseudoconvexity, and the fact that
all these results apply at the C2 level shows that they are, as it were, in the
nature of strong pseudoconvexity, without higher derivatives being involved.
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The starting point is Theorem 10.1.1 together with the completeness of
the Bergman metric. From these together, the C2 version of Corollary 3.4.4
(Wong’s theorem) via curvature arises:

Theorem 10.2.1. If Ω0 is a C2 strongly pseudoconvex domain, then either
Ω0 is biholomorphic to the ball or Aut (Ω0) is compact.

The proof follows the pattern of the curvature proof of Corollary 3.4.4:
there are, if Ω0 is not biholomorphic to the ball, a point p0 and a holomor-
phic 2-plane P at p0 with the holomorphic sectional curvature κ(P ) of P not
equal to −4/(n + 1), as discussed in a previous paragraph in this section.
Theorem 10.1.1 and the Aut (Ω0)-invariance of the Bergman metric and its
curvatures imply that the Aut (Ω0)-orbit of p0 is bounded away from the
boundary ∂Ω0 of Ω0. Hence by Proposition 1.3.10 and Corollary 1.3.6,
Aut (Ω0) is compact. This is exactly the same proof as for Corollary 3.4.4
except that Theorem 10.1.1 replaces Theorem 3.4.3. ��

Of course, more general results hold: the point here is the curvature
method. See Chapter 11 for the maximum generality known for results of
this type, about orbits of automorphism groups and strong pseudoconvexity
(cf. [Gaussier/Kim/Krantz 2002]).

Since Theorem 10.1.1 gives the C2 version of Theorem 3.5.1, it is to be
expected that Theorem 4.1.1 has a C2 version, since only the stable asymptotic
constancy of curvature near the boundary was used.

Theorem 10.2.2. There is a neighborhood U of the unit ball in the C2 topol-
ogy on domains with C2 boundary such that: if Ω ∈ U , then either

(1) Ω is biholomorphic to the ball,

or

(2) Aut (Ω) is compact and acts on Ω with a fixed point.

Proof. Following the pattern of the proof of Theorem 4.1.1, it suffices to show
that, for all Ω C2 close enough to the unit ball, Ω is C2 strongly convex (ob-
vious), and then the necessarily complete Bergman metric on Ω has negative
sectional curvature. This follows by exactly the same combination of interior
stability (Theorem 3.5.2 in the C∞ case) of the Bergman kernel and stable
asymptotic constancy of holomorphic sectional curvature near the boundary
of Ω, as in the proof of Theorem 4.1.1.

In the present instance, interior stability is disposed of by Theorem 10.1.4,
detouring around any considerations of the stability of the Kohn solution of
the ∂-Neumann problem (the latter was the approach used for Theorem 3.5.2):
a convex domain automatically satisfies the containment conditions required
for Theorem 10.1.4. On the other hand, the boundary stability of curvature
needed is exactly provided by Theorem 10.1.1. The remainder of the proof is
precisely as for Theorem 4.1.1. ��
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Of course, as before with Theorem 4.1.1, Theorem 10.2.2 is a special case
of Lempert’s result Theorem 4.1.2 on convex domains, since Aut (Ω) in Theo-
rem 10.2.2 is compact if Ω is not biholomorphic to the ball (cf. the discussion
after Theorem 4.1.1).

As it happens, many of the results later on in Chapter 4 hold under very
general hypotheses: they really depend only on the region near the boundary
being nonequivalent to the interior in some sense so that normal families are
stably nondegenerate. Recall the notion of normal convergence of sets (as well
as the Carathéodory kernel convergence of sets) introduced in Definition 9.2.2
of Section 9.2.2: a sequence Ωj of bounded domains (i.e., connected open sets)
in Cn converges normally to a bounded domain Ω0 if (1) for each compact
set K ⊂ Ω0, K ⊂ Ωj for every j sufficiently large, and (2) when a compact
set has a fixed positive distance (independent of j) from Cn \Ωj for every j,
then K ⊂ Ω0. Next define:

Definition 10.2.3. A domain Ω0 in Cn is called stably interior if there is a
point p0 ∈ Ω0 and an ε > 0 such that, if Ωj converges normally to Ω0, then
for all sufficiently large j the Euclidean distance dis (ϕ(p0),Cn \ Ωj) > ε for
all ϕ ∈ Aut (Ωj).

In the case of smooth (C∞) domains and C∞ convergence, the distance
to the boundary condition was discussed in Chapter 4. Theorem 4.1.4 can be
extended to the stably interior case in general.

Theorem 10.2.4. If Ω0 is stably interior, if Ωj → Ω0 in the C2 topology of
domains and if Ω0 is rigid (i.e., Aut (Ω0) = {idΩ0}), then Ωj is rigid for all
sufficiently large j.

Proof. It follows from Ω0 being stably interior that, if Ωj → Ω0 in the C2

topology and ϕj ∈ Aut (Ωj), then some subsequence ϕjk
converges uniformly

on compact subsets to ϕ0 ∈ Aut (Ω0). [See Proposition 9.2.4; see also Theo-
rem 1.3.4.] Since Ω0 is rigid, ϕ0 = id. The domain Ω0 being stably interior
also implies that there is a C2 neighborhood U1 of Ω0 such that Aut (Ω) is
compact for each Ω ∈ U1. Let g0 be the Bergman metric of Ω0. (Actually,
g0 can be taken to be any metric on Ω0: the use of the Bergman metric is
truly incidental here.) For each Ω ∈ U1, let gΩ be the average of g0 over the
compact group Aut (Ω). Note that, if Ωj → Ω0 (in the C2 topology), then gΩj

converges to gΩ0 uniformly (in the C∞ topology) on compact subsets of Ω0:
this is so because the elements of Aut (Ωj) will be C∞ close to the identity
uniformly on each compact subset of Ω0, by the normal families convergence
statement given earlier.

As in the proof of Theorem 4.1.4, we now want to show that, if Aut (Ωj) 	=
{idΩj} for j large, a contradiction is reached. But now the concluding Rie-
mannian geometry part of the proof of Theorem 4.1.2 applies without change
if the Bergman metrics of the Ωj are replaced by the metrics gΩj

, which
are themselves invariant under Aut (Ωj). The point here is that the gΩj

are



10.2 Separating Boundary and Interior Points 267

automatically C∞ close on compact sets to g0: no special observations about
Bergman metric stability are needed. ��

These arguments could have been used to prove Theorem 4.1.4. Since
Bergman metric stability was in sight in that case, it was used throughout.
But in fact its only essential use was in guaranteeing that Ω0 was stably
interior.

Theorem 4.4.3, the “semicontinuity theorem,” which is itself an extension
of Theorem 4.1.4, also has an analogue in the stably interior setting.

Theorem 10.2.5. If Ω0 is stably interior and Ωj → Ω0 normally, then for
all sufficiently large j, Aut (Ωj) is isomorphic to a subgroup of Aut (Ω0).

Proof. Normal families arguments show that if ϕj ∈ Aut (Ωj), then some sub-
sequence {ϕjk

} converges uniformly C∞ on compact subsets to an element
ϕ0 ∈ Aut (Ω0). It follows that, if τ : Ω0 → R is a C∞ exhaustion function
that is Aut (Ω0)-invariant (which always exists by averaging over Aut (Ω0)),
then the average over Aut (Ωj) of τ |Ωj∩Ω0 converges C∞ uniformly on com-
pact subsets of Ω0 to τ itself. Now choose α ∈ R a noncritical value of τ ,
α ∈ Range(τ), then τ−1

(
(−∞, α]

)
is a C∞ manifold-with-boundary, i.e., a

C∞ domain with smooth boundary which is Aut (Ω0)-invariant. Moreover,
if τj = the Aut (Ωj)-average of τ , then, for j large, the set τ−1

j

(
(−∞, α]

)
is

a C∞ domain with smooth boundary which is C∞ close to τ−1
(
(−∞, α]

)
.

Finally, let g0 be an Aut (Ω0)-invariant metric, either the Bergman metric
of Ω0 or the average over Aut (Ω0) of an arbitrary metric on Ω0. Then the
quantity given by the Aut (Ωj)-average of g0 is Aut (Ωj)-invariant and, on
the Aut (Ωj)-invariant domain τ−1

j

(
(−∞, α]

)
is diffeomorphism-conjugate to

a subgroup of Isom(g0) via a diffeomorphism C∞ close to the identity (for j
large). Call this subgroup Gj . Note that, for j large, Gj lies in a C∞ neigh-
borhood in Isom(g0) of Aut (Ωj) restricted to τ−1

(
(−∞, α]

)
. By the standard

Lie group theory result used before ([Montgomery/Zippin 1942]), it follows
that Gj , and hence also Aut (Ωj), for j large, are isomorphic to a subgroup
of Aut (Ω0). ��

From this viewpoint, the curvature invariants of the Bergman metric in
the C∞ case function were used in good part simply to guarantee the stably
interior condition: the Bergman metric separates stably some interior points
from points near the boundary by automorphism-invariant curvature invari-
ants, in the case of C∞ strongly pseudoconvex domains. This was discussed
in detail in Chapters 3 and 4 and summarized in this section earlier. The-
orem 10.1.1 gives the boundary behavior needed to extend this to the C2

case. When interior stability of the Bergman metric is also assured, e.g., as
in Theorem 10.1.3, then the stably interior condition is generated so that
the rigidity and semicontinuity theorems, Theorems 10.2.4 and 10.2.5, ap-
ply. But in fact, the interior stability of the Bergman metric follows by the
L2 ∂ technique with weights (almost identical to, and in fact easier than, the
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techniques demonstrated in Section 10.1.4, based upon [Hörmander 1965] and
[Hörmander 1990]). (We shall not include any further details as they would
be repetitious.) From this, we obtain the semicontinuity result in the C2 case.

Theorem 10.2.6. If Ω0 is a C2 strongly pseudoconvex domain, not biholo-
morphic to the ball, then there is a neighborhood U of Ω0 in the C2 topology
of domains with C2 boundary, such that, if Ω ∈ U , then Aut (Ω) is compact
and is Lie-group isomorphic to a subgroup of the compact group Aut (Ω0).

In connection with Theorems 10.2.4 and 10.2.5, it should be noted that the
condition of being stably interior or some related condition is indeed required.
Normal convergence of a sequence {Ωj} of bounded domains to a bounded
domain Ω0 is not enough as such to guarantee that Aut (Ωj) is isomorphic to
a subgroup of Aut (Ω0) for all j sufficiently large. It is, for example, possible
that Ω0 could be rigid even though none of the Ωj are rigid.

A (pseudoconvex) example of this behavior can be obtained as follows:
Let S be the boundary sphere of the unit ball in C2. Make a C2 small C∞

perturbation of S in a small neighborhood of the point (0, 1) to obtain a
hypersurface Ŝ such that the interior B̂ of Ŝ is C∞ strongly convex (hence
strongly pseudoconvex) and B̂ is rigid. This can be arranged by choosing
a suitable perturbation: indeed, generically any C2 small perturbation will
have this property. Now let ϕ : B → B be the holomorphic map in Aut (B)
defined by (z1, z2) −→

( z1+ 1
2

1+ 1
2 z1

,
√

3z2
2(1+ z1

2 )

)
(cf. Section 1.4). As usual, let ϕ0 = id,

ϕn = ϕ◦ϕn−1, and ϕ−n = (ϕ−1)n = ϕ−1 ◦ (ϕ−1)n−1, for n = 1, 2, 3, . . .. Since
ϕ is holomorphic except where z1 = −2, it is easy to see that ϕn, n ∈ Z, all
act on B̂ (when Ŝ is close enough to S) extending smoothly across Ŝ, indeed
holomorphically across Ŝ. Now for each positive integer k, we define a domain
Ωm to be

⋃+∞
k=−∞ ϕkm(B̂).

If the initial perturbation Ŝ is different from S itself only in a sufficiently
small neighborhood of (0, 1), then the images of the actually perturbed part of
S under ϕn are disjoint for all n = 1, 2, . . .. Hence

⋃K
k=−K ϕkm(B̂) will be pseu-

doconvex, indeed C∞ strongly pseudoconvex. Thus the Ωm, being increasing
unions of pseudoconvex domains, are pseudoconvex. The the boundaries of
Ωm are not, however, C2 at (1, 0) and (−1, 0).

Clearly, ϕm maps Ωm biholomorphically to itself. So Aut (Ωm) 	= {id}:
Ωm is not rigid. But it is not hard to check that the sequence {Ωm} converges
normally to B̂. The logic here is that, when m is large, powers ϕkm, m ∈ Z,
k 	= 0, all “compress” the perturbation near (0, 1) that changed S to Ŝ into a
very small perturbation near (1, 0) if m > 0, or (−1, 0) if m < 0. But B̂, the
limit domain, is rigid, while the Ωm are all nonrigid.

Note that there is no inconsistency with Theorem 10.2.4 or Theorem 10.2.5
since Ωm are not stably interior. And there is no inconsistency with Theo-
rem 10.2.6 because the boundaries of the Ωm are not C2 at (1, 0) and (−1, 0),
as already noted.
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This example is related to the fact that semicontinuity for compact
Riemannian manifolds (Theorem 4.4.1) does not hold for open (noncompact)
manifolds, at least for the most natural kind of convergence. A similar exam-
ple can be constructed. Make a perturbation of the standard metric of R2 near
(0, 0), say within the disc of radius 1/2 around (0, 0), in such a way that the
resulting metric on R2, say ĝ, has Isom (ĝ) = {id}. That this is possible is easy
to check by looking at curvature matters. Let, for m = 1, 2, 3, . . ., gm = the
metric obtained by making the same perturbation around the points (km, 0),
k ∈ Z. Isom (gm) 	= {id}, since gm is invariant under (x, y) → (x + km, y),
k ∈ Z. But clearly as m → +∞, the metrics gm converge C∞ uniformly on
compact sets to ĝ.

The existence of such examples clearly has to do with the possibility of
all of the automorphisms or isometries other than the identity moving off to
infinity, diverging to infinity in the classical language. When this is ruled out
by restriction to connected groups, for example, semicontinuity in some form
continues to hold.

10.3 Ian Graham’s Theorem by Scaling

The arguments here, based on the scaling method that gave a proof of the
theorem of Klembeck with stability (Theorem 10.1.1), have turned out to be
rather versatile. Here we will see that a slight modification gives a proof of a
well-known theorem of Ian Graham [Graham 1975].

Let Ω be a bounded domain in Cn with C2 smooth, strongly pseudo-
convex boundary. Let TΩ � (z, ξ) �→ FΩ(z, ξ) ∈ R denote the Kobayashi–
Royden metric (= the infinitesimal Kobayashi pseudometric) of the domain Ω.
The goal of this theorem is to identify the asymptotic boundary behavior of
FΩ(z, ξ) as z approaches the boundary point.

In order to present the theorem of Graham, we give two standard pieces
of notation: for z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Cn, write

〈z, w〉 = z1w̄1 + · · ·+ znw̄n

and

‖z‖2 = 〈z, z〉.
Theorem 10.3.1 ([Graham 1975]). Let p ∈ ∂Ω, and let ρ denote a C2

smooth defining function for Ω satisfying ‖∇ρ(p)‖ = 1. Then

lim
z→p

F (z, ξ)d(z, ∂Ω) =
1
2
‖ξN‖,

where ξN =
〈
ξ, ∇ρ(p)

‖∇ρ(p)‖
〉 ∇ρ(p)

‖∇ρ(p)‖ , the normal component of ξ to ∂Ω at p. If
ξN (p) = 0, then

lim
Λ�z→p

F (z, ξ)2d(z, ∂Ω) =
1
2
Lρ(p; ξ, ξ̄),
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where Λ denotes a (truncated) cone of arbitrary aperture with vertex at p, and
where Lρ(p; ξ, η̄) =

∑n
j,k=1

∂2ρ
∂zj∂z̄k

∣∣∣
p
ξj η̄k is the Levi form.

What this theorem says is that, near a strongly pseudoconvex boundary
point, the Kobayashi metric is asymptotically the Poincaré–Bergman metric
of the unit ball. This rough-sounding statement can be made more precise as
follows.

Let {pν} ⊂ Ω be a sequence of points that accumulates at p. Theorem 9.3.3
implies that there exist an open neighborhood U of p and a sequence of injec-
tive holomorphic mappings σν : Ω ∩ U → Cn such that

(1) σν(pν) = 0

and

(2) for every r > 0, there exists an N > 0 such that

(1− r)Bn ⊂ σν(Ω ∩ U) ⊂ (1 + r)Bn

for every ν > N .

By the distance-decreasing property of the Kobayashi metric, this imme-
diately shows that

FΩ∩U (pν , ξ) = Fσν(Ω∩U)(0, dσν |pν
(ξ))

and consequently FΩ∩U (pν ,ξ)
FBn (0,dσν |pν (ξ)) converges to 1 uniformly, regardless of the

choice of ξ ∈ Cn \ {0}.

Lemma 10.3.2. We have the limit

lim
ν→∞ sup

ξ∈Cn\{0}

∣∣∣∣FΩ∩U (pν , ξ)
FΩ(pν , ξ)

− 1
∣∣∣∣ = 0.

This lemma follows by a use of the holomorphic peak function at p for the
domain Ω and a basic normal family argument.

Therefore

lim
pν→p

FΩ(pν , ξ)
FBn(0, dσν |pν

(ξ))
= 1.

Since the construction of the map σν is explicit, a calculation will yield Gra-
ham’s theorem (Theorem 10.3.1). In fact, this gives more; one sees that the
Kobayashi metric is asymptotically Hermitian. We leave the details as an
exercise for the interested reader.
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10.4 Proper Mappings Between Bounded Strongly
Pseudoconvex Domains

Let n ≥ 2 in this section. Let Ω and Ω̃ be bounded strongly pseudoconvex
domains in Cn with C2 smooth boundary. Assume that there is a proper
holomorphic mapping f : Ω → Ω̃. Denote by g(z) the Jacobian determinant
of the proper mapping f at z ∈ Ω. Then we first prove:

Proposition 10.4.1 ([Pinchuk 1978]). The function g(z) does not vanish
anywhere.

Proof. Assume the contrary. Let V = {z ∈ Ω | g(z) = 0}. The Hartogs exten-
sion theorem implies that either V is an empty set, or there exists a sequence
zν ∈ V such that limν→∞ zν = p for some p ∈ ∂Ω. Assume, expecting a
contradiction, the latter case.

Then let wν = f(zν) for every ν = 1, 2, . . .. Since f is proper, it follows
that wν converges to p̃ ∈ ∂Ω̃ as ν tends to ∞.

Now we build two scaling sequences, both of them strongly analogous to
the scaling sequence (i.e., the centering maps Aν and Ãν for the domain Ω̃)
followed by the stretching map Λν (and Λ̃ν for Ω̃, respectively), corresponding
to the point sequence zν (and to wν , respectively). Write ων = Λν ◦ Aν and
ω̃ν = Λ̃ν ◦ Ãν , respectively. Then the sequence of mappings

hν := ω̃ν ◦ f ◦ ω−1
ν

contains a subsequence that converges. Denote by ĥ a subsequential limit. As
we saw in the scaling method with strongly pseudoconvex domains above, ĥ
maps the Siegel half-space S := {(z1, . . . , zn) ∈ Cn | Re z1 > |z2|2+· · ·+|zn|2}
into itself. In fact, combining with the linear fractional biholomorphism Ψ :
S → Bn from the Siegel half-space S onto the unit ball Bn, the sequence
Ψ ◦ hν ◦ Ψ−1 gives rise to a subsequential limit, say Ξ, which maps the open
unit ball Bn into itself.1 Replacing the original sequence by subsequences
whenever necessary, we shall assume that the full sequence converges. This
assumption will not cause any loss of generality in the proof.

Now we show that Ξ : Bn → Bn is a proper holomorphic mapping. It is
not true that the limit of a convergent sequence of proper holomorphic map-
pings is automatically proper, even if the limit mapping is nondegenerate.
Rather it requires some deep understanding of proper holomorphic maps be-
tween domains of the same dimension. A famous theorem of Remmert and
Stein [Remmert/Stein 1960] says that the degree (the number of pre-images
of a point, generically) of a proper holomorphic mapping is finite. Then it
is shown by Klingenberg and Pinchuk [Klingenberg/Pinchuk 1991] (see also
[Ourimi 2000]) that the limit of a locally uniformly convergent sequence of
proper mappings with bounded degree is either degenerate or proper. In our

1Surely Ξ coincides with Ψ ◦ ĥ ◦ Ψ−1.
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case the sequence Ψ ◦ ω̃ν ◦ f ◦ ω−1
ν ◦ Ψ−1 has the same degree as f , as all

the maps involved in this construction except f are biholomorphisms. Then
the scaling procedure shows that no point in the interior gets mapped to the
boundary. So it follows that Ξ is proper holomorphic. Notice that, by a the-
orem of H. Alexander ([Alexander 1977]), Ξ is a biholomorphic mapping.

On the other hand, if V were nonempty, then we would see that the holo-
morphic Jacobian determinant of hν vanishes at ων(zn). But then this point
sequence converges to (1, 0, . . . , 0). Therefore the Jacobian determinant of Ξ
must vanish at the origin, which is impossible for a biholomorphism. This
contradiction proves the proposition. ��
Theorem 10.4.2. Let Ω be a simply connected, bounded domain with C2

strongly pseudoconvex boundary. If f : Ω → Ω is a proper holomorphic map-
ping and if Ω is simply connected, then f is a biholomorphism.

Proof. By the preceding proposition, the Jacobian of f vanishes nowhere.
Hence f must be a covering map, since every proper, nonsingular differential
map of a manifold to another is a covering (a standard topological result;
cf. [Browder 1954]). Since Ω is simply connected, f must be a one-to-one
covering, hence biholomorphic. ��

This theorem is usually known as a theorem of H. Alexander and
S. Pinchuk. In [Bedford 1982], it is shown, more generally, that if f : Ω1 → Ω2
is a proper holomorphic mapping of one C2 strongly pseudoconvex bounded
domain to another, then in fact f is a finite normal covering, i.e., there is a fi-
nite subgroup Γ of Aut (Ω1) acting without fixed points (only the identity has
any fixed point) such that Ω2 is biholomorphic to the quotient of Ω1 mod Γ .
This of course implies Lemma 10.3.2 in particular.

It is an interesting consequence of the properties of the Cheng–Yau
Einstein–Kähler metric that “generically” the simple connectivity hypothe-
sis in Lemma 10.3.2 is not needed. first:

Theorem 10.4.3. If Ω is a C∞ strongly pseudoconvex bounded domain in Cn

which is not a covering-space quotient of the ball and if f : Ω → Ω is a proper
holomorphic map, then f is biholomorphic.

Proof. As before, f is a finite-to-one covering. In particular, f is a local isom-
etry of the Cheng–Yau metric, by uniqueness of the metric. Now, according
to [Cheng/Yau 1980], the holomorphic sectional curvature of the Cheng–Yau
metric g is asymptotically a negative constant, say −c0 (c0 depends only on
the normalization of the constant Ricci curvature of the Cheng–Yau metric).
Since Ω is not a quotient of the ball by hypothesis, the holomorphic sectional
curvature of the (complete) Cheng–Yau metric cannot be identically equal
to −c0. If it were, then the universal cover would have a complete Kähler met-
ric of constant negative holomorphic sectional curvature and would hence be
biholomorphically isometric to the ball with a suitable multiple of its Bergman
metric, by standard Kähler geometry. Combining these two facts—asymptotic
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constancy but no global constancy exactly—gives: there is an ε > 0 such that
{z ∈ Ω : some holomorphic sectional curvature K at z satisfies |K+c0| > ε} is
a nonempty open set with compact closure in Ω. Choose such an ε and let Uε

be the open set indicated. Clearly f−1(Uε) = Uε since f is holomorphic and
curvature-preserving. Now Uε has finite, nonzero volume (with respect to the
Cheng–Yau metric). But if the local isometry f is a k-to-one covering, then
f−1(Uε) = Uε would imply that the volume of Uε = k· (the volume of Uε).
This is clearly possible only if k = 1 so that f is in fact biholomorphic. ��

This result and its proof illustrate well the power and utility of the Cheng–
Yau metric. No other metric is both guaranteed smooth and preserved (locally)
by coverings: the Kobayashi (and Wu of first kind) metric have coverings
locally isometric but are not in general smooth enough for curvature to be
defined. The always C∞ Bergman metric does not have the property that
biholomorphic coverings are local isometries. Only the Cheng–Yau metric does
both the jobs needed here.
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Afterword

Many of the results in previous chapters concerned bounded strongly
pseudoconvex domains in complex Euclidean spaces. As it happens, almost
all of these results can be extended in some form to more general situations.
In particular, most of them apply in some suitable form to strongly pseu-
doconvex domains with compact closure in Stein manifolds. The restriction
to the Euclidean space case earlier simplified the statements and made for a
clearer exposition of the proof techniques. But it is of course important to
realize that generalizations are possible when indeed they are possible. In this
final chapter, we shall try to indicate these possibilities in enough detail that
interested readers will be able to carry through the detailed statements and
proofs for themselves in the more general situations which will be indicated.

If Ω is a connected open subset with a compact closure in a complex
manifold M such that Ω has nonempty C∞ strongly pseudoconvex boundary,
then, according to [Grauert 1958], Ω is itself a Stein manifold provided that
Ω contains no compact complex subvarieties of positive dimension. In particu-
lar, in this case, there is a slightly larger C∞ strongly pseudoconvex domain Ω̂
which contains the closure of Ω such that Ω̂ is also a Stein manifold. Thus we
shall lose no real generality if we assume that the C∞ strongly pseudoconvex
connected open sets to be considered lie with compact closure in some Stein
manifold M of complex dimension n.

This assumption, which we make from now on, yields a number of impor-
tant properties for Ω almost immediately. By the famous embedding theorem
of Bishop, Narasimhan, and Remmert ([Bishop, E. 1961], [Narasimhan 1960],
[Remmert 1956]), M can be properly embedded in some complex Euclidean
space CN . In our case, applying this result to M , we find an embedding of Ω
into CN which is smooth on the closure of Ω, and indeed on an open neighbor-
hood of the closure, which takes a suitable such neighborhood to a bounded
set in CN .

It follows immediately that Ω admits an abundance of bounded holomor-
phic functions: every holomorphic function on CN , when restricted to (the
image of) Ω, is bounded. This yields immediately that the Carathéodory

R. E. Greene et al., The Geometry of Complex Domains, Progress in Mathematics, 
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metric of Ω is positive definite and hence that its Kobayashi metric is. (This
latter can also be seen directly by Cauchy estimates.) Moreover, the pullback
to Ω of a holomorphic (n, 0)-form on CN will be a holomorphic (n, 0)-form
on M which is necessarily L2 on Ω. It is easy to check that there are enough
such forms to guarantee that the intrinsic Bergman metric of Ω in terms of
L2 holomorphic (n, 0)-forms is defined and is a positive definite Kähler metric
on Ω (see Section 3.2).

In particular, it follows that the automorphism group of Ω is a Lie group
(see Section 7.2.3), that its isotropy subgroups Ip, p ∈ Ω, are compact, and
that the map of Ip into linear maps of the tangent space at p defined by
f �→ df |p, f ∈ Ip, is injective: the direct analogues of Theorem 1.3.1 and
Corollary 1.3.3 are valid. Also, the action of Aut (Ω) on Ω is proper. (cf.
Theorem 7.2.10.)

To study Ω and in particular Aut (Ω) further, it is useful to note that Ω
(identified with its image as a submanifold in CN ) can be exhibited as the
intersection with M (similarly identified) of a C∞ strongly pseudoconvex do-
main in CN with certain special properties. We begin by noting from standard
Stein manifold theory ([Docquier/Grauert 1960]) that there is a neighborhood
U of M in CN for which there is a holomorphic retraction onto M ; i.e., there
is a holomorphic map F : U →M such that F (z) = z for every z ∈M . (Here
we identify M with its image in CN as before.) Choose a C∞ strictly plurisub-
harmonic function ϕ1 defined in a neighborhood of the closure of Ω in M such
that Ω = {z : ϕ1(z) < 1} and dϕ1 is nowhere zero on the boundary of Ω. Set
ϕ̂1 = ϕ1 ◦ F . Set ϕ2,ε(z) = ε−2 dis2(z,M). Then, for ε > 0 sufficiently small,
ϕ2,ε is C∞ for all z with ϕ2,ε(z) < 2 and z close enough to Ω. Now declare Ω̂
to be the set of z ∈ U such that F (z) lies in the neighborhood of the closure
of Ω on which ϕ1 is defined and ϕ̂1(z) + ϕ2,ε(z) < 1. It is straightforward to
check that ϕ̂1 +ϕ2,ε is, again for ε > 0 sufficiently small, C∞ strictly plurisub-
harmonic in a neighborhood of the closure of Ω: the function ϕ̂1 is strictly
plurisubharmonic “parallel to M” and ϕ2,ε is strictly plurisubharmonic “per-
pendicular to M” (cf. [Greene/Wu 1978] and [Elencwajg 1975]). Thus Ω̂ is
C∞ strongly pseudoconvex—the nonvanishing of d(ϕ̂1 + ϕ2,ε) at the bound-
ary of Ω̂ is also clear, for the C∞ part. Moreover, Ω̂∩M = Ω and F (Ω̂) ⊂ Ω,
since ϕ̂1 < 1 on Ω̂ by definition.

The utility of this somewhat intricate construction is that analysis of the
∂ problem on Ω can be transferred to Ω̂, a situation—C∞ strongly pseudo-
convex domains in CN—that is very familiar. Of course, ∂ analysis can be
carried out directly on domains in Stein manifolds. But the present approach
will be advantageous when we wish to consider stability matters.

The construction just given yields immediately that, if p is a point of the
boundary of Ω in M , then p is a “peak point” in the following (generalized)
sense: there is a holomorphic function fp : Ω → C such that |fp(z)| → 1
as z → p while lim sup |fp(z)| < 1 as z → q, q 	= p, q ∈ ∂Ω. This follows
since such “peaking functions” exist for each point of the boundary of a C∞
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bounded, strictly pseudoconvex domain in CN , so that peaking functions can
be obtained for Ω by restricting a peaking function for Ω̂.

The importance for our purposes of the existence of such peaking functions
is that this means that the argument of [Rosay 1979] applies to yield the anal-
ogous theorem, not just for domains in Cn as in Section 9.2.4, but also for
domains in Stein manifolds:

If Ω is a C∞ strictly pseudoconvex domain in a Stein manifold and
if Aut (Ω) is noncompact, then Ω is biholomorphic to the unit ball
in Cn, n = dimC Ω.

Actually, the existence of a global peaking function turns out to be unneces-
sary: the only hypothesis actually needed is strictly local. In particular, this
optimal result is obtained in [Gaussier/Kim/Krantz 2002]:

If Ω is a domain in a complex manifold with C2 boundary in a neigh-
borhood of some boundary point p, if p is a strictly pseudoconvex boun-
dary point, and if Aut (Ω) has an orbit that accumulates at p, then Ω
is biholomorphic to the unit ball in Cn, n = dimC Ω.

Returning now to the situation of a C∞ strictly pseudoconvex domain in a
Stein manifold, the embedding of Ω in Ω̂ opens up, as mentioned earlier, the
possibility of doing ∂ analysis on Ω rather explicitly. first, suppose that ω is a
(0, 1)-form on Ω. By the construction of Ω̂, there is a holomorphic retraction
(projection) F : Ω̂ → Ω, which in fact is defined and holomorphic on a
neighborhood of the closure of Ω̂. Since holomorphic pullbacks commute with
∂, we see that F ∗(∂Mω) = ∂CN (F ∗ω). In particular, F ∗ω is ∂ closed if ω is.
Moreover, if ∂u = F ∗ω, then u|Ω satisfies ∂M (u|M ) = ω. This setup means
that the full power of the regularity theory for the Kohn solution of ∂ on
strongly pseudoconvex domains is available, even though in our setting there
is no a priori canonical notion of a Kohn solution (orthogonal to holomorphic
functions) on Ω, because Ω does not have a canonically specified metric.

In particular, ∂ localization at boundary points holds in the form needed to
make the scaling method apply in the form needed to establish the analogue
of Theorem 3.4.3 and its stability under perturbation: Theorem 3.5.1 (and
also 3.5.2).

Theorem 11.1 (Theorems 3.5.1 and 3.5.2 Extended). If Ω0 is a C∞

strongly pseudoconvex domain with compact closure in a Stein manifold M ,
then the Bergman metric of Ω0 is complete, and its holomorphic sectional
curvature is asymptotically constant negative −4/(n + 1) in the sense that,
given ε > 0, there is a δ > 0 such that, if p ∈ Ω0 with dis (p,M \ Ω0) < δ,
then

∣∣K + 4
n+1

∣∣ < ε for each holomorphic sectional curvature K at p of the
Bergman metric of Ω0. Moreover, this estimate is stable in the sense that
there is a δ > 0 and a neighborhood U of Ω0 in the C∞ topology of domains
such that, if Ω ∈ U and p ∈ Ω with dis (p,M \ Ω) < δ, then

∣∣K + 4
n+1

∣∣ < ε
for each holomorphic sectional curvature K at p of the Bergman metric of Ω.
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Here dis means distance in a fixed Kähler metric on M .
It is actually the case that an asymptotic expansion of Fefferman type

holds in a neighborhood of each boundary point. first K(z, w), which is now
a double form of type (n, n)—type (n, 0) in z and type (0, n) in w—is again
C∞ on cl(Ω)× cl(Ω) \ {(p, p) : p ∈ ∂Ω}. And, given a boundary point p of Ω
with holomorphic coordinates (z1, . . . , zn) defined in a neighborhood U of p
in the Stein manifold M , we can write

K(z, w) = f(z, w) dz1 ∧ · · · ∧ dzn ∧ dw1 ∧ · · · dwn,

for z, w in the neighborhood Up of p and in Ω. Then the function f(z, w) has
the same form of asymptotic expansion as does the Bergman kernel function
in the Euclidean space case (cf. Section 3.4). This is established by using
∂ localization of the Bergman kernel form, which implies that its asymptotic
behavior near p is the same as that of the Bergman kernel of Up∩Ω (where we
can take Up to be itself strongly pseudoconvex). No essentially new ingredients
arise here: after the localization argument, one is in the original Fefferman
situation. This also holds in stable form, stable under C∞ perturbation.

Thus, either from the full Fefferman expansion or from the less detailed but
still sufficient information arising from the scaling method (see Section 10.1),
one can consider boundary orbit accumulation from the curvature viewpoint.
In particular, suppose that Ω is, as before, C∞ strongly pseudoconvex (or
even C2, since the scaling method still applies in that case). Also, suppose
that there is a sequence {ϕj} ⊂ Aut (Ω) such that, for some q ∈ Ω, the
sequence {ϕj(q)} converges to a point p0 in the boundary of Ω. Then, as in
Section 3.4, the (complete) Bergman metric of Ω has constant holomorphic
sectional curvature. As in Corollary 3.4.4, one can then deduce that Ω is
biholomorphic to the ball. As in the situation of Corollary 3.4.4, standard
Kähler geometry gives that the universal cover of Ω is biholomorphic to the
ball. To show that the covering map is injective, or equivalently that Ω is
simply connected, any of the several methods used to deal with the question
for 3.4.4 can be used here.

In particular, Lu Qi-Keng’s theorem (Theorem 4.2.2) applies1 in this case:

Theorem 11.2 (Lu Qi-Keng’s Theorem for Stein Domains). If Ω is
a domain with compact closure in a Stein manifold M , and if the Bergman
metric of Ω is complete and of constant (negative) holomorphic sectional cur-
vature, then Ω is biholomorphic to the unit ball in Cn, n = dimC M .

The proof of this result is obtained by the same method as for the case of
domains in Cn, with the one additional feature that a modified definition of

1If we are only concerned with establishing the simple connectivity of Ω, Lu’s
theorem is not really required, as noted in Section 3.4. But we exploit Lu’s theorem
here, because this generalization of Lu’s theorem for such Stein domains is interesting
by itself. Note: A domain is called Stein if it admits a strictly plurisubharmonic
exhaustion function.
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Bergman representative coordinates must be given. In the original definition as
given in Section 4.2, the coordinates at w0 ∈ Ω were obtained as w-derivatives
of log

(
K(z, w)/K(w,w)

)
, with the derivatives evaluated at w0. In the present

Stein manifold case, the quotient K(z, w)/K(w,w) is not as such defined, since
now K(z, w) and K(w,w) are not functions, but are rather double forms, one
at (z, w) ∈ Ω × Ω and the other at (w,w) ∈ Ω × Ω so that, if z 	= w, the
quotient is not meaningful.

However, this apparent difficulty can be removed by choosing holomorphic
coordinate systems (z1, . . . , zn) around the given z ∈ Ω and (w1, · · · , wn)
around the given w and then writing

K(z, w) = f(z, w) dz1 ∧ · · · ∧ dzn ∧ dw1 ∧ · · · dwn

and

K(w,w) = g(w,w) dw1 ∧ · · · ∧ dwn ∧ dw1 ∧ · · · dwn.

Then the quotient f/g is well defined up to a product of two factors,2 one
a holomorphic function of z, the other a holomorphic function of w—these
factors depending on the choice of z and w coordinate systems (the conjugate
factors for the w-coordinates cancel since the same factor occurs in f and g).
Thus w-derivatives of log(f/g) are well defined even though f/g is not well
defined itself. Once it is noted that Bergman representative coordinates can
be thus defined, the remainder of the proof given in Section 4.2 (see Theo-
rem 4.2.2) applies to establish Lu Qi-Keng’s theorem in this Stein domain
situation. ��

We return now to the function-theoretic and geometric stability prop-
erties of compact-closure C∞ strongly pseudoconvex domains Ω in a Stein
manifold M (which, as before, we suppose to have a fixed proper embed-
ding E : M → CN ). Using the construction for representing Ω as the inter-
section of E(M) ⊂ CN with a C∞ strongly pseudoconvex domain in CN

as already discussed, one obtains stable ∂ estimates for variation of Ω in
M from the stable ∂ estimates for C∞ strongly pseudoconvex domains in
CN ([Greene/Krantz 1982]). This stability is the needed ingredient to estab-
lish the extension of Theorems 3.5.1 and 3.5.2, as already stated. This theorem
in particular gives stable bounds on the distance of orbits from the boundary,
analogous to Theorem 3.5.2; this result comes directly from the stability part
of the extension of Theorems 3.5.1 and 3.5.2.

Theorem 11.3 (Theorem 3.5.2 Extended). Suppose that M is a Stein
manifold with a fixed but arbitrary Kähler metric and suppose that Ω0 is a
C∞ strictly pseudoconvex open subset of M with compact closure in M . If Ω0
is not biholomorphic to the unit ball in Cn, n = dimC M , and if po ∈ Ω0,

2One has to check what happens when we work with other holomorphic coordi-
nate systems; that is what is discussed here.
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then there is a δ > 0 and a neighborhood U of Ω0 in the C∞ topology on C∞

compact-closure domains in M such that, if Ω ∈ U , then:

(1) p0 ∈ Ω.
(2) The domain Ω is real diffeomorphic to Ω0 via a diffeomorphism that is

C∞ on the closure of Ω and with its inverse C∞ on the closure of Ω0.
(3) For every ϕ ∈ Aut (Ω), the distance in the Kähler metric on M from

ϕ(p0) to the boundary of Ω is ≥ δ.

The proof here follows the pattern of the proof of Theorem 3.5.2.
This result together with the normal families results already noted make

it possible to apply exactly the arguments used to prove Theorem 4.4.3 to
prove a similar semicontinuity result for perturbation of a given Ω0 in a Stein
manifold, Ω0 not biholomorphic to the ball.

Theorem 11.4 (Theorem 4.4.3 Extended). If Ω0 is a C∞ strongly pseu-
doconvex domain in a Stein manifold M with Ω0 not biholomorphic to the
unit ball in Cn, n = dimC M , then there is a neighborhood U of Ω0 in the
C∞ topology such that, if Ω ∈ U , then Aut (Ω) is isomorphic to a subgroup
of Aut (Ω0) via an isomorphism obtained by conjugation by a real diffeomor-
phism of Ω to Ω0. first, there is a real diffeomorphism F : Ω → Ω0 such that
the map α �→ F ◦ α ◦ F−1, α ∈ Aut (Ω), is an injective homomorphism of
Aut (Ω) onto a subgroup of Aut (Ω0).

A result for Stein domains analogous to Theorems 4.3.2 and 4.3.3 holds,
and the same basic technique applies, but some additional technical consider-
ations arise. The result itself is what one would perhaps expect.

Theorem 11.5 (Theorems 4.3.2 and 4.3.3 Extended). Suppose that Ω0
is a C∞ compact-closure strictly pseudoconvex domain in a Stein manifold M .
Then there is a C∞ neighborhood O of the almost complex structure JM of
M restricted to the closure of Ω0 within the space of all C∞ almost complex
structures on the closure of Ω0 with the following property: for each J ∈ O
with J integrable on Ω0, there is a C∞ compact-closure domain ΩJ in M
such that (Ω0, J) is biholomorphic to

(
ΩJ , JM

∣∣
ΩJ

)
. Moreover, given any C∞

neighborhood U of Ω0 in the C∞ topology on domains, the neighborhood O can
be chosen so that, for each J ∈ O, the domain ΩJ can be chosen to be in U .

The essential idea of the proof of this result is the same as that of the
proof of Theorem 4.3.2, except that we correct not the coordinate functions
of a domain in Cn but the embedding functions for M . Specifically, with
E : M → CN a holomorphic proper embedding as before, write

E = (E1, . . . , EN ),

where each Ei : M → C is a holomorphic function; holomorphic here means
holomorphic in the JM complex structure. The functions Ei

∣∣
Ω0

are of course
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C∞ on the closure of Ω0. They need not be holomorphic relative to another
integrable complex structure on (the closure of) Ω0, but ∂JEi, ∂J relative to
the J-structure, is C∞ small on the closure of Ω0. Suppose for the moment
that ∂J satisfies stable estimates in the same sense as for domains in the proof
of Theorem 4.3.2. Then there are C∞ functions uj on Ω0, which are C∞ small
up to the boundary of Ω0, which satisfy ∂Juj = ∂JEj , j = 1, . . . , N . Then
the map of Ω0 into CN defined by setting (the j-th coordinate function of)
EJ : M → CN = Ej − uj , j = 1, . . . , N , is J-holomorphic, and C∞ close to
the map E.

Of course there is no guarantee that the image of EJ lies in E(M). But
by [Docquier/Grauert 1960] there is a tubular neighborhood of E(M), first,
an open set U in CN that contains E(M) and for which there is a holomor-
phic mapping F : U → E(M) with F

∣∣
E(M) = identity. For short, there is a

holomorphic retraction of U onto E(M).
With F so chosen, it then follows from standard differential topology that,

when EJ is sufficiently C∞ (even C1) close to E on the closure of Ω0, the map
F ◦ EJ is a holomorphic diffeomorphism of Ω0 with the J-complex structure
onto its image in E(M), so that E−1 ◦ F ◦ EJ is its desired biholomorphic
realization of (Ω0, J) as a compact-closure domain in M .

The required ∂J estimates, stable in J , are obtained by working through
the solution of the ∂-Neumann problem for strictly pseudoconvex domains in
Stein manifolds directly, and checking the stability of each step, as in [Greene/
Krantz 1982]—a tedious and fairly difficult process.

If Ω0 is a compact-closure domain in a Stein manifold M and if G is a
compact subgroup of Aut (Ω0), then a G-invariant Kähler metric on Ω0 can be
obtained as follows: Let ϕ be a C∞ strictly plurisubharmonic function on M .
Define ψ : Ω → R as the average of ϕ

∣∣
Ω0

with respect to the G-action. Then
the Levi form of ψ is the desired G-invariant metric. If G on Ω0 extends to act
smoothly on the closure of Ω (as always happens, if Ω0 is C∞ strongly pseu-
doconvex in M), then this G-invariant metric will be C∞ on the closure of Ω0.
In this case, the Kohn solution of the ∂ problem (orthogonal to holomorphic
functions with respect to the Kähler metric) will be G-invariant in the ob-
vious sense. This in turn implies that a G-invariant abstract perturbation of
the complex structure of Ω0 can be realized G-equivariantly.

Equivalently, if G acting on Ω0 arises as the restriction to Ω0 of the action
of the group G on all of M , the action preserving Ω0, then every abstract
G-invariant perturbation of the complex structure of Ω0 that is sufficiently
C∞ close to the complex structure of Ω0 can be realized in the sense of
Theorem 11.5 as a G-invariant domain in M which is a C∞ perturbation of
Ω0. In this sense, Theorem 11.5 holds equivariantly.

While some additional technical details can be expected to and indeed
do arise in these developments, it is, from a certain viewpoint, almost to
be expected that so much extends to the Stein manifold situation from the
Euclidean space pseudoconvex situation. It is indeed one of the grand and
recurrent themes of modern several complex variables, dating at least back
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to K. Oka, E. Cartan and H. Grauert, and in many aspects even back to
E. E. Levi, that what happens for pseudoconvex domains in Euclidean space
ought also to happen for Stein manifolds and pseudoconvex domains in these
manifolds. In this sense, it is gratifying but not surprising that so many of the
results developed in earlier chapters for domains in complex Euclidean space
can be extended, and indeed extended by essentially the same arguments, to
Stein manifolds.
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de C

n par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble)
29(1979), 91–97.

[Royden 1971] Royden, H., Remarks on the Kobayashi Metric, Several Complex
Variables II, Maryland 1970, Springer, Berlin, 1971, 125–137.

[Royden/Wong] Royden, H. and Wong, P.-M., Carathéodory and Kobayashi metrics
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