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Preface

Shift-invariant algebras are uniform algebras of continuous functions defined on
compact connected groups, that are invariant under shifts by group elements. They
are outgrowths of generalized analytic functions, introduced almost fifty years ago
by Arens and Singer, and are the central object of this book. Associated algebras
of almost periodic functions of real variables and of bounded analytic functions
on the unit disc are also considered and carried along within the shift-invariant
framework. The adopted general approach leads to non-standard perspectives,
never-asked-before questions, and unexpected properties.

The book is based mainly on our quite recent, some even unpublished, results.
Most of its basic notions and ideas originate in [T2]. Their further development,
however, can be found in journal or preprint form only.

Basic terminology and standard properties of uniform algebras are presented
in Chapter 1. Associated algebras, such as Bourgain algebras, polynomial exten-
sions, and inductive limit algebras are introduced and discussed. At the end of
the chapter we present recently found conditions for a mapping between uniform
algebras to be an algebraic isomorphism. In Chapter 2 we give fundamentals, var-
ious descriptions and standard properties of three classical families of functions —
almost periodic functions of real variables, harmonic functions, and HP-functions
on the unit circle. Later on, in Chapter 7, we return to some of these families and
extend them to arbitrary compact groups. Chapter 3 is a survey of basic proper-
ties of topological groups, their characters, dual groups, functions and measures
on them. We introduce also the instrumental for the sequel notion of weak and
strong hull of a semigroup.

Chapter 4 is devoted to shift-invariant algebras. We describe the spaces of
automorphisms and of peak subgroups of shift-invariant algebras, and show that
the algebraic properties of the generating semigroup S have a significant impact on
the properties of the associated shift-invariant algebra Ag. For example, whether
analogues of the classical Radd’s theorem for null-sets of analytic functions, and of
Riemann’s theorem for removable singularities hold in a shift-invariant algebra Ag
depends on specific algebraic properties of the generating semigroup S. Asymp-
totically almost periodic functions on R, which share many properties with almost
periodic functions, are introduced at the end of the chapter. Extendability of lin-
ear multiplicative functionals from smaller to larger shift-invariant algebras is the
focal point of Chapter 5. The subject is naturally related with the extendability of
non-negative semicharacters from smaller to larger semigroups and, equivalently,
of their logarithms, called also additive weights. We give necessary and sufficient
conditions for extendability of individual weights, as well as of the entire family
of weights on a semigroup. These conditions imply various corona-type theorems.
For instance, if S is a semigroup of R containing the origin, then the algebra of
almost periodic functions in one real variable with spectrum in S does not have
a Ci-corona if and only if all non-negative semicharacters on S are monotone
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decreasing, or equivalently, if and only if the strong hull of S coincides with the
positive half of the group envelope of S. On the other hand, the same conditions
imply necessary and sufficient conditions for the related subalgebra of bounded
analytic functions on the unit disc D to possess a C;-corona and a D-corona. In
Chapter 6 we discuss big disc algebras of generalized analytic functions on a com-
pact abelian group G, an important class of shift-invariant algebras, also known
as G-disc algebras. We describe their Bourgain algebras, orthogonal measures and
primary ideals.

In Chapter 7 we extend the notion of harmonic and HP-functions to compact
abelian groups, and present corresponding Fatou-type theorems. In Chapter 8 we
utilize inductive limits of classical algebras to study and generalize shift-invariant
algebras on G-discs. In particular, we show that any sequence @ of inner functions
on the unit disc generates an inductive limit algebra, H>(Dg), of so called &-
hyper-analytic functions on the associated big disc Dg. They are generalizations
of hyper-analytic functions from [T], and similarly to them do not have a G-
disc-corona, i.e. there exists a standard dense embedding of the big disc Dg into
the maximal ideal space of H*(Dg). We introduce also the class of Blaschke
algebras, which are inductive limits of sequences of disc algebras connected with
finite Blaschke products.

The selection of topics depended entirely on our own research interests. Many
other related topics could not be included, or even mentioned. All chapters are
provided with historical notes, references, brief remarks, comments, and unsolved
problems. We do not necessarily claim credit for any uncited result. It may be an
immediate consequence of previous assertions, or, part of the common mathemat-
ical knowledge, or, may have a history difficult to be traced.

The book is addressed primarily to those interested in analytic functions and
commutative Banach algebras, though it could be useful to a wide range of research
mathematicians and graduate students, familiar only with the fundamentals of
complex and functional analysis.

Over the years our thinking in the area has been stimulated and encouraged
by discussions and communication with several experts, among which we would
like to mention Hugo Arizmendi, Richard Aron, Andrew Browder, Joseph Cima,
Brian Cole, Joseph Diestel, Evgeniy Gorin, Farhad Jafari, Krzysztof Jarosz, Paul
Muhly, Rao Nagisetty, Scott Saccone, Sadahiro Saeki, Anatoly Sherstnev, Andrzej
Soltysiak, Edgar Lee Stout, John Wermer, and Wiestaw Zelazko. Special thanks
are due to the participants — current and former — of the Analysis seminar at
the University of Montana: Gregory St.George, Karel Stroethoff, Elena Toneva,
George Votruba, and Keith Yale for their encouragement and support. We also
mention with pleasure and gratitude the contribution of our students Tatyana
Ponkrateva from Kazan State University, Aaron Luttman and John Case from
the University of Montana, and especially Scott Lambert, who read the entire
text and suggested many improvements.
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Chapter 1

Banach algebras and uniform
algebras

In this chapter we present a part of the uniform algebra theory we will need, includ-
ing several important algebraic constructions. Basic notations, terminology, and
selected auxiliary results concerning commutative Banach algebras and uniform
algebras are presented in the first two sections. The inductive and projective limits
of algebras, introduced in more detail, are very convenient tools for describing the
structure and revealing the hidden features of specific uniform algebras. Bourgain
algebras and polynomial extensions provide powerful methods for constructing
new classes of algebras. Further we discuss isomorphisms and homomorphisms
between uniform algebras.

1.1 Commutative Banach algebras

A Banach space B over the field of complex numbers C is a linear space over
C (thus, in B there are defined two operations — addition, and multiplication
by complex scalars) which is provided with a norm, i.e. a non-negative function
II.]|: B— Ry =10,00) with the following properties:

(i) ||Aall = |A||la|| for each a € B and any complex scalar A € C.

(ii) |le+ ]| < |la|| + ||b]| for each a,b € B.
(iii) O is the only element in B whose norm is zero.

)

(iv) B is a complete space with respect to the topology generated by the norm
Il 11

By completeness we mean that every Cauchy sequence {a,}52 ; of elements in B

is convergent.
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A Banach space B over C is called a Banach algebra, if B is provided with
an associative operation (called multiplication) which is distributive with respect
to addition, and if the inequality

(v) llab]l < llal[jo]
holds for every a,b € B. A Banach algebra is commutative if its multiplication is
commutative, and with unit if it possesses a unit element with respect to multipli-
cation (denoted usually by e, or, by 1) such that

(vi) el = 1.

Let B be a commutative Banach algebra with unit. An element f in B is
said to be invertible if there exists a g in B such that fg = e. The element g with
this property is uniquely defined. It is denoted by f~—! and is called the inverse
element of f. Hence we have f~1f = e for any invertible element f in B. The set
B! of all invertible elements of B under multiplication is a subgroup of B. A
simple example of a commutative Banach algebra with unit is the set of complex
numbers C.

Proposition 1.1.1. Let B be a commutative Banach algebra with unit e. FEvery
element of the open unit ball centered at e is invertible, i.e.

{heB:||h—e|<1}c B
Proof. Let || f]| < 1, and let g, = ka, where f = e. If m < n, then by (ii) and

k=0
(v) from the above we have that

n n n
lon =gl = S 7= 3wt S
k=m+1 k=m+1

k=m+1
_ A =gt A

L=/l Rt

Hence for any € > 0 and n, m big enough, we have ||g, — gm|| < €, since by || f]] < 1
we have klim | £+ < klim | £/¥+1 = 0. Thus, {g,} is a Cauchy sequence, and by
— 00 — 00

(o)
the completeness of B it converges to an element g € B, i.e. g = lim g, = Z Ik
n—oo
k=0

In addition,

[>'s) k
gle= = (3 r)e-n=lm > r)e-
n=0 n=0
k
= lim 3 (" = ") = lim (e~ fH) = e~ lim f =,

k—o0
n=0

since klim [ £]5*1 = 0. Hence e — f is an invertible element of B, as claimed. [
— 00
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Definition 1.1.2. The spectrum of an element f in a commutative Banach algebra
B is the set

o(fy={NeC: Xe—f¢ B '} (1.1)
Corollary 1.1.3. The spectrum o(f) is contained in the disc D(||f|]) = {z €
C: |z| < ||fII} with radius ||f||, centered at 0.

Proof. Given an f € B, let s be a complex number with |s| > || f||. Let g = f/s =

(1/s)f. By the hypothesis ||g|| = || f||/|s| < 1. Proposition 1.1.1 implies that the

element e — g is invertible, and its inverse element is the sum of the convergent
(oo}

series E g". Thus
n=0

o0

Z = (e~ f/s) Zf"/s

:((Se_f)/5>2fn/8 86— an/sn—i-l
n=0

Hence se — f is invertible in B. Therefore, s ¢ o(f) whenever |s| > | f||. Conse-
quently, o(f) C D(]|f]]), as claimed. O

Corollary 1.1.3 implies that the spectrum of any element f in B is a bounded
set in C, and therefore C\ o(f) # . One can see that B~! is an open subset of B,
and the correspondence f — f~! is a homeomorphism of B~! onto itself. More
precisely, B! is an open group (under multiplication) in B, and the mapping
f— f1: B! — B~! is a group automorphism. The spectrum o(f) is a
closed and bounded set, thus a compact subset of C. The number

r, = max{\z\: z € a(f)}

is called the spectral radius of f € B. Since r

D(|| f]])- The spectral radius r
S4, T2]). Namely,

; < Ifll, we have o(f) C D(r,) C

; can be expressed explicitly in terms of f (e.g.[G1,

r, = lim VIl < lim 3/
n—oo n—o0

Definition 1.1.4. The peripheral spectrum of an element f in a commutative Banach
algebra B is the set

or(f)={z€0a(f): \z\:T‘f}za(f)O']I‘rf. (1.3)

(1.2)

Any commutative Banach algebra B with unit admits a natural representa-
tion by continuous functions on a compact topological space. An important role in
this representation, as well as in commutative Banach algebra theory in general,
is played by complex-valued homomorphisms, i.e. linear multiplicative function-
als of the algebra. A linear multiplicative functional of B is called any non-zero
complex-valued function ¢ on B with the following properties:
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(i) v (Aa+pb) = Ap(a) + pe(d),
(i) @ (ab) = p(a)p (b)

for every a, b € B, and all scalars A\, u € C. The set M p of all non-zero linear
multiplicative functionals of B is called the mazimal ideal space (or, the spectrum)
of B.

For a fixed a € B with ¢(a) # 0 we have ¢(a) = p(ea) = ¢(e) p(a), thus
¢(a)(p(e) — 1) = 0. Consequently, ¢(e) = 1 for every linear multiplicative func-
tional ¢ of B. Since aa=! = e for every a € B~!, we have 1 = p(e) = p(aa™!) =
o(a) p(a=t), thus p(a) # 0 for every invertible element a € B.

Lemma 1.1.5. Every linear multiplicative functional ¢ € Mp is continuous on B,
and ||| = 1.

Proof. Let f € B, and let |z| > | f|| for some z € C. Hence, ze — f € B~! by
Corollary 1.1.3. According to the previous remark, ¢ (ze — f) # 0, and hence
o(f) # zp(e) = z for every ¢ € Mp. Consequently, the number ¢(f) belongs
to the disc {z € C: |z| < ||f[|}, i-e. [@(f)| < |If]l, and this holds for every f €
B. Therefore, the functional ¢ is bounded, thus continuous, and ||¢| < 1. By
definition, ||¢]| is the least number M with ’go(f)’ < M| f] for all f € B. For any
such M we have M > 1, since 1 = |¢(e)| < M|le|| = M. Hence, || > 1, and
therefore ||¢|| = 1. O

Example 1.1.6. (a) Let X be a compact Hausdorff set. The space C(X) of all

continuous functions on X under the pointwise operations and the uniform norm

Ifll = max | f (x)’ is a commutative Banach algebra. One can easily identify some
TE

of the linear multiplicative functionals of C'(X). Namely, for a fixed x € X consider
the functional “the point evaluation @, at x” in C(X), i.e. p,(f) = f(z) for every
[ € C(X). Clearly, ¢, € Mc¢(x). Actually, one can show that every element in
M xy is of type ¢, for some x € X. Consequently, M¢(x) and X are bijective
spaces. We usually identify them as sets without mention, and write them as
MC(X) =~ X.

(b) Let D =D(1) = {z: |2| < 1} be the open unit disc in the complex plane
C and let A(D) denote the space of continuous functions in the closed unit disc
D= {z eC:|z| < 1} that are analytic in D. Equipped with pointwise operations
and the uniform norm || f|| = max |f(x)

zeD

, A(D) is a commutative Banach algebra,
called the disc algebra. One can easily check that D C M 4(py. In fact, M 4p) = D.

A net {¢q} of functionals in M p is said to converge pointwise to an element
p € Mp if oo (f) — o(f) for every f € B. The pointwise convergence generates
a topology on the maximal ideal space Mp of B, called the Gelfand topology.
With respect to it Mp is a closed subset of the unit sphere Sp- of the space
B* dual to B. By the Banach-Alaoglu theorem, Sp~ is a compact space in the
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weak*-topology, which in this case coincides with the pointwise topology. Under
it Mp is a closed subset of Sp«, and therefore a compact and Hausdorff set.

Let f be an element in a commutative Banach algebra B. The Gelfand trans-
form of f is called the function f defined on Mg by

Fle) = ¢(f), ¢ € Mp. (1.4)

The Gelfand transform ]? of any f € B is a continuous function on Mpg with
respect to the Gelfand topology. Indeed, if ¢, — ¢ then v, (f) — ©(f), and
therefore, f(gpa) — A(go). The Gelfand transformation A: B — B C C(Mpz)
is a homomorphisAm of B onto the Gelfand transform B = {f f € B} of B. If

B =C(X), then f(pz,) = ¢z, (f) = f(xo) for every zo € X. Hence, if we identify
M (x) with X, as in Example 1.1.6(a), then f coincides with f.

Observe that if M g possesses a closed and open set K, then the characteristic
function », of K (i.e. s, (x) = 1 for x € K and 5, (x) = 0 otherwise) belongs
to B by the famous Shilov idempotent theorem (see e.g. [GRS]), which asserts
that under the hypotheses there exists a unique element b € B with b% = b (i.e.
b is an idempotent of the algebra B) whose Gelfand transform is precisely the
characteristic function of K, i.e. b= My

There is a good reason to call Mp the set of maximal ideals of B. A subset
J of a commutative Banach algebra B is called an ideal of B, if J is a linear subset
of B which is closed with respect to multiplication with elements in B, i.e. ab € J
for any ¢ € B and b € J. Any ideal of an algebra is an algebra on it own. An
ideal J C B is proper if it differs from B, and mazximal, if it is proper and every
proper ideal of B containing J, equals J. By Zorn’s Lemma, one can show that
any proper ideal of B is contained in some maximal ideal of B (cf. [G1, S4, T2]).

The sets {0}, B and aB = {ab : b € B} for a fixed a € B, are all ideals.
If ¢ is a linear multiplicative functional of B, then the null-set of ¢, Null () =
{f € B:p(f) = 0} is an ideal of B. Indeed, for every a € B and b € Null (),
plab) = p(a) p(b) = 0, i.e. ab € Null(p). Since p(e) = 1 we have that e ¢
Null (¢), and therefore, Null () is a proper ideal of B.

The unit e does not belong to any proper ideal J of B, since by assuming
the opposite, i.e. e € J, we get a = ea € J for all a € B, thus J = B. The same
argument applies to check that proper ideals J do not contain invertible elements
of B,i.e. B~'N.J = @ for any proper ideal J of B. An ideal of B is proper if and
only if @ is an invertible element of B, since if a € B~!, then e = aa™! € aB, a
contradiction.

One can easily see that the null-set Null (¢) of any linear multiplicative func-
tional ¢ is a maximal ideal (e.g. [G1, S4, T2]). Actually, every maximal ideal M
of B is of type Null (pps) for some ¢ € Mp, i.e. the set of maximal ideals of B
is bijective to the family of null-sets of linear multiplicative functionals on B.
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Proposition 1.1.7. The spectrum of any element f of B coincides with the range
of its Gelfand transform f, i.e.

~ ~

o(f) = f(Mp) = Ran(f). (1.5)
Proof. Let z € ]?(MB) and let ]?(go) = z for some ¢ € Mp. Hence z — o(f) =
zf(e) — f(¢) =0, thus ¢(ze — f) = 0, and therefore ze — f ¢ B~1, as shown prior
to Lemma 1.1.5. Consequently z € o(z). Conversely, if z € o(x) then ze— f ¢ B~!
and hence J = (ze — f) B is a proper ideal of B by the above remarks. If M is
a maximal ideal containing J, then for the corresponding functional ¢,, we have
Null(p,,) = M D J > ze — f, thus ¢,,(ze — f) = 0. Therefore, z = ¢,,(ze) =

~

@M(f):f(@zw)' U

As a corollary we sce that o(f +g) = (f +§)(Mp) C f(Mp) + G(Mp) =
o(f)+o(g), and, similarly, o(fg) C o(g) o(g) for every f,g € B.

By Proposition 1.1.7 max |z| = max [z| = max ’]?(x) , which yields
z€0(f) 2€f(Mp) reMp
the formula R R
ry = max [[(@)] = lflows)

for the spectral radius 7, of any element f € B. Combined with formula (1.2) this
identity yields

1y = max |F@)| =7, = tim 3/]f7]) (1.6)
x B n—oo

Proposition 1.1.7 implies the following description of the peripheral spectrum
(1.3):
ox(f) = {f(@): |f(x)] =r,, € Ma}.

By the well-known mazimum modulus principle for analytic functions, the
functions in the disc algebra A(D) assume their maximum modulus only at the
points in the unit circle T, i.e. the topological boundary T = bD of D = M 4 p). Sets
of this kind are of special interest for commutative Banach algebras. A subset F in
the maximal ideal space of a commutative Banach algebra B is called a boundary
of B if the Gelfand transform f of every element f in B attains the maximum of
its modulus max ’f(m)| = [[fllc(mp) in E. In other words, E is a boundary for

B

B if for every f € B there exists a @9 € E such that |]?(<p0)| = wrg/&\m/{xB |f(g0)|, ie.

the equality

nax 70 = g 1766

holds for every f € B. Clearly, the maximal ideal space Mp is a boundary of
B. The celebrated Shilov theorem asserts that the intersection 9B of all closed
boundaries of a commutative Banach algebra B is again a boundary, called the
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Shilov boundary of B (e.g. [G1, S4, T2]). Clearly, OB is the smallest closed bound-
ary of B. This minimal property of the Shilov boundary implies the following
characterization of its points.

Corollary 1.1.8. A point mgy in Mp belongs to the Shilov boundary 0B of a com-
mutative Banach algebra B if and only if for each neighborhood U of mg in Mp
there exists a function f in B such that max ’f ’ > max |f |

meuU

As it is not hard to see, 9C(X) = X. The maximum modulus principle,
mentioned above, shows that T is a boundary for the disc algebra A(D). In fact,

HAD) =T

Let B™ = {(21,22,...,zn) e C": H(Zl722,...,zn)|| < 1} be the unit ball
in C™ with radius 1 centered at the origin (0,0,...,0) € C,, let D™ be the n-
polydisc {(21,2’2,...,Zn) eCm:z| <1, 1<5< n}, and let T™ = {(21,22,...,
zn) € C": |zj| = 1, 1 < j < n} be the n-dimensional torus in C", i.e. the
distinguished boundary of B™. The Shilov boundary of the ball algebra A(B™) is
homeomorphic to the unit sphere in C™, which is the topological boundary of B",
while the Shilov boundary for the polydisc algebra A(D™) is homeomorphic to T",
which is a proper subset of the topological boundary bD™ of D™.

1.2 Uniform algebras

Algebras of continuous functions have many useful properties. They play a major
role in this book. A commutative Banach algebra A over C is said to be a uniform
algebra on a compact Hausdorfl space X if:

(i) A consists of continuous complex-valued functions defined on X, i.e. A C
C(X).

(ii) A contains all constant functions on X. In particular the identically equal to
1 function on X belongs to A.

(iii) The operations in A are the pointwise addition and multiplication.

(iv) A is closed with respect to the uniform norm in C(X),

If]l = max [ f(z)], f e A (1.7)

(v) A separates the points of X, i.e. for every two points in X there is a function
in A with different values at these points.

A uniform algebra A is said to be antisymmetric if there are no real-valued
functions in A besides the constants. A is a mazimal algebra on X if there is no
proper intermediate uniform algebra on X between A and C(X). A is a mazimal
algebra if the restriction algebra A|sp4 is a maximal algebra on 0A. According to
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the celebrated Wermer’s maximality theorem, the disc algebra A(D) is a maximal
algebra.

A uniform algebra A is called a Dirichlet algebra if the space Re (A| 5 A) of real
parts of its elements is uniformly dense in Cg(0A), i.e. if every real continuous
function on the Shilov boundary A can be approximated on JA by real parts
of functions in A. An example of a Dirichlet algebra is, for instance, the disc
algebra A(D). Indeed, Re A(D) consists of all real-valued continuous functions on
D that are harmonic on D and the harmonic conjugates of which are extendable
continuously on T. Consequently, Re A(D) contains all continuously differentiable
functions on T, and these are dense in Cg(T).

Let ¢ € M 4. A non-negative Borel measure p on X for which the equality

~ [ 1@ dutx)
X

holds for every f € A is called a representing measure for ¢ on X. Note that

/ fa o (fg) = / f(@) du( /(w)du(w)

for any f,g € A, i.e. u is a multiplicative measure for A. Any representing measure
u of p on X satisfies the equalities

Il = [ du = (1) =
X

By the Hahn-Banach theorem the set M, of all representing measures for a ¢ €
M4 is nonempty. Actually, M, is 1bomorphlc to the set of all norm-preserving
extensions of p € M4 from A C C(X) onto C(X) (e.g. [G1]).

If A is a Dirichlet algebra, then every ¢ € M4 has a unique representing
measure on 04, i.e. M, is a single-point set for every ¢ € M 4. If not, the difference
of every two representing measures of ¢ will vanish on A, hence on Re A, hence
on Cr(X) and therefore it will be the zero measure.

Proposition 1.2.1. Let A be a uniform algebra on a compact set X. If there is a
representing measure | for some ¢ € Ma, such that supp (u) = X, then A is an
antisymmetric algebra.

Proof. Assume that p is a representing measure for some ¢ € A with supp (u) =
X. Let f be a non-constant real-valued function in A, and let t1,t2 € f(X) C
R, t; # to. Without loss of generality we can assume that ¢; > 0. Let F be
a closed neighborhood of ¢; in R, which does not contain to. There exists a
function g € Cr(f(X)) such that bup\g\ =1,g=1on F,and g <1lon f(X)\F.
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Note that ¢ is a uniform limit of polynomials on f(X) C R. Hence, the function

g o f belongs to A. Since supp () = X and ||| = /g o fdu =1, we have that
X
0< /g o fdu =c < 1. Since p is a multiplicative measure, then
X

lim [ (go f)'du = (/nlggo(gof)”du) — lim " = 0.

n—oo n—oo

X X

On the other hand, the assumed property supp (1) = X implies that

lim [ (gof) /du>0

n—oo

b'e 0D

in contradiction with the previous equality. Therefore, every real-valued function
in A is constant, and consequently, A is an antisymmetric algebra. O

The space C(X) for a compact Hausdorff set X is a uniform algebra. Let K
be a compact subset of the maximal ideal space M4 of a uniform algebra A on
X. Consider the algebra A| 5 of restrictions of Gelfand transforms f , f € Aon

K. In general this is not a closed subalgebra of C(K), and therefore A’ 5 1s not

always a uniform algebra. However, the closure Ag of ﬁ’ x in C(K) is a uniform
algebra with M4, C Ma. If M4, does not meet A, then 0Ax = b(M a4, ), the
topological boundary of M 4, with respect to the Gelfand topology, which is an
immediate corollary of the following.

Theorem 1.2.2 (Rossi’s Local Maximum Modulus Principle). If U is an open
subset of My, then

sup [fm = aua ) /0]

for every function f € A.

Let A be a uniform algebra on X. As we know from section 1.1, the maximal
ideal space M 4 of A is a compact set. Since the point evaluation ¢, : f — ¢(x)
at any point of X is a linear multiplicative functional, then ¢, € M4 for every
T € X. This allows us to consider X as a subspace of M 4. The Gelfand trgnsform
fofan f € A is continuous on M 4. For any point of x € X we have f(p,) =
vz (f) = f(x), and therefore f can be interpreted as a continuous extension of f on
M 4. Moreover, in a certain sense M4 is the largest set for natural extension of all
functions in A. Recall that according to Lemma 1.1.5 the norm of any ¢ € M 4 is
1. Therefore, ||¢(f)|| < lellllf] = || f]|- It follows that the Gelfand transformation

A A—AcC CMa): f— f is an isometric isomorphism. Consequently, the
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algebra A and its Gelfand transform A are isometrically isomorphic, and hence A
is closed in C'(X). Since the algebra A|sa of restrictions of elements in A on the
Shilov boundary 0A is also isometrically isomorphic to A, we have A & A A| oA
For this reason we will not distinguish, for example, the disc algebra A(D) from
its restriction algebra A(T) = A(ID))|T on the Shilov boundary 0A(D) = T.

Observe, that [(my — ma)()]| = ma1(f) = ma(F)]| < (Il + lmall) I £1] <
2| f]| for every my,me € M4, and f € A. Consequently, the norm |jm; — mg|| of
the linear functional mi — mo € A* does not exceed 2. Therefore, the diameter of
the set M4 C A* is not greater than 2. The property ||m1 — ma|| < 2 generates a
transitive relation in M 4. It is easy to check that this is an equivalence relation
(e.g. [G1],[S4]). The equivalent classes of the set M 4 with respect to this relation
are called Gleason parts of A. It is clear that points on the extreme ends of a
diameter, i.e. for which ||m; — mz|| = 2, belong to distinct Gleason parts.

A homomorphism ¢: A — B between two uniform algebras naturally gen-
erates an adjoint continuous map @*: Mp — M 4 between their maximal ideal
spaces, defined by

(@ () () =9 (2()), f €A p€Ms.

If #: A — B preserves the norm, i.e. if

12l 5 = 17114
for every f € A, then @ is called an embedding of A into B. Clearly, &*(0B) C M 4.

Proposition 1.2.3. Let A and B be uniform algebras, and let &: A — B be a
homomorphism that does not increase the norm, i.e. for which H@(f)HB < |Iflla,
f € A. Then @ is an embedding of A into B if and only if the range &*(0B) of
@* contains the Shilov boundary 0A.

Proof. For every f € A we have

max |m(f)| = max [(#"(9))(f)| = max [o(2(f))]

med*(0B) p€EIB wEeIB (1 8)
= ;Ié%)jé ’(@(f))(@)’ = ng(f)HB

If 0A C $*(0B), then

1£la = mas [ 7o) = max [o(H] < mas - [o()] = [[90)]] -

Therefore, ||f||la = H@(f)HB, i.e. @ preserves the norm.

Conversely, if @ : A — B is an isometry, then ¢*(0B) is a boundary for A,
since by (1.8)

max [f(p)| = max |o(f)] =[|2(f)] 5 =IIf]la.

pED*(9B) ©ED*(OB)

Consequently, 0A C ¢*(0B). O
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Corollary 1.2.4. A homomorphism @ of A onto B which does not increase the
norm is an embedding if and only if *(0B) = DA.

Proof. The arguments from the proof of Proposition 1.2.3 show that it is enough
to show that ¢*(0B) C 9A. Suppose that, on the contrary, &*(0B) 2 JA, and let
o € P*(0B) \ OA. According to Corollary 1.1.8, there is a neighborhood U of ¢q
in M4 \ A, such that for every function f € A,

max|]?(m)|< max |f(m)|

meU meMa\U

In particular,

At < F(2*(0))].
e |F(2*(9))] < oo X £ (2" ()|

—

D(f)(p), we have

Since f(@*(@)) = (95* (@))(f) = @(@(f))

— —

max ] < max 7)) )
eax e < a2

By the assumed ®(A) = B, we see that

max 9(p)| < max
<p€(45*)*1(U)| ( )’ PE(P*)~H(MA\D)

[3(¢)]
for every g € B. Consequently, (&%)~ (M \ U) is a closed boundary of B, and

(@) (o) C (@*)"1(U) c Mp\ (&%)} (M4 \U) C Mg\ 9B, in contradiction
with the initially assumed property ¢ € ¢*(0B). Hence $*(0B) C 0A. O

Every embedding #: A(T) — A(T) of the disc algebra onto itself is an
isometric isomorphism between A(T) and @(A(T)). Consequently, the adjoint
map &*: Mgar)y) — My generates a homeomorphism of D onto D, and
" (8(P(A(T))) = OA(T) =T, i.e. *(T) = T, *(D) = D, and hence the function
&* is a finite Blaschke product (cf. [G2]) on D, i.e.

B(z):emH (lz—zk> for some zi, 0 <|zi| <1, k=1,2,...,n.
— ZkR
k=1

Therefore, for any embedding @: A(T) — A(T) of A(T) onto itself there exists a
finite Blaschke product B(z) on D with @ o f = f o B, i.e. such that

B(f(2)) = (fo®*)(2) = f(B(z)) for every f e A(T). (1.9)

Let A C C(X) be a uniform algebra on a compact set X. One can easily
identify certain points as elements of the Shilov boundary 0 A of a uniform algebra
A. A point zp € X is called a peak point of a uniform algebra A if there exists a
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function f in A such that f(z¢) = 1 and |f(x)| < 1 for every x € Ma \ {xo}.
Clearly, every peak point belongs to the Shilov boundary 0A. In general the set
of peak points is not a boundary for A. However, for algebras with metrizable
maximal ideal spaces it is (e.g. [G1, S4]). Moreover, in this case the set of peak
points is the minimal boundary for A, i.e. it is contained in every boundary of A.

An element f € A is called a peaking function of A if ||f|| = 1, and either

~ ~

f(x) =1, or, |f(z)] <1 for any x € M 4. In this case the set P(f) = {x € M4 :
f(x) =1} = f71(1) is called the peak set (or, peaking set) of A corresponding to

]?. Clearly, every peak point is a peak set of A, and f is a peaking function if and
only if o (f) = {1}. If K C M4 is such that K = P(f) for some peaking function
[, we say that fpeaks on K. Clearly, K is a peak set if there is a functionf € 4,
such that f|x =1, and |f(m)| < 1 whenever m € M4 \ K.

A point x € M4 is called a generalized peak point of A (or, a p-point of A) if
it coincides with the intersection of a family of peak sets of A. Equivalently, z is
a p-point of A if for every neighborhood V of z there is a peaking function f with
x € P(f) C V. The Choquet boundary (or, the strong boundary) §A of A is the set
of all generalized peak points of A. It is a boundary of A, and its closure coincides
with the Shilov boundary 0A of A, i.e. §A = 0A. Unlike § A, the set of peak points
of A in general is not dense in A, unless M 4 is metrizable (cf. [G1, S4]).

Till the end of the section we will assume that A C C(X) is a uniform
algebra on its maximal ideal space M4 = X. Denote by F(A) the set of all
peaking functions of A. For a fixed point « in X by F,(A) denote the set of all

~

peaking functions of A by P(f) 3 z, i.e. withf(z) = 1.

Lemma 1.2.5. Let A C C(X) be a uniform algebra. If f,g € A are such that
IfR < |lgh|| for all peaking functions h € F(A), then |f(z)| < |g(x)| on OA.

Proof. Assume that ||fh] < ||gh| for every h € F(A), but |f(zo)| > |g(zo)| for
some xg € 0A. Without loss of generality we may assume that xy € dA. Choose
a v > 0 such that |g(x0)| < v < |f(zo)|, and choose an open neighborhood V/
of zyp in X so that |g(z)] < v on V. Let h € F,,(A) be a peaking function of A
on X with P(h) C V. By choosing a sufficiently high power of h we can assume
from the beginning that |g(z)h(z)| < v for every x € A\ V. Since this inequality
obviously holds also on V', we deduce that ||gh|| < 7. Hence,

£ (@o)| = |f (wo)h(zo)| < (IRl < l[ghll < -

Therefore, | f(zo)| < v in contradiction with the choice of 7. Consequently, | f(z)| <
lg(z)| on OA. O

Corollary 1.2.6. If the functions f,g € A satisfy the equality || fh|| = ||gh|| for all
peaking functions h € F(A), then |f(x)| = |g(z)| on JA.
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Lemma 1.2.7. If the functions f,g € A satisfy the inequality

mas (1£(6)]+ K(©)]) < max (19(6)| + K(E)])

EcOA

for all k € A, then |f(x)| <|g(z)| for every x € DA.

Proof. The proof follows the line of proof of Lemma 1.2.5.
<
Assume that max (£ + [k(©)]) < max (Ig(©)] + |k(£)]) for every k € A, but

|f(z0)| > |g(xo)| for some zy € OA. Without loss of generality we may assume
that o € JA. Choose a v > 0 such that |g(zo)| < v < |f(x0)|, and choose an
open neighborhood V of zg in X so that |g(z)| <y on V. Let R > 1 be such that
I/l < R and max lg(§)] < R. Let k € F,,(A) be a peaking function for A with

P(k) C V. By choosing a sufficiently high power of k& we can assume from the
beginning that |g(x)| +|Rk(z)| < R+ for every x € 9A\ V. Since this inequality
holds also on V', we deduce that |g(x)|+|Rk(z)| < R+~ for every x € JA. Hence,
|f(@o)[ + B = [f(zo)| + [Rk(z0)|

< <

< max (I/(§)] +Rk(E)]) < max (I9()] + RIKEI) < R+7.
Therefore, | f(z0)| < 7 in contradiction with the choice of 7. Consequently, | f(z)| <
lg(z)| for every x € JA. O

Corollary 1.2.8. If the functions f,g € A satisfy the equality

max (|/(E)] + [K(©)I) = max (lg()] + k(©)])

£€0A

for all k € A, then |f(x)| = |g(z)| for every x € DA.

The following lemma, due to Bishop, helps to localize elements of uniform
algebras.

Lemma 1.2.9 (Bishop’s Lemma). If E C X is a peak set for A, and f #0 on E
for some f € A, then there exists a peaking function h € F(A) which peaks on E
and such that

1.1
[f(@)h(@)] < max|f(&)] (1.10)
for anyx € X \ E.
Proof. If f € A and grleaEX |f(&)] = M > 0. For any natural n € N define the set
Up={zeX:|f(z)] < M(1+1/2""")}.

Clearly, E C U,, C U,,—1 for every n > 1. Choose a function k € F(A) which peaks
1
on F, and let k, be a big enough power of k so that |k,(z)] < on OB X\ U,.
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— 1
The function h = E on kn belongs to F(A). Moreover, P(h) = h"'{R} = E,
1

|h(z)] < 1lon X\ E, and rgneaéiﬂf(f)h(f)\) = M. We claim that |f(z)h(x)] < M

for every x ¢ E. In what follows, z is a fixed element in X \ E.

1
n<1for

(i) Let x ¢ U;. Then x ¢ U, for all n € N, and hence |k, (z)| < 5

1
all n € N. Hence, |h(x)| < Z on = 1, thus |f(x)h(x)] < M.
1

(i) Let x € Up—1\ Uy, for some n > 1. Then z €U forevery 1 <i<n-—1,

and 2 ¢ U; for all i > n. Hence |f(z)| < M(1+ 1/2""") for every 1 <i <n—1,
1

and |k;(z)] < Y for all i > n. Since x € U,,_1, we see that |f(z)] < M (1+1/2"),

and
n—1

)] <M1+ 1/2) (X k(@] + 3 g ko))

i=1

Further,
n—1 1 n—1 1
_ n—1
Zgz‘kl(aj)|<222 =(1-1/2"""), and
i=1 =1
= 1 1 /1 1 M 1 1
kl < X g .= — .
;21| (x)‘ *;21 (21) ;42 3.4n—1 < 2.4n—1 2n.2n—1
Consequently,

+

|f(x)h(z)| < M(l + 1/2") <1 - 2n1_1 2n21n_1)

- 21n>> <M(1+1/2") (1— 2:_1 : ;)

< M(1+1/27) (1_ -
M(1-1/2%) < M.

M1/ (- 1)

7N

(iii) Ifxe m U, then |f(x)] < M, whence |f(z)h(z)| < M since |h(z)| <
n=1

lon X\ E. O

If also o(fh) = o(gh) for all h € F(A), then we have a much stronger
result than in Corollary 1.2.6. Namely,

Lemma 1.2.10. If f,g € A satisfy the equality
ox(fh) = ox(gh) (1.11)

for every peaking function h € A, then f(x) = g(z) on OA.
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Proof. Clearly, ||fh|| = ||lghl|, since |z| = || f]| for every z € o, (f). Corollary 1.2.6
yields [f(z)| = |g(x)| on OA. Let y € §A. If f(y) = 0, then |g(y)| = [f(y)| = 0
implies that also g(y) = 0. Therefore, we can assume without loss of generality
that f(y) # 0. Choose an open neighborhood V of y in X, and a peaking function
k e Fy(A) with P(k) C V. Let |f(zv)| = gren}%i) |f(&)| for some zy € P(k). By

Bishop’s Lemma there is a peaking function h € F,(A) with P(h) = P(k), so that
the functions fh and gh attain the maxima of their modulus only within P(h).
Therefore, by (1.11), f(zv) = f(zv) h(zv) € ox(fh) = ox(gh). Hence, there is a
zy € P(h) so that

flev) = g(zv) hzv) = g(zv). (1.12)

Since in every neighborhood V' 5 y there are points zy and zy in V with f(zy) =
g(zv), then f(y) = g(y) by the continuity of f and g. Consequently, f = g on
0A =6A. |

The next lemma is an additive version of Bishop’s Lemma (Lemma 1.2.9).

Lemma 1.2.11 (Additive analogue of Bishop’s Lemma). If E C X is a peak set
for A, and f £ 0 on E for some f € A, then there exists a function h € F(A)
which peaks on E and such that

|[f@)] + Nih(@)] < max|f ()] + N (1.13)

for any v € X \ E and any N > || f||.

Proof. The proof follows the line of proof of Bishop’s Lemma 1.2.9. If || f|| =
rgnz?(( ()| = R and rgna]%( |f(&)| = M, then clearly, 0 < M < R. For any natural
€ €

n € N define the set
Up={zeX:|flz) < M(1+1/2""")}.

Clearly, E C U,, C U,_1 for every n > 1. Choose a function k € F(A) which

M
peaks on E, and let k, be a big enough power of k so that R |k,(x)| < on OB

— 1
X \U,. The function h = Z on kn, belongs to F(A). Moreover, P(h) = h~'{R} =
1
E, |h(z)] < 1on X\ E, and rgnaé((|f(§)\ + R|h(€)]) = M + R. We claim that
€
|f(z)|+ R|h(x)] < M + R for every x ¢ E. In what follows, z is a fixed element
in X\FE.

M
(i) Let x ¢ Uy. Then x ¢ U, for all n € N, and hence R |k, (z)]| < on < M

for all n € N. Hence, R |h(z)| < Z ;\;{ = M, thus |f(z)|+ R|h(z)] < R+ M.
1
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(i) Let z € U,—1 \ Uy, for some n > 1. Then zeU;foralll <i<n-—1,
and z ¢ U; for each i > n. Hence |f(z)| < M (1+1/2""") forall1 <i <n—1, and

M
Rlki(z)] < i for each i > n. Since x € U,,_1, we see that |f(z)| < M (1+1/2"),
and

n— 1

|[f(@)] + RIh(z)| < M(1+1/2") +Z |+Z2z
i=1
Further,
n—1 R n—1 R
— n—1
;22‘k1(37)|<;21 —R(1—1/2 ), and
. < _ .
; A |kz(x)‘ = ; 21 ( ) MZ 4 3 4n 1 2 . 4n—1 on . gn-1
Consequently,
n n—1 M
[f@)]+R|h(z)| < M(1+1/2") + R(-1/2") + 0
1 1
<
M—l—R( +1- 2n—1+2n,2n—1>
B on on . 9n—1 :

(i) Ifxe m U, then |f(z)] < M, whence |f(z)| + R|h(z)] < M + R
n=1
since |h(z)| <1on X \ E.

Actually, (1.13) holds with any N > R for the function h constructed above.
Indeed,

[f (@) + Nlh(@)[ = [f(2)] + R[h(x)] + (N = R) |h(z)|
<rg1€a]%<|f( J+R+(N—-R)= max\f( )|+ N.

Corollary 1.2.12. Let E be a peak set of A, zg € E, f € A, N> ||f||, and v € T
be such that |f(xo)| = rgnaé( [£(&)] > 0 and f(xo) = a|f(xo)|. If h is the peaking
€

function of A with P(h) = E, constructed in Lemma 1.2.11, then

a) |f(z) + aNh(z)| < |f(2)| + N|h(z)| < | f +aNh| = |f(zo) + aNh(zo)| =
’f(l"o)| + N forallz e X\ E, and

(b) IIf +yNhl < |If + aNhl| for every v € T.
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Proof. (a) Lemma 1.2.11 implies that ’f(x) + aNh(x)| < |f(x)] + N|h(x)| <
max (IF )+ N) = |f(zo)| + N = |f(w0) + aNh(xo)| for all z € X \ E. Hence,
If + aNh|| = max |£(&) + aNh(&)| = [f(z0) + aNh(zo)| = |f(w0)| + N, ie. (a)
holds.

(b) By Lemma 1.2.11 and (a), we have

£ +7Nh| = max | £(€) +7NA(E)
< max (|f(©) + NIA(©]) = (@) + N =[[f +aNh.

If o.(f +h) =0x(9g+h) for all h € A, then we have a much stronger result
than in Corollary 1.2.8. Namely,

Lemma 1.2.13. If f,g € A satisfy the equalities
(a) ox(f+h)=0x(9+h), and
(b) max (F(O)]+ M(O)]) = max (9(€)|+ |(©))

for every h € A, then f(x) = g(x) for every x € A.

Proof. The proof follows the line of proof of Lemma 1.2.10. Let f,g € A and let
Il = llgll = R. Equality (b) and Corollary 1.2.8 imply that |f(z)| = |g(z)| on
0A. Let y € 6A. If f(y) = 0, then by |g(y)| = |f(y)| = 0 we see that g(y) = 0
too. Suppose now that f(y) # 0. Choose an open neighborhood V of y in X, and
a peaking function k € F,(A) with P(k) C V. There is an 2y € P(k) so that

|f(zv)| = {mg()]i) |f(&)] = M < R. Let f(zv) = ayM for some ay € T. By the
€

additive version of Bishop’s Lemma we can choose a peaking function h € F,(A)
with P(h) = P(k) and such that the function |f(z)|+|Rh(z)| attains its maximum
only within P(h). Hence

[f@v)|+ R=M+R=|ay(M+R)| = |f(zv) +av R|

= [f(wv) +av Rh(ev)| < ||f + avRAl| = max | (f + RR) (©)])
< max (1)1 + [RAQ) = max (|f(€)] +[RRE)])

= mnax (If(©)+Bl) = |/(zv) + R,

and therefore,

|[f(zv) +av R| = max (£ I+ [RR) = IIf + av RAl, (1.14)

and, by equality (a), f(zv)+ay R € o.(f+ayRh) = 0.(9+ ay Rh). Hence, there
is a zy € X so that

flzy)+ayR =g(zv) + ay Rh(zy). (1.15)
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We may assume that zy € 0A, since |g(zv) + ath(zv)’ = |flzy)+ avR| =
’f(xv) + ath(xV)’ is the maximum modulus of both functions g + ay Rh, f+
ay Rh, and as a peaking set of A (cf. [L1]), the preimage (g + ath)fl (g(zv) +
av Rh(zy)) of the number g(zv) + oy Rh(zy) under the function g + ay Rh nec-
essarily meets 0A. By (1.14) and Corollary 1.2.8 we have

l9(ev) +av Rh(av)| < lg(=v)| + [ Rhzv)
= 150} + [R(0)| < max (1£(O)] +|RRE)) = If + v Rh|

= max (|9(€) + avRh(§)|) = |g(z2v) + av Rh(zv)]|.

Hence, |g(zv)| + |Rh(zv)| = max (|9(€) + av RR(€)]). Since the function |g(¢) +

ath(é)’ attains its maximum only within P(h) it follows that zy € P(h), thus
h(zv) = 1. The equality (1.15) now becomes f(zv) + ay R = g(zv) + ay R, thus
flzy) = g(zv). Since in every neighborhood V' > y there are points zy and
zy in V with f(xzy) = g(zv), then f(y) = g(y) by the continuity of f and g.
Consequently, f = g on 0A = JA. O

1.3 Inductive and inverse limits of algebras and sets

In this section we introduce the notion of inductive and inverse systems and their
limits, which are used to construct associated algebras. Since we need the technique
in some special cases only, we do not present it in its general form, which can be
found elsewhere (e.g. [L1], [ES]).

Consider a family {A®},ex of uniform algebras. Suppose that the index set
X is directed, i.e. X is a partially ordered set, and every pair «, 3 of elements
of X' has a common successor 7 = «, 3 in Y. Suppose also that for every pair
A~ AP o < B, of algebras there is an algebraic homomorphism /2: A — AP,
The family {A%, 1%} ex is called an inductive system (or, inductive spectrum,
direct spectrum) of algebras A% with connecting homomorphisms 2, if

(i) ¢& is the identity mapping on A%, and
(i) ¢ho 2 =1 whenever a < 3 < 7.

A chain of the system {A% 12} ,cx is called any set of type v = {p®: p® €
A} 4 a, » such that 2 (p®) = pP for every a, 3 = a,,. Let A/ denote the set of all
chains of the system {A®, Lff }aex. Consider the following equivalence relation in
N:If vy = {p‘)‘}oéﬂyy1 and vy = {qo‘}a>%2 € N, then vy ~ 1y if there exists a
geX, B> ay,a,, such that p? = ¢ for every o > 3. The set A of equivalence
classes of A/ with respect to this relation is called the inductive limit of the system
{A 8} and is denoted by lim {A® 18} e 5. The equivalent class of a given chain

v ={p*}ara, € N consists of all chains ) = {¢*}asa, € N whose coordinates
q“ coincide eventually with the coordinates p™ of v.
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Example 1.3.1. (a) Let {A“},ex be a family of uniform algebras, such that A~ C
AP whenever o < 3. Let 2 be the inclusion mapping of A% into A”, i.e. (2(a) =
a € AP for every a € A%. Tt is easy to see that in this case the family {A%, 12} ex
is an inductive system, and lim {A%, 2} ex = U A%
- ack
(b) Given a uniform algebra A, and an index set X, consider the inductive
system {A% 18} ex, where A® = A for every a € X, and each of (3, o, 3 € X, is

the identity mapping on A. It is easy to check that the limit hi>n {A% 1B} hes of

this system is isomorphic to A.

Every coordinate algebra AP of an inductive system can be mapped naturally
into the inductive limit liin{A"‘, 3} aex by a mapping t5: AP — h_H)l{Aa, BYaes,

defined as follows: if a® € AP, then 15(a”) is the equivalent class of the chain
{Lg(aﬁ)}v>ﬁ EN.

Let, for instance, { A% 12} e = be the inductive system from Example 1.3.1(a),
where A% C AP whenever a < 3, and (2 is the inclusion mapping of A into A”.
By definition, the inclusion mapping g of a fixed coordinate algebra A” into

U A% = lim {A% 8} ,cx maps every a € AP to the equivalence class of the
ack -
stationary chain {a”},. g with a” = a. Since this class is uniquely defined by the

element a, it can be identified by a itself, and henceforth tg(a) = a for every
ac AP

One can define algebraic operations in an inductive limit of algebras A =
lim {A%, 12} ,ex as follows. Let the chains vy = {a®}ara, and va = {0%}asa, be

representatives of two elements in lim {A% (%} ex. Let v € X, v = a1, as. The

sum v + vy is defined as the equivalence class of the chain {a* 4+ b*}4y € N.
The product in A is defined in a similar way. It is easy to see that the inductive
limit A = lim {A%, 2}, is an algebra under these operations.

In the case when the index set X' is the set of natural numbers N with the
natural ordering, {A™, 1"}, ¢ is called also an inductive sequence, and is expressed
by the diagram

Al AL, A2 b, A3 s, L.

The fact that the algebra A = lim {A™, "}, cn is the limit of the inductive se-

quence {A™, 1"}, en can be expressed by the diagram
Al U, A2 B, p3 e, A

The inverse systems are dual objects to the inductive ones. Consider a fam-
ily {Sa}taex of sets, parametrized by a directed index set X. Suppose that for
every pair S,,Ss, a < 3, of sets there is a mapping 77: S35 — S,. The col-
lection {S,, 75} aex is called an inverse system (or, inverse spectrum, projective
spectrum) of S, with connecting mappings 772, if
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i) 7% is the identity on S,, and
«@
(ii) 74 o7 = 77 whenever o < § < 7.

A chain of the system {S,,7%},cx is any element {s,}aecs in the Carte-
sian product [] S, such that 77(sg) = s, whenever a < (. The family of all
chains is denozfdx by {El {84, 72} aes, and is called the inverse limit of the system
{Sa,7?}aes. Clearly, S is a subset of the Cartesian product [] Ss. The limit
S = @ {Su, 72} wes of an inverse system can be mapped naturoz;ellfl into every co-

ordinate set Sg by the $-coordinate projection mg : S — Sg : W({Sa}a€g> = s3.

In the case when X' = N with the natural ordering, {Sy, ¢ }nen is called also
inverse sequence, and is expressed by the diagram

2 3 4
S; T Sy T Gy Tio..

The fact that the set S is the limit of the inverse sequence {S,,, "} ,en can be
expressed also by the diagram

2 3 4
S i Sy L2 Sy TS

Example 1.3.2. (a) Let {Sy}acx be a family of sets, such that S, D Sz whenever
a < 3. Let 78 be the inclusion mapping of Ss into S, i.e. T5(s) = s € S, for
every s € Sg. It is easy to see that in this case the family {S.,7?}aex is an
inverse system, and lim {S,,7%}aex = (] S, By definition, the projection 7
- ack

of N Sa = lim {S,,7?}sex into a fixed coordinate set Sz maps every chain

act —
{Sa}acx with so = s to its § coordinate s € Sg, i.e. m, is the inclusion mapping
of N S, into Sg.

ack

(b) Let S be a set, and let X' be an index set. Consider the inverse system

{80, 75} aes, where S, = S for a € ¥, and every 72, o, 3 € X, is the identity
mapping on S. It is easy to check that the limit @ {Sw, ™2} wes of this system is

bijective to S.

If all coordinate sets S, are topological spaces, then the inverse limit S =
lim {A™, "}, en can be equipped with the topology inherited on S from the Carte-
sian product [] S,. If, in addition the mappings 77: S, — Sj are continuous,

aeX
then so are all projections m,: S — S,. One can show that if all S, are com-

pact sets, and 77 : Sg — S, are continuous mappings, then S is also a compact
set. If all sets S, have a particular algebraic structure, and the mappings 77 re-
spect this structure, then, in principle, the inverse limit S inherits this structure.
For instance, if all S, are groups [resp. semigroups|, and all 72 are group [resp.
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semigroup] homomorphisms, then S = lim {S,, 7%} ,ex is also a group [resp. semi-

group], actually a subgroup [resp. subsemigroup] of the Cartesian product [] Sa.
ack

Example 1.3.3. Consider the inverse sequence

2 3 4 5
T- T T T,
T, = T, 2. Ty 2 Ty e

where Ty = T are unit circles, and T,’:H(z) = 2?2 on T. Since all T}, are compact

abelian groups, and z2 is a continuous group homomorphism, the inverse limit
lim {Tyy1, 2%} ren is a compact abelian group. Similarly, if Dy, = D are closed unit

k

discs, and 7,71 (2) = 22 on D, the limit of the inverse sequence

3 4 5

2
Dy " Dy = Dy T2 Dy T4 -

is a compact abelian semigroup, containing the inverse limit lim {Tj1, zz}keN.
puy

Let {A%, 18} ,ex be an inductive sequence of uniform algebras A® C C(X,),
and let A = lim {A%,/%},c5 be its limit algebra. The maximal ideal spaces M 4a

can be lined up into an adjoint inverse system, namely {M aa, (¢12)*}4ex, where
the mappings (12)*: M s — M e are the adjoint mappings of 12 : A® — AP
defined as ((¢2)*(9))(f) = ¢(2(f)), where ¢ € Mys, and f € A*. The inverse
limit M4 = 1{211 {MAa,(Lg)*}
set. Suppose that the adjoint mappings (:2)* map the sets X3 C Mys onto
Xo C Mga for every a, 3 € X. There arises an inverse system {Xa, (Lg)*\xa},
and its limit X = I(El {Xa, () |x.} is a closed subset of M 4.

wes of maximal ideal spaces M 4. is a compact

acl

There is a close relationship between the properties of the limit algebra A
and its coordinate algebras A, (cf. [L1]).

Proposition 1.3.4. Assume that (2(1) = 1, and that the adjoint mappings (2)*
map Xg onto X, for every o, 3 € X. Then:

(i) A=1lim {A% B} nex can be viewed as an algebra of continuous functions on
X.

(ii) The mazimal ideal space of the closure A of A in C(X) coincides with the
set M 4.

(iii) If (:2)* maps the Shilov boundary OAP onto A for every a < (3, then the
Shilov boundary of A is the set lim {9A®, (Lg|aAa)*}a€2.

(iv) If every A% is a Dirichlet algebra on X, then A is a Dirichlet algebra on X.

Definition 1.3.5. The closure A of an inductive limit A = lim {A%, 8} ,ex of

algebras is called an inductive limit algebra.
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Similarly to the case of algebras, we can consider also inductive limits of
groups. An inductive system of groups is a family {G%, 1%} ,cx, where {G®}pex
is a collection of groups parametrized by a directed set X, and /2 : G* — GP are
group homomorphisms with the properties (i) and (ii). In a similar way one can
define the limit of an inductive system of groups lim {G®,:2},c x5, which is again
a group. 4’

Example 1.3.6. Let A C R be a basis in R over the field Q of rational numbers.

Consider the family J of pairs {(7,n)}, where v is a finite subset in A and n is a
natural number. We equip J with the ordering

(v,m) < (0,k) if and only if v C 6 and n < k.
For any (v,n) € J, v = (71,72, ---,7) define the set
Iy = {(l/n') (miyi +moye + - +mpyK): mj €Z, j= 1,...k}.

k
Clearly I,y is a subgroup of R isomorphic to 7F = @ 7, and I'tymy C Lism
i=1

whenever (v,n) < (d,k). With the natural inclusions as connecting homomor-

phisms, the family {F(%n)}(,y nyes is an inductive system of groups, and

h_n} {F('Y’n)}(’y,n)ej = UF('Y"”') =R.
J

Given an inverse system of groups {Ga, 72 }aex, their dual groups G, form

an adjoint inductive system, {@a, (r8)*} where the mappings (77)*: Go —

ael’
@g, o < f3, are the adjoint of 77 : Gg — G, mappings, defined by ((77)*(x)) (9)
= X(Tfj (g))7 where x € @a, and g € Gg. Similarly, the adjoint sequence of an in-
ductive sequence of groups is the inverse system of their dual groups. Moreover, the
dual group of the inverse limit 1(21 {Go, 78} aes is the inductive limit of the adjoint

system lim {éa, (75 )*}a e and vice versa, the dual group of an inductive limit

lim {G®, 8}, is the inverse limit of the adjoint system lim {éo‘, (Lg)*}aez.

Example 1.3.7. Let A = {dj}7°, be a sequence of natural numbers. Suppose that
my = Hle d;, mg = 1, and denote by I'4 the subgroup of Q that is generated
by the numbers 1/my, k € N. In particular, if d = 2 for every k € Z, I's is the

group of dyadic numbers in R. The group Iy can be expressed as the inductive
limit of groups Z, namely

M &, 7™ &, 76 G, g0 &, ..,

k+1
k

where (7 (my) = di - myg, m € Z*¥) = 7. The corresponding dual groups

Z* = T), = T form an inverse sequence of unit circles

Ty T Ty e TyeTd Ty T ... e (1.16)
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whose limit G4 = I'; is a compact abelian group. Here T (z) = ( ,’j“)*(z) =
2% Indeed, T (™) = eitsi T (m) = gitdem — (gitm)di for every point €™ €
Ty = Z*. Observe that both G4 and the limit D = lim {Dy1, 2%, dy € Alren

of the corresponding inverse sequence of unit discs D, = D,

Dy T Dy« Dy 5 Dy «Ti ... Dy (1.17)
are subsets of the limit lim {Dg41, 2% dy € A}ken of the inverse sequence

5

Dy 7} Dy e D3 s Dy Ta ... (118)

Note that D, is an open subset in the compact set lim {Dgi1, 2%, di. € A}ren,
and its topological boundary is G 4.

Given an inverse system of topological spaces { X,, 72} 4c 5, one can consider
inductive limits of various function algebras on X,,. For instance the spaces C'(X,)
of continuous functions on X, can be lined up as an adjoint inductive system,
namely {C(X,), (T(f)*}aez where the mappings (77)*: X, — X3, a < 3 are
the adjoint mappings to 75: Xg — X,, defined as ((72)*(f))(z) = f(72(x)),
where f € C(X,), and x € Xg. One can show that

lim {C(Xa), (75) } o = Clim {X*, ] ).

aloeXy

In particular, the adjoint sequence of an inverse sequence of topological sets

2 3 3 5
X4 T X, > X3 T Xy T4 ... X

is the inductive sequence
C(x) A% C(X) A% C(Xs) A% O(Xy) A% — O(X).

We say that two inductive sequences {A", ("}, en and {B", )7 },en of alge-
bras are isomorphic if there exist isomorphisms v : Ay — By, so that the infinite
diagram

A oA, 24y B
¥l ¥ | ¥s | (1.19)

;5 ] 13
Bl —1) 32 —2) B3 —3>
is commutative, i.e. if all its squares are commutative.

Likewise, two inverse sequences {X" 0" },cn and {Y"™, 7" },en of sets are
isomorphic if there exist bijections ¢y : X — Y so that the infinite diagram

2 3 4
X, & ox, &ox; &
¥1 l Y2 l ¥3 l (1~20)
2 3

4
T T T
Yi L Y, <2 Y; PR
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is commutative. The proof of the following proposition uses standard algebraic
and topological arguments.

Proposition 1.3.8. (i) The limits A and B of two isomorphic inductive sequences
of algebras

Al B 42 4B, g3 s, oo — A, and
Bl 4, B2 A3, B3 4i, ..._, B

are isomorphic algebras. If A¥, B¥ possess other algebraic structure, and if
Lerl, Jﬁ“ and Y from (1.19) respect it, then A and B possess the same
structure, and are isomorphic with respect to it.

(ii) The limits U and V of two isomorphic inverse sequences of sets

2 3 4
Xl 1 X2 G2 X3 Za ...<_X, and
2 3 4

are bijective. If Xy, Yy, possess any particular algebraic structure, and 0',]§+1,

T,i““ and @y, from (1.20) respect it, then X and Y possess the same structure,
and are isomorphic with respect to it; If Xi, Yy are topological spaces, and
U,’j“, T,’:H are continuous mappings, and @y, are homeomorphisms, then X

and 'Y are homeomorphic topological spaces.

1.4 Bourgain algebras of commutative Banach algebras

The norm topology of a commutative Banach algebra is too rough to reveal some
of its hidden properties. Therefore, weaker topologies which contain important
information about original algebras are also of importance, and they can be used
to construct associated algebras.

Let B be a commutative Banach algebra with norm || - || and let A C B be a
linear subspace of B (not necessarily closed), equipped with the restriction || - || 4
of the norm || - ||p on B on A. Let m4: B — B/A be the natural projection of
B onto the quotient algebra B/A. For every fixed f € B let Pf: A— fAC B
be the multiplication by f € B on A. The mapping

Sg=mpaoPr: A— (fA+A)/ACB/A: g — ma(fg)

is called a Hankel type operator on A corresponding to f. Note that w4 and Sy
both are bounded linear operators onto B/A and onto (fA + A)/A C B/A cor-
respondingly. Denote by cf(A) the family of weakly null sequences in A. Hence,
a sequence {¢,} in A belongs to ¢y (A) if L(¢,) — 0 as n — oo for every
bounded linear functional L on A.
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Definition 1.4.1. An element f in B is said to be a Bourgain element of A with re-
spect to B if its corresponding Hankel type operator Sy: A — B/A is completely
continuous. The collection of Bourgain elements with respect to B is denoted by
AB | and is called the Bourgain algebra of A with respect to B.

Clearly, f € AP if the operator Sy maps every weakly null sequence of A onto
a null sequence under the quotient norm on m4(fA) C B/A. Equivalently, f € AP
if and only if for every weakly null sequence {¢,}, in A there exists a sequence
{Pn}n, hn € A such that ||fo, — hu|lp — 0 as n — oo. If ¢ (A) denotes the
family of all sequences of elements in A that converge to 0 with respect to a given
topology 7 on A, then f € AP if and only if Sp(c¥(A)) C H : (B/A). AP is a
commutative Banach algebra, and if A is an algebra, then A C AB (e.g. [CT]). If
A C B C C are commutative Banach algebras then AP = AbC n B.

Proposition 1.4.2. If the range Sf(A) = ma(fA) of the Hankel type operator Sy
corresponding to f € B is finite-dimensional, then f € AP.

Proof. It {¢n}n is a weakly null sequence in A, then the sequence {f¢,}n is

also weakly null in B, and therefore {WA(gon)}n is a weakly null sequence in

7a(fA) C B/A. Hence {ma(pn)}, € ey (ra(fA)) C ey " (BJA), since ma(fA) is

finite-dimensional. Consequently f € AB a

As the following example shows, the range of the completely continuous op-
erator Sy need not be finite-dimensional.

Example 1.4.3. Let A = A(T) be the disc algebra on the unit circle T and let
B = C(T). Consider the function

=1
z) = Z E25k"
k=1

Clearly, f € C(T) = AP. We claim that the range of the Hankel type operator S
corresponding to f is infinite-dimensional. Indeed, let ¢, = [|2" f + A| g/4, and let
gn(2) = (1/cn)2". Clearly, g, € A, and ||gnf + Al[p/a = 1. To see that m4(fA) is
not finite-dimensional it is enough to show that the sequence {g, f+ A}, converges
weakly to 0 in B/A.

gn f

We can evaluate the (—m)-th Fourier coefficient ¢/ of the function g, f.

Namely,
1
In f — mdy = > 1.
Iy /gn(z)f(z)z 2 en(n+m)2 m,n >
T
Hence,
n 2 _
CnZHZ f—l—H”Lz/Hz— Z n—|—/<j

k::l



26 Chapter 1. Banach algebras and uniform algebras

and therefore,
1 1
<

n2e, — oo 1
4
" ; (n + k)

Note that

thus

Hence, lim 1/(n%c,) = 0, and therefore

n—oo

. m i 1
Jin [ou@) @)=t =0
T

for all m € N. It now follows that if p is any polynomial with p(0) = 0, then

lim [ g.(2) f(2)p(z)dz=0.

n—oo

T
Recall that if X is a Banach space and {zy, }, is a bounded sequence in X tending
to zero on a norm-dense set of the dual space X*, then {x,, }, is weakly null. Since
the space H} is isometrically isomorphic to (C (T) /A(’]I‘)) *, and the polynomials p
with p(0) = 0 are dense in H{, the sequence {g, f + A},, converges weakly to zero
in B/A, as claimed. U

The next proposition asserts that the complete continuity property of Hankel
type operators is invariant under algebraic isometries.

Proposition 1.4.4. Let A C C and B C D be two pairs of commutative Banach
algebras. If T: C — D is an isometric algebra isomorphism with T(A) = B,
then the Hankel type operator Sp(s): B — D/B is completely continuous if and
only if Sy: A — C/A is completely continuous.

Proof. Note that T maps the set c¢ff(A) onto the set c¢f(B) because T* is an
isometry. Secondly, for ¥, g, € A and f € C' we have that

Thus, if {¢n} € ¢¥(A) and Sy is completely continuous, then {T'(¢,)} € c¥(B)
and T'(gn) € B. Consequently, Sp(sy is completely continuous since all weakly null
sequences in B are of type {T(wn)}, where {1,,} € ¢/ (A). The argument is readily
reversible. ]
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Note that Proposition 1.4.4 holds for the case when T is a Banach algebra
isomorphism, i.e. is a continuous isomorphism of the algebraic structure that has
a continuous inverse. Moreover, if T' is an algebra homomorphism, while T'| 4 is a
topological linear isomorphism, one can show that Sp(y) is completely continuous
simultaneously with Sy.

()

Corollary 1.4.5. In the setting of Proposition 1.4.4, T(A) = (T(A)),

- BP.

Corollary 1.4.5 is quite natural since Bourgain algebras are defined solely in
terms of algebraic and metric conditions. Since the restriction map7: B — B | 0B
on the Shilov boundary 0B is an isometric algebra isomorphism. Proposition 1.4.4
and Corollary 1.4.5 yield the following

Corollary 1.4.6. Let X be a compact Hausdorff space and A C B C C(X) be
uniform algebras. Then:

(i) The Hankel type operator Sy, : A’(’)B — (B’(’)B)/(A’BB) is completely
continuous if and only if Sy: A — B/A is completely continuous.

(i) (A|aB>bB‘aB = AbB|aB'

Observe that Proposition 1.4.4 and Corollary 1.4.5 do not hold for an isome-
try T between A and B that is not extendable as an isometry between the algebras
C and D. For example, the Bourgain algebras of H relative to L for the unit
disc D and the unit circle T = JID are given respectively by

H>(T)E™ ™ = H>(T) + C(T), (1.21)

H>M)E™®) = H>(D) + C, (D) + V(D) (1.22)

where Cy, (D) is the space of uniformly continuous functions on D and V(D) is the
ideal of functions in L°°(D) that vanish near the boundary, namely, f € V(D) if
for every € > 0 there is a compact set K C DD for which ess supzeK’f(z)| <e
[CSY, Y]. Here the boundary value mapping f —— f* from H>°(D) to H>(T)
is an isometry which does not extend to the corresponding L°° algebras nor
does it even extend to the corresponding Bourgain algebras of H*°. However,
the boundary value mapping extends isometrically from H>(D) to the algebra
UD) = [H*(D), H (D)] generated by H*(D) and H " (D). Indeed, it extends
to the generators of U(D) and a closure argument provides a further extension to
U).

Note that U(D) = [HW(D),HOO(ID))] 2 C(Mpe (), and isometries on
H® (D) induced by automorphisms of D extend naturally to isometries of U(D).

Consider the algebras H>°(T) and H> (D). Note that the maximal ideal
spaces of the corresponding algebras L* are the corresponding sets 0H . Since
the mapping A: H*® — C(0H™): f — f|3Hoc is an isometry, we have
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Corollary 14.7. (i) (A(T)|,,,.)= " Don™ = foo(m)|, . +E(T)],,m
Y (Foo L= (D)|puos = 0o —
(i1) (H (]D))|8H°°(]D)>b O =H (D)’aHoo(D) + O“(D)’{)HOO(]D)'

This follows immediately from (1.21), (1.22) and Corollary 1.4.6. Note that
Corollary 1.4.7(ii) implifs, in particular, that H°°(ID))|3HOC(D) + C“(D)|8H°°(]D) is
a closed subalgebra of LOO(D)|8H00(D) since Bourgain algebras are automatically
closed.

The Bourgain algebra AP contains important information about A. If A is
an algebra of continuous functions on a set {2, then AP contains also information
about 2.

Proposition 1.4.8. If Uy and Us are biholomorphically equivalent domains in C™,
then the corresponding Bourgain algebras H°°(U1)Z,;{(U1) and H°°(U2)Z,;{(U2)
metrically isomorphic.

are 1so-

Proof. Let U; and Us be biholomorphically equivalent and 7: Uy — U; be a
biholomorphic mapping. Define the map T': C,(U;) — Cp(Uz) by

(T(f)) (21,22, 2n) = f(7(21,22, .-, 20))

for all f € Cy(Uy) and (21,29,...,2,) € Us. The mapping T is an isometric
algebra isomorphism with respect to the sup-norms on U; and U,. Moreover,
T(H>®(Uy)) = H®(Uz), T(U(U1)) = U(Uz). Corollary 1.4.6 now implies that

(B~ G) - '

In what follows we apply completely continuous Hankel type operators related
with the Bourgain algebras of the corresponding spaces H° relative to the algebras
U = [H*>, Hoo} C L® on the unit ball B" and the unit polydisc D™ in C",
respectively, to the problem of biholomorphic equivalence of domains in C". Recall
that every function f € H*°(D") has radial limits,

}i/‘nif(r('zl)ZQ)"'vzn)) = f*(217227"'72n)a

at almost every point (21, 22, . .., zn) € T™, and the radial boundary value function
[*(z1,22,...,2,) of any f € H*(D") belongs to H>*(T") (e.g. [R6], Theorem
2.3.2)).

Lemma 1.4.9. Let g € U(D") and let the corresponding Hankel type operator Sy :
H>*D") — UD™)/H>(D") be completely continuous. If g* is the boundary
value function of g on T", then the operator Sg-: H>®(T") — U(T™)/H>(T") is
also completely continuous.

This follows directly from the fact that every weakly null sequence {f,} in
H®(T") is of the form f, = ¢¥ where {¢,} is a weakly null sequence in H>(D").
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Below we apply the Bourgain algebra technique to provide an alternative
proof of the Poincaré Theorem for analytic functions in several complex variables.

Theorem 1.4.10 (Poincaré Theorem). The sets B™ and D™ are not biholomorphi-
cally equivalent if n > 2.

Proof. Suppose that D™ and B™ are biholomorphically equivalent and let 7: D" —
B™ be a biholomorphic mapping between them. Define T': Cp(B™) — Cj,(D"™), as
before, by

(T(f))(zh 22y Z’I’L) = f(T(Zla 25 e Z’n))
for all f € Cp(B™) and (21, 29, ..., z,) € D™. Proposition 1.4.8 implies that

T (Hoo (Bn)g(Bn)) — [ (Dn)ll;l(Dn).
Let f be a fixed non-constant function in the algebra A(B™). Observe that (T(f)) *

exists because f € H  (B") and so T(f) € H (D).

We claim that the mapping Sp;: H>(D") — U(D")/H>(D") is com-
pletely continuous. Note that f € C(B")|g» and also f € U(B"). An argument
from [I] implies that

C(B")|gn Cc H*B™) &),

Consequently, by the remark immediately following Definition 1.4.1 we have
oo (pn\ L7 (B™ n oo (mn\UB™
fer=®n,” " nuen) = 1B,

and hence
r(f) e T (H=@" ") = m=@"); ",

by Proposition 1.4.4, i.e. ST( ) is a completely continuous operator, as claimed.
From Lemma 1.4.9 it follows that for n > 2 the radial boundary value function
(T(f))" of the non-constant anti-analytic function T(f) belongs to H>®(T") =

Hoo (T T = oo (T)¥™) (see [1, Y]), which is impossible. O

Note that the boundary value technique avoids the need of a direct reference
to the more complicated Bourgain algebras of H>°(D") and H*>(B").

The notion of Bourgain algebras can be extended for commutative topolog-
ical algebras. Recall that a commutative algebra A over C is called a topological
algebra, if it is provided by a topology, under which the basic operations in A are
continuous. Let B be a commutative topological algebra and A be its subalgebra.
Denote by c§”(A) the space of bounded weakly null sequences in A.

Definition 1.4.11. The Bourgain algebra AP of a commutative topological algebra
A relative to B is the set of all elements f € B for which Sy (cf“(A)) C co(B/A),



30 Chapter 1. Banach algebras and uniform algebras

i.e. AP consists of all f € B such that for every {p,} € c}*(A) there exists a
sequence {g,} in A for which

nh_{go(@nf - gn) =0. (123)

It is straightforward to see that if A is an algebra, then A C AP.

Proposition 1.4.12. Let A C B be commutative topological algebras. Every com-
pletely continuous Hankel type operator Sy: A — mwa(fA) maps bounded weakly
Cauchy sequences in A onto Cauchy sequences in B/A.

Proof. Suppose that {g,} is a bounded weakly Cauchy sequence in A for which
the sequence {ma(fgn)}n is not Cauchy in B/A. Then there is a neighborhood U
of 0 in B/A such that for every natural M > 0 one can find integers nyr, mas > M
with T4(fgny ) — Ta(fgma) € U. Hence the sequence {ma (f (gnr — Gmar)) }3:1
does not tend to 0 in B/A. By the complete continuity of Sy we have that the
bounded sequence {gn,; — Gmar 1371 is not weakly null in A. Hence F'(gn,, — Gmas)
does not tend to 0 for some F' € A*. Therefore {F(g,)}, is not Cauchy, i.e. {gn}n
can not be a weakly Cauchy sequence. ]

Note that the dual space B* does not always separate the points of B for
every commutative topological algebra B. Local convexity of B is a sufficient
condition for this.

Theorem 1.4.13. Let B be a commutative topological algebra and A be a subalge-
bra of B. The Bourgain algebra AP of A relative to B is a closed commutative
topological subalgebra of B.

Proof. Let f € AP. Given a bounded weakly null sequence {¢,,} € c¥(A), ¢n € A,
there are elements h,, € A, such that ¢, f —h,, — 0. Note that {h,} is a bounded
weakly null sequence in A, since ¢, f is bounded and tends weakly to O.

Let now fi, fo € AP, and suppose that {¢,} is a bounded weakly null se-
quence in A. According to (1.23) there are h,, € A such that ¢, f; — h, — 0. By
the above remark {h,} is a bounded weakly null sequence in A. Therefore there
are k, € A such that h, fo — k, — 0. Now

flf2§0n_kn:fQ(fISOn_hn)'F(thn_kn) — 0. (124)
Consequently f1 fo € AP and hence AP is an algebra.

Let {¢n} be a bounded weakly null sequence in A, let f € B be the limit of
elements f, € AP and let U be a bounded set in A that contains {¢,, }. For a given
neighborhood W of 0 in B let V' be a neighborhood of 0 such that V. +V C W.
Take a neighborhood V; of 0 with V12 C V. There is a t > 0 such that tU C V;. Let
ko be such that f — fp € tV; for all k > kg, take such a k and choose h¥ € A such
that fupn — b — 0 as 1 — 0. Then f @, — h = (f = fu) on + (frn — hE) €
tViU+V =tU-Vi+V CV2+V CV+V CW for n big enough. Consequently,
AB is closed in B. O
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Proposition 1.4.14. Consider the algebra B = C(D) equipped with the compact-
open topology on the open unit disc D and let A = O(D) be the algebra of analytic

functions in D. Then O(D)f(D) = C(D).

Proof. Note that C(D) and O(D) both are Frechét algebras. Therefore every
weakly null sequence in C'(D) is bounded by the Uniform Boundedness Prin-
ciple (e.g. [R7], Theorem 2.6). First we show that the function Z belongs to
O(D)S(D). The argument is similar to the corresponding one for the case of A(DD)
(e.g. [CSY]). Given a weakly null sequence {p,} in O(D), consider the func-

tions hp(z) = #n(2) = on(0) € O(D). We observe that h,(z) tends weakly to 0
z

— (0
in O(D) since the map ¢ — h = = (0) from O(D) into itself, is a contin-

z
uous linear operator. Since ¢, (2) = zh,(2) + ©n(0), then zp,(2) — ho(z) =
(|22 = 1) hn(2) + 20, (0). For any fixed r € (0, 1) we have max |z on(2) — hn(2)] <

max |hn (2)] + |¢n(0)] — 0 by Montel’s theorem. Therefore z ¢, (2) — hy (%) tends

(D)

to 0 in the compact open topology in D. Consequently z € O(D)f , as claimed.

Thus (’)(]D))bc(D) contains the restrictions of all polynomials in z and Z on D;
therefore it contains the algebra C(DD) by the Stone-Weierstrass theorem. Since
C(D) is the closure of C(D) in the compact open topology in C'(D) we conclude

that O(D); ® = C(D). O

The Bourgain algebra construction can be applied to a rather general situ-
ation. Note that the class ¢ff (M) of weakly null sequences on a subspace M of a
commutative Banach algebra B in the Bourgain algebra construction can be re-
placed by an arbitrary class of sequences S(M). To be more precise, let us denote
the Bourgain algebra by AP (c¥) rather than by AP. We define the space AP (S)
in a way analogous to AP (c¥) by requiring {¢,} € S(A) instead of {¢,} € ¢ (A),
ie.

AP(S) = {f € B: S¢(S(A)) ey (B/A)}.
If the class S is contained in ¢, i.e. if S(M) C ¥ (M) for all M, then AZ(S) D
AB(cy) = AP. If S contains ¢, then AZ(S) is smaller than AP. For example, if
S (M ) is the class B}, of Weakly bounded sequences in M and A is an algebra,
then AP (BY) is simply the norm closure of A. The basic argument in [CT] can
be carried over to this general setting to show that A{f (S) is a closed subalgebra
of B whenever the class S satisfies the following properties:

(i) S(M) C S(N) whenever M C N C B,

(ii) S(M) c B¥(M) for all M,

(iii) if {¢©n} € S(A) and f € B, then {fp,} € S(B),
)

(
(iv) if {¢n} € S(B) and ¢, € A with |¢n, — ¥,| — 0 as n — oo, then
{tn} € S(A).
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Properties (i) and (ii) are required for all linear subspaces M and N of B,
while (iii) and (iv) are needed only for the fixed A and B under consideration.
Observe that by (ii) the elements of the sequences in S(M) are always in M.

1.5 Polynomial extensions of Banach algebras

In this section we derive a method for expanding commutative Banach algebras,
in which polynomials play a crucial role.

Let A and B be commutative Banach algebras with units. B is called an
extension of A, if there is a homomorphism of A into B preserving the unit. Let
Alz] be the algebra of polynomials in the variable z over A. As in the scalar case,
the degree of a polynomial p(r) = a,z" + an_12" "1 + - -+ + ag with coefficients in
A is said to be again the greatest integer n with ag # 0. In this case a9 € A is
called again the leading coefficient of p(x). If ag = 1 then p(z) is called a monic
polynomial.

Let p(z) = 2" + ap—12" "' + -+ + ag be a polynomial in A[z]. We construct
an associate extension of A as follows. Consider the ideal I = p(x) - A[z] C Alx],
and provide the quotient algebra B = Afx]/I with the norm

155 ciat+ ot Al = X el (1.25)
=0 i=0

where the number ¢ > 0 satisfies the condition
" > et + fleallt" 2 + - 4 [lenll.

Under the norm (1.25) B is a commutative Banach algebra, and the natural homo-
morphism of A into B is an embedding. The algebra B is called the Arens-Hoffman
extension of A associated with p(x). Below we give some of the properties of Arens-
Hoffman extensions (see [AH]).

(a) Any element b € B = A[z]/I can be expressed uniquely in the form a,,_12" 1
+ ap_ox™ 2+ 4 ag, where a; € A. In other words, the algebra B is a free

module over A, i.e. the functions z!,22,..., 2" ! form an A-basis of B, and
. . . n—1
the norm of B is equivalent to the component-wise norm max {||a;|| }i*O .

(b) The set of linear multiplicative functionals M g is homeomorphic to the set

{(m,z) € Ma x C: 2" + m(an—1)z""" +m(an_2)2" "2+ -+ m(ag) = 0}.

(c) Every b € B is an integral element over A, i.e. there exists a polynomial
q(x) = 2™ + 12" + .-+ + ¢, with ¢; € A, such that ¢(b) = 0.
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We observe that according to the property (b) the map 7: Mp — My :
(m, z) — m is surjective. By the Fundamental Theorem of Algebra, card 7= (m)
< n for every m € M.

As in the scalar case, the degree of a polynomial

P12, Tn) = Y iy, T E (1.26)
in n variables x1, o, ..., x, with coefficients in A is the greatest among the num-
bers iy +ig+ - - -+ iy, where iy, o, ..., i, are from (1.26). By A[z1,xa,...,x,] will

be denoted the algebra of polynomials in n variables with coefficients in A.

Let A and B be commutative Banach algebras with units. We say that B is
a polynomial extension of A if there is an isomorphism &% of A onto a Banach
subalgebra C' C B with the same unit as B, an n € N, and a homomorphism ¥

from A[zy,z2,...,zy] onto B, such that the diagram
B
A 24, B
A\ v
Alxy, 29, ..., Ty

is commutative, where id: A — A -1 is the natural embedding of A into A[x1, z2,
ey T

Example 1.5.1. (a) If A C B and A is isometrically isomorphic to B, then B
is a trivial polynomial extension of A. Indeed, one can take the set of constant
polynomials A -1 for A[z1,x2,...,z,] in (1.27).

(b) Let B be the algebra of all complex-valued functions f(z,t) € C(X), X =
D x [0,1], such that the functions z — f(z,t) belong to the disc algebra for
every fixed t € [1/4,1], and let A C B be such that for any f € A the function
z +— f(z,t) belongs to the disc algebra for every fixed ¢ € [1/2,1]. Clearly, A and
B are isomorphic, and B is a polynomial extension of A by the property (a).

(c) Let X =D x [0,1] be as in part (b) and B be the algebra of functions
f(z,t) € C(X), such that for every fixed t the function z — f(z,t) belongs to
the disc algebra. Then B is a polynomial extension of the algebra A = { fe
B: 0f/02(0,t) = O}, since B = A+ zA, My = Mp. However, B is not an
Arens-Hoffman extension of A.

As part (c) of Example 1.5.1 shows, not all polynomial extensions are neces-
sarily Arens-Hoffman extensions.

Theorem 1.5.2. If B is a polynomial extension of A, then there is a nested family
of Banach algebras,
A=Ay C A CAQC"'CAn,

such that there is a homomorphism @ from A, onto B for which @|A is the isomor-
phism &5 from (1.27), and A; is an Arens-Hoffman extension of A;_1, 1 <i < n.
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Proof. By (1.27) we have B = W(A[z1,3,...,3,]) and ¥(A) is isomorphic to
A. Hence we may assume that A C B and that there are by, bs,...,b, € B such
that B = A[b1,ba,...,by]. Let By be the space of polynomials of by,ba, ..., by, in
Alb1,ba,...,by], whose degrees do not exceed k. Clearly,

B = Alb1,bs, ..., bs] = | Bs.
k=0

By the Baire Category Theorem there exists a kg > 0, such that the space By,
is a set of the second category in B. Let Dy, be the space of polynomials in
variables x1,%s,...,z, over A, whose degrees do not exceed kg. The elements
x’fxgz coexin gy 4 ig + -+ i, < k form a basis of Dy,. Note that Dy, is a free

module over A, which is a Banach space under the norm

= i s |- (1.27)

. . . Zl i2 PRI Z
H E Qiyyig,...in 1 Lo xnn

The operator T': Zail,iz,...,inx?x? x;" — Zail,iz,...,inbil b? ~-~bﬁl", is a
continuous mapping from Dy, onto the space of second category By, of B. Hence
B = By, by the Open Mapping Theorem. For a fixed b € B define a linear

operator S: Dy, — Dy, as follows. For any basis element x}'x%?---zir define

S(xi'x¥ - xir) to be an element in 71 (b- T (x( % -~ xip)), and
(D it @l ) = N iy S(al R i),
Hence, T(S(d)) = bT(d) for all d € Dy,. Consequently,
T(5%(d)) = T(S(S(d))) =bT(S(d)) = b°T(d),

and, by induction, T'S™ = b"T for all n € N. By the Cayley-Hamilton Theorem
(e.g. [L]) there exists a polynomial q(z) = 2™ + a;2" "' + --- + a, over A with
q(S) = 0. Hence, 0 = T'(q(S(d))) = q(b) T'. Since the unit of A is the same as the
unit of B, and T preserves the units, we have ¢(b) = 0. Therefore, every b € B is
an integral element over A.

Let the polynomials g;(z;) = 27 —|—a1jx?_1 +---+an; be such that ¢;(b;) =0
for 1 <j < n. Define Ay = A, and let A; be the Arens-Hoffman extension of A;_;
associated with ¢;(x;), j =1,2,...,n. We obtain a nested sequence

A=Ay CA CcCAyC---CA,

of Banach algebras, where A; is an Arens-Hoffman extension of 4;_;,1 < j <n.
Clearly, every d € A,, has a unique expression in the form

—_— . . . Zl 22 ... Z
d= E iy yig,...,in L1 Lo xr{la
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where 0 < i < n. Therefore, the norm on A,, is equivalent to the norm (1.27).
Hence, the homomorphism @: A,, — B, defined by

11 2 i _ B L . i1 192 7
(I)( g Qiy iz, in®1 Lo xnn> = E ¢A (an,zz,m,ln bl b2 bnn)
is continuous, and |4 = &%, as claimed. O

Corollary 1.5.3. Any b € B is an integral element over ®5(A).

Proof. Since, as we have seen above, every a € A, is an integral element of A,
then a is also an integral element of ®5(A). O

Corollary 1.5.4. If B is a polynomial extension of an algebra A, then B is a finite
A-module.

Proof. Since A,, is a finite A-module and the surjective homomorphism &% pre-
serves the algebra A, then B is also a finite A-module. O

Note that the algebra B from Example 1.5.1(b) is a polynomial extension of
A, but there are no by, ba,...,b, € B,n=1,2,..., such that B = A[by,bs,...,b,].

If A C B are Banach algebras with the same unit, we say that B is a
strong polynomial extension of B, if there are b1,bs,...,b, € B such that B =
Alb1,ba, ..., by).

Lemma 1.5.5. Let A be a closed subalgebra of a Banach algebra B, and let b € B
be such that B = A[b]. There exist a closed subalgebra D of B which contains A,
and such that dim B/D = r(b) — 1, where r(b) is the minimal degree of all monic
polynomials () = 2" + ap—12" "1 + -+ + ag over A with q(b) = 0.

Proof. Let r(b) = k and let A; be the Arens-Hoffman extension of A associated
with a polynomial

q(z) = 2F +ap_12F N+ ap_0x 2+ + g (1.28)

with ¢(b) = 0. If &: Ay — B = A[b] is the homomorphism defined in Theorem
1.5.2 for Ay, then B = A, = A+ Ab+ Ab? + ... + AbF~1. The algebra A; is
a free (k — 1)-dimensional A-module. Therefore, Null (®) = {p(z) = cj_12""! +
Ch—2x" 2 4 -+ + ¢ € Ay p(b) = 0}. For a fixed p(z) € Null(®) let K, = {m €
My: m(cgp)) = 0}, where cgp) € A is the leading coefficient of p(z). We claim
that the family of sets {K,}, has a nonempty intersection, i.e.

K= (1] K,#0. (1.29)

p € Null ($)

Indeed, if suppose, on the contrary, that K = @, then for every p € Null (&)

one can find an m € Mg with m(cgp )) # 0. Consequently, there are polynomi-
als p1(z), pa(x),...,pi(x) € Null (@), and elements dq,ds,...,d; € A, such that
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I
Z dicgp D=, Therefore, for the polynomial
i=1
p(x) = dip1(x) + dop2(x) + - + dipi(z)
we have that p(b) = 0, its degree is k — 1, and its leading coefficient at z*~! is
1. This contradicts the minimality property of r(b) = k. Therefore, K # O, as
claimed.

Let p(z) = cp_12" 1 + cp_22* 2 + - 4 ¢y be a polynomial in Null (). We
claim that m(c;) = 0 for every m € K, and every ¢;, i = 1,2,..., k. According to
(1.29) we have that m(ck—1) = 0. Since ¢(b) = 0, where ¢ is the polynomial (1.28).
It follows that

bk = —akflbkil — akfgbkiz — .-+ —ap,

and therefore,

0 =bp(b) =b(ck_1b""t +cp_2bF "2+ +cg) = cr_1b" +cp_ob" L+ + cob
= cpo1(—ap—1bF 71 —ap_obF "2 — - —ag) + cp_2bF T 4+ b
= (-2 — Cr—1ak—1) "L + (ch—g — cr—1ak—2) ¥ "2 + - + (co — cr—1a0) b

—Ckr—10Q0.

Consequently, the polynomial

zp(x) = (Cp—2 — ch—1ak—1) "1+ (chog — ch—rap—2) T2+ -+
+(co — ck—1a0) T — cr—100
vanishes at b, and hence belongs to Null (#). As shown above, then 0 = m (cx—o —
Ch—10k—1) = m(cx—2) —m(cr—1) m(ar—1) = m(ck—2), since m(cx—1) = 0. Proceed-
ing inductively, we obtain that m(c;) =0 for all m € K and all i = 1,2,...,k, as
claimed.

Let mg € K, and let Iy = Null (mg) = {a € A: mg(a) = 0} be the corre-
sponding maximal ideal in the algebra A. As we have seen, mg(c;) = 0 for each
coefficient ¢; of any polynomial p € Null (@). Therefore, Null ($) C Dy, where

Dy = A+ Iz 4 Ipz® + - - - 4 Tpz" L.

Hence Dy is a closed subalgebra of A; containing Null (@). Since the mapping
@ : Ay — B is surjective, the set

D = &(Dy) = A+ Ipb+ Igh? + Iob® + - + Ipb* 1

is a closed subalgebra in A[b] = B. We claim that no linear combination of elements
b,b?,...,bF 1 belongs to D. Indeed, if we suppose that ayb+ -+ + ap_ ¥~ €
D=A+1yb+ Iob2 + Iob3 + -+ Iobk71 with (011, . ,Ozkfl) 7é (0, . ,0), then

alb+--- -I—Ckk,lbk_l =a+cb+--- +Ck,1bk_1, c; € Iy.
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Consequently,
a+(cr—ar)b+-+ (ck—1 —ozk_l)bkfl =0.

Hence the polynomial a + (¢; — ay)x + - + (g1 — ax_1) 2"~ is in Null (@),
and therefore, mo(c; — ;) = 0,1 = 1,...,k — 1, since my € K. Consequently,
m(a;) = a; =0 foralli =1,...,k — 1, since mp(c;) = 0. This contradicts the
choice of aq, . . ., iy, and completes the proof that dim B/D = k—1, as desired. O

Lemma 1.5.6. There exists a closed subalgebra D of B = Alby,ba,...,by], such
that AC D C B, and dim B/D < oc.

Proof. Let By = Alby, ba,...,bx] and let r4(b) be the minimal degree of all monic
polynomials gx(z) = 2! + a;_12' =" + a;_22'=2 + - - + ag over By_; with ¢(b) = 0.
Applying the technique of Lemma 1.5.5, we construct consecutive extensions of A,

namely
ACA CAyC---CA,.

Every element d € A,, admits a unique representation of type
d= Zail,iz,m,inxilxgg coexindp <rp(b), k=1,2,...,n.

Therefore, the norm on A,, is equivalent to the norm (1.27), and the map ¢: A,, —
B, defined as

i1 02 i _ 110 in
@(E @iy ig,...in L1 Lo xn) = E @iy ig,...in D1 0S - - DT

is continuous, and there exists a maximal ideal I in A,_; such that
Null(®) C Do = Ap—1+ [xp + -+ Iz}, (1.30)

where m = 7, (b) (cf. the proof of Lemma 1.5.5). The algebra Dy is closed in A4,, =
B, and therefore D = &(Dy) is a Banach subalgebra of B with dim B/D =m. O

A bounded linear functional d on an algebra B is called a point derivation of
B at m € Mp, if

d(ab) = d6(a)m(b) + m(a)d(b) for every a,b € B.
One can easily see that Null (§) is a subalgebra of B, and §(1) = 0. The next
theorem is well known (cf. [B7], or [D], p.118).

Theorem 1.5.7. If 0 is a linear functional on B such that Null () is an algebra,
then one of the following alternatives holds.

(i) If 6(1) # 0, then 0 is a scalar multiple of a linear multiplicative functional.

(ii) If 6(1) = 0, then either there exist m1, ma € Mp, m1 # ma, such that 6 is a
scalar multiple of m1 — ma, or, 0 is a point derivation at some m € Mp.



38 Chapter 1. Banach algebras and uniform algebras

Theorem 1.5.8. Let B = A[by, ba,...,by], b; € B, be a strong polynomial extension
of A. If A # B, then either there exist mi,ms € Mp, m1 # ma, such that A C
Null (my — mz) = {b € B: m1(b) = mz(b)}, or, there exists a non-trivial point
derivation 6 : B — C, such that A C Null (§) = {b € B: §(b) = 0}.

Proof. Since J =1+ Iz, + ---+ Iz]" is a maximal ideal of the algebra Dy from
(1.30), then J is a closed ideal in Dy. Let A,, be the algebra generated by Dy and
Zn. Clearly, J is an ideal of A,, and dim(4,,/J) = m + 1. Every element b € A,
generates a linear operator Ty : A,,/J — A, /J by Ty([a]) = [ba], where [a] is
the coset [a] = a + J. The operator T} is well defined, since J an ideal in A,,. The
space of operators {Ty: b € A,} is a commutative subalgebra of the algebra of
all linear operators on an (m + 1)-dimensional space. As shown in [D] (Theorem
1.8.11), there exists a basis [a1], [a2], ..., [am+1], in A, /J, such that any operator
Ty, € T(A,) has an upper-triangular form

€11 €12 €13 Ci4 0 Clk

0 22 c23 coa - Cop

0 0 c33 €3¢ -+ c3%

0 0 0 Cq4 tee Cak

0 0 0 0 o Ckk
with respect to this basis. The subspace E; of A,,/J spanned by [a1], [a2], . . ., [a],
is an invariant subspace of the algebra T'(A,). Therefore, the set E = {a €

Ay:la] € Ez} is an ideal in A, for all ¢« = 1,2,...,m. For the algebras D; =
Eé@@-l,i:l,Q,...,mwehave

D0CD1C"'CDm:An7

and dim(D;+1/D;) = 1. Since D = $(Dy) is a closed subalgebra in B = #(4,,),
and ¢ : A,, — B is a homomorphism, then ¢(D;_1) is a subalgebra of B with
codimension 1 that contains A. The result follows from Theorem 1.5.7. O

Let A C B be uniform algebras on X. If zp € X is a p-point (or generalized
peak point) for B, then there is no non-trivial derivation at x. Indeed, consider an
f€Juy={f€B: flzg) =0}, and let F,, = {& € X: [f(z)| > 1/n}. Since zg
is a p-point, then there exist elements h,, € B, such that ||hy| = hn(zo) = 1, and
|hn(z)| < 1/non F,. The functions f, = 1—h,, belong to J,,, and || fnf—f|| — 0
as n — oo. For any point derivation é of B at x¢ we have 0(f, f) = 0, and hence
0(f) =0 for every f € Jy,. Since also §(1) = 0, we see that ¢ is trivial, as claimed.

A uniform algebra A on X is said to be polynomially closed, if A has no
strong polynomial extensions that are uniform algebras on X, i.e. if any strong
polynomial extension B of A that is a uniform algebra on X coincides with A.
The remarks from the above, and Theorem 1.5.8 imply the following

Theorem 1.5.9. If A is a uniform algebra, such that every point of its mazimal
ideal space M 4 is a p-point for A, then A is a polynomially closed algebra.
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1.6 Isomorphisms between uniform algebras

In this section we assume that A and B are uniform algebras on their maximal ideal
spaces X and Y respectively. We find conditions for peripherally multiplicative and
peripherally additive operators to be algebraic isomorphisms.

Definition 1.6.1. An operator T: A — B is said to be

(a) preserving the peripheral spectra of algebra elements if

ox(Tf) = ox(f)  for every f € A. (1.31)
(b) ox-additive if
ox(Tf +Tg) =0x(f+g) forall f,ge A (1.32)
(¢) o-multiplicative if
ox((TF)(Tg)) = 0x(fg) forall f,ge A, (1.33)

First we will consider the case of o,-additive operators.

Lemma 1.6.2. If an operator T: A — B is o-additive, then the following equalities
hold for all f,g € A.

(a) ITf +T9H =If+gll,
(b) T(0) =
(c) T(= )= -Tf,
(d) ox(Tf) = ox(f),
(€) ox(T(f+9)) = ox(Tf+Ty),
&) ITfI =111, and

(&) ITf =Tyl =If—gll
If, in addition T is surjective, then it is R-linear.

Proof. The equality (a) is obvious, since |z| = || f|| for every z € o, (f). (b) follows
from (a) by letting f = g = 0. (c) follows from the o,-additivity of T'. Indeed,
oo (Tf + T(~f)) = 0n(f + (1)) = 0x(f — f) = 02(0) = {0}, hence Tf 1
T(—f) =0, and therefore, T(—f) = —T'f. Equalities (d) and (f) follow from the
or-additivity of T and (a) correspondingly, by letting g = 0. (e) follows from (d)
and the or-additivity of T’ because of o (T'(f+9)) = ox(f+9) = o (T f+Tg). (g)
follows form (a) and (c). The last statement follows from the theorem of Mazur-
Ulam [MU] (see also [V]), since, by (b) and (g), T(0) = 0, and |Tf—Tg|| = || f—g|l
for all f,g € A. ]
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Note that according to equality (f), the operator T preserves the norms of
algebra elements, and therefore maps the unit ball of A in the unit ball of B.
By (d) T preserves the peripheral spectra, and by (g) it preserves the distances
between algebra elements. It is straightforward to see that the o, -additivity of T
is equivalent to both (d) and (e).

Let C* = C\ {0}. In the sequel we will use the following notation:

sF(A)={sf: feF(A)}, where s € C*,
sFx(A) ={sf: fe€Fy(A)}, where s € C*,
C* - F(A)={sf: f e F(A), s € C*}, and
C* Fu(A) ={sf: feFs(A), seC*}.

The elements of the family {s: F(A), s € C*} are called C*-peaking functions
of A. Clearly, f is a C*-peaking function if and only if o.(f) is a singleton, and
g € sF(A) if and only if 0,(g9) = {s}. If f € sF(A) for some s € C*, then the
set P(f) = f~{s} is called the peak set for f. Obviously, P(sf) = P(f) for any
f € F(A) and any s € C*. Therefore, the collection of peak sets for the classes of
peaking functions and of the classes of C*-peaking functions of A coincide.

Lemma 1.6.3. If T : A — B is a surjective operator which preserves the peripheral
spectra of algebra elements, then

T(sF(A)) = sF(B) (1.34)

for any s € C*.

Proof. Indeed, if s € C* then T (sF(A)) C sF(B) follows by the preservation of
the peripheral spectra by T. Given a k € sF(B), s € C*, let k = Th for some
h € A. Then h € sF(A) since or(h) = 0-(Th) = or(k) = {s}. Hence k = Th €
T(sF(A)), and therefore sF(B) C T (sF(A)). Consequently, T (sF(A)) = sF(B)
for any s € C*, as claimed. O

Definition 1.6.4. An operator T: A — B is called monotone increasing in modulus
if the inequality |f(z)| < |g(z)| on A implies |(Tf)(y)| < |(Tg)(y)| on B for
every f,g € A.

Lemma 1.6.5. If a monotone increasing in modulus surjective operator T: A — B
preserves the peripheral spectra of algebra elements, then for any generalized peak
point x € 6A the set

E,= (] P(Th (1.35)
REC*-Fy (A)
18 non-empty.
Proof. Observe that
T(sF(A)) = sF(B) (1.36)
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for any s € C*. Indeed, if s € C* then T(sF(A)) C sF(B) follows by the
preservation of the peripheral spectra by T. Given a k € sF(B), s € C*, let
k = Th for some h € A. Then h € sF(A) since o(h) = 0-(Th) = or(k) = {s}.
Hence k = Th € T(sF(A)), and therefore sF(B) C T(sF(A)). Consequently,
T (sF(A)) = sF(B) for any s € C*, as claimed.

Let x be a generalized peak point of A. First we show that the family
{P(Th): h e C* ~.7-"x(A)} has the finite intersection property. If hi,ho,..., hy
belong to C* - F,(A), and h; € s;F5(A), s; € C*, then, clearly, the function
g = hy - ha---h, belongs to the space (s1 - s2---55) - Fx(A). Since |hj(z)| <
[sjl, 7= 1....,n, we have [g(&)| = [h1(&)] - [h2(&)] -+~ [ (§)] < | lgk|8j\]\hk( )=

J

H H |55] he (€ | for every £ € OA and any fixed k = 1,...,n. The preserva-

tlon of peripheral spectra by T implies that Tg € (s1 - s2---s,) - F(B) and
Thy € spF(B). Hence, |(Thi)(y)| < |si| for every y € Y. By Lemma 1.6.2(h),
T is R-linear, and since it is also monotone increasing in modulus, it follows that

(Tg) )l < |(T([ g[ [51] hjo) ()| = [ \31 JI(Thi) ()] < [(s1- 52+ 5n)]| for ev-
j
ery y € 0B. Consequently, for every y 6 Y with [(T'g)(y)| = |s1 -2 Sp| we must

have |(Thi)(y)| = |sk|, which implies (T'hy)(y) = sk, and hence P(Tg) C P(Thy,).

Since this holds for every k = 1,...,n, we obtain that P(T'g) C ﬂ P(Th;). Conse-
k=1

quently, the family {P(Th): heC* -fx(A)} has the finite intersection property,

as claimed. Hence it has a non-empty intersection, since all of its elements are

closed subsets of the compact set Y. (|

The following lemma provides sufficient conditions for an operator T: A — B
to be monotone increasing in modulus.

Lemma 1.6.6. If a surjective operator T: A — B satisfies the equality

(it) max ((TH)] +[(Tg)m)) = max (IfE)]+1g(E))

0A
for every f,g € A, then it is monotone increasing in modulus.

Proof. If | f(x)] < |g(z)| on OA, then, clearly,

ma (I£(€)] + k(€)]) < max (Jg(€)] + k(€)])

for any k € A. By equality (ii) we have
max (|(Tf)(n) + [(Tk)(n)]) = max (1)1 + [EE©)])

nc€oB
< maxc (19(€)|+ K(©)]) = max (T + 1R m).

Now from Lemma 1.2.7 and the surjectivity of T' if follows that |(T'f)(y)| <
(T'g)(y)| on OB. 0
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Proposition 1.6.7. If a surjective operator T: A — B satisfies the equalities
(i) o (Tf+Tg)=0(f+g), and
(i) max (ITH)0)] + [Tg)(n)) = max (1£(€)]+ lg(€))

forall f,g € A, then T is bijective.

Proof. We will show that T is injective. If T'f = T'g for some f, g € A, then for any
h e Awehave Tf+Th=Tg+ Th. Consequently, o.(Tf +Th)=0.(Tg+ Th).
The o,-additivity of T implies

ox(f+h)=0.(Tf+Th)=0.(Tg+Th)=0.(9+h).
By equality (ii) we have
e (1£(€)]+ [A(©)]) = max (1(T) )|+ [(TR) )

jgggj;ﬂ( 9) ]+ [(Th)(n)]) ggﬁ(\g(&)wlh(@\)
for every h € A. Lemma 1.2.13 now implies that f = g. Hence T is injective, and
therefore bijective. O

Lemma 1.6.8. If the operator T: A — B satisfies the assumptions of Proposition
1.6.7, then for generalized peak point x € JA the set E, is a singleton and belongs
to 6B.

Proof. Let x be a generalized peak point of A. Equality (ii) and Lemma 1.6.6 imply
that 7' is monotone increasing in modulus. It follows from Lemma 1.6.2(d) that
the operator T preserves the peripheral spectra of algebra elements. Therefore, T
satisfies the hypotheses of Lemma 1.6.5. In the course of its proof we saw that
{P(Tf): fecC -]—'z(A)} is a family of peak sets with non-empty intersection,
E., hence it meets 6B (e.g. [L1]).

Since T' preserves peripheral spectra of algebra elements, equality (1.34) im-
plies T7'(F(B)) = F(A). We claim that T-(F,(B)) C F.(A) for any y €
E,NéB. Let y € E, N 0B, k € Fy(B), and let h = T~!(k). To show that
h € F.(A) it is enough to verify that h(z) = 1. Take an open neighborhood V
of z and a peaking function g € F,(A) with P(g) C V. Equality (1.34) yields
Tg € F(B). Since y € E, C P(Tg) we have that (T'g)(y) = 1, and therefore,
Tg € Fy(B). Equality (ii) yields

k(y)+ (Tg)(y) =2 > max (L) +19(9)I)

= ma ({(TR)(n)| +|(Tg)(n)]) = max (Jk(n)| + (o) (m)]) = 2

Hence ?elg)fx (|R(&)] + [9(&)]) = 2, and there must be a zy € A with h(zy) =1
and g(zy) = 1. Therefore, zy € P(g) C V. We deduce that any neighborhood
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V of x contains a point xy with A(zy) = 1. The continuity of h implies that
h(z) =1, thus h € F,(A). Consequently, T~ (F,(B)) C F.(A), as claimed.

Let y € E, NéB. If there were a z € E, \ {y}, there would be a peaking
function k € F,(B) with |k(z)| < 1. For any h € T~(k) N F,(A) we have h €
Fu(A), k=Th € F(B), and P(k) = P(Th) D E,. Hence the function k = Th is
identically equal to 1 on E, contradicting |k(z)| < 1. This shows that the set E,
does not contain points other than y. O

Let T satisfy the assumptions of Proposition 1.6.7, and let « € JA. If 7(x)
denotes the single element of the set F,, i.e.

{r@)}=E.= () P(Th), (1.37)

heC*-F,(A)

then there arises a mapping 7: x —— 7(z). If h € sF,(A), s € C*, then, due
to (1.37), P(Th) D E, = {7(z)}, thus (T'(h))(7(x)) = s = h(x). Therefore, the
equality
(T(h))(r(x)) = h(x) (1.38)

holds for every C*-peaking function h € sF,(4), s € C*.

Under the assumptions of Proposition 1.6.7 the operator T is bijective. Let
k € C* - Fr(4)(B), for some z € 6A, and let T~'k = h € C* - F,(A). By (1.38) we
have k(7(x)) = (Th)(t(z)) = h(z) = (T~ k)(x), and therefore, the equality

(T7'k) () = k(r(x)) (1.39)
also holds for every x € §A and any C*-peaking function k € sF,,)(B), s € C*.

Lemma 1.6.9. Let the operator T: A — B satisfy the assumptions of Proposition
1.6.7, and let f € A. If (Tf)(7(x9)) =0 for some xo € 6A, then also f(xo) = 0.

Proof. Let xy be a generalized peak point of A and let f be in A with ||f|| =
ITf]| = R. Choose an open neighborhood U of 7(z) in Y, such that [(Tf)(y)| < €
on U. Let k € F,(,,)(B) be a peaking function of B with 7(z¢) € P(k) C U.
By taking a big enough power of k, we may assume from the beginning that

(THWI + Rlky)] < max (ITHM) + RlkM)]) < e+ R forally € Y \U.
n
Consequently, max ((Tf)(m)| + RIk(n)|]) < e+ R, and therefore, according to
ne

equality (ii),

Inax (IF I+ (T (RR))(E)I) = max (@)l + |RE)]) <&+ R.

Hence by (1.39) we have
[f(z0)| + R = | f(z0)| + |RK(r(x0))| = | f(z0)| + [(T™'(Rk)(z0)| < e+ R.

Thus, |f(z0)| < €, and consequently, f(xg) = 0 by the liberty of choice of e. O
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Lemma 1.6.10. If the operator T: A — B satisfies the assumptions of Proposition
1.6.7, then | f(x)| < |Tf(r(x))| for every x € A and all f € A.

Proof. Since T satisfies the assumptions of Proposition 1.6.7, then the equalities
(i) o (Tf+Tg)=0(f +g), and
(i) mas (1T + (T 0)) = max (1£€)]+ lg(©))

hold for all f,g € A. By Lemma 1.6.2(d) and (e), |Tf|| = ||f|l, and || Tf + Tg|| =
1T+ 9| =17+ a1,

Let z € 0A, f € A, and let ¢ = Tf € B. Without loss of generality we can
assume that g(7(z)) # 0, since if g(7(x)) = (T'f)(7(x)) = 0, then also f(x) =0 by
Lemma 1.6.9, and the result carries. If U is an open neighborhood of 7(z) in Y,
then by the additive version of Bishop’s Lemma (Lemma 1.2.11) we can choose
a k € B with 7(z) € P(k) C U, such that the function |g(y)| + |k(y)| attains
its maximum only within P(k) C U. Let ny € P(k) and Sy € T be such that
l9(nu)| = o l9(n)l, and g(nv) = Bu|g(nu)|. According to Corollary 1.2.12,

lg(no)l +1 = llg + Bukll,

while ||g + vk|| < |lg + Bukl|| for any v € T. Let a € T, be such that f(z) =
a|f(z)|. Denote h = T~Y(k) € F.(A). By equality (1.39) we have o = ak(7(z)) =
(T~ (ak))(z). Equality (i) and Corollary 1.2.12 imply

[f(@)+1=af(e) +1=|f(2)+a| =[f(z) + (T~ (ak)) ()]
= |(f + T~ (ak)) (@)| < |h+ T ak)|| = ||g + okl < llg + Bkl = lg(nw)] + 1,

thus |f(z)] < |g(nu)|- We have obtained that any neighborhood U of 7(z) contains
a pomt nu such that |f(z)| < lg(nu)|- The continuity of g implies that |f(z)] <

lg(7(@))| = (T f)(7(x))|. O

Lemma 1.6.11. If the operator T: A — B satisfies the assumptions of Proposition
1.6.7, then the mapping T from (1.37) is a homeomorphism from §A onto 0B.

Proof. Proposition 1.6.7 implies that T is bijective. Since the equalities (i) and
(ii) are symmetric with respect to f and Tf, they hold also for the inverse op-
erator T~1. According to Lemma 1.6.8 there arises a corresponding continuous
map ¢: deltaB — 0A such that the equality (1.38), which in this case reduces
to (T=(k))(¥(n)) = k(n), holds on 6B for any k € F,(B). Let # € A and y =
T(x) € 6B.If h € F,(A), then, due to (1.32) and (1.38), k = Th € F,(B), therefore
h((y)) = (T~1(k)) (¥ () — k(y) = (Th)(y) = (Th)(r(2)) = h(x )—1 and there-
fore ¥(y) € P(h). Since this holds for every h € F,(A) and ﬂ P(h) = {z},
heFx(A)
we have that ¢ (7(z)) = ¢¥(y) = x for every x € §A. By similar arguments one
can see also that 7(¢(y)) = y for any y € dB. Consequently, 7 and v both are
injective mappings, and ¢ = 7.
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Let z € dA be a generalized peak point of A, and let r € (0,1). Choose an
open neighborhood V' of 7(x) in §B, and a peaking function k € F,(,)(B) with
P(k) CcV and |k(y)| <ron §B\V.If h = T~1(k), then h € F,(A), and according
to (1.38), k(7(&)) = (Th)(7(£)) = h(§) on §A. Note that since h(z) =1 > r, the
open set W = {f € 0A: |h(&)| > r} contains x. According to Lemma 1.6.10,
for every ¢ € W we have |k((£))| = [(Th)(7(€))| > |h(§)| > r, and therefore,
T(§) € V, since on 0B\ V we have |k(n)| < r. Consequently, 7(W) C V, which
proves the continuity of 7. If we consider the operator T-': B — A and the
mapping 77 !: 6B — JA, the same arguments imply that 77! is also continuous,
which completes the proof. O

When applied to the operator T=': B — A and the mapping 7 ': 6B — A,
Lemma 1.6.10 implies [g(y)| < [(T'g)(77*(y))| for any y € 6B and every g € B,
or,if g=Tf, f €A and y = 7(x), x € 64, equivalently, |(Tf)(r(x))| < |f(z)]-
Hence we have the following

Corollary 1.6.12. If the operator T: A — B satisfies the assumptions of Proposi-
tion 1.6.7, then |(Tf)(1(x))| < |f(x)| for any x € 6A and every f € A.

Proposition 1.6.13. If T: A — B satisfies the assumptions of Proposition 1.6.7,
then the equality

(Th)(7(x)) = f(=) (1.40)
holds for every f € A and every generalized peak point x € 0A.

Proof. If T satisfies the assumptions of Proposition 1.6.7, then, by Lemma 1.6.8
the mapping 7 from (1.37) is well-defined, and, given an = € 0A, any C*-peaking
function h € sF;(A), s € C*, satisfies the equality (1.38), i.e. (1.40).

Let xyp be a generalized peak point of A and let f be in A with ||f] =
ITf]| = R. Without loss of generality we can assume that f(zg) # 0, since in
f(xo) = 0, then also (T'f)(r(x0)) = 0 by Lemma 1.6.9, applied to the operator
T—': B — A, the function Tf € B and the mapping 77 ': §B — JA. Let V be
an open neighborhood of zy in X. By the additive version of Bishop’s Lemma we
can choose an R-peaking function h € R - F,,(A) so that o € P(h) C V, and
such that the function |f(z)| + |h(z)| attains its maximum only within P(h) C V.
Let &y € P(h) and ay € T be such that f(&y) = av|f(&v)] and |f(&v)] +

R= max (IF )+ h©)]) = e |(f + avh)(©)] = |f(év) + av R|. Hence, by

Corollary 1.2.12,

FE&)+R=|f(&v)+avR|=|f+avh|, (1.41)

while ||f + vh|| < ||f + avh]| for any v € T. Therefore, f(&v) + avR € o (f +
ayh) = og (Tf + T(avh)). Hence there is a point zy € Y with

f(fv) +ayR = ((Tf+T(Olvh))(Zv) (142)
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We may assume that zy € 6B. Indeed, |f({v)| + R = || f + avh] is the maximum
modulus of the function f+ay h, and, according to Lemma 1.6.2(d), of the function
Tf + T(ayh) as well. Therefore, the function |Tf + T(ayh)| attains the value
|f(&v)| + R at some point of the Choquet boundary é B, and we can choose zy to
be such a point. The surjectivity of 7 implies that zy = 7(xy) for some zy € JA.
Equality (1.42), Corollary 1.6.12, (ii) and (1.38) imply

|£(¢ >+ale = |((Tf + T(avh)) (zv)| = (T (r(zv)) + (T(avh)(r(zv))|
< |(Tf)(r(@))| + (T (avh)) (r(@v))] < |f(@v)] + |ah(@y)| =] f(@v)] + [h(zy)]
< max (I£(©)] + 1)) = [£(&v)| + R = £ (&) + avR],

thus

|flav)|+ [h(zv)| = |f(&v) + avR| = max (1£ )+ nE)]).

Since this maximum is attained only within P(h), zv € P(h), thus h(zy) = 1,
and according to (1.41), (T(avh))(zv) = (T'(avh))(t(zv)) = avh(zy) = ayv R.
Now equality (1.42) becomes

f(&v) +avR = ((Tf+T(avh))(zv) = (Tf)(zv) + (T(avh))(zv)
= (Tf)(r(zv)) + avh(zv) = (Tf)((zv)) + av R,

thus f(&v) = (Tf)(r(xzv)). Therefore, any neighborhood V' of xy contains points
&v and zy such that f(&y) = (T'f)(7(xv)). The continuity of f, T f, and 7 implies
that f(zo) = (T'f)(7(x0))- O

Theorem 1.6.14. Let A C C(X) and B C C(Y) be uniform algebras on their
maximal ideal spaces X andY correspondingly. If a surjective operator T: A — B
satisfies the equalities

() ox(Tf+Tg)=o0(f +g), and
() e (17960 + 1(T9)(n)) = s (17(6)] + lo(e))

for every f and g in A, then T is an isometric algebra isomorphism from A onto
B.

Proof. Proof. Since the operator T satisfies the hypotheses of Proposition 1.6.7,
then Proposition 1.6.13 implies that the equality (1.40), i.e. (Tf)(7(z)) = f(z),
holds for every € §A and all f € A. Therefore, the restricted operator T": Alss —
B|sp defined by T'(f|sa) = Tflsp, [ € A, is an algebra isomorphism between
Alsa and §B. Since the Choquet boundary of an algebra is its boundary, A|s4 = A
and Blsp & B, and also T is uniquely determined by T”. It follows that T is an
algebra isomorphism between A and B. O

Recall that an operator T: A — B is said to be T-homogeneous, if the equality
(Tf)(sf)=s(Tf) holds for every f € Aand any s € T ={z € C: |z] = 1}.
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Lemma 1.6.15. Fvery additive operator T which preserves the peripheral spectra
of algebra elements is or-additive, i.e. satisfies the peripheral additivity property
(i) of Theorem 1.6.14.

This follows immediately from o (T f +Tg) = o (T(f +9)) = o= (f + 9)-
Lemma 1.6.16. If an operator T: A — B satisfies the equality

ITf+ Tyl = || f + ay] (1.43)

for every f,g € A and any a € T, then T satisfies equality (i) of Theorem 1.6.14.
Proof. Let f,g € A. If a € T is such that

mase (|(T)(0)] +|(Tg)(n)]) = max |(TF)(m) + a(Ta)(n)

then equality (1.43) implies

max ([T +(Tg)(m)) = max [(Tf)(m) + (Tg)(m)| = ITf +aTy|

= = < .
I/ + agll = max [£(6) + ag(€)] < max (7€) + l9(©)])
The argument is reversible, and therefore,

max (|(Tf)(n)| + [(Tg)(n)]) = max (If(€) + lg(6)])

nedB £€dA
i.e. equality (ii) holds, as claimed. |

Clearly, Lemma 1.6.16 holds for any operator that satisfies the equality
or(Tf 4+ aTg) = o (f + ag) for every f,g in A and any a € T. In particular, it
holds for any T-homogeneous operator which is o, -additive.

Lemma 1.6.17. Any C-linear operator T: A — B with T'(1) = 1 which preserves
the norms of algebra elements, preserves also their peripheral spectra.

Proof. Let f € A and zg € o.(f). Then 2y = f(xg) for some zg € X, and
20l = 11 (eo)| = 7] Clearly, £+ z0]l = mua | (x) + 20| = 2lzo]. The linearity of

Tyields T(f+20) =Tf+T(20) =Tf+ 2T (1) =Tf+ z0. The norm-preservation
of T imnplics [(T)(3)] < 7S] = £l = |zol, and hence

ITf + 20ll = IT(f + z0)l| = If + 20ll = 2[20],

since |f(z)| < |z0| for all x € X. Thus (T'f)(yo) = 2o for some yo € Y, and
therefore, 2o € o, (Tf), since |zo| = || f|| = || T f]-
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Conversely, let ug € o.(Tf) for some f € A. Then ug = (T f)(yo) for some
yo € Y, and |ug| = |(Tf)(yo)| = ||Tf]||. The linearity of T implies T'(f + up) =
Tf+4+T(up) =Tf+uT (1) =Tf + ug. Therefore, by the norm-preservation of T'
we have [f(z)| < |[f]| = [T ]l = [uo| and

1f + ol = |Tf + T(uo) || = | T(f + uo)|| = IT'f + uoll = 2luol,

since |(Tf)(y)| < |uo| for all y € Y. Hence, f(zo) = up for some zo € X, thus
uo € ox(f), since |uo| = [|Tf|| = [|f]|. Consequently, o=(T'f) = ox(f)- O

The next corollary follows from Theorem 1.6.14 and Lemma 1.6.16.

Corollary 1.6.18. If a surjective additive operator T: A — B preserves the periph-
eral spectra of algebra elements and satisfies the equality

(i) max (TN +I(To)n)) = max (£ +19(©))

for all f,g € A, then T is an isometric algebra isomorphism.
Theorem 1.6.14 and Lemma 1.6.16 imply the following
Proposition 1.6.19. If a surjective operator T: A — B satisfies the equality
(") ox(Tf+aTyg) =ox(f+ag)
for every f,g in A and any o € T, then T is an isometric algebra isomorphism.

Proof. Indeed, (') implies (1.43) and also (i) of Theorem 1.6.14, and therefore T
satisfies both equalities (i) and (ii) of Theorem 1.6.14. O

As mentioned before, the equality (i’) is satisfied automatically by any T-
homogeneous operator which is o,-additive. The next proposition follows from
Proposition 1.6.19.

Proposition 1.6.20. If T: A — B is a surjective, T-homogeneous, and o -additive
operator with T(1) =1, then T is an isomelric algebra isomorphism.

Proposition 1.6.20 and Lemma 1.6.15 imply

Theorem 1.6.21. Any surjective C-linear operator T between two uniform algebras,
which preserves the peripheral spectra of algebra elements, is an isometric algebra
isomorphism.

Corollary 1.6.22. Any surjective C-linear operator T: A — B with T(1) = 1,
which preserves the norms of invertible algebra elements, is an isometric algebra
isomorphism.

Proof. Clearly, if T' preserves the norms of invertible elements and T'(¢) = ¢ for
any ¢ € C, then T preserves the norms of all algebra elements. The result follows
from Theorem 1.6.21 and Lemma 1.6.17. ]
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As a consequence from Corollary 1.6.22 we obtain Nagasawa’s theorem [N]
(also [R3]) for uniform algebras.

Corollary 1.6.23. Let A and B be uniform algebras, and let By and Bp be their
open unit balls correspondingly. If F': B4 — Bp is a biholomorphic mapping such
that F(0) = 0, and F(1) = 1, then F extends on A as an isometric algebra
isomorphism.

Proof. As shown by T. Ransford [R3], F' preserves the norms and extends to a
C-linear isomorphism from A onto B. Clearly, the extension also preserves the
norms. Corollary 1.6.22 implies that this extension is also multiplicative. O

Now we consider the case of o -multiplicative operators.

Lemma 1.6.24. If an operator T: A — B with T(1) = 1 is o -multiplicative, then
the equalities

(@) ox(Tf) = 0ox(f),

b) ITfl = 1111,

(©) o= ((Tf)(Tg)) = o=(T(fg)), and

@) [[(TH(Tg] =19l
hold for all f,g € A.
Proof. The equality (a) follows from the o, -multiplicativity of T by letting g = 1.
(a) and the o,-multiplicativity of T" imply (c), because of o (T(fg)) = o(fg) =
o= ((Tf)(Tg)). Equalities (b) and (d) follow from (a) and (c) correspondingly,
since |z| = || f]| for every z € o, (f). O

Note that according to equality (a) the operator T preserves the peripheral

ranges of algebra elements. It is straightforward to see that the o, -multiplicativity
property (1.33) is equivalent to both properties (a) and (c¢). According to (b),

T preserves the norms of algebra elements, and according to (d) it is norm-
multiplicative.

Lemma 1.6.25. Any surjective and morm-multiplicative operator T: A — B is
monotone increasing in modulus.

Proof. If |f(x)| < |g(x)] on OA, then clearly ||fh| < |lgh| for any h € A. The
surjectivity of T implies that for any k& € F(B) there is an h € A such that
k = T(h). By the norm-multiplicativity of 7" we have

(@ f)- k|| = [[(THITH = [IFh] < llghll = [(To)(Th)|| = [|(Tg) - k)|

for every k € F(B). Now Lemma 1.2.5 implies that [(Tf)(y)| < |(T9)(y)| on
0B. (|

Proposition 1.6.26. Any o,-multiplicative surjective operator T: A — B is bijec-
tive.
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Proof. If Tf = Tg for some f,g € A, then for any h € F(A) we have (T'f)(Th) =
(Tg)(Th). Consequently, o ((T'f)(Th)) = o« ((Tg)(Th)). The or-multiplicativity
of T yields

ox(fh) = o= ((Tf)(Th)) = o= ((Tg)(Th)) = ox(gh).

Lemma 1.2.10 now implies that f = g. Therefore, T is injective, and consequently
it is bijective. O
Lemma 1.6.27. Let T: A — B be a surjective or-multiplicative operator with

T(1) = 1. Then for any generalized peak point x € §A the set E, defined in
(1.35) is a singleton and belongs to 0B.

Proof. According to Lemma 1.6.5, the set E, is non-empty. Let x € §A be a gen-
eralized peak point of A. The o, -multiplicativity property of T implies that T
is norm-multiplicative. According to Lemma 1.6.25, the operator T' is monotone
increasing in modulus. Since also T'(1) = 1, it follows from Lemma 1.6.24(a) that
T preserves the peripheral spectra of algebra elements. Hence T satisfies the hy-
potheses of Lemma 1.6.5. From its proof we know that {P(T'f): f € F,(A)} is a
family of peak sets with non-empty intersection, F,, hence it meets 6B (e.g. [L1]).
Consequently, E, NdB # O.

Since T preserves the peripheral ranges of algebra elements, then, by (1.33),
we have that T—!(F(B)) = F(A). We claim that T~ (F,(B)) C F,(A) for any
y € E,NOB. Let y € E, N 0B k € Fy(B), and let h = T~'(k). The function h
is unique, as it was already shown that T is injective. To show that h € F,(A)
it is enough to prove that h(z) = 1. Take an open neighborhood V of  and a
peaking function g € F,(A) with P(g) C V. By (1.33) we have T'g € F(B). Since
y € E, C P(Tg) we have (T'g)(y) = 1, thus T'g € F,(B). Lemma 1.6.24(c) yields

k(y)(Tg)(y) =1 > [|hgll = |[(Th)(Tg)|| = ||k - (Tg)|| = 1.

Hence ||hg|| = 1, and there must be a xy € JA with h(zy) = 1 and g(zv) = 1.
Therefore, xy € P(g) C V. We deduce that any neighborhood V' of x contains a
point zy with h(zy) = 1. The continuity of h implies that h(x) = 1,s0 h € F,(A).
Consequently, T~ (F,(B)) C F(A), as claimed.

Let y € E, N 0B, and suppose there exists z € E; \ {y}. Then there exists
a peaking function k € F,(B) such that |k(z)| < 1. By what was shown above, if
h = T~Y(k), then h(x) = 1. Thus E, C P(Th) = P(k), which implies k(z) = 1
contradicting |k(z)| < 1. This shows that the set E, contains exactly one point. [

We see that under the assumptions of Lemma 1.6.27, for any « € §A the
element 7(x) from (1.37) for which

{r(x)}=E.= () P(Tf)

fEFL(A)
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is well-defined, and so is the mapping 7:  — 7(z) from §A into éB. Moreover,
the equality (1.38), i.e.
(Th)(7(x)) = h(x)

holds for every C*-peaking function h € C* - F,(A). Under the assumptions of
Lemma 1.6.27, the operator T' is bijective, by Proposition 1.6.26. Let k& € s -
Fr)(B), for some x € §A, and let T'k = h € C- F(A). By (1.38) we have
k(r(z)) = (Th)(1(x)) = h(x) = (T~ k)(z). Therefore, the equality (1.39), i.e.

(T~k)(x) = k(r(x))
also holds for every x € §A and any C*-peaking function k € C* - F,(;)(B) of B.

Lemma 1.6.28. Let T: A — B be a surjective and o-multiplicative operator with
T(1) =1, and let f € A. If (Tf)(7(x0)) = 0 for some xog € §A, then also
f(zo) = 0.

Proof. Let xg be a generalized peak point of A and let f € A. Choose an open
neighborhood U of 7(z¢) in Y, such that [(T'f)(y)| < e onU. Let k € Fr(5,)(B) be
a peaking function of B with 7(z¢) € P(k) C U. By taking a big enough power of k,
we may assume from the beginning that |(Tf)(y)k(y)| < rglagc (T (mkn)]) <e

€

for ally € Y\ U. Consequently, H(Tf)k“ < g, and according to Lemma 1.6.24(d),
1F - (T 0| = [[(Tf) - k]| <&
Hence by (1.37) we have

[f (o)l = | (o) k(T (x0))| = [ f (o) (T™ k)(z0))| < e
Thus, |f(z0)| < €, and consequently, f(xg) = 0 by the liberty of choice of e. O

Lemma 1.6.29. If T: A — B is a surjective and o,-multiplicative operator with
T(1) =1, then |f(x)| < (T f)(r(x))] for every x € 6A and any f € A.

Proof. The proof follows the line of proof of Lemma 1.43. According to Lemma
1.6.24(b) and (<), |ITf]| = ||, and |[(T£)(Tg)| = |l fgll for all f,g € A.

Let z € 0A, f € A, and let ¢ = T f € B. Without loss of generality we can
assume that g(7(x)) # 0, since if g(7(z)) = (Tf)(r(x)) = 0, then, by Lemma
1.6.28, also f(x) = 0, and the result carries. If U is an open neighborhood of 7(z)
in Y, then by Bishop’s Lemma we can choose a peaking function k € F,(,)(B)
with P(k) C U, such that the function |(gk)(y)| attains its maximum only within

P(k) c U. Let ny € P(k) be such that |g(ny)| = mgglcc) lg(n)|. Denote h =
ne

T-Y(k) € F(A). Since T is norm-multiplicative, we have

[f(@)] = [£@@) (T~ (R) (@) = |(f- T (k) (@)
<If-TH 0 = 1T f) -kl = [lg kIl = lg(mw)],
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thus | f(x)] < |g(nv)|. We have obtained that any neighborhood U of 7(x) contains
a point nu such that |f(z)| < lg(nu)|- The continuity of g implies that |f(z)] <

lg(7(x))| = (T f)(7(x))|. O

Lemma 1.6.30. If T: A — B is a surjective and o,-multiplicative operator with
T(1) =1, then the mapping T from (1.37) is a homeomorphism from JA onto §B.

Proof. According to Proposition 1.6.26, the operator T is bijective. Since the o,-
multiplicativity condition (1.33) is symmetric with respect to f and Tf, it holds
also for the inverse operator T—!. According to Lemma 1.6.27 there arises a cor-
responding continuous map t: 0B — A such that the equality (1.38), which in
this case reduces to (T~*(k))(¢(n)) = k(n), holds on 6B for any k € F,(B). Let
x € 0A and y = 7(z) € 6B. If h € F,(A), then, due to Lemma 1.6.24(a) and
(1.38), k = Th € Fy(B), therefore h((y)) = (T~ (%)) (¥ (y)) = k(y) = (Th)(y) =
(Th)(r(x)) = h(z) = 1, and whence ¢(y) € P(h). Since this holds for every
h e F.(A), and ﬂ = {z}, we have that ¢(7(z)) = ¥(y) = = for every
heF.(A)

x € 0A. By similar arguments one can see that 7(¢(y)) = y for any y € 0B.
Consequently, 7 and v both are injective mappings, and ¢ = 771,

Let © € A be a generalized peak point of A, and let r € (0,1). Choose an
open neighborhood V' of 7(x) in §B, and a peaking function k € F,(,)(B) with
7(z) € P(k) C V and |k(y)| < r on 6B\ V. If h = T~1(k), then h € F,(A),
and according to (1.38), k(7(£)) = (Th)(7(§)) = h(§) on dA. Note that since
h(z) =1 > r, the open set W = {{ € 6A: |h(£)| > r} contains x. According to
Lemma 1.6.29, for any £ € W we have |k(7(£))| = ’( h)(r(€ ))’ > |h(&)] > r, and
therefore, 7(§) € V, since on § B\ V we have |k(n)| < r. Consequently, 7(W) C V,
which proves the continuity of 7. If we consider the operator T~': B — A and the
mapping 7 ': 6B — JA, the same arguments imply that 7! is also continuous,
which completes the proof. (|

When applied to the operator T-': B — A and the mapping 7~ ': 6B — A,
Lemma 1.6.29 implies |g(y)| < (T~ tg)(7=1(y))| for any y € 6B and every g € B.
By letting g = Tf, f € A, and y = 7(z), = € §A, we obtain |(Tf)(7(z))| < |f(z)|-
Hence we have the following

Corollary 1.6.31. If T : A — B is a surjective and o, -multiplicative operator with
T(1) =1, then ’(Tf)(T(x))’ < |f(z)| for any x € 6A and every f € A.

Proposition 1.6.32. If T: A — B is a surjective and or-multiplicative operator
with T (1) = 1, then the equality

(TF)(7(x)) = f(z) (1.44)
holds for every f € A and x € §A.

Proof. The proof follows the line of proof of Proposition 1.6.13. By Lemma 1.6.27,
the mapping 7 from (1.37) is well-defined, and every fixed = € dA all peaking
functions h € F,(A) satisfy the equality (1.38), i.e. (1.44).
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Let xg be a generalized peak point of A and let f € A. Without loss of gener-
ality we can assume that f(zg) # 0, since in f(z) = 0, then also (T'f)(r(x¢)) =0
by Lemma 1.6.28, if applied to the operator T~!': B — A, the function Tf € B
and the mapping 77': 6B — JA. Let V be an open neighborhood of z in
X. By Bishop’s Lemma we can choose a peaking function h € F,,(A) so that
xo € P(h) C V, and such that the function |(fh)(z)| attains its maximum only
within P(h) C V. Hence there is a point &y € P(h) such that

[fE&)l = |(Fr)(Ev)] = 1£R]l- (1.45)

Therefore, f(&v) € ox(fh) = o= ((Tf)(Th)). Hence there is a point zy € Y with

f&v) = ((THITh))(zv). (1.46)

We may assume that zy € 6B. Indeed, |f(&v)] = |(fh)(§v)| is the maximum
modulus of the function fh, and, according to Lemma 1.6.24(d), of the function
(Tf)(Th) as well. Therefore, the value f(&y) is attained by (Tf)(Th) at some
point of the Choquet boundary §B, and we can choose zy to be such a point.
The surjectivity of 7 implies that zy = 7(zy) for some xy € dA. Equality (1.46),
Corollary 1.6.31 and (1.38) imply

= |(THTR))(2v)| = [(TH)(r(zv)||(Th) (7(xv )|
Slf( >|\< V)l = [(fr)(@v)| < IfR) = 1),

thus |(fh)(zv)| = |f(&)] = [Ifhl = Igrg}g{’(fh)(f)’ Since this maximum is

attained only within P(h), v € P(h), and according to (1.38), (T'h)(zv)
(Th)(r(xv)) = h(zy) = 1. Now equality (1.46) becomes f(&y) = (Tf)(zv)
(Tf)(r(xv)). Therefore, any neighborhood V' of xy contains points &y and zy
such that f(&v) = (Tf)(r(xv)). The continuity of f, Tf, and 7 implies that
fxo) = (T'f)(7(x0))- 0

The next theorem follows from Proposition 1.6.32 in the same way as Theo-
rem 1.6.14 follows from Proposition 1.6.13.

Theorem 1.6.33. Let A C C(X) and B C C(Y) be uniform algebras on their
mazximal ideal spaces X and Y correspondingly. If T: A — B is a surjective and
or-multiplicative operator with T(1) = 1, then T is an isometric algebra isomor-
phism.

Since every multiplicative operator with 7'(1) = 1 which preserves the pe-
ripheral spectra of algebra elements is o,-multiplicative, we have the following

Corollary 1.6.34. Any surjective and multiplicative operator T between two uniform
algebras with T'(1) = 1, which preserves the peripheral spectra of algebra elements
is an tsometric algebra isomorphism.
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Note that if an operator T': A — B preserves the spectra of algebra elements,
then it preserves also their peripheral spectra. As a consequence of Theorem 1.6.33
we obtain

Corollary 1.6.35. If a surjective operator T: A — B with T(1) = 1 possesses the
o-multiplicativity property

o((Tf)(Tg)) = a(fg)

forall f,g € A, then T is an isometric algebra isomorphism.

1.7 Notes

The foundations of the theory of commutative Banach algebras were laid on by
Gelfand in [G3]. Systematic expositions on uniform algebras are given, for instance,
in [B7, G1, L1, P1, S4, P4, T2, Z], among others. Shilov boundaries were intro-
duced by Shilov in [G3]. A proof of Rossi’s Local Maximum Modulus Principle
can be found, say, in [S4], or, [AW].

A thorough exposition of inductive limits of uniform algebras is presented in
[L1]. The notion of Bourgain algebras was introduced by J. Cima and R. Timoney
[CT] in their study of the Dunford-Pettis property of uniform algebras. It is based
on a construction of J. Bourgain [B6] involving operators of Hankel type. Most of
the results on Bourgain algebras in this chapter, including the alternative proof of
the Poincaré theorem are from [TY] and [TY1]. Example 1.4.3 is due to S. Sac-
cone. Bourgain algebras of topological algebras were considered in [AT]. Bourgain
algebras of type AP(S), when S is a class of sequences in A, become less closely
associated to A and B as S becomes smaller. Note that if A = {0} and B is with
unit, then AU {1} C AP(S) implies AZ(S) = B, since S4 consists only of the
zero sequence. The last remark in Section 1.4 was pointed out by K. Yale, who
also raised the question whether every closed intermediate algebra between two
given algebras A C B can be described as an algebra of type AP(S) for certain
classes of sequences S. For example, as it is well known, the closed algebras be-
tween A = H*°(T) and B = L*°(T) on the circle T are characterized in terms of
interpolating Blaschke products. It would be very useful to have their alternative
descriptions, and also to have a characterization of the closed subalgebras between
H>° (D) and L*>°(D) on the unit disc D in terms of Bourgain type algebras relative
to various classes of sequences.

Polynomial and algebraic extensions of Banach algebras were introduced by
Arens and Hoffman in [AH]. Most of the results on polynomial extensions of com-
mutative Banach algebras in this chapter are from [G10]. An algebra B is said to
be an integral extension of its subalgebra A, if every element in B is an integral
element over A. Given two uniform algebras A and B on X, such that B is a
non-trivial integral extension of A, it is interesting to know if A is necessarily a
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polynomially closed algebra. Every strong polynomial extension of A is also an
integral extension. We are not aware of any examples of integral extensions of a
uniform algebra, that are not polynomial extensions. It will be interesting to find
descriptions of polynomial and integral extensions of uniform algebras, and, in
particular, of shift-invariant algebras, introduced in Chapter 4.

Finding conditions for an operator between Banach algebras which imply its
linearity and multiplicativity, is an important question in Banach algebra theory,
which still lacks a satisfactory answer. For linear operators to semisimple algebras
an answer is suggested by the theorem of Gleason-Kahane-Zelazko (e.g. [Z]) in
terms of spectra of algebra elements. The theorem by Kowalski and Slodkowski
[KS] implies also an answer for operators which are not necessarily linear. N.
V. Rao and A. K. Roy [RR] have introduced the o-multiplicativity condition in
Corollary 1.6.35 and a mapping similar to 7: §B — §A from (1.37). In the case
when A = C(X) this condition was considered by Molnar [M2]. Hatori, Miura
and Takagi [HMT] have replaced the o-multiplicativity condition in Corollary
1.6.35 by a similar ‘range multiplicativity’ condition, Ran ((@f)(@g)) = Ran(fg),
where Ran(f) = f(X) is the range of f. The conditions for a o,-additive oper-
ator between two uniform algebras to be an algebra isomorphism from Section
1.6 are from [RTT]. The arguments apply also for uniform algebras A C C(X),
where X is not necessarily the maximal ideal space of A, provided the peak-
ing functions of A are replaced by the peaking functions of A on X, and the
peripheral spectra of algebra elements are replaced by their peripheral ranges
Ran(f) = {f(z): |f(z)| = || f|l, * € X}. The results for or-multiplicative oper-
ators from Section 1.6 hold also for Ran r-multiplicative operators (cf. [LT]).



Chapter 2

Three classical families of
functions

This chapter contains the basics of three classical spaces of functions, namely,
almost periodic functions in real variables, harmonic functions in the disc, and HP-
functions on the unit circle and disc. Later on, in Chapters 7 and 8, we introduce
and study far reaching generalizations of these function spaces on abelian groups.

2.1 Almost periodic functions of one and several
variables

Definition 2.1.1. A continuous function f on the real line R is said to be almost
periodic on R if for every € > 0 there is an L > 0 such that within every interval
I C R with |I| > L there is some x € I such that r]paﬁ§<|f(t+x) - f(t)| <e.

te

The number L is called an e-period of f. Every periodic function with period

p is clearly almost periodic. In this case we can choose L = p. The Bochner theorem

(e.g. [B3]) asserts that f is almost periodic on R if and only if the set of all its

R-shifts fi(x) = f(x +t), t € R, is relatively uniformly compact in the set Cp(X)

of bounded continuous functions. Equivalently, f is almost periodic if it can be

approximated uniformly on R by exponential polynomials, i.e. functions of type
n

Zakezskx, where the aj are complex, and s; are real numbers. Note that the
k=1

functions x*(z) = €*5* are continuous characters on R, i.e. x*(x+vy) = x*(x) x*(y)
for any z,y € R, and |x*| =1 on R. It is easy to see that the set AP(R) of almost
periodic functions on R is an algebra over C. Actually, under the uniform norm
AP(R) is a commutative Banach algebra with unit. We provide the next result
with a short proof, probably well known.

18T
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Lemma 2.1.2. Let f be an almost periodic function on R. If there are numbers
tn, € R such that lim f(x +t,) =0 for all x € R, then f =0.

Proof. By Bochner’s theorem mentioned above, the space {f;} of t-shifts of f
is relatively uniformly compact in Cp(R). Hence, one can find a subsequence of
R-shifts fi, = f(x +t,) of f, that converge uniformly on R to an almost peri-

odic function h on R. By ||f;, || = ||f]| for all n we have that ||h|| = || f]|. Since
h(z) = lim f(x+ty,,, ), then h =0, and therefore, f = 0. O

Let f(x) be an almost periodic function on R, and let A € R. Dirichlet
coefficients a{ of f are the numbers

a{ = Tlim / f(x) e_i)‘xdx, (2.1)

where the existence of the limit, and also its value, are independent from y € R.
Dirichlet coefficients a{ are non-zero for countably many A’s at most, which are
called Dirichlet exponents of f(x). The set sp (f) of Dirichlet’s exponents of f(x) is
called the spectrum of f. Hence, sp (f) ={\ € R: a§ # 0} is a countable set. It is
customary to express the fact that A\, are the Dirichlet exponents, and the numbers
Ai = a{ , k=1,2,... are the Dirichlet coefficients of f(x) by associating a series
k
expansion to f, namely

f(z) ~ f: Af IART (2.2)
k=1

The series in (2.2), not necessarily convergent, is called the Dirichlet series of f.
It is easy to see that if all Dirichlet coefficients of an f € AP(R) are zero, then
f = 0. Consequently, the correspondence (2.2) between almost periodic functions
and their Dirichlet series is injective.

Given a subset A C R, by AP, (R) we denote the space of all almost periodic
A-functions, namely, almost periodic functions on R with spectrum contained in
the set A, i.e.

APy(R) = {f € AP(R): sp(f) C A}.

Note that every f € AP4(R) can be approximated uniformly on R by exponential
n

A-polynomials, i.e. by functions of type Z ape'SF s € A.
k=1

Let C4 = {z: Imz > 0} be the upper half-plane. Clearly, every exponential

polynomial Zakeiskx with s > 0, k= 1,...,n, is analytically extendable on
k=1

Cy =CLURU{0} by Zakeisk(x —|—iy), sp € A If sp (f) C Ry =0, 00) for an
k=1
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f € AP(R), then f also can be extended on C as a bounded analytic function f
In this case we call f an analytic almost periodic function on R. The set of analytic
almost periodic functions on R is denoted by AP,(R). If sp (f) C A C Ry = [0, 00),
then f is called an analytic almost periodic A-function on R, and its extension f
on C, is called an analytic almost periodic A-function on C,. In this case the
extended function fon C can be approximated uniformly on C; by exponential

n
polynomials of type Zakewkz, s €A, ze€Cy.
k=1
If S is an additive subsemigroup of R, containing 0, then the space APg(R)
of almost periodic S-functions on R is a commutative Banach subalgebra of the
algebra AP(R). If, in addition, S C R4, then every function f € APs(R) is
analytic almost periodic. In fact, the algebra ES(R) of analytic extensions of
functions in APg(R) on C is isometrically isomorphic to APs(R).
A continuous function f on R"™ is said to be almost periodic on R™, if the
set of all its R"-shifts fi, 1, 1) (%1, 22,. .., 2n) = f(z1 +t1, 20 + Loy .., 20 +
tn), (t1,ta,...,tn) € R™ is relatively uniformly compact in C,(R™). Equivalently,
f is almost periodic on R™ if it can be approximated uniformly on R™ by expo-
nential polynomials on R™, i.e. functions of type

E: i (Sg, @ Sk, T oo+ Sp T
ak17k27~~~7kne ( kl 1+ kz 2+ + kn n)7

where ag, k,,. .k, are complex, and s, Sk,,. .., Sk, are real numbers. Note that

any function x(z1,z2,...,2,) = €’ (Sk, 21 + 8k, %2 + - + 5k, %n) s 4 continuous
character on R, i.e.

X(‘Tl +y17x2 +y277xn+yn) :X(xlaxQM"vxn)X(yl?wa"7y’n)7

for any (z1,22,...,%n), (Y1,Y2,--.,yn) € R™ and |x| = 1 on R™. The set AP(R™)
of all almost periodic functions on R"™ is a commutative Banach algebra with
unit under the uniform norm on R™. Let S be a semigroup in R™. A function in
AP(R™) which can be approximated uniformly on R™ by exponential polynomi-

als E akl,k%m,knez(sklxl F k2 + o+ Sk, Tn) guch that (Sky» Skos--->Sk,) €S

is called an almost periodic S-function on R™. The space of almost periodic .S-
functions on R™ is denoted by APs(R™).

The space Cy(R) of bounded continuous functions on the real line R is a
uniform algebra under the sup-norm on R. Clearly, the space Cy(RR) of all contin-
uous functions on R vanishing at +oco is a subalgebra, actually an ideal, of Cp(R)
without unit.

Definition 2.1.3. A bounded continuous function f on R is said to be asymptotical-
ly almost periodic on R if there is an almost periodic function f* on R such that

nh_r{loo |f(1'n) - f*(l'n)| =0



60 Chapter 2. Three classical families of functions

for every sequence x,, — +o0. If f* is analytic almost periodic, then f is said to be
an asymptotically analytic almost periodic function on R. We denote by AP%*(R),
resp. AP (R), the spaces of asymptotically almost periodic, resp. asymptotically
analytic almost periodic, functions on R.

Observe that the function f* is uniquely defined, by Lemma 2.1.2. Since,
clearly, h = f — f* € Cy(R), we have the following

Lemma 2.1.4. A bounded continuous function f on R is asymptotically almost
periodic, resp. asymptotically analytic almost periodic on R, if there is a unique
f* € AP(R), resp. f* € AP,(R), and an h € Cy(R), such that f = f* + h.

Lemma 2.1.4 implies that AP*(R) = AP(R) @& Cy(R), resp. AP?*(R) =
AP,(R) @ Co(R).
. z’Z +1
' C1-2z
Clearly, elap(z) = ca(z+1)/(z=1) g every a € R. Let A be a subset of
R. Tt is easy to see that the linear span AP, (R) of characters %% a € A,
on R is isometrically isomorphic to the space APs(R) o ¢ = HY, the linear
span of the functions e (z+1)/(z=1) ¢ H> a € A, on T\ {1}. The space
Co(R)®C-1 is a commutative Banach algebra with unit. Clearly, Co(R) C-1 =
(Co(R) @ C-1}) o o = C(T), thus its maximal ideal space is homeomorphic to
the unit circle T. Observe that Co(R) = Co(R) o p = {f € C(T): f(1) = 0}.
Therefore, AP**(R) is isometrically isomorphic to the algebra AP**(R) o ¢ =
[z, 1/z, {e (z+1)/(z = 1), a € R}] on R generated algebraically by the func-
tions z, 1/z, and e% (z+1)/(z = 1), a € R. Correspondingly, the algebra AP2%¢(R)
of asymptotically analytic almost periodic functions is isometrically isomorphic to
the algebra AP*(R)o ¢ = [z, 1/z, {e® +D/GE=1) 4¢ R;}] on R.

Denote by ¢: D — C the fractional linear transformation ¢(z)

2.2 Harmonic functions in the unit disc

A complex-valued, function u on the unit disc D is called complex harmonic, if it
is twice differentiable on D and satisfies the Laplace equation

0%u . 0%u _o
ox2 oy

If, in addition, u is real-valued, it is called a harmonic function. The space of
complex-, resp. real-valued harmonic functions in D we denote by H(ID), resp.
Hr(D). The space of analytic functions in the open unit disc D is denoted by
O(D). Every f € O(D) is a complex harmonic function in I. Obviously, the real
and the imaginary part of any complex harmonic function are real-valued harmonic
functions. Therefore, the real (and the imaginary) parts of analytic functions in D
are harmonic functions in . The converse is also true. Namely, every real-valued
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harmonic function « in I is the real part of some function f analytic in D, i.e. u =
Re f, or, equivalently, f = u+iv, where v is another harmonic function in D, called
the harmonic conjugate of u. Note that the harmonic conjugate function is defined
uniquely up to an additive constant. Clearly, H(D) = ReH(D) + iIm H(D) =
Hr(D) + iHr(D) = ReO(D) +iRe O(D) = O(D) 4+ O(D).

For every real r, 0 < r < 1, the r-dilation f. of f is defined by f,.(z) =

f(rz). Given an analytic function f in D, let f(z) = Z anz" be its power series
n=0

expansion, then its r-dilation f, is analytic on the disc Dy, D D, and admits there

the power series expansion

oo

fr(z) = Z(anr”) 2",

n=0

Observe that the restriction of the r-dilation f, on T coincides with the r-trace f|,r
of f,i.e. the restriction of f on the circle rT = {re?’, 0 < 6 < 27}. We will denote
the r-trace of f again by f,, thus fT’jr = f’rﬂ,, ie. fr(z)|T = f(z)’rﬂ, = f(rz),
where z = ¢, 0 € [0,27]. If f possesses a continuous extension on the closed
unit disc D, then f’T € C(T) and }1/‘1111 fr(e?) = ll/ml F(rei®) = f(e') for every

0 € [0, 27].

Lemma 2.2.1. If f € A(D), then li/rri sup |fr(z) - f(z)| =0.
r z€D

Proof. The maximum modulus principle for analytic functions implies that

sup |fr(Z) - f(Z)| = sup ’fr(C) - f(C)|
CET

z€D

If we suppose that li/rri sup ’fr(() — f(()’ > ¢ for some € > 0, then there are r,, /1
r CeT
and ¢, — (o such that |frn (Cn) — f(Co)’ > ¢. Therefore,

’f(rncn) - f(<0)| = !fm(Cn) - f(<0)| > €

as n — 00, contradicting the continuity of f on D. |

o0

Lemma 2.2.2. If f(2) = Z an 2" is the power series expansion of a function f in
n=0

the disc algebra A(D), then

=, / F2) ¢ d.
T
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Proof. The power series expansion

(akrk) P

NE

fr(z) =

=~
i
=

of f., 0 <r <1, converges absolutely to f on D C Dy, as r / 1. Therefore,

2jm.h/"f;<<)<‘<"“>d<= QiiL/1(ZE:<akrk><k)<“”+l>dc
T T

k=0
2

> k k
ar”r n— akr n akr i(k—mn
-y ./& L = §: /& = [Jemnao
271 2
k=0 k: A

0

— n
= anr,

where ¢ = (. Lemma 2.2.1 implies that

erz'/f(é) ¢t a¢ = lim /f )¢t d¢ = lim ant" = an,
T

as claimed. O

Lemma 2.2.2 implies that for any f € A(D) and z € D we have:

Z):Tianz 2mi £ /f )¢ e dC)

n

oo
z
Note that since || = 1, for every p with |z| < ¢ < 1 the series Z cn is

absolutely convergent in z on the disc D,. As a consequence we obtain the well-
known Cauchy integral formula

fz) = 2;5_02 (/g,fﬂ ac )z

1 [ Q)
27m/f gn+1 dc_m‘/g—zd
T

If z = re? and ¢ = €', then for the r-trace f,.(¢) = f(r¢) of f we have

| . 1 = A it

1
zt 'Lt i(0—t) dt
27r/f 1 — rei(d— t) 27T/f ) dt,

(2.3)



2.2. Harmonic functions in the unit disc 63

1 oo
where C,.(¢) = = ZT"C" is the so-called Cauchy kernel in D. Conse-
1—1rC o
quently,
) 1 7 . .
fre) = / () Co (@@ D) dt, ie. f, = f % C, (2.4)
T

for every f € A(D). If u € Hr(D) is a real-valued harmonic function in D, then

there is an analytic function f(z) = Z anz" in D such that u =2Re f = f + f.
n=0

Hence,

u(z) = 2Reag + i anz" + i anz",
n=1 n=1

and therefore, for the r-trace u, of u we have

ur(Q) =u(r) = Y ear¢n ¢ =1,

ay when n < 0,
where ¢, = ¢ 2Reap whenn=0, (2.5)
an when n > 0.

1 o0
The real part u, of the r-trace of f(z) = 1 = E z" € O(D) admits the ex-
—z
n=0

(oo}

pansion u,(¢) = Z rI"I¢™ 4 1. The function in two variables
P(6) = u,(e?) =1 = Z rinlein? — 9 Z r" cos(nf) — 1
n=-—oo n=0

is called the Poisson kernel in D. It plays a special role in harmonic function
theory. Observe that

Po0) = Y rlrler = e Y et = Q) + (Cr(¢) — 1)
n=-—oo n=0 n=1
=2ReC,(¢) — 1= Re(2C,(¢) — 1) = Re<21_1rc —1)
_ T+r¢\ 1+ ret? _ 1—r?
_Re(l—r()_ (1—rei9>_1—2rcos9+r2’



64 Chapter 2. Three classical families of functions

where ¢ = ¢, Consequently, P.() admits the representation

oo

S il 14 7¢ 172
Pr — In| in6 — _ 9.
() e Re(l—rC) 1—2rcosf+r?’ (26)

n—=—oo

where ( = ¢ and 0 < r < 1.
Lemma 2.2.3. For any r, 0 < r <1 we have

1—r 1+7r
1 f Pfr‘e = ) d 5 Pra = .
0<0=2r () 140 M 0<b;1§pz7r ©) 1-r

1
Proof. Note that the conformal mapping 1 Tz maps the open unit disc D onto the
—z
open half-plane {z: Rez > 0}. In particular, the circle {z = re?: 0 < § < 27} is

1—r
mapped onto the circle centered on R which passes through the points 14 and

r
1 1-— ) 1-— 1

li_: Since P.(0) = Re (1 +i), z = re?, we see that 1 +: < P.(0) < li_:’
where both bounds are taken. O

Let u be a real-valued harmonic function on D, and v = (f + f)/2 for some
f € A(D). We claim that if v has a continuous extension on D, then the r-trace
u, of u has the unique representation

s

/u(eit)Pr(G C ) dt = u(e®) « P(O).  (27)

—T

1

i0) - 2w

u, (") = u(re)

Indeed, since all negatively indexed Fourier coefficients of the Cauchy kernel C;.(¢)

= g r"(™ are zero, we have

n=0

1 r ity —int 1, J ™ whenn >0,
27T/Cr(e)e dt‘{o when n < 0.

s

1 , ,
Since / fe™) Cp(e™) dt =
27

1

5 fe?) C..(ef*) dt, (2.3) implies that
7r

—T
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;ﬁ / u(e™) P.(0 —t) dt = ;ﬁ / u(e™) (Cr(e"®D) + O (') — 1) dt
=, /  (FE) 4+ F(e) (Coe®9) + (=) ~ 1)

4 /f zt 1(0 t) dt+ /f 'Lt (07t))dt
7

'Lt 1(0 t) zt i(0— t) zt
47r/f dt+ /f 47r/f

- / Fe)dt = (1/2)(£-(e™) + ao + a0 + F(¢") — an — ao) = ur ().

The expression (2.7) is called the Poisson integral representation of u. Denote

1 0 )
by H, the function H,(f) = 1— * 7"629 =20, (e") — 1. As we saw in (2.6), P,(0) =
re

1
Re ( + TeA ) = Re H,-(0). In the same way we can show that

1 —re®

, 1
u(e) e H0) =, [ ule) B0~ 1) di
™

—T
s

= 217r / ;(f(e“) + f(e™)(2C, (") — 1) dt = ; (2f:(e") + 2a0 — ag — ao)

—T

- ;(er(g) —2i Imag) = fr(¢) —i Im f(0),

where ¢ = ¢ € T. Therefore, if £(0) is real and f = u + 4v, then for the r-trace
of f we have

T

fr (€)= f(re') = /u(e“) H,(0 —t)dt = u(e®) « H,(6). (2.8)

—T

The function @, = Im H, is called the conjugate Poisson kernel in D. As a
corollary from (2.8) we obtain that the r-trace v, also admits an integral repre-
sentation involving Q... Namely,
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vr(em) =1Im f,(em) = or

1

- /u(eit) Qv (0 — 1) dt = u(e™) % Q. (6).

—Tr

2.3 The Poisson integral in the unit disc

In this section we present briefly some of the basic properties of the Poisson kernel

o0
= Z rln‘eme, 0<r<l1, —w<0<n7n

n—=—oo

1—12

P (0) = 1—2rcosf +r?

in the unit disc, which was defined in (2.6).

Let u be a real-valued harmonic function in D, and let u = Re f = (f + f)/2
for some analytic function f in D. As we saw in (2.7), if u has a continuous
extension on D, then the r-trace u, of u admits the Poisson integral representation

T 27
up(e?t) = ! u(e®) P.(t —0)do = ! u(et=9 P.(0)do. 2.9
()%/ﬂ()() 27%/( )P0V d. (29)
Similarly,
T 2
fey =y [ 1) P-odo= ) [ p @), (210)
g 0

for any f € A(D).
The Poisson kernel P,.(6) has the following properties.
Theorem 2.3.1.
(i) P-(0) > 0 for every r € [0,1).
) 1 ks 1 T
(ii) /PT(G) de = /Pr(t —0)df =1 for every r € [0,1).
27 27

(iii) For every 6 > 0, lim sup P.(0) = 0.
T/ 119)>5

Given a continuous function f on D, consider the coefficients

fr 1 7 . .
ci(r) S fr(ew) e qg.
rinl  27rin]
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Note that ¢/~ = rI"l¢f (). The r-trace f, has Fourier series expansion on T of type

FQ)~ Y erer =Y dr)riien, ¢ =

If f € A(D), then f = Zanz” in D, and

fL:%/f i6) ﬂnede_%/(Za ezk:@) =m0 49 — q,,.

—T

i.e. the n-th Fourier coefficient ¢/ equals the n-th coefficient in the Taylor series
of f. Further,

1 T r
fro — i\ ,—ind _ i0y —ind
el o / fr(e)e do o / flre™)e do

1 - . )
= o / (kz_oakrke”w) e~ ™40 = a,rm,

—T

i.e. ¢/r = ¢/r™. Consequently, for any f € A(D) we have that ¢/ (r) = ¢/~ /r" = ¢,
i.e. the coefficients ¢f (r) do not depend on r, 0 < r < 1. The following theorem
shows that a similar result holds for analytic and harmonic functions in D.

Theorem 2.3.2. Let u € Cr(D) be a real-valued function on D. The following
conditions are equivalent:

(i) u is harmonic.
(ii) The coefficients c*(r) = ¢t /ri*l do not depend on r.

Proof. Let u= f + f, where f is analytic in D. As we saw above, the coefficients
¢l (r) = ¢f = a,, do not depend on r € (0,1). Since, according to (2.5),

an when n < 0,
¢y =< 2Reap whenn=0,
an when n > 0,

the coefficients c¥(r) also are constant with respect to r € (0,1). Hence, (i) implies
(ii).
Conversely, assume that the coefficients c(r) of a function v € C(D) do

not depend on r, i.e. c%(r) = ¢¥, 0 < r < 1. We claim that the series Zcﬁz"
0
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converges in D. Indeed, for every integer n we have
In] Inl| — 0" nl
n r
™l = e (r) ol = | | = e

1T W0y ,—inf - i0
:’271_/11,,«(6 e d&’SQﬂ_/’ur(e )| df < oc.

—T

Fix a z € D, and let ro be a real number with |z| < r9 < 1. We have

00 00
D lene" = lenrg]
0 0

n n

< 00,

z

SM(To)i
0

To To

I >
where M (r) = / ’ur(ew)’ df. Hence the series Z cyz™ converges absolutely
™
“r 0

o0
in D. Therefore its sum f(z) = Z c“z™ is a function analytic in D, and ¢f = c*
0
for any n € Z;. Clearly, the Fourier coefficients of the function u(z) = 2
(oo} oo
Re f(z) = f(z) + f(») = Zcﬁz" + Zcﬁz" coincide with the corresponding
0 0

Fourier coefficients of u. Consequently, u = 2 Re f, hence u is harmonic. ]

We recall that the space LP consist of all Lebesgue measurable functions on

T, for which / |£(Q)|P d¢ < co. LP is a normed space under the norm
T

1= ([ 10 ac) ™"
X

Theorem 2.3.3. If f is a real-valued LP-function on the unit circle T for some
p,1 < p < oo, then the function f: D +—— R defined as

fe)=Fue®) = o [ Fe RO -tdt= ) P0)  (21)

is harmonic on D, and its r-traces ]?T(G) = f(rew) converge on T to f in the
LP-norm asr /1. If f is also continuous on T, then this convergence is uniform
on T.
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Proof. Let ]?T(ew) = f(rew) be the r-trace of f By the Fubini theorem we have

r 17 , ,
f _ % _ 0\ —in0
en(r) = rinl " ogplnl /fr(e Je do

1 1 [, >
_ 27rrlm/(%/f(e”)lr;(e—t)dt)e o dp

—Tr
™

_ 27”14”‘ / (;ﬂ/a(a_t) e—ind d&)f(e“)dt

—T

27r71"|"\ ] (217T](i::""lkleik(g_t))e_med&)f(eit)dt

—T —T

1 / ; ; 1 7 . :
— ,,,\n|e—mtf(ezt) dt = f(ezt) et g — C{N
27rinl 27

—Tr

i.e. the coefficients ¢/ () do not depend on r. Theorem 2.3.2 implies that the

function f(re'®) is harmonic in D. First we will consider the second, continuous
case. Observe that

Fre®)y = / P PO~ tydt = ) / F(e0=0) Py (t) d.

If f is continuous on T, then for every £ > 0 one can find a 6 > 0 such that
| f(e™) — f(e)| < e whenever |t — ] < §. Consequently,

T

Foe®)y = )| =, [ 50 Pyar - se), [ Pa

—T

T

o / (1) = s ar] < / |£(eO7D) = f(e)] Pu(t) dt

: dC i 1 (60— i

o / [F(C0) = fe)] Pty dt + ) / |7 (10D — f(ei®)| Po(t) dt.
[t]<d [t]>6

By Theorem 2.3.1 one can find an r¢ such that

1 5
P.(t)dt <
o / D<)

[t]>d
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for any r > rg, where || f||cc = sup|f|. Consequently,
T

T

y}“(rei@)—f(ei‘))y<2iT /Pr(t)dt+2H2f7l‘°° /Pr(t)dt<2€ﬂ /Pr(t)dt—i-s:Qs

It <o [t|>6 ™
for every r > ry.

If feLP, 1 <p< oo, then for any € > 0 one can choose a continuous on T
function g such that

oo , /
Hf — g||p = (2171_ / ’f(eZ(t)) — g(ezt)|p dt)l P e

Therefore, B B
1fr = Fllp < 1fr = Gellp + 19- = gllp +llg = flls
for any r, 0 < r < 1. Since g is continuous on D, then ||gr—g|l, < ||gr—9llc < €, as

already shown, and therefore, || fr— fllp <l fr— grllp+2e. By the Holder inequality,
applied to the measure P.(0 — t)dt, if 1/p+ 1/¢ = 1 then for any h € L? with
[I2|| < 1 it follows that

5 ] remeno ol
/|f M P.(0 —t) dt /|h H7P.( —tdt) Ha
< (2;/|f(ei(9—t>)|1’pr(t) dt)l/p.

By the Fubini theorem we have

=00l = o [ |oe [ () =) Pt~y at]"ao

<o | (o [ 1760 = gten) P01y ar)"ao

Hfr - gr“g

1 [1 [, .
— o [ (o [ 116 = gte) do)Put6 ~ 1yt < |1 = gl < =

Therefore, ||ﬁ — grllp < €, and hence Hﬁ — fllp < 3e. Consequently, fr — fin
the LP-norm on T, as claimed. O
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The function f from (2.11) is called the harmonic extension of f on D.

2.4 Classes of harmonic functions in the unit disc

In this section we introduce several Banach spaces of harmonic functions on the
unit disc. We recall that according to Theorem 2.3.2 a function u € Cg(D) is
harmonic in D if and only if the coefficients c(r) = ¢% /7!l do not depend on r,
where cir is the n-th Fourier coefficient of u,, 0 < r < 1. As the following theorem
shows, this result holds also for complex harmonic functions on D.

Theorem 2.4.1. The coefficients cf(r) = clr /ri™l of a function f € C(D) do not
depend on 1 € (0,1) if and only if f is harmonic in D, or, equivalently, if and only
if f € O(D)+ O(D) =H(D).

Proof. The remark preceding Theorem 2.3.2 shows that for any f € O(D) the
coefficients ¢f (r) do not depend on 7 € (0, 1). Clearly this is true for any f € O(D),
and also for any f € O(D) + O(D) = H (D). Conversely, if the coefficients ¢/ (r) of
an f € C(D) do not depend on r € (0,1), then the same is true for both Re f =
(f+f)/2and Im f = (f—f)/(2¢). Therefore, Re f and Im f are harmonic functions
in D by Theorem 2.3.2. Hence f € Hr(D) +iHr(D) = H(D) = O(D) + O(D). O

Theorem 2.4.1 implies the following characterization of harmonic functions.
Corollary 2.4.2. A function w € C(D) is harmonic on D if and only if

2

. . 1 :
up, () =u(rie™) = / tp, ()P, 1, () d6), (2.12)
0

for any 0 < r1 < ro < 1. Equivalently, if u|r1T(e“’) = u’rﬁ(em * P/, (9)), i.e.
the r1-trace u,, of u equals the r1/r2-trace of its harmonic extension (tr,)y, /r, -

Proof. Without loss of generality we can assume that u € Hg(D). Note that the
ro-dilation w,,(z) = u(rqez) of u is harmonic in D. Therefore,

uy, (€9) = u(re?) = U((?"l/’l’g) rgew)
27

= Uy, ((r1/r2)e”) = 217T / U, (") P,y (6) dO,

0

hence (2.12) holds. Conversely, if (2.12) holds for some u € Cr(D) and r = 11 /72,
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then by the Fubini theorem

w n 1 7 . » 1 T
cr(re) :cn”/r‘l| Inl /url(ew)e nd g = inl /u(rle Ye~ 0 dp
2mry o 27y .
T 27T
B G L VRGE R
—7m 0
27 ™
_ 1 / 1 (/u (ei(efc)) 7zn0d0> (C) d¢
27r7"‘1n| ) 2 J "2 ri/r2
1 2 1 ™
=t [ o ([ unleye e ds) P ac
2mry ) 2m o
1 27 Uy, In| Uy
Ur —in Cn T\ " _Cn u
= \n|/cn2 rl/rz(g)e CdC: |n\< ) =~ In _Cn(TQ)'
2mry ) ry T2 Ty

Hence, the coefficients ¢¥(r) = ¢ /71"l do not depend on r € (0,1), as claimed.
Therefore, u € Hr(D) by Theorem 2.3.2. O

If u € C(D), then (2.12) is equivalent to u, = u,. In fact, (2.12) is a charac-
terizing property for the set of harmonic functions in ID. As a consequence from
Corollary 2.4.2 we obtain that if f € O(D) C H(D), then

FrlE) = fre® / Fra(@OVP,, 1 (0) dB (2.13)

forany 0 <r; <rg < 1.
Denote by H2(ID) the space of harmonic functions u € H(D) for which

lullp.e = sup (jul?| )" = sup (lur(@®)p] ;)"

z€D re(0,1)
t € [0, 27]

— . 1(t 0)y|p &
= sup \ur NPP,(0 )d@ < 00,
TE(OI
t e o, 271']

where 0 < p < 1 and 1 < p < oo, and @ is the harmonic extension (2.11) of u. If
o =0, then

p p
Julo = sup. / jur(e) 7 do) "= / ur(e)7 do) " = Jull,.
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since po(#) = 1. For this reason we will write H?(D) instead of H5 (D). We claim
that the spaces H’Z(D), 0, 0 < p < 1 are mutually isometrically isomorphic.
Indeed,

140
sup P,(0) = )
0<<27 -0

according to Lemma 2.2.3. Hence,

1 2m 1
1+Q)” 1/ i(t—6) > 1+0)\”
o< sup ([ () o) = ullp.
s (100) s o) )

t € [0, 27)

lu

Similarly, the inequality

Py = "°

inf =
0<h<2m 1+

1-vo
in Lemma 2.2.3 implies that ||u >
ples that > (¢

[wllp,e on the space HE(D) are equivalent. Therefore, Hb (D) = HE(D) = HP(D).
This proves the following lemma.

p
) |lu||p. Hence the norms ||, and

Lemma 2.4.3. For every 0 < p < 1 and 1 < p < oo there are constants 0 < ¢1 <
cy < 00, depending on o, such that

cllu po < Hqu < CQHUHP»Q'

Consequently, all the spaces Hg(D), 0 < o < 1, are mutually isometrically iso-
morphic.

Recall that the Hardy space HP on the unit circle is the set of analytic
functions in the unit disc, whose restrictions on concentric circles centered at the
origin are uniformly bounded in the LP-norm. Consequently, the spaces Hi (D) =
Re H? = Re (H? + H"), and HP(D) = HE (D) +iHE (D), can be defined in a similar
way. On the other hand, Re H? = Re (H? + H') = Re H?(D) = HE (D). Clearly,
HP(D)NO(D) = H?, HE (D) = Re HP, and H? (D) = HE (D) +iHE (D) = H?+H".

Let p > 1 and let LE(T) be the completion of the space Cg(T) of real-valued
continuous functions on T under the norm

27
1 ; ;
o= sup (o [lue® ) Pi6)d0) "
te[0,27] \ 2T
0
Applying the same arguments as in Lemma 2.4.3, we see that the spaces L5(T),0 <
o0 < 1, are mutually isometrically isomorphic. Therefore, LH(T) = LH(T) = LP for
any 0 < o < 1. Given an u € LL(T), the integral

27

1 (i

o / u(e =9 P,(0) df
0
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is called also the Poisson integral of u. The next two theorems are direct conse-
quences of Lemma 2.4.3 (cf. [H3], Ch. 3).

Theorem 2.4.4. Let u be a harmonic function in D, and o € [0,1). Then

(a) u equals the Poisson integral of a function in LH(T) = LP for some p, 1 <
p < 00, if and only if u € HEH(D) = HP(D).

(b) u equals the Poisson integral of a function in L})(']I‘) =~ L' if and only if
u € Hy(D) = H' (D), while the r-traces u, of u converge to u in the L}(T)-
norm, asr / 1.

(¢) If u € Cr(T), then the r-traces u, of u converge uniformly tow asr /1.

(d) u equals the Poisson integral of a regular real Borel measure on T if and only

if u € HY(D).

Theorem 2.4.5. Let u be a harmonic function in HE(D) = HP(D), 1 < p < oc.
The limit u*(¢) = li/rri u(rQ) exists for almost every 6 with respect to the Lebesgue

measure on T, and is a function in LH(T) = LP. Moreover:

(a) If p > 1, then u equals the Poisson integral of u*, i.e. u coincides with the
harmonic extension u* of u*.

(b) If p=1, then u equals the Poisson integral of a regular Borel measure on T,
whose absolutely continuous component with respect to the Lebesque measure
on T is u* df.

(¢) If u is also bounded on D, then u* is bounded on T, and u coincides with the
Poisson integral of u*, i.e. u equals the harmonic extension u* of u*.

2.5 Notes

Almost periodic functions were introduced by H. Bohr [B5], who, together with
Besicovitch [B] and Jessen [J1], established their basic properties. Bohr discovered
the almost periodicity property in the course of his study of Dirichlet series of
analytic functions. For more detailed exposition on almost periodic functions we
refer to the books of Corduneanu [C2] and Loomis [L4].

Closely related to asymptotically almost periodic functions on R is the class
of weakly almost periodic functions on R. A function f € Cy(R) is weakly almost
periodic, if the set of all R-shifts, fi(z) = f(x +t), t € R, is relatively weakly
compact in Cp(R) (e.g. B8, E]). Let AP, (R) denote the set of weakly almost
periodic functions on R. One can show that AP(R) C AP**(R) C AP, (R). More-
over, AP,(R) = AP(R) + C(R)|g, where R is the one-point compactification of
R. Therefore, AP, (R) o ¢ is isometrically isomorphic to the subalgebra of H* on

T, generated by ¢@(# 7 1)/(2 =1) 4 € R, and the set of functions in C(T\{1})
that possess one-sided limits at 1 along T. The algebra AP, ,(R) = AP, o(R) o
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of analytically extendable on C; weakly almost periodic functions on R is iso-
metrically isomorphic to the subalgebra of H* NC(D\ {1}) on R generated alge-

braically by the functions % (z+1)/(z = 1), a € Ry, and the set of functions in
H>NC(D\ {1}) that possess one-sided limits at 1 along T.

The classical Hardy space HP on the unit circle T can be defined in three
equivalent ways. Firstly, H? is the set of functions in LP on the unit circle, whose
negative Fourier coefficients are zero. Secondly, H? is the completion of the space
of polynomials on the unit circle under the LP-norm. And thirdly, H? is the set of
analytic functions in the unit disc, whose restrictions on concentric circles centered
at the origin are uniformly bounded in the LP-norm. As we saw in Section 2.4, the
Hardy space HP is closely related to the space HP(D).

There are many classical books on harmonic functions, Poisson integrals, and
HP-spaces. For more detailed exposition see [G2, H3].



Chapter 3

Groups and semigroups

The main properties of topological groups and semigroups, their characters and
semicharacters are outlined in this chapter. Some of the basic features of various
spaces of functions, measures and operators on groups are presented too. Semi-
group algebras £1(S), introduced at the end of the chapter, are closely related with
the underlying semigroups S.

3.1 Topological groups and their duals

Let G be a group, i.e. a set provided by an associative operation (g,h) — g h,
an identity (or neutral) element » € G, and an inverse operation g — g~!. The
defining property of the identity element is that 1:g = g+ = g for all g € G, while
the defining property of the inverse element g=* € G is that gg~! = g~ 'g = 1. The
identity element ¢ is uniquely defined and is called the unit element of G. For any
g € G the element g~ is also uniquely defined and is called the inverse element of
g in G. If the group operation is commutative, i.e. if gh = h g for all g, h € G, then
G is called a commutative, or abelian group. We use mainly the additive notation
for the group operation, (g, h) — g + h, if the group is commutative, instead of
the multiplicative one, (g, h) — g h. The identity element in this case is denoted
by 0, rather than by 2, and is called the zero element, rather than the unit element
of G. In the sequel we will consider only groups that are abelian.

Let Gy and G2 be two groups. A homomorphism from G1 to G is called any
multiplicative mapping ¢: G1 — Ga, i.e. for which ¢(gh) = ©(g) ¢(h) for any
g, h € G. If a homomorphism ¢ is one-to-one, i.e. p(g) = ¢(h) if and only if g = h,
it is called an isomorphism of G into Gs. If, in addition, ¢ is surjective, i.e. if
f(G1) = Go, then ¢ is called an isomorphism between G; and Gs. In this case we
write G1 = Gs.

If a group G is a topological space, then it is called a topological group if the
mapping (g, h) — gh~! from G x G to G is continuous. This happens if and only
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if the functions (g, h) — gh from G x G to G, and g — g~! from G to G are
continuous. Let G be an abelian topological group G. A continuous complex-valued
function x on G is called a character of G, if |x| = 1, and x(z + y) = x(x) x(v)
(under the additive notation), or, x(xy) = x(z) x(y) (under the multiplicative
notation) for any z,y € G. In other words, the characters of G are complex
homomorphisms of G into T. The dual group, CA}',Aof G is the set of all characters
of G. It is easy to see that, if G is abelian, then G is also an abelian group under
the pointwise multiplication (x1x2)(9) = x1(9)x2(g) for every g € G, where

X1, X2 € G. The inverse element to a X € G is the character X 9) = x(g).

Example 3.1.1. (a) The dual group of Z is bijective to the unit circle T. Indeed,
any character of Z has the form x* : n —— 2" € T for some z € T, i.e. x*(n) = z™.
Hence Z = T.

(b) The characters on T are of the form x™ : z —— 2™ € T for some integer
n € Z, i.e. x"(z) = z™. Therefore, T = Z. The characters of any subgroup G of T
are also of type z — 2", z € G.

(¢) The dual group of Z™ is bijective to the n-torus T, i.e. Zn = Tn.
(d) The dual group of T™ is bijective to Z", i.e. Tn = 71,

Let Gy be a closed subgroup of a given abelian topological group G. Cosets
of Gy are called the sets of type gGo = {gh: h € Gp}, g € G. Tt is clear that the
family of all cosets of Gy is a group under the operation (g Go)(h Go) = (g h) Go.
This group is denoted by G/Gy, and is called the quotient group (or, factor group)
of G modulo Gy. Under the topology generated by the sets of type UGy = {hg: h €
U, g € Gy}, where U are open sets in G, G/Gy is a topological group. The map
TGyt 9 — g Go, is a continuous group homomorphism from G onto G/Gy.

Definition 3.1.2. Given a character x € G, the set Ker (x) = {z € G: x(z) = 1}
is called the kernel of .

Observe that, since x is a continuous function on G, its kernel is a closed
subgroup of G, containing 0. Clearly, 0 € Ker (x) for any x € G. The following
lemma shows that the kernels determine to a great extent their characters.

Lemma 3.1.3. If x1 and x2 are two characters on G with Ker (x1) = Ker (x2),
then either x2 = X1, or X2 = X1-

Proof. Let Gy = Ker(x1) = Ker (x2). The mapping X1: gGo — x1(g) is an
isomorphism from the quotient group G/Gy into T, and in fact, (X1 o 7g,)(g9) =
x1(g) for all g € G. Likewise, X2 o g, = X2, where X2: G/Gy — T: gGy —
X1(g). Therefore, ¥1(G) = X2(G) = G/Gy. Since both X1(G) and X2(G) are
subgroups of T, without loss of generality we can assume that actually X1 (G) =
X2(G). The mapping Y = X2 0 X; - is an isomorphism from ¥;(G) onto X1(G),
i.e. X is a character on Y1(G) C T. Hence Y is a function of type z —— 2™ for
some n € Z. Only two of the functions z™ map Y1(I") isomorphically onto itself,
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namely the identity z — z, and its conjugate z — z. Therefore, X(z) = z, or
X(z) = 2. Hence, xa = X2 07a, (X2) = X2°0 X1 ©X1°7TG, = XOX107Gy = XOX1-
Consequently, either x2 = x1, or x2 = X1, as claimed. O

The real line R is a group under addition. For every a € R the function
X%: & — ' € T is a character of R. As we show below, every character on R
has this form.

Lemma 3.1.4. The kernel of every non-trivial character x on R is of the form Zxq
for some xy > 0.

Proof. If x is a non-trivial character on R, then Ker (x) is a closed subgroup of
R, containing 0. We claim that 0 is an isolated point in Ker (). Indeed, suppose
that there exists a sequence {x,} in Ker (x) that converges to 0. Consider the sets
o0
Zxy ={kx,: k € Z} C Ker(x). One can easily see that the set |J Zx,, is dense
n=1
in R, and so is Ker (x). Therefore Ker (x) = R, since Ker () is closed in R. Hence
x is the trivial character on R, contrary to its choice. Hence 0 is an isolated point
in Ker (x). Hence, there is a minimal positive number in Ker (), say, xo, since
Ker (x) is a closed subset in R. We claim that Ker (x) = Zzo. Indeed, suppose
that there is an a € Ker (x) \ Zzo. Without loss of generality we can assume
that a > 0. Note that a + kxp € Ker (x) for every k € Z. If n € Z is such that
a € [nxo, (n+1)xg), then a—nwzy € Ker (x), and 0 < a—nxg < o, in contradiction
with the minimality property of z¢. Therefore, Ker (x) = Z xp. |

Lemma 3.1.5. Let x1 and x2 be two characters on R. If there is a sequence x,, — 0
such that x1(xn) = x2(x,) for every n, then x1 = xa.

Proof. Let x1,x2 € ]1/3@, X1 # xe2- Ifx = x1xs € é, then x(z,) = 1 for all n, i.e.
{zn}n C Ker (x). Lemma 3.1.4 implies that x = 1, i.e. x1 = X2, in contradiction
with the choice of x; and ys. O

Theorem 3.1.6. For every character x on R there is a real number a € R such that
Y has the form x = X*: ¥ — ¢'9% Thus, R = R.

Proof. If x = 1, the statement holds with a = 0. Let x be a non-trivial character of
R, and let 2y be the minimal positive number in Ker (), which exists by Lemma
3.1.4. Consider the character xi(zx) = ¢!(2m/20)T of R. The minimal positive
number in Ker (x1) is also zg, and therefore, Ker (x1) = Ker (x) = Zxo. Lemma

3.1.3 implies that either x = x1, or, x1 = x. Hence x is of type x(z) = ¢'** with
a = 27 /xo in the first case, and a = —(27/x¢) in the second. O

Lemma 3.1.7. If Ker (x*) C Ker (x?) for some a,b € I' = G, then b is an integer
multiple of a.

Proof. Let Gy = Ker (x?). If x* = X o mg,, then X* maps continuously and
isomorphically G/Gp in T. Let x* = X? o mg, where X” maps continuously and
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homomorphically G/Gp in T. Consider the mapping v = x?0 (¥*)~': (X®o7g,)(g)
— (XY 0 T, )(g) from G/Go C T onto G/Ker (x*) C T, such that Y* = v o x¢
on WGO(G) = G/Go. Therefore, Ker (y) = v {1} = (X" o (5{“)’1)71({1}) =
(X" o(x")H)({1}) = X “(Ker (X")). As a finite subgroup of T, the set Y (Ker (x*))

is of type {em (2m/n }k

_, for some n € N. Hence, by Lemma 3.1.3, v(2) = 2", or
7(z) = 2™ = 27" Consequently, x* = X’ o 7g, = Yo X% 0 1g, = (X*)™ o 7@, =

X" omg, = x™*, where m = £n. O

It is easy to see that if a belongs to the group envelope I'x of K, then

Ker (x ﬂ Ker (x
beK
Proposition 3.1.8. If a € I' and Ker (x ﬂ Ker (x for some subset K of I,

beK
then a belongs to the group envelope ' of K.

Proof. Let I'ry be the group generated by K. Since Ker (x®) C Ker (x?), any b € K
is of type b = nya for some n, € Z by Lemma 3.1.7. Hence K C Za, thus I'x C Za,
so that I'x = Z(ma) for some m € N. We claim that, in fact, m = 1. If we
suppose that m > 1, then I'x = Z (ma) is a proper subgroup of Za. The function
~v: Za — T : na —s ¢t (2T)/M ig 4 character on Za, and Ker (v) =Z(ma) D K.
Further, v can be extended to a character 7 on I'. Since a ¢ Ker (v), and 7 € =

G = G, there is a g € G, so that x*(g) = 7(a) = y(a) = et (2m/m) # 1, while

x’(g) =7(b) = 1 for all b € K. Therefore, g € (ﬂ Ker (Xb)>\ Ker (x*), contrary

beK
to the hypothesis on a. Hence, I'x = Za, and consequently, a € I'k. ]

Any element g € G gives rise to a continuous character g* on G by the rule
g (x) = x(9), x € G. The celebrated Pontryagin’s duality theorem asserts that
if G is a locally compact group, then G is also a locally compact group under
the compact-open topology in C(G), and every continuous character of G has the
erm g* for a suitable element g € G. Moreover, if all three groups G,é, and

G are equipped by their compact-open topologies, then G is homeomorphically
isomorphic to G via the mapping g — ¢g*. Consequently, we can identify every
locally compact topological group G with its double dual group G ~G.

Example 3.1.9. (a) If G is a compact group, then G is a discrete group under
the compact-open topology, which in this case is the uniform topology on G. If

G is a discrete group, then the compact-open topology on G is generated by the
pointwise convergence. Clearly, with respect to it, G is a compact group.

(b) Let G be an abelian topological group. Denote by G4 the same group

equipped by the discrete topology. Its dual group Gg is a compact group, con-
taining the dual group G of G with the original topology as a dense subgroup.
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The group é; is called the Bohr compactification of the group G. We will denote
it by b(G). In particular, the group of real numbers R can be embedded isomor-
phically and densely into its Bohr compactification b(R) = I@;, since R = R by
Theorem 3.1.6. Almost periodic functions f on R can be extended naturally as
continuous functions f on the Bohr compactification b(R) = Ry of R. The Fourier
coefficients c£ of the function extended in this way, f, on b(R) equal the Dirich-
let coefficients Ai of the original function f. Moreover, the maximal ideal space
M apr) of the algebra of almost periodic functions on R is homeomorphic to the
Bohr compactification b(R) of R.

In the sequel we will consider often the following situation. Let I" be a discrete
abelian_group. Its dual group G = I' is a compact abelian group, and the dual
group G of G is isomorphic to I', by Pontryagin’s duality theorem. The character
a* € G corresponding to a € I' we will denote by x“. Thus, for the elements of the
dual group I' 2 G we may use interchangeably two notations, namely a and x®.
If we use the additive notation for the group operation of G, then the elements
of the dual group I' 2 G will be denoted by a,b, etc. If, alternatively, we use
the multlphcatlve notation for the group operation of F then its elementb will be
denoted by x?, x?, etc. In this respect the expressions “y Xb for @, x® € G” and
“a + b for a,b € I'”, are equivalent. Now the equality y*x® = X‘”b, for a,b € I
makes perfect sense.

Any compact abelian group G possesses a unique probability measure o that
is invariant under G-shifts. It is called the Haar measure of G. More precisely, o
is a positive regular Borel measure on G, such that

o(G) =1, and o(hF) = o(F) (3.1)

for every h € G and every Borel set F' C G. Equivalently, o is defined by the

properties
/da—l and/fghda /f do(g

G

for every f € C(G) and h € G. Note that (3.1) implies that the Haar measure o on
G is also inverse invariant, i.e. o(F~!) = o(F) for every Borel set F' C G, where
F~1 ={g7! € G: g € F}. To see this, consider the measure ¢’ on G defined by
o'(F) = o(F~1). One can easily show that o’ is also a normalized and translation-
invariant positive Borel measure on GG. The uniqueness property of o implies that

¢’ = 0. Consequently,
/ flg~Hdo(yg / flg)do(g

for all continuous functions f on G.
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Given an h € G, the h-shift of f is called the function f1,(g) = f(hg). The
map f —— fp is an isometric isomorphism of C(G) onto itself. The invariant

property of the Haar measure o implies / fndo = / fdo. Henceforth, for any
G G

character on G we have

/xdo = /xhda = /x(hg) do(g) =x(h)/x(g) do(g) =x(h)/xdo~

G G G G G
Consequently, /Xda =0 if x # 1. Clearly, /1|G do = /da =1.
G G G
Example 3.1.10. The Haar measure o on the unit circle T is defined by the equality
27
1 i0
fdo = o fe*”ydo, feC(T).
T 0

Theorem 3.1.11. Let Gg be a proper closed subgroup of a compact abelian group
G. Then:

(a) There is a non-trivial character x on G such that x =1 on Gy.
(b) Ewvery character of Gy possesses a continuous extension on G as a character.

(c) Given a character v on Gy, there is a one-to-one correspondence between the
set of all character extensions of v on G, and the dual group (G/Go)” of the
quotient group G/Gy.

Proof. (a) One of the corollaries from Pontryagin’s duality theorem is that every
group with more than one element possesses non-trivial characters. Let y denote
a non-trivial character of the quotient group G/Gg. Therefore, the composition
xomg,: G — T is a non-trivial character of GG, and, clearly, it is identically equal
to 1 on Gy.

(b) The restriction mapping on Gy generates a homomorphism ¢ from G into
Go. We claim that v is surjective. If ¢(G) is a proper subset of Go, then there
isa x € Go \ ¥(G). Note that xv # 1 for any v € ¥(G), since x # v € ¥(G).
Therefore, /X'ydao = 0 for every v € w(@), where 0¢ is the Haar measure on Gjy.

Go
The Stone-Weierstrass approximation theorem, applied to the algebra generated
by the elements in 1/)(@) C @0, yields /deao = 0 for every f € C(Gyp). In
Go
particular, 0 = /XXdUO = /1 dog, which is impossible. Hence w(@) = @0, and
Go G

consequently every v € Gy is the restriction of some character x € G.
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(c) Note that if x; and x2 are two extensions of a v € éo on G, then
X1|G0 = X2|G0’ thus x4 Xl’Go = 1, and therefore Ker (x5 x1) D Go. Consequently,
X2 = X X1, where x = Xxax1 € @, and Ker (x) D Go. Conversely, if x1 is a
character extension of v on G, and if Ker (x) D Gy for some x € é, then x x; also
extends vy on G. Therefore, the set of all possible character extensions of v on G is
bijective to the orthogonal group Gp = {x €G: X|G0 = 1}, which is isomorphic
to (G/Go)". O

Definition 3.1.12. A compact group G is said to be solenoidal, if there is an iso-
morphism of the group R of real numbers in G, whose range is a proper dense
subgroup of G.

Clearly, T is not a solenoidal group. The next theorem gives a criterion for a
group to be solenoidal.

Theorem 3.1.13. A compact group G # T is solenoidal if and only if there is an
isomorphism from G into R with a dense range.

Proof. Let G be a solenoidal group, and let j be an isomorphism from R into G
such that its closure [j(R)] coincides with G. Clearly, j generates naturally an
adjoint homomorphism j*: G — Ry = R by (5*(0) (z) = x(j(2)). If j*(x) =
3*(7), x,7 € G, then x(j(z)) = (5*(0)(z) = (5*(7))(x) = 1(i(x)) for every
x € R. Consequently x = v, since the range j(G) of j is dense in G. Hence, j* is
an isomorphism from G onto a subgroup of R.

Conversely, suppose that there exists an isomorphism ¢ from G onto a proper
dense subgroup of R. For every x € R the mapping x —— €’ ¢(X) i a character on

é, i.e. belongs to G = G. Denote by j.(z) the corresponding element in G. We have

that x (j,(z)) = €’ P(X) @ for any x € G. There arises a mapping j,R — G : z —
J.(x). Clearly, j,(0) =2 € G. It is easy to check that j, maps R homomorphically
into G. We claim that the range 7,(R) is dense in G. Indeed, if x, v are two different
characters on G with equal values on the range j,(R), then X(jz (x)) = 'y(jz (x)) for

every z € R. Since x(j.(z)) = el <p(x)x’ and, also, v(j.(z)) = el <p(’y)x’ we have
P T = i p(V) T for every z € R. Hence, p(x) = ¢(v), and therefore x = 7,

since ¢ is an isomorphism. According to Theorem 3.1.11(c) this is is possible only
if 5,(R) is dense in G. O

The mapping j,: R — G with 5,(0) = 2 € G, defined in the proof of Theorem
3.1.13 is called the standard embedding of R into G via 1.

Let G be a solenoidal group, and let S be an additive semigroup of @J,_ =
GN[0, 00). Denote by I" the subgroup S—S of G C R generated by S. For simplicity
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we assume that 27 € S. The kernel Ker (x?™) of x*>" is a compact subgroup of
G, which we will denote by K, i.e. K = {g €G:x¥(g9) = 1}. Denote by g; the
element j,(t) € G, where j,: R — G is the standard embedding of R into G via 1.
It is clear that g, € K for every n € Z. The Cartesian product G=KxRisa
locally compact abelian group, and the map 7: G — G: (g,t) — g; g is a group
homomorphism. The kernel of 7 is the subgroup Ker (7) = {(gn, —n) € G : n € Z}
of G. For each n € Z the set K,, = K x [n,n+ 1) is a fundamental domain for
7. Therefore, 7: G—G generates a countably-sheeted covering over G without
singularities. The group G can be recovered from any set of type K,, = K X[n,n+1]
by identifying the points (g,n + 1) and (g19,n), g € G.

Let I' C R, I' % Z. Since b(I") = I; = I'; C R, Theorem 3.1.13 implies the
following

Corollary 3.1.14. If I' # Z is an additive subgroup of R, then its Bohr compacti-
fication b(I") = T'y is a solenoidal group.

In particular, b(@) = Qg and b(R) = b(]@) = Ry are solenoidal groups.

3.2 Functions and measures on groups

Let G be a compact Hausdorff group. The set P(G) of finite linear combinations
m
Zdjx“j, aj € G = I', d; € C of characters of G is a separating self-conjugate
Jj=1

subalgebra of C(G). By the Stone-Weierstrass approximation theorem P(G) is
dense in C'(G) in the uniform topology. If A is a fixed subset of G = I', a A-

polynomial is any finite linear combination Zdjxaj with a; € A. The set of all
j=1
A-polynomials is denoted by Px(G).

In the case when the group envelope I' = §— S is a discrete subgroup of R the
dual group G of I' is compact, by Pontryagin’s duality theorem. If, in addition, I"
is dense in R, then G is a solenoidal group, thus it contains a dense homomorphic
image of the real line R. Every continuous character on R can be extended to a
continuous character on G, and therefore, every almost periodic S-function f on

R can be extended to a continuous function fon G. The Fourier coefficients c£ of

the function fon G, extended in this way, coincide with the Dirichlet coefficients
Al of f.

A continuous function f on a topological group I' is said to be almost periodic
on I if the set of all its G-shifts fi,(g) = f(hg), h € I', is relatively uniformly
compact in Cy(I"). Equivalently, f is almost periodic on I" if it can be approximated
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n
uniformly on I" by linear combinations Z arpxr € P(I"), a, € C of characters yy
k=1
on I'. Under the uniform norm on I" the space AP(I") of almost periodic functions
on [ is a commutative Banach algebra with unit. Let S be a subsemigroup of .
Uniform limits on I" of linear combinations of characters x® in S are called almost
periodic S-functions on I'. The set of almost periodic S-functions on I' will be
denoted by APg(I).

1

Given a p: 1 < p < o0, the expression || f||, = (/mp)p do is a norm

G
on C(G), called the LP(G,o)-norm. Indeed, if || f||, = 0 for an f € C(G), then
|f|P do = 0, and therefore, f = 0 on the support of ¢, i.e. on G. The completion

G

L?(G,0) of C(G) under the LP(G, 0)-norm is a Banach space. Actually, L?(G, o)
coincides with the set of all Borel functions f on G with finite LP(G, o)-norms,
under the understanding that we identify functions that coincide o-almost ev-
erywhere on G. If p > 1, then the dual space, i.e. the set of all bounded linear
functionals of LP(G, o), is isomorphic to the space LY(G, o), where ¢ is such that
1< ¢g< oo, and 1/p+1/g = 1. Given a bounded Borel function f on G, the
L>(G,0)-norm is defined by

Il = esssupg|f(g)

b

which is the smallest number A > 0 such that a({g €G: |f(g)’ > /\}) = 0. Under
the agreement that we identify bounded Borel functions that coincide o-almost
everywhere on G, i.e. for which ||f — gllcc = 0, then the space L>*(G, o) of all
bounded Borel functions on G is a Banach space under the L*-norm. It is the
dual space of LY(G, o).

The space C(G) can be provided with an inner product, namely,

(t9) = [ fodo
G

1
Under the L?(G,o)-norm, ||f|l2= (/|f\2da>2, C(G) is a pre-Hilbert space.
a

Hence the completion L?(G, o) of C(G) in this norm is a Hilbert space. For every

Y% x* € G we have (x4 x?) = /X“_bda =0if a # b, and (x,x) = /do =1.
e} e]
Therefore, the characters on G are mutually orthogonal functions of unit L?(G, o)-
norm. Being dense in C(G) under the uniform norm, the linear combinations of
characters on G are also dense in L?(G, o) under the L?(G,o)-norm. Moreover,
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the set of characters G on G is an orthonormal basis for the space L?*(G,0). The
Hilbert space theory implies that every f € L?(G, o) has a unique representation
as a series of type

f= Zcf ¢, where cﬁ;:/fX*“dJ:/fXada, (3.2)
G G

acl’

called its Fourier series of f, and ||f||3 = Z /|2, The numbers ¢/ are called the
acl’

Fourier coefficients of f. The definition of Fourier coefficients ¢/ makes sense for

any L'(G,o)-function f. The fact that the numbers ¢/ are the Fourier coefficients

of f we indicate by
F~Y elxa

aeé’
Note that the above series may not be convergent, and therefore, in general it can
not be interpreted as a function.

Theorem 3.2.1. If all Fourier coefficients of a function f € L*(G, o) are 0, then
f is o-almost everywhere 0 on G.

Proof. Consider the measure p with du = f do on G, i.e. whose values on Borel sets
F C G are defined by u(F) = /f do, or equivalently, for which /g dp = /gf do

F
for every f € C(G). The function &(g) = / g du is a continuous linear functional
G
on C(QG). Since P(x /fx“da =0 for every a € I', the Stone-Weierstrass ap-

proximation theorem 1mphes that $(g) = 0 for every function g € C(G). According
to the Riesz representation theorem for bounded linear functionals on C(G), the
dual space of C(G) is isometrically isomorphic to the set M (G) of regular Borel
measures on G. Therefore, @ = 0, thus u = fdo is the zero measure on G, and
hence f = 0 o-almost-everywhere on G. ]

As an immediate corollary to Theorem 3.2.1 we obtain that the Fourier series
of functions in L'(G,o) are uniquely defined. If @ runs in I', then the Fourier
coefficient ¢/ generates a function f on I', namely f ( ) = ¢f, called the Fourier
transform of f.

Similarly, with any regular Borel measure p € M(G) on G we associate a
unique, not necessarily convergent, series, namely,

o~ Z chx®, where ¢t = /X_a du,

acq G
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called the Fourier-Stieltjes series of . The numbers ¢/ are called the Fourier-
Stieltjes coefficients of p. By arguments similar to the ones used in the proof of
Theorem 3.2.1, one can see that p is the zero measure on G if and only if all its
Fourier-Stieltjes coefficients ¢/ are 0. If a runs in I, the Fourier-Stieltjes coefficient
¢t gives rise to a function @ on I', namely, fi(a) = ¢, called the Fourier-Stieltjes
transform of .

Theorem 3.2.2. If the Fourier transform ]? of a function f € L*(G, o) coincides
with the Fourier-Stieltjes transform @ of a Borel measure p € M(G), then du =

fdo, ie. /<pdu:/g0fdo for every ¢ € C(G).
G G

Proof. Consider the measure uy € M(G) with duy = fdo. For every a € I' we
have fi1 (a) = ¢t = /X_“ dpy = /X_“f do=cl = f(a) = i(a). For the Fourier-

G G
Stieltjes coefficients of the measure v = p; — p € M(G) we have ¢ = V(a) =
i1 — =0 for every a € I'. Consequently, v = 0, and therefore u; = p. O

The spectrum of a function f € L*(G, o) is called the set sp (f) of all a € I,
such that ¢/ # 0. Similarly, for a given measure u € M(G) the set sp (u) = {a €
I': ¢ # 0} is called the spectrum of u. It is easy to see that any function f €
LY(G, o) whose spectrum sp (f) consists of finitely many elements ay, as, ..., an
of I, is a finite linear combination of the corresponding characters x% € I' = é,

m
i.e. is of type Zdjx‘” with some d; € C.
j=1

The space C(G) can be equipped with a multiplicative operation. Namely,
given two functions f,h € C(G) their convolution f1x fo € C(G) is defined by

(% fo)(g) = / Filgh™Y) folh) do(h). (3.3)
G

Since for any f € C(G),
/ F(hY) do(h) = / £(h) do(h),
G G

one can easily check that (f1 x f2)(g) = (f2 * f1)(g), i.e. the convolution is a
commutative operation in C(G). It is easy to see that

chrlz = el (3.4)
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for every f,g € L'(G, o). Indeed,

f1*f2 _/ i f2)(9) x “(g9) do(g)
G

\

/ Fr(h7g) fo(h) do(h))x~*(9) do(g)

G
_ / / fi(h™9) X~ () do () ) fa(h) dor(h)
G
- [ / A g) (0" g) do(9)) fo(h) X~ (h) do(h)
G

=cl! / f2(R)x™*(h) da(h) = cltel2.
G

In particular, as an immediate consequence we obtain that

sp (f1* f2) = sp (f1) Nsp (f2). (3.5)
Let f € C(G) and p € M(G). The convolution fxu of f and p is the function
f*u € C(G) defined by

(f % 1)(g /f (gh™Y) du(h

The convolution p % v of two measures p,v € M(G) is the measure yxv on G
defined by

(s 0)(F) = [ vl F) dulg)
G
for every Borel set ' C G. Equivalently, p* v is defined by the property

[ ratuen) = [ [ 1omduta) dvio,
G G G

where f € C(G). Consequently, ||p* v|| < ||ull|v|
Similarly, for every u,v € M(G) we have
= kel (3.6)

Indeed,

kL
Ca

X~td(pxv) = / x~%(gh) d(u(g) dv(h)
G

— O

X~®(gh) d(pu(g) du(h) = / x~%(9) d(u(g) / X~ (h) du(h) = et
G G

Q
Q
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In particular we see that
sp(uxv) = sp(p)Nsp(v). (3.7)

The following lemma shows that the mapping f — fp, where h € G, is a
continuous operator in L?(G, o), 1 < p < oco.

Lemma 3.2.3. Let f € LP(G,0), 1 < p < oco. If h,, — h, where h,,h € G, then
[ fh = fullp — 0.

Proof. Since the space LP(G, o) is the closure of C(G) in the LP(G, o)-norm, then
for every € > 0 there is a g € C(G) such that ||f — g||, < ¢/3. We have that
1x = gully = I — gll, < &/3 for every € G. Clearly, lgn, — gnllos — 0 as
hy — h. Hence ||gn,, — gnllp — 0 too, and therefore there is an N > 0 such that
llgn., — gnllp < €/3 when n > N. Therefore, for every n > N we have

I fhn = follp < I fh, — 9n

p T lgn, = gnlly + 1fn —gnllp <3(e/3) =¢. O

Note that the mapping f —— f5, where h € G, is an isometric isomorphism
on LP(G,0), 1 <p<oo.

The convolution in C(G) can be extended on the space L!(G, ), under which
it becomes a commutative Banach algebra. namely, the convolution of two func-
tions f1, fo in L'(G, o) is defined in exactly the same way, as in the continuous
case, namely,

(1% f2)(g /flgh ) fa(h) do(h).

Theorem 3.2.4. If f1, fo € L'(G,0), then f1x fo € L*(G,do), and

[ f1 % falli < ([ fall1]l f2ll1-

Therefore, with the convolution as a multiplication, the space L*(G, o) is a com-
mutative Banach algebra.

Proof. Let fi € L'(G, o) and {p,}, be a sequence of continuous functions on G,
such that ||, — f1][1 — 0 asn — 0. Then @, * fa € L'(G, o), and by the Fubini
theorem

lon* fo — m ol =/|(90n—90m)*f2|d0’

S/ /Isongh —m(gh™)|| f2(h !da(h)>d0(g)
G
/

/|son<gh- —plgh ™)) do(9)) | ()] do(1) = [[n — pmllallFols
G
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Therefore, {p, * fa}n is a Cauchy sequence in L'(G, o), and consequently its limit
f1* fo is also in L(G, o). In addition,

If1 % foll < / / |£1(gh™") fo(h)| do(h)do (g)
G G

= [ ([ 15tan ) dote)) |20 doth) = sl el
G G

O

Theorem 3.2.5. The convolution fi x fo is a continuous function on G in the
following cases.

(a) f1 € LYG,0) and fy € L=(G,0).
(b) f1 € LP(G,0) and f2 € LY(G,0), where 1 <p,q< oo, 1/p+1/g=1.
Proof. (a) Let f1 € LY(G,0) and fy € L>®(G, o). Hélder’s inequality implies

(ox £2)(0)| = | [ £l alh) do(®)] < LAl el
G

By the previous remark, for any g,,g € G we have

(1% F2)(g0) — (Fr 5 F2)(a)| = | / Ji(gah™") o) — Fr(gh™") fo(h) dor(h)
G

< | [ (0. 071 = (P 07D) £ do )] < |2, = (el el
G

If g, — g, then H(fl)gn — (fl)ng — 0 by Lemma 3.2.3, thus (f1 x f2)(gn) —
(fi % f2)(g) 5 gn — g. Consequently, f g € C(G).

(b) Let f1 € LP(G,0) and fy € LY(G,0), where 1 < p,q < o0, 1/p+1/g=1.
In the same way as (a) we obtain by Holder’s inequality that

i@ =| [ 5o faby do ] < Il el
G

The argument from (a) applies to obtain also that

|(fr % f2)(gn) = (Fr* f2)(9)] < [[(F1)g — (Fr)gl] Il f2lla-

Consequently, (f1 * f2)(gn) — (f1 * f2)(9) as g, — g, by Lemma 3.2.3. This
proves that f1 x fo € C(G). O
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3.3 Bochner-Fejér operators on groups

Bochner-Fejér operators on compact groups, introduced in this section, play a role
in the approximation of functions on groups, similar to the role of Fejér kernels
for functions on the unit circle. As mentioned in the previous section, given a
compact abelian group G, the set P(G) of linear combinations of characters on G
is dense in the space LP(G,0), 1 < p < oo, i.e. every function f € LP(G, o) can
be approximated by linear combinations of characters on G in the LP(G, o)-norm.
We show in this section that f can also be approximated in the L?(G, o)-norm by
m

sp (f)-polynomials, i.e. by finite linear combinations of characters Z d;x* on G,
j=1
with a; € sp(f).

Lemma 3.3.1. Let {U;}icr be a neighborhood basis in G of the unit element 1. For
every € € (0,1) and every i € I there exists a linear combination of characters,
¢ on G with the following properties:

(i) ¥:(g) =0 on G.
(i) ¥5(g) < € for every g € G\ U;.

(iii) / Y5 (g) do(g) =

Proof, For every neighborhood U; 3 @ there is a nonnegative continuous function
¥; € C(G) such that ¥;(z) = 1 and ¢i|G\U» = 0, by Urysohn’s Lemma. Clearly,

/ 1; do > 0. According to the Stone-Weierstrass approximation theorem, for every

€ € (0,1) one can find a linear combination P; = chx”j in P(G) such that
J
max ’Pi(g) - wi(g)’ < e. Since 9; > 0, we have
max [Re Pi(g) — ¥i(g)| < max|Pi(g) — ¢i(9)] <

Therefore, Q;(g9) = Re Pi(g9) +¢ >0 on G, while Q;(g9)|g\v, <€, and

G/Qida>!wida>0.

Note that since Re P; = (1/2)(P; + P;) is a linear combination of characters on G,

S0 is ;. Now the function
-1
= Qz ( / Qz dU)
G

satisfies the properties (i), (ii), (iii). O
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If 4% is one of the functions from Lemma 3.3.1, then for every p: 1 <p < o0
we define the operator K¢: LP(G,0) — LP(G,0) by

K5(f)(g) = (f * ) (g / Flgh™) s (h) do(h). (3.8)

Such a set is called a family of Bochner-Fejér operators on G. We define a partial
order in the family { K7}, by setting K7 < KJ if U; C U;, and n < e.

Theorem 3.3.2. Let f € LP(G,0), 1 < p < co. For every e > 0 and i € I the
functions KZ(f) possess the following properties.

(a) If p < oo, then K (f) € LP(G,0) and || K (f)[|, < [If]-

(b) K:(f) are linear combinations of characters on G.
(c) sp (K5(f)) C sp(f), thus KZ(f) are sp (f)-polynomials on G.
(d) If p < oo, then hmHK6 f”p =

(e) If f € C(G), then ||KF(f)]|, < Iflloe and lim||KGF(f) = £, =

Proof. (a) If p = 1, Theorem 3.2.4 implies that K:(f) = f* ¢ € L'(G,0), and
If > o5t < Ifllallwglls = [ f]li- Let 1 < p < oo, and let ¢ € LY(G, o), where
1/p+1/q=1. We have

Holder’s inequality implies that the inner integral does not exceed | fl|pl|¥llq-
Hence,

| [ KEDeda| <Ufbliels [ 67 do = £l
G G

Since this holds for any ¢ € L9(G,o), the mapping ¢ — /Kf(f)g@da is a

G
bounded linear functional on LY(G, o). Hence, K{(f) € LP(G,0) and || K{(f)|lp
< || fllp- This proves (a).
From K (f) = fx 1%, we see that sp (Kf(f)) =sp (f)Nsp (¢5) by (3.5). Con-
sequently, sp (Kf(f)) is a finite subset of sp (f), i.e. K{(f)isa (sp (f))—polynomiaL
which proves (b) and (c).
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(d) For any ¢ € LI(G, o) we have

| [ @z - ) edo| =) / / ) = 1(hg) w5 () do () o(g) dog)
G

< / | / (flgh™) = 1(9)) $(9) do(g)
G G

Holder’s inequality implies that the inner integral does not exceed || fr, — fllpl|¥llq-
For every f € LP(G,0), 1 < p < oo, and any € > 0 there exists a basis neigh-
borhood U; of 4, such that ||f — fu|l, < € for all h € U;. Indeed, by ’gp(h) —
()| < |Ifn = follp we see that the function ¢(h) = ||f — full, is continuous
on G. Since (1) = 0, there certainly exists a neighborhood U; of ¢ such that
o(h) = ||f — fullp < €, as claimed. The properties of ¥ established in Lemma
3.3.1 yield

¥; (h) do(h).

| / [t = 119)) e(a) dote)) w3 (h) doh)

G

(] (907 = £(9)) ola) dota)) v () dor)|
G

Ui
| ([ tar) = 100 ot dote)) with) dotw)].

G\U; G

The former expression does not exceed ¢ ||¢||4, while the latter one is not greater
than 2e || f|lpll¢llq- Since € can be chosen arbitrarily small, this shows that the

mapping ¢ — / (K;(f) — f) pdo is a bounded linear functional on L9(G,0),

a
and its norm is || K¢ (f) — f||p < 2¢ || f]|p- This proves (d).

(e) If f € C(G), the argument from part (d) implies

|55 H = 1. / [(F(gh™) = F(0))| 05 () do(h)
/| (gh™") — F())] 65 (h) /Ifgh ()] 65 (1) dor(h).
G\U;

The former integral does not exceed e, while the previous one does not exceed
2¢ || fllso- This completes the proof of (e) since € can be chosen small enough. [

As an immediate consequence from Theorem 3.3.2 we obtain the following

Corollary 3.3.3. Any f € LP(G,0), 1 < p < oo can be approzimated by sp (f)-
polynomials K with respect to the LP(G, o)-norm.
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Theorem 3.3.4. For every regular Borel measure pn € M (G) on G there exists a net
of linear combinations of characters, {pa}ta, Pa € P(G) with ||pado]| < ||p|| and
sp (pa) C sp( ), such that the measures podo converge to u in the weak*-topology
on M(G).

Proof. Let {¢f}; . be the family of functions defined in Lemma 3.3.1. Consider
the functions
= [ wita™ m) duth).
a

Note that since 9§ are linear combinations of characters on G, so are PF, and
sp (Pf) C sp (u). Indeed, if ¢ = Z ¢;x%, then

/w 9~ h) du(h /chx (9~ "h)du(h)
- ch( / u(h)) ) = X e [ X0 duw)x o).

G

Thus, if a € sp (Pf), we have

07A/P€ 9)do(g :ch/ (h)/x’(‘”*“)(g) do(g).
G

G

a = —a;, and /X (h)du(h) = / “%(h) du(h) # 0. Hence a € sp ().
el el
Consider the measures pf defined by dué = Pfdo € M (G). Fubini’s theorem

implies
il = [ 1petdo < [ [1oslaiudao = [ ( [ ot ao)alul = ul.
G G G G

G

J
Therefore, /X“-f(h) du(h) /X_(aﬁa) (9) do(g) # 0 for some a; € I'. Consequently,
el
a;j X

where d |p| is the total variation of u. For any f € C(G) we have

/f ) dyi (g /f ) P (g) do(g /f /ws (9" h) du(h)) dos)

~ [ ([ 10 uita mydsts ))du (h) = / / Fhg™) v ) dolg™))du(h)
(hg™")

[ (f s
:G/(G/f )do(g) /KE (h),

¥i (g



3.4. Semigroups and semicharacters 95

since the Haar measure ¢ is inverse invariant. Theorem 3.3.2(e) implies that

[ i = [Keau— [ rau
G G G

with respect to the ordering ‘<’ in the family {K¢}. Since this is true for every
f e C(G), and M(G) = C(G)*, it follows that the measures us € M(G) converge
to p in the weak*-topology on M (G). |

3.4 Semigroups and semicharacters

This section provides a survey of the basic properties of semigroups and their
semicharacters.

A semigroup is a set S provided with an associative operation (a,b) — ab,
a,b € S. If it is commutative, i.e. if ab = ba for all a,b € S, then S is said to
be commutative. In this case we use the additive notation, (a,b) — a + b for
the semigroup operation, rather than the multiplicative one. In the sequel we will
consider only commutative semigroups.

An element ¢ € S called identity element for S, if 1 + a = a for every a € S.
If it exists, the identity element of S is uniquely defined. It is denoted by 0, and
is called the zero of S. Under the multiplicative notation, ¢ is the identity element
of S if ta = a for every a € S. In this case it is denoted by 1 or 2, and is called
the unit of S. An element a € S is said to be invertible in S if a + b = 0 for some
b e S (resp. ab = ¢ under the multiplicative notation). In this case the element b
is said to be inverse to a. Every a € S has at most one inverse, and if it exists it is
denoted by —a (resp. a~! under the multiplicative notation). If S has an identity
element, and if every element of S is invertible, then, clearly, S is a group.

An element j € S is called an idempotent element (or, just idempotent) of S,
if 4+ =) (resp. ) = j under the multiplicative notation). Clearly, the identity
element is idempotent in any semigroup S. Note that if G is a group, and S is a
subsemigroup of G containing the identity element, then it is the only idempotent

of S.

Example 3.4.1. (a) The set of positive numbers (0, 00) is a semigroup under addi-
tion. It contains neither a zero element, nor idempotents. However, when endowed
with the multiplication, (0,00) is a semigroup with unit 1.

(b) The sets [0,00) = R4, and [0,00] = Ry are semigroups under addi-
tion, with zero element 0. Ry has only one idempotent, 0, while [0, c0] has two
idempotents, 0 and co.

(c) The semigroup R4 = [0, 00) under multiplication has two idempotents,

0 and 1, while the semigroup (0, oc] under multiplication has two idempotents, 1
and oo.
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(d) The sets Z, N, Z = NN{0}, 2Z = {2n:n € Z}, Zy X Z4, Ry x
Ry, {(n,m) € Ry x Ry:m > /n}, {(n,m) € Ry x Rp:m > 1},{(n,m) €
Ry x Ry:n/m < \/2} are semigroups under addition. So is the set {oo} U Z4
endowed with the following operation: the usual addition on Zy, coxz = « for
every x € {oo} UZy.

(e) Let 8 be an irrational number. The set Zy +Z. 08 = {n+mpB:n,m € Z, }
is a semigroup in Ry, while Z, + Z8 = {n+mpB: n € Z,, m € Z} is a semigroup
in R.

(f) The set S = R4 endowed with the operation z - y = max{x,y} is a
commutative semigroup. Its idempotents are the characteristic functions g )
and g ., v € Ry.

The set of all idempotents of a semigroup S is denoted by Ig. It is a semigroup
with respect to the operation inherited from S. One can introduce a natural order
in Ig, namely, ¢t < ¢ if and only if ¢; + 15 = ¢1. Clearly, the zero element succeeds
every other idempotent of S. In the semigroup [0, o] from Example 3.4.1(b) we
have 0 = oo, while in the semigroups from Example 3.4.1(c) we have 1 > 0 in
[0,00), and 1 > oo in (0, ).

A subset H C S is called a subsemigroup of S, if it is closed under the
semigroup operation, i.e. if H + H C H. Equivalently, H is a subsemigroup of S if
the sum a+b of every pair of elements a,b € H belongs to H. Given an idempotent
v € Ig, the set Gy ={a € S:a+1=aand a+ b= for some b € S} is a group
with identity element ¢. Actually G is the maximal subgroup of S that contains
t. If S possesses 0, then the set SN (—S) of invertible elements in S coincides with
G, which is the maximal subgroup of S containing 0. It is called the group kernel
of S, and is denoted by Gg. Clearly, if S does not possess idempotents other than
0, then Gg is the only maximal subgroup of S.

Let S; and S3 be two semigroups. A map ¢: S; — S5 is called a semigroup
homomorphism, if it respects the semigroup operation, i.e. if ¢(a+b) = p(a)+¢(b)
for any pair of elements a,b € S. The set Hom (51, S2) of semigroup homomor-
phisms from S; to Sa is denoted also by H(S7,S2). A homomorphism that is
injective, i.e. for which p(a) # ¢(b) whenever a # b, is called an embedding of
Sy in Sp. If; in addition, ¢ is surjective, i.e. if f(G1) = Ga, then ¢ is called a
(semigroup) isomorphism between S; and Sy. In this case we write S; = So.

We say that S is a semigroup with cancellation law, if a + ¢ = b + ¢ implies
a = b for any a,b,c € S. The cancellation law holds on the set R with addition,
while it fails on R with the operation x - y = max{z,y}, considered in Example
3.4.1(f). Tt is easy to see that the cancellation law holds on every group. Clearly,
the cancellation law holds on any subsemigroup of a group. As the next proposition
shows, the converse is also true.

Proposition 3.4.2. A semigroup S with 0 can be embedded into a group if and only
if the cancellation law holds on S.
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Proof. If ¢ is an embedding of S into a group, then obviously () is a semigroup
with cancellation law, and so is S.

Conversely, assume that S is a semigroup with cancellation law. A group into
which S can be embedded can be obtained by applying the classical construction
for creating the set of integers by natural numbers. Indeed, the Cartesian product
S x S is a semigroup under the standard operation (a,b) + (¢,d) = (a + ¢, b+ d).
Consider on S x S the equivalence relation (a, b) ~ (¢,d) if and only if a+d = b+c.
It is clear that (a,b) ~ (a,b) and that (a,b) ~ (¢, d) implies (¢, d) ~ (a,b) for every
(a,b), (c,d) € S x S. The relation ’~’ is also transitive, i.e. if (a,b) ~ (¢, d), and
(¢,d) ~ (k,1), then (a,b) ~ (k,1). Indeed, (a+1)+d=(a+d)+1l=(b+c)+1=
(c+l)+b=(d+k)+b=(b+k)+d The cancellation law on S implies that
a+l=>b+k,ie. (a,b) ~ (k,1). Denote by I's the set of equivalence classes [(a, b)]
of elements (a,b) € S x S, ie. [(a,b)] = {(c,d) € S x S: (¢,d) ~ (a,b)}. Define
an operation on I's by [(a,b)] + [(c,d)] = [(a + ¢,b+ d)]. Tt is easy to check that
this operation is associative and commutative. We claim that under this operation
I's is a group. Indeed, it is easy to see that for any ¢,d € S the elements (¢, c)
and (d,d) are equivalent, i.e. belong to one and the same equivalence class, say
[(e,c)] € I's. Note that (0,0) € [(c,c)]. The cancellation law on S implies that
[(a,0)] +[(c,c)] = [(a+¢,b+c)] = [(a,b)] for any a, b € S. Hence, [(c,c)] = [(0,0)]
is the identity element of I's, and the class [(b,a)] € I's is inverse to [(a,b)] € s.
Therefore, I's is a group, and the map a — [(a, 0)] embeds the semigroup S into
Is. 0

The group I's constructed in Proposition 3.4.2 is called the group envelope
of S. Formally, one can think of its elements [(a,b)] as ‘differences’ a — b, so that
I's={a—b:a,be S} =5 — 5. Therefore, any semigroup S with cancellation law
and 0 can be assumed to be a subsemigroup of its group envelope I's =S — S.

Example 3.4.3. Let 8 be an irrational number. Observe that Z + Zg € R is the
group envelope of the semigroups Z; + Z, 3 and Z, + Zf3. The group kernel of
Zy + 7.0 is {0}, while {0} 4+ Z( is the group kernel of Z; + Z.

A subsemigroup J of S is said to be a (semigroup) ideal of S, if J+ S C J,
i.e. if, given an element a € J, its sum a + b with any element b € S belongs to J.
If J; and Jo are two ideals of S, then the sets J; N Jy and J; + Jo are also ideals
of S. It is easy to see that groups do not contain proper ideals.

Example 3.4.4. (a) Intervals of type (¢,00) and [¢,00), ¢ € Ry, are ideals of the
semigroup R4 endowed with addition. In fact, every ideal of Ry is of this type,
which follows immediately from the fact that if J is an ideal of Ry, and if r € J,
then J contains every s > r, since s =r + (s —r) and s —r € Ry. By the same
token, the ideals of the semigroup Z. are sets of type {k € N: k > n}, where
n > 0.

(b) Any set of type (z,y) + Ry x Ry is an ideal of the semigroup Ry x Ry
endowed with addition. In fact, any ideal of Ry x R is a union of such ideals. If
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J is an ideal in Ry x Ry, and (z,y) € J, then (z,y) + R x R C J. In particular,
the sets (0,00) x Ry, Ry x (0,00), Ry x R4\ {(0,0)} are ideals in Ry x R;. The
ideals of the semigroup Zy x Z4 have a similar description.

(c) The sets of type (0,y) + R x Ry are ideals of the semigroup R x R under
addition. It is easy to see that every ideal of R x Ry is of type R X (¢, 00), or,
R X [¢,00), ¢ € Ry. The ideals of the semigroup Z x Z; are of similar type.

(d) The sets (Z4 + Z4B) \ Z4 and (Zy + Z43) \ Z+b are ideals in the
semigroup (Z+ + Z+6) under addition, where § is an irrational number.

Proposition 3.4.5. Any ideal J of a semigroup S that meets the group kernel Gg
coincides with S. Therefore, the set Jo = S\ Gg contains any proper ideal of S.

Proof. Assume that J N Gg # O, and let a € J N Gg. Then a possesses an
inverse element —a € S, and therefore 0 = a — a = a + (—a) € J. Consequently,
S=54+0cJcCS, thus J =5 as claimed. O

Example 3.4.6. (a) Let J C S be an ideal of a semigroup S. For any element a € S,
theset a+J ={a+0b, be J} C Jis also an ideal of S.

(b) The complement Jg = S\ Gg of the group kernel of S is an ideal of S.
Indeed, if a € Jg and b € S is such that a + b & Jg, then a + b € Gg, and hence
it possesses an inverse element —(a +b) € Gs. Hence 0 = (a+b) + (— (a +b)) =
a+ (b —(a+ b)), i.e. a is an invertible element of S, which is impossible since
ac€Jsg=S5 \ Ggs.

Definition 3.4.7. A proper ideal of a semigroup S is called
(a) a mazimal ideal of S if it is not contained in any other proper ideal of S.
(b) a minimal ideal of S if it does not contain any other ideal of S.
Theorem 3.4.8. Let S be a semigroup with 0. Then:
(i) Js =S\ Gg is the only maximal ideal of S.

(ii) If the cancellation law holds on S, then it does mot have proper minimal
ideals.

Proof. (i) As we saw in Example 3.4.6(b), Jg is an ideal in S. It is a maximal
ideal, in fact the only maximal ideal in S, since, by Proposition 3.4.5, Jg contains
every proper ideal of S.

(ii) Suppose that the cancellation law holds on S, and let J be a proper
minimal ideal of S. Fix an a € J and consider the ideal a + J C J. By the
minimality of J we have that J = a 4+ J. Therefore, a = a + b for some b € J.
By the cancellation property, b = 0, thus 0 € J and therefore, J = S, contrary to
hypothesis on J. |
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Definition 3.4.9. Let S be a semigroup with the cancellation property.

(i) The strong hull [S]s of S is the set of elements a € I's for which there is an
meq € N such that mga € S. If [S]s = S, then S is called a strongly enhanced
semigroup.

(ii) The weak hull [S], of S is the set of elements a € I's for which there is an
n € N such that ma € S for every m > n. If [S], = S, then S is called a
weakly enhanced semigroup.

Similarly, by replacing I's by any semigroup P containing S, one can define the
strong hull, [S]F, of S in P, the weak hull, [S]E, of S in P, and the notion of

57 w?

strongly and weakly enhanced semigroups in P. One can readily see that S C

[Slw € [S]s € I's, [S]s = [SI5¥, and [S]u, =[S,

Example 3.4.10. Consider the semigroup S = {(m,n): m,n > 0} U {(0,n): n >
2} U{(2k,0): k > 0} C Z?. Tt is easy to see that I's = Z?, [S], = {(m,n): m >
0, n > 0} U{(2k,0): & > 0}, and [S]s = {(m,n): m > 0, n > 0}. Hence,
S # [S]w # [S]s, and therefore the semigroup S is neither weakly, nor strongly
enhanced.

Proposition 3.4.11. Let S be a semigroup, and a € I's \ S. If myn € N are two
relatively prime integers, such that the elements na and ma belong to S, then
a € [S]w-

Proof. Without loss of generality we can assume that m > n > 1. We claim that
under the hypotheses there is an N € N such that every natural number M > N
can be expressed in the form M = rn 4 sm with some r,s € N. If m = n+ 1, then
we can choose N = n (n+1)+1=n2+(n+1).If M > N and M = rn+s (n+1) for
somer,s € N, then M+1 = (r—1)n+(s+1)(n+1), which proves the claim in the
case when r > 1. If r = 1, then M = n+s(n+1), and hence M +1 = (s+1)(n+1).
Thus M+1= (s+1)(n+1)=(s+1—n)(n+1)+n(n+1). Note that s+1—n > 0
since (s+1)(n+1)=M+1> N >n(n+1). In general, kn + Im = 1 for some
k,l € Z\{0}, since m and n are relatively prime integers. Without loss of generality
we may assume that £ > 0. If so, then ! < 0 and kn = (1) m+1. Now the previous
argument applies to the integers (—1)m and (=) m+ 1 = kn, and we obtain that
every natural number M > ((—=1)m)((—=l) m+1) = ((—)m) kn can be expressed
in the form M = r((—=1)m) + s (kn) = (r (<)) m + (sk)n with some r, s € N.

Assume now that m,n are relatively prime natural numbers, such that na
and ma belong to S. As we saw above, there is an N € N such that every natural
number M > N has the form M = rn + sm with some r,s € N. Therefore,
Ma = (rn + sm)a = r(na) + s(ma) € S for every M > N, and consequently
a € [S]w. O

Definition 3.4.12. A complex-valued function ¢ on S is called a semicharacter of
S, if p(0) =1, |¢| <1 and ¢(a+b) = p(a) p(b) for any a,b e S.
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Semicharacters on S are complex homomorphisms of G into D, the closed unit
disc in C, considered as a semigroup under multiplication. If ¢ is a semicharacter
of S and ¢ € Ig is an idempotent, then ¢(1) = ¢(t +¢) = ¢(¢) (¢), wherefrom
©(¢) is either 0 or 1. If ¢(¢) = 0, then necessarily, ¢ = 0 on the subgroup G%,
since p(a) = @(a+ 1) = p(a) p(t) = 0 for every a € GY%. If ¢(¢) =1, then |p| =1
on GY%. Indeed, if a € GY%, then a +b = ¢ for some b € GY%. Hence 1 = (1) =
o(a+) = p(a) p(b), and therefore, [p(a)| = |p(b)| = 1, since [p(a)], p(B)] < 1.
In particular, |¢| = 1 on the group kernel Gg of S for any semicharacter ¢ of S,
since ¢(0) = 1.

Example 3.4.13. (a) The function 1 ’ g = »#s = 1 is a semicharacter of S, called the
trivial semicharacter of S.

(b) For any z € R the function e~% is a semicharacter of the semigroup R, =
[0, 00) endowed with addition. Likewise, the function n — e~ is a semicharacter
of the semigroup Z,; under addition.

(c) The characteristic function s, of the group kernel Gg of S, defined by

s (a) = 1 whena € Gg,
G\ =19 o when a € Jg = S\ Gg

is a semicharacter of S.

A semicharacter w of S with w? = w is called an idempotent semicharacter
of S. We denote by Zg the set of all idempotent semicharacters of S that are not
identically equal to 0 on S. It is easy to see that 0 or 1 are the only possible values
of any idempotent semicharacter.

Let Null (w) be the null-set of a semicharacter ¢ of S, i.e. Null(¢) = {a €
S: p(a) = 0}, and let supp (¢) be the support set of ¢, i.e. supp (¢) = {a €
S: ¢(a) # 0}. The proof of the following lemma is straightforward.

Lemma 3.4.14. Let w be an idempotent semicharacter of S. Then
(a) supp (w) is a subsemigroup of S,
(b) Null (w) is an ideal of S,
(¢) supp (w)UNull (w) =S,
(d) supp (w) NNull (w) =0.

We define a natural partial order in the set Zg, by letting wi < wq if wiwy =
wi. Clearly, w1 < wso if and only if supp (w); C supp (w)2, or, equivalently, if
Null (w1) D Null (w2). The unit semicharacter g = 1 is a maximal element of Zg,
while the semicharacter s, from Example 3.4.13(c) is the minimal element of
Zs.

Example 3.4.15. (a) Counsider the subsemigroup R} endowed with addition. The
origin 0 is the only subsemigroup of R, whose complement is an ideal of R,.
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Lemma 3.4.14 shows that the only non-trivial idempotent semicharacter of R is
the characteristic function, dg = s}, of the origin 0. The same result holds for
the semigroup Z. .

(b) The sets Ry x {0}, {0} x Ry and the origin (0, 0) are the only semigroups
of Ry x R under addition, whose complement in R} x R is an ideal. By Lemma
3.4.14 the characteristic functions, sa « {0}, {0} xk, , and 6(g,0) = »{(0,0)} of these
sets are the only non-trivial idempotent semicharacters of Ry x Ry endowed with
addition. A similar result holds for the semigroup Z, x Z..

(c) The set R x {0} is the only semigroup of R x R} under addition whose
complement in R x R is an ideal. Lemma 3.4.14 implies again that the character-
istic function sy foy is the only non-trivial idempotent semicharacter of R x R..
A similar result holds for the semigroup Z x Z...

(d) Let 8 be an irrational number. The sets Z;, Z; [ and {0} are the only
semigroups whose complement in the semigroup Z, +7Z. 3, endowed with addition,
is an ideal. Hence, their characteristic functions xz,, xz,s and do = xyo} are the
only idempotent semicharacters of Z + Z 3.

3.5 The set of semicharacters

The set of semicharacters of a semigroup is a semigroup on its own. Here we
present some of its basic properties. All semigroups in this section are considered
to be with cancellation property and 0.

Let S be a semigroup with zero. The set H(S,D) of all semicharacters of S
is denoted also by H(S). It is easy to see that H(S) is a commutative semigroup
under the pointwise multiplication on S. Namely, (¢192)(a) = ¢1(a) p2(a) for
every a € S and ¢1,p2 € H(S). The unit of H(S) is the semicharacter ys = 1.
Clearly, the set Zg of idempotent semicharacters of S is a subsemigroup of H(.5).

Example 3.5.1. All semigroups below are considered to be endowed with addition.

(a) The set of semicharacters of S = Z is isomorphic to the closed unit disc
D, i.e. H(Z4) = D. Indeed, any z € D generates a semicharacter ¢, € H(Z,),
defined by

@.(n)=2", n€Zy, 0°=1.
Conversely, if ¢ € H(Zy), then (1) € D, and p(n) = ¢(1)". Therefore, the

correspondence z — ¢, is an isomorphism between H(Z, ) and D.

(b) H(Zy x Z1) = H(Zy) x H(Z+) =D x D = D”, the closed bi-disc in C2.
Functions of type

(n,m) — 2125,

where z1, 20 € D, and n, m € Z,, are typical semicharacters of Z, x Z.
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c) HZ xZy) = H(Z) x H(Zy) =2 T x D, the solid torus in R3. Typical
(c) + + yp
semicharacters of Z x Z4 are the functions

(n,m) — zi'23",

where |z1] =1, zo €D, and n € Z, m € Z.

(d) Let 8 be an irrational number, and let S = Z; + Z (3. It is clear that
Zy+74B= T, x L. Therefore, H(Zy +Z.0) = H(Z, x Z,) = D’, the closed
bi-disc in C2. Functions of type

n+mp— 2725,

where 21,22 € D, and n,m € Z,, are typical semicharacters on Z; + Z, 3.

(e) Likewise, Z+Z4 3 =2 Z X Z4, and therefore, H(Z+7Z4+5) = H(Z X Z4) =
TxD, the solid torus in R3, where 3 is an irrational number. Typical semicharacters
on Z + Z4 3 are given by

n+mp — 2725,
where |z1] =1, zo €D, and n € Z, m € Z.

A semicharacter ¢ of S with |<p(a)| =1 for every a € S is called a character
of S. Clearly, any character is a homomorphism of S into the unit circle T. The set
H(S,T) of characters of S is a subgroup of H(S) with unit element »g = 1. Every
¢ € H(S,T) has an inverse element, namely the character defined by ¢~(a) =

1/p(a) = p(a), a € S.

Proposition 3.5.2. (a) The group H(S,T) of characters of S coincides with the
group kernel of the semigroup H(S).

(b) H(S)\ H(S,T) is the only mazimal ideal of the semigroup H(S).

(¢) If S is not a group, then H(S) - sy is the only minimal ideal of H(S).
Proof. (a) By definition, a semicharacter ¢ of S belongs to the group kernel of the
semigroup H(S) if and only if there is a ¢ € H(S) with ¢ ¢ = 1. This happens if
and only if |p| =1, i.e. if ¢ is a character of S.

(b) That H(S) \ H(S,T) is the only maximal ideal of the semigroup H(S)
follows directly from part (a) and Theorem 3.4.8(iii).

(c) Clearly, H(S)-»¢, is an ideal of H(S). Let J C H(S)- 3¢ be an ideal of
H(S). The conjugate function ¢ : p(a) = ¢(a) of any ¢ € J is also a semicharacter
of S. Therefore |¢|? = ¢ € J. From |p|?> = 1 on Gg, we have that |¢|?xc, =
%G, since s is the characteristic function of Gs. Hence, »gy = |¢|*xas € J,
therefore H(S) - g, C J C H(S) - »ag, and thus, H(S) - »xg, = J. Consequently,
H(S) - 5¢g is the minimal ideal of H(S). O

Proposition 3.5.2 and Theorem 3.4.8(ii) below imply that, in general, the
cancellation law does not hold on the semigroup H(S5).
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Proposition 3.5.3. The group of characters, H(S,T), of S is isomorphic to the
dual group I's of the group envelope I's of S.

Proof. Every character x € H(S,T) can be extended uniquely to a character on
I's by

X(b) = x(a) whenever b=a—-celyg, a,c€S.
x(¢)

The extended function, ¥, is of modulus 1, and is multiplicative on I's. Indeed, if
b,bp € I'and b=a — ¢, by = a1 — ¢1, where a,a1,¢,¢; € S, then

X =x((a+a1)—(c+ec :X(CH'CH)
X(b+b1) =X((a+a1) = (c+er)) e
_ x(@)x(@) _ x@)y x(a)y _ oo
- x(@x(e) (X(C)><X(C1)> = X(b) X(b1)-

Thus, the extended function X is a character of the group I's D S, as claimed.
Since the restriction of every character of I's on S is a character, we conclude that
H(S,T) = I, as claimed. O

For every semicharacter ¢ € H(S) the modulus |¢]: |¢|(a) = |¢(a)| is a non-
negative semicharacter of S. Indeed, it is easy to see that 0 < |p|(a) < 1, and
|pl(a+b) = [¢l(a) @] (b) for any a,b € S.

Theorem 3.5.4. For every ¢ in H(S) there is a character x € H(S,T) = fs, such
that ¢ can be expressed in the form ¢ = |p|x on S.

Proof. It S; = supp (¢) = S\ Null(¢), let I's =S — S and I's, = S1 — S1 be the
group envelopes of S and S; respectively, equipped with the discrete topologies.
As a character on S7, the function ¢’: S; — T, defined by ¢'(a) = ¢(a)/|¢(a)| can
be extended, by Proposition 3.5.3, to a character ¢’ on the group I's,. Further, as
a character of the group I's,, ¢’ can be extended on the larger group I's D I's,, by
Theorem 3.1.11. The function x = ¢'|s is a character of S, and, clearly ¢ = |¢|x
on S. |

The expression ¢ = |¢| x from Theorem 3.5.4 is called a polar decomposition
of ¢ € H(S) (cf. [AS1]). In general it is not unique. However, if p(a) # 0 for every
a € S, it is, as the following proposition asserts.

Proposition 3.5.5. The polar decomposition ¢ = || x of a semicharacter ¢ € H(S)
is uniquely determined if and only if p(a) #0 for any a € S.

Proof. Let ¢ = |p|x1 = |¢|x2 for some x1,x2 € Is. If p(a) # 0 on S, then
x1(a) = x2(a) for every a € S. Consequently, x1|s = x2|s, thus x1 = x2, since S
generates I's.
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Conversely, assume on the contrary, that ¢(a) = 0 for some a € 5, ie.
that Null (¢) # @. Denote by I, the group envelope of the semigroup supp () =
S\Null (¢) with the discrete topology, i.e. I', = supp (¢)— supp (). We can extend
©/|¢| to a character x on I,. Note that I, # I's since a & I,. As a character
on the semigroup I, C I's, x possesses an extension on I's by Theorem 3.1.11.
The set of all possible character extensions of x on I's is isomorphic to the group
I j &~ I's/I,, which certainly contains more than one element. Therefore, the
polar decomposition of ¢ is not unique. O

Proposition 3.5.6. If S C P are semigroups with cancellation law and 0, then every
semicharacter ¢ of S can be extended uniquely to a semicharacter on the strong
hull [S]Y of S in P.

S

Proof. By Theorem 3.5.4 every ¢ € H(S) has a polar decomposition ¢ = |¢| x for
some character y of I's. Hence ¢ is extendable on [S]! as an element of H ([S]]")
if and only if || is extendable there. For any a € [S]F\ S there is an m, € N such
that mga € S. The function ’{5((1)’ = |<p(maa)’1/m“ is a semicharacter extension

of |¢| on the strong hull [S]F of S in P. O

As an immediate corollary from Proposition 3.5.6 and Example 3.4.15(a)
we see that semigroups S whose strong hulls [S]¥ in P contain R do not have

non-trivial idempotent semicharacters besides s(gy.

It is easy to see that Zg = Zjgr for every subsemigroup S C I's. Indeed,
any idempotent semicharacter w of S can be extended uniquely to an idempotent
semicharacter on [S]. Namely, for any a € [S]! define &(a) = w(nq.a), where
nqa € S. Equivalently, the extension @ on [S]? is given by

S

~. [ 1 whenaé€[supp (w)|%,
5@={ 0 Therac it

Proposition 3.5.7. The restriction mapping on the group kernel G's is a surjective
homomorphism from the semicharacter semigroup H(S) onto the dual group Gg.

Proof. We only need to prove that H(S)|gs = Gs. Given a x € Gy, consider the
function ¢, on S, defined by

[ x(a) whenae€ Gs,
@X(a)_{ 0 when a € Jg = S\ Gs.

Clearly, <pX| e = X and one can easily check that ¢, is a semicharacter of S. [

Let H(S, 0, 1]) denote the semigroup of all non-negative semicharacters of
S. Clearly Zs C H(S,[0,1]) € H(S). The modulus |¢| of any semicharacter ¢ of S
also belongs to H (S, [0,1]). Given an idempotent semicharacter w € Zg, let H,,(5)
be the set of all ¢ € H(S7 [0, 1]) with the same support as the support of w. Let
I', C I's be the group envelope of supp (w) with the discrete topology. Note that
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H, (supp (w)) is isomorphic to the set H(supp (w), (0, 1]) of positive semicharacters
of the semigroup supp (w). The uniqueness of the polar decomposition (Proposition
3.5.5) implies that H(S,D") = H(S,(0,1]) x I's, where D" = D\ {0}. Likewise,

H (supp (w),]D)*) = H (supp (w), (0, 1]) x I, =H,(S) x I,
for every idempotent semicharacter w € Zg.

The symbol LI is used below to indicate disjoint unions of sets.

Proposition 3.5.8. The semigroup H(S) of semicharacters of S can be expressed
as the disjoint union

H(S |_| H (supp (w |_| H,( x I, =~ |_| H (supp (w), (0, 1])xfw.

w€EZg w€EZg w€Zlg

(3.9)

Proof. Note that the polar decomposition, g x, o € H(supp (w), (0, 1]), X € IA“W, of
non-vanishing on supp (w) semicharacters is uniquely defined, and hence {g X: 0 €
H (supp (w), (0,1]), x € fw} =~ H,(S) x I,,. Therefore,

H(S) = Jox: 0€ H(S.0.1]), x € Is} = | | {ox: o€ Hu(S)., x € I's}

w€Zg
> | | {ox: o€ Hu(S), xe TL} = | | Hu(S) x L.
w€EZgs weTls 0
Let g, and s = 1 be the only idempotent semicharacters of S. Since

their supports are G's and S correspondingly, we have I, = Gs and I, = I's.
Hence, H,.,_(S5) = H(Gs,(0,1]) = {54}, and H,.,(S) = H(S, (0,1]). Therefore,
H(Supp (%Gs)v]D)*) = H(Supp (%Gs)a (07 1]) X F%GS = H%GS (S) x Gg = {%GS} X
Gs, while H (supp (g), ID)*) = H(S,D") = (H(S), (0,1]) x I's respectively. In this
case the identity (3.9) becomes
H(S) = (H (supp (»c5), (0,1]) X I ) U ( (supp (5s5), (0,1]) x IA“,{S) (3.10)
= ({ras} x Gs) L ( (S, (0, D x Is).

If, in addition, S has a trivial group kernel, so that Gg = {0}, then {s¢g.} x Gg =
(5¢g0},1), thus H(S,[0,1]) \ H(S,(0,1]) = {52101}, and (3.10) becomes

H(S) = (5¢0y,1) U (H(S, (0,1]) x T's) 2 (H(S,[0,1]) x I's)/({0} x T's), (3.11)

where we regard the points in the set ({0} x fs) / ({0} x fs) to be identified with
the semicharacter (s¢(oy,1). Clearly, sy is the delta function do.

Definition 3.5.9. The set Dg = ([0,1] x G)/({0} x G) is called the G-disc, or, the
(big) disc over G. The set D, = (0,1] x G is the punctured G-disc.
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The points of the G-disc D¢ will be denoted by r ¢ g, where r € [0, 1] and
g € G, under the agreement that we regard the points 0¢ g, g € G as identified.
The point obtained in this way is called the origin of the G-disc D¢ and is denoted
by w, i.e. 00 g = w for every g € G. Therefore, Dg = [0,1] © G/0¢ G. If we denote
w=00G/00G € D¢, then D, = D¢ \ {w}. The points of type 1o g, g € G,
are denoted simply by g. The non-negative number r is called the modulus of the
point rog, and we write |rog| = r. Clearly, the topological boundary of the G-disc
Dg is the set 10 G = G.

Let the group kernel Gg of S be {0}, and H (supp (w), (0,1]) = (0,1] for
every idempotent semicharacter w € Zg, w # do. In this case the identity (3.9)
becomes

H(S) = {(qop. #s)} U || (0,1 x T = {(eqoy,25)} U || Dr,, (3.12)
weZs\»0y wEZs\ (0}

i.e. H(S) is the union of a single point and a family of punctured I,-discs ID)}W,
w€lg \ 7{0}-

Example 3.5.10. All semigroups below are considered to be endowed with addition.

(a) If S is the semigroup S = N x NU (0,0) C Z2, then Gs = {(0,0)}, and
I's = Z2. The only non-trivial idempotent semicharacter of S is (0,00} = 0(0,0)
According to (3.11),

IIZ

.0y, D} U (H(S, (0,1]) x Ts) B

%{(00)}, }l_l( (N x NuU (0, 0),(0,1])><Zz)
(1,1)} U ((0,1] x T)?

>}u< )2 = °/(({0} x B) U (B x {0}).

1

1

{(
{(
{(,
{(o,

1

A typical non-trivial semicharacter of N x N U (0,0) C Z? is given by
(n,m) — 2723,

where z1, 20 € D, and n,m € N. Observe that the points (z1,0) and (0, 22)

generate the semicharacter g 0) = 9(0,0), then the points of the set D’ belonging
to {0} x D and D x {0} are identified.

(b) The semigroup S = Z x NU (0, 0) has also a single non-trivial idempotent
semicharacter, namely, 30,0y} = 6(0,0), while Gg = {(0,0)}, and I's = Z*. By
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(3.10) we have

H(S) 2 {(5¢0,00} #s)} UH (S, (0,1]) x I's
= { (50,00} )}uH(ZxNu(o 0), (0,1]) x Z2
= {(eq0.0yy. (1,1))} UH(Z, (0,1]) x H(N, (0,1]) x T
= {{1} x {0} {1, 1)} U {1} x (0,1] x T2
= {{0} x {(1,1)}} U (0,1] x T?

1

([0,1] x T?)/({0} x T?) = Dre,

the closed T2-disc. Consequently, H(Z x NU(0, 0)) is bijective to the closed T2-disc
in R3. Typical non-trivial semicharacters of S are of type

(n,m) — z1'23",

where |z1] = 1, 22 € D, and n € Z, m € N. Note that every point of type
(21,0) € T x {0} generates the semicharacter s(o,0)} = 0(0,0), Which implies that
the points of the set T x D belonging to T x {0} are identified.

(¢) Non-trivial idempotent semicharacters of the semigroup S = Z x NU
Z+ x {0} are s((0,0yy = (0,0 and sz, x o}, while Gs = {(0,0)}, and I's = Z>. By
(3.12), we obtain

H(S) = {(50.0)), %5)} UH(Zy,(0,1]) x ZU H (S, (0,1]) x T's
= {(%{(070)}, J{S)} U(0,1] x Tu H(S, (0, 1]) x 7.2
> { (50,0}, s) } UD U H(S,(0,1]) x T2 = DU (0,1] x T2.

Typical non-trivial examples of semicharacters on S are
(n,m) — 2725, where |z1] =1, 220€D, n€Z, meN

and n —— 27", where z; € D, n € Zy.

Proposition 3.5.11. The set of semicharacters on Ry =R N[0, 00) under addition
is bijective to the G-disc D¢, where G is the Bohr compactification, G = b(R), of
R, i.e.

H(Ry) = Dyg). (3.13)
Proof. Clearly, I, = R. The only non-trivial idempotent semicharacters of S =
Ry is »y. In addition, H(Ry,[0,1]) = [0,1]. Indeed, for every p € [0,1] the
function ¢(z) = p? belongs to H(R+, 0, 1]) Conversely, we claim that every ¢ €
H (R4, [0,1]) is of this type. Clearly, p = ¢(1) € [0,1]. For any m,n € N we have

@(m/n)" = go((m/n) ﬂ) = p(m) = p(1)™, and therefore, p(m/n) = @(l)m/”, If
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A is an irrational number, and p/q < A < m/n, then o(p/q) > ©(A) > o(m/n),
and hence

@(1) = p(1)™Pe/atp/9<A = inf (1)P/7 = inf o(p/q) > ()
p/q<A

p/q<X
> sup p(m/n) = sup o(1)™/" = p(1)"n/mim/m<A} — o(1),
m/n>\ m/n>\

Therefore, p(A) = p* with p = ¢(1) € [0,1]. Hence, H(R4,[0,1]) = [0,1], as
claimed. Together with (3.11) this implies that

H(Ry) = Dg; = Dy,
as claimed. O

It is easy to see that if the point r ¢ g € D¢g corresponds to a semicharacter
¢ € H(R,4) with a polar decomposition |¢|x, where |¢| € H(R4,[0,1]) and x €
Ry, then to the semicharacter lg| € H(R4,[0,1]) = [0,1] corresponds the point
ro1 € Dg, r € [0,1], while to the character x corresponds the point 1¢ g € Dg.

A similar result holds for any semigroup of type I'y with I" C R.

Proposition 3.5.12. Let I be a subgroup of Ry, and let I't = I' N [0,00). The set
of semicharacters H(I'y) is bijective to the G-disc Dg = [0,1] 0 G/{0} o G, where
G=T , i.e.

H(I'y) =2 Dg =Dgp. (3.14)
Proof. Let I" be dense in R. Every semicharacter ¢ € H(I'},[0,1]) can be extended
to a semicharacter ¢ in H (R4, [0,1]) by setting, say, ¢(z) = inf {¢(a): a <z, a €
F+}. This extension is unique, since if two semicharacters in H (R4, [0, 1]) coincide
on a dense subset of Ry, they are equal. Hence H(I4,[0,1])
=~ H(R4,[0,1]) = [0,1]. Since the group kernel of Iy is {0}, and Iy does not
have non-trivial idempotent semicharacters, (3.11) implies that

H(I'y) = (H(I'y,[0,1]) x I') /({0}y x I') = ([0,1] x I") / ({0} x I') = Dp.
If I" is not dense in R, then I' & Z, and H(Zy) = D, as we saw in Example
3.5.1(a). O

Corollary 3.5.13. If S is a semigroup in Ry such that [S]s = Iy for some subgroup
I' of R, then H(S) is bijective to the G-disc Dg, where G =T .

Proof. Indeed, Proposition 3.5.12 implies, H(S) = H([S]s) = H(I'y) = Dg. O
Example 3.5.14. All semigroups below are considered to be endowed with addition.

2
(a) H(R+ X R+) = H(R+) X H(R+) = Db(R) X Db(R) = Db(R)’ the closed
b(R)-bi-disc.
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(b) Let I; C R, i = 1,...,n be additive subgroups of R, and consider the
semigroup S = (I'1)4 x (I2)4 x --- x (I'y)4+ C R;. Proposition 3.5.12 yields
H(S) = H((I')+ x (I2)4 x -+ x (In)+)
= H((I)+) x H((I2)4) x - x H((I)4) =Dp xDp x--- x Dp .
(¢) HR xRy) = H(R) x H(Ry) = b(R) x Dy, the solid torus over b(R).
(d) Let S = (0,00) x (0,00) U (0,0) C R%. The only non-trivial idempotent
semicharacter of S is »(00)} = 6(0,0), while Gg = {(0,0)}, and I's = R?. As in
Example 3.5.10(a) we obtain that
2 * 2
H(S) = {(>(0,0)}, #s)} U ((0,1]) x b(R))" = {(w,w)} U (Dy(w))
2
= (Dyw)) / (({w} X Dy(r)) U (Dy(ry % {w})).

(e) The semigroup S = R x (0, 00) U (0,0) also has a single non-trivial idem-
potent semicharacter, namely, 0.0y}, Gs = {(0,0)}, while I's = R?. Similarly to
Example 3.5.10(b) we obtain that

H(S) = {(>¢(0,03> #5) } U (0, 1] x b(R)* = ([0, 1] x b(R)?) / ({0} x b(R)?) = Dy(g)>-
Consequently, H(R x (0, 00)U(0, O)) is bijective to the b(R)2-disc Dy(r)2, the closed
b(R)2-disc.
(f) Non-trivial idempotent semicharacters of the semigroup
S =R x (0,00)U[0,00) x {0}
are s((0,0y = 6(0,0) and s, x {0}, while G = {(0,0)}, and I's = R?. Similarly
to Example 3.5.10(c) we obtain
H(S) g{(%{(o_yo)}7%s)}uH(R+7(0 1)><]RduH( , ) XFS
= {00,003, 75) } U (0, 1] x b(R) U H (S, (0,1]) x Ri
= { (s¢((0,00} ) } U Dy L H (S ( 1]) x (b(R))?
2
>~ Db(R) L (0, 1} X (b(R)) .

3.6 The semigroup algebra ¢'(S) of a semigroup

Any semigroup with cancellation law and 0 generates in a standard way its semi-
group algebra, described in this section. Its properties reflect the properties of the
original semigroup.

Let S be a commutative semigroup with cancellation law and 0, and let
I's = S — S be its group envelope. Consider the linear space £*(S) of complex
valued functions f on S, for which

£l =" |f(a)] < o0

a€S
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Equivalently, ¢1(S) is the space of functions f on S with countable support, and
such that Z ’ f (a)’ < 00. It is well known, that under the pointwise operations

a€ supp(f)
and with the norm

£l =" | f(a)

a€s

?1(S) is a Banach space. The characteristic function, d,, of any element a € S
obviously is in £(S), since d,(a) = 1 and 6,(b) = 0 for any b # a. Clearly,
10allr = 1.

Given f, g € £1(S) the set supp (f) + supp (9) = {c € S:c=a+b ac
supp (f), b € supp (g)} is at most countable, and the following inequalities hold:

S| Y r@ge-a <X (X 1f@llgle-a))

ceS a,c—a€S ceS a,c—a€S

<N f@]lg®)| =D £ @] > 1g®)] = lIfl11llgls-

aeS bes a€sS bes

(3.15)

As consequences from them we obtain that

(i) for every ¢ € S the number Z f(a)g(b) is finite, and therefore the convo-
a,bes

lution f x g defined by (f * g)( Zf ) of f and g, is a well-defined

a,c—a€S
function on S, and

) 1f %9l =D |(F*0)@] =S| 3 f@)gle—a)| < Ifllglh.
ceS ceS a,c—a€S

In particular, (ii) implies that for any f,g € £}(S) their convolution f* g also
belongs to £1(S). Note that d, x d, = d41p for any a, b € S. Indeed,

(Ba*p)(p) = > dal —)#0
c,p—c€eS
only in the case when c=aand b=d,ie. onlyif p=a+b, and (0, *dp)(a+b) =
Z 0a( = 04(a) 0p(b) = 1. Hence, d, x J; is the characteristic function of

c+d=a+b
the point a + b, i.e. g * Ip = dgtp-

Proposition 3.6.1. The space (1(S) with multiplication f x g and the unit element
b0 s a commutative Banach algebra over C.

Proof. The inequality || f* gll1 < || f]l1]lg]l1 is established already in (ii). Given an
f € L(S), for any ¢ € S we have

(f*0o)(c) = > fla)do(c—a)= Y f(a) fe),

a,c—a€S a+0=c
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thus f x dp = f for every f € £*(S). Therefore, the function dy is indeed the unit

element of ¢1(S). O
Since (Zf(a) (5a>(c) = Z f(a)da(c) = f(e)dc(c) = f(c) for every ¢ € S,
acs acs

we see that any f € ¢1(S) can be expanded as a pointwise convergent series on

S, namely f = Z fla)d, = Z f(a)d,. Actually, this series also converges to
a€sS a€ supp (f)

f in the £*(S)-norm. Indeed, since ||f||; = Z |f(a)| < oo, for any € > 0 we can

a€sS
choose an n € N for which

S| f(a)]| = Hle—Z!f (ai)| <,
i>n
where {a;}$2, is any enumeration of supp (f). Now,

7= 3 flaosn]) = | san X ’Zfaz 2. (0)
i=1 i>n

i>n

<> | f(@i) dai(0)] =D [ f(@i)ba, (ai |=Z|f a;)

ceSi>n i>n i>n

Theorem 3.6.2. Let S be a semigroup with cancellation law and 0. The mazi-
mal ideal space Myi(sy of the algebra €'(S) is homeomorphic to the set H(S) of
semicharacters of S with pointwise convergence.

Proof. Let m : £1(S) — C be a linear multiplicative functional of ¢*(S). We
associate with m the function ¢,,: S — C, by ¢, (a) = m(d,). Clearly, p,,(a +
b) = m(darp) = m(dq * 0) = m(da) (5;,) = pm(a) om(b) for every a,b € S.
Also, ¢, (0) = m(8g) = 1, since &g is the unit of £1(S). Moreover, ©,, maps S
into the closed unit disc D of C. Indeed, |¢m(a)| = [m(da)| < [|6a]l1 = 1, since the
functional m is of unit norm. Hence, ¢, is a semicharacter of S, i.e. ¢, € H(S).

Conversely, with any semicharacter @ of S we absociate the linear functional

my: 01(S) — C defined by me,(f Zf ) for any f = Zf(a)é
a€S a€s
(1(S). This is a well-defined function in ¢!(S), since

1> H@e@)] < Y [F@)ela)| < D [F@)] = £ < .

a€s a€S a€S

Note that m., (4 Z da( ¢(a). Clearly, m,(dy) = ¢(0) =1, and
cesS

(00 % 0p) = Mg (Gats) = pla+b) = p(a) p(b) = me(da) My (95)-
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Since the elements in £*(S) are ¢1(S)-limits of finite linear combinations of func-
tions d,, a € S, it follows that m., is also multiplicative on ¢! (S). Hence, m, is a
linear multiplicative functional of £*(S).

It is easy to check that ¢,,, = ¢, and m,,, = m. Indeed, @y, (a) = my(a) =
¢(a) for any a € S, i.e. pm, = @. Since my,,, (62) = pm(a) = m(d,) for every
a € S, it follows that m,, (p) = m(p) for every finite linear combination of
functions &,. By continuity, me,, (f) = m(f) for any f € ¢*(S). Consequently,
the correspondence My gy — H(S): m —— ¢y, is one-to-one. If my — m
in Mgy, then o, (a) = ma(ds) — m(da) = ©m(a) for every a € S, ie.
©m, — m pointwise in H(S). Conversely, if v, — ¢ pointwise in H(S), then
Mg, (0a) = pala) — @(a) = my(d,). Hence, my (06,) — my(dq) for every
a € S, and therefore, m, (p) — my(p) for every finite linear combination p of
functions d,. Let f = Z f(a) 8, be an arbitrary function in £1(S). Given an € > 0,

a€S

let || - f:f(ai)(sai

i=1

< ¢ for some n, where a; € supp (f). Now
1

thus mg, (f) — my(f) for every f € ¢1(S), and hence m,, — m,, in Mgy
Consequently M gy and H (S) are homeomorphic spaces under the corresponding
topologies. O

Since every character on S belongs to H(.S), the group of characters H (S, T)
= [s is a subset of My (g). Note that if S = I's, then My gy = H(I's) =
H(S,T) = T.

Let ¢ € H(S) be a semicharacter of S, and let ¢ = px be its polar de-
composition, where ¢ = |p| € H(S,[0,1]) is the modulus of ¢, and x € I's (cf.
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Theorem 3.5.4). Every z in the closed upper half-plane C; generates a semichar-
acter o) € H(S) by .

¢ (a) = x(a) o(a) "%,
Note that if € R, then ¢(®)(a) = x(a) g(a)_ix, and therefore, |g0(w) (a)| =
lx(a)||g(a)_m| =1,ie @ ¢ I'g.If o € H(S,T) is a character of S, then |o| = 1,
thus <p(z). = x = p for every z € C,. If ¢ is an idempotent semicharacter of S,

then o~ %% = p, and therefore, *) = y p = ¢ for every z € C_. If p = wy, where

w is an idempotent semicharacter, and  is a character of S, then supp (¢*)) =
supp (w). If ¢ is not an idempotent semicharacter, then the mapping z — ©®) is
a continuous embedding of C into H(S) = My (g), such that o =

Lemma 3.6.3. Let © be a non-idempotent semicharacter of S. For any f € £*(95)
the mapping z — f(go(z)) is a bounded analytic function in C,., continuous up to
the boundary R.

Proof. If f = Z f(a) 8, € £1(S), and ¢ is a non-idempotent semicharacter of S,
a€S

Fme) = mea(f) = me (Y F@)8a) = D f(@)mp(8a) = Y- Fla) pla)

a€S a€S a€es

then

where m, € H(S) is the linear multiplicative functional of £*(S) associated with

. Hence, _
o) = > f@) P (a) =" fla) x(a) o(a) "%, (3.16)

acs acs
This is an absolutely convergent Dirichlet series in z € C,.. Indeed, since
= (@) | =[e(@)[|e(a) | = |e(a)!| |~ ) | = o(@)¥ | < 1

|o(a) |o(a)

for any z € C4, we see that

3" @) x(@) ol@) =] < 3 f@)] = 11l < .

a€s a€s

Consequently, ]?(mw(z)) is a bounded analytic function in C, which is continuous
on C,, as claimed. O

Proposition 3.6.4. Let ¢ be a semicharacter of S. Denote by H,(S,T) the set of
semicharacters 1 of S with the same support as ¢, and for which \wH

Then

suppy

[Fm)| < sup [ F(my)]
XGHQm(ST)

for every f € £1(S) and m € My(sy.
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Proof. Let f € ¢1(S), and let p = px € H(S). By the previous lemma F(z) =
f(mwm) is a bounded and analytic function in C;. By the Phragmen-Lindelof
theorem, F'(z) attains the maximum of its modulus on the boundary R. Therefore,
for any z € C we have

’F(z)| < sup ’F(z)’ = sup |]?(m¢<z+¢y>)|
z2€R y=0

= sup | 3 S(@) ¢ (@) = sup | 3 f(a) x(a) el) .

w€RT S5 wERT €5

Note that for every = € R the function Xg_m is a character of the semigroup

supp (¢) C S, and Zf(a) x(a) Q(a)—ix - Zf(a) (Xg_ix)(a) — gy (f) =
acs awcs
i (myp-iz ). Consequently,

’F(z)| < sup |]?(mngm)| < sup ’f(m@’
z€R YEH,(S,T)

for any z € C4.. Therefore, for any m € M1 (g) we have

[Fm)] = lom(N] = [¢@D (] = [Fm_o)| < swp  |f(my)]. O
YEH,,, (S,T)

Theorem 3.6.5. The group H(S,T) = fs of characters of S is a boundary for the
algebra (1(S).

Proof, Clearly, ¢1(S) is a Banach subalgebra of ¢!}(I's). Let f € ¢}(S) and p =

Zf )8a; € €1(S) be a finite linear combination of functions d,,, a; € S. The

bpectral radius formula (1.6) yields

s [p(m)]| = Jim (/s = lm /e

meMetes) N N N
= sup [p(m)| = sup |[p(m,)| = sup [p(m)],
mEM,1(rg) pels Pm €H(S,T)

where p*™ = p* px - - - x p. Since the finite linear combinations of functions §,, a €
N~ ~ -~

S are £'(S)-dense in £1(S), their Gelfand transforms are uniformly dense on M1 (g)

in EAl(S), and therefore,  sup ’f(m)’ < sup |]?(m)| for any f € (1(9).
mEM 1) Pm€ ,T)

Hence, the group I's ~H (S, T) of characters of S is a closed boundary for the

algebra £1(S), as claimed. O

In fact, as the next corollary shows, H (S, T) is the smallest closed boundary
for £1(S), i.e. it is its Shilov boundary.
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Corollary 3.6.6. The group of characters H(S,T) = fg of S is homeomorphic to
the Shilov boundary 9¢*(S) of £(S).

Proof. Since, by Theorem 3.6.5 the group H(S,T) 2 I's is a boundary for £1(S),
then £1(S) = £1(S)|p, C C(I's). Note that for every g € I's the g-shift Ty: I's —
fg: X = Xg = X(g9)x generates an automorphism T, of 0 (S). Therefore,
Ty (1(S)) = £'(S), and T, (d(£'(S)) = A¢(S). This is impossible if ' (S) #
Is. 0

If w is an idempotent semicharacter of S, then Proposition 3.6.4 and Theorem

3.6.5 imply that sup ’f(m)’ < sup ’f(m)’ for every f € £1(9).
SDm,EHw(SJT) <pm€fs

3.7 Notes

A standard reference on topological groups is the classical book by Pontryagin [P4].
Results on functions and measures on topological groups can be found in many
books (e.g. [G1], [L4], [R5]). Bochner-Fejér’s operators were considered initially in
the almost periodic setting (e.g. [P2]). The semigroup algebras ¢1(S) of topological
semigroups are studied in [AS1, HZ, H2], among others.



Chapter 4

Shift-invariant algebras on
compact groups

In this chapter we introduce shift-invariant algebras, the main objects of this
book. These are uniform algebras on a compact connected group G, consisting
of continuous functions on G, whose spectrum is contained in a semigroup S of
the dual group G. If G is a subgroup of R, and S C R, then the maximal ideal
space of the corresponding shift-invariant algebra is the G-disc, or, big disc over
G. In this chapter we describe two important models of shift-invariant algebras,
namely, by the means of almost periodic functions on R, and by the means of H>°-
functions on the unit circle. The set of automorphisms, and the peak groups of
shift-invariant algebras are also characterized. Extensions on G-discs and groups
of several classical theorems of Complex Analysis, such as Rad4’s theorem for null-
sets and the Riemann theorem for removable singularities of analytic functions,
are stated and proved. It is shown that these extensions hold for some semigroups,
while in general they fail. In principle we state all results for general shift-invariant
algebras Ag, though they apply automatically to the particular cases of algebras
APg of almost periodic functions, and of HZ%-algebras. Asymptotically almost
periodic functions combine the properties of classical almost periodic functions on
R, and of continuous functions on R that vanish at infinity.

4.1 Algebras of S-functions on groups

Let G be a compact connected abelian group and let S* = {x%}q.es be a sub-
semigroup of the dual group @, containing the unit element y = 1. We will
assume that the index set S is provided with the additive operation, induced from
the multiplication in S*. In particular, we will assume that y*x® = x**? for ev-
ery a,b € S. Therefore, S becomes a semigroup isomorphic to S*. We suppose
that S -5 G i.e. that S* generates the dual group G. The group envelope
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I's =8 — 5= 85" —5% which we will denote in this section by I" instead of by
I's, in this case coincides with G. In the sequel we will not distinguish between S
and S* [resp. between I' and G], and will denote S* rather by S [resp. G by I'].
Since G separates the points of G, so does S*. If the group envelope I' = 5 — S of
S differs from G, then we could replace, right from the beginning, G by the group

I'; and the dual group G~G- by the dual I of the group I'.

Definition 4.1.1. Finite linear combinations over C of characters x* € G with
a € S are called S-polynomials on G. Continuous functions on G with sp (f) C S
are called S-functions on G.

Equivalently, f € C(G) is an S-function on G if and only if its Fourier
coefficients

= [ flo)x*(9)do (4.1)
/

are zero whenever a € I's \ S. The set of all S-functions on G we denote by
Ag. Obviously, any S-polynomial is an S-function on G. Theorem 3.3.2 yields the
following

Proposition 4.1.2. The algebra Ag of continuous S-functions on G coincides with
the algebra of uniform limits of S-polynomials on G.

As a consequence we see that Ag is a uniform algebra on the group G.

Example 4.1.3. (a) Algebras Ag of S-functions are natural generalizations of poly-
disc algebras A(T"), n € N. Actually, if G =T", I" = G= 7", and S = 7}, the
algebra Ag on G is exactly the polydisc algebra AZi = A(T") on T"™. Z;-functions
on T” are restrictions on T™ of usual analytic functions in n variables in the poly-
disc D, continuous up to the boundary T".

(b) For any a € S C R denote by ¢, € H*> the singular function ¢,(z) =
eta (1+2)/(1=2) on the unit disc D. Denote by HZ the Banach algebra on
D generated by the functions 1,(z), a € S, equipped by the sup-norm on D.
Clearly, H¥ C H* N C(D¢ \ {1}). Note that the fractional linear transforma-
tion ¢(z) =i (14 2)/(1 — z) maps the unit disc D conformally onto the extended
upper half plane C.. Moreover, e¥(?) = ¢t (1+2)/(1=2) anq (egp(z))a =
gla(l+2)/(1-2z) _ 1q(z) for every a € S. Hence, HZ is isometrically isomorphic
to the algebra Ag of S-functions on G = I

(c) The Riemann surface Ry.4 of the function Log(z), z € C, admits the
following parametrization: Rroy = {(r,0): 0 < r < 00, 6 € R}, i.e. Rpog &
(0,00) x R. The space Rroq = ([O,oo) X R)/({O} X R), which contains Ry as
a dense subset, admits the parametrization Rroy = {(7", 0):0<r<oo 0c¢€
R}, with the agreement that (0,60;) = (0,62) for every 61,02 € R. The mapping
(r,0) — Log(re?) = Inr + 6 is a continuous lifting of Log(z) on R e, Which
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maps Rpog homeomorphically onto C. Every natural power 2" of z can be lifted
on Rroq as 2"(r,0) = r"e?  The functions 2" can be extended on Rrog by
letting E"({O} X R)/({O} X ]R) = 0. Consider the portion Rree(D) of Rreg above
the closed unit disc D, i.e. Rpog(D) = {(r,0) € Rrog: r < 1}. Any function 2"
maps Rroq(D) continuously onto D. We can define also functions z% on Ry.4(D)
for every real number a > 0, namely, Z%(r,0) = 7% which map Rpe.(D)
continuously onto . Let S be an additive subsemigroup of R, containing 0, and
let G = Is. Clearly, the algebra generated by the functions 2%, a € S, on Rpog(D)
is isometrically isomorphic to the shift-invariant algebra Ag of S-functions on G.

(d) Let I' = Z* = 7Z x Z be the two-dimensional integer lattice in R2. The
group of characters of I' is the two-dimensional torus G = T2. For a fixed irrational
number 8 > 0 we set I'Y = {(n,m) € Z2: fn+m > 0} C R,. The uniform algebra
Agp on T? generated by the characters x%, a € I’ f is also a shift-invariant algebra,
which contains the bi-disc algebra (e.g. [T2]).

We recall that for any semigroup S, 0 € S C Ry the algebra APs(R) of

almost periodic S-functions on R is generated by the characters e_lat, a € S. Since

the correspondence e—tat x® extends to an isometric isomorphism between
the algebras APg(R) and Ag C C(b(R)), we obtain

Proposition 4.1.4. If G is a solenoidal group, and S is an additive subsemigroup of
I' =G C R, containing 0, then the algebra Ag of S-functions on G is isometrically
isomorphic to the algebra APs(R) of almost periodic S-functions on R.

Similarly, if S is a semigroup of R™ containing the origin, then the alge-
bra APs(R™) of almost periodic S-functions on R™ is generated by the charac-
ters el(Skm 1+ k2 + oo+ s’“”x")» (SkysSkys---»Sk,) € S. The correspondence
ei(sklxl + Sk T2+ Sk, Tn) X(Sklvskz*'“vskn) extends to an isometric iso-
morphism between the algebras APs(R™) and Ag C C(b(R)™). Therefore we have
the following

Proposition 4.1.5. Let G be a compact abelian group, whose dual group G is a
subgroup of R™, and let S be an additive subsemigroup of R™, containing the origin
(0,0,...,0), then the algebra As of S-functions on G is isometrically isomorphic
to the algebra APs(R™) of almost periodic S-functions on R™.

Example 4.1.6. (a) Let G = R? and S = R; x R,. The algebra APRi (R2) of

almost periodic Ri—functions on R? consists of continuous functions on R? that
can be approximated uniformly on R? by exponential polynomials of type

}: 1Sk, T Sk, T
Ak ko € ( 1t Sk, 2)a Sk1s Sko ER+~

These are precisely the analytic almost periodic functions in two real variables.

(b) If G = R? and S = R xRy, then the functions in the algebra APrxr, (R?)
of almost periodic R x R, -functions on R? are approximable uniformly on R? by
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exponential polynomials of type Z akhhei(sklxl + Sk, T2) with si, € R, sg, €

R, . These are precisely the almost periodic functions on R?, analytic in the second
variable xs.

(¢) Let G be a compact abelian group. Denote by I'; the dual group I" = G
equipped by some topology 7, so that I'; is a locally compact topological group,
and for which I is bijective to I'. Then C(G) = AP(I;). If S is a semigroup of
I', then the shift-invariant algebra Ag is isometrically isomorphic to the algebra
APg(I;) of almost periodic S-functions on I;.

We can begin the construction of the algebra Ag with the semigroup S,
instead of with G. Let S be a semigroup with cancellation law and 0, and let
I' = S — S be the group envelope of S. Unless otherwise indicated, in the sequel
we will assume that besides the identity I" has no elements of finite orders and is
equipped with the discrete topology. The dual group G = I" of I', is a compact
connected abelian group. By Pontryagin’s duality theorem, G = I'. Therefore,
every a € S generates a unique character x* = a* on G, and the semigroup S is
isomorphic to the semigroup S* = {a* = x*: a € S} C G. Note that if S = Ry,
then I' = Ry, and the group G = ]1/%:1 coincides with the Bohr compactification
b(R) of R.

Definition 4.1.7. A uniform algebra A on G is said to be shift-invariant if the
g-shifts fg, defined as fy(h) = f(gh), g € G, of every element f € A belong to A.

Any algebra of type Ag is shift-invariant. Indeed, since x§(h) = x*(hg) =
x*(h) x*(g), any g-shift x§ of a character X“ a € S, belongs to Ag, and so does the

g-shift P, of any S-polynomial P(h Z cex ™ (h). Since any S-function f € Ag

is uniformly approximable on G by S- polynomlals the g-shifts f; of S-functions
f also belong to Ag. Therefore, Ag is shift-invariant, as claimed. The converse is
also true. Namely

Proposition 4.1.8. A uniform algebra A on a compact group G is shift-invariant
on G if and only if A is an algebra of type Ag for some subsemigroup S C G.

Proof. By the preceding remark, we only need to prove the necessity. Let A be a
shift-invariant algebra on G, and let S be the semigroup in I" generated by the set
U sp (f). Definition 4.1.1 implies that A C Ag.

feA

We claim, conversely, that if f is a fixed function in A, then any character
x* € G witha € sp (f) belongs to A. Indeed, for any fixed a € sp (f) the function

Filg) = clv = / £y () X (h) do(h) (4.2)
G
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is uniformly approximable by its Riemann sums
10105180,

Each one of these Riemann sums is a function in g that belongs to A, since fy(h}) =
f(gh}) = fn:(g) € A. Therefore, f* € A. By

Fm>=/nm> /fgh do(h)

——/f >wmwwﬂm/ﬂmvadm=dvmx

G

we have that x* € A, as claimed. Hence for every a € S the corresponding char-
acter x® belongs to A. Proposition 4.1.2 implies that Ag C A. Consequently,
A= Ag. O

Any algebra APs(R) of almost periodic S-functions on R, where S is a semi-
group of R is invariant under R-shifts, i.e. the function fi(x) = f(x + t) belongs
to A for any f € A and t € R. Restricted to 7,(R) C G, the arguments from the
proof of Proposition 4.1.8 imply the following

Proposition 4.1.9. A uniform algebra A C AP(R) is invariant under R-shifts if
and only if A is an algebra of type APs(R) for some semigroup S C R.

4.2 The maximal ideal space of a shift invariant algebra

In this section we describe the maximal ideal spaces of shift-invariant algebras
on compact groups. Let S be a semigroup with cancellation law and 0, and let
I' = S — S be its group envelope. Denote by G the dual group of I

Theorem 4.2.1. The mazimal ideal space M 4 of the algebra Ag is homeomorphic
to the semigroup H(S) of semicharacters of S.

Proof. If m € M4, is a linear multiplicative functional on Ag, then the function
om(a) =m(x?), a € S, is a semicharacter on S. Indeed, ¢, (a + b) = m(x**?) =
m(xX*X") = ¢m(a) om (b), and also g (a)] = [m(x*)] < [x*| = 1.

Converbely, if go € H(S) is a semicharacter of S, then the function m.,:

My (Z cex® ) = Z crp(ag) is a linear multiplicative functional on the algebra
k=1

PS(G) of S-polynomials on G. Note that ¢ also generates a linear multiplicative

functional m{, on the algebra ¢'(S) D Ps(G). Let p(g chx . For any



122 Chapter 4. Shift-invariant algebras on compact groups

yelanda € S C I' we have x° X4 (m,) = my(x*) = x*(7), and therefore,
Z . Since G = I is a boundary of £1(S) by Theorem 3.6.5, for
k=
every p € PS(G) we have
1 ~ N
m =|m < max = max [p(m~)| =max (m
my(p)| = |m(p)] S p(y))| e [P(ms)| =max |m,(p)]

_£Z§|;Cw ay)| =  nax kZleX N =Ple@ = lIplas-

Consequently, ||m,|| < 1 on the dense subset Ps(G) of Ag. Hence, m, can be
extended by continuity from Pg(G) on its uniform closure Ag as a linear mul-
tiplicative functional. Therefore, the mapping m —— ¢,, is a bijection between
My, and H(S), and ¢ — m,, is its inverse mapping.

Let mq — m in the Gelfand topology of My, i.e. mo(f) — m(f) for
every f € Ag. Hence ¢, (a) = ma(x*) — m(x*) = pm(a) for every a € S, i.e.
©m, converges to ¢,, pointwise on S. Conversely, if ¢, (a) — @m(a) for every
a € S, then my(x*) — m(x%), and hence m(p) — m(p) for every S-polynomial
p. Since the set Ps(G) of S-polynomials is uniformly dense in Ag, one can see that
ma(f) — m(f) for every f € Ag. Consequently, M 4, is homeomorphic to the
semigroup H(S) equipped with pointwise convergence. (|

As a consequence from Theorem 4.2.1 and (3.10), we obtain

Mag = H(S) = | | Ho(S)x T, = | | H(supp (@), (0,1]) x [, (4.3)

w€Zlsg w€Ts

Theorem 4.2.2. The Shilov boundary 0Ag of the algebra Ag is homeomorphic to
the group G.

Proof. Since Ag C C(G), it is clear that G is a boundary for Ag. Suppose that 0Ag
is a proper subset of G. Let h € G\ 9Ag, and let g € dAg. Then h g~t0Ag is also a
boundary for Ag, since Ag is shift-invariant on G. Consequently, 0Ag N (h dAg) is
a boundary of Ag. Note that h € hg~'0Ag, while h ¢ 9As. Hence the boundary
0As N (hdAg) is a proper subset of 0Ag, in contradiction with its minimality
property. O

The Gelfand transform, f, of any element f € Ag is a continuous function on
Mg, and the Gelfand transform Ag = {f: f € Ag} of Ag is a uniform algebra
on My,. It is easy to show that a shift-invariant algebra Ag is antisymmetric if
and only if the group kernel Gg is trivial, i.e. if SN (=S) = {0} (cf. [AS1, T2]).
As Arens and Singer [AS1] have shown , Ag is a maximal algebra if and only if
Gs = {0}, SU(-S) = é, and the partial order generated by the semigroup S in
I' = G is Archimedean (cf. [AS1, G1]). In this case, ' C R and S = I'y. If I is
dense in R, then G = I is a solenoidal group. If I' is not dense in R, then it is
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isomorphic to Z, and G is isomorphic to the unit circle T. In this case we also have
G 7,5 C Zy,and therefore the elements of the algebra Ag can be approximated
uniformly on T by the usual polynomials. Hence they can be extended on the open
unit disc D as analytic functions, continuous up to the boundary. Therefore Ag is
isometrically isomorphic to the disc algebra A(D) and M4, = D.

In the sequel we will identify M 4, with H(S) without mention. Since H(S)
is a semigroup under pointwise multiplication (¢ ¢)(a) = ¢(a)¥(a), a € S, so is
the maximal ideal space M4, of Ag, and x* = 1 is its unit element.

Let P be a semigroup with S C P C I's. Since Ag C Ap, we may consider
that Ag C Ap C C(Ma4,). Since I's = G, the Gelfand transforms of the characters

X%, a € 8, separate the points of M,, and therefore, M4, C M4, while
0Ap = G. However, in general M4, # M.

If G is a compact group with G C R and I't = I'NRy, then Ar, is called
the G-disc algebra, or, the big disc algebra on G. The I'\-functions are called
also analytic functions on G, analytic 'y -functions on G, or, generalized analytic
functions in the sense of Arens-Singer on G. From (3.13) it follows that S =R} =
R N[0, 00), then

Mg, 2 HR;) = ([0,1] x G)/({0} x G) =[0,1] 0 G/{0} oG =D¢,  (4.4)

where G = b(R) is the Bohr compactification of R, i.e. Mg, is bijective with
the closed G-disc Dg. This bijection is materialized by the polar decomposition
mapping m —— @, = |©m|Xm —— 7 © g, where r is the corresponding real
number to || € H(R4,[0,1]) = [0,1], while g € G = Iy is the element in G
that corresponds to x,, € I 4. The topology near any point ¢ in H(Ry) agrees
with the topology near the corresponding point r ¢ g € D¢. Indeed, if ¢ € H(R,)
is such that ¢ # x{0}, then ¢ #0 on R,. Let rog, r > 0, and 74 ©ga be the points
corresponding to ¢ and ¢, in Dg. Clearly, v, — ¢ if and only if |pa| — |¢|,
and ¢ /|pal — @/|p| pointwise on Ry, i.e. if and only if r, — r and g, — g.
Likewise, ¢, — 01 = x° € H(Ry) if and only if |¢,] — 0 pointwise on
R4 \ {0}, i.e. if and only if r, — 0, wherefrom r, ¢ g, — w, the origin of Dg¢.
We have obtained the following

Proposition 4.2.3. Let G = b(R) be the Bohr compactification of R. The maximal
ideal space MAR+ of the G-disc algebra Ag, is homeomorphic to the G-disc Dg =
[0,1] ¢ G/{0} ¢ G.

A similar argument applies to any G-disc algebra Ar, with I' C R.

Theorem 4.2.4. Given a subgroup I' of Ry, the mazximal ideal space /\/IAF+ of the
G-disc algebra Ar, is homeomorphic to the G-disc Dg = [0,1]0 G/{0} o G, where
G=T.

Proof. Indeed, Proposition 3.5.12 yields MAF+ > H(I'y) = Dg. a
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If S is a semigroup of Ry, I' = S — 5, zaundG:f7 then D¢ :MAF+ C Mag

and 9A = G = I s, by one of the remarks following Theorem 4.2.2. However, in
general, M 4, does not necessarily coincide with Dg.

Example 4.2.5. Theorem 4.2.1 and Examples 3.5.10 and 3.5.14 yield:
Ma,, ) = H(Zy x ;) 2D, the closed bidisc in C2.

May, ) = HRy x Ry) 2 Dy, the closed b(R)-bi-disc.

X

M(A(F1)+X(F2)+><---><(I“n)+) = H((F1)+ X (I2)4 %+ X (Fn)-i-) = Dfl X Df2 X
Dfn’ where I; C R, ¢ =1,...,n are additive subgroups of R.

Mazyo,) E H(Z X Zy) = T x D, the solid torus in R3.
Mann,) = H(R x Ry) 2 b(R) x Dy(), the solid b(R)-torus.
* * 2
Mooy = HN X NU(0,0)) = (0,000 (D x D) = D°/(({0} x D) U
(D x {0})).

M(A(o,oo)x(o,oo)u(o,o)) = H((0,00) x (0,00) U (070)) 2 (w,w) U (]D)Z(]R))2
(Dy(r))?/ ({w} x Dy(ry) U (Dp(ry x {w})),

M (Azvo0.0) = H(Z x NU (0, O)) = D2, the closed T?-disc.

M(ARMOM)U(O,O)) = H(R x (0,00) U (0,0)) = Dy(g)2, the closed b(R)?-disc.
If 8 is an irrational number, then:

~ H(Z, +Z+B) 2 D", the closed bi-disc.

(A@, 12, p)

M(A<Z++Z;a> ~ H(Z, +7Z3) = T x D, the solid torus in R3.

The Gelfand transforms f of an element f € A, is continuous in the G-
disc D¢ = Ma,, , and A(Dg) = A\ﬁ = {f: f € Ar_} is a uniform algebra on
Dg. Clearly, f is a continuous extension of f on Dg. In particular, the Gelfand
transform of any x* € Iy is the function x¢(r ¢ g) = r%g(a), which maps D¢
into D. Every I'y-polynomial P(g) = chx’“" (g9), can be extended on D¢ by

k=1

n

P(rog) = Z kX (1 o g), where a, € I'y and rog € Dg. Since Iy -functions f on

k=1
G are uniform limits of I' -polynomials on the Shilov boundary dAr, = G, their
Gelfand transforms f are approximable by Gelfand transforms of I';-polynomials
P on D¢ with respect to the uniform norm || f|| = max |f(r <>g)| in C(Dg).
rogeDa
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Example 4.2.6. (a) The Gelfand transforms of the G-disc algebra A(Dy) =
111; (D¢) of analytic I'y-functions are natural generalizations of the disc algebra
A(D). Actually, with G = T and I’ = G = Z, the algebra A(D¢) coincides with the
Z-disc algebra A(Dr) = ZZ\+ = A(D). Indeed, in this case Dg = D, rog = re® is
the standard trigonometric form of z € C, and x"(rog) = x"(re') = r"ein? = 2n
for every n € Z,.. Therefore, analytic Z, -functions are standard analytic functions
in D continuous up to the boundary T. Similarly, A(Drz) = ﬁ@ xz.. is the bi-disc
algebra of analytic functions in two complex variables on the closed unit bi-disc
in C2.

(b) Let S be a semigroup in Ry. Since, as we saw in Example 4.1.3(b),
HZ = Ag, we have that Mpug = De.

(¢) The maximal ideal space of the algebra from Example 4.1.3(c), generated
by the functions 2%, a € S, on Rrog(D) is the G-disc D¢g. Consequently, the portion
of Rrog(D) above the closed unit disc D of Ry,4 can be embedded densely and
homeomorphically into the G-disc Dg.

(d) The algebra Ag from Example 4.1.3(d) can be obtained in a different
way. Consider the compact set I’ = {(21,22) € C?: |z1] <1, |21] = |22/} which
contains T2. The set I/ = D’ \ (T2 U {(0,0)}) is a three-dimensional manifold
with one-dimensional complex structure (i.e. a C'R-manifold). Let Zg be the set
of continuous functions on D’ which are C'R-functions on I (see [G13]). It can
be shown that the restriction of Zg on T? coincides with the algebra Ag. Since
D' is the space of maximal ideals of Ag, we have that D = Dr2, and the Gelfand
transform of Ag coincides with ﬁg.

(e) Let I' be a subgroup of Ry. The algebra AP, (R) of almost periodic
I'; -functions is isometrically isomorphic to the algebra Ap, of analytic functions
on b(R). Therefore, the maximal ideal space of AP, (R) is homeomorphic to the
closed b(R)-disc Dy ).

(f) Let S = R} C R™. The algebra AP,(R™) of analytic almost periodic
functions on R™ is isometrically isomorphic to the algebra ARi of analytic R} -
functions on the group b(R)™. Therefore, the maximal ideal space of the algebra
of analytic almost periodic functions in n variables is homeomorphic to the closed
b(R)-polydisc ID)Z(R).

(g) Let I; C R, i =1,...,n be additive subgroups of R, and S = (I'})4+ X
(F2)+ X - X (Fn)+ C Ri The algebra AP(F1)+><(F2)+><~~~><(F,L)+(Rn) of (F1)+ X
(I3)4 X -+ X (I)+-almost periodic functions on R™ is isometrically isomorphic to
the algebra A1), (1), x.--x (), of analytic functions on the group fl X fg Xoe e X
I, Therefore, the maximal ideal space of the algebra of (1) 4+ X (L) 4 XX (L) 4-
almost periodic functions in n variables is homeomorphic to the closed polydisc

Dfl Xsz X ~-~><Dfn.
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We recall that the strong hull [S]; of a semigroup S is the set of elements
a € G for which there is an mg € N such that mga € S. The weak hull [S],, of S is
the set of elements a € I's for which there is an m, € N such that na € S for every
n > myg (cf. Definition 3.4.9). Clearly, S C [S]w C [S]s C I'. Let S be a semigroup
of I, and suppose that P is an additive subsemigroup of I', that contains 0, and
is a subset of [S]s. Proposition 3.5.6 implies that every semicharacter ¢ € H(S)
can be extended uniquely on P as a semicharacter in H (P). Therefore, we have

Proposition 4.2.7. If S is a semigroup with cancellation law and 0, and P is a
subsemigroup of I' with S C P C [S]s C I', then Mp = Mg.

Proof. Since As C Ap, the restriction mapping r: H(P) — H(S): ¢ — |4
maps M4, = H(P) continuously into M4, = H(S). Since by Proposition 3.5.6
every semicharacter on S admits a unique semicharacter extension on P, 7 is a
bijection of H(P) onto H(S). O

Since S C [S]w C [S]s, Proposition 4.2.7 implies
Corollary 4.2.8. M4 = Ma, for every semigroup S C G.

Since, according to Corollary 4.2.8, Mag, = My = Ma
have the following

Corollary 4.2.9. Let S,P C G be two subsemigroups of G such that S — S =
P—P= G If[ } = [P]w, then Mag = Ma,.

Proposition 4.2.10. Let a € G \S, and Sy =S +Zsa C G. Then Muyg, = Mag
if and only if a € [S]w

ply = Map, we

Proof. We need to prove the necessity part only, since the sufficiency follows from
Corollary 4.2.8. Assume that Mag, = Mag for some a € G. Note that in this
case the element (—a) does not belong to S. Otherwise, the non-invertible function
X~ %in Ag will be invertible in Ag,, in contradiction with the assumption MAsa =
M. The same is true for all elements of type (—n)a, n € N. First we will show
that a € [S]s. Suppose, on the contrary, that NaNS = . We have S, = S+Z;a =
JoUZ4a with J, = S\ {0} +Na, which is a semigroup ideal in S,. The assumption
Na NS = @ implies that J, N (Z1a) = @. The functions

(c) = 1 when ¢ € Z4a,
TEI=1 0 when ¢ € J,,

and
when ¢ =0,

1
0 when ce S, \ {0},

are two different elements in H(S,) = H(S,,D) with one and the same restriction
on S, namely,
when ¢ = 0,
{ when ¢ € S\ {0}.
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Because of

X(m1) = v1(c) = v2(c) = X°(mg) for all ¢ € S|
for the linear multiplicative functionals m; € M4, corresponding to v, ¢ =
1,2, we have my = mg. Since y1 # 2 on S,, we must have X%(m1) = v1(a)
Y2(a) = X*(m2). Consequently, m; # mq as elements of M4, contradicting the
assumption that Mg = M. This completes the proof that Na N S # O, i.e.
that a € [S9]s, as claimed.

Suppose that a & [S],, for some a € G. Fix a prime number n. Proposition
3.4.11 implies that n divides every m € N with m > n and ma € S. Define the set

Sl:{bECA}':b—l—c:kaforsomecESandkeN}.

Note that S; = (N (na) — S) N.S is a semigroup of S containing 0. Its complement
S\ 51 is a semigroup ideal of S. We claim that S\ S1 # @. Let u,v € S be such
that a = u — v. If we assume that v € Sp, then by definition there is a w € S with
v+w=pa, pe N.Thenu+w=a+v+w=(p+1)a,ie u € S;. According
to Proposition 3.4.11 there is an N € N such that Ma = (rp +s(p+ 1)) a =
r(v+w)+s(u+w)e S for every M > N, in contradiction with the supposed
a & [S]w. Hence S\ S1 # @, as claimed.

One can see that S, \ (Na + 57) is a semigroup ideal in S, and if n does not
divide ¢ > n, then (ga + S1) NS = @. Note that N (na) NS C S;. The function

(c) = 1  whence 5y,
=90 when c € S\ 94

belongs to H(S) and can be extended to an element of H(S,) by

(0) = Yo(c) when ¢ € S,
BT (2kmi/n when c=ka, kK €N.

Also the function

| vw(e) whencesS,
74(6)_{ 1 when ¢ = ka, k € N

can be extended as a semicharacter on S,. Now =3 and =4 are two different elements
in H(S,), whose restrictions on S are equal to . This is impossible since H(S,) =
My, = Mag = H(S). Consequently, a € [S]w. O

Corollary 4.2.11. Under the assumptions of Proposition 4.2.10, Mag, = Ma, if
and only if [S]w = [Plw-

Proof. If Mg = Ma,, then a € [S],, for every a € P\ S by Proposition 4.2.10.
Consequently, P C [S],, and hence [P], C [S]w. The opposite inclusion follows
immediately from Corollary 4.2.9. ]
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A uniform algebra A is said to be analytic on its maximal ideal space M 4
if any function f € A that vanishes on an open subset of M4 \ OA vanishes
identically on M 4. In this section we will assume that all algebras are analytic.
Let G be a compact abelian group and let S be a generating subsemigroup of the
dual group I' = G. It is easy to see that if a shift-invariant algebra Ag on G is
analytic, then S does not contain subgroups other than {0}, i.e. SN (=S) = {0}.

Proposition 4.2.12. Let S C P C G be two subsemigroups of@ such that S—S = G
and Ma, = Mua,. If the algebra Ag, is analytic for some a € P\ S, then
Mag = My, , and therefore, a € [S]w, by Proposition 4.2.10.

Proof. Clearly Mag; C Mag, for any a € P\ S, since X* is continuous on My, =
M ag. Suppose that Mg, # Mg, for some a € P\ S and let a = ¢ — d for some
¢,d € S. The natural inclusions Ag 4+ Ag, < Ap generate adjoint mappings
Ma, — Mag, SN M, on the respective maximal ideal spaces. Note that
by Mag = Ma,, we have that i*(Mag, ) = Mag. We claim that the mapping
i* : Mag, — Mag is injective. Observe that the restriction of i* on M, C
M g, is the identity mapping on M 4. Assume that for some mg € M4, the set
(i*)~1(mg) contains a point, say m, different from mg. Since mo(X®) = m1(X?)
for every b € S, then necessarily mo(X*) # m1(x®). Thus

mo(X*H) = mo(X°%) = ma(X°) = ma (x*),

and therefore,

mo(X*) mo(X?) = mo(X°) = ma(X*)ma(X?) = m1(X*) mo(X%).

Hence mo(X?) = mo(X°) = 0, since mo(X?) # m1(X?), i.e. mp € Null (¥°). Because
of (i*)7'(Null(x%)) = Nullg,(X°) = {m € Mua, : m(X¢) = 0}, i* maps the
set Mg, \ Nullg, (X°) homeomorphically onto the set M\ Null (X°), i.e. the
restriction of 7* on the set Mg \Nullg, (X°) is the identity mapping. By the
analyticity of S,, Mag \Nullg, (X°) is dense in Mg . Let mq — m1, mq €
My, \Nullg, (X°) = Mag\Null (x°). If we choose a convergent subsequence m,, €
M4 \Null (X¢), then my, — m, contrary to ma, = (i*)(Ma,) — (i*)(m1) =
mo 75 my. O

If I' ¢ R, and [S]s = Iy, then Proposition 4.2.7 implies that M4, =
MAr+ 2~ D¢, the G-disc over G = I'. We have obtained the following corona
type results.

Corollary 4.2.13. Let ' CR, G = I, and let S be a semigroup of R with [S]s =
I'y. Then:

(a) Ma, = Dg, thus the shift-invariant algebra As does not have a Cy-corona.
Namely, the mapping j, densely embeds the upper half-plane Cy into its max-
imal ideal space Mag.
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(b) The algebra APs(R) of almost periodic S-functions on R does not have a
C4-corona. Namely, the mapping j, densely embeds the upper half-plane C
into its mazimal ideal space M opg(r)-

(c) The algebra HZ® does not have o C4-corona. Namely, 7.(C4) is dense in the
mazimal ideal space Mprg .

Corollary 4.2.14. Let It C R, @ = 1,...,n be dense additive subgroups of R,
I'=I xIox---xITyand G=11 X Iy x---x I,. If S is a semigroup of R™
with [S]s = (I)+ X (I2)+ X -+ x (Iy)+, then:

(a) The shift-invariant algebra Ag does not have a C’-coronaMay =2 Dp %

]D)f X - X ID)A Namely, the mapping (( ),51(2),...,}( )) densely embeds

the Cartesian product C% into its mazimal ideal space M 4.

(b) The algebra APs(R) of almost periodic S—functions on R™ does not have
a C% -corona. Namely, the mapping Gz(l),}z(z), . ,j ) densely embeds C}
into its mazimal ideal space M 4pg(rn)-

Corollary 4.2.15. If S is a semigroup in RE with [S}]}fk = R", then the mazimal
ideal space M gopgrry of the algebra APS(Rk) of almost periodic S-functions on

R¥ is homeomorphic to the b(R)-polydisc ID)b(R Myp  (RY) = Mup, (rF)-

Corollary 4.2.14 implies that in the setting of Corollary 4.2.15 the Cartesian
product Cy x C4 x --- x C; C C* can be embedded densely into the closed b(R)-
polydisc DZ(R) ~ Mupgwry = Myp, ey Therefore, the algebra APs(RF) does
not have a (C, )*-corona.

The third part of Corollary 4.2.13 implies that the algebra HZ does not
have a D-corona either. Consider the mapping 7: My~ — D defined by 7(¢) =
o(id) € D. Tt is easy to see that 7 is a bijection on the set D = 7 1(D) C M.
Therefore, D and D are homeomorphic sets. Since HZ® C H°, there is a mapping
st Mpe — Mpyg so that mg o~ ! is the standard embedding of D into Mpg.
If o(z) =i(142)/(1 —2), then rgon™! = j,00: D — Mg, and therefore,
ms o w1 maps D densely into Mpg. By Corollary 4.2.13(c) it follows that Hg®
does not have a D-corona, as claimed.

Theorem 4.2.16. If G is a solenoidal group, and S is an additive subsemigroup
of I'y C Ry that contains 0 and generates I' = G, then there is a continuous
mapping from My onto the closed G-disc Dg.

Proof. The maximal ideal space of the algebra Hg° is the G-disc D¢g. Since HZ® =
As C Ap, = Hp: C H®™, the restriction mapping r: m — m|pge maps My
into Mpge = May = Dg. If ¢, is the evaluation functional on H*® at some
point z € D, then r(p,) € Dg. Hence, r(Mpg~) D Dg. Since DE = C4 is dense
in the G-disc Dg, and 7(Mpgs) is closed in Dg, then "(Mpg=) C Dg too, i.e.
’I“(MHoo) = Dg. U
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4.3 Automorphisms of shift-invariant algebras

The study of automorphisms of a uniform algebra is of considerable importance for
the algebra. In this section we describe automorphisms of shift-invariant algebras
on compact groups.

Let G be a compact abelian group and let .S be a subsemigroup generating its
dual group G, containing the unit element x° = 1, and such that SN (-S) = {0}.
Hence, s = S-S5 = é, thus, S separates the points of G, and S contains no
non-trivial subgroups. Therefore, the shift-invariant algebra Ag is antisymmetric.

An automorphism of an algebra A is any isometric isomorphism @ of A onto
itself. The adjoint mapping ¢* of @ defined by (@*(m)) (f)= m(@(f)), is a home-
omorphism of the maximal ideal space M 4 onto itself.

For example, adjoint mappings @* of automorphisms @ of the disc algebra
A(D) = Az, are Mdobius transformations, i.e.

z — Z
»*(z) = C ZOOZ, IC] =1, |z0] < 1.

1—

Note that if the origin 0 is a fixed point of a Mdbius transformation &*, then
&*(z) = Cz for some constant C' with |C| = 1. As the following lemma shows, the
same fact holds for automorphisms of the subalgebra Ay(D) = {f € A(D): f'(0) =
O} of the disc algebra A(D). It is easy to check that if a Mobius transformation
U(z) = Clz _ZZOZ belongs to Ag(D), i.e. if ¥'(0) = 0, then zo = 0, thus ¥(z) = C=z.
— 20

Observe, that Ag(D) = Ag, where S is the subsemigroup Z; \{1} = {0,2,3,4,...}
of Z.

Lemma 4.3.1. The adjoint mapping of an automorphism of the algebra Ayg(D) =
{f € AD): f(0) =0} fizes the origin.

Proof. If & : Ap(D) — Ap(D) is an automorphism, then its adjoint &* is a
homeomorphism of the unit disc D onto itself, and

[(@*(2)) = (B(f))(2) for any ¢ € Ag(DD). (4.5)

Moreover, @* is an analytic function of the unit disc D onto itself, i.e. &* is a Mobius
transformation. Applied to the function f(z) = 22, (4.5) implies (®(f))(z) =

f(®*(2)) = (@*(z))2 = (9%)2(2), i.e. B(f) = (9*)2. Therefore, (¥*)? € Ao(D),
and hence ((@*)2)/(0) = 0. Consequently, 2¢*(0)($*)'(0) = 0, thus &*(0) = 0, or
(@*)'(0) = 0. In the second case ¢*(z) = Cz, and therefore, $*(0) = 0 too. O

Observe that the adjoint mapping of any automorphism @ of a shift-invariant
algebra Ag on a group G maps the maximal ideal space M 4, homeomorphically
onto itself, and maps idempotent semicharacters of S to idempotent semicharacters
of S. Indeed, if¢p € Tg C H(S) = M4, and my, € M 44 is the corresponding linear
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multiplicative functional on Ag, then for any a € S we have ((@*(rnw))(xa))2 =

2 * ay) * 2
(My(P(x*)))" = (my)?(P(x*)) = my (P(x?)) = (P*(my)) (X), Le. (P*(my))” =
&*(my), thus the semicharacter of S corresponding to $*(my) is idempotent.

Hence, &* maps Zg onto itself.

An automorphism @ of Ag is said to be inner, if there is a 7 € Hom (S, 5)
and an element gy € G such that &(x*) = x%(go) X" for every x* € S. Arens
and Singer [AS1] have shown that in the case when G is a solenoidal group and S
is a semigroup in R with SU(=S) = G , then every automorphism ¢ of the algebra
Ag is inner.

Example 4.3.2. Not every automorphism & of the disc algebra A(DD) is inner. How-
ever, any automorphism ¢ whose adjoint fixes the origin, i.e. for which &*(z) =
Cz, |C| = 1 is inner. Indeed, for every z € D we have (D(f))(z) = f(®*(2)) =
f(Cz). If X" € Zy is the function x"(z) = 2", n > 0, then (¢(x™))(z) =
(@*(z))n = (Cz)™ = C"x"(#), hence &(x™) = C"x" = x"(C)x", i.e. ¢ is an
inner automorphism, since C € T.

If the group envelope I's of S is dense in R, then G is a solenoidal group,

and the algebra Ag is a subalgebra of the fg—disc algebra A(ry), on the group

G = fg. Since ['s = CA?, the characters x*, a € S, separate the points of D¢, and
therefore, Dg C M4, and 0A = G. Let z = ¢ 4+ iy € C4. For any a € S the
mapping a — e~ Wy (jl (x)) is a semicharacter of S, where j, is the standard
embedding of R into G. Denote by m; ) its corresponding linear multiplicative
functional on Ag. There arises a mapping 31: Cr — Mug 1 2+ 1y = My y)-
One can show that Z is an embedding of C; into My,. For any a € S we
have QQGZ(Z» = QQ(EZ(‘% + Zy)) =X (m(m,y)) = M(z,y) (Xa) = e_ayXa(jZ(x)) =
e~ yelar — cila(z +1iy) — 1% je. any x@ € S can be extended analytically
on the range 51(C+). Consequently, for any f € Ag the analytic almost periodic
function ﬂjz((c” is an analytic extension of f on C,. Note that e # 0 on }Z(CQ,

i.e. the maximal ideals of Ag on which x@ vanishes are outside j,(C.).

Theorem 4.3.3. If G is a group with GcC R, and Ag is a shift-invariant algebra

on G with I's = G, then either Ag = A(D), or every automorphism of the algebra
Ag is inner.

Proof. If the group I's generated by S is not dense in R, then Ag is a subalgebra of
the disc algebra A(D). If we assume that Ag differs from A(D), then, as it is easy
to see, 1 ¢ S, thus Ag C Ap(D). In the same way as for Ag(ID) one can see that
in this case any automorphism is a composition operator generated by a Mdbius
transformation that fixes the origin, thus it is an inner automorphism.

If the group envelope I's of S is dense in R, then the algebra Ag is a subal-
gebra of the I's-disc algebra A .- Let @ be an automorphism of Ag onto itself. By
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the remark preceding Theorem 4.3. 3 the function X* does not vanish on 51(C+)
M, for any a € S. We claim that 915( @) does not vanish on j,(Cy.) either. Indeed,
if m € Null (B(x7)) C Mag, then 0 = m(@(x*)) = (& (m)) (x*) = X*(@*(m)),
i.e. ®*(m) ¢ j,(C1). On the other hand, Null (#*(m)) = {a € S: (@ ( ) (x*) =
O} is a semigroup ideal in .S. Consider the function

(b) = 0  when X € Null (¢*(m)),
YT 1 when X’ € S\ Null (¢*(m)).

Clearly, v € Zg, and y®*(m) = &*(m). Thus (¥*)~!(v) is a non-trivial idem-
potent semicharacter of S, and (($*)7'(v)) m = m. Hence, om(a) = m(x*) =
(@)™ (7)) (x*) m(x*) is a non-invertible semicharacter on S, thus Null (¢,,) #
D, ie. X (om) = om(a) = 0 for some a € S. Therefore, m ¢ j,(Cy) by the
remark before Theorem 4.3.3. We have obtained that !15( @) £ 0 on 7,(Cq), as
claimed. Consequently, the bounded analytic function !15( 2)(z) does not have ze-
ros in C. Moreover, |#(x*)| = 1 on j,(R). Indeed, |(®(x*))(9)| = [x*(2*(9))| =1
for every g € G, since |x?| = 1, and &*(G) = G, because on G = JAg. By Besi-
covitch’s theorem [B], @(XQ)GZ(Z)) = P(x*)(z) = Ce'¥*% = C)/(;GZ(Z)), where
s>0, CeC, |C]=1.Hence, C = x*(go) for some gg € G. As it it is easy to see,
s € S, and the mapping 7: § — S: x* — x* is a homomorphism. O

4.4 p-groups and peak groups of shift-invariant algebras

In this section we give conditions for a subgroup of the carrier group of a shift-
invariant algebra to be a peak set or a p-set for the algebra.

Let A C C(X) be a uniform algebra on a compact set X. Recall that a closed
set K in X is a peak set (for A), if there is a function f € A, such that f|x =1,
and | f(m)| < 1 whenever m € M4\ K. Intersections of peak sets are called p-sets.

Let G be a connected compact abelian group and let S be a semigroup that
contains 0 and generates the dual group G. Here we give necessary and sufficient
conditions for a closed subgroup H of G to be a peak set for the algebra Ag, i.e.
to be a p-group for Ag.

Example 4.4.1. The subgroup H = {(z1,22) € T?: 21 = 22} of the torus T? is not
a peak set for the bi-disc algebra A(T?) =2 Azz . Indeed, assume, on the contrary,
that H is a peak set, and let f € A(T?) peak on H,ie. fl—zy = f(2,2) =1,
while ’ f z1, 22)’ < 1 whenever z; # z, where f is the analytic extension of f on
the bi-disc D’ Clearly, the function v(z) = f(z, z) = f|H is analytic in z € D. By
v(z) =1 on T we see that v(z) = 1 on D, and in particular, f(0,0) =v(0) = 1.
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Since A(T?) is shift-invariant on T?, the function

F(u1,uz) = / f(zmz, Zuz) dZ:/f(21u1722u2)d0(21722)
|z|=1 H

belongs to A(T?). The function w(z) = f(ulz,ugz) is analytic in z € D, and

therefore

w(z) n

dz =w(0) = f(0,0) =v(0) =1

F(ul,u2) = -

|z|=1

for every (u1,us) € T2. This is impossible, since if (uy,uz) € T2\ H, then

’F(ul,u2)| < / ’f(zul,zu2)| do(z1,22) < 1.
H

Consequently, there are no functions in A(T?) that peak on H, and hence H is
not a peak group for A(T?).

If Ag is a shift-invariant algebra on G, then every g € G is a p-point for Ag.
Indeed, {g} = m {Ker xXY:x%g9)=1,a€ S}, since the characters x* separate
the points of M . For every a € S the kernel Ker (%) = {g € Mag: X*(g9) = 1}

is a peak set for Ag, since the function h = (1 4+ x*)/2 € Ag is identically equal
to 1 exactly on Ker (Y*) C My,.

If g € G is a peak point for the shift-invariant algebra Ag on G, so is any
point go € G. Indeed, if f € Ag, S C Ry, is a peaking function at g for Ag,
then fgalg(h) = f(g; *gh) peaks at go. Therefore, peak points for Ag are either
all points in G, or none of them. For instance, if the group I" is countable, then
1 is a peak point for Ag. Indeed, let {x® };cn be an enumeration of S. Then the
function

= 1
F@) =) 5 x"(9)

=1

belongs to Ag, and its Gelfand transform peaks at 4, i.e. ]?(z) =1, while ’]?(rog)| <
1 at any other point 7 ¢ g € D¢g. Hence, if S is countable, or, more generally, if G
is a metrizable group, every point of G is a peak point for Ag.

If K C G, we denote by K+ = {xy € G: x|[x =1} = {x € G: Ker(x) D K}
the orthogonal set of K. Let H be a closed subgroup of G, and let 7gy: G — G/H
be the natural projection from G onto the quotient group G/H. We recall that

a natural isomorphism from the dual group (G/H)™ to the set H- = {x € G:
xle =1} = {x € G: Ker (x) D H} can be obtained as follows. Observe that
every x € H' generates a character ¥ € (G/H)", defined as )Z(WH(g)) = x(9).
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Clearly, x — X is an isomorphism of H+ onto (G/H)", and its inverse is the
mapping v —— yony: (G/H) — H*.

Consider the semigroup Hy = H+ NS = {x € S: x|g = 1}, which is
isomorphic to the subsemigroup Hg = {X: x € Hg} of the group (G/H)". The
subalgebra A HE of Ag generated by Hg is isometrically isomorphic to the shift-
invariant algebra Az L on the quotient group G/H = 7y (G). Note that, in general,
the set Hg does not separate the H-cosets of G. For instance, in the case of the
group H = { 21,22 e D2: 2 = 22} C T2, considered in Example 4.4.1, and
S =72, the set H: 7 = = {1} clearly does not separate the H-cosets of TZ.

Lemma 4.4.2. A closed group H C G is a peak set [resp. a p-set] for the algebra
As if and only if the unit g (H) = wp (1) of the group G/H = 7wy (G) is a peak
point [resp. a p-point] for Aﬁ;'

Proof. Let my (1) be a peak point for the algebra Aﬁs“ and let f € Aﬁé be
such that ]? peaks on 7y (z). Then ]?o my is a function in 21\5 that peaks on
H=n4 (ru() = T (ru(H)).

Conversely, let H be a peak set for Ag, and let f € Ag be such that f peaks
on H, namely, f\H = 1, while |f | < 1 for m € Ma, \ H. Since Ag is shift-

invariant on G, the function F(g) = /f(hg) do(h) also belongs to Ag, where o is

H
the Haar measure on H. The Gelfand transform
F(m) = [ Fm) doh)
H

of F' is constant on every H-coset of M 4., and |ﬁ(m)| < / |fh(m)| do(h) < 1 for

H
any m € My, \ H. Therefore, F': 7TH( ) — F(g) is a well-defined continuous
function on MAAL, which belongs to AHL’ and peaks on 7y (1) € G/H. Similar

arguments apply to p-sets. O

Proposition 4.4.3. A closed group H C G is a p-set for Ag if and only if the set
Hg separates the points of G/H. If the quotient group G/H is metrizable, the
same condition is necessary and sufficient for H to be a peak set for Ag.

Proof. If the set ffé separates the points of G/H, so does the algebra Aﬁi’
associated with H& g . Since the Shilov boundary of Az A is homeomorphic to the
group G/H = wg(G), then (1) € 7y (G) is a p- pomt for AHJ-’ by the remark

following Example 4.4.1. Hence, by Lemma 4.4.2, H is a p-set for Ag. Conversely,
if the set H § does not separate the points of G/H, neither does Ag . Therefore,
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g (2) is not a p-point for Aﬁé' Consequently, H is not a p-set for Ag, by Lemma

4.4.2. In the case when G/H is metrizable, similar arguments apply for peak
sets. ]

Observe that the algebra A(T?) in Example 4.4.1 does not contradict Propo-
sition 4.4.3, since the set H} = {1} clearly does not separate the points of the

i
group T?/H = T.

Theorem 4.4.4. If G is a compact abelian group, H is a closed subgroup of G and
S is a generating subsemigroup of the dual group G, then the following conditions
are equivalent.

(i) H is a p-set for Ag.

(ii) The semigroup ﬁ§ separates the points of G/H = 7 (G), i.e. H& separates
the H-cosets of G.

(iii) The dual group (G/H)" coincides with the group envelope FE% C (G/HY of

(iv) H coincides with the group (Hg)* m Ker (x) = {g € G: x(g) =

xeHZ
1 for all x € Hé-}

If, in addition, G/H is a metrizable group, then the above conditions are equivalent
to

(v) H is a peak set for Ag.

Proof. The equivalence of (i), (ii), and (iii) is already shown in Proposition 4.4.3. If
the semigroup H & separates the points of G/H, so does its group envelope 'z s C
(G/ H)". By Pontryagin’s duality theorem both groups coincide. Conversely, if

= (G/H), then I' L separates the points of G/H. Assume that Hs does
not separate the points of G/H. Then there is a 7 (g) € ma(G) \ mu(2) such
that X*(7u(g)) = 1 for all a € S. Let ¥ € Fﬁé be such that X (7w (g)) # 1.
Since, clearly, y € S, then y = x?/x? for some a,b € S. Therefore, x* (WH(g)) %

x? (7TH (g))7 in contradiction with the property x* (7TH (g)) =1 for all a € S. This
proves that (iii) and (iv) are equivalent.

If HS generates the dual group (G/H)", then (Hg ) = {g € G: yorp(g) =1
forally € (G/H)} =my (1) = H.1If, on the other hand, FHé is a proper subgroup
of (G/H)", then the group (Hg)* = {g € G:vompu(g) = Lforally € Fﬁé}

contains properly the group {g €G:yomy(g)=1forallye (G/H)A} which is
isomorphic to H. This proves that (iv) and (v) are equivalent. O
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Analogous results hold for peak subsets of G relative to Ag. Let X be a
compact set, and A C C'(X) be a uniform algebra on X, which does not necessarily
coincide with M 4. A closed set K in X is called a peak subset of X, relative to
A, if there is a function f € A, such that f|K = 1, and ’f(a:)| < 1 whenever
x € X\ K. Intersections of peak subsets of X for A are called p-subsets of X
relative to A. Clearly, peak sets and p-sets for A are peak subsets and p-subsets of
M 4 relative to A correspondingly.

Example 4.4.5. If a € S, then the kernel Ker (x*) = {g €G:x(g) = 1} is a peak
subset of G relative to Ag. Indeed, the function h = (1+x%)/2 € AS is identically
equal to 1 exactly on Ker (x*) C G. However, kernels of characters x*, a € S, are
not always peak sets relative to Ag.

By using similar arguments, one can obtain results similar to the above for
peak subsets of G, relative to Ag.

Proposition 4.4.6. A closed group H C G is a p-subset of G relative to Ag if and
only if the unit mg (1) of the group G/H = g (QG) is a p-point of G/H relative to
Aﬁé' If G/H is a metrizable group, then G/H = wy(G) is a peak point of G/H
relative to Aﬁé

Theorem 4.4.7. If G is a compact abelian group, H 1is a closed subgroup of G and

S is a generating subsemigroup of the dual group G, then the following statements
are equivalent.

(i) H is a p-subset of G relative to Ag.

ii) The semigroup H& separates the points of G/H = ng(QG), i.e. HE separates
g S 5
the H-cosets of G.

(iii) The dual group (G/H)" coincides with the group envelope I’ s C (G/H) o
(iv) H coincides with the group (Hg)* m Ker(x) = g e G: x(g) =

xX€EHZE
1 for all x € Hé}

If, in addition, G/H is a metrizable group, then the above conditions are equivalent
to

(v) H is a peak subset of G relative to Ag.

Denote by @(S) the class of all p-groups for Ag, i.e. closed subgroups of G
that are p-subsets of G relative to Ag.

Proposition 4.4.8. If H € p(S), then H = m Ker (x%).
X*€HZ
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Proof. Note that the point 7 (2) belongs to 7y (G) = G/H, while the set I?é-
separates the points of 7 (G) by Theorem 4 44. Conbequently, mg(H)=mg() =

ﬂ Ker (x*). Therefore, H —7TH1 7TH ﬂ Ker (x*), as claimed. O
X® EHJ' x*€HF

Observe that if § = G, then Ag = Az = C(G), and Hé separates the points
of G/H, since Hé = H+ = (G/H)" for any subgroup H C G. Theorem 4.4.4

yields that H is a p-set for Az. Hence, p(é) is the class of all closed subgroups of
G.

We recall that the weak hull [S],, of S is the set of elements a € I's for which
there is an m, € N such that na € S for all n > m,. S is weakly enhanced if
[S]w = S, i.e. if S coincides with its weak hull. (cf. Definition 3.4.9).

Proposition 4.4.9. o(S5) = p([S]w) for any semigroup S C G.

Proof. Clearly, As C Ajg, since S C [S]y, and therefore, p(S) C p([S}u,). Con-
versely, if H ¢ ©(S), then, by Theorem 4.4.4, the set I?é- does not separate
the points of 7wy (G). Hence, there is a g € G such that 7y (g) # 7w (z), and
X* (7TH( )) =1 for all x* € H§ If a € H[S] then there is an m, € N such that
na € S for all n > m,. Therefore x"*(g) = X"* (7 (g)) =1 for any n > m,. This
can happen only if x* (WH(g)) =1=x" (’/TH(’L)> Consequently, I?[é]w does not
separate the points of 7 (G), i.e. H € p([S]w). Hence, p(S) D 9([S]w). O

Theorem 4.4.10. Let S be a weakly enhanced semigroup of I'. All closed subgroups
of G are p-subsets of G relative to Ag if and only if G = S U (=95). If G is
metrizable, the same result holds for peak subsets of G relative to Ag.

Proof. Suppose that G= SU(—S) and let H be a closed subgroup of G. The group
HZ separates the points of G/H, since Hg = H({S) = Héu(fs) = Hé = (G/H)"
Therefore, H € p(S) by Proposition 4.4.3.

Conversely, let every closed subgroup H of G be a p-subset of G relative to

As. Hence, Ker (x*) € p(S) for any a € I'\ S, and Ker (x*) = m Ker (x%) by
xte (Ker (X“)):

Proposition 4.4.8. Denote K = (Ker (X“)); C S. Lemmas 3.1.8 and 3.1.7 imply
that I'x = Za, while x* ¢ K. Therefore there are m,n € Z with m > n and n
not a divisor of m, so that na and ma belong to the set {a: x* € K} C S. Hence
rn+ sm = 1 for some r,s € Z. If m > 0 and n < 0 (or vice versa), then r,s € N
and hence a = (rn + sm)a = r(na) + s(ma) € S, contrary to the choice of a.
If n,m € Z4, then a € [S]y, = S by Proposition 3.4.11, while if n,m € Z_, then
(—n)(—a) and (—m)(—a) both belong to —S, where —n, —m € Z,. Proposition
3.4.11 implies again that —a € [S], = S, i.e. a € (=95). O

Example 4.4.11. Let G = T?2. Consider the following semigroups of I" = G~7%
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(i) 51 = {(m,n) € Z>: m € Z, n > 0} U{(m,n) € Z*: m >0, n > 0} =
(Z X N) U (Z+ X Z+)

(i) So = {(m,n) € Z>: m € Z, n > 0} U{(m,n) € Z*>: m < 0, n > 0} =
(Z xN)U ((=Z4) x Z4.).

(iii) S3 = {(m,n) €7 m€eZ n< O}U{(m,n) €Z>>m>0,n< O} =

(iv) S4 = {(m,n) € Z*>: m € Z, n < 0} U {(m,n) € Z>: m < 0, n < 0} =
(Z x (=N) U ((—Z4) X (~4)).

It is easy to see that S; U (—S;) = Z% = G for any i = 1,2,3,4. By Theorem
4.4.14 all closed subgroups of T? are peak groups relative to the algebras Asg,,
1=1,2,3,4.

Example 4.4.12. Let G = T?, so that I = Z2. Given a fixed irrational number 3 >
0, consider the semigroup I'? = {(n,m) € Z*: fn+m >0} from Example 4.1.3,
and the associated algebra Az on T? generated by Ff. Here again F_EU(—F_E) ~ 72,
and by Theorem 4.4.14 all closed subgroups of T? are peak groups relative to the
algebra Ag.

Example 4.4.13. Let G = T?, I' = Z?, and S = Z3 = {(m,n): n > 0, m > 0}.
For a fixed k € Z consider the semigroup Gj, = {(z1,2}): |2| = 1} C A(T?) and
its corresponding algebra Ag, . If k < 0, the function (1 + zl_kZQ)/2 belongs to the
algebra Azi’ and peaks on G}. Hence, G}, is a peak subset of T? relative to the
algebra AZi .If k>0, as in Example 4.4.1 one can see that every character zJ'z5"
that is identically equal to 1 on Gy, is identically equal to 1 on T?. Therefore, the
set (Gk)i2+ = {1} does not separate the points of T?/G}, and consequently, Gy, is
not a p-group, nor a peak group for AZz+ .

Theorem 4.4.14. Let S and Sy be two weakly enhanced semigroups of@ containing
0. Then p(S) = p(S1) if and only if S U (=S) = 51 U (=51).

Proof. If SU (=S) = S; U (—5S1), then Hg = Hé_u(—s) = Hé_lu(—sl) = Hyg, for
every subgroup H C G. Therefore, the points of G/H are separated by Hg if and
only if they are separated by H§1, thus H € p(S) if and ounly if H € p(S1), by
Proposition 4.4.3.

Conversely, assume that ©(S) = (S1). Since Ker (x*) € p(S) = p(51) for

any a € S, we have that Ker (y*) = m Ker (x%) by Proposition 4.4.8. As
xPe(Ker (x*)4,

in the proof of Theorem 4.4.14 we see that a € Sy, or a € (—51). Therefore,

S C S1U(=51). Similarly, (=S) C S1U(=S57). Therefore, SU(—=S) C S1U(—=51).

The opposite inclusion holds by a symmetry argument. O
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Theorem 4.4.14 shows that for weakly enhanced semigroups S and S the

~

equalities p(S) = p(S1) = (G) hold if and only if SU(—S) = S1U(=S1) =T =G.

Corollary 4.4.15. Let S and Sy be two weakly enhanced semigroups of@ containing
0, for which SU(=S) =51 U (=51) # I, and Gs = Gg, = {0}. Suppose that the
only subgroups in the set S U (—S) are of type Zc, ¢ € S. Then p(S) = p(S1) if
and only if either S = S1, or S = (—=S1), or, equivalently, if and only if As = As,,
or AS = A81 .

Proof. If S = £54, then clearly SU(—S) = S1U(—51), and therefore p(S) = p(S1)
by Theorem 4.4.14.

If SU(=S) = S1U(=51), then § = (SN S1) U (SN (—S1)). Assume that
SNS; and SN (—S1) both are nonempty. Suppose first S is not contained in
any subgroup of type Zc¢, ¢ € S. Then there are a € SN S; and b € SN (—=51)
that do not belong to any subgroup of type Zc¢, ¢ € S. By the hypotheses, the
group I, ) generated by a and b is not a subset of S U (—S). Therefore, there
are m,n € Z\ {0}, such that ¢ = ma +nb ¢ S U (—S). Note that either m,n € N,
or m,n € (—N). Indeed, if m > 0 and n < 0, then ma and nb both are in S;
contrary to Gg = {0}. If m < 0, n > 0 we have ma, nb € (—S1). In both cases
¢ =ma+nb € S1U(—S1), contrary to the choice of ¢. If m,n both are in N, or in
(—=N), we obtain that ma,nb both are in S, or in (—5) correspondingly. In either
case ¢ = ma +nb € S U (—S5), which is impossible. Therefore, either S N.S; = O,
or SN (—=51) = O. Consequently, either S = Sy, or S = (=51). If S C Zc for some
c € S, then SU(—S) C Ze, and therefore SU (—S) is a group, thus I" & CA?, which
contradicts the assumption on S. O

For non-weakly enhanced semigroups we have the following

Corollary 4.4.16. Let S and S7 be two semigroups of G containing 0, such that
[S]w U [_S}w = [Sl}w U [_Sl}w 7& F; and [S}w N [_S}w = [Sl}w N [_Sl]w = {O}
Suppose that the only subgroups in [S], U [—=S]w are of type Zc for some ¢ € S.
Then p(S) = p(S1) if and only if either [S]y = [Silw, or [Slw = [~S1]w, i.e. if
either A[S]w = A[Sl] or A[S]u, = A[Sl]w'

w?

Observe that the set [S],, U[—S],, does not contain subgroups other than Zc,
if and only if it does not contain subgroups of type I'(, 3}, a,b € S, other than Zc,
i.e. if for every a,b € S there are m, n € Z\{0}, such that Z(na+mb)N(SN(-S5)) =
{0}, provided Z(na + mb) # Zc for any ¢ € S.

If the group (45 C I' generated by two elements a,b € S is not of type
Zc, c € S, then we can define a homomorphism (: I'f, 33 — Z2, by na + mb —
(n,m). One can easily see that Z (na +mb) N (SN (=S)) = {0} for some m,n €
Z\ {0} if and only if the set ((I'(q}) NS is situated between two non-collinear
rays initiating at 0, the angle between which is less than .



140 Chapter 4. Shift-invariant algebras on compact groups

If the dual group I' = G is countable, or, more generally, if the group G is
metrizable, then all results in this section hold also for peak groups, instead of for
p-groups relative to Ag.

4.5 Radd’s and Riemann’s theorems on (G-discs

Many theorems of classical complex analysis have natural extensions for functions
in general uniform algebras. Let U be an open set in the maximal ideal space
M 4 of a uniform algebra A. Consider the uniform closure Ay of the restriction
of Gelfand transform A of A on U. It is clear that Ay is a uniform algebra on
U C M4. A continuous function f on U is said to be A-holomorphic on U if for
every x € U there is a neighborhood V' of = so that the restriction f|v belongs
to Ay, i.e. if f |V can be approximated uniformly on V by Gelfand transforms of
functions in A. The set of all A-holomorphic functions on U is denoted by O4(U).

The classical Radd’s theorem for the disc algebra asserts that if a function
f is continuous on the closed unit disc D and analytic in the complement of its
null-set Null (f) in D, then f is analytic on the whole unit disc D.

Definition 4.5.1. A uniform algebra A has Radd’s property, if every function f,
which is continuous on M 4 and A-holomorphic on M 4\Null (f) belongs to A.

Radd’s theorem implies that the disc algebra A(D) has Radé’s property.
However, the Radd’s property fails for the algebra Ag(ID) of functions f continuous
on D, analytic in D, and whose derivative vanishes at 0. Observe that this algebra
is of type Ag with S = Z4 \ {1} = {0,2,3,4...} C Z, whose weak hull [S],, is
Zy #S.

Theorem 4.5.2. Let G be a compact connected abelian group and S be a subsemi-

group of G such that S — S = G, and SN (—S) = {0}. Then the algebra Ag has
the Rado property if and only if the semigroup S is weakly enhanced.

Proof. Suppose that the algebra Ag has the Rad6 property. We claim that S is
weakly enhanced. Let a € [S], C G. Then there is an n € N such that ak € S for
all k € N, k> n. Extend x* on M4, D G as follows:

>A<a (n+1)(m) o
)za(m) _ m(a) _ Qa"(m) when ¥ (m) # 0,

when Y*"(m) = 0.

If x*™(m) # 0, then X*(m) # 0 for every m € U in some neighborhood U C Mg of
m. Since X* ("1 and Y are in Ag, X* belongs to (As)y - Hence the function x* is
continuous on M 4, and Ag-holomorphic outside its null-set Null (x*). The Radé
property for Ag implies that )Z“’G € 21\5, thus x* € Ag, i.e. a € S. Consequently,
S is weakly enhanced.
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Conversely, suppose that S is a weakly enhanced semigroup of G. We will
show that Ag has Radd’s property. For simplicity we will assume that G is a
separable group. Let f € C(Mg) N Oag(Mag\ Null(f)), and let {h; 132, be a
countable dense subset of G, so that h; = 2. Denote by f; = fp, the h -shifts
of f,ie. fu,(9) = f(gh;), g € G. For every j € N consider the algebras Aj =
[As, fi1,..., f;] with maximal ideal space M; = Ma,. We have A; = [4;_q, f;],
Ap = Ag and f; is Aj_1-holomorphic on M;_1\Null (f;). By the arguments from
[G1] (II, Theorem 6.3) we conclude that 9A4; = A, _1. If (inTH)*: Mp41 — M,
is the adjoint map to the inclusion i"*1: A, — An+1, then (i"T1)* is surjective
and (i"TH)*(0A,41) = 0A,.

We obtain two sequences
As CAyC A C---CA,C---

and

Mo, — My U0 Ay DD pg, G

The closure Ay = U A in C(G) is an inductive limit algebra with My, =

Mag, and 04y = 8As = G (cf. Section 1.3). Moreover, Ay is a shift-invariant
uniform algebra on G, and hence, is generated algebraically by a semigroup of
G, actually, by the semigroup Sy generated by the elements of S and sp (f|q),
ie. Ay = Ag,. Hence, Ma, = Ma, = Ma, for every a € sp(f) C Sy, and
hence, a € [S],, according to Proposition 4.2.10. Hence, Sy = [S], = S because
S is Weakly enhanced. Therefore, sp (f|g) C S, thus f \G € Ag, and consequently,

fEAS U

Theorem 4.5.2 can be used to explore integral closedness phenomena in uni-
form algebras. Recall that every continuous solution of a polynomial equation with
coefficients that are analytic functions in C is an analytic function.

Definition 4.5.3. A uniform algebra A is integrally closed if every continuous func-
tion on M4 satisfying a polynomial equation of type

2" +az" 4 +a, =0, aj € A

belongs to A.

For example, the disc algebra, the polydisc algebra, and the algebra of ana-
lytic G4-functions on a G-disc over a group G with ordered dual, are integrally
closed algebras.

Theorem 4.5.4. Under the assumptions of Theorem 4.5.2 the algebra Ag is inte-
grally closed if and only if the semigroup S is weakly enhanced.
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Proof. Suppose that Ag is integrally closed and let a € [S],. Then there is an
ng € N such that ma € S for every m > n,. Consider the equation

ze — R = 0. (4.6)

Being a continuous solution of (4.6) on Mg, the function x* belongs to Ag, thus
a € S. Hence, [S], = S, i.e. S is weakly enhanced.

Conversely, if S is weakly enhanced, then Radd’s theorem holds on Ag ac-
cording to Theorem 4.5.2. This implies that the algebra Ag is integrally closed (cf.
[G5]). O

Example 4.5.5. Let S = {(m,n): m,n >0} U{(0,n): n > 2} U{(2k,0): k >0} C
72 be the non-weakly enhanced semigroup from Example 3.4.10. Theorems 4.5.2
and 4.5.4 imply that the algebra A on the bi-disc D’ that is generated by the
functions z™w™, where (m,n) € S neither has Radd’s property, nor is integrally
closed. For instance, the function f(z,w) = w is continuous on M4 = D? and A-
holomorphic outside Null (f) = {(z,w): w # 0} and also satisfies the polynomial
equation 22 — w? = 0, where w? € A. However f ¢ A.

The classical theorem of Riemann for removable singularities of analytic func-
tions on I asserts that if a function f € A(D) is analytic in the complement of one
point a € D, and bounded in a neighborhood of a, then f is analytic on the whole
unit disc D. Note that single points in the complex plane C are zeros of particular
analytic functions.

Definition 4.5.6. A uniform algebra A has the Riemann property if, given an f € A
with Null (f) N 90A = @, every bounded A-holomorphic function on M 4\Null (f)
can be extended on M 4 as an element in A.

The classical theorem of Riemann implies that the disc algebra A(ID) pos-
sesses the Riemann property.
Definition 4.5.7. Let S be a semigroup of G. The bounded hull [S]p of S is the set

of elements a € G for which there are b,c € S with a = b — ¢, such that X*/X¢ is
bounded on the set M 4, \Null (X¢). S is said to be boundedly enhanced if [S], = S.

A straightforward check shows that S C [S], C [S]s C [S]s C G. Note that
any semigroup S C G with SU (=5) = G, SN (=S) = {0} is simultaneously
weakly, strongly, and boundedly enhanced.

Theorem 4.5.8. Let G be a compact connected abelian group and let S be a sub-
semigroup of G such that S —S = G and SN (=S) = {0}. The algebra As has the
Riemann property if and only if the semigroup S is boundedly enhanced.

Proof. Let the algebra Ag have the Riemann property. Fix an element a € [S], C
G and let a = b—c, where b, ¢ € S be such that the function v = ¥?/x° is bounded
on Mg\ Null (x¢). Since « is bounded and Ag-holomorphic on M 4,\Null (x¢),
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it belongs to ﬁg by the Riemann property. Hence, 7| = x?/x° = x* € Ag, i.e.
a € S. Consequently, the semigroup .S is boundedly enhanced.

Conversely, assume that the semigroup S is boundedly enhanced, and let f be
a bounded function in Qa4 (M. \Null (g)) for some g € Ag. Denote Ag = [As, f]
and Mg = My,. The adjoint mapping (i®;)* of the inclusion i®;: Ag — Ag
maps My into M y4,. Since f is Ag-holomorphic on M 4.\Null (g) we have that
(i%1)*(Mo) D Mas\Null(g), and hence, (i%)*(Mp) = Mag, because [Mag \

Null (g)] = My, by the analyticity of Ag. Observe that for every f1 € Ay we

have f1g € Oas(Mag\Null (f1g)), and consequently, f1g € Ag by Theorem 4.5.2.
Hence, the function (f1g)/g = f1 is bounded on M 4, \Null (¢). By the Glicksberg
general version of Schwarz’s lemma [G5] (Th. 4.1) then

sup £ (Mas \ Null (9))] = sup| " (M, \ Null ()

= sup ‘ f;g (0Ag \ Null (g))‘ = sup ‘ f;g (BAS)‘.

We conclude that Ay = 0Ag, because [M 4, \Null (g)] = Mg by the analyticity
of As.

As in the proof of Theorem 4.5.2 we will assume that G is a separable group.
Let {h;}52,, h1 = 2 be a countable dense subset of G and let f; = fn; be the
hj-shift of f. Consider the algebra A, = [Ag, f, f1] with maximal ideal space M.
The functions f = fy and f; are Ag-holomorphic on the set M\ (Null (g) Uhyt-
Null(g)) = Mag \ (Null(g) \ h7'- Null (g)). By the analyticity of Ag the adjoint
map (i§)*: My — M, to the inclusion i}: Ag — A; = [As, fo, f1] maps M;
onto My = M4, . In a similar way as in Theorem 4.5.2, we see that 04; = 04y =
0Ags = G. By the same arguments we obtain two sequences

As CAyC A C---CA, C---,

and

Moy, <202 My LD My DD Ay 62

where A, = [Ag, f, f1,..., f;], and M} = My, . Proceeding inductively as before,
we obtain

b

Mg = (%)% o (if)*(My) = (i%,)* o (ib)* o (i2)"(Ma) = - -,

and 0Ay = 0Ag. As in the proof of Theorem 4.5.2, Ay = [ U Aj] is an inductive
=1

jf
limit algebra generated algebraically by the semigroup S; = [S, sp(f |G)], ie.
Ay = Ag,. Since every (¥ _1)* maps My onto My_1, the adjoint projection
R MASf — M 44 to the natural inclusion i: Ag — Ay maps MAsf onto M4,
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and 0Ay = 0As = G (cf. Section 1.3). Consequently, Ay is a shift-invariant
uniform algebra on G.

If now a € sp(f), then a = b — ¢ for some b,c € S, thus a + ¢ = b.
The function Y*T¢/Y¢ € Ag is continuous and bounded on M4, \Null (Y¢) =
w(/\/lAsf \Null (%)), since the function i(x*™¢)/(X¢) = i(x*¢)/i(X°) € Ay is con-
tinuous and bounded on M \Null (Y°). Hence, a € [S]y, i.e. S C Sp C [S]y =S
since S is boundedly enhanced. Consequently, Sy = S, thus sp (f|g) C S, and
therefore, f € Ag. a

4.6 Asymptotically almost periodic functions in one
variable

We recall that a function f € Cy(R) is asymptotically almost periodic, if there is a
unique f* € AP(R) and h € Cy(R) such that f = f*+h (cf. Lemma 2.1.4). Hence,
for the uniform algebra AP%*(R) of asymptotically almost periodic functions on R
we have AP**(R) =2 AP(R)® Cp(R). It is easy to see that the set Cp(R) is an ideal
in AP**(R). In this section we study in more detail the space of asymptotically
almost periodic functions on R.

The maximal ideal space M 4 pas () of AP?*(R) has a sophisticated structure.
Let G = b(R) be the Bohr compactification of R. The restrictions of a linear
multiplicative functional m € M 4pas ) on the algebras AP(R) and C- 1@ Cy(R)
generate linear multiplicative functionals m' = m| AP(R) € Mapwr) = G and

m’ = m|C,1®CO(R) € Mcagcym) = T. For any f = f*+ h € AP*(R) we have
m(f) = m(f*+ h) = m(f*) + m(h) = m'(f*) + m”(h). Therefore, there arises
an injective mapping @: m +— (m',m") of M pas(g) into the set Mpm) x
Mcagcymr) = G x T. Hence, without loss of generality, we can consider that

@(MApas(R)) is embedded into G x T. Below we describe in more detail the set
D(Mapes(r))-

Let m = (m/,m”) € Mapm) X Mcagc,m)- If m”|cymy = 0, then m(f) =
m'(f*) + m”(h) = m/(f*), and hence m(f) = m/(f*) is a linear multiplicative
functional on AP**(R). Now m’ coincides with the point evaluation m, in AP(R)
at some point g € G, while m”(g) = g(c0) = (gop)(1) = 0 for any g € C-1&Cy(R).
We assume that m” acts as ‘the evaluation’ in C -1 & Co(R) at co € R, i.e.
as the point evaluation in C(T) = (C-1® Cy(R)) o p at 1 € T, where ¢ is
the fractional linear transformation ¢ : D — C: p(2) =1 i i_ L Consequently,

m(f)=m/(f*)+m"(h) = F(g) +E(1), and hence, without loss of generality, we
can assume that G x {1} is injectively embedded into @ (M 4 pas(r))-

If m/| Co(R) # 0, then m” acts as the evaluation in Cy(R) at some point
of R, i.e. m”(h) = h(z) for any h € Co(R). If f € AP(R), then fh € Cp(R), and
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hence f(z)h(z) = (fh)(x) = m(fh) = m(f)m(h) = m(f)h(z). Consequently,
m(f) = f(z), i.e. m = my is the point evaluation in AP**(R) at z € R. Now
we have m(f) = mu(f) = ma(f* +h) = ml(f*) + mll(h) = f*(m},) + h(z) =
f* (j.(z)) + h(x), where j, is the standard dense embedding of R into G through s.
Therefore, &(m,) = (m!,,ml), where m! is the point evaluation in Cy(R) at 2 € R,
while m/, is the evaluation in ZI\D(R) at j,(x). Thus the set R = {(ju(x),2): z € R}
is contained in @(MApas(R)). Since, clearly, R = R, the set @(MApas(R)) and the
disjoint union (G x {1}) U R = G UR are bijective. Note that G and R keep
their own topologies in !15(/\/1 A PQS(R)). Since G is compact, all its accumulation
points in @(M A Pas(R)) belong to G. However, the set R might have accumulation
points in G x {1} = &(M gpas(r)) \ R. As we show below, this has a significant
impact on the topology of M 4pas(r). Let mq € R and mg, — mo € G x {1}. If
B(ma) = (j.(Ta), Ta), Ta € R, then for any h € Co(R) we have h(zs) =m” (h) =
ma(h) = E(ma) — E(mo) = mo(h) = my(h) = 0, wherefrom z, — =o0.
Clearly, for any ¢ > 0 and any h € Cy(R) the set {z € R: |iz\(a:)| < €} is open
in @(MAPM(R)), and necessarily contains the set G x {1} 2 G. This can happen
if and only if the sets G U {z € R: [z] > N, N € N} C G UR are open in
@(MApas(R ) Since M g pas(r) = (MAPae(]R)) we obtain the following

Theorem 4.6.1. The mazximal ideal space M g pas(wr) of the algebra of asymptotically
almost periodic functions AP**(R) on R is homeomorphic to the disjoint union

G UR provided with the topology generated by the standard open sets on G and R
correspondingly, and the sets of type G U {x eR:|z| >N, N € N}.

In other words, M 4 pas (r) is homeomorphic to the disjoint union of the group
G = b(R) and a copy of the line R that winds around G above the set j,(R) C G
and approaches it as x — Fo0. Equivalently, M 4 paes(g) is homeomorphic to the
set G U T provided with the topology generated by the standard open sets on
G, T\ {1}, and the sets of type G U (U \ {1}), where U is an open subset of T
containing 1. Observe that the closure of b(R) in M 4pas(g) is b(R) itself, while
the closure of R in M 4 pas(g) is the entire space M 4pas(w). Therefore, R is dense
in M 4 paes(r), while b(R) is not.

If we assume that the set G UR is equipped by the topology from Theorem
4.6.1, then the Gelfand transform of any function f € AP(R) ¢ AP**(R) is
the function f € C(G UR) such that f]¢ coincides with the natural continuous
extension f of f on G = b( ), and f\R =f1ffe Co(R) C AP“S( ), its Gelfand
tranbform is the function f € C(GUR) such that f\c =0,and f|R = f. The algebra
AP’”( ) consists of all continuous functions in C(G U R) of type f + h, where
f € AP(R) and h € Cy(R). Equivalently, W(R) = {f—i— h: f € AP(R), h €
C(T), (1) =0} Cc C(GUT).

We recall that the algebra AP, (R) of analytic almost periodic functions on
R is isomorphic to the algebra Ar, = AP, (R) of analytic R -functions on R.
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Consequently, M 4p, &) = MAR+% D¢, the G-disc over G = b(R). Theorem 4.6.1
now yields the following

Theorem 4.6.2. The maximal ideal space of the algebra
AP (R) 2 AP,(R) & Co(R) 2 [z, 1/z, {2 T /(=1 4 er

of asymptotically analytic almost periodic functions on R is homeomorphic to the
set Dgr UT provided with the topology generated by the standard open sets on Dgg,
T\ {1}, and sets of type DarU(U\{1}), where U is an open subset of T containing
1eT.

Let Ag(CL1) and Ag(C_) be the algebras of functions in Cy(R), that pos-
sess analytic extensions in the half-planes C; and C_ = — C4 correspondingly.
If a function in AP**(R) is analytically extendable in the upper half-plane C,
it is called analytic asymptotically almost periodic. One can see that any ana-
lytic asymptotically almost periodic function f admits a unique decomposition
of the form f = f* + h, where f* € AP,(R) and h € Ag(CL). The algebra
AP,(R) @ Ao(C4) of analytic asymptotically almost periodic functions is iso-
metrically isomorphic to the subalgebra [z, {e® (z+1)/(z - 1), a € Ry} of
H>NC(D\ {1}) generated by the functions z and e® (z+1)/(z = 1), a € Ry,
on R. Likewise, the algebra AP(R) @ Ao(C4) of all f € Cp(R) with a unique
decomposition of type f = f* + h, where f* € AP(R) and h € Ay(C;), is iso-
metrically isomorphic to the algebra [z, {e® (z+1)/(z = 1), a € R}] on R. Since
My, (c,) = D, we have also the following

Theorem 4.6.3. The maximal ideal space of the algebra
AP,(R) @ Ag(Cy) 2 [z, {0 TV/(E=1) 4 er Y c Honem\1)

of analytic asymptotically almost periodic functions on R (or on CL) is homeo-
morphic to the set Dy UD provided with the topology generated by the standard

open sets on Dyry, D\ {1}, and sets of type Dyry U (U \ {1}), where U is an open
subset of D containing 1 € D.

Let m : My~ — D be the mapping defined by m(p) = ¢(id) € D, which
provides a homeomorphism between D = 7~!(D) C Mg and D.

Corollary 4.6.4. (a) The mapping m maps the unit disc D = n(D) densely in the
maximal ideal space of the algebra AP,(R) & Ao(Cy) of analytic asymptoti-
cally almost periodic functions on R. Hence the algebra

[2, {ea(z—l-l)/(z—l), aER+}] c H®

does not have a D-corona.



4.6. Asymptotically almost periodic functions in one variable 147

(b) The image ;z(CQ of the upper half-plane C under the embedding 4, is not
dense in the maximal ideal space of the algebra AP,(R)@® Ao(Cy). Hence the
algebra

[z, {2 GHD/GE=1 g er,Y] c BH®
has a Cy-corona.
In a similar way we obtain

Theorem 4.6.5. The maximal ideal space of the algebra
AP(R) ® Ag(Cy) = [z, {e® (z+1)/(2~ 1), a € R}]

on T is homeomorphic to the set GLID provided with the topology generated by the
standard open sets on G, D\ {1}, and sets of type G U (U \ {1}), where U is an
open subset of D containing 1 € D.

The arguments used in the proof of Theorem 4.2.16 yield the following result.

Proposition 4.6.6. There is a continuous mapping r from Mpygs onto the set

Dypry) UD = Map, )@ 40(Cy)

equipped with the topology described in Theorem 4.6.3.

Observe that the space AP**(R) of asymptotically almost periodic functions
is a uniform algebra, invariant under R-shifts, i.e. the function fi(x) = f(x +t)
belongs to AP (R) for any f € AP (R) and ¢ € R. The uniform algebras
AP (R), Co(R), Ap(C4) and Ap(C-) also are R-invariant. If S is an additive
subgroup of R, then the set APs(R)® Cy(R) is an R-invariant uniform subalgebra
of AP**(R) which contains Cy(R). As the following theorem implies, every R-
invariant subalgebra of AP**(R) containing Cy(R) is of this type.

Theorem 4.6.7. For any R-invariant subalgebra A of AP**(R) there is a unique
semigroup S C R, and a closed R-invariant subalgebra B of Cy(R), so that A
admits a decomposition of type A = APs(R) @ B.

Proof. According to Lemma 2.1.4, for every f € A there is a unique almost periodic
function f* on R, and an h € Cy(R), such that f = f* + h. Fix an € > 0, and
choose a positive number ¢ such that |f*(z) — f*(z 4+ t)| < ¢ for all z € R, and
|h(z)] < e for all |x| > t. This is possible, since ¢ € AP(R), and h € Cy(R).

Consider the function v
1
N _
f - N 7;1 fnta
where fn:(z) = f(z + nt). Clearly, f¥ € A, since A is R-invariant. One can

easily check that |fN — f*| < 2¢ for N big enough. Hence the function f* can
be approximated uniformly by functions of type fV € A, and therefore, f* € A.
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Thus, h = f — f* € A, and therefore, A = AP*(R)N A= (AP(R)NA) & B C
AP (R), where B = Cyp(R) N A is an R-invariant ideal in A. Since the algebra
AP(R) N A is R-invariant, by Proposition 4.1.9 there is a semigroup S C R such
that AP(R) N A = APs(R). Consequently, A = APs(R) ® B. O

Note that in this case B is an ideal in A, while APs(R) and B both are closed
subalgebras of A.

If S C R4, then the algebra APs(R) @ Ap(C,) is an antisymmetric uniform
subalgebra of the algebra AP,(R) @& Ap(C4) of analytic asymptotically almost
periodic functions on R, containing A¢(C,). The following theorem implies that
every antisymmetric subalgebra of AP**(R) containing Ag(C.) is of this type.

Theorem 4.6.8. For any antisymmetric R-invariant subalgebra A of AP**(R) there
exist a unique semigroup S C Ry, and a closed antisymmetric R-invariant subal-
gebra B of Cp(R), so that A admits a decomposition of type A = APs(R) @ B.

The proof follows the same lines as the proof of Theorem 4.6.7, by taking
into account the antisymmetry of A. Similarly as before, B is an ideal in A, while
APs(R) and B are closed subalgebras of A.

Theorem 4.6.8 implies that any antisymmetric subalgebra of the algebra
[2, {0 T D/ =1 g er, Y c H®nAD\ 1),

is of type [{e® (z+1)/(z - 1), a € S}]®B, where S is an additive semigroup in R,
and B is an antisymmetric closed subalgebra of the space {f e AD): f(1)= 0}.

Using similar arguments as in Theorem 4.6.8, one can show the following

Theorem 4.6.9. Let A be an antisymmetric R-invariant uniform subalgebra of the
algebra AP, (R) of weakly almost periodic functions on R which is invariant un-
der R-shifts. Then there is a unique semigroup S C R, and a closed R-invariant
subalgebra B of C(R)|r, such that A = APs(R) @ B.

Note that in this case both algebras APg(R), of almost periodic S-functions
on R, and BC C (]R)’]R are closed subalgebras of A.

4.7 Notes

The class of shift-invariant algebras is more general than the class of G-disc al-
gebras of generalized analytic functions, introduced by Arens and Singer [AS1].
Algebras of S-functions with S # I'y were considered in [T2]. The description of
automorphisms for shift-invariant algebras is from [GPT]. For G-disc algebras gen-
erated by weakly archimedean ordered semigroups the result is due to Arens [A].
The results on peak groups for shift-invariant algebras are from [GT4]. Rad4’s and
Riemann’s theorem were proven originally by classical arguments. Their versions
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in a uniform algebra setting were considered by Glicksberg [G5]. In [GPT] (see
also [T2]) they have been extended to shift-invariant algebras. Integrally closed
uniform algebras were studied by Glicksberg [G5]. A uniform algebra A possesses
the weak Riemann property if, given a function g € A with Null(¢) N 90A = O,
every bounded function, A-holomorphic on M 4\Null (g), can be extended contin-
uously on M 4. Using similar arguments as in Theorem 4.5.8, one can show that
a shift-invariant algebra Ag on G possesses the weak Riemann property if and
only if the weak and the strong hulls of S coincide. The results on asymptotically
almost periodic functions are from [GT4].

It would also be interesting to have a characterization of semigroups S and
S1 of I' = G containing 0, with the same families of p-sets, or, peak sets, of G
relative to Ag and Ag, . This problem seems to be related with the existence of an
automorphism ¥ of I', with ¥(S) = Sj.



Chapter 5

Extension of semicharacters and
additive weights

The central theme of this chapter is the extendability of linear multiplicative func-
tionals from smaller to larger shift-invariant algebras. It is closely related to ex-
tendability of non-negative semicharacters and their logarithms (additive weights)
from smaller to larger semigroups. We give necessary and sufficient conditions for
extendability of additive weights in terms of properties such as monotonicity, and
in terms of purely algebraic properties of their semigroup domains. As immedi-
ate corollaries we obtain necessary and sufficient conditions for the corresponding
algebras of almost periodic functions and of H°°-functions to possess coronae.

5.1 Extension of non-vanishing semicharacters

Let G be a compact abelian group, and let S C P be two semisubgroups of the
dual group G. For the corresponding shift-invariant algebras we have Ag C Ap C
C(G). Clearly, a linear multiplicative functional of Ag can be extended to a linear
multiplicative functional on Ap if and only if the corresponding semicharacter ¢
on S can be extended to a semicharacter on P.

Let S be an additive subsemigroup with cancellation law and 0, and let
I's = S — S be the group envelope of S. The S-order, on I's is defined by b > «a
if and only if b — a € S. Any non-negative semicharacter ¢ € H(S) is monotone
decreasing with respect to the S-order on S. Indeed, if b > a for some a,b € S,
then b = a+c for some ¢ € S. Therefore, p(b) = p(a) p(c) < p(a), since 0 < p < 1.

If P is a semigroup in I's containing S, we equip ['s with the P-order. By
the above remark every non-negative semicharacter on P is monotone decreasing
with respect to the P-order. Consequently, for a non-negative semicharacter ¢ on



152 Chapter 5. Extension of semicharacters and additive weights

S to possess a semicharacter extension on P, ¢ needs to be monotone decreasing
on S with respect to the P-order. In fact, this condition is also sufficient.

Proposition 5.1.1. A positive semicharacter ¢ € H(S, (0, 1]) on S has a unique
semicharacter extension on a semigroup P D S if and only if ¢ is monotone
decreasing with respect to the P-order on S.

Proof. By the previous remarks, we only need to prove the sufficiency. Assume that
 is a monotone decreasing positive semicharacter on S. Ifbe PC Ig =5 -5,
then b = a — ¢ for some a, c € S. Clearly, a > ¢, and ¢(b) = p(a)/¢(c) is a positive
homomorphic extension of ¢ on P. Since p(a) < ¢(c), we have that 0 < @(b) <1,
i.e. ¢ is a positive semicharacter on P. ]

Proposition 5.1.2. A non-vanishing semicharacter ¢ € H(S, ]D)*) on S has a unique
semicharacter extension on a semigroup P D S if and only if its modulus |p| €
H(S) is monotone decreasing with respect to the P-order on S.

Proof. Suppose ¢ € H(S) does not vanish on S. By Theorem 3.5.4 and Proposition
3.5.5, ¢ has a unique polar decomposition ¢ = || x with some character x of I's.
Hence, ¢ is extendable on P as an element of H(P) if and only if |¢| is extendable.
By Proposition 5.1.1 this happens if and only if || is monotone decreasing on S
with respect to the P-order on S. ]

Consider the particular case when S C R, and P = I'y = I' N[0, 00), where
I' C R is the group envelope I's of S, equipped with the discrete topology.

Proposition 5.1.3. Let S be a semigroup of Ry containing 0 andletI' = I's = S—S
be its group envelope. A non-negative semicharacter o € H(S, [0, 1]) on S has a
unique semicharacter extension on Iy if and only if ¢ is monotone decreasing on

S.

Proof. Note that the I\ -order coincides with the standard order on I} inherited
from R. Because of Proposition 5.1.2 and the remarks preceding Proposition 5.1.1,
we only need to prove the sufficiency part of the statement for vanishing on S
semicharacters. Assume that ¢ is a monotone decreasing semicharacter of S with
@(a) = 0 for some a € S. Assume ¢(b) # 0 for some b € S\ {0}. If n € N is such
that nb > a, then p(nb) = ¢(b)™ # 0 in contradiction with the monotonicity of
w on S C Ry. Therefore, the only monotone decreasing semicharacter of S that
vanishes on S is the characteristic function s, € H (S, [0, 1]) of 0 in S. Applied
to the semigroup Iy, the same argument shows that the only monotone decreasing
semicharacter of I'y that vanishes on I'} is the characteristic function s;oy of 0 in
I'y. Clearly, »g, € H(S, [0, 1]) is the only possible semigroup extension of sy
from S on I7. |

Corollary 5.1.4. Under the assumptions of Proposition 5.1.3, a semicharacter ¢ €
H(S) possesses a unique semicharacter extension on I'y if and only if its modulus
|o| is monotone decreasing on S.
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Proof. If ¢ possesses a semigroup extension on I}, then so does |¢|, and therefore
it is monotone decreasing by Proposition 5.1.3.

Let, conversely, |¢| € H(S, [0, 1]) be monotone decreasing on S. If ¢ does not
vanish on S, then it possesses a semigroup extension on Iy by Proposition 5.1.2.
If ¢ vanishes in S, then by the arguments from the proof of Proposition 5.1.3 it
coincides with sy, and possesses a unique semigroup extension on /. O

Example 5.1.5. Let S be the semigroup Iy = {0} U [t,00) C Ry, where ¢ >
0. Clearly, the group envelope I'r, = I} — I} of I} is R. We claim that every
semicharacter p € H (S, [0,1]) is monotone decreasing on I}. Indeed, let a >
b, a,b € I}, and let n € N be such that n(a — b) > v, thus n(a — b) € I3.
Hence, p(a)" = @(na) = p(nb -+ nla — b)) = p(nb) p(n(a — b)) > @(nb) = p(b)",
and therefore, p(a) > p(b). Consequently, every non-negative semicharacter ¢ of
I is monotone decreasing. By Proposition 5.1.3 ¢ can be extended on Ry as a
semicharacter in H(Ry).

Example 5.1.6. Let 3 > 0 be an irrational number. Consider the two-dimensional
semigroup S? = {n +mB: n,m € Z,} C R. The group envelope of S# is I'¥ =
SP_SP = {n+mB:n,meZ}. Let P=I? = I'PNR, = {n+mB > 0:n,m e Z}.
Clearly, S8 # Ff. For instance, if § > 1, then the positive number 5 — |3] €
Ff \ S8, where | 3] is the greatest integer preceding (3. For a fixed b € (0,1) the
function ¢(n+mp3) = b", n+mp € SP, is a homomorphism from S? to (0,1] C D.
Thus, ¢ is a non-negative semicharacter on S”, ie. ¢ € H(S,[0,1]) C H(9).
We claim that ¢ is not monotone decreasing on S°. Indeed, ¢(mf3) = 0, while
p(n) =b"™ > 0 for every n > mf. The natural (and only) homomorphic extension
@ of ¢ on Ff is given by @(n + mp) = b, n,m € Z, n + mf3 > 0. However,
pé H(Ff) since, for instance, 3(3 — [3]) = b~#1 > 1. Consequently, ¢ can not
be extended as a semicharacter on R.

Proposition 5.1.7. Let S be a semigroup of Ry containing 0 and let I' = S—S be its
group envelope. The maximal ideal space M4y of the algebra Ag of S-functions
on G =T is homeomorphic to the G-disc D¢ if and only if all non-negative
semicharacters on S are monotone decreasing.

Proof. By Corollary 5.1.4, the above conditions are necessary and sufficient for
every semicharacter ¢ € H(S) to be extended uniquely as a semicharacter in
H(I'}y) = Dg. |

According to Proposition 4.1.4 the space APs(R) of almost periodic S-
functions on R is a uniform algebra isometrically isomorphic to the algebra Ag of
S-functions on G = I'. Propositions 5.1.7 and 4.2.4 yield the following

Proposition 5.1.8. Let S be a semigroup of Ry containing 0, whose group envelope

I' = S5—8 is dense in R. The maximal ideal space M spy(w) of the algebra APs(R)

of almost periodic S-functions is homeomorphic to the G-disc D¢ if and only if
all non-negative semicharacters on S are monotone decreasing.
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Note that any dense in Ry semigroup of type Iy = I' N R, satisfies the
assumptions of Proposition 5.1.8.

We recall that if G is a solenoidal group, then there is a natural embedding
j. : R — G of the real line R into G with a dense range, so that j,(0) =« If
S C Ry, the restrictions of S-functions on j,(R) are almost periodic S-functions,
that admit analytic extension on the upper half-plane C . Clearly, the set (0,1] xR
can be embedded densely in the G-disc Dg = [0,1] ¢ G/{0} ¢ G. Since (0, 1] x R =
[0,00) x R 2 C,, the upper half-plane C, also can be embedded densely in the
G-disc D¢. Note that I's C M Ag for every semigroup S C Ri. The embedding
Jo: R — I s extends naturally to an embedding :]2 of the upper half-plane C,
into the maximal ideal space M 4, of the algebra Ag (and, together, of APs(RR)).
Since the closure of the range j,(Cy) in M4, is homeomorphic to the G-disc D,
we see that j,(Cy) is dense in M 4 if and only if M 4, = D¢. Therefore, we have
the following

Corollary 5.1.9. Under the assumptions of Proposition 5.1.8 the upper half-plane
C4 can be embedded densely via j, in the mazimal ideal space Mapyw) of the
algebra APs(R) of almost periodic S-functions if and only if all non-negative
semicharacters on S are monotone decreasing. Consequently, if all non-negative
semicharacters on S are monotone decreasing, then the algebra APs(R) does not
have a C4 -corona.

Note that # = In g is an additive function from S to (—o0, 0] for any semichar-
acter o € Hy(S). It is straightforward to see that the necessary and sufficient
condition in Corollary 5.1.9 is equivalent to the following: Every additive positive
function # on S is monotone increasing, i.e. of type 6(a) = yya for some yy € [0, 00),
or f(a) = oo, for every a # 0. In the case when S = R this form of the condition
for the dense embedding of C, into M 4p,(r, ) has been given by Boettcher [B4].

Proposition 5.1.7 and the remarks preceding Corollary 5.1.9 imply the fol-
lowing corona type theorem for the algebra HZ.

Proposition 5.1.10. Let S be a semigroup of Ry containing 0. The unit disc D is
dense in the mazimal ideal space of the algebra HS® via the fractional linear trans-

~ 1
formation j, o @, where p(z) =1 ] e if and only if all non-negative semicharac-
—z
ters on S are monotone decreasing. Consequently, the algebra HZ® does not have

a D-corona if and only if all non-negative semicharacters on S are monotone de-
creasing.

In particular, since every non-negative semicharacter on I'y C Ry, where I'
is a dense subgroup of R, is monotone decreasing, the algebra Hp does not have
a D-corona, i.e. the open unit disc I can be embedded densely in the maximal
ideal space ./\/lHIog+ via the mapping j, o ¢ from Proposition 5.1.10.
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5.2 Extension of additive weights and semicharacters
on semigroups

In this section we prove that the monotonicity condition of a semicharacter, consid-
ered in the previous section, is also sufficient for the extendability of semicharacters
of a semigroup.

Theorem 5.2.1. Let S C P be two semigroups with cancellation law and 0. A
semicharacter ¢ € H(S) possesses a semigroup extension on P if and only if |¢|
is monotone decreasing with respect to the P-order on S.

We present a proof of this theorem based on so-called additive weights.

Definition 5.2.2. A function 6 on a semigroup S with 0 is called an additive weight
on S, if it is additive, takes values in the extended half-line Ry = [0, 0], and
0(0) = 0.

Hence, the values of any additive weight 6 on S may be either non-negative,
or oo, while #(0) = 0, and 6(a + b) = 6(a) + 6(b) for every a, b € S. Denote by
O(S) the set of additive weights on S. It is clear that with the pointwise addition
O(S) is a semigroup.

Proposition 5.2.3. The semigroup of additive weights ©(S) of a semigroup S is
isomorphic to the semigroup H(S, 0, 1]) of non-negative semicharacters of S.

Proof. Indeed, given an additive weight § € ©(S5), the function rg: a — e—@(a)7
with e~*° = 0, is multiplicative on S, 6_9(0) =e% =1, and ’e—ﬁ(a)’ <1lonsS.
Therefore, gy = = H(5,[0,1]). As we saw above, for any o € H (S, [0,1]) the
function 0,: a — —1Inp(a) is an additive weight on S. It is clear that 0 — gg
is a bijection from ©(S) onto H (S, [0,1]) that preserves the operations, i.e. is an
isomorphism. O

Example 5.2.4. (a) Let S = Z,, and let 29 € [0, 00). Clearly, the function 6,,(n) =
xomn, n € Zy is an additive weight on Z. . The function

0o (n) = 0  whenn =0,
VY7 oo whennéN
is also an additive weight on Z, . Actually, any additive weight on Z is of type 0.,
for some xg € [0, oc]. Therefore, in this case ©(Z;.) is isomorphic to the semigroup
[0, o<].
(b) For S = R4 = [0, 00) the set O(R) is also isomorphic to [0, 00], since all
additive weights on R are of type 0, (x) = zox for some z € [0, 0), or

0.0 (z) = 0 when z = 0,
W= 0o when n € (0, 00).
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Let P be an additive semigroup with cancellation law and 0, and let S C P
be a semigroup of P containing 0. According to Proposition 5.1.1, a necessary con-
dition for a semicharacter p € H (S, [0, 1]) to possess a semigroup extension on P
is that ¢ be monotone decreasing with respect to the P-order on S. Consequently,
for a weight 6 € ©(S) to possess a weight extension on P it is necessary for 6 to
be monotone increasing with respect to the same order on S. The next theorem
shows that this condition is also sufficient.

Theorem 5.2.5. Let S C P be two additive subsemigroups with cancellation law
and 0. An additive weight 0 € ©(S) possesses a weight extension if and only if 0
is monotone increasing with respect to the P-order on S.

Proof. The necessity is clear from the previous remarks. To prove the sufficiency,
suppose that @ is an increasing additive weight on S. Fix an a € P\ S and let
Se=Zya+S = {na—i—b: beS, ne Z+}. To extend 6 on S, as, say, 8, € O(S,),

we first define 5(1 at a.

If Na+ PNS = @, we define ,(a) = co. Assume that Na+ PN S # @. Note
that ¢ € Na+ PN S if and only if ¢ € S and na + p = ¢ for some n € N, p € P
i.e. ¢ € S and na < c for some n € N. Observe that if ¢ € Na + P NS, then the
set X = {(n,b,c):n € N,b,c € 5,0(b) <oo,c € No+PNS, nat+b=c}is
nonempty. Indeed, any triple (n,0,¢) with ¢ € Na + PN S belongs to X. Set

fu(a) = mf )00 (5.1)
(n,b,c)ex n

The condition 6(b) # oo is needed here to avoid the undeterminate expression of
type oo — oo in the numerator. Observe that 0 < ga(a) < 1. Indeed, if (n,b,¢) € X,
then ¢ > na + b, and hence ¢ = (na +b) + p = b + (na + p) for some p € P.
Consequently, ¢ = b, since na+p € P. Therefore, 6(c) > 6(b), and hence 6, (a) > 0.
Also, 6(c) — 6(b) < 1 since both 8(b), 6(c) < 1. Note that the number 6, (a) is well-
defined, since if na+b = c € S for some b € S with 6(b) < co and c € Na+ PN S,

then 0, (a) = 0(c) ; H(b). Indeed, if (m, V', ) € X, then ma+b" < ¢’ and therefore
me + nb’ = m(na 4+ b) + nb’ = n(ma + ') + mb < nd’ + mb. The additivity and

monotonicity of 6 imply

mé(c) +nb(b") < nb(c') +mo(b),

whence
0(c) —0(b) _ 0(¢) —0(v)
n - m '
Consequently, 0(c) — () = inf 6(c) — 0¥ = 6,(a). This shows that the
n (n,b,c")ex n

number ,(a) is well-defined, as claimed.
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Now define 6, by the equation 8, (na + b) = nf,(a) + 0(b) for any na +b €
Sa. This definition is unambiguous. Indeed, if na +b = ma + d € S, with, say
~ 0(b) —0(d
m > n, then (m —n)a + d = b. As noticed above, then 0,(a) = (b) = o ), thus
m—n
mbg(a)+6(d) = nby(a)+6(b). One can readily check that 6, is an additive weight
on S,. We claim that 6, is increasing on S,. Indeed, let

na+b>=ma+1, (5.2)

be two elements of S,;, where b, b’ € S, n, m € N. There are three possible cases
for m and n.

(a) If m = n, then b > b’ by the cancellation law, and therefore 6(b) > 6(b’)
by the assumed monotonicity of 6.

(b) If n > m, then (5.2) becomes ka + b = ', with k = n — m, and what
we need to show is that 6, (ka + b) > 0(b'). It is clear that if 6,(a) = 0o, we have
Oq(ka+b) = kOy(a) + 0(b) = co > O(b'), as needed. If 0,(a) < oo, then according

o (5.1), for every € > 0 one can find a ¢ € S with §(c) < co and d € Na+ PN S,
so that (n,c,d) € X and

6(d) —0(c) ~ 5
o )
. < O,(a)+ f
Because (n,¢,d) € X, we have d > na + ¢, and therefore
kd + nb = k(na + c¢) + nb = n(ka + b) + kc = nb’ + ke,

since ka + b > b'. Additivity and monotonicity of 6 imply that k6(d) + nf(b) >
nf(b') + k6(c), thus
k(6(d) —0(c))

. FO(b) > 0().

Consequently,

_ K(B(d) - 0(0))

Oo(ka+b) = kO, (a) + 6(b) .

—e+0(b)>0(b) —e.

Since & was arbitrarily chosen, we conclude that 6, (ka + b) > 6(b'), as desired.

(c) If n < m, then (5.2) becomes b = la+b" with | = m —n, and what we are

to show is that 8(b) > 0,(la + V). Note that in this case 6(b) > 6(b'), since b > b'.
If 6(b') = oo, then also (b) = oo, thus 6(b) > 0(la + b'). Assume that 6(b') < co.
If also 6,(a) = oo, then
—_ / ~
=00 6o,
since (1,0',b) € X, and hence 6(b) = oo. Therefore, 0(b) = co > O(la + V'), as
needed.
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It 04 (a) and 0(b') are finite numbers, then 104(a) < 6(b)—6(b'), and therefore,
Oa(la +0") = 104(a) +0(b") < 0(b) — O(b') + 6(b") = 6(b). This completes the proof
of the monotonicity of 6,. We have shown that 6, € O(S,).

Consider the family of increasing weight extensions of § € ©(S) on semi-
groups H, S C H C P, ordered by inclusion. It is easy to see that every chain of
its elements has a largest element. Zorn’s Lemma implies that this family has a
maximal element, say, . Denote by S the domain of 6, which is a subsemigroup
of P.If S5 is a proper subsemigroup of P, then, as shown above, for any a € P\ Sr
there is an increasing additive extension of 6 on the semigroup (S3)q = Zya+ S5,
properly containing Sj. This contradicts the maximality property of 0. Therefore,

Sz =P, ie. 0cO(P). 0

The proof of Theorem 5.2.1 now follows directly from the relationship be-
tween the additive weights and semicharacters on S, described in Proposition
5.2.3.

Corollary 5.2.6. Let S and P be as in Theorem 5.2.1. If every ¢ € H(S) has mono-
tone decreasing modulus || with respect to the P-order on S, then the restriction

riMap, — Mag:m— m|AS is a continuous mapping from Ma, onto M ag.

It is clear that r: m —— m| is a continuous mapping from M, into
M 4. The surjectivity of r follows from Theorem 5.2.1.

Corollary 5.2.7. Let S be a dense semigroup in R’L If every semicharacter ¢ €
H(S) has monotone decreasing modulus |¢| with respect to the R -order on S,
then the restriction r: DZ(R) — My is a continuous mapping from DZ(R) onto

Ma..

As a consequence we see that under the assumptions of Corollary 5.2.7 there
is an embedding of C} into the space Mg = M ypwn) With a dense image.

Corollary 5.2.8. If0 € S C P C Is are two semigroups, then H(S) = H(P) if
and only if

(a) FEwvery positive semicharacter on S is monotone decreasing with respect to the
P-order on S, and

(b) Every idempotent semicharacter on S possesses a unique extension on P,
which is an idempotent semicharacter of P.

Proof. If (a) holds, then every non-vanishing semicharacter on S has a unique
extension on P by Proposition 5.1.2. Let (b) hold, i.e. suppose that every idem-
potent semicharacter on S can be extended uniquely on P, and let ¢p € H(S).
By (a), ¥ possesses a semicharacter extension on P. We claim that this exten-
sion is unique. Assume that {/;1 and 'IZQ are two semicharacter extensions of
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on P. Clearly, supp (1;1) = supp (121), since otherwise the characteristic func-

tions Hupp(d:)? i = 1,2 will be two different extensions of the idempotent semichar-

acter gupp(y)- Ngte that the set P\ supp (zzl) is an ideal in P. Consider the set

K = {a € supp (h1): P1(a) = P2(a) }. Clearly, supp (1) C K C supp (i), where
the inclusions are proper. One can easily check that supp (1;1) \ K is an ideal in
supp (1;), and consequently, it is an ideal in P. Therefore Hsupp (F1)\K) is an idem-
potent semicharacter of P, which extends Zupp () O1 P, and is different from the
extension A supp (3)° ([l

If S is a semigroup of R% that meets the sets Ry x {0} and {0} x R, then
every idempotent semicharacter on S which is monotone decreasing with respect to
the R2-order has unique semicharacter extensions on Ri, namely the characteristic
functions sfoy, 2rx{0} and sfoyxg, i-e. the idempotent semicharacters of ]R%r.
Therefore, Corollary 5.2.8 implies the following.

Corollary 5.2.9. Let S be a semigroup of Ri that meets the sets Ry x {0} and
{0} xRy, and for which I's = R?. Then H(S) = H(R?) = Dyg)2, the b(R)-bi-disc,
where b(R) is the Bohr compactification of R, if and only if every semicharacter
¢ € H(S) has monotone decreasing modulus |¢| with respect to the R%-order on

S.

It is straightforward to see that the necessary and sufficient condition in
Corollary 5.2.9 is equivalent to the following one: Every additive positive function
6 on S C R? to be of type §(x1,72) = Y171 + Y222 for some y1,y2 € [0,00],
considered by Boettcher [B4].

5.3 Semigroups with extendable additive weights

In this section we provide characterizations of semigroups with the property that
any of its additive weights possesses a weight extension on larger semigroups. Let
S C P be two semigroups with cancellation law and 0, and let I's = S — S C
P — P = I'p be their group envelopes correspondingly. Note that in general P
may not be a subset of I's.

Proposition 5.3.1. Any weight 0 € O(S) has a unique weight extension on the
strong hull [S)F of S in P.

S

Proof. If 0 is an additive weight on S, then the associated semicharacter on S,
X(a) = 6_0(0’) It
3.5.6. The additive weight § = — log X corresponding to ¥ is an additive weight on
[S]F extending 6. O

, has a unique semicharacter extension X on [S]Y by Proposition
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Definition 5.3.2. Let S C P be two semigroups with cancellation law and 0. We
say that S is complete in P if [sNP =S, ie. if P\Is=P\S.

If S is a complete subsemigroup in P, then P = (PN Ig)U (P\Ig) =
SU(P\Is). Note that the notion of completeness of semigroups makes sense only
in the case when P ¢ I, since if S C P C Is, then S is complete in P if and
only if S = P.

Example 5.3.3. Let S be the two-dimensional semigroup S? = {n +mp: n,m €
Z+} C R considered in Example 5.1.6, where § is an irrational number. The
group envelope of Sg is given by I'? = 8 — S = {n +mpB:n,m € Z}. Let
P=I]=T°nRy = {n+mp >0:n,m e Z}. Clearly, $° # I' = ' N P,
since, for instance, the positive number 5 — 5] € Ff \ S8. Therefore, S” is not
complete in P.

Example 5.3.4. Let S =R, x {0}, and P = R xR, endowed with addition. Then
I's = Rx {0}, and I's N P = R x {0} # S. Therefore, Ry is not complete in
R x R+.

Given a weight 6 € ©(S), consider the semigroups
9_1(R) ={a € S:0(a) < oo}, and 9_1{00} ={a€S:0(a) =00}

The set (Gfl(R)—P) NP ={beP:b+de 0 R) for some d € P} is a semigroup
of P. Moreover, P\ (Hil(R)—P) is an ideal in P.

Lemma 5.3.5. If S is a complete semigroup in P, then 9_1(R) s a semigroup in
(9_1(R)—P) N P, while 0 {oc} is a semigroup in P\ (9_1(R)—P),

Proof. The first part is clear, since 0 € P and a+0 € 8 (R) for every a € 8 (R).
To prove the second part, assume, on the contrary, that there is an a € 971{00}
and d € P such that c=a+d € 971(]1%). Hence,d=c—a€IsnNP =S5, since §
is a complete semigroup in P. So, d € S, thus a + d € 071{00}, since 071{00} is an
ideal of S. Consequently, a+d=c €6 (R)N6 {oc}= @, which is impossible. [

Lemma 5.3.6. If S is a complete semigroup in P, then:
(1) (9_1(R)—P) N P is a strongly enhanced complete semigroup in P.
(ii) 6 (R) is a complete semigroup in (9_1(R)—P) NP and in P.

(iii) The strong hulls [9_1(R)]f

are complete semigroups in P.

and [S]F of 6=1(R) and S in P correspondingly,

S

(iv) If S is strongly enhanced in P, then so is 0 (R).
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Proof. (i) If b€ P and b = a — ¢, where a,c € (Gfl(R)—P) NP, thenb+c=ac
(6 (R)—P) N P. Hence (b+c+ P)N6 (R) # O, thus b € (§ (R)—P) N P by
definition. Hence, (9_1(R)—P) N P is complete in P. The equality [(9_1(R)—P) N

P]f = (Hil(R)—P) N P follows directly from the definition of (Gfl(R)—P) nP.

(ii) Let b = a — ¢ € P, where a,c € 0_1(]R) C S. Since S is complete in P,
thenb e S =6 (R)UO foo}. Note that b can not belong to 6 {oo}, since if it did,
then 0(a) = 6(b+ ¢) = 0o + 0(c) = oo, contradicting the assumption a € 9_1(R).
Therefore, b € 6 (R).

(iii) Let b = a — ¢ € P, where a,c € [S]I. There is an n € N such that
na,nc € S, and hence nb = na—nc € PNIg =.5, since S is complete. Therefore,
nbe S, thus b € [S], and consequently, [S]F is complete. The proof for the hull

1

A (]R)] , follows the same lines.

(iv) Let b € P be such that nb € 9_1(R) C S for some n € N. Hence b €
[S]? = S by the hypothesis on S. Note that b & 6 {oc}, since nf(b) = 0(nb) < oo
Therefore, b € 6 (R). O

Given a 0 € 6(S5), let I'y-yr) be the group envelope of 9_1(R), Le. Iy-yg) =
0 (R)—0 (R).
Lemma 5.3.7. If S is a strongly enhanced complete sengroup in P, then the group

Ly—yg) + Zb is isomorphic to I'y—yg) X Z for any b € (6 (R)—P) NP)\6 (R).

Proof. Assume that ¢ + nb = d + kb, for some n < k and b,c € Fe—l(R)
0 (R)—6~(R). Then (k—n)b=c—de 6§ (R)NP =06 (R), since, by Lemma
5.3.6(ii), 6 (R) is complete in P. Therefore, b € [071(]1%)]5 = 6 (R) by Lemma
5.3.6(iv). This contradicts the hypothesis on b. We conclude that the group
Iy—yg) + Zb is isomorphic to 0 (R) x Z, as claimed. O

Below we consider a particular case of weight extensions. Let I" be an additive
subgroup of R. Denote by S a subsemigroup in I'y = {« € I': > 0} that contains
0 and generates I'. The set

Sx{0}={(z,00eI'xZ:x€ S} CRXZ
is a semigroup in the group I' X Z. Let P be a semigroup in I" X Z which contains
the set S x {0} and the point (0, 1), and for which PN (I" x {0}) = S x {0}. We
will describe the weight extensions of the z-projection

m S x {0} — S:m(z,0)=2x

on P. We claim that for any (z,n) € P\ (0,0) either x or n are non-negative.
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Indeed, if both x and n are negative, then (0, —n) = (—n)(0,1) € P, since (0,1) €
P and (—n) > 0. Hence (z, —n)+(0,n) = (x,0) € P, thus (x,0) € PN(I'x{0}) =
S x {0}, and therefore, z € S C I'y, i.e. > 0, in contradiction with the choice of
z. Consider the two numbers

—00 if n >0 for all (z,n) € P
\p = ( Sl)lp ., {xz/n} if there are (z,n) € P with n <0
z,n) e P,
n <0
and (5.3)

Ap =inf {z/n: (z,n) € P, n > 0}.

Lemma 5.3.8. If P is a semigroup with S x {0} C P C I'x Z and PN (' x {0}) =
S x {0}, then )\P < AP <0.

Proof. This is clear in the case when = > 0 for all (x,n) € P, or if n > 0 for

all (z,n) € P. Let by = (z1,n1) with n1 < 0 and by = (z2,n2) with ny > 0, be
T T
two elements of P. As shown above, then z; > 0. We will show that ! < 21
n1 no
T T
we suppose, on the contrary, that b 2, then x1ng < nixsg, since ny < 0 and

ny U»)
ng > 0. The elements —n1by = (—n1z2, —ning) and neby = (n2x1,neny) belong to
P since both —n; and ng are positive. Therefore, noby —ni1by = (nox1 —nix2,0) €
PN (I' x {0}), and hence (noz1 —niz2,0) € S x {0} C I'y x {0}, in contradiction

Al €2
< , whenever ny < 0

ni n2
and no > 0. It is easy to see now that Ap < Ap < 0. O
Example 5.3.9. If P ="' x Z,, then A\p = —o0, while Ap = 0. If P =1 X Z, then
/\p = Ap =0.

with the already obtained x1ns < njzs. Consequently,

Proposition 5.3.10. Let S C Ry be a semigroup with 0, and I's =S — S C R is

the group envelope of S. Suppose that P is a semigroup of I's X Z C R x Z with
PN (Ix{0}) =85 x {0} C Ry x {0}. Then:

(i) For every real number a, \p < a < Ap, the map ¢: P — R, ¢(x,n) =
T — an is an additive weight on P.

(ii) For any weight ¢ € O(P) the number a = —¢(0,1) satisfies the inequalities
Ap < a < Ap. If, in addition, ¢(x,0) = x for all x € S, then ¢ can be
expressed as ¢p(x,n) =z — an, (z,n) € P.

Proof. (i) Let a be a real number with A\p < a < Ap. Clearly, the function ¢ from
(i) is additive. We will show that ¢ > 0 on P. Let b = (z,n) be a fixed element
in P. If n = 0, we have ¢(x,0) = x € S C Ry, and hence ¢(b) > 0. Let n # 0.

If n >0, thenZZAPZOz, and hence x —an > 0. If n < 0, then x > 0, thus

x
< Ap < a, and hence x — an > 0. Therefore, ¢ is an additive weight on P.
n
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(ii) For any b = (x,n) € P we have
¢(b) = ¢((z,0) + (0,n)) = ¢(z,0) + ¢(0,n) =z +n¢(0,1) =z — na,

where a = —¢(0, 1). Moreover, 0 < ¢(b) = ¢(z,n) = x —an. If n > 0 we have
a < z/n, thus o < Ap. If n < 0, then z/n < «, and hence \p < «. Therefore
Ap < a < Ap, as claimed. O

As we saw in Example 5.1.6, not every character in the semigroup S, can
be extended on P. Therefore, non-completeness of S might be an obstacle to the
extendability on larger semigroups of semicharacters of S, and together, of additive
weights of S.

Theorem 5.3.11. If S is a complete semigroup in P, then every weight 6 € O(S)
possesses a weight extension on P.

Proof. Let 8 € O(S5). First we extend 6 on (Hfl(R)—P) N P. Because of Proposition
5.3.1, without loss of generality we can assume the_t‘g S is strongly enhanced in P.
We can extend 6 additively on Ij—yp) =60 (R)—6 (R) by

O(a —b) = 6(a) — 0(b), a,b € 0~ (R).

Note that §(I,-yg,) C R. For any b € ((9_1(R)—P) NP)\ 6 (R) the mapping

“®)

7(a+nb) = (5(a), n)

is a surjective homomorphism from Fg*](R) + Zb onto g(Fgfl(R)) xZ C R xZ.
Consider the semigroup

P
(Tymy)y, = (Lp-ymy TZb) N P.
It is easy to see that (Fefl(R))f is strongly enhanced, and (0,1) € T((Fgﬂ(R)){:).

Since Fg*](R) +7Z1b is a group, (Fefl(R)>P is a complete semigroup in P. Moreover,

b
T((FO—I(R))bP) N (Q(FO—I(R)) x {0}) = G(Fe_l(R) N P) x {0} c 6(S) x {0}, since
Iy-ygy NP C S by the completeness of S. In fact, Iy-yp NP = 6 (R), since the
values o~f 6 on (FO—J(R))bP are in Ry. Therefore, T((Fe_l(R))f) N (9((F9—1(R))bP) X
{0}) = 9(971(R)) x {0}. By Proposition 5.3.10 there exist an additive weight ¢ on

the semigroup T((FQ—J(R))bP> C R x Z, whose restriction on 5(9_1(R)) x {0} is the
projection

1

e 5(0_ (R)) x {0} — [0,00) : 71 (x,0) = =

The restriction of the function ) = ¢o7: a+nbr— qb(@(a), n) on (Fg—{R))bP is an
additive weight on (I gfl(R))f, and its restriction on 0_1(R) coincides with 6. Note
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that v takes only finite values on (Fe_l(R))f. Indeed, since b € (9_1(R)—P) NP,
there exists a d € P such that b+d = a € 9_1(R). Therefore, d = a — b €
(071(]1%) +Z)NPC (FQ—I(R)>bP. Since both b and d belong to (Fgfl(R))f and 1 is

an additive weight on (F gfl(R))f, we have

P(b) <Yb+d)=0(0b+d) =6(a) < 0.

Consequently, v takes only finite values on (F gfl(R)):.

Let {(Si’ei)}iel be the family of pairs of complete semigroups S; strongly
enhanced in P, with 8 (R) C (Gfl(R)—P) N P, and weights §; € ©(S;), such that
0ilp—yr) = 0. One can define a partial order in this family, by (5;,6:) < (S;,6;)

when S; C S; and 6; = 6; on S;. For any chain {(Sj79j)}jeJ the set S" = |J S
J

is a complete semigroup in (9_1(R)—P) N P, strongly enhanced in P, and the

function #" defined on S’ by #'|s, = 0; for any j € J, is an additive weight on

S" such that 0" = 6 on §~YR). The pair (5’,0') € {(Si’ei)}iel is the largest

element of the chain. By Zorn’s Lemma there exists a maximal element (S*,60*)

in the family {(Si’ei)}iel' It is clear that S* = 6 (R)—P, since otherwise one

can obtain a proper extension of #* on a semigroup of type (Fgfl(R))f for some
—1

be ((0 (R)—P)NP)\S*. Consequently, § possesses an extension on (9_1(R)—P) NP
as an additive weight on 9_1(R)—P. On P\ (0_1(R)—P) we extend 0 as oco. O

Corollary 5.3.12. If S is a complete semigroup in R’i, then the restriction r: ]D)Z(R)
— Mg is a continuous mapping from ]D)Z(R) onto My,

As a consequence we see that under the assumptions of Corollary 5.3.12 there
is an embedding of C%} into the space May = M 4pgn) With a dense image, thus
the algebra AP(R"™) does not have a C-corona.

If all 6-values are finite, 6 can be extended as a weight on (Gfl(R)—P) NP
with finite values. To show this, in the family { (Si,ﬁi)}i cr from the above we
should consider weights 6; € ©(S;) which take finite values only.

Corollary 5.3.13. For any non-invertible element a € S there exists a weight 0 €
O(S), such that (na) = n.

Proof. Indeed, Za is a complete semigroup in S, and by Theorem 5.3.11 the
weight 6(na) = n of Zya can be extended as a weight on S. O

Given a weight 6 € ©(S) consider the following two semigroups of T, bR’

L)y ={a—biabe 6 (R), 6(a) — 6(b) >0},
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Ly =f{a—biabe 6 (R), 6(a) — 0(b) < 0}.

We recall that if a,b € S, then a < b with respect to the P-order on S if and only
if there is a ¢ € P such that a +c =b.

Proposition 5.3.14. A weight 6 on S is monotone increasing with respect to the
P-order on S if and only if

(1) Fe_‘l(R) NP=0, and

(i) (67 (R)=P) N {oc}= Q.

Proof. If § € ©(9) is an increasing weight on S, then we will show that (i) and (ii)

are satisfied. Assume, on the contrary, that Fg YR) NP # @, and let p € F I(R)QP.

Then p = a—b, where a, b € 071(]1%), and 0(a)—6(b) < 0. Since a =b+p, p € P, we
have that a > b, and consequently, 8(a) > 0(b), a contradiction. If a € (0_1(R)—P)ﬂ
P, then a+p € 0 (R) for some p € P. Therefore, a < a+p=">b € 6 (R), and
hence 0(a) < 0(b) < co by the monotonicity of . Consequently, a & 971{00}.

Let now (i) and (ii) both hold. Assume that 8 € ©(S) be such that §(a) < 6(b)
for some a,b € S, a = b. Consider first the case when both a,b € 9_1(R). Since

a > b, there is a p € P for which b + p = a. Therefore, p = a — b € P, and
0(a) —0(b) <0,ie.pel o-YR)’ in contradiction with (i). Let now 6(b) = oo, i.e.
be 6 {oo}, while a € 0 (R). From b+p=a, pc P we have b € (Gfl(R)—P) nP.
Therefore, if b = a + p, then b € (Hfl(R)—P) N6 {oo}= 0. O

Theorem 5.3.15. A weight 0 € O(S) can be extended as an additive weight on P
if and only if

(i) Fe_‘l(R) NP =0 and

(i) (6 (R)=P) N8 {oc} =@

While this result follows from Proposition 5.3.14 and Theorem 5.2.5, here we
give a more direct proof.

Proof. Assume that (i) and (ii) both hold. According to (i) the semigroup Ly N
P= F; ®) N P is a semigroup in F AR Let 0: Ty—ygy — R: 0(a —b) = 0(a) —
0(b), a,b € 6 ( ) be the natural extension of 6 on I'y-yg)- Since O(a —b) >
0(a) —0(b) > 0 on Fe ®)’
with 6(a) = 6(a) for a € 9_1( R). One can see that I,- gy N P is a complete
semigroup in both (6 (]R)—P) N P and P. By Theorem 5.3.11, 6 can be extended
on (Qfl(R)—P) N P as an additive weight. Since (6 (R)—P) N P is an ideal in P,

the restriction of 6 on I o ®) N P is an additive weight
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we can further extend 6 as an additive weight on P, by setting g‘P\(O—](R)ip) = 00.
(ii) implies that this is an extension of 6 on P.

Let now 6§ € ©(P) be an extension of a 6 € O(S). As before, for any a — b €

r NP, abeb (R) we have

6 (R)

0 < 8(a —b) = 0(a) — O(b).

-1

Therefore, a — b € (9_1(R)—P) N P, and hence I'j-yp) NP C (6 (R)—-P) N P.
Consequently, ngl(R)ﬂP = (), 1i.e. (i) holds. By definition, for any a € (9_1(R)—P)O
P there exists some b € P such that b+a = ¢ € 9_1(R). Since a,b € P, and
§ € O(P), we have 6(a) < 6(a+b) = 8(c) < o0, ie. (8 (R)=P)NP Cd (R), and
therefore, (Gfl(R)—P) N6 {oo}= 0, i.e. (ii) holds, too. O

Let 6 be an additive weight on S, and let X'p(0) be the set of all weight
extensions of # on P, i.e.

Ep(0) = {¢ € O(P): |, = 0}.

Observe that X'p(f) is a convex set in O(P), i.e. if 1,02 € Xp(f) and 0 < t < 1,
then t0; + (1 — t)02 € Xp(0).
Proposition 5.3.16. If S is a strongly enhanced complete semigroup in P, b € P\ S,
and 6 € O(S), then

{w(b): 1/) € Zp(g)} = [)\b,/lb],

where Xy and Ay are the corresponding numbers (5.3) for 0 with respect to the
semigroup (Fg*](R))f N (Gfl(R)—P) = (Fg*](R) +Zb) N (Gfl(R)—P) nP.
Proof. The restriction of any ¢ € Xp(6) on the semigroup (Feﬂ(R))bpﬂ (Gfl(R)—P)
is an additive weight, and as we saw in the proof of Theorem 5.3.11, it is of type
¢ =¢or, where 7: Iy + Zb — R x Z is the mapping 7(a 4+ ndb) = (Y(a),n),
and ¢ is an additive weight on T((Fe—l(R)):) C R x Z. By Proposition 5.3.10, ¢
can be expressed as
b(z,n) =z — an, (z,n) € P,

where a € [M\y, Ap]. Therefore, ¥(a + nb) = ¥(a) — an, and hence, ¥(b) = —a.
Clearly, the correspondence ¢ — —1(b) = o maps X'p into the interval [\, Ap)].

Conversely, for every o € [y, Ap] the mapping 1 (a+nb) = 1p(a)—an is an ad-
P -1 . . P
\ , N(0 (R)-P), by; Proposition 5.3.10. Since (FQ—I(R))b N
(6 (R)—P) is a complete semigroup in (6 (R)—P) N P, ¢ can be extended as an
additive weight on (9_1(R)—P) NP, by Theorem 5.3.11. On P\ (9_1(R)—P) we can
extend ¢ as oco. Clearly, different ay, s € [Ap, Ap] generate different extensions
1,19 of ¥ on P, since 1;(b) = —ay, i = 1, 2. |

ditive weight on (Fe—](R))
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Observe that the complement Js = S\ Gg of the group kernel Gg = {a €
S:a+b=0 for some b € S} of S is an ideal, namely the maximal ideal of S. The
following proposition gives an alternative sufficient condition for weight extensions
on P D S of additive weights on S.

Proposition 5.3.17. Let P be a semigroup that contains S. If Js is an ideal in P,
then any weight 0 € ©(S) can be extended to an additive weight on P.

Proof. Suppose that Jg is an ideal of P. Since § {oo} = {a € S:6(a) =00} is
an ideal in S, then § {oo} C Jg. If 6 {oc}= Jg, then 8 (R) = Gg, and therefore
the weight 6 is identically equal to 0 on Gg, and identically equal to oo on 971{00
}=Js. As an ideal in P, Jg is contained in the maximal ideal Jp = P\ Gp of P,
and therefore the function

~ . [ 0 whenae€Gp,
9(@)—{00 when a € Jp

is an additive weight on P. Clearly, fis a weight extension of 6 on P.

If 0_1{00} properly contains Jg, then there is a ¢ € Jg with 6(¢) < co. Since
Jg is an ideal in P, we have that a 4+ ¢ € Jg for any a € P, and we can extend 6
on P as

0(a) =0(a+c)—0(c), a € P.
It is easy to see that 0 is a well-defined function on P. Indeed, if d is another
element in Jg with 6(d) < oo, then 6(a +c) +60(d) = 0((a+c) +d) =0((a+d) +
c) = 6(a +d) + 6(c), since ¢, d, a+ ¢, and a + d belong to Jg C S. Therefore,
(a4 ¢) — 0(c) = O(b+ ¢) — O(b). We claim that 0 is an additive weight on P.
Indeed, if 6(c) < oo for ¢ € Jg, then 2¢c € Jg, and 6(2s) = 26(s) < co. Hence, for
any a,b € P, we have

O(a+0b)

Bla+b+c)—0(c)=0(a+b+2c)—6(2c)
0((a+c)+ (b+c)) —26(c) R -
Ola+c)—0(c) +0(b+c)—0(c) =0(a) +60(b).

Therefore, 0 is additive on P.  is also non-negative on P, since, given an a € P,
for any n € N we have

nb(a) = O(na) = 6(na + c) — 6(c) > —0(c).

01
Hence, 0(a) > — (c) for any n € N. By letting n — oo we see that 6(a) > 0.
n

Consequently, 0 is an additive weight on P. O

Colrollary 5.3.18. If Jgs is an ideal in P, and 0 is an additive weight on S, such that
0 {oc} is a proper subset of Js, then the weight extension of 6 on P constructed
in Proposition 5.3.17 is uniquely defined.
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Proof. Let 6 € O(S) and let 0 be the extension of # defined in Proposition 5.3.17
by some element ¢ € Jg \ 971{00}. If c is as in the proof of Proposition 5.3.17,
then a + ¢ € Jg whenever a € P, and for any extension §; € ©(P) of § on P
we have 01(a) + 0(c) = 01(a) + 61(c) = 61(a + ¢) = 6(a + ¢), and hence 01 (a) =
0(a+c) — 0(c) = 6(a). 0
Example 5.3.19. If S is the semigroup S = (Z4+ x N) U {(0,0)}, endowed with
addition, then Gs = {(0,0)} and Jg = Z4 xN. Since Jg is an ideal in P = Z4 XZ,
then every additive weight on S can be extended to an additive weight on P. Let
05 € O(S) be the maximal weight on S, for which 65 = oo on Z; x N and
65.(0,0) = 0. Now Z, x N = 071(c0), and therefore §5, can be extended on P as

5( ) = 0 when m = 0,
A WS when m # 0.

Note that the maximal weight £, on P is an alternative weight extension of § on
P.

We will show that the condition in Proposition 5.3.17 is also necessary.

Theorem 5.3.20. Let S be a strongly enhanced semigroup in P. All weights in ©(S)
have extensions as additive weights on P if and only if Js = S\ Gg is an ideal in
the semigroup I's N P.

Proof. If Jg is an ideal of I's N P, then by Proposition 5.3.17 any 6 € ©(S) can be
extended as an additive weight 6 on I s N P. Since, clearly, I's N P is a complete
semigroup in P, Theorem 5.3.11 implies that 6 can be extended further on P as
an additive weight.

Conversely, suppose that every € ©(S) has an extension on P as an additive
weight. We claim that no b € Jg is invertible in P. Observe that every additive
weight vanishes at invertible elements of S. By Corollary 5.3.13 there is a weight
in ©(S) extending the weight 0: Z b — Z. by 6(nb) = n. According to our
assumption, # can be extended further as an additive weight 6 on P. Hence g(b) =
0(b) = 1 # 0, and therefore, b can not be invertible in P. Consequently, JsNGp =
@, thus Js C Jp.

Suppose that Jg is not an ideal in I's N P. Then there are elements a €
(I'sNP)\S and b € Jg, such that a+b ¢ Js. We claim that a+b ¢ Gg. If we assume,
on the contrary, that a+b € Gg, then ¢ = a+b is invertible in S, and a+(b—c) = 0,
i.e. (b—c¢) is invertible in P, which contradicts b —c=b+ (—c) € Jg+ Gs C Js.
Consequently, a + b ¢ Gg, and therefore, a + b ¢ S. Hence, n (a +b) ¢ S for any
n € N; since S is strongly enhanced in P. We claim that the elements a and b are
linearly independent over Z. First we will show that if a is invertible in P, then
—a ¢ S. If we assume that —a € S, then —a is not invertible, since a ¢ S, and by
Corollary 5.3.13 there is a weight 1 € ©(5) extending the weight G(n(—a)) =n
defined on Z4 (—a), and according to our supposition, ¢ can be extended further
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as an additive weight 1; on P, and further on P. This is impossible, since for any
extension 61 of #; we have

Y1(a) = =y (—a) = —1 < 0,

in contradiction with ¢ > 0. Therefore, for any a € (I's N P) \ S we have —a ¢ S.
If we suppose that a +b € Gg, then ¢ = a + b is invertible in S, and hence —c =
—a—b€S. Then —a=b+ (—c) € Js + Gs = 5, a contradiction. Consequently,
n(a+0b) ¢S for any n € Z\ {0}, since S is strongly enhanced in P. Assume that
na +1b =0 and let [ > 0. Since b € Jg we have —na € S, and therefore, either
—a, or a belongs to S, since the semigroup S is strongly enhanced in P. As shown
above, neither one of these cases is possible. We conclude, that the elements a and
b are linearly independent over Z. Consider the group Za + Zb spanned by a and
b. Note that if na + kb € (Za + Zb) N S, then n < k. Indeed, if we assume that
k <n,then n(a+0b) =na+kb+ (n—k)be€ S, which is impossible. Consider the
additive weight ¢ on (Za + Zb) N S, defined by

V: (Za+7Zb)NS — [0,00): ¢ (na+ kb) = k —n.

Clearly nb € (Za + Zb) N S for any n € Z,, and therefore, ¥ (kb) = k. Since the

semigroup (Za + Zb) NS is complete in S, ¥ has an extension ¢ as an additive
weight on S, and further on P. For 0 < k < n we have

0 =9 (na+nb) = ¢ (na + kb) + ¢ ((n — k)b) = ¥ (na + kb) + (n — k).
Thus ¢ (na + kb) = —(n — k) = k — n < 0, which is impossible. Hence, J is an
ideal in I's N P. O

Corollary 5.3.21. Let S be a strongly enhanced semigroup in Ry. All weights in
O(S) have extensions as additive weights on Ry if and only if S\ {0} is an ideal
in the semigroup (I's)y+ = I's NR.

Note that the sufficient condition in Proposition 5.3.17 is also necessary if
I'sN P = P, since then P C I§.

Corollary 5.3.22. Let S C P C Is and let S be strongly enhanced in P. The
following conditions are equivalent.

(i) Js =S\ Ggs is an ideal in P.
All weights in ©(S) have weight extensions on P.

)
(iil) All semicharacters in H(S) possess semicharacter extension on P.
) All semicharacters in H(S) are monotone decreasing.

)

Any linear multiplicative functional of the algebra Ag can be extended to a
linear multiplicative functional on Ap.
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Corollary 5.3.23. Let S and P be as above. If Js = S\ Gg is an ideal in P, then
the restriction r: m — m’AS is a continuous mapping from M, onto May.

Clearly, r: m — m|A is a continuous mapping from M4, into M 4,. The
surjectivity of r follows from Corollary 5.3.22.

Corollary 5.3.24. Let S be a strongly enhanced semigroup in Ri, The above re-
striction r maps the b(R)-polydisc onto Mag if and only if Js = J\ S is an ideal
m ]Ri.

As a consequence we see that in the setting of Corollary 5.3.24 the standard
embedding of C'} into the space M 45 = M 4p(wn) has a dense image (equivalently,
the algebra Ag does not have a C’;-corona) if and only if Jg = J\ S is an ideal in
RE .

5.4 Weights on algebras generated by Archimedean
ordered semigroups

The natural partial order generated by a semigroup S on itself reflects the prop-
erties of the semigroup. Recall that if S is a semigroup with 0 and cancellation
law, the standard S-order is a partial pseudo-order on S, such that

a<bif a+c=>b for some ce S.

This order possesses the following properties:
(i) If a<b and b < ¢, then a < c.
(ii) a < a forevery a€ S.
(i) If a <b and c€ S, then a+c<b+c.
(iv) 0 < a for every a € S.
The S-order is an order on S, namely,
(v) a<band b<a imply a=0b,
if and only if the group kernel Gg of S is trivial, i.e. if Gg = SN (=S) = {0}.
The S-order < is total, i.e.
(vi) For every a,b € S either a < b, or b < a holds,
if and only if the group envelope I's =S — S of S equals S U (—5).
A total order < on S is Archimedean, i.e.

(vii) For every a,b € S, a # 0 there exist an m € N such that b < ma,
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if and only if SU (—S) = I's and S can be embedded in R.

The S-order can be extended naturally in the group envelope I's of S by
letting
a<bif b—ac€sb.

If the S-order is total on S, then its natural extension on I's is also total. Indeed,
if a,b € I's, and a = a1 — az, b = by — by, where a;,b; € S,1 = 1,2, then a1 + by
and b; + as belong to S. If, say, a; + b2 < by + ag, then a; + by + ¢ = by + as
for some ¢ € S. Therefore, b —a = (by — b2) — (a1 —az) =c € S, i.e. a < b. The
S-order on I's can be expanded in I's by letting

a <*b if and only if n(b—a) € S for some n € N
for any a,b € I's. Restricted on S, the order <* has the following property
a <* b if and only if na+ ¢ =nb for some n € N and c € S.
Clearly, a < b implies a <* b. The opposite, however, is not always true. One can

check that the properties (i)—(v) from the above hold for the order <’ too.

Example 5.4.1. It is easy to see that the S-order on the semigroup S = 7Z, x Z4
under addition is not total. Given an irrational number 3 > 0, we can define an
order <3 on S by

(n,k) <5 (m,1) if n+ak <m+al.

Note that 3 defines an embedding ¢g of S into Ry by ¢g(n, k) = n+ Sk. One can
check that the order < is total, i.e. for any a,b € S either a <3 b, or b <3 a holds.
This order is different from the natural order < on S, and also from its extension
<*. However, <z coincides with the natural order on the semigroup

Ff:{(n,m)erZ:n—i—ﬁsz},

on which it is both total and Archimedean.

Clearly, if 0 <* a, then na € S, i.e. a € [S]s, thus —a € [—S],. Hence,
(Is)y ={aels:0=<*a} C[Ss\[-S5]s;and ([s)- ={a € Ig:a <*0}C
[—5]s \ [S]s. Therefore, (I's)y+ U(I's)— C [S]s U[—S]s. The order <* generated by
S on I is total if (I's)+ N (— (I's)+) = {0} and (I's)+ U (— (I's)4+) = I's. This
happens if and only if (I's);+ = [S]s. We have obtained the following

Proposition 5.4.2. The <*-order in I's is Archimedean if and only if the following
conditions hold.

(i) (I's)+ = [Sls-
(i) [S]s N [=5]s = {0}
(iii) For every a,b € (I's)+, a # 0 there exists an m € N such that b <* ma.
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There is a close connection between the orders in the group envelope I's, and
the additive weights on S. Since every weight § € ©(S,R) can be extended on the
group envelope I's of S, say as 0: I's —> R, we can define an order on I's by
a <¢ b if and only if 0(a) < 6(b). The order <y is total if and only if the weight
0 is injective on S. If this is the case, the mapping 9: I's — R is an embedding,
and therefore the order generated by 6 in I's is total and Archimedean.

Note that if ¢ € ©(S), then ¢ (a) > 0 if and only if 0 <* a, i.e. if a € (I's)+.
If Gg = {0}, then for every a € S\ {0} there is a weight § € O(S,R) so that
0 < 6(a) < oco. Indeed, the semigroup Zya generated by a is complete in S. By
Theorem 5.3.11 and Proposition 5.3.1 there is an additive weight 6 on [S]s with
values in Ry, such that 6(na) = n. In particular, 6(a) = 1.

Proposition 5.4.3. If the order <* of the group I's is total and Archimedean, then
there is a homomorphic embedding of I's into R.

Proof. Let 6 be a weight in ©((I's)+) with 0 < 6(a) < oo for some a € S\ {0}.
By the Archimedean property of <*, given a b € (I's)4+ there is an m € Zy, so
that b <* ma. Therefore, 0(b) < 0(ma) = mb(a) < oo, i.e. § € O(S,R). On the
other hand we have also a <’ kb for some k € Z, thus 6(b) > 0. Consequently, 6
is a homomorphic embedding of (I's) into R,. Its natural extension, 6 : 6(—a) =
—6(a), on I's embeds I's homomorphically into R. |

Theorem 5.4.4. The following conditions are equivalent.
(i) The order <* generated by S on I's is Archimedean.
(ii) The weight semigroup O(S) is isomorphic to [0, c0].

(iii) The semigroup O(S,R) of weights with values in R is isomorphic to Ry =
[0, 00).

Proof. First we show that (i) implies (ii). Assume that <* is an Archimedean order
on I's. By Proposition 5.4.2(i) we have that (I's)+ = [S]s. If 8 € ©(S) is such that
6 # 0, and 6 # oo on S\ {0}, then there is an a € S\ {0} with 0 < 0(a) < co.
Since the order <* on I's is Archimedean, for every b € (I's); there exists an
m € N such that b <* ma. Therefore, 8(b) < oo on (I's)4, i.e. 8 € O(S,R). We
claim that if 6y is also an additive weight on S with 6(a) = 60 (a), then 0 = 0;.
Assume that 6 and 0, are extended naturally on I's as additive functions, namely,
by 0(b—c) = 0(b) —6(c), and 01 (b—c) = 01(b) — 61 (c) respectively. Let, say, a <* ¢
for some ¢ € (I's)+, and assume that 6(c) < 61(c). There are numbers m,n € Z
so that

0(c) — (m/n)0(a) = 6(c) — (m/n)01(a) <0 < b1(c) — (m/n)b(a).

Hence, 0(c) < 0 < 01(c), contrary to the fact that the extension on I's of the
weights in ©(S) are non-negative on [S]s = (I's)+. Consequently, 6(c) = 6 (c) for
any ¢ € I's with a <* ¢. The same argument applies for any ¢ <* a. Hence, 0 = 64
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on I's, and consequently, every weight ¢ € ©(S) can be expressed uniquely in the
form 1) = 1 (a) 6. Therefore, the mapping ¥ — 1 (a) is a bijection between the set
{v € O(5): ¥(b) # o0, b€ S} and Ry If there is no a € S with 6(a) < oo, then
6 = oo on S\ {0}, which corresponds to the case when 6(a) = co. Consequently,
O(S) = [0, 00|, which proves (ii).

Since, obviously, (ii) implies (iii), it remains to show that (iii) implies (i).
Observe that the semigroup O(S) is conic over R . If (i) holds, then the set (S, R)
can be parametrized by a real parameter A, namely, O(S,R) = {6, A € R;}. Fix
a A € Ry and let 6y(a) = 1 for some a € S\ {0}. We claim that the elements
of O(S,R) are of type r 0 for some real r; i.e. that O(S,R) = R, ). Because of
O(S,R) = Ry we have that 6,5 = nfx. Since 16 /n)x = On(m/n)r = Omr = mbx,
we obtain that 6, /n)» = (m/n)0 for every rational number m/n. If a is an
irrational number, and if p/q < o < m/n, then

Ow/ar = (0/a) Ox < ablx < (m/n) Ox = O ma-

Therefore,
sup (p/q)fx < bax < inf (p/q)0x,
p/a<o m/n>«

and hence 0, = afy. Consequently, O(S,R) = R, ), as desired. Since O(S,R)
separates the points of the semigroup S, so does 0. Therefore, if a,b € S, a # b,
then either 0x(a) < 0,(b), or 0x(b) < 0x(a). We assume that 6, is extended
naturally as an additive function on I's by 6x(a — b) = 0x(a) — 0x(b). Since 6,
separates the points in S, so does its extension 0 on I's. Hence 0 is an embedding
of I's into R. If I'y = {c € I's: 0x(c) > 0}, then I's = Iy U (—I}), and I}y N
(—=I'y) = {0}. Therefore, I's is isomorphic to a subgroup of R and the usual order
< on R corresponds to the order <*. Consequently, <* is an Archimedean order,
and (I's)y+ = I+ = [S]s by Proposition 5.4.2. This proves that (iii) implies (i). O

Since the property (iii) in Proposition 5.4.2 holds for the order <* generated
by a semigroup S C R, we have the following

Corollary 5.4.5. If S C Ry, then O(S,R) 2 Ry if and only if [S]s = (I's)+.

As a corollary O(S,R) = H (S, [0,1]), where R = [—o0,00]. Since [0, o0] &
[0, 1], Theorem 5.4.4 yields

Corollary 5.4.6. If S is a semigroup in Ry, then the semigroup H(S, [0,1}) of
non-negative semicharacters on S is isomorphic to the semigroup [0,1] if and only

if [S]s = (I's) +-

Note that H(S) = D¢, where G = T, if and only if H(S,[0,1]) is isomorphic
to [0, 1]. As shown in Proposition 4.2.7, [S]s D (I's)+ is a sufficient condition for
the set H(S) = M4, to be homeomorphic to D¢g. The following corollary shows
that this condition is also necessary.
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Corollary 5.4.7. Let S be a semigroup in Ry. The following conditions are equiv-
alent.

(i) [S]s = (I's)+-
(ii) The semigroup H(S) is isomorphic to the G-disc Dg, G = I's.

(iil) Any linear multiplicative functional of the algebra As can be extended uniquely
to a linear multiplicative functional on A(rg), -

(iv) All weights in ©(S) have unique weight extensions on (I's)+.
(v) All semicharacters in H(S) have unique semicharacter extension on (I's)y.
(vi) All non-negative semicharacters on S are monotone decreasing.

This is a direct consequence from Proposition 4.2.7 and Corollary 5.4.6.

Example 5.4.8. Let 3 > 0 be an irrational number. Consider the two-dimensional
semigroup S° = {n + mpB: n,m € Z;} C R endowed with addition. Clearly,
[SP]s = SP, and the group envelope of S? is I'qs = I'* = S# — §F = {n +
mfB: n,m € Z}. It is easy to see that in this case [S”]s # (I'ss)+ = {n+Bm > 0}.
For instance, if 3 > 1, then the positive number 8 — | 8] € (I'ss) + \[S?]s, where
| 3] is the greatest integer preceding . As we saw in Example 5.1.6, not every
semicharacter on S? is monotone decreasing, and not all semicharacters on S? are
extendable on (I'ss)+.

Consider the mapping 7: Mpye — D: p — ¢(id) € D, which is bijective
on the set D = 771 (D) C Mpe. Therefore, D and D are homeomorphic sets. The
following theorem, which is a direct consequence of Corollary 5.4.7 shows that the
condition in Corollary 4.2.13 is also necessary.

Theorem 5.4.9. If S is a semigroup of Ry with I's dense in R, then the following
conditions are equivalent.

(i) [S]s = (I's)+-

(ii) The mazimal ideal spaces Mag and Mypgw) corresponding to the shift-
invariant algebra Ag, and the algebra APs(R) of almost periodic functions
with spectrum in S, are homeomorphic to the G-disc Dg with G = fs.

(iii) The algebras Ag and APs(R) do not have a C-corona, i.e. the mapping j,
embeds densely the upper half-plane Cy in Mag = Mypg(w)-

(iv) The algebra HF C H* on the unit disc D, generated by the singular func-
ia(1+2)/(1-2)

does not have a D-corona, i.e. the unit disc D = w(D) is dense in the mazi-
mal ideal space of HZ .

tions {e , a € S} and endowed with the sup-norm on D,

(v) The algebra HZ® does not have a Cy-corona, i.e. the image }Z(CQ of the
upper half-plane C under the embedding j, is dense in its maximal ideal
space Mpg .
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Let S € Ry, 8 € O(S) and g € G. Consider the embedding C; —
Mg z— ¢j(z), where

(¢h(2)) (@) = 7 20@a(g), a e s.
Theorem 5.4.10. If S is a semigroup of Ry with I's dense in R, then the following
conditions are equivalent.
(i) [Sls = (I's)+-
(i) There is a 6y € O(S,R) and a g € G such that the set j (Cy) is dense in
Mag.
(iii) The set p§(Cy) is dense in Mag for all g € G and all 6 € O(S,R).
Proof. 1t [S]s = (I's)+, then O(S,R) 2 R, 0gU{oco}, and M4, = Dg. In this case
one can choose ¢} = j, for 0 in (ii). This proves that (i) implies (ii).
Assume that (ii) holds, and let : S — Ry be the identity weight, i.e.

0(a) = a, a € S. As a semicharacter on S, the function a — il +i)a belongs
to Mag. Since ¢f (Cy) is dense in Mg, there exists a sequence {2,} in C4 and
gn € G such that

X (gn) — i1 Hi)a
for all a € S. Hence, if z,, = x, + iy,, then

i#nbo(a)

|eizn00(a)xa(g)| _ |e—yn00(a)| — e % asn— oo

for all @ € S. Thus A = lim y, = a/6p(a). It is clear that A is independent of

a # 0. Therefore, 6y(a) = Aa = Ad(a). By the same arguments as in Theorem 5.4.4
one can show that the set ©(S,R) of non-zero weights § € ©(5) is isomorphic to
Ry 6o U {oo}, which implies (i), according to Theorem 5.4.4. Consequently, (ii)
implies (i).

Clearly, (iii) 1mp11es ( i). If (i) holds, then any 6y € O(S,R) is of type A0,

A

and o, (2)(a) = (o} ()", thus g}, () = (p}(2))", and hence, @}, (C) = 9} (C).
Similarly, 3 (2)(a ) 9090( 2 (g). . ¥, (2) = @, (2)-g thus 9§ (C) = ¢}, (C)-g.
This proves (iii), since the multiplication by g € G is a homeomorphism of M 4
onto itself. 0

Let g =1, and let 6;5 € ©(S) be the identity mapping on S, i.e. 0;4(a) = a,
a € S CR. For any a € S we have that

X (#,,(2)) = (¢b,,(2)) (@) = e "%
is an analytic periodic S-function on every line R,, = {z +iyo € C: z € R}
Therefore, if 8y = Aobiq, we have (gozo (2))(a) = (¢},,(2))(Xoa)x*(g), and the
algebra Ag oy = {foyj :f € As} coincides with the algebra APs(R) of
bounded almost periodic S-functions on R, which are analytic on Cj..
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5.5 Notes

The study of extendability properties of linear multiplicative functionals from
smaller to larger shift-invariant algebras was initiated in [GT1]. The idea of in-
volving monotonicity in this subject originated in [T2]. The solution of the related
problem for semicharacter extension of semicharacters on arbitrary semigroups in
terms of monotonicity (Theorem 5.2.1), is due to K. Ross [R3] (see also [CP], [K]).
In the case of semigroups of R, alternative sufficient conditions for semigroup ex-
tension of semicharacters were considered in [B4], and for arbitrary semigroups —
in [GT2] and [P3]. The proof of Theorem 5.2.5 presented here is due to Sherstnev
[S3] (see also [TG]). Most of the results on characterizations of semigroups with
the property that any of its additive weights possesses an extension on larger semi-
groups are from [?] and [TG]. The necessary and sufficient conditions in Corollary
5.1.9, Proposition 5.1.10 and Theorem 5.4.9 for existence of C, - and D-coronae of
the considered classes of algebras of almost periodic functions and of H*°-functions
are from [GT4].



Chapter 6

(G-disc algebras

G-disc algebras are also called big disc algebras, or algebras of generalized an-
alytic functions. They are special classes of shift-invariant algebras on compact
groups, generated by ‘one half’ of their dual groups. Their properties, including
the description of their Bourgain algebras and primary ideals, are presented in
this chapter. While all the results are given for general shift-invariant algebras
Ar, , they apply automatically to the particular cases of algebras APr, of almost
periodic functions, and of H I‘Zj—algebras.

6.1 Analytic functions on groups and G-discs

Let G be a compact group such that its dual group I' = G is isomorphic to a
subgroup of R. Without loss of generality we will assume that I" C R.

Definition 6.1.1. The G-disc algebra is said to be the shift-invariant algebra A,
on G, where I', = I'NR is the non-negative part of I". The elements in Ar,_, the
Iy -functions, are also called generalized analytic functions in the sense of Arens-
Singer on G, or, analytic functions on G, for short. The Gelfand transform Enr
of Ar, is denoted also by A(Dg). Its elements are called analytic functions on the
G-disc Dg.

We recall that a function f € C(G) belongs to Ar, if and only if its Fourier
coefficients

cf =/f(g) X*(g) do
G

are zero for all @ € I \ I'y. As a shift-invariant algebra on G, any G-disc algebra
Ar, possesses the following properties (cf. Section 4.1).

(i) The maximal ideal space M 4 r, 18 homeomorphic to the closed G-disc Dg =

([0,1]0G)/{0} oG = ([0,1] x G)/ ({0} x G) = H(I'}).



178 Chapter 6. G-disc algebras

(ii) The Shilov boundary dAr, is the group G.
(iti) A(Dg) = Ap, = Ap,.

(iv) The algebra A(D¢q) satisfies the local maximum modulus principle, i.e. given
an analytic function f on D¢, considered as a subset of the G-plane Cg =
([0,00) x G)/({0} x G) and a compact set K C D¢, then

| f(roogo)| < max |f(rog)|

for every point ro o go € K.

(v) If an analytic function on D¢ vanishes on a non-void open subset of D¢ then
it vanishes identically on Dg.

(vi) Ar, is an antisymmetric algebra, i.e. any real-valued analytic function on G

is constant.

(vii) The upper half- plane C4 can be embedded densely in the G-disc D¢ via the
natural mapping j,: C; — MAF+, and the function f| (C1) is analytic on
C, for any f € A.

An essential part of the classical theory of analytic functions in D is based
on the maximality property of the disc algebra A(D). The next theorem says that,
likewise, the algebra of analytic functions on G is a maximal algebra on G.

Proposition 6.1.2. A shift-invariant algebra Ag on G is mazimal if and only if
STy, ie if Ag coincides with the G-disc algebra.

Proof. It is obvious that if S is a proper subsemigroup of Iy, then Ar, properly
contains Ag. Hence, Ag can not be maximal. Conversely, we claim that any G-
disc algebra is maximal. Indeed, assume that B # C(G) is a closed subalgebra
of C(G) with Ar, € B C C(G). Since B D Ar,, we see that B contains every
X%, a € I'y. Because B # C(G) there exists a ¢ € I'y \ {0} such that x™¢ ¢ B.
Hence, x¢ has no inverse element in B, and therefore there is a linear multiplicative
functional ¢ € Mp, such that ¢(x¢) = 0. By the Archimedean property of N, for
any a € I} there is an m € N such that ma > c. Hence, if b = ma —c € N
we have x* € B, and therefore o(x*)™ = o(x"*) = ¢(x“x") = ¢(x°) (x") = 0.
Consequently, ¢(x®) = 0 for every a € I'. \ {0}, and therefore, any representing
measure f of ¢ vanishes identically on both sets {X“: aely)\ {0}}, and {X“: a €

I \{0}} = {x*: a € I'\I'}}. Hence, /X“(g) dp =0 for all a € I"\ {0}. Since, on
G
the other hand, /Xo(g) dp = /1 du = (1) = 1, we see that /Xa dp = /X“ do
G G G G
for any x* € G. By the Stone-Weierstrass theorem / fdp= / fdo for every
e
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f € C(G). The Riesz representation theorem implies that 1 = o. Consequently,

go(f):/fda for every f € B.If f € B and a € I'}. \ {0} then also fx* € B and
G

/fx“ do = p(fx*) = o(f) p(x*) = 0.

G
Thus ¢/, = /f(g) X *(g)do = /f(g) x%(g)do =0 for all a« € I'y \ {0}, ie.

G G
f € Ar,. Hence, B C Ar,, and therefore, B = Ar, . Consequently, Ar, is a
maximal algebra. O

The maximality of Ar, implies that if A is a continuous function on G,
which is not an analytic function on G, then every continuous function on G
n

can be approximated uniformly on G by functions of type Z fe(g) h*(g), where
k=1

fx € Ar,. Since APr, (R) = Ar,, as a corollary from Proposition 6.1.2 we obtain

that the algebra APr, (R) C AP,(R) of analytic almost periodic I'-functions on

R also is a maximal algebra.

Theorem 6.1.3. Let S C I'.. A shift-invariant algebra As on G is a Dirichlet
algebra, i.e. every real-valued continuous function f on G can be approrimated by
real parts of analytic functions on G, if and only if S generates I, i.e. if S—S =T .

Proof. If I's = S — S # I', then Ag does not separate the points of G, and
neither does Re Ag. Therefore, its closure [Re AS] does not coincide with C(G),
thus Ag is not a Dirichlet algebra. Conversely, let S — S = I', and assume, on
the contrary, that Ag is not a Dirichlet algebra. Then Re Ag is not dense in
the space Cgr(G) of real-valued continuous functions on G, hence [Re Ag] is a
proper subspace of Cgr(G). By the Hahn-Banach theorem there exists a non-zero
linear positive functional ¢ on Cg(G) that vanishes identically on [Re AS] . By the
Riesz representation theorem, ¢ can be expressed as the integration with respect

to a Borel measure, say p, on G. We have that /gd,u =0 for all g € Re Ag,

G
thus /fd,u = /Refdu —|—z'/lmfd,u = 0 for every f € Ag. Since the measure
G G G
w is real-valued, then also /fdu = /fd,u =0 for every f € Ag. In particular,
G G
for any character y € S we have /Xdu =0, and, /Xdu = /Xd,u = 0. Since
G G G

é:F:S—S, /Xd,uzofor any x € I'. Therefore,/hduzOfor any linear
G G
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combination h of characters of G. Since by the Stone-Weierstrass theorem these

combinations are dense in C(G), we deduce that / fdup = 0 for every continuous
G

function f € C(G). Hence ¢(g) = /gd,u =0 for any g € Cr(G). Therefore, ¢

G
is the zero functional on Cg(G), contradicting its choice. Consequently, Ag is a
Dirichlet algebra if S —S =1". |

In particular, any G-disc algebra Ar, is a Dirichlet algbera. Assume that
S — 8 =1 Since Ar, is a Dirichlet algebra, and G is its Shilov boundary, every
linear multiplicative functional of Ag has a unique representing measure on G.
Therefore, for any fixed point rog € Dg C Mg there is a unique positive measure
Mrog 00 G with supp (myoq) = G, and such that

]?(7‘09) = [ fdmiog
/

for every f € Ag. In particular, X*(r o g) = /X“ dmreg =1T%x%(g) for all a € S.
G
Note that /X“ dmyog = r‘a‘xa(g) for any a € S.
G
Proposition 6.1.4. The convolution of the representing measures of two points in

Dg for the G-disc algebra Ar, is the representing measure of their product.

Proof. Let m; be the representing measures of the points r; ¢ g; € Dg, i = 1,2.
By definition,

[ e ma) = [ [ figh) dmg)amain) (6.1)
G G G

for all f € C(G). Therefore,
[ dlme ma) =0 0.90) R0 0.92) = rix(91) 1 g2)
G = (r172)"x*(9192) = X" ((r1 © g1)(r2 © 92)),

for every a € I'y.. Consequently, m1 x mg is the representing measure of the point
(r10g91)(r2 ¢ g2). 0

Denote by m, the representing measure of the point r ¢ 1, i.e. M, = My,
where 1 is the unit element of G. Since Myog = Miog * Myo, for any g € G, then
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(6.1) implies that

f(?"()g) /fdmrog = /fd mlog * Miroy) (6.2)

//f (hk) dimaog (1) dimen (k /f gk) dm, (k) = Fo(g)

for any f € C(G). Here f, is denotes the convolution f, = fx m, of f and m,.. It
is easy to see that

f’l‘l = f* mT1 = (f* m’l‘z)* mrl/’r‘g = sz * mrl/’r‘g = (f’l‘z);l/r27

whenever rq < ro.

6.2 Bourgain algebras of GG-disc algebras

Bourgain elements and Bourgain algebras were introduced in Section 1.4. Let G
be a compact abelian group with unit element ¢, and let S be a subsemigroup of
G containing the unit character x° = 1. For a fixed character y € G denote by Py
the set xS\ S.

Proposition 6.2.1. Any character x € é, for which the set Py is finite, is a Bour-
gain element of Ag with respect to C(Q).

Proof. Note that the characters on G are linearly independent in C'(G). Since the
algebra Ag is generated linearly by S C C(G), the sets P, and ma4(Py) have the
same cardinality. Therefore,

dim (Sy(As)) = dim (745 (xAs)) = card (a4 (Py)) = card (Py) < oo.

By Proposition 1.4.2 the Hankel type operator S, is completely continuous. Hence

a(@)

X belongs to (Ag), " as claimed. O

Note that for any x € S the set P, has the same cardinality as x P
S\ xS ={y € S:v ¢ xS}, which is the set of all predecessors of x in S, i.e.
of all elements v in S which precede x with respect to the S-order on G. If, in
addition, S — S = G and every x € S has finitely many predecessors in S, then
every character y € G has finitely many predecessors in .S. Then Proposition 6.2.1
yields (Ag(G))b = C(G), and therefore the corresponding algebra Ag possesses
the Dunford-Pettis property (cf. [CT]).

Corollary 6.2.2. If x € S is such that S\ {1} C xS, then x is a Bourgain element
of As with respect to C(G).

Proof. Since xPy = S\ xS = ({1} U(S\{1})) \ xS C ({1}UxS) \ xS = {1}, we
have that P, = {x}. Hence x € (AS)bC(G) by Proposition 6.2.1. O
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Corollary 6.2.3. If As is a mazimal algebra, and the set Py is finite for some
character x € G \ S, then (AS)bC(G) = C(G).

Proof. Indeed, x € (Ag)bc(c) by Proposition 6.2.1. However, x ¢ Ag, since x ¢ S.
Consequently (Ag)bc(c) = C(G) by the maximality of Ag. O

Example 6.2.4. If H is a finite group, G = (H ® Z)" and S & H @ Z4, then
(AS)bC(G) = C(G). Indeed, for every character x(s,) € G, where h € H and
n € Z, we have

card(Py,,.,.,) = card((h,n)(H @ Zy )\ H ® Zy)
= card((hH ® (n+Z4))\ H ® Zy) = card((H ® (n+Z4)) \ H ® Z.)
= card(H @ ((n+Z4) \Z4)) = card H + n < oo.

Proposition 6.2.1 implies that x(5.,) € (AS)bC(G) for every h € H and n € Z.
Consequently G = H® Z C (As)bC(G)7 wherefrom (AS)bC(G) = C(Q).

The following theorem gives a description of Bourgain algebras for some G-
disc algebras.
Theorem 6.2.5. If G is a solenoidal group whose dual group G =~ I' is divisible
by an integer n # 1 belonging to I', then the Bourgain algebra (Ap+),?(G) of the
G-disc algebra Ar, coincides with Ar, .

The spaces R, Q, and the group of dyadic numbers {m/2": m € Z, n € N}
are examples of groups I satisfying the hypotheses of Theorem 6.2.5. Without
loss of generality we can assume that 1 € Iy, thus 1/n € Iy, ie. Xl/” € G;.
Clearly, I} is a subset of (Ap+)bC(G). First we prove two auxiliary results.

1+ ¢t (x/n) 2n

Lemma 6.2.6. The sequence of real-valued functions p,(x) = ‘ 5 con-

verges pointwise to 1 as n — oo for every x € R.

Proof. Fix an = € R. Since ¢! (x/n) # —1 for n big enough, we have

14 ¢t (x/n) ‘2>" _ (2+2005

(@/n)\™ _  on
9 4 ) = cos“""(z/(2n) — 1

eulw) = (|

as n — oQ. O

Note that the convergence in Lemma 6.2.6 is not necessarily uniform on R,
since, for instance, ¢, (z) = 0 if x = 7n for any integer n.

L+ 1/ g) 2o
Lemma 6.2.7. In the setting of Theorem 6.2.5, ¥, (g) = 9 converges

pointwise to 1 as n — oo for every g € G.
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Proof. Let j,: R — G be the standard embedding of the real line onto a dense
subgroup of G such that j,(0) = ¢. Then x/n (4u(x)) =€ (#/n) and 4, (ju(z)) =
on(z) for every real x. Hence ¢, () — 1 as n — oo by Lemma 6.2.6.

Consider the neighborhood U of 7, defined as U = (x!)~}e!: —7w/4 <t <
m/4} C G. Note that if {/[ -] is the principal value of the n-th root considered

on the set {e’: — /4 <t < w/4}, then Xl/n(h) = {/x'(h) on U. For a given
g € G there is an hy € U such that g = j, (z) for some x € R, where j, = hj, is
the standard dense embedding of R into G with j,(0) = h. Hence, if x*(h,y) = ets
for some s, —w/4 < s < w/4, then Xl/n(hg) = ei(s/n)7 and therefore,

14+, (2)) 20

Yu(g) = wn(jhg (z)) = 9

) X ()
2

2n ’1+62(3+x)/n om
- 2

Consequently, ¥, (g9) = ¢n(s +x) — 1 as n — o0, by Lemma 6.2.6. O

The remark following Lemma 6.2.6 shows that the convergence in Lemma
6.2.7 may not be uniform.

Proof of Theorem 6.2.5. Suppose that x3 € (Ap+)bC(G) and consider the sequence
€.(9) = ¥n(g) — 1, where 1, is the function from Lemma 6.2.7. Since {x'&,}n

converges pointwise to 0 on the compact group G, it is weakly null in A, . Since
e (Ap+)bc(G), there are functions h, € Ap, such that Ix3x n — hall < 1/n
for every n, where || - || is the sup-norm on G. By integrating, if necessary, over
Ker (Xl/n), we can assume that h,, is constant on Ker (Xl/”)—cosets in G, thus

hn = qn (Xl/ ”) for some polynomial ¢,,. Since

() a) = (M) (XTI X TN ),

1 2n
where p,, is the polynomial p,(z) = ( ;_Z> , we have that x'v,, € Ar,, and

therefore, §,, € Ar, too. If S is the k-th partial sum of p,, then the j-th Cesaro
mean

S0t ST+ + 5
g =
J j+1

of p,, for j = 2n equals

PN 1 " 2n
o (z) = 4n(2n +1) Z(?n —-k+1) ( k) 2",

k=0
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Hence
L 2n—1 9
4"(2n+1)obr(2) = ;;) ( ]:‘) 2F + I;) (2n — k) (]:‘) P
= (I—F 2)?" + 2n (li—i— 22 = (2n 414 2) (14 2)?" L
Now

13X &n = hall = maxgea | (X* X 6n)(9) — hn(9)]
= maxgea |(X'6n)(9) — (X*hn)(9)| = maxgea |(x ¥n)(9) — X' (9) — X*(9) hn(9)|
— maxgeq |pn (X7(9)) — X*(9) — (x/7(9)) > 0 (17 (9)) |

= max.er |pa(z) — 2" — 237qa(2)].

n n 3n
Note that Ug;:(z)_z (2) = ag;:(z)_z —= " (2) (2), because the Ceséro mean ooy,
depends only on the first 2n terms of the Taylor series. Since the inequality
max ’07{ (z)’ < max |f(z)| holds for every f € A(T), we obtain
z€ zeE

2)—z" 2 _Zn_ZSn 2
maxer |J§;’( ) ()| = maxcer |a§;( ) an )(z)’

< maxer |pa(z) — 2" — 2374, (2)| = [xPx € — hall < 1/,

ie. ||o§;(z)7zn — 0 as n — oo. However, Ug;;(z)*zn (z) = ag;;(z)(z) —2"(n+
1)/(2n + 1), and thus 02"(2:)%”(—1) — 1/2 as n — oo for odd n, contrary

n

to the already obtained Haz"(z)_ZnH — 0. Hence ||x*x'&n — | #— 0 for any

hn € Ar,, and therefore ¢ (A[‘+)bC(G). The maximality of Ap, implies that

(Ap )59 = Ap,. O

6.3 Orthogonal measures to (G-disc algebras

Orthogonal measures are important tools for studying subspaces of uniform alge-
bras. In this section we describe the set of orthogonal measures to a G-disc algebra.
We use these results to characterize all primary ideals in shift-invariant algebras.

Let G be a compact group, whose dual I" = Gisa subgroup of R. A measure
p € M(G) is orthogonal to the G-disc algebra A, if and only if sp (1) C I'y \ {0}.
The space of measures orthogonal to Ar, is denoted by Aﬁr. The measures in A
are called also analytic measures with respect to the algebra Ar, (e.g. [G1]). The
celebrated F. and M. Riesz theorem asserts that the space of orthogonal measures
to the disc algebra A(D) is isometrically isomorphic to the space Hi = zH?!,
where H! is the classical Hardy space on T, i.e. A(D)t = H}. More precisely,
AD)* = Hl do.
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Let A,(C4) be the algebra of bounded continuous functions on C; that are
analytic in the upper half-plane C, . By the classical Phragmen-Lindel6f principle
(e.8.G2]), for any f € 4,(Cy),

sup |f(2)] = sup | f(t)]- (6.3)

zeCy
Hence the restriction Ay(R) = {flr: f € Ay(C4)} of 4,(C4) on R is a closed
i —1
1+t
that maps R into the unit circle T. Denote by H*(R) = H'! o w the space of
dt

functions in L' (R, ) —|—t2> of type how with h € H', and let H}(R) = H{ o
w= (zHY) ow = w- (H' ow) = w- H'(R). Since A(D)* = H} do, then the
space Hy owd (w*o) = Hy(R) -
orthogonal to A(R).

algebra in the sup-norm. Let w be the fractional linear transformation w(t) =

- equals the space Ay(R)* of measures on R

Let APr, (R)* be the set of measures u € M(R) on R that are orthogonal
to the algebra APr, (R) of almost periodic functions on R with spectrum in Iy =

I'N Ry, Since APr, (R) is generated by the functions eiat, a € I'y, we see that
p € APp, (R)* if and only if /emt dp =0 for every a € I'y.
R

Proposition 6.3.1. For any measure p € M(R), the following are equivalent:

(1) /emt dp =0 for every a € I'y,

R
dt
.. 1
(i) pe HGR) -\ o
thus AP (R): = HYR dt
us APr, (R)" = Hi(R)- |\ .

dt
Proof. Tf € H} - Ty then clearly u € A,(R)*, which implies (ii). If p €
APF+ (R)L, then

/emt du(t) =0, for any a € I'y, (6.4)
R

and hence / etat du(t) =0 for all @ € Ry by the continuity argument. Conse-

R
quently, the Fourier transform of p vanishes on Ry, and therefore p belongs to

Hi(R) - - (e.g. [G1]). O
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Let j,: R — G be the standard embedding of R into a dense subgroup of G
with 5,(0) = . Since A, |j(R) =~ Ar, oj, = APr, (R), we obtain the following

Corollary 6.3.2. A measure p on R is orthogonal to algebra Ar, o j, if and only

. . 1 dt
ifu € Hy(R) Equivalently, (Ar, ’j(R)) = H!(R) - "

B

Without loss of generality we can assume that 27 € I'. Denote K = Ker (*™)
= {g €G: x*(g9) = 1}. The Cartesian product G=KxRisa locally compact
abelian group, contained in the set K x C,. Consider the algebra A,(K x C4)
of functions f(g,z) that are continuous on K x C,, and analytic in z, i.e. for
every fixed g € K the function z — f(g,z) belongs to Ay(Cy). Let Ay(G) =
Ap(KxCy) ’é be the restriction of the space Ay(K xC4) on G = K xR. According

to (6.3) for every f € Ap(K x C1) we have

sup  |f(g,2)| = sup |f(g,2)]|.
(9,2)EKXCy (9,2)€G

Therefore, Ap(K x C4) and A,(G) are isometric and isomorphic uniform algebras.

Denote by M(G) and M(G) the spaces of finite Borel measures on G and
G correspondingly. Clearly, the set Ay(G)* of measures on G orthogonal to the

algebra Ap(G) is contained in M (G). Let M} (G) be the set of measures on G, for
which there exist probability measures v on K, such that

ng0)- ()% | '), (6.5)

dt ) such that the functions ¢ —
1+¢2
h(g,t) are in H}(R) for v-almost every g € K.

where h(g,t) are functions in L' (dl/(g) X

Proposition 6.3.3. A measure pn € M(G) is orthogonal to the algebra Ay(G) if and

only if p € M3(G), i.e. Ap(G)t = MI(Q).

Proof. We embed naturally C(K) into Ay(G) by f(g,t) = f(g), f € C(K). Ac-
cording to a version of the Krein-Milman theorem (e.g. [R7]), every measure

p € Ap(G)* has the form du(g,t) = dv(g) x dv,(t), where v is a probability
measure on K, and {vy}sex is a family of measures on Ry = {g} x R C G,

such that v, € Ay(G)* for v-almost every g € K. Since the restriction of A4,(G)

dt
on R, is A(R), then by Proposition 6.3.1 we have that v,(t) € Hy(R) - Lt
t
The measures p and dv(g) X L2 are mutually absolutely continuous. Conse-
dt dt
quently, du(g,t) = h(g,t) - (du(g) X N t2) with a h(g,t) € L (du(g) X N t2)
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such that h(g,t) -
fore, u € MA(G).

= dy,(t) € H}(R) - for v-almost all g € K. There-

dt dt
14 ¢2 1+ ¢t2

Conversely, if € ME(G) then du(g,t) = h(g,t) - (du(g) X 1j—tt2>’ where

h(g, -) € HLR) = Ay(R)* for v-almost all g € K. For any f € Ay(G) we have

/fd/t:/(/f(g,t)h(g,t) 1ft2)dV(g),
G K R

and the inner integral vanishes for v-almost all g € K. Therefore, u € Ab(é)J-.
Consequently, M} (G) = Ay(G)*, as claimed. O

For a given measure p € Ay(G)L the probability measure v on K in (6.5)
can be determined as follows. The measure p' = |u|/||p|| on G generates a positive
linear functional F' on C(K) C Ap(G) with unit norm, namely

- /fdu’, f e ).
G

We now take v to be the probability measure on K with F'(f) = / f dv for every

f € C(K), existing by the Riesz representation theorem.

Consider the homomorphism ¢ : G — G defined by 7a(g,t) = g+ g, where
gt = J.(t) € G, t € R. Clearly, g, € K for every n € Z. The kernel Ker (7¢) of 7 is
the subgroup P = {(gn, —n) € G:nce Z} (cf. Section 3.1), and the group G can be
obtained from the set K x [n, n+1] by identifying the points (g,n+1) and (g1 g, n).
Actually, mg generates a countably-sheeted covering without singularities of G
onto G. Observe that for any Y € I'y we have (y®org)(g,t) = €' y(g) € A,(G).
Consequently, the adjoint mapping to mg: G — G, m¢., maps the G-disc algebra
AF+ into Ab(é)

Proposition 6.3.4. The algebra ﬁm = {fong: f € Ar, } = A, omg coincides with
the subalgebra of functions in Ay(G) which are invariant under shifts by elements
of the group Ker (r¢).

Proof. Since Ker(mg) is the kernel of the homomorphism 7¢ : G — @, the algebra
Ar

N
function on G. Since the quotient group G /Ker(mg) is isomorphic to G, there is

= Ar, ong is Ker(mg)-invariant. Let f € A(G) be a Ker(ng)-invariant

a continuous function f on G such that f ong = f. We claim that f € Ar, .
Observe that the homomorphism 7 generates an isometric isomorphism between
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the uniform algebras [ﬁm,ﬂ C Ay(G) on G and [Ar,, f] on G. The maximality
of Ar, implies that [Ap,, f] coincides either with Ar, , or with C(G). In the
second case we get x® omg € Ab(é) for all @ € I', which is impossible, since
(X% oma)(g,t) = e'ya(g) ¢ Ay(G) for any a < 0. Therefore, [Ar,,f]=Ar,,and
hence fe /Tﬁ. ]

The projection 7g: G — G can be extended on K x C+ as a mapping
Tg: KxCy — ID)Z = Dg\{w} by Ta(g, t+iy) = e~ Yg g:. Note that T generates
a countably-sheeted covering without singularities and without a boundary from
K x Cy C K x C onto D,. The mapping f —— f o7 is an embedding of /TQ
into Ay(K x Cy).

For any u € M(G) one can define a net of measures {uo} C M(G) with the
following properties.

(i) sp (e ) is finite, and is contained in sp (u).

(i) ol < fpll-
(iii) The net {u,} converges in the weak*-topology to p.

If pu is an analytic measure for the algebra A, on G, then sp (u) C I’y \ {0}, and

so are all u, according to (i). Moreover, du, = fo do, where o is the normalized

Haar measure of G, and f, = Z caX® is a I'y-polynomial on G with a € sp (us) C
a€sS

sp ()-

Any Borel set E C G = K xR can be expressed in the form F = U EN én,

where G,, = K x [n,n+1). A measure p € M(G) can be lifted naturally to G as
a locally finite measure 11 € M(G), defined by

o0

iE)= Y p(ra(ENGy))

n—=—oo

for every Borel set £ C G. The arising mapping g — [ maps M(G) onto the
space MKer(m)(G) C M(G) of locally finite measures on G that are invariant
under shifts by elements of Ker (7g). Note that if o and 7 are the normalized
Haar measures on the groups G and K respectively, then do = d7 x dt. In general,
& has the form dp(g,t) = f(g, )(dl/ x dt), where v is a probability measure on
K and the function f € L'(dv(g) x dt) is invariant under Ker (7¢)-shifts. For
every Borel set E C K x [0, 1] we have B(E) = p(ra(E)). Therefore, dex[o.l] =

f(g, t)(dv x dt), where f € L' (dv(g) x dt)|[0 it and hence / fomgdn = /fd,u

K x[0,1] G
for every f € C(G).
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Denote by M} G) the set of measures 1 € Myer(ro)(G) for which
Ker(mg) (ra)

w(t) ~

e -dp(g,t) € M3(G), where w: R — T is the fractional linear transfor-
1

—t _ ~ t ~
mation w(t) = . 4t Clearly, ¢ € M} (G), since w dv x w(®) € M} (G).
i

1+t

er(rq)

Proposition 6.3.5. The mapping p — p maps Ai C M(G) into Méer(wc)(é) C

M(G).
t B -
Proof. For any v € M(G) the measure 1w—£ 22 -dv(g,t) belongs to M(G), and
satisfies the inequalities
1 w(t) -
< d H < 4|l :
o Ivle <" 7| < 4lvl (6.6)

where || - || and [ - || 5 are the standard norms in M(G) and M(G) respectively.

Hence, if a net of measures {uo} C M(G) converges in the weak*-topology to a
t _ ~
measure g € M(G), then the net {1w+ 12 'dlia} C M(G) also converges in the

t " ~
lw—if 22 -dp € M(G). Therefore, the properties (i),

(ii), (iii) from the above imply that it is enough to prove that g € Mf(er(m)(é)

weak*-topology to the measure

for measures p € Ai with finite spectrum only. If u € Ai has a finite spectrum

sp(u), then dp = f do, where f = Z c(’;kxa", ay € I'y. For every fixed g € K the

k=1
function f(g,t) = (f o mg)(g,t) belongs to HY(R). Hence, dji(g,t) = f(g,t)-do €
Mll(er(‘n'g)(G)' O

We will consider the functions in H' on T as H!-functions on R that are
periodic with period 1, i.e. that H'! is a subset of H*(R).

Lemma 6.3.6. If f € H' and the function e_iatf(t) belongs to H* — H*(R) for
1

some a > 0, then /f(t) dt = 0.
0

Proof. Any f € H' — H*(R) can be expressed as a formal Fourier series f(t) ~

- 1
cg + Z cfleﬂﬂ-nt, where ¢/ = /f(t) e—i2mnt gy Clearly, the Fourier series of the
0

n=1

function e At £(¢) is

oo
e_latf(t) N cge_mt + Z C£61(27m —a)t

n=1



190 Chapter 6. G-disc algebras

If e~ttf(4) € HY < H(R), for some a > 0, then also c¢fe ' € H' — H(R),

1
which is possible if and only if ¢} = 0, i.e. if / f@)dt =o0. 0
0

Recall that the point evaluation at the origin w of a G-disc D¢ is a linear
multiplicative functional of the G-disc algebra Ar. . Denote by 7, the correspond-

ing maximal ideal, i.e. J, = {f € Ag: f(w) = 0} of Ar,. The following theorem
describes the space Jj— of measures on G that are orthogonal to 7.

Theorem 6.3.7. For a measure p on G the following statements are equivalent.
(1) /X“du =0 foralla € 'y \ {0}, i.e. p € J+.

(H) ﬁ € Mll(er(rrc)(é)'

Equivalently, J = M&er(m)(é).

Proof. We will show that the lifting g — g maps J} onto M&er(m)(é). Recall
that the representing measure of 7, is the normalized Haar measure o of G (e.g.
[G1]). Since dim(Ar, /J.) = 1, we have J = Ai + Co. The mapping p +— [t
is a linear map of Ai into Mf(er(m)(G), and o to do = dr x dt € Mll(er(m)(G).
Therefore, it maps J+ = Ai + Co into Mf(er(m)(G).

Let u € M(G) be such that 1 € M} )(G). We claim that p € J+. Indeed,

Ker(mg

let
dfi(g,t) = f(g,t) - (dv(g) x dt), (6.7)

where f is Ker(mg)-invariant on R and the functions t — f(g,t) belong to H*
— H!(R) for v-almost all g € K (cf. the proof of Proposition 6.3.5). The function

fay() = / *(9) Flg,t) du(g) (6.8)

K

belongs to H! — H'(R) for all a € I';. Since [ is Ker(rg)-invariant, we have

dpi(g,t) = di(gn g,t —n) = f(gng,t —n) - (dv(gn g) x dt), (6.9)
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where (g, —n) € Ker (7g). Comparing (6.7) and (6.9) we see that f(g, g,t — n)

dv(gn g) = f(g,t) dv(g) for almost every ¢ € R. Hence, f(g,t+n)dv(g) = f(gn g, 1)
dv(gn g), and therefore

Fay(t ) = / X*(9) Flg.t +n) dv(g)

K

X“(9) f(gn g.t) dv(gn g) = /x“ (9-n9) f(g.t) dv(g) (6.10)

K

eI (g) (g, t) du(g) = eI f (1),

D

since X(g_n g) = e~ 1M\4(g). Therefore, flay(t+n)=e zanf(a (t). Let @u(t) =
'@ f,)(t). For a > 0 the functions etat and f(a)(t) belong to H'(R). Therefore,

@a(t) is a periodic function with period 1 in H' — H!(R). Applied to ¢, (t),
1

Lemma 6.3.6 yields /goa(t) dt = 0. Hence, for any a € I'y \ {0} we have
0

/x“ dp = / X" omg dji = / (x* o 7c)(g,t) f(g,t)(dv(g) x dt)

G Kx[0,1] Kx[0,1]

= [ et flan (i) x do) /mt [0 Fg.t) av(o)) ae

K x[0,1] K

wa(t)dt =0.

[
O\H
a

~.
QL
8
=
2
=
3
S~—
QL
~
Il
O\H

Consequently p L x@ for any a € I'y \ {0}, thus p € J+. O

6.4 Primary ideals of G-disc algebras

Finding descriptions of various types of ideals is an important and interesting issue
in uniform algebra theory. A proper ideal of an algebra is called a primary ideal
if it is contained in exactly one maximal ideal of the algebra. The primary ideals
of the disc algebra A(D) have simple descriptions. Namely, these are the ideals

of type (12 — A0 ) - A(D), where zyp € D and n € N. Each ideal of this type is
— Z0%

contained in the maximal ideal J., = {f € A(D): f(z0) = 0}. In this section
we describe all primary ideals of G-disc algebras Ar, of analytic functions on a
solenoidal group G.
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Let G be a solenoidal group, i.e. a compact group, whose dual group G is
dense in R. As in Section 6.3 we assume that 2 € I' = G. Recall that every
maximal ideal of a G-disc algebra Ar, is a point evaluation, i.e. of type Jrog =
{f e Ar,: f(rog) = 0} for some 7 ¢ g € D¢. Therefore, an ideal I C Ap, is
primary if and only if I C J,o4 for some 7o g € Dg. In the sequel we will consider
closed ideals only.

We recall that the hull of an ideal I of the algebra A, is the set
hull (I) = {rog € Dg: f(rog) = mpog(f) =0 for all f e I}.

Clearly, I C Ar, is a primary ideal if and only if its hull is a singleton. First
we describe the primary ideals of Ar, , whose hulls coincide with the origin w =
0 ¢ g € D¢ of the G-disc, i.e. which are subideals of the maximal ideal T, = {f €

Ap, : fw)=0}.

With any non-negative number b € R, we associate two ideals,

T =[ U x" %], and Z(07) = () x"To,
a€F+ GEF+
a>b a<b

where [ . | is the closure of the enclosed set. Note that J,(0%) = J,,. Indeed, if

f € Ju, then for any ¢ > 0 there is a I’y -polynomial g = Z ¢/ x® such that
acl’y

g(w) =0, and ||f — g|| < e. Clearly, g € J,(07). Since J,(07) is closed and ¢ is

arbitrary, it follows that f € J,(0"). Therefore, J,(0") = J,,. Similarly, one can

see that J,(07) = A,

Definition 6.4.1. An ideal I of the algebra Ar, is called
(i) right-continuous, if the set U x?I is dense in I,
a€ri\{0}
(i) left-continuous, if the set m x“I coincides with I.
a€Ts\{0}
Lemma 6.4.2. Let b € R,. Then:
(a) J., and J,(bT) are right-continuous ideals.
(b) Ju,(b7) is a left-continuous ideal.
(c) If b€ I'y, then J,(b%) = X T, while T,(b7) = x*Ar, .

Proof. The right-continuity of the ideal J, = J,(07) follows from Definition
6.4.1.1fb > 0 and a > b, a € I'y, then J,(b*) = x*J, is right-continuous, and
so is J,(b"). This proves (a), while (b) follows directly from Definition 6.4.1. If
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be Iy, then ijw U XH“JW = U X“jw = J.,(b"). One can show that
a€cly a €Iy
a>0 a>b

J(b7) = x*Ar, by similar arguments. This proves (c). O

Theorem 6.4.3. Any primary ideal J of the algebra Ar, which is contained in J,
is either of type J,(b™), or of type T, (b™) for some non-negative real number b.

For the proof we need several results from the theory of analytic functions.
We recall that any positive measure p on R, which is singular with respect to the
Lebesgue measure, generates a singular inner function on C, by

exp ( —i/ tji_tl du(t)).

R

It is well known (e.g. [G2]), that any non-vanishing function f € H' admits a
unique inner-outer factorization of type

f(z) = 0 3D 2By (2)84(2)Fy (2), (6.11)

on D, where |C| =1, s(f) > 0, Sy is a singular inner function, Fy is an outer
function, and By is a Blaschke product in D whose zeros coincide with the zeros
of f. If f is continuous on D, then the support of the singular measure py which
generates Sy is contained in the set of zeros Null (f) of f on T.

Note that H! = HY(D) = H*(C,) c H'(R). As in Section 6.3 we will
assume that H' is embedded into H!(R), i.e. we will regard the functions in H*
as functions in H'(R) that are periodic with period 1. We will indicate by Hj the
image of H! in H'(R).

Lemma 6.4.4. The natural analytic extension f of any function f € APr, (R) on
C4 admits a unique inner-outer factorization of type

F(z) = Cet 3 2By (2) S4(2) Fy(2), (6.12)

where |C| =1, s(f) = inf (sp (f)), and the functions By, Sy, Fy are analogous to
those in (6.11).

Proof. Since (6.11) holds for f, and APr, (R) C Hg, we need to show only that
s(f) = inf (sp (f )) It is well known that for every analytic almost periodic function

h on C the function h(z)/ e'0% is hounded on the upper half-plane C if and only
if b < ag = s(h) = inf (sp (h)). Therefore, ag > s(f) since all functions in (6.12)
are bounded on Cy (cf. [B]). Hence, g(t) = f(t)/e'%! belongs to APp, (R), and
0 < s(g) = s(f) — ao. Thus, s(f) > ag, and consequently, s(f) = ao. O
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Corollary 6.4.5. Let mg be the natural projection mg: G=KxR— G, where

K = Ker (x*"). For any f € Ar, the function f(g,t) = (f oma)(g,t) can be

expressed on G as

Flg,t) = %X (g) h(g, 1), (6.13)

where s(hg) = 0, a = s(f) = inf (sp (f)), and hy(t) = h(g,t) belongs to the space
H} for every g € K.

Proof. Clearly, the function fg(t) = f(g,t) belongs to APr, (R) for every g € K,

and sp (fg) = sp (f). Hence, sp (fg) does not depend on g € K. Now (6.13) follows
from Lemma 6.4.4. O

If By and By are two Blaschke products on C,, then the quotient By /By is
also a Blaschke product if and only if the set Null (B3) of zeros of By, counting
the multiplicities, is contained in Null (B). Let S; and S2 be two singular inner
functions on C4, and let uq and ps be positive singular measures on R generating
S7 and Ss, respectively. The function S7/S2 is also an inner function on C if and
only if 1 — po is a positive measure on R (cf. [G2]).

Lemma 6.4.6. Let F be a family of bounded analytic functions in C which do not
vanish simultaneously at any z € Co. If u(t) € L*°(R, dt) is a unimodular function,
i.e. |u(t)| = 1 almost everywhere on R, such that fu € H} for all f € F, then
there is a real number a € R and a function k(t) € H} with s(k) = inf (sp (k)) =0,

such that u(t) = k(t) ¢!t ¢ HL.

Proof. Let f € F, f # 0. Since f and fu are in Hg, they admit factorizations of

type (6.11). The function u can be expressed as a meromorphic function on C,.

Namely,

(F0) _ iz Brul) Splz) 610
f(z) By(2) 5¢(2)

for every z € C,, where a = s(fu) — s(f). Here we assume that By,/By and
S¢u/Ss are irreducible fractions. Therefore, By, and By have no common zeros,
and also the measures jif, and py, that generate the singular factors Sy, and Sy
correspondingly, are mutually singular. We claim that, By = Sy = 1. Assume, on
the contrary, that By(z) # 1, i.e. By(zo) = 0 for some zy € C4. Let g € F be
such that g(zo) # 0. Since the function B,/Bj is not a Blaschke product, then
gu ¢ H', contradicting the properties of F.

u(z) =

Assume now that Sy # 1 and let ¢ € supp (uyf). If ¢ € F is such that
g(to) # 0, then ¢y does not belong to the support of the measure py generating
the singular factor S, of g. Therefore, S,;/Sy is not a singular inner function. Con-

sequently, gu ¢ H}, contradicting the hypotheses on F. Hence, u(z) = emzk(z),
where k(z) = Bpu(2) Spu(2). This yields k(t) = e~ "@u(t) € HE, and s(k(t)) =
s(e_latu(t)) = 5(BfySfu) =0, as claimed. O
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Corollary 6.4.7. In the setting of Lemma 6.4.6, for any non-vanishing function
dt
h e L (R, 1 +t2> with fh € HY for all f € F, there exists a function k € Hg

with s(k) = 0, such that h(t) = k(t) 't for some a € R.

dt
Proof. Tt is known that a positive function g € L' (R, 14 t2> coincides with the

modulus of a function in Hy if and only if

Jroggte) ¢y >~

>
1+4+¢2
R

For every non-zero f € F' we have

dt dt dt
—oo</10g|f(t)h(t)| - :/log’f(t)| _ —|—/log’h(t)’ e
R R R

Since the first summand is finite, so is the second one. Hence there exists an outer
function ® € HE, such that |&(t)| = |h(t)| for almost all ¢ € R. Therefore, h = du
for some unimodular function u. It is easy to see that u satisfies the hypotheses
of Lemma 6.4.6 with the family ®F C Ay(Cy). O

As a direct consequence from Corollary 6.4.7 we see that e_mth(t) € Hi,

; d
and s (e " p(t)) = 0. For any subset F C L' (R, - t2> define the number

s(F)=inf {s(f): f€F, f#0}.

Corollary 6.4.8. The number a from Corollary 6.4.7 is not smaller than s(F), i.e.
a> —s(F).

Proof. Since s(k) = 0 and f(t) k(t) et ¢ Hi for any f € B, we have that
s(f)+a > 0. Hence a > —s(f) for any f € F, f # 0. O

Corollary 6.4.9. In the setting of Corollary 6.4.8 the function h belongs to H} if
s(F) =0.

Proof of Theorem 6.4.3. Let J be a primary ideal of Ap, that is contained in 7.
Let f € J, f#0,and u € J*. Since the measure f du belongs to J, Theorem

6.3.7 implies that (fdu)~ C My (G). Therefore, (f du)~ is of type

er(mq)

(f dp)~(g,t) = f(g,1) (dv(g) x dt), (6.15)
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where f1 is Ker(rg)-invariant, and the functions f(lg) = f1(g,t) belong to Hy for

v-almost all g € K. Since (fdu)” = f dji, where f = f omg, we have dp(g,t) =

h(g.t)(dv(g) x dt), where h(g,t) = f'(g,t)/f(g,t). Let h)(t) = h(g,t), and

]?(g) (t) = f(g,t). By (6.15), for all f € J and for v-almost every g we have
Ffhi) = fly € H. (6.16)

Since 7g(K x Cy) = Dg, and J C J,, then for every g € K the restriction of
J ={fomg: f € J} on the set {g} x C, satisfies the hypotheses of Lemma
6.4.6. By applying Corollary 6.4.7 to (6.16) we obtain h () = k(g)(t) "9l with
k() (t) € Hi, and s(k(g)(t)) = 0 for almost every g € K. Corollary 6.4.8 implies
that —s(f(g)) < ag, for almost every g. Since s(f(g)) equals inf (sp (f)), which
is independent of ¢ € K, f € J, we have that s(J) = inf {sp (f):fed f#
0} > —ay for v-almost every g. Therefore, dji(g,t) = k(g,t) elagt (dv(g) x dt),
where k(g,t) = ky(t) € Hg, and s(J) > —a, for v-almost all g € K. Hence if
a > s(J) > —ag, then a + ag > 0, which implies that the measure d(1%)(g,t) =
Y(g) €' dji(g,t) is in MIl(er(TrG)(G), i.e. the measure x*du belongs to J. Let
b> s(J). Since I = G is dense in R, there exist numbers a,c € Iy \ {0} with b=
a+c, and a > s(J). Because of x%dm € J}, we have 0 = [ x“x"dp = /Xb du.
G G
Since y is an arbitrary measure in J*, we deduce that x* € .J, and therefore,
J.s(s(J)T) C J. There are two possible cases.

Case 1. s(J) & sp(f) for any f € J. Let f € J and € > 0. By Theorem

3.3.2 there is a I'y-polynomial g = Zcix‘“ € Ar, with sp(g) C sp(f), so that
IIf — glle < e. Since a; € sp (f), llgli < n, we see that a; > s(J). Therefore,
x“ belongs to J, (s(J)T), and so does g. Since J, (s(J)T) is closed and £ > 0 is
arbitrary, we see that f € J,(s(J)"). Therefore, J = 7, (s(J)").

Case 2. s(J) € sp(f) for some f € J. We claim that in this case J =
XS(J)AQ. Since s(J) € sp(f) = inf (sp (f))7 by the Besicovitch theorem (e.g.
[B]) we have that f = y*h, where h € Ar,, B(w) # 0. Consider the ideal
Ji1 = hAp, + J of Ap, . Since J C J,, and B(w) # 0, Ji coincides with the
algebra Ar, . Hence there is a k € Ar, and ¢ € J so that hk + ¢ = 1. By
multiplying with x*(), we get fk + x*D¢ = x*/). Since f and ¢ belong to
J, it follows that x*(/) € J, and therefore, XS(J)AF+ C J. For every g € J we
have inf (sp (9)) > s(J), and therefore, g/x*/) € Ap,. Hence g € x*\DAr,, ie.
J C XS(J)AF+. Thus, J = XS(J)AF+ = jw(s(,])*). O

As a consequence we obtain the following complete description of primary
ideals inside 7,,.
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Corollary 6.4.10. If J is a primary ideal of the algebra Ap,_ that is contained in
Jo, then either J = x*D T, or, J = X“”(J)Am.

The proof follows immediately from Lemma 6.4.2(c) and Theorem 6.4.3.

Next we describe primary ideals of a G-disc algebra Ar, which are contained
in maximal ideals other than J,,, where w is the origin of the G-disc Dg.

Let J be a primary ideal of Ap,_, which is contained in a maximal ideal
Trog, T > 0. Denote by J= {]? f € J} the Gelfand transform of J on D¢. Without
loss of generality we can assume that r ¢ g = j,(20) for some zg € C; = C; \ R.
Denote J(Cy) = j\%(c” and J(R) = Ajl(R) = J(Cy)|j, ). The set J(Cy) is a
subalgebra of A;(C..), the algebra of bounded analytic functions in C; .. Let ord,, f
be the multiplicity of the zero of fo Jus [ € J at zg. Set ord,,J = }gg(ordZOf).

Denote by J(R)*+ = J+ N M(j,(R)) the space of measures on j,(R) C G which
are orthogonal to J(R). Recall that Hj(R) = w- H'(R) = w- (H' ow) = Hj ow,

—t _
where w(t) = ! e R — T. Denote by u the unimodular function u(z) = =T
i

z—2z0

Lemma 6.4.11. If J is a primary ideal of Ar, contained in some mazimal ideal
Trog, >0, then
dt

TR = H®)- .

t—z
0, and n = ord,,J.

where u(t) =
~ 2

Proof. For any f € J we have f o Ji(2) = u™(2)fo(z), where z € C; and
fo € A(Cy). Hence the set J,(Cy) = u™ - J(CL) is a subspace of Ay(C).
The definition of n implies that for every z € C, there is function f € J,(Cy)
which does not vanish at j,(z). Therefore, we can apply Lemma 6.4.6 to J,,(Cy).
Since J C Jrog, 7 > 0, we have s(J) = 0, thus s (Jn((C+)) = s(J) = 0. Applying

Lemma 6.4.6, Corollary 6.4.7 and Corollary 6.4.8 to J,(R) = Jn((C+)|j =) Ve

obtain J,,(R)* = H}(R) - 1—c‘l_tt2' Since J(R)* = u™ - J,(R)*, we conclude that
n dt .

JR): =u™- HY(R) - T claimed. O

Note that the restriction of the covering 7g: K xCy — ]D)*G on{g}xCy, g€
K, generates an embedding of the upper half-plane C into Dg¢.

Lemma 6.4.12. Let J be a primary ideal of Ar, contained in some Jrog, 7 > 0.
If p is a measure on G which is orthogonal to J and for which u|jr) = 0, then

[ € Ag, .
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Proof. The set R = ’/Tal(jZ(R)) ={(g,1) € G: malg,t) € 4o(R)} can be expressed

as R = U {gn} x R. Since ,u| @ = 0 for the lifting @ of p on K x Cy (cf.

Section 6. 3) we have ,u|]R = 0. Since for any f € J the measure fdu belongs to
AI{ , it follows that fdfi = f1(g, 1) (dv(g) x dt) belongs to the space Mll(er(m)(G)
introduced in Section 6.3, and hence i = h(g,t)(dv(g) x dt) with h = f'/f,
where f = fo mg. We claim that g € Méer(m)(é). By the assumptions we have
that v({gn}n>_.) = 0. Hence, for v-almost all g € K the space J o %G|{g}><(C+
does not vanish at any point of {g} x C,, and s (jo %G’{Q}XC+) =s(J) = 0.
As in the proof of Theorem 6.4.3 we see that h,)(t) = h(g,t) € Hg for v-almost
all g € K, ie. 1 € MIl(er(TrG)(G)7 as desired. Therefore, y € J+ by Theorem
6.3.7. In fact, p € Af r, C Jt. Indeed, since J+ = Ai + Co, we see that
i = p1 + co for some measure pu; € Ai and ¢ € C. Let f(w) # 0 for some
f € J. Then 0= /fdu = /fdul —|—cf(w) = cf(w), since /fdul = 0. Hence

G G G
c =0, and consequently, u =y € Ai. O

Lemma 6.4.13. If J is a primary ideal of Ar,, such that J C Jrog for somer > 0,
then J+ = Af: + J(R)J—,

Proof. Note that since J(R J| (R), we have J(R)* C J* N M (j,(R)). Clearly,
AI{ C J+, wherefrom Al +J(R)L C Jt.

Conversely, let 1 € J*, and let p/ = u’ (®)" For any f € J we have fdu €
AF , and therefore, fdj € Ker(m)(G) Hence dii = h(g,t)(dv(g) x dt), and
f(g)( )f(g)( ) = f(g,t) h(g,t) € HZ for v-almost all g € K (cf. (6.16)). The support

of [i’ is inside R = U {gn} x R, and

n—=—oo

Z h(gn,t) (dv(gn) x dt).
For the measure 7 = u — u/, we have v € J+ and ’y|j ® = 0. Therefore, v €

Aﬁr by Lemma 6.4.12. Hence, u = v + u, where v € Ai. Note that if fdu €

dt
jL(R))J' = H}(R) - _ by Corollary 6.3.2. It follows that

Af, , then fdu' € (Ar,

/ fojdu =0forany f € J, and hence i/ € J(R)*. Consequently, y = y4pu' =

J (R)
v+ pliw) € Ai + J(R)*, as claimed. 0
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While the sum in Lemma 6.4.13 might not be direct, the space J(R)* has a

dt
. . 1 . 1 ! 1
direct complement in Ay, . Indeed, if p € Ax,, then p' = p ) € Hy(R) - -
- Ai. Hence pt = pux + 1|, (r), where fi.;, (m) = 0. Therefore,
dt
L _ gt 1
Ar, = (A7)« ® Hy(R) - 142
dt
where (Aﬁr)* = {u. : p € Ai}. Since J(R)* > Hy (R) - L4 g2 e see that

Jt=Af, + JR)T = (Ap,). © J(R)*.

Theorem 6.4.14. If J is a primary ideal of Ar, , which is contained in some maz-
imal ideal Jrog, v > 0, then Jt =" Aﬁr, where u(g) is the unimodular Borel
function on G defined by

t— 2o .
t) = h - SIS Rv
u(g):{u() [z VheBG=0i Jo(R)
1 when ¢ ¢ j,(R).
. . 1 iR n 1 dt
Proof. Indeed, Lemma 6.4.11 implies that J— = (Ap+)* +u" - Hy(R) - 142
" dt wal
= (u (48), @ BIR) - | ) = Ak since w (AF,). = (4 ). O

The next theorem shows that every primary ideal .J in Ar, which is contained
in some Jrog, 7 > 0, is uniquely determined by a natural parameter n € N.

Theorem 6.4.15. If J is a primary ideal of Ar, contained in some mazximal ideal
Trog, 7 >0, then J =1, ={f € Ar_: ord.,f > n}, where n = ord,,J.

Proof. The inclusion J C I, is clear. We claim that I,, C J, or, equivalently,
that I D J*. If f € I,, then f(j,(t)) = u(t) fo(t), where fo(t) € Ap(R). Hence

dt
u" - H (R) - _ C I}, and thus JJ,J;(R) C Il. Clearly, Aﬁr C Il. Therefore,
> ij(R) + Ai = J+. Consequently, I,, C J. |

Corollary 6.4.16. Every primary ideal J in Jrog, 7 > 0, has a finite codimension
m AF+ .

Proof. By Theorem 6.4.15, J = I, with n = ord,,J. Let f € Ar_ be a function
with ord.,f =n — 1. The ideal I,_; = {f € Ap, : ord.,f > n — 1} is isomorphic
to Cf + J. Similarly, I,,_o = Cg + Cf + J, where ord,,g = n — 2. Proceeding
inductively, we obtain that Ar, = Cfo+Cfi +---+Cf,_1 +J, where ord,, fr =
k. O

It remains to describe primary ideals J C Ap, that are contained in maximal
ideals of type Jy; = J10g, Where g is in the Shilov boundary 0Ar, = G. Without
loss of generality we can assume that ¢ = ¢ = 5,(0) € j,(R). Let Sf(t) be the
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singular component of a function f € H}, and let u ¢ be a positive singular measure
on R that generates S;(t). The measure py can be expressed uniquely as the sum
of two singular measures, namely, s = i’ +cfdo, where dy is the Dirac measure at
J.(0) =1 € 5,(R). Hence, S¢(t) = S;{(t) S} (t), where S;{(t) and S} (t) are singular
inner functions generated by the measures ,u} and cydg correspondingly. Observe
that S (t) = eier/t,

Let J be a primary ideal of the algebra Ar, , such that J C J, = Jj, (o),

dt

- +t2>\ H'(R) such that fh € H} for all
f € J(R). Using the same arguments as in Lemma 6.4.6, Corollary 6.4.7 and 6.4.8,
one can show that

and let h be a function in h € L* <R

h(t) = efCh/tg (1), (6.17)

where ¢, > 0, k(t) € Hg, S, (t) =1, and ¢p, < }nf,cﬂ
€

. dt it
For any ¢ > 0 let I, = eic/t . H;(R) - s Since ¢~ /1. H;(R) € Hy(R)

1+
.

for all ¢ > 0, we have I, D e ¢ /t. I.=1I._o for any ¢ : 0 < ¢’ < c. Therefore,

I'cI.when 0 < ¢ <ec.

Theorem 6.4.17. For any primary ideal J of Ar, contained in J, = Jj, (o) there
ezists a non-negative number ¢ > 0 such that Jt = Ai + Céog + 1.

Proof. We perform the proof in four steps.

Step 1. Let u € J(R)* be a measure on R, which is singular with respect to
the Lebesgue measure. We claim that u = ¢dp for a complex number ¢ € C. Indeed,
suppose, on the contrary, that sp (i) contains a point tg € R, ¢y # 0, and consider
a function f € J with f(t9) # 0. The non-zero measure f du belongs to (A, )j-(R),
and is singular with respect to Lebesgue measure. However, this is impossible,

since fdu € H}(R) -
therefore p € Cép.

dt
i by Proposition 6.3.1. Consequently, sp(u) = {0}, and

Step 2. Let u € J(R)* be a measure that is absolutely continuous with

dt dt dt
respect to Ty ie du=h(t)- L2 where h(t) € L (R, 14 t2>' Since
dt
dp € Hy(R) -
f 1% € O( ) 1 —|—t2

for every f € J, it follows that fh € H(R). By (6.17) we have

h(t) = i/ tr(t), (6.18)
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where ¢ < s(J) = inf {¢;: f € J(R)}, and k € H'(R). We claim that k € H}(R).
Indeed, for every f € J; r) we have

o-/f 0, = OO,

Since we can choose an f € J with ]?(z) # 0, we deduce that k(i) = 0, i.e.
k € HY(R). Thus, p € I, and consequently, J(R): C I.

Step 3. Let u be an arbitrary measure in J+, and let u/ = u’ (R Since

dt
J_ _ ol
fdu € Ay for any f € J, then fdu' € AFJ] ®) = H;(R) - i by Corollary
6.3.2. Therefore, / fdy/ =0 for any f € J, and hence p/ € J(R)*. Steps 1 and

J.(R)
- ; d
2 imply that dpi’ = cdp + ew/tk(t) g2 where k € Hi(R), and ¢ < s(J) = co.

The argument from the proof of Lemma 6.4.12 shows that the measure v = u— p’
belongs to Ai. Therefore, p = v+ ' € Ai + Cdp + I.. Since I. C I,,, we see

that J+ C Ay, +Cdo + I,

Step 4. We claim that I, C J*. Let u € I.,. Any function f € J can be
expressed on R as f(t) = e_lco/tk(t), where k € H}(R). Similarly,

; dt
dp = "0/ th(t) -
p=e ®) L e
dt
where h € H}(R), and hence fdu € H}(R) - e This implies that I, C J*.
Therefore, J* = Ai + Cdp + I, as claimed. O

6.5 Notes

Generalized analytic functions, as well as G-disc algebras, were introduced by
Arens and Singer in [AS1]. They have been intensively studied afterwards by
Hoffman, Helson, Lowdenslager, Kaufman, de Leeuw, Glicksberg, Gamelin, Muhly,
Curto, Xia, Asmar, Montgomery-Smith, Yale, Grigoryan, Tonev and others. Sys-
tematic expositions on G-disc algebras are given, for instance, in [G1, T2], where
one can find also a complete bibliography on the matter.

The results on Bourgain algebras of G-disc algebras are from [TY, TY1].
Most of the results on orthogonal measures to G-disc algebras and primary ideals
of G-disc algebras are from [G15].



Chapter 7

Harmonicity on groups and
(G-discs

In this chapter we extend the notions of harmonic and HP-functions for compact
groups G and on corresponding G-discs. We explore also their boundary behavior,
and prove corresponding Fatou type theorems. The results hold for general shift-
invariant algebras Ag, and consequently to the particular cases of of Hg°-algebras
and algebras APg of almost periodic functions, considered earlier.

7.1 Harmonic functions on groups and G-discs

The basic idea in extending the notion of harmonicity on groups and G discs is to
preserve the main properties of harmonic functions on the unit disc D, presented
in Chapter 2.

Let G be a compact abelian group whose dual group I' = Gisa subgroup
of R. We call the set Dg(r) = Dg)’r] = {gog €Dg:0< r} a G-disc with radius

r <1

We will denote by m,..4 the representing measure on G of the point r ¢ g € D¢
for the G-disc algebra A(D¢). The measure m,.., we will denote also by m,.. Note
that in the classical setting dm,.(6) = P,.(0) df, where

1—12

P (0) = 1—2rcosf +r2

is the Poisson kernel on the unit disc D. A real-valued harmonic function u on
D can be defined in three standard ways. Firstly, v is harmonic if it is a solution
of the Laplace equation, i.e. u is the real part of a holomorphic function on D.
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Secondly, u is harmonic, if the Fourier coefficients c'~ of its r-traces u, do not
depend on r (cf. Theorem 2.4.1). And thirdly, u is harmonic if the equations
1 2m
up, (e) = u(rie’) = or /ur2 (ei(tfo)) P.(0)df = uy, (ei(tfo)) *xm,(e?), (7.1)
0
hold for every r1,79, 0 < 71 < ro < 1, where r = r1/ry (cf. Corollary 2.4.2). We

will follow the second and third way to generalize the notion of harmonicity on

G-discs D¢ and groups. For approaches based on the first definition of harmonicity
see, e.g. ([ABG]).

For a f € C(D¢) denote by f,. the r-trace of f on r o G, namely f.(g) =
flrog).
Definition 7.1.1. A set {f(r)}re[
family of functions if

0.1) of functions on G is said to be a harmonic

£ (g) = (£ % m,) () = / 02 (gh) dm, (k)
G

for any 0 <r; < rqe <1, where r =71 /ro.

Therefore, if { f (T)} is a holomorphic family of functions, then

rel0,1)

£ (g) = / 02 (gh) dmy (k) = / £ (gh™Yy dme (B) = (SO % m,)(g)
G

G
for any 0 <r; < ro <1, where r = r1/ro.

Definition 7.1.2. A function f € C(Dg¢) is said to be harmonic on Dy, if the family
{fr}rejo,1) of its r-traces is a harmonic family of functions, i.e. if

Frn(@) = (fra ) (g) = / fra(gh) dim, () (7.2)
G

for any 0 <ry < ro <1, where r = r1/ro.

In other words, f is harmonic on D¢ if and only if f|r10G = (f’moc)* My /1y
whenever 11,72, 0 < r; < 1o < 1. We denote by H(D¢) the space of harmonic func-
tions on Dg¢. It is called a Stepanov space. Clearly, H(Dg) = Hr(D¢) + iHr(Dg),
where Hg(D¢) is the space of real-valued harmonic functions on Dg. Observe
that every function f € O(Dg) satisfies the condition f., = fr, * my, /r(g),0 <
r1 < r2 < 1. Therefore, O(Dg) C H(Dg) = Hr(Dg) + iHr(Dq), and also
OD¢g)+0O(D¢) C H(Dg). Consequently, Re f € Hr(Dg) for every f € O(Dg). If
u € H(D), then the function wo x* is harmonic on D¢ for every a € I'. Indeed, if
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u = Re f for some f € O(D), then fox® € O(Dg). Hence, uo x* = (Re f) o x* =
Re (f o x*) € Hr(Dg). The above remark shows that the space Hg(Dt) of real-
valued harmonic functions on G = T coincides with the space of classical harmonic
functions Hr(D) on the unit disc D. However, contrary to the classical situation,
not every real-valued harmonic function on D¢ is the real part of a function in
O(Dg). To see this, consider the operator T: O(Dg) — H(Dg) : f — Ref.
Note that T is linear over R. If f € O(D¢) and f ~ Z c£x“ is its Fourier expan-
acsS
sion, the Fourier series of T'(f) is given by Z Iy where
acl’

cf/2 when a >0,
' =4 ¢//2 whena <0,
Recy when a = 0.

Theorem 7.1.3. The operator T: O(Dg) — H(Dg): f — Ref is surjective if
and only if I' = G is isomorphic to Z.

Proof. f I' = Z, then D¢ is the unit disc D in C, and O(Dg) is the space of
analytic functions on D, i.e. O(Dg) = O(D), thus H(D¢g) = H(D). According to
Theorem 2.3.2, in this case T'(O(D)) = H(D), as claimed.

If I is not isomorphic to Z, then I' is dense in R. Assume that p1(z), p2(2) are
two polynomials on C with p;(0) = p2(0) = 0. We claim that for any r1,79, 0 <
r1,72 < 1, and each a € I\ {0} there is a b € I" such that:

(i) If [x*(r o g)| < ra, then |x*(r o g)| < r1 for some point ro g € D.
(ii) There is a point toh € Dg such that [x*(toh)|] < 71 and
Ip2(xP(toh))| > (1/2)%?( p2 0 X"

Indeed, if s = /r, then ’Xa(rog)| < 1 on Dg(s). Note that if b — 0, then
r* — 1, thus the set x”(D¢(s)) expands to the open unit disc D as b — 0.
Hence, we can choose a ¢ € R such that max |ps| on x° (Dg(r)) is greater than
(1/2) r%zéx |p2 o Xc’. Consider a sequence of polynomials {pn(z)}f; on D such

1
that

(i) pn(0) =0,

(ii) max |pn(2)| > n, and

(iii) max |Re (pn(z))| < 1/4™.

Let {t,}22, be a sequence of positive numbers such that |p,(z)| < 1/4™ whenever
|z| < t,. By the previous remarks we can choose a sequence {a,}52; in R such
that:
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(a) knan < ap—1, n > 2, where k, is the order of p,(z).

(b) If r o g € Dg and ’Xa" (r <>g)| < tn, then |Xa"—1(7" <>g)| < tn—1, and there is a
point r,, ¢ g, € D¢, such that |X““*1 (rn o gn)| < tn—1,and ’pn (X“" (rp o gn)) ’

> (1/2) max [pn.

By definition, |X‘“ (rp © gn)| < t; for all n. Consider the function

h=3T(pox™)
n=1

Since T (py, 0 X““) = Re (pp o x*) € H(Dg), property (iii) from the above implies

that sup |h| < Z (1/4™) < 1, thus h is a well-defined harmonic function on Dg¢.

n=1

Suppose7 on the contrary, that there is an analytic function f € O(D¢g) with
T(f)=h.If Gy, = Ker (x*) = {g € G: x*(g) = 1}, and oy, is the Haar measure
of G, consider the function

fm(rog):/f(rogk)dam(k),

Gm

on D¢. Note that sp (fm) = {a € sp (f): a/an € N}. Therefore,

Re fm(rog) = / Re f(r o gk) dop (k) = / h(r o gk) do, (k)
Gm Gm

_Z/ pnoXa" (7“<>g/<i dam Z /pnOXa" Tng)dUm(k)>

n= lG’!YL

=T Z/PnOX" )(r o gk) dom, (k :Re Z/pnoxa" rogk)dam(k)>
Property (a) from the above implies

> [ aox) o gt don ) =Y [ (aox)r o gh) dow(h)

n=lqg "=lq,,

Consequently, Re f,(r ¢ g) Z / Re (prn © x*)(r o gk) do.,, (k). Therefore,



7.1. Harmonic functions on groups and G-discs 207
fm(rog) = Z /(pn o x*)(r o gk)dom (k) + f(w), and hence
n=1

sup |f = f(w)] > sup |fn = F(W)| = |fon(rn © gn) — fw)]

> om0 (r 0. 9)| = | 3 pa(x® (r 0 gh)|
n=1

> (1/2) max |ppm| =1 > (m/2) = 1.

Since Dg, C Dg, we obtain that f is unbounded at w € Dg,, in contradiction
with f € O(Dg). Consequently, h ¢ T(O(D¢)), and hence T (A(D¢)) is a proper
subalgebra of H(D¢). O

Let A(Dg(r)) be the uniform closure [A(Dg)’]%(r)]
the algebra A(D¢) on the G-disc Dg(r) with radius r < 1. Since A(Dg(r)) is
generated by the semigroup {)?“|DG @€ I +} =~ [y, it is isometrically iso-
morphic to the G-disc algebra Ar, = A(D¢g). Let O(Dg) denote the set of
continuous functions on the open G-disc, that are locally approximable on Dg
by analytic functions in Dg. Clearly, the restriction algebra O(D¢) ’D (ry COD-
tains A(Dg) |]D () It is easy to see that the set 7o G = {rog: g € G} is the
Shilov boundary of the uniform closures of both these algebras. Consequently,
A(DG)’D(;(T) C O(Dg) |D @ C [AD = A(D¢(r)), by the maximality of
the algebra A(Dg(r)) = Ar, .

Proposition 7.1.4. A function f € C(Dg) belongs to the class O(Dg), if and only if
the restriction of f on every closed G-disc Dg(r) belongs to the algebra A(De(r)).

of the restriction of

G)|Dg(r)]

Proof. The remark from the above implies that O(D¢)lp ) C A(Dg(r)) for
any r < 1. Conversely, given a pog € Dg, let r1 be a positive number with
0 < rp < 1. If the restriction of f € C(Dg) on the G-disc Dg(r1) belongs to the
algebra Ap, (Dg(r1)), then f is an analytic function on the open set Dg(r1), and
therefore, f belongs to O(Dg). |

For any f € C(Dg) and r < 1 define the dilation f, of f by f.(0og) =
frou(00g) = f(roog), 0 < p < 1. Note that f — f, maps the algebra C’(ID)G ))
isometrically and isomorphically onto C(D¢g). The inverse mapping is given by
fr—=fijr: C(Dg) — C(Da(r)): fijr(eog) = f((e/r)og), 0 <0<

Proposition 7.1.5. A function f € C(D¢g) belongs to O(D¢g), if and only if it is
harmonic on Dg and at least one of its r-traces f, = 0 <r <1 belongs to
Ar,.

f|r<>G’

Proof. Proof. By the remarks before Theorem 7.1.3, it is enough to prove only
the sufficiency part. Assume that f,. € Ap, for some r € (0,1). If 7 < 7, then
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fri = fr % my /., according to Definition 7.1.2. By (3.7) we have that sp (f,) C
sp (fr) C I'y. Hence, f,, € Ar, . Note that since m,. is real-valued, then

/X“dmr = /X“dmr =re.

G G

Therefore, sp (m,) = I', and by (3.7) we have sp (f,,) = sp (f) for every r4 > r,
since f. = fr, x m; ;... We obtain that all r-traces f, of f belong to Ar, . Note
that the restriction of f on every closed G-disc D¢ (r) coincides with the function
]/”; € A(Dg), i.e. f belongs to the algebra A(IDg(r)). Proposition 7.1.4 now implies
that f € O(Dg). O

Since the Gelfand transform Y%(r o g) = 71%x%(g) of any x*, a € I'y, be-
longs to O(Dg), it is a harmonic function on D¢. Therefore, every I'y-polynomial
n

Z dpx® on G admits a harmonic extension on Dg.
k=1
Lemma 7.1.6. If u is harmonic on D¢, then

[ |loo = sUp |tr, | < sUp [ty | = [[thry [0
geG geG

for every r1,19, 0 <1y <719 < 1.

Proof. According to (7.2), ur,(g) = ur, * my-(g), where r = r1/ra, then
[tr [loo = lltiry x ma|| < |tr, [lsollmar || = lltir; ||oo,

since m, is a probability measure. Consequently, ||m,| = 1. O

Let He(Dg) = H(Dg) N C(Dg) be the space of continuous functions on D¢
that are harmonic on Dg.

Lemma 7.1.7. Fvery continuous function on G can be extended uniquely on Dg as
a harmonic function on Dg, i.e. Cr(G) = H.(Dg).

Proof. If f is a continuous function on G, then by the Stone-Weierstrass theorem
there is a sequence of linear combinations of characters p,, € P(G) on D¢ uniformly
converging on G to f. Lemma 7.1.6 implies that sup |p, — pm| = sup [pn — pm|, and
G D¢
therefore, {py, } is a Cauchy sequence in the sup-norm on Dg. Let f € Cr(D¢g) be
the uniform limit of this sequence. Since (pn)r, € O(Dg) C He(Dg), we deduce
that fe H.(D¢g). Hence fis a harmonic function on D¢, and its restriction on G
is f. O

For any f € C(D¢) and r < 1, the trace f,.(g) = f(rog) of f on roG admits
the series expansion

Fr(g) ~ D b (r)xorlel(g),

a€l’
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1
where ¢/ lal /fr do(g) = la] ¢l As in the classical setting, the
r
numbers ¢/ (r) in general depend continuously on r € (0, 1).

Theorem 7.1.8. A function uw € C(Dg) is harmonic on Dg if and only if the
coefficients c¥(r) are independent of v for any a € R.

Proof. Let u € HDg), 0 <11 <1y <1,and r = " The Fubini theorem implies
T2
that

) = 1y [unlx (o) o o [ ([ untahyam @) () doto)

G G G

|
5
E -
—
N
—
e
3
<
=

o)) dme ) = () ttr2) [ @m0
G

9 ‘a‘u a _ T2 lal 1 ‘a‘u o
(;2) ertapxron = (12) (1)) citra) = citr).

Conversely, let f € C(Dg) be a function with coefficients ¢/ (1) = c(a, f), a €
I', independent of r. If v = f, is the p-dilation of f, i.e. v(sog) = f(osog) for
some p, 0 < p < 1, then ¢/ (rg) = ¢/ (r) = c(a, f), v € C(Dg), and for all @ € R
and 0 < p < 1 we have

cle(r)y =c2(r) = :%;
- rllal /vr(g)x*a(g) do(g) = rllal /f(rgog) “(g)do(g)
G G
= r|1a| /fw(g) X"“(g)do(g) = T‘la‘ cre = T‘la‘ (or)llef (ro) = o0l c(a, f).
G

By Lemma 7.1.7 there exists a u € H.(Dg), such that v = v on G. Thus
c(r) = cla,u) = (1) = (1) = c(r) for all a € I' C I'y and r € (0,1). The

a
uniqueness of Fourier series implies that u = v on D¢, thus v € H.(Dg). Hence,

vy (g) = /vrz (gh) dmy(h), where r =11 /ro if 0 < r; < re < 1. Consequently,
G

fri(@09) = v (10g) = vy, (g) = / Ory(gh) dm (k) = / fra(0 (gh)) dim (B).
G

G
By letting ¢ 1 we obtain f,, (g /fr2 gh)dm,.(h) = (fr, x m;)(g), and

therefore, f € H.(D¢). O
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7.2 [P-harmonicity on groups and G-discs

There are close connections between harmonic functions on the unit disc T and
the Hardy space HP on the unit circle. Hardy space H? can be defined in two
standard ways. Firstly, HP-functions are defined as functions in LP(T) whose neg-
ative Fourier coefficients are zero. Secondly, HP-functions are defined as analytic
functions in D, whose restrictions on circles centered at the origin are uniformly
bounded in the LP-norm. Following these definitions leads to essentially different
classes of functions on groups. For approaches based on the first definition of H,-
functions i.e. based on their Fourier coefficients see e.g. [HL], also [G10]). We will
follow the second definition to generalize the notion of Hardy spaces on groups.
The resulting spaces are called Hardy-Bohr spaces. They are closely related with
analytic almost periodic functions on R.

Definition 7.2.1. Let G be a compact group whose dual group I" is a subgroup
of R, and let m(y,.) be the representing measure of the point (1/e) o2 € D, i.e.
M(1/e) = M(1/e)or- Consider the following spaces.

(a) The space HP(D¢g) of LP-harmonic functions on D¢, 1 < p < oo is the set of
harmonic functions v € H(D¢g) for which

1/p
HuHP :( sup /|ur(gh)’pdm(1/e)(h)>
0<r<1

geqG

1/

= ( sup /|ur(gh_1)’p dm(l/e)(h)) ’ < 0.
0<r<1
geqG

(7.3)

(b) The space H>*(D¢) of L*-harmonic functions on D¢ is the set of harmonic
functions u € H(D¢) with

ulloe = sup |u,(g)| < oo. (7.4)
0<r<1
geG

The space HP(D¢) is called also Stepanov’s p-space. Note that HP(Dg) =
HE(Dea) + iHR (D), where HE(Dg) is the set of the real-valued functions in
HP(Dg).

Lemma 7.2.2. Let f € H?(Dg), and r,r1,72 € [0,1), 11 <712, 1 <p < co. Then:

(a) sup/’fn(gh)|p dm,.(h) < sup/’fr2(gh)|p dm,.(h), i.e.
QEGG gEG’G

sup (|fn‘p * mr)(g) < sup (‘frz|p * mr)(g)~
geG geG
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b) /Ifn\p do < /Ifrz\p do, i.e. || frillp < 1 frallp-
G G

(¢) For everyr, 0 <r <1, there exist real constants 0 < ¢; < ¢a < 00, such that

cysup (| fr, [P+ my)(g) < sup (|fr, [P * maye)(g) < casup (|fr, [P * mr)(g)-
geG geG geG

Proof. (a) We recall that m(;,09,) * M(ry0gs) = H(riog1)-(ra0gs) = M(rir20g1gs) 10T
every 110 g1, 720 g2 € Dg. In particular, m,, x m;,, = m,,), i.e. for any function
f € C(G) we have

//f (gh)dmy, (g) dm,,(h /f ) dm(ry gy

Since the function f is harmonic on D¢, Holder’s inequality and the Fubini theorem
imply

P
Sup/’fn(gh)v) dmr = Sup/’/frz ghk dm(’r‘l/T2)(k)’ dmr(h)

geqG geG
G

< sgg//|fr2(ghk)| dm(y, jryy (k) dm,.(h)
9
GG

— sup / / | oo (ghk)|? ity (h) dimpy oy () < s / [ Fra (gh) P dimy (1),
gEGG & gEGG

as claimed.
(b) By the same argument we have

[ @ doto) < [ ([ 1fnlah)]” dimng (1)) doto)

G G G

= [ ([ Vo)l (@) e ) < [ 110 o)
el G

G

(c) Since m(1/¢) and m, are mutually absolutely continuous measures for
any r, 0 <r <1, there is a Borel function K, such that dm, = K, - dm ). In
fact, Kr|j ®) is a quotient of two Poisson kernels on R, where j,: R — G is the

standard embedding of R into G with j,(0) = 2. Hence, sup |KT (g)| < 00, and also
geG
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sup

1 ‘
< 00. Therefore,
geG ‘ Kr(g)

pet G/ (o) dme 1) = sup G/ [Fra(gh) " Ko (g) dm ey (h)
< jgg|Kr(g)| Zlelg! [fri (gh)[” dmq ey (h)

1
< sup |Kr(g)| sup ‘ Sup/ ’fn (gh)|p dme)(h).
9eG geG +(9) gEGG

Consequently, (b) holds with ¢; = , and co = sup

0l
sup |Kr(g) 9eG ’Kr(g) '

geG

Theorem 7.2.3. Under the HP(Dg)-norm from Definition 7.2.1, HP(Dg), 1 <p <
oo is a Banach space.

Proof. Let {u,}22; be a Cauchy sequence in the H?(Dg)-norm. If 1 < p < oo,
Lemma 7.2.2 and Hélder’s inequality imply that for every r, 0 < r < 1, we have

’(un)rl (9) = (Um)r, (9)| = ‘ / ((Un)rz (gh) — (Um)r, (gh)) K.(9) dm(l/e) (h)
G

< sup | K (g)|[[tn — tmllp-
geG

Therefore, for every 0 < r < 1 the sequence {(u,),}32, converges uniformly
on G to a continuous function u, € C(G). Let u(rog) = u,(g). We claim that
u € H(Dg). Indeed, if 0 < r; <79 < 1, and r = 71 /79, then

n—oo

r (9) = Jim (), =1 [ )y (9h)di (1)
G

__ / i (uy)r, (gh) dm, () = / e (gh) dmn (B),
G G
and consequently, u € H(Dg). If p = oo, the sequence {u,}22, converges uni-

formly on D¢ to a continuous function u. The proof of harmonicity of u follows
the same arguments as in the case p < co. ]

Let H2(Dg) be the closure of the space H.(Dg) = H(Dqg) N C(Dg) in the
HP (D¢ )-norm. The next theorem is obvious.

Theorem 7.2.4. HE(D¢g) is a closed proper subspace of HP(D¢g) for every p €
[1,00].
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For every 1 < p < oo denote HP(Dg) = HP(Dg) N O(D¢). The following
theorem and its proof is due to Hoffman ([H2]).

Theorem 7.2.5. If f is a function in HP(Dg), or in HP?(D¢g), 1 < p < oo, then:
(a) The limit f*(g) = li/ni fr(g) exists for myoq-almost every g € G, rog € Dg.
(b) f* € [ LP(G.mrog).

rog€Dg
(c) glfﬂi ||f7"HLP(G,m(TOg)) = Hf*”LP(G’,m(TOg)) for everyrog € Dg and 1 < p < co.
(d) rh/Hi [ frll Lo (Gmeog) = 1 1120 (G mirog)) for every ro g € Dg.
(e) If p =1, then the sequence of measures frdm( e converges in the weak”-
topology to a measure p € M(G) as v /1, and ||p|| = h/Hi | fr dm e |,

where || - || is the total variation norm on the space of Borel measures M(G)
on G.

Note that if f € HP(D¢), then (7.2) holds for all 0 <7 <71y < 1.
Definition 7.2.6. The space of boundary values f* = li/rr} fr of functions f in

H?(D¢), which exists by Theorem 7.2.5(a) is called the Hardy-Bohr space HP(G)
on G.

Denote by HP(G) the space of limits f*(g) = li/m1 fr(g) of functions in

HP(D¢), existing by Theorem 7.2.5(a). Let HE(G) be the space of restrictions
on G, i.e. of limits f* = li/ni fr of functions f in H2(Dg). The next theorem is a

direct consequence from Theorem 7.2.5 and Theorem 7.2.4.

Theorem 7.2.7. (a) The Hardy-Bohr space HP(G) is a proper subspace of the
space HP(G) for every p € [1,00].

(b) For every p, 1 < p < 0o, HE(G) and HP(G) are Banach spaces with respect
1/p
to the norm £, = sup ([ 1 (o) dms o))" = 171,
geG &

Denote by L” (G,m(l/e)) the space of all my,.)-integrable functions on G
with finite LP (G, m(l/e))—norm.

p

Definition 7.2.8. For any 1 < p < oo and ¢ = 1 let £P9(G) be the set of

integrable functions on G, with the property that the function

(f % u)(g) = / F(gh) u(h) dm oy (R) (7.5)
G

is continuous on G for any u € L? (G, m(l/e)).
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Theorem 7.2.9. For any 1 < p < oo, LP9(G) is a Banach subspace of LP(G,m1e))
with the norm

I£llp = sup (/ [ (gh)|" dmga e (h))l/p. (7.6)
G

Proof. Let f € £P(G). First we will show that || f||, < co. For any g € G consider
the bounded linear functional Fy, g € G, on L4 (G, m(l/e)), defined by

Fy(u) = (f * u)(g /fgh B dms e ().

According to (7.3),

Fg(u)’ < C = sup|(f* u)(g)’ for every Fy, g € G. The
geG
Banach-Steinhaus theorem, applied to the family {F}4eq, implies

sup | < oo, (77)
geG
where || Fy|} is the norm of Fy in the dual space of LY(G,m 1 /.)). Consequently,

P /p /
1£lp = sup ([ [F@m)]" dmey () = sup | Fyl; < oo,
geG & geG

as claimed. It remains to show that the space £P-9(G) is complete with respect to
the norm (7.6). Let {f,} be a Cauchy sequence in £P7(G). For any fixed g € G
the family of functions {fn (gh)} is a Cauchy sequence in the space LP (G, m(l/e)).
Let fo(gh) be the limit of this sequence. By (7.3) we have that the functions

(fn* u) /fn gh) u(h) dm ey (h)

form a Cauchy sequence in C(G) for any fixed u € L9(G,m(¢)). Therefore the
function

(fo* u) /fo gh)u(h) dm ey (h)

is continuous on G. Consequently, fo € LP1(G). |

Let j, : C; — D¢ be the natural extension on C, of the standard embedding
j.: R — G of R onto a dense subgroup of G, with 31(0) = 1. Namely, j,(t) = g €

G =T for any t € R, where g,(a) = '@, ¢ € I' = G. Denote by

1 y

P,
(o T2+ (to —1)?

(t)dt = dt,y >0 (7.8)

the Poisson measure on C, and let M(e=vog,) be the representing measure of the

point e Yog;, € De. One can easily see that dm(e_yogto)o;z(t—l—iy) = P,y dt, ie.
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the measure M(e=vog,,) 1S the image of the Poisson measure via the embedding ;z.

t
o Therefore

In particular, the measure m; /) is the image of the measure 14t
71'

the corresponding L9-spaces can be identified, i.e.
Lo(Gmqye) = (R, ). (7.9)
) e ) 1 + t2

Note that the measures m.-vo4,) and m(; /) are mutually absolutely continuous.
If K(e-vog,) = dM(c—vog,)/dMm(1/e) is the Radon-Nikodym derivative of m(c-veg,)
with respect to m(i ey, then dm-voq,) = K(c-vog,) dM(1/e)- Denote by K the
linear space generated by the functions K.-ve4,), t € R, y > 0.

Lemma 7.2.10. For any 1 <q<oo the space K is a dense subspace in LI(G,m1/e))-

Proof. Let f € LP(G,m(l/e)) with /dem(l/e) =0 for all K € K. Identities

G
(7.8) and (7.9) imply that

1 ydt
m /f(gt) y2 o+ (to— 1) 0
R

for every y > 0 and ¢y € R. Therefore, f = 0, because the Poisson integral of a non-
zero function can not be 0. Since the dual space of L4 (G, m(l/e)) is LP (G, m(l/e)),
the bipolar theorem implies that K is dense in L? (G, m(l/e)), as claimed. ]

Lemma 7.2.11. Every function f € LP9(G), 1 < p < 00, can be extended uniquely

to a function f € HP(Dg) such that f(g) = li/rq fr(g) for almost all g € G with
T

respect to any measure Myog, 70 g € Dg.

Proof. Let K, = K(o,). Since dm, = K.dm( /e, and K, € LP(G,m(/.)), the
definition of the space £P9(G) implies that the function

Folg) = (f % m)(g) = / £(gh) dm, (h)
G

is continuous on G. We have that K(,og,) — K(rgog,) in the LI(G,m(y /c))-norm,
as 1 — ro. Therefore, the function f(r o g) = f,(g) is continuous on D¢. For the
Fourier coefficient ¢! (r), a € I' we have

_ o
)= [ [ b wydotydmito) = 5 [ xe6) dmito) = <.
G G G

Theorem 7.1.8 implies that f is a harmonic function in Dg. Moreover, f € HP(Dg)
since
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s ([ 17" dm (1)) s, / | / g dm (5)” dis o (1))

geG

r<1 G T < 1
The Fubini theorem and Holder’s inequality, applied to the inner integral, yield
1flle < I 1p- 0

Lemma 7.2.11 implies that £79(G) C H?(D¢q). The opposite inclusion also
is true.

Theorem 7.2.12. All spaces of type LP9(G), q > 1 are isometrically isomorphic to
the space HP(D¢).

Proof. Let f € HP(G) and fe HP(D¢) be such that f = li/ni ., where f, = ﬂmc

is the r-trace of ]?on roG. For any r ¢ g € Dg we have

frog /f hk dm(l/p)og ):/f(hk) K(l/e)og(k) dm(l/e)(k) (7.10)
G

is continuous on G. For a fixed u € L? (G, m(l/e)) consider the function
(f > ) /f (hg) u(h) dmi/e)(h). (7.11)

Obviously,
sup [(f * w)(@)] = [1f * ullos < [ £llpllullq (7.12)
g

for any u € L9(G,m1/e)). Since K is dense in LI(G,m(ye)), then by (7.10)
and (7.12) we see that f x u can be approximated uniformly on G by linear

combinations of functions frcg, 7o g € Dg. Hence fx u is continuous on G for any
u € L(G,m(,.)), and therefore, f € L9(G). Consequently, HP(D¢) = LP1(G),
by Lemma 7.2.11. O

Define a topology 7 on the space LP(G) = HP(Dg) as follows. Choose the
neighborhood basis of a function f € £P9(G) to be the family of sets

U(fiuts -y un,e) = {g € LPUG): [f x ui — g% uilloo <&, 1< i< m},

where e > 0 and uy, ..., u, € LI(G,m(1.)). We say that anet { fo}acx C LPY(G)
T-converges to f € LP(G) if

iler%Hfa*u_f*U”oo:O

q 7 b1 o
for everyu € L (G, m(l/e)). Denote by 7 iler%fa and H iler%fa the limits of { fo} &

with respect to the corresponding topologies.
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Theorem 7.2.13. The space HP (Dg) = LP9(G), 1 < p < oo, is T-complete, i.e.
if for every u € LI(G,my/e)) the family {fo * u}acs is a Cauchy net in C(G),
then there is a function fo € LP1(G) = H%(Dq) such that fo = T_her% fo, t.e

= 1 q
foxu iler%(fa * u) for every u € LI(G,m( /e)).

Proof. Let, as before, K, be the Radon-Nikodym derivative of the measure m,
with respect to m(y /). Clearly, the function

~

Falrog) = fux Ki(g) = / Falhg) Kr(h) dmg ey ()
G

belongs to HP(D¢). Since K, € L4 (G, m(l/e)), the limit

~ o~

fr(g) = F(rog) =HP-lim fa(rog) (7.13)

exists for every fixed r < 1. Note that fa € H?(Dg) for every a € X. Lemma 7.2.2
and (7.13) imply that f € H(Dg). It remains to show that f € HP(G), i.e. that
fe Hp(Dg).

Let F': LY(G,m(1/e)) — C(G) be the linear operator defined by F(u) = HP-

—

lir% fo = u. Consider an extension F'(u) € H.(Dg) of the function F(u) on Dg.
ae

According to Lemma 7.1.6

Jimg oup [F (1) = Joox u] = Jimg [ Fw) = fox =0,

Consequently,

P_1; N _ 1 P_1; —
M- it (F o w), = lim 1= lim (fo s ), = Flu).

The Banach-Steinhaus theorem, applied to the family of bounded linear operators
Fr: LY(Gymyye)) — C(G): Fr(u) = (f* w),,

with ||Fy.|| = || f+[|p, implies that the family {F}},c(,1) is uniformly bounded. Let
B be the unit ball in LY(G,m.)). We have

I = supsup | [ Fulgh) ulh) dm oy 1)
G

geGueB

1/p

sup ([ [Fign)l” dm o) <
G

geG

where the positive constant ¢ does not depend on r. Hence, ]? € HP(D¢). Conse-

quently, f € HP(G) = LP4(G). O
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Theorem 7.2.14. For any 1 < p < oo the space C(G) is T-dense in HP (Dg) =
Lri(G).

Proof. If f € H?(Dg), then f, € C(G) and f = T—li/rri . O
All results in this section admit analogues for harmonic S-functions, where
S is a semigroup of I.
Definition 7.2.15. Hardy S-space on G is called the space H%(G), 1 < p < oo of
LP-harmonic functions in Dg with spectrum in S, i.e.
HY(G) = {f e H?(Dg) = LPYG): sp(f) C S}.

If S C Iy, then the set HP(D¢) is called Hardy S-space on G, or, Hardy-
Helson-Lowdenslager space, and is denoted by Hg(G). By the technique from the
above used to study the space HP(G), one can obtain the following theorems.

Theorem 7.2.16. (a) For anyl < p < oo the space Ha(G), resp. HE(G), coincide
with the space of HP-limits f* = HP-lim, ~ f, with f, € H%(Dg), resp
fr € HY(Dg).

b) For any 1 < p < oo the spaces HZ(G) and HZ(G) are T-closed subspaces of
s s
LP9(G) 2 HP(G) for every p, 1 < p < oo.
(c) For any 1 < p < oo the spaces H(G) and HE(G) are Banach spaces under

the norm
1/p

191 = sup ([ 17" drncsjon(0)
geG
a
Theorem 7.2.17. (a) The algebra Ag is T-dense in the space H(G).

(b) The HP(G)-closure of Ag is a proper subspace of He(G).

7.3 L'-harmonic functions on groups and G-discs

Let M(G) be the space of regular Borel measures on G. If m, = my, is the
representing measure of the point r o1 € Dg for A(D¢g), then, as it is easy to

check,
‘ / x*dm,.
G

for every a € I' C R and every r, 0 < r < 1. Therefore, sp (m,) = I' for every
measure of type m,..

= rlal (7.14)

Given a p € M(G), consider the measures p, and m/, defined by
(a) pr = px m,, and

(b) du! = fdo, f € LYG,0).
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Clearly g, and pf belong to M(G). Since sp (u * v) = sp (p)Nsp (v) for p,v €
M(G) (cf. (3.7)), and sp (m,.) = I', we see that sp (i) = sp (u).

For any f € C(G) let £, be the function

Frlg) = (f % m)(g) = / f(gh) dm, (h)
G

Clearly, f, € C(G).
Lemma 7.3.1. If f € H'(Dg), and ,u{{/e) = pufr % mi/e), then

fro — /e
Apii ey = firjey do = dplero.
Proof. Recall that the a-th Fourier-Stieltjes coefficient of the convolution of two
measures equals the product of the a-th coefficients of both measures (cf. (3.7)). B
(7.14) we see that the a-th Fourier-Stieltjes coefficient of the measure u{{/e) = plrx
m(1/e) equals (chyrlal(1/e)lel = (r/e)lelef. Theorem 7.1.8 implies that (r/e)llc]
is also the a-th coefficient of the measure duft/e) = frjey do. Consequently both
measures coincide. ]

Let M'(G) be the set of all u € M(G), such that for every r € (0,1) the
measure fi, = ft* m, can be expressed in the form du, = f(")do = d,uf( " for
some function f(") € C(G) with

sup /|f(r)(g)’ dm1/e)(gh) < o0. (7.15)
heG
0<r<1@

To every i € M*(G) we assign the function f,, on D¢, defined by f,(rog) =
) (g), where for every fixed r € (0,1) the function f(") € C(G) is such that
! = ) do.
Theorem 7.3.2. Let i € M'(G) be a measure, such that du, = dufm = f"do
with ) € C(G) for each r € (0,1). The map p — f, is a bijective mapping
between M*(G) and H'(Dg).
Proof. Let u € M*(G). We claim that the function f,, belongs to H!(D¢). Because
of (fu)rdo = f"do = d,uf(r) = du,, we have that ctrlel = clrrlal for alla € T.
Together with (7.15) and Theorem 7.1.8, this implies that f, € H!(Dg).

Conversely, given an f € H!(D¢), consider the family of measures {1r}reco,n
with du, = f, do. Clearly, f, € C(G) for any r, 0 < r < 1. Since

IIMT\\—/!fr )| dor(g) //Ifrgh|d0 ) dma e (h)

s/ sup /Ifr ()] dmajey (1)) dor(g) < I,
G

0< <1
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we can choose r, " 1 so that the sequence {u,, }, is weak*-convergent to a
measure v € M(G). Since v, = vx m, = w*-lim /™ * m,., and the weak*-limit of
{ufro s my} as v /711 equals (L=im fr(ra 0 9)) do(g) = f(9) do(g) = 1" (9),
we obtain that dv, = dufr = f,.do for all r € (0,1). Therefore, v € M'(G),
and f = f,. Since sp (m,.) = I', the uniqueness of the Fourier-Stieltjes expansion
implies that v does not depend on the choice of the sequence r,, 1. O

Theorem 7.3.2 shows that M (G) = {u € M(Gu, = fydo, r € (0,1), f €
H'(Dg)}. Clearly, for any f € C(G) the measure du/ = fdo € M*(G). Hence
the closure of M'(G) in M(G) contains measures of type gdo, g € L'(G,0).
However, there are functions integrable with respect to the Haar measure ¢ on G,

that are not extendable as harmonic functions on Dg. This implies that M1(G) is
not closed in M (G).

For any f € H'(Dg) denote by M ¢y (f) the family of measures ,ui, heG
of type

dpf(9) = w}l/rq fr(g)dm@ e (h™'g), h e G,

which exist according to Theorem 7.2.5(e). It is obvious that M) (f + g) =
M yey(f)+Mae)(g). Let M(ll/e) (G) be the space of all families of type My /¢)(f),

fe Hl(Dg).
Theorem 7.3.3. (a) Endowed with the norm ||Mg e (f)|| = sup H,u£||, the set
heG

M(ll/e)(G) is a Banach space.
() [[Mae) (D) = Ifll1 for every f € H!(Dg).
Proof. Theorem 7.2.5(e) implies that ||uf| = li/ni/\fr(gh)\dm(l/e)(g). Thus,
G

| M@ /e)(f)|| = I £]l1, which proves (b). On the other hand, the mapping My ¢)(f)
— [ is an isometric isomorphism between M(j,.)(G) and the space H'(Dg),
which proves (a). O

The following theorem and its proof are similar to the corresponding results
in the classical setting (cf. [H3]).

Theorem 7.3.4. For a f € 'Hl(ID)G) let f* = lim, ~ f, be the boundary value
function, existing by Theorem 7.2.5. Then:

(a) d,ui(g) = [*(9) dm1/e)(h™tg) +dv! (g), where v/ is a singular measure with
respect to the measure m(l/e)(h_lg).

(b) f(roh) = (f** K.)(h) + (K, x v/)(h), where K, is the Radon-Nikodym
derivative of pi. with respect to m(je).
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Example 7.3.5. Without loss of generality we can assume that 2m € I'. Let K =
{9 € G: x*"(g) =1} = Ker (x*). Recall that the group G can be obtained from
the set Ko = K x [0, 1] by identifying the points (g,1) and (g1 g,0), g € G. Here ¢,
is the element 4,(t) € G, where j,: R — G is the homomorphic embedding of R
into G with 4,(0) = 1. The mapping ¢: K x[0,1] — G is defined by ¥ (g,t) = g g:-
Fix a go € K, and let f(g,t) be a function on Ky = K x [0, 1], such that:

(a) f(g,0) = f(g,1)=0forall h € K, and f(go,t) =0 for all ¢ € [0,1].

(b) f(g,t) is a continuous function on Ky \ (go,1/2).
1

(¢) f>0and /f(g,t) dt — 1 whenever g — ¢o.

Consider the atomic measure J4,,1/2) concentrated at the point (go,1/2). From
(c) it follows that 04y 1/2) = w*- lim wu(g), where du(g) = f(g,t)dt. If f = fo,
9—49o

then the function g(roh) = (f* * K) (h) + (Ky % 0(gy,1/2)) (h) belongs to H' (D).

7.4 The space H?(Dy) as Banach algebra

For any p € [1,00) the space HP(D¢) possesses a natural multiplication. Namely,
given f,h € HP(Dg), their Hadamard product f x h is the function defined by

(f % B)((r1r2) 0 9) = (fur % hry)(g / S (k™) by (K) dor(B).

Note that if s159 = r17rq, then

frl * hrg = (fsl * m(T1/S1)> * (h52 * m(’"2/32)>

= (fsl * hs2) * (m(Tl/(Sl) * m(Tz/(S2)>
= fsl * h52 * m(rlrz)/(slsz) = fsl * h52 * mp = fsl * h52~

Consequently, Hadamard’s product is a well-defined operation in H?(D¢).

Theorem 7.4.1. The Hadamard product f x h of any f,h € HP(D¢g), 1 <p < oo,
belongs to the space HP(Dg), and

LF < llp < 1 £l [1oll,
where || - ||p is the LP-norm defined in Definition 7.2.1.
Proof. For any p € [1,00) we have

/! (f x h) ((rir2) o g)["dm /ey (g //’fn (gk™") hy (k)|"do (k) dm1 ) (9)

< [P ( [ 15 tor P dm(l/@(g))do(k) < 1115 [ Vs ) "ot
G G G
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Since the Haar measure o is invariant, and mj /) is a probability measure on G,
we have

/|h,2 ) do(k //yh ()" do(k) dm s ) (9)

://]hrz(kg_l)’pdff(k)dm(l/e)(g)
G G

= [ ([ Ihnstg ™ dmisc(9)) o) < [l
G G

Therefore, ||f x h[[b < ||f[|5 |2, as claimed. O

As an immediate consequence from Theorem 7.4.1 we obtain that H?(D¢)
is a Banach algebra with multiplication given by the Hadamard product. We will
characterize the ideals of this algebra.

Lemma 7.4.2. Any one-dimensional ideal J of the algebra HP (Dq) is of type J =
Cx® for some a € I.

Proof. Tt is easy to see that ¢/ x@ = f x x® for any f € J and a € I'. Indeed,

(f xx*)((rir2) 0 g) = /fm(gk_l)xi‘z(k) do(k) = /fn (gk) X7, (k=) do (k)

G

/ Fro (gk) X2, (k) dor() = 7} / Fru () X (k™) dor(k)

ol (g1 /f” do(k) = ry'x"(g /fn do (k)

=r'ry X (g) f(ﬁ):(ﬁ?“z)lalxa(g)cﬁ:x ((rir2) o g) ¢}

_ Tlalxa(g) 6571 lal lal . a
Hence, f x x® = ¢f x?, as claimed. It follows that ¢ x® for any f € J and a € T,
and therefore, any finite linear combination of type Zcﬁ; x® belongs to J. Since

fedJ
acl’

dim (J) = 1, there is an a € I" such that c{: =0forallbe '\ {a} and all f € J.
Consequently, J = Cy*. O

Let J be a closed ideal of the algebra H”(D¢). Recall that the hull of J is
the set hull (J) of all @ € I', such that ¢/ = 0 for every f € J.

Theorem 7.4.3. The mapping J —— hull (J) is a bijection between the family of
weakly closed ideals of the algebra HP(D¢) and the family of subsets of the dual
group I
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Proof. Suppose that J is a weakly closed ideal of HP(D¢). As we saw in Lemma
7.4.2,if a ¢ hull (J), then Cx® C J. Hence, the set I = {f € HP(Dg): sp(f)N
hull (J) = @} is contained in J. Hence the weak closure [I],, of I in H?(D¢) also is
contained in J. Since any function f € J C HP(Dg) can be approximated weakly
by linear combinations p of characters of G with sp (p) C sp (f), we obtain that
[I],, = J. Hence, the mapping J —— hull (J) is bijective. Conversely, let K C I,
and I = {f € H?(D¢): sp(f)NK =@}. One can easily check that in this case
the ideal Ik is weakly closed, and hull (Ix) = K. O

Note that since the convolution of two functions in LP(G, o) belongs to C(G),
Hadamard’s product of functions in H?(D¢) is in H.(D¢).

Theorem 7.4.4. The space HE(Dg) is the minimal closed ideal in the algebra
HP(Dq) with empty hull, which contains H.(Dg).

Proof. From H.(Dg) C HP(Dg) we see that H2(D¢) is a closed ideal in HP (Dg).
It is obvious that H?(D¢) has an empty hull, and that H?(D¢) is the minimal
closed ideal of HP (D) that contains H.(Dg). O

As an immediate consequence from Theorems 7.4.3 and 7.4.4 we obtain the
following.

Corollary 7.4.5. Let M be a closed maximal ideal of the algebra HP(Dg). Then
either there is an element a € I' for which M = {f € HP(Dg): ¢} =0}, or, M is
a closed hyperspace in H?(Dq) that contains H(Dg).

We recall that, given a semigroup S C I', HE(Dg) = L2U(G) = {f €
LP49(G): sp(f) € S}. Since the space Hy (D¢ ) is an ideal in the algebra HP(Dg),
then any ideal of H%(D¢) is also an ideal in HP(D¢). Therefore, the problem for
characterizing ideals in Hi(D¢) can be reduced to characterizing these ideals in
HP (D¢ ), whose hull contains the set I"\ S.

7.5 Fatou type theorems for families of harmonic
measures on groups

Fatou’s theorem on radial limits of harmonic functions in D is part of measure
theory, rather than of function theory. This is remarkably evident in the case
p = 1, when the theorem of Fatou is expressed entirely in terms of measures.
Definition 7.5.1. A set of Borel measures j1 = {,u(r) }TE(O,I) is said to be a harmonic
family of measures on G, if p(™) = p(72) % My, /ry) for any 0 < rqy < rg < 1. The
space of all harmonic families of measures on G will be denoted by M(G).

Clearly, Mu(G) is a linear space. Any harmonic family i can be interpreted
as a measure-valued map fi: (0,1) — M(G) : r — p(").
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Let u € M(G) be a Borel measure on G. The family 1 = {px m, },c0,1) is a
standard example of a harmonic family of measures on G. Indeed, since my,,, =
My, * My, We have px my, = fhx My, * My o) = Mg % M(py 1)

Lemma 7.5.2. If i € My(G) is a harmonic family of measures on the group G,
then

(a) fi:r+— u is a continuous mapping from (0,1) to M(G), and
() (|| < |p"2)|| whenever ry < ra.

Proof. Without loss of generality we can assume that u(" = uy * m, for some
o € M(G). If this is not the case, we can replace, right from the beginning, the
given harmonic family by v = {V(T)}Te(o’l), where rg is a fixed number in (0, 1),
and v(") = ;(70) % m,. = p(7o") If ¢/ — 7, then

lim [|u¢ — 1|| < ol Y [jm, — m, .
T T T—Tr

Since L!- lim (dm;s /dm;) =1 (cf. Lemma 7.2.11), we have that m, = lim m,,
and therefore, lim [|m; — m,| = 0. This proves the first part of the statement.

The second part is obvious. O

We recall that given an f € C(G), the function f(rog) = (f*m,)(g) = fr(9)
is continuous on D¢ and harmonic on D¢ (e.g. Lemma 7.2.11). Consider the family
{1i}re01) € Mu(G), where du! = fxdo, thus duf = dpf* dm, = (f* do)x dm,.

Hence, duf(g) = (f x dm,.) x do(g) = f(r o g)do(g). Consequently, the family
{u{}r€(071) is uniquely defined by the harmonic extension f of f. Note that the
mapping r — pf, defined on (0,1), can be extended naturally as a continuous
mapping from [0,1] to M(G).

Lemma 7.5.3. Let f ~ Z c{ixa be the Fourier series expansion of a function f €

acl’
LY(G,0). For any r € [0,1] there exists a function f. € L'(G, o) such that

(a) fr~ Z cIxerlal ) and

acl’
(b) r+—— f, is a continuous map from [0,1] to L*(G, o).

Proof. If {f,}52 4 is a sequence of continuous functions on G which converges to
f in the L'(G,o)-norm, then p/ = lim pf», where duf» = f,do, and du/ =

fdo. Therefore, the harmonic family of measures i, = {(fn)r da}r c(0,1) Can be
extended to a continuous map from [0,1] into M(G). By Theorem 7.3.3(b) the
sequence of measures {,AZ) b= { I },. converges to a measure p") asn — oco.
Hence, the sequence (), converges to a function f,. € L1(G, o) uniformly on [0, 1].
Therefore, the sequence {(f,)r: n €N, r € [0, 1]};0:1 c C([0,1],C(G)) converges



7.5. Fatou type theorems for families of harmonic measures on groups 225

to the continuous function r — f,. in C([O, 1], Ll(G,a)). Since (fn)1 = fn — f,
the Fourier series of (fy,)1 converges coefficient-wise to the Fourier series of f. Note

that fo = f(0) = cg. Consequently, the Fourier series of f,. is Z charlal. a

Corollary 7.5.4. Let 1 = {M(T)}re(o,l) be a harmonic family of measures on G,
such that dp(™) = du/ = fdo for some f € L'(G,0) and ro € (0,1). Then the
map i : (0,1) — M(G) can be extended to a continuous map p': [0,1] — M(G).

Definition 7.5.5. Let p > 1. A harmonic family of measures g = {,U(T)}re(o,n on
G is called LP-harmonic, if:

(a) du'") = dulr = f.do for some f,. € LP(G, o) for every r € (0,1).

(b) sup [[fr]lp < oo.
0<r<1

We denote by M?%,(G) the space of LP-harmonic families of measures on G.

The properties of the spaces M%,(G) resemble very much the properties of
the spaces LP(G, o).

Theorem 7.5.6 (Fatou’s theorem for the space MY, (G)). Let i = {“(r)}re(o n be
an LP-harmonic family of measures on G. Then

(a) If 1 < p < oo, there exists a function f € LP(G, o) such that p(") = pf x m,.,
where duf = fdo, and the map fi: (0,1) — M(G) can be extended to a
continuous map [ : [0,1] — M(G).

(b) If p=1, there exists a pg € M(G) such that p") = pg * m,..

The proof makes use of Lemma 7.5.3, and in general follows the lines of
proof of the classical Fatou theorem on radial limits of harmonic functions on D
(cf. [Hof], p. 55).

A measure pon G is called an analytic measure (or, I'y-measure), if sp (u) C
I'y. The class of all analytic measures on G will be denoted by Mp, (G). If I is
isomorphic to Z, then G = T, and any measure in Mz_ (T) is absolutely continuous
with respect to the Haar measure o on G. According to Riesz’s representation
theorem, its Radon-Nikodym derivative belongs to the Hardy space H'. If I is
not isomorphic to Z however, there are analytic measures on G that are singular
with respect to o.

Theorem 7.5.7. Let 1 € Mr, (G) be a regular Borel measure on G, such that
wx my is absolutely continuous with respect to the Haar measure o on G for some
r € (0,1). Then there exists a function f € LY(G,0o) such that sp (f) C I'y and
dp = dp! = fdo.

For the proof we need several properties of I'; -analytic measures on G. With-
out loss of generality we can assume that 27 € I'. Let K = Ker (x*") = {g €

G: x*(g9) = 1}. Given a t € R, choose g € G so that x%(g:) = '@t for each
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a € I'. The map t — ¢; is an imbedding of the group R into G. This map gen-
erates a homomorphism 7: K X R — G, defined as w(g,t) = g g;- We recall that
the kernel of 7 is the set Ker (1) = {(gn, —n)}zo:l (cf. Section 3.1). Clearly, the
set K x [0,1) is a fundamental domain of 7, and therefore we can identify the
group G with the set K x [0,1).

Denote by M(K x R) the set of locally finite measures on K x R which are
invariant with respect to shifts by elements in Ker (7). Note that the restriction
of the space M (K x R) on the set K x [0,1) coincides with the space M(G). In
particular, if o is the Haar measure on the group K, then the restriction of the
measure dog X dt on K x [0,1) is the Haar measure o.

Let H' be the Hardy space on the unit circle T. The fractional linear trans-

i—z
formation w(z) = | 4 , Tmaps R onto T\ {1}. Every function in the space H!ow =
itz
{fow: f € H'} can be extended as an analytic function in the upper half-plane
Cy.

Let Ml(K x R) be the space of measures on K xR of type f(g,t) (dl/(g) X dt),
where:

(a) v is a probability measure on K.

o) flo.t) e L (avte) x| ).

(c) For v-almost all g € K the function t — f(g,t) belongs to H' o w.

(d) The measure f(g,t)dr(g) belongs to M(K x R).

(e) |f(g,t)| (dv(g) x dt) and dv(g) x dt are mutually absolutely continuous mea-
sures.

The proof of the next lemma is straightforward (cf. [G10], Theorem 3.2).

Lemma 7.5.8. The restriction of the space M (K xR) on K x [0, 1] is isometrically
isomorphic to Mp, (G).

Lemma 7.5.9. For any i € Mr, (G), let di’ = f(g,t)(dv(g) x dt) be the measure
in M'(K x R), for which /”L/|K><[O n = M where f is as in (b) from the above. If

") = px m,., then (d(u')(r))(g,t) = fr(g,t) (dv(g) x dt), where

Yr dx

, with y, = —Inr.
7t '

1
ﬁ@w:W£}@w+wy
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Proof. Observe that linear combinations of the measures duX” = x%do, a € Iy,
are weak*-dense in Mp, (G). Since the convolution operator preserves weak*-
convergence, it suffices to prove the lemma only for measures of type duX" =
x%do, a € T'y. Note that d(uX")(g,t) = x*(g) e!%rlal (dok(g) x dt) € MY (K xR)
is the corresponding measure to duX" on K x R. For every r € (0,1) the cor-
responding measure to d(pX" )" = dpX" x dm, = x*rldldo is , (d(,uxa)’) (9) =
x*(9) eiatﬂ“'(da;{(g) x dt). Hence,

Jhat lal — 1 /eia(t—i-a:) 32/r d$2,
m yr ta
R

which completes the proof. O
Note that for any p € Mp, (G) we have /X“du =0, a € I+ \ {0}, ie.

G
the measures u € Mp, (G) are orthogonal to the ideal 7, of the G-disc algebra
Ar.,, generated by characters x*, a € I'y \ {0}. By the Lebesgue decomposition
theorem, the measure u can be expressed as pu = puf + pg with pf, p, € Mr, (G),
where du/ = f do is the absolutely continuous component, and i is the singular
component of u with respect to o (e.g. [G10]).

Proof of Theorem 7.5.7. It is enough to show that if a measure y € Mp (G) is
singular with respect to o, and u(") is absolutely continuous with respect to o for
some r € (0,1), then = 0. If it were, the corresponding measure p' € M'(K x R)
would have the form d/(g,t) = f(g,t)(dv(g) x dt), where v is a singular measure
with respect to the Haar measure ox of K. For any r € (0,1) we have also
d(W)(g,t) = fr(g,t)(dv(g) x dt). Hence the measure (/”L/)(T)|K><[0,1] is singular

with respect to o, in contradiction with the definition of the space M*(K xR). O

Definition 7.5.10. A harmonic family of measures on G is said to be a harmonic
family of analytic measures on G, if 5 = {M(T)}re(o,n, where p(") are analytic
measures on G for any r € (0,1). We denote by M%_’m (@) the space LP-harmonic
I'i -measure families on G.

Theorems 7.5.6 and 7.5.7 imply the following

Corollary 7.5.11.. For any p € M%_’m (G), p > 1, there exists a measure py €
Mr, (G) such that w) = g * m.

7.6 Notes

Most of the results in this chapter are from [G14]. Theorem 7.1.3 [resp. 7.3.2, 7.2.3
and 7.4.1] is due to Milaszewicz [M] [resp. [M1]]. Fatou type theorems for spaces
HP(Dg) and HP?(Dg), 1 < p < oo were considered first by Hoffman [H1, H2],
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who has developed the appropriate technique utilized also in this chapter. The
boundary behavior of bounded generalized analytic functions on a G-disc were
studied also in [KT] and [T2].



Chapter 8

Shift-invariant algebras and
inductive limit algebras on
groups

Uniform algebras that can be expressed as inductive limits of standard simpler
algebras are of particular interest. For instance, some G-disc algebras are induc-
tive limits of sequences of disc algebras, connected with finite Blaschke products,
called also Blaschke inductive limit algebras. Here we show, among others, that
only G-disc algebras, and the spaces H®(D¢) with G C Q, can be expressed as
limits of countable inductive sequences of algebras of type A(D) and H> corre-
spondingly. We study also inductive limits of sequences of spaces of type H>® and
prove corresponding corona theorems. Further, we establish relationships between
Bourgain algebras of coordinate algebras, and the Bourgain algebra of their in-
ductive limit, and also between H°°-spaces on D, as coordinate algebras in an
inductive sequence, and their inductive limit. While we state all results for general
shift-invariant algebras Ag, they apply automatically to the particular cases of
algebras APg of almost periodic functions, and of HZ -algebras.

8.1 Inductive limits of H°-algebras

Let H>*(D) be the space of bounded analytic functions in the unit disc D C
C. Every f € H*(D) possesses a boundary value function f* on T, and the
correspondence f —— f* is an isometric isomorphism between the spaces H (D)
and H> on T (cf. Theorem 2.4.4). Suppose that I = {ifT1}2°  is a sequence of
homomorphisms if ' : H>°(D) — H>(D). Consider the inductive sequence

H®(D,) -5 H®(D,) 25 H®(D3) 5 - (8.1)
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of algebras H*(Dy) & H* (D). Any adjoint mapping (kH) My — M
maps the maximal ideal space of H*(Dg11) into the maximal ideal space of
H>(Dy,). The maximal ideal space of the limit algebra [lim {H (D), iyt }keN}

is the limit M of the inverse sequence
MmJ M2<—@ M3<J M4<—@ e M.

We recall that, according to Carleson’s D-corona theorem ([C]), the open unit disc
D is a dense subset of every M. In general, the mappings (i k'H) do not neces-
sarily map the open disc D onto itself. However, the most interesting situations
arise when they do. In this section we will assume that the mappings (: k“) are

inner non-constant functions on D, and hence they map D onto itself.

Example 8.1.1. Consider the inverse sequence {DkH,Tk N ien, where Dk =D,
and Tk+1(Z) = 2% on ;. By Example 1.3.7, the inverse limit hrn {Dg41, Tk Nen

is a compact set, containing the compact abelian group G, = 1(21 {Tkt1,2 k’}keN
and the open set Dy = lim {Dgy1, 7 b ren from (1.16) and (1.17). In fact, the set
hm {Dk+1,Tk }keN com(:ldes with the G 4-disc D¢, = ([O, 1] x GA)/({O} X GA)
over the group G4 = T's. The connecting homomorphisms of the adjoint inductive
sequence { H>(Dy), +1}1 of algebras H> (ID)k) H® (D) are the compositions

ﬁ“ () HO(Dy) — H® Dy if 7 (F) = forf e (if71(f))(2) =
f(z%) for z € Dyy1. Note that the elements of the component algebras H>(Dy)
can be interpreted as continuous functions on the G 4-disc Dg,. The uniform
closure

H>(Dy) = [lim {H>(Dy), (z7)"; di € A}, ]

of the limit of the inductive sequence { H>(Dy), (2%*)*;dx € A}keN in the space
Cy(Dg , ) of bounded continuous functions on D¢ ,, is a commutative Banach alge-
bra of functions on D¢ ,, which is an inductive limit algebra (cf. Definition 1.3.5).

Example 8.1.2. Let B = {By,}72, be a sequence of finite Blaschke products By,:
D—D,ie.

Nk (k)

By (z) = €' H ( T Z(lk) ) for some zl(k) eD.
=1 1=z

Consider the inductive sequence
H®(Dy) <L H®(Dy) 25 H®(Ds) & ... (8.2)

of algebras H>°(DD), where the connecting homomorphisms if™': H®(Dy) —
H>(Dg41) are compositions by the Blaschke products By, namely, i’,j“ = By, so
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that i’g“(f) = f o By, for every k € N. Denote by D = lim {Dy1, Bk }ren the

limit of the inverse sequence {Dg41, Bk}zozl. The uniform closure

H (D) = [lim {H(00), B}

in Cy(Dp) of the limit of the inductive system {H>°(Dy), BZ};ZP is a commuta-
tive Banach algebra of functions on Dp, which is an inductive limit algebra.

Let A = {di}32, be the sequence of orders of Blaschke products {Bx}72, in
Example 8.1.2, and let I’y C Q be the group generated by the numbers 1/my, k =

k
0,1,2,..., where my = [] di, mo = 1. Denote by 7 the standard dj-sheeted
=1
lifting of the unit circle T to the Riemann surface R4, of the function 2/,
Clearly Ty, =2 T, and the diagram

By,

T — Tinr
Vi | Yry1 ]
T E& T
is commutative for every k = 0,1, 2, ..., where 1), is the natural covering mapping

Y : T, — T. Therefore, the infinite diagram

T B o B2 T Bs
1 | "szi "Jig,i

B B B
']I‘1<—1']I‘2<—2T3<—3

is commutative, and hence the inverse sequence of circles T

Ty 22 Ty B2 Ty B Ty B2 (8.3)

)

where Ek is the natural lifting of By on 741 (cf. Section 1.3), is isomorphic to
the inverse sequence of sets 7, C Rq,

BB B B (8.4)

In particular, if in Example 8.1.2 we take By (2) = 777 (2) = 2%, we obtain that

the sequences
2 =3 ~4 =5

T T Tyt Ty o e (8.5)

and
4 5

Ty T8 Ty D Ty T Ty T ... G (8.6)

are (topologically) isomorphic. Since on the other hand the sequences (8.4) and
(8.5) are also isomorphic, so are the sequences

T, «Br Ty B2 T3 B2 Ty Ba ... Tp (8.7)
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and 2 3 4 5
T, T Ty T2 T3 2 Ty Ta ... Ga. (88)

Proposition 1.3.8 implies that the set 7p is homeomorphic to the group G,.
Clearly, for the adjoint sequence we have

z! B, g2 Ba, g3 B, ..., G,=T,CQ. (8.9)
We have obtained the following

Lemma 8.1.3. The inverse limit Tg = lim {Tk41, Bk tren in (8.7) can be equipped
with the structure of a compact abelian group isomorphic to G, whose dual group
is 'y =G, C @

Let B = {By}32, be a sequence of finite Blaschke products on D. The limit
Dp of the inverse sequence

Dl By ID)Q Bo Dg Bs ]D)4 B ... DB

is a Hausdorff space. The limit of the inductive sequence {HOO (Dg), 6,’:“ }Cl)o of al-
gebras H*° (D), the connecting homomorphisms of which are the composition op-

erators By = Bi: H®(Dy,) — H®(Dgy1) : ( ,§+1(f))(zk+1) = [(Br(zr41)),
is an algebra of functions on Dp whose closure

H(Dp) = [lim {H(Dy), "'}, 0]

in Cy(Dp) is an inductive limit algebra.

We recall that a point zg € D is said to be singular for a finite Blaschke
product B, if card B=%(zg) < ord (B).
Theorem 8.1.4. Let B = {By}2, be a sequence of finite Blaschke products on
the unit disc D, each one with at most one singular point zék), and such that
Bk(zék+1)) = z(()k). The corresponding inductive limit algebra

H*(Dp) = [lim {H*(Dy), ;7' }, ]
generated by B, is isometrically isomorphic to the algebra H*(D,), where A =
{di}2, with dy, = ord By.
For the proof we need the following

Lemma 8.1.5. If B is a finite Blaschke product with the only singular point zo € D,
then S
By~ "+ Blao)
1+ B(zo)19(2)™

0 Z— 2
where m = ord B and 19 = 6101 0 for some 8, 0 <0 < 2.
— Z0%
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Proof. The restriction of B on D\ {zy} generates a holomorphic covering from D'\
- B
{20} onto D\ {B(z0) }. The composition o B, where ¢(z) = 12 B((ZO)) , generates
— Z0)%
a non-ramified m-sheeted holomorphic covering from D\ {zp} onto D \ {0}. There
exists a biholomorphic map o: D\ {2} — D\ {0}, such that (po B)(z) = o(2)™
(cf. [G13]). Clearly, 0 = 79 for some 6, 0 < 6 < 2m, ie. p(B(z)) = (Tg(z))m.
Hence (2) B(x0)
_ m  Te(2)™ + B(z
B(z) = ¢! (10(2))" = o
1+ B(z)m9(2)™
Proof of Theorem 8.1.4. By Lemma 8.1.5 we see that for every Mobius transfor-
mation ¢ on I with @k(z(()k)) = 0 there exists another M&bius transformation
wr+1 on D for which the diagram

O

D

is commutative. Hence, ¢, o By, = (pr+1)% and @k(z(()k)) = 0. Choose ¢y to be

the identity map on . By Lemma 8.1.5 we can define inductively a sequence
{pr}32, of Mébius transformations on D, with adjoint isometric automorphisms
¢} on H*(D) such that the diagram

k+1_ g
H>[D) "—" H>(D)
W}ZT ‘PZ+1 T
(T:+l)*

o) ' Ho(D)

is commutative. Here B} o pp = @5, 0 (( . )dk)*. Therefore, the infinite diagram

oo B o B3 ~ e
H (D) -— H (ID)) - H (D) LN
e 1 e 1 o3 1

o () 50 (r3)* o (m3)*
H>D) — H>(D) H>*D) — ...,

where 3FT! = By are the composition operators on H>(D) defined by Bi(f) =
f o By, is also commutative. Therefore, the inductive sequences

H®D) L5 H~D) £ H®D) L& ...— H®(Dp), and

H®D) 05 gom) {25 gom) 5 . HO(Dy),

with 777 (2) = 2%, are isomorphic. Consequently, H>®(Dp) = H>®(D,), as
claimed. g
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Corollary 8.1.6. If the Blaschke products By, in Theorem 8.1.4 are of type By(z) =
2% o (2), where @ are Mdbius transformations and d, > 1, then the algebra
H*>(Dpg) is isometrically isomorphic to the algebra H*(D,), where A = {dlk jSaip

Corollary 8.1.7. If every Blaschke product By in Theorem 8.1.4 is a Mobius trans-
formation, then the algebra H*(Dg) is isometrically isomorphic to the algebra
H>*(D) = H*°.

Indeed, Theorem 8.1.4 implies that H>°(Dp) = H>®(D,) with A={1,1,...}.
Therefore, 'y =7 and G4, = T.

Let & = {p1,902,..., ¢k, ... } be a sequence of non-constant inner functions
on . Consider the inverse sequence

Dy 2L Dy 22 Dy 22 Dy 24 .. Dy, (8.10)
where Dy, = D. The limit h_H)l {HZ, <p,t}k€N of the adjoint inductive sequence
HX® 1, H® 2, HP i, ..
of algebras H* = H*(Dy) = H*(D), where ¢}, k € N, are the composition
operators ¢ (f) = f oy, on H™, is a subalgebra of Cy(Dg).
Definition 8.1.8. The inductive limit algebra
H>(Dg) = [lim {H*, g} }ren| C Co(Da)

is called the algebra of @-hyper-analytic functions on Dg.

Carleson’s D-corona theorem for the space H* on the unit circle [C] asserts
k

that, given fi1,...,fr in H* with Z |fil > o >0 on D, there exist functions
j=1

k
g1,---, gk in H* such that ijgj =1 on D. If ||fjllc < 1, then g; can be
j=1
chosen to satisfy the estimates |g;|| < C(k,o) for some constant C(k,o) > 0.
Below we state and solve the Dg-corona problem for the algebra H°(Dg), where
Dy = lim {Dg11, Pk Fren-

Theorem 8.1.9. If f1, fo, ..., fn are @-hyper-analytic functions on Dg, for which
”fJH <1, and

|f1(x)|++|fn(a:)| > >0 for every x € Dg, (8.11)

then there is a constant K(n, ) and ®-hyper-analytic functions gi1,..., gn on Dg
with ||g;|| < K(n,d), such that the equality

fi(@) gi(z) + -+ fu(2) gu(z) = 1

holds for every point x in the set Dg.
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We observe that the adjoint mapplngs w; H* — H °°1 are isometric iso-
morphlbms So are the mappings L t H? — Hp® deﬁned by 1, = pjopii0

. Because (wj(f))( ) = f(p;(z )) Whenever z€Dj,j € N and f € HJOo we
have (L?(f))(z) = f(pjopjs10---0pk)(2)), whenever z € Dy 1. Consequently, ev-
ery coordinate algebra H;° can be embedded isometrically and isomorphically into
lim {Hoo,cpZ}keN C H>(Dg) via the natural inclusions ¢j: H?* — H*(Dg).
Moreover, if z* € Dy, then f(z*) = (1;(f))(z*), where #* € Dg is the chain
x* = (z1,22,...,%j,...) of the spectrum (8.10) with z; = z* and ¢, (2n+1) = 2n
for n > j.

Proof. Without loss of generality we can assume that ||f;|| <1/2 for all f; €
H>(Dg)in (8.11) and that § < 1/2. Let C(n,d/2) be the corresponding Carleson’s
constant and let ¢ = max {1,C(n,d/2)}. By the definition of the space H>(Dg)

there are integers n; € N and functions f; € H7?, such that

0

j=1,...,n.
20n7] ) 7”

15 = tn; (Pl = sup 1£i@) = (s () @)] <

Replacing fj by ¢, (f]), we can assume from the beginning that all fj € H for
some m > n;, j =1,2,...,n. The inequality (8.11) implies that for every z* € D
we have

|F1(z")| + +|]?n = !(Lm(fl))( A (e (Fa) (@)
- 5§ _ 9
_22|f1 Z|fj Lm f]))( *) 25_2CZ2>07
j=1
where, as before, * = (21, 22,...,2m,-..) is a chain of the spectrum (8.10) with

zm = 2* and @, (2p41) = 2n for n > m. Therefore, |fi|+ -+ |fn| > 6/2 >0 on
D for the bounded analytic functions f1, ..., f, on D. In addition,

0

1illoe = llom Ul oo < Wfslloo + [1£5 = tm (oo < Wfilloo + 5, <1

According to Carleson’s D-corona theorem for the space H> there exist functions
hi,...,hn € H with 1hlloo < C(n 5/2) < ¢ such that f1h1 + - —|—fn n=1on
D. Hence,

1= (fihi+ -+ fahn)(2") = tm(frha + - + fahn)(z*)
= (Lm(fl) ’/m(hl) + o+ ’/m(fn) Lm(hn))(x*)

on Dg, and HLm(hj)Hoo = ||hj]|oo < ¢. Though the function

F= flbm(hl) +oe fnbm(hn) € HOO(D95)
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is not necessarily equal to 1 on Dg, it is invertible in H**(Dg). Indeed,

1= Fllo —HZmej o) = 3 |

(8.12)
< o) = ill o lim ) < 0 en = <1,

> = 2¢en

Now the identity f1g1+-- -+ fngn = 1 holds on Dg with g; = i, (h;)/F € H*(Dg),

1 2 0
| = ..o n. -1 fo%e) < = i > —
J 1,...n. Note that [|[F~7' e < 162 2-06 since |F(z)] > 1 o O
2
D¢ according to (8.12). If K(n,d) = o _ 5 aX {1,C(n,6/2)}, then |gj|lcc <
2 2
HLm(hj)HOOHF_lHOO < 2_65 =, _ 5max {1,C(n,6/2)} = K(n,6). This com-
pletes the proof. O

8.2 Blaschke inductive limits of disc algebras

Let A C Ry be a basis in R over the field Q of rational numbers. As we saw in
Example 1.3.6, R can be expressed as the limit

R = 1141{1 {Iv.m}ymyes

of the inductive system {I(, n)}(y,n)es of subgroups I, ) of R isomorphic to

k
= P Z, defined by

i=1
F('y,n) = {(1/n') (ml’yl + may2 + - +mk:’7k:): mj € Z7 J =1,.. 7k}
Let Pr, n) = (I{5,n))+ be the non-negative half-group

Py = {@/n!) (may1 + -+ mae) € Ty ny: mam + -+ mpye > 0)}
of I'y ny- The b(R)-disc algebra Ay can be expressed as an inductive limit algebra
Ab(R) = I:h_n} {AP(’Y,H) (DG)}('y7n)€J]’
under inclusions, where Ap _ = is the algebra of P, ,,)-functions on G = b(R), the

Bohr compactification of R.

Similarly, every shift-invariant algebra Ag with S C R, can be expressed as
an inductive limit of algebras Ap_ , of analytic P, ,-functions on b(R). Note

that I, ) = Z*, where k = card (7).

Let B be the algebra of linear combinations of functions 2!/, n € N on the
set R7,,q(DD), considered in Example 4.2.6(c). For a fixed n € N denote by A™) the
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algebra of polynomials of Z'/™. Clearly, B = U A™ and A ¢ A whenever

neN
n < m. Consequently, B can be expressed as the limit of the inductive system

{AM) my ., where N is considered with the usual order, namely,

B=|JA™ =1lim {A"™ "}, cn.
neN

Uniform algebras that can be represented as inductive limits of disc algebras
A(D) are of particular interest. Let I = {i¥T1}2°  be a sequence of homomor-
phisms i¥T!: A(D) — A(D). Consider the inductive sequence

A(Ty) E5 A(Ty) 25 A(Ts) -5 ... (8.13)

of disc algebras A(T},) = A(T) with connecting homomorphisms i¥**: A(Ty) —
A(Tg41). Every adjoint mapping (i’,j“)*: My, —— M1 maps the maximal ideal
space My =2 D of A(Tk+1) into the maximal ideal space My = D of A(Tg).
Since if T (f) = fo (z’i“)* € A(Ty41) for every f € A(Ty), the mapping (ii“)*

is an analytic function preserving the unit disc. The inverse limit
Dy G- Py @ P, G p, G ... p,;
is the maximal ideal space of the inductive limit algebra

APy = [lim (AT, 7, )

In general, the mappings (iﬁ“)* do not necessarily map the unit circle Tj1
onto itself. The most interesting situations, though, occur when they do, and this

is what we will assume in this section. In this case the mapping (i’,j“)* becomes

a finite Blaschke product By on D.

Let {Dg1, T,f“}keN be the inverse sequence with D, = D and T,f“ (z) = 2%
on D. As we saw in Example 8.1.1, the limit lim {Dj41, T:—i_l}keN of the inverse
sequence {ID)kH,T,fH}keN, is the G-disc Dg, = ([0,1] x GA)/({0} x G4) over
the group G4 = 4. There arises an adjoint inductive sequence {A(Dk), z",j“ }keN
of algebras A(D) = A(T) with connecting homomorphisms i ™ = (7/771)*: A(Dy)
— A(Dg41), defined by (zﬁ“(f)) (z) = (f(z))dk The elements of the coordinate
algebras A(Dy) can be interpreted as continuous functions on G 4. The uniform
closure

ADg,) = [lim {ADr), i}, 0]

in C(Dg,) of the inductive limit of the sequence {A(Dy), iRt }keN and the corre-

sponding restriction algebra [lim {A(Tk), iﬁ“}k GN] are isometrically isomorphic
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to the G4-disc algebra Ar,, ie., to the algebra of analytic functions on the
G s-disc (cf. [T1])).

In a similar way, if {K;};°; is a sequence of connected compact sets in the

complex plane C with Tll+1(Kl+1) = K for every [ € N; then the closure of the

inductive limit lim {A(Kl),zf“}leN in C(K,) is the algebra A(K,) of analytic
I'y-functions on the compact set 4 = lim {Kz+1,Tll+1}leN in the G-plane

Cg, over the group G, (e.g. [L1]).

Consider an inductive sequence of disc algebras

A(Ty) 5 A(To) S5 A(Ts) 5 - (8.14)

with the the natural embeddings if™': A(T)) — A(Tki1) as connecting ho-

momorphisms. Since sz:+l(A(Tk)) = D and 9(if T (A(Ty))) = T, then accord-
ing to the remarks following Lemma 8.1.5, there are finite Blaschke products
By : D — D such that iZH = B}, for every k € N, i.e.

iy (f) = fo B,

where
ng

(k)
Bi(z) =TI (777 ) 1 <1

k
=1 1_21( )z

Let B = {By}72, be the sequence of finite Blaschke products corresponding
to the mappings i7" ', i.e. (Bg)*(2) = if ™ (2). Let A = {d),}32, be the sequence
of orders of Blaschke products {Bj}%2, and let I’y C Q be the group generated

k
by 1/my, k=0,1,2,..., where my = [[ d;, mo = 1.
=1

Consider the inverse sequence

Dy By Dy Bo Dy Bs Dy Ba .. Dg.

The inverse limit Dp = lim {Dg41, Bk }ren is a Hausdorff compact space. The

limit of the adjoint inductive sequence {A(Dk),ﬁfﬂ}io of disc algebras A(Dy),
whose connecting homomorphisms are the composition operators ﬂ’,j“ = Bj:
ADg) — ADgs1): ( ’,j“(f))(zkﬂ) = f(Bk(zk+1)), is an algebra of functions
on DB.

Definition 8.2.1. The Blaschke inductive limit of disc algebras is the closure
A(Dp) = [lim {ADy), 37}, ]

of the inductive limit algebra [lim {A(Dy), bi“}keN] in C(Dp).
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Clearly, the algebra A(Dp) is isometrically isomorphic to the algebra
lihi)n {A(Tk)7 /Bllz+1 }kEN]'

Proposition 8.2.2. Let B = {By}72, be a sequence of finite Blaschke products and
let
A(DB) = [hj)l {A(]D)k)vB;:}keN]

be the corresponding Blaschke inductive limit algebra. Then:

(i) A(Dg) is a uniform algebra on the compact set

Dp = lim {Dk+1»Bk}keN~

The mazimal ideal space of A(Dpg) is Dp.

ii)

(iii) A(Dp) is a Dirichlet algebra.
iv) A(Dg) is a mazimal algebra.
)

The Shilov boundary of A(Dg) is homeomorphically isomorphic to G4, and
its dual group is isomorphic to the group

(v

oo

FA%U ! 7 C Q,

m
k=0 k

k
where my, = [] di, mo =1, and dy, = ord By.
=1

Indeed, under our assumptions By maps Ty4+; onto Ty and Dy onto Dy.
Since the Shilov boundary of every component algebra A(Dj) is the unit circle
Tk, and the maximal ideal space is the disc Dy, the properties (i), (ii), (iii) follow
from Proposition 1.3.4, while (iv) follows from the next proposition.

Proposition 8.2.3. The inductive limit of mazimal algebras is a mazimal algebra.

Proof. Let A= [lim {47, ';}oex] where A% are maximal algebras. The maximal

ideal space of A is the inverse limit M 4 = hm {Mo, (i2)"} , where M, are the
vex’

maximal ideal spaces of the algebras A°. If h e C(MA) \ A, then the algebra A[h]
generated by A and h coincides with [lim {A”[h (ZU)**}JEZ] Since iZ(A%) C

A" and h ¢ A, it follows that h, & A for every o € Y. By the maximality of A
we have that A%[h,] = C(M,), o € X. Hence,

A[h] = [hm {A7]g] 0)**}062] [hm {C(M,), (i 0)**}062] =C(Myn).

Consequently, A is a maximal algebra, as claimed. O
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Theorem 8.2.4. Let G be a compact abelian group with dual group G tsomorphic
to a subgroup I' of R. The G-disc algebra Ar, is a Blaschke inductive limit of
disc algebras if and only if I' is isomorphic to some subgroup of Q.

Proof. The first part of the theorem is proven already in Proposition 8.2.2. Let
G 2T C Q and let {a;}2; be an enumeration of I". Without loss of generality
we can assume that a1 =1. Let IO =7 1r® =7+a7, I'® =7+ ayZ + asZ,
etc. Smce 7Z < I'™ and '™ is isomorphic to Z, there is an my € N, such
that I'® = (1/my) Z. By I'" C I'*** we have that dy41 = (mg11/my) € Z. The

il pk) oy pltD) generates a mapping zkH 7Z — 7 such that

dk+1, and therefore ZZ+ (n) = dgr1in, n € Z*). Clearly, the group

1nclu510n iy,

) =

o0

= U 1/mk —hm {F(k) ’LkJrl}k N C Q

is generated by the numbers 1/my, k € N. As we saw at the beginning of this
section, the Blaschke inductive limit algebra A(D,) corresponding to the sequence
A = {dy.}7° coincides with the I'y-disc algebra Ar, . . O

~

Similarly to the case of inductive limits of algebras H>° (D) & H, we obtain
the following analogues to Theorem 8.1.4 and its corollaries.
Theorem 8.2.5. If B = {By}72, is a sequence of finite Blaschke products on D,
each one with at most one singular point z( ) and such that By, (z(()kﬂ)) = zék),
then the algebra A(Dp) is isometrically zsomorphic to the algebra A(FA)+ with

A = {di}32,, where dj, = ord By,.
Corollary 8.2.6. If every Blaschke product By in Theorem 8.2.5 is a Mobius trans-

formation, then the algebra A(Dp) is isometrically isomorphic to the disc algebra

Az, = A(T).

8.3 Blaschke inductive limit algebras of annulus type

Let DI be the annulus region DM = {z eC:r< |zl < 1}, with topological
boundary bDI"! = T, UT = {z € C: |z| = r} U{|z| = 1}. Denote by A(DI"!]) the
uniform algebra of continuous functions on DI, analytic in its interior. Note that
A(D[T’”) coincides with R(D[T’”), the algebra of uniform limits of rational func-
tions on DI, By a well-known result of Bishop (e.g. [S4]), the Shilov boundary of
A(D[T*”) is the topological boundary D] = T, U T. The restriction of A(D[Tvl])
on bDI™! is a maximal algebra, such that codim (Re (A(D[T’l])’bm[nl])) = 1. These
results can be extended to the case of analytic I'y-functions on compact groups
(cf. [GY]).

Let G be a solenoidal group, i.e. a compact abelian group such that its dual
group I’ is isomorphic to a dense subgroup of R. Let ID)[CT;’U =[r1]e¢G, 0<r <1,
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be the G- annulub and let ( s 1]) be the uniform algebra on ID)[ ' }, generated by
the functions x?, a € I". Then:

(a) D[Gr’l] is the maximal ideal space of R (DD L 1])
(b) bD rll = = ({r} x G) U ({1} x G) is the Shilov boundary of R(ID)[CT;’I]).
(c) R(]D)[Gr’l]) is a maximal algebra with codim (Re (R(D[Gr’l])’bmg,u)) =1.

Consequently, R(ID)[CT;’H) coincides with A(ID)[CT;’H), the Blaschke inductive limit al-

1]

gebra of annulus type, consisting of continuous functions on ID)[GT’ that are locally

approximable by analytic functions in ]D)(Gf’l).

k+1

Let A = {d;}$2, be a sequence of natural numbers, 77" (z) = 2%, and
€ (0,1] be a fixed number. Consider the sets
,rl/vn T
Ek:D[ *1l —{ZEID) r/me < 2| <1} = (rfordo- -07',?_1)*1(}1)[ ’1]),
k
where my, = [[ di, mo =1, and E; = DI There arises an inverse sequence
=1
D[T,l] 72 By T3 E3 T3 E, 70
of compact subsets of D. Consider the adjoint inductive sequence
ADIY) L A(B,) B A(Es) S e (8.15)

where the embeddings i} ™ : A(Ey) — A(Fj11) are the adjoints to 2% composi-
tion operators, namely, ( Rt o f)(z) = f(z%). Let G 4 denote the compact abelian
group whose dual group I'y = G4 is the subgroup of Q generated by the set A.

Lemma 8.3.1. The uniform algebra [lim {A(Ek),izﬂ}keN] is isometrically iso-

morphic to A(ID)[CZ’H), the Blaschke inductive limit algebra of annulus type.

k
Proof. Let ar, = 1/my, where, as before, my = [[ d;, mo = 1. Consider the
=1

algebras A’“(ID)[H) {g oX%:qg € A(Ek) } C A( H]) k=1, ., where

2,.
AH(D ’"”)]

{2 € Iy Clearly, A*(DEY) ¢ A+ (DY) and A(DEY) = [

HCS I

thus have an inductive sequence
ALYy A2ty o A, (8.16)

where ]kH is the natural inclusion of A* (ID)[CT;’H) into AF+1 (]D)[é’l]). We claim that

the inductive sequences (8.15) and (8.16) are isomorphic. Indeed, X** maps ID)[CT;’H
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onto Ej, and the mapping ¢y defined by ¢ (f o X% ) = f maps A* (ID)[CT;’H) isomet-
rically and isomorphically onto A(Ey). In addition, iﬁ"'l 0 YK = QPri1 |A (o) =

k\Ma
Pk+1© j,’j“, i.e. the diagram

Ak (D[gl}) J;:_“) Ak+1 (D[Gr,l])
Pk i Pr41 l
k41

ABr) %= A(Bi)

is commutative. Therefore the infinite diagram

.2 .2 -3
Apgl) Hoagt) A gt

(%25} l Y2 i ¥3 l
i i5 i3
AE)  —  AE) & AlBs) —
is commutative too, and hence the inductive sequences (8.15) and (8.16) are
isomorphic, as claimed. Consequently, A(ID)[CT;’H) =~ [lim {A(Ek),i’,zﬂ}keN], as
claimed. ]
Let B = {B}?2, be a sequence of finite Blaschke products on D and let

dy, = ord Bg. Define inductively a sequence of sets Fj, as follows: F} = D[T*”,

Fni1=B;Y(F,)={z€D:B,(z) € F,} = (BioByo---0B,) (D)

n

for n > 0. Consider the adjoint sequences

DR« BL p Ba p Ba o Pl ¢ Dp, (8.17)

where Dp = lim {Dy41, Bk }ren, and

ANy B A(Fy) 2 A(Fy) Lo (8.18)
where By = B, ie. (B o f)(2) = f(Bi(2)).
Theorem 8.3.2. If the Blaschke products B, do not have singular points on the
sets Fy, for any n € N, then ’Dg’l] = Dg,1]7 and the algebra

A(Dg") = [t {A(F), B} },, .

s isometrically isomorphic to A(]D)[Gr’l]), the Blaschke inductive limit algebra of

annulus type.

For the proof we need a version of a well-known result on Riemann surfaces,
which we provide here with a short proof.
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Lemma 8.3.3. Suppose that the dy-sheeted holomorphic covering By, : Fp41 — Fy
does not have singular points, and there exists a biholomorphic mapping vy from
Fi, onto Ex. Then there exists a biholomorphic mapping Y41 : Frr1 — Ert1

such that the diagram
Fo &% Fg
v | Yt |
2%k

E, — Lyu
is commutative, i.e. 1y, o B, = (VYr41)%, where dj, = ord By,.

Proof. The function z% generates a bijection 24+ from Ej,; onto the dj-sheeted
covering Ek over Ey. Likewise, the map ¢yo0By: Fyy1 — sz/ generates a bijection
(Y 0 Bg)™ from Fyyq to Ek Therefore the map 41 = (24 )" o (¢ 0 By,) ™ is a
well-defined bijection from Fj41 onto Ejy1, so that the diagram

Friq
Va1 | \(wk'OBk')~

zek

Eny — By

is commutative. Since both component mappings of 151 are locally holomorphic,
SO 18 Vk+1- O

Proof of Theorem 8.3.2. Let 1; be the identity map on D"l = E; = F,. By
Lemma 8.3.3 we can define inductively biholomorphic mappings ¥y : Fr, — FEj
for every k € N, such that ¢ o By = (¥r41)%. Consequently,

D[CT;’H = 1(211 {En+1, Zd"}neN = 1(211 {Fn+1, Bn}nEN = Dg’” C Dp.

The adjoint mapping 15 maps the algebra A(E}) isometrically and isomorphically
onto A(Fy). Hence the infinite diagram

(z%1)" (z%2)" (z%3)"
) ¥s ] ¥3 ]
ek 85 B3
AF)  — (Fp) = (F3) -

is commutative, and therefore, the inductive sequences (8.15) and (8.18) are iso-
morphic. Consequently,

I

ADEY) = [lim {A(F,), B}, o] = [lim {A(B), i1} ] = A(DEY).

O

The following properties of the algebra A(Dg’l]) follow directly from Theo-
rem 8.3.2, Proposition 8.2.3, and the results in [G12].
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(a) The maximal ideal space of A(Dg’l]) is homeomorphic to the G-annulus
D&Y

b) The Shilov boundary of A DI s the set DY =r0o G U 160G,
( B G
(c) A(Dg’l]) is a maximal algebra on its Shilov boundary.
. r,1
(d) codim(Re (.A(DJ[B })’ng,ll)) =1.

Let F be a closed subset of the unit disc D. Denote by A(F') the algebra of all
continuous functions on F' that are analytic in the interior of F. Recall that A(F')
coincides with the uniform closure on F' of the restrictions of Gelfand transforms
of the elements in A(T) on F. ie. A(F) = A(D)|p.

Let B = {By,Ba2,...,Bn,...} be a sequence of finite Blaschke products on
D, and let 0 < r < 1. Define inductively a sequence of compact sets D, in D, as
follows. Dy+1 = By Y(Dy), for n > 1, Dy = D% = D(r) = {z € D: || < r}
There arises an inverse sequence

D(r) «2L Dy B2 Dy Bs Dy Bs ... —Dp(r) (8.19)
of subsets of D. The inductive limit
A(Dg(r)) = [hm {A(D *}neN] (8.20)
is a uniform algebra on its maximal ideal space

{El {Dna Bn—l}kEN = DB(T) - DB'

Any Blaschke product B(z) = e’ , |zk| < 1, of order n gener-
1
— Zk

ates an n-sheeted covering over each sunply connected domain V' C D which is
free of singular points of B. Thus the set F' = B~1(V) C D is biholomorphic with
a disjoint collection of n copies of V, i.e. F 2V x F,, where F,, = {1,2,...,n},
and the algebra A(F) is isomorphic to a subalgebra of the algebra

ADV) = AV) @ AV) @@ A(V) 2 A(V x F,),

where A(V x F,,) is the algebra of all continuous functions f(z,k) on V x F,
such that f(-,k) € A(V), k=1,2,...,n. Clearly, V x F,, is the set of maximal
ideals of algebra A(F), and A(F)|y, (, = A(V) for every k = 1,2,...,n. Hence

A(F) c AM(V) = A(VxF,) C C(VxF,). The space C(F},) also can be considered
as a subalgebra of A™(V') consisting of all functions f € A™(V) that are constant
on the sets V x {k}, k € F,.
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Proposition 8.3.4. Let B = {By,Bs,...,By,...} be a sequence of finite Blaschke
products on D and let 0 < r < 1. Suppose that the set D,, does not contain singular
points of By—1 for every n € N. Then:

(i) There is a compact set'Y such that the mazimal ideal space

M-A(DB(T)) = DB(T) = @ {‘Dn+17Bn}n€N

is homeomorphic to the Cartesian product D(r) x Y.

(i) A(DB(T)) is isometrically isomorphic to an algebra of functions f(xz,y) €
C(D(r) x Y), such that f(-,y) € A(D(r)) for everyy € Y.

(iii) A(Dp(r)) |]D)(r)><{y} = A(D(r)) for everyy €Y.
Proof. Consider the adjoint inductive sequence
A(D(r)) 2L A(Dy) B A(D3) Bis oo — A(Dp(r)). (8.21)

Observe that the set Dy, 1 = B,,}(D,,) is biholomorphic to D(r) x F,, form > 1,
where d,,, = ord B,,,. There arises a mapping ji : D(r) x Fy,, — D(r) x Fy,
such that the diagram

By,
Dy, — D11

I i , I i
D(r) x Fg <~ D(r) x Fy,,

commutes. Here I}, is the natural biholomorphic mapping Iy, : Dy, — D(r) x Fy, .
Note that j maps D(r) onto D(r), and Fy, ,, onto Fy, . Hence, the adjoint diagram

B*
A(Dk) —k> A(Dk+1)
i Tpqr* T

A(D(r) x Fy.) 25 A(D(r) x Fu,,)
is commutative for every k£ € N, and therefore the infinite diagram
Apy 2 amy) B apy B
il 1 )

Js Js

A(D(’I’) X Fd1> i (D(?") X Fd2> —_— (D(?") X ng) —
is commutative. Hence, the inductive sequence (8.21) is isomorphic to the sequence
AD(r)) 5> A(D(r) x Fg,) 25 A(D(r) x Fg,) 5 - (8.22)

Consider the inductive sequence

C s C(Fy,) -2 C(Fy,) -5 .- (8.23)
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of algebras A(D(r) x Fy, ) restricted on Fy,. A straightforward check shows that
F = [lim {C(Fdn)7j;}neN] is a commutative C*-algebra. Therefore F = C(Y),

where Y = lim {Fy,,,,jn tnen. Note that the inductive sequence (8.19) is
— +1

’Fdn
isomorphic to the sequence

D(r) «2 D(r) x Fy, <22 D(r) x Fyy 2= D(r) x Fy, <24 ... «—D(r) x Y.
It is clear that the algebra
A(Dp(r)) = [lim {A(Dn), By}, ] = [lim {AD(r) x Fa, ), 57} el
is a subalgebra of A(ID(r) x V) such that A(Dp(r)) |]D)(r)><{y} = A(ID(r)) for every
yey. O
Note that the set Y from Proposition 8.3.4 is homeomorphic to the set

{{yn}%o:p Yn € (ByoBso---o0 Bn_l)_l(O)}. Let T, =rT = {|z| = 7"}. Since

bDB(T) = lim {bDn—Ha Bn’bD,H_l} =T, xY, (824)

neN

Proposition 8.3.4 implies the following.

Corollary 8.3.5. In the setting of Proposition 8.3.4, the only singleton Gleason parts
of the algebra A(Dp(r)) are the points on the Shilov boundary bDp(r) = T, x Y.

Proposition 8.3.6. Let B = {By,Ba,...,By,...} be a sequence of finite Blaschke
products on D, and let 0 < r < 1. Suppose that for every n € N the set of singular
points for B, _1 in D,, is the set (By o Byo---0 B,_1)"1(0), and assume that all
its points have one and the same order d,_1 > 1. Then:

(i) There is a compact set' Y such that the mazimal ideal space

My (o) = Do) =1 (Duss. Baly, | Jeen

Di(r))
is homeomorphic to the Cartesian product Dg,(r) x Y, where A = {di}7
is the sequence of the orders of By.

(i) The algebra A(Dp(r)) on Dp(r) is isometrically isomorphic to an algebra of
functions f(z,y) € C(Dg,(r)xY), such that f(-,y) € A(Dg,(r)) for every
yey.

(iii) A(Dgs(r)) |]D)(r)><{y} = A(Dg,(r)) for everyy €Y.

Proof. Theset F = (ByoBgo---0B,_1)"1(D,) C D is biholomorphic to a disjoint
collection of d,, copies of D, i.e. F = D, x Fy_ , Fy, ={1,2,...,d,}. In addition,
the algebra A(F') is isomorphic to a subalgebra of the algebra

A4 (D,) = A(D,) ® A(D,,) ® ---® A(D,,) = A(D,,) x Fy,,.
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Moreover, A(F)|p,x{xy = A(Dy) for every k = 1,2,...,d,. Hence A(F) C
A (D,) = A(D,xF,;,) C C(D,xFy,), and D, x Fy, is the set of maximal ideals
of A(F). Consider the space C(Fy, ) as a subalgebra of A% (D,,) consisting of all
functions f € A% (D,,) that are constant on the sets DI x {k}, k€ Fy,. Asin
the proof of Proposition 8.3.4, we see that F = [h_H)l {C(Fd")’B:;}nEN] =C(Y),

where Y = lim {Fy,_,, By }nen, and (8.19) is isomorphic to the sequence

D(r) & D(r) x Fy, <42 D(r) x Fy, «2& ...« Dg,(r) x Y.

Consequently, the limit Dg(r) of the inverse sequence (8.19) is isomorphic to
D¢, (r) x Y. Moreover, the algebra A(Dp(r)) = [lim {A(D,,), B;}neN] is a sub-

algebra of C' (D¢, (r) X Y') such that A(Dp(r)) |1D>c ) = A(Dg, (r)) for every
A
yevy. O

Note that, as before, the set Y from the above is homeomorphic to the set
{{yn};o:h Yn € (Bl o B2 0-+-0 Bn—l)_l(O)},

8.4 Parts of Blaschke inductive limit algebras

We have seen already various links between Blaschke inductive limit algebras and
G-disc algebras. In this section we describe the Gleason parts of Blaschke inductive
algebras, and use them to find necessary and sufficient conditions for a Blaschke
inductive limit algebra to be isometrically isomorphic to a G-disc algebra.

Let A be a uniform algebra on the compact set X. While every point in the
Shilov boundary 0A is itself a Gleason part (e.g. [S4]), the opposite is not always
true, i.e. there are singleton Gleason parts outside the Shilov boundary of A. For
instance, if G is a solenoidal group, then the origin w = ({0} x G)/({0} x G) € D¢
of the G-disc Dg is a singleton Gleason part for the G-disc algebra Ar, . Of course
wgOAr, =G.

The celebrated theorem of Wermer (e.g. [S4]) states that an analytic disc can
be embedded in every non-singleton Gleason part of the maximal ideal space of a
Dirichlet algebra. Therefore it is of particular interest to locate singleton Gleason
parts of an algebra, and especially those of them that do not belong to the Shilov
boundary.

Observe that, as it follows from the results in Section 8.3, all singleton Glea-
son parts of the algebra A(Dg’l]) belong to the Shilov boundary b]D)[Gr’l]. On the
other hand, by (8.24), Propositions 8.3.4 and 8.3.6 we have the following
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Corollary 8.4.1. Let B = {B1,Ba,...,Bn,...} be a sequence of finite Blaschke
products on D, D,, are as in (8.19), and let 0 < r < 1. In the setting of Proposition
8.3.6 there are mo singleton Gleason parts of the algebra A(DB(T)> in the set
MA(DB(T)) \ (bDp(r)U({w} xY)), where w is the origin of the G x-disc D¢ ,, and

Y is the set Y = {{yn}o1, Yn € (BioByo---0B,_1)"1(0)} from Proposition
8.3.6.

As an immediate consequence we obtain that the algebra A(Dp(r)) is iso-
morphic to a G-disc algebra if and only if Y is a singleton set.

Corollary 8.4.2. In the setting of Corollary 8.4.1 the algebra .A(DB(’/‘)) s isomor-
phic to a G-disc algebra if and only if every Blaschke product B, has a single
singular point z(()n) in DS such that By (z(()")) = z(()"'H) for all n big enough.

Given a sequence of Blaschke products B = {B,}72; on D, consider the
Blaschke inductive limit algebra A(Dp) = [lim {A(Dy), f“}keN] on the com-
pact set Dp = lim {Dy, Bx_1 }ken, where B,’:H = Bj. Recall that the Shilov
boundary of A(Dpg) is the group 7 = lim {Ty, Bx—1 }ren-

Definition 8.4.3. We denote by B, the family of Blaschke products on D whose
zeros are inside the disc D(r) = rD = {|z| < r}. The set of elements in B, that
vanish at 0 will be denoted by B? C B,..

Theorem 8.4.4. Suppose that B,, € BY and ord B, > 1 for every n € N. Then
there is only one singleton Gleason part in the set D\ Tp.

We need several preliminary results for the proof. Given two points m; and
mg in Dp = M 4(py), consider the Gleason metric

d(my,ma) = sup |ma(f)—ma(f)|
Ifll<1
f € A(Dp)

Lemma 8.4.5. Let m1=(z1,22,...) , where z = Bi(zk+1), and ma= (w1, wa,...),
where wy, = B (wy+1), be the chains in the sequence {Dy, Br_1}ren of the points
m1, me € Dp correspondingly. Then

4d(m1,m2)
4+ d2(m1,m2) T koo

T Wk (8.25)

1-— WEZk

Proof. Let zj,wy € D denote the restrictions of my and ms on A(Dy,) respectively.
Define
d(my,ma) = sup |my(f) —ma(f)| = d (21, wy).

lfll<1
f € A(Dy)
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Since A(Dy) C A(Dg41) and A(Dp) = U , we have that

di(my,ma) < dgs1(mi,me) < d(mi,me), and d(my, mg) = klin;o di(mq,m2).

Note that (cf. [G2]),

ddp(my,mz) | 2 — wy ‘
4+ d2 (m1,ms) 1 —wpz !
Consequently,
4d(my,mg) . 4di(mi,mg)

= lim

2k — Wi ‘
4+ d2(my, ms) _k:—>oo4—|—di(m1,m2) T koo |1 —wgzg |

O

Lemma 8.4.6. For every p € [0,1] let a(p) = sup T ‘ Then for every
2l < p' 1 202
|zo| <7

B € B,,

‘m‘i’;‘B |< (a(p))ordB.

Proof. Standard properties of Mobius transformations imply that a(p) < 1 and
a(p) =1 only if p = 1. Consequently, if |z| < p for any B € B, we have

|_‘H(1_ZOZ>‘7(a(p))n. B

We observe that since B, (0) = 0 for every n € N, the chain w = (0,0,...) of
elements in the system {Dy, Bx_1}ren belongs to Dp = lim {Dy, Bi—1}ken, i.e.
the maximal ideal space of A(Dpg). The point w is called also the origin of Dp.
Proposition 8.4.7. Suppose that B,, € BY and ord B,, > 1 for every n € N. Then
w is a singleton Gleason part of A(Dg) in Dp \ T5.

Proof. Let m = (#1, 22,...) be a point in Dp and let d(w,m) = d. By (8.25)

4d(w,m) T 4d <1
= 1im Zn = =
44 d?(w,m) n—oo 44 d?
By Schwarz’s lemma, |z,| = |Bn(zn+1)| < |zn+1l, and hence |z,| < ¢ for every

n € N. Hence,

((0)) 5! < cafe),

B
20l = [Ba(zas)| = lznsal| (7)) Gsn)| < [znsal(ate

and consequently,
c= lim |z,| < ca(ec) <ec
n—oo

Therefore, a(c) = 1 and thus 1 = ¢ =4/(4 + d?), i.e. d = d(w,m) = 2, i.e. m and
w belong to different Gleason parts. ]
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It remains to show that w is the only singleton Gleason part of A(Dpg). For
the following lemma, probably well known, we provide a short proof.

Lemma 8.4.8. Let B C B, and let W be a simply connected domain in D, such
that DIl c W C D. Let K = D\ W and Kg = D\ B~Y(W). If the boundary bW
of W is a piecewise smooth curve, then the covering mapping K — K generated
by B does not have singular points.

Proof. Let zg € K. Consider a simply connected domain;ﬂv/, W c W c D with
a piecewise smooth boundary bW that contains zo. B~1(W) also has a piecewise
smooth boundary bB_l(W) = B_l(bW). Since all zeros of B belong to D71 ¢
W C W, the Argument Principle for analytic functions implies that every turn
around the curve bB~(W) generates N rotations around the curve bW, where

N = ord B. Therefore, card B~!(zy) = ord B, i.e. 2o is not a singular point for
B. |

Proof of Theorem 8.4.4. By Proposition 8.4.7, it is enough to show that the point
w is the only singleton Gleason part for A(Dg). Let m € Dg, m = (z1,22,...,
Zn,...) # w. As we saw in the proof of Proposition 8.4.7, |z,| < |zgx+1]| for every
n € Ny and nlggo |zr| = 1. Therefore, without loss of generality we can assume that

|z1] > r+¢, wheree = (1 —1r)/2. (8.26)
Consider the simply connected domains

W1 = B, (W,), Wy = DIOr+e/2, (8:27)
and let
Ko=DIO"+/2 K, = B7Y(K,) = D \ W1

n

Lemma 8.4.8 implies that B, has no singularities on K, 1. According to The-
r,1 P . r,1
orem 8.3.2, .A(DB3 ]) is isomorphic to A(D[GA]). Clearly MA(D“‘”) C Dp, and

B

A(’DB)|M ) is a uniform subalgebra of A(Dg’l]). The point m belongs to
A(Dg"ll
the interior of M [ 1]) since z, € int K, for every n € N. If we assume that m
A(py

B
is the only point in its Gleason part relative to A(Dp), then

sup  |f(m1) = f(m)| = sup |F(ma) = f(m)| =2
£l =1 £l =1
fe A f € A(Dg)

for every m; € MA(D[“”)’ i.e. m is the only point in its Gleason part relative to
B

A(Dg’l]), which is impossible. Hence, m does not belong to any singleton Gleason
part of A(Dg’l]). |



8.4. Parts of Blaschke inductive limit algebras 251

Corollary 8.4.9. Let B € B,, B(0) # 0, and By(z) = 2% B°, dy, > 1. Then there
is only one singleton Gleason part in the set D\ Tg.

Proposition 8.4.10. Let B be a finite Blaschke product with B(0) = 0. Consider
the stationary sequence B = {B, B,...}. If the Blaschke inductive limit algebra
A(Dp) = [lim {A(Dk)’Bk}keN]’ Dy = D, By = B is isometrically isomorphic to

a G-disc algebra, then necessarily B(z) = cz", where c €D, |c| =1, and n € N.
We precede the proof by several preliminary results.

Lemma 8.4.11. Consider the inductive sequence of algebras
ADy) F AD2) £o ADs) £ - — A(D),

where B is a Blaschke product B with B(0) = 0. For every n € N there exists an
automorphism I, : A(Dp) — A(Dp) such that

where i, is the natural embedding i, : A(D,) — A(Dp) .

Proof. We prove the statement in the case n = 2. For n > 2 it follows the same
lines. For every n € N denote by I} the identity mapping of A(ID,,) onto A(Dy,41).
For any n € N we have that I3 (2|p, ) = 2|p,., > IS(f)H = || f|| for each f € A(D,,),
and hence the diagram

AD,) 5 ADag)
7| A

ADur1) 25 ADnye)

commutes. Consequently, the infinite diagram

ADy) Eoamy) Boams) £

Il e I
ADy) > ADy) > AD)
is commutative, and hence the given inductive sequence is isomorphic to

ADy) 5 A(Ds) B5 ADy) BS oo

There arises an isometric isomorphism from the algebra lim {A(Dy), B;}k cn onto

itself, that can be extended as an isometric isomorphism I from the algebra
A(Dp) = [lim {A(Dy), BZ}keN] onto itself. It is straightforward to check that I

satisfies the identity (8.28). O
Corollary 8.4.12. If B(0) = 0, then the origin w = (0,0,...) € M g(p,) is a fized

point of the mapping I, : M gpy) — Muapy) adjoint to the automorphism I,
from Lemma 8.4.11.
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Proof. We observe that according to Proposition 8.4.7 and Corollary 8.4.9, the
point w is the only singleton Gleason part of the algebra A(Dp) outside its Shilov
boundary. Since I, is an automorphism, it preserves all properties of the algebra
A(Dpg). Therefore, the point I} (w) is also a singleton Gleason part of A(Dp) that
is outside the Shilov boundary. Hence, I} (w) = w, as claimed. O

For the following lemma, probably well known, we provide a short proof.

Lemma 8.4.13. Let X be a connected compact Hausdorff set. If lim Hew” —1” =0

for some 1, € C(X), then there are k, € Z such that the functions @, = ¥, —
2mik,, converge uniformly to 0 on X.

Proof. If 1, = up+iv,, then e¥n — etin (cos v, +isinvy,). Since nlirgo|‘ew”—1” =0,
we have that e sinv, — 0, while ¢%» cosv,, — 1 uniformly on X. Therefore,
e is a bounded sequence on X and, consequently, cosv, — 1, sinv, — 0
uniformly on X. The connectedness of X implies that for every n € N there
is a k, € Z such that |v, — 27k,|| < 1. Thus v, — 2wk, — 0 because of
sinv,, — 0, and hence cos(v,, —2mk,,) — 1, which yields e¥» — 1, i.e. u,, — 0.
Consequently, ¢,, = 1, — 2wik,, — 0 uniformly on X, as claimed. |

We observe that the mapping i7: M 4(p,) — D, adjoint to the inclusion
i1: A(D) — A(Dp), maps the Shilov boundary dA(Dg) = Tp onto T = JA(D).

Lemma 8.4.14. Let B be a finite Blaschke product with B(0) = 0. If S is an
isomorphism between the Blaschke inductive limit algebra A(Dp) and a G-disc
algebra Ar, , then the set (S o il)(A(']I‘)) contains a character xo of the group
G=0Ar,.

Proof. Observe first that ’(S ° il)(z|ﬂ,)| # 0 on G. Indeed, since the identity on T
does not vanish on the Shilov boundary of A(DD), its image i1 (id(T)) C A(Dp) # 0
on the Shilov boundary 7p of A(Dp), and therefore ’(S ° il)(id(T))’ # 0 on
0Ar, = G. By van Kampen’s theorem [vK] there is a xo € G and v € C(@), such
that (S oi1)(z]r) = xoe?. The Arens-Royden theorem (e.g. [S4]) implies that
Xo € Ap, . We claim that xo € (S 0i1)(A(T)).

Let x be a fixed element in I'y = Gn Ar,. Given an € > 0 one can find an
n € N so that d((S oi,)(A(T)), x) < &, where d(-, -) is the uniform distance in
Ap, C C(G). If I,, is the automorphism defined in Lemma 8.4.11, we have

d((S0i)(A(T)), SI;S™x) = d (i (A(T)), I;7S™x) =

d((In 0i1)(A(T)), S7'x) = d (in(A(T)), S7'x) =d ((Soin)(A(T)), x) <&,

Being an automorphism of the G-disc algebra Ap, onto itself, the operator
SI,;1S~1 maps xo onto a function of type cx1, where x; € Ar, is again a char-
acter on G, and ¢ € C, |¢| = 1 (see Section 4.3). Thus d ((S o i1)(A(T)),cx1) <&,
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and hence d ((S o i1)(A(T)), x1) < e. Therefore, for every ¢ > 0 one can find a

character x. € G N S(A(Dg)) ’G such that

d (i1 (A(T)), S 'xe) = d ((S 0 i1) (A(T)), xe) <e. (8.29)

Let x, € Ar, be such that d((S oi1)(A(T)), x»n) < 1/n, and suppose that
H Soi1)(fn) — Xn” < 1/n for some f,, € A(T). Hence f, # 0 on G, and by
van Kampen’s theorem [vK] there is an m,, € Z, and a 1, € C(T), such that
fo = 2Mne¥n . We have

[(S 0 i)(fa) = Xal| = [ (S0 i) (=" ) exp ((S 0 i1)(¥n) — xa) || < 1/n,  (8.30)
where i1 (f,) = i1 (zm”ewn) € i1 (A(T)). Consequently,

10co)™ exp (map + (S 0 1) ($0) = x| < 1/m.

This can happen only if (xo)™" = x». We have obtained that

| exp (mng + (S 0i1)(¥n)) — 1| < 1/n.

By Lemma 8.4.13 we have that, as n — oo, the functions m,p + (S o i1)(¢y) —
2mik,, converge uniformly to 0 for some k,, € Z. Note that (S o i1)(¢,) — 2mik, €
(S0 i1)(C(T)) c C(7Tp) = [hm {C(Tk), Bi},.cn] - Consequently, || + ((S o

i1)(¥n) — 2miky,) /my|| — 0, and hence ¢ € (Soiy)(C(T)). From (Soiy)(id(T)) =
xo €¥ we see that xo € (Soi1)(C(T)). It remains to show that xo € (Soi)(A(T)).
Suppose that S™'xo ¢ i1(A(T)) C i1(C(T)) and take a g € C(T) such that
i1(g9) = S~'x0. Then g ¢ A(T), and therefore, by the maximality of the disc alge-
bra A(T), the algebra [A(T), g] on T generated by A(T) and g coincides with C(T).
Observe that i1 (C(T)) = i1 ([A(T), g]) = [i1(A(T)),i1(g9)] = [i1(A(T)), S x0] C
i1 (C(T) N A(DB)) ’TB. However, this contradicts the antisymmetry property of
the G-disc algebra Ap, = A(Dg). We conclude that S~'xo € i1(A(T)), ie.
xo € (S 0i1)(A(T)), as claimed. O

Proof of Proposition 8.4.10. Let i7: M 4¢p,) — D denote the adjoint mapping
to i1, i1(z1, 22,...) = z1, where (21, z2,...) is a chain in {Dy, Bx_1 }ren. Observe
that i1(w) = 0. According to Lemma 8.4.14 the set (S oi1)(A(D) N @) contains
a character yo € G. Let S~xo = [(h,h oB,hoB?ho B3,...)] € A(Dp),
where h € A(T). Note that for the Gelfand transform (S~'xg)” we have 0 =
((S™'x0)7) (w) = (i1(h)) (w) = h(i}(w)) = h(0). Suppose that B(zo) = 0 for some
z9 € D. Then ((S~'x0)7)(0, 20,...) = h(0) = 0, and therefore (0,zp,...) = w,
since w is the only zero of the function (S~1xo)~ in M y(py)- Hence, 29 = 0, i.e.
0 is the only zero of the Blaschke product B. Consequently, B(z) = ¢ 2" for some
meN, ceC, |¢]=1. O
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Theorem 8.4.4 and Proposition 8.4.10 imply the following;:

Theorem 8.4.15. Let B be a finite Blaschke product on D. The Blaschke inductive
limit algebra A(Dp) is isometrically isomorphic to a G-disc algebra if and only if
B(z) is adjoint to a power 2" of z, i.e. if and only if there is an m € N and a

Mébius transformation 7: D — D such that (171 o Bo7)(2) = 2™.

8.5 H-type spaces on compact groups

In this section we study algebras of bounded analytic functions on G-discs, that
are limits of inductive sequences of H*® spaces on groups. What differentiates
these algebras from the algebras H3° of ®-hyper-analytic functions, considered
in Section 8.1, is that the connecting homomorphisms are not necessarily adjoint
homomorphisms to continuous mappings of I into itself.

Let G be a compact abelian group, whose dual group I' = Gisa subgroup
of R. We recall that the Hardy space H>(G) on G is the space of boundary value
functions on G of elements in H*(Dg), i.e.

H>*(G) = {f": f € H*(Dg)},

and || f*|lco = lim; 1 sUp e | f+(g)|, for every f € H*®(G), where f, is the r-trace
of f. H*(G) is a closed subalgebra of L>*°(G, o) (e.g. [H2]),

Let I be a directed set, i.e. I is a partially ordered set such that every pair
i1 and i9 in I has a common successor i3 € I, such that i; < i3 and i < i3. Let
{Ii}icr be a family of subgroups of I' parametrized by I, such that I, C I3,
whenever i3 < i3. Under the natural inclusions {I5};er becomes an inductive
system of groups. Suppose that I" coincides with the inductive limit of the system
{Li}ier, ie. I' = lim {I3}ier. Let HY(G) denote the space of functions f €
H*(G) with sp (f) C I5. Clearly, H(G) is a closed subalgebra of H*°(G), and
Hp(G) € HP(G) if and only if I; C Ij. Therefore the family {Hﬁf(G)}ieI of
subalgebras in H*°(G) is ordered by inclusion. Let @ = {¢!}; jer be the family

of inclusions ¢’ : I < I}, i < j. It is easy to see that the || - ||so-closure
H$(G) of the set U HX(G) =lim {HY (G)}iel coincides with the Hardy space

iel
H>(Dg) of &-hyper-analytic functions on G, where Dy = Dg. Clearly, H*(G)
is a commutative Banach algebra. The next theorem provides a criteria for the
algebra H*°(G) to be of type H*(G).

Theorem 8.5.1. Let G be a solenoidal group such that its dual group I' = G is the
inductive limit of a family {I;}ier of subgroups of I', i.e. I' = lim {I';};ey. Let

HX(G) be the space of functions in H*(G) with spectra in I';, i € I. Then the
following statements are equivalent.
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(a) H®(G) = H*(G).
(b) H*(G) = JHZ(G).

iel
(¢) Ewvery countable subgroup Iy in I' is contained in some group from the family
{Li}ier.
For the proof we need the following lemma.

Lemma 8.5.2. Let r € (0,1) and let m, be the representing measure on G of the
point r o1 € Dg. Then
lim supm,(V;g) =0 (8.31)
] gec
for every nested family Vi D Vo D --- DV, D --- of neighborhoods of the unit

element v with ﬂ Vi = {1}.
j=1
Proof. Assume, on the contrary, that lim supm,(V;g) > 0, and let {g;}{° be a
J— 00 QEG
sequence in G with m,(V;g;) — ¢ > 0. By the compactness of G there is a
subsequence of {g;}7°, say {h,}?°, that converges to a point h € G. Note that
my(Vp,h) > klim m,(Vihi) = c for every integer n, since V;,h D Vihy for k big
— 00
enough. Consequently, m,.(h) = klim my,(Vihi) = c. Consider the Lebesgue de-
— 00
composition of the measure m, — d,,, with respect to the point evaluation J; at
h, namely m,. — d,.., = cdp + v, where the measure v is singular with respect to J,.

Since m, — 00, L Ap, , the Dirac measure Jj (as well as v) is orthogonal to Ap+,
according to Ahern’s theorem (cf. [G1], Ch. II, Cor. 7.8]), which is impossible. O

Proof of Theorem 8.5.1. Clearly, (b) implies (a). Let f € H>°(G). Parseval’s iden-

tity implies that the spectrum sp (f) of f is countable. Therefore the group I'y gen-

erated by sp (f) is also countable. By the supposition there is a group I'; € {I; }ier

that contains I'y. Hence f € HpY(G) C U HP’(G). This shows that (c) implies (b).
I

To prove that (a) implies (c), assume first that I" is a countable group. Then
G=Tisa separable metric group. Let {h,}{° be a sequence of different points
in G with h,, — 1, and let {B,,}{° be a family of disjoint (metric) balls centered
at h,, not containing ¢, and such that for every neighborhood V of ¢ there is a
natural number N such that B, C V for all n > N. Consider a function f,, € Ar,
such that || fnllcc = fu(hn) =1, fu(r) = 0 and |f,| < 1/2™ on G \ B,,. Such a
function exists since the points of G are peak points for Ar, . By (6.2) we have

el = a0 )] =] [ falanam, | < [ |Futgh)|don, 0
G G

= / ’fn(gh)|dmr(h)+ / |fn(gh)|dmr(h) Smr(gian)_‘_l/Qn'

gian G\gian
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The hypotheses on the balls B,, imply that

(oo}

S |Fadr(@)] < me(g™' Vi) + 17281 < 2,

n==k

where Vj, = U By,. It follows from (8.31) that for every € > 0 thereis a k € N
n=k

such that m,.(g=V,) < € for all g € G. Consequently, the series Z( fn)r converges
n=1

uniformly on G to a function f, € Ap - Clearly || frllso < 2. Therefore the function

f: Z fn belongs to the algebra H*°(G). Since, by the hypothesis, H*(G) =
n=1

H7e(G), the function f is in Hp°(G). Then thereis a j € I and f € H(G), such
that _

If = flleo < 1/16.
Recall that the group I is the dual group of the quotient group G/G;, where
G; = I“J»J- = {g €G : x*(g)=1forallac Fj}. Therefore, the space H}j(G)
coincides with the space of Gj-periodic functions in H>*(G), i.e. u € HF(G) if
and only if u € H*(G) and u(h) = u(gh) = ug4(h) for all g € G;, h € G.
Consequently, f = f, for some g € G, and hence

17 = Follso < 11T = Flloo + 1y = folloe < 1/8 (8.:32)
for every g € G;. Suppose that I'; # I', i.e. G; # {+}. Fix a go € G; \ {¢}. By the
continuity of f on G\ {2} the set

V={heG\ {1} ||f(h) - Flgo)| < 1/16}

is an open neighborhood of gg # . By the construction of f, there are g; and go
in g5 'V \ {1} such that |f(g1)| > 15/16 and |f(g2)| < 1/16. Now

17(90) = foo(90)| < || F = fooll . <1/8 fori=1,2
implies B
| foo(91)| > 13/16 and |fy,(g2)| < 3/16.
Consequently, N N
|f90(gl) - fgo(92)| >5/8,

which is impossible since gog1 and gogs belong to V. Thus, G; = {1}, i.e. I' =TI}
is a group in the family {I;};cs.

Suppose now that I" is uncountable and that I} is a countable subgroup of
I'. Now the argument from the above applies to the countable group I and the
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family {I'o N I;}ier instead of to the group I' and the family {I5};cr, to obtain
that Iy = I; NIy C I; for some i € I. This completes the proof that (a) implies
(c). O
Example 8.5.3. Let I" = Q be the group of discrete rational numbers. Assume
that {I}};er is an inductive system of subgroups of Q such that Q = lim {7 }ie;.

Theorem 8.5.1 implies that if Q is not one of the groups in the family {I5}cr,
then H°(G) # H*(G).

Example 8.5.4. Let I' = R and let A C R be a basis in R over the field Q of
rational numbers. As we saw in Example 1.3.6, R can be expressed as the limit
R = lim {F(%n)}(y,n)eJ

of the inductive system {F(%n)} (et of subgroups

Ty my = {(1/”') (miy1 +maya + - +mypyR):my €Z, j = 1,...k}

k
of R that are isomorphic to Z* = @ Z. Given an (y,n) € J, consider the set
i=1

H(O,j’n)(G) = {f S HOO(G) sp (f) C F('y,n)}~
The closure H°(G) of the set U HEY ) (G) = lim {HZ (G)}(%n)eJ under

(v:m)
(vm)eJ
the || - ||co-norm is a subalgebra of H*(G).

There arises the question of whether H3°(G) coincides with H*>(G). As the
next theorem shows, in general this is not true.

Theorem 8.5.5. The space HP(G) = lim {H(Oj’n)(G)}(y ey s a proper closed
subalgebra of H*(G).
Proof. The inclusion H{°(G) C H*(G) is proven essentially in [CMX]. Assume,
on the contrary, that

H>(G) = Hy(G) =lim {HE,)(G)}, e

According to Theorem 8.5.1 the countable subgroup Q C R is among the members
of the family {F(%”)}(v e which is impossible since I, ;) is isomorphic to ZF
for some k € N. ]

8.6 Bourgain algebras of inductive limit algebras on
groups

In this section we apply the technique of inductive limit algebras to Bourgain
algebras. Let B be a commutative Banach algebra and let {A,},cx be a family
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of closed subalgebras of B, whose union U A, is an algebra. Denote by A the
ceXx
closure of U A, in B. Clearly, A is a commutative Banach algebra in B. The

ocy
following theorem establishes a relationship between the Bourgain algebra of A

and the Bourgain algebras of A, .

Theorem 8.6.1. Let {Ay}oes, {Bolocxs be two families of closed subspaces of
a commutative Banach algebra B such that the B, are algebras, and A, C By

for every o € X. Let A = [ U AU] be a (in general linear) subspace, and let
ceX
B = [ U BU] be a subalgebra of B. If for every o € X' there is a bounded linear

oeX
operator ro: B — B, such that

(i) 70|y, =ids,,
(ii) ro(fg) = f - ro(g) for every f € B,, g € B,

(iii) sup ||rs || < oo,
oceX

then AP C [ U (A,,)f“].

ocXy
Proof. Let f € B be a Bourgain element for A. Fix a ¢ € ¥, and consider a
weakly null sequence {¢,} in A, C A. Then {¢,} is also a weakly null sequence
in A since F|a, € A} for any F' € A*. Therefore, one can find h,, € A such that
Il fen — hnl| — 0. Hence,

70 (F)en = 1o (hn)|| = [[ro(Fen) = 1 (ha)|| < Irallllfon = hall — 0.

Consequently, 7, (f) is a Bourgain element for A,, i.e. 7, (f) € (AU)bB” for every o €

X. Note that under the hypotheses every f € B is approximable by the elements

ro(f) in the norm of B. Indeed, let f,, € B,, be such that f,, —— f. Then

[f =70, (DI < 1 = Foull+ 7o (fo) = 7o, (D] < 1 = fo | +sup 70, | fo, = FII-

Hence ro, (f) — f, and consequently, f € | U (AU)bB”]. O
oex

Let G be a compact abelian group, and let P be a subsemigroup of I' = @,
such that PU (=P) =TI and PN (—P) = {0}. We equip I" with the P-order, i.e.
X1 = X2 if and only if x; — x2 € P. Let X be a directed set, and let {I,},ex
be a family of subgroups of I' = G indexed by X" and directed by inclusions. We
will interpret the subgroups I', C I' as subspaces of C(G). If I' coincides with
the inductive limit of the system {[,},cx, ie. I' = hin {Iv}oes = U I',, then

ocex
I, = h_n} {(F0)+}0€E = U (I';),- Denote by A(r,), the space of functions
oeX
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[ € Ap, with sp(f) C I5. Clearly, A(p0)+ is a closed subalgebra of Ar, , and

A(r,), € A(r,), whenever o < 7. Therefore, {4 Fo)+} is an inductive system

ceX

of algebras and Ar, = [h_n} {A(Fﬂ)+ }062] = [ U A(FU)J-
oeX
Corollary 8.6.2. Let I' =1lim {[,}scx and G = I. Bourgain elements for the G-

disc algebra Ar, can be approvimated uniformly on G by Bourgain elements for
the algebras A(F0)+, oceX.

Proof. Fix a o € ¥ and let K, = [} = m {g €G: x(g) = 1}. The mappings
x€l'o
re: C(G) — C(G,) defined by

(ro (1)) () = / F(gh) do(h),
K,

where do is the Haar measure on K, satisfies the conditions (i), (ii), (iii) of The-
orem 8.6.1. In particular, ||7,|| <1 for every o € X. O

Suppose I' = lim {I},}sex as before. Let H (G) = {f € H*(G): sp(f) C
I'; }. Note that H? (G) is a closed subalgebra of H*°(G), and H? (G) € H (G) if
and only if I'; C I'-. Therefore, the family { H7? (G)}UEE of subalgebras of H*(Q)
is ordered by inclusions. Denote by HZ the L>(G, o)-closure H®(G) of the set
U HX(G) = lim {HX (G}, Note that HF and H*(G) = H*(Dg) are
ol
commutative Banach subalgebras of L>°(G, o) that are different from each other,
unless G = T (e.g. [T2, GT]). The mappings r, : HF — H (G) defined by
(re(f))(g) = / f(gh)do(h) are bounded linear operators from Hg onto H® (G)

Ko
satisfying the hypotheses of Theorem 8.6.1.

Corollary 8.6.3. Let I' = lim {[,}yecx and G = I'. Any Bourgain element for HE

can be approzimated in the L>-norm on G by Bourgain elements for H (G), o €
.

Let I" = Q be the group of rational numbers with the discrete topology and
let G =0b(Q) = @ be its Bohr compactification. Note that QQ can be presented as
the limit of the inverse sequence {Qy,, 2™/ *},en, where Q,, = {m/n: m € Z} = Z
and n > k if n is a multiple of k (e.g. [T2]). For any n € N consider the algebra
HE (b(Q) = H® ox/" = {fox": f e H*} = {f € H®(G) : sp(f) C Qu}.
Clearly, Hj, = Hg (b(Qy)) is a closed subalgebra of H>(G).

Definition 8.6.4. The closure H, f(o@) of the inductive limit of the system

{Hg, (@), ")} e
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with respect to the || - ||oo-norm is called the algebra of hyper-analytic functions

on G = b(Qy).

Clearly, Hy(g) is an inductive limit algebra. As shown in [T], its maximal
ideal space resembles the maximal ideal space of H*® on the unit circle. In partic-
ular, it has no Dg-corona. Let Ly (b(Q)) denote the algebra U Ly (b @n))]

neN
where L (b ) ={f¢€ LOO(G,U): sp(f) C Qn}. Corollary 8.6.3 implies that
the Bourgaln algebra of H, b(@) relative to Lg (b(@)) is a proper subalgebra of
Ly (b((@)) More precisely,
Corollary 8.6.5. The Bourgain algebra of H, b(@ is contained in the algebra Hl?(?@) +
Cc Q).
Proof. For the Bourgain algebra of Hg® (b(Qyn)) relative to Ly, (b(Qn)) we have

(HE (0(Qu) 55 ) & (o)L~ = o 4 (T (e, [CTY]. Hence,

(B (@) @) 2 g (@) + ) o X € By + C(O).
Corollary 8.6.3 implies
L (b(Q)
(H52) % @) ¢ [ s i) )

neN

_ [U (HE (b (Qn)))mn( (Qn))} C Higy +C(b(Q)).

neN O

Denote by V(Dg, G) the ideal of L (G, o)-functions on D¢ converging uni-
formly to0asm=rog — G.
Corollary 8.6.6. The Bourgain algebra of the algebra Hg° (D) = (HG )™ of hyper-
analytic functions on D¢ is a subset of the algebra H3® (Dg)+C (D) +V (Dg, G).

Let I' = R be the group of real numbers with the discrete topology and let
G = b(R) = Ry be its Bohr compactification. As we saw in Example 1.3.6, the dual
group G = R can be expressed as the inductive limit of an increasing system of
groups R,, o € ¥, isomorphic to Z*s, k, € N, i.e. R = U R,, where R, & Zko

oeX
for some k, € N, ks > 2 (cf. Section 8.5). Theorem 8.6.1 implies that

()™ 0O < [ U (a3, ) 7 )]
ceX

A function f € B is said to be a wc-element [resp. a c-element] for A, if for
every sequence {¢n}n € A, |lgn| < 1 the sequence ma(fyy,) contains a weakly
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convergent [resp. norm convergent| subsequence in B/A, i.e. if for every sequence
{on}n € A, ||@n|l < 1there are elements h,, € A such that the sequence fy,—h,, €
B contains a weakly convergent [resp. norm convergent| subsequence. We denote by
AB "and AP the sets of all wc-elements and c-elements for A in B correspondingly.

Clearly, AB C AB  also AP c AP.

wce?

Theorem 8.6.7. Under the assumptions of Theorem 8.6.1,

AP c [ (An)5e] and AP [ | (40)F-].

ceX ceXr

Proof. Let f € B be a we-element for A. Fix a 0 € X, and consider a sequence
{¢n} in the unit ball of A, C A. Clearly, every ¢,, belongs to the unit ball of A.
Therefore one can find h,, € A such that the sequence fy,, — h,, contains a weakly
convergent subsequence in B, which we will denote again by f¢, — h,. Hence the
sequence

To(f)on — 1o (hn) =716(fon) — 1o(hn) = 16(fn — hn)

converges weakly in B,,. Consequently, r,(f) is a wc-element for A,. Similar ar-
guments apply for c-elements of A. a

Corollary 8.6.8. If the hypotheses of Corollary 8.6.3 are met, then
LY (G . LY (G
(a) (HE):TY [U (Hp (@)l )}, and

oeX
00\ L7 (G) oo L, (G)
) (1) 7 < [U (HE @)= ]
ceXy
The next result follows from Corollary 8.6.8 in the same way as Corollary
8.6.5 follows from Theorem 8.6.1.
Corollary 8.6.9. The algebra H b(@ —|—C’(b(@)) contains the spaces (H°°

Ly (b(Q)) "
and (HE{’Q)) ¢

A uniform algebra A C C(X) is said to be tight [resp. strongly tight] if every
f € C(X) is a we-element [resp. c-element] for A, i.e. if (A)SSX) = C(X) [resp
(A)E(X) = C(X)] (cf. [CG, S]). Corollary 8.6.9 implies that the algebra H;
neither tight, nor strongly tight.

)LQ (b(Q))

@ !

8.7 Notes

Most of the results in this section are from [GT, GT3, T3]. The idea for in-
volving inductive sequences of disc algebras and of H°-spaces in exploring the
structure of algebras of generalized analytic functions originates in from [T] and
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[T2]. In particular, as shown in [T}, the inductive limit algebra HZ® of the sequence
{Hao/n)z(b((@)), (2 k) }neN coincides with the algebra of hyper-analytic functions
on G introduced there. In this setting the set Dg defined in (8.10) coincides with
the open big disc D¢, the algebra H*(Dg) of @-hyper-analytic functions on Dg,
introduced in Definition 8.1.8, coincides with the algebra HZ of hyper-analytic
functions, and Theorem 8.1.9 becomes the IDg-corona theorem for the algebra HZ
of hyper-analytic functions on G, considered and proved in [T].

The idea for Blaschke algebras appeared in [T1] in connection with the study
of the big disc algebra Ag with G~ Q. G-disc algebras which are inductive limits
of disc algebras were considered also in [T2].

Most of the results in Section 8.5 are from [GT]. The difference between
the algebra Hi®(Dg) and the space H®(G) = {f*: f € H*(Dg)} of boundary
values of bounded analytic functions in D¢g, and also from the weak*-closure of
Ar, in L*(G,0) is shown in [T2]. Algebras that are similar to Hg°(G) were
introduced by Curto, Muhly and Xia in [CMX] in connection with their study
of Wiener-Hopf operators with almost periodic symbols. The algebra H>(G) is
isometrically isomorphic to the algebra H KOP[‘+ & (R) C H*(R) of boundary values

of almost periodic I'-functions on R, extendable analytically on the upper half

plane. Similarly, the algebra H(D¢) = lim {H&O’n)(G)}(%n)eJ from Section 8.5

is isomorphic to the algebra H3°(R) = lim {H(O,j> n)(]R)}(,y myes C H3p. &) (R). By
— ’ ) +

Theorem 8.5.1 these two algebras are different. This answers one of the questions

raised by Curto, Muhly and Xia in [CMX]. Bourgain algebras of inductive limit

algebras were studied in [T3] The concept of tightness of an algebra was introduced

by Cole and Gamelin [CG] (see also [S]).

In principle, any G-disc algebra A(Dg) can be expressed as the limit of an,
in general uncountable, inductive system of disc algebras {A(Dr), T e @+ - R+}.
Indeed, assume that A(D,) is realized as an algebra of continuous functions in the
closed upper half-plane C,, generated by the single function e_ir, ie. A(D,) =

[e™""]rer, . Forany r < s, set b = (s—r)/s+7). The function if(2) = 1 —_bzz maps

D, onto D, and i;?(e_ir) = ¢~ 5 Therefore, for the G-disc algebra A(D¢) we have
A(D¢) = [lim {A(D,), ii}rem]' However, the connecting homomorphisms i$ are

not necessarily adjoint to mappings of the unit disc D¢ into itself.
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Hadamard’s product, 221-223
Hahn-Banach theorem, 8, 179
Hardy space
H' (on T), 193, 225, 226
HY(R), 193
H'ow (on R), 226
H> (on T), 75, 174, 229, 234,
235, 240, 259
H*>*(G) (boundary values of
H>(Dg)-functions on G),
254, 256, 257, 259, 262
H>(Dg) (®-hyper-analytic
functions on Dg), 230, 232,
233, 235, 254
H> (D) (bounded analytic func-
tions in D), 229, 230, 232
234
H>(R), 262
H>(Dg) (bounded analytic
functions in Dg), 229
Hg (hyper-analytic functions on
G), 259, 261, 262
H¢(G) (I-inductive limit of
H*-spaces), 254
Hg (S-functions in H*°), 60,
118, 129, 154, 174



276

HP? (on T), 73, 75, 210
H?(Dg) (analytic HP(Dg)-
functions), 213
H%(G) (S-functions in H?(G)),
218
HZ(R), 200
Hardy-Bohr space, HP(G) (boundary
values of HP(Dg)-functions
on G), 213
Hardy-Helson-Lowdenslager space,
see Hardy space HG(G)
harmonic family
of analytic measures on G, 227
of functions on G, 204
of measures on G, pu, 223, 224,
227
LP-harmonic, 225
harmonic function
S-function, on G, 218
H!(Dg)-function, 219
H*>*(Dg)-function, 210, 212
HP (D¢ )-function, 210
complex
in D, 60
in D, 60, 63, 64, 66-69, 71, 75,
203, 223, 225
conjugate, 61
in a G-disc D¢, 204, 206-208,
224
real-valued, 204
homeomorphism, 11, 24, 44, 52, 60,
119,121, 128-130, 145, 146,
153, 154, 174, 177, 232, 239,
245-247
homomorphism
algebraic, 10, 11, 18, 35, 38, 229,
237
connecting, of a system, 18, 230,
237, 238
algebraic, 232, 237
group, 20, 22, 77, 78, 84, 139,
163, 226
adjoint, 83

Index

semigroup, 21, 96, 102, 104, 132,
153
hull
of a semigroup
bounded, [S]y, 142, 144
strong, [S]s, 171, 173, 175
strong, [S]F (in P), 99, 104,
160, 161
weak, [S]w, 99, 126, 127, 137,
142, 149
weak, [S]E (in P), 99
of an ideal, hull (1), 192, 222, 223
hyperspace, 223

ideal
of a semigroup, 97, 98, 100, 102,
126, 127, 160, 165, 167, 169
maximal, 98, 102, 167
minimal, 98, 102
of an algebra, 5, 38, 144, 148,
191, 192, 227, 260
Juw, of Ar,, 192,193, 195, 197
closed, 223
left continuous, 192
maximal, 5, 36-38, 191, 192,
197, 199, 223
minimal, 223
one-dimensional, 222
primary, 191-193, 195, 197,
199, 201
proper, 5, 191
right continuous, 192
weakly closed, 222
idempotent
of a semigroup, 95, 100
of an algebra, 5
inductive
limit
algebra, 230, 232, 237, 238,
246, 259
of groups, 22, 236, 254, 258
of uniform algebras, 18, 54,
141, 143, 229, 232, 234, 236,
237, 239, 244, 262
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sequence, 19, 23, 241
adjoint, 23, 230, 232, 234, 237,
238, 241, 245
of uniform algebras, 21, 229,
230, 237, 238, 245, 251
system, 18, 19
adjoint, 22
of algebras, 259
of groups, 254, 257
injection, 172
inner product, 85
integral
element, 32, 34, 35, 54
representation, 65
inverse
element
in a group, 77, 97
in a semigroup, 95, 98
in an algebra, 2
of a character, 78, 102, 178
limit
of groups, 22, 232, 259
of sets, 20, 21, 231, 232, 237,
238, 247
sequence, 20, 22, 23, 141, 143,
230
adjoint, 242
of groups, 231
of sets, 237, 238, 241, 244, 247
system, 19-23
adjoint, 21
invertible element
in a Banach algebra, 2, 4, 5, 126,
236
in a semigroup, 95, 98, 164, 168
isomorphic sequences
inductive, 23, 24, 233, 242, 243,
245, 246, 251
inverse, 23, 24, 231, 247
isomorphism, 33, 34, 83, 199
algebraic, 39, 46, 48, 49, 53, 54,
246, 248, 250
group, 77,78, 134, 161, 177, 205,
232, 236, 239, 240, 257
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isometric, 9, 11, 26-28, 33, 60,
73, 82, 89, 118, 119, 123,
125, 130, 134, 145, 146, 153,
207, 216, 220, 229, 232, 235,
237,239, 240, 242, 243, 245—
247, 251, 252, 254, 262

adjoint, 233

semigroup, 96, 101, 155, 172,

173, 247

kernel

Cauchy, 63, 64

group, G (of a semigroup 95),
96, 98, 100, 104-106, 108,
122, 167, 169, 170, 172

Ker (7) (of a homomorphism ),
84, 226

Ker (x) (of a character y), 78,
133, 183, 194, 206, 221, 225

Poisson, 63, 66, 203, 211

conjugate, 65

Laplace equation, 60, 203
Lebesgue decomposition
of a measure, 255
theorem, 227
lifting
& (of a measure ), 198
of a function, 231
of a set, 231
limit, 216
LY(G, 0)-limit, 224
LP(G, p)-limit, 214
‘HP-limit, 216
21(9)-limit, 112
one-sided, 75
radial, 28, 213, 223, 225
uniform, 118, 124, 208, 240, 244
weak*-, 220
linear
combination, 36, 84, 85, 87, 91,
94, 112, 118, 179, 208, 216,
222,223, 227, 236
independence, 168, 169, 181
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mapping, 24
operator, 31, 34, 38, 48, 49, 205,
217, 252
bounded, 217, 258, 259
surjective, 205
upper-triangular form of, 38
space, 1, 24, 32, 109, 215, 223

Mobius transformation, 130, 131,
233, 240, 249, 254
manifold, 125
mapping, 122, 221, 222
adjoint, 10, 11, 21, 22, 141, 143,
230, 235, 237,241, 243, 251~
254
biholomorphic, 28, 233, 243-246
connecting, of a system, 19
continuous, 24, 34, 118, 129, 147,
158, 164
covering, 197, 231, 250
n-sheeted, 244
countably-sheeted, 84
holomorphic, 233, 243
identity, 18-20, 175, 233, 243,
251, 252, 258
inclusion, 19, 20, 128, 141, 143,
199, 236, 240, 241, 252, 254,
258, 259
inverse, 122, 207
measure-valued, 223
continuous, 224, 225
projection, 20, 133, 161, 163, 194
maximal ideal space
Mp (of a Banach algebra B),
4,9, 21,27, 38, 60, 81, 111,
121, 123, 125, 126, 128-130,
140-147, 149, 153, 154, 158,
174,175,177, 230, 237, 239,
241, 244-247, 249, 260
maximum modulus principle
for analytic functions in C, 6, 61
for analytic functions in D¢, lo-
cal, 178

Index

measure
absolutely continuous, 74, 200,
225, 227
mutually, 211, 215, 226
analytic, 184, 225, 227
atomic, 221
Borel, 8, 74, 81, 86, 87, 94, 95,
179,195, 213, 218, 220, 224
226, 255
Dirac, 200, 255
Haar, o, 81, 82,95, 134,179, 206,
220, 222, 225, 227, 259
Lebesgue, 74, 193, 200
orthogonal, 197, 201, 227, 255
probability, 208, 222, 226
representing, 8, 178, 180, 203,
210, 215, 217, 218, 255
singular, 193, 194, 200, 220, 225,
227, 255
mutually, 194
modulus (of a point in Dg), 106
monotone function
decreasing, 151-156
increasing, 156158, 165, 176
Montel’s theorem, 31

neighborhood, 30, 91, 93, 140, 145,
183, 255, 256
nested family of, 255
norm, 1, 24, 32, 34, 35, 37, 73, 218,
220, 258
LY(G,o)-norm, 224
L*°-norm, 85
L>(G, o)-norm, 260
LP-norm, 68, 70, 75, 85, 210, 213
HP (D¢ )-norm, 212
21(S)-norm, 110, 111
component-wise, 32
sup-norm, 174, 183, 208
total variation, 213
uniform, 4, 7, 57, 59, 85, 124
null-set
Null (¢) (of a semicharacter 1),
100, 144
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Null (f) (of a function f), 140,
142, 149, 193, 194

Null () (of a linear multiplica-
tive functional ¢), 5

number

complex, 200, 251, 252

dyadic, 22

integer, 182, 236, 252, 255

irrational, 119, 138, 153, 160,
171,173, 174

natural, 191, 199, 235, 241, 246,
248, 250, 251, 254, 255, 259

non-negative, 192, 193, 200

positive, 153, 217, 255

prime, 127

relatively, 99

rational, 173, 231, 238, 240, 241,
257

real, 162,173,194, 195, 211, 224,
241, 246, 249

Open Mapping Theorem, 34
operator

R-linear, 39

T-homogeneous, 46, 48

or-additive, 39, 42, 44, 46, 47,
55

or-multiplicative, 39, 49, 52, 53,
55

Bochner-Fejér, 92, 115

completely continuous, 25-30,
181

composition, 232-234

Hankel type, 24-28, 30, 54, 181

monotone increasing in modulus,
40-42, 49

norm-multiplicative, 49, 51

Wiener-Hopf, 262

origin

(0,0,...,0) (of R™), 101, 119

w (of a G-disc), 106, 192, 197,
207, 247-250, 252, 253

w (of an inverse Blaschke limit
of discs, Dp), 249
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0 (of R), 100

Parseval’s identity, 255
partial order, 158, 164, 170, 171, 237,

254, 259
S-order, 122, 151, 152, 155, 156,
165, 170, 181, 258
Archimedean, 122, 170-172, 178
in R, 152
in the set of idempotents Ig, 96
in the set of semicharacters
H(S), 100
total, 170, 171

partially ordered set, 18, 254
peak

function, 138

group, relative to Ag, 138

point, 11, 134, 136, 255

set, 12, 42-45, 50-53, 132, 134

subset of X, relative to an alge-
bra, 136-138

group, for Ag, 136

point, 12, 38, 41, 43-46, 50-53

set, 12, 132, 134

subset of X, relative to an alge-
bra, 136

period, of a function, 193
Phragmen-Lindel6f theorem, 114
Poincaré Theorem, 29

point

accumulation, 145

derivation, 37, 38

evaluation, 4, 9, 129, 144, 192,
255

fixed, 251

isolated, 79

single, 106

singular, 232, 240, 242-246, 250

Poisson

integral, 74, 215
representation, 65, 66
measure, 214
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polar decomposition (of a point in
Dg), 103, 104, 112, 152
polydisc, D™ (in C™), 7, 28, 118, 124
algebra, A(D™), 7, 118, 119, 132,
141
G-polydisc, D¢, 124, 125, 129, 170
polynomial, 26, 31, 32, 34, 35, 37, 75,
123, 141, 183, 205, 237
degree of, 32, 33, 35-37
exponential, 57, 58
in R™, 59
in n variables, 33, 34
leading coefficient of, 32
monic, 32, 35, 37
S-polynomial, on a group, 84, 118,
120, 121, 124, 192, 196, 208
Pontryagin’s duality theorem, 80-82,
84, 120, 135
power series, 62, 67
absolutely convergent, 62, 68
expansion, 61, 208
Taylor, 184
predecessor, 181

Radd’s
property, 140, 142
theorem, 140, 142, 148
Radon-Nikodym
derivative, 215, 217, 220, 225
range, 25
restriction
algebra, 7, 9, 10, 140, 196, 207,
226, 237, 240, 246
map, 27, 104, 126, 129, 158
of a function, 61, 118, 140, 154,
163, 165, 166, 197, 207, 210,
213, 233, 244, 248, 258
of an order, 171
Riemann, 148
property, 142
weak, 149
sum, 121
surface, 118, 231, 236, 242
theorem, 142

Index

Riesz representation theorem, 86,
179, 225

Rossi’s Local Maximum Modulus
Principle, 9, 54

Schwarz’s lemma, 143, 249
semicharacter, 99, 101, 103, 104, 108,
111, 112, 126, 151, 152, 154,
155, 159, 163, 175, 176
idempotent, 100, 104-109, 130
non-vanishing, 152
trivial, 100
unit, 100
semigroup, 20, 83, 95, 96, 101, 109,
111, 117, 119-122, 126-129,
132,134, 141-143,148, 151-
153, 155, 156, 158-160, 162—
164, 166, 168-171, 173, 175,
176, 181, 207, 218, 223
boundedly enhanced, 142, 144
compact abelian, 21
complete, 160, 161, 163, 164,
166, 168, 172
conic, 173
operation, 95, 96
proper, 158, 167
strongly enhanced, 99
in P, 160, 161, 163, 164, 166,
168, 169
weakly enhanced, 99, 137-141
sequence, 183
bounded, 26, 252
Cauchy, 1, 30, 90, 208, 212, 214,
217
weakly, 30
class of, 54
weakly bounded, 31
weakly null, 24-26, 28, 30, 31,
183, 258
shift
of a function
in R, 57, 74, 121, 147, 148
in R", 59
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in a group, 82, 84, 120
of a measure
in a group, 226
Shilov, 54
boundary, 0B (of a Banach alge-
bra B), 7, 8, 10-13, 15, 17,
91, 54, 114, 122, 124, 134
149, 178, 180, 199, 239, 240,
244, 246248, 252
idempotent theorem, 5
singleton, 248
singularity
of a covering map, 84
of a function
removable, 142
space
AP(R) (almost periodic
functions), 144, 145
AP*(R) (asymptotically almost
periodic functions), 60, 144,
145, 147
AP%(R) (asymptotically analy-
tic almost periodic func-
tions), 60, 146
APs(R) (almost periodic S-
functions), 58, 119, 121,
125,129, 153, 154, 174, 175,
179, 193, 194
APs(R™) (almost periodic S-
functions on R™), 119, 125,
129
AP,(R) (analytic almost perio-
dic functions), 59, 145
AP, (R™) (analytic almost peri-
odic functions on R™), 129
AP, (R) (weakly almost periodic
functions), 148
Ap(C4) (bounded analytic func-
tions), 195, 197
A5 (c-elements for A in B), 261
AB (wc-elements for A in B),
261
C(X) (continuous functions), 4,
179, 180, 207, 209, 211, 218,
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219, 223, 239, 244, 253, 258,
261

Co(R) (vanishing at co continu-
ous functions), 59, 144

Cr(X) (real-valued continuous
functions), 179, 180

Cy(X) (bounded continuous
functions), 28, 29, 57, 59,
144, 146, 230, 234

Cy(X) (uniformly continuous
functions), 27

G-plane, Cg, 178, 238

H(S), H(S,D) (semicharacters),
101, 102, 104, 105, 111, 121,
123, 151, 153, 155, 173, 177

H(S, (0,1]) (positive semicharac-
ters), 104, 152

H(S,[0,1]) (non-negative semi-
characters), 104, 155, 173

H(S,T) (characters), 102, 103,
114, 115

H(S1,52) (homomorphisms), 96

H(S, D*) (non-vanishing semi-
characters), 152

HE + C(G), 260

Is (idempotents), 96

K+ (of aset K), 133

K% (of aset K), 134

LY(G, p), 220

L2(G, ), 85, 86

L®(G, ), 194

L (G, 1), 260

L? (on T), 210

LP(G, ), 213, 215-217, 223, 225

M(G) (Borel measures), 213,
218, 220, 223, 224, 226

MY(G), 219

M(11/§)2(0G) (M(ll/e) (f)-measures),

M6 (f), 220
Mr, (G) (analytic measures on
G), 225-227
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P(G) (linear combinations of
characters on a group G),
84, 91

Ps(G) (S-polynomials on a
group G), 84, 121

V(Dg, G), 260

C (complex numbers), 1, 4, 142,
214, 222, 238, 240, 252

C+ (upper half-plane), 58, 113,
129, 146, 154, 174, 178, 193,
197, 226, 262

Ch, 129, 158, 164, 170

B, 248 251

B? (vanishing at 0 Blaschke
products in B,.), 248

H(D) (harmonic functions in D),
60, 205

H(D¢g) (harmonic functions in
De), 204, 207, 211, 215

HY(Dg), 219, 220

H>(Dg) (bounded harmonic
functions), 210

HP(G) (boundary values of
HP(Dg)-functions), 213,
217, 218

HP(Dg), 210, 212, 215, 216, 221
223

HZ(De) (S-functions in
HP(Dg)), 223

H2(G) (boundary values of
HP (D¢ )-functions on G),
213

HP(Dg), 212, 223

Hr(Dg) (real-valued harmonic
functions in Dg), 204

H.(D¢) (harmonic functions on
D), 208, 209, 223

Ts, Ips) (idempotent semi-
characters), 100

My (G)  (harmonic families
of measures on G), 223, 224

ME,(G) (LP-harmonic families
of measures), 225

%.r,(G) (LP-harmonic fami-

Index

lies of analytic measures on
G), 227

N (natural numbers), 168, 191,
206, 234

Q (rational numbers), 22, 182,
929, 231, 232, 236, 239241,
957, 259

R (real numbers), 79, 119, 123,
145, 160, 161, 179, 182, 192,
193, 201, 203, 205, 209, 214,
226, 236, 240, 257, 260

R™, 59, 109, 119, 124, 125, 129

R™, 96, 109, 124, 125, 129, 158,
164, 170

R (non-negative reals), 97, 123,
145, 155, 160, 171, 173175,
236

O(S) (additive weights), 155,
156, 158, 159, 162165, 168,
172, 175

O(S,R) (R-valued additive
weights), 172, 173, 175

Z (integers), 78, 171, 175, 205,
995, 226, 234, 236, 239, 240,
259

7k, 257

Z4 (non-negative integers), 155,
160, 168, 171, 172

Zr, 96, 101, 124

LP9(G), 213-216, 218, 223

LZ9(G) (S-functions in
Lr9(q)), 223

O(D) (analytic functions in D),
205, 206

O(D¢) (analytic functions in
D¢ ), 205, 207

O4(U) (A-holomorphic func-
tions), 140

1(S), 109, 110, 115

F(A) (peaking functions of A),
12-15, 40, 42, 49 51

Fo(A), 12, 41, 43-45, 50-53

C*- F.(A), 51

©(S) (p-groups for Ag), 136-139
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M(K x R) (locally finite mea-
sures), 226
MY(K x R), 226
countable, 255
dual, X* (of a Banach space X),
26, 85, 215
Hilbert, 85
pre-Hilbert, 85
spectral radius, 3, 6
spectrum
o(f) (of an algebra element f),
3, 6,54, 55
direct, see inductive system
inductive, see inductive system
inverse, see inverse system
projective, see inverse system
peripheral, o (f) (of an algebra
element f), 3, 6, 39, 40, 42,
44, 46-50, 54
sp(B) (of a Banach algebra B),
see maximal ideal space
sp (1) (of a measure ), 87, 200,
218, 220, 225
sp (f) (of a function f), 58, 87,
141, 144, 174, 193, 194, 196,
206, 208, 218, 223, 254, 255,
259
Stepanov’s
space, see space H(Dg)
LP?-space, see space HP(Dg)
Stone-Weierstrass theorem, 31, 82,
84, 86, 91, 178, 180, 208
subgroup
dense, 214
maximal, 96
subspace
dense, 218
of an algebra
closed, 258
invariant, 38
proper, 207, 257
spanned, 38
weak*-closed, 262
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proper, 218
successor, 18
support set
supp (¢) (of a semicharacter ),
100, 105
supp (1) (of a measure), 180,
193, 194
supp (f) (of a function f), 110

topological space, 24
compact, 4, 7, 9, 20, 23, 27, 125,
132, 145, 178, 183, 230, 238,
241, 244-248, 252, 255
complete, 1, 85, 214, 217
connected, 252
dense, 91, 122, 143, 154, 174,
175, 178-180, 215, 216, 230
uniformly, 122
weak*-, 227
Hausdorft, 4, 9, 27, 232, 238, 252
of the second category, 34
separable, 141, 143
simply connected, 250
weakly compact
relatively, 74
topology, 25, 123, 145, 147, 216
compact-open, 31, 80
discrete, 104, 259, 260
uniform, 80
weak*-, 5, 94, 95, 213
torus, T”, 7, 78, 118, 119, 132, 137
solid, 124
trace, f, (of a function f), 61-68, 74,
204, 207, 216, 254

uniform algebra, 7, 8, 11, 18, 19, 27,
38, 54, 59, 118, 120-122,
124,132, 140, 142, 144, 147,
149, 153, 191, 229, 237-241,
243, 244, 247, 248, 250, 261

analytic, 128, 143
antisymmetric, 7, 8, 122, 130,
148, 178, 253
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Dirichlet, 8, 21, 179, 180, 239,
247
integrally closed, 141
maximal, 7, 122, 178, 179, 182,
184, 239, 240, 244, 253
on X, 7
polynomially closed, 38
tight, 261
strongly, 261
Uniform Boundedness Principle, 31
unit
ball (in a Banach space), 217,
261
ball, B® (in C"), 7, 28
circle, T, 21, 22, 25, 27, 60, 61,
68, 73, 78, 102, 123, 132,
145, 147, 205, 210, 225, 226,
229, 231, 234, 237, 240, 252,
259, 260
element
1 (of a group or semigroup),
77, 91, 95, 101, 181, 183,
955, 256
X" (of the dual group), 117,
123, 181
e (of a Banach algebra), 2, 5,
32, 34, 54, 60, 110
sphere (in C"), 7
sphere, Sp (of a Banach space
B), 4
Urysohn’s Lemma, 91

van Kampen’s theorem, 252, 253
Wermer’s maximality theorem, 8
zero element (of a group or semi-

group), 77, 95, 97
Zorn’s Lemma, 5, 158, 164
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