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Preface

Shift-invariant algebras are uniform algebras of continuous functions defined on
compact connected groups, that are invariant under shifts by group elements. They
are outgrowths of generalized analytic functions, introduced almost fifty years ago
by Arens and Singer, and are the central object of this book. Associated algebras
of almost periodic functions of real variables and of bounded analytic functions
on the unit disc are also considered and carried along within the shift-invariant
framework. The adopted general approach leads to non-standard perspectives,
never-asked-before questions, and unexpected properties.

The book is based mainly on our quite recent, some even unpublished, results.
Most of its basic notions and ideas originate in [T2]. Their further development,
however, can be found in journal or preprint form only.

Basic terminology and standard properties of uniform algebras are presented
in Chapter 1. Associated algebras, such as Bourgain algebras, polynomial exten-
sions, and inductive limit algebras are introduced and discussed. At the end of
the chapter we present recently found conditions for a mapping between uniform
algebras to be an algebraic isomorphism. In Chapter 2 we give fundamentals, var-
ious descriptions and standard properties of three classical families of functions –
almost periodic functions of real variables, harmonic functions, and Hp-functions
on the unit circle. Later on, in Chapter 7, we return to some of these families and
extend them to arbitrary compact groups. Chapter 3 is a survey of basic proper-
ties of topological groups, their characters, dual groups, functions and measures
on them. We introduce also the instrumental for the sequel notion of weak and
strong hull of a semigroup.

Chapter 4 is devoted to shift-invariant algebras. We describe the spaces of
automorphisms and of peak subgroups of shift-invariant algebras, and show that
the algebraic properties of the generating semigroup S have a significant impact on
the properties of the associated shift-invariant algebra AS . For example, whether
analogues of the classical Radó’s theorem for null-sets of analytic functions, and of
Riemann’s theorem for removable singularities hold in a shift-invariant algebra AS

depends on specific algebraic properties of the generating semigroup S. Asymp-
totically almost periodic functions on R, which share many properties with almost
periodic functions, are introduced at the end of the chapter. Extendability of lin-
ear multiplicative functionals from smaller to larger shift-invariant algebras is the
focal point of Chapter 5. The subject is naturally related with the extendability of
non-negative semicharacters from smaller to larger semigroups and, equivalently,
of their logarithms, called also additive weights. We give necessary and sufficient
conditions for extendability of individual weights, as well as of the entire family
of weights on a semigroup. These conditions imply various corona-type theorems.
For instance, if S is a semigroup of R containing the origin, then the algebra of
almost periodic functions in one real variable with spectrum in S does not have
a C+-corona if and only if all non-negative semicharacters on S are monotone
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decreasing, or equivalently, if and only if the strong hull of S coincides with the
positive half of the group envelope of S. On the other hand, the same conditions
imply necessary and sufficient conditions for the related subalgebra of bounded
analytic functions on the unit disc D to possess a C+-corona and a D-corona. In
Chapter 6 we discuss big disc algebras of generalized analytic functions on a com-
pact abelian group G, an important class of shift-invariant algebras, also known
as G-disc algebras. We describe their Bourgain algebras, orthogonal measures and
primary ideals.

In Chapter 7 we extend the notion of harmonic and Hp-functions to compact
abelian groups, and present corresponding Fatou-type theorems. In Chapter 8 we
utilize inductive limits of classical algebras to study and generalize shift-invariant
algebras on G-discs. In particular, we show that any sequence Φ of inner functions
on the unit disc generates an inductive limit algebra, H∞(DΦ), of so called Φ-
hyper-analytic functions on the associated big disc DΦ. They are generalizations
of hyper-analytic functions from [T], and similarly to them do not have a G-
disc-corona, i.e. there exists a standard dense embedding of the big disc DΦ into
the maximal ideal space of H∞(DΦ). We introduce also the class of Blaschke
algebras, which are inductive limits of sequences of disc algebras connected with
finite Blaschke products.

The selection of topics depended entirely on our own research interests. Many
other related topics could not be included, or even mentioned. All chapters are
provided with historical notes, references, brief remarks, comments, and unsolved
problems. We do not necessarily claim credit for any uncited result. It may be an
immediate consequence of previous assertions, or, part of the common mathemat-
ical knowledge, or, may have a history difficult to be traced.

The book is addressed primarily to those interested in analytic functions and
commutative Banach algebras, though it could be useful to a wide range of research
mathematicians and graduate students, familiar only with the fundamentals of
complex and functional analysis.

Over the years our thinking in the area has been stimulated and encouraged
by discussions and communication with several experts, among which we would
like to mention Hugo Arizmendi, Richard Aron, Andrew Browder, Joseph Cima,
Brian Cole, Joseph Diestel, Evgeniy Gorin, Farhad Jafari, Krzysztof Jarosz, Paul
Muhly, Rao Nagisetty, Scott Saccone, Sadahiro Saeki, Anatoly Sherstnev, Andrzej
So�ltysiak, Edgar Lee Stout, John Wermer, and Wies�law Żelazko. Special thanks
are due to the participants – current and former – of the Analysis seminar at
the University of Montana: Gregory St.George, Karel Stroethoff, Elena Toneva,
George Votruba, and Keith Yale for their encouragement and support. We also
mention with pleasure and gratitude the contribution of our students Tatyana
Ponkrateva from Kazan State University, Aaron Luttman and John Case from
the University of Montana, and especially Scott Lambert, who read the entire
text and suggested many improvements.



Preface ix

We acknowledge with thanks the support of the National Science Foundation,
the National Research Council, the IREX, the Mathematisches Forschungsinstitut
in Oberwolfach (Germany), the Banach Center in Warsaw (Poland), the University
of Montana - Missoula (USA), and the Kazan State University, Tatarstan (Russia).

Missoula, Montana

January 2006



Chapter 1

Banach algebras and uniform
algebras

In this chapter we present a part of the uniform algebra theory we will need, includ-
ing several important algebraic constructions. Basic notations, terminology, and
selected auxiliary results concerning commutative Banach algebras and uniform
algebras are presented in the first two sections. The inductive and projective limits
of algebras, introduced in more detail, are very convenient tools for describing the
structure and revealing the hidden features of specific uniform algebras. Bourgain
algebras and polynomial extensions provide powerful methods for constructing
new classes of algebras. Further we discuss isomorphisms and homomorphisms
between uniform algebras.

1.1 Commutative Banach algebras

A Banach space B over the field of complex numbers C is a linear space over
C (thus, in B there are defined two operations — addition, and multiplication
by complex scalars) which is provided with a norm, i.e. a non-negative function
‖ . ‖ : B −→ R+ = [ 0,∞) with the following properties:

(i) ‖λa‖ = |λ|‖a‖ for each a ∈ B and any complex scalar λ ∈ C.

(ii) ‖a+ b‖ ≤ ‖a‖+ ‖b‖ for each a, b ∈ B.

(iii) 0 is the only element in B whose norm is zero.

(iv) B is a complete space with respect to the topology generated by the norm
‖ . ‖.

By completeness we mean that every Cauchy sequence {an}∞n=1 of elements in B
is convergent.
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A Banach space B over C is called a Banach algebra, if B is provided with
an associative operation (called multiplication) which is distributive with respect
to addition, and if the inequality

(v) ‖ab‖ ≤ ‖a‖‖b‖
holds for every a, b ∈ B. A Banach algebra is commutative if its multiplication is
commutative, and with unit if it possesses a unit element with respect to multipli-
cation (denoted usually by e, or, by 1) such that

(vi) ‖e‖ = 1.

Let B be a commutative Banach algebra with unit. An element f in B is
said to be invertible if there exists a g in B such that fg = e. The element g with
this property is uniquely defined. It is denoted by f−1 and is called the inverse
element of f . Hence we have f−1f = e for any invertible element f in B. The set
B−1 of all invertible elements of B under multiplication is a subgroup of B. A
simple example of a commutative Banach algebra with unit is the set of complex
numbers C.

Proposition 1.1.1. Let B be a commutative Banach algebra with unit e. Every
element of the open unit ball centered at e is invertible, i.e.

{h ∈ B : ‖h− e‖ < 1} ⊂ B−1.

Proof. Let ‖f‖ < 1, and let gn =
n∑

k=0

fk, where f0 = e. If m < n, then by (ii) and

(v) from the above we have that

‖gn − gm‖ =
∥∥∥ n∑

k=m+1

fk
∥∥∥ ≤ n∑

k=m+1

‖fk‖ ≤
n∑

k=m+1

‖f‖k

=
‖f‖m+1 − ‖f‖n+1

1− ‖f‖ ≤ ‖f‖m+1

1− ‖f‖ .

Hence for any ε > 0 and n,m big enough, we have ‖gn−gm‖ < ε, since by ‖f‖ < 1
we have lim

k→∞
‖fk+1‖ ≤ lim

k→∞
‖f‖k+1 = 0. Thus, {gn} is a Cauchy sequence, and by

the completeness of B it converges to an element g ∈ B, i.e. g = lim
n→∞

gn =
∞∑

k=0

fk.

In addition,

g (e− f) =
( ∞∑

n=0

fn
)
(e− f) =

(
lim

k→∞

k∑
n=0

fn
)
(e− f)

= lim
k→∞

k∑
n=0

(fn − fn+1) = lim
k→∞

(e− fk+1) = e− lim
k→∞

fk+1 = e,

since lim
k→∞

‖f‖k+1 = 0. Hence e− f is an invertible element of B, as claimed. �
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Definition 1.1.2. The spectrum of an element f in a commutative Banach algebra
B is the set

σ(f) = {λ ∈ C : λe− f /∈ B−1}. (1.1)

Corollary 1.1.3. The spectrum σ(f) is contained in the disc D(‖f‖) = {z ∈
C : |z| ≤ ‖f‖} with radius ‖f‖, centered at 0.

Proof. Given an f ∈ B, let s be a complex number with |s| > ‖f‖. Let g = f/s =
(1/s)f . By the hypothesis ‖g‖ = ‖f‖/|s| < 1. Proposition 1.1.1 implies that the
element e − g is invertible, and its inverse element is the sum of the convergent

series
∞∑

n=0

gn. Thus

e = (e− g)
∞∑

n=0

gn = (e− f/s)
∞∑

n=0

fn/sn

=
(
(se− f)/s

) ∞∑
n=0

fn/sn = (se− f)
∞∑

n=0

fn/sn+1.

Hence se − f is invertible in B. Therefore, s /∈ σ(f) whenever |s| > ‖f‖. Conse-
quently, σ(f) ⊂ D(‖f‖), as claimed. �

Corollary 1.1.3 implies that the spectrum of any element f in B is a bounded
set in C, and therefore C\σ(f) �= Ø. One can see that B−1 is an open subset of B,
and the correspondence f �−→ f−1 is a homeomorphism of B−1 onto itself. More
precisely, B−1 is an open group (under multiplication) in B, and the mapping
f �−→ f−1 : B−1 −→ B−1 is a group automorphism. The spectrum σ(f) is a
closed and bounded set, thus a compact subset of C. The number

r
f

= max
{
|z| : z ∈ σ(f)

}
is called the spectral radius of f ∈ B. Since r

f
≤ ‖f‖, we have σ(f) ⊂ D(r

f
) ⊂

D(‖f‖). The spectral radius r
f

can be expressed explicitly in terms of f (e.g.[G1,
S4, T2]). Namely,

r
f

= lim
n→∞

n
√
‖fn‖ ≤ lim

n→∞
n
√
‖f‖n = ‖f‖. (1.2)

Definition 1.1.4. The peripheral spectrum of an element f in a commutative Banach
algebra B is the set

σπ(f) =
{
z ∈ σ(f) : |z| = r

f

}
= σ(f) ∩ Tr

f
. (1.3)

Any commutative Banach algebra B with unit admits a natural representa-
tion by continuous functions on a compact topological space. An important role in
this representation, as well as in commutative Banach algebra theory in general,
is played by complex-valued homomorphisms, i.e. linear multiplicative function-
als of the algebra. A linear multiplicative functional of B is called any non-zero
complex-valued function ϕ on B with the following properties:
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(i) ϕ (λa + µb) = λϕ(a) + µϕ(b),

(ii) ϕ (ab) = ϕ (a)ϕ (b)

for every a, b ∈ B, and all scalars λ, µ ∈ C. The set MB of all non-zero linear
multiplicative functionals of B is called the maximal ideal space (or, the spectrum)
of B.

For a fixed a ∈ B with ϕ(a) �= 0 we have ϕ(a) = ϕ(ea) = ϕ(e)ϕ(a), thus
ϕ(a)

(
ϕ(e) − 1

)
= 0. Consequently, ϕ(e) = 1 for every linear multiplicative func-

tional ϕ of B. Since aa−1 = e for every a ∈ B−1, we have 1 = ϕ(e) = ϕ(aa−1) =
ϕ(a)ϕ(a−1), thus ϕ(a) �= 0 for every invertible element a ∈ B.

Lemma 1.1.5. Every linear multiplicative functional ϕ ∈ MB is continuous on B,
and ‖ϕ‖ = 1.

Proof. Let f ∈ B, and let |z| > ‖f‖ for some z ∈ C. Hence, ze − f ∈ B−1 by
Corollary 1.1.3. According to the previous remark, ϕ (ze − f) �= 0, and hence
ϕ(f) �= z ϕ(e) = z for every ϕ ∈ MB. Consequently, the number ϕ(f) belongs
to the disc

{
z ∈ C : |z| ≤ ‖f‖

}
, i.e.

∣∣ϕ(f)
∣∣ ≤ ‖f‖, and this holds for every f ∈

B. Therefore, the functional ϕ is bounded, thus continuous, and ‖ϕ‖ ≤ 1. By
definition, ‖ϕ‖ is the least number M with

∣∣ϕ(f)
∣∣ ≤M‖f‖ for all f ∈ B. For any

such M we have M ≥ 1, since 1 =
∣∣ϕ(e)

∣∣ ≤ M‖e‖ = M . Hence, ‖ϕ‖ ≥ 1, and
therefore ‖ϕ‖ = 1. �

Example 1.1.6. (a) Let X be a compact Hausdorff set. The space C(X) of all
continuous functions on X under the pointwise operations and the uniform norm
‖f‖ = max

x∈X

∣∣f(x)∣∣ is a commutative Banach algebra. One can easily identify some

of the linear multiplicative functionals of C(X). Namely, for a fixed x ∈ X consider
the functional “the point evaluation ϕx at x” in C(X), i.e. ϕx(f) = f(x) for every
f ∈ C(X). Clearly, ϕx ∈ MC(X). Actually, one can show that every element in
MC(X) is of type ϕx for some x ∈ X . Consequently, MC(X) and X are bijective
spaces. We usually identify them as sets without mention, and write them as
MC(X)

∼= X .

(b) Let D = D(1) =
{
z : |z| < 1

}
be the open unit disc in the complex plane

C and let A(D) denote the space of continuous functions in the closed unit disc
D =

{
z ∈ C : |z| ≤ 1

}
that are analytic in D. Equipped with pointwise operations

and the uniform norm ‖f‖ = max
x∈D

∣∣f(x)∣∣, A(D) is a commutative Banach algebra,

called the disc algebra. One can easily check that D ⊂MA(D). In fact,MA(D)
∼= D.

A net {ϕα} of functionals in MB is said to converge pointwise to an element
ϕ ∈MB if ϕα(f) −→ ϕ(f) for every f ∈ B. The pointwise convergence generates
a topology on the maximal ideal space MB of B, called the Gelfand topology.
With respect to it MB is a closed subset of the unit sphere SB∗ of the space
B∗ dual to B. By the Banach-Alaoglu theorem, SB∗ is a compact space in the
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weak∗-topology, which in this case coincides with the pointwise topology. Under
it MB is a closed subset of SB∗ , and therefore a compact and Hausdorff set.

Let f be an element in a commutative Banach algebra B. The Gelfand trans-
form of f is called the function f̂ defined on MB by

f̂(ϕ) = ϕ(f), ϕ ∈MB. (1.4)

The Gelfand transform f̂ of any f ∈ B is a continuous function on MB with
respect to the Gelfand topology. Indeed, if ϕα −→ ϕ then ϕα(f) −→ ϕ(f), and
therefore, f̂(ϕα) −→ f̂(ϕ). The Gelfand transformation Λ : B −→ B̂ ⊂ C(MB)
is a homomorphism of B onto the Gelfand transform B̂ = {f̂ : f ∈ B} of B. If
B = C(X), then f̂(ϕx0) = ϕx0(f) = f(x0) for every x0 ∈ X . Hence, if we identify
MC(X) with X , as in Example 1.1.6(a), then f̂ coincides with f .

Observe that ifMB possesses a closed and open setK, then the characteristic
function κK of K (i.e. κK (x) = 1 for x ∈ K and κK (x) = 0 otherwise) belongs
to B̂ by the famous Shilov idempotent theorem (see e.g. [GRS]), which asserts
that under the hypotheses there exists a unique element b ∈ B with b2 = b (i.e.
b is an idempotent of the algebra B) whose Gelfand transform is precisely the
characteristic function of K, i.e. b̂ = κ

K
.

There is a good reason to call MB the set of maximal ideals of B. A subset
J of a commutative Banach algebra B is called an ideal of B, if J is a linear subset
of B which is closed with respect to multiplication with elements in B, i.e. ab ∈ J
for any a ∈ B and b ∈ J . Any ideal of an algebra is an algebra on it own. An
ideal J ⊂ B is proper if it differs from B, and maximal, if it is proper and every
proper ideal of B containing J , equals J . By Zorn’s Lemma, one can show that
any proper ideal of B is contained in some maximal ideal of B (cf. [G1, S4, T2]).

The sets {0}, B and aB = {ab : b ∈ B} for a fixed a ∈ B, are all ideals.
If ϕ is a linear multiplicative functional of B, then the null-set of ϕ, Null (ϕ) ={
f ∈ B : ϕ(f) = 0

}
is an ideal of B. Indeed, for every a ∈ B and b ∈ Null (ϕ),

ϕ(ab) = ϕ(a)ϕ(b) = 0, i.e. ab ∈ Null (ϕ). Since ϕ(e) = 1 we have that e �∈
Null (ϕ), and therefore, Null (ϕ) is a proper ideal of B.

The unit e does not belong to any proper ideal J of B, since by assuming
the opposite, i.e. e ∈ J , we get a = ea ∈ J for all a ∈ B, thus J = B. The same
argument applies to check that proper ideals J do not contain invertible elements
of B, i.e. B−1 ∩ J = Ø for any proper ideal J of B. An ideal of B is proper if and
only if a is an invertible element of B, since if a ∈ B−1, then e = a a−1 ∈ aB, a
contradiction.

One can easily see that the null-set Null (ϕ) of any linear multiplicative func-
tional ϕ is a maximal ideal (e.g. [G1, S4, T2]). Actually, every maximal ideal M
of B is of type Null (ϕM ) for some ϕM ∈ MB, i.e. the set of maximal ideals of B
is bijective to the family of null-sets of linear multiplicative functionals on B.
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Proposition 1.1.7. The spectrum of any element f of B coincides with the range
of its Gelfand transform f̂ , i.e.

σ(f) = f̂(MB) = Ran (f̂). (1.5)

Proof. Let z ∈ f̂(MB) and let f̂(ϕ) = z for some ϕ ∈ MB. Hence z − ϕ(f) =
zf(e)− f(ϕ) = 0, thus ϕ(ze− f) = 0, and therefore ze− f /∈ B−1, as shown prior
to Lemma 1.1.5. Consequently z ∈ σ(x). Conversely, if z ∈ σ(x) then ze−f /∈ B−1

and hence J = (ze − f)B is a proper ideal of B by the above remarks. If M is
a maximal ideal containing J , then for the corresponding functional ϕ

M
we have

Null (ϕ
M

) = M ⊃ J  ze − f , thus ϕ
M

(ze − f) = 0. Therefore, z = ϕ
M

(ze) =
ϕ

M
(f) = f̂(ϕ

M
). �

As a corollary we see that σ(f + g) = (f̂ + ĝ)(MB) ⊂ f̂(MB) + ĝ(MB) =
σ(f) + σ(g), and, similarly, σ(fg) ⊂ σ(g)σ(g) for every f, g ∈ B.

By Proposition 1.1.7 max
z∈σ(f)

|z| = max
z∈ bf(MB)

|z| = max
x∈MB

∣∣f̂(x)∣∣, which yields

the formula
r

f
= max

x∈MB

∣∣f̂(x)∣∣ = ‖f̂‖C(MB)

for the spectral radius r
f

of any element f ∈ B. Combined with formula (1.2) this
identity yields

‖f̂‖C(MB) = max
x∈MB

∣∣f̂(x)∣∣ = r
f

= lim
n→∞

n
√
‖fn‖. (1.6)

Proposition 1.1.7 implies the following description of the peripheral spectrum
(1.3):

σπ(f) =
{
f̂(x) : |f̂(x)| = r

f
, x ∈MA

}
.

By the well-known maximum modulus principle for analytic functions, the
functions in the disc algebra A(D) assume their maximum modulus only at the
points in the unit circle T, i.e. the topological boundary T = bD of D ∼= MA(D). Sets
of this kind are of special interest for commutative Banach algebras. A subset E in
the maximal ideal space of a commutative Banach algebra B is called a boundary
of B if the Gelfand transform f̂ of every element f in B attains the maximum of
its modulus max

m∈MB

∣∣f̂(m)
∣∣ = ‖f̂‖C(MB) in E. In other words, E is a boundary for

B if for every f ∈ B there exists a ϕ0 ∈ E such that
∣∣f̂(ϕ0)

∣∣ = max
ϕ∈MB

∣∣f̂(ϕ)
∣∣, i.e.

the equality
max
ϕ∈E

∣∣f̂(ϕ)
∣∣ = max

ϕ∈MB

∣∣f̂(ϕ)
∣∣

holds for every f ∈ B. Clearly, the maximal ideal space MB is a boundary of
B. The celebrated Shilov theorem asserts that the intersection ∂B of all closed
boundaries of a commutative Banach algebra B is again a boundary, called the
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Shilov boundary of B (e.g. [G1, S4, T2]). Clearly, ∂B is the smallest closed bound-
ary of B. This minimal property of the Shilov boundary implies the following
characterization of its points.

Corollary 1.1.8. A point m0 in MB belongs to the Shilov boundary ∂B of a com-
mutative Banach algebra B if and only if for each neighborhood U of m0 in MB

there exists a function f in B such that max
m∈U

∣∣f̂(m)
∣∣ > max

m∈MB\U

∣∣f̂(m)
∣∣.

As it is not hard to see, ∂C(X) = X . The maximum modulus principle,
mentioned above, shows that T is a boundary for the disc algebra A(D). In fact,
∂A(D) ∼= T.

Let Bn =
{
(z1, z2, . . . , zn) ∈ Cn :

∥∥(z1, z2, . . . , zn)
∥∥ < 1

}
be the unit ball

in Cn with radius 1 centered at the origin (0, 0, . . . , 0) ∈ Cn, let Dn be the n-
polydisc

{
(z1, z2, . . . , zn) ∈ Cn : |zj| ≤ 1, 1 ≤ j ≤ n

}
, and let Tn =

{
(z1, z2, . . . ,

zn) ∈ Cn : |zj | = 1, 1 ≤ j ≤ n
}

be the n-dimensional torus in Cn, i.e. the
distinguished boundary of Bn. The Shilov boundary of the ball algebra A(Bn) is
homeomorphic to the unit sphere in Cn, which is the topological boundary of Bn,
while the Shilov boundary for the polydisc algebra A(Dn) is homeomorphic to Tn,
which is a proper subset of the topological boundary bDn of Dn.

1.2 Uniform algebras

Algebras of continuous functions have many useful properties. They play a major
role in this book. A commutative Banach algebra A over C is said to be a uniform
algebra on a compact Hausdorff space X if:

(i) A consists of continuous complex-valued functions defined on X , i.e. A ⊂
C(X).

(ii) A contains all constant functions on X . In particular the identically equal to
1 function on X belongs to A.

(iii) The operations in A are the pointwise addition and multiplication.

(iv) A is closed with respect to the uniform norm in C(X),

‖f‖ = max
x∈X

∣∣f(x)∣∣, f ∈ A. (1.7)

(v) A separates the points of X , i.e. for every two points in X there is a function
in A with different values at these points.

A uniform algebra A is said to be antisymmetric if there are no real-valued
functions in A besides the constants. A is a maximal algebra on X if there is no
proper intermediate uniform algebra on X between A and C(X). A is a maximal
algebra if the restriction algebra A|∂A is a maximal algebra on ∂A. According to
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the celebrated Wermer’s maximality theorem, the disc algebra A(D) is a maximal
algebra.

A uniform algebraA is called a Dirichlet algebra if the space Re
(
A
∣∣
∂A

)
of real

parts of its elements is uniformly dense in CR(∂A), i.e. if every real continuous
function on the Shilov boundary ∂A can be approximated on ∂A by real parts
of functions in A. An example of a Dirichlet algebra is, for instance, the disc
algebra A(D). Indeed, ReA(D) consists of all real-valued continuous functions on
D that are harmonic on D and the harmonic conjugates of which are extendable
continuously on T. Consequently, ReA(D) contains all continuously differentiable
functions on T, and these are dense in CR(T).

Let ϕ ∈MA. A non-negative Borel measure µ on X for which the equality

ϕ(f) =
∫
X

f(x) dµ(x)

holds for every f ∈ A is called a representing measure for ϕ on X . Note that∫
X

f(x) g(x) dµ(x) = ϕ (fg) =
∫
X

f(x) dµ(x)
∫
X

g(x) dµ(x)

for any f, g ∈ A, i.e. µ is a multiplicative measure for A. Any representing measure
µ of ϕ on X satisfies the equalities

‖µ‖ =
∫
X

dµ = ϕ(1) = 1.

By the Hahn-Banach theorem the set Mϕ of all representing measures for a ϕ ∈
MA is nonempty. Actually, Mϕ is isomorphic to the set of all norm-preserving
extensions of ϕ ∈ MA from A ⊂ C(X) onto C(X) (e.g. [G1]).

If A is a Dirichlet algebra, then every ϕ ∈ MA has a unique representing
measure on ∂A, i.e.Mϕ is a single-point set for every ϕ ∈ MA. If not, the difference
of every two representing measures of ϕ will vanish on A, hence on ReA, hence
on CR(X) and therefore it will be the zero measure.

Proposition 1.2.1. Let A be a uniform algebra on a compact set X. If there is a
representing measure µ for some ϕ ∈ MA, such that supp (µ) = X, then A is an
antisymmetric algebra.

Proof. Assume that µ is a representing measure for some ϕ ∈ A with supp (µ) =
X . Let f be a non-constant real-valued function in A, and let t1, t2 ∈ f(X) ⊂
R, t1 �= t2. Without loss of generality we can assume that t1 > 0. Let F be
a closed neighborhood of t1 in R+, which does not contain t2. There exists a
function g ∈ CR

(
f(X)

)
such that sup

X
|g| = 1, g ≡ 1 on F , and g < 1 on f(X) \F .
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Note that g is a uniform limit of polynomials on f(X) ⊂ R. Hence, the function

g ◦ f belongs to A. Since supp (µ) = X and ‖µ‖ =
∫
X

g ◦ f dµ = 1, we have that

0 <
∫
X

g ◦ f dµ = c < 1. Since µ is a multiplicative measure, then

lim
n→∞

∫
X

(g ◦ f)ndµ =
(∫

X

lim
n→∞

(g ◦ f)ndµ
)

= lim
n→∞

cn = 0.

On the other hand, the assumed property supp (µ) = X implies that

lim
n→∞

∫
X

(g ◦ f)n dµ =
∫

f−1(F )

dµ > 0,

in contradiction with the previous equality. Therefore, every real-valued function
in A is constant, and consequently, A is an antisymmetric algebra. �

The space C(X) for a compact Hausdorff set X is a uniform algebra. Let K
be a compact subset of the maximal ideal space MA of a uniform algebra A on
X . Consider the algebra Â

∣∣
K

of restrictions of Gelfand transforms f̂ , f ∈ A on
K. In general this is not a closed subalgebra of C(K), and therefore Â

∣∣
K

is not
always a uniform algebra. However, the closure AK of Â

∣∣
K

in C(K) is a uniform
algebra with MAK ⊂MA. If MAK does not meet ∂A, then ∂AK = b(MAK ), the
topological boundary of MAK with respect to the Gelfand topology, which is an
immediate corollary of the following.

Theorem 1.2.2 (Rossi’s Local Maximum Modulus Principle). If U is an open
subset of MA, then

sup
m∈U

∣∣f̂(m)
∣∣ = max

m∈bU∪(∂A∩U)

∣∣f̂(m)
∣∣

for every function f ∈ A.

Let A be a uniform algebra on X . As we know from section 1.1, the maximal
ideal space MA of A is a compact set. Since the point evaluation ϕx : f �−→ ϕ(x)
at any point of X is a linear multiplicative functional, then ϕx ∈ MA for every
x ∈ X . This allows us to consider X as a subspace of MA. The Gelfand transform
f̂ of an f ∈ A is continuous on MA. For any point of x ∈ X we have f̂(ϕx) =
ϕx(f) = f(x), and therefore f̂ can be interpreted as a continuous extension of f on
MA. Moreover, in a certain sense MA is the largest set for natural extension of all
functions in A. Recall that according to Lemma 1.1.5 the norm of any ϕ ∈MA is
1. Therefore,

∥∥ϕ(f)
∥∥ ≤ ‖ϕ‖‖f‖ = ‖f‖. It follows that the Gelfand transformation

Λ : A −→ Â ⊂ C(MA) : f �−→ f̂ is an isometric isomorphism. Consequently, the



10 Chapter 1. Banach algebras and uniform algebras

algebra A and its Gelfand transform Â are isometrically isomorphic, and hence Â
is closed in C(X). Since the algebra A|∂A of restrictions of elements in A on the
Shilov boundary ∂A is also isometrically isomorphic to A, we have A ∼= Â ∼= A

∣∣
∂A

.
For this reason we will not distinguish, for example, the disc algebra A(D) from
its restriction algebra A(T) = A(D)

∣∣
T

on the Shilov boundary ∂A(D) = T.

Observe, that
∥∥(m1 −m2)(f)

∥∥ =
∥∥m1(f)−m2(f)

∥∥ ≤ (
‖m1‖+ ‖m2‖

)
‖f‖ ≤

2 ‖f‖ for every m1,m2 ∈ MA, and f ∈ A. Consequently, the norm ‖m1 −m2‖ of
the linear functional m1 −m2 ∈ A∗ does not exceed 2. Therefore, the diameter of
the set MA ⊂ A∗ is not greater than 2. The property ‖m1 −m2‖ < 2 generates a
transitive relation in MA. It is easy to check that this is an equivalence relation
(e.g. [G1],[S4]). The equivalent classes of the set MA with respect to this relation
are called Gleason parts of A. It is clear that points on the extreme ends of a
diameter, i.e. for which ‖m1 −m2‖ = 2, belong to distinct Gleason parts.

A homomorphism Φ : A −→ B between two uniform algebras naturally gen-
erates an adjoint continuous map Φ∗ : MB −→MA between their maximal ideal
spaces, defined by (

Φ∗(ϕ)
)
(f) = ϕ

(
Φ(f)

)
, f ∈ A, ϕ ∈ MB.

If Φ : A −→ B preserves the norm, i.e. if∥∥Φ(f)
∥∥

B
= ‖f‖A

for every f ∈ A, then Φ is called an embedding of A into B. Clearly, Φ∗(∂B) ⊂MA.

Proposition 1.2.3. Let A and B be uniform algebras, and let Φ : A −→ B be a
homomorphism that does not increase the norm, i.e. for which

∥∥Φ(f)
∥∥

B
≤ ‖f‖A,

f ∈ A. Then Φ is an embedding of A into B if and only if the range Φ∗(∂B) of
Φ∗ contains the Shilov boundary ∂A.

Proof. For every f ∈ A we have

max
m∈Φ∗(∂B)

∣∣m(f)
∣∣ = max

ϕ∈∂B

∣∣(Φ∗(ϕ)
)
(f)

∣∣ = max
ϕ∈∂B

∣∣ϕ(Φ(f)
)∣∣

= max
ϕ∈∂B

∣∣(̂Φ(f))(ϕ)
∣∣ =

∥∥Φ(f)
∥∥

B
.

(1.8)

If ∂A ⊂ Φ∗(∂B), then

‖f‖A = max
ϕ∈∂A

∣∣f̂(ϕ)
∣∣ = max

ϕ∈∂A

∣∣ϕ(f)
∣∣ ≤ max

ϕ∈Φ∗(∂B)

∣∣ϕ(f)
∣∣ =

∥∥Φ(f)
∥∥

B
.

Therefore, ‖f‖A =
∥∥Φ(f)

∥∥
B

, i.e. Φ preserves the norm.
Conversely, if Φ : A −→ B is an isometry, then Φ∗(∂B) is a boundary for A,

since by (1.8)

max
ϕ∈Φ∗(∂B)

∣∣f̂(ϕ)
∣∣ = max

ϕ∈Φ∗(∂B)

∣∣ϕ(f)
∣∣ =

∥∥Φ(f)
∥∥

B
= ‖f‖A.

Consequently, ∂A ⊂ Φ∗(∂B). �
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Corollary 1.2.4. A homomorphism Φ of A onto B which does not increase the
norm is an embedding if and only if Φ∗(∂B) = ∂A.

Proof. The arguments from the proof of Proposition 1.2.3 show that it is enough
to show that Φ∗(∂B) ⊂ ∂A. Suppose that, on the contrary, Φ∗(∂B) � ∂A, and let
ϕ0 ∈ Φ∗(∂B) \ ∂A. According to Corollary 1.1.8, there is a neighborhood U of ϕ0

in MA \ ∂A, such that for every function f ∈ A,

max
m∈U

∣∣f̂(m)
∣∣ ≤ max

m∈MA\U

∣∣f̂(m)
∣∣.

In particular,

max
Φ∗(ϕ)∈U

∣∣f̂(Φ∗(ϕ)
)∣∣ ≤ max

Φ∗(ϕ)∈MA\U

∣∣f̂(Φ∗(ϕ)
)∣∣.

Since f̂
(
Φ∗(ϕ)

)
=
(
Φ∗(ϕ)

)
(f) = ϕ

(
Φ(f)

)
= Φ̂(f)(ϕ), we have

max
ϕ∈(Φ∗)−1(U)

∣∣Φ̂(f)(ϕ)
∣∣ ≤ max

ϕ∈(Φ∗)−1(MA\U)

∣∣Φ̂(f)(ϕ)
∣∣.

By the assumed Φ(A) = B, we see that

max
ϕ∈(Φ∗)−1(U)

∣∣ĝ(ϕ)
∣∣ ≤ max

ϕ∈(Φ∗)−1(MA\U)

∣∣ĝ(ϕ)
∣∣

for every g ∈ B. Consequently, (Φ∗)−1(MA \ U) is a closed boundary of B, and
(Φ∗)−1(ϕ0) ⊂ (Φ∗)−1(U) ⊂MB \ (Φ∗)−1(MA \ U) ⊂MB \ ∂B, in contradiction
with the initially assumed property ϕ0 ∈ Φ∗(∂B). Hence Φ∗(∂B) ⊂ ∂A. �

Every embedding Φ : A(T) −→ A(T) of the disc algebra onto itself is an
isometric isomorphism between A(T) and Φ

(
A(T)

)
. Consequently, the adjoint

map Φ∗ : MΦ(A(T)) −→ MA(T) generates a homeomorphism of D onto D, and
Φ∗(∂(Φ(A(T))

)
= ∂A(T) = T, i.e. Φ∗(T) = T, Φ∗(D) = D, and hence the function

Φ∗ is a finite Blaschke product (cf. [G2]) on D, i.e.

B(z) = eiθ
n∏

k=1

(
z − zk
1− zkz

)
for some zk, 0 < |zk| < 1, k = 1, 2, . . . , n.

Therefore, for any embedding Φ : A(T) −→ A(T) of A(T) onto itself there exists a
finite Blaschke product B(z) on D with Φ ◦ f = f ◦B, i.e. such that

Φ
(
f(z)

)
= (f ◦ Φ∗)(z) = f

(
B(z)

)
for every f ∈ A(T). (1.9)

Let A ⊂ C(X) be a uniform algebra on a compact set X . One can easily
identify certain points as elements of the Shilov boundary ∂A of a uniform algebra
A. A point x0 ∈ X is called a peak point of a uniform algebra A if there exists a
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function f in A such that f(x0) = 1 and
∣∣f̂(x)∣∣ < 1 for every x ∈ MA \ {x0}.

Clearly, every peak point belongs to the Shilov boundary ∂A. In general the set
of peak points is not a boundary for A. However, for algebras with metrizable
maximal ideal spaces it is (e.g. [G1, S4]). Moreover, in this case the set of peak
points is the minimal boundary for A, i.e. it is contained in every boundary of A.

An element f ∈ A is called a peaking function of A if ‖f‖ = 1, and either
f̂(x) = 1, or, |f̂(x)| < 1 for any x ∈ MA. In this case the set P (f) = {x ∈ MA :
f̂(x) = 1} = f̂−1(1) is called the peak set (or, peaking set) of A corresponding to
f̂ . Clearly, every peak point is a peak set of A, and f is a peaking function if and
only if σπ(f) = {1}. If K ⊂MA is such that K = P (f) for some peaking function
f , we say that f̂ peaks on K. Clearly, K is a peak set if there is a functionf ∈ A,
such that f̂ |K ≡ 1, and |f̂(m)| < 1 whenever m ∈ MA \K.

A point x ∈ MA is called a generalized peak point of A (or, a p-point of A) if
it coincides with the intersection of a family of peak sets of A. Equivalently, x is
a p-point of A if for every neighborhood V of x there is a peaking function f with
x ∈ P (f) ⊂ V . The Choquet boundary (or, the strong boundary) δA of A is the set
of all generalized peak points of A. It is a boundary of A, and its closure coincides
with the Shilov boundary ∂A of A, i.e. δA = ∂A. Unlike δA, the set of peak points
of A in general is not dense in ∂A, unless MA is metrizable (cf. [G1, S4]).

Till the end of the section we will assume that A ⊂ C(X) is a uniform
algebra on its maximal ideal space MA = X . Denote by F(A) the set of all
peaking functions of A. For a fixed point x in X by Fx(A) denote the set of all
peaking functions of A by P (f)  x, i.e. withf̂(x) = 1.

Lemma 1.2.5. Let A ⊂ C(X) be a uniform algebra. If f, g ∈ A are such that
‖fh‖ ≤ ‖gh‖ for all peaking functions h ∈ F(A), then |f(x)| ≤ |g(x)| on ∂A.

Proof. Assume that ‖fh‖ ≤ ‖gh‖ for every h ∈ F(A), but |f(x0)| > |g(x0)| for
some x0 ∈ ∂A. Without loss of generality we may assume that x0 ∈ δA. Choose
a γ > 0 such that |g(x0)| < γ < |f(x0)|, and choose an open neighborhood V
of x0 in X so that |g(x)| < γ on V . Let h ∈ Fx0(A) be a peaking function of A
on X with P (h) ⊂ V . By choosing a sufficiently high power of h we can assume
from the beginning that |g(x)h(x)| < γ for every x ∈ ∂A \V . Since this inequality
obviously holds also on V , we deduce that ‖gh‖ < γ. Hence,

|f(x0)| = |f(x0)h(x0)| ≤ ‖fh‖ ≤ ‖gh‖ < γ.

Therefore, |f(x0)| < γ in contradiction with the choice of γ. Consequently, |f(x)| ≤
|g(x)| on ∂A. �

Corollary 1.2.6. If the functions f, g ∈ A satisfy the equality ‖fh‖ = ‖gh‖ for all
peaking functions h ∈ F(A), then |f(x)| = |g(x)| on ∂A.
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Lemma 1.2.7. If the functions f, g ∈ A satisfy the inequality

max
ξ∈∂A

(
|f(ξ)|+ |k(ξ)|

)
≤ max

ξ∈∂A

(
|g(ξ)|+ |k(ξ)|

)
for all k ∈ A, then |f(x)| ≤ |g(x)| for every x ∈ ∂A.

Proof. The proof follows the line of proof of Lemma 1.2.5.
Assume that max

ξ∈∂A

(
|f(ξ)| + |k(ξ)|

)
≤ max

ξ∈∂A

(
|g(ξ)| + |k(ξ)|

)
for every k ∈ A, but

|f(x0)| > |g(x0)| for some x0 ∈ ∂A. Without loss of generality we may assume
that x0 ∈ δA. Choose a γ > 0 such that |g(x0)| < γ < |f(x0)|, and choose an
open neighborhood V of x0 in X so that |g(x)| < γ on V . Let R > 1 be such that
‖f‖ ≤ R and max

ξ∈∂A
|g(ξ)| ≤ R. Let k ∈ Fx0(A) be a peaking function for A with

P (k) ⊂ V . By choosing a sufficiently high power of k we can assume from the
beginning that |g(x)|+ |Rk(x)| < R+γ for every x ∈ ∂A\V . Since this inequality
holds also on V , we deduce that |g(x)|+ |Rk(x)| < R+γ for every x ∈ ∂A. Hence,

|f(x0)|+R = |f(x0)|+ |Rk(x0)|
≤ max

ξ∈∂A

(
|f(ξ)|+ |Rk(ξ)|

)
≤ max

ξ∈∂A

(
|g(ξ)|+R|k(ξ)|

)
< R + γ.

Therefore, |f(x0)| < γ in contradiction with the choice of γ. Consequently, |f(x)| ≤
|g(x)| for every x ∈ ∂A. �

Corollary 1.2.8. If the functions f, g ∈ A satisfy the equality

max
ξ∈∂A

(
|f(ξ)|+ |k(ξ)|

)
= max

ξ∈∂A

(
|g(ξ)|+ |k(ξ)|

)
for all k ∈ A, then |f(x)| = |g(x)| for every x ∈ ∂A.

The following lemma, due to Bishop, helps to localize elements of uniform
algebras.

Lemma 1.2.9 (Bishop’s Lemma). If E ⊂ X is a peak set for A, and f �≡ 0 on E
for some f ∈ A, then there exists a peaking function h ∈ F(A) which peaks on E
and such that

|f(x)h(x)| < max
ξ∈E

|f(ξ)| (1.10)

for any x ∈ X \ E.

Proof. If f ∈ A and max
ξ∈E

|f(ξ)| = M > 0. For any natural n ∈ N define the set

Un =
{
x ∈ X : |f(x)| < M

(
1 + 1/2n+1

)}
.

Clearly, E ⊂ Un ⊂ Un−1 for every n > 1. Choose a function k ∈ F(A) which peaks

on E, and let kn be a big enough power of k so that |kn(x)| < 1
2n

on X \ Un.
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The function h =
∞∑
1

1
2n
kn belongs to F(A). Moreover, P (h) = h−1{R} = E,

|h(x)| < 1 on X \ E, and max
ξ∈E

(
|f(ξ)h(ξ)|

)
= M . We claim that |f(x)h(x)| < M

for every x /∈ E. In what follows, x is a fixed element in X \ E.

(i) Let x /∈ U1. Then x /∈ Un for all n ∈ N, and hence |kn(x)| < 1
2n
< 1 for

all n ∈ N. Hence, |h(x)| <
∞∑
1

1
2n

= 1, thus |f(x)h(x)| < M .

(ii) Let x ∈ Un−1 \Un for some n > 1. Then x ∈ Ui for every 1 ≤ i ≤ n− 1,
and x /∈ Ui for all i ≥ n. Hence |f(x)| < M

(
1 + 1/2i+1

)
for every 1 ≤ i ≤ n − 1,

and |ki(x)| <
1
2i

for all i ≥ n. Since x ∈ Un−1, we see that |f(x)| < M
(
1 + 1/2n

)
,

and

|f(x)h(x)| < M
(
1 + 1/2n

)( n−1∑
i=1

1
2i
|ki(x)| +

∞∑
i=n

1
2i
|ki(x)|

)
.

Further,
n−1∑
i=1

1
2i
|ki(x)| <

n−1∑
i=1

1
2i

=
(
1− 1/2n−1

)
, and

∞∑
i=n

1
2i
|ki(x)| ≤

∞∑
i=n

1
2i

(
1
2i

)
=

∞∑
i=n

1
4i

=
M

3 · 4n−1
<

1
2 · 4n−1

=
1

2n · 2n−1
.

Consequently,

|f(x)h(x)|< M
(
1 + 1/2n

)(
1− 1

2n−1
+

1
2n2n−1

)
≤M

(
1 + 1/2n

)(
1− 1

2n−1

(
1− 1

2n

))
< M

(
1 + 1/2n

)(
1− 1

2n−1
· 1
2

)
= M

(
1 + 1/2n

)(
1− 1/2n

)
=M

(
1− 1/22n

)
< M.

(iii) If x ∈
∞⋂

n=1

Un, then |f(x)| ≤M , whence |f(x)h(x)| < M since |h(x)| <

1 on X \ E. �
If also σπ(fh) = σπ(gh) for all h ∈ F(A), then we have a much stronger

result than in Corollary 1.2.6. Namely,

Lemma 1.2.10. If f, g ∈ A satisfy the equality

σπ(fh) = σπ(gh) (1.11)

for every peaking function h ∈ A, then f(x) = g(x) on ∂A.
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Proof. Clearly, ‖fh‖ = ‖gh‖, since |z| = ‖f‖ for every z ∈ σπ(f). Corollary 1.2.6
yields |f(x)| = |g(x)| on ∂A. Let y ∈ δA. If f(y) = 0, then |g(y)| = |f(y)| = 0
implies that also g(y) = 0. Therefore, we can assume without loss of generality
that f(y) �= 0. Choose an open neighborhood V of y in X , and a peaking function
k ∈ Fy(A) with P (k) ⊂ V . Let |f(xV )| = max

ξ∈P (k)
|f(ξ)| for some xV ∈ P (k). By

Bishop’s Lemma there is a peaking function h ∈ Fy(A) with P (h) = P (k), so that
the functions fh and gh attain the maxima of their modulus only within P (h).
Therefore, by (1.11), f(xV ) = f(xV )h(xV ) ∈ σπ(fh) = σπ(gh). Hence, there is a
zV ∈ P (h) so that

f(xV ) = g(zV )h(zV ) = g(zV ). (1.12)

Since in every neighborhood V  y there are points xV and zV in V with f(xV ) =
g(zV ), then f(y) = g(y) by the continuity of f and g. Consequently, f = g on
∂A = δA. �

The next lemma is an additive version of Bishop’s Lemma (Lemma 1.2.9).

Lemma 1.2.11 (Additive analogue of Bishop’s Lemma). If E ⊂ X is a peak set
for A, and f �≡ 0 on E for some f ∈ A, then there exists a function h ∈ F(A)
which peaks on E and such that

|f(x)| +N |h(x)| < max
ξ∈E

|f(ξ)|+N (1.13)

for any x ∈ X \ E and any N ≥ ‖f‖.

Proof. The proof follows the line of proof of Bishop’s Lemma 1.2.9. If ‖f‖ =
max
ξ∈X

|f(ξ)| = R and max
ξ∈E

|f(ξ)| = M , then clearly, 0 < M ≤ R. For any natural

n ∈ N define the set

Un =
{
x ∈ X : |f(x)| < M

(
1 + 1/2n+1

)}
.

Clearly, E ⊂ Un ⊂ Un−1 for every n > 1. Choose a function k ∈ F(A) which

peaks on E, and let kn be a big enough power of k so that R |kn(x)| < M

2n
on

X \Un. The function h =
∞∑
1

1
2n
kn belongs to F(A). Moreover, P (h) = h−1{R} =

E, |h(x)| < 1 on X \ E, and max
ξ∈E

(
|f(ξ)| + R |h(ξ)|

)
= M + R. We claim that

|f(x)| + R |h(x)| < M + R for every x /∈ E. In what follows, x is a fixed element
in X \ E.

(i) Let x /∈ U1. Then x /∈ Un for all n ∈ N, and hence R |kn(x)| < M

2n
< M

for all n ∈ N. Hence, R |h(x)| <
∞∑
1

M

2n
= M , thus |f(x)|+R |h(x)| < R+M .
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(ii) Let x ∈ Un−1 \ Un for some n > 1. Then x ∈ Ui for all 1 ≤ i ≤ n − 1,
and x /∈ Ui for each i ≥ n. Hence |f(x)| < M

(
1 + 1/2i+1

)
for all 1 ≤ i ≤ n−1, and

R|ki(x)| <
M

2i
for each i ≥ n. Since x ∈ Un−1, we see that |f(x)| < M

(
1 + 1/2n

)
,

and

|f(x)| +R |h(x)| < M
(
1 + 1/2n

)
+

n−1∑
i=1

R

2i
|ki(x)| +

∞∑
i=n

R

2i
|ki(x)|.

Further,
n−1∑
i=1

R

2i
|ki(x)| <

n−1∑
i=1

R

2i
= R

(
1− 1/2n−1

)
, and

∞∑
i=n

R

2i
|ki(x)| ≤

∞∑
i=n

1
2i

(
M

2i

)
= M

∞∑
i=n

1
4i

=
M

3 · 4n−1
<

M

2 · 4n−1
=

M

2n · 2n−1
.

Consequently,

|f(x)|+R |h(x)| < M
(
1 + 1/2n

)
+R

(
1− 1/2n−1

)
+

M

2n2n−1

≤M +R
(

1
2n

+ 1− 1
2n−1

+
1

2n · 2n−1

)
= M +R

(
1− 1

2n
+

1
2n · 2n−1

)
< M +R.

(iii) If x ∈
∞⋂

n=1

Un, then |f(x)| ≤ M , whence |f(x)| + R |h(x)| < M + R

since |h(x)| < 1 on X \ E.

Actually, (1.13) holds with any N > R for the function h constructed above.
Indeed,

|f(x)| +N |h(x)| = |f(x)| +R |h(x)| + (N −R) |h(x)|
< max

ξ∈E
|f(ξ)|+R+ (N −R) = max

ξ∈E
|f(ξ)|+N.

�

Corollary 1.2.12. Let E be a peak set of A, x0 ∈ E, f ∈ A, N ≥ ‖f‖, and α ∈ T
be such that |f(x0)| = max

ξ∈E
|f(ξ)| > 0 and f(x0) = α |f(x0)|. If h is the peaking

function of A with P (h) = E, constructed in Lemma 1.2.11, then

(a)
∣∣f(x) + αNh(x)

∣∣ ≤ |f(x)| +N |h(x)| < ‖f + αNh‖ =
∣∣f(x0) + αNh(x0)

∣∣ =∣∣f(x0)
∣∣+N for all x ∈ X \ E, and

(b) ‖f + γNh‖ ≤ ‖f + αNh‖ for every γ ∈ T.
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Proof. (a) Lemma 1.2.11 implies that
∣∣f(x) + αNh(x)

∣∣ ≤ |f(x)| + N |h(x)| <
max
ξ∈E

(
|f(ξ)| + N

)
= |f(x0)| +N =

∣∣f(x0) + αNh(x0)
∣∣ for all x ∈ X \ E. Hence,

‖f + αNh‖ = max
ξ∈E

∣∣f(ξ) + αNh(ξ)
∣∣ =

∣∣f(x0) + αNh(x0)
∣∣ = |f(x0)| +N , i.e. (a)

holds.
(b) By Lemma 1.2.11 and (a), we have

‖f + γNh‖ = max
ξ∈X

∣∣f(ξ) + γNh(ξ)
∣∣

≤ max
ξ∈X

(
|f(ξ)|+N |h(ξ)|

)
= |f(x0)|+N = ‖f + αNh‖. �

If σπ(f + h) = σπ(g + h) for all h ∈ A, then we have a much stronger result
than in Corollary 1.2.8. Namely,

Lemma 1.2.13. If f, g ∈ A satisfy the equalities

(a) σπ(f + h) = σπ(g + h), and

(b) max
ξ∈∂A

(
|f(ξ)|+ |h(ξ)|

)
= max

ξ∈∂A

(
|g(ξ)|+ |h(ξ)|

)
for every h ∈ A, then f(x) = g(x) for every x ∈ ∂A.

Proof. The proof follows the line of proof of Lemma 1.2.10. Let f, g ∈ A and let
‖f‖ = ‖g‖ = R. Equality (b) and Corollary 1.2.8 imply that |f(x)| = |g(x)| on
∂A. Let y ∈ δA. If f(y) = 0, then by |g(y)| = |f(y)| = 0 we see that g(y) = 0
too. Suppose now that f(y) �= 0. Choose an open neighborhood V of y in X , and
a peaking function k ∈ Fy(A) with P (k) ⊂ V . There is an xV ∈ P (k) so that
|f(xV )| = max

ξ∈P (k)
|f(ξ)| = M ≤ R. Let f(xV ) = αVM for some αV ∈ T. By the

additive version of Bishop’s Lemma we can choose a peaking function h ∈ Fy(A)
with P (h) = P (k) and such that the function |f(x)|+|Rh(x)| attains its maximum
only within P (h). Hence

|f(xV )|+ R = M +R =
∣∣αV (M +R)

∣∣ =
∣∣f(xV ) + αV R

∣∣
=
∣∣f(xV ) + αV Rh(xV )

∣∣ ≤ ‖f + αVRh‖ = max
ξ∈∂A

∣∣(f +Rh
)
(ξ)|

)
≤ max

ξ∈∂A

(
|f(ξ)|+ |Rh(ξ)|

)
= max

ξ∈P (h)

(
|f(ξ)|+ |Rh(ξ)|

)
= max

ξ∈P (h)

(
|f(ξ)|+R|

)
= |f(xV )|+R,

and therefore,∣∣f(xV ) + αV R
∣∣ = max

ξ∈∂A

(
|f(ξ)|+ |Rh(ξ)|

)
= ‖f + αVRh‖, (1.14)

and, by equality (a), f(xV )+αVR ∈ σπ(f+αVRh) = σπ(g+αVRh). Hence, there
is a zV ∈ X so that

f(xV ) + αVR = g(zV ) + αVRh(zV ). (1.15)
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We may assume that zV ∈ ∂A, since
∣∣g(zV ) + αVRh(zV )

∣∣ = |f(xV ) + αVR| =∣∣f(xV ) + αVRh(xV )
∣∣ is the maximum modulus of both functions g + αVRh, f +

αVRh, and as a peaking set of A (cf. [L1]), the preimage
(
g + αVRh

)−1(
g(zV ) +

αVRh(zV )
)

of the number g(zV ) + αVRh(zV ) under the function g + αVRh nec-
essarily meets ∂A. By (1.14) and Corollary 1.2.8 we have∣∣g(zV ) + αVRh(zV )

∣∣ ≤ |g(zV )|+ |Rh(zV )|
= |f(zV )|+ |Rh(zV )| ≤ max

ξ∈∂A

(
|f(ξ)|+ |Rh(ξ)|

)
= ‖f + αVRh‖

= max
ξ∈δA

(∣∣g(ξ) + αVRh(ξ)
∣∣) =

∣∣g(zV ) + αVRh(zV )
∣∣.

Hence, |g(zV )| + |Rh(zV )| = max
ξ∈δA

(∣∣g(ξ) + αVRh(ξ)
∣∣). Since the function

∣∣g(ξ) +

αVRh(ξ)
∣∣ attains its maximum only within P (h) it follows that zV ∈ P (h), thus

h(zV ) = 1. The equality (1.15) now becomes f(xV ) + αVR = g(zV ) + αVR, thus
f(xV ) = g(zV ). Since in every neighborhood V  y there are points xV and
zV in V with f(xV ) = g(zV ), then f(y) = g(y) by the continuity of f and g.
Consequently, f = g on ∂A = δA. �

1.3 Inductive and inverse limits of algebras and sets

In this section we introduce the notion of inductive and inverse systems and their
limits, which are used to construct associated algebras. Since we need the technique
in some special cases only, we do not present it in its general form, which can be
found elsewhere (e.g. [L1], [ES]).

Consider a family {Aα}α∈Σ of uniform algebras. Suppose that the index set
Σ is directed, i.e. Σ is a partially ordered set, and every pair α, β of elements
of Σ has a common successor γ � α, β in Σ. Suppose also that for every pair
Aα, Aβ , α ≺ β, of algebras there is an algebraic homomorphism ιβα : Aα −→ Aβ .
The family {Aα, ιβα}α∈Σ is called an inductive system (or, inductive spectrum,
direct spectrum) of algebras Aα with connecting homomorphisms ιβα, if

(i) ιαα is the identity mapping on Aα, and

(ii) ιγβ ◦ ιβα = ιγα whenever α ≺ β ≺ γ.

A chain of the system {Aα, ιβa}α∈Σ is called any set of type ν = {pα : pα ∈
Aα}α�αν , such that ιβα(pα) = pβ for every α, β � αν . Let N denote the set of all
chains of the system {Aα, ιβa}α∈Σ. Consider the following equivalence relation in
N : If ν1 = {pα}α�αν1

and ν2 = {qα}α�αν2
∈ N , then ν1 ∼ ν2 if there exists a

β ∈ Σ, β � αν1 , αν2 , such that pσ = qσ for every σ � β. The set A of equivalence
classes of N with respect to this relation is called the inductive limit of the system
{Aα, ιβα}, and is denoted by lim

−→
{Aα, ιβα}α∈Σ. The equivalent class of a given chain

ν = {pα}α�αν ∈ N consists of all chains η = {qα}α�αη ∈ N whose coordinates
qα coincide eventually with the coordinates pα of ν.
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Example 1.3.1. (a) Let {Aα}α∈Σ be a family of uniform algebras, such that Aα ⊂
Aβ whenever α ≺ β. Let ιβα be the inclusion mapping of Aα into Aβ , i.e. ιβα(a) =
a ∈ Aβ for every a ∈ Aα. It is easy to see that in this case the family {Aα, ιβα}α∈Σ

is an inductive system, and lim
−→

{Aα, ιβα}α∈Σ =
⋃

α∈Σ

Aa.

(b) Given a uniform algebra A, and an index set Σ, consider the inductive
system {Aα, ιβα}α∈Σ, where Aα = A for every α ∈ Σ, and each of ιβα, α, β ∈ Σ, is
the identity mapping on A. It is easy to check that the limit lim

−→
{Aα, ιβα}α∈Σ of

this system is isomorphic to A.

Every coordinate algebra Aβ of an inductive system can be mapped naturally
into the inductive limit lim

−→
{Aα, ιβα}α∈Σ by a mapping ιβ : Aβ −→ lim

−→
{Aα, ιβα}α∈Σ ,

defined as follows: if aβ ∈ Aβ , then ιβ(aβ) is the equivalent class of the chain
{ιγβ(aβ)}γ�β ∈ N .

Let, for instance, {Aα, ιβα}α∈Σ be the inductive system from Example 1.3.1(a),
where Aα ⊂ Aβ whenever α ≺ β, and ιβα is the inclusion mapping of Aα into Aβ .
By definition, the inclusion mapping ιβ of a fixed coordinate algebra Aβ into⋃
α∈Σ

Aα = lim
−→

{Aα, ιβα}α∈Σ maps every a ∈ Aβ to the equivalence class of the

stationary chain {aγ}γ�β with aγ = a. Since this class is uniquely defined by the
element a, it can be identified by a itself, and henceforth ιβ(a) = a for every
a ∈ Aβ .

One can define algebraic operations in an inductive limit of algebras A =
lim
−→

{Aα, ιβα}α∈Σ as follows. Let the chains ν1 = {aα}α�α1 and ν2 = {bα}α�α2 be

representatives of two elements in lim
−→

{Aα, ιβα}α∈Σ . Let γ ∈ Σ, γ � α1, α2. The

sum ν1 + ν2 is defined as the equivalence class of the chain {aα + bα}α�γ ∈ N .
The product in A is defined in a similar way. It is easy to see that the inductive
limit A = lim

−→
{Aα, ιβα}α∈Σ is an algebra under these operations.

In the case when the index set Σ is the set of natural numbers N with the
natural ordering, {An, ιmn }n∈N is called also an inductive sequence, and is expressed
by the diagram

A1 −ι21−→ A2 −ι32−→ A3 −ι43−→ · · · .
The fact that the algebra A = lim

−→
{An, ιmn }n∈N is the limit of the inductive se-

quence {An, ιmn }n∈N can be expressed by the diagram

A1 −ι21−→ A2 −ι32−→ A3 −ι43−→ · · · −→ A.

The inverse systems are dual objects to the inductive ones. Consider a fam-
ily {Sα}α∈Σ of sets, parametrized by a directed index set Σ. Suppose that for
every pair Sα, Sβ , α ≺ β, of sets there is a mapping τβ

α : Sβ −→ Sα. The col-
lection {Sα, τ

β
α}α∈Σ is called an inverse system (or, inverse spectrum, projective

spectrum) of Sα with connecting mappings τβ
α , if
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(i) τα
α is the identity on Sα, and

(ii) τβ
α ◦ τ

γ
β = τγ

α whenever α ≺ β ≺ γ.

A chain of the system {Sα, τ
β
α}α∈Σ is any element {sα}α∈Σ in the Carte-

sian product
∏

α∈Σ

Sα such that τβ
α (sβ) = sα whenever α ≺ β. The family of all

chains is denoted by lim
←−

{Sα, τ
β
α}α∈Σ, and is called the inverse limit of the system

{Sα, τ
β
α}α∈Σ. Clearly, S is a subset of the Cartesian product

∏
α∈Σ

Sα. The limit

S = lim
←−

{Sα, τ
β
α}α∈Σ of an inverse system can be mapped naturally into every co-

ordinate set Sβ by the β-coordinate projection πβ : S −→ Sβ : π
(
{sα}α∈Σ

)
= sβ .

In the case when Σ = N with the natural ordering, {Sn, ι
m
n }n∈N is called also

inverse sequence, and is expressed by the diagram

S1 −τ
2
1←− S2 −τ

3
2←− S3 −τ

4
3←− · · · .

The fact that the set S is the limit of the inverse sequence {Sn, ι
m
n }n∈N can be

expressed also by the diagram

S1 −τ
2
1←− S2 −τ

3
2←− S3 −τ

4
3←− · · · ←− S.

Example 1.3.2. (a) Let {Sα}α∈Σ be a family of sets, such that Sα ⊃ Sβ whenever
α ≺ β. Let τβ

α be the inclusion mapping of Sβ into Sα, i.e. τβ
α (s) = s ∈ Sα for

every s ∈ Sβ. It is easy to see that in this case the family {Sα, τ
β
α}α∈Σ is an

inverse system, and lim
−→

{Sα, τ
β
α}α∈Σ =

⋂
α∈Σ

Sa. By definition, the projection πα

of
⋂

α∈Σ

Sa = lim
←−

{Sα, τ
β
α}α∈Σ into a fixed coordinate set Sβ maps every chain

{sα}α∈Σ with sα = s to its β coordinate s ∈ Sβ, i.e. πα is the inclusion mapping
of

⋂
α∈Σ

Sa into Sβ.

(b) Let S be a set, and let Σ be an index set. Consider the inverse system
{Sα, τ

β
α}α∈Σ, where Sα = S for α ∈ Σ, and every τβ

α , α, β ∈ Σ, is the identity
mapping on S. It is easy to check that the limit lim

←−
{Sα, τ

β
α}α∈Σ of this system is

bijective to S.

If all coordinate sets Sα are topological spaces, then the inverse limit S =
lim
←−

{An, ιmn }n∈N can be equipped with the topology inherited on S from the Carte-

sian product
∏

α∈Σ

Sα. If, in addition the mappings τβ
α : Sα −→ Sβ are continuous,

then so are all projections πα : S −→ Sα. One can show that if all Sα are com-
pact sets, and τβ

α : Sβ −→ Sα are continuous mappings, then S is also a compact
set. If all sets Sα have a particular algebraic structure, and the mappings τβ

α re-
spect this structure, then, in principle, the inverse limit S inherits this structure.
For instance, if all Sα are groups [resp. semigroups], and all τβ

α are group [resp.
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semigroup] homomorphisms, then S = lim
←−

{Sα, τ
β
α}α∈Σ is also a group [resp. semi-

group], actually a subgroup [resp. subsemigroup] of the Cartesian product
∏

α∈Σ

Sα.

Example 1.3.3. Consider the inverse sequence

T1 ←−τ
2
1− T2 ←−τ

3
2− T3 ←−τ

4
3− T4 ←−τ

5
4− · · · ,

where Tk = T are unit circles, and τk+1
k (z) = z2 on T. Since all Tk are compact

abelian groups, and z2 is a continuous group homomorphism, the inverse limit
lim
←−

{Tk+1, z
2}k∈N is a compact abelian group. Similarly, if Dk = D are closed unit

discs, and τk+1
k (z) = z2 on D, the limit of the inverse sequence

D1 ←−τ
2
1− D2 ←−τ

3
2− D3 ←−τ

4
3− D4 ←−τ

5
4− · · · ,

is a compact abelian semigroup, containing the inverse limit lim
←−

{Tk+1, z
2}k∈N.

Let {Aα, ιβα}α∈Σ be an inductive sequence of uniform algebras Aα ⊂ C(Xα),
and let A = lim

−→
{Aα, ιβα}α∈Σ be its limit algebra. The maximal ideal spaces MAa

can be lined up into an adjoint inverse system, namely {MAα , (ιβα)∗}α∈Σ, where
the mappings (ιβα)∗ : MAβ −→MAα are the adjoint mappings of ιβα : Aα −→ Aβ ,
defined as

(
(ιβα)∗(ϕ)

)
(f) = ϕ

(
ιβα(f)

)
, where ϕ ∈ MAβ , and f ∈ Aα. The inverse

limit MA = lim
←−

{
MAα , (ιβα)∗

}
α∈Σ

of maximal ideal spaces MAa is a compact

set. Suppose that the adjoint mappings (ιβα)∗ map the sets Xβ ⊂ MAβ onto
Xα ⊂ MAα for every α, β ∈ Σ. There arises an inverse system

{
Xα, (ιβα)∗|Xα

}
,

and its limit X = lim
←−

{
Xα, (ιβα)∗|Xα

}
α∈Σ

is a closed subset of MA.

There is a close relationship between the properties of the limit algebra A
and its coordinate algebras Aα (cf. [L1]).

Proposition 1.3.4. Assume that ιβα(1) = 1, and that the adjoint mappings (ιβα)∗

map Xβ onto Xα for every α, β ∈ Σ. Then:

(i) A = lim
−→

{Aα, ιβα}α∈Σ can be viewed as an algebra of continuous functions on
X.

(ii) The maximal ideal space of the closure A of A in C(X) coincides with the
set MA.

(iii) If (ιβα)∗ maps the Shilov boundary ∂Aβ onto ∂Aα for every α ≺ β, then the
Shilov boundary of A is the set lim

←−

{
∂Aα, (ιβα|∂Aa)∗

}
α∈Σ

.

(iv) If every Aα is a Dirichlet algebra on Xα, then A is a Dirichlet algebra on X.

Definition 1.3.5. The closure A of an inductive limit A = lim
−→

{Aα, ιβα}α∈Σ of
algebras is called an inductive limit algebra.
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Similarly to the case of algebras, we can consider also inductive limits of
groups. An inductive system of groups is a family {Gα, ιβα}α∈Σ, where {Gα}α∈Σ

is a collection of groups parametrized by a directed set Σ, and ιβα : Gα −→ Gβ are
group homomorphisms with the properties (i) and (ii). In a similar way one can
define the limit of an inductive system of groups lim

−→
{Gα, ιβα}α∈Σ, which is again

a group.

Example 1.3.6. Let Λ ⊂ R+ be a basis in R over the field Q of rational numbers.
Consider the family J of pairs {(γ, n)}, where γ is a finite subset in Λ and n is a
natural number. We equip J with the ordering

(γ, n) ≺ (δ, k) if and only if γ ⊂ δ and n < k.

For any (γ, n) ∈ J, γ = (γ1, γ2, . . . , γk) define the set

Γ(γ,n) =
{
(1/n!) (m1γ1 +m2γ2 + · · ·+mkγk) : mj ∈ Z, j = 1, . . . k

}
.

Clearly Γ(γ,n) is a subgroup of R isomorphic to Zk =
k⊕

i=1

Z, and Γ(γ,n) ⊂ Γ(δ,k)

whenever (γ, n) ≺ (δ, k). With the natural inclusions as connecting homomor-
phisms, the family

{
Γ(γ,n)

}
(γ,n)∈J

is an inductive system of groups, and

lim
−→

{
Γ(γ,n)

}
(γ,n)∈J

=
⋃
J

Γ(γ,n) = R.

Given an inverse system of groups {Gα, τ
β
α}α∈Σ, their dual groups Ĝα form

an adjoint inductive system,
{
Ĝα, (τβ

α )∗
}

α∈Σ
, where the mappings (τβ

α )∗ : Ĝα −→
Ĝβ , α ≺ β, are the adjoint of τβ

α : Gβ −→ Gα mappings, defined by
(
(τβ

α )∗(χ)
)
(g)

= χ
(
τβ
α (g)

)
, where χ ∈ Ĝα, and g ∈ Gβ . Similarly, the adjoint sequence of an in-

ductive sequence of groups is the inverse system of their dual groups. Moreover, the
dual group of the inverse limit lim

←−
{Gα, τ

β
α}α∈Σ is the inductive limit of the adjoint

system lim
−→

{
Ĝα, (τβ

α )∗
}

α∈Σ
, and vice versa, the dual group of an inductive limit

lim
−→

{Gα, ιβα}α∈Σ is the inverse limit of the adjoint system lim
←−

{
Ĝα, (ιβα)∗

}
α∈Σ

.

Example 1.3.7. Let Λ = {dk}∞k=1 be a sequence of natural numbers. Suppose that
mk =

∏k
l=1 dl, m0 = 1, and denote by ΓΛ the subgroup of Q that is generated

by the numbers 1/mk, k ∈ N. In particular, if dk = 2 for every k ∈ Z, ΓΛ is the
group of dyadic numbers in R. The group ΓΛ can be expressed as the inductive
limit of groups Z, namely

Z(1) −ζ2
1−→ Z(2) −ζ3

2−→ Z(3) −ζ4
3−→ Z(4) −ζ5

4−→ · · · −−→ ΓΛ,

where ζk+1
k (mk) = dk · mk, mk ∈ Z(k) = Z. The corresponding dual groups

Ẑk ∼= Tk = T form an inverse sequence of unit circles

T1 ←−τ
2
1− T2 ←−τ

3
2− T3 ←−τ

4
3− T4 ←−τ

5
4− · · · ←−− GΛ, (1.16)
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whose limit GΛ = Γ̂Λ is a compact abelian group. Here τk+1
k (z) = (ζk+1

k )
∗
(z) =

zdk . Indeed, τk+1
k (eitm) = eitζ

k+1
k (m) = eitdkm = (eitm)dk for every point eitm ∈

Tk = Ẑk. Observe that both GΛ and the limit DΛ = lim
←−

{Dk+1, z
dk , dk ∈ Λ}k∈N

of the corresponding inverse sequence of unit discs Dk = D,

D1 ←−τ
2
1− D2 ←−τ

3
2− D3 ←−τ

4
3− D4 ←−τ

5
4− · · · ←−− DΛ (1.17)

are subsets of the limit lim
←−

{Dk+1, z
dk , dk ∈ Λ}k∈N of the inverse sequence

D1 ←−τ
2
1− D2 ←−τ

3
2− D3 ←−τ

4
3− D4 ←−τ

5
4− · · · ←−− (1.18)

Note that DΛ is an open subset in the compact set lim
←−

{Dk+1, z
dk , dk ∈ Λ}k∈N,

and its topological boundary is GΛ.

Given an inverse system of topological spaces {Xα, τ
β
α}α∈Σ , one can consider

inductive limits of various function algebras on Xα. For instance the spaces C(Xα)
of continuous functions on Xα can be lined up as an adjoint inductive system,
namely

{
C(Xα), (τβ

α )∗
}

α∈Σ
where the mappings (τβ

α )∗ : Xα −→ Xβ, α ≺ β are
the adjoint mappings to τβ

α : Xβ −→ Xα, defined as
(
(τβ

α )∗(f)
)
(x) = f

(
τβ
α (x)

)
,

where f ∈ C(Xα), and x ∈ Xβ. One can show that

lim
−→

{
C(Xα), (τβ

α )∗
}

α∈Σ
= C

(
lim
−→

{
Xα, ιβα

}
α∈Σ

)
.

In particular, the adjoint sequence of an inverse sequence of topological sets

X1 ←−τ
2
1− X2 ←−τ

3
2− X3 ←−τ

3
2− X4 ←−τ

5
4− · · · ←−− X

is the inductive sequence

C(X1) −(τ
2
1 )∗−→ C(X2) −(τ

3
2 )∗−→ C(X3) −(τ

4
3 )∗−→ C(X4) −(τ

5
4 )∗−→ · · · −−→ C(X).

We say that two inductive sequences {An, ιmn }n∈N and {Bn, jmn }n∈N of alge-
bras are isomorphic if there exist isomorphisms ψk : Ak −→ Bk so that the infinite
diagram

A1
ι21−→ A2

ι32−→ A3
ι43−→ · · ·

ψ1 ↓ ψ2 ↓ ψ3 ↓
B1

j21−→ B2
j32−→ B3

j43−→ · · ·
(1.19)

is commutative, i.e. if all its squares are commutative.

Likewise, two inverse sequences {Xn, σm
n }n∈N and {Y n, τm

n }n∈N of sets are
isomorphic if there exist bijections ϕk : Xk −→ Yk so that the infinite diagram

X1
σ2
1←− X2

σ3
2←− X3

σ4
3←− · · ·

ϕ1 ↓ ϕ2 ↓ ϕ3 ↓
Y1

τ2
1←− Y2

τ3
2←− Y3

τ4
3←− · · ·

(1.20)
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is commutative. The proof of the following proposition uses standard algebraic
and topological arguments.

Proposition 1.3.8. (i) The limits A and B of two isomorphic inductive sequences
of algebras

A1 −ι
2
1−→ A2 −ι

3
2−→ A3 −ι

4
3−→ · · · −→ A, and

B1 −j21−→ B2 −j32−→ B3 −j43−→ · · · −→ B

are isomorphic algebras. If Ak, Bk possess other algebraic structure, and if
ιk+1
k , jk+1

k and ψk from (1.19) respect it, then A and B possess the same
structure, and are isomorphic with respect to it.

(ii) The limits U and V of two isomorphic inverse sequences of sets

X1 −σ
2
1←− X2 −σ

3
2←− X3 −σ

4
3←− · · · ←− X, and

Y1 −τ
2
1←− Y2 −τ

3
2←− Y3 −τ

4
3←− · · · ←− Y

are bijective. If Xk, Yk possess any particular algebraic structure, and σk+1
k ,

τk+1
k and ϕk from (1.20) respect it, then X and Y possess the same structure,

and are isomorphic with respect to it; If Xk, Yk are topological spaces, and
σk+1

k , τk+1
k are continuous mappings, and ϕk are homeomorphisms, then X

and Y are homeomorphic topological spaces.

1.4 Bourgain algebras of commutative Banach algebras

The norm topology of a commutative Banach algebra is too rough to reveal some
of its hidden properties. Therefore, weaker topologies which contain important
information about original algebras are also of importance, and they can be used
to construct associated algebras.

Let B be a commutative Banach algebra with norm ‖ · ‖ and let A ⊂ B be a
linear subspace of B (not necessarily closed), equipped with the restriction ‖ · ‖A

of the norm ‖ · ‖B on B on A. Let πA : B −→ B/A be the natural projection of
B onto the quotient algebra B/A. For every fixed f ∈ B let Pf : A −→ fA ⊂ B
be the multiplication by f ∈ B on A. The mapping

Sf = πA ◦ Pf : A −→ (fA+A)/A ⊂ B/A : g �−→ πA(fg)

is called a Hankel type operator on A corresponding to f . Note that πA and Sf

both are bounded linear operators onto B/A and onto (fA + A)/A ⊂ B/A cor-
respondingly. Denote by cw0 (A) the family of weakly null sequences in A. Hence,
a sequence {ϕn} in A belongs to cw0 (A) if L(ϕn) −→ 0 as n −→ ∞ for every
bounded linear functional L on A.
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Definition 1.4.1. An element f in B is said to be a Bourgain element of A with re-
spect to B if its corresponding Hankel type operator Sf : A −→ B/A is completely
continuous. The collection of Bourgain elements with respect to B is denoted by
AB

b , and is called the Bourgain algebra of A with respect to B.

Clearly, f ∈ AB
b if the operator Sf maps every weakly null sequence of A onto

a null sequence under the quotient norm on πA(fA) ⊂ B/A. Equivalently, f ∈ AB
b

if and only if for every weakly null sequence {ϕn}n in A there exists a sequence
{hn}n, hn ∈ A such that ‖fϕn − hn‖B −→ 0 as n −→ ∞. If cτ0(A) denotes the
family of all sequences of elements in A that converge to 0 with respect to a given
topology τ on A, then f ∈ AB

b if and only if Sf (cw0 (A)) ⊂ c
‖ · ‖
0 (B/A). AB

b is a
commutative Banach algebra, and if A is an algebra, then A ⊂ AB

b (e.g. [CT]). If
A ⊂ B ⊂ C are commutative Banach algebras then AB

b = AC
b ∩B.

Proposition 1.4.2. If the range Sf (A) = πA(fA) of the Hankel type operator Sf

corresponding to f ∈ B is finite-dimensional, then f ∈ AB
b .

Proof. If {ϕn}n is a weakly null sequence in A, then the sequence {fϕn}n is
also weakly null in B, and therefore

{
πA(ϕn)

}
n

is a weakly null sequence in

πA(fA) ⊂ B/A. Hence
{
πA(ϕn)

}
n
∈ c‖ · ‖

0

(
πA(fA)

)
⊂ c‖ · ‖

0 (B/A), since πA(fA) is
finite-dimensional. Consequently f ∈ AB

b . �

As the following example shows, the range of the completely continuous op-
erator Sf need not be finite-dimensional.

Example 1.4.3. Let A = A(T) be the disc algebra on the unit circle T and let
B = C(T). Consider the function

f(z) =
∞∑

k=1

1
k2zk

.

Clearly, f ∈ C(T) = AB
b . We claim that the range of the Hankel type operator Sf

corresponding to f is infinite-dimensional. Indeed, let cn = ‖znf +A‖B/A, and let
gn(z) = (1/cn)zn. Clearly, gn ∈ A, and ‖gnf +A‖B/A = 1. To see that πA(fA) is
not finite-dimensional it is enough to show that the sequence {gnf+A}n converges
weakly to 0 in B/A.

We can evaluate the (−m)-th Fourier coefficient cgnf
−m of the function gnf .

Namely,

cgnf
−m =

∫
T

gn(z) f(z) zm dz =
1

cn(n+m)2
, m, n ≥ 1.

Hence,

cn ≥ ‖znf +H2‖L2/H2 =

√√√√ ∞∑
k=1

1
(n+ k)4

,
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and therefore,
1
n2cn

≤ 1√√√√n4

∞∑
k=1

1
(n+ k)4

.

Note that
∞∑

k=1

1
(n+ k)4

≥
∞∫

n+1

1
x4
dx =

1
3(n+ 1)3

,

thus

lim
n→∞

n4
∞∑

k=1

1
(n+ k)4

=∞.

Hence, lim
n→∞

1/(n2cn) = 0, and therefore

lim
n→∞

∫
T

gn(z) f(z) zm dz = lim
n→∞

1
cn(n+m)2

= 0

for all m ∈ N. It now follows that if p is any polynomial with p(0) = 0, then

lim
n→∞

∫
T

gn(z) f(z) p(z) dz = 0.

Recall that if X is a Banach space and {xn}n is a bounded sequence in X tending
to zero on a norm-dense set of the dual space X∗, then {xn}n is weakly null. Since
the space H1

0 is isometrically isomorphic to
(
C(T)/A(T)

)∗, and the polynomials p
with p(0) = 0 are dense in H1

0 , the sequence {gnf +A}n converges weakly to zero
in B/A, as claimed. �

The next proposition asserts that the complete continuity property of Hankel
type operators is invariant under algebraic isometries.

Proposition 1.4.4. Let A ⊂ C and B ⊂ D be two pairs of commutative Banach
algebras. If T : C −→ D is an isometric algebra isomorphism with T (A) = B,
then the Hankel type operator ST (f) : B −→ D/B is completely continuous if and
only if Sf : A −→ C/A is completely continuous.

Proof. Note that T maps the set cw0 (A) onto the set cw0 (B) because T ∗ is an
isometry. Secondly, for ψn, gn ∈ A and f ∈ C we have that

‖ψnf − gn‖ =
∥∥T (ψnf)− T (gn)

∥∥ =
∥∥T (ψn)T (f)− T (gn)

∥∥.
Thus, if {ψn} ∈ cw0 (A) and Sf is completely continuous, then

{
T (ψn)

}
∈ cw0 (B)

and T (gn) ∈ B. Consequently, ST (f) is completely continuous since all weakly null
sequences in B are of type

{
T (ψn)

}
, where {ψn} ∈ cw0 (A). The argument is readily

reversible. �
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Note that Proposition 1.4.4 holds for the case when T is a Banach algebra
isomorphism, i.e. is a continuous isomorphism of the algebraic structure that has
a continuous inverse. Moreover, if T is an algebra homomorphism, while T |A is a
topological linear isomorphism, one can show that ST (f) is completely continuous
simultaneously with Sf .

Corollary 1.4.5. In the setting of Proposition 1.4.4, T (AC
b ) =

(
T (A)

)T (C)

b
= BD

b .

Corollary 1.4.5 is quite natural since Bourgain algebras are defined solely in
terms of algebraic and metric conditions. Since the restriction map T : B −→ B

∣∣
∂B

on the Shilov boundary ∂B is an isometric algebra isomorphism. Proposition 1.4.4
and Corollary 1.4.5 yield the following

Corollary 1.4.6. Let X be a compact Hausdorff space and A ⊂ B ⊂ C(X) be
uniform algebras. Then:

(i) The Hankel type operator Sf |∂B
: A

∣∣
∂B

−→
(
B
∣∣
∂B

)
/
(
A
∣∣
∂B

)
is completely

continuous if and only if Sf : A −→ B/A is completely continuous.

(ii)
(
A
∣∣
∂B

)B|∂B

b
= AB

b

∣∣
∂B
.

Observe that Proposition 1.4.4 and Corollary 1.4.5 do not hold for an isome-
try T between A and B that is not extendable as an isometry between the algebras
C and D. For example, the Bourgain algebras of H∞ relative to L∞ for the unit
disc D and the unit circle T = ∂D are given respectively by

H∞(T)L∞(T)
b = H∞(T) + C(T), (1.21)

H∞(D)L∞(D)
b = H∞(D) + Cu(D) + V (D), (1.22)

where Cu(D) is the space of uniformly continuous functions on D and V (D) is the
ideal of functions in L∞(D) that vanish near the boundary, namely, f ∈ V (D) if
for every ε > 0 there is a compact set K ⊂ D for which ess supz∈K

∣∣f(z)∣∣ < ε
[CSY, Y]. Here the boundary value mapping f �−→ f∗ from H∞(D) to H∞(T)
is an isometry which does not extend to the corresponding L∞ algebras nor
does it even extend to the corresponding Bourgain algebras of H∞. However,
the boundary value mapping extends isometrically from H∞(D) to the algebra
U(D) = [H∞(D), H

∞
(D)] generated by H∞(D) and H

∞
(D). Indeed, it extends

to the generators of U(D) and a closure argument provides a further extension to
U(D).

Note that U(D) =
[
H∞(D), H

∞
(D)

] ∼= C(MH∞(D)), and isometries on
H∞(D) induced by automorphisms of D extend naturally to isometries of U(D).

Consider the algebras H∞(T) and H∞(D). Note that the maximal ideal
spaces of the corresponding algebras L∞ are the corresponding sets ∂H∞. Since
the mapping Λ : H∞ −→ C(∂H∞) : f �−→ f̃

∣∣
∂H∞ is an isometry, we have
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Corollary 1.4.7. (i)
(
Ĥ∞(T)

∣∣
∂H∞

)bL∞(T)|∂H∞
b

= Ĥ∞(T)
∣∣
∂H∞ + Ĉ(T)

∣∣
∂H∞ ,

(ii)
(
Ĥ∞(D)

∣∣
∂H∞(D)

)bL∞(D)|∂H∞(D)

b
= Ĥ∞(D)

∣∣
∂H∞(D)

+ Ĉu(D)
∣∣
∂H∞(D)

.

This follows immediately from (1.21), (1.22) and Corollary 1.4.6. Note that
Corollary 1.4.7(ii) implies, in particular, that Ĥ∞(D)

∣∣
∂H∞(D)

+ Ĉu(D)
∣∣
∂H∞(D)

is

a closed subalgebra of L̂∞(D)
∣∣
∂H∞(D)

since Bourgain algebras are automatically
closed.

The Bourgain algebra AB
b contains important information about A. If A is

an algebra of continuous functions on a set Ω , then AB
b contains also information

about Ω .

Proposition 1.4.8. If U1 and U2 are biholomorphically equivalent domains in Cn,
then the corresponding Bourgain algebras H∞(U1)

U(U1)
b and H∞(U2)

U(U2)
b are iso-

metrically isomorphic.

Proof. Let U1 and U2 be biholomorphically equivalent and τ : U2 −→ U1 be a
biholomorphic mapping. Define the map T : Cb(U1) −→ Cb(U2) by(

T (f)
)
(z1, z2, . . . , zn) = f

(
τ(z1, z2, . . . , zn)

)
for all f ∈ Cb(U1) and (z1, z2, . . . , zn) ∈ U2. The mapping T is an isometric
algebra isomorphism with respect to the sup-norms on U1 and U2. Moreover,
T
(
H∞(U1)

)
= H∞(U2), T

(
U(U1)

)
= U(U2). Corollary 1.4.6 now implies that

T
(
H∞(U1)

U(U1)
b

)
= H∞(U2)

U(U2)
b . �

In what follows we apply completely continuous Hankel type operators related
with the Bourgain algebras of the corresponding spacesH∞ relative to the algebras
U = [H∞, H

∞
] ⊂ L∞ on the unit ball Bn and the unit polydisc Dn in Cn,

respectively, to the problem of biholomorphic equivalence of domains in Cn. Recall
that every function f ∈ H∞(Dn) has radial limits,

lim
r↗1

f
(
r(z1, z2, . . . , zn)

)
= f∗(z1, z2, . . . , zn),

at almost every point (z1, z2, . . . , zn) ∈ Tn, and the radial boundary value function
f∗(z1, z2, . . . , zn) of any f ∈ H∞(Dn) belongs to H∞(Tn) (e.g. [R6], Theorem
2.3.2]).

Lemma 1.4.9. Let g ∈ U(Dn) and let the corresponding Hankel type operator Sg :
H∞(Dn) −→ U(Dn)/H∞(Dn) be completely continuous. If g∗ is the boundary
value function of g on Tn, then the operator Sg∗ : H∞(Tn) −→ U(Tn)/H∞(Tn) is
also completely continuous.

This follows directly from the fact that every weakly null sequence {fn} in
H∞(Tn) is of the form fn = ϕ∗

n where {ϕn} is a weakly null sequence in H∞(Dn).



1.4. Bourgain algebras of commutative Banach algebras 29

Below we apply the Bourgain algebra technique to provide an alternative
proof of the Poincaré Theorem for analytic functions in several complex variables.

Theorem 1.4.10 (Poincaré Theorem). The sets Bn and Dn are not biholomorphi-
cally equivalent if n ≥ 2.

Proof. Suppose that Dn and Bn are biholomorphically equivalent and let τ : Dn−→
Bn be a biholomorphic mapping between them. Define T : Cb(Bn) −→ Cb(Dn), as
before, by (

T (f)
)
(z1, z2, . . . , zn) = f

(
τ(z1, z2, . . . , zn)

)
for all f ∈ Cb(Bn) and (z1, z2, . . . , zn) ∈ Dn. Proposition 1.4.8 implies that

T
(
H∞(Bn)U(Bn)

b

)
= H∞(Dn)U(Dn)

b .

Let f be a fixed non-constant function in the algebra A(Bn). Observe that
(
T (f)

)∗
exists because f ∈ H∞

(Bn) and so T (f) ∈ H∞
(Dn).

We claim that the mapping ST (f) : H
∞(Dn) −→ U(Dn)/H∞(Dn) is com-

pletely continuous. Note that f ∈ C(B
n
)|Bn and also f ∈ U(Bn). An argument

from [I] implies that
C(B

n
)|Bn ⊂ H∞(Bn)L∞(Bn)

b .

Consequently, by the remark immediately following Definition 1.4.1 we have

f ∈ H∞(Bn)L∞(Bn)
b ∩ U(Bn) = H∞(Bn)U(Bn)

b ,

and hence
T (f) ∈ T

(
H∞(Bn)U(Bn)

b

)
= H∞(Dn)U(Dn)

b ,

by Proposition 1.4.4, i.e. ST (f) is a completely continuous operator, as claimed.
From Lemma 1.4.9 it follows that for n ≥ 2 the radial boundary value function(
T (f)

)∗ of the non-constant anti-analytic function T (f) belongs to H∞(Tn) =
H∞(Tn)L∞(Tn)

b = H∞(Tn)U(Tn)
b (see [I, Y]), which is impossible. �

Note that the boundary value technique avoids the need of a direct reference
to the more complicated Bourgain algebras of H∞(Dn) and H∞(Bn).

The notion of Bourgain algebras can be extended for commutative topolog-
ical algebras. Recall that a commutative algebra A over C is called a topological
algebra, if it is provided by a topology, under which the basic operations in A are
continuous. Let B be a commutative topological algebra and A be its subalgebra.
Denote by cbw

0 (A) the space of bounded weakly null sequences in A.

Definition 1.4.11. The Bourgain algebra AB
b of a commutative topological algebra

A relative to B is the set of all elements f ∈ B for which Sf

(
cbw
0 (A)

)
⊂ c0(B/A),
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i.e. AB
b consists of all f ∈ B such that for every {ϕn} ∈ cbw

0 (A) there exists a
sequence {gn} in A for which

lim
n→∞

(ϕnf − gn) = 0. (1.23)

It is straightforward to see that if A is an algebra, then A ⊂ AB
b .

Proposition 1.4.12. Let A ⊂ B be commutative topological algebras. Every com-
pletely continuous Hankel type operator Sf : A −→ πA(fA) maps bounded weakly
Cauchy sequences in A onto Cauchy sequences in B/A.

Proof. Suppose that {gn}n is a bounded weakly Cauchy sequence in A for which
the sequence {πA(fgn)}n is not Cauchy in B/A. Then there is a neighborhood U
of 0 in B/A such that for every naturalM > 0 one can find integers nM ,mM ≥M
with πA(fgnM )− πA(fgmM ) /∈ U . Hence the sequence

{
πA

(
f (gnM − gmM )

)}∞
M=1

does not tend to 0 in B/A. By the complete continuity of Sf we have that the
bounded sequence {gnM −gmM }∞M=1 is not weakly null in A. Hence F (gnM −gmM )
does not tend to 0 for some F ∈ A∗. Therefore {F (gn)}n is not Cauchy, i.e. {gn}n

can not be a weakly Cauchy sequence. �
Note that the dual space B∗ does not always separate the points of B for

every commutative topological algebra B. Local convexity of B is a sufficient
condition for this.

Theorem 1.4.13. Let B be a commutative topological algebra and A be a subalge-
bra of B. The Bourgain algebra AB

b of A relative to B is a closed commutative
topological subalgebra of B.

Proof. Let f ∈ AB
b . Given a bounded weakly null sequence {ϕn} ∈ cw0 (A), ϕn ∈ A,

there are elements hn ∈ A, such that ϕnf−hn −→ 0. Note that {hn} is a bounded
weakly null sequence in A, since ϕnf is bounded and tends weakly to 0.

Let now f1, f2 ∈ AB
b , and suppose that {ϕn} is a bounded weakly null se-

quence in A. According to (1.23) there are hn ∈ A such that ϕnf1− hn −→ 0. By
the above remark {hn} is a bounded weakly null sequence in A. Therefore there
are kn ∈ A such that hnf2 − kn −→ 0. Now

f1f2ϕn − kn = f2(f1ϕn − hn) + (f2hn − kn) −→ 0. (1.24)

Consequently f1f2 ∈ AB
b and hence AB

b is an algebra.

Let {ϕn} be a bounded weakly null sequence in A, let f ∈ B be the limit of
elements fk ∈ AB

b and let U be a bounded set in A that contains {ϕn}. For a given
neighborhood W of 0 in B let V be a neighborhood of 0 such that V + V ⊂ W.
Take a neighborhood V1 of 0 with V 2

1 ⊂ V. There is a t > 0 such that tU ⊂ V1. Let
k0 be such that f − fk ∈ tV1 for all k ≥ k0, take such a k and choose hk

n ∈ A such
that fnϕn − hk

n −→ 0 as n −→ 0. Then f ϕn − hk
n = (f − fk)ϕn + (fkϕn − hk

n) ∈
t V1U +V = t U ·V1 +V ⊂ V 2

1 +V ⊂ V +V ⊂W for n big enough. Consequently,
AB

b is closed in B. �
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Proposition 1.4.14. Consider the algebra B = C(D) equipped with the compact-
open topology on the open unit disc D and let A = O(D) be the algebra of analytic
functions in D. Then O(D)C(D)

b = C(D).

Proof. Note that C(D) and O(D) both are Frechét algebras. Therefore every
weakly null sequence in C(D) is bounded by the Uniform Boundedness Prin-
ciple (e.g. [R7], Theorem 2.6). First we show that the function z̄ belongs to
O(D)C(D)

b . The argument is similar to the corresponding one for the case of A(D)
(e.g. [CSY]). Given a weakly null sequence {ϕn} in O(D), consider the func-

tions hn(z) =
ϕn(z)− ϕn(0)

z
∈ O(D). We observe that hn(z) tends weakly to 0

in O(D) since the map ϕ �−→ h =
ϕ− ϕ(0)

z
from O(D) into itself, is a contin-

uous linear operator. Since ϕn(z) = z hn(z) + ϕn(0), then z ϕn(z) − hn(z) =
(|z|2−1) hn(z)+ zϕn(0). For any fixed r ∈ (0, 1) we have max

z∈Dr

|z ϕn(z)− hn(z)| ≤
max
z∈Dr

|hn(z)|+ |ϕn(0)| −→ 0 by Montel’s theorem. Therefore z ϕn(z)−hn(z) tends

to 0 in the compact open topology in D. Consequently z̄ ∈ O(D)C(D)
b , as claimed.

Thus O(D)C(D)
b contains the restrictions of all polynomials in z and z̄ on D;

therefore it contains the algebra C(D) by the Stone-Weierstrass theorem. Since
C(D) is the closure of C(D) in the compact open topology in C(D) we conclude
that O(D)C(D)

b = C(D). �
The Bourgain algebra construction can be applied to a rather general situ-

ation. Note that the class cw0 (M) of weakly null sequences on a subspace M of a
commutative Banach algebra B in the Bourgain algebra construction can be re-
placed by an arbitrary class of sequences S(M). To be more precise, let us denote
the Bourgain algebra by AB

b (cw0 ) rather than by AB
b . We define the space AB

b (S)
in a way analogous to AB

b (cw0 ) by requiring {ϕn} ∈ S(A) instead of {ϕn} ∈ cw0 (A),
i.e.

AB
b (S) =

{
f ∈ B : Sf

(
S(A)

)
⊂ c

‖ · ‖
0 (B/A)

}
.

If the class S is contained in cw0 , i.e. if S(M) ⊂ cw0 (M) for all M , then AB
b (S) ⊃

AB
b (cw0 ) = AB

b . If S contains cw0 , then AB
b (S) is smaller than AB

b . For example, if
S(M) is the class Bw

M of weakly bounded sequences in M and A is an algebra,
then AB

b (Bw) is simply the norm closure of A. The basic argument in [CT] can
be carried over to this general setting to show that AB

b (S) is a closed subalgebra
of B whenever the class S satisfies the following properties:

(i) S(M) ⊂ S(N) whenever M ⊂ N ⊂ B,

(ii) S(M) ⊂ Bw(M) for all M ,

(iii) if {ϕn} ∈ S(A) and f ∈ B, then {fϕn} ∈ S(B),

(iv) if {ϕn} ∈ S(B) and ψn ∈ A with ‖ϕn − ψn‖ −→ 0 as n −→ ∞, then
{ψn} ∈ S(A).
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Properties (i) and (ii) are required for all linear subspaces M and N of B,
while (iii) and (iv) are needed only for the fixed A and B under consideration.
Observe that by (ii) the elements of the sequences in S(M) are always in M .

1.5 Polynomial extensions of Banach algebras

In this section we derive a method for expanding commutative Banach algebras,
in which polynomials play a crucial role.

Let A and B be commutative Banach algebras with units. B is called an
extension of A, if there is a homomorphism of A into B preserving the unit. Let
A[x] be the algebra of polynomials in the variable x over A. As in the scalar case,
the degree of a polynomial p(x) = anx

n + an−1x
n−1 + · · ·+ a0 with coefficients in

A is said to be again the greatest integer n with a0 �= 0. In this case a0 ∈ A is
called again the leading coefficient of p(x). If a0 = 1 then p(x) is called a monic
polynomial.

Let p(x) = xn + an−1x
n−1 + · · ·+ a0 be a polynomial in A[x]. We construct

an associate extension of A as follows. Consider the ideal I = p(x) · A[x] ⊂ A[x],
and provide the quotient algebra B = A[x]/I with the norm

∥∥∥ n−1∑
i=0

cix
i + p(x) ·A[x]

∥∥∥ =
n−1∑
i=0

‖ci‖ti, (1.25)

where the number t > 0 satisfies the condition

tn ≥ ‖c1‖tn−1 + ‖c2‖tn−2 + · · ·+ ‖cn‖.

Under the norm (1.25) B is a commutative Banach algebra, and the natural homo-
morphism of A into B is an embedding. The algebra B is called the Arens-Hoffman
extension of A associated with p(x). Below we give some of the properties of Arens-
Hoffman extensions (see [AH]).

(a) Any element b ∈ B = A[x]/I can be expressed uniquely in the form an−1x
n−1

+ an−2x
n−2 + · · ·+ a0, where ai ∈ A. In other words, the algebra B is a free

module over A, i.e. the functions x1, x2, . . . , xn−1 form an A-basis of B, and
the norm of B is equivalent to the component-wise norm max

{
‖ai‖

}n−1

i=0
.

(b) The set of linear multiplicative functionals MB is homeomorphic to the set{
(m, z) ∈MA × C : zn +m(an−1)zn−1 +m(an−2)zn−2 + · · ·+m(a0) = 0

}
.

(c) Every b ∈ B is an integral element over A, i.e. there exists a polynomial
q(x) = xn + c1xn−1 + · · ·+ cn with ci ∈ A, such that q(b) = 0.
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We observe that according to the property (b) the map π : MB −→ MA :
(m, z) −→ m is surjective. By the Fundamental Theorem of Algebra, cardπ−1(m)
≤ n for every m ∈MA.

As in the scalar case, the degree of a polynomial

p(x1, x2, . . . , xn) =
∑

ai1,i2,...,inx
i1
1 x

i2
2 · · ·xin

n (1.26)

in n variables x1, x2, . . . , xn with coefficients in A is the greatest among the num-
bers i1 + i2 + · · ·+ in, where i1, i2, . . . , in are from (1.26). By A[x1, x2, . . . , xn] will
be denoted the algebra of polynomials in n variables with coefficients in A.

Let A and B be commutative Banach algebras with units. We say that B is
a polynomial extension of A if there is an isomorphism ΦB

A of A onto a Banach
subalgebra C ⊂ B with the same unit as B, an n ∈ N, and a homomorphism Ψ
from A[x1, x2, . . . , xn] onto B, such that the diagram

A
ΦB

A−→ B
id↘ ↗ Ψ

A[x1, x2, . . . , xn]

is commutative, where id: A −→ A ·1 is the natural embedding of A into A[x1, x2,
. . . , xn].

Example 1.5.1. (a) If A ⊂ B and A is isometrically isomorphic to B, then B
is a trivial polynomial extension of A. Indeed, one can take the set of constant
polynomials A · 1 for A[x1, x2, . . . , xn] in (1.27).

(b) Let B be the algebra of all complex-valued functions f(z, t) ∈ C(X), X =
D × [0, 1], such that the functions z �−→ f(z, t) belong to the disc algebra for
every fixed t ∈ [1/4, 1], and let A ⊂ B be such that for any f ∈ A the function
z �−→ f(z, t) belongs to the disc algebra for every fixed t ∈ [1/2, 1]. Clearly, A and
B are isomorphic, and B is a polynomial extension of A by the property (a).

(c) Let X = D × [0, 1] be as in part (b) and B be the algebra of functions
f(z, t) ∈ C(X), such that for every fixed t the function z �−→ f(z, t) belongs to
the disc algebra. Then B is a polynomial extension of the algebra A =

{
f ∈

B : ∂f/∂z(0, t) = 0
}
, since B = A + zA, MA = MB. However, B is not an

Arens-Hoffman extension of A.

As part (c) of Example 1.5.1 shows, not all polynomial extensions are neces-
sarily Arens-Hoffman extensions.

Theorem 1.5.2. If B is a polynomial extension of A, then there is a nested family
of Banach algebras,

A = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ An,

such that there is a homomorphism Φ from An onto B for which Φ
∣∣
A

is the isomor-
phism ΦB

A from (1.27), and Ai is an Arens-Hoffman extension of Ai−1, 1 ≤ i ≤ n.
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Proof. By (1.27) we have B = Ψ
(
A[x1, x2, . . . , xn]

)
and Ψ(A) is isomorphic to

A. Hence we may assume that A ⊂ B and that there are b1, b2, . . . , bn ∈ B such
that B = A[b1, b2, . . . , bn]. Let Bk be the space of polynomials of b1, b2, . . . , bn in
A[b1, b2, . . . , bn], whose degrees do not exceed k. Clearly,

B = A[b1, b2, . . . , bn] =
∞⋃

k=0

Bk.

By the Baire Category Theorem there exists a k0 ≥ 0, such that the space Bk0

is a set of the second category in B. Let Dk0 be the space of polynomials in
variables x1, x2, . . . , xn over A, whose degrees do not exceed k0. The elements
xi1

1 x
i2
2 · · ·xin

n , i1 + i2 + · · · + in ≤ k form a basis of Dk0 . Note that Dk0 is a free
module over A, which is a Banach space under the norm∥∥∥∑ ai1,i2,...,inx

i1
1 x

i2
2 · · ·xin

n

∥∥∥ =
∑

‖ai1,i2,...,in‖. (1.27)

The operator T :
∑

ai1,i2,...,inx
i1
1 x

i2
2 · · ·xin

n �−→
∑

ai1,i2,...,inb
i1
1 b

i2
2 · · · bin

n , is a
continuous mapping from Dk0 onto the space of second category Bk0 of B. Hence
B = Bk0 by the Open Mapping Theorem. For a fixed b ∈ B define a linear
operator S : Dk0 −→ Dk0 as follows. For any basis element xi1

1 x
i2
2 · · ·xin

n define
S(xi1

1 x
i2
2 · · ·xin

n ) to be an element in T−1 (b · T
(
xi1

1 x
i2
2 · · ·xin

n )
)
, and

S
(∑

ai1,i2,...,inx
i1
1 x

i2
2 · · ·xin

n

)
=
∑

ai1,i2,...,inS(xi1
1 x

i2
2 · · ·xin

n ).

Hence, T
(
S(d)

)
= b T (d) for all d ∈ Dk0 . Consequently,

T
(
S2(d)

)
= T

(
S(S(d))

)
= b T

(
S(d)

)
= b2T (d),

and, by induction, TSn = bnT for all n ∈ N. By the Cayley–Hamilton Theorem
(e.g. [L]) there exists a polynomial q(x) = xn + a1x

n−1 + · · · + an over A with
q(S) = 0. Hence, 0 = T (q(S(d))) = q(b)T . Since the unit of A is the same as the
unit of B, and T preserves the units, we have q(b) = 0. Therefore, every b ∈ B is
an integral element over A.

Let the polynomials qj(xj) = xn
j +a1jx

n−1
j + · · ·+anj be such that qj(bj) = 0

for 1 ≤ j ≤ n. Define A0 = A, and let Aj be the Arens-Hoffman extension of Aj−1

associated with qj(xj), j = 1, 2, . . . , n. We obtain a nested sequence

A = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ An

of Banach algebras, where Aj is an Arens-Hoffman extension of Aj−1, 1 ≤ j ≤ n.
Clearly, every d ∈ An has a unique expression in the form

d =
∑

ai1,i2,...,inx
i1
1 x

i2
2 · · ·xin

n ,
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where 0 ≤ ik ≤ n. Therefore, the norm on An is equivalent to the norm (1.27).
Hence, the homomorphism Φ : An −→ B, defined by

Φ
(∑

ai1,i2,...,inx
i1
1 x

i2
2 · · ·xin

n

)
=
∑

ΦB
A

(
ai1,i2,...,in b

i1
1 b

i2
2 · · · bin

n

)
is continuous, and Φ|A = ΦB

A , as claimed. �
Corollary 1.5.3. Any b ∈ B is an integral element over ΦB

A(A).

Proof. Since, as we have seen above, every a ∈ An is an integral element of A,
then a is also an integral element of ΦB

A(A). �
Corollary 1.5.4. If B is a polynomial extension of an algebra A, then B is a finite
A-module.

Proof. Since An is a finite A-module and the surjective homomorphism ΦB
A pre-

serves the algebra A, then B is also a finite A-module. �
Note that the algebra B from Example 1.5.1(b) is a polynomial extension of

A, but there are no b1, b2, . . . , bn ∈ B, n = 1, 2, . . . , such that B = A[b1, b2, . . . , bn].

If A ⊂ B are Banach algebras with the same unit, we say that B is a
strong polynomial extension of B, if there are b1, b2, . . . , bn ∈ B such that B =
A[b1, b2, . . . , bn].

Lemma 1.5.5. Let A be a closed subalgebra of a Banach algebra B, and let b ∈ B
be such that B = A[b]. There exist a closed subalgebra D of B which contains A,
and such that dimB/D = r(b)− 1, where r(b) is the minimal degree of all monic
polynomials q(x) = xn + an−1x

n−1 + · · ·+ a0 over A with q(b) = 0.

Proof. Let r(b) = k and let A1 be the Arens-Hoffman extension of A associated
with a polynomial

q(x) = xk + ak−1x
k−1 + ak−2x

k−2 + · · ·+ a0 (1.28)

with q(b) = 0. If Φ : A1 −→ B = A[b] is the homomorphism defined in Theorem
1.5.2 for A1, then B = A1 = A + Ab + Ab2 + · · · + Abk−1. The algebra A1 is
a free (k − 1)-dimensional A-module. Therefore, Null (Φ) =

{
p(x) = ck−1x

k−1 +
ck−2x

k−2 + · · · + c0 ∈ A1 : p(b) = 0
}
. For a fixed p(x) ∈ Null (Φ) let Kp =

{
m ∈

MA : m
(
c
(p)
1

)
= 0

}
, where c(p)

1 ∈ A is the leading coefficient of p(x). We claim
that the family of sets {Kp}p has a nonempty intersection, i.e.

K =
⋂

p∈Null (Φ)

Kp �= Ø. (1.29)

Indeed, if suppose, on the contrary, that K = Ø, then for every p ∈ Null (Φ)
one can find an m ∈ MS with m

(
c
(p)
1

)
�= 0. Consequently, there are polynomi-

als p1(x), p2(x), . . . , pl(x) ∈ Null (Φ), and elements d1, d2, . . . , dl ∈ A, such that
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l∑
i=1

dic
(pi)
1 = 1. Therefore, for the polynomial

p(x) = d1p1(x) + d2p2(x) + · · ·+ dlpl(x)

we have that p(b) = 0, its degree is k − 1, and its leading coefficient at xk−1 is
1. This contradicts the minimality property of r(b) = k. Therefore, K �= Ø, as
claimed.

Let p(x) = ck−1x
k−1 + ck−2x

k−2 + · · ·+ c0 be a polynomial in Null (Φ). We
claim that m(ci) = 0 for every m ∈ K, and every ci, i = 1, 2, . . . , k. According to
(1.29) we have that m(ck−1) = 0. Since q(b) = 0, where q is the polynomial (1.28).
It follows that

bk = −ak−1b
k−1 − ak−2b

k−2 − · · · − a0,

and therefore,

0 = b p(b) = b (ck−1b
k−1 + ck−2b

k−2 + · · ·+ c0) = ck−1b
k + ck−2b

k−1 + · · ·+ c0b
= ck−1(−ak−1b

k−1 − ak−2b
k−2 − · · · − a0) + ck−2b

k−1 + · · ·+ c0b
= (ck−2 − ck−1ak−1) bk−1 + (ck−3 − ck−1ak−2) bk−2 + · · ·+ (c0 − ck−1a0) b
−ck−1a0.

Consequently, the polynomial

x p(x) = (ck−2 − ck−1ak−1)xk−1 + (ck−3 − ck−1ak−2)xk−2 + · · ·
+(c0 − ck−1a0)x− ck−1a0

vanishes at b, and hence belongs to Null (Φ). As shown above, then 0 = m (ck−2−
ck−1ak−1) = m(ck−2)−m(ck−1)m(ak−1) = m(ck−2), since m(ck−1) = 0. Proceed-
ing inductively, we obtain that m(ci) = 0 for all m ∈ K and all i = 1, 2, . . . , k, as
claimed.

Let m0 ∈ K, and let I0 = Null (m0) =
{
a ∈ A : m0(a) = 0

}
be the corre-

sponding maximal ideal in the algebra A. As we have seen, m0(ci) = 0 for each
coefficient ci of any polynomial p ∈ Null (Φ). Therefore, Null (Φ) ⊂ D0, where

D0 = A+ I0x+ I0x2 + · · ·+ I0xk−1.

Hence D0 is a closed subalgebra of A1 containing Null (Φ). Since the mapping
Φ : A1 −→ B is surjective, the set

D = Φ(D0) = A+ I0b+ I0b2 + I0b3 + · · ·+ I0bk−1

is a closed subalgebra in A[b] = B. We claim that no linear combination of elements
b, b2, . . . , bk−1 belongs to D. Indeed, if we suppose that α1b + · · · + αk−1b

k−1 ∈
D = A+ I0b+ I0b2 + I0b3 + · · ·+ I0bk−1 with (α1, . . . , αk−1) �= (0, . . . , 0), then

α1b+ · · ·+ αk−1b
k−1 = a+ c1b+ · · ·+ ck−1b

k−1, ci ∈ I0.
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Consequently,

a+ (c1 − α1) b+ · · ·+ (ck−1 − αk−1) bk−1 = 0.

Hence the polynomial a + (c1 − α1)x + · · · + (ck−1 − αk−1)xk−1 is in Null (Φ),
and therefore, m0(ci − αi) = 0, i = 1, . . . , k − 1, since m0 ∈ K. Consequently,
m(αi) = αi = 0 for all i = 1, . . . , k − 1, since m0(ci) = 0. This contradicts the
choice of α1, . . . , αn, and completes the proof that dimB/D = k−1, as desired. �
Lemma 1.5.6. There exists a closed subalgebra D of B = A[b1, b2, . . . , bn], such
that A ⊂ D ⊂ B, and dimB/D <∞.

Proof. Let Bk = A[b1, b2, . . . , bk] and let rk(b) be the minimal degree of all monic
polynomials qk(x) = xl + al−1x

l−1 + al−2x
l−2 + · · ·+ a0 over Bk−1 with q(b) = 0.

Applying the technique of Lemma 1.5.5, we construct consecutive extensions of A,
namely

A ⊂ A1 ⊂ A2 ⊂ · · · ⊂ An.

Every element d ∈ An admits a unique representation of type

d =
∑

ai1,i2,...,inx
i1
1 x

i2
2 · · ·xin

n , ik ≤ rk(b), k = 1, 2, . . . , n.

Therefore, the norm on An is equivalent to the norm (1.27), and the map Φ : An−→
B, defined as

Φ
(∑

ai1,i2,...,inx
i1
1 x

i2
2 · · ·xin

n

)
=
∑

ai1,i2,...,inb
i1
1 b

i2
2 · · · bin

n

is continuous, and there exists a maximal ideal I in An−1 such that

Null (Φ) ⊂ D0 = An−1 + Ixn + · · ·+ Ixm
n , (1.30)

where m = rn(b) (cf. the proof of Lemma 1.5.5). The algebra D0 is closed in An
∼=

B, and therefore D = Φ(D0) is a Banach subalgebra of B with dimB/D = m. �
A bounded linear functional δ on an algebra B is called a point derivation of

B at m ∈MB, if

δ(ab) = δ(a)m(b) +m(a)δ(b) for every a, b ∈ B.

One can easily see that Null (δ) is a subalgebra of B, and δ(1) = 0. The next
theorem is well known (cf. [B7], or [D], p.118).

Theorem 1.5.7. If θ is a linear functional on B such that Null (θ) is an algebra,
then one of the following alternatives holds.

(i) If θ(1) �= 0, then θ is a scalar multiple of a linear multiplicative functional.

(ii) If θ(1) = 0, then either there exist m1,m2 ∈MB, m1 �= m2, such that θ is a
scalar multiple of m1 −m2, or, θ is a point derivation at some m ∈ MB.
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Theorem 1.5.8. Let B = A[b1, b2, . . . , bn], bi ∈ B, be a strong polynomial extension
of A. If A �= B, then either there exist m1,m2 ∈ MB, m1 �= m2, such that A ⊂
Null (m1 − m2) =

{
b ∈ B : m1(b) = m2(b)

}
, or, there exists a non-trivial point

derivation δ : B −→ C, such that A ⊂ Null (δ) = {b ∈ B : δ(b) = 0}.
Proof. Since J = I + Ixn + · · · + Ixm

n is a maximal ideal of the algebra D0 from
(1.30), then J is a closed ideal in D0. Let An be the algebra generated by D0 and
xn. Clearly, J is an ideal of An and dim(An/J) = m + 1. Every element b ∈ An

generates a linear operator Tb : An/J −→ An/J by Tb

(
[a]
)

= [ba], where [a] is
the coset [a] = a+ J . The operator Tb is well defined, since J an ideal in An. The
space of operators {Tb : b ∈ An} is a commutative subalgebra of the algebra of
all linear operators on an (m + 1)-dimensional space. As shown in [D] (Theorem
1.8.11), there exists a basis [a1], [a2], . . . , [am+1], in An/J , such that any operator
Tb ∈ T (An) has an upper-triangular form⎡⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 c14 · · · c1k

0 c22 c23 c24 · · · c2k

0 0 c33 c34 · · · c3k

0 0 0 c44 · · · c4k

· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · ckk

⎤⎥⎥⎥⎥⎥⎥⎦
with respect to this basis. The subspace Ei of An/J spanned by [a1], [a2], . . . , [ai],
is an invariant subspace of the algebra T (An). Therefore, the set Ẽ′

i =
{
a ∈

An : [a] ∈ Ei

}
is an ideal in An for all i = 1, 2, . . . ,m. For the algebras Di =

Ẽ′
i ⊕ C · 1, i = 1, 2, . . . ,m we have

D0 ⊂ D1 ⊂ · · · ⊂ Dm = An,

and dim(Di+1/Di) = 1. Since D = Φ(D0) is a closed subalgebra in B = Φ(An),
and Φ : An −→ B is a homomorphism, then Φ(Dl−1) is a subalgebra of B with
codimension 1 that contains A. The result follows from Theorem 1.5.7. �

Let A ⊂ B be uniform algebras on X . If x0 ∈ X is a p-point (or generalized
peak point) for B, then there is no non-trivial derivation at x. Indeed, consider an
f ∈ Jx0 =

{
f ∈ B : f(x0) = 0

}
, and let Fn =

{
x ∈ X : |f(x)| ≥ 1/n

}
. Since x0

is a p-point, then there exist elements hn ∈ B, such that ‖hn‖ = hn(x0) = 1, and
|hn(x)| ≤ 1/n on Fn. The functions fn = 1−hn belong to Jx0 , and ‖fnf−f‖ −→ 0
as n −→∞. For any point derivation δ of B at x0 we have δ(fnf) = 0, and hence
δ(f) = 0 for every f ∈ Jx0 . Since also δ(1) = 0, we see that δ is trivial, as claimed.

A uniform algebra A on X is said to be polynomially closed, if A has no
strong polynomial extensions that are uniform algebras on X , i.e. if any strong
polynomial extension B of A that is a uniform algebra on X coincides with A.
The remarks from the above, and Theorem 1.5.8 imply the following

Theorem 1.5.9. If A is a uniform algebra, such that every point of its maximal
ideal space MA is a p-point for A, then A is a polynomially closed algebra.
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1.6 Isomorphisms between uniform algebras

In this section we assume that A andB are uniform algebras on their maximal ideal
spacesX and Y respectively. We find conditions for peripherally multiplicative and
peripherally additive operators to be algebraic isomorphisms.

Definition 1.6.1. An operator T : A→ B is said to be

(a) preserving the peripheral spectra of algebra elements if

σπ(Tf) = σπ(f) for every f ∈ A. (1.31)

(b) σπ-additive if

σπ(Tf + Tg) = σπ(f + g) for all f, g ∈ A. (1.32)

(c) σπ-multiplicative if

σπ

(
(Tf)(Tg)

)
= σπ(fg) for all f, g ∈ A, (1.33)

First we will consider the case of σπ-additive operators.

Lemma 1.6.2. If an operator T : A→ B is σπ-additive, then the following equalities
hold for all f, g ∈ A.

(a) ‖Tf + Tg‖ = ‖f + g‖,
(b) T (0) = 0,

(c) T (−f) = −Tf,
(d) σπ(Tf) = σπ(f),

(e) σπ

(
T (f + g)

)
= σπ(Tf + Tg),

(f) ‖Tf‖ = ‖f‖, and

(g) ‖Tf − Tg‖ = ‖f − g‖.
If, in addition T is surjective, then it is R-linear.

Proof. The equality (a) is obvious, since |z| = ‖f‖ for every z ∈ σπ(f). (b) follows
from (a) by letting f = g = 0. (c) follows from the σπ-additivity of T . Indeed,
σπ

(
Tf + T (−f)

)
= σπ(f + (−f)) = σπ(f − f) = σπ(0) = {0}, hence Tf +

T (−f) = 0, and therefore, T (−f) = −Tf . Equalities (d) and (f) follow from the
σπ-additivity of T and (a) correspondingly, by letting g = 0. (e) follows from (d)
and the σπ-additivity of T because of σπ

(
T (f+g)

)
= σπ(f+g) = σπ(Tf+Tg). (g)

follows form (a) and (c). The last statement follows from the theorem of Mazur-
Ulam [MU] (see also [V]), since, by (b) and (g), T (0) = 0, and ‖Tf−Tg‖ = ‖f−g‖
for all f, g ∈ A. �
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Note that according to equality (f), the operator T preserves the norms of
algebra elements, and therefore maps the unit ball of A in the unit ball of B.
By (d) T preserves the peripheral spectra, and by (g) it preserves the distances
between algebra elements. It is straightforward to see that the σπ-additivity of T
is equivalent to both (d) and (e).

Let C∗ = C \ {0}. In the sequel we will use the following notation:

sF(A) = {s f : f ∈ F(A)}, where s ∈ C∗,
sFx(A) = {s f : f ∈ Fx(A)}, where s ∈ C∗,
C∗ · F(A) = {s f : f ∈ F(A), s ∈ C∗}, and
C∗ · Fx(A) = {s f : f ∈ Fx(A), s ∈ C∗}.

The elements of the family {s : F(A), s ∈ C∗} are called C∗-peaking functions
of A. Clearly, f is a C∗-peaking function if and only if σπ(f) is a singleton, and
g ∈ sF(A) if and only if σπ(g) = {s}. If f ∈ sF(A) for some s ∈ C∗, then the
set P (f) = f−1{s} is called the peak set for f . Obviously, P (sf) = P (f) for any
f ∈ F(A) and any s ∈ C∗. Therefore, the collection of peak sets for the classes of
peaking functions and of the classes of C∗-peaking functions of A coincide.

Lemma 1.6.3. If T : A→ B is a surjective operator which preserves the peripheral
spectra of algebra elements, then

T
(
sF(A)

)
= sF(B) (1.34)

for any s ∈ C∗.

Proof. Indeed, if s ∈ C∗ then T
(
sF(A)

)
⊂ sF(B) follows by the preservation of

the peripheral spectra by T . Given a k ∈ sF(B), s ∈ C∗, let k = Th for some
h ∈ A. Then h ∈ sF(A) since σπ(h) = σπ(Th) = σπ(k) = {s}. Hence k = Th ∈
T
(
sF(A)

)
, and therefore sF(B) ⊂ T

(
sF(A)

)
. Consequently, T

(
sF(A)

)
= sF(B)

for any s ∈ C∗, as claimed. �

Definition 1.6.4. An operator T : A→ B is called monotone increasing in modulus
if the inequality |f(x)| ≤ |g(x)| on ∂A implies |(Tf)(y)| ≤ |(Tg)(y)| on ∂B for
every f, g ∈ A.

Lemma 1.6.5. If a monotone increasing in modulus surjective operator T : A→ B
preserves the peripheral spectra of algebra elements, then for any generalized peak
point x ∈ δA the set

Ex =
⋂

h∈C∗·Fx(A)

P (Th) (1.35)

is non-empty.

Proof. Observe that
T
(
sF(A)

)
= sF(B) (1.36)
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for any s ∈ C∗. Indeed, if s ∈ C∗ then T
(
sF(A)

)
⊂ sF(B) follows by the

preservation of the peripheral spectra by T . Given a k ∈ sF(B), s ∈ C∗, let
k = Th for some h ∈ A. Then h ∈ sF(A) since σπ(h) = σπ(Th) = σπ(k) = {s}.
Hence k = Th ∈ T

(
sF(A)

)
, and therefore sF(B) ⊂ T

(
sF(A)

)
. Consequently,

T
(
sF(A)

)
= sF(B) for any s ∈ C∗, as claimed.

Let x be a generalized peak point of A. First we show that the family{
P (Th) : h ∈ C∗ · Fx(A)

}
has the finite intersection property. If h1, h2, . . . , hn

belong to C∗ · Fx(A), and hj ∈ sjFx(A), sj ∈ C∗, then, clearly, the function
g = h1 · h2 · · ·hn belongs to the space (s1 · s2 · · · sn) · Fx(A). Since |hj(x)| ≤
|sj|, j = 1, . . . , n, we have |g(ξ)| = |h1(ξ)| · |h2(ξ)| · · · |hn(ξ)| ≤

[ ∏
j �=k

|sj |
]
|hk(ξ)| =∣∣[ ∏

j �=k

|sj |
]
hk(ξ)

∣∣ for every ξ ∈ ∂A and any fixed k = 1, . . . , n. The preserva-

tion of peripheral spectra by T implies that Tg ∈ (s1 · s2 · · · sn) · F(B) and
Thk ∈ skF(B). Hence, |(Thk)(y)| ≤ |sk| for every y ∈ Y . By Lemma 1.6.2(h),
T is R-linear, and since it is also monotone increasing in modulus, it follows that
|(Tg)(y)| ≤

∣∣(T ([ ∏
j �=k

|sj |
]
hj0

)
(y)
∣∣ =

[ ∏
j �=k

|sj |
]
|(Thk)(y)| ≤ |(s1 · s2 · · · sn)| for ev-

ery y ∈ ∂B. Consequently, for every y ∈ Y with |(Tg)(y)| = |s1 · s2 · · · sn| we must
have |(Thk)(y)| = |sk|, which implies (Thk)(y) = sk, and hence P (Tg) ⊂ P (Thk).

Since this holds for every k = 1, . . . , n, we obtain that P (Tg) ⊂
n⋂

k=1

P (Thj). Conse-

quently, the family
{
P (Th) : h ∈ C∗ · Fx(A)

}
has the finite intersection property,

as claimed. Hence it has a non-empty intersection, since all of its elements are
closed subsets of the compact set Y . �

The following lemma provides sufficient conditions for an operator T : A→ B
to be monotone increasing in modulus.

Lemma 1.6.6. If a surjective operator T : A→ B satisfies the equality

(ii) max
η∈∂B

(
|(Tf)(η)|+ |(Tg)(η)|

)
= max

ξ∈∂A

(
|f(ξ)|+ |g(ξ)|

)
for every f, g ∈ A, then it is monotone increasing in modulus.

Proof. If |f(x)| ≤ |g(x)| on ∂A, then, clearly,

max
ξ∈∂A

(
|f(ξ)|+ |k(ξ)|

)
≤ max

ξ∈∂A

(
|g(ξ)|+ |k(ξ)|

)
for any k ∈ A. By equality (ii) we have

max
η∈∂B

(
|(Tf)(η)|+ |(Tk)(η)|

)
= max

ξ∈∂A

(
|f(ξ)|+ |k(ξ)|

)
≤ max

ξ∈∂A

(
|g(ξ)|+ |k(ξ)|

)
= max

η∈∂B

(
|(Tg)(η)|+ |(Tk)(η)|

)
.

Now from Lemma 1.2.7 and the surjectivity of T if follows that |(Tf)(y)| ≤
|(Tg)(y)| on ∂B. �
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Proposition 1.6.7. If a surjective operator T : A→ B satisfies the equalities

(i) σπ(Tf + Tg) = σπ(f + g), and

(ii) max
η∈∂B

(
|(Tf)(η)|+ |(Tg)(η)|

)
= max

ξ∈∂A

(
|f(ξ)|+ |g(ξ)|

)
for all f, g ∈ A, then T is bijective.

Proof. We will show that T is injective. If Tf = Tg for some f, g ∈ A, then for any
h ∈ A we have Tf + Th = Tg + Th. Consequently, σπ(Tf + Th) = σπ(Tg + Th).
The σπ-additivity of T implies

σπ(f + h) = σπ(Tf + Th) = σπ(Tg + Th) = σπ(g + h).

By equality (ii) we have

max
ξ∈∂A

(
|f(ξ)|+ |h(ξ)|

)
= max

η∈∂B

(
|(Tf)(η)|+ |(Th)(η)|

)
= max

η∈∂B

(
|(Tg)(η)|+ |(Th)(η)|

)
= max

ξ∈∂A

(
|g(ξ)|+ |h(ξ)|

)
for every h ∈ A. Lemma 1.2.13 now implies that f = g. Hence T is injective, and
therefore bijective. �
Lemma 1.6.8. If the operator T : A → B satisfies the assumptions of Proposition
1.6.7, then for generalized peak point x ∈ δA the set Ex is a singleton and belongs
to δB.

Proof. Let x be a generalized peak point of A. Equality (ii) and Lemma 1.6.6 imply
that T is monotone increasing in modulus. It follows from Lemma 1.6.2(d) that
the operator T preserves the peripheral spectra of algebra elements. Therefore, T
satisfies the hypotheses of Lemma 1.6.5. In the course of its proof we saw that{
P (Tf) : f ∈ C∗ · Fx(A)

}
is a family of peak sets with non-empty intersection,

Ex, hence it meets δB (e.g. [L1]).

Since T preserves peripheral spectra of algebra elements, equality (1.34) im-
plies T−1

(
F(B)

)
= F(A). We claim that T−1

(
Fy(B)

)
⊂ Fx(A) for any y ∈

Ex ∩ δB. Let y ∈ Ex ∩ δB, k ∈ Fy(B), and let h = T−1(k). To show that
h ∈ Fx(A) it is enough to verify that h(x) = 1. Take an open neighborhood V
of x and a peaking function g ∈ Fx(A) with P (g) ⊂ V . Equality (1.34) yields
Tg ∈ F(B). Since y ∈ Ex ⊂ P (Tg) we have that (Tg)(y) = 1, and therefore,
Tg ∈ Fy(B). Equality (ii) yields

k(y) + (Tg)(y) = 2 ≥ max
ξ∈∂A

(
|h(ξ)| + |g(ξ)|

)
= max

η∈∂B

(
|(Th)(η)|+ |(Tg)(η)|

)
= max

η∈∂B

(
|k(η)|+ |(Tg)(η)|

)
= 2.

Hence max
ξ∈∂A

(
|h(ξ)| + |g(ξ)|

)
= 2, and there must be a xV ∈ ∂A with h(xV ) = 1

and g(xV ) = 1. Therefore, xV ∈ P (g) ⊂ V . We deduce that any neighborhood
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V of x contains a point xV with h(xV ) = 1. The continuity of h implies that
h(x) = 1, thus h ∈ Fx(A). Consequently, T−1

(
Fy(B)

)
⊂ Fx(A), as claimed.

Let y ∈ Ex ∩ δB. If there were a z ∈ Ex \ {y}, there would be a peaking
function k ∈ Fy(B) with |k(z)| < 1. For any h ∈ T−1(k) ∩ Fx(A) we have h ∈
Fx(A), k = Th ∈ F(B), and P (k) = P (Th) ⊃ Ex. Hence the function k = Th is
identically equal to 1 on Ex, contradicting |k(z)| < 1. This shows that the set Ex

does not contain points other than y. �
Let T satisfy the assumptions of Proposition 1.6.7, and let x ∈ δA. If τ(x)

denotes the single element of the set Ex, i.e.

{τ(x)} = Ex =
⋂

h∈C∗·Fx(A)

P (Th), (1.37)

then there arises a mapping τ : x �−→ τ(x). If h ∈ sFx(A), s ∈ C∗, then, due
to (1.37), P (Th) ⊃ Ex = {τ(x)}, thus (T (h))(τ(x)) = s = h(x). Therefore, the
equality

(T (h))(τ(x)) = h(x) (1.38)

holds for every C∗-peaking function h ∈ sFx(A), s ∈ C∗.

Under the assumptions of Proposition 1.6.7 the operator T is bijective. Let
k ∈ C∗ · Fτ(x)(B), for some x ∈ δA, and let T−1k = h ∈ C∗ · Fx(A). By (1.38) we
have k(τ(x)) = (Th)(τ(x)) = h(x) = (T−1k)(x), and therefore, the equality

(T−1k)(x) = k(τ(x)) (1.39)

also holds for every x ∈ δA and any C∗-peaking function k ∈ sFτ(x)(B), s ∈ C∗.

Lemma 1.6.9. Let the operator T : A → B satisfy the assumptions of Proposition
1.6.7, and let f ∈ A. If (Tf)(τ(x0)) = 0 for some x0 ∈ δA, then also f(x0) = 0.

Proof. Let x0 be a generalized peak point of A and let f be in A with ‖f‖ =
‖Tf‖ = R. Choose an open neighborhood U of τ(x0) in Y , such that |(Tf)(y)| < ε
on U . Let k ∈ Fτ(x0)(B) be a peaking function of B with τ(x0) ∈ P (k) ⊂ U .
By taking a big enough power of k, we may assume from the beginning that
|(Tf)(y)| + R |k(y)| < max

η∈U

(
|(Tf)(η)| + R |k(η)|

)
< ε + R for all y ∈ Y \ U .

Consequently, max
η∈Y

(
|(Tf)(η)| + R |k(η)|

)
< ε + R, and therefore, according to

equality (ii),

max
ξ∈∂A

(
|f(ξ)|+ |(T−1(Rk))(ξ)|

)
= max

η∈∂B

(
|(Tf)(η)|+ |Rk(η)|

)
< ε+R.

Hence by (1.39) we have

|f(x0)|+R = |f(x0)|+ |Rk(τ(x0))| = |f(x0)|+
∣∣(T−1(Rk)(x0)

∣∣ < ε+R.

Thus, |f(x0)| < ε, and consequently, f(x0) = 0 by the liberty of choice of ε. �
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Lemma 1.6.10. If the operator T : A→ B satisfies the assumptions of Proposition
1.6.7, then |f(x)| ≤ |Tf(τ(x))| for every x ∈ δA and all f ∈ A.

Proof. Since T satisfies the assumptions of Proposition 1.6.7, then the equalities

(i) σπ(Tf + Tg) = σπ(f + g), and

(ii) max
η∈∂B

(
|(Tf)(η)|+ |(Tg)(η)|

)
= max

ξ∈∂A

(
|f(ξ)|+ |g(ξ)|

)
hold for all f, g ∈ A. By Lemma 1.6.2(d) and (e), ‖Tf‖ = ‖f‖, and ‖Tf + Tg‖ =∥∥T (f + g)

∥∥ = ‖f + g‖.
Let x ∈ δA, f ∈ A, and let g = Tf ∈ B. Without loss of generality we can

assume that g(τ(x)) �= 0, since if g(τ(x)) = (Tf)(τ(x)) = 0, then also f(x) = 0 by
Lemma 1.6.9, and the result carries. If U is an open neighborhood of τ(x) in Y ,
then by the additive version of Bishop’s Lemma (Lemma 1.2.11) we can choose
a k ∈ B with τ(x) ∈ P (k) ⊂ U , such that the function |g(y)| + |k(y)| attains
its maximum only within P (k) ⊂ U . Let ηU ∈ P (k) and βU ∈ T be such that
|g(ηU )| = max

η∈P (k)
|g(η)|, and g(ηU ) = βU

∣∣g(ηU )
∣∣. According to Corollary 1.2.12,

|g(ηU )|+ 1 = ‖g + βUk‖,

while ‖g + γk‖ ≤ ‖g + βUk‖ for any γ ∈ T. Let α ∈ T, be such that f(x) =
α|f(x)|. Denote h = T−1(k) ∈ Fx(A). By equality (1.39) we have α = αk(τ(x)) =
(T−1(αk))(x). Equality (ii) and Corollary 1.2.12 imply

|f(x)|+ 1 = αf(x) + 1 =
∣∣f(x) + α

∣∣ =
∣∣f(x) + (T−1(αk))(x)

∣∣
=
∣∣(f + T−1(αk)

)
(x)

∣∣ ≤ ‖h+ T−1(αk)‖ =
∥∥g + αk‖ ≤ ‖g + βUk‖ = |g(ηU )|+ 1,

thus |f(x)| ≤ |g(ηU )|. We have obtained that any neighborhood U of τ(x) contains
a point ηU such that |f(x)| ≤ |g(ηU )|. The continuity of g implies that |f(x)| ≤
|g(τ(x))| =

∣∣(Tf)(τ(x))∣∣. �
Lemma 1.6.11. If the operator T : A→ B satisfies the assumptions of Proposition
1.6.7, then the mapping τ from (1.37) is a homeomorphism from δA onto δB.

Proof. Proposition 1.6.7 implies that T is bijective. Since the equalities (i) and
(ii) are symmetric with respect to f and Tf , they hold also for the inverse op-
erator T−1. According to Lemma 1.6.8 there arises a corresponding continuous
map ψ : deltaB → δA such that the equality (1.38), which in this case reduces
to
(
T−1(k)

)
(ψ(η)) = k(η), holds on δB for any k ∈ Fη(B). Let x ∈ δA and y =

τ(x) ∈ δB. If h ∈ Fx(A), then, due to (1.32) and (1.38), k = Th ∈ Fy(B), therefore
h(ψ(y)) =

(
T−1(k)

)
(ψ(y)) = k(y) = (Th)(y) = (Th)(τ(x)) = h(x) = 1, and there-

fore ψ(y) ∈ P (h). Since this holds for every h ∈ Fx(A) and
⋂

h∈Fx(A)

P (h) = {x},

we have that ψ(τ(x)) = ψ(y) = x for every x ∈ δA. By similar arguments one
can see also that τ(ψ(y)) = y for any y ∈ δB. Consequently, τ and ψ both are
injective mappings, and ψ = τ−1.
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Let x ∈ δA be a generalized peak point of A, and let r ∈ (0, 1). Choose an
open neighborhood V of τ(x) in δB, and a peaking function k ∈ Fτ(x)(B) with
P (k) ⊂ V and |k(y)| < r on δB \V . If h = T−1(k), then h ∈ Fx(A), and according
to (1.38), k(τ(ξ)) = (Th)(τ(ξ)) = h(ξ) on δA. Note that since h(x) = 1 > r, the
open set W =

{
ξ ∈ δA : |h(ξ)| > r

}
contains x. According to Lemma 1.6.10,

for every ξ ∈ W we have |k(τ(ξ))| =
∣∣(Th)(τ(ξ))∣∣ ≥ |h(ξ)| > r, and therefore,

τ(ξ) ∈ V , since on δB \ V we have |k(η)| < r. Consequently, τ(W ) ⊂ V , which
proves the continuity of τ . If we consider the operator T−1 : B → A and the
mapping τ−1 : δB → δA, the same arguments imply that τ−1 is also continuous,
which completes the proof. �

When applied to the operator T−1 : B → A and the mapping τ−1 : δB → δA,
Lemma 1.6.10 implies |g(y)| ≤

∣∣(T−1g)(τ−1(y))
∣∣ for any y ∈ δB and every g ∈ B,

or, if g = Tf, f ∈ A, and y = τ(x), x ∈ δA, equivalently,
∣∣(Tf)(τ(x))∣∣ ≤ |f(x)|.

Hence we have the following

Corollary 1.6.12. If the operator T : A→ B satisfies the assumptions of Proposi-
tion 1.6.7, then |(Tf)(τ(x))| ≤ |f(x)| for any x ∈ δA and every f ∈ A.

Proposition 1.6.13. If T : A → B satisfies the assumptions of Proposition 1.6.7,
then the equality

(Tf)(τ(x)) = f(x) (1.40)

holds for every f ∈ A and every generalized peak point x ∈ δA.

Proof. If T satisfies the assumptions of Proposition 1.6.7, then, by Lemma 1.6.8
the mapping τ from (1.37) is well-defined, and, given an x ∈ δA, any C∗-peaking
function h ∈ sFx(A), s ∈ C∗, satisfies the equality (1.38), i.e. (1.40).

Let x0 be a generalized peak point of A and let f be in A with ‖f‖ =
‖Tf‖ = R. Without loss of generality we can assume that f(x0) �= 0, since in
f(x0) = 0, then also (Tf)(τ(x0)) = 0 by Lemma 1.6.9, applied to the operator
T−1 : B → A, the function Tf ∈ B and the mapping τ−1 : δB → δA. Let V be
an open neighborhood of x0 in X . By the additive version of Bishop’s Lemma we
can choose an R-peaking function h ∈ R · Fx0(A) so that x0 ∈ P (h) ⊂ V , and
such that the function |f(x)|+ |h(x)| attains its maximum only within P (h) ⊂ V .
Let ξV ∈ P (h) and αV ∈ T be such that f(ξV ) = αV |f(ξV )| and |f(ξV )| +
R = max

ξ∈P (h)

(
|f(ξ)| + |h(ξ)|

)
= max

ξ∈P (h)

∣∣(f + αV h)(ξ)
∣∣ =

∣∣f(ξV ) + αVR
∣∣. Hence, by

Corollary 1.2.12,

|f(ξV )|+R =
∣∣f(ξV ) + αVR

∣∣ = ‖f + αV h‖, (1.41)

while ‖f + γh‖ ≤ ‖f + αV h‖ for any γ ∈ T. Therefore, f(ξV ) + αVR ∈ σπ(f +
αV h) = σπ

(
Tf + T (αV h)

)
. Hence there is a point zV ∈ Y with

f(ξV ) + αVR =
(
(Tf + T (αV h)

)
(zV ). (1.42)
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We may assume that zV ∈ δB. Indeed, |f(ξV )|+R = ‖f +αV h‖ is the maximum
modulus of the function f+αV h, and, according to Lemma 1.6.2(d), of the function
Tf + T (αV h) as well. Therefore, the function

∣∣Tf + T (αV h)
∣∣ attains the value

|f(ξV )|+R at some point of the Choquet boundary δB, and we can choose zV to
be such a point. The surjectivity of τ implies that zV = τ(xV ) for some xV ∈ δA.
Equality (1.42), Corollary 1.6.12, (ii) and (1.38) imply∣∣f(ξV ) + αVR

∣∣ =
∣∣((Tf + T (αV h)

)
(zV )

∣∣ =
∣∣(Tf)(τ(xV )) + (T (αV h))(τ(xV ))

∣∣
≤
∣∣(Tf)(τ(xV ))

∣∣+ |(T (αV h))(τ(xV ))| ≤ |f(xV )|+ |αh(xV )|= |f(xV )|+ |h(xV )|
≤ max

ξ∈δA

(
|f(ξ)|+ |h(ξ)|

)
= |f(ξV )|+R =

∣∣f(ξV ) + αVR
∣∣,

thus
|f(xV )|+ |h(xV )| =

∣∣f(ξV ) + αVR
∣∣ = max

ξ∈δA

(
|f(ξ)|+ |h(ξ)|

)
.

Since this maximum is attained only within P (h), xV ∈ P (h), thus h(xV ) = 1,
and according to (1.41), (T (αV h))(zV ) = (T (αV h))(τ(xV )) = αV h(xV ) = αVR.
Now equality (1.42) becomes

f(ξV ) + αVR =
(
(Tf + T (αV h)

)
(zV ) = (Tf)(zV ) + (T (αV h))(zV )

= (Tf)(τ(xV )) + αV h(xV ) = (Tf)(τ(xV )) + αVR,

thus f(ξV ) = (Tf)(τ(xV )). Therefore, any neighborhood V of x0 contains points
ξV and xV such that f(ξV ) = (Tf)(τ(xV )). The continuity of f, T f , and τ implies
that f(x0) = (Tf)(τ(x0)). �
Theorem 1.6.14. Let A ⊂ C(X) and B ⊂ C(Y ) be uniform algebras on their
maximal ideal spaces X and Y correspondingly. If a surjective operator T : A→ B
satisfies the equalities

(i) σπ(Tf + Tg) = σπ(f + g), and

(ii) max
η∈∂B

(
|(Tf)(η)|+ |(Tg)(η)|

)
= max

ξ∈∂A

(
|f(ξ)|+ |g(ξ)|

)
for every f and g in A, then T is an isometric algebra isomorphism from A onto
B.

Proof. Proof . Since the operator T satisfies the hypotheses of Proposition 1.6.7,
then Proposition 1.6.13 implies that the equality (1.40), i.e. (Tf)(τ(x)) = f(x),
holds for every x ∈ δA and all f ∈ A. Therefore, the restricted operator T ′ : A|δA→
B|δB defined by T ′(f |δA) = Tf |δB, f ∈ A, is an algebra isomorphism between
A|δA and δB. Since the Choquet boundary of an algebra is its boundary, A|δA

∼= A
and B|δB

∼= B, and also T is uniquely determined by T ′. It follows that T is an
algebra isomorphism between A and B. �

Recall that an operator T : A→ B is said to be T-homogeneous, if the equality
(Tf)(sf) = s(Tf) holds for every f ∈ A and any s ∈ T = {z ∈ C : |z| = 1}.
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Lemma 1.6.15. Every additive operator T which preserves the peripheral spectra
of algebra elements is σπ-additive, i.e. satisfies the peripheral additivity property
(i) of Theorem 1.6.14.

This follows immediately from σπ(Tf + Tg) = σπ

(
T (f + g)

)
= σπ(f + g).

Lemma 1.6.16. If an operator T : A→ B satisfies the equality

‖Tf + αTg‖ = ‖f + αg‖ (1.43)

for every f, g ∈ A and any α ∈ T, then T satisfies equality (ii) of Theorem 1.6.14.

Proof. Let f, g ∈ A. If α ∈ T is such that

max
η∈∂B

(
|(Tf)(η)|+ |(Tg)(η)|

)
= max

η∈∂B

∣∣(Tf)(η) + α(Tg)(η)
∣∣,

then equality (1.43) implies

max
η∈∂B

(
|(Tf)(η)|+ |(Tg)(η)|

)
= max

η∈∂B

∣∣(Tf)(η) + α(Tg)(η)
∣∣ = ‖Tf + αTg‖

= ‖f + αg‖ = max
ξ∈∂A

∣∣f(ξ) + αg(ξ)
∣∣ ≤ max

ξ∈∂A

(
|f(ξ)|+ |g(ξ)|

)
.

The argument is reversible, and therefore,

max
η∈∂B

(
|(Tf)(η)|+ |(Tg)(η)|

)
= max

ξ∈∂A

(
|f(ξ)|+ |g(ξ)|

)
i.e. equality (ii) holds, as claimed. �

Clearly, Lemma 1.6.16 holds for any operator that satisfies the equality
σπ(Tf + αTg) = σπ(f + αg) for every f, g in A and any α ∈ T. In particular, it
holds for any T-homogeneous operator which is σπ-additive.

Lemma 1.6.17. Any C-linear operator T : A → B with T (1) = 1 which preserves
the norms of algebra elements, preserves also their peripheral spectra.

Proof. Let f ∈ A and z0 ∈ σπ(f). Then z0 = f(x0) for some x0 ∈ X , and
|z0| = |f(x0)| = ‖f‖. Clearly, ‖f + z0‖ = max

ξ∈∂A

∣∣f(x) + z0
∣∣ = 2|z0|. The linearity of

T yields T (f+z0) = Tf+T (z0) = Tf+z0T (1) = Tf+z0. The norm-preservation
of T implies |(Tf)(y)| ≤ ‖Tf‖ = ‖f‖ = |z0|, and hence

‖Tf + z0‖ = ‖T (f + z0)‖ = ‖f + z0‖ = 2|z0|,

since |f(x)| ≤ |z0| for all x ∈ X . Thus (Tf)(y0) = z0 for some y0 ∈ Y , and
therefore, z0 ∈ σπ(Tf), since |z0| = ‖f‖ = ‖Tf‖.
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Conversely, let u0 ∈ σπ(Tf) for some f ∈ A. Then u0 = (Tf)(y0) for some
y0 ∈ Y , and |u0| = |(Tf)(y0)| = ‖Tf‖. The linearity of T implies T (f + u0) =
Tf + T (u0) = Tf + u0T (1) = Tf + u0. Therefore, by the norm-preservation of T
we have |f(x)| ≤ ‖f‖ = ‖Tf‖ = |u0| and

‖f + u0‖ =
∥∥Tf + T (u0)

∥∥ =
∥∥T (f + u0)

∥∥ = ‖Tf + u0‖ = 2|u0|,

since |(Tf)(y)| ≤ |u0| for all y ∈ Y . Hence, f(x0) = u0 for some x0 ∈ X , thus
u0 ∈ σπ(f), since |u0| = ‖Tf‖ = ‖f‖. Consequently, σπ(Tf) = σπ(f). �

The next corollary follows from Theorem 1.6.14 and Lemma 1.6.16.

Corollary 1.6.18. If a surjective additive operator T : A→ B preserves the periph-
eral spectra of algebra elements and satisfies the equality

(ii) max
η∈∂B

(
|(Tf)(η)|+ |(Tg)(η)|

)
= max

ξ∈∂A

(
|f(ξ)|+ |g(ξ)|

)
for all f, g ∈ A, then T is an isometric algebra isomorphism.

Theorem 1.6.14 and Lemma 1.6.16 imply the following

Proposition 1.6.19. If a surjective operator T : A→ B satisfies the equality

(i′) σπ(Tf + αTg) = σπ(f + αg)

for every f, g in A and any α ∈ T, then T is an isometric algebra isomorphism.

Proof. Indeed, (i′) implies (1.43) and also (i) of Theorem 1.6.14, and therefore T
satisfies both equalities (i) and (ii) of Theorem 1.6.14. �

As mentioned before, the equality (i′) is satisfied automatically by any T-
homogeneous operator which is σπ-additive. The next proposition follows from
Proposition 1.6.19.

Proposition 1.6.20. If T : A→ B is a surjective, T-homogeneous, and σπ-additive
operator with T (1) = 1, then T is an isometric algebra isomorphism.

Proposition 1.6.20 and Lemma 1.6.15 imply

Theorem 1.6.21. Any surjective C-linear operator T between two uniform algebras,
which preserves the peripheral spectra of algebra elements, is an isometric algebra
isomorphism.

Corollary 1.6.22. Any surjective C-linear operator T : A → B with T (1) = 1,
which preserves the norms of invertible algebra elements, is an isometric algebra
isomorphism.

Proof. Clearly, if T preserves the norms of invertible elements and T (c) = c for
any c ∈ C, then T preserves the norms of all algebra elements. The result follows
from Theorem 1.6.21 and Lemma 1.6.17. �
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As a consequence from Corollary 1.6.22 we obtain Nagasawa’s theorem [N]
(also [R3]) for uniform algebras.

Corollary 1.6.23. Let A and B be uniform algebras, and let BA and BB be their
open unit balls correspondingly. If F : BA → BB is a biholomorphic mapping such
that F (0) = 0, and F (1) = 1, then F extends on A as an isometric algebra
isomorphism.

Proof. As shown by T. Ransford [R3], F preserves the norms and extends to a
C-linear isomorphism from A onto B. Clearly, the extension also preserves the
norms. Corollary 1.6.22 implies that this extension is also multiplicative. �

Now we consider the case of σπ-multiplicative operators.

Lemma 1.6.24. If an operator T : A→ B with T (1) = 1 is σπ-multiplicative, then
the equalities

(a) σπ(Tf) = σπ(f),

(b) ‖Tf‖ = ‖f‖,
(c) σπ

(
(Tf)(Tg)

)
= σπ

(
T (fg)

)
, and

(d)
∥∥(Tf)(Tg)∥∥ = ‖fg‖,

hold for all f, g ∈ A.

Proof. The equality (a) follows from the σπ-multiplicativity of T by letting g = 1.
(a) and the σπ-multiplicativity of T imply (c), because of σπ

(
T (fg)

)
= σπ(fg) =

σπ

(
(Tf)(Tg)

)
. Equalities (b) and (d) follow from (a) and (c) correspondingly,

since |z| = ‖f‖ for every z ∈ σπ(f). �
Note that according to equality (a) the operator T preserves the peripheral

ranges of algebra elements. It is straightforward to see that the σπ-multiplicativity
property (1.33) is equivalent to both properties (a) and (c). According to (b),
T preserves the norms of algebra elements, and according to (d) it is norm-
multiplicative.

Lemma 1.6.25. Any surjective and norm-multiplicative operator T : A → B is
monotone increasing in modulus.

Proof. If |f(x)| ≤ |g(x)| on ∂A, then clearly ‖fh‖ ≤ ‖gh‖ for any h ∈ A. The
surjectivity of T implies that for any k ∈ F(B) there is an h ∈ A such that
k = T (h). By the norm-multiplicativity of T we have∥∥(Tf) · k∥∥ =

∥∥(Tf)(Th)∥∥ = ‖fh‖ ≤ ‖gh‖ =
∥∥(Tg)(Th)∥∥ =

∥∥(Tg) · k)∥∥
for every k ∈ F(B). Now Lemma 1.2.5 implies that |(Tf)(y)| ≤ |(Tg)(y)| on
∂B. �
Proposition 1.6.26. Any σπ-multiplicative surjective operator T : A → B is bijec-
tive.



50 Chapter 1. Banach algebras and uniform algebras

Proof. If Tf = Tg for some f, g ∈ A, then for any h ∈ F(A) we have (Tf)(Th) =
(Tg)(Th). Consequently, σπ

(
(Tf)(Th)

)
= σπ

(
(Tg)(Th)

)
. The σπ-multiplicativity

of T yields

σπ(fh) = σπ

(
(Tf)(Th)

)
= σπ

(
(Tg)(Th)

)
= σπ(gh).

Lemma 1.2.10 now implies that f = g. Therefore, T is injective, and consequently
it is bijective. �

Lemma 1.6.27. Let T : A → B be a surjective σπ-multiplicative operator with
T (1) = 1. Then for any generalized peak point x ∈ δA the set Ex defined in
(1.35) is a singleton and belongs to δB.

Proof. According to Lemma 1.6.5, the set Ex is non-empty. Let x ∈ δA be a gen-
eralized peak point of A. The σπ-multiplicativity property of T implies that T
is norm-multiplicative. According to Lemma 1.6.25, the operator T is monotone
increasing in modulus. Since also T (1) = 1, it follows from Lemma 1.6.24(a) that
T preserves the peripheral spectra of algebra elements. Hence T satisfies the hy-
potheses of Lemma 1.6.5. From its proof we know that

{
P (Tf) : f ∈ Fx(A)

}
is a

family of peak sets with non-empty intersection, Ex, hence it meets δB (e.g. [L1]).
Consequently, Ex ∩ δB �= Ø.

Since T preserves the peripheral ranges of algebra elements, then, by (1.33),
we have that T−1

(
F(B)

)
= F(A). We claim that T−1

(
Fy(B)

)
⊂ Fx(A) for any

y ∈ Ex ∩ δB. Let y ∈ Ex ∩ δB k ∈ Fy(B), and let h = T−1(k). The function h
is unique, as it was already shown that T is injective. To show that h ∈ Fx(A)
it is enough to prove that h(x) = 1. Take an open neighborhood V of x and a
peaking function g ∈ Fx(A) with P (g) ⊂ V . By (1.33) we have Tg ∈ F(B). Since
y ∈ Ex ⊂ P (Tg) we have (Tg)(y) = 1, thus Tg ∈ Fy(B). Lemma 1.6.24(c) yields

k(y)(Tg)(y) = 1 ≥ ‖hg‖ =
∥∥(Th)(Tg)∥∥ =

∥∥k · (Tg)∥∥ = 1.

Hence ‖hg‖ = 1, and there must be a xV ∈ ∂A with h(xV ) = 1 and g(xV ) = 1.
Therefore, xV ∈ P (g) ⊂ V . We deduce that any neighborhood V of x contains a
point xV with h(xV ) = 1. The continuity of h implies that h(x) = 1, so h ∈ Fx(A).
Consequently, T−1

(
Fy(B)

)
⊂ Fx(A), as claimed.

Let y ∈ Ex ∩ δB, and suppose there exists z ∈ Ex \ {y}. Then there exists
a peaking function k ∈ Fy(B) such that |k(z)| < 1. By what was shown above, if
h = T−1(k), then h(x) = 1. Thus Ex ⊂ P (Th) = P (k), which implies k(z) = 1
contradicting |k(z)| < 1. This shows that the set Ex contains exactly one point. �

We see that under the assumptions of Lemma 1.6.27, for any x ∈ δA the
element τ(x) from (1.37) for which

{τ(x)} = Ex =
⋂

f∈Fx(A)

P (Tf)
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is well-defined, and so is the mapping τ : x �−→ τ(x) from δA into δB. Moreover,
the equality (1.38), i.e.

(Th)(τ(x)) = h(x)

holds for every C∗-peaking function h ∈ C∗ · Fx(A). Under the assumptions of
Lemma 1.6.27, the operator T is bijective, by Proposition 1.6.26. Let k ∈ s ·
Fτ(x)(B), for some x ∈ δA, and let T−1k = h ∈ C · F(A). By (1.38) we have
k(τ(x)) = (Th)(τ(x)) = h(x) = (T−1k)(x). Therefore, the equality (1.39), i.e.

(T−1k)(x) = k(τ(x))

also holds for every x ∈ δA and any C∗-peaking function k ∈ C∗ · Fτ(x)(B) of B.

Lemma 1.6.28. Let T : A→ B be a surjective and σπ-multiplicative operator with
T (1) = 1, and let f ∈ A. If (Tf)(τ(x0)) = 0 for some x0 ∈ δA, then also
f(x0) = 0.

Proof. Let x0 be a generalized peak point of A and let f ∈ A. Choose an open
neighborhood U of τ(x0) in Y , such that |(Tf)(y)| < ε on U . Let k ∈ Fτ(x0)(B) be
a peaking function ofB with τ(x0) ∈ P (k) ⊂ U . By taking a big enough power of k,
we may assume from the beginning that

∣∣(Tf)(y)k(y)∣∣ < max
ξ∈U

(
|(Tf)(η)k(η)|

)
< ε

for all y ∈ Y \U . Consequently,
∥∥(Tf) ·k∥∥ < ε, and according to Lemma 1.6.24(d),∥∥f · (T−1k)

∥∥ =
∥∥(Tf) · k∥∥ < ε.

Hence by (1.37) we have

|f(x0)| =
∣∣f(x0) k(τ(x0))

∣∣ =
∣∣f(x0)

(
(T−1k)(x0)

)∣∣ < ε.
Thus, |f(x0)| < ε, and consequently, f(x0) = 0 by the liberty of choice of ε. �
Lemma 1.6.29. If T : A → B is a surjective and σπ-multiplicative operator with
T (1) = 1, then |f(x)| ≤ |(Tf)(τ(x))| for every x ∈ δA and any f ∈ A.

Proof. The proof follows the line of proof of Lemma 1.43. According to Lemma
1.6.24(b) and (c), ‖Tf‖ = ‖f‖, and

∥∥(Tf)(Tg)∥∥ = ‖fg‖ for all f, g ∈ A.
Let x ∈ δA, f ∈ A, and let g = Tf ∈ B. Without loss of generality we can

assume that g(τ(x)) �= 0, since if g(τ(x)) = (Tf)(τ(x)) = 0, then, by Lemma
1.6.28, also f(x) = 0, and the result carries. If U is an open neighborhood of τ(x)
in Y , then by Bishop’s Lemma we can choose a peaking function k ∈ Fτ(x)(B)
with P (k) ⊂ U , such that the function

∣∣(gk)(y)∣∣ attains its maximum only within
P (k) ⊂ U . Let ηU ∈ P (k) be such that |g(ηU )| = max

η∈P (k)
|g(η)|. Denote h =

T−1(k) ∈ Fx(A). Since T is norm-multiplicative, we have

|f(x)| =
∣∣f(x) (T−1(k)

)
(x)

∣∣ =
∣∣(f · T−1(k)

)
(x)

∣∣
≤ ‖f · T−1(k)‖ = ‖(Tf) · k‖ =

∥∥g k‖ = |g(ηU )|,
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thus |f(x)| ≤ |g(ηU )|. We have obtained that any neighborhood U of τ(x) contains
a point ηU such that |f(x)| ≤ |g(ηU )|. The continuity of g implies that |f(x)| ≤
|g(τ(x))| =

∣∣(Tf)(τ(x))∣∣. �
Lemma 1.6.30. If T : A → B is a surjective and σπ-multiplicative operator with
T (1) = 1, then the mapping τ from (1.37) is a homeomorphism from δA onto δB.

Proof. According to Proposition 1.6.26, the operator T is bijective. Since the σπ-
multiplicativity condition (1.33) is symmetric with respect to f and Tf , it holds
also for the inverse operator T−1. According to Lemma 1.6.27 there arises a cor-
responding continuous map ψ : δB → δA such that the equality (1.38), which in
this case reduces to

(
T−1(k)

)
(ψ(η)) = k(η), holds on δB for any k ∈ Fη(B). Let

x ∈ δA and y = τ(x) ∈ δB. If h ∈ Fx(A), then, due to Lemma 1.6.24(a) and
(1.38), k = Th ∈ Fy(B), therefore h(ψ(y)) =

(
T−1(k)

)
(ψ(y)) = k(y) = (Th)(y) =

(Th)(τ(x)) = h(x) = 1, and whence ψ(y) ∈ P (h). Since this holds for every
h ∈ Fx(A), and

⋂
h∈Fx(A)

P (h) = {x}, we have that ψ(τ(x)) = ψ(y) = x for every

x ∈ δA. By similar arguments one can see that τ(ψ(y)) = y for any y ∈ δB.
Consequently, τ and ψ both are injective mappings, and ψ = τ−1.

Let x ∈ δA be a generalized peak point of A, and let r ∈ (0, 1). Choose an
open neighborhood V of τ(x) in δB, and a peaking function k ∈ Fτ(x)(B) with
τ(x) ∈ P (k) ⊂ V and |k(y)| < r on δB \ V . If h = T−1(k), then h ∈ Fx(A),
and according to (1.38), k(τ(ξ)) = (Th)(τ(ξ)) = h(ξ) on δA. Note that since
h(x) = 1 > r, the open set W =

{
ξ ∈ δA : |h(ξ)| > r

}
contains x. According to

Lemma 1.6.29, for any ξ ∈ W we have |k(τ(ξ))| =
∣∣(Th)(τ(ξ))∣∣ ≥ |h(ξ)| > r, and

therefore, τ(ξ) ∈ V , since on δB \V we have |k(η)| < r. Consequently, τ(W ) ⊂ V ,
which proves the continuity of τ . If we consider the operator T−1 : B → A and the
mapping τ−1 : δB → δA, the same arguments imply that τ−1 is also continuous,
which completes the proof. �

When applied to the operator T−1 : B → A and the mapping τ−1 : δB → δA,
Lemma 1.6.29 implies |g(y)| ≤ |(T−1g)(τ−1(y))| for any y ∈ δB and every g ∈ B.
By letting g = Tf, f ∈ A, and y = τ(x), x ∈ δA, we obtain

∣∣(Tf)(τ(x))∣∣ ≤ |f(x)|.
Hence we have the following

Corollary 1.6.31. If T : A→ B is a surjective and σπ-multiplicative operator with
T (1) = 1, then

∣∣(Tf)(τ(x))∣∣ ≤ |f(x)| for any x ∈ δA and every f ∈ A.

Proposition 1.6.32. If T : A → B is a surjective and σπ-multiplicative operator
with T (1) = 1, then the equality

(Tf)(τ(x)) = f(x) (1.44)

holds for every f ∈ A and x ∈ δA.

Proof. The proof follows the line of proof of Proposition 1.6.13. By Lemma 1.6.27,
the mapping τ from (1.37) is well-defined, and every fixed x ∈ δA all peaking
functions h ∈ Fx(A) satisfy the equality (1.38), i.e. (1.44).



1.6. Isomorphisms between uniform algebras 53

Let x0 be a generalized peak point of A and let f ∈ A. Without loss of gener-
ality we can assume that f(x0) �= 0, since in f(x0) = 0, then also (Tf)(τ(x0)) = 0
by Lemma 1.6.28, if applied to the operator T−1 : B → A, the function Tf ∈ B
and the mapping τ−1 : δB → δA. Let V be an open neighborhood of x0 in
X . By Bishop’s Lemma we can choose a peaking function h ∈ Fx0(A) so that
x0 ∈ P (h) ⊂ V , and such that the function |(fh)(x)| attains its maximum only
within P (h) ⊂ V . Hence there is a point ξV ∈ P (h) such that

|f(ξV )| =
∣∣(fh)(ξV )

∣∣ = ‖fh‖. (1.45)

Therefore, f(ξV ) ∈ σπ(fh) = σπ

(
(Tf)(Th)

)
. Hence there is a point zV ∈ Y with

f(ξV ) =
(
(Tf)(Th)

)
(zV ). (1.46)

We may assume that zV ∈ δB. Indeed, |f(ξV )| =
∣∣(fh)(ξV )

∣∣ is the maximum
modulus of the function fh, and, according to Lemma 1.6.24(d), of the function
(Tf)(Th) as well. Therefore, the value f(ξV ) is attained by (Tf)(Th) at some
point of the Choquet boundary δB, and we can choose zV to be such a point.
The surjectivity of τ implies that zV = τ(xV ) for some xV ∈ δA. Equality (1.46),
Corollary 1.6.31 and (1.38) imply

|f(ξV )| =
∣∣((Tf)(Th))(zV )

∣∣ =
∣∣(Tf)(τ(xV ))

∣∣∣∣(Th)(τ(xV ))
∣∣

≤ |f(xV )||h(xV )| =
∣∣(fh)(xV )

∣∣ ≤ ‖fh‖ = |f(ξV )|,

thus
∣∣(fh)(xV )

∣∣ = |f(ξV )| = ‖fh‖ = max
ξ∈X

∣∣(fh)(ξ)∣∣. Since this maximum is

attained only within P (h), xV ∈ P (h), and according to (1.38), (Th)(zV ) =
(Th)(τ(xV )) = h(xV ) = 1. Now equality (1.46) becomes f(ξV ) = (Tf)(zV ) =
(Tf)(τ(xV )). Therefore, any neighborhood V of x0 contains points ξV and xV

such that f(ξV ) = (Tf)(τ(xV )). The continuity of f, T f , and τ implies that
f(x0) = (Tf)(τ(x0)). �

The next theorem follows from Proposition 1.6.32 in the same way as Theo-
rem 1.6.14 follows from Proposition 1.6.13.

Theorem 1.6.33. Let A ⊂ C(X) and B ⊂ C(Y ) be uniform algebras on their
maximal ideal spaces X and Y correspondingly. If T : A→ B is a surjective and
σπ-multiplicative operator with T (1) = 1, then T is an isometric algebra isomor-
phism.

Since every multiplicative operator with T (1) = 1 which preserves the pe-
ripheral spectra of algebra elements is σπ-multiplicative, we have the following

Corollary 1.6.34. Any surjective and multiplicative operator T between two uniform
algebras with T (1) = 1, which preserves the peripheral spectra of algebra elements
is an isometric algebra isomorphism.
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Note that if an operator T : A→ B preserves the spectra of algebra elements,
then it preserves also their peripheral spectra. As a consequence of Theorem 1.6.33
we obtain

Corollary 1.6.35. If a surjective operator T : A → B with T (1) = 1 possesses the
σ-multiplicativity property

σ
(
(Tf)(Tg)

)
= σ(fg)

for all f, g ∈ A, then T is an isometric algebra isomorphism.

1.7 Notes

The foundations of the theory of commutative Banach algebras were laid on by
Gelfand in [G3]. Systematic expositions on uniform algebras are given, for instance,
in [B7, G1, L1, P1, S4, P4, T2, Ż], among others. Shilov boundaries were intro-
duced by Shilov in [G3]. A proof of Rossi’s Local Maximum Modulus Principle
can be found, say, in [S4], or, [AW].

A thorough exposition of inductive limits of uniform algebras is presented in
[L1]. The notion of Bourgain algebras was introduced by J. Cima and R. Timoney
[CT] in their study of the Dunford-Pettis property of uniform algebras. It is based
on a construction of J. Bourgain [B6] involving operators of Hankel type. Most of
the results on Bourgain algebras in this chapter, including the alternative proof of
the Poincaré theorem are from [TY] and [TY1]. Example 1.4.3 is due to S. Sac-
cone. Bourgain algebras of topological algebras were considered in [AT]. Bourgain
algebras of type AB

b (S), when S is a class of sequences in A, become less closely
associated to A and B as S becomes smaller. Note that if A = {0} and B is with
unit, then A ∪ {1} ⊂ AB

b (S) implies AB
b (S) = B, since SA consists only of the

zero sequence. The last remark in Section 1.4 was pointed out by K. Yale, who
also raised the question whether every closed intermediate algebra between two
given algebras A ⊂ B can be described as an algebra of type AB

b (S) for certain
classes of sequences S. For example, as it is well known, the closed algebras be-
tween A = H∞(T) and B = L∞(T) on the circle T are characterized in terms of
interpolating Blaschke products. It would be very useful to have their alternative
descriptions, and also to have a characterization of the closed subalgebras between
H∞(D) and L∞(D) on the unit disc D in terms of Bourgain type algebras relative
to various classes of sequences.

Polynomial and algebraic extensions of Banach algebras were introduced by
Arens and Hoffman in [AH]. Most of the results on polynomial extensions of com-
mutative Banach algebras in this chapter are from [G10]. An algebra B is said to
be an integral extension of its subalgebra A, if every element in B is an integral
element over A. Given two uniform algebras A and B on X , such that B is a
non-trivial integral extension of A, it is interesting to know if A is necessarily a
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polynomially closed algebra. Every strong polynomial extension of A is also an
integral extension. We are not aware of any examples of integral extensions of a
uniform algebra, that are not polynomial extensions. It will be interesting to find
descriptions of polynomial and integral extensions of uniform algebras, and, in
particular, of shift-invariant algebras, introduced in Chapter 4.

Finding conditions for an operator between Banach algebras which imply its
linearity and multiplicativity, is an important question in Banach algebra theory,
which still lacks a satisfactory answer. For linear operators to semisimple algebras
an answer is suggested by the theorem of Gleason-Kahane-Żelazko (e.g. [Ż]) in
terms of spectra of algebra elements. The theorem by Kowalski and Slodkowski
[KS] implies also an answer for operators which are not necessarily linear. N.
V. Rao and A. K. Roy [RR] have introduced the σ-multiplicativity condition in
Corollary 1.6.35 and a mapping similar to τ : δB → δA from (1.37). In the case
when A = C(X) this condition was considered by Molnár [M2]. Hatori, Miura
and Takagi [HMT] have replaced the σ-multiplicativity condition in Corollary
1.6.35 by a similar ‘range multiplicativity’ condition, Ran

(
(Φf)(Φg)

)
= Ran (fg),

where Ran (f) = f(X) is the range of f . The conditions for a σπ-additive oper-
ator between two uniform algebras to be an algebra isomorphism from Section
1.6 are from [RTT]. The arguments apply also for uniform algebras A ⊂ C(X),
where X is not necessarily the maximal ideal space of A, provided the peak-
ing functions of A are replaced by the peaking functions of A on X , and the
peripheral spectra of algebra elements are replaced by their peripheral ranges
Ran π(f) =

{
f(x) : |f(x)| = ‖f‖, x ∈ X

}
. The results for σπ-multiplicative oper-

ators from Section 1.6 hold also for Ran π-multiplicative operators (cf. [LT]).



Chapter 2

Three classical families of
functions

This chapter contains the basics of three classical spaces of functions, namely,
almost periodic functions in real variables, harmonic functions in the disc, andHp-
functions on the unit circle and disc. Later on, in Chapters 7 and 8, we introduce
and study far reaching generalizations of these function spaces on abelian groups.

2.1 Almost periodic functions of one and several
variables

Definition 2.1.1. A continuous function f on the real line R is said to be almost
periodic on R if for every ε > 0 there is an L > 0 such that within every interval
I ⊂ R with |I| ≥ L there is some x ∈ I such that max

t∈R

∣∣f(t+ x)− f(t)∣∣ < ε.
The number L is called an ε-period of f . Every periodic function with period

p is clearly almost periodic. In this case we can choose L = p. The Bochner theorem
(e.g. [B3]) asserts that f is almost periodic on R if and only if the set of all its
R-shifts ft(x) = f(x+ t), t ∈ R, is relatively uniformly compact in the set Cb(X)
of bounded continuous functions. Equivalently, f is almost periodic if it can be
approximated uniformly on R by exponential polynomials, i.e. functions of type

n∑
k=1

ake
iskx, where the ak are complex, and sk are real numbers. Note that the

functions χs(x) = eisx are continuous characters on R, i.e. χs(x+y) = χs(x)χs(y)
for any x, y ∈ R, and |χs| ≡ 1 on R. It is easy to see that the set AP (R) of almost
periodic functions on R is an algebra over C. Actually, under the uniform norm
AP (R) is a commutative Banach algebra with unit. We provide the next result
with a short proof, probably well known.
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Lemma 2.1.2. Let f be an almost periodic function on R. If there are numbers
tn ∈ R such that lim

n
f(x+ tn) = 0 for all x ∈ R, then f ≡ 0.

Proof. By Bochner’s theorem mentioned above, the space {ft} of t-shifts of f
is relatively uniformly compact in Cb(R). Hence, one can find a subsequence of
R-shifts ftn = f(x + tn) of f , that converge uniformly on R to an almost peri-
odic function h on R. By ‖ftn‖ = ‖f‖ for all n we have that ‖h‖ = ‖f‖. Since
h(x) = lim

m→∞
f(x+ tnm), then h ≡ 0, and therefore, f ≡ 0. �

Let f(x) be an almost periodic function on R, and let λ ∈ R. Dirichlet
coefficients af

λ of f are the numbers

af
λ = lim

T→∞

1
T

y+T∫
y

f(x) e−iλxdx, (2.1)

where the existence of the limit, and also its value, are independent from y ∈ R.
Dirichlet coefficients af

λ are non-zero for countably many λ’s at most, which are
called Dirichlet exponents of f(x). The set sp (f) of Dirichlet’s exponents of f(x) is
called the spectrum of f . Hence, sp (f) = {λ ∈ R : af

λ �= 0} is a countable set. It is
customary to express the fact that λk are the Dirichlet exponents, and the numbers
Af

k = af
λk
, k = 1, 2, . . . are the Dirichlet coefficients of f(x) by associating a series

expansion to f , namely

f(x) ∼
∞∑

k=1

Af
ke
iλkx. (2.2)

The series in (2.2), not necessarily convergent, is called the Dirichlet series of f .
It is easy to see that if all Dirichlet coefficients of an f ∈ AP (R) are zero, then
f ≡ 0. Consequently, the correspondence (2.2) between almost periodic functions
and their Dirichlet series is injective.

Given a subset Λ ⊂ R, by APΛ(R) we denote the space of all almost periodic
Λ-functions, namely, almost periodic functions on R with spectrum contained in
the set Λ, i.e.

APΛ(R) =
{
f ∈ AP (R) : sp (f) ⊂ Λ

}
.

Note that every f ∈ APΛ(R) can be approximated uniformly on R by exponential

Λ-polynomials, i.e. by functions of type
n∑

k=1

ake
iskx, sk ∈ Λ.

Let C+ = {z : Im z > 0} be the upper half-plane. Clearly, every exponential

polynomial
n∑

k=1

ake
iskx with sk ≥ 0, k = 1, . . . , n, is analytically extendable on

C+ = C+ ∪R∪ {∞} by
n∑

k=1

ake
isk(x+ iy), sk ∈ Λ. If sp (f) ⊂ R+ = [0,∞) for an
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f ∈ AP (R), then f also can be extended on C+ as a bounded analytic function f̃ .
In this case we call f an analytic almost periodic function on R. The set of analytic
almost periodic functions on R is denoted by APa(R). If sp (f) ⊂ Λ ⊂ R+ = [0,∞),
then f is called an analytic almost periodic Λ-function on R, and its extension f̃
on C+ is called an analytic almost periodic Λ-function on C+. In this case the
extended function f̃ on C+ can be approximated uniformly on C+ by exponential

polynomials of type
n∑

k=1

ake
iskz, sk ∈ Λ, z ∈ C+.

If S is an additive subsemigroup of R, containing 0, then the space APS(R)
of almost periodic S-functions on R is a commutative Banach subalgebra of the
algebra AP (R). If, in addition, S ⊂ R+, then every function f ∈ APS(R) is
analytic almost periodic. In fact, the algebra ÃP S(R) of analytic extensions of
functions in APS(R) on C+ is isometrically isomorphic to APS(R).

A continuous function f on Rn is said to be almost periodic on Rn, if the
set of all its Rn-shifts f(t1,t2,...,tn)(x1, x2, . . . , xn) = f(x1 + t1, x2 + t2, . . . , xn +
tn), (t1, t2, . . . , tn) ∈ Rn, is relatively uniformly compact in Cb(Rn). Equivalently,
f is almost periodic on Rn if it can be approximated uniformly on Rn by expo-
nential polynomials on Rn, i.e. functions of type∑

ak1,k2,...,kne
i (sk1x1 + sk2x2 + · · ·+ sknxn),

where ak1,k2,...,kn are complex, and sk1 , sk2 , . . . , skn are real numbers. Note that
any function χ(x1, x2, . . . , xn) = ei (sk1x1 + sk2x2 + · · ·+ sknxn) is a continuous
character on Rn, i.e.

χ (x1 + y1, x2 + y2, . . . , xn + yn) = χ (x1, x2, . . . , xn)χ (y1, y2, . . . , yn),

for any (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ Rn and |χ| ≡ 1 on Rn. The set AP (Rn)
of all almost periodic functions on Rn is a commutative Banach algebra with
unit under the uniform norm on Rn. Let S be a semigroup in Rn. A function in
AP (Rn) which can be approximated uniformly on Rn by exponential polynomi-
als

∑
ak1,k2,...,kne

i(sk1x1 + sk2x2 + · · ·+ sknxn) such that (sk1 , sk2 , . . . , skn) ∈ S
is called an almost periodic S-function on Rn. The space of almost periodic S-
functions on Rn is denoted by APS(Rn).

The space Cb(R) of bounded continuous functions on the real line R is a
uniform algebra under the sup-norm on R. Clearly, the space C0(R) of all contin-
uous functions on R vanishing at ±∞ is a subalgebra, actually an ideal, of Cb(R)
without unit.

Definition 2.1.3. A bounded continuous function f on R is said to be asymptotical-
ly almost periodic on R if there is an almost periodic function f∗ on R such that

lim
n−→∞

∣∣f(xn)− f∗(xn)
∣∣ = 0
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for every sequence xn −→ ±∞. If f∗ is analytic almost periodic, then f is said to be
an asymptotically analytic almost periodic function on R. We denote by AP as(R),
resp. AP as

a (R), the spaces of asymptotically almost periodic, resp. asymptotically
analytic almost periodic, functions on R.

Observe that the function f∗ is uniquely defined, by Lemma 2.1.2. Since,
clearly, h = f − f∗ ∈ C0(R), we have the following

Lemma 2.1.4. A bounded continuous function f on R is asymptotically almost
periodic, resp. asymptotically analytic almost periodic on R, if there is a unique
f∗ ∈ AP (R), resp. f∗ ∈ APa(R), and an h ∈ C0(R), such that f = f∗ + h.

Lemma 2.1.4 implies that AP as(R) ∼= AP (R) ⊕ C0(R), resp. AP as
a (R) ∼=

APa(R)⊕ C0(R).

Denote by ϕ : D −→ C+ the fractional linear transformation ϕ(z) = i
z + 1
1− z .

Clearly, eiaϕ(z) = ea (z + 1)/(z − 1) for every a ∈ R. Let Λ be a subset of
R. It is easy to see that the linear span APΛ(R) of characters eiax, a ∈ Λ,
on R is isometrically isomorphic to the space APΛ(R) ◦ ϕ ∼= H∞

Λ , the linear
span of the functions ea (z + 1)/(z − 1) ∈ H∞, a ∈ Λ, on T \ {1}. The space
C0(R)⊕C · 1 is a commutative Banach algebra with unit. Clearly, C0(R)⊕C · 1 ∼=(
C0(R) ⊕ C · 1}

)
◦ ϕ = C(T), thus its maximal ideal space is homeomorphic to

the unit circle T. Observe that C0(R) ∼= C0(R) ◦ ϕ =
{
f ∈ C(T) : f(1) = 0

}
.

Therefore, AP as(R) is isometrically isomorphic to the algebra AP as(R) ◦ ϕ =[
z, 1/z,

{
ea (z + 1)/(z − 1), a ∈ R

}]
on R generated algebraically by the func-

tions z, 1/z, and ea (z + 1)/(z − 1), a ∈ R. Correspondingly, the algebra AP as
a (R)

of asymptotically analytic almost periodic functions is isometrically isomorphic to
the algebra AP as

a (R) ◦ ϕ =
[
z, 1/z,

{
ea (z + 1)/(z − 1), a ∈ R+

}]
on R.

2.2 Harmonic functions in the unit disc

A complex-valued, function u on the unit disc D is called complex harmonic, if it
is twice differentiable on D and satisfies the Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0.

If, in addition, u is real-valued, it is called a harmonic function. The space of
complex-, resp. real-valued harmonic functions in D we denote by H(D), resp.
HR(D). The space of analytic functions in the open unit disc D is denoted by
O(D). Every f ∈ O(D) is a complex harmonic function in D. Obviously, the real
and the imaginary part of any complex harmonic function are real-valued harmonic
functions. Therefore, the real (and the imaginary) parts of analytic functions in D
are harmonic functions in D. The converse is also true. Namely, every real-valued
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harmonic function u in D is the real part of some function f analytic in D, i.e. u =
Re f , or, equivalently, f = u+iv, where v is another harmonic function in D, called
the harmonic conjugate of u. Note that the harmonic conjugate function is defined
uniquely up to an additive constant. Clearly, H(D) = ReH(D) + i ImH(D) =
HR(D) + iHR(D) = ReO(D) + iReO(D) = O(D) +O(D).

For every real r, 0 < r < 1, the r-dilation fr of f is defined by fr(z) =

f(rz). Given an analytic function f in D, let f(z) =
∞∑

n=0

anz
n be its power series

expansion, then its r-dilation fr is analytic on the disc D1/r ⊃ D, and admits there
the power series expansion

fr(z) =
∞∑

n=0

(anr
n) zn.

Observe that the restriction of the r-dilation fr on T coincides with the r-trace f |rT

of f , i.e. the restriction of f on the circle rT = {reiθ, 0 < θ ≤ 2π}. We will denote
the r-trace of f again by fr, thus fr

∣∣
T

= f
∣∣
rT

, i.e. fr(z)
∣∣
T

= f(z)
∣∣
rT

= f(rz),
where z = eiθ, θ ∈ [0, 2π]. If f possesses a continuous extension on the closed
unit disc D, then f

∣∣
T
∈ C(T) and lim

r↗1
fr(eiθ) = lim

r↗1
f(reiθ) = f(eiθ) for every

θ ∈ [0, 2π].

Lemma 2.2.1. If f ∈ A(D), then lim
r↗1

sup
z∈D

∣∣fr(z)− f(z)
∣∣ = 0.

Proof. The maximum modulus principle for analytic functions implies that

sup
z∈D

∣∣fr(z)− f(z)
∣∣ = sup

ζ∈T

∣∣fr(ζ)− f(ζ)
∣∣.

If we suppose that lim
r↗1

sup
ζ∈T

∣∣fr(ζ)− f(ζ)
∣∣ > ε for some ε > 0, then there are rn ↗ 1

and ζn −→ ζ0 such that
∣∣frn(ζn)− f(ζ0)

∣∣ > ε. Therefore,∣∣f(rnζn)− f(ζ0)
∣∣ =

∣∣frn(ζn)− f(ζ0)
∣∣ > ε

as n −→∞, contradicting the continuity of f on D. �

Lemma 2.2.2. If f(z) =
∞∑

n=0

anz
n is the power series expansion of a function f in

the disc algebra A(D), then

an =
1

2πi

∫
T

f(z) ζ−(n+1) dζ.
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Proof. The power series expansion

fr(z) =
∞∑

k=0

(akr
k) zk

of fr, 0 < r < 1, converges absolutely to f on D ⊂ D1/r as r ↗ 1. Therefore,

1
2πi

∫
T

fr(ζ) ζ−(n+1) dζ =
1

2πi

∫
T

( ∞∑
k=0

(akr
k)ζk

)
ζ−(n+1) dζ

=
∞∑

k=0

akr
k

2πi

∫
T

ζk−n−1 dζ =
∞∑

k=0

akr
k

2π

∫
T

ζk−n dζ

iζ
=

∞∑
k=0

akr
k

2π

2π∫
0

ei(k−n)θ dθ

= anr
n,

where eiθ = ζ. Lemma 2.2.1 implies that

1
2πi

∫
T

f(ζ) ζ−(n+1) dζ = lim
r↗1

1
2πi

∫
T

fr(ζ) ζ−(n+1) dζ = lim
r↗1

anr
n = an,

as claimed. �
Lemma 2.2.2 implies that for any f ∈ A(D) and z ∈ D we have:

f(z) =
∞∑

n=0

anz
n =

1
2πi

∞∑
n=0

( ∫
T

f(ζ) ζ−(n+1) dζ
)
zn.

Note that since |ζ| = 1, for every � with |z| < � < 1 the series
∞∑

n=0

zn

ζn+1
is

absolutely convergent in z on the disc D�. As a consequence we obtain the well-
known Cauchy integral formula

f(z) =
1

2πi

∞∑
n=0

(∫
T

f(ζ)
ζn+1

dζ
)
zn

=
1

2πi

∫
T

f(ζ)
( ∞∑

n=0

zn

ζn+1

)
dζ =

1
2πi

∫
T

f(ζ)
ζ − z dζ.

If z = reiθ and ζ = eit, then for the r-trace fr(ζ) = f(rζ) of f we have

fr(eiθ) = f(z) =
1

2πi

∫
T

f(ζ)
ζ − z dζ =

1
2π

π∫
−π

f(eit)
eit

eit − reiθ dt

=
1
2π

π∫
−π

f(eit)
1

1− rei(θ−t)
dt =

1
2π

π∫
−π

f(eit)Cr(ei(θ−t)) dt,

(2.3)
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where Cr(ζ) =
1

1− rζ =
∞∑

n=0

rnζn is the so-called Cauchy kernel in D. Conse-

quently,

fr(eiθ) =
1
2π

π∫
−π

f(eit)Cr(ei(θ−t)) dt, i.e. fr = f � Cr (2.4)

for every f ∈ A(D). If u ∈ HR(D) is a real-valued harmonic function in D, then

there is an analytic function f(z) =
∞∑

n=0

anz
n in D such that u = 2 Re f = f + f .

Hence,

u(z) = 2 Rea0 +
∞∑

n=1

anz
n +

∞∑
n=1

anzn,

and therefore, for the r-trace ur of u we have

ur(ζ) = u(rζ) =
∞∑

n=−∞
cnr

|n|ζn, |ζ| = 1,

where cn =

⎧⎨⎩ an when n < 0,
2 Re a0 when n = 0,
an when n > 0.

(2.5)

The real part ur of the r-trace of f(z) =
1

1− z =
∞∑

n=0

zn ∈ O(D) admits the ex-

pansion ur(ζ) =
∞∑

n=−∞
r|n|ζn + 1. The function in two variables

Pr(θ) = ur(eiθ)− 1 =
∞∑

n=−∞
r|n|einθ = 2

∞∑
n=0

rn cos(nθ)− 1

is called the Poisson kernel in D. It plays a special rôle in harmonic function
theory. Observe that

Pr(θ) =
∞∑

n=−∞
r|n|ζn =

∞∑
n=0

rnζn +
∞∑

n=1

rnζ
n

= Cr(ζ) +
(
Cr(ζ)− 1

)
= 2 ReCr(ζ)− 1 = Re

(
2Cr(ζ)− 1

)
= Re

(
2

1
1− rζ − 1

)
= Re

(1 + rζ
1− rζ

)
= Re

(1 + reiθ

1− reiθ
)

=
1− r2

1− 2r cos θ + r2
,
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where ζ = eiθ. Consequently, Pr(θ) admits the representation

Pr(θ) =
∞∑

n=−∞
r|n|einθ = Re

(
1 + rζ
1− rζ

)
=

1− r2
1− 2r cos θ + r2

, (2.6)

where ζ = eiθ and 0 ≤ r < 1.

Lemma 2.2.3. For any r, 0 ≤ r < 1 we have

inf
0<θ≤2π

Pr(θ) =
1− r
1 + r

, and sup
0<θ≤2π

Pr(θ) =
1 + r
1− r .

Proof. Note that the conformal mapping
1 + z
1− z maps the open unit disc D onto the

open half-plane {z : Re z > 0}. In particular, the circle {z = reiθ : 0 < θ < 2π} is

mapped onto the circle centered on R which passes through the points
1− r
1 + r

and
1 + r
1− r . Since Pr(θ) = Re

(1− z
1 + z

)
, z = reiθ , we see that

1− r
1 + r

≤ Pr(θ) ≤
1 + r
1− r ,

where both bounds are taken. �

Let u be a real-valued harmonic function on D, and u = (f + f)/2 for some
f ∈ A(D). We claim that if u has a continuous extension on D, then the r-trace
ur of u has the unique representation

ur(eiθ) = u(reiθ) =
1
2π

π∫
−π

u(eit)Pr(θ − t) dt = u(eiθ) � Pr(θ). (2.7)

Indeed, since all negatively indexed Fourier coefficients of the Cauchy kernel Cr(ζ)

=
∞∑

n=0

rnζn are zero, we have

1
2π

π∫
−π

Cr(eit) e−int dt =
{
rn when n ≥ 0,
0 when n < 0.

Since
1
2π

π∫
−π

f(eit)Cr(eit) dt =
1
2π

∫ π

−π

f(eit)Cr(eit) dt, (2.3) implies that
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1
2π

π∫
−π

u(eit)Pr(θ − t) dt =
1
2π

π∫
−π

u(eit)
(
Cr(ei(θ−t)) + Cr(ei(θ−t))− 1

)
dt

=
1
2π

π∫
−π

1
2
(
f(eit) + f(eit)

)(
Cr(ei(θ−t)) + Cr(ei(θ−t))− 1

)
dt

=
1
4π

π∫
−π

f(eit)Cr(ei(θ−t)) dt+
1
4π

π∫
−π

f(eit)Cr(ei(θ−t)) dt

+
1
4π

π∫
−π

f(eit)Cr(ei(θ−t)) dt+
1
4π

π∫
−π

f(eit)Cr(ei(θ−t)) dt− 1
4π

π∫
−π

f(eit) dt

− 1
4π

π∫
−π

f(eit) dt = (1/2)
(
fr(eiθ) + a0 + a0 + f r(e

iθ)− a0 − a0

)
= ur(eiθ).

The expression (2.7) is called the Poisson integral representation of u. Denote

by Hr the function Hr(θ) =
1 + reiθ

1− reiθ = 2Cr(eiθ)− 1. As we saw in (2.6), Pr(θ) =

Re
(1 + reiθ

1− reiθ
)

= ReHr(θ). In the same way we can show that

u(eiθ) � Hr(θ) =
1
2π

π∫
−π

u(eit)Hr(θ − t) dt

=
1
2π

π∫
−π

1
2
(
f(eit) + f(eit)

)
(2Cr

(
eiθ)− 1

)
dt =

1
2
(
2fr(eiθ) + 2a0 − a0 − a0

)
=

1
2
(
2fr(ζ)− 2i Im a0

)
= fr(ζ)− i Im f(0),

where ζ = eiθ ∈ T. Therefore, if f(0) is real and f = u + iv, then for the r-trace
of f we have

fr(eiθ) = f(reiθ) =
1
2π

π∫
−π

u(eit)Hr(θ − t) dt = u(eiθ) � Hr(θ). (2.8)

The function Qr = ImHr is called the conjugate Poisson kernel in D. As a
corollary from (2.8) we obtain that the r-trace vr also admits an integral repre-
sentation involving Qr. Namely,
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vr(eiθ) = Im fr(eiθ) =
1
2π

π∫
−π

u(eit) ImHr(θ − t) dt

=
1
2π

π∫
−π

u(eit)Qr(θ − t) dt = u(eiθ) � Qr(θ).

2.3 The Poisson integral in the unit disc

In this section we present briefly some of the basic properties of the Poisson kernel

Pr(θ) =
1− r2

1− 2r cos θ + r2
=

∞∑
n=−∞

r|n|einθ, 0 ≤ r < 1, −π ≤ θ ≤ π

in the unit disc, which was defined in (2.6).

Let u be a real-valued harmonic function in D, and let u = Re f = (f + f)/2
for some analytic function f in D. As we saw in (2.7), if u has a continuous
extension on D, then the r-trace ur of u admits the Poisson integral representation

ur(eit) =
1
2π

π∫
−π

u(eiθ) Pr(t− θ) dθ =
1
2π

2π∫
0

u(ei(t−θ))Pr(θ) dθ. (2.9)

Similarly,

fr(eit) =
1
2π

π∫
−π

f(eiθ) Pr(t− θ) dθ =
1
2π

2π∫
0

f(ei(t−θ))Pr(θ) dθ, (2.10)

for any f ∈ A(D).

The Poisson kernel Pr(θ) has the following properties.

Theorem 2.3.1.

(i) Pr(θ) > 0 for every r ∈ [0, 1).

(ii)
1
2π

π∫
−π

Pr(θ) dθ =
1
2π

π∫
−π

Pr(t− θ) dθ = 1 for every r ∈ [0, 1).

(iii) For every δ > 0, lim
r↗1

sup
|θ|>δ

Pr(θ) = 0.

Given a continuous function f on D, consider the coefficients

cfn(r) =
cfr
n

r|n|
=

1
2πr|n|

π∫
−π

fr(eiθ) e−inθ dθ.
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Note that cfr
n = r|n|cfn(r). The r-trace fr has Fourier series expansion on T of type

fr(ζ) ∼
∞∑

n−∞
cfr
n ζ

n =
∞∑

n=−∞
cfn(r) r|n|ζn, ζ = eiθ.

If f ∈ A(D), then f =
∞∑
0

anz
n in D, and

cfn =
1
2π

π∫
−π

f(eiθ) e−inθ dθ =
1
2π

π∫
−π

( ∞∑
k=0

ake
ikθ
)
e−inθ dθ = an,

i.e. the n-th Fourier coefficient cfn equals the n-th coefficient in the Taylor series
of f . Further,

cfr
n =

1
2π

π∫
−π

fr(eiθ) e−inθ dθ =
1
2π

π∫
−π

f(reiθ) e−inθ dθ

=
1
2π

π∫
−π

( ∞∑
k=0

akr
keikθ

)
e−inθ dθ = anr

n,

i.e. cfr
n = cfnr

n. Consequently, for any f ∈ A(D) we have that cfn(r) = cfr
n /r

n = cfn,
i.e. the coefficients cfn(r) do not depend on r, 0 ≤ r < 1. The following theorem
shows that a similar result holds for analytic and harmonic functions in D.

Theorem 2.3.2. Let u ∈ CR(D) be a real-valued function on D. The following
conditions are equivalent:

(i) u is harmonic.

(ii) The coefficients cun(r) = cur
n /r

|n| do not depend on r.

Proof. Let u = f + f , where f is analytic in D. As we saw above, the coefficients
cfn(r) = cfn = an do not depend on r ∈ (0, 1). Since, according to (2.5),

cun =

⎧⎨⎩ an when n < 0,
2 Re a0 when n = 0,
an when n > 0,

the coefficients cun(r) also are constant with respect to r ∈ (0, 1). Hence, (i) implies
(ii).

Conversely, assume that the coefficients cun(r) of a function u ∈ C(D) do

not depend on r, i.e. cun(r) = cun, 0 ≤ r < 1. We claim that the series
∞∑
0

cunz
n
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converges in D. Indeed, for every integer n we have

|cunr|n|| = |cun(r) r|n|| =
∣∣ cur

n

r|n|
r|n|

∣∣ = |cur
n |

=
∣∣∣ 1
2π

π∫
−π

ur(eiθ) e−inθ dθ
∣∣∣ ≤ 1

2π

π∫
−π

∣∣ur(eiθ)
∣∣ dθ <∞.

Fix a z ∈ D, and let r0 be a real number with |z| < r0 < 1. We have

∞∑
0

|cunzn| =
∞∑
0

|cunrn0 |
∣∣∣∣ zr0

∣∣∣∣n ≤M(r0)
∞∑
0

∣∣∣∣ zr0
∣∣∣∣n <∞,

where M(r) =
1
2π

π∫
−π

∣∣ur(eiθ)
∣∣ dθ. Hence the series

∞∑
0

cunz
n converges absolutely

in D. Therefore its sum f(z) =
∞∑
0

cunz
n is a function analytic in D, and cfn = cun

for any n ∈ Z+. Clearly, the Fourier coefficients of the function u(z) = 2

Re f(z) = f(z) + f(z) =
∞∑
0

cunz
n +

∞∑
0

cunz
n coincide with the corresponding

Fourier coefficients of u. Consequently, u = 2 Re f , hence u is harmonic. �

We recall that the space Lp consist of all Lebesgue measurable functions on

T, for which
∫
T

|f(ζ)|p dζ <∞. Lp is a normed space under the norm

‖f‖p =
(∫

X

|f(ζ)|p dζ
)1/p

.

Theorem 2.3.3. If f is a real-valued Lp-function on the unit circle T for some
p, 1 ≤ p <∞, then the function f̃ : D �−→ R defined as

f̃(z) = f̃(reiθ) =
1
2π

π∫
−π

f(eit)Pr(θ − t) dt = f(eit) � Pr(θ) (2.11)

is harmonic on D, and its r-traces f̃r(θ) = f̃(reiθ) converge on T to f in the
Lp-norm as r ↗ 1. If f is also continuous on T, then this convergence is uniform
on T.
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Proof. Let f̃r(eiθ) = f̃(reiθ) be the r-trace of f̃ . By the Fubini theorem we have

cfn(r) =
c

efr
n

r|n|
=

1
2πr|n|

π∫
−π

fr(eiθ) e−inθ dθ

=
1

2πr|n|

π∫
−π

( 1
2π

π∫
−π

f(eit)Pr(θ − t) dt
)
e−inθ dθ

=
1

2πr|n|

π∫
−π

( 1
2π

π∫
−π

Pr(θ − t) e−inθ dθ
)
f(eit) dt

=
1

2πr|n|

π∫
−π

( 1
2π

π∫
−π

( ∞∑
0

r|k|eik(θ−t)
)
e−inθ dθ

)
f(eit) dt

=
1

2πr|n|

π∫
−π

r|n|e−intf(eit) dt =
1
2π

π∫
−π

f(eit) e−int dt = cfn,

i.e. the coefficients cfn(r) do not depend on r. Theorem 2.3.2 implies that the
function f̃(reiθ) is harmonic in D. First we will consider the second, continuous
case. Observe that

f̃(reiθ) =
1
2π

π∫
−π

f(eit)Pr(θ − t) dt =
1
2π

π∫
−π

f(ei(θ−t))Pr(t) dt.

If f is continuous on T, then for every ε > 0 one can find a δ > 0 such that∣∣f(eit)− f(eiθ)∣∣ < ε whenever |t− θ| < δ. Consequently,

∣∣f̃(reiθ)− f(eiθ)∣∣ =
∣∣∣ 1
2π

π∫
−π

f
(
ei(θ−t)

)
Pr(t) dt− f(eiθ)

1
2π

π∫
−π

Pr(t) dt
∣∣∣

≤
∣∣∣ 1
2π

π∫
−π

(
f
(
ei(θ−t)

)
− f(eiθ)

)
Pr(t) dt

∣∣∣ ≤ 1
2π

π∫
−π

∣∣f(ei(θ−t)
)
− f(eiθ)

∣∣Pr(t) dt

=
1
2π

∫
|t|<δ

∣∣f(ei(θ−t)
)
− f(eiθ)

∣∣Pr(t) dt+
1
2π

∫
|t|>δ

∣∣f(ei(θ−t)
)
− f(eiθ)

∣∣Pr(t) dt.

By Theorem 2.3.1 one can find an r0 such that

1
2π

∫
|t|>δ

Pr(t) dt <
ε

2 ‖f‖∞
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for any r > r0, where ‖f‖∞ = sup
T

|f |. Consequently,

∣∣f̃(reiθ)− f(eiθ)∣∣< ε

2π

∫
|t|<δ

Pr(t) dt+
2 ‖f‖∞

2π

∫
|t|>δ

Pr(t) dt<
ε

2π

π∫
π

Pr(t) dt+ ε=2ε

for every r > r0.

If f ∈ Lp, 1 ≤ p <∞, then for any ε > 0 one can choose a continuous on T
function g such that

‖f − g‖p =
( 1

2π

π∫
−π

∣∣f(ei(t))− g(eit)∣∣p dt)1/p

< ε.

Therefore,
‖f̃r − f‖p ≤ ‖f̃r − g̃r‖p + ‖g̃r − g‖p + ‖g − f‖p

for any r, 0 < r < 1. Since g is continuous on D, then ‖g̃r−g‖p ≤ ‖g̃r−g‖∞ < ε, as
already shown, and therefore, ‖f̃r−f‖p ≤ ‖f̃r−g̃r‖p+2ε. By the Hölder inequality,
applied to the measure Pr(θ − t) dt, if 1/p + 1/q = 1 then for any h ∈ Lq with
‖h‖ ≤ 1 it follows that∣∣∣ 1

2π

π∫
−π

f(eit)h(eit)Pr(θ − t) dt
∣∣∣

≤
( 1

2π

π∫
−π

∣∣f(eit)∣∣pPr(θ − t) dt
)1/p( 1

2π

π∫
−π

∣∣h(eit)∣∣qPr(θ − t) dt
)1/q

≤
( 1

2π

π∫
−π

∣∣f(ei(θ−t))
∣∣pPr(t) dt

)1/p

.

By the Fubini theorem we have

‖f̃r − g̃r‖p
p =

∥∥(f − g)e
r

∥∥p

p
=

1
2π

π∫
−π

∣∣∣ 1
2π

π∫
−π

(
f(eit)− g(eit)

)
Pr(θ − t) dt

∣∣∣pdθ
≤ 1

2π

π∫
−π

( 1
2π

π∫
−π

∣∣f(eit)− g(eit)∣∣p Pr(θ − t) dt
)p

dθ

=
1
2π

π∫
−π

( 1
2π

π∫
−π

∣∣f(eit)− g(eit)∣∣p dθ)Pr(θ − t) dt ≤ ‖f − g‖p
p < ε.

Therefore, ‖f̃r − g̃r‖p < ε, and hence ‖f̃r − f‖p < 3ε. Consequently, f̃r −→ f in
the Lp-norm on T, as claimed. �
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The function f̃ from (2.11) is called the harmonic extension of f on D.

2.4 Classes of harmonic functions in the unit disc

In this section we introduce several Banach spaces of harmonic functions on the
unit disc. We recall that according to Theorem 2.3.2 a function u ∈ CR(D) is
harmonic in D if and only if the coefficients cun(r) = cur

n /r
|n| do not depend on r,

where cur
n is the n-th Fourier coefficient of ur, 0 < r < 1. As the following theorem

shows, this result holds also for complex harmonic functions on D.

Theorem 2.4.1. The coefficients cfn(r) = cfr
n /r

|n| of a function f ∈ C(D) do not
depend on r ∈ (0, 1) if and only if f is harmonic in D, or, equivalently, if and only
if f ∈ O(D) +O(D) = H(D).

Proof. The remark preceding Theorem 2.3.2 shows that for any f ∈ O(D) the
coefficients cfn(r) do not depend on r ∈ (0, 1). Clearly this is true for any f ∈ O(D),
and also for any f ∈ O(D) +O(D) = H(D). Conversely, if the coefficients cfn(r) of
an f ∈ C(D) do not depend on r ∈ (0, 1), then the same is true for both Re f =
(f+f)/2 and Im f = (f−f)/(2i). Therefore, Re f and Im f are harmonic functions
in D by Theorem 2.3.2. Hence f ∈ HR(D) + iHR(D) = H(D) = O(D) +O(D). �

Theorem 2.4.1 implies the following characterization of harmonic functions.

Corollary 2.4.2. A function u ∈ C(D) is harmonic on D if and only if

ur1(e
it) = u(r1eit) =

1
2π

2π∫
0

ur2(e
i(t−θ))Pr1/r2(θ) dθ, (2.12)

for any 0 ≤ r1 < r2 < 1. Equivalently, if u
∣∣
r1T

(eit) = u
∣∣
r2T

(eiθ � Pr1/r2

(
θ)
)
, i.e.

the r1-trace ur1 of u equals the r1/r2-trace of its harmonic extension (ũr2)r1/r2 .

Proof. Without loss of generality we can assume that u ∈ HR(D). Note that the
r2-dilation ur2(z) = u(r2z) of u is harmonic in D. Therefore,

ur1(e
iθ) = u(r1eiθ) = u

(
(r1/r2) r2eiθ

)
= ur2

(
(r1/r2)eiθ

)
=

1
2π

2π∫
0

ur2

(
ei(t−θ)

)
Pr1/r2(θ) dθ,

hence (2.12) holds. Conversely, if (2.12) holds for some u ∈ CR(D) and r = r1/r2,
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then by the Fubini theorem

cun(r1) = c
ur1
n /r

|n|
1 =

1

2πr|n|1

π∫
−π

ur1(e
iθ) e−inθ dθ =

1

2πr|n|1

π∫
−π

u(r1eiθ) e−inθ dθ

=
1

(2π)2
1

r
|n|
1

π∫
−π

2π∫
0

(
ur2(e

i(θ−ζ))Pr1/r2(ζ) dζ
)
e−inθ dθ

=
1

2πr|n|1

2π∫
0

1
2π

( π∫
−π

ur2(e
i(θ−ζ)) e−inθ dθ

)
Pr1/r2(ζ) dζ

=
1

2πr|n|1

2π∫
0

1
2π

( π∫
−π

ur2(e
is) e−ins ds

)
Pr1/r2(ζ) e

−inζ dζ

=
1

2πr|n|1

2π∫
0

c
ur2
n Pr1/r2(ζ) e

−inζ dζ =
c
ur2
n

r
|n|
1

(r1
r2

)|n|
=
c
ur2
n

r
|n|
2

= cun(r2).

Hence, the coefficients cun(r) = cur
n /r

|n| do not depend on r ∈ (0, 1), as claimed.
Therefore, u ∈ HR(D) by Theorem 2.3.2. �

If u ∈ C(D), then (2.12) is equivalent to ur = ũr. In fact, (2.12) is a charac-
terizing property for the set of harmonic functions in D. As a consequence from
Corollary 2.4.2 we obtain that if f ∈ O(D) ⊂ H(D), then

fr1(e
it) = f(r1eit) =

1
2π

2π∫
0

fr2(e
i(t−θ))Pr1/r2(θ) dθ (2.13)

for any 0 ≤ r1 < r2 < 1.

Denote by Hp
�(D) the space of harmonic functions u ∈ H(D) for which

‖u‖p,� = sup
z∈D

(
|̃u|p

∣∣
�T

)1/p = sup
r ∈ (0, 1)
t ∈ [0, 2π]

( ˜|ur(eiθ)|p
∣∣
�T

)1/p

= sup
r ∈ (0, 1)
t ∈ [0, 2π]

( 1
2π

2π∫
0

|ur(ei(t−θ))|pP�(θ) dθ
)1/p

<∞,

where 0 ≤ � < 1 and 1 ≤ p < ∞, and ũ is the harmonic extension (2.11) of u. If
� = 0, then

‖u‖p,0 = sup
0<r<1

( 1
2π

2π∫
0

|ur(eiθ)|p dθ
)1/p

=
( 1

2π

2π∫
0

|ur(eiθ)|p dθ
)1/p

= ‖u‖p,
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since p0(θ) ≡ 1. For this reason we will write Hp(D) instead of Hp
0(D). We claim

that the spaces Hp
�(D), �, 0 ≤ � < 1 are mutually isometrically isomorphic.

Indeed,

sup
0≤θ≤2π

P�(θ) =
1 + �
1− �

according to Lemma 2.2.3. Hence,

‖u‖p,� ≤
(

1 + �
1− �

) 1
p

sup
r ∈ (0, 1)
t ∈ [0, 2π]

( 1
2π

2π∫
0

|ur(ei(t−θ))|p dθ
) 1

p

=
(

1 + �
1− �

) 1
p

‖u‖p.

Similarly, the inequality

inf
0≤θ≤2π

P�(θ) =
1− �
1 + �

in Lemma 2.2.3 implies that ‖u‖p,� ≥
(

1− �
1 + �

) 1
p

‖u‖p. Hence the norms ‖u‖p and

‖u‖p,� on the space Hp
�(D) are equivalent. Therefore, Hp

�(D) ∼= Hp
0(D) = Hp(D).

This proves the following lemma.

Lemma 2.4.3. For every 0 ≤ � < 1 and 1 ≤ p < ∞ there are constants 0 < c1 <
c2 <∞, depending on �, such that

c1‖u‖p,� ≤ ‖u‖p ≤ c2‖u‖p,�.

Consequently, all the spaces Hp
�(D), 0 ≤ � < 1, are mutually isometrically iso-

morphic.

Recall that the Hardy space Hp on the unit circle is the set of analytic
functions in the unit disc, whose restrictions on concentric circles centered at the
origin are uniformly bounded in the Lp-norm. Consequently, the spaces Hp

R(D) =
ReHp = Re (Hp +H

p
), and Hp(D) = Hp

R(D)+ iHp
R(D), can be defined in a similar

way. On the other hand, ReHp = Re (Hp +H
p
) = ReHp(D) = Hp

R(D). Clearly,
Hp(D)∩O(D) = Hp, Hp

R(D) = ReHp, and Hp(D) = Hp
R(D)+ iHp

R(D) = Hp +H
p
.

Let p ≥ 1 and let Lp
�(T) be the completion of the space CR(T) of real-valued

continuous functions on T under the norm

‖u‖p,� = sup
t∈[0,2π]

( 1
2π

2π∫
0

∣∣u(ei(t−θ))
∣∣pP�(θ) dθ

) 1
p

.

Applying the same arguments as in Lemma 2.4.3, we see that the spaces Lp
�(T), 0 ≤

� < 1, are mutually isometrically isomorphic. Therefore, Lp
�(T) ∼= Lp

0(T) ∼= Lp for
any 0 ≤ � < 1. Given an u ∈ Lp

�(T), the integral

1
2π

2π∫
0

u(ei(t−θ))P�(θ) dθ
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is called also the Poisson integral of u. The next two theorems are direct conse-
quences of Lemma 2.4.3 (cf. [H3], Ch. 3).

Theorem 2.4.4. Let u be a harmonic function in D, and � ∈ [0, 1). Then

(a) u equals the Poisson integral of a function in Lp
�(T) ∼= Lp for some p, 1 <

p ≤ ∞, if and only if u ∈ Hp
�(D) ∼= Hp(D).

(b) u equals the Poisson integral of a function in L1
�(T) ∼= L1 if and only if

u ∈ H1
�(D) ∼= H1(D), while the r-traces ur of u converge to u in the L1

�(T)-
norm, as r ↗ 1.

(c) If u ∈ CR(T), then the r-traces ur of u converge uniformly to u as r↗ 1.

(d) u equals the Poisson integral of a regular real Borel measure on T if and only
if u ∈ H1(D).

Theorem 2.4.5. Let u be a harmonic function in Hp
�(D) ∼= Hp(D), 1 ≤ p ≤ ∞.

The limit u∗(ζ) = lim
r↗1

u(rζ) exists for almost every θ with respect to the Lebesgue

measure on T, and is a function in Lp
�(T) ∼= Lp. Moreover:

(a) If p > 1, then u equals the Poisson integral of u∗, i.e. u coincides with the
harmonic extension ũ∗ of u∗.

(b) If p = 1, then u equals the Poisson integral of a regular Borel measure on T,
whose absolutely continuous component with respect to the Lebesque measure
on T is u∗ dθ.

(c) If u is also bounded on D, then u∗ is bounded on T, and u coincides with the
Poisson integral of u∗, i.e. u equals the harmonic extension ũ∗ of u∗.

2.5 Notes

Almost periodic functions were introduced by H. Bohr [B5], who, together with
Besicovitch [B] and Jessen [J1], established their basic properties. Bohr discovered
the almost periodicity property in the course of his study of Dirichlet series of
analytic functions. For more detailed exposition on almost periodic functions we
refer to the books of Corduneanu [C2] and Loomis [L4].

Closely related to asymptotically almost periodic functions on R is the class
of weakly almost periodic functions on R. A function f ∈ Cb(R) is weakly almost
periodic, if the set of all R-shifts, ft(x) = f(x + t), t ∈ R, is relatively weakly
compact in Cb(R) (e.g. [B8, E]). Let APw(R) denote the set of weakly almost
periodic functions on R. One can show that AP (R) ⊂ AP as(R) ⊂ APw(R). More-
over, APw(R) = AP (R) + C(R)|R, where R is the one-point compactification of
R. Therefore, APw(R) ◦ϕ is isometrically isomorphic to the subalgebra of H∞ on
T, generated by ea (z + 1)/(z − 1), a ∈ R, and the set of functions in C(T \ {1})
that possess one-sided limits at 1 along T. The algebra APw,a(R) ∼= APw,a(R) ◦ϕ
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of analytically extendable on C+ weakly almost periodic functions on R is iso-
metrically isomorphic to the subalgebra of H∞ ∩C(D \ {1}) on R generated alge-
braically by the functions ea (z + 1)/(z − 1), a ∈ R+, and the set of functions in
H∞ ∩ C(D \ {1}) that possess one-sided limits at 1 along T.

The classical Hardy space Hp on the unit circle T can be defined in three
equivalent ways. Firstly, Hp is the set of functions in Lp on the unit circle, whose
negative Fourier coefficients are zero. Secondly, Hp is the completion of the space
of polynomials on the unit circle under the Lp-norm. And thirdly, Hp is the set of
analytic functions in the unit disc, whose restrictions on concentric circles centered
at the origin are uniformly bounded in the Lp-norm. As we saw in Section 2.4, the
Hardy space Hp is closely related to the space Hp(D).

There are many classical books on harmonic functions, Poisson integrals, and
Hp-spaces. For more detailed exposition see [G2, H3].



Chapter 3

Groups and semigroups

The main properties of topological groups and semigroups, their characters and
semicharacters are outlined in this chapter. Some of the basic features of various
spaces of functions, measures and operators on groups are presented too. Semi-
group algebras �1(S), introduced at the end of the chapter, are closely related with
the underlying semigroups S.

3.1 Topological groups and their duals

Let G be a group, i.e. a set provided by an associative operation (g, h) �−→ g h,
an identity (or neutral) element ı ∈ G, and an inverse operation g �−→ g−1. The
defining property of the identity element is that ı g = g ı = g for all g ∈ G, while
the defining property of the inverse element g−1 ∈ G is that g g−1 = g−1g = ı. The
identity element ı is uniquely defined and is called the unit element of G. For any
g ∈ G the element g−1 is also uniquely defined and is called the inverse element of
g in G. If the group operation is commutative, i.e. if g h = h g for all g, h ∈ G, then
G is called a commutative, or abelian group. We use mainly the additive notation
for the group operation, (g, h) �−→ g + h, if the group is commutative, instead of
the multiplicative one, (g, h) �−→ g h. The identity element in this case is denoted
by 0, rather than by ı, and is called the zero element, rather than the unit element
of G. In the sequel we will consider only groups that are abelian.

Let G1 and G2 be two groups. A homomorphism from G1 to G2 is called any
multiplicative mapping ϕ : G1 −→ G2, i.e. for which ϕ(g h) = ϕ(g)ϕ(h) for any
g, h ∈ G. If a homomorphism ϕ is one-to-one, i.e. ϕ(g) = ϕ(h) if and only if g = h,
it is called an isomorphism of G1 into G2. If, in addition, ϕ is surjective, i.e. if
f(G1) = G2, then ϕ is called an isomorphism between G1 and G2. In this case we
write G1

∼= G2.

If a group G is a topological space, then it is called a topological group if the
mapping (g, h) �−→ g h−1 from G×G to G is continuous. This happens if and only
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if the functions (g, h) �−→ g h from G × G to G, and g �−→ g−1 from G to G are
continuous. Let G be an abelian topological groupG. A continuous complex-valued
function χ on G is called a character of G, if |χ| ≡ 1, and χ(x + y) = χ(x)χ(y)
(under the additive notation), or, χ(x y) = χ(x)χ(y) (under the multiplicative
notation) for any x, y ∈ G. In other words, the characters of G are complex
homomorphisms of G into T. The dual group, Ĝ, of G is the set of all characters
of G. It is easy to see that, if G is abelian, then Ĝ is also an abelian group under
the pointwise multiplication

(
χ1 χ2

)
(g) = χ1(g)χ2(g) for every g ∈ G, where

χ1, χ2 ∈ Ĝ. The inverse element to a χ ∈ Ĝ is the character χ−1(g) = χ(g).

Example 3.1.1. (a) The dual group of Z is bijective to the unit circle T. Indeed,
any character of Z has the form χz : n �−→ zn ∈ T for some z ∈ T, i.e. χz(n) = zn.
Hence Ẑ ∼= T.

(b) The characters on T are of the form χn : z �−→ zn ∈ T for some integer
n ∈ Z, i.e. χn(z) = zn. Therefore, T̂ ∼= Z. The characters of any subgroup G of T
are also of type z �−→ zn, z ∈ G.

(c) The dual group of Zn is bijective to the n-torus Tn, i.e. Ẑn ∼= Tn.

(d) The dual group of Tn is bijective to Zn, i.e. T̂n ∼= Zn.

Let G0 be a closed subgroup of a given abelian topological group G. Cosets
of G0 are called the sets of type g G0 = {g h : h ∈ G0}, g ∈ G. It is clear that the
family of all cosets of G0 is a group under the operation (g G0)(hG0) = (g h)G0.
This group is denoted by G/G0, and is called the quotient group (or, factor group)
ofGmoduloG0. Under the topology generated by the sets of type UG0 = {hg : h ∈
U, g ∈ G0}, where U are open sets in G, G/G0 is a topological group. The map
πG0 : g �−→ g G0, is a continuous group homomorphism from G onto G/G0.

Definition 3.1.2. Given a character χ ∈ Ĝ, the set Ker (χ) = {x ∈ G : χ(x) = 1}
is called the kernel of χ.

Observe that, since χ is a continuous function on G, its kernel is a closed
subgroup of G, containing 0. Clearly, 0 ∈ Ker (χ) for any χ ∈ Ĝ. The following
lemma shows that the kernels determine to a great extent their characters.

Lemma 3.1.3. If χ1 and χ2 are two characters on G with Ker (χ1) = Ker (χ2),
then either χ2 = χ1, or χ2 = χ1.

Proof. Let G0 = Ker (χ1) = Ker (χ2). The mapping χ̃1 : g G0 �−→ χ1(g) is an
isomorphism from the quotient group G/G0 into T, and in fact, (χ̃1 ◦ πG0)(g) =
χ1(g) for all g ∈ G. Likewise, χ̃2 ◦ πG0 = χ2, where χ̃2 : G/G0 −→ T : g G0 �−→
χ1(g). Therefore, χ̃1(G) ∼= χ̃2(G) ∼= G/G0. Since both χ̃1(G) and χ̃2(G) are
subgroups of T, without loss of generality we can assume that actually χ̃1(G) =
χ̃2(G). The mapping χ̃ = χ̃2 ◦ χ̃−1

1 is an isomorphism from χ̃1(G) onto χ̃1(G),
i.e. χ̃ is a character on χ̃1(G) ⊂ T. Hence χ̃ is a function of type z �−→ zn for
some n ∈ Z. Only two of the functions zn map χ̃1(Γ ) isomorphically onto itself,



3.1. Topological groups and their duals 79

namely the identity z �−→ z, and its conjugate z �−→ z. Therefore, χ̃(z) ≡ z, or
χ̃(z) ≡ z. Hence, χ2 = χ̃2 ◦ πG0 (χ2) = χ̃2 ◦ χ̃−1

1 ◦ χ̃1 ◦ πG0 = χ̃ ◦ χ̃1 ◦ πG0 = χ̃ ◦χ1.
Consequently, either χ2 = χ1, or χ2 = χ1, as claimed. �

The real line R is a group under addition. For every a ∈ R the function
χa : x �−→ eiax ∈ T is a character of R. As we show below, every character on R
has this form.

Lemma 3.1.4. The kernel of every non-trivial character χ on R is of the form Zx0

for some x0 > 0.

Proof. If χ is a non-trivial character on R, then Ker (χ) is a closed subgroup of
R, containing 0. We claim that 0 is an isolated point in Ker (χ). Indeed, suppose
that there exists a sequence {xn} in Ker (χ) that converges to 0. Consider the sets

Zxn = {kxn : k ∈ Z} ⊂ Ker (χ). One can easily see that the set
∞⋃

n=1
Zxn is dense

in R, and so is Ker (χ). Therefore Ker (χ) = R, since Ker (χ) is closed in R. Hence
χ is the trivial character on R, contrary to its choice. Hence 0 is an isolated point
in Ker (χ). Hence, there is a minimal positive number in Ker (χ), say, x0, since
Ker (χ) is a closed subset in R. We claim that Ker (χ) = Zx0. Indeed, suppose
that there is an a ∈ Ker (χ) \ Zx0. Without loss of generality we can assume
that a > 0. Note that a + kx0 ∈ Ker (χ) for every k ∈ Z. If n ∈ Z is such that
a ∈

[
nx0, (n+1)x0

)
, then a−nx0 ∈ Ker (χ), and 0 ≤ a−nx0 < x0, in contradiction

with the minimality property of x0. Therefore, Ker (χ) = Zx0. �
Lemma 3.1.5. Let χ1 and χ2 be two characters on R. If there is a sequence xn −→ 0
such that χ1(xn) = χ2(xn) for every n, then χ1 ≡ χ2.

Proof. Let χ1, χ2 ∈ R̂, χ1 �= χ2. If χ = χ1χ2 ∈ Ĝ, then χ(xn) = 1 for all n, i.e.
{xn}n ⊂ Ker (χ). Lemma 3.1.4 implies that χ ≡ 1, i.e. χ1 = χ2, in contradiction
with the choice of χ1 and χ2. �
Theorem 3.1.6. For every character χ on R there is a real number a ∈ R such that
χ has the form χ = χa : x �−→ eiax. Thus, R̂ ∼= R.

Proof. If χ ≡ 1, the statement holds with a = 0. Let χ be a non-trivial character of
R, and let x0 be the minimal positive number in Ker (χ), which exists by Lemma
3.1.4. Consider the character χ1(x) = ei(2π/x0)x of R. The minimal positive
number in Ker (χ1) is also x0, and therefore, Ker (χ1) = Ker (χ) = Zx0. Lemma
3.1.3 implies that either χ = χ1, or, χ1 = χ. Hence χ is of type χ(x) = eiax with
a = 2π/x0 in the first case, and a = −(2π/x0) in the second. �

Lemma 3.1.7. If Ker (χa) ⊂ Ker (χb) for some a, b ∈ Γ = Ĝ, then b is an integer
multiple of a.

Proof. Let G0 = Ker (χa). If χa = χ̃a ◦ πG0 , then χ̃a maps continuously and
isomorphically G/G0 in T. Let χb = χ̃b ◦ πG0 where χ̃b maps continuously and
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homomorphically G/G0 in T. Consider the mapping γ = χ̃b◦(χ̃a)−1 : (χ̃a◦πG0)(g)
�−→ (χ̃b ◦ πG0)(g) from G/G0 ⊂ T onto G/Ker (χb) ⊂ T, such that χ̃b = γ ◦ χ̃a

on πG0(G) = G/G0. Therefore, Ker (γ) = γ−1{1} =
(
χ̃b ◦ (χ̃a)−1

)−1({1}) =(
χ̃a◦(χ̃b)−1

)(
{1}

)
= χ̃a

(
Ker (χ̃b)

)
. As a finite subgroup of T, the set χ̃a

(
Ker (χ̃b)

)
is of type

{
eik (2π/n)}n

k=1
for some n ∈ N. Hence, by Lemma 3.1.3, γ(z) = zn, or

γ(z) = zn = z−n. Consequently, χb = χ̃b ◦ πG0 = γ ◦ χ̃a ◦ πG0 = (χ̃a)m ◦ πG0 =
χ̃ma ◦ πG0 = χma, where m = ±n. �

It is easy to see that if a belongs to the group envelope ΓK of K, then
Ker (χa) ⊃

⋂
b∈K

Ker (χb).

Proposition 3.1.8. If a ∈ Γ and Ker (χa) ⊂
⋂

b∈K

Ker (χb) for some subset K of Γ ,

then a belongs to the group envelope ΓK of K.

Proof. Let ΓK be the group generated byK. Since Ker (χa) ⊂ Ker (χb), any b ∈ K
is of type b = nba for some nb ∈ Z by Lemma 3.1.7. Hence K ⊂ Za, thus ΓK ⊂ Za,
so that ΓK = Z (ma) for some m ∈ N. We claim that, in fact, m = 1. If we
suppose that m > 1, then ΓK = Z (ma) is a proper subgroup of Za. The function
γ : Za −→ T : na �−→ ei (2πn)/m is a character on Za, and Ker (γ) = Z(ma) ⊃ K.
Further, γ can be extended to a character γ̃ on Γ . Since a /∈ Ker (γ), and γ̃ ∈ Γ̂ ∼=̂̂
G ∼= G, there is a g ∈ G, so that χa(g) = γ̃(a) = γ(a) = ei (2π/m) �= 1, while
χb(g) = γ̃(b) = 1 for all b ∈ K. Therefore, g ∈

(⋂
b∈K

Ker (χb)
)
\ Ker (χa), contrary

to the hypothesis on a. Hence, ΓK = Za, and consequently, a ∈ ΓK . �

Any element g ∈ G gives rise to a continuous character g∗ on Ĝ by the rule
g∗(χ) = χ(g), χ ∈ Ĝ. The celebrated Pontryagin’s duality theorem asserts that
if G is a locally compact group, then Ĝ is also a locally compact group under
the compact-open topology in C(G), and every continuous character of Ĝ has the
form g∗ for a suitable element g ∈ G. Moreover, if all three groups G, Ĝ, and̂̂
G are equipped by their compact-open topologies, then G is homeomorphically

isomorphic to ̂̂
G via the mapping g �−→ g∗. Consequently, we can identify every

locally compact topological group G with its double dual group ̂̂
G ∼= G.

Example 3.1.9. (a) If G is a compact group, then Ĝ is a discrete group under
the compact-open topology, which in this case is the uniform topology on G. If
G is a discrete group, then the compact-open topology on Ĝ is generated by the
pointwise convergence. Clearly, with respect to it, Ĝ is a compact group.

(b) Let G be an abelian topological group. Denote by Gd the same group
equipped by the discrete topology. Its dual group Ĝd is a compact group, con-
taining the dual group Ĝ of G with the original topology as a dense subgroup.
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The group Ĝd is called the Bohr compactification of the group Ĝ. We will denote
it by b(G). In particular, the group of real numbers R can be embedded isomor-
phically and densely into its Bohr compactification b(R) = R̂d, since R̂ = R by
Theorem 3.1.6. Almost periodic functions f on R can be extended naturally as
continuous functions f̃ on the Bohr compactification b(R) = R̂d of R. The Fourier
coefficients cf̃k of the function extended in this way, f̃ , on b(R) equal the Dirich-
let coefficients Af

k of the original function f . Moreover, the maximal ideal space
MAP (R) of the algebra of almost periodic functions on R is homeomorphic to the
Bohr compactification b(R) of R.

In the sequel we will consider often the following situation. Let Γ be a discrete
abelian group. Its dual group G = Γ̂ is a compact abelian group, and the dual
group Ĝ of G is isomorphic to Γ , by Pontryagin’s duality theorem. The character
a∗ ∈ Ĝ corresponding to a ∈ Γ we will denote by χa. Thus, for the elements of the
dual group Γ ∼= Ĝ we may use interchangeably two notations, namely a and χa.
If we use the additive notation for the group operation of G, then the elements
of the dual group Γ ∼= Ĝ will be denoted by a, b, etc. If, alternatively, we use
the multiplicative notation for the group operation of Γ , then its elements will be
denoted by χa, χb, etc. In this respect the expressions “χaχb for χa, χb ∈ Ĝ”, and
“a + b for a, b ∈ Γ”, are equivalent. Now the equality χaχb = χa+b, for a, b ∈ Γ
makes perfect sense.

Any compact abelian group G possesses a unique probability measure σ that
is invariant under G-shifts. It is called the Haar measure of G. More precisely, σ
is a positive regular Borel measure on G, such that

σ(G) = 1, and σ(hF ) = σ(F ) (3.1)

for every h ∈ G and every Borel set F ⊂ G. Equivalently, σ is defined by the
properties ∫

G

dσ = 1, and
∫
G

f(g h) dσ(g) =
∫
G

f(g) dσ(g)

for every f ∈ C(G) and h ∈ G. Note that (3.1) implies that the Haar measure σ on
G is also inverse invariant, i.e. σ(F−1) = σ(F ) for every Borel set F ⊂ G, where
F−1 = {g−1 ∈ G : g ∈ F}. To see this, consider the measure σ′ on G defined by
σ′(F ) = σ(F−1). One can easily show that σ′ is also a normalized and translation-
invariant positive Borel measure on G. The uniqueness property of σ implies that
σ′ = σ. Consequently, ∫

G

f(g−1) dσ(g) =
∫
G

f(g) dσ(g)

for all continuous functions f on G.



82 Chapter 3. Groups and semigroups

Given an h ∈ G, the h-shift of f is called the function fh(g) = f(h g). The
map f �−→ fh is an isometric isomorphism of C(G) onto itself. The invariant

property of the Haar measure σ implies
∫
G

fh dσ =
∫
G

f dσ. Henceforth, for any

character on G we have∫
G

χdσ =
∫
G

χhdσ =
∫
G

χ(h g) dσ(g) = χ(h)
∫
G

χ(g) dσ(g) = χ(h)
∫
G

χdσ.

Consequently,
∫
G

χdσ = 0 if χ �≡ 1. Clearly,
∫
G

1
∣∣
G
dσ =

∫
G

dσ = 1.

Example 3.1.10. The Haar measure σ on the unit circle T is defined by the equality∫
T

f dσ =
1
2π

2π∫
0

f(eiθ) dθ, f ∈ C(T).

Theorem 3.1.11. Let G0 be a proper closed subgroup of a compact abelian group
G. Then:

(a) There is a non-trivial character χ on G such that χ ≡ 1 on G0.

(b) Every character of G0 possesses a continuous extension on G as a character.

(c) Given a character γ on G0, there is a one-to-one correspondence between the
set of all character extensions of γ on G, and the dual group (G/G0)̂ of the
quotient group G/G0.

Proof. (a) One of the corollaries from Pontryagin’s duality theorem is that every
group with more than one element possesses non-trivial characters. Let χ denote
a non-trivial character of the quotient group G/G0. Therefore, the composition
χ◦πG0 : G −→ T is a non-trivial character of G, and, clearly, it is identically equal
to 1 on G0.

(b) The restriction mapping on G0 generates a homomorphism ψ from Ĝ into
Ĝ0. We claim that ψ is surjective. If ψ(Ĝ) is a proper subset of Ĝ0, then there
is a χ ∈ Ĝ0 \ ψ(Ĝ). Note that χγ �≡ 1 for any γ ∈ ψ(Ĝ), since χ �= γ ∈ ψ(Ĝ).

Therefore,
∫
G0

χγ dσ0 = 0 for every γ ∈ ψ(Ĝ), where σ0 is the Haar measure on G0.

The Stone-Weierstrass approximation theorem, applied to the algebra generated

by the elements in ψ(Ĝ) ⊂ Ĝ0, yields
∫
G0

χ f dσ0 = 0 for every f ∈ C(G0). In

particular, 0 =
∫
G0

χχdσ0 =
∫
G

1 dσ0, which is impossible. Hence ψ(Ĝ) = Ĝ0, and

consequently every γ ∈ Ĝ0 is the restriction of some character χ ∈ Ĝ.
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(c) Note that if χ1 and χ2 are two extensions of a γ ∈ Ĝ0 on G, then
χ1

∣∣
G0
≡ χ2

∣∣
G0

, thus χ2 χ1

∣∣
G0
≡ 1, and therefore Ker (χ2 χ1) ⊃ G0. Consequently,

χ2 = χχ1, where χ = χ2 χ1 ∈ Ĝ, and Ker (χ) ⊃ G0. Conversely, if χ1 is a
character extension of γ on G, and if Ker (χ) ⊃ G0 for some χ ∈ Ĝ, then χχ1 also
extends γ on G. Therefore, the set of all possible character extensions of γ on G is
bijective to the orthogonal group G⊥

0 =
{
χ ∈ Ĝ : χ

∣∣
G0
≡ 1

}
, which is isomorphic

to (G/G0)̂. �

Definition 3.1.12. A compact group G is said to be solenoidal, if there is an iso-
morphism of the group R of real numbers in G, whose range is a proper dense
subgroup of G.

Clearly, T is not a solenoidal group. The next theorem gives a criterion for a
group to be solenoidal.

Theorem 3.1.13. A compact group G �∼= T is solenoidal if and only if there is an
isomorphism from Ĝ into R with a dense range.

Proof. Let G be a solenoidal group, and let j be an isomorphism from R into G
such that its closure

[
j(R)

]
coincides with G. Clearly, j generates naturally an

adjoint homomorphism j∗ : Ĝ −→ R̂d = R by
(
j∗(χ)

)
(x) = χ

(
j(x)

)
. If j∗(χ) =

j∗(γ), χ, γ ∈ Ĝ, then χ
(
j(x)

)
=
(
j∗(χ)

)
(x) =

(
j∗(γ)

)
(x) = γ

(
j(x)

)
for every

x ∈ R. Consequently χ = γ, since the range j(G) of j is dense in G. Hence, j∗ is
an isomorphism from Ĝ onto a subgroup of R.

Conversely, suppose that there exists an isomorphism ϕ from Ĝ onto a proper
dense subgroup of R. For every x ∈ R the mapping χ �−→ ei ϕ(χ)x is a character on

Ĝ, i.e. belongs to ̂̂
G ∼= G. Denote by jı(x) the corresponding element in G. We have

that χ
(
jı(x)

)
= ei ϕ(χ)x for any χ ∈ Ĝ. There arises a mapping jıR −→ ̂̂

G : x �−→
jı(x). Clearly, jı(0) = ı ∈ G. It is easy to check that jı maps R homomorphically
into G. We claim that the range jı(R) is dense in G. Indeed, if χ, γ are two different
characters on G with equal values on the range jı(R), then χ

(
jı(x)

)
= γ

(
jı(x)

)
for

every x ∈ R. Since χ
(
jı(x)

)
= ei ϕ(χ)x, and, also, γ

(
jı(x)

)
= ei ϕ(γ)x, we have

ei ϕ(χ)x = ei ϕ(γ)x for every x ∈ R. Hence, ϕ(χ) = ϕ(γ), and therefore χ = γ,
since ϕ is an isomorphism. According to Theorem 3.1.11(c) this is is possible only
if jı(R) is dense in G. �

The mapping jı : R �−→ G with jı(0) = ı ∈ G, defined in the proof of Theorem
3.1.13 is called the standard embedding of R into G via ı.

Let G be a solenoidal group, and let S be an additive semigroup of Ĝ+ =
Ĝ∩[0,∞). Denote by Γ the subgroup S−S of Ĝ ⊂ R generated by S. For simplicity
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we assume that 2π ∈ S. The kernel Ker (χ2π) of χ2π is a compact subgroup of
G, which we will denote by K, i.e. K =

{
g ∈ G : χ2π(g) = 1

}
. Denote by gt the

element jı(t) ∈ G, where jı : R −→ G is the standard embedding of R into G via ı.
It is clear that gn ∈ K for every n ∈ Z. The Cartesian product G̃ = K × R is a
locally compact abelian group, and the map π : G̃→ G : (g, t) �−→ gt g is a group
homomorphism. The kernel of π is the subgroup Ker (π) = {(gn,−n) ∈ G̃ : n ∈ Z}
of G̃. For each n ∈ Z the set Kn = K × [n, n + 1) is a fundamental domain for
π. Therefore, π : G̃ −→ G generates a countably-sheeted covering over G without
singularities. The groupG can be recovered from any set of typeKn = K×[n, n+1]
by identifying the points (g, n+ 1) and (g1g, n), g ∈ G.

Let Γ ⊂ R, Γ �∼= Z. Since b̂(Γ̂ ) = ̂̂
Γd
∼= Γd ⊂ R, Theorem 3.1.13 implies the

following

Corollary 3.1.14. If Γ �∼= Z is an additive subgroup of R, then its Bohr compacti-
fication b(Γ̂ ) = Γ̂d is a solenoidal group.

In particular, b(Q̂) = Q̂d and b(R) = b(R̂) = R̂d are solenoidal groups.

3.2 Functions and measures on groups

Let G be a compact Hausdorff group. The set P (G) of finite linear combinations
m∑

j=1

djχ
aj , aj ∈ Ĝ = Γ, dj ∈ C of characters of G is a separating self-conjugate

subalgebra of C(G). By the Stone-Weierstrass approximation theorem P (G) is
dense in C(G) in the uniform topology. If Λ is a fixed subset of Ĝ = Γ , a Λ-

polynomial is any finite linear combination
m∑

j=1

djχ
aj with aj ∈ Λ. The set of all

Λ-polynomials is denoted by PΛ(G).

In the case when the group envelope Γ = S−S is a discrete subgroup of R the
dual group G of Γ is compact, by Pontryagin’s duality theorem. If, in addition, Γ
is dense in R, then G is a solenoidal group, thus it contains a dense homomorphic
image of the real line R. Every continuous character on R can be extended to a
continuous character on G, and therefore, every almost periodic S-function f on
R can be extended to a continuous function f̃ on G. The Fourier coefficients cf̃k of
the function f̃ on G, extended in this way, coincide with the Dirichlet coefficients
Af

k of f .

A continuous function f on a topological group Γ is said to be almost periodic
on Γ if the set of all its G-shifts fh(g) = f(h g), h ∈ Γ , is relatively uniformly
compact in Cb(Γ ). Equivalently, f is almost periodic on Γ if it can be approximated



3.2. Functions and measures on groups 85

uniformly on Γ by linear combinations
n∑

k=1

akχk ∈ P (Γ ), ak ∈ C of characters χk

on Γ . Under the uniform norm on Γ the space AP (Γ ) of almost periodic functions
on Γ is a commutative Banach algebra with unit. Let S be a subsemigroup of Γ̂ .
Uniform limits on Γ of linear combinations of characters χa in S are called almost
periodic S-functions on Γ . The set of almost periodic S-functions on Γ will be
denoted by APS(Γ ).

Given a p : 1 ≤ p ≤ ∞, the expression ‖f‖p =
(∫

G

|f |p
) 1

p

dσ is a norm

on C(G), called the Lp(G, σ)-norm. Indeed, if ‖f‖p = 0 for an f ∈ C(G), then∫
G

|f |p dσ = 0, and therefore, f ≡ 0 on the support of σ, i.e. on G. The completion

Lp(G, σ) of C(G) under the Lp(G, σ)-norm is a Banach space. Actually, Lp(G, σ)
coincides with the set of all Borel functions f on G with finite Lp(G, σ)-norms,
under the understanding that we identify functions that coincide σ-almost ev-
erywhere on G. If p > 1, then the dual space, i.e. the set of all bounded linear
functionals of Lp(G, σ), is isomorphic to the space Lq(G, σ), where q is such that
1 < q < ∞, and 1/p+ 1/q = 1. Given a bounded Borel function f on G, the
L∞(G, σ)-norm is defined by

‖f‖∞ = ess supG

∣∣f(g)∣∣,
which is the smallest number λ ≥ 0 such that σ

({
g ∈ G :

∣∣f(g)∣∣ ≥ λ}) = 0. Under
the agreement that we identify bounded Borel functions that coincide σ-almost
everywhere on G, i.e. for which ‖f − g‖∞ = 0, then the space L∞(G, σ) of all
bounded Borel functions on G is a Banach space under the L∞-norm. It is the
dual space of L1(G, σ).

The space C(G) can be provided with an inner product, namely,

〈f, g〉 =
∫
G

fg dσ.

Under the L2(G, σ)-norm, ‖f‖2 =
(∫

G

|f |2dσ
) 1

2
, C(G) is a pre-Hilbert space.

Hence the completion L2(G, σ) of C(G) in this norm is a Hilbert space. For every

χa, χb ∈ Ĝ we have 〈χa, χb〉 =
∫
G

χa−b dσ = 0 if a �= b, and 〈χ, χ〉 =
∫
G

dσ = 1.

Therefore, the characters on G are mutually orthogonal functions of unit L2(G, σ)-
norm. Being dense in C(G) under the uniform norm, the linear combinations of
characters on G are also dense in L2(G, σ) under the L2(G, σ)-norm. Moreover,
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the set of characters Ĝ on G is an orthonormal basis for the space L2(G, σ). The
Hilbert space theory implies that every f ∈ L2(G, σ) has a unique representation
as a series of type

f =
∑
a∈Γ

cfaχ
a, where cfa =

∫
G

fχ−a dσ =
∫
G

fχa dσ, (3.2)

called its Fourier series of f , and ‖f‖22 =
∑
a∈Γ

|cfa |2. The numbers cfa are called the

Fourier coefficients of f . The definition of Fourier coefficients cfa makes sense for
any L1(G, σ)-function f . The fact that the numbers cfa are the Fourier coefficients
of f we indicate by

f ∼
∑
a∈ bG

cfaχa.

Note that the above series may not be convergent, and therefore, in general it can
not be interpreted as a function.

Theorem 3.2.1. If all Fourier coefficients of a function f ∈ L1(G, σ) are 0, then
f is σ-almost everywhere 0 on G.

Proof. Consider the measure µ with dµ = f dσ onG, i.e. whose values on Borel sets

F ⊂ G are defined by µ(F ) =
∫
F

f dσ, or equivalently, for which
∫
G

g dµ =
∫
G

gf dσ

for every f ∈ C(G). The function Φ(g) =
∫
G

g dµ is a continuous linear functional

on C(G). Since Φ(χa) =
∫
G

fχadσ = 0 for every a ∈ Γ , the Stone-Weierstrass ap-

proximation theorem implies that Φ(g) = 0 for every function g ∈ C(G). According
to the Riesz representation theorem for bounded linear functionals on C(G), the
dual space of C(G) is isometrically isomorphic to the set M(G) of regular Borel
measures on G. Therefore, Φ ≡ 0, thus µ = f dσ is the zero measure on G, and
hence f ≡ 0 σ-almost-everywhere on G. �

As an immediate corollary to Theorem 3.2.1 we obtain that the Fourier series
of functions in L1(G, σ) are uniquely defined. If a runs in Γ , then the Fourier
coefficient cfa generates a function f̂ on Γ , namely f̂(a) = cfa , called the Fourier
transform of f .

Similarly, with any regular Borel measure µ ∈ M(G) on G we associate a
unique, not necessarily convergent, series, namely,

µ ∼
∑
a∈ bG

cµaχ
a, where cµa =

∫
G

χ−a dµ,



3.2. Functions and measures on groups 87

called the Fourier-Stieltjes series of µ. The numbers cµa are called the Fourier-
Stieltjes coefficients of µ. By arguments similar to the ones used in the proof of
Theorem 3.2.1, one can see that µ is the zero measure on G if and only if all its
Fourier-Stieltjes coefficients cµa are 0. If a runs in Γ , the Fourier-Stieltjes coefficient
cµa gives rise to a function µ̂ on Γ , namely, µ̂(a) = cµa , called the Fourier-Stieltjes
transform of µ.

Theorem 3.2.2. If the Fourier transform f̂ of a function f ∈ L1(G, σ) coincides
with the Fourier-Stieltjes transform µ̂ of a Borel measure µ ∈ M(G), then dµ =

f dσ, i.e.
∫
G

ϕdµ =
∫
G

ϕf dσ for every ϕ ∈ C(G).

Proof. Consider the measure µ1 ∈ M(G) with dµ1 = f dσ. For every a ∈ Γ we

have µ̂1(a) = cµ1
a =

∫
G

χ−a dµ1 =
∫
G

χ−af dσ = cfa = f̂(a) = µ̂(a). For the Fourier-

Stieltjes coefficients of the measure ν = µ1 − µ ∈ M(G) we have cνa = ν̂(a) =
µ̂1 − µ̂ = 0 for every a ∈ Γ . Consequently, ν = 0, and therefore µ1 = µ. �

The spectrum of a function f ∈ L1(G, σ) is called the set sp (f) of all a ∈ Γ ,
such that cfa �= 0. Similarly, for a given measure µ ∈ M(G) the set sp (µ) = {a ∈
Γ : cµa �= 0} is called the spectrum of µ. It is easy to see that any function f ∈
L1(G, σ) whose spectrum sp (f) consists of finitely many elements a1, a2, . . . , am

of Γ , is a finite linear combination of the corresponding characters χaj ∈ Γ = Ĝ,

i.e. is of type
m∑

j=1

djχ
aj with some dj ∈ C.

The space C(G) can be equipped with a multiplicative operation. Namely,
given two functions f, h ∈ C(G) their convolution f1 � f2 ∈ C(G) is defined by

(f1 � f2)(g) =
∫
G

f1(g h−1) f2(h) dσ(h). (3.3)

Since for any f ∈ C(G), ∫
G

f(h−1) dσ(h) =
∫
G

f(h) dσ(h),

one can easily check that (f1 � f2)(g) = (f2 � f1)(g), i.e. the convolution is a
commutative operation in C(G). It is easy to see that

cf1�f2
a = cf1

a c
f2
a (3.4)
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for every f, g ∈ L1(G, σ). Indeed,

cf1�f2
a =

∫
G

(f1 � f2)(g)χ−a(g) dσ(g)

=
∫
G

(∫
G

f1(h−1g) f2(h) dσ(h)
)
χ−a(g) dσ(g)

=
∫
G

(∫
G

f1(h−1g)χ−a(g) dσ(g)
)
f2(h) dσ(h)

=
∫
G

(∫
G

f1(h−1g)χ−a(h−1g) dσ(g)
)
f2(h)χ−a(h) dσ(h)

= cf1
a

∫
G

f2(h)χ−a(h) dσ(h) = cf1
a c

f2
a .

In particular, as an immediate consequence we obtain that

sp (f1 � f2) = sp (f1) ∩ sp (f2). (3.5)

Let f ∈ C(G) and µ ∈M(G). The convolution f �µ of f and µ is the function
f � µ ∈ C(G) defined by

(f � µ)(g) =
∫
G

f(g h−1) dµ(h).

The convolution µ � ν of two measures µ, ν ∈ M(G) is the measure µ � ν on G
defined by

(µ � ν)(F ) =
∫
G

ν(g−1F ) dµ(g)

for every Borel set F ⊂ G. Equivalently, µ � ν is defined by the property∫
G

f d (µ � ν) =
∫
G

∫
G

f(g h) dµ(g) dν(h),

where f ∈ C(G). Consequently, ‖µ � ν‖ ≤ ‖µ‖|ν‖.
Similarly, for every µ, ν ∈M(G) we have

cµ�ν
a = cµac

ν
a. (3.6)

Indeed,

cµ�ν
a =

∫
G

χ−ad(µ � ν) =
∫
G

χ−a(gh) d(µ(g) dν(h)

=
∫
G

∫
G

χ−a(gh) d(µ(g) dν(h) =
∫
G

χ−a(g) d(µ(g)
∫
G

χ−a(h) dν(h) = cµac
ν
a.
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In particular we see that

sp (µ � ν) = sp (µ) ∩ sp (ν). (3.7)

The following lemma shows that the mapping f �−→ fh, where h ∈ G, is a
continuous operator in Lp(G, σ), 1 ≤ p ≤ ∞.

Lemma 3.2.3. Let f ∈ Lp(G, σ), 1 ≤ p ≤ ∞. If hn −→ h, where hn, h ∈ G, then
‖fhn − fh‖p −→ 0.

Proof. Since the space Lp(G, σ) is the closure of C(G) in the Lp(G, σ)-norm, then
for every ε > 0 there is a g ∈ C(G) such that ‖f − g‖p < ε/3. We have that
‖fh − gh‖p = ‖f − g‖p < ε/3 for every h ∈ G. Clearly, ‖ghn − gh‖∞ −→ 0 as
hn −→ h. Hence ‖ghn − gh‖p −→ 0 too, and therefore there is an N > 0 such that
‖ghn − gh‖p < ε/3 when n ≥ N . Therefore, for every n ≥ N we have

‖fhn − fh‖p ≤ ‖fhn − ghn‖p + ‖ghn − gh‖p + ‖fh − gh‖p ≤ 3 (ε/3) = ε. �

Note that the mapping f �−→ fh, where h ∈ G, is an isometric isomorphism
on Lp(G, σ), 1 ≤ p ≤ ∞.

The convolution in C(G) can be extended on the space L1(G, σ), under which
it becomes a commutative Banach algebra. namely, the convolution of two func-
tions f1, f2 in L1(G, σ) is defined in exactly the same way, as in the continuous
case, namely,

(f1 � f2)(g) =
∫
G

f1(g h−1) f2(h) dσ(h).

Theorem 3.2.4. If f1, f2 ∈ L1(G, σ), then f1 � f2 ∈ L1(G, dσ), and

‖f1 � f2‖1 ≤ ‖f1‖1‖f2‖1.

Therefore, with the convolution as a multiplication, the space L1(G, σ) is a com-
mutative Banach algebra.

Proof. Let f1 ∈ L1(G, σ) and {ϕn}n be a sequence of continuous functions on G,
such that ‖ϕn−f1‖1 −→ 0 as n −→ 0. Then ϕn �f2 ∈ L1(G, σ), and by the Fubini
theorem

‖ϕn � f2 − ϕm � f2‖1 =
∫
G

∣∣(ϕn − ϕm) � f2
∣∣ dσ

≤
∫
G

( ∫
G

∣∣ϕn(g h−1)− ϕm(g h−1)
∣∣∣∣f2(h)∣∣ dσ(h))dσ(g)

=
∫
G

( ∫
G

∣∣ϕn(g h−1)− ϕm(g h−1)
∣∣ dσ(g))∣∣f2(h)∣∣ dσ(h) = ‖ϕn − ϕm‖1‖f2‖1.



90 Chapter 3. Groups and semigroups

Therefore, {ϕn �f2}n is a Cauchy sequence in L1(G, σ), and consequently its limit
f1 � f2 is also in L1(G, σ). In addition,

‖f1 � f2‖1 ≤
∫
G

∫
G

∣∣f1(g h−1) f2(h)
∣∣ dσ(h)dσ(g)

=
∫
G

(∫
G

∣∣f1(g h−1)
∣∣ dσ(g)) ∣∣f2(h)∣∣ dσ(h) = ‖f1‖1‖f2‖1.

�

Theorem 3.2.5. The convolution f1 � f2 is a continuous function on G in the
following cases.

(a) f1 ∈ L1(G, σ) and f2 ∈ L∞(G, σ).

(b) f1 ∈ Lp(G, σ) and f2 ∈ Lq(G, σ), where 1 < p, q <∞, 1/p+ 1/q = 1.

Proof. (a) Let f1 ∈ L1(G, σ) and f2 ∈ L∞(G, σ). Hölder’s inequality implies

∣∣(f1 � f2)(g)∣∣ =
∣∣∣ ∫
G

f1(g h−1) f2(h) dσ(h)
∣∣∣ ≤ ‖f1‖1‖f2‖∞.

By the previous remark, for any gn, g ∈ G we have

∣∣(f1 � f2)(gn)− (f1 � f2)(g)
∣∣ =

∣∣∣ ∫
G

(
f1(gnh

−1) f2(h)− f1(gh−1) f2(h)
)
dσ(h)

∣∣∣
≤
∣∣∣ ∫

G

(
(f1)gn(h−1)− (f1)g(h−1)

)
f2(h) dσ(h)

∣∣∣ ≤ ∥∥(f1)gn − (f1)g

∥∥
1
‖f2‖∞.

If gn −→ g, then
∥∥(f1)gn − (f1)g

∥∥
1
−→ 0 by Lemma 3.2.3, thus (f1 � f2)(gn) −→

(f1 � f2)(g) as gn −→ g. Consequently, f � g ∈ C(G).

(b) Let f1 ∈ Lp(G, σ) and f2 ∈ Lq(G, σ), where 1 < p, q <∞, 1/p+1/q = 1.
In the same way as (a) we obtain by Hölder’s inequality that

∣∣(f1 � f2)(g)∣∣ =
∣∣∣ ∫

G

f1(g h−1) f2(h) dσ(h)
∣∣∣ ≤ ‖f1‖p‖f2‖q.

The argument from (a) applies to obtain also that∣∣(f1 � f2)(gn)− (f1 � f2)(g)
∣∣ ≤ ∥∥(f1)gn − (f1)g

∥∥
p
‖f2‖q.

Consequently, (f1 � f2)(gn) −→ (f1 � f2)(g) as gn −→ g, by Lemma 3.2.3. This
proves that f1 � f2 ∈ C(G). �
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3.3 Bochner-Fejér operators on groups

Bochner-Fejér operators on compact groups, introduced in this section, play a role
in the approximation of functions on groups, similar to the role of Fejér kernels
for functions on the unit circle. As mentioned in the previous section, given a
compact abelian group G, the set P (G) of linear combinations of characters on G
is dense in the space Lp(G, σ), 1 ≤ p ≤ ∞, i.e. every function f ∈ Lp(G, σ) can
be approximated by linear combinations of characters on G in the Lp(G, σ)-norm.
We show in this section that f can also be approximated in the Lp(G, σ)-norm by

sp (f)-polynomials, i.e. by finite linear combinations of characters
m∑

j=1

djχ
aj on G,

with aj ∈ sp (f).

Lemma 3.3.1. Let {Ui}i∈I be a neighborhood basis in G of the unit element ı. For
every ε ∈ (0, 1) and every i ∈ I there exists a linear combination of characters,
ψε

i , on G with the following properties:

(i) ψε
i (g) ≥ 0 on G.

(ii) ψε
i (g) < ε for every g ∈ G \ Ui.

(iii)
∫
G

ψε
i (g) dσ(g) = 1.

Proof. For every neighborhood Ui  ı there is a nonnegative continuous function
ψi ∈ C(G) such that ψi(ı) = 1 and ψi

∣∣
G\Ui

≡ 0, by Urysohn’s Lemma. Clearly,∫
G

ψi dσ > 0. According to the Stone-Weierstrass approximation theorem, for every

ε ∈ (0, 1) one can find a linear combination Pi =
∑

j

cjχ
aj in P (G) such that

max
G

∣∣Pi(g)− ψi(g)
∣∣ < ε. Since ψi ≥ 0, we have

max
G

∣∣RePi(g)− ψi(g)
∣∣ ≤ max

G

∣∣Pi(g)− ψi(g)
∣∣ < ε.

Therefore, Qi(g) = RePi(g) + ε ≥ 0 on G, while Qi(g)|G\Ui
≤ ε, and∫

G

Qi dσ ≥
∫
G

ψi dσ > 0.

Note that since RePi = (1/2)(Pi +Pi) is a linear combination of characters on G,
so is Qi. Now the function

ψε
i = Qi

(∫
G

Qi dσ
)−1

satisfies the properties (i), (ii), (iii). �
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If ψε
i is one of the functions from Lemma 3.3.1, then for every p : 1 ≤ p ≤ ∞

we define the operator Kε
i : Lp(G, σ) −→ Lp(G, σ) by

Kε
i (f)(g) =

(
f � ψε

i

)
(g) =

∫
G

f(g h−1)ψε
i (h) dσ(h). (3.8)

Such a set is called a family of Bochner-Fejér operators on G. We define a partial
order in the family {Kε

i }, by setting Kε
i ≺ K

η
j if Uj ⊂ Ui, and η ≤ ε.

Theorem 3.3.2. Let f ∈ Lp(G, σ), 1 ≤ p ≤ ∞. For every ε > 0 and i ∈ I the
functions Kε

i (f) possess the following properties.

(a) If p <∞, then Kε
i (f) ∈ Lp(G, σ) and

∥∥Kε
i (f)

∥∥
p
≤ ‖f‖p.

(b) Kε
i (f) are linear combinations of characters on G.

(c) sp
(
Kε

i (f)
)
⊂ sp (f), thus Kε

i (f) are sp (f)-polynomials on G.

(d) If p <∞, then lim
≺

∥∥Kε
i (f)− f

∥∥
p

= 0.

(e) If f ∈ C(G), then
∥∥Kε

i (f)
∥∥
∞ ≤ ‖f‖∞ and lim

≺

∥∥Kε
i (f)− f

∥∥
∞ = 0.

Proof. (a) If p = 1, Theorem 3.2.4 implies that Kε
i (f) = f � ψε

i ∈ L1(G, σ), and
‖f � ψε

i ‖1 ≤ ‖f‖1‖ψε
i ‖1 = ‖f‖1. Let 1 < p < ∞, and let ϕ ∈ Lq(G, σ), where

1/p+ 1/q = 1. We have∣∣∣ ∫
G

Kε
i (f)ϕdσ

∣∣∣ =
∣∣∣ ∫
G

( ∫
G

f(g h−1)ψε
i (h) dσ(h)

)
ϕ(g) dσ(g)

∣∣∣
=
∣∣∣ ∫
G

( ∫
G

f(g h−1)ϕ(g) dσ(g)
)
ψε

i (h) dσ(h)
∣∣∣

≤
∫
G

∣∣∣ ∫
G

f(g h−1)ϕ(g) dσ(g)
∣∣∣ψε

i (h) dσ(h).

Hölder’s inequality implies that the inner integral does not exceed ‖f‖p‖ϕ‖q.
Hence, ∣∣∣ ∫

G

Kε
i (f)ϕdσ

∣∣∣ ≤ ‖f‖p‖ϕ‖q

∫
G

ψε
i (f) dσ = ‖f‖p‖ϕ‖q.

Since this holds for any ϕ ∈ Lq(G, σ), the mapping ϕ �−→
∫
G

Kε
i (f)ϕdσ is a

bounded linear functional on Lq(G, σ). Hence, Kε
i (f) ∈ Lp(G, σ) and ‖Kε

i (f)‖p

≤ ‖f‖p. This proves (a).

FromKε
i (f) = f� ψε

i , we see that sp
(
Kε

i (f)
)

= sp (f)∩ sp (ψε
i ) by (3.5). Con-

sequently, sp
(
Kε

i (f)
)

is a finite subset of sp (f), i.e.Kε
i (f) is a

(
sp (f)

)
-polynomial,

which proves (b) and (c).
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(d) For any ϕ ∈ Lq(G, σ) we have∣∣∣ ∫
G

(
Kε

i (f)− f
)
ϕdσ

∣∣∣ =
∣∣∣ ∫

G

(∫
G

(f(g h−1)− f(hg)
)
ψε

i (h) dσ(h)
)
ϕ(g) dσ(g)

∣∣∣
≤
∫
G

∣∣∣ ∫
G

(f(g h−1)− f(g)
)
ϕ(g) dσ(g)

∣∣∣ψε
i (h) dσ(h).

Hölder’s inequality implies that the inner integral does not exceed ‖fh− f‖p‖ϕ‖q.
For every f ∈ Lp(G, σ), 1 ≤ p < ∞, and any ε > 0 there exists a basis neigh-
borhood Ui of ı, such that ‖f − fh‖p < ε for all h ∈ Ui. Indeed, by

∣∣ϕ(h) −
ϕ(g)

∣∣ ≤ ‖fh − fg‖p we see that the function ϕ(h) = ‖f − fh‖p is continuous
on G. Since ϕ(ı) = 0, there certainly exists a neighborhood Ui of ı such that
ϕ(h) = ‖f − fh‖p < ε, as claimed. The properties of ψε

i established in Lemma
3.3.1 yield ∣∣∣ ∫

G

(∫
G

(f(g h−1)− f(g)
)
ϕ(g) dσ(g)

)
ψε

i (h) dσ(h)
∣∣∣

≤
∣∣∣ ∫
Ui

(∫
G

(
f(g h−1)− f(g)

)
ϕ(g) dσ(g)

)
ψε

i (h) dσ(h)
∣∣∣

+
∣∣∣ ∫
G\Ui

(∫
G

(
f(g h−1)− f(g)

)
ϕ(g) dσ(g)

)
ψε

i (h) dσ(h)
∣∣∣.

The former expression does not exceed ε ‖ϕ‖q, while the latter one is not greater
than 2ε ‖f‖p‖ϕ‖q. Since ε can be chosen arbitrarily small, this shows that the

mapping ϕ −→
∫
G

(
Kε

i (f)− f
)
ϕdσ is a bounded linear functional on Lq(G, σ),

and its norm is
∥∥Kε

i (f)− f
∥∥

p
≤ 2ε ‖f‖p. This proves (d).

(e) If f ∈ C(G), the argument from part (d) implies∥∥Kε
i (f)− f

∥∥
∞ ≤

∫
G

∣∣(f(g h−1)− f(g)
)∣∣ψε

i (h) dσ(h)

≤
∫
Ui

∣∣(f(g h−1)− f(γ)
)∣∣ψε

i (h) dσ(h) +
∫

G\Ui

∣∣f(g h−1)− f(g)
∣∣ψε

i (h) dσ(h).

The former integral does not exceed ε, while the previous one does not exceed
2ε ‖f‖∞. This completes the proof of (e) since ε can be chosen small enough. �

As an immediate consequence from Theorem 3.3.2 we obtain the following

Corollary 3.3.3. Any f ∈ Lp(G, σ), 1 ≤ p < ∞ can be approximated by sp (f)-
polynomials Kε

i with respect to the Lp(G, σ)-norm.
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Theorem 3.3.4. For every regular Borel measure µ ∈M(G) on G there exists a net
of linear combinations of characters, {pα}α, pα ∈ P (G) with ‖pαdσ‖ ≤ ‖µ‖ and
sp (pα) ⊂ sp(µ), such that the measures pαdσ converge to µ in the weak∗-topology
on M(G).

Proof. Let {ψε
i }i,ε be the family of functions defined in Lemma 3.3.1. Consider

the functions
P ε

i (g) =
∫
G

ψε
i (g

−1h) dµ(h).

Note that since ψε
i are linear combinations of characters on G, so are P ε

i , and
sp (P ε

i ) ⊂ sp (µ). Indeed, if ψε
i =

∑
j

cjχ
aj , then

P ε
i (g) =

∫
G

ψε
i (g

−1h) dµ(h) =
∫
G

∑
j

cjχ
aj (g−1h) dµ(h)

=
∑

j

cj

( ∫
G

χaj (h) dµ(h)
)
χaj (g−1) =

∑
j

cj

(∫
G

χaj (h) dµ(h)
)
χ−aj (g).

Thus, if a ∈ sp (P ε
i ), we have

0 �=
∫
G

P ε
i (g)χ−a(g) dσ(g) =

∑
j

cj

∫
G

χaj (h) dµ(h)
∫
G

χ−(aj+a)(g) dσ(g).

Therefore,
∫
G

χaj (h) dµ(h)
∫
G

χ−(aj+a)(g) dσ(g) �= 0 for some aj∈Γ . Consequently,

a = −aj , and
∫
G

χaj (h) dµ(h) =
∫
G

χ−a(h) dµ(h) �= 0. Hence a ∈ sp (µ).

Consider the measures µε
i defined by dµε

i = P ε
i dσ ∈M(G). Fubini’s theorem

implies

‖µε
i‖ =

∫
G

|P ε
i | dσ ≤

∫
G

∫
G

|ψε
i | d |µ|dσ =

∫
G

(∫
G

ψε
i dσ

)
d |µ| = ‖µ‖,

where d |µ| is the total variation of µ. For any f ∈ C(G) we have∫
G

f(g) dµε
i (g) =

∫
G

f(g)P ε
i (g) dσ(g) =

∫
G

f(g)
( ∫

G

ψε
i (g

−1h) dµ(h)
)
dσ(g)

=
∫
G

(∫
G

f(g)ψε
i (g

−1h) dσ(g)
)
dµ(h) =

∫
G

(∫
G

f(h g−1)ψε
i (g) dσ(g

−1)
)
dµ(h)

=
∫
G

(∫
G

f(h g−1)ψε
i (g) dσ(g)

)
dµ(h) =

∫
G

Kε
i (f)(h)dµ(h),
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since the Haar measure σ is inverse invariant. Theorem 3.3.2(e) implies that∫
G

f dµε
i =

∫
G

Kε
i (f) dµ −→

∫
G

f dµ

with respect to the ordering ‘≺’ in the family {Kε
i }. Since this is true for every

f ∈ C(G), and M(G) ∼= C(G)∗, it follows that the measures µε
i ∈M(G) converge

to µ in the weak∗-topology on M(G). �

3.4 Semigroups and semicharacters

This section provides a survey of the basic properties of semigroups and their
semicharacters.

A semigroup is a set S provided with an associative operation (a, b) �−→ ab,
a, b ∈ S. If it is commutative, i.e. if ab = ba for all a, b ∈ S, then S is said to
be commutative. In this case we use the additive notation, (a, b) �−→ a + b for
the semigroup operation, rather than the multiplicative one. In the sequel we will
consider only commutative semigroups.

An element ι ∈ S called identity element for S, if ι+ a = a for every a ∈ S.
If it exists, the identity element of S is uniquely defined. It is denoted by 0, and
is called the zero of S. Under the multiplicative notation, ι is the identity element
of S if ι a = a for every a ∈ S. In this case it is denoted by 1 or ı, and is called
the unit of S. An element a ∈ S is said to be invertible in S if a+ b = 0 for some
b ∈ S (resp. ab = ι under the multiplicative notation). In this case the element b
is said to be inverse to a. Every a ∈ S has at most one inverse, and if it exists it is
denoted by −a (resp. a−1 under the multiplicative notation). If S has an identity
element, and if every element of S is invertible, then, clearly, S is a group.

An element j ∈ S is called an idempotent element (or, just idempotent) of S,
if j + j = j (resp. j j = j under the multiplicative notation). Clearly, the identity
element is idempotent in any semigroup S. Note that if G is a group, and S is a
subsemigroup of G containing the identity element, then it is the only idempotent
of S.

Example 3.4.1. (a) The set of positive numbers (0,∞) is a semigroup under addi-
tion. It contains neither a zero element, nor idempotents. However, when endowed
with the multiplication, (0,∞) is a semigroup with unit 1.

(b) The sets [0,∞) = R+, and [0,∞] = R+ are semigroups under addi-
tion, with zero element 0. R+ has only one idempotent, 0, while [0,∞] has two
idempotents, 0 and ∞.

(c) The semigroup R+ = [0,∞) under multiplication has two idempotents,
0 and 1, while the semigroup (0,∞] under multiplication has two idempotents, 1
and ∞.
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(d) The sets Z, N, Z+ = N ∩ {0}, 2Z = {2n : n ∈ Z}, Z+ × Z+, R+ ×
R+,

{
(n,m) ∈ R+ × R+ : m ≥

√
n
}
,
{
(n,m) ∈ R+ × R+ : m ≥ 1

}
,
{
(n,m) ∈

R+ × R+ : n/m ≤
√

2
}

are semigroups under addition. So is the set {∞} ∪ Z+

endowed with the following operation: the usual addition on Z+, ∞x = x for
every x ∈ {∞} ∪ Z+.

(e) Let β be an irrational number. The set Z++Z+β = {n+mβ : n,m ∈ Z+}
is a semigroup in R+, while Z+ + Zβ = {n+mβ : n ∈ Z+, m ∈ Z} is a semigroup
in R.

(f) The set S = R+ endowed with the operation x · y = max{x, y} is a
commutative semigroup. Its idempotents are the characteristic functions κ[0,x)

and κ[0,x], x ∈ R+.

The set of all idempotents of a semigroup S is denoted by IS . It is a semigroup
with respect to the operation inherited from S. One can introduce a natural order
in IS , namely, ι1 ≺ ι2 if and only if ι1 + ι2 = ι1. Clearly, the zero element succeeds
every other idempotent of S. In the semigroup [0,∞] from Example 3.4.1(b) we
have 0 � ∞, while in the semigroups from Example 3.4.1(c) we have 1 � 0 in
[0,∞), and 1 � ∞ in (0,∞].

A subset H ⊂ S is called a subsemigroup of S, if it is closed under the
semigroup operation, i.e. if H+H ⊂ H . Equivalently, H is a subsemigroup of S if
the sum a+b of every pair of elements a, b ∈ H belongs to H . Given an idempotent
ι ∈ IS , the set Gι

S = {a ∈ S : a + ι = a and a+ b = ι for some b ∈ S} is a group
with identity element ι. Actually Gι

S is the maximal subgroup of S that contains
ι. If S possesses 0, then the set S∩ (−S) of invertible elements in S coincides with
G0

S , which is the maximal subgroup of S containing 0. It is called the group kernel
of S, and is denoted by GS . Clearly, if S does not possess idempotents other than
0, then GS is the only maximal subgroup of S.

Let S1 and S2 be two semigroups. A map ϕ : S1 −→ S2 is called a semigroup
homomorphism, if it respects the semigroup operation, i.e. if ϕ(a+b) = ϕ(a)+ϕ(b)
for any pair of elements a, b ∈ S. The set Hom (S1, S2) of semigroup homomor-
phisms from S1 to S2 is denoted also by H(S1, S2). A homomorphism that is
injective, i.e. for which ϕ(a) �= ϕ(b) whenever a �= b, is called an embedding of
S1 in S2. If, in addition, ϕ is surjective, i.e. if f(G1) = G2, then ϕ is called a
(semigroup) isomorphism between S1 and S2. In this case we write S1

∼= S2.

We say that S is a semigroup with cancellation law, if a+ c = b + c implies
a = b for any a, b, c ∈ S. The cancellation law holds on the set R+ with addition,
while it fails on R with the operation x · y = max{x, y}, considered in Example
3.4.1(f). It is easy to see that the cancellation law holds on every group. Clearly,
the cancellation law holds on any subsemigroup of a group. As the next proposition
shows, the converse is also true.

Proposition 3.4.2. A semigroup S with 0 can be embedded into a group if and only
if the cancellation law holds on S.
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Proof. If ϕ is an embedding of S into a group, then obviously ϕ(S) is a semigroup
with cancellation law, and so is S.

Conversely, assume that S is a semigroup with cancellation law. A group into
which S can be embedded can be obtained by applying the classical construction
for creating the set of integers by natural numbers. Indeed, the Cartesian product
S × S is a semigroup under the standard operation (a, b) + (c, d) = (a+ c, b+ d).
Consider on S×S the equivalence relation (a, b) ∼ (c, d) if and only if a+d = b+c.
It is clear that (a, b) ∼ (a, b) and that (a, b) ∼ (c, d) implies (c, d) ∼ (a, b) for every
(a, b), (c, d) ∈ S × S. The relation ’∼’ is also transitive, i.e. if (a, b) ∼ (c, d), and
(c, d) ∼ (k, l), then (a, b) ∼ (k, l). Indeed, (a+ l) + d = (a+ d) + l = (b+ c) + l =
(c + l) + b = (d + k) + b = (b + k) + d. The cancellation law on S implies that
a+ l = b+ k, i.e. (a, b) ∼ (k, l). Denote by ΓS the set of equivalence classes [(a, b)]
of elements (a, b) ∈ S × S, i.e. [(a, b)] =

{
(c, d) ∈ S × S : (c, d) ∼ (a, b)

}
. Define

an operation on ΓS by [(a, b)] + [(c, d)] = [(a + c, b+ d)]. It is easy to check that
this operation is associative and commutative. We claim that under this operation
ΓS is a group. Indeed, it is easy to see that for any c, d ∈ S the elements (c, c)
and (d, d) are equivalent, i.e. belong to one and the same equivalence class, say
[(c, c)] ∈ ΓS . Note that (0, 0) ∈ [(c, c)]. The cancellation law on S implies that
[(a, b)] + [(c, c)] = [(a+ c, b+ c)] = [(a, b)] for any a, b ∈ S. Hence, [(c, c)] = [(0, 0)]
is the identity element of ΓS , and the class [(b, a)] ∈ ΓS is inverse to [(a, b)] ∈ ΓS .
Therefore, ΓS is a group, and the map a �−→ [(a, 0)] embeds the semigroup S into
ΓS . �

The group ΓS constructed in Proposition 3.4.2 is called the group envelope
of S. Formally, one can think of its elements [(a, b)] as ‘differences’ a− b, so that
ΓS = {a− b : a, b ∈ S} = S−S. Therefore, any semigroup S with cancellation law
and 0 can be assumed to be a subsemigroup of its group envelope ΓS = S − S.

Example 3.4.3. Let β be an irrational number. Observe that Z + Zβ ∈ R is the
group envelope of the semigroups Z+ + Z+β and Z+ + Zβ. The group kernel of
Z+ + Z+β is {0}, while {0}+ Zβ is the group kernel of Z+ + Zβ.

A subsemigroup J of S is said to be a (semigroup) ideal of S , if J + S ⊂ J ,
i.e. if, given an element a ∈ J , its sum a+ b with any element b ∈ S belongs to J .
If J1 and J2 are two ideals of S, then the sets J1 ∩ J2 and J1 + J2 are also ideals
of S. It is easy to see that groups do not contain proper ideals.

Example 3.4.4. (a) Intervals of type (c,∞) and [c,∞), c ∈ R+, are ideals of the
semigroup R+ endowed with addition. In fact, every ideal of R+ is of this type,
which follows immediately from the fact that if J is an ideal of R+, and if r ∈ J ,
then J contains every s > r, since s = r + (s − r) and s − r ∈ R+. By the same
token, the ideals of the semigroup Z+ are sets of type {k ∈ N : k ≥ n}, where
n ≥ 0.

(b) Any set of type (x, y) + R+ × R+ is an ideal of the semigroup R+ × R+

endowed with addition. In fact, any ideal of R+ × R+ is a union of such ideals. If
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J is an ideal in R+ × R+, and (x, y) ∈ J , then (x, y) + R × R ⊂ J . In particular,
the sets (0,∞)×R+, R+× (0,∞), R+×R+ \ {(0, 0)} are ideals in R+×R+. The
ideals of the semigroup Z+ × Z+ have a similar description.

(c) The sets of type (0, y)+R×R+ are ideals of the semigroup R×R+ under
addition. It is easy to see that every ideal of R × R+ is of type R × (c,∞), or,
R× [c,∞), c ∈ R+. The ideals of the semigroup Z× Z+ are of similar type.

(d) The sets
(
Z+ + Z+β

)
\ Z+ and

(
Z+ + Z+β

)
\ Z+b are ideals in the

semigroup
(
Z+ + Z+β

)
under addition, where β is an irrational number.

Proposition 3.4.5. Any ideal J of a semigroup S that meets the group kernel GS

coincides with S. Therefore, the set JS = S \GS contains any proper ideal of S.

Proof. Assume that J ∩ GS �= Ø, and let a ∈ J ∩ GS . Then a possesses an
inverse element −a ∈ S, and therefore 0 = a − a = a + (−a) ∈ J . Consequently,
S = S + 0 ⊂ J ⊂ S, thus J = S as claimed. �

Example 3.4.6. (a) Let J ⊂ S be an ideal of a semigroup S. For any element a ∈ S,
the set a+ J = {a+ b, b ∈ J} ⊂ J is also an ideal of S.

(b) The complement JS = S \GS of the group kernel of S is an ideal of S.
Indeed, if a ∈ JS and b ∈ S is such that a + b �∈ JS , then a+ b ∈ GS , and hence
it possesses an inverse element −(a+ b) ∈ GS . Hence 0 = (a+ b) +

(
− (a+ b)

)
=

a +
(
b − (a + b)

)
, i.e. a is an invertible element of S, which is impossible since

a ∈ JS = S \GS .

Definition 3.4.7. A proper ideal of a semigroup S is called

(a) a maximal ideal of S if it is not contained in any other proper ideal of S.

(b) a minimal ideal of S if it does not contain any other ideal of S.

Theorem 3.4.8. Let S be a semigroup with 0. Then:

(i) JS = S \GS is the only maximal ideal of S.

(ii) If the cancellation law holds on S, then it does not have proper minimal
ideals.

Proof. (i) As we saw in Example 3.4.6(b), JS is an ideal in S. It is a maximal
ideal, in fact the only maximal ideal in S, since, by Proposition 3.4.5, JS contains
every proper ideal of S.

(ii) Suppose that the cancellation law holds on S, and let J be a proper
minimal ideal of S. Fix an a ∈ J and consider the ideal a + J ⊂ J . By the
minimality of J we have that J = a + J . Therefore, a = a + b for some b ∈ J .
By the cancellation property, b = 0, thus 0 ∈ J and therefore, J = S, contrary to
hypothesis on J . �
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Definition 3.4.9. Let S be a semigroup with the cancellation property.

(i) The strong hull [S]s of S is the set of elements a ∈ ΓS for which there is an
ma ∈ N such that maa ∈ S. If [S]s = S, then S is called a strongly enhanced
semigroup.

(ii) The weak hull [S]w of S is the set of elements a ∈ ΓS for which there is an
n ∈ N such that ma ∈ S for every m ≥ n. If [S]w = S, then S is called a
weakly enhanced semigroup.

Similarly, by replacing ΓS by any semigroup P containing S, one can define the
strong hull, [S]Ps , of S in P , the weak hull, [S]Pw, of S in P , and the notion of
strongly and weakly enhanced semigroups in P . One can readily see that S ⊂
[S]w ⊂ [S]s ⊂ ΓS , [S]s = [S]ΓS

s , and [S]w = [S]ΓS
w .

Example 3.4.10. Consider the semigroup S = {(m,n) : m,n > 0} ∪ {(0, n) : n ≥
2} ∪ {(2k, 0): k ≥ 0} ⊂ Z2. It is easy to see that ΓS = Z2, [S]w = {(m,n) : m ≥
0, n > 0} ∪ {(2k, 0): k ≥ 0}, and [S]s = {(m,n) : m ≥ 0, n ≥ 0}. Hence,
S �= [S]w �= [S]s, and therefore the semigroup S is neither weakly, nor strongly
enhanced.

Proposition 3.4.11. Let S be a semigroup, and a ∈ ΓS \ S. If m,n ∈ N are two
relatively prime integers, such that the elements na and ma belong to S, then
a ∈ [S]w.

Proof. Without loss of generality we can assume that m > n > 1. We claim that
under the hypotheses there is an N ∈ N such that every natural number M ≥ N
can be expressed in the form M = rn+ sm with some r, s ∈ N. If m = n+ 1, then
we can chooseN = n (n+1)+1 = n2+(n+1). IfM ≥ N andM = rn+s (n+1) for
some r, s ∈ N, then M+1 = (r−1)n+(s+1)(n+1), which proves the claim in the
case when r > 1. If r = 1, thenM = n+s (n+1), and henceM+1 = (s+1)(n+1).
ThusM+1 = (s+1)(n+1) = (s+1−n)(n+1)+n (n+1). Note that s+1−n > 0
since (s + 1)(n + 1) = M + 1 ≥ N > n (n+ 1). In general, kn+ lm = 1 for some
k, l ∈ Z\{0}, sincem and n are relatively prime integers. Without loss of generality
we may assume that k > 0. If so, then l < 0 and kn = (−l)m+1. Now the previous
argument applies to the integers (−l)m and (−l)m+ 1 = kn, and we obtain that
every natural number M >

(
(−l)m

)(
(−l)m+1

)
=
(
(−l)m

)
kn can be expressed

in the form M = r
(
(−l)m

)
+ s (kn) =

(
r (−l)

)
m+ (sk)n with some r, s ∈ N.

Assume now that m,n are relatively prime natural numbers, such that na
and ma belong to S. As we saw above, there is an N ∈ N such that every natural
number M > N has the form M = rn + sm with some r, s ∈ N. Therefore,
Ma = (rn + sm) a = r(na) + s(ma) ∈ S for every M > N , and consequently
a ∈ [S]w. �

Definition 3.4.12. A complex-valued function ϕ on S is called a semicharacter of
S, if ϕ(0) = 1, |ϕ| ≤ 1 and ϕ(a+ b) = ϕ(a)ϕ(b) for any a, b ∈ S.
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Semicharacters on S are complex homomorphisms ofG into D, the closed unit
disc in C, considered as a semigroup under multiplication. If ϕ is a semicharacter
of S and ι ∈ IS is an idempotent, then ϕ(ι) = ϕ(ι + ι) = ϕ(ι)ϕ(ι), wherefrom
ϕ(ι) is either 0 or 1. If ϕ(ι) = 0, then necessarily, ϕ ≡ 0 on the subgroup Gι

S ,
since ϕ(a) = ϕ(a+ ι) = ϕ(a)ϕ(ι) = 0 for every a ∈ Gι

S . If ϕ(ι) = 1, then |ϕ| ≡ 1
on Gι

S . Indeed, if a ∈ Gι
S , then a + b = ι for some b ∈ Gι

S . Hence 1 = ϕ(ι) =
ϕ(a + b) = ϕ(a)ϕ(b), and therefore, |ϕ(a)| = |ϕ(b)| = 1, since |ϕ(a)|, |ϕ(b)| ≤ 1.
In particular, |ϕ| ≡ 1 on the group kernel GS of S for any semicharacter ϕ of S,
since ϕ(0) = 1.

Example 3.4.13. (a) The function 1
∣∣
S

= κS ≡ 1 is a semicharacter of S, called the
trivial semicharacter of S.

(b) For any x ∈ R the function e−x is a semicharacter of the semigroup R+ =
[0,∞) endowed with addition. Likewise, the function n �−→ e−n is a semicharacter
of the semigroup Z+ under addition.

(c) The characteristic function κGS of the group kernel GS of S, defined by

κGS (a) =
{

1 when a ∈ GS ,
0 when a ∈ JS = S \GS

is a semicharacter of S.

A semicharacter ω of S with ω2 = ω is called an idempotent semicharacter
of S. We denote by IS the set of all idempotent semicharacters of S that are not
identically equal to 0 on S. It is easy to see that 0 or 1 are the only possible values
of any idempotent semicharacter.

Let Null (ω) be the null-set of a semicharacter ϕ of S, i.e. Null (ϕ) = {a ∈
S : ϕ(a) = 0}, and let supp (ϕ) be the support set of ϕ, i.e. supp (ϕ) = {a ∈
S : ϕ(a) �= 0}. The proof of the following lemma is straightforward.

Lemma 3.4.14. Let ω be an idempotent semicharacter of S. Then

(a) supp (ω) is a subsemigroup of S,

(b) Null (ω) is an ideal of S,

(c) supp (ω)∪Null (ω) = S,

(d) supp (ω)∩Null (ω) =Ø.

We define a natural partial order in the set IS , by letting ω1 ≺ ω2 if ω1ω2 =
ω1. Clearly, ω1 ≺ ω2 if and only if supp (ω)1 ⊂ supp (ω)2, or, equivalently, if
Null (ω1) ⊃ Null (ω2). The unit semicharacter κS ≡ 1 is a maximal element of IS ,
while the semicharacter κGS from Example 3.4.13(c) is the minimal element of
IS .

Example 3.4.15. (a) Consider the subsemigroup R+ endowed with addition. The
origin 0 is the only subsemigroup of R+, whose complement is an ideal of R+.
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Lemma 3.4.14 shows that the only non-trivial idempotent semicharacter of R+ is
the characteristic function, δ0 = κ{0}, of the origin 0. The same result holds for
the semigroup Z+.

(b) The sets R+×{0}, {0}×R+ and the origin (0, 0) are the only semigroups
of R+×R+ under addition, whose complement in R+×R+ is an ideal. By Lemma
3.4.14 the characteristic functions, κR+×{0}, κ{0}×R+ , and δ(0,0) = κ{(0,0)} of these
sets are the only non-trivial idempotent semicharacters of R+×R+ endowed with
addition. A similar result holds for the semigroup Z+ × Z+.

(c) The set R × {0} is the only semigroup of R × R+ under addition whose
complement in R×R+ is an ideal. Lemma 3.4.14 implies again that the character-
istic function κR×{0} is the only non-trivial idempotent semicharacter of R×R+.
A similar result holds for the semigroup Z× Z+.

(d) Let β be an irrational number. The sets Z+, Z+β and {0} are the only
semigroups whose complement in the semigroup Z++Z+β, endowed with addition,
is an ideal. Hence, their characteristic functions χZ+ , χZ+β and δ0 = χ{0} are the
only idempotent semicharacters of Z+ + Z+β.

3.5 The set of semicharacters

The set of semicharacters of a semigroup is a semigroup on its own. Here we
present some of its basic properties. All semigroups in this section are considered
to be with cancellation property and 0.

Let S be a semigroup with zero. The set H(S,D) of all semicharacters of S
is denoted also by H(S). It is easy to see that H(S) is a commutative semigroup
under the pointwise multiplication on S. Namely,

(
ϕ1ϕ2

)
(a) = ϕ1(a)ϕ2(a) for

every a ∈ S and ϕ1, ϕ2 ∈ H(S). The unit of H(S) is the semicharacter χS ≡ 1.
Clearly, the set IS of idempotent semicharacters of S is a subsemigroup of H(S).

Example 3.5.1. All semigroups below are considered to be endowed with addition.

(a) The set of semicharacters of S = Z+ is isomorphic to the closed unit disc
D, i.e. H(Z+) ∼= D. Indeed, any z ∈ D generates a semicharacter ϕz ∈ H(Z+),
defined by

ϕz(n) = zn, n ∈ Z+, 00 = 1.

Conversely, if ϕ ∈ H(Z+), then ϕ(1) ∈ D, and ϕ(n) = ϕ(1)n. Therefore, the
correspondence z −→ ϕz is an isomorphism between H(Z+) and D.

(b) H
(
Z+ ×Z+

) ∼= H(Z+)×H(Z+) ∼= D×D = D
2
, the closed bi-disc in C2.

Functions of type
(n,m) �−→ zn

1 z
m
2 ,

where z1, z2 ∈ D, and n,m ∈ Z+, are typical semicharacters of Z+ × Z+.
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(c) H
(
Z × Z+

) ∼= H(Z) × H(Z+) ∼= T × D, the solid torus in R3. Typical
semicharacters of Z× Z+ are the functions

(n,m) �−→ zn
1 z

m
2 ,

where |z1| = 1, z2 ∈ D, and n ∈ Z, m ∈ Z+.
(d) Let β be an irrational number, and let S = Z+ + Z+β. It is clear that

Z+ + Z+β ∼= Z+ ×Z+. Therefore, H(Z+ + Z+β) ∼= H(Z+ × Z+) ∼= D
2
, the closed

bi-disc in C2. Functions of type

n+mβ �−→ zn
1 z

m
2 ,

where z1, z2 ∈ D, and n,m ∈ Z+, are typical semicharacters on Z+ + Z+β.
(e) Likewise, Z+Z+β ∼= Z×Z+, and therefore, H(Z+Z+β) ∼= H(Z×Z+) ∼=

T×D, the solid torus in R3, where β is an irrational number. Typical semicharacters
on Z + Z+β are given by

n+mβ �−→ zn
1 z

m
2 ,

where |z1| = 1, z2 ∈ D, and n ∈ Z, m ∈ Z+.

A semicharacter ϕ of S with
∣∣ϕ(a)

∣∣ = 1 for every a ∈ S is called a character
of S. Clearly, any character is a homomorphism of S into the unit circle T. The set
H(S,T) of characters of S is a subgroup of H(S) with unit element κS ≡ 1. Every
ϕ ∈ H(S,T) has an inverse element, namely the character defined by ϕ−1(a) =
1/ϕ(a) = ϕ(a), a ∈ S.

Proposition 3.5.2. (a) The group H(S,T) of characters of S coincides with the
group kernel of the semigroup H(S).

(b) H(S) \H(S,T) is the only maximal ideal of the semigroup H(S).

(c) If S is not a group, then H(S) · κGS is the only minimal ideal of H(S).

Proof. (a) By definition, a semicharacter ϕ of S belongs to the group kernel of the
semigroup H(S) if and only if there is a ψ ∈ H(S) with ϕψ = 1. This happens if
and only if |ϕ| ≡ 1, i.e. if ϕ is a character of S.

(b) That H(S) \H(S,T) is the only maximal ideal of the semigroup H(S)
follows directly from part (a) and Theorem 3.4.8(iii).

(c) Clearly, H(S) ·κGS is an ideal of H(S). Let J ⊂ H(S) ·κGS be an ideal of
H(S). The conjugate function ϕ : ϕ(a) = ϕ(a) of any ϕ ∈ J is also a semicharacter
of S. Therefore |ϕ|2 = ϕϕ ∈ J . From |ϕ|2 ≡ 1 on GS , we have that |ϕ|2κGS =
κGS , since κGS is the characteristic function of GS . Hence, κGS = |ϕ|2χGS ∈ J ,
therefore H(S) ·κGS ⊂ J ⊂ H(S) ·κGS , and thus, H(S) ·κGS = J . Consequently,
H(S) · κGS is the minimal ideal of H(S). �

Proposition 3.5.2 and Theorem 3.4.8(ii) below imply that, in general, the
cancellation law does not hold on the semigroup H(S).
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Proposition 3.5.3. The group of characters, H(S,T), of S is isomorphic to the
dual group Γ̂S of the group envelope ΓS of S.

Proof. Every character χ ∈ H(S,T) can be extended uniquely to a character on
ΓS by

χ̃(b) =
χ(a)
χ(c)

whenever b = a− c ∈ ΓS , a, c ∈ S.

The extended function, χ̃, is of modulus 1, and is multiplicative on ΓS . Indeed, if
b, b1 ∈ Γ and b = a− c, b1 = a1 − c1, where a, a1, c, c1 ∈ S, then

χ̃(b+ b1) = χ̃((a+ a1)− (c+ c1)) =
χ(a+ a1)
χ(c+ c1)

=
χ(a)χ(a1)
χ(c)χ(c1)

=
(χ(a)
χ(c)

)(χ(a1)
χ(c1)

)
= χ̃(b) χ̃(b1).

Thus, the extended function χ̃ is a character of the group ΓS ⊃ S, as claimed.
Since the restriction of every character of ΓS on S is a character, we conclude that
H(S,T) ∼= Γ̂S , as claimed. �

For every semicharacter ϕ ∈ H(S) the modulus |ϕ| : |ϕ|(a) = |ϕ(a)| is a non-
negative semicharacter of S. Indeed, it is easy to see that 0 ≤ |ϕ|(a) ≤ 1, and
|ϕ|(a+ b) = |ϕ|(a) |ϕ|(b) for any a, b ∈ S.

Theorem 3.5.4. For every ϕ in H(S) there is a character χ ∈ H(S,T) ∼= Γ̂S, such
that ϕ can be expressed in the form ϕ = |ϕ|χ on S.

Proof. If S1 = supp (ϕ) = S\ Null (ϕ), let ΓS = S − S and ΓS1 = S1 − S1 be the
group envelopes of S and S1 respectively, equipped with the discrete topologies.
As a character on S1, the function ϕ′ : S1 → T, defined by ϕ′(a) = ϕ(a)/|ϕ(a)| can
be extended, by Proposition 3.5.3, to a character ϕ̃′ on the group ΓS1 . Further, as
a character of the group ΓS1 , ϕ̃′ can be extended on the larger group ΓS ⊃ ΓS1 , by
Theorem 3.1.11. The function χ = ϕ̃′|S is a character of S, and, clearly ϕ = |ϕ|χ
on S. �

The expression ϕ = |ϕ|χ from Theorem 3.5.4 is called a polar decomposition
of ϕ ∈ H(S) (cf. [AS1]). In general it is not unique. However, if ϕ(a) �= 0 for every
a ∈ S, it is, as the following proposition asserts.

Proposition 3.5.5. The polar decomposition ϕ = |ϕ|χ of a semicharacter ϕ ∈ H(S)
is uniquely determined if and only if ϕ(a) �= 0 for any a ∈ S.

Proof. Let ϕ = |ϕ|χ1 = |ϕ|χ2 for some χ1, χ2 ∈ Γ̂S . If ϕ(a) �= 0 on S, then
χ1(a) = χ2(a) for every a ∈ S. Consequently, χ1|S = χ2|S , thus χ1 = χ2, since S
generates ΓS .
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Conversely, assume on the contrary, that ϕ(a) = 0 for some a ∈ S, i.e.
that Null (ϕ) �= Ø. Denote by Γϕ the group envelope of the semigroup supp (ϕ) =
S\Null (ϕ) with the discrete topology, i.e. Γϕ = supp (ϕ)− supp (ϕ). We can extend
ϕ/|ϕ| to a character χ on Γϕ. Note that Γϕ �= ΓS since a �∈ Γϕ. As a character
on the semigroup Γϕ ⊂ ΓS , χ possesses an extension on ΓS by Theorem 3.1.11.
The set of all possible character extensions of χ on ΓS is isomorphic to the group
Γ⊥

ϕ
∼= ΓS/Γϕ, which certainly contains more than one element. Therefore, the

polar decomposition of ϕ is not unique. �
Proposition 3.5.6. If S ⊂ P are semigroups with cancellation law and 0, then every
semicharacter ϕ of S can be extended uniquely to a semicharacter on the strong
hull [S]Ps of S in P .

Proof. By Theorem 3.5.4 every ϕ ∈ H(S) has a polar decomposition ϕ = |ϕ|χ for
some character χ of ΓS . Hence ϕ is extendable on [S]Ps as an element of H

(
[S]Ps

)
if and only if |ϕ| is extendable there. For any a ∈ [S]Ps \S there is an ma ∈ N such
that maa ∈ S. The function

∣∣ϕ̃(a)
∣∣ =

∣∣ϕ(maa)
∣∣1/ma is a semicharacter extension

of |ϕ| on the strong hull [S]Ps of S in P . �
As an immediate corollary from Proposition 3.5.6 and Example 3.4.15(a)

we see that semigroups S whose strong hulls [S]Ps in P contain R+ do not have
non-trivial idempotent semicharacters besides κ{0}.

It is easy to see that IS = I[S]Ps
for every subsemigroup S ⊂ ΓS . Indeed,

any idempotent semicharacter ω of S can be extended uniquely to an idempotent
semicharacter on [S]Ps . Namely, for any a ∈ [S]Ps define ω̃(a) = ω(naa), where
naa ∈ S. Equivalently, the extension ω̃ on [S]Ps is given by

ω̃(a) =
{

1 when a ∈ [supp (ω)]Ps ,
0 when a ∈ [Null (ω)]Ps .

Proposition 3.5.7. The restriction mapping on the group kernel GS is a surjective
homomorphism from the semicharacter semigroup H(S) onto the dual group ĜS.

Proof. We only need to prove that H(S)|GS = ĜS . Given a χ ∈ ĜS , consider the
function ϕχ on S, defined by

ϕχ(a) =
{
χ(a) when a ∈ GS ,
0 when a ∈ JS = S \GS .

Clearly, ϕχ

∣∣
GS

= χ, and one can easily check that ϕχ is a semicharacter of S. �

Let H
(
S, [0, 1]

)
denote the semigroup of all non-negative semicharacters of

S. Clearly IS ⊂ H
(
S, [0, 1]

)
⊂ H(S). The modulus |ϕ| of any semicharacter ϕ of S

also belongs to H
(
S, [0, 1]

)
. Given an idempotent semicharacter ω ∈ IS , let Hω(S)

be the set of all ϕ ∈ H
(
S, [0, 1]

)
with the same support as the support of ω. Let

Γω ⊂ ΓS be the group envelope of supp (ω) with the discrete topology. Note that
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Hω

(
supp (ω)

)
is isomorphic to the setH

(
supp (ω), (0, 1]

)
of positive semicharacters

of the semigroup supp (ω). The uniqueness of the polar decomposition (Proposition
3.5.5) implies that H

(
S,D

∗) ∼= H
(
S, (0, 1]

)
× Γ̂S , where D

∗
= D \ {0}. Likewise,

H
(
supp (ω),D

∗) ∼= H
(
supp (ω), (0, 1]

)
× Γ̂ω = Hω(S)× Γ̂ω

for every idempotent semicharacter ω ∈ IS .

The symbol � is used below to indicate disjoint unions of sets.

Proposition 3.5.8. The semigroup H(S) of semicharacters of S can be expressed
as the disjoint union

H(S) ∼=
⊔

ω∈IS

H
(
supp (ω),D

∗) ∼= ⊔
ω∈IS

Hω(S)× Γ̂ω
∼=

⊔
ω∈IS

H
(
supp (ω), (0, 1]

)
×Γ̂ω.

(3.9)

Proof. Note that the polar decomposition, �χ, � ∈ H
(
supp (ω), (0, 1]

)
, χ ∈ Γ̂ω , of

non-vanishing on supp (ω) semicharacters is uniquely defined, and hence
{
�χ : � ∈

H
(
supp (ω), (0, 1]

)
, χ ∈ Γ̂ω

} ∼= Hω(S)× Γ̂ω. Therefore,

H(S) =
⋃
{�χ : � ∈ H

(
S, [0, 1]

)
, χ ∈ Γ̂S

}
=

⊔
ω∈IS

{
�χ : � ∈ Hω(S), χ ∈ Γ̂S

}
∼=

⊔
ω∈IS

{
�χ : � ∈ Hω(S), χ ∈ Γ̂ω

} ∼= ⊔
ω∈IS

Hω(S)× Γ̂ω.
�

Let κGS and κS ≡ 1 be the only idempotent semicharacters of S. Since
their supports are GS and S correspondingly, we have ΓκGS

= GS and ΓκS = ΓS .
Hence, HκGS

(S) ∼= H
(
GS , (0, 1]

) ∼= {κGS}, and HκS (S) ∼= H
(
S, (0, 1]

)
. Therefore,

H
(
supp (κGS ),D

∗) ∼= H
(
supp (κGS ), (0, 1]

)
× Γ̂κGS

∼= HκGS
(S)× ĜS

∼= {κGS} ×
ĜS , while H(supp

(
κS),D

∗)
= H(S,D

∗
) ∼=

(
H(S), (0, 1]

)
× Γ̂S respectively. In this

case the identity (3.9) becomes

H(S) ∼=
(
H
(
supp (κGS ), (0, 1]

)
× Γ̂κGS

)
�
(
H
(
supp (κS), (0, 1]

)
× Γ̂κS

)
=
(
{κGS} × ĜS

)
�
(
H(S, (0, 1])× Γ̂S

)
.

(3.10)

If, in addition, S has a trivial group kernel, so that GS = {0}, then {κGS}× ĜS =
(κ{0}, 1), thus H

(
S, [0, 1]

)
\H

(
S, (0, 1]

)
= {κ{0}}, and (3.10) becomes

H(S) ∼= (κ{0}, 1) �
(
H(S, (0, 1])× Γ̂S

) ∼= (
H(S, [0, 1])× Γ̂S

)
/
(
{0} × Γ̂S

)
, (3.11)

where we regard the points in the set
(
{0}× Γ̂S

)
/
(
{0}× Γ̂S

)
to be identified with

the semicharacter (κ{0}, 1). Clearly, κ{0} is the delta function δ0.

Definition 3.5.9. The set DG = ([0, 1]×G)/({0} ×G) is called the G-disc, or, the
(big) disc over G. The set D

∗
G = (0, 1]×G is the punctured G-disc.
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The points of the G-disc DG will be denoted by r � g, where r ∈ [ 0, 1] and
g ∈ G, under the agreement that we regard the points 0 � g, g ∈ G as identified.
The point obtained in this way is called the origin of the G-disc DG and is denoted
by ω, i.e. 0 � g = ω for every g ∈ G. Therefore, DG = [0, 1] �G/0 �G. If we denote
ω = 0 � G/0 � G ∈ DG, then D

∗
G = DG \ {ω}. The points of type 1 � g, g ∈ G,

are denoted simply by g. The non-negative number r is called the modulus of the
point r�g, and we write |r�g| = r. Clearly, the topological boundary of the G-disc
DG is the set 1 �G ∼= G.

Let the group kernel GS of S be {0}, and H
(
supp (ω), (0, 1]

) ∼= (0, 1] for
every idempotent semicharacter ω ∈ IS , ω �= δ0. In this case the identity (3.9)
becomes

H(S) =
{
(κ{0},κS)

}
�

⊔
ω∈IS\κ{0}

(0, 1]× Γ̂ω =
{
(κ{0},κS)

}
�

⊔
ω∈IS\κ{0}

D
∗
bΓω
, (3.12)

i.e. H(S) is the union of a single point and a family of punctured Γ̂ω-discs D
∗
bΓω

,
ω ∈ IS \ κ{0}.

Example 3.5.10. All semigroups below are considered to be endowed with addition.

(a) If S is the semigroup S = N × N ∪ (0, 0) ⊂ Z2, then GS = {(0, 0)}, and
ΓS = Z2. The only non-trivial idempotent semicharacter of S is κ{(0,0)} = δ(0,0).
According to (3.11),

H(S) ∼=
{
(κ{(0,0)}, 1)

}
�
(
H(S, (0, 1])× Γ̂S

)
∼=
{
(κ{(0,0)}, 1)

}
�
(
H(N× N ∪ (0, 0), (0, 1])× Ẑ2

)
∼=
{
((0, 0), (1, 1))

}
�
(
(0, 1]× T

)2
∼= {(0, 0)} � (D

∗
)2 ∼= D

2
/
((
{0} × D

)
∪
(
D× {0}

))
.

A typical non-trivial semicharacter of N× N ∪ (0, 0) ⊂ Z2 is given by

(n,m) �−→ zn
1 z

m
2 ,

where z1, z2 ∈ D, and n,m ∈ N. Observe that the points (z1, 0) and (0, z2)
generate the semicharacter κ(0,0) = δ(0,0), then the points of the set D

2
belonging

to {0} × D and D× {0} are identified.

(b) The semigroup S = Z×N∪(0, 0) has also a single non-trivial idempotent
semicharacter, namely, κ{(0,0)} = δ(0,0), while GS = {(0, 0)}, and ΓS = Z2. By
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(3.10) we have

H(S) ∼= {(κ{(0,0)},κS)} �H
(
S, (0, 1]

)
× Γ̂S

∼= {(κ{(0,0)}, 1)} �H
(
Z× N ∪ (0, 0), (0, 1]

)
× Ẑ2

∼=
{
(κ{(0,0)}, (1, 1))

}
�H

(
Z, (0, 1]

)
×H

(
N, (0, 1]

)
× T2

∼=
{
{1} × {0} × {(1, 1)}

}
� {1} × (0, 1]× T2

∼=
{
{0} × {(1, 1)}

}
� (0, 1]× T2

∼=
(
[0, 1]× T2

)
/
(
{0} × T2

) ∼= DT2 ,

the closed T2-disc. Consequently,H
(
Z×N∪(0, 0)

)
is bijective to the closed T2-disc

in R3. Typical non-trivial semicharacters of S are of type

(n,m) �−→ zn
1 z

m
2 ,

where |z1| = 1, z2 ∈ D, and n ∈ Z, m ∈ N. Note that every point of type
(z1, 0) ∈ T× {0} generates the semicharacter κ{(0,0)} = δ(0,0), which implies that
the points of the set T× D belonging to T× {0} are identified.

(c) Non-trivial idempotent semicharacters of the semigroup S = Z × N ∪
Z+×{0} are κ{(0,0)} = δ(0,0) and κZ+×{0}, while GS = {(0, 0)}, and ΓS = Z2. By
(3.12), we obtain

H(S) ∼=
{
(κ{(0,0)},κS)

}
�H

(
Z+, (0, 1]

)
× Ẑ �H

(
S, (0, 1]

)
× Γ̂S

= {(κ{(0,0)},κS)
}
� (0, 1]× T �H

(
S, (0, 1]

)
× Ẑ2

∼= {(κ{(0,0)},κS)
}
� D

∗ �H
(
S, (0, 1]

)
× T2 ∼= D � (0, 1]× T2.

Typical non-trivial examples of semicharacters on S are

(n,m) �−→ zn
1 z

m
2 , where |z1| = 1, z2 ∈ D, n ∈ Z, m ∈ N

and n �−→ zn
1 , where z1 ∈ D, n ∈ Z+.

Proposition 3.5.11. The set of semicharacters on R+ = R∩ [0,∞) under addition
is bijective to the G-disc DG, where G is the Bohr compactification, G = b(R), of
R, i.e.

H(R+) ∼= Db(R). (3.13)

Proof. Clearly, ΓR+ = R. The only non-trivial idempotent semicharacters of S =
R+ is κ{0}. In addition, H

(
R+, [0, 1]

) ∼= [0, 1]. Indeed, for every ρ ∈ [0, 1] the
function ϕ(x) = ρx belongs to H

(
R+, [0, 1]

)
. Conversely, we claim that every ϕ ∈

H
(
R+, [0, 1]

)
is of this type. Clearly, ρ = ϕ(1) ∈ [0, 1]. For any m,n ∈ N we have

ϕ(m/n)n = ϕ
(
(m/n)n

)
= ϕ(m) = ϕ(1)m, and therefore, ϕ(m/n) = ϕ(1)m/n. If
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λ is an irrational number, and p/q < λ < m/n, then ϕ(p/q) > ϕ(λ) > ϕ(m/n),
and hence

ϕ(1)λ = ϕ(1)supp/q{p/q<λ} = inf
p/q<λ

ϕ(1)p/q = inf
p/q<λ

ϕ(p/q) ≥ ϕ(λ)

≥ sup
m/n>λ

ϕ(m/n) = sup
m/n>λ

ϕ(1)m/n = ϕ(1)infm/n{m/n<λ} = ϕ(1)λ.

Therefore, ϕ(λ) = ρλ with ρ = ϕ(1) ∈ [0, 1]. Hence, H
(
R+, [0, 1]

) ∼= [0, 1], as
claimed. Together with (3.11) this implies that

H(R+) ∼= DcRd
= Db(R),

as claimed. �

It is easy to see that if the point r � g ∈ DG corresponds to a semicharacter
ϕ ∈ H(R+) with a polar decomposition |ϕ|χ, where |ϕ| ∈ H

(
R+, [0, 1]

)
and χ ∈

R̂d, then to the semicharacter |ϕ| ∈ H
(
R+, [0, 1]

) ∼= [0, 1] corresponds the point
r � 1 ∈ DG, r ∈ [0, 1], while to the character χ corresponds the point 1 � g ∈ DG.

A similar result holds for any semigroup of type Γ+ with Γ ⊂ R.

Proposition 3.5.12. Let Γ be a subgroup of Rd, and let Γ+ = Γ ∩ [0,∞). The set
of semicharacters H(Γ+) is bijective to the G-disc DG = [0, 1] �G/{0} �G, where
G = Γ̂ , i.e.

H(Γ+) ∼= DG = D bΓ . (3.14)

Proof. Let Γ be dense in R. Every semicharacter ϕ ∈ H(Γ+, [0, 1]) can be extended
to a semicharacter ϕ̃ in H(R+, [0, 1]) by setting, say, ϕ̃(x) = inf

{
ϕ(a) : a ≤ x, a ∈

Γ+

}
. This extension is unique, since if two semicharacters in H(R+, [0, 1]) coincide

on a dense subset of R+, they are equal. Hence H(Γ+, [0, 1])
∼= H(R+, [0, 1]) ∼= [0, 1]. Since the group kernel of Γ+ is {0}, and Γ+ does not
have non-trivial idempotent semicharacters, (3.11) implies that

H(Γ+) ∼=
(
H
(
Γ+, [0, 1])× Γ̂

)
/
(
{0} × Γ̂

) ∼= (
[0, 1]× Γ̂

)
/
(
{0} × Γ̂

)
= D bΓ .

If Γ is not dense in R, then Γ ∼= Z, and H(Z+) ∼= D, as we saw in Example
3.5.1(a). �

Corollary 3.5.13. If S is a semigroup in R+ such that [S]s = Γ+ for some subgroup
Γ of R, then H(S) is bijective to the G-disc DG, where G = Γ̂ .

Proof. Indeed, Proposition 3.5.12 implies, H(S) = H
(
[S]s

)
= H(Γ+) ∼= DG. �

Example 3.5.14. All semigroups below are considered to be endowed with addition.

(a) H
(
R+ × R+

) ∼= H(R+) × H(R+) ∼= Db(R) × Db(R) = D
2

b(R), the closed
b(R)-bi-disc.
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(b) Let Γi ⊂ R, i = 1, . . . , n be additive subgroups of R, and consider the
semigroup S = (Γ1)+ × (Γ2)+ × · · · × (Γn)+ ⊂ Rn

+. Proposition 3.5.12 yields

H(S) = H
(
(Γ1)+ × (Γ2)+ × · · · × (Γn)+

)
∼= H

(
(Γ1)+

)
×H

(
(Γ2)+

)
× · · · ×H

(
(Γn)+

) ∼= D bΓ1
× D bΓ2

× · · · × D bΓn
.

(c) H
(
R× R+

) ∼= H(R)×H(R+) ∼= b(R)× Db(R), the solid torus over b(R).
(d) Let S = (0,∞) × (0,∞) ∪ (0, 0) ⊂ R2. The only non-trivial idempotent

semicharacter of S is κ{(0,0)} = δ(0,0), while GS = {(0, 0)}, and ΓS = R2. As in
Example 3.5.10(a) we obtain that

H(S) ∼= {(κ{(0,0)},κS)} �
(
(0, 1])× b(R)

)2 ∼= {(ω, ω)} �
(
D

∗
b(R)

)2
∼=
(
Db(R)

)2
/
(
({ω} × Db(R)) � (Db(R) × {ω})

)
.

(e) The semigroup S = R× (0,∞)∪ (0, 0) also has a single non-trivial idem-
potent semicharacter, namely, κ{(0,0)}, GS = {(0, 0)}, while ΓS = R2. Similarly to
Example 3.5.10(b) we obtain that

H(S) ∼=
{
(κ{(0,0)},κS)

}
� (0, 1]× b(R)2 ∼=

(
[0, 1]× b(R)2

)
/
(
{0}× b(R)2

) ∼= Db(R)2 .

Consequently,H
(
R×(0,∞)∪(0, 0)

)
is bijective to the b(R)2-disc Db(R)2 , the closed

b(R)2-disc.
(f) Non-trivial idempotent semicharacters of the semigroup

S = R× (0,∞) ∪ [0,∞)× {0}

are κ{(0,0)} = δ(0,0) and κR+ × {0}, while GS = {(0, 0)}, and ΓS = R2. Similarly
to Example 3.5.10(c) we obtain

H(S) ∼=
{
(κ{(0,0)},κS)

}
�H

(
R+, (0, 1]

)
× R̂d �H

(
S, (0, 1]

)
× Γ̂S

= {(κ{(0,0)},κS)
}
� (0, 1]× b(R) �H

(
S, (0, 1]

)
× R̂2

d

∼= {(κ{(0,0)},κS)
}
� D

∗
b(R) �H

(
S, (0, 1]

)
× (b(R))2

∼= Db(R) � (0, 1]×
(
b(R)

)2
.

3.6 The semigroup algebra �1(S) of a semigroup

Any semigroup with cancellation law and 0 generates in a standard way its semi-
group algebra, described in this section. Its properties reflect the properties of the
original semigroup.

Let S be a commutative semigroup with cancellation law and 0, and let
ΓS = S − S be its group envelope. Consider the linear space �1(S) of complex
valued functions f on S, for which

‖f‖1 =
∑
a∈S

∣∣f(a)∣∣ <∞.
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Equivalently, �1(S) is the space of functions f on S with countable support, and
such that

∑
a∈ supp(f)

∣∣f(a)∣∣ <∞. It is well known, that under the pointwise operations

and with the norm
‖f‖1 =

∑
a∈S

∣∣f(a)∣∣,
�1(S) is a Banach space. The characteristic function, δa, of any element a ∈ S
obviously is in �1(S), since δa(a) = 1 and δa(b) = 0 for any b �= a. Clearly,
‖δa‖1 = 1.

Given f, g ∈ �1(S) the set supp (f) + supp (g) =
{
c ∈ S : c = a + b, a ∈

supp (f), b ∈ supp (g)
}

is at most countable, and the following inequalities hold:∑
c∈S

∣∣∣ ∑
a,c−a∈S

f(a) g(c− a)
∣∣∣ ≤∑

c∈S

( ∑
a,c−a∈S

∣∣f(a)∣∣∣∣g(c− a)∣∣)
≤
∑
a∈S

∑
b∈S

∣∣f(a)∣∣∣∣g(b)∣∣ =
∑
a∈S

∣∣f(a)∣∣∑
b∈S

∣∣g(b)∣∣ = ‖f‖1‖g‖1.
(3.15)

As consequences from them we obtain that

(i) for every c ∈ S the number
∑

a,b∈S

f(a) g(b) is finite, and therefore the convo-

lution f � g defined by (f � g)(c) =
∑

a,c−a∈S

f(a) g(b) of f and g, is a well-defined

function on S, and

(ii) ‖f � g‖1 =
∑
c∈S

∣∣(f � g)(c)∣∣ =
∑
c∈S

∣∣∣ ∑
a,c−a∈S

f(a) g(c− a)
∣∣∣ ≤ ‖f‖1‖g‖1.

In particular, (ii) implies that for any f, g ∈ �1(S) their convolution f �g also
belongs to �1(S). Note that δa � δb = δa+b for any a, b ∈ S. Indeed,

(δa � δb)(p) =
∑

c,p−c∈S

δa(c) δb(p− c) �= 0

only in the case when c = a and b = d, i.e. only if p = a+ b, and (δa � δb)(a+ b) =∑
c+d=a+b

δa(c) δb(d) = δa(a) δb(b) = 1. Hence, δa � δb is the characteristic function of

the point a+ b, i.e. δa � δb = δa+b.

Proposition 3.6.1. The space �1(S) with multiplication f � g and the unit element
δ0 is a commutative Banach algebra over C.

Proof. The inequality ‖f � g‖1 ≤ ‖f‖1‖g‖1 is established already in (ii). Given an
f ∈ �1(S), for any c ∈ S we have

(f � δ0)(c) =
∑

a,c−a∈S

f(a) δ0(c− a) =
∑

a+0=c

f(a) δ0(0) = f(c),
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thus f � δ0 = f for every f ∈ �1(S). Therefore, the function δ0 is indeed the unit
element of �1(S). �

Since
(∑

a∈S

f(a) δa
)
(c) =

∑
a∈S

f(a) δa(c) = f(c) δc(c) = f(c) for every c ∈ S,

we see that any f ∈ �1(S) can be expanded as a pointwise convergent series on
S, namely f =

∑
a∈S

f(a) δa =
∑

a∈ supp (f)

f(a) δa. Actually, this series also converges to

f in the �1(S)-norm. Indeed, since ‖f‖1 =
∑
a∈S

∣∣f(a)∣∣ <∞, for any ε > 0 we can

choose an n ∈ N for which∑
i>n

∣∣f(ai)
∣∣ = ‖f‖1 −

n∑
i=1

∣∣f(ai)
∣∣ < ε,

where {ai}∞i=1 is any enumeration of supp (f). Now,

∥∥∥f − n∑
i=1

f(ai) δai

∥∥∥
1

=
∥∥∥∑

i>n

f(ai) δai

∥∥∥
1

=
∑
c∈S

∣∣∣∑
i>n

f(ai) δai(c)
∣∣∣

≤
∑
c∈S

∑
i>n

∣∣f(ai) δai(c)
∣∣ =

∑
i>n

∣∣f(ai)δai(ai)
∣∣ =

∑
i>n

∣∣f(ai)
∣∣ < ε.

Theorem 3.6.2. Let S be a semigroup with cancellation law and 0. The maxi-
mal ideal space M�1(S) of the algebra �1(S) is homeomorphic to the set H(S) of
semicharacters of S with pointwise convergence.

Proof. Let m : �1(S) −→ C be a linear multiplicative functional of �1(S). We
associate with m the function ϕm : S −→ C, by ϕm(a) = m(δa). Clearly, ϕm(a+
b) = m(δa+b) = m(δa � δb) = m(δa)m(δb) = ϕm(a)ϕm(b) for every a, b ∈ S.
Also, ϕm(0) = m(δ0) = 1, since δ0 is the unit of �1(S). Moreover, ϕm maps S
into the closed unit disc D of C. Indeed,

∣∣ϕm(a)
∣∣ = |m(δa)| ≤ ‖δa‖1 = 1, since the

functional m is of unit norm. Hence, ϕm is a semicharacter of S, i.e. ϕm ∈ H(S).

Conversely, with any semicharacter ϕ of S we associate the linear functional
mϕ : �1(S) −→ C defined by mϕ(f) =

∑
a∈S

f(a)ϕ(a) for any f =
∑
a∈S

f(a) δa ∈

�1(S). This is a well-defined function in �1(S), since∣∣∣∑
a∈S

f(a)ϕ(a)
∣∣ ≤∑

a∈S

∣∣f(a)ϕ(a)
∣∣∣ ≤∑

a∈S

∣∣f(a)∣∣ = ‖f‖1 <∞.

Note that mϕ(δa) =
∑
c∈S

δa(c)ϕ(c) = ϕ(a). Clearly, mϕ(δ0) = ϕ(0) = 1, and

mϕ(δa � δb) = mϕ(δa+b) = ϕ(a+ b) = ϕ(a)ϕ(b) = mϕ(δa)mϕ(δb).
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Since the elements in �1(S) are �1(S)-limits of finite linear combinations of func-
tions δa, a ∈ S, it follows that mϕ is also multiplicative on �1(S). Hence, mϕ is a
linear multiplicative functional of �1(S).

It is easy to check that ϕmϕ = ϕ, andmϕm = m. Indeed, ϕmϕ(a) = mϕ(δa) =
ϕ(a) for any a ∈ S, i.e. ϕmϕ = ϕ. Since mϕm(δa) = ϕm(a) = m(δa) for every
a ∈ S, it follows that mϕm(p) = m(p) for every finite linear combination of
functions δa. By continuity, mϕm(f) = m(f) for any f ∈ �1(S). Consequently,
the correspondence M�1(S) −→ H(S) : m �−→ ϕm is one-to-one. If mα −→ m
in M�1(S), then ϕmα(a) = mα(δa) −→ m(δa) = ϕm(a) for every a ∈ S, i.e.
ϕmα −→ ϕm pointwise in H(S). Conversely, if ϕα −→ ϕ pointwise in H(S), then
mϕα(δa) = ϕα(a) −→ ϕ(a) = mϕ(δa). Hence, mϕα(δa) −→ mϕ(δa) for every
a ∈ S, and therefore, mϕα(p) −→ mϕ(p) for every finite linear combination p of
functions δa. Let f =

∑
a∈S

f(a) δa be an arbitrary function in �1(S). Given an ε > 0,

let
∥∥∥f − n∑

i=1

f(ai) δai

∥∥∥
1
< ε for some n, where ai ∈ supp (f). Now

∣∣mϕα(f)−mϕ(f)
∣∣

≤
∣∣∣mϕα(f)−mϕα

( n∑
i=1

f(ai) δai

)∣∣∣+ ∣∣∣mϕα

( n∑
i=1

f(ai) δai

)
−mϕ

( n∑
i=1

f(ai) δai

)∣∣∣
+
∣∣∣mϕ

( n∑
i=1

f(ai) δai

)
−mϕ(f)

∣∣∣
≤
∥∥∥f − n∑

i=1

f(ai) δai

∥∥∥
1
+
∣∣∣ n∑

i=1

f(ai)mϕα(δai)−
n∑

i=1

f(ai)mϕ(δai)
∣∣∣

+
∥∥∥f − n∑

i=1

f(ai) δai

∥∥∥
1

≤
n∑

i=1

∣∣f(ai)
∣∣∣∣ϕα(δai)− ϕ(δai)

∣∣+ 2ε,

thus mϕα(f) −→ mϕ(f) for every f ∈ �1(S), and hence mϕα −→ mϕ in M�1(S).
ConsequentlyM�1(S) andH(S) are homeomorphic spaces under the corresponding
topologies. �

Since every character on S belongs to H(S), the group of characters H(S,T)
∼= Γ̂S is a subset of M�1(S). Note that if S = ΓS , then M�1(ΓS)

∼= H(ΓS) =
H(S,T) ∼= Γ̂S .

Let ϕ ∈ H(S) be a semicharacter of S, and let ϕ = �χ be its polar de-
composition, where � = |ϕ| ∈ H(S, [0, 1]) is the modulus of ϕ, and χ ∈ Γ̂S (cf.
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Theorem 3.5.4). Every z in the closed upper half-plane C+ generates a semichar-
acter ϕ(z) ∈ H(S) by

ϕ(z)(a) = χ(a) �(a)−iz.

Note that if x ∈ R, then ϕ(x)(a) = χ(a) �(a)−ix, and therefore,
∣∣ϕ(x)(a)

∣∣ =∣∣χ(a)
∣∣∣∣�(a)−ix∣∣ = 1, i.e. ϕ(x) ∈ Γ̂S . If ϕ ∈ H(S,T) is a character of S, then |�| ≡ 1,

thus ϕ(z) = χ = ϕ for every z ∈ C+. If ϕ is an idempotent semicharacter of S,
then �−iz = �, and therefore, ϕ(z) = χ� = ϕ for every z ∈ C+. If ϕ = ωχ, where
ω is an idempotent semicharacter, and χ is a character of S, then supp (ϕ(z)) =
supp (ω). If ϕ is not an idempotent semicharacter, then the mapping z �−→ ϕ(z) is
a continuous embedding of C+ into H(S) ∼=M�1(S), such that ϕ(i) = ϕ.

Lemma 3.6.3. Let ϕ be a non-idempotent semicharacter of S. For any f ∈ �1(S)
the mapping z �−→ f̂(ϕ(z)) is a bounded analytic function in C+, continuous up to
the boundary R.

Proof. If f =
∑
a∈S

f(a) δa ∈ �1(S), and ϕ is a non-idempotent semicharacter of S,

then

f̂(mϕ) = mϕ(f) = mϕ

(∑
a∈S

f(a) δa
)

=
∑
a∈S

f(a)mϕ(δa) =
∑
a∈S

f(a)ϕ(a),

where mϕ ∈ H(S) is the linear multiplicative functional of �1(S) associated with
ϕ. Hence,

f̂
(
mϕ(z)

)
=
∑
a∈S

f(a)ϕ(z)(a) =
∑
a∈S

f(a)χ(a) �(a)−iz. (3.16)

This is an absolutely convergent Dirichlet series in z ∈ C+. Indeed, since∣∣�(a)−iz∣∣= ∣∣�(a)y − ix∣∣= ∣∣�(a)y∣∣∣∣�(a)−ix∣∣= ∣∣�(a)y∣∣∣∣e−ix ln�(a)∣∣= |�(a)y∣∣ ≤ 1

for any z ∈ C+, we see that∣∣∣∑
a∈S

f(a)χ(a) �(a)−iz
∣∣∣ ≤∑

a∈S

∣∣f(a)∣∣ = ‖f‖1 <∞.

Consequently, f̂
(
mϕ(z)

)
is a bounded analytic function in C+, which is continuous

on C+, as claimed. �
Proposition 3.6.4. Let ϕ be a semicharacter of S. Denote by Hϕ(S,T) the set of
semicharacters ψ of S with the same support as ϕ, and for which |ψ|

∣∣
supp ϕ

≡ 1.
Then ∣∣f̂(m)

∣∣ ≤ sup
χ∈Hϕm (S,T)

∣∣f̂(mχ)
∣∣

for every f ∈ �1(S) and m ∈M�1(S).
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Proof. Let f ∈ �1(S), and let ϕ = �χ ∈ H(S). By the previous lemma F (z) =
f̂
(
mϕ(z)

)
is a bounded and analytic function in C+. By the Phragmen-Lindelöf

theorem, F (z) attains the maximum of its modulus on the boundary R. Therefore,
for any z ∈ C we have∣∣F (z)

∣∣ ≤ sup
z∈R

∣∣F (z)
∣∣ = sup

y=0

∣∣f̂(mϕ(x+iy)

)∣∣
= sup

x∈R

∣∣∣∑
a∈S

f(a)ϕ(x+iy)(a)
∣∣∣ = sup

x∈R

∣∣∣∑
a∈S

f(a)χ(a) �(a)−ix
∣∣∣.

Note that for every x ∈ R the function χ�−ix is a character of the semigroup
supp (ϕ) ⊂ S, and

∑
a∈S

f(a)χ(a) �(a)−ix =
∑
a∈S

f(a)
(
χ�−ix

)
(a) = mχ�−ix(f) =

f̂
(
mχ�−ix

)
. Consequently,∣∣F (z)

∣∣ ≤ sup
x∈R

∣∣f̂(mχ�−ix)
∣∣ ≤ sup

ψ∈Hϕ(S,T)

∣∣f̂(mψ)
∣∣

for any z ∈ C+. Therefore, for any m ∈ M�1(S) we have∣∣f̂(m)
∣∣ =

∣∣ϕm(f)
∣∣ =

∣∣ϕ(i)
m (f)

∣∣ =
∣∣f̂(m

ϕ
(i)
m

)
∣∣ ≤ sup

ψ∈Hϕm (S,T)

∣∣f̂(mψ)
∣∣. �

Theorem 3.6.5. The group H(S,T) ∼= Γ̂S of characters of S is a boundary for the
algebra �1(S).

Proof. Clearly, �1(S) is a Banach subalgebra of �1(ΓS). Let f ∈ �1(S) and p =
n∑

i=1

f(a) δai ∈ �1(S) be a finite linear combination of functions δai , ai ∈ S. The

spectral radius formula (1.6) yields

sup
m∈M�1(S)

∣∣p̂(m)
∣∣ = lim

n→∞
n

√
‖p �n‖�1(S) = lim

n→∞
n

√
‖p �n‖�1(ΓS)

= sup
m∈M�1(ΓS)

∣∣p̂(m)
∣∣ = sup

ϕ∈bΓS

∣∣p̂(mϕ)
∣∣ = sup

ϕm∈H(S,T)

∣∣p̂(m)
∣∣,

where p �n = p � p � · · · � p︸ ︷︷ ︸
n

. Since the finite linear combinations of functions δa, a ∈

S are �1(S)-dense in �1(S), their Gelfand transforms are uniformly dense onM�1(S)

in �̂1(S), and therefore, sup
m∈M�1(S)

∣∣f̂(m)
∣∣ ≤ sup

ϕm∈H(S,T)

∣∣f̂(m)
∣∣ for any f ∈ �1(S).

Hence, the group Γ̂S
∼= H(S,T) of characters of S is a closed boundary for the

algebra �1(S), as claimed. �
In fact, as the next corollary shows, H(S,T) is the smallest closed boundary

for �1(S), i.e. it is its Shilov boundary.
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Corollary 3.6.6. The group of characters H(S,T) ∼= Γ̂S of S is homeomorphic to
the Shilov boundary ∂�1(S) of �1(S).

Proof. Since, by Theorem 3.6.5 the group H(S,T) ∼= Γ̂S is a boundary for �1(S),
then �̂1(S) ∼= �̂1(S)|bΓS

⊂ C(Γ̂S). Note that for every g ∈ Γ̂S the g-shift Tg : Γ̂S −→
Γ̂S : χ �−→ χg = χ(g)χ generates an automorphism T ∗

g of �̂1(S). Therefore,
T ∗

g

(
�̂1(S)

)
= �̂1(S), and Tg

(
∂(�1(S)

)
= ∂�1(S). This is impossible if ∂�1(S) �=

Γ̂S . �
If ω is an idempotent semicharacter of S, then Proposition 3.6.4 and Theorem

3.6.5 imply that sup
ϕm∈Hω(S,T)

∣∣f̂(m)
∣∣ ≤ sup

ϕm∈ bΓS

∣∣f̂(m)
∣∣ for every f ∈ �1(S).

3.7 Notes

A standard reference on topological groups is the classical book by Pontryagin [P4].
Results on functions and measures on topological groups can be found in many
books (e.g. [G1], [L4], [R5]). Bochner-Fejér’s operators were considered initially in
the almost periodic setting (e.g. [P2]). The semigroup algebras �1(S) of topological
semigroups are studied in [AS1, HZ, H2], among others.



Chapter 4

Shift-invariant algebras on
compact groups

In this chapter we introduce shift-invariant algebras, the main objects of this
book. These are uniform algebras on a compact connected group G, consisting
of continuous functions on G, whose spectrum is contained in a semigroup S of
the dual group Ĝ. If Ĝ is a subgroup of R, and S ⊂ R+, then the maximal ideal
space of the corresponding shift-invariant algebra is the G-disc, or, big disc over
G. In this chapter we describe two important models of shift-invariant algebras,
namely, by the means of almost periodic functions on R, and by the means of H∞-
functions on the unit circle. The set of automorphisms, and the peak groups of
shift-invariant algebras are also characterized. Extensions on G-discs and groups
of several classical theorems of Complex Analysis, such as Radó’s theorem for null-
sets and the Riemann theorem for removable singularities of analytic functions,
are stated and proved. It is shown that these extensions hold for some semigroups,
while in general they fail. In principle we state all results for general shift-invariant
algebras AS , though they apply automatically to the particular cases of algebras
APS of almost periodic functions, and of H∞

S -algebras. Asymptotically almost
periodic functions combine the properties of classical almost periodic functions on
R, and of continuous functions on R that vanish at infinity.

4.1 Algebras of S-functions on groups

Let G be a compact connected abelian group and let S∗ = {χa}a∈S be a sub-
semigroup of the dual group Ĝ, containing the unit element χ0 ≡ 1. We will
assume that the index set S is provided with the additive operation, induced from
the multiplication in S∗. In particular, we will assume that χaχb = χa+b for ev-
ery a, b ∈ S. Therefore, S becomes a semigroup isomorphic to S∗. We suppose
that S∗ − S∗ = Ĝ, i.e. that S∗ generates the dual group Ĝ. The group envelope
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ΓS = S − S ∼= S∗ − S∗, which we will denote in this section by Γ instead of by
ΓS , in this case coincides with Ĝ. In the sequel we will not distinguish between S
and S∗ [resp. between Γ and Ĝ], and will denote S∗ rather by S [resp. Ĝ by Γ ].
Since Ĝ separates the points of G, so does S∗. If the group envelope Γ = S−S of
S differs from Ĝ, then we could replace, right from the beginning, Ĝ by the group

Γ , and the dual group ̂̂
G ∼= G – by the dual Γ̂ of the group Γ .

Definition 4.1.1. Finite linear combinations over C of characters χa ∈ Ĝ with
a ∈ S are called S-polynomials on G. Continuous functions on G with sp (f) ⊂ S
are called S-functions on G.

Equivalently, f ∈ C(G) is an S-function on G if and only if its Fourier
coefficients

cfa =
∫
G

f(g)χa(g) dσ (4.1)

are zero whenever a ∈ ΓS \ S. The set of all S-functions on G we denote by
AS . Obviously, any S-polynomial is an S-function on G. Theorem 3.3.2 yields the
following

Proposition 4.1.2. The algebra AS of continuous S-functions on G coincides with
the algebra of uniform limits of S-polynomials on G.

As a consequence we see that AS is a uniform algebra on the group G.

Example 4.1.3. (a) Algebras AS of S-functions are natural generalizations of poly-
disc algebras A(Tn), n ∈ N. Actually, if G = Tn, Γ = Ĝ = Zn, and S = Zn

+, the
algebra AS on G is exactly the polydisc algebra AZn

+
= A(Tn) on Tn. Z+-functions

on Tn are restrictions on Tn of usual analytic functions in n variables in the poly-
disc D

n
, continuous up to the boundary Tn.

(b) For any a ∈ S ⊂ R denote by ψa ∈ H∞ the singular function ϕa(z) =
eia (1 + z)/(1− z) on the unit disc D. Denote by H∞

S the Banach algebra on
D generated by the functions ψa(z), a ∈ S, equipped by the sup-norm on D.
Clearly, H∞

S ⊂ H∞ ∩ C(DG \ {1}). Note that the fractional linear transforma-
tion ϕ(z) = i (1 + z)/(1− z) maps the unit disc D conformally onto the extended
upper half plane C+. Moreover, eϕ(z) = ei (1 + z)/(1− z), and

(
eϕ(z))a =

eia (1 + z)/(1− z) = ψa(z) for every a ∈ S. Hence,H∞
S is isometrically isomorphic

to the algebra AS of S-functions on G = Γ̂ .

(c) The Riemann surface RLog of the function Log(z), z ∈ C, admits the
following parametrization: RLog =

{
(r, θ) : 0 < r < ∞, θ ∈ R

}
, i.e. RLog ≈

(0,∞) × R. The space RLog
∼=
(
[0,∞) × R

)
/
(
{0} × R

)
, which contains RLog as

a dense subset, admits the parametrization RLog =
{
(r, θ) : 0 ≤ r < ∞, θ ∈

R
}
, with the agreement that (0, θ1) = (0, θ2) for every θ1, θ2 ∈ R. The mapping

(r, θ) �−→ Log(reiθ) = ln r + iθ is a continuous lifting of Log(z) on RLog, which
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maps RLog homeomorphically onto C. Every natural power zn of z can be lifted
on RLog as z̃n(r, θ) = rneinθ. The functions z̃n can be extended on RLog by
letting z̃n

(
{0} ×R

)
/
(
{0} ×R

)
= 0. Consider the portion RLog(D) of RLog above

the closed unit disc D, i.e. RLog(D) =
{
(r, θ) ∈ RLog : r ≤ 1

}
. Any function z̃n

maps RLog(D) continuously onto D. We can define also functions z̃a on RLog(D)
for every real number a ≥ 0, namely, z̃a(r, θ) = raeiaθ, which map RLog(D)
continuously onto D. Let S be an additive subsemigroup of R+, containing 0, and
let G = Γ̂S . Clearly, the algebra generated by the functions z̃a, a ∈ S, on RLog(D)
is isometrically isomorphic to the shift-invariant algebra AS of S-functions on G.

(d) Let Γ = Z2 = Z × Z be the two-dimensional integer lattice in R2. The
group of characters of Γ is the two-dimensional torus G = T2. For a fixed irrational
number β > 0 we set Γ β

+ = {(n,m) ∈ Z2 : βn+m ≥ 0} ⊂ R+. The uniform algebra
Aβ on T2 generated by the characters χa, a ∈ Γ β

+ is also a shift-invariant algebra,
which contains the bi-disc algebra (e.g. [T2]).

We recall that for any semigroup S, 0 ∈ S ⊂ R+ the algebra APS(R) of
almost periodic S-functions on R is generated by the characters e−iat, a ∈ S. Since
the correspondence e−iat �−→ χa extends to an isometric isomorphism between
the algebras APS(R) and AS ⊂ C(b(R)), we obtain

Proposition 4.1.4. If G is a solenoidal group, and S is an additive subsemigroup of
Γ = Ĝ ⊂ R, containing 0, then the algebra AS of S-functions on G is isometrically
isomorphic to the algebra APS(R) of almost periodic S-functions on R.

Similarly, if S is a semigroup of Rn containing the origin, then the alge-
bra APS(Rn) of almost periodic S-functions on Rn is generated by the charac-
ters ei(sk1x1 + sk2x2 + · · ·+ sknxn), (sk1 , sk2 , . . . , skn) ∈ S. The correspondence
ei(sk1x1 + sk2x2 + · · ·+ sknxn) �−→ χ(sk1 ,sk2 ,...,skn ) extends to an isometric iso-
morphism between the algebras APS(Rn) and AS ⊂ C

(
b(R)n

)
. Therefore we have

the following

Proposition 4.1.5. Let G be a compact abelian group, whose dual group Ĝ is a
subgroup of Rn, and let S be an additive subsemigroup of Rn, containing the origin
(0, 0, . . . , 0), then the algebra AS of S-functions on G is isometrically isomorphic
to the algebra APS(Rn) of almost periodic S-functions on Rn.

Example 4.1.6. (a) Let G = R2 and S = R+ × R+. The algebra APR2
+
(R2) of

almost periodic R2
+-functions on R2 consists of continuous functions on R2 that

can be approximated uniformly on R2 by exponential polynomials of type∑
ak1,k2e

i(sk1x1 + sk2x2), sk1 , sk2 ∈ R+.

These are precisely the analytic almost periodic functions in two real variables.
(b) If G = R2 and S = R×R+, then the functions in the algebra APR×R+(R2)

of almost periodic R× R+-functions on R2 are approximable uniformly on R2 by
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exponential polynomials of type
∑

ak1,k2e
i(sk1x1 + sk2x2) with sk1 ∈ R, sk2 ∈

R+. These are precisely the almost periodic functions on R2, analytic in the second
variable x2.

(c) Let G be a compact abelian group. Denote by Γτ the dual group Γ = Ĝ
equipped by some topology τ , so that Γτ is a locally compact topological group,
and for which Γ̂τ is bijective to Γ̂ . Then C(G) ∼= AP (Γτ ). If S is a semigroup of
Γ , then the shift-invariant algebra AS is isometrically isomorphic to the algebra
APS(Γτ ) of almost periodic S-functions on Γτ .

We can begin the construction of the algebra AS with the semigroup S,
instead of with G. Let S be a semigroup with cancellation law and 0, and let
Γ = S − S be the group envelope of S. Unless otherwise indicated, in the sequel
we will assume that besides the identity Γ has no elements of finite orders and is
equipped with the discrete topology. The dual group G = Γ̂ of Γ , is a compact
connected abelian group. By Pontryagin’s duality theorem, Ĝ ∼= Γ . Therefore,
every a ∈ S generates a unique character χa = a∗ on G, and the semigroup S is
isomorphic to the semigroup S∗ = {a∗ = χa : a ∈ S} ⊂ Ĝ. Note that if S = R+,
then Γ = Rd, and the group G = R̂d coincides with the Bohr compactification
b(R) of R.

Definition 4.1.7. A uniform algebra A on G is said to be shift-invariant if the
g-shifts fg, defined as fg(h) = f(gh), g ∈ G, of every element f ∈ A belong to A.

Any algebra of type AS is shift-invariant. Indeed, since χa
g(h) = χa(h g) =

χa(h)χa(g), any g-shift χa
g of a character χa, a ∈ S, belongs to AS , and so does the

g-shift Pg of any S-polynomial P (h) =
n∑

k=1

ckχ
ak(h). Since any S-function f ∈ AS

is uniformly approximable on G by S-polynomials, the g-shifts fg of S-functions
f also belong to AS . Therefore, AS is shift-invariant, as claimed. The converse is
also true. Namely

Proposition 4.1.8. A uniform algebra A on a compact group G is shift-invariant
on G if and only if A is an algebra of type AS for some subsemigroup S ⊂ Ĝ.

Proof. By the preceding remark, we only need to prove the necessity. Let A be a
shift-invariant algebra on G, and let S be the semigroup in Γ generated by the set⋃
f∈A

sp (f). Definition 4.1.1 implies that A ⊂ AS .

We claim, conversely, that if f is a fixed function in A, then any character
χa ∈ Ĝ with a ∈ sp (f) belongs to A. Indeed, for any fixed a ∈ sp (f) the function

f̃a(g) = cfg
a =

∫
G

fg(h)χa(h) dσ(h) (4.2)
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is uniformly approximable by its Riemann sums∑
j

fg(h∗j )χ
a(h∗j )∆hj .

Each one of these Riemann sums is a function in g that belongs to A, since fg(h∗j ) =
f(g h∗j ) = fh∗

j
(g) ∈ A. Therefore, f̃a ∈ A. By

f̃a(g) =
∫
G

fg(h)χa(h) dσ(h) =
∫
G

f(g h)χa(h) dσ(h)

==
∫
G

f(h)χa(h g−1) dσ(h) = χa(g)
∫
G

f(h)χa(h) dσ(h) = cfa χ
a(g),

we have that χa ∈ A, as claimed. Hence for every a ∈ S the corresponding char-
acter χa belongs to A. Proposition 4.1.2 implies that AS ⊂ A. Consequently,
A = AS . �

Any algebra APS(R) of almost periodic S-functions on R, where S is a semi-
group of R is invariant under R-shifts, i.e. the function ft(x) = f(x + t) belongs
to A for any f ∈ A and t ∈ R. Restricted to jı(R) ⊂ G, the arguments from the
proof of Proposition 4.1.8 imply the following

Proposition 4.1.9. A uniform algebra A ⊂ AP (R) is invariant under R-shifts if
and only if A is an algebra of type APS(R) for some semigroup S ⊂ R.

4.2 The maximal ideal space of a shift invariant algebra

In this section we describe the maximal ideal spaces of shift-invariant algebras
on compact groups. Let S be a semigroup with cancellation law and 0, and let
Γ = S − S be its group envelope. Denote by G the dual group of Γ .

Theorem 4.2.1. The maximal ideal space MAS of the algebra AS is homeomorphic
to the semigroup H(S) of semicharacters of S.

Proof. If m ∈ MAS is a linear multiplicative functional on AS , then the function
ϕm(a) = m(χa), a ∈ S, is a semicharacter on S. Indeed, ϕm(a+ b) = m(χa+b) =
m(χaχb) = ϕm(a)ϕm(b), and also |ϕm(a)| = |m(χa)| ≤ ‖χa‖ = 1.

Conversely, if ϕ ∈ H(S) is a semicharacter of S, then the function mϕ :

mϕ

( n∑
k=1

ckχ
ak

)
=

n∑
k=1

ckϕ(ak) is a linear multiplicative functional on the algebra

PS(G) of S-polynomials on G. Note that ϕ also generates a linear multiplicative

functional m1
ϕ on the algebra �1(S) ⊃ PS(G). Let p(g) =

n∑
k=1

ckχ
ak(g). For any
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γ ∈ Γ̂ and a ∈ S ⊂ Γ we have χ̂a(mγ) = mγ(χa) = χa(γ), and therefore,

p̂(γ) =
n∑

k=1

ckχ
ak(γ). Since G = Γ̂ is a boundary of �1(S) by Theorem 3.6.5, for

every p ∈ PS(G) we have∣∣mϕ(p)
∣∣ =

∣∣m1
ϕ(p)

∣∣ ≤ max
ψ∈M�1(S)

∣∣p̂(ψ)
∣∣ = max

γ∈bΓ

∣∣p̂(mγ)
∣∣ = max

γ∈G bΓ

∣∣mγ(p)
∣∣

= max
γ∈G bΓ

∣∣ n∑
k=1

ckγ(ak)
∣∣ = max

γ∈G bΓ∼=G

∣∣ n∑
k=1

ckχ
ak(γ)

∣∣ = ‖p̂‖C(G) = ‖p‖AS .

Consequently, ‖mϕ‖ ≤ 1 on the dense subset PS(G) of AS . Hence, mϕ can be
extended by continuity from PS(G) on its uniform closure AS as a linear mul-
tiplicative functional. Therefore, the mapping m �−→ ϕm is a bijection between
MAS and H(S), and ϕ �−→ mϕ is its inverse mapping.

Let mα −→ m in the Gelfand topology of MAS , i.e. mα(f) −→ m(f) for
every f ∈ AS . Hence ϕmα(a) = mα(χa) −→ m(χa) = ϕm(a) for every a ∈ S, i.e.
ϕmα converges to ϕm pointwise on S. Conversely, if ϕmα(a) −→ ϕm(a) for every
a ∈ S, thenmα(χa) −→ m(χa), and hencemα(p) −→ m(p) for every S-polynomial
p. Since the set PS(G) of S-polynomials is uniformly dense in AS , one can see that
mα(f) −→ m(f) for every f ∈ AS . Consequently, MAS is homeomorphic to the
semigroup H(S) equipped with pointwise convergence. �

As a consequence from Theorem 4.2.1 and (3.10), we obtain

MAS
∼= H(S) ∼=

⊔
ω∈IS

Hω(S)× Γ̂ω
∼=

⊔
ω∈IS

H
(
supp (ω), (0, 1]

)
× Γ̂ω. (4.3)

Theorem 4.2.2. The Shilov boundary ∂AS of the algebra AS is homeomorphic to
the group G.

Proof. Since AS ⊂ C(G), it is clear that G is a boundary forAS . Suppose that ∂AS

is a proper subset of G. Let h ∈ G\∂AS, and let g ∈ ∂AS . Then h g−1∂AS is also a
boundary for AS , since AS is shift-invariant on G. Consequently, ∂AS ∩ (h ∂AS) is
a boundary of AS . Note that h ∈ h g−1∂AS , while h /∈ ∂AS . Hence the boundary
∂AS ∩ (h ∂AS) is a proper subset of ∂AS , in contradiction with its minimality
property. �

The Gelfand transform, f̂ , of any element f ∈ AS is a continuous function on
MAS , and the Gelfand transform ÂS = {f̂ : f ∈ AS} of AS is a uniform algebra
on MAS . It is easy to show that a shift-invariant algebra AS is antisymmetric if
and only if the group kernel GS is trivial, i.e. if S ∩ (−S) = {0} (cf. [AS1, T2]).
As Arens and Singer [AS1] have shown , AS is a maximal algebra if and only if
GS = {0}, S ∪ (−S) = Ĝ, and the partial order generated by the semigroup S in
Γ = Ĝ is Archimedean (cf. [AS1, G1]). In this case, Γ ⊂ R and S = Γ+. If Γ is
dense in R, then G = Γ̂ is a solenoidal group. If Γ is not dense in R, then it is
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isomorphic to Z, and G is isomorphic to the unit circle T. In this case we also have
Ĝ ∼= Z, S ⊂ Z+, and therefore the elements of the algebraAS can be approximated
uniformly on T by the usual polynomials. Hence they can be extended on the open
unit disc D as analytic functions, continuous up to the boundary. Therefore AS is
isometrically isomorphic to the disc algebra A(D) and MAS = D.

In the sequel we will identify MAS with H(S) without mention. Since H(S)
is a semigroup under pointwise multiplication (ϕψ)(a) = ϕ(a)ψ(a), a ∈ S, so is
the maximal ideal space MAS of AS , and χ0 ≡ 1 is its unit element.

Let P be a semigroup with S ⊂ P ⊂ ΓS . Since AS ⊂ AP , we may consider
that ÂS ⊂ ÂP ⊂ C(MAP ). Since ΓS = Ĝ, the Gelfand transforms of the characters
χa, a ∈ S, separate the points of MAP , and therefore, MAP ⊂ MAS , while
∂AP = G. However, in general MAP �=MAS .

If G is a compact group with Ĝ ⊂ R and Γ+ = Γ ∩ R+, then AΓ+ is called
the G-disc algebra, or, the big disc algebra on G. The Γ+-functions are called
also analytic functions on G, analytic Γ+-functions on G, or, generalized analytic
functions in the sense of Arens-Singer on G. From (3.13) it follows that S = R+ =
R ∩ [0,∞), then

MR+
∼= H(R+) ∼=

(
[0, 1]×G

)
/
(
{0} ×G

)
= [0, 1] �G/{0} �G = DG, (4.4)

where G = b(R) is the Bohr compactification of R, i.e. MAR+
is bijective with

the closed G-disc DG. This bijection is materialized by the polar decomposition
mapping m �−→ ϕm = |ϕm|χm �−→ r � g, where r is the corresponding real
number to |ϕm| ∈ H

(
R+, [0, 1]

) ∼= [0, 1], while g ∈ G ∼= Γ̂d is the element in G
that corresponds to χm ∈ Γ̂d. The topology near any point ϕ in H(R+) agrees
with the topology near the corresponding point r � g ∈ DG. Indeed, if ϕ ∈ H(R+)
is such that ϕ �= χ{0}, then ϕ �= 0 on R+. Let r�g, r > 0, and rα �gα be the points
corresponding to ϕ and ϕα in DG. Clearly, ϕα −→ ϕ if and only if |ϕα| −→ |ϕ|,
and ϕα/|ϕα| −→ ϕ/|ϕ| pointwise on R+, i.e. if and only if rα −→ r and gα −→ g.
Likewise, ϕa −→ κ{0} = χ0 ∈ H(R+) if and only if |ϕa| −→ 0 pointwise on
R+ \ {0}, i.e. if and only if rα −→ 0, wherefrom rα � gα −→ ω, the origin of DG.
We have obtained the following

Proposition 4.2.3. Let G = b(R) be the Bohr compactification of R. The maximal
ideal space MAR+

of the G-disc algebra AR+ is homeomorphic to the G-disc DG =
[0, 1] �G/{0} �G.

A similar argument applies to any G-disc algebra AΓ+ with Γ ⊂ R.

Theorem 4.2.4. Given a subgroup Γ of Rd, the maximal ideal space MAΓ+
of the

G-disc algebra AΓ+ is homeomorphic to the G-disc DG = [0, 1] �G/{0} �G, where
G = Γ̂ .

Proof. Indeed, Proposition 3.5.12 yields MAΓ+
∼= H(Γ+) ∼= DG. �
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If S is a semigroup of R+, Γ = S−S, and G = Γ̂ , then DG =MAΓ+
⊂MAS

and ∂A = G = Γ̂S , by one of the remarks following Theorem 4.2.2. However, in
general, MAS does not necessarily coincide with DG.

Example 4.2.5. Theorem 4.2.1 and Examples 3.5.10 and 3.5.14 yield:

M(AZ+×Z+)
∼= H(Z+ × Z+) ∼= D

2
, the closed bidisc in C2.

M(AR+×R+ )
∼= H(R+ × R+) ∼= D

2

b(R), the closed b(R)-bi-disc.

M(A(Γ1)+×(Γ2)+×···×(Γn)+ )
∼= H

(
(Γ1)+× (Γ2)+×· · ·× (Γn)+

) ∼= D bΓ1
×D bΓ2

×· · ·×
D bΓn

, where Γi ⊂ R, i = 1, . . . , n are additive subgroups of R.

M(AZ×Z+)
∼= H(Z× Z+) ∼= T× D, the solid torus in R3.

M(AR×R+)
∼= H(R× R+) ∼= b(R)× Db(R), the solid b(R)-torus.

M(AN×N∪(0,0))
∼= H(N × N ∪ (0, 0)) ∼= (0, 0) ∪ (D

∗ × D
∗
) ∼= D

2
/
((
{0} × D

)
∪(

D× {0}
))

.

M(A(0,∞)×(0,∞)∪(0,0))
∼= H

(
(0,∞) × (0,∞) ∪ (0, 0)

) ∼= (ω, ω) ∪
(
D

∗
b(R)

)2 ∼=
(Db(R))2/

(
({ω} × Db(R)) ∪ (Db(R) × {ω})

)
,

M(AZ×N∪(0,0))
∼= H

(
Z× N ∪ (0, 0)

) ∼= DT2 , the closed T2-disc.

M(AR×(0,∞)∪(0,0))
∼= H(R× (0,∞) ∪ (0, 0)) ∼= Db(R)2 , the closed b(R)2-disc.

If β is an irrational number, then:

M(A(Z++Z+β)
∼= H(Z+ + Z+β) ∼= D

2
, the closed bi-disc.

M(A(Z++Zβ)
∼= H(Z+ + Zβ) ∼= T× D, the solid torus in R3.

The Gelfand transforms f̂ of an element f ∈ AΓ+ is continuous in the G-
disc DG = MAΓ+

, and A(DG) = ÂΓ+ = {f̂ : f ∈ AΓ+} is a uniform algebra on

DG. Clearly, f̂ is a continuous extension of f on DG. In particular, the Gelfand
transform of any χa ∈ Γ+ is the function χ̂a(r � g) = rag(a), which maps DG

into D. Every Γ+-polynomial P (g) =
n∑

k=1

ckχ
ak(g), can be extended on DG by

P̂ (r � g) =
n∑

k=1

ckχ̂ak(r � g), where ak ∈ Γ+ and r�g ∈ DG. Since Γ+-functions f on

G are uniform limits of Γ+-polynomials on the Shilov boundary ∂AΓ+ = G, their
Gelfand transforms f̂ are approximable by Gelfand transforms of Γ+-polynomials
P̂ on DG with respect to the uniform norm ‖f‖ = max

r�g∈DG

∣∣f(r � g)∣∣ in C(DG).
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Example 4.2.6. (a) The Gelfand transforms of the G-disc algebra A(Dg) =
ÂΓ+(DG) of analytic Γ+-functions are natural generalizations of the disc algebra
A(D). Actually, with G = T and Γ = Ĝ = Z, the algebra A(DG) coincides with the
Z+-disc algebra A(DT) = ÂZ+ = A(D). Indeed, in this case DG = D, r �g = reiθ is
the standard trigonometric form of z ∈ C, and χn(r�g) = χn(r eiθ) = rneinθ = zn

for every n ∈ Z+. Therefore, analytic Z+-functions are standard analytic functions
in D continuous up to the boundary T. Similarly, A(DT2) = ÂZ+×Z+ is the bi-disc
algebra of analytic functions in two complex variables on the closed unit bi-disc
in C2.

(b) Let S be a semigroup in R+. Since, as we saw in Example 4.1.3(b),
H∞

S
∼= AS , we have that MH∞

S

∼= DG.

(c) The maximal ideal space of the algebra from Example 4.1.3(c), generated
by the functions z̃a, a ∈ S, onRLog(D) is the G-disc DG. Consequently, the portion
of RLog(D) above the closed unit disc D of RLog can be embedded densely and
homeomorphically into the G-disc DG.

(d) The algebra Aβ from Example 4.1.3(d) can be obtained in a different
way. Consider the compact set D

′
=
{
(z1, z2) ∈ C2 : |z1| ≤ 1, |z1| = |z2|β

}
which

contains T2. The set D′ = D
′ \

(
T2 ∪ {(0, 0)}

)
is a three-dimensional manifold

with one-dimensional complex structure (i.e. a CR-manifold). Let Ãβ be the set
of continuous functions on D

′
which are CR-functions on D′ (see [G13]). It can

be shown that the restriction of Ãβ on T2 coincides with the algebra Aβ . Since
D

′
is the space of maximal ideals of Aβ , we have that D

′
= DT2 , and the Gelfand

transform of Aβ coincides with Ãβ .

(e) Let Γ be a subgroup of Rd. The algebra APΓ+(R) of almost periodic
Γ+-functions is isometrically isomorphic to the algebra AΓ+ of analytic functions
on b(R). Therefore, the maximal ideal space of APΓ+(R) is homeomorphic to the
closed b(R)-disc Db(R).

(f) Let S = Rn
+ ⊂ Rn. The algebra APa(Rn) of analytic almost periodic

functions on Rn is isometrically isomorphic to the algebra ARn
+

of analytic Rn
+-

functions on the group b(R)n. Therefore, the maximal ideal space of the algebra
of analytic almost periodic functions in n variables is homeomorphic to the closed
b(R)-polydisc D

n

b(R).

(g) Let Γi ⊂ R, i = 1, . . . , n be additive subgroups of R, and S = (Γ1)+ ×
(Γ2)+ × · · · × (Γn)+ ⊂ Rn

+. The algebra AP(Γ1)+×(Γ2)+×···×(Γn)+(Rn) of (Γ1)+ ×
(Γ2)+×· · ·× (Γn)+-almost periodic functions on Rn is isometrically isomorphic to
the algebra A(Γ1)+×(Γ2)+×···×(Γn)+ of analytic functions on the group Γ̂1×Γ̂2×· · ·×
Γ̂n. Therefore, the maximal ideal space of the algebra of (Γ1)+×(Γ2)+×· · ·×(Γn)+-
almost periodic functions in n variables is homeomorphic to the closed polydisc
D bΓ1

× D bΓ2
× · · · × D bΓn

.



126 Chapter 4. Shift-invariant algebras on compact groups

We recall that the strong hull [S]s of a semigroup S is the set of elements
a ∈ Ĝ for which there is an ma ∈ N such that maa ∈ S. The weak hull [S]w of S is
the set of elements a ∈ ΓS for which there is an ma ∈ N such that na ∈ S for every
n ≥ ma (cf. Definition 3.4.9). Clearly, S ⊂ [S]w ⊂ [S]s ⊂ Γ . Let S be a semigroup
of Γ , and suppose that P is an additive subsemigroup of Γ , that contains 0, and
is a subset of [S]s. Proposition 3.5.6 implies that every semicharacter ϕ ∈ H(S)
can be extended uniquely on P as a semicharacter in H(P ). Therefore, we have

Proposition 4.2.7. If S is a semigroup with cancellation law and 0, and P is a
subsemigroup of Γ with S ⊂ P ⊂ [S]s ⊂ Γ , then MP = MS.

Proof. Since AS ⊂ AP , the restriction mapping r : H(P ) −→ H(S) : ϕ �−→ ϕ
∣∣
S

maps MAP
∼= H(P ) continuously into MAS

∼= H(S). Since by Proposition 3.5.6
every semicharacter on S admits a unique semicharacter extension on P , r is a
bijection of H(P ) onto H(S). �

Since S ⊂ [S]w ⊂ [S]s, Proposition 4.2.7 implies

Corollary 4.2.8. MA[S]w
= MAS for every semigroup S ⊂ Ĝ.

Since, according to Corollary 4.2.8, MAS = MA[S]w
= MA[P ]w

= MAP , we
have the following

Corollary 4.2.9. Let S, P ⊂ Ĝ be two subsemigroups of Ĝ such that S − S =
P − P = Ĝ. If [S]w = [P ]w, then MAS = MAP .

Proposition 4.2.10. Let a ∈ Ĝ \ S, and Sa = S + Z+a ⊂ Ĝ. Then MASa
= MAS

if and only if a ∈ [S]w.

Proof. We need to prove the necessity part only, since the sufficiency follows from
Corollary 4.2.8. Assume that MASa

= MAS for some a ∈ Ĝ. Note that in this
case the element (−a) does not belong to S. Otherwise, the non-invertible function
χ−a in AS will be invertible in ASa , in contradiction with the assumptionMASa

=
MAS . The same is true for all elements of type (−n) a, n ∈ N. First we will show
that a ∈ [S]s. Suppose, on the contrary, that Na∩S = Ø. We have Sa = S+Z+a =
Ja∪Z+a with Ja = S \{0}+Na, which is a semigroup ideal in Sa. The assumption
Na ∩ S = Ø implies that Ja ∩ (Z+a) = Ø. The functions

γ1(c) =
{

1 when c ∈ Z+a,
0 when c ∈ Ja,

and

γ2(c) =
{

1 when c = 0,
0 when c ∈ Sa \ {0},

are two different elements in H(Sa) = H(Sa,D) with one and the same restriction
on S, namely,

γ(c) =
{

1 when c = 0,
0 when c ∈ S \ {0}.
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Because of
χ̂c(m1) = γ1(c) = γ2(c) = χ̂c(m2) for all c ∈ S,

for the linear multiplicative functionals mi ∈ MAS corresponding to γi, i =
1, 2, we have m1 = m2. Since γ1 �= γ2 on Sa, we must have χ̂a(m1) = γ1(a) �=
γ2(a) = χ̂a(m2). Consequently, m1 �= m2 as elements of MASa

, contradicting the
assumption that MASa

= MAS . This completes the proof that Na ∩ S �= Ø, i.e.
that a ∈ [S]s, as claimed.

Suppose that a �∈ [S]w for some a ∈ Ĝ. Fix a prime number n. Proposition
3.4.11 implies that n divides every m ∈ N with m ≥ n and ma ∈ S. Define the set

S1 = {b ∈ Ĝ : b + c = k a for some c ∈ S and k ∈ N}.

Note that S1 =
(
N (na)−S

)
∩S is a semigroup of S containing 0. Its complement

S \ S1 is a semigroup ideal of S. We claim that S \ S1 �= Ø. Let u, v ∈ S be such
that a = u− v. If we assume that v ∈ S1, then by definition there is a w ∈ S with
v + w = p a, p ∈ N. Then u + w = a+ v + w = (p + 1) a, i.e. u ∈ S1. According
to Proposition 3.4.11 there is an N ∈ N such that Ma =

(
r p + s (p + 1)

)
a =

r (v + w) + s (u + w) ∈ S for every M > N , in contradiction with the supposed
a �∈ [S]w. Hence S \ S1 �= Ø, as claimed.

One can see that Sa \ (Na+ S1) is a semigroup ideal in Sa and if n does not
divide q ≥ n, then (qa+ S1) ∩ S = Ø. Note that N (na) ∩ S ⊂ S1. The function

γ0(c) =
{

1 when c ∈ S1,
0 when c ∈ S \ S1

belongs to H(S) and can be extended to an element of H(Sa) by

γ3(c) =

{
γ0(c) when c ∈ S,
e2kπi/n when c = k a, k ∈ N.

Also the function

γ4(c) =
{
γ0(c) when c ∈ S,
1 when c = ka, k ∈ N

can be extended as a semicharacter on Sa. Now γ3 and γ4 are two different elements
in H(Sa), whose restrictions on S are equal to γ0. This is impossible since H(Sa) =
MASa

= MAS = H(S). Consequently, a ∈ [S]w. �
Corollary 4.2.11. Under the assumptions of Proposition 4.2.10, MAS = MAP if
and only if [S]w = [P ]w.

Proof. If MAS = MAP , then a ∈ [S]w for every a ∈ P \ S by Proposition 4.2.10.
Consequently, P ⊂ [S]w and hence [P ]w ⊂ [S]w. The opposite inclusion follows
immediately from Corollary 4.2.9. �
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A uniform algebra A is said to be analytic on its maximal ideal space MA

if any function f ∈ Â that vanishes on an open subset of MA \ ∂A vanishes
identically on MA. In this section we will assume that all algebras are analytic.
Let G be a compact abelian group and let S be a generating subsemigroup of the
dual group Γ = Ĝ. It is easy to see that if a shift-invariant algebra AS on G is
analytic, then S does not contain subgroups other than {0}, i.e. S ∩ (−S) = {0}.

Proposition 4.2.12. Let S ⊂ P ⊂ Ĝ be two subsemigroups of Ĝ such that S−S = Ĝ
and MAP = MAS . If the algebra ASa is analytic for some a ∈ P \ S, then
MAS = MASa

, and therefore, a ∈ [S]w by Proposition 4.2.10.

Proof. ClearlyMAS ⊂MASa
for any a ∈ P \S, since χ̂a is continuous onMAP =

MAS . Suppose that MAS �=MASa
for some a ∈ P \ S and let a = c− d for some

c, d ∈ S. The natural inclusions AS ↪→i− ASa ↪→ AP generate adjoint mappings
MAP −→ MASa

−→i∗− MAS on the respective maximal ideal spaces. Note that
by MAS = MAP , we have that i∗(MASa

) = MAS . We claim that the mapping
i∗ : MASa

−→ MAS is injective. Observe that the restriction of i∗ on MAS ⊂
MASa

is the identity mapping onMAS . Assume that for some m0 ∈MAS the set
(i∗)−1(m0) contains a point, say m1, different from m0. Since m0(χ̂b) = m1(χ̂b)
for every b ∈ S, then necessarily m0(χ̂a) �= m1(χ̂a). Thus

m0(χ̂a+d) = m0(χ̂c) = m1(χ̂c) = m1(χ̂a+d),

and therefore,

m0(χ̂a)m0(χ̂d) = m0(χ̂c) = m1(χ̂a)m1(χ̂d) = m1(χ̂a)m0(χ̂d).

Hencem0(χ̂d) = m0(χ̂c) = 0, sincem0(χ̂a) �= m1(χ̂a), i.e. m0 ∈ Null (χ̂c). Because
of (i∗)−1

(
Null (χ̂c)

)
= NullSa(χ̂c) =

{
m ∈ MASa

: m(χ̂c) = 0
}
, i∗ maps the

set MASa
\ NullSa(χ̂c) homeomorphically onto the set MAS\ Null (χ̂c), i.e. the

restriction of i∗ on the set MASa
\NullSa(χ̂c) is the identity mapping. By the

analyticity of Sa, MASa
\NullSa(χ̂c) is dense in MASa

. Let mα −→ m1, mα ∈
MASa

\NullSa(χ̂c)=MAS\Null (χ̂c). If we choose a convergent subsequencemαβ
∈

MAS\Null (χ̂c), then mαβ
−→ m1, contrary to mαβ

= (i∗)(mαβ
) −→ (i∗)(m1) =

m0 �= m1. �

If Γ ⊂ R, and [S]s = Γ+, then Proposition 4.2.7 implies that MAS
∼=

MAΓ+
∼= DG, the G-disc over G = Γ̂ . We have obtained the following corona

type results.

Corollary 4.2.13. Let Γ ⊂ R, G = Γ̂ , and let S be a semigroup of R with [S]s =
Γ+. Then:

(a) MAS
∼= DG, thus the shift-invariant algebra AS does not have a C+-corona.

Namely, the mapping j̃ı densely embeds the upper half-plane C+ into its max-
imal ideal space MAS .
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(b) The algebra APS(R) of almost periodic S-functions on R does not have a
C+-corona. Namely, the mapping j̃ı densely embeds the upper half-plane C+

into its maximal ideal space MAPS(R).

(c) The algebra H∞
S does not have a C+-corona. Namely, j̃ı(C+) is dense in the

maximal ideal space MH∞
S

.

Corollary 4.2.14. Let Γi ⊂ R, i = 1, . . . , n be dense additive subgroups of R,
Γ = Γ1 × Γ2 × · · · × Γn and G = Γ̂1 × Γ̂2 × · · · × Γ̂n. If S is a semigroup of Rn

with [S]s = (Γ1)+ × (Γ2)+ × · · · × (Γn)+, then:

(a) The shift-invariant algebra AS does not have a Cn
+-coronaMAS

∼= D bΓ1
×

D bΓ2
× · · · × D bΓn

. Namely, the mapping
(
j̃
(1)
ı , j̃

(2)
ı , . . . , j̃

(n)
ı

)
densely embeds

the Cartesian product Cn
+ into its maximal ideal space MAS .

(b) The algebra APS(R) of almost periodic S-functions, on Rn does not have
a Cn

+-corona. Namely, the mapping
(
j̃
(1)
ı , j̃

(2)
ı , . . . , j̃

(n)
ı

)
densely embeds Cn

+

into its maximal ideal space MAPS(Rn).

Corollary 4.2.15. If S is a semigroup in Rk
+ with [S]R

k

s = Rk
+, then the maximal

ideal space MAPS(Rk) of the algebra APS(Rk) of almost periodic S-functions on
Rk is homeomorphic to the b(R)-polydisc D

n

b(R)
∼= MAP

Rk
+

(Rk) = MAPa(Rk).

Corollary 4.2.14 implies that in the setting of Corollary 4.2.15 the Cartesian
product C+×C+× · · · ×C+ ⊂ Ck can be embedded densely into the closed b(R)-
polydisc D

n

b(R) ∼ MAPS(Rk) = MAPa(Rk). Therefore, the algebra APS(Rk) does
not have a (C+)k-corona.

The third part of Corollary 4.2.13 implies that the algebra H∞
S does not

have a D-corona either. Consider the mapping π : MH∞ −→ D defined by π(ϕ) =
ϕ(id) ∈ D. It is easy to see that π is a bijection on the set D̃ = π−1(D) ⊂MH∞ .
Therefore, D̃ and D are homeomorphic sets. Since H∞

S ⊂ H∞, there is a mapping
πS : MH∞ −→MH∞

S
so that πS ◦π−1 is the standard embedding of D intoMH∞

S
.

If ϕ(x) = i (1 + z)/(1 − z), then πS ◦ π−1 = j̃ı ◦ ϕ : D −→ MH∞
S

, and therefore,
πS ◦ π−1 maps D densely into MH∞

S
. By Corollary 4.2.13(c) it follows that H∞

S

does not have a D-corona, as claimed.

Theorem 4.2.16. If G is a solenoidal group, and S is an additive subsemigroup
of Γ+ ⊂ R+ that contains 0 and generates Γ = Ĝ, then there is a continuous
mapping from MH∞ onto the closed G-disc DG.

Proof. The maximal ideal space of the algebra H∞
S is the G-disc DG. Since H∞

S
∼=

AS ⊂ AΓ+
∼= H∞

Γ+
⊂ H∞, the restriction mapping r : m �−→ m|H∞

S
maps MH∞

into MH∞
S

∼= MAS = DG. If ϕz is the evaluation functional on H∞ at some
point z ∈ D, then r(ϕz) ∈ DG. Hence, r(MH∞) ⊃ DG. Since D∗

G
∼= C+ is dense

in the G-disc DG, and r(MH∞) is closed in DG, then r(MH∞) ⊂ DG too, i.e.
r(MH∞) = DG. �
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4.3 Automorphisms of shift-invariant algebras

The study of automorphisms of a uniform algebra is of considerable importance for
the algebra. In this section we describe automorphisms of shift-invariant algebras
on compact groups.

Let G be a compact abelian group and let S be a subsemigroup generating its
dual group Ĝ, containing the unit element χ0 ≡ 1, and such that S ∩ (−S) = {0}.
Hence, ΓS = S − S = Ĝ, thus, S separates the points of G, and S contains no
non-trivial subgroups. Therefore, the shift-invariant algebra AS is antisymmetric.

An automorphism of an algebra A is any isometric isomorphism Φ of A onto
itself. The adjoint mapping Φ∗ of Φ defined by

(
Φ∗(m)

)
(f) = m

(
Φ(f)

)
, is a home-

omorphism of the maximal ideal space MA onto itself.

For example, adjoint mappings Φ∗ of automorphisms Φ of the disc algebra
A(D) = AZ+ are Möbius transformations, i.e.

Φ∗(z) = C
z − z0
1− z0z

, |C| = 1, |z0| < 1.

Note that if the origin 0 is a fixed point of a Möbius transformation Φ∗, then
Φ∗(z) = Cz for some constant C with |C| = 1. As the following lemma shows, the
same fact holds for automorphisms of the subalgebra A0(D) =

{
f ∈ A(D) : f ′(0) =

0
}

of the disc algebra A(D). It is easy to check that if a Möbius transformation

ψ(z) = C
z − z0
1− z0z

belongs to A0(D), i.e. if ψ′(0) = 0, then z0 = 0, thus ψ(z) = Cz.

Observe, that A0(D) = AS , where S is the subsemigroup Z+\{1} = {0, 2, 3, 4, . . .}
of Z.

Lemma 4.3.1. The adjoint mapping of an automorphism of the algebra A0(D) ={
f ∈ A(D) : f ′(0) = 0

}
fixes the origin.

Proof. If Φ : A0(D) −→ A0(D) is an automorphism, then its adjoint Φ∗ is a
homeomorphism of the unit disc D onto itself, and

f
(
Φ∗(z)

)
=
(
Φ(f)

)
(z) for any ϕ ∈ A0(D). (4.5)

Moreover,Φ∗ is an analytic function of the unit disc D onto itself, i.e. Φ∗ is a Möbius
transformation. Applied to the function f(z) = z2, (4.5) implies

(
Φ(f)

)
(z) =

f
(
Φ∗(z)

)
=
(
Φ∗(z)

)2 = (Φ∗)2(z), i.e. Φ(f) = (Φ∗)2. Therefore, (Φ∗)2 ∈ A0(D),
and hence

(
(Φ∗)2

)′(0) = 0. Consequently, 2Φ∗(0)(Φ∗)′(0) = 0, thus Φ∗(0) = 0, or
(Φ∗)′(0) = 0. In the second case Φ∗(z) = Cz, and therefore, Φ∗(0) = 0 too. �

Observe that the adjoint mapping of any automorphism Φ of a shift-invariant
algebra AS on a group G maps the maximal ideal space MAS homeomorphically
onto itself, and maps idempotent semicharacters of S to idempotent semicharacters
of S. Indeed, if ψ ∈ IS ⊂ H(S) ∼= MAS andmψ ∈MAS is the corresponding linear
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multiplicative functional on AS , then for any a ∈ S we have
((
Φ∗(mψ)

)
(χa)

)2 =(
Mψ(Φ(χa))

)2 = (mψ)2
(
Φ(χa)

)
= mψ

(
Φ(χa)

)
=
(
Φ∗(mψ)

)
(χa), i.e.

(
Φ∗(mψ)

)2 =
Φ∗(mψ), thus the semicharacter of S corresponding to Φ∗(mψ) is idempotent.
Hence, Φ∗ maps IS onto itself.

An automorphism Φ of AS is said to be inner, if there is a τ ∈ Hom (S, S)
and an element g0 ∈ G such that Φ(χa) = χa(g0)χτ(a) for every χa ∈ S. Arens
and Singer [AS1] have shown that in the case when G is a solenoidal group and S
is a semigroup in R with S∪(−S) = Ĝ, then every automorphism ϕ of the algebra
AS is inner.

Example 4.3.2. Not every automorphism Φ of the disc algebra A(D) is inner. How-
ever, any automorphism Φ whose adjoint fixes the origin, i.e. for which Φ∗(z) =
Cz, |C| = 1 is inner. Indeed, for every z ∈ D we have

(
Φ(f)

)
(z) = f

(
Φ∗(z)

)
=

f(Cz). If χn ∈ Z+ is the function χn(z) = zn, n ≥ 0, then
(
Φ(χn)

)
(z) =(

Φ∗(z)
)n = (Cz)n = Cnχn(z), hence Φ(χn) = Cnχn = χn(C)χn, i.e. Φ is an

inner automorphism, since C ∈ T.

If the group envelope ΓS of S is dense in R, then G is a solenoidal group,
and the algebra AS is a subalgebra of the Γ̂S-disc algebra A(ΓS)+ on the group
G = Γ̂S . Since ΓS = Ĝ, the characters χa, a ∈ S, separate the points of DG, and
therefore, DG ⊂ MAS , and ∂A = G. Let z = x + iy ∈ C+. For any a ∈ S the
mapping a �−→ e−ayχa

(
jı(x)

)
is a semicharacter of S, where jı is the standard

embedding of R into G. Denote by m(x,y) its corresponding linear multiplicative
functional on AS . There arises a mapping j̃ı : C+ −→ MAS : x + iy �−→ m(x,y).
One can show that j̃ı is an embedding of C+ into MAS . For any a ∈ S we
have χ̂a

(
j̃ı(z)

)
= χ̂a

(
j̃ı(x + iy)

)
= χ̂a

(
m(x,y)

)
= m(x,y)(χa) = e−ayχa

(
jı(x)

)
=

e−ayeiax = eia(x+ iy) = eiaz, i.e. any χa ∈ S can be extended analytically
on the range j̃ı(C+). Consequently, for any f ∈ AS the analytic almost periodic
function f̂ |jı(C+) is an analytic extension of f on C+. Note that χ̂a �= 0 on j̃ı(C+),

i.e. the maximal ideals of AS on which χ̂a vanishes are outside j̃ı(C+).

Theorem 4.3.3. If G is a group with Ĝ ⊂ R, and AS is a shift-invariant algebra
on G with ΓS = Ĝ, then either AS

∼= A(D), or every automorphism of the algebra
AS is inner.

Proof. If the group ΓS generated by S is not dense in R, then AS is a subalgebra of
the disc algebra A(D). If we assume that AS differs from A(D), then, as it is easy
to see, 1 /∈ S, thus AS ⊂ A0(D). In the same way as for A0(D) one can see that
in this case any automorphism is a composition operator generated by a Möbius
transformation that fixes the origin, thus it is an inner automorphism.

If the group envelope ΓS of S is dense in R, then the algebra AS is a subal-
gebra of the Γ̂S-disc algebra AbΓS

. Let Φ be an automorphism of AS onto itself. By
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the remark preceding Theorem 4.3.3, the function χ̂a does not vanish on j̃ı(C+) ⊂
MAS for any a ∈ S. We claim that Φ̂(χa) does not vanish on j̃ı(C+) either. Indeed,
if m ∈ Null

(
Φ̂(χa)

)
⊂ MAS , then 0 = m

(
Φ(χa)

)
=
(
Φ∗(m)

)
(χa) = χ̂a

(
Φ∗(m)

)
,

i.e. Φ∗(m) /∈ j̃ı(C+). On the other hand, Null
(
Φ∗(m)

)
=
{
a ∈ S :

(
Φ∗(m)

)
(χa) =

0
}

is a semigroup ideal in S. Consider the function

γ(b) =
{

0 when χb ∈ Null
(
Φ∗(m)

)
,

1 when χb ∈ S \Null
(
Φ∗(m)

)
.

Clearly, γ ∈ IS , and γ Φ∗(m) = Φ∗(m). Thus (Φ∗)−1(γ) is a non-trivial idem-
potent semicharacter of S, and

(
(Φ∗)−1(γ)

)
m = m. Hence, ϕm(a) = m(χa) =(

(Φ∗)−1(γ)
)
(χa)m(χa) is a non-invertible semicharacter on S, thus Null (ϕm) �=

Ø, i.e. χ̂a(ϕm) = ϕm(a) = 0 for some a ∈ S. Therefore, m /∈ j̃ı(C+) by the
remark before Theorem 4.3.3. We have obtained that Φ̂(χa) �= 0 on j̃ı(C+), as

claimed. Consequently, the bounded analytic function Φ̃(χa)(z) does not have ze-
ros in C+. Moreover,

∣∣Φ(χa)
∣∣ ≡ 1 on jı(R). Indeed,

∣∣(Φ(χa)
)
(g)
∣∣ =

∣∣χa(Φ∗(g))
∣∣ = 1

for every g ∈ G, since |χa| ≡ 1, and Φ∗(G) = G, because on G = ∂AS . By Besi-

covitch’s theorem [B], Φ̂(χa)
(
j̃ı(z)

)
= Φ̃(χa)(z) = Ceisz = Cχ̂s

(
j̃ı(z)

)
, where

s ≥ 0, C ∈ C, |C| = 1. Hence, C = χa(g0) for some g0 ∈ G. As it it is easy to see,
s ∈ S, and the mapping τ : S −→ S : χa �−→ χs is a homomorphism. �

4.4 p-groups and peak groups of shift-invariant algebras

In this section we give conditions for a subgroup of the carrier group of a shift-
invariant algebra to be a peak set or a p-set for the algebra.

Let A ⊂ C(X) be a uniform algebra on a compact set X . Recall that a closed
set K in X is a peak set (for A), if there is a function f ∈ A, such that f |K ≡ 1,
and |f̂(m)| < 1 whenever m ∈MA \K. Intersections of peak sets are called p-sets.

Let G be a connected compact abelian group and let S be a semigroup that
contains 0 and generates the dual group Ĝ. Here we give necessary and sufficient
conditions for a closed subgroup H of G to be a peak set for the algebra AS , i.e.
to be a p-group for AS .

Example 4.4.1. The subgroup H = {(z1, z2) ∈ T2 : z1 = z2} of the torus T2 is not
a peak set for the bi-disc algebra A(T2) ∼= AZ2

+
. Indeed, assume, on the contrary,

that H is a peak set, and let f ∈ A(T2) peak on H , i.e. f |{z1=z2} = f(z, z) ≡ 1,
while

∣∣f̂(z1, z2)∣∣ < 1 whenever z1 �= z2, where f̂ is the analytic extension of f on

the bi-disc D
2
. Clearly, the function v(z) = f̂(z, z) = f̂ |H is analytic in z ∈ D. By

v(z) ≡ 1 on T we see that v(z) ≡ 1 on D, and in particular, f̂(0, 0) = v(0) = 1.
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Since A(T2) is shift-invariant on T2, the function

F (u1, u2) =
∫

|z|=1

f(zu1, zu2)
z

dz =
∫
H

f(z1u1, z2u2) dσ(z1, z2)

belongs to A(T2). The function w(z) = f̂(u1z, u2z) is analytic in z ∈ D, and
therefore

F (u1, u2) =
∫

|z|=1

w(z)
z

dz = w(0) = f̂(0, 0) = v(0) = 1

for every (u1, u2) ∈ T2. This is impossible, since if (u1, u2) ∈ T2 \H , then

∣∣F (u1, u2)
∣∣ ≤ ∫

H

∣∣f(zu1, zu2)
∣∣ dσ(z1, z2) < 1.

Consequently, there are no functions in A(T2) that peak on H , and hence H is
not a peak group for A(T2).

If AS is a shift-invariant algebra on G, then every g ∈ G is a p-point for AS .
Indeed, {g} =

⋂{
Ker (χ̂a) : χa(g) = 1, a ∈ S

}
, since the characters χa separate

the points of MAS . For every a ∈ S the kernel Ker (χ̂a) =
{
g ∈MAS : χ̂a(g) = 1

}
is a peak set for AS , since the function h = (1 + χ̂a)/2 ∈ ÂS is identically equal
to 1 exactly on Ker (χ̂a) ⊂MAS .

If g ∈ G is a peak point for the shift-invariant algebra AS on G, so is any
point g0 ∈ G. Indeed, if f ∈ AS , S ⊂ R+, is a peaking function at g for AS ,
then fg−1

0 g(h) = f(g−1
0 gh) peaks at g0. Therefore, peak points for AS are either

all points in G, or none of them. For instance, if the group Γ is countable, then
ı is a peak point for AS . Indeed, let {χai}i∈N be an enumeration of S. Then the
function

f(g) =
∞∑

i=1

1
2n
χai(g)

belongs to AS , and its Gelfand transform peaks at ı, i.e. f̂(ı) = 1, while
∣∣f̂(r�g)∣∣ <

1 at any other point r � g ∈ DG. Hence, if S is countable, or, more generally, if G
is a metrizable group, every point of G is a peak point for AS .

If K ⊂ G, we denote by K⊥ = {χ ∈ Ĝ : χ|K ≡ 1} =
{
χ ∈ Ĝ : Ker (χ) ⊃ K

}
the orthogonal set of K. Let H be a closed subgroup of G, and let πH : G −→ G/H
be the natural projection from G onto the quotient group G/H . We recall that
a natural isomorphism from the dual group (G/H )̂ to the set H⊥ =

{
χ ∈ Ĝ :

χ|H ≡ 1
}

=
{
χ ∈ Ĝ : Ker (χ) ⊃ H

}
can be obtained as follows. Observe that

every χ ∈ H⊥ generates a character χ̃ ∈ (G/H )̂ , defined as χ̃
(
πH(g)

)
= χ(g).
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Clearly, χ �−→ χ̃ is an isomorphism of H⊥ onto (G/H )̂ , and its inverse is the
mapping γ �−→ γ ◦ πH : (G/H )̂ −→ H⊥.

Consider the semigroup H⊥
S = H⊥ ∩ S = {χ ∈ S : χ|H ≡ 1}, which is

isomorphic to the subsemigroup H̃⊥
S = {χ̃ : χ ∈ H⊥

S } of the group (G/H )̂ . The
subalgebra AH⊥

S
of AS generated by H⊥

S is isometrically isomorphic to the shift-
invariant algebraA eH⊥

S
on the quotient groupG/H ∼= πH(G). Note that, in general,

the set H⊥
S does not separate the H-cosets of G. For instance, in the case of the

group H =
{
(z1, z2) ∈ D2 : z1 = z2

}
⊂ T2, considered in Example 4.4.1, and

S = Z2
+, the set H⊥

Z2
+

= {1} clearly does not separate the H-cosets of T2.

Lemma 4.4.2. A closed group H ⊂ G is a peak set [resp. a p-set] for the algebra
AS if and only if the unit πH(H) = πH(ı) of the group G/H = πH(G) is a peak
point [resp. a p-point] for A eH⊥

S
.

Proof. Let πH(ı) be a peak point for the algebra A eH⊥
S

, and let f ∈ A eH⊥
S

be

such that f̂ peaks on πH(ı). Then f̂ ◦ πH is a function in ÂS that peaks on
H = π−1

H

(
πH(ı)

)
= π−1

H

(
πH(H)

)
.

Conversely, let H be a peak set for AS , and let f ∈ AS be such that f̂ peaks
on H , namely, f̂ |H ≡ 1, while

∣∣f̂(m)
∣∣ < 1 for m ∈ MAS \ H . Since AS is shift-

invariant on G, the function F (g) =
∫
H

f(hg) dσ(h) also belongs to AS , where σ is

the Haar measure on H . The Gelfand transform

F̂ (m) =
∫
H

f̂h(m) dσ(h)

of F is constant on every H-coset ofMAS , and
∣∣F̂ (m)

∣∣ ≤ ∫
H

∣∣f̂h(m)
∣∣ dσ(h) < 1 for

any m ∈ MAS \ H . Therefore, F̃ : πH(g) �−→ F̂ (g) is a well-defined continuous
function on MAfH⊥

S

, which belongs to Â eH⊥
S

, and peaks on πH(ı) ∈ G/H . Similar
arguments apply to p-sets. �

Proposition 4.4.3. A closed group H ⊂ G is a p-set for AS if and only if the set
H̃⊥

S separates the points of G/H. If the quotient group G/H is metrizable, the
same condition is necessary and sufficient for H to be a peak set for AS.

Proof. If the set H̃⊥
S separates the points of G/H , so does the algebra A eH⊥

S
,

associated with H̃⊥
S . Since the Shilov boundary of A eH⊥

S
is homeomorphic to the

group G/H ∼= πH(G), then πH(ı) ∈ πH(G) is a p-point for A eH⊥
S

, by the remark
following Example 4.4.1. Hence, by Lemma 4.4.2, H is a p-set for AS . Conversely,
if the set H̃⊥

S does not separate the points of G/H , neither does A eH⊥
S

. Therefore,
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πH(ı) is not a p-point for A eH⊥
S

. Consequently, H is not a p-set for AS , by Lemma
4.4.2. In the case when G/H is metrizable, similar arguments apply for peak
sets. �

Observe that the algebra A(T2) in Example 4.4.1 does not contradict Propo-
sition 4.4.3, since the set H⊥

Z2
+

∼= {1} clearly does not separate the points of the

group T2/H ∼= T.

Theorem 4.4.4. If G is a compact abelian group, H is a closed subgroup of G and
S is a generating subsemigroup of the dual group Ĝ, then the following conditions
are equivalent.

(i) H is a p-set for AS.

(ii) The semigroup H̃⊥
S separates the points of G/H = πH(G), i.e. H⊥

S separates
the H-cosets of G.

(iii) The dual group (G/H )̂ coincides with the group envelope Γ eH⊥
S
⊂ (G/H )̂ of

H̃⊥
S .

(iv) H coincides with the group (H⊥
S )⊥ ∼=

⋂
χ∈H⊥

S

Ker (χ) =
{
g ∈ G : χ(g) =

1 for all χ ∈ H⊥
S

}
.

If, in addition, G/H is a metrizable group, then the above conditions are equivalent
to

(v) H is a peak set for AS.

Proof. The equivalence of (i), (ii), and (iii) is already shown in Proposition 4.4.3. If
the semigroup H̃⊥

S separates the points of G/H , so does its group envelope Γ eH⊥
S
⊂

(G/H )̂ . By Pontryagin’s duality theorem both groups coincide. Conversely, if
H̃⊥

S = (G/H )̂ , then Γ eH⊥
S

separates the points of G/H . Assume that H̃⊥
S does

not separate the points of G/H . Then there is a πH(g) ∈ πH(G) \ πH(ı) such
that χ̃a

(
πH(g)

)
= 1 for all a ∈ S. Let χ̃ ∈ Γ eH⊥

S
be such that χ̃

(
πH(g)

)
�= 1.

Since, clearly, χ �∈ S, then χ = χa/χb for some a, b ∈ S. Therefore, χa
(
πH(g)

)
�=

χb
(
πH(g)

)
, in contradiction with the property χ̃a

(
πH(g)

)
= 1 for all a ∈ S. This

proves that (iii) and (iv) are equivalent.

If H̃⊥
S generates the dual group (G/H )̂ , then (H⊥

S )⊥ =
{
g ∈ G : γ◦πH(g) = 1

for all γ ∈ (G/H )̂
}

= π−1
H (ı) = H . If, on the other hand, Γ eH⊥

S
is a proper subgroup

of (G/H )̂ , then the group (H⊥
S )⊥ =

{
g ∈ G : γ ◦ πH(g) = 1 for all γ ∈ Γ eH⊥

S

}
contains properly the group

{
g ∈ G : γ ◦ πH(g) = 1 for all γ ∈ (G/H )̂

}
which is

isomorphic to H . This proves that (iv) and (v) are equivalent. �
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Analogous results hold for peak subsets of G relative to AS . Let X be a
compact set, and A ⊂ C(X) be a uniform algebra on X , which does not necessarily
coincide with MA. A closed set K in X is called a peak subset of X , relative to
A, if there is a function f ∈ A, such that f

∣∣
K
≡ 1, and

∣∣f(x)∣∣ < 1 whenever
x ∈ X \ K. Intersections of peak subsets of X for A are called p-subsets of X
relative to A. Clearly, peak sets and p-sets for A are peak subsets and p-subsets of
MA relative to Â correspondingly.

Example 4.4.5. If a ∈ S, then the kernel Ker (χa) =
{
g ∈ G : χ(g) = 1

}
is a peak

subset of G relative to AS . Indeed, the function h = (1+χa)/2 ∈ AS is identically
equal to 1 exactly on Ker (χa) ⊂ G. However, kernels of characters χa, a ∈ S, are
not always peak sets relative to AS .

By using similar arguments, one can obtain results similar to the above for
peak subsets of G, relative to AS .

Proposition 4.4.6. A closed group H ⊂ G is a p-subset of G relative to AS if and
only if the unit πH(ı) of the group G/H = πH(G) is a p-point of G/H relative to
A eH⊥

S
. If G/H is a metrizable group, then G/H = πH(G) is a peak point of G/H

relative to A eH⊥
S

Theorem 4.4.7. If G is a compact abelian group, H is a closed subgroup of G and
S is a generating subsemigroup of the dual group Ĝ, then the following statements
are equivalent.

(i) H is a p-subset of G relative to AS.

(ii) The semigroup H̃⊥
S separates the points of G/H = πH(G), i.e. H⊥

S separates
the H-cosets of G.

(iii) The dual group (G/H )̂ coincides with the group envelope Γ eH⊥
S
⊂ (G/H )̂ of

H̃⊥
S .

(iv) H coincides with the group (H⊥
S )⊥ ∼=

⋂
χ∈H⊥

S

Ker (χ) =
{
g ∈ G : χ(g) =

1 for all χ ∈ H⊥
S

}
.

If, in addition, G/H is a metrizable group, then the above conditions are equivalent
to

(v) H is a peak subset of G relative to AS.

Denote by ℘(S) the class of all p-groups for AS , i.e. closed subgroups of G
that are p-subsets of G relative to AS .

Proposition 4.4.8. If H ∈ ℘(S), then H =
⋂

χa∈H⊥
S

Ker (χa).
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Proof. Note that the point πH(ı) belongs to πH(G) = G/H , while the set H̃⊥
S

separates the points of πH(G) by Theorem 4.4.4. Consequently, πH(H) = πH(ı) =⋂
eχa∈ eH⊥

S

Ker (χ̃a). Therefore, H = π−1
H

(
πH(H)

)
=

⋂
χa∈H⊥

S

Ker (χa), as claimed. �

Observe that if S = Ĝ, then AS = A bG = C(G), and H⊥bG separates the points
of G/H , since H⊥bG = H⊥ ∼= (G/H )̂ for any subgroup H ⊂ G. Theorem 4.4.4

yields that H is a p-set for A bG. Hence, ℘(Ĝ) is the class of all closed subgroups of
G.

We recall that the weak hull [S]w of S is the set of elements a ∈ ΓS for which
there is an ma ∈ N such that na ∈ S for all n ≥ ma. S is weakly enhanced if
[S]w = S, i.e. if S coincides with its weak hull. (cf. Definition 3.4.9).

Proposition 4.4.9. ℘(S) = ℘
(
[S]w

)
for any semigroup S ⊂ G.

Proof. Clearly, AS ⊂ A[S]w since S ⊂ [S]w, and therefore, ℘(S) ⊂ ℘
(
[S]w

)
. Con-

versely, if H �∈ ℘(S), then, by Theorem 4.4.4, the set H̃⊥
S does not separate

the points of πH(G). Hence, there is a g ∈ G such that πH(g) �= πH(ı), and
χ̃a
(
πH(g)

)
= 1 for all χa ∈ H⊥

S . If a ∈ H⊥
[S]w

, then there is an ma ∈ N such that
na ∈ S for all n ≥ ma. Therefore χna(g) = χ̃na

(
πH(g)

)
= 1 for any n ≥ ma. This

can happen only if χ̃a
(
πH(g)

)
= 1 = χ̃a

(
πH(ı)

)
. Consequently, H̃⊥

[S]w
does not

separate the points of πH(G), i.e. H �∈ ℘
(
[S]w

)
. Hence, ℘(S) ⊃ ℘

(
[S]w

)
. �

Theorem 4.4.10. Let S be a weakly enhanced semigroup of Γ . All closed subgroups
of G are p-subsets of G relative to AS if and only if Ĝ = S ∪ (−S). If G is
metrizable, the same result holds for peak subsets of G relative to AS.

Proof. Suppose that Ĝ = S∪(−S) and letH be a closed subgroup of G. The group
H⊥

S separates the points of G/H , since H⊥
S = H⊥

(−S) = H⊥
S∪(−S) = H⊥bG = (G/H )̂ .

Therefore, H ∈ ℘(S) by Proposition 4.4.3.

Conversely, let every closed subgroup H of G be a p-subset of G relative to
AS . Hence, Ker (χa) ∈ ℘(S) for any a ∈ Γ \S, and Ker (χa) =

⋂
χb∈

(
Ker (χa)

)⊥
S

Ker (χb) by

Proposition 4.4.8. Denote K =
(
Ker (χa)

)⊥
S
⊂ S. Lemmas 3.1.8 and 3.1.7 imply

that ΓK = Za, while χa �∈ K. Therefore there are m,n ∈ Z with m > n and n
not a divisor of m, so that na and ma belong to the set {a : χa ∈ K} ⊂ S. Hence
rn + sm = 1 for some r, s ∈ Z. If m > 0 and n < 0 (or vice versa), then r, s ∈ N
and hence a = (rn + sm) a = r (na) + s (ma) ∈ S, contrary to the choice of a.
If n,m ∈ Z+, then a ∈ [S]w = S by Proposition 3.4.11, while if n,m ∈ Z−, then
(−n)(−a) and (−m)(−a) both belong to −S, where −n,−m ∈ Z+. Proposition
3.4.11 implies again that −a ∈ [S]w = S, i.e. a ∈ (−S). �

Example 4.4.11. Let G = T2. Consider the following semigroups of Γ = Ĝ ∼= Z2:
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(i) S1 =
{
(m,n) ∈ Z2 : m ∈ Z, n > 0

}
∪
{
(m,n) ∈ Z2 : m ≥ 0, n ≥ 0

}
=

(Z × N) ∪ (Z+ × Z+).

(ii) S2 =
{
(m,n) ∈ Z2 : m ∈ Z, n > 0

}
∪
{
(m,n) ∈ Z2 : m ≤ 0, n ≥ 0

}
=

(Z × N) ∪
(
(−Z+)× Z+

)
.

(iii) S3 =
{
(m,n) ∈ Z2 : m ∈ Z, n < 0

}
∪
{
(m,n) ∈ Z2 : m ≥ 0, n ≤ 0

}
=(

Z× (−N)
)
∪
(
Z+ × (−Z+)

)
.

(iv) S4 =
{
(m,n) ∈ Z2 : m ∈ Z, n < 0

}
∪
{
(m,n) ∈ Z2 : m ≤ 0, n ≤ 0

}
=(

Z× (−N)
)
∪
(
(−Z+)× (−Z+)

)
.

It is easy to see that Si ∪ (−Si) = Z2 ∼= Ĝ for any i = 1, 2, 3, 4. By Theorem
4.4.14 all closed subgroups of T2 are peak groups relative to the algebras ASi ,
i = 1, 2, 3, 4.

Example 4.4.12. Let G = T2, so that Γ = Z2. Given a fixed irrational number β >
0, consider the semigroup Γ β

+ =
{
(n,m) ∈ Z2 : βn+m ≥ 0

}
from Example 4.1.3,

and the associated algebraAβ on T2 generated by Γ β
+. Here again Γ β

+∪(−Γ β
+) ∼= Z2,

and by Theorem 4.4.14 all closed subgroups of T2 are peak groups relative to the
algebra Aβ .

Example 4.4.13. Let G = T2, Γ = Z2, and S = Z2
+ = {(m,n) : n ≥ 0, m ≥ 0}.

For a fixed k ∈ Z consider the semigroup Gk =
{
(z1, zk

1 ) : |z| = 1
}
⊂ A(T2) and

its corresponding algebra AGk
. If k < 0, the function (1+ z−k

1 z2)/2 belongs to the
algebra AZ2

+
, and peaks on Gk. Hence, Gk is a peak subset of T2 relative to the

algebra AZ2
+
. If k > 0, as in Example 4.4.1 one can see that every character zn

1 z
m
2

that is identically equal to 1 on Gk, is identically equal to 1 on T2. Therefore, the
set (Gk)⊥

Z2
+

∼= {1} does not separate the points of T2/Gk, and consequently, Gk is
not a p-group, nor a peak group for AZ2

+
.

Theorem 4.4.14. Let S and S1 be two weakly enhanced semigroups of Ĝ containing
0. Then ℘(S) = ℘(S1) if and only if S ∪ (−S) = S1 ∪ (−S1).

Proof. If S ∪ (−S) = S1 ∪ (−S1), then H⊥
S = H⊥

S∪(−S) = H⊥
S1∪(−S1)

= H⊥
S1

for
every subgroup H ⊂ G. Therefore, the points of G/H are separated by H⊥

S if and
only if they are separated by H⊥

S1
, thus H ∈ ℘(S) if and only if H ∈ ℘(S1), by

Proposition 4.4.3.

Conversely, assume that ℘(S) = ℘(S1). Since Ker (χa) ∈ ℘(S) = ℘(S1) for
any a ∈ S, we have that Ker (χa) =

⋂
χb∈(Ker (χa))⊥S1

Ker (χb) by Proposition 4.4.8. As

in the proof of Theorem 4.4.14 we see that a ∈ S1, or a ∈ (−S1). Therefore,
S ⊂ S1 ∪ (−S1). Similarly, (−S) ⊂ S1 ∪ (−S1). Therefore, S ∪ (−S) ⊂ S1 ∪ (−S1).
The opposite inclusion holds by a symmetry argument. �
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Theorem 4.4.14 shows that for weakly enhanced semigroups S and S1 the
equalities ℘(S) = ℘(S1) = ℘(Ĝ) hold if and only if S∪(−S) = S1∪(−S1) = Γ = Ĝ.

Corollary 4.4.15. Let S and S1 be two weakly enhanced semigroups of Ĝ containing
0, for which S ∪ (−S) = S1 ∪ (−S1) �= Γ , and GS = GS1 = {0}. Suppose that the
only subgroups in the set S ∪ (−S) are of type Zc, c ∈ S. Then ℘(S) = ℘(S1) if
and only if either S = S1, or S = (−S1), or, equivalently, if and only if AS = AS1 ,
or AS = AS1 .

Proof. If S = ±S1, then clearly S∪(−S) = S1∪(−S1), and therefore ℘(S) = ℘(S1)
by Theorem 4.4.14.

If S ∪ (−S) = S1 ∪ (−S1), then S = (S ∩ S1) ∪
(
S ∩ (−S1)

)
. Assume that

S ∩ S1 and S ∩ (−S1) both are nonempty. Suppose first S is not contained in
any subgroup of type Zc, c ∈ S. Then there are a ∈ S ∩ S1 and b ∈ S ∩ (−S1)
that do not belong to any subgroup of type Zc, c ∈ S. By the hypotheses, the
group Γ{a,b} generated by a and b is not a subset of S ∪ (−S). Therefore, there
are m,n ∈ Z \ {0}, such that c = ma+ nb �∈ S ∪ (−S). Note that either m,n ∈ N,
or m,n ∈ (−N). Indeed, if m > 0 and n < 0, then ma and nb both are in S1

contrary to GS = {0}. If m < 0, n > 0 we have ma, nb ∈ (−S1). In both cases
c = ma+nb ∈ S1 ∪ (−S1), contrary to the choice of c. If m,n both are in N, or in
(−N), we obtain that ma, nb both are in S, or in (−S) correspondingly. In either
case c = ma+ nb ∈ S ∪ (−S), which is impossible. Therefore, either S ∩ S1 = Ø,
or S ∩ (−S1) = Ø. Consequently, either S = S1, or S = (−S1). If S ⊂ Zc for some
c ∈ S, then S ∪ (−S) ⊂ Zc, and therefore S ∪ (−S) is a group, thus Γ ∼= Ĝ, which
contradicts the assumption on S. �

For non-weakly enhanced semigroups we have the following

Corollary 4.4.16. Let S and S1 be two semigroups of Ĝ containing 0, such that
[S]w ∪ [−S]w = [S1]w ∪ [−S1]w �= Γ , and [S]w ∩ [−S]w = [S1]w ∩ [−S1]w = {0}.
Suppose that the only subgroups in [S]w ∪ [−S]w are of type Zc for some c ∈ S.
Then ℘(S) = ℘(S1) if and only if either [S]w = [S1]w, or [S]w = [−S1]w, i.e. if
either A[S]w = A[S1]w , or A[S]w = A[S1]w .

Observe that the set [S]w ∪ [−S]w does not contain subgroups other than Zc,
if and only if it does not contain subgroups of type Γ{a,b}, a, b ∈ S, other than Zc,
i.e. if for every a, b ∈ S there arem,n ∈ Z\{0}, such that Z(na+mb)∩

(
S∩(−S)

)
=

{0}, provided Z(na+mb) �= Zc for any c ∈ S.

If the group Γ{a,b} ⊂ Γ generated by two elements a, b ∈ S is not of type
Zc, c ∈ S, then we can define a homomorphism ζ : Γ{a,b} −→ Z2, by na+mb �−→
(n,m). One can easily see that Z (na +mb) ∩ (S ∩ (−S)) = {0} for some m,n ∈
Z \ {0} if and only if the set ζ(Γ{a,b}) ∩ S is situated between two non-collinear
rays initiating at 0, the angle between which is less than π.
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If the dual group Γ = Ĝ is countable, or, more generally, if the group G is
metrizable, then all results in this section hold also for peak groups, instead of for
p-groups relative to AS .

4.5 Radó’s and Riemann’s theorems on G-discs

Many theorems of classical complex analysis have natural extensions for functions
in general uniform algebras. Let U be an open set in the maximal ideal space
MA of a uniform algebra A. Consider the uniform closure AU of the restriction
of Gelfand transform Â of A on U . It is clear that AU is a uniform algebra on
U ⊂ MA. A continuous function f on U is said to be A-holomorphic on U if for
every x ∈ U there is a neighborhood V of x so that the restriction f

∣∣
V

belongs
to AV , i.e. if f

∣∣
V

can be approximated uniformly on V by Gelfand transforms of
functions in A. The set of all A-holomorphic functions on U is denoted by OA(U).

The classical Radó’s theorem for the disc algebra asserts that if a function
f is continuous on the closed unit disc D and analytic in the complement of its
null-set Null (f) in D, then f is analytic on the whole unit disc D.

Definition 4.5.1. A uniform algebra A has Radó’s property, if every function f ,
which is continuous on MA and A-holomorphic on MA\Null (f) belongs to Â.

Radó’s theorem implies that the disc algebra A(D) has Radó’s property.
However, the Radó’s property fails for the algebra A0(D) of functions f continuous
on D, analytic in D, and whose derivative vanishes at 0. Observe that this algebra
is of type AS with S = Z+ \ {1} = {0, 2, 3, 4 . . .} ⊂ Z, whose weak hull [S]w is
Z+ �= S.

Theorem 4.5.2. Let G be a compact connected abelian group and S be a subsemi-
group of Ĝ such that S − S = Ĝ, and S ∩ (−S) = {0}. Then the algebra AS has
the Radó property if and only if the semigroup S is weakly enhanced.

Proof. Suppose that the algebra AS has the Radó property. We claim that S is
weakly enhanced. Let a ∈ [S]w ⊂ Ĝ. Then there is an n ∈ N such that ak ∈ S for
all k ∈ N, k ≥ n. Extend χa on MAS ⊃ G as follows:

χ̃a(m) = m(a) =

⎧⎨⎩
χ̂a (n+1)(m)
χ̂an(m)

when χ̂an(m) �= 0,

0 when χ̂an(m) = 0.

If χ̂an(m) �= 0, then χ̂a(m) �= 0 for everym ∈ U in some neighborhood U ⊂MS of
m. Since χ̂a (n+1) and χ̂an are in AS , χ̃a belongs to (AS)U . Hence the function χ̃a is
continuous on MAS and AS-holomorphic outside its null-set Null (χ̃a). The Radó
property for AS implies that χ̃a

∣∣
G
∈ ÂS , thus χa ∈ AS , i.e. a ∈ S. Consequently,

S is weakly enhanced.



4.5. Radó’s and Riemann’s theorems on G-discs 141

Conversely, suppose that S is a weakly enhanced semigroup of Ĝ. We will
show that AS has Radó’s property. For simplicity we will assume that G is a
separable group. Let f ∈ C(MS) ∩ OAS

(
MAS\ Null (f)

)
, and let {hj}∞j=1 be a

countable dense subset of G, so that h1 = ı. Denote by fj = fhj the hj-shifts
of f , i.e. fhj (g) = f(ghj), g ∈ G. For every j ∈ N consider the algebras Aj =
[AS , f1, . . . , fj ] with maximal ideal space Mj = MAS . We have Aj = [Aj−1, fj ],
A0 = AS and fj is Aj−1-holomorphic on Mj−1\Null (fj). By the arguments from
[G1] (II, Theorem 6.3) we conclude that ∂Aj = ∂Aj−1. If (in+1

n )∗ : Mn+1 −→Mn

is the adjoint map to the inclusion in+1
n : An ↪→ An+1, then (in+1

n )∗ is surjective
and (in+1

n )∗(∂An+1) = ∂An.

We obtain two sequences

AS ⊂ A0 ⊂ A1 ⊂ · · · ⊂ Ak ⊂ · · ·

and
MAS =M0 ←−(i

1
0)∗− M1 ←−(i

2
1)∗− M2 ←−(i

3
2)∗− · · · .

The closure Af =
[ ∞⋃
j=1

Aj

]
in C(G) is an inductive limit algebra with MAf

=

MAS , and ∂Af = ∂AS = G (cf. Section 1.3). Moreover, Af is a shift-invariant
uniform algebra on G, and hence, is generated algebraically by a semigroup of
Ĝ, actually, by the semigroup Sf generated by the elements of S and sp (f |G),
i.e. Af = ASf

. Hence, MASa
= MAf

= MAS for every a ∈ sp (f) ⊂ Sf , and
hence, a ∈ [S]w according to Proposition 4.2.10. Hence, Sf = [S]w = S because
S is weakly enhanced. Therefore, sp (f |G) ⊂ S, thus f |G ∈ AS , and consequently,
f̂ ∈ ÂS . �

Theorem 4.5.2 can be used to explore integral closedness phenomena in uni-
form algebras. Recall that every continuous solution of a polynomial equation with
coefficients that are analytic functions in C is an analytic function.

Definition 4.5.3. A uniform algebra A is integrally closed if every continuous func-
tion on MA satisfying a polynomial equation of type

xn + a1x
n−1 + · · ·+ an = 0, aj ∈ A

belongs to Â.

For example, the disc algebra, the polydisc algebra, and the algebra of ana-
lytic Ĝ+-functions on a G-disc over a group G with ordered dual, are integrally
closed algebras.

Theorem 4.5.4. Under the assumptions of Theorem 4.5.2 the algebra AS is inte-
grally closed if and only if the semigroup S is weakly enhanced.
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Proof. Suppose that AS is integrally closed and let a ∈ [S]w. Then there is an
na ∈ N such that ma ∈ S for every m ≥ na. Consider the equation

xna − χ̂ana
= 0. (4.6)

Being a continuous solution of (4.6) on MS , the function χa belongs to AS , thus
a ∈ S. Hence, [S]w = S, i.e. S is weakly enhanced.

Conversely, if S is weakly enhanced, then Radó’s theorem holds on AS ac-
cording to Theorem 4.5.2. This implies that the algebra AS is integrally closed (cf.
[G5]). �
Example 4.5.5. Let S = {(m,n) : m,n > 0} ∪ {(0, n) : n ≥ 2} ∪ {(2k, 0): k ≥ 0} ⊂
Z2 be the non-weakly enhanced semigroup from Example 3.4.10. Theorems 4.5.2
and 4.5.4 imply that the algebra A on the bi-disc D

2
that is generated by the

functions zmwn, where (m,n) ∈ S neither has Radó’s property, nor is integrally
closed. For instance, the function f(z, w) = w is continuous on MA = D

2
and A-

holomorphic outside Null (f) = {(z, w) : w �= 0} and also satisfies the polynomial
equation x2 − w2 = 0, where w2 ∈ A. However f /∈ A.

The classical theorem of Riemann for removable singularities of analytic func-
tions on D asserts that if a function f ∈ A(D) is analytic in the complement of one
point a ∈ D, and bounded in a neighborhood of a, then f is analytic on the whole
unit disc D. Note that single points in the complex plane C are zeros of particular
analytic functions.

Definition 4.5.6. A uniform algebra A has the Riemann property if, given an f ∈ Â
with Null (f) ∩ ∂A = Ø, every bounded A-holomorphic function on MA\Null (f)
can be extended on MA as an element in Â.

The classical theorem of Riemann implies that the disc algebra A(D) pos-
sesses the Riemann property.

Definition 4.5.7. Let S be a semigroup of Ĝ. The bounded hull [S]b of S is the set
of elements a ∈ Ĝ for which there are b, c ∈ S with a = b − c, such that χ̂b/χ̂c is
bounded on the setMAS\Null (χ̂c). S is said to be boundedly enhanced if [S]b = S.

A straightforward check shows that S ⊂ [S]w ⊂ [S]s ⊂ [S]b ⊂ Ĝ. Note that
any semigroup S ⊂ Ĝ with S ∪ (−S) = Ĝ, S ∩ (−S) = {0} is simultaneously
weakly, strongly, and boundedly enhanced.

Theorem 4.5.8. Let G be a compact connected abelian group and let S be a sub-
semigroup of Ĝ such that S−S = Ĝ and S ∩ (−S) = {0}. The algebra AS has the
Riemann property if and only if the semigroup S is boundedly enhanced.

Proof. Let the algebra AS have the Riemann property. Fix an element a ∈ [S]b ⊂
Ĝ and let a = b−c, where b, c ∈ S be such that the function γ = χ̂b/χ̂c is bounded
on MS\ Null (χ̂c). Since γ is bounded and AS-holomorphic on MAS\Null (χ̂c),



4.5. Radó’s and Riemann’s theorems on G-discs 143

it belongs to ÂS by the Riemann property. Hence, γ|G = χb/χc = χa ∈ AS , i.e.
a ∈ S. Consequently, the semigroup S is boundedly enhanced.

Conversely, assume that the semigroup S is boundedly enhanced, and let f be
a bounded function in OAS

(
MAS\Null (g)

)
for some g ∈ ÂS . Denote A0 = [AS , f ]

and M0 = MA0 . The adjoint mapping (i0−1)
∗ of the inclusion i0−1 : AS ↪→ A0

maps M0 into MAS . Since f is AS-holomorphic on MAS\Null (g) we have that
(i0−1)∗(M0) ⊃ MAS\Null (g), and hence, (i0−1)∗(M0) = MAS , because

[
MAS \

Null (g)
]

= MAS by the analyticity of AS . Observe that for every f1 ∈ Â0 we
have f1g ∈ OAS

(
MAS\Null (f1g)

)
, and consequently, f1g ∈ ÂS by Theorem 4.5.2.

Hence, the function (f1g)/g = f1 is bounded on MAS\Null (g). By the Glicksberg
general version of Schwarz’s lemma [G5] (Th. 4.1) then

sup
∣∣f1(MAS \Null (g)

)∣∣ = sup
∣∣∣f1g
g

(
MAS \Null (g)

)∣∣∣
= sup

∣∣∣f1g
g

(∂AS \Null (g))
∣∣∣ = sup

∣∣∣f1g
g

(∂AS)
∣∣∣.

We conclude that ∂A0 = ∂AS , because
[
MAS \Null (g)

]
=MAS by the analyticity

of AS .

As in the proof of Theorem 4.5.2 we will assume that G is a separable group.
Let {hj}∞j=1, h1 = ı be a countable dense subset of G and let fj = fhj be the
hj-shift of f . Consider the algebra A1 = [AS , f, f1] with maximal ideal space M1.
The functions f = f0 and f1 are AS-holomorphic on the setMAS \

(
Null (g)∪h−1

1 ·
Null(g)

)
= MAS \

(
Null (g) \ h−1

1 · Null (g)
)
. By the analyticity of AS the adjoint

map (i10)
∗ : M1 −→ MAS to the inclusion i10 : AS ↪→ A1 = [AS , f0, f1] maps M1

ontoM0 = MAS . In a similar way as in Theorem 4.5.2, we see that ∂A1 = ∂A0 =
∂AS = G. By the same arguments we obtain two sequences

AS ⊂ A0 ⊂ A1 ⊂ · · · ⊂ Ak ⊂ · · · ,

and
MAS ←−(i

0
−1)

∗− M0 ←−(i
1
0)∗− M1 ←−(i

2
1)∗− M2 ←−(i

3
2)∗− · · · ,

where Ak = [AS , f, f1, . . . , fj ], and Mk =MAk
. Proceeding inductively as before,

we obtain

MAS = (i0−1)
∗ ◦ (i10)

∗(M1) = (i0−1)
∗ ◦ (i10)

∗ ◦ (i21)
∗(M2) = · · · ,

and ∂Ak = ∂AS . As in the proof of Theorem 4.5.2, Af =
[ ∞⋃

j=1

Aj

]
is an inductive

limit algebra generated algebraically by the semigroup Sf =
[
S, sp(f |G)

]
, i.e.

Af = ASf
. Since every (ikk−1)

∗ maps Mk onto Mk−1, the adjoint projection
ψ : MASf

−→MAS to the natural inclusion i : AS ↪→ Af maps MASf
onto MAS ,
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and ∂Af = ∂AS = G (cf. Section 1.3). Consequently, Af is a shift-invariant
uniform algebra on G.

If now a ∈ sp (f), then a = b − c for some b, c ∈ S, thus a + c = b.
The function χ̂a+c/χ̂c ∈ AS is continuous and bounded on MAS\Null (χ̂c) =
ψ
(
MASf

\Null (χ̂c)
)
, since the function i(χ̂a+c)/(χ̂c) = i(χ̂a+c)/i(χ̂c) ∈ Af is con-

tinuous and bounded on MASf
\Null (χ̂c). Hence, a ∈ [S]b, i.e. S ⊂ Sf ⊂ [S]b = S

since S is boundedly enhanced. Consequently, Sf = S, thus sp (f |G) ⊂ S, and
therefore, f ∈ AS . �

4.6 Asymptotically almost periodic functions in one

variable

We recall that a function f ∈ Cb(R) is asymptotically almost periodic, if there is a
unique f∗ ∈ AP (R) and h ∈ C0(R) such that f = f∗+h (cf. Lemma 2.1.4). Hence,
for the uniform algebra AP as(R) of asymptotically almost periodic functions on R
we have AP as(R) ∼= AP (R)⊕C0(R). It is easy to see that the set C0(R) is an ideal
in AP as(R). In this section we study in more detail the space of asymptotically
almost periodic functions on R.

The maximal ideal spaceMAP as(R) of AP as(R) has a sophisticated structure.
Let G = b(R) be the Bohr compactification of R. The restrictions of a linear
multiplicative functional m ∈MAP as(R) on the algebras AP (R) and C · 1⊕C0(R)
generate linear multiplicative functionals m′ = m

∣∣
AP (R)

∈ MAP(R)
∼= G and

m′′ = m
∣∣
C·1⊕C0(R)

∈ MC·1⊕C0(R)
∼= T. For any f = f∗ + h ∈ AP as(R) we have

m(f) = m(f∗ + h) = m(f∗) + m(h) = m′(f∗) + m′′(h). Therefore, there arises
an injective mapping Φ : m �−→ (m′,m′′) of MAP as(R) into the set MAP (R) ×
MC·1⊕C0(R)

∼= G × T. Hence, without loss of generality, we can consider that
Φ
(
MAP as(R)

)
is embedded into G × T. Below we describe in more detail the set

Φ
(
MAP as(R)

)
.

Let m = (m′,m′′) ∈ MAP (R) ×MC·1⊕C0(R). If m′′|C0(R) ≡ 0, then m(f) =
m′(f∗) + m′′(h) = m′(f∗), and hence m(f) = m′(f∗) is a linear multiplicative
functional on AP as(R). Now m′ coincides with the point evaluation mg in ÂP (R)
at some point g ∈ G, whilem′′(g) = g(∞) = (g◦ϕ)(1) = 0 for any g ∈ C·1⊕C0(R).
We assume that m′′ acts as ‘the evaluation’ in C · 1 ⊕ C0(R) at ∞ ∈ R, i.e.
as the point evaluation in C(T) ∼= (C · 1 ⊕ C0(R)) ◦ ϕ at 1 ∈ T, where ϕ is

the fractional linear transformation ϕ : D −→ C+ : ϕ(z) = i
z + 1
1− z . Consequently,

m(f) = m′(f∗) +m′′(h) = f̂∗(g) + ĥ(1), and hence, without loss of generality, we
can assume that G× {1} is injectively embedded into Φ

(
MAP as(R)

)
.

If m′′∣∣
C0(R)

�≡ 0, then m′′ acts as the evaluation in C0(R) at some point x
of R, i.e. m′′(h) = h(x) for any h ∈ C0(R). If f ∈ AP (R), then fh ∈ C0(R), and
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hence f(x)h(x) = (fh)(x) = m(fh) = m(f)m(h) = m(f)h(x). Consequently,
m(f) = f(x), i.e. m = mx is the point evaluation in AP as(R) at x ∈ R. Now
we have m(f) = mx(f) = mx(f∗ + h) = m′

x(f∗) + m′′
x(h) = f̂∗(m′

x) + h(x) =
f̂∗
(
jı(x)

)
+h(x), where jı is the standard dense embedding of R into G through ı.

Therefore, Φ(mx) = (m′
x,m

′′
x), wherem′′

x is the point evaluation in C0(R) at x ∈ R,
whilem′

x is the evaluation in ÂP (R) at jı(x). Thus the set R̃ =
{(
jı(x), x

)
: x ∈ R

}
is contained in Φ

(
MAP as(R)

)
. Since, clearly, R̃ ∼= R, the set Φ

(
MAP as(R)

)
and the

disjoint union
(
G × {1}

)
� R̃ ∼= G � R are bijective. Note that G and R keep

their own topologies in Φ
(
MAP as(R)

)
. Since G is compact, all its accumulation

points in Φ
(
MAP as(R)

)
belong to G. However, the set R̃ might have accumulation

points in G × {1} ∼= Φ
(
MAP as(R)

)
\ R̃. As we show below, this has a significant

impact on the topology of MAP as(R). Let mα ∈ R̃ and mα −→ m0 ∈ G× {1}. If
Φ(mα) =

(
jı(xα), xα

)
, xα ∈ R, then for any h ∈ C0(R) we have h(xα) = m′′(h) =

mα(h) = ĥ(mα) −→ ĥ(m0) = m0(h) = m′′
0 (h) = 0, wherefrom xα −→ ±∞.

Clearly, for any ε > 0 and any h ∈ C0(R) the set
{
x ∈ R : |ĥ(x)| < ε

}
is open

in Φ
(
MAP as(R)

)
, and necessarily contains the set G× {1} ∼= G. This can happen

if and only if the sets G �
{
x ∈ R : |x| > N, N ∈ N

}
⊂ G � R̃ are open in

Φ
(
MAP as(R)

)
. Since MAP as(R)

∼= Φ
(
MAP as(R)

)
, we obtain the following

Theorem 4.6.1. The maximal ideal spaceMAP as(R) of the algebra of asymptotically
almost periodic functions AP as(R) on R is homeomorphic to the disjoint union
G �R provided with the topology generated by the standard open sets on G and R
correspondingly, and the sets of type G �

{
x ∈ R : |x| > N, N ∈ N

}
.

In other words,MAP as(R) is homeomorphic to the disjoint union of the group
G = b(R) and a copy of the line R that winds around G above the set jı(R) ⊂ G
and approaches it as x −→ ±∞. Equivalently, MAP as(R) is homeomorphic to the
set G � T provided with the topology generated by the standard open sets on
G, T \ {1}, and the sets of type G �

(
U \ {1}

)
, where U is an open subset of T

containing 1. Observe that the closure of b(R) in MAP as(R) is b(R) itself, while
the closure of R in MAP as(R) is the entire space MAP as(R). Therefore, R is dense
in MAP as(R), while b(R) is not.

If we assume that the set G � R is equipped by the topology from Theorem
4.6.1, then the Gelfand transform of any function f ∈ AP (R) ⊂ AP as(R) is
the function f̂ ∈ C(G � R) such that f̂ |G coincides with the natural continuous
extension f̃ of f on G = b(R), and f̂ |R ≡ f . If f ∈ C0(R) ⊂ AP as(R), its Gelfand
transform is the function f̂ ∈ C(G�R) such that f̂ |G ≡ 0, and f̂ |R ≡ f . The algebra
ÂP as(R) consists of all continuous functions in C(G � R) of type f̃ + h, where
f ∈ AP (R) and h ∈ C0(R). Equivalently, ÂP as(R) =

{
f̃ + h : f ∈ AP (R), h ∈

C(T), h(1) = 0
}
⊂ C(G � T).

We recall that the algebra APa(R) of analytic almost periodic functions on
R is isomorphic to the algebra AR+

∼= APR+(R) of analytic R+-functions on R.
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Consequently, MAPa(R)
∼= MAR+

∼= DG, the G-disc over G = b(R). Theorem 4.6.1
now yields the following

Theorem 4.6.2. The maximal ideal space of the algebra

AP as
a (R) ∼= APa(R)⊕ C0(R) ∼=

[
z, 1/z,

{
ea (z + 1)/(z − 1), a ∈ R+

}]
of asymptotically analytic almost periodic functions on R is homeomorphic to the
set DβR�T provided with the topology generated by the standard open sets on DβR,
T\{1}, and sets of type DβR�

(
U \{1}

)
, where U is an open subset of T containing

1 ∈ T.

Let A0(C+) and A0(C−) be the algebras of functions in C0(R), that pos-
sess analytic extensions in the half-planes C+ and C− = −C+ correspondingly.
If a function in AP as(R) is analytically extendable in the upper half-plane C+,
it is called analytic asymptotically almost periodic. One can see that any ana-
lytic asymptotically almost periodic function f admits a unique decomposition
of the form f = f∗ + h, where f∗ ∈ APa(R) and h ∈ A0(C+). The algebra
APa(R) ⊕ A0(C+) of analytic asymptotically almost periodic functions is iso-
metrically isomorphic to the subalgebra

[
z,

{
ea (z + 1)/(z − 1), a ∈ R+

}]
of

H∞ ∩ C
(
D \ {1}

)
generated by the functions z and ea (z + 1)/(z − 1), a ∈ R+,

on R. Likewise, the algebra AP (R) ⊕ A0(C+) of all f ∈ Cb(R) with a unique
decomposition of type f = f∗ + h, where f∗ ∈ AP (R) and h ∈ A0(C+), is iso-
metrically isomorphic to the algebra

[
z,
{
ea (z + 1)/(z − 1), a ∈ R

}]
on R. Since

MA0(C+)
∼= D, we have also the following

Theorem 4.6.3. The maximal ideal space of the algebra

APa(R)⊕A0(C+) ∼=
[
z,
{
ea (z + 1)/(z − 1), a ∈ R+

}]
⊂ H∞ ∩C(D \ 1)

of analytic asymptotically almost periodic functions on R (or on C+) is homeo-
morphic to the set Db(R) � D provided with the topology generated by the standard
open sets on Db(R), D \ {1}, and sets of type Db(R) �

(
U \ {1}

)
, where U is an open

subset of D containing 1 ∈ D.

Let π : MH∞ −→ D be the mapping defined by π(ϕ) = ϕ(id) ∈ D, which
provides a homeomorphism between D̃ = π−1(D) ⊂MH∞ and D.

Corollary 4.6.4. (a) The mapping π maps the unit disc D = π(D̃) densely in the
maximal ideal space of the algebra APa(R) ⊕ A0(C+) of analytic asymptoti-
cally almost periodic functions on R. Hence the algebra[

z,
{
ea (z + 1)/(z − 1), a ∈ R+

}]
⊂ H∞

does not have a D-corona.
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(b) The image j̃ı(C+) of the upper half-plane C+ under the embedding j̃ı is not
dense in the maximal ideal space of the algebra APa(R)⊕A0(C+). Hence the
algebra [

z,
{
ea (z + 1)/(z − 1), a ∈ R+

}]
⊂ H∞

has a C+-corona.

In a similar way we obtain

Theorem 4.6.5. The maximal ideal space of the algebra

AP (R)⊕ A0(C+) ∼=
[
z,
{
ea (z + 1)/(z − 1), a ∈ R

}]
on T is homeomorphic to the set G�D provided with the topology generated by the
standard open sets on G, D \ {1}, and sets of type G � (U \ {1}), where U is an
open subset of D containing 1 ∈ D.

The arguments used in the proof of Theorem 4.2.16 yield the following result.

Proposition 4.6.6. There is a continuous mapping r from MH∞ onto the set

Db(R) � D ∼= MAPa(R)⊕A0(C+)

equipped with the topology described in Theorem 4.6.3.

Observe that the space AP as(R) of asymptotically almost periodic functions
is a uniform algebra, invariant under R-shifts, i.e. the function ft(x) = f(x + t)
belongs to AP as(R) for any f ∈ AP as(R) and t ∈ R. The uniform algebras
AP as

a (R), C0(R), A0(C+) and A0(C−) also are R-invariant. If S is an additive
subgroup of R, then the set APS(R)⊕C0(R) is an R-invariant uniform subalgebra
of AP as(R) which contains C0(R). As the following theorem implies, every R-
invariant subalgebra of AP as(R) containing C0(R) is of this type.

Theorem 4.6.7. For any R-invariant subalgebra A of AP as(R) there is a unique
semigroup S ⊂ R, and a closed R-invariant subalgebra B of C0(R), so that A
admits a decomposition of type A = APS(R)⊕B.

Proof. According to Lemma 2.1.4, for every f ∈ A there is a unique almost periodic
function f∗ on R, and an h ∈ C0(R), such that f = f∗ + h. Fix an ε > 0, and
choose a positive number t such that

∣∣f∗(x) − f∗(x + t)
∣∣ < ε for all x ∈ R, and

|h(x)| < ε for all |x| > t. This is possible, since g ∈ AP (R), and h ∈ C0(R).
Consider the function

fN =
1
N

N∑
n=1

fnt,

where fnt(x) = f(x + nt). Clearly, fN ∈ A, since A is R-invariant. One can
easily check that |fN − f∗| < 2ε for N big enough. Hence the function f∗ can
be approximated uniformly by functions of type fN ∈ A, and therefore, f∗ ∈ A.
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Thus, h = f − f∗ ∈ A, and therefore, A = AP as(R) ∩ A =
(
AP (R) ∩ A

)
⊕ B ⊂

AP as(R), where B = C0(R) ∩ A is an R-invariant ideal in A. Since the algebra
AP (R) ∩ A is R-invariant, by Proposition 4.1.9 there is a semigroup S ⊂ R such
that AP (R) ∩A = APS(R). Consequently, A = APS(R)⊕B. �

Note that in this case B is an ideal in A, while APS(R) and B both are closed
subalgebras of A.

If S ⊂ R+, then the algebra APS(R)⊕A0(C+) is an antisymmetric uniform
subalgebra of the algebra APa(R) ⊕ A0(C+) of analytic asymptotically almost
periodic functions on R, containing A0(C+). The following theorem implies that
every antisymmetric subalgebra of AP as(R) containing A0(C+) is of this type.

Theorem 4.6.8. For any antisymmetric R-invariant subalgebra A of AP as(R) there
exist a unique semigroup S ⊂ R+, and a closed antisymmetric R-invariant subal-
gebra B of C0(R), so that A admits a decomposition of type A = APS(R)⊕B.

The proof follows the same lines as the proof of Theorem 4.6.7, by taking
into account the antisymmetry of A. Similarly as before, B is an ideal in A, while
APS(R) and B are closed subalgebras of A.

Theorem 4.6.8 implies that any antisymmetric subalgebra of the algebra[
z,
{
ea (z + 1)/(z − 1), a ∈ R+

}]
⊂ H∞ ∩A(D \ 1),

is of type
[{
ea (z + 1)/(z − 1), a ∈ S

}]
⊕B, where S is an additive semigroup in R,

and B is an antisymmetric closed subalgebra of the space
{
f ∈ A(D) : f(1) = 0

}
.

Using similar arguments as in Theorem 4.6.8, one can show the following

Theorem 4.6.9. Let A be an antisymmetric R-invariant uniform subalgebra of the
algebra APw(R) of weakly almost periodic functions on R which is invariant un-
der R-shifts. Then there is a unique semigroup S ⊂ R, and a closed R-invariant
subalgebra B of C(R)|R, such that A = APS(R)⊕B.

Note that in this case both algebras APS(R), of almost periodic S-functions
on R, and B ⊂ C(R)

∣∣
R

are closed subalgebras of A.

4.7 Notes

The class of shift-invariant algebras is more general than the class of G-disc al-
gebras of generalized analytic functions, introduced by Arens and Singer [AS1].
Algebras of S-functions with S �= Γ+ were considered in [T2]. The description of
automorphisms for shift-invariant algebras is from [GPT]. For G-disc algebras gen-
erated by weakly archimedean ordered semigroups the result is due to Arens [A].
The results on peak groups for shift-invariant algebras are from [GT4]. Radó’s and
Riemann’s theorem were proven originally by classical arguments. Their versions
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in a uniform algebra setting were considered by Glicksberg [G5]. In [GPT] (see
also [T2]) they have been extended to shift-invariant algebras. Integrally closed
uniform algebras were studied by Glicksberg [G5]. A uniform algebra A possesses
the weak Riemann property if, given a function g ∈ A with Null (g) ∩ ∂A = Ø,
every bounded function, A-holomorphic on MA\Null (g), can be extended contin-
uously on MA. Using similar arguments as in Theorem 4.5.8, one can show that
a shift-invariant algebra AS on G possesses the weak Riemann property if and
only if the weak and the strong hulls of S coincide. The results on asymptotically
almost periodic functions are from [GT4].

It would also be interesting to have a characterization of semigroups S and
S1 of Γ = Ĝ containing 0, with the same families of p-sets, or, peak sets, of G
relative to AS and AS1 . This problem seems to be related with the existence of an
automorphism Ψ of Γ , with Ψ(S) = S1.



Chapter 5

Extension of semicharacters and
additive weights

The central theme of this chapter is the extendability of linear multiplicative func-
tionals from smaller to larger shift-invariant algebras. It is closely related to ex-
tendability of non-negative semicharacters and their logarithms (additive weights)
from smaller to larger semigroups. We give necessary and sufficient conditions for
extendability of additive weights in terms of properties such as monotonicity, and
in terms of purely algebraic properties of their semigroup domains. As immedi-
ate corollaries we obtain necessary and sufficient conditions for the corresponding
algebras of almost periodic functions and of H∞-functions to possess coronae.

5.1 Extension of non-vanishing semicharacters

Let G be a compact abelian group, and let S ⊂ P be two semisubgroups of the
dual group Ĝ. For the corresponding shift-invariant algebras we have AS ⊂ AP ⊂
C(G). Clearly, a linear multiplicative functional of AS can be extended to a linear
multiplicative functional on AP if and only if the corresponding semicharacter ϕ
on S can be extended to a semicharacter on P .

Let S be an additive subsemigroup with cancellation law and 0, and let
ΓS = S − S be the group envelope of S. The S-order, on ΓS is defined by b � a
if and only if b − a ∈ S. Any non-negative semicharacter ϕ ∈ H(S) is monotone
decreasing with respect to the S-order on S. Indeed, if b � a for some a, b ∈ S,
then b = a+c for some c ∈ S. Therefore, ϕ(b) = ϕ(a)ϕ(c) ≤ ϕ(a), since 0 ≤ ϕ ≤ 1.

If P is a semigroup in ΓS containing S, we equip ΓS with the P -order. By
the above remark every non-negative semicharacter on P is monotone decreasing
with respect to the P -order. Consequently, for a non-negative semicharacter ϕ on
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S to possess a semicharacter extension on P , ϕ needs to be monotone decreasing
on S with respect to the P -order. In fact, this condition is also sufficient.

Proposition 5.1.1. A positive semicharacter ϕ ∈ H
(
S, (0, 1]

)
on S has a unique

semicharacter extension on a semigroup P ⊃ S if and only if ϕ is monotone
decreasing with respect to the P -order on S.

Proof. By the previous remarks, we only need to prove the sufficiency. Assume that
ϕ is a monotone decreasing positive semicharacter on S. If b ∈ P ⊂ ΓS = S − S,
then b = a− c for some a, c ∈ S. Clearly, a � c, and ϕ̃(b) = ϕ(a)/ϕ(c) is a positive
homomorphic extension of ϕ on P . Since ϕ(a) ≤ ϕ(c), we have that 0 ≤ ϕ̃(b) ≤ 1,
i.e. ϕ̃ is a positive semicharacter on P . �

Proposition 5.1.2. A non-vanishing semicharacter ϕ ∈ H(S,D
∗
) on S has a unique

semicharacter extension on a semigroup P ⊃ S if and only if its modulus |ϕ| ∈
H(S) is monotone decreasing with respect to the P -order on S.

Proof. Suppose ϕ ∈ H(S) does not vanish on S. By Theorem 3.5.4 and Proposition
3.5.5, ϕ has a unique polar decomposition ϕ = |ϕ|χ with some character χ of ΓS .
Hence, ϕ is extendable on P as an element of H(P ) if and only if |ϕ| is extendable.
By Proposition 5.1.1 this happens if and only if |ϕ| is monotone decreasing on S
with respect to the P -order on S. �

Consider the particular case when S ⊂ R, and P = Γ+ = Γ ∩ [0,∞), where
Γ ⊂ R is the group envelope ΓS of S, equipped with the discrete topology.

Proposition 5.1.3. Let S be a semigroup of R+ containing 0 and let Γ = ΓS = S−S
be its group envelope. A non-negative semicharacter ϕ ∈ H

(
S, [0, 1]

)
on S has a

unique semicharacter extension on Γ+ if and only if ϕ is monotone decreasing on
S.

Proof. Note that the Γ+-order coincides with the standard order on Γ+ inherited
from R. Because of Proposition 5.1.2 and the remarks preceding Proposition 5.1.1,
we only need to prove the sufficiency part of the statement for vanishing on S
semicharacters. Assume that ϕ is a monotone decreasing semicharacter of S with
ϕ(a) = 0 for some a ∈ S. Assume ϕ(b) �= 0 for some b ∈ S \ {0}. If n ∈ N is such
that nb > a, then ϕ(nb) = ϕ(b)n �= 0 in contradiction with the monotonicity of
ϕ on S ⊂ R+. Therefore, the only monotone decreasing semicharacter of S that
vanishes on S is the characteristic function κ{0} ∈ H

(
S, [0, 1]

)
of 0 in S. Applied

to the semigroup Γ+, the same argument shows that the only monotone decreasing
semicharacter of Γ+ that vanishes on Γ+ is the characteristic function κ{0} of 0 in
Γ+. Clearly, κ{0} ∈ H

(
S, [0, 1]

)
is the only possible semigroup extension of κ{0}

from S on Γ+. �

Corollary 5.1.4. Under the assumptions of Proposition 5.1.3, a semicharacter ϕ ∈
H(S) possesses a unique semicharacter extension on Γ+ if and only if its modulus
|ϕ| is monotone decreasing on S.
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Proof. If ϕ possesses a semigroup extension on Γ+, then so does |ϕ|, and therefore
it is monotone decreasing by Proposition 5.1.3.

Let, conversely, |ϕ| ∈ H(S, [0, 1]) be monotone decreasing on S. If ϕ does not
vanish on S, then it possesses a semigroup extension on Γ+ by Proposition 5.1.2.
If ϕ vanishes in S, then by the arguments from the proof of Proposition 5.1.3 it
coincides with κ{0}, and possesses a unique semigroup extension on Γ+. �
Example 5.1.5. Let S be the semigroup Γt = {0} ∪ [t,∞) ⊂ R+, where t >
0. Clearly, the group envelope ΓΓt = Γt − Γt of Γt is R. We claim that every
semicharacter ϕ ∈ H

(
S, [0, 1]

)
is monotone decreasing on Γt. Indeed, let a >

b, a, b ∈ Γt, and let n ∈ N be such that n(a − b) ≥ ν, thus n(a − b) ∈ Γt.
Hence, ϕ(a)n = ϕ(na) = ϕ

(
nb+ n(a− b)

)
= ϕ(nb)ϕ

(
n(a− b)

)
≥ ϕ(nb) = ϕ(b)n,

and therefore, ϕ(a) ≥ ϕ(b). Consequently, every non-negative semicharacter ϕ of
Γt is monotone decreasing. By Proposition 5.1.3 ϕ can be extended on R+ as a
semicharacter in H(R+).

Example 5.1.6. Let β > 0 be an irrational number. Consider the two-dimensional
semigroup Sβ = {n +mβ : n,m ∈ Z+} ⊂ R. The group envelope of Sβ is Γ β =
Sβ−Sβ = {n+mβ : n,m ∈ Z}. Let P = Γ β

+ = Γ β∩R+ = {n+mβ ≥ 0 : n,m ∈ Z}.
Clearly, Sβ �= Γ β

+. For instance, if β > 1, then the positive number β − �β� ∈
Γ β

+ \ Sβ, where �β� is the greatest integer preceding β. For a fixed b ∈ (0, 1) the
function ϕ(n+mβ) = bn, n+mβ ∈ Sβ, is a homomorphism from Sβ to (0, 1] ⊂ D.
Thus, ϕ is a non-negative semicharacter on Sβ, i.e. ϕ ∈ H

(
S, [0, 1]

)
⊂ H(S).

We claim that ϕ is not monotone decreasing on Sβ. Indeed, ϕ(mβ) = 0, while
ϕ(n) = bn > 0 for every n > mβ. The natural (and only) homomorphic extension
ϕ̃ of ϕ on Γ β

+ is given by ϕ̃(n + mβ) = bn, n,m ∈ Z, n + mβ ≥ 0. However,
ϕ̃ /∈ H(Γ β

+) since, for instance, ϕ̃(β − �β�) = b−�β� > 1. Consequently, ϕ can not
be extended as a semicharacter on R.

Proposition 5.1.7. Let S be a semigroup of R+ containing 0 and let Γ = S−S be its
group envelope. The maximal ideal space MAS of the algebra AS of S-functions
on G = Γ̂ is homeomorphic to the G-disc DG if and only if all non-negative
semicharacters on S are monotone decreasing.

Proof. By Corollary 5.1.4, the above conditions are necessary and sufficient for
every semicharacter ϕ ∈ H(S) to be extended uniquely as a semicharacter in
H(Γ+) ∼= DG. �

According to Proposition 4.1.4 the space APS(R) of almost periodic S-
functions on R is a uniform algebra isometrically isomorphic to the algebra AS of
S-functions on G = Γ̂ . Propositions 5.1.7 and 4.2.4 yield the following

Proposition 5.1.8. Let S be a semigroup of R+ containing 0, whose group envelope
Γ = S−S is dense in R. The maximal ideal space MAPS(R) of the algebra APS(R)
of almost periodic S-functions is homeomorphic to the G-disc DG if and only if
all non-negative semicharacters on S are monotone decreasing.
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Note that any dense in R+ semigroup of type Γ+ = Γ ∩ R+ satisfies the
assumptions of Proposition 5.1.8.

We recall that if G is a solenoidal group, then there is a natural embedding
jı : R −→ G of the real line R into G with a dense range, so that jı(0) = ı. If
S ⊂ R+, the restrictions of S-functions on jı(R) are almost periodic S-functions,
that admit analytic extension on the upper half-plane C+. Clearly, the set (0, 1]×R
can be embedded densely in the G-disc DG = [0, 1] �G/{0} �G. Since (0, 1]×R ∼=
[0,∞) × R ∼= C+, the upper half-plane C+ also can be embedded densely in the
G-disc DG. Note that Γ̂S ⊂ MAS for every semigroup S ⊂ R+. The embedding
jı : R −→ Γ̂S extends naturally to an embedding j̃ı of the upper half-plane C+

into the maximal ideal space MAS of the algebra AS (and, together, of APS(R)).
Since the closure of the range j̃ı(C+) in MAS is homeomorphic to the G-disc DG,
we see that j̃ı(C+) is dense in MAS if and only if MAS = DG. Therefore, we have
the following

Corollary 5.1.9. Under the assumptions of Proposition 5.1.8 the upper half-plane
C+ can be embedded densely via j̃ı in the maximal ideal space MAPS(R) of the
algebra APS(R) of almost periodic S-functions if and only if all non-negative
semicharacters on S are monotone decreasing. Consequently, if all non-negative
semicharacters on S are monotone decreasing, then the algebra APS(R) does not
have a C+-corona.

Note that θ = ln � is an additive function from S to (−∞, 0] for any semichar-
acter � ∈ H+(S). It is straightforward to see that the necessary and sufficient
condition in Corollary 5.1.9 is equivalent to the following: Every additive positive
function θ on S is monotone increasing, i.e. of type θ(a) = yθa for some yθ ∈ [0,∞),
or θ(a) = ∞, for every a �= 0. In the case when S = R+ this form of the condition
for the dense embedding of C+ into MAPS(R+) has been given by Boettcher [B4].

Proposition 5.1.7 and the remarks preceding Corollary 5.1.9 imply the fol-
lowing corona type theorem for the algebra H∞

S .

Proposition 5.1.10. Let S be a semigroup of R+ containing 0. The unit disc D is
dense in the maximal ideal space of the algebra H∞

S via the fractional linear trans-

formation j̃ı ◦ ϕ, where ϕ(z) = i
1 + z
1− z if and only if all non-negative semicharac-

ters on S are monotone decreasing. Consequently, the algebra H∞
S does not have

a D-corona if and only if all non-negative semicharacters on S are monotone de-
creasing.

In particular, since every non-negative semicharacter on Γ+ ⊂ R+, where Γ
is a dense subgroup of R, is monotone decreasing, the algebra H∞

Γ+
does not have

a D-corona, i.e. the open unit disc D can be embedded densely in the maximal
ideal space MH∞

Γ+
via the mapping j̃ı ◦ ϕ from Proposition 5.1.10.
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5.2 Extension of additive weights and semicharacters
on semigroups

In this section we prove that the monotonicity condition of a semicharacter, consid-
ered in the previous section, is also sufficient for the extendability of semicharacters
of a semigroup.

Theorem 5.2.1. Let S ⊂ P be two semigroups with cancellation law and 0. A
semicharacter ϕ ∈ H(S) possesses a semigroup extension on P if and only if |ϕ|
is monotone decreasing with respect to the P -order on S.

We present a proof of this theorem based on so-called additive weights.

Definition 5.2.2. A function θ on a semigroup S with 0 is called an additive weight
on S, if it is additive, takes values in the extended half-line R+ = [0,∞], and
θ(0) = 0.

Hence, the values of any additive weight θ on S may be either non-negative,
or ∞, while θ(0) = 0, and θ(a + b) = θ(a) + θ(b) for every a, b ∈ S. Denote by
Θ(S) the set of additive weights on S. It is clear that with the pointwise addition
Θ(S) is a semigroup.

Proposition 5.2.3. The semigroup of additive weights Θ(S) of a semigroup S is
isomorphic to the semigroup H

(
S, [0, 1]

)
of non-negative semicharacters of S.

Proof. Indeed, given an additive weight θ ∈ Θ(S), the function rθ : a �−→ e−θ(a),
with e−∞ = 0, is multiplicative on S, e−θ(0) = e0 = 1, and

∣∣e−θ(a)∣∣ ≤ 1 on S.
Therefore, �θ = e−θ ∈ H

(
S, [0, 1]

)
. As we saw above, for any � ∈ H

(
S, [0, 1]

)
the

function θ� : a �−→ − ln�(a) is an additive weight on S. It is clear that θ �−→ �θ

is a bijection from Θ(S) onto H
(
S, [0, 1]

)
that preserves the operations, i.e. is an

isomorphism. �

Example 5.2.4. (a) Let S = Z+, and let x0 ∈ [0,∞). Clearly, the function θx0(n) =
x0 n, n ∈ Z+ is an additive weight on Z+. The function

θ∞(n) =
{

0 when n = 0,
∞ when n ∈ N

is also an additive weight on Z+. Actually, any additive weight on Z+ is of type θx0

for some x0 ∈ [0,∞]. Therefore, in this case Θ(Z+) is isomorphic to the semigroup
[0,∞].

(b) For S = R+ = [0,∞) the set Θ(R+) is also isomorphic to [0,∞], since all
additive weights on R+ are of type θx0(x) = x0x for some x ∈ [0,∞), or

θ∞(x) =
{

0 when x = 0,
∞ when n ∈ (0,∞).
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Let P be an additive semigroup with cancellation law and 0, and let S ⊂ P
be a semigroup of P containing 0. According to Proposition 5.1.1, a necessary con-
dition for a semicharacter ϕ ∈ H

(
S, [0, 1]

)
to possess a semigroup extension on P

is that ϕ be monotone decreasing with respect to the P -order on S. Consequently,
for a weight θ ∈ Θ(S) to possess a weight extension on P it is necessary for θ to
be monotone increasing with respect to the same order on S. The next theorem
shows that this condition is also sufficient.

Theorem 5.2.5. Let S ⊂ P be two additive subsemigroups with cancellation law
and 0. An additive weight θ ∈ Θ(S) possesses a weight extension if and only if θ
is monotone increasing with respect to the P -order on S.

Proof. The necessity is clear from the previous remarks. To prove the sufficiency,
suppose that θ is an increasing additive weight on S. Fix an a ∈ P \ S and let
Sa = Z+a+S =

{
na+ b : b ∈ S, n ∈ Z+

}
. To extend θ on Sa as, say, θ̃a ∈ Θ(Sa),

we first define θ̃a at a.

If Na+P ∩S = Ø, we define θ̃a(a) =∞. Assume that Na+P ∩S �= Ø. Note
that c ∈ Na + P ∩ S if and only if c ∈ S and na + p = c for some n ∈ N, p ∈ P
i.e. c ∈ S and na ≺ c for some n ∈ N. Observe that if c ∈ Na + P ∩ S, then the
set Σ =

{
(n, b, c) : n ∈ N, b, c ∈ S, θ(b) < ∞, c ∈ Na + P ∩ S, na + b ≺ c

}
is

nonempty. Indeed, any triple (n, 0, c) with c ∈ Na+ P ∩ S belongs to Σ. Set

θ̃a(a) = inf
(n,b,c)∈Σ

θ(c)− θ(b)
n

. (5.1)

The condition θ(b) �= ∞ is needed here to avoid the undeterminate expression of
type∞−∞ in the numerator. Observe that 0 ≤ θ̃a(a) ≤ 1. Indeed, if (n, b, c) ∈ Σ,
then c � na + b, and hence c = (na + b) + p = b + (na + p) for some p ∈ P .
Consequently, c � b, since na+p ∈ P . Therefore, θ(c) ≥ θ(b), and hence θ̃a(a) ≥ 0.
Also, θ(c)−θ(b) ≤ 1 since both θ(b), θ(c) ≤ 1. Note that the number θ̃a(a) is well-
defined, since if na+ b = c ∈ S for some b ∈ S with θ(b) <∞ and c ∈ Na+P ∩S,

then θ̃a(a) =
θ(c)− θ(b)

n
. Indeed, if (m, b′, c′) ∈ Σ, then ma+b′ ≺ c′ and therefore

mc + nb′ = m(na + b) + nb′ = n(ma + b′) +mb ≺ nc′ +mb. The additivity and
monotonicity of θ imply

mθ(c) + nθ(b′) ≤ nθ(c′) +mθ(b),

whence
θ(c) − θ(b)

n
≤ θ(c′)− θ(b′)

m
.

Consequently,
θ(c)− θ(b)

n
= inf

(n,b′,c′)∈Σ

θ(c′)− θ(b′)
n

= θ̃a(a). This shows that the

number θ̃a(a) is well-defined, as claimed.
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Now define θ̃a by the equation θ̃a(na + b) = nθ̃a(a) + θ(b) for any na + b ∈
Sa. This definition is unambiguous. Indeed, if na + b = ma + d ∈ Sa with, say

m > n, then (m− n)a+ d = b. As noticed above, then θ̃a(a) =
θ(b)− θ(d)
m− n , thus

mθ̃a(a)+θ(d) = nθ̃a(a)+θ(b). One can readily check that θ̃a is an additive weight
on Sa. We claim that θ̃a is increasing on Sa. Indeed, let

na+ b � ma+ b′, (5.2)

be two elements of Sa, where b, b′ ∈ S, n, m ∈ N. There are three possible cases
for m and n.

(a) If m = n, then b � b′ by the cancellation law, and therefore θ(b) ≥ θ(b′)
by the assumed monotonicity of θ.

(b) If n > m, then (5.2) becomes ka + b � b′, with k = n − m, and what
we need to show is that θ̃a(ka+ b) ≥ θ(b′). It is clear that if θ̃a(a) = ∞, we have
θ̃a(ka+ b) = kθ̃a(a) + θ(b) = ∞ ≥ θ(b′), as needed. If θ̃a(a) <∞, then according
to (5.1), for every ε > 0 one can find a c ∈ S with θ(c) <∞ and d ∈ Na+ P ∩ S,
so that (n, c, d) ∈ Σ and

θ(d)− θ(c)
n

< θ̃a(a) +
ε

k
.

Because (n, c, d) ∈ Σ, we have d � na+ c, and therefore

kd+ nb � k(na+ c) + nb = n(ka+ b) + kc � nb′ + kc,

since ka + b � b′. Additivity and monotonicity of θ imply that kθ(d) + nθ(b) ≥
nθ(b′) + kθ(c), thus

k
(
θ(d) − θ(c)

)
n

+ θ(b) ≥ θ(b′).

Consequently,

θ̃a(ka+ b) = kθ̃a(a) + θ(b) >
k
(
θ(d) − θ(c)

)
n

− ε+ θ(b) ≥ θ(b′)− ε.

Since ε was arbitrarily chosen, we conclude that θ̃a(ka+ b) ≥ θ(b′), as desired.

(c) If n < m, then (5.2) becomes b � la+ b′ with l = m−n, and what we are
to show is that θ(b) ≥ θ̃a(la+ b′). Note that in this case θ(b) ≥ θ(b′), since b � b′.
If θ(b′) = ∞, then also θ(b) = ∞, thus θ(b) ≥ θ(la+ b′). Assume that θ(b′) < ∞.
If also θ̃a(a) =∞, then

θ(b)− θ(b′)
l

≥ θ̃a(a),

since (l, b′, b) ∈ Σ, and hence θ(b) = ∞. Therefore, θ(b) = ∞ ≥ θ(la + b′), as
needed.
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If θ̃a(a) and θ(b′) are finite numbers, then l θ̃a(a) ≤ θ(b)−θ(b′), and therefore,
θ̃a(la+ b′) = lθ̃a(a) + θ(b′) ≤ θ(b)− θ(b′) + θ(b′) = θ(b). This completes the proof
of the monotonicity of θ̃a. We have shown that θ̃a ∈ Θ(Sa).

Consider the family of increasing weight extensions of θ ∈ Θ(S) on semi-
groups H, S ⊂ H ⊂ P , ordered by inclusion. It is easy to see that every chain of
its elements has a largest element. Zorn’s Lemma implies that this family has a
maximal element, say, θ̃. Denote by Seθ the domain of θ̃, which is a subsemigroup
of P . If Seθ is a proper subsemigroup of P , then, as shown above, for any a ∈ P \SF

there is an increasing additive extension of θ̃ on the semigroup (Seθ)a = Z+a+Seθ,
properly containing Seθ. This contradicts the maximality property of θ̃. Therefore,
Seθ = P , i.e. θ̃ ∈ Θ(P ). �

The proof of Theorem 5.2.1 now follows directly from the relationship be-
tween the additive weights and semicharacters on S, described in Proposition
5.2.3.

Corollary 5.2.6. Let S and P be as in Theorem 5.2.1. If every ϕ ∈ H(S) has mono-
tone decreasing modulus |ϕ| with respect to the P -order on S, then the restriction
r : MAP −→MAS : m �−→ m

∣∣
AS

is a continuous mapping from MAP onto MAS .

It is clear that r : m �−→ m
∣∣
AS

is a continuous mapping from MAP into
MAS . The surjectivity of r follows from Theorem 5.2.1.

Corollary 5.2.7. Let S be a dense semigroup in Rk
+. If every semicharacter ϕ ∈

H(S) has monotone decreasing modulus |ϕ| with respect to the Rk
+-order on S,

then the restriction r : D
n

b(R) −→ MAS is a continuous mapping from D
n

b(R) onto
MAS .

As a consequence we see that under the assumptions of Corollary 5.2.7 there
is an embedding of Cn

+ into the space MAS = MAP (Rn) with a dense image.

Corollary 5.2.8. If 0 ∈ S ⊂ P ⊂ ΓS are two semigroups, then H(S) = H(P ) if
and only if

(a) Every positive semicharacter on S is monotone decreasing with respect to the
P -order on S, and

(b) Every idempotent semicharacter on S possesses a unique extension on P ,
which is an idempotent semicharacter of P .

Proof. If (a) holds, then every non-vanishing semicharacter on S has a unique
extension on P by Proposition 5.1.2. Let (b) hold, i.e. suppose that every idem-
potent semicharacter on S can be extended uniquely on P , and let ψ ∈ H(S).
By (a), ψ possesses a semicharacter extension on P . We claim that this exten-
sion is unique. Assume that ψ̃1 and ψ̃2 are two semicharacter extensions of ψ



5.3. Semigroups with extendable additive weights 159

on P . Clearly, supp (ψ̃1) = supp (ψ̃1), since otherwise the characteristic func-
tions κsupp( eψi)

, i = 1, 2 will be two different extensions of the idempotent semichar-

acter κsupp(ψ). Note that the set P\ supp (ψ̃1) is an ideal in P . Consider the set
K =

{
a ∈ supp (ψ̃1) : ψ̃1(a) = ψ̃2(a)

}
. Clearly, supp (ψ1) ⊂ K ⊂ supp (ψ̃1), where

the inclusions are proper. One can easily check that supp (ψ̃1) \K is an ideal in
supp (ψ̃), and consequently, it is an ideal in P . Therefore κ(supp ( eψ1)\K) is an idem-
potent semicharacter of P , which extends κsupp ( eψ) on P , and is different from the
extension κsupp ( eψ). �

If S is a semigroup of R2
+ that meets the sets R+ × {0} and {0} × R+, then

every idempotent semicharacter on S which is monotone decreasing with respect to
the R2-order has unique semicharacter extensions on R2

+, namely the characteristic
functions κ{0}, κR×{0} and κ{0}×R, i.e. the idempotent semicharacters of R2

+.
Therefore, Corollary 5.2.8 implies the following.

Corollary 5.2.9. Let S be a semigroup of R2
+ that meets the sets R+ × {0} and

{0}×R+, and for which ΓS = R2. Then H(S) ∼= H(R2
+) ∼= Db(R)2 , the b(R)-bi-disc,

where b(R) is the Bohr compactification of R, if and only if every semicharacter
ϕ ∈ H(S) has monotone decreasing modulus |ϕ| with respect to the R2

+-order on
S.

It is straightforward to see that the necessary and sufficient condition in
Corollary 5.2.9 is equivalent to the following one: Every additive positive function
θ on S ⊂ R2 to be of type θ(x1, x2) = y1x1 + y2x2 for some y1, y2 ∈ [0,∞],
considered by Boettcher [B4].

5.3 Semigroups with extendable additive weights

In this section we provide characterizations of semigroups with the property that
any of its additive weights possesses a weight extension on larger semigroups. Let
S ⊂ P be two semigroups with cancellation law and 0, and let ΓS = S − S ⊂
P − P = ΓP be their group envelopes correspondingly. Note that in general P
may not be a subset of ΓS .

Proposition 5.3.1. Any weight θ ∈ Θ(S) has a unique weight extension on the
strong hull [S]Ps of S in P .

Proof. If θ is an additive weight on S, then the associated semicharacter on S,
χ(a) = e−θ(a), has a unique semicharacter extension χ̃ on [S]Ps by Proposition
3.5.6. The additive weight θ̃ = − log χ̃ corresponding to χ̃ is an additive weight on
[S]Ps extending θ. �
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Definition 5.3.2. Let S ⊂ P be two semigroups with cancellation law and 0. We
say that S is complete in P if ΓS ∩ P = S, i.e. if P \ ΓS = P \ S.

If S is a complete subsemigroup in P , then P = (P ∩ ΓS) � (P \ ΓS) =
S�(P \ΓS). Note that the notion of completeness of semigroups makes sense only
in the case when P �⊂ ΓS , since if S ⊂ P ⊂ ΓS , then S is complete in P if and
only if S = P .

Example 5.3.3. Let S be the two-dimensional semigroup Sβ = {n+mβ : n,m ∈
Z+} ⊂ R considered in Example 5.1.6, where β is an irrational number. The
group envelope of Sβ is given by Γ β = Sβ − Sβ =

{
n + mβ : n,m ∈ Z

}
. Let

P = Γ β
+ = Γ β ∩ R+ =

{
n +mβ ≥ 0: n,m ∈ Z

}
. Clearly, Sβ �= Γ β

+ = Γ β ∩ P ,
since, for instance, the positive number β − �β� ∈ Γ β

+ \ Sβ. Therefore, Sβ is not
complete in P .

Example 5.3.4. Let S = R+×{0}, and P = R×R+, endowed with addition. Then
ΓS = R × {0}, and ΓS ∩ P = R × {0} �= S. Therefore, R+ is not complete in
R× R+.

Given a weight θ ∈ Θ(S), consider the semigroups

θ
−1

(R) =
{
a ∈ S : θ(a) <∞

}
, and θ

−1{∞} =
{
a ∈ S : θ(a) = ∞

}
.

The set
(
θ
−1

(R)−P
)
∩P =

{
b ∈ P : b+ d ∈ θ−1(R) for some d ∈ P

}
is a semigroup

of P . Moreover, P \
(
θ
−1

(R)−P
)

is an ideal in P .

Lemma 5.3.5. If S is a complete semigroup in P , then θ
−1

(R) is a semigroup in(
θ
−1

(R)−P
)
∩ P , while θ

−1{∞} is a semigroup in P \
(
θ
−1

(R)−P
)
.

Proof. The first part is clear, since 0 ∈ P and a+ 0 ∈ θ−1
(R) for every a ∈ θ−1

(R).
To prove the second part, assume, on the contrary, that there is an a ∈ θ−1{∞}
and d ∈ P such that c = a+ d ∈ θ−1

(R). Hence, d = c− a ∈ ΓS ∩ P = S, since S
is a complete semigroup in P . So, d ∈ S, thus a+ d ∈ θ−1{∞}, since θ

−1{∞} is an
ideal of S. Consequently, a+d = c ∈ θ−1

(R)∩θ−1{∞}= Ø, which is impossible. �

Lemma 5.3.6. If S is a complete semigroup in P , then:

(i)
(
θ
−1

(R)−P
)
∩ P is a strongly enhanced complete semigroup in P .

(ii) θ
−1

(R) is a complete semigroup in
(
θ
−1

(R)−P
)
∩ P and in P .

(iii) The strong hulls
[
θ
−1

(R)
]P
s

and [S]Ps of θ−1(R) and S in P correspondingly,
are complete semigroups in P .

(iv) If S is strongly enhanced in P , then so is θ
−1

(R).
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Proof. (i) If b ∈ P and b = a − c, where a, c ∈
(
θ
−1

(R)−P
)
∩ P , then b + c = a ∈(

θ
−1

(R)−P
)
∩ P . Hence (b + c + P ) ∩ θ−1

(R) �= Ø, thus b ∈
(
θ
−1

(R)−P
)
∩ P by

definition. Hence,
(
θ
−1

(R)−P
)
∩ P is complete in P . The equality

[(
θ
−1

(R)−P
)
∩

P
]P
s

=
(
θ
−1

(R)−P
)
∩ P follows directly from the definition of

(
θ
−1

(R)−P
)
∩ P .

(ii) Let b = a − c ∈ P , where a, c ∈ θ−1
(R) ⊂ S. Since S is complete in P ,

then b ∈ S = θ
−1

(R)∪θ−1{∞}. Note that b can not belong to θ
−1{∞}, since if it did,

then θ(a) = θ(b + c) = ∞ + θ(c) = ∞, contradicting the assumption a ∈ θ−1
(R).

Therefore, b ∈ θ−1
(R).

(iii) Let b = a − c ∈ P , where a, c ∈ [S]Ps . There is an n ∈ N such that
na, nc ∈ S, and hence nb = na−nc ∈ P ∩ΓS = S, since S is complete. Therefore,
nb ∈ S, thus b ∈ [S]Ps , and consequently, [S]Ps is complete. The proof for the hull[
θ
−1

(R)
]P
s

follows the same lines.

(iv) Let b ∈ P be such that nb ∈ θ−1
(R) ⊂ S for some n ∈ N. Hence b ∈

[S]Ps = S by the hypothesis on S. Note that b �∈ θ−1{∞}, since nθ(b) = θ(nb) <∞.
Therefore, b ∈ θ−1

(R). �

Given a θ ∈ Θ(S), let Γθ−1(R) be the group envelope of θ
−1

(R), i.e. Γθ−1(R) =

θ
−1

(R)−θ−1
(R).

Lemma 5.3.7. If S is a strongly enhanced complete semigroup in P , then the group
Γθ−1(R) + Z b is isomorphic to Γθ−1(R) × Z for any b ∈

(
(θ

−1
(R)−P ) ∩ P

)
\ θ−1

(R).

Proof. Assume that c + nb = d + kb, for some n < k and b, c ∈ Γθ−1(R) =

θ
−1

(R)−θ−1(R). Then (k − n) b = c − d ∈ θ−1
(R) ∩ P = θ

−1
(R), since, by Lemma

5.3.6(ii), θ
−1

(R) is complete in P . Therefore, b ∈
[
θ
−1

(R)
]P
s

= θ
−1

(R) by Lemma
5.3.6(iv). This contradicts the hypothesis on b. We conclude that the group
Γθ−1(R) + Z b is isomorphic to θ

−1
(R)× Z, as claimed. �

Below we consider a particular case of weight extensions. Let Γ be an additive
subgroup of R. Denote by S a subsemigroup in Γ+ = {x ∈ Γ : x ≥ 0} that contains
0 and generates Γ . The set

S × {0} =
{
(x, 0) ∈ Γ × Z : x ∈ S

}
⊂ R× Z

is a semigroup in the group Γ ×Z. Let P be a semigroup in Γ ×Z which contains
the set S × {0} and the point (0, 1), and for which P ∩

(
Γ × {0}

)
= S × {0}. We

will describe the weight extensions of the x-projection

π1 : S × {0} −→ S : π1(x, 0) = x

on P . We claim that for any (x, n) ∈ P \ (0, 0) either x or n are non-negative.
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Indeed, if both x and n are negative, then (0,−n) = (−n)(0, 1) ∈ P , since (0, 1) ∈
P and (−n) > 0. Hence (x,−n)+(0, n) = (x, 0) ∈ P , thus (x, 0) ∈ P ∩

(
Γ×{0}

)
=

S ×{0}, and therefore, x ∈ S ⊂ Γ+, i.e. x ≥ 0, in contradiction with the choice of
x. Consider the two numbers

λP =

⎧⎪⎨⎪⎩
−∞ if n ≥ 0 for all (x, n) ∈ P

sup
(x, n) ∈ P,

n < 0

{
x/n

}
if there are (x, n) ∈ P with n < 0

and (5.3)

ΛP = inf
{
x/n : (x, n) ∈ P, n > 0

}
.

Lemma 5.3.8. If P is a semigroup with S×{0} ⊂ P ⊂ Γ ×Z and P ∩
(
Γ ×{0}

)
=

S × {0}, then λP ≤ ΛP ≤ 0.

Proof. This is clear in the case when x ≥ 0 for all (x, n) ∈ P , or if n ≥ 0 for
all (x, n) ∈ P . Let b1 = (x1, n1) with n1 < 0 and b2 = (x2, n2) with n2 > 0, be
two elements of P . As shown above, then x1 > 0. We will show that

x1

n1
≤ x2

n2
. If

we suppose, on the contrary, that
x1

n1
>
x2

n2
, then x1n2 < n1x2, since n1 < 0 and

n2 > 0. The elements −n1b2 = (−n1x2,−n1n2) and n2b1 = (n2x1, n2n1) belong to
P since both −n1 and n2 are positive. Therefore, n2b1−n1b2 = (n2x1−n1x2, 0) ∈
P ∩ (Γ ×{0}), and hence (n2x1 −n1x2, 0) ∈ S ×{0} ⊂ Γ+×{0}, in contradiction
with the already obtained x1n2 < n1x2. Consequently,

x1

n1
≤ x2

n2
, whenever n1 < 0

and n2 > 0. It is easy to see now that λP ≤ ΛP ≤ 0. �
Example 5.3.9. If P = Γ ×Z+, then λP = −∞, while ΛP = 0. If P = Γ ×Z, then
λP = ΛP = 0.

Proposition 5.3.10. Let S ⊂ R+ be a semigroup with 0, and ΓS = S − S ⊂ R is
the group envelope of S. Suppose that P is a semigroup of ΓS × Z ⊂ R × Z with
P ∩

(
Γ × {0}

)
= S × {0} ⊂ R+ × {0}. Then:

(i) For every real number α, λP ≤ α ≤ ΛP , the map φ : P −→ R, φ(x, n) =
x− αn is an additive weight on P .

(ii) For any weight φ ∈ Θ(P ) the number α = −φ(0, 1) satisfies the inequalities
λP ≤ α ≤ ΛP . If, in addition, φ(x, 0) = x for all x ∈ S, then φ can be
expressed as φ(x, n) = x− αn, (x, n) ∈ P .

Proof. (i) Let α be a real number with λP ≤ α ≤ ΛP . Clearly, the function φ from
(i) is additive. We will show that φ ≥ 0 on P . Let b = (x, n) be a fixed element
in P . If n = 0, we have φ(x, 0) = x ∈ S ⊂ R+, and hence φ(b) ≥ 0. Let n �= 0.
If n > 0, then

x

n
≥ ΛP ≥ α, and hence x − αn ≥ 0. If n < 0, then x > 0, thus

x

n
≤ λP ≤ α, and hence x− αn ≥ 0. Therefore, φ is an additive weight on P .
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(ii) For any b = (x, n) ∈ P we have

φ(b) = φ
(
(x, 0) + (0, n)

)
= φ(x, 0) + φ(0, n) = x+ nφ(0, 1) = x− nα,

where α = −φ(0, 1). Moreover, 0 ≤ φ(b) = φ(x, n) = x − αn. If n > 0 we have
α ≤ x/n, thus α ≤ ΛP . If n < 0, then x/n ≤ α, and hence λP ≤ α. Therefore
λP ≤ α ≤ ΛP , as claimed. �

As we saw in Example 5.1.6, not every character in the semigroup Sα can
be extended on P . Therefore, non-completeness of S might be an obstacle to the
extendability on larger semigroups of semicharacters of S, and together, of additive
weights of S.

Theorem 5.3.11. If S is a complete semigroup in P , then every weight θ ∈ Θ(S)
possesses a weight extension on P .

Proof. Let θ ∈ Θ(S). First we extend θ on
(
θ
−1

(R)−P
)
∩P . Because of Proposition

5.3.1, without loss of generality we can assume that S is strongly enhanced in P .
We can extend θ additively on Γθ−1(R) = θ

−1
(R)−θ−1

(R) by

θ̃(a− b) = θ(a)− θ(b), a, b ∈ θ−1(R).

Note that θ̃
(
Γθ−1(R)

)
⊂ R. For any b ∈

(
(θ

−1
(R)−P ) ∩ P

)
\ θ−1

(R) the mapping

τ(a+ nb) =
(
θ̃(a), n

)
is a surjective homomorphism from Γθ−1(R) + Z b onto θ̃

(
Γθ−1(R)

)
× Z ⊂ R × Z.

Consider the semigroup (
Γθ−1(R)

)P

b
=
(
Γθ−1(R) + Z b

)
∩ P.

It is easy to see that
(
Γθ−1(R)

)P

b
is strongly enhanced, and (0, 1) ∈ τ

(
(Γθ−1(R))

P
b

)
.

Since Γθ−1(R) + Z b is a group,
(
Γθ−1(R)

)P

b
is a complete semigroup in P . Moreover,

τ
(
(Γθ−1(R))

P
b

)
∩
(
θ̃(Γθ−1(R)) × {0}

)
= θ̃

(
Γθ−1(R) ∩ P

)
× {0} ⊂ θ̃(S) × {0}, since

Γθ−1(R) ∩ P ⊂ S by the completeness of S. In fact, Γθ−1(R) ∩ P = θ
−1

(R), since the

values of θ̃ on
(
Γθ−1(R)

)P

b
are in R+. Therefore, τ

(
(Γθ−1(R))

P
b

)
∩
(
θ̃((Γθ−1(R))

P
b ) ×

{0}
)

= θ̃
(
θ
−1

(R)
)
×{0}. By Proposition 5.3.10 there exist an additive weight φ on

the semigroup τ
(
(Γθ−1(R))

P
b

)
⊂ R× Z, whose restriction on θ̃

(
θ
−1

(R)
)
× {0} is the

projection
π1 : θ̃

(
θ
−1

(R)
)
× {0} −→ [0,∞) : π1(x, 0) = x.

The restriction of the function ψ = φ◦ τ : a+nb �−→ φ
(
θ̃(a), n

)
on

(
Γθ−1(R)

)P

b
is an

additive weight on
(
Γθ−1(R)

)P

b
, and its restriction on θ

−1
(R) coincides with θ. Note
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that ψ takes only finite values on
(
Γθ−1(R)

)P

b
. Indeed, since b ∈

(
θ
−1

(R)−P
)
∩ P ,

there exists a d ∈ P such that b + d = a ∈ θ
−1

(R). Therefore, d = a − b ∈(
θ
−1

(R) + Z
)
∩ P ⊂

(
Γθ−1(R)

)P

b
. Since both b and d belong to

(
Γθ−1(R)

)P

b
and ψ is

an additive weight on
(
Γθ−1(R)

)P

b
, we have

ψ(b) ≤ ψ(b + d) = θ(b+ d) = θ(a) <∞.

Consequently, ψ takes only finite values on
(
Γθ−1(R)

)P

b
.

Let
{
(Si, θi)

}
i∈I

be the family of pairs of complete semigroups Si strongly

enhanced in P , with θ
−1

(R) ⊂
(
θ
−1

(R)−P
)
∩ P , and weights θi ∈ Θ(Si), such that

θi|θ−1(R) ≡ θ. One can define a partial order in this family, by (Si, θi) ≺ (Sj , θj)
when Si ⊂ Sj and θi ≡ θj on Si. For any chain

{
(Sj , θj)

}
j∈J

the set S′ =
⋃
j

Sj

is a complete semigroup in
(
θ
−1

(R)−P
)
∩ P , strongly enhanced in P , and the

function θ′ defined on S′ by θ′|Sj ≡ θj for any j ∈ J , is an additive weight on
S′ such that θ′ = θ on θ−1(R). The pair (S′, θ′) ∈

{
(Si, θi)

}
i∈I

is the largest
element of the chain. By Zorn’s Lemma there exists a maximal element (S∗, θ∗)
in the family

{
(Si, θi)

}
i∈I

. It is clear that S∗ = θ
−1

(R)−P , since otherwise one

can obtain a proper extension of θ∗ on a semigroup of type
(
Γθ−1(R)

)P

b
for some

b ∈
(
(θ

−1
(R)−P )∩P

)
\S∗. Consequently, θ possesses an extension on

(
θ
−1

(R)−P
)
∩P

as an additive weight on θ
−1

(R)−P . On P \
(
θ
−1

(R)−P
)

we extend θ′ as ∞. �

Corollary 5.3.12. If S is a complete semigroup in Rk
+, then the restriction r : D

n

b(R)

−→MAS is a continuous mapping from D
n

b(R) onto MAS .

As a consequence we see that under the assumptions of Corollary 5.3.12 there
is an embedding of Cn

+ into the space MAS = MAP (Rn) with a dense image, thus
the algebra AP (Rn) does not have a Cn

+-corona.

If all θ-values are finite, θ can be extended as a weight on
(
θ
−1

(R)−P
)
∩ P

with finite values. To show this, in the family
{
(Si, θi)

}
i∈I

from the above we
should consider weights θi ∈ Θ(Si) which take finite values only.

Corollary 5.3.13. For any non-invertible element a ∈ S there exists a weight θ ∈
Θ(S), such that θ(na) = n.

Proof. Indeed, Z+a is a complete semigroup in S, and by Theorem 5.3.11 the
weight θ(na) = n of Z+a can be extended as a weight on S. �

Given a weight θ ∈ Θ(S) consider the following two semigroups of Γθ−1(R):

Γ+

θ−1(R)
=
{
a− b : a, b ∈ θ−1

(R), θ(a) − θ(b) ≥ 0
}
,
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Γ−
θ−1(R)

=
{
a− b : a, b ∈ θ

−1
(R), θ(a) − θ(b) < 0

}
.

We recall that if a, b ∈ S, then a ≺ b with respect to the P -order on S if and only
if there is a c ∈ P such that a+ c = b.

Proposition 5.3.14. A weight θ on S is monotone increasing with respect to the
P -order on S if and only if

(i) Γ−
θ−1(R)

∩ P = Ø, and

(ii)
(
θ
−1

(R)−P
)
∩ θ−1{∞}= Ø.

Proof. If θ ∈ Θ(S) is an increasing weight on S, then we will show that (i) and (ii)
are satisfied. Assume, on the contrary, that Γ−

θ−1(R)
∩P �= Ø, and let p ∈ Γ−

θ−1(R)
∩P .

Then p = a−b, where a, b ∈ θ−1
(R), and θ(a)−θ(b) < 0. Since a = b+p, p ∈ P , we

have that a � b, and consequently, θ(a) ≥ θ(b), a contradiction. If a ∈
(
θ
−1

(R)−P
)
∩

P , then a + p ∈ θ−1
(R) for some p ∈ P . Therefore, a ≺ a + p = b ∈ θ−1

(R), and
hence θ(a) ≤ θ(b) <∞ by the monotonicity of θ. Consequently, a �∈ θ−1{∞}.

Let now (i) and (ii) both hold. Assume that θ ∈ Θ(S) be such that θ(a) < θ(b)
for some a, b ∈ S, a � b. Consider first the case when both a, b ∈ θ−1

(R). Since
a � b, there is a p ∈ P for which b + p = a. Therefore, p = a − b ∈ P , and
θ(a) − θ(b) < 0, i.e. p ∈ Γ−

θ−1(R)
, in contradiction with (i). Let now θ(b) = ∞, i.e.

b ∈ θ−1{∞}, while a ∈ θ−1
(R). From b+ p = a, p ∈ P we have b ∈

(
θ
−1

(R)−P
)
∩ P .

Therefore, if b = a+ p, then b ∈
(
θ
−1

(R)−P
)
∩ θ−1{∞}= Ø. �

Theorem 5.3.15. A weight θ ∈ Θ(S) can be extended as an additive weight on P
if and only if

(i) Γ−
θ−1(R)

∩ P = Ø and

(ii)
(
θ
−1

(R)−P
)
∩ θ−1{∞} = Ø.

While this result follows from Proposition 5.3.14 and Theorem 5.2.5, here we
give a more direct proof.

Proof. Assume that (i) and (ii) both hold. According to (i) the semigroup Γθ−1(R)∩
P = Γ+

θ−1(R)
∩ P is a semigroup in Γ+

θ−1(R)
. Let θ̃ : Γθ−1(R) → R : θ̃(a − b) = θ(a) −

θ(b), a, b ∈ θ
−1

(R) be the natural extension of θ on Γθ−1(R). Since θ̃(a − b) ≥
θ(a)− θ(b) ≥ 0 on Γ+

θ−1(R)
, the restriction of θ̃ on Γθ−1(R) ∩P is an additive weight

with θ̃(a) = θ(a) for a ∈ θ
−1

(R). One can see that Γθ−1(R) ∩ P is a complete

semigroup in both
(
θ
−1

(R)−P
)
∩ P and P . By Theorem 5.3.11, θ̃ can be extended

on
(
θ
−1

(R)−P
)
∩ P as an additive weight. Since

(
θ
−1

(R)−P
)
∩ P is an ideal in P ,
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we can further extend θ̃ as an additive weight on P , by setting θ̃|P\(θ−1(R)−P ) ≡ ∞.
(ii) implies that this is an extension of θ on P .

Let now θ̃ ∈ Θ(P ) be an extension of a θ ∈ Θ(S). As before, for any a− b ∈
Γθ−1(R) ∩ P, a, b ∈ θ

−1
(R) we have

0 ≤ θ̃(a− b) = θ(a)− θ(b).

Therefore, a − b ∈
(
θ
−1

(R)−P
)
∩ P , and hence Γθ−1(R) ∩ P ⊂

(
θ
−1

(R)−P
)
∩ P .

Consequently, Γ−
θ−1(R)

∩P = Ø, i.e. (i) holds. By definition, for any a ∈
(
θ
−1

(R)−P
)
∩

P there exists some b ∈ P such that b + a = c ∈ θ−1
(R). Since a, b ∈ P , and

θ̃ ∈ Θ(P ), we have θ̃(a) ≤ θ̃(a+ b) = θ(c) <∞, i.e.
(
θ
−1

(R)−P
)
∩P ⊂ θ−1

(R), and
therefore,

(
θ
−1

(R)−P
)
∩ θ−1{∞}= Ø, i.e. (ii) holds, too. �

Let θ be an additive weight on S, and let ΣP (θ) be the set of all weight
extensions of θ on P , i.e.

ΣP (θ) =
{
ψ ∈ Θ(P ) : ψ

∣∣
S
≡ θ

}
.

Observe that ΣP (θ) is a convex set in Θ(P ), i.e. if θ1, θ2 ∈ ΣP (θ) and 0 < t < 1,
then tθ1 + (1 − t)θ2 ∈ ΣP (θ).

Proposition 5.3.16. If S is a strongly enhanced complete semigroup in P , b ∈ P \S,
and θ ∈ Θ(S), then {

ψ(b) : ψ ∈ ΣP (θ)
}

= [λb, Λb],

where λb and Λb are the corresponding numbers (5.3) for θ with respect to the
semigroup

(
Γθ−1(R)

)P

b
∩
(
θ
−1

(R)−P
)

=
(
Γθ−1(R) + Zb

)
∩
(
θ
−1

(R)−P
)
∩ P .

Proof. The restriction of any ψ ∈ ΣP (θ) on the semigroup
(
Γθ−1(R)

)P

b
∩
(
θ
−1

(R)−P
)

is an additive weight, and as we saw in the proof of Theorem 5.3.11, it is of type
ψ = φ ◦ τ , where τ : Γθ−1(R) + Zb −→ R× Z is the mapping τ(a+ nb) = (ψ(a), n),

and φ is an additive weight on τ
((
Γθ−1(R)

)P

b

)
⊂ R × Z. By Proposition 5.3.10, φ

can be expressed as
φ(x, n) = x− αn, (x, n) ∈ P,

where α ∈ [λb, Λb]. Therefore, ψ(a + nb) = ψ(a) − αn, and hence, ψ(b) = −α.
Clearly, the correspondence ψ �−→ −ψ(b) = α maps ΣP into the interval [λb, Λb].

Conversely, for every α ∈ [λb, Λb] the mapping ψ(a+nb) = ψ(a)−αn is an ad-
ditive weight on

(
Γθ−1(R)

)P

b
∩
(
θ
−1

(R)−P
)
, by Proposition 5.3.10. Since

(
Γθ−1(R)

)P

b
∩(

θ
−1

(R)−P
)

is a complete semigroup in
(
θ
−1

(R)−P
)
∩ P , ψ can be extended as an

additive weight on
(
θ
−1

(R)−P
)
∩P , by Theorem 5.3.11. On P \

(
θ
−1

(R)−P
)

we can
extend ψ as ∞. Clearly, different α1, α2 ∈ [λb, Λb] generate different extensions
ψ1, ψ2 of ψ on P , since ψi(b) = −αi, i = 1, 2. �
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Observe that the complement JS = S \ GS of the group kernel GS =
{
a ∈

S : a+ b = 0 for some b ∈ S
}

of S is an ideal, namely the maximal ideal of S. The
following proposition gives an alternative sufficient condition for weight extensions
on P ⊃ S of additive weights on S.

Proposition 5.3.17. Let P be a semigroup that contains S. If JS is an ideal in P ,
then any weight θ ∈ Θ(S) can be extended to an additive weight on P .

Proof. Suppose that JS is an ideal of P . Since θ
−1{∞} =

{
a ∈ S : θ(a) = ∞

}
is

an ideal in S, then θ
−1{∞} ⊂ JS . If θ

−1{∞}= JS , then θ
−1

(R) = GS , and therefore
the weight θ is identically equal to 0 on GS , and identically equal to ∞ on θ

−1{∞
}= JS . As an ideal in P , JS is contained in the maximal ideal JP = P \GP of P ,
and therefore the function

θ̃(a) =
{

0 when a ∈ GP ,
∞ when a ∈ JP

is an additive weight on P . Clearly, θ̃ is a weight extension of θ on P .

If θ
−1{∞} properly contains JS , then there is a c ∈ JS with θ(c) < ∞. Since

JS is an ideal in P , we have that a+ c ∈ JS for any a ∈ P , and we can extend θ
on P as

θ̃(a) = θ(a+ c)− θ(c), a ∈ P.

It is easy to see that θ̃ is a well-defined function on P . Indeed, if d is another
element in JS with θ(d) <∞, then θ(a+ c) + θ(d) = θ

(
(a+ c) + d

)
= θ

(
(a+ d) +

c
)

= θ(a + d) + θ(c), since c, d, a + c, and a + d belong to JS ⊂ S. Therefore,
θ(a + c) − θ(c) = θ(b + c) − θ(b). We claim that θ̃ is an additive weight on P .
Indeed, if θ(c) < ∞ for c ∈ JS , then 2c ∈ JS , and θ(2s) = 2θ(s) < ∞. Hence, for
any a, b ∈ P , we have

θ̃(a+ b) = θ(a+ b+ c)− θ(c) = θ(a+ b+ 2c)− θ(2c)
= θ

(
(a+ c) + (b+ c)

)
− 2θ(c)

= θ(a+ c)− θ(c) + θ(b + c)− θ(c) = θ̃(a) + θ̃(b).

Therefore, θ̃ is additive on P . θ̃ is also non-negative on P , since, given an a ∈ P ,
for any n ∈ N we have

nθ̃(a) = θ̃(na) = θ(na+ c)− θ(c) ≥ −θ(c).

Hence, θ̃(a) ≥ − θ̃(c)
n

for any n ∈ N. By letting n −→ ∞ we see that θ̃(a) ≥ 0.

Consequently, θ̃ is an additive weight on P . �
Corollary 5.3.18. If JS is an ideal in P , and θ is an additive weight on S, such that
θ
−1{∞} is a proper subset of JS, then the weight extension of θ on P constructed

in Proposition 5.3.17 is uniquely defined.



168 Chapter 5. Extension of semicharacters and additive weights

Proof. Let θ ∈ Θ(S) and let θ̃ be the extension of θ defined in Proposition 5.3.17
by some element c ∈ JS \ θ

−1{∞}. If c is as in the proof of Proposition 5.3.17,
then a + c ∈ JS whenever a ∈ P , and for any extension θ1 ∈ Θ(P ) of θ on P
we have θ1(a) + θ(c) = θ1(a) + θ1(c) = θ1(a + c) = θ(a + c), and hence θ1(a) =
θ(a+ c)− θ(c) = θ̃(a). �
Example 5.3.19. If S is the semigroup S = (Z+ × N) ∪ {(0, 0)}, endowed with
addition, thenGS = {(0, 0)} and JS = Z+×N. Since JS is an ideal in P = Z+×Z+,
then every additive weight on S can be extended to an additive weight on P . Let
θS
∞ ∈ Θ(S) be the maximal weight on S, for which θS

∞ ≡ ∞ on Z+ × N and
θS
∞(0, 0) = 0. Now Z+ × N = θ−1(∞), and therefore θS

∞ can be extended on P as

θ̃(n,m) =
{

0 when m = 0,
∞ when m �= 0.

Note that the maximal weight θP
∞ on P is an alternative weight extension of θ on

P .

We will show that the condition in Proposition 5.3.17 is also necessary.

Theorem 5.3.20. Let S be a strongly enhanced semigroup in P . All weights in Θ(S)
have extensions as additive weights on P if and only if JS = S \GS is an ideal in
the semigroup ΓS ∩ P .

Proof. If JS is an ideal of ΓS ∩P , then by Proposition 5.3.17 any θ ∈ Θ(S) can be
extended as an additive weight θ̃ on ΓS ∩ P . Since, clearly, ΓS ∩ P is a complete
semigroup in P , Theorem 5.3.11 implies that θ̃ can be extended further on P as
an additive weight.

Conversely, suppose that every θ ∈ Θ(S) has an extension on P as an additive
weight. We claim that no b ∈ JS is invertible in P . Observe that every additive
weight vanishes at invertible elements of S. By Corollary 5.3.13 there is a weight
in Θ(S) extending the weight θ : Z+b −→ Z+ by θ(nb) = n. According to our
assumption, θ can be extended further as an additive weight θ̃ on P . Hence θ̃(b) =
θ(b) = 1 �= 0, and therefore, b can not be invertible in P . Consequently, JS ∩GP =
Ø, thus JS ⊂ JP .

Suppose that JS is not an ideal in ΓS ∩ P . Then there are elements a ∈
(ΓS∩P )\S and b ∈ JS , such that a+b /∈ JS . We claim that a+b /∈ GS . If we assume,
on the contrary, that a+b ∈ GS , then c = a+b is invertible in S, and a+(b−c) = 0,
i.e. (b− c) is invertible in P , which contradicts b− c = b+ (−c) ∈ JS +GS ⊂ JS .
Consequently, a+ b /∈ GS , and therefore, a+ b /∈ S. Hence, n (a+ b) /∈ S for any
n ∈ N, since S is strongly enhanced in P . We claim that the elements a and b are
linearly independent over Z. First we will show that if a is invertible in P , then
−a /∈ S. If we assume that −a ∈ S, then −a is not invertible, since a /∈ S, and by
Corollary 5.3.13 there is a weight ψ ∈ Θ(S) extending the weight θ

(
n(−a)

)
= n

defined on Z+(−a), and according to our supposition, ψ can be extended further
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as an additive weight ψ̃ on P , and further on P . This is impossible, since for any
extension θ̃1 of θ1 we have

ψ1(a) = −ψ̃1(−a) = −1 < 0,

in contradiction with ψ̃ ≥ 0. Therefore, for any a ∈ (ΓS ∩P ) \ S we have −a /∈ S.
If we suppose that a+ b ∈ GS , then c = a+ b is invertible in S, and hence −c =
−a− b ∈ S. Then −a = b + (−c) ∈ JS +GS = S, a contradiction. Consequently,
n (a+ b) /∈ S for any n ∈ Z \ {0}, since S is strongly enhanced in P . Assume that
na + lb = 0 and let l > 0. Since b ∈ JS we have −na ∈ S, and therefore, either
−a, or a belongs to S, since the semigroup S is strongly enhanced in P . As shown
above, neither one of these cases is possible. We conclude, that the elements a and
b are linearly independent over Z. Consider the group Za+ Zb spanned by a and
b. Note that if na + kb ∈ (Za + Zb) ∩ S, then n ≤ k. Indeed, if we assume that
k < n, then n (a+ b) = na+ kb+ (n− k) b ∈ S, which is impossible. Consider the
additive weight ψ on (Za+ Zb) ∩ S, defined by

ψ : (Za+ Zb) ∩ S −→ [0,∞) : ψ (na+ kb) = k − n.

Clearly nb ∈ (Za + Zb) ∩ S for any n ∈ Z+, and therefore, ψ(kb) = k. Since the
semigroup (Za + Zb) ∩ S is complete in S, ψ has an extension ψ̃ as an additive
weight on S, and further on P . For 0 < k < n we have

0 = ψ̃ (na+ nb) = ψ̃ (na+ kb) + ψ̃
(
(n− k)b

)
= ψ̃ (na+ kb) + (n− k).

Thus ψ̃ (na + kb) = −(n − k) = k − n < 0, which is impossible. Hence, J is an
ideal in ΓS ∩ P . �

Corollary 5.3.21. Let S be a strongly enhanced semigroup in R+. All weights in
Θ(S) have extensions as additive weights on R+ if and only if S \ {0} is an ideal
in the semigroup (ΓS)+ = ΓS ∩ R+.

Note that the sufficient condition in Proposition 5.3.17 is also necessary if
ΓS ∩ P = P , since then P ⊂ ΓS .

Corollary 5.3.22. Let S ⊂ P ⊂ ΓS and let S be strongly enhanced in P . The
following conditions are equivalent.

(i) JS = S \GS is an ideal in P .

(ii) All weights in Θ(S) have weight extensions on P .

(iii) All semicharacters in H(S) possess semicharacter extension on P .

(iv) All semicharacters in H(S) are monotone decreasing.

(v) Any linear multiplicative functional of the algebra AS can be extended to a
linear multiplicative functional on AP .
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Corollary 5.3.23. Let S and P be as above. If JS = S \GS is an ideal in P , then
the restriction r : m �−→ m

∣∣
AS

is a continuous mapping from MAP onto MAS .

Clearly, r : m �−→ m
∣∣
AS

is a continuous mapping from MAP into MAS . The
surjectivity of r follows from Corollary 5.3.22.

Corollary 5.3.24. Let S be a strongly enhanced semigroup in Rk
+. The above re-

striction r maps the b(R)-polydisc onto MAS if and only if JS = J \ S is an ideal
in Rk

+.

As a consequence we see that in the setting of Corollary 5.3.24 the standard
embedding of Cn

+ into the spaceMAS =MAP (Rn) has a dense image (equivalently,
the algebra AS does not have a Cn

+-corona) if and only if JS = J \S is an ideal in
Rk

+.

5.4 Weights on algebras generated by Archimedean

ordered semigroups

The natural partial order generated by a semigroup S on itself reflects the prop-
erties of the semigroup. Recall that if S is a semigroup with 0 and cancellation
law, the standard S-order is a partial pseudo-order on S, such that

a ≺ b if a+ c = b for some c ∈ S.

This order possesses the following properties:

(i) If a ≺ b and b ≺ c , then a ≺ c.

(ii) a ≺ a for every a ∈ S.

(iii) If a ≺ b and c ∈ S , then a+ c ≺ b+ c.

(iv) 0 ≺ a for every a ∈ S.

The S-order is an order on S, namely,

(v) a ≺ b and b ≺ a imply a = b,

if and only if the group kernel GS of S is trivial, i.e. if GS = S ∩ (−S) = {0}.

The S-order ≺ is total, i.e.

(vi) For every a, b ∈ S either a ≺ b, or b ≺ a holds,

if and only if the group envelope ΓS = S − S of S equals S ∪ (−S).

A total order ≺ on S is Archimedean, i.e.

(vii) For every a, b ∈ S, a �= 0 there exist an m ∈ N such that b ≺ ma,
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if and only if S ∪ (−S) = ΓS and S can be embedded in R.

The S-order can be extended naturally in the group envelope ΓS of S by
letting

a ≺ b if b− a ∈ S.

If the S-order is total on S, then its natural extension on ΓS is also total. Indeed,
if a, b ∈ ΓS , and a = a1 − a2, b = b1 − b2, where ai, bi ∈ S, 1 = 1, 2, then a1 + b2
and b1 + a2 belong to S. If, say, a1 + b2 ≺ b1 + a2, then a1 + b2 + c = b1 + a2

for some c ∈ S. Therefore, b − a = (b1 − b2) − (a1 − a2) = c ∈ S, i.e. a ≺ b. The
S-order on ΓS can be expanded in ΓS by letting

a ≺∗ b if and only if n(b− a) ∈ S for some n ∈ N

for any a, b ∈ ΓS . Restricted on S, the order ≺∗ has the following property

a ≺∗ b if and only if na+ c = nb for some n ∈ N and c ∈ S.

Clearly, a ≺ b implies a ≺∗ b. The opposite, however, is not always true. One can
check that the properties (i)–(v) from the above hold for the order ≺′ too.

Example 5.4.1. It is easy to see that the S-order on the semigroup S = Z+ × Z+

under addition is not total. Given an irrational number β > 0, we can define an
order ≺β on S by

(n, k) ≺β (m, l) if n+ αk < m+ αl.

Note that β defines an embedding φβ of S into R+ by φβ(n, k) = n+βk. One can
check that the order ≺β is total, i.e. for any a, b ∈ S either a ≺β b, or b ≺β a holds.
This order is different from the natural order ≺ on S, and also from its extension
≺∗. However, ≺β coincides with the natural order on the semigroup

Γ β
+ =

{
(n,m) ∈ Z× Z : n+ βm ≥ 0

}
,

on which it is both total and Archimedean.

Clearly, if 0 ≺∗ a, then na ∈ S, i.e. a ∈ [S]s, thus −a ∈ [−S]s. Hence,
(ΓS)+ = {a ∈ ΓS : 0 ≺∗ a} ⊂ [S]s \ [−S]s, and (ΓS)− = {a ∈ ΓS : a ≺∗ 0} ⊂
[−S]s \ [S]s. Therefore, (ΓS)+ ∪ (ΓS)− ⊂ [S]s ∪ [−S]s. The order ≺∗ generated by
S on ΓS is total if (ΓS)+ ∩

(
− (ΓS)+

)
= {0} and (ΓS)+ ∪

(
− (ΓS)+

)
= ΓS . This

happens if and only if (ΓS)+ = [S]s. We have obtained the following

Proposition 5.4.2. The ≺∗-order in ΓS is Archimedean if and only if the following
conditions hold.

(i) (ΓS)+ = [S]s.

(ii) [S]s ∩ [−S]s = {0}.

(iii) For every a, b ∈ (ΓS)+, a �= 0 there exists an m ∈ N such that b ≺∗ ma.
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There is a close connection between the orders in the group envelope ΓS , and
the additive weights on S. Since every weight θ ∈ Θ(S,R) can be extended on the
group envelope ΓS of S, say as θ̃ : ΓS �−→ R, we can define an order on ΓS by
a ≺θ b if and only if θ̃(a) ≤ θ̃(b). The order ≺θ is total if and only if the weight
θ is injective on S. If this is the case, the mapping θ̃ : ΓS �−→ R is an embedding,
and therefore the order generated by θ in ΓS is total and Archimedean.

Note that if ψ ∈ Θ(S), then ψ(a) ≥ 0 if and only if 0 ≺∗ a, i.e. if a ∈ (ΓS)+.
If GS = {0}, then for every a ∈ S \ {0} there is a weight θ ∈ Θ(S,R) so that
0 < θ(a) < ∞. Indeed, the semigroup Z+a generated by a is complete in S. By
Theorem 5.3.11 and Proposition 5.3.1 there is an additive weight θ on [S]s with
values in R+, such that θ(na) = n. In particular, θ(a) = 1.

Proposition 5.4.3. If the order ≺∗ of the group ΓS is total and Archimedean, then
there is a homomorphic embedding of ΓS into R.

Proof. Let θ be a weight in Θ
(
(ΓS)+

)
with 0 < θ(a) < ∞ for some a ∈ S \ {0}.

By the Archimedean property of ≺∗, given a b ∈ (ΓS)+ there is an m ∈ Z+, so
that b ≺∗ ma. Therefore, θ(b) ≤ θ(ma) = mθ(a) < ∞, i.e. θ ∈ Θ(S,R). On the
other hand we have also a ≺′ kb for some k ∈ Z+, thus θ(b) > 0. Consequently, θ
is a homomorphic embedding of (ΓS)+ into R+. Its natural extension, θ̃ : θ̃(−a) =
−θ(a), on ΓS embeds ΓS homomorphically into R. �
Theorem 5.4.4. The following conditions are equivalent.

(i) The order ≺∗ generated by S on ΓS is Archimedean.

(ii) The weight semigroup Θ(S) is isomorphic to [0,∞].

(iii) The semigroup Θ(S,R) of weights with values in R is isomorphic to R+ =
[0,∞).

Proof. First we show that (i) implies (ii). Assume that ≺∗ is an Archimedean order
on ΓS . By Proposition 5.4.2(i) we have that (ΓS)+ = [S]s. If θ ∈ Θ(S) is such that
θ �≡ 0, and θ �≡ ∞ on S \ {0}, then there is an a ∈ S \ {0} with 0 < θ(a) < ∞.
Since the order ≺∗ on ΓS is Archimedean, for every b ∈ (ΓS)+ there exists an
m ∈ N such that b ≺∗ ma. Therefore, θ(b) < ∞ on (ΓS)+, i.e. θ ∈ Θ(S,R). We
claim that if θ1 is also an additive weight on S with θ(a) ≡ θ1(a), then θ ≡ θ1.
Assume that θ and θ1 are extended naturally on ΓS as additive functions, namely,
by θ(b− c) = θ(b)−θ(c), and θ1(b− c) = θ1(b)−θ1(c) respectively. Let, say, a ≺∗ c
for some c ∈ (ΓS)+, and assume that θ(c) < θ1(c). There are numbers m,n ∈ Z
so that

θ(c) − (m/n) θ(a) = θ(c)− (m/n) θ1(a) < 0 < θ1(c)− (m/n) θ(a).

Hence, θ(c) < 0 < θ1(c), contrary to the fact that the extension on ΓS of the
weights in Θ(S) are non-negative on [S]s = (ΓS)+. Consequently, θ(c) = θ1(c) for
any c ∈ ΓS with a ≺∗ c. The same argument applies for any c ≺∗ a. Hence, θ = θ1
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on ΓS , and consequently, every weight ψ ∈ Θ(S) can be expressed uniquely in the
form ψ = ψ(a) θ. Therefore, the mapping ψ �−→ ψ(a) is a bijection between the set{
ψ ∈ Θ(S) : ψ(b) �= ∞, b ∈ S

}
and R+. If there is no a ∈ S with θ(a) <∞, then

θ ≡ ∞ on S \ {0}, which corresponds to the case when θ(a) = ∞. Consequently,
Θ(S) ∼= [0,∞], which proves (ii).

Since, obviously, (ii) implies (iii), it remains to show that (iii) implies (i).
Observe that the semigroupΘ(S) is conic over R+. If (i) holds, then the set Θ(S,R)
can be parametrized by a real parameter λ, namely, Θ(S,R) = {θλ, λ ∈ R+}. Fix
a λ ∈ R+ and let θλ(a) = 1 for some a ∈ S \ {0}. We claim that the elements
of Θ(S,R) are of type r θλ for some real r, i.e. that Θ(S,R) ∼= R+ θλ. Because of
Θ(S,R) ∼= R+ we have that θnλ = nθλ. Since nθ(m/n)λ = θn(m/n)λ = θmλ = mθλ,
we obtain that θ(m/n)λ = (m/n) θλ for every rational number m/n. If α is an
irrational number, and if p/q < α < m/n, then

θ(p/q)λ = (p/q) θλ ≤ αθλ ≤ (m/n) θλ = θ(m/n)λ.

Therefore,
sup

p/q<α

(p/q)θλ ≤ θαλ ≤ inf
m/n>α

(p/q)θλ,

and hence θαλ = αθλ. Consequently, Θ(S,R) = R+ θλ, as desired. Since Θ(S,R)
separates the points of the semigroup S, so does θλ. Therefore, if a, b ∈ S, a �= b,
then either θλ(a) < θλ(b), or θλ(b) < θλ(a). We assume that θλ is extended
naturally as an additive function on ΓS by θλ(a − b) = θλ(a) − θλ(b). Since θλ
separates the points in S, so does its extension θ̃λ on ΓS . Hence θ̃λ is an embedding
of ΓS into R. If Γ̃+ =

{
c ∈ ΓS : θ̃λ(c) ≥ 0

}
, then ΓS = Γ̃+ ∪ (−Γ̃+), and Γ̃+ ∩

(−Γ̃+) = {0}. Therefore, ΓS is isomorphic to a subgroup of R and the usual order
≤ on R corresponds to the order ≺∗. Consequently, ≺∗ is an Archimedean order,
and (ΓS)+ = Γ̃+ = [S]s by Proposition 5.4.2. This proves that (iii) implies (i). �

Since the property (iii) in Proposition 5.4.2 holds for the order ≺∗ generated
by a semigroup S ⊂ R+, we have the following

Corollary 5.4.5. If S ⊂ R+, then Θ(S,R) ∼= R+ if and only if [S]s = (ΓS)+.

As a corollary Θ(S,R) ∼= H
(
S, [0, 1]

)
, where R = [−∞,∞]. Since [0,∞] ∼=

[0, 1], Theorem 5.4.4 yields

Corollary 5.4.6. If S is a semigroup in R+, then the semigroup H
(
S, [0, 1]

)
of

non-negative semicharacters on S is isomorphic to the semigroup [0, 1] if and only
if [S]s = (ΓS)+.

Note that H(S) ∼= DG, where G = Γ̂S , if and only if H
(
S, [0, 1]

)
is isomorphic

to [0, 1]. As shown in Proposition 4.2.7, [S]s ⊃ (ΓS)+ is a sufficient condition for
the set H(S) ∼= MAS to be homeomorphic to DG. The following corollary shows
that this condition is also necessary.
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Corollary 5.4.7. Let S be a semigroup in R+. The following conditions are equiv-
alent.

(i) [S]s = (ΓS)+.

(ii) The semigroup H(S) is isomorphic to the G-disc DG, G = Γ̂S.

(iii) Any linear multiplicative functional of the algebra AS can be extended uniquely
to a linear multiplicative functional on A(ΓS)+ .

(iv) All weights in Θ(S) have unique weight extensions on (ΓS)+.

(v) All semicharacters in H(S) have unique semicharacter extension on (ΓS)+.

(vi) All non-negative semicharacters on S are monotone decreasing.

This is a direct consequence from Proposition 4.2.7 and Corollary 5.4.6.

Example 5.4.8. Let β > 0 be an irrational number. Consider the two-dimensional
semigroup Sβ = {n + mβ : n,m ∈ Z+} ⊂ R endowed with addition. Clearly,
[Sβ]s = Sβ , and the group envelope of Sβ is ΓSβ = Γ β = Sβ − Sβ = {n +
mβ : n,m ∈ Z}. It is easy to see that in this case [Sβ]s �= (ΓSβ )+ = {n+βm ≥ 0}.
For instance, if β > 1, then the positive number β − �β� ∈ (ΓSβ ) + \[Sβ]s, where
�β� is the greatest integer preceding β. As we saw in Example 5.1.6, not every
semicharacter on Sβ is monotone decreasing, and not all semicharacters on Sβ are
extendable on (ΓSβ )+.

Consider the mapping π : MH∞ −→ D : ϕ �−→ ϕ(id) ∈ D, which is bijective
on the set D̃ = π−1(D) ⊂MH∞ . Therefore, D̃ and D are homeomorphic sets. The
following theorem, which is a direct consequence of Corollary 5.4.7 shows that the
condition in Corollary 4.2.13 is also necessary.

Theorem 5.4.9. If S is a semigroup of R+ with ΓS dense in R, then the following
conditions are equivalent.

(i) [S]s = (ΓS)+.

(ii) The maximal ideal spaces MAS and MAPS(R) corresponding to the shift-
invariant algebra AS, and the algebra APS(R) of almost periodic functions
with spectrum in S, are homeomorphic to the G-disc DG with G = Γ̂S .

(iii) The algebras AS and APS(R) do not have a C+-corona, i.e. the mapping j̃ı
embeds densely the upper half-plane C+ in MAS = MAPS(R).

(iv) The algebra H∞
S ⊂ H∞ on the unit disc D, generated by the singular func-

tions
{
eia (1 + z)/(1− z), a ∈ S

}
and endowed with the sup-norm on D,

does not have a D-corona, i.e. the unit disc D = π(D̃) is dense in the maxi-
mal ideal space of H∞

S .

(v) The algebra H∞
S does not have a C+-corona, i.e. the image j̃ı(C+) of the

upper half-plane C+ under the embedding j̃ı is dense in its maximal ideal
space MH∞

S
.
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Let S ⊂ R+, θ ∈ Θ(S) and g ∈ G. Consider the embedding C+ −→
MAS : z �−→ ϕg

θ(z), where(
ϕg

θ(z)
)
(a) = e−iz θ(a)χa(g), a ∈ S.

Theorem 5.4.10. If S is a semigroup of R+ with ΓS dense in R, then the following
conditions are equivalent.

(i) [S]s = (ΓS)+.

(ii) There is a θ0 ∈ Θ(S,R) and a g ∈ G such that the set ϕg
θ0

(C+) is dense in
MAS .

(iii) The set ϕg
θ(C+) is dense in MAS for all g ∈ G and all θ ∈ Θ(S,R).

Proof. If [S]s = (ΓS)+, then Θ(S,R) ∼= R+ θ0∪{∞}, andMAS
∼= DG. In this case

one can choose ϕi
θ = j̃ı for θ0 in (ii). This proves that (i) implies (ii).

Assume that (ii) holds, and let θ : S −→ R+ be the identity weight, i.e.
θ(a) = a, a ∈ S. As a semicharacter on S, the function a �−→ ei(1 + i) a belongs
to MAS . Since ϕg

θ0
(C+) is dense in MAS , there exists a sequence {zn} in C+ and

gn ∈ G such that
eiznθ0(a)χa(gn) −→ ei(1 + i) a

for all a ∈ S. Hence, if zn = xn + iyn, then∣∣eiznθ0(a)χa(g)
∣∣ =

∣∣e−ynθ0(a)∣∣ −→ e−a, as n→∞

for all a ∈ S. Thus λ = lim
n→∞

yn = a/θ0(a). It is clear that λ is independent of

a �= 0. Therefore, θ0(a) = λa = λθ(a). By the same arguments as in Theorem 5.4.4
one can show that the set Θ(S,R) of non-zero weights θ ∈ Θ(S) is isomorphic to
R+ θ0 ∪ {∞}, which implies (i), according to Theorem 5.4.4. Consequently, (ii)
implies (i).

Clearly, (iii) implies (ii). If (i) holds, then any θ0 ∈ Θ(S,R) is of type λθ,
and ϕı

θ0
(z)(a) =

(
ϕı

θ(z)(a)
)λ

, thus ϕı
θ0

(z) =
(
ϕı

θ(z)
)λ

, and hence, ϕı
θ0

(C) = ϕı
θ(C).

Similarly, ϕg
θ0

(z)(a) = ϕı
θ0

(z)·χa(g), i.e. ϕg
θ0

(z) = ϕı
θ0

(z)·g thus ϕg
θ0

(C) = ϕı
θ0

(C)·g.
This proves (iii), since the multiplication by g ∈ G is a homeomorphism of MAS

onto itself. �
Let g = ı, and let θid ∈ Θ(S) be the identity mapping on S, i.e. θid(a) = a,

a ∈ S ⊂ R. For any a ∈ S we have that

χ̂a
(
ϕı

θid
(z)
)

=
(
ϕı

θid
(z)
)
(a) = e−iaz

is an analytic periodic S-function on every line Ry0 = {x + iy0 ∈ C : x ∈ R}.
Therefore, if θ0 = λ0θid, we have

(
ϕg

θ0
(z)
)
(a) =

(
ϕı

θid
(z)
)
(λ0a)χa(g), and the

algebra AS ◦ ϕg
θid

= {f ◦ ϕg
θid

: f ∈ AS} coincides with the algebra APS(R) of
bounded almost periodic S-functions on R, which are analytic on C+.
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5.5 Notes

The study of extendability properties of linear multiplicative functionals from
smaller to larger shift-invariant algebras was initiated in [GT1]. The idea of in-
volving monotonicity in this subject originated in [T2]. The solution of the related
problem for semicharacter extension of semicharacters on arbitrary semigroups in
terms of monotonicity (Theorem 5.2.1), is due to K. Ross [R3] (see also [CP], [K]).
In the case of semigroups of R, alternative sufficient conditions for semigroup ex-
tension of semicharacters were considered in [B4], and for arbitrary semigroups —
in [GT2] and [P3]. The proof of Theorem 5.2.5 presented here is due to Sherstnev
[S3] (see also [TG]). Most of the results on characterizations of semigroups with
the property that any of its additive weights possesses an extension on larger semi-
groups are from [?] and [TG]. The necessary and sufficient conditions in Corollary
5.1.9, Proposition 5.1.10 and Theorem 5.4.9 for existence of C+- and D-coronae of
the considered classes of algebras of almost periodic functions and ofH∞-functions
are from [GT4].



Chapter 6

G-disc algebras

G-disc algebras are also called big disc algebras, or algebras of generalized an-
alytic functions. They are special classes of shift-invariant algebras on compact
groups, generated by ‘one half’ of their dual groups. Their properties, including
the description of their Bourgain algebras and primary ideals, are presented in
this chapter. While all the results are given for general shift-invariant algebras
AΓ+ , they apply automatically to the particular cases of algebras APΓ+ of almost
periodic functions, and of H∞

Γ+
-algebras.

6.1 Analytic functions on groups and G-discs

Let G be a compact group such that its dual group Γ = Ĝ is isomorphic to a
subgroup of R. Without loss of generality we will assume that Γ ⊂ R.

Definition 6.1.1. The G-disc algebra is said to be the shift-invariant algebra AΓ+

on G, where Γ+ = Γ ∩R+ is the non-negative part of Γ . The elements in AΓ+ , the
Γ+-functions, are also called generalized analytic functions in the sense of Arens-
Singer on G, or, analytic functions on G, for short. The Gelfand transform ÂΓ+

of AΓ+ is denoted also by A(DG). Its elements are called analytic functions on the
G-disc DG.

We recall that a function f ∈ C(G) belongs to AΓ+ if and only if its Fourier
coefficients

cfa =
∫
G

f(g)χa(g) dσ

are zero for all a ∈ Γ \ Γ+. As a shift-invariant algebra on G, any G-disc algebra
AΓ+ possesses the following properties (cf. Section 4.1).

(i) The maximal ideal space MAΓ+
is homeomorphic to the closed G-disc DG =(

[0, 1] �G
)
/{0} �G =

(
[0, 1]×G

)
/
(
{0} ×G

) ∼= H(Γ+).
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(ii) The Shilov boundary ∂AΓ+ is the group G.

(iii) A(DG) = ÂΓ+
∼= AΓ+ .

(iv) The algebra A(DG) satisfies the local maximum modulus principle, i.e. given
an analytic function f on DG, considered as a subset of the G-plane CG =(
[0,∞)×G

)
/
(
{0} ×G

)
and a compact set K ⊂ DG, then∣∣f(r0 � g0)∣∣ ≤ max

r�g∈bK

∣∣f(r � g)∣∣
for every point r0 � g0 ∈ K.

(v) If an analytic function on DG vanishes on a non-void open subset of DG then
it vanishes identically on DG.

(vi) AΓ+ is an antisymmetric algebra, i.e. any real-valued analytic function on G
is constant.

(vii) The upper half-plane C+ can be embedded densely in the G-disc DG via the
natural mapping j̃ı : C+ −→MAΓ+

, and the function f̂ |ejı(C+) is analytic on
C+ for any f ∈ A.

An essential part of the classical theory of analytic functions in D is based
on the maximality property of the disc algebra A(D). The next theorem says that,
likewise, the algebra of analytic functions on G is a maximal algebra on G.

Proposition 6.1.2. A shift-invariant algebra AS on G is maximal if and only if
S ∼= Γ+, i.e. if AS coincides with the G-disc algebra.

Proof. It is obvious that if S is a proper subsemigroup of Γ+, then AΓ+ properly
contains AS . Hence, AS can not be maximal. Conversely, we claim that any G-
disc algebra is maximal. Indeed, assume that B �= C(G) is a closed subalgebra
of C(G) with AΓ+ ⊂ B ⊂ C(G). Since B ⊃ AΓ+ , we see that B contains every
χa, a ∈ Γ+. Because B �= C(G) there exists a c ∈ Γ+ \ {0} such that χ−c /∈ B.
Hence, χc has no inverse element in B, and therefore there is a linear multiplicative
functional ϕ ∈MB, such that ϕ(χc) = 0. By the Archimedean property of N, for
any a ∈ Γ+ there is an m ∈ N such that ma ≥ c. Hence, if b = ma − c ∈ N
we have χb ∈ B, and therefore ϕ(χa)m = ϕ(χma) = ϕ(χcχb) = ϕ(χc)ϕ(χb) = 0.
Consequently, ϕ(χa) = 0 for every a ∈ Γ+ \ {0}, and therefore, any representing
measure µ of ϕ vanishes identically on both sets

{
χa : a ∈ Γ+ \{0}

}
, and

{
χa : a ∈

Γ+\{0}
}

=
{
χa : a ∈ Γ \Γ+

}
. Hence,

∫
G

χa(g) dµ = 0 for all a ∈ Γ \{0}. Since, on

the other hand,
∫
G

χ0(g) dµ =
∫
G

1 dµ = ϕ(1) = 1, we see that
∫
G

χa dµ =
∫
G

χa dσ

for any χa ∈ Ĝ. By the Stone-Weierstrass theorem
∫
G

f dµ =
∫
G

f dσ for every
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f ∈ C(G). The Riesz representation theorem implies that µ = σ. Consequently,

ϕ(f) =
∫
G

f dσ for every f ∈ B. If f ∈ B and a ∈ Γ+ \ {0} then also fχa ∈ B and

∫
G

f χa dσ = ϕ(fχa) = ϕ(f)ϕ(χa) = 0.

Thus cf−a =
∫
G

f(g)χ−a(g) dσ =
∫
G

f(g)χa(g) dσ = 0 for all a ∈ Γ+ \ {0}, i.e.

f ∈ AΓ+ . Hence, B ⊂ AΓ+ , and therefore, B = AΓ+ . Consequently, AΓ+ is a
maximal algebra. �

The maximality of AΓ+ implies that if h is a continuous function on G,
which is not an analytic function on G, then every continuous function on G

can be approximated uniformly on G by functions of type
n∑

k=1

fk(g)hk(g), where

fk ∈ AΓ+ . Since APΓ+(R) ∼= AΓ+ , as a corollary from Proposition 6.1.2 we obtain
that the algebra APΓ+(R) ⊂ APa(R) of analytic almost periodic Γ -functions on
R also is a maximal algebra.

Theorem 6.1.3. Let S ⊂ Γ+. A shift-invariant algebra AS on G is a Dirichlet
algebra, i.e. every real-valued continuous function f on G can be approximated by
real parts of analytic functions on G, if and only if S generates Γ , i.e. if S−S = Γ .

Proof. If ΓS = S − S �= Γ , then AS does not separate the points of G, and
neither does ReAS . Therefore, its closure

[
ReAS

]
does not coincide with C(G),

thus AS is not a Dirichlet algebra. Conversely, let S − S = Γ , and assume, on
the contrary, that AS is not a Dirichlet algebra. Then ReAS is not dense in
the space CR(G) of real-valued continuous functions on G, hence

[
ReAS

]
is a

proper subspace of CR(G). By the Hahn-Banach theorem there exists a non-zero
linear positive functional ϕ on CR(G) that vanishes identically on

[
ReAS

]
. By the

Riesz representation theorem, ϕ can be expressed as the integration with respect

to a Borel measure, say µ, on G. We have that
∫
G

g dµ = 0 for all g ∈ ReAS ,

thus
∫
G

f dµ =
∫
G

Re f dµ+ i
∫
G

Im f dµ = 0 for every f ∈ AS . Since the measure

µ is real-valued, then also
∫
G

f dµ =
∫
G

f dµ = 0 for every f ∈ AS . In particular,

for any character χ ∈ S we have
∫
G

χdµ = 0, and,
∫
G

χdµ =
∫
G

χdµ = 0. Since

Ĝ = Γ = S − S,
∫
G

χdµ = 0 for any χ ∈ Γ . Therefore,
∫
G

h dµ = 0 for any linear
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combination h of characters of G. Since by the Stone-Weierstrass theorem these

combinations are dense in C(G), we deduce that
∫
G

f dµ = 0 for every continuous

function f ∈ C(G). Hence ϕ(g) =
∫
G

g dµ = 0 for any g ∈ CR(G). Therefore, ϕ

is the zero functional on CR(G), contradicting its choice. Consequently, AS is a
Dirichlet algebra if S − S = Γ . �

In particular, any G-disc algebra AΓ+ is a Dirichlet algbera. Assume that
S − S = Γ . Since AΓ+ is a Dirichlet algebra, and G is its Shilov boundary, every
linear multiplicative functional of AS has a unique representing measure on G.
Therefore, for any fixed point r �g ∈ DG ⊂MS there is a unique positive measure
mr�g on G with supp (mr�g) = G, and such that

f̂(r � g) =
∫
G

f dmr�g

for every f ∈ AS . In particular, χ̂a(r � g) =
∫
G

χa dmr�g = raχa(g) for all a ∈ S.

Note that
∫
G

χa dmr�g = r|a|χa(g) for any a ∈ S.

Proposition 6.1.4. The convolution of the representing measures of two points in
DG for the G-disc algebra AΓ+ is the representing measure of their product.

Proof. Let mi be the representing measures of the points ri � gi ∈ DG, i = 1, 2.
By definition, ∫

G

f d (m1 � m2) =
∫
G

∫
G

f(gh) dm1(g) dm2(h) (6.1)

for all f ∈ C(G). Therefore,∫
G

χa d (m1 � m2) = χ̂a(r1 � g1) χ̂a(r2 � g2) = ra1χ
a(g1) ra2χ

a(g2)
= (r1r2)aχa(g1g2) = χa

(
(r1 � g1)(r2 � g2)

)
,

for every a ∈ Γ+. Consequently, m1 � m2 is the representing measure of the point
(r1 � g1)(r2 � g2). �

Denote by mr the representing measure of the point r � ı, i.e. mr = mr�ı,
where ı is the unit element of G. Since mr�g = m1�g � mr�ı for any g ∈ G, then
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(6.1) implies that

f̂(r � g) =
∫
G

f dmr�g =
∫
G

f d (m1�g � mr�ı) (6.2)

=
∫
G

∫
G

f(hk) dm1�g(h) dmr�ı(k) =
∫
G

f(gk) dmr(k) = f̃r(g)

for any f ∈ C(G). Here f̃r is denotes the convolution f̃r = f � mr of f and mr. It
is easy to see that

f̃r1 = f � mr1 = (f � mr2) � mr1/r2 = f̃r2 � mr1/r2 = (f̃r2)
e
r1/r2

,

whenever r1 < r2.

6.2 Bourgain algebras of G-disc algebras

Bourgain elements and Bourgain algebras were introduced in Section 1.4. Let G
be a compact abelian group with unit element ı, and let S be a subsemigroup of
Ĝ containing the unit character χ0 ≡ 1. For a fixed character χ ∈ Ĝ denote by Pχ

the set χS \ S.

Proposition 6.2.1. Any character χ ∈ Ĝ, for which the set Pχ is finite, is a Bour-
gain element of AS with respect to C(G).

Proof. Note that the characters on G are linearly independent in C(G). Since the
algebra AS is generated linearly by S ⊂ C(G), the sets Pχ and πAS (Pχ) have the
same cardinality. Therefore,

dim
(
Sχ(AS)

)
= dim

(
πAS (χAS)

)
= card

(
πAS (Pχ)

)
= card (Pχ) <∞.

By Proposition 1.4.2 the Hankel type operator Sχ is completely continuous. Hence
χ belongs to (AS)C(G)

b as claimed. �
Note that for any χ ∈ S the set Pχ has the same cardinality as χPχ =

S \ χS = {γ ∈ S : γ /∈ χS}, which is the set of all predecessors of χ in S, i.e.
of all elements γ in S which precede χ with respect to the S-order on Ĝ. If, in
addition, S − S = Ĝ and every χ ∈ S has finitely many predecessors in S, then
every character χ ∈ Ĝ has finitely many predecessors in S. Then Proposition 6.2.1
yields

(
A

C(G)
S

)
b

= C(G), and therefore the corresponding algebra AS possesses
the Dunford-Pettis property (cf. [CT]).

Corollary 6.2.2. If χ ∈ S is such that S \ {1} ⊂ χS, then χ is a Bourgain element
of AS with respect to C(G).

Proof. Since χPχ = S \ χS =
(
{1}∪ (S \ {1})

)
\ χS ⊂

(
{1}∪ χS

)
\ χS = {1}, we

have that Pχ = {χ}. Hence χ ∈ (AS)C(G)
b by Proposition 6.2.1. �
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Corollary 6.2.3. If AS is a maximal algebra, and the set Pχ is finite for some
character χ ∈ Ĝ \ S, then (AS)C(G)

b = C(G).

Proof. Indeed, χ ∈ (AS)C(G)
b by Proposition 6.2.1. However, χ /∈ AS , since χ /∈ S.

Consequently (AS)C(G)
b = C(G) by the maximality of AS . �

Example 6.2.4. If H is a finite group, G = (H ⊕ Z)̂ and S ∼= H ⊕ Z+, then
(AS)C(G)

b = C(G). Indeed, for every character χ(h,n) ∈ Ĝ, where h ∈ H and
n ∈ Z, we have

card
(
Pχ(h,n)

)
= card

(
(h, n)(H ⊕ Z+) \H ⊕ Z+

)
= card

(
(hH ⊕ (n+ Z+)) \H ⊕ Z+

)
= card

(
(H ⊕ (n+ Z+)) \H ⊕ Z+

)
= card

(
H ⊕ ((n+ Z+) \ Z+)

)
= cardH + n <∞.

Proposition 6.2.1 implies that χ(h,n) ∈ (AS)C(G)
b for every h ∈ H and n ∈ Z.

Consequently Ĝ = H ⊕ Z ⊂ (AS)C(G)
b , wherefrom (AS)C(G)

b = C(G).

The following theorem gives a description of Bourgain algebras for some G-
disc algebras.

Theorem 6.2.5. If G is a solenoidal group whose dual group Ĝ ∼= Γ is divisible
by an integer n �= 1 belonging to Γ , then the Bourgain algebra (AΓ+)C(G)

b of the
G-disc algebra AΓ+ coincides with AΓ+ .

The spaces R, Q, and the group of dyadic numbers {m/2n : m ∈ Z, n ∈ N}
are examples of groups Γ satisfying the hypotheses of Theorem 6.2.5. Without
loss of generality we can assume that 1 ∈ Γ+, thus 1/n ∈ Γ+, i.e. χ1/n ∈ Ĝ+.
Clearly, Γ+ is a subset of (AΓ+)C(G)

b . First we prove two auxiliary results.

Lemma 6.2.6. The sequence of real-valued functions ϕn(x) =
∣∣∣1 + ei (x/n)

2

∣∣∣2n

con-
verges pointwise to 1 as n −→∞ for every x ∈ R.

Proof. Fix an x ∈ R. Since ei (x/n) �= −1 for n big enough, we have

ϕn(x) =
(∣∣∣1 + ei (x/n)

2

∣∣∣2)n

=
(2 + 2 cos(x/n)

4

)n

= cos2n(x/(2n) −→ 1

as n −→∞. �

Note that the convergence in Lemma 6.2.6 is not necessarily uniform on R,
since, for instance, ϕn(x) = 0 if x = πn for any integer n.

Lemma 6.2.7. In the setting of Theorem 6.2.5, ψn(g) =
∣∣∣1 + χ1/n(g)

2

∣∣∣2n

converges
pointwise to 1 as n −→∞ for every g ∈ G.
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Proof. Let jı : R −→ G be the standard embedding of the real line onto a dense
subgroup of G such that jı(0) = ı. Then χ1/n(jı(x)) = ei (x/n) and ψn(jı(x)) =
ϕn(x) for every real x. Hence ϕn(x) −→ 1 as n −→∞ by Lemma 6.2.6.

Consider the neighborhood U of ı, defined as U = (χ1)−1{eit : − π/4 < t <
π/4} ⊂ G. Note that if n

√
[ · ] is the principal value of the n-th root considered

on the set {eit : − π/4 < t < π/4}, then χ1/n(h) = n
√
χ1(h) on U . For a given

g ∈ G there is an hg ∈ U such that g = jhg (x) for some x ∈ R, where jh = hjı is
the standard dense embedding of R into G with jh(0) = h. Hence, if χ1(hg) = eis

for some s, −π/4 < s < π/4, then χ1/n(hg) = ei(s/n), and therefore,

ψn(g) = ψn(jhg (x)) =
∣∣∣1 + χ1/n(jhg (x))

2

∣∣∣2n

=
∣∣∣1 + χ1/n(hg)χ1/n(jı(x))

2

∣∣∣2n

=
∣∣∣1 + ei (s+ x)/n

2

∣∣∣2n

.

Consequently, ψn(g) = ϕn(s+ x) −→ 1 as n −→∞, by Lemma 6.2.6. �

The remark following Lemma 6.2.6 shows that the convergence in Lemma
6.2.7 may not be uniform.

Proof of Theorem 6.2.5. Suppose that χ3 ∈ (AΓ+)C(G)
b and consider the sequence

ξn(g) = ψn(g) − 1, where ψn is the function from Lemma 6.2.7. Since {χ1ξn}n

converges pointwise to 0 on the compact group G, it is weakly null in AΓ+ . Since
χ3 ∈ (AΓ+)C(G)

b , there are functions hn ∈ AΓ+ such that ‖χ3χ1ξn − hn‖ < 1/n
for every n, where ‖ · ‖ is the sup-norm on G. By integrating, if necessary, over
Ker

(
χ1/n), we can assume that hn is constant on Ker

(
χ1/n)-cosets in G, thus

hn = qn
(
χ1/n) for some polynomial qn. Since

(χ1ψn)(g) =
(
χ1/n(g)

)n
(1 + χ1/n(g)

2

)n(1 + χ1/n(g)
2

)n

= pn

(
χ1/n(g)

)
,

where pn is the polynomial pn(z) =
(1 + z

2

)2n

, we have that χ1ψn ∈ AΓ+ , and
therefore, ξn ∈ AΓ+ too. If Sk is the k-th partial sum of pn, then the j-th Cesáro
mean

σpn

j =
S0 + S1 + · · ·+ Sj

j + 1

of pn for j = 2n equals

σpn

2n(z) =
1

4n(2n+ 1)

2n∑
k=0

(2n− k + 1)
(

2n
k

)
zk.



184 Chapter 6. G-disc algebras

Hence

4n(2n+ 1)σpn

2n(z) =
2n∑

k=0

(
2n
k

)
zk +

2n−1∑
k=0

(2n− k)
(

2n
k

)
zk

= (1 + z)2n + 2n (1 + z)2n−1 = (2n+ 1 + z) (1 + z)2n−1.

Now

‖χ3χ1ξn − hn‖ = maxg∈G

∣∣(χ3χ1ξn)(g)− hn(g)
∣∣

= maxg∈G

∣∣(χ1ξn)(g)− (χ3hn)(g)
∣∣ = maxg∈G

∣∣(χ1ψn)(g)− χ1(g)− χ3(g)hn(g)
∣∣

= maxg∈G

∣∣pn

(
χ1/n(g)

)
− χ1(g)−

(
χ1/n(g)

)3n
qn
(
χ1/n(g)

)∣∣
= maxz∈T

∣∣pn(z)− zn − z3nqn(z)
∣∣.

Note that σpn(z)−zn

2n (z) = σ
pn(z)−zn−z3nqn(z)
2n (z), because the Cesáro mean σ2n

depends only on the first 2n terms of the Taylor series. Since the inequality
max
z∈T

∣∣σf
n(z)

∣∣ ≤ max
z∈T

∣∣f(z)∣∣ holds for every f ∈ A(T), we obtain

maxz∈T

∣∣σpn(z)−zn

2n (z)
∣∣ = maxz∈T

∣∣σpn(z)−zn−z3nqn(z)
2n (z)

∣∣
≤ maxz∈T

∣∣pn(z)− zn − z3nqn(z)
∣∣ = ‖χ3χ1ξn − hn‖ < 1/n,

i.e.
∥∥σpn(z)−zn

2n

∥∥ −→ 0 as n −→ ∞. However, σpn(z)−zn

2n (z) = σ
pn(z)
2n (z) − zn(n +

1)/(2n + 1), and thus σpn(z)−zn

2n (−1) −→ 1/2 as n −→ ∞ for odd n, contrary
to the already obtained

∥∥σpn(z)−zn

2n

∥∥ −→ 0. Hence ‖χ3χ1ξn − hn‖ �−→ 0 for any
hn ∈ AΓ+ , and therefore χ3 /∈ (AΓ+)C(G)

b . The maximality of AΓ+ implies that
(AΓ+)C(G)

b = AΓ+ . �

6.3 Orthogonal measures to G-disc algebras

Orthogonal measures are important tools for studying subspaces of uniform alge-
bras. In this section we describe the set of orthogonal measures to a G-disc algebra.
We use these results to characterize all primary ideals in shift-invariant algebras.

Let G be a compact group, whose dual Γ = Ĝ is a subgroup of R. A measure
µ ∈M(G) is orthogonal to the G-disc algebra AΓ+ if and only if sp (µ) ⊂ Γ+ \{0}.
The space of measures orthogonal to AΓ+ is denoted by A⊥

Γ+
. The measures in A⊥

Γ+

are called also analytic measures with respect to the algebra AΓ+ (e.g. [G1]). The
celebrated F. and M. Riesz theorem asserts that the space of orthogonal measures
to the disc algebra A(D) is isometrically isomorphic to the space H1

0 = zH1,
where H1 is the classical Hardy space on T, i.e. A(D)⊥ ∼= H1

0 . More precisely,
A(D)⊥ = H1

0 dσ.
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Let Ab(C+) be the algebra of bounded continuous functions on C+ that are
analytic in the upper half-plane C+. By the classical Phragmen-Lindelöf principle
(e.g.[G2]), for any f ∈ Ab(C+),

sup
z∈C+

∣∣f(z)∣∣ = sup
t∈R

∣∣f(t)∣∣. (6.3)

Hence the restriction Ab(R) =
{
f |R : f ∈ Ab(C+)

}
of Ab(C+) on R is a closed

algebra in the sup-norm. Let w be the fractional linear transformationw(t) =
i− t
i+ t

that maps R into the unit circle T. Denote by H1(R) = H1 ◦ w the space of

functions in L1
(

R,
dt

1 + t2
)

of type h ◦ w with h ∈ H1, and let H1
0 (R) = H1

0 ◦
w = (zH1) ◦ w = w · (H1 ◦ w) = w · H1(R). Since A(D)⊥ = H1

0 dσ, then the

space H1
0 ◦ w d (w∗σ) = H1

0 (R) · dt

1 + t2
equals the space Ab(R)⊥ of measures on R

orthogonal to Ab(R).

Let APΓ+(R)⊥ be the set of measures µ ∈ M(R) on R that are orthogonal
to the algebra APΓ+(R) of almost periodic functions on R with spectrum in Γ+ =
Γ ∩ R+, Since APΓ+(R) is generated by the functions eiat, a ∈ Γ+, we see that

µ ∈ APΓ+(R)⊥ if and only if
∫
R

eiat dµ = 0 for every a ∈ Γ+.

Proposition 6.3.1. For any measure µ ∈M(R), the following are equivalent:

(i)
∫
R

eiat dµ = 0 for every a ∈ Γ+,

(ii) µ ∈ H1
0 (R) · dt

1 + t2
,

thus APΓ+(R)⊥ = H1
0 (R) · dt

1 + t2
.

Proof. If µ ∈ H1
0 ·

dt

1 + t2
, then clearly µ ∈ Ab(R)⊥, which implies (ii). If µ ∈

APΓ+(R)⊥, then ∫
R

eiat dµ(t) = 0, for any a ∈ Γ+, (6.4)

and hence
∫
R

eiat dµ(t) = 0 for all a ∈ R+ by the continuity argument. Conse-

quently, the Fourier transform of µ vanishes on R+, and therefore µ belongs to

H1
0 (R) · dt

1 + t2
(e.g. [G1]). �
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Let jı : R −→ G be the standard embedding of R into a dense subgroup of G
with jı(0) = ı. Since AΓ+

∣∣
j(R)

∼= AΓ+ ◦ jı = APΓ+(R), we obtain the following

Corollary 6.3.2. A measure µ on R is orthogonal to algebra AΓ+ ◦ jı if and only

ifµ ∈ H1
0 (R) · dt

1 + t2
. Equivalently,

(
AΓ+

∣∣
j(R)

)⊥ = H1
0 (R) · dt

1 + t2
.

Without loss of generality we can assume that 2π ∈ Γ . DenoteK = Ker (χ2π)
=
{
g ∈ G : χ2π(g) = 1

}
. The Cartesian product G̃ = K × R is a locally compact

abelian group, contained in the set K × C+. Consider the algebra Ab(K × C+)
of functions f(g, z) that are continuous on K × C+, and analytic in z, i.e. for
every fixed g ∈ K the function z �−→ f(g, z) belongs to Ab(C+). Let Ab(G̃) =
Ab(K×C+)

∣∣ eG be the restriction of the space Ab(K×C+) on G̃ = K×R. According
to (6.3) for every f ∈ Ab(K × C+) we have

sup
(g,z)∈K×C+

∣∣f(g, z)∣∣ = sup
(g,x)∈ eG

∣∣f(g, x)∣∣.
Therefore, Ab(K×C+) and Ab(G̃) are isometric and isomorphic uniform algebras.

Denote by M(G) and M(G̃) the spaces of finite Borel measures on G and
G̃ correspondingly. Clearly, the set Ab(G̃)⊥ of measures on G̃ orthogonal to the
algebra Ab(G̃) is contained in M(G̃). Let M1

0 (G̃) be the set of measures on G̃, for
which there exist probability measures ν on K, such that

h(g, t) ·
(
dν(g) × dt

1 + t2
)
, (6.5)

where h(g, t) are functions in L1
(
dν(g)× dt

1 + t2
)

such that the functions t �−→
h(g, t) are in H1

0 (R) for ν-almost every g ∈ K.

Proposition 6.3.3. A measure µ ∈M(G̃) is orthogonal to the algebra Ab(G̃) if and
only if µ ∈M1

0 (G̃), i.e. Ab(G̃)⊥ =M1
0 (G̃).

Proof. We embed naturally C(K) into Ab(G̃) by f(g, t) = f(g), f ∈ C(K). Ac-
cording to a version of the Krein-Milman theorem (e.g. [R7]), every measure
µ ∈ Ab(G̃)⊥ has the form dµ(g, t) = dν(g) × dνg(t), where ν is a probability
measure on K, and {νg}g∈K is a family of measures on Rg = {g} × R ⊂ G̃,
such that νg ∈ Ab(G̃)⊥ for ν-almost every g ∈ K. Since the restriction of Ab(G̃)

on Rg is Ab(R), then by Proposition 6.3.1 we have that νg(t) ∈ H1
0 (R) · dt

1 + t2
.

The measures µ and dν(g)× dt

1 + t2
are mutually absolutely continuous. Conse-

quently, dµ(g, t) = h(g, t) ·
(
dν(g)× dt

1 + t2
)

with a h(g, t) ∈ L1
(
dν(g)× dt

1 + t2
)



6.3. Orthogonal measures to G-disc algebras 187

such that h(g, t) · dt

1 + t2
= dνg(t) ∈ H1

0 (R) · dt

1 + t2
for ν-almost all g ∈ K. There-

fore, µ ∈M1
0 (G̃).

Conversely, if µ ∈ M1
0 (G̃) then dµ(g, t) = h(g, t) ·

(
dν(g)× dt

1 + t2
)
, where

h(g, · ) ∈ H1
0 (R) = Ab(R)⊥ for ν-almost all g ∈ K. For any f ∈ Ab(G̃) we have∫

eG

f dµ =
∫
K

( ∫
R

f(g, t)h(g, t)
dt

1 + t2
)
dν(g),

and the inner integral vanishes for ν-almost all g ∈ K. Therefore, µ ∈ Ab(G̃)⊥.
Consequently, M1

0 (G̃) = Ab(G̃)⊥, as claimed. �

For a given measure µ ∈ Ab(G̃)⊥ the probability measure ν on K in (6.5)
can be determined as follows. The measure µ′ = |µ|/‖µ‖ on G̃ generates a positive
linear functional F on C(K) ⊂ Ab(G̃) with unit norm, namely

F (f) =
∫
eG

f dµ′, f ∈ C(K).

We now take ν to be the probability measure on K with F (f) =
∫
K

f dν for every

f ∈ C(K), existing by the Riesz representation theorem.

Consider the homomorphism πG : G̃ −→ G defined by πG(g, t) = gt g, where
gt = jı(t) ∈ G, t ∈ R. Clearly, gn ∈ K for every n ∈ Z. The kernel Ker (πG) of π is
the subgroup P =

{
(gn,−n) ∈ G̃ : n ∈ Z

}
(cf. Section 3.1), and the groupG can be

obtained from the setK×[n, n+1] by identifying the points (g, n+1) and (g1 g, n).
Actually, πG generates a countably-sheeted covering without singularities of G̃
ontoG. Observe that for any χa ∈ Γ+ we have (χa◦πG)(g, t) = eiatχa(g) ∈ Ab(G̃).
Consequently, the adjoint mapping to πG : G̃ −→ G, π∗G, maps the G-disc algebra
AΓ+ into Ab(G̃).

Proposition 6.3.4. The algebra ÃΓ+ = {f◦πG : f ∈ AΓ+} = AΓ+◦πG coincides with
the subalgebra of functions in Ab(G̃) which are invariant under shifts by elements
of the group Ker (πG).

Proof. Since Ker(πG) is the kernel of the homomorphism πG : G̃ −→ G, the algebra
ÃΓ+ = AΓ+ ◦ πG is Ker(πG)-invariant. Let f̃ ∈ Ab(G̃) be a Ker(πG)-invariant
function on G̃. Since the quotient group G̃/Ker(πG) is isomorphic to G, there is
a continuous function f on G such that f ◦ πG = f̃ . We claim that f ∈ AΓ+ .
Observe that the homomorphism πG generates an isometric isomorphism between
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the uniform algebras [ÃΓ+ , f̃ ] ⊂ Ab(G̃) on G̃ and [AΓ+ , f ] on G. The maximality
of AΓ+ implies that [AΓ+ , f ] coincides either with AΓ+ , or with C(G). In the
second case we get χa ◦ πG ∈ Ab(G̃) for all a ∈ Γ , which is impossible, since
(χa ◦πG)(g, t) = eiatχa(g) /∈ Ab(G̃) for any a < 0. Therefore, [AΓ+ , f ] = AΓ+ , and
hence f̃ ∈ ÃΓ+ . �

The projection πG : G̃ −→ G can be extended on K × C+ as a mapping
π̃G : K×C+ −→ D

∗
G = DG\{ω} by π̃G(g, t+iy) = e−yg gt. Note that π̃G generates

a countably-sheeted covering without singularities and without a boundary from
K × C+ ⊂ K × C+ onto D∗

G. The mapping f �−→ f ◦ π̃G is an embedding of ÂΓ+

into Ab(K × C+).

For any µ ∈M(G) one can define a net of measures {µα} ⊂M(G) with the
following properties.

(i) sp (µα) is finite, and is contained in sp (µ).

(ii) ‖µα‖ ≤ ‖µ‖.
(iii) The net {µα} converges in the weak∗-topology to µ.

If µ is an analytic measure for the algebra AΓ+ on G, then sp (µ) ⊂ Γ+ \ {0}, and
so are all µα according to (i). Moreover, dµα = fα dσ, where σ is the normalized
Haar measure of G, and fα =

∑
a∈S

caχ
a is a Γ+-polynomial on G with a ∈ sp (µα) ⊂

sp (µ).

Any Borel set E ⊂ G̃ = K×R can be expressed in the form E=
∞⋃

n=−∞
E ∩ G̃n,

where G̃n = K × [n, n+ 1). A measure µ ∈M(G) can be lifted naturally to G̃ as
a locally finite measure µ̃ ∈M(G̃), defined by

µ̃(E) =
∞∑

n=−∞
µ
(
πG(E ∩ G̃n)

)
for every Borel set E ⊂ G̃. The arising mapping µ �−→ µ̃ maps M(G) onto the
space MKer(πG)(G̃) ⊂M(G̃) of locally finite measures on G̃ that are invariant
under shifts by elements of Ker (πG). Note that if σ and τ are the normalized
Haar measures on the groups G and K respectively, then dσ̃ = dτ ×dt. In general,
µ̃ has the form dµ̃(g, t) = f̃(g, t)(dν × dt), where ν is a probability measure on
K and the function f ∈ L1

(
dν(g) × dt

)
is invariant under Ker (πG)-shifts. For

every Borel set E ⊂ K × [0, 1] we have µ̃(E) = µ
(
πG(E)

)
. Therefore, dµ̃

∣∣
K×[0,1]

=

f̃(g, t)(dν×dt), where f ∈ L1
(
dν(g)×dt

)∣∣
[0,1]

, and hence
∫

K×[0,1]

f ◦ πG dµ̃ =
∫
G

f dµ

for every f ∈ C(G).
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Denote by M1
Ker(πG)(G̃) the set of measures µ̃ ∈ MKer(πG)(G̃) for which

w(t)
1 + t2

· dµ̃(g, t) ∈ M1
0 (G̃), where w : R −→ T is the fractional linear transfor-

mation w(t) =
i− t
i+ t

. Clearly, σ̃ ∈M1
Ker(πG)(G̃), since w dν × w(t)

1 + t2
∈M1

0 (G̃).

Proposition 6.3.5. The mapping µ �−→ µ̃ maps A⊥
Γ+
⊂M(G) into M1

Ker(πG)(G̃) ⊂
M(G̃).

Proof. For any ν ∈ M(G) the measure
w(t)
1 + t2

· dν̃(g, t) belongs to M(G̃), and

satisfies the inequalities

1
2
‖ν‖G ≤

∥∥∥ w(t)
1 + t2

dν̃
∥∥∥ eG
≤ 4 ‖ν‖G, (6.6)

where ‖ · ‖G and ‖ · ‖ eG are the standard norms in M(G) and M(G̃) respectively.
Hence, if a net of measures {µα} ⊂ M(G) converges in the weak∗-topology to a

measure µ ∈ M(G), then the net
{ w(t)

1 + t2
· dµ̃α

}
⊂M(G̃) also converges in the

weak∗-topology to the measure
w(t)
1 + t2

· dµ̃ ∈M(G̃). Therefore, the properties (i),

(ii), (iii) from the above imply that it is enough to prove that µ̃ ∈ M1
Ker(πG)(G̃)

for measures µ ∈ A⊥
Γ+

with finite spectrum only. If µ ∈ A⊥
Γ+

has a finite spectrum

sp(µ), then dµ = f dσ, where f =
m∑

k=1

cfak
χak , ak ∈ Γ+. For every fixed g ∈ K the

function f̃(g, t) = (f ◦ πG)(g, t) belongs to H1(R). Hence, dµ̃(g, t) = f̃(g, t) · dσ̃ ∈
M1

Ker(πG)(G̃). �

We will consider the functions in H1 on T as H1-functions on R that are
periodic with period 1, i.e. that H1 is a subset of H1(R).

Lemma 6.3.6. If f ∈ H1 and the function e−iatf(t) belongs to H1 ↪→ H1(R) for

some a > 0, then

1∫
0

f(t) dt = 0.

Proof. Any f ∈ H1 ↪→ H1(R) can be expressed as a formal Fourier series f(t) ∼

cf0 +
∞∑

n=1

cfne
i2πnt, where cfn =

1∫
0

f(t) e−i2πnt dt. Clearly, the Fourier series of the

function e−iatf(t) is

e−iatf(t) ∼ cf0e−iat +
∞∑

n=1

cfne
i(2πn− a)t.
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If e−iatf(t) ∈ H1 ↪→ H1(R), for some a > 0, then also cf0e
−iat ∈ H1 ↪→ H1(R),

which is possible if and only if cf0 = 0, i.e. if

1∫
0

f(t) dt = 0. �

Recall that the point evaluation at the origin ω of a G-disc DG is a linear
multiplicative functional of the G-disc algebra AΓ+ . Denote by Jω the correspond-
ing maximal ideal, i.e. Jω =

{
f ∈ AS : f̂(ω) = 0

}
of AΓ+ . The following theorem

describes the space J ⊥
ω of measures on G that are orthogonal to Jω.

Theorem 6.3.7. For a measure µ on G the following statements are equivalent.

(i)
∫
χa dµ = 0 for all a ∈ Γ+ \ {0}, i.e. µ ∈ J ⊥

ω .

(ii) µ̃ ∈M1
Ker(πG)(G̃).

Equivalently, J ⊥
ω
∼=M1

Ker(πG)(G̃).

Proof. We will show that the lifting µ �−→ µ̃ maps J ⊥
ω onto M1

Ker(πG)(G̃). Recall
that the representing measure of Jω is the normalized Haar measure σ of G (e.g.
[G1]). Since dim(AΓ+/Jω) = 1, we have J⊥

ω = A⊥
Γ+

+ Cσ. The mapping µ �−→ µ̃

is a linear map of A⊥
Γ+

into M1
Ker(πG)(G̃), and σ to dσ̃ = dτ × dt ∈ M1

Ker(πG)(G̃).

Therefore, it maps J ⊥
ω = A⊥

Γ+
+ Cσ into M1

Ker(πG)(G̃).

Let µ ∈M(G) be such that µ̃ ∈M1
Ker(πG)(G̃). We claim that µ ∈ J ⊥

ω . Indeed,
let

dµ̃(g, t) = f̃(g, t) ·
(
dν(g)× dt

)
, (6.7)

where f̃ is Ker(πG)-invariant on R and the functions t �−→ f̃(g, t) belong to H1

↪→ H1(R) for ν-almost all g ∈ K (cf. the proof of Proposition 6.3.5). The function

f(a)(t) =
∫
K

χa(g) f̃(g, t) dν(g) (6.8)

belongs to H1 ↪→ H1(R) for all a ∈ Γ+. Since µ̃ is Ker(πG)-invariant, we have

dµ̃(g, t) = dµ̃(gn g, t− n) = f̃(gn g, t− n) ·
(
dν(gn g)× dt

)
, (6.9)
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where (gn,−n) ∈ Ker (πG). Comparing (6.7) and (6.9) we see that f̃(gn g, t − n)
dν(gn g) = f̃(g, t) dν(g) for almost every t ∈ R. Hence, f̃(g, t+n) dν(g) = f̃(gn g, t)
dν(gn g), and therefore

f(a)(t+ n) =
∫
K

χa(g) f̃(g, t+ n) dν(g)

=
∫
K

χa(g) f̃(gn g, t) dν(gn g) =
∫
K

χa(g−n g) f̃(g, t) dν(g)

=
∫
K

e−ianχa(g) f̃(g, t) dν(g) = e−ianf(a)(t),

(6.10)

since χa(g−n g) = e−ianχa(g). Therefore, f(a)(t+n) = e−ianf(a)(t). Let ϕa(t) =
eiatf(a)(t). For a > 0 the functions eiat and f(a)(t) belong to H1(R). Therefore,
ϕa(t) is a periodic function with period 1 in H1 ↪→ H1(R). Applied to ϕa(t),

Lemma 6.3.6 yields

1∫
0

ϕa(t) dt = 0. Hence, for any a ∈ Γ+ \ {0} we have

∫
G

χa dµ =
∫

K×[0,1]

χa ◦ πG dµ̃ =
∫

K×[0,1]

(χa ◦ πG)(g, t) f̃(g, t)
(
dν(g)× dt

)

=
∫

K×[0,1]

eiatχa(g) f̃(g, t)
(
dν(g)× dt

)
=

1∫
0

eiat
(∫

K

χa(g) f̃(g, t) dν(g)
)
dt

=

1∫
0

eiatf(a)(t) dt =

1∫
0

ϕa(t) dt = 0.

Consequently µ ⊥ χa for any a ∈ Γ+ \ {0}, thus µ ∈ J ⊥
ω . �

6.4 Primary ideals of G-disc algebras

Finding descriptions of various types of ideals is an important and interesting issue
in uniform algebra theory. A proper ideal of an algebra is called a primary ideal
if it is contained in exactly one maximal ideal of the algebra. The primary ideals
of the disc algebra A(D) have simple descriptions. Namely, these are the ideals

of type
( z − z0

1− z0z
)n

· A(D) , where z0 ∈ D and n ∈ N. Each ideal of this type is

contained in the maximal ideal Jz0 =
{
f ∈ A(D) : f(z0) = 0

}
. In this section

we describe all primary ideals of G-disc algebras AΓ+ of analytic functions on a
solenoidal group G.
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Let G be a solenoidal group, i.e. a compact group, whose dual group Ĝ is
dense in R. As in Section 6.3 we assume that 2π ∈ Γ = Ĝ. Recall that every
maximal ideal of a G-disc algebra AΓ+ is a point evaluation, i.e. of type Jr�g ={
f ∈ AΓ+ : f̂(r � g) = 0

}
for some r � g ∈ DG. Therefore, an ideal I ⊂ AΓ+ is

primary if and only if I ⊂ Jr�g for some r � g ∈ DG. In the sequel we will consider
closed ideals only.

We recall that the hull of an ideal I of the algebra AΓ+ is the set

hull (I) =
{
r � g ∈ DG : f̂(r � g) = m(r�g)(f) = 0 for all f ∈ I

}
.

Clearly, I ⊂ AΓ+ is a primary ideal if and only if its hull is a singleton. First
we describe the primary ideals of AΓ+ , whose hulls coincide with the origin ω =
0 � g ∈ DG of the G-disc, i.e. which are subideals of the maximal ideal Jω =

{
f ∈

AΓ+ : f̂(ω) = 0
}
.

With any non-negative number b ∈ R+ we associate two ideals,

Jω(b+) =
[ ⋃
a ∈ Γ+
a > b

χaJω

]
, and Jω(b−) =

⋂
a ∈ Γ+
a < b

χaJω,

where [ . ] is the closure of the enclosed set. Note that Jω(0+) = Jω. Indeed, if
f ∈ Jω, then for any ε > 0 there is a Γ+-polynomial g =

∑
a∈Γ+

cfaχ
a such that

ĝ(ω) = 0, and ‖f − g‖ < ε. Clearly, g ∈ Jω(0+). Since Jω(0+) is closed and ε is
arbitrary, it follows that f ∈ Jω(0+). Therefore, Jω(0+) = Jω . Similarly, one can
see that Jω(0−) = AΓ+

Definition 6.4.1. An ideal I of the algebra AΓ+ is called

(i) right-continuous, if the set
⋃

a∈Γ+\{0}
χaI is dense in I,

(ii) left-continuous, if the set
⋂

a∈Γ+\{0}
χaI coincides with I.

Lemma 6.4.2. Let b ∈ R+. Then:

(a) Jω and Jω(b+) are right-continuous ideals.

(b) Jω(b−) is a left-continuous ideal.

(c) If b ∈ Γ+, then Jω(b+) = χbJω, while Jω(b−) = χbAΓ+ .

Proof. The right-continuity of the ideal Jω = Jω(0+) follows from Definition
6.4.1. If b > 0 and a > b, a ∈ Γ+, then Jω(b+) = χaJω is right-continuous, and
so is Jω(b+). This proves (a), while (b) follows directly from Definition 6.4.1. If
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b ∈ Γ+, then χbJω =
[ ⋃
a ∈ Γ+
a > 0

χb+aJω

]
=
[ ⋃
a ∈ Γ+
a > b

χaJω

]
= Jω(b+). One can show that

Jω(b−) = χbAΓ+ by similar arguments. This proves (c). �

Theorem 6.4.3. Any primary ideal J of the algebra AΓ+ which is contained in Jω

is either of type Jω(b−), or of type Jω(b+) for some non-negative real number b.

For the proof we need several results from the theory of analytic functions.
We recall that any positive measure µ on R, which is singular with respect to the
Lebesgue measure, generates a singular inner function on C+ by

exp
(
− i

∫
R

tz + 1
z − t dµ(t)

)
.

It is well known (e.g. [G2]), that any non-vanishing function f ∈ H1 admits a
unique inner-outer factorization of type

f(z) = Cei s(f) zBf (z)Sf(z)Ff (z), (6.11)

on D, where |C| = 1, s(f) ≥ 0, Sf is a singular inner function, Ff is an outer
function, and Bf is a Blaschke product in D whose zeros coincide with the zeros
of f . If f is continuous on D, then the support of the singular measure µf which
generates Sf is contained in the set of zeros Null (f) of f on T.

Note that H1 ∼= H1(D) ∼= H1(C+) ⊂ H1(R). As in Section 6.3 we will
assume that H1 is embedded into H1(R), i.e. we will regard the functions in H1

as functions in H1(R) that are periodic with period 1. We will indicate by H1
R the

image of H1 in H1(R).

Lemma 6.4.4. The natural analytic extension f̃ of any function f ∈ APΓ+(R) on
C+ admits a unique inner-outer factorization of type

f̃(z) = Cei s(f) zBf (z)Sf(z)Ff (z), (6.12)

where |C| = 1, s(f) = inf
(
sp (f)

)
, and the functions Bf , Sf , Ff are analogous to

those in (6.11).

Proof. Since (6.11) holds for f , and APΓ+(R) ⊂ H1
R, we need to show only that

s(f) = inf
(
sp (f)

)
. It is well known that for every analytic almost periodic function

h on C+ the function h(z)/eibz is bounded on the upper half-plane C+ if and only
if b ≤ a0 = s(h) = inf

(
sp (h)

)
. Therefore, a0 ≥ s(f) since all functions in (6.12)

are bounded on C+ (cf. [B]). Hence, g(t) = f(t)/eia0t belongs to APΓ+(R), and
0 ≤ s(g) = s(f)− a0. Thus, s(f) ≥ a0, and consequently, s(f) = a0. �
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Corollary 6.4.5. Let πG be the natural projection πG : G̃ = K × R −→ G, where
K = Ker (χ2π). For any f ∈ AΓ+ the function f̃(g, t) = (f ◦ πG)(g, t) can be
expressed on G̃ as

f̃(g, t) = eiatχa(g)h(g, t), (6.13)

where s(hg) = 0, a = s(f) = inf
(
sp (f)

)
, and hg(t) = h(g, t) belongs to the space

H1
R for every g ∈ K.

Proof. Clearly, the function f̃g(t) = f̃(g, t) belongs to APΓ+(R) for every g ∈ K,
and sp (f̃g) = sp (f). Hence, sp (f̃g) does not depend on g ∈ K. Now (6.13) follows
from Lemma 6.4.4. �

If B1 and B2 are two Blaschke products on C+, then the quotient B1/B2 is
also a Blaschke product if and only if the set Null (B2) of zeros of B2, counting
the multiplicities, is contained in Null (B1). Let S1 and S2 be two singular inner
functions on C+, and let µ1 and µ2 be positive singular measures on R generating
S1 and S2, respectively. The function S1/S2 is also an inner function on C+ if and
only if µ1 − µ2 is a positive measure on R (cf. [G2]).

Lemma 6.4.6. Let F be a family of bounded analytic functions in C+ which do not
vanish simultaneously at any z ∈ C+. If u(t) ∈ L∞(R, dt) is a unimodular function,
i.e.

∣∣u(t)∣∣ = 1 almost everywhere on R, such that fu ∈ H1
R for all f ∈ F , then

there is a real number a ∈ R and a function k(t) ∈ H1
R with s(k) = inf

(
sp (k)

)
= 0,

such that u(t) = k(t) eiat ∈ H1
R.

Proof. Let f ∈ F , f �= 0. Since f and fu are in H1
R, they admit factorizations of

type (6.11). The function u can be expressed as a meromorphic function on C+.
Namely,

u(z) =
(fu)(z)
f(z)

= eiaz
Bfu(z)Sfu(z)
Bf (z)Sf(z)

, (6.14)

for every z ∈ C+, where a = s (fu) − s (f). Here we assume that Bfu/Bf and
Sfu/Sf are irreducible fractions. Therefore, Bfu and Bf have no common zeros,
and also the measures µfu and µf , that generate the singular factors Sfu and Sf

correspondingly, are mutually singular. We claim that, Bf ≡ Sf ≡ 1. Assume, on
the contrary, that Bf (z) �≡ 1, i.e. Bf (z0) = 0 for some z0 ∈ C+. Let g ∈ F be
such that g(z0) �= 0. Since the function Bg/Bf is not a Blaschke product, then
g u /∈ H1, contradicting the properties of F .

Assume now that Sf �≡ 1 and let t0 ∈ supp (µf ). If g ∈ F is such that
g(t0) �= 0, then t0 does not belong to the support of the measure µg generating
the singular factor Sg of g. Therefore, Sg/Sf is not a singular inner function. Con-
sequently, g u /∈ H1

R, contradicting the hypotheses on F . Hence, u(z) = eiazk(z),
where k(z) = Bfu(z)Sfu(z). This yields k(t) = e−iatu(t) ∈ H1

R, and s
(
k(t)

)
=

s
(
e−iatu(t)

)
= s (BfuSfu) = 0, as claimed. �
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Corollary 6.4.7. In the setting of Lemma 6.4.6, for any non-vanishing function

h ∈ L1
(

R,
dt

1 + t2
)

with f h ∈ H1
R for all f ∈ F , there exists a function k ∈ H1

R

with s(k) = 0, such that h(t) = k(t) eiat for some a ∈ R.

Proof. It is known that a positive function g ∈ L1
(
R,

dt

1 + t2
)

coincides with the

modulus of a function in H1
R if and only if∫

R

log g(t)
dt

1 + t2
> −∞.

For every non-zero f ∈ F we have

−∞ <

∫
R

log
∣∣f(t)h(t)∣∣ dt

1 + t2
=
∫
R

log
∣∣f(t)∣∣ dt

1 + t2
+
∫
R

log
∣∣h(t)∣∣ dt

1 + t2
.

Since the first summand is finite, so is the second one. Hence there exists an outer
function Φ ∈ H1

R, such that
∣∣Φ(t)

∣∣ =
∣∣h(t)∣∣ for almost all t ∈ R. Therefore, h = Φu

for some unimodular function u. It is easy to see that u satisfies the hypotheses
of Lemma 6.4.6 with the family ΦF ⊂ Ab(C+). �

As a direct consequence from Corollary 6.4.7 we see that e−iath(t) ∈ H1
R,

and s
(
e−iath(t)

)
= 0. For any subset F ⊂ L1

(
R,

dt

1 + t2
)

define the number

s(F ) = inf
{
s(f) : f ∈ F, f �= 0

}
.

Corollary 6.4.8. The number a from Corollary 6.4.7 is not smaller than s(F ), i.e.
a ≥ −s(F ).

Proof. Since s(k) = 0 and f(t) k(t) eiat ∈ H1
R for any f ∈ B, we have that

s(f) + a ≥ 0. Hence a ≥ −s(f) for any f ∈ F, f �= 0. �

Corollary 6.4.9. In the setting of Corollary 6.4.8 the function h belongs to H1
R if

s(F ) = 0.

Proof of Theorem 6.4.3. Let J be a primary ideal of AΓ+ that is contained in Jω .
Let f ∈ J , f �= 0, and µ ∈ J⊥. Since the measure f dµ belongs to J ⊥

ω , Theorem
6.3.7 implies that (f dµ)˜ ⊂M1

Ker(πG)(G̃). Therefore, (f dµ)˜ is of type

(f dµ)˜(g, t) = f1(g, t)
(
dν(g)× dt

)
, (6.15)
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where f1 is Ker(πG)-invariant, and the functions f1
(g) = f1(g, t) belong to H1

R for

ν-almost all g ∈ K. Since (f dµ)˜ = f̃ dµ̃, where f̃ = f ◦ πG, we have dµ̃(g, t) =
h(g, t)

(
dν(g) × dt

)
, where h(g, t) = f1(g, t)/f̃(g, t). Let h(g)(t) = h(g, t), and

f̃(g)(t) = f̃(g, t). By (6.15), for all f ∈ J and for ν-almost every g we have

f̃(g)h(g) = f1
(g) ∈ H1

R. (6.16)

Since π̃G(K × C+) = D
∗
G, and J ⊂ Jω , then for every g ∈ K the restriction of

J̃ = {f̂ ◦ πG : f ∈ J} on the set {g} × C+ satisfies the hypotheses of Lemma
6.4.6. By applying Corollary 6.4.7 to (6.16) we obtain h(g)(t) = k(g)(t) eiagt, with
k(g)(t) ∈ H1

R, and s
(
k(g)(t)

)
= 0 for almost every g ∈ K. Corollary 6.4.8 implies

that −s
(
f̃(g)

)
≤ ag, for almost every g. Since s(f̃(g)) equals inf

(
sp (f)

)
, which

is independent of g ∈ K, f ∈ J , we have that s(J) = inf
{
sp (f) : f ∈ J, f �=

0
}
≥ −ag for ν-almost every g. Therefore, dµ̃(g, t) = k(g, t) eiagt

(
dν(g) × dt

)
,

where k(g, t) = kg(t) ∈ H1
R, and s(J) ≥ −ag for ν-almost all g ∈ K. Hence if

a > s(J) ≥ −ag, then a + ag > 0, which implies that the measure d(µ̃a)(g, t) =
χa(g) eiat dµ̃(g, t) is in M1

Ker(πG)(G̃), i.e. the measure χa dµ belongs to J⊥
ω . Let

b > s(J). Since Γ = Ĝ is dense in R, there exist numbers a, c ∈ Γ+ \ {0} with b =

a+ c, and a > s(J). Because of χadm ∈ J ⊥
ω , we have 0 =

∫
G

χcχa dµ =
∫
G

χb dµ.

Since µ is an arbitrary measure in J⊥, we deduce that χb ∈ J , and therefore,
Jω

(
s(J)+

)
⊂ J . There are two possible cases.

Case 1. s(J) �∈ sp (f) for any f ∈ J . Let f ∈ J and ε > 0. By Theorem

3.3.2 there is a Γ+-polynomial g =
n∑

i=1

ciχ
ai ∈ AΓ+ with sp (g) ⊂ sp (f), so that

‖f − g‖G < ε. Since ai ∈ sp (f), 1 ≤ i ≤ n, we see that ai > s(J). Therefore,
χai belongs to Jω

(
s(J)+

)
, and so does g. Since Jω

(
s(J)+

)
is closed and ε > 0 is

arbitrary, we see that f ∈ Jω

(
s(J)+

)
. Therefore, J = Jω

(
s(J)+

)
.

Case 2. s(J) ∈ sp (f) for some f ∈ J . We claim that in this case J =
χs(J)AΓ+ . Since s(J) ∈ sp (f) = inf

(
sp (f)

)
, by the Besicovitch theorem (e.g.

[B]) we have that f = χs(J)h, where h ∈ AΓ+ , ĥ(ω) �= 0. Consider the ideal
J1 = hAΓ+ + J of AΓ+ . Since J ⊂ Jω, and ĥ(ω) �= 0, J1 coincides with the
algebra AΓ+ . Hence there is a k ∈ AΓ+ and ϕ ∈ J so that hk + ϕ ≡ 1. By
multiplying with χs(J), we get fk + χs(J)ϕ = χs(J). Since f and ϕ belong to
J , it follows that χs(J) ∈ J , and therefore, χs(J)AΓ+ ⊂ J . For every g ∈ J we
have inf

(
sp (g)

)
≥ s(J), and therefore, g/χs(J) ∈ AΓ+ . Hence g ∈ χs(J)AΓ+ , i.e.

J ⊂ χs(J)AΓ+ . Thus, J = χs(J)AΓ+ = Jω

(
s(J)+

)
. �

As a consequence we obtain the following complete description of primary
ideals inside Jω .
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Corollary 6.4.10. If J is a primary ideal of the algebra AΓ+ that is contained in
Jω, then either J = χs(J)Jω, or, J = χs(J)AΓ+ .

The proof follows immediately from Lemma 6.4.2(c) and Theorem 6.4.3.

Next we describe primary ideals of a G-disc algebra AΓ+ which are contained
in maximal ideals other than Jω , where ω is the origin of the G-disc DG.

Let J be a primary ideal of AΓ+ , which is contained in a maximal ideal
Jr�g, r > 0. Denote by Ĵ = {f̂ : f ∈ J} the Gelfand transform of J on DG. Without
loss of generality we can assume that r � g = jı(z0) for some z0 ∈ C+ = C+ \ R.
Denote J(C+) = Ĵ |ejı(C+) and J(R) = Ĵ |jı(R) = J(C+)|jı(R). The set J(C+) is a
subalgebra of Ab(C+), the algebra of bounded analytic functions in C+. Let ordz0f

be the multiplicity of the zero of f̂ ◦ jı, f ∈ J at z0. Set ordz0J = inf
f∈J

(
ordz0f

)
.

Denote by J(R)⊥ = J⊥ ∩M
(
jı(R)

)
the space of measures on jı(R) ⊂ G which

are orthogonal to J(R). Recall that H1
0 (R) = w ·H1(R) = w · (H1 ◦w) = H1

0 ◦w,

where w(t) =
i− t
i+ t

: R → T. Denote by u the unimodular function u(z) =
z − z0
z − z0

.

Lemma 6.4.11. If J is a primary ideal of AΓ+ contained in some maximal ideal
Jr�g, r > 0, then

J(R)⊥ = un ·H1
0 (R) · dt

1 + t2
,

where u(t) =
t− z0
t− z0

, and n = ordz0J .

Proof. For any f ∈ J we have f̂ ◦ jı(z) = un (z)f0(z), where z ∈ C+ and
f0 ∈ Ab(C+). Hence the set Jn(C+) = un · J(C+) is a subspace of Ab(C+).
The definition of n implies that for every z ∈ C+ there is function f ∈ Jn(C+)
which does not vanish at jı(z). Therefore, we can apply Lemma 6.4.6 to Jn(C+).
Since J ⊂ Jr�g, r > 0, we have s(J) = 0, thus s

(
Jn(C+)

)
= s(J) = 0. Applying

Lemma 6.4.6, Corollary 6.4.7 and Corollary 6.4.8 to Jn(R) = Jn(C+)
∣∣
jı(R)

, we

obtain Jn(R)⊥ = H1
0 (R) · dt

1 + t2
. Since J(R)⊥ = un · Jn(R)⊥, we conclude that

J(R)⊥ = un ·H1
0 (R) · dt

1 + t2
, as claimed. �

Note that the restriction of the covering π̃G : K×C+ −→ D
∗
G on {g}×C+, g ∈

K, generates an embedding of the upper half-plane C+ into DG.

Lemma 6.4.12. Let J be a primary ideal of AΓ+ contained in some Jr�g, r > 0.
If µ is a measure on G which is orthogonal to J and for which µ|j(R) = 0, then
µ ∈ A⊥

Γ+
.
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Proof. The set R̃ = π−1
G

(
jı(R)

)
=
{
(g, t) ∈ G̃ : πG(g, t) ∈ jı(R)

}
can be expressed

as R̃ =
∞⋃

n=−∞
{gn} × R. Since µ

∣∣
jı(R)

= 0, for the lifting µ̃ of µ on K × C+ (cf.

Section 6.3), we have µ̃
∣∣eR = 0. Since for any f ∈ J the measure f dµ belongs to

A⊥
Γ+

, it follows that f̃ dµ̃ = f1(g, t)
(
dν(g)× dt

)
belongs to the space M1

Ker(πG)(G̃)

introduced in Section 6.3, and hence µ̃ = h(g, t)
(
dν(g) × dt

)
with h = f1/f̃ ,

where f̃ = f̂ ◦ π̃G. We claim that µ̃ ∈ M1
Ker(πG)(G̃). By the assumptions we have

that ν
(
{gn}∞n=−∞

)
= 0. Hence, for ν-almost all g ∈ K the space Ĵ ◦ π̃G

∣∣
{g}×C+

does not vanish at any point of {g} × C+, and s
(
Ĵ ◦ π̃G

∣∣
{g}×C+

)
= s(J) = 0.

As in the proof of Theorem 6.4.3 we see that h(g)(t) = h(g, t) ∈ H1
R for ν-almost

all g ∈ K, i.e. µ̃ ∈ M1
Ker(πG)(G̃), as desired. Therefore, µ ∈ J⊥

ω by Theorem
6.3.7. In fact, µ ∈ A⊥

Γ+
⊂ J ⊥

ω . Indeed, since J ⊥
ω = A⊥

Γ+
+ Cσ, we see that

µ = µ1 + cσ for some measure µ1 ∈ A⊥
Γ+

and c ∈ C. Let f̂(ω) �= 0 for some

f ∈ J . Then 0 =
∫
G

f dµ =
∫
G

f dµ1 + cf̂(ω) = cf̂(ω), since
∫
G

f dµ1 = 0. Hence

c = 0, and consequently, µ = µ1 ∈ A⊥
Γ+

. �
Lemma 6.4.13. If J is a primary ideal of AΓ+ , such that J ⊂ Jr�g for some r > 0,
then J⊥ = A⊥

Γ+
+ J(R)⊥.

Proof. Note that since J(R) = Ĵ
∣∣
jı(R)

, we have J(R)⊥ ⊂ J⊥ ∩M
(
jı(R)

)
. Clearly,

A⊥
Γ+
⊂ J⊥, wherefrom A⊥

Γ+
+ J(R)⊥ ⊂ J⊥.

Conversely, let µ ∈ J⊥, and let µ′ = µ
∣∣
jı(R)

. For any f ∈ J we have f dµ ∈
A⊥

Γ+
, and therefore, f̃ dµ̃ ∈ M1

Ker(πG)(G̃). Hence dµ̃ = h(g, t)
(
dν(g) × dt

)
, and

f̃(g)(t) f1
(g)(t) = f̃(g, t)h(g, t) ∈ H1

R for ν-almost all g ∈ K (cf. (6.16)). The support

of µ̃′ is inside R̃ =
∞⋃

n=−∞
{gn} × R, and

dµ̃′ =
∞∑

n=−∞
h(gn, t)

(
dν(gn)× dt

)
.

For the measure γ = µ − µ′, we have γ ∈ J⊥ and γ
∣∣
jı(R)

= 0. Therefore, γ ∈
A⊥

Γ+
by Lemma 6.4.12. Hence, µ = γ + µ′, where γ ∈ A⊥

Γ+
. Note that if f dµ ∈

A⊥
Γ+

, then f dµ′ ∈
(
AΓ+ |jı(R)

)⊥ = H1
0 (R) · dt

1 + t2
by Corollary 6.3.2. It follows that∫

jı(R)

f̂ ◦ j dµ′ = 0 for any f ∈ J , and hence µ′ ∈ J(R)⊥. Consequently, µ = γ+µ′ =

γ + µ|j(R) ∈ A⊥
Γ+

+ J(R)⊥, as claimed. �
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While the sum in Lemma 6.4.13 might not be direct, the space J(R)⊥ has a

direct complement in A⊥
Γ+

. Indeed, if µ ∈ A⊥
Γ+

, then µ′ = µ
∣∣
jı(R)

∈ H1
0 (R) · dt

1 + t2
⊂ A⊥

Γ+
. Hence µ = µ∗ + µ|jı(R), where µ∗|jı(R) = 0. Therefore,

A⊥
Γ+

= (A⊥
Γ+

)∗ ⊕H1
0 (R) · dt

1 + t2

where (A⊥
Γ+

)∗ = {µ∗ : µ ∈ A⊥
Γ+
}. Since J(R)⊥ ⊃ H1

0 (R) · dt

1 + t2
, we see that

J⊥ = A⊥
Γ+

+ J(R)⊥ = (A⊥
Γ+

)∗ ⊕ J(R)⊥.

Theorem 6.4.14. If J is a primary ideal of AΓ+ , which is contained in some max-
imal ideal Jr�g, r > 0, then J⊥ = un · A⊥

Γ+
, where u(g) is the unimodular Borel

function on G defined by

u(g) =

{
u(t) =

t− z0
t− z0

when g = gt ∈ jı(R),

1 when g /∈ jı(R).

Proof. Indeed, Lemma 6.4.11 implies that J⊥ = (A⊥
Γ+

)∗ + un · H1
0 (R) · dt

1 + t2

= un
(
un
(
A⊥

Γ+

)
∗ ⊕H

1
0 (R) · dt

1 + t2
)

= unA⊥
Γ+

, since un · (A⊥
Γ+

)∗ = (A⊥
Γ+

)∗. �

The next theorem shows that every primary ideal J in AΓ+ which is contained
in some Jr�g, r > 0, is uniquely determined by a natural parameter n ∈ N.

Theorem 6.4.15. If J is a primary ideal of AΓ+ contained in some maximal ideal
Jr�g, r > 0, then J = In = {f ∈ AΓ+ : ord z0f ≥ n}, where n = ordz0J .

Proof. The inclusion J ⊂ In is clear. We claim that In ⊂ J , or, equivalently,
that I⊥n ⊃ J⊥. If f ∈ In, then f

(
jı(t)

)
= un(t)f0(t), where f0(t) ∈ Ab(R). Hence

un ·H1
0 (R) · dt

1 + t2
⊂ I⊥n , and thus J⊥

jı(R) ⊂ I⊥n . Clearly, A⊥
Γ+

⊂ I⊥n . Therefore,

I⊥n ⊃ J⊥
jı(R) +A⊥

Γ+
= J⊥. Consequently, In ⊂ J . �

Corollary 6.4.16. Every primary ideal J in Jr�g, r > 0, has a finite codimension
in AΓ+ .

Proof. By Theorem 6.4.15, J = In with n = ordz0J . Let f ∈ AΓ+ be a function
with ordz0f = n− 1. The ideal In−1 = {f ∈ AΓ+ : ordz0f ≥ n− 1} is isomorphic
to Cf + J . Similarly, In−2 = Cg + Cf + J , where ordz0g = n − 2. Proceeding
inductively, we obtain that AΓ+ = Cf0 + Cf1 + · · ·+ Cfn−1 + J , where ordz0fk =
k. �

It remains to describe primary ideals J ⊂ AΓ+ that are contained in maximal
ideals of type Jg = J1�g, where g is in the Shilov boundary ∂AΓ+ = G. Without
loss of generality we can assume that g = ı = jı(0) ∈ jı(R). Let Sf (t) be the
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singular component of a function f ∈ H1
R, and let µf be a positive singular measure

on R that generates Sf (t). The measure µf can be expressed uniquely as the sum
of two singular measures, namely, µf = µ′f +cfδ0, where δ0 is the Dirac measure at
jı(0) = ı ∈ jı(R). Hence, Sf (t) = S+

f (t)S−
f (t), where S+

f (t) and S−
f (t) are singular

inner functions generated by the measures µ′f and cfδ0 correspondingly. Observe

that S−
f (t) = e−icf/t.

Let J be a primary ideal of the algebra AΓ+ , such that J ⊂ Jı = Jjı(0),

and let h be a function in h ∈ L1

(
R,

dt

1 + t2

)
\ H1(R) such that fh ∈ H1

R for all

f ∈ J(R). Using the same arguments as in Lemma 6.4.6, Corollary 6.4.7 and 6.4.8,
one can show that

h(t) = eich/tk(t), (6.17)

where ch > 0, k(t) ∈ H1
R, S−

k (t) ≡ 1, and ch ≤ inf
f∈J

cf .

For any c ≥ 0 let Ic = eic/t ·H1
0 (R) · dt

1 + t2
. Since e−ic

′/t ·H1
0 (R) ⊂ H1

0 (R)

for all c′ ≥ 0, we have Ic ⊃ e−ic
′/t · Ic = Ic−c′ for any c′ : 0 ≤ c′ ≤ c. Therefore,

I ′c ⊂ Ic when 0 ≤ c′ ≤ c.

Theorem 6.4.17. For any primary ideal J of AΓ+ contained in Jı = Jjı(0) there
exists a non-negative number c ≥ 0 such that J⊥ = A⊥

Γ+
+ Cδ0 + Ic.

Proof. We perform the proof in four steps.

Step 1. Let µ ∈ J(R)⊥ be a measure on R, which is singular with respect to
the Lebesgue measure. We claim that µ = cδ0 for a complex number c ∈ C. Indeed,
suppose, on the contrary, that sp (µ) contains a point t0 ∈ R, t0 �= 0, and consider
a function f ∈ J with f(t0) �= 0. The non-zero measure f dµ belongs to (AΓ+)⊥j(R),
and is singular with respect to Lebesgue measure. However, this is impossible,

since f dµ ∈ H1
0 (R) · dt

1 + t2
by Proposition 6.3.1. Consequently, sp(µ) = {0}, and

therefore µ ∈ Cδ0.

Step 2. Let µ ∈ J(R)⊥ be a measure that is absolutely continuous with

respect to
dt

1 + t2
, i.e. dµ = h(t) · dt

1 + t2
, where h(t) ∈ L1

(
R,

dt

1 + t2
)
. Since

f dµ ∈ H1
0 (R) · dt

1 + t2

for every f ∈ J , it follows that fh ∈ H1
0 (R). By (6.17) we have

h(t) = eic/tk(t), (6.18)
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where c ≤ s(J) = inf
{
cf : f ∈ J(R)

}
, and k ∈ H1(R). We claim that k ∈ H1

0 (R).
Indeed, for every f ∈ Jjı(R) we have

0 =
∫
R

f(t)h(t)
dt

1 + t2
= f̂(i) ec k(i).

Since we can choose an f ∈ J with f̂(i) �= 0, we deduce that k(i) = 0, i.e.
k ∈ H1

0 (R). Thus, µ ∈ Ic, and consequently, J(R)⊥ ⊂ Ic.

Step 3. Let µ be an arbitrary measure in J⊥, and let µ′ = µ
∣∣
jı(R)

. Since

f dµ ∈ A⊥
Γ+

for any f ∈ J , then f dµ′ ∈ A⊥
Γ+

∣∣
jı(R)

= H1
0 (R) · dt

1 + t2
by Corollary

6.3.2. Therefore,
∫

jı(R)

f dµ′ = 0 for any f ∈ J , and hence µ′ ∈ J(R)⊥. Steps 1 and

2 imply that dµ̃′ = cδ0 + eic/tk(t) · dt

1 + t2
, where k ∈ H1

0 (R), and c ≤ s(J) = c0.

The argument from the proof of Lemma 6.4.12 shows that the measure γ = µ−µ′
belongs to A⊥

Γ+
. Therefore, µ = γ + µ′ ∈ A⊥

Γ+
+ Cδ0 + Ic. Since Ic ⊂ Ic0 , we see

that J⊥ ⊂ A⊥
Γ+

+ Cδ0 + Ic0 .

Step 4. We claim that Ic0 ⊂ J⊥. Let µ ∈ Ic0 . Any function f ∈ J can be
expressed on R as f(t) = e−ic0/tk(t), where k ∈ H1

0 (R). Similarly,

dµ = eic0/th(t) · dt

1 + t2
,

where h ∈ H1
0 (R), and hence f dµ ∈ H1

0 (R) · dt

1 + t2
. This implies that Ic0 ⊂ J⊥.

Therefore, J⊥ = A⊥
Γ+

+ Cδ0 + Ic0 , as claimed. �

6.5 Notes

Generalized analytic functions, as well as G-disc algebras, were introduced by
Arens and Singer in [AS1]. They have been intensively studied afterwards by
Hoffman, Helson, Lowdenslager, Kaufman, de Leeuw, Glicksberg, Gamelin, Muhly,
Curto, Xia, Asmar, Montgomery-Smith, Yale, Grigoryan, Tonev and others. Sys-
tematic expositions on G-disc algebras are given, for instance, in [G1, T2], where
one can find also a complete bibliography on the matter.

The results on Bourgain algebras of G-disc algebras are from [TY, TY1].
Most of the results on orthogonal measures to G-disc algebras and primary ideals
of G-disc algebras are from [G15].



Chapter 7

Harmonicity on groups and
G-discs

In this chapter we extend the notions of harmonic and Hp-functions for compact
groups G and on corresponding G-discs. We explore also their boundary behavior,
and prove corresponding Fatou type theorems. The results hold for general shift-
invariant algebras AS , and consequently to the particular cases of of H∞

S -algebras
and algebras APS of almost periodic functions, considered earlier.

7.1 Harmonic functions on groups and G-discs

The basic idea in extending the notion of harmonicity on groups and G discs is to
preserve the main properties of harmonic functions on the unit disc D, presented
in Chapter 2.

Let G be a compact abelian group whose dual group Γ = Ĝ is a subgroup
of R. We call the set DG(r) = D[0,r]

g =
{
� � g ∈ DG : � ≤ r

}
a G-disc with radius

r < 1.

We will denote bymr�g the representing measure onG of the point r � g ∈ DG

for the G-disc algebra A(DG). The measure mr�ı we will denote also by mr. Note
that in the classical setting dmr(θ) = Pr(θ) dθ, where

Pr(θ) =
1− r2

1− 2r cos θ + r2

is the Poisson kernel on the unit disc D. A real-valued harmonic function u on
D can be defined in three standard ways. Firstly, u is harmonic if it is a solution
of the Laplace equation, i.e. u is the real part of a holomorphic function on D.
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Secondly, u is harmonic, if the Fourier coefficients cur
n of its r-traces ur do not

depend on r (cf. Theorem 2.4.1). And thirdly, u is harmonic if the equations

ur1(e
it) = u(r1eit) =

1
2π

2π∫
0

ur2

(
ei(t−θ)

)
Pr(θ) dθ = ur2

(
ei(t−θ)

)
� mr(eiθ), (7.1)

hold for every r1, r2, 0 ≤ r1 < r2 < 1, where r = r1/r2 (cf. Corollary 2.4.2). We
will follow the second and third way to generalize the notion of harmonicity on
G-discs DG and groups. For approaches based on the first definition of harmonicity
see, e.g. ([ABG]).

For a f ∈ C(DG) denote by fr the r-trace of f on r � G, namely fr(g) =
f(r � g).
Definition 7.1.1. A set

{
f (r)

}
r∈[0,1)

of functions on G is said to be a harmonic
family of functions if

f (r1)(g) =
(
f (r2) � mr

)
(g) =

∫
G

f (r2)(gh−1) dmr(h)

for any 0 ≤ r1 < r2 < 1, where r = r1/r2.

Therefore, if
{
f (r)

}
r∈[0,1)

is a holomorphic family of functions, then

f (r1)(g) =
∫
G

f (r2)(gh) dmr(h) =
∫
G

f (r2)(gh−1) dmr(h) =
(
f (r2) � mr

)
(g)

for any 0 ≤ r1 < r2 < 1, where r = r1/r2.

Definition 7.1.2. A function f ∈ C(DG) is said to be harmonic on DG, if the family
{fr}r∈[0,1) of its r-traces is a harmonic family of functions, i.e. if

fr1(g) = (fr2 � mr)(g) =
∫
G

fr2(gh) dmr(h) (7.2)

for any 0 ≤ r1 < r2 < 1, where r = r1/r2.

In other words, f is harmonic on DG if and only if f
∣∣
r1�G

= (f
∣∣
r2�G

)� mr1/r2 ,
whenever r1, r2, 0 ≤ r1 < r2 < 1. We denote byH(DG) the space of harmonic func-
tions on DG. It is called a Stepanov space. Clearly, H(DG) = HR(DG) + iHR(DG),
where HR(DG) is the space of real-valued harmonic functions on DG. Observe
that every function f ∈ O(DG) satisfies the condition fr1 = fr2 � mr1/r2(g), 0 <
r1 < r2 < 1. Therefore, O(DG) ⊂ H(DG) = HR(DG) + iHR(DG), and also
O(DG)+O(DG) ⊂ H(DG). Consequently, Re f ∈ HR(DG) for every f ∈ O(DG). If
u ∈ H(D), then the function u ◦ χa is harmonic on DG for every a ∈ Γ . Indeed, if
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u = Re f for some f ∈ O(D), then f ◦χa ∈ O(DG). Hence, u ◦χa = (Re f) ◦χa =
Re (f ◦ χa) ∈ HR(DG). The above remark shows that the space HR(DT) of real-
valued harmonic functions on G = T coincides with the space of classical harmonic
functions HR(D) on the unit disc D. However, contrary to the classical situation,
not every real-valued harmonic function on DG is the real part of a function in
O(DG). To see this, consider the operator T : O(DG) −→ H(DG) : f −→ Re f .
Note that T is linear over R. If f ∈ O(DG) and f ∼

∑
a∈S

cfaχ
a is its Fourier expan-

sion, the Fourier series of T (f) is given by
∑
a∈Γ

cT (f)
a χa, where

cT (f)
a =

⎧⎨⎩
cfa/2 when a > 0,
cfa/2 when a < 0,
Re c0 when a = 0.

Theorem 7.1.3. The operator T : O(DG) −→ H(DG) : f −→ Re f is surjective if
and only if Γ = Ĝ is isomorphic to Z.

Proof. If Γ ∼= Z, then DG is the unit disc D in C, and O(DG) is the space of
analytic functions on D, i.e. O(DG) = O(D), thus H(DG) = H(D). According to
Theorem 2.3.2, in this case T

(
O(D)

)
= H(D), as claimed.

If Γ is not isomorphic to Z, then Γ is dense in R. Assume that p1(z), p2(z) are
two polynomials on C with p1(0) = p2(0) = 0. We claim that for any r1, r2, 0 <
r1, r2 < 1, and each a ∈ Γ \ {0} there is a b ∈ Γ such that:

(i) If
∣∣χb(r � g)

∣∣ ≤ r2, then
∣∣χa(r � g)

∣∣ ≤ r1 for some point r � g ∈ DG.

(ii) There is a point t � h ∈ DG such that
∣∣χa(t � h)

∣∣ ≤ r1 and∣∣p2(χb(t � h))
∣∣ > (1/2)max

DG

∣∣p2 ◦ χb
∣∣.

Indeed, if s = a
√
r, then

∣∣χa(r � g)
∣∣ ≤ 1 on DG(s). Note that if b −→ 0, then

rb −→ 1, thus the set χb
(
DG(s)

)
expands to the open unit disc D as b −→ 0.

Hence, we can choose a c ∈ R such that max |p2| on χc
(
DG(r)

)
is greater than

(1/2)max
DG

∣∣p2 ◦ χc
∣∣. Consider a sequence of polynomials

{
pn(z)

}∞
n=1

on D such

that

(i) pn(0) = 0,

(ii) max
D

∣∣pn(z)
∣∣ > n, and

(iii) max
D

∣∣Re (pn(z))
∣∣ ≤ 1/4n.

Let {tn}∞n=1 be a sequence of positive numbers such that
∣∣pn(z)

∣∣ ≤ 1/4n whenever
|z| ≤ tn. By the previous remarks we can choose a sequence {an}∞n=1 in R such
that:
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(a) knan < an−1, n ≥ 2, where kn is the order of pn(z).

(b) If r � g ∈ DG and
∣∣χan(r � g)

∣∣ ≤ tn, then
∣∣χan−1(r � g)

∣∣ ≤ tn−1, and there is a
point rn � gn ∈ DG, such that

∣∣χan−1(rn � gn)
∣∣ ≤ tn−1, and

∣∣pn

(
χan(rn � gn)

)∣∣
> (1/2)max

D
|pn|.

By definition,
∣∣χa1(rn � gn)

∣∣ ≤ t1 for all n. Consider the function

h =
∞∑

n=1

T (pn ◦ χan).

Since T (pn ◦ χan) = Re (pn ◦ χan) ∈ H(DG), property (iii) from the above implies

that sup
DG

|h| ≤
∞∑

n=1

(1/4n) < 1, thus h is a well-defined harmonic function on DG.

Suppose, on the contrary, that there is an analytic function f ∈ O(DG) with
T (f) = h. If Gk = Ker (χak) =

{
g ∈ G : χak(g) = 1

}
, and σk is the Haar measure

of Gk, consider the function

fm(r � g) =
∫

Gm

f(r � gk) dσm(k),

on DG. Note that sp (fm) =
{
a ∈ sp (f) : a/am ∈ N

}
. Therefore,

Re fm(r � g) =
∫

Gm

Re f(r � gk) dσm(k) =
∫

Gm

h(r � gk) dσm(k)

=
∞∑

n=1

∫
Gm

(
T (pn ◦ χan)

)
(r � gk) dσm(k) =

∞∑
n=1

T
( ∫

Gm

(pn ◦ χan)(r � gk) dσm(k)
)

= T
( ∞∑

n=1

∫
Gm

(pn ◦ χan)(r � gk) dσm(k)
)

=Re
( ∞∑

n=1

∫
Gm

(pn ◦ χan)(r � gk) dσm(k)
)
.

Property (a) from the above implies

∞∑
n=1

∫
Gm

(pn ◦ χan)(r � gk) dσm(k) =
m∑

n=1

∫
Gm

(pn ◦ χan)(r � gk) dσm(k).

Consequently, Re fm(r � g) =
m∑

n=1

∫
Gm

Re (pn ◦ χan)(r � gk) dσm(k). Therefore,
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fm(r � g) =
m∑

n=1

∫
Gm

(pn ◦ χan)(r � gk) dσm(k) + f(ω), and hence

sup
DGm

∣∣f − f(ω)
∣∣ ≥ sup

DGm

∣∣fm − f(ω)
∣∣ ≥ ∣∣fm(rn � gn)− f(ω)

∣∣
≥
∣∣pm(χam(rn � gn))

∣∣− ∣∣m−1∑
n=1

pn

(
χan(r � gh)

)∣∣
≥ (1/2)max

D
|pm| − 1 > (m/2)− 1.

Since DGk
⊂ DG1 we obtain that f is unbounded at ω ∈ DG1 , in contradiction

with f ∈ O(DG). Consequently, h /∈ T
(
O(DG)

)
, and hence T

(
A(DG)

)
is a proper

subalgebra of H(DG). �
Let A

(
DG(r)

)
be the uniform closure

[
A(DG)

∣∣
DG(r)

]
of the restriction of

the algebra A(DG) on the G-disc DG(r) with radius r < 1. Since A
(
DG(r)

)
is

generated by the semigroup
{
χ̂a
∣∣
DG(r)

: a ∈ Γ+

} ∼= Γ+, it is isometrically iso-
morphic to the G-disc algebra AΓ+ = A(DG). Let O(DG) denote the set of
continuous functions on the open G-disc, that are locally approximable on DG

by analytic functions in DG. Clearly, the restriction algebra O(DG)
∣∣
DG(r)

con-
tains A(DG)

∣∣
DG(r)

. It is easy to see that the set r � G = {r � g : g ∈ G} is the
Shilov boundary of the uniform closures of both these algebras. Consequently,
A(DG)

∣∣
DG(r)

⊂ O(DG)
∣∣
DG(r)

⊂
[
A(DG)

∣∣
DG(r)

]
= A

(
DG(r)

)
, by the maximality of

the algebra A
(
DG(r)

) ∼= AΓ+ .

Proposition 7.1.4. A function f ∈ C(DG) belongs to the class O(DG), if and only if
the restriction of f on every closed G-disc DG(r) belongs to the algebra A

(
DG(r)

)
.

Proof. The remark from the above implies that O(DG)|DG(r) ⊂ A
(
DG(r)

)
for

any r < 1. Conversely, given a � � g ∈ DG, let r1 be a positive number with
� < r1 < 1. If the restriction of f ∈ C(DG) on the G-disc DG(r1) belongs to the
algebra AΓ+

(
DG(r1)

)
, then f is an analytic function on the open set DG(r1), and

therefore, f belongs to O(DG). �
For any f ∈ C(DG) and r < 1 define the dilation fr of f by fr(� � g) =

fr�ı(� � g) = f(r� � g), 0 ≤ � < 1. Note that f �−→ fr maps the algebra C
(
DG(r)

)
isometrically and isomorphically onto C(DG). The inverse mapping is given by
f �−→ f1/r : C(DG) −→ C

(
DG(r)

)
: f1/r(� � g) = f

(
(�/r) � g

)
, 0 ≤ � < r.

Proposition 7.1.5. A function f ∈ C(DG) belongs to O(DG), if and only if it is
harmonic on DG and at least one of its r-traces fr = f

∣∣
r�G
, 0 < r < 1 belongs to

AΓ+ .

Proof. Proof. By the remarks before Theorem 7.1.3, it is enough to prove only
the sufficiency part. Assume that fr ∈ AΓ+ for some r ∈ (0, 1). If r1 < r, then
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fr1 = fr � mr1/r, according to Definition 7.1.2. By (3.7) we have that sp (fr1) ⊂
sp (fr) ⊂ Γ+. Hence, fr1 ∈ AΓ+ . Note that since mr is real-valued, then∫

G

χadmr =
∫
G

χadmr = ra.

Therefore, sp (mr) = Γ , and by (3.7) we have sp (fr1) = sp (fr) for every r1 > r,
since fr = fr1 � mr/r1. We obtain that all r-traces fr of f belong to AΓ+ . Note
that the restriction of f on every closed G-disc DG(r) coincides with the function
f̂r ∈ A(DG), i.e. f belongs to the algebra A

(
DG(r)

)
. Proposition 7.1.4 now implies

that f ∈ O(DG). �
Since the Gelfand transform χ̂a(r � g) = r|a|χa(g) of any χa, a ∈ Γ+, be-

longs to O(DG), it is a harmonic function on DG. Therefore, every Γ+-polynomial
n∑

k=1

dkχ
ak on G admits a harmonic extension on DG.

Lemma 7.1.6. If u is harmonic on DG, then

‖ur1‖∞ = sup
g∈G

|ur1 | ≤ sup
g∈G

|ur2 | = ‖ur2‖∞

for every r1, r2, 0 ≤ r1 ≤ r2 < 1.

Proof. According to (7.2), ur1(g) = ur2 � mr(g), where r = r1/r2, then

‖ur1‖∞ = ‖ur2 � mr‖ ≤ ‖ur2‖∞‖mr‖ = ‖ur2‖∞,

since mr is a probability measure. Consequently, ‖mr‖ = 1. �
Let Hc(DG) = H(DG) ∩ C(DG) be the space of continuous functions on DG

that are harmonic on DG.

Lemma 7.1.7. Every continuous function on G can be extended uniquely on DG as
a harmonic function on DG, i.e. CR(G) ∼= Hc(DG).

Proof. If f is a continuous function on G, then by the Stone-Weierstrass theorem
there is a sequence of linear combinations of characters pn ∈ P (G) on DG uniformly
converging on G to f . Lemma 7.1.6 implies that sup

G
|pn−pm| = sup

DG

|pn−pm|, and

therefore, {pn}n is a Cauchy sequence in the sup-norm on DG. Let f̃ ∈ CR(DG) be
the uniform limit of this sequence. Since (pn)r1 ∈ O(DG) ⊂ Hc(DG), we deduce
that f̃ ∈ Hc(DG). Hence f̃ is a harmonic function on DG, and its restriction on G
is f . �

For any f ∈ C(DG) and r < 1, the trace fr(g) = f(r � g) of f on r�G admits
the series expansion

fr(g) ∼
∑
a∈Γ

cfa(r)χar|a|(g),
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where cfa(r) =
1
r|a|

∫
G

fr(g)χ−a(g) dσ(g) =
1
r|a|

cfr
a . As in the classical setting, the

numbers cfa(r) in general depend continuously on r ∈ (0, 1).

Theorem 7.1.8. A function u ∈ C(DG) is harmonic on DG if and only if the
coefficients cua(r) are independent of r for any a ∈ R.

Proof. Let u ∈ H(DG), 0 ≤ r1 < r2 < 1, and r =
r1
r2

. The Fubini theorem implies

that

cua(r1) =
1

r
|a|
1

∫
G

ur1(g)χ
−a(g) dσ(g) =

1

r
|a|
1

∫
G

(∫
G

ur2(gh) dmr(h)
)
χ−a(g) dσ(g)

=
1

r
|a|
1

∫
G

(∫
G

ur2(gh)χ
−a(g) dσ(g)

)
dmr(h) =

(r2
r1

)|a|
cua(r2)

∫
G

χa(h) dmr(h)

=
(r2
r1

)|a|
cua(r2)χa(r � ı) =

(r2
r1

)|a|(r1
r2

)|a|
cua(r2) = cua(r2).

Conversely, let f ∈ C(DG) be a function with coefficients cfa(r) = c(a, f), a ∈
Γ , independent of r. If v = f� is the �-dilation of f , i.e. v(s � g) = f(�s � g) for
some ρ, 0 < ρ < 1, then cfa(r�) = cfa(r) = c(a, f), v ∈ C(DG), and for all a ∈ R
and 0 < � < 1 we have

cf

a (r) = cva(r) =

cvr
a

r|a|

=
1
r|a|

∫
G

vr(g)χ−a(g) dσ(g) =
1
r|a|

∫
G

f(r� � g)χ−a(g) dσ(g)

=
1
r|a|

∫
G

fr�(g)χ−a(g) dσ(g) =
1
r|a|

cfr

a =

1
r|a|

(�r)|a|cfa(r�) = �|a|c(a, f).

By Lemma 7.1.7 there exists a u ∈ Hc(DG), such that u ≡ v on G. Thus
cua(r) = c(a, u) = cua(1) = cva(1) = cva(r) for all a ∈ Γ ⊂ Γ+ and r ∈ (0, 1). The
uniqueness of Fourier series implies that u ≡ v on DG, thus v ∈ Hc(DG). Hence,

vr1(g) =
∫
G

vr2(gh) dmr(h), where r = r1/r2 if 0 ≤ r1 < r2 < 1. Consequently,

fr1(� � g) = vr1(1 � g) = vr1(g) =
∫
G

vr2(gh) dmr(h) =
∫
G

fr2

(
� � (gh)

)
dmr(h).

By letting � ↗ 1 we obtain fr1(g) =
∫
G

fr2(gh) dmr(h) = (fr2 � mr)(g), and

therefore, f ∈ Hc(DG). �
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7.2 Lp-harmonicity on groups and G-discs

There are close connections between harmonic functions on the unit disc T and
the Hardy space Hp on the unit circle. Hardy space Hp can be defined in two
standard ways. Firstly, Hp-functions are defined as functions in Lp(T) whose neg-
ative Fourier coefficients are zero. Secondly, Hp-functions are defined as analytic
functions in D, whose restrictions on circles centered at the origin are uniformly
bounded in the Lp-norm. Following these definitions leads to essentially different
classes of functions on groups. For approaches based on the first definition of Hp-
functions i.e. based on their Fourier coefficients see e.g. [HL], also [G10]). We will
follow the second definition to generalize the notion of Hardy spaces on groups.
The resulting spaces are called Hardy-Bohr spaces. They are closely related with
analytic almost periodic functions on R.

Definition 7.2.1. Let G be a compact group whose dual group Γ is a subgroup
of R, and let m(1/e) be the representing measure of the point (1/e) � ı ∈ D, i.e.
m(1/e) = m(1/e)�ı. Consider the following spaces.

(a) The space Hp(DG) of Lp-harmonic functions on DG, 1 ≤ p <∞ is the set of
harmonic functions u ∈ H(DG) for which

‖u‖p =
(

sup
0 ≤ r < 1

g ∈ G

∫
G

∣∣ur(gh)
∣∣p dm(1/e)(h)

)1/p

=
(

sup
0 ≤ r < 1

g ∈ G

∫
G

∣∣ur(gh−1)
∣∣p dm(1/e)(h)

)1/p

<∞.
(7.3)

(b) The space H∞(DG) of L∞-harmonic functions on DG is the set of harmonic
functions u ∈ H(DG) with

‖u‖∞ = sup
0 ≤ r < 1

g ∈ G

∣∣ur(g)
∣∣ <∞. (7.4)

The space Hp(DG) is called also Stepanov’s p-space. Note that Hp(DG) =
Hp

R(DG) + iHp
R(DG), where Hp

R(DG) is the set of the real-valued functions in
Hp(DG).

Lemma 7.2.2. Let f ∈ Hp(DG), and r, r1, r2 ∈ [0, 1), r1 < r2, 1 ≤ p <∞. Then:

(a) sup
g∈G

∫
G

∣∣fr1(gh)
∣∣p dmr(h) ≤ sup

g∈G

∫
G

∣∣fr2(gh)
∣∣p dmr(h), i.e.

sup
g∈G

(
|fr1 |p � mr

)
(g) ≤ sup

g∈G

(
|fr2 |p � mr

)
(g).
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(b)
∫
G

|fr1 |p dσ ≤
∫
G

|fr2 |p dσ, i.e. ‖fr1‖p ≤ ‖fr2‖p.

(c) For every r, 0 < r < 1, there exist real constants 0 < c1 < c2 <∞, such that

c1 sup
g∈G

(
|fr1 |p � mr

)
(g) < sup

g∈G

(
|fr1 |p � m1/e

)
(g) < c2 sup

g∈G

(
|fr1 |p � mr

)
(g).

Proof. (a) We recall that m(r1�g1) � m(r2�g2) = µ(r1�g1)·(r2�g2) = m(r1r2�g1g2) for
every r1 � g1, r2 � g2 ∈ DG. In particular, mr1 � mr2 = m(r1r2), i.e. for any function
f ∈ C(G) we have∫

G

∫
G

f(gh) dmr1(g) dmr2(h) =
∫
G

f(g) dm(r1r2).

Since the function f is harmonic on DG, Hölder’s inequality and the Fubini theorem
imply

sup
g∈G

∫
G

∣∣fr1(gh)
∣∣p dmr(h) = sup

g∈G

∫
G

∣∣∣ ∫
G

fr2(ghk) dm(r1/r2)(k)
∣∣∣p dmr(h)

≤ sup
g∈G

∫
G

∫
G

∣∣fr2(ghk)
∣∣p dm(r1/r2)(k) dmr(h)

= sup
g∈G

∫
G

∫
G

∣∣fr2(ghk)
∣∣p dmr(h) dm(r1/r2)(k) ≤ sup

g∈G

∫
G

∣∣fr2(gh)|p dmr(h),

as claimed.

(b) By the same argument we have∫
G

∣∣fr1(g)
∣∣p dσ(g) ≤ ∫

G

( ∫
G

∣∣fr2(gh)
∣∣p dm(r1/r2)(h)

)
dσ(g)

=
∫
G

(∫
G

∣∣fr2(gh)
∣∣p dσ(g)) dm(r1/r2)(h) ≤

∫
G

|fr2(g)|p dσ(g).

(c) Since m(1/e) and mr are mutually absolutely continuous measures for
any r, 0 < r < 1, there is a Borel function Kr such that dmr = Kr · dm(1/e). In
fact, Kr

∣∣
jı(R)

is a quotient of two Poisson kernels on R, where jı : R −→ G is the

standard embedding of R into G with jı(0) = ı. Hence, sup
g∈G

∣∣Kr(g)
∣∣ <∞, and also
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sup
g∈G

∣∣∣ 1
Kr(g)

∣∣∣ <∞. Therefore,

sup
g∈G

∫
G

∣∣fr1(gh)
∣∣p dmr(h) = sup

g∈G

∫
G

∣∣fr1(gh)
∣∣pKr(g) dm(1/e)(h)

≤ sup
g∈G

∣∣Kr(g)
∣∣ sup

g∈G

∫
G

∣∣fr1(gh)
∣∣p dm(1/e)(h)

≤ sup
g∈G

∣∣Kr(g)
∣∣ sup

g∈G

∣∣∣ 1
Kr(g)

∣∣∣ sup
g∈G

∫
G

∣∣fr1(gh)
∣∣p dm(1/e)(h).

Consequently, (b) holds with c1 =
1

sup
g∈G

∣∣Kr(g)
∣∣ , and c2 = sup

g∈G

∣∣∣ 1
Kr(g)

∣∣∣. �

Theorem 7.2.3. Under the Hp(DG)-norm from Definition 7.2.1, Hp(DG), 1 ≤ p ≤
∞ is a Banach space.

Proof. Let {un}∞n=1 be a Cauchy sequence in the Hp(DG)-norm. If 1 ≤ p < ∞,
Lemma 7.2.2 and Hölder’s inequality imply that for every r, 0 < r < 1, we have

∣∣(un)r1(g)− (um)r1(g)
∣∣ =

∣∣∣ ∫
G

(
(un)r2(gh)− (um)r2(gh)

)
Kr(g) dm(1/e)(h)

∣∣∣
≤ sup

g∈G

∣∣Kr(g)
∣∣‖un − um‖p.

Therefore, for every 0 < r < 1 the sequence {(un)r}∞n=1 converges uniformly
on G to a continuous function ur ∈ C(G). Let u(r � g) = ur(g). We claim that
u ∈ H(DG). Indeed, if 0 < r1 < r2 < 1, and r = r1/r2, then

ur1(g) = lim
n→∞

(un)r1 = lim
n

∫
G

(un)r2(gh) dmr(h)

==
∫
G

lim
n→∞

(un)r2(gh) dmr(h) =
∫
G

ur2(gh) dmr(h),

and consequently, u ∈ H(DG). If p = ∞, the sequence {un}∞n=1 converges uni-
formly on DG to a continuous function u. The proof of harmonicity of u follows
the same arguments as in the case p <∞. �

Let Hp
c (DG) be the closure of the space Hc(DG) = H(DG) ∩ C(DG) in the

Hp(DG)-norm. The next theorem is obvious.

Theorem 7.2.4. Hp
c(DG) is a closed proper subspace of Hp(DG) for every p ∈

[1,∞].
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For every 1 ≤ p ≤ ∞ denote Hp(DG) = Hp(DG) ∩ O(DG). The following
theorem and its proof is due to Hoffman ([H2]).

Theorem 7.2.5. If f is a function in Hp(DG), or in Hp(DG), 1 ≤ p ≤ ∞, then:

(a) The limit f∗(g) = lim
r↗1

fr(g) exists for mr�g-almost every g ∈ G, r � g ∈ DG.

(b) f∗ ∈
⋂

r�g∈DG

Lp(G,mr�g).

(c) lim
r↗1

‖fr‖Lp(G, m(r�g)) = ‖f∗‖Lp(G, m(r�g)) for every r � g ∈ DG and 1 ≤ p <∞.

(d) lim
r↗1

‖fr‖L∞(G, m(r�g)) = ‖f∗‖L∞(G, m(r�g)) for every r � g ∈ DG.

(e) If p = 1, then the sequence of measures fr dm(1/e) converges in the weak∗-
topology to a measure µ ∈ M(G) as r ↗ 1, and ‖µ‖ = lim

r↗1

∥∥fr dm(1/e)

∥∥,
where ‖ · ‖ is the total variation norm on the space of Borel measures M(G)
on G.

Note that if f ∈ Hp(DG), then (7.2) holds for all 0 ≤ r1 < r2 < 1.

Definition 7.2.6. The space of boundary values f∗ = lim
r↗1

fr of functions f in

Hp(DG), which exists by Theorem 7.2.5(a) is called the Hardy-Bohr space Hp(G)
on G.

Denote by Hp(G) the space of limits f∗(g) = lim
r↗1

fr(g) of functions in

Hp(DG), existing by Theorem 7.2.5(a). Let Hp
c(G) be the space of restrictions

on G, i.e. of limits f∗ = lim
r↗1

fr of functions f in Hp
c (DG). The next theorem is a

direct consequence from Theorem 7.2.5 and Theorem 7.2.4.

Theorem 7.2.7. (a) The Hardy-Bohr space Hp(G) is a proper subspace of the
space Hp(G) for every p ∈ [1,∞].

(b) For every p, 1 ≤ p < ∞, Hp
c (G) and Hp(G) are Banach spaces with respect

to the norm ‖f∗‖p = sup
g∈G

( ∫
G

∣∣f∗(gh)∣∣p dm(1/e)(h)
)1/p

= ‖f‖p.

Denote by Lp
(
G,m(1/e)

)
the space of all m(1/e)-integrable functions on G

with finite Lp
(
G,m(1/e)

)
-norm.

Definition 7.2.8. For any 1 < p < ∞ and q =
p

p− 1
let Lp,q(G) be the set of

integrable functions on G, with the property that the function

(f � u)(g) =
∫
G

f(gh)u(h) dm(1/e)(h) (7.5)

is continuous on G for any u ∈ Lq
(
G,m(1/e)

)
.
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Theorem 7.2.9. For any 1 < p <∞, Lp,q(G) is a Banach subspace of Lp(G,m(1/e))
with the norm

‖f‖p = sup
g∈G

(∫
G

∣∣f(gh)∣∣p dm(1/e)(h)
)1/p

. (7.6)

Proof. Let f ∈ Lp,q(G). First we will show that ‖f‖p <∞. For any g ∈ G consider
the bounded linear functional Fg, g ∈ G, on Lq

(
G,m(1/e)

)
, defined by

Fg(u) = (f � u)(g) =
∫
G

f(gh)u(h) dm(1/e)(h).

According to (7.3),
∣∣Fg(u)

∣∣ ≤ C = sup
g∈G

∣∣(f � u)(g)∣∣ for every Fg, g ∈ G. The

Banach-Steinhaus theorem, applied to the family {Fg}g∈G, implies

sup
g∈G

‖Fg‖′q <∞, (7.7)

where ‖Fg‖′q is the norm of Fg in the dual space of Lq(G,m(1/e)). Consequently,

‖f‖p = sup
g∈G

(∫
G

∣∣f(gh)∣∣p dm(1/e)(h)
)1/p

= sup
g∈G

‖Fg‖′q <∞,

as claimed. It remains to show that the space Lp,q(G) is complete with respect to
the norm (7.6). Let {fn} be a Cauchy sequence in Lp,q(G). For any fixed g ∈ G
the family of functions

{
fn(gh)

}
is a Cauchy sequence in the space Lp

(
G,m(1/e)

)
.

Let f0(gh) be the limit of this sequence. By (7.3) we have that the functions

(fn � u)(g) =
∫
G

fn(gh)u(h) dm(1/e)(h)

form a Cauchy sequence in C(G) for any fixed u ∈ Lq(G,m(1/e)). Therefore the
function

(f0 � u)(g) =
∫
G

f0(gh)u(h) dm(1/e)(h)

is continuous on G. Consequently, f0 ∈ Lp,q(G). �

Let j̃ı : C+ −→ DG be the natural extension on C+of the standard embedding
jı : R −→ G of R onto a dense subgroup of G, with jı(0) = ı. Namely, jı(t) = gt ∈
G = Γ̂ for any t ∈ R, where gt(a) = eiat, a ∈ Γ = Ĝ. Denote by

P(t0,y)(t) dt =
1
π

y

y2 + (t0 − t)2
dt, y > 0 (7.8)

the Poisson measure on C, and let m(e−y�gt0 ) be the representing measure of the
point e−y�gt0 ∈ DG. One can easily see that dm(e−y�gt0 )◦ j̃ı(t+iy) = P(t0,y) dt, i.e.
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the measure m(e−y�gt0 ) is the image of the Poisson measure via the embedding j̃ı.

In particular, the measure m(1/e) is the image of the measure
1
π

dt

1 + t2
. Therefore

the corresponding Lq-spaces can be identified, i.e.

Lq
(
G,m(1/e)

) ∼= Lq
(

R,
dt

1 + t2
)
. (7.9)

Note that the measures m(e−y�gt) and m(1/e) are mutually absolutely continuous.
If K(e−y�gt) = dm(e−y�gt)/dm(1/e) is the Radon-Nikodym derivative of m(e−y�gt)

with respect to m(1/e), then dm(e−y�gt) = K(e−y�gt) dm(1/e). Denote by K the
linear space generated by the functions K(e−y�gt), t ∈ R, y > 0.

Lemma 7.2.10. For any 1<q<∞ the space K is a dense subspace in Lq(G,m(1/e)).

Proof. Let f ∈ Lp
(
G,m(1/e)

)
with

∫
G

fK dm(1/e) = 0 for all K ∈ K. Identities

(7.8) and (7.9) imply that

1
π

∫
R

f(gt)
y dt

y2 + (t0 − t)2
= 0

for every y > 0 and t0 ∈ R. Therefore, f ≡ 0, because the Poisson integral of a non-
zero function can not be 0. Since the dual space of Lq

(
G,m(1/e)

)
is Lp

(
G,m(1/e)

)
,

the bipolar theorem implies that K is dense in Lq
(
G,m(1/e)

)
, as claimed. �

Lemma 7.2.11. Every function f ∈ Lp,q(G), 1 < p <∞, can be extended uniquely
to a function f̃ ∈ Hp(DG) such that f(g) = lim

r↗1
f̃r(g) for almost all g ∈ G with

respect to any measure mr�g, r � g ∈ DG.

Proof. Let Kr = K(r�ı). Since dmr = Krdm(1/e), and Kr ∈ Lp(G,m(1/e)), the
definition of the space Lp,q(G) implies that the function

f̃r(g) = (f � mr)(g) =
∫
G

f(gh) dmr(h)

is continuous on G. We have that K(r�gt) −→ K(r0�gt) in the Lq(G,m(1/e))-norm,
as r −→ r0. Therefore, the function f̃(r � g) = f̃r(g) is continuous on DG. For the
Fourier coefficient cef

a(r), a ∈ Γ we have

c
ef
a(r) =

1
r|a|

∫
G

∫
G

f(gh)χ−a(h) dσ(h) dmr(g) =
cfa
r|a|

∫
G

χa(g) dmr(g) = cfa .

Theorem 7.1.8 implies that f is a harmonic function in DG. Moreover, f̃ ∈ Hp(DG)
since
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sup
g ∈ G
r < 1

(∫
G

∣∣f̃r(gh)
∣∣p dm(1/e)(h)

) 1
p≤ sup

g ∈ G
r < 1

( ∫
G

∣∣ ∫
G

f(ghk) dmr(k)
∣∣p dµ(1/e)(h)

) 1
p

.

The Fubini theorem and Hölder’s inequality, applied to the inner integral, yield

‖f̃‖p ≤ ‖f‖p. �
Lemma 7.2.11 implies that Lp,q(G) ⊂ Hp(DG). The opposite inclusion also

is true.

Theorem 7.2.12. All spaces of type Lp,q(G), q > 1 are isometrically isomorphic to
the space Hp(DG).

Proof. Let f ∈ Hp(G) and f̃ ∈ Hp(DG) be such that f = lim
r↗1

f̃r, where f̃r = f̃ |r�G

is the r-trace of f̃ on r �G. For any r � g ∈ DG we have

f̃r�g(h) =
∫
G

f(hk) dm(1/e)�g(k) =
∫
G

f(hk)K(1/e)�g(k) dm(1/e)(k) (7.10)

is continuous on G. For a fixed u ∈ Lq
(
G,m(1/e)

)
consider the function

(f � u)(g) =
∫
G

f(hg)u(h) dm(1/e)(h). (7.11)

Obviously,
sup
g∈G

∣∣(f � u)(g)∣∣ = ‖f � u‖∞ ≤ ‖f‖p‖u‖q (7.12)

for any u ∈ Lq
(
G,m(1/e)

)
. Since K is dense in Lq

(
G,m(1/e)

)
, then by (7.10)

and (7.12) we see that f � u can be approximated uniformly on G by linear
combinations of functions f̃r�g, r �g ∈ DG. Hence f � u is continuous on G for any
u ∈ Lq

(
G,m(1/e)

)
, and therefore, f ∈ Lp,q(G). Consequently, Hp(DG) ∼= Lp,q(G),

by Lemma 7.2.11. �
Define a topology τ on the space Lp,q(G) ∼= Hp(DG) as follows. Choose the

neighborhood basis of a function f ∈ Lp,q(G) to be the family of sets

U(f ;u1, . . . , un, ε) =
{
g ∈ Lp,q(G) : ‖f � ui − g � ui‖∞ < ε, 1 ≤ i ≤ n

}
,

where ε > 0 and u1, . . . , un ∈ Lq
(
G,m(1/e)

)
. We say that a net {fα}α∈Σ ⊂ Lp,q(G)

τ -converges to f ∈ Lp,q(G) if

lim
α∈Σ

‖fα � u− f � u‖∞ = 0

for every u ∈ Lq
(
G,m(1/e)

)
. Denote by τ - lim

α∈Σ
fα andHp- lim

α∈Σ
fα the limits of {fα}Σ

with respect to the corresponding topologies.
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Theorem 7.2.13. The space Hp(DG) ∼= Lp,q(G), 1 < p < ∞, is τ-complete, i.e.
if for every u ∈ Lq(G,m(1/e)) the family {fα � u}α∈Σ is a Cauchy net in C(G),
then there is a function f0 ∈ Lp,q(G) ∼= Hp

S(DG) such that f0 = τ- lim
α∈Σ

fα, i.e.

f0 � u = lim
α∈Σ

(fα � u) for every u ∈ Lq(G,m(1/e)).

Proof. Let, as before, Kr be the Radon-Nikodym derivative of the measure mr

with respect to m(1/e). Clearly, the function

f̂α(r � g) = fα � Kr(g) =
∫
G

fα(hg)Kr(h) dm(1/e)(h)

belongs to Hp(DG). Since Kr ∈ Lq
(
G,m(1/e)

)
, the limit

f̂r(g) = f̂(r � g) = Hp- lim
α∈Σ

f̂α(r � g) (7.13)

exists for every fixed r < 1. Note that f̂α ∈ Hp(DG) for every α ∈ Σ. Lemma 7.2.2
and (7.13) imply that f̂ ∈ H(DG). It remains to show that f ∈ Hp(G), i.e. that
f̂ ∈ Hp(DG).

Let F : Lq
(
G,m(1/e)

)
−→ C(G) be the linear operator defined by F (u) = Hp-

lim
α∈Σ

fα � u. Consider an extension F̃ (u) ∈ Hc(DG) of the function F (u) on DG.

According to Lemma 7.1.6

lim
α∈Σ

sup
DG

∣∣F̃ (u)− f̂α � u
∣∣ = lim

α∈Σ

∥∥F (u)− fα � u
∥∥
∞ = 0.

Consequently,

Hp- lim
r↗1

(f̂ � u)r = lim
r↗1

Hp- lim
α∈Σ

(fα � u)r = F (u).

The Banach-Steinhaus theorem, applied to the family of bounded linear operators

Fr : Lq
(
G,m(1/e)

)
�−→ C(G) : Fr(u) = (f̂ � u)r,

with ‖Fr‖ = ‖fr‖p, implies that the family {Fr}r∈(0,1) is uniformly bounded. Let
B be the unit ball in Lq(G,m(1/e)). We have

‖Fr‖ = sup
g∈G

sup
u∈B

∣∣∣ ∫
G

f̂r(gh)u(h) dm(1/e)(h)
∣∣∣

= sup
g∈G

( ∫
G

∣∣f̂(gh)∣∣p dm(1/e)(h)
)1/p

< c,

where the positive constant c does not depend on r. Hence, f̂ ∈ Hp(DG). Conse-
quently, f ∈ Hp(G) ∼= Lp,q(G). �
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Theorem 7.2.14. For any 1 < p < ∞ the space C(G) is τ-dense in Hp(DG) ∼=
Lp,q(G).

Proof. If f ∈ Hp(DG), then f̂r ∈ C(G) and f = τ - lim
r↗1

f̂r. �

All results in this section admit analogues for harmonic S-functions, where
S is a semigroup of Γ .

Definition 7.2.15. Hardy S-space on G is called the space Hp
S(G), 1 < p < ∞ of

Lp-harmonic functions in DG with spectrum in S, i.e.

Hp
S(G) =

{
f ∈ Hp(DG) ∼= Lp,q(G) : sp (f) ⊂ S

}
.

If S ⊂ Γ+, then the set Hp(DG) is called Hardy S-space on G, or, Hardy-
Helson-Lowdenslager space, and is denoted by Hp

S(G). By the technique from the
above used to study the space Hp(G), one can obtain the following theorems.

Theorem 7.2.16. (a) For any 1 < p <∞ the space Hp
S(G), resp. Hp

S(G), coincide
with the space of Hp-limits f∗ = Hp- limr↗1 fr with fr ∈ Hp

S(DG), resp
fr ∈ Hp

S(DG).

(b) For any 1 < p < ∞ the spaces Hp
S(G) and Hp

S(G) are τ-closed subspaces of
Lp,q(G) ∼= Hp(G) for every p, 1 < p <∞.

(c) For any 1 < p < ∞ the spaces Hp
S(G) and Hp

S(G) are Banach spaces under
the norm

‖f‖p = sup
g∈G

(∫
G

∣∣f(gh)∣∣p dm(1/e)(h)
)1/p

.

Theorem 7.2.17. (a) The algebra AS is τ-dense in the space Hp
S(G).

(b) The Hp(G)-closure of AS is a proper subspace of Hp
S(G).

7.3 L1-harmonic functions on groups and G-discs

Let M(G) be the space of regular Borel measures on G. If mr = mr�ı is the
representing measure of the point r � ı ∈ DG for A(DG), then, as it is easy to
check, ∣∣∣ ∫

G

χadmr

∣∣∣ = r|a| (7.14)

for every a ∈ Γ ⊂ R and every r, 0 ≤ r < 1. Therefore, sp (mr) = Γ for every
measure of type mr.

Given a µ ∈M(G), consider the measures µr and mf , defined by

(a) µr = µ � mr, and

(b) dµf = f dσ, f ∈ L1(G, σ).
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Clearly µr and µf belong to M(G). Since sp (µ � ν) = sp (µ)∩ sp (ν) for µ, ν ∈
M(G) (cf. (3.7)), and sp (mr) = Γ , we see that sp (µr) = sp (µ).

For any f ∈ C(G) let f̃r be the function

f̃r(g) = (f � mr)(g) =
∫
G

f(gh) dmr(h).

Clearly, f̃r ∈ C(G).

Lemma 7.3.1. If f ∈ H1(DG), and µfr

(1/e) = µfr � m(1/e), then

dµfr

(1/e) = f(r/e) dσ = dµf(r/e) .

Proof. Recall that the a-th Fourier-Stieltjes coefficient of the convolution of two
measures equals the product of the a-th coefficients of both measures (cf. (3.7)). By
(7.14) we see that the a-th Fourier-Stieltjes coefficient of the measure µfr

(1/e) = µfr �

m(1/e) equals (cfa) r|a|(1/e)|a| = (r/e)|a|cfa . Theorem 7.1.8 implies that (r/e)|a|cfa
is also the a-th coefficient of the measure dµf(r/e) = f(r/e) dσ. Consequently both
measures coincide. �

Let M1(G) be the set of all µ ∈ M(G), such that for every r ∈ (0, 1) the
measure µr = µ � mr can be expressed in the form dµr = f (r) dσ = dµf(r)

for
some function f (r) ∈ C(G) with

sup
h ∈ G

0 < r < 1

∫
G

∣∣f (r)(g)
∣∣ dm(1/e)(gh) <∞. (7.15)

To every µ ∈M1(G) we assign the function fµ on DG, defined by fµ(r � g) =
f̃ (r)(g), where for every fixed r ∈ (0, 1) the function f (r) ∈ C(G) is such that
dµf(r)

= f (r) dσ.

Theorem 7.3.2. Let µ ∈ M1(G) be a measure, such that dµr = dµf(r)
= f (r)dσ

with f (r) ∈ C(G) for each r ∈ (0, 1). The map µ �−→ fµ is a bijective mapping
between M1(G) and H1(DG).

Proof. Let µ ∈M1(G). We claim that the function fµ belongs toH1(DG). Because
of (fµ)r dσ = f (r) dσ = dµf(r)

= dµr, we have that cµar|a| = c
fµ
a r|a| for all a ∈ Γ .

Together with (7.15) and Theorem 7.1.8, this implies that fµ ∈ H1(DG).

Conversely, given an f ∈ H1(DG), consider the family of measures {µr}r∈(0,1)

with dµr = fr dσ. Clearly, fr ∈ C(G) for any r, 0 < r < 1. Since

‖µr‖ =
∫
G

∣∣fr(g)
∣∣ dσ(g) =

∫
G

∫
G

∣∣fr(gh)
∣∣ dσ(g) dm(1/e)(h)

≤
∫
G

(
sup

0<r<1

∫
G

∣∣fr(gh)
∣∣ dm(1/e)(h)

)
dσ(g) ≤ ‖f‖1,
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we can choose rn ↗ 1 so that the sequence {µrn}n is weak∗-convergent to a
measure ν ∈M(G). Since νr = ν � mr = w∗-lim

n
µfrn � mr, and the weak∗-limit of

{µfrn � mr} as rn ↗ 1 equals
(
L∞-lim

n
fr(rn � g)

)
dσ(g) = fr(g) dσ(g) = µfr (g),

we obtain that dνr = dµfr = fr dσ for all r ∈ (0, 1). Therefore, ν ∈ M1(G),
and f = fν . Since sp (mr) = Γ , the uniqueness of the Fourier-Stieltjes expansion
implies that ν does not depend on the choice of the sequence rn ↗ 1. �

Theorem 7.3.2 shows that M1(G) =
{
µ ∈ M(G).µr = frdσ, r ∈ (0, 1), f ∈

H1(DG)
}
. Clearly, for any f ∈ C(G) the measure dµf = f dσ ∈ M1(G). Hence

the closure of M1(G) in M(G) contains measures of type g dσ, g ∈ L1(G, σ).
However, there are functions integrable with respect to the Haar measure σ on G,
that are not extendable as harmonic functions on DG. This implies that M1(G) is
not closed in M(G).

For any f ∈ H1(DG) denote by M(1/e)(f) the family of measures µf
h, h ∈ G

of type
dµf

h(g) = w∗- lim
r↗1

fr(g) dm(1/e)(h−1g), h ∈ G,

which exist according to Theorem 7.2.5(e). It is obvious that M(1/e)(f + g) =
M(1/e)(f)+M(1/e)(g). LetM1

(1/e)(G) be the space of all families of typeM(1/e)(f),
f ∈ H1(DG).

Theorem 7.3.3. (a) Endowed with the norm
∥∥M(1/e)(f)

∥∥ = sup
h∈G

‖µf
h‖, the set

M1
(1/e)(G) is a Banach space.

(b)
∥∥M(1/e)(f)

∥∥ = ‖f‖1 for every f ∈ H1(DG).

Proof. Theorem 7.2.5(e) implies that ‖µf
h‖ = lim

r↗1

∫
G

|fr(gh)| dm(1/e)(g). Thus,∥∥M(1/e)(f)
∥∥ = ‖f‖1, which proves (b). On the other hand, the mappingM(1/e)(f)

�−→ f is an isometric isomorphism between M(1/e)(G) and the space H1(DG),
which proves (a). �

The following theorem and its proof are similar to the corresponding results
in the classical setting (cf. [H3]).

Theorem 7.3.4. For a f ∈ H1(DG) let f∗ = limr↗1 fr be the boundary value
function, existing by Theorem 7.2.5. Then:

(a) dµf
h(g) = f∗(g) dm(1/e)(h−1g) + dνf (g), where νf is a singular measure with

respect to the measure m(1/e)(h−1g).

(b) f(r � h) = (f∗ � Kr)(h) + (Kr � ν
f )(h), where Kr is the Radon-Nikodym

derivative of µr with respect to m(1/e).
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Example 7.3.5. Without loss of generality we can assume that 2π ∈ Γ . Let K ={
g ∈ G : χ2π(g) = 1

}
= Ker (χ2π). Recall that the group G can be obtained from

the set K0 = K× [0, 1] by identifying the points (g, 1) and (g1 g, 0), g ∈ G. Here gt

is the element jı(t) ∈ G, where jı : R −→ G is the homomorphic embedding of R
into G with jı(0) = ı. The mapping ψ : K× [0, 1] −→ G is defined by ψ(g, t) = g gt.
Fix a g0 ∈ K, and let f(g, t) be a function on K0 = K × [0, 1], such that:

(a) f(g, 0) = f(g, 1) = 0 for all h ∈ K, and f(g0, t) = 0 for all t ∈ [0, 1].

(b) f(g, t) is a continuous function on K0 \ (g0, 1/2).

(c) f ≥ 0 and

1∫
0

f(g, t) dt −→ 1 whenever g −→ g0.

Consider the atomic measure δ(g0,1/2) concentrated at the point (g0, 1/2). From
(c) it follows that δ(g0,1/2) = w∗- lim

g→g0
µ(g), where dµ(g) = f(g, t) dt. If f̃ = f ◦ ψ,

then the function g(r � h) =
(
f̃∗ �Kr

)
(h) +

(
Kr � δ(g0,1/2)

)
(h) belongs to H1(DG).

7.4 The space Hp(DG) as Banach algebra

For any p ∈ [1,∞) the space Hp(DG) possesses a natural multiplication. Namely,
given f, h ∈ Hp(DG), their Hadamard product f × h is the function defined by(

f × h
)(

(r1r2) � g
)

= (fr1 � hr2)(g) =
∫
G

fr1(gk
−1) hr2(k) dσ(k).

Note that if s1s2 = r1r1, then

fr1 � hr2 =
(
fs1 � m(r1/s1)

)
�
(
hs2 � m(r2/s2)

)
=
(
fs1 � hs2

)
�
(
m(r1/(s1) � m(r2/(s2)

)
= fs1 � hs2 � m(r1r2)/(s1s2) = fs1 � hs2 � m1 = fs1 � hs2 .

Consequently, Hadamard’s product is a well-defined operation in Hp(DG).

Theorem 7.4.1. The Hadamard product f × h of any f, h ∈ Hp(DG), 1 ≤ p <∞,
belongs to the space Hp(DG), and

‖f × h‖p ≤ ‖f‖p ‖h‖p,

where ‖ · ‖p is the Lp-norm defined in Definition 7.2.1.

Proof. For any p ∈ [1,∞) we have∫
G

∣∣(f × h)((r1r2) � g)∣∣pdm(1/e)(g) ≤
∫
G

∫
G

∣∣fr1(gk
−1)hr2(k)

∣∣pdσ(k) dm(1/e)(g)

≤
∫
G

∣∣hr2(k)
∣∣p(∫

G

∣∣fr1(gk
−1)

∣∣pdm(1/e)(g)
)
dσ(k) ≤ ‖f‖p

p

∫
G

∣∣hr2(k)
∣∣pdσ(k).
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Since the Haar measure σ is invariant, and m(1/e) is a probability measure on G,
we have∫

G

∣∣hr2(k)
∣∣pdσ(k) =

∫
G

∫
G

∣∣hr2(k)
∣∣pdσ(k) dm(1/e)(g)

=
∫
G

∫
G

∣∣hr2(kg
−1)

∣∣pdσ(k) dm(1/e)(g)

=
∫
G

(∫
G

∣∣hr2(kg
−1)

∣∣pdm(1/e)(g)
)
dσ(k) ≤ ‖h‖p

p.

Therefore, ‖f × h‖p
p ≤ ‖f‖p

p ‖h‖p
p, as claimed. �

As an immediate consequence from Theorem 7.4.1 we obtain that Hp(DG)
is a Banach algebra with multiplication given by the Hadamard product. We will
characterize the ideals of this algebra.

Lemma 7.4.2. Any one-dimensional ideal J of the algebra Hp(DG) is of type J =
Cχa for some a ∈ Γ .

Proof. It is easy to see that cfa χ
a = f × χa for any f ∈ J and a ∈ Γ . Indeed,

(
f × χa

)(
(r1r2) � g

)
=
∫
G

fr1(gk
−1)χa

r2
(k) dσ(k) =

∫
G

fr1(gk)χ
a
r2

(k−1) dσ(k)

=
∫
G

fr1(gk)χ
a
r2

(k) dσ(k) = r
|a|
2

∫
G

fr1(k)χ
a(kg−1) dσ(k)

= r
|a|
2 χ

a(g−1)
∫
G

fr1(k)χ
a(k) dσ(k) = r

|a|
2 χ

a(g)
∫
G

fr1(k)χ
a(k) dσ(k)

= r
|a|
2 χ

a(g) cfr1
a = r

|a|
1 r

|a|
2 χ

a(g) cfa(r1) = (r1r2)|a|χa(g) cfa = χa
(
(r1r2) � g

)
cfa .

Hence, f × χa = cfa χ
a, as claimed. It follows that cfa χ

a for any f ∈ J and a ∈ Γ ,
and therefore, any finite linear combination of type

∑
f ∈ J
a ∈ Γ

cfa χ
a belongs to J . Since

dim (J) = 1, there is an a ∈ Γ such that cfb = 0 for all b ∈ Γ \ {a} and all f ∈ J .
Consequently, J = Cχa. �

Let J be a closed ideal of the algebra Hp(DG). Recall that the hull of J is
the set hull (J) of all a ∈ Γ , such that cfa = 0 for every f ∈ J .

Theorem 7.4.3. The mapping J �−→ hull (J) is a bijection between the family of
weakly closed ideals of the algebra Hp(DG) and the family of subsets of the dual
group Γ .
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Proof. Suppose that J is a weakly closed ideal of Hp(DG). As we saw in Lemma
7.4.2, if a �∈ hull (J), then Cχa ⊂ J . Hence, the set I =

{
f ∈ Hp(DG) : sp (f)∩

hull (J) = Ø} is contained in J . Hence the weak closure [I]w of I in Hp(DG) also is
contained in J . Since any function f ∈ J ⊂ Hp(DG) can be approximated weakly
by linear combinations p of characters of G with sp (p) ⊂ sp (f), we obtain that
[I]w = J . Hence, the mapping J �−→ hull (J) is bijective. Conversely, let K ⊂ Γ ,
and IK =

{
f ∈ Hp(DG) : sp (f)∩K = Ø

}
. One can easily check that in this case

the ideal IK is weakly closed, and hull (IK) = K. �

Note that since the convolution of two functions in Lp(G, σ) belongs to C(G),
Hadamard’s product of functions in Hp(DG) is in Hc(DG).

Theorem 7.4.4. The space Hp
c(DG) is the minimal closed ideal in the algebra

Hp(DG) with empty hull, which contains Hc(DG).

Proof. From Hc(DG) ⊂ Hp(DG) we see that Hp
c (DG) is a closed ideal in Hp(DG).

It is obvious that Hp
c (DG) has an empty hull, and that Hp

c(DG) is the minimal
closed ideal of Hp(DG) that contains Hc(DG). �

As an immediate consequence from Theorems 7.4.3 and 7.4.4 we obtain the
following.

Corollary 7.4.5. Let M be a closed maximal ideal of the algebra Hp(DG). Then
either there is an element a ∈ Γ for which M =

{
f ∈ Hp(DG) : cfa = 0

}
, or, M is

a closed hyperspace in Hp(DG) that contains H(DG).

We recall that, given a semigroup S ⊂ Γ , Hp
S(DG) ∼= Lp,q

S (G) =
{
f ∈

Lp,q(G) : sp (f) ∈ S
}
. Since the space Hp

S(DG) is an ideal in the algebra Hp(DG),
then any ideal of Hp

S(DG) is also an ideal in Hp(DG). Therefore, the problem for
characterizing ideals in Hp

S(DG) can be reduced to characterizing these ideals in
Hp(DG), whose hull contains the set Γ \ S.

7.5 Fatou type theorems for families of harmonic
measures on groups

Fatou’s theorem on radial limits of harmonic functions in D is part of measure
theory, rather than of function theory. This is remarkably evident in the case
p = 1, when the theorem of Fatou is expressed entirely in terms of measures.

Definition 7.5.1. A set of Borel measures µ̃ =
{
µ(r)

}
r∈(0,1)

is said to be a harmonic

family of measures on G, if µ(r1) = µ(r2) � m(r1/r2) for any 0 < r1 < r2 < 1. The
space of all harmonic families of measures on G will be denoted by MH(G).

Clearly, MH(G) is a linear space. Any harmonic family µ̃ can be interpreted
as a measure-valued map µ̃ : (0, 1) −→M(G) : r �−→ µ(r).
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Let µ ∈M(G) be a Borel measure on G. The family µ̃ = {µ � mr}r∈(0,1) is a
standard example of a harmonic family of measures on G. Indeed, since mr1r2 =
mr1 � mr2 , we have µ � mr1 = µ � mr2 � m(r1/r2) = µr2 � m(r1/r2).

Lemma 7.5.2. If µ̃ ∈ MH(G) is a harmonic family of measures on the group G,
then

(a) µ̃ : r �−→ µ(r) is a continuous mapping from (0, 1) to M(G), and

(b) ‖µ(r1)‖ ≤ ‖µ(r2)‖ whenever r1 < r2.

Proof. Without loss of generality we can assume that µ(r) = µ0 � mr for some
µ0 ∈ M(G). If this is not the case, we can replace, right from the beginning, the
given harmonic family by ν̃ = {ν(r)}r∈(0,1), where r0 is a fixed number in (0, 1),
and ν(r) = µ(r0) � mr = µ(r0r). If r′ −→ r, then

lim
r′→r

∥∥µ(r′) − µ(r)
∥∥ ≤ ‖µ0‖ lim

r′→r
‖m′

r −mr‖.

Since L1- lim
r′→r

(dmr′/dmr) = 1 (cf. Lemma 7.2.11), we have that mr = lim
r′→r

mr′ ,

and therefore, lim
r′→r

‖m′
r −mr‖ = 0. This proves the first part of the statement.

The second part is obvious. �

We recall that given an f ∈ C(G), the function f̃(r�g) = (f � mr)(g) = fr(g)
is continuous on DG and harmonic on DG (e.g. Lemma 7.2.11). Consider the family
{µf

r}r∈(0,1) ∈MH(G), where dµf = f � dσ, thus dµf
r = dµf � dmr = (f � dσ)� dmr.

Hence, dµf
r (g) = (f � dmr) � dσ(g) = f̃(r � g) dσ(g). Consequently, the family

{µf
r}r∈(0,1) is uniquely defined by the harmonic extension f̃ of f . Note that the

mapping r �−→ µf
r , defined on (0, 1), can be extended naturally as a continuous

mapping from [0, 1] to M(G).

Lemma 7.5.3. Let f ∼
∑
a∈Γ

cfaχ
a be the Fourier series expansion of a function f ∈

L1(G, σ). For any r ∈ [0, 1] there exists a function fr ∈ L1(G, σ) such that

(a) fr ∼
∑
a∈Γ

cfaχ
ar|a|, and

(b) r �−→ fr is a continuous map from [0, 1] to L1(G, σ).

Proof. If {fn}∞n=1 is a sequence of continuous functions on G which converges to
f in the L1(G, σ)-norm, then µf = lim

n→∞
µfn , where dµfn = fn dσ, and dµf =

f dσ. Therefore, the harmonic family of measures µ̃n =
{
(fn)r dσ

}
r∈(0,1)

can be
extended to a continuous map from [0, 1] into M(G). By Theorem 7.3.3(b) the
sequence of measures

{
µ

(r)
n

}
n

=
{
µ(fn)r

}
n

converges to a measure µ(r) as n −→∞.
Hence, the sequence (fn)r converges to a function fr ∈ L1(G, σ) uniformly on [0, 1].
Therefore, the sequence

{
(fn)r : n ∈ N, r ∈ [0, 1]

}∞
n=1

⊂ C
(
[0, 1], C(G)

)
converges
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to the continuous function r �−→ fr in C
(
[0, 1], L1(G, σ)

)
. Since (fn)1 = fn −→ f ,

the Fourier series of (fn)1 converges coefficient-wise to the Fourier series of f . Note
that f0 = f(0) = cf0 . Consequently, the Fourier series of fr is

∑
cfaχar

|a|. �

Corollary 7.5.4. Let µ̃ = {µ(r)}r∈(0,1) be a harmonic family of measures on G,
such that dµ(r0) = dµf = f dσ for some f ∈ L1(G, σ) and r0 ∈ (0, 1). Then the
map µ̃ : (0, 1) �−→M(G) can be extended to a continuous map µ̃′ : [0, 1] �−→M(G).

Definition 7.5.5. Let p ≥ 1. A harmonic family of measures µ̃ = {µ(r)}r∈(0,1) on
G is called Lp-harmonic, if:

(a) dµ(r) = dµfr = fr dσ for some fr ∈ Lp(G, σ) for every r ∈ (0, 1).

(b) sup
0<r<1

‖fr‖p <∞.

We denote by Mp
H(G) the space of Lp-harmonic families of measures on G.

The properties of the spaces Mp
H(G) resemble very much the properties of

the spaces Lp(G, σ).

Theorem 7.5.6 (Fatou’s theorem for the space Mp
H(G)). Let µ̃ =

{
µ(r)

}
r∈(0,1)

be
an Lp-harmonic family of measures on G. Then

(a) If 1 < p ≤ ∞, there exists a function f ∈ Lp(G, σ) such that µ(r) = µf � mr,
where dµf = f dσ, and the map µ̃ : (0, 1) �−→ M(G) can be extended to a
continuous map µ̃′ : [0, 1] �−→M(G).

(b) If p = 1, there exists a µ0 ∈M(G) such that µ(r) = µ0 � mr.

The proof makes use of Lemma 7.5.3, and in general follows the lines of
proof of the classical Fatou theorem on radial limits of harmonic functions on D
(cf. [Hof], p. 55).

A measure µ on G is called an analytic measure (or, Γ+-measure), if sp (µ) ⊂
Γ+. The class of all analytic measures on G will be denoted by MΓ+(G). If Γ is
isomorphic to Z, then G ∼= T, and any measure inMZ+(T) is absolutely continuous
with respect to the Haar measure σ on G. According to Riesz’s representation
theorem, its Radon-Nikodym derivative belongs to the Hardy space H1. If Γ is
not isomorphic to Z however, there are analytic measures on G that are singular
with respect to σ.

Theorem 7.5.7. Let µ ∈ MΓ+(G) be a regular Borel measure on G, such that
µ� mr is absolutely continuous with respect to the Haar measure σ on G for some
r ∈ (0, 1). Then there exists a function f ∈ L1(G, σ) such that sp (f) ⊂ Γ+ and
dµ = dµf = f dσ.

For the proof we need several properties of Γ+-analytic measures on G. With-
out loss of generality we can assume that 2π ∈ Γ . Let K = Ker (χ2π) =

{
g ∈

G : χ2π(g) = 1
}
. Given a t ∈ R, choose gt ∈ G so that χa(gt) = eiat for each
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a ∈ Γ . The map t �−→ gt is an imbedding of the group R into G. This map gen-
erates a homomorphism π : K ×R −→ G, defined as π(g, t) = g gt. We recall that
the kernel of π is the set Ker (π) =

{
(gn,−n)

}∞
n=1

(cf. Section 3.1). Clearly, the
set K × [0, 1) is a fundamental domain of π, and therefore we can identify the
group G with the set K × [0, 1).

Denote by M̃(K × R) the set of locally finite measures on K × R which are
invariant with respect to shifts by elements in Ker (π). Note that the restriction
of the space M̃(K × R) on the set K × [0, 1) coincides with the space M(G). In
particular, if σK is the Haar measure on the group K, then the restriction of the
measure dσK × dt on K × [0, 1) is the Haar measure σ.

Let H1 be the Hardy space on the unit circle T. The fractional linear trans-

formation w(z) =
i− z
i+ z

maps R onto T\{1}. Every function in the space H1◦w =

{f ◦ w : f ∈ H1} can be extended as an analytic function in the upper half-plane
C+.

Let M̃1(K×R) be the space of measures on K×R of type f(g, t)
(
dν(g)×dt

)
,

where:

(a) ν is a probability measure on K.

(b) f(g, t) ∈ L1
(
dν(g)× dt

1 + t2
)
.

(c) For ν-almost all g ∈ K the function t �−→ f(g, t) belongs to H1 ◦ w.

(d) The measure f(g, t) dν(g) belongs to M̃(K × R).

(e)
∣∣f(g, t)∣∣ (dν(g)×dt) and dν(g)×dt are mutually absolutely continuous mea-
sures.

The proof of the next lemma is straightforward (cf. [G10], Theorem 3.2).

Lemma 7.5.8. The restriction of the space M̃1(K×R) on K× [0, 1] is isometrically
isomorphic to MΓ+(G).

Lemma 7.5.9. For any µ ∈ MΓ+(G), let dµ′ = f(g, t)
(
dν(g)× dt

)
be the measure

in M̃1(K × R), for which µ′
∣∣
K×[0,1]

= µ, where f is as in (b) from the above. If

µ(r) = µ � mr, then
(
d(µ′)(r)

)
(g, t) = fr(g, t)

(
dν(g) × dt

)
, where

fr(g, t) =
1
π

∫
R

f(g, x+ t)
yr dx

y2
r + x2

, with yr = − ln r.
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Proof. Observe that linear combinations of the measures dµχa

= χadσ, a ∈ Γ+,
are weak∗-dense in MΓ+(G). Since the convolution operator preserves weak∗-
convergence, it suffices to prove the lemma only for measures of type dµχa

=
χadσ, a ∈ Γ+. Note that d(µχa

)′(g, t) = χa(g) eiatr|a|
(
dσK(g)×dt

)
∈ M̃1(K×R)

is the corresponding measure to dµχa

on K × R. For every r ∈ (0, 1) the cor-
responding measure to d(µχa

)(r) = dµχa × dmr = χar|a|dσ is ,
(
d(µχa

)′
)
(g) =

χa(g) eiatr|a|
(
dσK(g)× dt

)
. Hence,

eiatr|a| =
1
π

∫
R

eia(t+ x)
yr dx

y2
r + x2

,

which completes the proof. �

Note that for any µ ∈ MΓ+(G) we have
∫
G

χadµ = 0, a ∈ Γ+ \ {0}, i.e.

the measures µ ∈ MΓ+(G) are orthogonal to the ideal Jω of the G-disc algebra
AΓ+ , generated by characters χa, a ∈ Γ+ \ {0}. By the Lebesgue decomposition
theorem, the measure µ can be expressed as µ = µf + µs with µf , µs ∈ MΓ+(G),
where dµf = f dσ is the absolutely continuous component, and µs is the singular
component of µ with respect to σ (e.g. [G10]).

Proof of Theorem 7.5.7. It is enough to show that if a measure µ ∈ MΓ+(G) is
singular with respect to σ, and µ(r) is absolutely continuous with respect to σ for
some r ∈ (0, 1), then µ = 0. If it were, the corresponding measure µ′ ∈ M̃1(K×R)
would have the form dµ′(g, t) = f(g, t)

(
dν(g)× dt

)
, where ν is a singular measure

with respect to the Haar measure σK of K. For any r ∈ (0, 1) we have also
d(µ′)(r)(g, t) = fr(g, t)

(
dν(g) × dt

)
. Hence the measure (µ′)(r)

∣∣
K×[0,1]

is singular
with respect to σ, in contradiction with the definition of the spaceM1(K×R). �

Definition 7.5.10. A harmonic family of measures on G is said to be a harmonic
family of analytic measures on G, if µ̃ = {µ(r)}r∈(0,1), where µ(r) are analytic
measures on G for any r ∈ (0, 1). We denote by Mp

H,Γ+
(G) the space Lp-harmonic

Γ+-measure families on G.

Theorems 7.5.6 and 7.5.7 imply the following

Corollary 7.5.11.. For any µ ∈ Mp
H,Γ+

(G), p ≥ 1, there exists a measure µ0 ∈
MΓ+(G) such that µ(r) = µ0 � mr.

7.6 Notes

Most of the results in this chapter are from [G14]. Theorem 7.1.3 [resp. 7.3.2, 7.2.3
and 7.4.1] is due to Milaszewicz [M] [resp. [M1]]. Fatou type theorems for spaces
Hp(DG) and Hp(DG), 1 < p ≤ ∞ were considered first by Hoffman [H1, H2],
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who has developed the appropriate technique utilized also in this chapter. The
boundary behavior of bounded generalized analytic functions on a G-disc were
studied also in [KT] and [T2].



Chapter 8

Shift-invariant algebras and
inductive limit algebras on
groups

Uniform algebras that can be expressed as inductive limits of standard simpler
algebras are of particular interest. For instance, some G-disc algebras are induc-
tive limits of sequences of disc algebras, connected with finite Blaschke products,
called also Blaschke inductive limit algebras. Here we show, among others, that
only G-disc algebras, and the spaces H∞(DG) with G ⊂ Q, can be expressed as
limits of countable inductive sequences of algebras of type A(D) and H∞ corre-
spondingly. We study also inductive limits of sequences of spaces of type H∞ and
prove corresponding corona theorems. Further, we establish relationships between
Bourgain algebras of coordinate algebras, and the Bourgain algebra of their in-
ductive limit, and also between H∞-spaces on D, as coordinate algebras in an
inductive sequence, and their inductive limit. While we state all results for general
shift-invariant algebras AS , they apply automatically to the particular cases of
algebras APS of almost periodic functions, and of H∞

S -algebras.

8.1 Inductive limits of H∞-algebras

Let H∞(D) be the space of bounded analytic functions in the unit disc D ⊂
C. Every f ∈ H∞(D) possesses a boundary value function f∗ on T, and the
correspondence f �−→ f∗ is an isometric isomorphism between the spaces H∞(D)
and H∞ on T (cf. Theorem 2.4.4). Suppose that I = {ik+1

k }∞k=1 is a sequence of
homomorphisms ik+1

k : H∞(D) −→ H∞(D). Consider the inductive sequence

H∞(D1) −i
2
1−→ H∞(D2) −i

3
2−→ H∞(D3) −i

4
3−→ · · · (8.1)
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of algebras H∞(Dk) ∼= H∞(D). Any adjoint mapping (ik+1
k )

∗
: Mk ←− Mk+1

maps the maximal ideal space of H∞(Dk+1) into the maximal ideal space of
H∞(Dk). The maximal ideal space of the limit algebra [lim

−→

{
H∞(Dk), ik+1

k

}
k∈N

]
is the limit MI of the inverse sequence

M1 ←−(i
2
1)

∗
− M2 ←−(i

3
2)

∗
− M3 ←−(i

4
3)

∗
− M4 ←−(i

5
4)

∗
− · · · ←−− MI .

We recall that, according to Carleson’s D-corona theorem ([C]), the open unit disc
D is a dense subset of every Mk. In general, the mappings (ik+1

k )
∗

do not neces-
sarily map the open disc D onto itself. However, the most interesting situations
arise when they do. In this section we will assume that the mappings (ik+1

k )
∗

are
inner non-constant functions on D, and hence they map D onto itself.

Example 8.1.1. Consider the inverse sequence {Dk+1, τ
k+1
k }k∈N, where Dk = D,

and τk+1
k (z) = zdk on Dk. By Example 1.3.7, the inverse limit lim

←−
{Dk+1, τ

k+1
k }k∈N

is a compact set, containing the compact abelian group GΛ = lim
←−

{Tk+1, z
dk}k∈N

and the open set DΛ = lim
←−

{Dk+1, τ
k+1
k }k∈N from (1.16) and (1.17). In fact, the set

lim
←−

{Dk+1, τ
k+1
k }k∈N coincides with the GΛ-disc DGΛ =

(
[0, 1]×GΛ

)
/
(
{0}×GΛ

)
over the group GΛ = Γ̂Λ. The connecting homomorphisms of the adjoint inductive
sequence

{
H∞(Dk), ik+1

k

}∞
1

of algebras H∞(Dk) ∼= H∞(D) are the compositions
ik+1
k = (τk+1

k )
∗
: H∞(Dk) −→ H∞(Dk+1) : ik+1

k (f) = f ◦ τk+1
k , i.e.

(
ik+1
k (f)

)
(z) =

f(zdk) for z ∈ Dk+1. Note that the elements of the component algebras H∞(Dk)
can be interpreted as continuous functions on the GΛ-disc DGΛ . The uniform
closure

H∞(DΛ) =
[
lim
−→

{
H∞(Dk), (zdk)∗; dk ∈ Λ

}
k∈N

]
of the limit of the inductive sequence

{
H∞(Dk), (zdk)∗; dk ∈ Λ

}
k∈N

in the space
Cb(DGΛ) of bounded continuous functions on DGΛ , is a commutative Banach alge-
bra of functions on DGΛ , which is an inductive limit algebra (cf. Definition 1.3.5).

Example 8.1.2. Let B = {Bk}∞k=1 be a sequence of finite Blaschke products Bk :
D −→ D, i.e.

Bk(z) = eiθk

nk∏
l=1

( z − z(k)
l

1− z(k)
l z

)
for some z

(k)
l ∈ D.

Consider the inductive sequence

H∞(D1) −i
2
1−→ H∞(D2) −i

3
2−→ H∞(D3) −i

4
3−→ · · · , (8.2)

of algebras H∞(D), where the connecting homomorphisms ik+1
k : H∞(Dk) −→

H∞(Dk+1) are compositions by the Blaschke products Bk, namely, ik+1
k = B∗

k, so
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that ik+1
k (f) = f ◦ Bk for every k ∈ N. Denote by DB = lim

←−
{Dk+1, Bk}k∈N the

limit of the inverse sequence {Dk+1, Bk}∞k=1. The uniform closure

H∞(DB) =
[
lim
−→

{
H∞(Dk), B∗

k

}
k∈N

]
in Cb(DB) of the limit of the inductive system

{
H∞(Dk), B∗

k

}∞
k=1

, is a commuta-
tive Banach algebra of functions on DB, which is an inductive limit algebra.

Let Λ = {dk}∞k=1 be the sequence of orders of Blaschke products {Bk}∞k=1 in
Example 8.1.2, and let ΓΛ ⊂ Q be the group generated by the numbers 1/mk, k =

0, 1, 2, . . . , where mk =
k∏

l=1

dl, m0 = 1. Denote by Tk the standard dk-sheeted

lifting of the unit circle T to the Riemann surface Rdk
of the function z1/dk .

Clearly Tk
∼= T, and the diagram

Tk

eBk←− Tk+1

ψk ↓ ψk+1 ↓
T

Bk←− T

is commutative for every k = 0, 1, 2, . . . , where ψk is the natural covering mapping
ψk : Tk −→ T. Therefore, the infinite diagram

T1

eB1←− T2

eB2←− T3

eB3←− · · ·
ψ1 ↓ ψ2 ↓ ψ3 ↓

T1
B1←− T2

B2←− T3
B3←− · · ·

is commutative, and hence the inverse sequence of circles T

T1 ←−B1− T2 ←−B2− T3 ←−B3− T4 ←−B4− · · · , (8.3)

where B̃k is the natural lifting of Bk on Tk+1 (cf. Section 1.3), is isomorphic to
the inverse sequence of sets Tk ⊂ Rdk

T1 ←−
eB1− T2 ←−

eB2− T3 ←−
eB3− T4 ←−

eB4− · · · . (8.4)

In particular, if in Example 8.1.2 we take Bk(z) = τk+1
k (z) = zdk , we obtain that

the sequences
T1 ←−eτ

2
1− T2 ←−eτ

3
2− T3 ←−eτ

4
3− T4 ←−eτ

5
4− · · · , (8.5)

and
T1 ←−τ

2
1− T2 ←−τ

3
2− T3 ←−τ

4
3− T4 ←−τ

5
4− · · · ←−− GΛ (8.6)

are (topologically) isomorphic. Since on the other hand the sequences (8.4) and
(8.5) are also isomorphic, so are the sequences

T1 ←−B1− T2 ←−B2− T3 ←−B3− T4 ←−B4− · · · ←−− TB (8.7)
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and
T1 ←−τ

2
1− T2 ←−τ

3
2− T3 ←−τ

4
3− T4 ←−τ

5
4− · · · ←−− GΛ. (8.8)

Proposition 1.3.8 implies that the set TB is homeomorphic to the group GΛ.
Clearly, for the adjoint sequence we have

Z1 −cB1−→ Z2 −cB2−→ Z3 −cB3−→ · · ·−−→ ĜΛ = ΓΛ ⊂ Q. (8.9)

We have obtained the following

Lemma 8.1.3. The inverse limit TB = lim
←−

{Tk+1, Bk}k∈N in (8.7) can be equipped
with the structure of a compact abelian group isomorphic to GΛ, whose dual group
is ΓΛ = ĜΛ ⊂ Q.

Let B = {Bk}∞k=1 be a sequence of finite Blaschke products on D. The limit
DB of the inverse sequence

D1 ←−B1− D2 ←−B2− D3 ←−B3− D4 ←−B4− · · · ←−− DB

is a Hausdorff space. The limit of the inductive sequence
{
H∞(Dk), βk+1

k

}∞
1

of al-
gebras H∞(Dk), the connecting homomorphisms of which are the composition op-
erators βk+1

k = B∗
k : H∞(Dk) −→ H∞(Dk+1) :

(
βk+1

k (f)
)
(zk+1) = f

(
Bk(zk+1)

)
,

is an algebra of functions on DB whose closure

H∞(DB) =
[
lim
−→

{
H∞(Dk), βk+1

k

}
k∈N

]
in Cb(DB) is an inductive limit algebra.

We recall that a point z0 ∈ D is said to be singular for a finite Blaschke
product B, if cardB−1(z0) < ord (B).

Theorem 8.1.4. Let B = {Bk}∞k=1 be a sequence of finite Blaschke products on
the unit disc D, each one with at most one singular point z(k)

0 , and such that
Bk(z(k+1)

0 ) = z
(k)
0 . The corresponding inductive limit algebra

H∞(DB) =
[
lim
−→

{
H∞(Dk), βk+1

k

}
k∈N

]
generated by B, is isometrically isomorphic to the algebra H∞(DΛ), where Λ =
{dk}∞k=1 with dk = ordBk.

For the proof we need the following

Lemma 8.1.5. If B is a finite Blaschke product with the only singular point z0 ∈ D,
then

B(z) =
τθ(z)m +B(z0)
1 +B(z0)τθ(z)m

,

where m = ordB and τθ = eiθ
z − z0
1− z0z

for some θ, 0 ≤ θ < 2π.
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Proof. The restriction of B on D\{z0} generates a holomorphic covering from D\
{z0} onto D\

{
B(z0)

}
. The composition ϕ◦B, where ϕ(z) =

z −B(z0)
1−B(z0)z

, generates

a non-ramifiedm-sheeted holomorphic covering from D\{z0} onto D \ {0}. There
exists a biholomorphic map σ : D \ {z0} −→ D \ {0}, such that (ϕ ◦B)(z) = σ(z)m

(cf. [G13]). Clearly, σ = τθ for some θ, 0 ≤ θ < 2π, i.e. ϕ
(
B(z)

)
=
(
τθ(z)

)m.
Hence

B(z) = ϕ−1
(
τθ(z)

)m =
τθ(z)m +B(z0)
1 +B(z0)τθ(z)m

. �

Proof of Theorem 8.1.4. By Lemma 8.1.5 we see that for every Möbius transfor-
mation ϕk on D with ϕk(z(k)

0 ) = 0 there exists another Möbius transformation
ϕk+1 on D for which the diagram

D
Bk←− D

ϕk ↓ ϕk+1 ↓

D
τk+1

k (z)=zdk

←− D

is commutative. Hence, ϕk ◦ Bk = (ϕk+1)dk and ϕk(z(k)
0 ) = 0. Choose ϕ0 to be

the identity map on D. By Lemma 8.1.5 we can define inductively a sequence
{ϕk}∞k=1 of Möbius transformations on D, with adjoint isometric automorphisms
ϕ∗

k on H∞(D) such that the diagram

H∞(D)
βk+1

k =B∗
k−→ H∞(D)

ϕ∗
k ↑ ϕ∗

k+1 ↑

H∞(D)
(τk+1

k
)∗

−→ H∞(D)

is commutative. Here B∗
k ◦ ϕ∗

k = ϕ∗
k+1 ◦

(
( · )dk

)∗. Therefore, the infinite diagram

H∞(D)
β2
1−→ H∞(D)

β3
2−→ H∞(D)

β4
3−→ · · ·

ϕ∗
1 ↑ ϕ∗

2 ↑ ϕ∗
3 ↑

H∞(D)
(τ2

1 )∗−→ H∞(D)
(τ3

2 )∗−→ H∞(D)
(τ4

3 )∗−→ · · · ,

where βk+1
k = B∗

k are the composition operators on H∞(D) defined by B∗
k(f) =

f ◦Bk, is also commutative. Therefore, the inductive sequences

H∞(D) −β
2
1−→ H∞(D) −β

3
2−→ H∞(D) −β

4
3−→ · · ·−−→ H∞(DB), and

H∞(D) −(τ2
1 )∗−→ H∞(D) −(τ3

2 )∗−→ H∞(D) −(τ4
3 )∗−→ · · ·−−→ H∞(DΛ),

with τk+1
k (z) = zdk , are isomorphic. Consequently, H∞(DB) ∼= H∞(DΛ), as

claimed. �
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Corollary 8.1.6. If the Blaschke products Bk in Theorem 8.1.4 are of type Bk(z) =
zdk ϕk(z), where ϕk are Möbius transformations and dk > 1, then the algebra
H∞(DB) is isometrically isomorphic to the algebra H∞(DΛ), where Λ = { 1

dk
}∞k=1.

Corollary 8.1.7. If every Blaschke product Bk in Theorem 8.1.4 is a Möbius trans-
formation, then the algebra H∞(DB) is isometrically isomorphic to the algebra
H∞(D) ∼= H∞.

Indeed, Theorem 8.1.4 implies that H∞(DB) ∼= H∞(DΛ) with Λ={1, 1, . . .}.
Therefore, ΓΛ = Z and GΛ = T.

Let Φ = {ϕ1, ϕ2, . . . , ϕk, . . . } be a sequence of non-constant inner functions
on D. Consider the inverse sequence

D1 ←−ϕ1− D2 ←−ϕ2− D3 ←−ϕ3− D4 ←−ϕ4− · · · ←−− DΦ, (8.10)

where Dk = D. The limit lim
−→

{
H∞

k , ϕ
∗
k

}
k∈N

of the adjoint inductive sequence

H∞
1 −ϕ∗

1−→ H∞
2 −ϕ∗

2−→ H∞
3 −ϕ∗

3−→ · · ·

of algebras H∞
k = H∞(Dk) ∼= H∞(D), where ϕ∗

k, k ∈ N, are the composition
operators ϕ∗

k(f) = f ◦ ϕk on H∞, is a subalgebra of Cb(DΦ).

Definition 8.1.8. The inductive limit algebra

H∞(DΦ) =
[
lim
−→

{H∞, ϕ∗
k}k∈N

]
⊂ Cb(DΦ)

is called the algebra of Φ-hyper-analytic functions on DΦ.

Carleson’s D-corona theorem for the space H∞ on the unit circle [C] asserts

that, given f1, . . . , fk in H∞ with
k∑

j=1

|fj| ≥ σ > 0 on D, there exist functions

g1, . . . , gk in H∞ such that
k∑

j=1

fjgj = 1 on D. If ‖fj‖∞ ≤ 1, then gj can be

chosen to satisfy the estimates ‖gj‖ ≤ C(k, σ) for some constant C(k, σ) > 0.
Below we state and solve the DΦ-corona problem for the algebra H∞(DΦ), where
DΦ = lim

←−
{Dk+1, ϕk}k∈N.

Theorem 8.1.9. If f1, f2, . . . , fn are Φ-hyper-analytic functions on DΦ, for which
‖fj‖ ≤ 1, and ∣∣f1(x)∣∣+ · · ·+ ∣∣fn(x)

∣∣ ≥ δ > 0 for every x ∈ DΦ, (8.11)

then there is a constant K(n, δ) and Φ-hyper-analytic functions g1, . . . , gn on DΦ

with ‖gj‖ ≤ K(n, δ), such that the equality

f1(x) g1(x) + · · ·+ fn(x) gn(x) = 1

holds for every point x in the set DΦ.
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We observe that the adjoint mappings ϕ∗
j : H∞

j −→ H∞
j+1 are isometric iso-

morphisms. So are the mappings ιkj : H∞
j −→ H∞

k defined by ιkj = ϕ∗
j ◦ϕ∗

j+1 ◦ · · · ◦
ϕ∗

k. Because
(
ϕ∗

j (f)
)
(z) = f

(
ϕj(z)

)
whenever z ∈ Dj+1, j ∈ N and f ∈ H∞

j we
have

(
ιkj (f)

)
(z) = f

(
ϕj ◦ϕj+1◦· · ·◦ϕk)(z)

)
, whenever z ∈ Dk+1. Consequently, ev-

ery coordinate algebraH∞
j can be embedded isometrically and isomorphically into

lim
−→

{
H∞, ϕ∗

k

}
k∈N

⊂ H∞(DΦ) via the natural inclusions ιj : H∞
j −→ H∞(DΦ).

Moreover, if z∗ ∈ Dj , then f(z∗) =
(
ιj(f)

)
(x∗), where x∗ ∈ DΦ is the chain

x∗ = (z1, z2, . . . , zj , . . . ) of the spectrum (8.10) with zj = z∗ and ϕn(zn+1) = zn
for n ≥ j.

Proof. Without loss of generality we can assume that ‖fj‖ ≤ 1/2 for all fj ∈
H∞(DΦ) in (8.11) and that δ ≤ 1/2. Let C(n, δ/2) be the corresponding Carleson’s
constant and let c = max

{
1, C

(
n, δ/2

)}
. By the definition of the space H∞(DΦ)

there are integers nj ∈ N and functions f̃j ∈ H∞
nj

, such that

∥∥fj − ιnj (f̃j)
∥∥
∞ = sup

x∈DI

∣∣fj(x) −
(
ιnj (f̃j)

)
(x)

∣∣ < δ

2cn
, j = 1, . . . , n.

Replacing f̃j by ιmnj
(f̃j), we can assume from the beginning that all f̃j ∈ H∞

m for
some m ≥ nj , j = 1, 2, . . . , n. The inequality (8.11) implies that for every z∗ ∈ D
we have ∣∣f̃1(z∗)∣∣+ · · ·+ ∣∣f̃n(z∗)

∣∣ =
∣∣(ιm(f̃1)

)
(x∗)

∣∣+ · · ·+ ∣∣(ιm(f̃n)
)
(x∗)

∣∣
≥≥

n∑
j=1

∣∣fj(x∗)
∣∣− n∑

j=1

∣∣fj(x∗)−
(
ιm(f̃j)

)
(x∗)

∣∣ ≥ δ − δ

2c
≥ δ

2
> 0,

where, as before, x∗ = (z1, z2, . . . , zm, . . . ) is a chain of the spectrum (8.10) with
zm = z∗ and ϕn(zn+1) = zn for n ≥ m. Therefore, |f̃1|+ · · ·+ |f̃n| ≥ δ/2 > 0 on
D for the bounded analytic functions f̃1, . . . , f̃n on D. In addition,

‖f̃j‖∞ =
∥∥ιm(f̃j)

∥∥
∞ ≤ ‖fj‖∞ +

∥∥fj − ιm(f̃j)
∥∥
∞ ≤ ‖fj‖∞ +

δ

2cn
≤ 1.

According to Carleson’s D-corona theorem for the space H∞ there exist functions
h1, . . . , hn ∈ H

∞
with ‖hj‖∞ ≤ C

(
n, δ/2

)
≤ c such that f̃1h1 + · · ·+ f̃nhn = 1 on

D. Hence,

1 = (f̃1h1 + · · ·+ f̃nhn)(z∗) = ιm(f̃1h1 + · · ·+ f̃nhn)(x∗)

=
(
ιm(f̃1) ιm(h1) + · · ·+ ιm(f̃n) ιm(hn)

)
(x∗)

on DΦ, and
∥∥ιm(hj)

∥∥
∞ = ‖hj‖∞ ≤ c. Though the function

F = f1ιm(h1) + · · ·+ fnιm(hn) ∈ H∞(DΦ)
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is not necessarily equal to 1 on DΦ, it is invertible in H∞(DΦ). Indeed,

‖1− F‖∞ =
∥∥∥∑

j

ιm(f̃j) ιm(hj)−
∑

j

fjιm(hj)
∥∥∥
∞

≤
∑

j

∥∥ιm(f̃j)− fj

∥∥
∞
∥∥ιm(hj)

∥∥
∞ ≤ δ

2cn
c n =

δ

2
< 1.

(8.12)

Now the identity f1g1+· · ·+fngn = 1 holds onDΦ with gj = ιm(hj)/F ∈ H∞(DΦ),

j = 1, . . . n. Note that ‖F−1‖∞ ≤ 1
1− δ/2 =

2
2− δ , since |F (x)| ≥ 1− δ

2
on

DΦ according to (8.12). If K(n, δ) =
2

2− δ max
{
1, C(n, δ/2)

}
, then ‖gj‖∞ ≤∥∥ιm(hj)

∥∥
∞ ‖F

−1‖∞ ≤ 2c
2− δ =

2
2− δ max

{
1, C(n, δ/2)

}
= K(n, δ). This com-

pletes the proof. �

8.2 Blaschke inductive limits of disc algebras

Let Λ ⊂ R+ be a basis in R over the field Q of rational numbers. As we saw in
Example 1.3.6, R can be expressed as the limit

R = lim
−→

{Γ(γ,n)}(γ,n)∈J

of the inductive system {Γ(γ,n)}(γ,n)∈J of subgroups Γ(γ,n) of R isomorphic to

Zk =
k⊕

i=1

Z, defined by

Γ(γ,n) =
{
(1/n!) (m1γ1 +m2γ2 + · · ·+mkγk) : mj ∈ Z, j = 1, . . . , k

}
.

Let P(γ,n) = (Γ(γ,n))+ be the non-negative half-group

P(γ,n) =
{
(1/n!) (m1γ1 + · · ·+mkγk) ∈ Γ(γ,n) : m1γ1 + · · ·+mkγk ≥ 0)

}
of Γ(γ,n). The b(R)-disc algebraAb(R) can be expressed as an inductive limit algebra

Ab(R) =
[
lim
−→

{
AP(γ,n)(DG)

}
(γ,n)∈J

]
,

under inclusions, where AP(γ,n) is the algebra of P(γ,n)-functions on G = b(R), the
Bohr compactification of R.

Similarly, every shift-invariant algebra AS with S ⊂ R+ can be expressed as
an inductive limit of algebras AP(γ,n) of analytic P(γ,n)-functions on b(R). Note
that Γ(γ,n)

∼= Zk, where k = card (γ).

Let B be the algebra of linear combinations of functions z̃1/n, n ∈ N on the
set R∗

Log(D), considered in Example 4.2.6(c). For a fixed n ∈ N denote by A(n) the
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algebra of polynomials of z̃1/n. Clearly, B =
⋃
n∈N

A(n), and A(n) ⊂ A(m) whenever

n ≤ m. Consequently, B can be expressed as the limit of the inductive system
{A(n), ιmn }n∈N, where N is considered with the usual order, namely,

B =
⋃
n∈N

A(n) = lim
−→

{A(n), ιmn }n∈N.

Uniform algebras that can be represented as inductive limits of disc algebras
A(D) are of particular interest. Let I = {ik+1

k }∞k=1 be a sequence of homomor-
phisms ik+1

k : A(D) −→ A(D). Consider the inductive sequence

A(T1) −i
2
1−→ A(T2) −i

3
2−→ A(T3) −i

4
3−→ · · · (8.13)

of disc algebras A(Tk) = A(T) with connecting homomorphisms ik+1
k : A(Tk) −→

A(Tk+1). Every adjoint mapping (ik+1
k )

∗
: Mk ←−Mk+1 maps the maximal ideal

space Mk+1
∼= D of A(Tk+1) into the maximal ideal space Mk

∼= D of A(Tk).
Since ik+1

k (f) = f ◦ (ik+1
k )

∗ ∈ A(Tk+1) for every f ∈ A(Tk), the mapping (ik+1
k )

∗

is an analytic function preserving the unit disc. The inverse limit

D1 ←−(i
2
1)

∗
− D2 ←−(i

3
2)

∗
− D3 ←−(i

4
3)

∗
− D4 ←−(i

5
4)

∗
− · · · ←−− DI

is the maximal ideal space of the inductive limit algebra

A(DI) =
[
lim
−→

{
A(Tk), ik+1

k

}
k∈N

]
.

In general, the mappings (ik+1
k )

∗
do not necessarily map the unit circle Tk+1

onto itself. The most interesting situations, though, occur when they do, and this
is what we will assume in this section. In this case the mapping (ik+1

k )
∗

becomes
a finite Blaschke product Bk on D.

Let {Dk+1, τ
k+1
k }k∈N be the inverse sequence with Dk = D and τk+1

k (z) = zdk

on Dk. As we saw in Example 8.1.1, the limit lim
←−

{Dk+1, τ
k+1
k }k∈N of the inverse

sequence {Dk+1, τ
k+1
k }k∈N, is the GΛ-disc DGΛ = ([0, 1] × GΛ)/({0} × GΛ) over

the group GΛ = Γ̂Λ. There arises an adjoint inductive sequence
{
A(Dk), ik+1

k

}
k∈N

of algebras A(D) ∼= A(T) with connecting homomorphisms ik+1
k = (τk+1

k )∗ : A(Dk)
−→ A(Dk+1), defined by

(
ik+1
k (f)

)
(z) =

(
f(z)

)dk . The elements of the coordinate
algebras A(Dk) can be interpreted as continuous functions on GΛ. The uniform
closure

A(DGΛ) =
[
lim
−→

{
A(Dk), ik+1

k

}
k∈N

]
in C(DGΛ) of the inductive limit of the sequence

{
A(Dk), ik+1

k

}
k∈N

and the corre-
sponding restriction algebra

[
lim
−→

{
A(Tk), ik+1

k

}
k∈N

]
are isometrically isomorphic
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to the GΛ-disc algebra AΓΛ+ , i.e., to the algebra of analytic functions on the
GΛ-disc (cf. [T1]).

In a similar way, if {Kl}∞l=1 is a sequence of connected compact sets in the
complex plane C with τ l+1

l (Kl+1) = Kl for every l ∈ N, then the closure of the
inductive limit lim

−→

{
A(Kl), il+1

l

}
l∈N

in C(KΛ) is the algebra A(KΛ) of analytic

ΓΛ+-functions on the compact set KΛ = lim
←−

{Kl+1, τ
l+1
l }l∈N in the GΛ-plane

CGΛ over the group GΛ (e.g. [L1]).

Consider an inductive sequence of disc algebras

A(T1) −i
2
1−→ A(T2) −i

3
2−→ A(T3) −i

4
3−→ · · · , (8.14)

with the the natural embeddings ik+1
k : A(Tk) −→ A(Tk+1) as connecting ho-

momorphisms. Since Mik+1
k (A(Tk)) = D and ∂(ik+1

k (A(Tk))) = T, then accord-
ing to the remarks following Lemma 8.1.5, there are finite Blaschke products
Bk : D −→ D such that ik+1

k = B∗
k for every k ∈ N, i.e.

ik+1
k (f) = f ◦Bk,

where

Bk(z) = eiθk

nk∏
l=1

( z − z(k)
l

1− z(k)
l z

)
, |z(k)

l | < 1.

Let B = {Bk}∞k=1 be the sequence of finite Blaschke products corresponding
to the mappings ik+1

k , i.e. (Bk)∗(z) = ik+1
k (z). Let Λ = {dk}∞k=1 be the sequence

of orders of Blaschke products {Bk}∞k=1 and let ΓΛ ⊂ Q be the group generated

by 1/mk, k = 0, 1, 2, . . . , where mk =
k∏

l=1

dl, m0 = 1.

Consider the inverse sequence

D1 ←−B1− D2 ←−B2− D3 ←−B3− D4 ←−B4− · · · ←−− DB.

The inverse limit DB = lim
←−

{Dk+1, Bk}k∈N is a Hausdorff compact space. The

limit of the adjoint inductive sequence
{
A(Dk), βk+1

k

}∞
1

of disc algebras A(Dk),
whose connecting homomorphisms are the composition operators βk+1

k = B∗
k :

A(Dk) −→ A(Dk+1) : (βk+1
k (f))(zk+1) = f(Bk(zk+1)), is an algebra of functions

on DB.

Definition 8.2.1. The Blaschke inductive limit of disc algebras is the closure

A(DB) =
[
lim
−→

{
A(Dk), βk+1

k

}
k∈N

]
of the inductive limit algebra

[
lim
−→

{
A(Dk), bk+1

k

}
k∈N

]
in C(DB).
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Clearly, the algebra A(DB) is isometrically isomorphic to the algebra[
lim
−→

{
A(Tk), βk+1

k

}
k∈N

].

Proposition 8.2.2. Let B = {Bk}∞k=1 be a sequence of finite Blaschke products and
let

A(DB) = [lim
−→

{
A(Dk), B∗

k

}
k∈N

]
be the corresponding Blaschke inductive limit algebra. Then:

(i) A(DB) is a uniform algebra on the compact set

DB = lim
←−

{
Dk+1, Bk

}
k∈N

.

(ii) The maximal ideal space of A(DB) is DB.

(iii) A(DB) is a Dirichlet algebra.

(iv) A(DB) is a maximal algebra.

(v) The Shilov boundary of A(DB) is homeomorphically isomorphic to GΛ, and
its dual group is isomorphic to the group

ΓΛ
∼=

∞⋃
k=0

1
mk

Z ⊂ Q,

where mk =
k∏

l=1

dl, m0 = 1, and dk = ordBk.

Indeed, under our assumptions Bk maps Tk+1 onto Tk and Dk+1 onto Dk.
Since the Shilov boundary of every component algebra A(Dk) is the unit circle
Tk, and the maximal ideal space is the disc Dk, the properties (i), (ii), (iii) follow
from Proposition 1.3.4, while (iv) follows from the next proposition.

Proposition 8.2.3. The inductive limit of maximal algebras is a maximal algebra.

Proof. Let A =
[
lim
−→

{Aσ, iτσ}σ∈Σ

]
, where Aσ are maximal algebras. The maximal

ideal space ofA is the inverse limitMA = lim
←−

{
Mσ, (iστ )∗

}
σ∈Σ

, whereMσ are the

maximal ideal spaces of the algebras Aσ. If h ∈ C(MA)\A, then the algebra A[h]
generated by A and h coincides with

[
lim
−→

{
Aσ[hσ], (iτσ)∗∗

}
σ∈Σ

]
. Since iστ (Aσ) ⊂

Aτ and h �∈ A, it follows that hσ �∈ Aσ for every σ ∈ Σ. By the maximality of Aσ

we have that Aσ[hσ] = C(Mσ), σ ∈ Σ. Hence,

A[h] =
[
lim
−→

{
Aσ[g], (iτσ)∗∗

}
σ∈Σ

]
=
[
lim
−→

{
C(Mσ), (iτσ)∗∗

}
σ∈Σ

]
= C(MA).

Consequently, A is a maximal algebra, as claimed. �
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Theorem 8.2.4. Let G be a compact abelian group with dual group Ĝ isomorphic
to a subgroup Γ of R. The G-disc algebra AΓ+ is a Blaschke inductive limit of
disc algebras if and only if Γ is isomorphic to some subgroup of Q.

Proof. The first part of the theorem is proven already in Proposition 8.2.2. Let
Ĝ ∼= Γ ⊂ Q and let {ai}∞i=1 be an enumeration of Γ . Without loss of generality
we can assume that a1 = 1. Let Γ (1) = Z, Γ (2) = Z + a2Z, Γ (3) = Z + a2Z + a3Z,
etc. Since Z ⊂ Γ (k) and Γ (k) is isomorphic to Z, there is an mk ∈ N, such
that Γ (k) = (1/mk) Z. By Γ k ⊂ Γ k+1 we have that dk+1 = (mk+1/mk) ∈ Z. The

inclusion ik+1
k : Γ (k) ↪→ Γ (k+1) generates a mapping ĩk+1

k : Z −→ Z such that

ĩk+1
k (1) = dk+1, and therefore ĩk+1

k (n) = dk+1n, n ∈ Z(k). Clearly, the group

Γ ∼=
∞⋃

k=1

(1/mk) Z = lim
−→

{Γ (k), ĩk+1
k }k∈N ⊂ Q

is generated by the numbers 1/mk, k ∈ N. As we saw at the beginning of this
section, the Blaschke inductive limit algebra A(DΛ) corresponding to the sequence
Λ = {dk}∞1 coincides with the ΓΛ-disc algebra AΓΛ+ . �

Similarly to the case of inductive limits of algebrasH∞(D) ∼= H∞, we obtain
the following analogues to Theorem 8.1.4 and its corollaries.

Theorem 8.2.5. If B = {Bk}∞k=1 is a sequence of finite Blaschke products on D,
each one with at most one singular point z(k)

0 and such that Bk

(
z
(k+1)
0

)
= z

(k)
0 ,

then the algebra A(DB) is isometrically isomorphic to the algebra A(ΓΛ)+
with

Λ = {dk}∞k=1, where dk = ordBk.

Corollary 8.2.6. If every Blaschke product Bk in Theorem 8.2.5 is a Möbius trans-
formation, then the algebra A(DB) is isometrically isomorphic to the disc algebra
AZ+ = A(T).

8.3 Blaschke inductive limit algebras of annulus type

Let D[r,1] be the annulus region D[r,1] =
{
z ∈ C : r ≤ |z| ≤ 1

}
, with topological

boundary bD[r,1] = Tr ∪T =
{
z ∈ C : |z| = r

}
∪
{
|z| = 1

}
. Denote by A

(
D[r,1]

)
the

uniform algebra of continuous functions on D[r,1], analytic in its interior. Note that
A
(
D[r,1]

)
coincides with R

(
D[r,1]

)
, the algebra of uniform limits of rational func-

tions on D[r,1]. By a well-known result of Bishop (e.g. [S4]), the Shilov boundary of
A
(
D[r,1]

)
is the topological boundary bD[r,1] = Tr ∪ T. The restriction of A

(
D[r,1]

)
on bD[r,1] is a maximal algebra, such that codim

(
Re (A(D[r,1])

∣∣
bD[r,1])

)
= 1. These

results can be extended to the case of analytic Γ+-functions on compact groups
(cf. [G9]).

Let G be a solenoidal group, i.e. a compact abelian group such that its dual
group Γ is isomorphic to a dense subgroup of R. Let D[r,1]

G = [r, 1] �G, 0 < r < 1,
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be the G-annulus, and let
(
D[r,1]

G

)
be the uniform algebra on D[r,1]

G , generated by
the functions χ̂a, a ∈ Γ . Then:

(a) D[r,1]
G is the maximal ideal space of R

(
D[r,1]

G

)
.

(b) bD[r,1]
G =

(
{r} ×G

)
∪
(
{1} ×G

)
is the Shilov boundary of R

(
D[r,1]

G

)
.

(c) R
(
D[r,1]

G

)
is a maximal algebra with codim

(
Re (R(D[r,1]

G )
∣∣
bD

[r,1]
G

)
)

= 1.

Consequently, R(D[r,1]
G ) coincides with A(D[r,1]

G ), the Blaschke inductive limit al-
gebra of annulus type, consisting of continuous functions on D[r,1]

G that are locally
approximable by analytic functions in D(r,1)

G .

Let Λ = {dk}∞k=1 be a sequence of natural numbers, τk+1
k (z) = zdk , and

r ∈ (0, 1] be a fixed number. Consider the sets

Ek = D
[r1/mk ,1]

=
{
z ∈ D : r1/mk ≤ |z| ≤ 1

}
= (τ2

1 ◦ τ3
2 ◦ · · · ◦ τk

k−1)
−1
(
D

[r,1])
,

where mk =
k∏

l=1

dl, m0 = 1, and E1 = D[r,1]. There arises an inverse sequence

D[r,1] ←−τ
2
1− E2 ←−τ

3
2− E3 ←−τ

4
3− E4 ←−τ

5
4− · · ·

of compact subsets of D. Consider the adjoint inductive sequence

A
(
D[r,1]

)
−i

2
1−→ A(E2) −i

3
2−→ A(E3) −i

4
3−→ · · · , (8.15)

where the embeddings ik+1
k : A(Ek) −→ A(Ek+1) are the adjoints to zdk composi-

tion operators, namely, (ik+1
k ◦f)(z) = f(zdk). Let GΛ denote the compact abelian

group whose dual group ΓΛ = ĜΛ is the subgroup of Q generated by the set Λ.

Lemma 8.3.1. The uniform algebra
[
lim
−→

{
A(Ek), ik+1

k

}
k∈N

]
is isometrically iso-

morphic to A
(
D[r,1]

G

)
, the Blaschke inductive limit algebra of annulus type.

Proof. Let ak = 1/mk, where, as before, mk =
k∏

l=1

dl, m0 = 1. Consider the

algebras Ak
(
D[r,1]

G

)
=
{
g ◦ χ̂ak : g ∈ A(Ek)

}
⊂ A

(
D[r,1]

G

)
, k = 1, 2, . . . , where

χ̂ak ∈ Γ+. Clearly, Ak
(
D[r,1]

G

)
⊂ Ak+1

(
D[r,1]

G

)
and A

(
D[r,1]

G

)
=
[ ∞⋃
k=0

Ak
(
D[r,1]

G

)]
. We

thus have an inductive sequence

A1
(
D[r,1]

G

)
−j

2
1↪→ A2

(
D[r,1]

G

)
−j

3
2↪→ · · · ↪→ A

(
D[r,1]

G

)
, (8.16)

where jk+1
k is the natural inclusion of Ak

(
D[r,1]

G

)
into Ak+1

(
D[r,1]

G

)
. We claim that

the inductive sequences (8.15) and (8.16) are isomorphic. Indeed, χ̂ak maps D[r,1]
G
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onto Ek, and the mapping ϕk defined by ϕk(f ◦ χ̂ak) = f maps Ak
(
D[r,1]

G

)
isomet-

rically and isomorphically onto A(Ek). In addition, ik+1
k ◦ ϕk = ϕk+1

∣∣
Ak

(
D

[r,1]
G

) =

ϕk+1 ◦ jk+1
k , i.e. the diagram

Ak
(
D[r,1]

G

) jk+1
k−→ Ak+1

(
D[r,1]

G

)
ϕk ↓ ϕk+1 ↓

A(Ek)
ik+1
k−→ A(Ek+1)

is commutative. Therefore the infinite diagram

A1
(
D[r,1]

G

) j2
1−→ A2

(
D[r,1]

G

) j2
2−→ A3

(
D[r,1]

G

) j3
2−→ · · ·

ϕ1 ↓ ϕ2 ↓ ϕ3 ↓
A(E1)

i21−→ A(E2)
i32−→ A(E3)

i43−→ · · ·

is commutative too, and hence the inductive sequences (8.15) and (8.16) are
isomorphic, as claimed. Consequently, A

(
D[r,1]

G

) ∼= [
lim
−→

{
A(Ek), ik+1

k

}
k∈N

]
, as

claimed. �
Let B = {Bk}∞k=1 be a sequence of finite Blaschke products on D and let

dk = ordBk. Define inductively a sequence of sets Fk as follows: F1 = D[r,1],

Fn+1 = B−1
n (Fn) = {z ∈ D : Bn(z) ∈ Fn} = (B1 ◦B2 ◦ · · · ◦Bn)−1(D[r,1])

for n ≥ 0. Consider the adjoint sequences

D[r,1] ←−B1− F2 ←−B2− F3 ←−B3− · · · ←−− D[r,1]
B ⊂ DB , (8.17)

where DB = lim
←−

{Dk+1, Bk}k∈N, and

A
(
D[r,1]

)
−β

2
1−→ A(F2) −β

3
2−→ A(F3) −β

4
3−→ · · · , (8.18)

where βk+1
k = B∗

k, i.e. (βk+1
k ◦ f)(z) = f

(
Bk(z)

)
.

Theorem 8.3.2. If the Blaschke products Bn do not have singular points on the
sets Fn for any n ∈ N, then D[r,1]

B
∼= D[r,1]

G , and the algebra

A
(
D[r,1]

B

)
=
[
lim
−→

{
A(Fn), B∗

n

}
n∈N

]
is isometrically isomorphic to A

(
D[r,1]

G

)
, the Blaschke inductive limit algebra of

annulus type.

For the proof we need a version of a well-known result on Riemann surfaces,
which we provide here with a short proof.
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Lemma 8.3.3. Suppose that the dk-sheeted holomorphic covering Bk : Fk+1 −→ Fk

does not have singular points, and there exists a biholomorphic mapping ψk from
Fk onto Ek. Then there exists a biholomorphic mapping ψk+1 : Fk+1 −→ Ek+1

such that the diagram

Fk
Bk←− Fk+1

ψk ↓ ψk+1 ↓
Ek

zdk←− Ek+1

is commutative, i.e. ψk ◦Bk = (ψk+1)dk , where dk = ordBk.

Proof. The function zdk generates a bijection z̃dk from Ek+1 onto the dk-sheeted
covering Ẽk over Ek. Likewise, the map ψk◦Bk : Fk+1 −→ Ek generates a bijection
(ψk ◦Bk)˜ from Fk+1 to Ẽk. Therefore the map ψk+1 = (z̃dk)−1 ◦ (ψk ◦Bk)˜ is a
well-defined bijection from Fk+1 onto Ek+1, so that the diagram

Fk+1

ψk+1 ↓ ↘(ψk◦Bk)e

Ek+1
ezdk−→ Ẽk

is commutative. Since both component mappings of ψk+1 are locally holomorphic,
so is ψk+1. �

Proof of Theorem 8.3.2. Let ψ1 be the identity map on D[r,1] = E1 = F1. By
Lemma 8.3.3 we can define inductively biholomorphic mappings ψk : Fk −→ Ek

for every k ∈ N, such that ψk ◦Bk = (ψk+1)dk . Consequently,

D[r,1]
G = lim

←−
{En+1, z

dn}n∈N
∼= lim

←−
{Fn+1, Bn}n∈N = D[r,1]

B ⊂ DB .

The adjoint mapping ψ∗
k maps the algebra A(Ek) isometrically and isomorphically

onto A(Fk). Hence the infinite diagram

A(E1)
(zd1)∗−→ A(E2)

(zd2 )∗−→ A(E3)
(zd3)∗−→ · · ·

ψ∗
1 ↓ ψ∗

2 ↓ ψ∗
3 ↓

A(F1)
β2
1−→ A(F2)

β3
2−→ A(F3)

β4
3−→ · · ·

is commutative, and therefore, the inductive sequences (8.15) and (8.18) are iso-
morphic. Consequently,

A
(
D[r,1]

B

)
=
[
lim
−→

{
A(Fn), βn+1

n

}
n∈N

]
=
[
lim
−→

{
A(En), in+1

n

}
n∈N

] ∼= A
(
D[r,1]

G

)
.

�

The following properties of the algebra A
(
D[r,1]

B

)
follow directly from Theo-

rem 8.3.2, Proposition 8.2.3, and the results in [G12].
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(a) The maximal ideal space of A
(
D[r,1]

B

)
is homeomorphic to the G-annulus

D[r,1]
G .

(b) The Shilov boundary of A
(
D[r,1]

B

)
is the set bD[r,1]

G = r �G ∪ 1 �G.

(c) A
(
D[r,1]

B

)
is a maximal algebra on its Shilov boundary.

(d) codim
(
Re (A(D[r,1]

B )
∣∣
bD

[r,1]
G

)
)

= 1.

Let F be a closed subset of the unit disc D. Denote by A(F ) the algebra of all
continuous functions on F that are analytic in the interior of F . Recall that A(F )
coincides with the uniform closure on F of the restrictions of Gelfand transforms
of the elements in A(T) on F . i.e. A(F ) = Â(D)|F .

Let B = {B1, B2, . . . , Bn, . . . } be a sequence of finite Blaschke products on
D, and let 0 < r < 1. Define inductively a sequence of compact sets Dn in D, as
follows. Dn+1 = B−1

n (Dn), for n ≥ 1, D1 = D[0,r] = D(r) =
{
z ∈ D : |z| ≤ r

}
.

There arises an inverse sequence

D(r) ←−B1− D2 ←−B2− D3 ←−B3− D4 ←−B4− · · · ←−−DB(r) (8.19)

of subsets of D. The inductive limit

A
(
DB(r)

)
=
[
lim
−→

{
A(Dn), B∗

n

}
n∈N

]
(8.20)

is a uniform algebra on its maximal ideal space

lim
←−

{Dn, Bn−1}k∈N = DB(r) ⊂ DB .

Any Blaschke product B(z) = eiθ
n∏

k=1

( z − zk
1− zkz

)
, |zk| < 1, of order n gener-

ates an n-sheeted covering over each simply connected domain V ⊂ D which is
free of singular points of B. Thus the set F = B−1(V ) ⊂ D is biholomorphic with
a disjoint collection of n copies of V , i.e. F ∼= V × Fn, where Fn = {1, 2, . . . , n},
and the algebra A(F ) is isomorphic to a subalgebra of the algebra

A(n)(V ) = A(V )⊕A(V )⊕ · · · ⊕A(V ) ∼= A(V × Fn),

where A(V × Fn) is the algebra of all continuous functions f(z, k) on V × Fn

such that f( · , k) ∈ A(V ), k = 1, 2, . . . , n. Clearly, V × Fn is the set of maximal
ideals of algebra A(F ), and A(F )|V ×{k}

∼= A(V ) for every k = 1, 2, . . . , n. Hence
A(F ) ⊂ An(V ) = A(V ×Fn) ⊂ C(V ×Fn). The space C(Fn) also can be considered
as a subalgebra of An(V ) consisting of all functions f ∈ An(V ) that are constant
on the sets V × {k}, k ∈ Fn.
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Proposition 8.3.4. Let B = {B1, B2, . . . , Bn, . . . } be a sequence of finite Blaschke
products on D and let 0 < r < 1. Suppose that the set Dn does not contain singular
points of Bn−1 for every n ∈ N. Then:

(i) There is a compact set Y such that the maximal ideal space

M
A
(
DB(r)

) = DB(r) = lim
←−

{Dn+1, Bn}n∈N

is homeomorphic to the Cartesian product D(r)× Y .

(ii) A
(
DB(r)

)
is isometrically isomorphic to an algebra of functions f(x, y) ∈

C
(
D(r) × Y

)
, such that f( · , y) ∈ A

(
D(r)

)
for every y ∈ Y .

(iii) A
(
DB(r)

)∣∣
D(r)×{y}

∼= A
(
D(r)

)
for every y ∈ Y .

Proof. Consider the adjoint inductive sequence

A
(
D(r)

)
−B

∗
1−→ A(D2) −B

∗
2−→ A(D3) −B

∗
3−→ · · ·−−→ A

(
DB(r)

)
. (8.21)

Observe that the set Dm+1 = B−1
m (Dm) is biholomorphic to D(r)×Fdm for m ≥ 1,

where dm = ordBm. There arises a mapping jk : D(r) × Fdk+1 −→ D(r) × Fdk

such that the diagram

Dk
Bk←− Dk+1

Ik ↓ Ik+1 ↓
D(r)× Fdk

jk←− D(r)× Fdk+1

commutes. Here Ik is the natural biholomorphic mapping Ik : Dk −→ D(r)×Fdk
.

Note that jk maps D(r) onto D(r), and Fdk+1 onto Fdk
. Hence, the adjoint diagram

A(Dk)
B∗

k−→ A(Dk+1)
I∗

k ↑ Ik+1∗ ↑
A
(
D(r)× Fdk

) j∗k−→ A
(
D(r) × Fdk+1

)
is commutative for every k ∈ N, and therefore the infinite diagram

A(D1)
B∗

1−→ A(D2)
B∗

2−→ A(D3)
B∗

3−→ · · ·
I∗
1 ↑ I∗

2 ↑ I∗
3 ↑

A
(
D(r) × Fd1

) j∗1−→ A
(
D(r) × Fd2

) j∗2−→ A
(
D(r) × Fd3

) j∗3−→ · · ·

is commutative. Hence, the inductive sequence (8.21) is isomorphic to the sequence

A
(
D(r)

)
−j∗1−→ A

(
D(r) × Fd2

)
−j∗2−→ A

(
D(r) × Fd3

)
−j∗3−→ · · · . (8.22)

Consider the inductive sequence

C −j
∗
1−→ C(Fd2) −j

∗
2−→ C(Fd3) −j

∗
3−→ · · · (8.23)
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of algebras A
(
D(r) × Fdk

)
restricted on Fdk

. A straightforward check shows that
F =

[
lim
−→

{
C(Fdn), j∗n

}
n∈N

]
is a commutative C∗-algebra. Therefore F = C(Y ),

where Y = lim
←−

{Fdn+1, jn
∣∣
Fdn+1

}n∈N. Note that the inductive sequence (8.19) is

isomorphic to the sequence

D(r) ←−j1− D(r) × Fd2 ←−j2− D(r) × Fd3 ←−j3− D(r) × Fd4 ←−j4− · · · ←− D(r) × Y.

It is clear that the algebra

A
(
DB(r)

)
=
[
lim
−→

{
A(Dn), B∗

n

}
n∈N

] ∼= [
lim
−→

{
A
(
D(r)× Fdn

)
, j∗n

}
n∈N

]
is a subalgebra of A

(
D(r)×Y

)
such that A

(
DB(r)

)∣∣
D(r)×{y} = A

(
D(r)

)
for every

y ∈ Y . �
Note that the set Y from Proposition 8.3.4 is homeomorphic to the set{

{yn}∞n=1, yn ∈ (B1 ◦B2 ◦ · · · ◦Bn−1)−1(0)
}
. Let Tr = rT =

{
|z| = r

}
. Since

bDB(r) = lim
←−

{
bDn+1, Bn

∣∣
bDn+1

}
n∈N

∼= Tr × Y, (8.24)

Proposition 8.3.4 implies the following.

Corollary 8.3.5. In the setting of Proposition 8.3.4, the only singleton Gleason parts
of the algebra A

(
DB(r)

)
are the points on the Shilov boundary bDB(r) ∼= Tr × Y .

Proposition 8.3.6. Let B = {B1, B2, . . . , Bn, . . . } be a sequence of finite Blaschke
products on D, and let 0 < r < 1. Suppose that for every n ∈ N the set of singular
points for Bn−1 in Dn is the set (B1 ◦B2 ◦ · · · ◦Bn−1)−1(0), and assume that all
its points have one and the same order dn−1 > 1. Then:

(i) There is a compact set Y such that the maximal ideal space

M
A
(
DB(r)

) = DB(r) = lim
←−

{Dn+1, Bn

∣∣
Dn+1

}k∈N

is homeomorphic to the Cartesian product DGΛ(r) × Y , where Λ = {dk}∞k=1

is the sequence of the orders of Bk.

(ii) The algebra A
(
DB(r)

)
on DB(r) is isometrically isomorphic to an algebra of

functions f(x, y) ∈ C
(
DGΛ(r)×Y

)
, such that f( · , y) ∈ A

(
DGΛ(r)

)
for every

y ∈ Y .

(iii) A
(
DB(r)

)∣∣
D(r)×{y} = A

(
DGΛ(r)

)
for every y ∈ Y .

Proof. The set F = (B1◦B2◦· · ·◦Bn−1)−1(Dn) ⊂ D is biholomorphic to a disjoint
collection of dn copies of Dn, i.e. F ≈ Dn×Fdn , Fdn = {1, 2, . . . , dn}. In addition,
the algebra A(F ) is isomorphic to a subalgebra of the algebra

Adn(Dn) = A(Dn)⊕A(Dn)⊕ · · · ⊕A(Dn) ∼= A(Dn)× Fdn .
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Moreover, A(F )|Dn×{k} ∼= A(Dn) for every k = 1, 2, . . . , dn. Hence A(F ) ⊂
Adn(Dn) = A(Dn×Fdn) ⊂ C(Dn×Fdn), and Dn×Fdn is the set of maximal ideals
of A(F ). Consider the space C(Fdn) as a subalgebra of Adn(Dn) consisting of all
functions f ∈ Adn(Dn) that are constant on the sets D(r)

n × {k}, k ∈ Fdn . As in
the proof of Proposition 8.3.4, we see that F =

[
lim
−→

{
C(Fdn), B∗

n

}
n∈N

]
= C(Y ),

where Y = lim
←−

{Fdn+1, Bn}n∈N, and (8.19) is isomorphic to the sequence

D(r) ←−j1− D(r) × Fd2 ←−j2− D(r)× Fd3 ←−j3− · · · ←− DGΛ(r) × Y.

Consequently, the limit DB(r) of the inverse sequence (8.19) is isomorphic to
DGΛ(r) × Y . Moreover, the algebra A

(
DB(r)

)
=
[
lim
−→

{
A(Dn), B∗

n

}
n∈N

]
is a sub-

algebra of C
(
DGΛ(r)×Y

)
such that A

(
DB(r)

)∣∣
DGΛ

(r)×{y} = A
(
DGΛ(r)

)
for every

y ∈ Y . �

Note that, as before, the set Y from the above is homeomorphic to the set{
{yn}∞n=1, yn ∈ (B1 ◦B2 ◦ · · · ◦Bn−1)−1(0)

}
.

8.4 Parts of Blaschke inductive limit algebras

We have seen already various links between Blaschke inductive limit algebras and
G-disc algebras. In this section we describe the Gleason parts of Blaschke inductive
algebras, and use them to find necessary and sufficient conditions for a Blaschke
inductive limit algebra to be isometrically isomorphic to a G-disc algebra.

Let A be a uniform algebra on the compact set X . While every point in the
Shilov boundary ∂A is itself a Gleason part (e.g. [S4]), the opposite is not always
true, i.e. there are singleton Gleason parts outside the Shilov boundary of A. For
instance, if G is a solenoidal group, then the origin ω =

(
{0}×G

)
/
(
{0}×G

)
∈ DG

of the G-disc DG is a singleton Gleason part for the G-disc algebra AΓ+ . Of course
ω �∈ ∂ AΓ+ = G.

The celebrated theorem of Wermer (e.g. [S4]) states that an analytic disc can
be embedded in every non-singleton Gleason part of the maximal ideal space of a
Dirichlet algebra. Therefore it is of particular interest to locate singleton Gleason
parts of an algebra, and especially those of them that do not belong to the Shilov
boundary.

Observe that, as it follows from the results in Section 8.3, all singleton Glea-
son parts of the algebra A

(
D[r,1]

B

)
belong to the Shilov boundary bD[r,1]

G . On the
other hand, by (8.24), Propositions 8.3.4 and 8.3.6 we have the following
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Corollary 8.4.1. Let B = {B1, B2, . . . , Bn, . . . } be a sequence of finite Blaschke
products on D, Dn are as in (8.19), and let 0 < r < 1. In the setting of Proposition
8.3.6 there are no singleton Gleason parts of the algebra A

(
DB(r)

)
in the set

M
A
(
DB(r)

) \(bDB(r)∪({ω}×Y )
)
, where ω is the origin of the GΛ-disc DGΛ , and

Y is the set Y =
{
{yn}∞n=1, yn ∈ (B1 ◦ B2 ◦ · · · ◦ Bn−1)−1(0)

}
from Proposition

8.3.6.

As an immediate consequence we obtain that the algebra A
(
DB(r)

)
is iso-

morphic to a G-disc algebra if and only if Y is a singleton set.

Corollary 8.4.2. In the setting of Corollary 8.4.1 the algebra A
(
DB(r)

)
is isomor-

phic to a G-disc algebra if and only if every Blaschke product Bn has a single
singular point z(n)

0 in D(r)
n such that Bn

(
z
(n)
0

)
= z

(n+1)
0 for all n big enough.

Given a sequence of Blaschke products B = {Bn}∞n=1 on D, consider the
Blaschke inductive limit algebra A(DB) =

[
lim
−→

{
A(Dk), βk+1

k

}
k∈N

]
on the com-

pact set DB = lim
←−

{Dk, Bk−1}k∈N, where βk+1
k = B∗

k. Recall that the Shilov

boundary of A(DB) is the group TB = lim
←−

{Tk, Bk−1}k∈N.

Definition 8.4.3. We denote by Br the family of Blaschke products on D whose
zeros are inside the disc D(r) = rD =

{
|z| ≤ r

}
. The set of elements in Br that

vanish at 0 will be denoted by B0
r ⊂ Br.

Theorem 8.4.4. Suppose that Bn ∈ B0
r and ordBn > 1 for every n ∈ N. Then

there is only one singleton Gleason part in the set DB \ TB .

We need several preliminary results for the proof. Given two points m1 and
m2 in DB = MA(DB), consider the Gleason metric

d(m1,m2) = sup
‖f‖ < 1

f ∈ A(DB)

∣∣m1(f)−m2(f)
∣∣.

Lemma 8.4.5. Let m1 =(z1, z2, . . . ) , where zk = Bk(zk+1), and m2 =(w1, w2, . . . ),
where wk = Bk(wk+1), be the chains in the sequence {Dk, Bk−1}k∈N of the points
m1, m2 ∈ DB correspondingly. Then

4 d (m1,m2)
4 + d2(m1,m2)

= lim
k→∞

∣∣∣∣ zk − wk

1− wkzk

∣∣∣∣ . (8.25)

Proof. Let zk, wk ∈ D denote the restrictions ofm1 and m2 on A(Dk) respectively.
Define

dk(m1,m2) = sup
‖f‖ < 1

f ∈ A(Dk)

∣∣m1(f)−m2(f)
∣∣ = d (zk, wk).
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Since A(Dk) ⊂ A(Dk+1) and A(DB) =
[ ∞⋃

k=1

A(Dk)
]
, we have that

dk(m1,m2) ≤ dk+1(m1,m2) ≤ d (m1,m2), and d (m1,m2) = lim
k→∞

dk(m1,m2).

Note that (cf. [G2]),
4 dk(m1,m2)

4 + d2k(m1,m2)
=
∣∣∣ zk − wk

1− wkzk

∣∣∣.
Consequently,

4 d (m1,m2)
4 + d2(m1,m2)

= lim
k→∞

4 dk(m1,m2)
4 + d2k(m1,m2)

= lim
k→∞

∣∣∣ zk − wk

1− wkzk

∣∣∣. �

Lemma 8.4.6. For every ρ ∈ [0, 1] let α(ρ) = sup
|z| ≤ ρ
|z0| ≤ r

∣∣∣ z − z0
1− z0z

∣∣∣. Then for every

B ∈ Br,

max
|z|<ρ

∣∣B(z)
∣∣ < (

α(ρ)
)ordB

.

Proof. Standard properties of Möbius transformations imply that α(ρ) ≤ 1 and
α(ρ) = 1 only if ρ = 1. Consequently, if |z| ≤ ρ for any B ∈ Br we have

∣∣B(z)
∣∣ =

∣∣∣ n∏
k=1

( z − z0
1− z0z

)∣∣∣ ≤ (
α(ρ)

)n
. �

We observe that since Bn(0) = 0 for every n ∈ N, the chain ω = (0, 0, . . . ) of
elements in the system {Dk, Bk−1}k∈N belongs to DB = lim

←−
{Dk, Bk−1}k∈N, i.e.

the maximal ideal space of A(DB). The point ω is called also the origin of DB .

Proposition 8.4.7. Suppose that Bn ∈ B0
r and ordBn > 1 for every n ∈ N. Then

ω is a singleton Gleason part of A(DB) in DB \ TB .

Proof. Let m = (z1, z2, . . . ) be a point in DB and let d(ω,m) = d. By (8.25)

4 d (ω,m)
4 + d2(ω,m)

= lim
n→∞

|zn| =
4 d

4 + d2
= c ≤ 1.

By Schwarz’s lemma, |zn| =
∣∣Bn(zn+1)

∣∣ < |zn+1|, and hence |zn| ≤ c for every
n ∈ N. Hence,

|zn| =
∣∣Bn(zn+1)

∣∣ = |zn+1|
∣∣∣(Bn

z

)
(zn+1)

∣∣∣ < |zn+1|
(
α(c)

)ordBn−1
< cα(c),

and consequently,
c = lim

n→∞
|zn| ≤ c α(c) ≤ c.

Therefore, α(c) = 1 and thus 1 = c = 4/(4 + d2), i.e. d = d(ω,m) = 2, i.e. m and
ω belong to different Gleason parts. �
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It remains to show that ω is the only singleton Gleason part of A(DB). For
the following lemma, probably well known, we provide a short proof.

Lemma 8.4.8. Let B ⊂ Br and let W be a simply connected domain in D, such
that D[0,r] ⊂W ⊂ D. Let K = D \W and KB = D \B−1(W ). If the boundary bW
of W is a piecewise smooth curve, then the covering mapping KB −→ K generated
by B does not have singular points.

Proof. Let z0 ∈ K. Consider a simply connected domain W̃ , W ⊂ W̃ ⊂ D with
a piecewise smooth boundary bW̃ that contains z0. B−1(W̃ ) also has a piecewise
smooth boundary bB−1(W̃ ) = B−1(bW̃ ). Since all zeros of B belong to D[0,r] ⊂
W ⊂ W̃ , the Argument Principle for analytic functions implies that every turn
around the curve bB−1(W̃ ) generates N rotations around the curve bW̃ , where
N = ordB. Therefore, cardB−1(z0) = ordB, i.e. z0 is not a singular point for
B. �
Proof of Theorem 8.4.4. By Proposition 8.4.7, it is enough to show that the point
ω is the only singleton Gleason part for A(DB). Let m ∈ DB, m = (z1, z2, . . . ,
zn, . . . ) �= ω. As we saw in the proof of Proposition 8.4.7, |zn| < |zk+1| for every
n ∈ N, and lim

n→∞
|zn| = 1. Therefore, without loss of generality we can assume that

|z1| > r + ε, where ε = (1− r)/2. (8.26)

Consider the simply connected domains

Wn+1 = B−1
n (Wn), W0 = D[0,r+ε/2], (8.27)

and let
K0 = D[0,r+ε/2], Kn+1 = B−1

n (Kn) = DB \Wn+1.

Lemma 8.4.8 implies that Bn has no singularities on Kn+1. According to The-
orem 8.3.2, A

(
D[r,1]

B

)
is isomorphic to A

(
D[r,1]

GΛ

)
. Clearly M

A
(
D[r,1]

B

) ⊂ DB, and

A(DB)|
M

A
(
D[r,1]

B

) is a uniform subalgebra of A
(
D[r,1]

B

)
. The point m belongs to

the interior of M
A
(
D

[r,1]

)
B

since zn ∈ intKn for every n ∈ N. If we assume that m

is the only point in its Gleason part relative to A(DB), then

sup
‖f‖ = 1

f ∈ A
`
D[r,1]

B

´

∣∣f̃(m1)− f̃(m)
∣∣ ≥ sup

‖f‖ = 1
f ∈ A(DB)

∣∣f̃(m1)− f̃(m)
∣∣ = 2

for every m1 ∈ MA
(
D[r,1]

B

), i.e. m is the only point in its Gleason part relative to

A
(
D[r,1]

B

)
, which is impossible. Hence, m does not belong to any singleton Gleason

part of A
(
D[r,1]

B

)
. �
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Corollary 8.4.9. Let B ∈ Br, B(0) �= 0, and Bk(z) = zdkBck , dk > 1. Then there
is only one singleton Gleason part in the set DB \ TB .

Proposition 8.4.10. Let B be a finite Blaschke product with B(0) = 0. Consider
the stationary sequence B = {B,B, . . . }. If the Blaschke inductive limit algebra
A(DB) =

[
lim
−→

{
A(Dk), Bk

}
k∈N

]
, Dk = D, Bk = B is isometrically isomorphic to

a G-disc algebra, then necessarily B(z) = c zn, where c ∈ D, |c| = 1, and n ∈ N.

We precede the proof by several preliminary results.

Lemma 8.4.11. Consider the inductive sequence of algebras

A(D1) −B
∗−→ A(D2) −B

∗−→ A(D3) −B
∗−→ · · · −→ A(DB),

where B is a Blaschke product B with B(0) = 0. For every n ∈ N there exists an
automorphism In : A(DB) −→ A(DB) such that

In
(
i1(A(D1))

)
= in

(
A(Dn)

)
, (8.28)

where in is the natural embedding in : A(Dn) −→ A(DB) .

Proof. We prove the statement in the case n = 2. For n > 2 it follows the same
lines. For every n ∈ N denote by In

2 the identity mapping of A(Dn) onto A(Dn+1).
For any n ∈ N we have that In

2 (z|Dn) = z|Dn+1,
∥∥In

2 (f)
∥∥ = ‖f‖ for each f ∈ A(Dn),

and hence the diagram

A(Dn) B∗
−→ A(Dn+1)

In
2 ↓ In+1

2 ↓
A(Dn+1)

B∗
−→ A(Dn+2)

commutes. Consequently, the infinite diagram

A(D1)
B∗
−→ A(D2)

B∗
−→ A(D3)

B∗
−→ · · ·

I1
2 ↓ I2

2 ↓ I3
2 ↓

A(D2)
B∗
−→ A(D3)

B∗
−→ A(D4)

B∗
−→ · · ·

is commutative, and hence the given inductive sequence is isomorphic to

A(D2) −B
∗−→ A(D3) −B

∗−→ A(D4) −B
∗−→ · · · .

There arises an isometric isomorphism from the algebra lim
−→

{
A(Dk), B∗

k

}
k∈N

onto
itself, that can be extended as an isometric isomorphism I2 from the algebra
A(DB) =

[
lim
−→

{
A(Dk), B∗

k

}
k∈N

]
onto itself. It is straightforward to check that I2

satisfies the identity (8.28). �
Corollary 8.4.12. If B(0) = 0, then the origin ω = (0, 0, . . . ) ∈ MA(DB) is a fixed
point of the mapping I∗n : MA(DB) −→ MA(DB) adjoint to the automorphism In
from Lemma 8.4.11.
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Proof. We observe that according to Proposition 8.4.7 and Corollary 8.4.9, the
point ω is the only singleton Gleason part of the algebra A(DB) outside its Shilov
boundary. Since In is an automorphism, it preserves all properties of the algebra
A(DB). Therefore, the point I∗n(ω) is also a singleton Gleason part of A(DB) that
is outside the Shilov boundary. Hence, I∗n(ω) = ω, as claimed. �

For the following lemma, probably well known, we provide a short proof.

Lemma 8.4.13. Let X be a connected compact Hausdorff set. If lim
n→∞

∥∥eψn−1
∥∥ = 0

for some ψn ∈ C(X), then there are kn ∈ Z such that the functions ϕn = ψn −
2πikn converge uniformly to 0 on X.

Proof. If ψn = un+ivn, then eψn = eun(cos vn+i sin vn). Since lim
n→∞

∥∥eψn−1
∥∥ = 0,

we have that eun sin vn −→ 0, while eun cos vn −→ 1 uniformly on X . Therefore,
eun is a bounded sequence on X and, consequently, cos vn −→ 1, sin vn −→ 0
uniformly on X . The connectedness of X implies that for every n ∈ N there
is a kn ∈ Z such that ‖vn − 2πkn‖ < 1. Thus vn − 2πkn −→ 0 because of
sin vn −→ 0, and hence cos(vn−2πkn) −→ 1, which yields eun −→ 1, i.e. un −→ 0.
Consequently, ϕn = ψn − 2πikn −→ 0 uniformly on X , as claimed. �

We observe that the mapping i∗1 : MA(DB) −→ D, adjoint to the inclusion
i1 : A(D) −→ A(DB), maps the Shilov boundary ∂A(DB) = TB onto T = ∂A(D).

Lemma 8.4.14. Let B be a finite Blaschke product with B(0) = 0. If S is an
isomorphism between the Blaschke inductive limit algebra A(DB) and a G-disc
algebra AΓ+ , then the set (S ◦ i1)

(
A(T)

)
contains a character χ0 of the group

G = ∂AΓ+ .

Proof. Observe first that
∣∣(S ◦ i1)(z∣∣T)

∣∣ �= 0 on G. Indeed, since the identity on T
does not vanish on the Shilov boundary of A(D), its image i1

(
id(T)

)
⊂ A(DB) �= 0

on the Shilov boundary TB of A(DB), and therefore
∣∣(S ◦ i1)(id(T)

)∣∣ �= 0 on
∂AΓ+ = G. By van Kampen’s theorem [vK] there is a χ0 ∈ Ĝ and ϕ ∈ C(G), such
that (S ◦ i1)(z|T) = χ0 e

ϕ. The Arens-Royden theorem (e.g. [S4]) implies that
χ0 ∈ AΓ+ . We claim that χ0 ∈ (S ◦ i1)

(
A(T)

)
.

Let χ be a fixed element in Γ+ = Ĝ ∩ AΓ+ . Given an ε > 0 one can find an
n ∈ N so that d

(
(S ◦ in)

(
A(T)

)
, χ
)
< ε, where d( · , · ) is the uniform distance in

AΓ+ ⊂ C(G). If In is the automorphism defined in Lemma 8.4.11, we have

d
(
(S ◦ i1)

(
A(T)

)
, SI−1

n S−1χ
)

= d
(
i1
(
A(T)

)
, I−1

n S−1χ
)

=

d
(
(In ◦ i1)

(
A(T)

)
, S−1χ

)
= d

(
in
(
A(T)

)
, S−1χ

)
= d

(
(S ◦ in)

(
A(T)

)
, χ

)
< ε,

Being an automorphism of the G-disc algebra AΓ+ onto itself, the operator
SI−1

n S−1 maps χ0 onto a function of type c χ1, where χ1 ∈ AΓ+ is again a char-
acter on G, and c ∈ C, |c| = 1 (see Section 4.3). Thus d

(
(S ◦ i1)

(
A(T)

)
, c χ1

)
< ε,
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and hence d
(
(S ◦ i1)

(
A(T)

)
, χ1

)
< ε. Therefore, for every ε > 0 one can find a

character χε ∈ Ĝ ∩ S
(
A(DB)

)∣∣
G

such that

d
(
i1
(
A(T)

)
, S−1χε

)
= d

(
(S ◦ i1)

(
A(T)

)
, χε

)
< ε. (8.29)

Let χn ∈ AΓ+ be such that d
(
(S ◦ i1)

(
A(T)

)
, χn

)
< 1/n, and suppose that∥∥(S ◦ i1)(fn) − χn

∥∥ < 1/n for some fn ∈ A(T). Hence fn �= 0 on G, and by
van Kampen’s theorem [vK] there is an mn ∈ Z, and a ψn ∈ C(T), such that
fn = zmneψn . We have∥∥(S ◦ i1)(fn)− χn

∥∥ =
∥∥(S ◦ i1)(zmn) exp

(
(S ◦ i1)(ψn)− χn

)∥∥ < 1/n, (8.30)

where i1(fn) = i1
(
zmneψn

)
∈ i1

(
A(T)

)
. Consequently,∥∥(χ0)mn exp

(
mnϕ+ (S ◦ i1)(ψn)

)
− χn

∥∥ < 1/n.

This can happen only if (χ0)mn = χn. We have obtained that∥∥ exp
(
mnϕ+ (S ◦ i1)(ψn)

)
− 1

∥∥ < 1/n.

By Lemma 8.4.13 we have that, as n −→ ∞, the functions mnϕ+ (S ◦ i1)(ψn)−
2πikn converge uniformly to 0 for some kn ∈ Z. Note that (S ◦ i1)(ψn)− 2πikn ∈
(S ◦ i1)(C(T)) ⊂ C(TB) =

[
lim
−→

{
C(Tk), B∗

k

}
k∈N

]
. Consequently,

∥∥ϕ +
(
(S ◦

i1)(ψn)−2πikn

)
/mn

∥∥ −→ 0, and hence ϕ ∈ (S◦i1)
(
C(T)

)
. From (S◦i1)

(
id(T)

)
=

χ0 e
ϕ we see that χ0 ∈ (S◦i1)

(
C(T)

)
. It remains to show that χ0 ∈ (S◦i1)

(
A(T)

)
.

Suppose that S−1χ0 /∈ i1
(
A(T)

)
⊂ i1

(
C(T)

)
and take a g ∈ C(T) such that

i1(g) = S−1χ0. Then g /∈ A(T), and therefore, by the maximality of the disc alge-
bra A(T), the algebra

[
A(T), g

]
on T generated by A(T) and g coincides with C(T).

Observe that i1
(
C(T)

)
= i1

(
[A(T), g]

)
=
[
i1
(
A(T)

)
, i1(g)

]
=
[
i1
(
A(T)

)
, S−1χ0

]
⊂

i1
(
C(T) ∩ A(DB)

)∣∣
TB

. However, this contradicts the antisymmetry property of
the G-disc algebra AΓ+

∼= A(DB). We conclude that S−1χ0 ∈ i1
(
A(T)

)
, i.e.

χ0 ∈ (S ◦ i1)
(
A(T)

)
, as claimed. �

Proof of Proposition 8.4.10. Let i∗1 : MA(DB) −→ D denote the adjoint mapping
to i1, i∗1(z1, z2, . . . ) = z1, where (z1, z2, . . . ) is a chain in {Dk, Bk−1}k∈N. Observe
that i1(ω) = 0. According to Lemma 8.4.14 the set

(
S ◦ i1)(A(D) ∩ Ĝ

)
contains

a character χ0 ∈ Ĝ. Let S−1χ0 =
[(
h, h ◦ B, h ◦ B2, h ◦ B3, . . .

)]
∈ A(DB),

where h ∈ A(T). Note that for the Gelfand transform (S−1χ0)̂ we have 0 =(
(S−1χ0)̂)(ω) =

(
i1(h)

)
(ω) = h

(
i∗1(ω)

)
= h(0). Suppose that B(z0) = 0 for some

z0 ∈ D. Then
(
(S−1χ0)̂)(0, z0, . . . ) = h(0) = 0, and therefore (0, z0, . . . ) = ω,

since ω is the only zero of the function (S−1χ0)̂ in MA(DB). Hence, z0 = 0, i.e.
0 is the only zero of the Blaschke product B. Consequently, B(z) = c zm for some
m ∈ N, c ∈ C, |c| = 1. �
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Theorem 8.4.4 and Proposition 8.4.10 imply the following:

Theorem 8.4.15. Let B be a finite Blaschke product on D. The Blaschke inductive
limit algebra A(DB) is isometrically isomorphic to a G-disc algebra if and only if
B(z) is adjoint to a power zm of z, i.e. if and only if there is an m ∈ N and a
Möbius transformation τ : D −→ D such that (τ−1 ◦B ◦ τ)(z) = zm.

8.5 H∞-type spaces on compact groups

In this section we study algebras of bounded analytic functions on G-discs, that
are limits of inductive sequences of H∞ spaces on groups. What differentiates
these algebras from the algebras H∞

Φ of Φ-hyper-analytic functions, considered
in Section 8.1, is that the connecting homomorphisms are not necessarily adjoint
homomorphisms to continuous mappings of D into itself.

Let G be a compact abelian group, whose dual group Γ = Ĝ is a subgroup
of R. We recall that the Hardy space H∞(G) on G is the space of boundary value
functions on G of elements in H∞(DG), i.e.

H∞(G) =
{
f∗ : f ∈ H∞(DG)

}
,

and ‖f∗‖∞ = limr↗1 supg∈G

∣∣fr(g)
∣∣, for every f ∈ H∞(G), where fr is the r-trace

of f . H∞(G) is a closed subalgebra of L∞(G, σ) (e.g. [H2]),

Let I be a directed set, i.e. I is a partially ordered set such that every pair
i1 and i2 in I has a common successor i3 ∈ I, such that i1 ≺ i3 and i2 ≺ i3. Let
{Γi}i∈I be a family of subgroups of Γ parametrized by I, such that Γi1 ⊂ Γi2

whenever i1 ≺ i2. Under the natural inclusions {Γi}i∈I becomes an inductive
system of groups. Suppose that Γ coincides with the inductive limit of the system
{Γi}i∈I , i.e. Γ = lim

−→
{Γi}i∈I . Let H∞

Γi
(G) denote the space of functions f ∈

H∞(G) with sp (f) ⊂ Γi. Clearly, H∞
Γi

(G) is a closed subalgebra of H∞(G), and
H∞

Γi
(G) ⊂ H∞

Γj
(G) if and only if Γi ⊂ Γj . Therefore the family

{
H∞

Γi
(G)

}
i∈I

of
subalgebras in H∞(G) is ordered by inclusion. Let Φ = {ϕj

i}i,j∈I be the family
of inclusions ϕj

i : Γi ↪→ Γj , i ≺ j. It is easy to see that the ‖ · ‖∞-closure
H∞

I (G) of the set
⋃
i∈I

H∞
Γi

(G) = lim
−→

{
H∞

Γi
(G)

}
i∈I

coincides with the Hardy space

H∞(DΦ) of Φ-hyper-analytic functions on G, where DF = DG. Clearly, H∞
I (G)

is a commutative Banach algebra. The next theorem provides a criteria for the
algebra H∞(G) to be of type H∞

I (G).

Theorem 8.5.1. Let G be a solenoidal group such that its dual group Γ = Ĝ is the
inductive limit of a family {Γi}i∈I of subgroups of Γ , i.e. Γ = lim

−→
{Γi}i∈I. Let

H∞
Γi

(G) be the space of functions in H∞(G) with spectra in Γi, i ∈ I. Then the
following statements are equivalent.
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(a) H∞(G) = H∞
I (G).

(b) H∞(G) =
⋃
i∈I

H∞
Γi

(G).

(c) Every countable subgroup Γ0 in Γ is contained in some group from the family
{Γi}i∈I .

For the proof we need the following lemma.

Lemma 8.5.2. Let r ∈ (0, 1) and let mr be the representing measure on G of the
point r � ı ∈ DG. Then

lim
j→∞

sup
g∈G

mr(Vjg) = 0 (8.31)

for every nested family V1 ⊃ V2 ⊃ · · · ⊃ Vn ⊃ · · · of neighborhoods of the unit

element ı with
∞⋂

j=1

Vj = {ı}.

Proof. Assume, on the contrary, that lim
j→∞

sup
g∈G

mr(Vjg) > 0, and let {gj}∞1 be a

sequence in G with mr(Vjgj) −→ c > 0. By the compactness of G there is a
subsequence of {gj}∞1 , say {hn}∞1 , that converges to a point h ∈ G. Note that
mr(Vnh) ≥ lim

k→∞
mr(Vkhk) = c for every integer n, since Vnh ⊃ Vkhk for k big

enough. Consequently, mr(h) = lim
k→∞

mr(Vkhk) = c. Consider the Lebesgue de-

composition of the measure mr − δr�ı with respect to the point evaluation δh at
h, namely mr− δr�ı = cδh + ν, where the measure ν is singular with respect to δh.
Since mr − δr�ı ⊥ AΓ+ , the Dirac measure δh (as well as ν) is orthogonal to AΓ+ ,
according to Ahern’s theorem (cf. [G1], Ch. II, Cor. 7.8]), which is impossible. �
Proof of Theorem 8.5.1. Clearly, (b) implies (a). Let f ∈ H∞(G). Parseval’s iden-
tity implies that the spectrum sp (f) of f is countable. Therefore the group Γf gen-
erated by sp (f) is also countable. By the supposition there is a group Γj ∈ {Γi}i∈I

that contains Γf . Hence f ∈ H∞
Γj

(G) ⊂
⋃
I

H∞
Γi

(G). This shows that (c) implies (b).

To prove that (a) implies (c), assume first that Γ is a countable group. Then
G = Γ̂ is a separable metric group. Let {hn}∞1 be a sequence of different points
in G with hn −→ ı, and let {Bn}∞1 be a family of disjoint (metric) balls centered
at hn, not containing ı, and such that for every neighborhood V of ı there is a
natural number N such that Bn ⊂ V for all n ≥ N . Consider a function fn ∈ AΓ+

such that ‖fn‖∞ = fn(hn) = 1, fn(ı) = 0 and |fn| < 1/2n on G \ Bn. Such a
function exists since the points of G are peak points for AΓ+ . By (6.2) we have∣∣(fn)r(g)

∣∣ =
∣∣fn(r � g)

∣∣ =
∣∣∣ ∫

G

fn(g h) dmr(h)
∣∣∣ ≤ ∫

G

∣∣fn(g h)
∣∣ dmr(h)

=
∫

g−1Bn

∣∣fn(g h)
∣∣ dmr(h) +

∫
G\g−1Bn

∣∣fn(g h)
∣∣ dmr(h) ≤ mr(g−1Bn) + 1/2n.
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The hypotheses on the balls Bn imply that

∞∑
n=k

∣∣(fn)r(g)
∣∣ ≤ mr(g−1Vk) + 1/2k−1 < 2,

where Vk =
∞⋃

n=k

Bn. It follows from (8.31) that for every ε > 0 there is a k ∈ N

such thatmr(g−1Vk) < ε for all g ∈ G. Consequently, the series
∞∑

n=1

(fn)r converges

uniformly on G to a function f̃r ∈ AΓ+ . Clearly ‖f̃r‖∞ < 2. Therefore the function

f̃ =
∞∑

n=1

fn belongs to the algebra H∞(G). Since, by the hypothesis, H∞(G) =

H∞
I (G), the function f̃ is in H∞

I (G). Then there is a j ∈ I and f ∈ H∞
Γj

(G), such
that

‖f̃ − f‖∞ < 1/16.

Recall that the group Γj is the dual group of the quotient group G/Gj , where
Gj = Γ⊥

j =
{
g ∈ G : χa(g) = 1 for all a ∈ Γj

}
. Therefore, the space H∞

Γj
(G)

coincides with the space of Gj-periodic functions in H∞(G), i.e. u ∈ H∞
Γj

(G) if
and only if u ∈ H∞(G) and u(h) = u(g h) = ug(h) for all g ∈ Gj , h ∈ G.
Consequently, f = fg for some g ∈ Gj , and hence

‖f̃ − f̃g‖∞ ≤ ‖f̃ − f‖∞ + ‖f̃g − fg‖∞ < 1/8 (8.32)

for every g ∈ Gj . Suppose that Γj �= Γ , i.e. Gj �= {ı}. Fix a g0 ∈ Gj \ {ı}. By the
continuity of f̃ on G \ {ı} the set

V =
{
h ∈ G \ {ı}

∣∣ ∣∣f̃(h)− f̃(g0)∣∣ < 1/16
}

is an open neighborhood of g0 �= ı. By the construction of f̃ , there are g1 and g2
in g−1

0 V \ {ı} such that |f̃(g1)| > 15/16 and |f̃(g2)| < 1/16. Now∣∣f̃(gi)− f̃g0(gi)
∣∣ ≤ ∥∥f̃ − f̃g0

∥∥
∞ ≤ 1/8 for i = 1, 2

implies ∣∣f̃g0(g1)
∣∣ > 13/16 and

∣∣fg0(g2)
∣∣ < 3/16.

Consequently, ∣∣f̃g0(g1)− f̃g0(g2)
∣∣ > 5/8,

which is impossible since g0g1 and g0g2 belong to V . Thus, Gj = {ı}, i.e. Γ = Γj

is a group in the family {Γi}i∈I .

Suppose now that Γ is uncountable and that Γ0 is a countable subgroup of
Γ . Now the argument from the above applies to the countable group Γ0 and the
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family {Γ0 ∩ Γi}i∈I instead of to the group Γ and the family {Γi}i∈I , to obtain
that Γ0 = Γj ∩ Γ0 ⊂ Γi for some i ∈ I. This completes the proof that (a) implies
(c). �
Example 8.5.3. Let Γ = Q be the group of discrete rational numbers. Assume
that {Γi}i∈I is an inductive system of subgroups of Q such that Q = lim

−→
{Γi}i∈I .

Theorem 8.5.1 implies that if Q is not one of the groups in the family {Γi}i∈I ,
then H∞

I (G) �= H∞(G).

Example 8.5.4. Let Γ = R and let Λ ⊂ R+ be a basis in R over the field Q of
rational numbers. As we saw in Example 1.3.6, R can be expressed as the limit

R = lim
−→

{
Γ(γ,n)

}
(γ,n)∈J

of the inductive system
{
Γ(γ,n)

}
(γ,n)∈J

of subgroups

Γ(γ,n) =
{
(1/n!) (m1γ1 +m2γ2 + · · ·+mkγk) : mj ∈ Z, j = 1, . . . k

}
of R that are isomorphic to Zk =

k⊕
i=1

Z. Given an (γ, n) ∈ J , consider the set

H∞
(γ,n)(G) =

{
f ∈ H∞(G) : sp (f) ⊂ Γ(γ,n)

}
.

The closure H∞
J (G) of the set

⋃
(γ,n)∈J

H∞
(γ,n)(G) = lim

−→

{
H∞

(γ,n)(G)
}

(γ,n)∈J
under

the ‖ · ‖∞-norm is a subalgebra of H∞(G).

There arises the question of whether H∞
J (G) coincides with H∞(G). As the

next theorem shows, in general this is not true.

Theorem 8.5.5. The space H∞
J (G) = lim

−→

{
H∞

(γ,n)(G)
}

(γ,n)∈J
is a proper closed

subalgebra of H∞(G).

Proof. The inclusion H∞
J (G) ⊂ H∞(G) is proven essentially in [CMX]. Assume,

on the contrary, that

H∞(G) = HJ(G) = lim
−→

{
H∞

(γ,n)(G)
}

(γ,n)∈J
.

According to Theorem 8.5.1 the countable subgroup Q ⊂ R is among the members
of the family

{
Γ(γ,n)

}
(γ,n)∈J

, which is impossible since Γ(γ,n) is isomorphic to Zk

for some k ∈ N. �

8.6 Bourgain algebras of inductive limit algebras on
groups

In this section we apply the technique of inductive limit algebras to Bourgain
algebras. Let B be a commutative Banach algebra and let {Aσ}σ∈Σ be a family
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of closed subalgebras of B, whose union
⋃

σ∈Σ

Aσ is an algebra. Denote by A the

closure of
⋃

σ∈Σ

Aσ in B. Clearly, A is a commutative Banach algebra in B. The

following theorem establishes a relationship between the Bourgain algebra of A
and the Bourgain algebras of Aσ.

Theorem 8.6.1. Let {Aσ}σ∈Σ , {Bσ}σ∈Σ be two families of closed subspaces of
a commutative Banach algebra B such that the Bσ are algebras, and Aσ ⊂ Bσ

for every σ ∈ Σ. Let A =
[ ⋃

σ∈Σ

Aσ

]
be a (in general linear) subspace, and let

B =
[ ⋃

σ∈Σ

Bσ

]
be a subalgebra of B. If for every σ ∈ Σ there is a bounded linear

operator rσ : B −→ Bσ, such that

(i) rσ
∣∣
Bσ

= idBσ ,

(ii) rσ(fg) = f · rσ(g) for every f ∈ Bσ, g ∈ B,

(iii) sup
σ∈Σ

‖rσ‖ <∞,

then AB
b ⊂

[ ⋃
σ∈Σ

(Aσ)Bσ

b

]
.

Proof. Let f ∈ B be a Bourgain element for A. Fix a σ ∈ Σ, and consider a
weakly null sequence {ϕn} in Aσ ⊂ A. Then {ϕn} is also a weakly null sequence
in A since F |Aσ ∈ A∗

σ for any F ∈ A∗. Therefore, one can find hn ∈ A such that
‖fϕn − hn‖ −→ 0. Hence,∥∥rσ(f)ϕn − rσ(hn)

∥∥ =
∥∥rσ(fϕn)− rσ(hn)

∥∥ ≤ ‖rσ‖‖fϕn − hn‖ → 0.

Consequently, rσ(f) is a Bourgain element forAσ, i.e. rσ(f) ∈ (Aσ)Bσ

b for every σ ∈
Σ. Note that under the hypotheses every f ∈ B is approximable by the elements
rσ(f) in the norm of B. Indeed, let fσn ∈ Bσn be such that fσn −→ f . Then∥∥f−rσn(f)

∥∥ ≤ ‖f−fσn‖+
∥∥rσn(fσn)−rσn(f)

∥∥ ≤ ‖f−fσn‖+sup ‖rσn‖‖fσn−f‖.
Hence rσn(f) −→ f , and consequently, f ∈

[ ⋃
σ∈Σ

(Aσ)Bσ

b

]
. �

Let G be a compact abelian group, and let P be a subsemigroup of Γ = Ĝ,
such that P ∪ (−P ) = Γ and P ∩ (−P ) = {0}. We equip Γ with the P -order, i.e.
χ1 � χ2 if and only if χ1 − χ2 ∈ P . Let Σ be a directed set, and let {Γσ}σ∈Σ

be a family of subgroups of Γ = Ĝ indexed by Σ and directed by inclusions. We
will interpret the subgroups Γσ ⊂ Γ as subspaces of C(G). If Γ coincides with
the inductive limit of the system {Γσ}σ∈Σ , i.e. Γ = lim

−→
{Γσ}σ∈Σ =

⋃
σ∈Σ

Γσ, then

Γ+ = lim
−→

{
(Γσ)+

}
σ∈Σ

=
⋃

σ∈Σ

(Γσ)+. Denote by A(Γσ)+
the space of functions
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f ∈ AΓ+ with sp (f) ⊂ Γσ. Clearly, A(Γσ)+
is a closed subalgebra of AΓ+ , and

A(Γσ)+
⊂ A(Γτ )+

whenever σ ≺ τ . Therefore,
{
A(Γσ)+

}
σ∈Σ

is an inductive system

of algebras and AΓ+ =
[
lim
−→

{
A(Γσ)+

}
σ∈Σ

]
=
[ ⋃

σ∈Σ

A(Γσ)+

]
.

Corollary 8.6.2. Let Γ = lim
−→

{Γσ}σ∈Σ and G = Γ̂ . Bourgain elements for the G-
disc algebra AΓ+ can be approximated uniformly on G by Bourgain elements for
the algebras A(Γσ)+

, σ ∈ Σ.

Proof. Fix a σ ∈ Σ and let Kσ = Γ⊥
σ =

⋂
χ∈Γσ

{
g ∈ G : χ(g) = 1

}
. The mappings

rσ : C(G) −→ C(Gσ) defined by(
rσ(f)

)
(g) =

∫
Kσ

f(gh) dσ(h),

where dσ is the Haar measure on Kσ satisfies the conditions (i), (ii), (iii) of The-
orem 8.6.1. In particular, ‖rσ‖ ≤ 1 for every σ ∈ Σ. �

Suppose Γ = lim
−→

{Γσ}σ∈Σ as before. Let H∞
Γσ

(G) =
{
f ∈ H∞(G) : sp (f) ⊂

Γσ

}
. Note thatH∞

Γσ
(G) is a closed subalgebra ofH∞(G), and H∞

Γσ
(G) ⊂ H∞

Γτ
(G) if

and only if Γσ ⊂ Γτ . Therefore, the family
{
H∞

Γσ
(G)

}
σ∈Σ

of subalgebras ofH∞(G)
is ordered by inclusions. Denote by H∞

G the L∞(G, σ)-closure H∞
Γ (G) of the set⋃

σ∈Σ

H∞
Γσ

(G) = lim
−→

{
H∞

Γσ
(G)

}
σ∈Σ

. Note that H∞
G and H∞(G) ∼= H∞(DG) are

commutative Banach subalgebras of L∞(G, σ) that are different from each other,
unless G = T (e.g. [T2, GT]). The mappings rσ : H∞

G −→ H∞
Γσ

(G) defined by(
rσ(f)

)
(g) =

∫
Kσ

f(gh) dσ(h) are bounded linear operators from H∞
G onto H∞

Γσ
(G)

satisfying the hypotheses of Theorem 8.6.1.

Corollary 8.6.3. Let Γ = lim
−→

{Γσ}σ∈Σ and G = Γ̂ . Any Bourgain element for H∞
G

can be approximated in the L∞-norm on G by Bourgain elements for H∞
Γσ

(G), σ ∈
Σ.

Let Γ = Q be the group of rational numbers with the discrete topology and
let G = b(Q) = Q̂d be its Bohr compactification. Note that Q can be presented as
the limit of the inverse sequence {Qn, z

n/k}n∈N, where Qn = {m/n : m ∈ Z} ∼= Z
and n � k if n is a multiple of k (e.g. [T2]). For any n ∈ N consider the algebra
H∞

Qn

(
b(Q)

)
= H∞ ◦ χ1/n =

{
f ◦ χ1/n : f ∈ H∞} =

{
f ∈ H∞(G) : sp (f) ⊂ Qn

}
.

Clearly, H∞
b(Qn) = H∞

Qn

(
b(Qn)

)
is a closed subalgebra of H∞(G).

Definition 8.6.4. The closure H∞
b(Q) of the inductive limit of the system{

H∞
Qn

(
b(Q)

)
, (zn/k)∗

}
n∈N
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with respect to the ‖ · ‖∞-norm is called the algebra of hyper-analytic functions
on G = b(Qn).

Clearly, H∞
b(Q) is an inductive limit algebra. As shown in [T], its maximal

ideal space resembles the maximal ideal space of H∞ on the unit circle. In partic-
ular, it has no DG-corona. Let L∞

Q

(
b(Q)

)
denote the algebra

[ ⋃
n∈N

L∞
Qn

(
b(Qn)

)]
∞,

where L∞
Qn

(
b(Q)

)
=
{
f ∈ L∞(G, σ) : sp (f) ⊂ Qn

}
. Corollary 8.6.3 implies that

the Bourgain algebra of H∞
b(Q) relative to L∞

Q

(
b(Q)

)
is a proper subalgebra of

L∞
Q

(
b(Q)

)
. More precisely,

Corollary 8.6.5. The Bourgain algebra of H∞
b(Q) is contained in the algebra H∞

b(Q) +
C(b(Q)).

Proof. For the Bourgain algebra of H∞
Qn

(
b(Qn)

)
relative to L∞

Qn

(
b(Qn)

)
we have(

H∞
Qn

(b(Qn)
)
)
L∞

Qn

(
b(Qn)

)
b

∼= (H∞)L∞
b

∼= H∞ + C(T) (e.g. [CJY]. Hence,

(
H∞

Qn
(b(Qn)

)
)
L∞

Qn

(
b(Qn)

)
b

∼= H∞
Qn

(
b(Qn)

)
+ C(T) ◦ χ1/n ⊂ H∞

b(Q) + C(G).

Corollary 8.6.3 implies

(
H∞

b(Q)

)L∞
Q

(
b(Q)

)
b

⊂
[ ⋃

n∈N

H∞
Qn

(
b(Qn)

)]L∞
Q

(
b(Q)

)
b

=
[ ⋃

n∈N

(
H∞

Qn

(
b(Qn)

))L∞
Qn

(
b(Qn)

)
b

]
⊂ H∞

b(Q) + C
(
b(Q)

)
.

�
Denote by V (DG, G) the ideal of L∞(G, σ)-functions on DG converging uni-

formly to 0 as m = r � g −→ G.

Corollary 8.6.6. The Bourgain algebra of the algebra H∞
Q (DG) = (H∞

Q )̂ of hyper-
analytic functions on DG is a subset of the algebra H∞

Q (DG)+C(DG)+V (DG, G).

Let Γ = R be the group of real numbers with the discrete topology and let
G = b(R) = R̂d be its Bohr compactification. As we saw in Example 1.3.6, the dual
group Ĝ = R can be expressed as the inductive limit of an increasing system of
groups Rσ, σ ∈ Σ, isomorphic to Zkσ , kσ ∈ N, i.e. R =

⋃
σ∈Σ

Rσ, where Rσ
∼= Zkσ

for some kσ ∈ N, kσ ≥ 2 (cf. Section 8.5). Theorem 8.6.1 implies that

(
H∞

b(R)

)L∞
(
b(R)

)
b

⊂
[ ⋃

σ∈Σ

(
H∞

Zkσ (b(Zkσ ))
)L∞

Zkσ

(
b(Zkσ )

)
b

]
.

A function f ∈ B is said to be a wc-element [resp. a c-element] for A, if for
every sequence {ϕn}n ∈ A, ‖ϕn‖ ≤ 1 the sequence πA(fϕn) contains a weakly
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convergent [resp. norm convergent] subsequence in B/A, i.e. if for every sequence
{ϕn}n ∈ A, ‖ϕn‖ ≤ 1 there are elements hn ∈ A such that the sequence fϕn−hn ∈
B contains a weakly convergent [resp. norm convergent] subsequence. We denote by
AB

wc and AB
c the sets of all wc-elements and c-elements for A in B correspondingly.

Clearly, AB
c ⊂ AB

wc, also AB
c ⊂ AB

b .

Theorem 8.6.7. Under the assumptions of Theorem 8.6.1,

AB
wc ⊂

[ ⋃
σ∈Σ

(Aσ)Bσ
wc

]
and AB

c ⊂
[ ⋃

σ∈Σ

(Aσ)Bσ
c

]
.

Proof. Let f ∈ B be a wc-element for A. Fix a σ ∈ Σ, and consider a sequence
{ϕn} in the unit ball of Aσ ⊂ A. Clearly, every ϕn belongs to the unit ball of A.
Therefore one can find hn ∈ A such that the sequence fϕn−hn contains a weakly
convergent subsequence in B, which we will denote again by fϕn− hn. Hence the
sequence

rσ(f)ϕn − rσ(hn) = rσ(fϕn)− rσ(hn) = rσ(fϕn − hn)

converges weakly in Bσ. Consequently, rσ(f) is a wc-element for Aσ. Similar ar-
guments apply for c-elements of A. �
Corollary 8.6.8. If the hypotheses of Corollary 8.6.3 are met, then

(a)
(
H∞

G

)L∞
Γ (G)

wc
⊂
[ ⋃

σ∈Σ

(
H∞

Γσ
(G)

)L∞
Γσ

(G)

wc

]
, and

(b)
(
H∞

G

)L∞
Γ (G)

c
⊂
[ ⋃

σ∈Σ

(
H∞

Γσ
(G)

)L∞
Γσ

(G)

c

]
.

The next result follows from Corollary 8.6.8 in the same way as Corollary
8.6.5 follows from Theorem 8.6.1.

Corollary 8.6.9. The algebra H∞
b(Q) +C

(
b(Q)

)
contains the spaces

(
H∞

b(Q)

)L∞
Q (b(Q))

wc

and
(
H∞

b(Q)

)L∞
Q (b(Q))

c
.

A uniform algebra A ⊂ C(X) is said to be tight [resp. strongly tight] if every
f ∈ C(X) is a wc-element [resp. c-element] for A, i.e. if (A)C(X)

wc = C(X) [resp.
(A)C(X)

c = C(X)] (cf. [CG, S]). Corollary 8.6.9 implies that the algebra H∞
b(Q) is

neither tight, nor strongly tight.

8.7 Notes

Most of the results in this section are from [GT, GT3, T3]. The idea for in-
volving inductive sequences of disc algebras and of H∞-spaces in exploring the
structure of algebras of generalized analytic functions originates in from [T] and
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[T2]. In particular, as shown in [T], the inductive limit algebraH∞
G of the sequence{

H∞
(1/n)Z(b(Q)), (zn/k)∗

}
n∈N

coincides with the algebra of hyper-analytic functions
on G introduced there. In this setting the set DΦ defined in (8.10) coincides with
the open big disc DG, the algebra H∞(DΦ) of Φ-hyper-analytic functions on DΦ,
introduced in Definition 8.1.8, coincides with the algebra H∞

G of hyper-analytic
functions, and Theorem 8.1.9 becomes the DG-corona theorem for the algebra H∞

G

of hyper-analytic functions on G, considered and proved in [T].
The idea for Blaschke algebras appeared in [T1] in connection with the study

of the big disc algebra AG with Ĝ ∼= Q. G-disc algebras which are inductive limits
of disc algebras were considered also in [T2].

Most of the results in Section 8.5 are from [GT]. The difference between
the algebra H∞

Φ (DΦ) and the space H∞(G) =
{
f∗ : f ∈ H∞(DG)

}
of boundary

values of bounded analytic functions in DG, and also from the weak∗-closure of
AΓ+ in L∞(G, σ) is shown in [T2]. Algebras that are similar to H∞

Φ (G) were
introduced by Curto, Muhly and Xia in [CMX] in connection with their study
of Wiener-Hopf operators with almost periodic symbols. The algebra H∞(G) is
isometrically isomorphic to the algebraH∞

APΓ+ (R)(R) ⊂ H∞(R) of boundary values
of almost periodic Γ -functions on R, extendable analytically on the upper half
plane. Similarly, the algebra H∞

J (DG) = lim
−→

{
H∞

(γ,n)(G)
}

(γ,n)∈J
from Section 8.5

is isomorphic to the algebraH∞
J (R) = lim

−→

{
H∞

(γ,n)(R)
}

(γ,n)∈J
⊂ H∞

APΓ+ (R)(R). By
Theorem 8.5.1 these two algebras are different. This answers one of the questions
raised by Curto, Muhly and Xia in [CMX]. Bourgain algebras of inductive limit
algebras were studied in [T3] The concept of tightness of an algebra was introduced
by Cole and Gamelin [CG] (see also [S]).

In principle, any G-disc algebra A(DG) can be expressed as the limit of an,
in general uncountable, inductive system of disc algebras

{
A(Dr), r ∈ Ĝ+ ⊂ R+

}
.

Indeed, assume that A(Dr) is realized as an algebra of continuous functions in the
closed upper half-plane C+, generated by the single function e−ir, i.e. A(Dr) ∼=
[e−ir]r∈Γ+ . For any r < s, set b = (s−r)/s+r). The function irs(z) =

b − z
1− bz maps

Dr onto Ds, and isr(e
−ir) = e−is. Therefore, for the G-disc algebra A(DG) we have

A(DG) ∼=
[
lim
−→

{
A(Dr), isr

}
r∈Γ+

]
. However, the connecting homomorphisms isr are

not necessarily adjoint to mappings of the unit disc DG into itself.
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DG(r)
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, 207, 208

C∗-, 246
G-disc, AΓ+ , A(DG), 123, 131,

148, 177–180, 182, 184, 191–
193, 197, 199, 201, 203, 207,
218, 227, 229, 236, 238, 240,
247, 248, 251–255, 262

R-invariant, 147, 148
ball, A(Bn), 7
Bourgain, 25, 27–29, 54, 181,

182, 184, 201, 258, 260
commutative Banach, 2, 4, 25,

26, 32, 33, 54, 57, 59, 85, 89,
110, 222, 230, 231, 254, 257,
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nested family of, 33, 34, 141,
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Frechét, 31
integrally closed, 149
polynomially closed, 55
quotient, 24, 32, 261
self-conjugate, 84
separating, 7, 84
shift-invariant, AS , 118–120,

122, 128, 130–132, 134, 141,
144, 148, 151, 153, 154, 174,

177, 181, 218, 236
tight, 262
topological, 29, 30, 54
uniform, see uniform algebra

almost periodic function, 57, 58, 74,
147, 262

S-function, 58, 59, 119, 148, 153,
154

analytic, 262
bounded, 175
on Rn, 119

analytic, 59, 193, 210
asymptotically, 60, 146

asymptotically, 59, 74, 144, 145
analytic, 146, 148

on Rn, 59
analytic, 125

on a group Γ , 84
weakly, 74, 148

analytic, 75
analytic Γ+-function, see analytic

function on a group
analytic function

S-function
periodic, 175

bounded, 235
in C, 6, 63, 74, 240, 250

bounded, 113, 132
in D, 31, 66, 67, 73, 75, 123, 125,

130, 132, 140, 142, 193, 210,
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bounded, 59, 75
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in a G-disc DG, 207, 238, 254
on a closed G-disc DG, 177, 178
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179, 201, 236

annulus, 240
G-annulus, 241
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local, 207, 241
uniform, 59, 120, 123, 179, 216,

259
weak, 223

Arens-Royden theorem, 252
Argument Principle, 250
automorphism

algebraic, 252
inner, of AS , 131
of �1(S), 115
of D, 27
of an algebra, 130, 131, 148, 251,

252

Baire Category Theorem, 34
Banach space, 1, 26, 34, 110, 212,

213, 218, 220
Banach-Alaoglu theorem, 4
Banach-Steinhaus theorem, 214, 217
basis, 32, 34, 38, 257

element, 34
neighborhood, 91, 93, 216
orthonormal, 86

Besicovitch’s theorem, 132, 196
big disc, see G-disc
big disc algebra, see G-disc algebra
bijection, 23, 122, 123, 129, 155, 173,

174, 219, 222, 223, 243
bipolar theorem, 215
Bishop’s Lemma, 13, 15, 51, 53

additive analogue, 15, 17, 44, 45
Blaschke

inductive limit algebra, 229, 238,
240, 247, 251, 252, 254

of annulus type, 241, 242
product

finite, 11, 193, 229–232, 234,
237, 238, 240, 242, 244–246,
248, 251–254

in C+, 193, 194
interpolating, 54

Bochner’s theorem, 57
Bohr compactification

b(G) (of a group G), 81, 84, 259
b(R) (of R), 81, 84, 120, 123, 144,

146, 159, 236
Borel

function, 85, 199, 211
set, 81, 86, 88

boundary
of a Banach algebra, 6, 10, 114,

122
minimal, 12

topological, bK (of a set K), 6,
9, 23, 106, 240

boundary value
function, 220, 229, 262

radial, 28, 29
mapping, 27

cancellation law, 96, 98, 102, 104,
109, 111, 120, 121, 126, 151,
156, 157, 159, 170

Carleson’s D-corona theorem, 230,
234, 235

Cartesian product, 20, 84, 97, 129,
245, 246

Cauchy integral formula, 62
Cayley–Hamilton Theorem, 34
Cesáro mean, 183
chain, 158, 164

of elements, in a system, 18, 235,
248, 253

character, 57, 59, 78–80, 82, 84, 85,
91, 94, 103, 114, 119, 120,
133, 138, 152, 163, 179, 181,
227, 252, 253

Choquet
boundary, δB (of a Banach al-

gebra B), 12, 15, 40, 42–44,
46, 50–52

codimension, 199
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233, 242, 243, 245, 251

convergence, 216, 255, 261
coefficient-wise, 225
pointwise, 4, 111, 122, 182, 183
uniform, 68, 74, 182, 183, 208,

212, 252, 253, 256, 260
weak, 260, 261
weak∗-, 220, 227

convolution
ϕ � µ (of function and measure),

88, 181, 204, 208, 214–216,
219, 224

µ�ν (of measures), 88, 180, 211,
218, 219, 224–227

f � g (of functions), 87, 89, 110,
213, 223

operator, 227
coordinate space, of a system, 19–21,

229, 235, 237
corona

C+-corona
of AS , 128, 154
of APS(R), 129
of H∞

S , 174
Cn

+-corona
of AS , 129
of APS(R), 129

DΦ-corona, of H∞(DΦ), 229
D-corona

of H∞, 235
of H∞

S , 129, 154, 174
DG-corona, 260

of H∞
G , 262

theorem
for H∞(DΦ), 234
for H∞

G , 262
coset, 78, 134

dilation, fr (of a function f), 61, 71,
207

directed set, 18, 19, 22, 254, 258
Dirichlet

coefficient, 58, 84

exponents, 58
series, 58, 74

absolutely convergent, 113
disc algebra, A(D), 4, 7, 8, 11, 25, 33,

123, 125, 130, 131, 140, 141,
178, 184, 191, 229, 237, 238,
240, 249, 253, 262

disc, D, 4, 21, 23, 27, 31, 54, 61, 63,
64, 66, 73, 75, 100, 101, 111,
119, 123, 142, 146, 154, 174,
191, 203, 205, 229, 230, 232–
235, 237, 240, 242, 244–246,
248, 250, 251

G-disc, DG, 105, 106, 109, 123, 125,
129, 146, 153, 154, 173, 174,
177, 178, 180, 192, 197, 204,
207–209, 215, 217, 219, 220,
230, 237, 247, 248, 254, 260

punctured, D∗
G, 105, 197

with radius r, DG(r), 203, 205,
208

disjoint union, 145, 160
Dunford-Pettis property, 54, 181

element
c-element, for A, 260, 261
wc-element, for A, 260, 261
Bourgain element, forA, 25, 258,

259
maximal, 100, 158, 164
minimal, 100

embedding, 10, 11, 96, 144, 171, 172,
175, 197, 241(
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(1)
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(2)
ı , . . . , j̃

(n)
ı

)
(of Cn

+ into
D bΓ1

×D bΓ2
× · · ·×D bΓn

), 129
j̃ı (of C+ into DG), 128, 132, 214
jı (of R into G), 83, 121, 131,

145, 154, 183, 186, 197, 198,
214, 221

algebraic, 235, 238, 251
group, 173

equivalence
biholomorphic, 28, 29
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class, 10, 18, 97
relation, 10, 18, 97

extension
analytic, 193, 226, 262
continuous, 225
harmonic, 71, 208, 215, 217, 220,

224
homomorphic, 152, 153, 172
of a semicharacter, 152, 155, 156,

163, 176
of an additive weight, 156, 158,

159, 161, 163–165, 167, 168,
172, 173, 176

of an algebra, 32
algebraic, 54
Arens-Hoffman, 32–34, 54
integral, 54
polynomial, 33, 35, 54
polynomial, strong, 35, 38, 55

of an order, 171

factorization, of a function, 193
Fatou’s theorem

for Mp
H(G), 225

in D, 223
finite intersection property, 41
Fourier

coefficient, 25, 64, 68, 71, 75, 84,
86, 118, 177, 210, 215

series
on T, 67
on a group, 86, 205, 209, 224

transform, 86, 87
Fourier-Stieltjes

coefficient, 87, 219
series, 87, 220
transform, µ̂ (of a measure µ),

87
fractional linear transformation, 60,

118, 129, 144, 154, 189, 197,
226

free module, 32, 34, 35
Fubini theorem, 69, 70, 89, 94, 209,

211, 216

function
A-holomorphic, 140, 143

bounded, 142, 149
CR-function, 125
H1-function, 193, 195
H∞(G)-function, 254, 259
L1(G,µ)-function, 224
L∞(G, σ)-function, 260
Lp-function, 68
S-function, 118, 120, 123, 145,

153, 154
C∗-peaking, 51
Φ-hyper-analytic, on DΦ, 234
Γ+-function, see analytic func-

tion on a group G
Hp(G)-function, 217
Lp,q(G)-function, 216
analytic, see analytic function
anti-analytic, 29
Bourgain element, 259
characteristic, κ

K
(of a set K),

5, 96, 100–102, 110, 152, 159
composition, 233
continuous, 3, 21, 57, 59, 68, 84,

87, 134, 141, 145, 179, 180,
193, 208, 212, 219, 221, 224,
230, 237, 240, 256

bounded, 59, 144, 193
vanishing at ∞, 59

harmonic, see harmonic function
hyper-analytic, on G, 260, 262
inner, 230, 234

singular, 118, 174, 193, 194,
200

integrable, 220
Lebesgue measurable, 68
locally holomorphic, 243
meromorphic, 194
orthogonal, 85
outer, 193, 195
peaking, 12, 40, 41, 43, 45, 49–53
periodic, 193, 256
unbounded, 207
uniformly continuous, 27
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unimodular, 194, 195, 197, 199
functional, 180

linear, 10, 24, 37, 86
bounded, 214
multiplicative, of an algebra,

3–5, 9, 32, 37, 111, 112, 121,
127, 144, 151, 178, 180

positive, 179
fundamental domain, of a homomor-

phism, 84, 226
Fundamental Theorem of Algebra, 33

Gelfand, 54
topology, 4, 122
transform, Â (of an algebra A),

177
transform, f̂ (of an algebra el-

ement f), 5, 6, 9, 122, 124,
125, 134, 140, 145, 197, 208,
244, 253

transformation, Λ, 5, 9
generalized analytic function, see an-

alytic function on a group
Gleason

metric, 248
part, 10, 247, 249

singleton, 246–250, 252
group, 20, 59, 77, 80, 95, 96, 134, 137,

151, 182, 248
abelian, 77, 78, 132, 231, 232,

237, 238, 240, 254–256
compact, 21, 23, 81, 82, 91,

117, 119, 122, 123, 128, 130,
132, 140, 142, 177, 181, 192,
203, 218, 221–223, 225, 226,
230, 232, 236, 240, 241, 252,
254, 255, 258

compact, 80, 120
dense in R, 84, 131, 196, 205
discrete, 80, 84
divisible, 182
dual, Ĝ (of a group G), 22, 78,

82, 84, 103, 104, 117, 122,
128, 130, 132, 133, 135, 177,

182, 203, 222, 225, 232, 239–
241, 254, 256, 260

envelope, ΓS (of a semigroup),
80, 84, 97, 103, 104, 109,
118, 120, 131, 151–153, 161,
162, 171–175

metric, 255
orthogonal, 83
proper, 135
quotient, 78, 82, 133, 134, 256
separable, 255
solenoidal, 83, 84, 119, 122, 129,

131, 154, 182, 191, 192, 247,
254

spanned, 169
topological, 77, 80, 84, 115

Hölder’s inequality, 70, 92, 211, 216
Hadamard’s product, 221–223
Hahn-Banach theorem, 8, 179
Hardy space

H1 (on T), 193, 225, 226
H1(R), 193
H1 ◦ w (on R), 226
H∞ (on T), 75, 174, 229, 234,

235, 240, 259
H∞(G) (boundary values of

H∞(DG)-functions on G),
254, 256, 257, 259, 262

H∞(DΦ) (Φ-hyper-analytic
functions on DΦ), 230, 232,
233, 235, 254

H∞(D) (bounded analytic func-
tions in D), 229, 230, 232,
234

H∞(R), 262
H∞(DG) (bounded analytic

functions in DG), 229
H∞

G (hyper-analytic functions on
G), 259, 261, 262

H∞
I (G) (I-inductive limit of
H∞-spaces), 254

H∞
S (S-functions in H∞), 60,

118, 129, 154, 174



276 Index

Hp (on T), 73, 75, 210
Hp(DG) (analytic Hp(DG)-

functions), 213
Hp

S(G) (S-functions in Hp(G)),
218

H1
0 (R), 200

Hardy-Bohr space,Hp(G) (boundary
values of Hp(DG)-functions
on G), 213

Hardy-Helson-Lowdenslager space,
see Hardy space Hp

S(G)
harmonic family

of analytic measures on G, 227
of functions on G, 204
of measures on G, µ̃, 223, 224,

227
Lp-harmonic, 225

harmonic function
S-function, on G, 218
H1(DG)-function, 219
H∞(DG)-function, 210, 212
Hp(DG)-function, 210
complex

in D, 60
in D, 60, 63, 64, 66–69, 71, 75,

203, 223, 225
conjugate, 61

in a G-disc DG, 204, 206–208,
224

real-valued, 204
homeomorphism, 11, 24, 44, 52, 60,

119, 121, 128–130, 145, 146,
153, 154, 174, 177, 232, 239,
245–247

homomorphism
algebraic, 10, 11, 18, 35, 38, 229,

237
connecting, of a system, 18, 230,

237, 238
algebraic, 232, 237

group, 20, 22, 77, 78, 84, 139,
163, 226

adjoint, 83

semigroup, 21, 96, 102, 104, 132,
153

hull
of a semigroup

bounded, [S]b, 142, 144
strong, [S]s, 171, 173, 175
strong, [S]Ps (in P ), 99, 104,

160, 161
weak, [S]w, 99, 126, 127, 137,

142, 149
weak, [S]Pw (in P ), 99

of an ideal, hull (I), 192, 222, 223
hyperspace, 223

ideal
of a semigroup, 97, 98, 100, 102,

126, 127, 160, 165, 167, 169
maximal, 98, 102, 167
minimal, 98, 102

of an algebra, 5, 38, 144, 148,
191, 192, 227, 260

Jω, of AΓ+ , 192, 193, 195, 197
closed, 223
left continuous, 192
maximal, 5, 36–38, 191, 192,

197, 199, 223
minimal, 223
one-dimensional, 222
primary, 191–193, 195, 197,

199, 201
proper, 5, 191
right continuous, 192
weakly closed, 222

idempotent
of a semigroup, 95, 100
of an algebra, 5

inductive
limit

algebra, 230, 232, 237, 238,
246, 259

of groups, 22, 236, 254, 258
of uniform algebras, 18, 54,

141, 143, 229, 232, 234, 236,
237, 239, 244, 262
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sequence, 19, 23, 241
adjoint, 23, 230, 232, 234, 237,

238, 241, 245
of uniform algebras, 21, 229,

230, 237, 238, 245, 251
system, 18, 19

adjoint, 22
of algebras, 259
of groups, 254, 257

injection, 172
inner product, 85
integral

element, 32, 34, 35, 54
representation, 65

inverse
element

in a group, 77, 97
in a semigroup, 95, 98
in an algebra, 2
of a character, 78, 102, 178

limit
of groups, 22, 232, 259
of sets, 20, 21, 231, 232, 237,

238, 247
sequence, 20, 22, 23, 141, 143,

230
adjoint, 242
of groups, 231
of sets, 237, 238, 241, 244, 247

system, 19–23
adjoint, 21

invertible element
in a Banach algebra, 2, 4, 5, 126,

236
in a semigroup, 95, 98, 164, 168

isomorphic sequences
inductive, 23, 24, 233, 242, 243,

245, 246, 251
inverse, 23, 24, 231, 247

isomorphism, 33, 34, 83, 199
algebraic, 39, 46, 48, 49, 53, 54,

246, 248, 250
group, 77, 78, 134, 161, 177, 205,

232, 236, 239, 240, 257

isometric, 9, 11, 26–28, 33, 60,
73, 82, 89, 118, 119, 123,
125, 130, 134, 145, 146, 153,
207, 216, 220, 229, 232, 235,
237, 239, 240, 242, 243, 245–
247, 251, 252, 254, 262

adjoint, 233
semigroup, 96, 101, 155, 172,

173, 247

kernel
Cauchy, 63, 64
group, GS (of a semigroup S),

96, 98, 100, 104–106, 108,
122, 167, 169, 170, 172

Ker (π) (of a homomorphism π),
84, 226

Ker (χ) (of a character χ), 78,
133, 183, 194, 206, 221, 225

Poisson, 63, 66, 203, 211
conjugate, 65

Laplace equation, 60, 203
Lebesgue decomposition

of a measure, 255
theorem, 227

lifting
µ̃ (of a measure µ), 198
of a function, 231
of a set, 231

limit, 216
L1(G, σ)-limit, 224
Lp(G,µ)-limit, 214
Hp-limit, 216
�1(S)-limit, 112
one-sided, 75
radial, 28, 213, 223, 225
uniform, 118, 124, 208, 240, 244
weak∗-, 220

linear
combination, 36, 84, 85, 87, 91,

94, 112, 118, 179, 208, 216,
222, 223, 227, 236

independence, 168, 169, 181
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mapping, 24
operator, 31, 34, 38, 48, 49, 205,

217, 252
bounded, 217, 258, 259
surjective, 205
upper-triangular form of, 38

space, 1, 24, 32, 109, 215, 223

Möbius transformation, 130, 131,
233, 240, 249, 254

manifold, 125
mapping, 122, 221, 222

adjoint, 10, 11, 21, 22, 141, 143,
230, 235, 237, 241, 243, 251–
254

biholomorphic, 28, 233, 243–246
connecting, of a system, 19
continuous, 24, 34, 118, 129, 147,

158, 164
covering, 197, 231, 250
n-sheeted, 244
countably-sheeted, 84
holomorphic, 233, 243

identity, 18–20, 175, 233, 243,
251, 252, 258

inclusion, 19, 20, 128, 141, 143,
199, 236, 240, 241, 252, 254,
258, 259

inverse, 122, 207
measure-valued, 223

continuous, 224, 225
projection, 20, 133, 161, 163, 194

maximal ideal space
MB (of a Banach algebra B),

4, 9, 21, 27, 38, 60, 81, 111,
121, 123, 125, 126, 128–130,
140–147, 149, 153, 154, 158,
174, 175, 177, 230, 237, 239,
241, 244–247, 249, 260

maximum modulus principle
for analytic functions in C, 6, 61
for analytic functions in DG, lo-

cal, 178

measure
absolutely continuous, 74, 200,

225, 227
mutually, 211, 215, 226

analytic, 184, 225, 227
atomic, 221
Borel, 8, 74, 81, 86, 87, 94, 95,

179, 195, 213, 218, 220, 224–
226, 255

Dirac, 200, 255
Haar, σ, 81, 82, 95, 134, 179, 206,

220, 222, 225, 227, 259
Lebesgue, 74, 193, 200
orthogonal, 197, 201, 227, 255
probability, 208, 222, 226
representing, 8, 178, 180, 203,

210, 215, 217, 218, 255
singular, 193, 194, 200, 220, 225,

227, 255
mutually, 194

modulus (of a point in DG), 106
monotone function

decreasing, 151–156
increasing, 156–158, 165, 176

Montel’s theorem, 31

neighborhood, 30, 91, 93, 140, 145,
183, 255, 256

nested family of, 255
norm, 1, 24, 32, 34, 35, 37, 73, 218,

220, 258
L1(G, σ)-norm, 224
L∞-norm, 85
L∞(G, σ)-norm, 260
Lp-norm, 68, 70, 75, 85, 210, 213
Hp(DG)-norm, 212
�1(S)-norm, 110, 111
component-wise, 32
sup-norm, 174, 183, 208
total variation, 213
uniform, 4, 7, 57, 59, 85, 124

null-set
Null (ψ) (of a semicharacter ψ),

100, 144
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Null (f) (of a function f), 140,
142, 149, 193, 194

Null (ϕ) (of a linear multiplica-
tive functional ϕ), 5

number
complex, 200, 251, 252
dyadic, 22
integer, 182, 236, 252, 255
irrational, 119, 138, 153, 160,

171, 173, 174
natural, 191, 199, 235, 241, 246,

248, 250, 251, 254, 255, 259
non-negative, 192, 193, 200
positive, 153, 217, 255
prime, 127

relatively, 99
rational, 173, 231, 238, 240, 241,

257
real, 162, 173, 194, 195, 211, 224,

241, 246, 249

Open Mapping Theorem, 34
operator

R-linear, 39
T-homogeneous, 46, 48
σπ-additive, 39, 42, 44, 46, 47,

55
σπ-multiplicative, 39, 49, 52, 53,

55
Bochner-Fejér, 92, 115
completely continuous, 25–30,

181
composition, 232–234
Hankel type, 24–28, 30, 54, 181
monotone increasing in modulus,

40–42, 49
norm-multiplicative, 49, 51
Wiener-Hopf, 262

origin
(0, 0, . . . , 0) (of Rn), 101, 119
ω (of a G-disc), 106, 192, 197,

207, 247–250, 252, 253
ω (of an inverse Blaschke limit

of discs, DB), 249

0 (of R), 100

Parseval’s identity, 255
partial order, 158, 164, 170, 171, 237,

254, 259
S-order, 122, 151, 152, 155, 156,

165, 170, 181, 258
Archimedean, 122, 170–172, 178
in R, 152
in the set of idempotents IS , 96
in the set of semicharacters

H(S), 100
total, 170, 171

partially ordered set, 18, 254
peak

function, 138
group, relative to AS , 138
point, 11, 134, 136, 255
set, 12, 42–45, 50–53, 132, 134
subset of X , relative to an alge-

bra, 136–138
p-

group, for AS , 136
point, 12, 38, 41, 43–46, 50–53
set, 12, 132, 134
subset of X , relative to an alge-

bra, 136
period, of a function, 193
Phragmen-Lindelöf theorem, 114
Poincaré Theorem, 29
point

accumulation, 145
derivation, 37, 38
evaluation, 4, 9, 129, 144, 192,

255
fixed, 251
isolated, 79
single, 106
singular, 232, 240, 242–246, 250

Poisson
integral, 74, 215

representation, 65, 66
measure, 214
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polar decomposition (of a point in
DG), 103, 104, 112, 152

polydisc, Dn (in Cn), 7, 28, 118, 124
algebra, A(Dn), 7, 118, 119, 132,

141
G-polydisc, Dn

G, 124, 125, 129, 170
polynomial, 26, 31, 32, 34, 35, 37, 75,

123, 141, 183, 205, 237
degree of, 32, 33, 35–37
exponential, 57, 58

in Rn, 59
in n variables, 33, 34
leading coefficient of, 32
monic, 32, 35, 37

S-polynomial, on a group, 84, 118,
120, 121, 124, 192, 196, 208

Pontryagin’s duality theorem, 80–82,
84, 120, 135

power series, 62, 67
absolutely convergent, 62, 68
expansion, 61, 208
Taylor, 184

predecessor, 181

Radó’s
property, 140, 142
theorem, 140, 142, 148

Radon-Nikodym
derivative, 215, 217, 220, 225

range, 25
restriction

algebra, 7, 9, 10, 140, 196, 207,
226, 237, 240, 246

map, 27, 104, 126, 129, 158
of a function, 61, 118, 140, 154,

163, 165, 166, 197, 207, 210,
213, 233, 244, 248, 258

of an order, 171
Riemann, 148

property, 142
weak, 149

sum, 121
surface, 118, 231, 236, 242
theorem, 142

Riesz representation theorem, 86,
179, 225

Rossi’s Local Maximum Modulus
Principle, 9, 54

Schwarz’s lemma, 143, 249
semicharacter, 99, 101, 103, 104, 108,

111, 112, 126, 151, 152, 154,
155, 159, 163, 175, 176

idempotent, 100, 104–109, 130
non-vanishing, 152
trivial, 100
unit, 100

semigroup, 20, 83, 95, 96, 101, 109,
111, 117, 119–122, 126–129,
132, 134, 141–143, 148, 151–
153, 155, 156, 158–160, 162–
164, 166, 168–171, 173, 175,
176, 181, 207, 218, 223

boundedly enhanced, 142, 144
compact abelian, 21
complete, 160, 161, 163, 164,

166, 168, 172
conic, 173
operation, 95, 96
proper, 158, 167
strongly enhanced, 99

in P , 160, 161, 163, 164, 166,
168, 169

weakly enhanced, 99, 137–141
sequence, 183

bounded, 26, 252
Cauchy, 1, 30, 90, 208, 212, 214,

217
weakly, 30

class of, 54
weakly bounded, 31
weakly null, 24–26, 28, 30, 31,

183, 258
shift

of a function
in R, 57, 74, 121, 147, 148
in Rn, 59
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in a group, 82, 84, 120
of a measure

in a group, 226
Shilov, 54

boundary, ∂B (of a Banach alge-
bra B), 7, 8, 10–13, 15, 17,
21, 54, 114, 122, 124, 134,
149, 178, 180, 199, 239, 240,
244, 246–248, 252

idempotent theorem, 5
singleton, 248
singularity

of a covering map, 84
of a function

removable, 142
space

AP (R) (almost periodic
functions), 144, 145

AP as(R) (asymptotically almost
periodic functions), 60, 144,
145, 147

AP as
a (R) (asymptotically analy-
tic almost periodic func-
tions), 60, 146

APS(R) (almost periodic S-
functions), 58, 119, 121,
125, 129, 153, 154, 174, 175,
179, 193, 194

APS(Rn) (almost periodic S-
functions on Rn), 119, 125,
129

APa(R) (analytic almost perio-
dic functions), 59, 145

APa(Rn) (analytic almost peri-
odic functions on Rn), 129

APw(R) (weakly almost periodic
functions), 148

Ab(C+) (bounded analytic func-
tions), 195, 197

AB
c (c-elements for A in B), 261
AB

wc (wc-elements for A in B),
261

C(X) (continuous functions), 4,
179, 180, 207, 209, 211, 218,

219, 223, 239, 244, 253, 258,
261

C0(R) (vanishing at ∞ continu-
ous functions), 59, 144

CR(X) (real-valued continuous
functions), 179, 180

Cb(X) (bounded continuous
functions), 28, 29, 57, 59,
144, 146, 230, 234

Cu(X) (uniformly continuous
functions), 27

G-plane, CG, 178, 238
H(S), H(S,D) (semicharacters),

101, 102, 104, 105, 111, 121,
123, 151, 153, 155, 173, 177

H(S, (0, 1]) (positive semicharac-
ters), 104, 152

H(S, [0, 1]) (non-negative semi-
characters), 104, 155, 173

H(S,T) (characters), 102, 103,
114, 115

H(S1, S2) (homomorphisms), 96
H
(
S,D

∗)
(non-vanishing semi-

characters), 152
H∞

G + C(G), 260
IS (idempotents), 96
K⊥ (of a set K), 133
K⊥

S (of a set K), 134
L1(G,µ), 220
L2(G,µ), 85, 86
L∞(G,µ), 194
L∞

Γ (G,µ), 260
Lp (on T), 210
Lp(G,µ), 213, 215–217, 223, 225
M(G) (Borel measures), 213,

218, 220, 223, 224, 226
M1(G), 219
M1

(1/e)(G) (M1
(1/e)(f)-measures),

220
M(1/e)(f), 220
MΓ+(G) (analytic measures on

G), 225–227
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P (G) (linear combinations of
characters on a group G),
84, 91

PS(G) (S-polynomials on a
group G), 84, 121

V (DG, G), 260
C (complex numbers), 1, 4, 142,

214, 222, 238, 240, 252
C+ (upper half-plane), 58, 113,

129, 146, 154, 174, 178, 193,
197, 226, 262

Cn
+, 129, 158, 164, 170
Br, 248–251
B0

r (vanishing at 0 Blaschke
products in Br), 248

H(D) (harmonic functions in D),
60, 205

H(DG) (harmonic functions in
DG), 204, 207, 211, 215

H1(DG), 219, 220
H∞(DG) (bounded harmonic

functions), 210
Hp(G) (boundary values of

Hp(DG)-functions), 213,
217, 218

Hp(DG), 210, 212, 215, 216, 221–
223

Hp
S(DG) (S-functions in
Hp(DG)), 223

Hp
c(G) (boundary values of
Hp

c(DG)-functions on G),
213

Hp
c(DG), 212, 223

HR(DG) (real-valued harmonic
functions in DG), 204

Hc(DG) (harmonic functions on
DG), 208, 209, 223

IS , IH(S) (idempotent semi-
characters), 100

MH(G) (harmonic families
of measures on G), 223, 224

Mp
H(G) (Lp-harmonic families

of measures), 225
Mp

H,Γ+
(G) (Lp-harmonic fami-

lies of analytic measures on
G), 227

N (natural numbers), 168, 191,
206, 234

Q (rational numbers), 22, 182,
229, 231, 232, 236, 239–241,
257, 259

R (real numbers), 79, 119, 123,
145, 160, 161, 179, 182, 192,
193, 201, 203, 205, 209, 214,
226, 236, 240, 257, 260

Rn, 59, 109, 119, 124, 125, 129
Rn

+, 96, 109, 124, 125, 129, 158,
164, 170

R+ (non-negative reals), 97, 123,
145, 155, 160, 171, 173–175,
236

Θ(S) (additive weights), 155,
156, 158, 159, 162–165, 168,
172, 175

Θ(S,R) (R-valued additive
weights), 172, 173, 175

Z (integers), 78, 171, 175, 205,
225, 226, 234, 236, 239, 240,
259

Zk, 257
Z+ (non-negative integers), 155,

160, 168, 171, 172
Zn

+, 96, 101, 124
Lp,q(G), 213–216, 218, 223
Lp,q

S (G) (S-functions in
Lp,q(G)), 223

O(D) (analytic functions in D),
205, 206

O(DG) (analytic functions in
DG), 205, 207

OA(U) (A-holomorphic func-
tions), 140

�1(S), 109, 110, 115
F(A) (peaking functions of A),

12–15, 40, 42, 49–51
Fx(A), 12, 41, 43–45, 50–53
C∗ · Fx(A), 51
℘(S) (p-groups for AS), 136–139
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M̃(K × R) (locally finite mea-
sures), 226

M̃1(K × R), 226
countable, 255
dual, X∗ (of a Banach space X),

26, 85, 215
Hilbert, 85
pre-Hilbert, 85

spectral radius, 3, 6
spectrum

σ(f) (of an algebra element f),
3, 6, 54, 55

direct, see inductive system
inductive, see inductive system
inverse, see inverse system
projective, see inverse system
peripheral, σπ(f) (of an algebra

element f), 3, 6, 39, 40, 42,
44, 46–50, 54

sp(B) (of a Banach algebra B),
see maximal ideal space

sp (µ) (of a measure µ), 87, 200,
218, 220, 225

sp (f) (of a function f), 58, 87,
141, 144, 174, 193, 194, 196,
206, 208, 218, 223, 254, 255,
259

Stepanov’s
space, see space H(DG)
Lp-space, see space Hp(DG)

Stone-Weierstrass theorem, 31, 82,
84, 86, 91, 178, 180, 208

subgroup
dense, 214
maximal, 96

subspace
dense, 218
of an algebra

closed, 258
invariant, 38
proper, 207, 257
spanned, 38
weak∗-closed, 262

proper, 218
successor, 18
support set

supp (ϕ) (of a semicharacter ϕ),
100, 105

supp (µ) (of a measure), 180,
193, 194

supp (f) (of a function f), 110

topological space, 24
compact, 4, 7, 9, 20, 23, 27, 125,

132, 145, 178, 183, 230, 238,
241, 244–248, 252, 255

complete, 1, 85, 214, 217
connected, 252
dense, 91, 122, 143, 154, 174,

175, 178–180, 215, 216, 230
uniformly, 122
weak∗-, 227

Hausdorff, 4, 9, 27, 232, 238, 252
of the second category, 34
separable, 141, 143
simply connected, 250
weakly compact

relatively, 74
topology, 25, 123, 145, 147, 216

compact-open, 31, 80
discrete, 104, 259, 260
uniform, 80
weak∗-, 5, 94, 95, 213

torus, Tn, 7, 78, 118, 119, 132, 137
solid, 124

trace, fr (of a function f), 61–68, 74,
204, 207, 216, 254

uniform algebra, 7, 8, 11, 18, 19, 27,
38, 54, 59, 118, 120–122,
124, 132, 140, 142, 144, 147,
149, 153, 191, 229, 237–241,
243, 244, 247, 248, 250, 261

analytic, 128, 143
antisymmetric, 7, 8, 122, 130,

148, 178, 253



284 Index

Dirichlet, 8, 21, 179, 180, 239,
247

integrally closed, 141
maximal, 7, 122, 178, 179, 182,

184, 239, 240, 244, 253
on X , 7

polynomially closed, 38
tight, 261

strongly, 261
Uniform Boundedness Principle, 31
unit

ball (in a Banach space), 217,
261

ball, Bn (in Cn), 7, 28
circle, T, 21, 22, 25, 27, 60, 61,

68, 73, 78, 102, 123, 132,
145, 147, 205, 210, 225, 226,
229, 231, 234, 237, 240, 252,
259, 260

element
ı (of a group or semigroup),

77, 91, 95, 101, 181, 183,
255, 256

χ0 (of the dual group), 117,
123, 181

e (of a Banach algebra), 2, 5,
32, 34, 54, 60, 110

sphere (in Cn), 7
sphere, SB (of a Banach space

B), 4
Urysohn’s Lemma, 91

van Kampen’s theorem, 252, 253

Wermer’s maximality theorem, 8

zero element (of a group or semi-
group), 77, 95, 97

Zorn’s Lemma, 5, 158, 164
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