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Preface to the German Edition

Complex analysis has produced a large number of deep recumbent and aesthetic
results in its more than 200 year-old history. In the classical context complex
analysis is the theory of complex differentiable functions of a complex variable,
or also the theory of holomorphic functions. These are the solutions of a (2 × 2)-
system of partial differential equations, which usually are called Cauchy–Riemann
differential equations (CRD).

Indeed, the algebra of the real quaternions of W.R. Hamilton has been available
since 1843 and the real Clifford algebra of W.K. Clifford since 1878, but until the
1930s the prevailing view was that complex analysis is a purely two-dimensional
theory. Only the group around the Swiss mathematician R. Fueter and the Ro-
manian mathematicians G.C. Moisil and N. Teodorescu around 1930 started to
develop a hypercomplex analysis in the algebra of real quaternions and in real
Clifford algebras. In the late 1960s a group of Belgian mathematicians around R.
Delanghe in Ghent created a rich higher dimensional analogy to complex analysis,
called Clifford analysis. Since 1990 the number of relevant articles and books has
increased significantly. Today intensive research is going on in Clifford analysis to
which the more than 9000 entries in our database on the relevant literature testify.
The database can be found on the CD attached to our book.

The purpose of the present textbook is to collect the essentials of classical complex
analysis and to present its higher dimensional generalizations at a level suitable
for university instruction. The typical users we have in mind are, first of all, stu-
dents of mathematics and physics, but also students of any discipline requiring
some sophisticated mathematics from the second year onward. The material to be
covered is extensive, and we have attempted to make it as self-sufficient as possible
within the limits of a modest size book. We have covered not only analytical and
geometrical aspects but numerical procedures as well. Historical references outline
the development of the field and present some of the personal characteristics of
the most important personalities who have contributed to that history.

In the first chapter complex numbers, quaternions, and the Clifford numbers are
introduced. We have emphasized the parallelism of our presentation. Quaternions
and Clifford numbers take up more space than complex numbers. Besides the
algebraic and geometrical properties we treat in particular also rotations and rep-
resentations.

In Section 4 we illustrate the topological and analytical basic facts for the treat-
ment of functions up to Riemann spheres. This section is deliberately kept short in
view of its relationship to classical analysis. Section 5 treats some of the possible
definitions of holomorphic functions. We keep this name also in higher dimen-
sions, because the definitions are almost independent of dimension. The standard
literature uses here mostly the concept of Weierstrass monogenic functions. How-
ever, it seems to us at least debatable whether this best describes the meaning
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of the definition (cf. end of Section 5). Also, the notion of holomorphic functions
fits conceptually better that of meromorphic functions. Since the articles by H.
Malonek the concept of holomorphic functions can be introduced also via local
approximation by suitable linear functions, so even in that context the analogy
holds in all dimensions. Section 6 is devoted to “simple” functions, namely powers
and Möbius transforms. The polynomials named after R. Fueter are suitable as
power functions in higher dimensions since they have many nice qualities. Unfor-
tunately, the reduction of Fueter polynomials to the planar case leads to powers
(−iz)n and not to zn; however, the parallelism is still given. In particular L.V.
Ahlfors has studied Möbius transforms in higher dimensions. Here too the clear
comparability of all dimensions can be recognized.

We have put together the necessary aids for integration in Appendix 2, and a short
introduction to the theory of differential forms in Appendix 1. We believe that
this can be helpful, because in lectures to beginners these areas are often treated
only very briefly, if at all. Indeed, we do not include the proof of Stokes’ integral
theorem as this would lead too far away from the subject. Then in Chapter III
Cauchy’ s integral theorem and the Borel–Pompeiu formula are easy consequences
of Stokes’ theorem. However, we also consider the boundary value formulae of
Plemelj–Sokhotzki. Conclusions on Cauchy’s integral formula follow. Moreover, the
Teodorescu transform is examined and the Hodge decomposition of quaternionic
Hilbert space is treated. The needed functional spaces are briefly introduced in
Appendix 3.

Chapter IV is devoted to different areas of hypercomplex analysis. We firstly treat
Taylor and Laurent series. The effort is clearly larger in higher dimensions than
in the plane, but the similarity helps. Unfortunately, the Taylor series in dimen-
sions greater than 2 are not orthogonal expansions. For quaternions orthogonal
expansions are introduced, which are especially adequate for numerical purposes.

The elementary functions in the plane have no special difficulties. They are given
more or less canonically. For all generalizations to higher dimensions, a royal way
does not exist symptomatically. Different generalizations of the exponential func-
tion are pointed out, and one generalization given by the method of separation of
variables is developed. This exponential function has some nice properties and is
an appropriate kernel for the Fourier transform of quaternion-valued functions.

Section 12, which explores the local structure of holomorphic functions, shows that
in higher dimensions this is still an active field of research. The pleasant qualities
of zeros and isolated singularities in the plane at first sight get lost in space. There
is still no suitable structure in which to understand all the relevant phenomena.
At least the residue theorem can be transferred, and also first attempts for an
argument principle were found.

Section 13 deals with special functions. The Gamma function and the Riemann
Zeta function are treated, followed by considerations about automorphic functions
and forms in C�(n) which offer an insight into the latest research in this field.
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Problems at the end of every section should help the reader toward a better un-
derstanding of the corresponding area. The use of the skewfield structure of the
real quaternions allows one to formulate some statements more precisely and in
a more readable form than in general Clifford algebras. Since applications in R3

and R4 are of special interest, we have sometimes waived the more general case of
real Clifford algebras C�(n).

Results of many colleagues working in the area of Clifford analysis are used in the
presentation of higher dimensional results. We thank especially our colleagues Pro-
fessor Krüger (Kaiserslautern/Germany), Professor Malonek (Aveiro/Portugal),
and Professor Kraußhar (Leuven/Belgium), who helped us to write some of the sec-
tions. We discussed details with Professor Sommen (Ghent/Belgium) and Profes-
sor Shapiro (Mexico-City/Mexico). We thank Professor Jank (Aachen/Germany)
and the editor Dr. Hempfling (Birkhäuser) for improving the typescript. Critical
remarks by the referees of a first version of the book were of great value for us.
M. Sprößig and T. Lahmer helped us by very carefully
long work for this book.

Weimar, Aachen and Freiberg, August 2005

Klaus Gürlebeck, Klaus Habetha and Wolfgang Sprößig



Preface to the English Edition
We thank the publisher for the opportunity to translate this book into English.
Of course we have corrected all mistakes we found in the German edition, other
changes have been made only rarely.
We thank in particular Professor E. Venturino (Torino/Italy) who translated one
chapter of the book, but also improved the translation of the rest of the book.
Some sections have been translated by M. Schneider and A. Schlichting who are
students in Freiberg/Germany.
Weimar, Aachen, Freiberg, May 2007
Klaus Gürlebeck, Klaus Habetha, Wolfgang Sprößig
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Numbers



2 Chapter I. Numbers

1 Complex numbers

1.1 The History of Their Discovery

The European Renaissance as rebirth of humanistic thought began in the middle of
the fourteenth century in Italy and had its maximal development in the sixteenth
century, in which with some delay the ideas of renewal of natural sciences and
mathematics were accepted. In particular, algebra experienced a push forward,
but also important results came from mechanics, astronomy, trigonometry and
geometry. A few learned men began to build on the mathematical results of the
ancient scientists. Thus the works of Archimedes, Apollonius, Euclid and
Heron of Alexandria became of remarkable interest. It was discovered that in
the year 50 A.D. already Heron in his book Stereometria had described roots of
negative numbers.

The main influence on the algebraically oriented
mathematics of this time came from the Arabic
world. Rules for finding roots of negative numbers
were described for the first time in 499 in the prin-
cipal work Āryabhat.ȳıa of Āryabhat.a the older.
Through the method of “completion of the square”,
the Babylonians were able to solve quadratic equa-
tions with positive coefficients.
The algebraists of the Renaissance had two principal
tasks: to extend the number system in order to un-
derstand the meaning of negative and complex num-
bers, and to develop an efficient mathematical sym-
bolism. Girolamo Cardano

With the exception of Diophantus of Alexandria, the ancient Greek and
Arabic mathematicians were accustomed to describing mathematical situations
by rhetorical means. With his principal work, printed in 1545 in Nürnberg Artis
magnae sive de regulis algebraicis or simply Ars magna, Girolamo Cardano
(1501–1576) established the foundations of modern mathematics. In his book he
not only showed how to solve cubic equations, but using roots of negative numbers
he gave also the formulas for solving algebraic equations of fourth order. Cardano
himself is seen as personification of the Renaissance. In a singular way he was able
to bridge the Middle Age and modern perspectives. On the one hand he was an
adept and active practitioner of occultism and of natural magic. He authored
general treatises on palmistry and the meaning of dreams, and he wrote about
spirits, angels, and deamons. On the other hand, his researches are completely
free from mystical and supernatural influxes. The solution methods that he made
public were based on firmly established results of his predecessors.
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These methods date back to Scipione dal
Ferro (1465–1526) and Niccolò Fontana
(“Tartaglia”) (1500–1557). Although he swore
to Tartaglia, who gave him the “secret knowl-
edge” for solving algebraic equations of third and
fourth order, not to publish these new methods
without Tartaglia’s consent, Cardano consid-
ered it his duty to make them known to the math-
ematical world of that time, indicating their dis-
coverer. The story of the Ars magna is indeed a
fascinating historical episode.

Niccolò Fontana

A new stage began with René Descartes (1596–1650). He introduced in 1637 the
terms real and imaginary and with his works in general tried to popularize these
new concepts. Albert Girard (1595–1632) gave geometrical interpretations of
roots of negative numbers. Also references to imaginary numbers are found in the
writings of the German universal scientist Gottfried Wilhelm Leibniz (1646–
1716). He writes in 1675 that an imaginary number is “a wonderful creature of
an ideal world, of amphibic nature between the things which are and those which
are not.” Later, general contributions were made by John Wallis (1616–1703),
Roger Cotes (1682–1716) and above all by Leonhard Euler (1707–1783),
who in 1777 introduced also the symbol i =

√
−1, shortly after having discovered

the relation

eiϕ = cos ϕ + i sin ϕ

and from it the astonishing result:

eiπ + 1 = 0.

The concept complex number was introduced only in 1832 by Carl Friedrich
Gauss. Since then, for a complex number z the notation z = x + iy became
standard. The introduction of complex numbers as pairs of real numbers dates
back to William Rowan Hamilton (1837).

1.2 Definition and Properties
The complex numbers can be defined in several different ways: we try to remain
consistent through the following chapters and begin by defining an extended field
of the real numbers R. We have then to establish a set and corresponding rela-
tionships.

Definition 1.1 (Field of the complex numbers). Let the set C := {z : z = (x, y),
x, y ∈ R} be the set of ordered pairs of real numbers. The numbers x and y are
called the coordinates of z.
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Componentwise Addition is defined as

z1 + z2 := (x1, y1) + (x2, y2) := (x1 + x2, y1 + y2)

for
zi = (xi, yi) ∈ C,

and multiplication with a real number a as

a(x, y) := (ax, ay).

Multiplication is defined as the linear continuation of the multiplication of the
basis elements 1 and i, where 1:= (1, 0) represents the multiplicative unit element
and i := (0, 1) satisfies the rule i2 = −1.

Some remarks: multiplication with real numbers allows the usual representation
for the complex numbers:

z = (x, y) = 1x + iy = x + iy.

Thus in place of x + i0 we can simply write x, and in place of 0 + iy simply iy, in
particular in place of 1 only 1 (or nothing at all). The continuation of multiplication
of the basis elements is carried out through formal expansion of the product

z1 z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + y1x2),

where we apply i2 = −1.

The pair (0, 0) is the neutral element of addition. To prove that addition and mul-
tiplication in C are associative and distributive is a somewhat tiresome exercise,
while commutativity follows immediately from the definition. All nonzero elements
have multiplicative inverses. Thus C is a field, the field of complex numbers.

If we identify the complex numbers x + i0 with the real numbers, then addition
and multiplication in C correspond to those in R, so that C is an extension field of
R. Also the above defined multiplication by a real number, which leads to a vector
space structure, is encompassed by the multiplication in C.

The complex numbers x + iy clearly correspond in a one-to-one manner to the
vectors

(
x
y

)
of the vector space R2, however vectors cannot be multiplied as complex

numbers, so that the structure of C is richer.

In higher dimensions the basis elements are frequently denoted by e0, e1 and so
on: in the plane this is not yet necessary, as here the use of summation signs does
not introduce any simplification.

Definition 1.2. x =: Re z is called the real part and y := Im z the imaginary part
of the complex number z = (x, y). The number z := x − iy is called the complex
conjugate of z. The expression |z| :=

√
zz =

√
x2 + y2 will be denoted as modulus

or absolute value of z.
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The modulus of a complex number is obviously equal to the Euclidean norm of
the corresponding two-dimensional vector.

Proposition 1.3. Let z, z1, z2 ∈ C be given. Then the following relations hold:

(i) Re z = z+z̄
2 , (ii) Im z = z−z̄

2i ,

(iii) 1
z = z

|z|2 , z �= 0, (iv) z1 + z2 = z1 + z2,

(v) z1z2 = z1 z2, (vi) z = z,

(vii) |z1z2| = |z1||z2|, in particular for all n ∈ Z (viii) |zn| = |z|n,

(ix) |z| = | − z| = |z|.

Proof. The relations (i)–(vi) and (ix) require only simple calculations. For (vii) write
|z1z2|2 = z1z2z1z2 = z1z1z2z2 = |z1|2|z2|2 . �

This proposition shows that conjugation is exchangeable with addition and mul-
tiplication in C: (iv), (v) and (vi) mean that conjugation is an involution. Thus in
physics and operator theory frequently the notation z∗ is used in place of z. The
reader should convince him/herself that conjugation is the only automorphism in
the algebra C apart from the identity. An example follows:

Example 1.4. If we want to split a fraction of complex numbers in its real and
imaginary parts, we have to expand it with the complex conjugate part of the
denominator as follows:

i + 3
2i − 4

=
(

i + 3
2i − 4

) (
−2i − 4
−2i − 4

)
=

−10 − 10i

20
= −1

2
− i

2
.

Remark 1.5. Proposition 1.3 contains the following statements: a sum of two
squares can be written as the product of linear expressions, obviously using the
complex unit i:

x2 + y2 = (x + iy)(x − iy).

Moreover, the two-squares-theorem holds:

(x2
1 + y2

1)(x
2
2 + y2

2) = (x1x2 − y1y2)2 + (x1y2 + y1x2)2,

which says that a product of two sums of two squares can be written again as the
sum of squares. In higher dimensions an extensive theory has been constructed
around this theorem (see [66]).

Now a few inequalities concerning the modulus of a complex number follow:

Proposition 1.6. For the modulus of a complex number we have

(i) |Re z| ≤ |z|, |Im z| ≤ |z|,
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(ii) |z1 + z2| ≤ |z1| + |z2| (triangular inequality),

(iii)
∣∣|z1| − |z2|

∣∣ ≤ |z1 − z2|.

With the so-called Euclidean distance |z1−z2| of two complex numbers, C becomes
a metric space. In Section 4.1 we will investigate this more closely.

Proof. We show only the triangular inequality and (iii) with the help of Proposition 1.3
and (i):

|z1 + z2|2 = (z1 + z2)(z1 + z2) = |z1|2 + |z2|2 + 2Re(z2z1)

≤ |z1|2 + |z2|2 + 2|z2||z1| = (|z1| + |z2|)2.

We obtain (iii) from (ii), since |z1| = |z2+z1−z2| ≤ |z2|+|z1−z2|, also |z1|−|z2| ≤ |z1−z2|.
Now we can interchange z1 and z2, one of the two left sides equals

∣∣|z1| − |z2|
∣∣, so that

(iii) follows. �

Im

y

x Re

z = x + iy

ϕ

Figure 1.1

Complex numbers can be represented as points in the so-called Gauss or Argand
plane, also Gaussian plane, with rectangular coordinates or with polar coordinates
(see Figure 1.1). Every complex number z = x + iy with r := |z| can be described
as follows:

z = r
z

r
= r
(x

r
+ i

y

r

)
= r

(
x√

x2 + y2
+ i

y√
x2 + y2

)
= r(cos ϕ + i sin ϕ).

The last representation is called the trigonometric form or polar form of the com-
plex number z. As in R2, r and ϕ are called the polar coordinates of z. Thus r gives
the distance of the point z from the origin of the Gaussian plane and ϕ describes
the angle between the positive real axis and the segment joining 0 and z. The
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coordinate ϕ is called the argument of z and is denoted by arg z. For −π < ϕ ≤ π,
we speak of the principal value of the argument. In general we use in calculations
the principal value. But fundamentally the argument is determined up to integer
multiples of 2π.

The formulae relating Euclidean and polar coordinates are, for x �= 0 :

x = r cosϕ, y = r sin ϕ, r =
√

x2 + y2, ϕ = arctan
y

x
.

If ϕ lies in the second quadrant, one has to add π, while if it lies in the third
quadrant, one has to subtract π to obtain the principal value of the argument.
We assume that the arctangent has values between −π/2 and π/2 as its argument
moves from −∞ to ∞.

In 1799 Caspar Wessel represented complex numbers by geometric figures
in the plane. However little notice of his work was taken. Independently, the
accountant Jean Robert Argand found in 1806 a geometric interpretation
of complex numbers. Finally it was C. F. Gauss who represented complex
numbers by means of arrows in the plane, a notation that remained in constant
use thereafter.

Due to simplicity of use, complex numbers in polar coordinates are particularly
suited for multiplication and division (Figure 1.2).

Proposition 1.7. Complex numbers are multiplied by multiplying their moduli and
adding their arguments. They are divided by dividing the moduli and subtracting
the arguments.

Im

Re
ϕ1

ϕ2

ϕ1 + ϕ2 z1

z2

z1z2

|z1z2|

Figure 1.2
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Proof. Let two complex numbers be given in trigonometric form z1 = r1(cos ϕ1+i sin ϕ1)
and z2 = r2(cos ϕ2 + i sin ϕ2). By expanding the multiplication we have

z1z2 = r1r2[(cos ϕ1 cos ϕ2 − sin ϕ1 sin ϕ2) + i(cos ϕ1 sin ϕ2 + sin ϕ1 cos ϕ2)]

= r1r2[cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)].

For the division we obtain
z1

z2
=

r1

r2
(cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2)) . �

An important consequence is the formula of year 1707 named after Abraham de
Moivre (1667–1754)

Corollary 1.8 (De Moivre formula). For all n ∈ Z with z = r(cos ϕ + i sin ϕ) we
have

zn = |z|n(cos nϕ + i sin nϕ),

where any argument ϕ of z can be used.
Proof. The proof for positive n ∈ N follows by a simple mathematical induction. For
n = 0 on both sides of the formula we have 1 and for negative n one has to change the
sign of the formula for positive n, paying attention to the fact that (cos nϕ + i sin nϕ) ·
(cos nϕ − i sin nϕ) = 1. �

The de Moivre formula allows the root extraction of every complex number:

Proposition 1.9 (Rootfinding). Let the complex number a �= 0 have the trigono-
metric representation

a = |a|(cos ψ + i sinψ).

The number a possesses for each natural n exactly n different n-th roots in C, i.e.,
the solutions of the equation zn = a. We can calculate them by the formula

zk = n
√

|a|
(

cos
ψ + 2kπ

n
+ i sin

ψ + 2kπ

n

)
for k = 0, . . . , n − 1.

From this formula it follows that all zk are points lying on the circle of radius
n
√

|a|, and neighboring points are distinguished by the difference of γ = 2π/n in
their argument. By imposing k = 0, 1, . . . , n − 1 in the above formula, we obtain
all these points from the periodicity of trigonometric functions.

Example 1.10. Let z3 = 1. The right-hand side has then the representation 1 =
1(cos 0 + i sin 0). It follows (Figure 1.3)

z1 = cos
0
3

+ i sin
0
3

= 1,

z2 = cos
2π

3
+ i sin

2π

3
(in the second quadrant),

z3 = cos
4π

3
+ i sin

4π

3
(in the third quadrant).
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Remark 1.11. The de Moivre formula shows that the partitioning of the circle,
i.e., inscribing a regular n-polygon in the unit circle {|z| = 1} can be solved by
solving the equation

zn = 1,

i.e., by

zk = cos
2πik

n
+ i sin

2πik

n
(0 ≤ k ≤ n − 1).

Im

Re
z1

z2

z3

Figure 1.3

Partitioning of the circle can be viewed as a special case of the solution of the
general algebraic equation of n-th degree:

Pn(z) = anzn + an−1z
n−1 + · · · + a1z + a0 = 0, an �= 0.

For this we have the fundamental theorem of algebra:

Theorem 1.12 (Fundamental theorem of algebra). The n-th degree polynomial
Pn(z) possesses exactly n zeros, provided we count each one according to its mul-
tiplicity, i.e., Pn(z) can be written in the form

Pn(z) = an (z − z1)n1(z − z2)n2 · · · (z − zp)np

with n1 + n2 + · · · + np = n and an �= 0. If the complex numbers zj are pairwise
distinct, then nj indicates the multiplicity of the zero zj.

We will prove this theorem later, when the necessary preliminary results and tools
will be ready for use.

The Flemish mathematician Albert Girard in 1629 expressed for the first
time the fact that every algebraic equation of n-th order has n roots, which are
to be sought in a larger domain than R. The first serious attempt to prove this
statement was undertaken in 1746 by Jean-Baptiste le Rond d’Alembert.
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For polynomials with real coefficients there was in 1749 a proof by L. Euler,
based on an idea of “Ars Magna”. Under the assumption that the solutions exist,
in 1795 Pierre Simon Laplace was able to provide an elegant proof. In C. F.
Gauss’ doctoral thesis the first complete proof of the fundamental theorem was
given. However probably the simplest proof, based on the idea of d’Alembert,
goes back to J. R. Argand and was published in 1814. A constructive proof
was finally given only in 1940 by Hellmuth Kneser.

1.3 Representations and geometric aspects

The multiplication of a complex number with cosϕ + i sinϕ describes a rotation
of the Gaussian plane of an angle ϕ, since the argument of every complex number
z would be augmented by the angle ϕ. All these rotations form a group, the
special orthogonal group SO(2), where the number 2 denotes the dimension of the
underlying R-vector space C. Clearly 1 is the neutral element of this group, the
inverse element of cosϕ + i sinϕ being given by cosϕ − i sinϕ.

Since the rotations in the plane can be represented also by multiplication of the
vector

(
x
y

)
by a matrix, one may ask what is the relationship of complex numbers

with this multiplication by a matrix. In fact we have

Proposition 1.13. The mapping M : z → M(z) of z = x + iy ∈ C on the real
(2 × 2)-matrices of the special form

M(z) =
(

x −y
y x

)
is a ring isomorphism from C onto the subring of R2×2-matrices of the above form.

Proof. The equations M(z + z′) = M(z) + M(z′) and M(zz′) = M(z)M(z′) for two
complex numbers z and z′ are easily checked. �

We then have found a so-called representation of complex numbers by matrices,
thus an isomorphic mapping from C into the linear mappings of R2 onto itself. In
this way M� corresponds to z, as well as detM to |z|2 and the traceM to 2Re z.
The rotations considered above correspond to the known planar rotation matrices,
i.e.,

R(ϕ) := M(cosϕ + i sin ϕ) =
(

cosϕ − sinϕ
sin ϕ cosϕ

)
,

with ϕ ∈ R. It is easily shown that

R(ϕ + ψ) = R(ϕ)R(ψ) (ϕ, ψ ∈ R).

The mapping R : ϕ→R(ϕ) represents a homomorphism of the additive group R
onto the multiplicative group of the given rotation matrices. Each such matrix, in
view of our association, corresponds to a point on the unit circle S1 = {z : |z|=1},
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the boundary of the unit disk D := {z : |z| < 1}. In general here the multiplicity
of the argument plays no role, since the addition of 2kπ, k ∈ Z, to ϕ does not
change the value of cosϕ and sin ϕ. In view of R(π) = R(−π) the elements of the
matrix of R(ϕ) remain continuous, if we let the value of ϕ jump from π on the
negative real axis to −π.

Remark 1.14. In conclusion we hint at the relationship between rotations and
reflections. By conjugation every complex number is reflected about the real axis.
In this way we can describe the reflection about an arbitrary straight line through
the origin as follows: if the line makes the angle α with the positive real axis, it
will be turned by (cos α − i sin α)z into the real axis; then reflection is given by
conjugation. Finally one has to rotate the line in the opposite direction, in a way
that the reflection point z′ of z is expressed through

z′ = (cos α + i sin α)2z = (cos 2α + i sin 2α)z.

If we perform another reflection, then we obtain

z′′ =
(
cos(2β + 2α) + i sin(2β + 2α)

)
z.

But this is a rotation about the origin. We can state then:
Two reflections of C on straight lines through the origin give a rotation of C about
the origin. Conversely we can split any rotation into two reflections.

We are now in the position to state a few facts of planar analytic geometry through
complex numbers. A straight line in the plane is described by an equation of the
form ax + by + c = 0 with real a, b, c, and a2 + b2 > 0. On using the formulae of
Proposition 1.3 we obtain

(a − ib)z + (a + ib)z + 2c = 0

or

N z + N z + 2c = 0

with the complex number N := a + ib �= 0 and a real c. This can also be written
in the form Re (N z) + c = 0.

For two vectors
(
x1
y1

)
and

(
x2
y2

)
of R2 the scalar product is defined by(

x1

y1

)
·
(

x2

y2

)
:= x1x2 + y1y2.

For the corresponding complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 the
expression

Re(z1z2) = x1x2 + y1y2 = Re(z1z2)
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is called the scalar product. For the linear equation

Re(Nz) + c = 0,

which means that for two points z1 and z2 on the straight line we have

Re
(
N(z1 − z2)

)
= 0.

This says that the vector corresponding to N lies perpendicular to the line. We
have then introduced the orthogonality of complex numbers, which can be illus-
trated in the Gaussian plane. We can observe easily that the point on the line
closest to the origin is given by

z0 =
−cN

|N |2 .

Finally, we recall that a straight line can also be described by a parametric rep-
resentation. If A denotes a complex number, corresponding to a vector in the
direction of the line — thus perpendicular to N — and z0 denotes a point on the
line, then the parametric representation is

z(t) = At + z0, − ∞ < t < ∞.

One can easily go from one representation of the equation of the straight line to
the other ones.

In a way similar to the scalar product, we can also introduce in C a vector product
(or cross product) by

[z1, z2] := x1y2 − x2y1 = Im(z1z2).

It corresponds to the operation
(

x1
y1

)
· J
(

x2
y2

)
in R2, where

J =
(

0 1
−1 0

)
represents the rotation matrix by the angle −π/2. This gives the formula [z1, z2] =
Re(z1(−i)z2) = Im z1z2 for the vector product. The matrix J shows up also in the
curvature theory of planar curves where it is called a Cartan matrix. If [z1, z2] = 0,
then z1 and z2 lie on a straight line through the origin, they are then collinear.
Moreover the relationship holds

z1z2 = z1 · z2 + i[z1, z2].

A further elementary geometrical figure in the plane is the circle, which is given
by its center z0 and radius R. It contains all points at distance R from z0,

SR(z0) := {z : |z − z0| = R}.
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The equation of the circle can be written in the from

(z − z0)(z − z0) = zz − 2Re zz0 + z0z0 = R2.

The tangent to such a circle at one of its points z1 ∈ SR(z0) is the straight line
through z1 orthogonal to the difference z1 − z0 (Figure 1.4). Its equation is thus

Re (z1 − z0)(z − z1) = 0 or Re (z1 − z0)z = Re (z1 − z0)z1.

Im

Re

z0

z1

Figure 1.4
A circle also can be described by a parametric representation. It is simply

z(t) = z0 + R(cos t + i sin t), − π < t ≤ π.

Both line and circle equations can be summarized by the formula

Azz + Re(Bz) + C = 0,

here A and C represent real numbers, B is an arbitrary complex number with
|B|2 − AC > 0. For A �= 0 we obtain a circumference, for A = 0 a straight line.
Re(Bz) is the scalar product of the vectors corresponding to B and z.

1.4 Exercises

1. For arbitrary complex numbers z1 and z2 prove the equality (Apollonius
identity)

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2).

2. Determine the geometric locus of all points of the complex plane for which
the following relationship holds:

a) Im
z − 1
z + i

≤ 0, b) |z − 2| − |z + 2| < 2.
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3. Prove de Moivre’s formula and investigate whether it can be extended to
rational exponents.

4. Show that the sum of all roots of the equation zn = 1 vanishes. Prove that
these roots are the corners of a regular n-polygon.

5. Calculate the roots of the equation 32z5 = (z + 1)5.

6. With the help of complex numbers show

a)
1
2

+ cos θ + cos 2θ + · · · + cos nθ =
sin (n + 1/2)θ

2 sin θ/2
,

b) sin θ + sin 2θ + · · · + sin nθ =
sin (n + 1)θ/2

sin θ/2
sin (nθ)/2).

7. Prove that the pairwise distinct points z1, z2, z3 all lie on a same straight
line, if and only if the expression (z3 − z1)/(z2 − z1) is real.

8. The mapping z′ = f(z) is called reflection about the unit circle, when both
z and z′ lie on the same ray emanating from the origin and |z||z′| = 1. Find
f(z) explicitly and determine z′ geometrically.
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2 Quaternions

2.1 The history of their discovery

It is often the case that mathematical results appear at first as the work of several
people in obscurity and then in a very short time are suddenly formulated by
several scientists. It is difficult to determine who precisely had the decisive idea
and should therefore be named the discoverer. Often the opinions on that clearly
diverge. Thus W. Blaschke, celebrating the 250th birth anniversary of Euler in
his conference talk entitled “Euler und die Geometrie (Euler and the geometry)”,
(Berlin, 23.03.1957), stated that Euler had been the first one to define quaternions
(see [12]). In a letter to Christian Goldbach of May 4th, 1748 in the framework
of his researches on parametric representations of movements in Euclidean space,
Euler defined quaternions, without explicitly naming them.

It seems however that Euler did not recog-
nize the fundamental character of this struc-
ture. He employed only “vectorial quaternions”
in his kinematic researches, without studying
in depth this new type of numbers. This idea
was forgotten for a long time. Almost 100 years
later the French mathematician and philosopher
Olinde Rodrigues began to use numbers sim-
ilar to quaternions to describe rotations in 3-
dimensional space. Also Gauss worked already
with quaternionic formulae, that he used in an
1819 note which then was not published.

Leonhard Euler (1707–1783)

The discoverer of quaternions is one of the most fascinating scientists of the nine-
teenth century, Sir William Rowan Hamilton. Already in the early thirties
he was involved in investigating algebraic questions. Thus in 1833 he was able to
show that complex numbers build an algebra, in case the unities 1 and i are used
with 12 = 1 and i2 = −1. All the elements of his algebra have then the form x+iy,
where x, y denote real numbers.

He tried for more than ten years to extend this result to the so-called triples, i.e.,
the real unit 1 would be studied together with two other “imaginary” units i and
j. In later papers he named these triples of numbers vectors. He was able to figure
out how these vectors are to be added and multiplied, but he did not succeed in
finding a suitable division — he was very unhappy about that. In view of his so
far brilliant scientific performance the inability to solve this problem was for him
a situation to which he was really unaccustomed. Only after introducing a further
imaginary unit and dropping commutativity was he able to divide vectors. About
the discovery of quaternions the following anecdote is told:
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It was Monday, October 16th, 1843 in the morning, Hamilton had to chair a
meeting of the Royal Irish Academy. His wife walked with him along the Royal
Canals in Dublin. At that moment he got the decisive idea for the solution of
his ten years old problem. With his pocketknife he wrote in the stones of the
Broome bridge the famous formula

i2 = j2 = k2 = ijk = −1.

In a letter to his eldest son just shortly before his death, he indicated the above
bridge erroneously as the Brougham bridge, as it is named also today.

From then on Hamilton called the new numbers

q = a + bi + cj + dk (a, b, c, d ∈ R)

quaternions. The first paper about quaternions appeared on November 14th, 1843,
in the Council Books of the Royal Academy at the “First General Meeting of the
Session” (see [6]). Concerning the naming, P.G. Tait, the only pupil of Hamilton,
expresses himself as follows:

Quaternion in Latin means “set of four”, the Greek translation of this word is
“Tetractys” . Hamilton who knew the Greek language in depth and revered the
pythagorical school, shows to have built a bridge between his structure and the
pythagorical Tetractys, which was considered as the source of all things.

Further interesting interpretations of the origin of the notation “Quaternion”, can
be found in S.L. Altman’s book [6].

2.2 Definition and properties

We want now to begin with a systematic exposition of the real quaternions. As in
C we need to define a set with corresponding connections:

Definition 2.1. Let H := {x : x = (x0, x1, x2, x3), xk ∈ R, k = 0, 1, 2, 3} be the set
of the ordered quadruples of real numbers. The numbers x0, x1, x2, x3 are called
the coordinates of x. Two quadruples x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3)
are then equal, when the single coordinates are equal: xk = yk, k = 0, 1, 2, 3.
Addition is defined coordinatewise:

x + y := (x0 + y0, x1 + y1, x2 + y2, x3 + y3),

and similarly multiplication with a real number λ:

λx := (λx0, λx1, λx2, λx3).

Multiplication is introduced as linear continuation of the multiplication of the basis
elements of the standard basis of R4, namely e0 := (1, 0, 0, 0), e1 := (0, 1, 0, 0),
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e2 := (0, 0, 1, 0), e3 := (0, 0, 0, 1). e0 should be the unit element of multiplication,
the other three basis elements satisfy the relations

eiej + ejei = −2δij, i, j = 1, 2, 3,

with the Kronecker symbol δij and the relation

e1e2 = e3.

The properties that we have learnt in C and H have the following general structure
which is called a vector space. Rn for n = 1, 2, 3, 4 becomes in our situation a special
case of this structure.

Definition 2.2. A set V with the following properties is called an R-vector space
or real vector space if:

(i) on V an addition is defined and V with respect to this addition is a commu-
tative group,

(ii) a multiplication of numbers from R and vectors of V is defined, which satisfies
the following rules: for a, b ∈ R, v,w ∈ V and 1 denoting the unit element of
R (thus the real number 1) we have

a(v + w) = av + aw, (a + b)v = av + bv (distributivity),
(ab)v = a(bv) (associativity),
1v = v (existence of the unit element).

The vector space is called real, since for multiplication only real numbers are
allowed, but of course other noncommutative fields could be employed, as for
instance C.
Vector spaces will be necessary in many places. As observed earlier, in this way
the usual vector space structure can be introduced in R4 and the canonical repre-
sentation of the real quaternions is made possible

x = x0e0 + x1e1 + x2e2 + x3e3 =
3∑

k=0

xkek.

Often e0 as unit element is not even written.
For clarity’s sake the above multiplication rule can also be written as

e2
1 = e2

2 = e2
3 = −1; eiej = −ejei, i �= j = 1, 2, 3.

The last relation can be written cyclically:

ei+1ei+2 = ei+3, i = 0, 1, 2 (mod 3).
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In general Hamilton has denoted the basis elements by i := e1, j := e2, k := e3,
so that the relationship with C, or better the extension of complex numbers, is
even clearer. Since i2 = j2 = k2 = −1 the basis elements can also be denoted as
imaginary units. We can immediately see that multiplication is not commutative,
thus quaternions do not build a field, rather a noncommutative or skew field. The
continuation of multiplication on general quaternions is obtained through formal
expansion:

xy = (x0 + x1e1 + x2e2 + x3e3)(y0 + y1e1 + y2e2 + y3e3)
= (x0y0 − x1y1 − x2y2 − x3y3)

+(x0y1 + x1y0 + x2y3 − x3y2)e1

+(x0y2 − x1y3 + x2y0 + x3y1)e2

+(x0y3 + x1y2 − x2y1 + x3y0)e3.

Arthur Cayley, an English mathematician (1821–1895), who wrote the first
papers with quaternions after Hamilton , developed a simple scheme to describe
this multiplication, which today is known as the Cayley table:

1 e1 e2 e3

1 1 e1 e2 e3

e1 e1 −1 e3 −e2

e2 e2 −e3 −1 e1

e3 e3 e2 −e1 −1

Also the following diagram is often very useful:

i
↗ ↘

k ←− j

The Irish political figure and patriot Eamon de Valera (1882–1975), who
was three times prime minister and from 1959 to 1973 was president of the Irish
republic, should have been executed in Dublin on Monday April 24th, 1916,
for high treason against the British crown. Because of lucky circumstances his
death sentence was commuted to a long jail detention. Valera, who had been a
mathematics teacher, full of national pride engraved the defining equations of
quaternions on the walls of his cell.

The quadruple (0, 0, 0, 0) is clearly the neutral element of addition and the proof
that addition and multiplication are associative and distributive is an even more
tiring task to show than in C: the addition is naturally commutative, the multipli-
cation is not as just remarked. The inverse element of x with respect to addition is
clearly −x, the one with respect to multiplication will shortly be simply described,
so that the real quaternions build a noncommutative field, the noncommutative
field of the real quaternions H.
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If we identify the quaternions of the form x0 + e1x1 with the complex numbers
x0 + ix1, then we can convince ourselves easily that multiplication in H is mapped
into complex multiplication, hence C is a subfield of H.

Clearly the quaternions x can be uniquely associated to vectors (x0, x1, x2, x3)�

in R4, (transposition indicates that vectors should in general be written as column
vectors). But as in C the structure of quaternions is richer than the one of vector
space.

Definition 2.3. For a quaternion x = x0 + x1e1 + x2e2 + x3e3 the real number
x0 is called the scalar part Sc(x) of the quaternion. The quaternion x := x1e1 +
x2e2 +x3e3 is called the vector part Vec(x) of the quaternion, so that we can write
x = x0 + x. The quaternion x := x0 − x associated with x is called the conjugate
quaternion of x. The expression |x| :=

√
x2

0 + x2
1 + x2

2 + x2
3 is then indicated as

the modulus or absolute value of the quaternion. For the set of all vectors we write
Vec H, for the set of all scalars Sc H.

It is then clear that the vector part of a quaternion contains the basis elements and
therefore is not a real number, as it happens with the imaginary part of complex
numbers. The modulus of a quaternion is also here equal to the modulus of the
corresponding vector in R4. Vec H and Sc H are real linear subspaces of H, but
unfortunately Vec H is not closed with respect to quaternion multiplication. Sc H
can clearly be identified with R and Vec H with R3.

Since a physical meaning could always be assigned to the vector part of a quater-
nion, W.R. Hamilton introduced in 1846 the concept of vector. Even nowadays
in engineering lectures Hamilton’s notation i, j and k for the basis elements in
R3 is often used. Thus a vector in the sense of Hamilton is representable in the
form

x = x1i + x2j + x3k.

Corresponding rules of complex numbers hold:

Proposition 2.4. Let us take x, y ∈ H, then the following relations are verified.

(i) Sc(x) = (x+x)
2 , (ii) Vec(x) = (x−x)

2 ,

(iii) xx = xx = |x|2, (iv) x−1 = x
|x|2 , x �= 0,

(v) x + y = x + y, (vi) xy = y x,

(vii) x = x, (viii) |xy| = |x||y|,
(ix) |x| = | − x| = |x|, (x) (xy)−1 = y−1x−1, xy �= 0.

Property (iv) indicates that H is in fact a noncommutative field, since here the
inverse element for multiplication is given; (x) follows from the noncommutativity
and must be considered with particular attention since it is unusual.
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Proof. The relations (i)–(vii) and (ix) require only simple calculations. For (viii) we write
|xy|2 = xyxy = xyy x = |y|2|x|2. (x) The associativity gives

(xy)(y−1x−1) = x(yy−1)x−1 = xx−1 = 1. �

Remark 2.5. It should be noted that in a similar way as for C in H the fourfold
quadratic sum

x2
0 + x2

1 + x2
2 + x2

3 = (x0 + x1e1 + x2e2 + x3e3)(x0 − x1e1 − x2e2 − x3e3)

can be represented as a product of two linear expressions, as in C this is not
evident. Also the four squares theorem holds

(x2
0 + x2

1 + x2
2 + x2

3)(y
2
0 + y2

1 + y2
2 + y2

3)
= (x0y0 − x1y1 − x2y2 − x3y3)2 + (x0y1 + x1y0 + x2y3 − x3y2)2

+(x0y2 − x1y3 + x2y0 + x3y1)2 + (x0y3 + x1y2 − x2y1 + x3y0)2,

which says that a product of two fourfold quadratic sums can be written again as
a quadratic sum (see [66]).

Propositions on the modulus of quaternions correspond to the complex case:

Proposition 2.6. Let x and y be quaternions, then for the modulus we have

(i) |Sc(x)| ≤ |x|, |Vec(x)| ≤ |x|,
(ii) |x + y| ≤ |x| + |y| (triangular inequality),

(iii)
∣∣|x| − |y|

∣∣ ≤ |x − y|.
Proof. The proof mimicks the one for C. �

H becomes a metric space with the introduction of the Euclidean distance |x− y|.
These propositions correspond to those for complex numbers, which will be treated
in Section 4.1. We now investigate specific properties of quaternions:
The multiplication of two quaternions gives

xy = (x0 + x)(y0 + y) = x0y0 + x0y + y0x + xy.

We want to consider more closely the last product xy:

xy = −(x1y1 + x2y2 + x3y3)
+(x2y3 − x3y2)e1 + (x3y1 − x1y3)e2 + (x1y2 − x2y1)e3

= −x · y + x × y,

with the scalar product x · y and the vector or cross product x × y of the two
vectors x and y. Historically these products were introduced in this way and then
later were “emancipated” from the theory of quaternions. But observe that

x · y := x1y1 + x2y2 + x3y3 and x × y :=

∣∣∣∣∣∣
e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ .



2. Quaternions 21

We remark also that
|x|2 = x2

0 − x2 = x2
0 + x · x.

A scalar product does not exist only for vectors, but also for quaternions. Only
the analogous operation to the vector product is not explained so easily:

Definition 2.7 (Scalar product). Let x, y ∈ H. The product

x · y =
1
2
(xy + yx) = Sc(xy) = Sc(yx)

= x0y0 + x1y1 + x2y2 + x3y3

is called the scalar product of the quaternions x and y. For x · y = 0, x and y are
orthogonal to each other.

Proposition 2.8. Let x, y, z be arbitrary elements in H. Then

(i) Sc (xyz) = Sc(yzx) = Sc(zxy),

(ii) Sc(xyz) = x · (yz) is a real number, which is also called a scalar mixed (or
triple) product of the quaternions x, y, z (in this order).

Proof. The proof is left to the reader (see Exercise 2.6.1). �

Remark 2.9. So far we have worked with R, C and H, sets that have both a vector
space structure and a field structure. They are called algebras. Since all elements
different from zero have a multiplicative inverse, we speak of division algebras. The
next theorem shows that no other division algebra over the field of real numbers
exists:

Theorem 2.10 (Frobenius theorem). The only finite-dimensional associative divi-
sion algebras over the field of real numbers R are R, C and H.

Proof. We refer to the book [72]. �

The solution behavior of quadratic equations manifest themselves in a completely
different way than for complex numbers. We formulate this in the next proposition:

Proposition 2.11. (i) The reciprocally conjugate quaternions x = x0 + x and
x = x0 − x satisfy the quadratic equation with real coefficients

ξ2 − 2x0ξ + |x|2 = 0.

(ii) A quaternion is a vector different from zero if and only if x2 is real and
negative.

(iii) A quaternion different from zero is real if and only if x2 is real and positive.

(iv) The solution set of a quadratic equation in H with real coefficients consists
either of one element, two elements or a two-dimensional sphere.
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Proof. (i) Substitution into the given equation delivers

(x0 ± x)2 − 2x0(x0 ± x) + x2
0 − x2 = 0

and therefore the desired result. (ii) For an arbitrary x ∈ H it follows that

x2 = (x0 + x)(x0 + x) = x2
0 − |x|2 + 2x0x.

At first let us consider x = x �= 0, then x2 = −|x|2 < 0. Conversely if we assume
R � x2 < 0 we then find 2x0x = x2 −x2

0 + |x|2 ∈ R . It thus follows that x0 = 0 or x = 0.
In case x0 = 0, we are done. For x = 0, we would then have x2 = x2

0 > 0, a contradiction
with the assumption. Thus the second case cannot arise. (iii) The proof is completely
analogous to the proof of (ii).
(iv) With completion of the square from the equation

x2 + 2ax + b = 0, (a, b ∈ R)

we find as usual
(x + a)2 = a2 − b.

If the right-hand side is non-negative, then by means of (iii) we find the well-known real
roots of the quadratic equation. If the right-hand side is negative, then from (ii) x + a
must be a vector, whose modulus is

√
b − a2. But this is a sphere in R3 with precisely

this radius. �

In the following proposition we want to list a number of important properties:

Proposition 2.12. Let x and y be two quaternions, correspondingly x and y two
vectors. Then the relations hold:

(i) x · y = −Sc(xy) = − 1
2 (xy + yx).

(ii) x × y = Vec(xy) = 1
2 (xy − y x).

(iii) From x2 = y2 it does not necessarily follow that x = ± y.

(iv) A quaternion x is real if and only if for every other quaternion y we have
yx = xy.

Proof. The properties (i) and (ii) follow immediately from the definition. For (iii) we
should observe that, from the previous proposition for x2 = y2 real and negative, it
follows only that x, correspondingly y, lie on a sphere in R3 and therefore in no way must
be equal apart from the sign. (iv) Real numbers commute naturally with an arbitrary
quaternion. Moreover yx = xy for all y ∈ H. Then in particular for y = e1 it follows that

xe1 = −x1 + x0e1 − x2e3 + x3e2 = −x1 + x0e1 + x2e3 − x3e2 = e1x,

from which 0 = x2e3 − x3e2. Thus x2 = x3 = 0 must be true. In the same way we also
obtain that x1 = 0. �

A proposition on the relationship between quaternions and vectors follows:

Proposition 2.13. (i) Let x be a quaternion. Then there exists a vector a �= 0,
so that x a is again a vector.
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(ii) An arbitrary quaternion x is representable as product of two vectors.

(iii) From each quaternion a we can calculate at least a root in H, i.e., there is
an x ∈ H with x2 = a.

(iv) Every quaternion e with |e| = 1 can be represented in the form

e = xyx−1y−1.

Proof. (i) For x = x0 + x and x = 0 we can choose a arbitrarily. For x �= 0 let a �= 0 be
a vector orthogonal to x. Then in view of x · a = 0 we have

x a = x0a + x × a ∈ Vec H.

(ii) Let a be chosen as in (i), then we have

x a = b, thus x = ba−1,

and the inverse of a vector is again a vector. The proof of the points (iii) and (iv) is left
to the reader (compare Exercises 2.6.2, 2.6.3). �

The real quaternions show remarkable analogies with complex numbers besides
these elementary properties, provided naturally that commutativity is ignored.

Theorem 2.14. Every quaternion x ∈ H with x �= 0 satisfies the trigonometric
representation

x = |x|(cosϕ + ω(x) sin ϕ).

Since x2
0 + |x|2 = |x|2 we find the relationships

cos ϕ =
x0

|x| , sin ϕ =
|x|
|x| , ω(x) =

x
|x| ∈ S2 (−π ≤ ϕ ≤ π),

where S2 denotes the unit sphere in R3.

Proof. We have clearly

x = x0 + x = |x|
(

x0

|x| +
x

|x|
|x|
|x|

)
= |x|(cos ϕ + ω(x) sin ϕ). �

Example 2.15. Let x = 1+2e1+2e2+e3, it follows then that ϕ = arccos (1/
√

10) =
arcsin (3/

√
10). With this we obtain the representation

x =
√

10
[

1√
10

+
(2e1 + 2e2 + e3)

3
3√
10

]
and see also that a calculation does not represent a problem.

Corollary 2.16 (de Moivre’s formula). Let x = x0 +x ∈ H, x �= 0, n ∈ Z be given;
we then have

(cosϕ + ω(x) sin ϕ)n = cos nϕ + ω(x) sin nϕ.
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Proof. We observe at first that contrary to the complex case we must replace here the
imaginary unit i by an element of the two-dimensional unit sphere. But we nevertheless
have

ω2(x) =

(
x

|x|

)2

= −1.

For positive n the proof follows then by mathematical induction. The case n = 0 gives 1
on both sides, and for negative n we have

(cos ϕ + ω(x) sin ϕ)−n = (cos ϕ + ω(x) sin ϕ)n = cos nϕ − ω(x) sin nϕ. �

2.3 Mappings and representations

Up to now we have considered mainly the structural side of the real quaternions.
We will now pay attention to the study of algebraic automorphisms, correspond-
ingly antiautomorphisms of H, which are specific mappings within the quaternionic
algebra closely connected with rotations and reflections in R4 as well as in R3. In
this context the automorphism h has to satisfy among other properties the mul-
tiplicative property h(xy) = h(x)h(y), x, y ∈ H, while an antiautomorphism k
should verify the relation k(xy) = k(y)k(x), x, y ∈ H. Our presentation relies
in part on results which are contained in the monographs [119] and [6]. Finally
we will investigate representations of the quaternionic algebra in the matrix ring
R4×4.

2.3.1 Basic maps

We observe at first that we do not need to distinguish between the Euclidean space
R3 and the R-linear subspace Vec H of H. As real vector spaces H and R4 are also
naturally isomorphic.
In comparison with C in H there are more possibilities to define an involution. We
thus distinguish different involutions:

Definition 2.17. (i) Let x ∈ H be given. The mapping x → x with

x = Sc (x) − Vec (x) ∈ H

is called conjugation in H. As we already know, the corresponding element x is
then the conjugate quaternion of x. Moreover x y = y x, so that we have an
antiautomorphism.

(ii) The mapping x → x̂,

x̂ := e2xe2
−1 ∈ H,

is called the principal involution in H. The element x̂ is called the involute of the
quaternion x.
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(iii) Finally the composition of conjugation and principal involution

x̃ := x̂ = x̂

is called the reversion in H. The element x̃ is the reverse of the quaternion x.

Remark 2.18. We can consider geometrically x → x̂ as a reflection about the plane
{λ + µe2 : λ, µ ∈ R}. Quaternions are then reflected about the plane spanned by
e0 and e2, the vectors in R3 are reflected about the e2-axis and moreover x̂y = x̂ ŷ.
The principal involution is thus an automorphism.
We also see that by using reversion the order of the factors in the quaternionic
product is reversed, thus it is in fact an antiautomorphism. It is exactly this last
property that justifies the name reversion.

We would like now to characterize the automorphisms of H:

Theorem 2.19 (Rodrigues, Porteous). An arbitrary automorphism or antiauto-
morphism m of the algebra H has always the representation

m(x) := Sc (x) + h
(
Vec (x)

)
, x ∈ H,

with an orthogonal automorphism h of R3.

Proof. Let m(1) = y0 + y with y0 ∈ R, y ∈ R3. Then since m(1) = m(12) = m2(1) we
have

y2
0 − |y|2 + 2y0y = y0 + y.

For y �= 0 we would have 2y0−1 = 0, which cannot hold in view of y0−y2
0 = 1/4 = −|y|2.

Thus it must be that y = 0, y0 = 1 and m(x0) = x0 for a real x0. For arbitrary x = x0+x
it then follows that

m(x) = x0 + m(x).

If it were now m(x) = y0 + y, then we would have

m(x2) = −m(|x|2) = −|x|2 = y2
0 − |y|2 + 2y0y.

Here we must have y0y = 0, since y = 0 is excluded in view of −|x|2 = y2
0 , then we find

only y0 = 0 and m(x) ∈ R3. Then the imbedding m|R3 =: h is an automorphism of R3,
and in view of m(|x|2) = |x|2 it is norm preserving and therefore orthogonal. �

A very important automorphism of H is defined by

ρy(x) := yxy−1, y ∈ H,

clearly with y �= 0. The mapping thus introduced will now be investigated in view
of its algebraic and topological properties.

Theorem 2.20. For x, x′ ∈ H and λ, λ′ ∈ R the mapping ρy possesses the following
properties:

(i) ρy(λx + λ′x′) = λρy(x) + λ′ρy(x′) (R-linearity).
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(ii) ρy(xx′) = ρy(x)ρy(x′) (multiplicativity).

(iii) ρy is an isometric automorphism on H.

(iv) The canonical scalar product in R4 is invariant under the mapping ρy, i.e.,

ρy(x) · ρy(x′) = x · x′.

(v) We have ρyρy′ = ρyy′ .

Proof. Since the relations (i) and (ii) are very easy to show, we only prove the last three
properties. We first show that ρ−1

y : x ∈ H → y−1xy is the inverse of ρy, then ρ−1
y = ρy−1 .

Thus ρy is an automorphism. Moreover

|ρy(x)| = |yxy−1| = |x|,

so that (iii) is proven. In order to obtain (iv), we calculate as follows:

ρy(x) · ρy(x′) =
1

2

[
ρy(x′)ρy(x) + ρy(x)ρy(x′)

]
=

1

2

[
yx′y−1yxy−1 + yxy−1yx′y−1

]
=

1

2

[
yx′y−1y−1x y + yxy−1y−1 x′ y

]
=

1

2
y(x′x + xx′)y

1

|y|2 = x · x′.

Finally the last relation follows from the associativity:

ρyρy′(x) = y(y′xy′−1)y−1 = yy′x(yy′)−1 = ρyy′(x). �

Since ρy is independent of |y| we can consider only those y with |y| = 1, i.e., the
elements of the unit sphere S3 in R4, so that

S3 := {y ∈ H : |y| = 1}.

Let x, y ∈ S3 be given, then since |xy| = |x||y| it follows that also xy ∈ S3. Further
we find 1 ∈ S3 and y = y−1 ∈ S3. Thus we have shown the

Proposition 2.21. S3 is a subgroup of H and the mapping y → ρy is a homomor-
phism of H onto S3.

We want now to study the properties of the automorphism ρy in R3 from which
we will gather insights into the behavior in H.

2.3.2 Rotations in R3

We begin by considering ρy in R3. In this case as well as in higher dimensions a
rotation is a mapping

x′ = Ax
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with an orthogonal matrix A, i.e., A−1 = A� and det A = 1. These matrices build
the group SO(3). Here detA = 1 means that the orientation is maintained, for
det A = −1 we obtain instead a reflection. At first we can state that in view of the
theorem of Rodrigues–Porteous 2.19 ρy(x) is again a vector, so that a scalar part
of x does not exist. Thus ρy (we use the same notation also for the imbedding
onto R3) is also an automorphism of R3 with the properties listed in Theorem
2.20. Moreover ρy in R3 is exchangeable with the vector product, so that

ρy(x) × ρy(x′) =
1
2

[ρy(x) ρy(x′) − ρy(x′) ρy(x)]

=
1
2
[
yxy−1 yx′y−1 − yx′y−1 yxy−1

]
=

1
2
y [xx′ − x′x] y−1 = ρy(x × x′).

We can thus summarize as follows:

The mapping ρy is an automorphism of R3 which leaves the canonical scalar prod-
uct invariant. It is homomorphic with respect to the vector product, as it follows
immediately from the above calculation.

In view of the last property, ρy leaves also the orientation invariant, thus it is a
rotation, a result we will see also in the next proposition.

The consideration of rotations was originally not connected with the use of
quaternions. Already Leonhard Euler in 1775 tried to describe the prob-
lem of the composition of two affine transformations. After elimination of three
parameters the remaining ones appeared as rotation axes and corresponding
rotation angles. He reduced the statement of the task to a pure algebraic prob-
lem. But he could not find closed form algebraic expressions. Benjamin Olinde
Rodrigues (1794–1851), the son of a banker in Bordeaux, was instead more
successful. He considered rotations as general movements on a sphere and in
1840 solved Euler’s problem of the composition of two rotations in a construc-
tive way.

With the help of quaternion theory we compute in a simpler way the mapping x′

of a vector x under the mapping ρy:
Let y ∈ S3 be given. As we already know this can be put in the form y = y0 +y =
y0 + ω|y| with y2

0 + |y|2 = 1 and ω2 = −1 by means of Theorem 2.14. As usual
we set y0 =: cos ϕ and |y| =: sin ϕ. At first we have

ρy(ω) = (y0 + ω|y|)ω(y0 − ω|y|) = (y2
0 + |y|2)ω = ω.

We have thus shown that the vector ω is invariant under the map ρy. It follows
that

ρy(x) = y0xy0 − y0x|y|ω + |y|ωxy0 − |y|2ωxω

= y2
0x + y0|y|(ωx − xω) − |y|2ωxω

= x cos2 ϕ + (ω × x) sin 2ϕ − ωxω sin2 ϕ.
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In view of

ωxω = ωxω + xωω − xωω = x + (ωx + xω)ω = x − 2(ω · x)ω

we obtain the following important result:

Proposition 2.22. a) Euler–Rodrigues formula. Let the point x ∈ R3 be mapped
by means of ρy into a point x′. Then with y = y0+y = y0+ω|y| and ω2 = −1,
y0 = cos ϕ, |y| = sin ϕ we have

x′ := ρy(x) = x cos 2ϕ + (ω × x) sin 2ϕ + (1 − cos 2ϕ)(ω · x)ω.

b) Each map ρy is a rotation about the axis ω and the angle 2ϕ. Conversely each
rotation in R3 can be represented by an automorphism of the form ρy = yxy−1

with y ∈ H.

Remark 2.23. The rotations in R3 can be more advantageously described with
the help of quaternionic exponential functions, which will be introduced later in
Section 11.2. The rotation axis of consecutive rotations can then be calculated in
an elegant way, see also [55].

Proof. Part a) was proven before the formulation of the proposition, we have only to
show part b). Since in fact we have a rotation about the axis ω, we can best proceed
by decomposing the vectors x and x′ in the components parallel to ω and those perpen-
dicular to it. We can easily convince ourselves that this decomposition can be written
as

x =: z + (ω · x)ω, x′ =: z′ + (ω · x′)ω.

In view of the invariance of the scalar product according to Theorem 2.20 (iv) and
ρy(ω) = ω it follows that ω · x = ω · x′. Substitution into the Euler–Rodrigues formula
2.22 a) yields

z′ = x′ − (ω · x′)ω

= x cos 2ϕ + (ω × x) sin 2ϕ − (ω · x)ω cos 2ϕ

= z cos 2ϕ + (ω × z) sin 2ϕ.

The last equation says that z gets rotated by the angle 2ϕ in the plane through the
origin orthogonal to ω since in this plane z and ω × z build an orthogonal coordinate
system. The component of x in the direction ω, i.e., the distance to the plane, remains
unchanged. This then describes the rotation of R3 about the axis ω of the angle 2ϕ.
We here have described a rotation; that this also agrees with the definition given at the
beginning of this subsection follows from what we mentioned above.
We have still to show the converse, that each rotation can be represented by a ρy: in
order to do that the rotation axis ω and the rotation angle 2ϕ must be given; from these
y0 and |y| can be determined immediately, and therefore also y and y. �

If we consider ρy with a vector y, then y0 = 0 and therefore ϕ = π/2. This means a
rotation of an angle π about the y-axis. This can also be interpreted as a reflection
about the y-axis. Since according to Proposition 2.13 (ii) every quaternion can be
represented as the product of two vectors, we can state the
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Corollary 2.24. Every rotation in R3 can be represented as the product of two
reflections about straight lines through the origin with associated vectors a and b,

ρy = ρa(ρb) = ρab.

We stress however that these are reflections about straight lines in R3 and not
about planes.

Reflections about a plane (through the origin) with the normal n, |n| = 1, can
easily be described by splitting x in a component parallel to the plane and another
one in the direction n,

x = z + (n · x)n,

and the reflection means that the part in the direction n gets the minus sign, so
that for the reflection point x′ we have

x′ = z − (n · x)n = x − 2(n · x)n.

Now the successive reflections about two mutually perpendicular planes give ex-
actly the reflection about the straight line which is the intersection of the two
planes, and this can also be calculated. Since n · n′ = 0 on the one hand we have

x′′ = x′ − 2(n′ · x′)n′

= x − 2(n · x)n − 2(n′ · x)n′,

while on the other hand the Euler–Rodrigues formula with ω := n × n′ yields

x′′ = −x + 2(ω · x)ω.

Equating the two formulae we finally find

x = (n · x)n + (n′ · x)n′ + (ω · x)ω,

which is true since it is the representation of x in the coordinate system given by
n,n′ and ω. We have thus shown the

Corollary 2.25. Every rotation in R3 can at most be composed by four reflections
about planes.

Finally we still show a proposition for the more precise determination of the rela-
tionship between S3 and SO(3).

Proposition 2.26 (Porteous). The map

ρ : S3 → SO(3) with ρ(y) = ρy

is a surjective group homomorphism with ker ρ = {−1, 1}.
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Proof. The last propositions say, among other things, that every rotation in R3, and
thus every element of SO(3) appears as an image, so that we have a surjective map.
From Theorem 2.20 (v) we conclude that yy′ is mapped into ρyy′ so that we have a
homomorphism. If y ∈ ker ρ, then ρy must be the identity rotation, which leaves all
vectors invariant. We have then

ρy(x) = yxy−1 = x (x ∈ R3),

from which it follows that yx = xy for all x. Clearly we can add to x an arbitrary scalar
part, so that also yx = xy holds for all quaternions x. From Proposition 2.12 (iv) y must
then be real. Since however |y| = 1 it follows that y = ±1. �

2.3.3 Rotations of R4

Finally we consider also the rotations in R4. As we remarked above, these are
introduced through orthogonal matrices, which leave distances invariant and whose
determinant have the value 1. This matrix group is denoted by SO(4). Since the
mappings ρy leave always invariant a straight line in the direction ω, and moreover
the real axis in H, a 2-dimensional plane E1 in H remains invariant under their
action. In the two-dimensional plane E2, which has only the origin in common
with E1 (in R4 our imagination ability fails!) it will then be rotated about an
angle of 2ϕ. A vector y will be reflected through ρy about the plane spanned by
y and e0. Hence we cannot describe by means of ρy all the movements of H.
An orthogonal matrix of fourth order can in general have as first case 4 real eigen-
values, which must all equal 1 in view of the length invariance; thus we obtain
the identity. As second case two real eigenvalues can arise, and two complex con-
jugate ones. The former must once again equal 1, the corresponding eigenvectors
determine an invariant plane, and those corresponding to the complex eigenvalues
determine also a plane, in which one turns by a suitable angle. In general this is
the case previously examined. As third and last possibility, the rotation matrix
can have two pairs of complex conjugate eigenvalues; in the mutually orthogonal
planes spanned by the corresponding eigenvectors, one rotates through a suitable
angle. This case has not been previously discussed. Since every rotation can be
decomposed as a product of reflections, this property continues to hold also for
rotations in R4.
The fundamental theorem on rotations in R4 is however the following

Theorem 2.27 (Cayley’s theorem). The rotations of H are exactly those mappings

x → x′ = axb

with |a| = |b| = 1 and a, b ∈ H.

Proof. At first we observe that it is an orthogonal mapping, since

x′ · y′ =
1

2
(x′y′ + y′x′)

=
1

2
a(xbby + ybbx)a = x · y.
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In order to show that ax, correspondingly xb, define rotations, we have to find the value
1 for the determinant of the corresponding matrix. In view of the multiplication rule for
ax the matrix reads

A =

⎛⎜⎜⎝
a0 −a1 −a2 −a3

a1 a0 −a3 a2

a2 a3 a0 −a1

a3 −a2 a1 a0

⎞⎟⎟⎠
with detA = |a|4 = 1; in a similar way we obtain the result for xb. Since SO(4) is a
group, the composition of two rotations gives again a rotation, so that x′ = axb defines
indeed a rotation.

Conversely, if the rotation T is given, then let T (e0) =: a. It follows that a−1T is also
a rotation T1 with T1(e0) = e0. In this way the real numbers remain invariant under
T1, T1 is therefore a rotation in R3, which in view of the previous subsection has the
form T1(x) = bxb−1. Thus T (x) = abxb−1, and this completes the second part of the
claim. �

2.3.4 Representations

As known, all real correspondingly complex (n×n)-matrices constitute a ring, the
so-called complete matrix ring Rn×n, correspondingly Cn×n. Often it is useful to
look at how algebraic structures to be studied represent themselves as isomorphic
images in the matrix ring, therefore as automorphisms of R4 or also of C2. Our
goal is to find suitable subfields of the skew field of the real quaternions in R4×4

as well as in C2×2, which appear as isomorphic images.

Let two arbitrary quaternions be given with x = x0 + x1e1 + x2e2 + x3e3 and
y = y0 + y1e1 + y2e2 + y3e3. By long multiplication of the quaternions xy we
obtain

xy = (x0y0 − x1y1 − x2y2 − x3y3)
+(x0y1 + x1y0 + x2y3 − x3y2)e1

+(x0y2 − x1y3 + x2y0 + x3y1)e2

+(x0y3 + x1y2 − x2y1 + x3y0)e3.

By means of the usual isomorphy this quaternion will be associated with the R4-
vector ⎛⎜⎜⎝

x0y0 − x1y1 − x2y2 − x3y3

x1y0 + x0y1 − x3y2 + x2y3

x2y0 + x3y1 + x0y2 − x1y3

x3y0 − x2y1 + x1y2 + x0y3

⎞⎟⎟⎠ .
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This vector is nothing else than the result of a left multiplication by the matrix

Lx :=

⎛⎜⎜⎝
x0 −x1 −x2 −x3

x1 x0 −x3 x2

x2 x3 x0 −x1

x3 −x2 x1 x0

⎞⎟⎟⎠
on the R4-vector y = (y0, y1, y2, y3)�, i.e., we have⎛⎜⎜⎝

x0y0 − x1y1 − x2y2 − x3y3

x1y0 + x0y1 − x3y2 + x2y3

x2y0 + x3y1 + x0y2 − x1y3

x3y0 − x2y1 + x1y2 + x0y3

⎞⎟⎟⎠ = Lxy.

In this way the matrix Lx will be associated in a natural way to the quaternion x,

x → Lx with xy = Lxy

for all y ∈ H, so that Lx will be called a left-representation of the quaternion x
in R4×4. It is not difficult to prove the properties

(i) L1 = E,

(ii) Lx = L�
x ,

(iii) Lxx̃ = LxLx̃,

(iv) detLx = |x|4,

where E denotes the unit matrix in R4×4. We finally consider the decomposition

Lx = x0 E + X

with X� = −X .

In a completely analogous way also a right-representation

Rx =

⎛⎜⎜⎝
x0 −x1 −x2 −x3

x1 x0 x3 −x2

x2 −x3 x0 x1

x3 x2 −x1 x0

⎞⎟⎟⎠
of the quaternion x in R4×4 can be obtained, where yx = Rxy. The properties (i),
(ii) and (iv) continue to hold, while (iii) gets replaced by

Rxx̃ = Rx̃Rx.

Other matrix representations in R4×4 are possible, but will not be discussed here.
Following the presentation of [95], we can show that

Le1Le2Le3 = −E, Re1Re2Re3 = E.

Both sets {Lx ∈ R4×4 : x ∈ H} and {Rx ∈ R4×4 : x ∈ H} build for H isomorphic
subalgebras of R4×4.
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Remark 2.28. Quaternions can also be represented by means of matrices in C2×2.
An association close to physics is the following one:

x0e0 + e1x1 + e2x2 + e3x3 →
(

x0 − ix3 −ix1 − x2

−ix1 + x2 x0 + ix3

)
.

This association appears naturally, if the orthogonal unit vectors e0, e1, e2, e3 are
mapped on variants of the so-called Pauli matrices , i.e., one sets as Pauli matrix

σ0 :=
(

1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
and identifies the ej successively with σ0,−iσ1,−iσ2,−iσ3 = σ1 σ2. We thus obtain
a subalgebra of C2×2.

Remark 2.29. In analogy to the non-commutative quaternions Clyde Davenport
published a monograph with the title “A commutative hypercomplex calculus with
applications to special relativity” [30]. In place of the Pauli matrices he used the
so-called Davenport numbers, which are

e1 :=
(

0 −i
i 0

)
, e2 :=

(
0 −1
1 0

)
, e3 :=

(
i 0
0 i

)
.

We can show that after introduction of the usual addition and of a suitable mul-
tiplication the totality of all Davenport numbers becomes a commutative algebra,
which is also called D-space algebra. Such algebras have been closely investigated
in particular by B. Peirce (1881) [113] and E. Study (1889) [149]. Similar to the
Study numbers in the plane the mathematical abundance of the Davenport num-
bers is not given, and therefore these are introduced only for very special tasks.
Further information on these structures can be found in [30].

2.4 Vectors and geometrical aspects
In July 1846 a paper on quaternions by W.R. Hamilton appeared in Philosoph-
ical Magazine of the Royal Irish Academy, in which among other things for the
first time he introduced the words vector and scalar as parts of a quaternion. He
considered a quaternion with the notation

q = w + ix + jy + kz.

He considers ([29], S. 31):

The algebraically real part may receive . . . all values contained on the one
scale of progression of number from negative to positive infinity; we shall call
it therefore the scalar part, or simply the scalar of the quaternion,. . . On the
other hand the algebraically imaginary part, being geometrically constructed
by a straight line or radius vector, which has in general for each determined
quaternion, a determined length and determined direction in space, may be
called vector part, or simply the vector of a quaternion.
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He introduced for the scalar part of the quaternion q the notation “S.q” resp.
“Scal.q”. The vector part of the upper quaternion was abbreviated to “V.q” corresp.
“Vect.q”. W.R. Hamilton created these symbols only in order to quickly separate
the real and imaginary parts of a quaternion. By considering the two vectors

v = ix + jy + kz and v′ = ix′ + jy′ + kz′

and calculating their quaternion product, Hamilton obtained the suitable defini-
tions of scalar and cross product. The latter appeared as

S.vv′ = −(xx′ + yy′ + zz′),
V.vv′ = i(yz′ − zy′) + j(zx′ − xz′) + k(xy′ − yx′).

Nowadays the scalar product is usually introduced as −S.vv′, while the defini-
tion for the cross product remains unchanged. Thus Hamilton can absolutely be
regarded as the founder of vector calculus, the later competitor of quaternion cal-
culus. The vector calculus in particular developed by the American Josiah W.
Gibbs (1839–1903) and the English Oliver Heaviside (1850–1925) has eman-
cipated as easier to learn from the mother, the quaternions and has become an
independent field.

However a large number of physical quantities like mass, charge, time, temperature
are defined just by giving a single number, a scalar. But in several situations also
the direction of the physical effects and of the flows is of interest. Quantities of this
sort are for instance path, force, velocity, and electrical field and are described by
means of vectors. The character of the quantities of this sort can be very different,
depending on the type of applications. We want to provide a few examples.

Example 2.30 (Locally applied vectors). Particles of a flowing fluid medium possess
individual velocities, which are different in module and direction. We describe the
velocities of the single particle by vectors, which are linked to the actual position;
we speak of locally applied vectors. The description of the whole current is obtained
through a velocity field. Such vector fields arise frequently in describing natural
phenomena.

Example 2.31 (Line vector). Force vectors can be displaced along their line of
action, without affecting the physical situation and are therefore called line vectors.

Since line vectors are meaningful only in special physical applications, in the fol-
lowing we want only to consider locally applied vectors and free vectors in R3. To
this end we endow the surrounding space with an orthonormal coordinate system,
so that every point can be described by its three coordinates: A = (a1, a2, a3).
To each pair of points A, B we can attach the locally applied vector

−−→
AB in

A, to which a vector in Vec H or in R3 can be assigned with no problems by
B − A = (b1 − a1, b2 − a2, b3 − a3).
The vectors locally applied into the origin are called in a special way, the position
vectors, since they describe the positions in space. The set of all applied vectors
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at point A is called tangential space TA(R3) of R3 at the point A. The totality of
the position vectors corresponds then to the tangential space T0(R3). We describe
now the so-called free vectors.

Example 2.32. In the set of all locally applied vectors
−−→
AB we introduce an equiv-

alence relation −−→
AB ∼ −−→

CD if and only if B − A = D − C.

We can easily convince ourselves that the latter is really an equivalence relation,
since it is symmetric, transitive and reflexive; the corresponding equivalence classes
[
−−→
AB] are called free vectors. These classes contain all the locally applied vectors,
which possess the same coordinate differences, and are then assigned to the same
element of R3. Each class contains as representative exactly one position vector.
In this way we can carry properties of the vectors in R3 over to the geometry of
our surrounding space, an action that we will demonstrate in what follows.

Since the quantities just considered depend only on the coordinate differences
of two points A and B, they are well defined for the free vectors and represent
corresponding geometrical objects. Among these is the Euclidean distance d(A, A′)
of two points A and A′, given by the norm of the associated vector |

−−→
AA′|. For

|
−−→
AA′| = 1, the applied vector in A as well as the free vector [

−−→
AA′] are called unit

vectors. In general we abbreviate the unit vectors as a lowercase boldface e, as well
as position vectors

−−→
OX with a lower case boldface x.

We can reconsider the geometrical meaning of the already known vector opera-
tions: the addition of two position vectors

−→
OA and

−−→
OB can be illustrated by the

parallelogram that both vectors span, the sum being represented by the diagonal
of the parallelogram originating in O. If we add two free vectors [

−→
OA] and [

−−→
OB],

we can select also from the second class a representative which is locally applied
at A whose endpoint is then the sum of both vectors. Clearly the commutativity
and associativity of addition are easily proven. The null vector 0 corresponds to
a vector of zero length, [

−→
AA], which must absolutely be distinguished from the

origin O. Since this addition corresponds also for instance to addition of forces in
physics, vectors are an important tool for describing forces.
If we multiply a vector with a real number r > 0, we do not change its direction,
but only its length by a factor r. In case the factor is r < 0, in particular r = −1,
then −[

−−→
AB] is the opposite vector [

−−→
BA], the addition of [

−−→
AB] and [

−−→
BA] gives

then the null vector. All the remaining computational rules of the vector space
are transferred naturally to position vectors or to free vectors. In the future we
will not particularly mention the geometrical interpretation but will assume the
concept is understood.
We want to mention another important concept of vector space theory:

Definition 2.33 (Linear dependence). The vectors a1, a2, . . . ,an are called linearly
dependent, if there are real numbers r1, r2, . . . , rn for which r2

1 + r2
2 + · · ·+ r2

n �= 0,
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so that r1a1 + · · · + rnan = 0. In case such numbers cannot be found, the vectors
a1,a2, . . . ,an are called linearly independent.

Remark 2.34. For n = 2 the concept of linear dependence is indicated as collinear-
ity. In case of linear dependence for three vectors we say that they are coplanars.

The following remark is fundamental for this concept. If two vectors are collinear,
then one is a real multiple of the other one. We could describe this with the vector
product introduced in Section 2.2, since the latter vanishes if and only if both
vectors are parallel or collinear.
For the description of the coplanarity we need a threefold product, which we will
learn only later.

We add a remark from mechanics:

Example 2.35 (Center of mass). The center of gravity (or of mass) s of several
point masses mk located at the points xk is calculated by the formula

s =
∑

mkxk∑
mk

.

For any two distinct points the center of gravity bisects the segment joining the
points in the proportion m1 : m2, since

s12 − x1 =
m2

m1 + m2
(x2 − x1), s12 − x2 =

m1

m1 + m2
(x1 − x2).

The segment lengths stand in the proportion m1 : m2.
If we add another point mass at x3 with mass m3, for the center of mass it follows
that

s123 =
m1x1 + m2x2 + m3x3

m1 + m2 + m3
= s12 +

m3

m1 + m2 + m3
(x3 − s12) .

From (m1 + m2 + m3)s123 = m3x3 + (m1 + m2)s12 it follows that the segment
X3S12 is divided in the proportion (m1 + m2) : m3 by S123. A corresponding fact
holds also for the lines through the other vertices. It then follows that the center
of gravity or center of mass of three point masses concentrated at the corners of a
triangle is the intersection of the line joining the vertex with the center of mass or
of gravity of the opposite side. Here Sij cuts the segment XiXj in the proportion
mi : mj for i, j = 1, 2, 3, i �= j. It follows immediately that

m2

m1
· m3

m2
· m1

m3
= 1 .

Thus we have shown the well-known theorem of Giovanni Ceva (1648 to 1734):

Theorem 2.36 (Ceva’s Theorem). If the three lines through the three vertices of a
triangle cut each other all at the same point, then the product of the proportions
of their side subdivisions is equal to one.
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Corollary 2.37. If m1 = m2 = m3 = 1 holds, then s123 cuts any one of the three
medians, i.e., the segments joining a vertex with the center of the opposite side,
in the proportion 2 : 1.

2.4.1 Bilinear products

In Section 2.2 we encountered the vector products introduced by Hamilton, which
later have become independent with vector calculus. We want to prove properties
of these products as well as investigate more closely their geometrical meaning.
We will always move in the space Vec H or also in H, and dealing with geometrical
questions we interchange freely point and free vectors. The products allow us to
comprehend more situations in the applications.
We recall that for the two vectors x = x1e1+x2e2+x3e3 and y = y1e1+y2e2+y3e3

in Section 2.2 we have defined both the following products,

the scalar product

x · y = −Scxy = −1
2
(xy + yx) = x1y1 + x2y2 + x3y3,

and the vector product

x × y = Vecxy =
1
2
(xy − yx) =

∣∣∣∣∣∣
e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ .
Here the determinant is formally defined and is to be developed along the first
row. We determine at first the algebraic properties of both products and interpret
their geometrical meaning. The vector product was adopted in the vector calculus
in a work by Gibbs in 1901.

Proposition 2.38. Let x,y ∈ Vec H.

(i) The scalar and vector products are both homogeneous, i.e., for a real number
r we have

r(x · y) = (rx) · y = x · (ry) as well as r(x × y) = (rx) × y = x × (ry).

(ii) The scalar and vector products are both left and right distributive, i.e.,

x · (y + z) = x · y + x · z and (x + y) · z = x · z + y · z,
x × (y + z) = x × y + x × z and (x + y) × z = x × z + y × z.

(iii) The scalar product is commutative, the vector product is anticommutative,
i.e.,

x · y = y · x und x × y = −y × x.
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Proof. (i) The proofs for scalar and vector product are completely parallel. Since real
numbers can be exchanged with quaternions, from

r(x · y) = − r

2
(xy + yx)

it follows immediately that r can be pulled inside the product near x as well as near y.
(ii) Again the proof can be done in parallel for the scalar and vector products. Let us
choose one of the four equations. From the distributivity of the quaternion multiplication
it follows that

x × (y + z) =
1

2
(x(y + z) − (y + z)x)

=
1

2
(xy + xz− yx − zx) = x × y + x × z.

(iii) The commutavity of the scalar product and the anticommutativity of the vector
product are an easy consequence of the definition. �

We examine now the geometrical meaning of the products, at first for the scalar
product. In view of x = −x we have

x · x = −x2 = xx = |x|2,

the scalar product of a vector by itself is then the square of its length. Thus

|x − y|2 = x · x + y · y − 2x · y,

and from the cosine theorem of planar geometry we have finally

x · y = |x||y| cos α,

where α denotes the angle of both vectors x and y.

y

x

x − y

p

Figure 2.1
From the picture we infer that |y| cos α is the length of the projection p of y upon
x, which corresponds to a theorem in geometry. Moreover we state

The scalar product of two vectors vanishes if and only if the two vectors are or-
thogonal to each other, x ⊥ y.
In addition we have shown:
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Corollary 2.39. Since | cos(x,y)| ≤ 1 we have

|x · y| ≤ |x||y|;

which is the well-known Schwarz’s inequality

Hermann A. Schwarz (1843–1921), German mathematician, active in Halle,
Zürich, Göttingen and Berlin. He worked in analysis and published important
papers in function theory.

We now turn to the simple geometric figures in R3, straight lines, planes and
spheres. If we solve an equation of the form n · x = d for x we find

Proposition 2.40 (Equation of a plane). Let n �= 0 be a given vector and d a real
number. Then the general solution of the equation

n · x = d

is given by

x =
n

|n|2 d + y (2.1)

where y represents an arbitrary vector, orthogonal to n. The equation (2.1) defines
the plane through the point nd/|n|2 orthogonal to n. Thus n ·x = d is an equation
of a plane in R3, and if the vector n is a unit vector, we speak of the Hesse normal
form of the plane equation, n represents then the normal of the plane.

x

O n
|n|

Figure 2.2

Proof. Clearly x0 := nd/|n|2 is a solution of the equation. To it we can add all the vectors
y, for which n · y = 0, thus obtaining the above expression for the general solution.
Geometrically a vector n applied at a point x0 in R3 determines a plane orthogonal to
n, which is indeed specified by our equation. �

Thus we have described one of the first geometrical figures, the plane.
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Example 2.41 (Sphere). a) Let X be a point on the sphere with center M and
radius r. Clearly we have |XM |2 = r2, so that

(x − m) · (x − m) = |x − m|2 = r2.

For m = 0 it follows that |x| = r. In a similar way as in C the tangent plane at
the point x0 is the plane which is orthogonal to the radius vector x0 − m at the
point x0. Its equation is then

x · (x0 − m) = x0 · (x0 − m).

b) As a further example let us consider the parametric representation of a plane:
if a and b denote two vectors in the considered plane through the point x0 which
are not collinear, then one can reach every point of the plane by adding to x0

arbitrary real multiples of a and b giving the equation

x = x0 + sa + tb, s, t ∈ R.

Before we make geometrical remarks on the vector product, we want to prove a
proposition due to Lagrange:

Joseph L. Lagrange (1736–1813) was born of French parents in Turin in
Italy and educated there. He worked in Turin, was president of the Prussian
Academy in Berlin, and later was made president of the committee for reforming
the standards of weights and measures in Paris. He was one of the greatest
mathematicians of his century, his fields were mainly mechanics and analysis.

Proposition 2.42 (Lagrange identity). Let x,y be given vectors. Then

|x|2|y|2 = |x · y|2 + |x × y|2.

Proof. Following Hamilton we had the relationship

xy = −x · y + x× y,

from which taking moduli it follows that

|xy|2 = |x · y|2 + |x × y|2,

i.e., the statement. �

We now consider geometrical properties of the vector product. The equation

4x · (x × y) = −x(xy − yx) − (xy − yx)x = −x2y + xyx − xyx + yx2 = 0

(in view of the real x2) gives immediately that x × y is orthogonal to x. In a
similar way this holds also for y, so that in summary we can state that

the vector x × y is orthogonal to x and y.
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From the Lagrange identity it follows that

|x × y|2 = |x|2|y|2 − |x · y|2 = |x|2|y|2 sin2 α

with the angle α = ∠(x,y). Thus the modulus of the vector product represents
the surface area of the parallelogram spanned by x and y. Also the vector x × y
admits the representation

x × y = |x||y|(sin α) ex×y,

which is also called oriented surface area, since ex×y is a unit vector orthogonal
to x and y. This follows from the special case e1, e2, e3 and

e1 × e2 =
1
2
(e1e2 − e2e1) = e3

which satisfy the right-hand rule, i.e., if the thumb of the right hand points to the
direction of x and the index finger to the direction of y, then the middle finger
indicates the direction x×y, in the natural assumption that our coordinate frame
of reference also satisfies this right-hand rule. We clearly have

e(−x)×y = ex×(−y) = −ex×y.

In a way similar to that for the scalar product we can solve the vector equation
a × x = b with the following result:

Proposition 2.43 (Plücker’s equation of the line). Let a and b be given vectors
with a �= 0 and a ⊥ b. Then the general solution of the equation

a × x = b

is given by

x =
b × a
|a|2 + ta,

where t represents an arbitrary real number. This is a straight line through the point
b × a/|a|2 in the direction a; the last equation is also called Plücker’s equation of
the line.

The German mathematician Julius Plücker (1801–1868) worked in several
universities and finally for over 30 years as professor of mathematics and physics
at the University of Bonn. His important mathematical works concern analytic
geometry.

Proof. The necessary solvability condition b ⊥ a follows from the direction of the cross
product orthogonal to a. The solution itself can only be sought in the direction orthogonal
to b, i.e., we can make the attempt with x0 = b × a; in view of a · (b × a) = 0 we have

a × (b × a) = a(b × a) + a · (b × a) =
1

2
a(ba − ab)

=
1

2
(a · a)b − 1

2
(a · b)a +

1

2
(a × b) × a
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and therefore
a × (b × a) = (a · a)b − (a · b)a.

Thus x0 = (b× a)/|a|2 is indeed a solution of our equation to which all vectors collinear
with a can be added, since their vector product with a vanishes. This is the given solution.
Clearly the latter describes a straight line in view of the free parameter. Our starting
equation goes back to Plücker who has provided in such a way a compact description of
a straight line in R3, resp. in Vec H. �

t

Plücker straight line

a

a

b
Figure 2.3

To characterize the geometrical position by algebraic means we can use special
properties of the quaternion product of two vectors x and y:

Proposition 2.44. Let x,y be vectors. We then have

(i) xy = y x if and only if x and y are collinear and

(ii) xy = −y x if and only if x is orthogonal to y.

Proof. (i) and (ii) follow immediately from the relations

0 = x y − y x = 2(x × y) and 0 = x y + y x = −2x · y. �

2.4.2 Multilinear products

A multiplication combination of more than two vectors in scalar or vector product
form entails some detours. While the vector product is nonassociative, i.e., in
general the vectors (x × y) × z and x × (y × z) are different from each other, the
scalar product is mainly defined only for two vectors. An alternating application
of both products is possible only with limitations, since in any case the vector
product has to be calculated first. Here we can remark that multiple products are
always to be expected with very specific properties. Instead the use of quaternion
multiplication is completely without problems. The latter is computable without
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problems and in addition associative, a fact that in the investigation of multiple
products will play an important role.
Let x,y, z be vectors. In view of quaternion calculus we have (x y)z = x(y z).
However we cannot guarantee anymore that the quaternion product of two vectors
is again a vector. We already know that

x y = −x · y + x × y,

so that we have

(x y)z = −(x · y)z − (x × y) · z + (x × y) × z .

On the other hand we have the identity

x(y z) = −x(y · z) − x · (y × z) + x × (y × z) .

Two quaternions are equal when their scalar and vector parts coincide.
By comparison of the scalar and vector parts we have

(i) x · (y × z) = (x × y) · z,
(ii) x × (y × z) + z(x · y) = (x × y) × z + x(y · z) .

The interpretation of (i) gives that the signs “ ·” and “×” in the double product are
interchangeable. From this we can obtain a new notation which no longer contains
explicitly the multiplication sign. We define:

Definition 2.45 (Mixed product). For three vectors x,y,z the product

(x,y, z) := x · (y × z)

is called their mixed product.

z

z
x

x

yy

x × y

Figure 2.4
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We summarize a few properties of the mixed product:

Proposition 2.46. (i) The mixed product defines a trilinear vector form, i.e., in
each component it is R-homogeneous and distributive, for instance

(x, sy + ty′, z) = s(x,y, z) + t(x,y′, z), s, t ∈ R.

(ii) By cyclically interchanging the vectors in the mixed product the sign does not
change, while by an anticyclical interchange it does change, so that

(x,y, z) = (y, z,x) = (z,x,y) = −(y,x, z) = −(x, z,y) = −(z,y,x).

(iii) The mixed product corresponds to the oriented volume of the parallelepiped
spanned by the three vectors. Using the definitions of scalar and vector product
we have then

(x,y, z) = |x||y||z| sin ∠(x,y) cos ∠(x × y, z).

Then the mixed product vanishes if and only if the three vectors are coplanar.

(iv) We have the determinant representation

(x,y, z) =

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣ .

Proof. (i) This property holds simply because it is satisfied by the scalar and vector
products.

(ii) The statement follows from the interchangeability of “ ·” and “×”, as shown above,
and from the commutativity of the scalar product as well as the anticommutativity of
the vector product.

(iii) The proof follows immediately from the geometrical meaning of scalar and vector
product. Only when the volume of such a solid figure vanishes are the three vectors
coplanar. We thus have obtained a formula for the computation of coplanarity.

(iv) We obtain immediately

(x,y, z) = (x × y) · z

=

(∣∣∣∣ x2x3

y2y3

∣∣∣∣ e1 +

∣∣∣∣ x3x1

y3y1

∣∣∣∣ e2 +

∣∣∣∣ x1x2

y1y2

∣∣∣∣ e3

)
·
(
z1e1 + z2e2 + z3e3

)
= z1

∣∣∣∣ x2x3

y2y3

∣∣∣∣ + z2

∣∣∣∣ x3x1

y3y1

∣∣∣∣ + z3

∣∣∣∣ x1x2

y1y2

∣∣∣∣
and from this the statement. �

The following discussion is devoted to the double vector product.
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Proposition 2.47 (Development formula). Let x,y, z be vectors. We then have

x × (y × z) = (x · z)y − (x · y)z.

Proof. Using 2(x · z)y = (x · z)y + y(x · z) for each term from the definition of scalar
and vector product it follows that

4[(x · z)y − (x · y)z]

= −(xz + zx)y − y(xz + zx) + (xy + yx)z + z(xy + yx)

= x(yz− zy) − (yz− zy)x = 4x × (y × z). �

As immediate consequence we find

Corollary 2.48 (Identity sum of the double vector product). Let x,y, z be vectors.
Then

x × (y × z) + y × (z × x) + z × (x × y) = 0.

Proof. If we apply the development theorem subsequently to each of the three products,
we obtain

x × (y × z) + y × (z× x) + z × (x× y)

= y(x · z) − z(x · y) + z(y · x) − x(y · z) + x(z · y) − y(z · x) = 0 . �

The development theorem for the double vector product allows the inclusion of
other vectors, which leads to a vector form of the Lagrange identity:

Proposition 2.49 (Lagrange identity). Let w be a further vector. For the scalar
product of two vector products we have

(x × y) · (z × w) =
∣∣∣∣ x · z x · w

y · z y · w

∣∣∣∣ .
Proof. We have

(x × y) · (z× w) = [(x × y) × z] · w
= [y(x · z) − x(y · z)] · w = (y · w)(x · z) − (x · w)(y · z) .

From this the determinant representation follows immediately. �

If we now consider the factor z × w substituting z in the double vector product,
the fourfold vector product can be calculated as follows:

(x × y) × (z × w) = y(x · (z × w)) − x(y · (z × w)) = y(x, z,w) − x(y, z,w).

In particular the following relation is proven by substituting z by y and w by z:

Proposition 2.50 (Double factor rule). Let x,y, z be given vectors. Then

(x × y) × (y × z) = y(x,y, z) .
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2.5 Applications
2.5.1 Visualization of the sphere S3

To an arbitrary quaternion x = x0 + x1i + x2j + x3k let us associate the complex
numbers z1 := x0 + ix1 and z2 := x2 + ix3. These allow the representation x =
z1 + z2j. A quaternion x ∈ S3 corresponds then to a pair of complex numbers
(z1, z2) ∈ C × C = C2 with |x|2 = |z1|2 + |z2|2 = 1. In a natural way we find now
a mapping m, which associates to x a unitary 2 × 2 matrix with complex entries.
We define:

m(x) :=
(

z1 z2

−z2 z1

)
∈ C2×2.

All unitary matrices with det m(x) = 1 make the unitary group SU(2). Moreover
we have mT = m−1.

Proposition 2.51. The mapping m : S3 → SU(2) with x → m(x) is an isomor-
phism.

Proof. The identity m(xx′) = m(x)m(x′) needs to be shown. In fact let x′ = z′
1 + z′

2j be
a further quaternion with z′

1, z
′
2 ∈ C. We then have

(z1 + z2j)(z
′
1 + z′

2j) = (z1z
′
1 − z2z′

2) + (z1z
′
2 + z2z′

1)j.

The corresponding matrix multiplication reads(
z1 z2

−z2 z1

)(
z′
1 z′

2

−z′
2 z′

1

)
=

(
z1z

′
1 − z2z′

2 z1z
′
2 + z2z′

1

−(z1z′
2 + z2z′

1) z1z′
1 − z2z′

2

)
,

which then proves our relationship. �

The identification of S3 and SU(2) allows us to describe with a formal algebraic
calculation poles, meridians and parallels. To this end, we consider first the char-
acteristic polynomial of the matrix m(x) = m(z1, z2) ∈ SU(2), which is given by
the equation

det (m(z1, z2) − λE) = (z1 − λ)(z1 − λ) + |z2|2 = λ2 − (z1 + z1)λ + 1.

The value x0 = Re z1 ∈ [−1, 1] is exactly half the trace of the matrix m(x) or the
scalar part of the quaternion x. This can be used to describe parallels on S3 in
a completely analogous way as for R3. Unfortunately we only have an analogy to
express this similarity. A “parallel” on S3 can be described by the formula

x2
1 + x2

2 + x2
3 = 1 − x2

0.

These are two-dimensional spheres, for x0 = 0 we get the “equator”. For x0 = ±1 it
follows that x1 = x2 = x3 = 0, and these would then be the poles. In an analogous
way the parallels in R3 would be described by x2

1 + x2
2 = 1 − x2

0. The parameter
value x0 = 0 corresponds to the equator and x0 = ±1 with x1 = x2 = 0 to the
poles.



2. Quaternions 47

Remark 2.52. The parallels are associated to a whole class Mm of unitary matri-
ces, since all matrices

Mm = {m′mm′−1 : m′ ∈ SU(2)}

possess the same trace x0. Conversely each such similarity class is uniquely tied
with a parallel on S3.

A more refined geometrical visualization of the sphere S3 can be illustrated by
means of the function ψ : S3 → [−1, 1] with ψ(z1, z2) = |z1|2 − |z2|2. We consider
the following levels:

Nψ0 := {(z1, z2) ∈ S3 : ψ(z1, z2) = ψ0, ψ0 ∈ [−1, 1]}.

Since |z1|2 + |z2|2 = 1 we have

|z1|2 =
1 + ψ0

2
and |z2|2 =

1 − ψ0

2
.

It is immediately clear that N1 and N−1 correspond indeed to the unit circles in
the first, resp. second factor of C2. Finally we obtain that Nψ0 with −1 < ψ0 < 1
is the characteristic product of both circles, i.e., through

Nψ0 :=
{

(z1, z2) ∈ C2 : |z1|2 =
1 + ψ0

2
; |z2|2 =

1 − ψ0

2

}
a torus is obtained. We also say that the tori (with ψ0 ∈ (−1, 1)), which are called
Clifford-Tori, are slices of the sphere S3.

2.5.2 Elements of spherical trigonometry

Multiple products can be applied in a particularly comfortable way to found the
elementary relationships of spherical trigonometry. Spherical trigonometry is im-
portant in particular directions of the engineering sciences, in particular mining
and topography. It is not our goal to completely treat spherical trigonometry, but
we present only some chosen examples to show the usefulness of the quaternionic
calculus.

A spherical triangle is obtained when we cut out of the unit sphere a tetrahedron
with a vertex in the center of the sphere, which serves as origin and therefore is
denoted by O. The vertices of the spherical triangle A, B, C correspond to the
position vectors a,b, c. The angles between the edge vectors will be consecutively
denoted by ∠(a,b) = γ, ∠(b, c) = α, ∠(c,a) = β. The angles between the side
surfaces of the tetrahedron are seen as angles in the spherical triangle.
These angles in the points A, B, C are denoted by α′, β′, γ′. From the picture it
follows that for α′′ = ∠(c × a,a × b) we have α′′ = π − α′. We should observe
that the twice appearing vectors in this angle description stand inwards. It then
follows trivially that cosα′′ = − cosα′, sin α′′ = sin α′. In an analogous way a
similar relation holds also for the remaining angles.
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A

B

C

a b

c

Figure 2.5

Proposition 2.53 (Spherical cosine theorem). We have

cosβ = cos γ cosα + sin γ sinα cosβ′.

Proof. Let a,b, c be vectors with |a| = |b| = |c| = 1. The Lagrange identity delivers

(a × b) · (b × c) =

∣∣∣∣ a · b a · c
b · b b · c

∣∣∣∣ = (a · b)(b · c) − a · c = cos γ cos α − cos β .

For the left side we obtain

(a × b) · (b × c) = sin γ sin α cos β′′ = − sin γ sin α cos β′ ,

from which the desired relation follows. �

Proposition 2.54 (Spherical sine-cosine theorem). With the already introduced no-
tation we have the following relationship:

sin α cos γ′ = cos γ sin β − cosβ sinγ cosα′.

Proof. We start from the obvious identity∣∣∣∣∣∣
a · a a · b a · c
a · a a · b a · c
c · a c · b c · c

∣∣∣∣∣∣ = 0 (first row = second row!)

and develop along the first row, to get

(a · a)

∣∣∣∣ a · b a · c
c · b c · c

∣∣∣∣ + (a · b)

∣∣∣∣ a · c a · a
c · c c · a

∣∣∣∣ + (a · c)
∣∣∣∣ a · a a · b

c · a c · b

∣∣∣∣ = 0.

The application of the Lagrange identity gives

(a · a)[(a × c) · (b × c)] + (a · b)[(a × c) · (c × a)] + (a · c)[(a × c) · (a × b)] = 0,

so that
(a × c) · (b × c) − (a · b)|a × c|2 − (a · c)[(c × a) · (a × b)] = 0
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and therefore

− sin β sin α cos γ′′ − cos γ sin2 β − cos β sin β sin γ cos α′′ = 0 .

The division by sin β and the equation cos γ′′ = − cos γ′ resp. cos α′′ = − cos α′ prove
our assertion. �

Proposition 2.55 (Spherical sine theorem). We have

sin β′

sin β
=

sin γ′

sin γ
=

sinα′

sin α
.

Proof. From the double factor rule on the edge vector b it follows that

|a × b||b × c| sin(a × b,b × c) = V |b| , where V := |(a,b, c)| .

Since |a| = |b| = |c| = 1 we obtain

sin γ sin α sin β′ = V .

Since a corresponding formula holds also on the edge vectors a and c we find

V = sin α sin β sin γ′ = sin β sin γ sin α′ = sin γ sin α sin β′

and therefore the assertion. �

2.6 Exercises
1. Let x, y, z be arbitrary elements in H. Prove Proposition 2.8:

(a) Sc(xyz) = Sc(yzx) = Sc(zxy).

(b) Sc(xyz) = x · (yz) is a real number.

2. Show that from every quaternion a in H at least one root can be calculated,
i.e., there is at least one x ∈ H with x2 = a.

3. Prove Proposition 2.13 (iv): every quaternion e with |e| = 1 can be repre-
sented in the form

e = xyx−1y−1.

4. We consider a tetrahedron spanned by x,y, z; the remaining edges are then
suitable differences of these three vectors. Show that the sum of the so-called
oriented surface area of all side surfaces (all surfaces at the same time oriented
toward the interior or toward the exterior !) equals zero. Can this result be
extended to an arbitrary polyhedron?
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3 Clifford numbers

3.1 History of the discovery
While observation is a general foundation of mathematical knowledge up to di-
mension three, in higher dimensional spaces we have to free ourselves from any
spatial imagination. Thus H. Grassmann writes in 1844 in his nowadays famous
book Die lineale Ausdehnungslehre (The linear extension theory):

Since long time it has become clear to
me that geometry is to be regarded as
a branch of mathematics in no way
similar to arithmetic or combinatorics,
but rather geometry refers to something
already given by nature (indeed the
space) and that therefore there should
be a branch of mathematics which in
a purely abstract way produces similar
laws as they appear linked to space in
geometry.

Hermann G. Grassmann (1809–1877)

This point of view set forth by H. Graßmann, led D. Hilbert in his paper of 1899
to completely strike out from geometry the concept of visualization. Graßmann’s
work remained in his time widely unnoticed and poorly understood, probably be-
cause the most part of his colleagues thought in the framework of three-dimensional
space.
Only 18 years later in 1862 appeared the methodically strongly improved second
edition of his earlier book. The latter, particularly popularized by H. Hankel’s
book (1867) Theory of the complex number systems, in particular of the common
imaginary numbers and of the Hamiltonian quaternions with their geometrical rep-
resentation lastingly influenced the development of several fundamental theories
like tensor calculus, vector analysis or also Clifford analysis. The algebraic fun-
damental terms of the extension theory were denoted as extensive quantities or
elementary quantities, which can be combined through two product constructions,
the inner and the outer product. The latter leads to k-vectors and finally to the
antisymmetric tensors. In modern notation Graßmann required his elementary
quantities e1, . . . , en to satisfy the following algebraic properties:

(i) eiej + ejei = 0, e2
i = 0 (i, j = 1, 2, . . . , n),

(ii) ei(ej + ek) = eiej + eiek.

The basic relations of the algebra that bears his name, Graßmann algebra are thus
defined.
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Hermann Günter Graßmann (1809–1877) was born in 1809 as the third
of 12 children. In 1827 he began to study theology and philology at the Berlin
University. After his return to Stettin he continued to study mathematics and
physics on his own while teaching. In 1834 he took a position at the Berlin
Industry Institute (later Berlin Institute of Technology), but returned already
in 1835 to Stettin. Around 1840 he wrote a book on the theory of tides and
flows as dissertation. He applied several times for a university position, sadly
without success. So he remained for his whole life as professor at the Stettin high
school (Gymnasium). He married in 1849 and got 11 children in the following
years. He was not only an excellent mathematician, but also a worldwide known
linguist. He created in 1875 the dictionary to Rig-Veda. The Veda is the step
before Sanscrit, the Rig-Veda is the foundation of Hinduismus. Graßmann was
interested in particular in special affinities between the Latin and the Greek
languages. In addition he busied himself with Gothic, old Prussian, Russian,
old Persian, Lithuanian and slavic languages. In linguistics there is even the
“Grassmannian aspiration law”. In 1876 he got the honorary doctoral degree of
the University of Tübingen. He passed away a year later of a kidney disease.

The genial combination of Graßmann’s ex-
tension theory and Hamilton’s quaternions
led W.K. Clifford in 1876–1878 to
a structure of a geometrical algebra, as
Clifford called it. In his famous work,
published in 1878, Applications of Grass-
mann’s Extensive Algebra he built a new al-
gebra, made of scalars, vectors and in gen-
eral of k-vectors (1 ≤ k ≤ n), the elements
of which are today called Clifford num-
bers. The k-vectors were built by means of
Graßmann’s outer product. Every real lin-
ear combination of k-vectors and scalars is
thus a Clifford number.

William K. Clifford (1845–1879)

The English philosopher and geometer William Kingdon Clifford (1845–
1879) was appointed professor of applied mathematics at the London University
College. He shortly thereafter became Fellow of the Royal Society. He was only
35 years old when he died of tuberculosis in Madeira.

Complex numbers and real quaternions are simple examples of Clifford num-
bers. In M. Chisholm’s book Such Silver Currents, Clifford’s relation with J.
C. Maxwell, who was one of the referees of his call, is described in this way:
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After 1874 Clifford and Maxwell often met as Fellows of the Royal Society. They
shared a mutual belief in the importance of Hamilton’s “quaternion methods”,
and used them in their teachings and writings. Later religious differences would
complicate this relationship and their attitudes to fundamental research.

Another significant mathematician of his time was the German Rudolf Lip-
schitz (1832–1903), who discovered again the geometric algebra in 1880 [93] while
studying sums of squares. He was also the first one to formulate geometric applica-
tions in higher dimensional spaces. K. Theodor Vahlen (1869–1945) introduced
in 1902 [156] a multiplication rule between two basis elements of a Clifford alge-
bra. Only in 1986 was this rule generalized in a paper by P.E. Hagmark and P.
Lounesto by using the Walsh functions. A significant progress was achieved in
1908 by E. Cartan, who discovered relationships between general Clifford algebras
and matrix algebras and showed the periodicity theorem.

3.2 Definition and properties

3.2.1 Definition of the Clifford algebra

W.K. Clifford has extended Hamilton’s idea of quaternions to Rn; in order to
do that he had to define the multiplication in Rn which he did in a way completely
analogous to that of Hamilton:

Definition 3.1. Let the space Rn+1 be given, with the basis {e0, e1, . . . , en}. For
the multiplication let the following rules hold: Let us consider p ∈ {0, . . . , n},
q := n − p; we define

e0ei = eie0 = e0, i = 1, . . . , n,

eiej = −ejei, i �= j, i, j = 1, . . . n,

e2
0 = e2

1 = · · · = e2
p = 1, e2

p+1 = · · · = e2
p+q = −1.

Thus we obtain a basis of an algebra A =: C�p,q:

e0; e1, . . . , en; e1e2, . . . , en−1en; e1e2e3, . . . ; e1e2 . . . en

with e0 as unit element. The addition and the multiplication with a real number
are defined coordinatewise. Further, let the condition hold

e1e2 . . . en �= ±1 if p − q ≡ 1 (mod4).

The algebra found in this way is called (universal) Clifford algebra C�p,q.

A list of remarks follows:

Remark 3.2. a) It is easy to see that C�p,q is a real vector space and it is also
easy to show that there are exactly 2n given basis elements, since squares of the
ei are reduced in view of the assumptions. The further rules of an algebra are
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satisfied without problems; commutativity clearly does not hold (in case n > 1),
associativity is contained in the definition, since we give the basis elements without
brackets. Distributivity is easily calculated, if in the bracket there are two basis
elements of the same degree, otherwise it is defined by means of linear continuation.
There are other generalizations of this type to Rn+1 , among which some of the
basis elements have the square 0.

b) The basis elements can also be given in the more easily understandable form

ei1i2...ip := ei1ei2 . . . eip .

The latter can be abbreviated even more, since as indices of the basis elements we
can use the elements A of the set Pn containing the subsets of {1, . . . , n} where
in these subsets the numbers are naturally ordered according to their size. Here
the empty set corresponds to the index 0; thus we describe the elements of C�p,q

in the form
x =

∑
A∈Pn

xAeA.

Such a number is called a Clifford number. We generally use |A| to denote the
cardinality of A. There are also other notations for C�p,q, for instance the notation
Rp,q introduced by F. Sommen, which has its own advantages.

c) The signature (p, q) remains invariant by a change of basis, according to the
theorem of Sylvester in linear algebra, so that the above definition makes sense. We
will mainly consider the algebra C�0,n and for it we introduce a special notation:

C�0,n =: C�(n).

d) The Clifford algebra of an arbitrary (real) vector space V can also be introduced
by means of a quadratic form Q(x) over V . Then the product is reduced by the
condition

x2 = Q(x);

in our case above we would choose

Q(x) = x2
1 + x2

2 + · · · + x2
p − x2

p+1 − · · · − x2
p+q (p + q = n).

For i = 1, . . . , p after substitution of ei,

e2
i = Q(ei) = 1,

and correspondingly for the remaining ei we obtain the equation e2
i = −1. If we

insert the vector ei+ej into x2 = Q(x) we obtain the exchange rule eiej +ejei = 0.
Such a pair (V, Q) thus actually defines a Clifford algebra.
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Example 3.3. a) (Algebra of the real numbers.) The index n = 0 is allowed. In this
case we obtain the real numbers R as a Clifford algebra.

b) (Algebra of the complex numbers.) Let n = 1 and p = 0 be given. Then C�0,1 is
the vector space spanned by 1 and e1 with e2

1 = −1. Thus it is the set of complex
numbers C, where naturally 1 and e1 = i are to be taken as basis vectors in our
sense.

c) (Algebra of the dual numbers.) Let n = 1 and p = 1 be given. Then C�1,0 is the
algebra of the dual numbers, spanned by the elements 1 and e1 with e2

1 = 1. The
big disadvantage against the complex numbers is the appearance of zero divisors,
since

(1 + e1)(1 − e1) = 0,

although the factors are not zero.

d) (Algebra of the real quaternions.) Here we take n = 2 and p = 0. Then we have
as basis the elements 1, e1, e2, e1e2, which correspond exactly to the basis elements
of H, also with respect to the calculation rules. The isomorphy C�0,2

∼= H follows,
where as in H the basis elements are to be understood as vectors in R4.

e) (Algebra C�0,3.) Let us now take n = 3 and p = 0. Then C�0,3 becomes a
Clifford algebra, which is generated by the anti-euclidean space with e2

1 = e2
2 =

e2
3 = −1. The basis consists of the vectors e1, e2, e3, the bivectors (or 2-vectors)

e12, e23, e13 and the 3-vector e123. On the basis of the algebraic relation

e2
123 = 1

we speak of e123 as a pseudoscalar. It is easy to show that

e123ei = eie123

holds, i.e., e123 also belongs to the center of the algebra. We can also connect
this algebra with the Pauli matrices introduced in Remark 2.28. This will be done
below in Example 3.21 (7). Here an element

x = x0e0 + x1e1 + x2e2 + x3e3 + x4e1e2 + x5e2e3 + x6e3e1 + x7e1e2e3

of the algebra is rewritten in the following way:

x = (x0 + x1e1) + (x4 − x2e1)e1e2 + (x5 + x7e1)e2e3 + (x6 + x3e1)e3e1.

f) (Spacetime algebra). Here we choose n = 4 and p = 1. Then the algebra C�1,3

is spanned by 1, e1, e2, e3, e4, e12, . . . , e1234; the generating vector space has the
signature (1, 3) and is called the Minkowski space. Let us remark that H as 4-
dimensional space has also the signature (1, 3), and we can imbed the Minkowski
space into an algebra in different ways.
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3.2.2 Structures and automorphisms

The R-linear hull

span{eA : |A| = k}

generates the R-linear subspace of the so-called k-vectors, which we will from
now on denote by C�k

p,q. Clearly in this space there are
(

n
k

)
basis elements. It

follows then that the vector space dimension of the (universal) algebra C�p,q can
be calculated by

dimRC�p,q =
(n

0

)
+
(n

1

)
+ · · · +

(n

n

)
= 2n.

Let [·]k : C�p,q → C�k
p,q be a linear projection with

[x]k :=
∑
|A|=k

xAeA.

Thus an arbitrary element x ∈ C�p,q can be written in the form

x = [x]0 + [x]1 + · · · + [x]n.

The elements of the form x = [x]0 are called scalars, the elements of the form
x = [x]1 are called vectors, and finally the elements of the form x = [x]0 + [x]1 are
called paravectors; they are the sum of a scalar and a vector. Moreover let

C�+
p,q =

⊕
2≤2�≤n

C�2�
p,q and C�−p,q =

⊕
1≤2�+1≤n

C�2�+1
p,q .

The dimensions of these subspaces are both exactly 2n−1, as it is easy to see.
The subspace with the even degrees is even a subalgebra, since an even number of
factors is again obtained by multiplication of the corresponding basis elements.

We want to state an algebraic property of C�(n) where the center consists of the
elements of the algebra, which are exchangeable with all other elements. The proof
is skipped here, (cf. Exercise 3.5.3).

Proposition 3.4. The center of the algebra C�(n) for even n consists of the real
numbers R; for odd n it is generated from e0 and the pseudoscalar e1e2 . . . en.

We are now in place to describe important automorphisms with certain known
invariant properties. We define next the principal involution (Inv M), the conju-
gation (Inv C) and the reversion (Inv R):

Definition 3.5. In case the identities

(i) Inv M(xy) = Inv M(x)Inv M(y),
(ii) Inv M(ei) = −ei (i = 1, . . . , n)

are satisfied for arbitrary elements x, y ∈ C�p,q, Inv M is called the principal
involution or inversion. We write generally Inv M(x) =: x̃.
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The following proposition shows that really such an involution exists:

Proposition 3.6. Let x ∈ C�p,q be given, then

Inv M(x) = x̃ = [x]0 − [x]1 + [x]2 − [x]3 + · · · ,

i.e., C�+
p,q and C�−p,q are eigenspaces of the operator Inv M .

Proof. The proof is an easy consequence of the definition. �

In general for a k-vector x we have x̃ := (−1)kx. For arbitrary Clifford numbers
we have x̃y = x̃ ỹ.

Definition 3.7. In case the arbitrary elements x, y ∈ C�p,q satisfy the relations

(i) Inv C(xy) = Inv C(y)Inv C(x),
(ii) Inv C(ei) = −ei (i = 1, 2, . . . , n),

then Inv C is called the Clifford conjugation, for which we write

Inv C(x) =: x.

In case of no confusion we can speak of the conjugation which naturally corresponds
to conjugations in H and C. Here also we need to discuss the existence of such an
involution:

Proposition 3.8. For an arbitrary x ∈ C�p,q we have

Inv C(x) = x = [x]0 − [x]1 − [x]2 + [x]3 + [x]4 − · · · ,

i.e., for x ∈ C�k
p,q we have

x = x, for k ≡ 0, 3 (mod 4),
x = −x, for k ≡ 1, 2 (mod 4).

Proof. The proof follows again immediately from the definition. �

For a k-vector x we have the formula

Inv C(x) = x = (−1)
k(k+1)

2 x,

and for arbitrary x, y it follows that xy = y x, we have thus an antiautomorphism.
Finally we want to define the reversion, which is the subsequent composition of
conjugation and principal involution.

Definition 3.9. In case for arbitrary x, y ∈ C�p,q the relations

(i) Inv R(xy) = Inv R(y)Inv R(x),
(ii) Inv R(ei) = ei (i = 1, 2, . . . n)

are satisfied, then Inv R is called reversion. We write then Inv R(x) =: x̂.
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As before we provide an existence proposition for such an involution:

Proposition 3.10. For arbitrary x ∈ C�p,q we have

Inv R = x̂ = [x]0 + [x]1 − [x]2 − [x]3 + [x]4 + · · · ,

i.e., for x ∈ C�k
p,q we have:

x̂ = x, for k ≡ 0, 1 (mod 4),
x̂ = −x, for k ≡ 2, 3 (mod 4).

Proof. The proof is left as an exercise to the reader (cf. Exercise 3.5.4). �

For an arbitrary k-vector x we have

Inv R(x) = x̂ = (−1)
k(k−1)

2 x.

It then follows for instance Inv R(ei1ei2 . . . eik
) = eik

eik−1 . . . ei1 , and therefore
x̂y = ŷ x̂, so that this is an antiautomorphism. Finally let us indicate the following
relationships:

x̂ = x̃ = x̃ and x̃ = x̂ = x̂.

We want now to establish a connection with the already known vector products.
Let x, y be vectors in C�1

p,q ⊂ C�p,q. These have the representation

x =
n∑

i=1

xiei and y =
n∑

i=1

yiei.

We define the inner product or scalar product of x and y by means of

x · y := −
p∑

i=1

xiyi +
n∑

i=p+1

xiyi,

which corresponds to the one of vector calculus. In the case p = 0 this can be
written also in the form

x · y := −xy + yx

2
,

using the multiplication in C�p,q. From this it follows that

ei · ej = −eiej + ejei

2
= 0 (i �= j).

So the basis elements are orthogonal and we have

ei · ei = −e2
i = 1, i = 1, . . . , n.
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For x = y precisely the quadratic form mentioned in the previous subsection arises,

x2 = −x · x = Q(x).

From the definition follows the commutativity of the inner product. Thus it rep-
resents the symmetric part of the Clifford product of two vectors. The Clifford
product itself splits into a sum of this symmetric part and an antisymmetric part:

xy =
(xy + yx)

2
+

(xy − yx)
2

.

The antisymmetric part will be called the outer product or the Graßmann product
(cf. Appendix 1, Example A.1.7 c). The scalar product defines the bilinear form
Q(x, y) := −x · y on our vector space for which clearly Q(x, x) = Q(x) holds.
Besides we can obtain Q(x, y) from Q(x) by means of the equation

Q(x, y) =
Q(x + y) − Q(x) − Q(y)

2
.

It may be mentioned here that for paravectors x and y we have for their scalar
product in Rn+1 the expression

x · y =
1
2
(xy + yx).

We should mention also that there are more possibilities to introduce inner prod-
ucts. F.R. Harvey classifies in [60] eight types of inner product spaces. C. Per-
wass introduces in his thesis [114] the commutator product A×B = 1

2 (AB −BA)
and the anti-commutator product A×B = 1

2 (AB + BA) of two elements of a geo-
metric algebra. By means of these products it becomes possible to consider several
products including the scalar product and write them using its algebraic structure.

3.2.3 Modulus

For an element x ∈ C�p,q we denote as usual the modulus or absolute value by

|x| :=

( ∑
A∈Pn

x2
A

)1/2

.

Then we can regard the Clifford algebra as a Euclidean space of dimension 2n with
Euclidean metric. We list at first the well-known rules for conjugation and for the
modulus, inasmuch as here they are needed

Proposition 3.11. The following relations hold, where Sc(x) = [x]0 = x0 represents
the scalar part of the Clifford number x and λ ∈ R:

(i) in case x is a paravector: Sc x = x+x
2 , (ii) x + y = x + y,

(iii) x = x, (iv) xy = y x,

(v) |x| = | − x| = |x|, (vi) |λx| = |λ||x|,
(vii)

∣∣|x| − |y|
∣∣ ≤ |x − y| ≤ |x| + |y|.
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The proofs are very simple and analogous to those in C and H.

So far so good, but in C and H we had further rules, which unfortunately give
difficulties here. Among the latter the existence of the inverse of the multiplication,
which in C�p,q is not always given:

Proposition 3.12. (i) For p > 0 or for p = 0 and q = n ≥ 3, C�p,q contains zero
divisors.

(ii) For p = 0 and for all n the paravectors, which are different from zero and
consist only of scalars and vectors, possess the known inverse

x−1 =
x

xx
, x �= 0.

(iii) The positive and negative basis elements {±eA : A ∈ Pn} constitute a group.

Proof. (i) For p > 0 we just gave above the zero divisors:

(1 + e1)(1 − e1) = 0.

For p = 0 and n = q ≥ 3 there is the zero divisor

(1 + e123)(1 − e123) = 0,

since we have e2
123 = 1.

(ii) For the paravectors we have

x = x0 +
n∑

i=1

xiei, x = x0 −
n∑

i=1

xiei

and therefore

x x = xx = x2
0 −

n∑
i,k=1

xixkeiek

= x2
0 +

n∑
i=1

x2
i +
∑
i<k

xixk(eiek + ekei) = |x|2,

so that x/|x|2 is the multiplicative inverse of x.

(iii) Independently of the sign, the product of two basis elements is again such an element.
e0 is naturally the unit element and the inverse of ±eA is eA or −eA, respectively. �

The usual equation xx = |x|2 just proven for paravectors is unfortunately not
right for all Clifford numbers. In C�0,n we get

Proposition 3.13. (i) For arbitrary Clifford numbers we have:

Sc(x y) = Sc(x y) = x · y

with the scalar product taken as the one for vectors x and y in R2n

.
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(ii) In particular we have Sc(xx) = |x|2 and

xx =
∑

e2
A=1

(x · (xeA))eA, xx =
∑

e2
A=1

(x · (eAx))eA.

From (ii) we see that x x begins indeed with x · x = |x|2 but as a rule in the sum
with eA �= e0 further terms follow.

Proof. (i) We have

x y =
∑
A,B

xAyBeAeB =
∑
C

⎛⎝ ∑
eAeB=±eC

±xAyB

⎞⎠ eC

=
∑

eAeB=±e0

±xAyB +
∑

C �={0}

⎛⎝ ∑
eAeB �=±eC

±xAyB

⎞⎠ eC ,

where eAeB = ±e0 can hold only for A = B and because p = 0 with +e0 in view of the
group property. We also have

Sc(x y) =
∑
A

xAyA = x · y.

The statement for xy follows in a similar way.

(ii) In view of eBeA = ±e0 for arbitrary y we have

Sc (yeA) = Sc

(∑
B

yBeBeA

)
= yAe2

A

and
y =

∑
A

Sc(yeA)eA

only in case B = A. In particular for y = x x it follows that

x x =
∑
A

Sc(x xeA)eA

=
∑
A

(x · (xeA))eA =
∑

e2
A

=1

(x · (xeA))eA.

The last equality follows from the relation

x · (xeA) = (xeA) · x = 0

for all x and the A with eA = −eA. This is obtained as follows:

x · (xeA) = Sc(xxeA) = Sc(xxeA) = Sc(xxeA)

= x · (xeA) = −x · (xeA),

so that it is indeed x · (xeA) = 0. �
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For the modulus of a product we prove now the following theorem, which does not
give the best constant, but rather a usable estimate.

Theorem 3.14. (i) For every n there is a constant Kn, so that for all x, y we
have

|xy| ≤ Kn|x||y|.
In any case we have

Kn ≤ 2n/2.

(ii) If y satisfies the relation yy = |y|2, then it possesses an inverse, and we have

|xy| = |yx| = |x||y|.

In C and H we have K1 = K2 = 1. The estimate given in the theorem is therefore
not sharp.

Proof. (i) From xy =
∑

A xyAeA, using the triangular inequality, it follows that

|xy| ≤
∑
A

|xyAeA| =
∑
A

|yA||xeA|.

In
xeA =

∑
B

xBeBeA

both B and eBeA run through all the subsets C ⊂ Pn, so that

|xeA|2 =
∑
B

|xB |2 = |x|2

and with Schwarz’s inequality we find

|xy|2 ≤
(∑

A

|yA||x|
)2

≤ |x|2
(∑

A

1

)(∑
A

|yA|2
)

= 2n|x|2|y|2.

(ii) |xy|2 = Sc(xy xy) = Sc(xy y x) = Sc(xx|y|2) = |y|2 Sc(xx) = |y|2|x|2. For the case
|yx|2 the proof is similar. �

3.3 Geometric applications
3.3.1 Spin groups

In these considerations for simplicity’s sake we assume the real Clifford algebra
C�0,n = C�(n). We consider 1-vectors in C�(n), thus vectors in Rn. In C (Section
1.3) in R3 (Section 2.3) and in H we have already considered rotations. Here too
we understand as rotation in Rn a linear transformation of the form

v = (v1, . . . , vn) → T (v) =

⎛⎝ n∑
i,j=1

Aijvj

⎞⎠ ,
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which preserves the scalar product of vectors and the orientation. The group of
such transformations is called the special orthogonal group and is denoted by
SO(n). The matrices A ∈ Rn×n are orthogonal matrices with A−1 = A�. In
view of the preservation of orientation we must have det A = +1.

We want first to address reflections in Rn from which we can construct rotations.
A reflection about a plane x · u = 0 determined by taking the unit vector u as
normal vector is clearly a mapping by which the component of x orthogonal to u
remains unchanged, while the one parallel to u gets a minus sign. In formula we
split x accordingly,

x = xu + (u · x)u,

where xu is orthogonal to u so that the reflected point x′ is given by

x′ := Ru(x) := xu − (u · x)u = x − 2(u · x)u.

Since u2 = u · u = −1 it follows further that

Ru(x) = x + (ux + xu)u = uxu.

This map is isometric, since

Ru(x) · Ru(y) = (uxu) · (uyu) = −1
2
[uxuuyu + uyuuxu]

=
1
2
u[xy + yx]u = x · y.

As matrix multiplication the corresponding matrix map is

A = E − 2uu�

with the identity matrix E and

A� = A = A−1,

the latter equality following since the inverse mapping is equal to the original.
However det A = −1 must hold, since the orientation is not preserved (a fact that
can be calculated). If we finally carry out two reflections one after the other, we
obtain a mapping with orthogonal matrices, but the determinant is +1, thus it is
a rotation. In summary:

Proposition 3.15. A reflection about an (n−1)-dimensional (hyper-) plane u·x = 0
in Rn with a unit vector u is described by

Ru(x) = x − 2(u · x)u = uxu.

The composition of two reflections gives a rotation

T (x) = u2u1xu1u2.
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As already Hamilton determined, we can in fact obtain every rotation as compo-
sition of an even number of reflections. We now want to investigate this problem.
To this end we first define

Definition 3.16. The Spin group Spin(n) is the totality of all products of an even
number of unit vectors from Rn ∼= C�1(n).

Here the empty product is allowed, it is equal to the unit element e0 of the Clifford
algebra. We can show that in fact it is a group, since at most pairs of such vectors
vanish, so that the even number of factors remains unchanged. For a product

s = u1u2 . . . u2k

the inverse is given by

s = u2k . . . u2 u1 = u2k . . . u2u1.

If we define now a map h : Spin(n) → SO(n) by h(s)(x) := s x s, we can then ask
what such map looks like. We will prove in the next subsection that it is surjective.
It is however not injective: let h(s) be equal to the identity map, then

h(s)(x) = s x s = x

for all x ∈ Rn, so that s commutes with all the basis elements ej and thus belongs
to the center of the algebra C�(n). The spin group is the subset of the even
subalgebra C�(n)+, whose elements are not exchangeable with all ej , for instance
(eiej)ej = −ei �= ej(eiej) = ei for i �= j. Thus s must be real, and this holds only
for the identity apart from the sign. Therefore we have shown:

Theorem 3.17. The map h : Spin(n) → SO(n) is a twofold covering, i.e., the
complete preimage of a given element from SO(n) consists exactly of two elements.

3.3.2 Construction of rotations of Rn

We want to treat the problem of the construction of rotations of Rn by means
of Clifford algebraic concepts. Our presentation follows a work of H. Krüger
(Kaiserslautern), which was kindly made available to us for our book project.
A general linear isometry or orthogonal map T will also be indicated from the fact
that it maps an orthonormal basis {e1, . . . , en} of Rn into another orthonormal
basis {g1, . . . , gn} thanks to the prescription

gk = T (ek).

Clearly we can express the gk by means of the ek. The coefficients are then exactly
the elements of the corresponding rotation matrix, if the orientation coincides,
otherwise the matrix has the determinant −1. But we want to work here within
the Clifford algebra. From the definition it follows directly that

gj · gk = T (ej) · T (ek) = ej · ek = δjk.
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The linearity of T gives immediately the property for arbitrary x, y ∈ Rn,

T (x) · T (y) = x · y.

The goal of our observations is constructing reflections Ru which transfer the or-
thonormal basis {e1, . . . , en} successively into the orthonormal basis {g1, . . . , gn}.
At first we observe that for two unit vectors x, y ∈ Rn with x �= y there is
always a unit vector u for which Ru(x) = y holds. In fact we need only to choose
u = (x − y)/|x − y| since in view of x2 = y2 = −1 we have

Ru(x) =
1

|x − y|2 (x − y)x(x − y) =
x3 − x2y − yx2 + yxy

2(1 − x · y)

=
y(1 − x · y)
1 − x · y = y.

This important mapping will be essential in the following.
Let now {e1, . . . , en} and {g1, . . . , gn} be orthonormal bases, which we would like
to send into each other. If e1 = g1, in the first step there is nothing to do, otherwise
we define u1 := (e1 − g1)/|e1 − g1|. Then Ru1 takes the basis vector e1 into the
new basis vector g1. But Ru1 applies also to the other basis vectors. We set

e
(1)
k := Ru1(ek) (2 ≤ k ≤ n).

From the properties of Ru1 we have

e
(1)
j · e(1)

k = ej · ek = δjk (2 ≤ j, k ≤ n).

For k = 2 with x = e
(1)
2 and y = g2 the consideration is repeated unless it happens

that we have e
(1)
2 = g2. For e

(1)
2 �= g2 let

u2 :=
e
(1)
2 − g2

|e(1)
2 − g2|

.

Ru2 maps as desired e
(1)
2 into g2. Luckily g1 remains invariant under this reflection:

at first it follows that

Ru2(g1) = u2g1u2 = u2(g1u2 + u2g1) − u2
2g1 = −2u2(g1 · u2) + g1.

We then have still to study the following scalar product:

g1 · u2 =
1

|e(1)
2 − g2|

g1 · (e(1)
2 − g2).

We find g1 · g2 = 0 from the assumption and

g1 · e(1)
2 = Ru1(e1) · Ru1(e2) = e1 · e2 = 0.
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Thus g1 remains in fact invariant under Ru2 .

We now use an induction argument on k. Let us construct

g1 = Ru1(e1), u1 =
e1 − g1

|e1 − g1|
,

g2 = Ru2(e
(1)
2 ), u2 =

e
(1)
2 − g2

|e(1)
2 − g2|

,

. . .

gk−1 = Ruk−1(e
(k−2)
k−1 ), uk−1 =

e
(k−2)
k−1 − gk−1

|e(k−2)
k−1 − gk−1|

,

where eventually Ruj is the identity, if e
(j−1)
j = gj . Then the Ruj leave the gi with

i < j invariant. Finally for the induction step from k − 1 to k we define again

e
(k−1)
j := Ruk−1(e

(k−2)
j ), j = k, . . . , n.

As before we set

uk :=
e
(k−1)
k − gk

|e(k−1)
k − gk|

and it then follows that
Ruk

(e(k−1)
k ) = gk.

We should consider whether the previous gj remain invariant with this procedure.
In any case for j < k we obtain that

Ruk
(gj) = ukgjuk = −u2

kgj + uk(ukgj + gjuk) = gj − 2uk(uk · gj).

It remains to show the vanishing of the scalar product

uk · gj =
1

|e(k−1)
k − gk|

(e(k−1)
k − gk) · gj.

From the assumption we have gk · gj = 0. For the rest we can again write

e
(k−1)
k · gj = Ruk−1(e

(k−2)
k ) · Ruk−1(gj) = e

(k−2)
k · gj

which is zero by inductive hypothesis.

Besides both en and gn are determined by the other basis elements and the ori-
entation. In case both orthonormal systems are oriented in the same way we can
skip the last step.

Thus we have obtained the following theorem:
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Theorem 3.18. Every isometry of Rn, in particular every rotation is the product
of at most n − 1 reflections about the planes uk · x = 0, k = 1, . . . , n − 1, defined
by the vectors uk. Thus the basis {e1, e2, . . . , en} is transformed into the basis
{g1, g2, . . . gn} with gk = T (ek), where we have

T = Run−1 ◦ · · · ◦ Ru2 ◦ Ru1 .

In particular every rotation is a composition of an even number of reflections.

Remark 3.19. In case u · v = 0 the product Ru ◦ Rv is commutative, i.e.,

(Ru ◦ Rv)(x) = (Rv ◦ Ru)(x),

since we have 0 = u · v = − 1
2 (uv + vu), and therefore uv = −vu so that

(Ru ◦ Rv)(x) = uvxvu = vuxuv = (Rv ◦ Ru)(x).

In particular all compositions Rej ◦ Rek
are commutative.

3.3.3 Rotations of Rn+1

The rotations of Rn+1 distinguish themselves from those of Rn in the following
way:

Theorem 3.20. The Clifford group Γn+1 is the set of all finite products of nonzero
paravectors. Rotations of Rn+1 have always the form

x′ = u x û = u x ũ−1,

where the u ∈ Γn+1 represent finite products of unit paravectors. Moreover ũ de-
notes the inversion and û the reversion.
Proof. As described above the reflection about a plane with the unit paravector u as
normal is given by

x′ = x − 2(u · x)u = x − (u x + xu)u = −ux u.

A second reflection with u = 1, x′′ = −x′, which is exchangeable with the first one
leads to x′′ = uxu. This is thus a rotation. The composition of more rotations leads to
expressions of the form

x′ = uk . . . u1xu1 . . . uk.

With u := uk . . . u1 we have u1 . . . uk = û, since ûj = uj . In view of

ũ û = ũ ũ = |u|2 = |u1|2 . . . |uk|2 = 1

the rotation can be written also in the form

x′ = u x ũ−1 = u x û.

Conversely from Theorem 3.18 every rotation T is the composition of an even number of
reflections Ru, so that

T = Ru2k ◦ · · · ◦ Ru1 .

If we now premultiply by 2k reflections Ri(x) = −x on one side, then the latter together
give the identity since they are even. On the other side they can be interchanged with
the Rui and then give as above the desired form. �
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3.4 Representations

As in C and H we should investigate whether an isomorphic matrix algebra can
be associated to every Clifford algebra. To this end we need to prove some funda-
mental results. At first we want to investigate the lower dimensional cases. Here
it is useful to use the Pauli matrices already used in Section 2.3 in Remark 2.28

σ0 :=
(

1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

We see easily that σ2
k = σ0 for k = 1, 2, 3. Further the Pauli matrices satisfy the

anticommutator relations:

σjσk + σkσj = 0 (j �= k; j, k = 1, 2, 3).

With Ad×d we denote the ring of all (d × d) matrices over the algebra A. Up to
now we can establish in detail the following representations:

Example 3.21. a) C�0,0: an element x ∈ C�0,0 has the form x = x0e0 with x0 ∈ R,
thus C�0,0

∼= R ∼= R1×1.

b) C�1,0: for the algebra of the dual numbers we have the basis {(1, 0), (0, 1)}.
The R2×2 matrices σ0 and σ1 constitute moreover an isomorphic basis. We can
assign to an element of the algebra x = x0 + x1e1 the matrix x0σo + x1σ1 and
have as representation the matrix(

x0 x1

x1 x0

)
.

We can also write C�1,0
∼= R ⊕ R.

c) C�0,1: This algebra is exactly equal to C and its basis can be constructed
from the matrices σ0,−iσ2. For a complex number x = x0 + ix1 we obtain the
representation (

x0 −x1

x1 x0

)
,

which we already encountered in Proposition 1.13.

d) C�2,0: the basis e0, e1, e2, e1e2 with e2
1 = e2

2 = 1 can be given by the matrices
σ0, σ1, σ3, σ1σ3, so that for an element x = x0e0 + x1e1 + x2e2 + x3e1e2 we obtain
the representation (

x0 + x2 x1 − x3

x1 + x3 x0 − x2

)
.

This delivers the whole matrix algebra R2×2.
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e) C�1,1: the basis elements are again e0, e1, e2, e1e2 with e2
1 = −e2

2 = 1, which
can be given by the matrices σ0, σ1, iσ2, σ1iσ2. An arbitrary element x = x0e0 +
x1e1 + x2e2 + x3e1e2 has then the representation(

x0 − x3 x1 + x2

x1 − x2 x0 + x3

)
.

This is again the whole matrix algebra R2×2.

f) C�0,2: here we have the quaternions for whose usual basis the matrices σ0,−iσ1,
−iσ2, σ1σ2(= −iσ3) can be used. An arbitrary element of H can be represented in
the form

x =
(

x0 − ix3 −x2 − ix1

x2 − ix1 x0 + ix3

)
,

which we have calculated in Section 2.3 in Remark 2.28, and we find that it is not
C2×2, rather it is C ⊕ C.

g) C�3,0: the basis of this algebra can be given by the Pauli matrices. In view
of σ1σ2 = iσ3, σ2σ3 = iσ1 and σ3σ1 = iσ2 as well as σ1σ2σ3 = iσ0 an arbitrary
element of the algebra

x = x0e0 + x1e1 + x2e2 + x3e3 + x4e1e2 + x5e2e3 + x6e3e1 + x7e1e2e3

gets the complex representation(
(x0 + ix7) + (x3 + ix4) (x1 + ix5) + (x6 − ix2)
(x1 + ix5) + (x6 + ix2) (x0 + ix7) − (x3 + ix4)

)
,

i.e., C�3,0
∼= C2×2. We can also construct the isomorphy with the complex quater-

nions, for which we need only to rewrite x in another way:

x = (x0 + ix7)σ0 + (x4 + ix3)σ1σ2 + (x5 + ix1)σ2σ3 + (x6 + ix2)σ1σ3.

From this example it is clear that representations are in no way unique. The fact
that the last representation is isomorphic to the complex quaternions is recog-
nized by observing that the basis elements now correspond to those of the real
quaternions.

We want now to show that all other Clifford algebras are tensor products of the
ones given here. The next representation stems from results of F. Sommen in a
joint work with the third author.

Theorem 3.22 (Dimension reduction). The algebras C�p+1,q+1 and C�p,q ⊗ C�1,1

are isomorphic to each other.
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Proof. The basis of the algebra C�p+1,q+1 can be given in the form

ĕ1, . . . , ĕp+1, e1, . . . , eq+1,

with ĕi
2 = 1, e2

i = −1. Let us now set e := eq+1, ĕ := ĕp+1. We easily see that the
bivector eĕ commutes with all elements ĕ1, . . . , ĕp, e1, .., eq and possesses the square 1.
From this the elements

Ĕ1 = ĕ1eĕ, . . . , Ĕp = ĕpeĕ,

E1 = e1eĕ, . . . , Eq = eqeĕ

generate also the algebra C�p,q, and thus C�p+1,q+1 is isomorphic to the one constructed
from the elements Ĕ1, . . . , Ĕp, E1, . . . , Eq, e, ĕ. Further we can write the elements of
C�p+1,q+1 in the form x0 + x1e + x2ĕ + x3eĕ with xi ∈ C�p,q. It follows then that
C�p+1,q+1

∼= C�p,q ⊗ C�1,1. �

Since from the previous considerations C�1,1 is isomorphic to the whole matrix
algebra R2×2 we have a reduction of p and q by passing to the corresponding
matrices.

Corollary 3.23. The following relationships hold:

C�p+1,q+1
∼= C�2×2

p,q , C�p+2,q+2
∼= C�4×4

p,q ,

and therefore

C�p,q
∼= C�2q×2q

p−q,0 for p ≥ q,

C�p,q
∼= C�2p×2p

0,q−p for q ≥ p.

We have still to investigate the algebras C�p,0 and C�0,q = C�(q). We consider
first two useful examples:

Example 3.24. We have (see Exercise 3.5.6):

a) C�2,2
∼= C�1,1 ⊗ C�1,1

∼= R4×4.

b) C�1,2
∼= C�0,1 ⊗ C�1,1

∼= C ⊗ C�1,1
∼= C2×2.

Theorem 3.25 (Exchange property). We have C�p+1,q
∼= C�q+1,p.

Proof. Let the canonical basis of C�p+1,q be

ĕ1, . . . , ĕp+1, e1, . . . , eq.

We set ĕ := ĕp+1. An isomorphic algebra can be constructed from the elements

Ĕ1 := e1ĕ, . . . , Ĕq := eq ĕ, Ĕq+1 := ĕ

E1 = ĕ1ĕ, . . . , Ep = ĕpĕ,

which however are clearly the generators of an algebra C�q+1,p. �
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For p > 1 in view of Theorems 3.22 and 3.25 as well as from Corollary 3.23 it
follows that

C�p,0
∼= C�1,p−1

∼= C�0,p−2 ⊗ C�1,1
∼= C�2×2

0,p−2.

In summary we have

Proposition 3.26. For the first eight algebras C�p,0 it follows that

C�0,0
∼= R1×1,

C�1,0
∼= R ⊕ R,

C�2,0
∼= R2×2,

C�3,0
∼= C2×2 ∼= R4×4,

C�4,0
∼= C�0,2 ⊗ C�1,1

∼= H2×2,

C�5,0
∼= C�0,3 ⊗ C�1,1

∼= (H ⊗ C)2×2,

C�6,0
∼= C�2×2

0,4 ,

C�7,0
∼= C�2×2

0,5 .

Only the Clifford algebras C�0,p = C�(p) remain. In view of the last two rows
which are not satisfactory, we still need a modification of the principle of dimension
reduction. More precisely: we need a property which relates the algebra C�0,p again
with C�p,0.

Theorem 3.27. The following isomorphism holds:

C�p,q+2
∼= C�q,p ⊗ C�0,2

∼= C�q,p ⊗ H.

Proof. In a similar way as in the proof of the last theorems, by a given basis we determine
a new basis

ĕ1, . . . , ĕp, e1, . . . , eq, eq+1, eq+2

by means of

Ĕ1 = e1eq+1eq+2, . . . , Ĕq = eqeq+1eq+2,

E1 = ĕ1eq+1eq+2, . . . , Ep = ĕpeq+1eq+2, Ep+1 = eq+1, Ep+2 = eq+2.

These elements produce also C�p,q+2, while the elements Ĕ1, . . . , Ep generate exactly the
algebra C�q,p. We can thus take again eq+1, eq+2 and eq+1eq+2 as bases with coefficients
from C�q,p. But that is the stated isomorphism. �

With these considerations we obtain the following representation, where for in-
stance according to Theorem 3.27,

H ⊗ H ∼= C�0,2 ⊗ H ∼= C�2,2
∼= R4×4,

is used according to Example 3.24 a).
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Corollary 3.28. Thus we have obtained:

C�0,1
∼= C,

C�0,2
∼= H,

C�0,3
∼= C�1,0 ⊗ H ∼= H ⊕ H,

C�0,4
∼= C�2,0 ⊗ H ∼= H2×2,

C�0,5
∼= C�3,0 ⊗ H ∼= R4×4 ⊗ H ∼= H4×4,

C�0,6
∼= C�4,0 ⊗ H ∼= H2×2 ⊗ H ∼= R8×8,

C�0,7
∼= C�5,0 ⊗ H ∼= (H ⊗ C)2×2 ⊗ H.

As completion of the previous construction it follows that

C�6,0
∼= C�2×2

0,4
∼= H4×4,

C�7,0
∼= C�2×2

0,5
∼= H8×8.

The remaining Clifford algebras can be calculated with the help of Bott’s period-
icity law:

Theorem 3.29 (Bott’s periodicity law). We have

C�p+8,q
∼= C�p,q+8

∼= C�p,q ⊗ R16×16 ∼= C�16×16
p,q .

Proof. From the previous theorems we obtain

C�p+4,q
∼= C�q+1,p+3

∼= C�p+1,q+1 ⊗ H
∼= C�p,q ⊗ C�1,1 ⊗ H ∼= C�p,q ⊗ H2×2,

from which it follows that

C�p+8,q
∼= C�p+4,q ⊗ H2×2 ∼= C�p,q ⊗ H2×2 ⊗ H2×2

∼= C�p,q ⊗ H4×4 ∼= C�p,q ⊗ R16×16. �

3.5 Exercises
1. Prove that the set of all products of nonvanishing paravectors C�(n) con-

stitutes a group, the group Γn+1. For a, b ∈ C�(n) and a from the Clifford
group Γn+1 the following relationship holds:

|ab| = |a||b|.

2. Let x be a paravector. Show the identity:

n∑
i=0

eixei = −(n − 1)x.
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3. Prove Proposition 3.4: the center of the algebra C�(n) for even n consists
only of the real numbers R and for odd n it can be obtained from 1 and
e1e2 . . . en.

4. Prove Proposition 3.10: For an arbitrary x ∈ C�p,q we have

Inv R = x̂ = [x]0 + [x]1 − [x]2 − [x]3 + [x]4 + · · · ,

i.e., for x ∈ C�k
p,q we have:

x̂ = x, for k ≡ 0, 1 (mod 4),
x̂ = −x, for k ≡ 2, 3 (mod 4).

5. Prove the relationships (i) C�2,2
∼= C�1,1 ⊗ C�1,1

∼= R4×4,

(ii) C�1,2
∼= C�0,1 ⊗ C�1,1

∼= C ⊗ C�1,1
∼= C2×2.



Chapter II

Functions
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4 Topological aspects

4.1 Topology and continuity
We know already distances in C, H, and C�(n). They all have the following prop-
erties and define therefore a metric in the respective sets: We have for a distance
d(z1, z2) for all z1, z2, z3:

d(z1, z2) ≥ 0, d(z1, z2) > 0 ⇔ z1 �= z2 (positivity),
d(z1, z2) = d(z2, z1) (symmetry),
d(z1, z2) ≤ d(z1, z3) + d(z3, z2) (triangle inequality).

This has been shown in the preceding sections.
The topological fundamentals, as, e.g., convergence, will now be defined as usual
in metric spaces (always of finite dimension). We start with a real vector space X
with a given metric d without any further specification and remark that subsets
of X are also metric spaces with the induced metric. Therefore subsets of C, H, or
C�(n) are always included.

Definition 4.1 (Sequence and limit). Let X be a vector space with metric d. A
function from N into X , written (zn)n∈N or shortly (zn), is called a sequence in
X . A sequence (zn) has the limit a ∈ X or it converges to a, if for all ε > 0 an
N = N(ε) exists such that d(zn, a) < ε for all n > N(ε). This is written shortly
zn → a.

We know this definition from the reals, examples are not necessary. But we use
the notion of Cauchy sequence as in the real numbers, and the Cauchy criterion
is applicable also here. A sequence may start with an index other than 1.

Proposition 4.2. A sequence (xn) in C, H, or C�(n) converges if and only if the
real sequences given by the components converge.

The proof is recommended as an exercise (see Exercise 4.4.1). Now we define
further fundamental topological notions as in metric spaces:

Definition 4.3 (Topology). Let X be a vector space with metric d and M ⊂ X .

(i) A ball Bε(z0) := {z ∈ X : d(z, z0) < ε} is called an ε-neighborhood of z0, a
set U ⊃ Bε(z0) is called a neighborhood of the point z0.

(ii) A point a is called an accumulation point of the set M , if there exists a
sequence of points in M , different from a, which converges to a. The set of
all accumulation points of M is denoted by M ′.

(iii) A set is called closed, if it contains all its accumulation points, i.e., M ′ ⊂ M .
The set M := M ∪ M ′ is called the closure of M .

(iv) The set CM := X\M is called the complement of M relative to X , and
∂M := M ∩ CM is the boundary of M .
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(v) For a subset N of M all these notions may be understood relative to M ; we
then have a topology relative to M . So N is a relative neighborhood of z, if
there exists a neighborhood U = U(z) with N = M ∩ U . The set N is called
relatively closed, if N = M ∩ A for a closed set A.

Further definitions are necessary:

Definition 4.4 (Domain). Let X be a vector space and M ⊂ X .

(i) A set M is called open, if M contains an ε-neighborhood of z for every point
z ∈ M . A set N ⊂ M is called relatively open with respect to M , if N contains
for every z ∈ N a relative neighborhood of z .

(ii) A set M is called connected, if it is not possible to find two open sets M1 and
M2, such that

M ⊂ M1 ∪ M2, M ∩ Mi �= ∅ (i = 1, 2), M ∩ M1 ∩ M2 = ∅.

If M is open, the definition simplifies to: There do not exist two open non-
empty sets G1 and G2 such that M = G1 ∪ G2, G1 ∩ G2 = ∅.

(iii) A set M is called polygonally connected, if every two points in M may be
connected by a polygon in M .

(iv) An open and connected set is called a domain.

In general we shall deal with domains and their boundaries. We need the following
simple topological propositions; for the proofs we refer to real analysis:

Proposition 4.5. (i) For an open set M the complement CM is closed; vice
versa, CM is open if M is closed.

(ii) The intersection of finitely or infinitely many closed sets is closed; the union
of finitely or infinitely many open sets is open.

(iii) The union of finitely many closed sets is closed; the intersection of finitely
many open sets is open.

We shall prove the following proposition as an exercise; it is useful for working
with domains:

Proposition 4.6. An open set in a vector space is connected if and only if it is
polygonally connected.

Proof. If in the open connected set M two points z1 and z2 exist that cannot be connected
by a polygon, we divide M into two subsets M1 and M2 := M\M1. Here M1 contains
all points from M that can be connected with z1 by a polygon. From our assumption
it follows that M1 and M2 are nonempty and disjoint. They are moreover open: For
z0 ∈ M1 an ε-neighborhood of z0 exists in M , all of whose points can be connected with
z0 by a straight line, therefore they can be connected with z1 by a polygon. So, the whole
ε-neighborhood is contained in M1 and M1 is open. We may prove similarly that M2 is
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open. In such a way we have divided M into two open, disjoint and nonempty subsets;
that is a contradiction to our definition of a connected set.
Now the other way around: If M is polygonally connected and not connected, we have
by definition a dissection of M into two open and disjoint sets M1 and M2. We choose
zi ∈ Mi, i = 1, 2. These two points can by assumption be connected by a polygon P in
M . This polygon may be given by the straight lines P0P1, . . . , Pn−1Pn, where the points
Pj (j = 0, . . . , n) are given by the vectors aj .

P1

P2 Pn−1

Pn = z2
M1

M2

Pn−2

P0 = z1

Figure 4.1

Then we have:

Pj−1Pj : z(t) = (aj − aj−1)(t − j + 1) + aj−1, j − 1 ≤ t ≤ j (j = 1, . . . , n),

in particular z(0) = a0 = z1 and z(n) = an = z2. The variable t runs in the interval
[0, n]. We define now Qi := P ∩ Mi, i = 1, 2; Q1 contains at least z1. Let

t∗ := sup{t ∈ [0, n] : z(t) ∈ Q1}.

If we have z(t∗) in Q1, then it also belongs to M1. It would follow that a neighborhood
of z(t∗) is contained in M1 and therefore all points z(t) with t∗ − δ < t < t∗ + δ for a
sufficiently small δ are contained in M1. That would contradict the definition of t∗ as
supremum. So, we have z(t∗) in Q2 and in M2. As M2 is open, we have a neighborhood
of z(t∗), which is contained in M2. But, this contradicts also the definition of t∗, which
says that there are points from Q1 ⊂ M1 as near as we wish to z(t∗). So, we have a final
contradiction and M has to be connected. �

Our introductory topological definitions end with the notion of a compact set:

Definition 4.7 (Compactness). (i) An arbitrary system of open sets is called a
covering of a set M , if every point of M is contained in at least one of these
open sets.

(ii) A set K is called compact, if an arbitrary covering of K can always be reduced
to a finite covering.

Part (i) of the theorem below is named after H. E. Heine (1821–1881) and E.
Borel (1871–1956) ; it is important for dealing with compact sets. The proof may
be found, e.g., in [8], vol. I, Chapter III.3.
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Theorem 4.8. (i) A set K is compact if and only if it is closed and bounded.

(ii) A set K possesses a compact closure if and only if every sequence from K
contains a convergent subsequence.

Now, we define some notions connected with continuity of functions. Therefore
let X and Y be vector spaces with metrics dX , resp. dY . We deal with functions
f : M → N for sets M ⊂ X, N ⊂ Y . The variable in the domain of definition
(which may not be a domain in the sense of Definition 4.4) is called z, the variable
in the range w = f(z); here w is called the image of z and z is a pre-image of w.
Similarly f−1(w) := {z ∈ M : f(z) = w} denotes the set of pre-images of the
point w in the domain of definition and f(M) := {w : ∃z ∈ M, f(z) = w} the
image set of a set M .

Definition 4.9 (Continuity). (i) A function f is said to have the limit w0 at a
point z0 ∈ M , if for all ε > 0 a δ = δ(ε, z0) exists such that dY (f(z), w0) < ε
for all z with dX(z, z0) < δ(ε) and z ∈ M, z �= z0.

(ii) A function f is said to be continuous at z0 ∈ M , if it has the limit w0 = f(z0)
at z0. A function is said to be continuous on a set if it is continuous at all
points of M . The function is said to be uniformly continuous on a set M if
the δ from (i) may be chosen independently of z0 ∈ M .

(iii) A function that is bijective and continuous together with its inverse is called
a homeomorphism.

(iv) A sequence of functions (fn) defined on M is called convergent to a limit
function f , if for all ε > 0 and for all z ∈ M an N(ε, z) exists such that
dY (fn(z), f(z)) < ε for n > N(ε, z). It is called uniformly convergent, if N
may be chosen independently of z.

We have the usual theorems on continuity also for functions between vector spaces:

Theorem 4.10. (i) A function f is continuous at z0 ∈ M if for every neighbor-
hood V of the image point w0 = f(z0) a relative neighborhood U of z0 exists
such that f(U ∩ M) ⊂ V .

(ii) A function f is continuous on M if and only if the pre-images of open sets
are open.

(iii) A function f is continuous on M if and only if the pre-images of closed sets
are closed.

(iv) For a continuous function f the images of compact sets in M are compact.

(v) For a continuous function f the images of connected sets in M are connected.

(vi) The limit function of a uniformly convergent sequence of continuous functions
is continuous.
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Proof. (i) Firstly we prove continuity: V is a neighborhood of w0 and contains an ε-
neighborhood Vε of w0. We assumed a neighborhood Uδ of z0 with f(Uδ ∩ M) ⊂ Vε

exists and that was just our definition of continuity. If continuity is given, then for a
neighborhood Vε in the range of f , a neighborhood Uδ exists such that f(Uδ ∩M) ⊂ Vε.
That is the assertion of the other direction of our proof.

M

U

f

z0

V

f(z0)

f(U ∩ M)

Figure 4.2

(ii) Let f : M → N be continuous on M , let G be a relative open set in N , and
z ∈ f−1(G). Then w = f(z) is contained in G and G is a neighborhood of w. Then it
follows from (i) that a neighborhood U of z exists with f(U ∩M) ⊂ G, U ∩M ⊂ f−1(G),
i.e., f−1(G) is relatively open. If for the other direction of our proof the pre-images
of open sets are relatively open, then an open ε-neighborhood of w exists which has a
relatively open pre-image. Therefore this pre-image contains a relative δ-neighborhood
of all of its points, i.e., continuity.

(iii) The proof is analogous to (ii).

To prove (iv) we take an open covering of the set f(K) by sets Gα. From (ii) it follows
that all sets f−1(Gα) are relatively open, and they form a covering of the compact set
K. The definition gives us a finite covering, i.e.,

K ⊂ f−1(Gα1) ∪ · · · ∪ f−1(Gαm).

From f(f−1(E)) = E for an arbitrary subset E ⊂ f(X) it follows that f(K) ⊂ Gα1 ∪
· · · ∪ Gαm , i.e., the assertion.

To prove (v) we assume f(M) not to be connected. Then there exist open sets G1 and G2

in Y which have a non-empty intersection with f(M); these intersections are disjoint and
their union contains f(M). The pre-images f−1(Gi) (i = 1, 2) are also relatively open
in M and disjoint. Then we should have M ⊂ f−1(G1) ∪ f−1(G2), i.e., a contradiction
with the connectivity of M .

We have to prove (vi): For all n≥N(ε/3) independently of x ∈ M we have dY (f(x), fn(x))
< ε/3; now let n ≥ N(ε/3) be fixed. For these n and ε, a δ(x) > 0 exists such that for
every dX(x, y) < δ(x) we have always dY (fn(x), fn(y)) < ε/3. It follows that

dY (f(x), f(y)) ≤ dY (f(x), fn(x)) + dY (fn(x), fn(y)) + dY (fn(y), f(y)) < ε. �
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4.2 Series

We shall define series in a vector space with Euclidean metric:

Definition 4.11 (Series). A pair of sequences ((an), (sn)) with sn :=
∑n

j=1 aj is
called a series; shortly written also

∑
an. The sn are called partial sums of the

series. The series
∑

an is convergent to s, or we say it has the sum s if sn → s.
This is written

s =
∞∑

n=1

an.

The series
∑

an is called absolutely convergent, if
∑

|an| is convergent.

A series may start with other indices, often with 0. We remark explicitly that∑
an stands for the series and

∑∞
n=1 an for the sum of the series, the latter if the

sum exists.

We will now ask whether a series in our algebras C, H and C�(n) has special
properties. In view of the triangle inequality, absolute convergence implies always
convergence. Similarly the Cauchy criterion is unchanged, this follows simply from
the Cauchy criterion for sequences. The comparison test brings no problems as it
is based also on the triangle inequality. The ratio and the root test are not so clear
as the multiplicativity of the absolute value may be important, a fact which is not
given in C�(n). We deal firstly with the root test:

Proposition 4.12 (Root test). Let
∑

ak be a series from C, H or C�(n) and let
lim sup

k→∞
k
√

|ak| = R be given. Then we have:

(i) For R < 1 the series converges absolutely.

(ii) For R > 1 the series diverges.

Proof. To prove (i) we take a real number r with R < r < 1. Then a natural number N
exists such that

k
√

|ak| < r

for k ≥ N . So these elements of our series
∑ |ak| are bounded from above by the elements

of the real geometric series
∑

rk, and our series converges absolutely. If we have in (ii)
R > 1, then we have infinitely many indices k with k

√
|ak| > 1 resp. |ak| > 1 implying

divergence of the series. �

As we see, the root test is not influenced by our algebras. Now we shall consider
the ratio test:

Proposition 4.13 (Ratio test). Let
∑

ak be a series from C, H or C�(n) and let

lim sup
k→∞

|ak+1|
|ak|

= Q.
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For the R from the root test we have R ≤ Q, thus the series converges absolutely
for Q < 1. If instead

lim
k→∞

|ak+1|
|ak|

= Q

with Q > 1, then the series diverges.

Proof. For Q < 1 let Q < q < 1; then it follows for k ≥ N with a suitable N that

|ak| ≤ q|ak−1| ≤ q2|ak−2| ≤ · · · ≤ qk−N |aN |

and

|ak| ≤ qk |aN |
qN

as well as k
√

|ak| ≤ q k

√
|aN |
qN

.

From the second inequality it follows that R ≤ Q and from the first we see that up to
a factor our series is bounded above by

∑
qk, so we have convergence. For the second

part of the proof let Q > q > 1, then we have for all sufficiently large k the inequality
|ak+1| ≥ q|ak| ≥ |ak|. Therefore the absolute values of the generic terms of our series do
not converge to zero and the series diverges. �

In the above proposition in C�(n) it is important to have the quotients of the
absolute values and not the absolute value of the quotients. Due to the inequality
|ab| ≤ K|a||b| from Theorem 3.14 the following remark is needed:

Remark 4.14. If in C�(n) instead of |ak+1|/|ak| we take the quotient |ak+1/ak|,
the ak must not be zero divisors as otherwise the quotient may not be defined.
Moreover we have to take into account the just cited multiplicativity inequality
for the absolute value in C�(n) and Q < q < 1:

|ak| =
∣∣∣∣ ak

aN
aN

∣∣∣∣ ≤ K|aN |
∣∣∣∣ ak

aN

∣∣∣∣ = K|aN |
∣∣∣∣ ak

ak−1

ak−1

ak−2
...

aN+1

aN

∣∣∣∣
≤ Kk−N |aN |

∣∣∣∣ ak

ak−1

∣∣∣∣ . . . ∣∣∣∣aN+1

aN

∣∣∣∣ ≤ (Kq)k (Kq)−N |aN |.

Up to a factor we get that our series is bounded above by
∑

(Kq)k, hence we have
to assume Q < 1/K for convergence.

The problems from the above remark in C�(n) can be seen in a relatively simple
example:

Example 4.15. For the geometric series
∑

xk we have always

sk = 1 + x + x2 + · · · + xk−1 =
1 − xk

1 − x
.

The well-known sum ∞∑
k=0

xk =
1

1 − x
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follows as usual for xk → 0 if k → ∞. In C and H this holds with |x| < 1 due
to |xk| = |x|k. In C�(n) we can derive convergence only for |x| < 1/K since
|xk| ≤ Kk−1|x|k. But convergence follows in C�(n) also for |x| < 1 if we deal with
paravectors only.

Now we shall consider series of functions
∑

uk(x) in our algebras:

Proposition 4.16 (Weierstraß). Suppose the functions uk(x) : G → C�(n) are given
in a domain G ⊂ C�(n) where they are bounded by

|uk(x)| ≤ bk.

If the real series
∑

bk converges, then the series of functions converges in G ab-
solutely and uniformly to a limit function

s(x) =
∞∑

k=0

uk(x).

Proof. Due to the triangle inequality∣∣∣∣∣
M∑

k=N

uk(x)

∣∣∣∣∣ ≤
M∑

k=N

|uk(x)| ≤
M∑

k=N

bk

and, taking into account the convergence of
∑

bk, the Cauchy criterion for the series of
functions is fulfilled at every point, independently of the points of G. So the series of
functions converges absolutely and uniformly in G. �

According to Theorem 4.10 (vi) the limit function of a uniformly convergent series
of continuous functions is itself continuous. An example is given by power series;
in the following form they are important mainly in C.

Definition 4.17 (Power series). A power series is a series
∑

akxk where the ak for
k ≥ 0 and x are elements of one of our algebras. If one uses powers of x − x0 one
speaks of a power series with center x0.

The important theorem is::

Theorem 4.18. Every power series
∑

akxk possesses a circle of convergence {|x| <
ρ/K} for C, resp. a ball of convergence for H or C�(n), such that the series
converges absolutely in the interior to a continuous function

f(x) =
∞∑

k=0

akxk.

Here K is the factor in |xy| ≤ K|x||y|, i.e., K = 1 in C, H or if x is a paravector
in C�(n). In C and H the series diverges if |x| > ρ; if |x| = ρ the convergence is
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not determined and may differ from point to point. The number ρ �= 0 is called
radius of convergence and is given by:

1
ρ

= lim sup
k→∞

|ak|1/k.

In case this limit is zero we define ρ := ∞. If this limit equals infinity we define
ρ := 0. The power series converges uniformly in every smaller circle or ball {|x| ≤
ρ
K − ε}.
Proof. The sum function f is continuous by the uniform convergence. To prove the latter
we assume firstly 0 < ρ < ∞, then from the above definition of ρ it follows that

1

ρ − ε
> |ak|1/k

for all ε > 0 with k > N(ε). For these k we have

|akxk| ≤ Kk|ak||x|k ≤
(

K|x|
ρ − ε

)k

;

the right-hand side shows a convergent series for |x| ≤ (ρ− 2ε)/K. So by comparison we
have uniform convergence of our power series for |x| ≤ (ρ− 2ε)/K. As ε > 0 is arbitrary
we have convergence for |x| < ρ/K.

To prove divergence for |x| > ρ in C or H we remark that, for infinitely many k ∈ N,

1

ρ + ε
≤ |ak|1/k,

so it follows that

|ak||x|k ≥
(

|x|
ρ + ε

)k

.

As we find for every |x| > ρ an ε such that |x|/(ρ + ε) > 1, the power series diverges for
all x with |x| > ρ. In C�(n) the situation is more difficult and we skip it here. But, if we
deal only with paravectors the assertion is also correct.

In case of ρ = 0 in C or H we can conclude just as before and the series diverges for all
x �= 0. Finally we have for ρ = ∞ in all three algebras

lim
k→∞

|ak|1/k = 0;

it follows for all ε > 0 and sufficiently large k that the inequality |akxk| ≤ Kk|ak||x|k ≤
(εK|x|)k. On the right-hand side we have for εK|x| < 1 a convergent comparison series
that holds for all |x| with sufficiently small ε. �

Example 4.19. a) Later we shall use also power series with negative powers of x:∑
a−kx−k.
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These series converge in C, H, and for paravectors in C�(n) in the exterior of a
circle, resp. ball, {|x| < ρ} with

1
ρ

= lim sup
k→∞

|a−k|1/k.

b) a) gives us in C, H, and for paravectors a second power series for 1/(1 − x):

1
1 − x

= − 1
x

1
1 − 1

x

= −
∞∑

k=1

x−k;

this series converges for |x| > 1 and complements the geometric series in the
exterior of the unit circle, resp. ball.
c) If the limit

lim
k→∞

|ak|
|ak+1|

exists it equals the radius of convergence of the power series
∑

akxk. The reader
may prove this and may calculate the radius of convergence for the power series∑

xk/k! (see Exercise 4.4.5).

d) In H and C�(n) one could investigate series of the form∑
ak0xak1xak2x...ak(k−1)xakk

due to the noncommutativity. With the estimate

|ak0xak1x . . . akk| ≤ K2k|ak0||ak1| . . . |akk||x|k

this may be reduced to the above cases. We do not carry this out here in detail, as
we shall define later on different and in some sense more convenient power series
in H and C�(n).

4.3 Riemann spheres

4.3.1 Complex case

Bernhard Riemann introduced a completion of the complex numbers, which
closes or compactifies the complex plane C by a point z = ∞. This is called one
point compactification of the complex plane or closed complex plane and will be
denoted by Ĉ := C ∪ {∞}. Relative to the notion compact we refer to Subsection
4.1 above. The point z = ∞ is at first to be seen as an ideal element which is not
a point of the complex plane C. We deal here only with the plane case, as we can
illustrate this in R3; the generalizations to H and C�(n) will follow.
The ideal point z = ∞ can be illustrated by the Riemann sphere in the following
manner: We put a ball of radius 1/2 on the complex plane, such that it touches
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the plane at the origin. This point is called the south pole of the Riemann sphere,
the diametral point is called the north pole N .

Bernhard Riemann (1826–1866) studied at the uni-
versities of Berlin and Göttingen and became Pri-
vatdozent in Göttingen. After the death of Johann
Peter Gustav Lejeune Dirichlet he inherited
the chair of Gauß. Riemann investigated already in
his doctoral thesis the foundations of function theory
which are still in use today. We shall meet his name
very often. Riemann made important contributions to
many fields in mathematics. He died of tuberculosis
when he was 39 years old during a stay in Italy. Bernhard Riemann

In space we introduce a coordinate system (ξ, η, ζ), the ξ-axis and the x-axis coin-
ciding as well as the η-axis and the y-axis. Then the north pole has the coordinates
(0, 0, 1). Now every point z ∈ C will be connected with N by a straight line. The
point where this line cuts the sphere is the image point of z on the sphere. As all
these lines start at one point N , this mapping is called stereographic projection.
Every point in C has an image on the sphere, every point on the sphere has a
pre-image except N . This motivates us to define z = ∞ as the image of N . So we
have found a concrete illustration of Ĉ.

This mapping transforms the southern half-sphere onto the interior of the unit
circle, while the northern half-sphere is mapped onto the exterior of this circle.
The Riemann sphere is given by the equation

ξ2 + η2 +
(

ζ − 1
2

)2

=
1
4

or by

ξ2 + η2 + ζ2 − ζ = 0.

Figure 4.3 shows a view into the Riemann sphere, here r is the absolute value of
z and ρ that of ξ + iη.
As the occuring triangles are similar and the arguments of z and ξ + iη are equal
we have

r

ρ
=

1
1 − ζ

, x =
ξ

1 − ζ
, y =

η

1 − ζ
.

In view of the above equation of the sphere it follows

z =
ξ + iη

1 − ζ
, zz =

ρ2

(1 − ζ)2
=

ζ

1 − ζ



4. Topological aspects 85

and

ξ =
x

1 + zz
, η =

y

1 + zz
, ζ =

zz

1 + zz
.

Im

Re

η

ζ

ξ

ξ

N

1-ζ
P

iy

C

x

iη

z

Figure 4.3

We are now able to introduce the Euclidean distance in R3 on the Riemann sphere
as a new distance of two complex numbers called chordal distance. We get by some
tedious calculations

dch(z1, z2) :=
√

(ξ1 − ξ2)2 + (η1 − η2)2 + (ζ1 − ζ2)2 =
|z1 − z2|√

1 + |z1|2
√

1 + |z2|2
.

This distance may be used especially for z = ∞. Indeed, if |z2| goes to ∞ we get
for z1 = z,

dch(z,∞) =
1√

1 + |z|2
.

We remark that C is not compact either in the Euclidean or the chordal metric, but
Ĉ is compact in the chordal metric. For example we have C = C in the Euclidean
metric, but C = Ĉ in the chordal metric.

Now we shall look at the images of lines and circles under the stereographic map. A
straight line in C is mapped onto the sphere by the lines which connect the points
of the given line with N ; these lines span a plane. This plane cuts the sphere in
a circle such that the straight lines in C are mapped onto circles on the sphere
going through N . If we now look at a circle in C given by the equation

zz − zz0 − zz0 + z0z0 = R2
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and map it by the above equations to the Riemann sphere, we get with τ := ξ+iη,

ττ − (ττ0 + ττ0)
1 − ζ

1 − ζ0
+ ζ0

(1 − ζ)2

1 − ζ0
= R2(1 − ζ)2.

If we substitute here ττ using the equation of the ball ττ = −ζ2 + ζ, we may
divide the result by 1 − ζ (N is not on the circle) and we get a linear equation in
ξ, η, ζ,

ζ − (ττ0 + ττ0)
1

1 − ζ0
+

ζ0

1 − ζ0
(1 − ζ) = R2(1 − ζ).

That means the images of our plane circle in C lie on a plane in space, the latter
cuts the Riemann sphere in a circle and this circle is the image of our circle in C.
So we have proved (Figure 4.4):

x ,

y ,

N

Figure 4.4

Proposition 4.20. Circular and straight lines in C correspond to circles on the
Riemann sphere. Circles in C correspond to circles not through N , straight lines
correspond to circles through N .

One sees that parallels on the sphere correspond to circles with center at the origin
in the plane, the meridians to the straight lines through the origin. It does also
not constitute a problem to find the plane circles which correspond to great circles
on the sphere, i.e., the shortest lines. For these great circles the defining plane has
to go through the center of the Riemann sphere (0, 0, 1

2 ). If we put this into the
equation for the plane it follows that

1 +
ζ0

1 − ζ0
= R2

or
1 + |z0|2 = R2 :
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a circle in the complex plane with center z0 and this Radius R corresponds to a
great circle on the Riemann sphere.

4.3.2 Higher dimensions

We start with the generalization of the Riemann sphere to the case of real quater-
nions. Let {e0 = 1, . . . , e4} be an orthonormal coordinate system in R5 and we

identify R5 with H × R. The points in R5 are given by ξ =
4∑

j=0

ξjej ; we identify

ξ̂ =
3∑

j=0

ξjej with x ∈ H. The generalized Riemann sphere is now defined by the

sphere

ξ2
0 + ξ2

1 + ξ2
2 + ξ2

3 +
(

ξ4 − 1
2

)2

=
1
4

or

ξ2
0 + ξ2

1 + ξ2
2 + ξ2

3 + ξ4(ξ4 − 1) = 0.

The point N = (0, 0, 0, 0, 1) is called the north pole, the origin is the south pole.
Every point x ∈ H can be connected with N by a straight line which meets the
sphere at the image point ξ. Adding an ideal point x = ∞ we get the one point
compactification Ĥ = H ∪{∞} of H, completely analogous to Ĉ. This point x = ∞
will be appointed to the north pole which has no pre-image in H. So Ĥ becomes a
compact set which we can equip with a chordal metric.

The relations between ξ on the sphere and x ∈ H are similar to the complex case.
From the theorem of intersecting lines we get, with ρ = |ξ̂|,

x0

ξ0
=

x1

ξ1
=

x2

ξ2
=

x3

ξ3
=

|x|
ρ

=
1

1 − ξ4
;

it follows that

x =
ξ̂

1 − ξ4
.

The reverse direction is a bit more difficult. From x = ξ̂/(1 − ξ4) it follows by the
sphere equation that

xx = |x|2 =
|ξ̂|2

(1 − ξ4)2
=

(1 − ξ4)ξ4

(1 − ξ4)2
=

ξ4

1 − ξ4

or

ξ4 =
|x|2

1 + |x|2 and ξ̂ =
x

1 + |x|2 .
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As for C we define now the chordal distance

dch(x, x′) = |ξ − ξ′|

to be the Euclidean distance on the sphere. Calculating as in C (we have to
substitute only iy by x) we get

dch(x, x′) =
|x − x′|√

1 + |x|2
√

1 + |x′|2
.

This metric allows us to include the point at ∞:

dch(x,∞) =
1√

1 + |x|2
.

Naturally the topological properties in H and C are the same.

It is not necessary to do this again in C�(n). One has to take an analogous ball of
diameter 1 in Rn+2. The point (0, . . . , 0, 1) defines the north pole and corresponds
to the ideal point x = ∞ which is added to Rn+1. The same formulas as in H hold
in this case too, and the corresponding chordal distance allows us to include the
ideal point x = ∞.

4.4 Exercises

1. Let (xn) be a sequence in C, H or C�(n). Prove:
a) (xn) converges if and only if the real sequences of the components of xn

converge.
b) If xn are complex numbers the sequence (xn) converges if and only if the
sequences of the absolute values and arguments converge. Are there excep-
tions?

2. Describe geometrically those sets which have the following definition in the
plane: a) |z| < 1, b) Im z ≤ 0.

3. Do both series
∑

−x−k and
∑

xk have the same values on the unit circle of
C, resp. the unit ball of H ?

4. Find examples of convergent power series with radius of convergence ρ = 0
and ρ = ∞.

5. a) Prove that if the limit

lim
k→∞

|ak|
|ak+1|

exists it equals the radius of convergence for the power series
∑

akxk.
b) Calculate the radius of convergence for the power series

∑
xk/k!.
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6. Calculate the chordal distance dch(x, x′) on the Riemann sphere in H and
C�(n).

7. Study the images of spheres and planes in H on the 4-dimensional Riemann
sphere under the stereographic map.
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5 Holomorphic functions

5.1 Differentiation in C

We now look at functions

f(z) = u(z) + iv(z) = u(x, y) + iv(x, y),
u = Ref, v = Imf,

in a domain G ⊂ C with values also in C. We know the notion of partial differentia-
tion of the real functions u and v from analysis, which functions depend on the two
real variables x and y. We assume u and v to be once continuously differentiable to
simplify the proceeding. There exists extensive research related to weaker assump-
tions for holomorphic functions which is known under the names of H. Looman
and D. Menchov. Generally the set of k-times continuously differentiable real
functions is denoted by Ck(G). The set C0(G) contains the continuous functions
in G. For complex functions, f ∈ Ck(G) means that the components of f are in
Ck(G). With the assumption f ∈ C1(G) we are allowed to work with differentials
(for differentials see Appendix 1):

df = du + idv = (ux + ivx)dx + (uy + ivy)dy.

We denote by ∂x, ∂y the partial derivatives to x and y and we define further:

∂z :=
1
2
(∂x − i∂y), ∂z :=

1
2
(∂x + i∂y).

Moreover we have for z = x + iy,

dx =
1
2
(dz + dz), dy =

1
2i

(dz − dz).

Besides this we introduce the notation

∂ := 2∂z, ∂ := 2∂z

to hint already of higher dimensions. So, we are able to express df as follows:

df =
1
2

(ux + vy + i(vx − uy)) dz +
1
2

(ux − vy + i(vx + uy)) dz

= (∂zu + i∂zv)dz + (∂zu + i∂zv)dz

and
df = (∂zf)dz + (∂zf)dz.

This rearrangement shows more explicitly the dependence of f on z and z, a fact
which we soon shall need. Sometimes also the short notation

fz := ∂zf, fz := ∂zf
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is used. We shall introduce now the notion of holomorphic function; for this purpose
we use approximation by linear functions following the real case. This may be used
also with success in higher dimensions and in function spaces. A linear function
or linear form in C has the form

L(z) = ax + by

with a, b ∈ C. This may be written also as

L(z) = Az + Bz (A, B ∈ C).

Firstly this is an R-linear function; we have with real α, α′,

L(αz + α′z′) = αL(z) + α′L(z′).

Stressing the complex variable z requires a C-linear function L which has to fulfil
for complex λ, λ′ the relation

L(λz + λ′z′) = λL(z) + λ′L(z′).

Obviously this is possible only for an L(z) given by

L(z) = Az, A ∈ C,

otherwise we have Bλz = Bλz for all z and λ thus implying B = 0. Now we are
able to define:

Definition 5.1 (Holomorphic function). A function f ∈ C1(G) in a domain G ⊂ C
is called holomorphic, if for each point z ∈ G a complex number f ′(z) exists, such
that for h → 0,

f(z + h) = f(z) + f ′(z)h + o(h).

The number f ′(z) is called the (complex) differential quotient or the (complex)
derivative of f in z.

The difference f(z + h)− f(z) is approximated in h by the linear function f ′(z)h.
The literature often uses the notion regular instead of holomorphic, or also mono-
genic. For consistency we shall use only the word “holomorphic”. For the Bach-
mann–Landau symbol o(h) see Definition A.1.11 in Appendix 1.
We have reached an important point: function theory deals mainly with holomor-
phic functions. We have chosen for the definition the linear approximation since
this is possible also in higher dimensions. In the sequel we shall get to know further
equivalent properties of holomorphic functions which are sometimes easier to show
than the definition. We remark explicitly that a holomorphic function is defined
in a domain. The approximation itself is defined pointwise.
We know from the reals that a function can be approximated by a linear function
if and only if it possesses a limit of the difference quotient. Unfortunately this does
not hold in higher dimensions, but in the plane we have:
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Definition 5.2 (Complex differentiability). A function f ∈ C1(G) in a domain
G ⊂ C is called complex differentiable, if the limit

lim
h→0

f(z + h) − f(z)
h

with h ∈ C exists for all z ∈ G. This limit is called the complex derivative if it
exists and is denoted by f ′(z).

A complex differentiable function is obviously continuous. We prove:

Proposition 5.3. A complex function f in a domain G is complex differentiable if
and only if it is holomorphic in G.

Proof. It is easy to convert the linear approximation

f(z + h) = f(z) + f ′(z)h + o(h)

into the difference quotient and vice versa:

f(z + h) − f(z)

h
= f ′(z) + o(1).

For h → 0, f ′(z) is also the limit of the difference quotient. �

Complex differentiability is a stronger assumption for complex functions than is
real differentiability. The reason is that h may tend to zero from all directions in
the plane while on the real axis only the two directions on the real axis are taken
into account. Therefore we assumed for the definition of a holomorphic function
the approximation by a complex linear function. We shall show now a second
equivalent property for a function to be holomorphic, one that will fulfil a system
of partial differential equations. And this is possible also in higher dimensions:

Theorem 5.4 (Cauchy–Riemann differential equations). A function f ∈ C1(G) in
a domain G ⊂ C is holomorphic in G if and only if one has

∂f = 2∂zf = ux − vy + i(uy + vx) = 0.

The equations
∂f = 2∂zf = 0

or
ux − vy = 0, uy + vx = 0

are called Cauchy–Riemann differential equations (CRD) and ∂z is called the
Cauchy–Riemann operator.

Before we start with the proof we give some remarks about Cauchy; the reader
may find remarks about Riemann in Subsection 4.3.
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Augustin-Louis Cauchy (1789–1857)
was after 1822 one of the most eminent
mathematicians of his time. He was
professor at the Ecole Polytechnique
in Paris and member of the French
Academy of Science. His textbooks have
been standard literature in different
languages and for several decades. His
enormous productivity is mirrored in
his extensive collected works. He laid
important foundations in several fields
of mathematics.

A.-L. Cauchy (1789–1867)
Proof. From the existence of real derivatives of the functions u and v with h =: h1 + ih2,
it follows that

u(x + h1, y + h2) − u(x, y) = ux(x, y)h1 + uy(x, y)h2 + o(h),

v(x + h1, y + h2) − v(x, y) = vx(x, y)h1 + vy(x, y)h2 + o(h).

We define u(x, y) =: u(z) and v(x, y) =: v(z). Both equations for u and v, because of
h1 = (h + h)/2 and h2 = (h − h)/2i, are contained in the following:

f(z + h) − f(z) = (ux(z) + ivx(z))h1 + (uy(z) + ivy(z))h2 + o(h)

=
1

2
(ux(z) + vy(z) + i(vx(z) − uy(z)))h

+
1

2
(ux(z) − vy(z) + i(vx(z) + uy(z))) h + o(h)

= ∂zf(z)h + ∂zf(z)h + o(h) (∗).

If f fulfils the CRD we have just the complex approximation of f ,

f(z + h) − f(z) = (∂zf)(z)h + o(h),

which means f ′(z) = (∂zf)(z) and this is one direction of our proof.

For the other direction of proof if f is holomorphic, we have

f(z + h) − f(z) = f ′(z)h + o(h),

and together with (*) it follows that

f ′(z) = ∂zf(z) + ∂zf(z)
h

h
+ o(1).

The last term on the right-hand side vanishes for h = |h|(cos ϕ+ i sin ϕ) → 0; the central
term has the factor (cos ϕ− i sin ϕ)2 which may take all values on the unit circle. As the
other terms do not depend on h our equation holds only for (∂zf)(z) = 0, i.e., the CRD
are fulfilled. �
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Proposition 5.5 (Differentiation rules). The differentiation rules are the same as
in the real case:

(f + g)′(z) = f ′(z) + g′(z),
(fg)′(z) = f ′(z)g(z) + f(z)g′(z),(
f

g

)′
(z) =

f ′(z)g(z) − f(z)g′(z)
g2(z)

, g(z) �= 0,

(f(g))′(z) = f ′(g(z))g′(z) (chain rule).

Also the rule for the inverse function is true:.

(f−1)′(z) =
1

f ′(f−1(z))
.

But in this case some assumptions have to be made, in particular the function f ′

must not vanish in a neighborhood of the point of differentiation.

Proof. We shall prove only two of the rules, firstly the product rule:

f(z + h)g(z + h) = (f(z) + f ′(z)h + o(h))(g(z) + g′(z)h + o(h))

= f(z)g(z) + (f ′(z)g(z) + f(z)g′(z))h + o(h),

as the product of a bounded function with a o(1) is again a o(1); secondly the chain rule:

f(g(z + h)) = f(g(z)) + f ′(g(z))[g(z + h) − g(z)] + o(h)

= f(g(z)) + f ′(g(z))g′(z)h + o(h),

as the sum of the different remainders is a o(h). �

Example 5.6. a) As an example we differentiate f(z) = zn, n ∈ N:

f(z + h) − f(z) = (z + h)n − zn = nzn−1h + o(h)

for h → 0, as in the binomial formula all terms but the first one contain a higher
power of h. Rational functions, i.e., quotients of polynomials, require the use of
the quotient rule. So we have, e.g.,

dz−n

dz
=

0 − nzn−1

z2n
= −nz−n−1, z �= 0;

the differentiation rule for positive exponents holds analogously also for negative
ones.
This direct reference to known derivatives makes it sometimes easier to use differ-
entiation than to use the CRD.
b) As an example for a non-holomorphic function we look at f(z) = z:

f(z + h) − f(z) = z + h − z =
h

h
h,



5. Holomorphic functions 95

and the quotient h/h has no limit for h → 0.
c) A non-constant real function f(x, y) is not complex differentiable, as f = u
reduces the CRD to

fx = 0, fy = 0,

thus f has to be constant.
d) As we may differentiate with a real h we get for a holomorphic function

f ′(z) = fx(z),

and similarly with an imaginary h,

f ′(z) = −ify(z).

Remark 5.7. At the beginning of this section we had written a differentiable complex
function in the form

f(z + h) = f(z) + (∂zf)(z)h + (∂zf)(z)h + o(h).

If h varies on a small circle around 0 we have, with h = |h|(cos ϕ + i sin ϕ),

f(z + h) − f(z) = h[(∂zf)(z) + (∂zf)(z)(cos 2ϕ − i sin 2ϕ)] + o(h).

If f is holomorphic then f(z + h) − f(z) behaves like h up to a factor, if we abandon
the inessential remainder term. One says that w = f(z) maps infinitesimal circles into
infinitesimal circles. The dilation of f(z+h)−f(z) by |f ′(z)| is in all directions the same,
therefore this behavior has been called monogenic.

But if we have (∂zf)(z) = 0 and (∂zf)(z) �= 0, one speaks of an antiholomorphic function.
The infinitesimal behavior is similar to the holomorphic case, however the image circles
are crossed in the opposite direction relative to the pre-image circles. These are the
functions depending on z, e.g., f(z) = z. This function gives the reflection about the real
axis, as for all z the imaginary part is multiplied by −1. This reflection generates the
inversion of the crossing direction through the infinitesimal circles.

If finally both derivatives do not vanish, i.e., ∂zf(z) �= 0 and ∂zf(z) �= 0, then f(z +h)−
f(z) runs through an infinitesimal ellipse if h runs through an infinitesimal circle. In this
case the dilation of f(z+h)−f(z) varies from one direction of h to another one. Therefore
such functions have been called polygenic. Also these functions contain interesting classes,
but this is not the place to deal with them. One may study the behavior of f at every
single point, but for holomorphic functions we assume always the same behavior in a
domain G.

5.2 Differentiation in H

As has been shown in Section 2, the algebra of quaternions is a division algebra
just as C and R. Therefore one may introduce differentiation also for functions
f = f(x), x ∈ H, with values in H via a difference quotient

[f(x + h) − f(x)]h−1 or h−1[f(x + h) − f(x)]
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with h ∈ H and to define all functions which have such a limit for h → 0 as H-
differentiable. We have already mentioned that h varies for real functions f at a
point x only from two directions, while h in C may vary from all plane directions
to zero, and this causes severe restrictions for the existence of the limit, namely
the complex functions must satisfy the Cauchy–Riemann differential equations.
The higher dimension in H brings still more freedom for h, so we have to expect a
more restrictive system of differential equations for the existence of a differential
quotient.
For this reason we have already used in C the linear approximation for the defini-
tion of a holomorphic function. We shall carry out this idea also in H, but some
further problems have to be solved here. From the historical point of view the
understanding of this situation is very recent. Twenty years ago the existence of a
useful notion of differentiation in the quaternions was thought to be impossible.
We shall show first that the classical notion of differentiability via the difference
quotient is possible only for trivial cases.

5.2.1 Mejlikhzhon’s result

Already in 1947 N.M. Krylov [87] and his pupil A.S. Mejlikhzhon [107]
could prove the following theorem which makes impossible the definition of an
H-holomorphic function via the existence of the limit of the difference quotient:

Theorem 5.8 (Krylov, Mejlikhzhon). Let f ∈ C1(G) be a function given in a
domain G ⊂ H with values in H. If for all points in G the limit

lim
h→0

h−1[f(x + h) − f(x)] =: ′f(x)

exists, then in G the function f has the form

f(x) = a + x b (a, b ∈ H).

We have an analogous result if the difference quotient with h−1 on its right-hand
side possesses a limit. We see also that the approximation of a function f by
f(x0) + xb, resp. by f(x0) + ax, is too strong an assumption for the function f .
We have to think of this fact while defining an H-holomorphic function.

Proof. (Following [152].) We choose for h the special values h0, h1e1, h2e2, h3e3 with
real hi, i = 0, 1, 2, 3. Using ∂i = ∂/∂xi for i = 0,1,2,3 we get for the different hi → 0 in x
the identities

′f = ∂0f = −e1∂1f = −e2∂2f = −e3∂3f . (∗)
Now we identify e1 with the complex unit i, and we split also the function f by F1 :=
f0 + if1, F2 := f2 − if3 in the following way:

f(x) = F1(x) + e2F2(x).

It then follows from (∗) that

∂0(F1 + e2F2) = −i∂1(F1 + e2F2) = −e2∂2(F1 + e2F2) = −e3∂3(F1 + e2F2).
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As 1 and e2 are complex linearly independent, the complex parts and those with the
factor e2 are separately equal:

∂0F1 = −i∂1F1 = ∂2F2 = i∂3F2,

∂0F2 = i∂1F2 = −∂2F1 = i∂3F1.

By convenient summation it follows that

(∂0 + i∂1)F1 = (∂2 − i∂3)F2 = 0,

(∂0 − i∂1)F2 = (∂2 + i∂3)F1 = 0.

That means that F1 is a holomorphic function of the complex variables z1 := x0 + ix1

and z2 := x2 + ix3, while this is correct for F2 relative to the conjugate complex variables
z1 and z2. Therefore all functions are differentiable infinitely often relative to the real
variables x0 and x1, resp. x2 and x3. We see further that

(∂0 − i∂1)F1 = −2i∂1F1 = 2∂2F2 = (∂2 + i∂3)F2,

(∂2 − i∂3)F1 = −2i∂3F1 = −2i∂1F2 = −(∂0 + i∂1)F2.

In addition we can conclude that (∂0 − i∂1)F1 is also holomorphic relative to z2, so
that the mixed derivative ∂z2 ∂z1F1 also exists and is continuous. From the theorem of
Schwarz it follows that we can change the order of differentiation and so

(∂0 − i∂1)
2F1 = (∂0 − i∂1)(∂2 + i∂3)F2 = (∂2 + i∂3)(∂0 − i∂1)F2 = 0,

(∂2 − i∂3)
2F1 = −(∂2 − i∂3)(∂0 + i∂1)F2 = −(∂0 + i∂1)(∂2 − i∂3)F2 = 0.

The last two equations show that F1 depends only linearly on the two complex variables
as the mixed derivative vanishes also:

(∂0 − i∂1)(∂2 − i∂3)F1 = −(∂0 − i∂1)(∂0 + i∂1)F2 = −(∂0 + i∂1)(∂0 − i∂1)F2 = 0.

Quite analogously the same follows for F2, so f depends only linearly on the variables:

f(x) = a +

3∑
k=0

bkxk

with quaternions a and bk. From the equation (∗) it follows finally that

b0 = −ib1 = −e2b2 = −e3b3

or

f(x) = a +

(
3∑

k=0

ekxk

)
b0 = a + xb0. �

5.2.2 H-holomorphic functions

One can proceed in analogy to the complex case also for a continuously differ-
entiable function f(x) in a domain G ⊂ H with values in H, but the calculation
of the quaternionic form of the total differential depending on x and x is more
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difficult. The differentials dxk commute with quaternions, but one should observe
that quaternionic expressions such as df or dx do not commute with quaternions.
Regarding differentials we refer to Appendix 1. Let us define ∂k := ∂/∂xk, we then
have

df = ∂0f dx0 +
3∑

k=1

∂kf dxk = dx0∂0f +
3∑

k=1

dxk∂kf.

From

dx = dx0 +
3∑

k=1

ekdxk and dx = dx0 −
3∑

k=1

ekdxk

and an appropriate multiplication with the ej from the left and the right the simple
formulas

dx0 =
1
2
(dx + dx) as well as dxj =

1
2
(ejdx − dx ej), j = 1, 2, 3,

follow, and by substituting this into df we get

df =
1
2
∂0f (dx + dx) +

1
2

3∑
k=1

∂kf (ek dx − dx ek)

=
1
2

(
3∑

k=0

∂kf ek

)
dx +

1
2

(
∂0f dx −

3∑
k=1

∂kf dx ek

)
.

A comparison with the formula for df in C shows that here also the differential
of the conjugate variable dx has been isolated with a differential operator of the
form

∂ :=
∂

∂x0
+

∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3

as a foregoing factor. One sees easily that 1
2∂ is a generalization of the complex

differential operator

∂z :=
1
2
(∂x + i∂y).

One can further see that the differential operator 1
2∂ with

∂ :=
∂

∂x0
− ∂

∂x1
e1 − ∂

∂x2
e2 − ∂

∂x3
e3

corresponding to

∂z :=
1
2
(∂x − i∂y)
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occurs only entangled with the differentials. That corresponds to the above remark
that ax or xb are not the correct approximations for a function f .
Before proceeding we remark that the operators ∂ and ∂ are often used in the
literature with interchanged meaning. We have decided to use the above notation
in agreement with the operator ∂z. The operator ∂ is also in H and C�(n), just as
in C, the central operator for the whole theory.
The variable x is not appropriate for the approximation and it also does not
satisfy the equation ∂x = 0, which happens in C. This may advise us to look for
linear expressions which satisfy the equation f∂ = 0 or ∂f = 0. So, the following
expressions satisfying the condition we wanted — also called Fueter variables —
are helpful:

zk := −1
2
(ekx + xek) = xk − x0ek, (k = 1, 2, 3).

It is also important that all calculations have to take care of the fact that the
differential operators may act upon f from the left, resp. from the right. Normally
we shall work with operators acting from the left, a fact which moreover is the
common writing style for operators. But for all statements we have a corresponding
one from the right.

e1

xke0

−x0e2 −e2

−e1 e2−x0e1

Figure 5.1

The new variables zk satisfy both the conditions zk∂ = 0, resp. ∂zk = 0. If we
substitute them into the formula for df , because of dxk = dzk + dx0ek we have
easily

df = (f∂)dx0 +
3∑

k=1

(∂kf)dzk = (∂f)dx0 +
3∑

k=1

dzk(∂kf).



100 Chapter II. Functions

If we now assume f∂ = 0, resp. ∂f = 0, this corresponds to the linear approxima-
tion by

�(x) =
3∑

k=1

akzk, resp. �(x) =
3∑

k=1

zkak.

As Malonek [100] showed this leads successfully to

Definition 5.9 (H-holomorphic function). Let the function f ∈ C1(G) be given in
the domain G ⊂ H with values in H. Then f is called right-H-holomorphic in G,
if for every point x ∈ G and for appropriate quaternions ak depending on x,

f(x + h) = f(x) +
3∑

k=1

ak(hk − h0ek) + o(h)

holds for h → 0, resp. left-H-holomorphic, if

f(x + h) = f(x) +
3∑

k=1

(hk − h0ek)ak + o(h).

Here the hk are the coordinates of h.

If no confusion is possible we shall speak simply of holomorphic functions or a bit
more precisely of right- resp. left-holomorphic functions. Without difficulties we
can prove the equivalence of our definition with one given via differential equations:

Theorem 5.10 (CRD in H). A function f ∈ C1(G) in a domain G ⊂ H and with
values in H is there right- resp. left-H-holomorphic if and only if

f∂ = 0, resp. ∂f = 0.

We call these differential equations also Cauchy–Riemann differential equations
(CRD) (in H).

These Cauchy–Riemann differential equations are sometimes called generalized
Cauchy–Riemann differential equations, resp. Cauchy–Fueter differential equations.

Proof. We restrict ourselves to left-holomorphic functions. Following A.1.14 and the
above considerations we get

f(x + h) − f(x) = df [h] + o(h) = (∂f)h0 +

3∑
k=1

(hk − h0ek)(∂kf) + o(h).

For ∂f = 0 we have explicitly the desired linear approximation. If vice versa the linear
approximation is given we see firstly ak = ∂kf , as for h0 = 0 the hk are independent vari-
ables with uniquely determined coefficients. If we compare this with the second formula
in Definition 5.9 we get

0 = (∂f)h0 + o(h),

and that is possible only for ∂f = 0. �
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5.2.3 Holomorphic functions and differential forms

It is possible to express the H-holomorphy very shortly by differential forms, a
fact that will be useful later for the integral theorems.

Theorem 5.11. A function f ∈ C1(G) in a domain G ⊂ H with values in H is
left-H-holomorphic if and only if

d(dx∗f) = 0,

analogously it is right-H-holomorphic if and only if

d(fdx∗) = 0.

For the Hodge operator ∗ and dx∗ see Definition A.1.15 in Appendix 1.

Proof. We prove only the statement for left-H-holomorphic functions, the proof for right-
H-holomorphic functions is completely analogous. Together with dσ := dx0 ∧dx1 ∧dx2 ∧
dx3 we have

d(dx∗f) = (−1)3dx∗ ∧ df = −
3∑

j,k=0

ejdx∗
j ∧ (∂kf)dxk

= −
3∑

j=0

ej(∂jf)dx∗
j ∧ dxj

=
3∑

j=0

ej(∂jf)dσ = (∂f)dσ,

as the wedge product vanishes if two dxj , dxk are equal. Therefore d(dx∗f) = 0 if and
only if ∂f = 0, i.e., the statement. �

We remark that this theorem is also correct in C since there we have dx∗ =
dy, dy∗ = −dx and dz∗ = dy − idx = −idz, and it follows that

d(dz∗f) = −(dy − idx) ∧ (∂xf dx + ∂yf dy) = 2(∂zf)dx ∧ dy,

i.e., the same formula as in H from which we concluded that d(dz∗f) and ∂zf
vanish simultaneously.

Moreover we are able to characterize H-holomorphic functions by differential forms
having a smaller degree, see A. Sudbery [152].

Theorem 5.12. A function f ∈ C1(G) in a domain G ⊂ H is left-H-holomorphic
in G if and only if

1
2
d(dx ∧ dxf) = dx∗(Df)

where D denotes the so-called Dirac operator

D =
3∑

k=1

ek∂k.
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Analogously a function is right-H-holomorphic if and only if

1
2
d(fdx ∧ dx) = (fD)dx∗.

The Dirac operator acts only upon the three variables x1, x2, x3; it has important
applications in physics and is named after the English physicist Paul A.M. Dirac
(1902–1984). For our basic operator ∂ we have obviously

∂ = ∂0 + D.

Proof. We shall firstly convert dx ∧ dx in a form convenient for higher dimensions:

1

2
dx ∧ dx =

1

2

3∑
i,j=0

eiejdxi ∧ dxj =
3∑

i<j;i,j=1

eiejdxi ∧ dxj

= e1e2dx1 ∧ dx2 + e1e3dx1 ∧ dx3 + e2e3dx2 ∧ dx3

=
3∑

i=1

(−1)i−1eidx̂0,i =: dτ.

Here the two subscripts at dx̂ mean that the two corresponding differentials have to be
cancelled. For this dτ it follows (x = x0 + x) that

dx0 ∧ dτ =

3∑
i=1

(−1)i−1eidx̂i = −
3∑

i=1

eidx∗
i = −dx∗ + dx∗

0 = −dx∗.

Now keeping in mind that ∂0 = ∂ − D it can easily be seen that

1

2
d(dx ∧ dx f) = d(dτ f) = (−1)2dτ ∧ df

= dτ ∧ dx0 ∂0f +
3∑

i=1

(−1)i−1eidx̂0,i ∧ dxi ∂if

= (−dx∗ + dx∗
0)(∂f − Df) +

3∑
i=1

dx̂0 ei∂if

= (−dx∗ + dx∗
0)(∂f − Df) + dx∗

0 Df

= −dx∗∂f + dx∗ Df.

So, ∂f = 0 is equivalent to the theorem’s assertion. �

We shall present now three other attempts to approach differentiation in the
quaternions to show that, over the years, quite different research has been done in
this direction.

Remark 5.13. In applications, maps from R3 into R4 are often used. If we identify
R3 with Vec H and R4 with H (regarding them as vector spaces) we can call a
function f : Vec H → H holomorphic if Df = 0. Then it follows that

d(dx∗f) = −(Df)dx1 ∧ dx2 ∧ dx3.
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We may hint of another possibility, sometimes necessary, to identify R3 with the
space R-span{e0, e1, e2}, which means with the paravectors in C�(2).

Remark 5.14. Using the notation (x)l := −elxel, l = 1, 2, 3, V. Souček found in 1983
[143] another form for the total differential df . The operator (x)l is the principal involu-
tion introduced in Definition 2.17 (ii).

One can easily calculate the formulas

(x)l(y)l = (xy)l,
3∑

l=1

(x)l = 2x0 + x = 4x0 − x.

Then following Souček the decomposition

dx ∂ +

3∑
l=1

(dx ∂)l = 4(dx ∂)0 = 4d

is given for the total differential operator d. If one calls the first term in this decomposition
D, then Df = 0 is equivalent to ∂f = 0 or to H-holomorphy.

Souček calls the second part in this decomposition �D and shows that �Df = 0 is equivalent
to the existence of the limit of the difference quotient, using however h instead of h. So,
�Df = 0 is equivalent to the linearity of f .

Following the definition, �Df = 0 is equivalent to 4df = dx ∂f . As one may put dxj = δjk

this is equivalent to the four equations

4∂0f = ∂f, 4∂1f = −e1∂f, 4∂2f = −e2∂f, 4∂3f = −e3∂f

or
∂0f = e1∂1f = e2∂2f = e3∂3f =

1

4
∂f.

Following Theorem 5.8 this is equivalent to the existence of the limit

lim
h→0

h
−1

[f(x + h) − f(x)]

and therefore to f(x) = a + xb. It is interesting that one here has a decomposition of df
in part related to holomorphy and in part related to classical differentiation.

Remark 5.15. M.S. Marinov [106] introduced a quite differently structured notion of a
so-called S-differentiability. Firstly a new multiplication is defined in H:

x ∗ y = (z1 + z2e2) ∗ (w1 + w2e2) := (z1w1 − z2w2) + (z1w2 + z2w1)e2,

which differs only slightly from the usual Hamilton multiplication

xy = (z1 + z2e2)(w1 + w2e2) := (z1w1 − z2w2) + (z1w2 + z2w1)e2.

But this multiplication is commutative, so a new algebra is defined which contains zero
divisors due to the Theorem of Frobenius 2.10. Marinov puts h = h1 + h2e2 and h∗ =
h1 − h2e2 and defines then:
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Let G ⊂ H be a domain and f : G → H. The function f is called S-differentiable in
x ∈ G if the limit

lim
h→0

h∗ ∗ (f(x + h) − f(h))

h2
1 + h2

2

, h2
1 + h2

2 �= 0,

exists.
For this version of differentiability it is remarkable that f ∗ g is again S-differentiable,
moreover the classical Leibniz rule holds due to commutativity. Marinov is able to prove
that this S-differentiability is equivalent to CRD of the form

∂∗ ∗ f = 0, ∂∗ := ∂z1 + ∂z2 e2.

We shall not go into details here.

Remark 5.16. In [130] M.V. Shapiro and N.I. Vasilevski introduced the notion of a
ψ-hyperholomorphic function. Corresponding differential operators of Cauchy–Riemann
type

ψDu :=
3∑

k=4−m

ψk∂ku,

Dψu :=

3∑
k=4−m

∂kψku

have been studied where ψ ∈ Hm, m = 1, 2, 3, 4. Necessary and sufficient conditions
are formulated such that the m-dimensional Laplace operator can be split up into the
composition of two operators of type ψD, resp. Dψ . Further facts are to be found in the
article cited above.

5.3 Differentiation in C�(n)

For the n-dimensional case the same difficulties come up as in the quaternions, so
we may proceed analogously. We deal with functions f ∈ C1(G) in a domain G ⊂
Rn+1, the variable x will be identified with the paravector x = x0+x1e1+· · ·+xnen.
The values of f are in C�(n). Again we have to observe the non-commutativity in
C�(n); we always have a left and a right version of the definitions and theorems.
From

df =
n∑

k=0

∂kfdxk =
n∑

k=0

dxk∂kf

with

dx0 =
1
2
(dx + dx) as well as dxk =

1
2
(ekdx − dx ek), k = 1, . . . , n,

similarly to the quaternions we get

df =
1
2

(
n∑

k=0

∂kf ek

)
dx +

1
2

(
∂0f dx −

n∑
k=1

∂kf dx ek

)
.
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This formula is quite analogous to those in C and H. Again the operator

∂ :=
n∑

k=0

∂kek

is important and basic for the whole theory. As in H it is not possible to isolate
the conjugate operator

∂ := ∂0 −
n∑

k=1

∂kek.

We introduce again new variables, the Fueter variables, which are solutions of the
equations ∂f = 0 = f∂:

zk := −1
2
(ekx + xek) = xk − x0ek, k = 1, . . . , n.

Substituting these variables into the formula for df , since dxk = dzk + dx0ek, k =
1, . . . , n, it follows that

df = (f∂)dx0 +
n∑

k=1

(∂kf)dzk = (∂f)dx0 +
n∑

k=1

dzk(∂kf).

If we now assume f∂ = 0, resp. ∂f = 0, this corresponds to linear approximation
as in H via

�(x) =
n∑

k=1

akzk, resp. �(x) =
n∑

k=1

zkak.

We follow again Malonek and define:

Definition 5.17 (Clifford holomorphic functions). Let the function f ∈ C1(G) have
values in C�(n) in a domain G ⊂ Rn+1. The function f is called right-Clifford
holomorphic in G if at every point x ∈ G for h → 0 and for convenient Clifford
numbers ak depending on x,

f(x + h) = f(x) +
n∑

k=1

ak(hk − h0ek) + o(h)

holds. It is left-Clifford holomorphic if

f(x + h) = f(x) +
n∑

k=1

(hk − h0ek)ak + o(h).

Here the hk are the components of h.

If no confusion is possible we shall also speak here simply of holomorphic or right-
resp. left-holomorphic functions. With the same proof as for the quaternions, see
Theorem 5.10, the equivalence with the corresponding differential equations fol-
lows:
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Theorem 5.18 (CRD in C�(n)). A function f ∈ C1(G) in a domain G ⊂ Rn+1

with values in C�(n) is right- resp. left-holomorphic if and only if

f∂ = 0 resp. ∂f = 0.

We shall call these differential equations again Cauchy–Riemann differential equa-
tions (CRD).

The equivalence with a condition for holomorphic functions using differential forms
is given as in H:

Theorem 5.19. A function f ∈ C1(G) in a domain G ⊂ Rn+1 with values in C�(n)
is left-holomorphic if and only if

d(dx∗f) = 0

in G. Similarly it is right-holomorphic if and only if

d(fdx∗) = 0.

Proof. The proof is quite analogous to H with dσ = dx0 ∧ · · · ∧ dxn, only the sums run
from 0 to n. �

We have just as in H the equivalence of holomorphy with an equation using dif-
ferential forms with a degree lower than n, as it was shown in 1999 in [53].

Theorem 5.20. A function f ∈ C1(G) in a domain G ⊂ Rn+1 is left-holomorphic
in G if and only if

d(dτ f) = dx∗(Df)

holds with the Dirac operator

D =
n∑

k=1

ek∂k

and the differential form

dτ =
n∑

k=1

(−1)k−1ekdx̂0,k.

Analogously a function f is right-holomorphic if and only if

d(f dτ) = (fD)dx∗.

Proof. The proof is again quite analogous to the one in H, only the summation runs from
1 to n. �
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5.4 Exercises
1. Find a product rule for ∂(fg) !

2. Prove in C the differentiation rule for the inverse function

(f−1)′(z) =
1

f ′(f−1(z))
.

3. Compute in C�(n) the expressions

∂ xm and ∂ xm, m ∈ N.

4. Show the identities (cf. Remark 5.14)

(x)l(y)l = (xy)l,

3∑
l=1

(x)l = 2x0 + x = 4x0 − x.
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6 Powers and Möbius transforms

6.1 Powers

6.1.1 Powers in C

We have already seen that powers

w = zn, n ∈ N ∪ {0},

are holomorphic in C. In polar coordinates, using the formula of de Moivre, we
have

w = rn(cos nϕ + sin nϕ)

and
|w| = rn, arg w = n arg z.

The image w winds around the origin precisely n-times if z winds around the
origin once. It is interesting to look at the inverse functions:

We divide the complex plane into n sectors:

Sk :
2kπ

n
≤ arg z <

2(k + 1)π
n

(k = 0, 1, . . . , n − 1).

The mapping w = zn transforms each of these sectors onto a complete copy Wk

of the w-plane. We assume these planes Wk to be cut along the positive real axis.
Then we have upper and lower boundaries; the upper boundary of a cut is always
the image of the bounding half line of the sector Sk with the smaller argument. If
we cross from Sk to Sk+1, the w of the lower boundary cut of Wk crosses to the
upper boundary cut of Wk+1. Therefore we “glue” the lower boundary cut of Wk

to the upper one of Wk+1. There emerges a “spiral staircase” which closes when
crossing from Sn−1 to S0; the lower boundary cut of Wn−1 has to be glued to the
upper boundary cut of W0. We get a geometric structure over the w-plane and
call it a Riemann surface F(w1/n) of w1/n. Upon this surface the inverse mapping
z = w1/n of w = zn is uniquely defined: On the copy Wk of the w-plane, z = w1/n

has to be defined by

z = |w|1/n

(
cos
(

arg w + 2kπ

n

)
+ i

(
arg w + 2kπ

n

))
,

here 0 ≤ arg w < 2π is assumed. The copies Wk of the w-plane are called sheets
of the Riemann surface. The points z = 0 and w = 0 are the unique images of
each other, the same with the points z = ∞ and w = ∞, the latter if we consider
the situation on the Riemann spheres in z and w. Both these points are called an
algebraic singularity or a winding point of the Riemann surface.



6. Powers and Möbius transforms 109

0

W0

W1

W2

Figure 6.1

As differentiation is a local property we may differentiate z = w1/n without diffi-
culties, and using the differentiation rule for the inverse function we get

dz

dw
=

1
n

w
1
n−1,

naturally with the exception of the point w = 0. The case n = 2 and the Riemann
surface for w1/2 make it possible to understand the connection between the pos-
itive and the negative root in the reals: the transition from one root to the other
corresponds to one winding around of the origin on the Riemann surface.

6.1.2 Powers in higher dimensions

The polynomials we deal with are either defined in H with values in H or in
Rn+1 with values in C�(n). Unfortunately it is difficult to transfer the notion of
holomorphic polynomials to polynomials in H or C�(n) as ∂x = x∂ = 1 − n �= 0.
Moreover we have no convenient product rule for the differentiation in view of the
non-commutativity. For the differentiation we could overcome these problems by
introducing new variables, which we call Fueter variables:

zj = xj − x0ej (j = 1, . . . , n).

For them we have
∂ zj = zj ∂ = 0 (j = 1, . . . , n);

but regrettably already

∂(zjzi) �= 0 (i, j = 1, . . . , n, i �= j),

as one can calculate. Rudolf Fueter found in the thirties of the last century a
method to get over these difficulties: He symmetrized products of his variables in
the sense of Appendix A.1.3 and defined homogeneous holomorphic polynomials
of arbitrary degree in H and C�(n).
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Karl Rudolf Fueter was born in 1880 in Basel (Switzerland) and studied
mathematics in Basel and Göttingen. He got his doctorate in 1903 in Göttingen
as a pupil of D. Hilbert. After his habilitation in Marburg he worked as
professor in Clausthal, Basel, Karlsruhe and since 1916 onwards at the university
in Zürich. In the thirties of the last century together with his pupils he developed
function theory in the quaternions. He made important progress in the theory
and publicized it. After 1940 his group started also to construct a function theory
in Clifford algebras. Rudolf Fueter died in 1950 in Brunnen (Switzerland).

Fueter introduced the polynomials named af-
ter him in 1936 [43]. They were used by his
pupils and later on, in particular, R. De-
langhe proved that they are left- and right-
holomorphic in C�(n). Much later in 1987 H.
Malonek [101] showed that the Fueter poly-
nomials have values only in the paravectors.
We now define the Fueter polynomials. We re-
mark that we have to choose n = 3 if the do-
main of definition is in H where we have to
use the three variables z1, z2, z3, in which case
the polynomials are defined in R4. If we on the
contrary understand H in the sense of C�(2)
we have only to use the two variables z1, z2,
i.e., n = 2 and the polynomials are defined
then in R3.

Rudolf Fueter

Definition 6.1 (Fueter polynomials). Let x be in H or Rn+1.

(i) We call k := (k1, . . . , kn) with integer ki a multiindex; for multiindices with
non-negative components let us take

k := |k| :=
n∑

i=1

ki, k! :=
n∏

i=1

ki!.

We call k = |k| the degree of the multiindex k.

(ii) For a multiindex k with at least one negative component we define

Pk(x) := 0.

For the degree k = 0 we write shortly k = (0, . . . , 0) = 000 and define

P000(x) := 1.

(iii) For a k with k > 0 we define the Fueter polynomial Pk(x) as follows: For
each k let the sequence of indices j1, . . . , jk be given such that the first k1
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indices equal 1, the next k2 indices equal 2 and, finally the last kn indices
equal n. We put

zk := zj1zj2 . . . zjk
= zk1

1 . . . zkn
n ;

this product contains z1 exactly k1-times and so on. Then

Pk(x) :=
1
k!

∑
σ∈perm(k)

σ(zk) :=
1
k!

∑
σ∈perm(k)

zjσ(1) . . . zjσ(k) .

Here perm(k) is the permutation group with k elements (see Definition A.1.1).

This symmetrization compensates in some respects the non-commutativity in H
resp. C�(n); for n = 1 in C we get nothing new but for the variable z/i. We show
the most important properties of Fueter polynomials:

Theorem 6.2. (i) The Fueter polynomials satisfy the following recursion formula
where εi := (0, . . . , 0, 1, 0, . . . , 0) with one 1 in position i:

kPk(x) =
n∑

i=1

kiPk−εi(x)zi =
n∑

i=1

kiziPk−εi(x).

This gives also
n∑

i=1

kiPk−εi(x)ei =
n∑

i=1

kieiPk−εi(x).

(ii) We get for the derivatives with j = 1, . . . , n,

∂j Pk(x) = kjPk−εj (x).

(iii) Finally we have

∂0 Pk(x) = −
n∑

j=1

kjejPk−εj (x) = −
n∑

j=1

ej∂jPk(x)

and

Pk(x)∂0 = −
n∑

j=1

kjPk−εj (x)ej = −
n∑

j=1

∂jPk(x)ej ,

i. e. the Pk are right- and left-holomorphic as the last two equations imply

∂ Pk(x) = Pk(x)∂ = 0.

Proof. (i) We prove only the left formula, the proof of the right one is completely analo-
gous. Every summand of Pk contains one of the zi as its last factor, so, if we order with
respect to this last factor we get an expression of the form

kPk(x) =
n∑

i=1

Qi,k(x)zi.
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In such an expression Qi,k(x) the sum runs over all permutations of the other elements
zj . The zi in the last position is fixed, and we have ahead of that fixed element all
permutations of the other k− 1 elements for the index k−εεεi. Moreover the factor before
the sum is just 1/(k − 1)! as the k has been multiplied on the left side. That means the
polynomial Pk−εεεi(x) is the factor before the fixed zi. But we have to take into account
that each of the ki equal factors zi can take the last position without any change in the
previous factors. So we have in Qi,k exactly ki-times the same expression Pk−εεεi(x):

Qi,k(x) := kiPk−εεεi(x).

That is the proof. We get the second equation if we substitute zi = xi − x0ei. The real
factors xi commute with Pk so that these summands can be cancelled. In the remaining
equation

n∑
i=1

kiPk−εεεi(x)x0ei =
n∑

i=1

kix0eiPk−εεεi(x),

one can divide by x0 and the assertion is proved.
(ii) Mathematical induction with respect to k: If k = 0, then the k−εεεj contains a negative
component, therefore Pk−εεεj = 0 and 0 = ∂kP000.
To conclude from k − 1 to k we apply the recursion formulas from (i): Following the
assumption for k − 1 and (i) we have

k∂j Pk(x) =
n∑

i=1

ki∂j(Pk−εεεi(x)zi)

=

n∑
i=1

kikjPk−εεεi−εεεj (x)zi +

n∑
i=1

kiPk−εεεi(x)∂jzi

= (k − 1)kjPk−εεεj (x) + kjPk−εεεj (x) = kkjPk−εεεj (x).

A division by k gives the assertion.
(iii) We apply also mathematical induction with respect to k and prove simultaneously
the formulas for the differentiation from the left and from the right. If k = 0 we have
P0−εεεj = 0 so we get 0 = ∂0P0(x). To go from k − 1 to k we apply again the recursion
formula from (i) and the assumption for k − 1 for the derivative from the right:

k∂0Pk(x) =
n∑

i=1

ki(∂0Pk−εεεi(x)) zi −
n∑

i=1

kiPk−εεεi(x)ei

= −
n∑

i,j=1

kikjejPk−εεεi−εεεj (x)zi −
n∑

i=1

kiPk−εεεi(x)ei

= −(k − 1)
n∑

j=1

kjejPk−εεεj (x) −
n∑

i=1

kieiPk−εεεi(x)

= −k
n∑

i=1

kiPk−εεεi(x)ei.

According to (ii) we may substitute kiPk−εεεi = ∂iPk. The same has to be done for the
right version starting with the derivative from the left, concluding the proof. �
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A simple corollary is:

Corollary 6.3. Fueter polynomials are right- and left-C�(n)-linearly independent.

Proof. The polynomials Pk are right-C�(n)-linearly independent if from∑
k

Pk(x)λk = 0

with λk ∈ C�(n) it follows that all λk = 0. This can be seen at once as every Pk contains
at least one of the xi with a power differing from the other Pk, so that linear independence
may be proven by real differentiation. �

Remark 6.4. All the polynomials Pk

(
x
|x|
)

with |k| = k constitute on the unit
sphere Sn the so-called spherical polynomials of degree k.

Corollary 6.5. We have the following estimate for the Fueter polynomials:

|Pk(x)| ≤ |z1|k1 . . . |zn|kn = |z|k ≤ |x||k|.

The proof may be an exercise for the reader (see Exercise 6.3.1).

Example 6.6. a) The Fueter polynomials of degree 1 are just the zi:

Pεi
(x) = zi.

b) For degree 2 obviously the simple squares of the zi are the polynomials of the
form

P2εi(x) = z2
i .

For mixed indices we have (i < j)

Pεi+εj (x) =
1
2
(zizj + zjzi).

c) For degree 3 the expressions become longer, e.g., for i < j,

P2εi+εj (x) =
1
3
(z2

i zj + zizjzi + zjz
2
i ).

We remark finally that the Pk have values in Rn+1, but we shall not prove this
here (see Proposition 10.6).

Remark 6.7. R. Delanghe introduced in 1970 [31] the notion of a totally analytic
variable. He calls a variable z ∈ H totally analytic if together with z also each
power zj is H-holomorphic. For this purpose he defines

z =
3∑

i=0

xiai
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with convenient ai ∈ H (i = 0, 1, 2, 3). These ai are not necessarily R-linearly
independent. This variable is totally analytic if and only if aiaj = ajai (see [54]).
Simple examples are the Fueter variables zi introduced above.

Between the system {a0, a1, a2, a3} and the Euclidean base {e0, e1, e2, e3} we have
the usual connection ⎛⎜⎜⎝

a0

a1

a2

a3

⎞⎟⎟⎠ = A

⎛⎜⎜⎝
e0

e1

e2

e3

⎞⎟⎟⎠
with A ∈ R4×4. We cancel now the first column in A and call the resulting matrix
A′, let rank A′ < 2 and let z be a totally analytic variable. For u = (u1, . . . , uk) ∈
Hk we define the following function with values in H:

(Lku)(x) =
k∑

l=1

⎧⎨⎩∏
j �=l

{[(z(x) − z(aj)] [z(ak) − z(aj)]
−1

ul}

⎫⎬⎭ .

Here we assume aj ∈ H (j = 1, . . . , k) and z(ak) �= z(aj) for k �= j. This function
Lk then takes just the values uj at the points aj :

(i) (Lku)(aj) = uj (j = 1, . . . , k),
(ii) (Lku)p ∈ ker ∂ (p = 1, 2, . . .) (holomorphy).

A polynomial with such (interpolation) properties is called a Lagrange polynomial.

6.2 Möbius transformations

6.2.1 Möbius transformations in C

In this section we shall investigate the properties of a simple but interesting class
of mappings: The function w = z +b translates all points of the Gaussian plane by
b, circles and straight lines are mapped onto circles and straight lines. This map
is called translation.

The function f(z) = az has the derivative a; one sees from

w = f(z) = az =: |a|(cos α + i sin α)z

that we have a rotation combined with a dilation of the plane. Every point is
rotated by the angle α around the origin and dilated by the factor |a|.

The function f(z) = 1/z has the derivative f ′(z) = −1/z2. Points in the open unit
disc are mapped into the exterior of the disc and vice versa, therefore this mapping
is called reflection about the unit circle. In particular the origin is mapped to the
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point z = ∞. At the end of Section 1.3 we had an equation for circles and straight
lines,

Azz + 2Re(Bz) + C = 0

with A, C real; AC < |B|2, if we apply our mapping z = 1/w we get

A + 2Re(Bw) + Cww = A + 2Re(Bw) + Cww = 0.

0

Im

Re

z

ζ w = 1
z

w = 1
z

Figure 6.2

We see that circles and straight lines are mapped onto the same geometric struc-
tures. More precisely we can say that straight lines through the origin are mapped
onto themselves (A = C = 0); straight lines not through the origin are mapped
onto circles through the origin and vice versa (A = 0, C �= 0 resp. A �= 0, C = 0).
At last circles not through the origin are mapped onto the same circles (AC �= 0).

Definition 6.8 (Möbius transformation). A mapping w = f(z), given by

f(z) =
az + b

cz + d

with ad − bc �= 0 is called a Möbius transformation. The matrix(
a b
c d

)
is associated with the Möbius transformation. We remark that an analogous matrix
in higher dimensions is called a Vahlen matrix. The mapping has to be conveniently
defined in Ĉ to have a continuous function in the chordal metric.

The mapping is named after August Ferdinand Möbius (1790–1868) and
the matrix after Karl Theodor Vahlen (1869–1945).
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The Möbius transformations are also called (fractional) linear maps despite the
presence of the denominator. The derivative is

f ′(z) =
ad − bc

(cz + d)2
;

it shows the Möbius transformation to be constant if the determinant ac − bd of
the associated matrix is zero. For this reason we have excluded this case.
From w = f(z) it is easy to calculate the inverse function

z = f−1(w) =
dw − b

−cw + a
.

Its associated matrix has the same determinant as f and is also a Möbius trans-
formation. Consequently a Möbius transformation is a one-to-one mapping even
from Ĉ onto Ĉ; in case c �= 0 the point z = −d/c will be mapped to w = ∞ and
z = ∞ to w = a/c. If c = 0 then the Möbius transformation f(z) = (az + b)/d
is the composition of a translation, a rotation, and a dilation. If c �= 0 we have a
composition of a translation, a rotation, a dilation, and the mapping w = 1/z, as
we may write f in the form

f(z) =
a

c
− ad − bc

c2

1
z + d/c

.

All these simple maps transform circles and straight lines into the same geometric
structures, so we have proved:

Proposition 6.9. A Möbius transformation maps circles and straight lines in the
z-plane onto circles and straight lines in the w-plane.

This is the reason why circles and straight lines are both called “circles” in a more
general sense: Möbius transformations are circle-preserving.
It is easy to see that the Möbius transformations form a group relative to com-
position. Indeed, the mapping f : z → z is the neutral element of this group, the
inverse mapping has been calculated above, and the composition of two Möbius
transformations is again a Möbius transformation, as may be easily calculated:
From

ζ =
a′w + b′

c′w + d′
; w =

az + b

cz + d

it follows that

ζ =
(a′a + b′c)z + (a′b + b′d)
(c′a + d′c)z + (c′b + d′d)

.

The matrix of the composition is just the product of the matrices of the factors.
So we have proved:



6. Powers and Möbius transforms 117

Proposition 6.10. The Möbius transformations form a group relative to composi-
tion, called the Möbius group.

The Möbius transformations possess many interesting geometric properties, we
shall now prove some of them:

Definition 6.11. The cross-ratio of four different points in C is defined as follows:

[z1, z2, z3, z4] :=
z3 − z1

z3 − z2
:

z4 − z1

z4 − z2
=

z3 − z1

z3 − z2

z4 − z2

z4 − z1
.

If one of the four points is z = ∞ we have to take the corresponding limit.

We show some properties of the cross-ratio and of the Möbius transformations:

Proposition 6.12 (Cross-ratio). (i) Möbius transformations preserve the cross-
ratio of four points.

(ii) Let z1, z2, z3 and w1, w2, w3 be given points, different in pairs, then the Möbius
transformation implicitly defined by the equation

[w1, w2, w3, w] = [z1, z2, z3, z]

transforms the sequence of points z1, z2, z3 into the sequence w1, w2, w3.

(iii) The cross-ratio of four points z1, z2, z3, z4 is real if and only if the points are
lying on a straight line or on a circle (i.e., on a circle in the above generalized
sense).

Proof. (i) We have seen above that a Möbius transformation may be split into a trans-
lation, a rotation, a dilation, and eventually a reflection in the unit circle w = 1/z. For a
translation w = z +a the a vanishes in the differences, so the cross-ratio is invariant. For
a rotation and a dilation w = az the a vanishes by a division, the invariance is given. It
remains the reflection about the unit circle w = 1/z, for which it follows that

[w1, w2, w3, w4] =
z1 − z3

z2 − z3

z2z3

z1z3

z2 − z4

z1 − z4

z1z4

z2z4
= [z1, z2, z3, z4],

i.e., we also have an invariant cross-ratio.
(ii) w, resp. z, can be calculated uniquely from the cross-ratio, in particular one sees from

[z1, z2, z3, z] =
z3 − z1

z3 − z2

z − z2

z − z1

that

[z1, z2, z3, z1] = ∞, [z1, z2, z3, z2] = 0, [z1, z2, z3, z3] = 1.

This is correct also for the w-part so that the transformation given in the proposition
indeed transforms z1 into w1, z2 into w2, and z3 into w3.
(iii) The proof is recommended as an exercise (see exercise 6.3.4). �
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Example 6.13. a) We look for a transformation which transforms the unit circle
D = B1(0) onto the upper half plane. Using the proposition above we choose the
points −1,−i, 1 on the unit circle and transform them to the points −1, 0, 1 on
the real axis. In the given sequence we run the boundaries in a direction such that
the unit circle and the upper half plane are both on the left side; it then follows
that

1 + 1
1

w

w + 1
=

1 + 1
1 + i

z + i

z + 1
or

w

w + 1
=

1
1 + i

z + i

z + 1

and at last

w =
z + i

iz + 1
.

This is the transformation named after the English mathematician Arthur Cay-
ley (1821–1895).

b) The Möbius group has many interesting subgroups, so the Möbius transforma-
tions

w = eiθ z − z0

1 − z0 z
, |z0| < 1, θ ∈ R,

form a group. These are the transformations which map the interior of the unit
circle D = {z : |z| < 1} onto itself (see Exercise 6.3.5).

6.2.2 Möbius transformations in higher dimensions

Unfortunately we meet in H and C�(n) some difficulties while defining Möbius
transformations, in part from the non-commutativity. The first published results
in this direction are due to Vahlen [156], and later to Maaß [99]; and in the eighties
of the last century Ahlfors studied these transformations in a series of papers [2]–
[4], see also the dissertation of Zöll [161].

At the end of Section 1.3 we gave a consistent equation for circles and straight
lines in the plane, which we shall repeat in higher dimensions. An n-dimensional
(hyper)plane in Rn+1 is given by the equation

x · B = c

or
xB + Bx = 2c =: −C

with real c and a paravector B. A sphere, an n-dimensional surface of a ball in
Rn+1, is described by the equation

(x + B)(x + B) = r2,
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−B is the center and r the radius of the sphere. This gives

xx + xB + Bx = r2 − |B|2 =: −C.

In summary we have:

Proposition 6.14. Planes and spheres of dimension n in Rn+1 are described by the
equation

Axx + xB + B x + C = 0;

here A and C are real and B is an arbitrary paravector and we have to assume
that

|B|2 − AC > 0.

For A = 0 the equation defines a plane, for A �= 0 a sphere.

As in the plane we can speak simply only of spheres if we deal with planes or
spheres. A translation

x′ = x + a

with a ∈ Rn+1 transforms the above equation into one of the same type, which
means planes and spheres or simply spheres are preserved. The same is true for
rotations and dilations of the form

x′ = axb.

We saw in Cayley’s Theorem 2.27 that in H this form describes rotations and an
additional factor gives the dilation. In Rn+1 we have to satisfy the assumptions
of Theorem 3.20, we then get x′ ∈ H, resp. ∈ Rn+1. The simple calculations are
recommended to the reader. Finally we deal in an analogous way with the plane
by means of mappings of the form

x′ =
1
x

=
x

|x|2 .

Also here x′ is in H resp. in Rn+1, and we see easily that planes are transformed
into spheres and vice versa. In a similar way as for the plane this transformation
is called reflection about the unit sphere. We state

Proposition 6.15. Translations, rotations, dilations, and the reflection about the
unit sphere x′ = 1/x preserve general spheres.

We shall define now the Möbius transformations. To be clearer we deal with both
the cases H and Rn+1 separately since there are some differences:

Definition 6.16. Let a, b, c, d ∈ H. The mapping

f(x) = (ax + b)(cx + d)−1
(
f(x) = (xc + d)−1(xa + b)

)
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with

H := cac−1d − cb �= 0 for c �= 0 and ad �= 0 for c = 0,(
H := dc−1ac − bc �= 0 for c �= 0 and da �= 0 for c = 0

)
is called a Möbius transformation in the left representation (Möbius transformation
in the right representation). The associated matrix(

a b
c d

)
is called a Vahlen matrix. Möbius transformations may be continued continuously
to Ĥ in the chordal metric.

H corresponds to the determinant in C; if c commutes with a this is also formally
correct. We have a theorem analogous to C:

Theorem 6.17. (i) The Möbius transformations preserve spheres.

(ii) The left representation may be transformed into a right one and vice versa.

(iii) The Möbius transformations form a group, the Möbius group.

As in the plane for each mapping we have a whole class of representations.

Proof. (i) For c �= 0 we calculate as follows:

f(x) = (ax + b)(cx + d)−1 = (a(x + c−1d) + b − ac−1d)(x + c−1d)−1c−1

= ac−1 − c−1H(x + c−1d)−1c−1,

and similarly for the right representation. Then we see that the mapping is composed
of translations, rotations, dilations, and a reflection in the unit sphere x′ = 1/x. So, the
last proposition shows that planes and spheres are preserved. For c = 0 we see at once
that

f(x) = (ax + b)d−1, resp. f(x) = d−1(xa + b),

and the assertion follows. Clearly a and d may not be zero, which means H �= 0. Inciden-
tally, one sees that H = 0 would correspond to the constant map, but we have excluded
that case.
(ii) We start with the left representation: for c = 0 it is necessary to have a �= 0 and we
get the desired right representation with

f(x) = axd−1 + bd−1 = (a−1)−1(xd−1 + a−1bd−1).

For c �= 0 we use the formula from (i):

f(x) = ac−1 − c−1H(x + c−1d)−1c−1 = ac−1 − [(x + c−1d)H−1c]−1c−1

= (xH−1c + c−1dH−1c)−1(xH−1cac−1 + c−1dH−1cac−1 − c−1).

If we denote the new coefficients with an index r, for c �= 0 they read:

ar = H−1cac−1, br = c−1dH−1cac−1 − c−1,

cr = H−1c, dr = c−1dH−1c.
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For c = 0 they read

ar = d−1, br = a−1bd−1, cr = 0, dr = a−1.

The new determinant for the right representation has to be different from zero, as the
mapping is not constant. The calculations from the right to the left representation are
quite analogous.
(iii) The inverse mapping to x′ = (ax + b)(cx + d)−1 is easily calculated,

x = (x′c − a)−1(−x′d + b),

we get a right representation, the determinant is the same. The neutral element of the
group is naturally the identity. The composition with a second Möbius transformation
x′′ = (a′x′ + b′)(c′x′ + d′)−1 gives analogously to C,

x′′ = ((a′a + b′c)x + (a′b + b′d))((c′a + d′c)x + (c′b + d′d))−1.

The latter is again a Möbius transformation with an associated Vahlen matrix, which
is the product of both the single Vahlen matrices. The determinant cannot be zero as
otherwise one of the single maps would be constant. Therefore we have all the necessary
properties of a group. �

In C�(n) we have an analogous situation with the additional difficulty that the
Möbius transformation really has to map into Rn+1. As in the quaternions we
have to exclude that the mapping is constant.

Definition 6.18. Also in Rn+1 we call the mappings

f(x) = (ax + b)(cx + d)−1, resp. f(x) = (xc + d)−1(xa + b)

with x ∈ Rn+1 and a, b, c, d ∈ Γ′
n+1 := Γn+1 ∪ {0} Möbius transformations; the

first form is called the left representation, the second one the right representation.(
a b
c d

)
is called again the Vahlen matrix, Γn+1 is the Clifford group from Theorem 3.20.
We assume for the left representation that

H∗ := ad̂ − bĉ ∈ R0 := R \ {0},

where d̂ is the reversion from Definition 3.9. For c �= 0 we assume moreover

ac−1, c−1d ∈ Rn+1

and for c = 0 only bd−1 ∈ Rn+1. For the right representation this reads

H∗ := d̂a − ĉb ∈ R0,

for c �= 0 let
c−1a, dc−1 ∈ Rn+1

and at last for c = 0 let d−1b ∈ Rn+1. The mapping has to be continued to the
one-point-compactification R̂n+1 continuously with the chordal metric.
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Here H∗ is nearer to the determinant in C, at least formally, than the determinant
H in the quaternions. We have an analogous theorem to the previous one:

Theorem 6.19. (i) Möbius transformations map R̂n+1 onto itself and preserve
spheres in the general sense.

(ii) The left representation may be transformed into a right representation and
vice versa.

(iii) The Möbius transformations form a group, the Möbius group.

Also in the case of the Clifford algebra one has many different possibilities to
represent a Möbius transformation.

Proof. (i) As in H we have for c �= 0,

f(x) = ac−1 + (b − ac−1d)(x + c−1d)−1c−1.

As we assumed ac−1, c−1d ∈ Rn+1 both these summands generate only translations in
Rn+1. Moreover (x + c−1d)−1 is composed by a translation and the reflection about the
unit sphere x′ = 1/x, which map also into Rn+1. Finally we have to study the mapping

x′ = (b − ac−1d)xc−1.

Since c−1d ∈ Rn+1 we have c−1d = (c−1d)̂ = d̂ ĉ−1, and it then follows that

c−1H = b − ac−1d = b − ad̂ĉ−1 = (bĉ − ad̂)ĉ−1 = λĉ−1,

as the expression in brackets is assumed to be real and not 0. So we get

x′ = λĉ−1xc−1;

following Theorem 3.20 this is a rotation for λ = 1, otherwise an additional dilation. So,
the transformation maps into the Rn+1, and Proposition 6.15 gives the assertion.
For c = 0 we have f(x) = axd−1 + bd−1. Because of bd−1 ∈ Rn+1 this summand gives a
translation. From H∗ = ad̂ ∈ R it follows further with a real λ �= 0 that

a = λd̂−1,

i.e., again the desired rotation composed with a dilation in Rn+1.

The proofs of (ii) and (iii) are the same as in H, so it is not necessary to repeat them. �

As our last proposition we shall differentiate the Möbius transformations. In con-
trast to C for n > 2 we shall see that they are not holomorphic functions in H and
C�(n).

Proposition 6.20. For f(x) = (ax + b)(cx + d)−1 we have with h ∈ H, resp.
h ∈ Rn+1,

(i) f ′(x)[h] = (xcr + dr)−1 h (cx + d)−1,

(ii) (∂f)(x) = −(n − 1)(xcr + dr)−1(cx + d)−1,
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(iii) (f∂)(x) = −(n − 1)(xcr + dr)−1(cx + d)−1.

We see as stated that a Möbius transformation is neither left- nor right-holomorphic.
The factor n − 1 shows why the derivative is zero in the plane, where we have a
holomorphic function. But that does not matter, the Möbius transformations are
important for us when we have to transform variables of integration. The deriva-
tive f ′ is to be understood in the sense of a mapping between vector spaces. The
additional argument h is necessary. The derivative may be calculated without too
many difficulties.

Proof. (i) We assume firstly c �= 0 and calculate

f(x) − f(y) = (ax + b)(cx + d)−1 − (ycr + dr)
−1(yar + br)

= (ycr + dr)
−1 [(ycr + dr)(ax + b) − (yar + br)(cx + d)] (cx + d)−1

= (ycr + dr)
−1[y(cra − arc)x + y(crb − ard)

+ (dra − brc)x + (drb − brd)](cx + d)−1.

Surprisingly this simplifies with the above calculated expressions for the coefficients of
the right representation (proof of Theorem 6.17 (ii)):

cra − arc = 0, drb − brd = 0,

dra − brc = 1, crb − ard = −1.

This gives us
f(x) − f(y) = (ycr + dr)

−1(x − y)(cx + d)−1,

also for c = cr = 0 we may calculate this without difficulties. We now substitute x by
x + h and y by x; it then follows that

f(x + h) − f(x) = (xcr + dr)
−1 h (c(x + h) + d)−1.

If we apply the same formula to g(x) = (cx + d)−1 we get

g(x + h) = (cx + d)−1 + |h|O(1).

This gives for our f(x),

f(x + h) = f(x) + (xcr + dr)
−1 h (cx + d)−1 + |h|2O(1),

i.e., the assertion for f ′(x).

(ii) Because of ∂if(x) = f ′(x)[ei] = (xcr + dr)
−1 ei (cx + d)−1 we have

(∂f)(x) =
n∑

i=0

ei(xcr + dr)
−1ei(cx + d)−1 = −(n − 1)(xcr + dr)

−1(cx + d)−1.

Here we have used the formula from Exercise 3.5.5

(iii) The proof is quite analogous to (ii). �
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6.3 Exercises
1. Prove the estimate

|Pk(x)| ≤ |z1|k1 . . . |zn|kn = |z|k ≤ |x||k|.

2. Prove the binomial formula for Fueter polynomials: We have for all x and y
in Rn+1 (k, i, j denoting multiindices)

Pk(x + y) =
∑

i+j=k

k!
i! j!

Pi(x)Pj(y).

Here one should use mathematical induction relative to |k|, the conclusion
from |k| − 1 to |k| should be proved by differentiation with respect to xi.

3. Show that the Möbius transformations of

w = eiθ z − z0

1 − z0 z
, |z0| < 1, θ ∈ R,

form a group and map the interior of the unit circle onto itself.

4. Prove that the cross-ratio of four points z1, z2, z3, z4 is real if and only if the
points are lying on a straight line or a circle. (Proposition 6.12 (iii)).

5. Calculate a Möbius transformation which maps the interior of the unit circle
onto the right half-plane.

6. Prove that

x′ =
r2

x

is a reflection about the sphere {|x| = r} in the following sense: the points x
and x′ should lie on the same half-line starting from the origin, and x′ should
be the polar point of x. Nevertheless x′ = 1/x is also called reflection about
the unit ball; here a reflection about the plane x0 = 0 is added.

7. Calculate the Möbius transformation in Rn+1 which maps the interior of the
sphere Sn onto the half-space {x0 > 0}.

8. Prove that translations, rotations, dilations, and the reflection about the unit
sphere x′ = 1/x preserve the set of general circles, i.e., n-dimensional planes
and spheres in Rn+1 .
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7 Integral theorems and integral formulae

7.1 Cauchy’s integral theorem and its inversion

The Cauchy integral theorem belongs to the central results of complex analysis
and tells us in its classical formulation that, for a holomorphic function f in a
domain G, the integral along a sufficiently smooth closed curve which is located
in G has always the value zero.

Cauchy (see Subsection 5.1) proved his famous theorem in 1825 (cf. [23]). He
formulated it for rectangle domains and used methods of variational calculus. In
1883 Edouard Goursat (1858–1936) considered domains with more general
boundaries and weakened the assumption of the continuity of the derivative f ′.
It was, in the end, Alfred Pringsheim (1850–1941) who brought the Cauchy
integral theorem to the form used today with a method based on a triangular
decomposition of the domain.

The Cauchy integral theorem is for us an easy consequence of Gauß’ theorem:

Theorem 7.1 (Cauchy’s integral theorem in C�(n)). Let f, g ∈ C1(G), where G is
a bounded domain of finite connectivity with a sufficiently smooth boundary ∂G,
so that always the normal points outwards. Let f be right-holomorphic and g be
left-holomorphic in G. We then have:∫

∂G

f(x)dx∗g(x) = 0.

The classical proof uses the method of Goursat. B. Wirthgen [104] has transferred
it to higher dimensions, so that also this proof would be possible, but with con-
siderable effort. We therefore restrict ourselves to the proposed method.

For n = 1 we have C�(n) = C. Because of the commutativity we can work in the
plane with one holomorphic function f . The theorem in C reads as follows:

Theorem 7.2 (Cauchy’s integral theorem in C). Let G be a bounded domain with
boundary ∂G consisting of a finite number of piecewise smooth curves. The bound-
ary curves may be oriented so that G is always on the left side. The function f is
assumed to be holomorphic in G and continuous in G. We then have∫

∂G

f(z)dz = 0.

Now we want to prove the theorem of the Italian mathematician Giacinto Mor-
era (1856–1909), a kind of inversion of the integral theorem which shows the
equivalence of Cauchy’s integral theorem and the definition of holomorphy.
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Theorem 7.3 (Morera’ s theorem in C�(n)). Let f ∈ C1(G) be a function in a
domain G ⊂ Rn+1. If we have for all balls Br(x) ⊂ G,∫

∂Br(x)

dy∗f(y) = 0,

then ∂f = 0 in G, thus f is a left-holomorphic function.

Proof. Let x ∈ G be an arbitrary point. Then Gauß’ theorem in C�(n) A.2.22 leads to

0 =

∫
∂Br(x)

dy∗f(y) =

∫
Br(x)

∂f(y) dσy.

Because of the continuity on the one hand and the theorem of Lebesgue from integral
calculus on the other, with the volume Vr of a ball of radius r we obtain

lim
r→0

1

Vr

∫
Br(x)

∂fdσ = ∂f(x) = 0,

so that f is a left-holomorphic function in G. �

In C the theorem was proved by Morera in 1886. There a primitive function exists
and the assertion can be formulated differently and under weaker assumptions:

Theorem 7.4 (Morera’ s theorem in C). Let G ⊂ C be a domain and let f : G → C
be continuous in G. If ∫

Π

f(z)dz = 0

for any closed polygon Π in G, then f is holomorphic and possesses in G a prim-
itive function F with F ′(z) = f(z).

Proof. One of the difficulties of the assumptions of this theorem lies in the “holes” even-
tually existing in the domain. One has to be able to integrate around them in every
direction. This is not always given as one can see for the integral of 1/z over the unit
circle (cf. Exercise 7.4.3).
Let now z0 be an arbitrary, but fixed point in G. We define

F (z) :=

∫ z

z0

f(ζ)dζ

and integrate over an arbitrary polygon Π connecting z0 and z in G. Because of the
conditions in Morera’s theorem the function F is uniquely defined: the integral over
another polygon Π1 has no different value as the integral over Π + (−Π1) has the value
zero.
We examine the differentiability of F :

F (z + h) − F (z)

h
=

1

h

∫ z+h

z

f(ζ)dζ.
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If |h| is small enough, z + h is contained in a small disk around z which belongs to G.
There we can integrate over the straight line from z to z + h. The latter requires again
the path independence of the integral. As f is continuous we have f(ζ) = f(z) + o(1) for
any ζ on the line from z to z + h, thus

1

h

∫ z+h

z

f(ζ)dζ =
1

h
f(z)h + R(h)

with the remainder term

R(h) :=
1

h

∫ z+h

z

o(1)dζ.

Because of the continuity we have |o(1)| < ε for |h| < δ and |R(h)| ≤ ε follows. Then
R(h) = o(1) and we have proved

F ′(z) = f(z).

Consequently, F is a holomorphic function and as we shall see later, also f is. �

A domain is called star-shaped with regard to a point z0 if any point z ∈ G can be
connected with z0 by a straight line contained in G. For such a star-shaped domain
it is sufficient to assume in Morera’ s theorem that the curve integral vanishes for
all triangles with one corner in z0 .

z0
z + h

z

G

Figure 7.1

A property of a function in a domain G is said to hold locally if for every point
x ∈ G a small ball (or disc) with center x exists which is contained in G and in
which the property in question holds. To give an example, typical properties of this
kind are the holomorphy and the uniform convergence of a sequence of functions.
The latter is given mostly only locally as the convergence generally becomes worse
near the boundary of G. We want to formulate a supplement of Cauchy’s theorem
which shows the equivalence with holomorphy:

Theorem 7.5. A continuous function f in a domain G ⊂ C is holomorphic if and
only if locally the integral over the boundary of all triangles is zero.

Proof. If we restrict ourselves to a small disc in G the assertion follows immediately from
Morera’s theorem in C, proven above. �
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7.2 Formulae of Borel–Pompeiu and Cauchy
7.2.1 Formula of Borel–Pompeiu

This section is devoted to the treatment of an integral formula which is named
after the French mathematician Émile Borel (1871–1956) and the Romanian
Dimitrie Pompeiu (1873–1954). An application to holomorphic functions proves
Cauchy’s integral formula which is the road into classical complex analysis. Of
course, Cauchy’s formula was obtained earlier than Borel–Pompeiu’s. We do not
treat the statement in C separately, the proof is included in the corresponding
theorem in C�(n).
For the integral formulae we need the so-called Cauchy kernel. In some sense it
represents the weakest isolated singularity a holomorphic function may have at a
point:

Definition 7.6. We call the function

En(x) =
1
σn

x

|x|n+1
(x �= 0),

defined in Rn+1 \ {0}, the Cauchy kernel. Here σn is the surface area of the unit
ball Sn in Rn+1. According to Example A.2.17 with the Gamma function from
Section 13.1 we have

σn = 2
Γn+1

(
1
2

)
Γ
(

n+1
2

) =
2π(n+1)/2

Γ
(

n+1
2

) .

In C the Cauchy kernel simplifies to

E1(z) =
1
2π

1
z
.

Proposition 7.7. The Cauchy kernel is right- and left-holomorphic.
Proof. We have

∂
x

|x|n+1
= (∂x)

1

|x|n+1
+
(
∂
(
|x|2
)−(n+1)/2

)
x,

and with

∂x =
n∑

i=0

eiei = n + 1, ∂|x|2 = 2
n∑

i=0

xiei = 2x

the desired relation
∂

x

|x|n+1
= 0

follows (proceed analogously for the right-holomorphy). �

Theorem 7.8 (Formula of Borel–Pompeiu in C�(n)). Let G ⊂ Rn+1 be a bounded
domain with sufficiently smooth boundary and an outwards pointing normal. Then
we have for any f ∈ C1(G),∫

∂G

En(y − x)dy∗f(y) −
∫
G

En(y − x)(∂f)(y)dσy =
{

f(x), x ∈ G,
0 , x ∈ Rn+1 \ G.
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Proof. Cutting out from G the ball Bε(x) we obtain the domain Gε := G\Bε(x) with the
boundary ∂Gε = ∂G∪(−Sε). Sε is the sphere with radius ε and center x. The orientation
of the sphere’s normal to the exterior of the domain Gε is taken into account by the minus
sign. Now we apply Gauß’ Theorem A.2.22 to the domain Gε and the functions En(y−x)
and f(y), y being the variable of integration. As En(y− x) is a holomorphic function we
obtain:∫

∂G

En(y − x)dy∗f(y) −
∫
Sε

En(y − x)dy∗f(y) =

∫
Gε

En(y − x)(∂f)(y)dσy.

For the second integral in agreement with the special cases A.2.17 b) and c) with ỹ =
(y − x)/|y − x| it follows that∫

Sε

En(y − x)dy∗f(y) =
1

σn

∫
Sε

y − x

|y − x|n+1

y − x

|y − x|f(y)εn|doỹ |

=
1

σn

∫
S1

f(x + εỹ)|doỹ |.

Because of the continuity of f for ε → 0 we have

lim
ε→0

1

σn

∫
S1

f(x + εỹ)|doỹ | =
1

σn

∫
S1

|doỹ|f(x) = f(x).

The volume integral over Gε causes no difficulties for ε → 0 although
En(y − x) becomes singular. In new coordinates y − x =: rt with |t| = 1, from the
special case A.2.17 b) we deduce

En(y − x) =
1

σn

t

rn
, dσy = rndr|dot|,

so that the singularity disappears and the volume integral converges for
ε → 0. �

For n = 1 the algebra C�(n) is just C. So we obtain the Borel–Pompeiu formula
of complex analysis:

Theorem 7.9 (Formula of Borel–Pompeiu in C). Let G be a domain of finite
connectivity with piecewise smooth boundary which is oriented so that the domain
lies on the left-hand side. Let the function f ∈ C1(G) have complex values. Then
we have

1
2πi

∫
∂G

f(ζ)
ζ − z

dζ − 1
π

∫
G

∂ζf(ζ)
ζ − z

dσζ =
{

f(z), z ∈ G,
0, z �∈ G.

For the notion piecewise smooth we refer to Example A.2.10 a and for finite con-
nectivity to Definition A.2.19.
Important conclusions can be drawn from the formula of Borel–Pompeiu, but we
shall introduce here only some notation which has become standard today, and
with which we shall deal later on.
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Definition 7.10. Let f ∈ C1(G) and ∂G be a sufficiently smooth manifold. The
operator F∂G, defined by

(F∂Gf)(x) :=
∫

∂G

En(y − x)dy∗f(y),

is called the Cauchy–Bitsadze operator. The operator TG, defined by

(TGf)(x) = −
∫
G

En(y − x)f(y)dσy ,

is called the Teodorescu transform.

Remark 7.11. With this new notation the Borel–Pompeiu formula can be written
in the form

(F∂Gf)(x) + (TG(∂f))(x) =
{

f(x), x ∈ G,
0, x ∈ Rn \ G.

7.2.2 Formula of Cauchy

Now it is easy to deduce Cauchy’s integral formula which turns out to be the
way into important parts of hypercomplex analysis. We shall draw the first con-
sequences of this formula in the next subsection. To prove Cauchy’s formula we
have only to use a left-holomorphic function in the formula of Borel–Pompeiu, so
that the volume integral vanishes:

Theorem 7.12 (Cauchy’s integral formula). Let G ∈ Rn+1 be a bounded do-
main with sufficiently smooth boundary and outwards oriented normal. For a left-
holomorphic function f ∈ C1(G) we have∫

∂G

En(y − x)dy∗f(y) =
{

f(x) , x ∈ G,
0 , x ∈ Rn+1 \ G.

For a right-holomorphic function, f and En(y − x) have to be interchanged. In
particular, we have for n = 1:

Theorem 7.13 (Cauchy’s integral formula in C). Let G be a bounded domain of
finite connectivity with piecewise smooth boundary, which is oriented so that the
domain G lies on the left-hand side. Let the function f be holomorphic in G and
continuous in G. We then have

1
2πi

∫
∂G

f(ζ)
ζ − z

dζ =
{

f(z), z ∈ G,
0, z �∈ G.
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Cauchy’s integral formula shows that the function f is completely defined by its
boundary values on ∂G. This strong inner connection of holomorphic functions
is the reason for many interesting properties. For the history of the formulae of
Cauchy and Borel–Pompeiu we refer to Subsection 7.2.4.
Now we want to prove a further variant of Cauchy’s integral formula over a so-
called exterior domain. For this purpose we consider a Jordan surface Γ, which is a
piecewise smooth bounded manifold whose complement relative to Rn+1 consists
only of two domains. Thus, Rn+1 is split by Γ into two domains, one of them
having the point ∞ as boundary point: this is called the exterior domain G− of
Γ. Correspondingly G+ = Rn+1 \ (Γ ∪ G−) is called the interior domain of Γ. We
then have

Theorem 7.14 (Cauchy’s integral formula for the exterior domain). Let Γ be a
Jordan surface with the exterior domain G− and the interior domain G+. The
orientation of Γ is to be chosen so that the normal points toward G−. The function
f is assumed to be left-holomorphic in G− and continuously differentiable in G−∪Γ
and to have a limit value f(∞) at x = ∞ using the chordal metric. We then have∫

Γ

En(y − x)dy∗f(y) =
{

−f(x) + f(∞), x ∈ G−,
f(∞), x ∈ G+.

Proof. We choose a sphere Γρ = {x : |x| = ρ} with sufficiently large radius ρ which
contains Γ and G+ , and consider the domain Gρ := G− ∩ {|x| < ρ}. Its boundary
is ∂Gρ = Γρ ∪ (−Γ) taking into account the orientation of Γ. Then Cauchy’s integral
formula for x ∈ Gρ yields

f(x) = −
∫
Γ

En(y − x)dy∗f(y) +

∫
|y|=ρ

En(y − x)dy∗(f(y) − f(∞))

+f(∞)

∫
|y|=ρ

En(y − x)dy∗

= −
∫
Γ

En(y − x)dy∗f(y) + f(∞) + R,

R :=

∫
|y|=ρ

En(y − x)dy∗(f(y) − f(∞)).

From our assumption the inequality |f(y) − f(∞)| < ε follows for sufficiently large ρ. If
we assume moreover ρ > 2|x| we get

|En(y − x)| =
1

σn

1

|y − x|n ≤ 1

σn

2n

ρn

because of |y − x| ≥ |y| − |x| > ρ/2. Finally we obtain with Theorem 3.14 (ii)

|R| ≤
∫

|y|=ρ

|En(y − x)dy∗|ε ≤ ε2n

σn

∫
|t|=1

|dot| = ε2n.
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For ρ → ∞ the value ε can be chosen arbitrarily small and the assertion is proved.
Our proof is also valid in the inner domain G+ as then the right-hand side contains the
value 0 instead of f(x) in the formulas above. �

7.2.3 Formulae of Plemelj–Sokhotski

We have proved in the previous section that a holomorphic function is determined
completely by its boundary values and that it can be described with the help of
Cauchy’s integral. Obviously the Cauchy integral can be written down formally
for any integrable function on Γ, and it defines a holomorphic function outside
Γ. Then naturally the question arises on the boundary values of this integral.
The following theorem and all questions around it were first considered by the
Slovenian mathematician Josef Plemelj (1873–1967) and the Russian Yulian
Vasilievich Sokhotski (1842–1927).
First of all we prove an auxiliary formula:

Proposition 7.15. Let G be a domain with a sufficiently smooth boundary Γ, i.e.,
Γ ∈ C2 at least, and let x ∈ Rn+1 be an arbitrary fixed point. Then we have∫

Γ

En(y − x)dy∗ =

⎧⎨⎩
1, x ∈ G,
1
2 , x ∈ Γ,
0, x ∈ Rn+1 \ G.

The integral is singular, i.e., it exists in the sense of Cauchy’s principal value.
Cauchy’s principal value is defined in the following way: By a ball Bε(x) one cuts
out from Γ a neighborhood Γε(x). Then the integral over Γ′ := Γ \ Γε(x) should
converge for ε → 0.

Proof. For x ∈ G the statement follows from Cauchy’s integral formula Theorem 7.12
using the function f = 1; for x ∈ Rn+1 \G the result follows from the integral formula in
the exterior domain Theorem 7.14. For x ∈ Γ we cut out the neighborhood Γε(x) by a
ball Bε(x) with surface Sε(x) obtaining Γ′. The part of the sphere within G is Sε(x)∩G.
The kernel function En(y − x) is holomorphic with regard to y in the domain bounded
by Γ′ ∪ (Sε(x)∩G) and thus the integral over this boundary is zero. Taking into account
the orientation we obtain∫

Γ′

En(y − x)dy∗ =

∫
Sε(x)∩G

En(y − x)dy∗.

On Sε(x) ∩ G we have as usual dy∗ = ν|do| (see Example A.2.17 c) with the unit vector
of the outer normal ν = (y − x)/|y − x|, thus the integrand reads

y − x

|y − x|n+1

y − x

|y − x| |do| = |do1|

with the surface element |do1| of the unit sphere Sn.
Our integral over Γ′ turns out to be the area of Sε(x) ∩ G divided by the area of the
whole sphere. Because of the differentiability, the surface Sε(x) ∩ G converges for ε → 0
to the hemisphere. Thus we get in the limit the value 1/2. �
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Γε(x)
x

Sε(x) ∩ G

Bε(x)

Γ

Figure 7.2

Remark 7.16. The proof remains valid if there are the so-called irregular subsets
on Γ (edges and corners). Let x be an irregular point of Γ, which is located on an
edge or is a corner (e.g., on a cuboid). If one measures the apex angle γ(x) of Γ
in x by the limit for ε → 0 of the area of the sphere’s part Sε(x) ∩ G divided by
the area of the whole sphere, one has for x ∈ Γ simply∫

Γ

En(y − x)dy∗ = γ(x).

This is a natural generalisation of the value 1
2 at a regular point. Nevertheless, we

remark that Γ should fulfil at least the cone property, which says that a circular
cone exists with the apex in x which belongs to G excluding the apex. This means
that cusps and cuts are not admitted.

The integral

(SΓu)(x) := 2
∫
Γ

En(y − x)dy∗u(y), x ∈ Γ,

is an important singular integral obtained from the Cauchy–Bitsadze integral

(FΓu)(x) =
∫
Γ

En(y − x)dy∗u(y), x ∈ Rn+1 \ Γ.

The proposition just proved is related to (FΓ1)(x) for x �∈ Γ and to 1
2 (SΓ1)(x)

for x ∈ Γ. For Hölder continuous functions u the following decomposition follows
immediately:

(SΓu)(x) = 2
∫
Γ

En(y − x)dy∗[u(y) − u(x)] + u(x), x ∈ Γ,
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as this integral exists as an improper integral because of the Hölder continuity.
For the concept of Hölder continuity we refer the reader to Appendix 3, Definition
A.3.1 and Proposition A.3.2.

Now we turn to the announced formula of Plemelj–Sokhotski:

Theorem 7.17 (Plemelj–Sokhotski formula). Let u be Hölder continuous on a suf-
ficiently smooth surface Γ = ∂G. Then at any regular point x ∈ Γ we have

n.t.- lim
t→x

(FΓu)(t) =
1
2

[±u(x) + (SΓu)(x)] ,

where t ∈ G± with G+ = G and G− = Rn+1 \ G. The notation n.t.- lim
t→x

means
that the limit should be taken non-tangential, i.e., t tends to x within a circular
cone whose symmetry axis points toward the normal direction of Γ at the point x.
The apex angle of the cone should be smaller than π.

Proof. Let x be a fixed point on Γ. Proposition 7.15 yields immediately for t ∈ G,

(FΓu)(t) =

∫
Γ

En(y − t)dy∗[u(y) − u(x)] + u(x)

and for t ∈ Rn+1 \ G,

(FΓu)(t) =

∫
Γ

En(y − t)dy∗[u(y) − u(x)].

We set

a(t) :=

∫
Γ

En(y − t)dy∗[u(y) − u(x)]

and intend to show that

a(t) → a(x) =

∫
Γ

En(y − x)dy∗[u(y) − u(x)] =
1

2
(SΓu)(x) − 1

2
u(x)

for the non-tangential convergence t → x. Hence, the assertion

(FΓu)(t) → 1

2
[±u(x) + (SΓu)(x)]

would be proved. In the integrand of a(t)− a(x) the absolute value can be drawn to the
factors as En and dy∗ are paravector-valued, thus

|a(t) − a(x)| ≤
∫
Γ

|En(y − t) − En(y − x)||u(y) − u(x)||dy∗|

follows. Because of the Hölder continuity of u we have |u(y) − u(x)| ≤ L|y − x|µ, and
from the triangle inequality we obtain the estimate (see Exercise 7.4.1)

|En(y − t) − En(y − x)| ≤ 1

σn
|x − t|2|y − x|n + |y − x|n−1|y − t| + · · · + |y − t|n

|y − x|n|y − t|n+1
.
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Now we choose an ε > 0 and a circular cone Cε with symmetry axis in the normal
direction, having its apex in x, and having a slightly greater apex angle (but < π) than
that cone in which t runs such that the following condition holds: In the interior of
Bε(x) the surface Γ lies in the exterior of Cε. Now let |t − x| < ε/2, inside Bε(x) the
non-tangential limit comes to play a decisive role.

ε

Γ

y
t

x
α

β

Figure 7.3

γ

γ
Γ

G

x

Tx

Bε(x)

Rn+1 \ G

Figure 7.4

We apply the sine theorem (cf. Figures 7.3 and 7.4) in the triangle with corners x, t, y
and angles α, β, γ:

|y − t|
|y − x| =

sin α

sin β
≥ sin α ≥ c > 0.

We have also
|x − t|
|y − t| =

sin γ

sin α
≤ 1

c
.

Therefore, we are able to use in the numerator of the above estimate for the difference
En(y − t) − En(y − x) the inequality |y − x| ≤ 1

c
|y − t| and in the denominator the

inequality |y − t| ≥ c|y − x| . With a suitable constant K1 as an upper bound for the
integrand in a(t) − a(x) we have the expression

K1
|x − t|1−δ

|y − x|n+1−µ−δ
.

Outside Bε(x) we get an analogous estimate from |y − x| ≥ ε ≥ 2|t − x|, i.e., |y − t| ≥
|y − x| − |t − x| ≥ 1

2
|y − x|. We can thus estimate as before with a suitable constant K2.

Actually, with K = max{K1, K2} we get

|a(t) − a(y)| ≤ K|t − x|1−δ

σn

∫
Γ

|dy∗|
|y − x|n+1−µ−δ

.

For µ+ δ > 1 this integral exists as an improper integral, and a(t) converges to a(x). �

Remark 7.18. Analogously to Remark 7.16 a suitable statement holds for an x on
edges or at corners if the non-tangential convergence is defined accordingly. We
may work with the apex angle γ(x) as in Remark 7.16. Then the operator SΓ has
to be replaced by the operator

(Sγ
Γ)(u) =

σn − 2γ(x)
σn

u(x) + (SΓu)(x).
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Corollary 7.19. Let G be a domain with a C2-boundary. The relation

(SΓu)(x) = u(x) for all x ∈ Γ

is necessary and sufficient so that u represents the boundary values of a holomor-
phic function (FΓu) defined in G. On the other hand, the condition

(SΓu)(x) = −u(x) for all x ∈ Γ

is necessary and sufficient so that (FΓu) is the holomorphic continuation of u into
the domain G− which vanishes at x = ∞.

Proof. At first let U be the holomorphic continuation into the domain G of the C�(n)-
valued function u(x) given on Γ. Then Cauchy’s integral formula yields U(x) = (FΓu)(x).
Therefore, the non-tangential boundary values of U are u. Using the formulae of Plemelj–
Sokhotski we get u(x) = 1

2
[u(x) + (SΓu)(x)], which leads to (SΓu)(x) = u(x).

If vice versa we have (SΓu)(x) = u(x) for all x ∈ Γ, then (FΓu)(x) has the boundary
values u, thus it is the holomorphic continuation of u into G. The proof for the exterior
domain proceeds analogously. �

Corollary 7.20. Let u be Hölder continuous on Γ, we then have the algebraic iden-
tity S2

Γu = Iu where I is the identity operator.

Proof. Setting

n.t.- lim
t→x,t∈G+

(FΓu)(t) = F+(x)

and

n.t.- lim
t→x,t∈G−

(FΓu)(t) = F−(x)

we get from the formula of Plemelj–Sokhotski and Corollary 7.19

(SΓu)(x) = F+(x) + F−(x).

Here F+ represents the boundary values of the function FΓu, holomorphic in G. Applying
the last corollary we find SΓF+ = F+. Similarly we get SΓF− = −F−, thus

(S2
Γu)(x) = (SΓF+)(x) + (SΓF−)(x) = F+(x) − F−(x) = u(x). �

Definition 7.21. The operators PΓ := 1
2 (I + SΓ) and QΓ := 1

2 (I − SΓ) are called
Plemelj projections.

Corollary 7.22. The operator PΓ is the projection onto the space of all functions
defined on Γ which are holomorphically continuable into G+. The operator QΓ is
the projection onto the space of all functions which are holomorphically continuable
into the exterior domain G− vanishing at ∞. The following algebraic properties
are fulfilled:

PΓ
2 = PΓ, QΓ

2 = QΓ, PΓQΓ = QΓPΓ = 0.

Proof. This is an immediate conclusion from the definition as well as from the Plemelj–
Sokhotski formula with its consequences. �
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7.2.4 History of Cauchy and Borel–Pompeiu formulae

In 1831 Cauchy proved his integral formula during his stay in Torino in Italy. The
result was published within a treatise on celestial mechanics. In [24] the result is
formulated in an unusual way for today’s way of writing

f(x) =
1
2π

π∫
−π

xf(x)
x − x

dp, (x) = |(x)|ep
√

(−1),

where the integration runs over the unit circle and x is inside the unit circle. Today
dp would be replaced by dϕ and x would be ζ.

In 1905 D. Pompeiu recognized in his thesis that the set of non-holomorphic points
of a continuous function f can already be characterized by the values of∫

Γ

f(z)dz.

Here Γ is a piecewise smooth closed curve in the domain of f .

In 1912 he introduced the areolar derivative of a function f as a measure of its
non-holomorphy at a given point z0 ∈ G:

Df

Dσ
(z0) := lim

G→{z0}

∫
∂G

f(z)dz

2i
∫
G dσ

.

The notation G → {z0} means that G shrinks to the point z0 if diam G → 0 (cf.
Exercise 7.4.9).

D. Pompeiu (1873–1954) was born in Broscauti in the
Roumanian province of Moldova. He graduated in 1893
from the “Scoala Nationala de Institutori” and got a po-
sition as a primary schoolteacher in Ploiesti. In 1898
he moved to Paris where he enrolled in the Sorbonne.
There he dealt, above all, with complex analysis and
mechanics. In 1905 he finished his thesis Sur la continu-
ité des fonctions de deux variable complexes [117]. His
results were taken up very sceptically and L. Zoretti, a
pupil of Émile Borel, tried to disprove them. Later D.
Pompeiu worked as a professor in Bucharest and Cluj. Dimitrie Pompeiu

The first two summands in the following representation (cf. Section 5.1, Remark
5.7)

f(z) = f(z0) + ∂zf(z0)(z − z0) + ∂zf(z0)(z − z0) + o(|z − z0|)
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vanish by Cauchy’s theorem while integrating along a piecewise smooth curve
which encloses the point z0. We are left with∫

Γ

f(z)dz = (∂zf)(z0)
∫
Γ

zdz +
∫
Γ

o(|z − z0|)dz.

According to Exercise A.2.3.8 the middle integral is just the area 2iσ(G) (up to
the factor 2i) of G bounded by Γ, such that

lim
G→{z0}

∫
Γ

f(z)dz

2iσ(G)
= (∂zf)(z0)

and thus
(∂zf)(z0) =

Df

Dσ
(z0).

Hence one obtains a coordinate free representation for the complex derivative ∂z .
In addition, a definition of ∂zf in a weak sense [118] is possible.
In 1909 Pompeiu proved that a function which is holomorphic in the whole complex
plane and vanishes at ∞ has the representation

f(z) =
1

2πi

∫
C

Df

Dσ
(ζ)

1
ζ − z

dσζ .

At first this result remained unnoticed, it became known by an analogous, but
much more special result by É. Borel [13], who lectured on this topic in 1912 in
Cambridge (U.K.) during the International Congress of Mathematicians. In the
end, in 1912 Pompeiu was able to show the formula

f(z) =
1

2πi

∫
∂G

f(ζ)
ζ − z

dζ − 1
π

∫
G

Df

Dσ
(ζ)

1
ζ − z

dσζ (z ∈ G)

for continuous functions f with continuous areolar derivative in a neighborhood
of G. He thought this formula to be an analogy of the main theorem of calculus

f(x) = f(x0) +

x∫
x0

f ′(t)dt.

In his thesis [154] N. Teodorescu transferred Pompeiu’s results to the case of
quaternions. He introduced the so-called volume derivative for quaternion-valued
functions f in a domain G ⊂ R3, which is given by

Df

Dσ
(x) := − lim

G→{x}

∫
∂G fdo∫

G dσ
(x ∈ G).
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It can be shown that the volume derivative coincides with the application of the
Hamilton operator ∇ (see Definition 7.24). The first generalization into space of
Borel–Pompeiu’s formula was proved in 1930 by G.C. Moisil [110]:

f(x) =
1
4π

∫
∂G

y − x

|y − x|3 doyf(y) +
1
4π

∫
G

Df

Dσ
(y)

y − x

|y − x|3 dσy.

This formula holds for functions f continuous in G with continuous and bounded
volume derivative in G. The reader will find further statements in [109].

A. Grothendieck used an analogous formula within the context of complex
analysis of several variables. Such a formula is proved in the monograph of H.
Cartan (1961) [21] as well as in the book of A. W. Bitsadze (1973) [11]. Based
on R. Delanghe’s results (see [31]) a Borel–Pompeiu formula in real Clifford
algebras could be obtained.

In 1975 E. M. Saak [127] considered a system of differential equations of first
order constructed as follows:
One takes a family of orthogonal n × n matrices {e1, . . . , en}, whose entries are
only the numbers 0, 1,−1, with the following property:

e�i ej + e�j ei = 0 (i �= j), i, j = 1, . . . , n.

One then represents n-dimensional vector-valued functions by the ei as a basis and
defines a differential operator of the system by

∑n
i=1 ei∂i. In 1978 an n-dimensional

matrix analogy to the formula of Borel–Pompeiu was developed for such a system
(cf. [144]).

Another interesting example of a Borel–Pompeiu formula in R3 goes back to A.
Dzhuraev. He considers in his article [37] the following matrix differential oper-
ator with three real variables x1, x2, x3 in a domain G ⊂ R3,

∂x =
(

∂x1 ∂z

−∂z ∂x1

)
,

and defines u = (u1, u2) by the complex numbers u := u1 + iu2 as well as z :=
x2 + ix3 and ζ := y2 + iy3. He studies then the differential equation ∂xu = f by
setting

E(y − x) = − 1
|y − x|3

(
y1 − x1 −(ζ − z)
ζ − z y1 − x1

)
, n =

(
n1 n2 − in3

−(n2 + in3) n1

)
with the outer normal unit vector n on ∂G. Then he proves a formula of Borel–
Pompeiu type:

u(x) =
1
σ2

∫
∂G

E(y − x)n(y)f(y)|doy | −
1
σ2

∫
G

E(y − x)(∂yu)(y)dσy.
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Formulae of Borel–Pompeiu type open new possibilities for the treatment of partial
differential equations by complex methods ([9]). Today analogies to the Borel–
Pompeiu formula also exist on Riemannian manifolds [20], in particular on the
sphere (cf. [157]) as well as in complex Clifford algebras [126] and for several
classes of differential operators [80]. Discrete Borel–Pompeiu formulae have also
been proved.

7.3 Consequences of Cauchy’s integral formula
7.3.1 Higher order derivatives of holomorphic functions

An important consequence shows us a decisive property of holomorphic functions,
namely that these are real continuously differentiable not only once, but infinitely
many times. Thus all derivatives of a holomorphic function are again holomorphic:
Because of Schwarz’ theorem the derivatives with respect to the variables xi com-
mute if they are continuous, consequently, the equation ∂f = 0 remains valid for
all derivatives of f .
At first, we formulate the theorem in C, because it is simpler and more precise:

Corollary 7.23 (Cauchy’s integral formula for derivatives in C). Let f be holomor-
phic in the disc {z : |z − z0| < R}, then f is infinitely often complex differentiable
in it and for any ρ and z with |z − z0| < ρ < R we have

f (n)(z) =
n!
2πi

∫
|ζ−z0|=ρ

f(ζ)
(ζ − z)n+1

dζ.

Moreover, if |f(z)| ≤ M on the circle |z − z0| = ρ, we have the estimate∣∣∣f (n(z0)
∣∣∣ ≤ n!

ρn
M.

In view of Cauchy’s integral theorem the radius does not matter. The function f
has only to be holomorphic in the given disc. Hence, one may choose ρ as large as
possible to come close to the next singular point of f .

Proof. The function f is holomorphic for |z− z0| ≤ ρ+ ε < R. So we can apply Cauchy’s
integral formula. We prove the first part of the theorem by mathematical induction. For
n = 0 we have Cauchy’s integral formula. For the induction step from n to n+1 we have
to exchange differentiation and integration (differentiation of parameter integrals). Thus
we obtain

d

dz
f (n)(z) =

n!

2πi

∫
|ζ−z0|=ρ

(n + 1)f(ζ)

(ζ − z)n+2
dζ,

i.e., just the assertion for n + 1.
The second part of the theorem follows directly from the formula for the derivatives:∣∣∣f (n)(z0)

∣∣∣ ≤ n!

2π

∫
|ζ−z0|=ρ

M

ρn+1
|dζ| =

n!M

ρn
,
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because the integral generates the factor 2πρ once again. �

In particular the real differentiability as well as the holomorphy of all partial
derivatives follow.

To prove an analogous result in Rn+1 we need some preliminaries:

Definition 7.24 (Nabla and Delta). We call the operator

∇ := (∂0, ∂1, . . . , ∂n)

Nabla, it corresponds to our vector operator ∂. With the multiindex k = (k0, . . . , kn)
the symbol

∇k := ∂k0
0 ∂k1

1 . . . ∂kn
n

is defined. Furthermore, we introduce the operator Delta

∆ := ∇ · ∇ = ∂∂ =
n∑

i=0

∂2
i .

A solution of the equation ∆f = 0 is called a harmonic function.

We shall deal with harmonic functions later on, but we have immediately:

Proposition 7.25. The coordinate functions of a holomorphic function are har-
monic.
Proof. For a holomorphic function, ∂f = 0 holds by definition. As the derivatives of any
order exist (see Corollary 7.28) ∆f = ∂∂ = 0 is given. The operator∆ is a real operator,
it acts separately on every coordinate function fA of f , so we have ∆fA = 0: the fA are
harmonic functions. �

The symbol of the operator ∇ was introduced by Hamilton already during the
fourties of the 19-th century in his quaternionic analysis. Firstly he wrote it lying
on its side with the peak to the right. James Clerk Maxwell recommended
in 1870 the name Atled, suggesting a Delta standing on its head. Shortly after
Robertson Smith suggested the name Nabla, which was used by Peter G.
Tait in the second edition of his book [153]. The reason for this naming was
probably the resemblance to the figure of an assyric string instrument, since it
was at that time that the first findings of the mesopotamic excavations reached
the British museum (cf. C.G. Knott [70]). The name might be borrowed from
the Greek where it means “string instrument”.

With the operator ∇ we define now

Definition 7.26.

Qk(x) :=
(−1)|k|

k!
∇kσnEn(x) =

(−1)|k|

k!
∇k x

|x|n+1
,

in particular

Q0(x) =
x

|x|n+1
= σnEn(x).
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We have to consider these functions, which we shall use often, in more detail:
Generally, we shall work with the multiindex k where k0 = 0, so that we shall
differentiate only with respect to x1, . . . , xn.

The functions Qk replace the negative powers of z in C: For n = 1 we have
Q0 = 1/z and in this case we have to use k = (0, k1) as well as z = x0 + ix1. In
view of ∂1f = if ′ we get, with k1 =: k,

Qk(z) =
(−1)k

k!
∂k
1Q0(z) =

ik

zk+1
.

Those are the negative powers of z. We need some more properties of the functions
Qk:

Proposition 7.27. We have

Qk(x) =
qk(x)

|x|n+2|k|+1

with a homogeneous polynomial qk of degree |k| + 1 which takes only values in
Rn+1, i.e., in the paravectors. Furthermore, constants Cn,k exist such that

|Qk(x)| ≤ Cn,k

|x|n+|k| .

Proof. We use mathematical induction with respect to |k|. For k = 0 the assertion is
given by σnEn(x) = Q0(x). To conclude from |k| to |k| + 1 we have to differentiate the
expression for Qk once:

∂iQk(x) =
|x|2∂iqk(x) − (n + 2|k| + 1)xiqk

|x|n+2|k|+3
.

The differentiation of a homogeneous polynomial with respect to one of its variables
yields either zero or it reduces the degree by 1, so that the first term in the numerator
has the right degree |k| + 2. For the second term this is also clear, and the homogeneity
is not altered by the differentiation or the multiplication with xi. With such a step the
numerator remains a paravector too.
Moreover a homogeneous polynomial qk can be estimated by a suitable constant, just
Cn,k, with the factor |x||k|+1, which is the assertion. �

Now we are able to formulate and prove a theorem for higher derivatives of a
holomorphic function in C�(n):

Corollary 7.28 (Cauchy’s integral formula for derivatives in C�(n)). Let f be holo-
morphic in the ball BR(x0). Then f is infinitely often real continuously differen-
tiable and we have, for all ρ with |x − x0| < ρ < R,

∇kf(x) =
k!
σn

∫
|y−x0|=ρ

Qk(y − x)dy∗f(y).
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If |f(x)| ≤ M for |x − x0| = ρ we have moreover∣∣∇kf(x0)
∣∣ ≤ MCn,kk!

ρ|k|

with the same constants of the last proposition.

Proof. The Cauchy kernel Q0(y − x) is arbitrarily often continuously differentiable with
respect to the xi, so one can differentiate under the integral sign and get the integral for
the derivatives of f as given. Because the functions Qk(y−x) and dy∗ have only values in
Rn+1 we may take the absolute value under the integral and further on into the product.
The integration yields the value σnρn, which implies the estimate as desired. �

Thus an important property of holomorphic functions has been proved:

Corollary 7.29. A holomorphic function in C�(n) is real continuously differentiable
arbitrarily many times and all its derivatives are also holomorphic.

Another quick consequence is the equivalence of Cauchy’s integral formula with
the holomorphy:

Corollary 7.30. A continuous function f in a domain G ⊂ Rn+1 is holomorphic
if and only if Cauchy’s integral formula holds locally.

Proof. If f is holomorphic in G then Cauchy’s integral formula holds locally. If vice versa
this formula holds locally then we can differentiate and f is locally holomorphic, but this
means it is in the whole domain G. �

7.3.2 Mean value property and maximum principle

In this subsection we shall deal with an important set of consequences of Cauchy’s
integral formula. The first one is the so-called mean value property which was
proved in case n = 1 by Poisson in 1823:

Corollary 7.31 (Mean value property). A holomorphic function f possesses the
mean value property, i.e., for all x0 in its domain of holomorphy G and for all
balls (disks) {x : |x − x0| ≤ ρ} ⊂ G we have

f(x) =
1
σn

∫
|y|=1

f(x0 + ρy)|doy |.

That means that the value of f in the center of the ball is equal to the integral of
f over the boundary of the ball, hence the name mean value property.

This theorem expresses once more the close relationship of the values of a holo-
morphic function.

Proof. From Cauchy’s integral formula we get

f(x0) =

∫
|t−x0|=ρ

En(t − x0)dt∗f(t).
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Substituting En(t − x0) from its definition and considering the special cases A.2.17 b)
and c) with t = x0 + ρy we find

En(t − x0)dt∗ =
1

σn
|doy |.

This is the assertion. �

An especially important consequence of Cauchy’s integral formula is the following:

Theorem 7.32 (Maximum principle). Let f be holomorphic and bounded in a do-
main G ⊂ Rn+1, i.e., supx∈G |f(x)| = M < ∞. If |f | attains the value M at a
point of G then f is constant in G with |f(x)| = M .

This shows also the close inner connection of the values of f . If f is not constant
|f | has to tend to the supremum M at a sequence of points converging to the
boundary of the domain. For a bounded domain G and f continuous in G the
function |f | has to take the value M on the boundary.
A corresponding minimum principle in C reads as follows: :

Let f be holomorphic in G ⊂ C and f(z) �= 0 for all z ∈ G. Then f is constant or
we have for each z ∈ G,

|f(z)| > inf
ζ∈∂G

|f(ζ)|

(see Exercise 7.4.6).

Proof. We want to show that the relation |f(x)| = M is true in the whole domain G. If
this is not the case there would exist a point x1 with |f(x1)| < M , and because of the
assumption a point x0 exists with |f(x0)| = M . The points x0 and x1 can be connected by
a polygon. Running this polygon from x1 to x0, let x2 be the first point with |f(x2)| = M
(x2 = x0 is not excluded). Such a point exists because of the continuity of |f |.

f(x) = M

x0

x1

x2
Gδ ρ

Figure 7.5

Now we consider a sufficiently small ball in G with center x2 and radius ρ, use in it the
mean value property from the last theorem, and obtain

M = |f(x2)| ≤
1

σn

∫
|y|=1

|f(x2 + ρy)||doy|.

On the sphere |x − x2| = ρ at least one point with |f(x)| < M exists, that is where the
polygon leaves the ball in the direction toward x1. Because of the continuity of f on a



146 Chapter III. Integration and integral theorems

small cap of the sphere of area δ we have also the inequality |f(x)| ≤ M −ε with suitably
chosen ε and δ. For the mean value integral this means

M = |f(x2)| ≤ 1

σn
(M(σn − δ) + (M − ε)δ) < M,

and this is a contradiction. Thus |f | is constant in |x− x2| ≤ ρ. The procedure has to be
repeated starting from a boundary point of the small ball. We obtain that |f | is constant
in G. Now it remains only to show that also f is constant. With |f |2 =

∑
A |fA|2 = const

the derivatives of |f | with respect to xi are zero, so∑
A

fA(∂ifA) = 0.

A second differentiation with respect to xi and summation over i yield

∑
A

(∑
i

(∂ifA)2 + fA∆fA

)
= 0.

From Proposition 7.25 we know ∆fA = 0, hence we find∑
A

∑
i

(∂ifA)2 = 0.

But this means that all partial derivatives of all fA vanish, so that f must be constant. �

7.3.3 Liouville’s theorem

We want to add another consequence of Cauchy’s integral formula, a theorem
first proved by the French mathematician Joseph Liouville (1809–1882) who
formulated it for complex functions. This theorem is an easy and far-reaching tool
in the theory of holomorphic functions. As an application we shall give a simple
proof of the fundamental theorem of algebra 1.12. The second part of the theorem
is a generalization.

Proposition 7.33. (i) A function holomorphic and bounded in Rn+1 is constant.

(ii) If f is holomorphic in Rn+1 and if

|f(x)| ≤ M |x|m,

then f is a polynomial of degree at most m.

Proof. (i) Let |f(x)| ≤ M for all x ∈ Rn+1. We then use the formula of Corollary 7.28
for the first derivatives of f with εi = (δ0i, . . . , δni):

|∂if(x0)| ≤ MCn,εi

ρ
.

As ρ is here an arbitrary real number, for ρ → ∞ we can conclude that |∂if(x0)| = 0.
Because of the arbitrary choice of x0 all derivatives ∂if are zero at all points in Rn+1

and f is constant.

The proof of (ii) is recommended as an exercise (see Exercise 7.4.7). �
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Now we are able to prove the fundamental theorem of algebra Theorem 1.12 with-
out any difficulty:

Corollary 7.34 (Fundamental theorem of algebra). A polynomial of degree n > 0
in C has exactly n zeros in C if every zero is counted according to its multiplicity.

Proof. If
P (z) = anzn + an−1z

n−1 + · · · + a0

had no zero in C, then 1/P (z) would be a holomorphic function in C. However, we have

|P (z)| ≥ |z|n
(
|an| −

|an−1|
|z| − · · · − |a0|

|z|n
)

≥ 1

2
|an||z|n

for |z| large enough. Hence 1/|P (z)| → 0 would follow for |z| → ∞ and P (z) would be
bounded in C. From Liouville’s theorem it would follow that f is constant. This is not
true as P (0) = a0 and P (z) → ∞ for z → ∞. So P has to have at least one zero, let us
call it z1. By division of P by (z − z1) we get P (z) = (z − z1)P1(z) with a polynomial
P1 of degree n − 1. An n-times iteration of the procedure gives the assertion. �

Remark 7.35. Unfortunately, this proof does not work in Rn+1 because the recip-
rocal value of a holomorphic function is not holomorphic in general. The question
about the zeros of a polynomial is much more complicated in higher dimensions, as
zeros do not have necessarily to be isolated. Later on we shall prove this statement
in C.

7.3.4 Integral formulae of Schwarz and Poisson

As usual let Br(0) =: Br be the disk with center at the origin and radius r in C.
H.A. Schwarz (see Section 2.4) succeeded in 1869 to solve the following boundary
value problem with the help of an integral formula which bears his name:

We seek a complex function u holomorphic and bounded in B1 whose real part has
as boundary values a continuous function g given on the boundary ∂B1.

The integral formula developed for this purpose by Schwarz reads as follows:

Theorem 7.36 (Integral formula of Schwarz). Let f = u + iv be a function holo-
morphic in Br ⊂ C and continuous in Br. Then for z ∈ Br we have

f(z) =
1

2πi

∫
∂Br

ζ + z

ζ − z
u(ζ)

dζ

ζ
+ i v(0).

Analogously the formula

f(z) =
1
2π

∫
∂Br

ζ + z

ζ − z
v(ζ)

dζ

ζ
+ u(0)

holds as well.



148 Chapter III. Integration and integral theorems

Of course one can transfer these formulae easily to circles with other centers by
substituting z and ζ by z − a resp. ζ − a.

Proof. If we reflect a point z about the circle ∂Br then, following Exercise 6.3.6, we get
the reflected point z∗ by z∗z = r2. Moreover, we have ζζ = r2 using the parametrization
ζ = r(cos ϕ + i sin ϕ) of the circle. Furthermore,

dζ = iζdϕ, dζ = −iζdϕ = − ζ

ζ
dζ.

As z∗ is located in the exterior of the disk Br we obtain using Cauchy’s integral formula∫
∂Br

f(ζ)

ζ − z∗ dζ = 0.

If we conjugate this equation and if we use

1

ζ − r2

z

=
ζz

r2(z − ζ)
=

z

ζ(z − ζ)
=

1

ζ
+

ζ

ζ(z − ζ)

we get the expressions

0 =

∫
∂Br

f(ζ)

ζ − r2

z

dζ =

∫
∂Br

f(ζ)

ζ
dζ +

∫
∂Br

f(ζ)

z − ζ

ζdζ

ζ

= 2πif(0) −
∫

∂Br

f(ζ)

ζ − z
dζ.

Therefore the Cauchy integral of the conjugated function f does not depend on the
variable point z. We obtain

1

2πi

∫
∂Br

f(ζ)

ζ − z
dζ = f(0)

and further

f(z) + f(0) =
1

πi

∫
∂Br

u(ζ)dζ

ζ − z
.

For the value of the real part of f at the origin this gives

u(0) =
1

2πi

∫
∂Br

u(ζ)

ζ
dζ,

and thus we get

f(z) =
1

πi

∫
∂Br

u(ζ)

ζ − z
dζ − 1

2πi

∫
∂Br

u(ζ)

ζ
dζ + i Im f(0)

=
1

2πi

∫
∂Br

ζ + z

ζ − z
u(ζ)

dζ

ζ
+ i Im f(0).

One gets easily from this formula the representation of f by its imaginary part by con-
sidering −if(z). �
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By decomposition into real and imaginary part one gets the well-known Poisson
integral formula:

Theorem 7.37. Let u be harmonic in Bρ and continuous in Bρ. With z = r(cos ϕ+
i sin ϕ) and ζ = ρ(cos θ + i sin θ) we then have

u(z) =
1
2π

2π∫
0

ρ2 − r2

ρ2 + r2 − 2rρ cos (ϕ − θ)
u(ζ)dθ.

Proof. The integral formula of Schwarz for a given u yields a holomorphic function f
with Re f = u as the boundary values determine u uniquely. Then one takes simply the
real part of Schwarz’ integral formula to prove the assertion. �

Poisson’s integral formula is a proven device for harmonic continuation of con-
tinuous functions into the interior of a ball, i.e., the solution of a boundary value
problem.

7.4 Exercises
1. Prove the following estimate for paravectors a and b:∣∣a|b|n+1 − b|a|n+1

∣∣ ≤ |b||a − b|[2|b|n + |b|n−1|a| + · · · + |a|n].

2. Prove Cauchy’s integral theorem for triangles in the plane. How can one
extend such a statement to an arbitrary domain with sufficiently smooth
boundary? (Advice: Dissect the domain into finer and finer triangles.)

3. Formulate and prove in Rn+1 an analogy to Theorem 7.5 about a local con-
dition for holomorphy.

4. Calculate the integral ∫
|z|=1

dz

z

in C. Why is it not zero?

5. Calculate in C�(n) the integral∫
|x|=1

x

|x|n+1
dx∗.

6. Prove the minimum principle in C: Let f be holomorphic in G ⊂ C and
f(z) �= 0 for any z ∈ G. Then either f is constant or we have

|f(z)| > inf
ζ∈∂G

|f(ζ)|

for all z ∈ G.
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7. Prove part (ii) of Liouville’ s Theorem 7.33 : If f is holomorphic in Rn+1 and
if |f(x)| ≤ M |x|m, then f is a polynomial of degree at most m.

8. Let a sequence of holomorphic functions (fk) be given which are defined in
a domain G ⊂ C and which converges at a fixed point z = a ∈ G to zero.
Furthermore, let the sequence of its real parts converge uniformly to zero in
G. Show that the sequence (fk) tends uniformly to zero on every compact
subset K ⊂ G .

9. Show that the limit value

lim
G→{z0}

∫
∂G f(z)dz

2i
∫
G dσ

exists, independently of the contraction G → {z0} .
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8 Teodorescu transform
Paraphrasing the Borel–Pompeiu formula in the domain G we are led to

(TG(∂f))(x) = f(x) − (F∂Gf)(x), x ∈ G.

i.e., the application of the Teodorescu transform to the image of the Cauchy–
Riemann operator reproduces the source function up to a boundary integral which
is the well-known Cauchy integral. If f has boundary values which allow a holomor-
phic continuation into the exterior domain, then the Cauchy integral disappears
and TG works like an inverse operator for ∂. Thus the question to study ∂TG

arises and this study is undertaken in this section. Such considerations require the
knowledge of suitable function spaces. TGf should at least be partially differen-
tiable in order to give the expression ∂TGf some sense. We have put together an
introduction to suitable function spaces in Appendix 3.

8.1 Properties of the Teodorescu transform
First we deal with the definition of the Teodorescu transform

(TGu)(x) = (Tu)(x) = − 1
σn

∫
G

Q0(y − x)u(y)dσy

introduced in 7.10 and of the Cauchy–Bitsadze operator

(FΓu)(x) = (Fu)(x) =
1
σn

∫
Γ

Q0(y − x)dy∗u(y),

where G is a bounded domain in Rn+1, σn = 2π(n+1)/2/Γ((n + 1)/2) is the area
of the n-dimensional unit sphere Sn in Rn+1 following Example A.2.17 a, and
Γ = ∂G is the sufficiently smooth (in general twice continuously differentiable)
boundary surface. We should recall that Q0(x) := x/|x|n+1 = σnEn(x).

Proposition 8.1. Let be u ∈ Lp(G) for p > n + 1.

(i) The integral (Tu)(x) exists everywhere in Rn+1 and tends to zero for |x| →
∞; in addition, TGu is holomorphic in Rn+1 \ G. Further we have for a
bounded domain G,

‖TGu‖p ≤ C1(G, p, n)‖u‖p.

(ii) For x, z ∈ Rn+1 and x �= z we get the inequality

|(TGu)(x) − (TGu)(z)| ≤ C2(G, p, n)‖u‖p|x − z|
p−n−1

p .

Although the constants can be estimated explicitly the corresponding expressions
are not very informative.
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Proof. (i) For |x| → ∞ we always have x �= y. Recall that Lp(G) ⊂ L1(G) for a bounded
domain G and p > n + 1. Then the estimate

|(TGu)(x)| ≤ 1

σn

∫
G

1

|x − y|n |u(y)|dσy ≤ 1

σn
max
z∈G

1

|x − z|n
∫
G

|u(y)|dσy.

follows. So we get |(TGu)(x)| → 0 for |x| → ∞. Because Q0 is holomorphic up to the
singularity, TGu is holomorphic in Rn+1 \ G. The Hölder inequality leads to

|(TGu)(x)| ≤ 1

σn

∫
G

|Q0(y − x)u(y)|dσy ≤ 1

σn
‖u‖p

⎛⎝∫
G

|Q0(y − x)|qdσy

⎞⎠1/q

.

The last integral is considered in Exercise 8.3.4. Repeated integration over G yields the
statement of the theorem.

(ii) Now let x, z ∈ Rn+1 and x �= z. We restrict ourselves to the integral T ′u over
G′ =: G \ Bε(x). Furthermore, let |z − x| < ε

2
, then |y − z| ≥ |y − x|/2 and we obtain∣∣∣∣ y − x

|y − x|n+1
− y − z

|y − z|n+1

∣∣∣∣ = ∣∣∣∣ z − x

|y − x|n+1
+ (y − z)

|y − z|n+1 − |y − x|n+1

|y − x|n+1|y − z|n+1

∣∣∣∣
≤ |z − x|

|y − x|n+1
+ |y − z| |z − x|(|y − z|n + |y − z|n−1|y − x| + · · · )

|y − x|n+1|y − z|n+1

≤ |z − x| 2n+1

|y − x|n+1
.

We apply Hölder’s inequality and get

|(T ′u)(z) − (T ′u)(x)| ≤ 2n+1|z − x|
σn

⎛⎝∫
G′

|u(y)|pdσy

⎞⎠1/p⎛⎝∫
G′

dσy

|y − x|(n+1)q

⎞⎠1/q

.

The last integral can be estimated in spherical coordinates by

σn

R∫
ε

rn−(n+1)qdr.

Let G be contained in a ball of radius R with center x. With a suitable constant C we
obtain

|(T ′u)(z) − (T ′u)(x)| ≤ C‖u‖p|z − x|ε(n+1)(1−q) 1
q ≤ C(G, p, n)‖u‖p|z − x|1−

n+1
p .

The limit ε → 0 gives the assertion. �

For u ∈ L1(G) it can be shown that the integral (TGu)(x) exists everywhere in
Rn+1. This proof will be left to the reader (Exercise 8.3.1). Now the proof of a
very important property of the Teodorescu transform follows, namely that it is
the right-inverse of the ∂–operator :
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Theorem 8.2. Let the function u be continuously differentiable in G. Then TGu is
also differentiable for all x ∈ G with

∂i(TGu)(x) = − 1
σn

∫
G

∂i,xQ0(y − x)u(y)dσy + ei
u(x)
n + 1

.

In particular, we have the identity

∂ (TGu)(x) = u(x).

The integral over G is strongly singular and exists only as Cauchy’s principal value.
That means one has to cut out from G the ball Bε(x) and then to consider the
limit of the integral over G′ := G \ Bε(x) for ε → 0.

Proof. First we deal with real-valued functions u, the general case of algebra-valued
functions can be done by addition. Let x ∈ G, in a similar way as in the preceding proof
we consider

(TGu)(x) = (TG\Bε(x)u)(x) + (TBε(x)u)(x).

Let ε be small enough so that the ball Bε(x) together with its boundary is contained in
G. The integral (TG\Bε(x)u)(x) can be transformed by Gauß’ theorem which we use in
the form (cf. Exercise A.2.3.9)∫

∂

f(y)dy∗ =

∫
G′

(∂yf)(y)dσy.

It is evident that

∂i,y
1

|y − x|n−1
= −(n − 1)

yi − xi

|y − x|n+1
= −∂i,x

1

|y − x|n−1
,

∂y
1

|y − x|n−1
= −(n − 1)Q0(y − x),

which leads to

(TG\Bε(x)u)(x) =
1

(n − 1)σn

∫
G\Bε(x)

(
∂y

1

|y − x|n−1

)
u(y)dσy

= − 1

(n − 1)σn

∫
G\Bε(x)

1

|y − x|n−1
∂yu(y)dσy

+
1

(n − 1)σn

⎛⎜⎝∫
∂G

−
∫

∂Bε(x)

⎞⎟⎠ u(y)

|y − x|n−1
dy∗.

For ε → 0 the integral over ∂Bε(x) tends to zero, because dy∗ includes the factor |y−x|n.
Hence we obtain for ε → 0,

(TGu)(x) = − 1

(n − 1)σn

∫
G

1

|y − x|n−1
(∂yu)(y)dσy +

1

(n − 1)σn

∫
∂G

u(y)

|y − x|n−1
dy∗.
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According to Exercise 8.3.3 the first integral can be differentiated under the integral sign.
The second integral is a parametric integral without singularities in the integrand and
may be differentiated very easily:

∂i,x(TGu)(x) = − 1

σn

∫
G

yi − xi

|y − x|n+1
(∂yu)(y)dσy +

1

σn

∫
∂G

yi − xi

|y − x|n+1
u(y)dy∗.

All integrals exist as improper integrals. Now we want to transform the integral over ∂G
again by using Gauß’ theorem:⎛⎜⎝∫

∂G

−
∫

∂Bε(x)

⎞⎟⎠ yi − xi

|y − x|n+1
u(y)dy∗

=

∫
G\Bε(x)

[(
∂y

yi − xi

|y − x|n+1

)
u(y) +

yi − xi

|y − x|n+1
(∂yu)(y)

]
dσy.

This leads to

∂i,x(TGu)(x) = − 1

σn

∫
Bε(x)

yi − xi

|y − x|n+1
(∂yu)(y)dσy

− 1

σn

∫
G\Bε(x)

∂i,xQ0(y − x)u(y)dσy +
1

σn

∫
∂Bε(x)

yi − xi

|y − x|n+1
u(y)dy∗,

where we used the relation

∂y
yi − xi

|y − x|n+1
= ∂y∂i,x

1

(n − 1)|y − x|n−1
= −∂i,xQ0(y − x).

In the coordinates y − x = rt the first integral has the form

− 1

σn

∫
Bε(x)

yi − xi

|y − x|n+1
(∂yu)(y)dσy = − 1

σn

ε∫
r=0

∫
|t|=1

ti(∂u)(x + rt)dr|do1|

and converges to zero for ε → 0. The second integral converges for ε → 0 to the desired
Cauchy’s principal value as stated (cf. Exercise 8.3.2). For the third integral we may
decompose as follows:∫

∂Bε(x)

yi − xi

|y − x|n+1
u(y)dy∗ =

∫
∂Bε(x)

yi − xi

|y − x|n+1
[u(y) − u(x)]dy∗

+u(x)

∫
∂Bε(x)

yi − xi

|y − x|n+1
dy∗;

because of dy∗ = (y − x)|y − x|n−1|do1| on ∂Bε(x) and u(y) → u(x) the first integral on
the right-hand side tends to zero for ε → 0. For the second integral on the right with
y − x = εt we obtain

u(x)

∫
∂Bε(x)

yi − xi

|y − x|n+1
dy∗ = u(x)

∫
|t|=1

tidt
∗
,



8. Teodorescu transform 155

and using Gauß’ theorem (see Exercise A.2.3.9)

= u(x)

∫
|t|<1

(∂ti)dσt = u(x)eiσn

1∫
0

rndr =
σn

n + 1
u(x)ei.

This proves our first assertion. Let us now study ∂(Tu). Because of the holomorphy of
Q0 the integral over ∂Q0 is zero and we find

∂(Tu)(x) =

n∑
i=0

ei∂i(Tu)(x) = u(x). �

The theorem just proved remains correct if only the continuity of u is assumed.
Starting from the result above we have to approximate the continuous function
u by a sequence of continuously differentiable functions and to prove the uniform
boundedness of TGu.
It should be noted that the differentiability of Γ does not matter. One can cut out
a fixed ball B from G and use the above proof. The integral over G \ B can be
differentiated as a non–singular parametric integral and added to the result in the
ball.
We are able to show even the sharper result:

Theorem 8.3. The operator

∂kTG : Lp(G) → Lp(G)

is continuous and in the bounded domain G it fulfils the estimate

‖∂kTGu‖p ≤ C3(G, p, n)‖u‖p (p > n + 1)

with a suitable constant C3(G, p, n).

Proof. Theorem 8.2 yields for u ∈ C1(G),

∂kTGu(x) = − 1

σn

∫
G

∂k,xQ0(x − y)u(y)dσy + ek
u(x)

n + 1
.

Now we apply the theorem of Calderon–Zygmund ([108] XI, §3). It follows with
1
p

+ 1
q

= 1 that ∥∥∥ 1

σn

∫
G

∂k,xQ0(y − x)u(y)dσy

∥∥∥
p
≤ C‖f‖Lq(Sn+1)‖u‖p,

if only (with ω := (y − x)/|y − x|)

f(ω) :=
1

σn
|y − x|n+1∂k,xQ0(y − x) =

1

σn
(−ek − (n + 1)ωkω)
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has on Sn a bounded q-norm with respect to ω. However, this is the case since∫
Sn

|f(ω)|q |doy | ≤
∫

Sn

(
n + 2

σn

)q

|doy | = σ1−q
n (n + 2)q ,

and so
‖f(ω)‖Lq(Sn) ≤ (n + 2)σ−1/p

n .

It is rather difficult to obtain an explicit estimate for the constant C. Because C1(G) is
dense in Lp(G), the inequality can be extended to Lp(G), i.e., it follows that∥∥∥ 1

σn

∫
G

∂k,xQ0(x − y)u(y)dy
∥∥∥

p
≤ C(n + 2)σ−1/p

n ‖u‖p.

Moreover we have ∥∥∥∥ek
u

n + 1

∥∥∥∥
p

≤ 1

n + 1
‖u‖p.

Adding up both the inequalities we conclude∥∥∂kTGu
∥∥

p
≤ C3(G, p, n)‖u‖p

with C3(G, p, n) = C(n + 2)σ
−1/p
n + 1

n+1
. �

Actually, it follows

Theorem 8.4. If G is a bounded domain, then

TG : Lp(G) → W 1,p(G)

is continuous.

Proof. Because of Proposition 8.1 and Theorem 8.3 we have

‖TGu‖1,p ≤ (C1(G, p, n) + (n + 1)C3(G, p, n)) ‖u‖p

and the assertion is proved. �

8.2 Hodge decomposition of the quaternionic Hilbert space

8.2.1 Hodge decomposition

Here we limit ourselves to R3 = Vec H; the functions should have values in H.
Then the Cauchy–Riemann operator ∂ is transformed into the Dirac operator D
according to Remark 5.13. Let further X := kerD ∩ L2(G) be the set of all holo-
morphic functions in L2(G). At first it will be shown that X is a closed subspace
in L2(G).

Proposition 8.5. Let G ⊂ R3 be a bounded domain with sufficiently smooth bound-
ary Γ. Then X = kerD ∩ L2(G) is a right-linear subspace in L2(G).
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Proof. Let (φi)
∞
i=1 be a Cauchy sequence in X. Because of the completeness of L2(G)

a function φ ∈ L2(G) exists with φi → φ in L2(G). The mean value theorem Corollary
7.31 for r small enough yields

|φi − φj |(x) ≤ 1

σ3

∫
|y|=1

|φi − φj |(x + ry)|doy| ,

from which it follows that

|φi − φj |(x) ≤ Cr ‖φi − φj‖2

and

sup
x∈G(r)

|φi − φj |(x) ≤ Cr‖φi − φj‖2

with G(r) = {x ∈ G : dist (x, Γ) > r}. Hence, we know that the sequence (φi) converges
uniformly on compact subsets. With Corollary 7.28 we obtain also that all-first order
partial derivatives on compact subsets converge, i.e., also (Dφi) converges (to zero). In
this way the assertion is verified. �

Remark 8.6. An analogous result is valid in Lp(G) for (1 < p < ∞) (cf. [55]).

We now study a basic theorem for all further considerations.

Theorem 8.7 (Hodge decomposition). The H-valued Hilbert space L2(G) allows
the orthogonal decomposition

L2(G) = (L2(G) ∩ kerD) ⊕ DW 1,2
0 (G)

with respect to the inner product in L2(G) which is defined in Appendix A.3.3.

Proof. We write briefly X := L2(G) ∩ kerD and Y := L2(G) � X for the orthogonal
complement to X in L2(G). For u ∈ Y we have v = Tu ∈ W 1,2(G) by using Theorem
8.4. It is clear that u = Dv and, in addition, for any holomorphic φ ∈ L2(G) we find∫

G

uφdσ =

∫
G

Dv(y)φ(y)dσ = 0.

We select points x(l) in R3 \ G and associate to them the singular functions

φl(x) =
1

σ2

x − x(l)

|x − x(l)|3 .

The latter are H-holomorphic in G. Hence,∫
G

(Dv)(y)φl(y)dσ = 0.
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Since φl = −φl and using Gauß’ theorem the representation

0 =

∫
G

Dv(y)φl(y)dσ =

∫
G

φl(y)(Dv)(y)dσ =

∫
G

(φlD)(y)v(y)dσ

∫
Γ

φl(y)dy∗v(y) = −(FΓv)(x(l))

follows. If we choose {x(l)} to be a dense subset in R3 \ G, the function (FΓv)(x) has to
be 0 on R3 \ G for continuity reasons. So the trace trΓv is holomorphically extendable
into the domain G. The continuation is denoted by h. Then we have trΓh = trΓv and
the trace operator trΓ describes just the restriction onto the boundary Γ. Now we set
w := v − h. Obviously, w has the boundary value zero and we get w ∈ W 1,2

0 (G). It is
now clear that

u = Dv = Dw,

which was to be proven. �

Remark 8.8. An orthogonal decomposition generates two orthoprojections on the
corresponding subspaces X and Y , i.e., we have

P : L2(G) → L2(G) ∩ kerD,

Q : L2(G) → DW 1,2
0 (G).

Moreover, the operator P can be seen as a generalisation of the classical Bergman
projection, which maps the functions from L2(G) onto the holomorphic ones in
L2(G).

We have tied together the Borel–Pompeiu formula with the behavior of a function
in the domain G by using Cauchy’s integral with its boundary values. Interestingly
the boundary values of TGf are connected with the above mentioned orthoprojec-
tions. The following proposition gives us an entire characterization of the image
of Q .

Proposition 8.9. A function u belongs to im Q if and only if trΓ Tu = 0, where
im Q is the image of the operator Q and trΓf is again the trace or restriction of
f onto Γ.

Proof. At first let us take u ∈ im Q. Then a function w ∈ W 1,2
0 (G) exists such that u

has the representation

u = Dw.

Then the formula of Borel–Pompeiu Theorem 7.8 leads to

Tu = TDw = w − FΓw = w,

and therefore trΓTu = trΓw = 0. Vice versa we assume that trΓTu = 0 and so

trΓTQu + trΓTPu = 0 .
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It is clear that trΓTQu = 0, so we find trΓTPu = 0. Using Theorem 8.4, TPu belongs
to W 1,2(G), therefore TPu ∈ W 1,2

0 (G). Then we get D(TPu) ∈ imQ. However, at the
same time we have D(TP)u = Pu ∈ imP. From Pu ∈ imP ∩ imQ it follows Pu = 0,
and the assertion is proven. �

8.2.2 Representation theorem

We already know that each component of a holomorphic function is harmonic.
In the following we look for a qualitative description of harmonic functions by
expressions as holomorphic functions. Thereby we also clarify the relation between
these important function classes.

Theorem 8.10 (Representation theorem). Let G be a domain in R3 with sufficiently
smooth boundary Γ, g ∈ W k+ 3

2 ,2(Γ) and k ≥ 0, k ∈ N. Every solution u ∈
W k+2,2(G) of the Dirichlet problem

∆u = 0 in G, (8.1)
u = g on Γ,

is determined by functions φ1 ∈ W k+2,2(G) and φ2 ∈ W k+1,1(G) of the form

u = φ1 + T φ2,

where φ1 solves the boundary value problem

Dφ1 = 0 in G, (8.2)
trΓφ1 = PΓg on Γ,

and φ2 is a solution of the boundary value problem

Dφ2 = 0 in G, (8.3)
trΓTφ2 = QΓg on Γ.

The functions φi (i = 1, 2) are uniquely defined.
Proof. Let u ∈ W k+2,2(G) be a solution of the boundary value problem (8.1). Then the
Borel–Pompeiu formula leads to

u = FΓtrΓu + TDu = FΓg + TDu.

We know that FΓg ∈ kerD and Du ∈ kerD. Setting now φ1 := FΓg and φ2 := Du
from u ∈ W k+2,2(G) it follows immediately that φ2 ∈ W k+1,2(G). Using the mapping
properties of the Teodorescu transform we get FΓg = u−TDu ∈ W k+2,2(G), so that the
regularity statement of the theorem is proven.

With φ1 = FΓg we have trΓφ1 = trΓFΓg = PΓg, and from trΓTφ2 = trΓu − FΓg =
g−PΓg = QΓg, we obtain that φ1 and φ2 really solve the boundary value problems (8.2)
and (8.3).

It remains to prove the uniqueness which is done as usual indirectly. The assumption of
two representations u = φ1 + Tφ2 = ψ1 + Tψ2 leads to 0 = (φ1 −ψ1) + T (φ2 −ψ2). The
action of D from the left gives directly φ2 = ψ2; using this φ1 = ψ1 follows. �
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8.3 Exercises
1. Prove that the Teodorescu transform

(TGu)(x) = − 1
σn

∫
G

Q0(y − x)u(y)dσy

exists everywhere in Rn+1 under the condition u ∈ L1(G).

2. Prove that the integrals∫
G\Bε(x)

∂i,xQ0(y − x)u(y)dσy and
∫

|y−x|=ε

Q0(y − x)dy∗
i u(y),

appearing in the differentiation of the Teodorescu transform in Theorem 8.2,
converge for ε → 0 locally uniformly in x.

3. Let the continuous function u be given in G ⊂ Rn+1. Prove that

∂i,x

∫
G

1
|y − x|n−1

u(y)dσy =
∫
G

∂i,x

(
1

|y − x|n−1

)
u(y)dσy .

Is it possible to weaken the condition for u?

4. For 1 ≤ q < (n + 1)/n prove the inequality∫
G

|Q0(x − y)|qdσy ≤ σn
(diamG)n+1−qn

n + 1 − qn
.
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9 Power series

9.1 Weierstraß’ convergence theorems, power series
9.1.1 Convergence theorems according to Weierstraß

Karl Weierstraß

In this section we will use Cauchy’s inte-
gral theorem and the integral formula to
derive results concerning the convergence
behavior of function sequences.

These theorems were discovered by Karl
Weierstraß, who played an important
role in the development of complex analy-
sis.

Karl Theodor Wilhelm Weierstrass (1815–1897) left the University of
Bonn, where he was preparing for a career in Prussian administration, to dedi-
cate himself fully to mathematics. One year later he already received his certifi-
cation as a teacher in Münster. After that he held teaching positions in Deutsch-
Krone (West Prussia) and from 1848 until 1855 in Braunsberg (East Prussia).
In 1854 the University of Königsberg awarded him an honorary doctor’s de-
gree for his paper “Zur Theorie der abelschen Funktionen” (On the theory of
Abelian functions). In June 1856 he was offered a chair at the Industry Institute
of Berlin, later the Berlin Institute of Technology, since October 1856 he held
a professorship at the Berlin University and in 1867 he was elected fellow of
the Berlin Academy of Sciences. In 1861 with the help of E.E. Kummer he
started the first research seminar for mathematics at a German University. His
lectures attracted numerous students from all around the world and had a big
influence on the development of mathematics, inside and outside of Germany.
He worked in the field of complex analysis and developed — in competition with
B. Riemann — a closed theory of complex analytic functions.

At first we recall the following proposition from real analysis which will serve as
a basic tool in the proofs:

Proposition 9.1. Let (fm) be a sequence of continuous functions in a domain
G ⊂ Rn+1 that converges uniformly to a function f . Then the limit function f
is continuous in G, and for a piecewise smooth manifold Γ ⊂ G of dimension n
and a function g continuous in G the following equation holds:

lim
m→∞

∫
Γ

fm(x)dx∗g(x) =
∫
Γ

f(x)dx∗g(x).
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The statement will remain true if f(x, s) depends on a real or paravector-valued
parameter s and if for s → s0 uniformly in x we have

f(x, s) → f(x).

Since the functions can be split into its component functions, the proof is a direct
consequence of the real case. Now we will prove the following theorem covering
differentiation under the integral sign:

Theorem 9.2. Let the sequence of differentiable functions (fm) converge pointwise
to a function f in a domain G ⊂ Rn+1; let the partial derivatives ∂ifm of fm

be continuous in G and converge in the local uniform sense to the functions gi.
Then f is partially differentiable in G and gi is the corresponding derivative ∂if .
A similar statement holds for a sequence of holomorphic functions fm.

Again the sequence of functions can be replaced by a parameter-depending func-
tion set, e.g., f(x, s) with the parameter s.

Proof. We will use the preceding proposition; differentiation with respect to xi at a point
x yields

fm(. . . , xi + h, . . .) − fm(. . . , xi, . . .) =

∫ h

0

∂ifm(. . . , xi + t, . . .)dt.

Recall that it is sufficient to consider small neighborhoods of x — differentiability is a
local property. Taking the limit m → ∞ the sequences on the left-hand side converge and
on the right-hand side we can interchange the limit and the integration signs because of
the uniform convergence property. We obtain

f(. . . , xi + h, . . .) − f(. . . , xi, . . .) =

∫ h

0

gi(. . . , xi + t, . . .)dt.

Thus f is differentiable with respect to xi and gi is the corresponding derivative.

Let fm be holomorphic in C. In a small disc with center z0 consider the integral

fm(z) − fm(z0) =

∫ z

z0

f ′
m(ζ)dζ.

This integral is uniquely defined since the f ′
m are also holomorphic. In addition the

Cauchy integral theorem yields that integrals over triangles with one corner at z0 vanish.
This still holds after taking the limit m → ∞, which we can exchange with the integral
sign:

f(z) − f(z0) =

∫ z

z0

g(ζ)dζ.

We can differentiate as in the proof of Morera’s theorem and finally obtain f ′(z) =
g(z). �

Now we want to prove a different type of theorem where only the functions have
to converge uniformly:
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Theorem 9.3. Suppose that the functions fm, m ∈ N, are holomorphic in a domain
G ⊂ Rn+1 and the sequence (fm) is convergent in G to a function f in the locally
uniform sense. Then f is holomorphic in G.

Proof. Let x0 ∈ G and the ball (disc) {|x − x0| ≤ ρ} be a subset of G. We can then use
Cauchy’s integral formula,

fm(x) =

∫
|y−x0|=ρ

En(y − x)dy∗fm(y).

Because of the uniform convergence we can exchange the limit m → ∞ and the integra-
tion. So we obtain:

f(x) =

∫
|y−x0|=ρ

En(y − x)dy∗f(y).

Thus Cauchy’s integral formula holds locally and because of Corollary 7.30, f is holo-
morphic. �

We just showed that the set of holomorphic functions is closed with respect to
locally uniform convergence. The following corollary stresses this fact:

Corollary 9.4. Suppose that the functions fm are holomorphic in a domain G ⊂
Rn+1 and the sequence (fm) converges to f in G in the locally uniform sense.
Then for every multiindex k the sequence of derivatives ∇kfm converges to ∇kf
in the locally uniform sense.

It is recommended to prove this as Exercise 9.4.1.

9.1.2 Power series in C

Power series constitute a third approach to complex analysis, which was mainly
developed by Weierstraß. At the end of the 19th and the beginning of the 20th cen-
tury the Riemannian and the Weierstrassian approaches to complex analysis were
competing, with some mathematicians claiming one or the other to be the “proper”
way. Fortunately this conflict has long since faded away and both viewpoints are
sound and indispensable, the question about the better approach is superfluous.
At first we will consider the complex case, in which the main properties are clearer
to see.
Power series were introduced in Definition 4.17 as series of the type

∑
anzn. It

was also shown that power series possess a disc of convergence |z| < ρ. Inside
this disc they converge absolutely to a continuous limit function. The radius of
convergence can be computed by

1
ρ

= lim sup
n→∞

|an|1/n

with the identifications 1
∞ := 0, 1

0 := ∞.
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One could think of differentiating the power series term by term inside the disc of
convergence:

f(z) =
∞∑

n=0

anzn ⇒ f ′(z) =
∞∑

n=1

nanzn−1 =
∞∑

j=0

= (j + 1)aj+1z
j. (9.1)

We shall now prove that this is indeed possible:

Theorem 9.5. In the interior of the disc of convergence a power series can be
differentiated termwise (in the complex sense). The termwise differentiated series
is the derivative of the given series and has the same radius of convergence. Thus,
power series are holomorphic inside their discs of convergence.

Proof. At first we want to show that the termwise differentiated series has the same radius
of convergence as the original series: The central series of formula (9.1) is multiplied by z
and this has no influence on convergence issues. Then the coefficients are bn := nan and

|bn|1/n = n1/n |an|1/n.

Because of n1/n → 1 if n → ∞ we obtain

lim sup
n→∞

|bn|1/n = lim sup
n→∞

|an|1/n =
1

ρ

with the original radius of convergence ρ. Now we have to show that f ′(z) is indeed
the derivative of f(z) inside the disc of convergence. The partial sum sn(z) of f and the
term by term differentiated partial sums s′n(z) converge inside the disc of convergence in a
locally uniform sense. Using Theorem 9.3, f is holomorphic inside the disc of convergence
and the termwise differentiated series is the derivative of f :

f ′(z) =

∞∑
n=1

nanzn−1 =

∞∑
k=0

(k + 1)ak+1z
k. �

Obviously the differentiation process can be repeated and inverted — we will
include this in two corollaries. The first one will also describe the relation of f to
the coefficients of the power series.

Corollary 9.6. A power series

f(z) =
∞∑

n=0

an(z − z0)n

is differentiable infinitely often inside its disc of convergence and for all n ≥ 0,

an =
1
n!

f (n)(z0).

The an are called the Taylor coefficients of f at z0.
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Proof. Differentiating n times gives

f (n)(z) = n!

∞∑
j=n

(
j
n

)
aj(z − z0)

j−n.

Substituting z = z0 completes the proof. �

Corollary 9.7 (Primitive of a power series). Inside its disc of convergence a power
series

f(z) =
∞∑

n=0

an(z − z0)n

has a holomorphic primitive, i.e., a function F satisfying F ′ = f , which is unique
up to a constant:

F (z) = c +
∞∑

n=0

1
n + 1

an(z − z0)n+1 = c +
∞∑

k=1

1
k
ak−1(z − z0)k.

The proof is obvious. Before we multiply or divide power series, we want to prove
the uniqueness of the power series expansion:

Corollary 9.8 (Uniqueness of power series). A holomorphic function f can admit
only one power series expansion at a point.
Proof. Assume that a function f admits two different power series expansions, e.g., at
the origin,

f(z) =

∞∑
n=0

anzn =

∞∑
n=0

bnzn.

Let n0 denote the smallest index with an �= bn. It follows that

0 = zn0

∞∑
n=n0

(an − bn)zn−n0 .

For z �= 0 we can divide by zn0 . Considering z → 0 leads to the contradiction an0 =
bn0 . �

Using the multiplication formula for absolutely converging series we can derive a
multiplication formula for power series:

Proposition 9.9 (Power series multiplication). Suppose that

f(z) =
∞∑

n=0

anzn, g(z) =
∞∑

n=0

bnzn

are two power series with radii of convergence ρf and ρg, respectively, with
0 < ρf ≤ ρg. Then for |z| < ρf we have:

f(z)g(z) =
∞∑

n=0

(
n∑

k=0

akbn−k

)
zn.
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Proof. For |z| < ρf we can use the multiplication formula for absolutely converging series

f(z)g(z) =

∞∑
n=0

anzn
∞∑

k=0

bkzk =

∞∑
n=0

n∑
k=0

akzk bn−kzn−k. �

Dividing power series proves to be a little more difficult:

Proposition 9.10 (Power series division). Suppose that

f(z) =
∞∑

n=0

anzn, g(z) =
∞∑

n=0

bnzn

are two power series with radii of convergence ρf and ρg, respectively, with
0 < ρf ≤ ρg and g(z) �= 0 for |z| < ρ. Then for |z| < min{ρf , ρ} the equal-
ity

f(z)
g(z)

= h(z) =
∞∑

n=0

cnzn

is satisfied with the recursion formula

cn =
1
b0

(
an −

n−1∑
k=0

ckbn−k

)

for the coefficients cn.

Proof. The preceding proposition gives

∞∑
n=0

anzn = f(z) = h(z)g(z) =

∞∑
n=0

(
n∑

k=0

ckbn−k

)
zn.

The uniqueness of the coefficients of the power series allows coefficients comparison:

an =
n∑

k=0

ckbn−k,

which leads us — taking into account b0 = g(0) �= 0 — to

cn =
1

b0

(
an −

n−1∑
k=0

ckbn−k

)
, n ≥ 0.

Now it is an easy task to determine the cn; c0 = a0/b0 is the first value. �

9.1.3 Power series in C�(n)

In C�(n) or Rn+1 the definition of the term power series and its convergence
is more complicated than in the complex case. Incidentally, functions admitting
a power series expansion are called analytic. But this term is used under many
different aspects, so we want to avoid it if possible.
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Definition 9.11 (Power series in C�(n)). Generalizing Definition 4.17, a power
series in C�(n) with variables in Rn+1 is a series of the form∑

Pk(x)

with homogeneous polynomials

Pk(x) =
∑
|k|=k

akxk.

Here k = (k0, . . . , kn) denotes a multiindex and xk := xk0
0 · · ·xkn

n . This series is
said to converge absolutely if the series∑

P̃k(x)

with
P̃k(x) :=

∑
|k|=k

|ak||xk|

converges.

We should explicitly point out that different combinations of the terms of such a
multi-infinite series are possible and lead to different definitions of convergence.
It is difficult to determine the domain of convergence and absolute convergence in
detail. Since |xi| ≤ |x| is true, an estimation of the following kind holds:

P̃k(x) ≤ |x|k
⎛⎝∑

|k|=k

|ak|

⎞⎠ =: Ak|x|k.

For the series
∑

k Ak|x|k we can use the results of the complex case. In this way
one obtains a ball of convergence {|x| < ρ} with

1
ρ

= lim sup
k→∞

|Ak|1/k.

We now show the following result:

Theorem 9.12. Inside its ball of convergence a power series can be differentiated
term by term and the differentiated series is the derivative of the original series.

Proof. The degree of a homogeneous polynomial in x is decreased by one (or becomes
zero) after differentiation with respect to xi. Hereby the factors ki ≤ |k| = k appear, so
that one obtains ∣∣∣∂̃iP k(x)

∣∣∣ ≤ k|x|k−1Ak.

Similarly to the complex case the convergence for |x| < ρ follows.
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Thus the partial sums of the original series sm(x) and the ∂ism(x) of the termwise
differentiated series converge uniformly to the functions

f(x) =
∞∑

k=0

Pk(x) resp. g(x) =
∞∑

k=0

∂iPk(x).

Using Theorem 9.2 we have g(x) = ∂if(x). �

We shall soon encounter examples of these multi-infinite series.

Theorem 9.13. The power series expansion of a function f (which admits such an
expansion) is uniquely determined.

Proof. Suppose that Pk and Qk denote the first homogeneous polynomials that differ in
the two series for a function f . Since f(0) determines the values P0 and Q0, we have
k > 0. A contradiction follows after differentiating with respect to a proper xi. �

9.2 Taylor and Laurent series in C

9.2.1 Taylor series

We shall again start with the complex case since it is relatively simple and leads to
important results. We shall again draw conclusions from Cauchy’s integral formula
and show that a function is holomorphic if and only if it admits a power series
expansion. Particularly Weierstraß preferred to use power series for his consider-
ations.

Theorem 9.14 (Taylor expansion ). Let f be holomorphic in the disc BR(z0) =
{|z − z0| < R}. Then f admits a converging power series expansion

f(z) =
∞∑

n=0

an(z − z0)n

with

an =
1
n!

f (n)(z0) =
1

2πi

∫
|ζ−z0|=ρ

f(ζ)
(ζ − z0)n+1

dζ,

where ρ is arbitrary with 0 < ρ < R.

Thus a function is holomorphic in a domain G if and only if it allows a converging
power series expansion at any point z0 ∈ G. Consequently power series include all
holomorphic functions. Nevertheless for different matters, different representations
can be useful. We already deduced that the geometric series for 1/(1−z) at z0 = 0 is
only a viable representation in the unit circle, although the rational representation
describes the complete behavior in Ĉ without problems.
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Proof. We use Cauchy’s integral formula in Bρ+ε with ρ < ρ + ε < R,

f(z) =
1

2πi

∫
|ζ−z0|=ρ+ε

f(ζ)

ζ − z
dζ,

and expand the Cauchy kernel 1/(ζ − z) into a converging geometric series with respect
to (z − z0):

1

ζ − z
=

1

ζ − z0

1

1 − z−z0
ζ−z0

=

∞∑
n=0

(z − z0)
n

(ζ − z0)n+1
.

In the closed disc Bρ(z0) this series converges uniformly. Thus it can be integrated term
by term. We obtain

f(z) =
∞∑

n=0

an(z − z0)
n, an =

1

2πi

∫
|ζ−z0|=ρ+ε

f(ζ)

(ζ − z0)n+1
dζ.

Cauchy’s integral theorem yields that the integral is independent of the radius, so that
we can substitute |ζ − z0| = ρ. The radius ρ can be chosen arbitrarily close to R, so that
the representation is correct in the whole disc BR(z0). The calculation of the coefficients
by using derivatives of f has already been discussed in Corollary 9.6. �

We will continue with an important theorem for holomorphic functions. Such a
function is already determined uniquely by its values on a sequence of points.

Theorem 9.15 (Uniqueness theorem). Let f be holomorphic in a domain G and let
us suppose that (zn) is a sequence of points from G with zn → z0 ∈ G. If f(zn) = 0
for all zn, then f = 0.

We can also reformulate the statement as follows:

The zeros of a holomorphic function, different from the zero function, are isolated.
Or alternatively:

Suppose that the two functions f and g are holomorphic in G and identical on
a sequence of points with an accumulation point in G. Then the functions are
identical.

Proof. Using Corollary 9.8 a holomorphic function admits a uniquely determined power
series expansion. Since f is continuous in G, f(z0) = 0 holds and we obtain for the power
series in z0,

f(z) =

∞∑
n=0

an(z − z0)
n

that a0 = 0. Now we define

f1(z) :=
f(z) − f(z0)

z − z0
=

∞∑
n=0

an+1(z − z0)
n.

Since f(zn) = f(z0) = 0, this function also fulfils the requirements, we thus deduce
a1 = 0. Induction with respect to n yields the assertion inside the convergence disc of
the power series. If there was another point z∗ in G with f(z∗) �= 0, we would use the
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already well known proving principle: We connect z0 and z∗ by a polygonal curve. Let
: z∗∗ be the “last” point between z0 and z∗ satisfying f(z∗∗) = 0; it has points z′ with
f(z′) �= 0 in any small neighborhood of z∗∗. We repeat the same at z∗∗. Compactness
arguments lead to a contradiction. �

The following definition is a direct consequence of this theorem:

Definition 9.16 (Holomorphic continuation). Let G1 and G2 be two domains with
non-empty intersection, let f and g be holomorphic in G1 and in G2, respectively.
If f(z) = g(z) in G1∩G2 (or on a sequence of points with an accumulation point in
G1 ∩G2), g is called a holomorphic continuation of f to G2 (and f a holomorphic
continuation of g to G1).

Because of the uniqueness theorem there can only be one holomorphic continuation
of that type. Thus the term is defined properly. Recall the geometric series in the
unit circle: its holomorphic continuation to C \ {1} is 1/(1 − z).
One can imagine the holomorphic continuation in the following way: Consider
a function f defined on a disc BR0(z0) and find a point z1, where the disc of
convergence of the Taylor series in z1, e.g., BR1(z1), extends BR0(z0). By repeating
this process we obtain a sequence of discs; the original function f is continued
by using this process. Each disc and the corresponding holomorphic function is
called a function element. If the centers of such a chain of discs are connected by a
polygonal curve (which does not leave the discs), f is said to possess a holomorphic
continuation along a polygonal curve.
Unfortunately it is not clear that one obtains the original function by continuing
f along a closed polygonal curve. Therefore the following result will be useful (the
term simply connected domain is explained in Definition A.2.19):

Theorem 9.17 (Holomorphic continuation to simply connected domains). Consider
a holomorphic function element f in BR0(z0) ⊂ G, where G denotes a simply
connected domain and z0 ∈ G. If f admits a holomorphic continuation to G, the
obtained function will be uniquely defined and holomorphic in G.

Considering the example
√

z, it is easy to see that in a not simply connected
domain the theorem does not necessarily hold. By continuing

√
z along the unit

circle starting from z0 = 1 around the origin, we obtain a function that differs
from the original one by a minus sign.

Proof. We will only sketch the proof and leave the details to the reader.

Let us assume the function obtained by holomorphic continuation not to be uniquely
defined. Then there is a closed polygonal curve, so that we obtain a function not equal
to the original one after holomorphic continuation along the path. We can assume the
polygonal curve to be a Jordan curve: If the path contained a self-intersection we could
split it into a closed polygonal curve and a second curve with one self-intersection less,
and so on. Holomorphic continuation along at least one of them must not be unique.
Otherwise the continuation along the original path would be unique, too.
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Now we cover the plane with a sufficiently close grid parallel to the axes. For continuity
reasons the original polygon can now be substituted by a polygonal curve parallel to the
axes. The small squares of the grid which are adjacent to the boundary of the polygo-
nal curve should of course be inside the discs on which our function elements used for
holomorphic continuation are defined. The interior of the closed polygonal curve parallel
to the axes cannot contain exterior points of G: Either there are no exterior points of G
or there is exactly one, so we can assume it to be at z = ∞, or there are more exterior
points, so we can assume one to be at z = ∞. In the last case no point can belong to
the interior of the polygonal curve, because in this case the boundary points covered
by the open sets of the interior or the exterior of the polygonal curve would be part of
the exterior. But these open sets would be disjoint, so that the boundary would not be
connected and G would not be simply connected.

z0

zn

Figure 9.1
Now we can get rid of the interior squares of the polygonal curve one by one until there
is only one remaining. Since each of these squares is a subset of one of the function
elements’ discs, the continuation along its boundary cannot lead to a different function.
Thus this property has to be true also for the original polygonal curve – the holomorphic
continuation of a function element results in a uniquely defined function f in G. �

We shall draw one final conclusion from the Taylor series expansion:

Corollary 9.18. If a holomorphic function has the power series expansion

f(z) =
∞∑

n=0

an(z − z0)n

with radius of convergence ρ > 0, it cannot be holomorphic at all boundary points
of the disc, i.e., of the circle |z − z0| = ρ.

Proof. If the function f was holomorphic at every point ζ of the circle |z − z0| = ρ, it
would also be — by definition — holomorphic in a small (open) disc around ζ. The circle
is a compact set covered by these discs, so that we can select a finite number of these
discs still covering the circle. This finite number of open discs overlap each other and
cover a small annulus ρ − ε ≤ |z − z0| ≤ ρ + ε. Thus one could apply Cauchy’s integral
formula to a bigger disc Bρ+ε(z0) and one would obtain a converging power series in this
disc. This is a contradiction with the assumption of the theorem. �
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9.2.2 Laurent series

We can extend the Taylor series principle to functions holomorphic only in an
annulus, the behavior inside the interior disc is arbitrary. We have the following
theorem.

Theorem 9.19 (Laurent series). Suppose that f is holomorphic in the annulus
G = {z : R1 < |z−z0| < R2} , in which R1 = 0 and/or R2 = ∞ is possible. Then
f can be represented by a Laurent series

f(z) =
∞∑

n=−∞
an(z − z0)n

in the annulus. The coefficients are given by

an =
1

2πi

∫
|ζ−z0|=ρ

f(ζ)
(ζ − z0)n+1

dζ,

where ρ is arbitrary with R1 < ρ < R2. The convergence of the two-sided infinite
series is defined by the convergence of the two series with positive and negative
indices, respectively.

The series of negative powers

−1∑
n=−∞

an(z − z0)n

is called the principal part of the function f in z0, the series of positive powers is
called the Taylor part.

If the function f is holomorphic in the whole disc |z − z0| < R2, all coefficients
with negative indices vanish and the coefficient formula coincides with the one of
the Taylor series. Hence Laurent series can be interpreted as extensions of Taylor
series.

Proof. In the smaller annulus R1 < ρ1 < |z − z0| < ρ2 < R2 the function f is also
holomorphic on the boundary. So we can use Cauchy’s integral formula

f(z) =
1

2πi

∫
|ζ−z0|=ρ2

f(ζ)

ζ − z
dζ − 1

2πi

∫
|ζ−z0|=ρ1

f(ζ)

ζ − z
dζ.

In order to have the annular region on the left we have to integrate over the inner circle
clockwise, so that a minus sign shows up in front of the second integral. Analogously with
the proof of the Taylor series we expand 1/(ζ − z) into a geometric series: This leads to

1

ζ − z
=

1

ζ − z0

1

1 − z−z0
ζ−z0

=
∞∑

n=0

(z − z0)
n

(ζ − z0)n+1
,
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for the outer circle and to

1

ζ − z
= − 1

z − z0

1

1 − ζ−z0
z−z0

= −
∞∑

n=0

(ζ − z0)
n

(z − z0)n+1

for the inner one. Both series converge in a little smaller, resp. greater, disc uniformly,
so that we can substitute integration and summation:

f(z) =
∞∑

n=0

(z − z0)
n 1

2πi

∫
|ζ−z0|ρ2

f(ζ)

(ζ − z0)n+1
dζ

+

∞∑
n=0

(z − z0)
−(n+1) 1

2πi

∫
|ζ−z0|=ρ1

f(ζ)(ζ − z0)
ndζ.

The first sum represents the Taylor part of the Laurent series, the second one can be put
in its final form by substituting the summation index n =: −m − 1 :

f(z) =

∞∑
n=−∞

an(z − z0)
n, an =

1

2πi

∫
|ζ−z0|=ρ

f(ζ)

(ζ − z0)n+1
dζ.

Because of Cauchy’s integral theorem the circle of integration with radius between R1

and R2 is arbitrary. Since the circles of integration can be chosen sufficiently close to
the boundaries of the annulus, the formula remains true in the whole annular domain
R1 < |z − z0| < R2. �

Example 9.20. a) In example 4.19 b we introduced a series which now is recognized
as being the Laurent series in 1 < |z| < ∞:

1
1 − z

= −
∞∑

n=1

z−n.

b) The function

f(z) =
1
z

is also a (very simple) example of a Laurent series in the annulus 0 < |z| < ∞.
c) Let the function f be holomorphic in the annulus 1 − ε < |z| < 1 + ε where it
possesses the Laurent series expansion

f(z) =
∞∑

n=−∞
anzn.

On the boundary of the unit disc we have z = eiϕ and the Laurent series transforms
into

f(eiϕ) =
∞∑

n=−∞
aneinϕ
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with coefficients

an =
1

2πi

∫
|ζ|=1

f(ζ)
ζn+1

dζ =
1
2π

∫ π

−π

f(eiϕ)e−inϕdϕ.

This turns out to be the Fourier series of the periodic complex function f(eiϕ),
which can be decomposed into sine and cosine series in the usual way.

As for the Taylor series the function f cannot be holomorphic on the whole bound-
ary of the annulus of convergence. Otherwise our annulus could be expanded.

9.3 Taylor and Laurent series in C�(n)

9.3.1 Taylor series

In this section we want to generalize the results of the complex plane to higher
dimensional spaces. The Fueter polynomials introduced and discussed in Section
6.2 will serve as generalizations of the usual powers zn in the complex plane.
Let us recall Euler’s formula for homogeneous functions:

Suppose that the function f is homogeneous of degree k in Rn+1. Then we have

x · ∇f(x) = kf(x).

This is proved by differentiating f(tx) = tkf(x) with respect to t and substituting
t = 1. Now we are able to prove a first statement concerning the representation
by Fueter polynomials:

Proposition 9.21. Every homogeneous holomorphic polynomial of degree k can be
written as a C�(n)-linear combination of Fueter polynomials:

P (x) =
∑
|k|=k

1
k!

Pk(x)(∇kP )(0), k = (0, k1, ..., kn).

Proof. Let P be a left-holomorphic homogeneous polynomial of degree k. We obtain the
formulae

∂0P (x) +

n∑
i=1

ei∂iP (x) = 0

and

x0∂0P (x) +
n∑

i=1

xi∂iP (x) = kP (x),

since P satisfies the Cauchy–Riemann equations and Euler’s formula. These yield

kP (x) =
n∑

i=1

(xi − x0ei)∂iP (x) =
n∑

i=1

zi∂iP (x).

This can also be regarded as a justification for introducing the variables zi = xi − x0ei

in Section 5.2 when we defined holomorphic functions. Because of Corollary 7.29 each
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derivative ∂iP is holomorphic. ∂iP is a homogeneous polynomial of degree k − 1. After
k steps one gets

k!P (x) =

n∑
i1,...,ik=1

zi1 . . . zik∂i1 . . . ∂ikP (x).

Now we combine all derivatives belonging to a multiindex k. The order of differentiation
does not play any role in computing the derivatives, but in computing the zi. Every
distribution of the zi occurs only once in the k components. These are also to be permuted
with each other in the Pk. We get a factor k! in the denominator and obtain

P (x) =
∑
|k|=k

1

k!k!

∑
σ∈perm(k)

ziσ(1) . . . ziσ(k)∇
kP (x)

=
∑
|k|=k

1

k!
Pk(x)∇kP (x)

(
k = (0, k1, . . . , kn)

)
.

This relation can be seen as the justification for introducing Fueter polynomials. Since we
obtain constants by differentiating a polynomial of degree k exactly k times, the desired
representation follows:

P (x) =
∑
|k|=k

Pk(x)ak, ak =
(∇kP )(0)

k!
. �

Let us now consider the Taylor series in C�(n). For left-holomorphic functions it
is of the form

∞∑
k=0

∑
|k|=k

Pk(x)ak,

for right-holomorphic functions the ak are on the left side. If this series converges
absolutely, we can exchange summation and differentiation. Thus a series of the
given form is holomorphic in case it converges absolutely. This condition can be
checked by using the estimates of Corollary 6.5.

The further considerations require the introduction of another kind of special
polynomials.

Definition 9.22. The function

Cµ
k (s) :=

k∑
m=[ k

2 ]

(
−µ
m

)(
m

2m − k

)
(−2s)2m−k

is called a Gegenbauer polynomial (due to Leopold Bernhard Gegenbauer
(1849–1903)).

Special cases are Cµ
0 (s) = 1, Cµ

1 (s) =
(

−µ
1

)(
1
1

)
(−2s)1 = 2µs.
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Proposition 9.23. (i) The polynomial Cµ
k (s) =

[ k
2 ]∑

j=0

(
−µ

k − j

)(
k − j
k − 2j

)
(−2s)k−2j

contains only powers of s with degrees k, k − 2, . . ..

(ii) The Taylor series expansion for (1 − 2st + t2)−µ with respect to t converges
for |t| < 1 and −1 ≤ s ≤ 1 in the locally uniform sense.

Proof. (i) With k − m =: j we get 0 ≤ j ≤ k
2
, the result follows.

[
k
2

]
denotes the largest

integer smaller than or equal to k
2
.

(ii) For small t the binomial series (see Exercise 9.4.4) for (1 − 2st + t2)−µ converges in
the locally uniform sense. For 0 < t < 1, 0 ≤ s ≤ 1 we obtain the strict inequality

1 ≥ t(t − 2s) = (t − s)2 − s2 > −1,

so that the series converges for these s and 0 < t < 1 in the locally uniform sense.
According to Exercise 9.4.2 the radius of convergence is 1. In a similar way one can prove
the convergence for negative s with negative t, so that for all s the series in t has the
radius of convergence 1. �

Theorem 9.24 (Taylor series). Let the function f be left-holomorphic for |x| < R
in Rn+1, where then it can be expanded into the converging Taylor series

f(x) =
∞∑

k=0

∑
|k|=k

Pk(x)ak, k = (0, k1, . . . , kn)

with

ak =
∇kf(0)

k!
=

1
σn

∫
|y|=ρ

Qk(y)dy∗f(y).

ρ is arbitrary with 0 < ρ < R, the Qk are given in Definition 7.26 as derivatives
of Q0(x) = σnEn(x). For right-holomorphic functions we need to interchange the
terms ak with Pk and the Qk with f .

Proof. As usual Cauchy’s integral formula is the starting point. For |x| < ρ < R we have

f(x) =

∫
|y|=ρ

En(y − x)dy∗f(y).

The Cauchy kernel En(y − x) or rather Q0(y − x) = σnEn(y − x) needs to be expanded
into a power series: We choose ρ arbitrarily with 0 < ρ < R, so that the expansion
converges in |x| < R due to Cauchy’s integral theorem. We calculate as follows:

∂x
1

|y − x|n−1
= −n − 1

2

1

|y − x|n+1
∂x|y − x|2

= (n − 1)
y − x

|y − x|n+1
= (n − 1)Q0(y − x),
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i.e., we find the Cauchy kernel with a factor. Consequently it is sufficient to determine
the series expansion of |y − x|−(n−1). Defining x =: ωx|x|, y =: ωy |y| we get

|y − x|2 = |y|2
(

1 − y x

|y|2
)(

1 − x y

|y|2
)

= |y|2
(

1 − 2(ωx · ωy)
|x|
|y| +

|x|2
|y|2
)

.

Finally setting

t :=
|x|
|y| , s := ωx · ωy

we get 0 ≤ t < 1, −1 ≤ s ≤ 1 and with µ := (n − 1)/2 we obtain

1

|y − x|n−1
=

1

|y|n−1

1

(1 − 2st + t2)µ
.

The binomial series expansion yields

1

(1 − 2st + t2)µ
=

∞∑
m=0

(
−µ
m

)
(−2st + t2)m.

This series converges for |−2st+t2| < 1 in the locally uniform sense. Thus it also converges
for sufficiently small t in s and t in the locally uniform sense. Since (−2st + t2)m leads
only to a finite number of terms, we can reorder by powers of t:

1

(1 − 2st + t2)µ
=

∞∑
m=0

m∑
j=0

(
−µ
m

)(
m
j

)
(−2st)jt2(m−j).

The factor preceding tk can only be non-zero if 2m− j = k or 2m ≥ k ≥ m, meaning for
those m satisfying

[
k
2

]
≤ m ≤ k that

1

(1 − 2st + t2)µ
=

∞∑
k=0

tk
k∑

m≥ k
2

(
−µ
m

)(
m

2m − k

)
(−2s)2m−k.

Since the series converges in the locally uniform sense, we can differentiate term by term.
Taking into account ∂xCµ

0 (s) = 0 this leads to

Q0(y − x) =
y − x

|y − x|n+1
=

∞∑
k=1

1

n − 1
∂xCµ

k (ωx · ωy)
|x|k

|y|n−1+k
.

By defining
1

n − 1
∂xCµ

k+1(ωx · ωy)
|x|k+1

|y|n+k
=: Pk(x, y),

one gets finally

Q0(y − x) =
y − x

|y − x|n+1
=

∞∑
k=0

Pk(x, y).

Due to the preceding Proposition 9.23 Pk(x, y) contains only powers of x having the form

(ωx · ωy)k+1−2j |x|k+1,
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so it is a polynomial in x with terms (see Proposition 9.23)

∂x

(
(x · ωy)k+1−2j |x|2j

)
.

These are homogenous polynomials in x of degree k. Since the series for Q0(y − x) is
bilaterally holomorphic, this property must be fulfilled by the terms. These are homoge-
neous polynomials of degree k, so that differentiating by ∂x no terms cancel each other.
Using Proposition 9.21 the Pk(x, y) can be decomposed into linear combinations of Fueter
polynomials Pk with |k| = k:

Definition 9.25. The functions Q̃k(y) are defined by∑
|k|=k

Pk(x)Q̃k(y) =
∑
|k|=k

Q̃k(y)Pk(x) = Pk(x, y).

We have

Q̃k(y) =
1

(n − 1)k!
∇k

x∂x

[
Cµ

k+1(ωx · ωy)
|x|k+1

|y|n+k

]∣∣∣∣
x=0

.

The Qk are thus homogeneous of degree −(n + k) in y. In the series expansion of Q0

no terms cancel the functions Pk(x, y) by differentiation with respect to y, so that Q̃k is
bilaterally holomorphic. Now we want to show their equality to

Qk(y) =
(−1)|k|

k!
∇kQ0(y),

introduced in Definition 7.26: For arbitrary j we get

Qj(y − x) =
(−1)|j|

j !
∇j

yQ0(y − x) =
1

j !
∇j

xQ0(y − x) =

∞∑
k=0

1

j !
∇j

xPk(x, y)

=
∞∑

k=0

∑
|k|=k

1

j !
∇j

xPk(x)Q̃k(y).

Setting x = 0, ∇jPk(0) = j! δj k (see Exercise 9.4.5) yields

Qj(y) =
1

j !
∇j

xPj(0)Q̃j(y) = Q̃j(y).

Consequently Q̃k = Qk holds and for |x| < ρ < R we obtain the series expansion for f ,

f(x) =
1

σn

∫
|y|=ρ

⎛⎝ ∞∑
k=0

∑
|k|=k

Pk(x)Qk(y)

⎞⎠ dy∗f(y).

Since it converges in the locally uniform sense we can integrate term by term and get

f(x) =
∞∑

k=0

∑
|k|=k

Pk(x)ak

with

ak =
∇kf(0)

k!
=

1

σn

∫
|y|=ρ

Qk(y)dy∗f(y).
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This is completely similar to the expansion in C; the negative powers of z are replaced
by Qk. �

In analogy to the complex case we want to prove a uniqueness theorem. But it
will have a different form than in C since the zeros of a holomorphic function in
Rn+1 may not be isolated. Consider the simple example f(x) = z1, where the
(n − 1)-dimensional plane x0 = x1 = 0 equals the set of zeros of f . By combining
the zi every lower-dimensional plane can be obtained as the set of zeros. We will
start with a proposition used in the proof of the uniqueness theorem in C�(n):

Proposition 9.26. Suppose that f is holomorphic in a domain G ⊂ Rn+1 and the
equality f(x) = 0 is valid for all x from a ball {|x − x0| < ρ} ⊂ G. Then f = 0 in
G.
Proof. x0 can be connected to every x∗ ∈ G by a polygonal curve Π in G. As a compact
set the polygonal curve has a distance δ > 0 to ∂G. Thus at an arbitrary point of Π the
Taylor series converges at least in a ball with radius δ. On Π we choose a point x1 with
δ/2 < |x1 − x0| < δ. In a small neighborhood of x1 we have f(x) = 0, so that all Taylor
coefficients in x1 equal zero and f(x) = 0 for |x−x1| < δ. Repeating this process a finite
number of times will lead us finally to x∗, so that f(x∗) = 0 holds. Thus we have f = 0
in G. �

A possible uniqueness theorem reads as follows:

Theorem 9.27 (Identity theorem). If a function f is holomorphic in a domain
G ⊂ Rn+1 and equals zero on an n-dimensional smooth manifold M ⊂ G, the
equation f = 0 is satisfied in G.

The dimension has to be at least n, as the example f(x) = z1 shows. The manifold
can be composed from an arbitrarily small piece, the focus lies on the dimension
n. A more uniqueness-theorem-like formulation is the following:

Two functions holomorphic in G coinciding on an n-dimensional smooth manifold
in G are identical.

Obviously this theorem remains true in C, but since the zeroes are isolated the
statement can be more general.

Proof. Let x∗ denote an arbitrary point in M and x(t1, . . . , tn) =: x(t) be a parametriza-
tion of M in a neighborhood of x∗ with x(0) = x∗. Since f(x(t)) = 0 holds for all t we
have

n∑
i=0

∂xi

∂tj
∂if(x∗) = 0, j = 1, . . . , n.

These are the tangential derivatives of f in the direction of the manifold. For our manifold
we assume the matrix (

∂xi

∂tj

)
to be of rank n. Thus in the mentioned system of equations we can express the ∂if(x∗)
by the ∂0f(x∗) with the help of suitable real-valued ai,

∂if(x∗) = ai∂0f(x∗), i = 1, . . . , n.
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Substituting into the Cauchy–Riemann equations yields(
n∑

i=1

eiai + 1

)
∂0f(x∗) = 0.

The term in brackets is obviously not zero, consequently ∂0f(x∗) = 0 holds. This yields
∂if(x∗) = 0, i = 0, . . . , n. Taking into account the correctness for all x∗ ∈ M all first-
order derivatives of f vanish in M . The ∂if are also holomorphic, so that we can expand
our considerations to higher-order derivatives of f with the use of induction. Thus the
coefficients of the Taylor series in x∗ are zero, so that the function f equals zero in the
ball of convergence of the Taylor series. The preceding proposition gives f = 0 in G. �

9.3.2 Laurent series

After considering the Taylor series for functions holomorphic in a ball, we want to
consider functions holomorphic in a ballshell, i.e., the multi-dimensional analogue
of an annulus. A corresponding Laurent expansion will be derived proceeding
similarly to the complex case.

Theorem 9.28 (Laurent series). Let f be left-holomorphic in a ballshell domain
G = {r < |x| < R} with 0 ≤ r < R ≤ ∞. Then f admits the following Laurent
series expansion in G,

f(x) = f1(x) + f2(x) =
∞∑

k=0

∑
|k|=k

Pk(x)ak +
∞∑

k=0

∑
|k|=k

Qk(x)bk

with

ak =
1
σn

∫
|y|=ρ

Qk(y)dy∗f(y),

bk =
1
σn

∫
|y|=ρ

Pk(y)dy∗f(y).

ρ is arbitrary with r < ρ < R; the series converge uniformly in any closed sub-
ballshell. Furthermore f1 is holomorphic in BR(0) and f2 is holomorphic in Rn+1\
Br(0) with

lim
|x|→∞

f2(x) = 0.

f1 is called the Taylor part and f2 is called the principal part of the Laurent series.

Proof. In the ballshell r < r′ < |x| < R′ < R Cauchy’s integral formula yields

f(x) =
1

σn

∫
|y|=R′

Q0(y − x)dy∗f(y) − 1

σn

∫
|y|=r′

Q0(y − x)dy∗f(y).



182 Chapter IV. Series expansions and local behavior

R2

r2

z0
R1

r1

Figure 9.2

The sign in front of the second integral appears reversed due to the orientation of the
boundary of the ballshell. The first integral, denoted by f1, possesses the already known
Taylor expansion

f1(x) =

∞∑
k=0

∑
|k|=k

Pk(x)ak

with
ak =

1

σn

∫
|y|=ρ

Qk(y)dy∗f(y).

ρ is an arbitrary number between r and R in view of Cauchy’s integral theorem.

Now we will focus on

f2(x) = − 1

σn

∫
|y|=r′

Q0(y − x)dy∗f(y).

Similarly to the Taylor series

−Q0(y − x) = ∂y
1

n − 1

1

|y − x|n−1

has to be expanded into a series. Since |x| > |y|, we have

1

|y − x|n−1
=

1

|x|n−1

1

(1 − 2st + t2)µ

with t = |y|/|x| and s = (ωx · ωy), ωx = x/|x|, ωy = y/|y|, µ = n−1
2

. One gets

Q0(y − x) = −
∞∑

k=1

1

n − 1
∂yCµ

k+1(ωx · ωy)
|y|k+1

|x|n−1+k
,

and with

Rk(x, y) :=
1

n − 1
∂yCµ

k+1(ωx · ωy)
|y|k+1

|x|n+k
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we have

Q0(y − x) = −
∞∑

k=0

Rk(x, y).

The Rk have the same properties as the Pk from the proof of the Taylor series after
exchanging x and y. We obtain

Rk(x, y) =
∑
|k|=k

Pk(y)Qk(x) =
∑
|k|=k

Qk(x)Pk(y)

and hence we have

f2(x) =
∞∑

k=0

∑
|k|=k

Qk(x)bk

with
bk =

1

σn

∫
|y|=ρ

Pk(y)dy∗f(y).

Again ρ is arbitrary with r < ρ < R (Cauchy’s integral theorem). The statement f2(x) →
0 for |x| → ∞ is left as Exercise 9.4.7. �

As a conclusion we want to point out some orthogonality relations of the Pk and
the Qk which correspond to similar properties of the z±k in C:

Proposition 9.29. For any positive ρ the Fueter polynomials Pk and the Qk satisfy
for arbitrary j and k the following orthogonality relations:

1
σn

∫
|x|=ρ

Qk(x)dx∗Pj(x) = δjk,

1
σn

∫
|x|=ρ

Pj(x)dx∗Qk(x) = δjk,

1
σn

∫
|x|=ρ

Pj(x)dx∗Pk(x) = 0,

1
σn

∫
|x|=ρ

Qj(x)dx∗Qk(x) = 0.

Proof. The first line follows from the Taylor expansion of a polynomial Pj. All Taylor
coefficients of Pj have to vanish for k �= j and aj = 1. The second line is the corresponding
statement for right-holomorphic functions since Qk and f are exchanged. The third line
represents the bk of the Laurent expansion of Pj, they have to vanish. Finally the fourth
line shows the coefficients ak of the Laurent expansion of Qj, they have to equal zero,
too. �

The Fueter polynomials are recognized to be left- and right-holomorphic generalizations
of the positive powers zk, but constructing higher-dimensional generalizations of the
negative powers proves to be a more difficult task. We chose the derivatives of the Cauchy
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kernel, but other approaches are possible. The powers x−n introduced by H. Malonek in
1990 [101] are not left-holomorphic. In [14] higher-dimensional left-holomorphic powers
with negative exponents are computed similarly to our way. It was also shown that
the values of Qk do not leave the paravector space. After tedious computation in [73]
a recursion formula was obtained. It was also possible for R. S. Kraußhar to get an
estimation for the Qk (see Proposition 7.27).

9.4 Exercises

1. Suppose that a sequence of functions (fm) is holomorphic in a domain G ⊂
Rn+1 and converges to a function f in G in the local uniform sense. Show
that for every multi-index k the sequence of derivatives (∇kfm) converges to
∇kf in the local uniform sense (see Corollary 7.28).

2. Assume a power series (at the origin) converges at a fixed point z0. Show that
it does converge absolutely for all |z| < |z0|. Explain the connection with the
radius of convergence.

3. Obtain the two possible power series for the function f(z) = 1
z−3i at the

origin.

4. Show that

(1 + z)a =
∞∑

j=1

(
a
j

)
zj (a ∈ C)

is a Taylor series. Use this to show

(1 + z)a = exp(a log(1 + z))

with the principal argument of the logarithm that equals zero for z = 1 (see
Section 11.4 and Definition 11.8). Evaluate the radius of convergence.

5. Show
a)

∇jPk =
k!

(k − j)!
Pk−j for j ≤ k,

b)
∇jPk = k! δk j for |k| = |j|

for Fueter polynomials with multiindices j and k. j ≤ k denotes jµ ≤ kµ for
all µ ∈ {0, . . . , n}.

6. Show the following uniqueness theorem: Suppose that a function is holomor-
phic in a domain G ⊂ Rn+1 and different from the zero function. Then it
does not have a zero of infinite degree. A function f is said to have a zero of
infinite degree in x0 if

lim
|x−x0|→0

|f(x)|
|x − x0|k

= 0

holds for all k ∈ N. (Hint: Taylor coefficients.)
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7. Show that the principal part f2(x) of a Laurent series converges to 0 for
|x| → ∞.
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10 Orthogonal expansions in H

The approximation, resp. the representation, of quadratically integrable functions
by Fourier series requires the knowledge of complete or closed function systems in
the Hilbert space as well as of the general representation of functionals.

10.1 Complete H-holomorphic function systems

As the quaternions are non-commutative we have to define a new closedness and
completeness. First we prove the following version of the Hahn–Banach theorem:

Theorem 10.1. Let X be a right vector space with norm over H and let X0 ⊂ X
be a closed subspace. Let f be a bounded, right-linear, H-valued functional on X0.
Then there is an H-valued right-linear extension F of f to X which is bounded on
X.

This theorem was proven first in 1938 by G. A. Suchumlinov [151]. A corresponding
theorem for locally convex spaces with values in a real Clifford algebra was proven
in 1982 [14].

Proof. The idea of the proof is that an arbitrary H-right-linear functional always has the
form

f(x) = f0(x) −
3∑

i=1

f0(xei)ei.

To prove this we start with the representation

f(x) = f0(x) + f1(x)e1 + f2(x)e2 + f3(x)e3.

Since f(xei) = f(x)ei (i = 0, 1, 2, 3) we have the relations

f1(x) = −f0(xe1), f2(x) = −f0(xe2), f3(x) = −f0(xe3).

Let now X0,R ⊂ X0 be a real subspace and f0 the restriction of f to X0,R. Following the
classical Hahn–Banach theorem, f0 can be extended to an R-linear bounded functional
F0 on X. The needed H-valued functional F is then given by

F (x) := F0(x) − F0(xe1)e1 − F0(xe2)e2 − F0(xe3)e3.

Finally we just need to prove the corresponding properties: We obviously have

|F (x)| ≤ 4‖F0‖‖x‖,

i.e., F is bounded. The additivity follows from the additivity of F0. The proof of right
homogeneity has to be done individually for each component. We now calculate the norm
of F : we choose a point x∗ ∈ X so that ‖x∗‖ = 1 and ‖F‖ ≤ |F (x∗)|+ ε. Since ‖F‖ �= 0
we can assume that F (x∗) �= 0. We define Θ := F (x∗)/|F (x∗)| and x∗∗ = x∗Θ and get

F (x∗∗) = F

(
x∗ F (x∗)

|F (x∗)|

)
= F (x∗)

F (x∗)
|F (x∗)| = |F (x∗)|.



10. Orthogonal expansions in H 187

From Sc F (x) = F0(x) it follows F0(x
∗∗) = F (x∗∗).

So we have

F0(x
∗∗) ≤ ‖F0‖‖x∗∗‖ = ‖F0‖

and

‖F‖ ≤ ‖F0‖ + ε.

Since ε > 0 is arbitrary,

‖F‖ = ‖F0‖

holds. We still have to prove ‖F‖ = ‖f‖ but this follows from ‖F0‖ = ‖f0‖ = ‖f‖.
Therefore F is a norm-preserving H-right-linear extension of f . �

Definition 10.2. Let X be a right vector space with norm over H. A set {x(i)} ⊂ X ,
i ∈ N, of elements of X is called H-complete if and only if for all x ∈ X and for
an arbitrary ε > 0 there is a finite right-linear combination Rε(x) of the {x(i)} so
that

‖x − Rε(x)‖ < ε

holds. The set {x(i)} is called H-closed in X , if for every bounded H-right-linear
functional F on X with values in H always from F (x(i)) = 0 (i ∈ N) it follows
that F = 0.

Analogously with the real analysis a set is H-closed if and only if it is H-complete.
The proof of this statement is left to the reader, with a strong recommendation
to become familiar with the special right-linear structure of the spaces considered
(see Exercise 10.4.2).

Theorem 10.3. Let F be an H-right-linear functional over Lp(G). It then has the
representation

F (u) =
∫
G

f(x)u(x)dσ

with f ∈ Lq(G) and 1
p + 1

q = 1.

For the proof for real Clifford algebras we refer to [14], in which the proof is related
to the classical proof for complex-valued linear functionals over Lp(G). For p = 2
we simply write F (u) := (f, u).
A first and simple complete system of holomorphic functions can be given in R3

with the help of “shifted” fundamental solutions of the Dirac operator:

Theorem 10.4. Let G, Gε be bounded domains in R3 whose boundaries Γ and Γ1

are at least C2-surfaces. Moreover let G ⊂ Gε and let {x(i)} be a dense subset of
Γ1. The system {φi}∞i=1 with φi(x) = (x − x(i))/|x − x(i)|3 is then H-complete in

L2(G) ∩ kerD, where D =
3∑

i=1

ei∂i is the Dirac operator.
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Proof. The proof is given by contradiction. We assume there is a function u ∈ L2(G) ∩
ker D, different from the zero function, with (φi, u) = 0 (i = 1, 2, . . .). It then follows
that for the Teodorescu transform the relation

(TGu)(x(i)) = − 1

σ3

∫
G

x − x(i)

|x − x(i)|3 u(x)dσx = 0

holds on the set {x(i)}, dense in Γ1. Since TGu is continuous in R3\G it follows
trΓ1TGu = 0. Further, TGu is holomorphic in R3\G, thus from Proposition 8.1 it fol-
lows that lim

|x|→∞
(TGu)(x) = 0. From theorem 7.14 we have (TGu)(x) = 0 in the exterior

of Γ1. Being a holomorphic function in R3 \ G, the Teodorescu transform TGu has to be
zero in the exterior of G by the identity Theorem 9.27. Because of the continuity it holds
also for the boundary values on the boundary Γ of G,

trΓTGu = 0.

From proposition 8.9 we have that u ∈ imQ. We had assumed that u ∈ kerD = imP.
Since imP ∩ imQ = {0} it follows that u = 0, this is the contradiction. �

The theorem just proved ensures that we can approximate with arbitrary accuracy
in the L2-norm the solutions of the Dirac equation by special simple solutions.
Our function systems are arbitrarily differentiable, but they unfortunately are not
orthogonal. It is easy to see that an orthogonalization would destroy the simple
structure, not to speak of the difficulties coming from the numerical instability.
In the next subsection we shall try to construct polynomial systems which do not
possess these disadvantages.

10.1.1 Polynomial systems

It is this section’s goal to provide orthogonal polynomial systems for approximation
purposes. Following the results we proved in Section 9.3, the shifted fundamental
solutions Q0(x − a) of the generalized Cauchy–Riemann operator in C�(n) can
be regarded as analogues of the functions 1/(z − a) in C. Our statements on
approximation and completeness are then related to the rational approximation
in complex analysis and lead us to the theorems of Walsh and Runge.
Up to now we have not clarified completely the question about analogues in C�(n)
of the positive powers of z in complex analysis. The results of the development into
Taylor series of left-holomorphic functions in Theorem 9.24 give us the first ideas.
We had proved that a function f , left-holomorphic in the unit ball Bn+1 := B1(0)
in Rn+1, can be developed into a convergent Taylor series

f(x) =
∞∑

k=0

∑
|k|=k

Pk(x)ak

with

ak =
∇kf(0)

k!
=

1
σn

∫
|y|=ρ

Qk(y)dy∗f(y).
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From this development we can conclude that f is locally approximable in the
sense of locally uniform convergence. But a global completeness statement, e.g.,
in L2(Bn+1), does not follow from this theorem.
Let us first have a look at the complex case. We assume a holomorphic function
f to be in L2(B2). This function then possesses a locally uniformly convergent
Taylor series in B2,

f(z) =
∞∑

k=0

f (k)(0)
k!

zk.

The functions zk constitute an orthogonal system in the space L2(B2), and after

a normalization an orthonormal system in the form
√

k+1
π zk. A function f can be

developed into a Fourier series relative to this orthonormal system,

f(z) �→
∞∑

k=0

(f,

√
k + 1

π
zk)

√
k + 1

π
zk =

∞∑
k=0

(f, zk)
k + 1

π
zk.

With the usual assumption that there is a function g ∈ L2(B2), which is orthogonal

to all zk, it follows from the above considerations that the system
{√

k+1
π zk

}
k∈N

is complete.
The reason for this easy result is the fact that the functions used for the Taylor
series in C are “spontaneously” orthogonal, though orthogonality played no role
for the Taylor series and we only used differentiation properties. Before we seek
convenient higher dimensional generalizations of the powers zk we will first state
the properties of the complex powers as functions of the real variables x and y to
get a frame of reference:

• The functions (x + iy)k are R-homogeneous (holomorphic) polynomials.

• R-homogeneous holomorphic polynomials of different order are orthogonal.

• We have zk ∈ ker ∂k+1
z \ ker ∂k

z .

• Moreover ∂zz
k = kzk−1,

∫
zk = 1

k+1zk+1 holds, i.e., differentiation and in-
tegration of basis functions deliver again basis functions. These properties
ensure that the derivative of a power series is again a power series, and that
the derivative of a Fourier series is at least formally a Fourier series.

Unfortunately these properties are not self-evident in the higher dimensional case.
If we restrict ourselves for better understanding to functions f : R3 �→ H, for the
degree k, we then have just k+1 linearly independent homogeneous H-holomorphic
polynomials. This satisfies indeed the requirements of a Taylor expansion as there
are also k + 1 partial derivatives of degree k,

∂k1
1 ∂k2

2 , k1 + k2 = k.
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But the requirements of a Fourier development are not satisfied as the k+1 Fueter
polynomials Pk from Definition 6.1 are not in any case orthogonal. But we can
show that homogeneous holomorphic polynomials of different degree are indeed
orthogonal, so we have to orthogonalize “only” in the subspaces H+

k of the H-
holomorphic homogeneous polynomials of degree k. But as desired the derivatives
∂iPk of the Fueter polynomials of degree |k| = k from Theorem 6.2 are again
Fueter polynomials

∂iPk = ki Pk−εεεi

with the vector εi having a 1 in place i and zeros otherwise.
Another attempt would be to use instead of the complex variable z, in R3 the
quaternionic variable x = x0 + x1e1 + x2e2, and in R4 the variable x = x0 +
x1e1 + x2e2 + x3e3. Unfortunately both variables are not H-holomorphic. If we
assume symmetry between the “imaginary” variables x1, x2, x3 the next candidates
would then be the H-holomorphic variables x = x0 + 1

2 (x1e1 + x2e2), resp. x =
x0 + 1

3 (x1e1 + x2e2 + x3e3). Such variables have been studied, e.g., in [100] (see
Exercise 10.4.4).
In view of these problems we start with the Fueter variables zi = xi − x0ei. These
variables are equal to the complex variable z up to an isomorphism. A simple
calculation shows that the positive powers zk

i are H-holomorphic as well. Away
from the zeros of the zi also the negative integer powers are H-holomorphic (see
Exercise 10.4.5). Such variables, which are called totally analytic by Delanghe in
[31], have been studied in Remark 6.7, where we pointed out the fact that the
H-holomorphic variable

z =
3∑

k=0

akxk, ak ∈ H,

is totally analytic if and only if aiaj = ajai, i, j = 0, 1, 2, 3. If we now examine the

functions u(x) =
3∑

i=0

ui(x)ai we have the product rule for the Cauchy–Riemann

operator ∂ in its classical form ∂(uv) = (∂u)v + u(∂v). Restricting ourselves to
functions with range span{ai}, we then can carry over almost the complete clas-
sical function theory. For a better understanding of this fact one should show (see
Exercise 10.4. 6) that the condition aiaj = ajai, i, j = 0, 1, 2, 3, means that the
range of z(x) is only a two-dimensional plane.
However this simple construction has significance in principle. We have defined in
Remark 6.7 the following interpolation polynomial:

Lku(x) :=
k∑

j=1

(∏
i�=j

[(z(x) − z(bi))(z(bj) − z(bi))−1]
)
uj . (10.1)

This polynomial generalizes the classical Lagrange interpolation polynomial. The
significance is that we can now show that for k arbitrarily given different points
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bj and k given values uj at these points, there is always a holomorphic function
which takes the given values at the given points. For H-holomorphic functions this
statement is in no case obvious. It would still be desirable to show that always a
totally analytic variable could be defined such that for the given points also the
condition z(bi) �= z(bj) for i �= j is satisfied.

The above Lagrange interpolation polynomial is not appropriate to interpolate
general H-holomorphic functions, since in view of the restricted range of z(x) no
complete polynomial system is given.

10.1.2 Inner and outer spherical functions

Before we seek complete H-holomorphic systems of possibly orthonormal poly-
nomials, we will state some properties of Fueter polynomials which are already
known. A question is whether the orthogonality relations from Proposition 9.29
can be useful in our context. We start with a definition:

Definition 10.5. (i) Let H+
k be the space of holomorphic, paravector-valued, ho-

mogeneous polynomials of degree k. An arbitrary element Pk of this space is
called an inner spherical polynomial of degree k.

(ii) Let H−
k be the space of holomorphic, paravector-valued, homogeneous func-

tions in Rn+1
0 = Rn+1 \ {0} of degree −(k + n). An arbitrary element Qk of

this space is called an outer spherical function of degree k.

(iii) Let Hk = H+
k ∪ H−

k ; the unions over all k are denoted by H+,H−, resp. H.

In Proposition 9.21 we have already proved that these Pk are spanned by the
Fueter polynomials Pk. In view of the Laurent expansion the Qk are spanned by
the Qk. In Proposition 7.27 we have shown that the Qk are paravector-valued,
this has to be proved also for the Pk:

Proposition 10.6. The Fueter polynomials Pk are paravector-valued, they span the
space of the inner spherical polynomials. The Qk are also paravector-valued and
span the space of the outer spherical functions.

Proof. We need only to prove that the Fueter polynomials are paravector-valued. We use
induction on the degree k = |k|. For k = 0 or k = 1 we have only the functions 1, resp.
zi, which are paravector-valued. To prove the assertion for k we use Theorem 6.2 (ii),

∂jPk = kjPk−εεεj ,

with kj from k and εεεj which has a 1 in place j and otherwise only zeros. If Pk had a
term not in Rn+1, then this term upon suitable differentiation would not be zero, but
it would not change the property not to be in Rn+1, as the latter is not affected by
convenient differentiation. This would be a contradiction with the property stating that
the differentiated polynomial is paravector-valued. �
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It remains to consider whether the relations of Proposition 9.29 are orthogonality
relations relative to L2(Bn+1). To investigate this we define a mapping between
H+ and H−: For x ∈ Rn+1, x �= 0, and f holomorphic in Rn+1

0 we let

If(x) := Q0(x)f
(
x−1
)
.

The reader is left to prove in Exercise 10.4.7 that If is a bijective map between
H+ and H−. We now can show:

Proposition 10.7. The spaces H+ and H− are orthogonal in L2(Sn).

Proof. Let Pj and Qk be arbitrary elements from both spaces. Then there is a Pk with

Qk(x) = IPk(x) = Q0(x)Pk

(
x

|x|2
)

.

We are interested in the scalar product in L2(Sn), where Q0(y) = y and therefore∫
Sn

Qk(y)Pj(y)|do1| =

∫
Sn

yPk(y)Pj(y)|do1| =

∫
Sn

Pk(y)dy∗Pj(y) = 0.

The last statement follows from the right-holomorphy of Pk(y) and the Cauchy integral
theorem. Moreover for the Fueter polynomials we have Pk(x) = Pk(x), as only the order
of the products of the zi is inverted. But as we sum over all orders nothing changes. The
individual zi’s will be conjugated twice, they do not change either. We then see that the
last integral is just the third one given in Proposition 9.29. �

We see that the statements about Fueter polynomials proved up to now are not
very helpful for the orthogonality problem. We therefore have to go deeper into
this question, and we restrict ourselves finally to holomorphic functions in C�(2),
which map R3 into H. We then have only the two variables z1 and z2, and we
are able to write down all formulas explicitly to make things clearer. We look
for convenient H-holomorphic polynomials which constitute a complete system of
functions. Malonek in [100] and [101] has done this with symmetric polynomials
which differ only slightly from the Fueter polynomials.
In this case we have z1 and z2 as the Fueter polynomials of degree 1; those of
degree 2 are:

P(2,0)(x) = z2
1 , P(1,1)(x) =

1
2
(z1z2 + z2z1), P(0,2)(x) = z2

2 .

We already mentioned that the Fueter polynomials constitute a basis for the holo-
morphic polynomials in H+

k . To get a statement about the completeness of the
system of the Fueter polynomials we need an assertion regarding the decomposi-
tion or the splitting of the space L2 ∩ ker ∂.

Theorem 10.8. We have

L2(B3) ∩ ker ∂ =
∞⊕

k=0

H+
k .
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Proof. The orthogonality of the subspaces of different degrees follows from the orthogo-
nality of the homogeneous harmonic polynomials of different degree, which we have yet
to show. If we now assume that the asserted splitting does not exhaust L2 ∩ ker ∂, then
there must be a function f which is orthogonal to all subspaces. This function can be
developed into a Taylor series in a neighborhood of the origin. In some ball this Taylor
series converges uniformly, and in a smaller ball it also converges in the L2-norm. Let
this ball have the radius ε < 1; we then study the function f∗ ∈ L2(B2/ε(0))∩ker ∂ with
f∗(x) = f( 1

2
εx). On the one hand the Taylor series of f∗ converges in L2(B3). On the

other one we have from the orthogonality to the subspaces that∫
B3

f
( εx

2

)
Pk(x)dσ = c

∫
B3

f
( εx

2

)
Pk

( εx

2

)
dσ = 0,

thus with a suitable c the function f∗ would be orthogonal to all subspaces H+
k . From

both statements it follows that f∗ = f = 0. �

We have thus also proved the needed completeness theorem:

Theorem 10.9. The Fueter polynomials are complete in L2(B3) ∩ ker ∂.

The above results show that we are able to develop holomorphic functions into
a Taylor series using Fueter polynomials, but we do not know precisely the ra-
dius of convergence of the power series. In the sense of best approximation any
H-holomorphic function, which is quadratically integrable in a ball, can be approx-
imated with arbitrary precision in that ball. Unfortunately this is not sufficient for
practical purposes, as the best approximation by arbitrary complete systems may
not be stable numerically. For theoretical questions one often uses the Schmidt
orthogonalization procedure, but this is also not numerically stable for such a sys-
tem. So, we have to deal with the explicit construction of complete orthogonal
systems. The system of Fueter polynomials, so important for the Taylor develop-
ment, is not appropriate for such a construction. To show the non-orthogonality
of the Fueter polynomials we cite a result of the article [18] (without the extensive
proof), from which we also take some of the following constructions:

Theorem 10.10. For |ν| = |µ| = n we have(
P(ν1,ν2),P(µ1,µ2)

)
L2(S2)

= a ,

where a = a0 + a1 e1 + a2 e2 + a3 e3 ∈ H as well as

(i) a0 = a1 = a2 = 0 and a3 �= 0 for |ν1 − µ1| and |ν2 − µ2| odd,

(ii) a1 = a2 = a3 = 0 and a0 �= 0 for |ν1 − µ1| and |ν2 − µ2| even,

(iii) a ∈ R+ for ν1 − µ1 = 0.

Here we can see that the Fueter polynomials are in general not orthogonal. But
if we work with the scalar part of the scalar product at least some of the Fueter
polynomials are orthogonal:
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Corollary 10.11. [19] If |ν1 − µ1| and |ν2 − µ2| are odd we then have(
P(ν1,ν2),P(µ1,µ2)

)
0,L2(S2)

= 0.

Here (., .)0 is the scalar part of the scalar product.

As a shorthand we will denote both these scalar products by

(f, g) =
∫
B3

f(x)g(x)dx

and

(f, g)0 = Sc
∫
B3

f(x)g(x)dx. (10.2)

We refer explicitly to Exercise 10.4.8, which shows that the scalar products relative
to B3 and S2 are equal up to a factor. For approximation statements both scalar
products are equivalent as they generate the same norm and so the same notion of
convergence. But if we consider the structure of the space more in detail we then
see that both the above scalar products are very different. (f, g)0 generates a finer
structure for the space; more functions are orthogonal, as we have seen already
with the example of the Fueter polynomials. Viewed from the constructive side it
seems to be easier to look first for orthonormal systems relative to the real scalar
product. We shall do that and shall see later that the result delivers quite easily
also orthonormal systems relative to the quaternion-valued scalar product.

If we have constructed these orthogonal polynomials, we are able to work in com-
plete analogy to the complex system {

√
n+1

π zn}. Due to the higher dimension the
calculations are much more complicated, but they are necessary. For the practical
application it is useful to think about a software solution of this formal problem.
The CD, attached to the book, contains a Maple package QUATPACKAGE, which
solves the generation problem of the polynomial basis for the 3-dimensional case.

10.1.3 Harmonic spherical functions

The idea of the following construction is to start with harmonic spherical functions,
for which we have relatively simple explicit formulas. If we apply the operator ∂ to
these functions we then get homogeneous holomorphic polynomials because of the
factorization ∆ = ∂ ∂ of the Laplace operator. We introduce spherical coordinates
as follows:

x0 = r cos θ ,

x1 = r sin θ cosϕ ,

x2 = r sin θ sin ϕ ,
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where 0 < r < ∞, 0 < θ ≤ π, 0 < ϕ ≤ 2π. Every x = (x0, x1, x2) ∈ R3 \ {0}
possesses the representation already repeatedly used,

x = rω, |x| = r, |ω| = 1.

If we transform also the Cauchy–Riemann operator we then have

∂ =
1
r

L + ω ∂ω

with

L =
2∑

i=0

ei(r∂i − xi∂ω), ∂ω =
2∑

i=0

ωi∂i.

The reader is asked to show that ∂ω = ∂r in Exercise 10.4.9; the adjoint Cauchy–
Riemann operator ∂ can now be written in the form

∂ = ω ∂r +
1
r

L,

where

L = (− sin θ−e1 cos θ cosϕ−e2 cos θ sin ϕ)∂θ+
1

sin θ
(e1 sinϕ−e2 cosϕ)∂ϕ. (10.3)

Every homogeneous harmonic polynomial Pn of degree n can be represented in
spherical coordinates in the form

Pn(x) = rnPn(ω) , ω ∈ S2. (10.4)

The restriction to the boundary of the unit ball Pn(ω) is called a harmonic
spherical function. Analogously and according to Definition 10.5 we will denote
H-holomorphic homogeneous polynomials by Hn(x) and the restrictions to the
boundary Hn(ω) by holomorphic spherical functions or by inner spherical polyno-
mials.
Our starting point is the well-known complete orthogonal system of harmonic
spherical functions ([128]),

U0
n+1(θ, ϕ) = Pn+1(cos θ), (10.5)

Um
n+1(θ, ϕ) = Pm

n+1(cos θ) cos mϕ, (10.6)
V m

n+1(θ, ϕ) = Pm
n+1(cos θ) sin mϕ , n = 0, . . . ,∞; m = 1, . . . , n + 1. (10.7)

Here Pn+1 denotes the Legendre polynomial of degree n + 1, given by

Pn+1(t) =
[ n+1

2 ]∑
k=0

an+1,k tn+1−2k, P0(t) = 1 , t ∈ [−1, 1] ,
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with

an+1,k = (−1)k 1
2n+1

(2n + 2 − 2k)!
k! (n + 1 − k)! (n + 1 − 2k)!

.

As usual [k] denotes the largest integer ≤ k.
The functions Pm

n+1 in (10.7) are called associated Legendre functions defined by

Pm
n+1(t) := (1 − t2)m/2 dm

dtm
Pn+1(t), m = 1, . . . , n + 1 .

For m = 0 the associated Legendre function P 0
n+1(t) is identical with the cor-

responding Legendre polynomial Pn+1(t). For the calculation of derivatives and
norms below we need some properties of the Legendre polynomials and of the asso-
ciated Legendre functions. The proof of these properties is in part very technical,
but it can be done with basic knowledge from analysis. To continue smoothly our
considerations we put the necessary results into Appendix 4. We recommend to
prove these properties as exercise, see Exercises A.4.6.1, 2, 3, 4.

10.1.4 H-holomorphic spherical functions

We will proceed as follows: The harmonic spherical functions will be continued
to harmonic homogeneous polynomials in the unit ball. To these polynomials we
apply the operator ∂. The holomorphic homogeneous polynomials obtained in
this way will be restricted again to the boundary of the unit ball, and the latter
describe the holomorphic spherical functions we are looking for. As an exercise the
reader should deal with the construction of applying the adjoint Cauchy–Riemann
operator directly to the harmonic spherical functions (without continuation and
restriction). The differences should then be discussed, see Exercise 10.4.10.
We consider the continuations of the harmonic spherical functions:

{rn+1 U0
n+1, rn+1 Um

n+1, rn+1 V m
n+1 , m = 1, . . . , n + 1}n∈N0 . (10.8)

For n ∈ N0 we apply the operator ∂ in spherical coordinates (10.3) to (10.8). After
restriction to the boundary we get the following holomorphic spherical functions:

X0
n , Xm

n , Y m
n , m = 1, . . . , n + 1 ,

given by

X0
n := ∂ (rn+1 U0

n+1)|r=1

= A0,n + B0,n cosϕe1 + B0,n sinϕe2, (10.9)

where

A0,n :=
1
2

(
sin2 θ

d

dt
[Pn+1(t)]t=cos θ + (n + 1) cos θPn+1(cos θ)

)
, (10.10)
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B0,n :=
1
2

(
sin θ cos θ

d

dt
[Pn+1(t)]t=cos θ − (n + 1) sin θPn+1(cos θ)

)
, (10.11)

and

Xm
n := ∂ (rn+1 Um

n+1)|r=1

= Am,n cosmϕ

+(Bm,n cosϕ cosmϕ − Cm,n sin ϕ sin mϕ) e1

+(Bm,n sin ϕ cosmϕ + Cm,n cosϕ sin mϕ) e2 , (10.12)

Y m
n := ∂ (rn+1 V m

n+1)|r=1

= Am,n sin mϕ

+(Bm,n cosϕ sin mϕ + Cm,n sin ϕ cosmϕ) e1

+(Bm,n sinϕ sin mϕ − Cm,n cosϕ cosmϕ) e2 (10.13)

with the coefficients

Am,n :=
1
2

(
sin2 θ

d

dt
[Pm

n+1(t)]t=cos θ + (n + 1) cos θ P m
n+1(cos θ)

)
(10.14)

Bm,n :=
1
2

(
sin θ cos θ

d

dt
[Pm

n+1(t)]t=cos θ − (n + 1) sin θ P m
n+1(cos θ)

)
(10.15)

Cm,n :=
1
2

m
1

sin θ
Pm

n+1(cos θ) , (10.16)

m = 1, . . . , n + 1.
To proceed safely with the indices in the following calculations we formulate a
simple observation as a proposition:

Proposition 10.12. The holomorphic spherical functions Xm
n and Y m

n are the zero
function for m ≥ n + 2.

Proof. We have Am,n, Bm,n, Cm,n = 0 for m ≥ n + 2; as for these m and all t ∈ [−1, 1],

P m
n+1(t) = (1 − t2)m/2 P

(m)
n+1(t) = 0. �

A little numerical example may help to motivate the next lengthy calculations.
Since the known dimension of H+

n,H is n + 1 we take the real space to have the
dimension 4n + 4. This is simple to prove: From the property that the Fueter
polynomials Pν1,ν2 , ν1+ν2 = n, constitute a basis in H+

n , we get at once that every
holomorphic homogeneous polynomial of degree n can be represented uniquely as
a linear combination of the polynomials Pν1,ν2 , Pν1,ν2e1, Pν1,ν2e2, and Pν1,ν2e3

with real coefficients. Therefore these polynomials constitute a basis in H+
n,R, and

the real dimension indeed is 4n+4. But by the above construction of the functions
X0

n , Xm
n , Y m

n , m = 1, . . . , n + 1, we get at most 2n + 3 holomorphic polynomials,
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which may not be linearly independent. In no case is the system complete, as none
of the constructed functions has a component of e3 different from zero. The idea
now is easily expressed: we look at

{X0
n , Xm

n , Y m
n , X0

nei , Xm
n ei , Y m

n ei; m = 1, . . . , n + 1}, i = 1, or i = 2, or i = 3.

These systems look equivalent but this is not the case. A numerical calculation of
the condition number of the Gram matrix shows the following results:

system degree condition number
{Xm

n } ∪ {Xm
n e1} n = 1 13,93

n = 2 69,99
n = 3 292,02
n = 4 1158,92
n = 7 70718,72

{Xm
n } ∪ {Xm

n e3} n = 1 3,00
n = 2 5,00
n = 3 7,00
n = 4 9,00
n = 7 15,00

Thus these systems will react quite differently when orthogonalized. Taking into
account these numerical results further on we shall deal with the system

{X0
n , Xm

n , Y m
n , X0

ne3 , Xm
n e3 , Y m

n e3; m = 1, . . . , n + 1}.

We introduce the following notation:

Xm
n,0 := Xm

n , Xm
n,3 := Xm

n e3 , m = 0, . . . , n + 1 ,

Y m
n,0 := Y m

n , Y m
n,3 := Y m

n e3 , m = 1, . . . , n + 1 .

Every subspace H+
n contains at least two linearly dependent functions which we

will delete. This can be seen if we analyze the last two elements of every system.
We have

Y n+1
n,3 = Xn+1

n,0 and Xn+1
n,3 = −Y n+1

n,0 .

This result is obtained from the explicit representations

Xn+1
n = −Cn+1,n cosnϕ e1 + Cn+1,n sin nϕ e2

and

Y n+1
n = −Cn+1,n sin nϕ e1 − Cn+1,n cosnϕ e2 .

A multiplication by e3 gives

Y n+1
n,3 = −Cn+1,n cosnϕ e1 + Cn+1,n sin nϕ e2 = Xn+1

n,0
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and
Xn+1

n,3 = −Y n+1
n,0 .

In the following we shall work for all n ∈ N0 with the 4n+4 holomorphic spherical
functions

{X0
n,0 , Xm

n,0 , Y m
n,0 , X0

n,3 , X l
n,3 , Y l

n,3; m = 1, . . . , n + 1, l = 1, . . . , n} .

(10.17)

Using this system we construct the desired orthonormal basis in H+
n,R, first relative

to the real scalar product (. , .)0,L2(B3). The starting point is described by the
following theorem:

Theorem 10.13. For all n ∈ N0 the subsystems of holomorphic spherical functions
X0

n,0 , Xm
n,0, resp. Y m

n,0 (m = 1, . . . , n + 1), are orthogonal systems relative to the
inner product (10.2) with the norms

||X0
n,0||0,L2(S2) =

√
π(n + 1) (10.18)

and

||Xm
n,0||0,L2(S2) = ||Y m

n,0||0,L2(S2) =

√
π

2
(n + 1)

(n + 1 + m)!
(n + 1 − m)!

, m = 1, . . . , n + 1.

(10.19)

The calculation of the norms is only possible with great effort. This effort is neces-
sary as we want to explicitly orthogonalize our polynomials. To continue it suffices
to know that the norms can be calculated and to know the result. Also this proof
has been shifted to Appendix 4.2 to be able to smoothly continue the exposition.
An analogous result can be proven for the second subsystem, see Exercise 10.4.11:

Theorem 10.14. For all n ∈ N0 the systems X0
n,3 , X l

n,3 and Y l
n,3 (l = 1, . . . , n)

are orthogonal relatively to the inner product (10.2), and the norms are given by

||X0
n,3||0,L2(S2) =

√
π(n + 1)

and

||X l
n,3||0,L2(S2) = ||Y l

n,3||0,L2(S2) =

√
π

2
(n + 1)

(n + 1 + l)!
(n + 1 − l)!

, l = 1, . . . , n .

The second fundamental problem is to find the relations between the subsystems
examined so far and to calculate, if possible, the inner products and thus also the
angle between the subspaces.
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Theorem 10.15. For all n ∈ N0 and m = 1, . . . , n + 1 ; l = 1, . . . , n, we have

(X0
n,0, X

0
n,3)0,L2(S2) = (X0

n,0, X
l
n,3)0,L2(S2) = (X0

n,0, Y
l
n,3)0,L2(S2)

= (Xm
n,0, X

0
n,3)0,L2(S2) = (Xm

n,0, X
l
n,3)0,L2(S2) = (Y m

n,0, X
0
n,3)0,L2(S2)

= (Y m
n,0, Y

l
n,3)0,L2(S2) = 0

and

(Xm
n,0, Y

l
n,3)0,L2(S2) = −(Y m

n,0, X
l
n,3)0,L2(S2) =

⎧⎨⎩
0, m �= l,

π
2 m (n+m+1)!

(n−m+1)! , m = l.

The proof has again been shifted to the appendix as it is completely technical,
no new ideas are necessary. Using the explicit representation of our holomorphic
spherical functions all necessary integrals can be easily calculated.

We see that only very few functions from the different systems are not orthogo-
nal. The Gram matrix is only sparse, and a chance remains to have an explicit
orthogonalization.

We now denote by

X̃0
n,0 , X̃m

n,0 , Ỹ m
n,0 , X̃0

n,3 , X̃ l
n,3 , Ỹ l

n,3 ; m = 1, . . . , n + 1; l = 1, . . . , n ,

the normalized polynomials arising from (10.17). From the above investigations
we see that the systems{

X̃0
n,0 , X̃m

n,0 , Ỹ m
n,0 ; m = 1, . . . , n + 1

}
n∈N0

(10.20)

and {
X̃0

n,3 , X̃ l
n,3 , Ỹ l

n,3 ; l = 1, . . . , n
}

n∈N0

(10.21)

are both orthonormal systems. The relations between these subsystems seem to
be easier after the normalization. For all n ∈ N0 all polynomials of the systems
(10.20) and (10.21) are orthogonal apart from

(X̃ l
n,0, Ỹ l

n,3)0,L2(S2) = −(Ỹ l
n,0, X̃

l
n,3)0,L2(S2)

=
l

n + 1
, l = 1, . . . , n .

We see that for increasing n the angle between the subspaces spanned by the
functions (10.20) and (10.21) converges to zero. Thus the parallel projectors onto
these subspaces will not be uniformly bounded in L2, and we cannot avoid the
orthogonalization of the complete system. As the result of the orthogonalization
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we get:

X0,∗
n,0 := X̃0

n,0 , (10.22)

Xm,∗
n,0 := X̃m

n,0 , (10.23)

Y m,∗
n,0 := Ỹ m

n,0 , (10.24)

Y l,∗
n,3 :=

√
sn,l

(
(n + 1) Ỹ l

n,3 − l X̃ l
n,0

)
, (10.25)

X0,∗
n,3 := X̃0

n,3 , (10.26)

X l,∗
n,3 :=

√
sn,l

(
(n + 1) X̃ l

n,3 + l Ỹ l
n,0

)
(10.27)

with

sn,l =
1

(n + 1)2 − l2
, (10.28)

m = 1, . . . , n + 1, l = 1, . . . , n.

This is easy to see: The first 2n + 3 functions in (10.22)–(10.24) are already an
orthonormal system. For the next 2n + 3 + l (l = 1, . . . , n) functions we calculate
stepwise: Let l be fixed and let Ynl be the not yet normalized function which
comes from step (2n + 3 + l) of the orthogonalization procedure. This function is
calculated explicitly as follows:

Ynl = Ỹ l
n,3 − X0,∗

n,0(X
0,∗
n,0, Ỹ

l
n,3)0,L2(S2)

−
n+1∑
m=0

Xm,∗
n,0 (Xm,∗

n,0 , Ỹ l
n,3)0,L2(S2) −

n+1∑
m=0

Y m,∗
n,0 (Y m,∗

n,0 , Ỹ l
n,3)0,L2(S2)

= Ỹ l
n,3 − X l,∗

n,0(X
l,∗
n,0, Ỹ

l
n,3)0,L2(S2),

here we have used Theorem 10.15. From the construction of the functions in (10.23)
it follows that

Ynl = Ỹ l
n,3 − X̃ l

n,0(X̃
l
n,0, Ỹ

l
n,3)0,L2(S2),

and the substitution of the scalar product’s known value gives

Ynl = Ỹ l
n,3 − l

n + 1
X l,∗

n,0 .

Y l,∗
n,3 has to be calculated by normalization of Ynl. The step (3n +4) gives (10.26),

and the remaining procedure leads us to (10.27) in analogy with the calculations
just described.
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10.1.5 Completeness in L2(B3) ∩ ker ∂

We will now examine whether the constructed orthonormal system (ONS) is com-
plete in L2(B3)R ∩ ker ∂. Because of Theorem 10.8 we know that any holomorphic
function can be developed into an orthogonal series with functions from the sub-
spaces H+

n . The spherical functions, constructed in the last subsection, can be
extended with the help of the relation (10.4) to an orthogonal system in H+

n,R, and
then can be normalized again. We get the system

1
2n + 3

rnX0,∗
n,0,

1
2n + 3

rnXm,∗
n,0 ,

1
2n + 3

rnY m,∗
n,0 ,

1
2n + 3

rnY l,∗
n,3,

1
2n + 3

rnX0,∗
n,3,

1
2n + 3

rnX l,∗
n,3. (10.29)

Every element in H+
n,R can be represented by the ONS of the 4n + 4 holomorphic

homogeneous polynomials (10.29). So we have proved the result we wanted, and
we can formulate the corresponding theorem:

Theorem 10.16. The system (10.29) is complete in L2(B3)R ∩ ker ∂.

We will try to construct from the ONS in the real Hilbert space L2(B3)R ∩ ker ∂
an ONS for the quaternion-valued scalar product in L2(B3)H ∩ ker ∂. We shall see
that it suffices to select suitable functions from the ONS in L2(B3)R ∩ ker ∂.

Theorem 10.17. For all n ∈ N0, the n + 1 holomorphic homogeneous polynomials

rn X0,∗
n,0, rn X2k1,∗

n,0 , rn Y 2k2,∗
n,3 , k1 = 1, . . . ,

[
n + 1

2

]
, k2 = 1, . . . ,

[n
2

]
(10.30)

constitute an orthogonal basis in H+
n,H.

This result raises the question whether it is possible to define an ONS for H+
n

using odd indices. This question is answered by the following theorem:

Theorem 10.18. For all n ∈ N0, the n + 1 holomorphic homogeneous polynomials

rn X2k1+1,∗
n,0 , rn Y 2k2−1,∗

n,3 , k1 = 0, . . . ,
[n
2

]
, k2 = 1, . . . ,

[
n + 1

2

]
,

constitute an orthogonal basis in H+
n,H.

In Appendix A.4.4 the first of these theorems is proved, the second proof is quite
analogous.

Corollary 10.19. Both systems{√
2n + 3 rn X0,∗

n,0,
√

2n + 3 rn X2k1,∗
n,0 ,

√
2n + 3 rn Y 2k2,∗

n,3 :

k1 = 1, . . . ,

[
n + 1

2

]
, k2 = 1, . . . ,

[n
2

]}
n∈N0

(10.31)
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and {√
2n + 3 rn X2k1+1,∗

n,0 ,
√

2n + 3 rn Y 2k2−1,∗
n,3 :

k1 = 0, . . . ,
[n
2

]
, k2 = 1, . . . ,

[
n + 1

2

]}
n∈N0

(10.32)

are complete orthonormal systems in L2(B3)H ∩ ker∂.

10.2 Fourier expansion in H

After the above extensive preparations the Fourier expansion of a quadratically
integrable holomorphic function is merely a formal business. We formulate here
only the result for L2(B3)R∩ker ∂ and leave the case L2(B3)H∩ker ∂ to the reader:

Theorem 10.20. Let f ∈ L2(B3)R ∩ ker ∂. The function f can then be represented
with the ONS (10.22)–(10.27):

f =
∞∑

n=0

√
2n + 3 rn

[
X0,∗

n,0 αn + X0,∗
n,3 βn

+
n∑

m=1

(
Xm,∗

n,0 γn,m + Y m,∗
n,0 δn,m + Xm,∗

n,3 εn,m + Y m,∗
n,3 ϕn,m

)
+Xn+1,∗

n,0 γn,n+1 + Y n+1,∗
n,0 δn,n+1

]
.

Obviously f may be characterized by its coefficients using the Parseval equation:

Theorem 10.21. f ∈ L2(B3)R ∩ ker ∂ is equivalent to

∞∑
n=0

[
α2

n + β2
n +

n∑
m=1

(
γ2

n,m + δ2
n,m + ε2

n,m + ϕ2
n,m

)
+ γ2

n,n+1 + δ2
n,n+1

]
< ∞.

10.3 Applications

10.3.1 Derivatives of H-holomorphic polynomials

In the introduction to Subsection 10.1.1 it was pointed out that the complex
powers zn have the advantage that their derivatives belong to the same system of
functions. We now shall examine what happens when the holomorphic functions
of our orthonormal systems will be differentiated. We denote by ∂iX0

n, ∂iXm
n and

∂iY m
n the holomorphic spherical functions which arise by an i-times differentiation

of rnX0
n, rnXm

n and rnY m
n by the operator ∂ followed by the restriction to the

boundary (here we have to pay attention to distinguish ∂i and the partial derivative
∂i). It suffices to examine first the derivatives of the functions Xm

n and Y m
n . With

their help we can easily calculate the derivatives of the functions of the orthogonal
systems.
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Theorem 10.22. We have

∂Xm
n = ∂(rnXm

n )|r=1

=
(1)

Am,n cosmϕ

+ (
(1)

Bm,n cosϕ cosmϕ−
(1)

Cm,n sin ϕ sin mϕ) e1

+ (
(1)

Bm,n sin ϕ cosmϕ+
(1)

Cm,n cosϕ sin mϕ) e2.

Proof. Formal differentiation of Xm
n gives the expression

∂Xm
n = ∂(rnXm

n )|r=1

=
(1)

Am,n cos mϕ

+(
(1)

Bm,n cos ϕ cos mϕ−
(1)

Cm,n sin ϕ sin mϕ) e1

+(
(1)

Bm,n sin ϕ cos mϕ+
(1)

Cm,n cos ϕ sin mϕ) e2

+
(1)

Em,n sin mϕe3

with the coefficients

(1)

Am,n =
1

2
(− sin θ

d

dθ
Am,n + cos θ

d

dθ
Bm,n +

1

sin θ
Bm,n + m

1

sin θ
Cm,n

+n cos θAm,n + n sin θBm,n), (10.33)
(1)

Bm,n =
1

2
(− sin θ

d

dθ
Bm,n − cos θ

d

dθ
Am,n + n cos θBm,n − n sin θAm,n), (10.34)

(1)

Cm,n =
1

2
(− sin θ

d

dθ
Cm,n + m

1

sin θ
Am,n + n cos θCm,n), (10.35)

(1)

Em,n =
1

2
(− cos θ

d

dθ
Cm,n − m

1

sin θ
Bm,n − 1

sin θ
Cm,n − n sin θ Cm,n) ,

m = 1, . . . , n + 1. The coefficient functions
(1)

Em,n (m = 1, . . . , n + 1) can be calculated
with the help of (10.14), (10.15), and (10.16) to show that they vanish. �

The fact that also the derivatives of the functions Xm
n take only values in

span{e0, e1, e2} as the functions themselves is remarkable. For the functions Y m
n

we have an analogous result. If we analyze the coefficients of the last theorem more
precisely we get a sharper statement:

Theorem 10.23. Let n ≥ 1. We then have

∂Xm
n = (n + m + 1)Xm

n−1, m = 0, . . . , n,

∂Y m
n = (n + m + 1)Y m

n−1, m = 1, . . . , n.
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Proof. Because of the analogous form of the polynomials and their derivatives it suffices
to show that

(i)
(1)

Am,n = (n + m + 1)Am,n−1, m = 0, . . . , n,

(ii)
(1)

Bm,n = (n + m + 1)Bm,n−1, m = 0, . . . , n,

(iii)
(1)

Cm,n = (n + m + 1)Cm,n−1, m = 1, . . . , n.

This calculation is explicitly carried out in Appendix 4, Theorem A.4.4 �

Indeed the derivatives of our polynomials turn out to be polynomials of lower
degree in the same system up to a constant. By iterated application of this result
we get corresponding expressions for the derivatives of higher order.

Theorem 10.24. Let n ∈ N0, i = 1, 2, . . .. We then have

∂iXm
n =

(
i∏

h=1

(n + m + 1 − (h − 1)

)
Xm

n−i , m = 0, . . . , n + 1 − i,

∂iY m
n =

(
i∏

h=1

(n + m + 1 − (h − 1)

)
Y m

n−i , m = 1, . . . , n + 1 − i.

Proof. The proof can be done by induction. The case i = 1 is the claim of Theorem A.4.4
(see Exercise 10.4.12). �

Contrary to the complex case it may happen that the derivative of a polynomial
vanishes before the order of the differentiation exceeds the degree of the polyno-
mial:

Corollary 10.25. For arbitrary n ∈ N0 we have

∂iXm
n = ∂iY m

n = 0 , i ≥ n − m + 2; m = 1, . . . , n + 1.

Proof. The proof follows from the last theorem, the representation formula for the deriva-
tives, and Proposition 10.12, see also Exercise 10.4.13. �

Finally we have to convince ourselves that the derivatives of a basis polynomial
do not vanish earlier as described in the last corollary.

Corollary 10.26. For arbitrary n ∈ N0 we have

rn X0
n ∈ (ker ∂n+1\ ker ∂n) ∩ ker ∂ ,

rn Xm
n , rn Y m

n ∈ (ker ∂n−m+2\ ker ∂n−m+1) ∩ ker ∂, m = 1, . . . , n + 1 ,

where ∂0 should be identified with the identity.
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Using the above theorems the proof involves only calculations, see Exercise 10.4.14.

We still need to examine the derivatives of the functions in our orthonormal sys-
tem. As the functions in the orthonormal system are described relatively simply
by the functions Xm

n and Y m
n , the task brings no serious difficulties:

Theorem 10.27. The derivatives of the functions in the ONS (10.22)–(10.27) can
be expressed in the same ONS as follows:

∂X0,∗
n,0 =

√
n(n + 1)X0,∗

n−1,0, (10.36)

∂Xm,∗
n,0 =

√
n

n + 1
1

√
sn,m

Xm,∗
n−1,0, (10.37)

∂Y m,∗
n,0 =

√
n

n + 1
1

√
sn,m

Y m,∗
n−1,0, (10.38)

∂Y l,∗
n,3 =

√
n + 1

n

(
1

√
sn−1,l

Y l,∗
n−1,3 +

l

n + 1
X l,∗

n−1,0

)
, (10.39)

∂X0,∗
n,3 =

√
n(n + 1)X0,∗

n−1,3, (10.40)

∂X l,∗
n,3 =

√
n + 1

n

(
1

√
sn−1,l

X l,∗
n−1,3 − l

n + 1
Y l,∗

n−1,0

)
, (10.41)

where sn,m is given by (10.28), and m = 1, . . . , n, l = 1, . . . , n − 1.

Proof. The only interesting case is Y l,∗
n,3 and analogously Xl,∗

n,3, the remaining steps are
formal calculations.

∂Y l,∗
n,3 =

√
sn,l

1

||Xl
n,0||0,L2(S2)

(
(n + 1)∂Y l

n e3 − l ∂Xl
n

)
=

√
sn,l

||Xl
n−1,0||0,L2(S2)

||Xl
n,0||0,L2(S2)

(n + l + 1)
(
(n + 1)Ỹ l

n−1,3 − l X̃l
n−1,0

)
=

√
n

n + 1

(
(n + 1)Ỹ l

n−1,3 − l X̃l
n−1,0

)
. (10.42)

Following the construction we get

X̃l
n−1,0 = Xl,∗

n−1,0

and
Ỹ l

n−1,3 =
1

n
√

sn−1,l
Y l,∗

n−1,3 +
l

n
Xl,∗

n−1,0 ;

substitution of these relations into (10.42) gives (10.39). The range of the indices has to
be explained yet: The index m runs from 1 to n since

∂Xn+1,∗
n,0 = ∂Y n+1,∗

n,0 = 0.
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The index l runs from 1 to n − 1 since the linear dependent functions ∂Y n,∗
n,3 and ∂Xn,∗

n,3

can be excluded. We indeed get

∂Y n,∗
n,3 =

√
sn,n

||Xn
n,0||0,L2(S2)

[
(n + 1)(2n + 1)Y n

n−1,3 − n(2n + 1)Xn
n−1,0

]
=

√
sn,n

||Xn
n,0||0,L2(S2)

(2n + 1)
[
(n + 1)Xn

n−1,0 − nXn
n−1,0

]
=

√
2n + 1

||Xn
n−1,0 ||0,L2(S2)

||Xn
n,0||0,L2(S2)

Xn,∗
n−1,0

=

√
n

n + 1
Xn,∗

n−1,0.

Using the result (10.37), already proved, we have

∂Y n,∗
n,3 =

√
sn,n ∂Xn,∗

n,0 (10.43)

and analogously

∂Xn,∗
n,3 = −√

sn,n ∂Y n,∗
n,0 . (10.44)

�

In Exercise 10.4.15 the reader is asked to show that the calculated derivatives
(10.36)–(10.41) constitute a basis in H+

n−1,R. As the number 4n is equal to the
dimension it suffices to prove the linear independence.

10.3.2 Primitives of H-holomorphic functions

Using the above constructed orthonormal systems of holomorphic functions we now
will begin to define holomorphic primitive functions of holomorphic functions. In
the complex plane we are able to describe primitives very easily by line integrals.
This does not work in higher dimensions as in such case line integrals depend on the
curve. We will define primitive functions by using inversion of the differentiation.
More precisely, we seek a right inverse operator of the hypercomplex derivative ∂,
which maps holomorphic functions into holomorphic functions

Definition 10.28. Every holomorphic function F with the property

∂F = f (10.45)

for a given holomorphic function f is called a holomorphic primitive of f . If for a
given f ∈ ker ∂ such a function F exists, we write shortly Pf := F .

The idea we shall use is to define the operator P for the functions of our or-
thonormal system and to extend it to the whole space L2. It should be remarked
that also extensions of this definition are of interest, e.g., an algebraic primitive
of holomorphic functions is given by the conjugated Teodorescu operator TG fol-
lowing Definition 7.10. The operator TG is also a right inverse of ∂, but it maps
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holomorphic functions into harmonic functions. This operator is important for the
solution of elliptic boundary value problems, but this will not be pursued here.

Sudbery [152] proved the existence of holomorphic primitives for the class of holo-
morphic polynomials using vector-analytic methods. Using an ansatz in Fueter
polynomials the explicit form of polynomial holomorphic primitives was con-
structed in [53] for given C�(n)-valued holomorphic polynomials. But the bound-
edness of such operator has not been proven. In [14] holomorphic primitives of
holomorphic functions have been shown to exist in a suitable domain, but this
method was not constructive.

We further remark that holomorphic primitives of one holomorphic function differ
by H-holomorphic constants, i.e., by functions f ∈ ker ∂ ∩ ker∂ which are only
functions of the form f(x1, x2) and which satisfy the equation

Df = (∂1e1 + ∂2e2)f = 0,

here D is the Dirac operator from Theorem 5.12. As in real and complex analysis
we speak sometimes of the primitive, meaning that we delete the constants in our
calculations.

In a parallel way to the calculation of the derivative of homogeneous holomorphic
polynomials we proceed to determine the primitive of a spherical holomorphic
function by first extending it into the ball, calculating there a primitive, and then
restricting the result if necessary to the surface of the ball. In this manner we can
also determine primitives of holomorphic functions.

Definition 10.29. The operator P : H+
n,R −→ H+

n+1,R is defined by

P (X0,∗
n,0) =

1√
(n + 1)(n + 2)

X0,∗
n+1,0, (10.46)

P (Xm,∗
n,0 ) =

√
n + 2
n + 1

√
sn+1,m Xm,∗

n+1,0, (10.47)

P (Y m,∗
n,0 ) =

√
n + 2
n + 1

√
sn+1,m Y m,∗

n+1,0, (10.48)

P (X0,∗
n,3) =

1√
(n + 1)(n + 2)

X0,∗
n+1,3, (10.49)

P (X l,∗
n,3) =

√
n + 1
n + 2

√
sn,l

(
X l,∗

n+1,3 +
l

n + 1
√

sn+1,l Y l,∗
n+1,0

)
, (10.50)

P (Y l,∗
n,3) =

√
n + 1
n + 2

√
sn,l

(
Y l,∗

n+1,3 − l

n + 1
√

sn+1,l X l,∗
n+1,0

)
, (10.51)

with n ∈ N0, m = 1, . . . , n + 1 and l = 1, . . . , n.

An analogous definition can be given for the basis (10.30) of H+
n,H:
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Definition 10.30. The operator P : H+
n,H −→ H+

n+1,H is defined by

P (X0,∗
n,0) =

1√
(n + 1)(n + 2)

X0,∗
n+1,0,

P (X2k1,∗
n,0 ) =

√
n + 2
n + 1

√
sn+1,2k1 X2k1,∗

n+1,0,

P (Y 2k2,∗
n,3 ) =

√
n + 1
n + 2

√
sn,2k2

(
Y 2k2,∗

n+1,3 − 2k2

n + 1
√

sn+1,2k2 X2k2,∗
n+1,0

)
,

with n ∈ N0, k1 = 1, . . . ,
[

n+1
2

]
and k2 = 1, . . . ,

[
n
2

]
.

Our intention is to extend the operator by continuity to the whole space. For this
purpose we need the norms of the primitives of our orthonormal basis.

Proposition 10.31. The norms of the primitives of the holomorphic spherical func-
tions are given by the following formulas:

||P X0,∗
n,0||0,L2(S2) = ||P X0,∗

n,3||0,L2(S2) =
1√

(n + 1)(n + 2)
,

||Xn+1,∗
n+1,3 − √

sn+1,n+1 Y n+1,∗
n+1,0 ||0,L2(S2)

= ||Xn+1,∗
n+1,3 +

√
sn+1,n+1 Y n+1,∗

n+1,0 ||0,L2(S2) =
√

1 + sn+1,n+1,

||Xn+2,∗
n+1,0 ||0,L2(S2) = ||Y n+2,∗

n+1,0 ||0,L2(S2) = 1,

||P Xm,∗
n,0 ||0,L2(S2) = ||P Y m,∗

n,0 ||0,L2(S2) =

√
n + 2
n + 1

√
sn+1,m, m = 1, . . . , n + 1,

||P X l,∗
n,3||0,L2(S2) = ||P Y l,∗

n,3||0,L2(S2) =

√
n + 1
n + 2

√
sn,l

√
1 +

l2

(n + 1)2
sn+1,l ,

l = 1, . . . , n.

Proof. The calculation can be done using the known norms of the elements of our or-
thonormal system. �

Theorem 10.32. The linear operator

P : L2(B3)R ∩ ker ∂ −→ L2(B3)R ∩ ker ∂

is bounded.
Proof. Let f ∈ L2(B3)R ∩ ker ∂. We consider the Fourier series relative to the ONS
(10.22)–(10.27) in L2(B3)R ∩ ker∂:

f =

∞∑
n=0

√
2n + 3 rn

[
X0,∗

n,0 αn + X0,∗
n,3 βn

+

n∑
m=1

(
Xm,∗

n,0 γn,m + Y m,∗
n,0 δn,m + Xm,∗

n,3 εn,m + Y m,∗
n,3 ϕn,m

)
+Xn+1,∗

n,0 γn,n+1 + Y n+1,∗
n,0 δn,n+1

]
, (10.52)
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where αn, βn, γn,m, δn,m, εn,m, ϕn,m, γn,n+1, δn,n+1 ∈ R, n ∈ N0, m = 1, . . . , n.
The formal application of the operator P leads to the series

Pf =
∞∑

n=0

√
2n + 3

2n + 5

√
2n + 5 rn+1

{
X0,∗

n+1,0

1√
(n + 1)(n + 2)

αn

+X0,∗
n+1,3

1√
(n + 1)(n + 2)

βn +

n∑
m=1

[
Xm,∗

n+1,0

(√
n + 2

n + 1

√
sn+1,m γn,m

−
√

n + 1

n + 2

√
sn,m

m

n + 1

√
sn+1,m ϕn,m

)
+ Y m,∗

n+1,0

(√
n + 2

n + 1

√
sn+1,m δn,m

+

√
n + 1

n + 2

√
sn,m

m

n + 1

√
sn+1,m εn,m

)
+ Xm,∗

n+1,3

√
n + 1

n + 2

√
sn,m εn,m

+ Y m,∗
n+1,3

√
n + 1

n + 2

√
sn,m ϕn,m

]
+ Xn+1,∗

n+1,0

√
n + 2

n + 1

√
sn+1,n+1 γn,n+1

+ Y n+1,∗
n+1,0

√
n + 2

n + 1

√
sn+1,n+1 δn,n+1

}
. (10.53)

On the right-hand side we see again a series development with the complete orthonormal
system in L2(B3)R ∩ ker ∂. To be able to apply the Parseval equation we have to prove
the convergence of the following series assuming that the series development for f is
convergent:

∞∑
n=0

2n + 3

2n + 5

{
1

(n + 1)(n + 2)
|αn|2 +

1

(n + 1)(n + 2)
|βn|2

+

n∑
m=1

[∣∣∣∣∣
√

n + 2

n + 1

√
sn+1,m γn,m −

√
n + 1

n + 2

√
sn,m

m

n + 1

√
sn+1,m ϕn,m

∣∣∣∣∣
2

+

∣∣∣∣∣
√

n + 2

n + 1

√
sn+1,m δn,m +

√
n + 1

n + 2

√
sn,m

m

n + 1

√
sn+1,m εn,m

∣∣∣∣∣
2

+
n + 1

n + 2
sn,m |εn,m|2 +

n + 1

n + 2
sn,m |ϕn,m|2

]
+

n + 2

n + 1
sn+1,n+1 |γn,n+1|2 +

n + 2

n + 1
sn+1,n+1 |δn,n+1|2

}
.

(10.54)

To simplify we estimate: For all n ∈ N0 we have

2n + 3

2n + 5

1

(n + 1)(n + 2)
|αn|2 < |αn|2 (10.55)

and

2n + 3

2n + 5

1

(n + 1)(n + 2)
|βn|2 < |βn|2 . (10.56)
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The inclusion of sn+1,n+1 from (10.28) simplifies the coefficients with γn,n+1 and δn,n+1:
For all n ∈ N0 we have

2n + 3

2n + 5

n + 2

n + 1
sn+1,n+1|γn,n+1|2 =

n + 2

(2n + 5)(n + 1)
|γn,n+1|2

< |γn,n+1|2 , (10.57)
2n + 3

2n + 5

n + 2

n + 1
sn+1,n+1|δn,n+1|2 < |δn,n+1|2 . (10.58)

For all other terms we estimate sn,m roughly: For all n ∈ N we have

max
m=1,...,n

sn+1,m =
1

4(n + 1)
, (10.59)

max
m=1,...,n

sn,m =
1

2n + 1
, (10.60)

max
m=1,...,n

m

n + 1
=

n

n + 1
. (10.61)

Thus we find

2n + 3

2n + 5

n∑
m=1

∣∣∣∣∣
√

n + 2

n + 1

√
sn+1,m γn,m −

√
n + 1

n + 2

√
sn,m

m

n + 1

√
sn+1,m ϕn,m

∣∣∣∣∣
2

≤
n∑

m=1

(
n + 2

n + 1
sn+1,m|γn,m|2 +

n + 1

n + 2
sn,m

m2

(n + 1)2
sn+1,m|ϕn,m|2

+ 2 sn+1,m
√

sn,m
m

n + 1
|γn,m| |ϕn,m|

)
(10.59)−(10.61)

≤ n + 2

4(n + 1)2

n∑
m=1

|γn,m|2 +
n2

4(n + 2)(2n + 1)(n + 1)2

n∑
m=1

|ϕn,m|2

+
n

4(n + 1)2
√

2n + 1

n∑
m=1

|γn,m| |ϕn,m|

≤
n∑

m=1

|γn,m|2 +

n∑
m=1

|ϕn,m|2 + 2

n∑
m=1

|γn,m| |ϕn,m| (10.62)

≤
n∑

m=1

|γn,m|2 +
n∑

m=1

|ϕn,m|2 + 2

(
n∑

m=1

|γn,m|2
)1/2( n∑

m=1

|ϕn,m|2
)1/2

.

To resolve the quadratic terms we used the Cauchy–Schwarz inequality. Since

2

(
n∑

m=1

|γn,m|2
)1/2( n∑

m=1

|ϕn,m|2
)1/2

≤
n∑

m=1

|γn,m|2 +
n∑

m=1

|ϕn,m|2

we get from (10.62) for all n ∈ N,

2n + 3

2n + 5

n∑
m=1

∣∣∣∣∣
√

n + 2

n + 1

√
sn+1,m γn,m −

√
n + 1

n + 2

√
sn,m

m

n + 1

√
sn+1,m ϕn,m

∣∣∣∣∣
2

< 2
n∑

m=1

|γn,m|2 + 2
n∑

m=1

|ϕn,m|2. (10.63)
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Analogously for all n ∈ N it follows that

2n + 3

2n + 5

n∑
m=1

∣∣∣∣∣
√

n + 2

n + 1

√
sn+1,m δn,m +

√
n + 1

n + 2

√
sn,m

m

n + 1

√
sn+1,m εn,m

∣∣∣∣∣
2

< 2

n∑
m=1

|δn,m|2 + 2

n∑
m=1

|εn,m|2, (10.64)

and

2n + 3

2n + 5

n∑
m=1

n + 1

n + 2
sn,m |εn,m|2

(10.60)

≤ (2n + 3)(n + 1)

(2n + 5)(2n + 1)(n + 2)

n∑
m=1

|εn,m|2

<

n∑
m=1

|εn,m|2, (10.65)

as well as

2n + 3

2n + 5

n∑
m=1

n + 1

n + 2
sn,m |ϕn,m|2 <

n∑
m=1

|ϕn,m|2. (10.66)

If we now collect (10.55)–(10.58) and (10.63)–(10.66) we get the estimate

|αn|2 + |βn|2 +

n∑
m=1

(
2|γn,m|2 + 3|ϕn,m|2 + 2|δn,m|2 + 3|εn,m|2

)
+|γn,n+1|2 + |δn,n+1|2

< 3

[
|αn|2 + |βn|2 +

n∑
m=1

(
|γn,m|2 + |ϕn,m|2 + |δn,m|2 + |εn,m|2

)
+ |γn,n+1|2 + |δn,n+1|2

]
for all n ∈ N0. We know from the Parseval equation for f that

3

∞∑
n=0

[
|αn|2 + |βn|2 +

n∑
m=1

(
|γn,m|2 + |ϕn,m|2 + |δn,m|2 + |εn,m|2

)
+|γn,n+1|2 + |δn,n+1|2

]
= 3 ‖f‖2

L2(B3) .

Thus the series (10.54) is convergent, it then follows that Pf ∈ L2(B3)R∩ker ∂. Moreover
we proved that

‖Pf‖L2(B3) ≤
√

3 ‖f‖L2(B3) , f ∈ L2(B3)R ∩ ker ∂ , (10.67)

so that indeed the operator P is bounded. �

The above estimate can be sharpened easily and leads then to better estimates of
the norm of P . But already the rough estimate shows how important the orthog-
onal system is for us as it allows the application of the Parseval equation. If we
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tried to give a definition using the more easily defined Fueter polynomials and the
Taylor series, we would have had to deal with the eigenvalues of the Gram matrix
of the Fueter polynomials, which would have been a quite more difficult task.

10.3.3 Decomposition theorem and Taylor expansion

Let us have another look at the Taylor expansion of a holomorphic function in
C. This expansion can also be seen as a splitting or decomposition of the space
of quadratically integrable holomorphic functions relative to the kernels of the
derivatives ∂n/∂zn. This splitting is direct and orthogonal as we use the functions

zn ∈ ker
∂n+1

∂zn+1
\ ker

∂n

∂zn
.

We now seek an analogous approach for holomorphic functions in C�(2). With the
Corollaries 10.25 and 10.26 we have the appropriate tool.
We start with the investigation in L2(B3)R ∩ker ∂. From Corollary 10.25 we know
that

rn X0,∗
n,0, rn X0,∗

n,3 ∈ ker∂n+1 ∩ ker∂ (10.68)

and

rn Xn+1,∗
n,0 , rn Y n+1,∗

n,0 ∈ ker ∂ ∩ ker∂ . (10.69)

Moreover we have from Corollary 10.26,

rn Xm,∗
n,0 , rn Y m,∗

n,0 , rn Xm,∗
n,3 , rn Y m,∗

n,3 ∈ ker ∂n−m+2 ∩ ker ∂, (10.70)
n ≥ 1, m = 1, . . . , n.

For n = 0 obviously rn X0,∗
0,0 , rn X0,∗

0,3 ∈ ker ∂ holds. This case is contained in
(10.68). With these considerations we are now able to formulate the decomposition
theorem:

Theorem 10.33. The space L2(B3)R∩ker ∂ allows the following orthogonal splitting:

L2(B3)R ∩ ker ∂ =
⊕
n≥1

(
(ker ∂n � ker∂n−1) ∩ ker∂

)
. (10.71)

Proof. For all k ∈ N the intersection ker∂k ∩ ker∂ is a closed subspace of L2(B3)R ∩
ker∂. With the induced inner product of the Hilbert space L2(B3)R ∩ ker∂ the subspace
ker∂k ∩ ker ∂ is also a Hilbert space. On the other hand ker∂k−1 ∩ ker∂ is also a closed
subspace of ker∂k ∩ ker ∂ and in this space possesses an orthogonal complement,

ker ∂k ∩ ker ∂ = (ker∂k−1 ∩ ker∂) ⊕
(
(ker∂k � ker∂k−1) ∩ ker∂

)
, (10.72)

where (ker∂k � ker∂k−1) ∩ ker∂ =
(
ker∂k−1 ∩ ker∂

)⊥
.
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The equation (10.72) implies that for all k ∈ N the finite decomposition

ker∂k ∩ ker ∂ =
k⊕

n=1

(
(ker∂n � ker∂n−1) ∩ ker∂

)
(10.73)

can be written. Let us now look at a function f ∈ L2(B3)R ∩ ker ∂, which is orthogonal
to the subspace ⊕n≥1

(
(ker ∂n � ker∂n−1) ∩ ker ∂

)
. Then f is orthogonal to all terms

(ker∂n � ker ∂n−1) ∩ ker∂ (n ∈ N) and thus also to every finite direct sum of these
subspaces, i.e., for all k ∈ N we have

f ⊥
(
⊕k

n=1(ker∂n � ker ∂n−1) ∩ ker∂
)

.

From (10.73) it follows again for all k ∈ N,

f ⊥ ker ∂k ∩ ker∂ . (10.74)

If we analyze our complete orthogonal system{√
2n + 3 rn X0,∗

n,0,
√

2n + 3 rn X0,∗
n,3,

√
2n + 3 rn Xm,∗

n,0 ,
√

2n + 3 rn Y m,∗
n,0 ,

√
2n + 3 rn Xl,∗

n,3,
√

2n + 3 rn Y l,∗
n,3 : m = 1, . . . , n + 1, l = 1, . . . , n

}
n∈N0

in L2(B3)R ∩ ker∂, we then see with (10.68) that
√

2n + 3 rn X0,∗
n,0,

√
2n + 3 rn X0,∗

n,3 ∈ ker∂n+1 ∩ ker∂.

The application of (10.74) leads us to the statement

(f,
√

2n + 3 rn X0,∗
n,0)L2(B3) = (f,

√
2n + 3 rn X0,∗

n,3)L2(B3) = 0 .

Analogously it follows from (10.69)–(10.71) and (10.74) that

(f,
√

2n + 3 rn Xm,∗
n,0 )L2(B3) = (f,

√
2n + 3 rn Y m,∗

n,0 )L2(B3)

= (f,
√

2n + 3 rn Xm,∗
n,3 )L2(B3) = (f,

√
2n + 3 rn Y m,∗

n,3 )L2(B3) = 0 .

We get that f is orthogonal to all basis elements of L2(B3)R ∩ ker D and thus f = 0
holds.

We have described the basis of every subspace (ker∂n � ker∂n−1) ∩ ker∂ (n ∈ N) by
elements of the complete orthonormal system. So it is clear that all these subspaces are
pairwise orthogonal. �

Here we will only state the analogous result for L2(B3)H ∩ker ∂. The proof follows
the same pattern:

Theorem 10.34. The space L2(B3)H ∩ ker ∂ allows the orthogonal splitting

L2(B3)H ∩ ker ∂ =
⊕
n≥1

(
(ker ∂n � ker ∂n−1) ∩ ker ∂

)
. (10.75)
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The representations of f following from this theorem are obviously reorderings of
the Fourier expansion and inherit the properties of the complex Taylor expansion
formulated at the beginning. But one should notice that the subspaces (ker ∂n �
ker∂n−1) ∩ ker ∂ are of infinite dimension. This follows from the fact that also
polynomials of arbitrarily high degree may have the property that their derivative
of degree n vanishes. The importance of the theorem consists in substantially
simplifying the termwise differentiation of Fourier series. We refer these remarks
to the Fourier series solution of partial differential equations.

10.4 Exercises
1. Prove the quaternionic analogy with the theorem of the Riesz brothers: Let

F be an H-right-linear functional over the H-valued space L2(G). Then it
allows the representation

F (u) =
∫
G

f(x)u(x)dσ

with an H-valued function f ∈ L2(G).

2. Prove that a function system in the right-linear Banach space is closed if and
only if it is complete.

3. Look for conditions for {x(i)}i∈N that the system {φi∈N = Q0(x − x(i))} is
closed in L2(G) ∩ kerD.

4. Examine whether the powers of the variables z = x0 + 1
2 (x1e1 + x2e2) and

z = x0 + 1
3 (x1e1 + x2e2 + x3e3) are holomorphic.

5. Show that the integer powers of the Fueter variables zi = xi − eix0 are
holomorphic, so that they are totally analytic variables.

6. Show that for the variables

z(x) =
3∑

k=0

akxk

the conditions aiaj = ajai for all i, j = 0, 1, 2, 3 mean that the range of z(x)
can be at most a two-dimensional plane.

7. Prove that the mapping

If(x) = Q0(x)f
(
x−1
)

from H+ to H− is one-to-one. To prove the holomorphy of If if f is holo-
morphic one should prove and use the equation

∆(xf) = 2∂ f + x∆f.
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8. For an orthonormal system of homogeneous holomorphic polynomials Hν
n ,

n = 0, 1, . . . ; ν = 1, . . . n + 1 show that

(Hν
n , Hµ

k )L2(B3) =
∫ 1

0

rn+k+2

(∫
S2

Hν
n Hµ

k |do|
)

dr

=
1

n + k + 3
(Hν

n , Hµ
k )L2(S2) .

9. With the spherical coordinates x = rω and |x| = r, ω = x/|x| show that

∂ω =
2∑

i=0

ωi∂i = ∂r,

L =
2∑

i=0

ei(r∂i − xi∂ω)

= (− sin θ − e1 cos θ cos ϕ − e2 cos θ sin ϕ)∂θ

+
1

sin θ
(e1 sin ϕ − e2 cos ϕ)∂ϕ.

10. Apply the spherical adjoint Cauchy–Riemann operator ∂ directly to the har-
monic spherical functions and discuss the differences with the procedure used
in Subsection 10.1.4.

11. Prove Theorem 10.14: For all n ∈ N0 the systems X0
n,3 , X l

n,3 and Y l
n,3 (l =

1, . . . , n) are orthogonal relatively to the inner product (10.2), and the norms
are given by

||X0
n,3||0,L2(S2) =

√
π(n + 1)

and by

||X l
n,3||0,L2(S2) = ||Y l

n,3||0,L2(S2) =

√
π

2
(n + 1)

(n + 1 + l)!
(n + 1 − l)!

, l = 1, . . . , n.

12. Prove Theorem 10.24: Let n ∈ N0, i = 1, 2, . . .. We then have

∂iXm
n =

(
i∏

h=1

(n + m + 1 − (h − 1)

)
Xm

n−i , m = 0, . . . , n + 1 − i,

∂iY m
n =

(
i∏

h=1

(n + m + 1 − (h − 1)

)
Y m

n−i , m = 1, . . . , n + 1 − i.

13. Prove Corollary 10.25: For arbitrary n ∈ N0 we have

∂iXm
n = ∂iY m

n = 0 , i ≥ n − m + 2; m = 1, . . . , n + 1.
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14. Prove also Corollary 10.26: For arbitrary n ∈ N0 we have

rn X0
n ∈ (ker ∂n+1\ ker ∂n) ∩ ker ∂ ,

rn Xm
n , rn Y m

n ∈ (ker ∂n−m+2\ ker ∂n−m+1) ∩ ker∂, m = 1, . . . , n + 1 ,

where ∂0 should be identified with the identity.

15. Show that the derivatives (10.36)–(10.41) constitute a basis in H+
n−1,R.
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11 Elementary functions

11.1 Elementary functions in C

11.1.1 Exponential function

The functions covered in this section are called elementary functions, although
they are not really so elementary. We will start by examining the exponential
function already known from real analysis, of fundamental importance since it
does not only serve as the generator for all the other elementary functions, but it
also plays an important role in applications.

Definition 11.1. For all z ∈ C the exponential function or e-function is defined by

ez := exp(z) :=
∞∑

n=0

zn

n!
.

The radius of convergence ρ = ∞ can be evaluated easily (see Exercise 4.4.5), so
that ez is defined in C.

Theorem 11.2. The exponential function

(i) is holomorphic in C with
dez

dz
= ez

(ii) and for all z, ζ ∈ C the functional equation

ez eζ = ez+ζ

holds.

(iii) For x ∈ R we have ex > 0 with e0 = 1 for all z ∈ C the formulae

ez = ez, |ez| = ex ≤ e|z| as well as |eix| = 1.

are valid. ez �= 0 for all z ∈ C.

(iv) For all z ∈ C we have

ez = lim
n→∞

(
1 +

z

n

)n

.

Proof. (i) Theorem 9.5 yields

dez

dz
=

∞∑
n=1

zn−1

(n − 1)!
= ez

after shifting the summation index by 1.
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(ii) Let ζ be fixed. Define the function

g(z) := e−z eζ+z

with the derivative
g′(z) = −g(z) + g(z) = 0.

Thus g is constant. This leads to g(0) = g(z) = eζ for z = 0 and consequently

eζ = e−z eζ+z.

Substituting ζ = 0 the equality ez e−z = 1 follows. This gives the functional equation.

(iii) For x ≥ 0 the power series consists of non-negative terms and at least one positive
term, so that ex > 0. The functional equation yields now e−x > 0. If we had ez0 = 0 for
a z0 ∈ C we would obtain

1 = e0 = e−z0 ez0 = 0.

The equality ez = ez is easily obtained by remarking that the coefficients are real. The
proof of the remaining equalities is left as Exercise 11.33.

(iv) Considering
(

n
k

)
= 0 for k > n we have

ez −
(
1 +

z

n

)n

=
∞∑

k=0

(
1

k!
−
(n

k

) 1

nk

)
zk.

The coefficients

1

k!
−
(n

k

) 1

nk
=

1

k!

(
1 − n

n
· n − 1

n
· · · · · n − k + 1

n

)
> 0

are positive, leading to∣∣∣ez −
(
1 +

z

n

)n∣∣∣ ≤ ∞∑
k=0

(
1

k!
−
(

n
k

)
1

nk

)
|z|k = e|z| −

(
1 +

|z|
n

)n

.

The term on the right-hand side converges to zero for n → ∞ in agreement with the real
case. �

11.1.2 Trigonometric functions

With the help of the exponential function the so-called trigonometric functions
can be defined quite easily, but the analogy with the functions of an angle and of
the unit circle known from the real case cannot be seen so easily.

Definition 11.3. The cosine and sine functions are defined by

cos z :=
1
2
(eiz + e−iz), sin z :=

1
2i

(eiz − e−iz),

and belong to the previously mentioned trigonometric functions.



220 Chapter IV. Series expansions and local behavior

Remark 11.4. The term “circle functions” (functions of an angle) usual in the
real case can lead to misunderstandings when using a complex argument, since
formulae like sin ix = − sinh x and cos ix = cosh x hold, so that the hyperbolic
functions would be a subset of the functions of an angle.

The usual properties certainly continue to hold:

Theorem 11.5. (i) For real z = x we have

cos x = Re eix, sin x = Im eix

and thus

eix = cos x + i sin x (Euler′s formula),

as well as cos 0 = 1, sin 0 = 0. Consequently every complex number can be
represented in the exponential form z = reiϕ. Recall that |eix| = 1 for all real
x (Theorem 11.2 (iii)).

(ii) For all z ∈ C we have the power series representations

cos z =
∞∑

n=0

(−1)n z2n

(2n)!
, sin z =

∞∑
n=0

(−1)n z2n+1

(2n + 1)!
.

Furthermore cosine is an even function, sine is an odd function, so that

cos(−z) = cos z, sin(−z) = − sin z.

(iii) The following sum and difference formulas hold: for all z, z1, z2 ∈ C we have

cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2,

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2,

cos2 z + sin2 z = 1.

(iv) Cosine and sine are holomorphic functions in C satisfying

d

dz
cos z = − sin z,

d

dz
sin z = cos z.

(v) According to real analysis the smallest positive real zero of cos x is π/2. Then
for all z ∈ C:

cos(z + 2π) = cos z, sin(z + 2π) = sin z, ez+2πi = ez.

It can be shown that the previous properties are sufficient to define sine and cosine
uniquely. According to the theorem the functions known from the real case coincide
with the complex ones.
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Proof. (i) Using part (iii) of the preceding theorem for real x we get

eix = eix = e−ix

showing part (i). The values of cos 0 and sin 0 follow from e0 = 1.
(ii) From i2n = (−1)n and i2n+1 = i(−1)n we obtain

eiz =

∞∑
k=0

(−1)k z2k

(2k)!
+ i

∞∑
k=0

(−1)k z2k+1

(2k + 1)!
.

(iii) The proof is left as an exercise for the interested reader (see Exercise 11.3.1).
(iv) The chain rule yields

d

dz
cos z =

1

2

d

dz
(eiz + e−iz) =

1

2
(ieiz − ie−iz) = − sin z.

The statement for sin z can be calculated in a similar fashion.
(v) We want to show the existence of a smallest positive zero of the cosine in a short
way: It is clear that cos 0 = 1. We use the power series to estimate cos 2:

cos 2 = 1 −
(

2 − 2

3

)
− · · · −

(
22k

(2k)!
− 22k+2

(2k + 2)!

)
− · · · .

Notice that the terms in brackets are positive. Indeed for k > 2 one gets

22k

(2k)!
− 22k+2

(2k + 2)!
=

22k

(2k)!

(
1 − 22

(2k + 1)(2k + 2)

)
> 0.

Consequently cos 2 < −1/3. According to the mean value theorem of real analysis cosine
must have a zero between 0 and 2. The smallest is called π/2. Such a smallest zero must
exist for continuity reasons. The sum and difference formulas yield | sin(π/2)| = 1 and
thus cos π = −1, sin π = 0, and finally we have cos(2π) = 1, sin(2π) = 0. This leads to

cos(z + 2π) = cos z cos(2π) − sin z sin(2π) = cos z,

sin(z + 2π) = sin z cos(2π) + cos z sin(2π) = sin z,

ez+2πi = exei(y+2π) = ex (cos(y + 2π) + i sin(y + 2π)) = ez. �

11.1.3 Hyperbolic functions

As already mentioned the hyperbolic functions coincide with the trigonometric
functions after a rotation by π/2.

Definition 11.6. The functions hyperbolic cosine and hyperbolic sine are defined by

cosh z :=
1
2
(ez + e−z), sinh z :=

1
2
(ez − e−z)

for all z ∈ C.

In order to complete this section the usual properties are listed:
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Theorem 11.7. (i) For real z = x the hyperbolic functions take real values, with
cosh 0 = 1 and sinh 0 = 0.

(ii) For all z ∈ C the hyperbolic functions admit the power series expansions

cosh z =
∞∑

n=0

z2n

(2n)!
, sinh z =

∞∑
n=0

z2n+1

(2n + 1)!
,

cosh z is an even function while sinh z is odd.

(iii) The sum and difference formulas hold: For all z, z1, z2 ∈ C we have

cosh(z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2,

sinh(z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2,

cosh2 z − sinh2 z = 1.

(iv) The hyperbolic cosine and the hyperbolic sine are holomorphic in C satisfying

d

dz
cosh z = sinh z,

d

dz
sinh z = cosh z.

(v) The hyperbolic cosine and the hyperbolic sine are periodic with the period 2πi.
We have the relations

cosh z = cos iz, sinh z = −i sin iz,

cos z = cosh iz, sin z = −i sinh iz,

cos z = cos x cosh y − i sin x sinh y,

sin z = sin x cosh y + i cos x sinh y,

with x = Re z, y = Im z.

(vi) The only zeros of cos z are the real numbers zn = π
2 + nπ, n ∈ Z; sin z

becomes zero only at the points zm = mπ, m ∈ Z. Finally cosh z has the
zeros izn and sinh z vanishes at izm.

The hyperbolic cosine is also known as catenary, since the shape of a flexible
chain is similar to the graph of the function. This can be obtained by solving
second-order ordinary differential equations.

Proof. (i) and (ii) follow immediately from the definition and the power series represen-
tation of ez.

(iii) and (iv): The sum and difference formulas can be computed similarly to the corre-
sponding ones of sine and cosine. The derivatives are a direct consequence of the prop-
erties of the exponential function.

(v) The proof is left as Exercise 11.3.2.
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(vi) part (v) yields

| cos z|2 = cos2 x cosh2 y + sin2 x sinh2 y = cos2 x + sinh2 y.

This equals zero if and only if cos x = 0, leading to the zn, and sinh y = 0, occurring only
if y = 0 according to the definition of hyperbolic sine. The case sine follows using similar
considerations. The zeros of the hyperbolic cosine and hyperbolic sine are obtained by
rotating by π/2. �

Finally we want to mention that the well-known functions tangent and cotangent as
well as the hyperbolic tangent and the hyperbolic cotangent are defined as quotients
of sine and cosine, resp. hyperbolic sine and hyperbolic cosine.

11.1.4 Logarithm

Constructing complex inverse functions for the trigonometric functions proves to
be a lot more difficult than in the real case. We already encountered this problem
when dealing with the integer powers and their inverses in Section 6.1. Now we
want to consider the inverse of the exponential function. The formula w = ez =
exeiy yields |w| = ex and arg w = y, so that

x = ln |w|, y = arg w

is the inverse. The problem is that the argument is not uniquely defined, in contrast
to the (natural) logarithm of the real line. At first we can state:

Definition 11.8. The principal value of the logarithm is defined by

log z := ln |z| + i arg z, − π < arg z ≤ π.

This definition is not satisfying, because the limitation of the argument was chosen
arbitrarily. A different limitation would be possible, too. We shall construct an
example of a Riemann surface in analogy to Section 6.1.
Obviously the principal value of the logarithm maps the plane denoted by E0 to
the strip

|Im w| < π.

Taking into account that the exponential function is periodic we will map onto
the parallel strips of the w-plane by considering the z-planes

En : log z = ln |z| + i arg z, − π + 2nπ < arg z < π + 2nπ, n ∈ Z.

The plane En will be mapped onto the strip

−π + 2nπ < Im w < π + 2nπ.

All the planes En are cut along the negative real line and connected along the
transition of one n to the following or preceding one: the upper edge of E0 is glued



224 Chapter IV. Series expansions and local behavior

together with the lower edge of E1 and so on, so that the argument is continuous.
E1 is located above E0, so that we obtain a helix surface that extends to infinity
in both directions.

The logarithm defined on the Riemann surface — called Flog — is the reasonable
inverse of the exponential function:

Definition 11.9. The logarithm is defined on Flog by

log z := ln |z| + i arg z, − π + 2nπ < arg z ≤ π + 2nπ, z ∈ En,

in a unique way. One is usually unaccustomed to dealing with such domains or
Riemann surfaces, but it serves as an appropriate way to deal with the ambiguous
argument. There follows:

Proposition 11.10. On Flog the logarithm is a holomorphic function satisfying

d

dz
log z =

1
z
.

The proof is straightforward — differentiating the inverse function, dez/dz = ez,
yields:

d

dz
log z =

1
elog z

=
1
z
.

The dealing with the surface Flog is still incomplete as in Section 6.1. Since ev-
ery point on Flog possesses an ordinary ε-neighborhood on one of the planes —
even on the connected edges by combining two semi-circles — the definition for
a holomorphic function can be used and the given function can be differentiated.
Only the origin common to all the planes has to be left out, such a point is called
a logarithmic singularity of a Riemann surface.

Finally we will use the logarithm to define the generalized powers:

Definition 11.11. For z, a ∈ C the power is defined by

za := exp(a log z).

This is only defined in a unique way on the Riemann surface of the logarithm; in C
one value of the logarithm has to be decided, usually the principal value. Only the
integer powers result in a uniquely defined function in C, because the exponential
function is periodic. For rational values of a things are not so complicated. Con-
sider, e.g., z1/2, after encircling twice the origin the same values are found again,
so that this function can be called “double-valued”.
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11.2 Elementary functions in C�(n)

11.2.1 Polar decomposition of the Cauchy–Riemann operator

Defining suitable elementary functions in the paravector space of Rn+1 proves to
be more difficult than in C. Some aspects coinciding in C need to be distinguished
and taken special care of. In this section we will introduce methods allowing us to
define suitable functions.
Therefore it is important to have an appropriate decomposition of the Cauchy–
Riemann operator. It should consist of one component along the radial direc-
tion and another component representing the tangential derivatives on the n-
dimensional sphere.

Definition 11.12. The usual notation is given by

L =
n∑

i=0

eiLi(x), Li(x) = |x|∂i − xi∂ω ,

∂ω =
n∑

i=0

ωi∂i = ω · ∇, ω =
n∑

i=0

ωiei =
x

|x| , ωi =
xi

|x| .

L and ∂ω are the operators which allow an appropriate radial decomposition of
∂. In order to create a better understanding for the representation, study of the
effects of the operators L and ∂ω proves to be useful.

Proposition 11.13. We have:

(i) ∂ = 1
|x|L + ω∂ω resp. L = |x|∂ − x∂ω,

(ii) ∂i|x| = xi

|x| = ωi,

(iii) ∂ωx = ω,

(iv) |x|∂jωk = δjk − ωkωj,

(v) ω · L =
∑n

i=0 ωiLi = 0.

(i) is the appropriate decomposition, (ii) serves as an auxiliary formula, (iii)–(v)
point out the effects of the newly defined operators.

Proof. Showing the parts (i), (ii) and (iii) are left as an exercise (see Exercise 11.3.8).
The quotient rule yields part (iv), and we have

∂jωk = ∂j
xk

|x| =
δjk

|x| −
xjxk

|x|3 =
δjk − ωjωk

|x| .

Part (v) can be obtained by using
∑n

i=0 ω2
i = 1 as follows:

n∑
i=0

ωiLi =
n∑

i=0

ωi(|x|∂i − xi∂ω) =
n∑

i=0

xi∂i −
n∑

i=0

ω2
i

n∑
j=0

xj∂j = 0. �
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The next proposition will cover the effects of our operators on functions depending
only on r = |x|, such functions are called radially symmetric.

Proposition 11.14. Suppose the function f ∈ C1(R+) depends only on |x| and
maps to C�(n). Then

(i) Lf = 0 and (ii) ∂ωf =
d

d|x|f = f ′.

We can see clearly that L respects the tangential direction to the sphere, whereas
∂ω represents the derivative with respect to the radial direction.

Proof. (i) Let j ∈ {0, 1, . . . , n} be fixed. We have

Ljf(|x|) = |x|∂jf(|x|) − xj∂ωf(|x|) = |x|f ′(|x|)∂j |x| − xj

n∑
i=0

ωi∂if(|x|)

= f ′(|x|)
(

xj − xj

n∑
i=0

ω2
i

)
= 0.

(ii) We deduce

∂ωf(|x|) =

n∑
i=0

ωi∂if(|x|) =

n∑
i=0

ωif
′(|x|)ωi = f ′(|x|). �

Proposition 11.15. Suppose that ϕ is a real-valued function defined on the n-
dimensional unit sphere. Then it satisfies the relations:

(i) Lϕ = gradωϕ − ω(ω · gradωϕ) and (ii) ∂ωϕ = 0.

gradωϕ :=
∑n

i=0 ei∂ωiϕ denotes the gradient with respect to the variable ω.

This is the counterpart of the preceding proposition; the function ϕ does not
depend on |x|, so that ∂ωϕ equals zero and L takes effect.

Proof. Using the chain rule and 11.13 (iv) we obtain

|x|∂iϕ(ω) = |x|
n∑

j=1

∂iωj∂ωjϕ(ω) = |x|
n∑

j=1

δij − ωiωj

|x| ∂ωjϕ(ω)

= ∂ωiϕ(ω) − ωi(ω · gradωϕ)

and

∂ωϕ(ω) =
n∑

j=1

ωj∂jϕ(ω) =
n∑

j,k=0

ωj
δjk − ωjωk

|x| ∂ωkϕ(ω)

=
1

|x|

n∑
k=0

(ωk − ωk)∂ωkϕ(ω) = 0.

This proves part (ii). Thus the second term of L vanishes, so we have then

Lϕ(ω) =

n∑
i=0

[ei∂ωiϕ(ω) − eiωi(ω · gradωϕ(ω))]. �
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Definition 11.16. The operators E := |x|∂ω and Γ := ωL are called the Euler
operator and the Dirac operator on the sphere Sn. The second one is defined as:

Γϕ(ω) := ω [gradωϕ(ω) − ω(ω · gradωϕ(ω)] .

Let us now consider some properties of these operators:

Corollary 11.17. (i) Suppose that ϕ(ω) = ω ·v, where ω is an element of the unit
sphere Sn in the paravector space, and v belongs to Rn+1. Then it satisfies
the often-used property of the spherical Dirac operator:

Γ(ω · v) = ω0v + ωv0 − 2ω0ω(ω · v) + ω ∧ v.

The restriction to Rn (v0 = w0 = 0) yields

Γ(ωωω · v) = ωωω ∧ v.

For the wedge product ∧ see Definition A.1.5 (iv) in Appendix 1.

(ii) The spherical Dirac operator is of the form

Γ = ω0L + ωL0 +
∑

1≤j<k

ejek(xj∂k − xk∂j).

When restricting to Rn the formula reduces to the sum.

(iii) The following anti-commutator-property holds:

(ωL + Lω)f = (2 − n − 2ω0ω) f.

In the special case of f(x) = ω we have: (ωL)ω = (1 − n)ω.

Proof. Before the actual proof we want to recall some useful formulas when dealing with
paravectors a = a0 + a, b = b0 + b. For vectors we have

ab = −a · b + a ∧ b.

This calculation gets a little more complicated when dealing with paravectors:

ab = a0b0 + a0b + b0a + ab

= a0b + b0a − a · b + a ∧ b

= a0b + b0a − a · b +
∑

1≤i<j

eiej(aibj − ajbi).

This yields
ab + ba = 2(a0b + b0a − a · b).

Now we will use this for our proof:
Define a := ω and b := gradωϕ − ω(ω · gradωϕ).
(i) Using Definition 11.16 we get

Γϕ(ω) = ωLϕ(ω) = ω [gradωϕ(ω) − ω(ω · gradωϕ(ω)] .
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This leads to

Γϕ(ω) = ω0gradωϕ(ω) + ω∂ω0ϕ(ω)

+ω ∧ gradωϕ(ω) − (1 + ω2)(ω · gradωϕ(ω)).

Using 1 + ω2 = 2ω0ω and ϕ(ω) = ω · v it follows that gradω(ω · v) = v and consequently

Γ(ω · v) = ω0v + ωv0 + ω ∧ v − 2ω0ω(ω · v).

In Rn (ω0 = v0 = 0) the special case holds:

Γ(ωωω · v) = ωωω ∧ v.

(ii) Using the paravector formulas we obtain

Γ = ωL = ω0L + ωL0 − ω · L +
∑

1≤i<j

eiej(ωiLj − ωjLi).

The equality
ωiLj − ωjLi = xi∂j − xj∂i

is easily proven, since ω · L = 0 has been proven earlier. In Rn only the sum remains.
(iii) We have

(Liωj) = (|x|∂i − xi∂ω)ωj = |x|∂iωj − xi

n∑
k=0

ωk∂kωj .

According to Proposition 11.13 (iv) we get ∂iωj = (δij − ωiωj)/|x|, leading to

(Liωj) = δij − ωiωj − xi

|x|

n∑
k=0

ωk(δkj − ωkωj)

= δij − ωiωj − ωi

n∑
k=0

ωkδkj + ωi

n∑
k=0

ω2
kωj

= δij − ωiωj .

Consequently,

L(ωf) =
n∑

i,j=0

eiejLi(ωjf) =
n∑

i,j=0

eiej(Liωj)f +
n∑

i,j=0

eiejωj(Lif)

=
n∑

i,j=0

eiej(Liωj)f −
n∑

i,j=0

ejeiωj(Lif) =
n∑

i,j=0

eiej(Liωj)f − (ωL)f.

Finally we have

(Lω + ωL)f =

n∑
i,j=0

eiej (δij − ωiωj) f

= (1 − n)f − ω2f = (2 − n − 2ω0ω)f. �
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11.2.2 Elementary radial functions

We will start with defining an exponential function:

Definition 11.18. For paravectors x = x0 + x ∈ C�(n) we define

ex :=
∞∑

k=0

xk

k!
.

This series converges absolutely for all x in analogy to the complex case, since
according to Section 3.2 we have |xn| ≤ |x|n for a paravector x. Because

exp(|x|)

converges, the comparison test yields that ex converges for all x. The newly defined
function is not holomorphic, which is a first disadvantage. This can be seen easily
by considering the powers of x which are not holomorphic. Nevertheless at the end
of this subsection we shall get around this difficulty.

Theorem 11.19. (i) For xy = yx we have the functional equation

ex+y = exey.

(ii) With ωωω(x) := x/|x| the exponential function admits the representation

ex = ex0(cos |x| + ωωω(x) sin |x|).

ex is paravector-valued.

Since the functions sine and cosine depend on |x|, the term elementary radial
function is justified.

Proof. (i) Unfortunately the elegant proof of the complex case, see Theorem 11.2 (ii),
does not work here. We have to consider the product (Proposition 9.9) of two power
series. The Cauchy product of the series expansions of ex and ey in case of commuting x
and y yields

∞∑
k=0

(x + y)k

k!
=

∞∑
k=0

1

k!

k∑
�=0

(
k
�

)
x�yk−�

=

∞∑
k=0

k∑
�=0

x�yk−�

�!(k − �)!
=

∞∑
�=0

x�

�!

∞∑
m=0

ym

m!
= exey.

(ii) Consequently, ex = ex0ex and ex remain to be considered. In detail,
∞∑

k=0

xk

k!
=

∞∑
�=0

x2�

(2�)!
+

∞∑
�=0

x2�+1

(2� + 1)!

=

∞∑
�=0

(−1)� |x|2�

(2�)!
+ ωωω(x)

∞∑
�=0

(−1)� |x|2�+1

(2� + 1)!
= cos |x| + ωωω(x) sin |x|.

�
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Example 11.20. Suppose that ex+y = exey. Then the equation xy = yx is not
necessarily satisfied. This can be shown via the following counterexample in H:

Suppose that x = 3πe1 and y = 4πe2. We then obtain xy = 12π2e1e2 = −12π2e2e1 =
−yx. On the one hand we have

|x + y| = 5π, |x| = 3π and |y| = 4π,

so that

ex+y = cos 5π +
3πe1 + 4πe2

5π
sin 5π = −1.

On the other hand we get

ex = cos 3π = −1 and ey = cos 4π = 1,

leading to ex+y = exey.

Corollary 11.21. (i) For all x ∈ Rn+1 we have e−xex = 1, ex �= 0.

(ii) ekx = (ex)k (k ∈ Z) (de Moivre’s formula).

(iii) eω(x)π = −1.

The proof is left as Exercise 11.3.10. Surprisingly the following statement holds:

Corollary 11.22. The usual limit representation works:

ex = lim
m→∞

(
1 +

x

m

)m

.

Proof. The proof is similar to Theorem 11.2 (iv) replacing |z| by |x|. �

With the help of the exponential function, trigonometric and hyperbolic functions
can be introduced.

Definition 11.23. Define for x ∈ Rn+1,

cosx :=
exω(x) + e−xω(x)

2
, sinx := −ω(x)

exω(x) − e−xω(x)

2
,

coshx :=
ex + e−x

2
, sinh x :=

ex − e−x

2
.

Similarly to C the functions cosine and hyperbolic cosine are even, while sine
and hyperbolic sine are odd. The hyperbolic functions satisfy the sum and differ-
ence formulas if x and y commute — the proof is similar to Theorem 11.7 (iii),
the C case. Unfortunately the sum and difference formulas for the trigonometric
functions do not hold, since ω(x + y) is not linear in x and y, respectively.
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Using the definition and Theorem 11.19 (ii) we obtain

e±x = cos |x| ± ω(x) sin |x|

and thus
cosh x = cos |x|, sinh x = ω(x) sin |x|.

Using the sum and difference formulas, we get

cosh x = cosh x0 cos |x| + sinh x0 sinhx,

sinh x = sinh x0 cos |x| + cosh x0 sinhx.

Similar formulas can be derived for the trigonometric functions by taking into
account that

xω(x) = x0ω(x) + xω(x) = −|x| + x0ω(x),

ω(x0ω(x)) =
x0ω(x)

|x0|
= (sgnx0)ω(x),

and
exω(x) = e−|x| ex0ω(x) = e−|x|(cos x0 + ω(x) sin x0).

Thus we have the representations

cos x = cos x0 cosx − sin x0 sinx,

sin x = sin x0 cosx + cos x0 sinx.

Consequently the hyperbolic and trigonometric functions are paravector-valued.
Considering ω(x) = −ω(x) one has

| cos x|2 = cos2 x0 + sinh2 |x|,
| sin x|2 = sin2 x0 + sinh2 |x|.

Hence the only zeros are already known from the complex case.
Since ex is paravector-valued, an inverse function comes to mind.

Definition 11.24. For k ∈ Z the paravector logarithm in C�(n) is defined by

log x :=
{

ln |x| + ω(x)(arccos x0
|x| + 2kπ), |x| �= 0 r |x| = 0, x0 > 0

ln |x| + e1π, |x| = 0, x0 < 0.

Actually the notation logk x would be more pleasing. For n = 1 this coincides with
the logarithm function introduced in Definition 11.8. One could also replace e1π
by ejπ, so that different definitions are plausible. At least the previously defined
function inverts the exponential function:
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Corollary 11.25. The function log x satisfies the properties:

(i) The function is the inverse of the exponential function:

elog x = x, log ex = x.

(ii) log 1 = 0, log ei = π
2 ei, i = 1, . . . , n.

(iii) If log x commutes with log y and x with y, respectively, using an appropriate
k in the definition, the well-known functional equation is satisfied:

log (xy) = log x + log y.

Proof. (i) Obviously,

elog x = eln |x|eω(x) arccos
x0
|x| eω(x)2πk

= |x|
(

cos arccos
x0

|x| + ω(x) sin arccos
x0

|x|

)
= |x|

(
x0

|x| + ω(x)
|x|
|x|

)
= x.

Exchanging the functions yields

log ex = log ex0(cos |x| + ω(x) sin |x|)

= ln ex0 + ω(x) arccos

(
ex0 cos |x|

ex0

)
= x0 +

x

|x| |x| = x.

(ii) is left as Exercise 11.3.11.
(iii) This proof is similar to the real or complex case. �

Definition 11.26. Let α be a real number. The generalized power function is defined
by the formula

xα := eα log x.

We want to conclude our considerations of elementary radial functions with an
example.

Example 11.27. Suppose that x = x and α = 1
3 . Then for the third root of a vector

we have:

x
1
3 = exp

(
1
3

(
ln |x| + ω(x) arccos

x0

|x| + ω(x)2kπ

))
= 3

√
|x|
[
cos(

1
3

arccos0 +
2
3
kπ) + ω(x) sin(

1
3

arccos 0 +
2
3
kπ)
]

= 3
√

|x|
[
cos
(π
6

+
2
3
kπ
)

+
x
|x| sin

(π
6

+
2
3
kπ
)]

(k = 0, 1, 2).



11. Elementary functions 233

It would be more pleasing if the introduced elementary functions were holomor-
phic. As already mentioned, this is not the case, so that a huge difference with C
exists. Nevertheless our functions are of the special form

f(x) = f0(x0, |x|) + ω(x)f1(x0, |x|)

with real-valued functions f0, f1. Thus it is sound to introduce radially holomorphic
functions.

Definition 11.28. Abbreviating |x| =: r,

∂rad :=
1
2
(∂0 + ω(x)∂r), ∂rad =

1
2
(∂0 − ω(x)∂r)

are called radial differential operators. The notation ∂radf =: f ′ will be justified
later.

Similarly to the introduction of holomorphic functions in C we consider the dif-
ference f(x + h) − f(x) for a differentiable function f which is given in a domain
G ⊂ Rn+1 and has the form

f(x) = f0(x0, |x|) + ω(x)f1(x0, |x|).

Suppose that h has the special form

h := h0 + ω(x)hr

where h0, hr are real. So x is really only changed in the radial direction. This leads
to

ω(x + h) =
x + ω(x)hr

|x + ω(x)hr |
=

x
|x|

|x| + hr

|x + ω(x)hr |
= ω(x)

for |hr| < |x|. This condition has to be satisfied anyway, otherwise the denominator
could become zero. In addition we have with respect to the variable |x|,

|x + h| = |x|
∣∣∣∣1 +

hr

|x|

∣∣∣∣ = |x| + hr.

Using
∂0 = ∂rad + ∂rad, ω(x)∂r = ∂rad − ∂rad,

and the ordinary differentiation rules we obtain

f(x+h)− f(x) = ∂0f0(x)h0 + ∂rf0(x)hr + ω(x)(∂0f1(x)h0 + ∂rf1(x)hr) + o(h)

= (∂radf(x))(h0 + ω(x)hr) + (∂radf(x))(h0 − ω(x)hr) + o(h).

One has to pay attention to the fact that ω(x) does neither depend on x0 nor on
r and has to be treated like a constant with respect to ∂0 or ∂r. Finally we get

f(x + h) − f(x) = (∂radf(x))h + (∂radf(x))h + o(h).

The following definition and the proposition hold in analogy to C :
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Definition 11.29. Suppose that a function f , given in a domain G ⊂ Rn+1, has
continuous first derivatives and is of the form

f(x) = f0(x0, |x|) + ω(x)f1(x0, |x|).

Then it is referred to as radially holomorphic in G if it satisfies

f(x + h) − f(x) = (∂radf(x))h + o(h)

for all x ∈ G and h = h0 + ω(x)hr → 0.
This is equivalent to the existence of the limit

lim
h→0

(f(x + h) − f(x)) h−1 = ∂radf(x) =: f ′(x).

Corollary 11.30. A function f is radially holomorphic if and only if it satisfies

∂radf = 0,

which is a Cauchy–Riemann type differential equation (CRD)

∂0f0 = ∂rf1, ∂0f1 = −∂rf0.

Proof. This proof is similar to the complex case if one considers that for h → 0 the term
h/h does not possess a limit. �

The notation ∂radf = f ′ is justified by the following statements:

Corollary 11.31. The previously defined elementary functions are radially holo-
morphic and satisfy:

(i) (ex)′ = ex,

(ii) (sin x)′ = cos x, (cos x)′ = − sin x,

(iii) (sinh x)′ = cosh x, (cosh x)′ = sinhx,

(iv) (log x)′ = 1
x ,

(v) (xα)′ = αxα−1 for α ∈ R.

The proof is left as Exercise 11.3.12 to the interested reader.

11.2.3 Fueter–Sce construction of holomorphic functions

In 1935 R. Fueter [47] developed a concept for creating holomorphic quaternion-
valued functions from complex functions which are holomorphic in the upper half-
plane. M. Sce [129] and T. Qian [121] extended Fueter’s concept to higher dimen-
sions. This is the basic idea:
Let x = x0 + x ∈ C�(n) be a paravector and ω(x) = x/|x|. Fueter’s concept
consists of associating a paravector-valued function h to every complex function
f holomorphic in the upper half-plane. In detail:
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Definition 11.32. (i) Suppose that a function f(z) = u(x, y) + iv(x, y) is holo-
morphic in the upper complex half-plane C+. The associated function is given
by

h(f)(x) := u(x0, |x|) + ω(x)v(x0, |x|).

(ii) Furthermore we introduce the Fueter transform of f ,

τn(f) := κn ∆
n−1

2 h(f).

f is called the primitive of τn(f), κn denotes a suitable constant.

For even n it is not a pointwise definition. The theory of pseudo-differential oper-
ators takes care of that matter. That is the reason for which we restrict ourselves
to odd cases of n. The normalization factor κn can be evaluated in the calculation.

Theorem 11.33 (Fueter, Sce, Qian). (i) h(f) = u+ωv is a radially holomorphic
function.

(ii) Suppose that n is odd. Then τn(f) is a right- and left-holomorphic function
in C�(n). We use the shorthand notation |x| =: r. With k := n−1

2 we have

τn(f) =
1

2kk!
∆k h(f) =

(
1
r
∂r

)k

u + ω(x)
(

∂r
1
r

)k

v.

Part (ii) yields a partial differential equation for h. This formula will be of special
use for the case n = 3.

Proof. (i) According to Corollary 11.30 a function is radially holomorphic if and only
if it satisfies the differential equations corresponding to the CRD in C. Also, a radially
holomorphic function will lead to a holomorphic function in C+.
(ii) We have that ∆ = ∂2

0 +
∑n

i=1 ∂2
i , ∂0 affects only u and v; instead of ω(x) we write

ω:
∂0h = ∂0u + ω∂0v, ∂2

0h = ∂2
0u + ω∂0v.

For i = 1, ..., n we notice that

∂iu =
xi

r
∂ru, ∂2

i u =
x2

i

r2
∂2

ru +
r2 − x2

i

r3
∂ru,

∂iω =
r2ei − xix

r3
,

n∑
i=1

xi

r
∂iω = 0,

n∑
i=1

ei∂iω =
−n + 1

r
,

∂2
i ω =

−r2x − 2r2xiei + 3x2
i x

r5
,

n∑
i=1

∂2
i ω =

−n + 1

r2
ω.

This leads to

∆h = ∂2
0(u + ωv) + ∂2

r (u + ωv) + (n − 1)

(
1

r
∂ru + ω∂r

( v

r

))
. (∗)
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In order to show the formula for ∆kh, we define u0 := u, v0 := v and for m = 1, 2, . . .

um =
2m

r
∂rum−1 = 2mm!

(
1

r
∂r

)m

u0, vm := 2m∂r
vm−1

r
= 2mm!

(
∂r

1

r

)m

v0.

Using mathematical induction we deduce for m = 0, 1, 2, . . .

∂0um = ∂rvm + 2m
vm

r
, ∂rum = −∂0vm.

For m = 0 this transforms to ∂0u0 = ∂rv0, ∂ru0 = −∂0v0, i.e., the Cauchy–Riemann
equations for radially holomorphic functions. The step from m − 1 to m is obtained as
follows:

∂0um =
2m

r
∂r

(
∂rvm−1 + 2(m − 1)

vm−1

r

)
= ∂rvm + 2m

vm

r
and

∂rum = −∂r

(
2m

r
∂0vm−1

)
= −∂0vm.

We will show the next equality using induction, too,

∆mh =
(n − 1)(n − 3) · · · (n − 2m + 1)

2m m!
(um + ωvm) =: Cm(um + ωvm).

For m = 0 the factor on the right-hand side becomes 1, so that h = u0 + ωv0, the
induction step is based on the preceding formula (∗):

∆mh = Cm−1∆(um−1 + ωvm−1)

= Cm−1

[
∂2
0(um−1 + ωvm−1) + ∂2

r (um−1 + ωvm−1)

+(n − 1)

(
1

r
∂rum−1 + ω∂r

( vm−1

r

))]
.

Since

∂2
0um−1 = ∂r∂0vm−1 +

2(m − 1)

r
∂0vm−1 = −∂2

rum−1 − 2(m − 1)

r
∂rum−1

and
∂2
0vm−1 = −∂2

rvm−1 − 2(m − 1)∂r

( vm−1

r

)
,

we have
∆mh = Cm−1

n − 2m + 1

2m
(um + ωvm) = Cm(um + ωvm).

Substitution of um, vm by u0, v0 yields

∆mh = (n − 1)(n − 3) · · · (n − 2m + 1)

((
1

r
∂r

)m

u0 + ω

(
∂r

1

r

)m

v0

)
and with m = k = n−1

2
,

∆kh = 2kk!

((
1

r
∂r

)k

u + ω

(
∂r

1

r

)k

v

)
.

Showing that ∂ τn(f) = 0 is left as Exercise 11.3.13. �
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Now we want to take a closer look at the effects of τn(f), restricting ourselves to
the case n = 3:

Example 11.34 (Exponential function). Let f(z) = ez. The associated function is

h(exp)(x) = ex0(cos r + ω(x) sin r).

This is exactly the radially holomorphic function ex introduced in the preceding
subsection, see Definition 11.18 and Theorem 11.19. The Fueter transform follows
by using the previous lemma and a suitable norm factor:

EXP3(x) := −1
2
τ3(exp)(x) = ex0

(
sin r

r
− ω(x)

(
sin r

r

)
r

)
.

Denoting

sinc r :=
sin r

r

this can be expressed as

EXP3(x) = ex0(sinc r − ω(x)(sinc r)′).

This newly-defined exponential function has a different form than the other gener-
alizations of ex we consider. We gain a holomorphic function, but lose some other
properties. At least we have:

(i) EXP3(x) �= 0 for all x.

(ii) lim
r→0

EXP3(x) = ex0 .

(iii) For real λ the operator ∂ gives

∂ EXP3(λx) = 2λEXP3(λx).

The factor 2 in part (iii) is based on using ∂, which is equal to 2∂z in the C case.

Proof. (i) We have

|EXP3(x)|2 = e2x0

(
sin2 r

r2
+

(r cos r + sin r)2

r4

)
.

This can only become zero if sin r = 0, but then we get cos r �= 0 in the inner bracket,
so that EXP3(x) �= 0 for all x.
(ii) It is well known that

sin r

r
= 1 − r2

3!
+ · · · ,

yielding
sin r

r
→ 1,

(
sin r

r

)′
→ 0
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for r → 0.
(iii) Firstly we conclude that

EXP3(λx) = eλx0

(
sin λr

λr
− ω(x)

(
λr cos λr − sin λr

λ2r2

))
,

because the sign of λ vanishes despite the fact that |λr| = |λ|r in some cases. But then
we have

∂0EXP3(λx) = λ EXP3(λx),

and since EXP3(λx) is holomorphic, using ∂ = ∂0 + D, we get

D EXP3(λx) = −∂0EXP3(λx) = −λ EXP3(λx),

and because of ∂ = ∂0 − D we deduce

∂ EXP3(λx) = 2λ EXP3(λx). �

This helps in solving the so-called ∂-problem:

Proposition 11.35. Suppose that Ln = an∂n + · · ·+a1∂ +a0 is a partial differential
operator with ak ∈ R. If λk is a real root of the algebraic equation

anλn + · · · + a1λ + a0 = 0 ,

the function

uk = EXP3

(
λk

2
x

)
represents a solution of the differential equation Lnu = 0. We can obtain a system
of linearly independent solutions with different λk.

The proof follows from part (iii) above.

Example 11.36 (Trigonometric functions). This example will cover the trigono-
metric functions. The hyperbolic functions are dealt with in the exercises. We
shall start with the complex functions

cos z = cos x cosh y − i sin x sinh y,

sin z = sin x cosh y + i cos x sinh y.

The associated functions are given by

h(cos)(x) = cos x0 cosh r − ω(x) sin x0 sinh r,

h(sin)(x) = sin x0 cosh r + ω(x) cos x0 sinh r,

which are, according to Definition 11.23, the radially holomorphic forms of cosine
and sine. Theorem 11.33 (ii) yields

COS3(x) := −1
2
τ3(cos)(x) = −1

r
cos x0 sinh r + ω sin x0

(
sinh r

r

)
r

,

SIN3(x) := −1
2
τ3(sin)(x) = −1

r
sin x0 sinh r − ω cos x0

(
sinh r

r

)
r

.
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The functions look a little strange, but they are holomorphic. Unfortunately we
have to pay for that and lose well-known properties, i.e.,

COS2
3(x) + SIN2

3(x) =
1
r2

sinh2 r −
(

1
r

cosh r − 1
r2

sinh r

)2

= − 1
r2

+
2
r3

cosh r sinh r − 1
r4

sinh2 r.

This is not very close to the expected result 1. The connection to the exponential
function is lost, too. The differentiation properties however hold:

∂0COS3(x) = −SIN3(x), ∂0SIN3(x) = COS3(x).

Because the functions are holomorphic, we get (∂0 +D)f = 0 or ∂ = ∂0−D = 2∂0,
and finally

∂ COS3(x) = −2SIN3(x), ∂ SIN3(x) = 2COS3(x).

The factor 2 comes from using ∂, since ∂z = 1
2∂ in the complex case.

The list of examples could be extended arbitrarily. Tao Qian [121] generalizes
Fueters calculations for quaternions by processing the Fueter transform of zk. F.
Sommen [139] computed the Fueter transform of the geometric series

1
1 − z

= 1 + z + z2 + · · · ,

using the Fueter transform of zk calculated by Qian.

11.2.4 Cauchy–Kovalevsky extension

In this subsection we will deal with a completely different principle for creating
holomorphic functions. Real analytic functions defined in a domain G ⊂ Rn will
be extended to holomorphic functions in Rn+1. This is also known as the Cauchy
problem. Concerning this matter the Russian mathematician Sofya Kovalevsky
made important contributions at the end of the 19th century.

Sofya Kovalevskaya or Sofya Kovalevsky (1850–1891) could study in Ger-
many only after marrying, since studying was impossible for a female in Russia
at that time. After attending lectures in Heidelberg she became one of the most
well-known students of Weierstraß. In 1874 she graduated with a doctoral degree
in Göttingen dealing with the theory of partial differential equations. Ten years
later she became the first woman to be offered a professorship at the university
of Stockholm. She gained a high reputation due to her award-winning works.
She died of pneumonia at a very young age.
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Definition 11.37. Let G ⊂ Rn be a domain. In addition to G we define the domain
G∗ ⊂ Rn+1 as follows: G∗ consists of all points of the form

x + te0, (t ∈ R, x ∈ G ⊂ Rn).

Given a real analytic function f(x) in G ⊂ Rn we are looking for a holomorphic
function f∗(x0,x) in G∗∗ ⊂ G∗ with G ⊂ G∗∗ satisfying

∂f∗(x0,x) = 0 in G∗∗,
f∗(0,x) = f(x), (initial condition).

This is called the Cauchy–Kovalevsky extension (CK extension) of the real function
f in the domain G∗∗ and is denoted by CK(f).

The idea for solving this problem is based on the relation following from
∂CK(f) = 0,

∂0CK(f) = −D CK(f).

Formally the equation
∂0e

−x0D = −e−x0DD

holds, so that we obtain:

Theorem 11.38. CK(f)(x0,x) := e−x0Df(x) =
∞∑

m=0

(−x0)m

m!
Dmf(x) represents

the solution of the Cauchy–Kovalevsky problem in an appropriate domain G∗∗ ⊂
G∗ with G ⊂ G∗∗.

Proof. Since for a real analytic function all partial derivatives exist, all the Dmf(x)
are defined properly. Assuming the convergence of the above series, after shifting the
summation index we obtain

∂0CK(f)(x0,x) = −
∞∑

m=0

(−x0)
m

m!
Dm+1f(x) = −D CK(f)(x0,x),

thus the series is holomorphic. The initial condition is satisfied — for x0 = 0 only the
m = 0 term remains, yielding CK(f)(0, x) = f(x).
In order to have convergence it is important that real analytic functions possess absolutely
converging Taylor series representations at every point x. Denoting ∇ = (∂1, . . . , ∂n) and
k = (k1, . . . , kn) the expression

f(x + h) =
∞∑

m=0

∑
|k|=m

hk

k!
∇kf(x)

converges absolutely for |h| small enough. Assuming h = (h, . . . , h) with real h we have
hk = hm and

|h|m
∑

|k|=m

1

k!

∣∣∣∇kf(x)
∣∣∣ =: cm,
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with a converging series
∑

cm. We want to consider

Dmf(x) =
n∑

i1,...,im=1

ei1 . . . eim∂i1 . . . ∂imf(x) = m!
∑

|k|=m

1

k!
ek∇kf(x),

where ek = ek1 · · · ekm . This leads to the estimate

|Dmf(x)| ≤ m!

|h|m cm.

Thus we obtain ∣∣∣∣∣
∞∑

m=0

(−x0)
m

m!
Dmf(x)

∣∣∣∣∣ ≤
∞∑

m=0

|x0|m
|h|m cm.

For |x0| ≤ |h| our series converges, determining the domain of existence of our solution,
G∗∗ ⊂ G∗. �

Example 11.39 (Fueter polynomials). Let Pεi
(x) =: xi (i = 1, . . . , n) denote the

special polynomials of a multiindex εi with a 1 in the ith place and zeros elsewhere.
Taking into account D Pεi = ei, we have

CK(xi) = zi = xi − x0ei.

Here the variables zi introduced by Fueter appear again.
Suppose that Pk(x) is a homogeneous polynomial of degree k with k = |k|, ak ∈
Rn+1 and k = (k1, . . . , kn),

Pk(x) =
∑

k=|k|
xkak.

The Cauchy–Kowalewski extension is of the form

CK(Pk)(x0,x) =
k∑

m=0

(−x0)m

m!
DmPk(x).

The function CK(Pk) is constructed to be holomorphic, and it is homogeneous
of degree k, because every D decreases the degree of the polynomial by 1. The
polynomial DmPk is of degree k − m, which is balanced out by xm

0 . Additionally
we have Dk+1Pk = 0. The initial conditions yield

CK(Pk)(0,x) = Pk(x).

In the special case of the polynomials xk we obtain

CK(xk) = k!Pk,

where Pk are the Fueter polynomials introduced in Section 6.1. The proof is left
as Exercise 11.3.15.
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Example 11.40 (Hermite polynomials). Let ρ0(x) = e−|x|2/2 (x ∈ Rn) denote the
Gaussian distribution function. Because of |x|2 = −x2 we have ρ0(x) = ex2/2.
Clearly the function ρ0 is real analytic. The CK extension can be written in the
following form:

CK(ρ0)(x) =
∞∑

m=0

(−x0)m

m!
Dm(ex2/2) = ex2/2

∞∑
m=0

xm
0

m!
Hm(x),

with
Hm(x) := (−1)me−x2/2Dm(ex2/2).

These functions are called radial Hermite polynomials after the French mathemati-
cian Charles Hermite (1822–1901). Using a different approach our definition
would give the so-called Rodrigues formula. The given functions are indeed poly-
nomials, as

H0(x) = 1

and the recursion formula

Hm+1(x) = (x − D)Hm(x)

show. The last formula is proved as follows:

Hm+1(x) = (−1)m+1e−x2/2Dm+1(ex2/2)

= −DHm(x) − (−1)m+1
(
De−x2/2

)
Dm(ex2/2),

since

De−x2/2 = e−x2/2
n∑

i=1

ei(−xi) = −xe−x2/2.

Radial Hermite polynomials are used for constructing higher-dimensional wavelet
transforms (see [15]).

We shall now consider the CK extension of the function

T (x) := |x|kex2/2Pk(ω(x)) (ω ∈ Sn−1,x ∈ Rn).

Suppose that Pk(ω) is a (inner) spherical polynomial according to Definition 10.5,
a linear combination of Fueter polynomials Pk(ω) with ω(x) = x/|x|. Thus the
degree of homogeneity is k = |k|. We write the CK extension as in the preceding
case in the form

CK(T )(x) =
∞∑

m=0

(−x0)m

m!
Dm(T (x)) = ex2/2

∞∑
m=0

xm
0

m!
Hmk(x)Pk(x)

with
Hmk(x)Pk(x) = (−1)me−x2/2Dm

(
ex2/2Pk(x)

)
.
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Again the last formula is referred to as Rodrigues’ formula. The functions Hmk(x)
are called generalized radial Hermite polynomials. Additional information can be
found in [139].

Example 11.41 (Plane waves). A complex-valued real analytic function h depend-
ing only on the scalar product x · y with (x,y ∈ Rn) is called a plane wave. This
definition was introduced by F. John in 1955 [67]. Suppose that y is fixed and h is
a given plane wave. The corresponding CK extension in a suitable (open) domain
in Rn+1 reads as follows:

CK(h)(x) =: H(x0,x,y) =
∞∑

m=0

(−x0)m

m!
Dmh(x · y).

Since h is complex, actually the CK extension would have to be written for each
of the two components of h. We have

Dh(x · y) =
n∑

i=1

eih
′(x · y)∂i(x · y) = h′(x · y)y

with the derivative h′ of h with respect to its variable. Consequently we get the
representation

H(x,y) =
∞∑

m=0

(−1)m

m!
h(m)(x · y)(x0y)m,

which can be decomposed as follows in view of y2 = −|y|2:

H(x,y) =
∞∑

k=0

(−1)k

(2k)!
(x0|y|)2kh(2k)(x · y)

− y
|y|

∞∑
k=0

(−1)k

(2k + 1)!
(x0|y|)2k+1h(2k+1)(x · y)

= H1(x · y, x0|y|) − y
|y|H2(x · y, x0|y|).

H1 and H2 are real analytic with respect to the new real variables x · y and
x0|y|. Extending the variables to complex ones will lead to a function (complex)
holomorphic with respect to each variable. Holomorphic functions obtained in this
way are called holomorphic plane waves.

We will conclude with an interesting special case ([32]). Because of h(k) = ikh the
CK extension ECK(x0,x,y) of the complex exponential function

h(x · y) = ei(x·y)
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is defined as

ECK(x0,x,y) = ei(x·y)

( ∞∑
k=0

(x0|y|)2k

(2k)!
− i

y
|y|

∞∑
k=0

(x0|y|)(2k+1)

(2k + 1)!

)

= ei(x·y)

(
cosh(x0|y|) − i

y
|y| sinh(x0|y|)

)
.

This is a third possible version of an exponential function in C�(n). According
to the construction this function is holomorphic with respect to the variable x =
x0 + x.

11.2.5 Separation of variables

All holomorphic exponential functions in C�(n) yet covered were based on ex-
tending a given function in C or Rn to Rn+1. Considering Theorem 11.2 and the
possibility of defining holomorphic functions as solutions of a system of differential
equations leads to the idea of taking the properties

dez

dz
= ez, e0 = 1

as the starting point for the generalization. Taking into account the complex case
1
2∂ can be considered as the derivative of a holomorphic function f : Rn+1 →
C�(n).
We shall restrict ourselves to the case n = 3, f : H → H, f = f0e0 + f1e1 +
f2e2 + f3e3. We shall start by studying the role of x0; let D =

∑3
i=1 ei∂i denote

the Dirac operator as in Theorem 5.12.

Definition 11.42. A function f : R4 → H satisfying the properties:

1. ∂ f = 0,

2. 1
2∂ f = f ,

3. f(0) = 1,

4. f(x0,0) = ex0 for x0 ∈ R,

5. f(x) �= 0 for all x ∈ H,

6. |f(x0, x1, 0, 0)| = |f(x0, 0, x2, 0)| = |f(x0, 0, 0, x3)| = ex0 for xi ∈ R

and being periodic with respect to the variables x1, x2, x3 is called an exponential
function on H. The last property is required to define a Fourier transform later
on.

Theorem 11.43. Assume that a function u(x) : R3 → H satisfies the differential
equation

Du(x) = −u(x).
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Then
f(x) = f(x0,x) = ex0u(x)

satisfies the differential equations

∂ f(x) = 0,
1
2
∂ f(x) = f(x).

Proof. With ∂/∂x0 = ∂0 we get ∂0 + D = ∂, ∂0 − D = ∂ and

1

2
(∂0 ± D) f(x) =

1

2
∂0 ex0u(x) ∓ 1

2
(−D)ex0u(x) =

1

2
f(x) ∓ 1

2
f(x). �

Every holomorphic solution of 1
2∂ f = f must be of the form f = ex0u(x) with

the stated properties of u. This is left as Exercise 11.3.16.
Thus our task is reduced to solving the differential equation

Du(x) = −u(x).

The action of D in R3 leads to

−∆ u = −Du = u.

The Laplacian ∆ in R3 acts as a scalar operator and we have

∆ ui = −ui, i = 0, 1, 2, 3.

We suppose ui to be of the form

ui(x) = ri(x1)si(x2)ti(x3).

The action of ∆ gives

∆ ui(x) = r′′i (x1)si(x2)ti(x3) + ri(x1)s′′i (x2)ti(x3) + ri(x1)si(x2)t′′i (x3)
= −ri(x1)si(x2)ti(x3) = −ui(x).

This yields
r′′i (x1)
ri(x1)

+
s′′i (x2)
si(x2)

+
t′′i (x3)
ti(x3)

= −1.

Clearly all quotients need to be constant. Assuming symmetry with respect to
x1, x2, x3, we have

r′′i (x1)
ri(x1)

=
s′′i (x2)
si(x2)

=
t′′i (x3)
ti(x3

= −1
3
.

Using the general solutions of the ordinary differential equations for ri, si, ti,

ri (x1) = ai cos
x1√

3
+ bi sin

x1√
3
,

si (x2) = ci cos
x2√

3
+ di sin

x2√
3
,

ti (x3) = ei cos
x3√

3
+ fi sin

x3√
3
,
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and after combining some constants we get

ui(x) = Ai cos
x1√

3
cos

x2√
3

cos
x3√

3
+ Bi cos

x1√
3

cos
x2√

3
sin

x3√
3

+Ci cos
x1√

3
sin

x2√
3

cos
x3√

3
+ Di cos

x1√
3

sin
x2√

3
sin

x3√
3

+Ei sin
x1√

3
cos

x2√
3

cos
x3√

3
+ Fi sin

x1√
3

cos
x2√

3
sin

x3√
3

+Gi sin
x1√

3
sin

x2√
3

cos
x3√

3
+ Hi sin

x1√
3

sin
x2√

3
sin

x3√
3
.

Thus the function we look for has to be periodic and the period can “automatically”
be computed from the assumption. This supports the assumption of symmetry —
otherwise we would obtain different periods for different directions.

The condition f(0) = 1 means u0(0) = 1, so that A0 = 1, and u1(0) = u2(0) =
u3(0) = 0 with Ai = 0 for i = 1, 2, 3.

Since the structure of the function is clear now, we evaluate the differential equa-
tion Du = −u in each coordinate. Taking into account that the functions

g1(x) := sin
x1√

3
sin

x2√
3

sin
x3√

3
, g2(x) := sin

x1√
3

sin
x2√

3
cos

x3√
3
,

g3(x) := sin
x1√

3
cos

x2√
3

sin
x3√

3
, g4(x) := sin

x1√
3

cos
x2√

3
cos

x3√
3
,

g5(x) := cos
x1√

3
sin

x2√
3

sin
x3√

3
, g6(x) := cos

x1√
3

sin
x2√

3
cos

x3√
3
,

g7(x) := cos
x1√

3
cos

x2√
3

sin
x3√

3
, g8(x) := cos

x1√
3

cos
x2√

3
cos

x3√
3

are linearly independent, comparing coefficients yields 32 linear equations for the
remaining 28 free coefficients. We will skip the computation here and refer to
the corresponding Exercise 11.3.17. Solving the system of linear equations with
parameters Bi, Ci and Gi yields

E0 = B2 − C3, E1 =
√

3 − B3 − C2,

E2 = −B0 + C1, E3 = B1 + C0,

D0 = −
√

3C3 − G2, D1 = 1 −
√

3 C2 + G3,

D2 =
√

3C1 + G0, D3 =
√

3 C0 − G1,

F0 = −
√

3 B1 −
√

3C0 + G1, F1 =
√

3B0 −
√

3C1 − G0,

F2 = 2 −
√

3B3 −
√

3C2 + G3, F3 =
√

3B2 −
√

3C3 − G2,

H0 = −
√

3 + B3 + 2C2 −
√

3 G3, H1 = B2 − 2C3 −
√

3G2,

H2 = −B1 − 2C0 +
√

3 G1, H3 = −B0 + 2C1 +
√

3 G0.

The remaining 12 parameters Bi, Ci, Gi, i = 0, 1, 2, 3, need to be determined. We
want to use the degrees of freedom left to generalize the property |eiy | = 1 of the
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complex e-function. We require that

|u(x1, 0, 0)| = |u(0, x2, 0)| = |u(0, 0, x3)| = 1.

Using
ui(x1, 0, 0) = δ0i cos

x1√
3

+ Ei sin
x1√

3
,

with Kronecker’s symbol δ0i we have immediately

1 = |u(x1, 0, 0)|2 = cos2
x1√

3
+ (E2

0 + E2
1 + E2

2 + E2
3) sin2 x1√

3
+ 2E0 sin

x1√
3

cos
x1√

3
.

Consequently we have E0 = 0 and E2
1 + E2

2 + E2
3 = 1. The same conditions have

to hold for the Bi and the Ci, following from the equations |u(0, 0, x3)| = 1 and
|u(0, x2, 0)| = 1. Since the variables need to be weighted equally we have

B1 = B2 = B3 = C1 = C2 = C3 =
1√
3
.

Fortunately the conditions for the Ei are satisfied anyway. Consequently the co-
efficients are

B0 = C0 = E0 = 0, B1 = B2 = B3 = C1 = C2 = C3 = E1 = E2 = E3 =
1√
3
,

D0 = −1 − G2, D1 = G3, D2 = 1 + G0, D3 = −G1,
F0 = −1 + G1, F1 = −1 − G0, F2 = G3, F3 = −G2,

H0 = −
√

3G3, H1 = − 1√
3
−

√
3 G2, H2 = − 1√

3
+

√
3G1, H3 = 2√

3
+

√
3G0.

The functions gi, i = 1, . . . , 8, have to be weighted equally. Thus D0, F0, H0 must
equal ±1, the remaining Di, Fi, Hi equal ± 1√

3
. This requires

G0 = −1, G1 = G2 = 0, G3 = ± 1√
3
.

We choose the minus sign and obtain

u0 = g8 − g5 − g3 − g2 + g1,

u1 =
1√
3
(g7 + g6 + g4 − g1 − g5),

u2 =
1√
3
(g7 + g6 + g4 − g1 − g3),

u3 =
1√
3
(g7 + g6 + g4 − g1 − g2),

with the formerly introduced abbreviations for the functions gi. Recall that

g8(x) − g5(x) − g3(x) − g2(x) = cos
x1 + x2 + x3√

3
,

g7(x) + g6(x) + g4(x) − g1(x) = sin
x1 + x2 + x3√

3
,

from which finally:
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Definition 11.44. If we denote the discovered exponential function with E(x), we
have

E(x) = ex0

[(
cos

x1 + x2 + x3√
3

+ sin
x1√

3
sin

x2√
3

sin
x3√

3

)
+

1√
3

(
(e1 + e2 + e3) sin

x1 + x2 + x3√
3

− e1 cos
x1√

3
sin

x2√
3

sin
x3√

3

−e2 sin
x1√

3
cos

x2√
3

sin
x3√

3
− e3 sin

x1√
3

sin
x2√

3
cos

x3√
3

)]
.

In contrast to the other constructions of exponential functions E(x) is periodic
with respect to x1, x2, x3 with the period 2π

√
3 and has the modulus ex0 along

the imaginary line.

We want to examine the behavior of the function E :

Proposition 11.45. For all x ∈ H we have

E(x) �= 0.

Proof. Defining

s =
x1 + x2 + x3√

3
, y1 =

x1√
3
, y2 =

x2√
3
, y3 =

x3√
3

we compute |E(x)|2 by

|E(x)|2= e2x0

{
cos2 s + sin2 s +

1

3
( sin2 y1 sin2 y2 + sin2 y1 sin2 y3 + sin2 y2 sin2 y3

+6 cos s sin y1 sin y2 sin y3 − 2 sin s [ cos y1 sin y2 sin y3

+sin y1 cos y2 sin y3 + sin y1 sin y2 cos y3 ] )

}
.

Using the sum and difference formulas for the sine we obtain

|E(x)|2 =
1

3
e2x0

{
3 + sin2 y1 sin2 y2 + sin2 y2 sin2 y3 + sin2 y3sin

2y1

−2 sin(y1 + y2) sin y1 sin y2 − 2 sin(y2 + y3) sin y2 sin y3

−2 sin(y3 + y1) sin y3 sin y1

}
.

The right-hand side consists of three terms of the form

gij := 1 + sin2 yi sin2 yj − 2 sin(yi + yj) sin yi sin yj ;

estimating from above | sin(yi + yj)| by 1 we obtain

gij ≥ 1 + a2b2 − 2ab = (ab − 1)2.

This is zero only for a = b = | sin yi| = | sin yj | = 1, i.e., yi and yj = ±π/2. But then we
have yi + yj equal 0 or ±π and sin(yi + yj) = 0. Thus the modulus of E(x) can never be
zero. �
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Now we want to study some other properties of the E-function. For the proof we
refer to the exercises, since only computational skills and endurance are required.

Proposition 11.46. The function E(x) satisfies the properties stated in Definition
11.42 and:

(i) E(x) is also right-holomorphic, thus it is biholomorphic.

(ii) ∂E(xλ) = 0 for real λ. For λ ∈ H this is not valid in general.

(iii) We get E(xλ)∂ = 0 for all λ ∈ H, in addition we have

1
2
∂E(xλ) = λE(xλ)

for all λ ∈ H.

(iv) 1
2∂E(xλ) is right-holomorphic, λE(xλ) is also left-holomorphic.

The function being biholomorphic is pretty surprising. We did not demand it and
not every left-holomorphic function is biholomorphic. The behavior of E(xλ) and
E(λx) for x, λ ∈ H is also very interesting. These functions are used for a solution
Ansatz for differential equations and for the Fourier transform. Recall that the
formerly considered generalizations of the complex e-function did only allow λx
with real λ. These results are in no way self-evident — we only wanted to con-
struct a left-holomorphic exponential function. We stated that E(x) is also right-
holomorphic. This property is invariant under the transformation x �→ xλ. This
has some interesting consequences. We have that E(xλ) is not left-holomorphic,
but λE(xλ) is biholomorphic. The E-function satisfies more properties than origi-
nally intended. Looking back these properties do not appear really strange if one
considers functionals of transforms of the type∫

R4

E(xλ)f(x)dσx .

Derivatives pulled out from f to the left-hand side can only be transported in
E(xλ) from the right-hand side — due to non-commutativity. We refer our reader
to Exercise 11.3.18 dealing with the E-function.

11.3 Exercises

1. Prove Theorem 11.5 (iii): For all z, z1, z2 ∈ C the following sum and difference
formulas hold:

cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2,

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2,

cos2 z + sin2 z = 1.
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2. Prove Theorem 11.7 (v): The hyperbolic cosine and the hyperbolic sine have
the period 2πi. We have the relations

cosh z = cos iz, sinh z = −i sin iz,

cos z = cosh iz, sin z = −i sinh iz,

cos z = cos x cosh y − i sin x sinh y,

sin z = sin x cosh y + i cos x sinh y

with z = x + iy.

3. Evaluate |ez| and show that |ez| ≤ e|z|.

4. Compute | sin z|2. Use this to localize all zeroes of sin z.

5. Evaluate the first five coefficients of the power series of

tan z =
sin z

cos z
.

6. Localize the zeros and singularities (i.e., the zeros of the denominator) of

tanh z :=
sinh z

cosh z
.

7. Determine the Taylor series expansion of the principal value of the logarithm

log(1 + z) =
∞∑

n=1

(−1)n+1

n
zn.

8. Prove the relations

∂ =
1
|x|L + ω∂ω,

∂i|x| =
xi

|x| = ωi, ∂ωx = ω

in Rn+1.

9. Prove that Lωk = ek − ωωk and ∂ω(ωk) = 0.

10. Prove Corollary 11.21:

a) e−xex = 1, ex �= 0,

b) ekx = (ex)k (k ∈ Z),

c) eω(x)π = −1.
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11. Show the statements of Corollary 11.25 (ii):

log 1 = 0, log ei =
π

2
ei.

12. Prove Corollary 11.31: The elementary functions are radially holomorphic
and satisfy

a) (ex)′ = ex,

b) (sin x)′ = cos x, (cos x)′ = − sin x,

c) (sinh x)′ = cosh x, (cosh x)′ = sinhx,

d) (log x)′ = 1
x ,

e) (xα)′ = αxα−1 with α ∈ R.

13. Prove that τn(f) is holomorphic for n odd according to Theorem 11.33 (ii):

∂ τn(f) = 0.

14. Evaluate the Fueter transform of the hyperbolic functions denoted by COSH3(x)
and SINH3(x), respectively.

15. Establish the relation (see example 11.39):

CK(xk) = k!Pk(x).

16. Prove that every solution of ∂ f = 0, ∂ f = 2f has the form (see Theorem
11.43)

f(x) = ex0u(x).

17. Solve the 32 linear equations, appearing in determining the holomorphic ex-
ponential function E(x), for the coefficients Ai, Bi, Ci, Di, i = 0, 1, 2, 3, by
evaluating the derivatives of the functions g1, . . . , g8 and comparing coeffi-
cients.

18. Prove Proposition 11.46:

a) E(x) is also right-holomorphic, thus biholomorphic.

b) ∂E(xλ) = 0 for real λ. For λ ∈ H this does not hold in general.

c) Show that E(xλ)∂ = 0 for all λ ∈ H, and in addition

1
2
∂E(xλ) = λE(xλ)

for all λ ∈ H.

d) 1
2∂E(xλ) is right-holomorphic, λE(xλ) is also left-holomorphic.



252 Chapter IV. Series expansions and local behavior

12 Local structure of holomorphic functions

12.1 Behavior at zeros

12.1.1 Zeros in C

In this section we want to discuss mainly local properties of holomorphic functions.
First we use Taylor series in C. With their help we can extend to all holomorphic
functions the notion of order of a root, already known from polynomials.

Definition 12.1 (Order of a root). Let f be a function holomorphic in the domain
G ⊂ C and z0 ∈ G. Let in the neighborhood of z0 the equation

f(z) =
∞∑

n=k

an(z − z0)n

hold, where ak �= 0. For k > 0 we then say that f has a zero of order k in z0.

The coefficients are uniquely determined in view of Corollary 9.8, and so this
definition makes sense. We can read off, that the quotient f(z)/(z − z0)k has a
finite limit for a zero of order k for z → z0. This limit is the Taylor coefficient
ak = f (k)(z0)/k!. We can factorize f in a neighborhood of a zero z0 of order k as
follows:

f(z) = (z − z0)kg(z),

where g is a holomorphic function with g(z0) �= 0. From the last formula it follows
then:

Proposition 12.2. Zeros of holomorphic functions are isolated.

This proposition is indeed the same as the uniqueness Theorem 9.15 for holomor-
phic functions, because a non-isolated zero enforces the function to be identically
equal to zero.

Example 12.3. For power series we can find the order of a zero only at the point
of expansion. We see that the function

sin z =
∞∑

n=0

(−1)n z2n+1

(2n + 1)!

has a simple zero at z = 0. The other zeros are also simple, because of the peri-
odicity, but this is not evident from the power series.

There is no restriction for the zeros of a holomorphic function other than the
requirement of being isolated. To show this we want to prove Weierstraß’ product
theorem for an entire function, that is a function holomorphic in the whole
complex plane. For this we need the notion of an infinite product.
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Definition 12.4 (Infinite product). (i) We call the symbol for a sequence of com-
plex numbers (an) with 1 + an �= 0,∏

(1 + an),

an infinite product. It is called convergent, if the limit of the partial products

lim
n→∞

n∏
k=1

(1 + ak) =:
∞∏

k=1

(1 + ak)

exists and is different from 0 and ∞. Using the principal value of the logarithm
the product is called absolutely convergent if∑

log(1 + an)

is absolutely convergent.

(ii) A product with a finite number of factors 1 + an = 0, n ≤ n0, is convergent,
if ∏

(1 + an+n0)

is convergent, in the sense of (i). To it we then assign the value 0.

A product is zero, if and only if finitely many factors are zero. We need some
properties of infinite products:

Proposition 12.5.

(i) A necessary condition for the product
∏

(1 + an) to converge is that an → 0.

(ii) The product
∏

(1+an) converges if only if the series
∑

log(1+an) converges.
Here too we use the principal value of the logarithm.

(iii) The product
∏

(1 + an) converges absolutely if and only if the series
∑

an

converges absolutely.

Proof. (i) In the case of convergence of the product and in view of

1 + an =
n∏

k=1

(1 + ak) /
n−1∏
k=1

(1 + ak) → 1

for n → ∞ it follows that an → 0.
(ii) Using

n∏
k=1

(1 + ak) = exp

(
n∑

k=1

log(1 + ak)

)
,

the principal value of the logarithm, and the continuity of the exponential function the
convergence of the product follows from the convergence of the series. The inversion is
left as Exercise 12.5.2.
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(iii) We can assume that |an| ≥ 1/2 only for finitely many factors. For the other n we
use the Taylor series of the logarithm (Exercise 11.3.7) if an �= 0,∣∣∣∣ 1

an
log(1 + an) − 1

∣∣∣∣ =
∣∣∣∣∣

∞∑
k=2

ak−1
n

k

∣∣∣∣∣ ≤
∞∑

k=2

(
1

2

)k

=
1

2

and therewith
1

2
≤
∣∣∣∣ log(1 + an)

an

∣∣∣∣ ≤ 3

2
.

We can ignore the terms with an = 0 as log(1+an) = 0, then
∑ | log(1+an)| and

∑ |an|
simultaneously diverge, respectively converge. �

We are now able to prove the announced theorem:

Theorem 12.6 (Weierstraß’ product theorem). Let (zk) be a sequence of complex
numbers, where 0 < |zk| ≤ |zk+1|, k ∈ N, and zk → ∞. Then natural numbers Nk

exist so that

h(z) :=
∞∏

k=1

Ek(z, zk)

is an entire function with zeros z1, z2, . . .. The Weierstraß factors Ek(z, zk) are
defined by

Ek(z, zk) :=
(

1 − z

zk

)
exp

⎛⎝Nk∑
j=1

1
j

(
z

zk

)j
⎞⎠ .

Multiple zeros are expressed by repeated zk. The factors containing the exponential
function are called generating convergence factors, because the factors are not
necessary if

∑
1/|zk| already converges.

In conclusion the distribution of the zeros of an entire function has no restriction.
So every entire function f can be written in the form

f(z) = zm eg(z)
∞∏

k=1

Ek(z, zk),

where g is entire and m is the order of the zero of f at z0 = 0. We get the
justification of this formula, if we apply Theorem 9.17 to the quotient of f and
zm
∏

Ek(z, zk). This quotient Q is an entire function with no zeros in C. So log Q
can be continued in C with Theorem 9.17 and is an entire function g, i.e., Q = eg.
Now we will turn to the proof of the theorem:

Proof. For natural numbers Nk and |z| < |zk| the equation

Ek(z, zk) = exp

(
log

(
1 − z

zk

)
+

Nk∑
j=1

1

j

(
z

zk

)j
)

= exp

⎛⎝−
∞∑

j=Nk+1

1

j

(
z

zk

)j
⎞⎠
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holds. If we assume |z| ≤ R, then for the zk with |zk| ≥ 2R and k ≥ k0 it follows that

|log Ek(z, zk)| ≤
∣∣∣∣ z

zk

∣∣∣∣Nk ∞∑
j=1

1

2j
≤
∣∣∣∣ z

zk

∣∣∣∣Nk

.

This estimate provides

∞∑
k=k0

| log E(z, zk)| ≤
∞∑

k=k0

(
R

|zk|

)Nk

≤
∞∑

k=k0

(
1

2

)Nk

,

and this is convergent for Nk = k. In general we can take smaller Nk. The convergence
for |z| ≤ R is uniform, so that the limit represents a holomorphic function. The product
is an entire function since R was arbitrary. �

Example 12.7. The function sin πz has zeros at z = 0,±1, . . .. This results in the
product

sin(πz)
πz

=
∞∏

k=1

(
1 − z2

k2

)
,

because (
1 − z

k

)(
1 +

z

k

)
= 1 − z2

k2
.

The function

f(z) := z
∞∏

k=1

(
1 − z2

k2

)
has then the same zeros as sin πz. One can prove that this function is really the
function π sin πz.

12.1.2 Zeros in C�(n)

For a holomorphic function in C�(n) the problem concerning zeros is a little bit
more difficult than for the zeros in the plane. There are also still open questions.
In Section 9.3 we have already noticed that the zeros are not necessarily isolated.
In the identity Theorem 9.27 we have shown that the manifold of zeros has at
most dimension n − 1. But all lower dimensions can occur. This can be seen for
example by considering the following function:

f(x) := z1e1 + z2e2 + · · · + zkek = kx0 + e1x1 + · · · + ekxk (1 ≤ k ≤ n).

This f is biholomorpic and has its zeros at the points with

x0 = x1 = · · · = xk = 0,

i.e., on an (n − k)-dimensional plane. For k = n we get an isolated point, the
origin.



256 Chapter IV. Series expansions and local behavior

The manifold, on which a holomorpic function is zero in a neighborhood of a point
a with f(a) = 0, depends among other things on the rank of the Jacobian

Jf =
(

∂fi

∂xj

)
.

In the case that the rank of Jf is constant in a neighborhood U of the zero,
let it equal m with n + 1 ≥ m ≥ 2, Hempfling [61] and in the quaternion case
Fueter [49] proved that exactly one manifold of dimension n + 1 − m through the
zero exists on which f(a) = 0. The case m = 1 cannot arise as we have shown
already in the identity theorem. We will not prove these results here, because we
would need theorems from the theory of ordinary and partial differential equations.
Additionally the examples of Zöll [161] show, that the rank of Jf can vary greatly
even for isolated zeros.
Nevertheless in the case of Jf (a) with rank n+1 we can conclude from the implicit
function theorem that also this rank of Jf is given in a neighborhood of the point
a and f denotes a local diffeomorphism. Then the zero at the point a is isolated:

Proposition 12.8. If the function f in a neighborhood U of the point a is holomor-
phic, if f(a) = 0 and detJf (a) �= 0, then the zero of f at a is isolated.

Propositions about the behavior of a holomorphic function in the neighborhood of
manifolds of zeros do not exist. So we want to restrict to isolated zeros at a point
a. In this case even the easy notion of the order of a zero is more complicated than
in the plane. We know from the previous subsection, that the order of a zero is
equal to the index of the first nonvanishing term in the Taylor series. So we can
specify in C the three following characterizations of the order k of a zero:

1. k is the smallest natural number with f (k)(a) �= 0.

2.
k :=

1
2πi

∫
γ

f ′(z)
f(z)

dz

holds with γ a simple closed curve around a with no other zeros of f inside.
The formula above follows by Cauchy’s integral theorem, if we use the Taylor
series of f ′ and f (see also Exercise 12.5.1).

3. The formula
k =

1
2πi

∫
f(γ)

dw

w

follows from the previous formula using the transformation w = f(z) in the
integral.

We cannot use the first definition in C�(n), because Zöll [161] provides examples
whose Taylor series do not give satisfying results. Also the second definition cannot
be applied for lack of a suitable derivative. But the third definition is suitable for
C�(n) [61], [62]:
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Definition 12.9. Let f be left-holomorphic in the domain G and a be an isolated
zero of f . Moreover let Bε(a) be a sufficiently small ball with radius ε around a
and the boundary Sε(a), so that no additional zero of f is in Bε(a) ∪ Sε(a). Then

ord(f ; a) :=
1
σn

∫
F (Sε(a))

Q0(y)dy∗

denotes the order of the zero of f at the point a. Here we define

F =
n∑

i=0

eifi

to be the restriction of the values of f to Rn+1.

The ‘cutting’ from f to F is an effort, which would have to be analyzed in more
detail. We know that Q0 is the ‘simplest’ singular holomorphic function having an
isolated singularity at the origin. We have introduced

Q0(y) =
y

|y|n+1

in Definition 7.26, where we used it as kernel for Cauchy’s integral formula. It is
shown in Proposition 12.49, that the so-defined order is an integer, namely the
winding number of the manifold F (Sε)(a) around the point a, which must still be
defined. So our definition meets the descriptive notion of order for zeros.

As the calculation of the order can technically be difficult, and in addition the
manifold is actually defined by Sε(a), we can try to transform the integral with
the help of the substitution y = F (x) for the variable x. Zöll has realized this:
Letting

dyj =
n∑

k=0

∂Fj

∂xk
dxk

it follows (cf. Remark A1.16 c))

dy∗
i = (−1)i

n∑
k0,...,k̂i,...kn=0

∂F0

∂xk0

· · · ∂̂Fi

∂xki

· · · ∂Fn

∂xkn

dxk0 ∧ · · · ∧ ˆdxki ∧ · · · ∧ dxkn

= (−1)i
n∑

j=0

∂(F0, . . . F̂i . . . , Fn)
∂(x0, . . . x̂j . . . , xn)

dx̂j .

Since

(−1)i+j ∂(F0, . . . F̂i . . . , Fn)
∂(x0, . . . x̂j . . . , xn)

=: Aij
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are just the adjoints of JF , in view of

J−1
F = (Aij)�/ detJF

we have finally the representation

dy∗ =
n∑

i,j=0

eiA
ijdx∗

j

and for the order the expression:

Corollary 12.10. With the assumptions of Definition 12.9,

ord(f ; a) =
1
σn

∫
Sε(a)

F (x)
|F (x)|n+1

n∑
i,j=0

eiA
ijdx∗

j

holds.

Now we can introduce J−1
F , but we encounter the additional restriction detJF �= 0.

Unfortunately this formula is not promising, because in practical cases the integral
is very difficult to calculate. Additional research is needed and hopeful approaches
are tackled by Kraußhar. But we will calculate the order of an isolated zero at
least in one case:

Example 12.11. We consider the function given at the beginning of this subsection:
f(x) = z1e1 + · · ·+ znen = nx0 + x, where x is the vector related to x. We do not
need to cut f to F , as f is a paravector-valued function. So for i, j = 1, . . . , n we
have:

f0(x) = nx0, fi(x) = xi

and
∂f0

∂x0
(x) = n,

∂f0

∂xi
(x) = 0,

∂fi

∂x0
(x) = 0,

∂fi

∂xj
= δij .

We get the very simple Jacobian

Jf =

⎛⎜⎜⎜⎝
n 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

⎞⎟⎟⎟⎠
with detJf = n and the adjoints (i, j = 1, . . . , n)

A00 = 1, A0i = 0, Ai0 = 0, Aij = nδij .

From this it follows that
n∑

i,j=0

eiA
ijdx∗

j = dx∗
0 + ndx∗
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and
ord(f ; 0) =

1
σn

∫
|x|=ε

nx0 − x
|nx0 + x|n+1

(dx∗
0 + ndx∗).

Now we deform the sphere Sε : |x| = ε continuously into the ellipsoid |nx0+x| = ε,
not crossing any zeros of f . The order cannot change, as the order is an integer
and the transformation is continuous. Now we set

x0(t) =
ε

n
y0(t), xi(t) = εy(t), i = 1, . . . , n,

where y is the parametric equation of the unit sphere y =
∑n

i=0 yiei according to
Example A.2.17 c). Furthermore we have

|nx0 + x| = ε|y0 + e1y1 + · · · + enyn| = ε, nx0 − x = ε y.

Since x0 occurs in dx∗
1, . . . , dx∗

n, but not in dx∗
0 we have

dx∗
0 + ndx∗ = εndy∗.

Using Example A.2.17 c) we get dy∗ = y|do1(y)|, where y is the unit outer normal
vector on the unit sphere Sn and |do1(y)| is the surface element of the unit sphere.
Finally the order is

ord(f ; 0) =
1
σn

∫
Sn

y y|do1(y)| =
1
σn

∫
Sn

|do1(y)| = 1.

Of course we expected this value, but the calculation was very complex and for
other functions it could be even more involved. As mentioned further research is
needed.

Unfortunately in C�(n) a theorem equivalent to the Weierstraß’ product theo-
rem cannot exist, as the product of holomorphic functions is not holomorphic in
general. New considerations are also necessary at this point.

12.2 Isolated singularities of holomorphic functions

12.2.1 Isolated singularities in C

In this subsection we want to examine the behavior of a function f at points
in which f is not defined or not holomorphic. First we consider the case of the
complex plane. For simplicity we state that ρ1 < |z − z0| < ρ2 means the annular
domain {z : ρ1 < |z − z0| < ρ2}.

Definition 12.12 (Singularity). If the function f is holomorphic in the punctured
disk 0 < |z − z0| < R, but not at z0, resp. not defined at z0, we say that f has an
isolated singularity at z0. These singularities are classified as follows:
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a) The singularity is called removable, if f is bounded in 0 < |z − z0| ≤ R/2.

b) The singularity is called a pole, if it is not removable and an n ∈ N exists,
so that (z − z0)nf(z) is bounded in 0 < |z − z0| ≤ R/2.

c) Else the singularity is called an essential singularity.

d) If a function f is holomorphic in a domain G up to poles, which are not
accumulating in G, we call f meromorphic in G.

e) We also refer to an essential singularity, if the function f is meromorphic in
0 < |z − z0| < R and has neither a removable singularity nor a pole in x0.

Now we want to study these singularities, firstly the removable singularities. We
prove:

Theorem 12.13 (Riemann’s theorem on removable singularities). Let f be a holo-
morphic function in 0 < |z − z0| < R and let f have a removable singularity at z0.
Then a number a0 exists so that the extended function

f̃(z) =
{

f(z), 0 < |z − z0| < R,
a0, z = z0,

is holomorphic in BR(z0).

Apart from the assumption that f is holomorphic in the punctured disk, it is
sufficient to show that lim

r→0
rM(r, f) = 0 with

M(r, f) := max
|z−z0|=r

|f(z)|.

We recognize that in the case of a removable singularity the problem is only the
function value at the point z0. So we call the function f holomorphic continuable
at z0. The assertion of the theorem shows that M(r, f) cannot converge to ∞ for
r → 0. But sometimes it is easier to show the weaker assumption in applications.

Proof. The function f is holomorphic in the punctured disk 0 < |z − z0| < R. In it f has
the convergent Laurent series

f(z) =
∞∑

n=−∞
an(z − z0)

n, an =
1

2πi

∫
|ζ−z0|=ρ

f(ζ)

(ζ − z0)n+1
dζ.

We consider the coefficients with negative index n > 0:

|a−n| ≤ 1

2π

∫
|ζ−z0|=ρ

M(ρ, f)

ρ−n+1
|dζ|

≤ M(ρ, f)ρn.

This expression converges with ρ → 0 and all n ≥ 1 to 0, so that every coefficient of the
Laurent series of f with negative index is 0. In conclusion f has a Taylor series and the
value at z0 is defined by

a0 =
1

2πi

∫
|ζ−z0|=ρ

f(ζ)

ζ − z0
dζ. �
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Example 12.14. Removable singularities appear mostly where a quotient of two
holomorphic functions is 0/0 or ∞/∞, such as

sin z

ez − 1

for z → 0. If we know the power series, by factoring out z in the numerator and
denominator we can easily recognize that the quotient for z → 0 converges to 1.
The remaining function is obviously holomorphic, because it is the quotient of two
different power series different from 0 at z = 0. In more complex cases Riemann’s
theorem on removable singularities ensures that the quotient in z = 0 is really a
holomorphic function.

Next we turn to the poles:

Theorem 12.15 (Poles). If f is holomorphic in the punctured disk 0 < |z−z0| < R
and has a pole at z0, then a k ∈ N exists so that

f(z) =
g(z)

(z − z0)k

with a holomorphic function g in BR(z0) and g(z0) �= 0. The number k is called
order of the pole. The Laurent series of f around z0 is then given by

f(z) =
∞∑

n=−k

an(z − z0)n =
∞∑

m=0

am−k(z − z0)m−k, a−k �= 0.

This series, which has at least one but only finitely many terms with negative
index, characterizes the poles of a function. The part of the Laurent series with
negative indices,

−1∑
n=−k

an(z − z0)n,

has been called the principal part of f at z0 in Theorem 9.19.

The behavior of a function at a pole is clear, because f has the limit ∞ in the sense
of the chordal metric and is consequently continuous. We want to emphasize that
we always consider the Laurent series of f , which converges in the punctured disk
0 < |z − z0| < R, i.e., in a neighborhood of the point z0. Poles are always isolated
according to their definition. In the case of zeros we have proved in Proposition
12.2 that they are isolated. The theorem shows again the result for poles.

Proof. For a suitable n the function (z − z0)
nf(z) is bounded in the neighborhood of

z0 and so this function has a removable singularity at z0. Let k be the smallest possible
such n, it follows then that

(z − z0)
kf(z) = g(z)
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with a holomorphic function g in BR(z0). Necessarily g(z0) �= 0, else we could rewrite g
in the form (z− z0)g1(z) and as a consequence k would not be minimal. From the Taylor
series for g we find

f(z) =
∞∑

n=0

an(z − z0)
n−k =

∞∑
m=−k

am+k(z − z0)
m,

i.e., a Laurent series with only finitely many terms with negative indices. There should be
at least one term with negative index, else the function would be holomorphic at z0 and
we would have had a removable singularity. Vice versa a function, which is representable
by such a Laurent series, has a pole (of order k, if ak �= 0), because then (z − z0)

kf(z)
is representable by a Taylor series, in particular it is bounded in the neighborhood of
z0. �

Example 12.16. a) Rational functions have poles at the zeros of the denominator.
For example 1/z has a simple pole in z = 0, 1/z2 a double pole and so on; rational
functions are meromorphic in C.
b) The cotangent

cot z =
cos z

sin z

has poles of first order at the zeros of the sine, zn = nπ, n ∈ Z, as the zeros of
the sine are simple. Consequently cot z is a meromorphic function in C.

Finally we want to turn towards the essential singularities. There are large theories
about the behavior of holomorphic functions in a neighborhood of an essential
singularity. We want to present only one theorem, which was found by the Italian
mathematician Felice Casorati (1835–1890), by Karl Weierstraß, and by
the Russian mathematician Yulian V. Sokhotski (1842–1927):

Theorem 12.17 (Theorem of Casorati–Weierstraß–Sokhotski). (i) A function f
has an essential singularity at z0 if and only if its Laurent series around z0

includes infinitely many terms with negative index.

(ii) In the neighborhood of an essential singularity z0, f gets as close as desired
to any value in Ĉ, that is for every c ∈ Ĉ there exists a sequence (zn) in
the punctured disk 0 < |z − z0| < R with zn → z0, so that f(zn) → c with
n → ∞.

The behavior in the neighborhood of an essential singularity is quite wild and very
hard to visualize. Therefore we need complex theories to handle this problem.

Proof. (i) The proposition with the Laurent series follows from the previous theorem:
Laurent series with finitely many terms with negative index characterize the poles.

(ii) We now turn towards the harder part of the proposition: If a value c �= ∞ and
ε > 0, δ > 0 existed, so that in the punctured disk 0 < |z − z0| < ε,

|f(z) − c| ≥ δ > 0,
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then the function
1

f(z) − c

would be bounded by 1/δ and so it would have a removable singularity:

1

f(z) − c
= g(z) ⇒ f(z) = c +

1

g(z)

with a holomorphic function g, so that f would have at the most a pole or a removable
singularity, which would be a contradiction. If the function f were bounded for c = ∞
then it would have only a removable singularity. Consequently f has to get as close as
desired to every value c. �

Example 12.18. We take

e1/z =
∞∑

n=0

z−n

n!

as an example of an essential singularity at the point z = 0, because the given
Laurent series around z = 0 has infinitely many terms with negative index.

The example shows a gap in our considerations: How can the behavior of a function
f at the point z = ∞ be rated? This can be clarified by the following definition:

Definition 12.19 (Behavior at ∞). If the function f is holomorphic in the domain
|z| > R, then the behavior of f at z = ∞ is described by the behavior of

f

(
1
ζ

)
at ζ = 0: f is holomorphic or has a pole or an essential singularity at z = ∞, if
and only if this is the case for f(1/ζ) at ζ = 0.

The last example showed already that ez has an essential singularity at z = ∞.
We have proved in Theorem 12.6 that the zeros of an entire function can be given
at any point with any order, and this holds also for the poles. The corresponding
theorem is due to the Swedish mathematician Magnus Gösta Mittag-Leffler
(1846–1927), from whom the mathematical Research Institute that he founded in
Stockholm takes the name. This theorem is important in constructing functions:

Theorem 12.20 (Mittag-Leffler). Let (an) be a sequence of complex numbers with
|an| ≤ |an+1| (n = 1, 2, . . .) and an → ∞. Furthermore let a sequence of principal
parts for every an be given by

hn(z) =
mn∑
k=1

Ank

(z − an)k

with suitable constants Ank. Then a sequence (Pn) of polynomials can be deter-
mined so that the series

f(z) :=
∞∑

n=1

(hn(z) − Pn(z)) (∗)
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converges uniformly in every compact subset of C, which does not contain any of
the an. The Pn are called convergence generating terms. Consequently the function
f is meromorphic in C and has poles at exactly every an with the principal part
hn.
Proof. If a1 = 0, then we set P1 = 0. For every |an| > 0 hn is holomorphic in |z| < |an|
and has a Taylor series

hn(z) =

∞∑
k=0

cnkzk.

Now we can determine a partial sum Pn(z) of this Taylor series, so that

|hn(z) − Pn(z)| ≤ 1

2n

holds in |z| ≤ |an|/2. From this the uniform convergence of the series (∗) in every compact
subset of C not containing the point an follows. Indeed, if we include the compact set
into a disk of radius R, then we have to take only the finitely many |an| ≤ 2R out of the
series, and we have finally a series which is a holomorphic function in view of Theorem
9.3. The added hn determine the desired poles with the given principal parts. �

The theorem of Mittag-Leffler can also be proven in any domain G. Finally we
can represent every meromorphic function in C with a series of the form

f(z) = f0(z) +
∞∑

n=1

(hn(z) − Pn(z)) ,

where f0(z) is an entire function.

Example 12.21. The Laurent series of the function

f(z) :=
π2

sin2 πz

starts with (z − n)−2 at the zeros of the sine. If we construct the (uniformly
convergent) series

g(z) :=
∞∑

n=−∞

1
(z − n)2

,

then the difference h(z) := f(z) − g(z) is an entire function. The function h is
uniformly bounded on the boundary of the squares

QN : |x| ≤ N +
1
2
, |y| ≤ N +

1
2
,

where N is a natural number. The periodicity of the function f (period 1) helps
on the vertical sides of the squares. The function h is bounded in the whole plane
because of the maximum principle Theorem 7.32, consequently h is a constant,
see the Theorem of Liouville 7.33. Using the following identity we find that this
constant must be zero:

h(z) =
1
2

{
h
(z

2

)
+ h

(
z + 1

2

)}
(Herglotz).
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12.2.2 Isolated singularities in C�(n)

C�(n)-holomorphic functions behave considerably differently from C-holomorphic
functions at singularities as well as at zeros. A number of questions have to be
answered still. We restrict to isolated singularities, which we know at least in the
Qk from Definition 7.26. We can thus define analogously to C:

Definition 12.22. If the function f is (left- or right-)holomorphic in the punctured
ball 0 < |x − a| < R, but not at a, resp. is not defined at a, then we say: f has an
isolated singularity at a. These singularities are classified as follows:

a) The singularity is called removable, if f is bounded in 0 < |x − a| < R/2.

b) The singularity is called a pole, if it is not removable and an m ∈ N exists
with m ≥ n, so that |x − a|mf(x) is bounded in 0 < |x − a| < R/2.

c) Else the singularity is called an essential singularity.

d) If a function f is (left- or right-)holomorphic in a domain G except at poles,
which do not accumulate in G, then we call f (left- or right-)meromorphic in
G.

R. Fueter [45] transferred for the first time the concept of complex meromorphic
functions to higher dimensions, and he also described the development in a Laurent
series in a ballshell (see Theorem 9.28). Now we want to analyze the singularities.
For removable singularities we have the same theorem as in C:

Theorem 12.23 (Riemann–Fueter’s theorem on removable singularities ). Let f
be a holomorphic function in 0 < |x−a| < R and let f have an isolated removable
singularity at a. Then a value a0 exists so that the extended function

f̃(x) =
{

f(x), 0 < |x − a| < R,
a0, x = a,

is holomorphic in BR(a).

The proof is given as Exercise 12.5.7 and is analogous to the complex case. Similar
to the complex case we have only to require that rnf(x) → 0 for r = |x − a| → 0,
which sometimes is easier to verify.
The poles cannot be described as simply as in C, but we can prove the following
theorem:

Theorem 12.24 (Poles in C�(n)). An isolated singularity a of a (left-)holomorphic
function in 0 < |x − a| < R is a pole if and only if the Laurent series in 0 <
|x − a| < R has only finitely many terms, but at least one term with a singular
function Qk(x − a):

f(x) =
m∑

k=0

∑
|k|=k

Qk(x − a)bk +
∞∑

k=0

∑
|k|=k

Pk(x − a)ak.
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If in the left sum at least one term with |k| = m is different from zero, then we
call m + n the order of the pole and the finite sum with the singular functions
Qk(x − a) is called the principal part of f at the point a.

We want to point out explicitly, that poles in C�(n) have always at least the order
n, as Q0 is the weakest singularity in C�(n).

Proof. We consider only the left-holomorphic case, the right-holomorphic case can be
proved in a similar way. First we assume the boundedness of |x− a|mf(x). According to
Theorem 9.28 the coefficients of the Laurent series are

bk =
1

σn

∫
|x−a|=ρ

Pk(x − a)dx∗f(x).

At this point we use the estimate for Pk according to Corollary 6.5 and the assumptions
for f : It follows with k = |k| and a suitable constant C that

|bk| ≤
1

σn

∫
|x−a|=ρ

C|x − a|k|dx∗||x − a|−m ≤ Cρk+n−m.

All coefficients bk must vanish for k > m − n, as ρ can be chosen as small as desired.

Now let the Laurent series of f have only finitely many terms with the Qk, then let m
be the largest of the |k|. With the estimate

|Qk(x − a)| ≤ Ck

|x − a|n+k
≤ Ck

|x − a|n+m

using Proposition 7.27 we get the result for f . �

Remark 12.25. The behavior of a function at poles in Rn+1 is very different from
the one in the plane: Of course Q0(x − a) = (x − a)/|x − a|n+1 converges to ∞
for x → a in the chordal metric as it does in C. But this is not always the case
and consequently a meromorphic function need not be continuous at a pole with
respect to the chordal metric. For example if we differentiate Q0 (for simplicity
let us take a = 0):

∂iQ0(x) =
|x|2ei − (n + 1)xxi

|x|n+3
,

then we get a non-vanishing numerator and the derivative converges to ∞ for
x → 0. But this changes if we differentiate again, since in

∂i∂jQ0(x) =
n + 1
|x|n+5

{
−(ejxi + eixj)|x|2 − δijx|x|2 + (n + 3)xxixj

}
the bracket vanishes for xi = xj = 0 if i �= j. This second derivative of Q0 is even
zero in an (n − 1)-dimensional plane and converges in this plane to 0 and not to
∞.
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Unfortunately there are no available studies about essential singularities in C�(n).
But the theorem of Mittag-Leffler can be transferred to the case of meromorphic
functions in Rn+1:

Theorem 12.26 (Mittag-Leffler). Let ak be a sequence of numbers of Rn+1 and let
|ak| ≤ |ak+1| as well as ak → ∞. In addition let Hk(x) be a sequence of principal
parts at the ak given by

Hk(x) =
mk∑
j=0

∑
|j|=j

Qj(x − ak)bjk.

Then a sequence (Pk) of holomorphic polynomials can be determined so that the
series

f(x) :=
∞∑

k=1

(Hk(x) − Pk(x))

converges uniformly in every compact subset of Rn+1, which does not contain any
of the ak. The Pk are called convergence generating terms. The function f is (left)-
meromorphic in Rn+1 and at the points ak it has poles precisely with the principal
parts Hk.

The proof is completely analogous to the complex case and is left to the reader as
Exercise 12.5.8.

12.3 Residue theorem and the argument principle

12.3.1 Residue theorem in C

The understanding of the local structure of holomorphic or meromorphic functions
achieved in the previous section allows us to extend the Cauchy integral theorem
and the Cauchy integral formula. Therefore we define at first:

Definition 12.27 (Residue). Let the function f , meromorphic in the domain G,
have at z0 ∈ G an isolated singularity. Let its Laurent series

f(z) =
∞∑

n=−∞
an(z − z0)n

be convergent in 0 < |z − z0| < R. We then call

a−1 =
1

2πi

∫
|z−z0|=ρ

f(z)dz =: Res(f, z0)

the residue of f at z0. We can choose ρ arbitrarily in the interval (0, R), in view
of Cauchy’s integral theorem.
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In the year 1814 the residue was introduced by Cauchy in his famous work “Mem-
oire sur les intégrales définies”, but basic ideas could be found already in Euler’s
work.

As a precaution we want to point out that the concept of residues cannot be
applied if we consider an essential singularity, which is a limit point of poles. The
residue theorem was published by Cauchy in 1825. The principle was that he
reduced quantities given by an integral to differential quantities.

Theorem 12.28 (Residue theorem). Let G ⊂ C be a finitely connected domain with
a piecewise smooth boundary. Let the function f be holomorphic in G up to finitely
many isolated singularities a1, . . . , an and continuous in G \ {a1, . . . , an}. Then∫

∂G

f(z)dz = 2πi

n∑
k=1

Res(f, ak)

holds.

The residue theorem apparently is an extension of the Cauchy integral theorem,
because if the function f is holomorphic in G, then the residues are zero and the
residue theorem becomes the Cauchy integral theorem.

Proof. We cut out of the domain G little disks Bε(ak), k = 1, . . . , n, which neither
intersect themselves nor the boundary of G, each containing only the singularity ak. Let
Gε be the resulting domain and for this domain we can apply Cauchy’s integral theorem,
as only finitely many smooth boundaries were added. The function f is holomorphic in
Gε, and consequently∫

∂Gε

f(z)dz = 0 =

∫
∂G

f(z)dz −
n∑

k=1

∫
|z−ak|=ε

f(z)dz.

This is already the assertion, because the last integrals are the residues at the points ak

except for the factor 2πi. �

Before we deal with the calculation of residues, we want to consider the point
z = ∞.

Definition 12.29. If f is holomorphic in |z| > R, we call

Res(f,∞) := − 1
2πi

∫
|z|=ρ

f(z)dz

the residue of f at the point z = ∞, where we can choose ρ > R arbitrarily.

Also for z = ∞ the residue is equal to the coefficient a−1 of the Laurent series of
f , which converges for |z| > R.
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Remark 12.30. We want to point out that this residue is not the same as the one
we would get if we calculated according to Definition 12.19: In this case we would
take the residue of f(1/ζ) at the point ζ = 0,

1
2πi

∫
|ζ|=1/ρ

f

(
1
ζ

)
dζ = − 1

2πi

∫
|z|=ρ

f(z)
dz

z2
.

This would just be the coefficient a1 of the Laurent series around ∞ and in this
sense passably, as a1z is the first term generating the singularity in ∞. But the
definition above is more practical as the following lemma shows:

Proposition 12.31. Let f be holomorphic in C up to finitely many points a1, . . . , an ∈
C. Then

n∑
k=1

Res(f, ak) + Res(f,∞) = 0

holds.

Proof. If |z| = ρ is a circle, which contains in its interior all ak, k = 1, . . . , n, then∫
|z|=ρ

f(z)dz = 2πi
n∑

k=1

Res(f, ak) = −2πi Res(f,∞)

holds. �

If we now want to calculate integrals by means of residues, it is very helpful to
have a method for calculating residues without integrals. In the case of essential
singularities this is only possible if the Laurent series is known. Then we simply
take the coefficient a−1. Also in the case of poles, knowledge of the Laurent se-
ries implies knowledge of the residues. But in this case there exists also another
method:

Proposition 12.32 (Calculation of residues at poles). If the function f has a pole
of order k at z0, we have

(k − 1)! Res(f, z0) = lim
z→z0

dk−1

dzk−1

(
(z − z0)kf(z)

)
.

This formula is particularly easy to handle in the case of simple poles as it then
reduces to

Res(f, z0) = lim
z→z0

(z − z0)f(z).

Proof. With

f(z) =

∞∑
n=−k

an(z − z0)
n
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it immediately follows that

(z − z0)
kf(z) =

∞∑
m=0

am−k(z − z0)
m.

The coefficient a−1 is the one with the index m = k−1. We get the assertion of the propo-
sition by applying the formula for coefficients of a Taylor series according to Theorem
9.14. �

Example 12.33. A first example is the calculation of

I :=
∫

|z−i|=5

(
z + 2
z + 3

+
z − 2
z + i

)
dz,

which with usual methods would only be possible by considerable effort. But ac-
cording to the residue theorem we only have to find the poles of the integrand,
which here are the points a1 = −3 and a2 = −i. These poles are obviously simple
poles and both points are included in the circle of integration, as |−3− i| < 5 and
| − 2i| < 5. We calculate the residues at both these points according to the above
formula:

Res(f,−3) = lim
z→−3

(
z + 2 + (z + 3)

z − 2
z + i

)
= −1,

and
Res(f,−i) = lim

z→−i

(
(z + i)

z + 2
z + 3

+ z − 2
)

= −2 − i.

Finally we get the integral we are looking for:

I = 2πi(−1 − 2 − i) = 2π(1 − 3i).

12.3.2 Argument principle in C

In this section we shall consider a further generalization of the residue theorem,
which is often called the argument principle. The most important result is the
following:

Theorem 12.34. Let the function f be meromorphic in the bounded domain G ⊂ C.
Further let Γ ⊂ G be a piecewise smooth curve, which does not contain zeros or
poles of f , where zA is the initial point and zE the endpoint of Γ. We then have

exp
(∫

Γ

f ′(z)
f(z)

dz

)
=

f(zE)
f(zA)

.

Proof. Let γ : [0, 1] → G be a parametrization of Γ. For every point γ(t) ∈ Γ there
exists a small disk D(t) := Bρ(t) not containing any zero or pole of f . Consequently f ′/f
is holomorphic in D(t) and has a primitive function

F (z) =

∫ z

z1

f ′(ζ)

f(ζ)
dζ,
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where z1 ∈ D(t) ∩ Γ. If z2 is an arbitrary point in D(t) and

g(z) :=
exp(F (z) − F (z2))

f(z)
,

then g is holomorphic in D(t) with the derivative

g′(z) = −f ′(z)

f(z)
g(z) + F ′(z)g(z) = 0.

Hence g is a constant. It follows for z = z2 that

g(z) =
1

f(z2)
⇒ exp(F (z) − F (z2)) =

f(z)

f(z2)
.

The graph of Γ is a compact set, which can be covered by finitely many disks D(t). These
disks D(t) must intersect themselves; we can then find a decomposition 0 = t0 < t1 <
· · · < tn−1 < tn = 1, so that the piece of the curve between γ(tj−1) and γ(tj) is contained
in one of the small disks. We choose the above z1 = γ(tj−1), z2 = γ(tj) and accordingly
Fj , and we get

exp

(∫
Γ

f ′(ζ)

f(ζ)
dζ

)
=

n∏
j=1

exp[Fj(γ(tj)) − Fj(γ(tj−1))] =
n∏

j=1

f(γ(tj))

f(γ(tj−1))
=

f(zE)

f(zA)
. �

Corollary 12.35. If the curve Γ is closed, we have∫
Γ

f ′(z)
f(z)

dz = 2nπi, n ∈ Z.

This follows from the fact that for a closed curve the right-hand side in our Theo-
rem 12.34 is 1 and as a consequence the argument of the exponential function can
only be an integer multiple of 2πi.

As a first important application we get the definition for the index or winding
number of a curve.

Definition 12.36 (Index, winding number). Let Γ be a closed piecewise smooth
curve in C and z �∈ Γ. We then define

I(Γ, z) :=
1

2πi

∫
Γ

dζ

ζ − z

to be the index or the winding number of the curve Γ with respect to z.

The previous theorem provides

Corollary 12.37 (Integer index). (i) The index of a piecewise smooth closed curve
Γ with respect to a point z is an integer.

(ii) In C \ Γ the index is locally constant, thus also in every subdomain of C \ Γ
it is constant.
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Proof. (i) This follows directly from Corollary 12.35 using the function f(ζ) = ζ − z.

(ii) On the one side the integral is a continuous function at z and on the other side it
is an integer, so it must be locally constant. In addition the graph of Γ is closed and
so C \ Γ is open. This complement splits into open and connected subsets. As a locally
constant function the winding number must be constant in such subdomains. �

This urges us to introduce the following definition:

Definition 12.38 (Interior and exterior of a closed curve). Let Γ be a closed piece-
wise smooth curve. We call

I(Γ) := {z : z ∈ C \ Γ, I(Γ, z) �= 0},

the interior of Γ and respectively

A(Γ) := {z : z ∈ C \ Γ, I(Γ, z) = 0}.

the exterior of Γ.

Now we introduce a generalization of Cauchy’s integral formula:

Theorem 12.39 (Extended Cauchy’s integral formula). Let G ⊂ C be a star-shaped
domain and Γ ⊂ G a closed piecewise smooth curve. Let the function f be holo-
morphic in G. Then for all z ∈ G\Γ we have

I(Γ, z) f(z) =
1

2πi

∫
Γ

f(ζ)
ζ − z

dζ.

The extension consists in the fact that now every arbitrary piecewise smooth curve
is allowed and not only the boundary of a domain. This means that Γ can wind
around the point z several times or none. Here the common assertion of this
theorem is the simple connectivity of G, but we use Theorem 7.4 of Morera in
our variant of the proof. According to Morera every holomorphic function in a
star-shaped domain possesses a primitive.

Proof. The function

g(ζ) =

{
f(ζ)−f(z)

ζ−z
, ζ �= z,

f ′(z), ζ = z

is holomorphic in ζ for ζ �= z and for ζ → z it is continuous. At this point g has a
removable singularity and thus g is holomorphic in G. As mentioned above the function
possesses a primitive F (ζ) in the star-shaped domain G in this case. Hence every integral
of g along a closed curve Γ is zero, if z ∈ G\Γ:∫

Γ

g(ζ)dζ =

∫
Γ

f(ζ) − f(z)

ζ − z
dζ = 0
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so that
f(z)

∫
Γ

dζ

ζ − z
=

∫
Γ

f(ζ)

ζ − z
dζ,

i.e., the assertion, since the factor of f(z) is equal to 2πiI(Γ, z). �

The last point in this section is the already announced argument principle.

Theorem 12.40 (Argument principle). Let G be a finitely connected domain with a
piecewise smooth boundary. Let the function f be holomorphic in G up to finitely
many poles and continuous in G. Let f be different from zero on ∂G. Then

1
2πi

∫
∂G

f ′(z)
f(z)

dz = n(0, f) − n(∞, f)

holds, where n(0, f) is the number of zeros of f in G (counted according to their
order) and n(∞, f) the number of poles (counted correspondingly).

The argument principle is a possibility to represent the number of zeros and poles
of a function by an integral. This is of special importance for the examination
of meromorphic functions. The term argument principle is justified, because the
integrand is the logarithmic derivative of the function f :

f ′(z)
f(z)

dz = d(log f(z)) = d(ln |f(z)|) + i d( arg f(z)).

But as we know, ln |f(z)| is uniquely defined in G and the integral along the
contour ∂G of d ln |f(z)| is zero, so that only the argument of f contributes to the
value of the integral. Then the theorem’s statement can be rewritten in the form:

1
2π

∫
∂G

d arg f(z) = n(0, f) − n(∞, f).

Proof. The logarithmic derivative of the function f is holomorphic in G and continuous in
G up to the finitely many zeros and poles, which we denote by a1, . . . , an, resp. b1, . . . , bm.
As usual we exclude these points from G by sufficiently small disks of radius ε. Now we
can apply Cauchy’s integral theorem to the remaining domain and get∫

∂G

f ′(z)

f(z)
dz =

n∑
j=1

∫
|z−aj |=ε

f ′(z)

f(z)
dz +

m∑
k=1

∫
|z−bk|=ε

f ′(z)

f(z)
dz.

The integrals along the small disks are the residues of f ′/f at the corresponding points.
We then get:

Let f have a zero at aj of order pj and let g be the corresponding holomorphic function
with g(aj) �= 0 and

f(z) = (z − aj)
pj g(z), f ′(z) = pj(z − aj)

pj−1g(z) + (z − aj)
pj g′(z);
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thus
f ′(z)

f(z)
=

pj

z − aj
+

g′(z)

g(z)
.

As a result f ′/f has a simple pole at aj with the residue pj . Similarly for a pole in bk of
order qk we get the residue −qk. Finally we have the desired result

1

2πi

∫
∂G

f ′(z)

f(z)
dz =

n∑
j=1

pj −
m∑

k=1

qk.

�

We conclude this section with a theorem of the French mathematician E. Rouché
(1832–1910), which allows us to compare the number of zeros of two functions:

Theorem 12.41 (Rouché’s theorem). Let the domain G be finitely connected with
a piecewise smooth boundary. Let f and g be holomorphic in G and continuous in
G. In addition let f be different from zero on ∂G and let us assume on ∂G,

|g(z)| < |f(z)|.

Then the functions f and f + g have the same number of zeros in G.
Proof. The function f + λg is different from zero on ∂G for 0 ≤ λ ≤ 1. Then

n(0, f + λg) =
1

2πi

∫
∂G

f ′(z) + λg′(z)

f(z) + λg(z)
dz

gives the number of zeros of f + λg. The integral is continuous in λ and is an integer,
thus it must be constant for all λ, 0 ≤ λ ≤ 1. The integral values for λ = 0 und λ = 1
give the assertion

n(0, f) = n(0, f + g). �

12.3.3 Residue theorem in C�(n)

In this section we can proceed in a parallel way as done in C, but only in the case
of isolated singularities. The theory referring to higher dimensional singularities
needs to be refined, maybe with the general theories of J. Leray [89] and F.
Norguet [112].
First we define:

Definition 12.42 (Residue). Let the left-holomorphic function f have a pole or an
essential singularity at the point a and let it have the Laurent series

f(x) =
∞∑

k=0

∑
|k|=k

Pk(x − a)ak +
∞∑

k=0

∑
|k|=k

Qk(x − a)bk

in 0 < |x − a| < R. We then call the coefficient

b0 =
1
σn

∫
|x−a|=ρ

dx∗f(x) =: Res(f, a)
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the residue of f at the point a. The radius ρ can be chosen arbitrarily between 0
and R.

In the case of a right-holomorphic function f , the residue is defined by

b0 =
1
σn

∫
|x−a|=ρ

f(x)dx∗ =: Res(f, a).

In the following we restrict ourselves to the left-holomorphic case, as the right-
holomorphic case presents no serious differences. As in the plane we have the

Theorem 12.43 (Residue theorem). Let G be a domain in Rn+1 with a suffi-
ciently smooth boundary manifold. Let the function f be continuous in G and
left-holomorphic in G apart from finitely many isolated singularities a1, . . . , am.
We then have ∫

∂G

dx∗f(x) = σn

m∑
k=1

Res(f, ak).

We omit the proof, as it is similar to the proof in C.
We can also define the residue at x = ∞ as in C:

Definition 12.44. If f is left-holomorphic for |x| > R, we define

Res(f,∞) := − 1
σn

∫
|x|=ρ

dx∗f(x)

to be the residue of f at the point x = ∞. In the formula we can choose ρ > R
arbitrarily.

The resulting lemma is also the same as in C:

Proposition 12.45. Let f be left-holomorphic in Rn+1 apart from finitely many
points a1, ..., am ∈ Rn+1. We then have

m∑
k=1

Res(f, ak) + Res(f,∞) = 0.

We also omit this proof, as it is nearly literally the same as in C. Interestingly
enough is the fact that there is also a parallel in calculating the residue at poles
according to Proposition 12.32:

Proposition 12.46 (Calculation of residues at poles). If the left-holomorphic func-
tion f has a pole of order m + n at a, then

Res(f, a) =
1
m!

lim
r→0

∂m
r rm+nωf(x)

holds, where r := |x − a| and ω := (x − a)/r.
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Proof. For simplicity of notation we set a = 0. The Laurent series of f in its Taylor part
is composed of terms like

Pk(x)ak = rkPk(ω)ak,

where k := |k| ≥ 0. As terms depending on ω will not be affected by differentiation with
respect to r, it follows that

1

m!
∂m

r rm+nωPk(x)ak =
1

m!

(
∂m

r rm+n+k
)

ωPk(ω)ak → 0

with r → 0, because a factor rn+k → 0 remains after differentiation.

The first singular term Q0(x)b0 becomes

ωQk(x)b0 =
ωω

rn
b0 =

b0
rn

in view of ωω = 1, and thus we find as requested

1

m!
∂m

r rm+nωQ0(x)b0 =
1

m!
∂m

r rmb0 = b0.

We apply Proposition 7.27 to the further singular terms Qk(x)bk and get

Qk(x) =
qk(x)

rn+2k+1
=

qk(ω)

rn+k
.

We obtain the expression (we have m ≥ k ≥ 1)

1

m!
∂m

r rm−kωqk(ω)bk.

The differentiation of this term gives zero since m − k < m; thus the limit is 0. �

12.3.4 Argument principle in C�(n)

Also in this section we can proceed for many steps in a parallel way as in C, but
some questions are still left open. In particular we consider only the dimensions
0 and n, although there are theories for the dimensions in between. In this case
we would have to deal with differential forms of corresponding degree. We do not
want to consider this case and refer the reader to [33] and [138]. At first we define

Definition 12.47 (Index, winding number). Let M be an n-dimensional closed
sufficiently smooth manifold in Rn+1 with x �∈ M . Then we call

I(M, x) :=
1
σn

∫
M

dy∗Q0(y − x) =
1
σn

∫
M

Q0(y − x)dy∗

the (Kronecker) index or the winding number of the manifold M with respect to
the point x.

First we formulate the following proposition:
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Proposition 12.48. We have

d{g(dxi ∧ dx)∗f} = −{(∂ig)dx∗f + gdx∗(∂if)} + {(g∂)dx∗
i f + gdx∗

i (∂f)}.

The proof is a simple calculation and is left as Exercise 12.5.9. In addition we
have:

Proposition 12.49 (Integer index). (i) The index of a sufficiently smooth
n-dimensional manifold M with respect to a point x �∈ M is an integer.

(ii) The index is locally constant, i.e., in every subdomain of Rn+1 \ M it is a
constant.

First some remarks: We have shown in Example A.2.17 c), that

dy∗ = ν|do|

with the normal vector ν. As we shall prove that the index is an integer, it follows
that

I(M, x) =
1
σn

∫
M

ν · (y − x)
|y − x|n+1

|do|

with the dot-product between the quantities ν and y − x understood as vectors.
We recognize that this is the Kronecker index in topology, which is the number of
windings of the manifold M around the point x.

Proof. (i) The correlation of both specified forms of the index results from changing
to a parametric representation as in the previous remark because the dot-product is
commutative.

If x �∈ M then I(M,x) is a right- and left-holomorphic function, because the integrand
is differentiable. We use at the moment the right holomorphic form

I(M,x) =
1

σn

∫
M

dy∗Q0(y − x).

This form can be expanded in a Laurent series for |x| > R with a large enough R:

I(M, x) =
∞∑

k=0

∑
|k|=k

akPk(x) +
∞∑

k=0

∑
|k|=k

bkQk(x),

where
ak =

1

σn

∫
|u|=ρ

I(M,u)du∗Qk(u), bk =
1

σn

∫
|u|=ρ

I(M, u)du∗Pk(u).

According to Example A.2.17 c) we have du∗ = ρnν|do1|, where ν is the outer unit normal
vector and |do1| is the surface element of the unit ball. Furthermore let u = ρω, so that
with k = |k|,

Pk(u) = ρkPk(ω), Qk(u) =
1

ρk+n
qk(ω)
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holds. As a consequence with a suitable constant C we have

|ak| ≤
C

ρn
ρn 1

ρk+n
→ 0

as ρ → ∞. Thus we get ak = 0 for all k, as the coefficients do not depend on ρ.

We use the Fubini theorem to prove that also the bk vanish:

bk =
1

σ2
n

∫
M

dy∗
∫

|u|=ρ

Q0(y − u)du∗Pk(u).

Using Cauchy’s integral formula we get

bk = − 1

σn

∫
M

dy∗Pk(y).

From the properties of the Fueter polynomials of Theorem 6.2 (ii) we have

∂nPk+εεεn(y) = (kn + 1)Pk(y),

where εεεn is a multiindex, which has only a 1 in the n-th place and else zeros. We apply
Proposition 12.48 and Stokes’ Theorem A.2.18 to the formula

bk = − 1

(kn + 1)σn

∫
M

dy∗∂nPk+εεεn(y),

where we have to set g = 1, f = Pk+εεεn and i = n in Proposition 12.48. So we get

0 =

∫
∂M

(dyn ∧ dy)∗f(y) = −
∫
M

dy∗∂nf(y) = bk,

where the 0 arises from ∂M = ∅. Hence I(M, x) vanishes outside M . I(M,x) is an integer
also in the other subdomains of Rn+1 \M , because the value changes only by an integer
while crossing M .

The latter is obtained as follows: Let K be a sufficiently small ball with the center at
a regular point of M , then K is divided into two domains K1 and K2. The boundaries
of K1 and K2 are given by ∂K1 = ∂K01 + M0 and ∂K2 = ∂K02 − M0, where M0 is
the intersection between K and M and the numbering is properly chosen. According to
Cauchy’s integral formula we have

1

σn

∫
∂K1

dy∗Q000(y − x) = 1,

where x ∈ K1. So we get

I(M,x) =
1

σn

∫
M

dy∗Q0(y − x) = 1 +

⎛⎜⎝ ∫
M\M0

−
∫

∂K01

⎞⎟⎠ dy∗Q0(y − x).
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The right-hand side of the formula is right-holomorphic in K; if the index in K1 is
constant, then it must be constant in K according to the identity Theorem 9.27. The
index changes by the calculated value 1 while crossing M or by another integer number,
if M0 has to be counted several times.

(ii) It was proved just now, that the index is an integer, so it has to be constant in each
subdomain of the complement of M . �

Now we could define the interior and exterior of a manifold in a way similar to
the plane, but we will not do this. We could also develop the n-th homology group
with this index, but this is also not done here.

We point out further parallels to the plane, which are partly conjectures for which
a proof is missing. We conjecture the theorem.

Theorem 12.50 (Extended Cauchy’s integral theorem). Let the function f be left
holomorphic in a domain G ⊂ Rn+1. In addition let M ⊂ G be an n-dimensional
closed sufficiently smooth manifold, i.e., with no boundary. Then both

(i) the Cauchy integral theorem, ∫
M

dy∗f(y) = 0,

(ii) and the Cauchy integral formula (x ∈ G \ M),

I(M, x) f(x) =
1
σn

∫
M

Q0(y − x)dy∗f(y),

hold.

An argument principle as in C is not known in C�(n). An approach is given in the
definition of the order of a zero in Corollary 12.10. But to prove the step from this
formula to an argument principle will be a hard job. The inclusion of poles is not
possible at the present state of the theory, as no integral formula is available for
calculating the order of a pole.

12.4 Calculation of real integrals

Real integrals of the form ∫ b

a

f(x)dx

can often be calculated with the help of the residue theorem. Therefore we want
to give some hints and examples. The interval [a, b] can be finite or infinite, at
first we assume that it is finite. Now a Jordan curve Γ′ in the upper half-plane is
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added to the interval, so that a closed curve Γ = [a, b] + Γ′ arises, which bounds
the domain G. Let the function f be meromorphically continuable in G∪Γ′, then

∫
Γ

f(z)dz =

b∫
a

f(x)dx +
∫
Γ′

f(z)dz = 2πi
∑

k

Res(f, ak)

holds, where the sum includes all residues of f in G. The basis of all the fol-
lowing calculation is the next proposition, named after the french mathematician
Camille Jordan (1838–1922).

Proposition 12.51 (Jordan’s lemma). Let a be fixed and let (CRn) be a sequence
of arcs CRn := {z : |z| = Rn, Im z > −a} with Rn → ∞. Let the function f be
defined on all arcs CRn and let it converge for n → ∞ uniformly to zero. Then for
an arbitrary λ > 0,

lim
n→∞

∫
CRn

f(z)eiλzdz = 0

holds.

Proof. Let M(Rn) := max
z∈CRn

|f(z)| and assume at first a > 0. According to Figure 12.1

we see that αn = arcsin(a/Rn) is the angle between the segment connecting the origin
with A and the positive real axis. As (1/x) arcsin x → 1 for x → 0, the equation Rnαn =
a(Rn/a) arcsin(a/Rn) → a for n → ∞ holds. According to the figure we get the estimate

|eiλz| = e−λy ≤ eaλ

for the arcs Γ1 from A to B and Γ4 from D to E. From the latter it follows that∣∣∣∣∣∣∣
∫
Γj

f(z)eiλzdz

∣∣∣∣∣∣∣ ≤ M(Rn)eaλαnRn, j = 1, 4,

since αnRn is the length of the arcs. This term converges to zero, as M(Rn) converges
to zero and αnRn is bounded by assumption.

We use the known estimate
sin ϕ ≥ 2

π
ϕ

on the arc Γ2 from B to C and get

|eiλz| = e−λRn sin ϕ ≤ exp

(
−2λRn

π
ϕ

)
.

We then have∣∣∣∣∣∣
∫
Γ2

f(z)eiλzdz

∣∣∣∣∣∣ ≤ M(Rn)Rn

π/2∫
0

exp

(
−2λRn

π
ϕ

)
dϕ = M(Rn)

π

2λ
(1 − e−λRn).
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D

C

Re

Im

Γ1

Γ2
Γ3

Γ4

Rn

−a

Figure 12.1

This integral converges to zero as M(Rn) converges to zero. The integral along the arc
Γ3 from C to D is treated similarly. So the lemma is proven in the case of positive a.
In the case of negative a the proof simplifies and only the arcs Γ2 and Γ3 have to be
considered, but this has already been proven. �

The sequence of arcs CRn can be replaced by a system of arcs CR with a real
parameter R → ∞ without changing the proof. We then have

lim
R→∞

∫
CR

f(z)eiλzdz = 0.

Let us consider some examples:

Example 12.52. This example is due to the French mathematician Pierre Simon
Laplace (1749–1827), whom we shall meet many times again. We will calculate
the following integral:

I :=

∞∫
0

cos x

x2 + c2
dx, c ∈ R.

We continue the integrand into the complex plane by

F (z) :=
eiz

z2 + c2
.

We have to choose λ = 1 and f(z) = 1/(z2 + c2) to apply Jordan’s lemma. In
particular we have for |z| = R,

|f(z)| ≤ 1
R2 − c2

,

and this term converges to zero independently of the argument of z for R → ∞. If
we choose a = 0 in the Jordan lemma, then CR is the arc of the half-circle around
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zero with radius R in the upper half-plane. Jordan’s lemma gives∫
CR

f(z)dz =
∫

CR

1
z2 + c2

eizdz → 0

for R → ∞. We now apply the residue theorem to the upper half-circle:

R∫
−R

eix

x2 + c2
dx +

∫
CR

eiz

z2 + c2
dz = 2πi Res(F, ci) = 2πi

e−c

2ci
=

π

c
e−c.

We have to consider that obviously the only pole is ic in the upper half-plane and
z2 + c2 = (z − ic)(z + ic). Finally for R → ∞ we get

∞∫
−∞

eix

x2 + c2
dx =

π

c
e−c.

Then we have to split the integral into real and imaginary parts

∞∫
−∞

cos x

x2 + c2
dx =

π

c
e−c,

∞∫
−∞

sin x

x2 + c2
dx = 0,

where the last integral follows noticing that sine is an odd function. As cosine is
an even function, we get finally for the required integral

I =
π

2c
e−c.

Example 12.53. This example dates back to Euler in 1781. We need to evaluate
the integral

I :=

∞∫
0

sin x

x
dx.

We use as continuation into the complex plane

F (z) =
eiz

z
.

This function has a simple pole at the origin. To apply Jordan’s lemma we have
to take f(z) = 1/z with a = 0 and λ = 1. We go around the pole at the origin, as
it is located on the path of integration, by integrating along a small half circle Cε

with radius ε in the upper half-plane:
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−R R

Re

Im

ε−ε

CR

Cε

Figure 12.2

We apply Cauchy’s integral theorem to the two arcs CR, Cε and the two intervals
[−R,−ε], [ε, R], (∫ −ε

−R

−
∫

Cε

+
∫ R

ε

+
∫

CR

)
eiz

z
dz = 0.

Because of |f(z)| = 1/R → 0 on CR, Jordan’s lemma yields

lim
R→∞

∫
CR

eiz

z
dz = 0.

We still have to find an estimate for the integral along the arc Cε. In the neigh-
borhood of the origin the equation

F (z) =
1
z

+ P (z), P (z) =
eiz − 1

z

holds, where |P (z)| ≤ K with a suitable constant K. The arc Cε is parameterized
by z = εeit, 0 ≤ t ≤ π, so that we finally get (cf. Theorem 7.13)∫

Cε

f(z)dz =
∫
Cε

dz

z
+
∫
Cε

P (z)dz = −πi + O(ε)

and that is the same as

lim
ε→0

(∫ −ε

−∞
+
∫ ∞

ε

)
eix

x
dx = πi.

If in the first integral of the above formula we substitute x′ := −x, it follows that
∞∫
0

eix − e−ix

x
dx = πi,
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where the integral is a proper integral, but it does not converge absolutely. Finally
we get

∞∫
0

sin x

x
dx =

π

2
.

Example 12.54. We consider a whole class of real integrals which have the form
2π∫
0

R(cos t, sin t)dt.

Here R(x, y) is a rational function of two variables, i.e., a ratio of two polynomials
in x and y with the additional assumption that R(cos t, sin t) is finite for all t. If t
runs through the interval [0, 2π], then z = eit moves along the unit circle. In view
of

cos t =
1
2
(eit + e−it), sin t =

1
2i

(eit − e−it)

we get
2π∫
0

R(cos t, sin t)dt =
1
i

∫
|z|=1

R

(
1
2
(z + z−1),

1
2i

(z − z−1)
)

dz

z
.

Now the integrand is a rational function F (z) and by the residue theorem we have
2π∫
0

R(cos t, sin t)dt = 2π
∑

k

Res(F, ak),

where the sum is taken over all residues of F in |z| < 1. As a specific example let
us consider the integrand

R(cos t, sin t) =
1

1 + 3 sin2 t
.

Here we get

F (z) =
1
z

[
1

1 + −3
4 (z − z−1)2

]
=

−4z

3(z2 − 3)(z + 1√
3
)(z − 1√

3
)
.

In the unit circle the integrand has only the two poles 1/
√

3 and −1/
√

3 with the
residues

Res(F,
1√
3
) =

1
4
, Res(F,

−1√
3
) =

1
4
.

We thus find the required integral
2π∫
0

dt

1 + 3 sin2 t
= π.
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12.5 Exercises

1. Show that the order k of a root of a holomorphic function f at a point a is
given by the formula

k =
1

2πi

∫
γ

f ′(z)
f(z)

dz,

where γ is a simple closed curve, in which no other root of f lies. For γ a
circle centered at a with a small enough radius can be chosen.

2. Show that the convergence of the series
∑

log (1+an) follows from the conver-
gence of the infinite product

∏
(1+ an). The principal value of the logarithm

has to be taken.

3. Show that ∏(
1 − z

c + n

)
ez/n

converges for all c ∈ C and n = 1, 2, . . ., if the constant c is a non-negative
integer.

4. Find the isolated singularities of

cot z =
cos z

sin z
,

and calculate the residues. Determine the first five coefficients of the Laurent
series around the point z = 0.

5. Describe the missing steps in Example 12.21, i.e., show the equation

π2

sin2 πz
=

∞∑
n=−∞

1
(z − n)2

.

6. Prove the equation

π cot πz =
1
z

+ 2
∞∑

n=1

z

z2 − n2
.

7. Prove Riemann–Fueter’s Theorem 12.23 on removable singularities: Let f
be a holomorphic function in 0 < |x − a| < R and let f have a removable
singularity at a. Then a value a0 exists so that the extended function with

f̃(x) =
{

f(x), 0 < |x − a| < R,
a0, x = a

is holomorphic in BR(a).
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8. Prove Mittag-Leffler’s Theorem 12.26 in C�(n): For given ak with |ak| ≤
|ak+1| → ∞ and given principal parts Hk(x) at the ak holomorphic polyno-
mials Pk(x) exist, so that the series

f(x) :=
∞∑

k=1

(Hk(x) − Pk(x))

is a meromorphic function in Rn+1 with poles ak and principal parts Hk(x).

9. Prove

d{g(dxi ∧ dx)∗f} = −{(∂ig)dx∗f + gdx∗(∂if)} + {(g∂)dx∗
i f + gdx∗

i (∂f)

(cf. Proposition 12.48).

10. Let R(x) be a rational function with no poles on the real axis. In addition
let R(x) vanish of order 2 for x → ∞, i.e., let x2|R(x)| be bounded. Map the
complex z-plane with

w =
z − i

z + i

to the w-plane. Determine the inverse mapping and the integral

I =

∞∫
−∞

R(x)dx

by applying the mapping. By which residues can the integral be described?
Apply this procedure to the example

R(x) =
1

1 + x2
.

11. Determine the value of the integral

I =
∫

|z+2|=4

dz

(z − 1)(z + 1)(z + i)
.

12. Calculate ∞∫
0

dx

1 + x4
.

13. Calculate Fresnel’s integrals:
∞∫
0

cos(x2)dx =

∞∫
0

sin(x2)dx =
√

π

8
.
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13 Special functions

13.1 Euler’s Gamma function
13.1.1 Definition and functional equation

In this section we present and examine the first non-elementary function in C,
namely Euler’s Gamma function also called Euler’s integral of second kind. This
function was studied by Euler for the first time in 1764. His goal was to find an
interpolation of the factorial function.

Definition 13.1 (Gamma function). The function given by the integral

Γ(z) =
∫ ∞

0

tz−1e−tdt,

where Re z > 0, is called the Gamma function.

In the integral the power with complex exponent is defined by

tz−1 := e(z−1) ln t,

since the basis is real. This power is a uniquely defined holomorphic function with
respect to z. We keep this definition in mind for the following similar integrals. Of
course we have to think about the convergence of the integral: Owing to |tz−1| =
tx−1 and the e-function e−t, the convergence is obtained for t → ∞ for all x. The
lower boundary causes bigger difficulties: As in this case e−t → 1 for t → 0 only
the factor tx−1 is important in the integrand. So the integral converges for x > 0
and the definition is usable in the case x = Re z > 0.
Now we want to prove the first properties of Γ:

Theorem 13.2. (i) The integral in the definition of Γ(z) converges absolutely and
uniformly for 0 < ρ ≤ Re z ≤ R. As a consequence Γ is a holomorphic
function for Re z > 0 and in particular it is positive for z = x > 0.

(ii) If Re z > 0, then the functional equation

Γ(z + 1) = z Γ(z)

holds. More generally for all n ∈ N we have

Γ(z + n) = z(z + 1)(z + 2) · · · (z + n − 1)Γ(z).

(iii) For all n ∈ N we have
Γ(n) = (n − 1)!.

Γ is defined as a holomorphic function in the right half-plane; the definition in the
left half-plane will be dealt with after the proof. Indeed the function Γ interpolates
the factorial function, as we will prove in (iii).
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Proof. (i) The equation∫ ∞

0

|tz−1|e−tdt ≤
∫ 1

0

tρ−1dt +

∫ ∞

1

tR−1e−tdt,

holds for ρ ≤ Re z ≤ R. In addition both integrals on the right-hand side converge
uniformly with respect to x since they are independent of x. According to Section 9.1 we
can differentiate under the integral and so Γ is a holomorphic function if Re z > 0. As
the integrand is positive for x > 0, Γ(x) is positive as well.
(ii) We integrate by parts

Γ(z + 1) =

∫ ∞

0

tze−tdt = lim
β→∞

−tze−t
∣∣β
t=0

+ z

∫ ∞

0

tz−1e−tdt = zΓ(z),

where Re z > 0. The general formula is obtained by induction on n.
(iii) The assertion results from (ii) by induction: Γ(n + 1) = nΓ(n) and considering

Γ(1) =

∫ ∞

0

e−tdt = lim
β→∞

−e−t
∣∣β
0

= 1.

�

Now we can continue Γ into the left half-plane:

Definition 13.3 (Gamma function). Let Γ(z) be defined by

Γ(z) :=
1

z(z + 1)(z + 2) · · · (z + n − 1)
Γ(z + n),

where 0 ≥ Re z > −n. As n ∈ N can be chosen arbitrarily this definition holds for
every point in C.

According to Definition 9.16 we have continued Γ holomorphically to every point of
the left half-plane except the negative integers. The identity theorem 9.15 implies
that such a continuation is uniquely determined, so that the above formula gives
the same value for different n.

Corollary 13.4. The function Γ is meromorphic in the whole complex plane C and
at the points zn = −n, n = 0, 1, 2, . . . , it has simple poles with the residues

Res(Γ(z), zn) =
(−1)n

n!
.

Γ has an essential singularity at the point z = ∞.
Proof. As Γ(z + n) is holomorphic if x > −n, so Γ(z) is also holomorphic except for the
zeros in the denominator at 0,−1,−2, . . . ,−(n − 1). Since n is taken arbitrarily, Γ(z) is
holomorphic for all z ∈ C apart from the poles at the non-positive integers. The poles
are simple according to the definition and so the residues can be calculated by

Res(Γ(z),−n) = lim
z→−n

(z + n)Γ(z)

= lim
z→−n

1

z(z + 1)...(z + n − 1)
Γ(z + n + 1) =

1

(−1)nn!
Γ(1).

As z = ∞ is an accumulation point of poles it is an essential singularity. �
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Γ(x)

x

40

−3

3

−4

Figure 13.1

We want to prove some — partly amazing — properties of Γ. A comprehensive
presentation is given in the “Bible” of classical analysis: Whittaker–Watson
[159]. We mostly proceed like E.C. Titchmarsh in his also classical book [155].
Before we prove functional equations a proposition follows:

Proposition 13.5 (Beta function). If Re z > 0, Re ζ > 0 the equation

B(z, ζ) :=
Γ(z)Γ(ζ)
Γ(z + ζ)

=
∫ ∞

0

uζ−1

(1 + u)z+ζ
du =

∫ 1

0

λz−1(1 − λ)ζ−1dλ

holds. The Beta function is also called Euler’s integral of first kind.

Proof. We can interchange the order of integration in the product

Γ(z)Γ(ζ) =

∫ ∞

0

tz−1e−tdt

∫ ∞

0

τ ζ−1e−τdτ,

for Re z > 0 and Re ζ > 0 in view of the absolute and local uniform convergence. First
we substitute τ = tu, dτ = tdu, then v = t(1 + u), dv = (1 + u)dt. This results in

Γ(z)Γ(ζ) =

∫ ∞

0

tz−1e−tdt

∫ ∞

0

tζuζ−1e−tudu

=

∫ ∞

0

uζ−1

(1 + u)z+ζ
du

∫ ∞

0

vz+ζ−1e−vdv

= Γ(z + ζ)

∫ ∞

0

uζ−1

(1 + u)z+ζ
du.
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The second integral in the lemma can be easily transformed by the substitution

λ =
1

1 + u
, u =

1 − λ

λ
, du = −dλ

λ2
. �

Theorem 13.6 (Legendre’s duplication formula). (i) We have Γ(1
2 ) =

√
π.

(ii) For all z ∈ C the Legendre’s duplication formula holds:

Γ(2z)Γ( 1
2 ) = 22z−1Γ(z)Γ(z + 1

2 ).

The value of Γ(1
2 ) is already amazing, because nothing in the defining integral

indicates the connection to π. The formula was discovered by the French mathe-
matician Adrien-Marie Legendre (1751–1833).

Proof. (i) We set z = ζ = 1
2

in Proposition 13.5 and get

Γ2( 1
2 ) = Γ(1)

∫ ∞

0

du√
u(1 + u)

= 2 arctan
√

u
∣∣∞
0

= π.

This gives the assertion since Γ( 1
2 ) > 0.

(ii) Now we set z = ζ in Proposition 13.5 and get

Γ2(z)

Γ(2z)
=

∫ 1

0

λz−1(1 − λ)z−1dλ = 2

∫ 1/2

0

λz−1(1 − λ)z−1dλ ,

where the last equality holds because of the symmetry around λ = 1/2. If we substitute

λ =
1

2
− 1

2

√
t, λ(1 − λ) =

1

4
(1 − t), dλ = −1

4

dt√
t

,

then according to Proposition 13.5 we get

Γ2(z)

Γ(2z)
= 21−2z

∫ 1

0

(1 − t)z−1 dt√
t

= 21−2z Γ(z)Γ( 1
2 )

Γ(z + 1
2 )

,

which is what we wanted. But we remark that the proof makes the assumption Re z > 0.
However, in view of the identity theorem the functional equation holds in the whole
domain of the function Γ, in our case C \ {0,−1,−2, . . .}. �

Another amazing functional equation is the following, whose proof is a good ap-
plication of the residue theorem:

Theorem 13.7. For all z ∈ C we have the functional equation

Γ(z)Γ(1 − z) =
π

sin πz
.

Proof. We set ζ = 1 − z in Proposition 13.5 and obtain

Γ(z)Γ(1 − z) =

∫ ∞

0

u−z

1 + u
du.
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First we restrict our considerations to real z = x where 0 < x < 1. We then calculate
the integral along the following path γ: We go along the real axis from u = ρ to u = R,
then along the circle |u| = R in the positive direction to u = R, from there to u = ρ and
finally back along the circle |u| = ρ in negative direction to u = ρ. The problem here is
the argument of the complex u: If we start on the real axis with arg u = 0, we then reach
arg u = 2π after going around |u| = R. We have to pay attention to this while calculating
the second integral. The closed integral is evaluated by the residue theorem, where we
have to take into account the simple pole at −1 with the residue (−1)−x = e−iπx:

2πi e−iπx =

∫
γ

u−xdu

1 + u

=

∫ R

ρ

e−x ln tdt

1 + t
+

∫ ρ

R

e−x(ln t+2πi)dt

1 + t

+i

∫ 2π

0

R1−xe−i(x−1)ϕdϕ

1 + Reiϕ
+ i

∫ 0

2π

ρ1−xe−i(x−1)ϕdϕ

1 + ρeiϕ

= (1 − e−2πix)

∫ R

ρ

t−xdt

1 + t
+ I3 + I4.

I3 is the integral along the circle with radius R and I4 the integral along the circle with
radius ρ. Both integrals converge to 0 for R → ∞, respectively ρ → 0, and we have for
I3,

|I3| ≤
∫ 2π

0

R1−xdϕ

R − 1
≤ 2π

R1−x

R − 1
.

The last quotient converges to zero since 0 < x < 1 and R → ∞. With a similar
estimation we can prove I4 → 0 for ρ → 0. The remaining formula

2πi e−iπx = (1 − e−2πix)

∫ ∞

0

t−xdt

1 + t
= (1 − e−2πix)Γ(x)Γ(1− x)

is equivalent to
Γ(x)Γ(1− x) =

π

sin πx
.

This equation is now proven on the line segment 0 < Re z < 1. As both sides of the
equation are holomorphic functions (apart from the poles) and the line segment is a set
with accumulation points, the equation holds then in the whole plane. �

13.1.2 Stirling’s theorem

We want to prove another important property of the Gamma function, which de-
scribes the behavior for Re z → ∞. The Scottish mathematician James Stirling
(1692–1770) discovered this property. We want to avoid too long a proof and so
first we prove some propositions:

Proposition 13.8. For Re z > 0 the formula

log Γ(z) = −γz − log z +
∞∑

n=1

( z

n
− log

(
1 +

z

n

))
,
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holds, where γ is the so called Euler–Mascheroni constant

γ := lim
N→∞

(
1 +

1
2

+ · · · + 1
N

− log N

)
= 0, 5772157 . . . .

Proof. We apply again Proposition 13.5, but this time to z − h and h, where we assume
Re z > 1. We have

Γ(z − h)Γ(h)

Γ(z)
=

∫ 1

0

th−1(1 − t)z−h−1dt.

We expand both sides with respect to h and compare the coefficients of h0 = 1, where h
is real and 0 < h < x. On the left side we obtain

1

Γ(z)

(
Γ(z) − hΓ′(z) + · · ·

) ( 1

h
− a0 + · · ·

)
=

1

h
− Γ′(z)

Γ(z)
− a0 + · · · ,

where −a0 is the corresponding coefficient of the Laurent series of Γ(h) around h = 0.
On the right-hand side we get

th

h

∣∣∣∣1
t=0

+

∫ 1

0

th−1[(1 − t)z−h−1 − 1]dt =
1

h
+

∫ 1

0

[(1 − t)z−1 − 1]
dt

t
+ o(1),

where the −1 in the square brackets is a term providing convergence for t = 0. Further-
more the right integral equals just the first integral above if h = 0. So it follows

Γ′(z)

Γ(z)
=

∫ 1

0

[1 − (1 − t)z−1]
dt

t
− a0,

where we substitue
1

t
=

1

1 − (1 − t)
=

∞∑
n=0

(1 − t)n

and integrate termwise along the interval [ε, 1]. We then calculate the limit for ε → 0
and obtain

Γ′(z)

Γ(z)
=

∞∑
n=0

(
1

n + 1
− 1

n + z

)
− a0.

If we combine 1/(n + 1) with the term 1/(n + 1 + z), we obtain

Γ′(z)

Γ(z)
= −1

z
+

∞∑
n=1

(
1

n
− 1

n + z

)
− a0.

We integrate this equation along the line segment from c > 0 to z:

log Γ(z) − log Γ(c) − log c = − log z +
∞∑

n=1

(
z − c

n
− log

n + z

n + c

)
− a0(z − c),

where we use the principal values of the logarithms. As Γ(c) c = Γ(c + 1) → 1 for c → 0,
we obtain almost the final assertion:

log Γ(z) = −a0z − log z +
∞∑

n=1

( z

n
− log

(
1 +

z

n

))
.
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Finally we need only to determine a0 by setting z = 1 into the above equation,

a0 =

∞∑
n=1

(
1

n
− ln

(
1 +

1

n

))

= lim
N→∞

N∑
n=1

(
1

n
− ln(n + 1) + ln n

)
= lim

N→∞

(
N∑

n=1

1

n
− ln(N + 1)

)
=: γ,

where we can use ln N instead of ln(N +1) in view of ln(N +1)− ln N = ln(1+1/N) → 0
for N → ∞. �

Now the claim of this section:

Theorem 13.9 (Stirling’s theorem). If Re z > 0 and | arg z| ≤ π
2 − δ, δ > 0,

uniformly in z we have

log Γ(z) = (z − 1
2 ) log z − z + 1

2 ln 2π + R(z),

where the remainder is given by

R(z) =
∫ ∞

0

[t] − t + 1
2

t + z
dt = O

(
1
|z|

)
for z → ∞ and [t] denotes the largest integer ≤ t.

We still need an additional proposition for better structuring the proof. The first
part of the proposition is a kind of interpolation for Γ and the second is already
Stirling’s theorem, but in the case of integers.

Proposition 13.10. (i) For real c > 0 and real z = x > 0 we have

Γ(x + c) = Γ(x)xc

(
1 + O

(
1

xc+1

))
.

(ii) For all n ∈ N and n → ∞ we have

ln(n!) = ln Γ(n + 1) = (n + 1
2 ) ln n − n + ln

√
2π + O

(
1
n2

)
.

Proof. (i) First we assume c > 1. According to Proposition 13.5, which is a fundamental
result for the Gamma function, the equation

Γ(x)Γ(c)

Γ(x + c)
=

∫ 1

0

λx−1(1 − λ)c−1dλ,

holds. If we now substitute λ = e−t, dλ = −e−tdt, we then obtain

Γ(x)Γ(c)

Γ(x + c)
=

∫ ∞

0

e−tx(1 − e−t)c−1dt

=

∫ ∞

0

tc−1e−txdt −
∫ ∞

0

{tc−1 − (1 − e−t)c−1}e−xtdt

= x−cΓ(c) − R(c, x),
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where R(c, x) represents the last of both integrals. In view of 1 − e−t < t for t > 0 the
last integral is positive, and since 1 − e−t > t − t2/2 for 0 < t < 1 we have the estimate

R(c, x) ≤
∫ 1

0

{1 − (1 − t/2)c−1}tc−1e−xtdt +

∫ ∞

1

tc−1e−xtdt

≤ K

∫ 1

0

tce−xtdt +

∫ ∞

1

tce−xtdt ≤ K + 1

xc+1
Γ(c + 1),

where we used (1− t/2)c−1 ≥ 1−Kt for a suitable K. With a little more transformation,
assuming c ≤ 1, the assertion follows by the functional equation in Theorem 13.2 (ii).
(ii) The following lines can be interpreted by the Riemann–Stieltjes integral or by direct
calculation ([t] is again the biggest integer not greater than t):

ln(n!) =
n∑

k=1

ln k =

∫ n+

1−
ln t d[t] = [t] ln t|n+

1− −
∫ n

1

[t]

t
dt

= (n + 1
2 ) ln n − n + 1 −

∫ n

1

[t] − t + 1
2

t
dt.

The numerator of the remainder is written in such a special form in view of the following
property: With

Φ(t) :=

∫ t

1

([τ ] − τ + 1
2 )dτ,

we obtain ∫ m+1

m

([τ ] − τ + 1
2 )dτ = 0

and so Φ(n) = 0 for all n. For the remainder we thus get∫ n

1

Φ′(t)
t

dt =
Φ(t)

t

∣∣∣∣n
1

+

∫ n

1

Φ(t)

t2
dt =

∫ n

1

Φ(t)

t2
dt.

Hence the remainder is monotonically decreasing with respect to n and bounded. It
converges to −C + 1, where C is a constant and we obtain

ln(n!) = (n + 1
2 ) ln n − n + C + O

(
1

n2

)
.

For determining the constant C, we set z = n in Legendre’s duplication formula:

ln Γ(2n) + ln Γ( 1
2 ) = (2n − 1) ln 2 + ln Γ(n) = ln Γ(n + 1

2 )

or with the equation ln Γ(n + 1) = ln(n!) just proved

(2n − 1 + 1
2 ) ln(2n − 1) − (2n − 1) + C + ln

√
π

= (2n − 1) ln 2 + 2(n − 1
2 ) ln(n − 1) − 2(n − 1) + 2C + ln

√
n − 1 + o(1).

Comparing the constant terms results in

−1

2
ln 2 + ln

√
π + C = − ln 2 + 2C

and as a consequence
C = ln

√
2π. �
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Proof of the Stirling theorem. We obtain from the previous lemma

log Γ(z) = −γz − log z +
∞∑

n=1

( z

n
− log

(
1 +

z

n

))
.

Now we substitute the sum from 1 to ∞ by a sum from 1 to N and let N diverge to ∞.
If we add and subtract in the sum z ln N , then the sum vanishes partly with γ z and we
are left with

log Γ(z) = − log z + lim
N→∞

{
z ln N −

N∑
n=1

log
(
1 +

z

n

)}
.

Indicating by SN the term in braces we obtain

SN = z ln N + ln(N !) −
N∑

n=1

log(n + z). (∗)

We now evaluate the remainder given in the theorem between the limits 0 and N .

RN : =

∫ N

0

[t] − t + 1
2

t + z
dt = −N +

N−1∑
n=0

∫ n+1

n

n + z + 1
2

t + z
dt

= −N +

N−1∑
n=0

[
(n + z +

1

2
) log(n + 1 + z) − (n + z +

1

2
) log(n + z)

]
.

By adding and subtracting a 1 in the first bracket of the sum a telescoping sum is obtained
and we find

RN = −N − (z +
1

2
) log z + (N + z +

1

2
) log(N + z) −

N∑
n=1

log(n + z).

Substituting the latter into the formula for SN we then use Proposition 13.10 (ii) to
eliminate ln(N !):

SN= z ln N + ln(N !) + N + (z +
1

2
) log z − (N + z +

1

2
) log(N + z) + RN

=(z +
1

2
) log z − z log

(
1 +

z

N

)
− (N +

1

2
) log

(
1 +

z

N

)
+ ln

√
2π + RN + o(1).

We now let N → ∞ and obtain

lim
N→∞

SN = (z + 1
2 ) log z − z + ln

√
2π + R(z),

where R(z) is the remainder from the theorem. So the assertion is proven except for the
estimation of the remainder. In the proof of the previous proposition we have introduced
the function

Φ(t) =

∫ t

0

([τ ] − τ + 1
2 )dτ,

which vanishes at the natural numbers and oscillates between 0 and −1/8. We set

R(z) =

∫ ∞

0

Φ′(t)
t + z

dt =

∫ ∞

0

Φ(t)

(t + z)2
dt,
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and with z = reiϕ it follows that

|R(z)| ≤ 1

8

∫ ∞

0

dt

t2 + r2 + 2rt cos ϕ

≤ 1

8

∫ ∞

0

dt

t2 + r2 − 2tr cos δ

=
π

8r sin δ
,

where the last step is obtained by calculating the integral. �

13.2 Riemann’s Zeta function

13.2.1 Dirichlet series

We discuss the function class of Dirichlet series, before introducing another non-
elementary function in C, the Riemann Zeta function, which also belongs to this
class. The class of Dirichlet series contains some interesting functions.

Johann Peter Gustav Lejeune Dirichlet (1805–1859) had Wallonian an-
cestors who came from Verviers in Belgium. He studied in Paris in the years
1822–1826, received in 1827 an honorary doctorate by the University of Bonn
and, supported by Alexander von Humboldt, became privatdozent and pro-
fessor in Breslau. In 1829 he went to Berlin, where he became full professor in
1839. In 1855 he was appointed as the successor of Gauß in Göttingen. Not
only his pioneering scientific work in mathematics and mathematical physics
had essential influence in mathematics, but also his exemplary lectures were of
utmost importance. Among his students we find the well known mathemati-
cians B. Riemann, E.E. Kummer, L. Kronecker, G. Eisenstein and R.
Dedekind.

Definition 13.11 (Dirichlet series). A series of the form∑ an

nz

is called a Dirichlet series, where an, z ∈ C and n ∈ N.

For Dirichlet series the notation s = σ + it is often used instead of z, but we do
not want to have too much notation. The slightly more general type of series,∑

ane−λnz, λn ∈ C,

called generalized Dirichlet series, is also sometimes considered. We have to study
the convergence behavior:

Theorem 13.12 (Convergence abscissa). If the Dirichlet series converges at z0,
then it is uniformly convergent in the angular sector

| arg(z − z0)| ≤
π

2
− δ,
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where δ can be arbitrarily chosen in 0 < δ < π/2. Thus a Dirichlet series possesses
a convergence abscissa

xc := inf{x :
∑

ann−z convergent in z = x + iy},

so that the series converges and becomes a holomorphic function if Re z > xc.

Proof. With the transformations a′
n := ann−z0 and z′ := z − z0 we can transform the

convergence point into the origin. Then the series
∑

an converges; let us set

Rn :=

∞∑
k=n+1

ak.

We have Rn → 0 for n → ∞, and for x > 0 we obtain

N∑
n=M

an

nz
=

N∑
n=M

Rn−1 − Rn

nz
=

N∑
n=M

Rn

(
1

(n + 1)z
− 1

nz

)
+

RM−1

Mz
− RN

(N + 1)z
.

In view of∣∣∣∣ 1

(n + 1)z
− 1

nz

∣∣∣∣ = ∣∣∣∣z ∫ n+1

n

dt

tz+1

∣∣∣∣ ≤ |z|
∫ n+1

n

dt

tx+1
=

|z|
x

(
1

nx
− 1

(n + 1)x

)

and as |Rn| ≤ ε for n > M − 1 is independent of z, it follows that∣∣∣∣∣
N∑

n=M

an

nz

∣∣∣∣∣ ≤ ε|z|
x

N∑
n=M

(
1

nx
− 1

(n + 1)x

)
+

ε

Mx
+

ε

(N + 1)x
≤ ε|z|

x

2

Mx
≤ 2ε|z|

x
.

Finally we have
|z|
x

=

√
1 +

y2

x2
=

1

| cos ϕ| ≤
1

sin δ

since |ϕ| ≤ π
2
− δ, and from this the statement of the theorem∣∣∣∣∣

N∑
n=M

an

nz

∣∣∣∣∣ ≤ 2ε

sin δ
.

If xc is the convergence abscissa defined in the theorem, then there is a point z0 at which
the series converges and x0 = Re z0 is arbitrarily close to xc. According to the first part
of the proof, the series is a holomorphic function in the half-plane x > x0 (as δ can be
chosen arbitrarily small), and so the series is also a holomorphic function in the half-plane
x > xc. �

Things are similar but easier in the case of absolute convergence.

Proposition 13.13 (Absolute convergence). The domain in which the Dirichlet
series converges absolutely is also a half-plane (which can degenerate into the whole
plane or the empty set), given by

x > xa := inf{x :
∑

|an|n−x is convergent}.
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Proof. Since n−x decreases as x increases, the convergence at a point x0 results in the
convergence at all points x > x0. As xa (as well as xc) can be +∞ or −∞, the half-
plane in which convergence occurs can degenerate into the empty set or into the whole
plane. �

The following example shows that xa and xc need not be equal: From analysis it
is known that ∑ (−1)n+1

nx

is absolutely convergent, if x > 1, but according to the Leibniz criterion (the terms
have alternating signs and the absolute value converges monotonically to 0) the
series converges for x > 0, so xc = 0 < 1 = xa really holds.

13.2.2 Riemann’s Zeta function

The most known Dirichlet series is the Riemann Zeta function:

Definition 13.14 (Riemann’s Zeta function). The series

ζ(z) =
∞∑

n=1

1
nz

.

is called Riemann’s Zeta function.

The series has the convergence abscissas xc = xa = 1, because it converges abso-
lutely for x > 1 and at z = 1 it diverges as it becomes the harmonic series. There
is an extensive theory about the Zeta function and also many books on this topic.
We give a short presentation.

Theorem 13.15 (Euler’s product formula). In the half-space Re z > 1,

ζ(z) =
∏
p

(
1 − 1

pz

)−1

holds, where the product ranges over all primes p.

Infinite products are defined and described explicitly in Definition 12.4 and Propo-
sition 12.5. The convergence is given by the existence of

lim
N→∞

∏
p≤N

(
1 − 1

pz

)−1

,

where the limit should not be zero.

Proof. Let N > 0 be a natural number and define the product∏
N

:=
∏

p≤N

(
1 − 1

pz

)−1

=
∏

p≤N

(
1 +

1

pz
+

1

p2z
+ · · ·

)
.
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Expanding these finitely many terms leads to∏
N

= 1 +
∑′ 1

nz
,

where the sum ranges over all natural numbers, which can be represented as the product
of powers of primes p ≤ N . The latter are at least all natural numbers ≤ N and so we
obtain ∣∣∣∣∣∏N

−
N∑

n=1

1

nz

∣∣∣∣∣ ≤
∞∑

n=N+1

1

nx
.

If N → ∞, then the right side converges to 0 and the sum in the absolute value to
ζ(z). �

This theorem points out the connection of ζ(z) with the primes. Unfortunately we
can not explore this relation in this book. But we want to hint at the prime number
theorem, which gives the number of primes ≤ N and can be shown with the help of
the statement that ζ(z) has no zero for Re z ≥ 1. Already Euler’s product formula
shows that ζ(z) has no zero for x > 1. The following functional equation is also
an important statement, and shows in addition that ζ(z) can holomorphically be
continued into the whole plane except for one simple pole at z = 1.

Theorem 13.16 (Functional equation). The Riemann Zeta function ζ(z) can mero-
morphically be expanded into the whole plane and has a simple pole at z = 1 with
residue 1. Furthermore ζ(z) satisfies the functional equation

ζ(1 − z) = 21−zπ−z cos
πz

2
Γ(z)ζ(z).

Proof. If x = Re z > 1 from

Γ(z)
1

nz
=

∫ ∞

0

( τ

n

)z−1

e−τ dτ

n
=

∫ ∞

0

tz−1e−ntdt,

we have

Γ(z)ζ(z) =

∫ ∞

0

tz−1
∞∑

n=1

e−nt dt =

∫ ∞

0

tz−1

et − 1
dt. (∗)

We consider the integral

J(z) :=

∫
C

(−u)z−1

eu − 1
du,

where C is the curve along the real axis from ∞ to δ with 0 < δ < 1 and then along
the positive circle with radius δ around 0 and back along the real axis from δ to ∞.
This integral converges locally uniformly in the z-plane, because the convergence at ∞
is ensured by the e-function. So J is a holomorphic function.

The problem of (−u)z−1 = e(z−1) log (−u) being a multivalued function is solved by stating
that log(−u) for u = −δ should be a real number. If u = teiϕ, then −π has to be chosen
as argument of log(−u) on the integral from ∞ to δ, because after a half positive circle
around zero to u = −δ we find the argument to be 0. As a result the argument on the
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integral from δ to ∞ is π. Combining these integrals along the real axis and remarking
that sin π(z − 1) = − sin πz results in∫ ∞

δ

(
−e(z−1)(ln t−iπ) + e(z−1)(ln t+iπ)

) dt

et − 1
= −2i sin πz

∫ ∞

δ

tz−1

et − 1
dt.

On the circle with radius δ the denominator can be represented by t(1 + O(t)) (δ → 0),
for the numerator we get

(−u)z−1 = δx−1ey(ϕ−π) = O(δx−1).

The integrand in the integral along the small circle is O(δx−2) (δ → 0), this integral
converges for x > 2 and δ going to zero. Setting this in (∗) gives

−2i sin πzΓ(z)ζ(z) = lim
δ→0

J(z).

As the integrand of J(z) does not cross any poles for 0 < δ < 1, the integral J(z) is
independent of δ and we can ignore the limit: So for x > 2 we obtain

−2i sin(πz)Γ(z)ζ(z) = J(z).

We have thus expanded ζ(z) into the whole plane, because all other appearing functions
are defined in C. The simple poles of Γ(z) at the points z = 0,−1,−2, . . . cancel with the
simple zeros of sin(πz) at these points, so that ζ(z) is holomorphic for Re z ≤ 0. Only at
z = 1 is the zero of sin(πz) not balanced, and so there we find a simple pole. Since we
do not really know J(z), we calculate the residue with the help of (∗):

Γ(z)ζ(z) =

∫ 1

0

(
1

et − 1
− 1

t

)
tz−1dt +

1

z − 1
+

∫ ∞

1

tz−1

et − 1
dt

holds if x > 0. The integrals converge uniformly in the neighborhood of z = 1, so that
Res(ζ(z), 1) = 1.

(2n + 1)π−(2n + 1)π 0

(2n + 1)πi

−(2n + 1)πi

Figure 13.2

Finally we turn towards the functional equation: We transform the circle in our above
curve C into a square centered at zero, with the sides of length 2(2n + 1)π parallel to
the axes. The integrals along the real axis change to integrals from ∞ to (2n + 1)π and
back to ∞. We call this new curve Cn. By doing so we cross the poles of (eu − 1)−1 at
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the points ±2kπi, k = 1, . . . , n. Therefore we have to apply the residue theorem. The
residue of the integrand at 2kπ is

lim
u→2kπi

(u − 2kπi)
e(z−1) log(−u)

eu − 1
= e(z−1)(log 2kπ−iπ/2) = i(2kπ)z−1e−iπz/2,

since we have to choose the argument of the logarithm as before. The residue of the
integrand at −2kπi is similar:

lim
u→−2kπi

(u + 2kπi)
e(z−1) log(−u)

eu − 1
= e(z−1)(log 2kπ+iπ/2) = −i(2kπ)z−1eiπz/2.

The sum of both residues is
−2i2(2kπ)z−1 sin

πz

2
,

and thus it follows that

J(z) =

∫
Cn

(−u)z−1

eu − 1
du = 4πi(2π)z−1 sin

πz

2

n∑
k=1

kz−1.

If we now let n → ∞, then the integrals along the the real axis converge to zero. On the
sides of the square |u| = O(n) holds and for the denominator |eu − 1| ≥ A > 0, because
on the vertical sides of the square eu diverges to ∞ or converges to 0. On the horizontal
sides the values of eu are equal for all n and do not approach 1 due to the periodicity.
So the integral has the order O(nx) on the square, as the sides have the length O(n). In
the case x < 0 the integral converges to 0, and so we obtain

−2i sin(πz)Γ(z)ζ(z) = −2i(2π)z sin
πz

2

∞∑
k=1

kz−1.

The assumption x < 0 is also essential for the convergence of the last sum, this sum is
then just ζ(1 − z) and we have proved

ζ(1 − z) = (2π)−z sin πz

sin πz
2

Γ(z)ζ(z) = 21−zπ−z cos
πz

2
Γ(z)ζ(z).

By the identity Theorem 9.15 this equation holds for all z, in which both sides are
holomorphic, i.e., in C except the poles. �

We further obtain from the functional equation: Since Γ(z) has no zero for x > 0,
due to Stirling’s theorem, and also ζ(z) has no zero for x > 1, as we saw above,
ζ(1−z) has the same zeros z = 2n+1 as cos(πz/2). So the Riemann Zeta function
has zeros at z = −2n, n = 1, 2, . . ., these are the so-called trivial zeros. At z = 0
there is no zero, because in the functional equation the pole of ζ(z) at z = 1
is compensated by the zero of cos(πz/2). One can prove that Riemann’s Zeta
function has infinitely many zeros in the open strip 0 < x < 1, and these are
the non-trivial or essential zeros. Riemann has conjectured that all essential zeros
are located on the critical line x = 1

2 , the famous Riemann hypothesis, a proof of
which is still missing. But numerical computations have shown that up to large
values of y all essential zeros are indeed located on the critical line.
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13.3 Automorphic forms and functions

13.3.1 Automorphic forms and functions in C

In this section we will handle the basic theory of automorphic functions and forms.
They have an important significance in many areas of mathematics and its appli-
cations. Since the last century the theory of holomorphic automorphic forms is a
major item of classical complex analysis as well as of analytic number theory.
For defining automorphic functions we first have to define discrete groups of Möbius
transformations:

Definition 13.17 (Discrete group). We understand the Möbius transformations as
the group SL(2, C) made of all (2 × 2)-matrices with determinant 1. The norm of
an element

T =
(

a b
c d

)
is defined by

‖ T ‖:=
(
|a|2 + |b|2 + |c|2 + |d|2

)1/2
.

We call a subgroup H ⊂ SL(2, C) discrete, if for all positive C there are only
finitely many T ∈ H with

‖ T ‖≤ C.

The group SL(2, Z) is called the special linear group.

From the definition we have that all discrete groups are countable (or finite). At
this point we give two important examples:

Example 13.18. a) The group Z is a discrete group to which belong the translations
by an integer z + m, thus a = d = 1, c = 0, and b = m ∈ Z.

b) Let ω1, ω2 be two R-linear independent complex numbers, i.e., Im(ω1ω2) �= 0.
They span a parallelogram in C. The set Ω := Zω1 +Zω2 is again a discrete group,
its elements are the translations z + mω1 + nω2 with m, n ∈ Z. This corresponds
to a Möbius transformation with a = d = 1, c = 0 and b = ω := mω1 + nω2.
The group Ω spans a two-dimensional lattice in C. The parallelogram spanned by
ω1, ω2 is also called the periodic parallelogram.

These are of course some of the simplest examples of discrete groups. Any other
parallelogram in the lattice can be chosen as a periodic parallelogram. We now
define automorphic functions with the help of discrete groups:

Definition 13.19. (i) A function f , holomorphic or meromorphic in a domain G,
is called automorphic with respect to the discrete group H , if for all T ∈ H ,

a) T (G) ⊂ G,

b) f(T (z)) = f(z).
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(ii) Functions which are automorphic with respect to the group Z are called
simple periodic functions.

(iii) Functions which are automorphic with respect to the group Ω are called
double periodic functions or elliptic functions.

The simple periodic functions include of course all elementary trigonometric func-
tions, but we will not have a closer look at them, rather we examine the elliptic
or double periodic functions more precisely.
Examples of simple or double periodic functions in one complex variable were
first announced by G. Eisenstein (1823–1852) in the year 1847 [38] as well as
in lectures from K. Weierstraß in 1863. Eisenstein introduced the following
function series:

Definition 13.20 (Meromorphic translative Eisenstein series). The series

ε(1)m (z; Z) :=

⎧⎨⎩
1
z +

∑
k∈Z\{0}

(
1

z+k − 1
k

)
, m = 1,∑

k∈Z

1
(z+k)m , m ≥ 2

and

ε(2)m (z; Ω) :=

⎧⎨⎩
1
z2 +

∑
ω∈Ω\{0}

(
1

(z+ω)2 − 1
ω2

)
, m = 2,∑

ω∈Ω

1
(z+ω)m , m ≥ 3

are called meromorphic translative Eisenstein series, where Ω and Z are the above
described discrete groups.

These series are meromorphic functions for the corresponding translation group. At
the points z = k, resp. z = ω, are located poles of according order; similarly to the
theorem of Mittag-Leffler the uniform convergence can be shown in |z| < R apart
from neighborhoods of the poles (we refer to the Exercises 13.4.7 and 13.4.8). If the
uniform convergence is shown, then the simple, resp. double, periodicity follows
since the translations z + 1, resp. z + ωi, i = 1, 2, give rise only to admissible
reorderings of the series.

The elementary trigonometric functions can be constructed with the help of ε
(1)
m ,

while the second type of series generates the double periodic Weierstraßelliptic
functions with respect to one complex variable.

The elliptic functions are particularly characterized by their special value distri-
bution. This distribution is described completely by the following three theorems
of Liouville:

Theorem 13.21 (First Liouville theorem). Every double periodic function f which
is holomorphic in the whole complex plane is a constant function.
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Proof. Let f be an entire elliptic function and P an arbitrary periodic parallelogram
of f . We remark that P is compact. Since f is holomorphic everywhere in the complex
plane, f is bounded on P : There is M ∈ R with |f(z)| ≤ M for all z ∈ P . Let z be an
arbitrary point in C, then there is an ω ∈ Ω, so that z + ω ∈ P . Hence f is bounded in
the whole C. According to Liouville’s Theorem 7.33, f is a constant. �

Theorem 13.22 (Second Liouville theorem). The sum of the residues of an elliptic
function f in a periodic parallelogram is zero.

This theorem shows that an elliptic function cannot have one simple pole in its
periodic parallelogram, then the sum of the residues would not be zero.

Proof. Without loss of generality we assume that f has no poles located on the boundary
of the periodic parallelogram P . Otherwise in the following calculation we can consider
a periodic parallelogram displaced at α ∈ C having no pole of f on its boundary. Such a
P always exists since the set of poles of f in P is discrete and finite. We obtain

2πi
∑
c∈P

Res(f, c) =
∑
c∈P

∫
|z−c|=ε

f(z)dz =

∫
∂P

f(z)dz

=

ω1∫
0

f(z)dz +

ω1+ω2∫
ω1

f(z)dz +

ω2∫
ω1+ω2

f(z)dz +

0∫
ω2

f(z)dz

=

ω1∫
0

f(z)dz +

ω2∫
0

f(z + ω1)dz +

0∫
ω1

f(z + ω2)dz +

0∫
ω2

f(z)dz = 0,

where we used the periodicity of f in the last step. �

Theorem 13.23 (Third Liouville theorem). Let P0 be the union of the interior of
the periodic parallelogram with the half-open lines [0, ω1) and [0, ω2), P0 is called
cell or a fundamental area. An elliptic function is defined completely by its values
in P0. Then the sum of the order of all a-points of f in P0 is independent of a ∈ Ĉ
and is called the order of f :∑

c∈P0

ord(f − a; c) =: ord f.

Proof. The order of an a-point of f , i.e., a point z with f(z) = a, is defined by the order of
the zero of f(z)−a. Without loss of generality we assume again, that f has no a-points nor
poles located on ∂P . They are thus located in the interior of P0. Since f is meromorphic
and double periodic, the function g(z) := f ′(z)/(f(z) − a) is also meromorphic and
double periodic. If we now apply the previous theorem and the argument principle to the
function g, we then obtain the assertion. �

Example 13.24. Among the elliptic functions the function series ε
(2)
m (z; Ω) are char-

acterized by the fact that every elliptic function can be constructed through these
series by a finite sum up to a constant.
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We want to point out that the function ε
(2)
2 (z; Ω) is called the Weierstraß

℘-function, where the stylized ℘ is pronounced like a normal p. Since the trans-
formation z = −z is only a reordering of the series, ℘(z) is an even function,

℘(−z) = ℘(z),

and the derivative
℘′(z) = −2

∑
ω∈Ω

1
(z + ω)3

is then odd. We want to derive the differential equation of the ℘-function as a
first step into the extensive theory of elliptic functions: The difference ℘(z) − z−2

is holomorphic in a neighborhood of zero and it has, for sufficiently small |z|, the
expansion

℘(z) − 1
z2

=
1
20

g2z
2 +

1
28

g3z
4 + O(z6).

It is not hard to see (cf. Exercise 13.4.9) that

g2 = 60
∑
ω

′ 1
ω4

, g3 = 140
∑
ω

′ 1
ω6

,

where
∑′ stand for the summation over all ω �= 0. After differentiation we obtain

℘′(z) =
−2
z3

+
1
10

g2z +
1
7
g3z

3 + O(z5).

Calculating ℘3 and ℘′2 we find

℘3(z) =
1
z6

+
3
20

g2
1
z2

+
3
28

g3 + O(z2),

℘′2(z) =
4
z6

− 2
5
g2

1
z2

− 4
7
g3 + O(z2)

and thus
℘′2(z) − 4℘3(z) + g2℘(z) + g3 = O(z2).

The function on the left-hand side is holomorphic in the neighborhood of the origin
and it is also an elliptic function with poles at most at ω ∈ Ω. Hence it cannot
have poles and is constant according to Theorem 13.21. If we let z → 0 the right
hand side of the last equation is zero, thus we have obtained:

Proposition 13.25. The Weierstraß℘-function satisfies the differential equation

℘′2(z) = 4℘3(z) − g2℘(z) − g3.

Example 13.26. A further family of classical Eisenstein series is

Gm(z) =
∑

(c,d)∈Z×Z\{(0,0)}
(cz + d)−m, Im z > 0, m ≥ 4, m even.
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These series are holomorphic functions in the upper half-plane:

H+(C) := {z ∈ C | Im z > 0}.

Obviously they have singularities located at the rational points on the real axis.
We can transform these functions Gm(z) at every z ∈ H+(C) as follows:

f(T (z)) = (cz + d)−mf

(
az + b

cz + d

)
,

where T is the Möbius transformation associated with the matrix

M =
(

a b
c d

)
∈ SL(2, Z).

We call the functions f with such a transformation behavior an automorphic form
of weight m (here) with respect to the complete linear group SL(2, Z). They are
indeed classical examples for modular forms and play an important role first of
all in number theory. This is justified by the fact that their Fourier expansion
contains sums of powers of divisors and the Riemann Zeta function:

Theorem 13.27. Let m ≥ 4 be an even number; the Eisenstein series Gm(z) has
the following Fourier representation in the upper half-plane:

Gm(z) = 2ζ(m) + 2
(2πi)m

(m − 1)!

∞∑
n=1

τm−1(n)e2πinz ,

where ζ(m) is the Riemann Zeta function and τm are sums of the powers of divi-
sors,

τm(n) =
∑

r≥1,r|n
rm.

Proof. We can reorder the series Gm(z) as follows:

Gm(z) = 2ζ(m) + 2

∞∑
j=1

ε(1)m (jz; Z),

where ε
(1)
m (z; Z) are the series according to definition 13.20. The next step is the calcu-

lation of the Fourier representation of ε
(1)
m . In the case m = 2 we obtain, according to

Example 12.21,

∑
n∈Z

(z + n)−2 =

(
π

sin(πz)

)2

=

(
2πi

eπiz − e−πiz

)2

= (2πi)2e2πiz

[
1

1 − e2πiz

]2

,

and if Im z > 0,

= (2πi)2e2πiz
∞∑

r=1

re2πiz(r−1) = (2πi)2
∞∑

r=1

re2πirz,
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where we applied the derivative of the geometric series. By termwise differentiation and
by induction we obtain for all integers m ≥ 2 the equation

ε(1)m (z; Z) =
(2πi)m

(m − 1)!

∞∑
r=1

rm−1e2πirz.

We plug this formula into the equation for Gm(z) and finally obtain

Gm(z) = 2ζ(m) + 2
(2πi)m

(m − 1)!

∞∑
j=1

∞∑
r=1

rm−1e2πirjz

= 2ζ(m) + 2
(2πi)m

(m − 1)!

∞∑
n=1

( ∑
r≥1,r|n

rm−1

)
e2πinz.

�

Remark 13.28. A further systematic method for constructing holomorphic modu-
lar forms with respect to the specialized linear group is to use suitable and in the
upper half-plane bounded holomorphic functions f : H+(C) → C. These functions
must belong to the class of automorphic forms with weight k of the translation
group Z. Then we can sum the expressions f(T (z)) over a complete representative
system of right cosets of SL(2, Z) modulo the translation invariant group Z, i.e.,∑

T∈SL(2,Z)/Z

(cz + d)−mf(T (z)).

If k is sufficiently large this series converges and delivers then modular forms with
respect to the complete specialized linear group SL(2, Z). Function series of this
type are often called Poincaré series in an extended meaning. The simplest non-
trivial example results from the setting f = 1. Then Poincaré’s series are equal to
the classical Eisenstein series Gm(z) up to a normalization factor. On the other
hand all modular forms with positive even integer weight k ≥ 4 with respect to
the group SL(2, Z) can be constructed from the Eisenstein series Gm.
The method just exposed has the advantage that it can be applied in a simple way
to other discrete groups, like important congruence groups in number theory, and
that it thereby provides further examples of automorphic forms.

13.3.2 Automorphic functions and forms in C�(n)

The systematic development of the general theory of holomorphic modular forms
with respect to one complex variable was mainly developed by H. Poincaré, F.
Klein and R. Fricke [116, 71].
O. Blumenthal (1904), C.L. Siegel (in the 1930s) and their students began to
study holomorphic functions of several complex variables. In 1949 H. Maaß [99]
introduced a higher dimensional type of non-analytic automorphic forms (Maaß’
waveforms), that are eigenfunctions of the hyperbolic Laplacian. These two
higher dimensional generalizations raised high interest and are still in the focus
of current research.
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Variations of holomorphic Siegel modular forms of quaternionic symplectic
groups, and in general of orthogonal groups, are still regarded with increas-
ing interest. We refer therefore to A. Krieg [84] as well as E. Freitag and C.F.
Hermann [41].
In another direction E. Kähler [68], J. Elstrodt, F. Grunewald and J. Mennicke
[39, 40] as well as A. Krieg [85, 86], V. Gritsenko [51] and other authors study
complex-valued generalizations of the non-analytic forms of discrete subgroups
of the Vahlen group (group of the Vahlen matrices according to Definitions
6.16 and 6.18) in higher dimensional half-spaces of the Euclidean space Rn.
Automorphic forms on m-times Cartesian products of quaternionic half-spaces
are of great interest, such as in works of O. Richter and H. Skogman [123, 124].

None of the above listed higher dimensional variations of automorphic forms are
solutions of the Cauchy–Riemann differential equations.

In works of A.C. Dixon [36], R. Fueter [46, 48, 49, 50] and J. Ryan [125] we
find the first contributions to holomorphic generalizations of the special double
periodic Weierstraßelliptic functions.
A systematic theory of holomorphic automorphic forms for the general arith-
metic subgroup of the Vahlen group, including generalizations of the modular
group and their congruence groups, is developed in [81].

This subsection is based on the accomplishment of R.S. Kraußhar (cf. [81]), who
in his habilitation thesis and the following works established the basis of such a
generalization. We only want to give a short introduction into the central aspects of
this theory. First we study the simplest type of discrete subgroups of the Vahlen
group in Rn+1, being the translation groups, which operate on Rn+1: For each
arbitrary set of p R-linear independent vectors ω1, . . . , ωp ∈ Rn+1, where p ∈
{1, . . . , n + 1}, Ωp = Zω1 + · · ·+ Zωp is a p-dimensional lattice in Rn+1. Since the
associated translation group T (Ωp) is generated by the matrices(

1 ω1

0 1

)
, . . . ,

(
1 ωp

0 1

)
,

it operates discontinuously on Rn+1 according to its Möbius transformation T (x) =
x + ωj , j = 1, . . . , p. This group is discrete since only finitely many T with lim-
ited norm exist. So we can say that we obtain meromorphic automorphic func-
tions with respect to a general discrete translation group T (Ωp) by adding up all
fundamental solutions of the ∂-operator Q0(x) = x/|x|n+1, resp. its derivatives
Qm(x) = (−1)|m|∇m(x/|x|n+1)/m!, according to Definition 7.26 at the points
x+ωi over the whole translation group. The following definition provides an exact
description:

Definition 13.29 (Meromorphic Eisenstein series with respect to translation sub-
groups). Let p ∈ {1, 2, . . . , n + 1} and let ω1, . . . , ωp be R-linear independent vec-
tors in Rn+1, furthermore let Ωp = Zω1 + · · · + Zωp be the corresponding lattice.
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We define the associated meromorphic translative Eisenstein series by

ε(p)
m (x; Ωp) =

∑
ω∈Ωp

Qm(x + ω),

where m is a multiindex and |m| ≥ max{0, p − n + 1}. If p = n, m = 0 as well as
p = n + 1, |m| = 1 we set

ε(p)
m (x; Ωp) = Qm(x) +

∑
ω∈Ωp\{0}

[
Qm(x + ω) − Qm(ω)

]
.

Also in the remaining case p = n+1 and m = 0, holomorphic Eisenstein series can
be constructed [74], but only those which have at least two different singularities
in every periodic box.
The convergence of this series is proved in ([81], Chapter 2). We use on the one
hand the estimate in Proposition 7.27,

|Qm(x)| ≤ Cm

|x|n+|m| ,

and on the other one a lemma of Eisenstein, [38], stating that the series∑
(m1,...,mp)∈Zp\{0}

|m1ω1 + · · · + mpωp|−(p+α)

converges if and only if α > 0. Hence the series in the definition converge ab-
solutely except at the poles. The limit function is a meromorphic function with
poles located at the lattice points. The functions are p-times periodic, because a
translation of the argument by ωi is only a renumbering of the series, which is
allowed in view of the absolute convergence.

The series ε
(p)
m with p < n generalize the series from Definition 13.20 to the Clifford

analysis. They provide an elementary foundation for constructing meromorphic
generalizations of various classical trigonometric function, as described in [81],
Chapter 2. The special series ε

(p)
0 is a p-times periodic meromorphic generalization

of the classical cotangent. Thus the p-times periodic meromorphic generalizations
of the classical tangent, cosecant, and secant as well as the squared cosecant and
secant are constructed from the cotangent by superposition:

Example 13.30. Let Vp(2) denote the canonical representative system of the fac-
tor module Ωp/2Ωp. We obtain the meromorphic generalization of the tangent,
cosecant, and secant in the following way:

tan(p)(x) := −
∑

v∈Vp\{0}
ε
(p)
0

(
x +

v

2

)
,

csc(p)(z) :=
1

2n−2
ε
(p)
0

(x

2

)
− ε

(p)
0 (x),

sec(p)(z) :=
∑

v∈Vp\{0}
csc(p)

(
x +

v

2

)
.
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From the partial derivatives of csc(p) and sec(p) we get the meromorphic general-
izations of the squared cosecant and secant.
Every p-times periodic meromorphic function with p < n + 1 can be represented
by a finite sum of p-times periodic cotangents ε

(p)
0 and (resp. or) their partial

derivatives apart from an entire function. This can be proven as a consequence of
Theorem 12.26 of Mittag-Leffler.

In the special case p = n + 1 the series ε
(n+1)
m are meromorphic generalizations of

Weierstraß’ elliptic functions. Especially ε
(n+1)
m , where |m| = 1, defines the gen-

eralized Weierstraß℘-function. This was examined first by A.C. Dixon, R. Fueter,
and J. Ryan.
Every (n + 1)-times periodic meromorphic function in Rn+1 can be represented
by finitely many series ε

(n+1)
m apart from a constant. The study of the generalized

elliptic functions was also pursued by Krausshar in [81]. In particular this was
done from number theoretical and complex analytic viewpoints, including explicit
applications to the theory of special L2-spaces.

One of the most fundamental properties is that all functions ε
(p)
m can be char-

acterized by special functional equations. These equations generalize the known
cotangent duplication formula. All function series ε

(p)
m (except in the case p = n,

where the index is m = 0) satisfy the following multiplication formula:

Theorem 13.31. Let Ωp be a p-dimensional lattice in Rn+1 and let m be a multi-
index. In addition if p = n + 1, we assume |m| ≥ 1. In all cases

rn+|m|ε(p)
m (rx) =

∑
v∈Vp(r)

ε(p)
m

(
x +

v

r

)
,

holds, where Vp(r) is the canonical representative system of Ωp/rΩp and r ≥ 2 is
a natural number.

We remark that the canonical representative system Vp(r) is composed of the
quantities m1ω1 + · · · + mpωp, where mi, 0 ≤ mi < r, are integers. And so Vp(r)
has exactly rp elements.

Proof (outline). In the cases |m| ≥ max{0, p − n + 1} the formula can be shown by a
direct reordering argument. In the case p = n and m = 0 we use the following identity
of arrangement of antipodal lattice points:∑

v∈Vp(r)\{0}

∑
ω∈Ωp\{0}

[Q0(rω + v) −Q0(rω)] = −
∑

v∈Vp(r)\{0}
Q0(v).

This formula and some clever arguments for reordering give the claim.
An argument of integration shows that the theorem holds also in the remaining cases
apart from a paravector-valued constant C ∈ Rn+1. Finally the Legendre relation for
generalized elliptic functions leads to C = 0. So the theorem is shown in all cases. We
refer the reader to [81], Chapter 2.5, for an explicit proof. �
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Also the converse holds:

Theorem 13.32. Let Ωp be a p-dimensional lattice in Rn+1 and m a multiindex with
|m| ≥ 1 in the case p = n + 1. Moreover let g : Rn+1 → C�(n) be a meromorphic
function with the principal parts Qm(x − ω) at every lattice point ω ∈ Ωp. If g
satisfies the functional equation

rn+|m|g(rx) =
∑

v∈Vp(r)

g
(
x +

v

r

)
,

where 2 ≤ r ∈ N, then there is a Clifford number C ∈ C�(n) and g(x) = ε
(p)
m (x)+C

for all x ∈ Rn+1\Ωp.

Proof. First we consider the function s(x) := g(x)− ε
(p)
m (x), which is holomorphic in the

whole space Rn+1. From the previous theorem it follows that

rn+|m|s(rx) =
∑

v∈Vp(r)

s
(
x +

v

r

)
, s(0) = s0, (∗)

where s0 ∈ C�(n). We assume that s is not a constant and define β := |ω1| + · · · + |ωp|.
According to the maximum principle in Theorem 7.32 there is a point c ∈ ∂Brβ(0), so
that

|s(x)| < |s(c)|
for all x ∈ Brβ(0). Moreover

∣∣∣ c + v

r

∣∣∣ = ∣∣∣∣∣1r
(

c +

p∑
i=1

αiωi

)∣∣∣∣∣ < β + β ≤ rβ

holds for all 0 ≤ αi < r. Hence from (∗) by setting rx = c we find

rn+|m||s(c)| =

∣∣∣∣∣∣
∑

v∈Vp(r)

s
( c + v

r

)∣∣∣∣∣∣ ≤
∑

v∈Vp(r)

∣∣∣s( c + v

r

)∣∣∣ < rp|s(c)| ≤ rn+|m||s(c)|.

But this is a contradiction. The assumption that s is not a constant is false, thus proving
the theorem. �

A certain analogue to the complex case is that the generalized elliptic functions
play a major role in the value distribution. Both next theorems are a direct gen-
eralization of Liouville’s first two theorems.

Theorem 13.33. Every entire (n + 1)-times periodic function is constant.

Proof. The theorem can be proved in strict analogy with the complex case in Theorem
13.21 using the higher dimensional Liouville’s theorem, Proposition 7.33. �

Theorem 13.34. The sum of the residues of an (n+1)-times periodic meromorphic
function f vanishes in a periodic box.
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Proof. We perform the proof for the special case that f has only isolated singularities.
However the theorem holds also in the general case, where the residues need to be applied
in the sense of Leray–Norguet, resulting then in a markedly more technical effort. So we
assume that f has only isolated singularities. Without loss of generality we furthermore
assume that the fundamental box P spanned by the vectors ω1, . . . , ωn+1 has no poles
located on its boundary. An (n + 1)-dimensional box is composed of exactly 2(n + 1)
different n-dimensional boundary planes Bj . In addition we define B′

j , j = 1, . . . , n + 1,
where B′

j = Bj + ωj is that boundary plane which arises by a translation of Bj by the
vector ωj . The normal vectors of these planes are outwards oriented. Hence Bj and B′

j

have opposite orientation. According to the residue Theorem 12.43 for a left-holomorphic
function we have

σn

∑
c∈P

Res(f, c) =

∫
∂P

dx∗f(x) =

n+1∑
j=1

⎛⎜⎝∫
Bj

dx∗f(x) +

∫
B′

j

dx∗f(x)

⎞⎟⎠

=

n+1∑
j=1

⎛⎜⎝∫
Bj

dx∗f(x) −
∫

Bj

dx∗f(x + ωj)

⎞⎟⎠ = 0,

where we used the periodicity of f and the opposite orientation of Bj and B′
j . �

In a special case an analogy to the third Liouville’s theorem could be proved
recently [62]. The difficulty while transferring the theorem into higher dimension
is the fact that no quotients of meromorphic functions are allowed:

Theorem 13.35. Let f be an (n+1)-times periodic paravector-valued meromorphic
function having only isolated poles. Moreover we assume for a ∈ Rn+1 that f has
only isolated a-points. Let P be a periodic box with the property that neither poles
nor a-points of f are located on its boundary planes. We denote the poles inside
P by b1, . . . , bν . Let δ > 0 be sufficiently small, so that the open punctured ball
Bδ(bi)\{bi} contains neither poles nor a-points. Then with the order of a zero
given by Definition 12.9,

∑
c∈P\{b1,...,bν}

ord(f − a; c) = −
ν∑

i=1

p(f − a; bi)

holds, where

p(f − a; bi) :=
1
σn

∫
Fi

Q0(y)dy∗,

and Fi := (f − a)(Sδ(bi)) is the image of Sj(bi) under f − a.

Proof. In contrast to the complex case we cannot deduce this assertion from the previous
one since the quotient of holomorphic functions need not be holomorphic in Rn+1. For
proving the theorem we have to calculate explicitly the appearing integrals. There are
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only finitely many a-points inside of P in view of the isolation of the a-points. We denote
them by t1, . . . , tµ. Then an ε > 0 exists, so that for every j ∈ {1, . . . , µ} the balls Bε(t

j)
are pairwise disjoint and moreover ∂P and the Bδ(bi) have no common points. As a

result in P\
µ⋃

j=1

Bε(t
j) no a-points are left. Henceforth we label the boundary planes of

P again as B1, B
′
1, . . . , Bn, B′

n. By setting Hj := (f − a)(Sε(t
j)) we calculate∑

c∈P\{b1,...,bν}
ord(f − a; c) +

ν∑
i=1

p(f − a; bi)

=
1

σn

µ∑
j=1

∫
Hj

Q0(y)dy∗ +
ν∑

i=1

p(f − a; bi) =
1

σn

∫
(f−a)(∂P )

Q0(y)dy∗

=
1

σn

n+1∑
k=1

( ∫
(f−a)(Bk)

Q0(y)dy∗ +

∫
(f−a)(B′

k
)

Q0(y)dy∗
)

=
1

σn

n+1∑
k=1

(
−

∫
(f−a)(B′

k
)

Q0(y)dy∗ +

∫
(f−a)(B′

k
)

Q0(y)dy∗
)

= 0.

In the last step of the calculation we used the periodicity of f since f(x) − a and
f(x − ωk) − a have the same range, but the orientation of Bk is opposite to the one
of B′

k. �

The generalized Weierstraßelliptic functions in Example 13.30 are moreover used
as generating functions for higher dimensional meromorphic generalizations of the
classical Eisenstein series Gm:

Definition 13.36. Let m be a multiindex, then for all odd |m| ≥ 3 the meromorphic
Eisenstein series associated to the generalized Weierstraß℘-function according to
Definition 13.29 is defined by

Gm(x) :=
∑

(α,ω)∈Z×Ωn\{(0,0)}
Qm(αx + ω), x ∈ H+(Rn+1) := {x ∈ Rn+1 : xn > 0}.

Let now Ωn be an n-dimensional lattice in spanR{e0, . . . , en−1}. The lattice should
be non-degenerate, i.e., the ωi should be R-linear independent.

To show the convergence of the series we apply the estimate in Proposition 7.27
to the partial derivatives of Q0,

|Qm(x)| ≤ Cm

|x|n+|m| .

If we decompose x into x = y + xnen, where y = x0 + x1e1 + · · · + xn−1en−1,
then for x ∈ H+(Rn+1) we always find xn > 0. In the next step with the help of
a classical argument of compactification we can show that for every ε > 0 there is
a real ρ > 0, so that all (α, ω) ∈ Z × Ωn uniformly satisfy the equation

|αx + ω| ≥ ρ|αen + ω|.
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Here x is an element of the corresponding vertical stripe

Vε(H+(Rn+1)) :=
{

x = y + xnen ∈ H+(Rn+1) : |y| ≤ 1
ε
, xn ≥ ε

}
.

Finally we obtain the estimate∑
(α,ω)∈Z×Ωn\{(0,0)}

|Qm(αx + ω)|

≤ ρ−(n+|m|)Cm

∑
(α,ω)∈Z×Ωn\{(0,0)}

|αen + ω|−(|m|+n).

The series occurring in the last row is an Epstein Zeta function, from which we
obtain the convergence of our series in the case |m| ≥ 2.

In case of a multiindex m with even |m| the series vanishes identically. But this
is not the case for all indices m with odd length |m| ≥ 3, a fact which we now
investigate.

As in the complex case these function series have interesting Fourier expansions
from the number theoretical point of view, since in the Fourier expansion occur
representation numbers of multiple sums of powers of divisors and a vector-valued
generalization of Riemann’s Zeta function.

Definition 13.37 (Generalized Riemann’s Zeta function in C�(n)). If |m| is odd
we then define the series

ζΩn

M (m) =
1
2

∑
ω∈Ωn\{0}

Qm(ω),

which is called Riemann’s Zeta function in C�(n). The subscript M should evoke
a connection to ‘meromorphic’ to distinguish this one from the many other gener-
alized Zeta functions.

Further information can be found in [81], Chapter 2.4. From Proposition 7.27 it
follows that the above defined Zeta function is paravector-valued. We want to
point out explicitly that the variable m, corresponding to the z in the classical
Riemann Zeta function, is not continuous since the function is only defined in
the case of multiindices m. Hence further research is needed. We now turn to the
Fourier expansion:

Theorem 13.38 (Fourier expansion). The Eisenstein series Gm belonging to the
orthonormal lattice, where m = (0, m1, . . . , mn, 0) and |m| ≥ 3 is odd, have the
following Fourier expansion in the upper half-space

Gm(x) = 2ζΩn

M (m) + σn(2πi)|m| ∑
s∈Zn\{0}

τm(s)(ien +
s
|s| )e

2πi〈s,x〉e−2π|s|xn .
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As usual σn is the area of the unit sphere Sn in Rn+1. Furthermore τm(s) is
defined by

τm(s) =
∑
r|s

rm,

where r|s means that a natural number a exists with ar = s.

At this point we see a nice correspondence between the Fourier expansion of the
classical Eisenstein series (Definition 13.20) and the structure of the Fourier ex-
pansion of the higher dimensional ones in Definition 13.29. Instead of the ordinary
Riemann Zeta function we have the vector valued Zeta function from Definition
13.37. We want to emphasize that the generalized Zeta function is compatible
downwardly to the ordinary one, because in case of two dimensions if we rewrite
Definition 13.37 and use paravector formalism we obtain the classical Zeta func-
tion.
Furthermore the Zeta function occurring here has a close relation to Epstein’s Zeta
function shown in [75]. In the closely related work [27] it was more precisely shown
that every vector component of the generalized Zeta function can be represented
by a finite sum of scalar-valued Dirichlet series of the form

δ(P (·), s) =
∑

g∈Zn\{0}
P (g)(g2

1 + · · · + g2
n)−s.

Here P is a real-valued polynomial with respect to g1, . . . , gn, and s is a complex
number which satisfies the condition Re(s)− deg(P ) > (n− 1)/2. The polynomial
P was calculated explicitly in [27].
The sums of divisors occurring in the Fourier expansion of the complex Eisenstein
series according to Definition 12.38 are generalized by the term τm of the theorem.
And again this term τm can be expressed by sums of divisors:

σm(s) = smσ−|m|(gcd(s1, . . . , sn)).

The holomorphic plane wave function comes in as a consequence of holomorphy
as it is the natural generalization of the classical exponential function.
Moreover we notice that infinitely many Fourier coefficients do not vanish. Hence
the series Gm(z) represent non-trivial functions for all multiindices m, where |m| ≥
3 is odd.

Proof (outline). First we expand the partial series ε
(n)
m (x; Ωn)) (|m| ≥ 2) into a Fourier

series on H+(Rn+1), ∑
r∈Zn

αf (r, xn)e2πi〈r,x〉.

By a direct calculation we find

αf (0, xn) =

∫
[0,1]n

( ∑
m∈Zn

Qm(x + m)
)
dσ = 0.
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In the case r �= 0 we use iterated partial integration; we integrate Qm until it becomes
Q0 and then differentiate the exponential terms. After finitely many iterations we obtain
the following result:

αf (r, xn) = (2πi)|m|rm
∫

Rn

Q0(x)e−2πi〈r,x〉dσ.

The value of the remaining integral is known and can be found in [136, 92, 27] or calcu-
lated with the residue theorem. So we get∫

Rn

Q0(z)e−2πi〈r,x〉dσ =
σn

2

(
ien +

r

|r|
)
e−2π|r|xn .

From xn > 0 we find the formula

ε(n)
m (x; Ωn) =

σn

2

∑
r∈Zn\{0}

(2πi)|m|rm
(
ien +

r

|r|
)
e−2π|r|xne2πi〈r,x〉.

We can now reorder the series Gm(x) as follows:

Gm(x) = 2ζΩn
M (m) + 2

∞∑
a=1

∑
m∈Zn

εm(ax; Ωn),

where we use the notation introduced above. Finally we put ε
(n)
m (ax; Ωn) in the reordered

series,

Gm(x) = 2ζΩn
M (m) + 2(2πi)|m|

(σn

2

) ∞∑
a=1

∑
r∈Zn

rm
(
ien +

r

|r|
)
e2πi〈ar,x〉e−2π|ar|xn ,

which can then be reordered to give the needed form. �

In the next part of this section we will recognize that the series Gm are fundamental
elements to construct classes of holomorphic modular forms with respect to bigger
discrete groups:

Definition 13.39. (i) The C�(n)-valued modular groups Γp are generated by the
following matrices for p < n + 1:(

0 1
−1 0

)
,

(
1 e0

0 1

)
, . . . ,

(
1 ep

0 1

)
.

(ii) The main congruence groups of order M , N ≥ 1, of Γp are defined by

Γp[N ] :=
{
M =

(
a b
c d

)
∈ Γp , a − 1, b, c, d − 1 ∈ NOp

}
,

where
Op :=

∑
A

ZeA

is the integer additive subgroup in C�(n).
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(iii) Let Tp be the group generated by the matrices(
1 e0

0 1

)
, . . . ,

(
1 ep

0 1

)
,

let Tp[N ] be the group of matrices generated by the matrices in Γp[N ] where
c = 0 and a = d = 1. Finally let Rp[N ] be a representative system of the
right cosets of Tp[N ]\Γp[N ].

In contrast to the classical complex case the series Gm(x) are not modular forms
of the complete modular group Γn. The singular points of Gm(x) are the rational
points Qe0 + · · · + Qen−1, which are at least invariant under Γn.
Now we will specify two construction theorems which generalize the classical def-
inition of Poincaré series, see Remark 13.28, to Clifford analysis. These theorems
provide a systematic example of non-trivial holomorphic automorphic forms of the
group Γp[N ], where N ≥ 1 and Γp = Γp[1].
We abbreviate

(f |M)(x) := Q0(cx + d)f(T (x))

where M ∈ Γp[N ]. First we show a construction theorem giving examples of
holomorphic automorphic forms of the group Γp[N ] where p < n and N ≥ 3.

Theorem 13.40. Let 1 ≤ p < n and N ≥ 3 be a natural number. Moreover let
f : H+(Rn+1) → C�(n) be a bounded holomorphic function invariant under the
translation group Tp. Then

g(z) :=
∑

M∈Rp[N ]

(f |M)(x), x ∈ H+(Rn+1),

is a C�(n)-valued holomorphic function, which is uniformly bounded on every com-
pact subset of H+(Rn+1). In addition for all M ∈ Γp[N ] the transformation be-
havior is g(x) = (g|M)(x).

Proof (outline). For showing the absolute convergence of the series, we just have to prove
that the series ∑

M∈Rp[N]

|Q0(cx + d)| ≤ C
∑

M∈Rp[N]

|cen + d|n

converges for n > p + 1 on H+(Rn+1) in view of the boundedness of f . From classical
arguments of compactification we have that for every ε > 0 there is a real number ρ > 0
with

|cx + d| ≥ ρ|cen + d| for all x ∈ Vε(H
+(Rn+1)) and

(
∗ ∗
c d

)
∈ Γp[N ].

The series ∑
M∈Rp[N]

(|c| + |d|)−α
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converges if α > p + 1.
Since f is a holomorphic function from Weierstraß’ convergence Theorem 9.3 we have
that the limit function g is holomorphic on the half-space.
To show that g is an automorphic form of Γp[N ], we choose an arbitrary matrix A ∈
Γp[N ]. For the associated T ∈ SL(2, Z)/Z and due to the homogeneity of the weight
factors Q0(ab) = Q0(b)Q0(a), we then obtain

g(T (x)) =
∑

M∈Rp[N]

Q0(cMT (x) + dM )f(T (x))

=
∑

M∈Rp[N]

Q0

(
cM (aAx + bA)(cAx + dA) + dM (cAx + dA)(cAx + dA)

|cAx + dA|2

)
f(T (x))

=
∑

M∈Rp[N]

Q0

(
cAx + dA

|cAx + dA|2
)

Q0 ((cMaA + dMcA)x + cM bA + dMdA)f(T (x))

= [Q0(cAx + dA)]−1
∑

M∈Rp[N]

Q0(cMAx + dMA)f(T (x))

= [Q0(cAx + dA)]−1g(x),

where we have set cMA := cMaA + dMcA and dMA := cM bA + dMdA. The last step is a
consequence of reordering, which is allowed due to the invariance of f under Tp[N ].
In the case N = 1, 2 this construction delivers only the zero function, then the negative
identity matrix −I is an element of Γp[N ]. Exactly in these cases g(z) = (g|I)(z) = −g(z)
holds for all x ∈ H+(Rn+1), as the automorphic factor Q0 is odd. �

Example 13.41. a) The simplest non-trivial example of a holomorphic automorphic
form of Γp[N ] with p < k − 2 and N ≥ 3 provides the following Γp[N ]-Eisenstein
series:

G(p,N)(x) =
∑

M∈Rp[N ]

Q0(cx + d).

The convergence and regularity properties follow from the previous Theorem 13.40
by setting f = 1. To prove that G(p,N) is not vanishing identically in the case
N ≥ 3, we consider the following limit, where x = x0 + x:

lim
x0→∞G(p,N)(x) =

∑
M∈Rp[N ]

lim
x0→∞Q0(cx + d)

=
∑

M∈Rp[N ],cM=0

Q0(d) = 1.

b) If we substitute f in the theorem by the holomorphic Eisenstein series Gm,
which we have considered before, we obtain further examples of non-trivial C�(n)-
valued automorphic functions of the group Γp[N ] with p < n − 1 and N ≥ 3:

Ep
m(x) =

∑
M∈Rp[N ]

(G̃m|M)(x).
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Here we have G̃m(x) := Gm(y + xnen; NZn). From a limit argument similar to
the previous one we have

lim
xn→∞Ep

m(x) = 2ζΩn

M (m).

Since the terms 2ζΩn

M (m) are exactly the Laurent coefficients of the series εn
m(x),

multiindices m have to exist with 2ζΩn

M (m) �= 0 or else we would obtain εn
m(x) =

Qm(x), which would be a contradiction with the periodicity of εn
m(x).

At the end of this section we want to present a second construction theorem, which
also delivers non-trivial holomorphic modular forms in the case of the groups Γp[N ]
with N = 1, 2 and even p = n−1. This theorem was proven in [78]. The underlying
idea is to make the construction with the help of two automorphic factors and a
further auxiliary variable. We restrict to Rn and to x = x. The following theorem
provides functions with the transformation behavior

f(x, y) = (f ||M)(x, y) := ˜Q0(cx + d)f(M〈x〉, M〈y〉)Q0(xĉ + d̂) (13.1)

under the operation of the whole group Γp[N ]. Here x̂ is the reversion according
to Proposition 3.10 and x̃ is the main involution of C�(n) according to Definition
3.5.
To avoid trivial examples we denote such a function as a non-trivial holomorphic
automorphic form, only if its restriction to the diagonal x = y is a non-constant
automorphic C∞-form of Γp[N ].

Theorem 13.42. Let p ∈ {1, . . . , n − 1} and N ≥ 3 be a natural number. Moreover
let H+

2 (Rn) := H+(Rn) ⊕ H+(Rn). If f : H+
2 (Rn) → C�(n) is a bounded function

satisfying the equation ∂xf(x, y) = f(x, y)∂y = 0 for all (x, y) ∈ H+
2 (Rn), and if

f(T (x), T (y)) = f(x, y) holds for all T ∈ Tp, then

g(x, y) :=
∑

M∈Rp[N ]

(f ||M)(x, y)

is a left-holomorphic function with respect to x and a right-holomorphic one with
respect to y. Furthermore g(x, y) satisfies

g(x, y) = (g||M)(x, y)

for all (x, y) ∈ H+
2 (Rn) and all M ∈ Γp[N ].

The proof is similar to the proof of the previous theorem. In every vertical stripe
Vε(Rn) × Vε(Rn) the estimate∑

M∈Rp[N ]

∣∣∣ ˜Q0(cx + d)f(M〈x〉, M〈y〉)Q0(yĉ + d̂)
∣∣∣

≤ L
∑

M∈Rp[N ]

1
|cen + d|2n
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holds, where L is a positive constant. The abscissa of the absolute convergence of
the series in the last line is p < 2n − 3. Hence in spaces of dimension n ≥ 3 we
obtain the absolute convergence for all p ≤ n−1. The function g is biholomorphic
in view of Weierstraß’ convergence theorem. The automorphic property under
simultaneous operations of Γp, resp. Γp[N ], can be shown by using the homogeneity
of Q0 by means of reordering arguments.

Example 13.43. a) The simplest non-trivial examples of holomorphic automor-
phic forms of Γp[1] and Γp[2] (for all p ≤ n − 1) are the following biholomorphic
Eisenstein series, which were first discovered in [78]:

F(x, y) =
∑

M∈Rp[N ]

(1||M)(x, y)

= ˜Q0(cMx + dM )Q0(yĉM + d̂M ), (x, y) ∈ H+
2 (Rn).

To prove that the series are indeed non-trivial examples for N = 1, 2, we use again
the limit arguments. Thus in the case of the group Γp[1] = Γp with p ≤ n we
obtain

lim
xn→∞F(xn, xn) =

∑
M∈Rp,cM �=0

lim
xn→∞

˜Q0(cx0 + d)Q0(x0ĉ + d̂)︸ ︷︷ ︸
=0

+
∑

M∈Rp,cM=0

Q̃0(d)Q0(d̂) = 2
∑

A⊆{1,...,p}
eA eA = 2p+1.

Hence the restriction to the diagonal F(x, x) is indeed a non-constant function.
Moreover the function is in the class C∞ with respect to the single paravector
variable x and has the transformation behavior as in formula (13.1) (just before
Theorem 13.42). A similar argument can be used in the case N = 2, where the
limit is 2 �= 0,∞.
b) We obtain further non-trivial examples while substituting the following product
of holomorphic Eisenstein series for f ,

f(x, y) = Gm(x; Zn)Gm(y; Zn).

The verification — again limit arguments can be used — that these series are
further examples is left as Exercise 13.4.10.

Final remark: We obtain similar results for polyholomorphic functions in general
real and complex Minkowski spaces, which are holomorphic with respect to several
Clifford variables. This function class allows the handling of several fundamental
problems of analytic number theory, of the theory of Bergman and Hardy spaces on
hyperbolic polyhedral domains, and of harmonic analysis on conformal plane spin-
manifolds. For a further deepening and more extensive description of this theory
we refer the reader to the new book [81] and the current articles [26, 25, 82, 83].
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13.4 Exercises

1. Show that ∫ ∞

0

e−ztdt =
1
z

is a holomorphic function in Re z > 0 and separate the real and imaginary
part.

2. Show that ∫ ∞

0

e−zt2dt =
√

π

2
√

z
,

Re z > 0.

3. Show that in C,

Γ(z) =
∫ ∞

1

tz−1e−tdt +
∞∑

n=0

(−1)n

n!(z + n)

holds except at the poles.

4. Show that for α > 0, β > 0 and real x, y,∫ y

x

(x − t)α−1(t − y)β−1dt =
Γ(α)Γ(β)
Γ(α + β)

(x − y)α+β−1.

5. Show that, if 0 < Re z < 1,

Γ(z)ζ(z) =
∫ ∞

0

tz−1

(
1

et − 1
− 1

t

)
dt.

6. Show that, if −1 < Re z < 0,

Γ(z)ζ(z) =
∫ ∞

0

tz−1

(
1

et − 1
− 1

t
+

1
2

)
dt.

7. Show that the series

ε(1)m (z; Z) =

⎧⎪⎨⎪⎩
1
z +

∑
k∈Z\{0}

(
1

z+k − 1
k

)
, m = 1,∑

k∈Z

1
(z+k)m , m ≥ 2

converges uniformly for |z| ≤ R except at the poles. Thus these series are
meromorphic functions in C.
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8. Show that also the Eisenstein series

ε(2)m (z; Ω) =

⎧⎪⎨⎪⎩
1
z2 +

∑
ω∈Ω\{0}

(
1

(z+ω)2 − 1
ω2

)
, m = 2,∑

ω∈Ω

1
(z+ω)m , m ≥ 3

converges uniformly except at the poles. Thus these series are also meromor-
phic functions in C.

9. Prove that the Taylor series

℘(z) − 1
z2

=
1
20

g2z
2 +

1
28

g3z
4 + O(z6)

in a neighborhood of the origin satisfies

g2 = 60
∑
ω

′ 1
ω4

, g3 = 140
∑
ω

′ 1
ω6

.

10. Show that the product of Eisenstein series

f(x, y) = Gm(x; Zn)Gm(y; Zn)

is a holomorphic and automorphic function (cf. Example 13.43 b).
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A.1 Differential forms in Rn

A.1.1 Alternating linear mappings

As we have to use differential forms we give here a short introduction.

Definition A.1.1. Let V and W be real vector spaces.

(i) A mapping Φ : V q → W is called q-times multilinear or q-linear if it is
R-linear in each of its q variables. The set of q-linear mappings from V to
W is denoted by Lq(V, W ). The number q is called the degree of Φ. Such
multilinear mappings are also called multilinear forms if W = R.

(ii) Φ ∈ Lq(V, W ) is called alternating or skew symmetric if for every permutation
σ ∈ perm(q),

σΦ(x1, . . . , xq) := Φ(xσ(1), . . . , xσ(q)) = (sgn σ)Φ(x1, . . . , xq).

Here perm(q) is the permutation group of q elements. The set of alternating
mappings in Lq(V, W ) is denoted by Aq(V, W ).

(iii) Φ ∈ Lq(V, W ) is called symmetric if σΦ = Φ holds for every permutation σ.
The set of symmetric mappings is denoted by Sq(V, W ).

We have Aq ⊂ Lq, Sq ⊂ Lq and Aq ⊕ Sq = Lq.
Instead of real vector spaces one may use complex vector spaces without problems,
then R has to be substituted by C. Scalar products in V = Rn are such multilinear
mappings with values in W = R.

Proposition A.1.2. (i) If {e1, . . . , en} is a basis of V , then a q-linear mapping is
uniquely determined by its values on the sets of q basis elements {ej1 , . . . , ejq},
values which can be chosen arbitrarily in W .

(ii) Lq(V, W ), Aq(V, W ), and Sq(V, W ) are real vector spaces with operations
given by the addition in W and the multiplication by real numbers.

(iii) Introducing norms we have for each pair of norms, |.|1 in V and |.|2 in W
that

|Φ|12 := sup{|Φ(x1, . . . , xq)|2 : |x1|1 ≤ 1, . . . , |xq|1 ≤ 1}

is finite and a norm of the vector space Lq(V, W ) with

|Φ(x1, . . . , xq)|2 ≤ |Φ|12|x1|1 · · · |xq|1.

(iv) If q vectors x1, . . . , xq are linearly dependent if and only if Φ(x1, . . . , xq) = 0,
then Φ is alternating.

(v) The vector spaces Aq and Sq are closed relative to norm convergence.
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Proof. (i) Φ ∈ V q, then

Φ(x1, ..., xk) =
∑

iq=0n

x1
i1 ...xq

iq
Φ(ei1 , ..., eiq )

which proves the assertion.

(ii) follows from the (multi)-linearity of Lq , Aq and Sq.

(iii) is obtained by using operator norms in finite spaces and matrix calculus.

(iv) It remains only to prove one direction. Let q = 2, then

Φ(xi, xj) = −Φ(xj , xi) (i �= j)

and

Φ(xi, xj) + Φ(xj , xi) = Φ(xi + xj , xj) + Φ(xi + xj , , xi) = Φ(xi + xj , xi + xj) = 0. �

We explicitly remark that an alternating mapping changes sign if two variables
are interchanged. Therefore an alternating mapping has the value zero if two of
its variables are equal.

We shall study now the alternating mappings in more detail, we start with a

Definition A.1.3. (i) For Φ ∈ Lq the mapping αq : Lq(V, W ) → Aq(V, W ) with

αq(Φ) :=
∑

σ∈perm(q)

(sgnσ)σΦ

is called anti-symmetrization.

(ii) For Φ ∈ Lp+q(V, W ) the mapping (αp, αq) : Lp+q(V, W ) → Ap,q(V, W ) is
defined by

(αp, αq)Φ(x1, . . . , xp, xp+1, . . . , xp+q)

:=
∑

σ∈perm(p)

(sgnσ)
∑

τ∈perm(q)

(sgn τ)Φ(xσ(1), . . . , xσ(p), xp+τ(1), . . . , xp+τ(q)).

(iii) The symmetrization is analogously defined by

βq(Φ) :=
∑

σ∈perm(q)

σΦ,

(βp, βq) has to be introduced correspondingly.

Clearly these mappings are linear. The mappings in the set Ap,q(V, W ) are al-
ternating separately the first p and the last q variables. Every Φq ∈ Aq can be
represented as an image of a Φ′

q ∈ Lq, in every case αqΦ′
q = Φq if Φq is already

alternating. Now we define a mapping which is important for us:
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Proposition A.1.4. The mapping αp,q : Ap,q → Ap+q, defined by

αp,q((αp, αq)Φ) := αp+q(Φ),

is well defined and linear. An analogous mapping βp,q is defined for the sym-
metrization, and a corresponding assertion holds.

The proof may be found, e.g., in [22] or [65].
From now on we assume W to be an algebra A such that we can multiply in it.
For us A will generally be R but C, H, or the Clifford algebra C�(n) are equally
possible. Now we are able to define:

Definition A.1.5. (i) The direct sum of the Lq(V,A), i.e., is the set of all formal
finite sums of elements of all Lq(V,A), is denoted by L∞(V,A):

L∞(V,A) :=
∞⊕

q=0

Lq(V,A).

(ii) L∞(V,A) becomes an algebra with the following tensor product: For Φp ∈
Lp(V,A) and Φp′ ∈ Lp′

(V,A) one defines Φp ⊗ Φp′ ∈ Lp+p′
(V,A) by

(Φp ⊗ Φp′)(x1, . . . , xp+p′ ) := Φp(x1, . . . , xp)Φp′(xp+1, . . . , xp+p′).

A is a subalgebra of L∞(V,A) with a ⊗ Φp = aΦp, a ∈ A.

(iii) A∞(V,A) and S∞(V,A) are analogously defined.

(iv) In A∞ the following exterior product or alternating product or wedge product
is defined:

∧ : Ap(V,A) × Aq(V,A) → Ap+q(V,A)

with
Φp ∧ Φq := αp,q(Φp ⊗ Φq).

This makes A∞ a (graduated) algebra, the exterior algebra or Graßmann
algebra.

(v) Quite analogously the symmetric product

∨ : Sp(V,A) × Sq(V,A) → Sp+q(V,A)

is defined using βp,q.

We remark explicitly that A∞ and S∞ are not subalgebras of L∞, but only linear
subspaces, as the exterior and the symmetric product are defined only in A∞,
resp. S∞. The following rules hold:

Proposition A.1.6. (i) The multiplications ∧ and ∨ are distributive and associa-
tive, the latter if the algebra A is associative.
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(ii) For commutative A (especially A = R, C) we have

Φp ∧ Φq = (−1)pqΦq ∧ Φp

Φp ∨ Φq = Φq ∨ Φp.

For the proof we refer to the books cited above and recommend it as an exercise
(see Exercise A.1.3.3). The distributivity follows easily from the distributivity in
L∞; for the associativity and the commutation rule one has to represent Φp, Φq

as images of elements of L∞(V,A) and then to use their properties.

Example A.1.7. a) The Φ0 ∈ L0(V,A) are the elements of A. As no variables exist
they cannot be exchanged and we have A0 = S0 = L0, moreover α0 and β0 equal
the identity. The exterior multiplication by a Φ0 runs as follows:

Φ0 ∧ Φp = α0,p(α0Φ0 ⊗ αpΦ̃p)

= α0+pΦ0 ⊗ Φ̃p = Φ0(αpΦ̃p) = Φ0Φp.

b) The elements in L1 resp. A1 or S1 are functions of only one variable. Therefore
one cannot exchange variables also for the Φ1, we have L1 = A1 = S1 and α1 =
β1 = id. The exterior product of elements of A1 has the form

Φ1 ∧ Φ̃1 = α1,1(α1Φ1 ⊗ α1Φ̃1) = α2(Φ1 ⊗ Φ̃1).

We get
(Φ1 ∧ Φ̃1)(x1, x2) = Φ1(x1)Φ̃1(x2) − Φ1(x2)Φ̃1(x1).

c) The product xy of two vectors in Rn, interpreted as 1-vectors in the Clifford
algebra C�(n), is a 2-form with values in A = C�(n). At the end of Subsection 3.2.2
we found that the symmetrized product (xy + yx)/2 is the usual scalar product
x · y; the anti-symmetrized product

xy − yx

2
= x ∧ y

appears to be the exterior product, also called the Graßmann product. The Graß-
mann product of two 1-vectors is a 2-vector or bivector. It describes the oriented
volume of the parallelogramm, spanned by the vectors x and y as we have seen in
R3 in Section 2 following Proposition 2.42.
Obviously also products with more factors are defined, so a product of k 1-vectors
gives a so-called k-form and we have also the exterior product, which gives a
k-vector . The exterior multiplication of a k-vector and an �-vector gives a (k + �)-
vector. The commutation rules of the last proposition hold obviously also here.
For the special case of Rn the Ak are denoted by Λk(Rn) and A∞ by Λ(Rn).
d) Especially the literature in physics represents the scalar and the exterior product
by two operators. On the one hand this is the annihilation operator Jx of the scalar
or interior multiplication and on the other hand the creation operator Ex of the
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exterior multiplication. Both operators are defined by the following recursions: Let
x be a 1-vector and x(k) = x1 ∧x2 ∧· · · ∧xk with 1-vectors x1, . . . , xk. One defines
then

Jx(1) := 0, Jx(x(k)) :=
k∑

i=1

(−1)i−1(x · xi)x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xk

and

Ex(1) := x, Ex(x(k)) := x ∧ x(k).

Both operators have to be continued linearly to Λ(Rn). From the definition we can
at once conclude

Proposition A.1.8. (i) For y ∈ Λk(Rn) we have Ex(y) ∈ Λk+1(Rn) and Jx(y) ∈
Λk−1(Rn). In particular for y ∈ Λ1(Rn) we have Jx(y) = x · y.

(ii) For x ∈ Λ1(Rn) and y, z ∈ Λ(Rn) the relation

Ex(y) · z = y · Jx(z)

holds showing Jx to be the conjugate operator to Ex relative to the interior
product.

(iii) In Λ(Rn) we have always E2
x = J2

x = 0 and so x ∧ x = 0.

The proof is given as Exercise A.1.3.4.

e) If we look for alternating forms for V = Rn and A = R we see that non-trivial
alternating forms exist only up to degree n: A Φp can be split up into expressions
of the form

Φp(ei1 , . . . , eip)

because of the distributivity; here the ej are the basis elements of V . If p > n at
least two basis elements have to be equal, therefore the alternating form is zero
on a set with p > n basis elements (an exchange of the two equal variables does
not change the value of the form but its sign).

Besides A0(Rn, R) = R it is easy to describe A1(Rn, R) = L1(Rn, R): L1(Rn, R)
contains precisely the Φ1(x) = a · x with a, x ∈ Rn. Also the n-forms are easy to
compute: with

xk =
n∑

j=1

xkjej
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we have Φn(ej1 , . . . , ejn) = 0 if two of the eji are equal. This gives

Φn(x1, . . . , xn) =
n∑

j1,...,jn=1

x1j1 · · ·xnjnΦn(ej1 , . . . , ejn)

=
∑

σ∈perm(n)

x1σ(1) · · ·xnσ(n)Φn(eσ(1), . . . , eσ(n))

=

⎛⎝ ∑
σ∈perm(n)

(sgnσ)x1σ(1) · · ·xnσ(n)

⎞⎠Φn(e1, . . . , en)

= Φn(e1, . . . , en) det(x1, . . . , xn).

Consequently only one n-linear form exists in Rn up to a factor.

A.1.2 Differential forms
We have now provided the necessary notions for our real purpose and we are able
to define differental forms:

Definition A.1.9. Let G be a domain in V .

(i) A mapping ωp : G → Ap(V,A) is called a differential form of degree p with
values in A. For x ∈ G we have therefore ω(x) ∈ Ap(V,A). If variables from
V p are needed we add them in brackets:

ω(x)[h1, . . . , hp].

If ωp is m-times continuously differentiable (in the sense of mappings between
vector spaces) we write

ωp ∈ Cm(G).

(ii) For every x ∈ G and using Definition A.1.5 (iv) we define ωp ∧ ωq by

(ωp ∧ ωq)(x) := ωp(x) ∧ ωq(x).

(iii) For ωp ∈ C1(G),

dωp := α1,p(ω′
p) : G → Ap+1(V,A)

is called the exterior differential or total differential of ωp. If dωp = 0 then ωp

is called closed or exact. If an ωp−1 exists with ωp = dωp−1, then ωp is called
a total differential form. The operator d is also called a Cartan operator.

Remark A.1.10. a) As A0(V,A) = A a differential form of degree 0 is a function
defined in G with values in A. As the Examples A.1.7 show we have

ω0 ∧ ωp = ω0ωp, ωp ∧ ω0 = ωpω0
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and

(ω1 ∧ ω̃1)(x)[h1, h2] = ω1(x) ∧ ω̃(x)[h1, h2]
= (ω1 ⊗ ω̃1 − ω̃1 ⊗ ω1)(x)[h1h2]
= ω1(x)[h1]ω̃1(x)[h2] − ω1(x)[h2]ω̃1(x)[h1].

Luckily one has very seldom to go into such details.

b) In definition (iii) a derivative ω′
p is used. This is always meant in the sense of

mappings between vector spaces: If f : G → A is a function defined in a domain
G ⊂ V , it is differentiable at a point x0 ∈ G if and only if an f ′(x0) ∈ L1(V,A)
exists such that

f(x) = f(x0) + f ′(x0)[x − x0] + |x − x0|o(1).

Here we have used a notation for functions which have the character of a remainder
term, as introduced by the German mathematicians Paul Bachmann (1837–
1920) and Edmund Landau (1877–1938):

Definition A.1.11 (Bachmann–Landau symbols). A function g(h) with values in
a vector space and depending on a variable h in a neighborhood of the origin
of another vector space V is denoted by o(1) — read ‘little-o of 1’ —, if g(h)
converges to 0 for h → 0.
If the function g is bounded for h → 0 it is denoted by O(1) – read ‘big-O of 1’ –.
If the product ko(1), resp. kO(1), with another function k is defined one writes
simply o(k), resp. O(k).

A sum and a product of such functions are a function of the same type, similarly
the multiplication with a bounded function does not change the type. That is the
advantage of this notation; we shall use it often with profit.
So, for a differential form ωp : G → Ap(V,A) differentiation means the existence
of an equation

ωp(x) = ωp(x0) + ω′
p(x0)[x − x0] + |x − x0|o(1)

for x → x0, here ω′
p(x0) ∈ L(V, Ap(V,A)).

It is important for the first and the higher derivatives that we always can put
canonically

L(V, Lp(V,A)) ∼= Lp+1(V,A);

this is done as follows: Φ ∈ L(V, Lp(V,A)) assigns to an x0 ∈ V a Φ(x0) ∈
Lp(V,A), which is a linear operation relative to x0. Therefore

Φ(x0)[x1, . . . , xp]

is a linear function relative to all variables; it is a multilinear function of grade
p + 1, and so it is an element in Lp+1(V,A).
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In particular for the differentiation of our differential form we have

ω′
p(x0)[x1, . . . , xp] ∈ Lp+1(V,A),

here the derivative is already assumed to be alternating relative to the p variables.
That shows

α1,p(x0)ω′
p

to be reasonably defined and alternating with degree p + 1.

c) Following the theorem of Schwarz the second and therefore also the higher
derivatives of a function f : G → A are symmetric. For f ′′ ∈ L2(V,A) this means

f ′′(x0)[h, k] = f ′′(x0)[k, h] (h, k ∈ V ).

We need rules for calculating with differential forms:

Proposition A.1.12. Let the algebra A be associative. We then have:

(i) The exterior product ∧ is associative.

(ii) The exterior differential d is additive, i.e., d(ω + ω̃) = dω + dω̃.

(iii) In a commutative algebra A we have

ωp ∧ ωq = (−1)pqωq ∧ ωp.

(iv) From ωp = αpΦp it follows that dωp = αp+1Φ′
p.

(v) For d the following Leibniz rule holds:

d(ωp ∧ ωq) = (dωp) ∧ ωq + (−1)pωp ∧ (dωq).

(vi) If ωp ∈ C2(G) we have d(dωp) = 0: The exterior differential of a differential
form is also a total differential form.

Proof. (i), (ii) and (iii) follow directly from the rules in Proposition A.1.6 for alternating
forms.

(iv) We have

ω′
p = (αpΦp)

′ =
∑

σ∈perm(p)

(sgn σ)(σΦp)
′

=
∑

σ∈perm(p)

(sgn σ)σΦ′
p[ · , · · · ] = (α1, αp)Φ

′
p = αp+1Φ

′
p

dωp = α1,p(ω′
p) = α1,p[(αpΦp)′] = α1,p[(α1, αp)Φ

′
p] = αp+1(Φ

′
p).

Here σ in the second line applies only to the last variables of Φ′, that is just the same as
the application of (α1, αp)to Φ′

p.
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(v) Again with ωp = αpΦp and ωq = αqΦq it follows that

d(ωp ∧ ωq) = d(αpΦp ∧ αqΦq) = d[αp,q(αpΦp ⊗ αqΦq)]

= d(αp+q(Φp ⊗ Φq)) = αp+q+1(Φp ⊗ Φq)
′

= αp+q+1(Φ
′
p ⊗ Φq + Φp ⊗ Φ′

q)

= αp+1,q(αp+1, αq)Φ
′
p ⊗ Φq + αp+q+1Φp ⊗ Φ′

q.

Within the last summand the additional variable, coming up with the differentiation
of Φq , has to be shifted to the first place, where this additional variable has to be,
following the definition of the derivative. If we do that with a permutation τ , we get with
p + q + 1 =: r,

αrτΦ =
∑

σ∈perm(r)

(sgn σ)στΦ = (sgn τ )
∑

σ∈perm(r)

(sgn στ )στΦ = (sgn τ )αrΦ.

If we apply this in our differentiation formula because of sgn τ = (−1)p (the additional
variable in Φ′

q has to be shifted over the p variables of Φp) we get

d(ωp ∧ ωq) = αp+1,qω
′
p ⊗ ωq + (sgn τ )αp,q+1(αp, αq+1)Φp ⊗ Φ′

q

= (dωp) ∧ ωq + (−1)pωp ∧ (dωq),

and that is the assertion.
(vi) From ωp = αpΦp it follows that dωp = αp+1Φ

′
p and

d(dωp) = αp+2Φ
′′
p =

∑
σ∈perm(p+2)

(sgnσ)σΦ′′
p =

∑
σ∈perm(p+2)

σΦ′′
p .

Now, following the theorem of Schwarz, Φ′′
p is symmetric in the first two variables, arising

from the differentiations. Therefore we split up σ in the following way: σ = (ρ, τ ), where
ρ is related only to the first two variables. Then for every τ there appears once ρ and once
ρ′, relative to the first two exchanged variables. ρ and ρ′ give for σ just different signs,
while Φ′′

p is unchanged because of the symmetry of the second derivatives. Therefore the
sum is zero indeed. �

We need a representation of differential forms by a basis, which is the usual form
of working with differential forms. A further operation will follow.

Theorem A.1.13. (i) A differential form ωq : G → Aq(V,A) possesses the fol-
lowing canonical representation depending on the basis (if A is of dimension
greater than 1, the representation holds for each component separately):

Let {e1, . . . , en} be a basis of V , x =
∑n

j=1 xjej. Let

dxj : G → A1(V, R) (= L(V, R)) with dxj [x] := xj ,

be the projection of x onto the j-th coordinate. The dxj do not depend on the
points in G, they are constant differential forms of degree 1. For ωq we have
then the representation

ωq(x) =
∑

j1<···<jq

aj1...jq(x) dxj1 ∧ · · · ∧ dxjq ,
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here ji runs through 1, . . . , n and the aj1...jq (x) are functions which are dif-
ferentiable as often as the differential form itself.

(ii) A differential form of degree 0, ω0(x), is a function a(x); a differential form
of degree 1 has the form

ω1(x) =
n∑

j=1

aj(x)dxj , aj(x) = ωj(x)[ej ].

Moreover ωq(x) = 0 for q > n and ωn(x) = a(x)dx1 ∧ · · · ∧ dxn.

Proof. (i) The differential form ωq(x)[h1, . . . , hq ] is uniquely defined by the values on the
sets of q basis elements ei1 , . . . , eiq , where it is useful to assume i1 < · · · < iq. On this
set of basis elements dxi1 ∧ · · · ∧ dxiq has the value 1, on all other sets of basis elements
the value 0. The proof uses mathematical induction relative to q: From dxi[ej ] = δij and
the induction starts dxi = α1(dxi); it then follows that

dxi1 ∧ · · · ∧ dxiq−1 ∧ dxiq = αq−1(dxi1 ∧ · · · ∧ dxiq−1) ∧ dxiq

= αq−1,1(αq−1(dxi1 ∧ · · · ∧ dxiq−1) ⊗ dxiq

= αq−1,1(αq−1 ⊗q−1
j=1 dxij ⊗ α1dxiq

= αq−1,1(αq−1, α1)dxi1 ⊗ · · · ⊗ dxiq

= αq(dxi1 ⊗ · · · ⊗ dxiq).

If one substitutes here the values ej1 , . . . , ejq one can prove the equation

(dxi1 ∧ · · · ∧ dxiq [ej1 , . . . , ejq ] = δi1,j1 · · · δiq ,jq , j1 < · · · < jq ,

(see Exercise A.1.3.6). This gives

ωq(x) =
∑

i1<···<iq

ωq(x)[ei1 , . . . , eiq ]dxi1 ∧ · · · ∧ dxiq ;

the property to be a basis and the uniqueness of the representation are now easy to see.
(ii) follows without difficulties from Examples A.1.7 a, b, e. �

Corollary A.1.14. (i) For a function f we have

df(x) =
n∑

j=1

∂f

∂xj
dxj .

(ii) The local increasing of a function f is described by (h → 0)

f(x + h) − f(x) = df [h] + |h|o(1).

Proof. (i) We have df = α1f
′ = f ′, therefore df [ej ] = f ′[ej ] = ∂f/∂xj and

df =

n∑
j=1

∂f

∂xj
dxj.
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(ii) We know from real analysis that

f(x + h) − f(x) =
n∑

i=1

∂f

∂xi
hi + |h|o(1)

with the components hi of h. Then from

df [h] =

n∑
i=1

∂f

∂xi
dxi[h] =

n∑
i=1

∂f

∂xi
hi

the desired equation follows:

f(x + h) − f(x) = df [h] + |h|o(1). �

xx

∆f

f(x)f

x + h

df

o(|h|)

Figure A.1

At the end of this appendix we are going to define a useful operation with differ-
ential forms without saying anything about the background. The notion is helpful
for the definition of holomorphic functions and also for the integration.

Definition A.1.15 (Hodge operator). For ωq(x) :=
∑

i1<···<iq

ai1...iq(x)dxi1 ∧· · ·∧dxiq

the Hodge operator is defined as follows:

ω∗
q (x) :=

∑
i1<···<iq

ai1...iq (x)(dxi1 ∧ · · · ∧ dxiq )
∗

and
(dxi1 ∧ · · · ∧ dxiq )

∗ := (sgn σ)dxiq+1 ∧ · · · ∧ dxin

if σ is the permutation with σ(j) = ij .

Remark A.1.16. a) We have in particular

ω∗
0 = f∗ = fdx1 ∧ · · · ∧ dxn.

For the integration we shall identify dx1 ∧ · · · ∧ dxn with the volume element dσ.
b) Obviously we have ω∗∗

q = ωq.
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c) The form dx∗ is of special interest for us, firstly we have

dx∗
i = (−1)i−1dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn =: (−1)i−1dx̂i,

the sign comes from the shifting of the index i to the first place. The abbreviation
dx̂i saves much typing. So dx∗ is a differential form of degree (n−1), the evaluation
of its value gives:

dx∗[h1, . . . , hn−1] =
n∑

i=1

ei dx∗
i [h1, . . . , hn−1]

=
n∑

i=1

(−1)i−1ei αn−1(dx1 ⊗ · · · ⊗ dxi−1 ⊗ dxi+1 ⊗ · · · ⊗ dxn)[h1, . . . , hn−1]

=
n∑

i=1

(−1)i−1ei ·∑
σ∈perm(n−1)

(sgn σ)dx1[hσ(1)] · · · dxi−1[hσ(i−1)]dxi+1[hσ(i)] · · · dxn[hσ(n−1)]

=
n∑

i=1

(−1)i−1ei

∑
σ∈perm(n−1)

(sgn σ)hσ(1),1 · · ·hσ(i−1),i−1hσ(i),i+1 · · ·hσ(n−1),n

= det

⎛⎜⎜⎜⎝
e1 . . . en

h11 . . . h1n

...
...

hn−1,1 . . . hn−1,n

⎞⎟⎟⎟⎠ .

Here the determinant has to be developed formally with respect to the first line
as we know from the cross product in R3, moreover we put hi = (hi,1, . . . , hi,n).
One can call this expression the vector product or cross product in Rn:

dx∗[h1, . . . , hn−1] =:
n−1�

i=1

hi.

Obviously this vector is orthogonal to all h1, . . . , hn−1, as the scalar product with
another vector a gives the determinant which as first line has the components of
the vector a:

a ·
(

n−1�

i=1

hi

)
= det

⎛⎜⎜⎜⎝
a
h1

...
hn−1

⎞⎟⎟⎟⎠ .

We shall use this fact while integrating over manifolds. We can look upon the
product in the last formula as a mixed n-product of the n vectors a, h1, . . . , hn−1.
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This is an operation with n incoming vectors, therefore no multiplication in the
usual sense. This product gives the volume of the box spanned by the n vectors,
we know this for R3 and here we have a generalization. As the determinant is
anti-symmetric relative to the hi one can ask for the relation to h1 ∧ · · · ∧ hn−1,
which is also an anti-symmetric product. To look for this relation we define

e∗j := (−1)j−1e1 ∧ · · · ∧ ej−1 ∧ ej+1 ∧ en,

and we get with quite similar calculations as in Example A.1.7 d

h1 ∧ · · · ∧ hn−1 = det

⎛⎜⎜⎜⎝
e∗1 . . . e∗n
h11 . . . h1n

...
...

hn−1,1 . . . hn−1,n

⎞⎟⎟⎟⎠
(see Exercise A.1.3.5). The mapping ej ↔ e∗j , j = 0, . . . n, defines an isomorphism
between the vector spaces C�(n)1 and C�(n)n−1, which gives a duality in C�(n)
if we continue it to the other degrees. Expressions such as dx∗[h1, . . . , hn−1] and
h1 ∧ · · · ∧ hn−1 are dual.

A.1.3 Exercises
1. Prove Proposition A.1.2.

2. Prove that the mapping αp,q : Ap,q → Ap+q, defined by

αp,q((αp, αq)Φ) := αp+q(Φ),

is well defined and linear (see Proposition A.1.4).

3. For commutative algebras A prove the rule, see Proposition A.1.6 (ii),

Φp ∧ Φq = (−1)pqΦq ∧ Φp.

4. Prove Proposition A.1.8

(i) For y ∈ Λk(Rn) we have Ex(y) ∈ Λk+1(Rn) and Jx(y) ∈ Λk−1(Rn). In
particular for y ∈ Λ1(Rn) we have Jx(y) = x · y.

(ii) For x ∈ Λ1(Rn) and y, z ∈ Λ(Rn) the relation

Ex(y) · z = y · Jx(z)

holds. That shows Jx to be the conjugate operator to Ex relative to the
interior product.

(iii) In Λ(Rn) we have always E2
x = J2

x = 0.
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5. Using the definitions in Remark A.1.16 c), prove

ej ∧ e∗j = e1 ∧ · · · ∧ en

and for vectors h1, . . . , hn−1,

h1 ∧ · · · ∧ hn−1 = det

⎛⎜⎜⎜⎝
e∗1 . . . e∗n
h11 . . . h1n

...
...

hn−1,1 . . . hn−1,n

⎞⎟⎟⎟⎠ .

6. Prove
(dxi1 ∧ · · · ∧ dxiq )[ej1 , . . . , ejq ] = δi1j1 · · · δiqjq .
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A.2 Integration and manifolds

A.2.1 Integration
A.2.1.1 Integration in Rn+1

The integral theorems proved in Section 7 are a basic and important tool in func-
tion theory in the plane as well as in space. For this purpose we give here the
necessary definitions and theorems within the theory of integration. The functions
to be integrated are differential forms and the domains of integration will be man-
ifolds. For this integration the degree of the differential form and the dimension
of the manifold have to be the same.
The simplest manifolds, although they are not usually referred to in this way, are
the domains in Rn+1 or in H, where our functions are defined. We remind the
reader that we have R3 as domain of definition in H if we look at H as C�(2),
otherwise we deal with mappings from H into H, which are defined in R4 and
where we have to choose n = 3.
We have seen in Appendix 1, Theorem A.1.13 (ii), that in Rn+1 up to a factor
only one differential form exists:

f(x)dx0 ∧ dx1 ∧ · · · ∧ dxn =: f(x)dσ.

We identify now dx0 ∧ dx1 ∧ · · · ∧ dxn with the volume element dσ of integration
in the sense of Riemann or Lebesgue. The reason is the identical behavior if the
variables are transformed, a fact we shall see later. For a function with real values
we apply the usual notion of integration from real analysis:

Definition A.2.1 (Integral over a domain). If a function f =
∑

A fAeA is given
in a domain in H or Rn+1 with values in H or C�(n), then the integral over f is
defined by integrating the components of f separately:∫

G

f(x)dσ :=
∑
A

eA

∫
G

fA(x)dσ.

If necessary the variable of integration is added as an index to dσ: dσx.

We give some rules for integrals:

Proposition A.2.2. (i) If two domains or open sets G1 and G2 are disjoint, then
we have ∫

G1∪G2

f(x)dσ =
∫
G1

f(x)dσ +
∫
G2

f(x)dσ.

(ii) In C�(n) ∣∣∣∣∣∣
∫
G

f(x)dσ

∣∣∣∣∣∣ ≤
∫
G

|f(x)|dσ

holds.
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(iii) We have always ∫
G

f(x)dσ =
∫
G

f(x)dσ.

Improper integrals are included here, e.g., for G being an unbounded domain of
integration.

Proof. (i) is simply the additivity of the integral relative to its domain.

(ii) We denote the integral to be estimated by J , for J = 0 nothing has to be proved.
Let now J �= 0, as the algebraic structure does not matter for the estimate. We look at f
as a function with values in C�(2n), then J is a paravector and has an inverse. We have
with a := J/|J | obviously |a| = 1 and

|J | = a−1J =

∫
G

a−1f(x)dσ =

∫
G

Sc(a−1f(x))dσ

≤
∫

G

|a−1f(x)|dσ =

∫
G

|f(x)|dσ.

Here Sc denotes also the real part in C.

(iii) follows from the definition. �

A.2.1.2 Transformation of variables

The transformation of variables is important for integration over manifolds, there-
fore we have to study how a differential form behaves if the variables are trans-
formed.

Definition A.2.3. Let G ⊂ Rn+1 and H ⊂ Rp (1 ≤ p ≤ n + 1) be domains
and let ϕ : H → G with x = ϕ(t) be an injective mapping from H to G with
ϕ ∈ Cm+1(H). The derivative ϕ′ is assumed to have rank p at all points of G.
Let ωp ∈ Cm(G) be a differential form of degree p in G, then the differential form
ωp ◦ ϕ in H is defined by (hi ∈ Rp)

(ωp ◦ ϕ)(t)[h1, . . . , hp] := ωp(ϕ(t))[ϕ′(t)[h1], . . . , ϕ′(t)[hp]].

We remark that ϕ′ is a ((n + 1) × p)-matrix and it is not always quadratic.

Proposition A.2.4. The form ωp ◦ ϕ is a differential form of degree p in H that is
m-times continuously differentiable.

Proof. Linearity and anti-symmetry follow from these properties of ωp and the linearity
of ϕ′, the differentiability follows from the chain rule. For the chain rule we need ϕ ∈
Cm+1(H) to have ϕ′ ∈ Cm(H). �

Two differential forms ωp and ωq satisfy the rules:
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Proposition A.2.5 (Rules for variable transformation).

a) (ωp ∧ ωq) ◦ ϕ = (ωp ◦ ϕ) ∧ (ωq ◦ ϕ),
b) (dωp) ◦ ϕ = d(ωp ◦ ϕ),
c) (ωp ◦ ϕ) ◦ ψ = ωp ◦ (ψ ◦ ϕ).

Proof. We only sketch the proof (see Exercise A.2.3.1): One has to use the representation
ωp = αpΦ with the anti-symmetrization αp and a multilinear mapping Φ as in Appendix
1. Then ϕ and αp commute as one has only to substitute into sums. Together with the
definition of the exterior product assertion a) follows. The assertion in b) can be proved
using the definition of the exterior derivative and the symmetry of ϕ′′ according to the
theorem of Schwarz. Finally the assertion of c) follows similarly from the chain rule for
ψ ◦ ϕ. �

The behavior of the canonical representation is also important when the variables
are transformed:

Proposition A.2.6. Let the differential form ωp(x) be given in canonical represen-
tation:

ωp(x) =
∑

i1<···<ip

ai1...ip(x) dxi1 ∧ · · · ∧ dxip .

For a transformation of variables x = ϕ(t) we then have

(ωp ◦ ϕ)(t) =

⎛⎝ ∑
i1<···<ip

(ai1...ip ◦ ϕ)(t)
∂(ϕi1 , . . . , ϕip)
∂(t1, . . . , tp)

⎞⎠ dt1 ∧ · · · ∧ dtp.

Proof. The proof is again only sketched. Similarly as in Remark A.1.16 c) the substitution
of ϕ′(t)[h1], . . . , ϕ

′(t)[hp] in dxi1 ∧ · · · ∧ dxip gives the Jacobians written in the assertion
and the expression for dt1 ∧ · · · ∧ dtp[h1, . . . , hp]. �

Remark A.2.7. a) The case p = n + 1, dealt with in the last subsection, is of
special interest for us. If we transform the variables in f(x)dx0 ∧ · · · ∧ dxn we get,
following the last proposition,

f(ϕ(t))
∂(ϕ0, . . . , ϕn)
∂(t0, . . . , tn)

dt0 ∧ · · · ∧ dtn = f(ϕ(t))detϕ′(t)dt0 ∧ · · · ∧ dtn.

This is precisely the transformation rule for integrals, known from real analysis,
with the so-called Jacobian J(ϕ) = detϕ′. Here we see the reason to identify
dx0 ∧ · · · ∧ dxn with the volume element of integration dσ.

b) We are now going to formulate the so-called Poincaré lemma:

Proposition A.2.8 (Poincaré’s lemma). Let G be a star-shaped domain relative to
x0 ∈ G, i.e., for all x ∈ G the line from x0 to x lies completely in G. If for a
differential form ωp ∈ C1(G) we have dωp = 0 in G, then ωp is constant for p = 0
and for p > 0 a differential form ωp−1 exists with

ωp = dωp−1.
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One approaches the proof by using the integral

ωp−1(x)[h1, . . . , hp−1] :=
∫ 1

0

tp−1ωp(tx)[x, h1, . . . , hp−1]dt.

The reader is asked to prove the statement (see Exercise A.2.3.2).

A.2.1.3 Manifolds and integration

We are looking now at the domains of integration in Rn+1 which have at most
dimension n. We start with a definition:

Definition A.2.9. (i) A p-dimensional manifold Mp in Rn+1 is a set with the
following properties:

For every x0 ∈ Mp a relatively open neighborhood U(x0) exists together with
a homeomorphic mapping ϕ : H → U(x0) of a domain H ⊂ Rp onto U(x0),
which is bijective and continuous in both directions. (U, ψ) with ψ = ϕ−1 is
called a chart, also a (local) coordinate system, a set of charts is called an
atlas.

(ii) The manifold Mp is defined to be k-times continuously differentiable (∈ Ck),
if for every pair of charts (U1, ψ1) and (U2, ψ2) with U1∩U2 �= ∅ the mapping

χ = ψ2 ◦ ϕ1 : ψ1(U1 ∩ U2) → ψ2(U1 ∩ U2)

is k-times continuously differentiable. Moreover the ϕi ∈ Ck are assumed to
have rankϕ′

i = p at all points of H . A manifold, which is at least in C1, is
called smooth manifold (sometimes for this notion C∞ is assumed).

(iii) Moreover Mp is called orientable if det χ′ > 0 always.

(iv) The manifold Mp has a boundary, if charts exist which map onto a half-ball
such that the plane boundary component of the half-ball corresponds to a
part of the boundary of Mp.

We deal only with smooth manifolds, at most with structures which are composed
by finitely many smooth manifolds, thus we speak of piecewise smooth manifolds.
We remark that

ϕ′(t)[ei] =
∂ϕ(t)
∂ti

;

these vectors span the tangential space Tx(Mp) at the point x = ϕ(t). The tan-
gential space is independent of the special chart as the passage to another chart
only changes the basis of the tangential space.

Unfortunately our intuition fails in higher dimensions and we can use only analo-
gies with dimensions 2 and 3. Here some examples follow:
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Mp ⊂ Rn+1

U2

U1

ψ2(U2) ⊂ Rp

ψ1(U1) ⊂ Rp

ψ2
ψ1

ψ1 ◦ ϕ2

Figure A.2

Example A.2.10. a) Curves. In every dimension we have 1-dimensional manifolds,
called curves; for each curve, the corresponding mapping ϕ is called a parametric
representation of the curve. Generally for a curve, one mapping ϕ : [a, b] → Rn+1 is
sufficient. The point ϕ(a) is called the initial point of the curve, ϕ(b) the endpoint.
If the initial and endpoint coincide the curve is called closed. If ϕ is injective,
i.e., it meets no point twice — or ϕ(t1) �= ϕ(t2) holds for t1 �= t2 — (with the
possible exception of initial and endpoint), the curve is called a Jordan curve. A
strictly monotone and surjective function τ : [a, b] → [α, β], which is continuously
differentiable and has a positive derivative in the whole interval including the
boundary points, is called an admissible parameter transformation.

A curve is called smooth, if at all points ϕ′(t) �= 0, piecewise smooth, if it can be
split into finitely many smooth curves.

ϕ(a)
ϕ(b)

ϕ(t)

Figure A.3

If Γ is a curve represented by ϕ(t) with t ∈ [a, b] then −Γ denotes the curve
run in the opposite direction. A possible parametrization is ϕ̃(τ) := ϕ(−τ) with
τ ∈ [−b,−a].

If Γ1 and Γ2 are two smooth or piecewise smooth curves, where the endpoint of Γ1

coincides with the initial point of Γ2, one can join both parametric representations
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and gets a piecewise smooth sum Γ1+Γ2. But we allow also formal sums of finitely
many curves, which may occur as boundaries of plane domains.
b) Curves may occur as boundaries of two-dimensional manifolds. One sees this
simply in the plane, e.g., a circle is the boundary of a disc. If we choose for a circle
the parametric representation

ϕ(t) = z0 + R(cos t + i sin t), 0 ≤ t ≤ 2π,

the interpretation as a manifold needs to remove the special situation of the point
z1 := z0 + R. The corresponding ψ = ϕ−1 constitutes together with the circle and
without the point z1 a chart; a second chart has to include the point z1, e.g., by
t ∈ [−π, π]. These two charts would constitute an atlas of the circle.

c) A quadrangle in the plane has four lines as boundary; the whole boundary is a
piecewise smooth curve, but not a manifold. One may call it a piecewise smooth
manifold.

d) In R3 besides curves we have two-dimensional manifolds, e.g., the sphere with
center in the origin, which may be described by spherical coordinates: For −π <
t1 < π, −π

2 < t2 < π
2 one has

x0 = R cos t1 cos t2, x1 = R sin t1 cos t2, x2 = R sin t2

(see Example A.2.17 a). Similarly to the circle in the plane this chart represents
the sphere; to get an atlas at least one further chart has to be added.

e) Similarly to the quadrangle the boundary of a cuboid in R3 is formed by six
quadrangles; it is not a smooth manifold, but it is composed of finitely many
smooth manifolds. So we may also call this boundary a piecewise smooth manifold.
The edges have to be looked at as singular sets.

f) Another example is the torus (cf. Figure A.4). The core of such a ring may be de-
scribed by a circle of radius R in the plane x0 = 0; the torus is then parameterized
by circles of radius r around the points of the core.

TTTTT r

R

Figure A.4
We get with 0 < t1, t2 < 2π,

x0 = r sin t1,

x1 = (R + r cos t1) cos t2,

x2 = (R + r cos t1) sin t2.
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One of the circles around points of the core is not covered; for an atlas of the torus
at least a second chart is necessary, where one has to define t1 and t2 suitably.

g) Further examples are the projective plane or the Möbius strip. The last one
arises if a paper strip is glued together twisted, a fact that may be described also
mathematically. It is an example of a non-orientable manifold.

Remark A.2.11. The orientation of a manifold Mp is generally chosen such that
for a chart (U, ψ) with ψ−1 = ϕ : H → U in H the usual orientation of Rp is
given.

For the orientation of the boundary ∂Mp we proceed as follows: Let (U, ψ) be a
chart mapping a part of the boundary into a (hyper)plane. We choose this plane
to be t1 = 0 so that the image of U lies in {t1 < 0}. Then we choose at each point
t of the boundary a coordinate system e1, . . . , ep oriented correspondingly to Rp

such that e1 points to the positive t1-direction. The other e2, . . . , ep correspond to
tangential vectors of the boundary of Mp; they span the tangential space of ∂Mp.
This definition is independent from the chosen chart, if we pass to another chart
the Jacobian is positive (see Definition A.2.9 (iii)) so that the orientation is not
influenced. The other orientation is then denoted by −∂Mp.

We are now going to integrate over such manifolds:

Definition A.2.12. Let Mp ∈ C1 be an orientable manifold of dimension p and let
one of its charts (U, ψ) be given with ψ−1 = ϕ : H → U . Let ωp be a differential
form of degree p in a domain G ⊃ Mp. Then we define∫

U

ωp :=
∫
H

ωp ◦ ϕ :=
∫
H

ωp(ϕ(t))[ϕ′(t)[e1], . . . , ϕ′(t)[ep]]dσt

with the canonical basis e1, . . . , ep of Rp ⊃ H # t.

We have to confirm that this is well defined, i.e., that another chart leads to the
same result:

So, let ψ̃ belong to another chart (Ũ , ψ̃), for simplicity we assume that the sets U
and Ũ in Mp are the same. Moreover let t = χ(t̃) = ψ ◦ ϕ̃(t̃) be the mapping from
H̃ to H with det χ′ > 0 and ϕ ◦ χ = ϕ̃. Then we get∫

H

ωp(ϕ(t))[ϕ′(t)[e1], . . . , ϕ′(t)[ep]]dσt

=
∫

H̃

ωp(ϕ(χ(t̃)))[ϕ′(χ(t̃))[e1], . . . , ϕ′(χ(t̃))[ep]] det χ′(t̃)dσt̃

=
∫

H̃

ωp(ϕ̃(t̃))[ϕ̃′(t̃) ◦ χ′−1(χ(t̃))[e1], . . . , ϕ̃′(t̃) ◦ χ′−1(χ(t̃))[ep]] detχ′(t̃)dσt̃.
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With χ′−1[ej ] =: hj =:
∑p

i=1 αij ẽi and ωp(ϕ̃(t̃)) =: Φ(t̃),

Φ[ϕ̃′[h1], . . . , ϕ̃′[hp]] =
p∑

i1,...,ip=1

Φ[ϕ̃′[ẽi1 ], . . . , ϕ̃
′[ẽip ]]αi11 · · ·αipp

=
∑

σ∈perm(p)

Φ[ϕ̃′[ẽ1], . . . , ϕ̃′[ẽp]](sgnσ)α1σ(1) · · ·αpσ(p)

= Φ[ϕ̃′[ẽ1], . . . , ϕ̃′[ẽp]] det(αij)

follows. We know that hj = χ′−1[ej ] = ∂χ−1/∂tj, thus αij = ∂χ−1
i /∂tj and

det(αij) = det
(

∂χ−1
i

∂tj

)
= det χ′−1 =

1
det χ′ .

This gives at last as desired∫
H

ωp(ϕ(t))[ϕ′(t)[e1], . . . , ϕ′(t)[ep]]dσt =
∫

H̃

ωp(ϕ̃(t̃))[ϕ̃′(t̃)[ẽ1], . . . , ϕ̃′(t̃[ẽp]]dσt̃.

So indeed
∫

U ωp is well defined. The next step is to define the integral over the
whole manifold. We need here an important theorem:

Theorem A.2.13 (Partition of unity). Let K ⊂ Rp be compact and (Ui)i∈I be an
open covering of K. Then functions fi : Rp → [0, 1] exist with fi ∈ C∞, i ∈ I,
such that with

supp fi := {x : x ∈ Rp, fi(x) �= 0}

we have:

a) supp fi ⊂ Ui.

b) For all x ∈ K exists an index i ∈ I with 0 ≤ fi(x) ≤ 1.
∑

i fi(x) ≤ 1 for all
x ∈ Rp.

c)
∑

i fi(x) = 1 for all x ∈ K.

d) For all x ∈ K there exists a neighborhood U such that only finitely many
functions fi(i ∈ I) are not vanishing on U .

Here supp f is called the support of the function f . For the proof we refer to [22].
Functions of the form

f(x) =

{
c exp

(
1

|x|2−r2

)
, |x| < r, c ∈ R,

0, |x| ≥ r

are the essential device for the proof. Now we are able to define:
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Definition A.2.14. Let Mp ∈ C1 be an orientable manifold and ωp be a differential
form in a neighborhood of Mp. We assume either ωp to have compact support or
Mp to be contained in a compact set. Then one uses the partition of unity so that
ωp =

∑
i fiωp and fiωp has its support in a chart Ui of an atlas of Mp. Now one

is able to define ∫
Mp

ωp : =
∑

i

∫
Ui

fiωp.

The independence of the chosen atlas, resp. the given covering, follows if we look
at the intersections Ui ∩ Vj , the charts (Vj , ψ̃j) being from the second partition.
Now we shall look at some special cases; interesting for us are the degrees p = 1
and p = n:

Example A.2.15. a) Case p = 1: Our manifold is a curve M1 = Γ given by x =
ϕ(t), t ∈ [t0, t1]. A differential form of degree 1 is of the form

ω1(x) =
n∑

i=0

ai(x)dxi,

the ai(x) being functions with values in the considered algebra. Because of

dϕ(t)
dt

= (x′
0(t), . . . , x

′
n(t))

we get for the integral ∫
γ

ω1 =
∫ t1

t0

n∑
i=0

ai(ϕ(t))x′
i(t)dt.

For ω1 = f(x)dxg(x) the integral simplifies to∫
γ

f(x)dxg(x) =
∫ t1

t0

f(ϕ(t))ϕ′(t)g(ϕ(t))dt.

For these line integrals the following rules hold:∫
−γ

f(x)dx = −
∫
γ

f(x)dx (orientation),∫
γ1

f(x)dx +
∫

γ2
f(x)dx =

∫
γ1+γ2

f(x)dx (additivity),∫
γ(αf(x) + βg(x))dx = α

∫
γ f(x)dx + β

∫
γ g(x)dx (linearity),∣∣∣∫γ f(x)dx

∣∣∣ ≤
∫ t1

t0
|f(x)x′(t)|dt (modulus inequality).

For the proof see Exercise A.2.3.3. Analogous formulas hold if the form
f(x)dxg(x) is integrated, which may happen if the algebra is not commutative.
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b) Case n = 2 and p = 1: We are in the plane and the line integrals setting x0 =: x
and x1 =: y have the form∫

γ

adx + bdy =
∫ t1

t0

(a(ϕ(t))x′(t) + b(ϕ(t))y′(t))dt.

One can view adx+ bdy as a scalar product, thus (a, b) · (x′, y′)dt. Here (x′, y′) is a
tangential vector of the curve; the integral consequently sums up the components
of the vector field (a, b) which point to the tangential direction. If we view the
integrand as a product (−b, a) · (−y′, x′) the components of (−b, a) in normal
direction are summed up. This measures, e.g., a stream flow through the curve.
For the theory of curves it is important that one can use a parameter called the
arc length:

s(t) =
∫ t

t0

|(x′(τ), y′(τ))|dτ.

The real number s(b) gives the length of the curve. This parameter simplifies many
formulas but we shall not go into detail here.

c) Case p = n: We have to integrate over n-dimensional surfaces in Rn+1, where
the differential form ωn = f(x)dx∗g(x) is of interest to us. In Remark A.1.16 c)
we have already studied this form obtaining

dx∗[h1, . . . , hn] =
n�

i=1

hi.

This is a vector product of the n vectors hi. While integrating we have to use

hi = ϕ′(t)[ei] =
∂ϕ(t)
∂ti

,

thus ∫
Mn

f(x)dx∗g(x) =
∫

H

f(ϕ(t))

(
n�

i=1

∂ϕ(t))
∂ti

)
g(ϕ(t))dσt.

Here we assume for simplicity that only one chart is sufficient, otherwise we have
to modify things correspondingly. The vector product has the following meaning:
One multiplies the n tangential vectors, the vector product is orthogonal to all
of them, thus it is the normal to our manifold or surface. Therefore dx∗ is the
oriented surface element for the integration over the manifold with its value in the
corresponding algebra, the notation do or dox is used here:

dx∗ =

(
n�

i=1

∂ϕ(t)
∂ti

)
dσt =: do.

In any case one has to test the correct orientation.
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Similarly to curves, the integral∫
Mn

|dx∗| =
∫

H

∣∣∣∣∣ n�

i=1

∂ϕ

∂ti

∣∣∣∣∣ dσt =
∫

H

|do|

gives the volume or area of the considered manifold, thus for a two-dimensional
surface in R3 the usual area.

The next example requires a proposition we already found for the quaternions
(Proposition 2.41):

Proposition A.2.16 (Lagrange’s identity). Let hi, i = 1, . . . , n, be vectors in Rn+1

and let

h :=
n�

i=1

hi.

Then the identity of Lagrange holds:

|h|2 = det (hi · hj)i,j=1,...,n.

Proof. Following Remark A.1.16 c) we have for an arbitrary paravector a,

a · h = det

⎛⎜⎜⎜⎝
a
h1

...
hn

⎞⎟⎟⎟⎠ , thus

(h · h)2 = det

⎛⎜⎜⎜⎝
h
h1

...
hn

⎞⎟⎟⎟⎠ det(h h1 . . . hn) = det

⎛⎜⎜⎜⎝
h · h h · h1 · · · h · hn

h1 · h h1 · h1 · · · h1 · hn

...
...

...
hn · h hn · h1 · · · hn · hn

⎞⎟⎟⎟⎠ .

Because of h · hi = 0, i = 1, . . . , n, we develop using the first row and get as desired

|h|4 = (h · h)2 = |h|2 det (hi · hj). �

Example A.2.17. a) As an example of integration over a manifold we shall compute
the surface area of the unit sphere Sn ⊂ Rn+1, which we need for our integral
theorems. On the unit sphere

x2
0 + x2

1 + · · · + x2
n = 1,

xn runs at most between −1 and 1, therefore tn is uniquely determined by

xn = sin tn

in the interval I := [−π/2, π/2]. From x2
0 + · · · + x2

n−1 = 1 − x2
n = cos2 tn follows

that xn−1 runs between − cos tn and cos tn, thus a tn−1 is uniquely determined
in I by

xn−1 = cos tn sin tn−1.
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The procedure is to be continued up to

x2 = cos tn · · · cos t3 sin t2,

x2
0 + x2

1 = cos2 tn · · · cos2 t2.

Then we have to define

x0 = cos tn · · · cos t2 cos t1,

x1 = cos tn · · · cos t2 sin t1,

with t1 ∈ [−π, π], as it is known from the plane. The procedure may be summarized
as

xi = cos tn · · · cos ti+1 sin ti, i = 0, . . . , n, t0 :=
π

2
.

We get further

∂xi

∂tj
=

⎧⎨⎩
0 for j < i,
cos tn · · · cos ti for j = i,
− cos tn · · · cos tj+1 sin tj cos tj−1 · · · cos ti+1 sin ti for j > i.

The reader may prove in Exercise A.2.3.6 that

∂x

∂tj
· ∂x

∂tj
=

n∏
k=j+1

cos2 tk

and for i �= j,
∂x

∂ti
· ∂x

∂tj
= 0.

Using the identity of Lagrange, Proposition A.2.16 for the surface element of the
sphere we get

|do| =
(

det
(

∂x

∂ti
· ∂x

∂tj

))1/2

dσt

and with some simple calculations

|do| =
n∏

i=2

(cos tn · · · cos ti+1) dσt

= cos t2 cos2 t3 · · · cosn−1 tndσt.

This gives for the surface area σn of the sphere Sn,

σn =
∫ π

t1=−π

∫ π/2

t2=−π/2

· · ·
∫ π/2

tn=−π/2

cos t2 · · · cosn−1 tn dtn · · · dt1

= 2π

n−1∏
k=1

∫ π/2

t=−π/2

cosk tdt =: 2π

n−1∏
k=1

Ik.
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Using partial integration we get a recursion formula for the Ik with k > 1,∫ π/2

−π/2

cosk tdt = 2
∫ π/2

0

(cosk−2 t − cosk−2 t sin2 t)dt = Ik−2 − 1
k − 1

Ik

or

Ik =
k − 1

k
Ik−2.

Together with I0 = π, I1 = 2 one can compute

I2k =
(2k)!π

22k(k!)2
, I2k+1 =

22k+1(k!)2

(2k + 1)!
.

We know from Section 13.1 that the last expression may be written using the
Gamma function

Ik =
Γ
(

1
2

)
Γ
(

n+1
2

)
Γ
(

n+2
2

) .

From σn = In−1σn−1 and σ0 = 2, resp. σ1 = 2π, it follows at last that

σn = 2
Γn+1

(
1
2

)
Γ
(

n+1
2

) .

This looks quite symmetric and short but the effort for the calculation is large.
To find the known value for σ1 we have to refer to Γ(1

2 ) =
√

π and Γ(1) = 1
(Theorems 13.2 (iii) and 13.6 (i)).

b) The calculations in the last example will be used now to deal with the trans-
formation to spherical coordinates for the ball. There we may have coordinates

y = rx

with x from the example a). If we move to the coordinates r, t1, . . . , tn we are
interested in the Jacobian

J :=
∂(y0, y1, . . . , yn)
∂(r, t1, . . . , tn)

.

For it we have
∂y

∂r
= x,

∂y

∂ti
= r

∂x

∂ti

with the derivatives from example a). On account of x · x = 1 it follows that

x · ∂x

∂ti
= 0,
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so that for the Jacobian with hi := ∂x/∂ti we get

J2 = r2n det

⎛⎜⎜⎜⎝
x
h1

...
hn

⎞⎟⎟⎟⎠det(xh1 . . . hn) = r2n det

⎛⎜⎜⎜⎝
1 0 · · · 0
0 h1 · h1 · · · 0
...

...
...

0 0 · · · hn · hn

⎞⎟⎟⎟⎠ .

To determine the sign of J one may insert t1 = t2 = · · · = tn = 0. This gives just
the unit matrix, so J is positive and

dσy = rndr|dox|.

For an integral over a ball BR(0) of radius R with center at the origin we obtain∫
BR(0)

f(y)dσy =
∫ R

0

rn

∫
∂B1(0)

f(rx)|dox|dr =
σn

n + 1
Rn+1.

We know this formula very well from the plane and the space R3.

c) We can see yet from the considerations in the example b) that x, h1, . . . , hn

has a positive determinant. Thus it is a system of vectors as we assumed for the
orientation of a boundary manifold. The paravector x is the outer normal of the
sphere (with radius R around the origin), as x equals the vector product of the
tangential vectors h1, . . . , hn. Therefore for such a ball we have

dy∗ = doy = x|doy | = Rnx|dox|.

A.2.2 Theorems of Stokes, Gauß, and Green

A.2.2.1 Theorem of Stokes

We deal now with a fundamental theorem of analysis which is also an important
tool for us. It generalizes the fundamental theorem of differential and integral
calculus in R,

f(b) − f(a) =

b∫
a

f ′(x)dx,

to manifolds and differential forms. The fundamental theorem shows the difference
of the values of a function f at the boundary points to be equal to the integral
of the derivative f ′(x) over the whole interval. Quite similarly the theorem of the
Irish mathematician George Gabriel Stokes (1819–1903) states the following:

Theorem A.2.18 (Theorem of Stokes). Let Mp+1 ∈ C1 be an orientable, bounded,
and smooth manifold of dimension p+1 with sufficiently smooth boundary ∂Mp+1
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which may be oriented according to Remark A.2.11. Let ωp be a differential form
of degree p, continuously differentiable in a neighborhood of Mp+1. We then have∫

∂Mp+1

ωp =
∫

Mp+1

dωp.

This corresponds precisely to the fundamental theorem of differential and integral
calculus: the integral of the differential form over the boundary of the manifold
equals the integral of the derivative of the differential form over the manifold itself.
We are not able to go into the deep proof of this theorem, thus we have to refer
to the literature, e.g., Amann and Escher [8].
One of the difficulties of Stoke’s theorem is the precise formulation of the as-
sumptions regarding the manifold’s boundary. It has to be made by finitely many
smooth manifolds whose boundaries must have in turn p-dimensional measure 0.
We skip the precise definition as we shall deal in this book only with manifolds and
boundaries which fulfil the ‘sufficient’ from the theorem. We shall deal with discs,
balls, or cuboids, very rarely with more complicated manifolds. The cuboid is a
good example for the boundary to have wedges and vertices, but not too many.

A.2.2.2 Theorem of Gauß

We shall look at the theorem of Stokes in the plane, where it is named mostly
after Gauß and the Russian mathematician Mikhail Vasilevich Ostrogradski
(1801–1862). Here we are able to say a bit more about the assumptions of the
theorem of Stokes. We start with a definition:

Definition A.2.19 (Connectivity of a domain). (i) A compact and connected set
is called a continuum.

(ii) A domain G is called k-times connected if its boundary ∂G consists of pre-
cisely n disjoint continua. For the 1-time or simple connectivity ∂G = ∅ is
possible. If k is not specified one speaks also of finite connectivity.

(iii) If no k exists as assumed in (ii) the domain is of infinite connectivity.

This definition holds independently of the dimension. But in the plane we are able
to define simple sufficient assumptions for the boundary, if the domain is of finite
connectivity.

Theorem A.2.20 (Theorem of Gauß–Ostrogradski). Let G be a plane domain of fi-
nite connectivity; the boundary ∂G has to consist of finitely many, piecewise smooth
curves which are oriented such that G lies on their left side. Let the functions u
and v be in C1(G); we then have∫

∂G

u(x, y)dx + v(x, y)dy =
∫
G

(vx(x, y) − uy(x, y))dσ(x,y).
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Proof. The proof is very simple: The manifold M2 is here the domain G, the differential
form is ω1 = udx + vdy. Then the assertion follows at once from Stoke’s theorem if one
considers

dω1 = du ∧ dx + dv ∧ dy = (−uy + vx)dx ∧ dy. �

We shall write the theorem in complex form which is more convenient for us:

Theorem A.2.21 (Theorem of Gauß in C). Making the same assumptions as in
the last theorem with a function f ∈ C1(G) we have∫

∂G

f(z)dz = 2i

∫
G

∂zf(z)dσ.

Since dz∗ = dy − idx = −idz we may formulate the assertion of the theorem in
the form ∫

∂G

f(z)dz∗ =
∫
G

∂f(z)dσ,

as we shall do in higher dimensions. Here we have used the notation ∂ = 2∂z from
the beginning of Section 5.1. The proof is again a simple conclusion from Stoke’s
theorem, clearly also from the above theorem of Gauß–Ostrogradski:

d(fdz) = df ∧ dz = (∂zf)dz ∧ dz

and
dz ∧ dz = (dx − idy) ∧ (dx + idy) = 2idx ∧ dy = 2idσ.

In higher dimensions we give the theorem of Gauß directly in an algebraic form
which is more convenient for us:

Theorem A.2.22 (Theorem of Gauß in C�(n)). Let G ⊂ Rn+1 be a domain of
finite connectivity with sufficiently smooth boundary ∂G, let the boundary be ori-
ented correspondingly to Remark A.2.11, i.e., with an outward pointing normal.
Let f, g ∈ C1(G). We then have∫

∂G

fdx∗g =
∫
G

(
(f∂)g + f∂g

)
dσ.

Proof. Following the product rule for the total differential in Proposition A.1.12 (v) we
have

d(fdx∗g) = df ∧ dx∗g + (−1)nfdx∗ ∧ dg,

and similarly to the proof of Theorem 5.11,

df ∧ dx∗ =

n∑
i=0

∂f

∂xi
eidxi ∧ dx∗

i ,

and analogously for dx∗ ∧ dg. Finally the assertion follows from

dxi ∧ dx∗
i = dσ resp. dx∗

i ∧ dxi = (−1)ndσ. �
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Remark A.2.23. For G ⊂ Rn with analogous assumptions and the Dirac operator
D according to Theorems 5.12, resp. 5.20, we have∫

∂G

fdx∗g =
∫
G

((fD)g + fDg)dσ.

A.2.2.3 Theorem of Green

Unfortunately the names for the last and the next theorems are not fixed. We
name the next theorem after the English mathematician George Green (1793–
1841), although it follows directly from the theorem of Gauß when choosing g = 1
and substituting f by f∂.

Theorem A.2.24 (Green’s formula). Let G be a domain of finite connectivity in
Rn+1 and with sufficiently smooth boundary ∂G appropriately oriented. For f ∈
C2(G) we have ∫

∂G

(f∂)dx∗ =
∫

G

∆fdσ.

Here

∆ = ∂∂ = ∂∂ =
n∑

i=0

∂2

∂x2
i

is the Laplace operator.

The last theorem in this appendix will be a theorem of Green in Rn, in which
∂ = D, the Dirac operator defined in Theorems 5.12 and 5.20. For the Dirac
operator we have D = −D and D2 = −∆n, where for clarity the index of ∆ shows
the dimension.

Theorem A.2.25 (Theorem of Green). Let G be a domain in Rn of finite con-
nectivity whose boundary ∂G is sufficiently smooth and appropriately oriented, we
assume f and g in C2(G). We then have∫

∂G

((fD)dx∗g − fdx∗Dg) =
∫
G

(f∆ng − (∆nf)g)dσ.

Proof. We write down the theorem of Gauß in Rn once with fD and once with Dg:∫
∂G

(fD)dx∗g =

∫
G

((fD)(Dg) − (∆nf)g)dσ,∫
∂G

fdx∗(Dg) =

∫
G

(−f∆ng + (fD)(Dg))dσ.

Subtraction of both the equations gives the assertion. �
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A.2.3 Exercises
1. Prove the rules in Proposition A.2.5:

a) (ωp ∧ ωq) ◦ ϕ = (ωp ◦ ϕ) ∧ (ωq ◦ ϕ),
b) (dωp) ◦ ϕ = d(ωp ◦ ϕ),
c) (ωp ◦ ϕ) ◦ ψ = ωp ◦ (ϕ ◦ ψ).

2. Prove Poincaré’s Lemma A.2.8:
Let G be a star-shaped domain relative to the point x0 ∈ G, i.e., for all
x ∈ G the line from x0 to x should be contained completely in G. Then if for
a differential form ωp ∈ C1(G) the statement dωp = 0 in G holds, one has for
p = 0 a constant form ωp, and for p > 0 a differential form ωp−1 exists with

ωp = dωp−1.

3. Prove the rules for line integrals in Example A.2.15 a:∫
−γ

f(x)dx = −
∫
γ

f(x)dx,∫
γ1

f(x)dx +
∫

γ2
f(x)dx =

∫
γ1+γ2

f(x)dx,∫
γ
(af(x) + bg(x))dx = a

∫
γ

f(x)dx + b
∫
γ

g(x)dx,∣∣∣∫γ f(x)dx
∣∣∣ ≤

∫ b

a
|f(x)x′(t)|dt.

For the last rule we refer to Proposition A.2.2 (ii).

4. Let γ be a smooth curve parameterized by x(t), t ∈ [a, b], let f(x) be con-
tinuous on γ. We then define∫

γ

f(x)dxg(x) :=
∫ b

a

f(x(t))x′(t)g(x(t))dt.

Prove that ∫
γ

f(x)dxg(x) =
∫

γ

g(x) dx f(x)

and ∣∣∣∣∫
γ

f(x)dxg(x)
∣∣∣∣ ≤ ∫ b

a

|f(x(t))x′(t)g(x(t))|dt.

5. Let G ⊂ C be a domain and let g, h : G → C be continuous. Let γ be a
piecewise smooth curve in G with initial point zA and endpoint zE . Moreover
we define ∫

γ

[g(z)dz + h(z)dz] : =
∫

γ

g(z)dz +
∫

γ

h(z)dz.
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Prove: If a differentiable function f : G → C exists with ∂zf = g and
∂zf = h one has ∫

γ

[g(z)dz + h(z)dz] = f(zE) − f(zA).

What does this mean in the case h = 0?

6. Prove the orthogonality of the tangential vectors to Sn in Example A.2.17 a
and the equations

∂x

∂tj
· ∂x

∂tj
=

n∏
k=j+1

cos2 tk.

7. Compute the integral ∫
|x|<1

dσ

|x| .

8. Let G be a domain of finite connectivity in C with piecewise smooth bound-
ary. Prove ∫

∂G

zdz = 2iσ(G),

here σ(G) is the area of G.

9. Prove the theorem of Gauß in the following form:∫
∂G

f(x)dx∗ =
∫

G

(∂f)(x)dσx.
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A.3 Some function spaces
We need some function spaces, particularly for working with the Teodorescu trans-
formation, and we shall present them in this appendix. We deal always with func-
tions f : E → Y, E ⊂ X , where we may have

X identified with R, C, H or Rn+1, and Y identified with R, C, H, Rn+1 or C�(n);

in every case we assume the Euclidean metric.

A.3.1 Spaces of Hölder continuous functions
Ludwig Otto Hölder (1859–1937) introduced the following definition:

Definition A.3.1. Let be 0 < µ ≤ 1. A function f : E → Y defined on a set E ⊂ X
is called Hölder continuous on E with the Hölder exponent µ, if the quantity

|f |µ,E := sup
x,y∈E;x �=y

|f(x) − f(y)|
|x − y|µ

is finite, i.e., if a constant A > 0 exists such that for x, y ∈ E,

|f(x) − f(y)| ≤ A|x − y|µ

always holds. The constant A is called a Hölder constant. For the exponent µ = 1
we speak of Lipschitz continuity. One uses also the expressions: f satisfies a Hölder
condition or a Lipschitz condition .

Below, some properties of such functions are listed:

Proposition A.3.2. Let f : E → Y, E ⊂ X be given. We then have:

(i) Hölder continuous functions are continuous.

(ii) For compact E and |f(x) − f(y)| ≤ Arµ for all r = |x − y| < δ, δ > 0 the
function f satisfies a Hölder condition in the whole E.

(iii) If the real components of f possess partial derivatives in a convex and compact
set E and these derivatives are bounded there, then f satisfies a Lipschitz
condition in E.

(iv) If f satisfies a Hölder condition in a convex and compact set E with exponent
µ > 1, then f is constant.

(v) Not every continuous function is Hölder continuous.

Proof. (i) is contained in the definition.
(ii) We assume r > δ. From (i) and the compactness of E follows |f(x)| ≤ M in E,
therefore we have for r ≥ δ,

|f(x) − f(y)| ≤ 2M

δµ
δµ ≤ 2M

δµ
rµ.
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Thus for arbitrary x, y ∈ E we have the inequality |f(x)−f(y)| ≤ A′|x−y|µ if we choose
A′ = max{A, 2M/δµ}.
(iii) On the line from x to y we can apply the mean value theorem of differential calculus
to the real components fi of f . As the components’ partial derivatives are assumed to
be bounded, maybe by Mi, we get at once inequalities of the form

|fi(x) − fi(y)| ≤ Mi|x − y|.

These estimates can be put together for the corresponding estimate of |f(x) − f(y)|.
(iv) The Hölder condition is also satisfied for the components fi of f . From µ > 1 it
follows for all x, x0 ∈ E

lim
x→x0

|fi(x) − fi(x0)|
|x − x0|

≤ lim
x→x0

A|x − x0|µ−1 = 0.

Therefore the partial derivatives are zero and the fi are constant.
To prove (v) it suffices to produce one such function. E.g., we may choose f : [0, 1

2
] → R

and

f(t) =

{ 1
ln t

(0 < t ≤ 1
2
),

0 (t = 0).

Obviously f is continuous in t = 0 but not Hölder continuous:

|f(t) − f(0)| =
1

| ln t| ≤ Atµ

will not be satisfied for any A since | ln t|tµ → 0 for t → 0 for all µ > 0. �

Definition A.3.3. The set of all functions which satisfy on a compact set E a Hölder
condition with exponent µ is denoted by Hµ(E).

Introducing the metric

‖f‖µ,E = max
z∈E

|f(x)| + sup
x,y∈E

|f(x) − f(y)|
|x − y|µ

one can prove that Hµ(E) is a Banach space.

A.3.2 Spaces of differentiable functions

Let G ⊂ X be a domain and m be a positive integer. By Cm(G) we denote the
space of all functions f : G → Y which are m-times continuously differentiable
in G. If Y is of dimension at least 2 the components fi of f are assumed to fulfil
this condition. We equip this space with the topology of uniform convergence of
functions f and their derivatives ∇αf for all |α| ≤ m on all compact subsets
K ⊂ G. Here ∇ = (∂0, ∂1, . . . , ∂n) is the vector operator of differentiation which
we introduced in Definition 7.24, and α = (α0, α1, . . . , αn) is a multiindex; we
define

∇α f := ∂α0
0 ∂α1

1 . . . ∂αn
n f.
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The subspace Bm(G) may contain all functions f from Cm(G), which are bounded
on G together with all derivatives ∇αf for |α| ≤ m. For Bm(G) we introduce the
norm with the real components fi of f ,

‖f‖m,G := max
i

max
0≤j≤m

max
|α|=j

sup
x∈G

|∇αfi(x)|,

which will be a Banach space. In particular we have

‖f‖0,G := max
i

sup
x∈G

|fi(x)|.

By C∞(G) one denotes the space of all functions f : G → Y possessing all deriva-
tives ∇α of arbitrary degree. And C∞

0 (G) denotes the subspace of all functions f
in C∞(G) which have compact support supp f in G; we had defined in Theorem
A.2.13,

supp f = {x ∈ G : f(x) �= 0}.

The space C∞
0 (Br(a)) contains, e.g., the important function

ϕ(x) =

{
exp
(

1
|x−a|2−r2

)
, if |x − a| < r,

0, otherwise.

For s = m+µ the space Bs(G) ⊂ Bm(G) denotes the space of all functions, which
have in G Hölder continuous derivatives of degree m with the Hölder exponent µ.
In Bs(G) we introduce the norm

‖f‖s,G = max
i

max
0≤j≤m

max
|α|=j

sup
x∈G

|∇αfi(x)| + max
i

max
|α|=m

‖∇αfi‖µ,G

and get a Banach space. Also the notation Cm,µ(G) is used.

A.3.3 Spaces of integrable functions
Let G ⊂ X be a domain and p a positive real number. Then Lp(G) denotes the
space of all equivalence classes of Lebesgue measurable functions f : G → Y for
which |f |p is integrable over G. With the norm

‖f‖p,G :=

⎛⎝∫
G

|f(x)|pdσ

⎞⎠1/p

Lp(G) for p ≥ 1 becomes a Banach space. Moreover for p = 2 we have a Hilbert
space with the scalar product

(f, g)2 := (f, g)2,G :=
∫
G

f(x)g(x)dσ.
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But in this case we have to restrict Y to R, C, H, or Rn+1 ⊂ C�(n). The space of
all Lebesgue measurable functions f : G → Y with

vrai maxG|f(x)| < ∞

is denoted by L∞(G). Here vrai max is the essential maximum, which is defined
as the infimum of all real a such that |f(x)| < a up to a set of measure 0. With
the norm ‖f‖∞,G := vrai maxG|f(x)| the space L∞(G) becomes a Banach space.
The space L1

loc contains all functions f defined almost everywhere in G which are
locally integrable, i.e., for every measurable compact set K one has f ∈ L1(K).
We remark explicitly that the Hilbert space L2(G) together with the above defined
scalar product possesses the norm

‖f‖2 := (f, f)1/2.

This is quite analogous to the usual norm for functions which have vector values.
The following properties hold:

(i) For all f ∈ L2(G) one has (f, f)2 > 0. Moreover (f, f)2 = 0 if and only if
f = 0.

(ii) For f, g ∈ L2(G) one has (f, g)2 = (g, f)2, where the bar denotes the conju-
gation in Y = C, H, Rn+1.

(iii) For f, g, h ∈ L2(G) one has the distributive rule (f +g, h)2 = (f, h)2+(g, h)2.

(iv) For λ ∈ X = R, C, H, Rn+1 one has λ(f, g)2 = (λf, g)2 and (f, g)2λ =
(f, gλ)2.

The proof is recommended as an exercise.

A.3.4 Distributions
The sequence (ϕm) ⊂ C∞

0 (G) is said to converge to a function ϕ in the sense of
the space D(G) if

(i) a compact set K ⊂ G exists such that supp(ϕm) ⊂ K holds for all m, and

(ii) ∇αϕm → ∇αϕ converges uniformly on K for all indices α.

We denote then the space C∞
0 (G) equipped with this topology by D(G). Its dual

space D′(G) relative to Z := R, C or H is called the space of Schwartz’s distribu-
tions. The space D′(G) is thus the vector space of all continuous linear functionals
T : D(G) → Z having the following properties:
Let there be T, S ∈ D′(G) and λ ∈ Z; we then have

(T + S)(ϕ) = T (ϕ) + S(ϕ),
(λT )(ϕ) = λ(T (ϕ)),

T (ϕ + λψ) = T (ϕ) + λT (ψ)
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for ϕ, ψ ∈ D(G). In Z = H one has to take care of the non-commutativity. In
D′(G) the topology is defined by the following convergence criterion:
Tm → T is convergent in D′(G) if and only if Tm(ϕ) → T (ϕ) in Z for all ϕ ∈ D(G).
One defines the derivative S = ∇αT ∈ D′(G) of a distribution T ∈ D′(G) in the
distributional sense by

S(ϕ) := (−1)|α|T (∇αϕ) for all ϕ ∈ D(G).

We remark that the partial differential operator ∇α : D′(G) → D′(G) is always
continuous, i.e., from Tm → T in D′(G) it follows necessarily that ∇αTm → ∇αT
in D′(G).

A.3.5 Hardy spaces

Let there be 0 < p < ∞. A holomorphic function f in B1(0) ⊂ C, H or Rn+1

belongs to the Hardy space Hp(B1(0)) if the condition

sup
0<r<1

∫
|x|=1

|f(rx)|pdo1(x) < ∞

is satisfied. Analogously the harmonic Hardy space is defined for harmonic func-
tions u by hp(B1(0)): A harmonic function u belongs to hp(B1(0)) if it satisfies
the condition

sup
0<r<1

∫
|x|=1

|u(rx)|pdo1(x) < ∞.

A.3.6 Sobolev spaces

Let G ⊂ X be a domain and m be a positive integer. The space, denoted by
Wm,p(G), containing all equivalence classes of functions f ∈ Lp(G) whose deriva-
tives (in the distributional sense) ∇αf for |α| ≤ m belong to Lp(G) is called
Sobolev space.
With the norms

‖f‖m,p,G :=
∫
G

⎛⎝ ∑
|α|≤m

|∇αf(x)|p dσ

⎞⎠ (1 ≤ p < ∞),

‖f‖m,∞,G := max
|α|≤m

vraimaxx∈G |∇αf(x)| (p = ∞)

the Sobolev space becomes a Banach space. For m = 0 we have

W 0,p(G) = Lp(G).
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The space Wm,p
0 (G) is just the closure of D(G) using the topology of the space

Wm,p(G).

Moreover let Γ be the sufficiently smooth boundary of the domain G and
Bm− 1

p ,p(Γ) the space of boundary values g of all functions f ∈ Wm,p(G). A norm
in Bm− 1

p ,p(Γ) is given by

‖g‖m− 1
p ,p = inf ‖f‖m,p,

here the infimum has to be taken over all functions in Wm,p(G) generating on Γ
the same trace g. Such spaces are also called spaces of Besov type.
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A.4 Properties of holomorphic spherical functions

This appendix is intended to present some calculations and proofs in detail, which
have been overlooked in Section 10 to facilitate the general understanding. Princi-
pally what is to be done to calculate norms and angles is clear. But to be correct
and to make our constructions verifiable, we have to compute the values used. We
need only tools from real analysis.

A.4.1 Properties of Legendre polynomials

Legendre polynomials and Legendre functions are solutions of a second-order or-
dinary differential equation:

(1 − t2)(Pm
n+1(t))

′′ − 2t(Pm
n+1(t))

′ +
(

(n + 1)(n + 2) − m2 1
1 − t2

)
Pm

n+1(t) = 0,

m = 0, . . . , n + 1. (A.4.1)

They satisfy also the recursion formulas

(1 − t2)(Pm
n+1(t))

′ = (n + m + 1)Pm
n (t) − (n + 1) t Pm

n+1(t) , (A.4.2)

(1 − t2)1/2(Pm
n+1(t))

′ = Pm+1
n+1 (t) − m (1 − t2)−1/2 t Pm

n+1(t) , (A.4.3)

(1 − t2)1/2Pm
n+1(t) =

1
2n + 3

(
Pm+1

n+2 (t) − Pm+1
n (t)

)
, (A.4.4)

and formulas, which are called three-terms recurrence relations,

(n + 1 − m)Pm
n+1(t) − (2n + 1) t Pm

n (t) + (n + m)Pm
n−1(t) = 0 , (A.4.5)

m = 0, . . . , n + 1. We have for m = n ≥ 1,

Pm
m (t) = (2m − 1)!! (1 − t2)m/2 .

These functions are orthogonal in pairs in L2([−1, 1]),∫ 1

−1

Pm
n+1(t)P

l
n+1(t) dt = 0, m �= l,

and the norms may be computed to give∫ 1

−1

(
Pm

n+1(t)
)2

dt =
2

2n + 3
(n + 1 + m)!
(n + 1 − m)!

, m = 0, . . . , n + 1. (A.4.6)
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The Legendre functions (not the Legendre polynomials) are also orthogonal in the
following weighted L2-space:

∫ 1

−1

Pm
n+1(t)P k

n+1(t) (1 − t2)−1 dt =

⎧⎪⎪⎨⎪⎪⎩
0, m �= k,

(n + 1 + m)!
m (n + 1 − m)!

, m = k,
(A.4.7)

m, k = 1, . . . , n + 1.
The reader interested in more details on Legendre polynomials and functions is
referred to [7] and [128].

A.4.2 Norm of holomorphic spherical functions
Theorem A.4.1. For all n ∈ N0 the subsystems of holomorphic spherical functions
X0

n,0 , Xm
n,0 resp. Y m

n,0 (m = 1, . . . , n + 1) are orthogonal systems with the norms

||X0
n,0||0,L2(S2) =

√
π(n + 1) (A.4.8)

and

||Xm
n,0||0,L2(S2) = ||Y m

n,0||0,L2(S2) =

√
π

2
(n + 1)

(n + 1 + m)!
(n + 1 − m)!

,

m = 1, . . . , n + 1. (A.4.9)

Proof. A simple calculation shows the orthogonality:

(X0
n,0, X

m
n,0)0,L2(S2) =

∫ π

0

(A0,nAm,n + B0,nBm,n) sin θ dθ

∫ 2π

0

cos mϕ dϕ

= 0, m = 1, . . . , n + 1 ,

(X0
n,0, Y

m
n,0)0,L2(S2) =

∫ π

0

(A0,nAm,n + B0,nBm,n) sin θ dθ

∫ 2π

0

sin mϕ dϕ

= 0, m = 1, . . . , n + 1 ,

(Xm1
n,0 , Y m2

n,0 )0,L2(S2) =

∫ π

0

(Am1,nAm2,n + Bm1,nBm2,n) sin θ dθ

·
∫ 2π

0

cos m1ϕ sin m2ϕ dϕ −
∫ π

0

Cm1,nCm2,n sin θ dθ

∫ 2π

0

sin m1ϕ cos m2ϕ dϕ

= 0, m1, m2 = 1, . . . , n + 1 ,

(Xm1
n,0 , Xm2

n,0 )0,L2(S2) =

∫ π

0

(Am1,nAm2,n + Bm1,nBm2,n) sin θdθ

·
∫ 2π

0

cos m1ϕ cos m2ϕdϕ +

∫ π

0

Cm1,nCm2,n sin θdθ

∫ 2π

0

sin m1ϕ sin m2ϕdϕ

= 0, m1 �= m2,
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(Y m1
n,0 , Y m2

n,0 )0,L2(S2) =

∫ π

0

(Am1,nAm2,n + Bm1,nBm2,n) sin θdθ

·
∫ 2π

0

sin m1ϕ sin m2ϕdϕ +

∫ π

0

Cm1,nCm2,n sin θdθ

∫ 2π

0

cos m1ϕ cos m2ϕdϕ

= 0, m1 �= m2 .

To compute the norms (A.4.8) and (A.4.9) we use the formulas (A.4.6)–(A.4.7) and define

Nm
n+1 :=

∫ 1

−1

(P m
n+1(t))

2 dt =
2

2n + 3

(n + 1 + m)!

(n + 1 − m)!
, (A.4.10)

Mm
n+1 :=

∫ 1

−1

(1 − t2)−1 (P m
n+1(t))

2 dt =
(n + 1 + m)!

m(n + 1 − m)!
. (A.4.11)

From (10.9)–(10.11) we get

||X0
n,0||20,L2(S2) =

∫
S2

X0
n,0 Xm

n,0 |do| = 2π

∫ π

0

[
(A0,n)2 + (B0,n)2

]
sin θdθ

=
π

2

∫ π

0

[
sin2 θ

[
d

dt
[Pn+1(t)]t=cos θ

]2
dθ + (n + 1)2 (Pn+1(cos θ))2

]
sin θdθ .

We substitute t = cos θ, use the definition of the associated Legendre functions, and get

||X0
n,0||20,L2(S2) =

π

2

∫ 1

−1

[
(1 − t2)

(
(Pn+1(t))

′)2 + (n + 1)2 (Pn+1(t))
2
]
dt .

=
π

2

∫ 1

−1

(
P 1

n+1(t)
)2

dt +
π

2
(n + 1)2

∫ 1

−1

(Pn+1(t))
2 dt

=
π

2
N1

n+1 +
π

2
(n + 1)2N0

n+1

= π (n + 1) .

To prove (A.4.9) we deal only with the functions Xm
n,0 (m = 1, . . . , n + 1). For m =

1, . . . , n + 1 the equation (10.12) gives

||Xm
n,0||20,L2(S2) =

∫
S2

Xm
n,0 Xm

n,0 |do|

=

∫ π

0

∫ 2π

0

[(
(Am,n)2 + (Bm,n)2

)
cos2 mϕ + (Cm,n)2 sin2 mϕ

]
sin θdϕdθ

= π

[∫ π

0

(
(Am,n)2 + (Bm,n)2

)
sin θdθ +

∫ π

0

(Cm,n)2 sin θdθ

]
. (A.4.12)

We compute the particular integrals: Together with (10.14) and (10.15) we get

(Am,n)2 + (Bm,n)2 =
1

4

{
sin2 θ

[
d

dt
[P m

n+1(t)]t=cos θ

]2
+ (n + 1)2 (P m

n+1(cos θ))2
}

,
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and transforming the variables by t = cos θ it follows that∫ π

0

(
(Am,n)2 + (Bm,n)2

)
sin θdθ =

∫ 1

−1

(
(Am,n)2 + (Bm,n)2

)
dt

=
1

4

∫ 1

−1

(1 − t2)
[
(P m

n+1(t))
′]2 dt +

1

4
(n + 1)2Nm

n+1 . (A.4.13)

To compute the right-hand side of (A.4.13) we use the recursion formulas (A.4.3) and
get ∫ 1

−1

(1 − t2)
[
(P m

n+1(t))
′]2 dt = Nm+1

n+1 + m2

∫ 1

−1

(1 − t2)−1 t2 (P m
n+1(t))

2 dt

−2m

∫ 1

−1

(1 − t2)−1/2 t P m
n+1(t)P m+1

n+1 (t) dt .

(A.4.14)

The first integral on the right-hand side can now be evaluated completely:∫ 1

−1

(1 − t2)−1 t2 (P m
n+1(t))

2 dt = −
∫ 1

−1

(1 − t2)−1 (1 − t2 − 1) (P m
n+1(t))

2 dt

= −
∫ 1

−1

(P m
n+1(t))

2 dt +

∫ 1

−1

(1 − t2)−1 (P m
n+1(t))

2 dt

= −Nm
n+1 + Mm

n+1 . (A.4.15)

Therefore (A.4.14) reads∫ 1

−1

(1 − t2)
[
(P m

n+1(t))
′]2 dt = Nm+1

n+1 − m2 Nm
n+1 + m2 Mm

n+1

−2m

∫ 1

−1

(1 − t2)−1/2 t P m
n+1(t)P m+1

n+1 (t) dt , (A.4.16)

but we still have to evaluate the integral on the right-hand side of (A.4.16). We use again
the recursion formula (A.4.4) in the form,

(1 − t2)−1/2P m
n+1(t) =

1

2n + 3

[
(1 − t2)−1P m+1

n+2 (t) − (1 − t2)−1P m+1
n (t)

]
,

(A.4.17)

and the two-step-formula (A.4.5),

t P m+1
n+1 (t) =

1

2n + 3

[
(n + 1 − m) P m+1

n+2 (t) + (n + m + 2) P m+1
n (t)

]
. (A.4.18)

The multiplication of (A.4.17) and (A.4.18) gives

(1 − t2)−1/2 t P m
n+1(t)P m+1

n+1 (t) =
1

(2n + 3)2
[
(n + 1 − m) (1 − t2)−1(P m+1

n+2 (t))2

−(n + m + 2)(1 − t2)−1(P m+1
n (t))2 + (2m + 1) (1 − t2)−1P m+1

n+2 (t)P m+1
n (t)

]
,



A.4. Properties of holomorphic spherical functions 367

and it follows that∫ 1

−1

(1 − t2)−1/2 t P m
n+1(t)P m+1

n+1 (t) dt =
n + 1 − m

(2n + 3)2
Mm+1

n+2 − n + m + 2

(2n + 3)2
Mm+1

n

+
2m + 1

(2n + 3)2

∫ 1

−1

(1 − t2)−1 P m+1
n+2 (t) P m+1

n (t) dt . (A.4.19)

The formula (A.4.16) now means∫ 1

−1

(1 − t2) [(P m
n+1(t))

′]2 dt = Nm+1
n+1 − m2 Nm

n+1 + m2 Mm
n+1

−2m(n + 1 − m)

(2n + 3)2
Mm+1

n+2 +
2m(n + m + 2)

(2n + 3)2
Mm+1

n

−2m(2m + 1)

(2n + 3)2

∫ 1

−1

(1 − t2)−1 P m+1
n+2 (t)P m+1

n (t) dt . (A.4.20)

From the recursion formula (A.4.4) it follows that

P m
n+1(t) =

1

2n + 3

[
(1 − t2)−1/2 P m+1

n+2 (t) − (1 − t2)−1/2 P m+1
n (t)

]
,

and by squaring

(P m
n+1(t))

2 =
1

(2n + 3)2
[
(1 − t2)−1 (P m+1

n+2 (t))2 + (1 − t2)−1 (P m+1
n (t))2

−2(1 − t2)−1 P m+1
n+2 (t)P m+1

n (t)
]

.

We get∫ 1

−1

(1− t2)−1 P m+1
n+2 (t)P m+1

n (t) dt = − (2n + 3)2

2
Nm

n+1 +
1

2
Mm+1

n+2 +
1

2
Mm+1

n . (A.4.21)

This result has to be substituted into (A.4.20),∫ 1

−1

(1 − t2)
[
(P m

n+1(t))
′]2 dt = Nm+1

n+1 − m2 Nm
n+1 + m (2m + 1) Nm

n+1

+m2 Mm
n+1 − m

2n + 3
Mm+1

n+2 +
m

2n + 3
Mm+1

n ,

and we substitute this further into (A.4.13) getting∫ π

0

(
(Am,n)2 + (Bm,n)2

)
sin θdθ =

1

4
Nm+1

n+1 +
1

4

[
(n + 1)2 − m2]Nm

n+1

+
1

4
m (2m + 1) Nm

n+1 +
1

4
m2 Mm

n+1 − 1

4

m

2n + 3
Mm+1

n+2 +
1

4

m

2n + 3
Mm+1

n .

(A.4.22)

If we use now (A.4.10) and (A.4.11) we have proved the following relations:

Nm+1
n+1 = (n + m + 2) (n + 1 − m)Nm

n+1 ,

Mm
n+1 =

2n + 3

2m
Nm

n+1 , (A.4.23)

Mm+1
n+2 =

2n + 3

2(m + 1)
(n + m + 3) (n + m + 2) Nm

n+1, (A.4.24)
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and

Mm+1
n =

2n + 3

2(m + 1)
(n + 1 − m) (n − m)Nm

n+1 . (A.4.25)

Together with (A.4.22) we have obtained∫ π

0

(
(Am,n)2 + (Bm,n)2

)
sin θdθ =

1

4

[
(n + 1) (2n + 3) − m

2
(2n + 3)

]
Nm

n+1 .

(A.4.26)

The remaining integral in (A.4.12) is easy to compute:∫ π

0

(Cm,n)2 sin θdθ =

∫ 1

−1

(Cm,n)2 dt

=
1

4
m2

∫ 1

−1

(1 − t2)−1 (P m
n+1(t))

2 dt

=
1

4
m2 Mm

n+1

=
1

8
m (2n + 3) Nm

n+1 . (A.4.27)

Substituting (A.4.26) and (A.4.27) into (A.4.12) we get finally

||Xm
n,0||20,L2(S2) =

π

4
(n + 1) (2n + 3) Nm

n+1

=
π

2
(n + 1)

(n + m + 1)!

(n + 1 − m)!
,

and this is the desired result. �

A.4.3 Scalar products of holomorphic spherical functions
Theorem A.4.2. For all n ∈ N0 and m = 1, . . . , n + 1 ; l = 1, . . . , n we have

(X0
n,0, X

0
n,3)0,L2(S2) = (X0

n,0, X
l
n,3)0,L2(S2) = (X0

n,0, Y
l
n,3)0,L2(S2)

= (Xm
n,0, X

0
n,3)0,L2(S2) = (Xm

n,0, X
l
n,3)0,L2(S2) = (Y m

n,0, X
0
n,3)0,L2(S2)

= (Y m
n,0, Y

l
n,3)0,L2(S2) = 0

and

(Xm
n,0, Y

l
n,3)0,L2(S2) = −(Y m

n,0, X
l
n,3)0,L2(S2) =

⎧⎨⎩
0, m �= l,

π
2 m (n+m+1)!

(n−m+1)! , m = l.

Proof. For n ∈ N0 and m = 1, . . . , n + 1 , l = 1, . . . , n we use (10.12), (10.13) as well as
the definition of Y l

n,3 and get

(Xm
n,0, Y

l
n,3)0,L2(S2) = −

∫
S2

Cm,n Bl,n sin mϕ sin lϕ |do|

−
∫

S2
Bm,n Cl,n cos mϕ cos lϕ |do| . (A.4.28)
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Because of ∫ 2π

0

sin mϕ sin lϕ dϕ =

∫ 2π

0

cos mϕ cos lϕ dϕ = 0 , m �= l ,

it follows from (A.4.28) that

(Xm
n,0, Y

l
n,3)0,L2(S2) = 0 , m �= l .

For m = l we get from (10.15), (10.16) using the notation in (A.4.10)

(Xm
n,0, Y

m
n,3)0,L2(S2) = −

∫
S2

Bm,n Cm,n |do|

= −2π

∫ π

0

Bm,n Cm,n sin θ dθ

= −2π

∫ 1

−1

Bm,n Cm,n dt (A.4.29)

= −π

2
m

∫ 1

−1

t (P m
n+1(t))

′P m
n+1(t) dt +

π

2
m(n + 1)Nm

n+1.

To compute the integral on the right-hand side of (A.4.29) we use again the recursion
formula (A.4.3):

(P m
n+1(t))

′ = (1 − t2)−1/2 P m+1
n+1 (t) − m (1 − t2)−1 t P m

n+1(t) .

We multiply this expression by t P m
n+1(t) and get

t (P m
n+1(t))

′ P m
n+1(t) = (1 − t2)−1/2 t P m+1

n+1 (t) P m
n+1(t) − m (1 − t2)−1 t2 (P m

n+1(t))
2,

with (A.4.15) now∫ 1

−1

t (P m
n+1(t))

′ P m
n+1(t) dt =

∫ 1

−1

(1 − t2)−1/2 t P m+1
n+1 (t)P m

n+1(t) dt

−m

∫ 1

−1

(1 − t2)−1 t2 (P m
n+1(t))

2 dt

=

∫ 1

−1

(1 − t2)−1/2 t P m+1
n+1 (t)P m

n+1(t) dt

+mNm
n+1 − mMm

n+1 (A.4.30)

follows. We calculate from (A.4.19) and (A.4.21)∫ 1

−1

(1 − t2)−1/2 t P m
n+1(t)P m+1

n+1 (t) dt =
1

2(2n + 3)
Mm+1

n+2 − 1

2(2n + 3)
Mm+1

n

−2m + 1

2
Nm

n+1 .

The result will be substituted into (A.4.30), using the equations (A.4.24) and (A.4.25)
we get at last ∫ 1

−1

t (P m
n+1(t))

′ P m
n+1(t) dt = −1

2
Nm

n+1 .
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Now we substitute (A.4.31) into (A.4.29) and use again (A.4.10):

(Xm
n,0, Y

m
n,3)0,L2(S2) =

π

4
m (2n + 3) Nm

n+1

=
π

2
m

(n + m + 1)!

(n + 1 − m)!
,

i.e., the assertion. �

A.4.4 Complete orthonormal systems in H+
n,H

Theorem A.4.3. For all n ∈ N0 the n + 1 holomorphic homogeneous polynomials

rn X0,∗
n,0, rn X2k1,∗

n,0 , rn Y 2k2,∗
n,3 , k1 = 1, . . . ,

[
n + 1

2

]
, k2 = 1, . . . ,

[n
2

]
(A.4.31)

form an orthogonal basis in H+
n,H.

Proof. For all n ∈ N0 the set (A.4.31) contains n+1 functions. Thus it is enough to prove
their orthogonality. We write down the scalar product of two functions f, g ∈ L2(S2)H in
detail:

(f, g)L2(S2) =

∫
S2

[ f g ]0 |do| +
∫

S2
[ f g ]1 |do| e1 (A.4.32)

+

∫
S2

[ f g ]2 |do| e2 +

∫
S2

[ f g ]3 |do| e3 . (A.4.33)

The scalar part of (A.4.32) is the same as the real inner product (10.2), moreover
the H-holomorphic spherical functions X0,∗

n,0, X2k1,∗
n,0 , Y 2k2,∗

n,3 (k1 = 1, . . . ,
[

n+1
2

]
, k2 =

1, . . . ,
[

n
2

]
) are orthogonal relative to the real scalar product, so we have at once∫

S2
[ X2k1,∗

n,0 X
2k′

1,∗
n,0 ]0 |do| = 0 , k1 �= k′

1 ,∫
S2

[ Y 2k2,∗
n,3 Y

2k′
2,∗

n,3 ]0 |do| = 0 , k2 �= k′
2 ,∫

S2
[ X0,∗

n,0 X2k1,∗
n,0 ]0 |do| =

∫
S2

[ X0,∗
n,0 Y 2k2,∗

n,3 ]0 |do|

=

∫
S2

[ X2k1,∗
n,0 Y 2k2,∗

n,3 ]0 |do| = 0 ,

where k1, k
′
1 = 1, . . . ,

[
n+1

2

]
, and k2, k

′
2 = 1, . . . ,

[
n
2

]
.

It remains to prove that the other components of (A.4.32) are also zero. From the defi-
nition we conclude

X0,∗
n,0 =

1

‖X0
n‖L2(S2)

X0
n ,

Xm,∗
n,0 =

1

‖Xm
n ‖L2(S2)

Xm
n , m = 2k1, k1 = 1, . . . ,

[
n + 1

2

]
,

Y l,∗
n,3 =

√
sn,l

‖Xl
n‖L2(S2)

[(n + 1)Y l
n e3 − l Xl

n] , l = 2k2, k2 = 1, . . . ,
[n
2

]
.
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To show the orthogonality we work only with the not normalized polynomials X0
n, Xm

n ,
given by (10.9) resp. (10.12), and we denote the functions (n + 1)Y l

n e3 − l Xl
n by Z1

n.
If we use the expressions of Xm

n and Y m
n according to (10.12), resp. (10.13), then the

functions Zl
n have the form

Zl
n := (n + 1)Y l

n e3 − l Xl
n

= −l Al,n cos lϕ

+
(
F l,n sin ϕ sin lϕ − Gl,n cos ϕ cos lϕ

)
e1

−
(
F l,n cos ϕ sin lϕ + Gl,n sin ϕ cos lϕ

)
e2

+(n + 1)Al,n sin lϕ e3,

where
F l,n := (n + 1)Bl,n + l Cl,n and Gl,n := (n + 1)Cl,n + l Bl,n

with l = 2k2, k2 = 1, . . . ,
[

n
2

]
. We start calculating the e1-coordinate of (A.4.32) for the

functions X0
n, Xm

n , and Zl
n for all m and all l getting∫

S2
[X0

nXm
n ]1|do|

=

∫
S2

[
(A0,n Bm,n − B0,nAm,n) cos ϕ cos mϕ − A0,nCm,n sin ϕ sin mϕ

]
|do|

=

∫ π

0

(A0,n Bm,n − B0,n Am,n) sin θ dθ

∫ 2π

0

cos ϕ cos mϕ dϕ

−
∫ π

0

A0,n Cm,n sin θ dθ

∫ 2π

0

sin ϕ sin mϕ dϕ.

Together with∫ 2π

0

cos ϕ cos mϕ dϕ =

∫ 2π

0

sin ϕ sin mϕ dϕ = 0 , m = 2, 3, . . . , (A.4.34)

we have ∫
S2

[ X0
n Xm

n ]1 |do| = 0 , m = 2k1, k1 = 1, . . . ,

[
n + 1

2

]
.

Again from (A.4.34) we find∫
S2

[ X0
n Zl

n ]1 |do| =

∫
S2

(B0,n Al,n − A0,n Gl,n) cos ϕ cos lϕ|do|

+

∫
S2

A0,n F l,n sin ϕ sin lϕ|do|

= 0 , l = 2k2, k2 = 1, . . . ,
[n
2

]
.

Within the set of functions Xm
n the e1-coordinates on the right-hand side of (A.4.32)

follow from∫
S2

[Xm1
n Xm2

n ]1|do| =

∫
S2

[(Am1,n Bm2,n − Bm1,n Am2,n) cos ϕ cos m1ϕ cos m2ϕ

−Am1,n Cm2,n sin ϕ cos m1ϕ sin m2ϕ

+Cm1,n Am2,n sin ϕ sin m1ϕ cos m2ϕ] |do|.
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Since ∫ 2π

0

cos ϕ cos mϕ cos lϕ dϕ =

∫ 2π

0

sin ϕ cos mϕ sin lϕ dϕ = 0,

m, l = 1, 2, . . . , m �= l + 1, m �= l − 1 ,

we get∫
S2

[ Xm1
n Xm2

n ]1 |do| = 0 , m1 = 2k1, m2 = 2k′
1, k1, k′

1 = 1, . . . ,

[
n + 1

2

]
.

For the e1-coordinates of Xm
n and Zl

n it follows from (A.4.32) that∫
S2

[ Xm
n Zl

n ]1 |do| =

∫
S2

[(
Am,nF l,n − (n + 1)Bm,nAl,n

)
sin ϕ cos mϕ sin lϕ

+
(
−Am,nGl,n + l Bm,nAl,n

)
cos ϕ cos mϕ cos lϕ

−l Cm,nAl,n sin ϕ sin mϕ cos lϕ

−(n + 1)Cm,nAl,n cos ϕ sin mϕ sin lϕ
]
|do|.

Together with∫ 2π

0

cos ϕ sin mϕ sin lϕ dϕ = 0 , m, l = 1, 2, . . . , m �= l + 1, m �= l − 1,

we obtain∫
S2

[ Xm
n Zl

n ]1 |do| = 0, m = 2k1, l = 2k2, k1 = 1, . . . ,

[
n + 1

2

]
, k2 = 1, . . . ,

[n
2

]
.

Finally working with (A.4.32) and with the functions Zl
n for the e1-coordinates we get∫

S2
[Zl1

n Zl2
n ]1|do| =

∫
S2

[
−
(
l1 Al1,nF l2,n + (n + 1)Gl1,nAl2,n

)
sin ϕ cos l1ϕ sin l2ϕ

+
(
l1 Al1,nGl2,n − l2 Gl1,nAl2,n

)
cos ϕ cos l1ϕ cos l2ϕ

+
(
l2 F l1,nAl2,n − (n + 1)Al1,nGl2,n

)
sin ϕ sin l1ϕ cos l2ϕ

−(n + 1)
(
Al1,nF l2,n + F l1,nAl2,n

)
cos ϕ sin l1ϕ sin l2ϕ

]
|do|

= 0, l1 = 2k2, l2 = 2k′
2, k2, k

′
2 = 1, . . . ,

[n
2

]
.

An analogous consideration gives the desired result for the e2-coordinates. For the e3-
coordinates we have initially∫

S2
[ X0

n Xm
n ]3 |do| = −

∫
S2

B0,nCm,n sin mϕ |do|

= 0 , m = 2k1, k1 = 1, . . . ,

[
n + 1

2

]
,



A.4. Properties of holomorphic spherical functions 373

in view of ∫ 2π

0

sin mϕdϕ = 0 , m = 1, 2, . . . .

Analogously we deduce∫
S2

[ X0
n Zl

n ]3 |do| =

∫
S2

[
(n + 1)A0,nAl,n + B0,nF l,n

]
sin lϕ |do| = 0,

l = 2k2, k2 = 1, . . . ,
[n
2

]
.

In case of our functions Xm
n the e3-coordinates in (A.4.32) are given by∫

S2
[ Xm1

n Xm2
n ]3 |do| =

∫
S2

(−Bm1,nCm2,n cos m1ϕ sin m2ϕ

+Cm1,nBm2,n sin m1ϕ cos m2ϕ) |do|.

From ∫ 2π

0

sin mϕ cos lϕ dϕ = 0, m, l = 1, 2, . . . (A.4.35)

we can conclude∫
S2

[ Xm1
n Xm2

n ]3 |do| = 0, m1 = 2k1, m2 = 2k′
1, k1, k

′
1 = 1, . . . ,

[
n + 1

2

]
.

The e3-coordinates of Zl
n in (A.4.32) are∫

S2
[ Zl1

n Zl2
n ]3 |do| =

∫
S2

{[
−l1(n + 1)Al1,nAl2,n − Gl1,nF l2,n

]
cos l1ϕ sin l2ϕ

+
[
l2(n + 1)Al1,nAl2,n + F l1,nGl2,n

]
sin l1ϕ cos l2ϕ

}
|do| (A.4.35)

= 0,

l1 = 2k2, l2 = 2k′
2, k2, k

′
2 = 1, . . . ,

[n
2

]
.

Finally we need the e3-coordinates in (A.4.32) for Xm
n and Zl

n:∫
S2 [ Xm

n Zl
n]3|do| =

∫
S2

{[
(n + 1)Am,nAl,n + Bm,nF l,n

]
cos mϕ sin lϕ

−Cm,nGl,n sin mϕ cos lϕ
}

|do| (A.4.35)
= 0,

m = 2k1, l = 2k2, k1 = 1, . . . ,

[
n + 1

2

]
, k2 = 1, . . . ,

[n
2

]
.

Summarizing the above calculated partial results we obtain

(X0,∗
n,0, X

m,∗
n,0 )L2(S2) = (X0,∗

n,0 , Y l,∗
n,0)L2(S2)

= (Xm1,∗
n,0 , Y m2,∗

n,3 )L2(S2) = 0,

m = 2k1, l = 2k2, k1 = 1, . . . ,

[
n + 1

2

]
, k2 = 1, . . . ,

[n
2

]
,
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and

(Xm1,∗
n,0 , Xm2,∗

n,0 )L2(S2) = (Y m1,∗
n,3 , Y m2,∗

n,3 )L2(S2) = 0,

m1 �= m2 , m1 − m2 even .

Thus we have proved that for all n ∈ N0 the n + 1 polynomials (A.4.31) are orthogonal
relative to the scalar product in L2(B3)H, consequently they form a basis in H+

n,H. �

A.4.5 Derivatives of holomorphic spherical functions
Theorem A.4.4. For n ≥ 1 we have

∂Xm
n = (n + m + 1)Xm

n−1, m = 0, . . . , n,

∂Y m
n = (n + m + 1)Y m

n−1, m = 1, . . . , n.

Proof. As the polynomials and their derivatives have a similar form it is sufficient to
show

(i)
(1)

Am,n = (n + m + 1)Am,n−1, m = 0, . . . , n,

(ii)
(1)

Bm,n = (n + m + 1)Bm,n−1, m = 0, . . . , n,

(iii)
(1)

Cm,n = (n + m + 1)Cm,n−1, m = 1, . . . , n .

If we use (10.33), (10.34), (10.35), Legendre’s differential equation (A.4.1), and the usual

substitution t = cos θ we are able to describe the coefficients
(1)

Am,n,
(1)

Bm,n, and
(1)

Cm,n

explicitly:

(1)

Am,n =
1

2

[
(2n + 1) sin2 θ cos θ

d

dt
[P m

n+1(t)]t=cos θ + (n + 1)(2n + 1) cos2 θP m
n+1(cos θ)

−((n + 1)2 − m2)P m
n+1(cos θ)

]
,

(1)

Bm,n =
1

2

[
(2n + 1) sin θ cos2 θ

d

dt
[P m

n+1(t)]t=cos θ − n sin θ
d

dt
[P m

n+1(t)]t=cos θ

−(n + 1)(2n + 1) sin θ cos θP m
n+1(cos θ) + m2 cos θ

sin θ
P m

n+1(cos θ)

]
,

(1)

Cm,n =
1

2

[
m(n + 1)

cos θ

sin θ
P m

n+1(cos θ) + m sin θ
d

dt
[P m

n+1(t)]t=cos θ

]
.

At first we check (i). We use the recursion formula (A.4.2) in
(1)

Am,n with t = cos θ and
get

(1)

Am,n=
1

2
(n + m + 1) [(2n + 1) cos θP m

n (cos θ) − (n − m + 1)P m
n+1(cos θ)] .

Application of the three-terms recurrence relations (A.4.5) gives

(1)

Am,n=
1

2
(n + m + 1)(n + m)P m

n−1(cos θ) .
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On the other hand from the recursion formula (A.4.2) it follows also that

Am,n−1 =
1

2

[
sin2 θ

d

dt
[P m

n (t)]t=cos θ + n cos θP m
n (cos θ)

]
=

1

2
(n + m)P m

n−1(cos θ) ,

(A.4.36)
thus we get

(1)

Am,n= (n + m + 1)Am,n−1.

To prove (ii) we use

2 cos θ Am,n−1 − 2 sin θBm,n−1 = n P m
n (cos θ) (A.4.37)

and

2 cos θ
(1)

Am,n −2 sin θ
(1)

Bm,n= n

[
(n + 1) cos θ P m

n+1(cos θ) + sin2 θ
d

dt
[P m

n+1(t)]t=cos θ

]
.

Application of the recursion formula (A.4.2) together with the substitution t = cos θ
leads to

2 cos θ
(1)

Am,n −2 sin θ
(1)

Bm,n= n(n + m + 1)P m
n (cos θ) .

We replace n P m
n (cos θ) in the right-hand side by the left-hand side of (A.4.37) and get

2 cos θ
(1)

Am,n −2 sin θ
(1)

Bm,n= (n + m + 1)
(
2 cos θ Am,n−1 − 2 sin θBm,n−1

)
.

We use then the already proved property (i) which gives

(1)

Bm,n= (n + m + 1) Bm,n−1.

It remains to prove (iii). We apply (A.4.2) in
(1)

Cm together with t = cos θ and obtain
directly

(1)

Cm,n= (n + m + 1)Cm,n−1. �

A.4.6 Exercises

1. Prove that the Legendre polynomials and the Legendre functions are solu-
tions of an ordinary differential equation of second order, for m = 0, . . . , n+1:

(1−t2)(Pm
n+1(t))

′′−2t(Pm
n+1(t))

′+
(

(n + 1)(n + 2) − m2 1
1 − t2

)
Pm

n+1(t) = 0.

2. Show that the Legendre polynomials satisfy the recursion formulas

(1 − t2)(Pm
n+1(t))

′ = (n + m + 1)Pm
n (t) − (n + 1) t Pm

n+1(t) ,

(1 − t2)1/2(Pm
n+1(t))

′ = Pm+1
n+1 (t) − m (1 − t2)−1/2 t Pm

n+1(t) ,

(1 − t2)1/2Pm
n+1(t) =

1
2n + 3

(
Pm+1

n+2 (t) − Pm+1
n (t)

)
,
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and the three-terms recurrence relations for m = 0, . . . , n + 1,

(n + 1 − m)Pm
n+1(t) − (2n + 1) t Pm

n (t) + (n + m)Pm
n−1(t) = 0 .

Show also for m = n ≥ 1,

Pm
m (t) = (2m − 1)!! (1 − t2)m/2 .

3. Show that the Legendre polynomials and the Legendre functions are orthog-
onal in pairs in L2([−1, 1]),∫ 1

−1

Pm
n+1(t)P

l
n+1(t) dt = 0, m �= l,

and that the norms are given by∫ 1

−1

(
Pm

n+1(t)
)2

dt =
2

2n + 3
(n + 1 + m)!
(n + 1 − m)!

, m = 0, . . . , n + 1.

4. Show that the Legendre functions (not the Legendre polynomials) are also
orthogonal in a weighted L2-space:

∫ 1

−1

Pm
n+1(t)P k

n+1(t) (1 − t2)−1 dt =

⎧⎪⎪⎨⎪⎪⎩
0, m �= k,

(n + 1 + m)!
m (n + 1 − m)!

, m = k,

m, k = 1, . . . , n + 1.

5. Using the last assertions prove that holomorphic polynomials of different
orders are orthogonal on S2.
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admissible parameter transformation,

342
algebra, 21

Clifford, 52
geometrical, 51
of the complex quaternions, 54
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spacetime, 54

algebraic singularity, 108
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alternating product, 326
annihilation operator, 327
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antiautomorphism, 24
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antiholomorphic function, 95
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arc length, 347
Archimedes, 2
area, 348
areolar derivative, 138
Argand’s plane, 6
Argand, J.R., 7, 10
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argument principle, 273
associated Legendre function, 196
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automorphic form, 306, 318
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Bachmann, P., 330
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canonical representation, 332
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Cardano, G., 2
Cartan operator, 329
Cartan, E., 52
Cartan, H., 140
Casorati, F., 262
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Cauchy’s principal value, 133, 153
Cauchy, A.-L., 93, 126, 138, 268
Cauchy–Bitsadze operator, 131, 151
Cauchy–Fueter differential equations,

100
Cauchy–Kovalevsky extension, 240
Cauchy–Riemann differential equations,
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in H, 100
in C�(n), 106
generalized, 100

Cauchy–Riemann equation
radial, 234

Cauchy–Riemann operator, 92, 188, 225
adjoint, 195
radial, 226
spherical adjoint, 216
tangential, 226

Cayley table, 18
Cayley, A., 18, 118
Cayley, theorem of, 30
cell, 304
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Ceva, theorem of, 36
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chart, 341
Chisholm, M., 51
chordal distance, 85
chordal metric, 85
circle of convergence, 81
circle-preserving, 116
C�(n)-holomorphic, 105
Clifford algebra, 52
Clifford conjugation, 56
Clifford group, 66
Clifford holomorphic, 105
Clifford number, 53
Clifford, W.K., 51
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complex plane, 83
differential form, 329
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collinear, 36, 42
compact, 76

compactification, 83
comparison test, 79
complement, 74
complete orthonormal system, 202
completeness in Hilbert space, 202
completeness theorem, 193
complex differentiable, 92
complex argument, 7
complex conjugate number, 4
complex derivative, 91, 92
complex number, 3, 54

absolute value, 4
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imaginary part, 4
modulus, 4
orthogonality, 12
polar form, 6
real part, 4
representation by matrices, 10
trigonometric form, 6

complex quaternion, 54
cone property, 134
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complex number, 4
quaternion, 19, 24
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simple, 352
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convergence, 74
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convergence abscissa, 296
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product, 253
uniformly, 77
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cosine function, 219
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creation operator, 327
cross product, 12, 20, 335
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curve, 342
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∂-problem, 238
dal Ferro, S., 3
Davenport, C., 33
de Moivre, formula of, 23
de Moivre, A., 8
de Valera, E., 18
decomposition theorem, 213
degree, 324

of multiindex, 110
Delanghe, R., 113, 140
Delta operator, 142
derivative

areolar, 138
complex, 91, 92
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Descartes, R., 3
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differentiable

complex, 92
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differential, 90
differential equation of
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differential operator
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complex, 91

differentiation
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rules, 94
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Dirac operator, 101, 106, 187

on the sphere, 227

Dirac, P., 102
Dirichlet problem, 159
Dirichlet series, 296

generalized, 296
Dirichlet, J.P.G.L., 84
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distance, 74
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distribution, 360
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domain, 75

star-shaped, 128
double factor rule, 45
double periodic function, 303
dual number, 54
Dzuraev, A., 140

e-function, 218
Eisenstein series, 303, 305, 308, 313, 318,
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equation
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of a plane, 39, 119
of a sphere, 40, 119
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parametric – of a plane, 40
Plücker’s – of a line, 41
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essential singularity, 260, 265
Euclid, 2
Euclidean distance, 6
Euler operator, 227
Euler’s formula, 175, 220
Euler’s Gamma function, 287
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of first kind, 289
of second kind, 287

Euler’s product formula, 298
Euler, L., 3, 10, 15, 27, 282
Euler–Mascheroni constant, 292
Euler–Rodrigues, formula of, 28
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exact differential form, 329
exchange property, 69
exponential function, 218

C–K extension, 244
Fueter transform, 237
on H, 244, 248, 249
radial, 229

extended
Cauchy’s integral formula, 272
Cauchy’s integral theorem, 279

exterior
algebra, 326
differential, 329
domain, 132
of a curve, 272
product, 326

factors generating convergence, 254
field of the complex numbers, 3
Fontana, N., 3
formula

de Moivre, 23
Borel–Pompeiu, 129, 130, 158
de Moivre, 8

for radial e-function, 230
Euler, 175, 220
Euler’s product, 298
Euler–Rodrigues, 28
Green, 354
Legendre’s duplication, 290
Rodrigues’, 242, 243

four-squares-theorem, 20
fourfold quadratic sum, 20
Fourier expansion, 175, 203

Eisenstein series, 314
Fourier series

Eisenstein series, 306
free vector, 35
Fresnel’s integrals, 286
Fricke, R., 307
Frobenius theorem, 21
Fueter polynomials, 110, 175, 190

C–K extension, 241
orthogonality relations, 183

Fueter transform, 235
Fueter variables, 99, 105
Fueter, R., 100, 110, 234, 265

function
Hölder continuous, 135
antiholomorphic, 95
automorphic, 302
biholomorphic, 249
continuous, 77
double periodic, 303
elementary, 218

radial, 229
elliptic, 303
entire, 252
exponential, 218

on H, 244, 248
C–K extension, 244
Fueter transform, 237

harmonic, 142
holomorphic, 91
hyperbolic, 221

radial, 230
left-H-holomorphic, 100
left-Clifford holomorphic, 105
left-meromorphic, 265
linear, 91
meromorphic, 260
monogenic, 91, 95
outer spherical, 191
polygenic, 95
power, 108
radial exponential, 229
radial power, 232
radially holomorphic, 234
radially symmetric, 226
rational, 94
regular, 91
right-H-holomorphic, 100
right-Clifford holomorphic, 105
right-meromorphic, 265
simple periodic, 303
trigonometric, 219

radial, 230
Fueter transform, 238

uniformly continuous, 77
function element, 171
function sequence

convergence, 163
function series, 81
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functional equation
e-function, 218
Eisenstein series, 310
Gamma function, 287, 290
hyperbolic functions, 222
radial hyperbolic functions, 231
radial trigonometric functions, 231
trigonometric functions, 220
Zeta function, 299

fundamental area, 304
fundamental theorem of algebra, 9, 147

Gamma function, 287, 288
Gauß, C.F., 7, 10, 15, 352
Gaussian plane, 6
Gegenbauer polynomial, 176
Gegenbauer, L.B., 176
generalized

Dirichlet series, 296
radial Hermite polynomials, 243
Riemann sphere, 87
Riemann’s Zeta function, 314

geometric series, 80
geometrical algebra, 51
Gibbs, J.W., 34
Girard, A., 3, 9
Goldbach, C., 15
Goursat, E., 126
Graßmann algebra, 50, 326
Graßmann, H.G., 50
Graßmann product, 58, 327
great circles, 86
Green’s formula, 354
Green, G., 354
Grothendieck, A., 140

H-closed, 187
H-complete, 187
H-differentiable, 96
H-holomorphic, 100, 101
Hölder condition, 357
Hölder constant, 357
Hölder continuity, 135
Hölder continuous, 357
Hölder exponent, 357
Hölder, L.O., 357
Hagmark, P.E., 52
Hahn–Banach’s theorem, 186

Hamilton, W.R., 3, 15, 19, 33
Hankel, H., 50
Hardy space, 361
harmonic

function, 142
Hardy space, 361
spherical function, 195

Heaviside, O., 34
Heine–Borel, theorem, 76
Hermite polynomials

radial, 242
Hermite, C., 242
Heron of Alexandria, 2
Hilbert space, 360
Hilbert, D., 110
Hodge decomposition, 157
Hodge operator, 334
holomorphic

continuable, 260
continuation, 171

along a polygonal curve, 171
to simply connected domains,

171
function, 91
plane waves, 243
primitive, 207
spherical function, 195

homeomorphism, 77
hyperbolic

cotangent, 223
functions, 221
hyperbolic tangent, 223

identity sum of the double vector
product, 45

identity theorem, 180
image, 77
image set, 77
imaginary part, 4
index, 271

in C�(n), 276
infinite product, 253
inner product, 57
inner spherical polynomial, 191, 195
integral formula

of Cauchy for derivatives, 141, 143
of Poisson, 149
of Schwarz, 147



390 Index

integral over a domain, 338
integral theorem

Cauchy’s, 126
interior domain, 132
interior of a curve, 272
inversion, 55
involute, 24
involution, 24
isolated singularity, 259, 265
isolation of zeros, 252, 256

J.P.G. Dirichlet, 296
Jacobian, 340
Jordan curve, 342
Jordan surface, 132
Jordan’s lemma, 280
Jordan, C., 280

k-vector, 55, 327
Klein, F., 307
Kneser, H., 10
Kovalevsky, S., 239
Krüger, H., 63
Kraußhar, R.S., 184, 308
Kronecker symbol, 17
Krylov, N.M., 96
Kummer, E., 162

Lagrange identity, 40, 45, 348
Lagrange interpolation polynomial, 190
Lagrange polynomial, 114
Lagrange, J.L., 40
Landau, E., 330
Laplace operator, 194, 354
Laplace, P.S., 10, 281
Laurent series, 173

in C�(n), 181
Lebesgue measurable, 360
left-H-holomorphic function, 100
left-Clifford holomorphic function, 105
left-meromorphic function, 265
left-representation, 32
Legendre function, 363
Legendre polynomial, 196, 363
Legendre’s duplication formula, 290
Legendre, A.-M., 290
Leibniz rule, 331
Leibniz, G.W., 3

lemma of Poincaré, 340
length, 347
Leray, J., 274
limit, 74

non-tangential, 135
line integral, 346
line vector, 34
linear

dependence, 35
equation, 12
form, 91
function, 91
map, 116

Liouville’s theorem, 146, 303, 311
Lipschitz condition, 357
Lipschitz continuous, 357
Lipschitz, R., 52
local, 128
locally applied vector, 34
logarithm, 224

principal value, 223
radial, 231

logarithmic derivative, 273
logarithmic singularity, 224
Looman, H., 90
Lounesto, E., 52

Möbius group, 117, 120, 122
Möbius strip, 344
Möbius transformation, 115

differentiation, 123
in left representation, 120, 121
in right representation, 120, 121

Möbius, A.F., 115
Maaß, H., 307
main congruence group, 316
Malonek, H., 100, 105, 110, 184
manifold, 341

with boundary, 341
Marinov, M.S., 103
matrix ring, 31
maximum principle, 145
Maxwell, J.C., 142
mean value theorem, 144
Mejlikhzon, A.S., 96
Menchov, D., 90
meridians, 86
meromorphic function, 260
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metric, 74
chordal, 85

minimum principle, 145
Minkowski space, 54
Mittag-Leffler, M.G., 263
mixed n-product, 335
mixed product, 43
modular form, 306
modular group, 316
modulus, 4, 58

of a quaternion, 19
Moisil, G.C., 140
monogenic function, 91, 95
Morera’s theorem, 127
Morera, G., 126
multi-infinite series, 168
multiindex, 110
multilinear form, 324
multilinear mapping, 324
multiplicity of a zero, 9

n-form, 328
Nabla operator, 142
negative power in C�(n), 143
neighborhood, 74
non-tangential limit, 135
Norguet, F., 274
number, 386

complex, 3

one point compactification, 83, 87
ONS, 202
open, 75
order

of an elliptic function, 304
of a pole, 261, 266
of a root, 252
of a zero, 252

in C�(n), 257
orientable, 341
orientation

of a manifold, 344
of the boundary, 344

orthogonal, 21, 42
decomposition, 214
matrix, 62
system, 199

orthogonality, 12

orthogonality relations of the Fueter
polynomials, 183

orthonormal system, complete, 202
Ostrogradski, M.V., 352
outer product, 58
outer spherical function, 191

p-function ℘-function, 305
parallelogram, periodic, 302
parallels, 86
parametric equation

of a plane, 40
parametric representation, 342

of a circle, 13
of a line, 12

paravector, 55, 58
paravector-valued, 191
partial product, 253
partial sum, 79
partition of unity, 345
partitioning of the circle, 9
Pauli matrix, 33, 67
periodic parallelogram, 302
periodicity law, 71
permutation group, 111, 324
piecewise smooth manifold, 341
Plücker, J., 41
Plücker’s equation of a line, 41
plane wave, 243

holomorphic, 243
Plemelj projections, 137
Plemelj, J., 133
Plemelj–Sokhotski formula, 135
Poincaré, H., 307
Poincaré’s lemma, 340
Poincaré’s series, 307
Poisson’s integral formula, 149
polar coordinates, 6
polar form, 6
pole, 260, 261, 265, 266
polygenic function, 95
polygonally connected, 75
Pompeiu, D., 129, 138
Porteous, theorem of, 29
position vector, 34
power, 108

generalized, 224
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power series, 81, 164
differentiation, 165
division, 167
expansion, 166, 169
in C�(n), 168
multiplication, 166
primitive, 166
trigonometric functions, 220
uniqueness, 166, 169

pre-image, 77
primitive, 166

holomorphic, 207
primitive function, 127
principal involution, 24, 55
principal part, 173, 181

of a Laurent series, 261, 266
principal value

of the argument, 7
Pringsheim, A., 126
product

absolutely convergent, 253
partial, 253

product theorem, 254
pseudoscalar, 54, 55

q-linear, 324
Qian, T., 234
quaternion, 16, 54

absolute value, 19
complex, 54
conjugate, 19, 24
left-representation, 32
modulus, 19
multiplication rule, 17
real, 17
right-representation, 32
scalar part, 19
trigonometric representation, 23
vector part, 19

QUATPACKAGE, 194

radial
differential operator, 233
Hermite polynomials, 242
power function, 232
holomorphic function, 234

radially symmetric function, 226
radius of convergence, 82

ratio test, 79
rational function, 94
real part, 4
rectangular coordinates, 6
reflection, 11, 27, 30, 62

about the unit ball, 124
about the unit circle, 114
about the unit sphere, 119

regular function, 91
relative neighborhood, 75
relative topology, 75
relatively closed, 75
relatively open, 75
removable singularity, 260, 265
representation by matrices, 10
representation theorem, 159
residue, 267

at infinity, 268, 275
calculation at poles, 269, 275
in C, 269
in C�(n), 274

residue theorem, 268
in C�(n), 275

reverse, 25
reversion, 25, 55, 56
Riemann hypothesis, 301
Riemann sphere, 83

generalized, 87
Riemann surface, 108, 223
Riemann’s theorem on removable singu-

larities, 260
Riemann’s Zeta function, 298

generalized, 314
Riemann, B., 83, 162
Riemann–Fueter’s theorem on

removable singularities, 265
right-H-holomorphic function, 100
right-Clifford holomorphic function, 105
right-meromorphic function, 265
right-representation, 32
Rodrigues’ formula, 242, 243
Rodrigues, O., 15, 27
root test, 79
rootfinding, 8
rotation, 10, 26, 30, 61, 114, 119
Rouché, E., 274

Saak, E.M., 140
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scalar, 55
part, 19, 58
product, 12, 20, 37, 57

of quaternions, 21
triple product, 21

Sce, M., 234
Schwarz’ integral formula, 147
Schwarz, H.A., 39, 147
S-differentiability, 103
sequence, 74
series, 79

function, 81
geometric, 80
power, 81

set of pre-images, 77
sheet, 108
Siegel, C.L., 307
simple periodic function, 303
sine function, 219
singularity

essential, 260, 265
isolated, 259, 265
pole, 260, 265
removable, 260, 265

skew field, 18
skew symmetric, 324
Smith, R., 142
smooth curve, 342
smooth manifold, 341
Sobolev space, 361
Sokhotski, Y.V., 133, 262
Sommen, F., 53, 68
Souček, V., 103
spaces

of Besov type, 362
of differentiable functions, 359
of integrable functions, 359

spacetime algebra, 54
special linear group, 302
special orthogonal group, 10, 62
sphere, 40
sphere-preserving, 119, 122
spherical

coordinates of a ball, 350
cosine theorem, 48
Dirac operator, 227
function

harmonic, 195
holomorphic, 195

polynomial, 113
inner, 191, 195

sine theorem, 49
sine-cosine theorem, 48

Spin group, 63
star-shaped domain, 128
stereographic projection, 84
Stirling’s theorem, 293
Stirling, J., 291
Stokes, G.G., 351
Suchumlinov, G.A., 186
Sudbery, A., 101
sum and difference formulas, 220, 222,

230
sum of a series, 79
support, 345
surface area of the unit sphere, 348
symmetric, 324

product, 326
symmetrization, 325

Tait, P.G., 142
tangent, 13, 223
tangent plane, 40
tangential space, 35, 341
Tartaglia, 3
Taylor coefficients, 165
Taylor expansion, 169
Taylor part, 173, 181
Taylor series, 169

in C�(n), 177
tensor product, 326
Teodorescu transform, 131, 151
Teodorescu, N., 139
term by term differentiation, 165
theorem

Calderon–Zygmund, 155
Casorati–Weierstraß–Sokhotski,

262
Cayley, 30
Ceva, 36
completeness, 193
Frobenius, 21
fundamental – of algebra, 9, 147
Gauß, 353
Gauß–Ostrogradski, 352
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Green, 354
Hahn–Banach, 186
Heine–Borel, 76
identity, 180
Liouville, 146, 303, 311, 312
mean value, 144
Mittag-Leffler, 263, 267
Morera, 127
Porteous, 29
Riemann – on removable singulari-

ties, 260
Riemann–Fueter – on removable

singularities, 265
Rouché, 274
Stirling, 293
Stokes, 351
Weierstraß, 81

torus, 343
total differential, 329, 331

of a function, 333
form, 329

totally analytic, 113, 190
trace operator, 158
translation, 114, 119
triangular inequality, 6, 20
trigonometric

form, 6
functions, 219

Fueter transform, 238
generalization to n dimensions,

309
representation, 23

two-squares-theorem, 5

uniformly continuous function, 77
uniformly convergent, 77
uniqueness theorem, 170

in C�(n), 180
unit circle, 9
unit sphere, 23

Vahlen matrix, 115, 120, 121
Vahlen, K.T., 52, 115
vector, 19, 55

free, 35
line, 34
locally applied, 34
position, 34

vector part, 19
vector product, 12, 20, 37, 335
vector space, 17
volume derivative, 139
vrai max, 360

Wallis, J., 3
wedge product, 326
Weierstraßfactors, 254
Weierstraß’ ℘-function, 305

generalized, 310
Weierstraß’ product theorem, 254
Weierstraß, K., 162, 262, 303
Weierstraß, theorem of, 81
Wessel, C., 7
winding number, 271

in C�(n), 276
winding point, 108

Zöll, G., 256
zero

hyperbolic functions, 222
of infinite degree, 184
order of a, 252
trigonometric functions, 222
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