


Lecture Notes in Mathematics 2041

Editors:
J.-M. Morel, Cachan
B. Teissier, Paris

For further volumes:
http://www.springer.com/series/304



•



Benjamin Howard � Tonghai Yang

Intersections of
Hirzebruch–Zagier
Divisors and CM Cycles

123



Benjamin Howard
Boston College
Department of Mathematics
140 Commonwealth Ave
Chestnut Hill, MA 02467
USA
howardbe@bc.edu

Tonghai Yang
University of Wisconsin, Madison
Department of Mathematics
480 Lincoln Drive
Madison, WI 53706
USA
thyang@math.wisc.edu

ISBN 978-3-642-23978-6 e-ISBN 978-3-642-23979-3
DOI 10.1007/978-3-642-23979-3
Springer Heidelberg Dordrecht London New York

Lecture Notes in Mathematics ISSN print edition: 0075-8434
ISSN electronic edition: 1617-9692

Library of Congress Control Number: 2011940289

Mathematics Subject Classification (2010): 11-XX, 11G15, 11F41, 14G40

c� Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The goal of this monograph is to prove new instances of relations between
special cycles on integral models of Shimura varieties, and the Fourier coefficients
of derivatives of Eisenstein series. The prototype of such a relation appears in
the famous work of Gross and Zagier [17], where the special cycles are linear
combinations of Heegner points on the integral model of the modular curveX0.N /,
and the Eisenstein series in question appears in the integral representation of a
Rankin–SelbergL-function.

A program to generalize such relations to other Shimura varieties, and to
Eisenstein series on higher rank groups, has been initiated by Kudla [26, 28], and
in many special cases such relations have been proved. To give few examples, the
book [34] of Kudla, Rapoport, and the second author relates the intersections of
cycles of CM points on Shimura curves to a Siegel Eisenstein series of genus two,
and uses these relations to prove new formulas of Gross–Zagier type. Here one
may think of the Shimura curve as being associated with the GSpin cover of a
reductive group of type SO.1; 2/, and of the CM points as arising from a family
of embeddings SO.0; 2/ �! SO.1; 2/. In a similar spirit, Kudla and Rapoport study
in [29] the triple intersection of divisors on an SO.2; 2/ Shimura variety arising
from embeddings SO.1; 2/ �! SO.2; 2/, and relate these intersections to the Fourier
coefficients of a Siegel Eisenstein series of genus three. In [30] those same authors
study the fourfold intersection of divisors on a Shimura variety of type SO.3; 2/
arising from embeddings SO.2; 2/ �! SO.3; 2/, and relate these intersections to a
Siegel Eisenstein series of genus four. When n > 3, the interpretation of orthogonal
Shimura varieties of signature .n; 2/ as moduli spaces of abelian varieties breaks
down, slowing further progress in this direction. A conjectural picture for all n
is described in [28]. Fortunately, the Shimura varieties of type GU.p; q/ have a
moduli interpretation for all signatures .p; q/, providing fertile ground for future
research. Recent work of Kudla and Rapoport [31,32] treats the n-fold intersections
of divisors arising from embeddings GU.n�2; 1/ �! GU.n�1; 1/, and their relation
to Fourier coefficients of Eisenstein series on U.n; n/.

In the series of papers [5,57,58], Bruinier and the second author study a different
problem, in which a family of divisors on a Hilbert modular surface is intersected
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vi Preface

with a fixed cycle of codimension two. If one views the Hilbert modular surface
as the Shimura variety associated with the GSpin cover of a reductive group of
type SO.2; 2/, then the family of divisors arise from embeddings SO.1; 2/ �!
SO.2; 2/, and are commonly known as Hirzebruch–Zagier divisors. The fixed cycle
of codimension two arises from an embedding SO.2; 0/ � SO.0; 2/ �! SO.2; 2/.
Under the moduli interpretation of the Hilbert modular surface, the Hirzebruch–
Zagier divisors correspond to embedded Shimura curves, and the codimension two
cycle corresponds to a collection of complex multiplication points. The papers just
cited relate these intersection multiplicities of these cycles to the Fourier coefficients
of the pullback of a Hilbert modular Eisenstein series via the diagonal embedding
H �! H � H of the complex upper half plane.

The main result of this monograph is an arithmetic interpretation of the original
Fourier coefficients of the Hilbert modular Eisenstein series, rather than the
coefficients of its diagonal restriction. Many of the main results of [57, 58] then
follow as easy corollaries, and with fewer unwanted hypotheses. In particular, we
obtain results in the case where the field of complex multiplication is a biquadratic
extension of Q. In this case, excluded in the work of Bruinier and the second author
cited above, the cycle of complex multiplication points and the Hirzebruch–Zagier
divisors may have nonempty intersection in the complex fiber of the Hilbert modular
surface.

The relations we prove among intersection multiplicities and Eisenstein series
strongly suggest (and are a step toward proving) a Gross–Zagier style theorem for
Hilbert modular surfaces, as explained later in the introduction.

Finally, the methods used here to study cycles on Hilbert modular surfaces
apply equally well to cycles on a product of modular curves. In this setting, the
Hirzebruch–Zagier divisors are replaced by the classical Hecke correspondences,
and our methods yield a refined version of the results of Gross and Zagier on the
prime factorizations of singular moduli [16]. Because the proofs simplify drastically
in this degenerate case, it is treated in a separate paper [22].
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Chapter 1
Introduction

1.1 The Set-up

Let F be a real quadratic field of discriminant dF and different DF , and denote
by � 2 Gal.F=Q/ the nontrivial Galois automorphism of F . Associated to F is a
Hilbert modular surface M. The algebraic stack M is defined as the moduli space of
abelian surfaces A equipped with an action of OF , and with an OF -linear principal
polarization; see Chap. 3 for more details. We refer to such A as OF -polarized
RM abelian surfaces. The abbreviation RM stands for real multiplication, and the
OF in OF -polarization indicates that the polarization is principal (in much of the
text we allow a more general class of polarizations; see Sect. 3.1). It is known
that M is regular, flat over Spec.Z/ of relative dimension two, and smooth over
Spec.ZŒ1=dF �/.

For every positive integer m, Hirzebruch and Zagier constructed a divisor on
the complex fiber M.C/, and in [29] Kudla and Rapoport gave a moduli-theoretic
description of this divisor. Define T.m/ to be the the moduli space of pairs .A; j /
in which A is an OF -polarized RM abelian surface, and j is a Rosati fixed
endomorphism satisfying j ı j D m and j ı x D x� ı j for all x 2 OF . The
morphism T.m/ ! M defined by “forget j ” is finite and unramified, and the image
is a codimension one cycle whose complex fiber is equal to the divisor constructed
by Hirzebruch and Zagier. As the subring of endomorphisms of A generated by OF

and j is an order in an indefinite quaternion algebra, the stacks T.m/ are essentially
integral models of quaternionic Shimura curves. The Hirzebruch-Zagier divisors
T.m/ are studied by Kudla and Rapoport in [29], and by Terstiege in [52, 53]. In
those papers the goal, following the conjectures of [28], is to relate the intersection
multiplicity of three Hirzebruch–Zagier divisors on M to the Fourier coefficients of
the central derivative of a Siegel Eisenstein series of genus three.

On the other hand, the second author proved a different kind of intersection
formula in [57, 58], which was first conjectured in joint work with Bruinier [5].
Under some technical restrictions this formula relates the intersection multiplicity
of T.m/ against a fixed codimension two cycle of complex multiplication points

B. Howard and T. Yang, Intersections of Hirzebruch–Zagier Divisors and CM Cycles,
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2 1 Introduction

on M, with the diagonal restriction of the central derivative of a Hilbert modular
Eisenstein series of weight one. Our Theorem E is a generalization of this result.
The central problem of the current work is to find an arithmetic interpretation of the
Hilbert modular Eisenstein series itself, before one takes the diagonal restriction.
This is Theorem C below, from which Theorem E follows more or less directly.

Let E be a quartic CM field with real quadratic subfield F . There are three
mutually exclusive possibilities:

• (cyclic) E=Q is a Galois field extension and Gal.E=Q/ Š Z=4Z,
• (biquad) E Š E1 ˝Q E2 for quadratic imaginary fields E1 6Š E2,
• (nongal) E=Q is a non-Galois field extension,

and in all cases we denote by a 7! a the complex conjugation on E. Given a CM
type ˙ of E, let E˙ be the reflex field of ˙ , and let O˙ be the ring of integers of
E˙ . There is a quartic Q-algebra E], the reflex algebra of E, characterized up to
isomorphism by the existence of an Aut.C=Q/-equivarient bijection

fCM types of Eg Š Hom.E];C/;

denoted˙ 7! �˙ and satisfying �˙.E]/ D E˙ . In cases (cyclic) and (nongal) E]

is a quartic CM field; in case (biquad) E] Š E1 � E2. In all cases we denote by
F ] the maximal totally real subalgebra of E], so that F ] is a real quadratic field in
cases (cyclic) and (nongal), and F ] Š Q � Q in case (biquad).

To the data .E;˙/ we attach an algebraic stack CM˙ , étale and proper over
Spec.O˙/. This stack is defined as the moduli space of principally polarized abelian
surfaces over O˙ -schemes with complex multiplication by OE , and satisfying the
˙-Kottwitz condition of Sect. 3.2. The obvious forgetful morphism CM˙ ! M=O˙

is finite and unramified, and its image is a codimension two cycle on M=O˙ .
In Sect. 2.3 we define an OF -polarized CM module T to be a projective OE -

module of rank one equipped with a perfect Z-valued symplectic form (suitably
compatible with the OE-action). To each such T there is an associated CM type, and
we denote byX˙ the finite set of isomorphism classes of OF -polarized CM modules
with CM type˙ . Taking the first homology of an OF -polarized CM abelian surface
over C defines a bijection CM˙.C/ ! X˙ , but we prefer to think of elements ofX˙
as purely linear algebraic (as opposed to algebro-geometric) objects. In Sect. 4.5
we attach to each T 2 X˙ an incoherent quadratic space C .T/ of rank two over
the adele ring AF ] . The incoherence condition means that C .T/ does not arise as
the adelization of any quadratic space over F ]. Using the Weil representation, we
then associate to C .T/ an incoherent Hilbert modular Eisenstein series E.�; s;T/
of parallel weight one for the group GL2.AF ]/. Here � D u C iv is an element of
the F ] upper half-plane

HF ] D fuC iv W u;v 2 F ]

R;v � 0g � F
]

C



1.1 The Set-up 3

(here and always, the notation � 0 means totally positive). A choice of
isomorphism F

]

R Š R � R identifies HF ] Š H � H with a product of two complex
upper half-planes. Define

E.�; s;˙/ D
X

T2X˙
E.�; s;T/:

The incoherence condition implies that E.�; s;˙/ vanishes at s D 0, and the
derivative at s D 0 has a Fourier expansion

E 0.�; 0;˙/ D
X

˛2F ]
c˙ .˛;v/ � q˛;

in which e.x/ D e2�ix and

q˛ D e.TrF ]=Q.˛�//:

In cases (cyclic) and (nongal) the Eisenstein series E.�; s;˙/ will turn out to be
independent of the CM type ˙ . See Corollary 5.3.5.

Roughly speaking, the main results of [57,58] relate the intersection multiplicity
of T.m/=O˙ and CM˙ to the Fourier coefficients c˙.˛;v/, under some restrictive
hypotheses on the extension E=Q. These hypotheses exclude case (biquad), and
imply that E.�; s;T/ is independent of T. The results assert that the intersection
multiplicity of T.m/=O˙ and CM˙ is equal to

� 1

WE

X

˛2F ]; ˛�0
Tr
F]=Q

.˛/Dm

c˙.˛;v/;

where WE is the number of roots of unity in E�. This formula suggests that one
should look for a decomposition of the scheme theoretic intersection

T.m/ \ CM˙ D T.m/=O˙ �M=O˙
CM˙ ;

into a disjoint union of zero cycles indexed by totally positive ˛ 2 F ] of tracem, in
such a way that the arithmetic degree of the ˛th zero cycle is essentially c˙.˛;v/.

To find such a decomposition, first reconsider the definition of T.m/. If S is a
connected scheme and A 2 M.S/, let L.A/ be the space of special endomorphisms
of A in the sense of Chap. 3.1. Thus L.A/ consists of those endomorphisms j of A
that are fixed by the Rosati involution and satisfy j ıx D x� ıj for all x 2 OF . The
Z-moduleL.A/ is free of rank at most four, and carries a positive definite quadratic
formQA.j / D j ıj . Thus an S -valued point of T.m/ consists of a pair .A; j / with
A 2 M.S/, and j 2 L.A/ satisfying QA.j / D m. Now suppose S is a connected
O˙ -scheme, and we are given an S -valued point of T.m/ \ CM˙ . Such a point
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consists of a pair .A; j / as above, but now A has complex multiplication by OE .
We will see in Sect. 3.2 that this complex multiplication endows V.A/ D L.A/˝ZQ

with the structure of anE]-module, and that there is a unique totally positive definite
F ]-quadratic form Q

]

A on V.A/ satisfying

QA D TrF ]=Q ıQ]

A:

It follows that there is a decomposition:

T.m/ \ CM˙ D
G

˛2F ]
Tr
F]=Q

.˛/Dm

CM˙.˛/

in which CM˙.˛/ is the moduli space of pairs .A; j / over O˙ -schemes, with A
an OF -polarized CM abelian surface satisfying the ˙-Kottwitz condition, and j 2
L.A/ satisfyingQ]

A.j / D ˛.

1.2 The Theorems

The following result will be proved in Sect. 3.3.

Theorem A If ˛ 2 F ] is totally positive then CM˙.˛/ has dimension zero.
Furthermore, all geometric points have the same nonzero residue characteristic,
and represent supersingular abelian surfaces.

Suppose we are in case (cyclic) or (nongal), so that F ] is a field. If ˛ 2 F ]

has trace m > 0 then certainly ˛ 2 .F ]/�. If such an ˛ is not totally positive
then CM˙.˛/ D ;, as Q]

A is totally positive definite. Thus Theorem A implies that
T.m/\CM˙ is zero dimensional, and T.m/=O˙ and CM˙ intersect properly on M=O˙ .
In case (biquad) this argument breaks down. In this situation F ] Š Q � Q, and
so there are ˛ 2 F ] of trace m > 0 with ˛ 62 .F ]/�. For such an ˛ the stack
CM˙.˛/ may have irreducible components of dimension one, and so CM˙ may have
irreducible components contained in T.m/=O˙ .

For each totally positive ˛ 2 F ] define the arithmetic degree

bdeg CM˙.˛/ D
X

q

log.Nm.q//
X

z2CM˙.˛/.Falg
q /

length
�

O sh
CM˙.˛/;z

�

#Aut.z/

where the outer sum is over all primes q of O˙ , Osh
CM˙.˛/;z

is the strictly Henselian
local ring at z (i.e. the local ring for the étale topology), the length of this ring is its
length as a module over itself, and the automorphism group Aut.z/ is computed in
the category CM˙.˛/.F

alg
q /. For each prime p let
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Ep D Qp

�f�.x/ W x 2 E and � 2 Hom.E;Qalg
p /g

�

be the smallest extension of Qp containing the image of every Q-algebra map � W
E ! Q

alg
p .

Hypothesis B We will sometimes impose the following conditions on a prime p:

1. the degree of the extension Ep=Qp is less than or equal to 4, and
2. the ramification degree of Ep=Qp is strictly less than p.

Hypothesis B is fairly mild. For example it holds if p is unramified in E, or if
p � 5 and E=Q is Galois.

Theorem C Suppose ˛ 2 F ] is totally positive, and that CM˙.˛/ is supported in
characteristic p for a prime satisfying both conditions of Hypothesis B. Then

bdeg CM˙.˛/ D � 1

WE

� c˙.˛;v/

where WE is the number of roots of unity in E. In particular, the right hand side is
independent of v 2 .F ]

R/
�0.

Theorem C is stated in the text as Theorem 5.1.1, and is proved in Sect. 5.2.
The proof relies heavily on local deformation theory calculations postponed until
Chap. 6. The second condition of Hypothesis B arises from the use of crystalline
deformation theory in the proof of Proposition 6.2.3, and would require new ideas
to remove from the hypotheses of Theorem C. The first condition of Hypothesis B
could probably be removed, but doing so would require adding new cases to the
already lengthy local calculations in Chap. 6; see Remark 5.2.4.

Of course Theorem C leads to the obvious question: is there an arithmetic
interpretation of the Fourier coefficients c˙.˛;v/ even when ˛ is not totally positive.
This question is closely tied up with archimedean intersection theory, and with the
construction of Green functions for the divisors T.m/ on M. To formulate such a
result, we introduce in Sect. 5.3 the arithmetic Chow goup cCh1.CM˙/ of Gillet-
Soulé, defined as the rational equivalence classes of pairs .Z;G/, where Z is a Weil
divisor on CM˙ with rational coefficients, and G is a Green function for Z. Of course,
as CM˙ is smooth of relative dimension 0 over O˙ , a divisor on CM˙ is simply a
weighted sum of closed points, and so Z.C/ D ;. Thus a Green function for Z is
just a function on the finite set of complex points of CM˙ .

When ˛ 2 .F ]/� is totally positive, the forgetful map CM˙.˛/ �! CM˙ allows
us to view CM˙.˛/ as a divisor Z˙.˛/ on CM˙ , and we obtain an arithmetic cycle
class

bZ˙.˛;v/ D .Z˙.˛/; 0/ 2 cCh1.CM˙/

independent of v 2 .F
]

R/
�0. When ˛ 2 .F ]/� is not totally positive we construct,

in Definition 5.3.2, a function G.˛;v; �/ on the complex fiber of CM˙ , depending
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on an auxiliary totally positive v 2 F
]
R. This allows us to extend the definition of

bZ˙.˛;v/ to ˛ 6� 0 by

bZ˙.˛;v/ D .0;G.˛;v; �// 2 cCh1.CM˙/:

The arithmetic Chow group comes equipped with a linear functional

bdeg W cCh1.CM˙/ �! R

defined in Sect. 5.3. Combining Theorem 5.3.1 and Theorem 5.3.4 yields the
following theorem.

Theorem D Suppose that Hypothesis B holds for all primes p. For any ˛ 2 .F ]/�,
and any totally positive v 2 F ]

R, we have

bdegbZ˙.˛;v/ D � 1

WE

� c˙.˛;v/:

The finite intersection multiplicity hT.m/ W CM˙ ifin is defined in Sect. 5.4, and
is essentially the sum of the lengths of all local rings of T.m/ \ CM˙ . To define
an archimedean component to the intersection, we construct in Sect. 5.3, following
ideas of Kudla [26] and Bruinier [3], a Green function Gr.m;v; �/ on M.C/ with a
logarithmic singularity along T.m/.C/. The Green function depends on the choice
of a positive parameter v 2 R, and is defined for all nonzero m 2 Z; if m < 0

then T.m/ D ; and Gr.m;v; �/ is a smooth function on M.C/. In (5.11) we define
Gr.m;v;CM˙/ by summing the values of Gr.m;v; �/ at the complex points of CM˙ .
This sum is finite, provided that we are either in case (cyclic) or (nongal) so that the
complex fibers of T.m/ and CM˙ are disjoint. For every nonzero m 2 Z define an
arithmetic divisor

bT.m;v/ D �

T.m/;Gr.m;v; �/�

on M. The right hand side is simply the formal pair consiting of T.m/ with its Green
function Gr.m;v; �/. The arithmetic intersection of CM˙ with bT.m;v/ is defined,
following [2], by

hbT.m;v/ W CM˙ i D hT.m/ W CM˙ ifin C 1

2
� Gr.m;v;CM˙/:

On the automorphic side, let i� W H ! HF ] be the diagonal embedding
of the usual complex upper half-plane. The pullback of E 0.�; 0;˙/ to H is a
nonholomorphic modular form of weight two with a Fourier expansion

E 0.i�.�/; 0;˙/ D
X

m2Z
b˙.m;v/ � qm

in which
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b˙.m;v/ D
X

˛2F ]
Tr
F ]=Q

.˛/Dm

c˙.˛;v/:

Now � D uC iv 2 H, and qm D e.m�/ as usual.

Theorem E Suppose that we are either in case (cyclic) or (nongal), and that
Hypothesis B holds for all primes p. For any positive v 2 R and any nonzero
m 2 Z,

hbT.m;v/ W CM˙ i D � 1

WE

� b˙.m;v/:

Theorem E is stated in the text as Theorem 5.4.1; a special case of this theorem
was proved, using a different method, by the second author in [58].

hT.m/ W CM˙ ifin D
X

˛2F ];˛�0
Tr
F]=Q

.˛/Dm

bdegbZ˙.˛;v/

and
1

2
� Gr.m;v;CM˙/ D

X

˛2F ];˛ 6�0
Tr
F ]=Q

.˛/Dm

bdegbZ˙.˛;v/;

and then applying Theorem D.

1.3 Speculation and Open Questions

For a choice of toroidal compactification M ,! M� one may define the codimension
one arithmetic Chow group cCH1.M�

=O˙
/ of Gillet-Soulé as in [13] or [4, 6, 12]. The

elements of this arithmetic Chow group are rational equivalence classes of pairs
bZ D .Z; G/ where Z is a divisor on M�

=O˙
and G is a Green function for Z. The

intersection multiplicity bZ 7! hbZ W CM˙ i, initially defined only when Z and CM˙
intersect properly, extends in a canonical way to a linear functional

bdegCM˙ W cCH1.M�
=O˙

/ ! R;

the arithmetic degree along CM˙ , defined as the composition

cCH1.M�
=O˙

/
f �

��! cCH1.CM˙/
bdeg��! R

where f W CM˙ �! M�
=O˙

is the forgetful map.

One would like to view bT.m;v/ as an element of the above arithmetic Chow
group. Unfortunately, the behavior of the Green function Gr.m;v; �/ near the
boundary of M� is not well understood, unlike that of the Green function˚.m; �/ for
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T.m/ constructed by Bruinier and studied in [3, 4]. For this reason, the arithmetic
intersection theory of Theorem E takes place on the open Hilbert modular surface
M. Suppose this obstacle can be overcome, and that one can define classes

bT.m;v/ 2 cCH1.M�
=O˙

/

for all m in such a way that Theorem E continues to hold (including the case
(biquad) and including the case m D 0):

bdegCM˙bT.m;v/ D � 1

WE

� b˙.m;v/: (1.1)

Suppose further that the formal generating series

�.�/ D �WE �
X

m

bT.m;v/ � qm 2 cCH1.M�
=O˙

/ŒŒq��

is a vector-valued modular form of weight 2. In fact Bruinier-Burgos-Kühn [4] prove
precisely such a result, but with a different choice of Green function for T.m/. If one
views � as an arithmetic version of a classical theta function, then, following the
philosophy of Kudla, the equality (1.1) may be viewed as an arithmetic Siegel–Weil
formula

bdegCM˙�.�/ D E 0.i�.�/; 0;˙/

relating� to the central derivative of an Eisenstein series.
As in [28, 34], given a cusp form f of weight 2, one may form the arithmetic

theta lift
�f D hf .�/;�.�/iPetersson 2 cCH1.M�

=O˙
/;

and the holomorphic function

L˙.f; s/ D hf .�/; E.i�.�/; s;˙/iPetersson:

Obviously L˙.f; s/ vanishes at s D 0. The arithmetic theta lift �f is defined by

integrating a vector-valued function, and by moving the linear functional bdegCM˙
inside the integral one finds the amusing Gross–Zagier style formula

bdegCM˙�f D ˝

f .�/;bdeg˙�.�/
˛Petersson

D ˝

f .�/; E 0.i�.�/; 0;˙/
˛Petersson

D L 0̇ .f; 0/:

Apart from the trivial observation that it inherits analytic continuation and a
functional equation from the Eisenstein series, the nature and properties of the
function L˙.f; s/ are unclear. Closely related functions appear in the work of
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Gross–Kohnen–Zagier [15, Section III], but the specific function L˙.f; s/ con-
structed here is in need of further study.

1.4 Permanent Notation

Throughout the entirety of the text, F denotes a fixed real quadratic field of
discriminant dF and different DF , andE is a quartic CM field with maximal totally
real subfield F . The nontrivial element of Gal.F=Q/ is denoted � , and F�0 denotes
the set of totally positive elements of F . Attached to F and E are two Q-algebras
F ] and E], defined in Sect. 2.1. The reflex field of a CM type ˙ of E is denoted
E˙ , and its ring of integers is O˙ . The letter c is reserved for a fractional ideal of
OF , which will always satisfy c�1 � OF . In the applications we will only need the
case c D OF .

If ` is a place of Q and M is a Z-module (or Z-algebra) we abbreviate M` D
M ˝Z Z`; we also abbreviate cM D M ˝Z

bZ where bZ is the profinite completion
of Z. Let A be the adele ring of Q and let Af Š bQ be the ring of finite adeles.
If L is a number field we set AL D L ˝Q A. An algebraic closure of a field L is
denotedLalg. For a Q-moduleX we abbreviateXR D X ˝Q R and XC D X ˝Q C.
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Chapter 2
Linear Algebra

Fix a fractional OF -ideal c 	 OF . In this chapter we introduce the linear algebraic
notions of c-polarized RM modules and c-polarized CM modules, and show that
certain spaces of special endomorphisms of these objects carry natural quadratic
forms. The modules themselves will reappear in Chap. 3 as the first homology of
abelian surfaces over C with real and complex multiplication, and the quadratic
spaces of special endomorphisms will underlie the construction of Hilbert modular
Eisenstein series in Sect. 4.5.

2.1 The Reflex Algebra

A CM type of E is an unordered pair ˙ D f�1; �2g of Q-algebra homomorphisms
�1; �2 W E ! C whose restrictions to F are related by

�1jF D �2jF ı �:

By Galois theory, B 7! HomQ�alg.B;Q
alg/ establishes an equivalence between the

category of étale Q-algebras and the category of finite sets with a continuous action
of the absolute Galois groupGQ D Gal.Qalg=Q/. If we fix an embeddingQalg ! C,
the set of all CM types ofE becomes aGQ-set, and so determines an étale Q-algebra
which we call E]. Thus there is a canonical bijection˙ 7! �˙

fCM types of Eg Š HomQ�alg.E
];C/: (2.1)

The algebra E] and the bijection (2.1) can be made more explicit as follows.
Consider the commutative Q-algebra

M D E ˝id;F;� E:

B. Howard and T. Yang, Intersections of Hirzebruch–Zagier Divisors and CM Cycles,
Lecture Notes in Mathematics 2041, DOI 10.1007/978-3-642-23979-3 2,
© Springer-Verlag Berlin Heidelberg 2012

11
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On the left we viewE as an F -algebra via the inclusion x 7! x of F intoE, and on
the right we view E as an F -algebra via the conjugate embedding x 7! x� . Thus
for any a; b 2 E and x 2 F we have the relation .xa/ ˝ b D a ˝ .x�b/: Define
Q-algebra automorphisms 	; � 2 Aut.M/ by

	.a˝ b/ D b ˝ a �.a ˝ b/ D b ˝ a:

Viewing E as a subalgebra of M via the embedding a 7! a ˝ 1, we define Q-
algebras E] and F ] by

M

��
��

��
��

�

��
��
��
��
�

E] D M h�i E D M h�	i

F ] D M h�;	2i

��
��

��
��

��
�

F D M h�	;	2i

��
��
��
��
��
�

Q:

The Q-algebra E] is the reflex algebra of E. The reflex homomorphism �˙ W
E] ! C associated to the CM type ˙ D f�1; �2g is defined as the restriction
to E] of the Q-algebra homomorphismM ! C defined by

a ˝ b 7! �1.a/ � �2.b/:

The reflex field of ˙ is E˙ D �˙.E
]/, and O˙ denotes the ring of integers of E˙ .

For a prime q of O˙ let Fq be the residue field of q.
Let x 7! x
 denote the restriction to E] of the automorphism a˝ b 7! a˝ b of

M , so that F ] is the subalgebra of E] fixed by x 7! x
.

Lemma 2.1.1 1. In case (cyclic) E] is isomorphic to E, and x 7! x
 is complex
conjugation.

2. In case (biquad)E] is isomorphic to E1 � E2, and x 7! x
 is the product of the
complex conjugations.

3. In case (nongal) E] is a quartic CM field which is not Galois over Q and is not
isomorphic to E. The automorphism x 7! x
 is complex conjugation.
In particular in case (biquad) F ] Š Q � Q, and in cases (cyclic) and (nongal)

F ] is a real quadratic field.

Proof. This as an easy exercise in Galois theory, and is left to the reader. ut
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A Hermitian form on an E]-module V is a pairing h ; i W V � V ! E] that is
E]-linear in the first variable and satisfies hv;wi D hw; vi
.

2.2 Polarized RM Modules

Definition 2.2.1 An RM module is a pair .T; �T / in which T is a Z-module, and
�T W OF ! EndZ.T / is a ring homomorphism making T into a projective OF -
module of rank 2.

The polarization module P.T; �T / is the OF -module of alternating Z-bilinear
forms �T W T � T ! Z satisfying

�T .�T .x/t1; t2/ D �T .t1; �T .x/t2/

for every x 2 OF . A c-polarization of .T; �T / is a �T 2 P.T; �T / satisfying

cT D ft1 2 T ˝Z Q W �T .t1; t2/ 2 Z for all t2 2 T g:

The OF -moduleP.T; �T / is projective of rank one. Given a c-polarized RM module
T D .T; �T ; �T /, let j 7! j � be the involution of EndZ.T /˝Z Q determined by

�T .jt1; t2/ D �T .t1; j
�t2/:

A special endomorphism of T is a j 2 EndZ.T / satisfying

�T .x/ ı j D j ı �T .x� /

for all x 2 OF , and satisfying j � D j . The Z-module of all special endomorphisms
of T is denoted L.T/, and we set

V.T/ D L.T/˝Z Q:

For a prime `, abbreviate L`.T/ D L.T/˝Z Z` and V`.T/ D V.T/˝Q Q`:

Let J 7! J 
 be the main involution on M2.F /, characterized by JJ 
 D det.J /,
and define a Q-vector space

WM2.Q/ D fJ 2 M2.F / W J � D J 
g

D
��

a ıb

ıc a�

�

2 M2.F / W a 2 F and b; c 2 Q

�

:

Here ı 2 F is any nonzero element satisfying ı� D �ı. The determinant det is a
quadratic form onWM2.Q/.
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Proposition 2.2.2 1. Up to isomorphism there is a unique c-polarized RM mod-
ule, T.

2. The functionQT.j / D j ı j defines a quadratic form on L.T/.
3. There is an isomorphism of Q-quadratic spaces

�

V.T/;QT
� Š �

WM2.Q/; det
�

:

4. The Q-quadratic space
�

V.T/;QT
�

has rank 4, signature .2; 2/, determinant dF ,
and Hasse invariant (normalized as in [35])

hasse.V .T/;QT/ D
��dF ;�1

Q

�

2 Br2.Q/:

Here Br2.Q/ is the 2-torsion subgroup of the Brauer group of Q.

Proof. Let T be a c-polarized RM module. The polarization �T has the form �T D
TrF=Qı�T for a unique OF -symplectic form�T W T �T ! D�1

F . As T is projective
of rank two as an OF -module we may fix an OF -linear isomorphism T Š OF ˚ a
for some fractional OF -ideal a whose image in Pic.OF / is traditionally called the
Steinitz class of T . Writing elements of OF ˚ a � F ˚ F as column vectors, the
fractional ideal a and the isomorphism may be chosen in such a way that

�T .a; b/ D t a � � �1
1

� � b:

The condition that �T is a c-polarization is then equivalent to a � c D D�1
F . This

proves the uniqueness of T.
Using the above isomorphism T Š OF ˚ a to view elements of T as column

vectors, any j 2 V.T/ can be written uniquely in the form t 7! J � t� for some
J 2 M2.F /. The condition j D j � translates to the condition J � D J 
, and the
rule j 7! J establishes a bijection V.T/ Š WM2.Q/ identifyingQT with det. All of
the remaining claims are now elementary calculations. ut

Let�T be the F -symplectic form on TQ D T ˝ZQ determined by �T D TrF=Qı
�T , and define algebraic groups over Q

G D ResF=QSp.TQ; �T /

H D SO.V .T/;QT/:

The group G acts on V.T/ through orthogonal transformations by the rule g � j D
g ı j ı g�1, and this defines a homomorphism G ! H . In this way one sees that
the construction of V.T/ from T gives a concrete way of realizing the exceptional
isomorphism of real Lie algebras sp.2/ � sp.2/ ! so.2; 2/: For any choice of
j 2 V.T/ with QT.j / > 0 the inclusion Hj ! H of the isotropy subgroup of j
inH gives a concrete way of realizing the inclusion of real Lie algebras so.1; 2/ !
so.2; 2/: The above exceptional isomorphism will allow us to identify a Hilbert
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modular surface with an orthogonal Shimura variety. The inclusions so.1; 2/ !
so.2; 2/ for varying j will then have a moduli-theoretic incarnation in the form of
a family of special cycles of codimension one, the Hirzebruch–Zagier divisors, on
this Shimura variety.

2.3 Polarized CM Modules

Definition 2.3.1 A CM module is a pair .T; �T / in which T is a Z-module and
�T W OE ! EndZ.T / is a ring homomorphism making T into a projective OE -
module of rank 1.

A c-polarization of .T; �T / is a c-polarization �T of the underlying RM module.
Let T D .T; �T ; �T / be a c-polarized CM module. Elementary linear algebra shows
that the c-polarization �T satisfies

�T .�T .x/t1; t2/ D �T .t1; �T .x/t2/

for all x 2 OE . If ˙ D f�1; �2g is a CM type of E then the homomorphism
of Q-vector spaces E ! C � C defined by x 7! .�1.x/; �2.x// extends to an
isomorphism of real vector spaces ER Š C � C: We therefore acquire an action
�T;˙ of C � C on TR, and in particular the diagonal embedding C ! C � C Š ER

makes TR into a C-vector space. There is a unique choice of CM type ˙ for which
the Hermitian form on TR

HT .x; y/ D �T .i � x; y/C i�T .x; y/ (2.2)

(the scalar multiplication i �x of C on TR depends on˙ , as just explained) is positive
definite.

Definition 2.3.2 Given a c-polarized CM module T the CM type of T is the unique
CM type ˙ D ˙.T/ for which the Hermitian form (2.2) has positive definite real
part.

Remark 2.3.3 Let T be a c-polarized CM module. If we fix an isomorphism of E-
modules E Š TQ, then there is a unique !T 2 E� such that !T D �!T and

�T .x; y/ D TrE=Q.!Txy/:

If one makes a different choice of isomorphism E Š TQ then !T is multiplied by an
element of NmE=F .E

�/. The CM type of T is characterized as the unique CM type
for which the induced C-module structure on ER makes i �!T 2 FR totally positive.

Now fix a c-polarized CM module T and recall the Q-quadratic space
�

V.T/;QT
�

of Sect. 2.2 associated to the underlying RM module. We will use the action of OE



16 2 Linear Algebra

on T to make V.T/ into a Hermitian E]-module. First define an action of the Q-
algebraM of Sect. 2.1 on

QV .T/ D fj 2 EndZ.T /˝Z Q W �T .x/ ı j D j ı �T .x� / for all x 2 OF g

by
.a ˝ b/ � j D �T .a/ ı j ı �T .b/:

The subspace V.T/ � QV .T/ of 
-fixed endomorphisms is stable under the action
of the subalgebra E] � M , although it is generally false that the Z-lattice L.T/ �
V.T/ is stable under the action of OE] . If l is a place of F ] abbreviate Vl.T/ D
V.T/˝F ] F

]

l :

Lemma 2.3.4 The Q-bilinear form on V.T/ defined by

Œj1; j2�T D QT.j1 C j2/ �QT.j1/ �QT.j2/

satisfies Œx � j1; j2�T D Œj1; x

 � j2�T for every x 2 E].

Proof. We may assume that x D a ˝ b C b ˝ a for some a; b 2 E, as elements of
this form generate E] as a Q-module. In the interest of simplifying the notation we
suppress �T , and simply viewE as embedded in EndZ.T /˝ZQ. The essential point
is that F D ff 2 EndOF .T /˝ZQ W f � D f g. In particular, as j1ıbıj2Cj2ıbıj1
is both 
-fixed and F -linear, it belongs to F , and so commutes with a. Thus

a ı j1 ı b ı j2 � j1 ı b ı j2 ı a D j2 ı b ı j1 ı a � a ı j2 ı b ı j1
and similar reasoning shows that

j2 ı a ı j1 ı b � b ı j2 ı a ı j1 D b ı j1 ı a ı j2 � j1 ı a ı j2 ı b:

Using these relations, direct calculation shows

Œx � j1; j2�T � Œj1; x

 � j2�T D 0:

ut
It follows from Lemma 2.3.4 that there is a unique E]-Hermitian form hj1; j2iT

on V.T/ satisfying
Œj1; j2�T D TrE]=Qhj1; j2iT;

and that Q]
T.j / D hj; j iT is the unique F ]-quadratic form on V.T/ satisfying

QT D TrF ]=Q ıQ]
T:

For any CM type ˙ of E the restriction of �˙ to F ] is an archimedean place of
F ] denoted 1�̇ . Let 1C

˙ be the other archimedean place of F ].
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Proposition 2.3.5 Suppose T has CM type˙ . The F ]-quadratic space .V .T/;Q]
T/

has signature .2; 0/ at 1C
˙ , and has signature .0; 2/ at 1�̇ .

Proof. Abbreviate 1˙ D 1˙̇. Let˙ D f�1; �2g be the CM type of T, and identify
ER Š C�C using the isomorphism z 7! .�1.z/; �2.z//. This makes TR into a C�C-
module, and the idempotents e1; e2 2 FR induce a decomposition TR Š T1 ˚ T2
in which each Tk is a one-dimensional C-vector space on which E acts through
�k W E ! C. Each Tk comes with an R-symplectic form �k (the restriction of �T to
Tk) for which x 7! �k.ix; x/ is positive definite. For any f 2 HomR.T1; T2/ define
f _ 2 HomR.T2; T1/ by the relation �1.t1; f _.t2// D �2.f .t1/; t2/ for all tk 2 Tk .
Using the relation e�1 D e2, we see that j 7! .j jT1 ; j jT2 / defines an injection

V.T/R ! HomR.T1; T2/ � HomR.T2; T1/;

whose image is the space of pairs .f; f _/. The quadratic form on QT is identified
with f _ ı f . In particular restriction to T1 defines an isomorphism

V.T/R Š HomR.T1; T2/ D HomC.T1; T2/˚ HomC.T1; T2/;

where the two spaces in the direct sum are the spaces of C-linear and C-conjugate-
linear maps. Tracing through these isomorphisms, one sees that the action of E] is
through the reflex homomorphism �f�1;�2g W E] ! C on the first summand and
through the reflex homomorphism �f�1;�2g W E] ! C on the second summand.
The first of these reflex homomorphisms restricts to the place 1C of F ], while the
second restricts to the place 1�. In other words

V.T/˝F ];1C R Š HomC.T1; T2/ (2.3)

V.T/˝F ];1� R Š HomC.T1; T2/: (2.4)

Fix isomorphisms of C-vector spaces T1 Š C Š T2 in such a way that
the R-symplectic forms �1 and �2 are each identified with the form �k.x; y/ D
�TrC=R.ixy/ (this is possible because �k.ix; x/ is positive definite). Every

f 2 HomC.T1; T2/ Š HomC.C;C/

then has the form f .t1/ D z�t1 for some z 2 C, and f _.t1/ D z�t2. Thus f _ıf D zz
proving that (2.3) is a positive definite R-quadratic space of rank 2. Similarly every

f 2 HomC.T1; T2/ Š HomC.C;C/

then has the form f .t1/ D z � t1 for some z 2 C, and f _.t1/ D �z � t2. Thus
f _ ı f D �zz proving that (2.4) is negative definite of rank 2. This completes the
proof. ut
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Propositions 2.2.2 and 2.3.5 imply that V.T/ is free of rank one overE], and that
the E]-Hermitian form h�; �iT on V.T/ is nondegenerate. It follows that there is an
E]-linear isomorphism of F ]-quadratic spaces

�

V.T/;Q]
T

� Š �

E]; ˇ.T/xx

�

; (2.5)

for some ˇ.T/ 2 .F ]/�.
The importance of the F ]-quadratic space structure on the space V.T/ may be

understood by considering the algebraic group over Q

H] D ResF ]=QSO.V .T/;Q]
T/:

This group is naturally a subgroup of

H D SO.V .T/;QT/;

and the inclusion H] ! H gives a concrete way of realizing the inclusion of
real Lie algebras so.2/ � so.2/ ! so.2; 2/: In the discussion of moduli problems
in Chap. 3, this inclusion will have a moduli-theoretic incarnation in the form of
a codimension two cycle on a Hilbert modular surface: the cycle of points with
complex multiplication by OE .

2.4 Algebraic Groups and Class Groups

In this subsection we construct generalized class groups

C0.E/ � CC.E/ � C.E/

that act on the set of all c-polarized CM modules, and algebraic groups SE and TE
that act on the space of special endomorphisms of a c-polarized CM module. Let SE
be the algebraic group over Q whose functor of points is

SE.A/ D fx 2 .E] ˝Q A/
� W xx
 D 1g

for any Q-algebra A. Let TE be the algebraic group over Q with functor of points

TE.A/ D fx 2 .E ˝Q A/
� W xx 2 A�g:

Let Gm be the multiplicative over Q, and view Gm as a subgroup of TE using the
inclusionA� ! .E˝QA/

�. There is a natural group homomorphismE� ! .E]/�
defined by x 7! x ˝ x. This homomorphism may be modified, as in the following
lemma, to yield a homomorphism of algebraic groups TE ! SE .
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Lemma 2.4.1 Define a homomorphism �E W TE ! SE by

�E.x/ D x ˝ x

xx
:

If k is a field of characteristic 0, or k D A , or k D Af , then the sequence

1 ! Gm.k/ ! TE.k/
�E�! SE.k/ ! 1

is exact.

Proof. See the proof of [22, Proposition 2.13] ut
For every prime ` < 1 define a compact open subgroup UE D Q

` UE;` of
TE.Af / by

UE D TE.Af / \ bO�
E:

The map �E W TE ! SE of Lemma 2.4.1 induces an isomorphism

TE.Q/nTE.Af /=UE Š SE.Q/nSE.Af /=�E.UE/:

Let I.E/ be the set of all pairs Z D .Z; �/ in which Z is a fractional ideal of OE

and � 2 F � satisfies ZZ D �OE: Then I.E/ is a group under componentwise
multiplication, and P.E/ D f.zOE; zz/ W z 2 E�g is a subgroup. Define a
generalized class group

C.E/ D I.E/=P.E/

and let CC.E/ � C.E/ be the subgroup consisting of those .Z; �/ for which �
is totally positive. The function .Z; �/ 7! Z defines a homomorphism C.E/ !
Pic.OE/ with finite kernel, and so C.E/ is finite. Given a t 2 TE.Af / let � be
the unique positive rational number that satisfies �bZ D .t t /bZ, and let Z be the
fractional OE -ideal defined by ZbOE D tbOE . Then t 7! .Z; �/ determines an
injective homomorphism

TE.Q/nTE.Af /=UE ! CC.E/ (2.6)

whose image is denoted C0.E/ � CC.E/:
Let T D .T; �T ; �T / be a c-polarized CM module. Given a pair Z D .Z; �/ 2

I.E/ define a new c-polarized CM module

.T; �T ; �T /˝ Z D .S; �S ; �S/

as follows. The underlying Z-module is S D T ˝OE Z, the action �S W OE !
End.S/ is �S.x/.t ˝ z/ D t ˝ .xz/, and �S is defined by

�S
�

t1 ˝ z1; t2 ˝ z2
� D �T .�T .�

�1z1z2/t1; t2/:
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The right hand side makes sense as ��1z1z2 2 OE . The construction T 7! T ˝ Z
defines an action of C.E/ on the set of isomorphism classes of c-polarized CM
modules. Using the notation of Remark 2.3.3, a simple calculation shows that
!T˝Z D ��1 � !T from which it follows that

˙.T ˝ Z/ D ˙.T/ ” Z 2 CC.E/: (2.7)

Proposition 2.4.2 1. The set X of isomorphism classes of c-polarized CM modules
is a simply transitive C.E/-set.

2. The set X˙ of isomorphism classes of c-polarized CM modules with a fixed CM
type ˙ is either empty or is a simply transitive CC.E/-set. If there is a finite
prime of F ramified in E then X˙ is nonempty.

Proof. First we show that the set of c-polarized CM modules is nonempty. Let A be
any fractional OE -ideal, and fix an ! 2 E� such that ! D �!. Define a Z-bilinear
alternating form

�.x; y/ D TrE=Q.!xy/

on A. If � W OE ! EndZ.A/ is the natural action, the triple .A; �; �/ is a b-polarized
CM module, where b�1 D !AADE: Here DE is the different of E=Q. The Hilbert
class field of F is linearly disjoint from E (as E is ramified at the archimedean
places), and so class field theory implies that the norm map from the ideal class
group of E to the ideal class group of F is surjective. Therefore we may factor
cb�1 D yYY for some y 2 F � and some fractional OE -ideal Y. If ! is replaced
by y! and A is replaced by YA, then T D .A; �; �/ is a c-polarized CM module. In
the notation of Remark 2.3.3, ! D !T.

The proof that the action of C.E/ on X is simply transitive is a routine exercise,
which we leave to the reader. This, together with (2.7), implies that X˙ is either
empty or a simply transitively CC.E/-set.

Now use ˙ to view ER as a C-vector space, as in Sect. 2.3. We may repeat the
argument of the first paragraph, but choose the initial the traceless ! 2 E� so that
i! 2 FR is totally positive. If there is at least one finite prime of F that is ramified
in E then the narrow Hilbert class field of F is linearly disjoint from E, and class
field theory implies that the norm map from the ideal class group of E to the narrow
ideal class group of F is surjective. This allows us to choose y to be totally positive,
and Remark 2.3.3 then shows that the T constructed above has CM type ˙ . ut

The remainder of this subsection is devoted to the proof of the following
proposition, which will be a crucial ingredient in the proof of Theorem 5.3.4. For a
c-polarized CM module T set

bL.T/ D L.T/˝Z
bZ bV .T/ D V.T/˝Q

bQ:

Proposition 2.4.3 Assume either (cyclic) or (nongal). There is a

Z D .Z; �/ 2 C.E/
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such that NmF=Q.�/ < 0, and such that for any c-polarized CM module T there is

an isomorphism of bF ]-quadratic spaces

�

bV .T/;Q]
T

� Š �

bV .T ˝ Z/;Q]
T˝Z

�

identifying bL.T/ with bL.T ˝ Z/. For any such Z the reflex homomorphisms

�˙.T˝Z/; �˙.T/ W E] ! C

have distinct restrictions to F ] (equivalently, the CM types˙.T˝Z/ and˙.T/ are
neither equal nor complex conjugates).

Before the proof, we need some technical preparation. Letting 1 denote the
archimedean place of Q, define finite groups of exponent 2

Gen1.E=F / D F �1=NmE=F .E
�1/

Genf .E=F / D bO�
F =NmE=F .bO

�
E/;

and the genus group

Gen.E=F / D Gen1.E=F / � Genf .E=F /:

The projections to the two factors are denoted z 7! z1 and z 7! zf . Given Z D
.Z; �/ 2 I.E/ we may choose an idele z 2 A�

E such that zbOE D ZbOE . Then
gen.Z/ D ��1zz defines the genus invariant

gen W C.E/ ! Gen.E=F /:

The subgroup CC.E/ � C.E/ is precisely the kernel of Z 7! gen.Z/1. If � W
A�
F ! f˙1g denotes the idele class character corresponding to the extension E=F ,

a brief exercise in class field theory shows that the sequence

C.E/
gen��! Gen.E=F /

��! f˙1g ! 1 (2.8)

is exact, where the arrow labeled � is the composition

Gen.E=F / ! A�
F =NmE=F .A

�
E/

��! f˙1g:

Lemma 2.4.4 Assuming either (cyclic) or (nongal), there is a Z 2 C.E/ and a
u 2 bZ� such that NmF=Q.z1/ < 0 and

u2 � NmF=Q.zf / 2 NmE=Q.bO
�
E/;

where z D gen.Z/.
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Proof. If we choose a totally negative � 2 F � such that E D F.
p
�/ then our

hypothesis that E=Q is not a biquadratic extension implies NmF=Q.�/ 62 .Q�/2:
Let p be any prime such that ordp.NmF=Q.�// is odd. Then p is either split or
ramified in F , and in either case there is a place v0 of F above p for which ordv0 .�/

is odd. The place v0 is necessarily ramified in E, and if w0 denotes the place of E
above v0 then we may choose a zv0 2 O�

F;v0
that is not a norm from O�

E;w0
.

If p is split in F then let v1 6D v0 be the other place above p. Then ordv1.�/ is
even, and class field theory (or a Hilbert symbol calculation) gives the first equality
in

Z�
p D NmEv0 =Qp

.O�
E;v0 / � NmEv1 =Qp

.O�
E;v1 / D NmEp=Qp .O

�
E;p/:

Thus
NmFv0 =Qp

.zv0 / 2 NmEp=Qp .O
�
E;p/:

If v is a finite place of F with v 6D v0 then set zv D 1 2 O�
F;v. Now define

zf D
Y

v

zv 2 Genf .E=F /

and set
z1 D .1;�1/ 2 f˙1g � f˙1g Š Gen1.E=F /:

and z D .z1; zf / 2 Gen.E=F /. By construction �.z/ D 1, and so by the exactness
of 2.8 there is a Z 2 C.E/ such that gen.Z/ D z. This choice of Z has the desired
properties.

Now assume that p is totally ramified in E. If Ew0=Qp is a biquadratic field
extension then NmF=Q.�/ 2 .Q�

p /
2, contradicting the choice of p. Thus either

Ew0=Qp is not Galois, or Ew0=Qp is Galois with cyclic Galois group. Assume first
that Ew0=Qp is Galois with cyclic Galois group. The Artin symbol Œzv0 IEw0=Fv0 �

is the nontrivial element of Gal.Ew0=Fv0 /. By local class field theory the inclusion
Gal.Ew0=Fv0 / ! Gal.Ew0=Qp/ satisfies

Œzv0 IEw0=Fv0 � 7! ŒNmFv0 =Qp
.zv0 /IEw0=Qp�

and we deduce that the element

NmFv0 =Qp
.zv0 / 2 Z�

p =NmEw0 =Qp
.O�

E;w0 / Š Gal.Ew0=Qp/

has order 2, and hence is a square. Thus for some up 2 Z�
p we have

u2p � NmFv0 =Qp
.zv0 / 2 NmEp=Qp .O

�
E;p/:

We now set zv D 1 for every finite place v 6D v0 and construct z and Z exactly as in
the previous paragraph. It remains to treat the case in which Ew0=Qp is not Galois.
In this case if we set L D Fv0 .

p
��/ then L 6Š Ew0 , and so class field theory

implies
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F �
v0 D NmEw0 =Fv0

.E�
w0/ � NmL=Fv0

.L�/:

If we now factor
zv0 D NmEw0 =Fv0

.a/ � NmL=Fv0
.b/

with a 2 E�
w0 and b 2 L� then

NmFv0 =Qp
.zv0 / D NmEw0 =Qp

.a/ � NmL=Qp .b/:

By construction of L the norm maps E�
w0 ! Q�

p and L� ! Q�
p have the same

image, and so
NmFv0 =Qp

.zv0 / 2 NmEp=Qp .E
�
w0/:

But zv0 2 Z�
p , and hence

NmFv0 =Qp
.zv0 / 2 NmEp=Qp .O

�
E;p/:

The construction of z and Z now proceeds as in the previous paragraph. ut
Lemma 2.4.5 Fix a Z 2 C.E/ and a c-polarized CM module T. If we set S D
T ˝ Z, then there is an isomorphism of bF ]-quadratic spaces

�

bV .T/;Q]
T

� Š �

bV .S/;NmF=Q.zf / �Q]

S

�

identifyingbL.T/ with bL.S/. Here zf 2 bO�
F is any representative of the finite part of

z D gen.Z/.

Proof. This is a simple calculation. Fix a representative .Z; �/ 2 I.E/ of Z and let
z 2 A�

E satisfy z � bOE D ZbOE: There is an bOE-linear isomorphism  W bT ! bS

defined by  .t/ D t ˝ zf : Given a j 2 bL.T/ one checks directly that

 �j D  ı �T .z�1
f / ı j ı  �1

defines an element of bL.S/, and that j 7!  �j is the desired isomorphism. ut
Proof (of Proposition 2.4.3). Let Z be as in Lemma 2.4.4, and set S D T ˝ Z. By
Lemma 2.4.5 there is an r 2 bO�

E , and an isomorphism

.bV .T/;Q]
T/ Š .bV .S/;NmE=Q.r/ �Q]

S/

identifying the bZ-lattices bL.T/ and bL.S/. If we set s D r ˝ r 2 .bE]/� then
NmE]=F ].s/ D NmE=Q.r/, and

s �bL.S/ D �S.r/ ıbL.S/ ı �S.r/ D bL.S/:
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Using the relationQ]

S.s � x/ D NmE]=F ].s/ �Q]

S.x/ we see that x 7! s � x defines
an isomorphism

.bV .S/;NmE=Q.r/ �Q]

S/ Š .bV .S/;Q]

S/;

which preserves bL.S/.
If we represent Z 2 C.E/ by a pair .Z; �/ 2 I.E/ then NmF=Q.z1/ < 0 implies

that � 2 F � is neither totally positive nor totally negative. From Remark 2.3.3 and
the discussion preceding (2.7), it follows that the CM types of S and T are neither
equal nor complex conjugates. ut



Chapter 3
Moduli Spaces of Abelian Surfaces

Let c 	 OF be a fractional OF -ideal. In this chapter we define c-polarized RM
abelian surfaces and c-polarized CM abelian surfaces. The moduli space of all
c-polarized RM abelian surfaces is a classical Hilbert modular surface, and the
moduli space of all c-polarized CM abelian surfaces determines a codimension two
cycle on the Hilbert modular surface. Useful references for Hilbert modular surfaces
include [10], [14], [19], [46], [54], and [56].

Throughout Chap. 3, “scheme” always means locally Noetherian scheme. We
impose these hypotheses because they are imposed in [42], our primary reference
for abelian schemes.

3.1 Abelian Surfaces with Real Multiplication

Let S be a connected scheme. For any x 2 OF define a polynomial

cx.T / D .T � x/.T � x� / 2 ZŒT �:

Definition 3.1.1 An RM abelian surface over S is a pair .A; �A/ in which A is an
abelian scheme over S of relative dimension two, and �A W OF ! End.A/ is an
action satisfying the Kottwitz determinant condition, in the sense of [56]: every
point of S admits an open affine neighborhood Spec.R/ ! S over which

• Lie.A=R/ is a free R-module of rank two,
• for all x 2 OF the characteristic polynomial of �A.x/ acting on Lie.A=R/ is
cx.T / 2 RŒT �.

A c-polarization of an RM abelian surface .A; �A/ over S is an OF -linear
polarization �A W A ! A_ whose kernel is the c�1-torsion subgroup scheme of A.
The condition of OF -linearity means that � ı �A.t/ D �A.t/

_ ı � for all t 2 OF .

B. Howard and T. Yang, Intersections of Hirzebruch–Zagier Divisors and CM Cycles,
Lecture Notes in Mathematics 2041, DOI 10.1007/978-3-642-23979-3 3,
© Springer-Verlag Berlin Heidelberg 2012
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Fix a c-polarized RM abelian surface A D .A; �A; �A/ over S and let j 7! j �
be the Rosati involution on End.A/˝Z Q induced by �A. A special endomorphism
of A is a j 2 End.A/ such that

�A.x/ ı j D j ı �A.x� /

for every x 2 OF , and such that j � D j . The Z-module of all special endomor-
phisms is denoted L.A/, and we set

V.A/ D L.A/˝Z Q:

If ` is a rational prime we abbreviate L`.A/ D L.A/ ˝Z Z` and V`.A/ D
V.A/˝Q Q`. For any j 2 L.A/ define QA.j / D j ı j:
Proposition 3.1.2 If S D Spec.C/ then rankZL.A/ � 2, and QA is a positive
definite Z-valued quadratic form on L.A/.

Proof. Let �1; �2 2 FR Š R�R be the orthogonal idempotents. The polarization �A
induces an alternating C-bilinear form on the complexified homologyH1.A.C/;C/.
The natural map

L.A/˝Z C ! EndC.H1.A.C/;C//

is injective, and every j in the image satisfies

1. j ı �2 D �1 ı j and j ı �1 D �2 ı j ;
2. �A.jx; y/ D �A.x; jy/;
3. j preserves the Hodge decompositionH1.A.C/;C/ Š Lie.A_/� ˚ Lie.A/:

The Kottwitz determinant condition implies that each �iLie.A/ has complex
dimension one. If we pick a generator ei 2 �iLie.A/ and define fi 2 �iLie.A_/� by
the relation �A.ei ; fi / D 1, then the above three conditions imply that the matrix of
j with respect to the basis fe1; e2; f1; f2g has the form

0

B

B

@

0 y

x 0

0 x

y 0

1

C

C

A

:

From this it is clear that L.A/ ˝Z C has complex dimension at most 2, and that
j ı j is a scalar. It follows that rankZL.A/ � 2, and that QA.j / 2 Q. The positive
definiteness ofQA.j / D j ı j � follows from the positivity of the Rosati involution
[43, Section 21]. ut

Let H be a rational quaternion algebra. The quaternion algebraHF D H ˝Q F

over F is equipped with the automorphism v 7! v� whose restriction to H is the
identity, and whose restriction to F is � . It is also equipped with its main involution
v 7! v
, which restricts to the main involution on H and restricts to the identity
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on F . Define a rational quadratic space

WH D fv 2 HF W v
 D v�g (3.1)

with quadratic form Nm.v/ D vv
. Routine calculations show that this quadratic
space has rank 4, determinant dF , Hasse invariant

hasse.WH ;Nm/ D H ˝
��dF ;�1

Q

�

2 Br2.Q/; (3.2)

and signature

sig.WH ;Nm/ D
(

.2; 2/ if H ˝Q R Š M2.R/

.4; 0/ otherwise:

Proposition 3.1.3 Suppose S D Spec.Falg
p / for some prime p. Suppose further that

there is an elliptic curve A0 over S and an isogeny A � A0 � A0.
1. If A0 is ordinary then set K1 D End.A0/ ˝Zp Qp, and let K2 be the other

quadratic imaginary subfield of K1 ˝Q F . There is an isomorphism of Q-
quadratic spaces

�

V.A/;QA
� Š �

K2; ˇ.A/ � NmK2=Q

�

for some positive ˇ.A/ 2 Q�.
2. If A0 is supersingular then there is an isomorphism of quadratic spaces

�

V.A/;QA
� Š �

WH;Nm
�

where H is the rational quaternion algebra of discriminant p.

If A is not isogenous to the square of an elliptic curve then L.A/ D 0.

Proof. Up to isogeny there are two p-divisible groups over Falg
p of dimension one

and height two. One of them, gss, is connected and is isomorphic to EŒp1� for any
supersingular elliptic curve E. The other, gord D Qp=Zp � �p1 , is isomorphic to
EŒp1� for any ordinary elliptic curve. The only possibilities for the isogeny type of
the p-divisible group AŒp1� are

1. gss � gord,
2. gord � gord,
3. gss � gss.

First suppose thatAŒp1�� gss � gord. The endomorphism algebraHp D End.gss/˝Zp

Qp is a quaternion division algebra, and the existence of the action
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�A W Fp ! End.AŒp1�/˝Zp Qp Š Hp � Qp � Qp

then implies that Fp Š Qp � Qp . The orthogonal idempotents �1; �2 2 Fp are
interchanged by the Galois automorphism � , and hence for any j 2 V.A/

j ı �1 D �2 ı j
j ı �2 D �1 ı j:

It follows that the image of j in End.AŒp1�/˝ZpQp is determined by its restrictions

j1 2 Hom.gss; gord/˝Zp Qp

j2 2 Hom.gord; gss/˝Zp Qp:

But both of the above Hom spaces are trivial, and hence V.A/ D 0.
Next suppose that A is ordinary, so that AŒp1� � gord � gord. By [7, Lemma 3],

the endomorphism ring of a simple ordinary abelian variety over Falg
p is commu-

tative, and so if A is simple then L.A/ D 0. If A � A1 � A2 with A1 and A2
non-isogenous ordinary elliptic curves, then again End.A/ is commutative and so
L.A/ D 0. Assume now that A � A20 with A0 an ordinary elliptic curve, so that
End.A/ ˝Z Q Š M2.K1/ with K1 D End.A0/ ˝Z Q a quadratic imaginary field.
Use the embedding �A W F ! M2.K1/ to view F as a subalgebra of M2.K1/,
and let L be the Q-subalgebra of M2.K1/ generated by K1 and F . The algebra L
is a biquadratic field, and is equal to the commutant of F in M2.K1/. We let K2

be the quadratic imaginary subfield of L that is not isomorphic to K1. The Rosati
involution onM2.K1/ induced by �A must preserve the centerK1, and as the Rosati
involution is positive it must restrict to complex conjugation on K1. As F is fixed
by the Rosati involution, the restriction of the Rosati involution to L agrees with
complex conjugation, and in particular is complex conjugation on K2. Define

QV D fj 2 M2.K1/ W 8x 2 F; x ı j D j ı x�g:

It follows from the Noether–Skolem theorem that M2.K1/ Š L ˚ QV with each
summand stable under 
. In particular dimQ

QV D 4. The ˙1 eigenspaces for the
operator 
 on QV are interchanged by the action of any trace zero element ofK1, and
so each eigenspace must be a two-dimensional Q-vector space. It follows that the
subspace

V D fj 2 QV W j � D j g
has Q-dimension two, and it is easy to see that V is stable under the action of K2.
Hence V is aK2-vector space of dimension one. Fixing any nonzero j 2 V we now
find that � 7! � � j defines an isomorphism

�

K2; ˇ � NmK2=Q

� Š �

V.A/;QA
�
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where ˇ D jj �. As ˇ commutes with F , it must lie inL. As ˇ is fixed by the Rosati
involution it must further lie in F . But ˇ D jj shows that ˇ commutes with j , and
the only elements of F that commute with j are the rational numbers. Therefore
ˇ 2 Q. Of course ˇ > 0, by the positivity of the Rosati involution.

Finally suppose thatAŒp1� � gss �gss. By [44, Theorem 4.2] there is an isogeny
f W A � A20 with A0 a supersingular elliptic curve. Fix any Z-algebra embedding

 W OF ! M2.Z/ and write A0 ˝ OF for the abelian surface A20 with the action

�A0˝OF W OF ! End.A0 ˝ OF /

determined by 
 (compare with [8, Theorem 7.5]). If �A0 W A0 ! A_
0 is the unique

principal polarization of A0 then, as in [21, Section 3.1], there is an induced D�1
F -

polarization �A0˝OF of A0 ˝ OF defined by

A0 ˝ OF

�A0˝id����! A_
0 ˝ D�1

F Š .A0 ˝ OF /
_:

Thus we obtain a D�1
F -polarized RM abelian surface

B D .A0 ˝ OF ; �A0˝OF ; �A0˝OF /

over F
alg
p . Set H D End.A0/ ˝Z Q so that H is a quaternion algebra ramified

precisely at p and 1, and

End.A0 ˝ OF /˝Z Q Š M2.H/:

Let HF be the commutant of F in M2.H/, so that HF Š H ˝Q F . The
subalgebraHF �M2.H/ is stable under the Rosati involution induced by �A0˝OF ,
and the restriction of the Rosati involution is equal to the main involution on the
F -quaternion algebra HF (as the main involution is the only positive involution of
HF that is the identity on F ). The Noether–Skolem theorem implies that any two
Q-algebra maps F ! M2.H/ are conjugate, and from this one deduces that the
isogeny f W A ! A0 ˝ OF may be chosen to be OF -linear. By [56, Proposition
1.3] the polarization f _ ı �A0˝OF ı f of A has the form

f _ ı �A0˝OF ı f D �A ı �A.x/

for some totally positive x 2 F �. As the reduced normH�
F ! F � surjects onto the

totally positive elements, we may choose 	 2 HF such that 	�	 D x�1. Replacing
f by a suitable integer multiple of 	 ı f allows us to assume that f _ ı�A0˝OF ı f
is a positive integer multiple of �A. This implies that the isomorphism

End.A/˝Z Q Š End.A0 ˝ OF /˝Z Q
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induced by f identifies the Rosati involution induced by �A with the Rosati
involution induced by �A0˝OF , and so restricts to an isomorphism of Q-quadratic
spaces

�

V.A/;QA
� Š �

V.B/;QB
�

:

The D�1
F -polarized RM abelian surface B admits a natural special endomorphism

j0 W A0 ˝ OF ! A0 ˝ OF

defined by j0.a˝ x/ D a˝ .x� /, which obviously satisfies j0 ı j0 D 1. Given any
other j 2 V.B/ the endomorphismJ D j ıj0 is OF -linear, so lies inHF � M2.H/.
The condition j � D j is equivalent to J 
 D J � , and j 7! J defines the desired
isomorphism

�

V.B/;QB
� Š �

WH;Nm
�

:

This completes the proof of Proposition 3.1.3. ut
Over an arbitrary connected scheme S we obtain the following result.

Corollary 3.1.4 The Z-module L.A/ is free of rank at most 4. For every j 2 L.A/
the endomorphismQA.j / D j ı j lies in Z, andQA is a positive definite quadratic
form on L.A/.

Proof. After [42, Corollary 6.2] it suffices to prove this when S D Spec.k/ is the
spectrum of a field. As A and A_ are of finite type over k, and Hom.A;A_/ and
End.A/ are finitely generated Z-modules, we may further reduce to the case of k
finitely generated over its prime subfield k0. Using the theory of Néron models one
may extend A to a c-polarized RM abelian surface over a local Dedekind domain
with fraction field k and residue field k0 of transcendence degree (over k0) one
less than that of k. By reducing A from k to k0, applying [42, Corollary 6.2], and
repeating, we eventually are reduced to the case in which k is an algebraic extension
of k0. The claim then follows from Propositions 3.1.2 and 3.1.3. ut

3.2 Abelian Surfaces with Complex Multiplication

Let S be a connected scheme.

Definition 3.2.1 A CM abelian surface over S is a pair .A; �A/ in which A is an
abelian scheme over S of relative dimension two, and �A W OE ! End.A/ is
an action such that the restriction of �A to OF satisfies the Kottwitz determinant
condition. In other words, a CM abelian surface is an RM abelian surface together
with an extension of the OF -action to OE . A c-polarization of .A; �A/ is a c-
polarization �A of the underlying RM abelian surface.

Fix a CM type ˙ D f�1; �2g of E, and let �˙ W E] ! C be the associated
reflex map of Sect. 2.1. Recall that O˙ is the ring of integers of E˙ D �˙.E

]/. If
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S is an O˙ -scheme and A is an OF -polarized CM abelian surface over S , we say
that A satisfies the ˙-Kottwitz condition if every point of S admits an open affine
neighborhood Spec.R/ ! S over which Lie.A=R/ is a free rank twoR-module, and
every x 2 OE acts on Lie.A=R/ with characteristic polynomial equal to the image of

c˙;x.T / D .T � �1.x//.T � �2.x// 2 O˙ ŒT �

in RŒT �.

Remark 3.2.2 Later (for example in the proof of Proposition 3.3.5) we will make
use of results proved in [20], where a slightly different condition is imposed on
Lie.A=R/. There, instead of the ˙-Kottwitz condition, it is assumed that for any
tuple x1; : : : ; xr 2 OE the determinant of T1x1 C � � � C Trxr acting on Lie.A=R/ is
equal to the image of

Y

�2˙
.T1�.x1/C � � � C Tr�.xr// 2 O˙ŒT1; : : : ; Tr �

in RŒT1; : : : ; Tr �. This condition is much closer in spirit to the definition given by
Kottwitz in [23], and obviously implies the ˙-Kottwitz condition as defined above.

In fact the two conditions are equivalent. Indeed, if the ˙-Kottwitz condition is
satisfied then the determinant of any x 2 OE acting on Lie.A=R/ is equal to the
image of �1.x/�2.x/ under O˙ �! R. For 2 � 2 matrices A and B one has the
polynomial identity

det.SAC TB/ D S2 det.A/C ST
�

det.AC B/� det.A/� det.B/
�C T 2 det.B/;

from which one easily deduces

det.T1x1 C T2x2/ D �

T1�1.x1/C T2�1.x2/
��

T1�2.x1/C T2�2.x2/
�

The desired equality for r > 2 is then proved using the above polynomial identity
and an elementary induction argument.

Fix a c-polarized CM abelian surface A D .A; �A; �A/ over S satisfying the
˙-Kottwitz condition.

Lemma 3.2.3 The Rosati involution induced by �A satisfies �A.x/� D �A.x/ for
every x 2 OE .

Proof. As in the proof of Corollary 3.1.4, it suffices to treat the case where S is
the spectrum of an algebraically closed field. Given any nonzero x 2 OE , [56,
Proposition 1.3] implies that the pullback of �A by the endomorphism �A.x/ is an
F -multiple of �A. More precisely, there is a y 2 F such that

�A.x/
_ ı �A ı �A.x/ D �A ı �A.y/:



32 3 Moduli Spaces of Abelian Surfaces

Of course this is equivalent to �A.x/� ı �A.x/ D �A.y/, which implies that �A.x/�
lies in the image of �A W E ! End.A/ ˝Z Q. The Rosati involution therefore
stabilizes the image of �A, and its restriction to E is a positive involution that
fixes F . The only such involution is complex conjugation. ut
Lemma 3.2.4 1. The map �A W OE ! HomOE .A/ is an isomorphism.
2. The automorphism group of A is isomorphic to �.E/, the group of roots of unity

in E.

Proof. For the first claim, as in the proof of Corollary 3.1.4, it suffices to treat the
case where S D Spec.k/ with k either C or Falg

p . The case of k D C is clear from
the complex uniformization of A.C/. If k D F

alg
p then fix a prime ` 6D char.k/. The

method of proof of [46, Lemma 1.3] shows that the `-adic Tate module Ta`.A/ is
free of rank one over OE;`. From this it follows first that OE;` ! EndOE;`

.Ta`.A//
is an isomorphism, and then (using the results of [43, Section 19]) that OE;` !
EndOE .A/˝Z Z` is an isomorphism. In particular EndOE .A/ is a rank 4 Z-algebra,
and first claim follows easily. In particular any automorphism of A is of the form
f D �A.x/ for some x 2 O�

E . The condition that f preserve the polarization �A
means that f _ ı�A ıf D �A, or, equivalently, that f � ıf D 1. After Lemma 3.2.3
this is equivalent to xx D 1, and so the obvious injective homomorphism

�.E/ D fx 2 O�
E W xx D 1g x 7!�A.x/�����! Aut.A/

is in fact an isomorphism. ut
As in Sect. 2.3 we will use the action �A W OE ! End.A/ to endow V.A/ with

an action of the reflex algebra E]. First define a Q-vector space

QV .A/ D fj 2 End.A/˝Z Q W �A.x/ ı j D j ı �A.x�/ for all x 2 OF g

and let the Q-algebraM of Sect. 2.1 act on QV .A/ by

.a ˝ b/ � j D �A.a/ ı j ı �A.b/:

The action of E] leaves invariant the subspace V.A/ D fj 2 QV .A/ W j � D j g; and
defines the desired E]-module structure on V.A/. If l is a place of F ], abbreviate
Vl.A/ D V.A/˝F ] F

]

l .
For any OF -linear f 2 End.A/ satisfying f � D f , the map �A ı f W A ! A_

is also OF -linear and satisfies .�A ı f /_ D �A ı f . By [56, Proposition 1.3] there
is an x 2 F such that �A ı f D �A ı �A.x/. It follows that

F D ff 2 EndOF .A/˝Z Q W f � D f g:

With this fact in hand, imitating the proof of Lemma 2.3.4 shows that the Q-bilinear
form on V.A/ defined by
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Œj1; j2�A D QA.j1 C j2/ �QA.j1/ �QA.j2/

satisfies Œx �j1; j2�A D Œj1; x

 �j2�A for all x 2 E]. From this it follows that there is

a unique totally positive definite Hermitian form hj1; j2iA on the E]-module V.A/
satisfying

Œj1; j2�A D TrE]=Qhj1; j2iA;

and that Q]

A.j / D hj; j iA is the unique F ]-quadratic form on V.A/ satisfying

QA.j / D TrF ]=QQ
]

A.j /: (3.3)

Proposition 3.2.5 Suppose that S D Spec.Falg
p / for some prime p, and that A is

supersingular. For some totally positive ˇ.A/ 2 .F ]/� there is an E]-linear
isomorphism of F ]-quadratic spaces

�

V.A/;Q]

A

� Š �

E]; ˇ.A/xx

�

:

Proof. The only thing to prove is that V.A/ is free of rank one over E]. In cases
(cyclic) and (nongal) this is obvious, as E] is a degree four field extension of Q,
and dimQ V.A/ D 4 by Proposition 3.1.3. In case (biquad) E] Š E1 � E2 splits
as a product of quadratic imaginary fields, and the freeness of V.A/ over E] is less
obvious. We must rule out the possibility that the action of E] factors through a
projection E] ! Ei . To do this it suffices to exhibit a prime ` such that V`.A/ D
V.A/˝Q Q` is free over E]

` .
Fix a prime ` 6D p that splits completely in E. Label the four Q-algebra maps

�1; �2; �3; �4 W E ! Q`

in such a way that �3.x/ D �1.x/ and �4.x/ D �1.x/. The proof of Lemma 3.2.4
shows that Ta0`.A/ D Ta`.A/˝Z` Q` is free of rank one over E`, and so there is a
Q`-basis fe1; e2; e3; e4g of Ta0`.A/ with the property that

�A.x/ � ei D �i .x/ � ei
for all x 2 E`. With respect to this basis the Weil pairing

e` W Ta0`.A/ � Ta0`.A/ ! Q`.1/

induced by �A is given, after fixing an isomorphism of Q`-vector spaces
Q`.1/ Š Q` and appealing to Lemma 3.2.3, by a matrix of the form

0

B

B

@

	1
	2

�	1
�	2

1

C

C

A
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for some 	1; 	2 2 Q�̀. Every special endomorphism j 2 V.A/ acts on Ta0`.A/ by a
matrix of the form

j D

0

B

B

@

	2b 	2c

	1a �	1c
�	2d 	2a

	1d 	1b

1

C

C

A

with a; b; c; d 2 Q`. By counting dimensions, the injection

V`.A/ ! EndQ`.Ta0`.A//

identifies V`.A/ with the space of all such matrices. The pair f�1; �2g induces a
Q-algebra map (the `-adic version of the reflex map of Sect. 2.1)

�12 W E] ! Q`

defined by restricting the domain of the map M ! Q` defined by

x ˝ y 7! �1.x/�2.y/:

Define �14, �23, and �34 in the same manner. The action of z 2 E] on V.A/ now
takes the explicit form

z � j D

0

B

B

@

	2b � �14.z/ 	2c � �12.z/
	1a � �23.z/ �	1c � �12.z/

�	2d � �34.z/ 	2a � �23.z/
	1d � �34.z/ 	1b � �14.z/

1

C

C

A

:

If we define

a.z/ D �23.z/

b.z/ D �14.z/

c.z/ D �12.z/

d.z/ D �34.z/

then the product a � b � c � d W E]

` ! Q4
` is an isomorphism of Q`-vector spaces,

and

z 7!

0

B

B

@

	2b.z/ 	2c.z/
	1a.z/ �	1c.z/

�	2d.z/ 	2a.z/
	1d.z/ 	1b.z/

1

C

C

A
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defines an E]

` -linear isomorphism E
]

` ! V`.A/. In particular V`.A/ is free of rank

one over E]

` . This completes the proof of Proposition 3.2.5. ut
Recall from Sect. 2.4 that the kernel of the norm map .E]/� ! .F ]/�, viewed as

an algebraic group over Q, is denoted SE . By restricting the action ofE] on V.A/ to
the subgroup SE.Q/ � .E]/� we obtain a representation of SE on the E]-module
V.A/. Composition with the homomorphism

�E W TE ! SE

of Lemma 2.4.1 yields a representation of TE on V.A/, which is given by the simple
formula

�E.t/ � j D �A.t/ ı j ı �A.t�1/:
If S D Spec.Falg

p / for some prime p, and A is supersingular, then it follows from
Proposition 3.2.5 that the action of SE on V.A/ defines an isomorphism of algebraic
groups over Q

SE Š ResF ]=Q SO.V .A/;Q]

A/:

We end this subsection by defining an action of the group CC.E/ of Sect. 2.4 on
the set of isomorphism classes of c-polarized CM abelian surfaces over S . Suppose
A D .A; �A; �A/ is a c-polarized CM abelian surface over S and Z D .Z; �/ 2
CC.E/. As in [8, Theorem 7.5], define a new CM abelian surface B D A ˝OE Z
over S and let �B W OE ! End.B/ be the action

�B.x/.a ˝ z/ D a˝ .xz/:

The pair .B; �B/ is characterized up to isomorphism by its functor of points

B.�/ D A.�/˝OE Z

from the category of S -schemes to the category of OE -modules. There is an f 2
HomOE .B;A/˝Z Q defined by

f .a ˝ z/ D �A.z/a;

and we obtain a �B 2 Hom.B;B_/˝Z Q defined by

�B D f _ ı �A ı f ı �B.��1/;

which one can show is a c-polarization of the CM abelian surface .B; �B/. Thus we
have constructed a new c-polarized CM abelian surface

.A; �A; �A/˝ Z
defD .B; �B ; �B/;
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and A 7! A ˝ Z defines an action of CC.E/ on the set of all isomorphism classes
of c-polarized CM abelian surfaces over S . If A satisfies the ˙-Kottwitz condition
then so does A ˝ Z for any Z 2 CC.E/.

Proposition 3.2.6 Suppose t 2 TE.Af /, and let Z 2 C0.E/ be the image of t under
(2.6). There is an isomorphism of F ]-quadratic spaces

�

V.A ˝ Z/;Q]

A˝Z

� ! �

V.A/;Q]

A

�

identifying bL.A ˝ Z/ Š �E.t/ � bL.A/.
Proof. As above, define f 2 HomOE .A˝OE Z; A/ ˝Z Q by f .a ˝ z/ D �A.z/a.
The isomorphism

End.A˝OE Z/˝Z Q ! End.A/˝Z Q

defined by j 7! f ı j ı f �1 identifies End.A˝OE Z/ with

f�A.z/ ı v ı �A.z/�1 W v 2 End.A/ and z 2 Zg:

The restriction of this map to V.A ˝ Z/ ! V.A/ is the desired isomorphism. ut
Remark 3.2.7 To every c-polarized CM module T we may attach a c-polarized CM
abelian surface A D .A; �A; �A/ over C as follows. As in the discussion surrounding
Definition 2.3.2, the CM type ˙.T/ determines a C-vector space structure on
TR D T ˝Z R, and so A.C/ D TR=T is a complex torus. The Hermitian form
(2.2) determines a polarization �A W A ! A_, and the action �T W OE ! EndZ.T /
induces an action �A W OE ! End.A/. It is easily seen that the construction T 7! A
establishes a CC.E/-equivariant bijection between the set of isomorphism classes
of c-polarized CM modules with CM type ˙ , and the set of isomorphism classes of
c-polarized CM abelian surfaces over C satisfying the ˙-Kottwitz condition. The
inverse of this bijection is “take first homology”.

3.3 Moduli Spaces

In this section we take c D OF and fix a CM type ˙ of E. We are now ready
to define the moduli space M of all OF -polarized RM abelian surfaces (a classical
Hilbert modular surface) and some special cycles on M. The first special cycle,
CM˙ , is the codimension two cycle of points with complex multiplication by OE

satisfying the ˙-Kottwitz condition. The second type of special cycle is the family
of Hirzebruch–Zagier divisors, denoted T.m/, composed of points that admit special
endomorphisms of norm m. The third type of special cycle, CM˙.˛/, will appear
as a closed substack of the intersection of CM˙ with T.m/. The definitions are as
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follows. Recall that a groupoid is a category in which all arrows are isomorphisms.
For algebraic stacks see [55] or [37].

Definition 3.3.1 Let M be the algebraic stack over Spec.Z/ whose functor of points
assigns to a connected scheme S the groupoid of all OF -polarized RM abelian
surfaces A over S .

It is known that M is regular of dimension 3, is flat over Z, and is smooth over
ZŒ1=dF �. See [10, 46, 56].

Definition 3.3.2 For each nonzero m 2 Z, let T.m/ be the algebraic stack over
Spec.Z/ whose functor of points assigns to every connected scheme S the groupoid
of pairs .A; j / in which

• A 2 M.S/ is an OF -polarized RM abelian surface over S ;
• j 2 L.A/ satisfies QA.j / D m.

Definition 3.3.3 Let CM˙ be the algebraic stack over Spec.O˙/ whose functor of
points assigns to every connected O˙ -scheme S the groupoid of all OF -polarized
CM abelian surfaces A over S satisfying the ˙-Kottwitz condition.

Definition 3.3.4 For every nonzero ˛ 2F ], let CM˙.˛/ be the algebraic stack
over Spec.O˙/ whose functor of points assigns to a connected O˙ -scheme S the
groupoid of pairs .A; j / in which

• A 2 CM˙.S/ is an OF -polarized CM abelian surface over S satisfying the ˙-
Kottwitz condition;

• j 2 L.A/ satisfies Q]

A.j / D ˛.

For m 2 ZC let Rm be the ring obtained by adjoining to OF a single element
j satisfying the relations j 2 D m and xj D jx� for all x 2 OF . Then Rm is an
order in an indefinite quaternion algebra over Q. Given a scheme S and an S -valued
point .A; j / 2 T.m/.S/, the subalgebra OF Œj � � End.A/ is isomorphic to Rm.
Thus one may think of T.m/ as the moduli space of OF -polarized abelian surfaces
with an extension of the action of OF to Rm. If we use the forgetful map T.m/ ! M
to view T.m/ as a cycle on M, then T.m/ is a classical Hirzebruch–Zagier divisor.
Our moduli-theoretic definition of these divisors follows the characterization given
by Kudla–Rapoport [29].

For every nonzero m 2 Z there are evident forgetful morphisms T.m/ ! M and
CM˙ ! M=O˙ . Using the definition of the moduli problems and the relation (3.3),
there is a canonical decomposition of O˙ -schemes

T.m/=O˙ �M=O˙
CM˙ Š

G

˛2F ]
Tr
F ]=Q

.˛/Dm

CM˙.˛/: (3.4)

Note thatQ]

A is totally positive definite for any OF -polarized CM abelian surface A,
and so CM˙.˛/ D ; unless ˛ is totally nonnegative.
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Proposition 3.3.5 The structure morphism f W CM˙ ! Spec.O˙/ is étale and
proper. In particular, CM˙ is regular of dimension 1.

Proof. To show that the map is étale, it suffices to show that the induced map

f � W bOsh
˙;f .z/ ! bOsh

CM˙ ;z

on completed strictly Henselian local rings is an isomorphism for any geometric
point z 2 CM˙.F

alg
q /, q a prime of O˙ . For such a z the ring bOsh

˙;f .z/ is isomorphic
to the completion of the ring of integers of the maximal unramified extension of
O˙;q. If z represents the OF -polarized CM abelian surface A over Falg

q , then bOsh
CM˙ ;z

represents the functor of deformations of A to complete local Noetherian bOsh
˙;f .z/-

algebras with residue field F
alg
q , where the deformations are again required to satisfy

the ˙-Kottwitz condition. By [20, Theorem 2.2.1], such deformations exist and are
unique, and so the above map f � is an isomorphism.

Let R be a discrete valuation ring, and let A be an OF -polarized CM abelian
surface over L D Frac.R/. We claim (as is well-known) that the underlying abelian
variety A has potentially good reduction. After replacing L by a finite extension
L0 we may assume that the Néron model A0 of A0 D A=L0 over R0 (the ring of
integers inL0) has semi-abelian reduction, as in [1, �7.4]. In other words, the identity
component of the reduction of A0 to the residue field of R0 is an extension of an
abelian variety by a torus, necessarily of dimension at most 2. But the character
group of this torus admits an action of OE , and so the torus has dimension 0. Thus,
by [1, Theorem 7.4.5], A0 is itself an abelian scheme, and it follows that A0 D A=L0

extends to a OF -polarized CM abelian surface over Spec.R0/. The properness of
CM˙ is now clear from the valuative criterion of properness for stacks [37]. ut
Proposition 3.3.6 Let k be an algebraically closed field. For any nonzero m 2 Z

and geometric point z 2 T.m/.k/, the completed strictly Henselian local ring
bOsh
T.m/;z is a complete intersection, and is the quotient of bOsh

M;z by a principal ideal.

Proof. We use Grothendieck’s deformation theory of abelian schemes, as described
in [36, Chap. 2.1.6]. This is essentially the Grothendieck–Messing theory of [18,39],
but those references frequently restrict to local rings of nonzero residue character-
istic, while we wish to allow characteristic zero. Let R be the completion of the
strictly Henselian local ring of M at z, so that

bOsh
T.m/;z Š R=I

for some ideal I . Let m be the maximal ideal of R, and abbreviate S0 D R=I and
S D R=mI . The point z represents a pair .A; j / over k. The tautological R-valued
point Auniv 2 M.R/ corresponds to the universal formal deformation of A, and S0
is the largest quotient of R for which the special endomorphism j lifts to a special
endomorphism of Auniv

=S0
. The de Rham homology
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H dR
1 .A

univ
=S / D HomS .H

1
dR.A

univ
=S /; S/

has a Hodge short exact sequence of free S -modules

0 ! Fil1H dR
1 .A

univ
=S / ! H dR

1 .A
univ
=S / ! Lie.Auniv

=S / ! 0;

and Grothendieck’s theory implies that the lift of j to L.Auniv
=S0
/ induces an

endomorphism (still called j ) of H dR
1 .A

univ
=S /. The composition

Fil1H dR
1 .A

univ
=S / ! H dR

1 .A
univ
=S /

j�! H dR
1 .A

univ
=S / ! Lie.Auniv

=S /;

which we denote by Obst.j /, becomes trivial after applying ˝SS0, precisely
because j lifts L.Auniv

=S0
/. Thus Obst.j / may be viewed as a map

Fil1H dR
1 .A

univ
=S / ! .I=mI /˝R Lie.Auniv

=S /:

The principal polarization �univ
=S of Auniv induces a perfect symplectic form on

H dR
1 .A

univ
=S /, under which the Hodge filtration Fil1H dR

1 .Auniv
=S / is maximal isotropic.

Fix an S -basis fe1; e2; f1; f2g of H dR
1 .A

univ
=S / in such a way that fe1; e2g is a basis

of the Hodge filtration, and the symplectic form �univ
=S is given by the matrix

�

I�I
�

where I is the 2 � 2 identity. The condition j D j � implies that j has the form

j D
�

A B

C tA

�

for some A;B;C 2 M2.S/ satisfying tB D � B and tC D � C , and the map
Obst.j / is given by the lower left 2 � 2 block,

C D
�

c

�c
�

with c 2 I=mI . In particular Obst.j / vanishes after applying ˝SS=cS , and so j
lifts to a special endomorphism of the reduction of Auniv

=S to S=cS . It follows that
S=cS DS0, and cS D I=mI . Nakayama’s lemma now implies that the ideal I � R

is generated by a single element, and as R is a regular local ring,R=I is a complete
intersection by [38, Theorem 21.2]. ut

It follows from Proposition 3.3.6 that T.m/ is a divisor on M for m > 0. Indeed,
it is locally defined by a single equation, and so we need only rule out the case that
T.m/ contains an entire irreducible component of M. But M is flat over Z, and so
has no vertical components. Thus if T.m/ contained an irreducible component of M,
the complex fiber T.m/=C would have dimension 2. This contradicts the results of
Sect. 5.3, where we construct a complex uniformization of T.m/.C/ and show that
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it has dimension 1. More detailed information about the structure of T.m/ can be
found in [29, 52, 53].

Proposition 3.3.7 Suppose ˛ 2 .F ]/�.

1. The category CM˙.˛/.C/ is empty.
2. For every prime q of O˙ and every point .A; j / 2 CM˙.˛/.F

alg
q / the underlying

OF -polarized CM abelian surface A is supersingular. Moreover, there is an E]-
linear isomorphism of F ]-quadratic spaces

�

V.A/;Q]

A

� Š �

E]; ˛xx
/: (3.5)

Proof. If A 2 CM˙.C/ then Proposition 3.1.2 tells us that dimQ V.A/ � 2. As
V.A/ is an E] module, the only way we can have V.A/ 6D 0 is if we are in
case (biquad), so that E] Š E1 � E2 (as in Lemma 2.1.1), and one of the two
orthogonal idempotents in E] kills V.A/. This implies that .V .A/;Q]

A/ can only
represent elements of F ] of norm 0, and in particular cannot represent ˛. Thus
CM˙.˛/.C/ D ;.

Suppose .A; j / 2 CM˙.˛/.F
alg
q /. If A is not supersingular then Proposition 3.1.3

implies that dimQ V.A/ < 4, and the argument of the preceding paragraph shows
that V.A/ cannot represent ˛. As V.A/ represents ˛ by hypothesis, we conclude
first that A is supersingular, and then, using Proposition 3.2.5 that there is an
isomorphism (3.5). ut

For ˛ 2 .F ]/� define a quadratic form Q˛.x/ D TrF ]=Q.˛xx

/ on the Q-vector

space E]. Define the global support invariant of ˛

inv.˛/ D hasse
�

E];Q˛

�˝
��dF ;�1

Q

�

2 Br2.Q/; (3.6)

and, for any place ` � 1, let the local support invariant of ˛

inv`.˛/ 2 Br2.Q`/ Š f˙1g

be the image of the global invariant under Br2.Q/ ! Br2.Q`/. TakingH D M2.Q/

in (3.1) and using the calculation (3.2), the global support invariant has the alternate
characterization

hasse
�

E];Q˛

� D inv.˛/˝ hasse
�

WM2.Q/;Nm
�

:

Loosely speaking, inv.˛/ measures the disparity between the two quadratic spaces
.E];Q˛/ and .WM2.Q/;Nm/. Define the modified local support invariant

inv�̀.˛/ D
�

inv`.˛/ if ` < 1
�inv`.˛/ if ` D 1
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and a finite set of places of Q

Sppt.˛/ D f` � 1 W inv�̀.˛/ D �1g: (3.7)

The product formula
Q

`�1 inv`.˛/ D 1 implies that Sppt.˛/ has odd cardinality.
The term “support invariant” comes from the fact that the set Sppt.˛/ determines the
support of the stack CM˙.˛/, as the following proposition makes clear.

Proposition 3.3.8 Suppose ˛ 2 .F ]/�.

1. If #Sppt.˛/ > 1 then CM˙.˛/ D ;.
2. If Sppt.˛/ D f1g then CM˙.˛/ D ;.
3. If Sppt.˛/ D fpg with p < 1 then every geometric point of CM˙.˛/ has

characteristic p.

Proof. Suppose .A; j / 2 CM˙.˛/.k/ is a geometric point. By Proposition 3.3.7
the field k has nonzero characteristic, and A is supersingular. Moreover, Propo-
sitions 3.3.7 and 3.1.3 tell us that there is an isomorphism of Q-quadratic spaces
.E];Q˛/ Š .WH ;Nm/; where H is the rational quaternion algebra of discriminant
p D char.k/. Comparing (3.2) with (3.6) shows that inv.˛/ D H , and hence
Sppt.˛/ D fpg. All claims now follow easily. ut
Proposition 3.3.9 If ˛ 2 .F ]/� then CM˙.˛/ has dimension zero.

Proof. Suppose q is a prime of O˙ and z 2 CM˙.˛/.F
alg
q /. By [47, Proposition

2.9] and the proof of Proposition 3.3.5, the completed strictly Henselian local ring
bOsh
CM˙.˛/;z

is a quotient of the complete discrete valuation ring bOsh
˙;q. The stack

CM˙.˛/ has no points in characteristic 0, by Proposition 3.3.7, and so the quotient
map bOsh

˙;q ! bOsh
CM˙ .˛/;z

is not an isomorphism. Therefore bOsh
CM˙ .˛/;z

is Artinian, and
the result follows easily. ut



Chapter 4
Eisenstein Series

In this chapter, we review some general facts on Eisenstein series, and construct the
Eisenstein series E.�; s;T/ of the introduction.

For x 2R set e.x/ D e2�ix . Let  W A!C� be the unique unramified additive
character that is trivial on Q and satisfies  1.x/ D e.x/. Define an additive
character  F] W AF ] ! C� by

 F] D  ı TrF ]=Q:

Let �] W A�
F ]

! C� be the quadratic Hecke character associated to E]=F ]. Define
an algebraic group over Q by G D ResF ]=Q SL2:

4.1 General Constructions

Let HF ] be the F ] upper half-plane of the introduction. For � D uC iv 2 HF ] set

g� D
�

1 u
1

��

v1=2

v�1=2
�

2 SL2.F
]

R/

viewed as an element of SL.AF ]/ with trivial nonarchimedean components. For a
finite prime p of F ] let Kp D SL2.OF ];p/ be the usual maximal compact open

subgroup of SL2.F
]
p/. If v is an infinite place of F ], let

Kv D fk� W � 2 Rg Š SO2.R/

be the usual maximal compact subgroup of SL2.F
]

v /, where

k� D
�

cos � sin �
� sin � cos �

�

:

B. Howard and T. Yang, Intersections of Hirzebruch–Zagier Divisors and CM Cycles,
Lecture Notes in Mathematics 2041, DOI 10.1007/978-3-642-23979-3 4,
© Springer-Verlag Berlin Heidelberg 2012
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Let K D Q

pKp (including the infinite primes).
Let

I.s; �]/ D
O

v

I.s; �]v/ D Ind
SL2.AF] /

B.A
F]
/ .�

] � j js/

be the representation of SL2.AF ]/ induced from the character �] � j js on B.AF ]/.
Here B � SL2 is the subgroup of upper triangular matrices. If R is any F ]-algebra,
define subgroups of B.R/ by

N.R/ D fn.b/ W b 2 Rg M.R/ D fm.a/ W a 2 R�g

where

n.b/ D
�

1 b

0 1

�

m.a/ D
�

a 0

0 a�1
�

:

A section (element) in I.s; �]/ is a smooth K-finite function ˚ on SL2.A
]
F / such

that
˚.n.b/m.a/g; s/ D �].a/jajsC1˚.g; s/

for all a 2 A�
F ]

, b 2 AF ] , and g 2 SL2.AF ]/. A section ˚ 2 I.s; �]/ is called
standard if ˚ jK is independent of s. A section ˚ is called factorizable if ˚ D ˝˚v

with ˚v 2 I.s; �]v/. For our purpose, it is sometimes convenient to consider I.s; �]/
as a representation of the groupG.A/. In this view, there is a factorization

I.s; �]/ D
O

p

I.s; �]p/ I.s; �]p/ D
O

vjp
I.s; �]v/:

A section ˚ 2 I.s; �]/ is called Q-factorizable if ˚ D ˝˚p with ˚p 2 I.s; �]p/.
Associated to a standard section ˚ is an Eisenstein series on SL2.AF ]/

E.g; s; ˚/ D
X

�2B.F ]/nSL2.F ]/

˚.�g; s/: (4.1)

According to the general theory of Langlands on Eisenstein series [41], the
summation defining E.g; s; ˚/ is absolutely convergent when Re.s/ is sufficiently
large, and has meromorphic continuation to the whole complex plane with finitely
many poles. The meromorphic continuation is holomorphic along the unitary axis
Re.s/ D 0 and satisfies a functional equation in s 7! �s. Furthermore, there is a
Fourier expansion

E.g; s; ˚/ D
X

˛2F ]
E˛.g; s; ˚/

where

E˛.g; s; ˚/ D
Z

F ]nA
F ]

E.n.b/g; s; ˚/ �  F].�b˛/ db:
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Here db is the Haar measure on F ]nAF ] self-dual with respect to  F ] . If˚ D ˝˚p
is Q-factorizable and ˛ 2 .F ]/�, there is a factorization

E˛.g; s; ˚/ D
Y

p

W˛;p.gp; s; ˚p/ (4.2)

in which

W˛;p.gp; s; ˚p/ D
Z

F
]
p

˚p.w
�1n.b/gp; s/ �  

F
]
p
.�˛b/ db;

and w D �

0 1�1 0
�

. If ˚ D ˝˚v is factorizable over the places of F ], then

W˛;p.gp; s; ˚p/ D
Y

vjp
W˛;v.gv; s; ˚v/

and
E˛.g; s; ˚/ D

Y

v

W˛;v.gv; s; ˚v/:

Here W˛;v.�/ is defined the same way as W˛;p.�/ but with F ]
p replaced by F ]

v .
When v is an infinite prime of F ] the compact group Kv Š SO2.R/ is abelian

with characters k� 7! ei`� indexed by ` 2 Z. Using the decomposition

SL2.F ]
v / D B.F ]

v / �Kv

and the fact that the character �] is odd, it follows that

I.s; �]v/ D
M

` odd

C � ˚`
v ; (4.3)

where ˚`
v 2 I.s; �]v/ is the unique standard section whose restriction to Kv satisfies

˚`
v .k� / D ei`� :

Write ˚`1 D Q

vj1˚`
v 2 I.s; �]1/. For a standard section

˚f 2
O

v−1
I.s; �]v/

the function (� D uC iv 2 HF ])

E.�; s; ˚f ˝ ˚`1/ D NormF ]=Q.v/
�`=2 �E.g� ; s; ˚f ˝ ˚`1/
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is a non-holomorphic Hilbert modular form of parallel weight `. Given a prime
p < 1 of Q abbreviate

W˛;p.s; ˚p/ D W˛;p.1; s; ˚p/

W˛;1.�; s; ˚`1/ D NormF ]=Q.v/
�`=2 �W˛;1.g� ; s; ˚`1/:

4.2 The Weil Representation

There is a systematic way to construct standard sections in the induced representa-
tion using quadratic spaces and Weil representations. We review some basic facts
about the construction in this section, and compute the associated local Whittaker
functions in Sect. 4.6. We will use slightly different notation in this section and in
Sect. 4.6. Let F be a local field of characteristic not equal to 2, and let  be a
non-trivial additive character of F . Let V D .V;Q/ be a non-degenerate quadratic
space over F of even dimension 2m. The reductive dual pair .SL2.F /;O.V // gives
a Weil representation !V; of SL2.F / on S.V /, the space of Schwartz functions
on V , which is determined by the formulas

!V; .n.b//�.x/ D  .bQ.x//�.x/

!V; .m.a//�.x/ D �V .a/jajm�.xa/ (4.4)

!V; .w
�1/�.x/ D �.V /

Z

V

�.y/ .�Œx; y�/ dV y

for � 2 S.V /, a 2 F�, and b 2 F . Here �V .a/ D ..�1/m detV; a/F is the
quadratic character of F� associated to V , Œx; y� is the bilinear form on V defined
by Œx; y� D Q.x C y/ �Q.x/ �Q.y/, and

w D �

0 1�1 0
�

:

Finally �.V / D �.V;  / is the local splitting index defined in [24, Theorem 3.1].
See also [25, I.3], where �.V;  / is denoted �. ı Q/. We refer to [24], [25], and
[45] for basics on Weil representations. Define also

n�.b/ D �

1 0
b 1

�

:

Lemma 4.2.1 Let V1 and V2 be two quadratic spaces over F of the same
dimension, same quadratic character, but different Hasse invariants. Then �.V1/ D
��.V2/:
Proof. This is a direct calculation either from from the definitions, or from [25,
Lemma I.4.2]. ut
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For s0 D m � 1 the map

� D �V; W S.V / ! I.s0; �V /

defined by �.�/.g/ D !V; .g/�.0/ is SL2.F /-equivariant. Given a Schwartz
function � 2 S.V /, let ˚.g; s/ 2 I.s; �V / be the unique standard section satisfying

˚.g; s0/ D �.�/:

Concretely, if we factor g D n.b/m.a/k with b 2 F , a 2 F�, and k 2 SL2.OF /

(when F is p-adic), k 2 SO2.R/ (when F D R), or k 2 U.2/ (when F D C),
then

˚.g; s0 C s/ D �.�/jajs:
Define the Whittaker function

W˛.g; s; ˚/ D
Z

F

˚.w�1n.b/g; s/ �  .�˛b/ db:

Here db is the Haar measure on F self-dual relative to  . The Whittaker function
depends on  , and we will write W  

˛ .: : :/ when we wish to emphasize this
dependence.

For a 2 F�, denote by V a D .V; aQ/ the vector space V with the new quadratic
form x 7! aQ.x/, and denote by a the additive character a .x/ D  .ax/. The
following follows from [25, Corollary 6.1] and can also be checked easily from the
explicit formulas for the Weil representation.

Lemma 4.2.2 Fix a 2 F�.

1. One has !V a; D !V;a .
2. If � 2 S.V / and �a 2 S.V a/ is the image of � under the identification S.V / D
S.V a/, then

�V a; .�
a/ D �V;a .�/ 2 I.s0; �V /:

Moreover, the associated Whittaker functions are related by

W a 
˛ .g; s; �V;a .�// D jaj 12 W  

˛a.g; s; �V a; .�
a//:

We end this section with a well-known fact (see for example [50, Lemma 1.2]).
Note that in [59] the factor of 2 is mistakenly omitted in definition of the function
� of the following lemma. Recall that  1 W R ! C� is the additive character
 1.x/ D e.x/.

Lemma 4.2.3 Let .V;Q/ be a quadratic space over F DR of signature .p; q/, and

let �V D ..�1/ .p�q/.p�q�1/
2 ; �/R be the associated quadratic character of R�. Fix an

orthogonal decomposition V D VC ˚ V� where V˙ are positive (negative) definite
subspace of V , and write x D xC C x� according to the decomposition. Let
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�.x/ D e�2�.Q.xC/�Q.x�// 2 S.V /:

Then � is an eigenfunction of .SO2.R/; !V; 1
/ with eigencharacter k� 7! e

p�q
2 i� .

In particular, �.�/ D ˚
p�q
2

R 2 I.s; �V / is the normalized weight p�q
2

vector in the
decomposition (4.3).

4.3 Coherent and Incoherent Eisenstein Series

In this section we review some basic facts about coherent and incoherent Eisenstein
series. The reader is referred to [26, 28, 33], and the references therein for more
details.

Given a place v of F ] let Cv be a binary F ]
v -quadratic space whose character

�Cv.x/ D .� det.Cv/; x/v

is equal to �]v. Let hasse.Cv/ be the Hasse invariant of Cv. The reductive dual pair
�

SL2.F
]

v /;O.Cv/
�

determines a Weil representation !v D !
Cv; 

]
v

of SL2.F
]
v / on the

space of Schwartz functions S.Cv/. Moreover, the Weil representation provides an
SL2.F

]
v /-equivariant map

�v W S.Cv/ ! I.0; �]v/

defined by
�v.�/.g/ D �

!v.g/�
�

.0/:

Let R.Cv/ be the image of �v. It is a beautiful fact [26] that

I.0; �]v/ D
M

Cv

R.Cv/ (4.5)

where the direct sum is over all binary F ]
v -quadratic spaces Cv of character �]v.

Suppose that C D Q

v Cv is a free AF ] -module of rank two equipped with an
AF ]-quadratic form whose character

�C .x/ D
Y

v

.� det.C /; x/v

is equal to �]. If
Y

v

hasse.Cv/ D 1
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then there is a global F ]-quadratic space V such that C Š V ˝F ] AF ] , and when
this is the case we say that C is coherent. If

Y

v

hasse.Cv/ D �1

then no such V exists, and we say that C is incoherent. We will usually think of C
as a collection of local quadratic spaces fCvg rather than as a quadratic space over
the adele ring AF ] . It follows from (4.5) that there is a global decomposition

I.0; �]/ D
 

M

C coherent

R.C /

!

˚
 

M

C incoherent

R.C /

!

;

where
R.C / D

O

v

R.Cv/:

Remark 4.3.1 Pick any bOF ] -lattice L � bC D Q

v−1 Cv, and for a finite place v

of F ] let Lv be the component of L at v. The tensor product defining R.C / is
understood to mean the restricted tensor product of the R.Cv/ with respect to the
vectors �v.char.Lv//, where char.Lv/ 2 S.Cv/ is the characteristic function of Lv.

Associated to any ˚.g/ 2 I.0; �]/ there is a unique standard section

˚.g; s/ 2 I.s; �]/

such that ˚.g; 0/D˚.g/. The formation of Eisenstein series (4.1) gives an
SL2.AF ]/-equivariant map

Eis W I.0; �]/ ! A .G.Q/nG.A// (4.6)

defined by
˚ 7! E.g; 0; ˚/;

where A .G.Q/nG.A// is the space of automorphic forms on G. Kudla showed in
[26] that

ker.Eis/ D
M

C incoherent

R.C /:

Given a coherent AF ] -quadratic space C as above and a

� 2 S.C / D
O

v

S.Cv/

(the tensor product on the right is the restricted tensor product with respect to the
characteristic functions of latticesLv � Cv as in Remark 4.3.1) the Eisenstein series
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E.g; 0; �.�// is related to a theta integral by the Siegel–Weil formula. Given an
incoherent collection C and a � 2 S.C / the Eisenstein seriesE.g; s; �.�// vanishes
at s D 0 by (4.6). One of the primary goals of Kudla’s program on arithmetic Siegel–
Weil formulas [28] is to understand the derivative of E.g; s; �.�// at s D 0.

Given an incoherent collection C of local binary quadratic spaces as above, and
an ˛ 2 .F ]/�, define Diff.˛;C / to be the set of all places v of F ] for which the
quadratic space Cv does not represent ˛. Equivalently

Diff.˛;C / D fplaces v of F ] W �]v.˛/ 6D hasse.Cv/g:

From the second description it is clear that Diff.˛;C / is a finite set of odd card-
inality. When � D ˝�v 2 S.C / is factorizable,

v 2 Diff.˛;C / H) W˛;v.g; 0; �v/ D 0: (4.7)

See [26]. Similarly, if � D ˝�p 2 S.C / is Q-factorizable then

W˛;p.g; s; �p/ D 0 (4.8)

for every place p � 1 of Q such that Diff.˛;C / contains a place above p.

4.4 CM Abelian Surfaces and Coherent Eisenstein Series

Let c 	 OF be a fractional OF -ideal, and fix a prime p. Fix a CM type ˙ of E,
let q be a prime of O˙ , and let A be a c-polarized supersingular CM abelian surface
over Falg

q . As in Sect. 3.2, the space of special endomorphisms L.A/ is a Z-lattice
in the free rank two F ]-module V.A/, which is equipped with the totally positive
definite F ]-quadratic formQ

]

A of character �V.A/ D �]. Let

�A D char.bL.A//

denote the characteristic function of bL.A/ � bV .A/. Lemma 4.2.3 implies that the
Eisenstein series

E.�; s;A/ D E.�; s;b�.�A/˝ ˚11/

associated to the coherent collection V.A/ ˝Q A is a Hilbert modular Eisenstein
series of weight 1. Moreover,E.�; 0;A/ is holomorphic. We writeW˛;p.g; s;A/ for
the associated local Whittaker functions, and

W˛;p.s;A/ D W˛;p.1; s;A/:
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Proposition 4.4.1 Recall the group C0.E/ defined in Sect. 2.4. For any totally
positive ˛ 2 .F ]/�

X

Z2C0.E/

X

j2L.A˝Z/

Q
]

A˝Z.j /D˛

1

#Aut.A ˝ Z/
� q˛ D #C0.E/

2WE

�E˛.�; 0;A/:

Proof. Recall the homomorphism �E W TE ! SE of algebraic groups of Sect. 2.4.
Abbreviate ŒSE�D ŒSE.Q/nSE.A/� and fix a Haar measure on ŒSE�. For any
function f on

ŒSE�=SE.R/�E.UE/ Š SE.Q/nSE.Af /=�E.UE/;

the isomorphisms

C0.E/ Š TE.Q/nTE.Af /=UE �E�! SE.Q/nSE.Af /=�E.UE/

imply that
Z

ŒSE �

f .h/dh D Vol.ŒSE�/

#C0.E/

X

t2C0.E/
f .�E.t//: (4.9)

For an infinite prime v of F ], define an SE.F
]
v /-invariant function on Vv.A/ by

�v.x/ D e�2�Q]
A.x/;

and recall from Lemma 4.2.3 that �v.�v/D˚1
v . Let �1 D ˝vj1�v. For � DuCiv 2

HF ] and h 2 SE.A/ let

�.�; h;A/ D NormF ]=Q.v/
� 1
2

X

x2V.A/

�

!V.A/.g� /�1
�

.h�11 x/ � �A.h
�1
f x/

be the theta kernel on HF ] � SE.A/. Simple calculation using (4.4) shows

�.�; h;A/ D
X

x2V.A/
�A.h

�1
f x/ � qQ]

A.x/:

Let

I.�;A/ D
Z

ŒSE �

�.�; h;A/ dh

be the theta integral. Then I.�;A/ is a Hilbert modular form of weight 1, and the
Siegel–Weil formula of [27, Theorem 4.1] asserts that

I.�;A/ D Vol.ŒSE�/

2
E.�; 0;A/: (4.10)
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Note that Vol.ŒSE�/ D 2, in the normalization of [27, Theorem 4.1].
Next, using (4.9), the ˛th Fourier coefficient of I.�;A/ is given by

I˛.�;A/ � q�˛ D
Z

ŒSE �

X

j2V.A/
Q
]
A.j /D˛

�A.h
�1
f j / dh

D Vol.ŒSE�/

#C0.E/

X

t2C0.E/

X

j2V.A/
Q
]
A.j /D˛

�A.�E.t/
�1j /

D Vol.ŒSE�/

#C0.E/

X

Z2C0.E/

X

j2V.A˝Z/

Q
]

A˝Z.j /D˛

�A˝Z.j /

where the final equality follows from Proposition 3.2.6. Combining this with
Lemma 3.2.4 shows that

I˛.�;A/ � q�˛ D Vol.ŒSE�/ �WE

#C0.E/

X

Z2C0.E/

X

j2L.A˝Z/

Q
]

A˝Z.j /D˛

1

#Aut.A ˝ Z/
: (4.11)

Combining (4.11) with (4.10) completes the proof. ut

4.5 CM Modules and (In)Coherent Eisenstein Series

Fix a fractional OF -ideal c 	 OF , and let T be a c-polarized CM module as in
Sect. 2.3. Let L.T/ be the space of special endomorphisms and recall that the rank
one E]-module V.T/ D L.T/ ˝Z Q is equipped with the F ]-quadratic form Q

]
T.

By Proposition 2.3.5, the F ]-quadratic space .V .T/;Q]
T/ has signature .2; 0/ at

one infinite place of F ], and has signature .0; 2/ at the other infinite place. Let
C .T/ D Q

Cv.T/ be the incoherent binary quadratic space over AF ] obtained from
V.T/ by replacing the quadratic space Vv.T/ at the infinite place v at which Vv.T/
has signature .0; 2/ by a quadratic space of signature .2; 0/. In other words, for
every place v of F ] we let Cv.T/ D Vv.T/ as an F ]

v -module; if v − 1 we give Cv

the quadratic formQ
]
T, and if v j 1 we give Cv the positive definite quadratic form.

If we set
bC .T/ D

Y

v−1
Cv.T/

thenbL.T/ can be viewed as abZ-lattice in thebF ]-modulebC .T/. Define an incoherent
Eisenstein series associated to the incoherent collection C .T/ by
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E.�; s;T/ D E.�; s;b�.�T/˝ ˚11/

where
�T D char.bL.T// 2 S.bC .T//

is the characteristic function of bL.T/. Lemma 4.2.3 implies that E.�; s;T/ is
a Hilbert modular form of weight 1, and the incoherence of C .T/ implies that
E.�; 0;T/ D 0. We writeW˛;p.g; s;T/ for the associated local Whittaker functions,
and

W˛;p.s;T/ D W˛;p.1; s;T/:

Remark 4.5.1 The sectionb�.�T/ 2 I.s; �]f / is Q-factorizable, but as thebZ-lattice
bL.T/ � bC .T/ need not be stable under the action of bOF ] , the sectionb�.�T/ need
not admit a factorization over the finite places of F ].

For ˛ 2 .F ]/� abbreviate Diff.˛;T/ D Diff.˛;C .T//. If ˛ is totally positive
then v 2 Diff.˛;T/ if and only if v is finite and Vv.T/ does not represent ˛.

Lemma 4.5.2 Suppose ˛ 2 .F ]/�. Every place v 2 Diff.˛;T/ is nonsplit in E].
Furthermore, if p 2 Sppt.˛/ then Diff.˛;T/ contains a unique prime above p.

Proof. The first claim is clear: if v 2 Diff.˛;T/ then .Vv.T/;Q
]
T/ does not

represent ˛. By (2.5) this requires that v is nonsplit in E]. Now suppose p 2
Sppt.˛/. We first prove that there is at least one prime of F ] above p which belongs
to Diff.˛;T/. Suppose not. Then the F ]

p -quadratic space Vp.T/ represents ˛, and it

follows from (2.5) that there is an isomorphism of F ]
p-quadratic spaces

.Vp.T/;Q
]
T/ Š .E]

p; ˛xx

/:

This implies that there is an isomorphism of Qp-quadratic spaces

.Vp.T/;QT/ Š .E]
p;TrF ]=Q.˛xx


//:

Comparing Proposition 2.2.2 with (3.6) shows that invp.˛/ D 1, contradicting p 2
Sppt.˛/.

Now we prove that Diff.˛;T/ contains exactly one prime above p. We may
assume that pOF ] D p1p2 is split in F ], and so

F ]
p Š F

]
p1 � F ]

p2 Š Qp � Qp:

The idempotents on the right induce a decomposition of E]
p as a product of Qp-

algebrasE]
p Š E1�E2. For ˇ D .ˇ1; ˇ2/ 2 F ]

p with ˇi ¤ 0, define an F ]
p-quadratic

form
Q
]

ˇ.z/ D ˇzz
 D .ˇ1z1z


1; ˇ2z2z



2/
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on E]
p , and a Qp-quadratic form on the same space Qˇ.z/ D ˇ1z1z



1 C ˇ2z2z



2. If di

is the discriminant of Ei then a simple Hilbert symbol calculation shows

hasse.E]
p;Qˇ/ D .ˇ1; d1/p � .ˇ2; d2/p � .�d1;�d2/p:

Recalling (3.6), (2.5), and Proposition 2.2.2

�hasse.E]
p;Q˛/ D .�dF ;�1/p D hasse.E]

p;Qˇ.T//:

Writing ˇ.T/ D .ˇ1; ˇ2/, we find

.ˇ1; d1/p � .ˇ2; d2/p � .�d1;�d2/p ¤ .˛1; d1/p � .˛2; d2/p � .�d1;�d2/p:

Thus
.ˇ1; d1/p ¤ .˛1; d1/p or .ˇ2; d2/p ¤ .˛2; d2/p

but not both. It follows that ˛ is represented by .E]
p; ˇ.T/ locally at exactly one of

p1 and p2, and so either p1 2 Diff.˛;T/ or p2 2 Diff.˛;T/, but not both. ut

Corollary 4.5.3 If ˛ 2 .F ]/� is totally positive and #Sppt.˛/ > 1, then

E 0̨ .g; 0;T/ D 0:

Proof. By Lemma 4.5.2, for each p 2 Sppt.˛/ there is a prime above p

in Diff.˛;T/. Therefore (4.8) and the factorization (4.2) imply that E˛.g; s;T/
vanishes to order at least two. ut

Associated to a polarized CM module T of CM type ˙ , there is also a coherent
Eisenstein series E.�; s; V .T// that will be needed in the proof of Lemma 5.3.3.
Let 1˙ D 1˙̇ be two archimedean places of F ], as in Proposition 2.3.5, so that

.V .T/;Q]
T/ has signature .2; 0/ at 1C and signature .0; 2/ at 1�. For ˛ 2 F ], let

˛˙ 2 R be the image of ˛ in the completion of F ] at 1˙. If � DuC iv 2 HF ] , let
�˙ Du˙ Civ˙ 2 H be the image of � under the map HF ] ! H determined by 1˙.

Define a Schwartz function �T;A D �T ˝ �T;1C ˝ �T;1� on the adelization of

the F ]-module V.T/ as follows. Let �T be the characteristic function of bL.T/, and
set

�T;1˙.x/ D e�2�Q]
T.x/

for x 2 V1˙.T/. By Lemma 4.2.3, the Eisenstein series

E.�; s; V .T// D .v�1C v�/
1
2 E.g� ; s; �.�T;A//

D .v�1C v�/
1
2 E.g� ; s; �.�T/˝˚1

1C
˝˚�11�/
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has weight 1 at 1C and weight �1 and 1�. We denote by W˛;p.g; s; V .T// the
associated local Whittaker function, and

W˛;p.s; V .T// D W˛;p.1; s; V .T//:

We now have the following variant of Proposition 4.4.1.

Proposition 4.5.4 Fix T 2 X˙ and ˛ 2 F ]. If ˛C > 0 and ˛� < 0, then

X

Z2C0.E/

X

j2L.T˝Z/

Q
]

T˝Z.j /D˛

1

WE

� q˛ D #C0.E/

2WE

v�1� e�4�˛�v�E˛.�; 0; V .T//:

Proof. The proof is similar to that of Proposition 4.4.1, and we only give a sketch.
Let

�.�; h; V .T// D .v�1C v�/
1
2

X

x2V.T/
!V.T/.g�/�T;A.h

�1x/

be the theta function associated to �T;A, where h 2 SO.V .T//.A/. A simple
calculation gives

�.�; h; V .T// D v�
X

˛2F ]
e4�˛�v�q˛

X

x2V.T/
Q
]
T.x/D˛

�T.bh
�1x/

where q˛ D e.˛C�C/e.˛���/, andbh is the finite part of h. Let

I.�; V .T// D
Z

ŒSE �

�.�; h; V .T//dh

be the associated theta integral. Unfolding, as in the proof of Proposition 4.4.1,
implies that the ˛th Fourier coefficient of I.�; V .T// is given by

I˛.�; V .T// D Vol.ŒSE�/

#C0.E/
v�e4�v�˛�

X

Z2C0.E/

X

j2L.T˝Z/

Q
]

T˝Z.j /D˛

1:

On the other hand, the Siegel–Weil formula [27, Theorem 4.1] gives

I.�; V .T// D Vol.ŒSE�/

2
E.�; 0; V .T//:

Now the proposition is clear. ut
In Chap. 5, we will see a close relation between the incoherent Eisenstein series

defined in this subsection and the coherent Eisenstein series defined in this and
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the previous subsections. For example, suppose ˙ is a CM type of E and q is a
prime of O˙ . If A is a supersingular OF -polarized CM abelian surface over an
algebraic closure of O˙=q, then A admits a unique lift to characteristic 0. This
lift corresponds, by Remark 3.2.7, to an OF -polarized CM module T, and the
coherent and incoherent quadratic spaces V.A/ and C .T/ differ at a unique place
of F ]. This implies a close relation between the Whittaker functions W˛.g; s;A/
andW˛.g; s;T/.

4.6 Local Whittaker Functions

In this section we compute some local Whittaker functions in specific cases. Some
of the formulae have appeared in [59], among other places.

Fix a prime p, and let F be a finite extension of Qp . Let E be a either a quadratic

field extension of F , or E Š F � F . In the applications we will take F D F
]

v

and E D E
]
v for a place v of F ]. Let DE =F and dE =F D Nm.DE =F / be the

relative different and discriminant. Denote by � W F� ! C� the quadratic character
associated to E =F , and by x 7! x
 the nontrivial automorphism of E =F . Let
� 2 F be a uniformizing parameter and abbreviate

f D ord�.dE =F / and q D #OF=�OF :

Fix a nonzeroˇ 2 OF and let Vˇ D E with the F -quadratic form Qˇ.x/Dˇxx
.
Let be an unramified additive character of F , and let ! D !Vˇ; be the associated
Weil representation of SL2.F / on the space of Schwartz functions S.Vˇ/. For
� 2 D�1

E =F write

˚
�

ˇ D �Vˇ; .�
�/ 2 I.s; �/

for the standard section associated to the Schwartz function

�� D char.�C OE /

Define the normalized Whittaker function

W �̨.g; s; ˚/ D jdE =F j� 1
2 L.s C 1; �/W˛.g; s; ˚/;

and abbreviate
W �̨.s; ˚/ D W �̨.1; s; ˚/:

Lemma 4.6.1 1. Let dˇz be the self-dual Haar measure on E with respect to the
F -bilinear form Œx; y� D  .TrE =F .ˇxy//, and let d z be the standard Haar

measure on E with Vol.OE ; d z/ D 1. Then dˇz D jˇ2dE =F j 12 .
2. If E =F is a field extension then
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Z

E
�.zNz/ d z D C.E =F /

Z

F
�.x/.1C �.x// dx

for every � 2S.F /. Here dx is the standard Haar measure on F with
Vol.OF ; dx/ D 1, and

C.E =F / D
(

1 if E =F is ramified
1
2
.1C q�1/ if E =F is inert:

Proof. Claim (1) is trivial. We now verify (2). As E is a field, for any f 2 S.E /
Z

E

f .z/ d z D
Z

E �

jzjf .z/ d z

jzj D
Z

E �=E 1

Z

E 1

jt jf .gt/ dg dt:

Here E 1 is the group of norm one elements in E , dg is the Haar measure on E 1

with .Vol.E 1// D 1, and dt is the quotient measure. Now z 7! zz
 can be used to
identify E �=E 1 with its image in F�, whose characteristic function can be given
as 1

2
.1C �.x//. Using the standard Haar measure dx

jxj , we have

Z

E

f .z/ d z D C1.E =F /

Z

F�

Qf .x/ dxjxj

for some constantC1.E =F / (the transfer constant from dt on E �=E 1 to dx
jxj ), where

Qf .x/ D 1C �.x/

2

Z

E 1

jzjf .gz/ dg:

Here z 2 E � is any element with zz
 D x; if no such z exists, then �.x/ D �1 and
we take Qf .x/ D 0. If we let f .z/ D �.zz
/ for � 2 S.F /, then

Qf .x/ D 1C �.x/

2
jxj
Z

E 1

�.x/ dg D 1C �.x/

2
jxj�.x/;

and so
Z

E
�.zz
/d z D C.E =F /

Z

F
�.x/.1C �.x// dx

where 2 �C.E =F / D C1.E =F /. Taking � D char.OF / yields the desired formula
for C.E =F /. ut

For any ideal a � OF define a compact open subgroup

K0.a/ D
��

a b

c d

�

2 SL2.OF / W c 2 a

�

:
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The proof of the following proposition is the same as [59, Propostions 2.1 and
2.2], and is left to the reader. When a ¤ OF is contained in the conductor of �,
i.e. �.1C a/ D 1, we extend � to a character of K0.a/ via

�

��

a b

c d

��

D �.d/:

Proposition 4.6.2 Assume that E =F is unramified, and fix an ˛ 2 F�. If ˛ 62 OF

then W˛.s; ˚
0
ˇ/ D 0. Assume that ˛ 2 OF .

1. If ord�.˛/ < ord�.ˇ/ then

W �̨.s; ˚0
ˇ/

�.Vˇ/
D jˇjL.s C 1; �/.1 � q�s/

ord� .˛/
X

nD0
qn.1�s/:

In particular,W �̨.0; ˚0
ˇ/ D 0, and

W �;0
˛ .0; ˚0

ˇ/

�.Vˇ/
D jˇj log.q/L.1; �/

ord� .˛/
X

nD0
qn:

2. If ord�.˛/ � ord�.ˇ/ then

W �̨.s; ˚0
ˇ/

�.Vˇ/
D jˇjL.s C 1; �/.1 � q�s/

ord� .ˇ/�1
X

nD0
qn.1�s/

C jˇj
ord� .˛=ˇ/
X

nD0
�.�n/q�ns:

In particular,

W �̨.0; ˚0
ˇ/

�.Vˇ/
D jˇj

ord� .˛=ˇ/
X

nD0
�.�/n D jˇj

(

ord�.˛=ˇ/C 1 if �.�/ D 1
1C.�1/ord� .˛=ˇ/

2
if �.�/ D �1:

SoW �̨.0; ˚0
ˇ/ D 0 if and only if �.�/ D �1 and ord�.˛=ˇ/ is odd. When this is

the case,

W �;0
˛ .0; ˚0

ˇ/

�.Vˇ/
D jˇj log.q/

�

ord�.˛=ˇ/C 1

2
C 1 � q�ord� .ˇ/

q.1 � q�2/

	

:

Proposition 4.6.3 Assume that E =F is ramified, and fix an ˛ 2 F�. If ˛ 62 OF

then W �̨.s; ˚0
ˇ/ D 0. Assume ˛ 2 OF .
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1. If 0 � ord�.˛/ < ord�.ˇ/ then

W �̨.s; ˚0
ˇ/

�.Vˇ/
D jˇj.1 � q�s/

ord� .˛/
X

nD0
qn.1�s/:

In particular,W �̨.0; ˚0
ˇ/ D 0, and

W �;0
˛ .0; ˚0

ˇ/

�.Vˇ/
D jˇj log.q/

ord� .˛/
X

nD0
qn

2. If ord�.˛/ � ord�.ˇ/ then

W �̨.s; ˚0
ˇ/

�.Vˇ/
D jˇjs C �.˛=ˇ/j˛dE =F js C jˇj.1 � q�s/

ord� .ˇ/�1
X

nD0
qn.1�s/:

In particular,
W �̨.0; ˚0

ˇ/

�.Vˇ/
D 1C �.˛=ˇ/:

If �.˛=ˇ/ D �1 then

W �;0
˛ .0; ˚0

ˇ/

�.Vˇ/
D log.q/

�

1 � q�ord� .ˇ/

q.1 � q�1/
C ord�.˛=ˇ/C f

	

:

Proof. The case ˇ 2 O�
F is [59, Proposition 2.3]. We may choose the uniformizer

� of F so that �.�/ D 1 and a uniformizer �E of E such that NmE =F .�E / D � .
Abbreviate X D q�s , cD ord�.ˇ/, and N D ord�.˛/, and recall f D ord�.dE =F /.
As in [59, Proposition 2.3], the Schwartz function �0 is an eigenfunction of
K0.ˇdE =F / with eigencharacter � (with respect to the Weil representation). So for
every k 2 K0.ˇdE =F / and g 2 SL2.F / one has

˚0
ˇ.gk/ D �.k/˚0

ˇ.g/:

Furthermore, one checks ˚0
ˇ.1/ D 1 and

˚0
ˇ.w

�1/ D �.Vˇ/jˇ2dE =F j 12 D �.ˇ/�.V1/jˇ2dE =F j 12 :

We now verify that for b 2 OF one has

˚0
ˇ.n�.b// D ˚0

ˇ.w
�1/�.b/jbj�1char.OF /.ˇ=b/:
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Using n�.b/ D wn.�b/w�1, unwinding the definition of the Weil representation
shows

˚0
ˇ.n�.b// D

Z

OE

 

�

� bzz

ˇ�f

�

d z:

Lemma 4.6.1 shows that if 0 � ord�.b/ < ord�.ˇ/C f then

˚0
ˇ.n�.b// D

Z

OF

 

�

� bx

ˇ�f

�

� .1C �.x// dx

D
Z

OF

 

�

� bx

ˇ�f

�

�.x/ dx

D
1
X

nD0
q�n

Z

O�

F

 

�

�b�
n�f x
ˇ

�

 .x/ dx

D jˇ=bjq� f
2 � .b=ˇ/ �.���f  ; �/ � char.OF / .ˇ=b/ :

Here

�.���f  ; �/ D q
f
2

Z

O�

F

 .���f x/�.x/ dx:

Take ˇ D b D 1 for a moment. From n�.1/ D n.1/w�1n.1/ it follows that

˚0
1 .n�.1// D ˚0

1 .w
�1/ D �.V1/q

� f
2 :

Comparing these two equalities shows �.���f  ; �/ D �.V1/. Now the formula
for ˚0

ˇ.n�.b// is clear.

Now we are ready to prove the formulae forW˛.s; ˚
0
ˇ/. Using

w�1n.b/ D n.�b�1/m.b�1/n�.b�1/

and the formulae just proved, we have

W˛.s; ˚
0
ˇ/ D

Z

OF

˚0
ˇ.w

�1/ .�b˛/ db

C
cCf�1
X

nD1

Z

��nO�

F

�.b/�1jbj�s�1˚0
ˇ.n�.b�1// .�b˛/ db

C
1
X

nDcCf

Z

��nO�

F

�.b/�1jbj�s�1 .�b˛/ db
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D ˚0
ˇ.w

�1/char.OF /.˛/C
X

n	cCf
Xn�.˛/q� f

2 �.V1/char.�n�f O�
F /.˛/

C˚0
ˇ.w

�1/
X

0<n�c
.qX/n




char.�nOF /.˛/ � q�1char.�n�1OF /.˛/
�

:

ThereforeW˛.s; ˚
0
ˇ/ D 0 unless ˛ 2 OF . When ˛ 2 OF , one has

W˛.s; ˚
0
ˇ/

˚0
ˇ.w

�1/
D �

(

.1 � X/
PN

nD0.qX/n if N < c

qc



Xc C �.ˇ˛/Xf CN �C .1 � X/
Pc�1

nD0.qX/n if N � c;

and the proposition is clear. ut
Proposition 4.6.4 Assume that E =F is ramified, ˛ 2 F�, p ¤ 2, and� 2 D�1

E =F X
OE . Then W �̨.s; ˚�

ˇ / D 0 unless c.˛; �/ D ordF .˛ � Qˇ.�// � 0. Assume
c.˛; �/ � 0.

1. If 0 � c.˛; �/ < ord�.ˇ/, then

W �̨.s; ˚�

ˇ /

�.Vˇ/
D jˇj.1 � q�s/

c.˛;�/
X

nD0
qn.1�s/:

In particular,W �̨.0; ˚�

ˇ / D 0, and

W �;0
˛ .0; ˚

�

ˇ /

�.Vˇ/
D jˇj log.q/

c.˛;�/
X

nD0
qn:

2. If c.˛; �/ � ord�.ˇ/, then

W �̨.s; ˚�

ˇ /

�.Vˇ/
D q�s
ord� .ˇ/ C jˇj.1 � q�s/

ord� .ˇ/�1
X

nD0
qn.1�s/:

In particular W �̨.0; ˚�

ˇ / D 1:

Proof. The proof is similar to Proposition 4.6.3. We again abbreviate X D q�s ,
c D ord�.ˇ/ and N D ord�.˛/. We don’t assume that p ¤ 2 until the actual
calculation of the Whittaker functions. First it is easy to check the following explicit
formulae

!.n.b//�� D  .bQˇ.�//�
� for b 2 OF ;

!.m.a//�� D �.a/�a
�1� for a 2 O�

F ;
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!.n�.b//�� D �� for b 2 ˇDE =F ;

!.w�1/�.x/ D ˚0
ˇ.w

�1/ .�TrE =F .ˇ�
x//:

From this, one sees immediately that ˚�

ˇ has the following properties.

1. For every b 2 OF , we have

˚
�

ˇ .gn.b// D  .bQˇ.�// � ˚�

ˇ .g/:

2. For every b 2 ˇDE =F , we have

˚
�

ˇ .gn�.b// D ˚
�

ˇ .g/:

3. We have ˚�

ˇ .1/ D 0 and ˚�

ˇ .w
�1/ D ˚0

ˇ.w
�1/.

Finally, for every b 2 OF ,

˚
�

ˇ .n�.b// D
(

˚0
ˇ.n�.b// .b�1Qˇ.�// if ordE .b/ � ordE .�ˇDE =F /

0 if ordE .b/ � ordE .ˇDE =F /:

Notice that if p 6D 2 (which is our assumption in the proposition) this covers all
possibilities. We now verify the last formula. The case b 2 ˇdE =F follows from
(2) and (3) above. Assume b … ˇdE =F (i.e. ord�.b/ < c C f ). Using n�.b/ D
wn.�b/w�1 we find

˚
�

ˇ .n�.b// D
Z

OE

 

�

� bzz


ˇ�f
� TrE =F

�

�
z��f
E

�

�

d z:

If ordE .b/ � ordE .�ˇDE =F / then ˇ��fE b
�1 2 OE . The substitution z 7! z �

ˇ��
f

E b
�1 gives

˚
�

ˇ .n�.b// D  .b�1ˇ��
/
Z

OE

 

�

� bzz


ˇ�f

�

d z

D  .b�1Qˇ.�// � ˚0
ˇ.n�.b//

as claimed.
Now we assume p ¤ 2 and prove the formula for W �̨.s; ˚�

ˇ /. The assumption
p ¤ 2 implies f D 1. Recall

w�1n.b/ D n.�b�1/m.b�1/n�.b�1/:
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It follows that

˚
�

ˇ .w
�1n.b// D

8

ˆ

ˆ

<

ˆ

ˆ

:

 .bQˇ.�// �˚0
ˇ.w

�1/ if b 2 OF

˚0
ˇ.w

�1/jbj�s if ord�.b/ � �c
0 if ord�.b/ < �c;

and thus, setting ˛.�/ D ˛ �Qˇ.�/,

W˛.s; ˚
�

ˇ / D
Z

F

˚
�

ˇ .w
�1n.b// .�˛b/ db

D ˚0
ˇ.w

�1/
h

char.OF /.˛.�//C
X

0<n�c

Z

��nO�

F

jbj�sC1 .�b˛.�// dbjbj
i

D ˚0
ˇ.w

�1/
h

char.OF /.˛.�//

C
X

0<n�c
.qX/n




char.�nOF /.˛.�// � q�1char.�n�1OF /.˛.�//
�

i

:

Since � … OE , ord�.Qˇ.�// < c. If c.˛; �/ D ord�.˛.�// < c then

W˛.s; ˚
�

ˇ / D ˚0
ˇ.w

�1/.1 � X/
X

0�n�c.˛;�/
.qX/n:

If c.˛; �/ � c then

W˛.s; ˚
�

ˇ /

˚0
ˇ.w

�1/
D .1 � X/

X

0�n<c
.qX/n C .qX/c:

Notice that c.˛; �/ � c implies �.˛ˇ�1/ D 1. Indeed, write � D �0�
�1
E with

�0 2 O�
E . Then c.˛; �/ � c implies

�0�


0 
 ˛ˇ�1 mod �OF ;

and �.˛ˇ�1/ D 1 follows. ut



Chapter 5
The Main Results

This chapter contains our main results. In Sect. 5.1 we relate the 0-dimension stack
CM˙.˛/ to the ˛th-Fourier coefficient of the central derivative of an incoherent
Hilbert modular Eisenstein series. Here ˛ is a totally positive element of F ]. The
proof of this result is contained in Sect. 5.2, with the exception of certain local
calculations (which are, in fact, the technical core of the proof) postponed until
Chap. 6.

In Sect. 5.3 we first reformulate the results of Sect. 5.1 in terms of the arithmetic
cycle classesbZ.˛;v/ of the introduction, still for ˛ � 0. We then construct Green
functions for the Hirzebruch–Zagier divisors. The study of such Green functions
motivates the definition of the arithmetic cycle classesbZ.˛;v/ for ˛ 6� 0.

Finally, in Sect. 5.4 the intersection of the cycles bT.m;v/ and CM˙ on M is
computed, and compared to the mth Fourier coefficient of the Hilbert modular
Eisenstein series, after pulling back the derivative to a classical non-holomorphic
modular form on the complex upper half-plane.

Throughout Chap. 5 we take c D OF and fix a CM type ˙ of E. Let X˙ denote
the set of isomorphism classes of OF -polarized CM modules with CM type ˙ , as
defined in Sect. 2.3. As always, O˙ � C denotes the maximal order in the reflex
field of ˙ . For a prime q of O˙ let Fq be the residue field of q and let Nm.q/ be the
cardinality of Fq.

5.1 Degrees of Zero Cycles

For a totally positive ˛ 2 .F ]/�, recall the algebraic stack CM˙.˛/ of dimension
zero defined in Sect. 3.3, and the finite set Sppt.˛/ of places of Q defined by
(3.7). The assumption that ˛ is totally positive implies that 1 62 Sppt.˛/, and so
Sppt.˛/ consists of an odd number of finite primes of Q. If #Sppt.˛/ > 1 then
Proposition 3.3.8 implies that CM˙.˛/ is empty. If Sppt.˛/ D fpg then CM˙.˛/
is supported in characteristic p by Proposition 3.3.8, and has dimension 0 by

B. Howard and T. Yang, Intersections of Hirzebruch–Zagier Divisors and CM Cycles,
Lecture Notes in Mathematics 2041, DOI 10.1007/978-3-642-23979-3 5,
© Springer-Verlag Berlin Heidelberg 2012
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Proposition 3.3.9. For a prime q of O˙ define

degq CM˙.˛/ D
X

z2CM˙.˛/.Falg
q /

length
�

O sh
CM˙ .˛/;z

�

#Aut.z/

where Osh
CM˙ .˛/;z

is the strictly Henselian local ring at z (i.e. the local ring for the
étale topology), and the automorphism group Aut.z/ is computed in the category
CM˙.˛/.F

alg
q /. Summing over all primes q of O˙ , define the arithmetic degree

bdeg CM˙.˛/ D
X

q

log.Nm.q// � degq CM˙.˛/:

From what we have said, if Sppt.˛/ D fpg then only those q above p contribute to
the sum.

On the automorphic side, for each T 2 X˙ , we have defined in Sect. 4.5 an
incoherent Eisenstein series

E.�; s;T/ D
X

˛2F ]
E˛.�; s;T/

.� D uC iv 2 HF ]). Summing over all T we obtain a nonholomorphic weight one
Hilbert modular Eisenstein series

E.�; s;˙/ D
X

T2X˙
E˛.�; s;T/

whose derivative at s D 0 has a Fourier expansion

E 0.�; 0;˙/ D
X

˛2F ]
c˙ .˛;v/ � q˛;

where the coefficient c˙.˛;v/ satisfies

c˙.˛;v/ � q˛ D
X

T2X˙
E 0̨ .�; 0;T/:

In the next section we will prove the following theorem, an example of an
arithmetic Siegel–Weil formula [28].

Theorem 5.1.1 Suppose ˛ 2 .F ]/� is totally positive, and that Sppt.˛/ D fpg for
some prime p satisfying both conditions of Hypothesis B. Then

bdeg CM˙.˛/ D � 1

WE

� c˙.˛;v/ (5.1)
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where (as always) WE is the number of roots of unity in E. Note in particular that
the right hand side is independent of v.

As a complement to the theorem, we also have the following easy proposition.

Proposition 5.1.2 Suppose ˛ 2 .F ]/� is totally positive, and that #Sppt.˛/ > 1.
Then both sides of (5.1) are equal to 0.

Proof. This is clear from Proposition 3.3.8 and Corollary 4.5.3. ut

5.2 Proof of Theorem 5.1.1

Throughout Sect. 5.2 we fix a CM type ˙ of E and a totally positive ˛ 2 .F ]/�
satisfying Sppt.˛/ D fpg for a prime p satisfying both conditions of Hypothesis B.
Let q be a prime of O˙ above p. The kernel of

OE]
�˙��! O˙ ! O˙=q

is a prime ofE] which we denote by q], the pullback of q by �˙ . Let p] be the prime
of F ] below q], and fix embeddings

Qalg ! C Qalg ! Qalg
p : (5.2)

These choices allow us to view O˙ as a subfield ofQalg
p , and we assume that (5.2) are

chosen so that the induced p-adic absolute value on O˙ agrees with that determined
by q. Let Cp be the metric completion of the algebraic closure of Qalg

p and let OCp �
Cp be the valuation ring. We denote by F

alg
q the residue field of OCp , with its O˙ -

algebra structure determined by the inclusion O˙ � OCp .
Remark 3.2.7 establishes a bijectionX˙ ! CM˙.C/, denoted T 7! A.T/. By the

theory of complex multiplication A.T/ has a model over Qalg with everywhere good
reduction. Using the fixed embedding Qalg ! Q

alg
p we may reduce A.T/ modulo

p to obtain an OF -polarized CM abelian surface QA.T/ over Falg
q . The construction

T 7! QA.T/ defines a CC.E/-equivariant function

X˙ ! CM˙.F
alg
q /; (5.3)

which is a bijection by [20, Theorem 2.2.1].

Proposition 5.2.1 If p] is nonsplit in E] then every point of CM˙.F
alg
q / is supersin-

gular. If p] is split in E] then CM˙.F
alg
q / contains no supersingular points.

Proof. This will be proved in Sect. 6.1. Indeed, by the bijectivity of (5.3) any A 2
CM˙.F

alg
q / has the form A D QA.T/ for some T 2 X˙ , and so we are in the situation

considered in Chap. 6. By Proposition 6.1.1, A is supersingular if and only if p] is
nonsplit in E]. ut
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Proposition 3.3.7 implies that every .A; j / 2 CM˙.˛/.F
alg
q / is supersingular.

Therefore, by Proposition 5.2.1,

p] split in E] H) CM˙.˛/.F
alg
q / D ;:

Proposition 5.2.2 Assume p] is nonsplit inE]. Fix a T 2 X˙ , and set A D QA.T/.
1. For every prime ` − p1 there is an E]

` -linear isomorphism of F ]

` -quadratic
spaces

�

V`.T/;Q
]
T

� Š �

V`.A/;Q
]

A

�

taking L`.T/ isomorphically to L`.A/.
2. The archimedean place w D 1�̇ of F ] determined by the reflex map
�˙ W E] ! C is the unique archimedean place for which

�

Vw.T/;Q
]
T

� 6Š �

Vw.A/;Q
]

A

�

:

3. The prime p D p] of F ] is the unique prime of F ] above p for which

�

Vp.T/;Q
]
T

� 6Š �

Vp.A/;Q
]

A

�

:

Proof. This will be proved in Chap. 6. See Proposition 6.2.4. ut
Assume p] is nonsplit in E], fix a T 2X˙ , and set A D QA.T/. Recalling

that we assume Sppt.˛/ D fpg, the set Diff.˛;T/ appearing in Lemma 4.5.2
contains a unique prime above p. If p] 2 Diff.˛;T/ then ˛ is not represented by
.Vp].T/;Q

]
T/, and the final claim of Proposition 5.2.2 implies that ˛ is represented

by .Vp] .A/;Q
]

A/. If there is another prime p 6D p] above p then .Vp.T/;Q
]
T/

represents ˛ (as p 62 Diff.˛;T/), and the final claim Proposition 5.2.2 implies that
˛ is also represented by .Vp.A/;Q

]

A/. On the other hand, if p] 62 Diff.˛;T/ then

.Vp].T/;Q
]
T/ represents ˛, and so .Vp].A/;Q

]

A/ does not. In summary, we have
proved

�

Vp.A/;Q
]

A

�

represents ˛ ” p] 2 Diff.˛;T/: (5.4)

Label the elements of our chosen CM type˙ D f�3; �4g, and set �1.x/ D �3.x/

and �2.x/ D �4.x/. Viewing each �i as a map E ! Q
alg
p , all four take values in

the subfield Ep defined in the introduction. The Galois group Gal.Ep=Qp/ acts on
the set f�1; �2; �3; �4g through rigid motions of the square

�1 �2

�4 �3
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and an exercise in Galois theory shows (see Proposition 6.1.1) that p] is nonsplit
in E] if and only if the subgroup Gal.Ep=Qp/ � D8 contains an element that
interchanges the top and bottom edges. As we assume that ŒEp W Qp� � 4, there are
five cases to consider:

• Quadratic case I: Gal.Ep=Qp/ is generated by rotation by 180ı,
• Quadratic case II: Gal.Ep=Qp/ is generated by reflection across the horizontal

axis,
• Cyclic quartic case: Gal.Ep=Qp/ is cyclic of order four,
• Klein four case I: Gal.Ep=Qp/ is generated by the horizontal and vertical

reflections,
• Klein four case II: Gal.Ep=Qp/ is generated by the diagonal reflections.

The following fundamental result, whose case-by-case proof will occupy the bulk
of Sect. 6, is a technical exercise in Grothendieck–Messing theory (or Zink’s theory
of displays).

Proposition 5.2.3 Assume p] is nonsplit in E], and define

�p].˛/ D ordp].˛/C ordp] .DF ]/C 1

2
�
(

1 if p] is inert in E]

2 if p] is ramified in E]

where DF ] is the different of F ]=Q. The strictly Henselian local ring of every
geometric point z 2 CM˙.˛/.F

alg
q / has length

length
�

O sh
CM˙.˛/;z

� D �p].˛/:

In particular the length does not depend on z.

Proof. This will be proved in Chap. 6. If z corresponds to the pair .A; j /, the
completed strictly Henselian local ring of CM˙.˛/ at z pro-represents the formal
deformation functor Def˙.A; j / defined in Sect. 6.2. Using Corollary 6.2.2, this
formal deformation functor is computed, in the five cases listed above, in Proposi-
tions 6.4.1, 6.5.1, 6.6.1, 6.7.1, and 6.8.1, respectively. ut
Remark 5.2.4 If the hypothesis ŒEp W Qp� � 4 were dropped, we would be left to
treat a sixth case: Gal.Ep=Qp/ Š D8. There is no obvious reason why the methods
used to prove Proposition 5.2.3 cannot be extended to treat this case as well, but the
technical details involved seem quite formidable.

Fix a T 2 X˙ and abbreviate A D QA.T/.
Proposition 5.2.5 Assume p] 2 Diff.˛;T/, a hypothesis which implies both that p]

is nonsplit in E] and that W˛;p.0;T/ D 0.
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1. If Lp.A/ represents ˛ thenW˛;p.0;A/ 6D 0 and

W 0̨
;p.0;T/

W˛;p.0;A/
D ��p].˛/

2
� log.Nm.q//:

2. If Lp.A/ does not represent ˛ then W˛;p.0;A/ and W 0̨
;p.0;T/ are both 0.

Proof. This will be proved case-by-case in Chap. 6. See Propositions 6.4.4, 6.5.4,
6.6.4, 6.7.4, and 6.8.4. ut

By combining the information above, we can express degq CM˙.˛/ in terms
of central derivatives of incoherent Eisenstein series. Proposition 4.4.1 and the
bijectivity of (5.3) imply

X

z2CM˙.˛/.Falg
q /

1

#Aut.z/
� q˛ D

X

T2X˙

X

j2L.A/
Q
]
A.j /D˛

1

#Aut.A/
� q˛

D 1

#C0.E/

X

T2X˙

X

Z2C0.E/

X

j2L.A˝Z/

Q
]

A˝Z.j /D˛

1

#Aut.A ˝ Z/
� q˛

D 1

2WE

X

T2X˙
E˛.�; 0;A/:

If p] 62 Diff.˛;T/, then (5.4) implies E˛.�; 0;A/ D 0, and so the final sum may be
restricted to those T for which p] 2 Diff.˛;T/. Applying Proposition 5.2.3 results
in

degq CM˙.˛/ � q˛ D �p] .˛/

2WE

�
X

T2X˙
p]2Diff.˛;T/

E˛.�; 0;A/: (5.5)

By the first claim of Proposition 5.2.2, for every rational prime ` 6D p there is an
isomorphism V`.A/ Š V`.T/ respecting the F ]

` -quadratic forms and respecting the
Z`-lattices. It follows that

W˛;`.s;A/ D W˛;`.s;T/

for all ` 6D p (including now ` D 1). Thus (4.2) implies

W˛;p.s;A/ �E˛.�; s;T/ D W˛;p.s;T/ �E˛.�; s;A/;

and Proposition 5.2.5 implies

� �p] .˛/

2
� log.Nm.q// �E˛.�; 0;A/ D E 0̨ .�; 0;T/: (5.6)
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Combining (5.5) and (5.6) shows that

degq CM˙.˛/ � log.Nm.q// � q˛ D � 1

WE

X

T2X˙
p]2Diff.˛;T/

E 0̨ .�; 0;T/: (5.7)

To complete the proof of (5.1), it only remains to sum over all q.

Proof (of Theorem 5.1.1). Assume, as we have been, that ˛ 2 .F ]/� is totally
positive, and that Sppt.˛/D fpg for a prime p satisfying both conditions of
Hypothesis B. By Proposition 3.3.8, CM˙.˛/ is supported in characteristic p, and
so (5.7) implies

bdeg CM˙.˛/ � q˛ D � 1

WE

X

qjp

X

T2X˙
p]2Diff.˛;T/

E 0̨ .�; 0;T/

where the outer sum is over all primes q j p of O˙ .
Suppose first that we are either in case (cyclic) or (nongal), so E] is a quartic

field and �˙ W E] ! E˙ is an isomorphism. Thus

bdeg CM˙.˛/ � q˛ D � 1

WE

X

qjp

X

T2X˙
p2Diff.˛;T/

E 0̨ .�; 0;T/

where the outer sum is now over the primes q j p of E], and p is the prime of
F ] below q. By Lemma 4.5.2 the set Diff.˛;T/ contains a unique prime p of F ]

above p, and that prime must be nonsplit in E]. The double sum on the right now
simplifies to

bdeg CM˙.˛/ � q˛ D � 1

WE

X

pjp
#fq above pg

X

T2X˙
p2Diff.˛;T/

E 0̨ .�; 0;T/

D �1
WE

X

T2X˙
E 0̨ .�; 0;T/

as desired.
Now suppose we are in case (biquad), so that F ] Š Q�Q. Label the orthogonal

idempotents �1; �2 2 F ] in such a way that �˙ W E] ! E˙ satisfies �˙.�2/ D 0.
Let p1 and p2 be the two primes of F ] above p, labeled so that pi is the preimage of
pZ under �i � W OF ] �! Z. The map �˙ W E] ! E˙ identifies �1E] Š E˙ , and so
for any prime q of O˙ we have p] D p1. We now deduce

bdeg CM˙.˛/ � q˛ D � 1

WE

X

q1jp1

X

T2X˙
p12Diff.˛;T/

E 0̨ .�; 0;T/



72 5 The Main Results

where the outer sum is over primes q1 j p1 of �1E]. The inner sum is empty unless
p1 is nonsplit in �1E], and so

bdeg CM˙.˛/ � q˛ D � 1

WE

X

T2X˙
p12Diff.˛;T/

E 0̨ .�; 0;T/:

As Diff.˛;T/ contains exactly one of p1 or p2 by Lemma 4.5.2, it now suffices to
prove that p2 2 Diff.˛;T/ implies E 0̨ .�; 0;T/ D 0.

Consider the Q-quadratic spaces V1.T/ D �1V .T/ and V2.T/ D �2V .T/ with
their (Q-valued) quadratic forms Q]

T. Proposition 2.3.5 asserts that V1.T/ has
signature .0; 2/, while V2.T/ has signature .2; 0/, and the incoherent quadratic space
C .T/ defined in Sect. 4.5 satisfies �2C .T/ Š bV 2.T/. As we assume p2 2 Diff.˛;T/,
V2.T/ does not represent �2˛ at p. As the set of rational places at which �2˛ is not
represented has even cardinality, and as V2.T/ does represent �2˛ at the archimedean
place, there is a rational prime ` 6D p at which V2.T/ does not represent �2˛. This
implies that C .T/ fails to represent ˛ both at p and `, and so both W˛;p.s;T/ and
W˛;`.s;T/ vanish at s D 0 by (4.8). Thus E˛.�; s;T/ vanishes at s D 0 to at least
order 2, completing the proof. ut

5.3 Classes in bCH1.CM˙ / and Green Functions

We now reformulate Theorem 5.1.1 in terms of the arithmetic Chow group
cCH1.CM˙/ of Gillet–Soulé [13]. See also [12,34,55], which deal with Chow groups
of stacks. Once this is done we will formulate and prove a version of Theorem 5.1.1
for all ˛ 2 .F ]/�, not just for the totally positive ˛.

For each embedding 
 W O˙ �! C, let CM
˙ be the stack over C obtained from
CM˙ by base change. Complex conjugation induces a canonical isomorphism

F1 W CM
˙ Š CM
˙ :

An arithmetic divisor on CM˙ is defined to be a pair .Z;G/ where Z is a Weil
divisor on CM˙ with rational coefficients, and G is Green function for Z. As Z has
no complex points, G is simply a real-valued F1-invariant function on

G


WO˙�!C

CM
˙ .C/: (5.8)

A principal arithmetic divisor is an arithmetic divisor of the form .div.f /,
� log jf j2/ for f a rational function on CM˙ , and the arithmetic Chow group
cCH1.CM˙/ is the group of arithmetic divisors modulo principal arithmetic divisors.
There a natural linear functional, the arithmetic degree,
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bdeg W cCH1.CM˙/ �! R:

To define this linear functional it suffices to treat the case

bdeg.Z; 0/ D
X

q�O˙

log.Nm.q//
X

z2Z.Falg
q /

1

#Aut.z/

where Z is a prime Weil divisor, and the case

bdeg.0;G/ D 1

2

X


WO˙�!C

X

P2CM
˙ .C/

G.P /

#Aut.P /

where Z D 0. Here Aut.z/ is the automorphism group of z in CM˙.F
alg
q /, and Aut.P /

is defined similarly.
For each ˛ 2 F�0 the forgetful morphism � W CM˙.˛/ �! CM˙ allows us to view

CM˙.˛/ as a Weil divisor Z˙.˛/ on CM˙ . To define this divisor more precisely, we
describe its pullback to any étale cover CM0̇ �! CM˙ with CM0̇ a scheme. If we set
CM0̇ .˛/ D CM˙.˛/ �CM˙ CM

0̇ , then the pullback of Z˙.˛/ to CM0̇ is

Z0̇ .˛/ D
X

z2CM0

˙.˛/

Œk.z/ W k.�.z//� � length.OCM0

˙.˛/;z
/ � �.z/:

Now define
bZ˙.˛/ D .Z˙.˛/; 0/ 2 cCH1.CM˙/:

For the sake of conformity with notation to be introduced momentarily, we define

bZ˙.˛;v/ DbZ˙.˛/

for any v 2 .F
]
R/

�0. The following theorem is simply a restatement of Theo-
rem 5.1.1 and Proposition 5.1.2.

Theorem 5.3.1 Suppose ˛ 2 .F ]/� is totally positive. If Sppt.˛/ D fpg for some
prime p satisfying both conditions of Hypothesis B, then

bdegbZ˙.˛;v/ D � 1

WE

� c˙.˛;v/ (5.9)

for any v 2 .F ]

R/
�0. If instead #Sppt.˛/ > 1, then both sides of (5.9) are 0.

Next we formulate a version of (5.9) that holds for ˛ 2 .F ]/� with ˛ 6� 0.
In this case the arithmetic divisor bZ˙.˛; v/ will be “supported at 1” in the sense
that the underlying divisor Z is the zero divisor. Thus, we only need to define the
appropriate function G.�/ D G.˛;v; �/ on (5.8). To understand the correct definition,
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given by (5.12) below, we must first make a lengthly digression on the structure of
the complex fiber M.C/.

Let S D .S; �S ; �S/ be an OF -polarized RM module (it is unique up to
isomorphism, by Proposition 2.2.2), and let �S be the F -symplectic form on SQ
determined by �S D TrF=Q ı�S . Let

G D ResF=QSp.SQ; �S/

be the associated symplectic group, and set

� D f� 2 G.Q/ W � � S D Sg:

A cusp of S is a maximal Q-rational parabolic subgroup of G=Qalg . Every cusp of
S is the stabilizer of an F -line in SQ, and the intersection of such a line with S is
a rank one OF -direct summand a � S . This establishes a � -equivariant bijection
between the set of cusps of S and the set of all such a � S . In particular, to any cusp
(which we now fix) we may attach a short exact sequence of projective OF -modules

0 ! a ! S ! b ! 0:

Fix a splitting S Š a ˚ b and an F -basis e1; e2 2 SQ with e1 2 aQ, e2 2 bQ,
and �S.e1; e2/ D 1. These choices identify SQ Š F � F (column vectors), and
identify a and b with fractional OF -ideals in such a way that ab D D�1

F . They
also identify G Š ResF=QSL2 in such a way that the chosen cusp is identified with
the subgroup of upper triangular matrices (the “cusp at infinity”). As in the proof
of Proposition 2.2.2, every j 2 V.S/ is now of the form js D J � s� for some
J 2 M2.F /, and j 7! J defines an isomorphism of quadratic spaces

�

V.S/;QS
� Š �

WM2.Q/; det
�

:

The action of G.Q/ on V.S/ defined by g � j D g ı j ı g�1 becomes the action
g � J D g � J � .g� /�1 of SL2.F / on WM2.Q/.

A complex structure on SR is an h 2 G.R/ satisfying h2 D �1, and such that
the symmetric bilinear form �S.hs1; s2/ on SR is positive definite. The set D of all
complex structures carries a natural transitive G.R/ action � 
 h D �h��1, and the
stabilizer of any point is a maximal compact open subgroup. We can make D into
a complex manifold by constructing explicit coordinates. Let F�0

R � FR be the
subset of totally positive elements, and define a subset HF � FC by

HF D FR C i � F�0
R :

A choice of isomorphism (which we do not make) FR Š R � R identifies HF with
the product of two copies of the upper half complex plane. Given any z D x C iy 2
HF define
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gz D
�

y1=2 xy�1=2
y�1=2

�

2 G.R/

and

h.z/ D gz �
� �1
1

�

� g�1
z 2 D:

The function z 7! h.z/ establishes a bijection HF Š D.
We now construct complex uniformizations of M.C/ and T.m/.C/. Every h 2 D

makesSR into a C-vector space in an obvious way (i � Dh), and so defines a complex
torus Ah.C/ D SR=S equipped with an action of OF deduced from �S , and an
OF -polarization deduced from �S . Thus to each point h 2 D we may associate
an OF -polarized RM abelian surface Ah D .Ah; �Ah ; �Ah/, and the construction
h 7! Ah determines an isomorphism of complex orbifolds (for orbifolds see [11,
Appendix B] and the references therein)

Œ� nD� Š M.C/:

For each h 2 D set

Vh D fj 2 V.S/R W h ı j D �j ı hg:

Given j 2 Vh and x 2 S , both nonzero, the calculation

0 < �S.hjx; jx/ D ��S.jhx; jx/ D �QS.j /�S .hx; x/

shows that QS.j / < 0. Thus the subspace Vh is negative definite, and the same
argument shows that its orthogonal complement

V ?
h D fj 2 V.S/R W h ı j D j ı hg

is positive definite. We know from Proposition 2.2.2 that V.S/R has signature .2; 2/,
and therefore Vh and V ?

h have signatures .0; 2/ and .2; 0/, respectively. Note that
V ?
h is the space of special endomorphisms that are complex linear for the complex

structure h on SR. For each j 2 V.S/R define

D.j / D fh 2 D W j 2 V ?
h g;

so that for each h 2 D.j / the complex analytic map j W SR ! SR determines
a special endomorphism of Ah. As above there is an isomorphism of complex
orbifolds h

� n
G

j2L.S/
QS.j /Dm

D.j /
i

Š T.m/.C/;

defined by sending a point h 2 D.j / to the pair .Ah; j /.
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If jh denotes the orthogonal projection of j to Vh, then

R.j;h/ D �QS.jh/

is a smooth nonnegative function on D whose zero locus is D.j /. We can use the
isomorphism HF Š D to give an explicit formula for R.j;h/. Fix a ı 2 F such
that ı2 D dF . The negative 2-plane Vz D Vh.z/ in WM2.Q/ ˝Q R is spanned by the
orthogonal vectors

gz �
�

ı

�ı
�

D ıp
yy�

�

y �xy� � x�y

0 �y�
�

gz �
�

ı

ı

�

D ıp
yy�

�

x yy� � xx�

1 �x�
�

:

If j 2 V.S/ corresponds to

J D
�

a ıb

ıc a�

�

2 WM2.Q/

then direct calculation shows that the function R.j;h/ on D is identified with the
function

R.j; z/ D jdF czz� C ıa� z � ıaz� � dF bj2
4dF yy�

on HF . In particular, the holomorphic function

�.j; z/ D dF czz� C ıa� z � ıaz� � dF b

has divisor D.j / � D.
Next we construct a Green function for the divisor T.m/, following ideas of

Kudla [26] and Bruinier [3]. The exponential integral ˇ1 W R>0 ! R of [34, (3.5.2)],
defined by

ˇ1.r/ D
Z 1

1

e�ruu�1 du;

has a logarithmic singularity at r D 0, in the sense that ˇ1.r/ C log.r/ can be
extended smoothly to R. Furthermore ˇ1.r/ D O.e�r / as r ! 1. For each j 2
V.S/ and positive parameter v 2 R, define a function

Gr.j;v;h/ D ˇ1.4�vR.j;h//

on D X D.j /. If �.j;h/ is any holomorphic function on D with divisor D.j /, the
calculation of the preceding paragraph shows that

Gr.j;v;h/C log j�.j;h/j2
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extends to a smooth function on all of D. Thus Gr.j;v;h/ is a Green function for
the divisor D.j /, in the sense of [13, 51]. For any nonzero m 2 Z the sum (see [3,
Sect. 3] for the proof of convergence)

Gr.m;v;h/ D
X

j2L.S/
QS.j /Dm

Gr.j;v;h/

is � -invariant, and defines a Green function for the orbifold divisor

h

� n
G

j2L.S/
QS.j /Dm

D.j /
i

! Œ� nD�:

In other words, Gr.m;v;h/ is a Green function for the Hirzebruch–Zagier divisor
T.m/ on M. In particular, if m < 0 then Gr.m;v;h/ is a smooth function on M. This
can also be seen directly from the definition of Gr.j;v;h/: if QS.j / < 0 then j
cannot be orthogonal to any negative 2-plane, and so R.j;h/ 6D 0 for every h 2 D.

Fix a CM type˙ ofE. We will now evaluate Gr.m;v;h/ on the 0-cycleCM˙.C/.
LetX˙ be the set of isomorphisms classes of OF -polarized CM modules of CM type
˙ , as in Sect. 2.3. As S is unique up to isomorphism, to each T 2 X˙ we may attach
a � -orbit of isomorphisms T Š S of OF -polarized RM modules. The CM type ˙
determines an isomorphism ER Š C � C, and so makes TR Š SR into a complex
vector space. Thus each T 2 X˙ determines a � -orbit of complex structures on S,
which we denote by DT � D. In this way we obtain an orbifold presentation

G

T2X˙




� nDT
� Š CM˙.C/:

The action of � on DT is transitive, and the orbifold on the left is a finite set of
points indexed by X˙ , each with stabilizer �.E/.

For each T 2 X˙ we now fix an isomorphism T Š S of underlying OF -polarized
RM modules. This singles out a representative hT 2 DT. Suppose j 2 L.T/ and
set ˛ D Q

]
T.j /. Let �C; �� 2 F

]
R be the orthogonal idempotents inducing the

splitting F ]

R Š R � R, labeled so that �˙ corresponds to the archimedean place
1˙̇ of Proposition 2.3.5. Scalar multiplication by complex numbers (in particular
by i D hT) commutes with the action of ER on TR, and so the involution j 7!
h ı j ı h�1 commutes with the E]-module structure on V.T/. In particular, the
decomposition

V.T/R D �CV.T/R ˚ ��V.T/R
is stable under the involution j 7! h ı j ı h�1. By Proposition 2.3.5 the summand
��V.T/R is a negative 2-plane, and it follows easily that VhT D ��V.T/R: From
this we deduce jhT D ��j , and

R.j;hT/ D �QT.�
�j / D ���Q]

T.j / D j˛j1�

˙
:
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By Remark 3.2.7 there is a canonical bijection X˙ ! CM˙.C/, and we at
last compute, at least formally, as CM˙.C/ may contain points lying along the
singularities of Gr.m;v; �/,

X

P2CM˙.C/

Gr.m;v; P /

#Aut.P /
D

X

T2X˙

Gr.m;v;hT/

WE

D
X

T2X˙

X

j2L.T/
QT.j /Dm

ˇ1.4�vR.j;hT//

WE

D
X

˛2F ]
Tr
F]=Q

.˛/Dm

ˇ1.4�jv˛j1�

˙
/
X

T2X˙

X

j2L.T/
Q
]
T.j /D˛

1

WE

: (5.10)

This is our provisional formula for the Green function Gr.m;v; �/ evaluated at
CM˙.C/, and should be viewed as an archimedean counterpart to the stack-theoretic
decomposition (3.4). Note that asQ]

T is positive definite at 1C
˙ and negative definite

at 1�̇ by Proposition 2.3.5, the only ˛ that contribute to the sum are those of mixed
sign: nonnegative at 1C

˙ and nonpositive at 1�̇ .
In all of the above calculations, we have viewed C as an O˙ -algebra using the

inclusion E˙ � C. Now let 
 W E˙ ! C be an arbitrary embedding, and extend 
 to
a field automorphism of C. This extension allows to define the Galois conjugate CM
type˙
, which one may check is independent of the choice of extension. Recall that
we defined CM
˙ to be the stack over C obtained from CM˙ by base change through

 W O˙ �! C. Let C
 denote the complex numbers, viewed as an O˙ -algebra via

 W E˙ ! C, so that there is a tautological equivalence of categories CM
˙ .C/ Š
CM˙.C
/. An object of the category CM˙.C
/ is OF -polarized CM abelian surface
A over C such that the characteristic polynomial of any x 2 OE acting on Lie.A/
is equal to the image of c˙;x.T / under 
 W O˙ŒT � ! CŒT �. But of course this is the
same as the image of c˙
;x.T / under the inclusion O˙ ŒT � ! CŒT �. In other words,
the functor A 7! A is an equivalence of categories CM˙.C
/ ! CM˙
.C/, and we
have constructed a canonical equivalence

CM
˙ .C/ Š CM˙
.C/:

For any nonzerom 2 Z and v 2 R>0 the value of Gr.m;v/ at CM˙ is defined to
be

Gr.m;v;CM˙/ D
X




X

P2CM
˙ .C/

Gr.m;v; P /

#Aut.P /
(5.11)

where the sum is over all embeddings 
 W E˙ ! C. It is clear from (5.10) and the
discussion above that
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Gr.m;v;CM˙/ D
X




X

˛2F ];˛ 6�0
Tr
F]=Q

.˛/Dm

ˇ1.4�jv˛j1�

˙

/
X

T2X˙


X

j2L.T/
Q
]
T.j /D˛

1

WE

:

We allow the possibility that both sides are infinite; this can only happen if F ] is not
a field, so that the right hand side includes a term with j˛j1�

˙

D 0.

At last we may define the promised function G.˛;v; �/ on (5.8).

Definition 5.3.2 Suppose ˛ 2 .F ]/� is not totally positive, and that v 2 .F
]

R/
�0.

To each point P 2 CM
˙ .C/ the bijections

CM
˙ .C/ Š CM˙
 .C/ Š X˙
;

associate an OF -polarized CM module T, and we define

G.˛;v; P / D ˇ1.4�jv˛j1�

˙

/
X

j2L.T/
Q
]
T.j /D˛

1: (5.12)

The arithmetic divisor

bZ˙.˛;v/ D .0;G.˛;v; �// 2 cCH1.CM˙/

has, by construction and by Lemma 3.2.4, degree

bdegbZ˙.˛;v/ D
X


WO˙�!C

ˇ1.4�jv˛j1�

˙

/
X

T2X˙


X

j2L.T/
Q
]
T.j /D˛

1

2WE

: (5.13)

In particular, for v 2 R>0 and nonzerom 2 Z we have

1

2
Gr.m;v;CM˙/ D

X

˛2F ];˛ 6�0
Tr
F]=Q

.˛/Dm

bdegbZ˙.˛;v/; (5.14)

at least in cases (cyclic) and (nongal), so that the sum contains only ˛ 2 .F ]/�.

Lemma 5.3.3 Fix � 2 HF ] , T 2 X˙ , and ˛ 2 .F ]/�. If ˛ is positive at 1C
˙ and

negative at 1�̇ then

ˇ1.4�jv˛j1�

˙
/
X

T2X˙

X

j2L.T/
Q
]
T.j /D˛

1

WE

� q˛ D � 1

WE

X

T2X˙
E 0̨ .�; 0;T/:

Otherwise the left hand side is equal to 0.
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Proof. The final claim is clear from Proposition 2.3.5, so we may assume that ˛ is
positive at 1C

˙ and negative at 1�̇ . If x 2 F ] (or F ]

R) let x˙ be the image of x in
the completion of F ] at 1˙̇, and identify this completion with R. The hypotheses
on the sign of ˛ imply that 1�̇ belongs to the set Diff.˛;T/ defined in Chap. 4.
Recall from Sect. 4.5 that we have attached two Eisenstein series to T. The first is
the incoherent Eisenstein series E.�; s;T/ constructed from C .T/, and the second
is the coherent Eisenstein series E.�; s; V .T// constructed from the adelization of
V.T/. These two AF ]-quadratic spaces are isomorphic at every place of F ] except
1�̇ , and it follows from the constructions that

W˛;v.g; s;T/ D W˛;v.g; s; V .T//

for every place v 6D 1�̇ . Therefore

E˛.�; s;T/
E˛.�; s; V .T//

D W˛�;R.��; s; ˚1
R/

W˛�;R.��; s; ˚�1
R /

;

i.e.,

E˛.�; s;T/ D W˛�;R.��; s; ˚1
R/

W˛�;R.��; s; ˚�1
R /

E˛.�; s; V .T//:

The assumption ˛� < 0 implies W˛�;R.��; 0; ˚1
R/ D 0. Differentiating both sides

at s D 0 and applying [33, Proposition 2.6] shows that

E 0̨ .�; 0;T/ D � 1

2v�
ˇ1.4�jv˛j1�/e�4�v�˛�E˛.�; 0; V .T//: (5.15)

The lemma now follows by combining (5.15) with Proposition 4.5.4. ut
Theorem 5.3.4 If ˛ 2 .F ]/� is not totally positive, and v 2 .F ]

R/
�0, then

bdegbZ˙.˛;v/ D � 1

WE

� c˙.˛;v/:

Proof. First suppose we are either in case (cyclic) or (nongal). This implies thatE˙
is a quartic CM field. As 
 varies over the four embeddings O˙ �! C,˙
 varies over
the four CM types of E. Thus we may rewrite (5.13) as

bdegbZ˙.˛;v/ D
X

1�k�4
ˇ1.4�jv˛j1�

˙k
/
X

T2X˙k

X

j2L.T/
Q
]
T.j /D˛

1

2WE

;

where ˙1; : : : ; ˙4 are the four CM types of E, labeled so that ˙1 D˙ and
˙2 D ˙ . Returning to Sect. 2.4, define an element Z D .OE;�1/ 2 C.E/. If
T D .T; �T ; �T / is a polarized CM-module, then T ˝ Z D .T; �T ;��T /, and
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T 7! T ˝ Z defines bijections X˙1 ! X˙2 and X˙3 ! X˙4 . There is an
isomorphism of F ]-quadratic spaces

.V .T/;Q]
T/ Š .V .T ˝ Z/;Q]

T˝Z/

identifying L.T/ Š L.T ˝ Z/, and it follows from the construction of E.�; s;T/
that E.�; s;T/ D E.�; s;T ˝ Z/. Thus

bdegbZ˙.˛;v/ D
X

k2f1;3g
ˇ1.4�jv˛j1�

˙k
/
X

T2X˙k

X

j2L.T/
Q
]
T.j /D˛

1

WE

:

Let ˛˙ 2 R be the image of ˛ in the completion of F ] at 1˙̇. Lemma 5.3.3,
together with the observation 1˙̇

1
D 1�

˙3
, implies

bdegbZ˙.˛;v/ � q˛ D � 1

WE

8

ˆ

ˆ

<

ˆ

ˆ

:

P

T2X˙1 E
0̨ .�; 0;T/ if ˛C > 0 and ˛� < 0

P

T2X˙3 E
0̨ .�; 0;T/ if ˛C < 0 and ˛� > 0

0 if ˛C < 0 and ˛� < 0.

Now choose Z 2 C.E/ as in Proposition 2.4.3. After possibly interchanging˙3 and
˙4, T 7! T˝Z defines bijectionsX˙1 ! X˙3 andX˙2 ! X˙4 , and it follows from
the constructions of Chap. 4 that E.�; s;T/ D E.�; s;T ˝ Z/. From this discussion
it is clear that the sum

X

T2X˙k
E.�; s;T/

is in fact independent of k. Thus

bdegbZ˙.˛;v/ D � 1

WE

(

c˙.˛;v/ if ˛ is not totally negative

0 if ˛ is totally negative

But if ˛ is totally negative then Diff.˛;T/ contains both archimedean places of F ],
and it follows that E.�; s;T/ vanishes to at least order 2 at s D 0, as (4.7) implies
that the local Whittaker function vanishes at s D 0 for both archimedean places.
Thus ˛ � 0 implies c˙.˛;v/ D 0, and we are done.

Now assume we are in case (biquad). This implies that E˙ is a quadratic
imaginary field. As 
 varies over the two embeddings O˙ �! C, ˙
 varies over
the two CM types ˙ and ˙ of E. By the argument of the previous paragraph, the
sum

X

T2˙
E.�; s;T/
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is unchanged if ˙ is replaced by ˙ , and so (5.13) implies

bdegbZ˙.˛;v/ D ˇ1.4�jv˛j1�

˙
/
X

T2X˙

X

j2L.T/
Q
]
T.j /D˛

1

WE

:

Label the orthogonal idempotents �C; �� 2 F ] Š Q � Q in such a way that
�˙.�

C/ D 0. Thus �˙ W E] �! E˙ identifies ��E] Š E˙ . As the notation
suggests, if we set ˛˙ D �˙˛ 2 Q then j˛˙j D j˛j1˙

˙
. Using Lemma 5.3.3

we obtain

bdegbZ˙.˛;v/ � q˛ D � 1

WE

(

P

T2X˙ E
0̨ .�; 0;T/ if ˛C > 0 and ˛� < 0

0 otherwise.

If ˛ is totally negative then, as in the previous paragraph, E 0̨ .�; 0;T/ D 0 for
every T 2 X˙ . If ˛C < 0 and ˛� > 0 then the argument is similar to that used at
the end of the proof of Theorem 5.1.1. As the incoherent quadratic space C .T/ was
obtained from V.T/ by interchanging invariants at 1�̇ , �CC .T/ is isomorphic to
the adelization of �CV.T/ as quadratic spaces over the adele ring A. In particular
�CC .T/ is a coherent quadratic space. As this quadratic space does not represent
˛C at the archimedean place, there is some finite place ` of Q such that �CC .T/
does not represent ˛C locally at `. Thus C .T/ fails to represent ˛ locally at 1 and
at `. As in the proof of Theorem 5.1.1, this implies that E 0̨ .�; 0;T/ D 0 for every
T 2 X˙ . It follows that

bdegbZ˙.˛;v/ � q˛ D � 1

WE

X

T2X˙
E 0̨ .�; 0;T/;

completing the proof of the theorem. ut
The proof of Theorem 5.3.4 has the following corollary, which should really be

viewed as a corollary of Proposition 2.4.3.

Corollary 5.3.5 In cases (cyclic) and (nongal) the Eisenstein series E.�; s;˙/ is
independent of ˙ .

5.4 Arithmetic Intersections

In this section we assume that we are either in case (cyclic) or (nongal), and that
Hypothesis B holds for every rational prime p. On the arithmetic threefold M, we
wish to compare the arithmetic intersection multiplicity of the divisor T.m/ and the
codimension two cycle CM˙ with the Fourier coefficients of the derivative of an
Eisenstein series.
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Fix a nonzerom 2 Z and a positive v 2 R, and define, as in the introduction, an
arithmetic divisor

bT.m;v/ D �

T.m/;Gr.m;v; �/�

on M. Here Gr.m;v; �/ is the Green function on M for the divisor T.m/ defined in
Sect. 5.3. The intersection multiplicity of bT.m;v/ with CM˙ is defined as the sum
of finite and archimedean contributions. If q is a prime of O˙ and

z 2 .T.m/\ CM˙/.F
alg
q /

is a geometric point, define the Serre intersection multiplicity at z by

hT.m/ W CM˙ iz D
X

`	0
lengthOsh

M;z
Tor

Osh
M;z

`

�

Osh
T.m/;z;O

sh
CM˙ ;z

�

:

On the right hand side we have shortened M=O˙ and T.m/=O˙ simply to M and T.m/
to ease notation. The finite intersection multiplicity is defined by

hT.m/ W CM˙ ifin D
X

q

log.Nm.q//
X

z2.T.m/\CM˙/.Falg
q /

hT.m/ W CM˙ iz

#Aut.z/
:

The archimedean contribution to the intersection is defined as one-half the value
(5.11), and the total intersection multiplicity is

hbT.m;v/ W CM˙ i D hT.m/ W CM˙ ifin C 1

2
� Gr.m;v;CM˙/:

Let H be the usual complex upper half-plane, and let

i� W H ! H � H Š HF ]

be the diagonal embedding. The pullback of E.�; s;˙/ to H is a nonholomorphic
modular form of weight 2, whose central derivative has a Fourier expansion (for
� D uC iv 2 H)

E 0.i�.�/; 0;˙/ D
X

m2Z
b˙.m;v/ � qm

in which
b˙.m;v/ D

X

˛2F ]
Tr
F ]=Q

.˛/Dm

c˙.˛;v/:

Theorem 5.4.1 For any nonzerom 2 Z and any positive v 2 R,

hbT.m;v/ W CM˙ i D � 1

WE

� b˙.˛;v/
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Proof. Recall from (3.4) that the stack

T.m/ \ CM˙ D T.m/=O˙ �M=O˙
CM˙:

has a decomposition

T.m/ \ CM˙ D
G

˛2F ]
Tr
F]=Q

.˛/Dm

CM˙.˛/:

As Q]

A is totally positive definite for any OF -polarized CM abelian surface A, we
in fact have

T.m/ \ CM˙ D
G

˛2F ];˛�0
Tr
F]=Q

.˛/Dm

CM˙.˛/:

The strictly Henselian local rings of T.m/ and CM˙ are Cohen–Macaulay by
Propositions 3.3.6 and 3.3.5, respectively, and so [49, p.111] implies that only
the `D 0 term contributes to the Serre intersection multiplicity at z. In other
words, hT.m/ W CM˙ iz is simply the length of the strictly Henselian local ring of
T.m/\ CM˙ at z. Hence

hT.m/ W CM˙ ifin D
X

˛2F ]; ˛�0
Tr
F ]=Q

.˛/Dm

bdeg CM˙.˛/:

Now applying Theorem 5.1.1 and Proposition 5.1.2 shows that

hT.m/ W CM˙ ifin D � 1

WE

X

˛2F ]; ˛�0
Tr
F ]=Q

.˛/Dm

c˙.˛;v/:

On the other hand, combining (5.14) and Theorem 5.3.4 shows that

1

2
Gr.m;v;CM˙/ D � 1

WE

X

˛2F ];˛ 6�0
Tr
F]=Q

.˛/Dm

c˙.˛;v/;

completing the proof. ut



Chapter 6
Local Calculations

This chapter contains the technical core of this work, and makes heavy use of the
theory of Dieudonné modules, the Grothendieck–Messing deformation theory of
p-divisible groups, and Zink’s theory of displays.

Fix a fractional OF -ideal c 	 OF and a CM type˙ of E. Exactly as in Sect. 5.2,
fix a prime q � O˙ and embeddings (5.2) such that the resulting embedding O˙ !
Q

alg
p lies above q. Write F

alg
q for the residue field of Qalg

p , to emphasize its O˙;q-
algebra structure. Throughout Chap. 6 we fix a c-polarized CM module T with CM
type ˙ . The c-polarized CM abelian surface over C (or over Qalg or Cp) associated
to T by Remark 3.2.7 will be denoted A.T/. Denote by A the reduction of A.T/
to the residue field of Cp . Thus A is a c-polarized CM abelian surface over Falg

q

satisfying the ˙-Kottwitz condition. The above choices and notation remain fixed
throughout Chap. 6.

Chapter 6 has three goals. The first is to compare the two F ]
p -quadratic spaces

�

Vp.T/;Q
]
T

�

and
�

Vp.A/;Q
]

A

�

, in order to complete the proof of Proposition 5.2.2.
The second goal is to compute the formal deformation space of the pair .A; j / for
any j 2 L.A/, completing the proof of Proposition 5.2.3. The third goal is the
calculation of the integral structures Lp.T/ � Vp.T/ and Lp.A/ � Vp.A/, which
lead to the proof of Proposition 5.2.5.

Let q] be the pullback of q by �˙ W OE] ! O˙ , and let p] be the prime of F ]

below q]. The elements of the fixed CM type are denoted ˙ D f�3; �4g; and we
define

�1.x/ D �3.x/ �2.x/ D �4.x/: (6.1)

Let DF ] be the different of F ]=Q, and let DE]=F ] be the different of E]=F ].
If L0 � L are finite extensions of Qp then e.L=L0/ denotes the ramification

degree of L=L0. As p is fixed, we abbreviate E for the subfield Ep � Q
alg
p of

the introduction.

B. Howard and T. Yang, Intersections of Hirzebruch–Zagier Divisors and CM Cycles,
Lecture Notes in Mathematics 2041, DOI 10.1007/978-3-642-23979-3 6,
© Springer-Verlag Berlin Heidelberg 2012
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6.1 Extended Dieudonné Modules

The CM types of E are f�1; �2g, f�3; �4g, f�1; �4g, and f�2; �3g, and the field
E contains the images of the four reflex homomorphisms E] ! Q

alg
p defined in

Sect. 2.1:

�12.x/ D �f�1;�2g.x/ �23.x/ D �f�2;�3g.x/

�34.x/ D �f�3;�4g.x/ �14.x/ D �f�1;�4g.x/:

The group Gal.E=Qp/ acts faithfully on each of the sets Hom.E;Qalg
p / and

Hom.E];Q
alg
p /, and to understand these two actions we draw the square

�1
�12

�14

�2

�23

�4
�34

�3

(6.2)

with vertices Hom.E;Qalg
p / and edges Hom.E];Q

alg
p /. The relations (6.1) imply

that Gal.E=Qp/ acts through rigid motions of (6.2), and we view Gal.E=Qp/ as a
subgroup of the dihedral group.

Proposition 6.1.1 The following are equivalent:

1. the c-polarized CM abelian surface A is supersingular,
2. the prime p] is nonsplit in E],
3. the edges �12 and �34 of (6.2) lie in the same Gal.E=Qp/-orbit.

Proof. The maps �12; �34 W E] ! E are complex conjugates, and both lie above
the prime p] of F ]. The equivalence of the second and third conditions is clear from
this.

For any prime Q of E above p, let HQ � HomQ.E;Cp/ be the subset of
maps inducing the prime Q. The proof of the Shimura–Taniyama formula (see for
example [9, Corollary 4.3]) shows that

dim.AŒQ1�/
height.AŒQ1�/

D #.˙ \HQ/

#HQ
: (6.3)

By [20, Proposition 2.1.1] the image of OE;Q in the endomorphism ring of AŒQ1�
is its own centralizer, and it follows from the proof of [20, Proposition 2.1.1] that
AŒQ1� is isoclinic: the slope sequence of its Dieudonné module is constant. The
simple (up to isogeny) Dieudonné module of slope s=t has dimension s and height t ,
and so the unique slope of AŒQ1� is (6.3). Therefore A is supersingular if and only
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if (6.3) is equal to 1=2 for every Q. If Œ�� denotes the Aut.E=Qp/-orbit of a map
� 2 HomQ.E;E/, then this result may be restated as

1

2
D #.f�3; �4g \ Œ��/

#Œ��
for every � 2 HomQ.E;E/ (6.4)

if and only if A is supersingular.
It only remains to check that the condition (6.4) is equivalent to the third con-

dition in the statement of the proposition: simply verify by brute force the desired
equivalence for every possible subgroup Gal.E=Qp/ of the dihedral group of the
square (6.2). ut

Let W D W.F
alg
q / be the Witt ring of F

alg
q , and let x 7! xFr be the unique

ring automorphism of W inducing x 7! xp on the residue field. There is a unique
ring homomorphismW ! OCp inducing the identity on the common residue field

F
alg
q , and this homomorphism realizes WQ D W ˝Z Q as the completion of the

maximal unramified extension of Qp in Cp. The (covariant) Dieudonné module of
A is denoted .D; F; V /, so thatD is a freeW -module of rank four and F and V are
continuous group homomorphisms F; V W D ! D satisfying FV D p D VF and

wFrF.x/ D F.wx/

for every w 2 W . The Lie algebra of D is the Falg
q -vector space

Lie.D/ D D=VD; (6.5)

which is canonically isomorphic to the Lie algebra of A (using the isomorphism
[60, (157)]). The action �A W OE ! End.A/ induces an action �D W OE ! End.D/,
and the polarization �A induces an alternating W -bilinear form �D W D �D ! W

satisfying
�D.F x; y/ D �D.x; Vy/

Fr:

Let WQ denote the completion of the maximal unramified extension of E in Cp , a
finite extension ofWQ, and let W � WQ be its valuation ring. In order to diagonalize
the action of OE on D we define

D D D ˝W W DQ D D ˝W WQ:

The action �D extends uniquely to �D W OE ! EndW .D/, and the pairing �D
extends uniquely to a W -linear pairing �D W D � D ! W . The operators F and V
induce a family of operators on D , which we now describe.

Let FrZ Š Z be the group of field automorphisms of WQ generated by Fr. We
will say that � 2 Aut.WQ=Qp/ is algebraic if the restriction of � to Aut.WQ=Qp/

lies in FrZ, and when this is the case we define k.�/ 2 Z by the relation

� jWQ
D Frk.�/:
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Let � � Aut.WQ=Qp/ be the subgroup of algebraic elements. There are obvious
surjective homomorphisms � ! Z and � ! Gal.E=Qp/; the first defined by
� 7! k.�/ and the second by restriction. The fiber over k 2 Z of the first map is
denoted � .k/. The second map identifies � .0/ D Gal.WQ=WQ/ with the inertia
subgroup of Gal.E=Qp/. For each � 2 � there is a pair of operators F� and V� on
D defined by

F� .x ˝ w/ D .F k.�/x/˝ .w� /

V� .x ˝ w/ D .V k.�/x/˝ .w�
�1

/:

These operators commute with the action �D and satisfy

F� ı V� D pk.�/ D V� ı F� :

One may recover D D D� .0/ from D as the W -submodule of elements fixed by
F� and V� for every � 2 � .0/, and then F and V agree with the restrictions to
D of F� and V� for any � 2 � .1/. The W -module D with its family of operators
fF� W � 2 � g [ fV� W � 2 � g is the extended Dieudonné module of A. The pairing
�D satisfies

�D.F�x; y/ D �D.x;V�y/
� for all � 2 � (6.6)

and
cD D fw 2 DQ W �D.w; z/ 2 W for all z 2 Dg: (6.7)

In order to do explicit calculations, we now put coordinates on D . Fix, once and
for all, an isomorphism of OE ˝ZW -modulesD Š OE ˝ZW (see [20, Proposition
2.1.1] for the existence of such an isomorphism). Of course this identifies D Š
OE ˝ZW . Let e1; e2; e3; e4 2 W 4 be the standard basis elements (written as column
vectors). The W -linear map OE ˝Z W ! W 4 determined by

x ˝ 1 7!

2

6

6

4

�1.x/

�2.x/

�3.x/

�4.x/

3

7

7

5

(6.8)

extends WQ-linearly to an isomorphism

DQ Š W 4
Q ; (6.9)

which we use to identify D with a submodule of W 4. If p is unramified in E then
D D W 4, but in general the inclusion is proper. Under the identification (6.9) the
action �D W OE ! EndW .D/ takes the form
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�D.x/ D

0

B

B

@

�1.x/

�2.x/

�3.x/

�4.x/

1

C

C

A

: (6.10)

The operators F� and V� with � 2 � .0/ each act on W 4 as the product of a
permutation matrix with a Galois automorphism:

� ı �i D �j H) F� .wei / D w� � ej : (6.11)

for every w 2 W . For a general � 2 � we cannot know the precise form of F�

without explicit knowledge of the operator F from which it is derived. However, if
� ı �i D �j then for any x 2 OE we have

�D.x/F� .ei / D F� .�D.x/ei /

D F� .�i .x/ei /

D �i .x/
�F� .ei /

D �j .x/F� .ei /;

and it follows that F� .ei / is a scalar multiple of ej . This shows that

� ı �i D �j H) F� .wei / D w�xi;j � ej (6.12)

for some xi;j 2 W �
Q . Thus F� has the form F� D X ı � for some matrix

X 2 M4.WQ/ having a unique nonzero entry in each row and each column, and
the location of the nonzero entries may be read off from the action of � on the
diagram (6.2).

It follows from Lemma 3.2.3 that

�D .�D.t/x; y/ D �D .x; �D .t/y/

for all t 2 OE , and so the pairing �D has the form

�D.x; y/ D t x �

0

B

B

@

	1
	2

�	1
�	2

1

C

C

A

� y (6.13)

for some 	1; 	2 2 W �
Q . Every special endomorphism j 2 Vp.A/ induces an

endomorphism of DQ, which is given by the action of some element of M4.WQ/.
The conditions j D j � and �A.x/ ı j D j ı �A.x� / for x 2 OF imply that this
matrix has the form
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j D

0

B

B

@

	2b 	2c

	1a �	1c
�	2d 	2a

	1d 	1b

1

C

C

A

2 M4.WQ/: (6.14)

The condition that j commutes with all operators F� and V� imposes additional
relations among the matrix entries, and the condition j 2 Lp.A/ (which is
equivalent to j � D � D) imposes still more relations. All of these additional
relations depend on the action of � on (6.2), and will be determined on a case-
by-case basis. Using the description (6.10) of the action of OE on DQ, the action of
E
]
p on Vp.A/ defined in Sect. 3.2 takes the explicit form

x � j D

0

B

B

@

	2b � �14.x/ 	2c � �12.x/
	1a � �23.x/ �	1c � �12.x/

�	2d � �34.x/ 	2a � �23.x/
	1d � �34.x/ 	1b � �14.x/

1

C

C

A

: (6.15)

The construction of the extended Dieudonné module of A has an analogue for T.
Define

T D T ˝Z W TQ D T ˝W WQ:

The action �T induces a W -linear action �T W OE ! EndW .T /, and the symplectic
form �T extends to a W -symplectic form �T W T � T ! W . For each � 2 �

there are operators F� and V� on T defined by

F� .x ˝ w/ D x ˝ .w� / V� .x ˝ w/ D x ˝ .w�
�1

/

and satisfying F� ı V� D id D V� ı F� . Furthermore

�T .F�x; y/ D �T .x;V�y/
� 8� 2 �: (6.16)

We may recover T from T as the Zp-submodule of elements fixed by F� for every
� 2 � . Fix, once and for all, an isomorphism of OE-modules T ˝Z Zp Š OE;p .
This induces an isomorphism T Š OE ˝Z W , and the map (6.8) then determines
a WQ-linear isomorphism TQ ! W 4

Q . Using this isomorphism we view T as a
submodule of W 4. As submodules of W 4 we have D D T , and the action �T is
given by the same formula (6.10) as �D . The pairing �T has the same form (6.13) as
�D , although the values of 	1 and 	2 for �T need not be the same as those for �D ; it
will always be clear from context whether 	1 and 	2 refer to the pairing �D or �T .
Every j 2 Vp.T/ induces a W -linear endomorphism of T of the form (6.14) which
commutes with all operators F� and V� , and satisfies

j 2 Lp.T/ ” j � T � T :
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The action ofE]
p on Vp.T/ again has the explicit form (6.15). For every � 2 � each

of F� and V� (now acting on W 4
Q ) may be written as the product of a permutation

matrix and a Galois automorphism. More precisely, (6.11) holds for every � 2 �

(not just � 2 � .0/).
Proposition 6.1.2 For any j 2 Vp.A/, written in the form (6.14),

e.E=F
]

p]
/ � ordp]

�

Q
]

A.j /
� D ordW .	1	2/C ordW .cd/:

If there is another prime p]� 6D p] of F ] above p then

e.E=F
]

p
]
�

/ � ord
p
]
�

�

Q
]

A.j /
� D ordW .	1	2/C ordW .ab/:

The same statement holds with A replaced everywhere by T.

Proof. Label the orthogonal idempotents �23; �14; �12; �34 in

E]
p ˝Qp WQ Š W 4

Q

in such a way that .x ˝ 1/ � �ij D 1 ˝ �ij .x/ for all x 2 E
]
p. If we identify

Vp.A/˝Qp WQ with the space of all matrices (6.14), then (6.15) shows that

�23 � j D
� 0 0
	1a 0

0 	2a
0 0

�

�14 � j D
 

	2b 0
0 0

0 0
0 	1b

!

�12 � j D
� 0 	2c
0 �	1c
0 0

0 0

�

�34 � j D
 

0 0
0 0�	2d 0
	1d 0

!

:

Let f W F ]
p ! WQ be the common restriction to F ]

p of the two maps �34; �12 W
E
]
p ! WQ, so that f induces the prime p] of F ]

p . If we set � D �12C �34 and extend

f to a map F ]
p ˝Qp WQ ! WQ, then

f .Q
]

A.j // D f .�Q
]

A.j // D f .QA.�j // D 	1	2cd:

Therefore
ordW .f .Q

]

A.j /// D ordW .	1	2/C ordW .cd/:

This proves the first claim, and the proof of the remaining claims is similar. ut
Lemma 6.1.3 If c D OF then

ordW .disc.E=Q//

2
D lengthW .W

4=D/ D �ordW .	1	2/:

The same statement holds with D replaced by T .
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Proof. The isomorphism OE ˝Z WQ ! W 4
Q defined by (6.8) identifies the WQ-

bilinear form q.x1˝1; x2˝1/ D TrE=Q.x1x2/ on the left with the usual dot product
on the right. If D_ denotes the dual lattice of D with respect to the dot product on
W 4

Q , it follows that

ordW .disc.E=Q// D lengthW .D
_=D/ D 2 � lengthW .W

4=D/:

This proves the first equality. For the second, (6.7) implies that D is self-dual with
respect to the pairing (6.13), while the dual lattice L of W 4 with respect to the same
pairing satisfies lengthW .D=L / D lengthW .W

4=D/ and lengthW .W
4=L / D �2�

ordW .	1	2/. ut

6.2 Deformation Theory

The image of �˙ D �34 W E]
p ! Q

alg
p is contained in E, and is denoted E˙ .

Recalling that q] is the prime of E] corresponding to �˙ , there is an isomorphism
of Qp-algebras E]

q]
! E˙ . Let W˙;Q be the completion of the maximal unramified

extension of E˙ in Cp , and let W˙ � W˙;Q be the valuation ring. Thus we have
inclusionsW � W˙ � W . Let Art˙ be the category of local Artinian W˙ -algebras
with residue field F

alg
q .

Proposition 6.2.1 Suppose R is any object of Art˙ , and A is a c-polarized CM
abelian surface over Falg

q satisfying the˙-Kottwitz condition. There is a unique way
to lift A to R in such a way that the lift again satisfies the ˙-Kottwitz condition.

Proof. This is a special case of [20, Theorem 2.2.1]. ut
For any j 2 L.A/ let Def˙.A; j / be the functor that assigns to every object R

of Art˙ the set of isomorphism classes of deformations (satisfying the ˙-Kottwitz
condition) of .A; j / to R. Let Q˙ be the maximal ideal of W˙ . In the situation of
Proposition 6.2.1, the unique lift of A is the canonical lift of A toR. For any positive
integerm let Acan

m be the canonical lift of A to W˙=Q
m
˙ .

Corollary 6.2.2 For any j 2 L.A/ the deformation functor Def˙.A; j / is pro-
represented by W˙=Q

m
˙ where m is the largest positive integer (including possibly

m D 1) for which j lifts to L.Acan
m /.

Proof. Let Def˙.A/ be the functor that assigns to every object R of Art˙ the set
of isomorphism classes of deformations (satisfying the ˙-Kottwitz condition) of A
to R. By Proposition 6.2.1 Def˙.A/ is pro-represented by W˙ . It now follows from
[47, Proposition 2.9] the functor Def˙.A; j / is pro-represented by a quotient of W˙ ,
and the claim follows easily. ut

Define a rank two W -direct summand D1 � D by
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D1 D

8

ˆ

ˆ

<

ˆ

ˆ

:

2

6

6

4

w1
w2
w3
w4

3

7

7

5

2 D W w3 D 0

w4 D 0

9

>

>

=

>

>

;

and set D1
Q D D1 ˝W WQ. For any j 2 Lp.A/ define, following Zink [60, Section

2.5],
obst.j / W D1 ! D=D1

as the composition D1 ! D
j�! D ! D=D1 where the first arrow is the inclusion

and the third arrow is the quotient map. Extending scalars to WQ, the submodule
D1

Q � DQ is spanned by e1 and e2, and the WQ-module map q W DQ ! W 2
Q defined

by
2

6

6

4

w1
w2
w3
w4

3

7

7

5

7!
�

w3
w4

	

(6.17)

identifies DQ=D
1
Q Š W 2

Q . The map obst.j / W D1
Q ! DQ=D

1
Q can be read off from

the lower left 2 � 2 block of (6.14), and has the explicit form

obst.j /.e1/ D
��	2d

0

	

obst.j /.e2/ D
�

0

	1d

	

: (6.18)

Let Q denote the maximal ideal of W , and define

obstm.j / W D1 ˝W W =Qm ! .D=D1/˝W W =Qm

to be the reduction of obst.j / modulo Qm. The next proposition shows that obst.j /
measures is the obstruction to lifting j 2 Lp.A/ to a special endomorphism of the
canonical lift of A.

Proposition 6.2.3 Assume e.E˙=Qp/ < p, and that A is supersingular. For every
j 2 L.A/ andm 2 ZC we have

j lifts to L.Acan
m / ” obstem.j / D 0;

where e D e.E=E˙/.

Proof. Let Dcrys be the covariant crystal associated to A by Grothendieck–Messing
theory [18, 39], or by Zink’s theory of displays [40, 60]. Thus for any object R of
Art˙ for which the kernel ofR ! F

alg
q is equipped with divided powers (compatible

with the canonical divided powers on pR), Dcrys.R/ is a free R-module equipped
with an action of OE and a canonical isomorphism [60, Proposition 51] Dcrys.R/ Š
D ˝W R: Let Q˙ be the maximal ideal of W˙ . The hypothesis e.E˙=Qp/ < p
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implies that the maximal ideal of R D W˙=Q
m
˙ is equipped with canonical divided

powers [18, Chap. IV.1.3]. Thus if we set D˙ D D ˝W W˙ , there is a canonical
isomorphism

Dcrys.R/ Š D˙ ˝W˙ R:

The unique lift Acan
m of A to R corresponds to the unique OE-stable R-direct

summand
Fil1Dcrys.R/ � Dcrys.R/

lifting the Hodge filtration

Fil1Dcrys.F
alg
q / D ker

�

Dcrys.F
alg
q / ! Lie.A/

�

:

This unique lift of the Hodge filtration is determined in [20, �2.1], and has the
following form. Let J˙ be the kernel of the W˙ -algebra map

OE ˝Z W˙ ! Cp � Cp

defined by x ˝ 1 7! .�3.x/; �4.x//. Then J˙ is an ideal in OE ˝Z W˙ , and

Fil1Dcrys.R/ D J˙Dcrys.R/:

The special endomorphism j of A induces an endomorphism jcrys of Dcrys.R/,
and j lifts to L.Acan

m / if and only if jcrys preserves the direct summand J˙Dcrys.R/

(see [60, Theorem 48]). This latter condition is equivalent to the vanishing of the
map

J˙Dcrys.R/
jcrys��! Dcrys.R/=J˙Dcrys.R/: (6.19)

The extension W˙ ! W is faithfully flat, so the vanishing of (6.19) is equivalent to
the vanishing of

.J˙D/˝W W =Qem j�! .D=J˙D/˝W W =Qem:

As J˙D D D1, the vanishing of this latter map is equivalent to the vanishing of
obstem.j /. ut
Proposition 6.2.4 Assume that A is supersingular.

1. For every prime ` 6D p there is anE]

` -linear isomorphism ofF ]

` -quadratic spaces

�

V`.T/;Q
]
T

� Š �

V`.A/;Q
]

A

�

taking L`.T/ isomorphically to L`.A/.
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2. The archimedean place w D 1�̇ of F ] determined by the reflex map �˙ W E] !
C is the unique archimedean place for which

�

Vw.T/;Q
]
T

� 6Š �

Vw.A/;Q
]

A

�

:

3. The prime p D p] of F ] is the unique prime of F ] above p for which

�

Vp.T/;Q
]
T

� 6Š �

Vp.A/;Q
]

A

�

:

Proof. Suppose ` 6D p and let Ta`.A/ be the `-adic Tate module of A. As T is
identified with the first homology of A.T/, and reduction modulo p induces an
isomorphism on `-adic Tate modules, there is canonical isomorphism

Ta`.A/ Š T ˝Z Z`;

and hence a canonical injection End.A/˝Z Z` ! End.T /˝Z Z`. It is easy to see
that this injection has torsion-free cokernel, and restricts to an injection L`.A/ !
L`.T/ with torsion-free cokernel. Both sides are free Z`-modules of rank four (by
Propositions 2.2.2 and 3.1.3), and so this map is an isomorphism. This proves the
first claim.

The second claim is clear from Proposition 2.3.5 and the fact that Q]

A is totally
positive definite.

For the third claim, first suppose that p D p] is the unique prime of F ] above p.
The global quadratic spaces .V .T/;Q]

T/ and .V .A/;Q]

A/ are nonisomorphic at an
even number of places of F ], and so the previous two claims imply that they are
nonisomorphic at p.

Now suppose there are two primes of F ] above p, p] and p, and let

�p 2 F ]
p Š F

]
p � F ]

p]

be the idempotent �p D .1; 0/. For any j 2 Vp.A/ let jp 2 End.AŒp1�/˝Zp Qp be
the corresponding quasi-endomorphism of the p-divisible group of A. By the proof
of Proposition 6.1.2, the action of �pjp on the extended Dieudonné module D is
through a matrix of the form

�pjp D

0

B

B

@

	2b 0

	1a 0

0 	2a

0 	1b

1

C

C

A

:

In particular �pjp preserves the submodule D1. If we repeat the proof of Propo-
sition 6.2.3 replacing A by AŒp1� everywhere, we see that �pjp lifts uniquely to
a quasi-endomorphism of the p-divisible group of Acan

m for every m 2 ZC. By
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applying Grothendieck’s formal existence theorem [8, Section 3] to truncated p-
divisible groups, we see that �pjp lifts to a quasi-endomorphism of the p-divisible
group of the unique deformation of A to W˙ . Applying base change from W˙ to
Cp shows that �pjp lifts to a quasi-endomorphism .�pjp/

� of the p-divisible group
of A.T/, which is none other than T ˝Zp Qp=Zp. We have now constructed an
injection �pj 7! .�pjp/

� from Vp.A/ to Vp.T/: As both are free of rank two over

F
]
p (by (2.5) and Proposition 3.2.5), this map is an isomorphism. The proof that

.V .T/;Q]
T/ and .V .A/;Q]

A/ are not isomorphic locally at p] is now exactly as in
the previous paragraph. ut

6.3 Strategy

In the remaining subsections of Sect. 6 we examine the quadratic spaces Vp.A/ and
Vp.T/, together with the deformation functor Def˙.A; j /, on a case-by-case basis
depending on the action of Gal.E=Qp/ on (6.2). The results of the preceding sub-
sections reduce everything to direct (if very tedious) linear algebra. The calculation
of Def˙.A; j / follows the same argument for each possible Gal.E=Qp/ � D8, and
in this subsection we explain the general structure of this argument.

Hypothesis 6.3.1 For the remainder of Chap. 6 we assume

1. A is supersingular (equivalently, p] is nonsplit in E]),
2. c D OF ,
3. ŒE W Qp� � 4,
4. e.E=Qp/ < p:

Because we assume that A supersingular, Proposition 6.1.1 tells us that the two
edges �12 and �34 of (6.2) lie in the same orbit under the action of the subgroup
Gal.E=Qp/ � D8. For each subgroup with this property we carry out the following
steps.

(1) Determine the submodules D and T of W 4. As both are equal to the image
of OE ˝Z W under the map (6.8), the theory of higher ramification groups
(especially Proposition 4 of [48, Chap. IV.1] and its corollary) implies that the
coordinates of points in D (and T ) satisfy certain congruences. The most
important example of such a congruence is the following. Suppose there is a
� 2 Gal.E=Qp/ of order 2, and let E0 be the fixed field of � . If � generates the
relative different of E=E0 then �.x/ 
 �.x/� .mod �W / for any x 2 OE and
any � W OE ! W . Thus if, say, �1 D � ı �3 then any point in D must have its
first and third coordinates congruent modulo�W . In every case the strategy is
first to find congruences satisfied by the coordinates of D . These congruences
determine a submodule D 0 � W 4 containing D , and after finding sufficiently
many congruences one may verify D 0 D D by computing the index ŒW 4 W D 0�
and comparing with Lemma 6.1.3.
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(2) Compute ordW .	1/ and ordW .	2/ both for �D and �T . Once the W -lattice
D � W 4 is known, this is a straightforward calculation using (6.7) and the
same relation with D replaced by T . One may simplify this calculation by
using Lemma 6.1.3.

(3) Find generators of � , and determine the operators F� and V� on D and T
for each of the chosen generators � 2 � . Finding generators for � is easy:
find generators for � .0/ (the inertia subgroup of Gal.E=Qp/) and then add
any element of � .1/. As explained earlier, the operators F� and V� on D for
� 2 � .0/ have a simple form: each is a permutation matrix composed with a
Galois automorphism, and the permutation matrix can be read off directly from
the action of Gal.E=Qp/ on (6.2), as in (6.11). For � 2 � .1/ recall from (6.12)
that V� has a single nonzero entry in each row and column, and that the positions
of the entries can be read off from the action of Gal.E=Qp/ on (6.2). The exact
values of the nonzero entries are impossible to determine, but recalling (6.5)
and using the fact that the action of OE on

D� .0/=V�D
� .0/ Š D=VD Š Lie.A/

must satisfy the ˙-Kottwitz condition, one obtains some information about the
image of V� . In particular, this information is enough to determine the p-adic
valuations of the coefficients of the matrix V� ı � . The operators F� and V� on
T may be computed in a similar manner. As noted before, each such operator is
a permutation matrix composed with a Galois automorphism Both for D and T
we only keep track of the V� operators, as F� can be easily recovered from V� .

(4) Among the elements of � there is at least one, say � , that interchanges the
edges �12 and �34. Such a � is either reflection across the horizontal axis in
(6.2), or is rotation by 180ı, and accordingly the corresponding operator F�

has, by (6.12), one of the two forms

� ����

�

ı � or

� � �� �

�

ı �

where the unknown entries will have known p-adic valuations. Given a j 2 Lp.A/
written in the form (6.14), the condition that j commutes with F� then implies
some relation between ordW .c/ and ordW .d/.

Once these calculations are done, the deformations space Def˙.A; j /, for any
nonzero j 2 L.A/, is easy to compute. Knowledge of the W -modules D1 �
D � W 4 together with (6.18) allows one to compute the maximal m for which
obstm.j / D 0 in terms of ordW .d/. Proposition 6.1.2 expresses ordp].Q

]

A.j //

in terms of ordW .	1/, ordW .	2/, ordW .c/, and ordW .d/. Combining all of these
relations gives a formula for the largest m for which obstm.j / D 0 in terms of
ordp] .Q

]

A.j //. Combining this formula with Proposition 6.2.3 one determines the
largest m for which j lifts to a special endomorphism of Acan

m , and then the functor
Def˙.A; j / is known by Corollary 6.2.2.
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To be more concrete, consider the case of E=Qp unramified and fix a nonzero
j 2 L.A/. Lemma 6.1.3 implies D D W 4, and (6.7) implies ordW .	1/ D 0 and
ordW .	2/ D 0: The submodule D1 � D is spanned by e1 and e2, and the W -module
map q W D ! W 2 defined by (6.17) identifies D=D1 Š W 2. By (6.18) the map
obst.j / has the explicit form

obst.j /.e1/ D
��	2d

0

	

obst.j /.e2/ D
�

0

	1d

	

:

It follows immediately that

obstm.j / D 0 ” m � ordW .d/:

On the other hand, Proposition 6.1.2 implies ordp].Q
]

A.j // D ordW .cd/: The only
missing ingredient, which we will prove on a case-by-case basis, is the relation
ordW .c/ C 1 D ordW .d/. Once this is known we immediately deduce from
Proposition 6.2.3

j lifts to L.Acan
m / ” obstm.j / D 0 ” m � ordp]

�

Q
]

A.j /
�C 1

2

and conclude that j lifts to L.Acan
m / but not to L.Acan

mC1/ where

m D ordp].Q
]

A.j //C 1

2
:

If ordp].Q
]

A.j // D 1 then j lifts to L.Acan
m / for everym.

The cases in which E=Qp is ramified are more technically involved, but the
arguments follow the same general structure.

6.4 The Quadratic Case, Part I

Suppose that E=Qp is a degree two extension, and that the nontrivial element � 2
Gal.E=Qp/ acts on the sets Hom.E;Qalg

p / and Hom.E];Q
alg
p / by

�1
��

���
��

��
��

�
�2

��

����
��
��
��

�12
��

���
��

��
��

�
�23

��

				
		
		
		

�4 �3 �14 �34:
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This implies E D E˙ , and that there are isomorphisms (which we do not fix)

Fp Š Qp � Qp Ep Š E � E

F ]
p Š Qp � Qp E]

p Š E � E:

Fix a generator�E of the different of E=Qp. The fixed isomorphism (6.9) identifies

D Š

8

ˆ

ˆ

<

ˆ

ˆ

:

2

6

6

4

w1
w2
w3
w4

3

7

7

5

2 W 4 W w1 � w3 2 �EW

w2 � w4 2 �EW

9

>

>

=

>

>

;

:

The condition (6.7) implies

ordW .	1�E/ D 0 ordW .	2�E/ D 0: (6.20)

There are two primes of F ] above p. One of them is p], and we denote the other
prime by p

]
�.

First suppose that E=Qp is unramified, so that W D W and �E 2 W �. There is
a unique lift of � to � 2 � .1/, and this � generates � . By (6.12) the operator V� on
D has the form

V� D

0

B

B

@

u1
u2

$1

$2

1

C

C

A

ı ��1

for some u1; u2;$1;$2 2 W . The characteristic polynomial of x 2 OE acting on
D=V�D is

.T � �1.x//ordW .u1/ � .T � �2.x//ordW .u2/

�.T � �3.x//
ordW .$1/ � .T � �4.x//

ordW .$1/ 2 Falg
q ŒT �;

and so the ˙-Kottwitz condition implies, as the notation suggests, that $1 and
$2 are uniformizing parameters of W , while u1; u2 2 W �. The relation (6.6) is
equivalent to

p	1 D �.u1$1	1/
� p	2 D �.u2$2	2/

� :

The condition that (6.14) commutes with V� is equivalent to

a D
� �pb

u1$2

��

b D
� �pa

u2$1

��

c D
�

pd

$1$2

��

d D
�

pc

u1u2

��

:
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Now consider the triple .T ; �T ; �T /. The operator V� acts on T as

V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1

and the relation (6.16) is equivalent to 	1 D �	�1 and 	2 D �	�2 : The condition that
(6.14) commutes with V� is equivalent to a; b; c; d 2 E together with a D �b� and
c D d� .

Now suppose E=Qp is ramified, so that ŒWQ W WQ� D 2 and E and WQ are
linearly disjoint over Qp. There is a unique lift of � to � 2 � .0/, and a unique lift
of the identity in Gal.E=Qp/ to � 2 � .1/. The elements �; � 2 � commute and
generate all of � . As E D E˙ , Hypothesis 6.3.1 implies p > 2, and it follows that
�E is a uniformizer of W . From (6.11), (6.12), and the fact that V� and V� commute,
we deduce that the operators V� and V� act on D as

V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1 V� D

0

B

B

@

$1

$2

$
�
1

$
�
2

1

C

C

A

ı ��1

for some $1;$2 2 W . As in the paragraph above, by computing the characteristic
polynomial of x 2 OE acting on D� .0/=V�D� .0/ and comparing with c˙;x one
can show that $1 and $2 are uniformizing parameters of W . The relation (6.6) is
equivalent to 	�1 D �	1 and 	�2 D �	2, together with

p	1 D .	1$1$
�
1 /
� p	2 D .	2$2$

�
2 /
�:

The condition that (6.14) commutes with V� and V� is equivalent to the relations
c D d� and a D �b� together with

aD
�

pa

$
�
1 $2

��

bD
�

pb

$1$
�
2

��

cD
�

pc

$1$2

��

d D
�

pd

$
�
1 $

�
2

��

:

Now consider the triple .T ; �T ; �T /. The commuting operators V� and V� act on
T as

V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1 V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1:
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The relation (6.16) implies that 	1; 	2 2 E and satisfy 	�1 D �	1 and 	�2 D �	2.
The condition that (6.14) commutes with V� and V� is equivalent to a; b; c; d 2 E

together with c D d� and a D �b�

Proposition 6.4.1 For any j 2 Lp.A/, j lifts to Lp.Acan
m / but not to Lp.Acan

mC1/
where

m D ordp] .Q
]

A.j //C 1

2
�
(

1 if p] is inert in E]

2 if p] is ramified in E].

Proof. If E=Qp is unramified then the calculations above prove ordW .d=c/ D 1,
and so the claim follows from the discussion of Sect. 6.3. Assume now that E=Qp

is ramified. The submodule D1 � D is free on the generators�Ee1 and �Ee2, and
the map (6.17) identifies the quotient D=D1 with W 2. By (6.18) the obstruction
obst.j / W D1 ! W 2 is given

�Ee1 7!
�

0

�E	1d

	

�Ee2 7!
���E	2d

0

	

and it follows from (6.20) that obstm.j / D 0 if and only if m � ordW .d/. We saw
above that c=d 2 W �, and so Proposition 6.1.2 implies

ordW .d/ D ordp]
�

Q
]

A.j /
�C 1:

As p] is ramified in E], the claim follows from Proposition 6.2.3. ut
By direct linear algebra we can determine the conditions on the matrix (6.14)

which ensure that j 2 Lp.A/. This leads to the following result.

Proposition 6.4.2 For some ˇp.A/ 2 F ]
p satisfying ord

p
]
�

.ˇp.A// D 0 and

ordp] .ˇp.A// D
(

1 if p] is unramified in E]

0 otherwise

there is an E]
p-linear isomorphism of F ]

p -quadratic spaces

�

Vp.A/;Q
]

A

� Š �

E]
p; ˇp.A/xx



�

identifying Lp.A/ Š OE];p:

Proof. Suppose j 2 Vp.A/ is written in the form (6.14). As a W -module, D is
generated by the elements e1 C e3, e2 C e4, �Ee3, and �Ee4, and so j � D � D if
and only if
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2

6

6

4

0

	1a � 	1c
0

	1d C 	1b

3

7

7

5

2

6

6

4

	2b C 	2c

0

�	2d C 	2a

0

3

7

7

5

2

6

6

4

0

��E	1c

0

�E	1b

3

7

7

5

2

6

6

4

�E	2c

0

�E	2a

0

3

7

7

5

all lie in D . This is easily seen to be equivalent to a; b; c; d 2 W and satisfying the
congruences

a � b � c � d 
 0 .mod �2
EW /

a 
 �b 
 c .mod �EW /:

If E=Qp is unramified then these congruences are automatically satisfied. If E=Qp

is ramified then the relations a D �b� and c D d� imply that

a 
 �b .mod �EW /

c 
 d .mod �EW /

and a � b � c � d D .a � c/ C .a � c/� 2 W . Therefore if a 
 c .mod �EW /

then a� b� c�d 2 pW � �2
EW . It follows that the above system of congruences

can be replaced by the single congruence a 
 c .mod �EW /, and so

j 2 Lp.A/ ” a; b; c; d 2 W and a 
 c .mod �EW /:

The next claim is that

j 2 Lp.A/ ” a; b; c; d 2 �EW : (6.21)

This is clear if E=Qp is unramified, so assume E=Qp is ramified. The implication
(H is obvious from the previous paragraph. The implication H) is more subtle,
and we give two proofs. First, if j 2 Lp.A/ then (trivially) j lifts to Lp.Acan

1 /. By
Proposition 6.2.3 the map obst1.j / must vanish, and the proof of Proposition 6.4.1
shows that 1 � ordW .d/. As�E is a uniformizer of W and c D d� , we deduce that
c; d 2 �EW . We already saw that a 
 c .mod �EW /, and using a D �b� we
have proved a; b; c; d 2 �EW as desired. For the second proof we give a different
argument that 1 � ordW .d/. If not then d 2 W �, and so also a; b; c; d 2 W �. The
congruence a 
 c .mod �EW / and the relations

a D
�

pa

$
�
1 $2

��

c D
�

pc

$1$2

��

imply that
$1

$
�
1


 1 .mod �EW /:
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This implies ordW .$1 �$�
1 / > ordW .�E/. As W D W Œ$1�, it follows that

ordW .x � x� / > ordW .�E/

for every x 2 W , contradicting [48, Proposition IV.1.4].
Having proved (6.21), fix any E]

p-module generator j 2 Vp.A/, so that

ordW .d/ D ordW .c/C
(

1 if E=Qp is unramified

0 otherwise

and ordW .a/ D ordW .b/. The map

E]
p

�23��12�����! E � E

is an isomorphism, and any uniformizer of OE is a uniformizer of W . Using this
and (6.15), we may multiply j by an element of E]

p to assume that a and c each
generate the ideal �EW . Then also b generates�EW . The map x 7! x � j defines
an E]

p-linear isomorphism

�

E]
p; ˇp.A/xx



� ! �

Vp.A/;Q
]

A

�

where ˇp.A/ D Q
]

A.j /, and Proposition 6.1.2 shows that this ˇp.A/ has the desired

valuations at p] and p
]
�. Finally, it follows from (6.21) and (6.15) that x � j 2

Lp.A/ if and only if �.x/ 2 W for every � 2 Hom.E]
p;Q

alg
p /. This is equivalent to

x 2 OE];p , and so x 7! x � j identifies OE];p Š Lp.A/. ut
As we have identified T D D as submodules of W 4, it is straightforward to

modify the proof of Proposition 6.4.2 to obtain the following result.

Proposition 6.4.3 For some ˇp.T/ 2 F ]
p satisfying

ordp] .ˇp.T// D �ordp] .DE]=F ]/

ord
p
]
�

.ˇp.T// D �ord
p
]
�

.DE]=F ]/

there is an E]
p-linear isomorphism of F ]

p -quadratic spaces

�

Vp.T/;Q
]
T

� Š �

E]
p; ˇp.T/xx



�

identifying Lp.T/ Š Zp C DE]=F ]OE];p:

Proof. Suppose j 2 Vp.T/. The proof of Proposition 6.4.2 (plus the earlier
calculation a; b; c; d 2 E) shows that j � T � T if and only if a; b; c; d 2 OE
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and satisfy the congruence a 
 c .mod �EOE/. The equivalence (6.21), however,
is false in this setting.

Fix a j 2 Lp.T/ such that a; b; c; d 2 O�
E . For example, first choose any

a; c 2 O�
E satisfying a 
 c .mod �EOE/; by the calculation of the operators

fV� W � 2 � g above, if we set b D �a� and d D c� then (6.14) defines the desired

j 2 Lp.A/. Consider the function E]
p ! Vp.T/ defined by x 7! x � j . For any

x 2 E
]
p , the results of the paragraph above and the explicit action (6.15) show that

x � j 2 Lp.T/ if and only if x 2 OE];p and

a�23.x/ 
 c�12.x/ .mod �EOE/:

Of course this is equivalent to �23.x/ 
 �12.x/ .mod �EOE/, which is equivalent
to

x 2 Zp C DE]=F ]OE];p:

Taking ˇp.T/ D Q
]
T.j / and using Proposition 6.1.2 to compute the valuation of

ˇp.T/ at p] and p
]
�, we see that x 7! x � j defines the desired isomorphism E

]
p !

Vp.A/. ut
Suppose ˛ 2 .F ]/� and p 2 Sppt.˛/, and recall the quantity �p] .˛/ of

Proposition 5.2.3. Assume p] 2 Diff.˛;T/, so that W˛;p.0;T/ D 0 by (4.7).

Proposition 6.4.4 1. If Lp.A/ represents ˛ then W˛;p.0;A/ 6D 0 and

W 0̨
;p.0;T/

W˛;p.0;A/
D ��p].˛/

2
� log.Nm.q//:

2. If Lp.A/ does not represent ˛ then W˛;p.0;A/ and W 0̨
;p.0;T/ are both 0.

Proof. Abbreviate p D p] and p� D p
]�. Identify E]

p D E
]
p � E

]
p�

and F ]
p D

F
]
p � F ]

p�
, and write

ˇp.T/ D .ˇp.T/; ˇp�
.T//

ˇp.A/ D .ˇp.A/; ˇp�
.A//:

We divide the proof of (1) into two cases. First assume that p is inert in E].
This implies that p� is also inert in E]. In this case, both Lp.T/ and Lp.A/ can be
identified with OE];p , by Propositions 6.4.3 and 6.4.2 respectively, and so there are
factorizations

W˛;p.s;T/ D W˛;p.s; ˚
0
ˇp.T// �W˛;p�

.s; ˚0
ˇp�

.T//

W˛;p.s;A/ D W˛;p.s; ˚
0
ˇp.A// �W˛;p�

.s; ˚0
ˇp�

.A//;
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where ˚0
ˇ is in the notation of Sect. 4.6. Those same propositions imply

.OE];p�
; ˇp�

.T/xx
/ Š .OE];p�
; ˇp�

.A/xx
/;

and so
W˛;p�

.s; ˚0
ˇp�

.T// D W˛;p�
.s; ˚0

ˇp�
.A//:

The hypothesis thatLp�
.A/ represents ˛ implies that ordp�

.˛=ˇp�
.A// is both even

and positive, and so Proposition 4.6.2 implies

W �̨
;p�

.0; ˚0
ˇp�

.A// D �.Vˇp�
.A//:

The same reasoning shows that

W �̨
;p.0; ˚

0
ˇp.A// D �.Vˇp.A//:

On the other hand, Propositions 6.4.3 and 4.6.2 imply

W �;0
˛;p.0; ˚

0
ˇp.T// D ordp.˛/C 1

2
� �.Vˇp.T// � log Nm.p/:

Lemma 4.2.1 implies �.Vˇp.T// D ��.Vˇp.A//, and combining this with Nm.q/ D
Nm.p/2 shows

W 0̨
;p.0;T/

W˛;p.0;A/
D
W �;0
˛;p.0; ˚

0
ˇp.T/

/

W �̨
;p.0; ˚

0
ˇp.A/

/
D ��p.˛/

2
log Nm.q/:

This proves .1/ under the assumption that p is inert in E].
Next we assume that p is ramified in E]. In this case p� is also ramified in E],

and p ¤ 2. Let$ and$� be uniformizing parameters of F ]
p and F ]

p�
, respectively.

Under the identification E]
p D E

]
p �E]

p�
we have

Zp C DE]=F ]OE];p D
G

a2Z=pZ
.aC$OE];p/ � .a C$�OE];p�

/:

Define
Q̌
p.T/ D . Q̌

p.T/; Q̌
p�
.T// D .$$
ˇp.T/;$�$
�ˇp�

.T//:

The map .x1; x2/ 7! .x1$
�1; x2$�1� / gives an isomorphism of quadratic spaces

.E]
p; ˇp.T/xx


/ Š .E]
p;

Q̌
p.T/xx
/

which identifies Zp C DE]=F ]OE];p with

G

a2Z=pZ

� a

$
C OE];p




�
�

a

$�
C OE];p�

�

;
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and therefore

W �̨
;p.s;T/ D

X

a2Z=pZ
W �̨

;p

�

s; ˚
a
$

Q̌p.T/
� �W �̨

;p�

�

s; ˚
a
$�

Q̌p�
.T/

�

: (6.22)

If a 6D 0 and

˛ 2 Q̌
p.T/

a2

$$

C OF ];p

then
˛

a2ˇp.T/
2 1C 1

a2ˇp.T/
OF ;

and it follows (using Proposition 6.4.3) that �p.˛/ D �p.ˇp.T//. But this implies
that Vp.T/ represents ˛, contradicting p 2 Diff.˛;T/. Invoking Proposition 4.6.4
now shows that if a 6D 0 then

W �̨
;p.s; ˚

a
$

Q̌p.T// D 0:

We have now shown that only the a D 0 term contributes to (6.22), and so

W �̨
;p.s;T/ D W �̨

;p.s; ˚
0
Q̌p.T// �W �̨

;p�

.s; ˚0
Q̌p�

.T/
/:

As we assume thatLp.A/ represents ˛, Proposition 6.4.2 implies that ˛ 2 OF ];p .
The same proposition allows us to identify Lp.A/ Š OE];p , and so there is a
factorization

W �̨
;p.s;A/ D W �̨

;p.s; ˚
0
ˇp.A// �W �̨

;p�

.s; ˚0
ˇp�

.A//:

Proposition 4.6.3 shows that both factors in the right hand side are nonvanishing at
s D 0. Lemma 4.5.2 and the hypothesis p 2 Diff.˛;T/ imply that p� … Diff.˛;T/,
and so ˛ is represented by Vp�.T/ as well as Vp�.A/. Combining this with

ordp�
.ˇp�

.A// D ordp�
.ˇp�

.T// D 0

shows that ˇp�.A/=ˇp�.T/ is a norm from O�
E];p�

, which implies

W �̨
;p�

.s; ˚0
ˇp�

.A// D W �̨
;p�

.s; ˚0
Q̌p�

.T/
/:

From this we deduce

W 0̨
;p.0;T/

W˛;p.0;A/
D W �;0

˛;p.0;T/

W �̨
;p.0;A/

D
W

�;0
˛;p.0; ˚

0
Q̌p.T//

W �̨
;p.0; ˚

0
ˇp.A/

/
:
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But Propositions 6.4.2, 6.4.3, and 4.6.3 imply

W
�;0
˛;p.0; ˚

0
Q̌p.T//

W �̨
;p.0; ˚

0
ˇp.A/

/
D ��p.˛/

2
log Nm.p/:

Since p is ramified in E], we see Nm.p/ D Nm.q/. This proves (1) in the ramified
case.

Now we prove (2). Assume that ˛ is not represented by Lp.A/. If ˛ … OF ];p ,
then

W˛;p.s;T/ D W˛;p.s; A/ D 0

by Propositions 6.4.2, 6.4.3, 4.6.3 and 4.6.4, so we may assume that ˛ 2 OF ];p .
The assumption p 2 Diff.˛;T/ implies that Vp.T/ does not represent ˛. Proposi-
tion 6.2.4 now implies that Vp.A/ does represent ˛, and Proposition 6.4.2 (together
with the hypothesis that ˛ 2 OF ];p) implies that ˛ is represented by Lp.A/. It
follows that Lp�

.A/ does not represent ˛, and so

W˛;p�
.0; ˚0

ˇp�
.A// D 0

by Proposition 4.6.3. Therefore

W˛;p.0;A/ D W˛;p.0; ˚
0
ˇp.A// �W˛;p�

.0; ˚0
ˇp�

.A// D 0:

The proof of (1) gives the first equality in

W˛;p�
.0; ˚0

ˇp�
.T// D W˛;p�

.0; ˚0
ˇp�

.A// D 0

and also shows that

W 0̨
;p.0;T/ D W 0̨

;p.0; ˚
0
ˇp�

.T// �W˛;p�
.0; ˚0

ˇp�
.T// D 0: ut

6.5 The Quadratic Case, Part II

Suppose that E=Qp is a degree two extension, and that the nontrivial element � 2
Gal.E=Qp/ acts on the sets Hom.E;Qalg

p / and Hom.E];Q
alg
p / by

�1




��

�2




��

�12
��

���
��

��
��

�
�23

�4 �3 �14 �34:
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This implies E D E˙ , and that

Fp Š E Ep Š E � E

F ]
p Š Qp � Qp E]

p Š E � .Qp � Qp/:

Fix a generator�E of the different of E=Qp. The fixed isomorphism (6.9) identifies

D Š

8

ˆ

ˆ

<

ˆ

ˆ

:

2

6

6

4

w1
w2
w3
w4

3

7

7

5

2 W 4 W w1 � w4 2 �EW

w2 � w3 2 �EW

9

>

>

=

>

>

;

:

The condition (6.7) implies

ordW .	1�E/ D 0 ordW .	2�E/ D 0:

There are two primes of F ] above p. One of them, p], is nonsplit in E]. The other,
which we will denote by p

]
�, is split in E].

First suppose that E=Qp is unramified, so that � is generated by the unique lift
of � to � 2 � .1/. The operator V� has the form

V� D

0

B

B

@

u2
u1

$1

$2

1

C

C

A

ı ��1

for some uniformizing parameters $1;$2 2 W and units u1; u2 2 W �, and the
relation (6.6) is equivalent to

p	2 D �.u2$1	1/
� p	1 D �.u1$2	2/

� :

The condition that (6.14) commutes with V� is equivalent to

a D
� �pa

u1$1

��

b D
� �pb

u2$2

��

c D
� �pd
$1$2

��

d D
��pc

u1u2

��

:

Now consider the triple .T ; �T ; �T /. The operator V� is equal to

V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1



6.5 The Quadratic Case, Part II 109

and the relation (6.16) is equivalent to 	2 D �	�1 and 	1 D �	�2 : The condition that
(6.14) commutes with V� is equivalent to

a D �a� b D �b� c D �d� d D �c� :

Now suppose E=Qp is ramified. The group � is generated by two commuting
elements: the unique lift of � to � 2 � .0/, and the unique lift of the identity
element of Gal.E=Qp/ to � 2 � .1/. commuting elements � D .Fr; id/ and
� D .id; �/. Hypothesis 6.3.1 implies p > 2, and hence �E is a uniformizer of E.
The commuting operators V� and F� on D have the form

V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1 V� D

0

B

B

@

$1

$2

$
�
2

$
�
1

1

C

C

A

ı ��1

for some some uniformizers$1;$2 2 W . The relation (6.6) implies that 	1 and 	2
satisfy 	�1 D �	2 and 	�2 D �	1, together with

p	1 D .	1$1$
�
2 /
� p	2 D .	2$2$

�
1 /
�:

The condition that (6.14) commutes with V� is equivalent to

a D �a� b D �b� c D �d� d D �c�

and the condition that (6.14) commutes with V� is equivalent to the further relations

aD
�

pa

$2$
�
2

��

bD
�

pb

$1$
�
1

��

cD
�

pc

$1$2

��

d D
�

pd

$
�
1 $

�
2

��

:

Now consider the triple .T ; �T ; �T /. The operators V� and V� on T are equal to

V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1 V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1:

The relation (6.16) implies that 	1; 	2 2 E and satisfy 	�1 D �	2 and 	�2 D �	1.
The condition that (6.14) commutes with V� and V� is equivalent to a; b; c; d 2 E

satisfying
a D �a� b D �b� c D �d� d D �c� :

Proposition 6.5.1 For any j 2 Lp.A/, j lifts to Lp.Acan
m / but not to Lp.Acan

mC1/
where
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m D ordp].Q
]

A.j //C 1

2
�
(

1 if p] is inert in E]

2 if p] is ramified in E]

Proof. After the calculations done above, the proof is the same, word-for-word, as
the proof of Proposition 6.4.1. ut
Proposition 6.5.2 For some ˇp.A/ 2 F ]

p satisfying ord
p
]
�

.ˇp.A// D 0 and

ordp].ˇp.A// D
(

1 if p] is inert in E]

0 if p] is ramified in E]

there is an E]
p-linear isomorphism of F ]

p -quadratic spaces

�

Vp.A/;Q
]

A

� ! �

E]
p; ˇp.A/xx



�

which identifies Lp.A/ with the maximal order OE];p .

Proof. Suppose j 2 Vp.A/ and write j in the form (6.14). As a W -module, D is
generated by e1 C e4, e2 C e3,�Ee3, and�Ee4: Applying j to each of these vectors
shows that j � D � D if and only if a; b; c; d 2 �EW , and satisfy the congruences

	2c � 	1d 
 0 .mod �EW /

	2b � 	1b 
 0 .mod �EW /

	1a � 	2a 
 0 .mod �EW /

	1c � 	2d 
 0 .mod �EW /:

If E=Qp is unramified then these congruences are automatically satisfied. If E=Qp is
ramified then we may choose�E so that��

E D ��E, and write 	1 D u��1
E for some

u 2 W �. The relations 	�1 D �	2 and u� 
 u .mod �EW / imply 	1 � 	2 2 W .
This shows that the second and third congruences are automatically satisfied. The
relations 	1d D .	2c/

� and 	2d D .	1c/
� show that the first and fourth congruences

are automatically satisfied. Therefore j 2 Lp.A/ if and only if a; b; c; d 2 �EW .
The rest of the proof is exactly the same as Proposition 6.4.2. ut
Proposition 6.5.3 For some ˇp.T/ 2 F ]

p satisfying

ordp] .ˇp.T// D 0 ord
p
]
�

.ˇp.T// D 0

there is an E]
p-linear isomorphism of F ]

p -quadratic spaces

�

Vp.T/;Q
]
T

� ! �

E]
p; ˇp.T/xx



�

which identifies Lp.T/ with the maximal order OE];p .
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Proof. Using the equality T D D of submodules of W 4, the proof of Proposition
6.5.2 shows that every j 2 Vp.T/ satisfies j 2 Lp.T/ if and only if a; b; c; d 2
�EOE. One may construct a j 2 Lp.T/ in such a way that a, b, c, and d each
generate �EOE (start by choosing a; b; c so that a� D �a, b� D �b, and each of
a; b; c generates �EOE; then define d D �c� ), and then (6.15) shows that x � j 2
Lp.T/ if and only if �.x/ 2 OE for every � W E]

p ! E. This implies

x � j 2 Lp.T/ ” x 2 OE];p:

Taking ˇp.T/ D Q
]
T.j /, the completion of the proof is exactly is in

Proposition 6.4.3. ut
Suppose ˛ 2 .F ]/� and p 2 Sppt.˛/, and recall the quantity �p] .˛/ of

Proposition 5.2.3. Assume p] 2 Diff.˛;T/, so that W˛;p.0;T/ D 0 by (4.7).

Proposition 6.5.4 1. If Lp.A/ represents ˛ then W˛;p.0;A/ 6D 0 and

W 0̨
;p.0;T/

W˛;p.0;A/
D ��p].˛/

2
� log.Nm.q//:

2. If Lp.A/ does not represent ˛ then W˛;p.0;A/ and W 0̨
;p.0;T/ are both 0.

Proof. (Sketch) The proof is similar to that of Proposition 6.4.4 and a little simpler.
Keep the notation in Proposition 6.4.4. Then Propositions 6.5.2 and 6.5.3 imply

.Lp.A/;Q
]

A/ Š .OE];p; ˇp.A/xx

/˚ .OE];p�

; ˇp�
.A/xx
/

and the same with A replaced by T. Therefore

W˛;p.s;A/ D W˛;p.s; ˚
0
ˇp.A//W˛;p�

.s; ˚0
ˇp�

.A//

W˛;p.s;T/ D W˛;p.s; ˚
0
ˇp.T//W˛;p�

.s; ˚0
ˇp�

.T//:

Moreover, the same propositions give

.OE];p�

; ˇp�
.A/xx
/ Š .OE];p�

; ˇp�
.T/xx
/

and so
W˛;p�

.s; ˚0
ˇp�

.A// D W˛;p�
.s; ˚0

ˇp�
.T//:

The rest of the proof goes exactly as that of Proposition 6.4.4, and is left to the
reader. ut
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6.6 The Cyclic Quartic Case

Suppose that Gal.E=Qp/ is cyclic of order 4. Let � 2 Gal.E=Qp/ be a generator
inducing the absolute Frobenius x 7! xp on the residue field of E. As the CM
type ˙ D f�3; �4g is an unordered pair, we are free to interchange the indices of
�3 and �4 (which requires also interchanging �1 and �2) in order to assume that �
acts on Hom.E;Qalg

p / and Hom.E];Q
alg
p / by

�1 �� �2

��

�12 �� �23

��
�4





�3

 �14





�34:



If we let E0 � E be the fixed field of �2 then E D E˙ and

Fp Š E0 Ep Š E

F ]
p Š E0 E]

p Š E:

Let �E 2 E be a generator of the different of E=Qp. The fixed field of the
inertia subgroup of Gal.E=Qp/ is either E, E0, or Qp. In the first case E=Qp is
unramified. In the second case E0=Qp is unramified, E=E0 is ramified, p > 2 (by
Hypothesis 6.3.1), and�E is a uniformizing parameter of E. In the third case E=Qp

is totally ramified, p > 3, and (as E=Qp is tamely ramified) ordW .�E/ D 3.
If E=Qp is not totally ramified then the fixed isomorphism (6.9) identifies

D Š

8

ˆ

ˆ

<

ˆ

ˆ

:

2

6

6

4

w1
w2
w3
w4

3

7

7

5

2 W 4 W w1 � w3 2 �EW

w2 � w4 2 �EW

9

>

>

=

>

>

;

:

If E=Qp is totally ramified then the situation is more complicated. As p > 2, W
contains a primitive 4th root of unity. By Kummer theory there is a uniformizer
˘ 2 W such that ˘4 2 W . As already noted �EW D ˘3W . There is a unique
extension of � 2 Aut.OE=Zp/ to � 2 Aut.W =W /, and we let � 2 W � be the 4th

root of unity determined by˘� D �˘ . Then D � W 4 is generated as a W -module
by the span of the vectors

2

6

6

4

1

1

1

1

3

7

7

5

2

6

6

4

˘

�˘

�˘
��˘

3

7

7

5

2

6

6

4

˘2

�˘2

˘2

�˘2

3

7

7

5

2

6

6

4

˘3

��˘3

�˘3

�˘3

3

7

7

5

:
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From this it is not hard to show that

D D

8

ˆ

ˆ

<

ˆ

ˆ

:

2

6

6

4

w1
w2
w3
w4

3

7

7

5

2 W 4 W
8i; j wi � wj 2 ˘ � W
w1 � w2 C w3 � w4 2 ˘2 � W
w1 C �w2 � w3 � �w4 2 ˘3 � W

9

>

>

=

>

>

;

:

Regardless of the ramification of E=Qp, the relation (6.7) implies

ordW .	1�E/ D 0 ordW .	2�E/ D 0:

Suppose first that E=Qp is unramified. The group � is generated by the unique
lift of � to � 2 � .1/, and the operator V� on D has the form

V� D

0

B

B

@

u1
u2
$1

$2

1

C

C

A

ı ��1

for some units u1; u2 2 W � and some uniformizers$1;$2 2 W . The relation (6.6)
is equivalent to

�p	1 D .$2u2	2/
� p	2 D .$1u1	1/

� :

The condition that (6.14) commutes with V� is equivalent to the conditions

a D
��pc

u1u2

��

b D
�

pd

$1$2

��

c D
�

pb

u1$2

��

d D
� �pa
$1u2

��

:

Now consider the triple .T ; �T ; �T /. The operator V� on T is equal to

V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1

and the relation (6.16) is equivalent to 	1 D �	�2 and 	2 D �	�1 . The condition that
(6.14) commutes with V� is equivalent to a; b; c; d 2 E satisfying

a D �c� b D d� c D b� d D �a� :

Next suppose that E0=Qp is unramified, while E=E0 is ramified. The group � is
generated by two commuting elements: the unique lift of � to � 2 � .1/, and the
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unique lift of �2 to � 2 � .0/. The commuting operators V� and V� on D have the
form

V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1 V� D

0

B

B

@

$1

$�
2

$�
1

$2

1

C

C

A

ı ��1

for some uniformizers $1;$2 2 W . The relation (6.6) is equivalent to 	�1 D �	1
and 	�2 D �	2, together with

�p	1 D .	2$2$
�
2 /
� p	2 D .	1$1$

�
1 /
� :

The condition that (6.14) commutes with V� and V� is equivalent to a D �b� ,
d D c� , and

a D
� �pc
$1$

�
2

��

b D
�

pd

$�
1$2

��

c D
�

pb

$1$2

��

d D
� �pa
$�
1$

�
2

��

:

Now consider the triple .T ; �T ; �T /. The operators V� and V� on T are equal to

V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1 V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1:

The relation (6.16) is equivalent to

	�1 D �	1 	�2 D �	2 	
�
1 D 	2 	

�
2 D �	1:

The condition that (6.14) commutes with V� and with V� is equivalent to a; b; c; d 2
E satisfying a D �b� , d D c� , and

a D �c� b D d� c D b� d D �a� :

Finally suppose that E=Qp is totally ramified. Then � is generated by two
commuting elements: the unique lift of � to � 2 � .0/, and the unique lift of the
identity in Gal.E=Qp/ to � 2 � .1/. The operators V� and V� have the form

V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1 V� D

0

B

B

B

@

z
z�

z�
2

z�
3

1

C

C

C

A

ı ��1
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for some z 2 W satisfying ordW .z/ D 2. The condition (6.6) is equivalent to 	�1 D
	2 and 	�2 D �	1, together with

p	1 D .	1zz�
2

/� p	2 D .	2z
� z�

3

/�:

The condition that (6.14) commutes with V� and V� is equivalent to

a� D �d b� D c c� D �a d� D b

together with the extra condition

a D
�

ap

z� z�2

��

:

Now consider the triple .T ; �T ; �T /. The operators V� and V� on T are equal to

V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1 V� D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1:

The condition (6.16) is equivalent to 	1; 	2 2 E together with 	
�
1 D 	2 and

	
�
2 D �	1: The condition that (6.14) commutes with V� and V� is equivalent to
a; b; c; d 2 E satisfying

a� D �d b� D c c� D �a d� D b:

Proposition 6.6.1 For any j 2 Lp.A/, j lifts to Lp.Acan
m / but not to Lp.Acan

mC1/
where

m D ordp] .Q
]

A.j //C ordp] .DF ]/C 1

2
�
(

1 if p] is inert in E]

2 if p] is ramified in E].

Proof. If E=Qp is not totally ramified then the proof is nearly identical to that of
Proposition 6.4.1, so we assume that E=Qp is totally ramified. The submodule D1 �
D is

D1 D ˚

w1e1 C w2e2 2 W 4 W w1;w2 2 ˘2W and w1 C �w2 2 ˘3W
�

and the map (6.17) identifies

D=D1 D
��

w3
w4

	

2 W 2 W w3 � w4 2 ˘W

�

:
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After (6.18) the obstruction obst.j / W D1 ! D=D1 is given by

obst.j /.w1e1 C w2e2/ D
��w2	2d

w1	1d

	

:

The submodule D1 is generated by ˘3e1 and �˘2e1 � ˘2e2 and so the image of
obst.j / is generated by

s D
�

0

˘3	1d

	

t D
�

˘2	2d

�˘2	1d

	

:

Of course obstm.j / vanishes if and only if both s and t are divisible by ˘m in
D=D1, which is equivalent to

ordW .˘
3	1d/ � mC 1

ordW .˘
2	2d � �˘2	1d/ � mC 1:

Rewrite these inequalities as

ordW .d/ � mC 1

ordW .d/C ordW .1 � �	1	�1
2 / � mC 2:

There are x1; x2 2 W � such that 	1˘3 D x1 and 	2˘3 D x2. Using 	�1 D 	2 and
x1 � x�1 2 ˘W , we see that x1 
 x2�

3 .mod ˘W /, and so

	1	
�1
2 
 �3 .mod ˘W /:

We deduce that ordW .1 � �	1	
�1
2 / � 1, and so the second inequality is a

consequence of the first. Thus obstm.j / D 0 if and only if ordW .d/ � m C 1:

But ordW .c=d/ D 0, and so Proposition 6.1.2 implies

ordW .d/� 3 D ordp] .Q
]

A.j //:

By Proposition 6.2.3, j lifts to Lp.Acan
m / if and only if m � ordp] .Q

]

A.j // C 2, as
desired. ut
Proposition 6.6.2 For some ˇp.A/ 2 F ]

p satisfying

ordp].ˇp.A// D
(

1 if p] is inert in E]

�ordp].DF ]/ if p] is ramified in E]

there is an E]
p-linear isomorphism of F ]

p -quadratic spaces
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�

Vp.A/;Q
]

A

� ! �

E]
p; ˇp.A/xx



�

identifying Lp.A/ Š OE];p .

Proof. Assume first that E=Qp is not totally ramified. For any j 2 Vp.A/, an
argument similar to that used in the proof of Proposition 6.4.2 shows that

j 2 Lp.A/ ” a; b; c; d 2 �EW ;

and the rest of the proof follows as in the proof Proposition 6.4.2.
Now assume that E=Qp is totally ramified. Decompose (6.14) as

j D
 

	2b �	1c
	2a

	1d

!

�

1
1
1

1

�

C
 

	2c
	1a

�	2d
	1b

!

�

1
1
1
1

�

: (6.23)

Recall that we have fixed an OE -linear isomorphism ofW -modulesD Š OE˝ZW .
If we now identify OE ˝Z W Š W using x ˝ w 7! �1.x/w then j may be viewed
as a W -linear endomorphism of WQ. Using the relations computed earlier between
	1 and 	2, and among a; b; c; d , we find that (6.23), restricted to DQ � DQ and
viewed as an endomorphism of WQ, is

j.x/ D 	2b � x� C 	2c � x�3 : (6.24)

It follows that for any j 2 Vp.A/, j 2 Lp.A/ if and only if the W -linear
endomorphism (6.24) of WQ stabilizes W .

The next claim is that every j 2 Vp.A/ satisfies

j 2 Lp.A/ ” a; b; c; d 2 ˘2W : (6.25)

First suppose a; b; c; d 2 ˘2W . The theory of higher ramification groups implies
that y 
 y� .mod ˘W / for every y 2 W . In particular if x 2 W then x�

3 D
x� C ˘r for some r 2 W . Similarly, if we write b D s˘2 and c D t˘2 with
s; t 2 W , then b� D c implies s C t 2 ˘W . Therefore

j.x/ D 	2.s C t/˘2 � x� C 	2t˘
3r 2 W :

This proves that j 2 Lp.A/. Conversely, assume that j 2 Lp.A/. Then for every
y 2 W

by C cy�
2 2 ˘3W :

Taking y D ˘ shows that b � c 2 ˘2W , while taking y D 1 shows that b C c 2
˘3W . As p 6D 2 we deduce first that b; c 2 ˘2W , and then that a; b; c; d 2 ˘2W
by the relations
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ordW .a/ D ordW .b/ D ordW .c/ D ordW .d/

computed earlier. This completes the proof of (6.25).
Now start with any E]

p-module generator j 2 Vp.A/. As a, b, c, and d each
generate the same ideal of W , (6.15) shows that one may multiply j by an element
of E]

p in order to assume that a, b, c, and d each generate˘2W . As in the proof of

Proposition 6.4.2, x 7! x � j defines an isomorphism E
]
p ! Vp.A/, and (6.25) and

(6.15) show that x � j 2 Lp.A/ ” x 2 OE];p . If we define ˇp.A/ D Q
]

A.j /

then Proposition 6.1.2 allows us to compute the valuation of ˇp.A/ at p]. ut
Proposition 6.6.3 For some ˇp.T/ 2 F ]

p satisfying

ordp] .ˇp.T// D
(

0 if p] is inert in E]

�1 if p] is ramified in E]

there is an E]
p-linear isomorphism of F ]

p -quadratic spaces

�

Vp.T/;Q
]
T

� Š �

E]
p; ˇp.T/xx



�

identifying Lp.T/ Š Zp C DE]=F ]OE];p:

Proof. First suppose that E=Qp is not totally ramified. As in the proof of Propo-
sition 6.4.3, every j 2 Vp.T/ satisfies j � T � T if and only if a; b; c; d 2 OE

and satisfy the congruence a 
 c .mod �EOE/. If E=Qp is unramified then the
congruence is automatically satisfied. IfE=Qp is ramified (butE0=Qp is unramified)
then we may pick a c 2 O�

E satisfying c� 
 �c .mod �EOE/ and set a D �c� .
Then a 
 c .mod �EW /, and if we define d D �a� and b D d� then (6.14)
defines an element j 2 Lp.T/ with a; b; c; d 2 O�

E . The proof concludes as in

the proof of Proposition 6.4.3: x 7! x � j defines an isomorphism E
]
p ! Vp.T/

satisfying x � j 2 Lp.T/ if and only if x 2 OE];p and �23.x/ 
 �12.x/

.mod �EOE/. Taking ˇp.T/ D Q
]
T.j / completes the proof in this case.

If E=Qp is totally ramified then the proof of Proposition 6.6.2 shows that any
j 2 Vp.T/ satisfies

j 2 Lp.T/ ” a; b; c; d 2 ˘2W ;

and the proof concludes exactly as with Proposition 6.6.2. Note that in this case
Zp C DE]=F ]OE];p D OE];p . ut

Suppose ˛ 2 .F ]/� and p 2 Sppt.˛/, and recall the quantity �p] .˛/ of
Proposition 5.2.3. Assume p] 2 Diff.˛;T/, so that W˛;p.0;T/ D 0 by (4.7).
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Proposition 6.6.4 1. If Lp.A/ represents ˛ then W˛;p.0;A/ 6D 0 and

W 0̨
;p.0;T/

W˛;p.0;A/
D ��p].˛/

2
� log.Nm.q//:

2. If Lp.A/ does not represent ˛ then W˛;p.0;A/ and W 0̨
;p.0;T/ are both 0.

Proof. Abbreviate p D p]. There are three cases: (i) p is inert in E], (ii) p is totally
ramified in E], and (iii) p is inert in F ] and p is ramified in E].

In the first two cases, Zp C DE]=F ]OE];p D OE];p , and so

W˛;p.s;T/ D W˛;p

�

s; ˚0
ˇp.T/

�

W˛;p.s;A/ D W˛;p

�

s; ˚0
ˇp.A/

�

:

Here ˚�

ˇ is in the notation of Chap. 4.6 with E D E
]
p and F D F

]
p . We first treat

case (ii). Let a be a generator of DF ];p and set Q .x/ D  p.a
�1x/, so that Q is

unramified. As p 6D 2, a is a uniformizing parameter of F ]
p , and Propositions 6.6.2

and 6.6.3 imply that

Q̌
p.T/ D aˇp.T/ Q̌

p.A/ D aˇp.A/

both lie in O�
F ];p

. Lemma 4.2.2 implies

W˛;p

�

s; ˚0
ˇp.T/

� D jaj 12 W Q 
a˛;p

�

s; ˚0
Q̌
p.T/

�

W˛;p

�

s; ˚0
ˇp.A/

� D jaj 12 W Q 
a˛;p

�

s; ˚0
Q̌
p.A/

�

:

The hypothesis p 2 Diff.˛;T/ tells us that Vp.T/ does not represent ˛, and so
Proposition 6.2.4 implies that Vp.A/ does represent ˛. If Lp.A/ does not represent
˛ then Proposition 6.6.2 implies that a˛ … OF ];p, and so Proposition 4.6.2 implies

W˛;p.s;T/ D W˛;p.s;A/ D 0:

Assume now thatLp.A/ does represent ˛, so that a˛ 2 OF ];p. If �p is the quadratic

character associated to the extension E]
p=F

]
p then Proposition 4.6.2 implies

W
�; Q 
a˛;p

�

0;˚0
Q̌
p.T/

� D �.V Q̌
p.T/

/.1C �p.˛ˇp.T//
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W
�; Q 
a˛;p

�

0;˚0
Q̌
p.A/

� D �.V Q̌
p.A/

/.1C �p.˛ˇp.A//:

As �p.˛ˇp.A// D 1, we deduce

W
�; Q 
a˛;p

�

0;˚0
Q̌
p.A/

� ¤ 0:

Moreover, Proposition 4.6.2 and Lemma 4.2.1 imply

W 0̨
;p.0;T/

W˛;p.0;A/
D
W

�;0; Q 
a˛;p

�

0;˚0
Q̌
p.T/

�

W
�; Q 
a˛;p

�

0;˚0
Q̌
p.A/

�

D �ordp.a˛/C 1

2
� log Nm.p/

D ��p.˛/
2

� log.Nm.q//:

This proves all claims in case (ii). Case (i) is similar but easier, and is left to the
reader.

Now assume we are in case (iii). Let $ be a uniformizing parameter of E]
p, so

that Q̌
p.T/ D $$
ˇp.T/ is an element of O�

F ];p
. The map x 7! x$�1 is an

isomorphism from .E
]
p; ˇp.T/xx
/ to .E]

p; Q̌
p.T/xx
/, and identifies

Zp C DE]=F ]OE];p Š
G

a2Z=pZ

� a

$
C OE];p




:

Therefore
W �̨

;p.s;T/ D
X

a2Z=pZ
W �̨

;p

�

s; ˚
a
$

Q̌
p.T/

�

:

The same argument used in the proof of Proposition 6.4.4 shows that only the a D 0

term contributes, and so

W �̨
;p.s;T/ D W �̨

;p

�

s; ˚0
Q̌
p.T/

�

:

Proposition 6.6.2 shows that

W �̨
;p.s;A/ D W �̨

;p

�

s; ˚0
ˇp.A/

�

;

and the rest of the proof is similar to case (ii). ut
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6.7 The Klein Four Case, Part I

Suppose that Gal.E=Qp/ D h�1; �2i is isomorphic to the Klein four group, and that

�1 acts on Hom.E;Qalg
p / and Hom.E];Q

alg
p / by

�1




��

�2




��

�12
��

��














�23

�4 �3 �14 �34

while �2 acts by

�1 

 �� �2 �12 �23
��

				
		
		
		

�4 

 �� �3 �14 �34:

If we set �0 D �1 ı �2 and let Ei denote the fixed field of �i , then E˙ D E2 and

Fp Š E0 Ep Š E

F ]
p Š Qp � Qp E]

p Š E1 � E2:

If E2=Qp is unramified then both E0=Qp and E1=Qp must be ramified. If E2=Qp is
ramified then Hypothesis 6.3.1 implies p > 2, and it follows from class field theory
that exactly one of E0=Qp and E1=Qp is ramified over Qp. In any case, exactly one
of E0, E1, E2 is unramified over Qp. Let�E be a generator of the different of E=Qp,
and let ıi be a generator of the different of E=Ei . One of ı0; ı1; ı2 generates�EOE,
and the other two are units. The fixed isomorphism (6.9) identifies

D Š

8

ˆ

ˆ

<

ˆ

ˆ

:

2

6

6

4

w1
w2
w3
w4

3

7

7

5

2 W 4 W
w1 � w2;w3 � w4 2 ı2W
w1 � w4;w2 � w3 2 ı1W
w1 � w3;w2 � w4 2 ı0W

9

>

>

=

>

>

;

:

The condition (6.7) implies

ordW .	1�E/ D 0 ordW .	2�E/ D 0:

There are two primes of F ] above p. One is p], and the other we denote by p
]
�.

First suppose that E0=Qp is unramified, so that ı0OE D �EOE. There are unique
lifts of �0; �1; �2 2 Gal.E=Qp/ to �0 2 � .0/ and �1; �2 2 � .1/. These lifts
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commute, and any two of the three generate � . The commuting operators V�0 and
V�1 on D have the form

V�0 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
0 V�1 D

0

B

B

@

$
�0
2

$
�0
1

$2

$1

1

C

C

A

ı ��1
1

for some uniformizers $1;$2 2 W . The condition (6.6) implies that 	1 and 	2
satisfy 	�01 D �	1 and 	�02 D �	2, together with

�p	1 D .$1$
�0
1 	2/

�1 � p	2 D .$2$
�0
2 	1/

�1 :

The condition that (6.14) commutes with V�0 and V�1 is equivalent to the conditions
a�0 D �b and c�0 D d , together with

a D �
�

pa

$
�0
1 $2

��1

c D �
�

pc

$
�0
1 $

�0
2

��2

:

Now consider the triple .T ; �T ; �T /. The operators commuting V�0 and V�1 on T
are equal to

V�0 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
0 V�1 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
1 :

The condition (6.16) implies that 	1 and 	2 satisfy

	
�0
1 D �	1 	

�0
2 D �	2 	

�1
2 D �	1 	

�1
1 D �	2:

The condition that (6.14) commute with V�0 and V�1 is equivalent to a; b; c; d 2 E

satisfying
a�0 D �b c�0 D d a�1 D �a c�2 D �c:

Next suppose that E1=Qp is unramified, so that ı1OE D �EOE. There are unique
lifts of �0; �1; �2 2 Gal.E=Qp/ to �1 2 � .0/ and �0; �2 2 � .1/. The group � is
generated by any two of these three commuting elements. The commuting operators
V�0 and V�1 on D are equal to

V�0 D

0

B

B

@

$
�1
2

$
�1
1

$1

$2

1

C

C

A

ı ��1
0 V�1 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
1
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for some uniformizers$1;$2 2 W . The condition (6.6) is equivalent to 	1 and 	2
satisfying 	�12 D �	1 and 	�11 D �	2, together with

�p	1 D .$1$
�1
2 	1/

�0 � p	2 D .$
�1
1 $2	2/

�0 :

The condition that (6.14) commutes with V�0 and V�1 is equivalent to the conditions

a�1 D �a b�1 D �b c�1 D �d

together with

a D
� �pb
$2$

�1
2

��0

b D
� �pa
$1$

�1
1

��0

c D
�

pd

$1$2

��0

:

Now consider the triple .T ; �T ; �T /. The commuting operators V�0 and V�1 on T
are equal to

V�0 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
0 V�1 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
1 :

The condition (6.16) implies that 	1 and 	2 satisfy

	
�1
2 D �	1 � 	1 D 	

�0
1 	

�1
1 D �	2 � 	2 D 	

�0
2 :

The condition that (6.14) commutes with V�0 and V�1 is equivalent to a; b; c; d 2 E

satisfying
a�1 D �a b�1 D �b c�1 D �d

together with b�0 D �a and d�0 D c:

Finally suppose that E2=Qp is unramified, so that ı2OE D �EOE. The elements
�0; �1; �2 2 Gal.E=Qp/ admit unique lifts to �2 2 � .0/ and �0; �1 2 � .1/, and � is
generated by any two of these three commuting elements. The commuting operators
V�0 and V�2 on D have the form

V�0 D

0

B

B

@

u
u�2

z
z�2

1

C

C

A

ı ��1
0 V�2 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
2

for some z 2 W satisfying ordW .z/ D 2 and some unit u 2 W �. The condition
(6.6) implies that 	1 and 	2 satisfy 	�22 D 	1 and 	�21 D 	2, together with

�p	1 D .zu	1/
�0 � p	2 D .z�2u�2	2/

�0 :
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The condition that (6.14) commutes with V�0 and V�2 is equivalent to the conditions

a�2 D b c�2 D �c d�2 D �d

together with

a D
��pb

z�2u

��0

c D
�

pd

zz�2

��0

d D
� pc

u�2u


�0
:

Now consider the triple .T ; �T ; �T /. The operators V�0 and V�2 on T are equal to

V�0 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
0 V�2 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
2 :

The condition (6.16) implies that 	1 and 	2 satisfy

	
�2
2 D 	1 � 	1 D 	

�0
1 	

�2
1 D 	2 � 	2 D 	

�0
2 :

The condition that (6.14) commutes with V�0 and V�2 is equivalent to a; b; c; d 2 E

satisfying
a�2 D b c�2 D �c d�2 D �d

together with a�0 D �b and d�0 D c.

Proposition 6.7.1 For any j 2 Lp.A/, j lifts to Lp.Acan
m / but not to Lp.Acan

mC1/
where

m D ordp]
�

Q
]

A.j /
�C 1

2
�
(

1 if p] is inert in E]

2 if p] is ramified in E]

Proof. If either E0=Qp or E1=Qp is unramified then W˙ D W , p] is ramified in
E], p > 2, and �E is a uniformizing parameter of OE. The submodule D1 is free
on the generators �Ee1 and �Ee2. The map D ! W 2 defined by (6.17) identifies
D=D1 Š W 2, and exactly as in the proof of Proposition 6.4.1, obstm.j / vanishes if
and only ifm � ordW .d/. As c=d 2 W � D 0 and e.E=F ]

p]
/ D 2, Proposition 6.1.2

implies
ordW .d/ D ordp]

�

Q
]

A.j /
�C 1:

As e.E=E˙/ D 1, the claim now follows from Proposition 6.2.3.
Now suppose that E2=Qp is unramified, so that W˙ D W and p] is unramified

in E]. The submodule D1 � D is generated by �Ee1, �Ee2, and e1 C e2. The map
D ! W 2 defined by (6.17) identifies

D=D1 Š
��

w3
w4

	

2 W 2 W w3 � w4 2 �EW

�

:
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After (6.18) the obstruction obst.j / W D1 ! D=D1 is given by

�Ee1 7!
�

0

�E	1d

	

�Ee2 7!
���E	2d

0

	

e1 C e2 7!
��	2d
	1d

	

:

The relation 	�21 D 	2 implies 	1 C 	2 2 W (choose �E so that ��2
E D ��E,

write 	1 D x��1
E with x 2 W � and use x�2 
 x .mod �EW /), and it follows that

obstm.j / vanishes if and only if

m � ordW .d/ � ordW .�E/:

As ordW .c=d/ D �2 and e.E=F ]

p]
/ D 2, Proposition 6.1.2 implies

ordW .d/ D ordp]
�

Q
]

A.j /
�C ordW .�E/C 1;

and so obstm.j / vanishes if and only if m � ordp] .Q
]

A.j //C 1. As e.E=E˙/ D 2,
the claim follows from Proposition 6.2.3. ut
Proposition 6.7.2 For some ˇp.A/ 2 F ]

p satisfying ord
p
]
�

.ˇp.A// D 0 and

ordp].ˇp.A// D
(

1 if p] is inert in E]

0 if p] is ramified in E]

there is an E]
p-linear isomorphism of F ]

p -quadratic spaces

�

Vp.A/;Q
]

A

� ! �

E]
p; ˇp.A/xx



�

identifying Lp.A/ Š OE];p .

Proof. Arguing as in the proofs of Proposition 6.4.2 and Proposition 6.5.2, in all
cases j 2 Vp.A/ satisfies

j 2 Lp.A/ ” a; b; c; d 2 �EW :

The rest of the proof proceeds as in the proof of Proposition 6.4.2. Fix any E]
p-

module generator j 2 Vp.A/. If E0 or E1 is unramified over Qp (so that p] is
ramified in E]) then by the calculations above

ordW .a/ D ordW .b/ ordW .c/ D ordW .d/;

and we may multiply j by an element of E]
p in order to assume that a; b; c; d each

generate�EW . If E2 is unramified over Qp (so that p] is unramified in E]) then

ordW .a/ D ordW .b/ ordW .c/C 2 D ordW .d/;
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and after multiplying j by an element of E]
p we may assume that a; b; c each

generate�EW . In any case one sets ˇp.A/ D Q
]

A.j / and uses Proposition 6.1.2 to

compute the valuation of ˇp.A/ at p] and p
]
�. The rule x 7! x �j defines the desired

isomorphismE
]
p ! Vp.A/, as in the proof of Proposition 6.4.2. ut

Proposition 6.7.3 For some ˇp.T/ 2 F ]
p satisfying

ordp].ˇp.T// D ord
p
]
�

.ˇp.T// D
(

�1 if p] and p
]� are both ramified in E]

0 otherwise

there is an E]
p-linear isomorphism of F ]

p -quadratic spaces

�

Vp.T/;Q
]
T

� ! �

E]
p; ˇp.T/xx



�

identifying

Lp.T/ Š
(

Zp C DE]=F ]OE];p if p] and p
]
� are both ramified in E]

OE];p otherwise:

Proof. The argument is similar to the proof of Proposition 6.4.3. Fix a j 2 Vp.T/.
If E0=Qp is unramified (so that p] and p

]
� are both ramified inE]) then j 2 Lp.T/ if

and only if a; b; c; d 2 OE and a 
 c .mod �EOE/. If one first chooses a; c 2 O�
E

satisfying a�1 D �a, c�2 D �c, and a 
 c .mod �EOE/, and then sets b D �a�0
and d D c�0 , then (6.14) defines an element j 2 Lp.T/. The map x 7! x�j defines

an isomorphismE
]
p ! Vp.T/, and examination of (6.15) shows that x � j 2 Lp.T/

if and only if x 2 OE];p and

�23.x/a 
 �12.x/c .mod �EOE/:

The congruence is equivalent to �23.x/ 
 �12.x/ .mod �EOE/; from which we
deduce

x � j 2 Lp.T/ ” x 2 Zp C DE]=F ]OE];p:

As a; b; c; d 2 O�
E , Proposition 6.1.2 shows that ˇp.T/ D Q

]

A.j / has valuation �1
at each of p] and p

]
�, and x 7! x � j defines the desired isomorphism E

]
p ! Vp.T/.

If E1=Qp or E2=Qp is unramified then j 2 Lp.T/ if and only if a; b; c; d 2
�EOE. One may choose a j 2 Vp.T/ such that a; b; c; d each generate the ideal

�EOE, and again x 7! x � j defines the desired isomorphism E
]
p ! Vp.T/. ut

Suppose ˛ 2 .F ]/� and p 2 Sppt.˛/, and recall the quantity �p] .˛/ of
Proposition 5.2.3. Assume p] 2 Diff.˛;T/, so that W˛;p.0;T/ D 0 by (4.7).
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Proposition 6.7.4 1. If Lp.A/ represents ˛ then W˛;p.0;A/ 6D 0 and

W 0̨
;p.0;T/

W˛;p.0;A/
D ��p].˛/

2
� log.Nm.q//:

2. If Lp.A/ does not represent ˛ then W˛;p.0;A/ and W 0̨
;p.0;T/ are both 0.

Proof. (Sketch) When both p] and p
]� are ramified in E], the proof is the same as

the ramified case in the proof of Proposition 6.4.4. Otherwise, the proof is the same
as in the unramified case in the proof of Proposition 6.4.4. We leave the details to
the reader. ut

6.8 The Klein Four Case, Part II

Suppose that Gal.E=Qp/ D h�1; �2i is isomorphic to the Klein four group, and that

�1 acts on Hom.E;Qalg
p / and Hom.E];Q

alg
p / by

�1
��

���
��

��
��

�
�2 �12 

 �� �23

�4 �3 �14 

 �� �34

while �2 acts by

�1 �2
��

����
��
��
��

�12




��

�23




��
�4 �3 �14 �34:

Set �0 D �1 ı �2, and let Ei denote the fixed field of Ei . Then E˙ D E and

Fp Š Qp � Qp Ep Š E1 � E2

F ]
p Š E0 E]

p Š E:

The extension E=Qp is ramified, and so Hypothesis 6.3.1 implies p > 2. It then
follows from class field theory that exactly one of E0, E1, and E2 is unramified
over Qp . Let �E be a generator of the different of E=Qp. As E=Qp is tamely
ramified with ramification degree 2, �E is a uniformizer of E. Let ıi be a generator
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of the different of E=Ei . One of ı0; ı1; ı2 generates the ideal �EOE, and the other
two are units. The fixed isomorphism (6.9) identifies

D Š

8

ˆ

ˆ

<

ˆ

ˆ

:

2

6

6

4

w1
w2
w3
w4

3

7

7

5

2 W 4 W
w2 � w4 2 ı2W
w1 � w3 2 ı1W
w1 � w3;w2 � w4 2 ı0W :

9

>

>

=

>

>

;

:

The condition (6.7) implies

ordW .	1�E/ D ordW .ı2/ ordW .	2�E/ D ordW .ı1/:

First suppose that E0=Qp is unramified, so that ı0 is a uniformizing parameter
of E. The elements �0; �1; �2 2 Gal.E=Qp/ admit unique lifts �0 2 � .0/ and
�1; �2 2 � .1/. The group � is generated by any two of these three commuting
elements. The commuting operators V�0 and V�1 on D have the form

V�0 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
0 V�1 D

0

B

B

@

$
�0
1

$
�0
2

$1

$2

1

C

C

A

ı ��1
1

for some uniformizers $1;$2 2 W . The condition (6.6) implies that 	1 and 	2
satisfy 	�01 D �	1, 	�02 D �	2, and

�p	1 D .$1$
�0
1 	1/

�1 p	2 D .$2$
�0
2 	2/

�1 :

The condition that (6.14) commutes with V�0 and V�1 is equivalent to a�0 D �b and
c�0 D d together with

a D
�

pc

$
�0
1 $

�0
2

��1

c D
�

pa

$1$
�0
2

��1

:

Now consider the triple .T ; �T ; �T /. The operators V�0 and V�1 on T are equal to

V�0 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
0 V�1 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
1 :

The condition (6.16) implies that 	1 and 	2 satisfy

	
�0
1 D �	1 	

�1
1 D �	1 	

�0
2 D �	2 	

�1
2 D 	2:
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The condition that (6.14) commutes with V�0 and V�1 is equivalent to a; b; c; d 2 E

satisfying a�0 D �b and c�0 D d , together with a�1 D c,
Next suppose that E1=Qp is unramified, so that ı1 is a uniformizing parameter

of E. The elements �0; �1; �2 2 Gal.E=Qp/ admit unique lifts �1 2 � .0/ and
�0; �2 2 � .1/. The group � is generated by any two of these three commuting
elements. The operators V�0 and V�1 on D have the form

V�0 D

0

B

B

@

$�1

u
$

z

1

C

C

A

ı ��1
0 V�1 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
1

where $ 2 W is a uniformizer, u 2 W �, and z 2 W satisfies ordW .z/ D 2. The
condition (6.6) implies that 	1 and 	2 satisfy 	�11 D �	1 and 	�12 D 	2, together with

�p	1 D .$$�1	1/
�0 � p	2 D .uz	2/

�0 :

The condition that (6.14) commutes with V�0 and V�1 is equivalent to a�1 D c and
b�1 D �d , together with

a D
��pb

z$�1

��0

b D
��pa

u$


�0
:

Now consider the triple .T ; �T ; �T /. The operators V�0 and V�1 on T are equal to

V�0 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
0 V�1 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
1 :

The condition (6.16) implies that 	1 and 	2 satisfy 	�11 D �	1 and 	�12 D 	2, together
with

�p	1 D 	
�0
1 � p	2 D 	

�0
2 :

The condition that (6.14) commutes with V�0 and V�1 is equivalent to a; b; c; d 2 E

satisfying a�1 D c and b�1 D �d , together with a D �b�0 .
Finally suppose E2=Qp is unramified, so that ı2 is a uniformizing parameter ofE.

The elements �0; �1; �2 2 Gal.E=Qp/ admit unique lifts �2 2 � .0/ and �0; �1 2
� .1/. The group � is generated by any two of these three commuting elements.
The commuting operators V�0 and V�2 on D have the form

V�0 D

0

B

B

@

u
$�2

z
$

1

C

C

A

ı ��1
0 V�2 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
2



130 6 Local Calculations

where $ 2 W is a uniformizer, u 2 W �, and z 2 W satisfies ordW .z/ D 2. The
condition (6.6) implies that 	1 and 	2 satisfy 	�21 D 	1 and 	�22 D �	2, together with

�p	1 D .uz	1/
�0 � p	2 D .$$�2	2/

�0 :

The condition that (6.14) commutes with V�0 and V�1 is equivalent to a�2 D d and
b�2 D �c together with

a D
��pb

u$

��0

b D
��pa

z$�2

��0

:

Now consider the triple .T ; �T ; �T /. The operators V�0 and V�2 on T are equal to

V�0 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
0 V�2 D

0

B

B

@

1

1

1

1

1

C

C

A

ı ��1
2 :

The condition (6.16) implies that 	1 and 	2 satisfy

	
�2
1 D 	1 	

�2
2 D �	2 	

�0
1 D �	1 	

�0
2 D �	2:

The condition that (6.14) commutes with V�0 and V�1 is equivalent to a�2 D d and
b�2 D �c, together with a D �b�0 .
Proposition 6.8.1 For any j 2 Lp.A/, j lifts to Lp.Acan

m / but not to Lp.Acan
mC1/

where

m D ordp]
�

Q
]

A.j /
�C ordp] .DF ]/C 1

2
�
(

1 if p] is inert in E]

2 if p] is ramified in E]

Proof. First suppose E0=Qp is unramified, so that p] is ramified in E], ı1; ı2 2 O�
E

and ı0OE D �EOE. The submodule D1 is free on the generators �Ee1 and �Ee2,
and the map D ! W 2 defined by (6.17) identifies D=D1 Š W 2. After (6.18) the
obstruction obst.j / W D1 ! D=D1 is given by

�Ee1 7!
�

0

�E	1d

	

�Ee2 7!
���E	2d

0

	

;

and so obstm.j / vanishes if and only if m � ordW .d/. As c=d 2 W � and
e.E=F

]

p]
/ D 2, Proposition 6.1.2 implies

ordW .d/ D ordp]
�

Q
]

A.j /
�C 1:
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The claim now follows from Proposition 6.2.3.
Now suppose that E1=Qp is unramified, so that p] is ramified in E], ı0; ı2 2

O�
E and ı1OE D �EOE. The submodule D1 is generated by �Ee1 and e2. The

map D ! W 2 defined by (6.17) identifies D=D1 with W 2, and the obstruction
obst.j / W D1 ! D=D1 is given by

�Ee1 7!
�

0

�E	1d

	

e2 7!
��	2d

0

	

;

and so obstm.j / vanishes if and only if m � ordW .d/. Earlier calculations show
that ordW .c=d/ D �1, and so e.E=F ]

p]
/ D 1 together with Proposition 6.1.2 imply

2 � ordW .d/� ordW .�E/� 1 D ordp]
�

Q
]

A.j /
�

:

Again the claim follows from Proposition 6.2.3. The case of E2=Qp unramified is
entirely similar. ut
Proposition 6.8.2 For some ˇp.A/ 2 F

]
p satisfying ordp] .ˇp.A// D 0 there is an

E
]
p-linear isomorphism of F ]

p -quadratic spaces

�

Vp.A/;Q
]

A

� ! �

E]
p; ˇp.A/xx



�

identifying Lp.A/ Š OE];p .

Proof. First suppose that E0=Qp is unramified, so that p] is ramified inE]. Arguing
as in the proof of Proposition 6.4.2, each j 2 Vp.A/ satisfies j 2 Lp.A/ if and only

if a; b; c; d 2 �EW . If we pick any E]
p-module generator j 2 Vp.A/, then using

(6.15) and
ordW .a/ D ordW .b/ D ordW .c/ D ordW .d/

we may multiply j by an element of E]
p in order to assume that a; b; c; d each

generate�EW . Setting ˇp.A/ D Q
]

A.j /, Proposition 6.1.2 implies

2 � ordp] .ˇp.A// D ordW .	1	2�
2
E/ D 0

As in the proof of Proposition 6.4.2, x 7! x � j defines the desired isomorphism
E
]
p ! Vp.A/.
If E1=Qp is unramified then p] is unramified in E] and each j 2 Vp.A/ satisfies

j 2 Lp.A/ if and only if a; b; c; d 2 W . Using

1C ordW .a/ D ordW .b/ D 1C ordW .c/ D ordW .d/

We may construct a j 2 Lp.A/ such that a; c 2 W � and b; d generate the maximal

ideal of W . Setting ˇp.A/ D Q
]

A.j /, Proposition 6.1.2 implies
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ordp].ˇp.A// D ordW .	1	2/C 1 D 0;

and again x 7! x � j defines the desired isomorphism E
]
p ! Vp.A/. The case of

E2=Qp unramified is similar. ut

Proposition 6.8.3 For some ˇp.T/ 2 F ]
p satisfying ordp].ˇp.T// D �1 there is an

E
]
p-linear isomorphism of F ]

p -quadratic spaces

�

Vp.T/;Q
]
T

� ! �

E]
p; ˇp.T/xx



�

identifying
Lp.T/ Š Zp C DE]=F ]OE];p:

Proof. First suppose that E0=Qp is unramified, so that p] is ramified inE]. Arguing
as in the proofs of Proposition 6.4.2 and Proposition 6.4.3, each j 2 Vp.T/ satisfies
j 2 Lp.T/ if and only if a; b; c; d 2 OE and a 
 c .mod �EOE/. We may
construct a j 2 Lp.T/ in such a way that a; b; c; d 2 O�

E , and then (6.15) shows that
x �j 2 Lp.T/ if and only if x 2 OE];p and �12.x/c 
 �23.x/a .mod �EOE/. This
congruence is equivalent to �12.x/ 
 �23.x/ .mod �EOE/, which is equivalent to
x 2 Zp C DE]=F ]OE];p: Setting ˇp.T/ D Q

]
T.j / and applying Proposition 6.1.2

gives
2 � ordp].ˇp.T// D ordW .	1	2/ D �2:

Thus x 7! x � j defines the desired isomorphism E
]
p ! Vp.T/.

If either E1=Qp or E2=Qp is unramified then p] is unramified inE], and each j 2
Vp.T/ satisfies j 2 Lp.T/ if and only if a; b; c; d 2 OE. We may choose j 2 Lp.T/
in such a way that a; b; c; d 2 O�

E . Setting ˇp.T/ D Q
]
T.j /, Proposition 6.1.2

implies
ordp] .ˇp.T// D ordW .	1	2/ D �1;

and again x 7! x � j defines the desired isomorphism E
]
p ! Vp.T/. Note that in

this case Zp C DE]=F ]OE];p D OE];p . ut
Suppose ˛ 2 .F ]/� and p 2 Sppt.˛/, and recall the quantity �p] .˛/ of

Proposition 5.2.3. Assume p] 2 Diff.˛;T/, so that W˛;p.0;T/ D 0 by (4.7).

Proposition 6.8.4 1. If Lp.A/ represents ˛ then W˛;p.0;A/ 6D 0 and

W 0̨
;p.0;T/

W˛;p.0;A/
D ��p].˛/

2
� log.Nm.q//:

2. If Lp.A/ does not represent ˛ then W˛;p.0;A/ and W 0̨
;p.0;T/ are both 0.
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Proof. (sketch) If p] is inert in E] then F ]
p=Qp is ramified, and

Zp C DE]=F ]OE];p D OE];p:

In this case, the proof is the same as that of Proposition 6.6.4 case (ii). If p] is
ramified in E], then F ]

p=Qp is unramified over Qp. In this case, the proof is the
same as that of Proposition 6.6.4 case (iii). ut
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