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Preface

Clifford analysis is a comparatively active branch of mathematics that
has grown significantly over the past 30 years. It possesses both theo-
retical and applicable values of importance to many fields, for example
in problems related to the Maxwell equation, Yang-Mills theory, quan-
tum mechanics, and so on. Since 1965, a number of mathematicians
have made great efforts in real and complex Clifford analysis, rapidly
expanding our knowledge of one and multiple variable complex anal-
ysis, vector-valued analysis, generalized analytic functions, boundary
value problems, singular differential and integral equations of several di-
mension and harmonic analysis in classical domains (see Luogeng Hua’s
monograph [26]1)). In recent years, more mathematicians have recog-
nized the important role of Clifford analysis in harmonic analysis and
wavelet analysis. Most of content of this book is based on the authors’
research results over the past twenty years. We present the concept of
quasi-permutation as a tool and establish some properties of five kinds
of quasi-permutations. Moreover, we use this tool to overcome the diffi-
culty caused by the noncommutative property of multiplication in Clif-
ford algebra, give the sufficient and necessary condition for generalized
regular functions, and discuss the solvability for some boundary value
problems.

In Chapter I, we introduce the fundamentals of Clifford algebra in-
cluding definitions, some properties, the Stokes theorem, Cauchy inte-
gral formulas and Pompieu formulas for generalized regular functions
and harmonic functions. We also definite quasi-permutation and study
the property of quasi-permutations. We state the sufficient and nec-
essary conditions for generalized regular functions. In the last section
of this chapter, we consider regular and harmonic functions in complex
Clifford analysis.

In Chapters II and III, the Cauchy principle value and Plemelj for-
mula of Cauchy type integrals are firstly studied. Next, the relation
between linear and non-linear boundary value problems with Haseman
shift for generalized regular and biregular functions, vector-valued func-
tions and singular integral equations in real Clifford analysis is discussed.
In addition, we discuss the existence, uniqueness and integral expres-
sions of their solutions. By using quasi-permutation as a tool, we study
the Dirichlet and mixed boundary value problems for generalized reg-
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ular functions, and give the Schwarz integral formulation of hyperbolic
harmonic functions in real Clifford analysis.

In Chapter IV, the theory of harmonic analysis in classic domains
studied by Luogeng Hua is firstly introduced. Moreover, using quasi-
permutation, we investigate two boundary value problems for four kinds
of partial differential equations of second order in four kinds of classical
domains of real and complex Clifford analysis, prove the existence and
uniqueness of the regular solutions, and give their integral representa-
tions.

In Chapter V, we first introduce Cauchy’s estimates for three kinds
of integrals with parameters, and then discuss the Poincaré-Bertrand
permutation formulas, inverse formulas of singular integrals with Cauchy
kernel, Fredholm theory, and the regularization theorem for singular
integral equations on characteristic manifolds.

In Chapter VI, we introduce the definitions of the Hadamard principle
value, the Holder continuity, recursive formulas, calculation formulas,
differential formulas and Poincaré-Bertrand permutation formulas for six
kinds of high order singular integrals of quasi-Bochner-Martinelli type
with one and two singular points, and then prove the unique solvability
of the corresponding non-linear differential integral equations in real
Clifford analysis.

In Chapter VII, we use the method of Clifford analysis to solve some
boundary value problems for some uniformly and degenerate elliptic
systems of equations.

It is clear that when n = 2, the functions in real Clifford analysis are
the functions in the theory of one complex variable, hence the results
in this book are generalizations of the corresponding results in complex
analysis of one complex variable. In this book, we introduce the history
of the problems as elaborately as possible, and list many references for
readers’ guidance. After reading the book, it will be seen that many
questions about real and complex analysis remain for further investiga-
tions. Finally the authors would like to acknowledge the support and
help of NSFC, Mr. Pi-wen Yang, Lili Wang, Nanbin Cao and Yanhui
Zhang.

Shijiazhuang and Beijing December, 2005

Sha Huang, Yu Ying Qiao and Guo Chun Wen
Hebei Normal University and Peking University



CHAPTER 1

GENERAL REGULAR AND HARMONIC
FUNCTIONS IN REAL AND COMPLEX
CLIFFORD ANALYSIS

Clifford algebra is an associative and noncommutative algebraic struc-
ture, that was devised in the middle of the 1800s. Clifford analysis is
an important branch of modern analysis that studies functions defined
on R"™ with values in a Clifford algebra space. In the first section of
this chapter, we define a Clifford algebra. In the second section, we dis-
cuss the Cauchy type integral formula of regular functions and Plemelj
formula of Cauchy type integral in real Clifford analysis. In the third
section, we introduce the conception of quasi-permutation posed by Sha
Huang, and from this we get an equivalent condition for regular and
general regular functions. In the fourth section, we establish a new hy-
percomplex structure. In the last section, we discuss some properties of
harmonic functions in complex Clifford analysis.

1 Real and Complex Clifford Algebra

Let A,(R) (or A,(C)) be an real (or complex) Clifford algebra
over an n-dimensional real vector space R"™ with orthogonal basis
e := {e1,...,en}, where e; = 1 is a unit element in R". Then A,(R)
(A, (C)) has its basis eq, ..., en; €263, ..., €n_1€p; ...; €2, ..., €. Hence an
arbitrary element of the basis may be written as e4 = eq,, ..., €q,; here
A=A{ay,..,ap} C{2,...,n}and 2 < a1 < ag < -+ < ap, < n and when
A = (empty set) eq = e1. So real (complex) Clifford algebra is com-
posed of elements having the type a = Y 4 z4€4, in which x4(€ R) are
real numbers and a = Y 4 Caeq, where Cy(€ C) are complex numbers
(see [6]). In general, one has e? = +1,i=1,...,s,e? = —1,i = s+1,...,n
and e;ej +eje; =0, 4,5 = 2,...,n,i # j. With different s we can get dif-
ferent partial differential equations (elliptic, hyperbolic, parabolic equa-
tions) from the regular function in Clifford analysis. In this book we let
s=1.
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Noting that the real vector space R" consists of the elements
z:=x1€1 + - + Tpep, (1.1)

we can consider that the elements z := zje1 + -+ + x2e, and z =
(21, ...,zy) are identical, and denote by Rez = z1 the real part x; of z.
For z € R™, we define the conjugate as

Z=1x1€1 —::* — Tneénp,

thus 2z = e1(23 + -+ + 22). The absolute value (or a norm) for an
element a = > ageq € A,(R) is taken to be
A

jal = /la2 =[S laal?, (1.2)
A

then |2]? = |z2]? = 22 =Zz for z € R™. If 2 # 0, 2 € R™, then we have
z z
Z(ﬁ) = (72)2 =1, (1.3)

2| 2|

hence, all non-zero elements of R™ possess the inverse operation of mul-
tiplication. However, it is not true for all Clifford elements, for instance
1+ e123.

Definition 1.1 For a € A, (R) (or A,(C)), we give some calculations
as follows:
a = Z:cAefA (or a' = ZCAe;l):
A A

where ¢/, = (—1)l4le4 and |A| = na(see [7]) being the cardinality of A,
ie. when A = O, |A| = 0 and when A = {ag,as,...,ap} # O, then

Al = h.
a= ZxAgA (ora = Z@AgA),
A A

|AI(1A[-1)/2

where €4 = (—1) e, and

[A[(JA[+1) [A[(JA[+1)
a=a=d =Y (-1)" 2 “zaca(ora=S (1) 2 caca)).
A A

For any a,b € A,(R) (A,(C)), an inner product is defined by

< a,b >= [ab]y, (1.4)
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where [ab]; is the coefficient of e; in ab, and we can prove that [ab]; =
[bal1, so < a,b >= [ab]y = [ba];. From (1.2), (1.4) we have

la* =< a,a >= Z laal?. (1.5)
A

Proposition 1.1 Let a,b € A,(R)(An(C)). Then
ab=ba, |a| = |d| = |a| = |al, |a|* = [aa]: = [aa];.
Definition 1.2 A Clifford number a € A,(R)(A,(C)) is said to be

conjugate, if a@a = @a = |a|?, and @ is called the conjugate Clifford
number of a.

Denote by X (X(C)) the set of all conjugate Clifford numbers in
An(R)(An(C)).

Proposition 1.2  For any a € A,(C), the following conditions are
equivalent:

1) a is conjugate.

2) |ab| = |ba| = |b||a| for any b € A,(C).

3) There exists b € Ap(C)\{0}, such that ab = |a||b| or ba = |b||a|.
Proof It is sufficient to show that the assertion is valid for a # 0.
We first prove 1) — 2). By Proposition 1.1, it is clear that

lab|? = [abab], = [baab); = |a|*[bb]; = |a|?|b|?.
Similarly we can verify |ba| = |b||al.
Setting b = @ and using Proposition 1.1, we can get 2) — 1), 1) — 3).

As for 3) — 1), we need to show that ab = |a||b| (b # 0), i.e. a@ = |a|?.
There is no harm in assuming that |a| = |b|, then by Proposition 1.1, we
get
< a,b>= [ab]; = ab = |al|b| = |a]|b]. (1.6)
Hence there exists t € C such that b = ta and [t| = 1. From (1.6), it
follows that
tla]* =< a,ta >= |a]*.

Since a # 0, we obtain t = 1, that is @ = b, therefore

a@ = ab = |a||b] = |a|?.
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By using the above result it is easy to extend Proposition 1.1, hence
we have the following corollaries.

Corollary 1.3 a,b € R(C) = ab € X(C).
Corollary 1.4 Ifay,...,am € R(C) and b € A,(C), then

|a1, PN aj,lbaj...am| = |CL1, ‘, |aj,1||b|]aj\...|am|.

2 Cauchy Integral Formula of Regular Functions and
Plemelj Formula of Cauchy Type Integrals in Real
Clifford Analysis

Firstly we give the definition of A-value function.

Definition 2.1 Let 2 C R" be an open connected set. The function
f which is defined in © with values in A, (R) can be expressed as

f($) = ZeAfA(x)v
A

where the function f4 is a real-valued function.

The set of C"-functions in 2 with values in A, (R) is denoted by

F§' = {f1f : Q= Aq(R), f(@) =3 fa(z)ea).
A

We introduce also the Dirac operator

a T r—1
8:Zeiaxi : Fg())—> 5(2 ), (2.1)

that is of
e _ o 2IA
af = %;ele,q 92,

The Dirac operator 0 is defined as
o0 0 0

0= g — e — ey 2.2
“a o0x1 2 0xo o Oxy, ( )
Since A, (R) is not a commutative algebra, in general the expression
of of

8](‘:61871'1_‘_“‘—’_6”87%
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1S not same as

5. 9f of
fa— aiﬂlel + + 81‘”6”'

Definition 2.2 Let 2 C R"™ be a domain and f € Fg). Then f is

left regular in Q, if 9f = 0 in Q; and f is right regular in €, if f0 = 0

in Q. Forn =2, df = 20f/0z = 0f/0x1 + e20f/Ox2, thus under this

condition the Clifford algebra is just the complex space and left regular

is equivalent to holomorphic. For n =3, f(z) =Y eafa =eifi+eafo+
A

e3 f3+eas foz. If we transform fy, fo, f3, fos into &1, — Py, —P3, O, then
df = 01is equivalent to the elliptic system in higher dimensional domains,
i.e. the M — T equation. Liede Huang discussed the boundary value
problems of the M — T equation in [28] and found a lot of applications,
for example the problem of airplane wing shapes, momentum pressure,
electromagnetism, laser technology and so on.

Notice that the product of Dirac operators @ and 0 is equivalent to
the Laplace operator

N & 02
00 =0 =5+t 5 = (2.3)

Definition 2.3 Let (2 C R"™ be a domain and f € Fg). If
Af =0, (2.4)
then f is called a harmonic function.

It is clear that we have the following theorem.

Theorem 2.1 Let) C R™ be a domain and f € Fg(zz). If f is harmonic
in Q, then Of is left reqular in 2, and fO is right regqular in Q; and if f
is reqular in 2, then [ is harmonic in €.

Let & C R" be a domain. If U = 77, ® AP w is the exterior
algebra with the basis {dx,...,dz,}, we consider the pth-differential
form ¥(z) = 3 Y4 g(z)eads, where z € Q C R". Furthermore, the

AH

function ¢4 g (z) is assumed to be in set C"(2) (r > 1). Integration of
¥ (x) over the p-chain I' C Q is defined as

_ H
/Fw(m) —%/FLZJA,H(JJ)@ACM ) (2.5)
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Now we establish the Stokes theorem for functions in (1) as follows:
Denote by I' C €2 an n-dimensional differentiable and oriented manifold.
By means of the (n — 1)-forms

dr; =dxi A Ndri—1 Ndxiga A~ Ndxy,i=1,...,n

a Ay, (R)-valued n — 1—form is introduced by putting

n

do =Y (—1)""e;dz;.

=1

If dS stands for the “classical” surface element and
n
m = Z €;Nng,
i=1

where n; is the i-th component of the unit outward normal vector, then
the A, (R)-valued surface element do can be written as

do = mdS.
Furthermore the volume-element dz = dx1 A -+ - A dz,, is used.

Now we state and prove the Stokes-Green theorem about the function
in Fy,.

Theorem 2.2 (see [6]) Let Q be as stated above, M C Q be an n-
> 1),

dimensional differentiable, oriented manifold, f,g € FS({) (r and I’

be an arbitrary n-chain on M. Then we have

| tdog= [ ((19)g+ 1 @g)lda (26)

Proof Using the Stokes theorem for real-valued functions, we succes-
sively get

fdog = / ) faggdTieacien
or 8FA1 B

= Y (D eacien [ (<1100 (fagy)do

Ai,B

= /Z (Oz; fa)eneigyep + faeaeiep(0z,9,)|dx
A,i,B

= [10)g+ 1 @g)de
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Corollary 2.3 If f is right reqular in Q2 and g s left reqular in ), then
for any n-chain I' on M C ), the following integral holds:

/ fdog=0. (2.7)
or

Corollary 2.4 Putting f =1, the formula (2.6) yields

/5gd:c:/ dog,
r or

where g € FS({) (r>1).

For any g, which is left reqular in M, we have

dog = 0. (2.8)
or

This is called the Cauchy theorem.

Next let Q C R™ be a domain and the boundary 02 be a differ-
entiable, oriented, compact Liapunov surface. The so-called Liapunov
surface is a kind of surface satisfying the following three conditions (see

[19]).

1. Through each point in 92, there is a tangent plane.

2. There exists a real constant number d > 0, such that for any point
Ny € 092, we can construct a sphere E with the center at Ny and
radius d, and FE is divided into two parts by 02, one included in
the interior of E denoted by dQ', the other in the exterior of E;
and each straight line parallel to the normal direction of 02 at N,
with 99 intersects at most a point.

3. If the angle 8(N7, N2) between outward normal vectors through
Ny, Ns is an acute angle, and 712 is the distance between N; and
Ny, then there exist two numbers b,a(0 < a < 1, b > 0) in-
dependent of Nj, Ny, such that 8(Ni, No) < bria for all points
Ny, Ny € 092

From 3 we get that 6 is continuous at the point N € 9Q (see [29]2)).
Let Ny € 092 be a fixed point, and establish a polar coordinate system
with the origin at Ny and the outward normal direction of 9 at Ny
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as the direction of the positive #, axis. Then the surface 99 may be
written in the form

gn :gn(§17"‘7£n—1)7 (29)

and &, has first order partial derivatives on & (i = 1,...,n — 1).

Let d > 0 be small enough such that bd® < 1, and for any point N € 9,
0o = 6(No, N) as stated before, and ro = |NoN| be the distance from
Ny to N (9 < d). We can obtain
1 1o 9
cosby >1 290 >1 2b o > 0,

and then

1
< <1432 <2.
cosfy — 1— %bzrgo‘ = LHbT s

Thus we have the formula
1
cos by > 7 (2.10)

Moreover we introduce a local generalized spherical coordinate at Ny as

follows:
§n—1 = Po COS (1 COS (P2... COS Py 3 COS P2,

§n—2 = PO COS Q1 COS Pa... COS Pp—3 SIN P2,
.
§2 = po COS 1 8in g,

§&1 = posingn,
where py is the length of the projection of ¢ on the tangent plane of 92
at No, and y; satisfy the conditions

o] < g 5=1,2,.,m—3,0< @, 9 < 27,

hence we get

— ) > 1 D(gla"wgn—l)

cos(mg, Tp) > =, < pn2 2.11
( " 2 D(pOagplv"'ﬂOan) Ao ( )
where m§ is a normal vector through N.

A function f(y) : 92 — A,(R) is said to be Holder continuous on
00, if f(y) satisfies

|f(y1) = f(y1)] < Milyr — 2|, y1,92 € 02 (0 < a < 1). (2.12)
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Denote by H§, the set of all Hélder continuous function on 9€2 with the
index «.

Now we consider the Cauchy type integral, Cauchy singular integral
and the Plemelj formula.

Definition 2.4 The integral

1

P(z) = o oo E(z,y)n(y) f(y)dsy, (2.13)

o) = - [ Ble)do, fv

is called the Cauchy type integral, where 2 and 0f2 are as before, n(y)
is the normal vector through y, dS, is the area difference E(z,y) =
7—T

and w, = lgern//;) is the area of the unit sphere in R®. When

x € RM\0Q, f(x) € Hgg, it is clear that the integral is well defined.

Definition 2.5 If zy € 0f), construct a sphere E with the center at
xo and radius § > 0, where 0 is divided into two parts by E, and the
part of 0 lying in the interior of F is denoted by As. If }in% s =1,in

which )
@s(oo) = — [ Bleo,y)da, /(). (2.14)

Wn

then I is called the Cauchy principal value of singular integral and de-
noted by I = ®(zp).

Now we prove the Cauchy-Pompjeu integral formula.

Theorem 2.5 Let Q, O be as stated above, and Q = QU IN. Then
for each x € Q, f € FZ(r > 1), we have

f@) = [ B, fw) - [ Ben@)wd.  (215)
and
f@) = [ 1wdo, By - - [ (D)) E@ iy (216)

Proof We also use the notations as before and denote by = a point in
Q and the hypercomplex number x = z1e1 + - -+ + xpe,. For n > 3, set

1 n 1 n
E(z,y) = ﬂa(Iy - 9«"\2 ) = ﬂﬂy - 9U|2 )0,
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and for n = 2,
E(z,y) = d(In|y — z[) = (Inly — z|)0.

In both instances,

O(E(z,y)) = (E(z,9))0 =0,y # =

So both |y — z|> ™™ (n > 3) and In|y — z| (n = 2) are harmonic. If
Q. ={y € Q:|ly—x| > €}, where z € Q is fixed and the e-ball:
ly — x| < € about x lies completely within Q, by the Stokes theorem one
has

| B@n)@nwidy= | Baydo, i)~ By, i).
e ly

—z|=¢

About the fixed point z, f(y) may be approximated as f(y) = f(x) +
O(e), in which lir% O(e) = 0. Using the Stokes theorem we have
E—

E(x,y)doy = wp.

ly—x|=¢

Hence when € — 0, we can obtain the Cauchy-Pompieu representation
(2.15). A calculation analogous to the above verifies the representation
(2.16).

Corollary 2.6 Let ), 0N be as stated above, and f be a left regular
function defined on Q. Then

f(x0)7 o € Q7

O(x0) = o (2.17)
0, zo € R™M\Q,

here ®(xq) is defined by Definition 2.5.

Theorem 2.7 Suppose that Q, 0Q are as stated before, and f €
Hgq, wo € 0S). Then

wi E(z0,y)doy f(y)
1 n J o0 X (2.18)
= — E(xo,y)day[f(y)—f(fﬂo)Hgf(xo)v
Wn JOQ

where the first integral is defined by Cauchy’s principal value, and the
second integral is defined by a generalized integral.
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Proof Let \s be as stated above. Then

| Baowdo, )
A0—Ns
= E(zo,y)doy[f(y) — f(zo)] + E(xo,y)doy f(x0).

-5 00—Xs
(2.19)

Because f € Hj, and (2.11),(2.12), we can get

M
|E (20, y)doy[f(y) — f(xo)]| < W\dSyl

D(gl?"'vé_nfl)
D(p07<1017"'780n72) |y — x0|n717a| poay ©On |
M 1
< | =200 *dpodipr...dipn 2| < M dpo,
||y_x0|n717a Py dpoder...dpn—s| P D

in which the integral of the last function is convergent, so

6—0
O0—Ns

tim [ B, p)doy [F)— (o)) = [ B(wo,1)doy[F () - flao)).
N

Calculating the second item, and setting Doy = {0[(D(z0,d)) U Q]} N

(R™ —Q), by the Cauchy formula (see Corollary 2.6), we have
E(xo,y)doy f(x0) = wn f(20),
aQ_)\5+Dout

and

| Blao.doyi(zo)= [ Blro.) = 2as,f ()
Dout Dout

1
= [ —— 4S8, f(=x0),
/ |y—330‘n_1 yf( 0)
Dout

and from the condition about 9€2, we obtain

. 1
}l_r)% E(‘T()ay)do-yf(‘r()) = iwnf(w0)7
Dout
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SO

lim [ E(wo,9)doyf (xo)
90~ As

~ lim / E(xo,y)doy f (o)

00—=As+Dout

. 1
—%lg(l) E(any)dayf(xﬂ)ziwnf(1:0)~
Dout
Summarizing the above discussion and letting § — 0 in (2.19), we can

get the required result.

Next we consider the limit of Cauchy’s integral when x — xg, xg € 0
from QT = Q and Q= = R™"\Q; we first give a Hile’s lemma.

Lemma 2.8 Suppose that t,z € R", n(> 2) and m(> 0) are integers.

Then Po(e.1)
T t m (T,
m+2 m—+2 < m~+1|+|m+1 |l‘ B t|’ (220)
|z I |||

where

m
S xRk, m £,
P(z,t)={ k=0

1, m = 0.

Proof The proof can be seen in [19].
We rewrite (2.13) in the form

@)= - [ Elay)do,i)

= [ Be)doy[f) - @)+ [ Bl gy fwo)
Wn JOQ Wn JOQ

= F(x)+ wi /{m E(x,y)doy f(zo).

n

(2.21)
From Corollary 2.6, we get
1 f(l'()), T € Q+7
— | E(z,y)doyf(xo) = (2.22)
Wn JOQ 0, z e .

Now we need to consider the limit of (2.14), it suffices to study the first
item in (2.21).
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Theorem 2.9 Let 2,0 be as stated above, and f(x) € H§y, 0 < a <
1. Then for xo € 082 we have

lim  F(x) = F(zo). (2.23)

z€RM\OQ

Proof We first assume that z — zg and is not along the direction of
the tangent plane at zo(€ 9€2). This means that the angle between the
tangent plane of 02 at x¢ and line segment ZTZg is greater than 20y, then

F(z) - F(xo)
= — | Blawdo i)~ 1)~ [ Bwo,u)doylf()~f(o)
Wn JOO Wn JOQ
= L[ [B,y) - E@oy)doy[f(y) — f(z0)]
Wn JOQ
- [ (Bte.y) ~ Ewou)da, 1) - fleo)
2 [ B y) - (o, )Hoy[f(y) — f(xo)] = I + Do,
Wn JOQ—Ns

From the conditions that 9 is a Liapunov surface and x — xg is not
along the direction of the tangent plane and the angle to the tangent
plane of 9 at xg is greater than 23y, where [y is a constant, we can get

Tr — X0
Yy—x

< Ms < o0,

—x
‘y 0 < Ms < oo

y—x

again by Hile’s lemma, we have

R )
ly—z[*  |y—zo

|E(x, y)—E(zo,y)|

|z — x| 1
T

— |x—x0] 1

= ly—a|F ly—zo[nF

ly— x| |y—a|Ft |y —xont
(n—1)M§

ly —xzont = ppt

k=1

< (n—1)Mj
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From (2.11), it follows that

’ 1o &n—1)
D(po, ¢1, ...y Pn—2)

’dSy‘ = ’day’

X |dpodpr...dpn—2| < Mapl~2dpo,

and
[Ih] < ES A |E(x,y)—E(xo,y)||doy][ f(y) = f(z0)]
55 5
< Ms/%pg_%é"dposm /08‘_161/)07
o Po 0

in which the constants M3, My are independent of xg, and for arbitrary
e > 0, there exists a p > 0 such that when 0 < p,|[1] < /2. Given a
fixed 0 such that 0 < § < p, thus we can estimate I». By

Ba,y) — E(wo,y)| < Z —oolt 1Y gy
E(zo,y)| < x — x|,
0 —z|* |y — x| 0

we get
1
[L|= — |E(,y) = E(zo, y)l|doy||f(y) = f (xo)]

Wn, JOQ—Ns

1 L( 1) M¥

n— _
< = [T 02000 My o — o).
Wné Po

Here L is a positive constant because of 02 being bounded. Thus when
|x — x| is small enough we can get |I3] < £/2. Hence F(z) converges
to F(xzp) on 02 as x — xp. Note that § is independent of xy, and
z 1z € 09, thus it is easy to see that F'(z) is uniformly continuous on

of.

Next consider x — z¢ along the direction of the tangent plane of OS2
at z9. When |z — x| is small enough, we can choose a point y(€ )
such that |z — y|, |y — xo| are also small enough, and z lies in the
direction of the tangent plane of 02 at y. Taking account that F(x)
on 0 is uniformly continuous, we can derive that for any € > 0, when
|z — xo|, |y — x| are small enough, the following inequalities hold:

[F(y) = F(xo)| < 5, [F(2) = F(y)| <

l\D\m
NI O
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thus
|F(z) — F(zo)| < [F(z) — F(y)| + [F(y) — F(xo)| < e.

This completes the proof.

Theorem 2.10 Let Q, 9O, QF, Q™ be as stated above, f(z) € Hgq,
0<a<l,zed, and denote by ®+(z0), D~ (z0) the limits of ®(x),
when x — xq in QT, Q respectively. Then

®*(a0) = - [ B 0)doy 1) + 5 Flav),

| i (2.24)
@ (o) = — [ El@o,)do, 1) - 5/@o).
" &* (20) — B (a0) = f(a0),
(2.25)

®(a0) + (o) = — [ B(eo,)do, £(5).

Proof By using Cauchy’s integrals (2.13), (2.21), (2.22) and Theorem
2.5, when z — zo in Q1, Q~, ®(z) possesses the limits

©(o0) = - [ Blan.y)do, [(0) - F(a0)] + Flao)
® (w0) = [ Bleo.)do (0)  Flao))

respectively. Form (2.21) it follows that (2.24) is valid. Similarly we
can prove (2.25). The formula (2.25) is called the Plemelj formula for
left regular functions, which is generally used to discuss boundary value
problems.

3 Quasi-Permutations and Generalized Regular
Functions in Real Clifford Analysis

Clifford numbers that we use in Clifford analysis do not have the com-
mutative property, creates a lot of difficulties in handling some problems.
In this section we first introduce the conception of quasi-permutation
proposed by Sha Huang (see [29]4),5),6)), and then we give some equiv-
alent conditions of regular functions and generalized regular functions
by the above quasi-permutation.
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3.1 The quasi-permutation and its properties

Definition 3.1 Let A = {hy,ho,....,hx}, 1 < hy < hg < ... < hy,
here h; (i =1,...,k), and m be natural numbers. For the arrangement

L {A\{m}, me A,

mA =
{91792> "'7gk+1}7 m ¢ A7

where g; € AUm, 1 < g1 < g2 < ... < gg+1, we call mA the first class
quasi-permutation for arrangement mA, and define mm = 1, m1 = m.
If there are p natural numbers h; € [2,m], then the sign

Oz = (=1)°

is called the sign of the first class quasi-permutation mA.
Property 3.1 1. If mA = B, then mB = A.

2. mA = Am.

3. Let m =1, then 6~ = 1.

4. If mA =B and m # 1, then 6— = —0-—.

5. emes = Op—e—r.

The proof is easily obtained by Definition 3.1.

Definition 3.2 Let A be as stated in Definition 3.1 and B =
{li,la, .., ln}, 1 <l <o < . < by <1, (1 £ j < m) be natural
numbers. We call the arrangement BA = (BUA)\(BN A) with the nat-
ural order as the second class quasi-permutation for arrangement BA,

and
m

5ﬂ=H5,j—A

Jj=1

as the sign of the second class quasi-permutation. And we let BB =
1, BI=RB
Property 3.2. 1. If BA=C, then CA = B.
2. BA = AB.
r(r+1)
2.

3. Let A= {hy,ha,....,h;} #{1}. Then 64z = (—1)

4. Epepg — (Smeﬁ
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5. Ifa =Y acec, A=CB, w=>Y wgep, then
C B

aw = Z(Z acdsgwnB)ea.

A C

Proof. Noting that
aw = acec Y. wgep
B

Y. acwpecen
B

[
M o] alv

acwp 607B607B’

w

c

we can write A = C'B, and notice for every C, A and B monogamy, so

aw = Z Z acdEEwWBeA.

A C

Definition 3.3 Let j be a natural number and D = {hy, ha, ..., hs},
1 <hy <hy<..<hg<n,h,(1<p<s)benatural numbers. The ar-
rangement Dj is called the third class quasi-permutation of arrangement
3D, and the sign

(_1)8 for any p € [178]7 hp#ja
€iD =
(=1)*~! for some p € [1,s], hy = 7,
e1p =1,
is called the sign of the third class quasi-permutation.

Property 3.3 If j, D are as stated above, then

€j€D = steDej.

Definition 3.4 Let the arrangement D = {hy,..., h,} and C be natu-
ral number arrangement with natural order as above. Then the arrange-

ment C'D is called the fourth class quasi-permutation of arrangement
DC' and the sign

s
EDC = H e
p=1
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is called the sign of the fourth class quasi-permutation.
Property 3.4 IfC, D are as stated above, then

€EDEC = EDCECED-

Property 3.5 Let C = {hy,....h}, D ={k1,...,kp} as stated in Def-
inition 3.1, where h;, k; are all not equal to 1 and q elements in C' and
D are the same. Then epec = (—1)"P~%ecep, epc = (—1)"P7%, and
when r or p is an even number, then epec = (—1)%ecep,epc = (—1)4.

Definition 3.5 Let C, D, E, M be the arrangement of natural num-
bers as in Definition 3.1. The arrangement CDEM is called the fifth
class quasi-permutation of arrangement FEDC M, and if

CM = {hla ceey hr}v EM = {bb --wbp}a VEDC = €EDEECEDC,

then we call
r(r+1)+p(p+1)
pepc = (—1) 2 VEDC

the sign of the fifth class quasi-permutation.

Property 3.6 Let E, D, M be the arrangement of natural numbers
as in Definition 3.1, ED = {hy,...,h;} = A(h; # 1), MA = C,CD =
{bl, ...,bp} =B (b] 75 1) Then

1. 0ppocar = HEDCOGDORNT-

2. 0ep0Far = hEDCOEROET
p(p+1)
3. Egpepecepn — VEDC(_l) 2 5@5@.

Proof We calculate egepeceys in two ways, and obtain

egepecer = SppeEnOTReont

r(r+1)
5ﬁ50M=

= dgpdemresneonr = (—1)
where ED = MEDM = CM, and then
€Epe€pecen =VEDCECEDEEEM
= VEDCOepOEmC e DCERT

p(p+1)
=vepc(—1) 2 Sepdmar
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where CD = MEDD = EM. From the above equality, we can derive

r(r Y p(pH)
gpdear=(—1)" 2 VEDCOmpOEs

and the proof of 1 is finished. Similarly we can prove 2, 3.

Property 3.7 Let D, B be the natural arrangement of natural num-
bers, j(# m) be natural numbers, and

7D =A=1{h1,...hy} =mB, jB=mD = {b1,....b,}.

Then

Proof We prove it according to the following three cases:

1. m,j5 € D.

2. m,j & D.

3. D includes one of m and j.

If m,j € D, then m,j ¢ N \ B, and there exists a set F, such that
D =FEU{j,m}, B=FE\{j,m}, hence

r(r+1)
emeDejeB:67mD67mD6ﬁ€j?:57mDéﬁ(_l) 2,

moreover we have

€mEDE;ER = VmDj€;€DEmER = Vijéjj&@

r(r+1)

From this, we get 1. Similarly we can prove 2, 3.

3.2 Regular functions and generalized regular functions

By the method using the sign of quasi-permutation, in the follow-
ing we give equivalent conditions for regular functions and generalized
regular functions.
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Theorem 3.8 If f : Q — A,(R), then f(x) = > fa(x)ea is a left
A

regular function if and only if

n
fAz, = Z 6m MAT,?
m=2

where ( )y, = 0( )/0Tm.

Proof By the definition of quasi-permutations, we have

n n

9f(x) = zeﬁf 33 a2

=1 A

of
= ZA:(Si.Aemaxé—leA HaAJFZ A zAa ]

A

when 2 < i < n;if iA = B, then A =B, o5 = —0:5. So

=2

P
1A€1A87561

af(x) =3

A

zBe 8331
Again because 1A = B, iB = A(2 < i < n), we can verify that the

elements of the sets {A} and {B} possess the same quantity and same
form. From this formula it follows that

8f(x):2[ Ofa ana asz]

Finally by the definition of df(z), the proof is completed.

Especially, when n = 3, the equivalent condition is the system of
equations (3.0), Chapter VII.

Theorem 3.9 Let f : Q@ — A. Then f(x) = Y fa(x)ea is a left
A
regular function if and only if

mB
ot O

where mA = B.

Proof By Theorem 3.8 and 05 = —0:5 (i # 1, iA = B, iB = A), the
theorem is easily proved.
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Let w = Y waes. Then W = Y waey, if A = {hl,...,hr}, €p =
A A

(—1)T<T2+1) e4 (see Definition 1.1). When r = 0,3 (mod 4), ie.
(—l)mﬂ) =1, we denote A by A and the A is called the A-type index.
r(r+1)

When r = 1,2 (mod 4), i.e. (—1) = —1, we denote A by A and the
A is called the A-type index. Hence we can write

w = Zwéeéf
A

wAae

S

[S\g!

Definition 3.6 Let Q@ C R" be a bounded domain, and w(z) =
Y wa(x)ea € Fg) (r > 1). If w(z) satisfies the system of first order
A

equations

Ow = aw + bw + 1, z € Q, (3.1)

then w(x) is called a generalized regular function in 2, where

:Zac( ec, b Zbc x)ec, | ZZA(;U)QA_
C

A
By Theorems 3.8 and 3.9, we know
n
Y. D GnpWba,ea
mB=AMm=1
and by Property 3.2, at the same time letting w = > wyrep +>- wamenr,
M M o=
we have

aw+bw+l = (3 acec) (S wmen +
c M

[S\g

wyepm)
+(X boec) (X wmenm — > wumem) + 3 laea
c M M == A
= > acwydggreat Yo acwydggreat Y bcwM5@eA

CA = CA == CA

— > bowydagrea+) laea= ) (ac+bo)wpdzze
C%Cgcgfx %:AA c%(c c)wamdzgrea

+ > (ac — bo)wnpdggrea + > laea,
& =M 7
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where CM = A, CM = A. Thus (3.1) becomes

n
Z Z 5@U)BIWGA = Z(CLC + bC)’U)Mé@(BA
A m=1 C,A

+ C%(ac — bo)wmdgrea + Z laea,

)

in which mB = A,CM = A, CM = A. From the above discussion,
we have the following theorem. That is to say for any A, the following
formula (3.2) is true.

Theorem 3.10 Let Q@ C R"™ be a bounded domain, and w(zx) =
S wy(x)en € Fg({) (r > 1). Then w(z) is a generalized regular func-
M

tion in Q if and only if w(x) satisfies the elliptic system of first order
equations

Z 5mew3xm: Z (CLC‘FbC)U/M(;@
=1

_m= C
mB=A CM=A

+ Z (ac — bc)w%(S@%— la.
CM=A

In addition, we can also derive the relation between a generalized reqular
function and an elliptic system of second order equations.

Theorem 3.11 Let @ C R"™ be a bounded domain, and w(x) =
S wy(x)en € FS({) (r >2). Then w(z) is a generalized regular function
M

in Q if and only if the components of w(x) satisfy the elliptic system of
second order equations

D = Z 5ﬁ5@(ac + bC)IjU}M
3,C

+ Z ip0car(ac +bc)wne; + 3 055

)

xdagr(ac — be)w,wy + Z [ndeis
X(ac — bc)’waj + Zl 5j7Dlej7
M =

where j =1,...n, jD = A, CM = A, CM = A.
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Proof Let w(z) = Y wa(x)ers be a generalized regular function.
M

From Theorem 3.10, it is clear that wys(z) satisfies (3.2), and for a fixed
index D, we consider the term wp in the left-hand side of equation (3.2),
i.e. the equation corresponding to e4 satisfying that jD = A. Suppose
that the term corresponding to wp is 6jfw Dk;» and this equation is said
to be the equation for wp. Then we find partial derivatives with respect
to x; for the equation including Wp, and then multiply this equation
by 5373. Finally sum these derivatives according to the index j, we get

Z 6‘77D (Z 5’mbBl’1m) Tj

=1 =1
’ g (3.4)

n

Z ]D waz-i— Z mbBzwmwj'
J=1 Jmﬁsﬁm

Noting that mB = A, A= jD(j = 1,...,n) in (3.4) only include a part
of all indexes(real subset) of sets A, and that from Corollary 3.7 we have
(5 5 mBWBTmz; = _5m5j73w3xja:m7

then
Jm,j#Em
moreover we can derive
n n
> % <Z 5mbBmm> = Awp. (3.5)
j=1 m=1 ;i

In fact we consider the right side of equation for w(z) in (3.2). By using
the same method (i.e. we find the partial derivatives with respect to x;
and multiply by (5].5, and then sum them by j) we can get the expression
of wp in the right side of equation (3.4):

C

7j=1
+Z ac — bC wM(SCM+lA] )
C

+ : (5ﬁ5@[(&0 — bC)’UJM]wj
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n
+2_ 5plas; = D Gpdeyr(ac +be)a,wn
j=1 3¢

Z Hoaar(ac + bo)wisa,

Z CM (ac = bc)a, wym

n
Z D CM - bC)w%fvj‘FZ‘sﬁlAﬁf
j=1

Here CM = A, CM = A, jD = A. From equations (3.4), (3.5), (3.6),
it follows that the formula (3.3) is true.

4 The Chain Rule and Differentiation Rules of new
Hypercomplex Differential functions in Clifford
Analysis

There are three ways to discuss general holomorphic functions in
complex analysis: one is Cauchy’s method that is based on the dif-
ferentiability; another one is the Weierstrass method that is based on
power series; the third one is the Riemann method that is based on the
Cauchy-Riemann equations. In the case of a quaternion, F. Sommen
[72]1) uses a special differential form that avoide the differentiability in
Cauchy’s method. Conversely in 1990, H. Malonek [48] gave an imitation
of Cauchy’s classical method by using the new hypercomplex structure,
first giving a relation between new hypercomplex differentiable func-
tions and monogenic functions, a hypercomplex structure that possesses
an obvious advantage. In this section, we establish a new chain rule
and new differential rule in Clifford analysis from the view of the new
hypercomplex structure of Malonek.

4.1. Hypercomplex Differential

Let

m
A= Z A€k, (m < n, A\ are real numbers)
k=1
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be a hypercomplex number and the set of all A make up a space ﬂm(R).
Then R™ = .,Zm(R), x = (r1,....,om) € R™ and z, = zp — x1€, k =
2,...m, Z = (22,..., 2m). Denote by H™ ! the set of all Z’, and de-
note the topological product of m — 1 spaces A, (R) by A" 1(R), then
H™ ! c Am=Y(R). For any 7 € H™"! define the norm of Z" by

Iz = ( 7,7% szzk%: mxl—l—Zxk%
k=2

where the inner product (7, ?) = (?, Z) =20 Ziépe

Definition 4.1 Denote by L(A™ !(R), A271(R)) the set of linear

mappings from A" '(R) to AP"!(R). A bounded mappings T €

LA™Y R), A271(R)) is said to be A linear (or linear for short), if
v € A YR), \, u € Ay(R); then we have

TOT+u) = AT (W) + 1T (D).

Lemma 4.1 (see [48]) Every A linear mapping | € L(H™ !, A,(R))
has a unique expression I(Z') = z9A2 + -+ + 2z, Am, where A €
An(R), kj - 2, ...,m

Proof Let ! € L(H™ !, A,(R)) be an A linear mapping. Then we
have
1(0,0,...,1,...,0) = Ay € A, (R), k=2,...,m,
and then
l(?) = 29A9 + -+ zZnAm.
If there are other A;f, k =2,...,m, such that

U(Z) = A5+ + zm A,

then

0=UZ -7)=1UZ)-1(?)

= 29(Ag — AY) + -+ 2 (Am — A ),
and we get Ay = A;C, k=2,....,m

Definition 4.2 (see [48]) Let @ € H™ ! and f be a continuous
mapping from some domain of @ to A,(R). The function f = f(7Z)
is called the left hypercomplex differential, for short hypercomplex dif-
ferential, if there exists an A linear mapping [ € L(H™ !, A,(R)) such
that

f(@+ A7) — f(@) - (A7)

lim =0
AT —0 A2 ’
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and | = [(7Z) is called the left hypercomplex differential for f (for short
hypercomplex differential), written by | = f/(@) or I(Z") = f'(@)(Z).

Lemma 4.2 (see [72]1)) If f(Z) is a hypercomplex differential func-
tion from H™ ! to A,(R), then the differential f'(7@) is unique.

4.2 A-chain rule of hypercomplex differentiation

Theorem 4.3 If f: H" ! — A,(R), b= f(@), and f'(@) is given,
then for any € > 0, there exists a number 6 > 0 such that when || Z —
@l <0, the inequality |f(Z) — f(@)| < € is valid, and we say that f is
continuous at @ .

Proof From the conditions, we can get

f(@+ A7) - f(@) - f'(@)(AZ)]

lim =0,
AT —0 A2
and then
lim |f(@+A7)—f(ad)— f’(?)(A7)| =0.
A?HO

On the basis of Lemma 4.1, it is easy to see that f/(@)(A7Z) = AzgAs+
<o+ Az A, where Ay (kK = 2,...,m) are fixed Clifford numbers that

are independent with AZ’, hence lim f/(@)(AZ) =0 and
AZ -0

lim |f(@+ A7) - f(@)]
A2 —0

= lim |f(@+ A7) - f(@) - f(@)AZ) + f(@) (A7) =0.

Theorem 4.4 Let | € L(A™Y(R), AP"Y(R)). Then there exists an
M > 0 such that

1T (@) < M| %, @ € A" (R),

m
where ||| = 1/_22 [uil?, W = (u2y .o, Um), Ui € Ap(R), i =2,...,m.
1=

Definition 4.3 Let @ € A27!(R) and ? be a continuous mapping
from some domain of @ to AT !(R). Then 7 = ?(7) is said to
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be A differential at the point @ if there exists an A linear mapping
l € L(AP"Y(R), A" '(R)) such that

I7(@+A2)- (@) - T(A7)]

lim = 07
AZ 0 I1AZ]
then | = 1 (%) is called the left differential, written by 1 (%) =
—

Theorem 4 5 Let [ AP— 1( ) — A" YR) and ?(7) be given.
Then 7 is continuous at @

Lemma 4.6 (see [72]1)) If f : A2"Y(R) — A™Y(R) is A differen-
—
tiable, then f' (@) is unique.

Theorem 4.7 Let [ : AP"L(R) — A" L(R) be A differentiable at a
and g : A7 H(R) — An(R) be A, (R) differentiable at f( ). Then the
composite function go f : AP~Y(R) — A, (R) is differentiable at @, and

(g0 T)(@) = d(F (@) o (F)(@)).

Proof Suppose that b = ?(7), W o= ?(7), N = 7(6’), u o=
g (F(@)), and let

AZ =7 @, ANTW=710—0b,
() =T(Z)-T(@)-X(z-a)
Y(@) = g(B) — 9(T) — (W — D),

where
po X(7 @) =g (T (@) o (F (@)
Then we have -
i Z@I @)
Z-a—0 17 - @l
lim Jﬁ@!: (4.2)
(W-b)—0 W= b
In order to prove
im PG (4.3)

Z-a)—0 |7 -7l



28 Chapter I

we consider
p(Z)=go F(Z)—go F(@)—po[f(Z)-T(T)-B(Z)
=go f(Z)—go [(@)—po[f(Z)~ F(@)+uo[@(?)

=90 [ (Z)+u(B(Z)).
(4.4)
It is sufficient to prove

p e F ()

Z-a@)—0 |7 — @l

i PMEE (4.6)
(7—0, —0 HZ - aH

=0, (4.5)

For any fixed number ¢ > 0, from (4.1) there exists a § > 0 such that

when
1w -0 =7(Z)-F(@) <5

the following inequality holds:

o T () <el T (=) -

Moreover from Theorem 4.3, we see that for the d as stated above there
exists a 01 > 0, such that when H?’ — @ || < 1, we have

I7(z @) <.

Again by Theorem 4.2, there exists M > 0, such that
IX(Z - @) < M|z - a||.
Hence
o F(R)N<elF2)-F (@ <elB(@) +elX (7 - @)

<el@ @)+ Mel|Z — |-
(4.7)
In addition from (4.1), (4.7), it follows that (4.5) holds. Again from
Theorem 4.2, we get

ln(E (=) . M|[P(Z)]
;<

Iz ==l = [IZ7 -l
Noting (4.1) and (4.4), we see that (4.6) and (4.3) are true, i.e.
@

(go T) (@) =po A(Z —a) =g (F(@)o(f (7))



General Regular and Harmonic Functions 29

4.3. Differentiation rules

First of all, we give a notation for a project function. A function
T (= T(2) = (a(Z)so f(Z)) : HPL = ATL(R) can uniquely
determine m — 1 component functions f;(%) : HP~! — A,(R),i =
2,..,m. If @ : AP7Y(R) — A™"Y(R) is an identical mapping 7 (W) =
U = (ug, ..., um), then 7; : AT HR) — A, (R), 7(W) = us, i = 2, ...,
is called the i-th project function. From this we can get f; = m; 0 7, i
2, ...,m.

I3

Theorem 4.8 If f : A7 YR) — A, (R) is an A linear mapping, then
(@) (Z) = f(Z), for short f'(@) = f(Z).

Theorem 4.9 Let ? = (f2y.ees frm) : HP7L — A™=Y(R). Then 7 is
A differentiable at @ € HP~', if and only if every f; (i = 2,...,m) is
hypercomplex differentiable at @, and

—/ /

f(@) = (f5(@), ... fru(@)).

Proof Suppose that every f; (i = 2,...,m) is hypercomplex differen-
tiable at @. If X (%) = (f}(@), ... m( )(Z), then [ (@ + AF) —

F(@) - T( Z) = (T +AF) - fo(@) = H@)NAD), oo, fu @ +
AZ) = fm(@) = f1.(@)(AZ)), and then

[ (@+a2)- F(@)- XD

1Al

li)m
N Z2°—0

< lim Z Ifi(a +A7)_fi(z>)_ff(7)(ﬂ7)u
- AN Z —01= ||A z II ,

namely f is A differentiable at @, and the equality in this theorem is
true. Conversely if ? is dlfferentlable at @ € H™ ', then from Theo-
rems 4.4 and 4.5, we see that f; = m; o 7 is hypercomplex differentiable
at E)Z

Theorem 4.10 If S: A2(R) — A, (R), S(u,v)=u+v, then S'(a,b)
= S(u,v).

Theorem 4.11 Let q: A2(R)—A,(R), q(u,v)=uv. Then ¢'(a,b)(u,v)
=ub+ av.
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Proof Suppose A(u,v) = ub+ av. Then
: lg(a + Au, b+ Av) — g(a,b) — AM(Au, Av)||
lim
(Du,A0)—0 [(Au, Av)|

o busel _ . Blsu]la
(Au,Av)—0 H(Au, AU)H T (Au,Av)—0 \/(HAUH)Q + (HAUH)2

B__ || Aul? + || Av|?
< im  — =0,
(Bus0)=0 2 /([ Aul)? + ([ Av]])?

where B > 0 is a constant, hence ¢'(a, b)(u,v) = ub+ av.

Theorem 4.12 Let f,g : H™ ! — A,(R) be hypercomplex differen-
tiable at @. Then

1.(f+g9)(@)=(f)(@)+(9)(a).
2. (fgy(@) = (f)(@)g(a@) + f(a@)g'(@).
Proof On the basis of Theorem 4.4, Theorem4.6 and Theorem4.7, we

can get 1. Moreover from Theorems 4.4, Lemma 4.6 and Theorem 4.8,
we can derive 2.

5 Regular and Harmonic Functions in Complex Clifford
Analysis

Let e := {e1,...,en} be the orthogonal basis of R™. According to
the structure of real Clifford analysis, we use the complex numbers to
construct the complex Clifford algebra A(C); its elements possess the
form

Z:ZCAeA, (5.1)
A

where c4 are the complex numbers and e4 is as above. The norm of the

element is defined as
2] = [>_ leal®. (5.2)
A

Complex Clifford analysis studies the functions defined on C™ and
taking value on a complex Clifford algebra. About Complex Clifford
analysis, F. Sommen and J. Ryan have obtained some results. In 1982,
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F. Sommen discussed the relation between functions of several variables
and monogenic functions by using the Fourier-Borel transformation (see
[72]2)). In 1982, J. Ryan gave a simulation of Cauchy’s theorem, proved
the invariant property of the complex left regular function under the ac-
tion of a Lie group and structured the holomorphic function by complex
harmonic functions (see [68]1)). In 1983, J. Ryan also gave a general
Cauchy integral formula for a kind of special holomorphic function and
used this formula to prove that all these special holomorphic functions
form a Fréchet model (see [68]2).

5.1 Complex regular functions

Now we give the concept of a complex regular function by using the
Dirac operator.

Definition 5.1. Let U C C" be a domain and f : U — A,(C) be a
holomorphic function. If for every point z € U, we have

then f(z) is called a complex left regular function in U. If for every
point z € U, we have

'
=3 (J;Z)ej:o,
7=1

then f(z) is called a complex right regular function in U.

In the following, we mainly discuss the complex left regular function,
and the complex right regular function can be analogously discussed.
Let

A= {jla "'ajT‘}, Ak‘ = {jla "’jk—l’jk+1? "'7j1“}a
2<n<jpe<..<jr<m,

KA=Kji..jr, AK = j1..5, K,

and denote the sign of permutation (I, j1, ..., jr) by sgn(l, A). And by a
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direct calculation, we get

013, 013
PR (R DL =1,2,...
e]k azjk eAk 8Z]k ( ) €A (k ) &y 7T)?

. akae _ 3fk;A626 _ 5ka
k 0z, kA 0z, * A Ozk
= —sgn(k, A) 8kaeA (k<ji,k=1,2,...,51 —1),
Of ak » O f ak o2 +1afAk
— (-1 = (—1)"
k 8Zk CAk ( ) 6zk eA ( ) 8zk €A

= —sgn(k, A)%4ke, (. < bk = j, + 1,40 +2,...,n),

ekweﬁ,.. kg = —sgn(k, A) angUA ea,
(i <k <jr, k¢ A,
and then
= > {XT:( 1)kt /3, _|_j1i:1 —0fka + Y (1t Of ak
A4 k=1 Ozjy 3 9% 57 Oz

J1<k<jr,kgA,

r f Ji—1 af
_ k 17 Ag kA
- E { E (—1)"+ + E —sgn(k, A) 3zk )

A | k=1 0zj,

0 )
£ (—sgn(k,4) T LS (—sgnlh,A) fg’“}UA>}eA
k=jr+1 J1<k<jrkgA “k

r f f
_ _ k A {k}UuA
= > [Z( 1 — > sgn(k, A) 9o ]

thus we have the theorem

Theorem 5.1 Let f: U — A,(C) be an analytic function. Then f is
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complezx left regular if and only if

r Of~
Z(fl)k—lg _ Z sgn(k, A) Ofryua =0.

= 0z, ih 0z,

Similarly to the M-T system in real Clifford analysis (see [28] ), we
think it is useful to study the system which is equivalent to complex
regular function when n = 3.

Definition 5.2. If f : U C C" — A,(C) is a holomorphic function
and satisfies the equation

then we call f(z) a complex harmonic function.
From this we can get the following result.

Theorem 5.2  Suppose that f(z) is a holomorphic function, then f is
a complex harmonic function if and only if fa satisfies

DafA(Z) =0.

Theorem 5.3. Let f(z) be a complex left reqular function. Then f(z)
is a complex harmonic function.

The inverse of Theorem 5.3 is not true, for example, if f: U C C? —
Ao(C), f(z) = (22 + 2z3)e1 + z2e2 + z3€3 is a complex harmonic function,
but it is not the complex left regular function, therefore we have the
following theorem.

Theorem 5.4. If f(z) is a complex harmonic function, then the func-
tion

f(z) <~ Oof ., 0f(z) <~ 0f(2)
821 ;ejazj'_2el 621 j;ej aZj

€1

is a complez left regular function.

5.2 The structure of complex left regular functions

From Theorem 5.2 and 5.3, we easily obtain the following theorem.
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Theorem 5.5 Let f(z) be a complex left reqular function. Then for
every A, fa is a complex harmonic function.

The inverse of Theorem 5.5 is not true. It is interesting that when
condition f4 is satisfied, the function f(z) is complex left regular. For
this we first construct a complex left regular function from the complex
harmonic function.

Theorem 5.6. Let U C C" be a star domain, A = {j1,j2, .., jr},
and ug 1 U — C be a complexr harmonic function. Then there exists a
complex left reqular function

AU — A0),
such that the component of f4(2) about the basic element ey is equal to
ua(z).

Proof By using the transformation of coordinates, we can consider
that the domain includes the origin and is a star domain about the
origin. Under the conditions, we discuss the function

FA(2)

ua(z)ea

1 I &K 0
L Ved® / n—3 N ds|
ec [ ; s el 9o ]E;] 7z ua(sz) p zeads

where the sign Vecd[z] = 2z — zaea, 2 € A,(C). Tt is clear that the
component of f4 about ey is just ua(z). Now we only consider the
complex left regularity.

n
Because z = > zrep and when j = k we have e% = —1, so the
k=1
component of the function

/1 §n3 ei—zn:ei ua(sz) p zeads
0 182’1 = ]32]' A A

about ey4 is

1 - 0
n—3
/ s E 2k oo ua(sz)ds

0 k=1

1 d 1
= / "2y (sz)ds = ug — / (n —2)s" 3u,(s2)ds,
0 ds 0
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and then
1 0 - 0
A n—3
z)=1[ s e1=——» e;=— | ua(sz)| zeads
e= [(a Za) Al >] ’

1
+/ (n — 2)s" Buy(sz)eqds.
0

Moreover we have

= 9fz)
> ea=g
k=1 2k
1 " 0 0 " 0
— n—3 = = _ L
= /0 s Lzl ex oo (el 5o zej azj) uA(sz)] zeads
= j=2
1 “ 0 " 0 0z
+ n—3 - L d
; s {kzzjlek [(61 9o ]Z:er 82j> UA(SZ):| oo } eads
1 n
+ n=3 Ze Jua eads
0 k=1

From Theorem 5.4 we obtain

" 0 0 Zn 0
P - e — == 07
kzl Ck 0z, (el 021 o K 8zj) ua(s7)

hence

1 n
/Osn—?) {kz::lek |:(€1 Zeja ) )] €k}€AdS
+/01(n . 32": 8uA (sz) eads,

and by direct calculation, we get

Bl )]
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B dua <~ Oua S Oua  ~ Oua
= (TL 2)61872:1 jze‘jazj Z elzejaizj‘i_gekaizk

2 k=2j#k j=2 k=2
Jup " Oua " Oua(sz)
R
7j=1
and then

ZeA 8z] _0

This shows that f4 is a complex left regular function.

Theorem 5.7 Ifuy : U C C" — C is a complex harmonic function
defined in a star domain U € C™, moreover, there exists the following
relation:

/01 3 {Z Z[azj(zzla%gsz)) + (n — I)W]eje,q} ds =0,

A= {j1..jr},

then the function F(z) =Y uaea in Uis a complex left reqular function.
A

Proof According to Theorem 5.6, we know that for every u,4, there
exists a complex left regular function f(4) such that

f(A) (2) =upes + VecA) [g(A)(z)],
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where
g(A)(Z) = /1 s" 3[<€ — En 6‘7)U4(Sz)]264d8
0 1821 =2 ]82’]' ’

and

z) = ZUA(BA = Zf(A)(z) - ZV@C(A) (4)
A A A
Because f) is a Complex left regular function, so

A =1

" 1 0 0 n 0
- _ § E VecA [ gn—3 " 772 Y
“ “ /o ™ { [ (el 0z = K 0zj )UA(SZ)]Z}eAdS

=1 A 2

- Lo 0 - 0 \ Jua(sz)
- _ 174 (A)/ n—3 v Y

lE:1 el EA ec ; s e1 5o ]22 e; 72 02 z

_iel ZV@C(A) {/()g”—B |:< zn: ) ]eleAdS}

Noting that
Vec [Z ZAGA] = ZerA — z4€Aq,
A A

and the component about ey of

1 0 " 0 | Jua(sz)
n—3 o .
/0 S [ (61 721 jg . €; —Zj ) 2 zeads
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is

we have

- Lo 0 L0\ Oua(sz)
_ E E n—3 = _ E . A
_ “ /0 s |:(€1 621 j= ej 82’]) 8zl ] zeAdS

1 - 0 0 - 0
_ n—3 § : 2 : _§ . —
N /0 s A {l:1€l |:6Zl (61 821 j=2 K 821) UA(SZ)] } ZeAdS 07

and

" n 3 6u,4(sz)
d

D T

_ZGZZVec { [( 8821 — Zej;;) uA(sz)] eleAds}
=1 A j= J

:/ n3zzn:€l€k l)AdS

A k=1
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0 - 0
((31821 —jZejaZJ) uA(sz)] eleA} ds.

" 0 " 0
A
E el[/ec( ) { [(elzl — E ejizj> UA(SZ):| 6leA}

1
" 0 0
= Zeﬂa ua(sz) eA—l—Zela—ZluA(sz)eleA

Jj=2 =2
I=1

26‘78 (sz) | erea

J#l

= (zn: ) es—(n— 1)8ué4§z) eA

n n 8
JrZel Zeja—z]uA(sz)eA
=\
& 0 Oua(sz)
= (]Z::zej@zjuA(SZ)) ea—(n—1) or €A
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Lo 0 Ou(sz)
dali n—3 s .
Zelazl /0 s ZA: Z 9%, {Zlazl ]ejeAds
1 n
_/0 Snf?) Z [(1 — n) Z ;zUA(SZ)ejeA:| ds
A j=

Lo 0 < Oua(sz) 0
— n—3 Y JUuA(S=<) _ A _
=/,° {;Z[azpizz 5yt = D ualsa)|ejea p ds=0.

Consequently, F(z) in U is a complex left regular function.

According to Theorem 5.6 and 5.7, we see that there exists a similar
characteristic between the relation of complex left regular functions and
complex harmonic functions in complex Clifford analysis and the relation
of analytic functions and harmonic functions in one complex variable
function theory, but they aren’t the same. The results of Theorem 5.6
and 5.7 are generalizations of those in [19].



CHAPTER II

BOUNDARY VALUE PROBLEMS OF
GENERALIZED REGULAR FUNCTIONS
AND HYPERBOLIC HARMONIC
FUNCTIONS IN REAL CLIFFORD
ANALYSIS

This chapter deals with boundary value problems of some functions
in real Clifford analysis. In the first three sections, the problems of reg-
ular and generalized regular functions are considered, and in the last
section, the Dirichlet problem of hyperbolic harmonic functions is dis-
cussed. Most results in this chapter have been obtained by us in recent
years.

1 The Dirichlet Problem of Regular Functions for
a ball in Real Clifford Analysis

In this section, we discuss two boundary value problems of regular
functions for a ball in real Clifford analysis, which are obtained from the
papers of Luogeng Hua[26]1) and Sha Huang[29]4),5).

Firstly, we give definitions of some differential operators

= 0 o .
ai—l,i =é 15— teé7—, 1= 27 37 ey 1
8$i71 8951
0 .
Oili=¢€ 17— —€—=—, 1=2,3,...,n,
81’1‘71 83)1

and then we have

R "=
0= 5[312 + 012 + Z(az‘—lﬂ' — 0i-14)];
i=2

1~ 0 1 —
0= 5[512 + 012 — ;(32‘—1,i — 0i—1,4)], o 5(312 + 012),
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0 _ &

By using the quasi-permutation signs introduced in Chapter I, we can
give some regular conditions of functions.

(Di—14 — 0i—14), i =2,3,...,n.

If we write the element >  aseq in A as
A
D asea=> (ap+azpes)ep = > Ipep,
A B B

where B = {aq,...,ap} € {3,4,...n},3< a1 < - <ar <n,IpeC
(the complex plane). It is evident that we can obtain the following
theorem.

Theorem 1.1 The sufficient and necessary condition for Y ases =0
A

is that for all B = {aq,....,ax} C{3,...,n},3< a1 <+ < ay <n, the
following equality holds:

Ip =ap + asges = 0. (1.1)

Moreover, for a function whose value is in the real Clifford algebra
An(R).'
f(z) = ZfA(:c)eA : Q— A,(R),
A

we can write it as

f(.%’) = ZIBeB : Q — .Anfl(C),
B

where Ig : Q@ — C, A,_1(C) is the complex Clifford algebra.

Theorem 1.2 A function whose value is in the real Clifford algebra

A:
f@)=>" fa(z)ea =) _Ipes,
A B
(A={Br,...0} C{2.3,..n}, 2B < < fp<n, (12
B={aj,..,ar} C{3,4,...n},3< a1 < - <ar<n)

is regular in € if and only if

n
Oialp = 0plipy,

m=3
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where Ig, = 0L 5/0xm, T@mm is the conjugate of I-5, , and mB
is the quasi-permutation for mB, 65 is the sign of quasi-permutation
mB. In addition, a function f is harmonic in Q if and only if every Ip

18 harmonic.
Proof It is clear that e,,/p = age,m — aspesey, = Igem, SO
25121363 +> Z Ipz,,emen-
B m=3

Denote B = {ai,...,ax}, By ={a1,...,0p—1, py1,...,0x}, mB =ma;
., Bm = a1 ...apm. When m is some o), among B, we have

. o= ] _1)\P Y VR
eapIBpxapeBp - IBpmap( 1) €B = Iaprap 5apBeB'

When m < a;, we have

emImBzmemB = —I@mmeB = —I@ImémeeB.
Similarly, when m > ag, we get

emIBm:cmeBm = _Imem(smBeB7
and
n n

> D Imanemen = =3 3 [Inp,, dnplen,

B m=3 B m=3
hence

=2 Oulpen =) > T b

B m=3
Thus according to Theorem 1.1, the function f is regular if and only if

n
di2lp =Y Ipp, oop
m=3

This completes the proof.

In order to derive another sufficient and necessary requirement of the
generalized Cauchy-Riemann condition, we divide the function

=Y faea=) Igep
A B

into the two parts

fz) = f¢ ZIB€B+Z I// B
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where B in the sum Y’ obtained from (3,4, ...,n) is a combination with

B
odd integers; it is called the first suffix, the rest is called the second
suffix. The corresponding sum is denoted by 3", Ig(x) whose B is got
B

from the first suffix and is denoted by Iz (), ep whose B is derived from
the second suffix is denoted by €5, and Ip(z), ep whose B is derived from
the second suffix are denoted by I}, € respectively. In addition, we call
f@ the ith part of f, and denote f() = J;f(i = 1.2). According to this
and the above theorem, we can get the following theorem.

Theorem 1.3 A function f whose value is in real Clifford algebra
An(R) is regular in domain 2, if and only if

_ n -
0121} = Z [ —lmBr,
m= (1.3)

a3 7 _ n !
812IB - mz—?) 5mB mBLm

in which f(x) = > faea = > Ipep = ZIBEB + Z//I% B B =
A B

{ai,...,ax} C {3,4,. n} and 01210, Imem, O denote the corre-
sponding part of 81213, B, 05 respectively, when B, mB are de-
rived from the first suffix. The rest is the corresponding part which is
derived from the second suffiz.

Let © = (x1,22,....,2,) C R", and 27 be the transpose of z, Q :

n

zal = Y x? < 1 represent a unit ball, and 9 : zz” =1 be a unit
i=1

sphere, whose area w, = 27™/2/I'(n/2).

Definition 1.1 If %/u’Be’B is continuous in 912, we find a function f(x)

to be regular in €, and continuous in Q = Q U 9Q with the condition

Tif(E) =3 ug(€)e, € € 09 (1.4)
B

The above problem is called the Dirichlet boundary value problem in
the unit ball, and we denote it by Problem D.

Theorem 1.4 Let Y uzey be continuous on the sphere 0. Then
B

Problem D in the ball € is solvable, and the solution can be represented

by
) =3 Ty()el + 3 Thx)eh, (1.5)
B B
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= [ [ Pk (1.6)
—

£67=1

in which P(x,&) = (1 —z2™)/(1 — 22”4 2z )% is called the Poisson
kernel, f is the area element of the sphere €67 =

Ip(x) = ThaRp(z) + Qp (fl?), (L.7)

2%/ /Zmeé;n—Buf (©)¢, (1.8)
ey

where

and Q'h(x) satisfies the following relations:
8;12 /é(l“) =0, (1'9)

Dol (x Z o5 TR, (@) + QL (@) (1.10)

The operators Tio, T1o and 8;12 can be seen below.

Proof Firstly, we find an expression of the solution. Suppose that
f(x) is a solution of Problem D in the ball 2. Then from Theorem 2.1,
Chapter I, and Theorem 1.2, we can derive that I (z) is harmonic in .
By [26]1) we obtain

j— , :
wn / / (1 —2&2T + CCCCT) g ON
@

which satisfies I5(§) = uz(§) (€ € 9Q), where //5 = W,
——
£67=1

Denote 212 = z1+12€2, Q12 = §1+82€2, 02, = % (% - 62%) 021, =
L (3 +eap). It follows that Orp = 20.,,, D1z = 20, When a2’ < 1

we introduce two operators:

T12fB($):% / ) / fB(£13527$37$47"'7$n)d€1d€2’

212 — (12
E+e2<1—a2——a2
— 1 , €9, 3,4, .0y Ty
Th2fp(x) = — // fole ?12 - Z4 )d€1d§2-
—G12

§He3<d—ai——af
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By using the results in [77] and the first expression of Theorem 1.3,
we can obtain

*T12 Z O Bi'/me +Qp(x),

where 0z,,Q%(z) =0 (z € Q). By using [26]1), we get

—22,, (1282 +22T)—27Ing,, i
an/ /Z (1 — 2627 +xxT)% Ot mB(f)f

EET 1

Therefore,
Ip(z) = T2 Rp(z) + Q(2).

Substituting (1.7) into the second expression of Theorem 1.3, we can

derive
n

O1alp(x) = 125" [T12Ri, (2) +Qg, (@)
From the overdetermined system (1.10) and 05,Q%5(x) = 0 (z € Q)
and by [76], we can find Q’;(z). Thus, from (1.7) again, I};(z) can also
be found. That is to say, if f(z) is a solution of Problem D, then the
expressions (1.5) — (1.10) hold.

Moreover, we verify that the function satisfying expressions (1.5) —
(1.10) is a solution of Problem D. In fact, since f(M|5q = %/11/96/37 €€

09, by using [27], we have I5(£) = uz(€), and then
!/
Vlog = > up(€)es
B
From (1.7), (1.9) and 919 = 285,,, we immediately derive

0121} = 01912 Ry + 20712Q's = 012T1a R}, = 205, T1o R,

In addition, from (1.6) and (1.8), we have

Z "o / [ P, 08

£§T 1

= Z O BiinBZL‘

28512T12R%
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Thus, from (1.10) and (1.7), we get

n

8712[/3 = Z 6/,3 mBzpn,

m=3

From Theorem 1.3 again, it is easy to see that the function f(z) sat-
isfying (1.5) — (1.10) is regular in 2. To sum up, f(x) is a solution of
Problem D. This proof is completed.

Next, we discuss the pseudo-modified Dirichlet problem. In order
to discuss the uniqueness of its solution, we first consider the sectional
domains of 2. Cutting 2 by “the planes”:

xr3 = as,
T4 = a4,
Tn = Qn,

we obtain a sectional domain G, in the x1x9 plane:

xa:caT::U%+x§+ Z a,2n <1
m=3
Let Ty : &67 = €2 4+ €2 + Z a2, = 1 be the boundary of G,, and its
center be denoted by O, = (0 0 as, ag, ..., Gp).
For given continuous functions Z’ub(&)e’B (€ € 09Q), % (&) (&a €

I'y) and the complex constants dBa’ we find a regular function f(x) =
% Igels + %” %el in Q, which is continuous in Q with the following

pseudo-modified conditions:
Jif(§) = %’U'B(ﬁ)eb,ﬁeaﬂ,
Relglr, = @p(&a) +Mp(6a)s & € T,
15(0a) = dp,,

where h; (&) = b5, (& € Ty) are all unknown real constants to be
determined appropriately, and Relf, = Re(Fp + Fyzes) = Fp. The
above problem will be denoted by Problem D*.

Theorem 1.5 Suppose that Y 'uzely is continuous on 9, and for
B

any fized ag, ag,...,an, the function ¢'5(&,) is continuous on Ty, here
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& = (&, &, as, ...,ay). Then there exists a unique solution of Problem
D*. Moreover the solution possesses the expressions (1.5) — (1.10) and
satisfies

ReQp () = —Re[T12Rp (&) + ¢5(Ea) + hp(&a), €a € Tay,  (1.11)
B(04) = —T12RE(0,) + dg- (1.12)

Proof Evidently, on the basis of the proof of Theorem 1.4, it is suffi-
cient to add the following proof.

Firstly, we find the integral representation of the solution. Suppose
that f(z) is a solution of Problem D*. From (1.7) and the boundary
condition, we can derive

Re[THR%(ga) + Q%’(&a)] = 79(5&) + h%(fa)a
T12R}(00) + Q(04) = I5(0,) = dp,
Noting that
&212 IJIS(x) =0, z € Q,

it is clear that Q7 (z,) satisfies the conditions

(z
1, QB (7a) = 0, 74 € Gy,
ReQ (§a) = —Re[T12 R (8a)] + ¢5(Ea) + hp(&a), &a € Lo,
5(0a) = —T12Rp(0a) + dp,
Since the modified Dirichlet problem for analytic functions has a unique

solution [80]7), from (1.9), (1.11) and (1.12), we can find Q% (z,), z €
G, and then Q' (z), x € Q, because a is an arbitrary point.

That is to say, if f(x) is a solution of Problem D*, then the expressions
(1.5) — (1.12) hold.

Next, we verify that the function f(x) determined by the above ex-
pressions is a solution of Problem D*. From (1.7) — (1.11), it follows
that

Re( )’Fa Re[TmR%(fa)]“‘Re[ %(ga)]: %(fa)'i'h/]g(ga)agaeraa

and then I%(0,) = T12R%5(0,) + Q%(04) = d’p,. Therefore, the above
function f(z) is just a solution of Problem D*.

Finally, we prove that the solution of Problem D* is unique. Suppose
that fi(x) and fa(x) are two solutions of Problem D*, and denote fi(x)—
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2(x) by F(x). It 1s clear that F'(x) 1s regular in {2 and 1s a solution o

by F It is cl hat F(z) i lar in © and i luti f
the corresponding homogeneous equation of Problem D* and F() loq =
Sl (€)ely — Y ulz(€)e’y = 0. For convenience, we shall adopt the same
B B

i

symbols for f(z) as before, namely denote F(z) = Y Iizely + Y " Thels.
B B
Since F'(x) is regular in €, thus it is harmonic in €2, therefore for all B,
I () are all harmonic in Q. Since ' Ie’zla0 = FM|gq = 0, Ih|aa = 0,
B

again by using the uniqueness of the solution of the Dirichlet problem
for harmonic functions in a ball (see [26]1)), we get Iz = 0 in €2, thus
J1F' =0, I'==0in Q. From the definition of R (z),

1< —
Rp@) =5 3 0 plabe,,
m=3
and then R7, = 0. Hence
I = T RE(x) + Q5 () = Q% (2). (1.13)

Since F'(x) is a solution of the corresponding homogeneous equation of
Problem D*, from (1.9), (1.11) and (1.12), we derive

&zlg /é(xa) =0, 74 € Gm

RGQ/]_,;(&L) = h%(fa)7 fa S Faa
'5(04) =0, O, € G

In addition, using the results about the existence and uniqueness of
solutions of the modified Dirichlet problem for analytic functions (see
[80]7)), we can obtain Q'5(zq) =0, z, € G4. Hence Q5(x) =0, z € Q.
From (1.13), I} = 0, = € Q, and then JoF(z) = 0 in Q. So F(z) =
0, x € Q, ie. fi(x) = fa(x), € Q. This shows the uniqueness of the
solution of Problem D*.

2 The Mixed Boundary Value Problem for Generalized
Regular Functions in Real Clifford Analysis

In this section, we discuss the existence and uniqueness of solutions
of the so-called mixed boundary value problem (Problem P-R-H) for
generalized regular functions in real Clifford analysis; the material is
derived from Huang Sha’s paper [29]6).
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Definition 2.1  We assume the linear elliptic system of second order
equations

Au = Z dmug,, + fut+g, =€, (2.1)
m=1
where (€ R") is a bounded domain and Q € C?** (0 < a < 1), dy, =
dm(r) = dp(z1,...,20,) € CO¥(Q), dyp(x) > 0,2 € Q. The oblique
derivative problem of equation (2.1) is to find a solution wu(z) =
u(z1, ..., 7,) € C?(Q) satisfying (2.1) and the boundary conditions

ou
5, +o(@u(e) = 7(2) + h, © €00, (2.2)

u(d) =ug, d= (dl, ,dn) S ﬁ,

in which o(z),7(z) € C1%(09), o(x) > 0, € IQ, h is an unknown real
constant, ug is a real constant, v is a vector on z € 9, cos(v, ng) > 0, ny
is the outward normal vector on z € 952, and cos(v, ng) € C1*(99). The
above boundary problem is called Problem O.

Problem O is a non-regular oblique derivative problem. If the coef-
ficients v(z), o(x) satisfy cos(v,ng) =0, o(x) = 0 on 91, then Problem
O is the Dirichlet problem. If v(z), o(x) satisty cos(v,ng) =1, o(xz) =0
on 012, then Problem O is the Neumann problem. If cos(v,ng) > 6 >
0, o(z) > 0 on 02, then Problem O is the regular oblique derivative
problem. In [59], B. P. Ponejah proved the following lemma using the
method of integral equations.

Lemma 2.1 Problem O for equation (2.1) has a unique solution.

Proof The existence and uniqueness of solutions for Problem O for
equation (2.1) in the plane can be found in [80]4). Using a similar
method in [80]4), we can also prove the uniqueness of the solution in
Lemma 2.1. Using a priori estimates of solutions and the Leray-Schauder
theorem [18], the existence of solutions in Lemma 2.1 can be proved.

For convenience, we order all w(x) with numbers of the form 27!
in w(z) = Y wa(x)es according to the following method, and denote
A
them by wi,ws,wa, ..., won-1.
1) If none of the suffixes in wg = wp, . p, is h; = n, but there exists
some suffix k; = n in wp = wy, . 1,, then we arrange wy before wp.

2) If none of the suffixes in wy = Whi,.hyes WB = Why .k, 18 1, then
when r < s, we order wa before wp. When wy = wp, .. n,,we = Way,....ar
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and hi + -+ h, < a1 + -+ + a,, we order wy before we. When
hi+--+4+h=a1+ -+ a and (hy,...,h) # (a1, ..., ), if the first
unequal suffix is h; < «;, we also order wa before wc.

3) If there exists some suffix in wq = wp, . p,
n, then waA = Wy, hy_ins WB = Wiy, ks_1,n> W€ OTder WA = Why . h,_y
and wp = Wk, ...k, , by using the method as in 2), and regard them as
the order of wq = wp, . 4, and wp = Wy, . k.-

and WRB = Wky,... .k is

s

We have ordered all suffixes with numbers in the form 2"~! through
1), 2), 3), then we can denote them by wi, ..., won—1.

Definition 2.2 The oblique derivative problem for generalized regular
functions in €2 is to find a solution w(x) € CH* () N C?(Q)for the elliptic
system of first order equations

Ow = aw + bw +1 (2.3)
satisfying the boundary conditions
0
9k 4 (@) won(x) = () + haey T € B,
Oy, (2.4)

wk(d) =up, 1<k< on—l1

in which o, (2), 7(x) € CY¥(99), 01(z) > 0 on IQ, hy, is an unknown
real constant, u; is a real constant, v is the vector on 9€), ng is the
outward normal vector on 9€2; moreover, cos(vy,ng) € CH*(99). The
above boundary value problem will be called Problem P.

Let w(z) = > wa(x)es be a solution of Problem P. Then according
A
to Property 3.3 and Property 3.4, Chapter I, we know that the following
equalities for arbitrary index A are true:

n

Y. OmpwBa, = Y (actbo)wmdeys
et BA CCM=A (2.5)

+ > (ac—bc)chSC—M—HA,
oo =L

Z pocar(ac + bo)z;wm + Z Hcar(ac + bo)wa,

Z D CM( _bC)r]wMJFE 7D CM( — bc)wpta

+ j;l 5ﬁlAmj ,
(2.6)
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where j = 1,2,...,n,jD = A, CM = A, CM = A; M, M denote two
kinds of indices of M respectively (see [29]6))

Suppose that the equalities
(ac +bc)z; =0, (ac — bc)x; = 0, jD=A CM=A, C#j (2.7)

in (2.6) are true. Especially, when n = 3, set C' = 23, then according
to the condition (2.7), we get (ags — b23).; = 0,1 < j < 3, namely
(ags — bag) is a constant. If C = 3, by the condition (2.7), we get
(a3 —b3)z; =0, j=1,2,ie. (a3 — b3) only depends on x3.

Noting the condition (2.7), the equality (2.6) can be written as
AwD = 25 0——+ M(a] +b ) jwM+%5E5@(ac+bc)waj

+Z JD' jM( bj)xng—i_%éﬁé@(ac_bc)w%% (28)

+ j;éﬁl Azj)

in which CM = A, Cﬂ:A,ﬁ:A.

Suppose that D is the A-type index. In the first term of the right
side in (2.8), we see jM = jD, M = D, and then 5JD6]M 1; and in
the third term of the right side in (2.8), if the equality jM = jM holds,
then D = M is the A-type index. This is a contradiction. Hence when
D is the A-type index, the third term of the equality (2.8) disappears.

Thus the equality (2.8) can be written as

n
AwD: gl(aj + b ) WD + Z ]D CM(aC + bC)Wij
! (2.9)
+ Z 3D CM( - bc)wa] +]¥ 5JDZA:)3]7
in which CM = A,CM = A,jD = A. Especially, when n = 3,D = 1,
the equality (2.9) possesses the form

3 3
Awr= 2, (4 +bj)onz; + 2 (a5 +bj)a,wn + (a1 = bi)war,
Jj= J=

+(a1 — by)wszs — (a2 — b2)wazy — (a2 — ba)wazzs
(2.10)
—(az — b3)wsxs + (a3 — b3)waszyy — (@23 — ba3)wazry

3
—(ag3 — 523)w3m2 + (a3 — 523)w21‘3 + '21 Ljz;.
j=
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Noting M = D =1, M # D = 1, it is clear that the third term of the

equality (2.8): - (a;j —bj)q,wn in (2.10) disappears. When M = D, we
j=1
have C = MA = MjD = DjD = j, 5 5CM 5 506D = 5]D5]D

and then the equality (2.9) can be rewr1tten as

AwD:Z(aj—i—bj)ijD—i—Z(aj +bj)WD{L'j + %5ﬁém(ac+bc)waj
J J D> T

+JXC:’5]7D(S@(CLC — bc)UJ%m]. + Z]: 5ElAmj,

(2.11)
where M # D, and A is the index satisfying A = jD.
In addition, we first write equation (2.5) in the form
n n
Z (5@&)ij + Z (Smu)ng

3=l j=1 7= (2.12)

= Z(CLE—H)E)UJM(SW—I—Z(GE—bE)(SWwM—i-lB,

E = E = =

where EM = B, BM = B, jM = B, and B runs all indexes. Moreover
we use §p(ac —bc) to multiply every equation in (2.12), herein CD =
B, D is the fixed index, and sum according to the index B, we obtain

g:j 5@5@@%' — bC)Wij + BZ] 5@5@@0 — bc)wgwj

=) (ac — bc)(ap + bp)dapdmmwm (2.13)

)

+ BE:E(CLC — bC)(CLE — bE)d@&@W& + %(CLC — bC)échB

)

where CD = B, EM = B,EM = B,jM = B.

According to Property 3.6 about the quasi-permutation in Section 3,
Chapter I, C = DB and the arbitrariness of B, we know that C' can run
all indexes, so the second term in the left-hand side in (2.13) can also
be written as

> depdsgr(ac — bo)wmz; = Z Sepdiar(ac — bo)wmr;
e I n (2.14)

_]z: /’L]DC(s 5C]\/[(QC bC)ngL‘ja

where jM = B, CD = B.

Since D is given, we get A = jD(j = 1,2,...,n) and C = MA =
MjD. Suppose that the coefficients corresponding to C' which do not
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conform to the condition jD = CM = A satisfy
ac —bo =0, (2.15)

and the coeflicients corresponding to C' = BD with the condition

pipc = 1 satisfy
ac — bo = 0; (2.16)

then the equality (2.14) can also be written in the form

Z 5CD5JM(GC bo) UJMI] = Z D jM aC_bC)Wgzj- (2.17)
B
(CD, jILJI B) (D= A CK A)

In addition, from the equality (2.13), we have

Z iD JM( —bo)wa,

= z}; (5@ W(GC_bC)Wij_ EXJ; (ac—bc)(aE—l-bE)(SCD(s TYM
Js - 5

(CD=B,jM=B) (CD=B,EM=B)
- EZ}; (GC - bC)<aE - bEﬁ@(S@w%— %: (a(j — 60)5@@9.
(ﬁ:B:@:B) o (CD=B)
(2.18)
Substituting the equality (2.18) into the equality (2.11), we get
Awp = z]: (aj—i-bj)zij—i- ; (aj—l—bj)wpg;j
(7D=A) (7D=A)
+ Z ip0car(ac+bo)wma; + 2 depoar(ac —bo)wmz;
7(113 " (7M=B.CD=B)
CM=A,M#D
— Bz;s (aC - bC)(GE — bE)(S@(S@wM
(CD=B,EM=B)
_ Bz;a (aC — bc)(aE — bE)(S@(S@w%
(ﬁ:B:@:B) B
— X (ac ~bc)dpls + Z 75l A, -
(CD=B) (;D A)
(2.19)

In the fourth term of the equality (2.19), when M = D, we have CD =
B:m:ﬁ,andC:j,thuséﬁz5m:5j7):1.Inthe
fifth term of the equality (2.19), when M = D, in accordance with
CD = EM = B, we have C = E, and then 059537 = 9epdep = 1. So,
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the equality (2.19) can be written as

Awp =

Y (ajtbi)e, — ¥ (ag—bg)|wp+ ¥ 2acwpa;

]7(.7D_A) C)(]D_B) jT:A,ﬁ:B

+ Z; D CM(ac—l—bo)wMg;]—l— ;‘ 5@5W(ao—bc)wM$j
. =

JD=A,CM=A,M#D jM=B,CD=B,M#D
— Z (CLC — bc)(CLE + bE)écTéWWM
B.E -

CD=B,EM=B,M#D

- > (ac—bc)(ag — be)izpo5r M

B.E

CT:B,@:B

- > (aC —-b )5 lB + X o5 DleJ
B, CD=B §, jD=A

(2.20)
In the sixth term of the right-hand side of equality (2.20), when E # C
and pcpp = —1, by Property 3.6 in Section 3, Chapter I, we get (ac —
bc)(aE—bE)(5 6EM = (ac—bo)(CLE—bE>5ﬁ(5@ = —(CLE—bE>(ac—
bC)éﬁ(S@, hence }32;5 (CLC —bo)(aE —bE) Xé@é@(ﬂg = 0,

E#Cncpp==1

While F # C, ucprg = —1, suppose that the term corresponding to the
sixth term of the right-hand side in (2.20) satisfies

(ac —be)(ag —bg) = 0. (2.21)

When E = C, we have CD = EM = CM, so D = M. This contradicts
that D is an A-type index. Hence this condition does not hold, hence
the equality (2.20) can also be written as

Awp=| ¥ (aj+bj)e;— X (ag=b%)|wp+ X20cwpz;
3,(1D=A) C,\(jD=B) J
+ £ 6E5@(ac+bc)wa]
j7D=A

+ Z 5ﬁ5@(ac—bc)wﬂ%

B,M:
— > (ac—bc)(aE+bE)5@5mwM
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- ¥ (ac—bo)igple+ ¥ Oiplas; (2.22)
B,(CD=B) J,(1D=A)

Let the third, fourth, and fifth terms in the right-hand side of (2.22)
satisfy

ac+bc =0, ac—bc =0, (ac — bc)(CLE + bE) =0, (2.23)
respectively. Then equality (2.22) can be written in the form

Awp=[ ¥ (aj+bj)a:j—%:(a20—bzc)]wD+ >, 2acwpg,
J

5, (iD=A) BB 7D

- ¥ (ac—bc)dgple+ 3 Oplas;.

B,(CD=B) 7,(jD=A4)
(2.24)
When D = 1, we simply write the equality (2.24) as
n
Awp = Y dmywie,, + frws + g1, (2.25)

m=1

here d, = dp, () = dpy (21, s 20), f1 = fi(x) = fi(zr, .oy xn), g1 =
g1(x) = q1(z1, ..., ). Let
fl(l') > 0. (2.26)

Then according to Lemma 2.1, there exists a unique function wi(x)
satisfying the boundary condition (2.4). After we get wi(x), we can
consider that wi(z) in equation (2.5) is known as well as the known
coefficients a4(x),ba(x),la(x). Applying the same method concluding
with the equality (2.25), we get the equality (2.24) when D = 2, and
write it simply as

m=1

where dy,, = dm, (2), f2 = f2(2), g2 = g2(x, wi(x)). Set fa(z) > 0; on the
basis of Lemma 2.1, there exists a unique we(x) satisfying the boundary
condition (2.4). After getting wa(z), we can regard wi(z), we(x) as the
known functions. Using the above method, we can get

Au)g = Z dmgngm + f3w3 + g3, (2.28)

m=1
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in which dy, = dim, (), f3 = f3(z), g3 = g3(x,wi(x),wa(x)). In accor-
dance with the above steps and the order of wq,...,wsn-1, We proceed
until wyn-2. At last, we get the unique wi, ..., wyn—2 satisfying

Awp = iy Whay, + fewi + i (2.29)

m=1
where

dmk == dmk(x)a fk - fk($)7 gk = gk($,w1(x)7 WQ(SU), --.,wk_1($))7
fr(z) >0,1<k <22,

For simplicity, denote by U the conditions (2.7), (2.15), (2.16), (2.17),
(2.21), (2.23),... and fi(z) > 0(1 < k < 2772) of system (2.3).

From the above discussion, by means of Lemma 2.1, if system (2.3)
satisfies the condition U, then there exists a unique solution wy, ,1 <
k<22

In order to further discuss wy, (2" 241 < k < 2"71), we need to study
the system (2.5). Suppose that the suffix A of [4 in the equality (2.5)
has been arranged according to the above method, and [4 has been
written I1,...,lon—2, lon—241,...,lon-1. We may only discuss the system
of equations corresponding to lon—241, lon—249,...,lon—1 in the equality
(2.5), namely

21 5@&)me = Z (CLC + bC)WM(S@
mB—A

(2.30)
>, (ac —be)wmdagr +la;

where [4 = I, 2" 24+ 1 < k < 2771 w(z) = Swalx)es, © € Q. The
A

following assumption is called the condition V. Set n = 2m, and denote
Top_1 + Topt = zk, k = 1,...,m, ¢ is the imaginary unit, and wor_1 +
iwor, = Wy, k=1,...,2" 2. Let Q = Gy x - - x G,, be a multiply circular
cylinder about complex variables z1, ..., 2. Then we regard wy, ..., won—2
as the known functions, by using the result in [80]4), the elliptic system
of first order equations: (2.30) about wgn-2,1,...,won-1 can be written
* 0w,
Fk = f11(21, orry Zim, Wan—3.4 1, Wan—39, ..., Wan—2), (2.31)
Zk
in which k=2""2+1,..,2"2 I =1,..,m.
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Denote (see [43])

fis a Holder continuous function defined on characteristic
manifold 0Gy X - -+ x 0G,y,, whose real index is 3, and

NlL: f Cla' 7Cm)
/acl /aam Toh ot Gt dom =0,

1‘m

J>—k, l=1,...m

If (i) fi is continuous with respect to z = (z1,...,2m) € Q, @ =
(627173_’_1, EQn—3+2, ...,527172) S Bg, here B9 = {WHEJ’ < 0, J = 2”73 +
1,273 4+ 2,...,2"2}  § > 0, moreover, fi; is holomorphic about @ €
By, and has continuous mixed p/\artial derivatives until m — 1 order for
different Z; (j # [), namely afgl%
Q, here \<m—-1,1<i;<---<iy<m,ig #lL k=1,...,\

is continuous about W € By, z €

(ii) the system (2.31) is completely integrable, that is

n—2 2n72
O frl g Ofu O frj 0 frj
— + ——fp, = —+ — [l
07 p2;3+1 0w, Pi 0z p2;3+1 ow, P

k=2"341,...,2"2 1<j l<m.

(iii) the set

w are several complex variable functions defined on €,
with continuous mixed partial derivatives up to order m
for different Z;, and satisfy
)\7
0 Wy
8@1 ...0Z; N

1<ip<---<ix<m, 1<A<m, 2z€Q

;| <0, | 1<, j=2"341,..,2"2

is defined. When w € My, the composite function fi; and its continu-
ous mixed partial derivatives up to order m for different Z; (j # ) are
uniformly bounded, we denote its bound by Ky. Moreover, for arbitrary
W, w € My, the composite function fi; and its mixed partial derivatives
satisfy the Lipschitz condition, that is

)\ J— J—
O fri(21, vy Zm, Won—3.41, ..., Wan—2)
(951'1...85@')\

)\ ~ ~
0 Tri(21, oy Zmy Won—341, ..., Won—2)
822-1...(%“
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< Ly max sup | ———=
- 2n73+1§5§2n*2 0O ’ 82‘7162‘]& "
1<) < <ja<m

1<ip <<y <myip # L

(iv) the real functions v;(z1,...,2m) on 0Gy X --- x 0G,, satisfy
the Holder condition, namely (21, ..., 2m) € CP(OG x -+ x 0Gyp,). In
addition, we assume an unknown real function h; on Nj-. The above
conditions are called the condition V.

anl

Definition 2.3 For the solution w = ) wi(x)ep of Problem P,
k=1

if Won-3,1,...,Won—2(0 = wop—1 + iwar) sa‘;isfy generalized Riemann-
Hilbert boundary condition on 9G1 X - - - x 0G,, (see [43]):

Re[szl, ey zr_nkm, Wi(215 0 2m)] = ¥j(21, o Zm) + by, (2.5
G=2"3 4 1,..,2" 2 2 = (21, ..., 2m) € OGY X - -+ X OGp,

then the problem for generalized regular functions is called the mixed
boundary problem, which will be denoted by Problem P-R-H.

On the basis of the result in [43], under the condition V, when K; <

2n72

0(j = 1,..,m), and Ky,Lg, > Cg(1j) are small enough, there
j=2n—341

exists a unique solution (Won-341,...,Won-2) for the modified problem

(2.31), (2.32), S0 won-2,41,...,wan—1 are uniquely determined.

From the above discussion, we get the existence and uniqueness of
the solution of Problem P-R-H for generalized regular functions in real
Clifford analysis.

Theorem 2.2 Under the condition U, V, when K; < 0 (j = 1,2, ...,
2n—2
m), and Kg,Lg, > Cg(1;) are small enough, there exists a unique
j=2n—341

n—1

solution w(z) => wa(x)ea= Y. wi(z)ex (x € Q) of Problem P—R—H
A k=1

for generalized regular functions, where wy(x), ..., won—2(x) satisfy equa-
tion (2.3) and the boundary condition (2.4) of Problem P. Denote
Wk = wop—1 + dwog (k=273 + 1, ...,2""2), then Won-341, ..., Won—2 Sat-
isfy equation (2.31), and the corresponding functions won—2 1, won-29,
ey Won—1 satisfy equation (2.3) and the generalized R—H boundary con-
dition (2.32).
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3 A Nonlinear Boundary Value Problem With Haseman
Shift for Regular Functions in Real Clifford Analysis

This section deals with the nonlinear boundary value problem with
Haseman shift d(¢) in real Clifford analysis, whose boundary condition
is as follows:

a(t)®T(t) + b(t)PT(d(t)) + c(t)® (1)

(3.1)
= g(t) - fz, @ (t), 2 (t), 27 (d(t)), 2~ (d(2)))-

We shall prove the existence of solutions for the problem (3.1) by using
the Schauder fixed point theorem (see [29]1)). It is easy to see that
when a(t) = g(t) =0, b(t) = 1, the problem (3.1) becomes the Haseman
problem

H(d(t)) = GH)D (D). (3.2)

The problem (3.2) was first solved by C. Haseman [22]. In general, all
boundary value conditions for holomorphic functions can be expressed
as the pasting condition of the unknown functions, hence the boundary
value problem can be regarded as the conformal pasting problem [87] in
function theory. But the method of conformal pasting cannot be used to
handle all problems of multiple elements. In 1974, A. M. Hekolaeshuk
[23] gave an example, i.e. for the boundary value problem

a(®)®T(t) + ()@ (d(t)) + c(t)@ (t) = g(1), (3.3)

the method of conformal pasting cannot be eliminated the shift d(t). For
the problem (3.1) discussed in this section, we choose the linear case of
(3.3) as its example.

Firstly, we reduce the problem to the integral equation problem, and
then use the fixed point theorem to prove the existence of solutions for
the problem.

Assume a connected open set 2 € R™, whose boundary 02 is a
smooth, oriented, compact Liapunov surface (see Section 2, Chapter
1). Suppose that a(t),b(t), c(t),d(t), g(t) are given on 0L, and d(t) is
a homeomorphic mapping, which maps 99 onto 9. Denote QT =
Q0,0 = RM\Q, O = QUOIN; we shall find a regular function ®(x)
in QF, which is continuous on QF |JJQ, and satisfies @~ (c0) = 0 and
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the nonlinear boundary condition (3.1) with Haseman shift. The above
problem is called Problem SR. Set

O(x) = — - E(z,t)m(t)p(t)ds:, (3.4)

where w,, = QW%/P(%) is the surface area of a unit ball in R", E(x,t) =

n
‘t"ff‘n, m(t) = > ejcos(m,e;) is the outward normal unit vector on 02,
j=1
and ds; is the area element, and () is the unknown Hélder continuous
function on 99Q. According to the Plemelj formula (2.24) in Section 2,

Chapter I,

o+ (2) = P2 L po(a), 2 € 00, (3.5)
O () = ( ) + Py(x), x € 09, (3.6)
in which the operator
Po(x) = wln [ B m(t)p(t)ds;, o o9
In addition
(1) = “012(“””) + Pip(z), © €00 (3.7)
o (d(t)) = *Oléx) + Pip(x), =€ 80 (3.8)

where ¢1(z) = ¢(d(x)), and

Prp(z) = Pep(d(x))

= L[ Bld@), mt)e()ds.. (3.9)
o0

Substituting (3.5) — (3.8) into (3.1), we get

( +P<,p)+b( +P1gp)+c(——+P<p)_g f. (3.10)

2

Introducing the operator
Fo=(a+0)(—5 + Pg) +b(5 + Pip) + (L+a)o - gf.
the equation (3.10) becomes

p=1Fo. (3.11)
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Thus the problem SR is reduced to solving the integral equation (3.11).

Denote by H (952, 3) the set of the above Hélder continuous functions
with the Hélder index 8 (0 < 8 < 1). For arbitrary ¢ € H(99,3), the
norm of ¢ is defined as

| ¢ llg=Clp,00) + H(p,0Q,B),

t1)—op(t
where O, 00) =max [o(0), H(p,90,9) = sup A= AA]]
teo t17#t2, t1,t2 €00 |t1 - t2’
It is evident that H (3(2, () is a Banach space; moreover we easily verify

I f+gls<Uflg+1gls 1F-glls<2"7 fllglglly (312)
where f,g € H(0Q, ).

Theorem 3.1 Suppose that the operator 6 : 0p = § — Pp and the
function o(t) € H(OR, ) are given; then there exists a constant Jy
independent of p, such that

10e g < Tl ¢ g (3.13)

Proof On the basis of Theorem 2.7, Chapter I, we know

1 1
— E(x,t)ym(t)ds; = =, = € 09,
o0N 2

and then

O) @) < H(p00.5) [

bali—z-1-8 =M H(p,00,8), (3.14)

in which M; is a constant independent of .

In order to consider H(0p, 092, 3), we choose arbitrary x, & € 0f2, and
denote § = |x — #|. Firstly, suppose 66 < d (d is the constant about a
Liapunov surface in Section 2, Chapter I); we can make a sphere with
the center at x and radius 36. The inner part of this sphere is denoted
0y and the remaining part is denoted 9{22, thus we have

(02)(a) = 02) )| < | [ Bla.om(O(ela) — olt)ds
+ ol [ EGOmOe@) - e)ds

Wn  JOQ
+ 1B meta) —p)ds— B Om() (o) -(0)ds

= L1+L2—|—L3.
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For x, we use the result about Ny € 9 in Section 2, Chapter I, and
denote by 7 the projection field of 9€2; on the tangent plane of z; then

35 n—2
Ly < MaH(9,00.0) |~ Lsdpo = MsH (0,02 )l = 3l
Po
where Mo, M3 are constants independent of x, . In the following we
shall denote by M; the constant having this property. Similarly, Ly <

MyH(p, 09, B)|x — 2|°. Next, we estimate Ls:

Lo < ool [ (Bt = B oym(t)(p(a) - olt)ds
+ o[BG Om)(e(@) — ol@)ds| = 01+ 0x

By using Hile’s lemma (see Section 2, Chapter 1), we get

t—x B t—=T
it —al* [t—2"

|E(z,t) — E(Z,1)] =

n—=2,, _—(k+1)

t
) P It — 2"z — 4.
=0 t—x

For arbitrary t € 0, we have |t — &| > 26, and then

1 t—=x
=<
2

—| < 2.
t—2x

Thus Oy < MsH (i, 09, 8)|z — 2|°. Noting that ¢ € H(p,09Q), it is easy
to see that Oy < MgH (0,09, 8)|z — #|°. Hence

Ls < MrH(p,09, f)lz — |,
From the above discussion, when 6|z — Z| < d, we have

|(09)(z) — (6)(2)] < MgH (, 0, B)|x — 2|7 (3.15)

On the basis of the results in [53], we obtain the above estimation for
6|z — 2| > d. Moreover, according to (3.14),(3.15), there exists a positive
constant Ji, such that || 6 [|5 < Ji]| ¢ [| 5. This completes the proof.

Taking into account

¥
Pp==-4
P 9 1)

we get
1 1
IPellg < Slels+110ells < (5 + Il ¢ lls (3.16)



64 Chapter I1
Similarly, it is easy to prove the following corollary.

Corollary 3.2 For arbitrary ¢ € H(0Q,3), there exists a constant
Jo independent of ¢, such that

¥
15+ Pel < 2l ¢l (3.17)

Theorem 3.3 Let the shift d = d(x)(x € 0Q) satisfy the Lipschitz
condition on 02. Then for arbitrary z, & € 082, we have

d(x) - d(@)| < Jslz — . (3.18)

We introduce the operator

Go =24 Pip= P10 4 poiaay),

then for arbitrary ¢ € H(OQ, 3), there exists a constant Js independent
of p, such that
1Gellg < Jsll ¢ 5 (3.19)

Proof According to (3.16), we get

Lo lls
2

C(Gep,09) < e

Similar to the proof of (3.15), we have

|Po(d(x)) = Po(d(2))| < Jall ¢ l|sld(2) — d(@)|° < 5]l ¢ l|gle — 217
(3.21)
From (3.20), (3.21), it follows that the inequality || Gy ||z < Js ¢ |5
holds.

s Tl els=0+d)llells  (3.20)

Corollary 3.4 Under the same condition as in Theorem 3.3, the fol-
lowing inequality holds:

| =+ Pip || < Jill ¢ llg- (3.22)

Theorem 3.5 Suppose that the shift d = d(z) in Problem SR satis-
fies the condition (3.18) and a(t), b(t), c(t), g(t) € H(OQ, B). Then, if
the function f(t,®1) &2 &G) &®) is Hélder continuous for the ar-
bitrary fized Clifford numbers ®1) &2 &G) &™) gbout fized t € N
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and satisfies the Lipschitz condition for the arbitrary fixed t € 02 about
oM o2 B &M namely

|f(t17 q)gl)a @52)’ q>g3)7 (1)(14)) - f(tQ, (I)gl)v ¢)§2)7 @;3), (1)(24))| (3 23)
< Jgltr = 62 + Jo|@f" — @57| + - 4 Jiaf @l — @)Y

where J;, i = 8, ...,12 are positive constants independent of t;, @g’) (i =

1,2,3,4,j=1,2), £(0,0,0,0,0) = 0; and if [ a+c ||z <e <1, || bz <

e<l, [14allg<e<1,0<p=e2""(Ji+Js+1) <1, and | g |5 <
, M(1 — p)

0; then when 0 < § < (it Jish)’

M is the given positive number (|| ¢ [|5 < M), Ji7,.Jis are the positive

numbers dependent on J;, 1 =1,2,6,7,...,12.

Problem SR is solvable, where

Proof Denote by

T ={plp € HOQ, B), | ¢ 5 < M}

the subset of the continuous function space C'(0f2). According to (3.11),
we have

1Fpllg <27 HlatcllslOlls+2" bl |Gl 52 [1+allll ]

_ ' 14 ¥1 ¥1

From Theorems 3.1, 3.3, Corollaries 3.2, 3.4 and the condition (3.23), it
follows that
C(f,09Q) < Jiz + Jual|o||g- (3.24)

Moreover using (3.23) we have

(028 4 P o), ZE o), 25 4 P,

-, Pie(t) - f (¢ R
@1§2) + Prp(t2), —goz(tz) + Pl‘p(t2)> ’

< (15 + Juellellg)tr — t2f (J15 = Js).
(3.25)
In accordance with (3.24),(3.25), we obtain

1fllg < 17+ Jusllell g, (3.26)
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hence when ¢ € T, applying the condition in this theorem, the inequality
1Fells < pllellg+27710(Jir + Jisllell5)
< uM + 82" Jir + JisM) < M
is concluded. This shows that F' maps the set T into itself.

In the following, we shall prove that F' is a continuous mapping.
Choose arbitrary (™ (z) € T, such that {©((x)} uniformly converges
to o(z),x € ON. It is clear that for arbitrary given number £ > 0, when
n is large enough, ||¢™ — ¢|| 5 may be small enough. Now we consider
P (x) — Po(x). Let 66 < d, § > 0. Then we can make a sphere with
the center at x and radius 36. The inner part of the sphere is denoted
by 091, and the rest part is denoted 0€22. Thus we have

1P (2) — Po(z)] < Bl m(t) (o™ () — @(t)]dS;

- r/ S 90(")( )+ ¢(a) - o(0) + ¢"@)
o)lds| < | / OIERIORERIE)

+(p(@) = p(1))dS, (2, ym(t) (¢ () — () dS;

< wln| . E(z, ym(t)[(e"™ (1) — ™ (@) + (#(x) — @(t))1dS)]
+w1n| o, E(z, )m()[(e™ (1) — ™ (2)) + (p(x) — @(t))]dS)]
+%H<ﬁ‘”) —¢llg=La+Ls + W
where
Ly = wln| . E(z, )m(t)[(™ (t) — ™ (2)) + ((x) — o(t))dS,]
< g /0 ? pgllgpgﬂdpo = Jig /0 " ot dpy = o,
and
Ls = wln| QQQE(J% Hm ()™ (1) = (1)) = (™ (x) = p(x))dS|
< Jalle™ = ol
hence

|P<p(")(ac) — Py(x)| < Jood? + J22|’¢(n) - <P||5-
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We choose a sufficiently small positive number §, such that Jyp6? <
£/2, and then choose a sufficiently large positive integer n, such that

Joa| | — ellg < g Thus for the arbitrary x € 92, we have

|Po™(2) — Po(z)| < e. (3.27)

Similarly, when n is large enough, for arbitrary x € 92, we can derive
(@) - pr(@)] <, (3.28)
|Pro™ (2) — Pro(z)| < e. (3.29)

Taking into account (3.11), (3.23) and (3.27) — (3.29), we can choose a
sufficiently large positive integer n, such that

|Fo™(z) — Fo(z)| < e, for arbitrary z € 8.

This shows that F' is a continuous mapping, which maps 7" into itself.
By means of the Ascoli-Arzela theorem, we know that 7" is a compact set
in the continuous function space C'(02). Hence the continuous mapping
F maps the closed convex set 7" in C'(0f2) onto itself, and F(T') is also
a compact set in C'(9€2). By the Schauder fixed point theorem, there
exists a function ¢g € H(01, ) satisfying the integral equation (3.11).
This shows that Problem SR is solvable.

Theorem 3.6 If f = 1 in Theorem 3.5, then Problem SR has a
unique solution.

In fact, for arbitrary ¢1, @2 € H(0, 3), by using the similar method
as before, we can obtain

1Fp1 = Fallg < pller — wall5-

Taking account of the condition 0 < p < 1, we know that F¢ (when
f =1) is a contracting mapping from the Banach space H (02, 3) into
itself, hence there exists a unique fixed point ¢o(z) of the functional
equation g = Fpg, i.e. Problem SR has a unique solution

B(z) = wln [ Blatim(t)go(t)ds:, & (00) = .

In 1991, Sha Huang discussed the boundary value problem with con-
jugate value

a(t)®T(t) + b(t) DT (t) + c(t)®(t) + d(t) @ (t)

=g(t), te



68 Chapter I1

for regular functions in real Clifford analysis (see [29]3)). Similarly,
we can discuss the nonlinear boundary value problem with shift and
conjugate value for regular functions in real Clifford analysis.

4 The Dirichlet Problem of Hyperbolic Harmonic
Functions in Real Clifford Analysis

One of the generalized forms of a Cauchy-Riemann system in high
dimensional space is the following system of equations:

8U1 8’[1,2 8“71
WG = == o)+ (n = Du, =0,
v (Bacl 0z &cn) +(n—1u 0
8xk 8.%'1’ Z7k 9 7n’ ( )
8u1 8uk
—=——Lt k=20
oz, Ory’ !t

The system (H,,) appeared in a remark of H. Hasse paper [21] in 1949,
but to our knowledge has not been treated so far. In 1992, H. Leutwiler
established the relation between solutions for system (H,,) and classical
holomorphic functions [41]. In this section, on the basis of [41], we study
the Schwarz integral representation for hyperbolic harmonic functions
and the existence of solutions for a kind of boundary value problems for
hyperbolic harmonic functions for a high dimension ball in real Clifford
analysis. We also discuss hyperbolic harmonic functions in real Clifford
analysis and the relation with solutions of system (H,). The material
comes from Sha Huang’s paper [29]7).

4.1 The Relation Between Solutions for System (H,) and
Holomorphic Functions

n
Setting * = (x1,22,....,2p) € R", we denote I(x) = [> xz]%,
k=2

n
I(x) = > zper/l(x). In the following, we shall introduce a kind
k=2

of mapping from R"™ to A,(R). For any complex variable func-
tion f(z) = u(z,y) + tv(z,y), we consider its corresponding function
f=f(z1, 22, ... 2,) = u(z1,l(x)) + I(x)v(z1,1(z)). In [41], H. Leutwiler
gave the following result.

Theorem 4.1 Let @ C (R*)T = {z]z = (z,y) € R?,y > 0} be an
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open set, and f(z) = u + iv be holomorphic in Q. Then

f(x) = f(x1, 22, ..., ) = u(zy, [(x) + I(z)v(z1, (x)) (4.1)
is a solution of system (H,) in Q= {x= f: zrer € Rz +il(z) € Q.
k=1

~ n
Moreover, if we denote f = > uger in (4.1), then u;xy = upx;, i,k =
k=1
2,..,n.

Proof Since f(z) is holomorphic, we have

f = uta, @) + (22 + 100 T @)
and then
ur () = u(zy, (),
ug(z) = %U($l’l($))’ k=23, ..,n
Hence
8u1
9, tal@n (@),
Ouy, Tp (1 Tk
B = (s ool () + @[vm,u Dles

Substitute the above equality into the first equality of system (H,); it is
obvious that the first equality holds. After a similar computation, the
other equalities are all true.

Sha Huang gave the corresponding results about the above functions
in [29]7).

Theorem 4.2 Suppose we have compler constants a = a1 + ib, ¢ =
c1 + id and complex variable number z = x1 + iy. Then

1) 1=1(z), 2= =21+ > j_o TkCk.
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2) a=ay+ I(x)b, specially, @ = a, a + z = a+ %, when a is a real
number.

3) D=1 (9=
4) (’{) = 5\a|_2, here, |a| = \/a% + b2, (%v) = 3(,{).

5) (35) ===

=
[SEIS}
Wt

We can verify by direct computation that all above terms are true.
Here, the proof is omitted.

Theorem 4.3 Suppose that f = 3. ugey, is defined in the ball B C
k=1

(R™)™, which does not intersect with the real azis in R™, moreover fis
a solution for system (H,) satisfying u;xy = upz;, i,k = 2,...,n. Then
there exists a holomorphic function f(z) = u+ iv defined in a circular

disk B, such that f(z) = u(w1, \/Sp_sx7)+1(x)v(z1, /S 0o 7), where
ve B ={o=Y}_ o, € R (21 +i\/Sio2}) € B}

4.2 The Integral Representation of Hyperbolic Harmonic
Functions in Real Clifford Analysis

The components uyq, ..., u,—1 of (twice continuously differentiable) so-
lution (uq,...,u,) of (H,) satisfy the hyperbolic version of the Laplace
equation i.e. the hyperbolic Laplace equation in mathematics and
physics is

ou

TnAu — (n — 1)(3— =0, (4.3)
In

where v : R™® — R is a real-valued function with n variables.

Definition 4.1 The twice continuously differentiable solution u(x) of
equation (4.3) is called the real hyperbolic harmonic function of n vari-
ables.

In [41], H. Leutwiler introduced the definition of hyperbolic harmonic
function in real Clifford analysis.

~ n

Definition 4.2 Let f = Y ug(z)er : R™ — R™ possess twice con-
k=1

tinuously differentiable derivatives, the components ui,us,...,un—1 be

hyperbolic harmonic, and u,, satisfy the equation

22 Au — (n — 1)xn§7u +(n—1)u=0. (4.4)
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Then f is called a hyperbolic harmonic function.

Theorem 4.4 Let f: up + ugez + -+ + upeép be a twice continuously
differentiable function. Then f is a solution of system (Hy) if and only
if f and the functions

xfek + ekfx, k=1,..,n—1
are hyperbolic harmonic in the above sense.

1 -~ -
Proof The Clifford numbers wy, = §(xfek +epfx) (k=2,....,n—1)

are vectors, whose components wy; (i = 1,...,n) are given by

WEpl = —T1up — TRu, k=2,...,n—1,
Wgi = —Tiug + Ty, 1=2,...n k=2,...,n—11#k,
WEk = T1U] — ToUg — *++ — Tply, k=2,...,n—1.
. I
In case k=1, i.e. wy = §(xf + fx), we have
Wil = T1U] — TU2 — *+* — Tplp,
w1 = Tiug + X1, 1= 2,...,n.

It is easy to verify that f and wg (k = 1,...,n — 1) are hyperbolic har-
monic if and only if f satisfies system (H,,).

Theorem 4.5 Suppose that the ball B with the radius R > 0, B C
R™M*, (or B € (RM)7), f = > ug(x)e, is a hyperbolic harmonic
k=1

function in B and continuous on the boundary of E, and denote by
wii (1 <k <n—1,1<1i<n) the components of wp(z) = (xfey +
erfx)/2. Let the following four conditions hold : i) wy; = 0(2 < k <
n—1,2 <14 < n); i) The other wiy (2 < k < n—1),w; (1 <i <
n — 1) are real-valued hyperbolic harmonic functions; i) xiyu, = Tyu; (2
<i<n—1); w) wu satisfies (4.4). Then, f(x) possesses the integral
representation:

~ 2 t+ 2 —2a
Fz) = % /0 q)(t)tdl—f72dcp+l(x)v(a), (4.5)

where x € E, t belongs to the boundary of a circular disk B with the cen-
ter at a € (R®)* (see Theorem 4.1) and radius R, (t—a) = Re'?, f(z) =
u+ v is analytic in B, and Ref(x) = ®(t).
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Proof According to the conditions i),ii), we see that wg; (1 < k <
n—1,1 <i < n—1) are real-valued hyperbolic harmonic. From the
conditions i),iv), it follows that wg,(z) (1 < k < n — 1) satisfies (4.4).
Hence wg(x) (1 < k <n — 1) are hyperbolic harmonic functions. More-
over by Theorem 4.4, we know that f is a solution of system (Hy). Itis
clear that from the formula (1.7) in [41], when 2 < k <n-—1, 2 <i < n,
we have

W = %(xfek +epfr) = 2Re[fex] + exRe[fa] — (z,e5)f

n n n
— (:Cl + %xzez)(—uk) + ek[ula:l — Z uza:z} — xk(ul — Z uiei)
1=

n
= —zug + Y (—D)zjuge;+[uix; — Zum]ek TRUl+ E:pkuzez
i=2 1=2 =2
n

n
_(:El + up + zkul)—l- 22 (:Ekui—a:iuk)ei+ [ulxl — %uiwi]ek,
i= 1=
(ik)

and its components are
Wk = —Tjup + iy, 2<k<n-—1,2<i<n,i#k.

In addition, by the conditions i),iii), we have z;ur, = xpu; (i,k =2,....,n)
when ¢ = k, hence the above equality is true. By using Theorem 4.3,
there exists f(z) = w + iv, which is analytic in the circular disc B :
|z —al < R,B C (R?*)", such that

f(z) —u(ml, ka) mv(ml, Zxk),

where z € B = {z = Y7_, ze, € R™|(z1 4 i/ 0 ,x2) € B}, and in
the following we denote f = u(z) + I(x)v(z), [f(z)]; = u(x). Finally,
according to the Schwarz formula of the holomorphic function:

fz) = — / o) 22 00 4 iu(a)(z € B) (4.6)

2w Jo t—=z

in which (t — a) = Re",®(t) = Ref(t), and using Theorem 4.2 and
(4.6), we obtain

< 2w L+ —2a
fo) =5 [ o2 + 1)l

27 —x

where z € B,t € B.
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4.3 The Existence and Integral Representation of Solutions for
a Kind of Boundary Value Problem

Let ®(t) be a continuous function defined on the boundary B(|t—a| =
R) of the disk B : |z —a|] < R in (R®)*, and B = {z]|z = Y}, zrex €
R", z1 +i\/>SF o2} € B} and t = t; +ih € B. Denote h = /37, 13,

t =19 + EZ 5 trex, and ‘I)() = (I)(tl,h) = (I)(tlﬂ/zz 2t2) = (I)( )
In the following, we shall discuss the hyperbolic harmonic function f
R" — R" in B, and find a solution of the problem of Ref(t1) = ®(t);
here Ref(z) = u(acl, [(x)), u is a real number. This problem is called
Problem D.

Theorem 4.6 Problem D for hyperbolic harmonic functions in a high
dimension ball B is solvable.

Proof On the basis of the existence of solutions of the Dirichlet prob-
lem for holomorphic functions, we see that there exists a holomorphic
function f(z) = w + v, such that when z — ¢, Ref(z) — ®(¢), where
t =t 4+ih € B, z =1 + iy € B. By Theorem 4.1, we know that

f(x) —u(xl, Zxk)—i—f U(:rl, ka'

is a solution of system (H,) in B. If we denote the above function

~ n
as f(z) = Z urv, then w;zp = upx;, i,k = 2,...,n. From Theorem

4.4, it 1s clear that f(z) is hyperbolic harmonic in B. Denote z =

r1 + Z TRer € B and when + — t = t1 + > treg, we have z =
E=2 k=2

1+ iy = 314 i/ D T — t = t; +ih = t1 +iy/>f_ot3, thus

Ref(z) — ®(t), i.e. u(z1,y) = u(z) — ®(t) = ®(t1,h). Again because

u(z1,y) = w(@1, \/Shes x2) = u(z), (t1,h) = ®(t ), we have Ref(z) =

u(z) — ®(t)(z — t), namely Ref(t) = ®(t). This shows that f(z) is a
solution of Problem D.

Theorem 4.7 The solution f(ac) as in Theorem 4.6 possesses the in-
tegral representation (4.5).

Proof In fact, the hyperbolic harmonic function f () in Theorem 4.6
is a solution of Problem D, hence it is also a solution of system (H,)
satisfying (4.7). According to the proof of Theorem 4.5, we know that
f(z) possesses the integral representation (4.5).



CHAPTER III

NONLINEAR BOUNDARY VALUE
PROBLEMS FOR GENERALIZED
BIREGULAR FUNCTIONS IN
REAL CLIFFORD ANALYSIS

This chapter deals with boundary value problems for the functions
in real Clifford analysis. In the first section we consider boundary value
problems for biregular functions. In the second section we consider
boundary value problems for generalized biregular functions. In the
last section we consider boundary value problems for biregular function
vectors.

1 A Nonlinear Boundary Value Problem for Biregular
Functions in Real Clifford Analysis

The regular function in Clifford analysis is similar to the holomorphic
function in complex analysis. The biregular function discussed in this
section is the regular function with two variables. In Chapter 11, we have
given some boundary value problems for regular functions. Similarly to
holomorphic functions of several complex variables, Cauchy type integral
formulas, the Hartogs theorem and the Cousin problem of biregular
functions were obtained (see [7], [39]), and the Plemeli formula for several
complex variables was considered (see [88]1)).

In this section, we give the Plemelj formula for biregular functions and
prove the existence of solutions for a nonlinear boundary value problem,
especially showing that the linear boundary value problem (f = 1) has
a unique solution [29]2).

1.1 Cauchy principal value of Cauchy type integrals

Denote by 2 = 21 X 29 an open connected set in the Euclidean space
Rmek,lngn,lgkgn,andby
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Fy = {f

the set of C" functions in Q with values in A, (R). We introduce the
right and left Dirac operators, i.e.

s A, O0fa o Ofa
axf—zzezeAaixia fay—z;eAegT%,

i=1 A j=1

[ Q= Ay(R), f(z,y) = § fa(z, y)eA,}
falz,y) €CT(Q), 2z € R™, y € R¥,

respectively. A function f is called biregular if and only if
gacf = 0,
/3, = o
Let the boundaries 921,09 of Q1,9 be differentiable, oriented,

compact Liapunov surfaces (see Section 2, Chapter I). Now, we consider
the Cauchy principal value of a Cauchy type integral.

A function A(u,v) = > Aa(p,v)ea, (1, v) € 0Q1 x 09 is said to be
A

Holder continuous on 02 x 0€Qq, if and only if [A(u1,v1) — A(pe, v2)|
< G|(u1,v1) — (u2,10)|%, where G, 3 (0 < 3 < 1) are positive constants
and |(pi1, v1) = (2, v2)| = [[p1 — p2f* +[v1 —v2|*]"/?. Denote by H (901 x
009, 3) the set of Holder continuous functions on 9€2; x 99, and define
the norm in H (00 x 982, 8) as ||f||5 = C(f, 00 x 0Q2) + H(f, 001 x
009, #), in which

H(f, 001 x 009, 8)= sup |f(M1,V1)—f(u2,y26)|7
(#i,l/i)eaﬂl Xaﬂg,(‘u‘hyl)#(‘u‘27y2) ‘(/,[/17 ]/1) _(/'l’27 V2)|

C(f, 0y X 892) = (,u,l/)éggi(xéﬁlg |f(u, V)|, f S H(@Ql X 892,ﬂ)

It is easy to prove that H (0 x 08, 3) is a Banach space and

I f+gllg<l Fllg+lglls I Fallg<Jull £ llgllgllg- (1.1)

Theorem 1.1 Let €00, y€ONa, p(pu,v) € H(OQ x 0Q9, 3). Then
the Cauchy type integral

Pz, y) = A Em(x, p)doup(p, v)do, Ex(y,v)  (1.2)
0 x02
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is a biregular function and ®(x,00) = P(c0,y) = (o0, 00) = 0, where
Ei(t,te) =ty — t1/|ta — t1]' (I = m, k) and X\ = 1/wmwk, W, wy are the
area of a unit sphere in R™, R¥ respectively. In this chapter, Ej(ty,ts)
and A\ possess the same meaning.

Proof It is clear that 9, Ep, (2, u) = Ex(y,v)d, = 0 and Jim En(x, 1)
= lim Ex(y,v) =0 (see [80]7)), hence the result is obvious.
y—00

If the point (tl,tg) € 021 x 029 and O : ]a: - t1| <6, Oy: |y - t2| <9,
then O((t1,t2),d) = O1 x Oq is called the §-neighborhood of (t1,t3), and
denote A5 = (0§21 x 9Q2) N [O((t1,1t2),0)].

Definition 1.1 The integral

D(t1,t2) =\ En(t1, p)doup(p, v)doy, Ex(ta, v), (t1, t2) € 021308
391 X@QQ (1 3)

is called a singular integral on 9 x 092 [6].
Definition 1.2 If %iH(l) Ds(ty,t2) = I, where
Ds(t1,t2) = A Ep(t1, pdoue(p, v)doy E(t2, v),
891 X@QQ—/\gg

then I is called the Cauchy principal value of a singular integral and
written as I = ®(t1, t2).

Theorem 1.2 If o(u,v) € H(OQ x 0Q9,03), then there exists the
Cauchy principal value of singular integrals and

1 1
D(t1,t2) = —Zw(tl, t2) + x(t1,t2) + Z(PlSO + Payp), (1.4)
where
x(ti,t2) = A Em(ty, p)douip(p, v)doy, Ey(ta, v),
8Q1 ><8§22
Y, v) = o) —opta) — ot v) + ¢(t, t2),
x(@,y) = A Em(z, p)doyib(p, v)do, Ex(y, v),
8Q1 XaQQ
and 5
PISD = Em(tlvu)daugp(/’tth)v
Wm JoO
2
chp = — (p(tl, V)dUVEk(tQ, V)

Wk J O,
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are singular integral operators, where ®; (i = 1,2,3) are as stated in
Definition 1.1.

Proof Denote ®s =11 + Iy + I3+ I4, where

I =)\ Em(t1, p)doup(ty, ta)doy, Ex(t2, v),
001 XN —As
Io=\ En(ty, p)doup(p, v)do, Eg(ta, v),
891 X@QQ*/\(S
73 =A Em(tlv H)dau[so(l% t2) - So(th t2)]dUVEk(t2a V)7
8Q1 ><8927)\6
74 =\ Em(tlv N)dau[@(tl, V) - @(tl, t2)]dUVEk(t27 V)‘
8Q1 X@QQ—)\(;
By using [33],
1 1 1 1
— E,(t do, ==, — do, Ey(t = - 1.5
wm o, m( 17,“’) Uu 27 wi Joa, Oy k( 27”) 27 ( )

- 1
we have [} — Zgo(tl,tg) as 0 — 0. Since ¢ € H(0 x 02, 0),

[9(u, )] < Aolu—t1]7, [9(p, )] < Arly—ta]?, where Ag = A1 = 2|| ¢ |5,
from [88]1), the inequality

B B
[, V)| < Aolp —ta]2|v — 122, Ao =2] ¢ |5 (1.6)
is derived.

By (2.11) in Chapter I and (1.6), we have

B_1q B_1q
(b1, 1)y, ) B (12, )| < 44y dpon) (0l dipon), (1.7

where po; (i = 1,2) are po in (2.11) of Chapter I for ¢;(i = 1,2), which
correspond to Ny in Section 2, Chapter 1. Therefore, To — x(t1,t2) as

§ = 0. By (1.5) and |Ep(tr, p)dofe(p, ta) — @t t2)]| < A2p(; dpon,
there exists a limit of I3 as § — 0. Similarly, we can obtain the limit of
T4 as § — 0. From [33], when § — 0, we can get

_ 1 — 1
I3 — Z(PNP — ), 14 — Z(Pw — ).

Consequently (1.4) is proved.
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1.2 The Plemelj formula of Cauchy type integrals

Theorem 1.3  Let o(u,v) € H(0Q x 009, §), (x,y)EO x 00a, then

lim  x(z,y) = x(t1,t2), (t1,t2) € 01 x 0.
(:L',y)—>(t1,t2)

Proof Denote

X(ﬂ:‘, y) - X(tlv t2)

= A [Em (@, 1) = Em(t1, p)ldou(p, v)doy Eg(t2,v)
891 ><8Q2
+A [Em(.’l,’, :U’) (tlv )]do'lﬂ/}(/jﬂ )dUV[Ek(yv V) _Ek(t27 V)]
6le692
+A E,, (tb H)dUuU’(Ma V)dau [Ek (y7 l/) _Ek (t27 V)]
691 Xaﬂg

= L1(6§21 X 892)+L2(8Ql X 892)+L3(891 X 692),

and suppose that 60 < d;,i = 1,2, 6 > 0, O((t1,t2),6) is the J neigh-
borhood of (t1,t2) with the center at point (¢1,¢2) and radius §. Let
o0 = (891) N [O((tl,tg),(S)] (Z =1, 2), 0o = (89,) — (anl) (Z =1, 2);

we have

Lj(8Q1 X 8(22):Lj(8Q11 X 8921)4-[/]‘(8911 X 6922)
Lj((?ng X 8921)+L (8912 X 8922) =1, 2,3.
On the basis of the Hile inequality (2.20) in Chapter I, we get

E—T  f-—h
=™ =t

|Em(x7 M) - Em(tlnul)|:

B—t1 ‘
!u—w\m | —ti|™

ZO | — |2 — gy
1=

| — x| =ty [t

[(p =) = (p—t1)]

©b—x

Similarly we estimate |Ex(v,y) — Ex(v,t2)|, and

x—t _
(B (21, 1) = Em(t1. s rszr e [
B (1.8)
v—ty, .. y—t _
|E(v,y) — Er(v,t2)] < Z =2 |=—2||v — to| !
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are obtained.

It is easy to see that we only need to prove the result when z, y limits
t1, to along the line that are not in the tangent plane of 9€); at t1, 9€) at
to respectively. If we take an angle between the direction of x — ¢ and
the tangent plane of 0y at t1, which is greater than 23y, and similarly
take an angle between the direction of y — t2 and the tangent plane of
0€)y at to, which is greater than 23y, then

,u—tl :L‘—tl I/—tQ
| I= M [ < M, | ——=| < M, |
p—x p—x v—y

y—1
v —

2| <M, M=M(5).

’ (1.9)
By (1.6) — (1.9), we have

L1 (0911 x 0Q01)| < A36°, |L1 (02 x 9Q01)| < A7,

and |L1(3Q11 X 3922)| < 145(5g Now we consider Ll (8912 X 8@22),
and first rewrite (1.8) in the form

Elo) — Bt < 3 (A=t o=t
Y = S

1=

o (1.10)

vty 1 ly—tl

|Ex(v,y) — Eg(v,t2)] < | K .

— 'y — v —tok

Jj=0 y

Next from (1.6) — (1.10), we can get |Li (0012 x 00a2)| < Aglx — t1].
This shows that Lq(0Q; x 0Q2) — 0 as (z,y) — (t1,t2). Similarly, we
have L2(891 X 892) — 0 and L3(891 X 892) — 0 as (m,y) — (tl,tQ).
Thus lim X(l‘,y) = X(tl,tg), (tl,tg) S 891 X 892

(2,y)—(t1,t2)

Set QF = Q, (i = 1,2), Q] = R™\Qy, Q; = RF\Qy, and denote
x(€ Q{E) —t;1 €09 by x — tf Moreover denote y(€ Qéc) — 1y € 0y
by y — ti, and ®(x,y) — ®FFE(t1,t9) by (z,y) — (tT,tF); we have the
following Sohotskil —Plemelj formula (see [88]1))

Theorem 1.4 Suppose p(u,v) € H(OQ x 009, 3). Then

1
D (ty,t0) = [Pt t2) + Prop + Pog + Py,

1
QT (t1,t0) = 1[—90(% t2) — Prp + Py + P3y], i)
1.11

1
D (ty, 1) = Z[—SO(tl, ta) + Pip — Pop + P3y],

1
O (t1,t2) = Z[@(tlatz) — Pio — Poyp + P3ypl,
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in which (t1,t2) € 01 x 009, and P; (i = 1,2) are as in Theorem 1.2,
Py = 4(I)(t1,t2).

Proof We first write (1.2) as

O(z,y) = x(@,y)+A B (2, p)dop(ty, ta)do, Ex(y, v)
691 X@QQ
+ )\ Em(w7u)d0—l$[@(u7t2) - So(tlat?)]daVEk(yaV)
891 ><8§22
+ A B, p)dop[e(ty, v) — o(t, ta)]doy Ex(y, v).
691 XBQQ

From Theorems 1.2 and 1.3, x¥(t1,t2) = xTF(t1,t2) = x(t1,t2) =

1
Z[(p — Pip — Pop + Psyp] is derived. Next by [33], (1.11) can be verified.

Corollary 1.5 If o(u,v)€ H(0Q1 x 004, B), (t1,t2) € 0N x 0Na, then
Ot (ty,te) — DT (t1,t2) — @ T (t1,t2) + D (t1,t2) = @(t1,t2),
OFF(t1,ta) — T (t1,t2) + @7 T (tr,t2) — @7 (L1, 12) = Pr,
OFH(t1,ta) + @ (t1,t2) — @7 (tr,t2) — @7 (11, 12) = Pap,

DT (ty,t2) + T (t1,t2) + P~ (t1,t2) + D (t1,t2) = ngo.(l 2

1.3 Existence of solutions for Problem R

We assume that A(tl,tg), B(tl,tQ), C(tl,tg), D(tl,tg), g(tl,tg),
(t1,t2) € 0 x 0N and f(tl,t2,<I>(1), o), <I>(3),<I>(4)) is a function on
(0 x 02) x Ap(R) X Ap(R) X Ay (R) X Ay, (R). We identify a sectionally
biregular function ®(x,y), in Qf x Qg , QO xQ5, Q7 xQF, Q7 x Q5 , which
is continuous in (2] x Q3 )U(921 x9N2), (QF xQ5 )U(0Q x00), (2] x
QF) U (01 x 00), (] x Q7) U (01 x0Q) and &+~ (z,00) =
d~ T (00,y) = & (00,00) = 0, and satisfies the nonlinear boundary
condition

A(I>++(t1, tg) + B(I)+_(t1, tQ) + C(I)_+(t1, tQ) + D(I)__(tl, tg)

= g(t1,t2) flt1, ta, @HH(t1, t2), @ (t1, t2), @ (t1,12), @ (t1, 2)].
(1.13)
The above boundary value problem is called Problem R.

Noting (1.2), (1.11) and (1.13), we can obtain

Fo =, (1.14)
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where
Fo= (A+B)(¢+ Pip+ Py + Pap)
+H(C + D)(—¢ + Pro — Py + Psp)
+(B+ D)(2¢ —2P1p) + (1 —4B)p — 4gf.

Therefore, Problem R is transformed into the singular integral equation
(1.14). From (3.17) and (3.22) of Chapter II, we get

Lemma 1.6 Let o(t1,t2) € H(OQ x 002, 3). Then
|20 £2Pp 5 < Lol @ llg [ 2Pip llg < Ll @ llg i =1,2,  (1.15)
where Jo is a positive constant.
Theorem 1.7 If p(t1,t2) € H(0Q x 0Q9, (), then
| Pap £ P |lg < Jsl[ 0 |l 5, (1.16)
in which Js is a positive constant which is independent of .
Proof From (1.4), it follows that
Pyp — Psp = — Prp — 4x(t1, t2). (1.17)

Moreover, from Lemma 1.6 we only need to prove || x(t1,t2)|[g < Jal|¢||-
We first use (1.6), (1.7) to get

IX(t1,t2)| < Bl ¢ [, (1.18)

then we rewrite ¢ (u, v) as 1o(t1,t2), thus

x(t1,t2) = A En(ty, p)douibo(te, ta)do, E(te, v).
8Q1 XBQQ

Now we consider H (y, 91 x 099, §) and write § = |(t1,t2) — (¢],t5)] =
(5%4—5%)% for any (t1,t2), (t],t5) € Q1 x Q9 and denote by p1, pa, i, P
the projections of |u — t1], |V — tal, | — t}], |V — t5] on the tangent plane
respectively. Moreover we construct spheres O;(t;, 39;) with the center at
t; and radius 3d;, where 66; < d;,d; < 1,7 = 1,2. Denote by 01, 02,
the part of 0€; lying inside the sphere O; and its surplus part (i = 1, 2)
respectively, and set R(0Q1 x 0Q2) = x(t1,t2) — x(¢],t5) = X(021 %
892) — ?(891 X 892) Thus
R(0921 x 092)
= R(OQH X 8921) + R(aQn X 8922) (1.19)

+R(6912 X 0@21) + R(aﬂu X 6@22).
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Firstly, we consider R(0€1 X 0€Q91). By (1.6) and (1.7), we have

|R(0Q11 X 0Q91)]

IX(0Q11 x 00a21)] + | X (0211 x 0Qa1)| (1.20)

Byl ¢ llgl(t1, t2) — (11, 85)17,

IA

IN

and
Yot t2)] < 2| @ 5l — ta]?,

(
[Wo(tist2)] < 2] ¢ ll5lv — tal”,
(

)
)

[o(th, )] < 2]l @ Il — 417,
)

(1.21)
[Yo(th, )] <2/ @ |l 5lv — t5]°.
Noting that |v — th]| > 202, |v — ta| > 302 > 0 on 02, we have
|R(0Q11 x 0292)| < Bs|| ¢ ||5l(t1, 82) — (17, 15)°. (1.22)

Similarly, we can discuss the case of R(012 x 9€221). Moreover we write
R(E)le X 8922) as

R(@ng X 8922)

= A [Em (t1, 1) — Em (8], p)ldouibo(t, ta)doy, Ex(t2, v)
8912 XaQQQ

+A B (81, p)doutho(ty, ta)doy [Ey(te, v) — Eg(th, v)]
8912 XaQQQ

+A Em(tlla u)dau[wo(h, t2) — @bg(tll, té)]daka(téa V)
8912 X@QQQ

= 51+ 5%+ 55.

For S5, by the Hile lemma, it is easy to see that

|ty — 1o
v —tolF’

|Ek(t27 ) Ek t2> | < Z ‘I/ — t/ |]+1’ (123)

Next from (1.6), (1.7) and (1.23) and noting that | —¢| > 36; > 0, | —
tl‘ > 2(51 > 0 on 8912, ’I/ — tg‘ > 3(52 > 0, ‘V — té’ > 2(52 > 0 on 3Q22,
we get [Sa| < Ch| ¢ [|5](t1,t2) — (th,t5)|°. Furthermore, we can similarly
discuss the case of S;. As for Sz, by (1.5), it is clear that

1
= E,(t d thY) — ¢
%= 2wm 0812 ( I’M) U“[SD(M’ 2) (p(u’ 2)]
1 t ’t _ t,,t/
7/ [‘P(tllv v) — (1, I/)]doyEk(t'27 V) + p(t1,t2) — p(t) 2)‘
2wk Jo0,, 1
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Again by (1.6) and (1.7),|S3] < Csf| ¢ ||ﬁ|(t1,t2) — (t’l,t’2)|5 is obtained.
The above discussion shows that

|R(02 x 8Q22)| < C3l ¢ |l (tr.t2) — (17, 8)1°. (1.24)
Secondly by (1.19), (1.20), (1.22) and (1.24) and when 65; < d;,d; <
1,6; > 0,7 = 1,2, we have
|R(OQ x 992)| < Cull ¢ |lgl(t1, t2) — (17, 85)]” (1.25)
It is easily seen that (1.25) holds for any (t1,t2), (t],t5) € 01 x 0.

Finally by (1.18) and (1.25), we can obtain || x(t1,t2) |5 < Jull ¢ [ 5-
Hence (1.16) is derived.

Corollary 1.8 Let p(t1,t2) € H(0Q x 0Q9,3). Then

| @FF (1, t2) llg < Jsll @ llg, | 2F(t1,22) 15 < sl @ I,

| @~ F(t1,t2) llg < Jsll @ llg, | 277 (t1,22) I3 < J5ll @ I,

¢+ Pro+ P+ Psp g < Js| ¢l

| —¢— Pip+ Pop+ Psp [l5 < Js ¢ 5,

| =+ Prp — Pap + Pap |5 < Js|| ¢ Il g,

o —Pip—Pop+ Psp |5 < Js| ¢ |5
Theorem 1.9 Suppose the functions A(z,y), B(z,y),C(x,y), D(z,y),
g(z,y) € HOQ x 0Qy,0). Then the function f(t1,ty, ®1), &) &G)

<I>(4)) is a Holder continuous function for (t1,t2) € 001 x 00y and sat-
isfies the Lipschitz condition for ®', ®% &3 ®* and any (t1,t2), namely

1f(tr1, ta1, @, 02 @) @) — f(t1g, 19, BV, 0P 6P (V)|

< Jol(ti1,t21) — (12, t22) [P+ J7| @ — @8)| - 4 @t —@lY),
(1.26)
where J; (i = 6,...,10) are positive constants independent of ti;, taj,
oM, . oY, j = 1,2, Neat let £(0,0,0,0,0,0) =0, | A+B |, < e,
[C+Dlsg<e, | D+Bllz<e [|[1-4B|lz3<e 0<e<1,0<pu=
e12Js+J2+1)<1, |l g Hﬁ < 6. If

M(1 — p)

0<d< ,
4J1(J13 + J14M)
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then Problem R has at least one solution as in the form (1.2), in which
M(|l ¢ llg < M), J13,J14 are positive constants, such that | f|lg < Ji3 +

Jrallellg-

Proof First of all, let T' = {p|p € H (0 x 9Q2,0),| ¢ ||z < M} be
denoted a subset of C (09 x 092). By condition (1.26) and Theorem
1.2, it is not difficult to see that C(f, 001 x 0Qs) < Ji1 + Jiz|l ¢ |-
Similarly, we have || f |5 < Ji3 + Ji4l| ¢ [|5- Hence, by (1.1) and (1.14),
| F¢ |l3 < M is derived. This shows that the operator I is a mapping
from T into itself.

Now we prove that the operator F' is a continuous mapping. In fact,
suppose that the sequence of functions {p,} uniformly converges to a
function p(t1,t2), (t1,t2) € 0021 x 98y, where @, € T. For any € > 0, by
[88]1), if n is large enough, then

|Prpn — Pl <&, |Papn — Payp| < €. (1.27)

Moreover we consider (Psy, — Psp) and write ¢, (u,v) = on(p,v) —
on(t1,v) — on(p, t2) + ©n(t1, t2). By the result in [88]1), it is easy to see
that ) )

[ (1, v)| < Aglp — to] > v — t2]>. (1.28)

Set ngon(tl,tg) — Pgtp(tl,tg) = 11(891 X 892) =+ 4 I5<891 X 6Q2),

where

L (0 x 09Q2) = 4\ Ey(ty, p)douhn(p, v)doy Eg(ta, v),
8Q1><692
I(0 x 0) = —4A En(ty, p)doup(p, v)do, Eg(ta, v),
8Q1X8§22

13(891 X@QQ) 4 E (tlvﬂ)dau[@n(tly ) (tl, )]dO'V.Ek(tQ, ),
891><8 2

1,(01 x 0822) =4\ B (t1, p)doy[on(p, t2) —p(p, t2)]doEy (ta, v),
891><an

I5(01 x 0Q) =4X | Ep(tr, pdou|e(ti, ta) —pn(te, t2)ldouEy(t2, v).
001 X0

Assume that 60 < d;,i = 1,2,0 > 0. Denote by O((t1,t2),30) the 30
neighborhood of (t1,t2) with the center at the point (¢1,t2) € 991 X
0 and radius 3o, and assume that 0€2;1,0;2 are as stated before.
Consequently, I](aﬁl X 892) = Ij(OQH X 8@21) + Ij(aﬂn X 6922) +
Ij(aglg X 8921) -+ Ij(ang X 8922),1 < j < 5. From (1.6), (1.7) and
(1.28), it follows that

111 (871 x 8Q01)| < Jis0” < J160'§7
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and

|11 (0012 x 0Q91)| < J17/ p
0010 0

Similarly, we consider 11(8(211 X 8922),12(8911 X 8921),]2(6912 X
8921), 12(8911 X 8922) and write

11(8912 X 8922) + 12(8912 X (9922)

=4\ Ey(t1, p)do, W (p, v)doy, Eg(ta, v),
001 X0

where
Wi, v) = {len(p,v) — o(p, )] = [pn(t1,v) — @(t1,v)]}
Hpn(t1, t2) — w(t1,t2)] — [on(p, t2) — p(p, t2)]}-

In accordance with [10], it is clear that

W ()] < 20 o = gl =t 2lv — 2],
and then by (1.7),
11(0Q12 x 0Q92) + I2(02 x 0022) < Jigll on — ¢ [l
is concluded. Again by (1.5) and (1.27), we have
|I3(02 x 0Q9)| < &, [14(091 x 0N)| < &,

and
’I5(6Q1 X 892)‘ = ’(Pn — 90’

The above discussion shows that
B
|Pagn — P3| < Jaoe+02 + || on — ¢ |lg)-

Thus for any € > 0, we first choose a sufficiently small number ¢ and
next select a sufficiently large positive integer n; we can then obtain

| P3pr, — P3| < Ge, (1.29)
in which G is a positive constant.

Finally, by (1.14), (1.27), (1.29) and condition (1.26), we can choose n
large enough such that |Fo, — Fo| < We, for any (t1,t2) € 91 x 0o,
here W is a positive constant. This proves that the operator F' is a
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continuous mapping from T into itself. According to the Ascoli-Arzela
theorem, it is evident that 7" is a compact set in the space C'(9€21 x 9€2).
Thus the continuous operator F' maps the convex closed subset T' of
C(0Q1 x 99Q2) onto a compact subset F(T') of T. On the basis of the
Schauder fixed point principle, there exists a function ¢ € H(9; X
009, 3) satisfying the integral equation (1.14). This completes the proof.

Theorem 1.10 When f =1 in Theorem 1.9, Problem R has a unique
solution.

Proof By the principle of contracting mapping, it is not difficult to
verify that the statement in this theorem is true.

2 Nonlinear Boundary Value Problems of Generalized
Bireguler Functions With Haseman Shift in Real
Clifford Analysis

In complex analysis the generalized regulae function is a generaliza-
tion of a holomorphic function that has formed an important mathe-
matical branch and has found important applications in fluid mechanics
and elasticity mechanics (see [3],[77],[81],[83] and so on). Similarly to
holomorphic functions, some results about generalized regular functions
have also been obtained in Clifford analysis. In this section, we introduce
the integral expression and the Plemej formula of generalized biregular
functions in Clifford analysis. In addition, we also discuss the solution
of a kind of nonlinear boundary value problem for generalized biregular
functions with shift in Clifford analysis (see [29]1)8), [64]2)).

2.1 Formulation of the boundary value problem

Let F{, be the class of Holder continuous functions on {2 = {2 x {2y
and the Dirac operator are as stated before. The so-called generalized
regular function f is the function f on {2 satisfying the system:

{axf:Flv

_ (2.1)
[0, = F.

We suppose that Qf, Q; are the unit sphere of R™*! and RF*! respec-
tively, and W**(t1,t) are the limit values of the function W, when
(r,y) — (tf’i,tQi’i). The nonlinear boundary value problem is formu-
lated as follows.

Problem RV We find a generalized biregular function W (z, y)(€ Fg({))
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in Qf xQF, Qf xQ5, Q7 xQF, Q7 x Q5 , such that it is continuous
in (QF x Q) U (8 x 99Qy), (QF x Q5) U (8 x 9Qy), and satisfies
W (oo, 00) = W(z,00) = W(oco,y) = 0 and the nonlinear boundary
condition with shift:

A(tl, t2)W++(Oz(t1), tg) + B(tl, tz)W+_ (a(tl), tg))
+C(t1, tg)W_+(t1, tg) + D(tl, tQ)W__(tl, tg)

=g(t1, t2) f(t1, L2, W (L, t2) WH (t1, 12), W™ (81, t2), W™ (t1,12)),
(2.2)
where a(t1): 01 — 09 is a Haseman shift (see [54]1)), A, B,C,D €
H (091 x 092, 3) and f are all known functions.

2.2 Plemelj formula of generalized biregular functions

We are given the operator
-1

TlF(x,y):—/ Ep(z,u)F uydu——/ G (z,u) ,y)du,
wm Jaf

TyF(2,y) = / Fo,0)Eu(y,o)do - - R{CE )Gy, v)ao,

where Gl(tl,tg) = (1/%2 —fl)/(‘l/tQ — tl)HtQDl, | = m,k.

Lemma 2.1 (see [19]) If F(x,y) € LP™(R™) for every fized y € RF,
and the norm |F|pm = |F, Qf |p+|F(m), Qf |, is independent of y, p > m,
then for every y € R*, we have

1. |ThF| < M(m,p)|F|pm, z € R™.

2. For any x1,z9 € R™, we have
p—m

TV F (21,y) — ThF (32, y)] < M(m,p)|Flpm|z1 — 22|, a = —

3. For |z| > 3 we have |T1F| < M(m,p)|F|pm|x|(m/P)=m+1),
4. gz(TlF) =F, zeR™.

In all cases M (m,p) is a positive constant dependent on m,p and inde-
pendent of x,y.

Lemme 2.2 Let F(z,y) € L? (Rk) for every fivzed x € R™ and let the
norm |F| 1 = |F,QF |, + |F®), Q5 |, be independent of x, ¢ > k. Then
for every fired x € R™, we have
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1. |ToF| < M(k,q)|F|gk, y € RF.

2. For any y1,y2 € R¥, we have

q—k
(1o (o)~ ToF (@.92) < M (k) Pl =l = =

3. For |y| > 3, we have |ToF| < M(k, q)|F|,x|y|(F/O—k+1),
4. (TwF)d, =F,y € RF.

In all cases M (k,q) is a positive constant dependent on k,q and inde-
pendent of x,y.

Corollary 2.3 Under the conditions of Lemmas 2.1 and 2.2, and if
q=pk/m and m > 2, k > 2, then

1. For every fized y € RF, we have T\F € C*R™), and
T1F(co,y) =0, herea=1—m/p=1-k/q.

2. For every fited x € R™, we have ToF € C%(RF), and
ThF(x,00) = 0, here « is as stated above.

Proof According to Lemmas 2.1 and 2.2, we have p = (¢ — k)/q =
1-k/q=1-m/p=aand (m/p)—m+1 < 1-m+1 <0, (k/q)—k+1 <0,
then the result can be obtained.

Theorem 2.4 Let k > 2, m > 2, F(z,y) € CYR*),0 < a < 1, for
every fized s € R™, y1,y5 € RY, and |F(z, 1)~ F(z,y2)| < Miyn—ps|?,
here M; is independent of x, p > m,a = 1 —m/p. Then for any fized
r € R™, we have Ty F € C*(R*) and the Holder constant is independent
of x.

Proof Let p' satisfy (1/p) + (1/p') = 1, note p > m; then we have
l<p<m/(m—1),m—1<(m—1)p <m, and

‘yl_y2‘a7 QT‘
p

m

M (=1 L
(TP ()= TaF () | < Jual = | dul]
w Qf

My [ 1 o
2= gy~ al®, | < Mol —gal®
Wm, Q;ru D

Theorem 2.5 Let k > 2, m > 2, F(z,y) € C*R™),0 < a < 1,
for every fized y € R* and any 1,75 € R™, |F(z1,y) — F(x2,y)| <
Mi|x1 — z2|®, here M is independent of y, ¢ > k, « =1 —k/q. Then
for every fired y € R¥, we have ToF € C*(R™) and the Holder constant
is independent of y.
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The proof of this theorem is similar to that in Theorem 2.4, so we
omit it.

Theorem 2.6  Suppose that Q; (i = 1,2) are two unit balls in R™, R*
respectively, and F(z,y) satisfies the same conditions as in Theorems
2.4 and 2.5, and p > m,q>k,a=1—m/p=1-k/q, q = p(k)/m.
Then

T;F(z,y) € C*(R™ RY), i =1,2.

Proof In accordance with the conditions in this theorem, when x €
R™, we see F(x,y) € L9*(R¥), and when y € R¥, we have F(z,y) €
LP™(R™). On the basis of Lemmas 2.1, 2.2 and Theorems 2.4, 2.5, for
any (r1,y1), (r2,72) € R™ x RF we get

T F (z1,y1) — TiF (22, y2)|
< |TiF(x1,y1) — TiF (22, y1) + TiF (22, y1) — TiF (22, y2)|

< Mslzy — 22| + Mylyr — y2|® < Ms|(z1,y1) — (22, y2)|%, i = 1,2.

Theorem 2.7 Let Fy, Fy in (2.2) satisfy Fi, Fy € C'(Q), where Q =
Q1 x Qo, Flgy = 0,F» and the condition on F is as in Theorem 2.6,

moreover F'10y also satisfy the condition on F as in Theorem 2.6. Then
the generalized bireqular function W(x,y), i.e. a solution of equation
(2.1) in QFf x QF, QF x Qy, has the integral expression

W(z,y) = T F1 + Ta[Fy — (T1 F1)9y) + ®(z,y), (2.3)
where ®(x,y) is a biregular function in QF x QF, OF x Q5.
Proof When (z,y) € Qf x0F, Qix 25, by means of Lemmas 2.1 and
2.2, we know 0,(T1F;) = Fj, (ToF;)0y = F; (i = 1,2), then according to
the condition F: 15y = 0, F,, we obtain

O TV i+ To[Fo— (T F1)0y)} = 0, T Fi + 0, To Fy— 0, T [(T1 Fy ) 9,
=F1+T15(0,F2) — 0, To[T1 (F10y)] = F1 + T (0, Fy) — T3 [0, (T1 (F10y))]
=P+ T5(0,F2) —Ta(F10,) = F1 +T5 (0, Fy) — T (9. Fy) = Fy.
Moreover,
{IWFy + To[F> — (T F1)0,]}0y = (T1F1)0y + Fy — (T1Fy )0y = Py,

that is to say T1 Fy + 1o [Fy — (TlFl)gy] and W (z,y) are both generalized
biregular functions, so

{TlFl + TQ[FQ — (TlFl)ay]} — W(x,y)
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is a biregular function, hence (2.3) is derived. This completes the proof.

Now we introduce the operator T5(F10y) = To[(T1F1)0,].

Theorem 2.8 Under the conditions described in Theorem 2.7, if
Fi(x,00) = Fy(00,y) = 0, then we have

0:((T5(F19y)] = Ta(F10y), [T5(F10,)]0y = Ti(F10y),

T3(F15y) € Ca(Rm, Rk),

T5(F10y)(00,y) = T5(F10y)(z,00) = T3(F19y) (00, 00) = 0.

Proof According to the proof of Theorem 2.7, we know that the first
term is true. Using Theorem 2.6, we see that the second term is valid.
According to Corollary 2.3, the third term is also true. Thus Theorem
2.8 is proved.

Theorem 2.9 Under the conditions described in Theorem 2.4, we ob-
tain the Plemelj formula of generalized biregular functions as follows:

— 1
W (ty,to) =T Fy +T2F2_T3(F16y)+1[80+P1§0+P280+P380],

_ — 1
W (t,te)=T1 Fy +T2F2_T3(Flay)+Z[_SO_PISO+P2§0+P3QD]7

_ .1
w +(t1,tg):TlFl+T2F2—Tg(Flay)+Z[—CP+P1LP—P2(,0+P3QP],

- _ 1
W (tl,tz)=T1F1+T2F2—T3(F13y)+Z[SO—PlsO—stOJrPssO],

(2.
for any (t1,t2) on 01 x 002, moreover, W(oco,y) = W (x,o0)
W (00, 00) = 0.

=
N—

Proof Similarly to [29]2) (see formula (1.11) of Chapter III), we can
use the Cauchy type integral to express ®(x,y) in (2.3). Moreover noting
the result in [29]2), Theorem 2.7, Corollary 2.3, we see that (2.4) is
valid. According to Fij(z,00) = Fy(oo,y) = 0, and Theorems 2.7, 2.8,
we obtain T} Fj(x,00) = TaFs(c0,y) = 0 and W(x,00) = W(o0,y) =
W (o0, 00) = 0.

Corollary 2.10 Let a(t1) be a Haseman shift on 021 —0Q1, and the
conditions in Theorem 2.8 be satisfied. Then for any (t1,t2) € 001 x00s,
we have
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W++(Oé(t1),t2) = {T1F1 + ToFy — Tg(Flgy)}(Oé(tl),tQ)

1
+1[901 + g + @p + g3,

W+_(a(t1),t2) = {TlFl + ToFy — Tg(Flgy)}(Oé(tl),tg)

(2.5)

1
+Z[—<p1 — 19 + @ + @3¢l

where p1(t1,t2) = p(a(ty),t2), qp(t,t2) = Pip(a(ty),t2), 1 = 1,2,3,
P; (i =1,2,3) are as stated in Section 1.

2.3 The existence of the problem RY

The boundary condition (2.2) of Problem RY can be reduced to the
singular integral equation

Ly =, (2.6)
in which L is a singular integral operator in the space H (9 x 0Qs, 3):
Ly = (A+ B)(p1 + qip + qop + a3p) — 2B(1 + q190)
+(C+D)[—p+Prp—Pop+P3pl+(2D+1))p—2DPro—4gf
+4(A+ B)[IWFy + To By — T5(F10,)](a(t1), ta)

+4(C + D)[TlFl + ThFy — Tg(Flgy)](tl, tg),
(2.7)
where @1, P;, ¢; (i = 1,2, 3) are as stated in [29]1).

Lemma 2.11 Let ; (i = 1,2) be unit balls, and let f satisfy the fol-
lowing condition on 0€; (i = 1,2):

|f(tllat21aW1(1)a 1(2)5 1(3)a 1(4))_f(t127t227W2(1)7 2(2)7 2(3)5 2(4))|

< Jl!(tn,tzl)*(tlza7522)|’8+J2W1(1)*W2(1)!+' : '+J5[W1(4)*W2(4)|7
(2.8)
in which J; (i = 1,2,3,4,5) are positive constants independent of Wj(m),
fOT tlj) t2j (] = 17 27 m = 17 2735 4)7

B
|(ti1, t21) — (tia, ta2) |’ = (\/(tll —t12)? + (ta1 — t22)2) ;
and £(0,0,0,0,0,0) = 0. Then there exist the constants Jg, J; such that

1flls < J6 + Jallells-
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Proof According to (2.8) and the bounded property of Q = Q1 x Qq,
it is easy to see that

9 0,) =
C(f,001 x 0Q2) (tm)renaagfxmlf!

- ma. ti, to, WH(ty,t), ..., W™ (t1,t
(tl,t2)€aé(1><aﬂg |f(t1, b2, (t1,t2), .., (t1,t2))

_f(07 Oa 07 07 07 O)| < JS + J9HS0||B7
where Jg, Jg are positive constants. Moreover we have

|f(t11, tor, WHH (t11,t01), W (t11, to1), W™ T (t11, t21), W™~ (t11, t21)
—f(t12, taa, W (t12, t22), W (t12, taa),W T (t12, ta2),W ™~ (t12, t22))|

< (Jio + Jullellg)|(tr1s tar) — (t12,t22)]°,

thus || f|lg < Js + J7| ¢l 5-

Lemma 2.12  Suppose that Q; (i = 1,2), a(t) are as stated before, and
f satisfies the conditions in Lemma 2.11, moreover

1) F; (i =1,2) satisfy the condition of F in Lemma 2.1, 2.2, F10, =
0. Fy and Fy(x,00) = Fy(c0,y) = 0.

2) T1F17 T2F27 T3(F15y)7 A7 Bu Ca D7 g € H(an X 8927ﬂ)7 a <
B<l,a=1—m/p, [ are as stated as in Lemma 2.11.

3) Set 5 = Jialia(|A+ Bll + 11 + Dl + | Blls +2Dllg) + 2D +
1||5] < 1, where Jyo, J13 are both positive constants, Jis is similar to Jq
in [29]1), Jis is similar to the mazimum one among Ja, J3, Jy in [29]1),
A,B,C,D,g are coefficients of the boundary condition. In addition we
give § > 0 such that 6 < M (1 —~)/4(1/J13 + Ji2(Js + J7M)), where M
is a positive constant such that ||¢|g < M, |lgllg < 6, |[T1F1 + ToF> —
T5(F10y)|lg < d; herein g, F1, Fy are all known functions satisfying the
requirement conditions. Then, we have the following results:

1. The operator L maps the subspace of C(01 x 0Q2), T = {¢|
© € H(OM x 002, 0), |lllpg < M} into itself.

2. The operator L is a continuous mapping on T.

Proof 1. According to the definition of the operator L and a property
of the norm || % ||3, we can get
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ILellp < Ji2llA+ Bllgller + a1 + a2 + gzl s + J12l| Bl 51201
+2q10l[3 + J12|C + Dligller + Pro — Pap + Paol|
+J12[|2D+1[gllell s+ J12l|2D] gl Preolls
+4J12||A+B+C+D| || TV Fi+ To Fo —T5(F10y) | s+4 12 £l 19l -

From the conditions 3) Ji2J13(||[A + Bljg + [|C + D||g) < v < 1, we can
obtain

1
|[A+B+C+D|g<||[A+ Blg+[|C+Dlsg< :
J12J13

Similarly
ILellp < Ji2J1sllllglll A+ Bllg+[|C+Dlls + [ Bl|s
+2[|D|| gl + Ji2l12D+1| gl el + 4T12 5756
+4J19[Jo+ Jrllepll )6 < MAy+6[ 5 +4J12(Js+ Tr Il )
< My+M(1—v) =M,

which shows that the operator L maps T into itself.

2. We arbitrarily choose ¢, € T, n = 1,2, ..., such that {¢,} uni-
formly converge to ¢ on 91 x 9Qs. For any £ > 0, when n is large
enough, ||¢n, — ¢||g can be small enough. According to [4], when n is
large enough, for any (t1,t2) € 921 x 9y, we have |Pip, — Piy| <
g, |Paon, — Pap| < e. Similarly, we can obtain |Psp, — Psp| < e,
lqion — qip| < (i = 1,2,3), and |Ly, — Lp| < We, where W is a
positive constant, thus we prove that L is a continuous mapping in 7.

Theorem 2.13 Under the same conditions as in Lemma 2.12, there
exists oo € T such that Lpg = @o. Moreover, Problem RY is solvable,
and the solution can be expressed as

W(z,y) = TiFy + Ta[F> — (T1F1)0,] + ®(z,y), (2.9)

wn which
ay) =A[ Bl wdougo(un v)do, Buly.v)
8Q1 X@QQ

here E.,(x, 1), Ex(y,v) are the same as Theorem 1.1, Section 1.
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Proof According to Lemma 2.12, we see that L is a mapping from T
to itself and it is continuous. By the Schauder fixed-point theorem, we
know that there exists w9 € T such that Loy = ¢o. Substituting g
into the above formula, we get ®(z,y), moreover substituting ®(z,y)
into the formula (2.3), the function W (z,y) is obtained, which is just a
solution of Problem RV.

Similarly to Theorem 2.13 (see [29]3)) we can also discuss a kind
of nonlinear boundary value problem for generalized biregular functions
with the shift and with conjugate value

Ay (tr, )W (ty, ta) + Ag(ty, to) WHH(d(t1, t2))
+ By (t1, t2) W (t1,t2) + Ba(t1, to)WH=(d(t1,t2))

+C4 (tl, tQ)W_+(t1, t2) + Cg(tl, t2)W7+(d(t1, tg))

+Dq (tl, tQ)W__(tl, tz) + Dz(t1, tQ)W__(tl, tg)(d(tl, tg))
= g(tl, tg)f(tl, to, W++(t1, tg), wt- (tl, tg), W_+(t1, tg), W__(tl, tg),
WHH(d(t1, t2)), W (d(t1, t2)), W (d(t1, t2)), W —d((t1, 12)))

where d(t1,t2) : 0021 x 0Q2 — 01 x 08y is a Haseman shift.

3 A Nonlinear Boundary Value Problem for Biregular
Function Vectors in Real Clifford Analysis

On the basis of the results of the above two sections and enlight-
ened by the vector value analysis [25], in this section the existence and
uniqueness of solutions of a boundary value problem for biregular func-
tion vectors will be discussed (see [9],[30]).

3.1 Formulation of the boundary value problem

Definition 3.1 Let F;(z,y) € Fg) (¢t = 1,...,p) be functions with
values in the real Clifford algebra A, (R). We call F(z,y) = (Fi(z,y),
..., Fp(z,y)) a function vector, and call F1, ..., F}, the components of F'.
For F(z,y)=(Fi(z,y), ..., Fp(x,y)), G(z,y) = (Gi(z,y), ...,Gp(z,y)),
the addition operation of two function vectors is defined by F+G = (F;+
G1,...,Fp, 4+ Gp), and the multiplication operation of function vectors
is defined by F ® G = (F1Gq,. .., F,Gp). Moreover we define the mul-
tiplication of a function vector and a function as pF = (pFy,...,¢F,),
Fi = (F1, ..., Fp), where ¢(z,y), ¢(z,y) are functions. We define
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P
the norm of the function vector as |F(z,y)| = (3 |Fi(z,y)|>)"/2. Tt is
=1

1
easy to see that

[F+ G| < |F|+G], |[F & G| < JolF||G], (3.1)
where Jj is a positive constant.

Definition 3.2 We call a function vector F(z,y) = (Fi(z,y), ...,
F,(x,y)) biregular in €2, that is to say that Fj(x,y) (i = 1,...,p) are
biregular functions in €2, and = 1 x ) is stated as in section 1.

We call a function vector F(u,v) = (Fi(u,v),..., Fp(u,v)), (u,v) €
001 x 0€29 Holder continuous in the characteristic manifold 92 x 9€29,
if it satisfies

d 2\1/2
|F(u1,v1) — F(U27U2)|=(§|Fi(ul,Ul)—Fi(U27vz)| )Y

< B|(u1, v1) — (us,v2)|°,

in which 0 < 3 < 1, |(uy,v1) — (u2, v2)| = (Jug — ug|? + |v1 — va|?)*/2, and
B is a positive constant independent of (u;,v;) (i = 1,2).

Theorem 3.1 The number 5 (0 < 8 < 1) is the index of a Holder con-
tinuous function vector F(u,v) in 00 x 0Qsa, if and only if the number (3
is the index of every Holder continuous component f;(u,v) (i =1,...,p).

It is easy to verify by the definition, so we omit it.

Noting that the Holder continuous function vector set with the index
B0 < B < 1)in 991 x 90y is denoted by H,(0Q x 09, (), we take
F(u,v) € Hy(021 x 02, 3), and define the norm of F(u,v) as ||F||g =

Cp(F, 0y x 892) + Hp(F, 00y x OQg,ﬁ), where
CP(F, 891 X 892) =

max |F(u,v)]
(u,0)€0021 XN

p
N F; 2\1/2
(%”U)Enalgi(xagb (z; | Z(U, Q})‘ ) ,

Hy(F,00,x0Q,8)=  sup ‘F(uhvl)_F(U%U%ﬂ
(uj,0;) €001 X009 ‘(ula Ul) - (u27v2)’

(u1,v1)#(u2,v2)

p
(O [Fi(ur, v1) = Fiug, vg) )"/
i=1

= sup
(ug,v;)€E001 XN |('U/17'U1) - (u2702)|/8
(u1,01)#(uz,v2)
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It is easy to see that H,(0€ x 092, ) is a Banach space, and we can
verify that the following inequalities hold:

1E+Glls < |[Flls + |Glls, IF' ® Glls < Jol[Fllsl|Glls,  (3:2)

where Jj is the same as before, F,G € H,(0Q x 002, 3).

Problem SR We are given a connected open set (2 = 1 xQs C R x
R, whose boundaries 09;(i = 1,2) are all smooth, oriented, compact Li-
apunov surfaces. Let A(ty,t2), B(t1,t2), C(t1,t2), D(t1,t2), G(t1,t2) and
Fy(t1,to, o) 32 G, <I>(4)) be given function vectors in 921 x 925 and
0 x 00 x Ap(R) x Ap(R) x Ap(R) x Ay (R) respectively. We find a
biregular function vector ®(z,y) in Qf x Qg , Qf xQ5, Q7 xQF, Q7 x5,
such that it is continuous in (QF x QF )U(9Q1 x9Qs), (QF x5 )U(9Q x
082), namely its every component is continuous, ®(z,00) = (00, y) =
®(00,00) = 0 and satisfies the nonlinear boundary condition

A(tl, t2)®¢)++ (tl, tg)—l—B(tl, t2)®¢)+7 (tl, tg)—l—C(tl, tg)
@ DT (t1,t2)+D(t1,t2) P (t1,t2) =G (t1, t2) @ Fi[t1, to,
ST (1, 12), DT (1, t2), DT (t1, 1), DT (t1, £2)],

where A, B,C, D, G, F, are all known function vectors, and ®(t1,t2) is
an unknown function vector as

ST (11, t9) = [®F T (t1,t2), ..., B T (t1, 12)],
O (t1,ta) = [®F " (t1,12), ..., B (t1, 1)),
O (ty,t2) = [®7 T (t1, t2), ..., ®, T (t1, t2)],
D™ (t,t2) = [P (t1,t2),..., D, (t1,t2)].

Here we simply write F' ® G as F'G, so the above boundary condition
can be briefly written as

A(tl, t2)®++(t1, tg) + B(tl, tg)q)+_(t1, tg) + C(tl, tg)q)_+(t1, tg)

+D(t1, tg)q)__(tl, t2) = G(tl, tQ)F*(tl, to, (I)++, (I)+_, (I)_+, (I)__).
(3.3)

3.2 The Plemelj formula of biregular function vectors with
Cauchy type integrals

We can obtain the following theorem about biregular function vectors
by the above lemma.
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Theorem 3.2 Let x ¢ 0Qy, y ¢ 002 and the function vector ¢(u,v) €
H, (0 x 089, 3). Then the Cauchy type integral
ay) =2 Eulawdegluodo,Blyo) (34
891 X@QQ

is a biregular function vector satisfying the condition ®(co,y) = ®(z, 00)
= ®(00,00) = 0, where Ep(z,u) = (a—2)/|u—z|™, Ex(y,v)=(0—1)/
lv — y|* and X is as same as in Section 1.

Proof It is clear that

Ooy) = A Eplww)doup(u,v)do, By, o)
891 X@QQ

= I Buleu)dowp(u 0)do, Bily.v),
an X@Qz

A / Epn(, w)dowpy(u, v)doy Ey(y, v)]
021 X0
= [@1(.%, y)a ceey (I)P(xv y)]

On the basis of Theorem 3.1, we see that the function vector ¢(u,v) €
H, (0 x 0Qg,3), hence its every component ¢;(u,v) € H(9Q X
0,0) (i = 1,...,p). By (1.2), we know that ®;(z,y) (i = 1,...,p)
are biregular functions. This shows that ®(z,y) is a biregular function
vector.

Definition 3.3 The integral

@(tl, tg) =A Em(tl, u)daugo(u, U)dUUEk(tQ, 'U), (tl, tQ) €00y x 892,
891 X8Q2 (3 5)

which is called the singular integral in characteristic manifold 9€2; x 9€25.

Now we consider
DPs(t1,t2) = >\/ B (t1, u)doyo(u,v)do, Eg(t2,v),
BQl X@QQ—A(;

where A5 is the same as that in Definition 1.2.

Definition 3.4 If there exists %in% ®s(t1,t2) = I, then I is called

the Cauchy principle value of a singular integral, which is also called
the Cauchy principle value of a Cauchy type integral denoted by I =
(I)(tl, tg), where

%ii%(l)(;(tl,tz) = [%iir(l)q)lg(tl,tz), . .,%E%(I)p(s(tl,tg)], I=(L,....1,).
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Next we introduce the singular integral operators

Prp = me/anEm(thu)dUuSD(UatQ)

2

= [%/89 Em(tlv u>d0ug01 (U, t2)7 ey 7Em(t17 u)daugap(u, t?)]?

1 m
Pyp = wlk o(t1,v)doy, Ex(t2,v)

0
2

:4i/m¢ﬂmmwﬁﬂm”“”wk89%WWM%&@”W

2 2

Pg(p = 4@(751,752) = [4@1(t1,t2), ce ,4¢’p(t1,t2)].

Theorem 3.3 (The Plemelj formula of function vectors with Cauchy
type integrals) Given the function vector p(u,v) = (¢1(u,v),...,
op(u,v)) € Hp(0 x 009, B) in (3.4), then for any (t1,t2) € 0 x 0y,
we have

O (t1, 1) = 1o + Pip + Pag + Payl(t1, 1),

O (t1,t2) = 21;[*@*P1<P+P280+P390](t1,752)7 56)
& (t1,2) = [0+ Pro — Pap o+ Pagl(t1,2), |
O~ (t1,12) = 5[ — Prp — Pap + Pyl (ta, t2).

3.3 The existence of solutions of nonlinear boundary value
problems for biregular function vectors

Suppose that the solution of Problem SR is as stated in (3.4), and
substitute (3.6) into (3.3), then we have

Alty, t2){i[90(t1, t2) + Prp(t1, ta) + Pap(ta, t2) + Pap(te, t2)]}

+ B(t1, t2){%[—90(t1, t2) — Pro(ti,t2) + Pap(ts, t2) + Pp(ta, t2)]}

+ C(t, t2){%[—90(t1a t2) + Prp(t1, ta) — Pap(ta, t2) + Pap(te, t2)]}

1
+ D(ty, t2){1[90(t1, ta) — Pro(ti,ta) — Pap(ty, t2) + P3p(ty, t2)]}
= G(t1,ta)Filt1, to, ®TF(t1,t2), @ (t1,t2), DT (t1, t2), D~ (t1, t2)],

and then
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(A+B)(¢+ Pio+ Pop+ P3p) + (C+ D)(—¢ + Piy
—Pop+ Psp) + (B+ D)(2¢p —2P1p) — 4By = AGF..
Let
= (A+ B)(¢+ Pip+ Pop+ Psp) + (C+ D)(—¢ + Prp
—Pyp + P3p) + (B + D)(2¢ — 2Pyp) + (1 — 4B)¢ — 4GF,.

Then Problem SR is reduced to finding the solution of singular integral
equation Fy = ¢.

Lemma 3.4 ([29]2)) Let o(t1,t2) € H(0 x 009, 3). Then there ex-
ists a positive constant Ji independent of v, such that

[1Piollg < Jillellg (i =1,2), ||Pap + P3ollg < Jillel|s. (3.7)

Using Lemma 3.4 and the definition of the norm of a function vector,
by calculation we can get the following theorem.

Theorem 3.5 Let the function vector ¢(ti,t2) = (p1(t1,t2), ...,
op(t1,t2)) € Hp(0 x 09,3). Then there exists a positive constant
Ja independent of ¢, such that

||Plg0||/3 < J2||90||,31 i=1,2,3, ||290:l: QBSOHﬁ < J2||90||/67 1=1,2,
[DFE(t1, t2)lp < Jall@lls, || £ ¢ £ Pro+ Pap + Psollg < Jolloll,

10EF(t1, t2)l |5 < Jallells, || F o+ Pro — Pag + Paglls < Jallol 5.
(3.8)

Theorem 3.6 Let A(tl,tg), B(tl,tg) C(tl,tg) D(tl,tg) G(tl,tQ) S
Hy(0 x 0Q9,8), Fi(ti,ta, @D 02 &G &W) be Holder contin-
uous about t = (t1,ta) € 391 X 892 for any Clifford num-
ber @D &2 G W and for any (t1,t2) € O x 9Ny about
oM 32 G oM satisfies the Lipschitz condition, i.e.

|Fu(tay, ta1, @, @2 0 &) — Fo(t19, tas, 85V, 0P 05 @)
< Js|(tnst1) — (tro, )P+ Jo @D — 0V |+ g5 02 — 2]
+ 7610 — o0 | + Frja(M — eV,

where Js3,...,J7 are positive constants independent of tlj,tQj,(I)gi) (i =
1,2,3,4,5 = 1,2), and F,(0,0,0,0,0,0) = 0. If A, B, C, D satisfy
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7= Jo[2([[A+ Blls + [|C + Dllg + || B+ Dl|g) + [[1 = 4B]|s] <1, and

_ MO =y :
I|Gllg < 9, then when 0 <6 < To(Js ¥ Jo M)’ Problem SR is solvable,

where M is a given positive number and Jg, Jg are positive constants,
such that ||¢||g < M, and ||Fy[|g < Js + Jol| ¢l 5.

Proof We introduce a subset of the continuous function vector space
Cp(0 x 0Q) as T = {plp € Hp(0 x 002, B), ||¢||p < M}, and first
prove that F' maps the set T into itself.

By (3.6), (3.1), we have

[Folls = [I(A+ B)(¢+ Pip+ Pap+ Psp) + (C + D)(—¢
+Prp—Pop+P3p)+(B+D)(2p—2P1p)+(1-4B)p
—AGF.||g< Jol|A+Bl|gllo+Pro+ Py
+Ps¢llg + Jo||[C + D||gll — ¢ + Pry
—Pop + Psollg + Jo||B + D||sl[2¢ — 2P1¢||s
+Jol|1 = 4B||gllells — 4Jol |G|l Fx||

IA

JollA+ BllgJa|[¢lls + Jol|C + Dl|s T2l #lls
+Jol|B + DllgJa|l¢lls + Jol[1 = 4B|[sll¢l|s
—4Jol|G|llFlls=Jo[J2(||A + Bl|s +[|C + Dl|s
+[1B + Dllg) + (|1 = 4Bl[slll¢lls — 4Jol|Gl|s] | Fx[ls
< llells = 4Jod|[F]s-

Moreover we consider ||F||g, and first discuss Cp(Fi, 0 x 0822). By
(3.8), we get

|E| = |Fultr, ta, @ F (¢, ), @1 (E1,82), @ (1, 82), (1, t2)
_F,(0,0,0,0,0,0)]
J3|(t1,t2)|2 + Ju|®@FF (b1, t2)| 4 J5|®F (11, 12)]

+J6|® T (t1, t2)| + J7 @7 (t1, t2)| < J3|(t1, t2)]P

IN

+J4|| @ (t1, t2) 5 + J5| [T (1, t2)|| 5
+J6]| @7 (t1, t2) g + J7|| @7 (t1, t2) || < Jal(t1, t2)|”
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+JsJollollg + 5 J2ll¢llg + JeJ2|| 0|5

+J702llllg < Jsl(t1, t2)|P 4 Jiollel s
SO

C(F., 00 x 00) = F,
p( 1 X 2) (tl,tg)re%afl}ixafzg‘ ’

< J3|(t1, t2)|° + J —J+J _
_(tl,tz)re%%z}ixagg( 3l(t1,t2)1” + Jiollellg) = Ju1 + Jollells

Next we discuss Hp(Fy, 0 x 08, 3). Noting that
|Fi(tin, tor, @4 (t11, t01), @ (t11, t21), @~ (t11, t21), 7 (t11,t21))
—Fi(t1g, toz, DT (t12, t22), D1 (t12, ta2), @~ (t12, toz), @ (t12,t22))]
< Jsl(tins t21) — (tiz, to2) [P + Ju|@FF (t11, ta1) — DT (t1, too)]
+J5|®F (t11, to1) — @ (t1a, toz)| + J6| P~ T (11, to1) — @ F(t12, Lo2))|
+J7|® 7 (t11, 1) — D7 (tr2, ta2)| < J3|(t11, t21) — (t12, t22)|”
+JyHy(®FF, 001 x 0Q2, B)|(t11,ta1) — (t12,ta2)|?
+J5 Hy(®F =, 001 x 0Q2, B)|(t11,ta1) — (t12,ta2)|?
+JeHp(®~F, 001 x 0Q2, B)|(t11,ta1) — (t12,ta2)|?
+J7Hyp (@77, 00 x 00, B)|(t11,t21) — (ti2, ta2)|?
< (J3 + Jul|2F |5 + I5|[@F (| + J6| |25 + J7||27 7 [[5)
|(t11, t21) — (t12, t22)|”
< (J3 + Jada|lellp + JsJa||ells + JeJo|lol|g + 72l 0ll8)

|(t11, t21) — (tr2, ta2)|P < (J5 + Jaollol]g)|(t11, t21) — (t12, t22)|°,

and taking into account
F} = Fu(tin, to1, @ (t11, t21), ..., @7 (f11, t21)),
F? = Fy(tig,ta2, @ (12, 122), ..., D7 (t12, t22)),
then

Fl_F?
Hp(F*,E)Ql X 892,5) = sup | x x ’ 3
(t1i.ta)€09 x00y |(t11,21) — (t12, t22)]
(t11,t21)#(t12,t22)

< J3+ Jiollells,
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hence we have
[|Fillg = Cp(Fx, 021 x 022) + Hp(Fy, 01 x 09, ()
< Ju+Jollellg+ I3+ J12llellp < Js+Jol ¢l 5.

Furthermore from v = Jo[J2(||A+ B||g+||C + D||g+||B+ D||g) +||1 —
4B||5] < 1, it follows that

1E¢lls < llells — 4J0d(Js + Jol[#]]5)

N M(1—~)
<M 4J04J0(J8—|—J9)M(J8+J9M)

which shows that F' maps the set T into itself.

By a similar method and through complicated calculations, we can
prove that F' is a continuous mapping, namely F' continuously maps T’
into itself. In accordance with the Ascoli-Arzela theorem, we see that T
is a compact set of continuous function vector space Cp, (0821 x 9€2z). This
shows that F' continuously maps a closed convex set 1" of Cp, (9821 x 0€22)
into itself, and F'(T') is also a compact set of Cp(0€; x 0€2). Hence by
the Schauder fixed-point principle, we know that there exists at least one
wo € Hp(0Q x 0Qy, B) satisfying the singular integral equation (3.7).
This proves that Problem SR has one solution.

Theorem 3.7 Under the conditions as in Theorem 3.6, and if Fy, = 1,
then problem SR has a unique solution.



CHAPTER IV

BOUNDARY VALUE PROBLEMS OF
SECOND ORDER PARTIAL DIFFERENTIAL
EQUATIONS FOR CLASSICAL DOMAINS
IN REAL CLIFFORD ANALYSIS

In this chapter, we first introduce the harmonic analysis in classical
domains for several complex variables obtained by Luogeng Hua in 1958,
and discuss the Cauchy formula, Poisson formula and boundary value
problems of harmonic functions for classical domains in Luogeng Hua'’s
sense. By using above results, I. N. Vekua’s results about generalized
analytic functions, and the tool of quasi-permutations (see Section 3,
Chapter I), we discuss two boundary value problems for four kinds of
complex partial differential equations of second order in four kinds of
classical domains, and prove the existence and uniqueness of regular
solutions for the problems and give their expressions in complex Clifford
analysis. Finally we discuss a pseudo-modified boundary value problem
in a ball for a kind of real partial differential equations of second order in
real Clifford analysis and prove that the problem has a unique solution.

1 Harmonic Analysis in Classical Domains for Several
Complex Variables

In function theory of several complex variables [89], a domain in C"
is called a symmetric domain, i.e. for every point of this domain, its
symmetric point also belongs to the domain. In 1936, E.Cartan proved
that a bounded symmetric domain can be divided into four classes, ex-
cept 16 and 27 dimensional complex spaces. It is exactly said, except
for the two special cases, every bounded symmetric domain in C™ must
belong to one of these four classes of domains, or be equivalent to topol-
ogy multiplication of some domains of these four classes of domains
(see[8]). Luogeng Hua denoted by Ry (k=1,2,3,4) these four classical do-
mains according to the matrix form. Until 1957, Qikeng Lu pointed out
that R3(C C*) and Ry (C C°) were equivalent to each other [47]2). In
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1961, E. E. Berjiske-Sabilof [60] gave the definition of classical domains,
namely those that can be analytically equivalent to a bounded domain
and permit a transitive classical group. Consequently, the four classi-
cal domains firstly defined by Luogeng Hua were symmetric classical
domains. Obviously there exists a symmetric classical domain.

The four classes of symmetric classical domains Ry(1 < k < 4) de-
fined by Luogeng Hua are the complex mn, p(p+1)/2(> 3), ¢(¢—1)/2(>
6) and N (> 5) dimensional respectively, where R;(m;n) is the matrix
hyperbolic space satisfying 1™ — 77 > 0, Z = (2ij)mxn(m < n),
I(M) is the m x m unitary square matrix, where a square matrix > 0
means that this square matrix is positive definite; Ra(p) is the sym-
metric square matrix hyperbolic space satisfying [ ) - 77 > 0,7 =
(zij)pxp, P(P+1)/2 >3, Z = Z'; R3(q) is the oblique symmetric square
matrix hyperbolic space satisfying I\9 + ZZ > 0, Z = (2i)gxqs a(q —
1)/2 > 6, Z' = —Z; R4(N) is the Lie ball hyperbolic space satisfying
|22/ 241227 > 0, |22/| < 1, 2 = (21, .., 2n), N > 5. Al R(1 < k < 4)
are bounded star circular domains with center at the origin [47]2). In
function theory of one complex variable, we often study function theory
in the unit disk |z| < 1, because in general all symmetric domains are
equivalent to the unit disk, hence the above four classes of symmetric
classical domains play an important role in function theory of several
complex variables.

The geometries usually discussed by researchers in function theory of
one complex variable include parabolic geometry, i.e. the complex plane
C! with measure |dz|; elliptic geometry, i.e. the Riemann ball with met-
rics |dz|/(1 + |z|?); hyperbolic geometry, i.e. the unit disk with metrics
|dz|/(1 — |z|?). Their unitary curvatures are equal to 0, positive and
negative respectively. In C", the generalization of parabolic geometry
is the geometry with metrics {37, |dz;|?}'/2. In order to discuss the
geometric structure of boundary of symmetric classical domains, Qikeng
Lu introduced hyperbolic metrics in symmetric classical domains, and
proved that the symmetric classical domains and their boundaries pos-
sess a common geometric character([47]2),3)).

The boundary By of classical domain Ry, generally speaking, does
not become a differential manifold, but B can be denoted as a sum of
some subsets, in which every subset is transitive and invariable under
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the action of the motion group I'*. According to the theory of Lie
groups, one can give a real analytic structure for every subset, such
that it becomes a real analytic manifold. The interesting thing is the
subspace of the closed classical domain R}, which is invariable under
the action of the motion group I'* and its dimension is the lowest, and
is a real homogenous compact analytic manifold. We call them the
characteristic manifolds of Ry and denote them by Ly (1 < k < 4).
They play an important role in function theory in classical domains.
For instance, the Cauchy integral formula for holomorphic functions in
the classical domains defines the integral on a characteristic manifold,
and does not need to be integrable on the whole boundary except for a
few examples. This character essentially distinguishes it from with the
Cauchy formula in function theory of one complex variable. The Poisson
formula in classical domains has a similar property.

In order to find the Poisson kernel, from which the Cauchy kernel
can be found, Qikeng Lu utilized the geometric character of symmetric
classical domains and their boundaries. He first found the transposition
relation to the volume element of characteristic manifold Lj under the
action of I'*| and then he represented the volume element with the outer
differential form, consequently the computation becomes simple. On the
basis of this, we can prove the following mean value theorem.

Theorem 1.1 Suppose that Ra,, Ra,, ..., Ra, are all domains in four
classes of symmetric classical domains, N is the sum of dimensions of
the classical domains, R = Ra, X Rg, X ---x Ry, , La, is a characteristic
manifold of Ra,, L = La, X Lay, X -+ X La,, and f(z) = f(z1,...,2N)
is an analytic function in R and is continuous on RU L. Then we have

£(0) = V(lL) | 1.

where € is the volume element of L, and V(L) is the volume of L.

As an application of the mean value theorem, we shall derive the
Poisson formula in classical domains R. Because every R4, is transitive
under the action of I'4, we can conclude that R is transitive under the
action of the direct product of these kinds of groups. Assume zy € R,
then there must exist an analytic transformation of this direct product
as follows:

w = D(z; 20, 20), (1.1)

which maps zg onto the origin. Let the inverse of this transformation be

z = & Hw; 20,%0). (1.2)
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Because every transformation of I'4 is still analytic on the boundaries
of Ry4,, it is evident that the transformations (1.1) and (1.2) are analytic
on the boundary of R. We arbitrarily give an analytic function f(z) in
R, such that it is continuous on RU L, then

F(w) = f(7"(w; 20, %0))

is also analytic in R and continuous on RU L, and F(0) = f(z9). Ac-
cording to Theorem 1.1, we get

FO) = 57 [, Fl0K (1.3)

where ( = ®(§;20,20), £ € L. Assume that through transformation
(1.1), the integral possesses the relation

| F©é= [ 1P o€ (14
L L

then (1.3) can be rewritten as

f(z0) = V(lL) JEGIERS

where zg € R. We call (1.4) the Poisson formula in the classical domains,
and call P(zp,&) the Poisson kernel of R. By the computation, we can
get that the Poisson kernel of every symmetric classical domain Ry, (1 <
k < 4) can be written in the form

P “\|2
P ) = e,

1<k<d4,

in which for the fixed w € Ry, Hy(z,@) in Ry is analytic concerning z,
and Hy(z,w) = Hi(w,Zz). By using Hi(z,£), we can derive the Cauchy
formula of functions in Rj.

Let Ry (1 < k < 4) be four classes of symmetric classical domains, and
Lyj, (1 < k < 4) be the characteristic manifolds of Rj. Given an arbitrary
function f(z) which is analytic in Ry and continuous on Ry U Ly, then
for every z € Ry, we have the Cauchy integral formula

fo) = [ fe) Hu(= B (1.5)

V(Lk’) Ly
where Hp(z,&) is called the Cauchy kernel of Ry. In fact, we construct
the function

9(2) = f(2) [ Hr(z, @),
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when w € Ry is fixed, g(z) is analytic in Ry and continuous on Ry U Lg;
by using the Poisson formula (1.4), we get

. 1 P 1 |Hk(z7g)|2 :
96) = g [, 9O = s [ o

that is

1 o [ He (2, 9P

F(2)[Hp(z,w)] " =

The above formula is valid for every point w € Ry, especially for w = z,
notice Hy(z,Z) > 0 and Hy(z,&) = Hy(£,Z), then after eliminating
Hy(z,%) from two sides of the above formula, the formula (1.5) is con-
cluded.

The above method about the Cauchy integral formula (1.5) was ob-
tained by Qikeng Lu in 1963 [47]3); it is different from the method given
by Luogeng Hua in 1958. In Hua’s monograph [26]1), he first used the
representation theory of groups to find the complete orthogonal and nor-
mal system of functions on the characteristic manifolds Ly (1 < k < 4)
of four classes of symmetric classical domains Ry, (1 < k < 4), and then
he got the Cauchy integral formula.

In [26]1),2), Luogeng Hua and Qikeng Lu introduced the harmonic
operators A (1 < k < 4):

m n n o2
Ly = Z Z (5Jk B Z Zj)\zk/\ aﬁ - ZZlaZl/g 8 7%
G k=1 a,pf=1 A=1 Zja Zkﬁ
L, a=p;
Sop =
0, a # p;
p p - p _
1 FAo Zuo 1 Zar 2B
No = (Ory — = ZAT BTN (S — — Zpry
0475%1:1 b2 02::1 Pxo Ppo : 2 7; Par Ppr
1 2
X . — ,
2PxaPpp 82)‘048’2115
1
—, a=0,
Pap = \/5
L, a#p5;
q 82

1
3T 5 Z 5)\# Z zAUZMU) aB — E :Zm‘zﬁr Q)\aquﬁif7
2 02)a0%,8
o8, A u=1 o=1 r=1 12
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07 a:/37
qag =

L, a# 5

2 N 02
ANg=(1 — 227 — 22472
1= (1427 27) 2 (6ap — 22 Zﬁ)aza(%ﬁ
a,f=1
82

+2 Z o —27'24)(2 5722'25)8%(826.

a,B=1
The function f(z) in four classes of symmetric classical domains Ry, (1 <
k < 4) satisfying Agf(z) = 0 and possessing twice continuous partial
derivatives is called a harmonic function. After we prove that the Poisson
kernels Pi(z,£) of Rk (1 < k < 4) are harmonic functions of z € Ry,
herein £ € Ly, it is easily seen that the Poisson integral

Pz, :
is also a harmonic function in Ry (1 < k < 4), where ¢(£) is continuous
on the characteristic manifolds Ly, (1 < k < 4)) [32].

Applying the boundary properties and extremum principle of the
Poisson integral in Ry (1 < k < 4), we can prove the existence and
uniqueness of solutions of the Dirichlet boundary value problem in clas-
sical domains Ry (1 < k < 4) for harmonic functions of several complex
variables [27].

Theorem 1.2 Let ¢ (£) be continuous on Ly, (1 < k <4), 2 € R\ L.
Then there exists a unique harmonic function fi(z) in Ry, such that
lirré fe(z) =vr(Q) (1 <k <4),if € Lg, and fr(z) can be expressed as

1e2) = s, #HOP=. 0%,

where Py(z,&) is the Poisson kernel of classical domains Ry, (1 < k < 4).

2 The Dirichlet Problem of Second Order Complex
Partial Differential Equations for Classical Domains
in Complex Clifford Analysis

On the basis of the results of harmonic analysis in four classical
domains by Luogeng Hua and Qikeng Lu as stated in the above section,
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and the results about generalized analytic functions by I. N. Vekua [77],
in this section we shall discuss four kinds of complex partial differential
equations of second order in complex Clifford analysis, and then we shall
prove the existence and uniqueness of regular solutions for two boundary
value problems of Dirichlet type in four classical domains and give their
integral expressions (see [32]2)).

Denote by pi (1 < k < 4) the dimensions of four classical domains
Ri (1 <k <4), that is py =mn, pp =p(p+1)/2, ps =q(q¢—1)/2, ps =
N, and by CP* the space of complex variables 21, ..., 2p,. When k = 1,
set (211, e, Z1ny -0y Zmls oy Zmn) = (21, ..., 2p; ), the rest can be given a
similar notation. In this section, we consider the function f(z) from CP*
to complex Clifford algebra 4, (C)(1 <k <4).

In Section 3, Chapter 1, we divide the function f(z) = f(21,..., 2p,)
into two parts:

flz) =1 ZfAeAJFZ faeh,

where A in the sum Y is chosen the first suffix, and A in }_” is chosen
A A

the second suffix, and denote f) = J; f (i = 1,2).
Let 3¢y (€)€/y on Ly (1 < k < 4) be continuous; we shall seek a
regular f?mction f(z) =324 fa(z)ea in Ry satisfying the equation
Aef(z) =0, (2.1)

such that it is continuous on Ry (1 < k < 4) satisfying the boundary
condition of Dirichlet type

PO = Dl = (e, € € Ly (2.2)
F A

The problem for complex partial differential equations of second order
(2.1) in classical domains Ry will be called Problem Dy (1 < k < 4), or
Problem D;, for short.

Firstly, we find the integral expression of solutions for Problem Dy.
Let f(z) be a solution of Problem Dy; it is clear that > Agfa(z)ea =
A

Arf(z) =0, and then Apfa(z) =0, z € Rg. From (2.2) it follows that
1) = ¢4(€) (§ € Li). By using Theorem 1.2, we see that f/(z) may
be uniquely expressed as

fa(z Lk / wa(€ €S, (2.3)
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Because f(z) is a regular solution of equation (2.1), similarly to Theorem
1.3 in Chapter II, the function in the complex Clifford analysis can be
written as

fAZl - 2_: mA mAz

- (2.4)
!/ _ Pk 1 "

Ta = X O,
where denote by f:n—Azm( 7/7/1727”) the function (f—).,., when the quasi-
permutation mA is taken the first (second) suffix; 6= (62—) is the sign
of corresponding quasi-permutations of first (second) suffix.

Next, we introduce the operators T, T (see [77]):
/fA 517227“ zpk)do’

&1

e - ; | fA@;;%g-v ad i,
- - S1
G

where 1 < k < 4, and integral variable &; taken over the section of
R, : G, = RN {527: 22, &pp = Zpp by 2 = (2150, 2p,) € Ry, dog, s
the area element of Gy. By [77], we see that from the first expression of
(2.4), the following equalities hold:

Py
FA=T1 Y oafia 4+ Qh(2), 0:,Qh(2) =
m=2

Let R} = Z 5’ f’ , then we have

fX(Z) =T\ Ry + Qa(2). (2.5)
Moreover applying (2.3), we get

1 Pk , . .
Z b, = V(L’“)L{ gfmm(z’@dm@m(f)f- (2.6)

Thus R’} can be found from (2.6).

Substituting (2.5) into the second expression of (2.4), we have

fae = 25” [T\ R, (2) + Qg (2)]

mAzm

_ S TR (o) + z: (2);

=2 mAz
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the above formula can be expressed as

fho = Z Qi (2). (2.7)

Noting that f(z) is a solution of equation (2.1), we see that f/4(z) satisfies
Npfi(z) =0, 2 € Ry, 1 <k < 4. (2.8)

Substituting (2.5) into (2.8), the equality
Ap(T1RA(2) + Q4(2)) =0 (2.9)

is derived. Applying Theorem 1.2, from (2.9) and (2.6), we can find
TR\ (z) + Q4 (2) and Rj(z), thus T1R/j(z) can also be obtained. In
addition, from (2.9) we can find the general solution of Q") (z) satisfying
0:,@Q") = 0. In brief, the solution of Problem Dy, for equation (2.1) in
four classical domains includes the expression

/ n
2) = falz)ea + ) FA(2)e, (2.10)
A A
in which f/(2), fi(z) are given by (2.3), (2.5), (2.6), and Q’}(z) in (2.5),
given by (2.7) and (2.9), is an analytic function with respect to z; [77].

Inversely, we verify that the function given by (2.3), (2.5), (2.6), (2.7),
(2.9), (2.10) and

9, QU(2) =0,z € Ry, 1 <k <4 (2.11)
is just a solution of Problem Dy. In fact, by (2.5),(2.6),(2.11), we have

fie = (TlR”(ZHQ”(Z))zlZ(TlRZx(Z))n

Z

and by (2.5), (2.7), we can derive

fazey = Hi(2)+ Z O x (2)

mAz

_ PEé;:TA<TlRi’TAZm(z)+ ()

mAzm

5 (TR + Qi)

m=2

By " "
- mX::Z 5mA

Zm

mAzm
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In addition, from (2.4) we know that f(z) = Y fi(2)ey + X" fA(2)es
A A

is regular in R;. Because f(l)‘L = Jif(&) = X' i (€)€)y, and by using
k A

Theorem 1.2, we conclude that (2.3) is the expression of solutions of
boundary value problems for Ay f/(z) = 0(z € Rg, 1 < k < 4). Hence

FA() = Pa(©) (€ € Li), Defi(2) = 0, amd [O| = Ty (€)e)y. Fi-

A
nally by (2.9) and (2.5), we have Ay f{(z) = Ak(TlR”( )+ Q% (2)) = 0.
Consequently, for every arbitrary index A, Arfa(z) = 0(z € Ry), we

can derive A Y fa(z)ea = Y (Axfa(z))ea = 0. Thus the function
A A
f(2) = X fa(z)ea satisfies equation (2.1). This shows that f(z) is a
A

solution of Problem Dy, in four classical domains Ry (1 < k < 4) for
equation (2.1). Therefore, we have the following theorem.

Theorem 2.1 If ¢/4(€) on characteristic manifolds Ly, (1 < k < 4) is
continuous, then Problem Dy of Dirichlet type in four classical domains
for equation (2.1) is solvable, and its solution can be expressed in the
form

2= Fa)eh + 3 Fh(2)eh
A A
fi(z) = V(lLk) / OO FA) =TuRA(:) + Q4 (o)

where

| Hi(2,6)P?

Hk('z?Z) R

P(z,8) =

)0 ()8,

when w € Ry is fized, Hp(z,w) in Ry is an analytic function

with respect to z satisfying Hi(z,w) = Hi(w,z)(1 < k < 4),
Q'\(2) is an analytic function about Z1 satisfying f, = Hj(z) +

Py _
mZ::g o ;/rTAzm (2), k(TR (2)+Q%(2)) = 0(2 € Ry), and 6", (")

is the sign of quasi-permutations, when mA is taken as the first (second)
suffiz; the operator T is stated as before, and can be found in [77].

In order to further investigate the uniqueness of the solution, we first
consider the section domain of Rj. Denote by Rf the domain on the z1-
plane in Ry which is cut by the plane S : (21,22 = a2, 23 = as, ..., zp, =
ap, ), and L{ by the boundary of R. Set b, = (b1,a2,as,...,ap, ), and
let b, € R}. From Section 1, we know that the four classical domains
Ry(1 < k < 4) are all circular domains, so R is also the circular domain
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on the z;-plane. For a given complex constant d’j, € C, let Z "(&)ey

on Ly and the real value function ¢/4(§,) on L{ be contlnuous respec-

tively, where &, = (£1,a2,a3,...,ap,) € LE (1 < k < 4). In the following,

we find a regular function f(z) = > f4(2)ey + X" fi(2)e's (2 € Ry),
A A

such that it is continuous in Ry, and satisfies equation (2.1) and the
pseudo-modified boundary conditions:

Jiflp, = Nf§) = %3'@21(5)6217 ¢ € Ly,
Refilpe = ¥al&a) + 14(8a), & € L,
f ( ) Aa?

in which ') (&) = Py, (€« € L}) is a real constant to be determined
appropriately, and Re f is the real part of f’{. The above pseudo-
modified problem in four classical domains will be called Problem D}
about equation (2.1), and denoted by Problem Dj, for short.

Theorem 2.2 Let a complex constant d’y, € C, and Y.'¢'4(€)e/y on
A

Ly, and the real-valued function ¢y (&) on L (1 < k < 4) be continuous
respectively. Then Problem Dy, has a unique solution, which can be given
by (2.10), (2.3), (2.5), (2.6), (2.11), (2.7), (2.9) and

Aa

ReQ4(§a) = —Re[T1 R} (&)] + V4 (&a) + ha(Ca), &a € L, (2.12)
4(ba) = =T1 R} (ba) + dg- (2.13)

Proof On the basis of the proof of Theorem 2.1, it is sufficient to
give the following supplement to the proof of Theorem 2.1. Firstly, we
find the integral expression of the solution. Let f(z) be the solution of
Problem Dj. By (2.5) and the boundary condition, we have

Re[T1 R (€a) + Q4 (&)] = Re[f4(&)] = ¥a(éa) + Ia(&a), & € Li,
TR (ba) + Q%4 (ba) = f4(ba) = 4.
Using (2.11), we get 9:Q4(2) = 0, so Q"}(z,) on R{ satisfies
02,Q%(20) =0, 24 € R, 1 <k <4,
ReQ (&) = Re@4(éa) (2.14)
= —Re[T1R} (&a)] + ¥4(&) + Wi (&), & € L,
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Q) (ba) = ~T1R(ba) + d,- (2.15)

By the existence and uniqueness of the solution of the modified Dirich-
let problem for analytic functions with one complex variable [80]7),
and from (2.14),(2.15), we can find Q" (2,) (za € Ry}); moreover by the
arbitrariness of a, we immediately obtain Q"(2)(z € Rj), and then
Q"4 (2) (# € R, 1 < k < 4) is found. In addition by (2.14) and (2.15),
it is easy to get (2.12), (2.13). In brief, if f(z) is a solution of Problem
Dy, then we have the expressions (2.10), (2.3), (2.5), (2.6), (2.7), (2.9),
(2.11), (2.12), and (2.13).

Secondly, we verify that the function f(z) determined by (2.10),(2.3),
(2.5),(2.6),(2.7),(2.9),(2.11),(2.12) and (2.13) is a solution of Problem
D;. In fact, by using (2.5) and (2.12), we have

Re f4]p; = (Re[TuRA + Q4TH , = Re[TLRA(E)

+Re[Q4(8a)] = V¥4 (&) + h;,l(ga)v €a € L,
Moreover by (2.5) and (2.13), we get
fA(ba) = T1 R} (ba) + Q4(ba) = dy,-
Hence the above function f(z) is just a solution of Problem Dj.

Finally we prove the uniqueness of solutions of Problem Dj (1 <

kE < 4). Let fi(z ) (i = 1,2) be two solutions of Problem Dj. Denoting

F(z) = fi(z) — Fa(z), it is easy to see that F(z) is a solution of the

corresponding homogeneous problem (Problem Dj), and the solution
is regular in Ry, and satisfies

NF|, = ZLPA ZW €)ey =0, £€ Ly.

For convenience, in the following we still denote f(z) by F(z), i.e
F(2) =Y f4(2)e's+3" f4(2)e’y. Noting that F(z) is a solution of Prob-
A A

lem Dy, it is clear that for every arbitrary index A, every f/|r, satisfies
ANpfi(z) = 0(z € Ry). From JiF|p, = Y f4(2)e4]r, = 0, it follows
A

that f/|z, = 0. By using Theorem 1.2, we get f/(z) =0(z € Ry). Sim-
ilarly we have J1F( ) =0(z € Ry), and then fI—=0(z € Ri). By the
definition of R’j, we immediately obtain R’} =0 (z € Ry). Consequently,

fa(z)=T1R\+ Q"% = Q%4(2), z € Ry. (2.16)
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Moreover, since F'(z) is a solution of Problem Dj,, by (2.11), (2.14),
(2.15), we have

851 Zl(z) = 821622{4(2) =0, z € Ry,
ReQIA(ga) = hz&(ga)u g e Laa
Q"4 (by) =0, b, € RE.

In accordance with the existence and uniqueness of solutions for the
modified Dirichlet problem for analytic functions [80]7), we see that
Q") (z) =0, (z € R{). Noting the arbitrariness of a, we have Q")(z) =
0(z € Ry), and then Q4 (2) =0(z € Ry). Using (2.16), we get f/1(z)
0(z € Ry), hence JoF(z) = 0(z € Ry), and F(z) = 0(z € Ry), this
shows that fi(z) = f2(2) (2 € Ry). Therefore Problem Dj has at most
one solution. The proof of Theorem 2.2 is finished.

3 A Pseudo-Modified Boundary Value Problem of Second
Order Real Partial Differential Equations for a
Hyperball in Real Clifford Analysis

In this section, we discuss the first kind of function f(z) : R" —
A, (R) in Clifford analysis, which was introduced in Section 2, Chapter
1 (see [29]3)).

In Section 1, Chapter 2, we not only rewrite the members Za: A€A
in A as ZerA = ZIBeB, where 4 € R, Ig € C, B = {oq,ag,

ah}C{134 n}(1§a1<a2<---<ah§n) but also use
the “quasi- permutatlon” to give the sufficient and necessary condition
of the regular function f(z):

/

n
a7 _ 1 &
812]3 - Z 5mB mBxy,

3 / 11
812IB Z 07— mB mBzm
m=3

where the operator

Oi_1i = ej_ 0 + €; 8'(9 = L—e 9 2<¢<n.
i—1i — Gi— 18.’% | zaxia i—1i — Z_lc%:i_l Z@xl
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Now we consider the partial differential equation of second order

(D12 + 012)[(1 — 2a)? (D12 + Or2) f ()]

n

— > (Bic1i — 0im14)[(1 — 22")?>7™(Di—14 — Di14) f(x)] = 0, z € R™,

=2
(3.2)

T is represented by the transposition of x = (1, 2, ..., T,,).

where 2/ =z

Denote by D : z2’ < 1 the unit ball, and L : z2’ = 1 the unit sphere;
its surface area is w, = ZW%/F(%). Suppose that %"u’é({)ej’g on L is

continuous. Then we shall find a regular function f(z) = f) + ) =
%’Iéejg + %" e/, which is continuous in D and f®) (in Section 3,

Chapter 1, we call it the second part of f) in D satisfies (3.2) and

O] = Rf(©) =Y "uh€)hon L: gt = 1.

B

The above boundary value problem in the unit ball will be called Prob-
lem A for equation (3.2).

In order to give the integral expression of the solution of Problem A,
let
I(2) =Y Tpely + 3 Thely (3.3)
B B
be the solution of the above problem. Then we can derive

(@12 +0h2) [(1 = 2)> " D1z + 012) P ()]

—Zn:@;u — 0i-11) {(1 — 22" (D14 — Oi—140) fP (ﬂf)] =0,
i=2

that is

012 ;312 (1- xm/)Q_ngm ;- O12 @ (x)]

" (—€i)(Di—1i — Oi—14)

+§ 5

. [(1 — ol MO 2 01 g (:c)] ~0
hence

0 oN2-n 0 (2) :| [ o \2-n 0 (2) ] —

o, [(1 xa') 8%]‘“ () +Z oz, (1 —ax") 8aclf ()| =0,
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0
1
o2, [( xz’)
Thus we have

nl<s 9 No—
1—ax

namely

n
D Z" 5B)
=1

0
" Ih) )y <.

=1
and then
4 2 0L}
(1 —zz') Z [1—3; ")? aszo. (3.4)

1

Using the above results, we see that I’ is a solution of the Dirichlet prob-
lem for equation (3.4), and satisfies I%(§) = uw/5(€) (€ € L). Applying
the result of Luogeng Hua [26]2), we get

" wn / / (1 —12;;1 o )n_l u(6)E, (3.5)

5’ 1
1— a2 n-l
where P(z,§) = <> is the Poisson kernel.
1—2x¢ + za/
Let
z12 = 11 + x2e2, 12 = &1 + S22,
1, 0 0 1.0 0
0, = —(— —eg—), &5, = —(— ).
12 2(({9.%1 628332)7 12 2(8901 +€23$2)
From the above formula, we can conclude di2 = 20,,,, 012 = 205,
moreover we introduce the operators T2, T12 as follows:
Tiofp(a / / fB(£17£27$371'4y~-'7$n)d§1d52’
212 — Q12
E4e2<l—aZ——a?
TleB / / fB(gl;éan?nivlla"'awn)d§1d§27
Z12 — G192
E24&2<1—x3——a?

in which za’ < 1. By the results in [77] and the second formula of (3.1),
we get

7T12 Z 5mB mBz + Q/B(‘T)v (36)
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herein Q’z(x) satisfies

65126238(33) =0. (3.7)
Since (2€')z,, = &m, (x2')s,, = 22m, we see that

2(n — 1)(1 — 22")" 22z, (€ — 1) + & (1 — 22')]
P, = .
" (1 —2x&" + za’ )"

Consequently, by (3.5) we obtain

Rp()
_ (n=1)(A—zz")" > aca;’)” 2 2xm (x€ —1)+&m (1—xa’) sy
- / / (1- 2x§)’+xx) ]5// u’ B(§)€7
55’ 1
(3.8)
and then
Ip(x) = TiaRp(x) + Qp(2). (3.9)
Putting (3.9) into the first formula of (3.1), we can conclude
O1lf(x) = 5;79[7121%%3% (z) + Q?TBM (z)]. (3.10)

k=3

By (3.8), (3 5), we know that Ri— and I can be obtained by the known
function u/;, hence in (3.10), only Q;C—B(SL') is unknown. So it suffices to
find Qz(z ) from (3.10), (3.7).

If n is an even integer, then by a substitution analogous to zio =
x1+x2e2, we can write Q’Kfok () in (3.10) as a complex overdetermined
system of first order about Q’5; for simplicity, we can assume that (3.10)
is the complex form. Hence by the result of W. Tutschke [75], for the
overdetermined systems (3.10) and (3.7) with appropriate conditions, is
called Condition C, we can find Q3. Because of page limitations, we
do not recount this in detail. Moreover we can obtain I by (3.9), and
then the solution of Problem A:

ZIBBB+Z // /l

is found. Thus we have the following theorem.

Theorem 3.1. Let Z” 'Le'l on L be continuous and n be an even

integer. Then if Condz’tz’on C' is satisfied, Problem A is solvable, and its
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solution can be expressed as
=Y Tp(@)ep + 3 The)e,
B B

)= [ [ P
—

£¢'=1
Ip(2) = TizRp(z) + Qp(2),

1— a2’ n-l
where P(l’,g) = (1_2%/5%> and

=5 / 3 szma;gB O,
fé’ 1

in which Q' is a generalized analytic function about z12 and satisfies

O121%5( Z 0 T12R;?Bxk (2) + @15, @),

where d—= is the sign of quasi-permutation mB.

In order to discuss the uniqueness of the solution of Problem A,

we first consider the sectional domain of D. Denote by G, : z,2, =

z3 + 23 + Z a2, < 1 the domain in D and on the zjzo-plane, which

is cut by the plane S i (z1,x9,23 = ag,...,x, = an)(n > 3), where
xq = (1,T2,a3,a4,...,a,), and by Ty : £,£, = 1 the boundary of G,
with center at O, = (0,0, a3, a4, ..., a,). Now we give a fixed d, € C,

and assume that Z" '5(€)ey on L and ¢’5(&,) on T', are continuous

respectively. In the following we seek a regular function
ZIB€B+Z Ites (x € D),

such that it is continuous in D, and satisfies equation (3.2) and the
pseudo-modified boundary conditions

Toflr = Jf(€) =3 "uh(©)eh, ¢ €L,

B
ReI/B‘Fa - wlB(éa) + h/B(€G)7 fa € Fa: (311)

I/B(OCL) = dlBa’
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where h'z(&,) = hlg, (&q € Ty) is an undetermined real constant. The
above pseudo-modified boundary value problem in the unit ball is de-
noted by Problem A* about equation (3.2).

In 2003 Huang Min, Huang Sha have proved the existence and
uniqueness of Problem A* (see Advances in Natural Science, (2003)
13(4), (Chinese)).

Theorem 3.2  Under the same conditions as in Theorem 3.1, if ¢'5(&,)
on T is continuous, and dg, € C is given, then Problem A* has a unique
solution, which can be obtained by (3.3),(3.5),(3.9),(3.8),(5.10) and

RGQ/B(&L) = _Re[T12R/B(§a)] + (PlB(ga) + hlB(&a% fa € Fav (3'12)
Q'5(04) = —T12R5(0,) + dgy, 05,,Q5(x) =0, z € D. (3.13)
(see [29]3)).

Proof On the basis of the proof of Theorem 3.1, it is evident that we
only need give the following supplement to the proof of Theorem 3.1.

Firstly, we need to find the integral expression of the solution. Let
f(2) be a solution of problem A*. By (3.9) and the pseudo-modified
boundary condition (3.11), we get

Re[T12Rp(§a) + Qp(8a)] = Re[lp(8a)] = ©p(€a) + (&), Sa € Ta,
TIQR/B(OOL) + Qj}}(Oa) = I/B(OCL) = d,Ba’

and 0z,,Qz(z) = 0(z € D), hence Q’z(z,) on G, satisfies (3.12),(3.13),
and Q’z(x,) is an analytic function about z12. Using the existence and
uniqueness of the solution of the pseudo-modified boundary value prob-
lem for analytic functions [80]7), we can obtain an analytic function
Q's(z4) (x4 € Gy) from (3.12) and (3.13). Due to the arbitrariness of a,
we can get Qz(z) (x € D). In other words, if f(z) is a solution of Prob-
lem A*, then from Theorem 3.1 we can obtain the solutions of Problem
A*, which can be expressed by (3.3), (3.5), (3.9), (3.8), (3.10), (3.12)
and (3.13).

Secondly, we prove that the function f(x) determined by (3.3), (3.5),
(3.9), (3.8), (3.10), (3.12) and (3.13) is a solution of Problem A*. In
fact, by (3.9) and (3.12) we have Relg|r, = {Re[T12(R%) + Q5]}r, =
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Re[T12 R}y (€0)] + RelQlp(€0)] = @p(Ea) + Wy(€a),Ea € T Moreover by
(3.9) and (3.13), we get I5(04) = T12RR(04) + Q'5(04) = d’,. Hence,
the above function f(z) is just the solution of the pseudo-modified prob-
lem (Problem A*).

Finally, we prove that the solution of Problem A* is unique. Let
fi(x), fa(x) be two solutions of Problem A*. It is clear that F(z) =
fi(x) — fa(z) is a solution of the corresponding homogenous problem
(Problem AO) which is regular in D and satisfies F®|;, = JoF(£) =

Z//u// (g) Z// " (g) 0
B

For convenience, in the following, we still adopt the notation about
f(z) as in the proof of Theorem 3.1. For instance, we still denote

) =3 Ipey + Y el
B B

and so on. Because F(x) is a solution of Problem A{ satisfying (3.2),

consequently, for every B, I}, satisfies equation (3.2). That is to say,

every I, in D is harmonic. Then by F®)|, = ST%et|; = 0, the
B

equality I%|r, = 0 is derived. By the uniqueness of the solution of the
Dirichlet problem for harmonic functions about (3.2) [26]2), we get I}, =

0 and I~ = 0 in D. By using (3.5), (3.8), it is easy to see that
Rig(z) = 3 23 07— TBy. » and Rig(z) = 0 in D. In addition by (3.9),
we get

Iy = T Rip(x) + Qp(x) = Qp(@). (3.14)

Because F'(x) is the solution of the corresponding homogenous problem
(Problem Aj), from (3.12) and (3.13), it follows that

8512Q/3(xa) = 07 Tq € Ga7
ReQ5(&a) = Mp(&a), &a € Ta,
Q'5(04) =0, Oy €T,,.

At last by the existence and the uniqueness of the solution to the mod-
ified Dirichlet problem for analytic functions [80]7), we know Q' (z,) =
0(zq € Gg). Noting the arbitrariness of a, we have Qz(x) = 0(x € D).
Hence by (3.14), we get Iz(z) = 0(xz € D). So J1F = 0(z € D), and
F(z)=0(x € D), ie. fi(z) = fa(x) (r € D). This completes the proof.

In this chapter, we used quasi-permutation as a tool to construct
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the close connection between harmonic analysis in classical domains for
several complex variables functions and Clifford analysis, in particular
the boundary value problems, which symbolically establishes a bridge
between complex analysis and Clifford analysis.



CHAPTER V

INTEGRALS DEPENDENT ON
PARAMETERS AND SINGULAR INTEGRAL
EQUATIONS IN REAL CLIFFORD ANALYSIS

In the above chapters, we have discussed two kinds of functions in
real and complex analysis: f : R" — A,(R) and f : C" — A,(C).
In the first section of this chapter, we shall introduce the third kind of
function f : RP — A,(C) and Cauchy’s estimates of three integrals de-
pendent on parameters [29]11). In the second section, firstly we give the
definition of two kinds of singular integrals with Cauchy’s kernel in real
Clifford analysis. Moreover we find some singular integrals which can be
exchanged the integral order. Finally we prove three kinds of Poincaré-
Bertrand transformation formulas of singular integrals with Cauchy’s
kernel [29]12). On the basis of the transformation formulas as stated
in the first section, in the third section we shall prove the composition
formula and the inverse formula of singular integrals with Cauchy’s ker-
nel [29]13). In the fourth section we introduce the Fredholm theory of
a kind of singular integral equations in real Clifford analysis by using
transformation formulas, and discuss the regularization operator [29]9).
In the last section according to the method of unite resolution, we define
generalized integrals in the sense of M. Spivak [73] on an open manifold
for unbounded functions in real Clifford analysis, and discuss the solv-
ability and series expression of solutions for second kinds of generalized
integral equations with exchangeable factors, and give the error estimate
of the approximate calculation [67].

1 Cauchy’s Estimates of Integrals with One Parameter in
Real Clifford Analysis

Since 1965, many scholars have studied functions, integrals, and
boundary value problems in real and complex Clifford analysis and
other related problems. R. Delanghe in [12], F. Brackx et al in [6] and
other scholars investigated the function f : R" — A, (R) (the function
which appeared early is called the first kind function). Zhengyuan Xu
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in [86] and Sha Huang in [29]3) discussed some boundary value prob-
lems in real Clifford analysis. F. Sommon in [72]2), J. Ryan in [68]2),
and Sha Huang and Yuying Qiao in [32]2) studied theoretic proper-
ties for functions f : C" — A,(C) (which we call the second kind
functions) and corresponding boundary value problems for canonical
domains in complex Clifford analysis. Kimiro Somo in [36] discussed
functions f : RP — A,(C) (which we call the third kind functions)
and obtained Cauchy’s estimates for monogenic and harmonic functions
and their partial derivatives, which are the generalizations of Sommon’s
result and Aranissiann’s result. In this section we discuss Cauchy’s es-
timate for the partial derivatives of the above three integrals dependent
on parameters, which are developments of the results in [36], [2], [72]3).

1.1 Cauchy’s estimates of Cauchy’s Kernel

Lemma 1.1([36]) Let m,n € N, m™ =T(m—n+1)/T(m+1), Ny =
NU{0}, a, B, ..., 8" € N* and a = (a1, ...,qm), ¥ = (71, -, 7n) € R,
7| =+ 4, ol = arl...aw,!, where N is the set of natural numbers.
Then

al 1 . .
> g el = e, (1.1)
Bl fr=a -

Proof Differentiate the equality
{14 Fzn)t} {14 -+ 2t} = {21+ -+ 2t}
for |a| times with respect to t. Let t = (w1 + -+ + 2,,) "1, then expand

it and form coefficients of . Thus we obtain the identity (1.1).

Lemma 1.2([36]) Ifp—1 € N,n€ Z, a € N}, x € RP, where Z is
the set of positive integrals, then

() =

Proof When oo =0 or n =0, it is clear that (1.2) holds; therefore, in
what follows we use the inductive method on « and show (1.2) for any
n # 0. Assume that (1.2) holds for any n € Z, and 3 € N{ such that
0 < 3 < a. Note that z* belongs to RP for any k € Z; then if n > 0, by

< \nﬂa\)\ |zl (1.2)
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Corollary 1.4, Chapter 1, for any j =1,...,p we get
d\* ol _
() )= () B e
B o\
k n—k—1
<5 % e =G

k=0 B+y=a
where 3, v € N§. From the hypothesis it follows that
8 (6%
‘((%) 8.%']
By Lemma 1.1, we obtain

(3) 5
ox 8%

If n < 0, we set m = —n, then by Corollary 1.4, Chapter 1, for any
j=1,...,p we have

I

Z Z Wk B (n — k — 1)(|“/|)|x’n—\a|—1‘

k=0 B+y=a

< Z YUal)|gn=lal=t — plal+1)|gn=lal=1 (1 3)

IN

IN
(]

Z a! < o )ﬁ 1
k=0 B+vy+d+e=a ﬁ' '7' 5' 5! 61’ IEk

A 3G ) =
oxr) z||\0zx) x| \Ox) zxmk-1]’

where 3, 7, §, ¢ € N}. From the hypothesis it follows that

<‘9)a 9 1
ox Oxj x™
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m-1 U (—k) (18D (—1) (WD (1)) (— (2
> al (=R )ID (1)1 (4 k4 )
Blyl5le! (—1)lel[z[mHal+T

k=0 B+v+d+e=

By Lemma 1.1 we obtain

(a)a o 1
oxr/) Oxjz™
" (=m — 1)eD] (la+1)| . in—lal—1
< 5 Mmoot g1
o

Thus, by (1.3) and (1.4), the assertion is true for any n # 0 and any
a € Ng.

(1.4)

Theorem 1.3 Suppose that m, n € Ng,p—1 € N, a € N}, and x €
RP\{0}. Then
0 1 1 |(=m — n)(eD)]
— ) | = < . 1.5
‘(61.) (xm $|n>‘ — |x‘m+\a|+n ( )

Proof We prove this theorem by the inductive method on «. When
a =0, (1.5) is clearly true. Assume that (1.5) is true for n € Ny, m €
Ny, and 8 € Nf such that 0 < 8 < o; for any j = 1,...,p and any
v E Né’ such that 0 <~ < «, we obtain

(&) o] |Ge) 7
dx) Ozl or) |x|nt?
_‘(8)771[6]95]1 <8>'y %(ejf—i-xéj)
- \ozx/) |z|aw Ox |z|naT

() L (2]
2| \ oz x|z|? Ox f\:c|”ej

() =

="\ oz xlz|™ |’

By the hypothesis, we have

(2) o1
6.’E . n

n|(—n — 1)(|‘/|)‘
|ap|I7I+n+1
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Furthermore, from the definition of sign (m)™ we get

MﬂwMHw:ﬂﬂ+1+n—U!

- 1!
(Iv] 4+ n)! oy (1.6)
Yl +n)
:m—;rf:nMﬂw4www
Slmllarly we have
‘(—m)(lvlﬂ)‘ = (Iv[+m) ‘(—m)(lvl)‘ : (1.7)
—m) D
_ ] = Em)Y
‘( m) ’ - (f1)|7| ) (1.8)
and
o\ 9 1 |(—n) (WD)
or) oz, < <y<a ‘
‘<8$) Oxj x| = |z|hl+ntl 7 0<sy=<a (1.9)

Again from Corollary 1.4, Chapter I, it follows for any j = 1,...,p, the
following inequality holds:

0
_ m—1 (3>ﬁ ii 1 1

T kol \O7 2% (g2 zm=hT
SR (f’f 1
= ey T A R ANV

X

)

aNT 1l oNT 1]l o\ 1
@) 3|@) 3|(@) ==

where 3° € N§, i =1,...,4. By means of Lemmas 1.1, 1.2 and (1.6), we




130 Chapter V

can obtain

(‘9)6 9 1
ox/) Ox;x™

m—1 B! (_k)(\ﬁll)(_1)(|,82\)<_1)(|63|)(_m+k+1)(\ﬁ4|)

: ,;)Bﬂ” A (— 1) Bl P (1.10)
< | (=m = 1)U m|(—m = 1)U8)][(—m) (el
> ’x‘m-H/@H-l - ‘1‘|m+|ﬁ|+1 = ‘x’m+\a|+1
k=0
where B= > . From (1.9), (1.10), Lemma 1.2 and hypothesis
B +pi=p

of induction, we get

oy (o)1 1o

Ox Oxja™ ) |z| o™ \ Oxj |x|"

N |(CANKIRNIIRARE
Biy! Ox) Oxja™||\dzx/) |x|"

B+y=a
(3)& 2 1
0x) Oxj|z|®

IN

ezy
ox) xm

ol [(=m) B (—p) (D] 4 | (=m) (8D (=) (1+1))
2 et |

ol (=m)IBHD (—p) (D 4 (=) (18D (—p)(I+D)
Z; Bly! (_1)|a\+1|x‘m+|a|+n+1
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ot (=m)I30(n) D (18] + m + 3] +n)
< 2 G (1)1l [t BT

BH+y=a

(—m —n)D(ja] +m +n)
- (—1)led|g|mtntlal+l

(=m — n)al+D) ((=m — n)(lal+D)|

—(=1)lalH|gmAntlal+l g mtntlal+l

Theorem 1.3 is an improvement of the corresponding results in [36],

[72)3).

1.2 Cauchy’s estimates of three integrals dependent on a pa-
rameter in Clifford analysis

We discuss the third kind of function f : RP — A,(C). Let B, =
{x |xr € RP, |z| <7}, OB, = {z |z € RP, |x| = r}. The set C'-function
in 4B, with values in A,(C) is denoted by C1(0B,, A,(C)). If f, u €
CY(0By, A,(C)), we discuss the following three integrals depending on
one parameter

1 1
Fonlz) = —/ do ,
(@) wp aBTf(m Yy —a)ymly —
1 uly) r2 — Jaf?
(I)n = y Un = 7<I>n y
@)= | Ty e Unle) = (@)

where B,, = {z € RP, |z| <7 <7}, x € By, = B;, UOB,,.

Theorem 1.4 Letp—1,¢q—1 € N withp < g, m,n € No, v €
N{, B, C RP, and f(y) € C*(0B,, A,(C)). Then

’(a)aan(O)‘ < !(—m——n)('a‘)\M

o - |,Y|m+|a|+n—p+l ™

where M, = sup |f(y)|.
yEI B
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Proof When z € B,,, we obtain

(2) s
= (jp on. f(y)doy (i)a (y — m)’i\y — x|

_ ARG
T wp aBrf(wday (811) (y — z)™y — x|

From Corollary 1.4, Chapter 1 and Lemma 1.1, we can find

(4)" )

1

= L[ e
'p JOB;

I\ (—1)le
<8y> Y™y
(—m — n)(lal)‘

1 \
M,,w—p 0B, o] |y|metnetlal

IA

B |(—m —n)leD] 1 1
o r |fy|m+n+\a|*P+1 QTP /637. ‘ Uy‘ryp—l
(=m — m)oD|

|y al L

Theorem 1.4 is the generalization of Theorem 2 in [36].

Corollary 1.5 Letp—1,q—1 € N withp < q,« € Nf, and f be
right regular in a neighborhood of B, C RP with values in Ay (C). Then

O\ 1ion| < o DI
(5) 10| < 20—,
where M, = sup |f(y)]|.

ly|=r

Proof By Theorem 1.4 and Cauchy’s integral formula [36], we have

1 7T
T) = — doy,———
f( ) wp 8Brf(y) y‘y_x|p
1 1
= — do ,
o Jom, OV Ty e

which is similar to the Cauchy’s integral formula in Section 2, Chapter
1, hence the result in Corollary 1.5 is valid.
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Theorem 1.6 Suppose thatp—1,q—1€ N withp < g, n € Ny, a €
NE, andu € C' (0B,, A,(C)), B, C RP. Then

‘<a>a¢n(0)’ < =)@,

ox = |y|ntlal-pt1

where N, = sup |u(y)|.
y€OB,

Proof By Theorem 1.4, we immediately get the result in Theorem 1.6.

Theorem 1.7 Under the conditions as in Theorem 1.6, we have

d\“ |(—n + 1)) ||| (—n + 1)Ul
< < :
‘(390) Un(o)‘ = |y|nHlel—p Ny

Proof Since |y —z|? = (y — z)(y — 7), from the kernel function, when
ly| > |z|, we can find

1 1
U,(z) = — U ds
@) = 57 Jos, "WV oy a2 S
1 T
+— u ds,.
wpr Jom, (y)@—f)\y—ﬂ”*2 Y

Moreover we have

o\ 1 o\ 1
<9$) U"(m)_@ aBru(y)y (6:1:) (y—w)ly—w\”‘QdSy

1 o\“ T
—_ — das,,.
*wraa“”<&) Gy — a2

Therefore,
9\ 1 5\ (~1)a)
a n e -~ 7d
(0x> Un(o) e BBTU(y)y <(9x) S S,
p 1 ( o )Q—/\j (_1>|a|71
* Wy T wy)a; 5= —————¢€;dSy,



134 Chapter V

where A\j = (dj,,...,0;,) € N§, j =1,...,p. On the basis of Corollary 1.4,
Chapter 1 and Theorem 1.3, we can find

(&) v

1 |(—n + 1)(eD)
= @ 98, [u(y)| {7'“'*”1

|(—n + 1)(el=1)

p
+ ‘ Z Qj ,y|oc\+n—2 }dSy

(=4 1) +al|(=ntD)(oI=D] |
fy|f"‘+n_17 Nrwip f(’)BT 7’1’*1 dSy

IN

=+ D] + Jal| (= + 1]
- fy|0“+"—p T

Theorem 1.7 is an improvement of the corresponding results in [36],
[72]3).

Corollary 1.8 Letp—1,q—1€ N withp < q, a« € NY, and u € C!
(0B, A,(C)) be harmonic in a neighborhood of B, C RP. Then

o _ (la]) _ (Jo]-1)
‘(3) Un(O)’ < |(=p+ D' +af(-p+1) N..
Ox ||l

Proof By Poisson’s integral formula of harmonic functions (see [36])

U(SC) — 7‘2 — |$|2 é u(y) ds

WpT B, |y —x[P Y

and Theorem 1.7, we immediately get the result in Corollary 1.8.

2 Three Kinds of Poincaré-Bertrand Transformation
Formulas of Singular Integrals with a Cauchy’s Kernel
in Real Clifford Analysis

Tongde Zhong and Sheng Gong have studied the Poincaré-Bertrand
(P-B) transformation formulas and singular integrals in several complex
variables (see [89], [88]2), [88]3), [88]4), [20]). In 1992, M. R. Kand-
mamov gave a new proof of P-B transformation formulas in several com-
plex variables functions (see [35]). Under the illumination of [88]2), [35],
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on the basis of the results of Section 1, Chapter 3, we shall prove three
kinds of P-B transformation formulas of singular integrals with Cauchy’s
kernel in real Clifford analysis.

2.1 Preparation

Let Q1 C R™, Qo C RF be differentiable, oriented, bounded, com-
pact manifolds, whose dimensions are m, k respectively, and 0€2; be
the boundary of €;, ¢ = 1,2. 09Q;(i = 1,2) are oriented Liapunov
surfaces, and let the orientation be coordinated with that of €2;. Let
002 = 021 x 00y. Denote by 052, the variable n = (91, n2) on 02, and
set f(n', n% &, €2) € H(0Q, B), 0 < B < 1 (see Section 1, Chapter 3 ).
For convenience, we give the signs

B =_ g = 73

A:nl—CI’B:%’
W[t — (L™ wi|n? — (2|

62 g_"’Tl b: ?_?
wm €8 = nt ™ wg|&2 — 2|k’

E=f(n', n*% &' ).

In Section 1, Chapter 3, we have defined the Cauchy principal value of
singular integrals with the Cauchy’s kernel on the character manifold,
which is called the one time singular integral. Similarly to several dimen-
sional singular integrals (see [88]3)), we must give a precise definition of
the two times singular integral as follows.

Definition 2.1 The two times singular integral is defined as

Ado,do,2 B do-C EDdo
o0, n1d0py2 ~ €1 €2

= Zdan1 l

d051 OEDdU{Q] danzﬁ
9,

09

= Zdanl / d0n2§ d051 C’EDdagz
09,1 99,2 00

[ e, { / [ [ e
89,1 8,2 |00 o0
(2.1)

Similarly to several dimensional singular integrals (see [88]3)), we also
give the definition of a two times singular integral which has to be

EDdagz)] do’nzB} .

1¢l 2¢2
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changed in integral order as follows

dosdo Ado,1CEDdo,»B
09 e o9, ' "

= do Ado,CEDdo,»Bldo
09 éhl[aQn " w Bldog:

/anlgl

= dO’gl{/
o0 o0

1¢1

do / do Ado, CEDdo,»B
51[ 09, €2 o0, nt 02 ]

[ / Ado, O / EDdo,>B))dog:},
8911 8922

2¢2

where [5, (i(09, ;) CXPTESSeS the integral over 0€;(i = 1,2) for the vari-
& in?

able £(n'), and the integrals are all in the sense of Cauchy principal
values (see Chapter I). In general, (2.1), (2.2) are not the same. For
discussing their relation, we give the Poincaré-Bertrand transformation
formulas. From Chapters I and III, it is clear that the following results
are valid:

£ 9lls < Al flisllals,

(J1 a positive constant, f,g € H(9,[3))

— 1
/ Ado, = / do,, —, ( € 0%
29,1 09,2 2

BpA=A0,=0

Y
[l

B=DB0,2=0,#1n' i=12;

S o (2.3)
(771 - Cl)anl =m, (€1 - 771)87]1 =—-m,
(0 = (20,2 =k, (& —12)0,2 = —k;

m k
/ dp' =, / dn? = 2=,
B((le) m = JB(ee) k

here B(C!, €) : [n' = (Y| < e, B(&% ¢): > = &*| < e.

Theorem 2.1 The following equalities hold:
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ihnqgagl):m/ Ado,nC =0,
oN
Rgy2 (€2, 2:/ Ddo,:B =0,
2n? (§ ¢ ) 00 n?
[ ACdo, =0, do DB =0,
090, 1 o9

where ¢, €1 € 00, (' # &', (P, €2 € 0, (7 #£ .

Proof By means of the Cauchy principal value, we have

h el =1lim M C=B
1771(C §) S 00, (B o) UB(E ) Ot 0-

Here 0 is the boundary, and the orientation of Qy, B((l,¢), B(¢,¢)
D\(B(¢te)UB(&,¢)) on the communal part is harmonious, and the
orientations of 9y, A[Q\(B(¢Y,e)UB(EY,¢))], 0B(¢C,e) , OB(£L,¢)
are the induced orientations of 1, Q1\(B(¢t,e)UB(¢h,¢)) , B(¢he)
B(€', ¢) respectively. Similarly to [36], we rewrite By as a sum of the
following three terms.

By=Ilim Zdon1€
e=0J9[Q1\(B(¢Le) | B(£,))]
+1lim Ada 1C+lim ngnlézBl‘f—BQ—f—Bg.
e=0.J0; N9B((L e e=0J0;1 (N oB(g,e)

By using the Stokes theorem (see Section 2, Chapter 1 or Theorem 9.2
in [6]) and (2.3), the limit

B; = lim A(0,.C) + (A0 do,1 =0 2.4
1E%smw&Mﬂw@ﬂ(“) (A0,1)Cldo,n (2.4)

is derived. Noting that |n! — ¢(!| = £ on OB((!,¢) and using the Stokes
theorem and formula (2.3), we get

By = — lim Ada C == hm

nt — (Ndo, C
e—0JaB(¢1,¢) 2 e—0 eMwy,, /83((1,5)(77 ) It

1

2

1 1 — _ _

=5 lim ‘é@%JWI—C)@m0%+Wﬂ—CU%ﬁCM%1
1

T2

e—0 eMwyy,

1 _
lim / mC’dan1 .
e=0 &Mwm JB(¢Le)
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When ¢ — 0, n* — ¢!, we can write C = H + O4(e), here

= &=
Ay 04l =0 = Jer— e
Thus
1 1 1 He"w, H
By = - lim mH/ dyt = L pig MHE m _H g
2 e—0 eMwy, B(¢le) 2 eao EMWymMm 2
Similarly when ¢ — 0, (¢! — E)gnz = —m, we know

By =

_QH. (2.6)

Combining (2.4), (2.5), (2.6), we get hy,n(¢',€") = 0. Moreover we can
prove

ho2 (€2, (%) = /8 . Ddo,»B =0,

and
/ ACdo, =0, o, DB = 0.
o0

17]1

Theorem 2.2 Let p(¢4, €2) € H(0RQ, B8), 0 < 3 < 1. Then

[ e )AdonC = [ DiopBi(e!, €) =0
aQ17]1 6927]2

where Cla 61 € 8917 Cl ?é 517 C27 52 € 8927 C2 ?é 52'

Proof Similarly to the proof of Theorem 2.1, it suffices to notice that
5777590(‘517 52) = 90(‘517 gz)gni =0,1=12
Theorem 2.3 The limit

lim Zdan1 = lim/ dan2§ =0
6—0 0’6(<1’T]1) 6—0 05(42771 )

is valid, in which the orientation of o5(C*, nF) = Oy N B(¢k,6), ¢k e

O, k=1,2, ., B(C*,0) is coordinated, and the orientation of OQ, is

the inductive orientation of 2.
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Proof We only prove the first formula. Letting 0 < & < 4, ag(cl, n') =
Qy,n N B¢, 6) and using (2.3), we have

lim / Zd()’nl = lim llim / Adan1]

0=0Jo5(¢ ) 0=0 [5-0J(05(¢*m*))\(o5(¢t "))

= lim llim / Adan1]
0=0 |50 (99,1 \o5(¢Ln)\(09,,1\05(C1n1))

= lim Zd0n1 — lim Zd0n1
6—0 /(99,1 \o5(¢*n')) 0-0J89,,1\0s(¢t 1)

B

=5 5=

Similarly we can prove the second formula.

2.2 Some singular integrals whose integral order can be ex-
changed

In the following, ¢(n’,¢Y) € H(0Q;,3) (i = 1,2,0 < # < 1) mean
that the function ¢ about ¢ and &° all belong to H(99Q;, 3), i = 1,2 (see
Section 3, Chapter II, [88]3)).

Theorem 2.4 Suppose that o(n', ¢') € H(0Q, B),0< < 1, ¢! €
0Q1. Then

/a Aoy /8 dog Clp(nt,€1) — (€', €V

1¢l
/89151

/6 - Ado,, /(‘9 . doaClp(E',€Y) — o(n',n")]

1€l

dog: /a L Ade Clo, €1 — o(€, €]

= da§1/ Adoi Clp(E", €Y — o0 n')];
89151 annl

O = Zd()’nl / d0'516[g0(771, 771) - QO(Cla Cl)]
aﬂlnl 0N

1¢1

= dO'sl / ZdUnlé[SO(Ulwl) - @(Cla Cl)] =0
(09151 891,,]1

Proof We only prove the third formula, because the other formulas
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can be similarly proved. Let © = Oy + 05, O’ = O + O, where

O z/ Zdanl/ doaClp(n',n') — o(¢', ¢,
00,1 09, 1\os(nt, &)

05 = / Zdo’nl / dU&lé[@(nlan:l) - ‘P(Clacl)],
691,,]1 0’5(771’51)

6:/ dggl/ Ado, Clo(n',n') — (¢, ¢H],
89151\0'6(771751) o0

. Y Vel 1 .1y 1 -1
_/ e 1‘/6017’1 AdO'WIC[SO(n 1 ) ‘P(C 7C )]7

in which the orientations of os(n', &') = 9 N B(n',d), O and
B(n',$) are all coordinate, and the orientation of 9§2; is the inductive
orientation of €;. From Section 1, Chapter III and [29]2), we know that
©p, O are integrals in the normal sense, by using the Fubini Theorem
[7], [6], [19], whose integral order can be exchanged, i.e. ©g = 6, hence
|© — ©'| < |65+ |0f|. In addition, from Section 1, Chapter IH (or see
[29]2)) we can get

/8an1

where NV is a positive constant. From Theorem 2.3, we know when
d is small enough, there exists ¢ > 0 independent of ' such that
‘fga(nl7€l) dagé’ < 2¢/N, so

alem',n') — w((l,cl)]‘ <N

©5] < % (2.7)

Next we consider ©%. By using Theorem 2.1, we can substitute
©(Ch, ¢Y) by (&L, €1) in ©F, thus ©f can be written as

0 = / dog / Ado,p Oy + Uy + U3,
as(nt, &) o, 1
in which
U =o', n') — o', ) — et nh) + et e,
Wy = o(n',€") — o', €h), U3 = o(¢'n') — o(¢!, €.
Since

Zda,ﬂé[\lﬂ +Wy+ \113]
09,1
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= lim Ado 10[\1’1 + Wy + W3,
0=0J89Q,, 1 \o5 (¢t nt)

(2.8)

where o5(¢t,nt) = 0,1 N B(¢!, ), we consider

g :/ d0'51/ Zd0n16[‘1/1 + \I’Q-I-‘lig]
os(ntgt) 09, 1 \os(¢tn")

:P1—|—P2—|-P3.

From Section 1, Chapter III or [29]2), we have |[¥;| < J. p6/2 ﬁ/2,
’77 _C ‘7 ’dO’gl‘ <

herein Jo is a positive constant, p; = [p! — €Y, po =
“2dp, |do,| < Lapy'™“dpa, L1, L are positive constants. Thus

Lypl"
—m+1 g m—2
p3 Py dps

B
P <L1L2J2/p mtlp2 om
3917,1\05((1,711)

g1 81 8
= L1 Loy / Sy p2 dpy < Jso%,
/ 00,,1\05(CL 1)
(2.9)
5
|P2| < Ja / pr "ol o2 dpy / py " Py P dpy
09, 1 \os (Cnt)
5 (2.10)
= J4/p?71dp1 p;ldPQ < J5(SB
J 09, 1\o5(C1 ")
Similarly we can get
(2.11)

| P3| < J0”,

in which J; (i = 3,4,5,6) are positive constants. From (2.8)—(2.11)

see that if § is small enough, the inequality

0] < 2 (2.12)

is derived. From (2.7), (2.12), it follows that |© — ©’| < . Due to the
arbitrariness of ¢, the equality © = ©’ is obvious

Similarly we can prove
Theorem 2.5 Let p(n?, £€2) € H(0Qs, £),0 < < 1,(? € 0Qy. Then
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252 2n
/ doy:B / [p(€%,6%) = ¢(n*,n*)| Ddog:
BQQ 2 69252
= [ doe [ I6€.€) — o(?, o) Do, T
8Q2§2 o o2
/ do,2B [o(n?,n%) — ¢(¢?,¢*)] Ddoe
dQ2 2 69252
= dog / le(n*.1%) — ¢(¢*,¢*)|Ddoe B.
02 o2

Theorem 2.6 If f(n',n? €', &%) € H(OQ, B),0 < B < 1, ¢! € 0y,
(%2 € 0%y, then the following integrals order can be exchanged for the
integral order.

Ado,pdo,2 B doa C[f(n',n* €', €%) — f(n',n*in', €%)
99

—ft € n?) + ft st )| Doz,

Zdanld@ﬂE dO’glé[f(’l?l, 172; {1, 172) — f(n:l’ 772; 7717 772)
09,

_f<7717 CZ;é-l7 C2)+]f(7717 C257717 <2)]Ed0'€2,

/ Zdan1dan2§ daglé[f(nl, n%; 771752) — f(nt, 0% 771’772)
o0,

99,
— (¢ 0% ) + £ ¢n?) | Ddoge,

Zd@ﬂ dO’nEE dU@é[f(nl, 172; 171, 772) — f((l’ 772; Cl’ 772)
99

—f", ¢t () + £(¢1 6% ¢ ()] Ddoga.

2.3 Three kinds of Poincaré-Bertrand transformation formu-
las of two times singular integrals

Theorem 2.7 Let E = f(n',n% ¢4, €2) e HOQ, B),0< B < 1,¢t e
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0, CQ € 0Qy. Then

AN Zdam dan2§ dog éEDdagz
o9, 09

= dosdo Ado,.CEDdo,»B
- ¢1dog2 o0, nt 2

dog [ AdopTf(n' €' O

doga /m (s ¢ €)Ddoy: B
Lot 21 oy

+T6f(g 7CaC aC)—AQ-

Proof Transform /i into the form

A= Ada 1d0’ 2B dO’g1C((I)1+ +(I>11)Dd0'52—D1+ -+D1q1,

09, 09

where

1 =f(n" 0% &) —fnt ' ) —fF (' € )+ (0 im0,
So=f(n', 0% &) —f (' Pt m?) —f (', i €1, )+ (', it ¢P),
S3=f(n",n*n", ) —f (' m*sntm?) = (s ¢ )+ (KL ),
Sa=f(n',n*n'n?) —fF(C P Chn?) —f (' it ¢G)—F (L i CLEP),
D5 = f(n', ¢ €Y ) — f(€, ¢35 €L ¢7),

%:f(Cl,??Q, , &%) = f(¢h % ¢ €Y,

D7 = f(&1,¢% €N ) = f(nh ¢ty ¢,

Bg = f(¢1, €% ¢1 &) — F(Chn? ¢ ),

Dy = f(n',¢* 0t ) = F(¢H ¢35 ¢ ),

P1o = f(CH 0% ¢ ) — F(CH ¢35 ¢ ¢,
11 = f((laCQ; Cla CQ)

For every D;, i = 1,...,4, we exchange their integral orders by using
Theorem 2.6 and then merge them, and for every D;, i = 5,...,10, we
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exchange their integral orders by using (2.3), Theorem 2.4, 2.5 and then
merge them. Moreover for ®11, by using (2.3) we obtain
N = / ng1dU£2 Zd0n16(@1 —+ -+ @4)Dd0n2§
09 09,
1
4

+ dO'El / ZdO’nlC((I){; + &7 + D)
00, 09,1

1

+i . dO’gQ /89 (CI)(; + &g + ‘I’lo)ﬁdUnzB
282 27]2

1 1 2, 1 2
+Ef(<. aC 7C 7C )

= 20 dO'EldUg /897, Zdo—nlé [f(n17772; 61752) - f(nla 42; 517 (2)

—F(S ) + 1 6% ¢ ¢ Doy B
1 — ~
1 Joone, dog /dQ Ado C | F(n', % €8, = F(¢H B¢ )

g [ doe [ (R L) — 1 ¢ ¢ ) Doy B

4 JoQu,, o2
1 1 42, 1 2
T ISTAN )
Finally, applying Theorem 2.1 we can get

N = d0€1d052/ Zdanléf(nl,UQ; £l 62)Ed0n23
09 o,

_|_1/ dO'gl ZdJnléf(nlaé_2;£17<2)

Theorem 2.8 Let G = b(n',n?), F = f(¢', €2) € H(OQ, §),0< B <
1, Cl € 0y, CQ € 0Q. Then

Ado,1do,»B Gdo CFDdo
o0, 1 GO0y2 50, €1 €2
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= dosado AGdo,CFDdo,»B
99 §eve 0%, ' "

i\
o

_i_f
# [ doe [ WA €) Do B

ddfl / ) Zb(ﬁl, Cz)do—nléf(flv <2)

1€l an

4
CIoies 09,
1 1 2 1 2
+16b(Ch OV ).

Similar to the proof of Theorem 2.7, we can prove Theorems 2.8 and
2.9.

Theorem 2.9 Let E = f(n',n? €1,62) ¢ HOQ, 5),0< <1, ¢! €
691, C2 S 892 Then

o0, Zd0n1 d0n2§ - édagﬁdagzﬁ

= dosdo ACdo,1Edo,»D B
o0 £1a0¢2 o0, pl n?

1

1

/ dO’gl / 76(10‘171]8(7717{2; 517 C2)
aﬂlgl 8Q1771

+ [ doe / £ ¢L€0)do,. DB
69252 22

1 1 2, +1 2
+T6f(C7CaCaC)

3 The Composition Formula and Inverse Formula of
Singular Integrals with a Cauchy’s Kernel in Real
Clifford Analysis

In this section, we first prove the composition formula and the inverse
formula of singular integrals with Cauchy’s kernel by using the Poincaré-
Bertrand transformation formula, and then we give the second proof
method for the composition formula and the inverse formula by using
the Plemelj formula for Cauchy’s integrals.
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We suppose E = F(&, €2;¢1,¢%) = f(&), €2) in Theorem 2.9, and
use Theorem 2.1, then the composition formula of singular integrals with
Cauchy’s kernel can be obtained.

Theorem 3.1 Let f(¢1,€%) € H(OQ, 5),0 < B < 1,(" € 0,0 =
1,2. Then

_ o 1
o, Adeysdo;B /@ ,. O Fl€, €)doeD = —f(C, ). (3.1)

Denote the operator
Wf=4 / Cdog f(¢', €)dogD,
09
then the composition formula can written as
W2f = W(Wf) = f. (3.2)
By using the composition formula, the inverse formula for singular
integrals with Cauchy’s kernel can also be obtained.
Theorem 3.2 If f(¢4, €2) € H(0R, 8), 0 < B < 1, and we write
Wf=gn', ), (3.3)
then
Wg = f(¢', ¢?). (3.4)
Proof From (3.3), (3.2), we get (3.4) and
Wg=W(Wf)=f(¢, ¢

Inversely, we have (3.3) from (3.4), and (3.3), (3.4) are called the inverse
formulas for singular integrals with Cauchy’s kernel on characteristic
manifolds. Obviously it is equivalent to the composition formula. If
(3.3) is seen as a singular integral equation with the unknown function
f, then from inverse formula (3.4), we can derive that the equation has
a unique solution.

As a corollary, we can get the inverse formula on the smooth closed
manifold as follows:

g(n') =2 o Cdogi f(£),
1€l

f(Cl) :/89 Zd0n1g(n1).
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From Theorem 1.1 in Section 1, Chapter III, we know that Cauchy
type integral

gd-z 142 -y
F(z, :/ ——do , E)dopr ————|
DD Jop leT a7 SN L e
x ¢ 8917 ) ¢ aQQ
is a biregular function in QF x QF, and F(z,00) = F(oco,y) =

F(co,00) = 0. Using Theorem 1.1 (the Plemelj formula) in Section
1, Chapter I1I1, it is easy to see that

Frembn®) + FH= (' n?) + F~ Yt n®) + F~—(n',n?)

= g(nl.n2 1,2 (3.6)
g(n-,n%), (", n*) € .

From (3.3), we can get g(n',n?) = W f. If we consider another biregular
function Q(z,y) in QF x QF,

Qz,y) = { (3.7)

—F(x,y), (z,y) € Qf x Q5 or Q] x QF,
then (3.6) can be written as

QT () — QT (', n?) — QT (', n?) + Q™ (nt,n?) 58)
1 .

= 9(77 3772)7

where (n!,n?) € 09, i.e. Q(x,y) is a solution of (3.8). From Theorem
1.1 (Plemelj formula) of Section 1, Chapter III again, we see that the
Cauchy type integral

nl _ 5 n2 _ 7

n - 1,2 -y
dO’nlg<77 , N )dO’,,ﬂm

x,y) = _
Ql( y) /897, Wm‘nl —:B‘m
is a solution of (3.8). Let Q2(z,y) = Q(z,y) — Q1(z,y). From condition
(3.8), we know that @ satisfies the homogeneous boundary condition
of (3.8):

sTmhL ) — Q3 (nhn?) — Q3T (nh ) + Qs (nh,n?)
=0, (nt,n?) € oN.

This shows that Qa(z,y) possesses the jump degree zero, hence

;Ei (z,y) can be extended to a biregular function through each other’s

09, namely Qo(z,y) is a biregular function in R™ x R* and Qo(x, 00) =
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Q2(00,y) = Q2(00,00) = 0. From the Liouville theorem (see [19]), we
get Q2 = 0, thus Q(z,y) = Q1(x,y). From the above Plemelj formula
again, we have

Frm'n?) = F= (L) = F~+ (' n?) + F~—(n',1%)
= f(n', %), (n',n?) € 9,
QT (') + QT (" n*) + QT (", 1?) + Q™ (0", n?)
=Wy, n%), (0" %) € 0Q.

From (3.7), the definition of g(n',7?) and two formulas as stated above,
we obtain

ftn?) =Wgn',n*) = WWf) = Wf,

which shows that the inverse formula is true.

4 The Fredholm Theory of a Kind of Singular Integral
Equations in Real Clifford Analysis

In this section we deal with a kind of integral equations with quasi-
Cauchy kernel in real Clifford analysis. Firstly we write the condition for
an integral equation, which can be reduced to the Fredholm type equa-
tion, and find the regularization operator and prove the regularization
theorem. Let b(n', n?), c(n', n?), o(n*, n?) € H(OQ, B),0 < B < 1,
and introduce the singular integral operator with Cauchy kernel and
quasi-Cauchy kernel K, L:

(Kf)(n',n*) = 4/39 doa Cf (&', &%) Ddoy,

LHeta = [ D0 o F(€! 6o (€ ),

where the Cauchy kernels C, D have been given in Section 2, and the
quasi-Cauchy kernel is defined as

ll(flaﬁl) 2(52 2) _ 52(62,172)
€1 — pim—1-r1’ 1) = €2 — 2 [F—1-r

LYehnt) =

where 1}(¢%, nt) € H(0Q, a;), 0 < a; < 1, 7, > 0,7 = 1,2. We consider
the singular integral equation with quasi-Cauchy kernel in H (0%, 3):

Sf=f+bKf+cLf=oep, (4.1)
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in which 012 is the regularizing manifold. The following regularization
theorem about (4.1) can be obtained.

Theorem 4.1 Let (1 —b%) in (4.1) be invertible on O, and ||1/(1 —
v?)|| <Y, Y a positive constant. Then when ||b|| is small enough, (4.1)
can be transformed into a Fredholm type equation.

Proof Firstly we give the operator M : My = 1(¢ — bKv)/(1 —
b)), € H(99Q,3), and prove that M is a regularization operator of
(4.1). In fact, when M acts on the two sides of (4.1), the right-hand side
of (4.1) becomes a function g such that My = g and the left-hand side
becomes

M(Sf) = 1_*1192[]0 +cLf — bK (DK f) — bK (cLf)].

By applying Theorem 2.8 to K (bK f) in the above formula and exchang-
ing the integral order of K(cLf) (from Theorems 2.4, 2.5, 2.6, we see
that the order can be exchanged), hence (4.1) possesses the form

[M(SF)](¢, ¢2)

c 160 4b 4b 4b
_ _ _ — — 4.2
f+1—b2Lf 1—b2Uf 1—b2Jf 1—b2Qf l—bQVf (4.2)
= g(¢", &%),
in which

(Uf)(Cl,CQ)Z/(?Qsdagld0g2/mnﬁb(nl7772)d0n1@f(§1,§2)Dd0n237

UNC A= [ doa [ A", (o TrE€)

1&1 891,,]1

@I =] doe [ WL Do, B,

2¢2 8927;2

Ley= 1 2
Vo= oo
< | Ac(n*, n*) LM (&' n")doyp f (€', €%)do,2 L (€%, 7°)B.
Qy

We write the kernel of U, J, Q, V, L as Uy, Ji, Q1, V1, L1, herein

Ui (¢t ¢3¢ €% :/ Ab(n?, n2)dan1@ﬁdan2§,
o0,
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RS ey = [ A, oy .

1n1

Ql(cla C27 52) = / b(cla nQ)EdUnZEa

Vi(c, ¢ el &)

=/, Ac(n®, n*) L' (&', n")do,do, 2 LP (€%, n°)B,
n

Li(¢!, ¢3¢, &) = LY, (ML, &),
Moreover setting v(nt, n%) = b(n', n?) —b(n', €2) —b(&, n?) +b(£L, €2),

and using Theorem 2.2, we know that U; can be transformed into

U, = / Av(n', n*)do,.CDdo,2 B.

(]
From Section 1, Chapter III or [29]2), we get
1118, 2 (2/8
vl < Jaoln” —&[2[n" — &7 (4.3)
where Js is a positive constant. Hence

U1 |

< |do,||doe|

_1-8 _1_8 ’
0 [t — Hm=tpt — g g2 = CFT 2 a2 - (YR
(4.4)
in which J3 is a positive constant. Using the Hadamard Theorem (see
[19]), we see that when m > g +1, k> g + 1, the estimate

J
U] < — 7 (4.5)
S ]
is derived, where Jy is a positive constant. Similarly, we have
Vil
|do,1||doz |
< J5/ 1 Tfm—1|,1 _ el|m—1 2 _ (2k—1[p2 _ £2|k—1
o0, Nt — CHmtnt = gHmatmnn? — 2Rl n? — g2kl

< J6
— |£1 _ <1|m7177“1 |£2 _ CQ‘kflfrg )

(4.6)
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where J5, Jg are positive constants. Using Theorem 2.2, we know that
J1 can be changed as

I = / Aby (n', ¢2)do,C,
Q

lnl
in which bl(?’]l, CQ) = b(nlg CQ) - b(Clv 62)1 and
[ba] < Jzln* — ¢, (4.7)

herein J7 is a positive constant. By the Hadamard Theorem and (4.7),
when m > 8+ 1, we have

PARES / ldory |
1l = Js
Oy, [Nt — GBIt — g mt (48)
< P
= [ —gpe
Next we discuss (J1. We can get, when k > 5+ 1,
J10
Q1] < W (4.9)
For L obviously we have
J
Ly < 1 (4.10)

|€1 _ <1|m717r1 ’52 _ <2‘k717r2 ’

in which Jg, Jg, Jio, J11 are all positive constants. Combining (4.5),
(4.6), (4.8), (4.9) and (4.10), it is easy to see that (4.2) is a weak singular
equation. By the Hadamard Theorem, when ¢!, &' € 0Q and 1, po >
0, we get

o1 | Ji2
< .
oy T EpT g < e e (41

where m > pu1 + po + 1, Jio is a positive constant. In addition for
¢2, €2 € 099, the same estimate can be concluded. Similarly by the
Hadamard theorem, when ¢, £ € 002 and p; > 0,1 < i < 4, we can
obtain

/ ‘do‘n1|’d0',72|
o2, I = G T — Ty = Ty — 2

< J13
T ¢t — g m i (ntie) |2 — 2|kl (ustpa)

(4.12)
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where m > pu1 +po+1, k> ps+pg+1, Jis is a positive constant. Thus
from (4.5), (4.11), (4.12), we see that the reiterative kernel Ul(p) of Up
for p times satisfies the inequality (see [46])

J
v < 7
O S

(4.13)

here Jy4 is a positive constant. Moreover the reiterative kernels of V7, Jp,
Q1, Ly for p times satisfy the similar inequality. Because of (¢ € 99
(i =1, 2), the integrals

/ |d0n1‘ O<m <1
00, [t — CHmlmm ’
99, [0? — Gk

are uniformly bounded, hence the mixed reiterative kernels of
Ui, Vi, J1, Q1, Ly for p times satisfy the similar inequality (see [46]).

From (4.13) we see that for the positive integer p satisfying k — 1 —
% <0, m—1-— %ﬂ < 0, the reiterative kernel Ul(p) of Uy for p times are
all bounded functions, it is sufficient to assume p > max{[2(m —1)/8]+
1, [2(k—1)/B]+1}. Similarly we can consider the reiterative kernels and
mixed reiterative kernels of Uy, Vi, J1, Q1, L1 for p times. We know if p
is large enough the reiterative kernels and mixed reiterative kernels for
p times are all bounded functions. This shows that (4.2) is a Fredholm
equation, and the Fredholm theorem holds for it.

Finally we prove that there exists an inverse of M. In fact, from
Section 1, Chapter III or [29]2), we know that ||KW¥||g < Ji5||¥|g, where
Jis is a positive constant, hence when ||b|| 5 is small enough, the operator
bKV is a compact operator. Moreover from the hypothesis ||1/(1 —
b?)|| s < Y, we see that when ||b|| 5 is small enough, there exists an inverse
operator M1 (see [46]). This shows that (4.1) is equivalent to the
Fredholm equation (4.2).

Remark 1 When ||b||3, |lc|l3, ||¢]lg are appropriately small, from Sec-
tion 1, Chapter III (or see [29]2)), we know that (4.1) is solvable

Remark 2 When a is invertible, the singular integral equation (see
[19])
af +bKf+cLf =, (4.14)

can be rewritten as

f+abKf+ateLf =a .
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Hence from Theorem 4.1, we know that under some condition (4.14) is
equivalent to a Fredholm equation.

5 Generalized Integrals and Integral Equations in Real
Clifford Analysis

By using the method of resolution of the identity, in this section we
define the generalized integrals in the sense of M. Spivak (see [73]) on
open manifold for unbounded functions in real Clifford analysis, and dis-
cuss the solvability and the series expression of solutions for the second
kind of generalized integral equations. Finally we give the error estimate
for the approximate calculation.

Let 2 C R"™ be an n-dimensional bounded manifold. We consider a
class of functions belonging to Cq(.A), where the functions are defined
in © and with values in the real Clifford space A, (R).

Now we give the definition of resolution of the identity.

Let 2 be as stated before, # be an open covering on €2, and for every
U C 6, we have U C €. Then we call 6 a permissible open covering on
Q. Thus there must exist a group of sets ® of function ¢ belonging to
C®; ¢ is defined on an open set including €2, and satisfies

1. For every z € Q, we have 0 < ¢(x) < 1.

2. For every z € (), there exists an open set V including = such that
there exists a finite ¢ € ® which isn’t equal to 0, V.

3. For every = € €2, we have Y ¢(z) =1.
ped

4. For every ¢ € ®, there exists an open set U belonging to @ such
that ¢ is equal to 0 on a closed subset in U.

If & C C*° satisfies 1 — 3, then @ is called a resolution of the identity on
Q. If ® also satisfies 4, then ® is said to be a resolution of the identity
belonging to 6. If ® is a resolution of the identity belonging to # on €2, f
is a function from €2 to R and f is bounded in an open set of each point
in €, the measure of the set {x : f is discontinuous on z} is 0, then for
any ¢ € 0, p|f| on Q is integrable. If 3" ¢ [g ¢|f| converges, then f is
said to be a generalized integrable function on 2.
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We consider the function class Cq(.A), where the functions are defined
in Q and with values in the Clifford space.

Definition 5.1 Let f(z) € Cq(A), 6 be a permissible open covering

on £, ®(C C) be a resolution of the identity belonging to 6 on € so

that for any ¢ € 0, p|f| be integrable on Q. If > [, ¢|f| as series is
ped

convergent (see [73]), we say that f is integrable as a generalized integral
in the sense of M. Spivak. The sum of the series is called the integral of
f on Q. All the generalized integrable functions in C(.A) can be written
as In(A).

In the following, the generalized integrable functions are considered
such functions in the sense of M. Spivak.

Lemma 5.1 If Q € R"™ is as stated above, then f(x) = Xfa(z)eas €
Io(A), if and only if each fa(x) is generalized integrable on €.

Lemma 5.2 IfQ € R", Ig(A) is as stated above, then for any f, g €
Ig(A) and Clifford number X € A, (R) we have f + g € Iq(A) and
A€ Ig(A).

Proof Let f,g € Ig(A), i.e. there exist a permissible open covering
f1 on ) and a resolution of the identity ®; belonging to 61, such that
f is bounded in an open set of each point in 2. Hence, for any ¢ €
01, | f| is integrable, and 3-cq [ ¢[f] as a series is convergent. At the
same time, there exists another permissible open covering 6 on 2 and
a resolution of the identity ®o € 65, such that g is bounded in one open
set of each point in , and then for any ¢ € 01, ¢|f]| is integrable, and
> pcd Jo, lg| as a series is convergent. Make a permissible open covering
0=0.Ub: = {U|U = u1 Yuz,u; € 0;,i =1,2} on Q and a resolution
of the identity ® = {p|p = 72 o, € ®;, i = 1,2} on Q, then

Z;D/Q@\Hgl < %UﬂsolfH/Q@!g}
< = |+ fod] + X [ [+ [enol.

p2E€D2

and each integral on the right-hand side of the inequality is convergent.
Hence the integral on the left-hand side is also convergent. That is to
say that f 4 ¢ is generalized integrable. In the same way, if A is a real
Clifford number, then Af is generalized integrable too. The proof is
completed.
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Definition 5.2 Let f(z,y) = Y 4 fa(z,y)ea, (z,y) € Q x Q,where
each fa(x,y): Q x Q — R!is a real function. If f4(z,y) is square inte-
grable for each variable (the other variable is looked on as a constant),
i.e. |f|? looked on as a function of z or y is generalized integrable and
Ja Jo |f(z,y)|?dzdy < co. Then we define f(z,y) as a square generalized
integrable function. All the square generalized integrable functions can
be written as Inxq(A).

Lemma 5.3 If f(z,9),9(z,y) € Ioxq(A) and ®* € Io(A), then

1. About u (here x,y are seen as constants) f(x,u)g(u,y) € Io(A).

2. [o flz,u)g(u,y)du € Inxa(A).
8. Jo fla,u)®*(u)du € Ig(A).

Definition 5.3 Let K(x,y) = > 4 Ka(z,y)ea € Ioxa(A) be a func-
tion. We define the corresponding kernel as

K xz,y) =Y _ Ka(z,y)eaha,
A

where hy = he, = h
is a transformation

eryoery = ey oPe, s A= {r1,...,rn}, and each h,

€5, ZZ]?
h‘ei(ej) = ) )
—€y, 7175]7

and define hy as a left exchange factor.

Definition 5.4 Define the equation

pla) = [ K u)p(w)du = f(2) (1)

as a second kind integral equation, where ¢(z) is an unknown function,

K°(z,y) is a function defined in Definition 5.3, f is a known function

satisfying f2 € Iq, and A(€ A, (R)) is a real Clifford constant. In the

following, we find a solution of equation (5.1).

We find a solution of equation (5.1) by using a successive iteration.
Let

po(z) = [(),

(5.2)

om(x) = f(2) + X Jo KO(z,u)om—1(u)du, m = 1,2....
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It is easy to prove that if the sequence of functions {¢,,(z)} on Q uni-
formly converges to a function, then the function is a solution of equation
(5.1).

In order to study the property of {¢,(z)}, we give the following
definition.

Definition 5.5 If K(z,y) € Ioxa(A) is as stated before, we define

Kae,y) = [ Ko, 0K (ty)dt,

m(T,y) /Ka:th 1(t,y)dt, m > 3,
as the reiterative kernel of K (x,y) (m > 2) for m times.
I

Theorem 5.4 If K°(z,y), K(z,y), A
{ KO(z,u)f(x) = f(2)K (z,u),

x) is as stated above, then

K%z, u)\ = AK (z,u). >3

By the definition of the exchange factor, the theorem is easy to prove.
Consider the sequence of functions {¢,,(x)} as follows:

p1(@) = @)+ 1 [ Ko Opo(t)dr

pal@) = J(@) 4\ [ KO, 0p1(0)dt

~ f(a) +>\/QK°(x,t) [f(t) +)\/ KO(t,u)f(u)du} dt

— f(:c)+)\/QK0(a: u) f(u) + (\) / [/ K(x, t)K°(t, u)f(u)du} dt

:f(a:)—i—/\/QKO(xu /ngu
p3(z) = ...
In general, we have
_ 0 - m
pul)= 1) +A [ K fdue 300" | Kol f )

n=12...
(5.4)
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Theorem 5.5 If f(z) € Ig(A) and
[ @Pdv, = 12, K ()] < M),
0

which is valid for each x € Q, u € Q and M(u) is a generalized square
integrable function [o, | M (u)|*dv, = L?, where dv, is the volume element
of Q, then

\/ Ko (zu) f(u)du] < HL™ P m = 1,2, .. (5.5)

Proof If m =1, we denote K (z,u) = K°(x,u) and have

/m ) f () dul </Q\K1(m,u)f(u)\dvu < Jl/Q]M(u)]|f(u)|dvu

< [/Q |M(u)\2dvu]; [/Q\f(u)IdeuF — L HL

Suppose that the estimate (5.5) is true for m — 1; we shall prove that
the estimate (5.5) is also true for m, i.e.

|/K ) f(w)du| = \//thK(m 1 (b, )t £ (u)dul
=1 | K@l / K1t 0)f ()l

<J1[/]th\dvt} [/]/Kmltu )du!dvt

<.Jp U |M(t)|2dvt} : V Jf(m_l)szvt] : < HL™J".
Q) Q

Theorem 5.6 Under the same result as in Theorem 5.2, then for the
real Clifford number \ satisfying |\ < 1/JZL, equation (5.1) has a
unique solution, and the solution is the limit of the sequence of func-
tions: (5.4).

Proof From Theorem 5.4, it is easy to see that the above sequence of
functions uniformly converges on 2. Obviously its limit function is a
solution of equation (5.1). In the following, we will prove the uniqueness
of the solution. If there exists A € A,(R), and |\| < 1/J?L, then there
exist two solutions @1 (), p2(x) of equation (5.1), i.e

pr(@) = A [ KO, u)or(u)du = f(a),

pal@) = A | K@ y)pa(wdu = f(z).
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Let the first equality be subtracted from the second one, then we get

P1(@) = pala) =\ [ K, w)lipa(u) = pawldu = 0.

Denote w(x) = ¢1(x) — pa(z), then we have
w(z) = )\/QKO(Q:,u)w(u)du,
and then
W@ < B [ K 0)Pdv, [ el

Making the volume integration go to x on €2 in both sides of the inequal-
ity, i.e.

[ lw(@) Pavef < NP [ () Pdo,,
Q Q
we get
(1— J12L2|>\|2)/ lw(u)2dvy < 0,

Q

and
et =0, ¢ = ga.

The proof of Theorem 5.3 is finished.

Theorem 5.7 Under the same conditions described in Theorem 5.4,
we substitute {¢n} in (5.4) into the accurate solution of equation (5.1),
then the norm error is not greater than

’)\’n+1Ln+1HJ12n+1
1— [\2L2J2




CHAPTER VI

SEVERAL KINDS OF HIGH ORDER
SINGULAR INTEGRALS AND
DIFFERENTIAL INTEGRAL EQUATIONS
IN REAL CLIFFORD ANALYSIS

In the first section of this chapter, we shall introduce six kinds of
high order singular integrals of quasi-Bochner-Martinelli type with one
singular point, definitions of their Hadamard principal values, recur-
rence formulas, calculational formulas and differential formulas. In the
second section, after proving the lemma of Hile type, we shall discuss
the properties of high order singular integral operators and then prove
the Holder continuity of several kinds of high order singular integrals
of quasi-Bochner-Martinelli type on the integral path. In the third sec-
tion, we shall prove the existence and uniqueness of solutions for three
kinds of nonlinear differential integral equations with high order sin-
gular integrals of quasi-Bochner-Martinelli type by the method of in-
tegral equations. In the fourth section, we shall give the definitions of
high order singular integrals with two singular points, and prove the
Poincaré-Bertrand permutation formulas for high order singular inte-
grals of quasi-Bochner-Martinelli type in real Clifford analysis by using
the differential formulas (see [29]10), [65]).

1 The Hadamard Principal Value and Differential Formu-
las of High Order Singular Integrals with One Singular
Point in Real Clifford Analysis

First of all, we introduce the concept of Hadamard principal value
of high order singular integrals with one singular point for functions of
one complex variable. Suppose that L is a simple smooth closed curve,
f' on L is Holder continuous, and f' € H. Let 7, € L; it is clear that

the integral
[0,
L (T —10)
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at 7 = 70 possesses a singularity of high order (> 1). In general, it is
divergent, even under the sense of Cauchy principal value. For instance,
if we define

/L IO gy = tim S0y (1.1)

(1 —10)? n—0Jrr, (T —70)?

in which L, = L N {|7 — 79| < n}, then its limit on the right-hand side
of the above equality usually doesn’t exist. This is because we know

L N (I O O
/L_Ln( 2_/L_L,, d+{ — [ + D,

T —170) (1 —10) To—1To TIL—T0
by means of integration by parts, where 71,70 € LN {|T — 10| = n}.
Noting f’ € H, if n — 0, then
/!
Il —>/ 7']0 (T> dT,
L (T —70)
and
. . f()=f(r0) [f(n)—f(70) 1 1
lim I, =1 - -
nli% 2 nli%{ To—1T0 T1—170 +f(7—0)(7'2_7'0 7—1_7—0)}
. 1 1
= f(70) lim ( -

n—0 " To — Ty T — 70 .

This shows that this integral generally doesn’t exist (except f(7m9) = 0)
Hence we cannot define this kind of singular integrals by (1.1). Now
we first consider the case: m = 2 > 1 on the left side of (1.1). It is a
singular integral whose singularity is higher than one order. Moreover,
we conclude that L and n satisfy conditions such that the integral

f(7)
/L ety (1.2)

can converge under the sense of Cauchy principal value. Some authors
have discussed the problem and acquired some results. But for applica-
tions, we shall discuss the high order singular integral (1.2) from another
view. This view was first proposed by J. Hadamard for similar singular
integrals on the real axis, namely the idea of the so-called finite part of an
integral [70]. In 1957, C. Fox generalized this idea to integral (1.2) with
the positive integer n [16]. Afterwards Chuanrong Wang discussed the
problem in [78], and then Jianke Lu in [45], generalized n to the case
of a general positive real number and an integral with many singular
points. Using the idea of Hadamard principal value, we can define

/f(T) dr = f(7) dr
L( ’

T —170)2 LT—To
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[ (=) smar= [~ (=5 ) £

) possesses a lower order singularity than ( )'. Thus
T —T0 T —1T0

we define a high order singular integral by induction on an integral
having a low order singularity. It is also said that this integral is defined
by cutting out the divergent part Is. This idea is easily generalized to
a general high order singular integral (1.2). Provided that we do the
integration by parts and cut out the terms with divergent part several
times, then we can write the definition as desired. In [46], Jianke Lu
straight forwardly defines

i.e.

where —(

T0 € L.

/ i) d _1 f(n)(T)dT,
L

(r—m)" ) 1—1

In 1990, Xiaogin Wang obtained some results about the Hadamard prin-
cipal value of high order singular integrals for functions of several com-
plex variables (see [79]).

In this chapter, we discuss the first kind of function in Clifford analysis
f(z) : R® = A, (R), where the element in A, (R) is u = Y uases (ua €
A

R), the element in R™ is = >}, xxey, herein ey = 1, 7 = x1e1 —
Y h—o Tker, and denote the operator

_ n d 0 - 9
Op = kz::lekaixkv Op = 6187931 - lgekaixk‘

Before giving the induction definition of high order singular integrals,
we prove several lemmas.

n
Lemma 1.1 Let u(x) = > ua(x)ea, v(x) = > vi(z)e;, © € R,
A =1

_0() Oua ‘
()a; = d;" Doy’ (vi)z, be continuous. Then
Dp(wv) = (Dzu)v + u(v) + > (eju — ue;)vg,, (1.3)

Jj=

[\

Oz (uv) = (Ozu)v + u(0zv) +

-

Il
)

(uej — eju)uvg;, (1.4)
J
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(0,0 + Opv)
= —(D2u)T — (Dpu)v + Dy (uD) + 0y (uv) (1.5)

n

n
— Z (eju— uej)ﬁxj — Z (uej — eju)vy;.
7=2 7j=2

Proof It is clear that

Do(wv) = 30 € 3 3 (uavi)a, eacs
7j=1 A =1
= 3 e S (ua)e en 3 vier + 32 o5 X(ua)ea i(vo%
j=1 A =1 j=1 A =1

n —
= (Ogu)v + Zl eju(vg;) = (0zu)v + ueivg, + 22 eju(vz;)
Jj= j=
— n n
= (0,u)v + uejvg, + UJEQ €Uz, + j§2(eju — ue;)vy;

= (Ozu)v +u(0zv) + 3 (eju — ue;) vy, -
j=2

Similarly, we can prove (1.4). Substitute v into the position of v in (1.3),
and add it to (1.4), then we immediately get (1.5).

Corollary 1.2 If the conditions in Lemma 1.1 are satisfied, then
(1) Ifwv is independent of x, then Oy(uv) = (Oyu)v.
(2) If u=uyey, then

Oz (uv) = (Opu)v + u(0pv); Oz(uv) = (Opu)v + u(dpv),

—~
SN—
—

(S5

(020 + 0p0) = —(0pu)v — (Opu)v + Oz (ud) + Oy (uv).

Lemma 1.3 Leta>0,z,y € R™ 2z #y, vy = ( )‘x—y‘mra; Vg =
r—y
1
. Th
@—n—a)e—yrrez "
% _ €; B (n+a)(z; — yj)vl (1.6)
dzj  (—a)|r —y|rto |z —y|? ’ '
LI S U 20 C el ) (17)

Oxj  (—a)lz —y["te |z — y|?
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dvy T —Yj ,
2 _ WY < j<n, 1.8
ar; ~ fp -y L SIEN )

where

Proof Noting

I Sl —
—1 —n—a
= a63’33 Y|
—1 n —nN— n 2 —n—a—2
t > (wi—yi)es 2 O (wi—y)®) ™ 2 -2(z—y;)
i=1 i=1
_ €j . v1
- —O[’.T—y|n+a —(n—l—a)(avj y])’x_y’27

and substituting 7; into the position of v; in (1.6), we get (1.7), and

n

ov —n—a+2 —n—a Tj—Y;
T = o ey @i T 2wy =

or;  2(2-n—a) = |z —y|nte
hence (1.8) is valid.
Lemma 1.4 Letz,y€ R", x #vy, a >0. Then
Bale—9) =1, Opla —y) = (1.9)
Fula —y|” = alz —yI" 2 (z —y),
(1.10)
Ozlz —y|” = olz —y|I” (2 —7), 0 > 0;
= rT—y Ty 1
D — 9, - . (111
(o= = Ca =y = oyt 1Y
— 1 T —y
a:p = )
N e L P
| iy (1.12)
D ( ) =

(2—n—a)z —y|rte—2 |z — y|nta’
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Proof It is evident that

M)
0:(Z — ) _jz::lejaﬂfj[(

(2

Chapter VI

z1—y)er — (i — yi)ei

9

n
= e1e1 + Zej(—l)ej =n.
j=2

Similarly, we can prove 0,(z — y) = n. In addition, noting that

5x|x - y|0

ole —yl”*> (x5 —y;
j=1

- (.%'—y),

(1.10) is derived. Moreover we can prove O|r—

By means of Corollary 1.2 and (1.10), we get

)ej

yl” =ole—y|”*(z-7).

_ j;—g

d

e T

5 dr—yl ™ L 1 ~
= [ (@ — B)

[I( —a )](JJ y)+(—a)|x—y|”+°‘ x(l‘ y)
_ n+a —n—a—2 = - n
= |z —y| (fv—y)(w—y)+_a|x e

n 1 n
= (—+1

N P e e
B 1
o e -yl

T—Y 1

Finally, we can similarly prove 0, ( oz — e

(1.11) is true. On the basis of (1.10), the equalit

Lemma 1.5 Let u(z) = > ua(x)ea, v(zx)
A
ditions of Lemma 1.1 be satisfied. Then

)

Oz (vu) = (9pv)u + v(0pu) — 2 Z

o8

) = PTE namely

y (1.12) can be derived.

vi(x)e;, and the con-
1

(1.13)

vieiejuxj,

ij=2,i#]
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Oz (vu) = (0zv)u + v(0zu) + 2 Z Vi€i€jly; . (1.14)

§,j=2,i#]

Proof Taking into account

— n n
Op(vu) = 3 €5 3 S(viua)s€iea
7=1 i=1 A
n
= > ejvgu+ Z e;j Z v,eZZ(uA)xjeA
7=1 j=1 i=1 A
— n
= (0yv)u+ vejuy, + Z €Uy

j=2

n n
= (Oyv)u+v(eruyg, + 22 ejug;) + ZQ €jVlg; — v 22 €Uy,
j= j= j=

_ n n n n
= (a )U + U( )+ Z Z Vi€jeilg; — E Z Vi€i€jUg;
j=2i=1 j=2i=1
— — n
= (Opv)u+v(0zu) —2 > wvieejuy;,
i j= 2]

(1.13) is derived. Similarly we can prove (1.14).

Corollary 1.6 If the conditions in Theorem 1.4 are satisfied, then
1) If u is independent of x, then 0.(vu)=(0zv)u, d:(vu) = (0zv)u.
2) When v=wvie1, then Op(vu) = (Opv)u+v(0zu), :(vu) = (Ozv)u+

v(0zu).

Suppose that D is a connected open set in R",  is the boundary of
D, and 0, f(z,y), Oz f(z,y) (z,y € Q) are Holder continuous. In (1.4),

set
1

@—n— -y

by (1.12), (1.8), we have

v =

u= f(z,y);

-5 1
f(l‘ay)m - 893 |:f(l‘7y) (2 —n— Oé)|ZL' _ y|n+a72
8]) ) " . .
e s = S ey — e

Jj=2

T-Y
|z -yt
has a high order singularity. By means of the above equality, we know

in which has a (> 0) order singularity, and

‘.ZC _ y‘n—i-a
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T
Al Z—n _J;()‘;Cy_) o —a—3) also has a(> 0) order singularity. However
. ) ]
———— possesses a lower order singularity than ————~—. Hence
|$——yW+a’2p g y |z — y[to

according to the idea of Hadamard’s principal value of integrals and
using the lower order singular integrals to inductively define the high
order singular integrals, we can give the following definitions.

Definition 1.1 The a (> 0) order singular integral is defined as

oG-y, _ [ Ol
EANGAZAS. S Ly € Q.
J |a:—y\n+a TR PEN

1
G n_a)jz —gpraz U = @) by

means of (1.12), (1.8), we can give the following definition.

Similarly, in (1.3) let v =

Definition 1.2
f avf €T,y doy
/ To—yle y|"+a ””:/( S 0> 0.y e

Q (n+a—2)|x—y|nte—2’

In (1.5), let w = f(z,y), v = W; in view of (1.11), (1.6),
(1.7), we have

2f(z,y)

(@)@ ) ey
l (Cale -y T ’y”(—a)\x—wa]

5 [ [l y) (@ —7) f(z,y)(z —y)
ey e e

> (ejf(@,y) = flz,y)e)) R =D (f(z.y)e; —e; f(z,y) N,
j=2

J=2
where

_ ¢ (nto)(zi-y)  (@-7)
"= <<a>|xy\n+a - (o) yw)-

Similarly to the above discussion, we see that in the right-hand side
of the above equality, the term ——————— possesses an « + 1 order
|z -yt
rT—-y -y

singularity and other terms Calfz =yt (—a)z = gjte have an

a (> 0) order singularity. So we can inductively give
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Definition 1.3 The integral
f(xvy)dax _ / (5xf)(j — g) + (8xf)(x - y)d
Q

,a>0,ye
o fz— g+ 2afa — y[+e ey

is called the first kind of high order singular integral of quasi-Bochner-
Martinelli type with one singular point.

In (1.14), set

1
(2—n—a)|a:— |nta= 2’

u= f(z,y), v

by means of the components v; = 0(2 <4 < n) of v and (1.12), we can
get

w—y|nte T Q2en—a)f—yrtem? 2-n—a)lr—y|rter?
1
Similarly to the above discussion, we see that W has a lower
o FTY
order singularity than the o order of %, so we can also give
r—y

Definition 1.4
/ (z —9)f(x,y)dos :/ Ox f(x, y)dos
Q (

|z — y[rte o (n+a=2)x—yrte?

a>0, yeq.

By means of (1.12), (1.13), we can define other high order singular
integrals through a similar method.

Definition 1.5

/ (x - y)f(a:,y)daw _ / 5zf(3?7y)d0x La>0,ye.
o |z —y|nte o (n+a—2)|z —y|rta—?
In view of Definitions 1.1, 1.2, 1.4 and 1.5, we get
(@ —9)f (@, y)do, flz.y)@-9),
/Q P—TE / ’n+a dog, >0, y€Q, (1.15)

(x - y) L y dU:t: f )
/Q =y / ‘m_ ’n+a " do,, >0, ye Q. (1.16)
The above two high order singular integrals are called the second and
third kinds of high order singular integrals of quasi-Bochner-Martinelli
type with one singular point respectively.
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Definition 1.6 If f(z,y), (z,y) € Q x Q is still Holder continuous
after the action of the operator 0y, 0, for p (< m) times, and 0 < § < 1
is its Holder index, then we say that f(x,y) belongs to Hg(cm) (6), and
write f € Hgﬂm)(ﬁ). When m = 0, denote by f € H;E;O)(ﬁ) the Holder
continuity of f on x € Q, where /3 is the Holder index. Similarly we can
define f € Hl(,m) (B).

In the following, we prove the recurrence formulas of the first, sec-
ond and third kinds of high order singular integrals of quasi-Bochner-
Martinelli type.

Theorem 1.7 Letn > 1, a > 2m > 0, f(x,y) € Hg(gzmﬂ)(ﬂ), y € Q.

Then

[ L g AT @ufw.)os o
|x_y|n+o¢ n+a—2m-—2 Jq |x_y‘n+a—2m—2 ? '
fl,y) (@ —y) Iz AT (0 f(x,y))doo
T = , (1.1
/ \:z:— ‘n—l—a T ta—2m—2Jq Jo— y[nta—2m=2 (1.18)

f(x,y)dax o I / A;n+1f(l',y)d0x (1 19)
alr—ylvte  aln4a—2m—2) Jg |z — y[rte—2m=2’ .

where the operator Ay = 0305 = 050y,

_ (a—=2m —2)!Y(n+ o —2m — 2)!!
h= (@ —2)(n+a-2)l ’

and r!! expresses the multiplication of the integers from r to the least
integer every time decrease 2, and if —2 < r <0, denote r!l =1, then

(n+a—2m —2)!!

N i Fa—2la—2(a—4)(a—2m) (1:20)

Proof On the basis of Definitions 1.1, 1.2 and 1.3, we have

/ flz — y)doy _/ Orf(w,y)doy
\if—y!"““ Ja(nta—2) - ylrte?

(020, )T — ) + (0.0, 1) (x — 1) N
Q2(n+a—2)(a—2)z—yrta—2"""

:/ [Azaxf(l‘,y)]dax
n+oa— 2)(71 + o — 4)(a _ 2)‘$ _ y‘n+a_4
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_ / (022,09, F)(T — 7) + (3:8:0: ) (z — y)]do,
Q Q(TL +a— 2)(n +a— 4)(a — 2)(@ _ 4)’$ _ y’n+a74

- (A20:f (. y))do

o (n+a=2)(n+a-4)n+a—6)(a=2)(a—4)—yrtes
B (o —6)!(n + o — 6)!! / [A20:f(x,y)ldos
T (nta-6)(a—20(nta-2N |z yFtes

Inductively, we can get

/ f(z,y)(@ —y)dos p / (A0 f(2,y))dos
Q Q

lz—y["te n+a—2m—2 |z — y[nta—2m=2 ~

This shows that (1.17) is valid. Similarly, we can prove (1.18). By means
of Definitions 1.1, 1.2 and 1.3, we know

f(xay)dam _ 1/ (gxf)(f_y) + (8xf)(33 — y)
alz—y["te 2a o |z — y|rte
0 (A f)do,
- ant+a-—2) /Q |z — y|nta—2
_ 1 / [(02A: 1)@ —Y) + (0:A:f)(z — y)]
2a(n+a—2)(a—2) Jo |z — y|nto—2
/ [AZf(2,y)]dos
oala—2)(n+a—-2)(n+a—4)z—y[rtod
_ (a —DM(n+a—HN / [A2 f(z,y)]do,
an+a—4)(a-2"n+a-2)!! Jo |z—y/rte—t "

do

dog

Moreover, it is easy to verify (1.19).

Theorem 1.8 Let f(z,y) € Hé%ﬁ)(ﬁ), y € Qmn>10<7r <
Loy (n—r—=3)!
T 2k —r — D2k —r — 1)1V
ond and third kinds of high order singular integrals of quasi-Bochner-
Martinelli type. Moreover, they can be expressed in the forms

Then there exist the first, sec-

f(2,y)(x — y)do, _ / [AkD, f(x,y)]do,

o |z —yntekri-r A qa |r—yn1r (1.21)
f(2,y) (@ —y)do, _ / [AkD, f(x,y)]do,

Q |z —y|rtke-r A a |z gyl (1.22)

Q Q

lz—y[P T2 T 21—y lz—y[n 1T
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Proof In Theorem 1.7, setting o = 2k + 1 — r, m = k, and according
o (1.20), we get
p B (n—r—1)1
n+a—2m—-2 (n—r—1n+2k—r— N2k —r—1)!
hence (1.21), (1.22), (1.23) are correct. The integrals on the right-hand
side of (1.21), (1.22),(1.23) converge under the general sense as in Section
4, Chapter II. So there exist the above three kinds of high order singular

integrals of quasi-Bochner-Martinelli type, and then (1.21), (1.22), (1.23)
are their calculational formulas. This completes the proof.

=\,

The values calculated by (1.21) (1.22) (1.23) are called the Hadamard
principal value of the first, second and third kinds of high order singular
integrals of quasi-Bochner-Martinelli type. In the following, we derive
the differential formulas of three kinds of high order singular integrals
of quasi-Bochner-Martinelli type.

Theorem 1.9 Let u(y) = Y ua(y)ea, (wa(y))y, be continuous, and
A
1

U3:m,0<7a<1,x7yeRn,x¢y. Then
r—=y
n _ _ _ _
dvs (T —Yu u(z — )
o) 2B 1 - 1.24
]Z:Q(U@J eju) By, (n—r—1) [|$ — oyt g =yt ) ( )
n
dvs (z —y)u u(z —y)

- ue;) 2B = (n—r—1 - . (1.25
Syt = (nmr =) [t - U] )
Proof In accordance with (1.8), we have

dy; |z — gyt
and then
n
0
Z(uej — eju)ﬂ
=2 9y;

_ yj)e;
= (n—r—1) [“ij_ |n+1r Z|x_ 1= r]
- (951 - yl)el (551 - yl)elu
+rn—1-7) [( iz — g |z — yntior

B I I
|l‘ _ y|n+1—r |:L‘ _ y|n+1—r
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Thus (1.24) is obtained. By means of [(Z —y) + (z — y)|Ju — u[(Z — y) +
(x —y)] = 0, we know that (1.25) is true.

Deﬁnltlon 1.7 Let f(z,y) € aim (61) (z,y) € 2 x Q, and f(z,y) €
y (,82), 0 < B < 1,7 = 1,2. Then we say that f(x,y) belongs to
HU™P)(y, By), and is denoted by f(z,y) € H™) (51, 52).

Theorem 1.10 Let f(z,y) € HMT2k+E2m)(3 8). 0 < 3 < 1,7 =
1,2, 0 <r <1, X be as stated in Theorem 1.8. Then

y f(@y)(@ — y)do, )\/ [0y + 0:)" As f (, y)]dam, (1.26)

Q ’x_ |n+2k+1 T ’33— ’n 1—r

f(z,y)(x — y)doy _)\/ [(Oy + 02)"AED, f(2,y)]do s (1.27)

Y Q ’x_ |n+2k+1 r ‘x_ ‘n 1—r ’
m / flz,y)do, A / [(9y +02)" Az f (@, y)ldo
Y Q |$_y|n+2k+177’ - 2k +1—7r Q |1._ |n 1—r
(1.28)
Proof On the basis of (1.12), we have
1 7—T T—7
Oy————=—(n—-1-r) =(n—-1-r)

y|x_y|n—1—r ’x_y’n-‘rl—r |x_y|n+1—7"

By means of (1.21), (1.4), (1.24), (1.15) and Definition 1.1, we obtain

f(l', y)('f — g)dam

9 ’n+2k+1—7‘

Y Q ’HI
[ BRI Ny [ IR0 Do,

|x_y|n 1—r |x_y‘n+l—r

—{—)\(TL —1— T)/Q ( - y) [A];axf(.%',y)]dO'x

|z —y[r i

AR, f(x, T —7)doy
_A(n — 1= T)/Q [ T ﬁ;(m_ Z?lg_xl_ry) g
Aka f(z,y)dos [A];axf($ay)](f_§)d0x
_)\/ T +)\(n—1—r)/9 o=y

_)\/ 8Ak8fxy)]dax+)\(n_1

’(L‘— ’nlr

[0:850: f (x, y)]dow
—r) /Q :

n—1-r)z—y/r1-r

dog.

_A/ (By + 82)(ARD, f(,y))

‘x_ ‘nlr
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Inductively, it is easy to see that (1.26) is valid. By means of (1.22),
(1.23), we can use the same method to prove (1.27) and (1.28).

Theorem 1.11 If f(x,y) € HH2E+2m)(3) 3,), 0 < ; < 1,0 = 1,2,
0 <r <1, X is as stated in Theorem 1.8, then

= m Ak
f(z,y) (T — y)doy )\/ (8 + 0,)" NS0, f (x, y)]d0x7 (1.29)
y 0 |x_y‘n+2k+1 r |1: _y|n 1—r
_ mAk
, f(z,y)(x — y)doy )\/ 8 + 0, O f (z, y)]daz’ (1.30)
Q ‘il] ‘n+2k+1 r |l’— |n 1—7r
am/ flx,y)do, A / [0y + 92)™ Az f (2, y)ldo
Q |x_y|n+2k+1 r 2k+1_7a Q |x_y|n 1—r
(1.31)
Proof In view of (1.12), we have
P S (/s S Vs B e Rt ()
Yo —yfntor |z — y[rior |z -yt

By means of (1.21),(1.3),(1.25),(1.16) and Definition 1.2, we get
f(z,y)(@ — y)do,
Y Jq ]ac y|rt2ktl-r

Akﬁ f(z,y)]do, Ak, f(z,)](n — 1 —r)(x — y)do,
_)\/ n—1—r )\/ n+l-—r
|z —yl [z —y|

+)\/ (n—1—r)( )[Aka f(z,y)|do,

’.CL‘ _ ’n—l—l r

[ B =M e )i

’33 _ ’n—i—l r

[0,AF0, f(x,y)|dos [ARD, f(z,9)](z — y)dos
_)\/ T +)\(n—1—r)/ﬂ =

_ )\/ Aka f(z,y)]doy F A -1 _r)/Q ( [(E)IAl;axf(%y)}dUév

!w—y!” e n—1—r)z—y"1=r

_/\/ 9y + 0:) (AL f (2, ))d%

‘33— ‘nlr

Inductively, it is easy to see that (1.29) is true. By means of (1.22),
(1.23), we can use the same method to prove (1.30) and (1.31).
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Corollary 1.12 Let f(z,y) € Htrt2kt2min)(3 5y 0 < §; <
1,i=1,2,0<r <1, X be as stated in Theorem 1.8. Then

oo f(z,y)(Z—g)do, A/ "Dy + 0, )PALD, f (x, y)]dax
’33 y’n+2k+1 r ’HJ y’n 1—r
(1. 32)
gmap [ (@ y)(@—y)do, /\/ " (Oy+0:)P A f (2, yldos
v Jo m—y|n 2Rt |z —y[r— 17
(1.33)
m f(z,y)do,
8 8p/ |.’E— |n+2k+1 r
1.34
R R (2% SRS N0 (134
2%+ 1-—7 |z —y|nt-r

Proof It is easy to prove this corollary by using Theorems 1.10 and
1.11.

Theorem 1.13 If f(x,y) € HMT2k+20)(3) 3,), 0 < B < 1,0 = 1,2,
t1,to € Q, 0 <r <1, X\ is as stated in Theorem 1.8, then

Iy am k
9 oP f €z 752 $—t1)d0’z _ [(aar: angxaxf(xatQ)]da—x, (135)
t1 t2 |JI _ tl‘n+2k+1 r Q ‘37 _ tlyn—l—r
f .T tg T — tl)dax [(5;naf Al;}éxf(xat2)]d0'x
m Qp —
8751 81‘/2 / |$ _ t1‘n+2k+1 ro /\/Q ‘; _ tlln—l—r ) (1'36)
5m6p/ f(ar,tg)dax . A / [(8m8§’2Ak+1f(x tg)]ddx
t1 Y2 Q‘x_t1’n+2k+1—r _2k+1_7. Q \Sﬂ—tl’” 1—r
(1.37)

Proof According to (1.21), Corollaries 1.2, 1.6, (1.12), (1.16) and Def-
inition 1.2, we have

f .Z‘ tQ T —fl)dax

6;?6?2 ‘37 _ t1’n+2k+1 T
- [AkD, f(z,t2)]do
= 8t1871532)\/ |$*t1‘n 1—r

_ )\6;711/ [852Al;633f(x7t2)]d0—33
Q

|$ _ tl‘n—l—r



174 Chapter VI

Aém—l (n -1- T‘)(QS‘ - tl)[ang];8$f(x> t2)]d0x
t1 Q ‘(L’ _ t1’n+1—r

~ O AEO, f(x,t2)|(x — t1)do
_ 1 m—1 to =™ ) x
= AMn—1-7)0; /Q o T
— )\gmfl/ [(gxawfpgA’;axf(mvt2)]dU:c
h Q ’$ — t1|n—1—r
_ / (070F, A30a f (x, t2))do
Q

‘SL’ _ tl |n717r

This shows that (1.35) is correct.

Similarly, By means of (1.22), Corollaries 1.2 and 1.6, (1.12), (1.15)
and Definition 1.2, we get (1.36).

At last, by using (1.23), Corollaries 1.2, 1.6, (1.12), (1.16) and Defi-
nition 1.2, we can get (1.37).

In the following, we discuss the fourth, fifth and sixth kinds of high
order singular integrals of quasi-Bochner-Martinelli type.

Theorem 1.14 Suppose that u(z) = Y ua(x)ea, v(z) = X vi(z)e;
A ,

are as those in Lemma 1.1. Then
[(0r — 02) (v +0)|u = (v+0)[(0z — Oz)u] + (Op — Op)[(v+D)u], (1.38)

[0z (v +0)]u = —(v+ 0)0zu + Oy[(v + 0)u] . (1.39)

Proof We substitute v by v in Lemma 1.5 and notice when j > 2,7; =
—vj, then

Oz (vu) = (0,0)u + v(dpu) + 2 Z vi€i€jly; (1.40)
1,J=2,i#]
and
0z (vu) = (050)u + v(0yu) — 2 Z Vi€i€jly; . (1.41)
i,j=2,i#j

In view of (1.12), (1.14), (1.40), (1.41), we get (1.38). By means of
(1.14), (1.41), it is easy to derive (1.39). The proof is finished.
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Suppose o > 0, and let v = (_a)% u = f(z,y) in (1.38) of

|lz—y[nte
Theorem 1.11. By using Lemma 1.3, we can get

n+« T —7)? x —y)?
(@ orolfe =" O ), (L)
(04 D0 = 0] = L+ (0, 0, )

(1.43)
The right-hand side of (1.43) has a lower order singularity than the
right-hand side of (1.42). Similarly to the discussion of Definition 1.1,
due to (1.38), we shall use the integral on the right-hand side of (1.43)
to define the following integral.

Definition 1.8

/ [ (i._g)2 _ (x_y)2 f(:v,y)dam
Q

‘.%' _y‘n-‘ra—Z ‘x _y‘n+a+2

(1.44)

I SN I E ) I
- [ e, - 0 e,

where a > 0, y € Q.

The singular integral on the left side of (1.44) is called the fourth kind
of high order singular integral of quasi-Bochner-Martinelli type with one
singular point.

T—y

o —gpra "7 f(z,y) in (1.39), then we get

Similarly, let v =

-n—o« z—9)>2%n+a
oot o= |20 - EED N e ()

—(Z—9) + (= —-y)l

—(v+0)0pu = |z — y|rte

Ouf(z,1). (1.46)

In the terms on the right-hand side of (1.45), (1.46), it is only the term:
(@ - 5P + )
|z — y[rrot?

defined.

f(z,y), whose high order singular integral has not been

Similarly, by means of (1.39), we can inductively define the fifth kind
of high order singular integrals of quasi-Bochner-Martinelli type with
one singular point.
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Definition 1.9

/ (-9 f(x,y)do, —(n+a—2) [ f(z,y)do,
Q

_ o nta+2 - _ alnta
1 / (T —9) + (@ —y)|0:f(z,y) ,
n+a o |z — y[rte v
ifyeQ, a>0.

Finally according to (1.44), (1.47), it is easy to give the definition
of the sixth kind of high order singular integrals of quasi-Bochner-
Martinelli type with one singular point.

Definition 1.10

/ (x—y)2f(x,y)dax (n+a—2) f(x,y)daw
Q

o=yl T —(nta) Jalo—ye

1 (7 —9) + (z —y)]
A

n—+ o |x — y|rte

(1.48)

gwf(l', y)d0$7

fory € Q, a > 0.

As a supplement to Lemma 1.4, it is easy to prove the following
equalities:

LTy 2-n (mta)a—y)
&p(‘x _ y’n+a+2) - ‘.%' _y‘n-&-a - ‘.%' — y‘n—i—a—l—Q , a> 0, (1.49)
aa:(|l-—y|n+o¢) - ’x_y’n—i-a - ’$—y|n+0‘+2 , Q> 0. (150)

From the second term on the right side of (1.49), (1.50), we see that for
investigating high order singular integrals in real Clifford analysis, it is
necessary to discuss the fourth, fifth and sixth kinds of high order sin-
gular integrals of quasi-Bochner-Martinelli type with one singular point.

By means of Definitions 1.8, 1.9, 1.10 and recurrence formulas, cal-
culational formulas, and differential formulas for the first, second, and
third kinds of high order singular integrals of quasi-Bochner-Martinelli
type with one singular point, we can get the recurrence formulas, calcu-
lational formulas, and differential formulas for the fourth, fifth and sixth
kinds of high order singular integrals of quasi-Bochner-Martinelli type.
Because of page limitation, we don’t prove all formulas, and only prove
one of every kind of high order singular integrals; the other proofs are
left to readers.
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Theorem 1.15 Ifn > 1,a > 2m > 0, f(z,y) € H*™2(3),y € Q, u
is as stated in Lemma 1.6, then we have the recurrence formula

(z—7) (z — y)?
/Q Lm — y|n+a+2 - ’fL’ _ y|n+a+2‘| f(x,y)dax

= & / A (95 = ) f(x,9)]
C(nta)(nta-2m—-2) Jg |z —yrte2m-2

(1.51)

dog.

Proof By Definition 1.8, (1.15), (1.16), (1.17) and (1.18), we have
(z - g) (z —y)?
|z — y|ntot2 o |z — y|rto+? f(z,y)do,

A
YRR
Q

) =
n—+ ‘x — y’n-i-a [(835 - 896)ff$7 Z/)} daéi
_ H / A0z + 0.)(0p — 02) f (2, y)
- (n+a)(nt+a—2m—2)Jo |z — y|nta—2m=2

_ " / AZ (95 = 93) [ (w,y)] do
(n+a)n+a—2m-—2) Jo |z — y|nto—2m=2 '

do,

Theorem 1.16 Suppose that f(x,y) € Hgkﬁ)(ﬁ), y € Q, X is as
stated in Theorem 1.8, andn > 1,0 <r < 1. Then

/ (j — Q)Qf(qj,y)do-x
Q

’x _ y|n+2k+3—r

A2 —n) / AT @) g g
Q

n+2k+1—r)2k+1—7) Jo |z —y/~ 1=
A e
n+2k+1—rJo |x—y/r -

do,.

Proof By Definition 1.9, (1.15), and Theorem 1.8, we get

/ (j — Q)Qf(l‘,y)dax
Q

’l‘ _ y|n+2k+37r

B —(n+2k—1-r) / f(z,y)do,
C on+2k+1-r Jol|v—ynt2tlor

NNy S EYUEVPS R
n+2k+1-1rJo |z — y|nt2htl-r
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~A(n+2k—1-7) / (AL f(a,y)] do,
m+2k+1—-r)2k+1—1)Jo |z—y/*1"

n+2k+1—rJo |z —y[rtor

M2 n) [ A,
2+ 1-7)2k+1—71) Jo |z —yr T
PR ST P
n+2k+1—rJo |z—yr-t-r

Theorem 1.17 Let f(z,y) € HMT2k+2m) (5, 8)) 0 < 5 < 1,0 <
r <1, A be the same as that in Theorem 1.8. Then

am (‘T — y)2f(:c, y)daz
Yy Q ‘$ _ y’n+2k+3—r

- A2 n) [ Dy + 2.)" A f (2, )] do,
 (n+2%k+1-7r)2k+1-7) Jo |z — y[n—1=r
A Dy + 0.)" A2 f(2,9)| doy
+n+2k+1—r/9 |z —y|n—1-" '
(1.53)
Proof By Definitions 1.5, 1.10, and Theorem 1.10, we can get
om (JI — y)Qf(l', y)da—x
YV Jo |z — y[rteReser
- _(n+2k+1_7«) Yy Q |x—y|”+2k+1_’"
N RPNy VNS
n+2k+1—1r ) Q |x_y|n+2k+lfr
_ (n+2k—1—7)A / (Oy + 0,)"AFT (2, y)do,
2%k + 172k +1—71) Jo |z —y|n—1-"
A {(@y + o)™ [(ABH + ALOR) f(2, )]}
+ / dog
n+2k+1—rJo |z — y[r— 1T
- A2~ n) [ (9 + 00)" AL f ()] doy
T o (n42k+1-7)2k+1-7) Jo |z —y[n 1T
A (D + Do) A2 f (. )| dory
+n+2k‘+1—r/g |z —y|n—1-7 )
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2 The Holder Continuity of High Order Singular Inte-
grals in Real Clifford Analysis

By the known inequality
o} = 04| < |1 — oo, (2.1)

where 0 < u < 1,0; > 0,7 = 1,2 [87], we can prove the following
theorem similar to the Hile type lemma (see Section 2, Chapter II).

Theorem 2.1 Let m be a positive integer, a > 0 and [«] be the integral
part of o; x, y, U, t, t € R®, ¢, £t #0, x #£ vy, x # 7. Then

m—1 k

<2

k=0

t—1t

t

t

t

1 1

—_— tm, 2.2
i i ‘ =2

and

1 1
jz—yl* |z —glo] =

[a +1

=4
-y

y =yl

<3

Proof Noting that
’ ’]wm ™|
T T
\m—uMgUW%P%W "
) IRIE 23
it is clear that (2.2) is true. By means of (2.1), (2.2), we have
1 1
jz —yl* [z =gl
| 1 1

(Jz — y|EFT)lal1

t—t

i

Ak
t

Yo+l (g — | )lal+1

[ 1 155 ||z — | BT — | — | o \—la]-1
<y z— @ ||z — y| !wa 1] (’ @!W“) [a]
k=0T Y |z — y[ T+
oy g [l -yl — gl
é Z — a T — y|
k=0'* Y |z — y[ T+
o] - o= Yy—79 @1
< > lz— g7
k=0 r—Y X
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From this section to the last section in this chapter, we suppose that the
boundary €2 of the domain D is a smooth, oriented, compact, Liapunov
surface, and the orientation of () is the induced orientation of D. In
view of the definition of Liapunov surface, there exists a positive number
d > 0, such that for any point Ny € (2, the sphere with the center at Ny
and radius d (or less then d) can be divided € into two parts, and the
interior part of the sphere is denoted by Q. We choose Ny as the origin
of the local generalized sphere coordinate system, such that z,-axis and
the outwards normal direction of ) at Ny are identical. If d is small
enough and the outward normal line of ' at any point N(&y,---,&,) is
ng. Let ro = |NoN|. Denote by po the length of the project of ry on the
tangent plane through Ny and by (po, ¢1, - -+, ¢n—2) the local generalized

D(£ 7"'75717 ) .
m be the Jacobian

determinant of coordinate transformation. In Section 2, Chapter I, we
have obtained

sphere coordinate of N, and let J = ‘

1
cos(ng, Tn) > 3 |J| < po"™ 2. (2.4)

For any ® € H"2k4+20) (8, 3,), 0 < B; < 1,4 = 1,2, the norm of ® is
defined as

[2)lg= > COM*2oreax )+ Y H@*29,,0.0 x Q).
0<m+p<n 0<m+p<n

For convenience, we denote ® = 97" 2290, where

A

C(AP,Q Q — (D 9 9
( x €2) (x,i?é’“é‘m' (z,y)]

i P ~
H(‘I),Q X Q) = sup | (x]«?ylﬁ) ($2,y2)ﬁ’ 7
(@1,51),(w2,92)€0xQ |T1 — T2|Pt + |y1 — y2 |2

in which (z1,y1) # (x2,y2). This definition is different from the defi-
nition of H(f,9Q x 9QB) in Section 4, Chapter II, but it is the same
as that in Tongde Zhong’s paper in 1980 [88]2), and it is easy to prove
H®+2k+2,7) (3, B5) is a compact Banach space, and its norm possesses
the property

IF +Gllg < [IFlls + 1Glig, 1FGlls < 2" FllsGlis,
where F, G € HH2k4+2.0) (3, 3,).

Theorem 2.2 If the operator on § is defined as

(Po)w) = | ol@,y)dos

|z =yt
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here 0 < r < 1, o(z,y) € HOO(B,5:),0 < B < 1,0 = 1,2, w =
min(By, Be), 7 > B1, f1 < 2T,y € Q, then Py € ngo)(w) on .

n—1 7

Proof We introduce the operator

p(z ,Y) / o(y,y)do,
(0 doy, (0 = [ LI
(O1)( / |x7 |n 1 —dog,  (620)(y) g1

Q

Obviously (Py)(y) = (61¢)(y) + (62¢)(y). Firstly, we discuss the Holder
continuity of (91g0)( ). From Section 2, Chapter 1, we know do, =
m(x)ds,, m(z) = Z e;j cos(m,e;) is the outward normal direction of
jf

x on §. For any y1,y2 € Q, we denote 6 = |y; — y2|. Let 3§ < d, here d
is as stated before. We make a sphere with the center at y; and radius
36. Denote by ; the interior part of Q2 and by (o the left part. It is
easy to see that

[(019)(y1) — (6190)(y2)]

o o(z,y1) — o(Y1,y1)

o(x,y2) — w(yz,w)d
|I’ _ y1|n—1—r

2 ‘x_yQ‘n_l_T

dog| +

x

1 1

+  |Ja, (|x T P yﬂn_l_ﬂ(w(%yl) — o(y1,y1))doy
e, [(¢(z, 1) — w(x,‘zg/f)_) ;’(i(lyf; y2) — o1, y1))] do.

= Ly+ Lo+ L3+ Ly.

The formula (2.4) about Ny € €2 discussed at the beginning of the section
is used as yi1, and the projective domain of €21 on the tangent plane of
y1 is denoted by 71, from which we can get

ds
L1 <G / z
1S 1||90Hﬂ o |z _y1|n7177~751

cos(ng, Tp)dsy

= GIH(IDHB le ‘I‘ _ ylln—l—r—ﬁlcos(noj ]}n)
dfl e dfn—l
<G /
> 1”90”5 - (|£U _ y1|n—1—r—ﬁ1)% (25)

_deo T
< Gallola S8 L0 < Gl

< Gallellgd™ = Gallpl|gdo™

< Gsllellg0* = Gsllelislyr — yal”.

Similarly, we have
Ly < Gellellslyr — vl (2.6)
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where G;(i = 1,...,6) are positive constants independent of yi,ys. In
the following, G;(i > 1) are denoted as positive constants with the
similar property. Next, we estimate Ls. By means of Theorem 2.1,
the inequality

1 1
|x_y1|n—1—r |x_y2‘n—1—r
9 k(n—1—r) n—1—r
—a |l — n—1 — n—1 _ _
Y2 Y1 — Y2 |$_y2| nt+1l—r
k=012 — U1 T =Y

is derived. For any x € Q9, we have |x —y1| > 36 = 3|y1 — y2|, |x —y2| >
26, hence 3 < ‘% < 2, |z — y2| > 3|z — y1|. Moreover, noting that

(n—=1-=7r)/(n—1) > (1, we have

n—l

0 B1
|z — y1l

Y1 — Y2
r—u

_ B1
< Y1 — Y2
r—1U

I

and then

5P|l glz — y1|Prds, lollpdss
L3 < Gy =G7y1—y2’31/ —_—
Q0 |z —ypniorth | | o |z —y|n o

< Gsllellglyr — y2I”* < Gollollglyr — y2|.

2.7)
By virtue of
[(p(z,y1) — @z, 42)) + (0(y2,92) — ©(y1,91))]
< lellslyr = v2l® + lells [lyr = vel® + v — 92l
< Guollellslyr —w2l”,
we know
Ly < Gulleliglyr — ya”. (2.8)

Next we discuss the Holder continuity of (f2¢)(y). It is not difficult to
see that

[(B200) (y1) — (O200)(y2)|

dog

i

< ’(‘P(yhyl) - (P(y27y2))/ T

y27y2
y1|n 1—r |J,‘ y2|n 1—r B
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do
_ — 1P .
< Guallelaln — vl + lin =) + el | | =7
dog
+ R
1 1
+ / ( — )da
et |1, (= = )
= Ls+ Lg¢+ L7+ Lg.
Firstly, it is easy to see that
Ls < Gusllellglyr — vl (2.9)

Secondly, similarly to the deduction of (2.5), and according to the con-
dition of r > 31 > w, we get

Le < Gullellpd" < Gusllel|p0* = Gusllellslyr — vl (2.10)

Moreover, we have
Lz < Gsllollglyr — yal*. (2.11)
Finally, similarly to the deduction of (2.7), and noting that » — 31 > 0,

we get

do
Ls <G — fﬁ/ z <G — ya]*.
8 < Girllellglyr — ve 0, o g G S 1sllellalyr — vel

(2.12)

In view of (2.5) — (2.12), the inequality

[(Po)(y1) — (Pe)(y2)] < Grollellglyr — v2l < Gaolyr — 92|, (2.13)

is derived, namely Py € Hz? (w). The proof of this theorem is finished.

Now, we verify the holder continuity for every kind of high order
singular integrals of quasi-Bochner-Martinelli type on an integral path.

Theorem 2.3 Let f(z,y) € H(2k+2’0)(ﬁ1,ﬁ2), O<r<1l,7r>pB,n—
1>7r/(1=p01),w =min(6,5),y € 0 < 5 < 1,i =1,2. Then
the six kinds of high order singular integrals of quasi-Bochner-Martinelli
type as stated before all belong to Hg(w) on .

Proof On the basis of Theorem 2.2 and the calculation formulas of
every kind of high order singular integrals of quasi-Bochner-Martinelli
type, we can prove this theorem.
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3 Nonlinear Differential Integral Equations including
Three Kinds of High Order Singular Integrals of Quasi-
Bochner-Martinelli Type in Real Clifford Analysis

From the Definitions 1.8, 1.9, 1.10, we know that the fourth, fifth, and
sixth kinds of high order singular integrals of quasi-Bochner-Martinelli
type with one singular point can be expressed by the first, second, and
third kinds of high order singular integrals of quasi-Bochner-Martinelli
type with one singular point. So when we consider the nonlinear differen-
tial equations including high order singular integrals of quasi-Bochner-
Martinelli type in real Clifford analysis, it is sufficient to discuss the
equations with the first, second, and third kinds of high order singular
integrals of quasi-Bochner-Martinelli type. In the field of differential
integral equations, Y. Hino investigated the linear Volterra differential
integral equation in 1990 (see [24]).

Due to the enlightenment from the Volterra differential integral equa-
tion, in this section we shall prove the existence and uniqueness of so-
lutions for some nonlinear differential integral equations with the first,
second, and third kinds of high order singular integrals of quasi-Bochner-
Martinelli type by using the results in Sections 1 and 2, the method of
integral equations and the Schauder fixed-point theorem.

In this section, 2 is the same as that in the above section. Now we
introduce three high order singular integral operators over 2 x €, i.e.

<p(a:, tg)(:f — t_l)dO'x

(Slcp)(tlv tQ) = ‘m _ t1’n+2k+1—r1 ’
. (p Z, tg T — tl)dO'x
(SQ(p)(tlatQ) = .ZL' _ t1’n+2k+1 ro
.%' tQ dO’x
(S3¢)(t17 t2) = / ’1‘ _ t1’"+2k+1 r3’

where 0 < r; < 1,1 =1,2,3, (t1,t2) € Q x Q, and the nonlinear differ-
ential integral equation including S;p (1 <i < 3) is

3 =~ mv
We = Yl(ailtit) X 9700 Sip)

=1 O<kl+ml<nl

3.1
+g(t1, t2) flt1, t2, OLLOL S1p, DL Saep, D720 S5 (3:1)

= o(t1,t2), (t1,t2) € 2 x Q,

here k;, m;, n;, p;, q; are non-negative integers.
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Theorem 3.1 If the operator

\Il(.%', tg)dJ:C

PU)(t1,t2) = _—
(PO)(t1,t2) W To—

O0<r<l,
is given, then for any ¥(x,y) € H((g’lo)ﬁ2), 0<Bi<1l,i=12,n—-1>
r/(1 — (1), there exists a positive constant Jy independent of ¥, such

that
[P¥lg < J|[¥]s. (3.2)

Proof From Section 2, Chapter II, it is clear that do, = m(x)ds,.
Now we introduce the singular integral operator

(\Il(tlatQ) - ‘I/(Zﬁ,tg))dax
’:L’ _ t1|n717r

(QU)(t1, 1) = /Q

(3.3)
dog
= U(ty,t — Y — PU.
( L 2)/9 ‘:L' _ tlln—l—r
Firstly, we estimate
t x|Pt|m ds,
(@U)(t.ta)] < Gallw | "]
(3.4)

ds
<Gls | o tl‘nfl_r_ﬁl < G|,

where G, Gy are positive constants independent of W.

In order to consider H(QW,Q x ,3), denote Y~ = Q x Q, and for
any (t1,t2), (f1,t2) € 3, set § = |t; —t1]|. Let 30 < d, and d be as stated
in Section 2. We make a sphere with the center at ¢; and radius 3§.
Denote by €21 the interior part and by €2 the left part, hence

(QU)(t1, t2) — (QW)(t1,12)]

< / (\I/(tl,tg) \I/(.T tg))dax / (\I/(%\l,%) — \I/(x,fg))dam
B \x —ty|ntr o |z —ty|n—1-r
1
+ ’.’IJ o tl‘n 1—r |IL’ o %\1”_1—1”> (\Il(tlatZ) - \I/(l’,tQ))dO'x
n / [(V(,t2) — Yz, t2)) + (P(t1,t2) — ‘1’(?1,?2))]%
’x _ t1|n—1—r

= L1+L2+L3—|—L4.
(3.5)
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The formula (2.4) about Ny € Q in Section 2 is used to t;, and the
projective domain of 2 on the tangent plane of ¢; is denoted by 71, thus
we can obtain

ds
Ly < G40 / v
1 < Gs| Hﬁ . |:C—t1‘"_1_7'_51

cos(ng, Tp)dsy
-,
3l|Vlg 0, |x — t1|"1="Picos(ng, z,)

dglmdgn—l
m |v —tpn-1r=hil (3.6)

35 -2
Po_"dpo
§G4H‘I’Hﬁ/0 P

0
< Gs[|U]|g0" 6P < G| ¥||5lt1 — T

< G3||¥g

|Bl

<G6H‘I’Hﬁ[|t1—t1\ + [t2 — 2 \ 7,

where G;(i = 3, ..., 6) are positive constants independent of ¢;, £;,7 = 1, 2.
Similarly, we have

Ly < Gl Wl llts — A" + |ta — 6. (3.7)

Secondly, we estimate Ls. By means of Theorem 2.1, the inequality

1 1
Y N R A L
n—2 r
— t1 k(n—1-7) ¢ t 1 ~
S Z|x t1|7’”*1 | 1 — 1|nn 1r|x t1|—n+1+7“
=0 T — 11 xTr —

is derived. For any = € Qa, we get |x — t1| > 38, |x — £1] > 26, hence

S | PPN SR T)
2 = lz -t =3 !
Moreover we have
t1 — 7?1 n—l t1 — 7?1 & _ ) )51
T — 11 xr—1t ’x_t1| ’
and then
3% |z — 11| ||| pds, " V] pdsq
Ly <Gs O ‘IL‘ _ tl‘n—l—r+ﬁ1 - Ggltl - tl‘ 42 m

< Gol|W||g[lts — £1]* + [t2 — £2]7].
(3.8)
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In view of
(U (x,t2) — Uz, t2)) + (U(t1, t2) — U(H1,12))|

[Grolta — 2| + Gua ([t — 11| + [ta — 12 )][| %] 5

IN

< G| Vllgllts — 1) + [t2 — £2]],

it is easy to see that
Ly < Gua||lsllts — &1 + [t2 — 2]™]. (3.9)
In view of (3.5) — (3.9), we know when 3|t; — 1| < d,
(QW)(t1,t2) = (QU)(E1, f2)] < GrallW|sllts — 1| + [t2 — £2™]. (3.10)

It is clear that when 3|t; — fl\ > d, the above estimation is correct. From
(3.4), (3.10), it follows that [|QW¥|/g < G15]|¥||3. So in view of (3.3), we
have

1P¥s < [[Q¥ls + Gisll¥lls < J1[1¥]]3,

here G;(7 < i < 16) are positive constants independent of t;,#;, (i =

dog
1,2), Gig = sup [ —————,
) teQ Jo |z — tq|n—1=r

of W. This completes the proof of Theorem 3.1.

J1 is a positive constant independent

Corollary 3.2 Suppose p(t1,ty) € H@T2k+20) (3, 8,) ¢ HO0 (5, 6y),
0<ki+m; <n;<n,n—1>r;/(1-01),i=1,2,3, wheren, k, k;, m;, n;
are non-negative integers. Then ||3£i8§2ni5icp(t1,t2)“ﬁ < Jo|| V|5, where
the norm is the norm of the element in space H9 (5, Bs).

Proof It is easy to prove this corollary by means of Theorems 1.13
and 3.1.

_ The set of functions which have arbitrary order generalized derivative
Ot , O, on Q2 x  is denoted by Doo (2 x ). It is clear that Do (2 x ) C
HOO(5y, 35).

Theorem 3.3 Let g(ty,ta), f(t1, b2, @' (t1,t2), ®*(t1, t2), ®3(t1,t2)) and
ai(ti,t2) (i = 1,2, 3) in the nonlinear differential integral equations (3.1)
belong to Do (2% Q), where ®(t1, 1) = (071011 S;0) (11, t2), (t1, t2) € O
Qpi+q¢ <n<n, s$¢,0<r; <l,n—1>r/(1-7p1)(GE=1,2,3) are
as stated in Corollary 3.2, and f(0,0,0,0,0) = 0. Then when 0 < r =

_ _ n M(1—
971 Jo (i + 1)2 2 llaills < 1, llglls < o, 0 < o < ST o the
1=

nonlinear differential integral equation (3.1) has a solution ¢ € Dy (£ X
Q); and when f = 1,0 < r < 1, the solution is unique, where M is a
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given positive number such that ||¢||g < M, and Gig, Gog are positive
constants.

Proof According to the condition f € Dy (2 x Q), for any (t1,12),
(t1,t2) € Q x Q and any ®) € A,(R), (i =1,2), 1 < j < 3, we have

|f(t1;t2) q’gl)»‘b?), (I)g?))) - f(flaf% q)gl)vq)g)v ®é3))|

o . (3.11)
< Girllts — o] + |1 — t2|ﬁz] + Gis ‘21 “I’g]) - (I)gj)’v
]:

in which G17, G1g are positive constants independent of ¢;, %, <I>§j ), 1=
1,2, 1 < j < 3. Next, we consider the subset

SOGDOO(QXQ) CH(070)<ﬁ17ﬁ2)7 }

T = {p(ti,t2)
(tl,tg) € Q) x Q, ”gng < M, M >0

of HO9) (B, B5), in which the norm is defined in the space H(®9) (8, ).
For any ¢ € T, by means of (3.1), Theorem 1.13 and the above condi-
tions, we know W, € Do (2 x Q). In view of (3.1) and Corollary 3.1,
the estimate

3
_ ak; am; _
[Wellg <2" l,ZlHaillﬂO > 1950 Siells +2" gl flls
1=

<k;+m;<n;

3
< on-1 21 lasllg(n + 1)2 Tl + 2" gl sl £l 5
1=
(3.12)

is concluded. In accordance with f(0,0,0,0,0) = 0, (3.11) and Corollary
3.2, we have

3 = . .
[fl < Gurllts = 017 + [tz — 01%2] + G 3 |07 0f; Sigpl
i=1 (3.13)

< Gig + 3Gis 2o p-
Noting (3.11), we have
| f(t1, ta, OV OL S1p(tr, t2), ..., OV O S50p(t1, L2))

—f(t1, ta, OF O S1p(t,12), ..., OF2OF S3o(th, £a))]

IN

Gurllt1— 1]+ [ta — E2]P2]+ 3G 15 Ja || ol gl t1 — 1| Pt +[t2 — 12| 2]

IN

(G174 3G1s a0l [|t1 — ta]Pr + [t2 — £2]72].
(3.14)
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From (3.13),(3.14), it follows that

1flls < Gio + Gaollells- (3.15)

By means of (3.12), (3.13) and the conditions, we get
3
Wells <2 X flaillg(n+ 1)22M + 27715(Gho + Gao M)
i=1

< Mr+ 2n_15(G19 + GQOM) < M.
This shows that W maps the set T into itself.

Next, we prove that W is a continuous mapping. we are free to choose
a sequence (™ € T(n = 1,2,...), such that {©(t;,t5)} uniformly
converges to ¢(t1,t2) € T, (t1,t2) € Qx §. For arbitrarily given positive
number &, when n is large enough, [|p(™ — ¢|lp can be small enough,
hence by (3.11), (3.12) and Corollary 3.2, we see that when n is large
enough, the following inequality holds:

W™ (t1,ta) — Welti, ta)| 5
L2 N2 T ()
< 2" ;Haz‘||ﬁ(n+1) Jollo'™ —o||g

+2" 7 glls(8G1s T2 ll0™ — ¢l|5) <e.

This shows that W is a continuous mapping, which maps 7" into itself.
According to the Ascoli-Arzela theorem, we see that T is a compact
set of space H*%(1,32). Hence the continuous mapping W maps the
closed convex set T in H(®0)(3;, 35) onto itself. Moreover W (T) is also
a compact set in H(©0) (81, P2). By the Schauder fixed-point theorem,
there exists a function pg € Do (2% Q) satisfying equation (3.1); here we
mention that though the conditions added to a;, g, f are stronger, the
solution found still satisfies the above condition. At last when f = 1,
similarly to Section 4, Chapter II, by using the contraction mapping
theorem, we can verify the uniqueness of the solution for equation (3.1).

4 A Kind of High Order Singular Integrals of Quasi-
Bochner-Martinelli Type With two Singular Points and
Poincaré-Bertrand Permutation Formulas in Real Clif-
ford Analysis

From the enlightenment of Sheng Gong’s paper about singular inte-
grals of several complex variables [20], in this section, we first discuss
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high order singular integrals of quasi-Bochner-Martinelli type with two
singular points.

Denote still by §2 the boundary of the connected open set D in R™.
If © # t(z,t € Q), by means of the separability of D, we assume that
D?®, Dt satisfy the conditions D* N D' = (), D* U D! = D, Q*, Q! are
the boundaries of D*, D! respectively, z € Q% t € Qf, and the orien-
tations of Q%, Q! are harmonious with the orientation of Q. Moreover,
the orientations of , Q%, O are induced orientations of D, D%, D? re-
spectively. In addition, suppose that D¥ (VD! = ¥, and for any y € X,
|y — x| = |y — t| holds. The integral kernels with singular points z,t are
denoted by K*(z,y), K'(z,y) respectively. By the additive property of
general integrals, the singular integral with two singular points can be
defined as follows.

Definition 4.1 Let o(z,y) € H™P) (B, 62), 0 < §; < 1,1 =1,2; the
singular integral with two singular points on 2 is defined as

/ K (y, t)p(a, y) K* (2, y)do,

| K e K @)do,+ [ K 005K @ 0)do,

where m,p are determined by the orders of singularity of kernels
K*(x,y), K'(y,t) respectively.

In the following, we first discuss the singular integral which can ex-
change the integral order.

Theorem 4.1 Let ¢(x,y) € H(O’O)(ﬂl,ﬂz), 0<Bi<l,r>0h>
0,n—1>r+h,z,te Then

z,y)
doy| dog
/[ ‘y_t’n 1 r‘x y[— 1k Uy] g

o(x,y)do, ]
p— d
/Q [!y 1 Jo oy ih Oy

Proof According to the Hadamard theorem [19], when (n—1) > r+h,
we have

Ga1
— ‘x _ t|(n—1)—(r+h) :

/ o(z,y)doy,
Q

|y _ t‘n—l—r|x _ y|n—1—h

This shows that the above integral with two singular points has a weak
singularity, and then the left side of (4.1) is the integral in a general
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sense. By means of the Fubini theorem [19], we know that this integral
order can be exchanged. Hence (4.1) holds.

Now, we deduce the Poincaré-Bertrand permutation formula for the
first and second kinds of high order singular integrals of quasi-Bochner-
Martinelli type.

Theorem 4.2. Let p(z,y) € HVD(81,3),0< i <1, 7, h > B, i =
1,2,0<r<l,n—=1>h+r z,t Q. Then

/{ y—t / o(x,y)do, ]da
Q ’y—t‘TH_l_T Q‘l’—y’n_l_h Yy
(g - a‘%’(% y)day
n+l-—r n—1—h doy
a lJa ly —t |z — g
1 o(x,y) ) }
' doy, | doy,
+/Q /Qt (n—l—r)‘y_ﬂn—l—ra (’x_y|n—1—h Oy | 4o,

Ly oo (St ) do] o
(4.2)

Proof Under the conditions of Definition 1.1, Theorem 1.8, Corollary
1.2, Lemma 1.4 and Theorem 4.1, we can get

y—t o(r,y)do, J
— ¢|ptl-r _ o n—1—h Oy
aly—t olr -yl

1 Byw(x,y)daxﬂ
P— d
[ (n—1-r)y—tn=1-r ( \x—y\”‘l‘h o

e(z,y)(z—y)(n—1—h) ]
do,| d 4.3
+/|:n17a‘yt’n1r/ ‘xy‘n—i—lh oy | doy  (43)
:/ [/ 8y‘»0(x7y)d‘7y :|d0'
alJo (n—1=r)ly —t"=1=rfz —y[n-1=h ] 77F
n—1-—nh 1 Ozp(z,y)doy }
d
+n—1—T/Q{\y—ﬂ"‘l_r/g(n—l—h)|x—y|”_1_h o

S L[] e ),
n—1=rJolaly—tf"1="|e —yrt=n] 0

On the basis of Definitions 4.1 and 1.1, Corollary 1.2, Lemma 1.4 and




192 Chapter VI

(4.3), we can derive

y — t_)QD z,y day :l
d
/Q /\y—t]”ﬂ r‘x_ [n=1=h Oz
—E)QD(JJ,y)dO'y ):l
- +/ ( dog
/Q _(/Qt L) ’y—t‘n+1_T’$—y’n_1_h

- [ 1 p(z,y) ) }
B /Q _/Qt n—1—-r)y— t]n—l—ray (\x — y[n—1-h doy | do
o Lo |z —y[*=1 ="y —tn 1T
-, UQ (
+/ [/ (n= 1= h)(& = g)do,
ot (n— 1 — )|y — || — y[n R
1 1
+/Q[ QZ’QC—?J’”_I_"(I—H—n)ay(]y—t\n—l—r)SO(x?y)d%}d%
Oyp(x, y)do,
+/ [/ Y ]d .
o lJas (n—1—=r)|y—tn—1=r|z — y[r—1-h .

Al pa | do
o llas (n—1—r)ly—t|-1="]a —y[r-1-0] 7

Oyp(x,y)doy ]
/Q {/ (n—1—7)|ly—t/n1-7|x — yjn-1-h o

doy

Oyp(z,y)doy ]
doy
n—l—/,")‘y_ﬂan‘x_ ‘nlh g
. Y)

doy

Owp(x,y)doy }
doy
+/Q /Q n—l—r |y—t|” 1- r|$ |n717h o
]
Q Qt n—l—T)|y—t|"17“|x_ |n1h T
xz,Y )(n_l— )(CL'— )dO'y
doy
+/Q /Qt n—l—r) — tjn1-r|z — y[ntl-h 0.
1
+/Q /Qw 14+r—mn |.1‘ y|" 1- hay<|y_t|n_1_7,)<p(x,y)day}daz
Oep(x,y)doy ]
— i,
/Q /m n—l—r Yy —t|n—t-rjz — y|n—1-h 0.
s )
QQInlryt|”1T|my’n1h z
_ /U (Oy + 82)p(x, y)doy ]da
Q LJ/Q (nfl—r)|y t|n717r‘x y‘nfl—h T

Ll e
- -
o l/at(n—1-r |y t|" L=r| g —y[n—1-h

N R P

_l’_
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_/Q/m<(n—1—r)\i_y\n—1—h> 9y (W) w(x,y)day] do,
e e

- /Q[/Q (n—1 j%g?gﬁffﬁj?y‘n_l_h]dam
_/Q[/Qt 1o T)‘ly =0 S_O(z'j;?ﬁ_h)day]daz

1 1
_/ [/W (n—1-r)|z— ’n—l—hay( ly — t’n—l—r)so(x? y)do|doy

/ /w (Or + 0y)p(x,y)doy o,

n—l—r YNy — t|n=1=7 |z — y|r—1-h

— / / o(z,y)doy o,
= 0 ’y_t|n+1 r ‘il] ‘n 1— h

e(z,y)
/Q/Qt n—1-—r) ‘y_ﬂn 1—r (|x_ |n 1— h)day]daz
/Q/ n—l—r)’x M= h(‘)y(‘y tyn —)p(z,y)do,do,
(Oy + 0z)p(x,y)do
/Q/x e, |n_1—h]d0-x.

n—l—r ’y_t‘n 1— T|.%'

(4.4)
In view of (4.4) and Corollary 1.2, we have

[ [t
— / U (¥ — De(z,y)doy } i
Q LJ/Q |y_t’n+17r|x_y|n,17h T
- 1 p(,y) ) ]
+/Q —‘/Qt (TL -1- T)’y - t|nilir ax <|,CC — y|n*17h day dax
- 1 p(z,y) }
+/Q /w (n—1-=r)|z— y|n—17hay(’y — t|n71—r)d0y dog
- 8$30(:C7y)d0'y :|
oAl do
o lJas (n—1—r)|z —y[r—1-hly —t|n-1-r o
= / [/ (y — t)p(x, y)doy } do
al/a ly — tnti-rjz — y|n-1-h
+/ [/ 1 9 ( ) )da ] do
olJat (n—1—7r)y—tp=1=r""\ |z — y|n—1-h y| A0x




194 Chapter VI

1 p(x,y) ) }
+/Q [/Qz (n—1—r)|z—yn-1-h Oy (|y — 1o doy| doy
1 o(z,y) ) ]

Merge the last two terms in (4.5), and we get (4.2). The proof of this
theorem is completed.

(4.5)

In short, the method of the proof in Theorem 4.2 is as follows: Firstly,
by using calculational formulas, differential formulas in Section 1 and
the Fubini theorem (see [6],[7][19]), we establish the relation between
the singular integral before permutation, the singular integral after per-
mutation with high order quasi-Bochner-Martinelli type kernels and the
singular integrals with two singular points to be exchanged in integral
order respectively. Next we can get the Poincaré-Bertrand permutation
formulas. The above differential formulas play an important pole in the
proof. This method is different from that used to prove the Poincaré-
Bertrand permutation formulas of non-high order singular integrals in
Section 2, Chapter V.

If W(k;,7i) (1 <i<6) are expressed the general first—sixth kinds of
high order quasi-Bochner-Martinelli kernels in Theorems 1.8 and 1.16,
then we can use the same method in the proof of Theorem 4.2 to prove
the Poincaré-Bertrand permutation formulas of the general high order
singular integrals with the kernels W (k;,r;) and W (k;,7;) (1 <14,j < 6).
Because of page limitation we do not prove them one by one. The proofs
are left as exercises.

Concluding Remark It is well known that the representation in cir-
cular cylinder domains for several complex variables is worse than the
representation in the unit disk for functions of one complex variable.
Hence in theory of several complex variables, the regular functions de-
termined by Cauchy integral formulas in several domains possess differ-
ent representations, which were an important research subject by many
scholars. In 1961, F. Norguet enumerated 66 main papers about Cauchy
integral formulas of several complex variables in the appendix of his pa-
per [56]. In [56], the main Cauchy integral formulas are classified as five
kinds, for example, the Cauchy integral formulas in four kinds of canon-
ical domains, Cauchy integral formulas of Bochner-Martinelli type and
so on. These Cauchy integral formulas are generalized to the Cauchy
integral formula of a complex variable from different angles and views.
We are enlightened by the variability of Cauchy integral formulas in
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several complex variables. Because of the non-commutativity property
in Clifford algebra, the expressions of integral operators adopted in this
chapter are different from the Cauchy integral expression

1/ ’x_ydamf(a:), Q=aD c R",
Q

Wn T — y’n

used by other scholars (see [6],[19]). In this chapter, we use integral
expressions, that be got in Chapter I, such that many calculational for-
mulas, recurrence formulas and differential formulas of singular integrals
as stated in Section 1 are succinct and regular. Furthermore, we can give
another method to prove the Poincaré-Bertrand permutation formula of
high order singular integrals by using differential formulas. It is also
interesting to investigate various integral expressions of generalized or
doubly regular functions in Clifford analysis.



CHAPTER VII
RELATION BETWEEN CLIFFORD
ANALYSIS AND ELLIPTIC EQUATIONS

In this chapter, we first introduce the solvability of some oblique
derivative problems for uniformly and degenerate elliptic equations of
second order, and then discuss the existence of solutions of some bound-
ary value problems for some degenerate elliptic systems of first order in
Clifford analysis by using the above results for elliptic equations.

1 Oblique Derivative Problems for Uniformly Elliptic
Equations of Second Order

1.1 Formulation of oblique derivative problem for nonlinear
elliptic equations

Let @ be a bounded domain in RY and the boundary 0Q € C’i (0<
p < 1), herein N (> 1) is a positive integer. We consider the nonlinear
elliptic equation of second order

F(x,u, Dyu, D2u) = 0 in Q, (1.1)
namely
N N
Lu = Z QijUyz; + Z biug, +cu = f in Q, (1.2)
ij=1 i=1

where Dyu = (uy,), D2u = (Uz;e;), and
1 1
Gij = /0 Frr (z,u,p,7r)dT, b = /0 Frp,(z,u,7p,0)dr,

1
c :/ Fry(x,7u,0,0)dr, f = —F(«,0,0,0),
0

ou - Ou
81‘1'85%" Pi= 8%

2
r = Dxu7 p = Dl‘“) r’bj =
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Suppose that (1.1) (or (1.2)) satisfies Condition C, i.e. for arbitrary
functions u (), ua(z) € Cﬁ(Q) NW2(Q), F(x,u, Dyu, D>u) satisfy the
following conditions:

F(z,u1, Dyuy, D2uy) — F(x,u2, Dyus, D2us)

(1.3)
= Z AijUz;z; + Zb Uy, + Cu,
1,j=1
where 0 < 0 < 1,u = u; — us and
1
&1j:/Fuzz(xup7 T, /Fumxupa )da
0
1
c= / Fu(z,a,p,7)dr, © = ug + 7(u; — uz),
0
P = Dyfus + 7(u1 — uz)], ¥ = D2[ug + 7(u1 — us)],
and a;;, bi, ¢, f satisfy the conditions
N N N
oY 1617 < D ai&é < qpt D I41P0 < q < 1, (1.4)
j=1 ij=1 j=1
2N —1
Sup Zau/mf Zau <O <z a5 Lp(f, Q) <k,

|56ij|, |b1| <kyin Q, 1,5 = 1,...,N,—k0§ian 6§supQ ¢c<0,

in which ko, k1,p(> N + 2) are non-negative constants. Moreover,
for almost every point * € @ and D?u € RN (N+1)/2 the functions
aij(x, u, Dy, D2u), bi(z,u, Dyu), &(x,u) are continuous in v € R and
D,u e RN.

The so-called oblique derivative problem(Problem O) is to find a con-
tinuously differentiable solution u = u(z) € C’é(@) N W2(Q) satisfying
the boundary conditions:

lu:ng—l—bu:g(a:), x €0Q, ie

N
ou
lu _]Zjldjaﬂ?j +bu =g(z), =€ 0Q,
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in which d;(z), b(x), g(x) satisty the conditions

Calb(x), 0Q) <ko, Cilg(), Q] < k2,

cos(v,n) > qo > 0, b(x) >0 on 0Q,
N

Zdj cos(v,x;)>qo >0, Cé[dj(x),aQ] <kypj=1,..,,N,
j=1

in which n is the unit outward normal on 90Q, a (0 < a < 1), ko, ke,
qo (0 < go < 1) are non-negative constants. In particular, if Problem O
has the conditions d = 1,v =n, b = 0 on 9Q in (1.6), then Problem O
is the Neumann boundary value problem, which will be called Problem

N.

In the following, we give a priori estimates of solutions for Problem
O. Then, by using the method of parameter extension and the Leray-
Schauder theorem, we prove the existence and uniqueness of solutions
for Problem O.

1.2 A priori estimates of solutions for Problem O for (1.2)

We first prove the following theorem.

Theorem 1.1 If the equation (1.2) satisfies Condition C, then the
solution of Problem O is unique.

Proof Let uj(z),u2(z) be two solutions of Problem O, it is easily seen
that v = u1 — ug is a solution of the boundary value problem

N N
Z iUz, + Zbium +céu=0in Q, (1.8)
ij=1 i=1
. ou
lu(x) =0 i.e. d% +bu =0, € 0qQ, (1.9)

where dij,gi,é are as stated in (1.3). By the maximum principle of
solutions for (1.8), u(z) attains its maximum in @ at a point Py € 0Q,
and lu|p, > 0; this contradicts (1.9), hence u(z) = 0 in @, i.e. u!(z) =
u?(z), z € Q.

In the following, we shall give the estimates of C'(Q) and C’é(@) of
solutions u(z) of Problem O.
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Theorem 1.2 Under the same condition as in Theorem 1.1, any so-
lution u(x) of Problem O for (1.2) satisfies the estimate

N
lullor gy = lullo@y + 3 lualleg) < M, (1.10)

where My is a non-negative constant only dependent on q,p,a, k,Q, i.e.

Ml = Ml(q7p7a7 ka)7q = (QO7q1)7k - (k(]vkl’kQ)-

Proof Suppose that (1.10) is not true, there exist sequences of func-
tions {a;j}, {67}, {¢™}, {f™} and {a™(x)},{b™(2)},{g™ (x)}, which
satisfy Condltlon C and the conditions in (1.7), and {af}}, {0},
{™} {f™} weakly converge to af;, by, %, f°, and {a™}, {b™}, {gm} uni-
formly converge to a’, b°, g° on 0Q respectively. Furthermore the bound-

ary value problem

Z ;i Uz, —I—meuzz +cMu=f"in Q, (1.11)
tj=1
m m : maum m, m m
W (x) =¢™(x), ie. a W—}—b u™ =g"(x), x€0Q (1.12)

has a solution u™(z), such that [[u™||c1g) = Am(m = 1,2,...) is un-
bounded (there is no harm in assuming that A,, > 1, and lim, e Ay, =
+00). It is easy to see that U™ = u™/A,, is a solution of the initial-
boundary value problem

N
ZamUm =B" B" ==Y Ul —c"U"+ " [Am, (1.13)
U (z) = g ie. a™ " +0"U™ = g x € 0Q. (1.14)
Ap’ on Ap’

Noting that SN, b*UM+c™U™ in (1.13) is bounded, by using the result
in Theorem 1.3 below, we can obtain the estimate

U™ llex@) = U™ Mles@ +Z|I v lcp(@) < Ma, (1.15)

HUm||W22(Q) < M3 = M3(q7p7a7 k?Q)a m = ]-525 (116)

where 3(0 < f < ), Mj = M;(q,p, o, k,Q)(j = 2,3) are non-negative
constants. Hence from {U™},{U;"}, we can choose a subsequence
{U™} such that {U™}, {U*} uniformly converge to U, U in Q
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respectively, {U;’Z’;j} weak converges to Ugixj in @, and U? is a solution
of the boundary value problem:

N N
iajzl =1
0 . ou”° 0
1U°(x) =0, ie. @ +boU" =0, z €0Q. (1.18)

According to Theorem 1.1, we know that U%(z) = 0, x € Q. However,
from [|[U™|[c1(g) = 1, we can derive that there exists a point z* € @,

such that [U%(z*)|+ XN, | UY (#*)] > 0. This contradiction proves that
(1.10) is true.

Theorem 1.3 Under the same condition as in Theorem 1.1, any so-
lution u(x) of Problem O satisfies the estimates

lulley@) < Ma = Malg, p, . k, Q) (1.19)

||u||W22(Q) < M5 = M5(Q7p7a7k>Q)7 (120)

where (0 < B < a), My, M5 are non-negative constants.

Proof First of all, we find a solution 4(z) of the equation
Ati— i =0 (1.21)
with the boundary condition (1.6), which satisfies the estimate
|l c2(g) < Me = Mes(q, p; o, k, Q). (1.22)
(see [38]). Thus the function
u(x) = u(x) — u(zr) (1.23)

is a solution of the equation

N N

Lu = Z aijﬂxixj + Z bitiy, + it = f’ (1.24)
3,j=1 i=1

li(z) =0, = € 0Q, (1.25)

where f = f — La. Introduce a local coordinate system on the neighbor-
hood G of a surface S1 € 0Q:

x; = hi(&, - Ev—1)éN + 961, én—1), i =1,.., N, (1.26)
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where &y = 0 is just the surface S; : z; = gi(&1,..,énv-1)(i = 1,...,N),
and

hae) = 4) i=1,..,N,dz) = id%).
() l;=gi(e) =
Then the boundary condition (1.25) can be reduced to the form
oun -
—— +b=0 =0 1.27
agN + on §N , ( )

where @ = a[z(£)], b = b[z(£)]. Secondly, we find a solution v(z) of
Problem N for the equation (1.21) with the boundary condition

(;Z’V =bon &y =0, (1.28)

which satisfies the estimate
[vllc2(gy < M7= Mr(q,p, ., k, Q) < o0, (1.29)

(see [38]) and the function
V(x) = a(x)e’™ (1.30)

is a solution of the boundary value problem in the form

N N
Y Ve, + 3 biVe, +V =, (1.31)
t,j=1 i=1

1%

e =0 = 0. 1.32

On the basis of Theorem 1.4 below, we can derive the estimates of V' (&),
ie.
Vlley@) < Ms = Ms(a,p, .k, Q), (1.33)

||V||W22(Q) < M9 = M9(Qapaa7kaQ)v (134)

where (0 < 8 < a), Mg, Mg are non-negative constants. Combining
(1.22), (1.29), (1.33) and (1.34), the estimates (1.19) and (1.20) are
obtained.

Now, we shall give some estimates of solutions of Problem N for (1.2).

Theorem 1.4  Suppose that the equation (1.2) satisfies Condition C.
Then any solution u(x) of Problem N satisfies the estimates

Cé[ua Q] S MIO - MIO(Q7P7 «, ka Q)? (135>
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||u||W22(Q) é Mll — Mll(Q7p7aa ka)? (136)

where Mg, M11 are non-negative constants, and 3 is a constant as stated
in (1.19).

Proof First of all, choosing that z* is an arbitrary point in @) and ¢
is a small positive number, we construct a function J(z) € C2(Q) such
that

1, x €y,
J(x) = { 0< J(m) < 17 MRS 8@25\@5,
O, HARS Q\aQQ&‘a

in which Q. = {|x — 2*| < ¢} and J(z) satisfies the estimate
C?[J(x),Q) < M1y = Ma(e, Q). (1.37)

Denote U(z) = J(x)u(z); obviously U = U(z) is a solution of the bound-
ary value problem

N N
> aijUsie, + D bilUa, +cU = f*, 2 € Q, (1.38)
i,j=1 i=1

U(z) =0, z€0Q, (1.39)

in which d* = JLu + Y7—; aij[Ja,tia; + Joe,u] + Yivy bidz,u. By the
method of inner estimate in [1],[11], we can obtain

C[%[Ua Q] < M13) C’é[u, Qa] < M14, (1.40)

where M; = M;(q,p, o, k,Q¢), j = 13,14. Combining (1.37) and (1.40),
we obtain the estimate

Cé[u, QE] < M15 = MlS(Qaa7kaQ7p)' (141)

Next, we choose any point * € S5 = 0Q and a small positive number
d such that Sz = Sa N {|z — 2*| < d}. Then we can find a solution u(x)
of (1.21) on @, such that 4(z) satisfies the boundary condition

i
8% =g(z), x € Ss,
which satisfies the estimate (1.22). Thus @(z) = u(z) — 4(z) is a solu-
tion of the equation as stated in (1.24), and u(z) satisfies the boundary
condition 55
U
S0, ress 1.42
on rEes (142)
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We can define a non-singular transformation of a second order contin-
uously differentiable function ¢ = {(x), such that S5 maps onto Sy on
the plane (y = 0, the domain ) onto the domain @); in the half space
(ny < 0, and the equation (1.24) and boundary condition (1.42) are
reduced to the equation and boundary condition as follows:

N N
> Aijiige; + ) By, +Ci=D in Q (1.43)
ij=1 im1
o
% — 0 on Su. 1.44
N On o4 (1.44)

Now, we extend the function % to a symmetric domain Q2 of ()1 about
Sy, i.e. we define a function

{ ﬁ’(C)? Ctea
U =

(1.45)
a(¢*), ¢ € Q2

where (* = ({1, ...,(n—1, —Cn), and U(() is a solution of the equation

N N
> AU+ BiUe, +CU =D in Q1UQq, (1.46)
ij=1 i=1
where
N Ai;(€), 1,i#j, ior j=N,
(-1)kA 0, other cases,
- B;(Q), 1,7=
B; =
(=1)*B;(¢*), 0,i# N,

~ { C(C)a ~ { C)? C € Qla
C = D=
C(C*>7 D(C*)a C € QQ-

By using a similar method in the proof of (1.41), we can derive that
U(¢) and u(z) satisfy the estimate

C3lU, Q1 U Q2] < Myg, Chlu, Q1] < Mz, (1.47)

where M; = M;(q,p, o, k,Q),j = 16,17. Combining (1.41) and (1.47),
the estimates (1.35) and (1.36) are obtained.
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1.3 Solvability of oblique derivative problem for elliptic equa-
tions

We first consider a special equation of (1.2), namely

Au = gp(z,u, Dyu, Dgu),

N N ) (1.48)
Gm =Au— Z QigmUg;a; _Z bimu—cpu+fm in @,
ig—=1 i=1

where Au = YN, 0%u/027, A = (2N —1)info N, a;/(2N? —2N — 1),
and the coefficients

aij/Aa bZ/Aa o
Qijm = blm = 1) = 1, "'an
51]/A7 07

C/A, f/A in Qmu
Cm = fm =
0, 0 in RM\Qpn,

where Q, = {(z) € Q|dist(z,0Q) > 1/m}, m is a positive integer,
0ii = 1,055 = 0(i # 4,14,5 = 1,...,N). In particular, the linear case of
equation (1.48) can be written as

N

Au=gm(z,u, Dyu, Dou), gm= Y _[0ij—Qijm(2)]tiz,a,
ij—=1
N (1.49)
_szm(x)uxl_cm(x)u_‘_fm(x) in Q.
=1

In the following, we will give a representation of solutions of Problem
O for equation (1.48).

Theorem 1.5 Under the same condition as in Theorem 1.1, if u(x)
is any solution of Problem O for equation (1.48), then u(x) can be ex-
pressed in the form

u(z) =U(z)+ V(z) =U(x) + vo(x) + v(z),

v(@)=Hp=| G(z—¢)p(¢)d¢,
Qo (1.50)

2PN /(N (2= N)wy), N >2,
log | — (|/2m, N =2,
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where wy = 27N/2/(NT(N/2)) is the volume of a unit ball in
RY, p(z) = Au = g, and V() is a solution of Problem Dq for (1.48)
in Qo = {|x| < R} with the boundary condition V(x) = 0 on 0Qo; here
R is an appropriately large number, such that Qo D Q, and U(x) is a
solution of Problem O for AU = 0 in Q with the boundary condition
(1.58) below, which satisfy the estimates

_ 1.51
CHV. Qo] + IVIlwz(qy < Mo,

where (0 < < «), M; = M;(q,p, o, k,Qm)(j =18,19) are non-
negative constants, ¢ = (qo,q1), k = (ko, k1, k2).

Proof It is easy to see that the solution u(z) of Problem O for equation
(1.48) can be expressed by the form (1.50). Noting that a;jmy, = 0 (i #
3)s bim = 0, ¢y = 0, fr(z) = 0 in R¥\Q,,, and V() is a solution of
Problem Dy for (1.48) in Qq, we can obtain that V(x) in ng = Q\Qom
satisfies the estimate

Cz[V(.T),QQm] < M20 = MQO(qvpu a7k7Qm)'

On the basis of Theorem 1.3, we can see that U(z) satisfies the first
estimate in (1.51), and then V' (x) satisfies the second estimate in (1.51).

Theorem 1.6 If equation (1.2) satisfies Condition C, then Problem
O for (1.48) has a solution u(x).

Proof In order to prove the existence of solutions of Problem O for
the nonlinear equation (1.48) by using the Leray-Schauder theorem, we
introduce an equation with the parameter h € [0, 1],

Au = hgp(z,u, Dyu, D?u) in Q. (1.52)

Denote by Bjs a bounded open set in the Banach space B = WE(Q) =
C’é(@) NW2(Q)(0 < B < a), the elements of which are real functions
V(z) satisfying the inequalities

Vi) = ClV. Q1 + [IVlwz() < Ma1 = Mg + 1, (1.53)

in which Mg is a non-negative constant as stated in (1.51). We choose
any function V' (z) € By and substitute it into the appropriate positions
in the right-hand side of (1.52), and then we define an integral v(z) = Hp
as

o(x) = Hp, p(z)=AV. (1.54)
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Next we find a solution 9p(x) of the boundary value problem in Qq:
Aﬁo =0 on Qo, (155)

Oo(x) = —0(z) on 0Qo, (1.56)

and denote the solution V (z) = &(x) 4 @o(z) of the corresponding Prob-
lem Dy in Q. Moreover on the basis of the result in [38], we can find a
solution U(z) of the corresponding Problem O in Q,

AU =0 on Q, (1.57)
oU ov .
5 +b(z)U = g(z) — e +b(x)V on 0Q. (1.58)

Now we discuss the equation
AV = hgy,(z, @, Dy, D2U + D2V), 0<h <1, (1.59)

where & = U+V. By Condition C, applying the principle of contracting
mapping, we can find a unique solution V' (z) of Problem Dy for equation
(1.59) in Qo satisfying the boundary condition

V(z) =0 on 9Qy. (1.60)

Denote u(z) = U(x) + V(x), where the relation between U and V' is the
same as that between U and V, and by V = S(V,h), u = S1(V,h) (0 <
h < 1) the mappings from V onto V and u respectively. Furthermore,
if V() is a solution of Problem Dy in @y for the equation

AV = hgm(z,u, Dyu, D2U + D2V)), 0 < h <1, (1.61)

where u = S1(V, h), then from Theorem 1.3, the solution V(x) of Prob-
lem Dy for (1.61) satisfies the estimate (1.53), consequently V(x) € Byy.
Set By = By x [0,1]. In the following, we shall verify that the map-
ping V =S (f/, h) satisfies the three conditions of the Leray-Schauder
theorem:

1) For every h € [0,1], V = S(V,h) continuously maps the Banach
space B into itself, and is completely continuous on Bj;. Besides, for

every function V (z) € Bz, S(V, k) is uniformly continuous with respect
to h € [0,1].

In fact, we arbitrarily choose Vi(z) € By (l = 1,2,..); it is
clear that from {V;(z)} there exists a subsequence {Vj, ()} such that
Vi, (@)}, {Vi,2,(x)} (i =1,..., N) and corresponding functions {Uj, (x)},
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{Ulk%(az)}’ {alk~(x)}a {@lkmz(x)}(l = 1a--'7N) uniformly CODVG@ tﬁ
‘/O(x)u %$z(x)7 U()(:U), UOxi(x>7 ag(l’), ﬁqu(x) (2 - 177N) in Q07 Q
respectively, in which @;,, = S1(Vj,,h), to = S1(Vo, h). We can find a
solution Vp(x) of Problem Dy for the equation

AVo=hgm(x, @i, Dylio, D3Us + D3Vp), 0<h<1 in Qo.  (1.62)

From Vj, = S(Vi,,h) and Vp = S(Vp, h), we have

lg s
—gm(x, @y, Dytly,,, D20, + D2Vo) + Cy (z)], 0<h <1,

where ~
Clk ([E> - gm(xa ﬁlka Dmalk7D5%Ulk + D;%‘/b)

—gm(x, g, Dy, D2Uy + D2Vpy), z € Q.

According to a similar method to deriving (2.43), Chapter II in [81], we
can prove that

Ly[Cy, (z), Qo] — 0 as k — oc. (1.63)

Moreover according to Theorem 1.3, we can derive that

Vi, = Vollyiz (o) < M22L2(Cly, Qo

where Moy = Maa(q,p, a, ko, Q) is a non-negative constant, hence
Vi, —VOHW;(QO) — 0 as k — oo. Thus from {V, (x) — V(z)},
there exists a subsequence (for convenience we denote the subse-
quence again by {Vj, (z) — Vo(z)}) such that ||V, (z) — Vo(a:)HW;(QO)
= CjlVi,(2) — Vo(@,1), Qo] + |IVi,(2) — Vo(@)llwg(q, — 0 as k —
oo. From this we can obtain that the corresponding subsequence
{w, (z) — uo(x)} = {S1(Vj,,h) — S1(Vo,h)} possesses the property:
||y, (z) — uo(x)HWQ(Q) — 0 as k — oo. This shows the complete conti-
~ 2 —_—

nuity of V= S(V,h) (0 < h < 1) in By By using a similar method,
we can prove that V' = S(V,h) (0 < h < 1) continuously maps By into
B, and V = S(V, h) is uniformly continuous with respect to h € [0, 1]
for V € Byy.

2) For h = 0, from (1.53) and (1.59), it is clear that V = S(V,0) €
By

3) From Theorem 1.3 and (1.53), we see that V = S(V,h)(0 < h < 1)
does not have a solution u(x) on the boundary 0By = By \Ba-
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Hence by the Leray-Schauder theorem (see [40]), we know that Prob-
lem Dy for equation (1.59) with h =1 has a solution V(z) € By, and
then Problem P of equation (1.52) with h =1, i.e. (1.48) has a solution
u(z)=S1(V,h)=U(z)+V (z)=U(x)+vo(x)+v(x) € B.

Theorem 1.7 Under the same conditions as tn Theorem 1.1, Problem
O for the equation (1.2) has a solution.

Proof By Theorem 1.3 and Theorem 1.6, Problem O for equa-
tion (1.48) possesses a solution u,(x), and the solution wu,,(x) of
Problem O for (1.48) satisfies the estimates (1.19) and (1.20), where
m = 1,2,.... Thus, we can choose a subsequence {up,(z)}, such
that {um, (z)}, {tmya;(z)} (i = 1,...,N) in Q uniformly converge to
uo(x), uoz, () (i = 1,..., N) respectively. Obviously, ug(z) satisfies the
boundary conditions of Problem O. On the basis of principle of compact-
ness of solutions for equation (1.48), we can see that ug(z) is a solution
of Problem O for (1.2).

2 Boundary Value Problems of Degenerate Elliptic
Equations of Second Order

2.1 Formulation of the Oblique Derivative Problem for De-
generate Elliptic Equations

Let G € C2(0 < a < 1) be a bounded domain in the upper-half space
xny > 0, whose boundary is 9G = Sy U Sz, in which Sy is located on
zny = 0 and Sy is located in zy > 0. Denote I' = Sy N {xy = 0}. We
consider the degenerate elliptic equation of second order

N
Lu= Z a;j(x uzzz]+2b h(x)umN—i—c( Ju=f(z) in G. (2.1)
ij=1 TN

Suppose that the equation (2.1) satisfies the following conditions, i.e.
Condition C:

1) There exists a positive number ¢y (< 1), such that for = =
(z1,...,zN) € G, the following equality holds:

N
Z x)&; > qoZa, (2.2)

=1

there is no harm in assuming that ayy = 1 and (a;;(z)) is symmetrical.
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2) Coefficients of (2.1) satisfy the conditions

Calaij(x), G, Calbi(z), Gl, Cale(x), Gl < ko,i,5 = 1,..., N,

B B (2.3)
Calf(2),G] < k1, C?[R(x), G] < ko, c(x) <0, k>0,

where a(0 < o < 1), k;(j = 0,1) are non-negative constants.

Problem @ Find a bounded solution u(z) of equation (2.1) in G sat-
isfying the oblique derivative boundary condition

)
lu = 8—;‘ +b(z)u = g(z) on Sa, (2.4)

where v is a vector on every point of So, and b(x), g(z) satisfy the con-
ditions
Colz [COS(Vv n)’ 52]’ Colz [b(ﬂ?), 52] < ko, Cé [g(x), 52] <k,

(2.5)
cos(v,m) >0, b(x) <0 on Ss,

in which n is the inner normal vector on Ss. The contents of this section
are mainly chosen from [42].

2.2 Unique Solvability of the Oblique Derivative Problem for
Degenerate Elliptic Equations

Lemma 2.1 If the boundary 0Q of the domain Q belongs to C2 and
the operator

N
Lu = Zaw uzlz]—i—Zb x)Ug, + c(z)u
i,j=1

satisfies the uniformly elliptic condition, a;j(x),b;(z), c(x) € Co(Q), and
the coefficients of boundary operator

lu—Zd )z, + b(z)u

satisfy the conditions

N

Zd (x) cos(n, x;)|ag > qo0 >0, Cl L1di(z),0Q) <k0,C’1[ (2),0Q] <ka, (2.6)
i=1



Clifford Analysis and Elliptic Equations 211

then any function u(z) (€ C2(Q)) satisfies the estimate
Calu, Q) < Mi{Ca[Lu, Q) + C4[Bu, Q] + clu, @)},

where the non-negative constant My is only dependent on the coefficients
of L,l and 0Q) (see [38]).

We use the parameter expression of Sy as follows:
T, — xi(fl, "'75]\[—1)77: = 1, ...,N,
in which (&1, ...,&n—1) € C2 and define by

X — 1 0(Tig1, s TN, X1, -0 Tim1)
’ Q 8(517”'761\7—1) ’

the direct cosine of an inner normal line of S, where

N (i1 I, T zi1) 07 1/2
0= et RIERES] y g eeey Lj— .
[Z( OEt, s En-1) ) ] >0

i=1

Theorem 2.2  Suppose that equation (2.1) satisfies Condition C and
Cllaij,G) < ko, ¢ < 0 in G. Then Problem Q of (2.1) has a bounded
solution u(x) € C2(G U Sa).

Proof Choose a decreasing sequence of positive numbers {e,,} such
that €, = 0 as m — oo, and define a sequence of domains {Gy,} satis-
fying the conditions:

1) G1C Gy C ..
2) UG, = G,

3) Gy, and its boundary are in xy > 0, and G, N {zn > ,} =
GNn{zy > en};

4) The boundary S,, of G, belongs to C2.

Introduce the boundary condition

Oup,
T + b ()t = gm(z) on Sy,

where we choose vy, by, (), gm (), such that when x,, > 2¢e,,, cos(vm,n)
> 0; herein n is the inner normal vector of Sy, and v,,, = v, by, (z) = b(x),
gm(x) = g(z). Next for S, N{zny <en}, set

%_%_il (o )X.% B— ﬁv:(g: (1) X;)? v
v ol _ijlea” €T P ijzuj:lau T)Aj )
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in which [ is the secondary normal vector and its directional cosine is
Y, = Zj 16i5(x)X;/B. Tt is clear that cos(n,l) > 0, and by, (x) < —1,
CLbm, Sm N {xn < em}], Cllgm, Sm N{zn < em}] < k3, where k3 is
a positive constant. Moreover for {3¢,,/2 < zny < 2ep,}, let v = v,
and CL[bp, S N {3em/2 < an < 2em}], CLlgm, Sm N {3em/2 < zn <
2em}] < ks. Finally for S, N {em < an < 3em/2}, Ot /Oy, is defined
to be the relation

D, ) Ot = )
gl = (51;- 7£N 1 um+ ;hz 517- agN )a’ué-l

where k(&1,...,En—1) > 0, hi(&1, .., én—1) € CL, by, < =1, and by, (2),
gm(z) satisfy the condition as before.

Noting that

9 _ icos(y :1:)i =y cos(l, z;)
ov P " Oy _121 cos(n, 1) " O
+Z [cos v, ;) f:(c))ss((n,7;)) cos(lwi)} &ii on 3677'1 <zy < 26m,
we have
9 _cos(n,l) O
al~ cos(v,n) B
2.7
—I—Z[coslx cos(n, 1) cos(ux)} 0 0n3€—<m <2 =0
" cos(v,n) Y 0w 2 N "
Denote «; = cos(l, ;) — cos(n, 1) cos(v, x;)/ cos(v,n), then it is obvious
N
Z OéiXi = 0.
i=1
Besides for any differentiable function v(x1,...,zx), we have
Ov Oz ov dx;  Ov
ag;%%z’ ’mz%% 9,

There is no harm in assuming that d(z1,...,zx-1)/9(&1, .., En—1) # 0,
we obtain

Ov  Ov O(Tjq1,..y TN, T, e, Tj1)
dx;  Oxy (&1, - 7§N 1)
a($j+1,...,x]v_1, —v xl,.. Xj— 1 1’1,..., )
&1y EN—1 (&1, - 7§N

j:LmN—L
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thus

N—
Z $Z-i-la'”vx]\fyxl)” Lj— 1 xlu"‘?
= (

8517"’75]\[ 8.TN 8517' 7§N

8 T

N O @ity oy TN-1, =0, T, ey i) (1, ey TN 1)
—l—Zai /

i—1

8(517"‘75]\/71) a(&lv"‘ag]\ffl)
ran v _ 1 N_laia(xiﬂ,...,azN,l,—v,xl,...,xN,l)
a$N QXN i=1 8(617'”761\771)
N-—1
o; X; ov
* (ZZI XN + N) orN’

Besides we can find N — 1 functions (&1, ...,Ex—1) € CL, such that

N
ov

i

ov
&’

N-1

=> h(1s o éna1) 5
i=1

thus (2.7) can be written as

o a = 1, o
a:k(gla“wg]\/' +Zh’ 617 ’gN )851

where K'(£1,....,&n—1) > 0,hi(&1,....,énv—1) € CL.  Especially k(¢1,
wéno1) =1, h(&, e énv-1) =0(i =1,...,N — 1) in x, < ey. Hence
we have

0
al

o = d
(515' aéNfl)%“i“;Hi(glv"'7§N71)67&7Z':17"'7N71'

Now we consider the boundary value problem (Problem Q)

Ot + b, = gm(x) on Sy,. (2.8)

Luy, = f(z) in Gy, o

By the result in [38] and Lemma 2.1, we know that there exists a solution
um(z) of Problem @Q,,, and the solution u,,(x) satisfies the estimate

C’[um(z),@] < My, Cg[um(:t),@] < Mo, (2.9)

where My = Mi(qo, o, k,G), My = Ms(qo, o, k,G,,) are two positive
constants, k = (ko, k1, k2). In the following, we shall prove that u,,(z),
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Uma; (), Umae; (1,7 = 1,..., N) uniformly converge to the functions
uo(x), oz, (), Uoz;e; (1,5 = 1,..,N) in GN{xy > 3n > 0} respec-
tively. In fact, for arbitrary small positive number 7, we can assume
that ¥(x) € C2(G), ¥(x) = 1 for xx > 2n, ¥(z) = 0 for zxy < 7, and
0Y/0v =0 on Sa. Let vy, = upm(x)(z), then we have

Lom = () f(2) + um () Ly

N " 2.10
+2 3 (@) G2 S el (o) = o). =1
i,j=1 ¢

Denote by G, a bounded domain in G' with the boundary S, € C2, and
SyN{zn >n} = Sen{zn >n}, G, C {zn > 0}. It is clear that there
exists a positive integer m such that G, C G,,, when 2¢,, <7, and

()
v (2.11)

Ovp,

= ¢(x)g(x) for zny > n;

moreover for zy < n, we have ¥(z) =0, vy, (x) = 0, hence

8;—;” + b(x)vm(x) = Y(x)g(x) for xny < n.
Thus 9
loy, = % + b(x)vm(x) = Y(x)g(x) on Sy. (2.12)

By the results in [38], Section 1 and Lemma 2.1, the boundary value
problem (2.10),(2.12) has a bounded solution v, (z), and the solution
satisfies the estimate

C2 [upm (), Gy] < M3 = M3(qo, , k, Gy). (2.13)
Hence v (), Vme, (T), Vmaz; (3,5 = 1,...,N) are uniformly bounded
and equicontinuous. According to the Ascoli-Arzela theorem,

from {v,,(z)} we can choose a subsequence {v,, (x)}, such that
{vm. b {vmpz: by {Vmpaie; b uniformly converge to u(x), ug,, Uz, in Gy
and u(z) € C2(G,). Hence u(z) satisfies the equation and boundary
condition

Lu= f(z) in xn > 3n, % +b(x)u = g(x) on Son{zy > 3n}.

This prove that there exists a bounded solution of the above problem
in GN{zy > 3n}. Noting the arbitrariness of 7, we verify that the
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boundary value problem (2.1),(2.4), i.e. Problem @, has a bounded
solution u(z) € C2(G'U Sy).

Corollary 2.3 If the coefficient c(z) < 0 of equation (2.1), and the
boundary condition

ou N
lu = m + b(x)u Zdl(m)u:pl + b(z)u = g(x) on S (2.14)
i=1

satisfies
N
Caldi(z), Sa] < ko, Y di(x) cos(n, z;)|s, > qo > 0,

i=1

cos(v,n) >0, b(z) <0 on Sy,

and one of bj(x)(i = 1,...,N) for instance bj(x) > 0(1 < j < N), then
the result in Theorem 2.2 is still valid.

Proof Introduce a transformation

equation (2.1) is reduced to
N N-1 h(z) ) ‘
> ai (@) v, + Y bi(@)vg, + — Ve H @)y = f(z) in G,
ij=1 i=1 N

where &(x) = ¢(z) — (a11(x)p? +bj(z) u)e!®i /(C —eH®5). Noting a1 > qo,
we can choose positive constants C' and p such that ¢(x) < 0 in G and
(C —eM*i) > 1, then the boundary condition (2.14) is transformed into

Zd )0y, + b(z)v = §(x) on So,

in which b(x) = b(z) — pbj(x)er®s /(C' — el®i) < 0.

Theorem 2.4 If the conditions in Theorem 2.2 and b(x) < 0 on S
hold, then when g(z) = 0, equation (2.1) has a bounded solution u(x) €
C2(G U Ss) satisfying the boundary condition (2.4) on So.

The proof is the same with that of Theorem 2.2.

Theorem 2.5 Let the conditions in Theorem 2.2 hold, and cos(v,x )
>0 on I'. Moreover one of the following conditions holds:
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a) k=1, h(xy,...,xn-1,0) > 1, and h(x) about xx is even;
b) k>1, h(Il, ...,.TNfl,O) > 0.

Then Problem Q of (2.1) has at most a bounded solution u(z) € C2(G'U
Sa).

Proof It is sufficient to prove the bounded solution u(z) = 0 of the
boundary value problem: Lu = 0 and 0u/0v + bu = 0 on Sp. For this
we construct a barrier function W (z) as follows:

1) W(z) > ¢p >0 in G, here ¢ is a constant;
2) When zny — 0, W(z) — oo uniformly holds;
3) LW < 0in G;

oW
4) W+bW<Ml2 on Ss.

If there exists the function W (z), by Theorem 2.2 we can establish a
bounded function w(x) satisfying Lw = 0 and dw/0v + bw > W /0l +
bW. Let V(x) = W(z) — w(xz). Then LV < 0, 0V/0v + bV < 0, and
from the boundedness of w(z), it follows that limy, .o V(z) = +oc.
On the basis of the result in [58], we can derive eV £ uy > 0, where ¢
is a positive number. In fact, L(eV £ up) = eLV < 0 in G, 9(eV £
up)/Ov+b(eV £ up) <0on Se, and V — oo as Xy — 0, hence eV £ uy
cannot take the negative minimum in G. Due to the arbitrariness of ¢,
we obtain ug = 0.

Now we make the barrier function in case a) as follows:

W(z)=hay — (2, —a)’ + K, (2.15)

where @ is chosen such that 1 —a > 1 for x = (z1,...,zx) € G, and
J, K are undetermined constants. For a sufficiently small zy, we can
choose that a positive number A is large enough, such that

1—h(x)
(zn)?

= [1—h(z1,....,2Nn_1,0)— 8h(m1"'5?]vv*1’0)” +0(22 )]z N < 4

the above inequality is also valid for any zy in G. From (2.2), a11 > qo,
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we can select a J large enough such that
LW = —ay1(z)J(J — 1)(z1 — @)’ 2
—by(2)J (x1—a)” T [1—h(z)]ry? +c(z)W <0,

and then choose a sufficiently large K such that W(z) > ¢y > 0 in G.
Moreover OW/0v = —(0xn/0v)/xn + O(1). According to the hypoth-
esis: cos(v,zy) > 0 near to I, hence W /v + bW < M} on So; this
shows that the function W (x) in (2.15) satisfies all conditions of the
barrier function.

Finally we consider the case b); we choose the function
W) =2y —(z1-a)) +K, 0<B<1, (2.16)

and for a sufficiently small x, it is clear that
BB +1— h(z)ry Tz P2 < —gh(azl, o1, 0z P <0,

where J, K are chosen as stated in case a). Moreover from cos(v, xy) > 0
on T, we have OW /v +b(x)W < M?. Thus the function W (z) in (2.16)

satisfies all conditions of the barrier function. This completes the proof.

Theorem 2.6 Under the same conditions as in Theorems 2.4 and
2.5, there exists at most a bounded solution u(x) € C2(G U S3) of (2.1)
satisfying the boundary condition

ou

E%—bu:() on Ss.

3 The Schwarz Formulas and Dirichlet Problem in Half-
space and in a Ball

First of all, we introduce the regular function in real Clifford analysis.
The Clifford algebra A,,(R) over the space R™ is defined as follows: Let
e1 = 1,eq, -, e, be the standard orthogonal basis in R"™, and denote
by es the general basis element of A,(R), where s is any subset of
{1,2,3,...,n}, ie.

61:1,6?:—1,2§j§n,
ejep = —egej, 2 < 5 <k <mn,
€s = €j,€jy €, 2 g1 < Jo < - < Js <,

s = {j17j27 7]8}
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It is not difficult to see that A, (R) is a 2"~ -dimensional Clifford algebra
space. An arbitrary element of the Clifford algebra A,,(R) can be written
as

r=x1€e1+- - +xTrpen+-- '+$Ij1'_ﬁs€j1...6%+’ T2 pn€2...6n :szes,
S

in which zq,...,2pn, ..., T} js» - T2.n € R.

Let x = Y zses, y = Y yses € Ap(R), where x5,ys € R. Then
TY = ) sk TsYk€sek, in which esep is a basis element of An(R) and
zsyr € R. For x = z1e1 +x9es + - - - + xpe, € R™, its conjugate element
is defined by = xr1e; — x9es — - -+ — xpe,. It is obvious that

oT = T = |z|?.
If x # 0, then x is invertible, and 27! = z/|z|%.

Denote by D a connected open set in R, and by
_{f|f D_)-A Zfs 657 fseCT(D)}

the set of continuously differentiable functions up to degree r, the values
of which belong to A, (R). Define the differential operators

A RO Y S U

—e— — — ey —
0x1 0x,,’

then we have )
0
00 = 00 = E 8m = A.

If f(z) € Fg)(r > 1) and df = 0, then f(x) is called a (left-)regular
function, and then fs(x) is harmonic in D. In particular if n = 2, the
regular function f(r) in a domain D in R? is an analytic function, and
if n = 3, the regular function f(z) = >, fs(z)es = fi(x) + fa(x)es +
fa(x)es + faz3(w)ezes in a domain in R3 is a solution (f1, fa2, f3, f23) of
the system of partial differential equations of first order

0 o 0
%e1 x5 a3 fi 0

0 0 0
9e; 9o 0 Oas f 0

: , =1, (3.0)
da3 0 D21 ~ Bzs f3

0 _o o 2 Fos 0
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We can see that it is an analytic function in the 3-dimensional domain.
Hence, the general regular functions possess some properties similar to
those of analytic functions in the planar domain.

In the following, we first discuss the 3-dimensional space R3 and
the corresponding Clifford algebra A3(R) over R3. In this case, z =
x1 + zoey + x3€3 + Tazeas € As(R), and we define by

Rex = 1 + x9e9, Imx = 23 — 29369, (3.1)

the real part and imaginary part of x. It is evident that

1 -
r =Rez + ezlmuz, Rexzﬁ(x—kiz), Ima::—engx, (3.2)

where Z = Rex — e3Imz. Let y = Rey + eslmy € A3z(R), then we can
verify that xy = Zy.

3.1 Schwarz Formula and Dirichlet Problem for the Halfspace

Theorem 3.1 Suppose that u(y) is a Holder continuous function in
the plane E = {x3 = 0}, and u(y) = 0 if |y| is large enough. Then there
exists a reqular function f(x) in the upper halfspace D, such that

Ref"(y) = u(y), y € E. (3.3)

Then the function f(x) can be expressed as

fz) = % //E rteln Eyy—l):c—:@(m ~ ) u(y)dSy + esg, (3.4)

where we assume that lim |, f(z) = f(oo) = e3(asz — azses), as, az3
are real constants, and then esg = f(o0). This is also a representation of
the solution of the Dirichlet problem for regular functions in the halfspace
D.

Proof We assume that f(z) is a desired regular function, where z is
any point in D. Let X be the upper half sphere with the center at the
origin and radius R, and denote by Dy a domain with the boundary X
and Er = {|z| < R, z € E}. We choose R so large that + € Dp and
ly — x| > R/2, y € Er. By the Cauchy integral formula we have

J@) =1 [ L nw)swas,

Tar Jop ly—aP"

(3.5)

b [T S0, = T+

4z Er |y_x|3n
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Moreover from

| ﬁ3|%k”(|lnwﬂ IMQ
y—x ) Yy — Ty Yy—x7y (3.6)
2 4 6|z
< |x|(ﬁ + ﬁ) il
it follows that
1/‘[y‘x - 5] s was
Am Jeg Ly — 2P |yf? Y
d 37
_477/ |Sy_4R3/2R S (3.7)

_ M|

R — 0 as R — oo.

For arbitrarily given positive constant e, there exists a large positive
constant Ry, such that |f(y) — f(c0)| < € if |y| > Rp. Thus

[ i) - fe0)ds, | < T

w Yl a
which implies that
[, pEn) ~ f0)las, =0 as B—oo. (3
R

Noting that

1 y—2x 1 = = _
:M/ER5_;3n(y)f(y)dsy=M/ERL;/_;’?,—53] n(y) f(y)dS,

to [ Tl @)-reolds,+ - [ Zsntw)f(eo)as,,

Am Jsg lyP g [y

and
1

1 7 Lo
i L (s, = 5 7).

and applying (3.7)and (3.8),

lim ) = %f(oo) (3.9)

R—o00

follows.
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As for the integral I, taking n(y) = —es, y = y1 + e2y2 on ER into
account, we have

B= [ ) f)is,

T ar Jpp ly—aP

1 /ER (y1 — x1) — ea(w2 — y2) + e3w3 (—e3)f(y)dS, (3.10)

o ly —

1 /ER r3 + 63[(1‘1 - yl) + 62(.222 — y2)]n(y)f(y)dsy

" ar ly—

Letting R tend to oo,

can be derived. If Imx < 0, then according to Cauchy’s theorem for
regular functions, we can similarly obtain

0= 1/ —x3 + es[(z1 — y1) + e2(w2 — y2)]

1
f(y)dSy + §f(00)
From the above formula, it is easy to derive

1 / z3 + es[(x1 — 1) +ear2 — o) ;
E

T 4w g — 2] f(y)dS, — = f(o0). (3.12)

N =

Adding (3.11) and (3.12), and noting that f(co) = —f(oc0), we get

:1/ x3tes[(z1—y1)+ea(xa—y2)]
A7 JE ly—|3

f(z) [f(y)+F(y)]dSy+f(c0)

1 /E 3+ es((z1 — y1) + ez — y2)]u(y)dsy + f(00).

L ly — af

It remains to verify that f(z) is just the desired function. It is
sufficient to prove that

Re f(2°) = u(2?), (3.13)

0

where z" is any point on E. We rewrite (3.4) in the form

f(x):% /ER r3+es|(ry ’;y_l)x—i’_;Q(x2_y2)]u(y)dSy

s z3+esf(z1—y1)+ea(ra—y2)]

dS, + ,
o E\ER ‘y _ ZE’3 u(y) Yy f(OO)
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where Er = {|y| < R,y € E} and Xy are as stated before. Due to
u(y) = 0 if |y| is sufficiently large, and for piecewise smooth surface
Y r U ERr and sectionally Holder-continuous function u(y), the Plemelj
formula is still true. Hence

g (%) — g7 (2%) = 2u(a?), (3.14)

1 z3 + es[(z1 — y1) + e2(w2 — yo)]
T(z) = — u(y)dSy, * € Dpg.
g7() 21 /ERUER ly — )8, 5

Setting ¢ =, ¢ & Dn,

§+($) — i /E B €r3 — 63[(%1 - yl) + 62(%2 - y2)]u(y)d5’y

2m ly —xf?
NN | —G3 —es[(z1 —y1) + ea(x2 — yo)]
=g ()= — u(y)dS
g (C) o \/ERUER ’y _ C|3 (y) Y
can be obtained. Letting  tend to 2°, we know that §*(2%) = —g~ (2°).

From (3.14), it follows that
g7 (%) — g7 (2") = g (2") + g7 (2") = 2u(z?), ie.

Re g™ (z%) = u(a?).

(3.15)

Noting that

3 + es[(x1 — y1) + ea(x2 — y2)]
L= . - u(w)dS, + (o)

— 3
- e3[(2 — y1) + ea(a) — yo)]
T or //E\ER ly — 203 : u(y)dsSy + f(o0),

it is easily seen that

1 es3[(2 — y1) + ea (2 — 1)) _

Thus we obtain (3.13).

Finally, on account of u(y) = 0 if |y| is large enough,

lim f(z) = f(c0)

|z|—o0

can be derived. This shows that the above regular function f(z) is
unique.
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Remark By using a similar method, we can also get an expression for
the solution of the Dirichlet problem for regular functions in the halfs-
pace D with weaker conditions, namely we suppose u(y) is a bounded
continuous function in the plane F = {z3 = 0}, and the solution f(x)
of the Dirichlet problem satisfies the condition |Ref(x)|= O(1/|x|) as
|z| tends to co. Then f(x) may be expressed in the form (3.4), where
g(x1,22) = g1(x1,22) + e2g2(x1,x2) is an arbitrary function satisfying
91 = €agas (see [3]).

3.2 Schwarz Formula and Dirichlet Problem for a Ball

Next, we shall give the Schwarz formula for regular functions in a
ball G = {|z|] < R, 0 < R < oo} in R3. We need the following lemmas.

Lemma 3.2 A function f(x) with values in the Clifford algebra As(R)
is reqular in G if and if only Re f(x) and Im f(x) satisfy the system of
first order equations

8 0
(%U* Re f = o —Imf, z €@, (3.16)
0 0
s —Ref = —28—Imf SN ER (3.17)
where £* = x1 + x99, T, = X1 — Toey, and
g 1,0 0 o 1,0 0

o7~ 200 " 20n,) 9r. 290 T 2o,

Proof It is clear that

0
2o (eslm f) =
Hence
of = (2 0 +e 0 )(Re f + e3Im f)
T 0z, P oxy ?
0 0 6 0

If f(z) is regular in G, ie. 8f = 0, from (3.18) follows (3.16) and (3.17).
The inverse statement is also true.

Suppose that f(x) is a regular function and f(x) € C?(G). Then

00Ref=00Ref=ARef =0, Alm f =0.
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So Re f and Im f are called harmonic functions in Clifford analysis, and
Im f is called the conjugate harmonic function of Re f.

Lemma 3.3 Let f(x) = ui(x) + equa(z), ui(x) and ug(x) be real
harmonic functions in G and uy(x),uz(x) € CY(G). Then the conjugate
harmonic function v(x) of u(x) is given by the formula

= [ ey = ST (2,0 + glaa), (319
= 0 8x*u X3 — Oz ulxi, r2, g\r1,r2), .

where g(x1,x2) = g1(z1,22) + e2g2(x1,x2) is an arbitrary function sat-
isfying 0g/0x* = 0, and

Tu(z) = —% / /E U g (3.20)

R Yx — Tx

where Eg = {(x1,22,0) |22 + 22| < R?}.

Proof From (3.16), it follows that

99 i
_/0 ax*u x3 + w(z1, z2).

Substituting the above expression into (3.15) and letting x3 = 0, we
obtain

—u(x1, T2, 23)|ps=0 + 25—w(x1,22) =0,

8%3 %

and then

1~ 0
w(xy, T2) = —§T(7U($17$2,$3)|13=0) + g(z1, 22)

a$3

can be obtained, in which g(z1,x2) satisfies 0g/0z* = 0. Thus formula
(3.19) holds.

Moreover, if v(x) is given by (3.19), we can see that u(z) and v(x)
satisfy (3.16). Since u(z) is a harmonic function and
00 0 > >
Ox* Oz, Ox?  Ox3  0xi

it is easy to verify that u(z) and v(z) satisfy (3.17).

Lemma 3.4 Suppose that u(x) = ui(z) + egua(x) is a harmonic func-
tion in G = {|z| < R} in Clifford analysis and u(x) is continuous on G.
Then u(x) can be expressed as

0 1 1 1 R
w(z) = — = = Y yuy)ds,, 3.21
@ == ooyl e G2
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where & = x1 + Toez + T3€3, Y = Y1 + y2e2 + yzes, & = R%x/|z|?, 9/0n
denotes the exterior normal derivative with respect to y on the sphere
ly| = R, and dS, is the area element of |y| = R.

Proof Dueto Au =0 in G and because u(z) is continuous on G, from
the Poisson formula for harmonic functions in a ball, it follows that the
formula (3.21) holds.

Now, we find the conjugate harmonic functions of 1/|z — y| and
R/|z||Z — y| with respect to z. Noting that

3 0 1 3 z*—y*
D g [P Va
/0 Oxy |z — y| 3 0 lz —y3 ’
(a* —y") (23 —y3) (=" =y )ys
[z =y P —y) o=y Pl = y1)? + (22 = y2)? +y3]2

and
1o 1 1 s
C20wgfw —ylla=0  2[(w1 — y1)2 + (22— 92)? + 431
_ 0 (" —y*)y2
Oxt ok — g Pl(wy — y1)? + (w2 — y2)? + Y332
we obtain
1.7 0 1
e <<9:c3 |z — y| ws=0>
(" —y")y2

= + w(z1, x2),
|2 — y*2[(21 — y1)? + (22 — y2)? + y3]1/2

where w(x1, x2) is a function satisfying 82* w = 0. On the basis of Lemma

3.3, we know that the conjugate harmonic function of 1/|x — y|(z # vy)
with respect to x possesses the form

(@ =) (23 — y3)
2% — y*?lz — y|

+ c(x1, 22) + w(xy, x2).

In particular, choosing c(z1,2z2) = —w(x1,z2), it is easy to see that
—(2* —y*)(z3 —y3)/|v* — y*|*|x — y| is a conjugate harmonic function of
1/]x —y|. Similarly, we can find that a conjugate function of R/|z||Z — y|
with respect to y possesses the form

Ry* — i) (ys — ¥3) _ R (y" = R?2"/|2*)(ys — R?|ws|/|2[?)

ally =& Ply -2 el |y — B2 /|a?Ply — R2x/|a]?]
__ Rla|(lz[y" — R?a*)(|2[*ys — R?as)
jaty* — Rea*Pllal?y — Rz
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and a conjugate function of R/|z||Z — y| with respect to x possesses the
form

 Rlyl(yPa* — Ry)(yPas — Rys)
ly[Pe = B2y PllyPz — Ryl

( ) 1 ( 1 R 1 )
g\r,y) = — T 0= 9
dr \|z —y[  [2|]Z -yl

1 ((9:* —y") (@2 — y2)
A\ |z* — y* Pz — |

_ Rlyl(jyPe* — R*y*)(ly[*zs — R?ys)
lylPz* — R2y*[?||y|*z — R?y| ’

Denoting

h(x7y) =

then for z # y, the function s(z,y) = g(x,y) + esh(z,y) satisfies ds = 0
with respect to z. Since

9 Oy 0 ya 0 ys

on oy lyl Oyl Auslyl

by calculation, we obtain

1 {R?-\:q?

_9 (2, 9)| 1=
on” Y W=F 4rR lz—yl[3

2(x* (w3 —y3) +a3(z*—y*)
¥ —y* 2|z -y

+€3 —

(3.22)
A(x* —y*) (w3 —y3)(|* > = (z191 + 22y2))

lz* — y* 4z -y

(2" — y*)(zs — y3)(J2|* — R?)
2% = y* [Pl —y]?

Theorem 3.5 Let u(z) = ui(x) + equz(x) be a continuous function

on the sphere |x| = R. Then there exists a continuous function f(x) on

G, which satisfies the system of first order equations

_|_

+

Of =0in G = {|z| < R} (3.23)
and the boundary condition

Re f = u(z) on 0G = {|z| = R}, (3.24)
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and f(x) can be expressed as

1 R2_ 2 2 * o * ok
@) = !l’l) n [_ (z* (23 - y3)*+333($ y*))
ArR Joc | |z -y |z* — y*||z — y
Az — y*) (w3 — y3)(Jo* 2 — (z1y1 + 2212))
lz* — y*[42 — y|

z*—y*)(x3— z|?— R?
( Z\/migz*,g\igy“:s i )]}“(y)dSyJF@SC(xlayz)’

_l’_

+
(3.25)

where c(x1,x2) = c1(x1, x2) + eaca(1, x2) is an arbitrary function satis-
fying

—c(x1,22) =0,

ox

where ¥ = 11 + Toe9.

Proof From the above discussion, we see that the function expressed
by (3.25) is a solution of the Dirichlet boundary value problem (3.23)
and (3.24). Conversely, if the Dirichlet problem (3.23) and (3.24) has a
solution f(x), we denote the integral on the right-hand side of (3.25) by
F(z), ie.

2 RQ_ 2 20+ o * ok
F@ - il [ ) date” =)
AR Joc | |z —yl |lz* —y*||lz —y|

Ax* — y*) (23 — y3) (|2 * — (z1y12202))

_l’_
| = y*|*|z — y]
(@ ~ ") — ) (of? ~ R
NN A

Then OF () = 0 in G and Re F|; g = u(z). Hence A(Re f —Re F) = 0
in G, and (Re f — Re F)|=g = 0. This implies that Re f = Re F on G.
According to Lemma 3.2, we obtain

(Imf—ImF)=0.

0 0
8:/U*(Irnf—ImF)fO, 92s

Thus Im f — Im F' = ¢(z1,z2) and dc(x1,x2)/0x* = 0. The theorem is
proved (see [4]).
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4 Oblique Derivative Problems for Regular Functions
and Elliptic Systems in Clifford Analysis

First of all, we consider the case of the Clifford algebra A3 over the
space R3. Let G be a ball, i.e. G = {Z?Zl |z;|* < R*(< 00)}, and for
convenience, let eses be denoted by e4. Any point z in G may be written
as x = Z?’:1 xje;, and any function f(z) in G with values in the Clifford
algebra may be denoted by w(x) = Z?ﬂ wj(x)e;.

4.1 Oblique Derivative Problems for Generalized Regular
Functions in R?

A generalized regular function w(z) in G is defined as a solution
w(z) = Z?d wj(z)e; (€ C*(G)) for the elliptic system of first order
equations in the form

Ow = aw +bw + ¢ in G, (4.1)
where
4 4
Za] x)ej, b(x) = ij(x)ej,
j=1 j=1

4
= ¢j(z)e; € CLG),0<a < L.
7=1

Problem P The oblique derivative problem for system (4.1) is to
find a solution w(x) € CL(G) N C?(G) of (4.1) satisfying the boundary
condition

Ow

T‘;’J +oj(x)w;(x) = 75(x) + hy, © € 0G, wj(R) =uj,j = 1,2, (4.2)
J

where 0j(z),7j(z) € CL(0G), oj(z) > 00on dG,j = 1,2, hj(j =1,2) are

unknown real constants to be determined appropriately, u;(j = 1,2) are

real constants, v;(j = 1,2) are vectors at the point z € 0G, cos(v;,n) >

0,j = 1,2, n is the outward normal at z € G, and cos(vj,n) € CL(9G).

If w(z) is a solution of Problem P for system (4.1), then we can verify
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that [w1(x),ws(x)] is a solution of the system of second order

3
Aw1 = Z(A] + Bj)wlx]- + B5’U)1 + B6a
j=1
3 (4.3)
A’LUQ =2 Z ijgmj + B7w2 + (AQ'U)l)zl — (Alwl)m
j=1
—(Aqw1) gy — Bowig, + Biwigz, + Bawig, + Bswi + By

satisfying the boundary condition (4.2), where A; = a; + bj, B; = a; —
bj, 7 = 1,...,4, B; is only a function of z;, j = 1,2,3, By is a real
constant, and

4 3
Bs = =2 AjBj+)_ Aje;s Bs = =2 BiCi+ 3 Ciuy,
j=1 j=1 j -
3 4
B; =Y Bjs, — »_ B}, By = AiBy — Ay By — A3By + AyBs,
j=1 j=1
By = _Clxg + 021;1 — 04;,;3 — B1Cy + B3Cy + B3Cy — B4Cs.
In fact, it follows from (4.1) that

Wig, — Wagy — W3z = Aqwi — Bowy — Bsws — Byws + Cf,

Wogy + Wigy + Wigy = Aswy + Biwy — Baws + Bswy + Co, ( )
4.4

W3gy — Wiz + Wizg = Aswi + Byjws + Biws — Bawyg + Cs,

Whgy + W3y — Wgy = Aqwi — B3wy + Bows + Biwy + Cy.

When Bj = Bj(z;),j = 1,2,3, and By is a real constant, from (4.4) we
can derive the first equation in (4.3), and then the second equation in
(4.3) can be obtained.

Conversely, if the following conditions hold:
Bs >0, B; >0o0nG, (4.5)

then according to Theorem 1.6, the boundary value problem (4.3),(4.2)
has a solution [w;(x), wa(z)]. Afterwards, if

B3 = B4 =0 on G, (4.6)
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then we can find ws(x), ws(z) by the following integrals:

x3
w3() :/0 (W1, —Wazy — Arwi1 + Bows — C1|dz3+¢3(x1, x2),

4.7
wa(x) —/0363[—1025,;1 — W1z, +Aswi + Biwe+Csldrs+da(x1, x2), D
where ¢3(r1,22), d4(x1, x2) satisfy the conditions
{ P32y — P4z, — B1gs + Bagy — Cs = h3(21, 22), (18)
P33y + Pazy, — Bags — Bioa — Cy = ha(z1, 22),
in which
V3(w1, T2) = [~Wizy +A3W1]|zs=0, Ya(21, T2) = [Wory +Asw1 | 25=0,

and A;, Bj, C; satisfy some conditions such that the integrals in (4.7)
are single-valued. Suppose that ¢ = ¢3 + Paea0 = @3 + P40 satisfies the
Riemann-Hilbert boundary conditions:

{ Re[\(t)p(t)]=r(t)+h(t),t=t1 +ita €T =0GN{x3=0},
Im[\(d;).

t
( (4.9)
A(dj)o(dj)] =95, j=1,...,2K +1 for K >0;

where [A(t)| = 1, A(t), r(t) € CA(T), d; (j = 1,...,2K + 1 for K > 0)
are distinct points on I', g; (j = 1,...,2K + 1 for K > 0) are known real
constants, and

1
Oonl for K = 2—Aparg)\(t) >0,
T

h(t) = ~K-1
ho+Re Z (ht +ih, )™ on T for K <0;
m=1
herein hg,ht(m = 1,..,—K — 1) are undetermined real constants.

According to Theorems 4.1 and 4.6, Chapter 2 in [81], the func-
tions ¢3(x3,24), Pa(x1,x2) may be uniquely determined, and then
ws(x), ws(x) may be also uniquely determined. Then we obtain

Theorem 4.1 If the coefficients of the system (4.1) satisfy the con-
ditions (4.5),(4.6), and W (t) = ws(t) + iwa(t) satisfies the boundary
conditions

Re[NOW (1) =r(t) + h(t), t € T=0G N {z3 = 0}, (4.10)
Im[)\(dJ)W(d])] = gj, j=1,..,2K+1 for K >0, (4.11)

where A(t),r(t), h(t),d;j,g; and K are as stated in (4.9), then Problem
P has a unique solution w(x) = Z§:1 w;(z)e; € CLG) NC%HE), 0 <
a < 1 (see [3]).
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4.2 Oblique Derivative Problem for a Degenerate Elliptic Sys-
tem of First Order in R?

Now, we discuss the degenerate elliptic system of first order equations
— Way, — THWse, = Ajwy —Bows —Bszs Hws —B C

Wiz, —Wogy — Ty W3gs = A1W1 —D2W2 —D3T3 W3 —baws+07,

Wz, + Wigy + Wogy =Aswi + Biwy — B4x§w3 + Byw4+C5,

(4.12)
$§w3m — Whgy +Wigy = A3w1+ng2+le§w3—ng4+Cg,

Wagy + ThWszy — Wozy = Agwi — Bswa+ Boxhws+ Biws+Cy,

where Aj(x), Bj(x),Cj(x)(j = 1,...,4) are known functions as stated
n (4.4), and Cy(z) = x5 e (2), Cj(z) = zhcj(x), j = 2,3,4, ¢j(z) €
Cé(é), j=1,...,4, uis a non-negative constant, and G is a domain in
the upper halfspace x3 > 0 with the boundary G = Dy U Dy € C2,
where D; is in 23 > 0 and Dg in 23 = 0, = Dy N {z3 = 0}. The
Riemann-Hilbert boundary value problem (Problem A) for (4.12) is to
find a bounded solution w(x) = Z§:1 w;(z)e; € CL{G)NC?(G) of (4.12)
satisfying the boundary condition

% + o3(z)ws(x) = 13(x), x € Dy,
V3
Do (4.13)
Don + o4(x)wy(x) = 14(x), x € OG,
vy
{ Re[A(t) (w1 (t) + iwa(t)] = 7(t) + h[C(t)], t = x1 +ixg €T,
- (4.14)
Im[)\(dj)(wl(dj)+iw2(dj))] =9, ] = 1, ceey 2K +1 for KZO,

where cos(v;,n) > 0, j = 3,4, n is the outward normal at z € 0G,
and oj(z) > 0, 7j(z) € CL(ODs), j = 3,4, A(t),r(t),h(t),d;,g; and
K are similar as in (4.9), ((¢) is a conformal mapping from the unit
disk {t| < 1} onto Dy. Similarly to before, if B; is only a function of
xj,j =1,2,3, By is a real constant, and A; = Bj,j =1, ..., 4, then the
solution w(z) = Z?Zl wj(z)e; of Problem O for (4.12) is also a solution
of the following boundary value problem for the degenerate system of

second order equations:

Aws =2B1w3y, +2Bowsg, + Asrs e, + Agws + A,

" (4.15)
Aw4 = Z(A] + Bj)w450j + A8w4 + Agwg —+ A].O

=1
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with the boundary condition (4.13), in which

As = —p+ Bszs(1 + x3), Cs € 02(6)’

4 3
Ag = (1+ p)Bs — ZB? + ZBj:rj + (B?% — Bsg,)(1 — x3),

==
A7=(—B1C3—ByCy+B3C1+B4CoCly5+Cspy +Clzy )23 ",
4 3
Ag = =3 B2+ Bjay, Ag=Auly ™ (Bup + Agrs—Byzd),
= A

Ag = —A1Cy + AC3 — A3Cy + AyCy + Copy — Cgy +Clg,

Conversely, if the following conditions hold:
Ag >0, A3 >0 in G, (4.16)

then by means of Corollary 2.3, the boundary value problem (4.15),(4.13)
is solvable. Moreover, if

A1 == A2 =0 in é, (417)
then [wy(z), w2(x)] can be found by the following integrals:
z3
|
3
/() [xgngz + Wz, —nggwg — Biw, —C4]d:133+¢2 (a:l, 332),
(4.18)

—rh w3y, Wiy, +Brows — Bowg+Csldxs+¢1 (21, 22),

[e=]

w1 (x)
wa(x)

in which ¢1(x1,x2), ¢2(x1,x2) satisfy the conditions
Py, — G20y — A1P1 + Baga = 11 (w1, 22),
{ G201 + D12y — A2¢1 — Broo = 2(x1, 72),
where
V11, 12) = (25 prwsey +C1]|z5=0, 221, T2) = [~ Wiy +Col|es=0, (4.19)
and A;, B;, C; satisfy some conditions.

Besides, we require that ¢ = ¢1 + ¢oea = @1 + ¢oi satisfies the
boundary condition (4.14), i.e.

{ Re[A(t)p(t)] = r(t) + h(t), t € T,
Im[)\(dj)d)(dj)] =gj,j=1,...,2K+1 for K >0.

(4.20)
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Similarly to (4.10),(4.11), the function [¢1(z1,22), p2(z1,22)] is
uniquely determined, and hence [wy(z), w2(x)] is also uniquely deter-
mined. Thus we have

Theorem 4.2  Suppose that the coefficients of system (4.12) satisfy
conditions (4.16),(4.17) etc. stated as before. Then Problem A for de-
generate elliptic system (4.12) has a solution w(z) = Z?Zl wj(z)e; €
CL(GUD)NC%G), 0 < a < 1(see [80]6)).

We mention that when the boundary condition (4.13) is replaced by
ws(z) = 13(x), wa(x) =n(x), z € 0G, (4.21)

we can similarly discuss the solvability of the boundary value problem
(4.12) and (4.21).

4.3 Oblique Derivative Problem for an Elliptic System of
First Order in R*

Now, we discuss the elliptic system of first order equations in a do-
main @ C R* The so-called regular function w(zx) = Z?:l wj(x)e; is
indicated as a solution of the system of first order equations

Wig, — W2y —W3g3 — Whyy = 07 W1z, +w2$1 +w51‘3 +w63}4 = 07

w1$3 +w3x1 _wSxQ +w7.’114 = 07 w11‘4 +w4x1 _wﬁwg _w7x3 = 0’
(4.22)
—Wgs T+ W3z, + W5z — W8y :07 — Wz, +Whgs + W6y +w8x3 :Oa

—W3gy +w4Z3 +w7x1 —W8xy = 07 Wrg, — Wegs +w7$2 +w8:ﬂl — 07
in @, in which for convenience we denote e; = eses, eg = egey4, €7 =
eseq, es = egegeq. The generalized regular function w(x) = Z?ZI wj(zx)
is indicated as a solution of the system of first order equations

Ow = Aw+ Bw+ C in Q, (4.23)
where A(x) = ?:1 Aj(z), B(r) = ?:1 Bj(z), C(z) = ?:1 Cj(z),

w(z) = wi(z) = Yjpwi(z). Let Q = {|z;| < R(j = 1,2,3,4),0 <
R < oo}. The oblique derivative problem (Problem P) of (4.22) in @ is
to find a bounded solution w(x) = Z?ZI wj(z)e; € CL(Q) N C*Q) of
(4.22) satisfying the boundary conditions

e +0j(z)w;(z) = 1j(x) + hj, x € 0Q,
vj (4.24)

’U)J(R) = Uj, j = 1,2,3,5,
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where 0;(x),7j(z) € CL(0Q), oj(x) > 0(j = 1,2,3,5), hj(j = 1,2,3,5)
are undetermined constants, and u;(j = 1,2,3,5), a are real constants,
vj(j =1,2,3,5) are vectors at every point z € 9Q and cos(vj,n) > 0, n
is the outward normal at the point z € 9Q, and cos(v;,n) € CL(0Q), j =
1,2,3,5.

We first find the partial derivatives for the first four equations in
(4.22) with respect to x1,x2,x3, x4, and then add the equations, thus

Awy = w2 + -+ w2 = 0. (4.25)
Similarly we can obtain

Aw; = Wig2 + - w2 =0, 5 =2,3,5. (4.26)
On the basis of Theorem 1.6, there exists a solution [wi(x), we(x),
ws(z), ws(z)] of the boundary value problem (4.25),(4.26),(4.24), where
w;(z) € CLQ) N C*(Q), j = 1,2,3,5. Substituting the functions into
(4.22), we have

w4x4 = wlxl - w2x2 - w3x3’ w6x4 = _wle - w2x1 - w5x37
(4.27)
Wiz, = —Wigy — W3z + W5y, W8y, = — W23 + W3z, + Wsg -
From the above system, it follows that
T4
wy = / Wiz, — Wopy — W3gy|dxs + ga(T1, T2, 23),
0
T4
we = / [—Wigy — Wz, — Wy |dTs + g6(T1, T2, 3),
0
(4.28)

T4
wr = /O [_wlccg — W3z + w5$2]d‘7}4 +g7(21, 22, 23),
T4
wg = /0 [_w2xs + W3z, + w5w1]dx4 + 98(1‘17 x2s 333)’
and g (z1,22,23) (j = 4,6,7,8) satisfy the system of first order equations

G4z, — G620 — Grx3 = —Wilxy ‘$4:0 =az,

94xo + 96z, + 98z3 = w21‘4‘$4:0 = aa,
(4.29)

G435 + 97x1 — 98z = w3x4‘x420 = as,

9623 — 97z — Y8z1 = w5x4|:p4=O = Q4.
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Let g4, g6, g7, gs be replaced by w1, wa, ws, wys, then the system (4.29)
can be rewritten as

(4.30)

Wiz, — W2y — W3gg = A1, Wiz, + W2y, + Wegy = a2,
lUlwg +_1U3$1 _'1U4$2 = as, 1”2%3 _'1U3I2 _'1U4rl = G4,

ie. w(z)= Z?:l wj(x;)e; satisfies the equation

4
ow = €1 Wy, + €2Wys, + €3Wsy = a, a = Z a;e;,

j=1
and (4.30) is just a special case of (4.1) with a(z) = b(z) = 0, c¢(z) =
a(x). By Theorem 4.1 and the result in [38], the system (4.30) has
a solution w(z) = 2?21 w;(z)e; € CL(D) N C?*(D); herein D = Q N
{z4 = 0}. Thus the functions g4(x), gs(x), g7(z), gs(x) are found. Let
these functions be substituted into (4.28). Then w;(z)(j = 4,6,7,8) are
determined, and the function w(z) = jﬁ?:l wj(x)e; is just the solution

of Problem P for (4.22). Hence we have the following theorem.

Theorem 4.3 Problem P of the elliptic system of first order equations
(4.22), i.e. the regular functions in the domain @, has a solution w(x) =
Z?:l w;(x)e; € CL(Q) U C*(Q), where 0 < o < 1 (see [80]6)).

As for the generalized regular functions, under certain conditions, we
can also prove the existence of solutions of Problem P for system (4.23)
in . By a similar method as stated in Subsection 4.2, we can prove
the solvability of Problem P for the corresponding degenerate elliptic
systems of first order equations with some conditions in the domain G.

Finally, we consider the case of arbitrary dimension n. Let A,(R)
be a real Clifford algebra and @ be a polycylinder Q1 X - -+ X @, in the
space R", Q; = {|z;| < R;},0< Rj < o0,j=1,...,n.

Problem P’ The oblique derivative problem for generalized regular
functions in @ C R" is defined to be the problem of finding a generalized
regular function

2n—1

w(zx) = Z wj(z)e; = ZUJA(CU)BA in G,
A

j=1
A:{jl, ...,jk}C{l, ...,n}, €A=¢€j...€j, 1§j1 < <jk§n,
satisfying the boundary condition

gly+0j($)wj($) = Tj+hj, € 0Q, wj(R) = u;,j =1,..,2" 7% (4.31)
J
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Here j = A if j < n and if A includes at least two integers greater
than 1, then j(n < j < 2"7!) denotes one of integers system A such
that j and A possess a one to one relation, v; is a vector at the point
z € 0Q, cos(vj,n) > 0,0j(z) > 0,z € 9Q, h;(j = 1,..,2"7 1) are
undetermined constants.

Theorem 4.4 A function

w(z) = ZwA(x)eA in Q

A
is a generalized regular function if and only if the wa(x) satisfy the real
elliptic system of first order equations

n

Z 5@1033% = Z(ad + bd)wM(de + Z(ad — bd)wN(SdTV +ca, (4.32)
k=1 d=1 d=1

where kB = A, dM = A, dN = A and &5 elc. are proper signs (see
[80]10)).

Proof Since w(zx) is a generalized regular function, it is clear that
w(x) satisfies the elliptic system of first order equations

ow = aw + bw + c. (4.33)

Moreover we have

n

ow = Z Z OrEWBz,€A = Z‘SﬁmekeA-
A k=1 k,A

Thus
aw +bw + ¢ =32y 4(aq + ba)wrrdgrea

+ Y g.a(aq — ba)wndgyea + X 4 caea,

where kB = A, dM = A and dN = A, which shows that wa(z) satisfies
(4.32).

Under certain conditions, by introducing various quasi-permutations
as stated in Chapter I, from (4.32) we can obtain

n
Awy, = Z dmkwkxm + frwp +w, k=1,..., on—2, (4.34)

m=1

On the basis of the result in Section 1, a solution [wy(x), ..., won—2(x)] of
(4.34) satisfying the boundary condition (4.31) can be found. Moreover,
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we rewrite (4.32) in the form

Wkﬁ == Fkl(217 ceey Zm7 W2n73+1, ceey W2n72),
(4.35)
E=2"341,.,2"2 1=1,..m,

where
n = 2m, Top_1 + iTop = 2k, Wop_1 + twop = Wi, k=1,...,2" 2.

If @ is a polycylinder, under some conditions, we can obtain
(Wan-3,1(2), ..., Wan—2(x)] satisfying

Re[TlKl...%Kij(Zl, ey Zm)] = rj(zl, ey Zm) + hj,
(4.36)
2(21y 0y 2m) € OQ1 X -+ X OQu, j =23 +1,...,2"72,

The above result can be written as

Theorem 4.5 Under some conditions, Problem P’ for (4.14) has a
solution [wi(x), ..., won—1(x)], where Q is a polycylinder (see [31]2)).
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degenerate elliptic system
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integral equation 50, 60, 62,
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M-T equation 5

nonlinear elliptic equation
197
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partial differential equation
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singular integral equation
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Dirac operator 4, 76, 87

harmonic operator 109

inverse operator 152
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251

the second suffix 44, 111,
112

symmetric domain 105, 106, 204

theorem

Ascoli-Arzela theorem 67,
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Cauchy’s theorem 7, 30, 221
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fixed point theorem 60, 67,
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Fredholm theorem 152
Fubini theorem 194
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