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Preface

Clifford analysis is a comparatively active branch of mathematics that
has grown significantly over the past 30 years. It possesses both theo-
retical and applicable values of importance to many fields, for example
in problems related to the Maxwell equation, Yang-Mills theory, quan-
tum mechanics, and so on. Since 1965, a number of mathematicians
have made great efforts in real and complex Clifford analysis, rapidly
expanding our knowledge of one and multiple variable complex anal-
ysis, vector-valued analysis, generalized analytic functions, boundary
value problems, singular differential and integral equations of several di-
mension and harmonic analysis in classical domains (see Luogeng Hua’s
monograph [26]1)). In recent years, more mathematicians have recog-
nized the important role of Clifford analysis in harmonic analysis and
wavelet analysis. Most of content of this book is based on the authors’
research results over the past twenty years. We present the concept of
quasi-permutation as a tool and establish some properties of five kinds
of quasi-permutations. Moreover, we use this tool to overcome the diffi-
culty caused by the noncommutative property of multiplication in Clif-
ford algebra, give the sufficient and necessary condition for generalized
regular functions, and discuss the solvability for some boundary value
problems.

In Chapter I, we introduce the fundamentals of Clifford algebra in-
cluding definitions, some properties, the Stokes theorem, Cauchy inte-
gral formulas and Pompieu formulas for generalized regular functions
and harmonic functions. We also definite quasi-permutation and study
the property of quasi-permutations. We state the sufficient and nec-
essary conditions for generalized regular functions. In the last section
of this chapter, we consider regular and harmonic functions in complex
Clifford analysis.

In Chapters II and III, the Cauchy principle value and Plemelj for-
mula of Cauchy type integrals are firstly studied. Next, the relation
between linear and non-linear boundary value problems with Haseman
shift for generalized regular and biregular functions, vector-valued func-
tions and singular integral equations in real Clifford analysis is discussed.
In addition, we discuss the existence, uniqueness and integral expres-
sions of their solutions. By using quasi-permutation as a tool, we study
the Dirichlet and mixed boundary value problems for generalized reg-
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ular functions, and give the Schwarz integral formulation of hyperbolic
harmonic functions in real Clifford analysis.

In Chapter IV, the theory of harmonic analysis in classic domains
studied by Luogeng Hua is firstly introduced. Moreover, using quasi-
permutation, we investigate two boundary value problems for four kinds
of partial differential equations of second order in four kinds of classical
domains of real and complex Clifford analysis, prove the existence and
uniqueness of the regular solutions, and give their integral representa-
tions.

In Chapter V, we first introduce Cauchy’s estimates for three kinds
of integrals with parameters, and then discuss the Poincaré-Bertrand
permutation formulas, inverse formulas of singular integrals with Cauchy
kernel, Fredholm theory, and the regularization theorem for singular
integral equations on characteristic manifolds.

In Chapter VI, we introduce the definitions of the Hadamard principle
value, the Hölder continuity, recursive formulas, calculation formulas,
differential formulas and Poincaré-Bertrand permutation formulas for six
kinds of high order singular integrals of quasi-Bochner-Martinelli type
with one and two singular points, and then prove the unique solvability
of the corresponding non-linear differential integral equations in real
Clifford analysis.

In Chapter VII, we use the method of Clifford analysis to solve some
boundary value problems for some uniformly and degenerate elliptic
systems of equations.

It is clear that when n = 2, the functions in real Clifford analysis are
the functions in the theory of one complex variable, hence the results
in this book are generalizations of the corresponding results in complex
analysis of one complex variable. In this book, we introduce the history
of the problems as elaborately as possible, and list many references for
readers’ guidance. After reading the book, it will be seen that many
questions about real and complex analysis remain for further investiga-
tions. Finally the authors would like to acknowledge the support and
help of NSFC, Mr. Pi-wen Yang, Lili Wang, Nanbin Cao and Yanhui
Zhang.

Shijiazhuang and Beijing December, 2005

Sha Huang, Yu Ying Qiao and Guo Chun Wen
Hebei Normal University and Peking University



CHAPTER I

GENERAL REGULAR AND HARMONIC

FUNCTIONS IN REAL AND COMPLEX

CLIFFORD ANALYSIS

Clifford algebra is an associative and noncommutative algebraic struc-
ture, that was devised in the middle of the 1800s. Clifford analysis is
an important branch of modern analysis that studies functions defined
on Rn with values in a Clifford algebra space. In the first section of
this chapter, we define a Clifford algebra. In the second section, we dis-
cuss the Cauchy type integral formula of regular functions and Plemelj
formula of Cauchy type integral in real Clifford analysis. In the third
section, we introduce the conception of quasi-permutation posed by Sha
Huang, and from this we get an equivalent condition for regular and
general regular functions. In the fourth section, we establish a new hy-
percomplex structure. In the last section, we discuss some properties of
harmonic functions in complex Clifford analysis.

1 Real and Complex Clifford Algebra

Let An(R) (or An(C)) be an real (or complex) Clifford algebra
over an n-dimensional real vector space Rn with orthogonal basis
e := {e1, ..., en}, where e1 = 1 is a unit element in Rn. Then An(R)
(An(C)) has its basis e1, ..., en; e2e3, ..., en−1en; ...; e2, ..., en. Hence an
arbitrary element of the basis may be written as eA = eα1 , ..., eαh

; here
A = {α1, ..., αh} ⊆ {2, ..., n} and 2 ≤ α1 < α2 < · · · < αh ≤ n and when
A = Ø (empty set) eA = e1. So real (complex) Clifford algebra is com-
posed of elements having the type a =

∑
A xAeA, in which xA(∈ R) are

real numbers and a =
∑

A CAeA, where CA(∈ C) are complex numbers
(see [6]). In general, one has e2

i = +1, i = 1, ..., s, e2
i = −1, i = s+1, ..., n

and eiej + ejei = 0, i, j = 2, ..., n, i �= j. With different s we can get dif-
ferent partial differential equations (elliptic, hyperbolic, parabolic equa-
tions) from the regular function in Clifford analysis. In this book we let
s = 1.
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Noting that the real vector space Rn consists of the elements

z := x1e1 + · · · + xnen, (1.1)

we can consider that the elements z := x1e1 + · · · + x2en and z =
(x1, ..., xn) are identical, and denote by Rez = x1 the real part x1 of z.
For z ∈ Rn, we define the conjugate as

z = x1e1 − · · · − xnen,

thus zz = e1(x2
1 + · · · + x2

n). The absolute value (or a norm) for an
element a =

∑
A

aAeA ∈ An(R) is taken to be

|a| =
√
|a|2 =

√∑
A

|aA|2, (1.2)

then |z|2 = |z|2 = zz = zz for z ∈ Rn. If z �= 0, z ∈ Rn, then we have

z(
z

|z|2 ) = (
z

|z|2 )z = 1, (1.3)

hence, all non-zero elements of Rn possess the inverse operation of mul-
tiplication. However, it is not true for all Clifford elements, for instance
1 + e123.

Definition 1.1 For a ∈ An(R) (or An(C)), we give some calculations
as follows:

a′ =
∑
A

xAe′A (or a′ =
∑
A

cAe′A),

where e′A = (−1)|A|eA and |A| = nA(see [7]) being the cardinality of A,
i.e. when A = Ø, |A| = 0 and when A = {α2, α3, ..., αh} �= Ø, then
|A| = h.

ã =
∑
A

xAẽA (or ã =
∑
A

cAẽA),

where ẽA = (−1)|A|(|A|−1)/2eA, and

a = ã′ = ã′ =
∑
A

(−1)
|A|(|A|+1)

2 xAeA (or a =
∑
A

(−1)
|A|(|A|+1)

2 cAeA)).

For any a, b ∈ An(R) (An(C)), an inner product is defined by

< a, b >= [ab]1, (1.4)
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where [ab]1 is the coefficient of e1 in ab, and we can prove that [ab]1 =
[ba]1, so < a, b >= [ab]1 = [ba]1. From (1.2), (1.4) we have

|a|2 =< a, a >=
∑
A

|aA|2. (1.5)

Proposition 1.1 Let a, b ∈ An(R)(An(C)). Then

ab = ba, |a| = |a′| = |a| = |ã|, |a|2 = [aa]1 = [aa]1.

Definition 1.2 A Clifford number a ∈ An(R)(An(C)) is said to be
conjugate, if aa = aa = |a|2, and a is called the conjugate Clifford
number of a.

Denote by ℵ (ℵ(C)) the set of all conjugate Clifford numbers in
An(R)(An(C)).

Proposition 1.2 For any a ∈ An(C), the following conditions are
equivalent:

1) a is conjugate.

2) |ab| = |ba| = |b||a| for any b ∈ An(C).

3) There exists b ∈ An(C)\{0}, such that ab = |a||b| or ba = |b||a|.
Proof It is sufficient to show that the assertion is valid for a �= 0.

We first prove 1) → 2). By Proposition 1.1, it is clear that

|ab|2 = [abab]1 = [baab]1 = |a|2[bb]1 = |a|2|b|2.
Similarly we can verify |ba| = |b||a|.
Setting b = a and using Proposition 1.1, we can get 2) → 1), 1) → 3).

As for 3) → 1), we need to show that ab = |a||b| (b �= 0), i.e. aa = |a|2.
There is no harm in assuming that |a| = |b|, then by Proposition 1.1, we
get

< a, b >= [ab]1 = ab = |a||b| = |a||b|. (1.6)

Hence there exists t ∈ C such that b = ta and |t| = 1. From (1.6), it
follows that

t|a|2 =< a, ta >= |a|2.
Since a �= 0, we obtain t = 1, that is a = b, therefore

aa = ab = |a||b| = |a|2.
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By using the above result it is easy to extend Proposition 1.1, hence
we have the following corollaries.

Corollary 1.3 a, b ∈ ℵ(C) ⇒ ab ∈ ℵ(C).

Corollary 1.4 If a1, ..., am ∈ ℵ(C) and b ∈ An(C), then

|a1, ..., aj−1baj ...am| = |a1, |..., |aj−1||b||aj |...|am|.

2 Cauchy Integral Formula of Regular Functions and
Plemelj Formula of Cauchy Type Integrals in Real
Clifford Analysis

Firstly we give the definition of A-value function.

Definition 2.1 Let Ω ⊂ Rn be an open connected set. The function
f which is defined in Ω with values in An(R) can be expressed as

f(x) =
∑
A

eAfA(x),

where the function fA is a real-valued function.

The set of Cr-functions in Ω with values in An(R) is denoted by

F
(r)
Ω = {f |f : Ω → An(R), f(x) =

∑
A

fA(x)eA}.

We introduce also the Dirac operator

∂ =
n∑

i=1

ei
∂

∂xi
: F

(r)
Ω → F

(r−1)
Ω , (2.1)

that is
∂f =

∑
i,A

eieA
∂fA

∂xi
.

The Dirac operator ∂ is defined as

∂ = e1
∂

∂x1
− e2

∂

∂x2
− · · · − en

∂

∂xn
. (2.2)

Since An(R) is not a commutative algebra, in general the expression

∂f = e1
∂f

∂x1
+ · · · + en

∂f

∂xn
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is not same as
f∂ =

∂f

∂x1
e1 + · · · + ∂f

∂xn
en.

Definition 2.2 Let Ω ⊂ Rn be a domain and f ∈ F
(r)
Ω . Then f is

left regular in Ω, if ∂f = 0 in Ω; and f is right regular in Ω, if f∂ = 0
in Ω. For n = 2, ∂f = 2∂f/∂z = ∂f/∂x1 + e2∂f/∂x2, thus under this
condition the Clifford algebra is just the complex space and left regular
is equivalent to holomorphic. For n = 3, f(x) =

∑
A

eAfA = e1f1 +e2f2 +

e3f3+e23f23. If we transform f1, f2, f3, f23 into Φ1, −Φ2, −Φ3, Φ0, then
∂f = 0 is equivalent to the elliptic system in higher dimensional domains,
i.e. the M − T equation. Liede Huang discussed the boundary value
problems of the M − T equation in [28] and found a lot of applications,
for example the problem of airplane wing shapes, momentum pressure,
electromagnetism, laser technology and so on.

Notice that the product of Dirac operators ∂ and ∂ is equivalent to
the Laplace operator

∂∂ = ∂∂ =
∂2

∂x2
1

+ · · · + ∂2

∂x2
n

= 	. (2.3)

Definition 2.3 Let Ω ⊂ Rn be a domain and f ∈ F
(r)
Ω . If

	f = 0, (2.4)

then f is called a harmonic function.

It is clear that we have the following theorem.

Theorem 2.1 Let Ω ⊂ Rn be a domain and f ∈ F
(2)
Ω . If f is harmonic

in Ω, then ∂f is left regular in Ω, and f∂ is right regular in Ω; and if f
is regular in Ω, then f is harmonic in Ω.

Let Ω ⊂ Rn be a domain. If U =
∑n

p=1 ⊕ ∧p w is the exterior
algebra with the basis {dx1, ..., dxn}, we consider the pth-differential
form ψ(x) =

∑
A,H

ψA,H(x)eAdxH , where x ∈ Ω ⊂ Rn. Furthermore, the

function ψA,H(x) is assumed to be in set Cr(Ω) (r ≥ 1). Integration of
ψ(x) over the p-chain Γ ⊆ Ω is defined as∫

Γ
ψ(x) =

∑
A,H

∫
Γ

ψA,H(x)eAdxH . (2.5)
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Now we establish the Stokes theorem for functions in F (1) as follows:
Denote by Γ ⊆ Ω an n-dimensional differentiable and oriented manifold.
By means of the (n − 1)-forms

dx̂i = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn, i = 1, ..., n,

a An(R)-valued n − 1−form is introduced by putting

dσ =
n∑

i=1

(−1)i−1eidx̂i.

If dS stands for the “classical” surface element and

−→m =
n∑

i=1

eini,

where ni is the i-th component of the unit outward normal vector, then
the An(R)-valued surface element dσ can be written as

dσ = −→mdS.

Furthermore the volume-element dx = dx1 ∧ · · · ∧ dxn is used.

Now we state and prove the Stokes-Green theorem about the function
in F r

Ω.

Theorem 2.2 (see [6]) Let Ω be as stated above, M ⊆ Ω be an n-
dimensional differentiable, oriented manifold, f, g ∈ F

(r)
Ω (r ≥ 1), and Γ

be an arbitrary n-chain on M . Then we have∫
∂Γ

fdσg =
∫
Γ
[(f∂)g + f(∂g)]dx. (2.6)

Proof Using the Stokes theorem for real-valued functions, we succes-
sively get∫

∂Γ
fdσg =

∫
∂Γ

∑
A,i,B

(−1)i−1fAgBdx̂ieAeieB

=
∑

A,i,B

(−1)i−1eAeieB

∫
Γ
(−1)i−1∂xi(fAgB )dx

=
∫
Γ

∑
A,i,B

[(∂xifA)eAeigBeB + fAeAeieB(∂xigB )]dx

=
∫
Γ
[(f∂)g + f(∂g)]dx.
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Corollary 2.3 If f is right regular in Ω and g is left regular in Ω, then
for any n-chain Γ on M ⊂ Ω, the following integral holds:∫

∂Γ
fdσg = 0. (2.7)

Corollary 2.4 Putting f = 1, the formula (2.6) yields∫
Γ

∂gdx =
∫

∂Γ
dσg,

where g ∈ F
(r)
Ω (r ≥ 1).

For any g, which is left regular in M , we have∫
∂Γ

dσg = 0. (2.8)

This is called the Cauchy theorem.

Next let Ω ⊂ Rn be a domain and the boundary ∂Ω be a differ-
entiable, oriented, compact Liapunov surface. The so-called Liapunov
surface is a kind of surface satisfying the following three conditions (see
[19]).

1. Through each point in ∂Ω, there is a tangent plane.

2. There exists a real constant number d > 0, such that for any point
N0 ∈ ∂Ω, we can construct a sphere E with the center at N0 and
radius d, and E is divided into two parts by ∂Ω, one included in
the interior of E denoted by ∂Ω

′
, the other in the exterior of E;

and each straight line parallel to the normal direction of ∂Ω at N0,
with ∂Ω

′
intersects at most a point.

3. If the angle θ(N1, N2) between outward normal vectors through
N1, N2 is an acute angle, and r12 is the distance between N1 and
N2, then there exist two numbers b, α (0 ≤ α ≤ 1, b > 0) in-
dependent of N1, N2, such that θ(N1, N2) ≤ br12 for all points
N1, N2 ∈ ∂Ω.

From 3 we get that θ is continuous at the point N ∈ ∂Ω (see [29]2)).
Let N0 ∈ ∂Ω be a fixed point, and establish a polar coordinate system
with the origin at N0 and the outward normal direction of ∂Ω at N0
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as the direction of the positive xn axis. Then the surface ∂Ω
′

may be
written in the form

ξn = ξn(ξ1, ..., ξn−1), (2.9)

and ξn has first order partial derivatives on ξi (i = 1, ..., n − 1).

Let d > 0 be small enough such that bdα ≤ 1, and for any point N ∈ ∂Ω
′
,

θ0 = θ(N0, N) as stated before, and r0 = |N0N | be the distance from
N0 to N (r0 < d). We can obtain

cos θ0 ≥ 1 − 1
2
θ2
0 ≥ 1 − 1

2
b2r2α

0 ≥ 0,

and then
1

cos θ0
≤ 1

1 − 1
2b2r2α

0

≤ 1 + b2r2α
0 ≤ 2.

Thus we have the formula

cos θ0 ≥ 1
2
. (2.10)

Moreover we introduce a local generalized spherical coordinate at N0 as
follows:

ξn−1 = ρ0 cos ϕ1 cos ϕ2... cos ϕn−3 cos ϕn−2,

ξn−2 = ρ0 cos ϕ1 cos ϕ2... cos ϕn−3 sin ϕn−2,

...,

ξ2 = ρ0 cos ϕ1 sin ϕ2,

ξ1 = ρ0 sin ϕ1,

where ρ0 is the length of the projection of r0 on the tangent plane of ∂Ω
at N0, and ϕi satisfy the conditions

|ϕj | ≤ π

2
, j = 1, 2, ..., n − 3, 0 ≤ ϕn−2 < 2π,

hence we get

cos(−→m0, xn) ≥ 1
2
,

∣∣∣∣ D(ξ1, ..., ξn−1)
D(ρ0, ϕ1, ..., ϕn−2)

∣∣∣∣ ≤ ρn−2
0 , (2.11)

where −→m0 is a normal vector through N .

A function f(y) : ∂Ω → An(R) is said to be Hölder continuous on
∂Ω, if f(y) satisfies

|f(y1) − f(y1)| ≤ M1|y1 − y2|α, y1, y2 ∈ ∂Ω (0 < α < 1). (2.12)
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Denote by Hα
∂Ω the set of all Hölder continuous function on ∂Ω with the

index α.

Now we consider the Cauchy type integral, Cauchy singular integral
and the Plemelj formula.

Definition 2.4 The integral

Φ(x) =
1
ωn

∫
∂Ω

E(x, y)n(y)f(y)dsy, (2.13)

or
Φ(x) =

1
ωn

∫
∂Ω

E(x, y)dσyf(y)

is called the Cauchy type integral, where Ω and ∂Ω are as before, n(y)
is the normal vector through y, dSy is the area difference E(x, y) =
y − x

|y − x|n , and ωn = 2πn/2

Γ(n/2) is the area of the unit sphere in Rn. When

x ∈ Rn\∂Ω, f(x) ∈ Hα
∂Ω, it is clear that the integral is well defined.

Definition 2.5 If x0 ∈ ∂Ω, construct a sphere E with the center at
x0 and radius δ > 0, where ∂Ω is divided into two parts by E, and the
part of ∂Ω lying in the interior of E is denoted by λδ. If lim

δ→0
Φδ = I, in

which
Φδ(x0) =

1
ωn

∫
∂Ω−λδ

E(x0, y)dσyf(y), (2.14)

then I is called the Cauchy principal value of singular integral and de-
noted by I = Φ(x0).

Now we prove the Cauchy-Pompjeu integral formula.

Theorem 2.5 Let Ω, ∂Ω be as stated above, and Ω = Ω ∪ ∂Ω. Then
for each x ∈ Ω, f ∈ F r

Ω
(r ≥ 1), we have

f(x) =
1
ωn

∫
∂Ω

E(x, y)dσyf(y) − 1
ωn

∫
Ω

E(x, y)(∂f)(y)dy, (2.15)

and

f(x) =
1
ωn

∫
∂Ω

f(y)dσyE(x, y) − 1
ωn

∫
Ω
(f∂)(y)E(x, y)dy. (2.16)

Proof We also use the notations as before and denote by x a point in
Ω and the hypercomplex number x = x1e1 + · · · + xnen. For n ≥ 3, set

E(x, y) =
1

2 − n
∂(|y − x|2−n) =

1
2 − n

(|y − x|2−n)∂,
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and for n = 2,

E(x, y) = ∂(ln|y − x|) = (ln|y − x|)∂.

In both instances,

∂(E(x, y)) = (E(x, y))∂ = 0, y �= x.

So both |y − x|2−n (n ≥ 3) and ln |y − x| (n = 2) are harmonic. If
Ωε = {y ∈ Ω : |y − x| > ε}, where x ∈ Ω is fixed and the ε-ball:
|y−x| < ε about x lies completely within Ω, by the Stokes theorem one
has∫

Ωε

E(x, y)(∂f)(y)dy=
∫

∂Ω
E(x, y)dσyf(y)−

∫
|y−x|=ε

E(x, y)dσyf(y).

About the fixed point x, f(y) may be approximated as f(y) = f(x) +
O(ε), in which lim

ε→0
O(ε) = 0. Using the Stokes theorem we have

∫
|y−x|=ε

E(x, y)dσy = ωn.

Hence when ε → 0, we can obtain the Cauchy-Pompieu representation
(2.15). A calculation analogous to the above verifies the representation
(2.16).

Corollary 2.6 Let Ω, ∂Ω be as stated above, and f be a left regular
function defined on Ω. Then

Φ(x0) =

⎧⎨⎩ f(x0), x0 ∈ Ω,

0, x0 ∈ Rn\Ω,
(2.17)

here Φ(x0) is defined by Definition 2.5.

Theorem 2.7 Suppose that Ω, ∂Ω are as stated before, and f ∈
Hα

∂Ω, x0 ∈ ∂Ω. Then

1
ωn

∫
∂Ω

E(x0, y)dσyf(y)

=
1
ωn

∫
∂Ω

E(x0, y)dσy[f(y)−f(x0)]+
1
2
f(x0),

(2.18)

where the first integral is defined by Cauchy’s principal value, and the
second integral is defined by a generalized integral.
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Proof Let λδ be as stated above. Then

∫
∂Ω−λδ

E(x0, y)dσyf(y)

=
∫

∂Ω−λδ

E(x0, y)dσy[f(y) − f(x0)] +
∫

∂Ω−λδ

E(x0, y)dσyf(x0).

(2.19)
Because f ∈ Hα

∂Ω and (2.11), (2.12), we can get

|E(x0, y)dσy[f(y) − f(x0)]| ≤ M

|y − x0|n−1−α
|dSy|

≤
∣∣∣∣ D(ξ1, ..., ξn−1)
D(ρ0, ϕ1, ..., ϕn−2)

∣∣∣∣ M

|y − x0|n−1−α
|dρ0dϕ1...dϕn−2|

≤ | M

|y − x0|n−1−α
2ρn−2

0 dρ0dϕ1...dϕn−2| ≤ M
′ 1
ρ1−α

0

dρ0,

in which the integral of the last function is convergent, so

lim
δ→0

∫
∂Ω−λδ

E(x0, y)dσy[f(y)−f(x0)]=
∫

∂Ω

E(x0, y)dσy[f(y) − f(x0)].

Calculating the second item, and setting Dout = {∂[(D(x0, δ)) ∪ Ω]} ∩
(Rn − Ω), by the Cauchy formula (see Corollary 2.6), we have

∫
∂Ω−λδ+Dout

E(x0, y)dσyf(x0) = ωnf(x0),

and ∫
Dout

E(x0, y)dσyf(x0)=
∫

Dout

E(x0, y)
y−x0

|y−x0|dSyf(x0)

=
∫

Dout

1
|y − x0|n−1

dSyf(x0),

and from the condition about ∂Ω, we obtain

lim
δ→0

∫
Dout

E(x0, y)dσyf(x0) =
1
2
ωnf(x0),
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so
lim
δ→0

∫
∂Ω−λδ

E(x0, y)dσyf(x0)

= lim
δ→0

∫
∂Ω−λδ+Dout

E(x0, y)dσyf(x0)

− lim
δ→0

∫
Dout

E(x0, y)dσyf(x0)=
1
2
ωnf(x0).

Summarizing the above discussion and letting δ → 0 in (2.19), we can
get the required result.

Next we consider the limit of Cauchy’s integral when x → x0, x0 ∈ ∂Ω
from Ω+ = Ω and Ω− = Rn\Ω; we first give a Hile’s lemma.

Lemma 2.8 Suppose that t, x ∈ Rn, n(≥ 2) and m(≥ 0) are integers.
Then ∣∣∣∣ x

|x|m+2
− t

|t|m+2

∣∣∣∣ ≤ Pm(x, t)
|x|m+1|t|m+1

|x − t|, (2.20)

where

Pm(x, t) =

⎧⎪⎪⎨⎪⎪⎩
m∑

k=0
|x|m−k|t|k, m �= 0,

1, m = 0.

Proof The proof can be seen in [19].

We rewrite (2.13) in the form

Φ(x) =
1
ωn

∫
∂Ω

E(x, y)dσyf(y)

=
1
ωn

∫
∂Ω

E(x, y)dσy[f(y)−f(x0)]+
1
ωn

∫
∂Ω

E(x, y)dσyf(x0)

= F (x) +
1
ωn

∫
∂Ω

E(x, y)dσyf(x0).

(2.21)
From Corollary 2.6, we get

1
ωn

∫
∂Ω

E(x, y)dσyf(x0) =

⎧⎨⎩ f(x0), x ∈ Ω+,

0, x ∈ Ω−.
(2.22)

Now we need to consider the limit of (2.14), it suffices to study the first
item in (2.21).
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Theorem 2.9 Let Ω, ∂Ω be as stated above, and f(x) ∈ Hα
∂Ω, 0 < α <

1. Then for x0 ∈ ∂Ω we have

lim
x→x0

x∈Rn\∂Ω

F (x) = F (x0). (2.23)

Proof We first assume that x → x0 and is not along the direction of
the tangent plane at x0(∈ ∂Ω). This means that the angle between the
tangent plane of ∂Ω at x0 and line segment xx0 is greater than 2β0, then

F (x) − F (x0)

=
1
ωn

∫
∂Ω

E(x, y)dσy[f(y)−f(x0)]− 1
ωn

∫
∂Ω

E(x0, y)dσy[f(y)−f(x0)]

=
1
ωn

∫
∂Ω

[E(x, y) − E(x0, y)]dσy[f(y) − f(x0)]

=
1
ωn

∫
λδ

[E(x, y) − E(x0, y)]dσy[f(y) − f(x0)]

+
1
ωn

∫
∂Ω−λδ

[E(x, y) − E(x0, y)]dσy[f(y) − f(x0)] = I1 + I2.

From the conditions that ∂Ω is a Liapunov surface and x → x0 is not
along the direction of the tangent plane and the angle to the tangent
plane of ∂Ω at x0 is greater than 2β0, where β0 is a constant, we can get∣∣∣∣y − x0

y − x

∣∣∣∣ ≤ M2 < ∞,

∣∣∣∣x − x0

y − x

∣∣∣∣ ≤ M2 < ∞;

again by Hile’s lemma, we have

|E(x, y)−E(x0, y)|=
∣∣∣∣ y−x

|y−x|n −
y−x0

|y−x0|n
∣∣∣∣

≤
n−2∑
k=0

|x − x0|
|y − x|k+1

1
|y − x0|n−1−k

=
n−1∑
k=1

|x−x0|
|y−x|k

1
|y−x0|n−k

=
n−1∑
k=1

|x − x0|
|y − x|

|y − x0|k−1

|y − x|k−1

1
|y − x0|n−1

≤ (n − 1)Mk
2

1
|y − x0|n−1

≤ (n − 1)Mk
2

ρn−1
0

.
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From (2.11), it follows that

|dSy| = |dσy| =
∣∣∣∣ D(ξ1, ..., ξn−1)
D(ρ0, ϕ1, ..., ϕn−2)

∣∣∣∣
×|dρ0dϕ1...dϕn−2| ≤ M2ρ

n−2
0 dρ0,

and

|I1| ≤ 1
ωn

∫
λδ

|E(x, y)−E(x0, y)||dσy||f(y)−f(x0)|

≤ M3

δ∫
0

1
ρn−1

0

ρn−2
0 ρα

0 dρ0≤M4

δ∫
0

ρα−1
0 dρ0,

in which the constants M3, M4 are independent of x0, and for arbitrary
ε > 0, there exists a ρ > 0 such that when δ < ρ, |I1| < ε/2. Given a
fixed δ such that 0 < δ < ρ, thus we can estimate I2. By

|E(x, y) − E(x0, y)| ≤
(

n−1∑
k=1

|y − x0|k
|y − x|k

1
|y − x0|n

)
|x − x0|,

we get

|I2|= 1
ωn

∫
∂Ω−λδ

|E(x, y)−E(x0, y)||dσy||f(y)−f(x0)|

≤ 1
ωn

L∫
δ

(n − 1)Mk
2

ρn
0

2ρn−2
0 dρ0M1|x − x0|.

Here L is a positive constant because of ∂Ω being bounded. Thus when
|x − x0| is small enough we can get |I2| < ε/2. Hence F (x) converges
to F (x0) on ∂Ω as x → x0. Note that δ is independent of x0, and
x

′
, x0 ∈ ∂Ω, thus it is easy to see that F (x) is uniformly continuous on

∂Ω.

Next consider x → x0 along the direction of the tangent plane of ∂Ω
at x0. When |x − x0| is small enough, we can choose a point y(∈ ∂Ω)
such that |x − y|, |y − x0| are also small enough, and x lies in the
direction of the tangent plane of ∂Ω at y. Taking account that F (x)
on ∂Ω is uniformly continuous, we can derive that for any ε > 0, when
|x − x0|, |y − x0| are small enough, the following inequalities hold:

|F (y) − F (x0)| ≤ ε

2
, |F (x) − F (y)| ≤ ε

2
,
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thus

|F (x) − F (x0)| ≤ |F (x) − F (y)| + |F (y) − F (x0)| ≤ ε.

This completes the proof.

Theorem 2.10 Let Ω, ∂Ω, Ω+, Ω− be as stated above, f(x) ∈ Hα
∂Ω,

0 < α < 1, x0 ∈ ∂Ω, and denote by Φ+(x0), Φ−(x0) the limits of Φ(x),
when x → x0 in Ω+, Ω− respectively. Then⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φ+(x0) =
1
ωn

∫
∂Ω

E(x0, y)dσyf(y) +
1
2
f(x0),

Φ−(x0) =
1
ωn

∫
∂Ω

E(x0, y)dσyf(y) − 1
2
f(x0),

(2.24)

or ⎧⎪⎨⎪⎩
Φ+(x0) − Φ−(x0) = f(x0),

Φ−(x0) + Φ−(x0) =
2
ωn

∫
∂Ω

E(x0, y)dσyf(y).
(2.25)

Proof By using Cauchy’s integrals (2.13), (2.21), (2.22) and Theorem
2.5, when x → x0 in Ω+, Ω−, Φ(x) possesses the limits

Φ+(x0) =
1
ωn

∫
∂Ω

E(x0, y)dσy[f(y) − f(x0)] + f(x0),

Φ−(x0) =
1
ωn

∫
∂Ω

E(x0, y)dσy[f(y) − f(x0)],

respectively. Form (2.21) it follows that (2.24) is valid. Similarly we
can prove (2.25). The formula (2.25) is called the Plemelj formula for
left regular functions, which is generally used to discuss boundary value
problems.

3 Quasi-Permutations and Generalized Regular
Functions in Real Clifford Analysis

Clifford numbers that we use in Clifford analysis do not have the com-
mutative property, creates a lot of difficulties in handling some problems.
In this section we first introduce the conception of quasi-permutation
proposed by Sha Huang (see [29]4),5),6)), and then we give some equiv-
alent conditions of regular functions and generalized regular functions
by the above quasi-permutation.
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3.1 The quasi-permutation and its properties

Definition 3.1 Let A = {h1, h2, ..., hk}, 1 ≤ h1 < h2 < ... < hk,
here hi (i = 1, ..., k), and m be natural numbers. For the arrangement

mA =

⎧⎨⎩ A \ {m}, m ∈ A,

{g1, g2, ..., gk+1}, m �∈ A,

where gi ∈ A ∪ m, 1 ≤ g1 < g2 < ... < gk+1, we call mA the first class
quasi-permutation for arrangement mA, and define mm = 1, m1 = m.
If there are p natural numbers hi ∈ [2, m], then the sign

δmA = (−1)p

is called the sign of the first class quasi-permutation mA.

Property 3.1 1. If mA = B, then mB = A.

2. mA = Am.

3. Let m = 1, then δmA = 1.

4. If mA = B and m �= 1, then δmA = −δmB.

5. emeA = δmAemA.

The proof is easily obtained by Definition 3.1.

Definition 3.2 Let A be as stated in Definition 3.1 and B =
{l1, l2, ..., lm}, 1 ≤ l1 < l2 < ... < lm ≤ n, lj (1 ≤ j < m) be natural
numbers. We call the arrangement BA = (B∪A)\(B∩A) with the nat-
ural order as the second class quasi-permutation for arrangement BA,
and

δBA =
m∏

j=1

δljA

as the sign of the second class quasi-permutation. And we let BB =
1, B1 = B

Property 3.2. 1. If BA = C, then CA = B.

2. BA = AB.

3. Let A = {h1, h2, ..., hr} �= {1}. Then δAA = (−1)
r(r+1)

2 .

4. eBeA = δBAeBA.
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5. If a =
∑
C

aCeC , A = CB, ω =
∑
B

ωBeB, then

aω =
∑
A

(
∑
C

aCδCBωB)eA.

Proof. Noting that

aω =
∑
C

aCeC
∑
B

ωBeB

=
∑
C

∑
B

aCωBeCeB

=
∑
B,C

aCωBδCBeCB,

we can write A = CB, and notice for every C, A and B monogamy, so

aω =
∑
A

∑
C

aCδCBωBeA.

Definition 3.3 Let j be a natural number and D = {h1, h2, ..., hs},
1 < h1 < h2 < ... < hs ≤ n, hp (1 ≤ p ≤ s) be natural numbers. The ar-
rangement Dj is called the third class quasi-permutation of arrangement
jD, and the sign

εjD =

⎧⎨⎩ (−1)s for any p ∈ [1, s], hp �= j,

(−1)s−1 for some p ∈ [1, s], hp = j,

ε1D = 1,

is called the sign of the third class quasi-permutation.

Property 3.3 If j, D are as stated above, then

ejeD = εjDeDej .

Definition 3.4 Let the arrangement D = {h1, ..., hr} and C be natu-
ral number arrangement with natural order as above. Then the arrange-
ment CD is called the fourth class quasi-permutation of arrangement
DC and the sign

εDC =
r∏

p=1

εhpC
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is called the sign of the fourth class quasi-permutation.

Property 3.4 If C, D are as stated above, then

eDeC = εDCeCeD.

Property 3.5 Let C = {h1, ..., hr}, D = {k1, ..., kp} as stated in Def-
inition 3.1, where hi, kj are all not equal to 1 and q elements in C and
D are the same. Then eDeC = (−1)rp−qeCeD, εDC = (−1)rp−q, and
when r or p is an even number, then eDeC = (−1)qeCeD, εDC = (−1)q.

Definition 3.5 Let C, D, E, M be the arrangement of natural num-
bers as in Definition 3.1. The arrangement CDEM is called the fifth
class quasi-permutation of arrangement EDCM , and if

CM = {h1, ..., hr}, EM = {b1, ..., bp}, νEDC = εEDεECεDC ,

then we call
µEDC = (−1)

r(r+1)+p(p+1)
2 νEDC

the sign of the fifth class quasi-permutation.

Property 3.6 Let E, D, M be the arrangement of natural numbers
as in Definition 3.1, ED = {h1, ..., hr} = A (hj �= 1), MA = C, CD =
{b1, ..., bp} = B (bj �= 1). Then

1. δEDδCM = µEDCδCDδEM .

2. δCDδEM = µEDCδEDδCM .

3. eEeDeCeM = νEDC(−1)
p(p+1)

2 δCDδEM .

Proof We calculate eEeDeCeM in two ways, and obtain

eEeDeCeM = δEDeEDδCMeCM

= δEDδCMeEDeCM = (−1)
r(r+1)

2 δEDδCM ,

where ED = MEDM = CM , and then

eEeDeCeM =νEDCeCeDeEeM

= νEDCδCDδEMeCDeEM

= νEDC(−1)
p(p+1)

2 δCDδEM ,
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where CD = MEDD = EM. From the above equality, we can derive

δEDδCM =(−1)
r(r+1)+p(p+1)

2 νEDCδCDδEM

and the proof of 1 is finished. Similarly we can prove 2, 3.

Property 3.7 Let D, B be the natural arrangement of natural num-
bers, j(�= m) be natural numbers, and

jD = A = {h1, ..., hr} = mB, jB = mD = {b1, ..., bp}.

Then
δmDδjB = −δjDδmB.

Proof We prove it according to the following three cases:

1. m, j ∈ D.

2. m, j �∈ D.

3. D includes one of m and j.

If m, j ∈ D, then m, j �∈ N \ B, and there exists a set E, such that
D = E ∪ {j, m}, B = E \ {j, m}, hence

emeDejeB =δmDemDδjBejB =δmDδjB(−1)
r(r+1)

2 ,

moreover we have

emeDejeB = νmDjejeDemeB = νmDjδjDδmB

×ejDemB = −δjDδmB(−1)
r(r+1)

2 .

From this, we get 1. Similarly we can prove 2, 3.

3.2 Regular functions and generalized regular functions

By the method using the sign of quasi-permutation, in the follow-
ing we give equivalent conditions for regular functions and generalized
regular functions.



20 Chapter I

Theorem 3.8 If f : Ω → An(R), then f(x) =
∑
A

fA(x)eA is a left

regular function if and only if

fAx1 =
n∑

m=2

δmAfmAxm
,

where ( )xm = ∂( )/∂xm.

Proof By the definition of quasi-permutations, we have

∂f(x) =
n∑

i=1

ei
∂f

∂xi
=

n∑
i=1

∑
A

eieA
∂fA

∂xi

=
∑
i,A

δiAeiA

∂fA

∂xi
=
∑
A

[
δ1Ae1A

∂fA

∂x1
+

n∑
i=2

δiAeiA

∂fA

∂xi

]
,

when 2 ≤ i ≤ n; if iA = B, then A = iB, δiA = −δiB. So

∂f(x) =
∑
A

[
δ1Ae1A

∂fA

∂x1

]
−
∑
B

n∑
i=2

[
δiBeB

∂fiB

∂xi

]
.

Again because iA = B, iB = A (2 ≤ i ≤ n), we can verify that the
elements of the sets {A} and {B} possess the same quantity and same
form. From this formula it follows that

∂f(x) =
∑
A

[
eA

∂fA

∂x1
−

n∑
i=2

δiAeA
∂fiA

∂xi

]
.

Finally by the definition of ∂f(x), the proof is completed.

Especially, when n = 3, the equivalent condition is the system of
equations (3.0), Chapter VII.

Theorem 3.9 Let f : Ω → A. Then f(x) =
∑
A

fA(x)eA is a left

regular function if and only if

n∑
m=1

δmB

∂fB

∂xm
= 0,

where mA = B.

Proof By Theorem 3.8 and δiA = −δiB (i �= 1, iA = B, iB = A), the
theorem is easily proved.
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Let w =
∑
A

wAeA. Then w =
∑
A

wAeA, if A = {h1, ..., hr}, eA =

(−1)
r(r+1)

2 eA (see Definition 1.1). When r = 0, 3 (mod 4), i.e.
(−1)

r(r+1)
2 = 1, we denote A by A and the A is called the A-type index.

When r = 1, 2 (mod 4), i.e. (−1)
r(r+1)

2 = −1, we denote A by A and the
A is called the A-type index. Hence we can write

ω =
∑
A

ωAeA −
∑
A

ωAeA

Definition 3.6 Let Ω ⊂ Rn be a bounded domain, and w(x) =∑
A

wA(x)eA ∈ F
(r)
Ω (r ≥ 1). If w(x) satisfies the system of first order

equations

∂w = aw + bw + l, x ∈ Ω, (3.1)

then w(x) is called a generalized regular function in Ω, where

a(x) =
∑
C

aC(x)eC , b(x) =
∑
C

bC(x)eC , l(x) =
∑
A

lA(x)eA.

By Theorems 3.8 and 3.9, we know

∂w =
∑

mB=A

n∑
m=1

δmBwBxmeA,

and by Property 3.2, at the same time letting w =
∑
M

wMeM +
∑
M

wMeM ,

we have

aw+bw+l = (
∑
C

aCeC)(
∑
M

wMeM +
∑
M

wMeM )

+(
∑
C

bCeC)(
∑
M

wMeM −∑
M

wMeM ) +
∑
A

lAeA

=
∑
C,A

aCwMδCMeA+
∑
C,A

aCwMδCMeA+
∑
C,A

bCwMδCMeA

− ∑
C,A

bCwMδCMeA+
∑
A

lAeA =
∑
C,A

(aC +bC)wMδCMeA

+
∑
C,A

(aC − bC)wMδCMeA +
∑
A

lAeA,
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where CM = A, CM = A. Thus (3.1) becomes

∑
A

n∑
m=1

δmBwBxmeA =
∑
C,A

(aC + bC)wMδCMeA

+
∑
C,A

(aC − bC)wMδCMeA +
∑
A

lAeA,

in which mB = A, CM = A, CM = A. From the above discussion,
we have the following theorem. That is to say for any A, the following
formula (3.2) is true.

Theorem 3.10 Let Ω ⊂ Rn be a bounded domain, and w(x) =∑
M

wM (x)eM ∈ F
(r)
Ω (r ≥ 1). Then w(x) is a generalized regular func-

tion in Ω if and only if w(x) satisfies the elliptic system of first order
equations

n∑
m=1

mB=A

δmBwBxm =
∑

C
CM=A

(aC + bC)wMδCM

+
∑

C
CM=A

(aC − bC)wMδCM + lA.

(3.2)

In addition, we can also derive the relation between a generalized regular
function and an elliptic system of second order equations.

Theorem 3.11 Let Ω ⊂ Rn be a bounded domain, and w(x) =∑
M

wM (x)eM ∈ F
(r)
Ω (r ≥ 2). Then w(x) is a generalized regular function

in Ω if and only if the components of w(x) satisfy the elliptic system of
second order equations

	wD =
∑
j,C

δjDδCM (aC + bC)xjwM

+
∑
j,C

δjDδCM (aC + bC)wMxj +
∑
j,C

δjD

×δCM (aC − bC)xjwM +
∑
j,C

δjDδCM

×(aC − bC)wMxj +
n∑

j=1
δjDlAxj ,

(3.3)

where j = 1, ..., n, jD = A, CM = A, CM = A.
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Proof Let w(x) =
∑
M

wM (x)eM be a generalized regular function.

From Theorem 3.10, it is clear that wM (x) satisfies (3.2), and for a fixed
index D, we consider the term wD in the left-hand side of equation (3.2),
i.e. the equation corresponding to eA satisfying that jD = A. Suppose
that the term corresponding to wD is δjDwDkj

, and this equation is said
to be the equation for wD. Then we find partial derivatives with respect
to xj for the equation including WD, and then multiply this equation
by δjD. Finally sum these derivatives according to the index j, we get

n∑
j=1

δjD

⎛⎝ n∑
j=1

δmBωBxxm

⎞⎠xj

=
n∑

j=1

(δjD)2ωDx2
j
+

∑
j,m,j �=m

δjDδmBωBxxmxj
.

(3.4)

Noting that mB = A, A = jD (j = 1, ..., n) in (3.4) only include a part
of all indexes(real subset) of sets A, and that from Corollary 3.7 we have

δjDδmBwBxmxj = −δmDδjBwBxjxm ,

then ∑
j,m,j �=m

δjDδmBwBxmxj = 0 (jD = A,mB = A, j �= m);

moreover we can derive
n∑

j=1

δjD

(
n∑

m=1

δmBwBxm

)
xj

= 	wD. (3.5)

In fact we consider the right side of equation for w(x) in (3.2). By using
the same method (i.e. we find the partial derivatives with respect to xj

and multiply by δjD, and then sum them by j) we can get the expression
of wD in the right side of equation (3.4):

n∑
j=1

δj D[
∑
C

(aC + bC)wMδCM

+
∑
C

(aC − bC)wMδCM + lA]xj

=
∑
j, C

δj DδCM [(aC + bC)wM ]xj

+
∑
j,C

δjDδCM [(aC − bC)wM ]xj
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+
n∑

j=1

δjDlAxj =
∑
j,C

δjDδCM (aC + bC)xjwM

+
∑
j,C

δjDδCM (aC + bC)wMxj

+
∑
j, C

δjDδCM (aC − bC)xjwM

+
∑
j, C

δjDδCM (aC − bC)wMxj +
n∑

j=1

δjDlAxj .

(3.6)

Here CM = A, CM = A, jD = A. From equations (3.4), (3.5), (3.6),
it follows that the formula (3.3) is true.

4 The Chain Rule and Differentiation Rules of new
Hypercomplex Differential functions in Clifford
Analysis

There are three ways to discuss general holomorphic functions in
complex analysis: one is Cauchy’s method that is based on the dif-
ferentiability; another one is the Weierstrass method that is based on
power series; the third one is the Riemann method that is based on the
Cauchy-Riemann equations. In the case of a quaternion, F. Sommen
[72]1) uses a special differential form that avoide the differentiability in
Cauchy’s method. Conversely in 1990, H. Malonek [48] gave an imitation
of Cauchy’s classical method by using the new hypercomplex structure,
first giving a relation between new hypercomplex differentiable func-
tions and monogenic functions, a hypercomplex structure that possesses
an obvious advantage. In this section, we establish a new chain rule
and new differential rule in Clifford analysis from the view of the new
hypercomplex structure of Malonek.

4.1. Hypercomplex Differential

Let

λ =
m∑

k=1

λkek, (m ≤ n, λk are real numbers)
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be a hypercomplex number and the set of all λ make up a space Ãm(R).
Then Rm ∼= Ãm(R), x = (x1, ..., xm) ∈ Rm, and zk = xk − x1ek, k =
2, ..., m, −→z = (z2, ..., zm). Denote by Hm−1 the set of all −→z , and de-
note the topological product of m − 1 spaces An(R) by Am−1

n (R), then
Hm−1 ⊂ Am−1

n (R). For any −→z ∈ Hm−1 define the norm of −→z by

‖−→z ‖ = (−→z ,−→z )
1
2 = (

m∑
k=2

zkzk)
1
2 = (mx2

1 +
m∑

k=2

x2
k)

1
2 ,

where the inner product (−→z ,
−→
ξ ) = (−→ξ ,−→z ) =

∑m
k=2 zkξk.

Definition 4.1 Denote by L(Am−1
n (R), Ap−1

n (R)) the set of linear
mappings from Am−1

n (R) to Ap−1
n (R). A bounded mappings −→

l ∈
L(Am−1

n (R), Ap−1
n (R)) is said to be A linear (or linear for short), if

−→u , −→v ∈ Am−1
n (R), λ, µ ∈ An(R); then we have

−→
l (λ−→u + µ−→v ) = λ

−→
l (−→u ) + µ

−→
l (−→v ).

Lemma 4.1 (see [48]) Every A linear mapping l ∈ L(Hm−1, An(R))
has a unique expression l(−→z ) = z2A2 + · · · + zmAm, where Ak ∈
An(R), k = 2, ..., m.

Proof Let l ∈ L(Hm−1, An(R)) be an A linear mapping. Then we
have

l(0, 0, ..., 1, ..., 0) = Ak ∈ An(R), k = 2, ..., m,

and then
l(−→z ) = z2A2 + · · · + zmAm.

If there are other A
′
k, k = 2, ..., m, such that

l(−→z ) = z2A
′
2 + · · · + zmA

′
m,

then
0 = l(−→z −−→z ) = l(−→z ) − l(−→z )

= z2(A2 − A
′
2) + · · · + zm(Am − A

′
m),

and we get Ak = A
′
k, k = 2, ..., m.

Definition 4.2 (see [48]) Let −→a ∈ Hm−1 and f be a continuous
mapping from some domain of −→a to An(R). The function f = f(−→z )
is called the left hypercomplex differential, for short hypercomplex dif-
ferential, if there exists an A linear mapping l ∈ L(Hm−1, An(R)) such
that

lim
�−→z →0

|f(−→a + 	−→z ) − f(−→a ) − l(	−→z )|
‖	−→z ‖ = 0,
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and l = l(−→z ) is called the left hypercomplex differential for f (for short
hypercomplex differential), written by l = f ′(−→a ) or l(−→z ) = f ′(−→a )(−→z ).

Lemma 4.2 (see [72]1)) If f(−→z ) is a hypercomplex differential func-
tion from Hm−1 to An(R), then the differential f ′(−→a ) is unique.

4.2 A-chain rule of hypercomplex differentiation

Theorem 4.3 If f : Hm−1 → An(R), b = f(−→a ), and f ′(−→a ) is given,
then for any ε > 0, there exists a number δ > 0 such that when ‖−→z −
−→a ‖ < δ, the inequality |f(−→z )− f(−→a )| < ε is valid, and we say that f is
continuous at −→a .

Proof From the conditions, we can get

lim
�−→z →0

|f(−→a + 	−→z ) − f(−→a ) − f ′(−→a )(	−→z )|
‖	−→z ‖ = 0,

and then

lim
�−→z →0

|f(−→a + 	−→z ) − f(−→a ) − f ′(−→a )(	−→z )| = 0.

On the basis of Lemma 4.1, it is easy to see that f ′(−→a )(∆−→z ) = 	z2A2+
· · · + 	zmAm, where Ak (k = 2, ..., m) are fixed Clifford numbers that
are independent with ∆−→z , hence lim

∆−→z →0
f ′(−→a )(∆−→z ) = 0 and

lim
�−→z →0

|f(−→a + 	−→z ) − f(−→a )|

= lim
�−→z →0

|f(−→a + 	−→z ) − f(−→a ) − f ′(−→a )(	−→z ) + f ′(−→a )(	−→z )| = 0.

Theorem 4.4 Let −→
l ∈ L(Am−1

n (R), Ap−1
n (R)). Then there exists an

M > 0 such that

‖−→l (−→u )‖ ≤ M‖−→u ‖, −→u ∈ Am−1
n (R),

where ‖−→u ‖ =

√
m∑

i=2
|ui|2, −→u = (u2, ..., um), ui ∈ An(R), i = 2, ..., m.

Definition 4.3 Let −→a ∈ Ap−1
n (R) and −→

f be a continuous mapping
from some domain of −→a to Am−1

n (R). Then −→
f = −→

f (−→z ) is said to
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be A differential at the point −→a ; if there exists an A linear mapping
l ∈ L(Ap−1

n (R), Am−1
n (R)) such that

lim
�−→z →0

‖−→f (−→a + 	−→z ) −−→
f (−→a ) −−→

l (	−→z )‖
‖	−→z ‖ = 0,

then −→
l = −→

l (−→z ) is called the left differential, written by −→
l (−→z ) =−−→

(f ′)(−→a ) or −→
l =

−−→
(f ′)(−→a ).

Theorem 4.5 Let −→
f : Ap−1

n (R) → Am−1
n (R) and

−→
f ′ (−→a ) be given.

Then −→
f (−→z ) is continuous at −→a .

Lemma 4.6 (see [72]1)) If −→
f : Ap−1

n (R) → Am−1
n (R) is A differen-

tiable, then
−→
f ′ (−→a ) is unique.

Theorem 4.7 Let −→f : Ap−1
n (R) → Am−1

n (R) be A differentiable at −→a
and g : Am−1

n (R) → An(R) be An(R) differentiable at −→f (−→a ). Then the
composite function g◦−→f : Ap−1

n (R) → An(R) is differentiable at −→a , and

(g ◦ −→f )′(−→a ) = g′(−→f (−→a )) ◦ (
−−→
(f ′)(−→a )).

Proof Suppose that −→
b = −→

f (−→a ), −→w = −→
f (−→z ), −→λ =

−→
f ′ (−→a ), µ =

g′(−→f (−→a )), and let

	−→z = −→z −−→a ,	−→w = −→w −−→
b ,

−→ϕ (−→z ) = −→
f (−→z ) −−→

f (−→a ) −−→
λ (−→z −−→a ),

ψ(−→w ) = g(−→w ) − g(−→b ) − µ(−→w −−→
b ),

ρ(−→z ) = g ◦ −→f (−→z ) − g ◦ −→f (−→a ) − µ ◦ −→λ (−→z −−→a ),

where
µ ◦ −→λ (−→z −−→a ) = g′(−→f (−→a )) ◦ (

−→
f ′ (−→a )).

Then we have
lim

(−→z −−→a )→0

‖−→ϕ (−→z )‖
‖−→z −−→a ‖ = 0, (4.1)

lim
(−→w−−→b )→0

|ψ(−→w )|
‖−→w −−→

b ‖ = 0. (4.2)

In order to prove

lim
(−→z −−→a )→0

|ρ(−→z )|
‖−→z −−→a ‖ = 0, (4.3)
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we consider

ρ(−→z ) = g ◦ −→f (−→z ) − g ◦ −→f (−→a ) − µ ◦ [−→f (−→z ) −−→
f (−→a ) −−→ϕ (−→z )]

= g ◦ −→f (−→z )−g ◦ −→f (−→a )−µ ◦ [−→f (−→z ) −−→
f (−→a )]+µ ◦ [−→ϕ (−→z )]

= ψ ◦ −→f (−→z )+µ(−→ϕ (−→z )).
(4.4)

It is sufficient to prove

lim
(−→z −−→a )→0

|ψ ◦ −→f (−→z )|
‖−→z −−→a ‖ = 0, (4.5)

lim
(−→z −−→a )→0

|µ(−→ϕ (−→z ))|
‖−→z −−→a ‖ = 0. (4.6)

For any fixed number ε > 0, from (4.1) there exists a δ > 0 such that
when

‖−→w −−→
b ‖ = ‖−→f (−→z ) −−→

f (−→a )‖ < δ,

the following inequality holds:

|ψ ◦ −→f (−→z )| ≤ ε‖−→f (−→z ) −−→
f (−→a )‖.

Moreover from Theorem 4.3, we see that for the δ as stated above there
exists a δ1 > 0, such that when ‖−→z −−→a ‖ < δ1, we have

‖−→f (−→z ) −−→
f (−→a )‖ < δ.

Again by Theorem 4.2, there exists M > 0, such that

‖−→λ (−→z −−→a )‖ ≤ M‖−→z −−→a ‖.
Hence

|ψ ◦ −→f (−→z )| ≤ ε‖−→f −→z ) −−→
f (−→a )‖ ≤ ε‖−→ϕ (−→z )‖ + ε‖−→λ (−→z −−→a )‖

≤ ε‖−→ϕ (−→z )‖ + Mε‖−→z −−→a ‖.
(4.7)

In addition from (4.1), (4.7), it follows that (4.5) holds. Again from
Theorem 4.2, we get

‖µ(−→ϕ (−→z ))|
‖−→z −−→a ‖ ≤ M‖−→ϕ (−→z )‖

‖−→z −−→a ‖ .

Noting (4.1) and (4.4), we see that (4.6) and (4.3) are true, i.e.

(g ◦ −→f )′(−→a ) = µ ◦ −→λ (−→z −−→a ) = g′(−→f (−→a )) ◦ (
−→
f ′ (−→a )).
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4.3. Differentiation rules

First of all, we give a notation for a project function. A function−→
f (= −→

f (−→z ) = (f2(−→z ), ..., fm(−→z )) : Hp−1 → Am−1
n (R) can uniquely

determine m − 1 component functions fi(−→z ) : Hp−1 → An(R), i =
2, ..., m. If −→π : Am−1

n (R) → Am−1
n (R) is an identical mapping −→π (−→u ) =

−→u = (u2, ..., um), then πi : Am−1
n (R) → An(R), πi(−→u ) = ui, i = 2, ..., m

is called the i-th project function. From this we can get fi = πi ◦−→f , i =
2, ..., m.

Theorem 4.8 If f : Am−1
n (R) → An(R) is an A linear mapping, then

f ′(−→a )(−→z ) = f(−→z ), for short f ′(−→a ) = f(−→z ).

Theorem 4.9 Let −→
f = (f2, ..., fm) : Hp−1 → Am−1

n (R). Then −→
f is

A differentiable at −→a ∈ Hp−1, if and only if every fi (i = 2, ..., m) is
hypercomplex differentiable at −→a , and

−→
f

′
(−→a ) = (f ′

2(−→a ), ..., f ′
m(−→a )).

Proof Suppose that every fi (i = 2, ..., m) is hypercomplex differen-
tiable at −→a . If −→λ (−→z ) = (f ′

2(−→a ), ..., f ′
m(−→a ))(−→z ), then −→

f (−→a + 	−→z ) −−→
f (−→a ) −−→

λ (	−→z ) = (f2(−→a + 	−→z ) − f2(−→a ) − f ′
2(−→a )(	−→z ), ..., fm(−→a +

	−→z ) − fm(−→a ) − f ′
m(−→a )(	−→z )), and then

lim
�−→z →0

‖−→f (−→a +�−→z )−−→f (−→a )−−→λ (�−→z )‖
‖�−→z ‖

≤ lim
�−→z →0

m∑
i=2

‖fi(
−→a +�−→z )−fi(

−→a )−f ′
i(
−→a )(�−→z )‖

‖�−→z ‖ ,

namely −→
f is A differentiable at −→a , and the equality in this theorem is

true. Conversely if −→f is differentiable at −→a ∈ Hm−1, then from Theo-
rems 4.4 and 4.5, we see that fi = πi ◦−→f is hypercomplex differentiable
at −→a i.

Theorem 4.10 If S : A2
n(R) → An(R), S(u, v)=u + v, then S′(a, b)

= S(u, v).

Theorem 4.11 Let q : A2
n(R)→An(R), q(u, v)=uv. Then q′(a, b)(u, v)

= ub + av.
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Proof Suppose λ(u, v) = ub + av. Then

lim
(�u,�v)→0

‖q(a + 	u, b + 	v) − q(a, b) − λ(	u,	v)‖
‖(	u,	v)‖

= lim
(�u,�v)→0

‖	u	v‖
‖(	u,	v)‖ ≤ lim

(�u,�v)→0

B‖	u‖‖	v‖√
(‖	u‖)2 + (‖	v‖)2

≤ lim
(�u,�v)→0

B

2
‖	u‖2 + ‖	v‖2√
(‖	u‖)2 + (‖	v‖)2 = 0,

where B > 0 is a constant, hence q′(a, b)(u, v) = ub + av.

Theorem 4.12 Let f, g : Hm−1 → An(R) be hypercomplex differen-
tiable at −→a . Then

1. (f + g)′(−→a ) = (f)′(−→a ) + (g)′(−→a ).

2. (fg)′(−→a ) = (f)′(−→a )g(−→a ) + f(−→a )g′(−→a ).

Proof On the basis of Theorem 4.4, Theorem4.6 and Theorem4.7, we
can get 1. Moreover from Theorems 4.4, Lemma 4.6 and Theorem 4.8,
we can derive 2.

5 Regular and Harmonic Functions in Complex Clifford
Analysis

Let e := {e1, ..., en} be the orthogonal basis of Rn. According to
the structure of real Clifford analysis, we use the complex numbers to
construct the complex Clifford algebra A(C); its elements possess the
form

Z =
∑
A

cAeA, (5.1)

where cA are the complex numbers and eA is as above. The norm of the
element is defined as

|Z| =
√∑

A

|cA|2. (5.2)

Complex Clifford analysis studies the functions defined on Cn and
taking value on a complex Clifford algebra. About Complex Clifford
analysis, F. Sommen and J. Ryan have obtained some results. In 1982,
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F. Sommen discussed the relation between functions of several variables
and monogenic functions by using the Fourier-Borel transformation (see
[72]2)). In 1982, J. Ryan gave a simulation of Cauchy’s theorem, proved
the invariant property of the complex left regular function under the ac-
tion of a Lie group and structured the holomorphic function by complex
harmonic functions (see [68]1)). In 1983, J. Ryan also gave a general
Cauchy integral formula for a kind of special holomorphic function and
used this formula to prove that all these special holomorphic functions
form a Fréchet model (see [68]2).

5.1 Complex regular functions

Now we give the concept of a complex regular function by using the
Dirac operator.

Definition 5.1. Let U ⊂ Cn be a domain and f : U → An(C) be a
holomorphic function. If for every point z ∈ U , we have

∂f =
n∑

j=1

ej
∂f(z)
∂zj

= 0,

then f(z) is called a complex left regular function in U . If for every
point z ∈ U , we have

f∂ =
n∑

j=1

∂f(z)
∂zj

ej = 0,

then f(z) is called a complex right regular function in U .

In the following, we mainly discuss the complex left regular function,
and the complex right regular function can be analogously discussed.
Let

A = {j1, ..., jr}, Âk = {j1, ...jk−1, jk+1, ..., jr},
2 ≤ j1 < j2 < ... < jr ≤ n,

KA = Kj1...jr, AK = j1...jrK,

and denote the sign of permutation (l, j1, ..., jr) by sgn(l, A). And by a
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direct calculation, we get

ejk

∂f
Âk

∂zjk

e
Âk

=
∂f

Âk

∂zjk

(−1)k−1eA (k = 1, 2, ..., r),

ek
∂fkA

∂zk
ekA =

∂fkA

∂zk
e2
keA = −∂fkA

∂zk
eA

= −sgn(k, A)
∂fkA

∂zk
eA (k < j1, k = 1, 2, ..., j1 − 1),

ek
∂fAk

∂zk
eAk = (−1)r ∂fAk

∂zk
e2
keA = (−1)r+1 ∂fAk

∂zk
eA

= −sgn(k, A)∂fAk
∂zk

eA (jr < k, k = jr + 1, jr + 2, ..., n),

ek
∂fj1,...,k,...,jr

∂zk
ej1,...,k,...,jr = −sgn(k, A)

∂f{k}∪A

∂zk
eA,

(j1 < k < jr, k /∈ A),

and then

n∑
j=1

ej
∂f(z)
∂zj

=
n∑

j=1

ej
∂

∂zj

∑
A

fAeA

=
∑
A

⎧⎨⎩
r∑

k=1

(−1)k−1
∂f

Âk

∂zjk

+
j1−1∑
k=1

−∂fkA

∂zk
+

n∑
k=jr+1

(−1)r+1 ∂fAk

∂zk

+
∑

j1<k<jr,k �∈A,

−sgn(k, A)
∂f{k}∪A

∂zk

⎫⎬⎭ eA

=
∑
A

⎧⎨⎩
r∑

k=1

(−1)k+1
∂f

Âk

∂zjk

+
j1−1∑
k=1

(−sgn(k, A)
∂fkA

∂zk
)

+
n∑

k=jr+1

(−sgn(k, A))
∂fAk

∂zk
+

∑
j1<k<jr,k �∈A

(−sgn(k, A)
∂f{k}∪A

∂zk
)

⎫⎬⎭ eA

=
∑
A

⎡⎣ r∑
k=1

(−1)k−1
∂f

Âk

∂zjk

−
∑
k �∈A

sgn(k, A)
∂f{k}∪A

∂zk

⎤⎦ eA,

thus we have the theorem

Theorem 5.1 Let f : U → An(C) be an analytic function. Then f is
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complex left regular if and only if

r∑
k=1

(−1)k−1
∂f

Âk

∂zjk

−
∑
k �∈A

sgn(k, A)
∂f{k}∪A

∂zk
= 0.

Similarly to the M-T system in real Clifford analysis (see [28] ), we
think it is useful to study the system which is equivalent to complex
regular function when n = 3.

Definition 5.2. If f : U ⊂ Cn → An(C) is a holomorphic function
and satisfies the equation

�εf(z) ≡
n∑

j=1

∂2f

∂z2
j

(z) = 0,

then we call f(z) a complex harmonic function.

From this we can get the following result.

Theorem 5.2 Suppose that f(z) is a holomorphic function, then f is
a complex harmonic function if and only if fA satisfies

�εfA(z) = 0.

Theorem 5.3. Let f(z) be a complex left regular function. Then f(z)
is a complex harmonic function.

The inverse of Theorem 5.3 is not true, for example, if f : U ⊆ C3 →
A2(C), f(z) = (z2 + z3)e1 + z2e2 + z3e3 is a complex harmonic function,
but it is not the complex left regular function, therefore we have the
following theorem.

Theorem 5.4. If f(z) is a complex harmonic function, then the func-
tion

e1
∂f(z)
∂z1

−
n∑

j=2

ej
∂f

∂zj
= 2e1

∂f(z)
∂z1

−
n∑

j=1

ej
∂f(z)
∂zj

is a complex left regular function.

5.2 The structure of complex left regular functions

From Theorem 5.2 and 5.3, we easily obtain the following theorem.
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Theorem 5.5 Let f(z) be a complex left regular function. Then for
every A, fA is a complex harmonic function.

The inverse of Theorem 5.5 is not true. It is interesting that when
condition fA is satisfied, the function f(z) is complex left regular. For
this we first construct a complex left regular function from the complex
harmonic function.

Theorem 5.6. Let U ⊆ Cn be a star domain, A = {j1, j2, ..., jr},
and uA : U → C be a complex harmonic function. Then there exists a
complex left regular function

fA : U → A(C),

such that the component of fA(z) about the basic element eA is equal to
uA(z).

Proof By using the transformation of coordinates, we can consider
that the domain includes the origin and is a star domain about the
origin. Under the conditions, we discuss the function

fA(z) ≡ uA(z)eA

+V ec(A)

⎡⎣∫ 1

0

⎧⎨⎩sn−3

⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎫⎬⎭ zeAds

⎤⎦ ,

where the sign V ecA[z] = z − zAeA, z ∈ An(C). It is clear that the
component of fA about eA is just uA(z). Now we only consider the
complex left regularity.

Because z =
n∑

k=1
zkek and when j = k we have e2

k = −1, so the

component of the function

∫ 1

0

⎧⎨⎩sn−3

⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎫⎬⎭ zeAds

about eA is ∫ 1

0
sn−3

n∑
k=1

zk
∂

∂zk
uA(sz)ds

=
∫ 1

0
sn−2 d

ds
uA(sz)ds = uA −

∫ 1

0
(n − 2)sn−3uA(sz)ds,
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and then

fA(z)=
∫ 1

0
sn−3

⎡⎣⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦ zeAds

+
∫ 1

0
(n − 2)sn−3uA(sz)eAds.

Moreover we have
n∑

k=1

eA
∂fA(z)

∂zk

=
∫ 1

0
sn−3

⎡⎣ n∑
k=1

ek
∂

∂zk

⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦ zeAds

+
∫ 1

0
sn−3

⎧⎨⎩
n∑

k=1

ek

⎡⎣⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦ ∂z

∂zk

⎫⎬⎭ eAds

+
∫ 1

0
(n − 2)sn−3

n∑
k=1

ek
∂uA(sz)

∂zk
eAds.

From Theorem 5.4 we obtain
n∑

k=1

ek
∂

∂zk

⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz) = 0,

hence
n∑

k=1

ek
∂fA(z)

∂zk

=
∫ 1

0
sn−3

⎧⎨⎩
n∑

k=1

ek

⎡⎣⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦ ek

⎫⎬⎭ eAds

+
∫ 1

0
(n − 2)sn−3

n∑
k=1

ek
∂uA(sz)

∂zk
eAds,

and by direct calculation, we get

n∑
k=1

ek

⎡⎣⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦ ek

=

⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)



36 Chapter I

+
n∑

k=2

ek

⎡⎣⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦ ek

=

⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

+
n∑

k=2

e2
k

∂uA

∂z1
−

n∑
k=2

ek

⎛⎝ n∑
j=2

ej
∂uA

∂zj

⎞⎠ ek

=

⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz) −
n∑

k=2

e1
∂uA

∂z1

+
n∑

k=2,j �=k
e2
k

n∑
j=2

ej
∂uA
∂zj

−
n∑

k=2,j=k
e3
k

∂uA
∂zk

= −(n − 2)e1
∂uA

∂z1
−

n∑
j=2

ej
∂uA

∂zj
−

n∑
k=2,j �=k

e1

n∑
j=2

ej
∂uA

∂zj
+

n∑
k=2

ek
∂uA

∂zk

= −(n − 2)e1
∂uA

∂z1
−(n − 2)

n∑
j=2

ej
∂uA

∂zj
=−(n − 2)

n∑
j=1

ej
∂uA(sz)

∂zj
,

and then
n∑

j=1

eA
∂fA(z)

∂zj
= 0.

This shows that fA is a complex left regular function.

Theorem 5.7 If uA : U ⊆ Cn → C is a complex harmonic function
defined in a star domain U ∈ Cn, moreover, there exists the following
relation:∫ 1

0
sn−3

⎧⎨⎩∑
A

n∑
j=1

[
∂

∂zj
(

n∑
l=2

zl
∂uA(sz)

∂zl
) + (n − 1)

∂uA(sz)
∂zj

]ejeA

⎫⎬⎭ ds = 0,

A = {j1...jr},
then the function F (z) =

∑
A

uAeA in U is a complex left regular function.

Proof According to Theorem 5.6, we know that for every uA, there
exists a complex left regular function f (A) such that

f (A)(z) = uAeA + V ec(A)[g(A)(z)],
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where

g(A)(z) =
∫ 1

0
sn−3[(e1

∂

∂z1
−

n∑
j=2

ej
∂

∂zj
)uA(sz)]zeAds,

and
F (z) =

∑
A

uAeA =
∑
A

f (A)(z) −
∑
A

V ec(A)g(A).

Because f (A) is a complex left regular function, so

n∑
l=1

el

∂
∑
A

f (A)

∂zl
=

n∑
l=1

el

∑
A

∂f (A)

∂zl
=
∑
A

n∑
l=1

el
∂f (A)

∂zl
= 0,

and
n∑

l=1

el
∂F

∂zl
= −

n∑
l=1

el

∑
A

V ec(A) ∂g(A)

∂zl

= −
n∑

l=1

el

∑
A

V ec(A)
∫ 1

0
sn−3 ∂

∂zl

⎧⎨⎩
⎡⎣⎛⎝e1

∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦z
⎫⎬⎭eAds

= −
n∑

l=1

el

∑
A

V ec(A)
∫ 1

0
sn−3

⎧⎨⎩
⎛⎝e1

∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠ ∂uA(sz)
∂zl

z

+

⎡⎣⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦ ∂z

∂zl

⎫⎬⎭ eAds

= −
n∑

l=1

el

∑
A

V ec(A)

⎧⎨⎩
∫ 1

0
sn−3

⎡⎣⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠ ∂uA(sz)
∂zl

⎤⎦zeAds

⎫⎬⎭
−

n∑
l=1

el

∑
A

V ec(A)

⎧⎨⎩
∫ 1

0
sn−3

⎡⎣⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦eleAds

⎫⎬⎭.

Noting that

V ec(A)

[∑
A

zAeA

]
=
∑
A

zAeA − zAeA,

and the component about eA of

∫ 1

0
sn−3

⎡⎣⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠ ∂uA(sz)
∂zl

⎤⎦ zeAds
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is ∫ 1

0
sn−3

n∑
k=1

zk
∂2uA(sz)
∂zk∂zl

ds,

we have

V ec(A)

⎧⎨⎩
∫ 1

0
sn−3

⎡⎣⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠ ∂uA(sz)
∂zl

⎤⎦ zeAds

⎫⎬⎭
=

∫ 1

0
sn−3

⎡⎣⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠ ∂uA(sz)
∂zl

⎤⎦ zeAds

−
∫ 1

0
sn−3

n∑
k=1

zk
∂2uA(sz)

∂zkzl
eAds.

Because ⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

is a complex left regular function, we get

−
n∑

l=1

el

∑
A

∫ 1

0
sn−3

⎡⎣⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠ ∂uA(sz)
∂zl

⎤⎦ zeAds

= −
∫ 1

0
sn−3

∑
A

⎧⎨⎩
n∑

l=1

el

⎡⎣ ∂

∂zl

⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦⎫⎬⎭ zeAds=0,

and

n∑
l=1

el
∂F

∂zl
=

n∑
l=1

el

∑
A

∫ 1

0
sn−3

n∑
k=1

zk
∂2uA(sz)

∂zkzl
eAds

−
n∑

l=1

el

∑
A

V ec(A)

⎧⎨⎩
∫ 1

0
sn−3

⎡⎣⎛⎝e1
∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦ eleAds

⎫⎬⎭
=
∫ 1

0
sn−3

∑
A

n∑
l,k=1

elek
∂2uA(sz)

∂zkzl
eAds
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−
∫ 1

0
sn−3

∑
A

n∑
l=1

elV ec(A)

⎧⎨⎩
⎡⎣⎛⎝e1

∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦ eleA

⎫⎬⎭ ds

=
∫ 1

0
sn−3

∑
A

n∑
j,l=1

∂

∂zj

[
zl

∂uA(sz)
∂zl

]
ejeAds

−
∫ 1

0
sn−3

∑
A

n∑
l=1

elV ec(A)

⎧⎨⎩
⎡⎣⎛⎝e1

∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦ eleA

⎫⎬⎭ ds.

Taking into account

n∑
l=1

elV ec(A)

⎧⎨⎩
⎡⎣⎛⎝e1

∂

∂z1
−

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦ eleA

⎫⎬⎭
= −

n∑
j=2
l=1

ej
∂

∂zj
uA(sz)eA +

n∑
l=2

el
∂

∂z1
uA(sz)eleA

+
n∑

l=2

el

⎛⎜⎝− n∑
j=2
j �=l

ej
∂

∂zj
uA(sz)

⎞⎟⎠ eleA

= −
⎛⎝ n∑

j=2

ej
∂

∂zj
uA(sz)

⎞⎠ eA − (n − 1)
∂uA(sz)

∂z1
eA

+
n∑

l=2

e2
l

⎛⎜⎝ n∑
j=2
j �=l

ej
∂

∂zj
uA(sz)eA

⎞⎟⎠

=

⎛⎝− n∑
j=2

ej
∂

∂zj
uA(sz)

⎞⎠ eA − (n − 1)
∂uA(sz)

∂z1
eA

−(n − 2)

(
n∑

j=2
ej

∂
∂zj

uA(sz)

)
eA

= −(n − 1)

⎡⎣⎛⎝e1
∂

∂z1
+

n∑
j=2

ej
∂

∂zj

⎞⎠uA(sz)

⎤⎦ eA

= −(n − 1)
n∑

j=1

ej
∂

∂zj
uA(sz)eA =−(n − 1)

n∑
j=1

∂

∂zj
uA(sz)ejeA,
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we have
n∑

l=1

el
∂F

∂zl
=
∫ 1

0
sn−3

∑
A

n∑
j,l=1

∂

∂zj

[
zl

∂uA(sz)
∂zl

]
ejeAds

−
∫ 1

0
sn−3

∑
A

⎡⎣(1 − n)
n∑

j=1

∂

∂zj
uA(sz)ejeA

⎤⎦ ds

=
∫ 1

0
sn−3

⎧⎨⎩∑
A

n∑
j=1

[
∂

∂zj

n∑
l=1

zl
∂uA(sz)

∂zl
+(n − 1)

∂

∂zj
uA(sz)

]
ejeA

⎫⎬⎭ ds=0.

Consequently, F (z) in U is a complex left regular function.

According to Theorem 5.6 and 5.7, we see that there exists a similar
characteristic between the relation of complex left regular functions and
complex harmonic functions in complex Clifford analysis and the relation
of analytic functions and harmonic functions in one complex variable
function theory, but they aren’t the same. The results of Theorem 5.6
and 5.7 are generalizations of those in [19].



CHAPTER II

BOUNDARY VALUE PROBLEMS OF

GENERALIZED REGULAR FUNCTIONS

AND HYPERBOLIC HARMONIC

FUNCTIONS IN REAL CLIFFORD

ANALYSIS

This chapter deals with boundary value problems of some functions
in real Clifford analysis. In the first three sections, the problems of reg-
ular and generalized regular functions are considered, and in the last
section, the Dirichlet problem of hyperbolic harmonic functions is dis-
cussed. Most results in this chapter have been obtained by us in recent
years.

1 The Dirichlet Problem of Regular Functions for
a ball in Real Clifford Analysis

In this section, we discuss two boundary value problems of regular
functions for a ball in real Clifford analysis, which are obtained from the
papers of Luogeng Hua[26]1) and Sha Huang[29]4),5).

Firstly, we give definitions of some differential operators

∂i−1,i = ei−1
∂

∂xi−1
+ ei

∂

∂xi
, i = 2, 3, ..., n,

∂i−1,i = ei−1
∂

∂xi−1
− ei

∂

∂xi
, i = 2, 3, ..., n,

and then we have

∂ =
1
2
[∂12 + ∂12 +

n∑
i=2

(∂i−1,i − ∂i−1,i)],

∂ =
1
2
[∂12 + ∂12 −

n∑
i=2

(∂i−1,i − ∂i−1,i)],
∂

∂x1
=

1
2
(∂12 + ∂12),



42 Chapter II

∂

∂xi
=

−ei

2
(∂i−1,i − ∂i−1,i), i = 2, 3, ..., n.

By using the quasi-permutation signs introduced in Chapter I, we can
give some regular conditions of functions.

If we write the element
∑
A

aAeA in A as

∑
A

aAeA =
∑
B

(aB + a2Be2)eB =
∑
B

IBeB,

where B = {α1, ..., αk} ⊆ {3, 4, ..., n}, 3 ≤ α1 < · · · < αk ≤ n, IB ∈ C
(the complex plane). It is evident that we can obtain the following
theorem.

Theorem 1.1 The sufficient and necessary condition for
∑
A

aAeA = 0

is that for all B = {α1, ..., αk} ⊆ {3, ..., n}, 3 ≤ α1 < · · · < αk ≤ n, the
following equality holds:

IB = aB + a2Be2 = 0. (1.1)

Moreover, for a function whose value is in the real Clifford algebra
An(R):

f(x) =
∑
A

fA(x)eA : Ω → An(R),

we can write it as

f(x) =
∑
B

IBeB : Ω → An−1(C),

where IB : Ω → C, An−1(C) is the complex Clifford algebra.

Theorem 1.2 A function whose value is in the real Clifford algebra
A:

f(x) =
∑
A

fA(x)eA =
∑
B

IBeB,

(A = {β1, ..., βk} ⊆ {2, 3, ..., n}, 2 ≤ β1 < · · · < βk ≤ n,

B={α1, ..., αk} ⊆ {3, 4, ..., n}, 3 ≤ α1 < · · · < αk ≤ n)

(1.2)

is regular in Ω if and only if

∂12IB =
n∑

m=3

δmBImBxm
,
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where ImBxm
= ∂ImB/∂xm, ImBxm

is the conjugate of ImBxm
, and mB

is the quasi-permutation for mB, δmB is the sign of quasi-permutation
mB. In addition, a function f is harmonic in Ω if and only if every IB

is harmonic.

Proof It is clear that emIB = aBem − a2Be2em = IBem, so

∂f(x) =
∑
B

∂12IBeB +
∑
B

n∑
m=3

IBxmemeB.

Denote B = {α1, ..., αk}, B̂p = {α1, ..., αp−1, αp+1, ..., αk}, mB = mα1

...αk, Bm = α1 ...αkm. When m is some αp among B, we have

eαpIB̂pxαp
eB̂p

= −IB̂pxαp
(−1)peB = −IαpBxαp

δαpBeB.

When m < α1, we have

emImBxmemB = −ImBxm
eB = −ImBxm

δmBeB.

Similarly, when m > αk, we get

emIBmxmeBm = −ImBxm
δmBeB,

and ∑
B

n∑
m=3

IBm xmemeB = −
∑
B

n∑
m=3

[ImBxm
δmB]eB,

hence

∂f(x) =
∑
B

∂12IBeB −
∑
B

n∑
m=3

ImBxm
δmBeB.

Thus according to Theorem 1.1, the function f is regular if and only if

∂12IB =
n∑

m=3

ImBxm
δmB.

This completes the proof.

In order to derive another sufficient and necessary requirement of the
generalized Cauchy-Riemann condition, we divide the function

f(x) =
∑
A

fAeA =
∑
B

IBeB

into the two parts

f(x) = f (1) + f (2) =
∑
B

′
I ′Be′B +

∑
B

′′
I ′′Be′′B,
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where B in the sum
∑
B

′ obtained from (3, 4, ..., n) is a combination with

odd integers; it is called the first suffix, the rest is called the second
suffix. The corresponding sum is denoted by

∑
B

′′, IB(x) whose B is got

from the first suffix and is denoted by I ′B(x), eB whose B is derived from
the second suffix is denoted by e′B, and IB(x), eB whose B is derived from
the second suffix are denoted by I ′′B, e′′B respectively. In addition, we call
f (i) the ith part of f , and denote f (i) = Jif(i = 1.2). According to this
and the above theorem, we can get the following theorem.

Theorem 1.3 A function f whose value is in real Clifford algebra
An(R) is regular in domain Ω, if and only if⎧⎪⎪⎨⎪⎪⎩

∂12I
′′
B =

n∑
m=3

δ′
mB

I
′
mBxm

,

∂12I
′
B =

n∑
m=3

δ′′
mB

I
′′
mBxm

,
(1.3)

in which f(x) =
∑
A

fAeA =
∑
B

IBeB =
∑
B

′I ′Be′B +
∑
B

′′I ′′Be′′B, B =

{α1, ..., αk} ⊂ {3, 4, ..., n}, and ∂12I
′
B, I

′
mBxm

, δ′
mB

denote the corre-
sponding part of ∂12IB, ImBxm

, δmB respectively, when B, mB are de-
rived from the first suffix. The rest is the corresponding part which is
derived from the second suffix.

Let x = (x1, x2, ..., xn) ⊂ Rn, and xT be the transpose of x, Ω :

xxT =
n∑

i=1
x2

i < 1 represent a unit ball, and ∂Ω : xxT = 1 be a unit

sphere, whose area ωn = 2πn/2/Γ(n/2).

Definition 1.1 If
∑
B

′u′
Be′B is continuous in ∂Ω, we find a function f(x)

to be regular in Ω, and continuous in Ω = Ω ∪ ∂Ω with the condition

J1f(ξ) =
∑
B

′
u′

B(ξ)e′B, ξ ∈ ∂Ω. (1.4)

The above problem is called the Dirichlet boundary value problem in
the unit ball, and we denote it by Problem D.

Theorem 1.4 Let
∑
B

′u′
Be′B be continuous on the sphere ∂Ω. Then

Problem D in the ball Ω is solvable, and the solution can be represented
by

f(x) =
∑
B

′
I ′B(x)e′B +

∑
B

′′
I ′′B(x)e′′B, (1.5)
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where
I ′B(x) =

1
ωn

∫
· · ·
∫

︸ ︷︷ ︸
ξξT =1

P (x, ξ)u′
B(ξ)ξ̇, (1.6)

in which P (x, ξ) = (1 − xxT )/(1 − 2ξxT + xxT )
n
2 is called the Poisson

kernel, ξ̇ is the area element of the sphere ξξT = 1,

I ′′B(x) = T12R
′′
B(x) + Q′′

B(x), (1.7)

R′′
B(x) =

1
2ωn

∫
· · ·
∫

︸ ︷︷ ︸
ξξT =1

n∑
m=3

Pxmδ′
mB

u′
mB

(ξ)ξ̇, (1.8)

and Q′′
B(x) satisfies the following relations:

∂z12Q
′′
B(x) = 0, (1.9)

∂12I
′
B(x) =

n∑
k=3

δ′′
kB

[T 12R′′
kBxk

(x) + Q′′
kBxk

(x)]. (1.10)

The operators T12, T 12 and ∂z12 can be seen below.

Proof Firstly, we find an expression of the solution. Suppose that
f(x) is a solution of Problem D in the ball Ω. Then from Theorem 2.1,
Chapter I, and Theorem 1.2, we can derive that I ′B(x) is harmonic in Ω.
By [26]1) we obtain

I ′B(x) =
1
ωn

∫
· · ·
∫

︸ ︷︷ ︸
ξξT =1

1 − xxT

(1 − 2ξxT + xxT )
n
2

u′
B(ξ)ξ̇,

which satisfies I ′B(ξ) = u′
B(ξ) (ξ ∈ ∂Ω), where

∫
· · ·
∫

︸ ︷︷ ︸
ξξT =1

ξ̇ = ωn.

Denote z12 = x1+x2e2, ζ12 = ξ1+ξ2e2, ∂z12 = 1
2

(
∂

∂x1
− e2

∂
∂x2

)
, ∂z12 =

1
2

(
∂

∂x1
+ e2

∂
∂x2

)
. It follows that ∂12 = 2∂z12 , ∂12 = 2∂z12 .When xxT < 1

we introduce two operators:

T12fB(x)=
1
π

∫
· · ·
∫

︸ ︷︷ ︸
ξ2
1+ξ2

2<1−x2
3−···−x2

n

fB(ξ1, ξ2, x3, x4, ..., xn)
z12 − ζ12

dξ1dξ2,

T 12fB(x) =
1
π

∫
· · ·
∫

︸ ︷︷ ︸
ξ2
1+ξ2

2<1−x2
3−···−x2

n

fB(ξ1, ξ2, x3, x4, ..., xn)
z12 − ζ12

dξ1dξ2.
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By using the results in [77] and the first expression of Theorem 1.3,
we can obtain

I ′′B(x)=
1
2
T12

n∑
m=3

δ′
mB

I
′
mBxm

+Q′′
B(x),

where ∂z12Q
′′
B(x) = 0 (x ∈ Ω). By using [26]1), we get

R′′
B(x)=

1
2ωn

∫
· · ·
∫

︸ ︷︷ ︸
ξξT =1

n∑
m=3

−2xm(1−2ξxT +xxT )−2−1nξm

(1 − 2ξxT + xxT )
n
2

δmBu′
mB

(ξ)ξ̇.

Therefore,
I ′′B(x) = T12R

′′
B(x) + Q′′

B(x).

Substituting (1.7) into the second expression of Theorem 1.3, we can
derive

∂12I
′
B(x) =

n∑
k=3

δ′′
kB

[T 12R′′
kBxk

(x) + Q′′
kBxk

(x)].

From the overdetermined system (1.10) and ∂z12Q
′′
B(x) = 0 (x ∈ Ω)

and by [76], we can find Q′′
B(x). Thus, from (1.7) again, I ′′B(x) can also

be found. That is to say, if f(x) is a solution of Problem D, then the
expressions (1.5) − (1.10) hold.

Moreover, we verify that the function satisfying expressions (1.5) −
(1.10) is a solution of Problem D. In fact, since f (1)|∂Ω =

∑
B

′I ′Be′B, ξ ∈
∂Ω, by using [27], we have I ′B(ξ) = u′

B(ξ), and then

f (1)|∂Ω =
∑
B

′
u′

B(ξ)e′B.

From (1.7), (1.9) and ∂12 = 2∂z12 , we immediately derive

∂12I
′′
B = ∂12T12R

′′
B + 2∂z12Q

′′
B = ∂12T12R

′′
B = 2∂z12T12R

′′
B.

In addition, from (1.6) and (1.8), we have

2∂z12T12R
′′
B =

n∑
m=3

δ′
mB

ωn

∫
· · ·
∫

︸ ︷︷ ︸
ξξT =1

Pxm(x, ξ)u′
mB

(ξ)ξ̇

=
n∑

m=3

δ′
mB

I
′
mBxm

.
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Thus, from (1.10) and (1.7), we get

∂12I
′
B =

n∑
m=3

δ′′
mB

I
′′
mBxm

.

From Theorem 1.3 again, it is easy to see that the function f(x) sat-
isfying (1.5) − (1.10) is regular in Ω. To sum up, f(x) is a solution of
Problem D. This proof is completed.

Next, we discuss the pseudo-modified Dirichlet problem. In order
to discuss the uniqueness of its solution, we first consider the sectional
domains of Ω. Cutting Ω by “the planes”:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x3 = a3,

x4 = a4,

...

xn = an,

we obtain a sectional domain Ga in the x1x2 plane:

xax
T
a = x2

1 + x2
2 +

n∑
m=3

a2
m < 1.

Let Γa : ξaξ
T
a = ξ2

1 + ξ2
2 +

n∑
m=3

a2
m = 1 be the boundary of Ga, and its

center be denoted by Oa = (0, 0, a3, a4, ..., an).

For given continuous functions
∑
B

′u′
B(ξ)e′B (ξ ∈ ∂Ω), φ′′

B(ξa) (ξa ∈
Γa) and the complex constants d′′Ba, we find a regular function f(x) =∑
B

′I ′Be′B +
∑
B

′′I ′′Be′′B in Ω, which is continuous in Ω with the following

pseudo-modified conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
J1f(ξ) =

∑
B

′u′
B(ξ)e′B, ξ ∈ ∂Ω,

ReI ′′B|Γa = φ′′
B(ξa) + h′′

B(ξa), ξa ∈ Γa,

I ′′B(Oa) = d′′Ba,

where h′′
B(ξa) = h′′

Ba (ξa ∈ Γa) are all unknown real constants to be
determined appropriately, and ReI ′′B = Re(F ′′

B + F ′′
2Be2) = F ′′

B. The
above problem will be denoted by Problem D∗.

Theorem 1.5 Suppose that
∑
B

′u′
Be′B is continuous on ∂Ω, and for

any fixed a3, a4, ..., an, the function φ′′
B(ξa) is continuous on Γa, here
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ξ = (ξ1, ξ2, a3, ..., an). Then there exists a unique solution of Problem
D∗. Moreover the solution possesses the expressions (1.5) − (1.10) and
satisfies

ReQ′′
B(ξa) = −Re[T12R

′′
B(ξa)] + φ′′

B(ξa) + h′′
B(ξa), ξa ∈ Γa, (1.11)

Q′′
B(Oa) = −T12R

′′
B(Oa) + d′′Ba. (1.12)

Proof Evidently, on the basis of the proof of Theorem 1.4, it is suffi-
cient to add the following proof.

Firstly, we find the integral representation of the solution. Suppose
that f(x) is a solution of Problem D∗. From (1.7) and the boundary
condition, we can derive

Re[T12R
′′
B(ξa) + Q′′

B(ξa)] = φ′′
B(ξa) + h′′

B(ξa),

T12R
′′
B(Oa) + Q′′

B(Oa) = I ′′B(Oa) = d′′Ba.

Noting that
∂z12Q

′′
B(x) = 0, x ∈ Ω,

it is clear that Q′′
B(xa) satisfies the conditions⎧⎪⎪⎨⎪⎪⎩

∂z12Q
′′
B(xa) = 0, xa ∈ Ga,

ReQ′′
B(ξa) = −Re[T12R

′′
B(ξa)] + φ′′

B(ξa) + h′′
B(ξa), ξa ∈ Γa,

Q′′
B(Oa) = −T12R

′′
B(Oa) + d′′Ba.

Since the modified Dirichlet problem for analytic functions has a unique
solution [80]7), from (1.9), (1.11) and (1.12), we can find Q′′

B(xa), x ∈
Ga, and then Q′′

B(x), x ∈ Ω, because a is an arbitrary point.

That is to say, if f(x) is a solution of Problem D∗, then the expressions
(1.5) − (1.12) hold.

Next, we verify that the function f(x) determined by the above ex-
pressions is a solution of Problem D∗. From (1.7) − (1.11), it follows
that

Re(I ′′B)|Γa =Re[T12R
′′
B(ξa)]+Re[Q′′

B(ξa)]=φ′′
B(ξa)+h′′

B(ξa), ξa∈Γa,

and then I ′′B(Oa) = T12R
′′
B(Oa) + Q′′

B(Oa) = d′′Ba. Therefore, the above
function f(x) is just a solution of Problem D∗.

Finally, we prove that the solution of Problem D∗ is unique. Suppose
that f1(x) and f2(x) are two solutions of Problem D∗, and denote f1(x)−
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f2(x) by F (x). It is clear that F (x) is regular in Ω and is a solution of
the corresponding homogeneous equation of Problem D∗ and F (1)|∂Ω =∑
B

′u′
B(ξ)e′B −∑

B

′u′
B(ξ)e′B = 0. For convenience, we shall adopt the same

symbols for f(x) as before, namely denote F (x) =
∑
B

′I ′Be′B +
∑
B

′′I ′′Be′′B.

Since F (x) is regular in Ω, thus it is harmonic in Ω, therefore for all B,
I ′B(x) are all harmonic in Ω. Since

∑
B

′I ′Be′B|∂Ω = F (1)|∂Ω = 0, I ′B|∂Ω = 0,

again by using the uniqueness of the solution of the Dirichlet problem
for harmonic functions in a ball (see [26]1)), we get I ′B ≡ 0 in Ω, thus
J1F ≡ 0, I ′

mB
≡ 0 in Ω. From the definition of R′′

B(x),

R′′
B(x) =

1
2

n∑
m=3

δ′
mB

I
′
mBxm

,

and then R′′
B ≡ 0. Hence

I ′′B = T12R
′′
B(x) + Q′′

B(x) = Q′′
B(x). (1.13)

Since F (x) is a solution of the corresponding homogeneous equation of
Problem D∗, from (1.9), (1.11) and (1.12), we derive⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂z12Q
′′
B(xa) = 0, xa ∈ Ga,

ReQ′′
B(ξa) = h′′

B(ξa), ξa ∈ Γa,

Q′′
B(Oa) = 0, Oa ∈ Ga.

In addition, using the results about the existence and uniqueness of
solutions of the modified Dirichlet problem for analytic functions (see
[80]7)), we can obtain Q′′

B(xa) ≡ 0, xa ∈ Ga. Hence Q′′
B(x) ≡ 0, x ∈ Ω.

From (1.13), I ′′B ≡ 0, x ∈ Ω, and then J2F (x) ≡ 0 in Ω. So F (x) ≡
0, x ∈ Ω, i.e. f1(x) = f2(x), x ∈ Ω. This shows the uniqueness of the
solution of Problem D∗.

2 The Mixed Boundary Value Problem for Generalized
Regular Functions in Real Clifford Analysis

In this section, we discuss the existence and uniqueness of solutions
of the so-called mixed boundary value problem (Problem P -R-H) for
generalized regular functions in real Clifford analysis; the material is
derived from Huang Sha’s paper [29]6).
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Definition 2.1 We assume the linear elliptic system of second order
equations

∆u =
n∑

m=1

dmuxm + fu + g, x ∈ Ω, (2.1)

where Ω(∈ Rn) is a bounded domain and Ω ∈ C2,α (0 < α < 1), dm =
dm(x) = dm(x1, ..., xn) ∈ C0,α(Ω), dm(x) ≥ 0, x ∈ Ω. The oblique
derivative problem of equation (2.1) is to find a solution u(x) =
u(x1, ..., xn) ∈ C2(Ω) satisfying (2.1) and the boundary conditions⎧⎪⎨⎪⎩

∂u

∂ν
+ σ(x)u(x) = τ(x) + h, x ∈ ∂Ω,

u(d) = u0, d = (d1, ..., dn) ∈ Ω,

(2.2)

in which σ(x), τ(x) ∈ C1,α(∂Ω), σ(x) ≥ 0, x ∈ ∂Ω, h is an unknown real
constant, u0 is a real constant, ν is a vector on x ∈ ∂Ω, cos(ν, n0) ≥ 0, n0

is the outward normal vector on x ∈ ∂Ω, and cos(ν, n0) ∈ C1,α(∂Ω). The
above boundary problem is called Problem O.

Problem O is a non-regular oblique derivative problem. If the coef-
ficients ν(x), σ(x) satisfy cos(ν, n0) ≡ 0, σ(x) ≡ 0 on ∂Ω, then Problem
O is the Dirichlet problem. If ν(x), σ(x) satisfy cos(ν, n0) ≡ 1, σ(x) ≡ 0
on ∂Ω, then Problem O is the Neumann problem. If cos(ν, n0) ≥ δ >
0, σ(x) ≥ 0 on ∂Ω, then Problem O is the regular oblique derivative
problem. In [59], B. P. Ponejah proved the following lemma using the
method of integral equations.

Lemma 2.1 Problem O for equation (2.1) has a unique solution.

Proof The existence and uniqueness of solutions for Problem O for
equation (2.1) in the plane can be found in [80]4). Using a similar
method in [80]4), we can also prove the uniqueness of the solution in
Lemma 2.1. Using a priori estimates of solutions and the Leray-Schauder
theorem [18], the existence of solutions in Lemma 2.1 can be proved.

For convenience, we order all ωA(x) with numbers of the form 2n−1

in ω(x) =
∑
A

ωA(x)eA according to the following method, and denote

them by ω1, ω2, ω2, ..., ω2n−1 .

1) If none of the suffixes in ωA = ωh1,...,hr is hi = n, but there exists
some suffix kj = n in ωB = ωk1,...,ks , then we arrange ωA before ωB.

2) If none of the suffixes in ωA = ωh1,...,hr , ωB = ωk1,...,ks is n, then
when r < s, we order ωA before ωB. When ωA = ωh1,...,hr , ωC = ωα1,...,αr ,
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and h1 + · · · + hr < α1 + · · · + αr, we order ωA before ωC . When
h1 + · · · + hr = α1 + · · · + αr and (h1, ..., hr) �= (α1, ..., αr), if the first
unequal suffix is hi < αi, we also order ωA before ωC .

3) If there exists some suffix in ωA = ωh1,...,hr and ωB = ωk1,...,ks is
n, then ωA = ωh1,...,hr−1,n, ωB = ωk1,...,ks−1,n, we order ωA = ωh1,...,hr−1

and ωB = ωk1,...,ks−1 by using the method as in 2), and regard them as
the order of ωA = ωh1,...,hr and ωB = ωk1,...,ks .

We have ordered all suffixes with numbers in the form 2n−1 through
1), 2), 3), then we can denote them by ω1, ..., ω2n−1 .

Definition 2.2 The oblique derivative problem for generalized regular
functions in Ω is to find a solution ω(x) ∈ C1,α(Ω)

⋂
C2(Ω)for the elliptic

system of first order equations

∂̄ω = aω + bω̄ + l (2.3)

satisfying the boundary conditions⎧⎪⎨⎪⎩
∂ωk

∂νk
+ σk(x)ωk(x) = τk(x) + hk, x ∈ ∂Ω,

ωk(d) = uk, 1 ≤ k ≤ 2n−1

(2.4)

in which σk(x), τk(x) ∈ C1,α(∂Ω), σk(x) ≥ 0 on ∂Ω, hk is an unknown
real constant, uk is a real constant, νk is the vector on ∂Ω, n0 is the
outward normal vector on ∂Ω; moreover, cos(νk, n0) ∈ C1,α(∂Ω). The
above boundary value problem will be called Problem P .

Let ω(x) =
∑
A

ωA(x)eA be a solution of Problem P . Then according

to Property 3.3 and Property 3.4, Chapter I, we know that the following
equalities for arbitrary index A are true:

n∑
m=1,mB=A

δmBωBxm =
∑

C,CM=A

(aC +bC)ωMδCM

+
∑

C,CM

(aC−bC)ωMδCM +lA,
(2.5)

∆ωD =
∑
j,C

δjDδCM (aC + bC)xjωM +
∑
j,C

δjDδCM (aC + bC)ωMxj

+
∑
j,C

δjDδCM (aC − bC)xjωM +
∑
j,C

δjDδCM (aC − bC)ωMxj

+
n∑

j=1
δjDlAxj ,

(2.6)
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where j = 1, 2, ..., n, jD = A, CM = A, CM = A; M, M denote two
kinds of indices of M respectively (see [29]6)).

Suppose that the equalities

(aC + bC)xj = 0, (aC − bC)xj = 0, jD = A, CM = A, C �= j (2.7)

in (2.6) are true. Especially, when n = 3, set C = 23, then according
to the condition (2.7), we get (a23 − b23)xj = 0, 1 ≤ j ≤ 3, namely
(a23 − b23) is a constant. If C = 3, by the condition (2.7), we get
(a3 − b3)xj = 0, j = 1, 2, i.e. (a3 − b3) only depends on x3.

Noting the condition (2.7), the equality (2.6) can be written as

∆ωD =
∑
j

δjDδjM (aj+bj)xjωM +
∑
j,C

δjDδCM (aC +bC)ωMxj

+
∑
j

δjDδjM (aj−bj)xjωM +
∑
j,C

δjDδCM (aC−bC)ωMxj

+
n∑

j=1
δjDlAxj ,

(2.8)

in which CM = A, CM = A, jD = A.

Suppose that D is the A-type index. In the first term of the right
side in (2.8), we see jM = jD, M = D, and then δjDδjM = 1; and in
the third term of the right side in (2.8), if the equality jM = jM holds,
then D = M is the A-type index. This is a contradiction. Hence when
D is the A-type index, the third term of the equality (2.8) disappears.
Thus the equality (2.8) can be written as

∆ωD =
n∑

j=1
(aj + bj)xjωD +

∑
j,C

δjDδCM (aC + bC)ωMxj

+
∑
j,C

δjDδCM (aC − bC)ωMxj +
n∑

j=1
δjDlAxj ,

(2.9)

in which CM = A,CM = A, jD = A. Especially, when n = 3, D = 1,
the equality (2.9) possesses the form

∆ω1=
3∑

j=1
(aj + bj)ω1xj +

3∑
j=1

(aj + bj)xjω1 + (a1 − b1)ω2x2

+(a1 − b1)ω3x3 − (a2 − b2)ω2x2 − (a2 − b2)ω23x3

−(a3 − b3)ω3x3 + (a3 − b3)ω23x2 − (a23 − b23)ω23x1

−(a23 − b23)ω3x2 + (a23 − b23)ω2x3 +
3∑

j=1
ljxj .

(2.10)
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Noting M = D = 1, M �= D = 1, it is clear that the third term of the

equality (2.8):
n∑

j=1
(aj − bj)xjωM in (2.10) disappears. When M = D, we

have C = MA = MjD = DjD = j, δjDδCM = δjDδCD = δjDδjD = 1,

and then the equality (2.9) can be rewritten as

∆ωD =
∑
j
(aj+bj)xjωD+

∑
j
(aj+bj)ωDxj +

∑
j,C

δjDδCM (aC +bC)ωMxj

+
∑
j,C

δjDδCM (aC − bC)ωMxj +
∑
j

δjDlAxj ,

(2.11)
where M �= D, and A is the index satisfying A = jD.

In addition, we first write equation (2.5) in the form

n∑
j=1

δjMωMxj +
n∑

j=1
δjMωMxj

=
∑
E

(aE+bE)ωMδEM +
∑
E

(aE−bE)δEMωM +lB,
(2.12)

where EM = B, BM = B, jM = B, and B runs all indexes. Moreover
we use δCD(aC − bC) to multiply every equation in (2.12), herein CD =
B, D is the fixed index, and sum according to the index B, we obtain∑

B,j
δCDδjM (aC − bC)ωMxj +

∑
B,j

δCDδjM (aC − bC)ωMxj

=
∑
B,E

(aC − bC)(aE + bE)δCDδEMωM

+
∑
B,E

(aC − bC)(aE − bE)δCDδEMωM +
∑
B

(aC − bC)δCDlB

(2.13)

where CD = B,EM = B,EM = B, jM = B.

According to Property 3.6 about the quasi-permutation in Section 3,
Chapter I, C = DB and the arbitrariness of B, we know that C can run
all indexes, so the second term in the left-hand side in (2.13) can also
be written as∑

B,j
δCDδjM (aC − bC)ωMxj =

∑
C,j

δCDδjM (aC − bC)ωMxj

=
∑
j,C

µjDCδjDδCM (aC − bC)ωMxj ,
(2.14)

where jM = B, CD = B.

Since D is given, we get A = jD (j = 1, 2, ..., n) and C = MA =
MjD. Suppose that the coefficients corresponding to C which do not
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conform to the condition jD = CM = A satisfy

aC − bC = 0, (2.15)

and the coefficients corresponding to C = BD with the condition
µjDC = 1 satisfy

aC − bC = 0; (2.16)

then the equality (2.14) can also be written in the form∑
B,j

(CD,jM=B)

δCDδjM (aC − bC)ωMxj = −
∑
j,C

(jD=A,CM=A)

δjDδjM (aC − bC)ωMxj . (2.17)

In addition, from the equality (2.13), we have∑
j,C

δjDδjM (aC − bC)ωMxj

=
∑
j,B

(CD=B,jM=B)

δCDδjM (aC−bC)ωMxj−
∑
E,B

(CD=B,EM=B)

(aC−bC)(aE+bE)δCDδEMωM

− ∑
E,B

(CD=B,EM=B)

(aC − bC)(aE − bE)δCDδEMωM− ∑
B

(CD=B)

(aC − bC)δCDlB.

(2.18)
Substituting the equality (2.18) into the equality (2.11), we get

∆ωD =
∑
j

(jD=A)

(aj+bj)xjωD+
∑
j

(jD=A)

(aj+bj)ωDxj

+
∑
j,C

(jD=A)

CM=A,M �=D

δjDδCM (aC +bC)ωMxj +
∑
B,j

(jM=B,CD=B)

δCDδjM (aC−bC)ωMxj

− ∑
B,E

(CD=B,EM=B)

(aC − bC)(aE − bE)δCDδEMωM

− ∑
B,E

(CD=B,EM=B)

(aC − bC)(aE − bE)δCDδEMωM

− ∑
B

(CD=B)

(aC − bC)δCDlB +
∑
j

(jD=A)

δjDlAxj .

(2.19)
In the fourth term of the equality (2.19), when M = D, we have CD =
B = jM = jD, and C = j, thus δCD = δjM = δjD = 1. In the
fifth term of the equality (2.19), when M = D, in accordance with
CD = EM = B, we have C = E, and then δCDδEM = δCDδCD = 1. So,
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the equality (2.19) can be written as

∆ωD =⎡⎣ ∑
j,(jD=A)

(aj+bj)xj −
∑

C,(jD=B)

(a2
C−b2

C)

⎤⎦ωD +
∑
j

jD=A,CD=B

2aCωDxj

+
∑
j,C

jD=A,CM=A,M �=D

δjDδCM (aC +bC)ωMxj +
∑
B,j

jM=B,CD=B,M �=D

δCDδjM (aC−bC)ωMxj

− ∑
B,E

CD=B,EM=B,M �=D

(aC − bC)(aE + bE)δCDδEMωM

− ∑
B,E

CD=B,EM=B

(aC − bC)(aE − bE)δCDδEMωM

− ∑
B, CD=B

(aC − bC)δCDlB +
∑

j, jD=A

δjDlAxj .

(2.20)
In the sixth term of the right-hand side of equality (2.20), when E �= C
and µCDE = −1, by Property 3.6 in Section 3, Chapter I, we get (aC −
bC)(aE−bE)δCDδEM = −(aC−bC)(aE−bE)δEDδCM = −(aE−bE)(aC−
bC)δEDδCM , hence

∑
B,E

E �=C,µCDE=−1

(aC − bC)(aE − bE) ×δCDδEMωM = 0;.

While E �= C, µCDE = −1, suppose that the term corresponding to the
sixth term of the right-hand side in (2.20) satisfies

(aC − bC)(aE − bE) = 0. (2.21)

When E = C, we have CD = EM = CM , so D = M. This contradicts
that D is an A-type index. Hence this condition does not hold, hence
the equality (2.20) can also be written as

∆ωD =

⎡⎣ ∑
j,(jD=A)

(aj+bj)xj −
∑

C,(jD=B)

(a2
C−b2

C)

⎤⎦ωD +
∑
j
2aCωDxj

+
∑
j,C

jD=A

CM=A,M �=D

δjDδCM (aC +bC)ωMxj

+
∑
B,j

jM=B

CD=B,M �=D

δCDδjM (aC−bC)ωMxj

− ∑
B,E

CD=B,EM=B
M �=D,E �=C

(aC−bC)(aE+bE)δCDδEMωM
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− ∑
B,(CD=B)

(aC − bC)δCDlB +
∑

j,(jD=A)

δjDlAxj . (2.22)

Let the third, fourth, and fifth terms in the right-hand side of (2.22)
satisfy

aC + bC = 0, aC − bC = 0, (aC − bC)(aE + bE) = 0, (2.23)

respectively. Then equality (2.22) can be written in the form

∆ωD = [
∑

j,(jD=A)

(aj+bj)xj −
∑
C

(a2
C−b2

C)]ωD +
∑
j

CD=B,jD=A

2aCωDxj

− ∑
B,(CD=B)

(aC − bC)δCDlB +
∑

j,(jD=A)

δjDlAxj .

(2.24)
When D = 1, we simply write the equality (2.24) as

∆ω1 =
n∑

m=1

dm1ω1xm + f1ω1 + g1, (2.25)

here dm1 = dm1(x) = dm1(x1, ..., xn), f1 = f1(x) = f1(x1, ..., xn), g1 =
g1(x) = g1(x1, ..., xn). Let

f1(x) ≥ 0. (2.26)

Then according to Lemma 2.1, there exists a unique function ω1(x)
satisfying the boundary condition (2.4). After we get ω1(x), we can
consider that ω1(x) in equation (2.5) is known as well as the known
coefficients aA(x), bA(x), lA(x). Applying the same method concluding
with the equality (2.25), we get the equality (2.24) when D = 2, and
write it simply as

∆ω2 =
n∑

m=1

dm2(x)ω2xm + f2ω2 + g2, (2.27)

where dm2 = dm2(x), f2 = f2(x), g2 = g2(x, ω1(x)). Set f2(x) ≥ 0; on the
basis of Lemma 2.1, there exists a unique ω2(x) satisfying the boundary
condition (2.4). After getting ω2(x), we can regard ω1(x), ω2(x) as the
known functions. Using the above method, we can get

∆ω3 =
n∑

m=1

dm3ω3xm + f3ω3 + g3, (2.28)
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in which dm3 = dm3(x), f3 = f3(x), g3 = g3(x, ω1(x), ω2(x)). In accor-
dance with the above steps and the order of ω1, ..., ω2n−1 , we proceed
until ω2n−2 . At last, we get the unique ω1, ..., ω2n−2 satisfying

∆ωk =
n∑

m=1

dmk
ωkxm + fkωk + gk, (2.29)

where

dmk
= dmk

(x), fk = fk(x), gk = gk(x, ω1(x), ω2(x), ..., ωk−1(x)),

fk(x) ≥ 0, 1 ≤ k ≤ 2n−2.

For simplicity, denote by U the conditions (2.7), (2.15), (2.16), (2.17),
(2.21), (2.23),... and fk(x) ≥ 0 (1 ≤ k ≤ 2n−2) of system (2.3).

From the above discussion, by means of Lemma 2.1, if system (2.3)
satisfies the condition U , then there exists a unique solution ωk, , 1 ≤
k ≤ 2n−2.

In order to further discuss ωk (2n−2+1 ≤ k ≤ 2n−1), we need to study
the system (2.5). Suppose that the suffix A of lA in the equality (2.5)
has been arranged according to the above method, and lA has been
written l1, ..., l2n−2 , l2n−2+1, ..., l2n−1 . We may only discuss the system
of equations corresponding to l2n−2+1, l2n−2+2, ..., l2n−1 in the equality
(2.5), namely

n∑
m=1

mB=A

δmBωBxm =
∑

C,(CM=A)

(aC + bC)ωMδCM

+
∑

C,(CM=A)

(aC − bC)ωMδCM + lA,
(2.30)

where lA = lk, 2n−2 + 1 ≤ k ≤ 2n−1, ω(x) =
∑
A

ωA(x)eA, x ∈ Ω. The

following assumption is called the condition V . Set n = 2m, and denote
x2k−1 + x2ki = zk, k = 1, ..., m, i is the imaginary unit, and ω2k−1 +
iω2k = ωk, k = 1, ..., 2n−2. Let Ω = G1×· · ·×Gm be a multiply circular
cylinder about complex variables z1, ..., zm. Then we regard ω1, ..., ω2n−2

as the known functions, by using the result in [80]4), the elliptic system
of first order equations: (2.30) about ω2n−2+1, ..., ω2n−1 can be written
as

∂ωk

∂zk
= fkl(z1, ..., zm, ω2n−3+1, ω2n−3+2, ..., ω2n−2), (2.31)

in which k = 2n−3 + 1, ..., 2n−2, l = 1, ..., m.
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Denote (see [43])

N⊥
1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
f

∣∣∣∣∣∣∣∣∣∣∣∣

f is a Hölder continuous function defined on characteristic
manifold ∂G1 × · · · × ∂Gm, whose real index is β, and∫

∂G1

· · ·
∫

∂Gm

f(ζ1, ..., ζm)
ζJ1
1 ...ζJm

m

dζ1...dζm = 0,

Jl > −kl, l = 1, ..., m

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

If (i) fkl is continuous with respect to z = (z1, ..., zm) ∈ Ω, ω =
(ω2n−3+1, ω2n−3+2, ..., ω2n−2) ∈ Bθ, here Bθ = {ω||ωj | < θ, j = 2n−3 +
1, 2n−3 + 2, ..., 2n−2}, θ > 0, moreover, fkl is holomorphic about ω ∈
Bθ, and has continuous mixed partial derivatives until m − 1 order for

different zj (j �= l), namely
∂λfkl

∂zi1 ...∂ziλ

is continuous about ω ∈ Bθ, z ∈
Ω, here λ ≤ m − 1, 1 ≤ i1 < · · · < iλ ≤ m, ik �= l, k = 1, ..., λ.

(ii) the system (2.31) is completely integrable, that is

∂fkl

∂zj
+

2n−2∑
p=2n−3+1

∂fkl

∂ωp
fpj =

∂fkj

∂zl
+

2n−2∑
p=2n−3+1

∂fkj

∂ωp
fpl,

k = 2n−3 + 1, ..., 2n−2, 1 ≤ j, l ≤ m.

(iii) the set

Mθ=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ω

∣∣∣∣∣∣∣∣∣∣∣∣∣

ω are several complex variable functions defined on Ω,
with continuous mixed partial derivatives up to order m
for different zj , and satisfy

|ωj | < θ, | ∂λωj

∂zi1 ...∂ziλ

| ≤ θ, j = 2n−3 + 1, ..., 2n−2,

1 ≤ i1 < · · · < iλ ≤ m, 1 ≤ λ ≤ m, z ∈ Ω

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
is defined. When ω ∈ Mθ, the composite function fkl and its continu-
ous mixed partial derivatives up to order m for different zj (j �= l) are
uniformly bounded, we denote its bound by Kθ. Moreover, for arbitrary
ω, ˜̄ω ∈ Mθ, the composite function fkl and its mixed partial derivatives
satisfy the Lipschitz condition, that is∣∣∣∣∣∂λfkl(z1, ..., zm, ω2n−3+1, ..., ω2n−2)

∂zi1 ...∂ziλ

−∂λfkl(z1, ..., zm, ˜̄ω2n−3+1, ..., ˜̄ω2n−2)
∂zi1 ...∂ziλ

∣∣∣∣∣
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≤ Lθ max
2n−3+1≤ε≤2n−2

1≤j1<···<jα≤m

sup
Ω

|∂
α(ωE − ω̃ε)
∂zj1 ...∂zjα

|,

1 ≤ i1 < · · · < iλ ≤ m, ip �= l.

(iv) the real functions ψj(z1, ..., zm) on ∂G1 × · · · × ∂Gm satisfy
the Hölder condition, namely ψj(z1, ..., zm) ∈ Cβ(∂G1 × · · · × ∂Gm). In
addition, we assume an unknown real function hj on N⊥

1 . The above
conditions are called the condition V .

Definition 2.3 For the solution ω =
2n−1∑
k=1

ωk(x)ek of Problem P ,

if ω2n−3+1, ..., ω2n−2(ωk = ω2k−1 + iω2k) satisfy generalized Riemann-
Hilbert boundary condition on ∂G1 × · · · × ∂Gm (see [43]):

Re[z−k1
1 , ..., z−km

m , ωj(z1, ..., zm)] = ψj(z1, ..., zm) + hj ,

j = 2n−3 + 1, ..., 2n−2, z = (z1, ..., zm) ∈ ∂G1 × · · · × ∂Gm,
(2.32)

then the problem for generalized regular functions is called the mixed
boundary problem, which will be denoted by Problem P -R-H.

On the basis of the result in [43], under the condition V , when Kj <

0 (j = 1, ..., m), and Kθ, Lθ,
2n−2∑

j=2n−3+1

Cβ(ψj) are small enough, there

exists a unique solution (ω2n−3+1, ..., ω2n−2) for the modified problem
(2.31), (2.32), so ω2n−2+1, ..., ω2n−1 are uniquely determined.

From the above discussion, we get the existence and uniqueness of
the solution of Problem P -R-H for generalized regular functions in real
Clifford analysis.

Theorem 2.2 Under the condition U, V , when Kj < 0 (j = 1, 2, ...,

m), and Kθ, Lθ,
2n−2∑

j=2n−3+1

Cβ(ψj) are small enough, there exists a unique

solution ω(x) =
∑
A

ωA(x)eA =
2n−1∑
k=1

ωk(x)ek (x ∈ Ω) of Problem P−R−H

for generalized regular functions, where ω1(x), ..., ω2n−2(x) satisfy equa-
tion (2.3) and the boundary condition (2.4) of Problem P. Denote
ωk = ω2k−1 + iω2k (k = 2n−3 + 1, ..., 2n−2), then ω2n−3+1, ..., ω2n−2 sat-
isfy equation (2.31), and the corresponding functions ω2n−2+1, ω2n−2+2,
..., ω2n−1 satisfy equation (2.3) and the generalized R−H boundary con-
dition (2.32).
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3 A Nonlinear Boundary Value Problem With Haseman
Shift for Regular Functions in Real Clifford Analysis

This section deals with the nonlinear boundary value problem with
Haseman shift d(t) in real Clifford analysis, whose boundary condition
is as follows:

a(t)Φ+(t) + b(t)Φ+(d(t)) + c(t)Φ−(t)

= g(t) · f(x,Φ+(t), Φ−(t), Φ+(d(t)), Φ−(d(t))).
(3.1)

We shall prove the existence of solutions for the problem (3.1) by using
the Schauder fixed point theorem (see [29]1)). It is easy to see that
when a(t) = g(t) ≡ 0, b(t) ≡ 1, the problem (3.1) becomes the Haseman
problem

Φ+(d(t)) = G(t)Φ−(t). (3.2)

The problem (3.2) was first solved by C. Haseman [22]. In general, all
boundary value conditions for holomorphic functions can be expressed
as the pasting condition of the unknown functions, hence the boundary
value problem can be regarded as the conformal pasting problem [87] in
function theory. But the method of conformal pasting cannot be used to
handle all problems of multiple elements. In 1974, A. M. Hekolaeshuk
[23] gave an example, i.e. for the boundary value problem

a(t)Φ+(t) + b(t)Φ−(d(t)) + c(t)Φ−(t) = g(t), (3.3)

the method of conformal pasting cannot be eliminated the shift d(t). For
the problem (3.1) discussed in this section, we choose the linear case of
(3.3) as its example.

Firstly, we reduce the problem to the integral equation problem, and
then use the fixed point theorem to prove the existence of solutions for
the problem.

Assume a connected open set Ω ∈ Rn, whose boundary ∂Ω is a
smooth, oriented, compact Liapunov surface (see Section 2, Chapter
1). Suppose that a(t), b(t), c(t), d(t), g(t) are given on ∂Ω, and d(t) is
a homeomorphic mapping, which maps ∂Ω onto ∂Ω. Denote Ω+ =
Ω, Ω− = Rn\Ω, Ω = Ω

⋃
∂Ω; we shall find a regular function Φ(x)

in Ω+, which is continuous on Ω±⋃ ∂Ω, and satisfies Φ−(∞) = 0 and
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the nonlinear boundary condition (3.1) with Haseman shift. The above
problem is called Problem SR. Set

Φ(x) =
1
ωn

∫
∂Ω

E(x, t)m(t)ϕ(t)dst, (3.4)

where ωn = 2π
n
2 /Γ(

n

2
) is the surface area of a unit ball in Rn, E(x, t) =

t−x
|t−x|n , m(t) =

n∑
j=1

ej cos(m, ej) is the outward normal unit vector on ∂Ω,

and dst is the area element, and ϕ(t) is the unknown Hölder continuous
function on ∂Ω. According to the Plemelj formula (2.24) in Section 2,
Chapter I,

Φ+(x) =
ϕ(x)

2
+ Pϕ(x), x ∈ ∂Ω, (3.5)

Φ−(x) = −ϕ(x)
2

+ Pϕ(x), x ∈ ∂Ω, (3.6)

in which the operator

Pϕ(x) =
1
ωn

∫
∂Ω

E(x, t)m(t)ϕ(t)dSt, x ∈ ∂Ω.

In addition

Φ+(d(t)) =
ϕ1(x)

2
+ P1ϕ(x), x ∈ ∂Ω, (3.7)

Φ−(d(t)) = −ϕ1(x)
2

+ P1ϕ(x), x ∈ ∂Ω, (3.8)

where ϕ1(x) = ϕ(d(x)), and

P1ϕ(x) = Pϕ(d(x))

=
1
ωn

∫
∂Ω

E(d(x), t)m(t)ϕ(t)dSt.
(3.9)

Substituting (3.5) − (3.8) into (3.1), we get

a(
ϕ

2
+ Pϕ) + b(

ϕ1

2
+ P1ϕ) + c(−ϕ

2
+ Pϕ) = g · f. (3.10)

Introducing the operator

Fϕ = (a + c)(−ϕ

2
+ Pϕ) + b(

ϕ1

2
+ P1ϕ) + (1 + a)ϕ − gf,

the equation (3.10) becomes

ϕ = Fϕ. (3.11)
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Thus the problem SR is reduced to solving the integral equation (3.11).

Denote by H(∂Ω, β) the set of the above Hölder continuous functions
with the Hölder index β (0 < β < 1). For arbitrary ϕ ∈ H(∂Ω, β), the
norm of ϕ is defined as

‖ ϕ ‖β = C(ϕ, ∂Ω) + H(ϕ, ∂Ω, β),

where C(ϕ, ∂Ω)=max
t∈∂Ω

|ϕ(t)|, H(ϕ, ∂Ω, β) = sup
t1 �=t2, t1,t2∈∂Ω

|ϕ(t1)−ϕ(t2)|
|t1 − t2|β .

It is evident that H(∂Ω, β) is a Banach space; moreover we easily verify

‖ f + g ‖β ≤ ‖ f ‖β + ‖ g ‖β, ‖ f · g ‖β ≤ 2n−1‖ f ‖β‖ g ‖β, (3.12)

where f, g ∈ H(∂Ω, β).

Theorem 3.1 Suppose that the operator θ : θϕ = ϕ
2 − Pϕ and the

function ϕ(t) ∈ H(∂Ω, β) are given; then there exists a constant J1

independent of ϕ, such that

‖ θϕ ‖β ≤ J1‖ ϕ ‖β. (3.13)

Proof On the basis of Theorem 2.7, Chapter I, we know

1
ωn

∫
∂Ω

E(x, t)m(t)dst =
1
2
, x ∈ ∂Ω,

and then

|(θϕ)(x)|≤ 1
ωn

H(ϕ, ∂Ω, β)
∫

∂Ω

dst

|t−x|n−1−β
=M1H(ϕ, ∂Ω, β), (3.14)

in which M1 is a constant independent of ϕ.

In order to consider H(θϕ, ∂Ω, β), we choose arbitrary x, x̂ ∈ ∂Ω, and
denote δ = |x − x̂|. Firstly, suppose 6δ < d (d is the constant about a
Liapunov surface in Section 2, Chapter I); we can make a sphere with
the center at x and radius 3δ. The inner part of this sphere is denoted
∂Ω1 and the remaining part is denoted ∂Ω2, thus we have

|(θϕ)(x) − (θϕ)(x̂)| ≤ 1
ωn

|
∫

∂Ω1

E(x, t)m(t)(ϕ(x) − ϕ(t))dst|

+
1
ωn

|
∫

∂Ω1

E(x̂, t)m(t)(ϕ(x̂) − ϕ(t))dst|

+
1
ωn

|
∫

∂Ω2

E(x, t)m(t)(ϕ(x)−ϕ(t))dst−
∫

∂Ω2

E(x̂, t)m(t)(ϕ(x̂)−ϕ(t))dst|

= L1 + L2 + L3.
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For x, we use the result about N0 ∈ ∂Ω in Section 2, Chapter I, and
denote by π1 the projection field of ∂Ω1 on the tangent plane of x; then

L1 ≤ M2H(ϕ, ∂Ω, β)
∫ 3δ

0

ρn−2
0

ρn−1−β
0

dρ0 = M3H(ϕ, ∂Ω, β)|x − x̂|β,

where M2, M3 are constants independent of x, x̂. In the following we
shall denote by Mi the constant having this property. Similarly, L2 ≤
M4H(ϕ, ∂Ω, β)|x − x̂|β. Next, we estimate L3:

L3 ≤ 1
ωn

|
∫

∂Ω2

(E(x, t) − E(x̂, t))m(t)(ϕ(x) − ϕ(t))dst|

+
1
ωn

|
∫

∂Ω2

E(x̂, t)m(t)(ϕ(x) − ϕ(x̂))dst| = O1 + O2.

By using Hile’s lemma (see Section 2, Chapter 1), we get

|E(x, t) − E(x̂, t)| =

∣∣∣∣∣ t − x

|t − x|n − t − x̂

|t − x̂|n
∣∣∣∣∣

≤
n−2∑
k=0

∣∣∣∣ t − x

t − x̂

∣∣∣∣−(k+1)

|t − x̂|−n|x − x̂|.

For arbitrary t ∈ ∂Ω2, we have |t − x̂| ≥ 2δ, and then

1
2
≤ | t − x

t − x̂
| ≤ 2.

Thus O1 ≤ M5H(ϕ, ∂Ω, β)|x− x̂|β. Noting that ϕ ∈ H(ϕ, ∂Ω), it is easy
to see that O2 ≤ M6H(ϕ, ∂Ω, β)|x − x̂|β. Hence

L3 ≤ M7H(ϕ, ∂Ω, β)|x − x̂|β.

From the above discussion, when 6|x − x̂| < d, we have

|(θϕ)(x) − (θϕ)(x̂)| ≤ M8H(ϕ, ∂Ω, β)|x − x̂|β. (3.15)

On the basis of the results in [53], we obtain the above estimation for
6|x− x̂| ≥ d. Moreover, according to (3.14),(3.15), there exists a positive
constant J1, such that ‖ θϕ ‖β ≤ J1‖ ϕ ‖β. This completes the proof.

Taking into account
Pϕ =

ϕ

2
− θϕ,

we get

‖ Pϕ ‖β ≤ 1
2
‖ ϕ ‖β + ‖ θϕ ‖β ≤ (

1
2

+ J1)‖ ϕ ‖β. (3.16)
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Similarly, it is easy to prove the following corollary.

Corollary 3.2 For arbitrary ϕ ∈ H(∂Ω, β), there exists a constant
J2 independent of ϕ, such that

‖ ϕ

2
+ Pϕ ‖

β
≤ J2‖ ϕ ‖β. (3.17)

Theorem 3.3 Let the shift d = d(x) (x ∈ ∂Ω) satisfy the Lipschitz
condition on ∂Ω. Then for arbitrary x, x̂ ∈ ∂Ω, we have

|d(x) − d(x̂)| ≤ J3|x − x̂|. (3.18)

We introduce the operator

Gϕ =
ϕ1

2
+ P1ϕ =

ϕ(d(x))
2

+ Pϕ(d(x)),

then for arbitrary ϕ ∈ H(∂Ω, β), there exists a constant J6 independent
of ϕ, such that

‖ Gϕ ‖β ≤ J6‖ ϕ ‖β. (3.19)

Proof According to (3.16), we get

C(Gϕ, ∂Ω) ≤ ‖ ϕ ‖β

2
+ (

1
2

+ J1)‖ ϕ ‖β = (1 + J1)‖ ϕ ‖β. (3.20)

Similar to the proof of (3.15), we have

|Pϕ(d(x)) − Pϕ(d(x̂))| ≤ J4‖ ϕ ‖β|d(x) − d(x̂)|β ≤ J5‖ ϕ ‖β|x − x̂|β.
(3.21)

From (3.20), (3.21), it follows that the inequality ‖ Gϕ ‖β ≤ J6‖ ϕ ‖β

holds.

Corollary 3.4 Under the same condition as in Theorem 3.3, the fol-
lowing inequality holds:

‖ −ϕ1

2
+ P1ϕ ‖

β
≤ J7‖ ϕ ‖β. (3.22)

Theorem 3.5 Suppose that the shift d = d(x) in Problem SR satis-
fies the condition (3.18) and a(t), b(t), c(t), g(t) ∈ H(∂Ω, β). Then, if
the function f(t, Φ(1), Φ(2), Φ(3), Φ(4)) is Hölder continuous for the ar-
bitrary fixed Clifford numbers Φ(1), Φ(2), Φ(3), Φ(4) about fixed t ∈ ∂Ω
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and satisfies the Lipschitz condition for the arbitrary fixed t ∈ ∂Ω about
Φ(1), Φ(2), Φ(3), Φ(4), namely

|f(t1, Φ
(1)
1 , Φ(2)

1 , Φ(3)
1 , Φ(4)

1 ) − f(t2, Φ
(1)
2 , Φ(2)

2 , Φ(3)
2 , Φ(4)

2 )|

≤ J8|t1 − t2|β + J9|Φ(1)
1 − Φ(1)

2 | + · · · + J12|Φ(4)
1 − Φ(4)

2 |,
(3.23)

where Ji, i = 8, ..., 12 are positive constants independent of ti, Φ(i)
j (i =

1, 2, 3, 4, j = 1, 2), f(0, 0, 0, 0, 0) = 0; and if ‖ a + c ‖β < ε < 1, ‖ b ‖β <

ε < 1, ‖ 1 + a ‖β < ε < 1, 0 < µ = ε·2n−1(J1+J6+1) < 1, and ‖ g ‖β <

δ; then when 0 < δ ≤ M(1 − µ)
2n−1(J17 + J18M)

, Problem SR is solvable, where

M is the given positive number (‖ ϕ ‖β ≤ M), J17, J18 are the positive
numbers dependent on Ji, i = 1, 2, 6, 7, ..., 12.

Proof Denote by

T = {ϕ|ϕ ∈ H(∂Ω, β), ‖ ϕ ‖β ≤ M}

the subset of the continuous function space C(∂Ω). According to (3.11),
we have

||Fϕ||β ≤2n−1‖a+c‖β‖θϕ‖β+2n−1||b||β||Gϕ||β+2n−1||1+a||β||ϕ||β
+2n−1||g||β · ||f(t,

ϕ

2
+ Pϕ,−ϕ

2
+ Pϕ,

ϕ1

2
+ P1ϕ,−ϕ1

2
+ P1ϕ)||

β
.

From Theorems 3.1, 3.3, Corollaries 3.2, 3.4 and the condition (3.23), it
follows that

C(f, ∂Ω) ≤ J13 + J14||ϕ||β. (3.24)

Moreover using (3.23) we have∣∣∣∣f (t1,
ϕ(t1)

2
+ P ϕ(t1),

−ϕ(t1)
2

+ Pϕ(t1),
ϕ1(t1)

2
+ P1ϕ(t1) ,

− ϕ1(t1)
2

+ P1ϕ(t1)
)
− f

(
t2,

ϕ(t2)
2

+ Pϕ(t2) ,
−ϕ(t2)

2
+ Pϕ(t2),

ϕ1(t2)
2

+ P1ϕ(t2),
−ϕ(t2)

2
+ P1ϕ(t2)

)∣∣∣∣
≤ (J15 + J16||ϕ||β)|t1 − t2|β (J15 = J8).

(3.25)
In accordance with (3.24),(3.25), we obtain

||f ||β ≤ J17 + J18||ϕ||β, (3.26)
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hence when ϕ ∈ T , applying the condition in this theorem, the inequality

||Fϕ||β ≤ µ||ϕ||β + 2n−1δ(J17 + J18||ϕ||β)

< µM + δ2n−1(J17 + J18M) ≤ M

is concluded. This shows that F maps the set T into itself.

In the following, we shall prove that F is a continuous mapping.
Choose arbitrary ϕ(n)(x) ∈ T, such that {ϕ(n)(x)} uniformly converges
to ϕ(x), x ∈ ∂Ω. It is clear that for arbitrary given number ε > 0, when
n is large enough, ||ϕ(n) − ϕ||β may be small enough. Now we consider
Pϕ(n)(x) − Pϕ(x). Let 6δ < d, δ > 0. Then we can make a sphere with
the center at x and radius 3δ. The inner part of the sphere is denoted
by ∂Ω1, and the rest part is denoted ∂Ω2. Thus we have

|Pϕ(n)(x) − Pϕ(x)| ≤ 1
ωn

∣∣∣∣∫
∂Ω

E(x, t)m(t)[ϕ(n)(t) − ϕ(t)]dSt

∣∣∣∣
=

1
ωn

|
∫

∂Ω
E(x, t)m(t)[ϕ(n)(t) − ϕ(n)(x) + ϕ(x) − ϕ(t) + ϕ(n)(x)

−ϕ(x)]dSt| ≤ 1
ωn

|
∫

∂Ω
E(x, t)m(t)[(ϕ(n)(t) − ϕ(n)(x))

+(ϕ(x) − ϕ(t))]dSt| + 1
ωn

∣∣∣∣∫
∂Ω

E(x, t)m(t)
(
ϕ(n)(x) − ϕ(x)

)
dSt

∣∣∣∣
≤ 1

ωn
|
∫

∂Ω1

E(x, t)m(t)[(ϕ(n)(t) − ϕ(n)(x)) + (ϕ(x) − ϕ(t))]dSt|

+
1
ωn

|
∫

∂Ω2

E(x, t)m(t)[(ϕ(n)(t) − ϕ(n)(x)) + (ϕ(x) − ϕ(t))]dSt|

+
1
2
||ϕ(n) − ϕ||β = L4 + L5 +

||ϕ(n) − ϕ||β
2

where

L4 =
1
ωn

|
∫

∂Ω1

E(x, t)m(t)[(ϕ(n)(t) − ϕ(n)(x)) + (ϕ(x) − ϕ(t))dSt|

≤ J19

∫ 3δ

0

1

ρn−1−β
0

ρn−2
0 dρ0 = J19

∫ 3δ

0
ρβ−1

0 dρ0 = J20δ
β,

and

L5 =
1
ωn

|
∫

∂Ω2

E(x, t)m(t)[(ϕ(n)(t)−ϕ(t))−(ϕ(n)(x)−ϕ(x))dSt|

≤ J21||ϕ(n) − ϕ||β,

hence
|Pϕ(n)(x) − Pϕ(x)| ≤ J20δ

β + J22||ϕ(n) − ϕ||β.
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We choose a sufficiently small positive number δ, such that J20δ
β <

ε/2, and then choose a sufficiently large positive integer n, such that
J22||ϕ(n) − ϕ||β <

ε

2
. Thus for the arbitrary x ∈ ∂Ω, we have

|Pϕ(n)(x) − Pϕ(x)| < ε. (3.27)

Similarly, when n is large enough, for arbitrary x ∈ ∂Ω, we can derive

|ϕ(n)
1 (x) − ϕ1(x)| < ε, (3.28)

|P1ϕ
(n)(x) − P1ϕ(x)| < ε. (3.29)

Taking into account (3.11), (3.23) and (3.27) − (3.29), we can choose a
sufficiently large positive integer n, such that

|Fϕ(n)(x) − Fϕ(x)| < ε, for arbitrary x ∈ ∂Ω.

This shows that F is a continuous mapping, which maps T into itself.
By means of the Ascoli-Arzela theorem, we know that T is a compact set
in the continuous function space C(∂Ω). Hence the continuous mapping
F maps the closed convex set T in C(∂Ω) onto itself, and F (T ) is also
a compact set in C(∂Ω). By the Schauder fixed point theorem, there
exists a function ϕ0 ∈ H(∂Ω, β) satisfying the integral equation (3.11).
This shows that Problem SR is solvable.

Theorem 3.6 If f ≡ 1 in Theorem 3.5, then Problem SR has a
unique solution.

In fact, for arbitrary ϕ1, ϕ2 ∈ H(∂Ω, β), by using the similar method
as before, we can obtain

||Fϕ1 − Fϕ2||β < µ||ϕ1 − ϕ2||β.

Taking account of the condition 0 < µ < 1, we know that Fϕ (when
f ≡ 1) is a contracting mapping from the Banach space H(∂Ω, β) into
itself, hence there exists a unique fixed point ϕ0(x) of the functional
equation ϕ0 = Fϕ0, i.e. Problem SR has a unique solution

Φ(x) =
1
ωn

∫
∂Ω

E(x, t)m(t)ϕ0(t)dSt, Φ−(∞) = 0.

In 1991, Sha Huang discussed the boundary value problem with con-
jugate value

a(t)Φ+(t) + b(t)Φ+(t) + c(t)Φ−(t) + d(t)Φ−(t)

= g(t), t ∈ Ω
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for regular functions in real Clifford analysis (see [29]3)). Similarly,
we can discuss the nonlinear boundary value problem with shift and
conjugate value for regular functions in real Clifford analysis.

4 The Dirichlet Problem of Hyperbolic Harmonic
Functions in Real Clifford Analysis

One of the generalized forms of a Cauchy-Riemann system in high
dimensional space is the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xn(
∂u1

∂x1
− ∂u2

∂x2
− · · · − ∂un

∂xn
) + (n − 1)un = 0,

∂ui

∂xk
=

∂uk

∂xi
, i, k = 2, ..., n,

∂u1

∂xk
= −∂uk

∂x1
, k = 2, ..., n.

(Hn)

The system (Hn) appeared in a remark of H. Hasse paper [21] in 1949,
but to our knowledge has not been treated so far. In 1992, H. Leutwiler
established the relation between solutions for system (Hn) and classical
holomorphic functions [41]. In this section, on the basis of [41], we study
the Schwarz integral representation for hyperbolic harmonic functions
and the existence of solutions for a kind of boundary value problems for
hyperbolic harmonic functions for a high dimension ball in real Clifford
analysis. We also discuss hyperbolic harmonic functions in real Clifford
analysis and the relation with solutions of system (Hn). The material
comes from Sha Huang’s paper [29]7).

4.1 The Relation Between Solutions for System (Hn) and
Holomorphic Functions

Setting x = (x1, x2, ..., xn) ∈ Rn, we denote l(x) = [
n∑

k=2
x2

k]
1
2 ,

I(x) =
n∑

k=2
xkek/l(x). In the following, we shall introduce a kind

of mapping from Rn to An(R). For any complex variable func-
tion f(z) = u(x, y) + iv(x, y), we consider its corresponding function
f̃ = f̃(x1, x2, ..., xn) = u(x1, l(x)) + I(x)v(x1, l(x)). In [41], H. Leutwiler
gave the following result.

Theorem 4.1 Let Ω ⊂ (R2)+ = {z ∣∣z = (x, y) ∈ R2 , y > 0} be an
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open set, and f(z) = u + iv be holomorphic in Ω. Then

f̃(x) = f̃(x1, x2, ..., xn) = u(x1, l(x)) + I(x)v(x1, l(x)) (4.1)

is a solution of system (Hn) in Ω̃ = {x =
n∑

k=1
xkek ∈Rn|x1+il(x) ∈ Ω}.

Moreover, if we denote f̃ =
n∑

k=1
ukek in (4.1), then uixk = ukxi, i, k =

2, ..., n.

Proof Since f(z) is holomorphic, we have⎧⎨⎩ u′
x = v′y,

u′
y = −v′x,

(4.2)

f̃ = u(x1, l(x)) + (
x2e2

l(x)
+

x3e3

l(x)
+ · · · + xnen

l(x)
)v(x1, l(x)),

and then
u1(x) = u(x1, l(x)),

uk(x) =
xk

l(x)
v(x1, l(x)), k = 2, 3, ..., n.

Hence

∂u1

∂x1
= u

′
x(x1, l(x)),

∂uk

∂xk
= (

xk

l(x)
)
′
xk

v(x1, l(x)) +
xk

l(x)
[v(x1, l(x))]xk

=
l(x) − xkl

′
xk

(x)
[l(x)]2

v(x1, l(x)) +
xk

l(x)
v
′
y(x1, l(x))l

′
xk

(x)

=
l(x)v(x1, l(x)) − x2

k[(l(x))−1v(x1, l(x)) + v
′
y(x1, l(x))]

[l(x)]2
.

Substitute the above equality into the first equality of system (Hn); it is
obvious that the first equality holds. After a similar computation, the
other equalities are all true.

Sha Huang gave the corresponding results about the above functions
in [29]7).

Theorem 4.2 Suppose we have complex constants a = a1 + ib, c =
c1 + id and complex variable number z = x1 + iy. Then

1) ĩ = I(x), z̃ = x = x1 +
∑n

k=2 xkek.
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2) ã = a1 + I(x)b, specially, ã = a, ˜a + z = ã + z̃, when a is a real
number.

3) (̃1
z ) = 1

z̃ (̃a
z ) = ã

z̃ .

4) (̃ 1
a) = ˜̄a|a|−2, here, |a| =

√
a2

1 + b2, (̃ z
a) = z̃(̃ 1

a).

5) ˜( z+a
c−z ) = z̃+a

c̃−z
.

We can verify by direct computation that all above terms are true.
Here, the proof is omitted.

Theorem 4.3 Suppose that f̃ =
n∑

k=1
ukek is defined in the ball B̃ ⊂

(Rn)+, which does not intersect with the real axis in Rn, moreover f̃ is
a solution for system (Hn) satisfying uixk = ukxi, i, k = 2, ..., n. Then
there exists a holomorphic function f(z) = u + iv defined in a circular
disk B, such that f̃(x) = u(x1,

√∑n
k=2 x2

k)+I(x)v(x1,
√∑n

k=2 x2
k), where

x ∈ B̃ =
{
x =

∑n
k=1 xkek ∈ Rn|(x1 + i

√∑n
k=2 x2

k) ∈ B
}

.

4.2 The Integral Representation of Hyperbolic Harmonic
Functions in Real Clifford Analysis

The components u1, ..., un−1 of (twice continuously differentiable) so-
lution (u1, ..., un) of (Hn) satisfy the hyperbolic version of the Laplace
equation i.e. the hyperbolic Laplace equation in mathematics and
physics is

xn∆u − (n − 1)
∂u

∂xn
= 0, (4.3)

where u : Rn → R is a real-valued function with n variables.

Definition 4.1 The twice continuously differentiable solution u(x) of
equation (4.3) is called the real hyperbolic harmonic function of n vari-
ables.

In [41], H. Leutwiler introduced the definition of hyperbolic harmonic
function in real Clifford analysis.

Definition 4.2 Let f̃ =
n∑

k=1
uk(x)ek : Rn → Rn possess twice con-

tinuously differentiable derivatives, the components u1, u2, ..., un−1 be
hyperbolic harmonic, and un satisfy the equation

x2
n∆u − (n − 1)xn

∂u

∂xn
+ (n − 1)u = 0. (4.4)
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Then f̃ is called a hyperbolic harmonic function.

Theorem 4.4 Let f̃ = u1 + u2e2 + · · · + unen be a twice continuously
differentiable function. Then f̃ is a solution of system (Hn) if and only
if f̃ and the functions

xf̃ek + ekf̃x, k = 1, ..., n − 1

are hyperbolic harmonic in the above sense.

Proof The Clifford numbers ωk =
1
2
(xf̃ek + ekf̃x) (k = 2, ..., n − 1)

are vectors, whose components ωki (i = 1, ..., n) are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
ωk1 = −x1uk − xku1, k = 2, ..., n − 1,

ωki = −xiuk + xkui, i = 2, ..., n, k = 2, ..., n − 1, i �= k,

ωkk = x1u1 − x2u2 − · · · − xnun, k = 2, ..., n − 1.

In case k = 1, i.e. ω1 =
1
2
(xf̃ + f̃x), we have

⎧⎨⎩ ω11 = x1u1 − x2u2 − · · · − xnun,

ω1i = xiu1 + x1ui, i = 2, ..., n.

It is easy to verify that f̃ and ωk (k = 1, ..., n − 1) are hyperbolic har-
monic if and only if f̃ satisfies system (Hn).

Theorem 4.5 Suppose that the ball B̃ with the radius R > 0, B̃ ⊂
(Rn)+, (or B̃ ⊂ (Rn)−), f̃ =

n∑
k=1

uk(x)ex is a hyperbolic harmonic

function in B̃ and continuous on the boundary of B̃, and denote by
ωki (1 ≤ k ≤ n − 1, 1 ≤ i ≤ n) the components of ωk(x) = (xf̃ek +
ekf̃x)/2. Let the following four conditions hold : i) ωki = 0 (2 ≤ k ≤
n − 1, 2 ≤ i ≤ n); ii) The other ωk1 (2 ≤ k ≤ n − 1), ω1i (1 ≤ i ≤
n− 1) are real-valued hyperbolic harmonic functions; iii) xiun = xnui (2
≤ i ≤ n − 1); iv) ωn1 satisfies (4.4). Then, f̃(x) possesses the integral
representation:

f̃(x) =
1
2π

∫ 2π

0
Φ(t)

t̃ + x − 2ã

t̃ − x
dϕ + I(x)v(a), (4.5)

where x ∈ B̃, t belongs to the boundary of a circular disk B with the cen-
ter at a ∈ (R2)+ (see Theorem 4.1) and radius R, (t−a) = Reiϕ, f(z) =
u + iv is analytic in B, and Ref(x) = Φ(t).
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Proof According to the conditions i), ii), we see that ωki (1 ≤ k ≤
n − 1, 1 ≤ i ≤ n − 1) are real-valued hyperbolic harmonic. From the
conditions i), iv), it follows that ωkn(x) (1 ≤ k ≤ n − 1) satisfies (4.4).
Hence ωk(x) (1 ≤ k ≤ n − 1) are hyperbolic harmonic functions. More-
over by Theorem 4.4, we know that f̃ is a solution of system (Hn). It is
clear that from the formula (1.7) in [41], when 2 ≤ k ≤ n−1, 2 ≤ i ≤ n,
we have

ωk =
1
2
(xf̃ek + ekf̃x) = xRe[f̃ ek] + ekRe[f̃x] − (x, ek)f̃

= (x1 +
n∑

i=2
xiei)(−uk) + ek[u1x1 −

n∑
i=2

uixi] − xk(u1 −
n∑

i=2
uiei)

= −x1uk +
n∑

i=2
(−1)xiukei+[u1x1−

n∑
i=2

uixi]ek−xku1+
n∑

i=2
xkuiei

= −(x1 + uk + xku1)+
n∑

i=2
(i�=k)

(xkui−xiuk)ei+[u1x1−
n∑

i=2
uixi]ek,

and its components are

ωki = −xiuk + xkui, 2 ≤ k ≤ n − 1, 2 ≤ i ≤ n, i �= k.

In addition, by the conditions i), iii), we have xiuk = xkui (i, k = 2, ..., n)
when i = k, hence the above equality is true. By using Theorem 4.3,
there exists f(z) = u + iv, which is analytic in the circular disc B :
|z − a| < R, B ⊂ (R2)+, such that

f̃(x) = u

⎛⎝x1,

√√√√ n∑
k=2

x2
k

⎞⎠+ I(x)v

⎛⎝x1,

√√√√ n∑
k=2

x2
k

⎞⎠ ,

where x ∈ B̃ = {x =
∑n

k=1 xkek ∈ Rn|(x1 + i
√∑n

k=2 x2
k) ∈ B}, and in

the following we denote f̃ = u(x) + I(x)v(x), [f̃(x)]1 = u(x). Finally,
according to the Schwarz formula of the holomorphic function:

f(z) =
1
2π

∫ 2π

0
Φ(t)

t + z − 2a

t − z
dϕ + iv(a)(z ∈ B) (4.6)

in which (t − a) = Reiϕ, Φ(t) = Ref(t), and using Theorem 4.2 and
(4.6), we obtain

f̃(x) =
1
2π

∫ 2π

0
Φ(t)

t̃ + x − 2ã

t̃ − x
dϕ + I(x)v(a),

where x ∈ B̃, t ∈ B.
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4.3 The Existence and Integral Representation of Solutions for
a Kind of Boundary Value Problem

Let Φ(t) be a continuous function defined on the boundary Ḃ (|t−a| =
R) of the disk B : |z − a| < R in (R2)+, and B̃ = {x|x =

∑n
k=1 xkek ∈

Rn, x1 + i
√∑n

k=2 x2
k ∈ B} and t = t1 + ih ∈ Ḃ. Denote h =

√∑n
k=2 t2k,

t
¯

= t1 +
∑n

k=2 tkek, and Φ(t) = Φ(t1, h) = Φ(t1,
√∑n

k=2 t2k) = Φ(t
¯
).

In the following, we shall discuss the hyperbolic harmonic function f̃ :
Rn → Rn in B̃, and find a solution of the problem of Ref̃(t1) = Φ(t

¯
);

here Ref̃(x) = u(x1, l(x)), u is a real number. This problem is called
Problem D.

Theorem 4.6 Problem D for hyperbolic harmonic functions in a high
dimension ball B̃ is solvable.

Proof On the basis of the existence of solutions of the Dirichlet prob-
lem for holomorphic functions, we see that there exists a holomorphic
function f(z) = u + iv, such that when z → t, Ref(z) → Φ(t), where
t = t1 + ih ∈ Ḃ, z = x1 + iy ∈ B. By Theorem 4.1, we know that

f̃(x) = u

⎛⎝x1,

√√√√ n∑
k=2

x2
k

⎞⎠+ I(x)v

⎛⎝x1,

√√√√ n∑
k=2

x2
k

⎞⎠
is a solution of system (Hn) in B̃. If we denote the above function

as f̃(x) =
n∑

k=1
ukvk, then uixk = ukxi, i, k = 2, ..., n. From Theorem

4.4, it is clear that f̃(x) is hyperbolic harmonic in B̃. Denote x =

x1 +
n∑

k=2
xkek ∈ B̃, and when x → t

¯
= t1 +

n∑
k=2

tkek, we have z =

x1 + iy = x1 + i
√∑n

k=2 x2
k → t = t1 + ih = t1 + i

√∑n
k=2 t2k, thus

Ref(z) → Φ(t), i.e. u(x1, y) = u(z) → Φ(t) = Φ(t1, h). Again because
u(x1, y) = u(x1,

√∑n
k=2 x2

k) = u(x), Φ(t1, h) = Φ(t
¯
), we have Ref̃(x) =

u(x) → Φ(t
¯
)(x → t

¯
), namely Ref̃(t) = Φ(t

¯
). This shows that f̃(x) is a

solution of Problem D.

Theorem 4.7 The solution f̃(x) as in Theorem 4.6 possesses the in-
tegral representation (4.5).

Proof In fact, the hyperbolic harmonic function f̃(x) in Theorem 4.6
is a solution of Problem D, hence it is also a solution of system (Hn)
satisfying (4.7). According to the proof of Theorem 4.5, we know that
f̃(x) possesses the integral representation (4.5).



CHAPTER III

NONLINEAR BOUNDARY VALUE

PROBLEMS FOR GENERALIZED

BIREGULAR FUNCTIONS IN

REAL CLIFFORD ANALYSIS

This chapter deals with boundary value problems for the functions
in real Clifford analysis. In the first section we consider boundary value
problems for biregular functions. In the second section we consider
boundary value problems for generalized biregular functions. In the
last section we consider boundary value problems for biregular function
vectors.

1 A Nonlinear Boundary Value Problem for Biregular
Functions in Real Clifford Analysis

The regular function in Clifford analysis is similar to the holomorphic
function in complex analysis. The biregular function discussed in this
section is the regular function with two variables. In Chapter II, we have
given some boundary value problems for regular functions. Similarly to
holomorphic functions of several complex variables, Cauchy type integral
formulas, the Hartogs theorem and the Cousin problem of biregular
functions were obtained (see [7], [39]), and the Plemeli formula for several
complex variables was considered (see [88]1)).

In this section, we give the Plemelj formula for biregular functions and
prove the existence of solutions for a nonlinear boundary value problem,
especially showing that the linear boundary value problem (f ≡ 1) has
a unique solution [29]2).

1.1 Cauchy principal value of Cauchy type integrals

Denote by Ω = Ω1×Ω2 an open connected set in the Euclidean space
Rm × Rk, 1 ≤ m ≤ n, 1 ≤ k ≤ n, and by
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F
(r)
Ω =

⎧⎨⎩f

∣∣∣∣∣∣
f :Ω → An(R),f(x, y) =

∑
A

fA(x, y)eA,

fA(x, y) ∈ Cr(Ω), x ∈ Rm, y ∈ Rk,

⎫⎬⎭
the set of Cr functions in Ω with values in An(R). We introduce the
right and left Dirac operators, i.e.

∂xf =
m∑

i=1

∑
A

eieA
∂fA

∂xi
, f∂y =

k∑
j=1

∑
A

eAej
∂fA

∂yj
,

respectively. A function f is called biregular if and only if⎧⎨⎩ ∂xf = 0,

f∂y = 0.

Let the boundaries ∂Ω1, ∂Ω2 of Ω1, Ω2 be differentiable, oriented,
compact Liapunov surfaces (see Section 2, Chapter I). Now, we consider
the Cauchy principal value of a Cauchy type integral.

A function λ(µ, ν) =
∑
A

λA(µ, ν)eA, (µ, ν) ∈ ∂Ω1 × ∂Ω2 is said to be

Hölder continuous on ∂Ω1 × ∂Ω2, if and only if |λ(µ1, ν1) − λ(µ2, ν2)|
≤ G|(µ1, ν1) − (µ2, ν2)|β, where G, β (0 < β < 1) are positive constants
and |(µ1, ν1)−(µ2, ν2)| = [|µ1−µ2|2 + |ν1−ν2|2]1/2. Denote by H(∂Ω1×
∂Ω2, β) the set of Hölder continuous functions on ∂Ω1×∂Ω2, and define
the norm in H(∂Ω1 × ∂Ω2, β) as ||f ||β = C(f, ∂Ω1 × ∂Ω2) + H(f, ∂Ω1 ×
∂Ω2, β), in which

H(f, ∂Ω1 × ∂Ω2, β)= sup
(µi,νi)∈∂Ω1×∂Ω2,(µ1,ν1)�=(µ2,ν2)

|f(µ1, ν1)−f(µ2, ν2)|
|(µ1, ν1)−(µ2, ν2)|β ,

C(f, ∂Ω1 × ∂Ω2) = max
(µ,ν)∈∂Ω1×∂Ω2

|f(µ, ν)|, f ∈ H(∂Ω1 × ∂Ω2, β).

It is easy to prove that H(∂Ω1 × ∂Ω2, β) is a Banach space and

‖ f+g ‖β ≤‖ f ‖β+‖ g ‖β, ‖ fg ‖β ≤J1‖ f ‖β‖ g ‖β. (1.1)

Theorem 1.1 Let x∈̄∂Ω1, y∈̄∂Ω2, ϕ(µ, ν) ∈ H(∂Ω1 × ∂Ω2, β). Then
the Cauchy type integral

Φ(x, y) = λ

∫
∂Ω1×∂Ω2

Em(x, µ)dσµϕ(µ, ν)dσνEk(y, ν) (1.2)
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is a biregular function and Φ(x,∞) = Φ(∞, y) = Φ(∞,∞) = 0, where
El(t1, t2) = t̄2 − t̄1/|t2 − t1|l (l = m, k) and λ = 1/ωmωk, ωm, ωk are the
area of a unit sphere in Rm,Rk respectively. In this chapter, El(t1, t2)
and λ possess the same meaning.

Proof It is clear that ∂xEm(x, µ) = Ek(y, ν)∂y = 0 and lim
x→∞Em(x, µ)

= lim
y→∞Ek(y, ν) = 0 (see [80]7)), hence the result is obvious.

If the point (t1, t2) ∈ ∂Ω1 × ∂Ω2 and O1 : |x − t1| < δ, O2 : |y − t2| < δ,
then O((t1, t2), δ) = O1×O2 is called the δ-neighborhood of (t1, t2), and
denote λδ = (∂Ω1 × ∂Ω2) ∩ [O((t1, t2), δ)].

Definition 1.1 The integral

Φ(t1, t2)=λ

∫
∂Ω1×∂Ω2

Em(t1, µ)dσµϕ(µ, ν)dσνEk(t2, ν), (t1, t2)∈∂Ω1×∂Ω2

(1.3)
is called a singular integral on ∂Ω1 × ∂Ω2 [6].

Definition 1.2 If lim
δ→0

Φδ(t1, t2) = I, where

Φδ(t1, t2) = λ

∫
∂Ω1×∂Ω2−λδ

Em(t1, µ)dσµϕ(µ, ν)dσνEk(t2, ν),

then I is called the Cauchy principal value of a singular integral and
written as I = Φ(t1, t2).

Theorem 1.2 If ϕ(µ, ν) ∈ H(∂Ω1 × ∂Ω2, β), then there exists the
Cauchy principal value of singular integrals and

Φ(t1, t2) = −1
4
ϕ(t1, t2) + χ(t1, t2) +

1
4
(P1ϕ + P2ϕ), (1.4)

where

χ(t1, t2) = λ

∫
∂Ω1×∂Ω2

Em(t1, µ)dσµψ(µ, ν)dσνEk(t2, ν),

ψ(µ, ν) = ϕ(µ, ν) − ϕ(µ, t2) − ϕ(t1, ν) + ϕ(t1, t2),

χ(x, y) = λ

∫
∂Ω1×∂Ω2

Em(x, µ)dσµψ(µ, ν)dσνEk(y, ν),

and
P1ϕ =

2
ωm

∫
∂Ω1

Em(t1, µ)dσµϕ(µ, t2),

P2ϕ =
2
ωk

∫
∂Ω2

ϕ(t1, ν)dσνEk(t2, ν)
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are singular integral operators, where Φi (i = 1, 2, 3) are as stated in
Definition 1.1.

Proof Denote Φδ = I1 + I2 + I3 + I4, where

I1 = λ

∫
∂Ω1×∂Ω2−λδ

Em(t1, µ)dσµϕ(t1, t2)dσνEk(t2, ν),

I2 = λ

∫
∂Ω1×∂Ω2−λδ

Em(t1, µ)dσµψ(µ, ν)dσνEk(t2, ν),

I3 = λ

∫
∂Ω1×∂Ω2−λδ

Em(t1, µ)dσµ[ϕ(µ, t2) − ϕ(t1, t2)]dσνEk(t2, ν),

I4 = λ

∫
∂Ω1×∂Ω2−λδ

Em(t1, µ)dσµ[ϕ(t1, ν) − ϕ(t1, t2)]dσνEk(t2, ν).

By using [33],

1
ωm

∫
∂Ω1

Em(t1, µ)dσµ =
1
2
,

1
ωk

∫
∂Ω2

dσνEk(t2, ν) =
1
2
, (1.5)

we have I1 −→ 1
4
ϕ(t1, t2) as δ → 0. Since ϕ ∈ H(∂Ω1 × ∂Ω2, β),

|ψ(µ, ν)| ≤ A0|µ−t1|β, |ψ(µ, ν)| ≤ A1|ν−t2|β, where A0 = A1 = 2‖ ϕ ‖β,
from [88]1), the inequality

|ψ(µ, ν)| ≤ A2|µ − t1|
β
2 |ν − t2|

β
2 , A2 = 2‖ ϕ ‖β (1.6)

is derived.

By (2.11) in Chapter I and (1.6), we have

|Em(t1, µ)dσµψ(µ, ν)dσνEk(t2, ν)| ≤ 4A2(ρ
β
2
−1

01 dρ01)(ρ
β
2
−1

02 dρ02), (1.7)

where ρ0i (i = 1, 2) are ρ0 in (2.11) of Chapter I for ti(i = 1, 2), which
correspond to N0 in Section 2, Chapter I. Therefore, I2 → χ(t1, t2) as
δ → 0. By (1.5) and |Em(t1, µ)dσµ[ϕ(µ, t2) − ϕ(t1, t2)]| ≤ A2ρ

β−1
01 dρ01,

there exists a limit of I3 as δ → 0. Similarly, we can obtain the limit of
I4 as δ → 0. From [33], when δ → 0, we can get

I3 → 1
4
(P1ϕ − ϕ), I4 → 1

4
(P2ϕ − ϕ).

Consequently (1.4) is proved.
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1.2 The Plemelj formula of Cauchy type integrals

Theorem 1.3 Let ϕ(µ, ν) ∈ H(∂Ω1 × ∂Ω2, β), (x, y)∈∂Ω1 × ∂Ω2, then

lim
(x,y)→(t1,t2)

χ(x, y) = χ(t1, t2), (t1, t2) ∈ ∂Ω1 × ∂Ω2.

Proof Denote

χ(x, y) − χ(t1, t2)

= λ

∫
∂Ω1×∂Ω2

[Em(x, µ) − Em(t1, µ)]dσµψ(µ, ν)dσνEk(t2, ν)

+λ

∫
∂Ω1×∂Ω2

[Em(x, µ)−Em(t1, µ)]dσµψ(µ, ν)dσν [Ek(y, ν)−Ek(t2, ν)]

+λ

∫
∂Ω1×∂Ω2

Em(t1, µ)dσµψ(µ, ν)dσν [Ek(y, ν)−Ek(t2, ν)]

= L1(∂Ω1×∂Ω2)+L2(∂Ω1×∂Ω2)+L3(∂Ω1×∂Ω2),

and suppose that 6δ < di, i = 1, 2, δ > 0, O((t1, t2), δ) is the δ neigh-
borhood of (t1, t2) with the center at point (t1, t2) and radius δ. Let
∂Ωi1 = (∂Ωi)∩ [O((t1, t2), δ)] (i = 1, 2), ∂Ωi2 = (∂Ωi)− (∂Ωi1) (i = 1, 2);
we have

Lj(∂Ω1 × ∂Ω2)=Lj(∂Ω11 × ∂Ω21)+Lj(∂Ω11 × ∂Ω22)

+Lj(∂Ω12 × ∂Ω21)+Lj(∂Ω12 × ∂Ω22), j =1, 2, 3.

On the basis of the Hile inequality (2.20) in Chapter I, we get

|Em(x, µ) − Em(t1, µ)|=
∣∣∣∣∣ µ − x

|µ − x|m − µ − t1
|µ − t1|m

∣∣∣∣∣
=
∣∣∣∣ µ − x

|µ − x|m − µ − t1
|µ − t1|m

∣∣∣∣
≤

m−2∑
i=0

|µ − x|(m−2)−i|µ − t1|i

|µ − x|m−1|µ − t1|m−1
|(µ − x) − (µ − t1)|

=
m−2∑
i=0

∣∣∣∣µ − t1
µ − x

∣∣∣∣i ∣∣∣∣x − t1
µ − x

∣∣∣∣ |µ − t1|−m+1.

Similarly we estimate |Ek(ν, y) − Ek(ν, t2)|, and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|Em(x, µ) − Em(t1, µ)| ≤

m−2∑
i=0

|µ − t1
µ − x

|i |x − t1
µ − x

||µ − t1|−m+1,

|Ek(ν, y) − Ek(ν, t2)| ≤
k−2∑
j=0

|ν − t2
ν − y

|j |y − t2
ν − y

||ν − t2|−k+1

(1.8)
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are obtained.

It is easy to see that we only need to prove the result when x, y limits
t1, t2 along the line that are not in the tangent plane of ∂Ω1 at t1, ∂Ω at
t2 respectively. If we take an angle between the direction of x → t1 and
the tangent plane of ∂Ω1 at t1, which is greater than 2β0, and similarly
take an angle between the direction of y → t2 and the tangent plane of
∂Ω2 at t2, which is greater than 2β0, then

|µ − t1
µ − x

|≤M, |x − t1
µ − x

|≤M, |ν − t2
ν − y

|≤M, |y − t2
ν − y

|≤M, M =M(β0).

(1.9)
By (1.6) − (1.9), we have

|L1(∂Ω11 × ∂Ω21)| ≤ A3δ
β, |L1(∂Ω12 × ∂Ω21)| ≤ A4δ

β
2 ,

and |L1(∂Ω11 × ∂Ω22)| ≤ A5δ
β
2 . Now we consider L1(∂Ω12 × ∂Ω22),

and first rewrite (1.8) in the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|Em(x, µ) − Em(t1, µ)| ≤

m−2∑
i=0

|µ − t1
µ − x

|i+1 |x − t1|
|µ − t1|m ,

|Ek(ν, y) − Ek(ν, t2)| ≤
k−2∑
j=0

|ν − t2
ν − y

|j+1 |y − t2|
|ν − t2|k .

(1.10)

Next from (1.6) − (1.10), we can get |L1(∂Ω12 × ∂Ω22)| ≤ A6|x − t1|.
This shows that L1(∂Ω1 × ∂Ω2) → 0 as (x, y) → (t1, t2). Similarly, we
have L2(∂Ω1 × ∂Ω2) → 0 and L3(∂Ω1 × ∂Ω2) → 0 as (x, y) → (t1, t2).
Thus lim

(x,y)→(t1,t2)
χ(x, y) = χ(t1, t2), (t1, t2) ∈ ∂Ω1 × ∂Ω2.

Set Ω+
i = Ωi, (i = 1, 2), Ω−

1 = Rm\Ω1, Ω−
2 = Rk\Ω2, and denote

x(∈ Ω±
1 ) → t1 ∈ ∂Ω1 by x → t±1 . Moreover denote y(∈ Ω±

2 ) → t2 ∈ ∂Ω2

by y → t±2 , and Φ(x, y) → Φ±±(t1, t2) by (x, y) → (t±1 , t±2 ); we have the
following Sohotski1̆−Plemelj formula (see [88]1))

Theorem 1.4 Suppose ϕ(µ, ν) ∈ H(∂Ω1 × ∂Ω2, β). Then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ++(t1, t2) =
1
4
[ϕ(t1, t2) + P1ϕ + P2ϕ + P3ϕ],

Φ+−(t1, t2) =
1
4
[−ϕ(t1, t2) − P1ϕ + P2ϕ + P3ϕ],

Φ−+(t1, t2) =
1
4
[−ϕ(t1, t2) + P1ϕ − P2ϕ + P3ϕ],

Φ−−(t1, t2) =
1
4
[ϕ(t1, t2) − P1ϕ − P2ϕ + P3ϕ],

(1.11)
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in which (t1, t2) ∈ ∂Ω1 × ∂Ω2, and Pi (i = 1, 2) are as in Theorem 1.2,
P3 = 4Φ(t1, t2).

Proof We first write (1.2) as

Φ(x, y) = χ(x, y) + λ

∫
∂Ω1×∂Ω2

Em(x, µ)dσµϕ(t1, t2)dσνEk(y, ν)

+ λ

∫
∂Ω1×∂Ω2

Em(x, µ)dσµ[ϕ(µ, t2) − ϕ(t1, t2)]dσνEk(y, ν)

+ λ

∫
∂Ω1×∂Ω2

Em(x, µ)dσµ[ϕ(t1, ν) − ϕ(t1, t2)]dσνEk(y, ν).

From Theorems 1.2 and 1.3, χ±±(t1, t2) = χ±∓(t1, t2) = χ(t1, t2) =
1
4
[ϕ−P1ϕ−P2ϕ + P3ϕ] is derived. Next by [33], (1.11) can be verified.

Corollary 1.5 If ϕ(µ, ν)∈H(∂Ω1×∂Ω2, β), (t1, t2)∈∂Ω1×∂Ω2, then⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Φ++(t1, t2) − Φ+−(t1, t2) − Φ−+(t1, t2) + Φ−−(t1, t2) = ϕ(t1, t2),

Φ++(t1, t2) − Φ+−(t1, t2) + Φ−+(t1, t2) − Φ−−(t1, t2) = P1ϕ,

Φ++(t1, t2) + Φ+−(t1, t2) − Φ−+(t1, t2) − Φ−−(t1, t2) = P2ϕ,

Φ++(t1, t2) + Φ+−(t1, t2) + Φ−+(t1, t2) + Φ−−(t1, t2) = P3ϕ.
(1.12)

1.3 Existence of solutions for Problem R

We assume that A(t1, t2), B(t1, t2), C(t1, t2), D(t1, t2), g(t1, t2),
(t1, t2) ∈ ∂Ω1 × ∂Ω2 and f(t1, t2, Φ(1), Φ(2), Φ(3), Φ(4)) is a function on
(∂Ω1×∂Ω2)×An(R)×An(R)×An(R)×An(R). We identify a sectionally
biregular function Φ(x, y), in Ω+

1 ×Ω+
2 , Ω+

1 ×Ω−
2 , Ω−

1 ×Ω+
2 , Ω−

1 ×Ω−
2 , which

is continuous in (Ω+
1 ×Ω+

2 )∪(∂Ω1×∂Ω2), (Ω+
1 ×Ω−

2 )∪(∂Ω1×∂Ω2), (Ω−
1 ×

Ω+
2 ) ∪ (∂Ω1 × ∂Ω2), (Ω−

1 × Ω−
2 ) ∪ (∂Ω1 ×∂Ω2) and Φ+−(x,∞) =

Φ−+(∞, y) = Φ−−(∞,∞) = 0, and satisfies the nonlinear boundary
condition

AΦ++(t1, t2) + BΦ+−(t1, t2) + CΦ−+(t1, t2) + DΦ−−(t1, t2)

= g(t1, t2)f [t1, t2, Φ++(t1, t2), Φ+−(t1, t2), Φ−+(t1, t2), Φ−−(t1, t2)].
(1.13)

The above boundary value problem is called Problem R.

Noting (1.2), (1.11) and (1.13), we can obtain

Fϕ = ϕ, (1.14)
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where

Fϕ = (A + B)(ϕ + P1ϕ + P2ϕ + P3ϕ)

+(C + D)(−ϕ + P1ϕ − P2ϕ + P3ϕ)

+(B + D)(2ϕ − 2P1ϕ) + (1 − 4B)ϕ − 4gf.

Therefore, Problem R is transformed into the singular integral equation
(1.14). From (3.17) and (3.22) of Chapter II, we get

Lemma 1.6 Let ϕ(t1, t2) ∈ H(∂Ω1 × ∂Ω2, β). Then

‖ 2ϕ ± 2Piϕ ‖β ≤ J2‖ ϕ ‖β, ‖ 2Piϕ ‖β ≤ J2‖ ϕ ‖β, i = 1, 2, (1.15)

where J2 is a positive constant.

Theorem 1.7 If ϕ(t1, t2) ∈ H(∂Ω1 × ∂Ω2, β), then

‖ P2ϕ ± P3ϕ ‖β ≤ J3‖ ϕ ‖β, (1.16)

in which J3 is a positive constant which is independent of ϕ.

Proof From (1.4), it follows that

P2ϕ − P3ϕ = ϕ − P1ϕ − 4χ(t1, t2). (1.17)

Moreover, from Lemma 1.6 we only need to prove ‖χ(t1, t2)‖β ≤ J4‖ϕ‖β.
We first use (1.6), (1.7) to get

|χ(t1, t2)| ≤ B1‖ ϕ ‖β, (1.18)

then we rewrite ψ(µ, ν) as ψ0(t1, t2), thus

χ(t1, t2) = λ

∫
∂Ω1×∂Ω2

Em(t1, µ)dσµψ0(t1, t2)dσνEk(t2, ν).

Now we consider H(χ, ∂Ω1 × ∂Ω2, β) and write δ = |(t1, t2)− (t′1, t′2)| =
(δ2

1 +δ2
2)

1
2 for any (t1, t2), (t′1, t′2) ∈ ∂Ω1×∂Ω2 and denote by ρ1, ρ2, ρ

′
1, ρ

′
2

the projections of |µ− t1|, |ν − t2|, |µ− t′1|, |ν − t′2| on the tangent plane
respectively. Moreover we construct spheres Oi(ti, 3δi) with the center at
ti and radius 3δi, where 6δi < di, δi < 1, i = 1, 2. Denote by ∂Ωi1, ∂Ωi2,
the part of ∂Ωi lying inside the sphere Oi and its surplus part (i = 1, 2)
respectively, and set R(∂Ω1 × ∂Ω2) = χ(t1, t2) − χ(t′1, t′2) = χ(∂Ω1 ×
∂Ω2) − χ(∂Ω1 × ∂Ω2). Thus

R(∂Ω1 × ∂Ω2)

= R(∂Ω11 × ∂Ω21) + R(∂Ω11 × ∂Ω22)

+R(∂Ω12 × ∂Ω21) + R(∂Ω12 × ∂Ω22).

(1.19)
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Firstly, we consider R(∂Ω11 × ∂Ω21). By (1.6) and (1.7), we have

|R(∂Ω11 × ∂Ω21)|
≤ |χ̄(∂Ω11 × ∂Ω21)| + |¯̄χ(∂Ω11 × ∂Ω21)|
≤ B2‖ ϕ ‖β|(t1, t2) − (t′1, t′2)|β,

(1.20)

and
|ψ0(t1, t2)| ≤ 2‖ ϕ ‖β|µ − t1|β,

|ψ0(t1, t2)| ≤ 2‖ ϕ ‖β|ν − t2|β,

|ψ0(t′1, t′2)| ≤ 2‖ ϕ ‖β|µ − t′1|β,

|ψ0(t′1, t′2)| ≤ 2‖ ϕ ‖β|ν − t′2|β.

(1.21)

Noting that |ν − t′2| ≥ 2δ2, |ν − t2| ≥ 3δ2 > 0 on ∂Ω22, we have

|R(∂Ω11 × ∂Ω22)| ≤ B3‖ ϕ ‖β|(t1, t2) − (t′1, t
′
2)|β. (1.22)

Similarly, we can discuss the case of R(∂Ω12×∂Ω21). Moreover we write
R(∂Ω12 × ∂Ω22) as

R(∂Ω12 × ∂Ω22)

= λ

∫
∂Ω12×∂Ω22

[Em(t1, µ) − Em(t′1, µ)]dσµψ0(t1, t2)dσνEk(t2, ν)

+λ

∫
∂Ω12×∂Ω22

Em(t′1, µ)dσµψ0(t1, t2)dσν [Ek(t2, ν) − Ek(t′2, ν)]

+λ

∫
∂Ω12×∂Ω22

Em(t′1, µ)dσµ[ψ0(t1, t2) − ψ0(t′1, t
′
2)]dσνEk(t′2, ν)

= S1 + S2 + S3.

For S2, by the Hile lemma, it is easy to see that

|Ek(t2, µ) − Ek(t′2, µ)| ≤
k−2∑
j=0

|ν − t2
ν − t′2

|j+1 |t′2 − t2|
|ν − t2|k . (1.23)

Next from (1.6), (1.7) and (1.23) and noting that |µ− t| ≥ 3δ1 > 0, |µ−
t′| ≥ 2δ1 > 0 on ∂Ω12, |ν − t2| ≥ 3δ2 > 0, |ν − t′2| ≥ 2δ2 > 0 on ∂Ω22,
we get |S2| ≤ C1‖ ϕ ‖β|(t1, t2)− (t′1, t′2)|β. Furthermore, we can similarly
discuss the case of S1. As for S3, by (1.5), it is clear that

S3 =
1

2ωm

∫
∂Ω12

Em(t′1, µ)dσµ[ϕ(µ, t′2) − ϕ(µ, t2)]

+
1

2ωk

∫
∂Ω22

[ϕ(t′1, ν) − ϕ(t1, ν)]dσνEk(t′2, ν) +
ϕ(t1, t2) − ϕ(t′1, t′2)

4
.
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Again by (1.6) and (1.7),|S3| ≤ C2‖ ϕ ‖β|(t1, t2) − (t′1, t′2)|β is obtained.
The above discussion shows that

|R(∂Ω12 × ∂Ω22)| ≤ C3‖ ϕ ‖β|(t1, t2) − (t′1, t
′
2)|β. (1.24)

Secondly by (1.19), (1.20), (1.22) and (1.24) and when 6δi < di, di <
1, δi > 0, i = 1, 2, we have

|R(∂Ω1 × ∂Ω2)| ≤ C4‖ ϕ ‖β|(t1, t2) − (t′1, t
′
2)|β. (1.25)

It is easily seen that (1.25) holds for any (t1, t2), (t′1, t′2) ∈ ∂Ω1 × ∂Ω2.

Finally by (1.18) and (1.25), we can obtain ‖ χ(t1, t2) ‖β ≤ J4‖ ϕ ‖β.
Hence (1.16) is derived.

Corollary 1.8 Let ϕ(t1, t2) ∈ H(∂Ω1 × ∂Ω2, β). Then

‖ Φ++(t1, t2) ‖β ≤ J5‖ ϕ ‖β, ‖ Φ+−(t1, t2) ‖β ≤ J5‖ ϕ ‖β,

‖ Φ−+(t1, t2) ‖β ≤ J5‖ ϕ ‖β, ‖ Φ−−(t1, t2) ‖β ≤ J5‖ ϕ ‖β,

‖ ϕ + P1ϕ + P2ϕ + P3ϕ ‖β ≤ J5‖ ϕ ‖β,

‖ −ϕ − P1ϕ + P2ϕ + P3ϕ ‖β ≤ J5‖ ϕ ‖β,

‖ −ϕ + P1ϕ − P2ϕ + P3ϕ ‖β ≤ J5‖ ϕ ‖β,

‖ ϕ − P1ϕ − P2ϕ + P3ϕ ‖β ≤ J5‖ ϕ ‖β.

Theorem 1.9 Suppose the functions A(x, y), B(x, y), C(x, y), D(x, y),
g(x, y) ∈ H(∂Ω1 × ∂Ω2, β). Then the function f(t1, t2, Φ(1), Φ(2), Φ(3),
Φ(4)) is a Hölder continuous function for (t1, t2) ∈ ∂Ω1 × ∂Ω2 and sat-
isfies the Lipschitz condition for Φ1, Φ2, Φ3, Φ4 and any (t1, t2), namely

|f(t11, t21, Φ
(1)
1 , Φ(2)

1 , Φ(3)
1 , Φ(4)

1 ) − f(t12, t22, Φ
(1)
2 , Φ(2)

2 , Φ(3)
2 , Φ(4)

2 )|
≤ J6|(t11, t21) − (t12, t22)|β+J7|Φ(1)

1 − Φ(1)
2 | + · · · + J10|Φ(4)

1 −Φ(4)
2 |,
(1.26)

where Ji (i = 6, ..., 10) are positive constants independent of t1j , t2j ,

Φ(1)
j , ...,Φ(4)

j , j = 1, 2. Next let f(0, 0, 0, 0, 0, 0) = 0, ‖ A + B ‖β < ε,
‖ C + D ‖β < ε, ‖ D + B ‖β < ε, ‖ 1 − 4B ‖β < ε, 0 < ε < 1, 0 < µ =
εJ1(2J5 + J2 + 1) < 1, ‖ g ‖β < δ. If

0 < δ <
M(1 − µ)

4J1(J13 + J14M)
,



Boundary Value Problems for Generalized Biregular Functions 85

then Problem R has at least one solution as in the form (1.2), in which
M(‖ ϕ ‖β < M), J13, J14 are positive constants, such that ‖f‖β ≤ J13 +
J14‖ϕ‖β.

Proof First of all, let T = {ϕ|ϕ ∈ H(∂Ω1 × ∂Ω2, β), ‖ ϕ ‖β ≤ M} be
denoted a subset of C(∂Ω1 × ∂Ω2). By condition (1.26) and Theorem
1.2, it is not difficult to see that C(f, ∂Ω1 × ∂Ω2) ≤ J11 + J12‖ ϕ ‖β.
Similarly, we have ‖ f ‖β ≤ J13 + J14‖ ϕ ‖β. Hence, by (1.1) and (1.14),
‖ Fϕ ‖β ≤ M is derived. This shows that the operator F is a mapping
from T into itself.

Now we prove that the operator F is a continuous mapping. In fact,
suppose that the sequence of functions {ϕn} uniformly converges to a
function ϕ(t1, t2), (t1, t2) ∈ ∂Ω1 × ∂Ω2, where ϕn ∈ T. For any ε > 0, by
[88]1), if n is large enough, then

|P1ϕn − P1ϕ| < ε, |P2ϕn − P2ϕ| < ε. (1.27)

Moreover we consider (P3ϕn − P3ϕ) and write ψn(µ, ν) = ϕn(µ, ν) −
ϕn(t1, ν)−ϕn(µ, t2) + ϕn(t1, t2). By the result in [88]1), it is easy to see
that

|ψn(µ, ν)| ≤ A8|µ − t2|
β
2 |ν − t2|

β
2 . (1.28)

Set P3ϕn(t1, t2) − P3ϕ(t1, t2) = I1(∂Ω1 × ∂Ω2) + · · · + I5(∂Ω1 × ∂Ω2),
where

I1(∂Ω1 × ∂Ω2) = 4λ
∫

∂Ω1×∂Ω2

Em(t1, µ)dσµψn(µ, ν)dσνEk(t2, ν),

I2(∂Ω1 × ∂Ω2) = −4λ

∫
∂Ω1×∂Ω2

Em(t1, µ)dσµψ(µ, ν)dσνEk(t2, ν),

I3(∂Ω1×∂Ω2)=4λ
∫

∂Ω1×∂Ω2

Em(t1, µ)dσµ[ϕn(t1, ν)−ϕ(t1, ν)]dσνEk(t2, ν),

I4(∂Ω1×∂Ω2)=4λ
∫

∂Ω1×∂Ω2

Em(t1, µ)dσµ[ϕn(µ, t2)−ϕ(µ, t2)]dσνEk(t2, ν),

I5(∂Ω1×∂Ω2)=4λ
∫

∂Ω1×∂Ω2

Em(t1, µ)dσµ[ϕ(t1, t2)−ϕn(t1, t2)]dσνEk(t2, ν).

Assume that 6σ < di, i = 1, 2, σ > 0. Denote by O((t1, t2), 3σ) the 3σ
neighborhood of (t1, t2) with the center at the point (t1, t2) ∈ ∂Ω1 ×
∂Ω2 and radius 3σ, and assume that ∂Ωi1, ∂Ωi2 are as stated before.
Consequently, Ij(∂Ω1 × ∂Ω2) = Ij(∂Ω11 × ∂Ω21) + Ij(∂Ω11 × ∂Ω22) +
Ij(∂Ω12 × ∂Ω21) + Ij(∂Ω12 × ∂Ω22), 1 ≤ j ≤ 5. From (1.6), (1.7) and
(1.28), it follows that

|I1(∂Ω11 × ∂Ω21)| ≤ J15σ
β ≤ J16σ

β
2 ,
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and

|I1(∂Ω12 × ∂Ω21)| ≤ J17

∫
∂Ω12

ρ
β
2
−1

1 dρ1

∫ 3σ

0
ρ

β
2
−1

2 dρ2 ≤ J18σ
β
2 .

Similarly, we consider I1(∂Ω11 × ∂Ω22), I2(∂Ω11 × ∂Ω21), I2(∂Ω12 ×
∂Ω21), I2(∂Ω11 × ∂Ω22) and write

I1(∂Ω12 × ∂Ω22) + I2(∂Ω12 × ∂Ω22)

= 4λ

∫
∂Ω1×∂Ω2

Em(t1, µ)dσµW (µ, ν)dσνEk(t2, ν),

where

W (µ, ν) = {[ϕn(µ, ν) − ϕ(µ, ν)] − [ϕn(t1, ν) − ϕ(t1, ν)]}
+{[ϕn(t1, t2) − ϕ(t1, t2)] − [ϕn(µ, t2) − ϕ(µ, t2)]}.

In accordance with [10], it is clear that

|W (µ, ν)| ≤ 2‖ ϕn − ϕ ‖β|µ − t1|
β
2 |ν − t2|

β
2 ,

and then by (1.7),

I1(∂Ω12 × ∂Ω22) + I2(∂Ω12 × ∂Ω22) ≤ J19‖ ϕn − ϕ ‖β

is concluded. Again by (1.5) and (1.27), we have

|I3(∂Ω1 × ∂Ω2)| < ε, |I4(∂Ω1 × ∂Ω2)| < ε,

and
|I5(∂Ω1 × ∂Ω2)| = |ϕn − ϕ|.

The above discussion shows that

|P3ϕn − P3ϕ| ≤ J20(ε + σ
β
2 + ‖ ϕn − ϕ ‖β).

Thus for any ε > 0, we first choose a sufficiently small number σ and
next select a sufficiently large positive integer n; we can then obtain

|P3ϕn − P3ϕ| < Ḡε, (1.29)

in which Ḡ is a positive constant.

Finally, by (1.14), (1.27), (1.29) and condition (1.26), we can choose n
large enough such that |Fϕn −Fϕ| < Wε, for any (t1, t2) ∈ ∂Ω1 × ∂Ω2,
here W is a positive constant. This proves that the operator F is a
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continuous mapping from T into itself. According to the Ascoli-Arzela
theorem, it is evident that T is a compact set in the space C(∂Ω1×∂Ω2).
Thus the continuous operator F maps the convex closed subset T of
C(∂Ω1 × ∂Ω2) onto a compact subset F (T ) of T . On the basis of the
Schauder fixed point principle, there exists a function ϕ ∈ H(∂Ω1 ×
∂Ω2, β) satisfying the integral equation (1.14). This completes the proof.

Theorem 1.10 When f ≡ 1 in Theorem 1.9, Problem R has a unique
solution.

Proof By the principle of contracting mapping, it is not difficult to
verify that the statement in this theorem is true.

2 Nonlinear Boundary Value Problems of Generalized
Bireguler Functions With Haseman Shift in Real
Clifford Analysis

In complex analysis the generalized regulae function is a generaliza-
tion of a holomorphic function that has formed an important mathe-
matical branch and has found important applications in fluid mechanics
and elasticity mechanics (see [3],[77],[81],[83] and so on). Similarly to
holomorphic functions, some results about generalized regular functions
have also been obtained in Clifford analysis. In this section, we introduce
the integral expression and the Plemej formula of generalized biregular
functions in Clifford analysis. In addition, we also discuss the solution
of a kind of nonlinear boundary value problem for generalized biregular
functions with shift in Clifford analysis (see [29]1)8), [64]2)).

2.1 Formulation of the boundary value problem

Let F r
Ω be the class of Hölder continuous functions on Ω = Ω1 × Ω2

and the Dirac operator are as stated before. The so-called generalized
regular function f is the function f on Ω satisfying the system:⎧⎨⎩ ∂xf = F1,

f∂y = F2.
(2.1)

We suppose that Ω+
1 , Ω+

2 are the unit sphere of Rm+1 and Rk+1 respec-
tively, and W±±(t1, t2) are the limit values of the function W , when
(x, y) → (t±,±

1 , t±,±
2 ). The nonlinear boundary value problem is formu-

lated as follows.

Problem R∇ We find a generalized biregular function W (x, y)(∈ F
(r)
Ω )
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in Ω+
1 × Ω+

2 , Ω+
1 × Ω−

2 , Ω−
1 × Ω+

2 , Ω−
1 × Ω−

2 , such that it is continuous
in (Ω±

1 × Ω+
2 ) ∪ (∂Ω1 × ∂Ω2), (Ω±

1 × Ω−
2 ) ∪ (∂Ω1 × ∂Ω2), and satisfies

W (∞,∞) = W (x,∞) = W (∞, y) = 0 and the nonlinear boundary
condition with shift:

A(t1, t2)W++(α(t1), t2) + B(t1, t2)W+−(α(t1), t2))

+C(t1, t2)W−+(t1, t2) + D(t1, t2)W−−(t1, t2)

=g(t1, t2)f(t1, t2,W++(t1, t2),W+−(t1, t2),W−+(t1, t2),W−−(t1, t2)),
(2.2)

where α(t1) : ∂Ω1 → ∂Ω1 is a Haseman shift (see [54]1)), A, B, C, D ∈
H(∂Ω1 × ∂Ω2, β) and f are all known functions.

2.2 Plemelj formula of generalized biregular functions

We are given the operator

T1F (x, y)=
−1
ωm

∫
Ω+

1

Em(x, u)F (u, y)du− 1
ωm

∫
Ω+

1

Gm(x, u)F (
1
u

, y)du,

T2F (x, y)=
−1
ωk

∫
Ω+

2

F (x, v)Ek(y, v)dv − 1
ωk

∫
Ω+

2

F (x,
1
v
)Gk(y, v)dv,

where Gl(t1, t2) = (1/t2 − t1)/(|1/t2 − t1)||t2|)l, l = m, k.

Lemma 2.1 (see [19]) If F (x, y) ∈ Lp,m(Rm) for every fixed y ∈ Rk,
and the norm |F |p,m = |F, Ω+

1 |p+|F (m), Ω+
1 |p is independent of y, p > m,

then for every y ∈ Rk, we have

1. |T1F | ≤ M(m, p)|F |p,m, x ∈ Rm.

2. For any x1, x2 ∈ Rm, we have

|T1F (x1, y) − T1F (x2, y)| ≤ M(m, p)|F |p,m|x1 − x2|α, α =
p − m

p
.

3. For |x| ≥ 3 we have |T1F | ≤ M(m, p)|F |p,m|x|((m/p)−m+1).

4. ∂x(T1F ) = F, x ∈ Rm.

In all cases M(m, p) is a positive constant dependent on m, p and inde-
pendent of x, y.

Lemme 2.2 Let F (x, y) ∈ Lq,k(Rk) for every fixed x ∈ Rm and let the
norm |F |q,k = |F, Ω+

2 |q + |F (k), Ω+
2 |q be independent of x, q > k. Then

for every fixed x ∈ Rm, we have
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1. |T2F | ≤ M(k, q)|F |q,k, y ∈ Rk.

2. For any y1, y2 ∈ Rk, we have

|T2F (x, y1)−T2F (x, y2)|≤M(k, q)|F |q,k|y1 − y2|µ, µ =
q − k

q
.

3. For |y| ≥ 3, we have |T2F | ≤ M(k, q)|F |q,k|y|((k/q)−k+1).

4. (T2F )∂y = F, y ∈ Rk.

In all cases M(k, q) is a positive constant dependent on k, q and inde-
pendent of x, y.

Corollary 2.3 Under the conditions of Lemmas 2.1 and 2.2, and if
q = pk/m and m ≥ 2, k ≥ 2, then

1. For every fixed y ∈ Rk, we have T1F ∈ Cα(Rm), and
T1F (∞, y) = 0, here α = 1 − m/p = 1 − k/q.

2. For every fixed x ∈ Rm, we have T2F ∈ Cα(Rk), and
T2F (x,∞) = 0, here α is as stated above.

Proof According to Lemmas 2.1 and 2.2, we have µ = (q − k)/q =
1−k/q = 1−m/p = α and (m/p)−m+1 < 1−m+1 ≤ 0, (k/q)−k+1 ≤ 0,
then the result can be obtained.

Theorem 2.4 Let k ≥ 2, m ≥ 2, F (x, y) ∈ Cα(Rk), 0 < α < 1, for
every fixed x ∈ Rm, y1, y2 ∈ Rk, and |F (x, y1)−F (x, y2)| ≤ M1|y1−y2|α,
here M1 is independent of x, p > m, α = 1 − m/p. Then for any fixed
x ∈ Rm, we have T1F ∈ Cα(Rk) and the Hölder constant is independent
of x.

Proof Let p′ satisfy (1/p) + (1/p′) = 1, note p > m; then we have
1 < p′ < m/(m − 1), m − 1 < (m − 1)p′ < m, and

|T1F (x, y1)−T1F (x, y2)|≤M1

ωm
[
∫
Ω+

1

|u−x|−(m−1)p′ |du|] 1
p′
∣∣∣|y1−y2|α, Ω+

1

∣∣∣
p

+
M1

ωm
[
∫
Ω+

1

|1
u
−x|−(m−1)p′ |u|−mp′ |du|] 1

p′
∣∣∣|y1−y2|α, Ω+

1

∣∣∣
p
≤M2|y1−y2|α.

Theorem 2.5 Let k ≥ 2, m ≥ 2, F (x, y) ∈ Cα(Rm), 0 < α < 1,
for every fixed y ∈ Rk and any x1, x2 ∈ Rm, |F (x1, y) − F (x2, y)| ≤
M1|x1 − x2|α, here M1 is independent of y, q > k, α = 1 − k/q. Then
for every fixed y ∈ Rk, we have T2F ∈ Cα(Rm) and the Hölder constant
is independent of y.



90 Chapter III

The proof of this theorem is similar to that in Theorem 2.4, so we
omit it.

Theorem 2.6 Suppose that Ωi (i = 1, 2) are two unit balls in Rm, Rk

respectively, and F (x, y) satisfies the same conditions as in Theorems
2.4 and 2.5, and p > m, q > k, α = 1 − m/p = 1 − k/q, q = p(k)/m.
Then

TiF (x, y) ∈ Cα(Rm, Rk), i = 1, 2.

Proof In accordance with the conditions in this theorem, when x ∈
Rm, we see F (x, y) ∈ Lq,k(Rk), and when y ∈ Rk, we have F (x, y) ∈
Lp,m(Rm). On the basis of Lemmas 2.1, 2.2 and Theorems 2.4, 2.5, for
any (x1, y1), (x2, y2) ∈ Rm × Rk we get

|TiF (x1, y1) − TiF (x2, y2)|
≤ |TiF (x1, y1) − TiF (x2, y1) + TiF (x2, y1) − TiF (x2, y2)|
≤ M3|x1 − x2|α + M4|y1 − y2|α ≤ M5|(x1, y1) − (x2, y2)|α, i = 1, 2.

Theorem 2.7 Let F1, F2 in (2.2) satisfy F1, F2 ∈ C1 (Ω), where Ω =
Ω1 × Ω2, F1∂y = ∂xF2 and the condition on F is as in Theorem 2.6,
moreover F1∂y also satisfy the condition on F as in Theorem 2.6. Then
the generalized biregular function W (x, y), i.e. a solution of equation
(2.1) in Ω±

1 × Ω+
2 , Ω±

1 × Ω−
2 , has the integral expression

W (x, y) = T1F1 + T2[F2 − (T1F1)∂y] + Φ(x, y), (2.3)

where Φ(x, y) is a biregular function in Ω±
1 × Ω+

2 , Ω±
1 × Ω−

2 .

Proof When (x, y) ∈ Ω±
1 ×Ω+

2 , Ω±
1 ×Ω−

2 , by means of Lemmas 2.1 and
2.2, we know ∂x(T1Fi) = Fi, (T2Fi)∂y = Fi (i = 1, 2), then according to
the condition F1∂y = ∂xF2, we obtain

∂x{T1F1+T2[F2−(T1F1)∂y]}=∂xT1F1+∂xT2F2−∂xT2[(T1F1)∂y]

=F1+T2(∂xF2)−∂xT2[T1(F1∂y)]=F1+T2(∂xF2)−T2[∂x(T1(F1∂y))]

=F1+T2(∂xF2)−T2(F1∂y)=F1+T2(∂xF2)−T2(∂xF2) = F1.

Moreover,

{T1F1 + T2[F2 − (T1F1)∂y]}∂y = (T1F1)∂y + F2 − (T1F1)∂y = F2,

that is to say T1F1 +T2[F2−(T1F1)∂y] and W (x, y) are both generalized
biregular functions, so

{T1F1 + T2[F2 − (T1F1)∂y]} − W (x, y)
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is a biregular function, hence (2.3) is derived. This completes the proof.

Now we introduce the operator T3(F1∂y) = T2[(T1F1)∂y].

Theorem 2.8 Under the conditions described in Theorem 2.7, if
F1(x,∞) = F2(∞, y) = 0, then we have

∂x[(T3(F1∂y)] = T2(F1∂y), [T3(F1∂y)]∂y = T1(F1∂y),

T3(F1∂y) ∈ Cα(Rm, Rk),

T3(F1∂y)(∞, y) = T3(F1∂y)(x,∞) = T3(F1∂y)(∞,∞) = 0.

Proof According to the proof of Theorem 2.7, we know that the first
term is true. Using Theorem 2.6, we see that the second term is valid.
According to Corollary 2.3, the third term is also true. Thus Theorem
2.8 is proved.

Theorem 2.9 Under the conditions described in Theorem 2.4, we ob-
tain the Plemelj formula of generalized biregular functions as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W++(t1, t2)=T1F1+T2F2−T3(F1∂y)+
1
4
[ϕ+P1ϕ+P2ϕ+P3ϕ],

W+−(t1, t2)=T1F1+T2F2−T3(F1∂y)+
1
4
[−ϕ−P1ϕ+P2ϕ+P3ϕ],

W−+(t1, t2)=T1F1+T2F2−T3(F1∂y)+
1
4
[−ϕ+P1ϕ−P2ϕ+P3ϕ],

W−−(t1, t2)=T1F1+T2F2−T3(F1∂y)+
1
4
[ϕ−P1ϕ−P2ϕ+P3ϕ],

(2.4)
for any (t1, t2) on ∂Ω1 × ∂Ω2, moreover, W (∞, y) = W (x,∞) =
W (∞,∞) = 0.

Proof Similarly to [29]2) (see formula (1.11) of Chapter III), we can
use the Cauchy type integral to express Φ(x, y) in (2.3). Moreover noting
the result in [29]2), Theorem 2.7, Corollary 2.3, we see that (2.4) is
valid. According to F1(x,∞) = F2(∞, y) = 0, and Theorems 2.7, 2.8,
we obtain T1F1(x,∞) = T2F2(∞, y) = 0 and W (x,∞) = W (∞, y) =
W (∞,∞) = 0.

Corollary 2.10 Let α(t1) be a Haseman shift on ∂Ω1→∂Ω1, and the
conditions in Theorem 2.8 be satisfied. Then for any (t1, t2) ∈ ∂Ω1×∂Ω2,
we have
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W++(α(t1), t2) = {T1F1 + T2F2 − T3(F1∂y)}(α(t1), t2)

+
1
4
[ϕ1 + q1ϕ + q2ϕ + q3ϕ],

W+−(α(t1), t2) = {T1F1 + T2F2 − T3(F1∂y)}(α(t1), t2)

+
1
4
[−ϕ1 − q1ϕ + q2ϕ + q3ϕ],

(2.5)

where ϕ1(t1, t2) = ϕ(α(t1), t2), qiϕ(t1, t2) = Piϕ(α(t1), t2), i = 1, 2, 3,
Pi (i = 1, 2, 3) are as stated in Section 1.

2.3 The existence of the problem R∇

The boundary condition (2.2) of Problem R∇ can be reduced to the
singular integral equation

Lϕ = ϕ, (2.6)

in which L is a singular integral operator in the space H(∂Ω1 × ∂Ω2, β):

Lϕ = (A + B)(ϕ1 + q1ϕ + q2ϕ + q3ϕ) − 2B(ϕ1 + q1ϕ)

+(C+D)[−ϕ+P1ϕ−P2ϕ+P3ϕ]+(2D+1))ϕ−2DP1ϕ−4gf

+4(A + B)[T1F1 + T2F2 − T3(F1∂y)](α(t1), t2)

+4(C + D)[T1F1 + T2F2 − T3(F1∂y)](t1, t2),
(2.7)

where ϕ1, Pi, qi (i = 1, 2, 3) are as stated in [29]1).

Lemma 2.11 Let Ωi (i = 1, 2) be unit balls, and let f satisfy the fol-
lowing condition on ∂Ωi (i = 1, 2):

|f(t11, t21,W
(1)
1 ,W

(2)
1 ,W

(3)
1 ,W

(4)
1 )−f(t12, t22,W

(1)
2 ,W

(2)
2 ,W

(3)
2 ,W

(4)
2 )|

≤J1|(t11, t21)−(t12, t22)|β+J2|W (1)
1 −W

(1)
2 |+· · ·+J5|W (4)

1 −W
(4)
2 |,

(2.8)
in which Ji (i = 1, 2, 3, 4, 5) are positive constants independent of W

(m)
j ,

for t1j , t2j (j = 1, 2, m = 1, 2, 3, 4),

|(t11, t21) − (t12, t22)|β =
(√

(t11 − t12)2 + (t21 − t22)2
)β

,

and f(0, 0, 0, 0, 0, 0) = 0. Then there exist the constants J6, J7 such that

‖f‖β ≤ J6 + J7‖ϕ‖β.
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Proof According to (2.8) and the bounded property of Ω = Ω1 × Ω2,
it is easy to see that

C(f, ∂Ω1 × ∂Ω2) = max
(t1,t2)∈∂Ω1×∂Ω2

|f |

= max
(t1,t2)∈∂Ω1×∂Ω2

|f(t1, t2, W++(t1, t2), ..., W−−(t1, t2))

−f(0, 0, 0, 0, 0, 0)| ≤ J8 + J9‖ϕ‖β,

where J8, J9 are positive constants. Moreover we have

|f(t11, t21, W
++(t11, t21), W+−(t11, t21), W−+(t11, t21), W−−(t11, t21)

−f(t12, t22,W
++(t12, t22),W+−(t12, t22),W−+(t12, t22),W−−(t12, t22))|

≤ (J10 + J11‖ϕ‖β)|(t11, t21) − (t12, t22)|β,

thus ‖f‖β ≤ J6 + J7‖ϕ‖β.

Lemma 2.12 Suppose that Ωi (i = 1, 2), α(t) are as stated before, and
f satisfies the conditions in Lemma 2.11, moreover

1) Fi (i = 1, 2) satisfy the condition of F in Lemma 2.1, 2.2, F1∂y =
∂xF2 and F1(x,∞) = F2(∞, y) = 0.

2) T1F1, T2F2, T3(F1∂y), A, B, C, D, g ∈ H(∂Ω1 × ∂Ω2, β), α <
β < 1, α = 1 − m/p, f are as stated as in Lemma 2.11.

3) Set γ = J12[J13(‖A + B‖β + ‖C + D‖β + ‖B‖β + 2‖D‖β) + ‖2D +
1‖β] < 1, where J12, J13 are both positive constants, J12 is similar to J1

in [29]1), J13 is similar to the maximum one among J2, J3, J4 in [29]1),
A, B, C, D, g are coefficients of the boundary condition. In addition we
give δ > 0 such that δ < M(1 − γ)/4(1/J13 + J12(J6 + J7M)), where M
is a positive constant such that ‖ϕ‖β ≤ M , ‖g‖β < δ, ‖T1F1 + T2F2 −
T3(F1∂y)‖β < δ; herein g, F1, F2 are all known functions satisfying the
requirement conditions. Then, we have the following results:

1. The operator L maps the subspace of C(∂Ω1 × ∂Ω2), T = {ϕ|
ϕ ∈ H(∂Ω1 × ∂Ω2, β), ‖ϕ‖β ≤ M} into itself.

2. The operator L is a continuous mapping on T .

Proof 1. According to the definition of the operator L and a property
of the norm ‖ ∗ ‖β, we can get
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‖Lϕ‖β ≤ J12‖A + B‖β‖ϕ1 + q1ϕ + q2ϕ + q3ϕ‖β + J12‖B‖β‖2ϕ1

+2q1ϕ‖β + J12‖C + D‖β‖ϕ1 + P1ϕ − P2ϕ + P3ϕ‖β

+J12‖2D+1‖β‖ϕ‖β+J12‖2D‖β‖P1ϕ‖β

+4J12‖A+B+C+D‖β‖T1F1+T2F2−T3(F1∂y)‖β+4J12‖f‖β‖g‖β.

From the conditions 3) J12J13(‖A + B‖β + ‖C + D‖β) ≤ γ < 1, we can
obtain

‖A + B + C + D‖β ≤‖A + B‖β + ‖C + D‖β <
1

J12J13
.

Similarly

‖Lϕ‖β ≤J12J13‖ϕ‖β[‖A+B‖β+‖C+D‖β + ‖B‖β

+2‖D‖β]+J12‖2D+1‖β‖ϕ‖β + 4J12
1

J12J13
δ

+4J12[J6+J7‖ϕ‖β]δ≤Mγ+δ[ 4
J13

+4J12(J6+J7‖ϕ‖β)]

≤ Mγ + M(1 − γ) = M,

which shows that the operator L maps T into itself.

2. We arbitrarily choose ϕn ∈ T, n = 1, 2, ..., such that {ϕn} uni-
formly converge to ϕ on ∂Ω1 × ∂Ω2. For any ε > 0, when n is large
enough, ||ϕn − ϕ||β can be small enough. According to [4], when n is
large enough, for any (t1, t2) ∈ ∂Ω1 × ∂Ω2, we have |P1ϕn − P1ϕ| <
ε, |P2ϕn − P2ϕ| < ε. Similarly, we can obtain |P3ϕn − P3ϕ| < ε,
|qiϕn − qiϕ| < ε (i = 1, 2, 3), and |Lϕn − Lϕ| < Wε, where W is a
positive constant, thus we prove that L is a continuous mapping in T .

Theorem 2.13 Under the same conditions as in Lemma 2.12, there
exists ϕ0 ∈ T such that Lϕ0 = ϕ0. Moreover, Problem R∇ is solvable,
and the solution can be expressed as

W (x, y) = T1F1 + T2[F2 − (T1F1)∂y] + Φ(x, y), (2.9)

in which

Φ(x, y) = λ

∫
∂Ω1×∂Ω2

Em(x, µ)dσµϕ0(µ, ν)dσνEk(y, ν),

here Em(x, µ), Ek(y, ν) are the same as Theorem 1.1, Section 1.
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Proof According to Lemma 2.12, we see that L is a mapping from T
to itself and it is continuous. By the Schauder fixed-point theorem, we
know that there exists ϕ0 ∈ T such that Lϕ0 = ϕ0. Substituting ϕ0

into the above formula, we get Φ(x, y), moreover substituting Φ(x, y)
into the formula (2.3), the function W (x, y) is obtained, which is just a
solution of Problem R∇.

Similarly to Theorem 2.13 (see [29]3)) we can also discuss a kind
of nonlinear boundary value problem for generalized biregular functions
with the shift and with conjugate value

A1(t1, t2)W++(t1, t2) + A2(t1, t2)W++(d(t1, t2))

+B1(t1, t2)W+−(t1, t2) + B2(t1, t2)W+−(d(t1, t2))

+C1(t1, t2)W−+(t1, t2) + C2(t1, t2)W−+(d(t1, t2))

+D1(t1, t2)W−−(t1, t2) + D2(t1, t2)W−−(t1, t2)(d(t1, t2))

= g(t1, t2)f(t1, t2, W++(t1, t2), W+−(t1, t2), W−+(t1, t2), W−−(t1, t2),

W++(d(t1, t2)), W+−(d(t1, t2)), W−+(d(t1, t2)), W−−d((t1, t2)))

where d(t1, t2) : ∂Ω1 × ∂Ω2 → ∂Ω1 × ∂Ω2 is a Haseman shift.

3 A Nonlinear Boundary Value Problem for Biregular
Function Vectors in Real Clifford Analysis

On the basis of the results of the above two sections and enlight-
ened by the vector value analysis [25], in this section the existence and
uniqueness of solutions of a boundary value problem for biregular func-
tion vectors will be discussed (see [9],[30]).

3.1 Formulation of the boundary value problem

Definition 3.1 Let Fi(x, y) ∈ F
(r)
Ω (i = 1, . . . , p) be functions with

values in the real Clifford algebra An(R). We call F (x, y) = (F1(x, y),
. . . , Fp(x, y)) a function vector, and call F1, . . . , Fp the components of F .
For F (x, y)=(F1(x, y), . . . , Fp(x, y)), G(x, y) = (G1(x, y), . . . , Gp(x, y)),
the addition operation of two function vectors is defined by F+G = (F1+
G1, . . . , Fp + Gp), and the multiplication operation of function vectors
is defined by F ⊗ G = (F1G1, . . . , FpGp). Moreover we define the mul-
tiplication of a function vector and a function as ϕF = (ϕF1, . . . , ϕFp),
Fψ = (F1ψ, . . . , Fpψ), where ϕ(x, y), ψ(x, y) are functions. We define
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the norm of the function vector as |F (x, y)| = (
p∑

i=1
|Fi(x, y)|2)1/2. It is

easy to see that

|F + G| ≤ |F | + |G|, |F ⊗ G| ≤ J0|F ||G|, (3.1)

where J0 is a positive constant.

Definition 3.2 We call a function vector F (x, y) = (F1(x, y), . . . ,
Fp(x, y)) biregular in Ω, that is to say that Fi(x, y) (i = 1, . . . , p) are
biregular functions in Ω, and Ω = Ω1 × Ω2 is stated as in section 1.

We call a function vector F (u, v) = (F1(u, v), . . . , Fp(u, v)), (u, v) ∈
∂Ω1 × ∂Ω2 Hölder continuous in the characteristic manifold ∂Ω1 × ∂Ω2,
if it satisfies

|F (u1, v1) − F (u2, v2)|=(
p∑

i=1
|Fi(u1, v1)−Fi(u2, v2)|2)1/2

≤ B|(u1, v1) − (u2, v2)|β,

in which 0 < β < 1, |(u1, v1)− (u2, v2)| = (|u1 −u2|2 + |v1 − v2|2)1/2, and
B is a positive constant independent of (ui, vi) (i = 1, 2).

Theorem 3.1 The number β (0 < β < 1) is the index of a Hölder con-
tinuous function vector F (u, v) in ∂Ω1×∂Ω2, if and only if the number β
is the index of every Hölder continuous component fi(u, v) (i = 1, . . . , p).

It is easy to verify by the definition, so we omit it.

Noting that the Hölder continuous function vector set with the index
β(0 < β < 1) in ∂Ω1 × ∂Ω2 is denoted by Hp(∂Ω1 × ∂Ω2, β), we take
F (u, v) ∈ Hp(∂Ω1 × ∂Ω2, β), and define the norm of F (u, v) as ||F ||β =
Cp(F, ∂Ω1 × ∂Ω2) + Hp(F, ∂Ω1 × ∂Ω2, β), where

Cp(F, ∂Ω1 × ∂Ω2) = max
(u,v)∈∂Ω1×∂Ω2

|F (u, v)|

= max
(u,v)∈∂Ω1×∂Ω2

(
p∑

i=1
|Fi(u, v)|2)1/2,

Hp(F, ∂Ω1×∂Ω2, β)= sup
(ui,vi)∈∂Ω1×∂Ω2
(u1,v1)�=(u2,v2)

|F (u1, v1)−F (u2, v2)|
|(u1, v1) − (u2, v2)|β

= sup
(ui,vi)∈∂Ω1×∂Ω2
(u1,v1)�=(u2,v2)

(
p∑

i=1

|Fi(u1, v1)−Fi(u2, v2)|2)1/2

|(u1, v1) − (u2, v2)|β
.
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It is easy to see that Hp(∂Ω1 × ∂Ω2, β) is a Banach space, and we can
verify that the following inequalities hold:

||F + G||β ≤ ||F ||β + ||G||β, ||F ⊗ G||β ≤ J0||F ||β||G||β, (3.2)

where J0 is the same as before, F, G ∈ Hp(∂Ω1 × ∂Ω2, β).

Problem SR We are given a connected open set Ω = Ω1×Ω2 ⊂ Rm×
Rk, whose boundaries ∂Ωi(i = 1, 2) are all smooth, oriented, compact Li-
apunov surfaces. Let A(t1, t2), B(t1, t2), C(t1, t2), D(t1, t2), G(t1, t2) and
F∗(t1, t2, Φ(1), Φ(2), Φ(3), Φ(4)) be given function vectors in ∂Ω1×∂Ω2 and
∂Ω1 × ∂Ω2 ×An(R)×An(R)×An(R)×An(R) respectively. We find a
biregular function vector Φ(x, y) in Ω+

1 ×Ω+
2 , Ω+

1 ×Ω−
2 , Ω−

1 ×Ω+
2 , Ω−

1 ×Ω−
2 ,

such that it is continuous in (Ω±
1 ×Ω+

2 )∪(∂Ω1×∂Ω2), (Ω±
1 ×Ω−

2 )∪(∂Ω1×
∂Ω2), namely its every component is continuous, Φ(x,∞) = Φ(∞, y) =
Φ(∞,∞) = 0 and satisfies the nonlinear boundary condition

A(t1, t2)⊗Φ++(t1, t2)+B(t1, t2)⊗Φ+−(t1, t2)+C(t1, t2)

⊗Φ−+(t1, t2)+D(t1, t2)⊗Φ−−(t1, t2)=G(t1, t2)⊗F∗[t1, t2,

Φ++(t1, t2), Φ+−(t1, t2), Φ−+(t1, t2), Φ−−(t1, t2)],

where A, B, C, D, G, F∗ are all known function vectors, and Φ(t1, t2) is
an unknown function vector as

Φ++(t1, t2) = [Φ++
1 (t1, t2), . . . ,Φ++

p (t1, t2)],

Φ+−(t1, t2) = [Φ+−
1 (t1, t2), . . . ,Φ+−

p (t1, t2)],

Φ−+(t1, t2) = [Φ−+
1 (t1, t2), . . . ,Φ−+

p (t1, t2)],

Φ−−(t1, t2) = [Φ−−
1 (t1, t2), . . . ,Φ−−

p (t1, t2)].

Here we simply write F ⊗ G as FG, so the above boundary condition
can be briefly written as

A(t1, t2)Φ++(t1, t2) + B(t1, t2)Φ+−(t1, t2) + C(t1, t2)Φ−+(t1, t2)

+D(t1, t2)Φ−−(t1, t2) = G(t1, t2)F∗(t1, t2, Φ++, Φ+−, Φ−+, Φ−−).
(3.3)

3.2 The Plemelj formula of biregular function vectors with
Cauchy type integrals

We can obtain the following theorem about biregular function vectors
by the above lemma.
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Theorem 3.2 Let x /∈ ∂Ω1, y /∈ ∂Ω2 and the function vector ϕ(u, v) ∈
Hp(∂Ω1 × ∂Ω2, β). Then the Cauchy type integral

Φ(x, y) = λ

∫
∂Ω1×∂Ω2

Em(x, u)dσuϕ(u, v)dσvEk(y, v) (3.4)

is a biregular function vector satisfying the condition Φ(∞, y) = Φ(x,∞)
= Φ(∞,∞) = 0, where Em(x, u) = (ū− x̄)/|u−x|m, Ek(y, v) = (v̄− ȳ)/
|v − y|k and λ is as same as in Section 1.

Proof It is clear that

Φ(x, y) = λ

∫
∂Ω1×∂Ω2

Em(x, u)dσuϕ(u, v)dσvEk(y, v)

= [λ
∫

∂Ω1×∂Ω2

Em(x, u)dσuϕ1(u, v)dσvEk(y, v),

. . . , λ

∫
∂Ω1×∂Ω2

Em(x, u)dσuϕp(u, v)dσvEk(y, v)]

= [Φ1(x, y), . . . ,Φp(x, y)].

On the basis of Theorem 3.1, we see that the function vector ϕ(u, v) ∈
Hp(∂Ω1 × ∂Ω2, β), hence its every component ϕi(u, v) ∈ H(∂Ω1 ×
∂Ω2, β) (i = 1, . . . , p). By (1.2), we know that Φi(x, y) (i = 1, . . . , p)
are biregular functions. This shows that Φ(x, y) is a biregular function
vector.

Definition 3.3 The integral

Φ(t1, t2)=λ

∫
∂Ω1×∂Ω2

Em(t1, u)dσuϕ(u, v)dσvEk(t2, v), (t1, t2)∈∂Ω1×∂Ω2,

(3.5)
which is called the singular integral in characteristic manifold ∂Ω1×∂Ω2.

Now we consider

Φδ(t1, t2) = λ

∫
∂Ω1×∂Ω2−λδ

Em(t1, u)dσuϕ(u, v)dσvEk(t2, v),

where λδ is the same as that in Definition 1.2.

Definition 3.4 If there exists lim
δ→0

Φδ(t1, t2) = I, then I is called

the Cauchy principle value of a singular integral, which is also called
the Cauchy principle value of a Cauchy type integral denoted by I =
Φ(t1, t2), where

lim
δ→0

Φδ(t1, t2) = [lim
δ→0

Φ1δ(t1, t2), . . . , lim
δ→0

Φpδ(t1, t2)], I = (I1, . . . , Ip).
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Next we introduce the singular integral operators

P1ϕ = 2
ωm

∫
∂Ω1

Em(t1, u)dσuϕ(u, t2)

= [ 2
ωm

∫
∂Ω1

Em(t1, u)dσuϕ1(u, t2), . . . ,
2

ωm
Em(t1, u)dσuϕp(u, t2)],

P2ϕ = 2
ωk

∫
∂Ω2

ϕ(t1, v)dσvEk(t2, v)

= [ 2
ωk

∫
∂Ω2

ϕ1(t1, v)dσvEk(t2, v), . . . ,
2
ωk

∫
∂Ω2

ϕp(t1, v)dσvEk(t2, v)],

P3ϕ = 4Φ(t1, t2) = [4Φ1(t1, t2), . . . , 4Φp(t1, t2)].

Theorem 3.3 (The Plemelj formula of function vectors with Cauchy
type integrals) Given the function vector ϕ(u, v) = (ϕ1(u, v), . . . ,
ϕp(u, v)) ∈ Hp(∂Ω1×∂Ω2, β) in (3.4), then for any (t1, t2) ∈ ∂Ω1×∂Ω2,
we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ++(t1, t2) = 1
4[ϕ + P1ϕ + P2ϕ + P3ϕ](t1, t2),

Φ+−(t1, t2) = 1
4[−ϕ − P1ϕ + P2ϕ + P3ϕ](t1, t2),

Φ−+(t1, t2) = 1
4[−ϕ + P1ϕ − P2ϕ + P3ϕ](t1, t2),

Φ−−(t1, t2) = 1
4[ϕ − P1ϕ − P2ϕ + P3ϕ](t1, t2).

(3.6)

3.3 The existence of solutions of nonlinear boundary value
problems for biregular function vectors

Suppose that the solution of Problem SR is as stated in (3.4), and
substitute (3.6) into (3.3), then we have

A(t1, t2){1
4
[ϕ(t1, t2) + P1ϕ(t1, t2) + P2ϕ(t1, t2) + P3ϕ(t1, t2)]}

+ B(t1, t2){1
4
[−ϕ(t1, t2) − P1ϕ(t1, t2) + P2ϕ(t1, t2) + P3ϕ(t1, t2)]}

+ C(t1, t2){1
4
[−ϕ(t1, t2) + P1ϕ(t1, t2) − P2ϕ(t1, t2) + P3ϕ(t1, t2)]}

+ D(t1, t2){1
4
[ϕ(t1, t2) − P1ϕ(t1, t2) − P2ϕ(t1, t2) + P3ϕ(t1, t2)]}

= G(t1, t2)F∗[t1, t2, Φ++(t1, t2), Φ+−(t1, t2), Φ−+(t1, t2), Φ−−(t1, t2)],

and then
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(A + B)(ϕ + P1ϕ + P2ϕ + P3ϕ) + (C + D)(−ϕ + P1ϕ

−P2ϕ + P3ϕ) + (B + D)(2ϕ − 2P1ϕ) − 4Bϕ = 4GF∗.

Let

Fϕ = (A + B)(ϕ + P1ϕ + P2ϕ + P3ϕ) + (C + D)(−ϕ + P1ϕ

−P2ϕ + P3ϕ) + (B + D)(2ϕ − 2P1ϕ) + (1 − 4B)ϕ − 4GF∗.

Then Problem SR is reduced to finding the solution of singular integral
equation Fϕ = ϕ.

Lemma 3.4 ([29]2)) Let ϕ(t1, t2) ∈ H(∂Ω1 × ∂Ω2, β). Then there ex-
ists a positive constant J1 independent of ϕ, such that

||Piϕ||β ≤ J1||ϕ||β (i = 1, 2), ||P2ϕ + P3ϕ||β ≤ J1||ϕ||β. (3.7)

Using Lemma 3.4 and the definition of the norm of a function vector,
by calculation we can get the following theorem.

Theorem 3.5 Let the function vector ϕ(t1, t2) = (ϕ1(t1, t2), . . . ,
ϕp(t1, t2)) ∈ Hp(∂Ω1 × ∂Ω2, β). Then there exists a positive constant
J2 independent of ϕ, such that

||Piϕ||β ≤ J2||ϕ||β, i = 1, 2, 3, ||2ϕ ± 2Piϕ||β ≤ J2||ϕ||β, i = 1, 2,

||Φ±±(t1, t2)||β ≤ J2||ϕ||β, || ± ϕ ± P1ϕ + P2ϕ + P3ϕ||β ≤ J2||ϕ||β,

||Φ±∓(t1, t2)||β ≤ J2||ϕ||β, || ∓ ϕ ± P1ϕ − P2ϕ + P3ϕ||β ≤ J2||ϕ||β.
(3.8)

Theorem 3.6 Let A(t1, t2), B(t1, t2), C(t1, t2), D(t1, t2), G(t1, t2) ∈
Hp(∂Ω1 × ∂Ω2, β), F∗(t1, t2, Φ(1), Φ(2), Φ(3), Φ(4)) be Hölder contin-
uous about t = (t1, t2) ∈ ∂Ω1 × ∂Ω2 for any Clifford num-
ber Φ(1), Φ(2), Φ(3), Φ(4), and for any (t1, t2) ∈ ∂Ω1 × ∂Ω2 about
Φ(1), Φ(2), Φ(3), Φ(4) satisfies the Lipschitz condition, i.e.

|F∗(t11, t21, Φ
(1)
1 , Φ(2)

1 , Φ(3)
1 , Φ(4)

1 ) − F∗(t12, t22, Φ
(1)
2 , Φ(2)

2 , Φ(3)
2 , Φ(4)

2 )|

≤ J3|(t11, t21) − (t12, t22)|β+J4|Φ(1)
1 −Φ(1)

2 |+J5|Φ(2)
1 −Φ(2)

2 |

+J6|Φ(3)
1 − Φ(3)

2 | + J7|Φ(4)
1 − Φ(4)

2 |,

where J3, . . . , J7 are positive constants independent of t1j , t2j , Φ
(i)
j (i =

1, 2, 3, 4, j = 1, 2), and F∗(0, 0, 0, 0, 0, 0) = 0. If A, B, C, D satisfy
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γ = J0[J2(||A + B||β + ||C + D||β + ||B + D||β) + ||1 − 4B||β] < 1, and

||G||β < δ, then when 0 < δ <
M(1 − γ)

4J0(J8 + J9M) , Problem SR is solvable,

where M is a given positive number and J8, J9 are positive constants,
such that ||ϕ||β ≤ M, and ‖F∗‖β ≤ J8 + J9‖ϕ‖β.

Proof We introduce a subset of the continuous function vector space
Cp(∂Ω1 × ∂Ω2) as T = {ϕ|ϕ ∈ Hp(∂Ω1 × ∂Ω2, β), ||ϕ||β ≤ M}, and first
prove that F maps the set T into itself.

By (3.6), (3.1), we have

||Fϕ||β = ||(A + B)(ϕ + P1ϕ + P2ϕ + P3ϕ) + (C + D)(−ϕ

+P1ϕ−P2ϕ+P3ϕ)+(B+D)(2ϕ−2P1ϕ)+(1−4B)ϕ

−4GF∗||β ≤J0||A+B||β||ϕ+P1ϕ+P2ϕ

+P3ϕ||β + J0||C + D||β|| − ϕ + P1ϕ

−P2ϕ + P3ϕ||β + J0||B + D||β||2ϕ − 2P1ϕ||β
+J0||1 − 4B||β||ϕ||β − 4J0||G||β||F∗||β

≤ J0||A + B||βJ2||ϕ||β + J0||C + D||βJ2||ϕ||β
+J0||B + D||βJ2||ϕ||β + J0||1 − 4B||β||ϕ||β
−4J0||G||β||F∗||β =J0[J2(||A + B||β + ||C + D||β
+||B + D||β) + ||1 − 4B||β]||ϕ||β − 4J0||G||β||F∗||β

≤ γ||ϕ||β − 4J0δ||F∗||β.

Moreover we consider ||F∗||β, and first discuss Cp(F∗, ∂Ω1 × ∂Ω2). By
(3.8), we get

|F∗| = |F∗[t1, t2, Φ++(t1, t2), Φ+−(t1, t2), Φ−+(t1, t2), Φ−−(t1, t2)

−F∗(0, 0, 0, 0, 0, 0)|
≤ J3|(t1, t2)|β + J4|Φ++(t1, t2)| + J5|Φ+−(t1, t2)|

+J6|Φ−+(t1, t2)| + J7|Φ−−(t1, t2)| ≤ J3|(t1, t2)|β

+J4||Φ++(t1, t2)||β + J5||Φ+−(t1, t2)||β
+J6||Φ−+(t1, t2)||β + J7||Φ−−(t1, t2)||β ≤ J3|(t1, t2)|β
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+J4J2||ϕ||β + J5J2||ϕ||β + J6J2||ϕ||β
+J7J2||ϕ||β ≤ J3|(t1, t2)|β + J10||ϕ||β,

so

Cp(F∗, ∂Ω1 × ∂Ω2) = max
(t1,t2)∈∂Ω1×∂Ω2

|F∗|

≤ max
(t1,t2)∈∂Ω1×∂Ω2

(J3|(t1, t2)|β + J10||ϕ||β) = J11 + J10||ϕ||β.

Next we discuss Hp(F∗, ∂Ω1 × ∂Ω2, β). Noting that

|F∗(t11, t21, Φ++(t11, t21), Φ+−(t11, t21), Φ−+(t11, t21), Φ−−(t11, t21))

−F∗(t12, t22, Φ++(t12, t22), Φ+−(t12, t22), Φ−+(t12, t22), Φ−−(t12, t22))|
≤ J3|(t11, t21) − (t12, t22)|β + J4|Φ++(t11, t21) − Φ++(t12, t22)|
+J5|Φ+−(t11, t21) − Φ+−(t12, t22)| + J6|Φ−+(t11, t21) − Φ−+(t12, t22)|
+J7|Φ−−(t11, t21) − Φ−−(t12, t22)| ≤ J3|(t11, t21) − (t12, t22)|β

+J4Hp(Φ++, ∂Ω1 × ∂Ω2, β)|(t11, t21) − (t12, t22)|β

+J5Hp(Φ+−, ∂Ω1 × ∂Ω2, β)|(t11, t21) − (t12, t22)|β

+J6Hp(Φ−+, ∂Ω1 × ∂Ω2, β)|(t11, t21) − (t12, t22)|β

+J7Hp(Φ−−, ∂Ω1 × ∂Ω2, β)|(t11, t21) − (t12, t22)|β

≤ (J3 + J4||Φ++||β + J5||Φ+−||β + J6||Φ−+||β + J7||Φ−−||β)

|(t11, t21) − (t12, t22)|β

≤ (J3 + J4J2||ϕ||β + J5J2||ϕ||β + J6J2||ϕ||β + J7J2||ϕ||β)

|(t11, t21) − (t12, t22)|β ≤(J3 + J12||ϕ||β)|(t11, t21) − (t12, t22)|β,

and taking into account

F 1∗ = F∗(t11, t21, Φ++(t11, t21), . . . ,Φ−−(t11, t21)),

F 2∗ = F∗(t12, t22, Φ++(t12, t22), . . . ,Φ−−(t12, t22)),

then

Hp(F∗, ∂Ω1 × ∂Ω2, β) = sup
(t1i,t2i)∈∂Ω1×∂Ω2
(t11,t21)�=(t12,t22)

|F 1
∗ −F 2

∗ |
|(t11, t21)−(t12, t22)|β

≤ J3 + J12||ϕ||β,
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hence we have

||F∗||β = Cp(F∗, ∂Ω1 × ∂Ω2) + Hp(F∗, ∂Ω1 × ∂Ω2, β)

≤ J11+J10||ϕ||β+J3+J12||ϕ||β ≤J8+J9||ϕ||β.

Furthermore from γ = J0[J2(||A+B||β + ||C +D||β + ||B +D||β)+ ||1−
4B||β] < 1, it follows that

||Fϕ||β ≤ γ||ϕ||β − 4J0δ(J8 + J9||ϕ||β)

≤ γM − 4J0
M(1 − γ)

4J0(J8 + J9)M
(J8 + J9M)

= γM − M(1 − γ) ≤ M,

which shows that F maps the set T into itself.

By a similar method and through complicated calculations, we can
prove that F is a continuous mapping, namely F continuously maps T
into itself. In accordance with the Ascoli-Arzela theorem, we see that T
is a compact set of continuous function vector space Cp(∂Ω1×∂Ω2). This
shows that F continuously maps a closed convex set T of Cp(∂Ω1×∂Ω2)
into itself, and F (T ) is also a compact set of Cp(∂Ω1 × ∂Ω2). Hence by
the Schauder fixed-point principle, we know that there exists at least one
ϕ0 ∈ Hp(∂Ω1 × ∂Ω2, β) satisfying the singular integral equation (3.7).
This proves that Problem SR has one solution.

Theorem 3.7 Under the conditions as in Theorem 3.6, and if F∗ ≡ 1,
then problem SR has a unique solution.



CHAPTER IV

BOUNDARY VALUE PROBLEMS OF

SECOND ORDER PARTIAL DIFFERENTIAL

EQUATIONS FOR CLASSICAL DOMAINS

IN REAL CLIFFORD ANALYSIS

In this chapter, we first introduce the harmonic analysis in classical
domains for several complex variables obtained by Luogeng Hua in 1958,
and discuss the Cauchy formula, Poisson formula and boundary value
problems of harmonic functions for classical domains in Luogeng Hua’s
sense. By using above results, I. N. Vekua’s results about generalized
analytic functions, and the tool of quasi-permutations (see Section 3,
Chapter I), we discuss two boundary value problems for four kinds of
complex partial differential equations of second order in four kinds of
classical domains, and prove the existence and uniqueness of regular
solutions for the problems and give their expressions in complex Clifford
analysis. Finally we discuss a pseudo-modified boundary value problem
in a ball for a kind of real partial differential equations of second order in
real Clifford analysis and prove that the problem has a unique solution.

1 Harmonic Analysis in Classical Domains for Several
Complex Variables

In function theory of several complex variables [89], a domain in Cn

is called a symmetric domain, i.e. for every point of this domain, its
symmetric point also belongs to the domain. In 1936, E.Cartan proved
that a bounded symmetric domain can be divided into four classes, ex-
cept 16 and 27 dimensional complex spaces. It is exactly said, except
for the two special cases, every bounded symmetric domain in Cn must
belong to one of these four classes of domains, or be equivalent to topol-
ogy multiplication of some domains of these four classes of domains
(see[8]). Luogeng Hua denoted by Rk(k=1,2,3,4) these four classical do-
mains according to the matrix form. Until 1957, Qikeng Lu pointed out
that R3(⊂ C4) and R4 (⊂ C6) were equivalent to each other [47]2). In
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1961, E. E. Berjiske-Sabilof [60] gave the definition of classical domains,
namely those that can be analytically equivalent to a bounded domain
and permit a transitive classical group. Consequently, the four classi-
cal domains firstly defined by Luogeng Hua were symmetric classical
domains. Obviously there exists a symmetric classical domain.

The four classes of symmetric classical domains Rk(1 ≤ k ≤ 4) de-
fined by Luogeng Hua are the complex mn, p(p+1)/2(≥ 3), q(q−1)/2(≥
6) and N(≥ 5) dimensional respectively, where R1(m; n) is the matrix
hyperbolic space satisfying I(m) − ZZ

′
> 0, Z = (zij)m×n(m ≤ n),

I(m) is the m × m unitary square matrix, where a square matrix > 0
means that this square matrix is positive definite; R2(p) is the sym-
metric square matrix hyperbolic space satisfying I(p) − ZZ > 0, Z =
(zij)p×p, p(p + 1)/2 ≥ 3, Z = Z ′; R3(q) is the oblique symmetric square
matrix hyperbolic space satisfying I(q) + ZZ > 0, Z = (zij)q×q, q(q −
1)/2 ≥ 6, Z ′ = −Z; R4(N) is the Lie ball hyperbolic space satisfying
|zz′|2+1−2zz′ > 0, |zz′| < 1, z = (z1, ..., zN ), N ≥ 5. All Rk(1 ≤ k ≤ 4)
are bounded star circular domains with center at the origin [47]2). In
function theory of one complex variable, we often study function theory
in the unit disk |z| < 1, because in general all symmetric domains are
equivalent to the unit disk, hence the above four classes of symmetric
classical domains play an important role in function theory of several
complex variables.

The geometries usually discussed by researchers in function theory of
one complex variable include parabolic geometry, i.e. the complex plane
C1 with measure |dz|; elliptic geometry, i.e. the Riemann ball with met-
rics |dz|/(1 + |z|2); hyperbolic geometry, i.e. the unit disk with metrics
|dz|/(1 − |z|2). Their unitary curvatures are equal to 0, positive and
negative respectively. In Cn, the generalization of parabolic geometry
is the geometry with metrics {∑n

i=1 |dzi|2}1/2. In order to discuss the
geometric structure of boundary of symmetric classical domains, Qikeng
Lu introduced hyperbolic metrics in symmetric classical domains, and
proved that the symmetric classical domains and their boundaries pos-
sess a common geometric character([47]2),3)).

The boundary Bk of classical domain Rk, generally speaking, does
not become a differential manifold, but Bk can be denoted as a sum of
some subsets, in which every subset is transitive and invariable under
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the action of the motion group Γk. According to the theory of Lie
groups, one can give a real analytic structure for every subset, such
that it becomes a real analytic manifold. The interesting thing is the
subspace of the closed classical domain Rk, which is invariable under
the action of the motion group Γk and its dimension is the lowest, and
is a real homogenous compact analytic manifold. We call them the
characteristic manifolds of Rk and denote them by Lk (1 ≤ k ≤ 4).
They play an important role in function theory in classical domains.
For instance, the Cauchy integral formula for holomorphic functions in
the classical domains defines the integral on a characteristic manifold,
and does not need to be integrable on the whole boundary except for a
few examples. This character essentially distinguishes it from with the
Cauchy formula in function theory of one complex variable. The Poisson
formula in classical domains has a similar property.

In order to find the Poisson kernel, from which the Cauchy kernel
can be found, Qikeng Lu utilized the geometric character of symmetric
classical domains and their boundaries. He first found the transposition
relation to the volume element of characteristic manifold Lk under the
action of Γk, and then he represented the volume element with the outer
differential form, consequently the computation becomes simple. On the
basis of this, we can prove the following mean value theorem.

Theorem 1.1 Suppose that RA1 , RA2 , ..., RAk
are all domains in four

classes of symmetric classical domains, N is the sum of dimensions of
the classical domains, R = RA1×RA2×· · ·×RAk

, LAi is a characteristic
manifold of RAi, L = LA1 × LA2 × · · · × LAk

, and f(z) = f(z1, ..., zN )
is an analytic function in R and is continuous on R ∪L. Then we have

f(0) =
1

V (L)

∫
L

f(ξ)ξ̇,

where ξ̇ is the volume element of L, and V(L) is the volume of L.

As an application of the mean value theorem, we shall derive the
Poisson formula in classical domains R. Because every RAi is transitive
under the action of ΓAi , we can conclude that R is transitive under the
action of the direct product of these kinds of groups. Assume z0 ∈ R,
then there must exist an analytic transformation of this direct product
as follows:

w = Φ(z; z0, z0), (1.1)

which maps z0 onto the origin. Let the inverse of this transformation be

z = Φ−1(w; z0, z0). (1.2)
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Because every transformation of ΓAi is still analytic on the boundaries
of RAi , it is evident that the transformations (1.1) and (1.2) are analytic
on the boundary of R. We arbitrarily give an analytic function f(z) in
R, such that it is continuous on R ∪ L, then

F (w) = f(Φ−1(w; z0, z0))

is also analytic in R and continuous on R ∪ L, and F (0) = f(z0). Ac-
cording to Theorem 1.1, we get

F (0) =
1

V (L)

∫
L

F (ζ)ζ̇, (1.3)

where ζ = Φ(ξ; z0, z0), ξ ∈ L. Assume that through transformation
(1.1), the integral possesses the relation∫

L
F (ζ)ζ̇ =

∫
L

f(ξ)P (z0, ξ)ξ̇, (1.4)

then (1.3) can be rewritten as

f(z0) =
1

V (L)

∫
L

f(ξ)P (z0, ξ)ξ̇,

where z0 ∈ R. We call (1.4) the Poisson formula in the classical domains,
and call P (z0, ξ) the Poisson kernel of R. By the computation, we can
get that the Poisson kernel of every symmetric classical domain Rk (1 ≤
k ≤ 4) can be written in the form

Pk(z, ξ) =
|Hk(z, ξ)|2
Hk(z, z)

, 1 ≤ k ≤ 4,

in which for the fixed w ∈ Rk, Hk(z, w) in Rk is analytic concerning z,
and Hk(z, w) = Hk(w, z). By using Hk(z, ξ), we can derive the Cauchy
formula of functions in Rk.

Let Rk (1 ≤ k ≤ 4) be four classes of symmetric classical domains, and
Lk (1 ≤ k ≤ 4) be the characteristic manifolds of Rk. Given an arbitrary
function f(z) which is analytic in Rk and continuous on Rk ∪ Lk, then
for every z ∈ Rk, we have the Cauchy integral formula

f(z) =
1

V (Lk)

∫
Lk

f(ξ)Hk(z, ξ)ξ̇, (1.5)

where Hk(z, ξ) is called the Cauchy kernel of Rk. In fact, we construct
the function

g(z) = f(z)[Hk(z, w)]−1,
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when w ∈ RA is fixed, g(z) is analytic in Rk and continuous on Rk ∪Lk;
by using the Poisson formula (1.4), we get

g(z) =
1

V (Lk)

∫
Lk

g(ξ)Pk(z, ξ)ξ̇ =
1

V (Lk)

∫
Lk

g(ξ)
|Hk(z, ξ)|2
Hk(z, z)

ξ̇,

that is

f(z)[Hk(z, w)]−1 =
1

V (Lk)

∫
Lk

f(ξ)[Hk(ξ, w)]−1 |Hk(z, ξ)|2
Hk(z, z)

ξ̇.

The above formula is valid for every point w ∈ Rk, especially for w = z,
notice Hk(z, z) > 0 and Hk(z, ξ) = Hk(ξ, z), then after eliminating
Hk(z, z) from two sides of the above formula, the formula (1.5) is con-
cluded.

The above method about the Cauchy integral formula (1.5) was ob-
tained by Qikeng Lu in 1963 [47]3); it is different from the method given
by Luogeng Hua in 1958. In Hua’s monograph [26]1), he first used the
representation theory of groups to find the complete orthogonal and nor-
mal system of functions on the characteristic manifolds Lk (1 ≤ k ≤ 4)
of four classes of symmetric classical domains Rk (1 ≤ k ≤ 4), and then
he got the Cauchy integral formula.

In [26]1),2), Luogeng Hua and Qikeng Lu introduced the harmonic
operators 	 (1 ≤ k ≤ 4):

	1 =
m∑

j,k=1

n∑
α,β=1

(δjk −
n∑

λ=1

zjλzkλ)(δαβ −
n∑

l=1

zlαzlβ)
∂2

∂zjα∂zkβ
,

δαβ =

⎧⎨⎩ 1, α = β;

0, α �= β;

	2 =
p∑

α,β,λ,µ=1

(δλµ − 1
2

p∑
σ=1

zλσ

pλσ

zµσ

pµσ
)(δαβ − 1

2

p∑
r=1

zαr

pαr

zβr

pβr
)

× 1
2pλαpµβ

· ∂2

∂zλα∂zµβ
,

pαβ =

⎧⎪⎨⎪⎩
1√
2
, α = β,

1, α �= β;

	3 =
1
2

q∑
α,β,λ,µ=1

(δλµ −
q∑

σ=1

zλσzµσ)(δαβ −
q∑

r=1

zαrzβr)qλαqµβ
∂2

∂zλα∂zµβ
,
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qαβ =

⎧⎨⎩ 0, α = β,

1, α �= β;

	4 = (1 + |z z′|2 − 2z z′)
N∑

α,β=1

(δαβ − 2zαzβ)
∂2

∂zα∂zβ

+2
N∑

α,β=1

(zα − z z′zα)(zβ − z z′zβ)
∂2

∂zα∂zβ
.

The function f(z) in four classes of symmetric classical domains Rk (1 ≤
k ≤ 4) satisfying 	kf(z) = 0 and possessing twice continuous partial
derivatives is called a harmonic function. After we prove that the Poisson
kernels Pk(z, ξ) of Rk (1 ≤ k ≤ 4) are harmonic functions of z ∈ Rk,
herein ξ ∈ Lk, it is easily seen that the Poisson integral

1
V (Lk)

∫
Lk

ϕ(ξ)Pk(z, ξ)ξ̇

is also a harmonic function in Rk (1 ≤ k ≤ 4), where ϕ(ξ) is continuous
on the characteristic manifolds Lk (1 ≤ k ≤ 4)) [32].

Applying the boundary properties and extremum principle of the
Poisson integral in Rk (1 ≤ k ≤ 4), we can prove the existence and
uniqueness of solutions of the Dirichlet boundary value problem in clas-
sical domains Rk (1 ≤ k ≤ 4) for harmonic functions of several complex
variables [27].

Theorem 1.2 Let ϕk(ξ) be continuous on Lk (1 ≤ k ≤ 4), z ∈ Rk\Lk.
Then there exists a unique harmonic function fk(z) in Rk, such that
lim
z→ζ

fk(z) = ϕk(ζ) (1 ≤ k ≤ 4), if ζ ∈ Lk, and fk(z) can be expressed as

fk(z) =
1

V (Lk)

∫
Lk

ϕk(ξ)Pk(z, ξ)ξ̇,

where Pk(z, ξ) is the Poisson kernel of classical domains Rk (1 ≤ k ≤ 4).

2 The Dirichlet Problem of Second Order Complex
Partial Differential Equations for Classical Domains
in Complex Clifford Analysis

On the basis of the results of harmonic analysis in four classical
domains by Luogeng Hua and Qikeng Lu as stated in the above section,
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and the results about generalized analytic functions by I. N. Vekua [77],
in this section we shall discuss four kinds of complex partial differential
equations of second order in complex Clifford analysis, and then we shall
prove the existence and uniqueness of regular solutions for two boundary
value problems of Dirichlet type in four classical domains and give their
integral expressions (see [32]2)).

Denote by pk (1 ≤ k ≤ 4) the dimensions of four classical domains
Rk (1 ≤ k ≤ 4), that is p1 = mn, p2 = p(p + 1)/2, p3 = q(q − 1)/2, p4 =
N, and by Cpk the space of complex variables z1, ..., zpk

. When k = 1,
set (z11, ..., z1n, ..., zm1, ..., zmn) = (z1, ..., zp1), the rest can be given a
similar notation. In this section, we consider the function f(z) from Cpk

to complex Clifford algebra Ap
k
(C) (1 ≤ k ≤ 4).

In Section 3, Chapter 1, we divide the function f(z) = f(z1, ..., zpk
)

into two parts:

f(z) = f (1) + f (2) =
∑
A

′
f ′

Ae′A +
∑
A

′′
f ′′

Ae′′A,

where A in the sum
∑
A

′ is chosen the first suffix, and A in
∑
A

′′ is chosen

the second suffix, and denote f (i) = Jif (i = 1, 2).

Let
∑
A

′ϕ′
A(ξ)e′A on Lk (1 ≤ k ≤ 4) be continuous; we shall seek a

regular function f(z) =
∑

A fA(z)eA in Rk satisfying the equation

	kf(z) = 0, (2.1)

such that it is continuous on Rk (1 ≤ k ≤ 4) satisfying the boundary
condition of Dirichlet type

f (1)
∣∣∣
Lk

= J1f |Lk
=
∑
A

′
ϕ′

A(ξ)e′A, ξ ∈ Lk. (2.2)

The problem for complex partial differential equations of second order
(2.1) in classical domains Rk will be called Problem Dk (1 ≤ k ≤ 4), or
Problem Dk for short.

Firstly, we find the integral expression of solutions for Problem Dk.
Let f(z) be a solution of Problem Dk; it is clear that

∑
A
	kfA(z)eA =

	kf(z) = 0, and then 	kfA(z) = 0, z ∈ Rk. From (2.2) it follows that
f ′

A(ξ) = ϕ′
A(ξ) (ξ ∈ Lk). By using Theorem 1.2, we see that f ′

A(z) may
be uniquely expressed as

f ′
A(z) =

1
V (Lk)

∫
Lk

ϕ′
A(ξ)Pk(z, ξ)ξ̇. (2.3)
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Because f(z) is a regular solution of equation (2.1), similarly to Theorem
1.3 in Chapter II, the function in the complex Clifford analysis can be
written as ⎧⎪⎪⎪⎨⎪⎪⎪⎩

f ′′
Az1

=
Pk∑

m=2
δ′
mA

f ′
mAzm

,

f ′
Az1

=
Pk∑

m=2
δ′′
mA

f ′′
mAzm

,

(2.4)

where denote by f ′
mAzm

(f ′′
mAzm

) the function (fmA)zm , when the quasi-
permutation mA is taken the first (second) suffix; δ′

mA
(δ′′

mA
) is the sign

of corresponding quasi-permutations of first (second) suffix.

Next, we introduce the operators T1, T 1 (see [77]):

T1fA(z) =
1
π

∫
Gk

fA(ξ1, z2, ..., zpk
)

z1 − ξ1
dσξ1 ,

T 1fA(z) =
1
π

∫
Gk

fA(ξ1, z2, ..., zpk
)

z1 − ξ1

dσξ1 ,

where 1 ≤ k ≤ 4, and integral variable ξ1 taken over the section of
Rk : Gk = Rk ∩ {ξ2 = z2, ..., ξpk

= zpk
}, z = (z1, ..., zpk

) ∈ Rk, dσξ1 is
the area element of Gk. By [77], we see that from the first expression of
(2.4), the following equalities hold:

f ′′
A = T 1

Pk∑
m=2

δ′
mA

f ′
mAzm

+ Q′′
A(z), ∂z1Q

′′
A(z) = 0.

Let R′′
A =

Pk∑
m=2

δ′
mA

f ′
mAzm

, then we have

f ′′
A(z) = T 1R

′′
A + Q′′

A(z). (2.5)

Moreover applying (2.3), we get

R′′
A =

Pk∑
m=2

δ′
mA

f ′
mAzm

=
1

V (Lk)

∫
Lk

pk∑
m=2

Pk zm(z, ξ)δ′
mA

ϕ′
mA

(ξ)ξ̇. (2.6)

Thus R′′
A can be found from (2.6).

Substituting (2.5) into the second expression of (2.4), we have

f ′
Az1

=
Pk∑

m=2
δ′′
mA

[T 1R
′′
mAzm

(z) + Q′′
mAzm

(z)]

=
Pk∑

m=2
δ′′
mA

T 1R
′′
mAzm

(z) +
Pk∑

m=2
δ′′
mA

Q′′
mAzm

(z);
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the above formula can be expressed as

f ′
Az1

= H ′′
A(z) +

Pk∑
m=2

δ′′
mA

Q′′
mAzm

(z). (2.7)

Noting that f(z) is a solution of equation (2.1), we see that f ′′
A(z) satisfies

	kf
′′
A(z) = 0, z ∈ Rk, 1 ≤ k ≤ 4. (2.8)

Substituting (2.5) into (2.8), the equality

	k(T 1R
′′
A(z) + Q′′

A(z)) = 0 (2.9)

is derived. Applying Theorem 1.2, from (2.9) and (2.6), we can find
T 1R

′′
A(z) + Q′′

A(z) and R′′
A(z), thus T 1R

′′
A(z) can also be obtained. In

addition, from (2.9) we can find the general solution of Q′′
A(z) satisfying

∂z1Q
′′
A = 0. In brief, the solution of Problem Dk for equation (2.1) in

four classical domains includes the expression

f(z) =
∑
A

′
f ′

A(z)e′A +
∑
A

′′
f ′′

A(z)e′′A, (2.10)

in which f ′
A(z), f ′′

A(z) are given by (2.3), (2.5), (2.6), and Q′′
A(z) in (2.5),

given by (2.7) and (2.9), is an analytic function with respect to z1 [77].

Inversely, we verify that the function given by (2.3), (2.5), (2.6), (2.7),
(2.9), (2.10) and

∂z1Q
′′
A(z) = 0, z ∈ Rk, 1 ≤ k ≤ 4 (2.11)

is just a solution of Problem Dk. In fact, by (2.5),(2.6),(2.11), we have

f ′′
Az1

= (T 1R
′′
A(z) + Q′′

A(z))z1 = (T 1R
′′
A(z))z1

= R′′
A(z) =

pk∑
m=2

δ′
mA

f ′
mAzm

,

and by (2.5), (2.7), we can derive

f ′
Az1

= H ′′
A(z) +

Pk∑
m=2

δ′′
mA

Q′′
mAzm

(z)

=
Pk∑

m=2
δ′′
mA

(
T 1R

′′
mAzm

(z) + Q′′
mAzm

(z)
)

=
Pk∑

m=2
δ′′
mA

(
T 1R

′′
mA

(z) + Q′′
mA

(z)
)

zm

=
Pk∑

m=2
δ′′
mA

f ′′
mAzm

.



114 Chapter IV

In addition, from (2.4) we know that f(z) =
∑
A

′f ′
A(z)e′A +

∑
A

′′f ′′
A(z)e′′A

is regular in Rk. Because f (1)
∣∣∣
Lk

= J1f(ξ) =
∑
A

′f ′
A(ξ)e′A, and by using

Theorem 1.2, we conclude that (2.3) is the expression of solutions of
boundary value problems for 	kf

′
A(z) = 0 (z ∈ Rk, 1 ≤ k ≤ 4). Hence

f ′
A(ξ) = ϕ′

A(ξ) (ξ ∈ Lk), 	kf
′
A(z) = 0, and f (1)

∣∣∣
Lk

=
∑
A

′ϕ′
A(ξ)e′A. Fi-

nally by (2.9) and (2.5), we have 	kf
′′
A(z) = 	k(T 1R

′′
A(z)+Q′′

A(z)) = 0.
Consequently, for every arbitrary index A,	kfA(z) = 0 (z ∈ Rk), we
can derive 	k

∑
A

fA(z)eA =
∑
A

(	kfA(z))eA = 0. Thus the function

f(z) =
∑
A

fA(z)eA satisfies equation (2.1). This shows that f(z) is a

solution of Problem Dk in four classical domains Rk (1 ≤ k ≤ 4) for
equation (2.1). Therefore, we have the following theorem.

Theorem 2.1 If ϕ′
A(ξ) on characteristic manifolds Lk (1 ≤ k ≤ 4) is

continuous, then Problem Dk of Dirichlet type in four classical domains
for equation (2.1) is solvable, and its solution can be expressed in the
form

f(z) =
∑
A

′
f ′

A(z)e′A +
∑
A

′′
f ′′

A(z)e′′A,

f ′
A(z) =

1
V (Lk)

∫
Lk

ϕ′
A(ξ)Pk(z, ξ)ξ̇, f ′′

A(z) = T 1R
′′
A(z) + Q′′

A(z),

where

Pk(z, ξ) =
|Hk(z, ξ)|2
Hk(z, z)

, R′′
A(z) =

1
V (Lk)

∫
Lk

pk∑
m=2

Pk zm(z, ξ)δ′
mA

ϕ′
mA

(ξ)ξ̇,

when w ∈ Rk is fixed, Hk(z, w) in Rk is an analytic function
with respect to z satisfying Hk(z, w) = Hk(w, z) (1 ≤ k ≤ 4),
Q′′

A(z) is an analytic function about z1 satisfying f ′
Az1

= H ′′
A(z) +

Pk∑
m=2

δ′′
mA

Q′′
mAzm

(z), 	k(T 1R
′′
A(z)+Q′′

A(z)) = 0 (z ∈ Rk), and δ′
mA

, (δ′′
mA

)

is the sign of quasi-permutations, when mA is taken as the first (second)
suffix; the operator T 1 is stated as before, and can be found in [77].

In order to further investigate the uniqueness of the solution, we first
consider the section domain of Rk. Denote by Ra

k the domain on the z1-
plane in Rk which is cut by the plane S : (z1, z2 = a2, z3 = a3, ..., zpk

=
apk

), and La
k by the boundary of Ra

k. Set ba = (b1, a2, a3, ..., apk
), and

let ba ∈ Ra
k. From Section 1, we know that the four classical domains

Rk(1 ≤ k ≤ 4) are all circular domains, so Ra
k is also the circular domain
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on the z1-plane. For a given complex constant d′′Aa ∈ C, let
∑
A

′ϕ′
A(ξ)e′A

on Lk and the real value function ψ′′
A(ξa) on La

k be continuous respec-
tively, where ξa = (ξ1, a2, a3, ..., apk

) ∈ La
k (1 ≤ k ≤ 4). In the following,

we find a regular function f(z) =
∑
A

′f ′
A(z)e′A +

∑
A

′′f ′′
A(z)e′′A (z ∈ Rk),

such that it is continuous in Rk, and satisfies equation (2.1) and the
pseudo-modified boundary conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

J1f |Lk
= J1f(ξ) =

∑
A

′ϕ′
A(ξ)e′A, ξ ∈ Lk,

Ref ′′
A|La

k
= ψ′′

A(ξa) + h′′
A(ξa), ξa ∈ La

k,

f ′′
A(ba) = d′′Aa,

in which h′′
A(ξa) ≡ h′′

Aa (ξa ∈ La
k) is a real constant to be determined

appropriately, and Ref ′′
A is the real part of f ′′

A. The above pseudo-
modified problem in four classical domains will be called Problem D∗

k

about equation (2.1), and denoted by Problem D∗
k for short.

Theorem 2.2 Let a complex constant d′′Aa ∈ C, and
∑
A

′ϕ′
A(ξ)e′A on

Lk and the real-valued function ψ′′
A(ξa) on La

k (1 ≤ k ≤ 4) be continuous
respectively. Then Problem D∗

k has a unique solution, which can be given
by (2.10), (2.3), (2.5), (2.6), (2.11), (2.7), (2.9) and

ReQ′′
A(ξa) = −Re[T 1R

′′
A(ξa)] + ψ′′

A(ξa) + h′′
A(ξa), ξa ∈ La

k, (2.12)

Q′′
A(ba) = −T 1R

′′
A(ba) + d′′Aa. (2.13)

Proof On the basis of the proof of Theorem 2.1, it is sufficient to
give the following supplement to the proof of Theorem 2.1. Firstly, we
find the integral expression of the solution. Let f(z) be the solution of
Problem D∗

k. By (2.5) and the boundary condition, we have

Re[T 1R
′′
A(ξa) + Q′′

A(ξa)] = Re[f ′′
A(ξa)] = ψ′′

A(ξa) + h′′
A(ξa), ξa ∈ La

k,

T 1R
′′
A(ba) + Q′′

A(ba) = f ′′
A(ba) = d′′Aa.

Using (2.11), we get ∂zQ′′
A(z) = 0, so Q′′

A(za) on Ra
k satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂z1Q
′′
A(za) = 0, za ∈ Ra

k, 1 ≤ k ≤ 4,

ReQ′′
A(ξa) = ReQ′′

A(ξa)

= −Re[T 1R
′′
A(ξa)] + ψ′′

A(ξa) + h′′
A(ξa), ξa ∈ La

k,

(2.14)
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Q′′
A(ba) = −T 1R′′

A(ba) + d′′Aa. (2.15)

By the existence and uniqueness of the solution of the modified Dirich-
let problem for analytic functions with one complex variable [80]7),
and from (2.14),(2.15), we can find Q′′

A(za) (za ∈ Ra
k); moreover by the

arbitrariness of a, we immediately obtain Q′′
A(z) (z ∈ Rk), and then

Q′′
A(z) (z ∈ Rk, 1 ≤ k ≤ 4) is found. In addition by (2.14) and (2.15),

it is easy to get (2.12), (2.13). In brief, if f(z) is a solution of Problem
D∗

k, then we have the expressions (2.10), (2.3), (2.5), (2.6), (2.7), (2.9),
(2.11), (2.12), and (2.13).

Secondly, we verify that the function f(z) determined by (2.10),(2.3),
(2.5),(2.6),(2.7),(2.9),(2.11),(2.12) and (2.13) is a solution of Problem
D∗

k. In fact, by using (2.5) and (2.12), we have

Re f ′′
A

∣∣
La

k
= {Re[T 1R

′′
A + Q′′

A]}
∣∣∣
La

k

= Re[T 1R
′′
A(ξa)]

+Re[Q′′
A(ξa)] = ψ′′

A(ξa) + h′′
A(ξa), ξa ∈ La

k,

Moreover by (2.5) and (2.13), we get

f ′′
A(ba) = T 1R

′′
A(ba) + Q′′

A(ba) = d′′Aa.

Hence the above function f(z) is just a solution of Problem D∗
k.

Finally we prove the uniqueness of solutions of Problem D∗
k (1 ≤

k ≤ 4). Let fi(z) (i = 1, 2) be two solutions of Problem D∗
k. Denoting

F (z) = f1(z) − F2(z), it is easy to see that F (z) is a solution of the
corresponding homogeneous problem (Problem D∗

k0), and the solution
is regular in Rk and satisfies

J1F |Lk
=
∑
A

′
ϕ′

A(ξ)e′A −
∑
A

′
ϕ′

A(ξ)e′A = 0, ξ ∈ Lk.

For convenience, in the following we still denote f(z) by F (z), i.e.
F (z) =

∑
A

′f ′
A(z)e′A+

∑
A

′′f ′′
A(z)e′′A. Noting that F (z) is a solution of Prob-

lem D∗
k0, it is clear that for every arbitrary index A, every f ′

A|Lk
satisfies

	kf
′
A(z) = 0 (z ∈ Rk). From J1F |Lk

=
∑
A

′f ′
A(z)e′A|Lk

= 0, it follows

that f ′
A|Lk

= 0. By using Theorem 1.2, we get f ′
A(z) ≡ 0 (z ∈ Rk). Sim-

ilarly we have J1F (z) ≡ 0 (z ∈ Rk), and then f ′
mA

≡ 0 (z ∈ Rk). By the
definition of R′′

A, we immediately obtain R′′
A ≡ 0 (z ∈ Rk). Consequently,

f ′′
A(z) = T 1R

′′
A + Q′′

A = Q′′
A(z), z ∈ Rk. (2.16)
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Moreover, since F (z) is a solution of Problem D∗
k0, by (2.11), (2.14),

(2.15), we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂z1Q

′′
A(z) = ∂z1Q

′′
A(z) = 0, z ∈ Ra

k,

ReQ′′
A(ξa) = h′′

A(ξa), ξ ∈ La
k,

Q′′
A(ba) = 0, ba ∈ Ra

k.

In accordance with the existence and uniqueness of solutions for the
modified Dirichlet problem for analytic functions [80]7), we see that
Q′′

A(z) = 0, (z ∈ Ra
k). Noting the arbitrariness of a, we have Q′′

A(z) ≡
0 (z ∈ Rk), and then Q′′

A(z) ≡ 0 (z ∈ Rk). Using (2.16), we get f ′′
A(z) ≡

0 (z ∈ Rk), hence J2F (z) ≡ 0 (z ∈ Rk), and F (z) ≡ 0 (z ∈ Rk), this
shows that f1(z) ≡ f2(z) (z ∈ Rk). Therefore Problem D∗

k has at most
one solution. The proof of Theorem 2.2 is finished.

3 A Pseudo-Modified Boundary Value Problem of Second
Order Real Partial Differential Equations for a
Hyperball in Real Clifford Analysis

In this section, we discuss the first kind of function f(x) : Rn →
An(R) in Clifford analysis, which was introduced in Section 2, Chapter
1 (see [29]3)).

In Section 1, Chapter 2, we not only rewrite the members
∑
A

xAeA

in A as
∑
A

xAeA =
∑
B

IBeB, where xA ∈ R, IB ∈ C, B = {α1, α2,

..., αh} ⊆ {1, 3, 4, ..., n} (1 ≤ α1 < α2 < · · · < αh ≤ n), but also use
the “quasi-permutation” to give the sufficient and necessary condition
of the regular function f(x):

⎧⎪⎪⎨⎪⎪⎩
∂12I

′′
B =

n∑
m=3

δ′
mB

I
′
mBxm

,

∂12I
′
B =

n∑
m=3

δ′′
mB

I
′′
mBxm

,
(3.1)

where the operator

∂i−1 i = ei−1
∂

∂xi−1
+ ei

∂

∂xi
; ∂i−1 i = ei−1

∂

∂xi−1
− ei

∂

∂xi
, 2 ≤ i ≤ n.
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Now we consider the partial differential equation of second order

(∂12 + ∂12)[(1 − xx′)2−n(∂12 + ∂12)f(x)]

−
n∑

i=2
(∂i−1 i − ∂i−1 i)[(1 − xx′)2−n(∂i−1 i − ∂i−1 i)f(x)] = 0, x ∈ Rn,

(3.2)
where x′ = xT is represented by the transposition of x = (x1, x2, ..., xn).

Denote by D : xx′ < 1 the unit ball, and L : xx′ = 1 the unit sphere;
its surface area is ωn = 2π

n
2 /Γ(n

2 ). Suppose that
∑
B

′′u′′
B(ξ)e′′B on L is

continuous. Then we shall find a regular function f(z) = f (1) + f (2) =∑
B

′I ′Be′B +
∑
B

′′I ′′Be′′B, which is continuous in D and f (2) (in Section 3,

Chapter 1, we call it the second part of f) in D satisfies (3.2) and

f (2)
∣∣∣
L

= J2f(ξ) =
∑
B

′′
u′′

B(ξ)e′′B on L : ξξ′ = 1.

The above boundary value problem in the unit ball will be called Prob-
lem A for equation (3.2).

In order to give the integral expression of the solution of Problem A,
let

f(z) =
∑
B

′
I ′Be′B +

∑
B

′′
I ′′Be′′B (3.3)

be the solution of the above problem. Then we can derive

(∂12 + ∂12)
[
(1 − xx′)2−n(∂12 + ∂12)f (2)(x)

]
−

n∑
i=2

(∂i−1 i − ∂i−1 i)
[
(1 − xx′)2−n(∂i−1 i − ∂i−1 i)f (2)(x)

]
= 0,

that is

∂12 + ∂12

2

[
(1 − xx′)2−n ∂12 + ∂12

2
f (2)(x)

]

+
n∑

i=2

(−ei)(∂i−1 i − ∂i−1 i)
2

×
[
(1 − xx′)2−n (−ei)(∂i−1 i − ∂i−1 i)

2
f (2)(x)

]
= 0,

hence

∂

∂xi

[
(1 − xx′)2−n ∂

∂xi
f (2)(x)

]
+

n∑
i=2

∂

∂xi

[
(1 − xx′)2−n ∂

∂xi
f (2)(x)

]
= 0,
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namely
n∑

i=1

∂

∂xi

[
(1 − xx′)2−n ∂

∂xi
(
∑
B

′′
I ′′Be′′B)

]
= 0.

Thus we have

∑
B

′′
{

n∑
i=1

∂

∂xi

[
(1 − xx′)2−n ∂

∂xi
I ′′B
]
e′′B

}
= 0,

and then

(1 − xx′)n
n∑

i=1

∂

∂xi

[
(1 − xx′)2−n ∂I ′′B

∂xi

]
= 0. (3.4)

Using the above results, we see that I ′′B is a solution of the Dirichlet prob-
lem for equation (3.4), and satisfies I ′′B(ξ) = u′′

B(ξ) (ξ ∈ L). Applying
the result of Luogeng Hua [26]2), we get

I ′′B(x) =
1
ωn

∫
· · ·
∫

︸ ︷︷ ︸
ξξ′=1

(
1 − xx′

1 − 2xξ′ + xx′

)n−1

u′′
B(ξ)ξ̇, (3.5)

where P (x, ξ) =
(

1 − xx′

1 − 2xξ′ + xx′

)n−1

is the Poisson kernel.

Let

z12 = x1 + x2e2, ξ12 = ξ1 + ξ2e2,

∂z12 =
1
2
(

∂

∂x1
− e2

∂

∂x2
), ∂z12 =

1
2
(

∂

∂x1
+ e2

∂

∂x2
).

From the above formula, we can conclude ∂12 = 2∂z12 , ∂12 = 2∂z12 ,
moreover we introduce the operators T12, T 12 as follows:

T12fB(x) =
1
π

∫ ∫
ξ2
1+ξ2

2<1−x2
3−···−x2

n

fB(ξ1, ξ2, x3, x4, ..., xn)
z12 − ζ12

dξ1dξ2,

T 12fB(x) =
1
π

∫ ∫
ξ2
1+ξ2

2<1−x2
3−···−x2

n

fB(ξ1, ξ2, x3, x4, ..., xn)
z12 − ζ12

dξ1dξ2,

in which xx′ < 1. By the results in [77] and the second formula of (3.1),
we get

I ′B =
1
2
T12

n∑
m=3

δ′′
mB

I
′′
mBxm

+ Q′
B(x), (3.6)
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herein Q′
B(x) satisfies

∂z12Q
′
B(x) = 0. (3.7)

Since (xξ′)xm = ξm, (xx′)xm = 2xm, we see that

Pxm =
2(n − 1)(1 − xx′)n−2[2xm(xξ′ − 1) + ξm(1 − xx′)]

(1 − 2xξ′ + xx′)n
.

Consequently, by (3.5) we obtain

R′
B(x)

= (n−1)(1−xx′)n−2

ωn

∫
· · ·
∫

︸ ︷︷ ︸
ξξ′=1

n∑
m=3

[2xm(xξ′−1)+ξm(1−xx′)]
(1−2xξ′+xx′)n δ′′

mB
u′′

mB
(ξ)ξ̇,

(3.8)
and then

I ′B(x) = T12R
′
B(x) + Q′

B(x). (3.9)

Putting (3.9) into the first formula of (3.1), we can conclude

∂12I
′′
B(x) =

n∑
k=3

δ′
kB

[T 12R′
kBxk

(x) + Q′
kBxk

(x)]. (3.10)

By (3.8), (3.5), we know that R′
kB

and I ′′B can be obtained by the known
function u′′

B, hence in (3.10), only Q′
kB

(x) is unknown. So it suffices to
find Q′

B(x) from (3.10), (3.7).

If n is an even integer, then by a substitution analogous to z12 =
x1+x2e2, we can write Q′

KBxk
(x) in (3.10) as a complex overdetermined

system of first order about Q′
B; for simplicity, we can assume that (3.10)

is the complex form. Hence by the result of W. Tutschke [75], for the
overdetermined systems (3.10) and (3.7) with appropriate conditions, is
called Condition C, we can find Q′

B. Because of page limitations, we
do not recount this in detail. Moreover we can obtain I ′B by (3.9), and
then the solution of Problem A:

f(z) =
∑
B

′
I ′Be′B +

∑
B

′′
I ′′Be′′B

is found. Thus we have the following theorem.

Theorem 3.1. Let
∑
B

′′u′′
Be′′B on L be continuous and n be an even

integer. Then if Condition C is satisfied, Problem A is solvable, and its
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solution can be expressed as

f(z) =
∑
B

′
I ′B(x)e′B +

∑
B

′′
I ′′B(x)e′′B,

I ′′B(x) =
1
ωn

∫
· · ·
∫

︸ ︷︷ ︸
ξξ′=1

P (x, ξ)u′′
B(ξ)ξ̇,

I ′B(x) = T12R
′
B(x) + Q′

B(x),

where P (x, ξ) =
(

1 − xx′

1 − 2xξ′ + xx′

)n−1

and

R′
B(x) =

1
2ωn

∫
· · ·
∫

︸ ︷︷ ︸
ξξ′=1

n∑
m=3

Pxmδ′′
mB

u′′
mB

(ξ)ξ̇,

in which Q′
B is a generalized analytic function about z12 and satisfies

∂12I
′′
B(x) =

n∑
k=3

δ′
kB

[T 12R′
kBxk

(x) + Q′
kBxk

(x)],

where δmB is the sign of quasi-permutation mB.

In order to discuss the uniqueness of the solution of Problem A,
we first consider the sectional domain of D. Denote by Ga : xax

′
a =

x2
1 + x2

2 +
n∑

m=3
a2

m < 1 the domain in D and on the x1x2-plane, which

is cut by the plane S : (x1, x2, x3 = a3, . . . , xn = an) (n ≥ 3), where
xa = (x1, x2, a3, a4, . . . , an), and by Γa : ξaξ

′
a = 1 the boundary of Ga

with center at Oa = (0, 0, a3, a4, . . . , an). Now we give a fixed d′Ba ∈ C,
and assume that

∑
B

′′u′′
B(ξ)e′′B on L and ϕ′

B(ξa) on Γa are continuous

respectively. In the following we seek a regular function

f(x) =
∑
B

′
I ′Be′B +

∑
B

′′
I ′′Be′′B (x ∈ D),

such that it is continuous in D, and satisfies equation (3.2) and the
pseudo-modified boundary conditions⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

J2f |L = J2f(ξ) =
∑
B

′′
u′′

B(ξ)e′′B, ξ ∈ L,

ReI ′B|Γa = ϕ′
B(ξa) + h′

B(ξa), ξa ∈ Γa,

I ′B(Oa) = d′Ba,

(3.11)
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where h′
B(ξa) = h′

Ba (ξa ∈ Γa) is an undetermined real constant. The
above pseudo-modified boundary value problem in the unit ball is de-
noted by Problem A∗ about equation (3.2).

In 2003 Huang Min, Huang Sha have proved the existence and
uniqueness of Problem A∗ (see Advances in Natural Science, (2003)
13(4), (Chinese)).

Theorem 3.2 Under the same conditions as in Theorem 3.1, if ϕ′
B(ξa)

on Γa is continuous, and d′Ba ∈ C is given, then Problem A∗ has a unique
solution, which can be obtained by (3.3),(3.5),(3.9),(3.8),(3.10) and

ReQ′
B(ξa) = −Re[T12R

′
B(ξa)] + ϕ′

B(ξa) + h′
B(ξa), ξa ∈ Γa, (3.12)

Q′
B(Oa) = −T12R

′
B(Oa) + d′Ba, ∂z12Q

′
B(x) = 0, x ∈ D. (3.13)

(see [29]3)).

Proof On the basis of the proof of Theorem 3.1, it is evident that we
only need give the following supplement to the proof of Theorem 3.1.

Firstly, we need to find the integral expression of the solution. Let
f(z) be a solution of problem A∗. By (3.9) and the pseudo-modified
boundary condition (3.11), we get

Re[T12R
′
B(ξa) + Q′

B(ξa)] = Re[I ′B(ξa)] = ϕ′
B(ξa) + h′

B(ξa), ξa ∈ Γa,

T12R
′
B(Oa) + Q′

B(Oa) = I ′B(Oa) = d′Ba,

and ∂z12Q
′
B(x) = 0 (x ∈ D), hence Q′

B(xa) on Ga satisfies (3.12),(3.13),
and Q′

B(xa) is an analytic function about z12. Using the existence and
uniqueness of the solution of the pseudo-modified boundary value prob-
lem for analytic functions [80]7), we can obtain an analytic function
Q′

B(xa) (xa ∈ Ga) from (3.12) and (3.13). Due to the arbitrariness of a,
we can get Q′

B(x) (x ∈ D). In other words, if f(x) is a solution of Prob-
lem A∗, then from Theorem 3.1 we can obtain the solutions of Problem
A∗, which can be expressed by (3.3), (3.5), (3.9), (3.8), (3.10), (3.12)
and (3.13).

Secondly, we prove that the function f(x) determined by (3.3), (3.5),
(3.9), (3.8), (3.10), (3.12) and (3.13) is a solution of Problem A∗. In
fact, by (3.9) and (3.12) we have ReI ′B|Γa = {Re[T12(R′

B) + Q′
B]}|Γa =
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Re[T12R
′
B(ξa)] + Re[Q′

B(ξa)] = ϕ′
B(ξa) + h′

B(ξa), ξa ∈ Γa. Moreover by
(3.9) and (3.13), we get I ′B(Oa) = T12R

′
B(Oa) + Q′

B(Oa) = d′Ba. Hence,
the above function f(x) is just the solution of the pseudo-modified prob-
lem (Problem A∗).

Finally, we prove that the solution of Problem A∗ is unique. Let
f1(x), f2(x) be two solutions of Problem A∗. It is clear that F (x) =
f1(x) − f2(x) is a solution of the corresponding homogenous problem
(Problem A∗

0), which is regular in D and satisfies F (2)|L = J2F (ξ) =∑
B

′′u′′
B(ξ)e′′B −∑

B

′′u′′
B(ξ)e′′B = 0.

For convenience, in the following, we still adopt the notation about
f(x) as in the proof of Theorem 3.1. For instance, we still denote

F (x) =
∑
B

′
I ′Be′B +

∑
B

′′
I ′′Be′′B

and so on. Because F (x) is a solution of Problem A∗
0 satisfying (3.2),

consequently, for every B, I ′′B satisfies equation (3.2). That is to say,
every I ′′B in D is harmonic. Then by F (2)|L =

∑
B

′′I ′′Be′′B|L = 0, the

equality I ′′B|L = 0 is derived. By the uniqueness of the solution of the
Dirichlet problem for harmonic functions about (3.2) [26]2), we get I ′′B =
0 and I ′′

mB
≡ 0 in D. By using (3.5), (3.8), it is easy to see that

R′
B(x) = 1

2

n∑
m=3

δ′′
mB

I
′′
mBxm

, and R′
B(x) ≡ 0 in D. In addition by (3.9),

we get
I ′B = T12R

′
B(x) + Q′

B(x) = Q′
B(x). (3.14)

Because F (x) is the solution of the corresponding homogenous problem
(Problem A∗

0), from (3.12) and (3.13), it follows that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂z12Q

′
B(xa) = 0, xa ∈ Ga,

ReQ′
B(ξa) = h′

B(ξa), ξa ∈ Γa,

Q′
B(Oa) = 0, Oa ∈ Γa.

At last by the existence and the uniqueness of the solution to the mod-
ified Dirichlet problem for analytic functions [80]7), we know Q′

B(xa) ≡
0 (xa ∈ Ga). Noting the arbitrariness of a, we have Q′

B(x) ≡ 0 (x ∈ D).
Hence by (3.14), we get I ′B(x) ≡ 0 (x ∈ D). So J1F ≡ 0 (x ∈ D), and
F (x) ≡ 0 (x ∈ D), i.e. f1(x) ≡ f2(x) (x ∈ D). This completes the proof.

In this chapter, we used quasi-permutation as a tool to construct
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the close connection between harmonic analysis in classical domains for
several complex variables functions and Clifford analysis, in particular
the boundary value problems, which symbolically establishes a bridge
between complex analysis and Clifford analysis.



CHAPTER V

INTEGRALS DEPENDENT ON

PARAMETERS AND SINGULAR INTEGRAL

EQUATIONS IN REAL CLIFFORD ANALYSIS

In the above chapters, we have discussed two kinds of functions in
real and complex analysis: f : Rn → An(R) and f : Cn → An(C).
In the first section of this chapter, we shall introduce the third kind of
function f : Rp → Aq(C) and Cauchy’s estimates of three integrals de-
pendent on parameters [29]11). In the second section, firstly we give the
definition of two kinds of singular integrals with Cauchy’s kernel in real
Clifford analysis. Moreover we find some singular integrals which can be
exchanged the integral order. Finally we prove three kinds of Poincaré-
Bertrand transformation formulas of singular integrals with Cauchy’s
kernel [29]12). On the basis of the transformation formulas as stated
in the first section, in the third section we shall prove the composition
formula and the inverse formula of singular integrals with Cauchy’s ker-
nel [29]13). In the fourth section we introduce the Fredholm theory of
a kind of singular integral equations in real Clifford analysis by using
transformation formulas, and discuss the regularization operator [29]9).
In the last section according to the method of unite resolution, we define
generalized integrals in the sense of M. Spivak [73] on an open manifold
for unbounded functions in real Clifford analysis, and discuss the solv-
ability and series expression of solutions for second kinds of generalized
integral equations with exchangeable factors, and give the error estimate
of the approximate calculation [67].

1 Cauchy’s Estimates of Integrals with One Parameter in
Real Clifford Analysis

Since 1965, many scholars have studied functions, integrals, and
boundary value problems in real and complex Clifford analysis and
other related problems. R. Delanghe in [12], F. Brackx et al in [6] and
other scholars investigated the function f : Rn → An(R) (the function
which appeared early is called the first kind function). Zhengyuan Xu
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in [86] and Sha Huang in [29]3) discussed some boundary value prob-
lems in real Clifford analysis. F. Sommon in [72]2), J. Ryan in [68]2),
and Sha Huang and Yuying Qiao in [32]2) studied theoretic proper-
ties for functions f : Cn → An(C) (which we call the second kind
functions) and corresponding boundary value problems for canonical
domains in complex Clifford analysis. Kimiro Somo in [36] discussed
functions f : Rp → Aq(C) (which we call the third kind functions)
and obtained Cauchy’s estimates for monogenic and harmonic functions
and their partial derivatives, which are the generalizations of Sommon’s
result and Aranissiann’s result. In this section we discuss Cauchy’s es-
timate for the partial derivatives of the above three integrals dependent
on parameters, which are developments of the results in [36], [2], [72]3).

1.1 Cauchy’s estimates of Cauchy’s Kernel

Lemma 1.1 ([36]) Let m, n ∈ N, m(n) = Γ(m−n+1)/Γ(m+1), N0 =
N ∪ {0}, α, β1, ..., βn ∈ Nm

0 and α = (α1, ..., αm), γ = (γ1, ..., γn) ∈ Rn,
|γ| = γ1+· · ·+γn, α! = α1!...αm!, where N is the set of natural numbers.
Then ∑

β1+···+βn=α

α!
β1! · · ·βn!

γ
(|β1|)
1 · · · γ(|βn|)

n = |γ|(|α|). (1.1)

Proof Differentiate the equality

{(x1 + · · · + xm)t}γ1 · · · {(x1 + · · · + xm)t}γn = {(x1 + · · · + xm)t}|γ|

for |α| times with respect to t. Let t = (x1 + · · · + xm)−1, then expand
it and form coefficients of xα. Thus we obtain the identity (1.1).

Lemma 1.2 ([36]) If p − 1 ∈ N, n ∈ Z, α ∈ Np
0 , x ∈ Rp, where Z is

the set of positive integrals, then

∣∣∣∣( ∂

∂x

)α

xn

∣∣∣∣ ≤ ∣∣∣n(|α|)
∣∣∣ |x|n−|α|. (1.2)

Proof When α = 0 or n = 0, it is clear that (1.2) holds; therefore, in
what follows we use the inductive method on α and show (1.2) for any
n �= 0. Assume that (1.2) holds for any n ∈ Z, and β ∈ Np

0 such that
0 ≤ β ≤ α. Note that xk belongs to Rp for any k ∈ Z; then if n > 0, by
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Corollary 1.4, Chapter 1, for any j = 1, ..., p we get∣∣∣∣∣
(

∂

∂x

)α ∂

∂xj
xn

∣∣∣∣∣ =
∣∣∣∣∣
(

∂

∂x

)α n−1∑
k=0

xkejx
n−k−1

∣∣∣∣∣
≤

n−1∑
k=0

∑
β+γ=α

α!
β!γ!

∣∣∣∣∣
(

∂

∂x

)β

xk

∣∣∣∣∣
∣∣∣∣( ∂

∂x

)γ

xn−k−1

∣∣∣∣ ,
where β, γ ∈ Np

0 . From the hypothesis it follows that∣∣∣∣∣
(

∂

∂x

)α ∂

∂xj
xn

∣∣∣∣∣≤
n−1∑
k=0

∑
β+γ=α

α!
β!γ!

k(|β|)(n − k − 1)(|γ|)|x|n−|α|−1.

By Lemma 1.1, we obtain∣∣∣∣∣
(

∂

∂x

)α ∂

∂xj
xn

∣∣∣∣∣ ≤
n−1∑
k=0

(n − 1)(|α|)|x|n−|α|−1 = n(|α|+1)|x|n−|α|−1. (1.3)

If n < 0, we set m = −n, then by Corollary 1.4, Chapter 1, for any
j = 1, ..., p we have

∣∣∣∣∣
(

∂

∂x

)α ∂

∂xj

1
xm

∣∣∣∣∣
=

∣∣∣∣∣
(

∂

∂x

)α m−1∑
k=0

1
xk

ej

(
∂

∂xj

1
xej

)
1

xm−k−1

∣∣∣∣∣
≤

m−1∑
k=0

∣∣∣∣∣
(

∂

∂x

)α
{

1
xk

ej
−1

(xej)2
1

xm−k−1

}∣∣∣∣∣
≤

m−1∑
k=0

∑
β+γ+δ+ε=α

α!
β! γ! δ! ε!

∣∣∣∣∣
(

∂

∂x

)β 1
xk

∣∣∣∣∣
×
∣∣∣∣( ∂

∂x

)γ 1
x

∣∣∣∣
∣∣∣∣∣
(

∂

∂x

)δ 1
x

∣∣∣∣∣
∣∣∣∣( ∂

∂x

)ε 1
xm−k−1

∣∣∣∣ ,
where β, γ, δ, ε ∈ Np

0 . From the hypothesis it follows that∣∣∣∣∣
(

∂

∂x

)α ∂

∂xj

1
xm

∣∣∣∣∣
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≤
m−1∑
k=0

∑
β+γ+δ+ε=α

α!
β!γ!δ!ε!

(−k)(|β|)(−1)(|γ|)(−1)(|δ|)(−m + k + 1)(|ε|)

(−1)|α||x|m+|α|+1
.

By Lemma 1.1 we obtain∣∣∣∣∣
(

∂

∂x

)α ∂

∂xj

1
xm

∣∣∣∣∣
≤

m−1∑
k=0

|(−m − 1)(|α|)|
|x|m+|α|+1

=
∣∣∣n(|α|+1)

∣∣∣ |x|n−|α|−1.

(1.4)

Thus, by (1.3) and (1.4), the assertion is true for any n �= 0 and any
α ∈ Np

0 .

Theorem 1.3 Suppose that m, n ∈ N0, p − 1 ∈ N, α ∈ Np
0 , and x ∈

Rp\{0}. Then ∣∣∣∣( ∂

∂x

)(
1

xm

1
|x|n

)∣∣∣∣ ≤ |(−m − n)(|α|)|
|x|m+|α|+n

. (1.5)

Proof We prove this theorem by the inductive method on α. When
α = 0, (1.5) is clearly true. Assume that (1.5) is true for n ∈ N0, m ∈
N0, and β ∈ Np

0 such that 0 ≤ β ≤ α; for any j = 1, ..., p and any
γ ∈ Np

0 such that 0 ≤ γ ≤ α, we obtain

∣∣∣∣∣
(

∂

∂x

)γ ∂

∂xj

1
|x|n

∣∣∣∣∣ =
∣∣∣∣( ∂

∂x

)γ −nxj

|x|n+2

∣∣∣∣
=
∣∣∣∣( ∂

∂x

)γ n[ejx]1
|x|nxx

∣∣∣∣ =
∣∣∣∣∣
(

∂

∂x

)γ n
2 (ejx + xej)

|x|nxx

∣∣∣∣∣
=

n

2

∣∣∣∣ej

(
∂

∂x

)γ 1
x|x|n +

(
∂

∂x

)γ 1
x|x|n ej

∣∣∣∣
≤ n

∣∣∣∣( ∂

∂x

)γ 1
x|x|n

∣∣∣∣ .
By the hypothesis, we have

∣∣∣∣∣
(

∂

∂x

)γ ∂

∂xj

1
|x|n

∣∣∣∣∣ ≤ n|(−n − 1)(|γ|)|
|x||γ|+n+1

.
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Furthermore, from the definition of sign (m)(n) we get

∣∣∣(−n)(|γ|+1)
∣∣∣ = (|γ| + 1 + n − 1)!

(n − 1)!

= n
(|γ| + n)!

n!
= n

∣∣∣(−n − 1)(|γ|)
∣∣∣ . (1.6)

Similarly we have

∣∣∣(−m)(|γ|+1)
∣∣∣ = (|γ| + m)

∣∣∣(−m)(|γ|)
∣∣∣ , (1.7)

∣∣∣(−m)(|γ|)
∣∣∣ = (−m)(|γ|)

(−1)|γ|
, (1.8)

and ∣∣∣∣∣
(

∂

∂x

)γ ∂

∂xj

1
|x|n

∣∣∣∣∣ ≤ |(−n)(|γ|+1)|
|x||γ|+n+1

, 0 ≤ γ ≤ α. (1.9)

Again from Corollary 1.4, Chapter I, it follows for any j = 1, ..., p, the
following inequality holds:

∣∣∣∣∣
(

∂

∂x

)β ∂

∂xj

1
xm

∣∣∣∣∣
=

∣∣∣∣∣
(

∂

∂x

)β m−1∑
k=0

1
xk

ej

(
∂

∂xj

1
xej

)
1

xm−k−1

∣∣∣∣∣
≤

m−1∑
k=0

∣∣∣∣∣
(

∂

∂x

)β
{

1
xk

ej
−1

(xej)2
1

xm−k−1

}∣∣∣∣∣
≤

m−1∑
k=0

∑
β1+···+β4=β

β!
β1! · · · β4!

∣∣∣∣∣
(

∂

∂x

)β1
1
xk

∣∣∣∣∣
×
∣∣∣∣∣
(

∂

∂x

)β2
1
x

∣∣∣∣∣
∣∣∣∣∣
(

∂

∂x

)β3
1
x

∣∣∣∣∣
∣∣∣∣∣
(

∂

∂x

)β4
1

xm−k−1

∣∣∣∣∣,
where βi ∈ Np

0 , i = 1, ..., 4. By means of Lemmas 1.1, 1.2 and (1.6), we
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can obtain

∣∣∣∣∣
(

∂

∂x

)β ∂

∂xj

1
xm

∣∣∣∣∣
≤

m−1∑
k=0

B
β!

β1! ... β4!
(−k)(|β1|)(−1)(|β2|)(−1)(|β3|)(−m+k+1)(|β4|)

(−1)|β||x|m+|β|+1

≤
m−1∑
k=0

|(−m − 1)(|β|)|
|x|m+|β|+1

=
m|(−m − 1)(|β|)|

|x|m+|β|+1
=

|(−m)(|α|+1)|
|x|m+|α|+1

(1.10)

where B =
∑

β1+···+β4=β

. From (1.9), (1.10), Lemma 1.2 and hypothesis

of induction, we get

∣∣∣∣∣
(

∂

∂x

)α ∂

∂xj

1
xm

1
|x|n

∣∣∣∣∣
=

∣∣∣∣∣
(

∂

∂x

)α
[(

∂

∂xj

1
xm

)
1

|x|n +
1

xm

(
∂

∂xj

1
|x|n

)]∣∣∣∣∣
≤

∑
β+γ=α

α!
β!γ!

{∣∣∣∣∣
(

∂

∂x

)β ∂

∂xj

1
xm

∣∣∣∣∣
∣∣∣∣( ∂

∂x

)α 1
|x|n

∣∣∣∣
+

∣∣∣∣∣
(

∂

∂x

)β 1
xm

∣∣∣∣∣
∣∣∣∣∣
(

∂

∂x

)α ∂

∂xj

1
|x|n

∣∣∣∣∣
}

≤
∑

β+γ=α

α!
β!γ!

|(−m)(|β|+1)(−n)(|γ|)| + |(−m)(|β|)(−n)(|γ|+1)|
|x|m+|α|+n+1

.

Again by (1.7), (1.8) and Lemma 1.1, we can derive the inequality

∣∣∣∣∣
(

∂

∂x

)
∂

∂xj

1
xm

1
|x|n

∣∣∣∣∣
≤

∑
β+γ=α

α!
β!γ!

(−m)(|β|+1)(−n)(|γ|) + (−m)(|β|)(−n)(|γ|+1)

(−1)|α|+1|x|m+|α|+n+1
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≤
∑

β+γ=α

α!
β!γ!

(−m)(|β|)(−n)(|γ|)(|β| + m + |γ| + n)
(−1)|α||x|m+n+|β|+|γ|+1

≤ (−m − n)(|α|)(|α| + m + n)
(−1)|α||x|m+n+|α|+1

=
(−m − n)(|α|+1)

(−1)|α|+1||x|m+n+|α|+1
=
|(−m − n)(|α|+1)|
|x|m+n+|α|+1

.

Theorem 1.3 is an improvement of the corresponding results in [36],
[72]3).

1.2 Cauchy’s estimates of three integrals dependent on a pa-
rameter in Clifford analysis

We discuss the third kind of function f : Rp → Aq(C). Let Br =
{x |x ∈ Rp, |x| < r}, ∂Br = {x |x ∈ Rp, |x| = r}. The set C1-function
in ∂Br with values in Aq(C) is denoted by C1(∂Br, Aq(C)). If f, u ∈
C1(∂Br, Aq(C)), we discuss the following three integrals depending on
one parameter

Fm n(x) =
1
ωp

∫
∂Br

f(y)dσy
1

(y − x)m|y − x|n ,

Φn(x) =
1
ωp

∫
∂Br

u(y)
|y − x|n dSy, Un(x) =

r2 − |x|2
r

Φn(x),

where Br1 = {x ∈ Rp, |x| < r1 < r}, x ∈ Br1 = Br1

⋃
∂Br1 .

Theorem 1.4 Let p − 1, q − 1 ∈ N with p ≤ q, m, n ∈ N0, α ∈
Np

0 , Br ⊂ Rp, and f(y) ∈ C1(∂Br, Aq(C)). Then

∣∣∣∣( ∂

∂x

)α

Fm n(0)
∣∣∣∣ ≤ |(−m − n)(|α|)|

|γ|m+|α|+n−p+1
Mr,

where Mr = sup
y∈∂Br

|f(y)|.
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Proof When x ∈ Br1 , we obtain(
∂

∂x

)α

Fm n(x)

=
1
ωp

∫
∂Br

f(y)dσy

(
∂

∂x

)α 1
(y − x)m|y − x|n

=
1
ωp

∫
∂Br

f(y)dσy

(
∂

∂y

)α (−1)|α|

(y − x)m|y − x|n .

From Corollary 1.4, Chapter 1 and Lemma 1.1, we can find

∣∣∣( ∂
∂x

)α
Fm n(0)

∣∣∣
=

1
ωp

∫
∂Br

|f(y)||dσy|
∣∣∣∣∣
(

∂

∂y

)α (−1)|α|

ym|y|n
∣∣∣∣∣

≤ Mr
1
ωp

∫
∂Br

|dσy| |(−m − n)(|α|)|
|γ|m+n+|α|

= Mr
|(−m − n)(|α|)|
|γ|m+n+|α|−p+1

1
ωp

∫
∂Br

|dσy| 1
γp−1

=
|(−m − n)(|α|)|
|γ|m+n+|α|−p+1

Mr.

Theorem 1.4 is the generalization of Theorem 2 in [36].

Corollary 1.5 Let p − 1, q − 1 ∈ N with p ≤ q, α ∈ Np
0 , and f be

right regular in a neighborhood of Br ⊂ Rp with values in Aq(C). Then∣∣∣∣( ∂

∂x

)α

f(0)
∣∣∣∣ ≤ |(−p + 1)|(|α|)

|γ||α| Mr,

where Mr = sup
|y|=r

|f(y)|.

Proof By Theorem 1.4 and Cauchy’s integral formula [36], we have

f(x) =
1
ωp

∫
∂Br

f(y)dσy
y − x

|y − x|p

=
1
ωp

∫
∂Br

f(y)dσy
1

(y − x)|y − x|p−2
,

which is similar to the Cauchy’s integral formula in Section 2, Chapter
1, hence the result in Corollary 1.5 is valid.
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Theorem 1.6 Suppose that p − 1, q − 1 ∈ N with p ≤ q, n ∈ N0, α ∈
Np

0 , and u ∈ C1 (∂Br, Aq(C)), Br ⊂ Rp. Then

∣∣∣∣( ∂

∂x

)α

Φn(0)
∣∣∣∣ ≤ |(−n)(α)|Nr

|γ|n+|α|−p+1
,

where Nr = sup
y∈∂Br

|u(y)|.

Proof By Theorem 1.4, we immediately get the result in Theorem 1.6.

Theorem 1.7 Under the conditions as in Theorem 1.6, we have

∣∣∣∣( ∂

∂x

)α

Un(0)
∣∣∣∣≤ |(−n + 1)(|α|)+|α||(−n + 1)(|α|−1)|

|γ|n+|α|−p
Nr.

Proof Since |y − x|2 = (y − x)(y − x), from the kernel function, when
|y| > |x|, we can find

|y|2 − |x|2
|y − x|n = y

1
(y − x)|y − x|n−2

+
1

(y − x)|y − x|n−2
x.

Putting this into Un(x), we get

Un(x) =
1

ωp r

∫
∂Br

u(y)y
1

(y − x)|y − x|n−2
dSy

+
1

ωp r

∫
∂Br

u(y)
x

(y − x)|y − x|n−2
dSy.

Moreover we have(
∂

∂x

)α

Un(x) =
1

ωp r

∫
∂Br

u(y)y
(

∂

∂x

)α 1
(y − x)|y − x|n−2

dSy

+
1

ωp r

∫
∂Br

u(y)
(

∂

∂x

)α x

(y − x)|y − x|n−2
dSy.

Therefore,

(
∂

∂x

)α

Un(o) =
1

ωp r

∫
∂Br

u(y)y
(

∂

∂x

)α (−1)(|α|)

y|y|n−2
dSy

+
p∑

j=1,α≥λj

1
ωp r

∫
∂Br

u(y)αj

(
∂

∂x

)α−λj (−1)|α|−1

y|y|n−2
ejdSy,
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where λj = (δj1 , ..., δjp) ∈ Np
0 , j = 1, ..., p. On the basis of Corollary 1.4,

Chapter 1 and Theorem 1.3, we can find∣∣∣∣( ∂

∂x

)α

Un(o)
∣∣∣∣

=
1

ωp r

∫
∂Br

|u(y)|
{
|(−n + 1)(|α|)|

γ|α|+n−1
r

+
p∑

j=1,λj≥1

αj
|(−n + 1)(|α|−1)

γ|α|+n−2

⎫⎬⎭ dSy

≤ |(−n+1)(|α|)|+|α||(−n+1)(|α|−1)|
γ|α|+n−p Nr

1
ωp

∫
∂Br

1
rp−1 dSy

≤ |(−n + 1)(|α|)| + |α||(−n + 1)(|α|−1)|
γ|α|+n−p

Nr.

Theorem 1.7 is an improvement of the corresponding results in [36],
[72]3).

Corollary 1.8 Let p − 1, q − 1 ∈ N with p ≤ q, α ∈ Np
0 , and u ∈ C1

(∂Br, Aq(C)) be harmonic in a neighborhood of Br ⊂ Rp. Then∣∣∣∣( ∂

∂x

)α

Un(0)
∣∣∣∣ ≤ |(−p + 1)(|α|) + |α|(−p + 1)(|α|−1)

|γ||α| Nr.

Proof By Poisson’s integral formula of harmonic functions (see [36])

U(x) =
r2 − |x|2

ωp r

∫
∂Br

u(y)
|y − x|p dSy

and Theorem 1.7, we immediately get the result in Corollary 1.8.

2 Three Kinds of Poincaré-Bertrand Transformation
Formulas of Singular Integrals with a Cauchy’s Kernel
in Real Clifford Analysis

Tongde Zhong and Sheng Gong have studied the Poincaré-Bertrand
(P-B) transformation formulas and singular integrals in several complex
variables (see [89], [88]2), [88]3), [88]4), [20]). In 1992, M. R. Kand-
mamov gave a new proof of P-B transformation formulas in several com-
plex variables functions (see [35]). Under the illumination of [88]2), [35],



Singular Integrals and Equations Dependent on Parameters 135

on the basis of the results of Section 1, Chapter 3, we shall prove three
kinds of P-B transformation formulas of singular integrals with Cauchy’s
kernel in real Clifford analysis.

2.1 Preparation

Let Ω1 ⊂ Rm, Ω2 ⊂ Rk be differentiable, oriented, bounded, com-
pact manifolds, whose dimensions are m, k respectively, and ∂Ωi be
the boundary of Ωi, i = 1, 2. ∂Ωi(i = 1, 2) are oriented Liapunov
surfaces, and let the orientation be coordinated with that of Ωi. Let
∂Ω = ∂Ω1 × ∂Ω2. Denote by ∂Ωη the variable η = (η1, η2) on ∂Ω, and
set f(η1, η2; ξ1, ξ2) ∈ H(∂Ω, β), 0 < β < 1 (see Section 1, Chapter 3 ).
For convenience, we give the signs

A =
η1 − ζ1

ωm|η1 − ζ1|m , B =
η2 − ζ2

ωk|η2 − ζ2|k ,

C =
ξ1 − η1

ωm|ξ1 − η1|m , D =
ξ2 − η2

ωk|ξ2 − η2|k ,

E = f(η1, η2; ξ1, ξ2).

In Section 1, Chapter 3, we have defined the Cauchy principal value of
singular integrals with the Cauchy’s kernel on the character manifold,
which is called the one time singular integral. Similarly to several dimen-
sional singular integrals (see [88]3)), we must give a precise definition of
the two times singular integral as follows.

Definition 2.1 The two times singular integral is defined as

∫
∂Ωη

Adση1dση2B

∫
∂Ωξ

dσξ1C ED̄dσξ2

=
∫

∂Ωη

Adση1

[∫
∂Ωξ

dσξ1C̄ĒD̄dσξ2

]
dση2B

=
∫

∂Ω1η1

Adση1

[∫
∂Ω2η2

dση2B

∫
∂Ωξ

dσξ1C̄ĒD̄dσξ2

]

=
∫

∂Ω1η1

Adση1

{∫
∂Ω2η2

[∫
∂Ω1ξ1

dσξ1C(
∫

∂Ω2ξ2

ĒD̄dσξ2)

]
dση2B

}
.

(2.1)
Similarly to several dimensional singular integrals (see [88]3)), we also
give the definition of a two times singular integral which has to be
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changed in integral order as follows

∫
∂Ωξ

dσξ1dσξ2

∫
∂Ωη

Adση1C̄ĒD̄dση2B

=
∫

∂Ωξ

dσξ1 [
∫

∂Ωη

Adση1C̄ĒD̄dση2B]dσξ2

=
∫

∂Ω1ξ1

dσξ1 [
∫

∂Ω2ξ2

dσξ2

∫
∂Ωη

Adση1C̄ĒD̄dση2B]

=
∫

∂Ω1ξ1

dσξ1{
∫

∂Ω2ξ2

[
∫

∂Ω1η1

Adση1C(
∫

∂Ω2η2

ĒD̄dση2B)]dσξ2},

(2.2)

where
∫
∂Ωiξi (∂Ωiηi )

expresses the integral over ∂Ωi(i = 1, 2) for the vari-

able ξi(ηi), and the integrals are all in the sense of Cauchy principal
values (see Chapter I). In general, (2.1), (2.2) are not the same. For
discussing their relation, we give the Poincaré-Bertrand transformation
formulas. From Chapters I and III, it is clear that the following results
are valid:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖f g‖β ≤ J1‖f‖β‖g‖β,

(J1 a positive constant, f, g ∈ H(∂Ω, β))∫
∂Ω1η1

Adση1 =
∫

∂Ω2η2

dση2B =
1
2
, ζ ∈ ∂Ω;

∂η1A = A ∂η1 = ∂η2B = B ∂η2 = 0, ζi �= ηi, i = 1.2;

(η1 − ζ1)∂η1 = m, (ξ1 − η1)∂η1 = −m,

(η2 − ζ2)∂η2 = k, (ξ2 − η2)∂η2 = −k;∫
B(ζ1,ε)

dη1 =
ωnεm

m
,

∫
B(ξ2,ε)

dη2 =
ωkε

k

k
,

here B(ζ1, ε) : |η1 − ζ1| ≤ ε, B(ξ2, ε) : |η2 − ξ2| ≤ ε.

(2.3)

Theorem 2.1 The following equalities hold:
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h1η1(ζ1, ξ1) =
∫

∂Ω1η1

Adση1C = 0,

h2η2(ξ2, ζ2) =
∫

∂Ω2η2

Ddση2B = 0,

∫
∂Ω1η1

A Cdση1 = 0,

∫
∂Ω2η2

dση2D B = 0,

where ζ1, ξ1 ∈ ∂Ω1, ζ1 �= ξ1, ζ2, ξ2 ∈ ∂Ω2, ζ2 �= ξ2.

Proof By means of the Cauchy principal value, we have

h1η1(ζ1, ξ1)= lim
ε→0

∫
∂Ω1η1\(B(ζ1,ε)

⋃
B(ξ1,ε))

Adση1C =B0.

Here ∂ is the boundary, and the orientation of Ω1, B(ζ1, ε) , B(ξ1, ε)
Ω1\(B(ζ1, ε)

⋃
B(ξ1, ε)) on the communal part is harmonious, and the

orientations of ∂Ω1, ∂[Ω1\(B(ζ1, ε)
⋃

B(ξ1, ε))] , ∂B(ζ1, ε) , ∂B(ξ1, ε)
are the induced orientations of Ω1, Ω1\(B(ζ1, ε)

⋃
B(ξ1, ε)) , B(ζ1, ε) ,

B(ξ1, ε) respectively. Similarly to [36], we rewrite B0 as a sum of the
following three terms.

B0 = lim
ε→0

∫
∂[Ω1\(B(ζ1,ε)

⋃
B(ξ1,ε))]

Adση1C

+lim
ε→0

∫
Ω1

⋂
∂B(ζ1,ε)

Adση1C+lim
ε→0

∫
Ω1

⋂
∂B(ξ1,ε)

Adση1C =B1+B2+B3.

By using the Stokes theorem (see Section 2, Chapter 1 or Theorem 9.2
in [6]) and (2.3), the limit

B1 = lim
ε→0

∫
Ω1\(B(ζ1,ε)

⋃
B(ξ1,ε))

[A(∂η1C) + (A ∂η1)C]dση1 = 0 (2.4)

is derived. Noting that |η1 − ζ1| = ε on ∂B(ζ1, ε) and using the Stokes
theorem and formula (2.3), we get

B2 =
1
2

lim
ε→0

∫
∂B(ζ1,ε)

Adση1C =
1
2

lim
ε→0

1
εmωm

∫
∂B(ζ1,ε)

(η1 − ζ1)dση1C

=
1
2

lim
ε→0

1
εmωm

∫
B(ζ1,ε)

[(η1 − ζ1)(∂η1C) + ((η1 − ζ1)∂η1)C]dση1

=
1
2

lim
ε→0

1
εmωm

∫
B(ζ1,ε)

mCdση1 .
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When ε → 0, η1 → ζ1, we can write C = H + OA(ε), here

lim
ε→0

OA(ε) = 0, H =
ξ1 − ζ1

ωm|ξ1 − ζ1|m .

Thus

B2 =
1
2

lim
ε→0

1
εmωm

(m)H
∫

B(ζ1,ε)
dη1 =

1
2

lim
ε→0

mHεmωm

εmωmm
=

H

2
. (2.5)

Similarly when ε → 0, (ζ1 − η1)∂η2 = −m, we know

B3 =
−H

2
. (2.6)

Combining (2.4), (2.5), (2.6), we get h1η1(ζ1, ξ1) = 0. Moreover we can
prove

h2η2(ξ2, ζ2) =
∫

∂Ω2η2

Ddση2B = 0,

and ∫
∂Ω1η1

A Cdση1 = 0,

∫
∂Ω2η2

dση2D B = 0.

Theorem 2.2 Let ϕ(ξ1, ξ2) ∈ H(∂Ω, β), 0 < β < 1. Then∫
∂Ω1η1

ϕ(ξ1, ξ2)Adση1C =
∫

∂Ω2η2

Ddση2Bϕ(ξ1, ξ2) = 0,

where ζ1, ξ1 ∈ ∂Ω1, ζ1 �= ξ1, ζ2, ξ2 ∈ ∂Ω2, ζ2 �= ξ2.

Proof Similarly to the proof of Theorem 2.1, it suffices to notice that

∂ηiϕ(ξ1, ξ2) = ϕ(ξ1, ξ2)∂ηi = 0, i = 1, 2.

Theorem 2.3 The limit

lim
δ→0

∫
σδ(ζ1,η1)

Adση1 = lim
δ→0

∫
σδ(ζ2,η2)

dση2B = 0

is valid, in which the orientation of σδ(ζk, ηk) = ∂Ωkηk

⋂
B(ζk, δ), ζk ∈

∂Ωk, k = 1, 2, Ωk, B(ζk, δ) is coordinated, and the orientation of ∂Ωk is
the inductive orientation of Ωk.
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Proof We only prove the first formula. Letting 0 < δ < δ, σδ(ζ
1, η1) =

Ω1η1

⋂
B(ζ1, δ) and using (2.3), we have

lim
δ→0

∫
σδ(ζ1,η1)

Adση1 = lim
δ→0

[
lim
δ→0

∫
(σδ(ζ1,η1))\(σ

δ
(ζ1,η1))

Adση1

]

= lim
δ→0

[
lim
δ→0

∫
(∂Ω1η1\σδ

(ζ1,η1))\(∂Ω1η1\σδ(ζ1,η1))
Adση1

]

= lim
δ→0

∫
(∂Ω1η1\σδ

(ζ1,η1))
Adση1 − lim

δ→0

∫
∂Ω1η1\σδ(ζ1,η1)

Adση1

=
1
2
− 1

2
= 0.

Similarly we can prove the second formula.

2.2 Some singular integrals whose integral order can be ex-
changed

In the following, ϕ(ηi, ξi) ∈ H(∂Ωi, β) (i = 1, 2, 0 < β < 1) mean
that the function ϕ about ηi and ξi all belong to H(∂Ωi, β), i = 1, 2 (see
Section 3, Chapter II, [88]3)).

Theorem 2.4 Suppose that ϕ(η1, ξ1) ∈ H(∂Ω1, β), 0 < β < 1, ζ1 ∈
∂Ω1. Then∫

∂Ω1η1

Adση1

∫
∂Ω1ξ1

dσξ1C[ϕ(η1, ξ1) − ϕ(ξ1, ξ1)]

=
∫

∂Ω1ξ1

dσξ1

∫
∂Ω1η1

Adση1C[ϕ(η1, ξ1) − ϕ(ξ1, ξ1)];

∫
∂Ω1η1

Adση1

∫
∂Ω1ξ1

dσξ1C[ϕ(ξ1, ξ1) − ϕ(η1, η1)]

=
∫

∂Ω1ξ1

dσξ1

∫
∂Ω1η1

Adση1C[ϕ(ξ1, ξ1) − ϕ(η1, η1)];

Θ =
∫

∂Ω1η1

Adση1

∫
∂Ω1ξ1

dσξ1C[ϕ(η1, η1) − ϕ(ζ1, ζ1)]

=
∫

∂Ω1ξ1

dσξ1

∫
∂Ω1η1

Adση1C[ϕ(η1, η1) − ϕ(ζ1, ζ1)] = Θ′.

Proof We only prove the third formula, because the other formulas
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can be similarly proved. Let Θ = Θ0 + Θδ, Θ′ = Θ′
0 + Θ′

δ, where

Θ0 =
∫

∂Ω1η1

Adση1

∫
∂Ω1ξ1\σδ(η1, ξ1)

dσξ1C[ϕ(η1, η1) − ϕ(ζ1, ζ1)],

Θδ =
∫

∂Ω1η1

Adση1

∫
σδ(η1, ξ1)

dσξ1C[ϕ(η1, η1) − ϕ(ζ1, ζ1)],

Θ′
0 =

∫
∂Ω1ξ1\σδ(η1, ξ1)

dσξ1

∫
∂Ω1η1

Adση1C[ϕ(η1, η1) − ϕ(ζ1, ζ1)],

Θ′
δ =

∫
σδ(η1, ξ1)

dσξ1

∫
∂Ω1η1

Adση1C[ϕ(η1, η1) − ϕ(ζ1, ζ1)],

in which the orientations of σδ(η1, ξ1) = ∂Ω1ξ1 ∩ B(η1, δ), Ω1 and
B(η1, δ) are all coordinate, and the orientation of ∂Ω1 is the inductive
orientation of Ω1. From Section 1, Chapter III and [29]2), we know that
Θ0, Θ′

0 are integrals in the normal sense, by using the Fubini Theorem
[7], [6], [19], whose integral order can be exchanged, i.e. Θ0 = Θ′

0, hence
|Θ − Θ′| ≤ |Θδ| + |Θ′

δ|. In addition, from Section 1, Chapter III (or see
[29]2)) we can get∫

∂Ω1η1

∣∣∣Adση1 [ϕ(η1, η1) − ϕ(ζ1, ζ1)]
∣∣∣ ≤ N,

where N is a positive constant. From Theorem 2.3, we know when
δ is small enough, there exists ε > 0 independent of η1 such that∣∣∣∫σδ(η1, ξ1) dσξ1C

∣∣∣ ≤ 2ε/N , so

|Θδ| ≤ ε

2
. (2.7)

Next we consider Θ′
δ. By using Theorem 2.1, we can substitute

ϕ(ζ1, ζ1) by ϕ(ξ1, ξ1) in Θ′
δ, thus Θ′

δ can be written as

Θ′
δ =

∫
σδ(η1, ξ1)

dσξ1

∫
∂Ω1η1

Adση1C[Ψ1 + Ψ2 + Ψ3],

in which

Ψ1 = ϕ(η1, η1) − ϕ(η1, ξ1) − ϕ(ζ1, η1) + ϕ(ζ1, ξ1),

Ψ2 = ϕ(η1, ξ1) − ϕ(ξ1, ξ1), Ψ3 = ϕ(ζ1, η1) − ϕ(ζ1, ξ1).

Since ∫
∂Ω1η1

Adση1C[Ψ1+Ψ2+Ψ3]



Singular Integrals and Equations Dependent on Parameters 141

= lim
δ→0

∫
∂Ω1η1\σδ(ζ1,η1)

Adση1C[Ψ1 + Ψ2 + Ψ3], (2.8)

where σδ(ζ1, η1) = ∂Ω1η1

⋂
B(ζ1, δ), we consider

Θ′′
δ =

∫
σδ(η1,ξ1)

dσξ1

∫
∂Ω1η1\σδ(ζ1,η1)

Adση1C[Ψ1 + Ψ2+Ψ3]

= P1 + P2 + P3.

From Section 1, Chapter III or [29]2), we have |Ψ1| ≤ J2ρ
β/2
1 ρ

β/2
2 ,

herein J2 is a positive constant, ρ1 = |η1 − ξ1|, ρ2 = |η1 − ζ1|, |dσξ1 | ≤
L1ρ

m−2
1 dρ1, |dση1 | ≤ L2ρ

m−2
2 dρ2, L1, L2 are positive constants. Thus

|P1| ≤ L1L2J2

δ∫
0

ρ−m+1
1 ρ

β
2
1 ρm−2

1 dρ1

∫
∂Ω1η1\σδ(ζ1,η1)

ρ−m+1
2 ρ

β
2
2 ρm−2

2 dρ2

= L1L2J2

δ∫
0

ρ
β
2
−1

1 dρ1

∫
∂Ω1η1\σδ(ζ1,η1)

ρ
β
2
−1

2 dρ2 ≤ J3δ
β
2 ,

(2.9)

|P2| ≤ J4

δ∫
0

ρ−m+1
1 ρβ

1ρm−2
1 dρ1

∫
∂Ω1η1\σδ(ζ1,η1)

ρ−m+1
2 ρm−2

2 dρ2

= J4

δ∫
0

ρβ−1
1 dρ1

∫
∂Ω1η1\σδ(ζ1,η1)

ρ−1
2 dρ2 ≤ J5δ

β.

(2.10)

Similarly we can get

|P3| ≤ J6δ
β, (2.11)

in which Ji (i = 3, 4, 5, 6) are positive constants. From (2.8)−(2.11), we
see that if δ is small enough, the inequality

|Θ′
δ| ≤

ε

2
(2.12)

is derived. From (2.7), (2.12), it follows that |Θ − Θ′| < ε. Due to the
arbitrariness of ε, the equality Θ = Θ′ is obvious.

Similarly we can prove

Theorem 2.5 Let ϕ(η2, ξ2) ∈ H(∂Ω2, β), 0 < β < 1, ζ2 ∈ ∂Ω2. Then
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∫
∂Ω2η2

dση2B

∫
∂Ω2ξ2

[ϕ(η2, ξ2) − ϕ(ξ2, ξ2)]Ddσξ2

=
∫

∂Ω2ξ2

dσξ2

∫
∂Ω2η2

[ϕ(η2, ξ2) − ϕ(ξ2, ξ2)]Ddση2B;

∫
∂Ω2η2

dση2B

∫
∂Ω2ξ2

[ϕ(ξ2, ξ2) − ϕ(η2, η2)]Ddσξ2

=
∫

∂Ω2ξ2

dσξ2

∫
∂Ω2η2

[ϕ(ξ2, ξ2) − ϕ(η2, η2)]Ddση2B;

∫
∂Ω2η2

dση2B

∫
∂Ω2ξ2

[ϕ(η2, η2) − ϕ(ζ2, ζ2)]Ddσξ2

=
∫

∂Ω2ξ2

dσξ2

∫
∂Ω2η2

[ϕ(η2, η2) − ϕ(ζ2, ζ2)]Ddση2B.

Theorem 2.6 If f(η1, η2; ξ1, ξ2) ∈ H(∂Ω, β), 0 < β < 1, ζ1 ∈ ∂Ω1,
ζ2 ∈ ∂Ω2, then the following integrals order can be exchanged for the
integral order.∫

∂Ωη

Adση1dση2B

∫
∂Ωξ

dσξ1C[f(η1, η2; ξ1, ξ2) − f(η1, η2; η1, ξ2)

−f(η1, η2; ξ1, η2) + f(η1, η2; η1, η2)]Ddσξ2 ,∫
∂Ωη

Adση1dση2B

∫
∂Ωξ

dσξ1C[f(η1, η2; ξ1, η2) − f(η1, η2; η1, η2)

−f(η1, ζ2; ξ1, ζ2)+]f(η1, ζ2; η1, ζ2)]Ddσξ2 ,∫
∂Ωη

Adση1dση2B

∫
∂Ωξ

dσξ1C[f(η1, η2; η1, ξ2) − f(η1, η2; η1, η2)

−f(ζ1, η2; ζ1, ξ2) + f(ζ1, η2; ζ1, η2)]Ddσξ2 ,∫
∂Ωη

Adση1dση2B

∫
∂Ωξ

dσξ1C[f(η1, η2; η1, η2) − f(ζ1, η2; ζ1, η2)

−f(η1, ζ2; η1, ζ2) + f(ζ1, ζ2; ζ1, ζ2)]Ddσξ2 .

2.3 Three kinds of Poincaré-Bertrand transformation formu-
las of two times singular integrals

Theorem 2.7 Let E = f(η1, η2; ξ1, ξ2) ∈ H(∂Ω, β), 0 < β < 1, ζ1 ∈
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∂Ω1, ζ2 ∈ ∂Ω2. Then

	1 =
∫

∂Ωη

Adση1dση2B

∫
∂Ωξ

dσξ1CĒD̄dσξ2

=
∫

∂Ωξ

dσξ1dσξ2

∫
∂Ωη

Ādση1C̄ĒD̄dση2B

+
1
4

[∫
∂Ω1ξ1

dσξ1

∫
∂Ω1η1

Adση1Cf(η1, ζ2; ξ1, ζ2)

+
∫

∂Ω2ξ2

dσξ2

∫
∂Ω2η2

f(ζ1, η2; ζ1, ξ2)Ddση2B

]

+
1
16

f(ζ1, ζ2; ζ1, ζ2) = 	2.

Proof Transform 	1 into the form

	1 =
∫

∂Ωη

Adση1dση2B

∫
∂Ωξ

dσξ1C(Φ1+· · ·+Φ11)D̄dσξ2 =D1+· · ·+D11,

where

Φ1 =f(η1, η2; ξ1, ξ2)−f(η1, η2; η1, ξ2)−f(η1, η2; ξ1, η2)+f(η1, η2; η1,η2),

Φ2 =f(η1, η2; ξ1, η2)−f(η1, η2; η1, η2)−f(η1, ζ2; ξ1, ζ2)+f(η1, ζ2; η1,ζ2),

Φ3 =f(η1, η2; η1, ξ2)−f(η1, η2; η1, η2)−f(ζ1, η2; ζ1, ξ2)+f(ζ1, η2; ζ1,η2),

Φ4 =f(η1, η2; η1, η2)−f(ζ1, η2; ζ1, η2)−f(η1, ζ2; η1, ζ2)−f(ζ1, ζ2; ζ1,ζ2),

Φ5 = f(η1, ζ2; ξ1, ζ2) − f(ξ1, ζ2; ξ1, ζ2),

Φ6 = f(ζ1, η2; ζ1, ξ2) − f(ζ1, ξ2; ζ1, ξ2),

Φ7 = f(ξ1, ζ2; ξ1, ζ2) − f(η1, ζ2; η1, ζ2),

Φ8 = f(ζ1, ξ2; ζ1, ξ2) − f(ζ1, η2; ζ1, η2),

Φ9 = f(η1, ζ2; η1, ζ2) − f(ζ1, ζ2; ζ1, ζ2),

Φ10 = f(ζ1, η2; ζ1, η2) − f(ζ1, ζ2; ζ1, ζ2),

Φ11 = f(ζ1, ζ2; ζ1, ζ2).

For every Di, i = 1, ..., 4, we exchange their integral orders by using
Theorem 2.6 and then merge them, and for every Di, i = 5, ..., 10, we
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exchange their integral orders by using (2.3), Theorem 2.4, 2.5 and then
merge them. Moreover for Φ11, by using (2.3) we obtain

	1 =
∫

∂Ωξ

dσξ1dσξ2

∫
∂Ωη

Adση1C(Φ1 + · · · + Φ4)D̄dση2B

+
1
4

∫
∂Ω1ξ1

dσξ1

∫
∂Ω1η1

Adση1C̄(Φ5 + Φ7 + Φ9)

+
1
4

∫
∂Ω2ξ2

dσξ2

∫
∂Ω2η2

(Φ6 + Φ8 + Φ10)Ddση2B̄

+
1
16

f(ζ1, ζ2; ζ1, ζ2)

=
∫

∂Ωξ

dσξ1dσξ2

∫
∂Ωη

Adση1C
[
f(η1, η2; ξ1, ξ2) − f(η1, ζ2; ξ1, ζ2)

−f(ζ1, η2; ζ1, ξ2) + f(ζ1, ζ2; ζ1, ζ2)
]
Ddση2B

+
1
4

∫
∂Ω1ξ1

dσξ1

∫
∂Ω1η1

Adση1C̄
[
f(η1, ζ2; ξ1, ζ2) − f(ζ1, ζ2; ζ1, ζ2)

]

+
1
4

∫
∂Ω2ξ2

dσξ2

∫
∂Ω2η2

[
f(ζ1, η2; ζ1, ξ2) − f(ζ1, ζ2; ζ1, ζ2)

]
Ddση2B̄

+
1
16

f(ζ1, ζ2; ζ1, ζ2).

Finally, applying Theorem 2.1 we can get

	1 =
∫

∂Ωξ

dσξ1dσξ2

∫
∂Ωη

Adση1Cf(η1, η2; ξ1, ξ2)Ddση2B̄

+
1
4

∫
∂Ω1ξ1

dσξ1

∫
∂Ω1η1

Adση1C̄f(η1, ζ2; ξ1, ζ2)

+
1
4

∫
∂Ω2ξ2

dσξ2

∫
∂Ω2η2

f(ζ1, η2; ζ1, ξ2)Ddση2B̄

+
1
16

f(ζ1, ζ2; ζ1, ζ2) = 	2.

Theorem 2.8 Let G = b(η1, η2), F = f(ξ1, ξ2) ∈ H(∂Ω, β), 0 < β <
1, ζ1 ∈ ∂Ω1, ζ2 ∈ ∂Ω2. Then∫

∂Ωη

Adση1dση2B

∫
∂Ωξ

Gdσξ1CF̄D̄dσξ2
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=
∫

∂Ωξ

dσξ1dσξ2

∫
∂Ωη

Ā Gdση1C̄F̄ D̄dση2B

+
1
4

[∫
∂Ω1ξ1

dσξ1

∫
∂Ω1η1

Ab(η1, ζ2)dση1Cf(ξ1, ζ2)

+
∫

∂Ω2ξ2

dσξ2

∫
∂Ω2η2

b(ζ1, η2)f(ζ1, ξ2)Ddση2B

]

+
1
16

b(ζ1, ζ2)f(ζ1, ζ2).

Similar to the proof of Theorem 2.7, we can prove Theorems 2.8 and
2.9.

Theorem 2.9 Let E = f(η1, η2; ξ1, ξ2) ∈ H(∂Ω, β), 0 < β < 1, ζ1 ∈
∂Ω1, ζ2 ∈ ∂Ω2. Then∫

∂Ωη

Adση1dση2B

∫
∂Ωξ

Cdσξ1Edσξ2D

=
∫

∂Ωξ

dσξ1dσξ2

∫
∂Ωη

Ā Cdση1Ēdση2D B

+
1
4

[∫
∂Ω1ξ1

dσξ1

∫
∂Ω1η1

A Cdση1f(η1, ζ2; ξ1, ζ2)

+
∫

∂Ω2ξ2

dσξ2

∫
∂Ω2η2

f(ζ1, η2; ζ1, ξ2)dση2D B

]

+
1
16

f(ζ1, ζ2; ζ1, ζ2).

3 The Composition Formula and Inverse Formula of
Singular Integrals with a Cauchy’s Kernel in Real
Clifford Analysis

In this section, we first prove the composition formula and the inverse
formula of singular integrals with Cauchy’s kernel by using the Poincaré-
Bertrand transformation formula, and then we give the second proof
method for the composition formula and the inverse formula by using
the Plemelj formula for Cauchy’s integrals.
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We suppose E = F (ξ1, ξ2; ζ1, ζ2) = f(ξ1, ξ2) in Theorem 2.9, and
use Theorem 2.1, then the composition formula of singular integrals with
Cauchy’s kernel can be obtained.

Theorem 3.1 Let f(ξ1, ξ2) ∈ H(∂Ω, β), 0 < β < 1, ζi ∈ ∂Ωi, i =
1, 2. Then∫

∂Ωη

Adση1dση2B

∫
∂Ωξ

Cdσξ1f(ξ1, ξ2)dσξ2D =
1
16

f(ζ1, ζ2). (3.1)

Denote the operator

Wf = 4
∫

∂Ωξ

Cdσξ1f(ξ1, ξ2)dσξ2D,

then the composition formula can written as

W 2f = W (Wf) = f. (3.2)

By using the composition formula, the inverse formula for singular
integrals with Cauchy’s kernel can also be obtained.

Theorem 3.2 If f(ξ1, ξ2) ∈ H(∂Ω, β), 0 < β < 1, and we write

Wf = g(η1, η2), (3.3)

then
Wg = f(ζ1, ζ2). (3.4)

Proof From (3.3), (3.2), we get (3.4) and

Wg = W (Wf) = f(ζ1, ζ2).

Inversely, we have (3.3) from (3.4), and (3.3), (3.4) are called the inverse
formulas for singular integrals with Cauchy’s kernel on characteristic
manifolds. Obviously it is equivalent to the composition formula. If
(3.3) is seen as a singular integral equation with the unknown function
f , then from inverse formula (3.4), we can derive that the equation has
a unique solution.

As a corollary, we can get the inverse formula on the smooth closed
manifold as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g(η1) = 2
∫

∂Ω1ξ1

Cdσξ1f(ξ1),

f(ζ1) =
∫

∂Ω1η1

Adση1g(η1).
(3.5)
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From Theorem 1.1 in Section 1, Chapter III, we know that Cauchy
type integral

F (x, y) =
∫

∂Ωξ

ξ1 − x

ωm|ξ1 − x|m dσξ1f(ξ1, ξ2)dσξ2

ξ2 − y

ωk|ξ2 − y|k ,

x /∈ ∂Ω1, y /∈ ∂Ω2

is a biregular function in Ω±
1 × Ω±

2 , and F (x,∞) = F (∞, y) =
F (∞,∞) = 0. Using Theorem 1.1 (the Plemelj formula) in Section
1, Chapter III, it is easy to see that

F++(η1, η2) + F+−(η1, η2) + F−+(η1, η2) + F−−(η1, η2)

= g(η1, η2), (η1, η2) ∈ ∂Ω.
(3.6)

From (3.3), we can get g(η1, η2) = Wf . If we consider another biregular
function Q(x, y) in Ω±

1 × Ω±
2 ,

Q(x, y) =

⎧⎨⎩ F (x, y), (x, y) ∈ Ω+
1 × Ω+

2 or Ω−
1 × Ω−

2

−F (x, y), (x, y) ∈ Ω+
1 × Ω−

2 or Ω−
1 × Ω+

2 ,
(3.7)

then (3.6) can be written as

Q++(η1, η2) − Q+−(η1, η2) − Q−+(η1, η2) + Q−−(η1, η2)

= g(η1, η2),
(3.8)

where (η1, η2) ∈ ∂Ω, i.e. Q(x, y) is a solution of (3.8). From Theorem
1.1 (Plemelj formula) of Section 1, Chapter III again, we see that the
Cauchy type integral

Q1(x, y) =
∫

∂Ωη

η1 − x

ωm|η1 − x|m dση1g(η1, η2)dση2

η2 − y

ωk|η2 − y|k

is a solution of (3.8). Let Q2(x, y) = Q(x, y)−Q1(x, y). From condition
(3.8), we know that Q2 satisfies the homogeneous boundary condition
of (3.8):

Q++
2 (η1, η2) − Q+−

2 (η1, η2) − Q−+
2 (η1, η2) + Q−−

2 (η1, η2)

= 0, (η1, η2) ∈ ∂Ω.

This shows that Q2(x, y) possesses the jump degree zero, hence
Q±±

2 (x, y) can be extended to a biregular function through each other’s
∂Ω, namely Q2(x, y) is a biregular function in Rm ×Rk and Q2(x,∞) =
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Q2(∞, y) = Q2(∞,∞) = 0. From the Liouville theorem (see [19]), we
get Q2 ≡ 0, thus Q(x, y) ≡ Q1(x, y). From the above Plemelj formula
again, we have

F++(η1, η2) − F+−(η1, η2) − F−+(η1, η2) + F−−(η1, η2)

= f(η1, η2), (η1, η2) ∈ ∂Ω,

Q++(η1, η2) + Q+−(η1, η2) + Q−+(η1, η2) + Q−−(η1, η2)

= Wg(η1, η2), (η1, η2) ∈ ∂Ω.

From (3.7), the definition of g(η1, η2) and two formulas as stated above,
we obtain

f(η1, η2) = Wg(η1, η2) = W (Wf) = W 2f,

which shows that the inverse formula is true.

4 The Fredholm Theory of a Kind of Singular Integral
Equations in Real Clifford Analysis

In this section we deal with a kind of integral equations with quasi-
Cauchy kernel in real Clifford analysis. Firstly we write the condition for
an integral equation, which can be reduced to the Fredholm type equa-
tion, and find the regularization operator and prove the regularization
theorem. Let b(η1, η2), c(η1, η2), ϕ(η1, η2) ∈ H(∂Ω, β), 0 < β < 1,
and introduce the singular integral operator with Cauchy kernel and
quasi-Cauchy kernel K, L:

(Kf)(η1, η2) = 4
∫

∂Ωξ

dσξ1Cf(ξ1, ξ2)Ddσξ2 ,

(Lf)(η1, η2) =
∫

∂Ωξ

L1(ξ1, η1)dσξ1f(ξ1, ξ2)dσξ2L2(ξ2, η2),

where the Cauchy kernels C, D have been given in Section 2, and the
quasi-Cauchy kernel is defined as

L1(ξ1, η1) =
l1(ξ1, η1)

|ξ1 − η1|m−1−r1
, L2(ξ2, η2) =

l2(ξ2, η2)
|ξ2 − η2|k−1−r1

,

where li(ξi, ηi) ∈ H(∂Ω, αi), 0 < αi < 1, ri > 0, i = 1, 2. We consider
the singular integral equation with quasi-Cauchy kernel in H(∂Ω, β):

Sf = f + bKf + cLf = ϕ, (4.1)
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in which ∂Ω is the regularizing manifold. The following regularization
theorem about (4.1) can be obtained.

Theorem 4.1 Let (1 − b2) in (4.1) be invertible on ∂Ω, and ‖1/(1 −
b2)‖ < Y, Y a positive constant. Then when ‖b‖β is small enough, (4.1)
can be transformed into a Fredholm type equation.

Proof Firstly we give the operator M : Mψ ≡ 1(ψ − bKψ)/(1 −
b2), ψ ∈ H(∂Ω, β), and prove that M is a regularization operator of
(4.1). In fact, when M acts on the two sides of (4.1), the right-hand side
of (4.1) becomes a function g such that Mϕ = g and the left-hand side
becomes

M(Sf) =
1

1 − b2
[f + cLf − bK(bKf) − bK(cLf)].

By applying Theorem 2.8 to K(bKf) in the above formula and exchang-
ing the integral order of K(cLf) (from Theorems 2.4, 2.5, 2.6, we see
that the order can be exchanged), hence (4.1) possesses the form

[M(SF )](ζ1, ζ2)

= f +
c

1−b2
Lf− 16b

1−b2
Uf− 4b

1−b2
Jf− 4b

1−b2
Qf− 4b

1 − b2
V f

= g(ζ1, ζ2),

(4.2)

in which

(Uf)(ζ1, ζ2)=
∫

∂Ωξ

dσξ1dσξ2

∫
∂Ωη

Āb(η1, η2)dση1C̄f(ξ1, ξ2)Ddση2B,

(Jf)(ζ1, ζ2)=
∫

∂Ω1ξ1

dσξ1

∫
∂Ω1η1

Ab(η1, ζ2)dση1Cf(ξ1, ξ2),

(Qf)(ζ1, ζ2)=
∫

∂Ω2ξ2

dσξ2

∫
∂Ω2η2

b(ζ1, ζ2)f(ζ1, ξ2)Ddση2B,

(V f)(ζ1, ζ2)=
∫

∂Ωξ

dσξ1dσξ2

×
∫

∂Ωη

Āc(η1, η2)L1(ξ1, η1)dση1f(ξ1, ξ2)dση2L2(ξ2, η2)B.

We write the kernel of U, J, Q, V, L as U1, J1, Q1, V1, L1, herein

U1(ζ1, ζ2; ξ1, ξ2) =
∫

∂Ωη

Āb(η1, η2)dση1C̄Ddση2B,
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J1(ζ1, ζ2, ξ1) =
∫

∂Ω1η1

Ab(η1, ζ2)dση1C,

Q1(ζ1, ζ2, ξ2) =
∫

∂Ω2η2

b(ζ1, η2)Ddση2B,

V1(ζ1, ζ2; ξ1, ξ2)

=
∫

∂Ωη

Āc(η1, η2)L1(ξ1, η1)dση1dση2L2(ξ2, η2)B,

L1(ζ1, ζ2; ξ1, ξ2) = L1(ξ1, ζ1)L2(ξ2, ζ2).

Moreover setting v(η1, η2) = b(η1, η2)− b(η1, ξ2)− b(ξ1, η2)+ b(ξ1, ξ2),
and using Theorem 2.2, we know that U1 can be transformed into

U1 =
∫

∂Ωη

Āv(η1, η2)dση1C̄Ddση2B.

From Section 1, Chapter III or [29]2), we get

|v| ≤ J2|η1 − ξ1|β
2 |η2 − ξ2|β

2 (4.3)

where J2 is a positive constant. Hence

|U1|

≤ J3

∫
∂Ωη

|dση1 ||dση2 |
|η1 − ζ1|m−1|η1 − ξ1|m−1−β

2 |η2 − ζ2|k−1−β
2 |η2 − ζ2|k−1

,

(4.4)
in which J3 is a positive constant. Using the Hadamard Theorem (see
[19]), we see that when m > β

2 + 1, k > β
2 + 1, the estimate

|U1| ≤ J4

|ξ1 − ζ1|m−1−β
2 |ξ2 − ζ2|k−1−β

2

, (4.5)

is derived, where J4 is a positive constant. Similarly, we have

|V1|

≤ J5

∫
∂Ωη

|dση1 ||dση2 |
|η1 − ζ1|m−1|η1 − ξ1|m−1−r1 |η2 − ζ2|k−1|η2 − ξ2|k−1−r2

≤ J6

|ξ1 − ζ1|m−1−r1 |ξ2 − ζ2|k−1−r2
.

(4.6)
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where J5, J6 are positive constants. Using Theorem 2.2, we know that
J1 can be changed as

J1 =
∫

∂Ω1η1

Ab1(η1, ζ2)dση1C,

in which b1(η1, ζ2) = b(η1, ζ2) − b(ζ1, ζ2), and

|b1| ≤ J7|η1 − ζ1|β, (4.7)

herein J7 is a positive constant. By the Hadamard Theorem and (4.7),
when m > β + 1, we have

|J1| ≤ J8

∫
∂Ω1η1

|dση1 |
|η1 − ζ1|m−1−β |η1 − ξ1|m−1

≤ J9

|ζ1 − ξ1|m−1−β
.

(4.8)

Next we discuss Q1. We can get, when k > β + 1,

|Q1| ≤ J10

|ξ2 − ζ2|k−1−β
. (4.9)

For L1 obviously we have

|L1| ≤ J11

|ξ1 − ζ1|m−1−r1 |ξ2 − ζ2|k−1−r2
, (4.10)

in which J8, J9, J10, J11 are all positive constants. Combining (4.5),
(4.6), (4.8), (4.9) and (4.10), it is easy to see that (4.2) is a weak singular
equation. By the Hadamard Theorem, when ζ1, ξ1 ∈ ∂Ω1 and µ1, µ2 >
0, we get∫

∂Ω1η1

|dση1 |
|η1 − ζ1|m−1−µ1 |η1 − ξ1|m−1−µ2

≤ J12

|ζ1 − ξ1|m−1−(µ1+µ2)
, (4.11)

where m > µ1 + µ2 + 1, J12 is a positive constant. In addition for
ζ2, ξ2 ∈ ∂Ω2, the same estimate can be concluded. Similarly by the
Hadamard theorem, when ζ, ξ ∈ ∂Ω and µi > 0, 1 ≤ i ≤ 4, we can
obtain∫

∂Ωη

|dση1 ||dση2 |
|η1 − ζ1|m−1−µ1 |η1 − ξ1|m−1−µ2 |η2 − ζ2|k−1−µ3 |η2 − ξ2|m−1−µ4

≤ J13

|ζ1 − ξ1|m−1−(µ1+µ2)|ζ2 − ξ2|k−1−(µ3+µ4)
,

(4.12)
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where m > µ1 +µ2 +1, k > µ3 +µ4 +1, J13 is a positive constant. Thus
from (4.5), (4.11), (4.12), we see that the reiterative kernel U

(p)
1 of U1

for p times satisfies the inequality (see [46])

U
(p)
1 ≤ J14

|ζ1 − ξ1|m−1− pβ
2 |ζ2 − ξ2|k−1− pβ

2

; (4.13)

here J14 is a positive constant. Moreover the reiterative kernels of V1, J1,
Q1, L1 for p times satisfy the similar inequality. Because of ζi ∈ ∂Ω
(i = 1, 2), the integrals∫

∂Ω1η1

|dση1 |
|η1 − ζ1|m−1−µ1

, 0 < µ1 < 1,

∫
∂Ω2η2

|dση2 |
|η2 − ζ2|k−1−µ3

, 0 < µ3 < 1

are uniformly bounded, hence the mixed reiterative kernels of
U1, V1, J1, Q1, L1 for p times satisfy the similar inequality (see [46]).

From (4.13) we see that for the positive integer p satisfying k − 1 −
pβ
2 ≤ 0, m− 1− pβ

2 ≤ 0, the reiterative kernel U
(p)
1 of U1 for p times are

all bounded functions, it is sufficient to assume p ≥ max{[2(m−1)/β]+
1, [2(k−1)/β]+1}. Similarly we can consider the reiterative kernels and
mixed reiterative kernels of U1, V1, J1, Q1, L1 for p times. We know if p
is large enough the reiterative kernels and mixed reiterative kernels for
p times are all bounded functions. This shows that (4.2) is a Fredholm
equation, and the Fredholm theorem holds for it.

Finally we prove that there exists an inverse of M . In fact, from
Section 1, Chapter III or [29]2), we know that ‖KΨ‖β ≤ J15‖Ψ‖β, where
J15 is a positive constant, hence when ‖b‖β is small enough, the operator
bKΨ is a compact operator. Moreover from the hypothesis ‖1/(1 −
b2)‖β < Y, we see that when ‖b‖β is small enough, there exists an inverse
operator M−1 (see [46]). This shows that (4.1) is equivalent to the
Fredholm equation (4.2).

Remark 1 When ‖b‖β, ‖c‖β, ‖ϕ‖β are appropriately small, from Sec-
tion 1, Chapter III (or see [29]2)), we know that (4.1) is solvable

Remark 2 When a is invertible, the singular integral equation (see
[19])

af + bKf + cLf = ϕ, (4.14)

can be rewritten as

f + a−1bKf + a−1cLf = a−1ϕ.
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Hence from Theorem 4.1, we know that under some condition (4.14) is
equivalent to a Fredholm equation.

5 Generalized Integrals and Integral Equations in Real
Clifford Analysis

By using the method of resolution of the identity, in this section we
define the generalized integrals in the sense of M. Spivak (see [73]) on
open manifold for unbounded functions in real Clifford analysis, and dis-
cuss the solvability and the series expression of solutions for the second
kind of generalized integral equations. Finally we give the error estimate
for the approximate calculation.

Let Ω ⊂ Rn be an n-dimensional bounded manifold. We consider a
class of functions belonging to CΩ(A), where the functions are defined
in Ω and with values in the real Clifford space An(R).

Now we give the definition of resolution of the identity.

Let Ω be as stated before, θ be an open covering on Ω, and for every
U ⊂ θ, we have U ⊂ Ω. Then we call θ a permissible open covering on
Ω. Thus there must exist a group of sets Φ of function ϕ belonging to
C∞; ϕ is defined on an open set including Ω, and satisfies

1. For every x ∈ Ω, we have 0 ≤ ϕ(x) ≤ 1.

2. For every x ∈ Ω, there exists an open set V including x such that
there exists a finite ϕ ∈ Φ which isn’t equal to 0, V .

3. For every x ∈ Ω, we have
∑

ϕ∈Φ
ϕ(x) = 1.

4. For every ϕ ∈ Φ, there exists an open set U belonging to θ such
that ϕ is equal to 0 on a closed subset in U.

If Φ ⊂ C∞ satisfies 1− 3, then Φ is called a resolution of the identity on
Ω. If Φ also satisfies 4, then Φ is said to be a resolution of the identity
belonging to θ. If Φ is a resolution of the identity belonging to θ on Ω, f
is a function from Ω to R and f is bounded in an open set of each point
in Ω, the measure of the set {x : f is discontinuous on x} is 0, then for
any ϕ ∈ θ, ϕ|f | on Ω is integrable. If

∑
ϕ∈Φ

∫
Ω ϕ|f | converges, then f is

said to be a generalized integrable function on Ω.
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We consider the function class CΩ(A), where the functions are defined
in Ω and with values in the Clifford space.

Definition 5.1 Let f(x) ∈ CΩ(A), θ be a permissible open covering
on Ω, Φ(⊂ C∞) be a resolution of the identity belonging to θ on Ω so
that for any ϕ ∈ θ, ϕ|f | be integrable on Ω. If

∑
ϕ∈Φ

∫
Ω ϕ|f | as series is

convergent (see [73]), we say that f is integrable as a generalized integral
in the sense of M. Spivak. The sum of the series is called the integral of
f on Ω. All the generalized integrable functions in CΩ(A) can be written
as IΩ(A).

In the following, the generalized integrable functions are considered
such functions in the sense of M. Spivak.

Lemma 5.1 If Ω ∈ Rn is as stated above, then f(x) = ΣfA(x)eA ∈
IΩ(A), if and only if each fA(x) is generalized integrable on Ω.

Lemma 5.2 If Ω ∈ Rn, IΩ(A) is as stated above, then for any f, g ∈
IΩ(A) and Clifford number λ ∈ An(R) we have f + g ∈ IΩ(A) and
λf ∈ IΩ(A).

Proof Let f, g ∈ IΩ(A), i.e. there exist a permissible open covering
θ1 on Ω and a resolution of the identity Φ1 belonging to θ1, such that
f is bounded in an open set of each point in Ω. Hence, for any ϕ ∈
θ1, ϕ|f | is integrable, and

∑
ϕ∈Φ

∫
Ω ϕ|f | as a series is convergent. At the

same time, there exists another permissible open covering θ2 on Ω and
a resolution of the identity Φ2 ∈ θ2, such that g is bounded in one open
set of each point in Ω, and then for any ϕ ∈ θ1, ϕ|f | is integrable, and∑

ϕ∈Φ

∫
Ω ϕ|g| as a series is convergent. Make a permissible open covering

θ = θ1
⋃

θ2 = {U |U = u1
⋃

u2, ui ∈ θi, i = 1, 2} on Ω and a resolution
of the identity Φ = {ϕ|ϕ = ϕ1+ϕ2

2 , ϕi ∈ Φi, i = 1, 2} on Ω, then

∑
ϕ∈Φ

∫
Ω

ϕ|f + g| ≤
∑
ϕ∈Φ

[∫
Ω

ϕ|f | +
∫
Ω

ϕ|g|
]

≤
∑

ϕ1∈Φ1

[∫
Ω

ϕ1|f | +
∫
Ω

ϕ1|g|
]

+
∑

ϕ2∈Φ2

[∫
Ω

ϕ2|f | +
∫
Ω

ϕ2|g|
]
,

and each integral on the right-hand side of the inequality is convergent.
Hence the integral on the left-hand side is also convergent. That is to
say that f + g is generalized integrable. In the same way, if λ is a real
Clifford number, then λf is generalized integrable too. The proof is
completed.
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Definition 5.2 Let f(x, y) =
∑

A fA(x, y)eA, (x, y) ∈ Ω × Ω,where
each fA(x, y) : Ω × Ω → R1 is a real function. If fA(x, y) is square inte-
grable for each variable (the other variable is looked on as a constant),
i.e. |f |2 looked on as a function of x or y is generalized integrable and∫
Ω

∫
Ω |f(x, y)|2dxdy < ∞. Then we define f(x, y) as a square generalized

integrable function. All the square generalized integrable functions can
be written as IΩ×Ω(A).

Lemma 5.3 If f(x, y), g(x, y) ∈ IΩ×Ω(A) and Φ2 ∈ IΩ(A), then

1. About u (here x,y are seen as constants) f(x, u)g(u, y) ∈ IΩ(A).

2.
∫
Ω f(x, u)g(u, y)du ∈ IΩ×Ω(A).

3.
∫
Ω f(x, u)Φ2(u)du ∈ IΩ(A).

Definition 5.3 Let K(x, y) =
∑

A KA(x, y)eA ∈ IΩ×Ω(A) be a func-
tion. We define the corresponding kernel as

K0(x, y) =
∑
A

KA(x, y)eAhA,

where hA = heA = her1 ...erh
= her1

...herh
, A = {r1, ..., rh}, and each hei

is a transformation

hei(ej) =

⎧⎨⎩ ej , i = j,

−ej , i �= j,

and define hA as a left exchange factor.

Definition 5.4 Define the equation

ϕ(x) − λ

∫
Ω

K0(x, u)ϕ(u)du = f(x) (5.1)

as a second kind integral equation, where ϕ(x) is an unknown function,
K0(x, y) is a function defined in Definition 5.3, f is a known function
satisfying f2 ∈ IΩ, and λ(∈ An(R)) is a real Clifford constant. In the
following, we find a solution of equation (5.1).

We find a solution of equation (5.1) by using a successive iteration.
Let ⎧⎨⎩ ϕ0(x) = f(x),

ϕm(x) = f(x) + λ
∫
Ω K0(x, u)ϕm−1(u)du, m = 1, 2....

(5.2)
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It is easy to prove that if the sequence of functions {ϕm(x)} on Ω uni-
formly converges to a function, then the function is a solution of equation
(5.1).

In order to study the property of {ϕm(x)}, we give the following
definition.

Definition 5.5 If K(x, y) ∈ IΩ×Ω(A) is as stated before, we define

K2(x, y) =
∫
Ω

K(x, t)K0(t, y)dt,

Km(x, y) =
∫
Ω

K(x, t)Km−1(t, y)dt, m ≥ 3,

as the reiterative kernel of K(x, y) (m ≥ 2) for m times.

Theorem 5.4 If K0(x, y), K(x, y), λ, f(x) is as stated above, then⎧⎨⎩ K0(x, u)f(x) = f(x)K(x, u),

K0(x, u)λ = λK(x, u).
(5.3)

By the definition of the exchange factor, the theorem is easy to prove.
Consider the sequence of functions {ϕm(x)} as follows:

ϕ1(x) = f(x) + λ

∫
Ω

K0(x, t)ϕ0(t)dt,

ϕ2(x) = f(x) + λ

∫
Ω

K0(x, t)ϕ1(t)dt

= f(x) + λ

∫
Ω

K0(x, t)
[
f(t) + λ

∫
Ω

K0(t, u)f(u)du

]
dt

= f(x) + λ

∫
Ω

K0(x, u)f(u) + (λ)2
∫
Ω

[∫
Ω

K(x, t)K0(t, u)f(u)du

]
dt

= f(x) + λ

∫
Ω

K0(x, u)f(u) + (λ)2
∫
Ω

K2(x, u)f(u)du,

ϕ3(x) = ....

In general, we have

ϕn(x)=f(x)+λ

∫
Ω
K0(x, u)f(u)du+

n∑
m=2

(λ)m
∫
Ω
Km(x, u)f(u)du,

n = 1, 2, ....
(5.4)



Singular Integrals and Equations Dependent on Parameters 157

Theorem 5.5 If f(x) ∈ IΩ(A) and∫
Ω
|f(u)|2dvu = H2, |K(x, u)| ≤ M(u),

which is valid for each x ∈ Ω, u ∈ Ω and M(u) is a generalized square
integrable function

∫
Ω |M(u)|2dvu = L2, where dvu is the volume element

of Ω, then

|
∫
Ω

Km(x, u)f(u)du| ≤ HLmJm
1 , m = 1, 2, .... (5.5)

Proof If m = 1, we denote K(x, u) = K0(x, u) and have

|
∫
Ω

K1(x, u)f(u)du| ≤
∫
Ω
|K1(x, u)f(u)|dvu ≤ J1

∫
Ω
|M(u)| |f(u)|dvu

≤ J1

[∫
Ω
|M(u)|2dvu

] 1
2
[∫

Ω
|f(u)|2dvu

] 1
2

= J1HL.

Suppose that the estimate (5.5) is true for m − 1; we shall prove that
the estimate (5.5) is also true for m, i.e.

|
∫
Ω

Km(x, u)f(u)du| = |
∫
Ω

∫
Ω

K(x, t)K(m−1)(t, u)dtf(u)du|

= |
∫
Ω

K(x, t)[
∫
Ω

K(m−1)(t, u)f(u)du]dt|

≤ J1

[∫
Ω
|K(x, t)|2dvt

] 1
2
[∫

Ω
|
∫
Ω

K(m−1)(t, u)f(u)du|2dvt

] 1
2

≤ J1

[∫
Ω
|M(t)|2dvt

] 1
2
[∫

Ω
J

2(m−1)
1 H2dvt

] 1
2 ≤ HLmJm

1 .

Theorem 5.6 Under the same result as in Theorem 5.2, then for the
real Clifford number λ satisfying |λ| < 1/J2

1L, equation (5.1) has a
unique solution, and the solution is the limit of the sequence of func-
tions: (5.4).

Proof From Theorem 5.4, it is easy to see that the above sequence of
functions uniformly converges on Ω. Obviously its limit function is a
solution of equation (5.1). In the following, we will prove the uniqueness
of the solution. If there exists λ ∈ An(R), and |λ| < 1/J2

1L, then there
exist two solutions ϕ1(x), ϕ2(x) of equation (5.1), i.e.

ϕ1(x) − λ

∫
Ω

K0(x, u)ϕ1(u)du = f(x),

ϕ2(x) − λ

∫
Ω

K0(x, y)ϕ2(u)du = f(x).
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Let the first equality be subtracted from the second one, then we get

ϕ1(x) − ϕ2(x) − λ

∫
Ω

K0(x, u)[ϕ1(u) − ϕ2(u)]du = 0.

Denote ω(x) = ϕ1(x) − ϕ2(x), then we have

ω(x) = λ

∫
Ω

K0(x, u)ω(u)du,

and then

|ω(x)|2 ≤ J2
1 |λ|2

∫
Ω
|K0(x, u)|2dvu

∫
Ω
|ω(u)|2dvu.

Making the volume integration go to x on Ω in both sides of the inequal-
ity, i.e. ∫

Ω
|ω(x)|2dvxJ2

1 ≤ L2|λ|2
∫
Ω
|ω(u)|2dvu,

we get

(1 − J2
1L2|λ|2)

∫
Ω
|ω(u)|2dvx ≤ 0,

and ∫
Ω
|ω(u)|2dvx = 0, ϕ1 = ϕ2.

The proof of Theorem 5.3 is finished.

Theorem 5.7 Under the same conditions described in Theorem 5.4,
we substitute {ϕn} in (5.4) into the accurate solution of equation (5.1),
then the norm error is not greater than

|λ|n+1Ln+1HJ2n+1
1

1 − |λ|2L2J2
1

.



CHAPTER VI

SEVERAL KINDS OF HIGH ORDER

SINGULAR INTEGRALS AND

DIFFERENTIAL INTEGRAL EQUATIONS

IN REAL CLIFFORD ANALYSIS

In the first section of this chapter, we shall introduce six kinds of
high order singular integrals of quasi-Bochner-Martinelli type with one
singular point, definitions of their Hadamard principal values, recur-
rence formulas, calculational formulas and differential formulas. In the
second section, after proving the lemma of Hile type, we shall discuss
the properties of high order singular integral operators and then prove
the Hölder continuity of several kinds of high order singular integrals
of quasi-Bochner-Martinelli type on the integral path. In the third sec-
tion, we shall prove the existence and uniqueness of solutions for three
kinds of nonlinear differential integral equations with high order sin-
gular integrals of quasi-Bochner-Martinelli type by the method of in-
tegral equations. In the fourth section, we shall give the definitions of
high order singular integrals with two singular points, and prove the
Poincaré-Bertrand permutation formulas for high order singular inte-
grals of quasi-Bochner-Martinelli type in real Clifford analysis by using
the differential formulas (see [29]10), [65]).

1 The Hadamard Principal Value and Differential Formu-
las of High Order Singular Integrals with One Singular
Point in Real Clifford Analysis

First of all, we introduce the concept of Hadamard principal value
of high order singular integrals with one singular point for functions of
one complex variable. Suppose that L is a simple smooth closed curve,
f ′ on L is Hölder continuous, and f ′ ∈ H. Let τo ∈ L; it is clear that
the integral ∫

L

f(τ)
(τ − τ0)2

dτ
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at τ = τ0 possesses a singularity of high order (> 1). In general, it is
divergent, even under the sense of Cauchy principal value. For instance,
if we define ∫

L

f(τ)
(τ − τ0)2

dτ = lim
η→0

∫
L−Lη

f(τ)
(τ − τ0)2

dτ, (1.1)

in which Lη = L ∩ {|τ − τ0| ≤ η}, then its limit on the right-hand side
of the above equality usually doesn’t exist. This is because we know∫

L−Lη

f(τ)dτ

(τ − τ0)2
=
∫

L−Lη

f ′(τ)
(τ − τ0)

dτ +
[

f(τ2)
τ2 − τ0

− f(τ1)
τ1 − τ0

]
= I1 + I2,

by means of integration by parts, where τ1, τ2 ∈ L ∩ {|τ − τ0| = η}.
Noting f ′ ∈ H, if η → 0, then

I1 →
∫

L

f ′(τ)
(τ − τ0)

dτ,

and

lim
η→0

I2 = lim
η→0

{f(τ2)−f(τ0)
τ2−τ0

− f(τ1)−f(τ0)
τ1−τ0

+f(τ0)(
1

τ2−τ0
− 1

τ1−τ0
)}

= f(τ0) lim
η→0

(
1

τ2 − τ0
− 1

τ1 − τ0
).

This shows that this integral generally doesn’t exist (except f(τ0) = 0)
Hence we cannot define this kind of singular integrals by (1.1). Now
we first consider the case: n = 2 > 1 on the left side of (1.1). It is a
singular integral whose singularity is higher than one order. Moreover,
we conclude that L and n satisfy conditions such that the integral∫

L−Lη

f(τ)
(τ − τ0)n

dτ (1.2)

can converge under the sense of Cauchy principal value. Some authors
have discussed the problem and acquired some results. But for applica-
tions, we shall discuss the high order singular integral (1.2) from another
view. This view was first proposed by J. Hadamard for similar singular
integrals on the real axis, namely the idea of the so-called finite part of an
integral [70]. In 1957, C. Fox generalized this idea to integral (1.2) with
the positive integer n [16]. Afterwards Chuanrong Wang discussed the
problem in [78], and then Jianke Lu in [45], generalized n to the case
of a general positive real number and an integral with many singular
points. Using the idea of Hadamard principal value, we can define∫

L

f(τ)
(τ − τ0)2

dτ =
∫

L

f ′(τ)
τ − τ0

dτ,
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i.e. ∫
L

( −1
τ − τ0)

)′
f(τ)dτ =

∫
L
−
( −1

τ − τ0

)
f ′(τ)dτ,

where −(
−1

τ − τ0
) possesses a lower order singularity than (

−1
τ − τ0

)′. Thus

we define a high order singular integral by induction on an integral
having a low order singularity. It is also said that this integral is defined
by cutting out the divergent part I2. This idea is easily generalized to
a general high order singular integral (1.2). Provided that we do the
integration by parts and cut out the terms with divergent part several
times, then we can write the definition as desired. In [46], Jianke Lu
straight forwardly defines

∫
L

f(τ)
(τ − τ0)n+1

dτ =
1
n!

∫
L

f (n)(τ)
τ − τ0

dτ, τ0 ∈ L.

In 1990, Xiaoqin Wang obtained some results about the Hadamard prin-
cipal value of high order singular integrals for functions of several com-
plex variables (see [79]).

In this chapter, we discuss the first kind of function in Clifford analysis
f(x) : Rn → An(R), where the element in An(R) is u =

∑
A

uAeA (uA ∈
R), the element in Rn is x =

∑n
k=1 xkek, herein e1 = 1, x̄ = x1e1 −∑n

k=2 xkek, and denote the operator

∂̄x =
n∑

k=1

ek
∂

∂xk
, ∂x = e1

∂

∂x1
−

n∑
k=2

ek
∂

∂xk
.

Before giving the induction definition of high order singular integrals,
we prove several lemmas.

Lemma 1.1 Let u(x) =
∑
A

uA(x)eA, v(x) =
n∑

i=1
vi(x)ei, x ∈ Rn,

( )xj =
∂( )
∂xj

.
∂uA

∂xk
, (vi)xk

be continuous. Then

∂x(uv) = (∂xu)v + u(∂xv) +
n∑

j=2

(eju − uej)vxj , (1.3)

∂x(uv) = (∂xu)v + u(∂xv) +
n∑

j=2

(uej − eju)vxj , (1.4)
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u(∂xv + ∂xv)

= −(∂xu)v − (∂xu)v + ∂x(uv) + ∂x(uv)

−
n∑

j=2
(eju − uej)vxj −

n∑
j=2

(uej − eju)vxj .

(1.5)

Proof It is clear that

∂x(uv) =
n∑

j=1
ej
∑
A

n∑
i=1

(uAvi)xjeAei

=
n∑

j=1
ej
∑
A

(uA)xjeA

n∑
i=1

viei +
n∑

j=1
ej
∑
A

(uA)eA

n∑
i=1

(vi)xjei

= (∂xu)v +
n∑

j=1
eju(vxj ) = (∂xu)v + ue1vx1 +

n∑
j=2

eju(vxj )

= (∂xu)v + ue1vx1 + u
n∑

j=2
ejvxj +

n∑
j=2

(eju − uej)vxj

= (∂xu)v + u(∂xv) +
n∑

j=2
(eju − uej)vxj .

Similarly, we can prove (1.4). Substitute v̄ into the position of v in (1.3),
and add it to (1.4), then we immediately get (1.5).

Corollary 1.2 If the conditions in Lemma 1.1 are satisfied, then

(1) If v is independent of x, then ∂x(uv) = (∂xu)v.

(2) If u = u1e1, then

∂̄x(uv) = (∂̄xu)v + u(∂̄xv); ∂x(uv) = (∂xu)v + u(∂xv),

u(∂̄xv̄ + ∂xv) = −(∂̄xu)v̄ − (∂xu)v + ∂x(uv̄) + ∂x(uv).

Lemma 1.3 Let α > 0, x, y ∈ Rn, x �= y, v1 =
x − y

(−α)|x − y|n+α
, v2 =

1
(2 − n − α)|x − y|n+α−2

. Then

∂v1

∂xj
=

ej

(−α)|x − y|n+α
− (n + α)(xj − yj)

|x − y|2 v1, (1.6)

∂v̄1

∂xj
=

ēj

(−α)|x − y|n+α
− (n + α)(xj − yj)

|x − y|2 v̄1, (1.7)
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∂v2

∂xj
=

xj − yj

|x − y|n+α
, 1 ≤ j ≤ n, (1.8)

where

ēj =

⎧⎨⎩ e1, j = 1,

−ej , 2 ≤ j ≤ n,
x − y =

n∑
j=1

(xj − yj)ej .

Proof Noting

∂v1

∂xj
=

−1
α

n∑
i=1

[(xi − yi)|x − y|−n−α]xjei

=
−1
α

ej |x − y|−n−α

+
−1
α

n∑
i=1

(xi−yi)ei
−n−α

2
(

n∑
i=1

(xi−yi)2)
−n−α−2

2 · 2(xj−yj)

=
ej

−α|x − y|n+α
− (n + α)(xj − yj)

v1

|x − y|2 ,

and substituting v1 into the position of v1 in (1.6), we get (1.7), and

∂v2

∂xj
=

−n−α+2
2(2−n−α)

(
n∑

i=1

(xi−yi)2)
−n−α

2 · 2(xj−yj)=
xj−yj

|x−y|n+α
,

hence (1.8) is valid.

Lemma 1.4 Let x, y ∈ Rn, x �= y, α > 0. Then

∂x(x̄ − ȳ) = n, ∂x(x − y) = n; (1.9)⎧⎨⎩ ∂x|x − y|σ = σ|x − y|σ−2(x − y),

∂x|x − y|σ = σ|x − y|σ−2(x̄ − y), σ > 0;
(1.10)

∂x(
x̄ − y

(−α)|x − y|n+α
) = ∂x(

x − y

(−α)|x − y|n+α
) =

1
|x − y|n+α

; (1.11)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂x(

1
(2 − n − α)|x − y|n+α−2

) =
x − y

|x − y|n+α
,

∂x(
1

(2 − n − α)|x − y|n+α−2
) =

x̄ − ȳ

|x − y|n+α
.

(1.12)
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Proof It is evident that

∂̄x(x̄ − ȳ) =
n∑

j=1

ej
∂

∂xj
[(x1 − y1)e1 −

n∑
i=2

(xi − yi)ei]

= e1e1 +
n∑

j=2

ej(−1)ej = n.

Similarly, we can prove ∂x(x − y) = n. In addition, noting that

∂̄x|x − y|σ =
n∑

j=1

ej
∂

∂xj
(

n∑
i=1

(xi − yi)2)
σ
2

=
n∑

j=1

ej
σ

2
(

n∑
i=1

(xi − yi)2)
σ
2
−1 · 2(xj − yj)

= σ|x − y|σ−2
n∑

j=1

(xj − yj)ej

= σ|x − y|σ−2(x − y),

(1.10) is derived. Moreover we can prove ∂x|x−y|σ =σ|x−y|σ−2(x̄−y).
By means of Corollary 1.2 and (1.10), we get

∂̄x(
x̄ − ȳ

(−α)|x − y|n+α
)

= [∂̄x(
|x − y|−n−α

−α
)](x̄ − ȳ) +

1
(−α)|x − y|n+α

∂x(x − y)

=
n + α

α
|x − y|−n−α−2(x − y)(x̄ − ȳ) +

n

−α|x − y|n+α

= (
n

α
+ 1)

1
|x − y|n+α

+
n

−α|x − y|n+α

=
1

|x − y|n+α
.

Finally, we can similarly prove ∂x(
x − y

−α|x − y|n+α
) =

1
|x − y|n+α

, namely

(1.11) is true. On the basis of (1.10), the equality (1.12) can be derived.

Lemma 1.5 Let u(x) =
∑
A

uA(x)eA, v(x) =
n∑

i=1
vi(x)ei, and the con-

ditions of Lemma 1.1 be satisfied. Then

∂̄x(vu) = (∂̄xv)u + v(∂̄xu) − 2
n∑

i,j=2,i �=j

vieiejuxj , (1.13)
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∂x(vu) = (∂xv)u + v(∂xu) + 2
n∑

i,j=2,i �=j

vieiejuxj . (1.14)

Proof Taking into account

∂̄x(vu) =
n∑

j=1
ej

n∑
i=1

∑
A

(viuA)xjeieA

=
n∑

j=1
ejvxju +

n∑
j=1

ej

n∑
i=1

viei
∑
A

(uA)xjeA

= (∂̄xv)u + ve1ux1 +
n∑

j=2
ejvuxj

= (∂̄xv)u + v(e1ux1 +
n∑

j=2
ejuxj ) +

n∑
j=2

ejvuxj − v
n∑

j=2
ejuxj

= (∂̄xv)u + v(∂̄xu) +
n∑

j=2

n∑
i=1

viejeiuxj −
n∑

j=2

n∑
i=1

vieiejuxj

= (∂̄xv)u + v(∂̄xu) − 2
n∑

i,j=2,i�=j
vieiejuxj ,

(1.13) is derived. Similarly we can prove (1.14).

Corollary 1.6 If the conditions in Theorem 1.4 are satisfied, then

1) If u is independent of x, then ∂̄x(vu)=(∂̄xv)u, ∂x(vu)=(∂xv)u.

2) When v = v1e1, then ∂̄x(vu) = (∂̄xv)u+v(∂̄xu), ∂x(vu) = (∂xv)u+
v(∂xu).

Suppose that D is a connected open set in Rn, Ω is the boundary of
D, and ∂̄xf(x, y), ∂xf(x, y) (x, y ∈ Ω) are Hölder continuous. In (1.4),
set

v =
1

(2 − n − α)|x − y|n+α−2
, u = f(x, y);

by (1.12), (1.8), we have

f(x, y)
x − y

|x − y|n+α
= ∂x

[
f(x, y)

1
(2 − n − α)|x − y|n+α−2

]
− ∂xf(x, y)

(2 − n − α)|x − y|n+α−2
−

n∑
j=2

[f(x, y)ej − ejf(x, y)]
xj − yj

|x − y|n+α
,

in which
x − y

|x − y|n+α
has α (> 0) order singularity, and

xj − yj

|x − y|n+α
also

has a high order singularity. By means of the above equality, we know
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∂x[
f(x, y)

(2 − n − α)|x − y|n+α−2
] also has α(> 0) order singularity. However

1
|x − y|n+α−2

possesses a lower order singularity than
x − y

|x − y|n+α
. Hence

according to the idea of Hadamard’s principal value of integrals and
using the lower order singular integrals to inductively define the high
order singular integrals, we can give the following definitions.

Definition 1.1 The α (> 0) order singular integral is defined as∫
Ω

f(x, y)(x̄ − ȳ)
|x − y|n+α

dσx =
∫
Ω

∂xf(x, y)dσx

(n + α − 2)|x − y|n+α−2
, y ∈ Ω.

Similarly, in (1.3) let v =
1

(2 − n − α)|x − y|n+α−2
, u = f(x, y); by

means of (1.12), (1.8), we can give the following definition.

Definition 1.2∫
Ω

f(x, y)(x−y)
|x−y|n+α

dσx =
∫
Ω

∂̄xf(x, y)dσx

(n+α−2)|x−y|n+α−2
, α > 0, y ∈ Ω.

In (1.5), let u = f(x, y), v = x−y
(−α)|x−y|n+α ; in view of (1.11), (1.6),

(1.7), we have

2f(x, y)
|x − y|n+α

= −
[
(∂̄xf(x, y))(x̄ − ȳ)
(−α)|x − y|n+α

+ (∂xf(x, y))
x − y

(−α)|x − y|n+α

]

+∂̄x

[
f(x, y)(x̄ − ȳ)

(−α)|x − y|n+α

]
+ ∂x

[
f(x, y)(x − y)

(−α)|x − y|n+α

]
−

n∑
j=2

(ejf(x, y) − f(x, y)ej)ℵ −
n∑

j=2

(f(x, y)ej − ejf(x, y))ℵ,

where

ℵ =
(

ej

(−α)|x − y|n+α
− (n + α)(xj − yj)

|x − y|2 · (x − y)
(−α)|x − y|n+α

)
.

Similarly to the above discussion, we see that in the right-hand side

of the above equality, the term
1

|x − y|n+α
possesses an α + 1 order

singularity and other terms
x − y

(−α)|x − y|n+α
,

x − y

(−α)|x − y|n+α
have an

α (> 0) order singularity. So we can inductively give
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Definition 1.3 The integral∫
Ω

f(x, y)dσx

|x − y|n+α
=
∫
Ω

(∂̄xf)(x̄ − ȳ) + (∂xf)(x − y)
2α|x − y|n+α

dσx, α > 0, y ∈ Ω

is called the first kind of high order singular integral of quasi-Bochner-
Martinelli type with one singular point.

In (1.14), set

u = f(x, y), v =
1

(2 − n − α)|x − y|n+α−2
;

by means of the components vi = 0 (2 ≤ i ≤ n) of v and (1.12), we can
get

(x̄−ȳ)f(x, y)
|x−y|n+α

=∂x[
f(x, y)

(2−n−α)|x−y|n+α−2
]− ∂xf(x, y)

(2−n−α)|x−y|n+α−2
.

Similarly to the above discussion, we see that
1

|x − y|n+α−2
has a lower

order singularity than the α order of
x̄ − ȳ

|x − y|n+α
, so we can also give

Definition 1.4∫
Ω

(x̄ − ȳ)f(x, y)dσx

|x − y|n+α
=
∫
Ω

∂xf(x, y)dσx

(n + α − 2)|x − y|n+α−2
, α > 0, y ∈ Ω.

By means of (1.12), (1.13), we can define other high order singular
integrals through a similar method.

Definition 1.5∫
Ω

(x − y)f(x, y)dσx

|x − y|n+α
=
∫
Ω

∂̄xf(x, y)dσx

(n + α − 2)|x − y|n+α−2
, α > 0, y ∈ Ω.

In view of Definitions 1.1, 1.2, 1.4 and 1.5, we get∫
Ω

(x̄ − ȳ)f(x, y)dσx

|x − y|n+α
=
∫
Ω

f(x, y)(x̄ − ȳ)
|x − y|n+α

dσx, α > 0, y ∈ Ω, (1.15)

∫
Ω

(x − y)f(x, y)dσx

|x − y|n+α
=
∫
Ω

f(x, y)(x − y)
|x − y|n+α

dσx, α > 0, y ∈ Ω. (1.16)

The above two high order singular integrals are called the second and
third kinds of high order singular integrals of quasi-Bochner-Martinelli
type with one singular point respectively.
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Definition 1.6 If f(x, y), (x, y) ∈ Ω × Ω is still Hölder continuous
after the action of the operator ∂̄x, ∂x for p (≤ m) times, and 0 < β < 1
is its Hölder index, then we say that f(x, y) belongs to H

(m)
x (β), and

write f ∈ H
(m)
x (β). When m = 0, denote by f ∈ H

(0)
x (β) the Hölder

continuity of f on x ∈ Ω, where β is the Hölder index. Similarly we can
define f ∈ H

(m)
y (β).

In the following, we prove the recurrence formulas of the first, sec-
ond and third kinds of high order singular integrals of quasi-Bochner-
Martinelli type.

Theorem 1.7 Let n > 1, α > 2m > 0, f(x, y) ∈ H
(2m+2)
x (β), y ∈ Ω.

Then∫
Ω

f(x, y)(x̄ − ȳ)dσx

|x − y|n+α
=

µ

n + α − 2m − 2

∫
Ω

∆m
x (∂xf(x, y))dσx

|x − y|n+α−2m−2
, (1.17)

∫
Ω

f(x, y)(x − y)
|x − y|n+α

dσx =
µ

n + α − 2m − 2

∫
Ω

∆m
x (∂̄xf(x, y))dσx

|x − y|n+α−2m−2
, (1.18)

∫
Ω

f(x, y)dσx

|x − y|n+α
=

µ

α(n + α − 2m − 2)

∫
Ω

∆m+1
x f(x, y)dσx

|x − y|n+α−2m−2
, (1.19)

where the operator ∆x = ∂x∂̄x = ∂̄x∂x,

µ =
(α − 2m − 2)!!(n + α − 2m − 2)!!

(α − 2)!!(n + α − 2)!!
,

and r!! expresses the multiplication of the integers from r to the least
integer every time decrease 2, and if −2 < r ≤ 0, denote r!! = 1, then

µ =
(n + α − 2m − 2)!!

(n + α − 2)!!(α − 2)(α − 4) · · · (α − 2m)
. (1.20)

Proof On the basis of Definitions 1.1, 1.2 and 1.3, we have∫
Ω

f(x, y)(x̄ − ȳ)dσx

|x − y|n+α
=
∫
Ω

∂xf(x, y)dσx

(n + α − 2)|x − y|n+α−2

=
∫
Ω

(∂x∂xf)(x − y) + (∂x∂xf)(x − y)
2(n + α − 2)(α − 2)|x − y|n+α−2

dσx

=
∫
Ω

[∆x∂xf(x, y)]dσx

(n + α − 2)(n + α − 4)(α − 2)|x − y|n+α−4
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=
∫
Ω

[(∂x∆x∂xf)(x − y) + (∂x∆x∂xf)(x − y)]dσx

2(n + α − 2)(n + α − 4)(α − 2)(α − 4)|x − y|n+α−4

=
∫
Ω

[∆2
x∂xf(x, y)]dσx

(n + α − 2)(n + α − 4)(n + α − 6)(α − 2)(α − 4)|x − y|n+α−6

=
(α − 6)!!(n + α − 6)!!

(n + α − 6)(α − 2)!!(n + α − 2)!!

∫
Ω

[∆2
x∂xf(x, y)]dσx

|x − y|n+α−6
.

Inductively, we can get∫
Ω

f(x, y)(x̄ − ȳ)dσx

|x − y|n+α
=

µ

n + α − 2m − 2

∫
Ω

(∆x
m∂xf(x, y))dσx

|x − y|n+α−2m−2
.

This shows that (1.17) is valid. Similarly, we can prove (1.18). By means
of Definitions 1.1, 1.2 and 1.3, we know∫

Ω

f(x, y)dσx

|x − y|n+α
=

1
2α

∫
Ω

(∂xf)(x − y) + (∂xf)(x − y)
|x − y|n+α

dσx

=
1

α(n + α − 2)

∫
Ω

(∆xf)dσx

|x − y|n+α−2

=
1

2α(n + α − 2)(α − 2)

∫
Ω

[(∂x∆xf)(x − y) + (∂x∆xf)(x − y)]
|x − y|n+α−2

dσx

=
∫
Ω

[∆2
xf(x, y)]dσx

α(α − 2)(n + α − 2)(n + α − 4)|x − y|n+α−4

=
(α − 4)!!(n + α − 4)!!

α(n + α − 4)(α − 2)!!(n + α − 2)!!

∫
Ω

[∆2
xf(x, y)]dσx

|x − y|n+α−4
.

Moreover, it is easy to verify (1.19).

Theorem 1.8 Let f(x, y) ∈ H
(2k+2)
x (β), y ∈ Ω, n > 1, 0 < r <

1, λ =
(n − r − 3)!!

(n + 2k − r − 1)!!(2k − r − 1)!!
. Then there exist the first, sec-

ond and third kinds of high order singular integrals of quasi-Bochner-
Martinelli type. Moreover, they can be expressed in the forms∫

Ω

f(x, y)(x̄ − ȳ)dσx

|x − y|n+2k+1−r
= λ

∫
Ω

[∆k
x∂xf(x, y)]dσx

|x − y|n−1−r
, (1.21)

∫
Ω

f(x, y)(x − y)dσx

|x − y|n+2k+1−r
= λ

∫
Ω

[∆k
x∂̄xf(x, y)]dσx

|x − y|n−1−r
, (1.22)

∫
Ω

f(x, y)dσx

|x−y|n+2k+1−r
=

λ

2k+1−r

∫
Ω

[∆k+1
x f(x, y)]dσx

|x−y|n−1−r
. (1.23)
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Proof In Theorem 1.7, setting α = 2k + 1 − r, m = k, and according
to (1.20), we get

µ

n + α − 2m − 2
=

(n − r − 1)!!
(n − r − 1)(n + 2k − r − 1)!!(2k − r − 1)!!

= λ,

hence (1.21), (1.22), (1.23) are correct. The integrals on the right-hand
side of (1.21), (1.22),(1.23) converge under the general sense as in Section
4, Chapter II. So there exist the above three kinds of high order singular
integrals of quasi-Bochner-Martinelli type, and then (1.21), (1.22), (1.23)
are their calculational formulas. This completes the proof.

The values calculated by (1.21) (1.22) (1.23) are called the Hadamard
principal value of the first, second and third kinds of high order singular
integrals of quasi-Bochner-Martinelli type. In the following, we derive
the differential formulas of three kinds of high order singular integrals
of quasi-Bochner-Martinelli type.

Theorem 1.9 Let u(y) =
∑
A

uA(y)eA, (uA(y))yk
be continuous, and

v3 =
1

|x − y|n−1−r
, 0 < r < 1, x, y ∈ Rn, x �= y. Then

n∑
j=2

(uej − eju)
∂v3

∂yj
= (n− r− 1)

[
(x̄ − ȳ)u

|x − y|n+1−r
− u(x̄ − ȳ)

|x − y|n+1−r

]
, (1.24)

n∑
j=2

(eju−uej)
∂v3

∂yj
= (n− r− 1)

[
(x − y)u

|x − y|n+1−r
− u(x − y)

|x − y|n+1−r

]
. (1.25)

Proof In accordance with (1.8), we have

∂v3

∂yj
= (n − r − 1)

(xj − yj)
|x − y|n+1−r

,

and then
n∑

j=2

(uej − eju)
∂v3

∂yj

= (n − r − 1)

⎡⎣u n∑
j=2

(xj − yj)ej

|x − y|n+1−r
−

n∑
j=2

(xj − yj)eju

|x − y|n+1−r

⎤⎦
+(n − 1 − r)

[
(
−u(x1 − y1)e1

|x − y|n+1−r
+

(x1 − y1)e1u

|x − y|n+1−r

]
= (n − r − 1)

[
(x̄ − ȳ)u

|x − y|n+1−r
− u(x̄ − ȳ)

|x − y|n+1−r

]
.
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Thus (1.24) is obtained. By means of [(x̄− ȳ) + (x− y)]u− u[(x̄− ȳ) +
(x − y)] = 0, we know that (1.25) is true.

Definition 1.7 Let f(x, y) ∈ H
(m)
x (β1), (x, y) ∈ Ω × Ω, and f(x, y) ∈

H
(p)
y (β2), 0 < βi < 1, i = 1, 2. Then we say that f(x, y) belongs to

H(m,p)(β1, β2), and is denoted by f(x, y) ∈ H(m,p)(β1, β2).

Theorem 1.10 Let f(x, y) ∈ H(m+2k+2,m)(β1, β2), 0 < βi < 1, i =
1, 2, 0 < r < 1, λ be as stated in Theorem 1.8. Then

∂m
y

∫
Ω

f(x, y)(x̄ − ȳ)dσx

|x − y|n+2k+1−r
= λ

∫
Ω

[(∂y + ∂x)m∆k
x∂xf(x, y)]

|x − y|n−1−r
dσx , (1.26)

∂m
y

∫
Ω

f(x, y)(x − y)dσx

|x − y|n+2k+1−r
= λ

∫
Ω

[(∂y + ∂x)m∆k
x∂̄xf(x, y)]dσx

|x − y|n−1−r
, (1.27)

∂m
y

∫
Ω

f(x, y)dσx

|x − y|n+2k+1−r
=

λ

2k + 1 − r

∫
Ω

[(∂y + ∂x)m∆k+1
x f(x, y)]dσx

|x − y|n−1−r
.

(1.28)

Proof On the basis of (1.12), we have

∂y
1

|x − y|n−1−r
= −(n − 1 − r)

y − x

|x − y|n+1−r
= (n − 1 − r)

x − y

|x − y|n+1−r
.

By means of (1.21), (1.4), (1.24), (1.15) and Definition 1.1, we obtain

∂y

∫
Ω

f(x, y)(x̄ − ȳ)dσx

|x − y|n+2k+1−r

= λ

∫
Ω

[∂y∆k
x∂xf(x, y)]dσx

|x − y|n−1−r
+ λ(n − 1 − r)

∫
Ω

[∆k
x∂xf(x, y)](x − y)dσx

|x − y|n+1−r

+λ(n − 1 − r)
∫
Ω

(x − y)[∆k
x∂xf(x, y)]dσx

|x − y|n+1−r

−λ(n − 1 − r)
∫
Ω

[∆k
x∂xf(x, y)](x − y)dσx

|x − y|n+1−r

= λ

∫
Ω

(∂y∆k
x∂x)f(x, y)dσx

|x − y|n−1−r
+ λ(n − 1 − r)

∫
Ω

[∆k
x∂xf(x, y)](x − y)dσx

|x − y|n+1−r

= λ

∫
Ω

[∂y∆k
x∂xf(x, y)]dσx

|x − y|n−1−r
+ λ(n − 1 − r)

∫
Ω

[∂x∆k
x∂xf(x, y)]dσx

(n − 1 − r)|x − y|n−1−r

= λ

∫
Ω

(∂y + ∂x)(∆k
x∂xf(x, y))

|x − y|n−1−r
dσx.
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Inductively, it is easy to see that (1.26) is valid. By means of (1.22),
(1.23), we can use the same method to prove (1.27) and (1.28).

Theorem 1.11 If f(x, y) ∈ H(m+2k+2,m)(β1, β2), 0 < βi < 1, i = 1, 2,
0 < r < 1, λ is as stated in Theorem 1.8, then

∂̄m
y

∫
Ω

f(x, y)(x̄ − ȳ)dσx

|x − y|n+2k+1−r
= λ

∫
Ω

[(∂̄y + ∂̄x)m∆k
x∂xf(x, y)]dσx

|x − y|n−1−r
, (1.29)

∂̄m
y

∫
Ω

f(x, y)(x − y)dσx

|x − y|n+2k+1−r
= λ

∫
Ω

[(∂̄y + ∂̄x)m∆k
x∂̄xf(x, y)]dσx

|x − y|n−1−r
, (1.30)

∂̄m
y

∫
Ω

f(x, y)dσx

|x − y|n+2k+1−r
=

λ

2k + 1 − r

∫
Ω

[(∂̄y + ∂̄x)m∆k+1
x f(x, y)]dσx

|x − y|n−1−r
.

(1.31)

Proof In view of (1.12), we have

∂̄y
1

|x − y|n−1−r
=

−(n − 1 − r)(y − x)
|x − y|n+1−r

=
(n − 1 − r)(x − y)

|x − y|n+1−r
.

By means of (1.21),(1.3),(1.25),(1.16) and Definition 1.2, we get

∂̄y

∫
Ω

f(x, y)(x̄ − ȳ)dσx

|x − y|n+2k+1−r

= λ

∫
Ω

[∂̄y∆k
x∂xf(x, y)]dσx

|x − y|n−1−r
+ λ

∫
Ω

[∆k
x∂xf(x, y)](n − 1 − r)(x − y)dσx

|x − y|n+1−r

+λ

∫
Ω

(n − 1 − r)(x − y)[∆k
x∂xf(x, y)]dσx

|x − y|n+1−r

−λ

∫
Ω

(n − 1 − r)[∆k
x∂xf(x, y)](x − y)dσx

|x − y|n+1−r

= λ

∫
Ω

[∂̄y∆k
x∂xf(x, y)]dσx

|x − y|n−1−r
+ λ(n − 1 − r)

∫
Ω

[∆k
x∂xf(x, y)](x − y)dσx

|x − y|n+1−r

= λ

∫
Ω

[∂̄y∆k
x∂xf(x, y)]dσx

|x − y|n−1−r
+ λ(n − 1 − r)

∫
Ω

[∂̄x∆k
x∂xf(x, y)]dσx

(n − 1 − r)|x − y|n−1−r

= λ

∫
Ω

(∂̄y + ∂̄x)(∆k
xf(x, y))

|x − y|n−1−r
dσx.

Inductively, it is easy to see that (1.29) is true. By means of (1.22),
(1.23), we can use the same method to prove (1.30) and (1.31).



High Order Singular Integrals and Differential Integral Equations 173

Corollary 1.12 Let f(x, y) ∈ H(m+p+2k+2,m+p)(β1, β2), 0 < βi <
1, i = 1, 2, 0 < r < 1, λ be as stated in Theorem 1.8. Then

∂̄m
y ∂p

y

∫
Ω

f(x, y)(x̄−ȳ)dσx

|x−y|n+2k+1−r
=λ

∫
Ω

[(∂̄y + ∂̄x)m(∂y+∂x)p∆k
x∂xf(x, y)]dσx

|x−y|n−1−r
,

(1.32)

∂̄m
y ∂p

y

∫
Ω

f(x, y)(x−y)dσx

|x−y|n+2k+1−r
=λ

∫
Ω

(∂̄y + ∂̄x)m(∂y+∂x)p∆k
x∂̄xf(x, y)]dσx

|x−y|n−1−r
,

(1.33)

∂̄m
y ∂p

y

∫
Ω

f(x, y)dσx

|x − y|n+2k+1−r

=
λ

2k + 1 − r

∫
Ω

[(∂̄y + ∂̄x)m(∂y + ∂x)p∆k+1
x f(x, y)]dσx

|x − y|n−1−r
.

(1.34)

Proof It is easy to prove this corollary by using Theorems 1.10 and
1.11.

Theorem 1.13 If f(x, y) ∈ H(m+2k+2,p)(β1, β2), 0 < βi < 1, i = 1, 2,
t1, t2 ∈ Ω, 0 < r < 1, λ is as stated in Theorem 1.8, then

∂̄m
t1 ∂p

t2

∫
Ω

f(x, t2)(x̄ − t̄1)dσx

|x − t1|n+2k+1−r
= λ

∫
Ω

[(∂̄m
x ∂p

t2∆
k
x∂xf(x, t2)]dσx

|x − t1|n−1−r
, (1.35)

∂̄m
t1 ∂p

t2

∫
Ω

f(x, t2)(x − t1)dσx

|x − t1|n+2k+1−r
= λ

∫
Ω

[(∂̄m
x ∂p

t2∆
k
x∂̄xf(x, t2)]dσx

|x − t1|n−1−r
, (1.36)

∂̄m
t1 ∂p

t2

∫
Ω

f(x, t2)dσx

|x − t1|n+2k+1−r
=

λ

2k + 1 − r

∫
Ω

[(∂̄m
x ∂p

t2∆
k+1
x f(x, t2)]dσx

|x − t1|n−1−r
.

(1.37)

Proof According to (1.21), Corollaries 1.2, 1.6, (1.12), (1.16) and Def-
inition 1.2, we have

∂̄m
t1 ∂p

t2

∫
Ω

f(x, t2)(x̄ − t̄1)dσx

|x − t1|n+2k+1−r

= ∂̄m
t1 ∂p

t2λ

∫
Ω

[∆k
x∂xf(x, t2)]dσx

|x − t1|n−1−r

= λ∂̄m
t1

∫
Ω

[∂p
t2∆

k
x∂xf(x, t2)]dσx

|x − t1|n−1−r
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= λ∂̄m−1
t1

∫
Ω

(n − 1 − r)(x − t1)[∂
p
t2∆

k
x∂xf(x, t2)]dσx

|x − t1|n+1−r

= λ(n − 1 − r)∂̄m−1
t1

∫
Ω

∂p
t2∆

k
x∂xf(x, t2)](x − t1)dσx

|x − t1|n+1−r

= λ∂̄m−1
t1

∫
Ω

[(∂̄x∂p
t2∆

k
x∂xf(x, t2)]dσx

|x − t1|n−1−r

= λ

∫
Ω

[(∂̄m
x ∂p

t2∆
k
x∂xf(x, t2)]dσx

|x − t1|n−1−r
.

This shows that (1.35) is correct.

Similarly, By means of (1.22), Corollaries 1.2 and 1.6, (1.12), (1.15)
and Definition 1.2, we get (1.36).

At last, by using (1.23), Corollaries 1.2, 1.6, (1.12), (1.16) and Defi-
nition 1.2, we can get (1.37).

In the following, we discuss the fourth, fifth and sixth kinds of high
order singular integrals of quasi-Bochner-Martinelli type.

Theorem 1.14 Suppose that u(x) =
∑
A

uA(x)eA, v(x) =
n∑

i=1
vi(x)ei

are as those in Lemma 1.1. Then

[(∂x − ∂̄x)(v + v̄)]u = (v + v̄)[(∂̄x − ∂x)u] + (∂x − ∂̄x)[(v + v̄)u] , (1.38)

[∂x(v + v̄)]u = −(v + v̄)∂xu + ∂x[(v + v̄)u] . (1.39)

Proof We substitute v by v̄ in Lemma 1.5 and notice when j ≥ 2, v̄j =
−vj , then

∂̄x(v̄u) = (∂̄xv̄)u + v̄(∂̄xu) + 2
n∑

i,j=2,i �=j

vieiejuxj , (1.40)

and

∂x(v̄u) = (∂xv̄)u + v̄(∂xu) − 2
n∑

i,j=2,i �=j

vieiejuxj . (1.41)

In view of (1.12), (1.14), (1.40), (1.41), we get (1.38). By means of
(1.14), (1.41), it is easy to derive (1.39). The proof is finished.
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Suppose α > 0, and let v = x̄−ȳ
(−α)|x−y|n+α , u = f(x, y) in (1.38) of

Theorem 1.11. By using Lemma 1.3, we can get

[(∂x−∂̄x)(v+v̄)]u =
n + α

α
[

(x̄ − ȳ)2

|x − y|n+α+2
− (x − y)2

|x − y|n+α+2
]f(x, y), (1.42)

(v + v̄)[(∂̄x − ∂x)u] =
1
α

[
x̄ − ȳ

|x − y|n+α
+

x − y

|x − y|n+α
][(∂x − ∂̄x)f(x, y)].

(1.43)
The right-hand side of (1.43) has a lower order singularity than the
right-hand side of (1.42). Similarly to the discussion of Definition 1.1,
due to (1.38), we shall use the integral on the right-hand side of (1.43)
to define the following integral.

Definition 1.8∫
Ω

[
(x̄ − ȳ)2

|x − y|n+α−2
− (x − y)2

|x − y|n+α+2

]
f(x, y)dσx

=
1

n + α

∫
Ω

(x̄ − ȳ) + (x − y)
|x − y|n+α

[(∂x − ∂̄x)f(x, y)]dσx,

(1.44)

where α > 0, y ∈ Ω.

The singular integral on the left side of (1.44) is called the fourth kind
of high order singular integral of quasi-Bochner-Martinelli type with one
singular point.

Similarly, let v =
x̄ − ȳ

|x − y|n+α
, u = f(x, y) in (1.39), then we get

[∂x(v + v̄)]u =

[
2 − n − α

|x − y|n+α
− (x̄ − ȳ)2(n + α)

|x − y|n+α+2

]
f(x, y), (1.45)

−(v + v̄)∂xu =
−[(x̄ − ȳ) + (x − y)]

|x − y|n+α
∂xf(x, y). (1.46)

In the terms on the right-hand side of (1.45), (1.46), it is only the term:
(x̄ − ȳ)2(n + α)
|x − y|n+α+2

f(x, y), whose high order singular integral has not been

defined.

Similarly, by means of (1.39), we can inductively define the fifth kind
of high order singular integrals of quasi-Bochner-Martinelli type with
one singular point.
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Definition 1.9∫
Ω

(x̄ − ȳ)2f(x, y)dσx

|x − y|n+α+2
=

−(n + α − 2)
n + α

∫
Ω

f(x, y)dσx

|x − y|n+α

+
1

n + α

∫
Ω

[(x̄ − ȳ) + (x − y)]∂xf(x, y)
|x − y|n+α

dσx,

(1.47)

if y ∈ Ω, α > 0.

Finally according to (1.44), (1.47), it is easy to give the definition
of the sixth kind of high order singular integrals of quasi-Bochner-
Martinelli type with one singular point.

Definition 1.10∫
Ω

(x − y)2f(x, y)dσx

|x − y|n+α+2
=

(n + α − 2)
−(n + α)

∫
Ω

f(x, y)dσx

|x − y|n+α

+
1

n + α

∫
Ω

[(x̄ − ȳ) + (x − y)]
|x − y|n+α

∂̄xf(x, y)dσx,

(1.48)

for y ∈ Ω, α > 0.

As a supplement to Lemma 1.4, it is easy to prove the following
equalities:

∂̄x(
x − y

|x − y|n+α+2
) =

2 − n

|x − y|n+α
− (n + α)(x − y)2

|x − y|n+α+2
, α > 0, (1.49)

∂x(
x̄ − ȳ

|x − y|n+α
) =

2 − n

|x − y|n+α
− (n + α)(x̄ − ȳ)2

|x − y|n+α+2
, α > 0. (1.50)

From the second term on the right side of (1.49), (1.50), we see that for
investigating high order singular integrals in real Clifford analysis, it is
necessary to discuss the fourth, fifth and sixth kinds of high order sin-
gular integrals of quasi-Bochner-Martinelli type with one singular point.

By means of Definitions 1.8, 1.9, 1.10 and recurrence formulas, cal-
culational formulas, and differential formulas for the first, second, and
third kinds of high order singular integrals of quasi-Bochner-Martinelli
type with one singular point, we can get the recurrence formulas, calcu-
lational formulas, and differential formulas for the fourth, fifth and sixth
kinds of high order singular integrals of quasi-Bochner-Martinelli type.
Because of page limitation, we don’t prove all formulas, and only prove
one of every kind of high order singular integrals; the other proofs are
left to readers.
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Theorem 1.15 If n > 1, α > 2m > 0, f(x, y) ∈ H2m+2
x (β), y ∈ Ω, µ

is as stated in Lemma 1.6, then we have the recurrence formula

∫
Ω

[
(x̄ − ȳ)2

|x − y|n+α+2
− (x − y)2

|x − y|n+α+2

]
f(x, y)dσx

=
µ

(n + α)(n + α − 2m − 2)

∫
Ω

∆m
x

[
(∂2

x − ∂̄2
x)f(x, y)

]
|x − y|n+α−2m−2

dσx.

(1.51)

Proof By Definition 1.8, (1.15), (1.16), (1.17) and (1.18), we have

∫
Ω

[
(x̄ − ȳ)2

|x − y|n+α+2
− (x − y)2

|x − y|n+α+2

]
f(x, y)dσx

=
1

n + α

∫
Ω

(x̄ − ȳ) + (x − y)
|x − y|n+α

[
(∂x − ∂̄x)f(x, y)

]
dσx

=
µ

(n + α)(n + α − 2m − 2)

∫
Ω

∆m
x (∂x + ∂̄x)(∂x − ∂̄x)f(x, y)

|x − y|n+α−2m−2
dσx,

=
µ

(n + α)(n + α − 2m − 2)

∫
Ω

∆m
x

[
(∂2

x − ∂̄2
x)f(x, y)

]
dσx

|x − y|n+α−2m−2
.

Theorem 1.16 Suppose that f(x, y) ∈ H
(2k+2)
x (β), y ∈ Ω, λ is as

stated in Theorem 1.8, and n > 1, 0 < r < 1. Then

∫
Ω

(x̄ − ȳ)2f(x, y)dσx

|x − y|n+2k+3−r

=
λ(2 − n)

(n + 2k + 1 − r)(2k + 1 − r)

∫
Ω

∆k+1
x f(x, y)

|x − y|n−1−r
dσx

+
λ

n + 2k + 1 − r

∫
Ω

∆k
x

[
∂2

xf(x, y)
]

|x − y|n−1−r
dσx.

(1.52)

Proof By Definition 1.9, (1.15), and Theorem 1.8, we get

∫
Ω

(x̄ − ȳ)2f(x, y)dσx

|x − y|n+2k+3−r

=
−(n + 2k − 1 − r)

n + 2k + 1 − r

∫
Ω

f(x, y)dσx

|x − y|n+2k+1−r

+
1

n + 2k + 1 − r

∫
Ω

[(x̄ − ȳ) + (x − y)] ∂xf(x, y)dσx

|x − y|n+2k+1−r
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=
−λ(n + 2k − 1 − r)

(n + 2k + 1 − r)(2k + 1 − r)

∫
Ω

[
∆k+1

x f(x, y)
]
dσx

|x − y|n−1−r

+
λ

n + 2k + 1 − r

∫
Ω

∆k
x

[
(∂x + ∂̄x)∂xf(x, y)

]
dσx

|x − y|n−1−r

=
λ(2 − n)

(n + 2k + 1 − r)(2k + 1 − r)

∫
Ω

∆k+1
x f(x, y)

|x − y|n−1−r
dσx

+
λ

n + 2k + 1 − r

∫
Ω

∆k
x

[
∂2

xf(x, y)
]
dσx

|x − y|n−1−r
.

Theorem 1.17 Let f(x, y) ∈ H(m+2k+2,m)(β1, β2), 0 < βi < 1, 0 <
r < 1, λ be the same as that in Theorem 1.8. Then

∂m
y

∫
Ω

(x − y)2f(x, y)dσx

|x − y|n+2k+3−r

=
λ(2 − n)

(n + 2k + 1 − r)(2k + 1 − r)

∫
Ω

[
(∂y + ∂x)m∆k+1

x f(x, y)
]
dσx

|x − y|n−1−r

+
λ

n + 2k + 1 − r

∫
Ω

[
(∂y + ∂x)m∆k

x∂̄2
xf(x, y)

]
dσx

|x − y|n−1−r
.

(1.53)

Proof By Definitions 1.5, 1.10, and Theorem 1.10, we can get

∂m
y

∫
Ω

(x − y)2f(x, y)dσx

|x − y|n+2k+3−r

=
(n + 2k − 1 − r)
−(n + 2k + 1 − r)

∂m
y

∫
Ω

f(x, y)dσx

|x − y|n+2k+1−r

+
1

n + 2k + 1 − r
∂m

y

∫
Ω

[(x̄ − ȳ) + (x − y)] ∂̄xf(x, y)dσx

|x − y|n+2k+1−r

=
(n + 2k − 1 − r)λ

−(n + 2k + 1 − r)(2k + 1 − r)

∫
Ω

(∂y + ∂x)m∆k+1
x f(x, y)dσx

|x − y|n−1−r

+
λ

n + 2k + 1 − r

∫
Ω

{(∂y + ∂x)m
[
(∆k+1

x + ∆k
x∂̄2

x)f(x, y)
]
}

|x − y|n−1−r
dσx

=
λ(2 − n)

(n + 2k + 1 − r)(2k + 1 − r)

∫
Ω

[
(∂y + ∂x)m∆k+1

x f(x, y)
]
dσx

|x − y|n−1−r

+
λ

n + 2k + 1 − r

∫
Ω

[
(∂y + ∂x)m∆k

x∂̄2
xf(x, y)

]
dσx

|x − y|n−1−r
.
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2 The Hölder Continuity of High Order Singular Inte-
grals in Real Clifford Analysis

By the known inequality

|σµ
1 − σµ

2 | ≤ |σ1 − σ2|µ, (2.1)

where 0 ≤ µ ≤ 1, σi > 0, i = 1, 2 [87], we can prove the following
theorem similar to the Hile type lemma (see Section 2, Chapter II).

Theorem 2.1 Let m be a positive integer, α > 0 and [α] be the integral
part of α; x, y, ŷ, t, t̂ ∈ Rn, t, t̂ �= 0, x �= y, x �= ŷ. Then∣∣∣∣∣ 1

|t|m − 1
|t̂|m

∣∣∣∣∣ ≤
m−1∑
k=0

∣∣∣∣∣ t̂t
∣∣∣∣∣
k ∣∣∣∣∣ t − t̂

t

∣∣∣∣∣ |t̂|−m, (2.2)

and∣∣∣∣ 1
|x − y|α − 1

|x − ŷ|α
∣∣∣∣ ≤ [α]∑

k=0

∣∣∣∣x − ŷ

x − y

∣∣∣∣ αk
[α]+1

∣∣∣∣y − ŷ

x − y

∣∣∣∣ α
[α]+1 |x − ŷ|−α. (2.3)

Proof Noting that ∣∣∣∣ 1
|t|m − 1

t̂m

∣∣∣∣ =
∣∣∣|t̂|m − |t|m

∣∣∣
|t|m|t̂|m

=

∣∣∣|t̂| − |t|
∣∣∣m−1∑

k=0
|t̂|m−1−k|t|k

|t|m|t̂|m ≤
m−1∑
k=0

∣∣∣∣∣ t̂t
∣∣∣∣∣
k ∣∣∣∣∣ t − t̂

t

∣∣∣∣∣ |t̂|−m,

it is clear that (2.2) is true. By means of (2.1), (2.2), we have∣∣∣∣ 1
|x − y|α − 1

|x − ŷ|α
∣∣∣∣

=

∣∣∣∣∣ 1

(|x − y| α
[α]+1 )[α]+1

− 1

(|x − ŷ| α
[α]+1 )[α]+1

∣∣∣∣∣
≤

[α]∑
k=0

∣∣∣∣x − ŷ

x − y

∣∣∣∣ αk
[α]+1

∣∣∣∣∣ |x − y| α
[α]+1 − |x − ŷ| α

[α]+1

|x − y| α
[α]+1

∣∣∣∣∣ (|x − ŷ| α
[α]+1

)−[α]−1

≤
[α]∑
k=0

∣∣∣∣x − ŷ

x − y

∣∣∣∣ αk
[α]+1

∣∣∣|x − y| − |x − ŷ|
∣∣∣ α
[α]+1

|x − y| α
[α]+1

|x − ŷ|−α

≤
[α]∑
k=0

∣∣∣∣x − ŷ

x − y

∣∣∣∣ αk
[α]+1

∣∣∣∣y − ŷ

x − y

∣∣∣∣ α
[α]+1 |x − ŷ|−α.
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From this section to the last section in this chapter, we suppose that the
boundary Ω of the domain D is a smooth, oriented, compact, Liapunov
surface, and the orientation of Ω is the induced orientation of D. In
view of the definition of Liapunov surface, there exists a positive number
d > 0, such that for any point N0 ∈ Ω, the sphere with the center at N0

and radius d (or less then d) can be divided Ω into two parts, and the
interior part of the sphere is denoted by Ω′. We choose N0 as the origin
of the local generalized sphere coordinate system, such that xn-axis and
the outwards normal direction of Ω at N0 are identical. If d is small
enough and the outward normal line of Ω′ at any point N(ξ1, · · · , ξn) is
n0. Let r0 = |N0N |. Denote by ρ0 the length of the project of r0 on the
tangent plane through N0 and by (ρ0, φ1, · · · , φn−2) the local generalized
sphere coordinate of N , and let J =

∣∣∣ D(ξ1,...,ξn−1)
D(ρ0,ϕ1,...,ϕn−2)

∣∣∣ be the Jacobian
determinant of coordinate transformation. In Section 2, Chapter I, we
have obtained

cos(n0, xn) ≥ 1
2
, |J | ≤ ρ0

n−2. (2.4)

For any Φ ∈ H(n̄+2k+2,n̄)(β1, β2), 0 < βi < 1, i = 1, 2, the norm of Φ is
defined as

‖Φ‖β =
∑

0≤m+p≤n̄

C(∂̄m+2k+2
x ∂y

pΦ,Ω × Ω)+
∑

0≤m+p≤n̄

H(∂̄m+2k+2
x ∂y

pΦ,Ω × Ω).

For convenience, we denote Φ̂ = ∂̄m+2k+2
x ∂p

yΦ, where

C(Φ̂, Ω × Ω) = max
(x,y)∈Ω×Ω

|Φ̂(x, y)|,

H(Φ̂, Ω × Ω) = sup
(x1,y1),(x2,y2)∈Ω×Ω

|Φ̂(x1, y1) − Φ̂(x2, y2)|
|x1 − x2|β1 + |y1 − y2|β2

,

in which (x1, y1) �= (x2, y2). This definition is different from the defi-
nition of H(f, ∂Ω × ∂Ωβ) in Section 4, Chapter II, but it is the same
as that in Tongde Zhong’s paper in 1980 [88]2), and it is easy to prove
H(n̄+2k+2, n̄)(β1, β2) is a compact Banach space, and its norm possesses
the property

‖F + G‖β ≤ ‖F‖β + ‖G‖β, ‖FG‖β ≤ 2n−1‖F‖β‖G‖β,

where F, G ∈ H(n̄+2k+2,n̄)(β1, β2).

Theorem 2.2 If the operator on Ω is defined as

(Pϕ)(y) =
∫
Ω

ϕ(x, y)dσx

|x − y|n−1−r
,
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here 0 < r < 1, ϕ(x, y) ∈ H(0,0)(β1, β2), 0 < βi < 1, i = 1, 2, ω =
min(β1, β2), r > β1, β1 < n−1−r

n−1 , y ∈ Ω, then Pϕ ∈ H(0)
y (ω) on Ω.

Proof We introduce the operator

(θ1ϕ)(y) =
∫
Ω

ϕ(x, y) − ϕ(y, y)
|x − y|n−1−r

dσx, (θ2ϕ)(y) =
∫
Ω

ϕ(y, y)dσx

|x − y|n−1−r
.

Obviously (Pϕ)(y) = (θ1ϕ)(y)+(θ2ϕ)(y). Firstly, we discuss the Hölder
continuity of (θ1ϕ)(y). From Section 2, Chapter 1, we know dσx =

m(x)dsx, m(x) =
n∑

j=1
ej cos(m, ej) is the outward normal direction of

x on Ω. For any y1, y2 ∈ Ω, we denote δ = |y1 − y2|. Let 3δ < d, here d
is as stated before. We make a sphere with the center at y1 and radius
3δ. Denote by Ω1 the interior part of Ω and by Ω2 the left part. It is
easy to see that

|(θ1ϕ)(y1) − (θ1ϕ)(y2)|

≤ | ∫Ω1

ϕ(x, y1) − ϕ(y1, y1)
|x − y1|n−1−r

dσx| +
∣∣∣∣∫

Ω1

ϕ(x, y2) − ϕ(y2, y2)
|x − y2|n−1−r

dσx

∣∣∣∣
+

∣∣∣∣∫Ω2
(

1
|x − y1|n−1−r

− 1
|x − y2|n−1−r

)(ϕ(x, y1) − ϕ(y1, y1))dσx

∣∣∣∣
+

∣∣∣∣∫Ω2

[(ϕ(x, y1) − ϕ(x, y2)) + (ϕ(y2, y2) − ϕ(y1, y1))]
|x − y2|n−1−r

dσx

∣∣∣∣
= L1 + L2 + L3 + L4.

The formula (2.4) about N0 ∈ Ω discussed at the beginning of the section
is used as y1, and the projective domain of Ω1 on the tangent plane of
y1 is denoted by π1, from which we can get

L1 ≤ G1‖ϕ‖β

∫
Ω1

dsx

|x − y1|n−1−r−β1

= G1‖ϕ‖β

∫
Ω1

cos(n0, xn)dsx

|x − y1|n−1−r−β1cos(n0, xn)

≤ G1‖ϕ‖β

∫
π1

dξ1 · · · dξn−1

(|x − y1|n−1−r−β1)1
2

≤ G2‖ϕ‖β

∫ 3δ
0

(ρ0)n−2dρ0

ρ0
n−1−r−β1

≤ G3‖ϕ‖βδrδβ1

≤ G4‖ϕ‖βδβ1 = G4‖ϕ‖βδωδβ1−ω

≤ G5‖ϕ‖βδω = G5‖ϕ‖β|y1 − y2|ω.

(2.5)

Similarly, we have
L2 ≤ G6‖ϕ‖β|y1 − y2|ω, (2.6)
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where Gi(i = 1, ..., 6) are positive constants independent of y1, y2. In
the following, Gi(i ≥ 1) are denoted as positive constants with the
similar property. Next, we estimate L3. By means of Theorem 2.1,
the inequality∣∣∣∣ 1

|x − y1|n−1−r
− 1

|x − y2|n−1−r

∣∣∣∣
≤

n−2∑
k=0

∣∣∣∣x − y2

x − y1

∣∣∣∣
k(n−1−r)

n−1
∣∣∣∣y1 − y2

x − y1

∣∣∣∣n−1−r
n−1 | x − y2 |−n+1−r

is derived. For any x ∈ Ω2, we have |x−y1| ≥ 3δ = 3|y1−y2|, |x−y2| ≥
2δ, hence 1

2 ≤
∣∣∣x−y2

x−y1

∣∣∣ ≤ 2, |x − y2| ≥ 1
2 |x − y1|. Moreover, noting that

(n − 1 − r)/(n − 1) > β1, we have

∣∣∣∣y1 − y2

x − y1

∣∣∣∣n−1−r
n−1 ≤

∣∣∣∣y1 − y2

x − y1

∣∣∣∣β1

= (
δ

|x − y1|)
β1 ,

and then

L3 ≤ G7

∫
Ω2

δβ1‖ϕ‖β|x − y1|β1dsx

|x − y1|n−1−r+β1
= G7|y1 − y2|β1

∫
Ω2

‖ϕ‖βdsx

|x − y1|n−1−r

≤ G8‖ϕ‖β|y1 − y2|β1 ≤ G9‖ϕ‖β|y1 − y2|ω.
(2.7)

By virtue of

|(ϕ(x, y1) − ϕ(x, y2)) + (ϕ(y2, y2) − ϕ(y1, y1))|

≤ ‖ϕ‖β|y1 − y2|β2 + ‖ϕ‖β

[
|y1 − y2|β1 + |y1 − y2|β2

]
≤ G10‖ϕ‖β|y1 − y2|ω,

we know
L4 ≤ G11‖ϕ‖β|y1 − y2|ω. (2.8)

Next we discuss the Hölder continuity of (θ2ϕ)(y). It is not difficult to
see that

|(θ2ϕ)(y1) − (θ2ϕ)(y2)|

≤
∣∣∣∣(ϕ(y1, y1) − ϕ(y2, y2))

∫
Ω

dσx

|x − y1|n−1−r

∣∣∣∣ ,
+ |ϕ(y2, y2)|

∣∣∣∣∫
Ω

(
1

|x − y1|n−1−r
− 1

|x − y2|n−1−r

)
dσx

∣∣∣∣
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≤ G12‖ϕ‖β(|y1 − y2|β1 + |y1 − y2|β2) + ‖ϕ‖β

∣∣∣∣∫
Ω1

dσx

|x − y1|n−1−r

∣∣∣∣
+ ‖ϕ‖β

∣∣∣∣∫
Ω1

dσx

|x − y2|n−1−r

∣∣∣∣
+ ‖ϕ‖β

∣∣∣∣∫
Ω2

(
1

|x − y1|n−1−r
− 1

|x − y2|n−1−r

)
dσx

∣∣∣∣
= L5 + L6 + L7 + L8.

Firstly, it is easy to see that

L5 ≤ G13‖ϕ‖β|y1 − y2|ω. (2.9)

Secondly, similarly to the deduction of (2.5), and according to the con-
dition of r > β1 ≥ ω, we get

L6 ≤ G14‖ϕ‖βδr ≤ G15‖ϕ‖βδω = G15‖ϕ‖β|y1 − y2|ω. (2.10)

Moreover, we have
L7 ≤ G16‖ϕ‖β|y1 − y2|ω. (2.11)

Finally, similarly to the deduction of (2.7), and noting that r − β1 > 0,
we get

L8 ≤ G17‖ϕ‖β|y1 − y2|β1

∫
Ω2

dσx

|x − y1|n−1−(r−β1)
≤ G18‖ϕ‖β|y1 − y2|ω.

(2.12)
In view of (2.5) − (2.12), the inequality

|(Pϕ)(y1) − (Pϕ)(y2)| ≤ G19‖ϕ‖β|y1 − y2|ω ≤ G20|y1 − y2|ω, (2.13)

is derived, namely Pϕ ∈ H0
y (ω). The proof of this theorem is finished.

Now, we verify the hölder continuity for every kind of high order
singular integrals of quasi-Bochner-Martinelli type on an integral path.

Theorem 2.3 Let f(x, y) ∈ H(2k+2,0)(β1, β2), 0 < r < 1, r > β1, n −
1 > r/(1 − β1), ω = min(β1, β2), y ∈ Ω, 0 < βi < 1, i = 1, 2. Then
the six kinds of high order singular integrals of quasi-Bochner-Martinelli
type as stated before all belong to H0

y (ω) on Ω.

Proof On the basis of Theorem 2.2 and the calculation formulas of
every kind of high order singular integrals of quasi-Bochner-Martinelli
type, we can prove this theorem.
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3 Nonlinear Differential Integral Equations including
Three Kinds of High Order Singular Integrals of Quasi-
Bochner-Martinelli Type in Real Clifford Analysis

From the Definitions 1.8, 1.9, 1.10, we know that the fourth, fifth, and
sixth kinds of high order singular integrals of quasi-Bochner-Martinelli
type with one singular point can be expressed by the first, second, and
third kinds of high order singular integrals of quasi-Bochner-Martinelli
type with one singular point. So when we consider the nonlinear differen-
tial equations including high order singular integrals of quasi-Bochner-
Martinelli type in real Clifford analysis, it is sufficient to discuss the
equations with the first, second, and third kinds of high order singular
integrals of quasi-Bochner-Martinelli type. In the field of differential
integral equations, Y. Hino investigated the linear Volterra differential
integral equation in 1990 (see [24]).

Due to the enlightenment from the Volterra differential integral equa-
tion, in this section we shall prove the existence and uniqueness of so-
lutions for some nonlinear differential integral equations with the first,
second, and third kinds of high order singular integrals of quasi-Bochner-
Martinelli type by using the results in Sections 1 and 2, the method of
integral equations and the Schauder fixed-point theorem.

In this section, Ω is the same as that in the above section. Now we
introduce three high order singular integral operators over Ω × Ω, i.e.

(S1ϕ)(t1, t2) =
∫
Ω

ϕ(x, t2)(x̄ − t̄1)dσx

|x − t1|n+2k+1−r1
,

(S2ϕ)(t1, t2) =
∫
Ω

ϕ(x, t2)(x − t1)dσx

|x − t1|n+2k+1−r2
,

(S3ϕ)(t1, t2) =
∫
Ω

ϕ(x, t2)dσx

|x − t1|n+2k+1−r3
,

where 0 < ri < 1, i = 1, 2, 3, (t1, t2) ∈ Ω × Ω, and the nonlinear differ-
ential integral equation including Siϕ (1 ≤ i ≤ 3) is

Wϕ =
3∑

i=1
(ai(t1, t2)

∑
0≤ki+mi≤ni

∂̄ki
t1 ∂mi

t2 Siϕ)

+g(t1, t2)f [t1, t2, ∂̄p1
t1 ∂q1

t2 S1ϕ, ∂̄p2
t1 ∂q2

t2 S2ϕ, ∂̄p3
t1 ∂q3

t2 S3ϕ]

= ϕ(t1, t2), (t1, t2) ∈ Ω × Ω,

(3.1)

here ki, mi, ni, pi, qi are non-negative integers.
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Theorem 3.1 If the operator

(PΨ)(t1, t2) =
∫
Ω

Ψ(x, t2)dσx

|x − t1|n−1−r
, 0 < r < 1,

is given, then for any Ψ(x, y) ∈ H
(0,0)
(β1,β2), 0 < βi < 1, i = 1, 2, n − 1 >

r/(1 − β1), there exists a positive constant J1 independent of Ψ, such
that

‖PΨ‖β ≤ J‖Ψ‖β. (3.2)

Proof From Section 2, Chapter II, it is clear that dσx = m(x)dsx.
Now we introduce the singular integral operator

(QΨ)(t1, t2) =
∫
Ω

(Ψ(t1, t2) − Ψ(x, t2))dσx

|x − t1|n−1−r

= Ψ(t1, t2)
∫
Ω

dσx

|x − t1|n−1−r
− PΨ.

(3.3)

Firstly, we estimate

|(QΨ)(t1, t2)| ≤ G1‖Ψ‖β

∫
Ω

|t1 − x|β1 |m(x)|dsx

|x − t1|n−1−r

≤ G1‖Ψ‖β

∫
Ω

dsx

|x − t1|n−1−r−β1
≤ G2‖Ψ‖β,

(3.4)

where G1, G2 are positive constants independent of Ψ.

In order to consider H(QΨ, Ω × Ω, β), denote
∑

= Ω × Ω, and for
any (t1, t2), (t̂1, t̂2) ∈∑, set δ = |t1− t̂1|. Let 3δ < d, and d be as stated
in Section 2. We make a sphere with the center at t1 and radius 3δ.
Denote by Ω1 the interior part and by Ω2 the left part, hence

|(QΨ)(t1, t2) − (QΨ)(t̂1, t̂2)|

≤
∣∣∣∣∫

Ω1

(Ψ(t1, t2) − Ψ(x, t2))dσx

|x − t1|n−1−r

∣∣∣∣+
∣∣∣∣∣
∫
Ω1

(Ψ(t̂1, t̂2) − Ψ(x, t̂2))dσx

|x − t̂1|n−1−r

∣∣∣∣∣
+

∣∣∣∣∣
∫
Ω2

(
1

|x − t1|n−1−r
− 1

|x − t̂1|n−1−r

)
(Ψ(t1, t2) − Ψ(x, t2))dσx

∣∣∣∣∣
+

∣∣∣∣∣
∫
Ω2

[(Ψ(x, t̂2) − Ψ(x, t2)) + (Ψ(t1, t2) − Ψ(t̂1, t̂2))]
|x − t̂1|n−1−r

dσx

∣∣∣∣∣
= L1 + L2 + L3 + L4.

(3.5)
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The formula (2.4) about N0 ∈ Ω in Section 2 is used to t1, and the
projective domain of Ω on the tangent plane of t1 is denoted by π1, thus
we can obtain

L1 ≤ G3‖Ψ‖β

∫
Ω1

dsx

|x − t1|n−1−r−β1

= G3‖Ψ‖β

∫
Ω1

cos(n0, xn)dsx

|x − t1|n−1−r−β1cos(n0, xn)

≤ G3‖Ψ‖β

∫
π1

dξ1...dξn−1

|x − t1|n−1−r−β1 1
2

≤ G4‖Ψ‖β

∫ 3δ

0

ρn−2
0 dρ0

ρn−1−r−β1
0

≤ G5‖Ψ‖βδrδβ1 ≤ G6‖Ψ‖β|t1 − t̂1|β1

≤ G6‖Ψ‖β[|t1 − t̂1|β1 + |t2 − t̂2|β2 ],

(3.6)

where Gi(i = 3, ..., 6) are positive constants independent of ti, t̂i, i = 1, 2.
Similarly, we have

L2 ≤ G7‖Ψ‖β [|t1 − t̂1|β1 + |t2 − t̂2|β2 ]. (3.7)

Secondly, we estimate L3. By means of Theorem 2.1, the inequality

∣∣∣∣∣ 1
|x − t1|n−1−r

− 1
|x − t̂1|n−1−r

∣∣∣∣∣
≤

n−2∑
k=0

|x − t̂1
x − t1

| k(n−1−r)
n−1 | t1 − t̂1

x − t1
|n−1−r

n−1 |x − t̂1|−n+1+r

is derived. For any x ∈ Ω2, we get |x − t1| ≥ 3δ, |x − t̂1| ≥ 2δ, hence

1
2
≤
∣∣∣∣∣x − t̂1
x − t1

∣∣∣∣∣ ≤ 2, |x − t̂1| ≥ 1
2
|x − t1|.

Moreover we have∣∣∣∣∣ t1 − t̂1
x − t1

∣∣∣∣∣
n−1−r

n−1

≤
∣∣∣∣∣ t1 − t̂1
x − t1

∣∣∣∣∣
β1

= (
δ

|x − t1|)
β1 ,

and then

L3 ≤ G8

∫
Ω2

δβ1 |x − t1|β1‖Ψ‖βdsx

|x − t1|n−1−r+β1
= G8|t1 − t̂1|β1

∫
Ω2

‖Ψ‖βdsx

|x − t1|n−1−r

≤ G9‖Ψ‖β[|t1 − t̂1|β1 + |t2 − t̂2|β2 ].
(3.8)
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In view of

|(Ψ(x, t̂2) − Ψ(x, t2)) + (Ψ(t1, t2) − Ψ(t̂1, t̂2))|
≤ [G10|t2 − t̂2|β2 + G11(|t1 − t̂1|β1 + |t2 − t̂2|β2)]‖Ψ‖β

≤ G12‖Ψ‖β[|t1 − t̂1|β1 + |t2 − t̂2|β2 ],

it is easy to see that

L4 ≤ G13‖Ψ‖β[|t1 − t̂1|β1 + |t2 − t̂2|β2 ]. (3.9)

In view of (3.5) − (3.9), we know when 3|t1 − t̂1| < d,

|(QΨ)(t1, t2)−(QΨ)(t̂1, t̂2)| ≤ G14‖Ψ‖β[|t1 − t̂1|β1 + |t2 − t̂2|β2 ]. (3.10)

It is clear that when 3|t1− t̂1| ≥ d, the above estimation is correct. From
(3.4), (3.10), it follows that ‖QΨ‖β ≤ G15‖Ψ‖β. So in view of (3.3), we
have

‖PΨ‖β ≤ ‖QΨ‖β + G16‖Ψ‖β ≤ J1‖Ψ‖β,

here Gi(7 ≤ i ≤ 16) are positive constants independent of ti, t̂i, (i =

1, 2), G16 = sup
t1∈Ω

∫
Ω

dσx

|x − t1|n−1−r
, J1 is a positive constant independent

of Ψ. This completes the proof of Theorem 3.1.

Corollary 3.2 Suppose ϕ(t1, t2)∈H(n̄+2k+2,n̄)(β1, β2) ⊂ H(0,0)(β1, β2),
0 ≤ ki+mi ≤ ni ≤ n̄, n−1 > ri/(1−β1), i = 1, 2, 3, where n̄, k, ki, mi, ni

are non-negative integers. Then ‖∂̄ki
t1 ∂mi

t2 Siϕ(t1, t2)‖β ≤ J2‖Ψ‖β, where
the norm is the norm of the element in space H(0, 0)(β1, β2).

Proof It is easy to prove this corollary by means of Theorems 1.13
and 3.1.

The set of functions which have arbitrary order generalized derivative
∂̄t1 , ∂t2 on Ω×Ω is denoted by D∞(Ω×Ω). It is clear that D∞(Ω×Ω) ⊂
H(0,0)(β1, β2).

Theorem 3.3 Let g(t1, t2), f(t1, t2, Φ1(t1, t2), Φ2(t1, t2), Φ3(t1, t2)) and
ai(t1, t2) (i = 1, 2, 3) in the nonlinear differential integral equations (3.1)
belong to D∞(Ω×Ω), where Φi(t1, t2) = (∂̄pi

t1 ∂qi
t2Siϕ)(t1, t2), (t1, t2) ∈ Ω×

Ω, pi + qi ≤ ni ≤ n̄, siφ, 0 < ri < 1, n − 1 > ri/(1 − β1) (i = 1, 2, 3) are
as stated in Corollary 3.2, and f(0, 0, 0, 0, 0) = 0. Then when 0 < r =

2n−1J2(n̄ + 1)2
n∑

i=1
‖ai‖β < 1, ‖g‖β < σ, 0 < σ ≤ M(1−r)

2n−1(G19+G20M)
, the

nonlinear differential integral equation (3.1) has a solution ϕ ∈ D∞(Ω×
Ω); and when f ≡ 1, 0 < r < 1, the solution is unique, where M is a
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given positive number such that ‖ϕ‖β ≤ M, and G19, G20 are positive
constants.

Proof According to the condition f ∈ D∞(Ω × Ω), for any (t1, t2),
(t̂1, t̂2) ∈ Ω × Ω and any Φj

i ∈ An(R), (i = 1, 2), 1 ≤ j ≤ 3, we have

|f(t1, t2, Φ(1)
1 , Φ(2)

1 , Φ(3)
1 ) − f(t̂1, t̂2, Φ(1)

2 , Φ(2)
2 , Φ(3)

2 )|

≤ G17[|t1 − t2|β1 + |t̂1 − t̂2|β2 ] + G18

3∑
j=1

|Φ(j)
1 − Φ(j)

2 |,
(3.11)

in which G17, G18 are positive constants independent of ti, t̂i, Φ(j)
i , i =

1, 2, 1 ≤ j ≤ 3. Next, we consider the subset

T =

⎧⎨⎩ϕ(t1, t2)

∣∣∣∣∣∣
ϕ ∈ D∞(Ω × Ω) ⊂ H(0,0)(β1, β2),

(t1, t2) ∈ Ω × Ω, ‖ϕ‖β ≤ M, M > 0

⎫⎬⎭
of H(0,0)(β1, β2), in which the norm is defined in the space H(0,0)(β1, β2).
For any ϕ ∈ T , by means of (3.1), Theorem 1.13 and the above condi-
tions, we know Wϕ ∈ D∞(Ω × Ω). In view of (3.1) and Corollary 3.1,
the estimate

‖Wϕ‖β ≤ 2n−1
3∑

i=1
‖ai‖β

∑
0≤ki+mi≤ni

‖∂̄ki
t1 ∂mi

t2 Siϕ‖β + 2n−1‖g‖β‖f‖β

≤ 2n−1
3∑

i=1
‖ai‖β(n̄ + 1)2J2‖ϕ‖β + 2n−1‖g‖β‖f‖β

(3.12)
is concluded. In accordance with f(0, 0, 0, 0, 0) = 0, (3.11) and Corollary
3.2, we have

|f | ≤ G17[|t1 − 0|β1 + |t2 − 0|β2 ] + G18

3∑
i=1

|∂̄pi
t1 ∂qi

t2Siϕ|

≤ G19 + 3G18J2‖ϕ‖β.

(3.13)

Noting (3.11), we have

|f(t1, t2, ∂̄p1
t1 ∂q1

t2 S1ϕ(t1, t2), ..., ∂̄
p3
t1 ∂q3

t2 S3ϕ(t1, t2))

−f(t̂1, t̂2, ∂̄p1
t1 ∂q1

t2 S1ϕ(t̂1, t̂2), ..., ∂̄
p3
t1 ∂q3

t2 S3ϕ(t̂1, t̂2))|
≤ G17[|t1− t̂1|β1 +|t2− t̂2|β2 ]+3G18J2‖ϕ‖β[|t1− t̂1|β1 +|t2− t̂2|β2 ]

≤ [G17 + 3G18J2‖ϕ‖β] [|t1 − t̂1|β1 + |t2 − t̂2|β2 ].
(3.14)
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From (3.13),(3.14), it follows that

‖f‖β ≤ G19 + G20‖ϕ‖β. (3.15)

By means of (3.12), (3.13) and the conditions, we get

‖Wϕ‖β ≤ 2n−1
3∑

i=1
‖ai‖β(n̄ + 1)2J2M + 2n−1δ(G19 + G20M)

≤ Mr + 2n−1δ(G19 + G20M) ≤ M.

This shows that W maps the set T into itself.

Next, we prove that W is a continuous mapping. we are free to choose
a sequence ϕ(n) ∈ T (n = 1, 2, ...), such that {ϕ(n)(t1, t2)} uniformly
converges to ϕ(t1, t2) ∈ T, (t1, t2) ∈ Ω×Ω. For arbitrarily given positive
number ε, when n is large enough, ‖ϕ(n) − ϕ‖β can be small enough,
hence by (3.11), (3.12) and Corollary 3.2, we see that when n is large
enough, the following inequality holds:

‖Wϕ(n)(t1, t2) − Wϕ(t1, t2)‖β

≤ 2n−1
3∑

i=1
‖ai‖β(n̄+1)2J2‖ϕ(n) − ϕ‖β

+2n−1‖g‖β(3G18J2‖ϕ(n) − ϕ‖β)<ε.

This shows that W is a continuous mapping, which maps T into itself.
According to the Ascoli-Arzela theorem, we see that T is a compact
set of space H0, 0(β1, β2). Hence the continuous mapping W maps the
closed convex set T in H(0,0)(β1, β2) onto itself. Moreover W (T ) is also
a compact set in H(0,0)(β1, β2). By the Schauder fixed-point theorem,
there exists a function ϕ0 ∈ D∞(Ω×Ω) satisfying equation (3.1); here we
mention that though the conditions added to ai, g, f are stronger, the
solution found still satisfies the above condition. At last when f ≡ 1,
similarly to Section 4, Chapter II, by using the contraction mapping
theorem, we can verify the uniqueness of the solution for equation (3.1).

4 A Kind of High Order Singular Integrals of Quasi-
Bochner-Martinelli Type With two Singular Points and
Poincaré-Bertrand Permutation Formulas in Real Clif-
ford Analysis

From the enlightenment of Sheng Gong’s paper about singular inte-
grals of several complex variables [20], in this section, we first discuss
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high order singular integrals of quasi-Bochner-Martinelli type with two
singular points.

Denote still by Ω the boundary of the connected open set D in Rn.
If x �= t (x, t ∈ Ω), by means of the separability of D, we assume that
Dx, Dt satisfy the conditions Dx ∩ Dt = ∅, Dx ∪ Dt = D, Ωx, Ωt are
the boundaries of Dx, Dt respectively, x ∈ Ωx, t ∈ Ωt, and the orien-
tations of Ωx, Ωt are harmonious with the orientation of Ω. Moreover,
the orientations of Ω, Ωx, Ωt are induced orientations of D, Dx, Dt re-
spectively. In addition, suppose that Dx

⋂
Dt = Σ, and for any y ∈ Σ,

|y − x| = |y − t| holds. The integral kernels with singular points x, t are
denoted by Kx(x, y), Kt(x, y) respectively. By the additive property of
general integrals, the singular integral with two singular points can be
defined as follows.

Definition 4.1 Let ϕ(x, y) ∈ H(m, p)(β1, β2), 0 < βi < 1, i = 1, 2; the
singular integral with two singular points on Ω is defined as∫

Ω
Kt(y, t)ϕ(x, y)Kx(x, y)dσy

=
∫
Ωt

Kt(y, t)ϕ(x, y)Kx(x, y)dσy+
∫
Ωx

Kt(y, t)ϕ(x, y)Kx(x, y)dσy,

where m, p are determined by the orders of singularity of kernels
Kx(x, y), Kt(y, t) respectively.

In the following, we first discuss the singular integral which can ex-
change the integral order.

Theorem 4.1 Let ϕ(x, y) ∈ H(0,0)(β1, β2), 0 < βi < 1, r > 0, h >
0, n − 1 > r + h, x, t ∈ Ω. Then∫

Ω

[∫
Ω

ϕ(x, y)
|y − t|n−1−r|x − y|n−1−h

dσy

]
dσx

=
∫
Ω

[
1

|y − t|n−1−r

∫
Ω

ϕ(x, y)dσx

|x − y|n−1−h

]
dσy.

(4.1)

Proof According to the Hadamard theorem [19], when (n−1) > r+h,
we have ∣∣∣∣∫

Ω

ϕ(x, y)dσy

|y − t|n−1−r|x − y|n−1−h

∣∣∣∣ ≤ G21

|x − t|(n−1)−(r+h)
.

This shows that the above integral with two singular points has a weak
singularity, and then the left side of (4.1) is the integral in a general
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sense. By means of the Fubini theorem [19], we know that this integral
order can be exchanged. Hence (4.1) holds.

Now, we deduce the Poincaré-Bertrand permutation formula for the
first and second kinds of high order singular integrals of quasi-Bochner-
Martinelli type.

Theorem 4.2. Let ϕ(x, y) ∈ H(1,1)(β1, β2), 0 < βi < 1, r , h > βi, i =
1, 2, 0 < r < 1, n − 1 > h + r, x, t ∈ Ω. Then∫

Ω

[
ȳ − t̄

|y − t|n+1−r

∫
Ω

ϕ(x, y)dσx

|x − y|n−1−h

]
dσy

=
∫
Ω

[∫
Ω

(ȳ − t̄)ϕ(x, y)dσy

|y − t|n+1−r|x − y|n−1−h

]
dσx

+
∫
Ω

[∫
Ωt

1
(n − 1 − r)|y − t|n−1−r

∂x

(
ϕ(x, y)

|x − y|n−1−h

)
dσy

]
dσx

+
∫
Ω

[∫
Ωx

1
(n−1−r)|x−y|n−1−h

(∂x+∂y)
(

ϕ(x, y)
|y−t|n−1−r

)
dσy

]
dσx.

(4.2)

Proof Under the conditions of Definition 1.1, Theorem 1.8, Corollary
1.2, Lemma 1.4 and Theorem 4.1, we can get∫

Ω

ȳ − t̄

|y − t|n+1−r

∫
Ω

ϕ(x, y)dσx

|x − y|n−1−h
dσy

=
∫
Ω

[
1

(n − 1 − r)|y − t|n−1−r

∫
Ω

∂y

(
ϕ(x, y)

|x − y|n−1−h

)
dσx

]
dσy

=
∫
Ω

[
1

(n − 1 − r)|y − t|n−1−r

(∫
Ω

∂yϕ(x, y)dσx

|x − y|n−1−h

)]
dσy

+
∫
Ω

[
1

(n−1−r)|y−t|n−1−r

∫
Ω

ϕ(x, y)(x̄−ȳ)(n−1−h)
|x−y|n+1−h

dσx

]
dσy

=
∫
Ω

[∫
Ω

∂yϕ(x, y)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n−1−h

]
dσx

+
n − 1 − h

n − 1 − r

∫
Ω

[
1

|y − t|n−1−r

∫
Ω

∂xϕ(x, y)dσx

(n − 1 − h)|x − y|n−1−h

]
dσy

=
1

n − 1 − r

∫
Ω

[∫
Ω

(∂y + ∂x)ϕ(x, y)dσy

|y − t|n−1−r|x − y|n−1−h

]
dσx.

(4.3)

On the basis of Definitions 4.1 and 1.1, Corollary 1.2, Lemma 1.4 and
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(4.3), we can derive∫
Ω

[∫
Ω

(ȳ − t̄)ϕ(x, y)dσy

|y − t|n+1−r|x − y|n−1−h

]
dσx

=
∫
Ω

[
(
∫
Ωt

+
∫
Ωx

)
(

(ȳ − t̄)ϕ(x, y)dσy

|y − t|n+1−r|x − y|n−1−h

)]
dσx

=
∫
Ω

[∫
Ωt

1
(n − 1 − r)|y − t|n−1−r

∂y

(
ϕ(x, y)

|x − y|n−1−h

)
dσy

]
dσx

+
∫
Ω

[∫
Ωx

(ȳ − t̄)ϕ(x, y)dσy

|x − y|n−1−h|y − t|n+1−r

]
dσx

=
∫
Ω

[∫
Ωt

∂yϕ(x, y)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n−1−h

]
dσx

+
∫
Ω

[∫
Ωt

ϕ(x, y)(n − 1 − h)(x̄ − ȳ)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n+1−h

]
dσx

+
∫
Ω

[∫
Ωx

1
|x−y|n−1−h(1+r−n)

∂y

(
1

|y−t|n−1−r

)
ϕ(x, y)dσy

]
dσx

+
∫
Ω

[∫
Ωx

∂yϕ(x, y)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n−1−h

]
dσx

−
∫
Ω

[∫
Ωx

∂yϕ(x, y)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n−1−h

]
dσx

=
∫
Ω

[∫
Ω

∂yϕ(x, y)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n−1−h

]
dσx

+
∫
Ω

[∫
Ω

∂xϕ(x, y)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n−1−h

]
dσx

−
∫
Ω

[∫
Ωt

∂xϕ(x, y)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n−1−h

]
dσx

+
∫
Ω

[∫
Ωt

ϕ(x, y)(n − 1 − h)(x̄ − ȳ)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n+1−h

]
dσx

+
∫
Ω

[∫
Ωx

1
(1+r−n)|x−y|n−1−h

∂y

(
1

|y−t|n−1−r

)
ϕ(x, y)dσy

]
dσx

−
∫
Ω

[∫
Ωx

∂xϕ(x, y)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n−1−h

]
dσx

−
∫
Ω

[∫
Ωx

∂yϕ(x, y)dσy

(n−1−r)|y−t|n−1−r|x−y|n−1−h

]
dσx

=
∫
Ω

[∫
Ω

(∂y + ∂x)ϕ(x, y)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n−1−h

]
dσx

−
∫
Ω

[∫
Ωt

∂xϕ(x, y)dσy

(n−1−r)|y−t|n−1−r|x−y|n−1−h

]
dσx

+
∫
Ω

[∫
Ωt

(
ϕ(x, y) · (−1)

(n−1−r)|y−t|n−1−r

)
∂x

(
1

|x − y|n−1−h

)
dσy

]
dσx
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−
∫
Ω

[∫
Ωx

(
1

(n−1−r)|x−y|n−1−h

)
∂y

(
1

|y−t|n−1−r

)
ϕ(x, y)dσy

]
dσx

−
∫
Ω

[∫
Ωx

(∂x + ∂y)ϕ(x, y)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n−1−h

]
dσx

=
∫
Ω
[
∫
Ω

(∂x + ∂y)ϕ(x, y)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n−1−h
]dσx

−
∫
Ω
[
∫
Ωt

1
(n − 1 − r)|y − t|n−1−r

∂x(
ϕ(x, y)

|x − y|n−1−h
)dσy]dσx

−
∫
Ω
[
∫
Ωx

1
(n − 1 − r)|x − y|n−1−h

∂y(
1

|y − t|n−1−r
)ϕ(x, y)dσy]dσx

−
∫
Ω
[
∫
Ωx

(∂x + ∂y)ϕ(x, y)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n−1−h
]dσx

=
∫
Ω
[

ȳ − t̄

|y − t|n+1−r

∫
Ω

ϕ(x, y)dσx

|x − y|n−1−h
]dσy

−
∫
Ω
[
∫
Ωt

1
(n − 1 − r)|y − t|n−1−r

∂x(
ϕ(x, y)

|x − y|n−1−h
)dσy]dσx

−
∫
Ω
[
∫
Ωx

(
1

(n − 1 − r)|x − y|n−1−h
∂y(

1
|y − t|n−1−r

)ϕ(x, y)dσy]dσx

−
∫
Ω
[
∫
Ωx

(∂y + ∂x)ϕ(x, y)dσy

(n − 1 − r)|y − t|n−1−r|x − y|n−1−h
]dσx.

(4.4)
In view of (4.4) and Corollary 1.2, we have

∫
Ω

[
ȳ − t̄

|y − t|n+1−r

∫
Ω

ϕ(x, y)dσx

|x − y|n−1−h

]
dσy

=
∫
Ω

[∫
Ω

(ȳ − t̄)ϕ(x, y)dσy

|y − t|n+1−r|x − y|n−1−h

]
dσx

+
∫
Ω

[∫
Ωt

1
(n − 1 − r)|y − t|n−1−r

∂x

(
ϕ(x, y)

|x − y|n−1−h

)
dσy

]
dσx

+
∫
Ω

[∫
Ωx

1
(n − 1 − r)|x − y|n−1−h

∂y(
ϕ(x, y)

|y − t|n−1−r
)dσy

]
dσx

+
∫
Ω

[∫
Ωx

∂xϕ(x, y)dσy

(n − 1 − r)|x − y|n−1−h|y − t|n−1−r

]
dσx

=
∫
Ω

[∫
Ω

(ȳ − t̄)ϕ(x, y)dσy

|y − t|n+1−r|x − y|n−1−h

]
dσx

+
∫
Ω

[∫
Ωt

1
(n − 1 − r)|y − t|n−1−r

∂x

(
ϕ(x, y)

|x − y|n−1−h

)
dσy

]
dσx
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+
∫
Ω

[∫
Ωx

1
(n − 1 − r)|x − y|n−1−h

∂y

(
ϕ(x, y)

|y − t|n−1−r

)
dσy

]
dσx

+
∫
Ω

[∫
Ωx

1
(n − 1 − r)|x − y|n−1−h

∂x

(
ϕ(x, y)

|y − t|n−1−r

)
dσy

]
dσx.

(4.5)

Merge the last two terms in (4.5), and we get (4.2). The proof of this
theorem is completed.

In short, the method of the proof in Theorem 4.2 is as follows: Firstly,
by using calculational formulas, differential formulas in Section 1 and
the Fubini theorem (see [6],[7][19]), we establish the relation between
the singular integral before permutation, the singular integral after per-
mutation with high order quasi-Bochner-Martinelli type kernels and the
singular integrals with two singular points to be exchanged in integral
order respectively. Next we can get the Poincaré-Bertrand permutation
formulas. The above differential formulas play an important pole in the
proof. This method is different from that used to prove the Poincaré-
Bertrand permutation formulas of non-high order singular integrals in
Section 2, Chapter V.

If W (ki, ri) (1 ≤ i ≤ 6) are expressed the general first−sixth kinds of
high order quasi-Bochner-Martinelli kernels in Theorems 1.8 and 1.16,
then we can use the same method in the proof of Theorem 4.2 to prove
the Poincaré-Bertrand permutation formulas of the general high order
singular integrals with the kernels W (ki, ri) and W (kj , rj) (1 ≤ i, j ≤ 6).
Because of page limitation we do not prove them one by one. The proofs
are left as exercises.

Concluding Remark It is well known that the representation in cir-
cular cylinder domains for several complex variables is worse than the
representation in the unit disk for functions of one complex variable.
Hence in theory of several complex variables, the regular functions de-
termined by Cauchy integral formulas in several domains possess differ-
ent representations, which were an important research subject by many
scholars. In 1961, F. Norguet enumerated 66 main papers about Cauchy
integral formulas of several complex variables in the appendix of his pa-
per [56]. In [56], the main Cauchy integral formulas are classified as five
kinds, for example, the Cauchy integral formulas in four kinds of canon-
ical domains, Cauchy integral formulas of Bochner-Martinelli type and
so on. These Cauchy integral formulas are generalized to the Cauchy
integral formula of a complex variable from different angles and views.
We are enlightened by the variability of Cauchy integral formulas in
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several complex variables. Because of the non-commutativity property
in Clifford algebra, the expressions of integral operators adopted in this
chapter are different from the Cauchy integral expression

1
ωn

∫
Ω

x − y

|x − y|n dσxf(x), Ω = ∂D ⊂ Rn,

used by other scholars (see [6],[19]). In this chapter, we use integral
expressions, that be got in Chapter I, such that many calculational for-
mulas, recurrence formulas and differential formulas of singular integrals
as stated in Section 1 are succinct and regular. Furthermore, we can give
another method to prove the Poincaré-Bertrand permutation formula of
high order singular integrals by using differential formulas. It is also
interesting to investigate various integral expressions of generalized or
doubly regular functions in Clifford analysis.



CHAPTER VII

RELATION BETWEEN CLIFFORD

ANALYSIS AND ELLIPTIC EQUATIONS

In this chapter, we first introduce the solvability of some oblique
derivative problems for uniformly and degenerate elliptic equations of
second order, and then discuss the existence of solutions of some bound-
ary value problems for some degenerate elliptic systems of first order in
Clifford analysis by using the above results for elliptic equations.

1 Oblique Derivative Problems for Uniformly Elliptic
Equations of Second Order

1.1 Formulation of oblique derivative problem for nonlinear
elliptic equations

Let Q be a bounded domain in RN and the boundary ∂Q ∈ C 2
µ (0 <

µ < 1), herein N (> 1) is a positive integer. We consider the nonlinear
elliptic equation of second order

F (x, u, Dxu, D2
xu) = 0 in Q, (1.1)

namely

Lu =
N∑

i,j=1

aijuxixj +
N∑

i=1

biuxi + cu = f in Q, (1.2)

where Dxu = (uxi), D
2
xu = (uxixj ), and

aij =
∫ 1

0
Fτrij (x, u, p, τr)dτ, bi =

∫ 1

0
Fτpi(x, u, τp, 0)dτ,

c =
∫ 1

0
Fτu(x, τu, 0, 0)dτ, f = −F (x, 0, 0, 0),

r = D2
xu, p = Dxu, rij =

∂u

∂xi∂xj
, pi =

∂u

∂xi
.
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Suppose that (1.1) (or (1.2)) satisfies Condition C, i.e. for arbitrary
functions u1(x), u2(x) ∈ C1

β(Q) ∩ W 2
2 (Q), F (x, u, Dxu, D2

xu) satisfy the
following conditions:

F (x, u1, Dxu1, D
2
xu1) − F (x, u2, Dxu2, D

2
xu2)

=
N∑

i,j=1

ãijuxixj +
N∑

i=1

b̃iuxi + c̃u,
(1.3)

where 0 < β < 1, u = u1 − u2 and

ãij =
∫ 1

0
Fuxixj

(x, ũ, p̃, r̃)dτ, b̃i =
∫ 1

0
Fuxi

(x, ũ, p̃, r̃)dτ,

c̃ =
∫ 1

0
Fu(x, ũ, p̃, r̃)dτ, ũ = u2 + τ(u1 − u2),

p̃ = Dx[u2 + τ(u1 − u2)], r̃ = D2
x[u2 + τ(u1 − u2)],

and ãij , b̃i, c̃, f satisfy the conditions

q0

N∑
j=1

|ξj |2 ≤
N∑

i,j=1

ãijξiξj ≤ q−1
0

N∑
j=1

|ξj |2, 0 < q0 < 1, (1.4)

sup
Q

N∑
i,j=1

ã2
ij/inf

Q
[

N∑
i=1

ãii]2≤q1 <
2N−1

2N2−2N−1
, Lp(f,Q) ≤ k1,

|ãij |, |b̃i| ≤ k0 in Q, i, j = 1, ..., N,−k0≤ infQ c̃≤supQ c̃<0,

(1.5)

in which k0, k1, p (> N + 2) are non-negative constants. Moreover,
for almost every point x ∈ Q and D2

xu ∈ RN(N+1)/2, the functions
ãij(x, u, Dxu, D2

xu), b̃i(x, u, Dxu), c̃(x, u) are continuous in u ∈ R and
Dxu ∈ RN .

The so-called oblique derivative problem(Problem O) is to find a con-
tinuously differentiable solution u = u(x) ∈ C1

β(Q) ∩ W 2
2 (Q) satisfying

the boundary conditions:

lu = d
∂u

∂ν
+ bu = g(x), x ∈ ∂Q, i.e.

lu =
N∑

j=1

dj
∂u

∂xj
+ bu = g(x), x ∈ ∂Q,

(1.6)
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in which dj(x), b(x), g(x) satisfy the conditions

C1
α[b(x), ∂Q]≤k0, C

1
α[g(x), Q] ≤ k2,

cos(ν, n) ≥ q0 > 0, b(x) ≥ 0 on ∂Q,

N∑
j=1

dj cos(ν, xj)≥q0 >0, C1
α[dj(x), ∂Q] ≤ k0, j =1, ..., ,N,

(1.7)

in which n is the unit outward normal on ∂Q, α (0 < α < 1), k0, k2,
q0 (0 < q0 < 1) are non-negative constants. In particular, if Problem O
has the conditions d = 1, ν = n, b = 0 on ∂Q in (1.6), then Problem O
is the Neumann boundary value problem, which will be called Problem
N .

In the following, we give a priori estimates of solutions for Problem
O. Then, by using the method of parameter extension and the Leray-
Schauder theorem, we prove the existence and uniqueness of solutions
for Problem O.

1.2 A priori estimates of solutions for Problem O for (1.2)

We first prove the following theorem.

Theorem 1.1 If the equation (1.2) satisfies Condition C, then the
solution of Problem O is unique.

Proof Let u1(x), u2(x) be two solutions of Problem O, it is easily seen
that u = u1 − u2 is a solution of the boundary value problem

N∑
i,j=1

ãijuxixj +
N∑

i=1

b̃iuxi + c̃u = 0 in Q, (1.8)

lu(x) = 0 i.e. d
∂u

∂ν
+ bu = 0, x ∈ ∂Q, (1.9)

where ãij , b̃i, c̃ are as stated in (1.3). By the maximum principle of
solutions for (1.8), u(x) attains its maximum in Q at a point P0 ∈ ∂Q,
and lu|P0 > 0; this contradicts (1.9), hence u(x) = 0 in Q, i.e. u1(x) =
u2(x), x ∈ Q.

In the following, we shall give the estimates of C1(Q̄) and C1
β(Q) of

solutions u(x) of Problem O.
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Theorem 1.2 Under the same condition as in Theorem 1.1, any so-
lution u(x) of Problem O for (1.2) satisfies the estimate

||u||C1(Q̄) = ||u||C(Q̄) +
N∑

i=1

||uxi ||C(Q) ≤ M1, (1.10)

where M1 is a non-negative constant only dependent on q, p, α, k, Q, i.e.
M1 = M1(q, p, α, k, Q), q = (q0, q1), k = (k0, k1, k2).

Proof Suppose that (1.10) is not true, there exist sequences of func-
tions {am

ij }, {bm
i }, {cm}, {f m} and {am(x)}, {bm(x)}, {gm(x)}, which

satisfy Condition C and the conditions in (1.7), and {am
ij }, {bm

i },
{cm}, {fm} weakly converge to a0

ij , b
0
i , c

0, f 0, and {am}, {bm}, {gm} uni-
formly converge to a0, b0, g0 on ∂Q respectively. Furthermore the bound-
ary value problem

N∑
i,j=1

am
ij uxixj +

N∑
i=1

bm
i uxi + cmu = f m in Q, (1.11)

lum(x) = gm(x), i.e. am ∂um

∂ν
+ bmum = gm(x), x ∈ ∂Q (1.12)

has a solution um(x), such that ||um||C1(Q̄) = Am(m = 1, 2, ...) is un-
bounded (there is no harm in assuming that Am ≥ 1, and limm→∞ Am =
+∞). It is easy to see that Um = um/Am is a solution of the initial-
boundary value problem

L̃Um =
N∑

i,j=1

am
ij U

m
xixj

=Bm, Bm =−
N∑

i=1

bm
i Um

xi
−cmUm+fm/Am, (1.13)

lUm(x) =
gm

Am
, i.e. am ∂Um

∂n
+ bmUm =

gm

Am
, x ∈ ∂Q. (1.14)

Noting that
∑N

i=1 bm
i Um

xi
+cmUm in (1.13) is bounded, by using the result

in Theorem 1.3 below, we can obtain the estimate

||Um||C1
β
(Q̄) = ||Um||Cβ(Q̄) +

N∑
i=1

||Um
xi
||Cβ(Q̄) ≤ M2, (1.15)

||Um||W 2
2 (Q) ≤ M3 = M3(q, p, α, k, Q), m = 1, 2, .... (1.16)

where β(0 < β ≤ α), Mj = Mj(q, p, α, k, Q)(j = 2, 3) are non-negative
constants. Hence from {Um}, {Um

xi
}, we can choose a subsequence

{Umk} such that {Umk}, {Umk
xi

} uniformly converge to U0, U0
xi

in Q
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respectively, {Umk
xixj

} weak converges to U0
xixj

in Q, and U0 is a solution
of the boundary value problem:

N∑
i,j=1

a0
ijŨ

0
xixj

+
N∑

i=1

b0
i Ũ

0
xi

+ c0U0 = 0, (1.17)

lU0(x) = 0, i.e. a
∂U0

∂ν
+ bU0 = 0, x ∈ ∂Q. (1.18)

According to Theorem 1.1, we know that U0(x) = 0, x ∈ Q. However,
from ||Um||C1(Q̄) = 1, we can derive that there exists a point x∗ ∈ Q̄,

such that |U0(x∗)|+∑N
i=1 | U0

xi
(x∗)| > 0. This contradiction proves that

(1.10) is true.

Theorem 1.3 Under the same condition as in Theorem 1.1, any so-
lution u(x) of Problem O satisfies the estimates

||u||C1
β
(Q̄) ≤ M4 = M4(q, p, α, k, Q), (1.19)

||u||W 2
2 (Q) ≤ M5 = M5(q, p, α, k, Q), (1.20)

where β(0 < β ≤ α), M4, M5 are non-negative constants.

Proof First of all, we find a solution û(x) of the equation

∆û − û = 0 (1.21)

with the boundary condition (1.6), which satisfies the estimate

||û||C2(Q̄) ≤ M6 = M6(q, p, α, k, Q). (1.22)

(see [38]). Thus the function

ũ(x) = u(x) − û(x) (1.23)

is a solution of the equation

Lũ =
N∑

i,j=1

aij ũxixj +
N∑

i=1

biũxi + cũ = f̃ , (1.24)

lũ(x) = 0, x ∈ ∂Q, (1.25)

where f̃ = f −Lû. Introduce a local coordinate system on the neighbor-
hood G of a surface S1 ∈ ∂Q:

xi = hi(ξ1, ..., ξN−1)ξN + gi(ξ1, ..., ξN−1), i = 1, ..., N, (1.26)
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where ξN = 0 is just the surface S1 : xi = gi(ξ1, ..., ξN−1)(i = 1, ..., N),
and

hi(ξ) =
di(x)
d(x)

∣∣∣∣
xi=gi(ξ)

, i = 1, ..., N, d2(x) =
N∑

i=1

d2
i (x).

Then the boundary condition (1.25) can be reduced to the form

∂ũ

∂ξN
+ b̃ = 0 on ξN = 0, (1.27)

where ũ = ũ[x(ξ)], b̃ = b[x(ξ)]. Secondly, we find a solution v(x) of
Problem N for the equation (1.21) with the boundary condition

∂v

∂ξN
= b̃ on ξN = 0, (1.28)

which satisfies the estimate

||v||C2(Q̄) ≤ M7 = M7(q, p, α, k, Q) < ∞, (1.29)

(see [38]) and the function

V (x) = ũ(x)ev(x) (1.30)

is a solution of the boundary value problem in the form

N∑
i,j=1

ãijVξiξj
+

N∑
i=1

b̃iVxi + c̃V = f̃ , (1.31)

∂V

∂ξN
= 0, ξN = 0. (1.32)

On the basis of Theorem 1.4 below, we can derive the estimates of V (ξ),
i.e.

||V ||C1
β
(Q̄) ≤ M8 = M8(q, p, α, k, Q), (1.33)

||V ||W 2
2 (Q) ≤ M9 = M9(q, p, α, k, Q), (1.34)

where β (0 < β ≤ α), M8, M9 are non-negative constants. Combining
(1.22), (1.29), (1.33) and (1.34), the estimates (1.19) and (1.20) are
obtained.

Now, we shall give some estimates of solutions of Problem N for (1.2).

Theorem 1.4 Suppose that the equation (1.2) satisfies Condition C.
Then any solution u(x) of Problem N satisfies the estimates

C1
β[u, Q̄] ≤ M10 = M10(q, p, α, k, Q), (1.35)
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||u||W 2
2 (Q) ≤ M11 = M11(q, p, α, k, Q), (1.36)

where M10, M11 are non-negative constants, and β is a constant as stated
in (1.19).

Proof First of all, choosing that x∗ is an arbitrary point in Q and ε
is a small positive number, we construct a function J(x) ∈ C2

α(Q̄) such
that

J(x) =

⎧⎨⎩ 1, x ∈ Ωε,

0, x ∈ Q\∂Q2ε,
0 ≤ J(x) ≤ 1, x ∈ ∂Q2ε\Qε,

in which Qε = {|x − x∗| ≤ ε} and J(x) satisfies the estimate

C2[J(x), Q] ≤ M12 = M12(ε, Q). (1.37)

Denote U(x) = J(x)u(x); obviously U = U(x) is a solution of the bound-
ary value problem

N∑
i,j=1

aijUxixj +
N∑

i=1

biUxi + cU = f∗, x ∈ Q̄, (1.38)

lU(x) = 0, x ∈ ∂Q, (1.39)

in which d∗ = JLu +
∑N

i,j=1 aij [Jxiuxj + Jxixju] +
∑N

i=1 biJxiu. By the
method of inner estimate in [1],[11], we can obtain

C1
β[U, Q̄] ≤ M13, C1

β[u, Qε] ≤ M14, (1.40)

where Mj = Mj(q, p, α, k, Qε), j = 13, 14. Combining (1.37) and (1.40),
we obtain the estimate

C1
β[u, Qε] ≤ M15 = M15(q, α, k,Q, p). (1.41)

Next, we choose any point x∗ ∈ S2 = ∂Q and a small positive number
d such that S3 = S2 ∩ {|x − x∗| ≤ d}. Then we can find a solution û(x)
of (1.21) on Q, such that û(x) satisfies the boundary condition

∂û

∂n
= g(x), x ∈ S3,

which satisfies the estimate (1.22). Thus ũ(x) = u(x) − û(x) is a solu-
tion of the equation as stated in (1.24), and ũ(x) satisfies the boundary
condition

∂ũ

∂n
= 0, x ∈ S3. (1.42)
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We can define a non-singular transformation of a second order contin-
uously differentiable function ζ = ζ(x), such that S3 maps onto S4 on
the plane ζN = 0, the domain Q onto the domain Q1 in the half space
ζN < 0, and the equation (1.24) and boundary condition (1.42) are
reduced to the equation and boundary condition as follows:

N∑
i,j=1

Aij ũζiζj
+

N∑
i=1

Biũζi
+ Cũ = D in Q1 (1.43)

∂ũ

∂ξN
= 0 on S4. (1.44)

Now, we extend the function ũ to a symmetric domain Q2 of Q1 about
S4, i.e. we define a function

U =

⎧⎨⎩ ũ(ζ), ζ ∈ Q1,

ũ(ζ∗), ζ∗ ∈ Q2,
(1.45)

where ζ∗ = (ζ1, ..., ζN−1,−ζN ), and U(ζ) is a solution of the equation

N∑
i,j=1

ÃijUζiζj
+

N∑
i=1

B̃iUζi
+ C̃U = D̃ in Q1 ∪ Q2, (1.46)

where

Ãij =

⎧⎨⎩Aij(ζ),

(−1)kAij(ζ∗),
k=

⎧⎨⎩ 1, i �=j, i or j =N,

0, other cases,

B̃i =

⎧⎨⎩ Bi(ζ),

(−1)kBi(ζ∗),
k =

⎧⎨⎩ 1, i = N,

0, i �= N,

C̃ =

⎧⎨⎩ C(ζ),

C(ζ∗),
D̃ =

⎧⎨⎩ D(ζ), ζ ∈ Q1,

D(ζ∗), ζ ∈ Q2.

By using a similar method in the proof of (1.41), we can derive that
U(ζ) and u(x) satisfy the estimate

C1
β [U, Q1 ∪ Q2] ≤ M16, C1

β[u, Q1] ≤ M17, (1.47)

where Mj = Mj(q, p, α, k, Q), j = 16, 17. Combining (1.41) and (1.47),
the estimates (1.35) and (1.36) are obtained.
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1.3 Solvability of oblique derivative problem for elliptic equa-
tions

We first consider a special equation of (1.2), namely

∆u = gm(x, u, Dxu, D2
xu),

gm =∆u−
N∑

i,j=1

aijmuxixj −
N∑

i=1

bimu−cmu+fm in Q,
(1.48)

where ∆u =
∑N

i=1 ∂2u/∂x2
i , Λ = (2N −1) infQ

∑N
i=1 aii/(2N2−2N −1),

and the coefficients

aijm =

⎧⎨⎩ aij/Λ,

δij/Λ,
bim =

⎧⎨⎩ bi/Λ,

0,
i, j = 1, ..., N,

cm =

⎧⎨⎩ c/Λ,

0,
fm =

⎧⎨⎩ f/Λ

0

in Qm,

in RN\Qm,

where Qm = {(x) ∈ Q |dist(x, ∂Q) ≥ 1/m}, m is a positive integer,
δii = 1, δij = 0 (i �= j, i, j = 1, ..., N). In particular, the linear case of
equation (1.48) can be written as

∆u=gm(x, u, Dxu, D2
xu), gm =

N∑
i,j=1

[δij−aijm(x)]uxixj

−
N∑

i=1

bim(x)uxi−cm(x)u+fm(x) in Q.

(1.49)

In the following, we will give a representation of solutions of Problem
O for equation (1.48).

Theorem 1.5 Under the same condition as in Theorem 1.1, if u(x)
is any solution of Problem O for equation (1.48), then u(x) can be ex-
pressed in the form

u(x) = U(x) + V (x) = U(x) + v0(x) + v(x),

v(x)=H̃ρ=
∫

Q0

G(x − ζ)ρ(ζ)dζ,

G=

⎧⎨⎩ |x−ζ|2−N/(N(2−N)ωN ), N >2,

log |x − ζ|/2π, N = 2,

(1.50)
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where ωN = 2πN/2/(NΓ(N/2)) is the volume of a unit ball in
RN , ρ(x) = ∆u = gm and V (x) is a solution of Problem D0 for (1.48)
in Q0 = {|x| < R} with the boundary condition V (x) = 0 on ∂Q0; here
R is an appropriately large number, such that Q0 ⊃ Q, and U(x) is a
solution of Problem Õ for ∆U = 0 in Q with the boundary condition
(1.58) below, which satisfy the estimates

C1
β[U,Q] + ||U ||W 2

2 (Q) ≤ M18,

C1
β[V, Q0] + ||V ||W 2

2 (Q0) ≤ M19,
(1.51)

where β(0 < β ≤ α), Mj = Mj(q, p, α, k, Qm) (j =18,19) are non-
negative constants, q = (q0, q1), k = (k0, k1, k2).

Proof It is easy to see that the solution u(x) of Problem O for equation
(1.48) can be expressed by the form (1.50). Noting that aijm = 0 (i �=
j), bim = 0, cm = 0, fm(x) = 0 in RN\Qm and V (x) is a solution of
Problem D0 for (1.48) in Q0, we can obtain that V (x) in Q̂2m = Q\Q2m

satisfies the estimate

C2[V (x), Q̂2m] ≤ M20 = M20(q, p, α, k, Qm).

On the basis of Theorem 1.3, we can see that U(x) satisfies the first
estimate in (1.51), and then V (x) satisfies the second estimate in (1.51).

Theorem 1.6 If equation (1.2) satisfies Condition C, then Problem
O for (1.48) has a solution u(x).

Proof In order to prove the existence of solutions of Problem O for
the nonlinear equation (1.48) by using the Leray-Schauder theorem, we
introduce an equation with the parameter h ∈ [0, 1],

∆u = hgm(x, u, Dxu, D2
xu) in Q. (1.52)

Denote by BM a bounded open set in the Banach space B = Ŵ 2
2 (Q) =

C1
β(Q) ∩ W 2

2 (Q)(0 < β ≤ α), the elements of which are real functions
V (x) satisfying the inequalities

||V ||Ŵ 2
2 (Q) = C1

β[V, Q̄] + ||V ||W 2
2 (Q) < M21 = M19 + 1, (1.53)

in which M19 is a non-negative constant as stated in (1.51). We choose
any function Ṽ (x) ∈ BM and substitute it into the appropriate positions
in the right-hand side of (1.52), and then we define an integral ṽ(x) = H̃ρ
as

ṽ(x) = H̃ρ̃, ρ̃(x) = ∆Ṽ . (1.54)
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Next we find a solution ṽ0(x) of the boundary value problem in Q0:

∆ṽ0 = 0 on Q0, (1.55)

ṽ0(x) = −ṽ(x) on ∂Q0, (1.56)

and denote the solution V̂ (x) = ṽ(x)+ ṽ0(x) of the corresponding Prob-
lem D0 in Q0. Moreover on the basis of the result in [38], we can find a
solution Ũ(x) of the corresponding Problem Õ in Q,

∆Ũ = 0 on Q, (1.57)

∂Ũ

∂ν
+ b(x)Ũ = g(x) − ∂V̂

∂ν
+ b(x)V̂ on ∂Q. (1.58)

Now we discuss the equation

∆V = hgm(x, ũ, Dxũ,D2
xŨ + D2

xV ), 0 ≤ h ≤ 1, (1.59)

where ũ = Ũ + V̂ . By Condition C, applying the principle of contracting
mapping, we can find a unique solution V (x) of Problem D0 for equation
(1.59) in Q0 satisfying the boundary condition

V (x) = 0 on ∂Q0. (1.60)

Denote u(x) = U(x) + V (x), where the relation between U and V is the
same as that between Ũ and Ṽ , and by V = S(Ṽ , h), u = S1(Ṽ , h) (0 ≤
h ≤ 1) the mappings from Ṽ onto V and u respectively. Furthermore,
if V (x) is a solution of Problem D0 in Q0 for the equation

∆V = hgm(x, u, Dxu, D2
xU + D2

xV )), 0 ≤ h ≤ 1, (1.61)

where u = S1(V, h), then from Theorem 1.3, the solution V (x) of Prob-
lem D0 for (1.61) satisfies the estimate (1.53), consequently V (x) ∈ BM .
Set B0 = BM × [0, 1]. In the following, we shall verify that the map-
ping V = S(Ṽ , h) satisfies the three conditions of the Leray-Schauder
theorem:

1) For every h ∈ [0, 1], V = S(Ṽ , h) continuously maps the Banach
space B into itself, and is completely continuous on BM . Besides, for
every function Ṽ (x) ∈ BM , S(Ṽ , h) is uniformly continuous with respect
to h ∈ [0, 1].

In fact, we arbitrarily choose Ṽl(x) ∈ BM (l = 1, 2, ...); it is
clear that from {Ṽl(x)} there exists a subsequence {Ṽlk(x)} such that
{Ṽlk(x)}, {Ṽlkxi

(x)} (i = 1, ..., N) and corresponding functions {Ũlk(x)},
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{Ũlkxi
(x)}, {ũlk(x)}, {ũlkxi

(x)} (i = 1, ..., N) uniformly converge to
Ṽ0(x), Ṽ0xi(x), Ũ0(x), Ũ0xi(x), ũ0(x), ũ0xi(x) (i = 1, ..., N) in Q0, Q
respectively, in which ũlk = S1(Ṽlk , h), ũ0 = S1(Ṽ0, h). We can find a
solution V0(x) of Problem D0 for the equation

∆V0 =hgm(x, ũ0, Dxũ0, D
2
xŨ0 + D2

xV0), 0≤h≤1 in Q0. (1.62)

From Vlk = S(Ṽlk , h) and V0 = S(Ṽ0, h), we have

∆(Vlk − V0) = h[gm(x, ũlk , Dxũlk , D2
xŨlk + D2

xVlk)

−gm(x, ũlk , Dxũlk , D2
xŨlk + D2

xV0) + Clk(x)], 0 ≤ h ≤ 1,

where
Clk(x) = gm(x, ũlk , Dxũlk , D2

xŨlk + D2
xV0)

−gm(x, ũ0, Dxũ0, D2
xŨ0 + D2

xV0), x ∈ Q0.

According to a similar method to deriving (2.43), Chapter II in [81], we
can prove that

L2[Clk(x), Q0] → 0 as k → ∞. (1.63)

Moreover according to Theorem 1.3, we can derive that

||Vlk − V0||Ŵ 2
2 (Q0) ≤ M22L2[Clk , Q0],

where M22 = M22(q, p, α, k0, Qm) is a non-negative constant, hence
||Vlk − V0||Ŵ 2

2 (Q0) → 0 as k → ∞. Thus from {Vlk(x) − V0(x)},
there exists a subsequence (for convenience we denote the subse-
quence again by {Vlk(x) − V0(x)}) such that ||Vlk(x) − V0(x)||Ŵ 2

2 (Q0)

= C1
β[Vlk(x) − V0(x, t), Q0] + ||Vlk(x) − V0(x)||W 2

2 (Q0) → 0 as k →
∞. From this we can obtain that the corresponding subsequence
{ulk(x) − u0(x)} = {S1(Vlk , h) − S1(V0, h)} possesses the property:
||ulk(x) − u0(x)||Ŵ 2

2 (Q) → 0 as k → ∞. This shows the complete conti-

nuity of V = S(Ṽ , h) (0 ≤ h ≤ 1) in BM . By using a similar method,
we can prove that V = S(Ṽ , h) (0 ≤ h ≤ 1) continuously maps BM into
B, and V = S(Ṽ , h) is uniformly continuous with respect to h ∈ [0, 1]
for Ṽ ∈ BM .

2) For h = 0, from (1.53) and (1.59), it is clear that V = S(Ṽ , 0) ∈
BM .

3) From Theorem 1.3 and (1.53), we see that V = S(Ṽ , h)(0 ≤ h ≤ 1)
does not have a solution u(x) on the boundary ∂BM = BM\BM .
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Hence by the Leray-Schauder theorem (see [40]), we know that Prob-
lem D0 for equation (1.59) with h = 1 has a solution V (x) ∈ BM , and
then Problem P of equation (1.52) with h = 1, i.e. (1.48) has a solution
u(x)=S1(V, h)=U(x)+V (x)=U(x)+v0(x)+v(x) ∈ B.

Theorem 1.7 Under the same conditions as in Theorem 1.1, Problem
O for the equation (1.2) has a solution.

Proof By Theorem 1.3 and Theorem 1.6, Problem O for equa-
tion (1.48) possesses a solution um(x), and the solution um(x) of
Problem O for (1.48) satisfies the estimates (1.19) and (1.20), where
m = 1, 2, .... Thus, we can choose a subsequence {umk

(x)}, such
that {umk

(x)}, {umkxi(x)} (i = 1, ..., N) in Q uniformly converge to
u0(x), u0xi(x) (i = 1, ..., N) respectively. Obviously, u0(x) satisfies the
boundary conditions of Problem O. On the basis of principle of compact-
ness of solutions for equation (1.48), we can see that u0(x) is a solution
of Problem O for (1.2).

2 Boundary Value Problems of Degenerate Elliptic
Equations of Second Order

2.1 Formulation of the Oblique Derivative Problem for De-
generate Elliptic Equations

Let G ∈ C2
α(0 < α < 1) be a bounded domain in the upper-half space

xN > 0, whose boundary is ∂G = S1 ∪ S2, in which S1 is located on
xN = 0 and S2 is located in xN > 0. Denote Γ = S2 ∩ {xN = 0}. We
consider the degenerate elliptic equation of second order

Lu=
N∑

i,j=1

aij(x)uxixj +
N∑

i=1

bi(x)uxi +
h(x)
xk

N

uxN +c(x)u=f(x) in G. (2.1)

Suppose that the equation (2.1) satisfies the following conditions, i.e.
Condition C:

1) There exists a positive number q0 (< 1), such that for x =
(x1, ..., xN ) ∈ G, the following equality holds:

N∑
i,j=1

aij(x)ξiξj ≥ q0

N∑
i=1

ξ2
i ; (2.2)

there is no harm in assuming that aNN = 1 and (aij(x)) is symmetrical.
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2) Coefficients of (2.1) satisfy the conditions

Cα[aij(x), G], Cα[bi(x), G], Cα[c(x), G] ≤ k0, i, j = 1, ..., N,

Cα[f(x), G] ≤ k1, C2[h(x), G] ≤ k0, c(x) ≤ 0, k > 0,
(2.3)

where α(0 < α < 1), kj(j = 0, 1) are non-negative constants.

Problem Q Find a bounded solution u(x) of equation (2.1) in G sat-
isfying the oblique derivative boundary condition

lu =
∂u

∂ν
+ b(x)u = g(x) on S2, (2.4)

where ν is a vector on every point of S2, and b(x), g(x) satisfy the con-
ditions

C1
α[cos(ν, n), S2], C1

α[b(x), S2]≤k0, C
1
α[g(x), S2]≤k2,

cos(ν, n) > 0, b(x) < 0 on S2,
(2.5)

in which n is the inner normal vector on S2. The contents of this section
are mainly chosen from [42].

2.2 Unique Solvability of the Oblique Derivative Problem for
Degenerate Elliptic Equations

Lemma 2.1 If the boundary ∂Q of the domain Q belongs to C2
α and

the operator

Lu =
N∑

i,j=1

aij(x)uxixj +
N∑

i=1

bi(x)uxi + c(x)u

satisfies the uniformly elliptic condition, aij(x), bi(x), c(x) ∈ Cα(Q), and
the coefficients of boundary operator

lu =
N∑

i=1

di(x)uxi + b(x)u

satisfy the conditions

N∑
i=1

di(x) cos(n, xi)|∂Q≥q0 >0, C1
α[di(x),∂Q]≤k0,C

1
α[b(x),∂Q]≤k2, (2.6)
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then any function u(x) (∈ C2
α(Q)) satisfies the estimate

C2
α[u, Q] ≤ M1{Cα[Lu,Q] + C1

α[Bu, ∂Q] + c[u, Q]},
where the non-negative constant M1 is only dependent on the coefficients
of L, l and ∂Q (see [38]).

We use the parameter expression of S2 as follows:

xi = xi(ξ1, ..., ξN−1), i = 1, ..., N,

in which xi(ξ1, ..., ξN−1) ∈ C2
α and define by

Xi =
1
Ω

∂(xi+1, ..., xN , x1, ..., xi−1)
∂(ξ1, ..., ξN−1)

,

the direct cosine of an inner normal line of S2, where

Ω =

[
N∑

i=1

(
∂(xi+1, ..., xN , x1, ..., xi−1)

∂(ξ1, ..., ξN−1)

)2
]1/2

> 0.

Theorem 2.2 Suppose that equation (2.1) satisfies Condition C and
C1

α[aij , G] ≤ k0, c < 0 in G. Then Problem Q of (2.1) has a bounded
solution u(x) ∈ C2

α(G ∪ S2).

Proof Choose a decreasing sequence of positive numbers {εm} such
that εm = 0 as m → ∞, and define a sequence of domains {Gm} satis-
fying the conditions:

1) G1 ⊂ G2 ⊂ ...;

2) ∪Gm = G;

3) Gm and its boundary are in xN > 0, and Gm ∩ {xN ≥ εm} =
G ∩ {xN ≥ εm};

4) The boundary Sm of Gm belongs to C2
α.

Introduce the boundary condition

∂um

∂νm
+ bm(x)um = gm(x) on Sm,

where we choose νm, bm(x), gm(x), such that when xm >2εm, cos(νm, n)
> 0; herein n is the inner normal vector of Sm and νm = ν, bm(x) = b(x),
gm(x) = g(x). Next for Sm ∩ {xN ≤εm}, set

∂um

∂νm
=

∂um

∂l
=

N∑
i,j=1

1
B

aij(x)Xj
∂um

∂xi
, B=

⎡⎣ N∑
i,j=1

(
N∑

i,j=1

aij(x)Xj)2
⎤⎦1/2

,
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in which l is the secondary normal vector and its directional cosine is
Yi =

∑N
j=1 aij(x)Xj/B. It is clear that cos(n, l) > 0, and bm(x) < −1,

C1
α[bm, Sm ∩ {xN ≤ εm}], C1

α[gm, Sm ∩ {xN ≤ εm}] ≤ k3, where k3 is
a positive constant. Moreover for {3εm/2 < xN ≤ 2εm}, let ν = ν,
and C1

α[bm, Sm ∩ {3εm/2 < xN ≤ 2εm}], C1
α[gm, Sm ∩ {3εm/2 < xN ≤

2εm}] ≤ k3. Finally for Sm ∩ {εm < xN ≤ 3εm/2}, ∂um/∂νm is defined
to be the relation

∂um

∂l
= k(ξ1, ..., ξN−1)

∂um

∂νm
+

N−1∑
i=1

hi(ξ1, ..., ξN−1)
∂um

∂ξi
,

where k(ξ1, ..., ξN−1) > 0, hi(ξ1, ..., ξN−1) ∈ C1
α, bm < −1, and bm(x),

gm(x) satisfy the condition as before.

Noting that

∂

∂ν
=

N∑
i=1

cos(ν, xi)
∂

∂xi
=

N∑
i=1

cos(ν, n)
cos(n, l)

cos(l, xi)
∂

∂xi

+
N∑

i=1

[
cos(ν, xi)− cos(ν, n)

cos(n, l)
cos(l, xi)

]
∂

∂xi
on

3εm

2
<xN < 2εm,

we have
∂

∂l
=

cos(n, l)
cos(ν, n)

∂

∂ν

+
N∑

i=1

[
cos(l, xi)− cos(n, l)

cos(ν, n)
cos(ν, xi)

]
∂

∂xi
on

3εm

2
<xN <2εm.

(2.7)

Denote αi = cos(l, xi) − cos(n, l) cos(ν, xi)/ cos(ν, n), then it is obvious
N∑

i=1

αiXi = 0.

Besides for any differentiable function v(x1, ..., xN ), we have

∂v

∂ξi
=

N∑
j=1

∂v

∂xj

∂xj

∂ξi
, i = 1, ..., N − 1, i.e.

N∑
j=1

∂v

∂xj

∂xj

∂ξi
− ∂v

∂ξi
= 0.

There is no harm in assuming that ∂(x1, ..., xN−1)/∂(ξ1, ..., ξN−1) �= 0,
we obtain

∂v

∂xj
=

∂v

∂xN

∂(xj+1, ..., xN , x1, ..., xj−1)
∂(ξ1, ..., ξN−1)

+
∂(xj+1, ..., xN−1,−v, x1, ..., xj−1)

∂(ξ1, ..., ξN−1)

/
∂(x1, ..., xN−1)
∂(ξ1, ..., ξN−1)

,

j = 1, ..., N − 1,
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thus

N∑
i=1

αi
∂v

∂xi
=

N−1∑
i=1

αi
∂(xi+1, ..., xN , x1, ..., xi−1)

∂(ξ1, ..., ξN−1)
∂v

∂xN

/
∂(x1, ..., xN−1)
∂(ξ1, ..., ξN−1)

+
N−1∑
i=1

αi
∂(xi+1, ..., xN−1,−v, x1, ..., xi−1)

∂(ξ1, ..., ξN−1)

/
∂(x1, ..., xN−1)
∂(ξ1, ..., ξN−1)

+αN
∂v

∂xN
=

1
ΩXN

N−1∑
i=1

αi
∂(xi+1, ..., xN−1,−v, x1, ..., xN−1)

∂(ξ1, ..., ξN−1)

+

(
N−1∑
i=1

αiXi

XN
+ αN

)
∂v

∂xN
.

Besides we can find N − 1 functions h̃(ξ1, ..., ξN−1) ∈ C1
α, such that

N∑
i=1

αi
∂v

∂xi
=

N−1∑
i=1

h̃(ξ1, ..., ξN−1)
∂v

∂ξi
,

thus (2.7) can be written as

∂

∂l
=k′(ξ1, ..., ξN−1)

∂

∂ν
+

N−1∑
i=1

h′
i(ξ1, ..., ξN−1)

∂

∂ξi
,

where k′(ξ1, ..., ξN−1) > 0, h′
i(ξ1, ..., ξN−1) ∈ C1

α. Especially k′(ξ1,
..., ξN−1) = 1, h′

i(ξ1, ..., ξN−1) = 0 (i = 1, ..., N − 1) in xn ≤ εN . Hence
we have

∂

∂l
=K(ξ1, ..., ξN−1)

∂

∂νm
+

N−1∑
i=1

Hi(ξ1, ..., ξN−1)
∂

∂ξi
, i=1, ..., N−1.

Now we consider the boundary value problem (Problem Qm)

Lum = f(x) in Gm,
∂um

∂νm
+ bmum = gm(x) on Sm. (2.8)

By the result in [38] and Lemma 2.1, we know that there exists a solution
um(x) of Problem Qm, and the solution um(x) satisfies the estimate

C[um(x), Gm] ≤ M1, C
2
α[um(x), Gm] ≤ M2, (2.9)

where M1 = M1(q0, α, k, G), M2 = M2(q0, α, k, Gm) are two positive
constants, k = (k0, k1, k2). In the following, we shall prove that um(x),
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umxi(x), umxixj (i, j = 1, ..., N) uniformly converge to the functions
u0(x), u0xi(x), u0xixj (i, j = 1, ..., N) in G ∩ {xN ≥ 3η > 0} respec-
tively. In fact, for arbitrary small positive number η, we can assume
that ψ(x) ∈ C2

α(G), ψ(x) = 1 for xN ≥ 2η, ψ(x) = 0 for xN ≤ η, and
∂ψ/∂ν = 0 on S2. Let vm = um(x)ψ(x), then we have

Lvm = ψ(x)f(x) + um(x)Lψ

+2
N∑

i,j=1

aij(x)
∂um

∂xi

∂ψ

∂xj
−c(x)ψ(x)um(x)=Fm(x).

(2.10)

Denote by Gη a bounded domain in G with the boundary Sη ∈ C2
α, and

Sη ∩ {xN ≥ η} = S2 ∩ {xN ≥ η}, Gη ⊂ {xN > 0}. It is clear that there
exists a positive integer m such that Gη ⊂ Gm, when 2εm ≤ η, and

∂vm

∂ν
+ b(x)vm(x) = ψ(x)gm(x) + b(x)um(x)

∂ψ(x)
∂ν

= ψ(x)g(x) for xN ≥ η;
(2.11)

moreover for xN < η, we have ψ(x) ≡ 0, vm(x) ≡ 0, hence

∂vm

∂ν
+ b(x)vm(x) = ψ(x)g(x) for xN < η.

Thus
lvm =

∂vm

∂ν
+ b(x)vm(x) = ψ(x)g(x) on Sη. (2.12)

By the results in [38], Section 1 and Lemma 2.1, the boundary value
problem (2.10),(2.12) has a bounded solution vm(x), and the solution
satisfies the estimate

C2
α[um(x), Gη] ≤ M3 = M3(q0, α, k, Gη). (2.13)

Hence vm(x), vmxi(x), vmxixj (i, j = 1, ..., N) are uniformly bounded
and equicontinuous. According to the Ascoli-Arzela theorem,
from {vm(x)} we can choose a subsequence {vmk

(x)}, such that
{vmk

}, {vmkxi}, {vmkxixj} uniformly converge to u(x), uxi , uxixj in Gη

and u(x) ∈ C2
α(Gη). Hence u(x) satisfies the equation and boundary

condition

Lu = f(x) in xN ≥ 3η,
∂u

∂ν
+ b(x)u = g(x) on S2 ∩ {xN ≥ 3η}.

This prove that there exists a bounded solution of the above problem
in G ∩ {xN ≥ 3η}. Noting the arbitrariness of η, we verify that the
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boundary value problem (2.1),(2.4), i.e. Problem Q, has a bounded
solution u(x) ∈ C2

α(G ∪ S2).

Corollary 2.3 If the coefficient c(x) ≤ 0 of equation (2.1), and the
boundary condition

lu =
∂u

∂ν
+ b(x)u =

N∑
i=1

di(x)uxi + b(x)u = g(x) on S2 (2.14)

satisfies

C1
α[di(x), S2] ≤ k0,

N∑
i=1

di(x) cos(n, xi)|S2 ≥ q0 > 0,

cos(ν, n) > 0, b(x) ≤ 0 on S2,

and one of bi(x)(i = 1, ..., N) for instance bj(x) > 0(1 ≤ j ≤ N), then
the result in Theorem 2.2 is still valid.

Proof Introduce a transformation

u(x) = (C − eµxj )v(x), 1 ≤ j ≤ N ;

equation (2.1) is reduced to

N∑
i,j=1

aij(x)vxixj +
N−1∑
i=1

b̃i(x)vxi +
h(x)
xk

N

vxN + c̃(x)v = f̃(x) in G,

where c̃(x) = c(x)−(a11(x)µ2+bj(x)µ)eµxj/(C−eµxj ). Noting a11 > q0,
we can choose positive constants C and µ such that c̃(x) < 0 in G and
(C − eµxj ) > 1, then the boundary condition (2.14) is transformed into

N∑
i=1

d̃i(x)vxi + b̃(x)v = g̃(x) on S2,

in which b̃(x) = b(x) − µbj(x)eµxj/(C − eµxj ) < 0.

Theorem 2.4 If the conditions in Theorem 2.2 and b(x) ≤ 0 on S2

hold, then when g(x) ≡ 0, equation (2.1) has a bounded solution u(x) ∈
C2

α(G ∪ S2) satisfying the boundary condition (2.4) on S2.

The proof is the same with that of Theorem 2.2.

Theorem 2.5 Let the conditions in Theorem 2.2 hold, and cos(ν, xN )
> 0 on Γ. Moreover one of the following conditions holds:
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a) k = 1, h(x1, ..., xN−1, 0) ≥ 1, and h(x) about xN is even;

b) k > 1, h(x1, ..., xN−1, 0) > 0.

Then Problem Q of (2.1) has at most a bounded solution u(x) ∈ C2
α(G∪

S2).

Proof It is sufficient to prove the bounded solution u(x) ≡ 0 of the
boundary value problem: Lu = 0 and ∂u/∂ν + bu = 0 on S2. For this
we construct a barrier function W (x) as follows:

1) W (x) ≥ c0 > 0 in G, here c0 is a constant;

2) When xN → 0, W (x) → ∞ uniformly holds;

3) LW < 0 in G;

4)
∂W

∂ν
+ bW < M2

1 on S2.

If there exists the function W (x), by Theorem 2.2 we can establish a
bounded function w(x) satisfying Lw = 0 and ∂w/∂ν + bw > ∂W/∂l +
bW. Let V (x) = W (x) − w(x). Then LV < 0, ∂V/∂ν + bV < 0, and
from the boundedness of w(x), it follows that limXN→0 V (x) = +∞.
On the basis of the result in [58], we can derive εV ± u0 ≥ 0, where ε
is a positive number. In fact, L(εV ± u0) = εLV < 0 in G, ∂(εV ±
u0)/∂ν + b(εV ± u0) ≤ 0 on S2, and V → ∞ as XN → 0, hence εV ± u0

cannot take the negative minimum in G. Due to the arbitrariness of ε,
we obtain u0 ≡ 0.

Now we make the barrier function in case a) as follows:

W (x) = lnxN − (x1 − ã)J + K, (2.15)

where ã is chosen such that x1 − ã > 1 for x = (x1, ..., xN ) ∈ G, and
J, K are undetermined constants. For a sufficiently small xN , we can
choose that a positive number A is large enough, such that

1 − h(x)
(xN )2

= [1−h(x1, ..., xN−1, 0)− ∂h(x1,...,xN−1,0)xN

∂xN
+O(x2

xN
)]x−2

N ≤A;

the above inequality is also valid for any xN in G. From (2.2), a11 ≥ q0,
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we can select a J large enough such that

LW = −a11(x)J(J − 1)(x1 − ã)J−2

−b1(x)J(x1−ã)J−1+[1−h(x)]x−2
N +c(x)W <0,

and then choose a sufficiently large K such that W (x) ≥ c0 > 0 in G.
Moreover ∂W/∂ν = −(∂xN/∂ν)/xN + O(1). According to the hypoth-
esis: cos(ν, xN ) > 0 near to Γ, hence ∂W/∂ν + bW < M2

1 on S2; this
shows that the function W (x) in (2.15) satisfies all conditions of the
barrier function.

Finally we consider the case b); we choose the function

W (x) = x−β
N − (x1 − ã)J + K, 0 < β < 1, (2.16)

and for a sufficiently small xN , it is clear that

β[β + 1 − h(x)x−k+1
N ]x−β−2 < −β

2
h(x1, ..., xN−1, 0)x−k−β−1

N < 0,

where J,K are chosen as stated in case a). Moreover from cos(ν, xN ) > 0
on Γ, we have ∂W/∂ν + b(x)W < M2

1 . Thus the function W (x) in (2.16)
satisfies all conditions of the barrier function. This completes the proof.

Theorem 2.6 Under the same conditions as in Theorems 2.4 and
2.5, there exists at most a bounded solution u(x) ∈ C2

α(G ∪ S2) of (2.1)
satisfying the boundary condition

∂u

∂l
+ bu = 0 on S2.

3 The Schwarz Formulas and Dirichlet Problem in Half-
space and in a Ball

First of all, we introduce the regular function in real Clifford analysis.
The Clifford algebra An(R) over the space Rn is defined as follows: Let
e1 = 1, e2, · · · , en be the standard orthogonal basis in Rn, and denote
by es the general basis element of An(R), where s is any subset of
{1, 2, 3, ..., n}, i.e.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e1 = 1, e2
j = −1, 2 ≤ j ≤ n,

ejek = −ekej , 2 ≤ j < k ≤ n,

es = ej1ej2 · · · ejs , 2 ≤ j1 < j2 < · · · < js ≤ n,

s = {j1, j2, ..., js}.
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It is not difficult to see that An(R) is a 2n−1-dimensional Clifford algebra
space. An arbitrary element of the Clifford algebra An(R) can be written
as

x=x1e1+· · ·+xnen+· · ·+xxj1...γs
ej1 ...eγs +· · ·+x2...ne2...en =

∑
s

xses,

in which x1, ..., xn, ..., xj1...js , ..., x2...n ∈ R.

Let x =
∑

xses, y =
∑

yses ∈ An(R), where xs, ys ∈ R. Then
xy =

∑
s,k xsykesek, in which esek is a basis element of An(R) and

xsyk ∈ R. For x = x1e1 + x2e2 + · · ·+ xnen ∈ Rn, its conjugate element
is defined by x̄ = x1e1 − x2e2 − · · · − xnen. It is obvious that

xx̄ = x̄x = |x|2.

If x �= 0, then x is invertible, and x−1 = x̄/|x|2.
Denote by D a connected open set in R, and by

F
(r)
D = {f |f : D → An(R), f(x) =

∑
s

fs(x)es, fs ∈ Cr(D)}

the set of continuously differentiable functions up to degree r, the values
of which belong to An(R). Define the differential operators

∂̄ = e1
∂

∂x1
+ e2

∂

∂x2
+ · · · + en

∂

∂xn
, ∂ = e1

∂

∂x1
− · · · − en

∂

∂xn
;

then we have

∂̄∂ = ∂∂̄ =
n∑

j=1

∂2

∂x2
j

= ∆.

If f(x) ∈ F
(r)
D (r ≥ 1) and ∂̄f = 0, then f(x) is called a (left-)regular

function, and then fs(x) is harmonic in D. In particular if n = 2, the
regular function f(x) in a domain D in R2 is an analytic function, and
if n = 3, the regular function f(x) =

∑
s fs(x)es = f1(x) + f2(x)e2 +

f3(x)e3 + f23(x)e2e3 in a domain in R3 is a solution (f1, f2, f3, f23) of
the system of partial differential equations of first order⎛⎜⎜⎜⎜⎜⎜⎝

∂
∂x1

− ∂
∂x2

− ∂
∂x3

0
∂

∂x2

∂
∂x1

0 ∂
∂x3

∂
∂x3

0 ∂
∂x1

− ∂
∂x2

0 − ∂
∂x3

∂
∂x2

∂
∂x1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
f1

f2

f3

f23

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0

0

0

0

⎞⎟⎟⎟⎟⎟⎠ . (3.0)
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We can see that it is an analytic function in the 3-dimensional domain.
Hence, the general regular functions possess some properties similar to
those of analytic functions in the planar domain.

In the following, we first discuss the 3-dimensional space R3 and
the corresponding Clifford algebra A3(R) over R3. In this case, x =
x1 + x2e2 + x3e3 + x23e23 ∈ A3(R), and we define by

Re x = x1 + x2e2, Im x = x3 − x23e2, (3.1)

the real part and imaginary part of x. It is evident that

x = Re x + e3Im x, Re x =
1
2
(x + x̃), Im x = −e3

x − x̃

2
, (3.2)

where x̃ = Re x − e3Im x. Let y = Re y + e3Im y ∈ A3(R), then we can
verify that x̃y = x̃ỹ.

3.1 Schwarz Formula and Dirichlet Problem for the Halfspace

Theorem 3.1 Suppose that u(y) is a Hölder continuous function in
the plane E = {x3 = 0}, and u(y) = 0 if |y| is large enough. Then there
exists a regular function f(x) in the upper halfspace D, such that

Ref+(y) = u(y), y ∈ E. (3.3)

Then the function f(x) can be expressed as

f(x) =
1
2π

∫ ∫
E

x3 + e3[(x1 − y1) + e2(x2 − y2)]
|y − x|3 u(y)dSy + e3g, (3.4)

where we assume that lim|x|→∞ f(x) = f(∞) = e3(a3 − a23e2), a3, a23

are real constants, and then e3g = f(∞). This is also a representation of
the solution of the Dirichlet problem for regular functions in the halfspace
D.

Proof We assume that f(x) is a desired regular function, where x is
any point in D. Let ΣR be the upper half sphere with the center at the
origin and radius R, and denote by DR a domain with the boundary ΣR

and ER = {|x| < R, x ∈ E}. We choose R so large that x ∈ DR and
|y − x| ≥ R/2, y ∈ ER. By the Cauchy integral formula we have

f(x) =
1
4π

∫
ΣR

ȳ − x̄

|y − x|3 n(y)f(y)dSy

+
1
4π

∫
ER

ȳ − x̄

|y − x|3 n(y)f(y)dSy = I1 + I2.

(3.5)
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Moreover from∣∣∣ ȳ − x̄

|y − x|3 − ȳ

|y|3
∣∣∣≤ |x|

(
1

|y − x||y|2 +
1

|y − x|2|y|
)

≤ |x|( 2
R3

+
4

R3
) =

6|x|
R3

,

(3.6)

it follows that ∣∣∣∣ 1
4π

∫
ΣR

[
ȳ − x̄

|y − x|3 − ȳ

|y|3
]
n(y)f(y)dSy

∣∣∣∣
≤ 1

4π

∫
ΣR

6|x|
R3

|f(y)|dSy ≤ M |x|
4πR3

∫
ΣR

dSy

=
M |x|
2R

→ 0 as R → ∞.

(3.7)

For arbitrarily given positive constant ε, there exists a large positive
constant R0, such that |f(y) − f(∞)| < ε if |y| ≥ R0. Thus∣∣∣∣∫

ΣR

ȳ

|y|3 n(y)[f(y) − f(∞)]dSy

∣∣∣∣ ≤ 4
π

ε,

which implies that∫
ΣR

ȳ

|y|3 n(y)[f(y) − f(∞)]dSy → 0 as R → ∞. (3.8)

Noting that

I1 =
1
4π

∫
ΣR

ȳ−x̄

|y−x|3 n(y)f(y)dSy =
1
4π

∫
ΣR

[
ȳ−x̄

|y−x|3 −
ȳ

|y|3
]
n(y)f(y)dSy

+
1
4π

∫
ΣR

ȳ

|y|3 n(y)[f(y)−f(∞)]dSy+
1
4π

∫
ΣR

ȳ

|y|3 n(y)f(∞)dSy,

and
1
4π

∫
ΣR

ȳ

|y|3 n(y)f(∞)dSy =
1
2
f(∞),

and applying (3.7)and (3.8),

lim
R→∞

I1 =
1
2
f(∞) (3.9)

follows.
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As for the integral I2, taking n(y) = −e3, y = y1 + e2y2 on ER into
account, we have

I2 =
1
4π

∫
ER

ȳ − x̄

|y − x|3 n(y)f(y)dSy

=
1
4π

∫
ER

(y1 − x1) − e2(x2 − y2) + e3x3

|y − x|3 (−e3)f(y)dSy

=
1
4π

∫
ER

x3 + e3[(x1 − y1) + e2(x2 − y2)]
|y − x|3 n(y)f(y)dSy.

(3.10)

Letting R tend to ∞,

f(x)=
1
4π

∫
ER

x3+e3[(x1−y1)+e2(x2−y2)]
|y−x|3 f(y)dSy+

1
2
f(∞) (3.11)

can be derived. If Imx < 0, then according to Cauchy’s theorem for
regular functions, we can similarly obtain

0 =
1
4π

∫
ER

−x3 + e3[(x1 − y1) + e2(x2 − y2)]
|y − x|3 f(y)dSy +

1
2
f(∞).

From the above formula, it is easy to derive

0 =
1
4π

∫
E

x3 + e3[(x1 − y1) + e2(x2 − y2)
|y − x|3 f̃(y)dSy − 1

2
f̃(∞). (3.12)

Adding (3.11) and (3.12), and noting that f̃(∞) = −f(∞), we get

f(x)=
1
4π

∫
E

x3+e3[(x1−y1)+e2(x2−y2)]
|y−x|3 [f(y)+f̃(y)]dSy+f(∞)

=
1
2π

∫
E

x3 + e3[(x1 − y1) + e2(x2 − y2)]
|y − x|3 u(y)dSy + f(∞).

It remains to verify that f(x) is just the desired function. It is
sufficient to prove that

Re f+(x0) = u(x0), (3.13)

where x0 is any point on E. We rewrite (3.4) in the form

f(x)=
1
2π

∫
ER

x3+e3[(x1−y1)+e2(x2−y2)]
|y − x|3 u(y)dSy

+
1
2π

∫
E\ER

x3+e3[(x1−y1)+e2(x2−y2)]
|y − x|3 u(y)dSy+f(∞),
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where ER = { |y| < R, y ∈ E} and ΣR are as stated before. Due to
u(y) = 0 if |y| is sufficiently large, and for piecewise smooth surface
ΣR ∪ ER and sectionally Hölder-continuous function u(y), the Plemelj
formula is still true. Hence

g+(x0) − g−(x0) = 2u(x0), (3.14)

where

g+(x) =
1
2π

∫
ER∪ΣR

x3 + e3[(x1 − y1) + e2(x2 − y2)]
|y − x|3 u(y)dSy, x ∈ DR.

Setting ζ̃ = x, ζ �∈ D̄R,

g̃+(x) =
1
2π

∫
ER∪ΣR

x3 − e3[(x1 − y1) + e2(x2 − y2)]
|y − x|3 u(y)dSy

= g̃+(ζ̃) =
1
2π

∫
ER∪ΣR

−ζ3 − e3[(x1 − y1) + e2(x2 − y2)]
|y − ζ|3 u(y)dSy

can be obtained. Letting x tend to x0, we know that g̃+(x0) = −g−(x0).
From (3.14), it follows that

g+(x0) − g−(x0) = g+(x0) + g̃+(x0) = 2u(x0), i.e.

Re g+(x0) = u(x0).
(3.15)

Noting that

lim
x→x0

1
2π

∫ ∫
E\ER

x3 + e3[(x1 − y1) + e2(x2 − y2)]
|y − x|3 u(y)dSy + f(∞)

=
1
2π

∫ ∫
E\ER

e3[(x0
1 − y1) + e2(x0

2 − y2)]
|y − x0|3 u(y)dSy + f(∞),

it is easily seen that

Re

[
1
2π

∫
E\ER

e3[(x0
1 − y1) + e2(x0

2 − y2)]
|y − x0|3 u(y)dSy + f(∞)

]
= 0.

Thus we obtain (3.13).

Finally, on account of u(y) = 0 if |y| is large enough,

lim
|x|→∞

f(x) = f(∞)

can be derived. This shows that the above regular function f(x) is
unique.
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Remark By using a similar method, we can also get an expression for
the solution of the Dirichlet problem for regular functions in the halfs-
pace D with weaker conditions, namely we suppose u(y) is a bounded
continuous function in the plane E = {x3 = 0}, and the solution f(x)
of the Dirichlet problem satisfies the condition |Ref(x) |= O(1/|x|) as
|x| tends to ∞. Then f(x) may be expressed in the form (3.4), where
g(x1, x2) = g1(x1, x2) + e2g2(x1, x2) is an arbitrary function satisfying
gx1 = e2gx2 (see [3]).

3.2 Schwarz Formula and Dirichlet Problem for a Ball

Next, we shall give the Schwarz formula for regular functions in a
ball G = {|x| < R, 0 < R < ∞} in R3. We need the following lemmas.

Lemma 3.2 A function f(x) with values in the Clifford algebra A3(R)
is regular in G if and if only Re f(x) and Im f(x) satisfy the system of
first order equations

2
∂

∂x∗
Re f =

∂

∂x3
Im f, x ∈ G, (3.16)

∂

∂x3
Re f = −2

∂

∂x∗ Im f, x ∈ G, (3.17)

where x∗ = x1 + x2e2, x∗ = x1 − x2e2, and

∂

∂x∗ =
1
2
(

∂

∂x1
− e2

∂

∂x2
),

∂

∂x∗
=

1
2
(

∂

∂x1
+ e2

∂

∂x2
).

Proof It is clear that

2
∂

∂x∗ (e3Im f) = 2e3
∂

∂x∗
Im f.

Hence
∂̄f = (2

∂

∂x∗
+ e3

∂

∂x3
)(Re f + e3Im f)

= (2
∂

∂x∗
Re f − ∂

∂x3
Im f) + e3(

∂

∂x3
Re f + 2

∂

∂x∗ Im f). (3.18)

If f(x) is regular in G, i.e. ∂̄f = 0, from (3.18) follows (3.16) and (3.17).
The inverse statement is also true.

Suppose that f(x) is a regular function and f(x) ∈ C2(G). Then

∂̄∂ Re f = ∂∂̄ Re f = ∆Re f = 0, ∆Im f = 0.
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So Re f and Im f are called harmonic functions in Clifford analysis, and
Im f is called the conjugate harmonic function of Re f.

Lemma 3.3 Let f(x) = u1(x) + e2u2(x), u1(x) and u2(x) be real
harmonic functions in G and u1(x), u2(x) ∈ C1(G). Then the conjugate
harmonic function v(x) of u(x) is given by the formula

v(x) =
∫ x3

0
2

∂

∂x∗
udx3 − 1

2
T̃ (

∂

∂x3
u(x1, x2, 0)) + g(x1, x2), (3.19)

where g(x1, x2) = g1(x1, x2) + e2g2(x1, x2) is an arbitrary function sat-
isfying ∂g/∂x∗ = 0, and

T̃ u(x) = − 1
π

∫ ∫
ER

u(y∗)
y∗ − x∗

dσy∗ , (3.20)

where ER = {(x1, x2, 0) |x2
1 + x2

2 | < R2}.
Proof From (3.16), it follows that

v(x) =
∫ x3

0
2

∂

∂x∗
udx3 + w(x1, x2).

Substituting the above expression into (3.15) and letting x3 = 0, we
obtain

∂

∂x3
u(x1, x2, x3)|x3=0 + 2

∂

∂x∗w(x1, x2) = 0,

and then

w(x1, x2) = −1
2
T̃ (

∂

∂x3
u(x1, x2, x3)|x3=0) + g(x1, x2)

can be obtained, in which g(x1, x2) satisfies ∂g/∂x∗ = 0. Thus formula
(3.19) holds.

Moreover, if v(x) is given by (3.19), we can see that u(x) and v(x)
satisfy (3.16). Since u(x) is a harmonic function and

4
∂

∂x∗
∂

∂x∗
u = (

∂2

∂x2
1

+
∂2

∂x2
2

)u = − ∂2

∂x2
3

u,

it is easy to verify that u(x) and v(x) satisfy (3.17).

Lemma 3.4 Suppose that u(x) = u1(x)+ e2u2(x) is a harmonic func-
tion in G = {|x| < R} in Clifford analysis and u(x) is continuous on G.
Then u(x) can be expressed as

u(x) = −
∫
|y|=R

∂

∂n
(

1
4π

1
|x − y| −

1
4π

R

|x||x̃ − y|)u(y)dSy, (3.21)
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where x = x1 + x2e2 + x3e3, y = y1 + y2e2 + y3e3, x̃ = R2x/|x|2, ∂/∂n
denotes the exterior normal derivative with respect to y on the sphere
|y| = R, and dSy is the area element of |y| = R.

Proof Due to ∆u = 0 in G and because u(x) is continuous on G, from
the Poisson formula for harmonic functions in a ball, it follows that the
formula (3.21) holds.

Now, we find the conjugate harmonic functions of 1/|x − y| and
R/|x||x̃ − y| with respect to x. Noting that∫ x3

0
2

∂

∂x∗
1

|x − y|dx3 =
∫ x3

0

(
−x∗ − y∗

|x − y|3
)

dx3

= −(x∗ − y∗)(x3 − y3)
|x∗ − y∗|2(x − y)

− (x∗ − y∗)y3

|x∗ − y∗|2[(x1 − y1)2 + (x2 − y2)2 + y2
3]1/2

,

and

−1
2

∂

∂x3

1
|x − y|

∣∣∣
x3=0

= −1
2

y3

[(x1 − y1)2 + (x2 − y2)2 + y2
3]3/2

=
∂

∂x∗
(x∗ − y∗)y2

|x∗ − y∗|2[(x1 − y1)2 + (x2 − y2)2 + y2
3]3/2

,

we obtain

−1
2
T̃

(
∂

∂x3

1
|x − y|

∣∣∣
x3=0

)
=

(x∗ − y∗)y2

|x∗ − y∗|2[(x1 − y1)2 + (x2 − y2)2 + y2
3]1/2

+ w(x1, x2),

where w(x1, x2) is a function satisfying ∂
∂x∗ w = 0. On the basis of Lemma

3.3, we know that the conjugate harmonic function of 1/|x − y|(x �= y)
with respect to x possesses the form

−(x∗ − y∗)(x3 − y3)
|x∗ − y∗|2|x − y| + c(x1, x2) + w(x1, x2).

In particular, choosing c(x1, x2) = −w(x1, x2), it is easy to see that
−(x∗−y∗)(x3 −y3)/|x∗−y∗|2|x−y| is a conjugate harmonic function of
1/|x−y|. Similarly, we can find that a conjugate function of R/|x||x̃−y|
with respect to y possesses the form

−R(y∗ − x̃∗)(y3 − x̃3)
|x||y∗ − x̃∗|2|y − x̃| = − R

|x|
(y∗ − R2x∗/|x|2)(y3 − R2|x3|/|x|2)
|y − R2x∗/|x|2|2|y − R2x/|x|2|

= −R|x|(|x|2y∗ − R2x∗)(|x|2y3 − R2x3)
|x2

1y
∗ − R2x∗|2||x|2y − R2x| ,
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and a conjugate function of R/|x||x̃− y| with respect to x possesses the
form

−R|y|(|y|2x∗ − R2y∗)(|y|2x3 − R2y3)
||y|2x∗ − R2y∗|2||y|2x − R2y| .

Denoting

g(x, y) =
1
4π

(
1

|x − y| −
R

|x|
1

|x̃ − y|
)

,

h(x, y) = − 1
4π

(
(x∗ − y∗)(x2 − y2)
|x∗ − y∗|2|x − y|

−R|y|(|y|2x∗ − R2y∗)(|y|2x3 − R2y3)
||y|2x∗ − R2y∗|2||y|2x − R2y|

)
,

then for x �= y, the function s(x, y) = g(x, y) + e3h(x, y) satisfies ∂̄s = 0
with respect to x. Since

∂

∂n
=

∂

∂y1

y1

|y| +
∂

∂y2

y2

|y| +
∂

∂y3

y3

|y| ,

by calculation, we obtain

− ∂

∂n
s(x, y)||y|=R=

1
4πR

{
R2−|x|2
|x−y|3

+e3

[
−2(x∗(x3−y3)+x3(x∗−y∗)

|x∗−y∗|2|x−y|

+
4(x∗−y∗)(x3−y3)(|x∗|2−(x1y1+x2y2))

|x∗ − y∗|4|x − y|

+
(x∗ − y∗)(x3 − y3)(|x|2 − R2)

|x∗ − y∗|2|x − y|3
]}

.

(3.22)

Theorem 3.5 Let u(x) = u1(x) + e2u2(x) be a continuous function
on the sphere |x| = R. Then there exists a continuous function f(x) on
G, which satisfies the system of first order equations

∂̄ f = 0 in G = {|x| < R} (3.23)

and the boundary condition

Re f = u(x) on ∂G = {|x| = R}, (3.24)
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and f(x) can be expressed as

f(x) =
1

4πR

∫
∂G

{
R2 − |x|2
|x − y|3 + e3

[
−2(x∗(x3 − y3) + x3(x∗ − y∗))

|x∗ − y∗||x − y|

+
4(x∗ − y∗)(x3 − y3)(|x∗|2 − (x1y1 + x2y2))

|x∗ − y∗|4|x − y|

+
(x∗−y∗)(x3−y3)(|x|2−R2)

|x∗−y∗|2|x−y|3
]}

u(y)dSy+e3c(x1, y2),

(3.25)
where c(x1, x2) = c1(x1, x2) + e2c2(x1, x2) is an arbitrary function satis-
fying

∂

∂x∗ c(x1, x2) = 0,

where x∗ = x1 + x2e2.

Proof From the above discussion, we see that the function expressed
by (3.25) is a solution of the Dirichlet boundary value problem (3.23)
and (3.24). Conversely, if the Dirichlet problem (3.23) and (3.24) has a
solution f(x), we denote the integral on the right-hand side of (3.25) by
F (x), i.e.

F (x) =
2

4πR

∫
∂G

{
R2 − |x|2
|x − y|3 + e3

[
−2x∗(x3 − y3) + x3(x∗ − y∗)

|x∗ − y∗||x − y|

+
4(x∗ − y∗)(x3 − y3)(|x∗|2 − (x1y1x2y2))

|x∗ − y∗|4|x − y|

+
(x∗ − y∗)(x3 − y3)(|x|2 − R2)

|x∗ − y∗|2|x − y|3
]}

u(y)dSy.

Then ∂̄F (x) = 0 in G and ReF ||x|=R = u(x). Hence ∆(Re f −Re F ) = 0
in G, and (Re f −Re F )||x|=R = 0. This implies that Re f = Re F on G.
According to Lemma 3.2, we obtain

∂

∂x∗ (Im f − Im F ) = 0,
∂

∂x3
(Im f − Im F ) = 0.

Thus Im f − Im F = c(x1, x2) and ∂c(x1, x2)/∂x∗ = 0. The theorem is
proved (see [4]).
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4 Oblique Derivative Problems for Regular Functions
and Elliptic Systems in Clifford Analysis

First of all, we consider the case of the Clifford algebra A3 over the
space R3. Let G be a ball, i.e. G = {∑3

j=1 |xj |2 < R2(< ∞)}, and for
convenience, let e2e3 be denoted by e4. Any point x in G may be written
as x =

∑3
j=1 xjej , and any function f(x) in G with values in the Clifford

algebra may be denoted by w(x) =
∑4

j=1 wj(x)ej .

4.1 Oblique Derivative Problems for Generalized Regular
Functions in R3

A generalized regular function w(x) in G is defined as a solution
w(x) =

∑4
j=1 wj(x)ej (∈ C2(G)) for the elliptic system of first order

equations in the form

∂̄w = aw + bw̄ + c in G, (4.1)

where

a(x) =
4∑

j=1

aj(x)ej , b(x) =
4∑

j=1

bj(x)ej ,

c(x) =
4∑

j=1

cj(x)ej ∈ C1
α(G), 0 < α < 1.

Problem P The oblique derivative problem for system (4.1) is to
find a solution w(x) ∈ C1

α(Ḡ) ∩ C2(G) of (4.1) satisfying the boundary
condition

∂wj

∂νj
+ σj(x)wj(x) = τj(x) + hj , x ∈ ∂G, wj(R) = uj , j = 1, 2, (4.2)

where σj(x), τj(x) ∈ C1
α(∂G), σj(x) ≥ 0 on ∂G, j = 1, 2, hj(j = 1, 2) are

unknown real constants to be determined appropriately, uj(j = 1, 2) are
real constants, νj(j = 1, 2) are vectors at the point x ∈ ∂G, cos(νj ,n) ≥
0, j = 1, 2, n is the outward normal at x ∈ ∂G, and cos(νj ,n) ∈ C1

α(∂G).

If w(x) is a solution of Problem P for system (4.1), then we can verify
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that [w1(x), w2(x)] is a solution of the system of second order

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆w1 =
3∑

j=1

(Aj + Bj)w1xj + B5w1 + B6,

∆w2 = 2
3∑

j=1

Bjw2xj + B7w2 + (A2w1)x1 − (A1w1)x2

−(A4w1)x3 − B2w1x1 + B1w1x2 + B4w1x3 + B8w1 + B9

(4.3)

satisfying the boundary condition (4.2), where Aj = aj + bj , Bj = aj −
bj , j = 1, ..., 4, Bj is only a function of xj , j = 1, 2, 3, B4 is a real
constant, and

B5 = −
4∑

j=1

AjBj +
3∑

j=1

Ajxj , B6 = −
4∑

j=1

BjCj +
3∑

j=1

Cjxj ,

B7 =
3∑

j=1

Bjxj −
4∑

j=1

B2
j , B8 = A1B2 − A2B1 − A3B4 + A4B3,

B9 = −C1x2 + C2x1 − C4x3 − B1C2 + B2C1 + B3C4 − B4C3.

In fact, it follows from (4.1) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1x1 − w2x2 − w3x3 = A1w1 − B2w2 − B3w3 − B4w4 + C1,

w2x1 + w1x2 + w4x3 = A2w1 + B1w2 − B4w3 + B3w4 + C2,

w3x1 − w4x2 + w1x3 = A3w1 + B4w2 + B1w3 − B2w4 + C3,

w4x1 + w3x2 − w2x3 = A4w1 − B3w2 + B2w3 + B1w4 + C4.

(4.4)

When Bj = Bj(xj), j = 1, 2, 3, and B4 is a real constant, from (4.4) we
can derive the first equation in (4.3), and then the second equation in
(4.3) can be obtained.

Conversely, if the following conditions hold:

B5 ≥ 0, B7 ≥ 0 on Ḡ, (4.5)

then according to Theorem 1.6, the boundary value problem (4.3),(4.2)
has a solution [w1(x), w2(x)]. Afterwards, if

B3 = B4 = 0 on Ḡ, (4.6)
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then we can find w3(x), w4(x) by the following integrals:⎧⎪⎪⎨⎪⎪⎩
w3(x)=

∫ x3

0
[w1x1−w2x2−A1w1+B2w2−C1]dx3+φ3(x1, x2),

w4(x)=
∫ x3

0
[−w2x1−w1x2 +A2w1+B1w2+C2]dx3+φ4(x1, x2),

(4.7)

where φ3(x1, x2), φ4(x1, x2) satisfy the conditions⎧⎨⎩ φ3x1 − φ4x2 − B1φ3 + B2φ4 − C3 = ψ3(x1, x2),

φ3x2 + φ4x1 − B2φ3 − B1φ4 − C4 = ψ4(x1, x2),
(4.8)

in which

ψ3(x1, x2)=[−w1x3 +A3w1]|x3=0, ψ4(x1, x2)=[w2x3 +A4w1]|x3=0,

and Aj , Bj , Cj satisfy some conditions such that the integrals in (4.7)
are single-valued. Suppose that φ = φ3 + φ4e2 = φ3 + φ4i satisfies the
Riemann-Hilbert boundary conditions:⎧⎨⎩Re[λ(t)φ(t)]=r(t)+h(t), t= t1+it2∈Γ=∂G∩{x3 =0},

Im[λ(dj)φ(dj)] = gj , j = 1, ..., 2K + 1 for K ≥ 0;
(4.9)

where |λ(t)| = 1, λ(t), r(t) ∈ C2
α(Γ), dj (j = 1, ..., 2K + 1 for K ≥ 0)

are distinct points on Γ, gj (j = 1, ..., 2K + 1 for K ≥ 0) are known real
constants, and

h(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 on Γ for K =

1
2π

∆Γargλ(t) ≥ 0,

h0+Re
−K−1∑
m=1

(h+
m+ih−

m)tm on Γ for K <0;

herein h0, h
±
m(m = 1, ...,−K − 1) are undetermined real constants.

According to Theorems 4.1 and 4.6, Chapter 2 in [81], the func-
tions φ3(x3, x4), φ4(x1, x2) may be uniquely determined, and then
w3(x), w4(x) may be also uniquely determined. Then we obtain

Theorem 4.1 If the coefficients of the system (4.1) satisfy the con-
ditions (4.5),(4.6), and W (t) = w3(t) + iw4(t) satisfies the boundary
conditions

Re[λ(t)W (t)]=r(t) + h(t), t ∈ Γ=∂G ∩ {x3 = 0}, (4.10)

Im[λ(dj)W (dj)] = gj , j = 1, ..., 2K + 1 for K ≥ 0, (4.11)

where λ(t), r(t), h(t), dj , gj and K are as stated in (4.9), then Problem
P has a unique solution w(x) =

∑4
j=1 wj(x)ej ∈ C1

α(Ḡ) ∩ C2(G), 0 <
α < 1 (see [3]).
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4.2 Oblique Derivative Problem for a Degenerate Elliptic Sys-
tem of First Order in R3

Now, we discuss the degenerate elliptic system of first order equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1x1−w2x2−xµ
3w3x3 =A1w1−B2w2−B3x

1+µ
3 w3−B4w4+C1,

w2x1 + w1x2 + w2x3 =A2w1 + B1w2 − B4x
µ
3w3 + B3w4+C2,

xµ
3w3x1 − w4x2 +w1x3 = A3w1+B2w2+B1x

µ
3w3−B2w4+C3,

w4x1 + xµ
3w3x2 − w2x3 =A4w1−B3w2+B2x

µ
3w3+B1w4+C4,

(4.12)

where Aj(x), Bj(x), Cj(x)(j = 1, ..., 4) are known functions as stated
in (4.4), and C1(x) = x1+µ

3 c1(x), Cj(x) = xµ
3cj(x), j = 2, 3, 4, cj(x) ∈

C1
α(G), j = 1, ..., 4, µ is a non-negative constant, and G is a domain in

the upper halfspace x3 > 0 with the boundary ∂G = D1 ∪ D2 ∈ C2
α,

where D1 is in x3 > 0 and D2 in x3 = 0, Γ = D1 ∩ {x3 = 0}. The
Riemann-Hilbert boundary value problem (Problem A) for (4.12) is to
find a bounded solution w(x) =

∑4
j=1 wj(x)ej ∈ C1

α(G)∩C2(G) of (4.12)
satisfying the boundary condition⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂w3

∂ν3
+ σ3(x)w3(x) = τ3(x), x ∈ D1,

∂w4

∂ν4
+ σ4(x)w4(x) = τ4(x), x ∈ ∂G,

(4.13)

⎧⎨⎩ Re[λ(t)(w1(t) + iw2(t)] = r(t) + h[ζ(t)], t = x1 + ix2 ∈ Γ,

Im[λ(dj)(w1(dj)+iw2(dj))]=gj , j =1, ..., 2K+1 for K≥0,
(4.14)

where cos(νj , n) > 0, j = 3, 4, n is the outward normal at x ∈ ∂G,
and σj(x) > 0, τj(x) ∈ C1

α(∂D2), j = 3, 4, λ(t), r(t), h(t), dj , gj and
K are similar as in (4.9), ζ(t) is a conformal mapping from the unit
disk {t| < 1} onto D2. Similarly to before, if Bj is only a function of
xj , j = 1, 2, 3, B4 is a real constant, and Aj = Bj , j = 1, ..., 4, then the
solution w(x) =

∑4
j=1 wj(x)ej of Problem O for (4.12) is also a solution

of the following boundary value problem for the degenerate system of
second order equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆w3 =2B1w3x1 +2B2w3x2 +A5x
−1
3 w3x3 +A6w3+A7,

∆w4 =
3∑

j=1

(Aj + Bj)w4xj + A8w4 + A9w3 + A10

(4.15)
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with the boundary condition (4.13), in which

A5 = −µ + B3x3(1 + x3), C5 ∈ C2(G),

A6 = (1 + µ)B3 −
4∑

j=1

B2
j +

3∑
j=1

Bjxj + (B2
3 − B3x2)(1 − x3),

A7 =(−B1C3−B2C4+B3C1+B4C2−]C1x3 +C3x1 +C4x2)x
−µ
3 ,

A8 = −
4∑

j=1

B2
j +

3∑
j=1

Bjxj , A9 =A4x
µ−1
3 (B4µ + A3x3−B3x

2
3),

A10 = −A1C4 + A2C3 − A3C2 + A4C1 + C2x3 − C3x2 +C4x1 .

Conversely, if the following conditions hold:

A6 ≥ 0, A8 ≥ 0 in G, (4.16)

then by means of Corollary 2.3, the boundary value problem (4.15),(4.13)
is solvable. Moreover, if

A1 = A2 = 0 in G, (4.17)

then [w1(x), w2(x)] can be found by the following integrals:⎧⎪⎪⎨⎪⎪⎩
w1(x)=

∫ x3

0
[−xµ

3w3x1 +w4x2 +B1x
µ
3w3−B2w4+C3]dx3+φ1(x1, x2),

w2(x)=
∫ x3

0
[xµ

3w3x2 +w4x1−B2x
µ
3w3−B1w4−C4]dx3+φ2(x1, x2),

(4.18)
in which φ1(x1, x2), φ2(x1, x2) satisfy the conditions⎧⎨⎩ φ1x1 − φ2x2 − A1φ1 + B2φ2 = ψ1(x1, x2),

φ2x1 + φ1x2 − A2φ1 − B1φ2 = ψ2(x1, x2),

where

ψ1(x1, x2)=[xµ
3µw3x3 +C1]|x3=0, ψ2(x1, x2)=[−w4x3 +C2]|x3=0, (4.19)

and Aj , Bj , Cj satisfy some conditions.

Besides, we require that φ = φ1 + φ2e2 = φ1 + φ2i satisfies the
boundary condition (4.14), i.e.⎧⎨⎩ Re[λ(t)φ(t)] = r(t) + h(t), t ∈ Γ,

Im[λ(dj)φ(dj)]=gj , j =1, ..., 2K+1 for K≥0.
(4.20)
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Similarly to (4.10),(4.11), the function [φ1(x1, x2), φ2(x1, x2)] is
uniquely determined, and hence [w1(x), w2(x)] is also uniquely deter-
mined. Thus we have

Theorem 4.2 Suppose that the coefficients of system (4.12) satisfy
conditions (4.16),(4.17) etc. stated as before. Then Problem A for de-
generate elliptic system (4.12) has a solution w(x) =

∑4
j=1 wj(x)ej ∈

C1
α (G ∪ D1) ∩ C2(G), 0 < α < 1 (see [80]6)).

We mention that when the boundary condition (4.13) is replaced by

w3(x) = τ3(x), w4(x) = τ4(x), x ∈ ∂G, (4.21)

we can similarly discuss the solvability of the boundary value problem
(4.12) and (4.21).

4.3 Oblique Derivative Problem for an Elliptic System of
First Order in R4

Now, we discuss the elliptic system of first order equations in a do-
main Q ⊂ R4. The so-called regular function w(x) =

∑8
j=1 wj(x)ej is

indicated as a solution of the system of first order equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1x1−w2x2−w3x3−w4x4 = 0, w1x2 +w2x1 +w5x3 +w6x4 = 0,

w1x3 +w3x1−w5x2 +w7x4 = 0, w1x4 +w4x1−w6x2−w7x3 = 0,

−w2x3 +w3x2 +w5x1−w8x4=0,−w2x4 +w4x2 +w6x1 +w8x3=0,

−w3x4 +w4x3 +w7x1−w8x2 = 0, w5x4−w6x3 +w7x2 +w8x1 =0,

(4.22)

in Q, in which for convenience we denote e5 = e2e3, e6 = e2e4, e7 =
e3e4, e8 = e2e3e4. The generalized regular function w(x) =

∑8
j=1 wj(x)

is indicated as a solution of the system of first order equations

∂w = Aw + Bw + C in Q, (4.23)

where A(x) =
∑8

j=1 Aj(x), B(x) =
∑8

j=1 Bj(x), C(x) =
∑8

j=1 Cj(x),
w(x) = w1(x) −∑8

j=2 wj(x). Let Q = {|xj | < R (j = 1, 2, 3, 4), 0 <
R < ∞}. The oblique derivative problem (Problem P ) of (4.22) in Q is
to find a bounded solution w(x) =

∑8
j=1 wj(x)ej ∈ C1

α(Q) ∩ C2(Q) of
(4.22) satisfying the boundary conditions⎧⎪⎪⎨⎪⎪⎩

∂wj

∂νj
+ σj(x)wj(x) = τj(x) + hj , x ∈ ∂Q,

wj(R) = uj , j = 1, 2, 3, 5,

(4.24)
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where σj(x), τj(x) ∈ C1
α(∂Q), σj(x) ≥ 0 (j = 1, 2, 3, 5), hj(j = 1, 2, 3, 5)

are undetermined constants, and uj(j = 1, 2, 3, 5), α are real constants,
νj(j = 1, 2, 3, 5) are vectors at every point x ∈ ∂Q and cos(νj , n) > 0, n
is the outward normal at the point x ∈ ∂Q, and cos(νj , n) ∈ C1

α(∂Q), j =
1, 2, 3, 5.

We first find the partial derivatives for the first four equations in
(4.22) with respect to x1, x2, x3, x4, and then add the equations, thus

∆w1 = w1x2
1
+ · · · + w1x2

4
= 0. (4.25)

Similarly we can obtain

∆wj = wjx2
1
+ · · · + wjx2

4
= 0, j = 2, 3, 5. (4.26)

On the basis of Theorem 1.6, there exists a solution [w1(x), w2(x),
w3(x), w5(x)] of the boundary value problem (4.25),(4.26),(4.24), where
wj(x) ∈ C1

α(Q) ∩ C2(Q), j = 1, 2, 3, 5. Substituting the functions into
(4.22), we have⎧⎨⎩ w4x4 = w1x1 − w2x2 − w3x3 , w6x4 = −w1x2 − w2x1 − w5x3 ,

w7x4 = −w1x3 − w3x1 + w5x2 , w8x4 = −w2x3 + w3x2 + w5x1 .
(4.27)

From the above system, it follows that

w4 =
∫ x4

0
[w1x1 − w2x2 − w3x3 ]dx4 + g4(x1, x2, x3),

w6 =
∫ x4

0
[−w1x2 − w2x1 − w5x3 ]dx4 + g6(x1, x2, x3),

w7 =
∫ x4

0
[−w1x3 − w3x1 + w5x2 ]dx4 + g7(x1, x2, x3),

w8 =
∫ x4

0
[−w2x3 + w3x2 + w5x1 ]dx4 + g8(x1, x2, x3),

(4.28)

and gj(x1, x2, x3) (j = 4, 6, 7, 8) satisfy the system of first order equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g4x1 − g6x2 − g7x3 =−w1x4 |x4=0 =a1,

g4x2 + g6x1 + g8x3 = w2x4 |x4=0 = a2,

g4x3 + g7x1 − g8x2 = w3x4 |x4=0 = a3,

g6x3 − g7x2 − g8x1 = w5x4 |x4=0 = a4.

(4.29)
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Let g4, g6, g7, g8 be replaced by w1, w2, w3, w4, then the system (4.29)
can be rewritten as⎧⎨⎩ w1x1 − w2x2 − w3x3 = a1, w1x2 + w2x1 + w4x3 = a2,

w1x3 + w3x1 − w4x2 = a3, w2x3 − w3x2 − w4x1 = a4,
(4.30)

i.e. w(x) =
∑4

j=1 wj(xj)ej satisfies the equation

∂w = e1wx1 + e2wx2 + e3wx3 = a, a =
4∑

j=1

ajej ,

and (4.30) is just a special case of (4.1) with a(x) = b(x) = 0, c(x) =
a(x). By Theorem 4.1 and the result in [38], the system (4.30) has
a solution w(x) =

∑4
j=1 wj(x)ej ∈ C1

α(D) ∩ C2(D); herein D = Q ∩
{x4 = 0}. Thus the functions g4(x), g6(x), g7(x), g8(x) are found. Let
these functions be substituted into (4.28). Then wj(x)(j = 4, 6, 7, 8) are
determined, and the function w(x) =

∑8
j=1 wj(x)ej is just the solution

of Problem P for (4.22). Hence we have the following theorem.

Theorem 4.3 Problem P of the elliptic system of first order equations
(4.22), i.e. the regular functions in the domain Q, has a solution w(x) =∑8

j=1 wj(x)ej ∈ C1
α (Q) ∪ C2(Q), where 0 < α < 1 (see [80]6)).

As for the generalized regular functions, under certain conditions, we
can also prove the existence of solutions of Problem P for system (4.23)
in Q. By a similar method as stated in Subsection 4.2, we can prove
the solvability of Problem P for the corresponding degenerate elliptic
systems of first order equations with some conditions in the domain G.

Finally, we consider the case of arbitrary dimension n. Let An(R)
be a real Clifford algebra and Q be a polycylinder Q1 × · · · × Qn in the
space Rn, Qj = {|xj | ≤ Rj}, 0 < Rj < ∞, j = 1, ..., n.

Problem P ′ The oblique derivative problem for generalized regular
functions in Q ⊂ Rn is defined to be the problem of finding a generalized
regular function

w(x) =
2n−1∑
j=1

wj(x)ej =
∑
A

wA(x)eA in G,

A={j1, ..., jk}⊂{1, ..., n}, eA =ej1 ...ejk
, 1≤j1 < · · ·<jk≤n,

satisfying the boundary condition

∂wj

∂νj
+σj(x)wj(x) = τj+hj , x ∈ ∂Q, wj(R) = uj , j = 1, ..., 2n−2. (4.31)
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Here j = A if j ≤ n and if A includes at least two integers greater
than 1, then j(n < j ≤ 2n−1) denotes one of integers system A such
that j and A possess a one to one relation, νj is a vector at the point
x ∈ ∂Q, cos(νj , n) ≥ 0, σj(x) ≥ 0, x ∈ ∂Q, hj (j = 1, ..., 2n−1) are
undetermined constants.

Theorem 4.4 A function

w(x) =
∑
A

wA(x)eA in Q

is a generalized regular function if and only if the wA(x) satisfy the real
elliptic system of first order equations

n∑
k=1

δkBwBxk
=

n∑
d=1

(ad + bd)wMδdM +
n∑

d=1

(ad − bd)wNδdN + cA, (4.32)

where kB = A, dM = A, dN = A and δbB etc. are proper signs (see
[80]10)).

Proof Since w(x) is a generalized regular function, it is clear that
w(x) satisfies the elliptic system of first order equations

∂̄w = aw + bw̄ + c. (4.33)

Moreover we have

∂̄w =
∑
A

n∑
k=1

δkBwBxk
eA =

∑
k,A

δkBwBxk
eA.

Thus
aw + bw̄ + c =

∑
d,A(ad + bd)wMδdMeA

+
∑

d,A(ad − bd)wNδdNeA +
∑

A cAeA,

where kB = A, dM = A and dN = A, which shows that wA(x) satisfies
(4.32).

Under certain conditions, by introducing various quasi-permutations
as stated in Chapter I, from (4.32) we can obtain

∆wk =
n∑

m=1

dmkwkxm + fkwk + wk, k = 1, ..., 2n−2. (4.34)

On the basis of the result in Section 1, a solution [w1(x), ..., w2n−2(x)] of
(4.34) satisfying the boundary condition (4.31) can be found. Moreover,
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we rewrite (4.32) in the form

Wkxk
= Fkl(z1, ..., zm, W2n−3+1, ..., W2n−2),

k = 2n−3 + 1, ..., 2n−2, l = 1, ..., m,
(4.35)

where

n = 2m, x2k−1 + ix2k = zk, w2k−1 + iw2k = Wk, k = 1, ..., 2n−2.

If Q is a polycylinder, under some conditions, we can obtain
[W2n−3+1(x), ..., W2n−2(x)] satisfying

Re[z1
K1 ...zm

KmWj(z1, ..., zm)] = rj(z1, ..., zm) + hj ,

z(z1, ..., zm) ∈ ∂Q1 × · · · × ∂Qm, j = 2n−3 + 1, ..., 2n−2.
(4.36)

The above result can be written as

Theorem 4.5 Under some conditions, Problem P ′ for (4.14) has a
solution [w1(x), ..., w2n−1(x)], where Q is a polycylinder (see [31]2)).
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[8] Cartan É., Sur les domaines bornés homogénes de léspaace de
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ford Analysis. Birkhäuser, Boston Basel Berlin, 2003.

[58] Oleinik O. A., On equations of elliptic type degenerating on the
boundary of a region. Dokl. Akad. Nauk SSSR (N.S.) 1952, 87:885-
888.

[59] Panejah B. P., On the theory of solvability of the oblique derivative
problem. Math. Sb. (N.S.), 1981, 114:226-268 (Russian).

[60] Berjiske-Sabilof E. E., Geometry of classical domains and theory
for automorphic functions. Nauka, Moscow, 1961 (Russian).

[61] Protter M. H. and Weinberger H. F., Maximum principles in dif-
ferential equations. Prentice-Hall, Englewood Cliffs, N.J., 1967.



References 245

[62] Qian T., 1) Singular integrals with monogenic kernels on the m-
torus and their Lipschits perturbations. Clifford Algebras in Analy-
sis and Related Topics. CRC Press, Boca Raton New York London
Tokyo, 1996, 157-171.
2) Singular integrals associated with holomorphic functional calcu-
lus of the spherical Diracoperator on star-shaped Lipschitz surfaces
in the quaternionic space. Math. Ann., 310, 1998, 601-630.
3) Fourier analysis on starlike Lipschitz surfaces. Journal of Func-
tional Analysis, 183, 2001, 370-412.

[63] Qian T., Hempfling T., McIntosh A., Sommen F., Advances in
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