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And one might therefore say
of me that in this book, I
have only made up a bunch
of other people’s flowers and
that of my own I have only
provided the string that ties
them together.

(Book III, Chapter XVI
of Physiognomy)
Signeur de Montaigne
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PREFACE

This monograph is centered around a simple and beautiful observation of
J.L. Walsh, in 1932, that if a function is analytic in a disc of radius p (p > 1)
but not in |z| < p, then the difference between the Lagrange interpolant to it
in the n'" roots of unity and the partial sums of degree n — 1 of the Taylor
series about the origin, tends to zero in a larger disc of radius p?, although both
operators converge to f(z) only for |z| < p. This result was stated by Walsh
in 1932 in a short paper [304] and proved in [87]. A precise formulation of this
interesting result appears in 1935 in the first edition of his book Interpolation
and Approzimation by Rational Functions in the Complex Domain [88, p. 153]).

One of the reasons why this result of Walsh was not noticed until 1980 seems
to be that it is sharp in the sense that if 2 = p?, then there exists a function f(z)
analytic in |z| < p, for which the difference, between its Lagrange interpolant
on the n'" roots of unity and the partial sum of degree n — 1 of its Taylor
series about the origin, does not tend to zero for z = p?. The function which
provides this phenomenon is p—iz. In 1980 a paper authored by A.S. Cavaretta,
A. Sharma and R.S. Varga [27] gives an extension of the above result in many

new directions.

The object of this monograph is to collect the various results stemming from
this theorem of Walsh which have appeared in the literature, and to give as
well some new results. The first work which gave publicity to this subject was
a paper by R.S. Varga [82] which appeared in 1982 and later a survey paper
by A. Sharma [72] in 1986. T.J. Rivlin, E.B. Saff and R.S. Varga (all students
of Walsh) made significant contributions to extend this result. New directions
were due to V. Totik [85], K. Ivanov and A. Sharma [43], J. Szabados [80],
Lou Yuanren [202], M.P. Stojanova [76], A. Jakimovski and A. Sharma [48] and
others.

T.J. Rivlin in his brief comment on the above result in the selected papers
of Walsh, says that “..by the mid nineties the interest in this theorem had
almost disappeared. The result was probably about 200 published papers”.

xi



xii WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

This comment encouraged us to write this monograph and to present a unified
presentation of the significant results and extensions of this theorem along with
a complete bibliography. (How T.J. Rivlin arrived at the figure of about 200
published papers is not clear to us.)

This book is easily accessible to students who have had a course in complex
variables and have gone, for example, through the book Theory of Approzima-
tion by P.J. Davis, or the book Approzimation of Functions by G.G. Lorentz.
Our book is divided into 12 chapters. Chapter 1 begins with elementary results
on Lagrange interpolation to functions defined on |z| < p and gives a proof
of the Theorem of Walsh which is the object of the present study. Chapter 2
deals with an extension of Walsh’s theorem to Hermite interpolation. Chapter
3 is concerned with an extension of Walsh’s theorem to rational functions with
given poles outside the circle |z| < p. Chapters 4 and 5 deal with sharpness and
converse results respectively. Chapter 6 is concerned with Padé approximation
and Walsh equiconvergence for meromorphic functions with a finite number of
given poles. Chapter 7 deals with quantitative results in the overconvergence
of meromorphic functions of Chapter 6. In Chapter 8, we turn to the study of
equiconvergence of Lagrange and Hermite interpolation for functions analytic
in an ellipse. In Chapter 9 we extend the Walsh equiconvergence by application
of methods of regular summability, which was initiated by R. Briick [16] and
continued by A. Jakimovski and A. Sharma [46]. Chapter 10 deals with Faber
expansions of analytic functions and extensions of Walsh equiconvergence results
for differences of approximation operators on Fejér and Faber nodes. Chapter

11 is concerned with corresponding results for equiconvergence on lemniscates.

We can never thank Prof. R.S. Varga enough for his kindness and constant
encouragement, advice and suggestions over several years. He has been kind
enough to go through the manuscript with constructive corrections and amend-

ments.

We are grateful to Prof. A.S. Cavaretta for his kindness and help by reading
part of this book with care and to Prof. M.G. de Bruin for his critical and
constructive help in Chapters 6 and 7. Without their help we could not complete
these chapters in their present forms.

A. Sharma is particularly grateful to his family for their encouragement and
patience with him during the preparation of this monograph. His son Raja
and his wife Sarla went “the extra mile” beyond their filial duties in caring for
him, and ungrudgingly endured his eccentricities. He records his gratefulness to
the Good Samaritan Society (Mount Pleasant Choice Center) for his care and
nursing during his illness while the work was in preparation.
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CHAPTER 1

LAGRANGE INTERPOLATION
AND WALSH EQUICONVERGENCE

1.1 Introduction

Let f(z) be a function analytic in an open domain D and continuous on the
boundary of this domain. Further let n be a positive integer, and 21, . .., 2, pair-
wise different points from D. We shall denote the (unique) Lagrange polynomial
interpolant, of degree at most n—1, of f(z) in these n zeros by L,,—1(f;2). With
the notation wy,(z) := [[,_;(z — 2x), this polynomial can be represented in the

form

L

1 t) — t

it i) = e [ SO 10
i Jo w(t) t—z

where C' may be any rectifiable Jordan curve in D containing the points 21, ...,

zn, and z in the interior of the domain bounded by C'. Indeed, this is a polynomial

of degree at most n — 1, and by Cauchy’s theorem

1 ft)

L7L—1(f7zk) - % Ct_zk

dt = f(z1), k=1,...,n.

The uniqueness of this interpolant follows from the fundamental theorem of
algebra: if there existed two different interpolating polynomials, then their dif-
ference, a polynomial of degree at most n — 1 not identically zero, would vanish
at n points, which is impossible. Most often in this book, we will be concerned
with the special case when the nodes of interpolation are the n'" roots of unity,
i.e., when w,(z) = 2™ — 1. In 1884, Méray gave a very instructive example of a
function whose Lagrange interpolant in the n*® roots of unity does not converge
to it anywhere except at the point 1. Thus if f(z) = 1/z then L,,_1(f;2) = 2" ~!
is the polynomial of degree n — 1 which interpolates f(z) in the zeros of 2™ — 1.
For |z| > 1, nlLrI;o 2"~! does not exist and for |z| < 1, nlLrI;O 2"~ =0, while
for |z| = 1, 2z # 1 it diverges so that L, _1(f;z) converges to f(z) = z~! only
at the point 1. The same applies to the case when f(z) = 27, k > 0. Even for
analytic functions in the closed unit circle |z| < 1, the condition

n
: 1
nlLH;o H |z — zk|™ = 2| for |z|>1 (1.0)
k=1
1



2 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

must be satisfied for the nodes of interpolation zg, |zx| = 1, k = 1,...,n, in
order to have uniform convergence of the corresponding Lagrange interpolants
in |z| < 1. (For the roots of unity, this is obviously satisfied.) For functions

which are not analytic, we have the following theorem.

THEOREM 1. Let f(2) be defined and continuous (or R-integrable, i.e., Rie-
mann integrable) on the circumference of the unit circle T := {2z : |z| = 1}. If

L._1(f; z) is the Lagrange interpolant to f(z) in the zeros of z™ — 1, then

lim L,_1(f;2) = ! f() d

n— 00 27TZ T t—z

t, |z| <1, (1.1)
uniformly for |z| < § < 1.

PRrROOF. Denoting w,, = exp 2mi/n, the Lagrange interpolant has the fol-

lowing representation:
—wk)n

Loa(fi2) =) f(w) 7_1) (1.2)
k=1

Namely, this is indeed a polynomial of degree at most n — 1, since each w¥ is a

root of the polynomial 2z — 1. Moreover,

lim 5 =
z—»w,jL z— wn

n_q 0 ifj#k,
I if =k,

ie., Lyo_1(f;w)) = f(wl), 7 =1,...,n as stated. From the definition of the

Riemann integral, we have

Fym b [T g Ly Semen mun) g

2mi Jpt— 2z n—oo 2mi £~ wﬁ z

and

Z" — " wk(w, — k
lim [F(2) ~ Ly(f;2)] = lim [1,+ 11)]2 fwn — DS (wh)

n—o0 n—oo | 2mi  n(wy, — — wk — 2

Since lim n(w, —1) = 274, we see that for |z| < 1, we have (1.1). The uniform
n—oo

convergence for |z| < 0 < 1 is also clear from the last formula. OJ

If f(z) is analytic for |z| < 1 and continuous for |z| = 1, then f(z) = F(z).
In order to extend this result to other operators, we shall need the following
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LEMMA 1. Let f(z) be R-integrable on T and let L,,—1(f; z) be the Lagrange
interpolant to f on the zeros of 2™ — 1. Then, for any fized nonnegative integer

p
im (p) = p' 711(75) z
lim L,”,(f;2) = /r(t dt, [z <1 (1.4)

n—oo 2mi — z)ptl
the convergence being uniform for |z] < § < 1.

PROOF. Since

Lni(f;2) = Zf k)Zw”“z]

Differentiating the above p times with respect to z, we get

(p _n « (wp)wy,
L - Z (wk _ Z p+1
(1.5)
n P n—2 ¢ ¢
_Z f(wy,)w
z — k) _ S\
" ZO =R e
where (n)y =n(n—1)...(n—k -+ 1). We notice that
n—1
1 Swk)wh 1 £(t)
lim = _ SR, 2 S
S 2 ke e o

and that for any k > 0, |z|"n* — 0 uniformly for |2| <6 < 1 as n — oo. (1.4)
now follows from (1.5). O

If fU)(2) exists along T for j = 0,1,...,r — 1, we denote by h,,_1(f;z) the
polynomial of degree rn — 1 which satisfies the conditions:

p9) (Frwh) = fDwk), k=1,...n; j=0,1,...,r—1 (1.6)

Then we have

THEOREM 2. Let f~1(2) exist and be R-integrable along T. If hyn_1(f; 2)
is the Hermite interpolant to f satisfying (1.6), then

f)
dim R (fs 2 1 L.
im hen—1(f;2 =5 / dt |z] < (L.7)
and uniformly for |z] < 4§ < 1.

PrOOF. For r = 1, the theorem is the same as Theorem 1; so it is enough

to consider the case when r > 1. Set

hen-1(f32) = Ln-1(f; 2 +Z<1—z")7Pm<f,z> (1.8)

Jj=1
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where each P, ;(f;z) is a polynomial of degree < n — 1. Thus it is enough to
prove that

nli_)r{.loPn_,j(f;z) =0, j=1,....,7r—1, |z| <1
However we shall prove the stronger result that

lim P(f;2)=0, j=12...,r—1, £=01..., [s]<l (L9

n—oo

We use induction on j. First let j = 1. Differentiating (1.8) at z = wF, we

n’

obtain
w’ﬂh;n—l(f; ’UJE) = w’ﬂf/(wfi) = wnL’In—l(f; IUZ) - nPTl,l(f; w:)
(k=0,1,...,n—1)

whence we have

1
Poa(f;2) = — [2Lioa(f32) = Lu-a (2" 2)]- (1.10)
Differentiating this ¢ times gives
1
P(Fi2) = S LD (F2) L2, (f52) - L 52 (1)

so that by Lemma 1, we see that (1.9) holds for j = 1. Now suppose that (1.9)
has been proved for j, 1 < j <r — 2. From (1.8), we deduce

wGTORRUHY (£ k) = UTDRLEED (k) 4 (—1)7H (G 4 1)l T x
X P jy1(f;wk)
ANAE N (i+1-5)
& n\f I+1—s ok
e (111 G0 )P

(=1 s=¢
(k=0,1,...,n—1).

Because of (1.6), we obtain

S 1 o
(1 G+ DI Pja(f52) = WLn—l(szrlf(J+l)§ 2) = (= )”1L(]+1)(f;2)

S () e )fj(f)(—nt(m)s.

(=1 s=j t=1

Differentiating ¢ times, using the induction hypothesis and Lemma 1, we see
that (1.9) holds for j 4+ 1 and the proof is complete. O

If we set
rn—1

rn 1f7 Z’Ykz

then we can define the average of the partlal sums of h,,—1(f; z) and set

rn—1 J

rn 1f7 a Z nykz

7=0 k=0
In a similar fashion, one can establish
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THEOREM 3. Let f=1) exist along T' and be R-integrable on T'. Let
Arn—1(f; 2) be the average of the partial sums of the Hermite interpolant of f(z)
satisfying (1.6). Then

R0

2mi Ft_Z

lim A,.,_1(f;2) = dt,

for |z| <1 and uniformly for |z| <6 < 1.

PrROOF. By a change in the order of summation we see that
r—1
Arncr(F32) = 2L (£2) +2 3 (rm Ky = B (F12) = - 2hr o (F32)
9 n— ) ~ ) nr rn— )

Now we see from (1.8) that

r—1 r—1
ey (fi2) =2Ly_y(fi2) + 2D (1= 2" Py (fr2) —na" Y j(1— 2"~ x
k=0 j=1
X P j(f52)-
Thus, using Lemma 1 and

lim [hyp—1(f;2) = Ln-1(f;2)] =0, 2] <1

n—oo

(which follows from (1.8)-(1.9)), we see that

lim Ehlmfl(f; z) =0.

n—oo n

This, combined with Theorem 1 proves Theorem 3.

1.2. Least-Square Minimization

For m > n, let @Q,—1(f;2) denote the unique polynomial of degree < n — 1

which minimizes

m—1
Do fwh) = plwh)l?, wp =1, (2.1)
k=0

over all p(z) € mp_1. f m =n, Qn_1(f;2) is the Lagrange interpolant to f
at the n'™® roots of unity. If m > n, then it is easy to see that Q,_1(f;z2) is
obtained by truncating L,,_1(f;2). More precisely if

m—1 n—1

L’m—l(f; Z) = Z Ckzkv m>n then Q'n—l(f; Z) = Z Cuzya

k=0 v=0
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where
m—1

== Zf w; %, v=0,1,...,n—1. (2.2)

To see this, we first observe that from

1 Flwk) (™ — DHw*
m1f7 *Ez m) )

(= — wh)
it follows that the coefficient of z” in L,,—1(f;2) is given by (2.2). If we want

n—1
to minimize (2.1) and set p(z) = > p, 2", then in order to minimize

v=0

m—1 n—1 2
k kv
E wm) - E PrWp,
k=0 v=0

we need the orthogonality conditions

m—1 n—1
3 (Fwh) =S powt)w =0, p=0,1,...,n—1.
k=0 v=0

Simplifying, we see that

Fwk )w, it = Zopuzw”’“ "k = mp,

which proves that p,, = ¢, in (2.2) and proves the assertion. From (2.2) we can
see that

—

m—

k=0

1 = Fwh) (wht - wh)
Qn—1(f72)—m kZ:O wfn—z
n m—1 k —(n—-1)k
+ = f(wm)kwm =51+5
m = wk — 2

We notice that as n — oo
|S2| = O(Jz|") = 0(1) uniformly for |z| <d < 1.

Since m > n, and lim m(w,, — 1) = 27 we have proved

THEOREM 4. If f(z) is R-integrable on T and if Qn—1(f;z) is the unique

polynomial which minimizes (2.1), then

lim Qn_1(f;2) 27”/ SO dt lz] < 1 (2.3)

n—oo

uniformly for |z| < § < 1.

The above theorems have a corresponding analogue for Laurent development.
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THEOREM 5. Let f(z) be R-integrable on the unit circle T' and let Qp (%)
be the polynomial in z and % of degree n in each, which interpolates f(z) in the
zeros of 22" — 1. If Quon(2) = qu(2) + 0 (271), where

@(2)=ao+arz+---+a,2", rp(z7)=a_1z27 a0zt ta_,2 ",

then

: _ 1 f®)
Jim g (2) = 57 Jp 52 dt, [zl < 1

(2.4)

: -1y _ 1 Q)
Jim 7, (2 D= Jp 72 dt, |z >1.

The convergence is uniform in 3 < |z| <6 < 1.

If f(2) is analytic in an annulus p~! < |z| < p, p > 1 then the equations (2.4)
are valid respectively for |z| < p and for |z| > % and uniformly for |z2| < R < p

and |z > £ > % . Moreover

qn(2) +rn(z_1) — f(z) for % < |z| < p,

and uniformly in

1
— < < R<p.
R_IZI_ P

1.3. Functions Analytic in T, = {2 : |2| = p}

We shall now consider functions which are analytic in the disc of radius
p (p > 1) but not in T',. We shall denote this class of functions by A,. It is
known that if f(z) € A, and if

[ee]

f(z)= Z apz”

k=0

is the power-series expansion of f(z), then the right side converges in |z| < p
and
: 1/n 1
lim |a,|"/" ==
n—oo p

n—1
If we set p,_1(f;2) = 3. agz¥, the Taylor expansion of f then p,_;(f;2) con-
k=0
verges to f(z) for |z| < p, if f(z) € A,. Similarly L,,_1(f;z) (the Lagrange
interpolant to f on the zeros of 2z — 1) also converges to f(z) only for |z| < p.
However the difference of L,,_1(f;2) and p,_1(f;2) converges to 0 for |z| < p?.
This beautiful observation is formulated as
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THEOREM 6. Let f(z) € A, (p > 1) and let L,_1(f;z) be the Lagrange
interpolant to f on the zeros of 2™ — 1. Then the sequence Ln_1(f;z) converges
geometrically to f(z) in any closed subdomain of |z| < p. Moreover if pn—1(f;2)
is the Taylor section of f(z) of degree n — 1, then

lim [Ly,1(f;2) = pn-1(f32)] = 0, (3.1)

n—oo

geometrically for any closed subdoamin of |z| < p?.

PROOF. Since f(z) = 27” fFR t(t) dt where R < p, and since
L[ fen =)
n b am AN‘r N\ dt?
1(f52) = 2m/ (tn —1)(t — 2)
we obtain
1 (" =1 f(?)
'Il I o N/, N dt, .
f(Z) 1(f ) 27TZ/1—\ (t"fl)(tfz) |Z|<R
We see from the above that
T n z
il f(2) ~ Lo (227 < 2

which proves the geometric convergence for closed subdomains of |z| < p (since
R < p was arbitrary). Similarly, we have
(" —=2")f(t)
Ly—1(f; n ; — 7 dt. 3.2

1fi#) = pna(fi2) = zmAme_n@_@ &2

Hence
- n o max{R, |z

limy oo [Ln—1(f; 2) = Pn—1(f; Z)‘l/ < 3%72‘”; R <p.

The result follows from this immediately. 0

The quantity p? is the best possible, in the sense that for any point z on
|z| = p?, there is a function f(z) € A, for which (3.1) does not hold. The

function f(z) = Zip is a natural example since in this case

Lnfl(f; Z) - pnfl(f; Z) = pn(pnpi_l)z(z o p)

when z = p?, and we see that this difference becomes 1/(p — p?) . Many exten-

sions of Theorem 6 have recently been given. We begin with a straightforward
extension. Let us set

Poo1i(fi2) =) akpnz®, §=0,1,2,... (3.3)
k=0

(o)
where the function f(z) € A, has the Taylor-series expansion Y axz*. We shall
0

prove below the following
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THEOREM 7. If f(2) € A, and if £ > 1 is any given integer, then

. 1/n
lim max |L,_1(f;2) — an 1,j f,Z)’ < ,3+1, p<p™ o (34)

n—00 [z <p

1 Moreover

i.e. the convergence is uniform and geometric for all |z] < p < p
the region |z| < p'*1 is best possible in the sense that for any point zy with
|z0| = p'TL, there exists a function fo(z) € Ag for which (3.4) does not hold for

zZ = Z0.

Thus if we take zg = p, and fo(z) = (p — 2)7L, then

_ pn —_ Zn
Pn-1,5(fo0,2) = W

and

(0" = )" — 1)
IERESE CEETArEE

7=0

It is easy to see that

1/n 1

{—1
lim mln ‘L_ 1 2) — _1.i(fo; 2 > ——>0.
S n—1(fo; 2) ]Z::Opn l,j(fO ) A

PROOF. As in the proof of Theorem 6, we can express the difference on the

left in (3.4) as a contour integral

1 fOE" —2")
2 ) G (3.5)

For [t| = R and for all |z| < pu < R < p*! (1> p), we have

T — m n n

e i et
t—=z R—pu

so that the above integral is bounded above in modulus by

MR(u" + R™)
(R = (R = 1)R™

where M := max.er, | f(2)|. Taking n*! roots we see that

1/n

— [
llmn—>oo ll'gg)i Ln 1 f7 an 1,5 f7 < RO+
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which proves the desired uniform and geometric convergence of (2.3). ]

On letting ¢ — oo in (3.4), we see that

Lua(f;2) =Y po-1,(f32)
=0

n—1
which shows that if L,,_1(f;z) = > ¢,2¥, then, it can be verified that
v=0

oo
Cy = § Ay4xn-
A=0

In Theorems 6 and 7, we compared two processes of interpolation each of which
separately converges to f(z) only for |z| < p, while their difference converges to
zero in a larger region. In view of this, the above phenomenon is often termed as
“overconvergence” or “equiconvergence.” It is natural to ask whether the Taylor
polynomial p,,—1(f; z) can be replaced by the polynomial p,,—1(f; z) which is the
polynomial of best uniform approximation to f(z)in |z| < 1. If fy(2) = (p—2) 7},

then

pn—l _ Zn—l Zn—l

= +
(p=z)p"t  (p*=1)p"?

ﬁn—l(fo;z)
for all n > 2. Then

pnfl _ anl B anl(pn72 _ 1)
(p—2z)(p" = 1)pn=t  (p" —1)(p* —1)p"~2

Ln_1(fo;2) — Pn—1(fo; 2) =

and 1
Pn—1(f0; 2) = pn-1(fo; 2) = 2o 1) (;) 1

which converges to zero only for |z| < p. If f(z) € A, and is also continuous
in D, := {2z : |2| < p}, it is natural to ask if this stronger hypothesis on the
function would make the equiconvergence region larger. The answer to this
question is given by

THEOREM 8. Let f(z) € A,NC(D,). Then for each positive integer £, we

have

n—oo

{—1
lim {Ln—l(f; Z) - an—l,j(ﬂ Z)} = 03 |Z| S PE_H»
=0

{+1

the convergence being uniform for all |z| < p*™1 and geometric for all |z| <r <

l+1
P
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PRrROOF. For any f(z) € A,NC(D,), let s,_1(f;z) be the polynomial of best
approximation to f from m,_1 on the circle D, = {z : |z| < p}. Then

Ena(f) = dnf |If —qlp, =If = su-1llp,

and it is known that lim F,,_1(f) = 0. From the linearity of the Lagrange and

Taylor polynomials, we have

£—1
n 1 f7 an 1,5 f7 :Ln—l(f_sn—l;z)_an—l,j(f_sn—ﬁz)»
j=0
so that from (3.4), we obtain for R < p

Froalfi) an 14(f32) Zm/ (&) = sna(f31)) - (" = 2") dt.

(t—2)(t" — 1)ein

This shows that

max
|z|<pttt

n(£+1)+Rn R
n 1 f7 an 1,J(f7 ‘7 (€+1( )(p)(Rn_l)RZ" .

Since the left side is independent of R, we get on letting R tend to p,

max
|z|<pttt

En_1(f)(1+p")
Ly f7 an 1,J(f7 ‘ = g(l _pfz)(l_pfn) :

But the right side tends to zero as n — oo, which proves the result. Uniform

and geometric convergence for |z| < r < p**! follows as in Theorem 7.

1.4. An extension of Walsh’s Theorem

We claim that the sum ,
-1
> pao1(fi2)
=0

n (3.3) (Theorem 7) is the Lagrange interpolant in the n*® roots of unity of the

n
polynomial pg,—1(f;2) = Y. axz®. This is easily seen since

{—1 n—1

{—1 n—1
Pen1(f32) =Y D ka2 =YY apan(2M = 1)2F
A=0 k=0 A=0 k=0
-1 n—1
k
T D akeanz
A k=0

=0
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so that
-1 n—1 -1
Lya(pen—1:2) = D> Y avran?® =D puoaa(f2).
A=0 k=0 A=0
With this simple observation, one can write the formula (3.3) in the equivalent
form
Jim [Lo1(f32) = Lo-1(p,, -, (f12):2)] =0 for |z < p. (4.1)

If we denote by L,_1(f;a, z) the Lagrange interpolant in the zeros of 2" — o™,
when «a # 0, and the Hermite interpolant of order n at 0 when o = 0, then (4.1)

is also equivalent to

lim [L,—1(f;1,2) = Ly—1(Len—1(£;0,2);1,2)] =0, [z] < p*t.

n—oo

This train of ideas amply justifies the following

THEOREM 9. Ifm=mm+¢q, s<I<landl=s +O(%) then for each
f(z) C A, and for each o, 5 € D, (o # [3), we have

nh_)rgo Azﬁn(f,z) = nli_)rrgo[Ln_l(f,a,z) — L1 (Lm-1(f,3,2),a,2)] =0 (4.2)

for |z| < o, where

o := p/ max ( (';‘) ('i')r“). (4.3)

More precisely, for any p with p < p < oo, we have
H

n— 00 g

lim {max [Ax7(f;2)[}'/" <
z€Dy, ’

Moreover if a, 3, m satisfy neither « = 8 = 0 nor o = " when m = rn,

then (4.3) is best possible in the sense that for any zo with |zg| = o, there is a

function fo € A, such that (4.2) fails to hold for fy at 2.

When =1, 8 =0 and m = ¢n, (4.2) yields Theorem 7.

Proor. Since o, 3 € D,, we may write

1 fEm —=m)
Lnat$ 09 = 5 | G g

In order to find a similar representation for Ln_l(Lm_l(f7 0, z),a,z), it is

tm— 2™
L,y (H7a,z>.

enough to evaluate
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Since m = rn + ¢, we have

tm _ Zm t7'n+q _ Z7'n+q

t—z t—=z
tnr_zrn tq_Zq
= — 94 " —
t—z t—=z
:tq‘ trn_zrn.tn_zn+zrn' t4 — 24
th — 2n t—=z t—=z

From this it is clear that the Lagrange interpolant of (™ — 2™)/(t — z) in the

zeros of 2™ — o™ will be given as below:

Ly 1| ———,a,z) =1t +a"™"- ,as g <n.
nl( t—z ) <t”—a”> t—z t—=z ¢

Hence

Lon1(f,a,z) = L/ M dt,

270 Jp, (t—2)(t" —am)
1 f() e —2m
L,y (Lm—l(f7 6az)aaaz) = o m[/n—l I ya, 2 | dt.
From this we obtain the representation
a,B 1

’ 27 Jp,
where

1 " — "™ " — 2" t1 — z4

. q . . ™
K(t2) = o — gonra [t m—an i—2 Y
th— 2" 1
th —a™ t—2z
ﬁrn+q —a™ . tn — n
= (trn+q _ I@rnJrq)(tn _ an) : t— 2
a™™ t? — 24
+ tnr+q _ ﬁrn-‘rq ’ t—z
Since
R —|2|* max(|]"*9,|a|™RY) o™ RI— |27

K(t < . . < R),
K(2)| < e g e g g (4 <)
it follows that (4.2) will be proved if

rn—+q ran q rn

o max(A R et

R7'n+q+n R7'7L+q
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where ¢ = sn + O(1). In other words taking the n'! roots of both sides above,
and letting n — oo, we see that (4.2) is proved if

2] < p/max(<|§|>r+s, (‘%')T) =0, and |2 < p/ <“;‘|>T/S = 0.

Since % < 1 and s < 1, we have

() e

so that 07 < ¢ and this completes the proof. [

COROLLARY. Letm=1rn+q, s <L <1and L= 3—5—0(%). If Prm(n) (f; 2)
denotes the polynomial of degree n — 1 which minimizes

[

m—

[f(Bwy,) = p(Bwy)®, B € D,,

k=

=}

over all polynomials p(z) € m,_1, then

. . 181\
pn,m(n)(faz)_sn—l(fvz) —0 fO’f‘ |Z| <p/ D

and the bound for |z| above is best possible in the same sense as in Theorem 9.

This corollary follows from Theorem 8 on taking o =0, 8 = 1.
1.5. Multivariate Extensions of Walsh’s Theorem

In the multivariate case the domain of analyticity of a function f(z), where
z=1(21,...,2m) € @™, can be defined in two different ways. One possibility is to

m
consider the ball, i.e., the set defined by Y |z;|? < p?. The other possibility is to
j=1

take the polydisc |z;| < p;, 7 =1,...,m. These two definitions lead to entirely
different theories, since there is no equivalence (i.e. holomorphic mapping)
between the ball and the polydisc. For our purposes, the setup based on a
polydisc is more suitable and convenient. We begin with some fundamental
definitions. Let

1<P1§P2§§pma p:(plap277p’rn)7 (51)

we remark that the ordering in (5.1) can be achieved, without loss of generality,
by simply renumbering the components of p. Then, denote by A(p) the set of

functions analytic in the polydisc

D(p) :={z=(z1,...,2m) : |z]| <pjs 5=1,...,m}.
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where each such function has a singularity on each of the circles |z;| = pj,
j=1,...,m. (Here singularity may involve either poles or branchpoints on the

circle |z| = p.) The multivariate Cauchy formula

_ 1 f(t)
f(z) = i) /D ﬁ o dt, ze€ D(p) (5.2)

where the integration is taken over a polydisc D in D(p) which contains the point
z and, with dt := dty ...dt,,, is valid for all f(2) € A(p). Let ' denote set of
all complex polynomials p(z) of m variables which are of degree at most n in
each of the variables z;, j = 1,..., m. (This set differs from the usual definition
of a polynomial of several variables, having degree at most n, which means that
the total degree of each term is at most n, but our definition here serves a more
useful purpose later.) The (n — 1) Taylor section of an f(z) € A(p) is then
defined as

$u1(2) = g [ SO T] gy (5.9

.:1

which, in the sense of the above definition, is an element of I']* ;

THEOREM 10. For any f(z) € A(p), the Taylor sections Sn—_1(f;2) of (5.3)

converge to f(z), uniformly and geometrically in each closed subset of D(p).

ProOF. We have from (5.2) and (5.3) that

1) = Suafi2) = g [ LTI )

Pl —2) = 3
j=1
Here,
2 n
‘1— <1——)‘_C max |2| —0 as n— o0
t" 1<i<m | t;
in any closed subset of D, and this proves the theorem. (I

We now turn to the definition of the interpolation operator. The problem
of interpolation in the multivariate case is more difficult (in general, existence
and uniqueness are not guaranteed), but, with our definition of the set I'"", the

situation simplifies. Consider the polynomial

'(L n

Lualf2) = o [ S]] —t])dter (5.4

Jj=1
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where Ly, (f;2z) € T, for any f(z) € A(p). As usual, let w be a primitive
n'™ root of unity. From the representation (5.4) we can see that, at the points
z=(wh, ..., wh") where 0 < k; <n—1,j=1,...,m, are arbitrary integers,
the polynomial (5.4) has the same values as f(z). It will follow from the next
lemma that this interpolation polynomial L,_1(f;2) is uniquely determined

LEMMA 2. If p(z) € T2 has n™ different roots z = (21, ..., %n) such that
each z; takes n different values, then p(z) = 0.

PROOF. We use induction on m. For m = 1, the statement follows from the
fundamental theorem of algebra. Assume it is true for m — 1, and represent p(2)

in the form

n—1
pz) = Zhpr(z") (5.5)

k=0
where 2* = (z9,...,2,) € €™ ! and py(2*) € T7"!. Fixing an arbitrary 2* =
(23, -+, 2,) where 2%, j = 2,...,m — 1, are coordinates of the roots of p(z),

then according to our assumption (5.5) vanishes for n different values of z;. But
then
pr(2)=0, k=0,...,n—1.

Here, by our assumption, z* takes n™ ! different values, and thus, by the
induction hypothesis, the p; are identically zero for k¥ = 0,...,n — 1. This
proves the statement for m. O

Since the interpolation points for the polynomial (5.4) satisfy the condition
of Lemma 2, L,_1(f,#) is uniquely determined. The uniform convergence of
L,_1(f,2) to f(2) in every closed subset of D(p) will follow from Theorem 10
and the following overconvergence theorem:

THEOREM 11. We have

_ 1 .
lim |Ln71(f7z) - Snfl(f7z)|1/n S - H @ (56)
n—00 P1 |25 >0 Pj

for all f(z) € A(p) and z € ™. (Here, the empty product is defined as unity.)

REMARKS. 1. In particular if 2 € D(p), then, as the product is unity in
(5.6), the right hand side of (5.6) is 1/p; < 1 which, coupled with Theorem 10,
yields the uniform convergence of L, _1(f;2) to f(2).

2. If 2
zZ5
II = <o (5.7)

P
lzi1>p; 7
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then we have the overconvergence of the difference L, 1 — S,,_1. Condition
(5.7) gives an intrinsic relation between the coordinates z1, ..., z,. The larger
we choose some |z;|’s, the smaller we have to make the remaining |z;|’s. In order
to see more clearly how this works, consider the special case p1 = -+ = py, := p.
Then note that (5.7) allows us to select either

1 .
‘Zj|<p1+m, ]:13"'7ma
or
21l = = lemaal = p |em| <%

In the first case, one has overconvergence in each coordinates (but with a smaller
radius), while the second case gives no overconvergence in m — 1 variables, but
optimal overconvergence in the final coordinate. Of course, other choices are

also possible.
PROOF OF THEOREM 11. Equations (5.3) and (5.4) imply

An-1(f;2) = Ly l(fv = Sn— l(fv )

g m m
2m /f t-(thl—linti)dt'

J =17 j=1 i (5.8)

Here,

1
(or =) Ty~ )"

where £ > 0 is an arbitrary small fixed number. Thus, we obtain from (5.8)
that

n

m
Zl max(|z;], pj — €)
=

(m -1 —¢)

Jj=1

An—l(t; Z) =0

ie.,

T A, (fia)s —— [ 2L
n—o0 p1—¢ pj—¢
|zj|>pj—e

whence, the statement of the theorem follows, since £ > 0 was arbitrary. (I
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The estimate in (5.6) of Theorem 11 is sharp in the following sense. Consider
the function

= € A(p).
1;[ —y (p)
Evidently
n 1 an H )
j=1 1 - p] (Z] )
and from (5.3)
n 1 f07 .
1:[ (pj - ZJ)
Thus
m Z‘;l _ p;l m m
st = 1T 222 (1] - 11 5)
j=1 P T A NG Py~ j=1
o 0( : )
i (== Ny P

whence by (5.1)

I |A,(fz)r =TT B

0
lzj|>p; 7

Thus for some functions in A(p), the result of (5.6) is sharp. However, we can
ask for the following stronger version of sharpness: is it true that

Fn max A, (fi2)]/ = — [ 2

n—oo — s
[zl = ri3e; P

for any r; > 0,7 =1,...,m and f(z) € A(p)? The answer to this question is
no, and this is in sharp contrast to the univariate case (cf. Chapter 4). This

can be seen from the following example.

ExXAMPLE. Let m =2, 1 < p; < p2, and consider the function

> (2)" <)

k=0 P

Sk-,

fi(z) = i (i)
k=0

P1

We shall examine the overconvergence case of |z1| = 11 > p1, |22] = 12 > pa.



LAGRANGE INTERPOLATION AND WALSH EQUICONVERGENCE 19

Formula (5.8) in this case gives

An_i1(fi32) = / fi(#) H _tt;n |:ln

+O((pl —16)2” " s 16)”)}#

kn—1 k 1

e LIS 7S e

k=0 Y
L0 < T1ir2 + rir2 >n
(p1—€)3(p2—¢)  (p1—¢)(p2 —€)?
235 22\3" rire \ "
_ 1
2 2 G e (GR))
n<3k<2n—1 Pi 3k<n—1

provided € > 0 is small enough. Now, assume that the integers \,, pu, satisfy
3¢ < 2n < 30Tl and  3Hn < < 3L (5.9)

Evidently, in the sum ), 45, _; above there is at most one term (for k = A, ;

otherwise it may be empty). Then we can write

3An—n gun n

T T r172
A1 (fr1:2) =0 1o—2— +0<( ) ) 5.10
(A1 (f152)] paTes o (5.10)

By (5.9), pin < An — 1, and therefore 3#» < 3M—1 < %”, whence
T%An*"{rgun _ TITS/S <<7’1T2 )TL)
< =of | == .
PP p3 pps)” P2

Thus, (5.10) yields
172 "
A, 1(f32) =0l | =— ,
[An1(f1:2) <<P202> )

i.e., for this function the error estimate in case r1 > py, ro > po is indeed better

than the one provided by Theorem 11.

If we iterate interpolation operators and Taylor series, we can obtain different
types of overconvergence results. (For a detailed account on this subject in the
univariate case, see Ch. 2.) Here we restrict ourselves to one particular case.
Instead of the interpolating polynomial (5.4), let us introduce the operator

m —tn
Ly 1(f;e;2): 2m /f E -—a”)(z] t)dtan o (5.11)
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where o = (av1,...,am) € D(p), o; > 0,5 = 1,...,m, for any f(z) € A(p).
(5.11) interpolates f at the points z = (aw™, ..., aywh™), where 0 < k; <
n—1, j =1,...,m, are arbitrary integers. This polynomial, just like (5.4), is

uniquely determined. Using also the notation (5.3), we now state

THEOREM 12. If A > 1 is a fixed integer, then we have

A m
. n o Z;
limsup |Ln—1(f — San—1(f);@;2)["/™ < max (;) . I | %
J j=1 J

for any f € A(p) and any z = (21,...,2m).

The result shows that we have convergence if

_ o] AT
Jj=1 maxi<;j<m |5+
In particular, if 0 < a3 = -+ = aym = a < p1 = -+ = p,, = p, then this
condition takes the form
p)\/m
Izjl < a)\/m*17 J= 1a , 1M,

i.e. we have overconvergence provided A > m.

PROOF OF THEOREM 12. (5.2), (5.3) and (5.11) yield

f(u)

1
Ln-1(f = Sn-1(f);;2) = (2m)2"/o o 11 (uy — 1)

j=1 J j=117J J
= f(w) p— x
(2mi)?™ Jp, Ds 31;[1 (7 —af)(uj —tj)(z — t))
J
< [1-]] L= )| dtdu,
j=1 j
where
Dlz{(tl,...,tm):|tj|:o¢j+5,j:1,...,m}
and

Dy ={(u1,...,um): |ujl=p;—¢c,j=1,...,m}
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with an arbitrarily small € > 0. Here

Ui 2 — 7 i ™
H n— ot . / = % H |Z7{|*1
=1 (87— af)(uy = 15)(z5 = t5) | 7 €™ 4 af
and
m An aj +e\M
1— H — = || < ¢ max < . )
e ’U,] 1<j<m pj —€
Hence
» + c A m |Z|
lHmsup |Ln—1(f — San-1(f); e 2)|/™ < | hax —— o
n—00 sjsm | pj < Jj=1 @

Since € > 0 was arbitrary, this yields the statement. [

1.6. Historical Remarks

(a) The nodes satisfying (1.0) are called asymptotically uniformly distributed.
This condition is due to Kalmar [62] (see Gaier [42, p. 64]). Theorems 1 and
5 are due to Walsh [115 , Ch. 7, Theorems 10 and 11], just like the beautiful
observation formulated as Theorem 6 (cf. Walsh [115, Ch. 7, Theorem 1]). The
sharpness of Theorem 6 was shown again in [115, p. 154]. Theorem 3 can
be found in Cavaretta, Dikshit and Sharma [25]. The extension formulated
in Theorem 7 is due to Cavaretta, Sharma and Varga [30]. That the Taylor
sections in the overconvergence theorem cannot be replaced by the polynomials
of best uniform approximation was shown by D. J. Newman (1980) by means
of an example at the end of a lecture by A. Sharma where he was present. The
determination of best approximating polynomial to (p — z)~! is due to Al'per
[3] (see also Rivlin [87]), who estimated the order of best approximation of some
other, related functions as well. In connection with Theorem 8, it was V. Totik
[111] who showed that the additional property of continuity of the function
in A, does not essentially improve the error estimate in the overconvergence,
thus answering a question of Szabados raised in [106]. The Corollary is Rivlin’s
generalization [88] of Walsh’s theorem. Section 1.5 is a recent result of Sharma
and Szabados (cf. [97]). A different approach (using balls instead of the polydisc)
was done by Cavaretta, Micchelli and Sharma [26]. With the norm ||z|| =

>ty |zj]?, for a function analytic in the ball ||z|| < 1, they introduced the

operators

4
n—1 m

i(m+£1) Yoty | dot),

=0 j=1

Sn-1(f;2) = (2mi)™ /tl 1
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and forr = (r,...,mn), 0<r; <1, j=1,...,m,

¢
m m+0—1 m
(m—1)! Zj:l ( +Z ) (Zj:l thj)
Ln—l(fvraz) = 7,,71/ t m Ty dO'(Z),
@m)™ Jjeg=1 [T, (1 —rpty)
(6.1)
where do(z) is the Lebesgue measure on ||z|| = 1. These operators are the

analogues of the Taylor series and Lagrange interpolation, respectively. (In
fact, for m = 1, (6.1) is indeed a Lagrange interpolation polynomial, but for

m > 1 no such interpretation exists.) It is proved in [26] that
nh_)n;o [Ln—l(farwz) - Sn—l(f7 Z)] =0

for
1

2| < —,
maxi<ij<m7Tj

i.e., we have overconvergence.

(b) Concerning overconvergence, Lagrange interpolation on nodes other than

the roots of unity was first considered by Briick. Let

(z+a)"™ — (az + 1)" !

n
wi(z) == T =11z- %), 0<a<l,
k=0
be a monic polynomial of degree n + 1, where
@ Wgn — & 27TZ]€ 0
Zpy = —————,  Wky 1= TP ——, =0,...,n.
k™ — qwp, kn P +1

From this representation, it is easy to see that for |z| > 1,

lim w;‘(z)#l =z4+a

n—oo
which implies that the interpolation nodes 2}, are not asymptotically uniformly
distributed (see Gaier [42, p. 64]). Now if f(z) is analytic in K(R,a) := {z €
C:|z+a|l < R+a}, LY(f; %) denotes its Lagrange interpolation to f on the
zeros of w%(z) and S&(f;2) := > p_, axz" is the Taylor expansion of f(z) about
—a;, then

Jim [L7(f52) = Sp(f;2)] =0, z € Ex(R, ),

where

R+a\’
Ey(R,a) = {zEC:|z+a<(R+a)<1+Ra> }, 0=1,2,....
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Moreover for any integer ¢ > 1,

lim [LS(f;52) — Sen(f;2)] =0 for z € Ey(R,a),

where

n (—1j(n+1) jn+ 1)\
an fiz) ZZ Z ( )aj(n+1)m(1 _a2>mak+m(z+a)k

k=037=0 m=0

—

n (—1n—k+j(n+1) nfk+j<n+1)
m

k=0 j=0 m=0
x (1 —a?)manhritnt-mg, (1 + az)k
(see Briick [21]). From Example 2 in [3,p. 132], we see that if fo(z) = p%, then
the polynomial of best uniform approximation to fy(z) of degree at most n — 1
on the disc |z| < 1 is given by

2" (pz —1) 1

1
Prn-1(fo;2) = — , where ¢= ————.
" p—z p—z pnt(p* —1)

Then simplifying, we have

A gL ez )
pn—l(f07 )_ p—z (p*Z)(p2*1)Pn_1
1 2" p(z—p)+p* -1

Tz (p-2p (2 1)

B 1 N Zn—l Zn—l
p—z p"2(p2—=1) prlp—2)
B pnfl _ anl N anl
(p—2)pn=t ~ pn2(p? 1)
Also for |z] =1
2 L(pz —1) pz—1
— D _ R = = = 1
f()(Z) Dn l(fO,Z) _1(p_z) z—p ’ ’

and because of the maximum principle here the left hand side is < 1 in |z| < 1.



CHAPTER 2

HERMITE AND HERMITE-BIRKHOFF
INTERPOLATION AND WALSH EQUICONVERGENCE

2.1. Hermite Interpolation

As a generalization of Lagrange interpolation, we introduce the notion of
Hermite interpolation. Let f(z) be a function analytic in an open domain D.
Further let n and r be positive integers, and zg,...,2,_1 pairwise different
points from D. We shall denote the (unique) Hermite polynomial interpolant
of degree rn — 1 and order r, of f(z) in these n zeros by hy,n—1(f;2). This
polynomial is defined by the properties

With the notation wy(z) := Z;é(z — 21), this polynomial can be represented

in the form

hr,rnfl (f7 Z)

L[ wa()" —wn(2)" f(t)
/C dt, (1.0)

T 2mi wp ()7 t—2z

where C' may be any rectifiable Jordan curve included with its interior in D
and containing the points z1,...,2, and z in its interior. Indeed, (1.0) is a

polynomial of degree at most rn — 1, and by Cauchy’s theorem

G
h"r‘{gnfl 27

_1)i4
(o) = (=1)'3! /C (tJ;(Z)>j+1 dt, k=0,....n—1:§=0,...,r—1.
The uniqueness follows from the fundamental theorem of algebra: if we had two
different polynomials with the above properties, then their not identically zero
difference, a polynomial of degree at most rn — 1, together with its first » — 1
derivatives, would vanish at the points zg,...,z,_1. Counting multiplicities,
this would result in rn roots for a polynomial of degree at most rn — 1, which

is impossible.

Now let f € A, (p > 1) and let by —1(f; 2) denote the Hermite interpolant
to f in the zeros of (2™ — 1)". Then hy,rn—1(f; %) € mrn—1 and it satisfies the

conditions

B9 (Frwh) = fDwb), j=01,....r—1; k=0,1,....n—1 (L1)
25
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where w is a primitive n'" root of unity. It is known that

N (O G e eV

hrm-1(f32) = 5 b -z 1) dt (1.2)
where T'r={t: |[t| =R}, R<p.
If f(z) = kiojo arz¥, then from (3.3) in Chapter 1
=, Ft) tm—zm
Pra-1,0(f32) = ];) az" = 5 i dt (1.3)

is the Taylor series of f of degree rn — 1 about the origin. From (1.2) and (1.3),
we see that

Arn—l,l(f; Z) = hr,rn—l(f§ Z) - prn—l,O(f» 27_” / f PR ) (14)

where
ST (zn _ 1)r

trn (t" _ ]_)r

K,(t,z) = (1.5)

In order to examine the behaviour of K, (¢, z) for large n, we shall prove

LEMMA 1. For all t with |t| > 1, the following identity holds:

z" z—1D" t—=z ﬂ”z
2ol e ae 09

where B r(2) is a polynomial in z of degree v — 1 given by

r—1

Bs.r(2) ::Z (HI‘z_l) (z—1F, s=1,2,.... (1.7)

k=0

PRrOOF. From (1.7), we can easily check that

Bunnr) =2, = (7T ) -y
B1,r(2) =2"—(2—1)".

From (1.6), on expanding the left side in powers of 1/, we see that on using
(1.8)

(1.8)

I
X
—
w

\
—
N
=
|
L
N"_‘

tlki <r+k1> t%
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ey 1 i (r+zl)(z—1)r

tr tr — tk

tr k

_ 5 7«(2) Z Brt1,r(2) — 2Bk, (2)
t

t—=z ﬂk r ﬂk T(Z
= $r+l 61,r(2 Z tr+k Z tr+k

t—z s Brr(2)
Ty Z th

after shifting the summation index in the second sum. This completes the proof.
O

The following two lemmas will give some estimates on the polynomials §; ,.(z).
From (1.7), we see that

. 1
Bjr(z) = rri-1y) =) dt, j=1,2,.... (1.9)
7>
0

r

This is easily done on expanding the right side in powers of (z — 1) and then
using Euler’s formula for the Beta-function. We shall prove

LEMMA 2. There exists a constant co depending only on r such that

1Bjr(2)] < coj™ " max {1,]2]"""}, j=1,2,.... (1.10)

PROOF. If |z| > 1, then |z — |71 < (|z] + 1)"~1 < 2771z~ for each
te[0,1]. If [2] < 1, |z —¢|"71 < 277! for 0 < ¢ < 1. These two inequalities give
the result. O

LEMMA 3. (a) If |z| > 1, then there exist constants ¢y = c1(r) > 0 and
Ny = Ny(r, z) such that

Cleil‘Z|n(Til) < ‘ﬂj,r(zn”v n = Ni. (1.11)

(b) If |z| < 1, then there are constants co = ca(r) > 0 and Ny = Na(r, 7, z)
such that

cof" Tt < B (2™ for nm > Na. (1.12)
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(¢) If Bjr(2) has no zero on the unit circle, then there is a constant cg =
cs(r) > 0 such that
c3 < |Bjr(2)] when |z|=1. (1.13)

Proor. (a) We get (1.11) from (1.9) and the fact that for each z with |z| > 1,

we have .
. 1
/ 11—tz ldt — = as n — oo
0 J

(b) From (1.9), we have
i) = -1y (7T o

r—1
when |z| < 1, 2" — 0 and n — oo which proves (1.12).

(c) If B;,r(2) has no zero on the unit circle then the constant ¢z in (1.13) can
be taken to be lirllf |Bj,r(w)| > 0.
w|=1

There are values of j and r for which §; ,(z) has zeros on |z| = 1. Thus when
j=1, Bi1,(2) =2" — (2 —1)" which has a zero on |z| = 1 when r is a multiple
of 6.

For any positive integer ¢ > 1, we set

-1
Arn—l,é(.f; Z) = hr,rn—l(f; Z) - hr,rn—l,O(.f; Z) - Z hr,rn—l,j(f; Z) (114)

j=1

where
rn—1

hr,rnfl,O(f; ) ‘= Prn—1,0 fa Z akz

and with T'r = {z||z| = R},

hr,rn—l,j(f7 = ﬁj, Z ak+n(7‘+] 1)Z

— n 1 f( ) fn - Z .
_6j7T(Z )% t—Z tn(TJ’_j) dt J= 1527"'7
so that FOK, )
z
Ay dt, 1.15
nelfiz) = 27i t—=z ( )
where ,
-1
Pl (Zn _ 1)7" A Bj 7”(Zn)
K(t — i . 1.16
N (I 20 (110)

We shall now prove
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THEOREM 1. If f € A, (p > 1), then for any fized integer £ > 1,

lim Ay,_10(f;2) =0 for |z| < pitr, (1.17)

the convergence being uniform and geometric for all |z| < R < p1+£. Moreover
the result of (1.17) is best possible.

Proor. Using (1.6), we see that the kernel K (¢,z) in (1.16) can be written
as

K(t,2) Z ﬂ”(z (1.18)

From (1.15) and (1.18) we see that

1 B
A 1o(f:2)] < — M2 o
\ 1e(f32)] < o TR Rm ‘ |_ Z RJn
R(|z]" = R") g~ euf™~ 1\Z|”(T D
- m T

where the last inequality is obtained on using Lemma 2.
S} .
Since Y j"71R7I" < oo for R > 1, we see that
j=t

|z|rn

|A7’n 1l(f7 )| an+én

from which we get (1.17). O

REMARK. If £ > 1, the operator A,,_1¢(f;2) can be also interpreted as
the Hermite interpolant in the zeros of (2" — 1)" of the difference f(z) —
Pe+r—1)n—1(f; 2) where, as in Ch. 1, p;(f; 2) is the Taylor expansion of degree
jof f.If we set hypn—1(f;1,2) := hyrn—1(f; 2) when we want to emphasize the
interpolation in the zeros of (2™ — 1), we can write

Arn—l,@(f; Z) = hr,rn—l(f; 17 Z) - hr,rn—l (p(ZJrrfl)nfl(f); 1a Z)

Since
1 f(t) t(ZJrrfl)n _ Z(€+T71)n
Pet+r—1)n—1(f;2) = 2 by t—2 ’ t{+r=1)n dt,
we see that in (1.15), K(fzz) is the Hermite interpolant to the difference
(tn _ 1)7" _ (Zn _ 1)r t(2+r—1)n _ Z(l+r—1)n Z(l+r—1)7L (Zn )

t—2)n—1)7 (- zt@rr—n  — kr—Dn (g — 1) =] /(t—=2) .
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Since

r—1
an(ebr=1) _ (gn _p 4 qyttrl = Z (Z +r— 1> (2" — 1) 4+ (2" = 1)7q(z)

i=0 /

= Ber(2") + (2" = 1)7q(2)
where ¢(z) is a polynomial of degree £ — 1 in 2™, we see that

t”—l’rﬁ’r ny _ n_l’rﬁ,r m
K(t’z) = ( ) tfé+(’lz—1))n(t(7f_ 1)r) - ( ) '

This expression for K (t, z) when compared with (1.18) shows that the following
identity holds:

"o SN () (1) B ) (7 Bt
Z R (Ve (1.19)

(=" —1)"(a(2) — (1))

+ t(l+r=1)n

This identity can be easily proved directly when ¢ = 1, since the left side in
(1.19) because of (1.6) in Lemma 1, becomes

ZT‘?’I (ZTL _ 1)T
trn (t" _ 1)7" :

(1.20)

Also for ¢ =1, the right side becomes, on using (1.8),

(" = 1)7 (2" — (2" = 1)) = (2" = 1) (£ — (" — 1)")
trn(tn _ 1)r

which simplifies easily into (1.20) and completes the verification for ¢ = 1 since

q(z) = q(t) =constant.

2.2. Generalizations of Theorem 1

We shall first find the Hermite interpolant to a monomial
glz) =Tt 0<j<n—1

in the zeros of (2™ — 1)". Since

r—1

R G PRV DI (F A RESV NI

k=0
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where ¢(z) is a polynomial, it follows that
g T + S k_ _j n
hrrn 1 971 Z =z Z - 1) ==z ﬁs+1,r(z )
Similarly, if we find the Hermite interpolant to g(z) in the zeros of (" —a™)",
where o € D,,, then

hr,rn—l(g; «, Z) = zjan(7-+s)ﬁs+1,r(Zn/an)~ (21)

If o,8 € D,, o, both not equal to zero, then for any f € A, (p > 1), we
define

Ag’;lﬁ’rn(fa ) . P,P”l 1(faa Z) P,P’ﬂ—l(LT’ﬂ—l(faﬂaZ);avz)a (22)

where m, p,n,m > pn are positive integers. We shall now prove

THEOREM 2. If f € A, (p > 1) and if o, 3 € D, (p > 1), |af+|B] # 0,
then

lim A%S (fi2) =0 for |z <o (2.3)

o=oiman { (2177 (271, 2

the convergence being uniform and geometric in |z| < 7 < o and the result is

where

best possible in the same sense as in Theorem 1.

PROOF. Since

1 f(t) t’f’n _ Z’l“’n
’r"n ] * dt
1(f36,2) = 2mi rp t—z tm— ﬂm
it follows that )
A% (fiz2) = — K (t, z)dt 2.
Won7) = g [ TOK (@) (25)

where K (t, z) is the Hermite interpolant of A(z) in the zeros of (2" —a™)?, i.e.,
K(t,z) = hp pn—1(A(-); o, 2). Here A(2) is given by

(t” _ a’"«)P _ (Zn _ an)p {rn _ ,rn 1
(t" —amP(t— z) trn — Bt — 2
ﬁrn (Zn _ an)p

trn — ﬂrn - (tn _ a”)l) /(t - Z) = Ala"(z) - A27n(2),

A(z) =
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where we set

(A" —a)P — (2" = a™)PtT
Arinle) = (t—z)(trm = prr)(tr —ar)p
_ AT —at)? — (2" — am)P]
o) = G = oy —any

Since Ag n(2) € Tpp—1, we have
hpypnfl(AQ,n; a, Z) = A2,n (Z) (26)

From (2.1) we may replace 2™ by its interpolant in the zeros of (2 —a™)?, i.e.,

by & Br_p+1,p(2"/a™) in order to find its Hermite interpolant and so

hp,pn—l(Al,n; «, Z) =

_ arnﬂrprrl,p (272) (tn - an)p - arnﬁrsz»l,p (:;7:) (Zn - an)p
(t =) = (e — )y

From (2.6) and (2.7) we see that
K(t,z) = hp pn—1(A1n; @, 2) — Ao (2). (2.8)

Since Ag ., (z) = EZS O(1) for large n, it follows that A, (z) tends to

e
r/p
ol < n/ ('ﬁ') . (2.9

p

zero as n — oo if

By Lemma 2, B,—p11,,(t"/a™) < O (1 )p_l so that

o™

arnﬂT*erlyp(tn/an)(zn — an)p | |’r'n |t|n(p71) |Z|np (2 10)
(trn _ 5rn)(tn _ a")P — |a‘n(p71) ‘t'rn—‘—np '
and the right side will tend to zero as n — oo, if
p
2| < ——=r - (2.11)
le\ =
P
Similarly,
0"y g0 | [ (.12)
(tn _ an)p(trn _ Brn) — ‘a|n(p71)|t‘rn '
and this will tend to zero as n — oo, if
p
P (2.13)

()7
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Combining (2.7), (2.10) and (2.11), we see that Ay pn—1 (A1} v, 2) tends to zero

as n — oo, if

2] < min P P S — (2.14)

r—p+l r—p+l r—p+1
laly Pt lal ® lofy 7
P P P

Combining (2.9) and (2.14), we get (2.4) which completes the proof. O

REMARK 1. Instead of (2.2), one may consider a slightly more general oper-

ator, viz.,

Apm (£32) = hppn-1(f30,2) = hppn-1(Lm-1(f3 8, 2); 3 2) (2.15)

where m =t +q, p < r, ¢ = ns+ O(1), 0 < s < 1. In this case no

special difficulties arise and the result is slightly more general. In this case the
expression for ¢ in (2.4) becomes
o\
[0 P
p/ max —
o ()

()7 216)

If in (2.2), we put 8 =1, a = 0, then hy, pn—1(f;0,2) is the Taylor section of
degree pn — 1 for f about the origin and we get the Corollary in Chapter 1.

2.3. Mixed Hermite Interpolation

If 1 < p < r are integers, then we consider the operator

H;gnﬁrn(f; Z) = hp,pn—l(f§ Q, Z) - hp,pnfl(hrnfl(f; B, Z); Q, Z) (31)
As in the previous section, we can see that

3 152) = gz [ SOK (a1 (32)

2mi,
where K (t,z) is the Hermite interpolant in the zeros of (2™ — «™)? of the poly-
nomial K (t,z), where
n__ A n\p _ (N _ ~An\p n _ AQn\r _ (.m _ AQn\r
Kyfrn) = @ =" 0t (g — (" = )
(t —2)(t" —am)? (t—z)(" = pgm)"
B |:(Zn o ﬁn)r (Zn o an)p:| 1

- t—z

(tn _ 571)7“ (tn _ an)p
Since

(2" =B = ;0 @ (=" — a"Yi(a" — Bm)r
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with a similar expansion for (t™ — 8™)", we see that

K, (0" = oy 2_; () ¢ —amptar gy

ey () ey )

= \J
(=2 - gy —anp).
From this it is clear that

R () @B (a2 ety
vt =3 (0) e ey e

§=0
(3.3)
since the right side in (3.3) is a polynomial of degree pn — 1 and the values of

K(t,2) and of Ky (t, z) on the zeros of (2™ — a™)P are the same.

From (3.3) we see that for |t| = R < p, we have

max (||, |3]")"[2|™
K(t2)|<C
|K(t,2)| < C max L Jnax | { T ,

| { L e By il

1<j<p—1 Rnr+n(p—j)

From this inequality, we see that the right side will tend to zero when

RT/3
< __
12l < G (al, [T 73

j=1,...,p—1

and .
r+p—j
P

2] <

r=p=j °

max (|al, [5])>

Therefore (3.2) will tend to zero when n — oo, provided

RR(r—p+1)/p Rr/3
|Z| < min r—ptl mln - T =i
max (lal,[B)) " '=/=Pmax (Jal,[8]) T
. R . R
= min — min o
o 191\ 1<ise ol 181\ T
max R’ R max R’ R
Letting R — p, we see that
: P
lim HRS (fi2) =0 for |2 < e (34)
max (12l @) !
pop

We have thus proved
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THEOREM 3. Ifa# 3, a,B8 € D, and if f € A, (p > 1) then the polynomial
Hg‘,;ﬂm(f; 2), 1 <p <, defined by (3.1) tends to zero as n — oo, when

r—ptl
|z|<p/max {04 Wq ’
p’p

A different, but similar result is the following. If r, ¢ are positive integers,
m =nq+ ¢, and q¢ > r is a given positive integer, we set
Afnﬁ 1,2, m(fa Z) = h’r,rnfl(f; a, Z) - hr,rnfl (hZ,mel(f; Ba Z); «, Z) (35)

We shall now prove

THEOREM 4. Let r,£,m be positive integers, m = nqg+c¢, q > r and ¢ a
constant. Then

Jim. AN em(f32)=0 for z€ D, (3.6)

where
Kl e e
- al\ E ol
_ 1P 1] 1o . (3.7
7 = p/max <p> ’ (p) <p> ’(ﬂ) 3.7

More precisely, for any p < pu < o, we have

£q
T

N 1/rn
lim {max |A%A (f,z)|} < g .

n=00 U|z|=p rn—1,4,m

Taking e = 1, |B] < 1, it is easy to see that o = pgq:rl

Ifa=1 8=0,¢=1, m =nqgand ¢ = ¢’ +r — 1, then we obtain from
(3.11) the following result:

V-1

nh—>r£>10 hrrn 1 fal Z Zﬁjr pn 1,7+j5— 1(f7 ) :07 |Z|<p1+

where p,_1;(f; %) is given by (3.3) of Ch. 1.

The proof of Theorem 4 will be based on the following:
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LEMMA 4. For any o, 8 € O, we have
(27 = B = (=" — a") Qun—yn(2) + Rem-1(2)

where Qem—rn(2) € Tem—rn and Ry rn_1(2) € Tpm_1 is given by

Ripr () = (—0™) +Z ( )( YR Rean g, (7 o) (3.9)
with Bs r(z) defined in (1.7).

ProoOF. The binomial theorem gives

14
(Zm _ ﬁm)é — (_ﬁm)é + Z <£> (_ﬁm)f—kzmk

k=1

and since 2"k = Zk(nate) = yke(zm)ak and ¢ > r, we see that

gk _ (Zn —a" Ozn)qk _ Z <qk> (Zn _ an)j(an)qk—j + (Z" _ an)qu(z)

i=o N
= a1 (2" a") + (2" = a") qi(2)

where gy (2) € Ty, From this, observation (3.9) is immediate. O

LEMMA 5. The operator Am 1 ém(f;z) in (3.5) has the integral represen-

tation

Afrlnﬁ 1 Zm(f;z) = 5

FR)K(t, z)dt (1<R<p)
27 Jr,

where

t" —a™) Rern—1(2) — (2" —a™)" Ry yn—1(t)
(tm _ 6m)l(tn _ an)r(t _ Z) '

K(t,2) = & (3.10)

PRroOOF. Since A p—1 is linear and reproduces polynomials of degree < rn —
1, we see that

A?’r’Lﬁ 1,4, nL(f’ Z) = hT,rn—l(g; «, Z)

where
9(2) = hepn1(fi, 2) = hoom—1(f; 8, 2) = %m g F®)K1(t,z) dt

and

_[@n—any -G —any (= ) (7 - g
Bl = | ey e LA
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So in order to find K (¢, z), it is enough to find the Hermite interpolant of the
kernel K1 (¢,z) of (3.11) in the zeros of (2™ —a™)". Observe that on simplifying,

we have

(zm_ﬁm)e B (Zn_an)r .

[( m_ﬂm)é (tn_an)r]/(t )

(t" — ")y (e = 7Y~ (2"~ any (e - g’
(tm — ﬂmV@”—%ﬂﬁﬁt—Z) '

Kl(t,Z) =

By Lemma 3, (2™ — ™)" = Ry rn—1(2) + Qom—rn(2)(z" —a™)", (™ —gm) =
Ry rn—1(t)

+Qom—rn(2)(t™ —a™)". Since K (t,z) in (3.10) is a polynomial in z of degree
< rn — 1, and since it coincides with K7 (¢, z) in the zeros of (z™ — a™)", we see
that K (t, z) in (3.10) is the required kernel. O

ProOOF OF THEOREM 4. Using the expression (3.9) for Ry ,.,—1(2), we see
that Ky (t, z) = Ka(t, z) + Ks(t, z) where

1
SERNCE DI
< {( ﬁm>"+§j ( ) (B By (2" ™))
Ks(t,2) = — o —ary (3.12)

(mfﬁmqwfwwafa
{ ﬁm)z""z < ) —Bmy)htheqnak g (o )}

We see from the expression for K3(t, z) in (3.12) on using Lemma 2 that K3(¢, 2)

will tend to zero as n — oo, if

n\7T—1
2] |3t 278 k(1)
(A) Rmernr nd Rgm+7w 9 1 S k S VA
tend to zero as n — oo. Similarly Ks(t, z) will tend to zero if
n(r—1) m(£—k)| . |nqgk
e m

tends to zero as n — oco. Since m = ng + ¢ (c a constant), we see that the

terms in (A) will tend to zero if

R R
|2| < min i =S (%) , 1<k<d
1<k<¢ (M)T (lﬂ)i
R R

R
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The terms in (B) will tend to zero if

2] < min q(uk)R gkl
LSRsE ) T (o)) T
R R

Letting R — p, we see that K (¢,z) — 0 as n — oo when |z| < min (o1, 02)

where

or = p/mas <|ﬂ|>

g (w) (|a)*” <m|>
"\ » p "\ »p

Lg+1—r

03 = p/ max <W> (If;é)<k:|> 2

Since o = min (o7, 09), the result follows.

and

O

REMARK. 1. If in Theorem 4, where we suppose that m =ng+c¢, ¢ > r, we
also require that c is not a constant, but that ¢ = sn + O(1), 0 < s < 7, then
the details of the proof remain the same with minor changes and the value of o
depends upon s. Then it is easy to see that in this case

U*p/ma {(‘?)e(ws) (|i|)(£ 1(q+s)/r(|(;|)q+1 r (|(;|),Zq+1 ,}.

2. If we take « =0, r = 1, then

n 1zm(f7 ): 7171(f;z)*Snfl(hé,ﬂmfl(f;ﬂa');z)-

2.4. Mixed Hermite and f3-Approximation

Let f € A, (p>1) and let 0 # « € D,. If m > n are fixed positive integers,
let w be a primitive m'" root of unity. We shall consider the problem of finding
the polynomial Pryyn(f;,2) € Trmin for each f € A, which satisfies the

Hermite interpolation condition

pY (f;a,awk):f(”)(awk), k=0,1,....m—1, v=0,1,...,r—1, (4.1)

rm—+n

and also minimizes
Z 1P (fr s 0wk) = FO (awh)?, 7 >0 (4.2)

over all polynomials in 7+, which satisfy (4.1). If Lypyn(f; 5, 2) is the La-

rm—+n

grange interpolant to f in the zeros of z — ™™+ we shall prove
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THEOREM 5. For each f € A, (p > 1) and for each non-negative integer
7, let Prmyn(f;a,2) satisfy (4.1) and (4.2). If 0 < g := lim = <1 and if
n—oo
a, B € D,, then

nh~>n;o [Prm+n(f; @, Z) - LTern(f; 67 Z)] =0 (43)

for all

2| < o= A (4.4)
max { 181 M} o
PP
It is clear from (4.1) that Pry,n(f; @, z) will have the form

Prmin(fi0,2) = hpm-1(fi0,2) = (2™ — a™)"Qn(2)

where @, (z) will be determined by the requirement (4.2). Observe that

dr m m\T mr—r, —kr . r—v [T
7 7 o e =0 1 () G

=™ "W m ! (4.5)
where (z)g = 1 and (z); = z(x—1) ... (x—k+1) for any positive integer k. Then
the problem of minimizing (4.2) reduces to finding the polynomial Q,(z) € m,
such that

m—1 m—1
> lg(aw®) = Quaw®)? = min > lglaw”) = plaw®)? (4.6)
k=0 k=0

where
&R L (fian2) = fD(2)}

amrm” - r!

9(z) = (4.7)

We shall prove

LEMMA 6. The polynomial Qn(z) € 7, satisfying (4.6) is explicitly given by

Qn(z) _ L f(t)tmfnfl(thrl _ Zn+1) " (4’8)

2mi Jp,  (t—2)(t™ —am)rHL

where 1 < R < p and T'r = {z: |z| = R}.

Proor. The polynomial @, (z) which minimizes the right side in (4.6) is
obtained by truncating the Lagrange interpolant to g(z) on the zeros of z™—a™.
In order to find L,,_1(g; a, ), we shall calculate g(aw®). To do this we observe

that . .
hr,rn—l(f§ «, Z) - f(Z) = - 7A L K(t,Z)dt

271 Jp, (t™ —am)r



40 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

where K (t,2) = (Z% Since

d" -rla™”
" K(t —qwk = k=0,1,... -1
Z dzr (7Z)]Z—chl’ (t—ozwk) ) y Ly , M

we see that
glawk) = [ (R0 (fr0,2) = £ () amaur /@™ M - 7]

! f(t) dr
271 /FR (tm _ am)r [Z o (t, Z)]z:awk dt
1
27TZ (tm _ am)r t— awk

dt,

Hence it follows that

Lm—l(g§Ck, Z) = L/F ( f(t)(tm — Zm) i

2mi t—z)({tm — am)rtl

so that Q,(z) is as given by (4.8). O

PrOOF OF THEOREM 5. From Lemma 5 we see that

1 Sf@)

Prm+n(f;a7z) r‘ern(f Ba ) 27” I‘ t— 2

where after some simplification we have

ZTernJrl _ ﬁrernJrl M _ qm T a™m — tmfnflznjtl

Kl (t,Z) = — + ( > . .
trernJrl _ BrernJrl tm — qm tm — qm

We write K1 (t, z) = Ka(t, z) + Ks(t, z) + K4(t, z) where

z

rm+n+1 B'rm+n+1 Zrm+7L+1
KQ(t’Z) = trmtn+l _ ﬁrm+n+1 - trm+n+1

5rm+n+l (zrm+n+1 _ trm+n+1)

= trm+n+1(trm+n+l _ 6Tm+n+1) ’
Z\Tm M gm r gntl
Ks(t2) = {(t) - (tm —am> } gt
m m\ 7T n+1 m m—n—1.n+1
2 —a 1 a™ —1 K4
K4(t,2): <tm_am> '{tn—kl + tm _ gm }
zm _ am r am(thrl _ Zn+1)
- <tm _ am) ’ tn+1(tm _ am) :

From the expressions for Ky(t, z) (¢ = 2,3,4), we see that as n — oo, |Ks(t, z)|
— 0if |2] < R/(18]).
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From (1.6), we easily have
T T
ﬁ _ Zm_am _t . 'r‘mz /83+17 /a )
tm tm — qm - t(r+1)m )
and from Lemma 2, we have

‘Z‘ (r—1)m
b rfam <o (B

|

‘rm+n‘a

Thus K3(t,z) — 0 as n — oo, if W — 0, and so we require

R

la 1/(r+q) °
(%)

Lastly, we see from the expression for Ky(t, z) that K4(t,z) — 0 as n — oo if

2| <

|Z|rm+n+1|a|m R

— O7 i.e., if ‘Z| < ™ .
o]\ FrtaTT
‘R

Since lim > = ¢, on combining the above three and on letting R — p, we see
that Prm+n(f; «, Z) - er+n<f; ﬁ: Z) - 0 lf

Rm'r+m+n+1

ORCHaCE

From this (4.4) is immediate. O

|z| < min g P p

2.5. A Lemma and Its Applications

We shall consider here the following problem and see how it extends the
result of Theorem 5 on Walsh equiconvergence.

PROBLEM. Let fo(z),...... , fr—1(2) be r given functions in A, (p > 1). Let
{pejti= 1 ((=0,1,...,7r—1) be r sets of given real numbers. For each ¢ and
a set of real numbers {p;,; }?;01 we define a linear operator £, on the space of

polynomials of degree < n — 1 such that

n—1 n—1
if Qn(z)= chzj, then L,(Qn) = ZijLij. (5.1)
=0 =0

The problem is to find the polynomial P, , »(z) which minimizes the sum

r—1 m—1

Z Z |f2(wk) - £€Qn(wk)‘2v w"=1, m>n, (52)
(=0 k=0
over all polynomials @,, € m,_1. Let

m—1
Lin-1(fe2) =) a2
=0

Then we can easily prove
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LEMMA 7. The polynomial Py, ,, »(z) which minimizes (5.2) is given by
n—1 i
> i—o ¢j2’, where

— Zp“af,’j), Kj=>(pej)?, j=0,...,n—1 (5.3
K =0 =

PRrROOF. Since
|fé(w ) ‘CZQTL(W'IC)F |Lm l(fg, ) £lQn(W Z kj|2

where o
Qp " =P 6o 7=0,1,...,n—1,
e = (5.4)

(m)

Q ; j=n,...,m—1,

we see on using the properties of roots of unity that

r—1 m—1 r—1 m—1
|f£(w ) — ££Qn( =m ‘d&j|2‘
=0 k=0 =0 j=0
If we put
cj::pjewf, 7=0,1,...,n—1

(5.5)
o™ =g geitei, j=0,1,...om—1 £=0,1,...,r—1

then from (5.4), (5.5) we get

Lo, 10,2 S
|O—e7jez¢e’1 _pz,jpjezj‘ ) .7_071a"'an_1

| 4|

2 -
, j=n,....m-—1

o,

and the problem of finding the minimum of (5.2) is equivalent to finding that
of

—
i

rT— n—

pe,] + Z a@J 2 Zp/]pja/,] cos (0; — ¢e.5)
0

o~

=0

[

where p; runs over the reals and 0 < 0; < 2.

Elementary calculations now show that p; and 6; are determined by the
following equations:

—1 —1
Pi > oi—0(Peg)® = 24 Pejoey cos (05 — dej) =0

-1 .
Y i—oPejoey sin (05 — ¢p ) =0
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Thus we have
sinf; _ cosf; _ 1
Aj B; VAZ+B?

—1 . -1
Aj =300 pejoesinge , B =31, 0 pejoe;cos g

(5.6)
Therefore
\JA%2+ B? :
J J B,cosf; + A;sinb; )
Pj = =1 5= J ]K~ J L §=0,....,n—1. (5.7)
1=0(Pej) j
From (5.5), (5.6) and (5.7), we get (5.3). O
We now choose f;(2) := fU)(z), where f(z) € A,. If we set
n—1
Lo(@n) =Y (ec;z ™",
7=0
then £,(Q) = ) and the problem of minimizing (5.2) is equivalent to mini-
mizing the sum
r—1 m—1
DS WH O - QU WM, Qn € mna (5.8)
=0 k=0

We can then prove

oo
LEMMA 8. If f(2) = > anz” € A,, then the unique polynomial which mini-
v=0

mizes (5.8) is given by
T 3 j = A ms .
P, ZCJ Cj Ao](r Z 2 (1) aj+a (5.9)
where Ay;(r) = 3" ()e(j + Xm)e, A=0,1,... .
=0

PRrROOF. In this case p;; = (j)¢. Since

o

2L () = Z(V)gal,z” ,

v=0
it follows that the Lagrange interpolant to z¢ () (2) in the m*™ roots of unity is

m—1 o)
Z ag?)zj, where oz(m) Z(] + AM) @4 .-
7=0 A=0
The result (5.9) is now a direct application of (5.3) in Lemma 7. O
If we set
n—1
A .
Spnr(fi2) = Ari(r) Pajiam, A=0,1,2,... (5.10)
o = Aos(r)

then the following theorem is easily proved:
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THEOREM 6. Let f(z) € A, (p > 1) and let m,n be positive integers such
that nlLII;O ™ = q > 1. Suppose that for a given positive integer v, P n.r(f;2)
is the polynomial which minimizes (5.8) on the m'™ roots of unity. Then for
any integer p > 1

n—oo

pn—1
lim [Py (f;2) — an)\,r(f;z)] =0 for |z|<p'tre.
A=0

As another application of Lemma 8, we consider the polynomial IgsmHL( i«
, %) € Tsmtn—1 analogous to Pspyin(f; @, 2z) in Theorem 5. We now require that

Pomin(f; @, 2) satisfies

PY . (fia,awk) = fP(aw®), k=0,1,...,m—1;v=0,1,...,s—1 (5.11)

sm—+n

for some o € D, and also minimizes

m—1 s+1
> Y IBLL L (franwh) = £ (awh)? (5.12)
k=0 v=0

over all polynomials in mg,1n—1 satisfying (5.11). We prove the following ana-

logue of Theorem 5:

THEOREM 7. For each f € A, (p > 1) and for each non-negative integer s
and o, B € D, let Pgm+n(f;a,z) satisfy (5.11) and (5.12). If lim  =¢ <1
then

lim [ﬁsm+n(f;057 Z) - Lsm'f‘"(f; /B’Z)} =0

n—oo

for all z (|z| < o) where o is given by

p

SEEE)
p p

g =

PROOF. As in the proof of Theorem 5, let
ﬁstrn(f; «, Z) = hs7sm71(,f§ a, Z) + (Zm - am)sQn(z)

where @, will be determined by (5.12). Besides (4.5), we also have

ds+1

dzs+1

1
(2" = &) omqur =m™ - (s +1)! 5 s(m — Dasm=D=1,=ks+) - (513)
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Then minimizing (5.12) can be shown to be equivalent to minimizing

,_.

m—

1
m® sl Y Y 1Le(@Qu)WF) — ful )P, Qu €T
k=0 £=0
where fo(2) := [BST0 (Fra, 2) — FEHD(2)]25H /m® - slams—s—¢ (£ =0,1) and
Lo, L1 are linear operators on the space m,_1. Lo is the identity operator and

£1(Q)E) = 6+ 1) (5 sm -1 +2 1)@,

:(s+1)nz:1<; S(m—1)+j>cjzj

=0

n—1
where Q,,(z) = Y ¢jz7. So
3=0

1
poj =1 and pi;=(s+1) (j+25(m—1)>, j=0,1,...,n—1. (5.14)

Since ) (o s
fOE—ame

hs,sm—l(.f; a,z) (Z) 27” T'n (tm _ am)s(t _ Z)

it follows on using (4.5) and (5.13) that

fO(O‘Wk) == ﬁ er (tmf—(i)m)s i— awk dt
s s(m—1 (515)
fl(awk) = - 2;;1 fFR (tm]i(i)m)s {2t(awk) + (t— awk)Z }dt
k=0,...,m—1.

From (5.15) we can find the Lagrange interpolants to fo and f; on the zeros of

2™ — ™. Thus we have
1 f(t) tm o _ ,m
Lyp—1(fo;0,2) = —5—= dt 5.16
1(foj @ 2) 2mi Jp, (™ —am)stl -z (5.16)
and ) 1)
s+ t
Ly, ja,z) = — —— ——— K(t, z)dt, 5.17
e == 50 [ K (517)
where

K(t.2) = [és(m—l) = zm _% { H(Em — 2™ H

tm—am  t—z (tm —am)(t — z)

since the value of % { . " —z")

_ k ; : _ aw”
=) (1=2) } at z = aw"” is easily seen to be oot -
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From (5.16) we see that the coefficient of 27 in L,,_1(fo; @, 2) is given by

m—j—1
o) = 1 / [t gt
re (

 2mi tm — qm)stl
and from (5.17) we have for the coefficient of 27 in L,,_1(f1; @, 2)

o) s—i—l/ - f@ {1 s(m =Dt i< tm=J }dt
r

B m_qgm)s 2 tm — qm dt tm—am)

1 271

L AU L {Pu‘ 4 mlst Da™ }dt.

 omi r, (tm™m—am)stl tm — am

n—1 .
By Lemma 7, applied with r =2, Qp(2) = 3 ¢;2’ where
§=0

_ POjOé(()j ) +P1ga§;n)

I T o) + (p1y)?

Using (5.14) and the values of a(();.n) and ozg?)

above, we have

1 Hrm—1-i
Cj == — Ll dt
2mi Jp, (™ —am)st
m(s+1)a™  piy / frm—1t-3 i@t
2mi 1+ (p1j)2 (tm — am)5+2 ’
Therefore Q,(z2) = — 27” fFR (t)K1(t, 2)dt where
m—n(4n n m n—1 m—j— i
Ki(t2) = — (t" —z") m(s + 1o pit™ I

(tm _ Oém)s+1(t _ Z) (tm _ am)s+2 1+ (plj)2

=0

so we have now

Paninlf5062) = Lol f35:9) = 5= [ JOR (@, 2)ae

T'r

where

(tm _ am)s _ (Zm _ am)s
(t" — am)s(t - 2)
tsm+n _ zsm+n 1

+ (Z’"L _ aTﬂ)SKl(t’ Z)

K(t,z) =

- tsm+n _ ﬂsm+n ’ t— 2z
1 ~ ~ ~ ~
=7 [K1(t, z) + Ka(t, z) + K5(t, 2)] + Ka(t, 2).

Here we have set

Zstrn _ Bsm+n Zstrn (Zsm+n _ tsm+n)

_ ﬁsm—b—n

K4 (t,Z) = gsmtn _ ﬂsm—HL - tsm+n

ts7n+n(tsm+n _ ﬂsm—&-n)’
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n zsm (Zm _ am)s
{ (tm _ am)s

. Zstrn (Zm ) Zn 2
KQ(taz) = tsm+n (tm am)s F = t7n tsim -
~ mys tm nn _ ,m
Ratt.2) = o {5 - S o)
—« tm _ qm
_ (Z _ m)s { m(tn_zn)}
- (tm _ am)s tn<tm _ am) ’
1 IR
Ky(t,z) = m(s + 1) (" — a™)*a™ o pit" I

(tm _ am)s+2 = 1+ (plj)Q

From these expressions for the kernels IN(,,(t, 2), v=1,...,

}

47

4, we see that as

n — oo, Ki(t,z) — 0if |z] < Tlf‘ . Using Lemma 2 and the identity (1.6) in

Lemma 1 we sce that Ky(t, z) tends to zero as n — oo if |

also tends to zero for the same bound for |z|. Since 0 <
that

z| <
|ﬁ

Dpij
1+(P1

— Rn)

. 1 sm||m n
‘K4(t,2)| < m(s |—;|?7)]é+2)|a| RM—™ (|7| |
2 —
and so K4(t, z) tends to zero for |z < —E&— . So
s+q

| z

135m+n(f§ @,2) = Lsmyn(f;8,2)

will tend to zero as n — oo, when

R R
|z| < min R
" (lel) e

R

On letting R — p, we get the required result.

2.6. Birkhoff Interpolation

- Ks(t, 2)

) < 1 we see

When we state an interpolation problem where not necessarily consecutive

higher order derivatives are prescribed, then we call this lacunary (or Hermite-

Birkhoff, or simply Birkhoff) interpolation. This type of interpolation was in-
troduced by G. Birkhoff [5] at the beginning of the 19th century, but remained

unnoticed for a long time. After the pioneering work of P. Turédn in the late 50’s,

the theory of lacunary interpolation gained new momentum, and nowadays it

is a fruitful field in approximation theory.

Since our subject is overconvergence, we will be concerned with one specific
(although rather general) setup. Let f(z) € A, (p > 1) and let

0=mg <my <--- <My, stqu

(¢>1)

(6.1)
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be integers. For a given integer n > 1, we would like to construct polynomials
B, (f; z) of degree at most (¢ + 1)n — 1 such that

Bf{”s)(f;wt):f(mS)(wt)7 t=1,...,n; s=1,...,q, (6.2)

h

where w is a primitive n*" root of unity.

In contrast to Hermite interpolation, the existence and uniqueness of such
interpolation polynomials is highly non-trivial. Our first theorem says that for
sufficiently large n’s this is true.

THEOREM 8. If

m
n > max — (6.3)

1<s<q S
then the problem of (0,mq,...,mg) interpolation is uniquely solvable for any

f(z) € A,

The complete proof of this theorem is out of the scope of this monograph; at
the appropriate places we will refer to the literature where the interested reader
can complete the argument.

Sketch of proof. Consider the polynomials
p(z) =22""F E=0,1,...,n—1; X>q.

We look for the polynomial B, (p,z) in the form
q .
By(p;2) = Zaj,)\,k,nzjn+k € T(g+1)n—1 (6.4)
§=0

with some numbers «; » ;n. Conditions (6.2) for f = p can be written as

q
B (i) = Y ajakn(§n + k)n, 0 7 = (An 4 k) w77 (6.5)
=0

t=0,1,....n—1; s=0,1,...,q)
where we use the notation (a), = a(a—1)...(a—v+1) for non-negative integers

a and v. (Note that if a < v then (a), = 0; further (a)g = 1.) This leads to the

following system of linear equations:

q
Zaj7>\7k,n(jn +E)m, =Mn+k)pm, s=01,...,q. (6.6)
=0
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The determinant of this system is

1 1 1
(k)ml n+k)m, - (qn + k) m,
M, (k) = . ' . . (6.7)
F)mg (n+E)m, - (qn+k)m,

Under the condition (6.3), M,,(k) # 0 (k=0,...,n — 1). The interested reader
may find a proof of this statement in [67, Corollary 4.18].

This means that o » k., are uniquely determined and (6.4) satisfies the con-
ditions (6.5). (Note that if A < g then B, (p;z) = p(2).) Now if

[eS) n—1 oo

f(z) = Z apz" = Z Z arngrz T (6.8)

k=0 k=0 A=0

then by the linearity of the operator B,, we obtain

(g+1)n—1 n—1 oo q
k ] k
B, (f;2) = Z apz” + Z Z Axrn+k Z ozj,A,k,nz]"Jr . (6.9)
k=0 k=0 A=q+1 =0

This proves the existence of the operator B,, for any f(z) € A,. Uniqueness
follows from the non-vanishing of (6.7) and the linearity of the operator.

Next we prove the convergence of the operator B,,.

THEOREM 9. We have

_ . if 0<R<I,
lim ma>é|f(z)—Bn(f;z)|W <
€

n—oo ‘ZI

(6.10)
if 1<R<p

Sl SI=

for any f(z) € A,.

The result shows that we have geometric convergence in every closed subdo-
main of |z| < p.

PROOF. We have to estimate the coefficients a; \ x,» in (6.6) for sufficiently
large n’s. First we find a lower estimate for the determinant (6.7). With the

notation z = £ we get
n

(jn+k)m8ans(x+j)<x+j_%)"'(x—'—j_msn_l)

=M {(:c+j)m'*+0(%)} (J=0,1,....¢s5=1,...,q)
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where the constant involved in O(1/n) depends only on g and my, ..., m,. Hence
for M, (k) we obtain

1 1 1
™ (x4+ D)™ . (x4 g™
My (k) =nMa| . ' + O(nMa=h,
M (x4+ 1) . (x4 q)"

Here the determinant is a so-called generalized Vandermonde determinant for
2 > 0 which is known to be postive (cf. e.g. [67, p. 51]). Hence

cyn™Ma < M, (k) < con™Ma (6.11)

where c1,co > 0 depend only on ¢, my, ..., my.

In order to estimate a; xk,, we apply Cramer’s rule for the system (6.6).
To do this, we have to establish lower and upper estimates for the determinant
M, j A(k) obtained from (6.7) by replacing the (j + 1)-st column by [1 (An +
K)my - - (An+k)m,]". Applying the same estimate to this determinant as above,

we obtain
My, j (k) =
1 ... 1 1 1 . 1

2™ o (x4 -D™ (z+A)™ (z+i+1)™ L (g™
— pMa

2™ . (4= (x4 N (z+j+ D)™ . (x4 q)™

+ O(nMa=1) (j=0,...,¢; k=0,...,n—1), (6.12)

where again # = £ . Expanding the determinant by the (j + 1)-st column we
get

| My (k)| < csA™apMa =0, ¢ k=0,...,n—1; A>q. (6.13)

To obtain a lower estimate, we move the (j + 1)-st column to the last column.
The resulting determinant (which is (—1)?77 times the original determinant) is
again a generalized Vandermonde determinant which is positive for 0 < z <1,

and its lower bound depends only on A, ¢, my, ..., m,. Thus

|Mn,j’)\(k2)|ZC4HM‘7, j=0,...,¢; k=0,....,n—1; g<A<qg+¢{ (6.14)
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Now (6.11), (6.13) and (6.14) imply

<csA™e, j=0,...,¢; k=0,....,n—1; A >q,
| M52 (K)| ,
Mn(k) >c >0, 7=0,...,q; k=0,...,n—1;

g<A<gq+V{.

lovj k| =

(6.15)

After these preliminaries, we can prove the theorem. Taking the difference of
(6.8) and (6.9), on using (6.15) we have

FERERTEII ) Sl e (1—ZaJ+W |

k=0 A=q+1

—O(Z Z — )Mk R max (1, |z|q")Amq)
k=0 A=q+1
with an arbitrary € > 0. Now if |z| < p — € then this yields
max(1, |z —— ) =0(———=
2 oo (o — )+

which, since € > 0 was arbitrary, results in (6.10). O

After having settled the convergence, we now turn to the overconvergence
problem. For this we need another operator

(g+1)n—1 n—1 g+0—1
TSNS MITEES i DTS ORISR
k=0 k=0 A—q+1

which contains another fixed parameter £ > 1. (In case £ = 1, the second term in
(6.16) does not appear, and S, ; is simply the Taylor section.) We will consider
the difference of (6.9) and (6.16):

[ee]

— q
An,f(f; z) = By(f;2) — Sh,e (f;2) Z Z Arn+k Z ij;,\7k,nzjn+k. (6.17)
k=0 §=0

THEOREM 10. We have for each f(z) € A

P
ar  if Rl <1
patt
1 FEoy
q . p
i max| A, o(f;2)| 707 = L i 1<|R|<p (6.18)
n—»oo| ‘ patt
|| ;
o if p<|R].
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The theorem shows that the exact radius of overconvergence is p1+#.

PRrROOF. First we prove the upper estimates in (6.18). Just like in the proof
of Theorem 2, we obtain from (6.17)

[Anelf52)] :O(i > (p—e) M rama max(l,\z\q"+k)>

k=0 A=q+¢

|
—

= 0((p— &)™) 3 (p — &) F max(1, |27 H)
0

O((p—e)~laton if |z[<1

>
Il

27"

= O(m) if 1<zl <p

(a+1)n .
0 < T ) it p<lz
which proves the upper estimate since € > 0 is arbitrary.

Now we turn to proving the equality in (6.18). Let first R < 1, and suppose
there exists f(z) € A, and 0 < § < 1 such that

) n
m A . < (—— .

contrary to (6.18). Dividing (6.17) by zi*1, 0 <t < ¢+ ¢ — 1, and integrating
over |z| = R <1 we get

[e.e]

1 / An ((f; Z)
— — 2 dt = ap a + Z « a .
t+1 ,q+4,t,nA(g+0)n+t 0,\,t,n@An+t
211 |z|=R z p——
Hence using (6.19), (6.15), as well as
lrnse] = O((p — )) (6.20)
with an arbitrary € > 0 we get
5 \" = A
s =0 (52)" + ) so1)
(g+0)n+t patt AZ;H (p—e)n (

o \" 1 5 \"
:O<<Pq+e> +(p—g)(q+€+1)n>20<<pq+g> ), 0<t<qg+£-1,

provided € > 0 is small enough. Since the numbers (¢+/¢)n+t withn =0,1,...

and t =0,...,q + ¢ — 1 exhaust all nonnegative integers, we conclude that

|an|=o((%)"), 0<s<1 (6.22)
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which contradicts f € A,.

Now let 1 < R < p, and suppose there exist f € A, and 0 < ¢ < 1 such that

GRINT
) < (2
‘132§|A7L,g(f,z)| < (qu) , (6.23)

contrary to (6.18). Dividing (6.17) by 22"+ 0 < ¢t < g+/¢—1, and integrating

over |z| = R we get
1 An Z(f; Z) .
— — = dz =« a E « a .
2mi J\1=r Laqn+l+1 g.q+6tn0(g+on+t a,AtnUAntt
A=q+L+1

Hence using (6.23), (6.15) and (6.20) we have the same estimate as in (6.21)
and (6.22), again a contradiction.

Finally, let p < R, and suppose there exist f € A, and 0 < § < 1 such that

oR )" (6.24)

E\li}}(z'An’z(f; z)| < (W

contrary to (6.18). Dividing (6.17) by z"~t*1 0 < t < ¢ + ¢, and integrating
over |z| = R we get

1 An,/(f7 Z) dz =a a
P i1 =0 £,n—t —
i =R Sn—t+1 q+Hen—t,n(g+l+1)n—t

oo
+ E Ao A n—t,nA(A+1)n—t-
A=q+L+1

Hence using (6.24), (6.15) and ( 6.20) we obtain

s n 0o AMa
a(q+£+1)n—t_0(<pq+£+1) + Z (p_g)()\ﬂ)n)

A=q+{+1

1) n 1 5 N
_O<(Pq”“) +(p—e><q+f+2>n>_0<(,,q+m) ) 0<t<qg+?,

provided € > 0 is small enough. Since the numbers (¢ + ¢ + 1)n — ¢t with

n=12... andt =0,...,q+ ¢ cover all positive integers, we conclude that
(6.22) holds, a contradiction. O

2.7. Historical Remarks

(a) Theorem 1 is due to Cavaretta, Sharma and Varga [30]. Theorems 2 and
3 are due to Akhlagi, Jakimovski and Sharma [2].
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Theorem 4, even in the more general case when c is not necessarily a constant
but ¢ = sn+ O(1), 0 < s < 1/¢, was proved by Lou Yuanren [74]. It generalizes
the special case (3.8) due to Ivanov and Sharma [50]. Theorem 5, when o =
1,8 =r =0, reduces to a result of Rivlin [88] on ¢s-approximation on the mth
roots of unity. The more general case « = 1, 8 = 0, r > 1 was proved by
Cavaretta, Sharma and Varga [30]. The special case « = 1, 8 = 0 of Theorem 7
can be found in Cavaretta, Dikshit and Sharma [24].

Theorem 8 can be found in [67], [86] or [94]. Theorems 9 and 10 are new.
Note that the results of Section 2.6 applied with ms = s, s = 1,...,q lead to
the results on Hermite interpolation in this chapter (where different methods
were used).

(b) As in the case of Lagrange interpolation, it is possible to get overconver-
gence results for the Hermite interpolation on the roots of the Mébius transform
mentioned in Section 1.6. Let h%pw( /; #z) be the Hermite interpolation polyno-

mial of order p on the roots

TWh,p, — O

Zin(r) = k=0,....,n,0<a<1

11— TWk,n ’
of the polynomial

n+1 _ ,.n+1 n+1
WO (2) = (z+«) r" 1+ az) 7
T 1— (ra)nt+t

where wy, ,, are the roots of 2"*1 — 1. Sharma and Ziegler [99] proved that if
f(z)is analyticin {z€ C:|z+a|<R+a}, R>1,thenfor 0 <r,s <1

Jim (B (f52) = Pnp,s(f52)] = 0,

provided

2€82€C:|z+al< Rta Rta )
' (max (r,5))1/? \ 1+ Ra '

For further details refer to Briick [21].



CHAPTER 3

A GENERALIZATION OF THE TAYLOR SERIES TO
RATIONAL FUNCTIONS AND WALSH EQUICONVERGENCE

In this chapter we consider least square approximation when polynomials are
replaced by rational functions with given poles. Equiconvergence of the rational
functions appearing in these considerations will also be investigated. Finally, we
will consider a discrete analogue of the least square approximation for rational
functions.

3.1. Rational Functions with a Minimizing Property
If f(z) = Y a,2” is analytic in and on the circle I' = {2 | |z| = 1}, then the
v=0

n—

polynomial Y a,z" is characterized by the property that it minimizes the least
v=0

square difference

f|f DR, T ={e] |2l = 1)

over all polynomials p(z) € m,_;. It also interpolates f*)(z) (v =0,1,...,n—1)
at the origin. We now give a simple generalization of the Taylor series and its
two properties for rationals with given poles.

THEOREM 1. Let f(z) be analytic in and on I'. If aq,...,a, are n given
numbers, |ag| > 1 (k=1,...,n), and R, (2) is the unique rational function of
the form

R, (z) == M, Qn(z) € m, (1.1)
[1(z —ax)
k=1

which minimizes

F(2) = Ra(2)[?ld2] (1.2)

e

over all Qp € Ty, then R, (z) interpolates f(z) in the points 0, % .
REMARKS. If one of the factors z — oy in the denominator has multiplicity

Ak, then the node % has also to have the same multiplicity for interpolation.
55
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If one of the poles ay is infinite, then it is dropped out in (1.1). This shows
that if for any integer m > —1, we consider rational functions of the form

Quin(s) [ TL - )
k=1

then )
Qn+7n( )

H(Z—Oék)

k=1

fz) - |dz|

min ?{
Qnim€Tntm Jp

is attained when Q4. (z) interpolates f(z) H (z — ag) at the nodes 0
k=1

’Ot yeeey

L
= -

PrROOF OF THEOREM 1. Rational functions of the form (1.1) can be inter-
preted as linear combinations of the linearly independent functions
1 1
1, . (1.3)

b) )
zZ— a1 Z—

Taking proper linear combinations of these functions, we can obtain an orthog-
onal system ro(z) = 1,...,r,(2) on I'. By a theorem of Walsh [115, Ch. 6,
n

Theorem 1], R,,(z) = Y cxri(z) will be the solution of the minimization prob-
=0

lem (1.1) if and only if

}{[f(z)—Rn(z)]rk(z) |dz| =0, k=0,...,n. (1.4)
r
It is well-known that each function in (1.3) can be expressed as a linear combi-
nation of rg,...,r,. Therefore (1.4) is equivalent to
d
j{[f(Z)—Rn(Z)L| oo, k=1...m, (1.5)
T zZ — O
and
F17G) - Ru(a)] a1 = (1.6
We have to show that if R, (z) is the interpolating rational function of the form
(1.1) to f(2) at 0, a— ,..., = then (1.5) is satisfied. But (1.5) is equivalent to
ff — Ru(2) dz=0, k=1,...,n,
1 —az

and this is true because of the interpolating property the integrand is an analytic

function. (1.6) is also fulfilled because of the interpolation property at z = 1.
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So far we assumed that the «y’s are pairwise different. The proof easily
extends to the general case by using the corresponding Hermite interpolation

polynomials. (I

From Theorem 1, it is easy to see that

F6) = Rale) = 5  HOK 1) 1.7

where
n

2 @z- DI (t-a)
K(t,z) = —=1 =L : (1.8)
t(t — z)y];[l(z - ay)y 1(61,15 -1

If f(2) is analytic in |z| < p, p > 1 and if the poles oy, are > o > 1, then from
(1.7) and (1.8) we can show that the sequence {R,(z)} converges to the limit
f(z) for

o?p+p+20
20p+ 0% +1

|z| < (> min (o, p)). (1.9)

For taking the circle I'y, with 1 < p’ < p < p, we have

o +o arz — 1

1+ po

t— ag <O’R*1

TR R=|z| <o

apt — 1 Z— O
For n sufficiently large, and for R < p’, the kernel K(¢,z) will tend to zero if

pP+oc oR-1
1+poc o—-—R

<1

Simplifying this we get (1.9) on letting p’ — p.
If p = o, then the right side in (1.7) becomes

o3+ 30
30241

If f(z) is analytic at every finite point of the z-plane, then letting p — oo, we

get the region of convergence to be

0% +1
20

But if we let 0 — oo, then the region of convergence is only the circle |z|] < p
in which f(z) is analytic and R,,(z) is the Taylor section. Thus Theorem 1 is a
generalization of Taylor’s series.
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If we take f(z) = ﬁ, and let oy = ag = --- = a,, = 0, then

_ —2p—a)"(z = )" +plp— 3)"(z—0)"
Rn(z) = p(p_%)n(z_g)”(z—p)

so that (z — o)™ R, () is a polynomial of degree < n which interpolates ﬁ at 0
and at L (multiplicity n). This shows the sharpness of the bound (1.9), because

2(z— L) (p—o)"
plp— 2)"(z—o)"(z—p)

f(z) = Rn(2) =

If z is on the unit circle, then [22=1| = 1 and f(z) — R, () will tend to zero if

p—o0

<1
po—1

REMARK. In Theorem 1, ifin (1.1), @,(z) € m,—1, then it can be seen easily

that in order to minimize (1.2), the polynomial @, (z) will interpolate f(z) in
1

76?1.

the nodes =, ...
Qg

3.2. Interpolation on roots of 2" — o™

We shall now consider a special case of Theorem 1 and take a rational function

Tnt+m,n (%) of the form

PTL m
Tntmn (%) = 7z”+ (i), 06>0, Ppim(2) €mpam (m>-1) (2.1)
-0
which minimizes the integral
§ 17 = ()Pl (22)

r(2) the form (2.1). In this case by Theorem 1 we know that P, (z) interpo-
lates f(2)(z™ — o™) in the zeroes of 2™+ (2" — ¢~™) and we can write

1 2L (e — T (7 — ™) f(t)
1) = Totmn(2) 2mi Jp (zn —om)(th — o)t (t - 2) (23)
where I'; is the circle [t| =7, 1 <7 < p and f(z) € 4,.
If m = -1, it follows from the remark in Section 3.1, that r,_1 ,(z) will

interpolate f(z)(z™ — o™) in the zeros of (2" —o™™). When m = —p, 2 < p <
n, then we shall show that there is a close connection between the rationals

Tn—pun(2) and rnp_1 n(z). More precisely, we have
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LEMMA 1. Let p > 1, 0 > 1 and let p be a fized integer, 2 < p < n. Let

Pp_,n(z) denote the polynomial € m,_,, which attains the minimum

min ]{
Qe‘ﬂ'n—u T

Then Pp_,, n(2) is obtained by truncating the polynomial Pn_1 n(%). Indeed, we

Qz) |?

ZTL_

ldz|, f(z) € A,. (2.4)

f(z) =

have

p—1ln—p+l _ nfp,+l _ 4N
0L E 4 1 <r<p. @25)
" 2mi (t—2)({tr—o™m)

Pn—,u,n

PRrROOF. The problem of minimizing (2.4) is equivalent to the problem of

finding the following minimum
2
mln y{ ’f ajfj(z)| |dz| (2.6)

where f;(z) = 27 /(2" — ¢™). This minimum will be attained if

# {1 - Y Gh G F@Y =0, =0 (2)

7=0
Since
-1
1 n 1 wké"'k N
fe(z):7§ n—~0—1 ) wzla
n o z w
k=0
and since

1 1 f d

27t Jp Z—ow™k
1 1
=5 iz )k dz —
2 Jp oz -5 ow™h
k k
)
o o
it follows that
L1 f(z)w
=— d
2mi j{f Fal2) |z ZOO'" £-1 Z—owk 147
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Similarly

1 - . L
o $ I T el = — ZZ iﬂ
n—1

—J
= i g E k=0
non— 4 (O’ n_Un

k:O
:{<1—> j=t
0, J#L

So from (2.7) we get

—1
ag 1 3 (wk) ke f(t) okt
_ _ dt
1—og2n  pon—t kz=o ! o )Y non—* 2m Z

I k=0
11 Wk
= — — t .
no™t 2mi éf( ) Z _
k=0 o
Since
gn—1-¢ n—1 (w )n 1—¢ ot n—1 _
tn . Z w’” n— 1 o wk - ; _ wk
o o k=0 o
S0 1—¢
1 1 Ot
e 1L L [frorT g, (2.8)

1—02 o 27 Jp th—0o "
Then the polynomial

n—p

P, un(z) = Z apz’

n_ g7 f* f tu 1 tn p+1 n—,u+1)

t—z(t”—a n) dt.

Writing 67" — 0™ = 67" —t"4+t" —¢" and splitting the above into two integrals,
we get (2.5). From (2.3)

1 n_ ~—n no_4n t
e L e
' 2t Jp (2" — o)t — o) (t — 2)
and it is easily seen that (2.5) is the truncation of this. O

REMARK. If we find the polynomial P,_, n(z) € mp—p, 2 < p < n which

min ?{
QETn—p JT

minimizes

((;‘)) Q\dz\, w(z) = H|z—a]-| (2.9)
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n—p
then the polynomial P,_, »(2) = Y a;f;(z) is easily obtained by solving the
j=0
equations

;O 0 jg £1(2) Fo@) |d=] = ]f £(2) Fol@) |d2,

where we have set fi(z) = 2°/w(z) (¢ = 0,1,...,n — p). It can be seen by
a simple example, that the interesting property of Lemma 1 does not hold in
n

general when 2" —¢™ is replaced by w(z) = [] (2—a), || > 1. In other words,
=1

v=
it is not true in general that P,_,, ,,(2) is obtained by truncating P,_1 »(z). Thus
for example

. a b 2
min ] £(2) — - |dz| (2.10)
a,b r zZ — Q1 zZ — Q2
is attained when
1 1
zZ—a zZ—aQo 0 1 1
T 0, LT-a
Ro(2) = | =ty =2 f&E) |+ - . (2.11)
aj ay . 1 . 1
1 1 1opo1 Ty T2
%7011 %*&2 Oé2f(57)

Similarly,
a
mln dz
j{’f Z*O{l)(Z*OZQ) ‘ |

is attained when

a_?{(z_ajlc(zz)—az |dz|/% z—m)z—az) (2—61)1(?—62) |dz|.

Simple calculation shows that

/&3 - &)
— 1
Sl -a(dE o) ~ @ -a)(F o)

The value of a obtained from (2.11) on putting z = 0 is different from the value

of a above except when a7y = ¢ and ay = —o.

3.3. Equiconvergence of Ry, ,(2) and rpimna(2) for m > -1

Let Ry, ,(2) denote the rational function %U(f), Bpim(2) € Tnim,

which interpolates (2" —o™) f(z) € A, in the zeros of z"T™F! — g™+l where

0+# « € D, 7 = min (o, p). Then we can write

Zn+m+l _ an+m+1 n __ O.n
&)= Bnad =5 § WO )

n+m,n 2711 <Z" _ o-n)(tn+m+1 _ an+m+1)<t _ Z)



62 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

where 1 < 7 < p and |z| < 7. From (3.1), it follows that if K = {z : |2] < 7},
then for m fixed

— 1
Tim_|f(2) — Ry, (2)|V/" < —max {L[2[} <1, z€K.

n+m,n

From (3.1), we get

Ro (z) Lfl; (threrl _ Zn+m+1)(tn _ O.n) f(t) it (32)

n+m,n = 21 ) (tn+m+1 _ an+m+1)(zn _ O’")(t _ Z)

oo
so that if p > o, and f(2) = > ax2z¥, then for |z| > o, we have

k=0
0 if m=-1
1 @ = m m m
A Biimn(2) = L gt SO g Sk, ms -1,
k=0
(3.3)
The following theorem shows that the difference Ry, ,(2) — Tnimn(2) con-

verges to zero in a larger region. The proof (in a more general setting; see

Theorem 3 or 4) will be given later.
THEOREM 2. Let p, 0 > 1 and let || < min (p,0). If f € A,, and if

Az+m,n(2; f) = Rz+m,n(2) - TTH'TW:,’"/(Z)? (34)

then
Vil <p1, if o=>m
lim Apymn(z; f)=0 (3.5)
Viz|#0 if o<m

where py := p*/|al.

For fixed integers m > —1, n > 1,set N = n+m+1, let % < || < min (o, p),
and

Qnom(2) = ot _ymHlgmn g (2) =2 — o). (3.6)

Let Sn.(2) € m(u4+1)nv—1 which interpolates (amm(z))y(z” — o™ f(z) in the

v+1

Hermite sense in the zeros of (ﬁnm(z)) . We shall now prove

LEMMA 2. If f(2) € A,, then for each n sufficiently large,

BLL G B (3.7)

lim
V—00 (an,m<z>)
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uniformly in |z| < 1. Also

SN (2) — anm(2)Snp—1(%) = (ﬁn,m(z))ypjjﬁrm(z; v), v=12... (3.8)
where Py, (z;v) € my_1. Consequently for |z| <1,
(=i =3 (223) P an). (39)
v=0 7,

REMARK. When v =0, P2, (2;0) interpolates (2™ — o™)f(2) in the zeros
of B3,,m(2) and so from the polynomial P, (z;0) we get

P, . (%0)
Tner,n(z) = %
and P, ,,(z;1) interpolates (Zn7071);(2)7(5’7*’”(2’0) Qn.m(z) in the zeros of
Br,m (2)-

Proor OF LEMMA 2. From the interpolation properties of Sy ,(z), we see
that Sy, —1(z) interpolates (2" — ™) f(2)(anm(2))”~* in the zeros of
(ﬂnym(z))y, while Sy, (2) interpolates (2™ — ™) f(2) (anﬁm(z))y in the zeros of
(Bum(2))" " 1t follows that

Sn,t/(z) - an,m(z)sn,u—l(z) = (ﬂn,m(z))yps-i,-m(za V)
where P, ,,(z;v) is a polynomial of degree < N(v+1)—1—(Nv—1+m+1) =
n 4+ m. This proves (3.8).

In order to prove (3.7) we observe, from the definition of Sy ,(z), that

1 (an.m ()" (t" — ™) f(t) i1 il
Svule) = 5 A A ) = (B ()"
3 S (o) o) ( )= )
(3.10)
so that
" n Sn (2
B(): = (2" — 0" () - e
(n,m(2))
L [ BamT { 2nmll) o)
21t Jr | Bum(t) 0 m (%) t—=z
where |a| < 7 < p. Then it follows that
= Yo _ (Lo~ (a4 )
T VB O < o=y <!
for n sufficiently large.
(3.9) follows from (3.7) and (3.8). O
Since By ,,,(2) € Tpim and it interpolates (2" — o™)f(z) in the zeros of
ZrtmAl_gntmtl we would like to express BY, ,, (z) in terms of the polynomials
P2 . (z;v). This is given by
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COROLLARY 1. Forn > ng (m,p,0), we have

oo

Bg+m( ) = ZPn+m(Z V) (311)

v=0

PROOF. If w™*™+! =1 then from (3.8)

Bim(aw) = (2" = 0")f(2)}z—w

Br,m(aw)
= E Pa aw; V) E (aw;v)
{anm aw n+m( ) ner
since 2"t — qrtmtl = 3 (2) — apm(2) vanishes for z = aw and so

ﬂn,m(aw) = Oén,m(ozw).

(3.11) follows from the uniqueness of Lagrange interpolation. O

P:«Fm, (Z;V)
Zn_gn

We set 71, n(2,v) i= , and for any integer £ > 1, put

¢
Aermn( f) = g+m,n(z>7zr${+m,n(z;y)'
We can now prove

THEOREM 3. Let p > 1, ¢ > 1 and an integer m > —1, be given. If
f(z) € A, and if for any given integer £ > 1, and |a| < min (p,0) we put

-1
a,l o «
AL n-+m, n(f ) = Rn+m,n(z) - Zrn+m,n(z; V)
v=0
then ' -
< pe, =
lim A7, . (f;2) = { for |zl < pe Zf 7=p (3.12)
n—0o0 for |z|#o if o<pe
where

pe = p*!/(max (|af,07 1))~

The convergence in (3.12) is uniform and geometric on compact subsets of the

above regions. Moreover, the result is sharp.

PrOOF. From (3.11), we see that

a, > P L (zv
An—fm n(f; Z) = Z ﬁ . (313)

Z'IL — O-TL
v=~_
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In order to obtain an integral representation for Agfmn( f;2), we observe that

by definition

Sale) = g f, WO Gunl0) T~ Grne) ™,

= omi (t = 2) (Bum (1)
(3.14)

where 7 < min (p, o), so that from (3.7), we have

SN,V(Z) — Qnm (Z)Sn,u—l (2)

Pa v
(Bn,m (2))

n+m

(zv) =

Using (3.14) and observing that

37 100 =)oty 2=l gy

we see that

o _ 1 f)@" —oa™)
Pn-‘rm(zal/) - Tm ﬁf T Ku(ta Z)dt

where

K,(t,z) =

O‘n-,m(z)ﬁn,m (t) — an,m(t)ﬁn,M(z) {an,wz(t) }U
an,m(t)ﬂn,m (t) Bnm(t) .

Hence from (3.13), we see that

At = I e (3.15)

e 2mi Jp t—=z

where for |a| < min (p, o) and n sufficiently large

Kt,2)= =" -iKl,(t,z) (3.16)
v={

Znia-n

3

t"—o . an,m(z)ﬁn,m(t) — an,m(t)ﬂn,m(z) = an,m(t) Y
an —gn i () B (t) 2 <ﬁn,m(t))

v=~(

t* —o" . n,m (2) B,m (8) — an,m (8) Br,m (2) (a"’"l(t) >€><
2 — o™ Oén,m(t)ﬂn,m(t) ﬁn,m(t)
Br,m (t)

tn+m+1 _ an+m+1

3

£ 20" on(hnl —onnWhnle) (2un®)

2 —gn B (£) (tEm+1 — gnimtl) Br,m (t)
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Denoting v := min (Ja|,071), we obtain by (3.6)
lon m(2)] < ™, [Bum(2)| < e max (|z|,0 )" forall z€ €,

and
Bum ()] > clt|™ if |t| > o L.

Hence using term-by-term estimates,

|t m (2) Br,m (8) — Qm (8) Br,m (2)| < ey™ [max ([¢], U_l)n + max (|2], (7_1)”}

< ey" max (|2, [t]) if [t >0t

Thus from (3.16) we get

max (|t|,o)" " max (|2],[t))» 4D
max(|z\,0—)n |t|n ‘t‘n@

(2] # o, [t] > 1).

|K(t,2)] < ¢

3.17
max (|t], o) max (|2, [¢]) - 7 (47

- max (|2], o) - [t|+1

. 041
Now if 0 > £7— then for [z| < £

|t] < p is close enough to p.

041 £ n .
— we get |K(t,2)] < c[% |z ‘t‘“ﬁﬁ] — 0 1if

41 e
pvz then we distinguish two cases:

On the other hand, if o <

Case 1: p < 0. Then from (3.17)

R e R e I S

|t|l+1 |t|é+1

again if |¢| < p and |¢| is close enough to p.

Case 2: p > o. Then assuming |t| > o we get for |z| < |¢]

n (e—1)n
[t -+ o
|K(t,z)|§c{gtle+1 <c m — 0,

while for |z| > [¢]

n In
|ty v
K (t,2)] §c[|t|£+1 =c(p) —0

provided [t| < p is close enough to p. This completely proves Theorem 3. O

A similar result can be proved if we set B(z) := 2/t (27 — ) where
18] < p, 18| # |a| and where Ly (fs, B,2) denotes the Hermite-Lagrange
interpolant of degree £(m +n + 1) — 1 to the function f,(z) := (2™ — o™)f(2)
on the zeros of B(z). Let Ly,4+n(fs, o, z) denote the Lagrange interpolant to f,
at the zeros of 2™+l — o™+7+1 We can then prove
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THEOREM 4. Let f(z) € A, (p > 1) and let m > —1 be a fized integer. If
a# B (Jal,|8] < min(p,0)) are given and if
Aa ﬂ (f? ) = Lm+n(fo’a Q, Z) - Lm+n (Lf(m+n)(f0'7ﬁ7 Z),O[,Z)
then A
lim m,n(fﬂ Z) -0

n—oo 2" —gh

for |z| <oy if o > o1 = p'1/(max(|al, \ﬁ|))é and for |z| # o if 0 < 07.
For £ =1, 3 =0""1, we get Theorem 2.

PROOF. Since

Lé(m+n)(f0767 27TZ f fa

where 1 <7 < pand K(t,z) = % , in order to find an integral represen-
tation for Afnﬁn(f, z), it is enough to find the Lagrange interpolant of K (¢, z) in
the zeros of M+l — gmin+l

Then we obtain

Liin(K(t,"),0,2) =

1 |:t/.(m+n+1) _ a((m+n+1) gmtn+l _ o mtntl

B(t)| tmtntl —gmtntl t—2z

_ ﬁ@n

t—=z

SR et
2" —a” T 2mi TN gn — g

(tﬁ(m-ﬁ—l) _ Z@(m+1)):|

Then

where
tm+n+1 _ Zm+n+1

Ki(t,2) = (t — z)(¢mHntl — gmin+l) - Lm+n(K(t,z),a,z)

tm+n+1 _ ZernJrl aZ(m«l»n«l»l) _ t[(m«l»l)ﬂén
= (t _ Z)(tm+7L+1 _ am+n+1) B(t)

ﬂfn (té(m+1) _ Zé(m+1))
(t—2)B(t)
Hence with the notation v := max (|al, |5|) we obtain

th — o™ K1 ; z)‘ { max ([t|, o) {maX(|t|7|Z|)’YZ 4 ﬂ} }n

2 — max (|z|, o) |¢]6+1 [t]¢

+

max o) max 2|yt 1n
< o moxlitho) max (i Ay

max (|z|, o)|t|t+1
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The rest of the analysis is essentially the same as in Theorem 3. ]

So far we considered m > —1. We shall now show that if m = —u, u > 2,

then also equiconvergence holds. We can prove

THEOREM 5. Let p, 0 > 1 and let p > 2 be fived. If f € A,, suppose the
rational function Ryy_, . (2) = By, (2)/(2" —a™) interpolates f(z) in the zeros

of 2V H+L _ qn=#FL gnd the rational function rn,#,n(z) with the denominator

n n

2" — o™, minimizes

f@ () = ro e (2) 21z,
Then

Vil <p1, if o>pi

i (R (2) = Tnepn(2)) =0 { Viz|#£0 if o<p

where py := p?/ max(|al,o71).
PRrROOF. In this case, we see that using (2.5) and (3.2)

Ry yn(2) = Tn—pn(2) =

f* f t) tn —c )(t’n p+1l Zn—,u—b—l)(tu—l n—p+l _ O.—n) it

= i (zn —om)(t — 2)(t" — o) (tn— kTt — qnptl)

and the result follows as in the proof of Theorem 4. O
In order to bring out the sharpness of the result we take f(z) = ip . Then

for n > 2(p — 1), we can verify that

(an;hLl _ anflqul)(pp‘flanf,qul _ Un) o — Zuflanf;ﬁ»l
(p—2)(prrtt —an—utl) * p—z

Buun([.2) =

and
(Un _ Ufn)pufl (pnf,u,Jrl _ ZTL*/J.+1)

pnio-—n piz

Pn—,u,n(fa Z) =

From the difference of Bn_#,n(f, z) — Pn_u’n(f, z), we can verify that when
2

n—oo 2 —on

o> p thonforzozplzm,wegct
lim Bn—u,n(fa ZO) n w,n fa ZO) 1 1
o S o= A/max(alo 1)’
and when o = % then
p—1
lim n p,n(faz) n w,n (f,Z) ’: |Z| (|Z|>0’)

p—2
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3.4. Hermite Interpolation

We shall see how some of the above theorems hold also for Hermite interpo-
lation. For fixed integers m,r,s (m > —1, 1 <r <s)and N =n+m+ 1, let
Roin_1(f,a,2) == Csno1(f,a,2) /(2" —0™)", where Csn_1(f, z) is a polynomial
which interpolates (2" — o™)" f(z) in the zeros of (2 — a™)*, where |a| < p
and f(z) € A,. Suppose Ssn—1(f,0,2) = Qsnv-1(f,0,2)/(z" — ¢™)° where
Qsn_1(f, B3, 2) interpolates f(z)(z™ — ¢™)" in the zeros of z5N=""(z" — )",
where [ # «, and max (|a|, |8]) < p. If we set

A?\]Es(fv )_ r N — l(faa Z) stl(f7ﬂvz) (41)

then we can prove

THEOREM 6. If fe A, (p>1) and a # 3 (v := max(|a|,|8]) < p), then

lim AP (f2) = (4.2)

n—oo

in the following situations:
1

(a) For |z| < p1 := "H; , when o > py

(b) For |z] < pe ':{ps;l Y=, |z| # o, when p < o < p.
(c) For |z| < (2= s )sir, |z| # o when 1 <o < p.

The convergence is geometric i every compact subset of the corresponding re-

gions.
We shall prove a slightly more general result.

THEOREM 7. If f(2) € A, (p > 1) and if a # (5 (v < p) are any complex
numbers then for any integer £ > 1, there exist polynomials Psy_1;(f, %) of
degree sN —1 (j=1,2,...,£—1) such that

lim [A%7(f,2) ZPsN 1;(f,2)/(z" = ") ] =0 (4.3)

n—oo

for z € D, where the region D is given below:
<a> D ={z] 2| < p/(2)"}, if o= pttejyte,
b) D ={z ||z|<p<">ﬁ/<”># 2l £ 0} if 1<(2)° < (2).
( ) D={z] |2 <p/(2)77, |el#£0}, if 1<o<p.
The convergence is umform and geometric in every compact subset of D.

PROOF. It is easy to see that

2mi Jp_ t—z
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where 1 < 7 < p, and

sN—rn n_ an\T" N _ _N\S
K(t,z)—(j) (;gﬂ) <w) = Ki(t,2) — Ka(t, 2)

on setting
sN N N\ S
z N —a
Ki(t,2) = <t> - (tN—aN> ) (4.5)

o) GR)] e

From Lemma 1 of Chapter 2, we know that

N N N
| qU+s—1DN 53',3(2‘ a
tsN - tiN ’
P

Ki(t,2) = )

(4.7)

2 sN— rn ﬁ], (r— 1)n
KQ(IZ Z) = E Z in ﬂ

From (4.4), (4.5), (4.6) and (4.7), we see that

A(JJ\L]/?:S ZPSN 1,5 fa < )T

where Psy_1,;(f, z) are polynomials of degree < sN —1 for each j and are given
by

Pavorg(F2) = 5o f FOE = o) My (¢, 2)dt. (4.8)
i
M;(t, z) is a polynomial of degree sN — 1 and

Mj(t, Z) = Mj"l(t, Z) — Mj,g(t, 1“)

where
(J+s—1)N N _—N\ 4N N
[« Bis(z¥a™) tV — 2z
M;q(t,z) = (t) & —— €T, (4.9)
(G+r—1)n n n sN—rn
. ﬁ /Bj r( ﬁ ) th — 2z z
M;o(t, 2) := (t o — 7 € TsN_1.

(4.10)

For any positive integer £ > 1, we have

-1 0o
- Z Pino1,(f,2)/(z" = o™)" = Z Pin-1,5(f,2)/ (" = a")".
” = (4.11)
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Using Lemma 2 from Chapter 2, we see that for |z| > p and || < p, we have

AN D]al NN

ey max(1, |
|Mj,1(t7z)‘ < |Oé|('7+S 2 |t|sN+jN

-1

/¥ [2] Y max(|af STV, [N /g AN o

IN

LR

= |tHIN

Similarly from (4.10), we obtain

. max ﬁn(rfl)’ Zn('r‘fl) B o
Myt 2)| < opn 2P S e rman ey

ﬂjn|Z|SN -r—1
— |t|jn+sN

If |t| = R < p and |z| > p, then using (4.8), we see that

(2" = o™)7"]

Z Psn—l,j(za .f)‘
Jj=L

R+ 0" [~ [ lal NN oy 18PN
=¢ |z|? — om Zg{ RiN+sNJ * RintsN 7
j=
n n |7 sn||s(m+1)n
o Brron [ ey
— |Z|n —on R(s+0n R(s+£)(m+1)
oo iN Jjn
- Y s—1 M - Y r—1 @
XZ{(]+) (R +G+0H
7=0
n+o.n r |Z|5n,yn
< .
— |Z|n —on R(s+6)n

From (4.11) and the above, we see that (4.3) holds when |z| < p1, if 0 > p; :=

1/s
(Rs“> If p < o < py, then (4.3) holds if

,Y[
Rerl 1/(s—r)
|z| < pa:= (W) and |z| # o.

If 1 < o < p, then (4.3) holds if

Rs+€—r 1/(5*"')
|2] < ps3 = ( i > and |z| # 0.
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These are the regions given in the theorem when R — p and completes the
proof of the theorem.

We observe that p; > p and p3 > p, but ps > p only if
4 P r
()~ )
gl P
o s l
(5) < (5)-
P v

REMARK. When s = r, it can be seen from the proof that convergence holds

and pg > o, if
O

for |z| # o, when o < py.
3.5. A Discrete Analogue of Theorem 1

As before let A,, 1 < p < oo be the set of functions f(z) analytic in |z] < p
but not in |z| < p. If ¢ is a fixed positive integer and m =gn+¢,0<c<g-—1
let P_1.m(z, f), m > n denote the polynomial of least square approximation
f(2) on the m™ roots of unity. Then

PROPOSITION 1. If q is a fized integer > 2, m = qgn+¢, 0 < ¢ < qg—1,
fed,l<p<oo, and if Sp_1(z, f) is the Taylor section of f(z) about the

origin of degree < n — 1, then
lim {Py_1m(z;f) = Su_1(2, )} =0 for |z| < p?™h (5.1)

the convergence being uniform and geometric in |z| < r < p?*L. Moreover the
result is sharp in the sense that (5.1) fails to be true for every |z| = p?*! for an
feA,.

We will not prove this statement, but give an extension to the case of rational
functions with denominator z™ — ¢”, o > 1. In order to do this we consider the
following problem:

PROBLEM (P1). Let m > —1, ¢ > 2 be fized integers and let w = exp(%)
for f € A, We want to minimize

gn—1

3 (f@h) - R(w*, £)? (5.2)

k=0

over all rational functions of the form % , p(2) € Tham.
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We shall denote this rational minimizing function by

Pn+m,n(z)
Zn p— O-n

Rn+m,n(za f) = s Pn+m,n(za f) = Tn+4+m,

and replace the Taylor section in (5.1) by the rational function rp4m n (2, f) =
Prim,n(z,f)

Zn—gn

which interpolates f(z) in the zeros of (2™ — o™)z™ 1.

We shall prove the following:

THEOREM 8. Let m > —1, ¢ > 2 be fized integers and let 0 > 1. If f € A,
(p > 1), then

2| < p'*e, if o> plte

li Royymn y — 'n4+m,n < =0 .
Jm (R f) = (e =0 { S0

the convergence being uniform and geometric in any compact subset of the re-
gions described above. Moreover the result is sharp in the sense that for each
|z| = p' T4 if o > p' T, there is an f € A, for which (5.2) does not hold.

The reason for the choice of 7y 4m n (%, f) is Theorem 1 in Section 3.1.

We shall need the following lemmas to prove the result.

LEMMA 3. Let m > —1, ¢ > 2 be fized integers, ¢ > 1 , and let g(z) =
n+m .
PG where P(z) = . ¢j7 € Tpim. Then the Lagrange interpolant of g(z)

2N —gn )
j=0

on the (qgn)™ roots of unity is given by

gn—1

anfl(zag) = Z A aJZ

qg—1 m
D IEES S FRAEED 39 S B
v=0 j=m+1 v=1 j=0
where
)\1Cj + )\ch—l—n» V= 07 0 S] <m
Avs = Aoy = 4 Aosrcy, 0<v<g-1, m+l<j<n+l
Avg1c +Acip1, 1<v<g—1, 0<j5j<m
(5.3)
where
(g—v)n
/\V:Ui v=1,...,q.

1—ogm’
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PROOF. The Lagrange interpolant of (2™ —¢™)~! in the (gn)* roots of unity
is given by

AN an

anfl(zl(zn - O-n)_l) = (Z" _ (T" an Z )\ Z(V 1)"

Then
n+m 2n+m qn+m
— 77 kj k
wk" g =M Z w4 Az Z Cjnw® 4+ Ag Z Ci—(g—1)nW
j=(g—Dn

(We make the convention that Ag4+1 = A1.)

In each of the g summations above, there are m+1 distinct powers of w* which
also appear in the preceding sums. If we group the terms involving identical

powers of w” in separate summations and then rearrange them, then we obtain

P(wF m 4 1 n-1 .
&:Z(Alcj‘i‘)\ Cj+n)wk]+z Z )\V+1cjw(un+j)k:

wkn on
Jj=0 v=0 j=m+1
q m

+ Z Z V+1Cj + )\ch+n>w(un+])k (54)
v=1 j=0

m _

Z ,szk—i—z Z ijwk]—i-ZZA Jw

7=0 v=0j=m+1 v=1j=0

where the A, ;’s are given by (5.3).

gn—1
We have Lg,—1(wF, f) = Z bjwk = f(w*) (k=0,1,...,qn — 1) with
o,
bj = 277@ t, j=0,1,...,qn—1. (5.5)
Since
an—l(wk7g ZAO ]wkj + Z Z Ap16w (vn+j)k
r=0j=m-+1
+ Z Z()‘n+1cj + )\ch+n)w(2n+j)k
v=1j=0
we have
qn—1 et anet
Z|f (wW*) = Lgn—1(w", g)| Z’ZbiA)wk]
qn71

=qn ) b — 44l
j=0
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so the problem of minimizing (5.2) is equivalent to finding the minimum of

gn—1
G=Y |bjA,? (5.6)
=0
where the A;’s are given by (5.3).
‘We now rewrite
m qg—1 n-—1
G= Z ‘bj —Aigj — )‘ch+n|2 + Z Z |bj+vn - )‘V—O-lcj‘Q
7=0 v=0j=m+1
Q* m
ZZ j+vn V+1Cj - )‘ch-&-n‘Q-
v=1j=0
Therefore for 0 < j < m, we have
oG =
% = —(bj — )\10j — )\ch+n))\1 — (bj+,,n — Ay+lcj — )\ch+n)>\u+1 =0
J v=1
oG 1
Born —(bj = Mej = AgCirn)Ag = D (bjswn = Avt1€5 = Aujn) Ay = 0
j n V:1

which on simplifying yields for 0 < j < m,

qg—1
ac; + ﬂcn+j = ZOAV+1an+j
N (5.7)

q—1
ﬂCj + QCp4j = Aqu + Z )\Vbl/n+j
v=1
where we have set

a:)\%+)\§+~~~+)\3:7

and

o +O.(q—1)n
1— o2 T

B =AM+ A+ + A1y =
Form+1<j<n-—1, we have
qg—1

Z >\u+lcj Z Av41bjpun =0

v=0
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which yields
1 q

. 2 2 _ 1—g2la—bn 1
since a® — 3° = “F—pi— - o)z » We find from (5.7)

O_(qfl)n(l _ O.Qn) g-1

G = bt T e ZU*V”%W O<j=m
o2la=Dn(] — g2 .
Cj+n = bj—n - 1 U(q 1)2n ZU J+(V*1)n’ n<j<ntm
v=1

and for m+1 < j <n—1, we have
o.(qfl)n(l _ 0.271)

q—1
Cj=—"T""—"— o', m+1<j3<n-—1.
J qn Z Jtvns >]>
140 =

Thus we have the

LEMMA 4. The rational function Rpimn(z, f) = Potmin(z.)

S which mini-

n+m .
mizes (5.2) is given by Poymn(2, f) = > P,z? where
j=0

ola=Dnq_g2ny 4 1

*bjo'n + 1_g(a—D2n Z O'_anj—&-una 0<7<m,
=1
1n 2n
pj=4{ £ aoe™) )za bjtun: m+1<j<n-—1, (59)

U2(q—1)n(1 O_Zn) .
bjon — —F—w—n— ZU ""biv(wrtyn, n<J<n+m.

Recall that 7pima(z, f) = P;rfg(ff) where  P,imn(z, f) interpo-

lates f(2)(2"™ — ™) in the zeros of (2™ — o™)z™*!. Thus

m+lin _ sny _ m+li n __ ;—n
Prima(eof) = 51 § s —om LD ST S0

tm+1(tn _ O-—n)

Hence

Tntmn((2, f) = 2ri 74 (tnzi o")f(t) A — o) — 2 (2 -0

—on (g — o)

(W—a /() <
A
2m j{ n—gn ]z:; j (¢, 2)dt

dt
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where we have set

tm+1 _ Z7n+1 Zm+1(tn—m—1 _ Zn—m—l)
Aq(t = — As(t =
1(3Z) tm+1(t—z) ) 2(72) (t"—a‘”)(t—z) )
(5.10)
n tm+1 _ .m+1
Ag(t, 2) = — )
tmtL(tn — o) (t — 2)
Using the values of P;’s in Lemma 4, we see that
Rn+m7n (2’7 f) = o ogn
where
WL gy L ,
Pi(z) =—0") bz’ + w20 " Y bjpund,
=0 v= §=0
U(q—l)n(liajn) q—1 9 n—1 .
PQ(Z) = I P T Z o " Z bj+VnZJ, (511)
v=0 j=m+1
n+m . g2a=1n (g 2n) g—1 _ngm )
Py(z) = X bj—nz? — T—gla-D2n Yo Z bj+(u—1)nzj-
j=n

j=n v=1
We use the formula for b; in (5.5) in the above expressions for P;(z), Py(z) and

P5(z). Thus
3

P,
Rn+m,n(za f) = Z % ;

where using (5.9), we have

Pi(z) = ZOszj =—0" Y bjzi+
i=

Jj=0

q- m ,
+ola= (1 — g27) (1 — gla=D2m) =L Shg=vn S pe 20
j=0

v=1
q—1 n—1 .
Pz) =olaUn(1— o)1 4o0m) 1 Y g T bjtimz’
v=0 j=m+1
n+m . qg—1
Pg(Z) — Z bj,nzj _ O.2(q—1)n(1 _ O.2n)(1 _ O.(q—l)2n)—1 Zo,—vnx
j=n v=1
n+m .
X Z bj(,,,l)nzj.
j=n
(5.12)
Using (2.5) in the above and simplifying, we obtain
o™ t)¢am tm+1 o Zm+1 O,(q—l)n 1— 0_271
R 1 (o)
i Jp, —1 (t— z)tm+ 1 —gla—12n
1 moIT .
— Jpan—i—vn=lgy 5.13
* omi tq" 1 Zz (5.13)
Ir 7j=0 v=1
1 t ,
— ) Ay (t,2){o" D" B(t, ) — t"o" }dt

C2mi Jpo ot —1
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m+1 m+1 tn(t(qfl)n70_7(:1—1)71)(170_—271,)

where A;(t,z) = W and B(t,0) = G e Simi-
larly,
_ 1 tan — g—an m—+1 tn—m—l _ n—m—1
Py _ T L[ f)tr—gmm am sy
1+o71 21 Jp_t1" —1 th —o—" t—z
L S0 oo,
C2mi Jpo tan —1 14 o
m—+1 tnfmfl _ n—m—1
« A : ) at (5.14)
=) —o )
where
Zm+1<tn—m—1 _ Zn—m—l) (tqn _ O,—qn)(o.—n _ O.n)
Ay(t, z) = By(t,o) = .
2(t:2) (t—2)(t"— o) ’ 2(t,0) 14o0-an

Lastly, in the same way from (5.9) and (5.11), we get

n+m 2(q 1)71 2n q—1 nt+m

Py(e) = 2 bjn’ - 1- U(q D2n Z > b
Jj=n v=1 j=n
2(q 1)n 1—g2n =1 m ]
=z Zb 2 = U((qfl)Qn )Zn ZU_”nZ]bﬁm
v=1 j=0

:Zni thn =10

2mi T, tqn — 1

0.2(‘1—1)71(1 _0.2n) nq 1 m o 1 £t )
_ — ] gn—vn—j—1
1— U(q—1)2n z Z ZU 27” T tan 1t dt
v=1 j= T

B on f(t)tq’n tm+1 _ Zm+1

dt

2mi Jp, ten—1 tmAl(t — z)
Lo [ O (1) (1)
1—o-(a=1)2n 2mi Jp_ tan —1 1—(to)™™

tm+1 _ Zerl

—————dt.
X 2y
Putting A3(t,2) = 2" (™ — 2™ Y ((t — 2)(#" — 0 ™))7 1, we have

1 fee .
27 T tqn_l(t —o ")) As(t, 2)

1 (]_ — U*?ﬂ)an % tn(t(lI*l)n _ U*(qfl)n) f(t)

T mi 1= oG e T

1O

omi Jr tn —1

.

“MY {497 — oM B(t, o)} As(t, 2)dt
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where we have set

tn(t(qfl)n _ O.f(qfl)n)(l _ 0.72n)
(tn _ 0'7'”)(1 _ a—f(qfl)Zn)

B(t,o) =

Combining (5.13), (5.14) and (5.15), we have

Rner,n(va) = i ]{* 1) Al(_ 2 By (t,o)dt

2mi Jp 9 —1 2"
L \% f(t) AQ(ta Z) BZ(taO) dt
2mi Jp_ 9 =1t —1 2" — o™

L f(t) AS(t>Z) B3(ta U)

2 Jp, 9" —1 4" —1 2" — o™

dt,

where

Bs(t,o) = (t" — o "){t™" — o"B(t,0)},
Bi(t,o) =0 D" B(t,0) — t"c"

and

(tqn _ J*qn)(afn _ O_n) .

B (t7 J) - 1+o0-9n

This gives

z2)K;(t,o)

79

Rn,+m,n(zvf) rﬂ+mn Z, f 27.” % Z (Zn _ O-’n) t_ Z)(tq" — 1)

where
Ki(t,z) =0 2" B(t,0) —tTc" — (17 — 1)(t" — o™)

= (77(‘172)”3(157 o) — lathn 4 gn _ G0

Ks(t,2) = Ba(t,0) — (t7" — 1)(t" — o™)

_ (" —o" ) (07" —0") L gangn _glatn yn o

1+o-1m

ting 7n( +o~ (g— 2)n) O.fqn(o.fn _O_n)

1+o-1m

_ _ t(q+1)n 4

dt

(5.16)

(5.17)
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and
Ks(t,z) = (" —o™){t" — c"B(t, o)} — (7" = 1)(t" — o)

O,ntn(t(q—l)n _ o.—(q—l)n)(l _ O.—2n>
1— U—Q(q—l)n

_ tqn(tn _ O_—n) _

_ t(Q+1)n + tho— gh + tangn

_ 1 o~ (g? — 1)
__4qn(/._n n o _ n__ _n
=t"(o o ") (1 1— O_—Q(q—l)n) 1 — g—2(g—1)n +1 g
o~ (g2n — 1 (g—n —(g—1)n _ 1
G VY et b
1— 072(q71)n
(5.18)

An analysis of the kernels A;(t,z) and K;(t,0), j = 1,2,3 above yields the
result.

To prove that the result is sharp, we consider the point z* = p'*9 and the
function f(z) = (z — p)~*. A direct computation shows that

3

—~ ~ Aji(p,2)Kj(p,o
Roymn(2, f) = Tngmm(2, f) = Z (zn — agp)(z)— p()ﬁpqg -1

Jj=1

If o > p'T9, we get after some simple calculations that

q
nll_)II;O Rn+m,7t(p1+qv f) - T”+m’7l(p1+q7 f) - Pqpf 1°

3.6. Historical Remarks

Theorem 1 is due to Walsh [113]. The special case & = 1 of Theorems 3 and 5
was proved by Saff and Sharma [91]. Case (a) of Theorem 6 with a =1, =0
is a result of Bokhari and Sharma [16]. Theorem 6 with £ = 1,8 = o~ ! is
Theorem 2.2 from [16]. For £ > 1, Theorem 6 and Theorem 3.3 from [16] are
not comparable. Proposition 1 is due to Rivlin [88].



CHAPTER 4

SHARPNESS RESULTS

4.1. Lagrange Interpolation

In Chapter 1, Section 3, we gave upper estimates, for the order of overcon-

vergence in the corresponding domain in case of Lagrange interpolation. Now
we examine how sharp these estimates are.

THEOREM 1. If f(z) € A, and if £ > 1 is any given integer, then

L if O<p<p

P
nh~>Holo max |Ln 1 fa an 1,] faz)|l/n = . (11)
[z|=p =0 p[% Zf ,UZ p.
PrROOF. Let
oo
= Zakzk €A, p>1,
k=0
then ar, = O((p —e)~") for all £ > 0. Denoting
oo n—1
An,é(f? ) =L, f7 an 1,5 f: Z ZakJrjnz (1’2)
j=¢ k=0

let € > 0 be so small that in case u < p, we have u < p — ¢ as well. Then

nl f, Zagn+kz +O(Z|Z —(l+1)n— k)

n—1 O((p—e)~+bm) if 0<pu<p
- Z amirz" + {
O((u"(p—e)~m) if u>p.  (1.3)

Hence, the first upper estimate in (1.1) follows from

) Zaemkzk’ =0((p—2)™™), p<p-c¢

81
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when letting e — 0. The second upper estimate in (1.1) would follow also easily,
but this has already been proved in Theorem 7 of Chapter 1.

So we have to prove the lower estimates in (1.1). We obtain from (1.2) for
O<pu<p

4 f7 —
lagnin| = ‘/ St ‘+o (p—e)"HDm) 0<k<l—1. (1.4)
Since f € A,, there exists a sequence m; < mg < ..., mj =4fn;+k;, 0 < k; <

¢ — 1 such that
am; > (p+e)~t

for sufficiently large j. Thus we obtain from (1.4)

e A, o (f52)] = cr(p )™M — ca(p— )~ HI > e3(p+2) ™™
z|l=p

if £ > 0 is small and j is large enough. Hence

1
nj

lim max [A,(f;2)]"/" > Tm max| A, .o(f,2)| ™

n—oo |z|=p =00 |2|=

= ¢

(p+te)™, O0<pu<p

and this yields the result since ¢ > 0 was arbitrary.

Finally, let 4 > p. Then (1.2) leads to

laonti| = ‘/ ni(Jrle) dz '—i—O (p—g)~E+2n "), n—l—1<k<n-1
Choosing a sequence mi < mg < ..., mj =4{n; +kj, nj —€—1<Fk; <n; -1
such that

U, > (p+e)” I

for sufficiently large j, we obtain

max A, o(f32)] = Crp™ (p+ )~ D™ — Copmi (p — g) 2™

> Oy (p+¢)~HDm
provided € > 0 is small and j is large enough. Hence

hm max |Ang(f,z)\1/” > hm max ‘AnJ7g(f,Z)‘"J

>ulp+e) 7 uzp
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which proves the second lower estimate in (1.1). O
(1.1) can be reformulated as
I A (2 2) M = Ko(p, ) {p@, ifp<p
im sup max 2 = = .
nﬂoop z|=p e s pl%a if > p.
Theorem 1 asserts that on each circle |z] = p > 0, the best possible error

estimate is indeed attained. The next question which naturally arises is the

following: Is it possible to get, at some points, better estimates than those

stated in (1.1)? More exactly, let

By(f;2) := limsup| A, o(f;2)|"/"

n—oo

and
be,p(f) == {2 Be(f;2) < Kelp,|2])}-

The elements of the set d; ,(f) are called (¢, p)-distinguished or (¢, p)—exceptio-

nal points.

First, note that for z = 0, Theorem 1 does not give any information. Indeed,

(1.3) shows that
A o(f;0) =ae, + O((p _ 6)—(e+1)n)

and evidently there exists f € A, such that a; = as¢ = az¢ = --- = 0 and then

n@o'A”’[(f;O)P/n <(p—e)tt<pt

if € > 0 is small enough, i.e., (1.1) is not true for x = 0 in this case.

In general, it is rather exceptional that the general error term in (1.1) is not

attained. This will be shown in the next theorem.
THEOREM 2. Let f(z) € A,, p>1. Then
A=

for all but at most £ — 1 points in 0 < |z| < p; and

T n z
Tm A e(fi ) = %

for all but at most € points in |z| > p.

(1.5)

(1.6)
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In other words, the set of distinguished points consists of at most £ — 1 and
¢ elements in |z| < p and |z| > p, respectively.

PROOF. Let first 0 < |z| < p — ¢ with some & > 0, then

hn(z) L= An,f(f; Z) - zZAnle,Z(f; Z) (17)

n—1 n
= Z am+kzk — Zazn+e+k2’£+k + O((p _ 8)—(£+1)n)
k=0 k=0

-1
_ Za2n+kzk + O(|z|"(p _ E)*(H»l)n).
k=0
Assume the contrary: we have 0 < |z;| < p, j =1,...,£ such that
T A e(fs2)[ V7 < =0 G=1,...0
oo n,l\J s ~<j p€7 J gyt
Then by (1.7) we also get
T ()" < =, G=1,...,0 1.8
n1_>H;o|n(Zj)‘ <p£7 J=1L4...,% ()
i.e.,
-1
Z&€n+k’z‘;€ :ﬁjna j = 17"'aéa (19)
k=0
where

Bjn = hn(z5) + O (25" (p — &)~ FD").
Here by (1.8 ), supposing |z;| < p — ¢, we get
T (8" < &, =10
B gl < o, =Lt

Solving the system of equations (1.9) for agn+x, we obtain (since z; are inde-
pendent of n) withm=4In+k, 0<k</{-1,
1

lim \am|1/m < max lim ‘ﬁj’n|%'#+k < =
m— o0 1<j<l n—oo

B

which contradicts f € A,.

Now let |z| > p. Then we have

n—1 n
hn(2) = Z a€n+kzk - Z a5n+€+kzz+k + O(|z|”(p - 6)7([+2)n)
k=0 k=0 (1.10)

4
= Z a(f-‘rl)nﬁ-kzn-‘rk + O((p — 6)—[71 + 2" (p — E)_(€+2)"),
k=0
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Assuming again

|21

H@O‘An,f(f7zj)‘l/n< p£+1 ) ]-7 7€+]—7
we also have
- 2 i
B (11
Thus from (1.10)
¢
> a@iimantt =B, G=1,...0+1 (1.12)

k=0

where
Bim =2 "hn(z) +O(l2] " (p—&) "+ (p—) "), j=1,... 0+

Here by (1.11)

— 1
: o |11/n -
n1£20|ﬁj,n| < pEsl j=1,...0+1

provided € > 0 is so small that
pTh < min (z](p—e)' (p—e)F?), j=1,....0+1
But then from (1.10), with m =+ 1)n+k, 0 < k < ¢, we get

1 1
im |a,|Y™ < max Tim |Bj,|" @OmF < =
m—0oQ

T 1<j<l+1 n—oo

)

again a contradiction. (I

We now show that distinguished points appearing in Theorem 2 indeed exist.

This will be seen from an example given in the next theorem.

THEOREM 3. (i) Given arbitrary points 0 < |z;| < p, j=1,...,A, A <l—1,
there exists a function f1 € A, such that

max (|z;],1)

T .o\ 1/
Jim [Ap o (fr52)[ " < P2

=1,..., X\ (1.13)
and at all other points |z| < p, (1.5) holds.

(ii) Given arbitrary points |z;| > p, j =1,..., X X < £, there exists a function
f2 € A, such that

max(|z;], p*)

T (AefrzVn < BEERD jx @)
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and at all other points |z| > p, (1.6) holds.

PROOF. (i) The system of equations

(1~
(2]
o
QN
I
_
<
I
“H
>

(1.15)
k=1

has a unique solution in ¢’s, since it has a non-zero system determinant (Van-

dermonde). From this solution we construct

A 0 m
N =27 (Past-1) 3 (0) " s
k=1 m=0 P
This function has the Taylor coefficients
0 if 0<k<‘l—X—-2
Qomir =4 —p'™ if k=0—-X—1, m=20,1,...,
ck7€+)\+1p7£m if £— X\ < k < f—1.
(1.16)
Now (1.16) and (1.15) imply that
-1 -1
Z agm_,_sz = pfem( — szk*l + ck_g+>\+1zf) (1.17)
k=0 k=£—X

A
:pfemzf_A_1<chZJk—1) =0, j=1,...,\
k=1

For a positive integer n, let the integers r and s (0 < s < £) be determined such
that r + s = (£ 4 1)n. Then by (1.17 ) we get

n—1 s—1 r—1 -1

k L(r—n) k L(v—n) k
E QenykZj = Z; E Qpr4k2; + E 25 E Qpy k2
k=0 k=0 v=n k=0

s—1
_ ey K
= Zj agr+kzj
k=0

|25/ =) |24" .

Hence by (1.3) and |z;| <p (j=1,...,A),

251" 1

Ane(fi;2) = O(p<e+1)n T 6)(“1)”), J=1,...,\
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and since € > 0 was arbitrary, (1.13) follows.

In order to show that at all other points 0 < |z| < p, (1.5) holds, we get from
(1.7) and (1.16) (denoting ¢y = —1)

-1 -1
S amin =p7" D erriai12 = ha(2) + O(l2]"(p — )T,
k=0 k=0—X\—1

(1.18)
Now if (1.5) does not hold then there exists an a, 0 < a < 1 such that

n

|Ane(fr:2)] = O (;Zn) . de, |ha(2)]=0 <a;> .

p
Thus (1.18) yields

A
LA Zc 2 =0(a™+ 7|Z|np@n —0 as n— o
o (0 — &) 0m ’
k=0

ERRYAST
provided € > 0 is so small that 0 < |z| < % . Hence

A
E ckzk =1,
k=1

and therefore by (1.15), z must be one of the z;’s.

(ii) Again, we consider the system of equations (1.15), but now with |z;| > p

and A < /. The solution of this system defines a function

A oo
fQ(Z) — Zifk(zckzk _ 1) Z (E)(Z—O—l)m c Am

k=1 m=0 p
whose Taylor coefficients are
0 if 0<k<?l-—-X-1,
Ao 1ymik = § —p~EHD™ if k=0-X, (1.19)

Chompgrp D™ if AN+ 1<k </,
form=20,1,2,....
Hence and by (1.15)

14

4
Z a(Z+1)m+kZ]k = p_(£+1)m( — Zf_/\ + Z c;@,u)\zf) (1.20)
k=0 k=0—\+1

A

= p_(é+1)mzf7>‘(20kz§? — ) =0, j=1,...,\
k=1
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For a positive integer n, let the integers r and s (0 < s < £+1) be determined
such that fn + s = (£ + 1)r. Then by (1.20)

n—1 s—1 n—1 4

E_ k (£4+1)r—Ln k
E pn4kZ; = g T E 2 E A(e4+1)v+kZj
k=0 k=0 v=r k=0

s—1
= Zazn+kz§“ =0(p™™), j=1,...,\
k=0
Hence and by (1.3)

N f —tn 24" _ o ((max(|z]", p*") .
N e (e (p_g)wz)n) = O( (p—eyom ) =L

whence (1.14) follows, since ¢ > 0 was arbitrary.

Finally, (1.10) and (1.19) imply (denoting ¢y = —1)

4 0
Za(g+1)n+kzk+n = p_(“'l)" Z Ck_g+)\zk+n (1.21)
k=0 k=0—X\
max([2]", )
= —hn(2) + 0<7).
(p— &)@2m

If (1.6) does not hold then there exists an a, 0 < a < 1, such that

an|z|n

. _ an|Z|n . _
A?L,Z(an Z)| = O(W)’ 1.e., |hn(2)| = O(W)
Thus (1.21) yields
A n n
p(£+1) p(f+3)

X Z k_ O( n
z Crz a’+ +2)n + n +2)n
= (p— )+ = [2|"(p — £)(“+2)

)—>0 as n — o0

. 043
provided |z| > (pfsw . Hence

A
Z ckzk =0
k=0
which shows, by (1.15), that z must be one of the z;’s. O
So far distinguished points on the circle |z| = p were excluded. Next we

show that any distinct ¢ + 1 points on this circle can always be preassigned as
distinguished points.
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THEOREM 4. Given any distinct {+1 points z;, with |z;| = p, j =1,...,£+1,
there exists a function fs3(z) € A, such that

I 1
; R v -
nlggo‘A"’e(fS’ZJ” n< pg j=1,...,0+1. (1.22)
ProOOF. Consider the system of equations
¢ -1
Zb(gﬂ)nﬂw;‘“ = Z bgn+kw§“, w;=zip ', j=1,....0+1 (1.23)
s=0 k=0

in the unknowns {b(gﬂ)nﬂ}ﬁ:o. It is uniquely solvable, since the determinant

of the system is Vandermonde:

£—1

b(€+1)n+s = Z Ck,s,nbfn-‘rk? s = Oa cee 7€ (124)
k=0
where
leksn| <M1, k=0,....,0—1; s=0,...,6 n=12,...
(M; > 0 is independent of n). Let ng = £ +2 and set by = by = -+ = bppo—1 =
ben, = 1. Then the next ng — 1 = £+ 1 numbers bgpg11,- -, be1)n,—1 can be

determined from the system of equations

no—1
> bimerswf =0, j=1,...0+1. (1.25)
k=0

Using (1.24) successively with n = ng, ng+1,..., we determine all the by, k >

(¢ + 1)ng, in turn uniquely.

‘We now show that
Iim |b /" = 1. (1.26)

For any positive integer v, let v = ({+1)n+k, 0 < k < £+ 1. Then from (1.24)

we have

|b,j| < Mlg max |b]‘ SMlngSIl[%)_‘(_e“)]‘ Sle |b]|

max
In<j<l(n+1) J<vl/(l+1)+£

If we set p(z) = m<ax|bl,| then

(N
N) < M¢- bj| = Mybop(—— + ¢
#(N) < My jgN?/la}il)H']' 1<p(€+1+),
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so that
s f s = Z J
o) < 00t e (7 7) N + 03 (7))
=0
s { s
< (My0) go((m) N+£(£+1)), s=1,2,....
Now let

_ [bgf(ﬁ 2
log (1+%) ’

then the previous iterative estimate yields
P(N) < (Mil)*p(20(¢ + 1))

whence
Iim |b, |V < 1. (1.27)

n—oo

In order to show the opposite inequality, we observe that from the first £
equations in (1.23) we get
‘
bonik = Y danbstyngs: k=0,....0—1 (1.28)

s=0

where
|ds kon| < Mz, s$=0,....4; k=0,....—1; n=12,...
(M3 > 0 is independent of n). Let mg = ¢ng, and choose m; > mg such that

|6y | = max |bs].
(+1)no<s<(£+1)(no+1)

Then by (1.28) (with n = ng, k£ =0)
1="bpm, < Ma(£+ 1)|bm, |- (1.29)

Proceeding inductively, in general let m; = fny + ki, 0 < ky < £ be defined,
then my is defined by

b = b
(b | (z+1)ntgsni?§(+1)(m+1)‘ sh

so that by (1.28) (with n =ny, k = ky)

b, | < Ma(£ + D)oy, |, t=0,1,... .
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Hence and by (1.29),

b, > (Ma(£+1))"", t=0,1,... . (1.30)

Since (¢ + 1)ny < myq1, we get

t—1

me—ke _ L+ Dng_y —L+1 L4+ 1N\t /-1 L4 1N\J
— > > (= - - -
M= 2 0 ——(e)”oejzo(z>
0+ 1\t 04+ 1N\?
>(%) (n0—€+1)>(%), t=1,2,....
Thus
‘< log ny log
" log S 7 log

and (1.30) yields

241

b, > (Ma(£41))7 108 /108 555 =12

whence

Jim by, [V ™ > 1.
This together with (1.27) proves (1.26).

We now set aj, == p~Fb, k= 0,1,... and f3(2) :== Y o ar2z*. From (1.26)

we have Tim |a,|'/" = p~!, i.e., f3 € A,. Also following the reasoning in (1.7)
n—oo

and (1.10), we get for |z| = p,

{—1 Vi
hn(2) = Z agn_,_kzk — Z a(z+1)n+kzn+k + O((p _ 6)—(€+1)n,)7
k=0 k=0
whence using (1.23), we have

hn(zj) = Ane(fs525) — ZfAnH,e(fa; z)=0((p— 5)7(“1)”),
=1, 041,

Thus

n—1
|Ane(fa:25) — 25" Dane(f3:25)] = | Z 255 (Do o(f3, 25) — 25 Appsi1,e(fs3 25))
s=0

n—1

<D A f32) = 25 An ase(fai 25)]
s=0

= O(TL(‘D - 8)_(£+1)n)7 .7 = ]-7 cee 7&
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whence using (1.1)
|Ane(f327)] = [Aane(f352)) + O(n(p — )~ ")

=0(p " +n(p—e) VM), j=1.. 041,

ie.,

T (A e(fi 2% < (p—) 7 j=1 040

Since € > 0 is arbitrary, this proves the theorem.

We now want to give general conditions for a given set of points Z =U UV
to be distinguished, where

U:{U17...7uu}a V:{'Ul,...,'l},,}

with
lujl <p (G=1,...,p), lv;l >p (G=1,...,v).
Set
1 ul Ui_l 1 (%1 Ulf
X= e ov= z
1w, uffl 1 wvu vl
and
X
X
X
M=MXY)=|, ,
Y
Y

where X is repeated £ 4+ 1 times and Y is repeated ¢ times. (The Y’s begin
below the last row of the last X.)

THEOREM 5. The set Z defined above is (¢, p)-distinguished if and only if

rank M < £(¢+1).

As a corollary, we obtain the following reformulation of Theorem 2:
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COROLLARY 1. If either p > £ orv > £+1 (i.e., there are at least £ points in
|z| < p or at least £+ 1 points in |z| > p), then Z is not an (£, p)-distinguished

set.

Namely, if p > ¢, we take the minor of M which consists of the first ¢ rows
of each X in M. Its determinant is the (£ + 1)*® power of the Vandermonian of
U, thus nonzero. Similar reasoning applies for the set V if v > ¢ + 1.

The second corollary is a reformulation of Theorem 3:

COROLLARY 2. If u+v < lv >0 orpu < liv =0 then Z is an (¢, p)-

distinguished set.

Namely, the number of rows in M is u(¢+1)+v < £(£+1) so that rank M <
L+1).

Proof of Theorem 5. (a) Sufficiency. Suppose rank M < ¢(¢+1). Then there
exists a nonzero vector b = (bo, ..., bge41)—1) such that

M-bT =0. (1.31)

Set
o0 GG —Le(e+)
f(z) = Z anz = ll — () ] Z b2
N=0 P k=0
Evidently f € A, and
an = byp HEFIM, (1.32)

where N =¢({+1)m+k, k=0,1,...,£({+ 1) — 1. From (1.30) and (1.31), we

have

£ k
aa makzs =10, zeU,
{ Zkfo (L+1)m+k (1.33)

Zi;t omarz® =0, zeV
for each m. For any positive integer n, we can find integers r and s such that

n+s={L+1)r, 0<s<{+1. Then (1.32) and (1.33) give

£

n—1 s—1

k_ 4+ )ym—t k
E Qpnti2” = E L "E (04 1)ym+k?
k=0 k=0 =0

s—1
= Zal'rﬁ-kzk = O(p—fn)’ zeV.
k=0
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Hence

n—1

Apm1(fi2) = Y amsnz" + O(Kesa (p,|2]) +)") (1.34)
k=0

= 00" + (Kesa(p, |2]) +€)")
= O((Kea(ps|2)) —)"),  z€V,
which shows that the set V is indeed (¢, p)-distinguished.

Now, if for any positive integer n, we determine r and s (0 < s < £) such
that fr + s = (¢ + 1)n, then we have from (1.32) and (1.33)

n—1 s—1 r—1 -1
k o(r— k {(m—n k

§ Ao n2® = 240 E Qpryr2” + Z ZHm=m) § Qpmtk?
k=0 k=0 m=n k=0

s—1 L(r—n)

_ z
_ Zé(r n) E agTJrka -0 ( | )
k=0

pé'r‘
_ 2"\ _ o (1)
_O(p(2+1)71 =0 ? 5 zeU.
1

BiaslFi2) =0 (5 —¢) + Kenlplsh+or ) (a39)

:o<<p1£_g>n), e,

which shows that the set U is also (¢, p)-distinguished.

S

Therefore, we obtain

(b) Necessity. Suppose By(f;z) < K¢(p,|z|) for z € Z and that rank M =
£(£ 4+ 1). We shall show that this leads to a contradiction. Set

h(z) = Aé,nfl(f; z) — ZeAan(f;Z)-

Then
-1 J4
hz) =Y amr?® = @iz + O(Kea (p, |2]) +2)).
k=0 k=0

By supposition we have

-1 1 n(£+1) 1 n
h(z) = ampez* +0 ((p + 5) |2|™ + <p€+1 + 5) )

k=0

:o<<p1€_5>n), zev,
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so that
-1 1 n
ZagnJrkzk =0 <<e — €> ) , zeU. (1.36)
k=0

Similarly

¢ nt n
1 z
h(z) = =) agennerz" ™ +0 <( + 6) + ( |e+|2 + 5) )
k=0 p p
|| "
¢ ) N
Za(z+1)n+kzk =0 <<£+1 - 5) > R zeV. (1.37)
k=0 P

Since (1.36) and (1.37) are true for every value of n, we put n = ({ + 1)m + A
in (1.36) and n = ¢m + X in (1.37). Then we obtain

that is

-1 m
1
E ag(g+1)m+g)\+kzk20<<pe(z+l)_5> >,ZEU,)\IO,...,E,m:O,l,...

k=0
(1.38a)
and

£ m
1
E o+ 1ym (4 1)Ak2 = O <<pf(/+1) - 5) ) , 2€V,A=0,...,0—1,
k=0

om=0,1,.... (1.38b)

The matrix of the system of equations (1.38a)-(1.38b) is M which, by hypoth-
esis, has full rank. So the equalities (1.38a)-(1.38b) can be uniquely solved to
determine the ai’s. Hence we have

1 n
ae(e+1)m+k20<<pm+l)—e> >, k=0,1,...,0(+1) -1,

so that limsupy_ . |an|"/N < 1/p — ¢, which contradicts the fact that f € A,.
(I

4.2. Hermite Interpolation

In this section we generalize the sharpness results obtained for Lagrange
interpolation, to the case of r*® order Hermite interpolation. Although the
methods to be used are similar, new ideas applied to the more complicated

situation are needed.

For the A,,,_1 ¢(f;2) introduced in Chapter 2, (1.14), we first prove
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THEOREM 6. Letr, £ € IN and p > 1. Then for any f € A, we have

J— _271 .
pt T, ifp <,
2 1-1/r .
lim max [An,_16(f;2)[7 = s, if1<pu<p,
n—»oo|z|7 P
plibikhw if p < p.

o0
PROOF. It is easily seen that if f(2) = 3 axz* then
k=0

rn—1 n—1

rn 1 fv Z a'kz + Zﬁ], Za‘(r+jfl)n+kzka

k=0

where (3; ,(z) is defined in (1.7) of Chapter 2. On the other hand, from (1.14),
Chapter 2 we get

n—1

Ay 1,4 fa Zﬁj r Z a(r+j_1)n+kzk. (2.1)

k=0

Hence and from Lemma 2 of Chapter 1 we obtain
[Arn1,(f:2)] = O max{1, 2]} Zf : Z [2]¥(p — &) i Dn=k)

where € > 0 is arbitrary. Hence, distinguishing the cases p <1, 1 <y < p and
= p, we get

£—1
Jim maXIA77L Le(f52)| 7 < p7 ' max {1, ' upm 7} = Ko alp, ).
(2.2)

To prove the opposite inequality, first notice that (2.1) and (2.2) imply

n—1

Arn—l,f(f; Z) = ﬁé,r(zn) Z af(r+l—1)n+kzlC + Arn—l,l-&-l(f; Z) (23)
k=0

n—1

= ﬂf,r(zn) Z a(r+f—1)n+kzk + O((Kﬁé-‘-l(pv :u’) + E)TLT)
k=0

with an arbitrary ¢ > 0. Dividing by z**! and integrating

1 AT?’Lfl,Z(f; Z) - nr
%/F T k1 dz = ﬁZ,T'(O)a(r+€—1)n + O(ﬂ k(Kr,Z-Q—l(Pa p) +e€) )»

k=0,...,n—1.
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r+0—2

Since from (4.8), we get B¢,(0) = (=1)""! ( o

) # 0, it follows that
|a(rgt—1yntrl < clu"“lrﬁgilﬁm—u(f; D+ 0 (Kresa(pp) +)™),
k=0,... n—1 (2.4)
If £ <1 then puttingm=(r+£¢—1)n+k, k=0,... ,7r+£—2, we get

i x| Ap1o(f32)] 7 2 T (1 |am] = O((Kr,e41(p, 1) + €))7

_q_t=1

=p .
If 4 > 1 then by (2.1) and by (4.7) of Chapter 2, we have

1 Arn—l,é(f;z) T +‘€ -1
omi Jp, Zo-vmerrt B0 g Aot

+ O(,uf(rfl)”fkfl(KMH(p, ) + 6)"7"), k=1,... ,n—1.
(2.5)

Nowincase l < pu<p,set m= (r+¢—1)n+k, k=0,... ,r+£—2. Then as
above

r—1)n AN
> T [0 ag| — O((Kresn (o) +€)™)]7

lim max|Am M(fyz)

n—o0 |z|=

1_1 _q_f=t

ZM TP T

When p > p, we take m=(r+4¢—1)n+k, k=n—r—4¢+1,...n—1. Then

from (2.5) we have

lim max [Arn—1,6(f32) = > Tim (1™ |am| *O((Kr7g+1(p,p) +5)m)]ﬁ

n—oo |z|= m— 00

Theorem 6 is completely proved. (I

4.3. The Distinguished Role of the Roots of Unity for the Circle

In the previous sections we described the exact order of magnitude of the
overconvergence in case of the roots of unity as nodes. The question naturally
arises whether these nodes are optimal among all possible systems of nodes. The
conjecture is that the roots of unity play a distinguished role and, as we will
see, this is indeed the situation. However, this is a highly nontrivial statement

which requires a number of new ideas.
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First of all we make the following natural restriction on the nodes of inter-
polation (which can be multiple):

|zl <p, k=1,...,n. (3.1)

This upper limit is the consequence of the fact that the function is analytic (and
defined) only in |z| < p.

The other restriction is the following: let w,(z) = (z — z1), and let

1

TT::]:

wn(p) ife>1
Yn(p) = the modulus of the first nonzero term of
wn(p)—p" fl=1
(3.2)
(as for ¢, see (4.4) below). This quantity is always positive, except when w,,(z) =

2™ and £ = 1. In the latter case let v,(p) = 0. Now our restriction is that

w(p) = Tm v, (p)*/" > 1for all p > 1. (3.3)
In case of roots of unity on the circle |z| = r we have u(p) = r. Thus the

case r < 1 is excluded by (3.3). The reason for this exclusion is that in this
case (as is easily seen) the region of overconvergence is |z| < p‘T'/r, which is
larger than |z| < p’*!, the region of overconvergence for the roots of unity on
|z| = 1. Hence by letting » — 0, the region of overconvergence becomes the
whole complex plane. In order to avoid this situation, we make the restriction
(3.3).

Now the main result of this section is the following: Let L,_1(f,z,2Z) be
the Lagrange (or Hermite, depending on the multiple nodes z;) interpolation
polynomial of f € A, based on the nodes Z, and let

-1

Ani(f,2,2) = Lna(f,2,Z2) =Y _pu-1,i(f;2) (3.4)

Jj=0

(see the analogous definition (1.2) in case of roots of unity on |z| = 1). Further
let
1/n

Adlr,p,2) = sup T { max|Ani(f, 2 2)| } (3.5)

feA, n—ooo

and denote by E the matrix of nodes of the roots of unity on |z| = 1.

THEOREM 7. Let Z = {zin}}_, be a system of nodes of Lagrange interpo-
lation satisfying (3.1) and (3.3). Then for any |z] > max (% ,p) there is an
fo € A, such that

T |A, o(fo. 7)| = oo. (3.6)
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In addition we have

Ao(r,p, Z) = plp)r/p™ = Ag(r,p, E)  forall r>p>1.  (3.7)

(3.7) shows that indeed, the matrix E is the “best” among all matrices sat-
isfying (3.1) and (3.3).

PRrROOF. Let |u| = p and

fu(z) = €A, (3.8)

A simple computation shows that

_ owalw) —wa(x) o O e ()
Lnfl(fmzvz)* wn(u)(u_z) ) ;Pnfl(fu, )* (U"—l)(u—z)ue"'

(3.9)
Thus for any |z| =r > p we have
|2 (u; 2)]|
Ani(fu, 2, 2)| > 3.10
e PP ] (10
where
in um —1 n n
Q(u;2) := u"™ (W (u) — wn(z)) — ] (u"™ — 2™wn(u) (3.11)

is a polynomial in u.

Denote j,, 0 < j, < n, the multiplicity of 0 among the z;’s. Then we can

write
wn(u) = u/" &y, (u), where @, (0) # 0. (3.12)
Similarly,
Qn(u;2) = uwn ﬁn(u, ) (3.13)
where
Ouus2) = (" — L ) Bl G, (319
n(u;2) == 3Ju g W =2 p Gnlu) —u 297 On(2). .

(3.12) and (3.13) imply

‘ Qi (us 2) D (u;z) |

wn(u) ’ - \u\:p‘ RO (3.15)

max
lul=p
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Let _

n—jin

I[ ' (w—z) with |z <p, (3.16)
k=1

where the dash indicates that in case j, = n, the product is identically 1. Now

W (u) ==

2 (u;
(= =7)
k=1
as a function of u, is analytic in |u| < p( <

2z ). Thus by (3.15) and (3.16)

Qn (u;
max | Ry, (u; z)| = max | (u2)] (3.18)
lul=p lul=p "I, Ziu

I lp— =5

k=1

lul=p ‘ wn

aX’Qn(u;Z)’
\u\ pl wp(u) I

Now fix an arbitrary 2z such that

p(p)| 2| > p!

(3.19)
and let u, = u,(%Z) denote a point on |u|

= p where |R,(u;Z)| attains its
maximum. By the maximum principle, (3.17) - (3.18) yield
Qn(u;z ~ N ~ N Q
max‘ﬂ ‘ = Ry (un;2)| > |Rp(0;2)] = M
|u\=p U—’n(u)

ey (3.20)
(3.14) implies, with |Z| = r,

(=1 and j,<n

~ @, (0)] if £>1,or
Qn(0;2) =
0

if /=1 and j,=n.

From the definition (3.2) it follows in all cases that
e A~ Yy, (,0)
2,(0:2)] = ———

o (3.21)
Thus combining (3.10), (3.20) and (3.21) yields

A e(fur 2, Z)]| 2( " )" n(p)

=, r+p forall n > 1.
Recalling the hypothesis (3.3), let £ > 0 be arbitrary such that

(3.22)

(ulp) —e)r > p™t, |2 =7

(3.23)
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(cf. (3.19)), and let n; < ny < ... be a sequence of integers such that

Yu; (p) = ((p) — €)™, forall j > 1. (3.24)
Then (3.22) yields
~ L (pulp) —g)rms ,
Bl 22012 [ = ] for all j>1, (3.25)

where, for convenience, we have set f; := f,, . Further let
J

= > 1. .

Pn = mAX |2kl <p, n> (3.26)
We may suppose that there exists a sequence of indices {n;}32; such that

(3.24), as well as

2p£+1

p) - 8)(p - pnj

nje1 > On; ( T ))nj, j=12,... (3.27)

and

IAnjl,f(fk7E: Z)' <

&(M)W forall j>k, k=12,...

= Bn; Pt
(3.28)
hold, where
B—1 12(r + p)

Namely, if this were not true, then for some kg we would have

~ a ¢ (ulp) —e)ryr

|An,€(ka,Z,Z)‘ > 67” ((pl”rl)) — 00 as n — o0
by (3.23), and this would prove (3.6) with fo = fi,.
So assuming (3.27) and (3.28), define
— 1) _ < 1
fo(z) = =) — (3.30)

where |up, | = p for all kK > 1. Now (3.27) implies

ng > " In; forall k>j>1, (3.31)
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i.e. the series (3.30) converges uniformly in |z| < p, and fo(z) is analytic in
|z| < p. In order to show that fo(z) has a singularity on |z| = p, let fo(z) =

>~ ¢jz?. Then by (3.30) - (3.31)
7=0

1 1 X1 3—2 ‘
‘CJ‘—‘Z j+1‘ m(;l—Z;k)zmv j=01...,

k=2
whence j@o ;|17 > 1/p, and so fo € A,.
Now (3.30) implies
[An, e(fo,2,2)] > S1 — S2 — 53 =S4
where (see (3.4))

S = 7%7 |Anj,€(fja27z)‘a Sy _Zk 1 ny |A"J (fk’AZ)| ’
S3 = 3001w L1 (s 2 2|, Sai= 300 5y i | i py—10(fii 2.

From (3.25) we have

1 ((u(p) —e)r

n; )
512> G = ) , forall j>1,

while from (3.28) and (3.31) we get

Jj—1 1

S2 ﬁim ((M(T)n >

=1

o ( (1(p) = &)r .

= G-, pitt

Next, from the first equation in (3.9) and from (3.26) we obtain

IN
>~

for 5> 2.

(p+ pp,)" + (14 pn,)"
(P - pnj)nj (’I“ - P)
2(2r)"

- (P - pnj)nj (’I“ - P)

A

|Ln;—1(fr: 2, Z)| <

, forall k>j+1.

Similarly, from the second equation in (3.9), we deduce

-1
oy <« AP 4 1)
D e o

4rni < 8rni
T =Dr=p) T (p—pn)(p—7)
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for all kK > j + 1 and j large enough.

Thus by (3.31) and (3.27)

Sz + 8, < 4(27;3'J Z L
(b= pu;)"o(r = p) Sty
43(2r)"

= (B=1)(p—pn,)" (r — p)nji

4 ( (u(p) —e)r )"

=m0 1) pitt

for all j sufficiently large. On using (3.29), these inequalities imply

1 (u(p) —&)r\m™
— Sy — 85— 8, >
Sismsimsez g (e )

for all j sufficiently large. Hence and by (3.23)

R (n(p) —e)r
‘Anj;é(fmzvz)‘ 2 3(r+p)n]’ ( p£+1

)nj — 00 as j — 00 (3.32)

which proves (3.6).

To conclude the proof of Theorem 6, we note that the above construction is
valid for any choice of the complex number 2z such that |zZ| =» > p and any ¢
with 0 < & < ulp|. So from (3.32) we get

_ 1/n _
lim {Imlax|An(f0,z,Z)|} > W7 > p,
n—oo z|l=r p

and since fo € A,, by (3.5) we have

Ag(T, 0, Z) 2 (ﬂ(p> — E)T

7p£+1 , Tr>p.

Since € > 0 is arbitrary and Ay(r, p, E) = e (cf. Theorem 1) we obtain (3.7).
O

4.4. Equiconvergence of Hermite Interpolation on Concentric Circles

So far we considered the difference of interpolation polynomials and “shifted”
Taylor-type series, or superpositions of these, in order to demonstrate the phe-
nomenon of overconvergence. In this section we will see that differences of
Hermite interpolation polynomials based on roots of unity on concentric circles

also show corresponding properties.
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If f(z) € Ay (p > 1), p > 1 is an integer and 0 < a < p, then let
hpn—1(f;a;2) € mpp—1 denote the Hermite interpolation polynomial to f(z)

in the zeros of (2" — a™)P, i.e.
KD (f,a,w®) = fO(@FWk), j=0,...,p—1; k=0,....,n—1

(o)
where w is a primitive n*® root of unity. Let f(z) = Y axz*, then using (2.1)

k=0
of Ch. 2 we obtain
pn—1 n—1 [eS)
hpn1(fy0,2) = > apz® + > { D am PN B (2 AN g (pi-1) }Zk
k=0 k=0 j=1

(4.1)
where the polynomials 3;, € mp,_1 are defined in (1.7) of Ch. 2.

After these preliminaries, we can state the equiconvergence result. If 0 <

a <y <p,set
An(fa a7, Z) = hpnfl(fy «, Z) - hpnfl(f7 s Z)

THEOREM 8. Let f(z) € A, (p>1) and 0 < a <y < p. Then

P if |z] > p,

e p—1 .
Tm (AL (f ey, ) =4 2=y <z <, (4.2)
L if 0< 2] <,

with the exception of at most p points in |z| > p and p—1 points in 0 < |z|] < p,
at which points the left hand side of (4.2) is strictly less than the right hand
side. At |z| =~ and at |z| = p, the “< 7 holds in (4.2).

1+1/p .
The result shows that |z| < Pvli/p is the exact domain of overconvergence.

PROOF. (4.1) implies

An(f,a»%Z);il 3 {O‘n(w_l)ﬁ” <§>n_
k=0 | j=1

n j— z !
—y (p+J 1>5j,p <’y> ] ak+n(p+j1)} 2

In all three cases to be considered, the term j = 1 will dominate. To estimate
the terms corresponding to j > 2, we use ay = O((p—s)’k) (k=0,1,...,e>0
arbitrary) as well as Lemma 2 of Ch. 2 to get

n—1

An(fa «, 7, Z) = Z[apnﬁl,p(zn/an) - ﬁpnﬁl,p(zn/’yn)]ak-i—pnzk + ETL(Z)7
k=0
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where

Q

2n|_|pn .
(( b |(p‘+2)n) if f<p—e< |Z|»

o
3
—
S
Ny
|
Q

27| (P= D )
((p )P FDn ) if y<lzl<p—cg,

Q

(p+1)n .
((p’YE)(p+1)n ) if |z| <.
Since f1,,(z) = 2P — (2 — 1)? (cf. (1.8) of Ch. 2), we get

n—1

An(f,a,7v,2) =[(z"—a™)P — (2" —4™)P] Z Ahrpn2® +en(2).

k=0
Here

pz(pfl)n,yn + O(|Z|(p71)nan + |Z|(p72)n72n)
if |z[ =7y
(" = (2" =P =
()P 197 4 0@ 4 [3f )

if |z] <~.
Thus we obtain
n—1
An(f,0,7,2) = a(2) D aripn?® +&n(2), (4.3)
k=0
where
pz®PHnamif 2] > 4,
cn(z) = (4.4)
(=1)PHap if 2] <oy
and

2n pn n pn
=P a”|z|? :
O( TSGR P e if [z]>p

T e ) if v <|zl<p (4.5)

&nl(2) = O(’Zp—‘s)l@“)” MENEDID

(p+1)n pn n(p—1)n
ol P +|z|"y :
O( Gt + G )t Jel <o

Therefore
of 2Lz ) g 2| >
(p—e)@FDm iz = p
|- Dn

|An(f,0l»%z)‘: O(W) if ’YSIZ‘<,O

O(ﬁ) it [z <7,
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whence the upper estimate (i.e. “ <”) in (4.2) follows.
To prove the lower estimate, we distinguish two cases.

CASE 1: |z| > 7. Then by (4.3) - (4.5) we have

(Sn(Z) L= 'YAn(f, a, 7, Z) - ZAn+1(f7 a, 7, Z) (46)
n—1 n
= pfy"""lz(p_l)n( Z ak+pnzk — Z ak+(n+1)pzk+p) + O(.fn(z))
k=0 k=0
p—1 n+p
L (e 1)n(z Z )ak+pn2 + 0(&n(2))
k 0 k=n
p,yn+1 pn Z ak+(p+1)nz + O( % + ﬁn(z))
if |z > p,

pn
py"Hizemn Z @pipn2” + O((pe)ﬁ * gn(z))

1f v <zl < p.

Now suppose that for some pairwise different zo, ..., z, such that |z;| > p

(j=0,...,p) the equality in (4.1) does not hold, i.e.

|An(faa7’7)zj)|zo(((pi,z;)+1_n)n)7 ]:077])

with some n > 0. Then by (4.6)
o) =0(( 22 =), G =0
n\~j - (p—E)p+1 n ) J=Y,...,P;

and

- 1 ny
Zak+(p+1)nzf :O((W —771) >7 J=0,...,p,

provided m; = > 0 is small enough. Solving this system of equations

n
7y max [z;[P

for the unknowns ag (p41)n We get

1

|kt (p+1yn| = O((m - 771)“), k=0,...,p.

Hence lim |a,|'/" < -1 — , for arbitrary € > 0. Thus l1m lan|V/™ < L
n—00 p—e UT P

which contradicts f(z) € A,.
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Similarly, suppose that for some pairwise different zp,...,2,-1 such that
B < |zj| < p the equality in (4.2) does not hold, i.e.

A (frany, 7)) :0((% )" i=0ep-1 @)

with some 7 > 0. Then by (4.6)

outel =0 (S ). = 0ip— (48)

and )
Zaﬂmzf:o((ﬁ—m)”), j=0,...,p—1 (4.9)

k=0

provided n; = % > 0 is small enough. Solving this system we get
7

4 max

1 n
akern:O(( )p,m) ) k=0,...p—1. (4.10)

(p—e

1

Hence lim |a,|'/™ < e —~ which leads again to contradiction.
n— oo m

CASE 2: 0 < |z| < 4. Then by (4.3)-(4.5) we have

On(2) 1 = (*1>p+1<7pAn —2PAny1)

n—1 n
= HP(ntD) ( Z Ahpnz® — Z ak+(n+1)1’zk+p) +0(6n(2))

k=0 k=0

p—1 n+p

=Pt ( > >ak+pnzk +0(&n(2))
k=0 k=n

p—1
) ST

k=0
Again, assuming the existence of zp,...,2zp—1 such that 0 < |z;| < v, j =
0,...,p — 1 and (4.7) holds, then (4.8) will also be valid. Proceeding as in
(4.9)-(4.10), we arrive at the same conclusion. O

Note that this theorem does not settle the case of exceptional points on the

circles |z| = v and |z| = p.
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4.5. (0,m)-P4él type Interpolation

In this section we dwell upon the regularity of (0;m) P4l type interpolation
and obtain an equiconvergence result for it. It differs from (0,m) interpolation
where values and m*™ derivatives are prescribed at the same nodes. The regu-
larity and equiconvergence for (0,m) interpolation on roots of unity is known.
Here we show that the problem of (0;m) P4l type interpolation on the zeros of
z" —a™ and 2™ + ™ is regular and we obtain the precise region of overconver-

gence when f € A,.

Let @, 0 < a < p, be a real number. By P4l type (0;m) interpolation on
the zeros of 2" — a™ and of 2™ 4+ &, we mean to find a polynomial P, (%)
of degree < 2n — 1 such that Pay, ., (2) interpolates a given function f(z) in the
zeros of 2" — a™ and its m'" derivative PQ(ZL Zn(z) interpolates f("™)(z) in the

zeros of 2™ + a™. We first find an explicit formula for Ps,, ,,,(f, z), when

[ee]

f(z) = Zakzk €A,

k=0

Since interpolation is a linear process, it is enough to find the value of
Papm(fr,2) when fy(z) = 2’** 0 < k < n — 1 for any positive integer
A. We try to get our polynomial in the form

P2n,m(f)\; Z) = azk + bzn+k7

and require that

Py (fr;25) = z;‘"+k, zj = aw; where wj =1,
Antk—m i
Pz(:’bzn(f,\,z;) :z;- (An + k)m, z; =awjen ,

where (k) = k(k—1)...(k—m+ 1). We then have
{ a+ba™ = a™,
a(k)m — (n + k)mba™ = (An + k) o’ (=1)A

Then

(k)mt(”"'k)m
_ an Ondk)m (DM (ntk)m
a=a’ &)+ (nFF)m = k-

IfA=0, apr =1 and Gor = 0. If A =1, apr = 0 and B1 = 1. This proves that
P4l type (0;m) interpolation is regular on the zeros of z" — o™ and 2" + .

b= qO—Dn Bm—Qntk)m (=1 _
{ Bk (5.1)

Since
n—1 oo

f(2) =Y a2t

k=0 X=0
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we have
TL— o0
k +k
Ponm(f:2) E E a2 + Parz" ) arnt k-
—0 A=0

For any integer £ > 1, we set

n—1 £¢-—1

Sne(f;2) =D Y annirlaarz® + Bruz™ )

k=0 A=0

= Popm (Tznfl (f) Z)

where Tp,—1(f) is the Taylor expansion of f of degree fn — 1. (For £ =1 or 2,
evidently Sy ¢(f;2) = Tin—1(f;2).)

Consider the difference

An,é(f; Z) L= P2n,m(f; Z) - Sn,é(f; Z)

n—1 oo (52)
=3 axngrlaanz® + Barz" ).
k=0 A=¢
THEOREM 9. If f(z) € Ay, p> 1, p>a >0 then
1 1 £—1
max{oz2,|?2}o¢ 2 ‘Z' <p
— P
m |A,(f:2)] < (5.3)
e 5 .
el if lzl=p.
p 2
=1
Hence we have overconvergence in the circle |z] < p(£) % .
PROOF. Let f(z) € A, then |a,| = O(W) fore >0, n=0,1,2... and

by (5.1),
azg = O()\ma/\n), Ok = O()\moz()\_l)n),
(norA\—o0, k=0,1,...,n—1).

Therefore from (5.2), we get

|
—

K

n

[Bne(f:2)] = O( 32 P A" (p = &) (a2 4 [z )

x>
Il

0

>
I

L

n—1
— O(Z a(/.—l)n(p _ 6)—én—k(|anz|k + |Z|n+k))
k=0
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O(a"+|z|”)a(e—1)n if |2l <p—e

(p—e)n

2n .
O((p_lf)lw)a(l*l)" if [z]>p—ec

O
Since € > 0 is arbitrary, we have (5.3).
THEOREM 10. Under the same conditions as in Theorem 1, we have
/2 g2y, St
max {a! :)’zl/%zl 2Ya 2 Zf R < 0,
hm Irrllax |A, o (f, 2)|m = o (5.4)
Ro‘é if R>p.
P 2
Proor. From (5.2), we have
n—1
Ane(f;2) = amir(amz® + Buz"t")
k=0
n—1 oo
O( Z Z )\m(p _ 8)—)\n—k|a|()\—1)n(|anz‘k + |Z|n+k)
k=0 A=£+1
that is
n—1
Ani(fi2) = amir(omz® + Buz"t")
k=0
n n . 5.9
O(% a|Z") if |zl<p—c¢ (55)

O(Lwn) if |2 >p—e
(p—e)&TDm Z P .

Case 1: R = |z| < p. Then divide (2.5) by 2**! (k = 0,1,...,n — 1) and

integrate on the circle |z| = R. Then

1 / Ane(fi2) oD
: —=— dz = aggap, k-l-O(i),
2mi Jiy=p P! + (p—e)t+hn

k=0,1,...,0—1.

Since (agg) > Crpa®™ > 0, we get

! Bne(f52)15) 1 o o)
1msup(max ne(f; 2n>zimsup( — )
n—co i o \(p =)~ (p—e)@r
3
a2
 (p—e)t

(5.6)
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Case 2: p < |z| = R. Then divide (5.5) by z"***!1 (0 < k < n —1) and
integrate. We then have
—k—1_tn .
O(%) ifl<|z|<p—ce

1 A 1z and O S k S /-1
: n,f(kf 1) dz = ﬁékaén+k+
270 Jisjer 2R PR

O( (p_s)(£+2)n> if |z|>p—c¢

and n—/+1<k<n.

Since |Bex| > Coa®=D" and n — £ + 1 < k < n we have

max |A, (f;2)] > Co R D" ayp, [+

|z|=R
n_tn 1<zl <p—c¢
R™a* 3 ’
O((P—e)““)" ) if 0<k</
! 2
R27 gt . zZ|Z2p—c¢€,
O((p—s><“2>") f o iil<k<n
Hence
%
lim sup (max \An’g(f;z)|) "
n— oo [z|=R
1
lim sup (Rn+k(p —g) kg =n _ O(%)) "
n—oo
ifl<|z|<p—cand 0< k<
>
P
im sup (Rn+k(p _g)tnkgl=Dn O((p}fi)%)) o
n—oo
if|z]|>p—candn—L+1<k<n
1 of-1
Rra 2 if1<|zl<p—c¢,
(p—e)2
>
=1
Lo Z iz >p—e
(p—e)72

Combining these lower estimates in Cases 1 and 2 with the upper estimates of
Theorem 1, we get the statements (5.4) of Theorem 11. O

4.6. Historical Remarks

Theorems 1 and 2, as well as the special case A = ¢ — 1 of Theorem 3 are
due to Totik [111]. Theorem 4 can be found in Ivanov and Sharma [51], where
interesting properties of the distinguished points (i.e., point systems when the
general error term is not attained) can be found. We mention here some of

them.
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(a) When ¢ = 1, then for any given function f € A, there are no (p,1)-
distinguished points in |z| < p and there is at most one (p,1)-distinguished
point in |z| > p (by Corollary 1).

Similarly, for ¢ — 2, there is at most one point in |z| < p and at most two

points in |z| > p which are (p, 2)-distinguished.

(b) Let £ =2, Z = {z1, 29,23}, |21] < p < |22, |23]- Then the set Z is (p, 2)-
distinguished if and only if z; = 0 and 25 + 23 = 0.

Namely, M = M(X,Y) is a 6 x 7 matrix with

B (1 2 23
X =[1z] and Y<1 2 22 )

Let us denote by M, the matrix obtained from from M when the jth row is
deleted. From Theorem 5, Z is a (p, 2)-distinguished set if and only if |M;| =0
for j = 1,...,7. A direct computation shows that (to within a factor +1) we
have

|M1| = (ZQ — 23)2(22 + zZ3 — Zl), |M3| = 212223(22 — 23)2(2223 — 2129 — 2123).

Here |M;| denotes the determinant of the matrix M;. If z; # 0, then from
|M7| =0 and |M3| =0, it follows that z—zo + 23 and 21 (22 + 23) = 2223. Hence
22 = 2923, ie., p? < |2223] = |21]? < p?, a contradiction. So for Z to be a
(p, 2)-distinguised set, we necessarily have z; = 0. In this case the determinants

of the Mj’s are easily seen to be the following:
|My| = (22 — 23)%(22+ 23), | Ma| = z023(22 — 23)%(22 + 23),

|My| = 2z3(23 — 22)(23 + 22), |Ms| = 22(23 — 22)(23 + 22),
|M3| = |[Mg| = |M¢7| = 0.

Hence |M;| =0 for j = 1,...,7 implies z5 + z3 = 0. Conversely, if z; = 0 and
zo + 23 = 0, we have rank M < 6. This proves the claim.

(c) Let £ = 3. In this case, by Corollary 1, we can have at most two points in
|z| < p and at most three points in |z| > p which are (p, 3)-distinguished. The
cases which are not covered by Corollary 2 are:

(I) one point inside and three points outside the circle |z| = p;
(II) two points inside and two points outside;

(I1T) two points inside and three points outside.

Let Z = {z1,22,%23,24}. In (I), let |z1] < p and |z;| > p, j = 2,3,4. We
claim that Z is a (p, 3)-distinguished set if and only if one of the following cases

occurs:
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(a) 21 =0 and 22 + 23 + 24 = 0,
(b) z1 =0and 25 ' + 231 + 2,1 =0,

(c) 21 — (22 4+ 23+ 2z4) = 0 and
Z%(ZQ + 25 + 24) — 21(2023 + 2224 + 2324) + 222324 = 0.

Observe in (c) that we necessarily have z; # 0, since otherwise we have 292324 =
0, which is impossible. Also remark that the solution of (c) is not vacuous. In

fact, a solution with |z1| < p and |z3], |23], |24] > p is easily seen to be:

z1=a, Z%Z=—2a, 2z3,24=0 3—|— ! with \/§<a<
= = _ —al 4+ — 2 )
1 y 22 y #3524 223 p 7 P

The proof of this assertion can be found in [51, Sec. 5].

The sharpness of overconvergence results for Hermite interpolation on roots

of unity (Theorem 5) is due to Ivanov and Sharma [50].

The distinguished role of the roots of unity (Theorem 7) was settled by
Szabados and Varga [107] when the roots are in |z| < p and satisfy (4.1) and
(4.3).

Results for roots which are sufficiently close to the roots of unity were proved
by Baishanski [4] and Bokhari [7]. The results of Section 4.4 for concentric circles

are new.

P4l-type interpolation was introduced in [82].



CHAPTER 5

CONVERSE RESULTS

In this chapter we will be concerned with so-called converse theorems of the
theory of equiconvergence. This means that from some convergence properties
of the operator in question we will deduce structural properties of the function
approximated. The results are strongly connected with the sharpness theorems
of Chapter 4, but here our assumptions on the function will be kept minimal so
that the operators can be defined for it: analyticity in |z| < 1 (in order to have
a convergent Taylor series), and continuity in |z| <1 (in order to make sense of
interpolations).

5.1. Lagrange Interpolation

Theorem 1 of Chapter 4 shows that for Lagrange interpolation and shifted
Taylor series the equiconvergence takes place in |z| < p‘*! for functions in
the class A,. To state the corresponding converse result, let Z,,, ZPC denote,
respectively, the set of functions analytic, at least, in |z| < p and analytic, at
least, in |z| < p and continuous on |z| < p. (In other words, in contrast to A4,,

here we do not require the function to have singularities on |z| = p.)

THEOREM 1. Let f € A,C. If the sequence
(1.1)

-1
Bl = {Laa (£ = Y pacay(Fi2))
j=0

is uniformly bounded on every closed subset of |z| < p‘*', then f(2) € A,
(p>1).

REMARK. The example f(z) = (p — 2)~* shows that the conclusion of The-
orem 1 is the best possible. Also, notice that we do not require the convergence
of the sequence (1.1) to zero; only the boundednes.

The proof is based on Theorem 1.1 of Chapter 4, as well as the following

lemma.
115
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LEMMA 1. Ifar (k=0,1,...) are arbitrary complex numbers then

201 20-1 20—1
a(322+1)m+p - a(6l2+1)7n+p = E a(3jl+1)m+p + E E a(3js+2l+s+1)m+p
j=t s=0+1 j=¢ (1.2)
20—1 20—1
- Z E A(3js+26+j+1)m+p
s={ j=¢

(=2, p>0,m>1).

ProOOF. Changing j to j + 1, the first sum on the right hand side can be

written as
201

G(3024+1)m+p T Z Q(3j6+30+1)ym+p — Q(6£2+1)m+p -
=t

But here the sum is nothing else but the missing term s = ¢ of the first double
sum in (1.2). Thus the right hand side of (1.2) will be

20—1 20—1

a(352+1)m+p - a(6€2+l)m+p + E E a(3js+2€+s+1)m+p
s=0 j=¢
20—1 2¢—1

- Z Z A(3js+26+j+1)m+p-

s=0 j=¢

Here the double sums are the same, which can be seen by switching the roles of
j and s. O

PrOOF OF THEOREM 1. By the remark made at the beginning of Section 4
in Chapter 1, we have

o0

Apo(fiz)= Ln—l( Z akzk;z)

k=In

provided
flz)= Z apz”.
k=0

Thus by assumption

Sup max ’Ln,l( Z akzk;z) ‘ =M(r)<oco, r<ptl (1.3)

n |z|=r k—tn

Therefore

[e o]

max ’Lgn_l( Z akzk;z) ‘ < M(r).

|z]=r
k=2ln
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If we denote
2n—1

L2n71( i akzk;z) = Z bp2",
k=0

k=2/n
then

|br| = % ‘/M:T zik*an( i akzk;z)dz’

k=2ln

< MTEf)

, k=0,1,...,2n—1.

Thus using that the n'" roots of unity are also (2n)"™ roots of unity we obtain

(5 ) = s (s 35 )|

k=2¢n
n—1

= ' Z(bk + bk+n)zk‘
k=0

=< M(r) Z(r*k +r ek <onM(r), |z =

This together with (1.3) yields

2¢n—1

Ln—l( Z akzk;z) ‘ < (2n+1)M(r). (1.4)

k=In

max
|z|=r

On the other hand, using the obvious property

Ln-1(2"g(2); 2) = Ln-1(9(2); 2)
several times,

2n—1 n—1 2¢-—1

Ln,l( kzzen apz" z) = 2 ( Z ak+]n) ,
hence and by (1.4)
201 2n-1
’Zakﬂn = — ’/ . R, 1( 3 ayed; z)dz‘ (1.5)

Jj=in

*en+1)M@r), k=0,...,n—1.
Now if £ = 1 then this yields for k=n—2and k=n —1

lagn_2| < 727204+ 1)M(r), |agn_1] < r'7"(2n +1)M(r),
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respectively, i.e. lim |a,|"/™ < r~Y/2. But r < p**! = p? was arbitrary, thus
n—oo

lim sup |a,|"/™ < 1/p.

n—oo

This shows that f € A,.

So from now on we may assume that ¢ > 2. Using (1.5) with
k=m+p, (204+s+1)m+p, (204+1)m+p andn=3lm, 3sm, (3s+ 1)m,

respectively, we obtain

201
’ Z a(gjgﬂ)m_,_p‘ <r7MP6fm+ V)M (r) < Tmr~"M(r), 0<p<m,
j=¢

20—1

‘ Z a(3j5+2€+8+1)m+p‘ <y GEEsEDM=D (Ggm 4 1) M (1)
j=t
<12mr="M(r), 0<p<m, {+1<s<2(—1,

and

20—1

' > asjaraeritnymep| < VP65 4+ 2)m + 1M (r)
j=t
<12mr~"M(r), 0<p<m, £<s<20-—1.

Hence Lemma 1 yields

lagez 4 1ymtp — Q6024 1ymepp| < Tmr ™™ M (r) + 120mr~ ™M (r)
+ 1202mr~™ M (r) (1.6)
< 28€2mr_mM(r) , 0<p<m, £>2.

Now let

log 9
n > (362 + 1) max (6£2 v1, 220 1) (1.7)
logr
represented in the form
n=0GBC+Dm+p, 0<p<33, (1.8)

and define the sequences of integers {r;}7°, and {sy}7>, by

ro=m, Sop=0p, (1.9)
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Thi1 = [gﬁziﬁ 7’1@}, and  spp1 = sy + (602 + 1)ry, — (302 + 1) [gii 1 1 k},
for k=1,2,.... (1.10)
Then evidently
(602 + 1)+ sp = (34D rp1 +sp1, k=0,1,.... (1.11)
We shall prove that
an = i(a@ﬁ"‘l)"k"’sk — Q6024 1)ry sy )- (1.12)
k=0

Namely, (1.8), (1.9) and (1.11) yield that the N*® partial sum of this series can

be written as

N

Z(a(3€2+1)rk+sk - a(682+1)7‘k+5k) = an — a(6€2+1)TN+sN-
k=0

The assumption f € A;C implies hm 0 ay = 0, namely if pr_1(z) denotes the
best approximation of f(z) on |z| < 1 by polynomials of degree at most k — 1,

i.e.

gl‘i)iLf(Z) Pr—1(2)| = Er_1(f),

then

1 ke
ol = 52| [ s
u |z|=1

1 ke
- %‘/Izl_lz k l[f(z)—pk_l(z)]dz‘
<Ek_1(f)—0 as k—0.

From (1.9) - (1.10) it is clear that

k
(g)mgrk§2km7 p<sp<3k+1)*, k=0,1,..., (1.13)

thus A}im a2 +1)ry+sy = 0, i.e. (1.12) holds. Since by (1.7) and (1.8)

log9)

m > max (652, ,
logr

we have from (1.13) si, < 7 (k=0,1,...), and applying (1.6) we get the result.

A more general formulation is the following.
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THEOREM 2. Suppose f(z) is defined on the set

U= z|z=e* " k=0,...,n—1}. (1.14)
U {=1

n=1
and {a,}22, is a sequence of complex numbers such that

{—1 n—1

An,e(z) = An,[(.ﬁ {a’n}'?zozo;z) = Ln—l(f; ) Z Z ak+jnz s £>1

j=0 k=0

is uniformly bounded in every compact subset of |z| < p'T1.

Then -
() g(z):= Y arz® is analytic in |z| < p,
k=0
and

(ii) f(2) — g(2) can be extended analytically to |z| < p**t.

An obvious consequence of this theorem (with f = g) is the following

COROLLARY 1. If f(z) = Z anz" is analytic in |z| < 1 and continuous

on |z| < 1; moreover (1.15) is umformly bounded in every compact subset of

|z| < p**L, then f(2) is analytic in |z| < p.

PROOF OF THEOREM 2. Denote

then evidently

Ly 1(Sen—1;2) = akﬂ-nzk. (1.16)

Thus by (1.15) we have for 1 < r < p‘+1,

M(r) :=sup lmlzix |A,, 0(2)] = sup lm‘zix |f(2) = Sen—1(2)| < o0. (1.17)

Applying (1.16) with ¢N instead of ¢,

17 1

N—
Ln—l (SZnN—l - an—la - Z ak-‘r]nz
0 j=¢

3
|

Ead
Il
<.

and thus by (1.17) for 0 < k <n —1,

IN—1

‘ E ak+]n

- L (Senn 1 — Sen d‘
27T’/|—'r 1( nN—1 n—1;% ) 2 (1.18)

< M(?")T_lC + % ’ / z_k_an_l(f - SgnN_l;z)dz ’
|z|=r
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Let
nN-—1
Lon-1(f = Sen-132) = > b2, (1.19)
t=0
then
1 N-1 N-1
% " (Z Ziyn)zikianN—l(f - SEnN—l;Z)dZ = Z bk+un7
=T u=0 v=0

while by (1.19)

1
= Zikianfl(f - S@anﬁz)dZ
21 |z|=r
1 —k—1
= — z Ly—1(LnN-1(f — Senn—1;2);t)dt
211 |z|=r ( )
1 nN—1
—k—1 t
= — z L ,1( btz;z)dt
211 |z|=r " ;
1 n—1 N—1
= T Zﬁkil Z Z bt+ynztdt
T Jlz|=r t=0 v=0

N-—1
- § bk+1/n-
v=0

Thus (1.18) can be written in the form (using (1.17) again, with nV instead of

IN-1 1 N-1
‘ Z ak+jn‘ < M(ryrF+ *‘ / Z 2R LN (f — Seanﬁz)dt‘
= 2 |z|=r V=0
(1.20)
k - 2r" —1 k
— —vn -
< M(r)r (1+V;)r )§ e M(r)r
2r —1
< M@r)yr =", k=0,...,n—1.
— r— 1 (T)’r ) ) 7n
Now we make use of the identity (cf. also Lemma 1)
IN-1
A(3041)m+p = O30+1)tmN+p T Z A(304+1)jm+p (1.21)
j=t
IN—1 IN—1
+ Z Z Q(355+25+j++1)m+p
s=0+1 j=¢
IN—1 IN—1

- Z Z a(35j+25+j+2+1)m+p
j=t s=L
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which is easily seen if we add the term s = ¢ so the first double sum on the
right hand side, and subtract it from the first (single) sum. Apply first (1.20)
successively with n = (3¢+4 1)m, k = p; then with n = (3s+1)m, k = (2s+ ¢+
1)m+p; and finally with n = (3j+2)m, k = (j+£+1)m+p, where 0 < p < m.
We obtain

IN—1
Ze a](3€+1)m+p‘ S % M(T)T_pv
=
IN—1 - Z
‘ = aj(35+1>m+<2s+£+1>m+p’ < 2=l A () @s b Dmep )
‘7= .
for £+1<s<{IN-1,
IN—1 o =
Zg a(3j+2)sm+(j+€+1)m+p‘ < TT%I M(r)r*(JﬁL +1)m—p
S=
for £<j<IN-1
Hence
= 2 —1 IN—1
Z Z a(3j8+28+j+£+1)m+p’ < 1 M(T)T—p Z po2sm
s=0+1 j={ d
¢N—1 ¢(N—1 o1 s
l Z Z A(3js+2s+j+0+1)m+p ’ < — M(r)r—? (T—(z+1)m Z T_]m)_
j=t s=t <

Thus using (1.22) in (1.21), we have

la@er1yem+pl < la@es1yemngpl +C(r)rP.

Letting N — o0, ay — 0, we obtain
laset1yemypl S C(r)r P, 0<p<m.

Hence with n = (3¢+ 1)fm +p, m — (3¢ + 1)¢ < p < m — 1 we obtain

— N T
p~l= Tim |a,|"/" <r” GEOET <1
n—oo

We now show that p; > p. If we had p; < p, then choose r such that p; <
P71 < p. Then from (1.20) we have

EN—1 IN—1
|aen+k| < ’ Z Ajntk ‘ + ' Z ajnJrk‘
j=t j=t+1
oo
<cr)yr 40 ( Z (p1 — 8)7]-”7]6)
j=t+1

<+ 0 ((pr =)™ H), 0<k<n-1,
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Using this with n — £ < k < n — 1, we see from the definition of pl_1 and the
above inequality that

— 4z 1
prt= T Ja, |V < max {7, (o —o)" b < —
V—00
for sufficiently small € > 0, a contradiction. This proves that g(z) is analytic in
|z| < p.
In order to prove (ii) we observe that by Theorem 1 of Chapter 4, A, ¢(g; )
is uniformly bounded on compact subsets of |z| < pT!. Thus by (1.15),
|Ln—1(f = g:2)| < [Ane(2)] + |An(g; 2)| < M < o0

on compact subsets of |z| < p’*l. If we apply this to n! instead of n, then
by Vitali’s selection principle there exists a subsequence n; < ng < ... such
that Ly, 1—1(f — ¢;2) converges uniformly to some function F(z) analytic in
|z| < p**1. Since the (1.14) is dense in the unit circle, it follows that F(z) =
f(z) —g(z), z€ U. O

Next we investigate the question whether assuming the condition
lim A, ¢(f;z) =0 uniformly in |z] < p‘! (1.23)
n—oo

is stronger than (1.15), i.e. can we conclude that f(z) is continuous in |z| < p .

The negative answer will follow from the following

THEOREM 3. If f € A, (p > 1) and {©n}32, is a positive monotone (in-

creasing or decreasing) sequence with pa, ~ @n, then

max |Ane(f;2)|=0(pn), n— o (1.24)

|z|=ptt+1
and

an=0(p "pn), n— 0 (1.25)

are equivalent. (Here a, are the Taylor coefficients of f.)

PRrROOF. By the assumption on ¢,,, there exists a constant ¢ > 0 such that
(en®)™r < ¢, < en®. Thus, using the representation (1.2) from Chapter 4 we
get by (1.25)

oo n—1

|An,€(.f; Z Z ak+]n| | |

j=L

(Z Okt jnp k—jn+k(1€+1))

j=t k=0

( 3onp™ j)”>=0(s0n), 2| = p"tt.
j=¢

3

8
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Conversely, for f € A, we get

n—1
Ane(f;2) Zakwnz +O( Z Zak+jnzk)
k=0

j=4+1
n—1
= Z Apron 2" + O( Z Z(p — 5)_k_j’ka(e+1))
j=0+1 k=0
n—1
_ Z aanzk + O((p _ 5)*(£+2)npn(£+1)> 2| = p£+1
k=0

whence by (1.24), forn =¢n+k,n—¢—1<k <n—1 we obtain

n N f7 — n  (n—
|(lm| o ’ / o+ szrl dz ‘ + O E) 2 p( k)(5+1))
—ptt1

_ O(p—k(f+1)<pn + (P _ 6)—([—&-2)n) _ O(,O_ngm),
since k({+1) > m —£({+1), n(£+1) > m, and ¢, is of polynomial growth. O

Now we can answer the question raised after the proof of Theorem 1. Let

> k
z

This function is not in A,C, since at z = p it is not even defined. Nevertheless,

1 n 1
ap = w P ¥Pn, Pn= —
np n

and thus by Theorem 3, (1.24) holds which implies (1.23).

Thus uniform convergence of A, ¢(f;z) to zero on |z| < p*1 does not imply
even the boundedness of f(z) on |z] < p.

2. Hermite Interpolation

For any f(z) € A, (p > 1), r—1 times differentiable on |z| < p, let hpp—1(f; 2)
denote the Hermite interpolant to f in the zeros of (2™ —1)"

hijn) 1(f;wk) = f(j)(wk), j=0,...,r—=1;k=0,...,n—1

where w” = 1 (see (1.1) of Chapter 2). We shall also use the definition of
Bsr(z) in (1.7) and A,p,—1,0(f;2) in (1.14) of Chapter 2. Now the analogue of
Corollary 1 can be stated as follows:
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THEOREM 4. Assume that f(z) € Ay isr—1 times differentiable on |z| =1,
and
1+Z/7‘.

(2.1)

Arp—1,0(f32)  is uniformly bounded on every closed subset of  |z| < p
Then f(z) € Ap.

(o]
PROOF. Asusual, let f(z) = 3 az2* be the Taylor expansion of f in |z| < 1.
k=0
First we prove the following identity:

(o)
Arnfl,é(f;z) = hrnfl < Z akzk;z)- (22)
k=(r+£—1)n
Namely, since h,,_1 is a linear operator which reproduces polynomials of degree
at most rn — 1, we have

[e o]

hrn—l(f; Z) —hrn1 ( Z akzk; Z) (23)
k=(r+£—1)n
(r+£—1)n—1
= hrn—l ( Z akzk; Z)
k=0
rn—1 (r+£—1)n—1
= hpn1 ( > akzk;Z) + B ( > akzk;Z)
k=0 k=rn
rn—1 (r+£—1)n—1
= Z akzk + Z akhrnfl(zk;z)
k=0 k=rn
rn—1 {—1 n—1 .
_ Z ak2k+z Z ak:+(r+j—1)nh7'n—1(zk+(r+]_1)n;Z)-
k=0 j=1 k=0

Here, according to (2.1) in Chapter 2 (applied with j = k, s = j—1,and o = 1),

we have
B (EFOHI70m ) = kB, (27), j=1,2,..., 0<k<n-—1. (24)
Substituting this into (2.3), and using also (1.14) from Chapter 2 we get (2.2).

Now let 1 < R < p'+¥/" be arbitrary. Then by (2.1) and (2.2)

brn—1 ( i a;czk;z) } < M(R) < . (2.5)
k=(r+£—1)n

sup max
n |z[=R

The last inequality will be used with Nn instead n as well:

max ‘th,l ( Z akzk;z) ‘ < M(R). (2.6)
== k=N (r4+f—1)n
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Thus if we set

(o) Nrn—1
th_l( Z apz” z): Z by 2" (2.7)

k=N(r+£—1)n

we get from Cauchy’s formula
o] < M(R)R™", k=0,1,...,Nrn — 1. (2.8)

Since the set of (Nn)*™ roots of unity includes all nt" roots of unity, evidently

we have:
hrn—l(g; Z) = hrn—l (thn—l(g; Z)7 Z) .
Using this with g(z) = > apz® successively, as well as (2.4) and (2.7)
k=N(r+£—1)n
to obtain
hrn—l ( Z akzk;z> = hrn—l (thn—1< Z akzk;z>;z)
k=N (r+£—1)n k=N (r+0—1)n
Nrn—1
= h’rn—l ( Z bkzk;z)
k=0
rn—1 (N=-1)r—1
= Z bkzk + Z karrnhrnfl (Zk+rn; Z)
k=0 k=0
rn—1 n—1 (N—-1)r—1
- Z bez" + Z Z it sy firm—1 (25 2)
rn—1 (N 1)r—1

= Z brz® + Z Bat1,r(2") Zbk+(r+)\)n

Here, by Lemma 2 of Chapter 2,

max | By (2")] < e N RO

where ¢, > 0 depends only on r. Thus we get, using also (2.8)

max ’hm 1 ( Z akzk;z> l (2.9)
==k k=N(r4+4—1)n

(N=1)r—1
< TTLM(R) + e Z 'R (r—1)n Z M Rfkf(r+>\)n+k

(N-1)r—1
<rnM(R)+ ¢ M(R)R™ Y MR < nM(R)
A=0
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with some other constant ¢/ > 0.

This last estimate can be used as follows. Since

N(r4+£—1)n—1 o
hon—1 ( > akz’“;Z) = hyn1 ( > akzk;Z)—
k=(r+£—1)n k=(r+£—1)n

o0

_hrn—l ( Z a,zk;z)a
k=N(n+0-1)n

(2.5) and (2.9) yield

N(r+£4—1)n—1
max ‘hm,l ( Z apz"; z) ’ < (c.n+1)M(R). (2.10)
|=I=R k=(r+£—1)n

Using again (2.5) we get

N(r+£4—1)n—1

hrn—1 < Z akzk;z> =

k=(r+£—-1)n
n—1 (r+f—1)(N—-1)—1
- Z Z Ukt (r4 A+0-1)nforn—1 (ZH(THH?M? 2)
k=0 A=0

n—1 (r+f—1)(N—1)—1

k
= Z Z Aoy (ri A1) 2 Berrr(2").
k=0 A=0

Here, by (1.7) of Chapter 2,

Bronr () =3 (T e

pn=0 H
r—1 n
r+ E + )‘ -1 1Y —v_vn
> (0D R ) e
pn=0 K v=0
r—1 r—1
P eI <r+€+ P 1> <u)
v=0 nu=0 K v
and thus
N(r+£—1)n—1 n—1 r—1
[ — ( Z akzk;z) = Z Z PLRRA
k=(n+£—1)n k=0 v=0

r4+4—2 r—1
ey [(RFLFA=1\ [
X Z Z(—l)’ < y ) <1/> Okt (n+A+0—-1)n -

A=0 pu=0
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Applying Cauchy’s formula and (2.10) we get

(r+—1)(N=1)=1 r_1

L (r+Hl+EA=1\ (1
Z Z (=1~ ( ) <l/> At (rte4A—1)n | <
A=0 pn=v

# (2.11)

(cdn+1)M(R) B S
_W7 k—o,...,n—l,V—07...7’f‘—1.
Denoting

(rf—1)(N—1)—1 7—1

L (r+l+A=1
Hkvn = Z Z (*1)'“ ( ) (5) ak+(r+l+)\—1)n
A=0 pn=0

I

and summing up for v we obtain

(r+0—1)(N—-1)—1 r—1

r—1
r+l4+A-1
OITITEED SR S| Rr———
v=0 A=0 pn=0 r
r—1 1
-1 v
2 ()

(r+0—1)(N—1)—1

= E ak+(r+£+)\—1)n
A=0

N(r+£—1)—1

= E A+ jn -

j=r+4—1
Thus by (2.10) we get

N(r+6—1)—1 r—1 ,
r(cn+1)(M(R
S | €2 Il < Rk?( B) o1, -1
j=r+l—1 v=0

From these inequalities we can conclude (just like in the proof of Theorem 1) that
f(2) can be analytically continued from |z| < 1 into a larger circle. Let 5 > 1
be the maximal radius for which f(z) is analytic in |z| < p. By Theorem 3(ii)
of Chapter 4, the sequence (2.2) can be bounded in at most r + ¢ — 1 distinct

1+2/r

points in |z| > p . From the hypothesis of the theorem, this means that

p <P, ie. f(z) is analytic in |z| < p. O

5.3. Historical Remarks

Theorem 1 is due to Szabados [106], and later it was extended (in the weaker
form) to Hermite interpolation by Cavaretta, Sharma and Varga [32] (Theo-
rem 4). The stronger form Theorem 2 (and Corollary 1) was proved by Ivanov
and Sharma [52]. The negative answer (Theorem 3) to the question if continu-
ity property of the function is inherited in the order of overconvergence can be
found in Totik [111].



CHAPTER 6

PADE APPROXIMATION AND
WALSH EQUICONVERGENCE FOR
MEROMORPHIC FUNCTIONS WITH v POLES

6.1. Introduction

In the previous chapters extensions of the Walsh equiconvergence theorem
for functions in A,, p > 1, were estimated. In all these extensions of the Walsh
equiconvergence theorem the differences of two polynomial approximation oper-
ators played a role. In this chapter we bring extensions of the Walsh theorem to
differences of rational approximation operators of a certain type. It seems that
most equiconvergence theorems for polynomial approximation operators can be

extended to equiconvergence theorems for rational interpolants.

For each non-negative integer v and for each p with 1 < p < oo, let M,(v)
denote the set of functions F'(z) which are meromorphic with precisely v poles
(counting multiplicities) in the disc D, but not in ﬁp and which are regular at

z =0 and on |z| = 1. A rational function

Un 14 . .
Vn:,,((zz)) , Unpu(2)€m, and V,, €m ismonic (1.1)
is called of type (n,v).

For a given F' € M,(v), denote by S, . (2) = Sp(F, z) the rational inter-
polant of type (n,v) to F(z) in the (n + v + 1) roots of unity. This means
that if w is a primitive (n + v + 1) root of unity, we require that

Spo(W)=FWr), 0<k<n+w (1.1a)

When v = 0 we have S, 0 = L,(f,z). Similarly, consider the Hermite-Padé
rational interpolant R, , (F};z) of type (n,v) defined by

Ruu(F,2) == Ry, (2) := SZZ((?) , Pou(2) €Ty Quou(2) € my is monic
’ (1.2)
and
Rou(2) — F(2) = 0" as 2 —0. (1.2a)

129
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It is easy to see that for v =0, Ry, o= Sp(F,z).

It is known from a theorem of de Montessus de Ballore [39] that the rational

interpolants Ry, ,,(z) and Sy . (z) exist and are unique for large n.

The first extension of Walsh theorem of equiconvergence to functions in the
class M,(v) is the following:

THEOREM 1. If F' € My(v) (p > 1) and if {a;}4_; are the v poles of F' in
D, (listed according to multiplicities), then for the rational interpolants Sy, . (2)
of (1.1) and R, (%) of (1.2), we have

n—oo

lim [S,,,(F,2) — Ry, (F,2)] =0, Vz& D\ U{aj}, (1.3)

the convergence being uniform and geometric on any closed subset of D 2\ ‘LVJI
=
{a;}.

More precisely, on any closed subset H of D;\ 'LVJl {o} with p < 7 < o0,
J:
there holds
. 1 T
lim sup {max|S,, . (F, 2) = Bn.o(F, 2)[} n < e (1.4)

n—oo
The result (1.3) is best possible in the sense that for any v > 0 and for any p,
1 < p < oo, there exists an F, € M,(v) such that
lim sup {lnlain2 1Snu(F,2) — Ry, (F, 2)|} > 0. (1.5)
z|=p

n—oo

Note that in the special case v = 0, this theorem reduces to Walsh’s theorem

in Chapter 1 for functions in the class A,.

We illustrate this theorem with an example before stating and proving its

generalization.

EXAMPLE. For any given p with 1 < p < oo and any fixed o with 0 < || < p,
|| # 1, we consider the function F(z) = —— + Z%p which belongs to M,(1).

Z—x

Because there is only one pole inside the disc D, it is easy to check that

Un)l(Z) Pn,l(z)
Vn,l(z) Qn,l(z)
where we write V,, 1(2) = z+ X\, and Qn1(2) = z+,. Observe that U, 1(z)

: ; 2 : — +An

mtirpolates F(2)Vy1(2) in the zeros of 2”72 —1. Since F(z)V,,1(z) = 2+ %22 4+
PEAn
z—p

Sn,l(F;Z) = and Rn’l(F, Z) =

the interpolant to it at the zeros of 2"*2 — 1 is clearly

(a+X) ("2 = a™2)  (p+ M) (2" = p"P?)
(z—a)(1 —ant?) (z = p)(1 = pnt2)

2+
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In order that it is equal to U, 1(z) which € m,, we choose A, so that the
coefficient of z"*! in the above vanishes. This gives

apn+2+an+2p_p_a
2 — pn+2 _ an+2

An =

(For sufficiently large n, the denominator is different from zero.)

Similarly, we have
pn+1 + an+1

Tn = —p& P2 4 qnt2 :

An easy calculation now gives

pVar(p) " —p") eV (@) (z" T — o™t

Una(2) =2~ (P2 —1)(z — p) (@2 —1)(z —a) ~
Qua(P)(" = p™)  Quafa)(zmH — am
Ppi(z) =2— = (ppg-(u(z _ p)p - (06725—1(2« —a) ) :

Since p > |a|, both A,, and 7, tend to —a as n — oo. Thus the poles of Sy, 1 (F), 2)
and Ry, 1(F, z) both tend to the inner pole of F(z) as n — oo.

A straightforward but lengthy calculation yields

S —alpra=22) o1
PG —api g O (9

Sp1(F,z) — Ry 1 (F,2) =
as n — oo, the last term holding uniformly on any bounded set in C\ ({a}U{p}).
This shows overconvergence in D2\ {a}.

Moreover we have

lp— al*(20° — p— |al)
@

lim { min [S,1(F,z) — Rn71(F;z)|} >

n—oo |z‘:p

Thus we have verified the theorem in this case for v = 1.
The above example can also be modified to yield an example for the case
when v > 2. In order to do this for any v > 2, we set

1 1

Zl/_al/ Zl/_pV

F,(z):=F(z";a",p") := € M,(v)

where 0 < |a| < p and |a| # 1. Then the rational interpolants S, , (F,;z) and
R, . (F,, z)are easily seen to be related to the previous case of S, 1(F1,2) and
R, 1(F1, %) as below:

S(m+1)u—1,u(Fl/7 Z) = Sm,l(F('vaV7ﬂy)7 ZV) 5
R(m-i—l)u—l,l/(FI/aZ) Rm,l(F('vayvﬂy)azU): m = 1727'” .
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It therefore follows from (1.6) that

S(m+l)Vfl7V(Fl/? Z) - R(m+1)u71,u(Fl/7 Z) =

Z(m+1)1/+1(p1/ _ au)Q(pl/ + a? — 2ZV) O( 1 )
p2(m+1)u+2(zu _ OLV)S(ZV _ pu) p(m+1)u ’

as m — o0

and from (1.7), we get

n%gnoo{lr?ln |S(m+1)u l(Fw Z) R(m+1)1/71(F1/7 Z)‘}

o’ P20 — p" — |o]")
(p2”+|a| )2 (0™ +p)

lp —

> 0.

Hence
lim sup { min_ |Sy, ,(Fy,2) — Rn7,,(F,,,z)|} >0
_p2

n— oo |z|=

for each positive integer v and each p with 1 < p < oo. This shows the sharpness

of Theorem 1 in this case.

6.2 A Generalization of Theorem 1

We start with the representation of any function F'(z) € M,(v) in the form

Bf((zz)), where f(z) € A, and B, (z) is a monic polynomial of degree v which may

have multiple zeros. More precisely, let

> 1
f(z) = Zakz’“, limsup |a, "™ ==, f(z;) #0,
p
k=0

n—oo

where
" v n
z) = H(z — )N = E az®, a,=1 and g Aj =
j=1 k=0 j=1

For some o € C, |a| < p, we first find the (n,r) Hermite-Padé interpolant
to F(z) € M,(v) on the zeros of z"*"+1 — o™ 1 We suppose that w is an
arbitrary (n + v + 1)* primitive root of unity (w™***1 = 1). We shall denote
this Hermite-Padé interpolant by

UOO(Z) Z?:Opgonzs 0o

n l/( ) = v ; ’ Yoon = 1 (21)
BOO ( ) Zs:() FY;OTLZS ’

where BgS,(z) is monic of degree v and Ug®(z) € m,. We suppose that {aw®} 11y
are dlfferent from the zeros of B, (z). For any other § € Cwith || < p, |8] # |¢

let {Bwk}tY be different from the zeros of B,(z). For any integer £ > 1 we
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denote the Lagrange interpolant to f(z) on the zeros of z¢/(v+1) — gtntv+l)

by Lytntv+1)(f; B; 2) and for brevity we denote it by L[(n+y+1( z). Now write

8 l(nt+v+1)—1
LZ(TL+V+1)(Z) = kzo Bf;’nzk, where
(o)
B,‘;n = 3 Gty kBTN =01, M v+ 1) - 1.
m=0

(2.2)

The Lagrange interpolant to Le(nJrVH) on the zeros of 2"+ — ¥+l will be

a polynomial of degree n + v and we denote it by

n+v
Lot (D) 2) = D AL 2, (2.3)
where on using the value of Bk , 0 (2.2),
-1
4 v

— Z Bv-(n+y+1)+j,nar(n+ +1)

r=0

£—1 oo
= Z Z a(m€+T)(n+u+1)+jﬂme(n+u+l)ar(n+y+1)7 .7 = 07 17 ntv,

r=0m=0

Set
L"+V+1 (Lf(n—O—V—O—l); @; Z)

(>1
BU(Z) ) —

Go(Fiz) =
and consider the (n,v) Hermite-Padé interpolant to G?’f(F ; z) on the zeros of

vl gntvtl We denote it by

ULE) _ g’
Bﬁ,u(z) Z::O ’V\g,nzs

Using (2.3), this interpolation property of P} ,(z) to G?_’f(F; z) can be written

P’ﬁ,u(z) = ) Wﬁ,n =1

in the form

n—+v
B, (aw*) UL (aw®) = (aw® ZA S E=0,1,...,n+v. (2.5)

Using the estimates a, = O((p —€)™") as n — oo, max (|al,|8]) < p — ¢, we
easily obtain from (2.4)

o0
A= i A = S i@, =01 (0
r=0
Thus with this definition of A% we can say that the interpolation property

J,m

(2.5) remains valid for ¢ = co. We now have the following



134 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

THEOREM 2. Let F € M,(v) (p > 1, v > 0), and let o, 3 € C such that
la] # |B| < p. Suppose that the poles of F' are not on the circles |z| = |a| and
|z| = |B|. Then for z such that B,(z) # 0, we have

£
(2) i lel<o

limsup [P35, (2) - P2, ()] " < {7,
noes (2) B i Jzlzp

where v := max(|al, |B], maxi <<, |2;])-

o
Thus we have overconvergence on compact subsets in |z| < £, with zeros

of B,(z) deleted.

The proof of this theorem will depend on several lemmas, but we first prove
the unique existence of the operators Pé and Pp<, for n sufficiently large. Using

the notation for coefficients introduced in (2.5) means that the polynomials

v n n+v
¢ k ¢ ¢
z) = E gz g Psn?’ = g ( E akp,,.m)zs
k=0 s=0 s=0 k+r=s

n+v min(v,s)

—Z( > akpﬁ_k,n)zs (2.7)

k=max(0,s—n)

and
n4v n—+v
Bl ()Y AL, Z Tt D A
=0
n+2v mln(u,s)

S (0% bl

s=0  k=max(0,s—n—v)

n+v min(v,s)

v—1 v
Z ( Z ’Yk nAs k n)zS + Zn+u+1 Z ( Z ’Yl[é,nAg—&-n—&-l/—&-l—k,n)Zs

s=0 s=0 k=s+1

coincide at the roots of the polynomial z"+*+! — o+l Evidently this is also
true of the polynomial

n+v min(v,s)

Z( Z Ve A kn)z +04"+““Z ( Z Ve At ngva1- kn>
s=0

s=0 k=s+1
(2.8)

Thus the polynomial (2.8) (being of degree at most n + v) is identically equal
to the polynomial (2.7). Comparing coefficients we have

¢ n+v+1 ¥4
Z ’Yk nAs k,n +a Z ryk nAs+n+u+1 k,n

min(v,s) k=0 k—sg
Z akpﬁ—k,n = if 0 <s<v-— 1
k=max(0,s—n) v .
Z’yﬁnAﬁ_kn, if v<s<n+u
k=0 ’
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REMARK. For s < 0, we make, for convenience, the convention that

4 L n+u+1 l
As,n T An+u+1+s n (210)
First we consider the case when B, (z) has simple zeros z1, 2o, ..., 2z,. Since

(2.7) and (2.8) are identical this means that (2.8) is zero for the zeros of
B,(z) :

n+v [ min(v,s)

Z Z fYknAs kn Z‘? n+1/+1z<z an s+n+u+1 kn) ;:0

s=0 k=s+1
(I<j<v).

Rearranging the left side, and on using the convention (2.10), we get

v n+v v—1
s+k £ s n+v+1 L s e
Z { E As n J + E Asfkmzj +o E :As+n+u+17k,nzj }fYk:n =0
k=0 s=0 s=v+1 s=0

j=1,...,v. (211)

All formulae so far are also true for 1 < ¢ < oco. Now if 1 < £ < oo, then by
(2.4), we have,for 0 < s < s + v, on recalling v := max(|«|,|5]) < p,

-1
Ag,n =as+ Z m@(n+u+1)+sﬂme(n+y+1) + Zar(n+u+1)+s rntv+1)

m=1 r=1
oo £—1

>

m=1 r

oo (2" (20 (58 )

— as +O(1) ( W) 0(1) ((p—e)*) , s=0,1,..., 1< [ < oo,

AUmesr) ety TN gTEOEVED (212)

=1

Similarly for £ = oo, we obtain from (2.6)

n

2l

oo
AZZ::as*’E:‘WOHw+U+saM"+”+D::“S*’O((EiiSEI;

r=1

) (2.13)

s=0,1,....

Substituting these into (2.11), we get by ax = O((p — &)%) :

ij{Ejasz+ S% Q512 +OU)<< >n>}7§n:0. (2.14)

k=0 s=v+1
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The two inner sums in the above become

v—£k n+4v n+v—~k

s+k s _ _k s
g asZ; -+ E Os—kZ; = Zj asZ;.
s$=0 s=v+1 s=0

Extending the summation over s to oo, an error of the same order O <(ﬁ)">

is introduced and from Y72 asz§ = f(z;), we find from (2.14) that Wﬁ’n satisfy

the equations

v ’y n ]
Z{sz(zj)—l—O((p_E) >}7ﬁ,n20, j=1,...,v, 1</{<oc0.

k=0
(2.15)

Since f(z;) # 0f or j = 1,...,v by supposition and 'yfm =1, we have

{0 () )t -0 ()

for j=1,...,v and 1<{<oc0. (2.16)

In this part of the proof the zeros (2;)1<j<y of By (z) are distinct. Therefore
for sufficiently large n, this system, in the unknowns ’yf;n, is uniquely solvable,
because Det {zF}o<k<y—1,1<j<1 # 0. Now B,(z;) = 0 can be written in the
form

g =—2 j=1,...1 (2.17)

We can rewrite the difference of (2.16) and (2.17) in the form

v—1 n n
Z{vﬁn(1+0< 1 ))—ak}z§=0(1)< 2 ) . j=1,...,v
=0 ’ p—¢€ p—¢

Using Cramer’s rule, we get

so that

Ve = o +O0(1) (v) , 0<k<v-L (2.18)

where V(z1,...,2,) is the Vandermonde determinant and V(z1,...,z2,) is ob-

tained from V(21,...,z,) on replacing the k" column by (1, 1 ...)T. As (2.18)

implies that lim B¢ ,(2) = B,(z), 1 < ¢ < oo, uniformly on every compact set
n— 00 ’

of . Hence, in particular,

. ¢ 1/n IRRT . ¢ 1/n .
hrILILSolclup rzna‘;[( ’(Bnu(z)’ - nh_{& /IZI}C_I,}I_} |Bn,u(z)‘ -

1 (2.19)
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for every compact setHprovidedz; € H,j =1,...,v

Now (2.12) and (2.13) also imply

0o
¢ E : £(ntv+1 E : +v+1
As n 5 n amf(n+u+1)+sﬁm (ntv+l) ar(n+u+1)+sar(” v+1)

m=1 r=~{
oo 4—1

+ Z Za(mu_r)("+V+1)+Sar(n+u+1)ﬁm£(n+u+1)
m=1 r=1

oo (2 G2 (24|
:0(1)([)_7:;”%, 5=0,1,... . (2.20)

Thus (2.11) can be written in the following form (using again also (2.13)):

v n+v
Z{ZASH j+k+ Z As knz +Oln—’—l/—i—lZflernJrl/Jrl kn ]} X
k=0 s=v+1
N In
0 O(1
O =850 + 0 (512
v v—k n+v n
_ s+k £ _ 00
= {Zasz + Y ae +0(1)< 5) }(%,n Vrin)
=0 s=0 s=v+1
Lo >< )
v ~ n v 120
- {Z’“f(zj +om (522) bt -z rom (1) =0
= p—¢ p—¢€
for j =1,...,v. Hence
v ~ n ~y In
k 0 oo
224+ 0(1 n— Ven) =0(1 .
kZ:O{ W (522) Joka - =om (52

This obviously implies that

In
Wﬁn—vz’"nzO(l)< 7 > . k=0,1,...,v (2.21)
. : p—¢
whence ,
lim sup max |B (2) — BZ, (2)|Y" < (1) (2.22)
n—oo %€M ’ P

for any compact subset H C €. So far we have dealt only with the solution of
(2.9) with respect to the unknowns vﬁ’n. This system (as also in the case £ = o)
consists of n+ v + 1 equations with the unknowns fy,[é’n (k=0,1,...,v—1) and
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pﬁ,n (j =0,1,...,n). So the number of unknowns and the number of equations
is the same, i.e., n + v + 1. Hence the rank of the full matrix M is <n+4+v+1
where M is the system (2.9).

If we multiply the equations (2.9) by z3 and sum on s for 0 < s <n-+v, we
get the matrix M; (a Vandermonde matrix) to determine vy, (k =0,1,...,v—
1), since the unknowns pﬁ’n drop out as a result of the summation process
using the fact that B,(z;) = 0. Since the rank of a matrix does not change
by row operations, we may consider the matrix of the system of equations for
v < s <n+ v, adjoined to the matrix M;. A close examination of the sum on
the left in (2.9) shows that for v < s < n + v, the matrix for pﬁ)n is of the

following form:

[, Qp—1 Qp_2 - o 0 )
Ay Qy—1 - aq Qo
M2 _ Qy  Oy—1 o Qo
0 ay, g
al/ e az
L Qy

Ms> is a triangular matrix of order n with a,, = 1 in the principal diagonal and

so is non-singular. Thus the matrix M for the system of equations (2.9) is
M, 0

where Ms is the algebraic complement of My,
A M

row equivalent to (

and A is some matrix. Clearly the determinant of the system (]\fll 1\2 ) is
2

non-zero. Therefore fy,l;nand p‘;,n can be uniquely determined for n sufficiently

large.

After settling the problem of asymptotic behaviour of the denominators (see
(2.19) and (2.22)), we now turn our attention to the numerators. In this respect

we prove the following

LEMMA. We have

¢
X if T<p
lim sup max U (2) — Uk(2)|V/™ < (p)e (2.23)
n—oo 2€D; (%) % 7f T > p
and
1 4 7<
lim sup max |US°(z2)|/" = { - f P (2.24)
n—oo 2€D- ) » if T>p.

PROOF. Set 0y := p}2, —pi,n,O < £ < oo with pi’n = ppon = 0 for k > n and
p%n := 0. The unknowns pim are given by the equations (2.9). Let v < m < n.
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We multiply the equations (2.9) by z;~™ and sum over s from mton +v. Then

n—+v v n+v
E E akps kn? E fYk n E As k,n J
s=m k=0

On putting s = k + m — r, the left side can, as p,‘nfryn =0 for m —r > n, be
written, since Y;_g ax2f = B,(z;) =0, as

v k k
k—r 4 k—r
E E akpm rn?; = § E AkPrm—rn?;

k=0r=m—n+k—v k=0 r=m—n
v

Il
AN
N
|
=}
o
=
B
3
hNa.
!

k=0 r=k+1
v r—1
— (4 k—r
- AkPm—rn?;
r=1 k=0
v v
— k—r 4
- akzj pm—r,n ’
r=1 k=r

So the equations to determine pf ,, are:

n—+v

Z(gamk T)Pm rn:Z(ZAg kn?j m)’yf;n

r=1
with a similar equation for p?_,.,. Then subtracting we have (on putting
57”—7“ = p%—r,n - pfn—r,n)?

n—+v

Z{Zakzk T} m—r Z’YanAS kn?j

r=1
n+v

—ZmZA AT 1<ise

The coefficient matrix of the {(5m_r}$:1 has a typical row consisting of the v

elements
14
} : } : k—2 Z k—v41
OékZ OlkZ gooey akzj sy )
k=v—1

This shows that the coefficient matrix of {d,,—,}%_; is the product of two ma-

trices:
g Qg Qp ay
o) Qg e Qay, 0
V(z1,...,2,) and
al/—l a’/ .« e O .. 0

a, 0o - 0 0
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Thus the determinant of the system of equations is non-zero and using Cramer’s

rule, we have

n+v n+v
de{z’}/an*A ZFYanAs k:nZ; m}
for 1<r<u. (2.25)

Here the d, ;’s are the minors of the determinants whose elements depend only

on the poles of F(z), the a’s being coefficients of [] (2—z;) and so are uniformly
j=1

bounded, i.e. |d, ;| < es.
We now estimate the difference in the braces on the right in (2.25). Set

n+v n+v

0= Y08 k) D A+ Do DA~ i)
k=0

s=m

Write R, = max ( plf“é p‘ | ). We have

(i) %5, — Vel < CRE < CREHHD from (2.21),

N
N\m

14
(i) hkal<C (since  lim Y ¢ 2" = By(2)),
k=0

1 |
iii) A2, — AL al < C (
( ) ‘ k k | (p* )5 k [ 1 p— €

+

2
‘ﬂ| l(n+v+1)
(p_> |

Rg)f(n+l/+1)

P -5

+v+1
1A%, — AL |<C |a| R S
s—k,n —k,n 4 p— (p_ s—k

1
k=
2
L(n+v+1)
y max( ol ﬁ|€>
P—3 -3

af et R
< (p=5) 7+’
© 1
r(n+v+1) <Cy ——
Z « Ar(ntv+1)+s—k| > L2 _ —k
Z (p—e)

)l(n+u+1)

for s>k

for s <k,

<04(

when s >k,

(V) [ A g 0| =

(e’ ‘a| n+v+1
E (n+v+1
o (ntv )a7'(7L+V+1)+S—k < Cl (5) X

r=1 p— 2

X — when s<k and 0<Ek<v
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by (2.6). Using these estimates, we have

L(n+v+1) | +v+1
. a| n+v
2 2
RZ(n«I»VJrl)
Sc(fsﬁ for 0<r<v and m<s<n+r.
P—3

Therefore from (2.23), we get o, = C % ,  0<k <n where C does not

depend on n, k but only on the z;’s. Now with all these estimates, we come to
the proof of (2.21). From (2.19)

l(n+r+1
max|U:(z) - Ul(z |<maX’Z5kz .<ZC 5(_6)k) *
< CRe(n+u+1) Z ( )k
k=0 p €
MR ifr<p—e
{MR“”*”“)([) )" if 7> p.

Since € > 0 may be taken arbitrarily small, this gives

! v vy < { BT TS g
o {m EU S VI
which is (2.23). Since U?(z) = 0, it follows that
1/n 1 it 7<p
lim sup {max|Ufj°(z)|} < { . (2.27)
n—oo 2€H <3 it 7>p.
]

PROOF OF THEOREM 2. If H is a compact subset of |z| < 7, 7 > 0 and if
H C D,\ CIIJ {z:}, then recalling that B}, ,(z) and B2, (z) — B, (z) as n — oo,

we have

hm sup {maxl TL+V+1(Z) 7L+V+1(Z)|}

n—oo

. 1/
= T {max|U*(2)B] (=) — UL(2) B, (2)] |

n—oo

n—0o0

< lim {maX\UOO(Z)\l/n\B J(2) = B;:u(zﬂl/n
1/n
+ max| B, ()| - [U () - Ui (=)}

n—oo

< lim {maX\UOO(Z)\l/n‘B (2) — Bﬁl/(z”l/n}
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n—oo

¢
< {Re max (1, T> + max (RZ,T R> }
P P

R? R?
:max(T,Rz) = T—, if 7>p.
P P

+ T oo {max| B3, () 1U2 (2) — UE(2)]/7

on using (2.26) and (2.27). O

6.3. Historical Remarks

(a) The first generalization of the Walsh equiconvergence theorem for mero-
morphic and rational functions (Theorem 1 and Example) is due to Saff, Sharma
and Varga [92]. They consider the difference between the (n,v) rational inter-
polating function at the roots of unity to a meromorphic f(z) and the Padé

approximation by (n,v) rational functions to f(z).

(b) Theorem 1 is due to Saff et al [92]. The sharpness result (1.5) gives for
v = 0, the corresponding result of Cavaretta et al [30]. Concerning the monic

polynomials in R, ,(F;z) and S, (F;z) they observe that for every compact
set H C C,

—

lim sup m%}{( Voo (2) — Qn)u(z)|1/" <=
ze

n—oo

s

follows from Theorem B of Saff [90].

Let E be a closed bounded point set in the z-plane whose complement K
(with respect to the extended plane) is connected and regular in the sense that K
possesses a Green function G(z) with pole at infinity [114, p. 65]. Let T'y, 0 > 1
denote generically the locus

Iy :={z€C:G(z) =logo},

and denote by E, the interior of I',. Before giving the proof of Theorem 1, Saff
et al [92] consider a more general situation: the rational interpolation in the

triangular schemes

(0)
1

(1) (1)
1 M2

2 2 2
2,58, 55 (3.1)

(n) n) (n)
1 P2 e P
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and
(0)
1
(1) o)
1 M2
NN (32)
iu)’ﬁéy)v et 7(1?1

We assume that no limit points of the tableaux (3.1) or (3.2) lie exterior to E.
Let 7, (F; z) be the rational function of the form

12) =T z :pnvy(z)
Tn,l/(F7 ) n,u( ) qn,y(Z)’

Pny € I, gny € 1L, gn, monic, which interpolates F'(z) in the n +v + 1

ﬂ<n+V) n+v+1
J

points { T e,

P (B = F(BT), j=1, . ntv L (3.3)

Similarly 7(F; z) interpolates F(z) in the points {ﬁ§n+u)}?:+1”+1, ie.,

Fap (B ) = F(B")), j=1,.n+v+L (3.4)

In order to assume that the tableaux (3.1) and (3.2) are, in some sense, close
to each other, we set

n+1 n+1

+

wa(2) = [T =8"), wa(z) = [[G=8""), d1(z) =wa(z) = 1.
j=1 j=1
(3.5)
Concerning the triangular schemes (3.1) and (3.2), we suppose
lim |wy(2)|Y™ = Aexp G(z) (3.6)

n—oo

uniformly in z in each closed bounded subset of K, where A is the transfinite
diameter (or capacity) [9,Sec. 4.4] of E. The existence of some triangular scheme
{ﬁ;n)} for E for which (3.6) holds is well known: for example, on defining the
tableaux {ﬁj(n)} to consist of the Fekete points for E, then (3.6) holds [9, p. 172].
Next, since each w;(z) and w;(z) in (3.5) is monic of precise degree j + 1, there

are unique constants v;(n), 0 < j < n such that

Wn(2) = wu(2) + Zvj(n)wj,l(z), foralln > 1 (3.7)
j=0
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For fixed p we assume (as in Cavaretta et al [30, Sec. 10]) that there exists a
constant A with —oo < A < 1, such that

1/n

limsup ¢ Y |y (n)(A5)7 ¢ < Ap* < Ap. (3.8)
With these assumptions it can be shown that for each n sufficiently large, the
rational interpolants 7, ,(F;z) and 7, ,(F;z) of F(z) in (3.3) and (3.4) do
indeed exist and are unique. Then the following theorem holds.

Theorem 3. Let p be fized with 1 < p < oo, and suppose that the tableaux
(3.1) and (3.2) have no limit points exterior to E and satisfy the conditions
(3.3) and (3.4). If F € M(E,;v), v > 0, and if {a;}_; are the v poles of
F in E,\ E (listed according to multiplicities), then the rational interpolants
rnu(F; 2) of (3.3) and 7y, (F; 2) of (3.5) satisfy

lim [7 o (F;2) — rp(F; 2)] =0, forall z€ Epx\Ui_{a;}, (3.9)

n—oo

the convergence being uniform and geometric on any closed subset of

Epzfx \ U;{ZI{()&]‘}.

More precisely, on any closed subset H of any E. \ {a;} with p < 1 < 0o, there
holds

’
P2

lim sup{ma&( [P (F52) — 1 (F z)|}1/" < (3.10)
ze

n—oo

The proof of Theorem 3 depends on the following extension, due to Saff [90],
of the de Montessus de Ballore Theorem [39]:

Theorem A. Suppose that F € M(E,;v) for some 1 < p < oo, v > 0, and
let {aj}7_; denote the v poles of F in E, \ E. Suppose further that the points

of the triangular scheme
0
b
bgl)’ bél)
o, b5 b5V (3.11)

DR A A
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(which need not be distinct in any row) have no limit points exterior to E, and

that
ntl 1/n

lim H (z— zbEn)) = AexpG(z), (3.12)
uniformly on each closed and bounded subset of K. Then, for all n sufficiently

large, there exists a uniques rational function

Snw(z) = Z::Zg} gnw €11, by, €1, hy,  monic (3.13)
which interpolates F(z) in the points b{" ™) ") ,bgﬁ:ﬁl. Each sy, ()

has precisely v finite poles, and as n — oo, these poles approach, respectively,
the v poles of F(z) in E, \ E. The sequence {sn,(2)}57,, converges to F(z)
on E, \ UY_{a;}, uniformly and geometrically on any closed subset of E, \
UY_1{ay}. More precisely, on any closed subset H of any E, \ UY_{a;} with
1 <7 < p, there holds

T

> (3.14)

limsup{me% |F(2) = sp.,(2)|Y/"™ <
zZE€

n—0o0

(¢) Theorem 2 is basically the main result from de Bruin and Sharma [35]
(for multiple nodes cf. de Bruin and Sharma [36]). Here the idea of Stojanova
[101] is used, but the unexplained definition

-1
£ - . _ _ -
Agp = E A (ntv+1) 455 —v<s<n+4+v; a1=---=a_,:=0

m=0
there, is replaced by the more reasonable (2.4).

Additional results, obtained by A. Jakimovski and A. Sharma [58], extend
equiconvergence theorems for polynomial interpolants to rational Hermite-Padé
interpolants are given now. The complete proof of these theorems is out of the
scope of this monograph; at the appropriate places we will refer to the literature

where the interested reader can complete the argument.

Suppose f(z) € Ay, p > 1, and 0 < |a] # |B] < p. We recall that B, (z)
is a monic polynomial of degree v with v zeros, not necessarily simple, in D,,.
We shall suppose throughout that f(z) does not vanish at the zeros of B, (z).

Let the Hermite-Padé interpolant to g((z;) on the zeros of (2% — a™)" be

denoted by Pp u,r (z, o L) ) . Then we have

' By (?)
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THEOREM 4. Suppose f € A,, p>1and 0 < |af # |B] < p. If Bu(2) is a
monic polynomial with no common zeros with f(z), then

. f(Z) . Ln+u(za a>H:(n+V+1)_1('aﬁa f)
Pn,a+1,1 (Z,a, BV(Z) Pn,l/+1,1 Z, Q; B,,(Z)

r(n+v+1) n
= 0(1)|z|7 <maXp(|f|;ﬁ|)> <pi€> 4s T — 00

where O(1) is independent of n and z.

The following interesting connection between the Lagrange and Hermite in-
terpolants was used in the proof of the above theorem.

LEMMA 2. Given a function f € A, , p>1, numbers 0 < |a| # 3] < p

and a positive integer r, then we have

n+v
Lntv(z, H:(n+u+1)—1(" B, f) = Lntv(2, 0, f) = Z Cjntv,a,8% (7.0)

J=0

where

X s+r—1
Cjntv,a,p = (om+u+1 _ 5n+u+1)r Z Z ( . )aj+(7n+s+7")(n+l/+1)><
m=0 s=0
% am(n+u+l)ﬁs(n+u+l) fO’l’ 0<j<n+v,
and

> A (maxaa, |5|>>’“<”*”” 1

Cintv < - .
| J,m~+ 7Ot76| (17@) (17 18| p— ¢ (p—E)J
p—e p—e

O

We assume in this section that m = rn+s, 0 < s <r —1and pn+q <
m, p > 1. Let Ppy4q-1,m)(2) denote the unique polynomial P(z) of degree
< pn+ q — 1 for which

m—1
min E ‘f(awk) — P(aw®) 2, Wwh=1,0<al <p, p>1, (3.4)
Pempniq—1 =0

is attained. It is known [88] that the polynomial satisfying (3.4) is obtained by
truncating the Lagrange interpolant to f(z) on the zeros of 2™ — a™. Since

3

00
Lm,l(z,a,f) = Cjzjv Cj = Zaj+amagm7
o=0

J

Il
=)

we have
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LEMMA 3. Assume m =rn+s, 0<s<r—1and pn+q < m. Then we

have
pn+q—1 00 pn+q—1
_ j mo_ (m) _j
Pontq-1.m) (2, f) = Z Z E @jrom”" = E c; 7 (3.5)
j=0 o=0 J=0
(m) _ S om
where ¢; =37 0 Ajroma”™.

THEOREM 5. Suppose f € A,, p>1and 0 < |a| # |5] < p. If B,(2) is a

monic polynomial with no common zeros with f(z), then

. f(Z) _ . Ln—l(zy a, Ppn+q—1,(7rL)('7 ﬂ’ f) _
Pr,o,1 <Z,017 By () Proa |z a; Bo(2) =

rn—+s n n—1—v
= 0(1)|z| 7" max (('ﬁ) , (|a|>p ) <|z) asn — oo,
p—e€ p—e€ p—e€

wherem =rn+s, 0<s<r—1, pn+qg<m, p>1and Pyrye1(20,f)
is defined as in (3.4).

The region of Walsh equiconvergence given in this case agrees with the one
in Theorem 4 in [2] with the poles deleted.

THEOREM 6. Let f € A,, p> 1. Assume 0 < |a| # |5] < p and that k > r

are two positive integers. Then we have

.Hlljn—l(z’ﬁvf) . f(Z)
Pn,O,r <Z7Oé, B,,(Z)) - Pn,O,T <Z70, BV(Z)>

oL ) (max,f'f“';ﬁ'))n~

THEOREM 7. Suppose f € A,, p> 1. Suppose 0 < |a| # |B] < p, k > are

two positive integers and v > 1 is a given integer. Then we have

. f _Hllgm—l('7ﬂaf)
Pn,O,r <Z> a; BV(Z)) - Pm(),r <Z7 Q; B,,(z))

_0(1)|Z|u< 2] )T"”l (mx(mm)(kﬂr)n.

p—€ p—¢€

The proof of the last theorem requires iteration of two Hermite interpolants

and is based on the following lemma.
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LEMMA 6. Given o function f € A,, p > 1, numbers 0 < |a| # |5] < p and
positive integers p,r, p <, then we have

pn—1
Hgnfl(zvavH:n—l('aﬁa f) = Hgnfl('z,a, f) - Z C;,n,a,ﬂzj
=0
where
n(r—p+1)
1
¢ nap = O(1) (max(|0‘|’|ﬂ|)> L o<j<m-t
p—e (p—e)

This agrees with the result in Theorem 1 in [2], where v = 0.



CHAPTER 7

QUANTITATIVE RESULTS IN THE EQUICONVERGENCE
OF APPROXIMATION OF MEROMORPHIC FUNCTIONS

The subject of this chapter is similar to that of Chapter 4: we determine the
position and number of distinguished points, but now for meromorphic functions

and rational interpolants.
7.1. The Main Theorems

If ¢ is a positive integer or oo, for a function F'(z) € M,(v) we have defined

the rational functions

Ut (2
Pfiw(z,F) = 57 ((z)*)

n,v

(1.1)

and have proved the existence and uniqueness of these rational functions for n

sufficiently large. We have equiconvergence of the difference

AL (2, F) = PX,(2,F) = P} (2, F) (1.2)

v

and have proved (Ch. 6, Theorem 2) that if «,0 € C, |af # |8], v :=

max(jal, |]) and

Sew(z, F) = Tim |AL (2, F)|7, 1<£< o0,
then Sy, (2, F) < K(z), where
¢
(%) for |z] <p
K(z) = (1.3)

(My Ll for |z| > p.
/2 o =

A point z where Sy, (2, F) < K(z) will be called distinguished or exceptional
(cf. Ch.4, Section 4.1).

We now shall prove the following four theorems:

THEOREM 1. For any F C M,(v), there are at most { — 1 distinguished
points in |z| < p (i.e., Dp\{2;}_1)-

149
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THEOREM 2. For any set of { — 1 points w; in 0 < |z| < p different from
{2;}_1, there is a meromorphic function F(z) € My(v), such that the points
{wj}ﬁ;% are distinguished for F(z).

THEOREM 3. For each F € M,(v), v > 0 there are at most v+{ distinguished
points in |z| > p.

THEOREM 4. For any set of £ + 1 — v points w; in |z| > p, there exists a
function F' € M,(v), v > 1 such that these {+1—v points are distinguished for
the function F.

7.2. Some Lemmas
We shall need some lemmas for the proof of these theorems. Set
AL (2 F) = By () B, (2)A L, (2, F).

Then we have

LEMMA 1. For each z satisfying |z| # p and B,(z) # 0 the following state-
ments are equivalent:

() SeulsF) < K(2),

(i) Af (2, F)- (i)EZfH_LV(ng) = O((gK(2))") for some q, 0 < q < 1.

PROOF. Since lim |Bf;,u(z)|% = 1 for B,(z) # 0 (see (2.21) in Ch. 6),
part (ii) of the lemma follows from part (i). We shall now show that (ii) implies
(i). To see this observe that

ATL7V(Z’F) - (E)SZZfL+s,V(ZvF)

) s—1 Ké)kfzfﬁw(z,ﬂ - (2)(1@“)2 Zfl+k+l,u(zaF)}
k=0
~o( S |2 twra)™) (2.1)
k=0

(a) Case 1: |z| < p. Using (2.1) with s = n and n + 1, respectively, we have

Bl F) = ()RS, (= F) = 0( Y ()" (ak(2)"")
k=0

n—1

=0 (X ()" («=h)™)

k=0 P
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- (B o (X (s )

p

n—1

= (a(5)) (X )

k=0

and
Ko F) = () B e F) = 0 (a(12))7),

These two relations can be put together and we get

2\ oy o s qlof\e
IR ) = Byl P+ (1))

2

Let us suppose that Sy, (z, F) > q(l I) . Then

2
n

252,60 = T |ty )

n—oo

=Sz, F).

Therefore al\
«
> (7)) =K@

which contradicts Theorem 2 of Ch. 6. Thus S¢ . (2, f) < ¢K(z) < K(z).

Sew(z, F) = <|a|)

|2l

(b) Case 2: |z| > p. Using (2.1) with s =n and n + 1 we have

Bl o) (2) B, ) = Ol ()™,

(%

Similarly, we have

N (n+1)¢ n n n ‘Z| 2n
R F) = (2) " B, (5 F) = O(¢" |2l (-rr) ).

Putting n for 2n (or for 2n 4 1), we have

(%3]

Bl P+ 02 (2 (el

- _ z
A[%],u(zaF) - (7) |Oé‘ p[_H

«

Let us suppose that S¢(z, F) = K(z). Then

1

(K(2)"? = Tm |&f),

n
n—o00 2

(2 F)|"
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n+1

~ Tm OED[ TR )

ES
n

n—o00 [0
z |5

=|—| K(z).
BRIE)

This gives
4 {41 4 {41
K(z)z(ﬂ) :‘B‘ M(‘QD :‘B‘ K(z) < K(z).
T E A1V

From this contradiction and from Theorem 2 of Ch. 6, we see that (i) is also

true for |z| > p. O

14
LEMMA 2. Let B,(2) = > a,2™. Then we have the following representa-
m=1

tion for A, (2, F) :

n+2v
AL (2 F) =Y Ren2®+en (2.2)
s=0
where
len| < C(qK(Z))n
and
n+2v v n+v
Z Rs,nzs — Ozz("""’"'l)B,j(Z) akaé(n+y+1)+3_kzs
s=0 k=0 s=k
174 vV—T v
2D D D @ = T 2T
=1 k=0 m=0 (2.3)

Recall that rs (0 < s <w) are given by

rs’n::’yf)nf'y;on, 1</l< o0, 0<s<w.

Here ’ygn,’yfn depend on the coefficients of B, (z).

The following estimates assumed repeatedly in the sequel are listed below for

ready reference:

(a) lim 'yf)n = Qs ., \’yfyn| <c forall ¢ s,n;

n—oo
o £(n+v+1)
(b) Tom = 'Yﬁ,n —Yoms  Tsnl < C(%) ;

Cc

(c) la;| < —oy

, 3203
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(d) A, — AL, = dygnavsr)s0 T e,

c || \ (ntr+1)(e+1)
where Esnzi‘-( ) , §2>0;
EVEDERVEE
(e) AL, — Aﬁ,n = aé(n+u+1)+n+u+1+sa(€+l)(nJrUH) +€om
. |a| n+v+1
where ef, = ( ) Estntvtinl, $<0;
, p—c
c a n+v+1
(f) Af=a.+6l,, '5?"“@'(,)'%6) L 1<l<o0, 520,

PrOOF. With UX(2) := Opﬁ’nzs, the following relation holds between p’ ,’s
S=
and ’yf;’n’s :

v v
4 l l

Z akpsfk,n = Z ’Yk,nAsfk,n (24)

k=0 k=0

Whereak:Ofork<00rk>l/,andpgyn:0f0r5<00rs>n.Then

B,(2)US(2) =Y oy pl 20
k=0 s=0

n—+v v n4v v
S (e ) = 3 ()
s=0 k=0 s=0 k=0 (2.5)

We shall need the difference (recall that in Agn the index s can be negative;
see (2.12))

B,(2)U"(2) = By, (2) Y AL .28
s=0

n+v v n v
o l l s l s l k
- E (E Vk,nAsfk,n)Z 75 As,nz E fYk,nZ .
s=0 k=0 s=0 k=0

Here the first double sum can be split into three sums and

v v n v
= Z (Z rYf:,nAﬁ—k’,n)ZS + Z (Z 'Yll;,nAg—k,n)ZS
k=0

s=0 k=0 s=v
n+v v

E E 4 4 s

+ ( ’Yk,nAsfk,n)Z ’
s=n+1 k=0

and the second double sum can be handled similarly:

s n v
4 0 4 0
(Z ’Yk,nAsfk,n) ZS + Z ( Z ’Yk,nAsfk,n) zs
k=0

s=0 k=0

1
s=0
n+v v

+ 3 (X kAl

s=n+1 k=s—n
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The difference of these two can now be seen to be

s—n—1

Vz:l( ZV: VemALk )z + Z ( Z e WAL kn)zs_

s=0 k=s+1 s=n+1 =

Hence interchanging the order of summation in s and k in the above two double

suims,
v k-1 v—1 n+v
0 l s E : § : £
’}/k,nAsfk,nZ + ’YkmA .
k=1 s=0 k=0 s=n+k+1

Replacing s by s + k in the above, we have

v—1n+v—=k

v —1
DD Al D AL

k=1s=—k k=0 s=n+1

Therefore
n v—1 n+v—~k
B,(2)U'(2) = B, ,(2) > ALz + ) Vi A
s=0 k=0 s 1

=n+

v -1
Y k
+Z Z VenAs 2T, 1<l <o,

k=1 s=—k

(2.6)

If we multiply (2.6) with £ = oo by Bf;y(z) and from the product subtract (2.6)

multiplied by By°,(2), we get

AL (2, F) = By, ,(2) By (2)U;°(2) — ByS, (2) By (2)U*(2)

=851+ 8+ 53 (2.7)
where
S1 =B, (2)B,(2) (A%, — AL )2°
s=0
v—1n+v—~k v—1 nt+v—~k
S2 =B, ,(2) Z X WAL ST =BR, () X vhaAlatt,
=0 s=n+1 ’ k=0 s=n+1 ’ ’
S3 :szu(z)z Z ’YIgonAS?nzs+k n 1/( )Z Z ’yﬁ,n 2ok,
=1 s=—k k=1 s=—k
(2.8)
We shall write Sy = S21 + S22 + S2,3 where
p v—1 nt+v—~k k
Soa = (Bl = BR()) X ¥ A%
k=0 s=n+1
v—1 nt+v—~k
Sop =B,(2) 2 X W(AZ, — AL (2.9)
k=0 s=n+1
v—1 ntv—k p ’ &
5273 ( ) ZO Z+1 (’Yk n ’)/k,n)As,nzst .
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We shall prove that

Si = vty (Bu(z))2 Z (ntv+1)+s2° + O [(qK(Z))n] . (2.10)

s=0

To see this we use (d) above to get

S 4] < (o) S (LY o)

P —o P
(2.11)
Also, Bf;yl,(z) — B,(2) = Z::o(’Yﬁ,n — «ay)z°, where \’yﬁ’n — as] < C¢™ and
the same holds for B°,(z) — B,(z), so that we may replace BY, ,(2)B;°,(2) by
(Bu(2) + 77)2 where

v
n| < Cq™ ) |2* < Cq".

s=0

It follows that replacing B ,(z)B;X,(z) by B,(z)? brings in an error
n, < 2|B,(2)|g"C + (Cq")* < Cq".

This proves (2.10) on using (2.11).

We now estimate S2 1,522,523 in (2.9) in the same way to get

y—1 =k
Sa1 Z Pmn2™ Y Y apasz T+ O[(gK (2 )) I
k=0 s=n-+1

v—1n+v—=k

Soo = o/("Jf”“)By(z) > akag(n+y+1)+szs+k + O[(qK(z))n],
k=0 s=n+1

v—1n+v—=k n
So3 = fBl,(z)kZ > 1 Thnasz 4 O[(qK(z)) ]
=0 s=n-+

(2.12)
We now split S3 of (2.8) in three parts as was done for S :

v —1
S3,1 - (B’ﬁ’y(z) - Byoy,oy(z)) Z Z fyzan:?'nzs-i_k: )

k=s s=—k

v

-1
2D D0 WalA% — AL
k=1 s=—k
v —1
S3,3 = B,,OI?V(Z) Z Z (’Yﬁ,n - ’yz?n)Aﬁ 7Lzs+k

k=1 s=—k

Using the estimates (a)-(f), we can see that

Ss;=0[(¢K(2))"], i=1,2,3. (2.13)
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Using (2.10), (2.11) and (2.13) in the expression of AY, (2, F) i.e., in (2.7), we
get

n
A _ A(n+v+1 2
An,u(va) = oflntv )(BV(Z)) Zaé(n+v+1)+szs
s=0
v—1 nt+y—Fk
+Zrmnz > D sl
k=0 s=n+1
v—1 nd+v—~k
4 1 s+k
+ « (ntv+ )BV(Z)Z Z akag(n_w_,_l)_,_sz""'
k=0 s=n+1
v—1 nt+v—~k

— B, (2) Z Z Thnas 2™+ O[(qK(2))"].

k=0 s=n+1

(2.14)

This leads to (2.2) and (2.3), if we can prove that the sums in (2.14) can be
rewritten to give (2.3).

Combining the first and third sums on the right in (2.14), we obtain

n

O/(n+u+1)BV (Z){B,,(Z) Z ae(n+y+1)+so/(n+u+1)zs

s=0
v—1 nt+v—~k
s+k
+ E E Qpp(n4v+1)+s2 }
k=0 s=n-+1
v n
_ _bn+tvrv+1 s+k
= o )By(z){ Z E Ok Op(ntv+1)+s?
k=0 s=0
v—1 n+v—=k
s+k
+ § § Oékaé(n+u+1)sz }
k=0 s=n+1
Z n+v+1
( )B {Z E nga[(n+y+1)+sz
k=0 s=0
v n+vrv—=k
s+k
+ E E Ak Af(ntv+1)+s? }
k=0 s=n+1

Observe that in the last double sum we have 0 < k < v while in the previous
step in the last double sum we have 0 < k < v — 1.

n+v—~k

This is justified since Y akag(nJr,,HHszS*k = 0 for k = v. Thus on sim-
s=n+1

plifying from the above we have the first and third sums in (2.14) become on
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adding

v n+vrv—k

O/(n+u+1)By(z)Z Z aka‘f(n+u+l)+szs+k

v n+4v

_ A(n+vr+1 )
a (ntv )Bl/(z) E E akai(n+u+1)+s—k257
k=0 s=k

which is the first part of (2.3).

Finally the second and fourth sums on the right in (2.14) yield on using the

expression for B, (z) :

v—1 n+v—k v—1 nd+v—~k
E Tmn2 E E ARasZ E apz™ E E ThnGsZ =
m=0 k=0 s=n+1 k=0 s=n+1

v v—1 nt+v—=k
= s+k—m
= E E g (PO — Tk Olm ) As 2 .

m=0 k=0 s=n+1

Now interchange the summations over s and k. First we have 0 < k < v — 1,
n+1 < s < n+v—k. Thisis equivalent ton+1 < s < n+rvand 0 < k < n+v—s.
Putting s=7+n, 1 <7 <, we have

v v o v—T
E E E +k+
" (Tm,nak - Tk7nam)ar+nZT m

m=0 =1 k=0
which is the second sum in (2.3). This completes the proof of Lemma 2. O
7.3 Distinguished Points for |z| < p (proof of Theorems 1 and 2)

PROOF OF THEOREM 1. Assume that there is at least one function F(z) €
M, (v) for which there are ¢ distinguished points in |z| < p. Let us denote these
points by wi,...,w. Then

Sg,l,(wj,F)<K(wj)7 ]:1,7€
By Lemma 1, we have
B — (D) Bl = O[aK )] 1<t (3

We shall use Lemma 2 to replace wa and A, +1,, by the corresponding formula

(2.3) where the error made by using it is of the same order (qK(wj))n. But the
T'm,n in formula (2.3) depend upon n and so to distinguish 7, ,, in the expression
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for AY , from ry,, in AL, ,, we denote the ., in AL, by 7 n. Then by
(2.3),

Zﬁ,u(wjv ) ( ) An«l»l u(w]7F> = T1 + T2 + O[<qK(wJ)>n]’

where
v n4+v
__(ntv+1 )
Ty = ot )Bu(%‘){ DD Wtttk
k=0 s=k
w v n+l—-v (32)
i\?
_ (;‘7) a@(n+u+1) Z Z akaé(n+u+2)+87k¢w;}
k=0 s=k
and
v v—T v
k
— w;L (PmnQk — Tk nam)aT_,_mw trtm
7=1 k=0 m=0 ( )
3.3
v
+1 kT4
n Z Z Z(Tm nOL — ’I"k nam)a7'+m+1w T m

7=1 k=0 m=0

Using the bounds for 7, n, Tk.pn and ar4n41, we can see that T is of the same
order as (¢K (w;))". Thus from (3.1), we obtain (using 7}) :

v n+v

E(n+u+1)B { Z Z QR p(n4v+1)+s— kw

k=0 s=k
v n+v+1

- ¢ Z Z O‘kaé(n+u+2)+s—kw5}
k=0 s=k (3.4)
= O[(qK(wj))n].

We shall simplify (3.4) further. Thus we get for the left hand side of (3.4)

v n+v
L 1
=« (n+v+ )By(wj){ Z Z aka[(n+y+1)+3,ksz-
k=0 s=k
v n+v+1
s+4
- Z Z aka2(7L+u+1)+£+s—kw;' }
k=0 s=k
v n4v
QDB () {Z Z kg 441) 4 k0
k=0 s=k

v n+v+14+4

- Z Z akaé(n+u+1)+s—kw;}

k=0 s=k+¢
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where we have changed s+ ¢ to s in the second sum in the braces. Thus we get

v k+4—1
ae(n+u+1)By(wj){Z Z a{kag(n+y+1)+57kUJ;
k=0 s=k
v ntv+l4+L
- Z Z O‘kal(n+u+1)+s—kw;} = O[<qK(wJ)) ]
k=0 s=n+v+1 (3'5)

Since the B, (wj)’s are bounded, |w;| < gp, 0 < ¢ < 1, the second sum in
the braces in (3.5) is of the same order as (qK(wj))n. Then (3.5) gives with
T=s5—Fk:

v (-1

B, (wj) Z Z Wk y(ntvr1) 1] =0 [<QK(wj) )"}

k=07=0 |a|l

or

-1
(BV (wj))Q Z T (ntv41) 705 = O((q(ii;’)]) )ﬂ).

Dividing by B, (w;)? and recalling that K(w;) = (\%|)z when |w;| < p, we get

-1
T q \n+v+1 .
E G/g(n+,/+1)+7-wj = O((?) ), J = 1, FEN 716. (36)
7=0

The above set of £ equations in the unknowns ay(,1,41)4- for £(n+v +1) <
7 < 4(n+v+1)+£—1 has a non-vanishing Vandermonde determinant and
applying Cramer’s rule, we obtain

q n+v+1 .
Qp(ntv+1)+j = OK?) }’ 0<j<{-1

Asfl(n+v+1)+7,0<j<{—1runs through all integers > £(v+1) for n € IN,

we have X

Tim [a|* = Tim | e = L
i a e — 1 a . n+v Y - .
k—o0 k n— oo Z(n+u+l)+] P P

This contradicts the hypothesis that f(z) € A, and completes the proof. O

PROOF OF THEOREM 2. We shall first construct a function f(z) € A, which
is analytic in each of the points w; and which satisfies

f(2)
B,(z)

We define the coefficients {a, }n>0 by the conditions

St (w5 ) < K(w), 1<j<e-1.

aem = p~"™ag, ap#0, m=12 ...

=1 3.7
Y amyswi =0, 1<j<l-1, m=0,1,2,.... (37)
s=0
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For m > 0, we can write

w1 7 Gem+1 1
wa wi .. Wg_l Hem+2 =ptmay | -
> e

We-1 Wy We—1 Afm4o—1 1

The determinant of this system of equations is wiws ... we—1V (w1, wa, ..., we_1)
# 0. By Cramer’s rule
Vi(wi,y .o, we—1)
—Lim J 1 yWi—1 .

At = —p Tag =———=, 1<j<L-1 3.8
e V(wt, .., we—q) (3.8)
where Vj(w1,...,we—1) is obtained from V(ws,...,ws—1) by replacing the col-

umn containing w3 by the column (1 1...1)T. From (3.8) it is clear that
anie = p tan, n>0.

Since for an arbitrary m, we can write m =kl +s, k> 0and 1 <s < {—1, we
see that

— 1 — _ ke 11
lim |am| m = lim P kl+s aS| kl+s S —.
m— oo k—o0 p
m=s(mod £)
. 1 . _ 1
However for m = k£, k >0, lim |age|* = lim p~|a,|* = L . Therefore
k—o0 k—oo P

m |am|% =
m—0o0 P

and the function f(z) = > am2z™ € A, and F(z) = f(2)/B.(z) € My(v), if
m=0
we choose ag in such a manner that f(z;) #0,1<j <w.

We see on using the representation formula just before (3.6), that for 1 <

-1
Al (wy) - (%)lzﬁﬂ,u(%‘) = (Bu(wj))2Zae(n+u+1>+sw§+0[(qK(wj))n]
= O[(¢K (w)))"],

on using the second relation in (3.7). This shows by Lemma 1, that the w;’s
are distinguished for F'(z). O

7.4. Distinguished Points for |z| > p (proof of Theorem 3)

We shall need some more lemmas before we come to prove Theorems 3 and
4. We begin with
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LEMMA 3. The coefficients R, of z° in (2.3) satisfy the following estimates:

£(n+v+1)
Rs’n:OK o ) ;}, 0<s<n+2v, (4.1)
p—¢ (p—e)
and L
Rs,n = a@(nJrqul) Z Zamakaé(n+u+1)+sfmfk (42)
m=0 k=0

for2v<s<n+u.

PrOOF. In order to find the coefficient R, of z° in the expansion of
AL (2, F)in (2.2), (2.3), we find the coefficient of 2° in

n,v

v n+v

oD B, (2) Z Z Qp(ntv1)+s—kZ" (4.3)
k=0 s=k

and also the contribution to the coefficient of z® in the triple sum in (2.3). Now

the product (4.3) by interchange of order of summation

n+v min(7,v)

_ 0/("+”+1)Bl,(z) Z Z R yvi1) e kZ

7=0 k=0
n+2v s min(7,v)
_ l(n+v+1
=« (ntv+1) E { § Qg7 Z akaé(n+u+1)+‘rfk'}zs~
s=0  r=max(0,s—v) k=0

The double sum between the curly brackets contains only a finite number of
terms ((v +1)? to be precise) which leads to an upper bound for the coefficient

of z* in the above expression. This bound is

|| Entr+1) s
(=2) (p—2)".

The triple sum in (2.3) also contributes to the coefficient of z* :

v vV—T v
2" Z Z Z (P — Tk Q) G 27T (4.4)

7=1 k=0 m=0

Putting 7 + 1 for 7 in the above we have

v—1lv—71—-1 v 2v

E § § : k+1+14m _ E +J
2" (Tm,nak - 7'kmam)a7+n+lz " M= Cn+jzn ja

7=0 k=0 m=0 7j=1

where we put j =k + 7+ m + 1, so that

CnJrj = Z(Tm,nak - Tk,nam)an+7+17 1< ] <v
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where 7T+ k+m=j—-1,7,kkm>0,7<v—-1,m<v, k<v—1-—7 When
1 < j < v, the above conditions can be replaced by the simpler conditions 7 > 0,
k>0,7+k <j—1and m = j—1—7—k. Therefore we can write for 1 < j < w:

j—1j—7-1

Cn+' = (T’—I—T—k,nak - rk,na'—l—T—k)an+T+1~
J J J

7=0 k=0

For 0 <7< j—1<v—1, the inner sum in the above becomes zero for each
7. This means that the triple sum in (4.4) contributes to the powers of z* only
fors >n+v+1. Forn+v+1<s<n+ 2, there are only a finite number
of terms and their order is also (M)Wwﬂ(p — &)~ %, showing that (4.1) is true

p—e
fornd+rv+1<s<n-+2u.

In order to prove (4.2), we have to consider powers of z°, 2v < s < n + v;
these can arise only as a result of (4.3). There we see that the coefficient of z*

is

s min(7,v)
£(n+v+1
« (ntv+1) Z A5 1 Z Ok Qg(ntv+1) 47—k
T=max(0,s—v) k=0

where m4+7=5,0<m<pr,0<7<n4v.Sincet=s—m>2v—m > v,

the above sum can be replaced by

14 14
a£(7L+l/+1) Z Z amakaz(n+u+1)+s—m—kae(n+y+1)7
m=0 k=0
which is the value of R;,, in (4.2) for 2v < s < n+wv. This completes the proof.
O

LEMMA 4. Let all the zeros {z;}}_; of the monic polynomial B,(z) =
iakzk, a, = 1, belong to |z| < p. Furthermore let the quantities {As}52,
Igzl?fésfy )

kzz:oakAs,k = O[(%)s}, as 8§ — 00 (4.5)

for some q, 0 < g < 1. Then

1
lim sup| A, |Y/* < = .
p

S§— 00

PrOOF. Consider the formal power series

flz)=> Az
s=0
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From the order relation (4.5) in the lemma, we see that the coefficients Cs of
the formal power series formed by the Cauchy product B, (z)f(z) satisfy
qg 1

lim sup|Cs,

s$—00 1%

This implies that B, (z)f(z) is an analytic function at z = 0 with Taylor series

having a radius of convergence R; > p. As all zeros of B,(z) are in |z| < p, the

- e

function

is also analytic on | S5 < % . O

§— 00
PROOF OF THEOREM 3. Assume that there is at least one function F(z) €
M,(v) with £+ v +1 distinguished points w; in |z| > p. We consider throughout
the case of simple poles. In other words, this implies that
Sep(wi, F) < K(wj), 1<j<{l+v+1 (4.6)
According to Lemma 1,
NG AN n
A=A (@ F) = () Bl (@, F) = O[(gK (w@))"]
for some 0 < g < 1. We first use Lemma 2 (relation (2.2)) to show that for
1<j<tl+v+1,

n+2v
A ZR? nw + Z (Rs n_— 5 s Z,n—)—l)w]
n4+2v4+£0+1 1 (47)
Y LR 0K )).
s=n+2vr+1
By Lemma 2, omitting the error terms for simplicity, we have
n+2v

v(wj) = Z R nw3
s=0

n+2v+1 n+2v+4+4+1
A4 _ s+ __ s
Wy An—o—l,u(wj) = § Rs,n+le = Z Rs_g,n_,_le.
s=0

Then
A= Zﬁ,u(w]') - (*J) AZ+1 u(wj)

n+2v n+2v+0+1
= § Rs,nw;‘ - J § Rs—f,n+1w;
n+2v
= § Rs nw + § ( - s ZnJrl)
n+2v+£+1 1

_ Z JRs—Z,n+1w;' + O[(qK(wJ))n]

s=n+2v+1
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This proves (4.7).

We shall show that (4.7) can be rewritten as

n+2v 1 n+2v+L4+1 1
A= Z <Rs,n - J Rs—@,n+1)w; + Z ( - J }%s—e,n—%l)w;9
s=n+v+1 s=n+2v+1
=0 [(qK(w]))n} . (4.8)

To this end we observe that using (4.1), we have

s n . _ p—E€
ZRsmwj =O[(¢(K(wj))"] using ¢= i o] < 1. (4.9)
Now
n+v 1 2u++0—1 n+v
Z (Rs,n - J Rs—é,n—‘—l)u};‘ - Z Z ( - Rs V4 n+1)
s=/{ s=2v+¢
= Il + ]2.

The first sum [; is estimated from above using (4.1) by

C( | )e(n+u+1)

P = 0<(QK(wj))")- (4.10)

In the second sum we use Lemma 3 (4.2) which holds for 2v < s <n+ v and

a[(n+u+2) v v

l E E
(67 Rs—é,n+1 = O[Z amakaﬂ(n+u+1)+ﬂ+s—£—m—k

m=0 k=0
_ O/(n—O—V—O—l) Z Z amakaé(n+u+1)+s—k—m
m=0 k=0
= Rs,n
so that )
R — = Rs_pn+1=0 for 2v+0<s<n+w. (4.11)

Thus combining (4.9), (4.10) and (4.11), we get (4.8).

Put7=s—n—v—1in (4.8). Then for j =1,2,...,/+ v+ 1, we have

v—1 1

1
E (Rr+n+u+1,n - o/ Rrynyviie n+1)w7+"+y+
7=0

v+£L
+Z( Rrynyvyio Zn+1> Thntvtl o O[(qK(wj))n]-

(4.12)
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In (4.12) replace (K(wj))n by (K(ujj))nerrl and then divide (4.12) by w?J”’H.
This gives a linear system of v+ ¢+ 1 equations in v+ £+ 1 variables. Applying

Cramer’s rule, we get

1 |a‘f ntv+1
R —R —o( 14 __
T+n+v+1l,n — 7 T+n+v+1—~€n+1 — 1+1
o (p—e)

for0<r7<v-—-1,

1 gla|®  \nmtvtt
_J R7—+n+u+1—i,n+1 = O(m)

forv<rtr<n+2v+1+4.

Replacing 7 +n + v + 1 by m, we have

1 glal®  \rtet
Rm,n - JRW—E,TL—&-I = O(m) )
forn+v+1<m<n+2v (4.13)
1 - q\a|£ n4v+1
~ o B =0(0m)
forn+2v+1<m<n+2v+/+1.
(4.14)

Now replace n + 1 by n in (4.14), multiply by —a’ and replace m — £ by m.
Then we get

qlal’ )"*”*1

R = (m , max{n+v+1,n+2v—L} <m < n42v. (4.15)

We now use (4.15) in (4.13) giving —2 Rp_¢n41. Then multiplying by —a

and replacing m — £ by m, we have

q|a|e n4v+1
(p _ 5)z+1) }

for max(n+v—L+1,n+2v—20) <m<n+2v—L

Rpyny1 =0 {

Again replace n + 1 by n and replace n 4+ v in the order term on the right by
n+ v + 1 to obtain

Rmm _0 K(pq—|(z|;“)n+u+1}

for
max(n+2v —4m+2v—20—1)<m<n+2v—0—1. (4.16)

Thus we have been able to get an estimate for R,,, for values of m in (4.16)
which have been shifted by £+ 1 from the range for m in (4.15). Repeating the
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process a number of times, we can get the validity of the estimate for R,, , for
n+v—L<m<n+uv.

We use the explicit form for R, in Lemma 3 (4.2) and combine that form
with (4.16) for £ + 1 consecutive values of s and divide by a/**¥+1) Then we

have

v v q n+v+1 1
Z (7% Z akaﬁ(n+u+1)+s—m—k = O |:( 7 ) w
T p—¢ (p—g)ftmtvth)

forn+v—¥4<s<n+v.

Aslin+v+1)+sruns fromb(n+v+1)+n+v—L={L+1)(n+v) to
n+v+1)+n+v=>L+1)(n+v)+{ wecanlet {{(n+v+1)+s}s, run
through all integers > Ny by letting n run through all integers > N;. Therefore

v v n+v+1
q
Om Akln—m—k = O|: {+1)(n4v+1 }
2 IcZ:O (p— o) E Do)

m=0

1/¢

By Lemma 4, we get

Zakan_m_k = O((q—l)n) for some ¢, 0<q1 <1
k=0 P

Applying Lemma 4 again, we get

e 1 1
lim |a,|» < —,
n—oo

a contradiction to lim |ay,
n—oo

p
7.5. A Lemma and Proof of Theorem 4

For the proof of Theorem 4, we shall need the following technical lemma.

LEMMA 5. Let F(z) € M,(v) have simple poles, and let £ > v. If |z| > p,

then we have for £ > v and n large, the following relation:

Zﬁn{zflfufl,u(’z?F) - (g)exfzfu,u(zaF)}
-1 v
=-B,(2)a™ > > aragpiynrst (5.1)

sS=—V k=—s

l—v
- (BV(Z))QO/n Z Ao+ 1)nts2”
s=0
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4 l—s
B Y P
s=f—v+1 k=0
af e lzl ™
ro(a( ) LY g <
p—&° p—¢€

PROOF. We begin with the explicit form for AY ,(z, F) as given in Lemma
2, (2.2) and (2.3). We shall prove that

il < €[ (o 2Ly ] 52

and show that (5.2) allows us to prove that the triple sum in (2.3) is of the same
order as (¢K(z))".

We recall that the system of equations to find the coefficients 'yi’n, pi,n can
be reduced to a system of equations to determine ’yf;’n along with a system of
equations to determine pi_’n in terms of 'yf;’n. The equations to determine 'yf;n
(7., = 1) were given by (2.13) of Ch. 6:

n+v
ZﬂyanAs k2l =0, 1<j<v, 1<0<oc0.

Shifting the summation index we get

n+v—=k

kaanAsn]: , 1<j<y1<i< . (5.3)
s=—k

This easily yields a system of equations to determine ry, , = 'yf;n — Von Where
=0:
n

n+v—=k n+v—k

Zrknz > Asnj—ka,mf > (AL, - AT =0. (5.4)

s=—k s=—k
We shall now use the following known estimates:
Af;,n =oALy, <0 and Aﬁm =as+ 5£7n, 5s>0
where (5.5)

’ c |o¢\ n+v+1
5s,n = (p—2)° (p7€> , 1<s<oo, s2>0.

Using (5.5), we can write the first double sum in (5.4) as below:

n+v—~k —1

Zrk nZ ( Z Asn ])+Zrk nZ { Z an+V+ (a""+l’+1+9+6n+u+l+9 n) 3

S=—

n+v—k
+ Z 63,”}:514“8‘2. (5.6)
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Using the estimates on a,qy+14s and of 65,1, in (5.5), on the first sum
between curly braces, the second of these three double sums is bounded by:

n+v+1 4 s
’ Z @ (a”+”+1+5 + 5n+ll+l+s,n)zj‘ <

s=—k
S5l e
. ( s p

(=) \p—e —¢

< O™ttt 0<g< 1.

Similarly,

n+v—=~k n+v—=~k

2 = () ()T s

—€
Thus combining the above we get an upper bound for the second part of (5.6),
i.e.,

v—1
S2 < remlzF(Cr+ Co)g™™, g =max(q1, 2)
k=0
£(n+v+1)
< cz ( o] ) pH(CL + Co)g™ (5.7)
(n+v+1)¢
S C@n+u( |a| ) .
p—¢

The first double sum in (5.6) can be written as

|
—

174 o0

e[ = Y an]
k=0 s=n+v—k+1
v—1
=k f(2)
k=0
v—1 00 s
©(ZGHTT Y 2
im0 P € s=ntv—k+1 (p—¢)®
v—1 v—1
k | \e(ntvr1) [2] \ntv+1-k
f<zj>k§j:0rk, 5 +0((0=0) I;O(pis)

_f(z])Zrknz +o(( li) n+u+1>qn)

The second sum in (5.4) can be estimated directly on using |v25,| < C;

< o] £(n+v+1) c o £(n+v+1)
= (?) T oo (H)

, s>0
14
|As,n - A;on

, s<0

(l+1)(n+v+1)
|| 1 C
S( ) G T Gor s>a(

of )2(n+v+1)
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and it gives the same estimate as in (5.7).

Thus the set of equations to determine 7, can be written as
v—1
i o l(n+v+1) )

> rinzy f(z) = C(%) ¢, 1<j<w

k=0

Applying Cramer’s rule to the above system of equations, we get

en=of(a(2L) )] oskens

since f(z;) # 0, and V(z1,...,2,) # 0. This proves (5.2).

169

(5.9)

We now use (5.2) in the triple sum in Lemma 2 (2.3). Since there is only a

finite number of terms in the triple sum in (2.3), it is bounded by

o L(n+v) 2z ntv
o (L) (LY ™
p—¢ p—¢

From (2.3), we see that

v n+v

Zfb,u(% F)= e(nJrVH)B Z Z Ong(ntv+1)+s T O[(QK(z))n+V]'

k=0 s=k
Then
Zn v— lu(z F) (a)e n— VV(z F) PB+E (510)
where Pp has B, (z) as a factor and the error term FE is given b
g Y
4 n—1 4 n
Clqnfl[( |a ) ] } L O [( ) || } <
p—e/ p—¢ p—¢
<og K |al )f ] }"
p—e/ p—el’
Now
v n-1 £, 0(n+1)
«@
Pp = BV(Z) |:a£n Z QkQpnts—k2" — ot Zakaé(n%»l)Jrsszs}
k=0 s=k k=0 s=k
v n+4
=aB,(2) Zak{zaemg D D T ch}
k=0 s=k-+t
v k+4—1 n+4
:o/”By(z Zak{ Z ppts—k2 —Zagnﬂ kz} (5.11)

k=0
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The first sum in (5.10) is easily estimated by

v k+£4—1

. |[° o\ L2l
ol ;)C z::k (p—s)f"“*’fgc(p—a) (p—€

) k+£—1

< C(K(2)q)",

since |z| > p. Thus from (5.10) and (5.11), we see that for |z| > p,

An v— ly(va)_ ( ) Afb VV(Z’F)
«a
v n+4
= —a™B,(2) Z g Z ants—k2® +C(qK(2))".
k= = (5.12)
In order to complete the proof of Lemma 5, we examine the double sum S in
the above
v nt+l
fn Z Z Qppnts—k2°
k=0 s=n

Set t = s —n — k in the above. Then

v
_f t+k
=a " E E QR tnit?

k=0 t=—k

Here the region of summation is the parallelogram OABC with vertices O =
(0,0), A= (£,0), B=({—wv,v), C = (—v,v) with t along the horizontal axis
and k along the vertical axis. This region is split into a triangle —v <t < —1,
a rectangle 0 <t < ¢ — v and another triangle (¢ — v + 1 <t < ¥). Thus:

—1 v
n_n § § t+k
oz akAEnJrnthz

t=—v k=—t
v {—v
n_n t+k
+a "z E E QApntn+t?
k=0 t=0
0 {—k

¢ t+k
+a 2" Z Qg Za(l+1)n+t2 *

t=f—v+1 k=0
The middle sum is

l—v

o™ "Zakz Za(g+1)n+tz =a2"B, (Z)Za(g+1)n+tzt.

t=0
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Inserting this expression in S, we get from (5.12)

l—v

AN < t— n.n
Aﬁ—u—l,u(za F) - (a) AfL—v,v(ZvF) == O/ Z /BV(Z)Q Za(€+1)n+tzt
t=0
—1
— o/"z"Bl,(z) Z pningt?
t=—v

)4

4 t
—a"2"B, () E Qpninit?
t=0—v+1

which is the expression in (5.1) and this completes the proof of Lemma 5. O

PROOF OF THEOREM 4. Let {w;}, 1 < j < £—v+1 be a set of distinct
points in |z| > p. We shall then construct a function f(z) € A,(v) so that F(z) =
f(2)/By(2) € My(v). If f(z) = > arz", we define the sequence {ax}72,,, by

k=0

the following scheme:

Arygs = p IS U1 —v<s<l, r>1 (5.13)

aet1yr+s = 0, 0<s</l—-v, 1<r<2v-1. (5.14)

This scheme defines the ay’s for {+1 < k < 2v(¢+1)—1. From this point onwards
only (5.13) contributes to the construction of the aj’s where k = ({ + 1)r + s
and r > 2rv and £ +1—v < s < /£. It still remains to construct two sets of a;’s :
(i) the finite set {ag}, 0<k <Y,
(ii) the infinite set {a(p41)r4s}, With 7 >2v and 0 < s </ —wv.

The set in (ii) is defined inductively on using the following:

-1

l—v v
1
E wl?a(ZJrl)rJrk = T 75 7 N E E ata(€+l)r+sw$+t+
k=0 ! (BV(w])) { s=—v t=—s ! (515)

4 -1
LD DI ST Ly

s=f—v+1 t=0

for0 <s</l—v,r>2v,1<j<{—v+1. The first and third sums on
the right side above are motivated by the first and third sums on the right
in the expression in Lemma 5. On the left in (5.15), the a(y41)r4% are for
0 <k <{—v, but on the right side the a’s have indices of the form ({+ 1)r +s
for { —v+1<s </ and we can use (5.13) for r > 2v. For —v < s < —1, we
can write {4+ 1)r+s={l+1)(r—1)+4+1+swithl—v+1<l+14s</¢
for r = 2v — 1 and this again is known by (5.14).
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From (5.13), it is clear that once the a’s are defined, we have

1 1
lim |ag|* = - (5.16)
P

k—o0
for the sequences in (5.13), i.e., for subsequences of the form {a41)r4s}rZos
{—v+1<s </ fixed.

We now apply Cramer’s rule to (5.15) to solve for asy1),+s. Then we get
Ay = dep” T 0<t<l—v, v >, (5.17)
where d; is a constant which can be given explicitly by

—1 14
d; = Z Ct,jpt_j + Z 6t,jpt_j7

j=—v j=f—v+1

where C ; and 5t,j depend only on w;’s and ay,’s.
Since ¢ runs through only a finite number of values of (5.16), we see that
_ 1
lim |a(£+1)r+t‘ (£+11)r+t = —, 0 S t S é — V.
rT—00 p

Together with (5.16), the subsequences cover all natural numbers and we find
that (5.16) holds for the sequence {ay}§ itself as the finite set ag, a1, . . ., a; does

not change the limsup.

The ¢ + 1 numbers ag,a1,...,ap are now chosen in such a way that
oo
)= s, fw)=1 1<j<w,
k=0

and since ¢ > v, there is always a solution. The function F*(z) = 1];*(2) then

satisfies the conditions that

1
I F=_.
d el
By Lemma 5, for w; (1 <j <{¢—wv+1), we have
J— % Wi l— *
[Afzwq,u(wij )= () A wy, F )}
2 I o
= w? (B,,(wj)) { — (B(UJJ)) Z Z aka([+1)n+kw;€+t
k=—v t=—k
t—v L ek
=D At = (BW) ™ D D ok +t}
k=0 k=t—v t=0

rer(20) " (2

= ClgK (wy)]" ™+
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by using (5.15). By Lemma 1, w; is distinguished for F* (1 <j </{—v+1). O

7.6. Simultaneous Hermite-Padé Interpolation

Simultaneous Hermite-Padé interpolation has received some attention lately.

This section will discuss the setting of the problem and its solution.

Let d,vg, 1,19, ... ,v4 be natural numbers and let FY, Fy, ..., F; be d func-
tions, meromorphic in the disks D,, = {z € ¢ : |2| < p}, p > 1, given by

1
S PR L RyYE S SRS fim sup o] = (6.1)
Bi(» prt p
where
i 123 Hi
Bi(z) == H(z — 2 ) = Za,;7kzk, Gy, =1,, Z)"Vj = ;. (6.2)
j=1 k=0 j=1

Here it is assumed that the poles given all lie in D, and the poles of F; are
disjoint from those of Fj, k # i. Let £ be an integer and put n = ¢ + 1, where
o =1vy+v1+re+... g It is important for the sequel to remember that the v;
with ¢ = 1,... ,d are fixed (thus also 0 — vy = n — vy — 1 is fixed) and that vy
will go to infinity (or, equivalently, n or o). Let now o = C\{0} satisfy |a| < p,
such that the zeros of 2™ — a™ are different from those of the B;(z) for all i.
Then the Lagrange interpolant to the Taylor sections ZZiBl a; ;2" on the zeros
of 2" — a™ will be denoted by

ZAn IAZKZ]

This is the first stage of the problem; explicit formulae for the Af_’j are easily
derived (cf. [35]). When £ = oo, fio(2) is the full Taylor series of f;(z). For the

sake of completeness the explicit forms for 1 < ¢ < oo are given below:

-1

= Zai,r(a+1)+sar(a+l) (S Z 0)7 Afys = O‘U+1Ai,a+1+s (5 < O)a
r=0

(6.3)
The value of ¢ governs how many packets of n successive coefficients from the
Taylor series are used in the Lagrange interpolation; for £ = co the full Taylor
series is used. The Aﬁs with s < 0 are needed in the formulae for the second,
simultaneous stage of the problem which can be stated as:
Find d rational functions Uf(z)/B*(z) with the common denominator and

1. with Uf = Y00 pl 2° (1 <i<d), BY2) =000 ieh,
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2. that interpolate the d rationals f; ;/Bi(z) on the zeros of 2" — ™,
3. and B’ is monic: 'yfl_yo_l =1
For details the reader is referred to [37]. Define K(z) by
K(:) = (““') Bl s k() = (““') fl<p  (64)
p) p P

The two-stage problem has a unique solution for n sufficiently large, a solution

that moreover satisfies

n—rp—1 d
lim v =dp with Y @z’ =[[Bi(z), 1<¢< o0,
e k=0 i=1 (6.5)
1/n
: >z Ufz)
imswp (| 55055 - ey ) <K (00

for each compact subset H of |z] < 7 (7 > 0), that omits the singularities of the
functions F;(z), 1 < < d. For details the reader is referred to [35].

One of the main results is

THEOREM 5. Let r,d, v, fi, pi, By, z; 5 and £ be given as above.
(i)  For n sufficiently large, the interpolating problem stated above has a

unique solution that satisfies
n—vog—1

d
lim ~f = (., with Z G2t = HBi(z); 1<t< 0. (6.7)
k=0

n—oo -
=1

(ii)  Let H be a compact subset of |z| < T, T > 0, that omit the singularities
of the functions F; (1 <i<d). Then

VR ) (2 )
) - | R (T < pi),

lim sup <max (6.8)

n—oo z€EH

with R = maxi<;<d pL

(iii)  specifically, we have for |z| < py R-¢=141/7),

U U

uniformly and geometrically in compact subsets omitting the singularities.

As it is more convenient to study the difference of polynomials than that
of rational functions, we can multiply by the denominators - not changing the

upper bound because of (6.5).
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Define

4 — B:(2)B®(2)B% (% ULOO(Z)_UZZ(Z)
ML () = BB OB (pa) ~ ) (610

for z not one of the singularities of the function F; and the let

St(z, F;) :=limsup |AY, (2)V/™, (6.11)

;Y0
n— oo

Then (6.5) takes the form
Sz, F;)) < K(z)  (for z with B;(z) #0). (6.12)

The question now arises, whether the upper bound K (z) is attained for any z.

The following results from [37].

THEOREM 6. For each i € {1,...,d} there are at most ¢ — 1 distinguished
points for F; in |z| < p.

THEOREM 7. For any set of d(¢ — 1) points w; in 0 < |z| < p, and any
subdivision into d sets of £ — 1 points-say w; j (1 < j <€—1,1<i<d)- there
exists a d-tuple of meromorphic function satisfying (6.1) and (6.2) and such that
for each i € {1,... ,d} the points w; j, (1 < j < {€—1) are distinguished for F;.

THEOREM 8. Foreachi € {1,... ,d} there are at most o—vy+{ distinguished
points for F; in |z| > p.

THEOREM 9. For any set of d({ + 1 — (0 — vp)) points w; in |z| > p, and
any subdivision into d sets of £ + 1 — (0 — vy) points — say w;; (1 < j <
L4+ 1—(0c—1p), 1 <i<d)— there exists d-tuple of meromorphic functions
satisfying (6.1) and (6.2) and such that for each i € {1,...,d} the points w; ;
(1<j<Ll+1—(0—w)) are distinguished for F;.

Remark. The "gap” between Theorems 7 and 8 is obvious; whether this
is a matter of the method of proof in [37] or a question of intrinsic behavior of

rational interpolation, is a matter for further research.
7.7. Historical Remarks

The method of proof of Theorems 1 to 4 is essentially due to Stojanova [102].
Note that there is a gap between Theorems 3 and 4.

Xin Li [116] gave an interesting extension of Walsh’s overconvergence theorem

for rational interpolation. Assume that the set {ag, aq,...} has no limit point
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on |z| = 1, its closure does not separate the complex plane, and for the rational

function

Bu(z) = [ -

1—agz
k=0 k
we have

Y(z) == lim |Bp(2)|"/" # const.

locally uniformly in |z| > 1 except at the closure of the sequence 1/, 1/ay, . ...
Let 2.5, k=0,1,...,n, be the roots of B,,(z) = 1 (these are on the unit circle),

and denote

f( an (B z) — )
Ry (f;2)
nl Z ! (k) (Z — Zkn)
the rational interpolant to the function f(z) analytic in ¥(z) < p (p > 1).
Further let r,(f;2) be the least square (n,n)" degree rational approximation
to f on the unit circle. Then

lim (R, (f;2) —ra(fi2)] =0 for w(2) <p’.

n—oo



CHAPTER 8

EQUICONVERGENCE FOR FUNCTIONS
ANALYTIC IN AN ELLIPSE

8.1. Introduction

In the earlier chapters we have been dealing with equiconvergence problems
for functions analytic in the interior of some circle about the origin and its
expansion in a power series. It seems natural to consider functions which are
analytic in other domains. The simplest extension is to consider equiconvergens
results for functions analytic in an ellipse with foci £1 and their expansion in
terms of Chebyshev series. In this case, similarly to the power series case, there
is a largest ellipse in which the Chebyshev expansion converges to the function,
and the convergence is uniform on each compact set inside this ellipse. Let
E,, p>1, be the ellipse in the complex z plane which is the image of the circle
|w| = p in the complex w plane by the mapping z = %(w +w™1). The ellipse
E, has foci +1 and the half-axes a = (p + %), b=1(p— %) . Notice that an
ellipse with foci £1 and half axes (in the direction of the x, y-axes) whose sum
is p > 1is necessarily £, . The set of functions analytic in the interior of £, but
not in E,, p/ > p, will be denoted by A(E,). Let Ti(z) denote the Chebyshev
polynomial (of the first kind) of degree k. Each z € E, , p > 1, has a unique
representation z = 3 (w + <) where |w| = p > 1. On using the representation

we have
1/, 1 1 1

A function f(z) € A(E,) has a unique Chebyshev expansion inside the ellipse
E, of the form

f(z) = %Ao + ) ARTi(2). (1.1)
k=1

Set S, (f;2) = A0 + > p_o AxTk(z). First we need a result on expansion of
functions from the class A(E,).

177
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LEmMMA 1. If f € A(E,) then

fz) = %A0+ZAka(Z) (1.1)
k=1

where

a2 [ {@T@

T J 1 V1—22 ’

are the coefficients of the Chebyshev expansion. Here the convergence of the

k=0,1,2,... (1.2)

series (1.1) is uniform in every closed subdomain of E,.

PrROOF. With the substitution z = cost and z = e we obtain
1 T

Ap = — f(cos t) cos kt dt (1.3)
a —T
1 -1 k —k
= = (Z+Z )z A
e |z]=1 2 2 z

Taking an R, 1 < R < p, the function g(z) := f(Lf) will be analytic in the
closed annulus G = {z : & < 2| < R}. When z is on the boundary of G then
w = 1 (z+27") is on the boundary of the ellipse Eg. Thus (1.3) can be written

as

1 1
Ap= — g(2)2F tdz + — g(2)27 " 1dz, k=0,1,....
271 |z|=1/R 211 |z|=R

Let M = max |g(z)|, then we get
z€G

|Ax| <2MR7* k=0,1,.... (1.4)

Now let 7 be such that 1 <r < R < p, and let z € E,.. Then with 2 =  (w+
w™1) by (1.0)

1 1
|Ti(2)] < 3 (Jw|® + Jw| %) < 5 (rF+rF)y <k k=0,1,.... (1.5)

(1.4) and (1.5) show that the series (1.1) has a convergent numerical majorant
o0

> (%), i.e. the Chebyshev series converges in E,. Since r can be arbitrarily
k=0
close to p, this proves the lemma. O

It is also clear from the proof of Lemma 1 that the order of best polynomial
approximation of an f € A(E,) in any closed subdomain of E, is geometric.
We now turn our attention to Lagrange interpolation of functions from the class
A(E,). The natural choice for the system of nodes is the roots of the Chebyshev
polynomial T,,(z), and it will turn out that such an interpolation also has good
convergence properties. First we need a special representation of L,_1(f;2),
the Lagrange interpolant to f(z) on zeros of T, ().
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LEMMA 2. For any f € A(E,) with (1.1) we have

Lo_1(f;2) = Z {Ak + Z ) (Agnj—1 + A2n]+k)}Tk:(z) (1.6)

k=0

where the dash indicates that the term k = 0 should be halved.

ProOF. From (1.1) we get

Ln1(f;2) Z AgLn—1(Ty; 2) (1.7)
k=0
[e%s) 2n—1
= Z/ Z "AonjikLn—1(Tonjtk; 2)
j=0 k=0

where now the dashes indicate that the term corresponding to j = k = 0 should
be halved. Using the identity

Ta(z) = —T,(2) + QT%(z)T¥ (2), A> p, A= p(mod2) (1.8)
successively, we get
L1 (Tojnsi; 2) = Ly—1(— Tongi—1)+k + 2T (25— 1)+4Th: 2) (1.9)
= —Ln1(Ton(j—1y4x:2) = -+ = (=1)? Ln_1(Ti; 2)
(—1)7Tx(2) if 0<k<n
=<0 if k=n
(1)1 Ty, p(2) if n<k<2n.

Thus we obtain from (1.7)

2n—1

n 1 f7 Z (i A2nj+k ]Tk Z A2nj+k J+ T2n k)
7=0 k= k=n+1
n—1
—AO+ZAQM 1)/ Z {4 +Z Y (Asng sk + Azns k) [ Th(2)
j=1 =1
which proves the lemma. ([l

A similar representation for the Hermite interpolation polynomial hy 2p,—1
of order 2 on the roots of T, (x) (that is, function values and first derivatives

prescribed) can be established:
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LEMMA 3. For any f € A(E,) with (1.1), we have

hoon—1(fi2) =Y '(—1) Agnj+
=0
2n—1 (e .
+ > { > (1[G + 1) Agnjisn + jA2n(j+1)fk]}Tk(Z),
k=1  j=0 (1.10)

where the dash means halving the term corresponding to j = 0.

PROOF. Again from (1.1) we get

hoon—1(f;2) Z Aghoon_1(Tk(2); 2) (1.11)
k=0

2n—1

o
= Z/ Z "Aonjikho on—1(Tonjtk; 2)

i=0 k=0

where the dashes mean that the term with 7 = £ = 0 has to be halved. Here

(—1)7 if k=0,
hoon—1(Tonjk; 2) = .
(=17 + DTu(2) + jTon_r(2)] if 1<k<2n-1.
(1.12)
We prove this relation by induction on j. For j =0,
man={ L0 () 0
hoon—1(Tk; 2) = =Tr(z 1.13
sl Te(z) if 1<k<2n-1

is obviously true. Assume (1.12) is true for j, then from (1.8) and the identity
Ty, = 27?2 — 1 we obtain

ha2n—1(Ton(j+1)+k: 2) = h2,2n-1(— Ton(j—1)+k + 2T2nj+kTon, 2)
= h2,20-1( = Ton(j—1)+k — 2Tonj+k; 2)
(-1 =21y
- { (=D [iTk + (G = 1)Ton—k] = 2(=1)7[(j + )Tk + jT2n—4]
(=17, if k=0,
B { (D)7 G +2)Tk+ (G + Do, if 1<k<2n-1,

i.e., (1.12) holds for j + 1. Applying this to (1.11) we get

0o 2n—1 oo

hoon-1(f32) =Y (1) Agnj+ Y Y (1Y [(G+1)Tk(2) 4+ T2n—k(2)] Aznj

j=0 k=1 j=0
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whence (1.10) follows by changing k to 2n — k in the second term. O

Lemmas 1 and 3 enable us to prove the convergence of Lagrange and Hermite

interpolation.
LEMMA 4. If f(z) € A(E,) then both L,_1(f;2) and ha on—1(f;2) converge

to f(z) as n — oo, uniformly and geometrically in every closed subdomain of
E,.

Proor. (1.1) and (1.6) imply

f(Z) - Lnfl(f; Z) = Z Aka(z) Z ! (AQn] kTt A2n]+k)Tk( )
k=n k=0 3:1
and
f(2) = haan—1(f;2) = ZAka = (=1) Agy;
k=2n j=1
2n—1 oo .
- Z Z(—l)J[(j + D A2njik + G A2n(r1)— k| Tk(2)-
k=1 j=1

Now choose 7 and R such that 1 < r < R < p, and let z € E,. Then by (1.4)
and (1.5)

f(z)—Lnl(f;Z)ﬂMg(;) +4anl iR (Rt = <<T>n)

k=0 j=1
and similarly,

2n—1

|£(2) = hagn1(f3 2)| < 2M i (%)k+4M i {(jﬂ)R?"j (%)'ﬂ

k=2n k=1 j=1

+jR—2"<J’+1>(rR>’<}

_O<(R)2n>

which shows that the convergence is geometric. (I

8.2. Equiconvergence (Lagrange Interpolation)

We are interested in exploiting the possible equiconvergence phenomena in
connection with interpolating polynomials and partial sums of Chebyshev series.
Denoting

Su(f:2) Z ApTy(2) (2.1)
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the n'™ partial sum of the Chebyshev series (1.1), we have by (1.6)

Lu-1(f;2) = Su-1(f32) Z D (=1 (Aznjk + Aznjyi) Te(2). (2:2)
=0 j=1

Unfortunately, there is no equiconvergence in the clabsical sense. This can be

seen from the following simple example. Let fo(z) = Z p kT (2) € A(E,).
Then for zo = 1 (p+ p~') we obtain from (1.0) and (2. 2)

1 n—1 o0
Lu-1(foi20) = Sn-a(forz0) = 5 D" 3 (=17 (0572 4 p~"7#) (0" + p7H)
k=0 j=1
1 n—1 0
PNV D S
k=0 j=1
< 1p2n72(_p2n _’_p72n) — _i 4 O( 72n)
2 2p2

which shows that the left hand side does not go to zero as n — oo. Similar phe-
nomenon occurs for the Hermite interpolation. In order to establish equiconver-
gence we have to modify our operator. We introduce two parameters: a fixed
integer ¢ > 1, and an increasing sequence of integers m,, depending on n such
that

" =ig>1,and A:= lim {m,i1 —m,} < occ. (2.3)

n—oo M

With these parameters, our operator is defined as

A¢—1.n,m, (f32) = Sn-1 (Lmnfl(f - 52(z-1)mn+n—1(f));z) (2.4)

for any f € A(E,). (Here we use the notation (1.6) - (2.1).) Note that in case
f =1, m, > n this simplifies to

AO,n,mn (f’ Z) = Sn—l (Lmn—l(f) - f; Z)

Our first result gives the precise asymptotic value of this operator.

THEOREM 1. For any f € A(E,) and z € E, (r > 1) we have

r

Timn . 1/n _

B A, (5" = s (25)
except possibly for at most 20\ — 2 points zi,...,zoun_o outside the interval
[—1,1], where
lim |A_q, (f; z)|V/"™ < [0, z-:l(w-—i—w,_l) j=1,...,200=2.
n—s oo MMy, »~] p2€q71 bl 7 2 J J b ) b

(2.6)
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In other words, we have equiconvergence in the ellipse E2cq-1. Note that
(2.5) does not distinguish between the cases r < p or r > p, in contrast to the

case of functions analytic in a circle.

PrOOF. First we prove the upper estimate in (2.5). For this purpose we
represent the operator (2.4) in the form

n—1 0o

Ar—1n,m, (f32) = Z ' { Z(—l)j(Am'mﬁk + Azjm,,ﬁ/c)}Tk(Z) (2.7)

k=0 = j=¢

To see this, first we write

oo

f(2) = Sop—1ymp4n—1(f;2) = Z ApTy(2),

k=2(l—1)m,+n

and then apply the Lagrange operator L, _; :

2my,—1

Lmnfl (.f - SQ(Z—l)nLn—Q—n—l(f); Z) = Z AQ(Z—l)mn—Q—kLmnfl (TQ(Z—I)mn—&-k; Z)
k=n

oo 2mg,—1

+Z Z Azjmn kL —1 (Tojmtn; )

j=C k=0
Using the relation (1.9) we obtain
L, -1 (f = Sate—1ymp+n-1(f):2) =
2my,—1 mp—1
=(- 2(0=1)ymp+kL2m, —k(Z 1) 206=1)ymp+kLk(Z
(-1 A T (2) + (=1)! A Ti(z)
k=m,+1 k=n
1% My, —1 2my,—1
+Z(*1)J{ D Ak Th(z) = Y A2jmn+kT2ka(z)}
j=¢ k=0 k=m,+1
my—1 Mmyp—1
= (=1 > Agpm, kTe(2) + (=1 D" As—tym, +1Tk(2)
k=1 k=n

my—1 —1

DY Appa i) — Y Angriny, Tl ),
j=t k=0 k=1

whence (2.7) follows by replacing j + 1 by j in the second sum and by applying
Sp—1 to both sides. Now the upper estimate in (2.5) follows by using (1.4) and
(1.5):
|Asjmp ] < 2MR™H™n =8 Ay | S2MRTH™HRE 1 < R < p,
(2.8)
Ty (2)| < rF | ze B, r>1,
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whence by (2.7)
n—1 oo .
At mm, (f52)] <AM Y " REHmpk = O(RT2mm ),
k=0 j=¢
Thus using (2.3) we get

1/ r
nh_)n;o %&X|Ae 1nmn(f7 )| "< R2q—1 "

Since R < p was arbitrary, hence the upper estimate of (2.5). In order to prove
the second part of the theorem, we use (1.0) to estimate (2.7) by the help of
(1.4) and (2.8):

(_1)4 n—1 n—1
Artnm, (f32) = > Asgn,—i0® +O( Y Asem, sl - 0]+
k=1 k=0
n— [e%s) [e%s) n—1
> Z [Asjm, el ol + 32 D7 Az, el [l
k=0 j j=0+1 k=0

/‘\

,_.
<\
3“
,_.

Z A2Kmn—kw +O ( RQimn (max < ‘w| |5| >> >
= ZAZKm,L kW +O((% —n)n)

with some constant n > 0, provided R < p is close enough to p. Hence

/‘\
=
3
,_.

A= 2(*1)Z[A£71,n,mn (fa z) - w%(mn7mn+l)Aéfl,n+1,mn+1 (f7 Z)]

n—1 n
_ w n
=3 Asomy k0 =3 Agg g2 m) O((% _ 77) )

k=1

Here we split the two sums into four:

n*QE(anrl*mn) n—1
k
A= Z + Z Aggmn_k’w (29)
k=1 k=n—20(mp41—mn)+1
2E(mn+1—mn) n
k—420(mpy,—mag,
_ Z + Z A2€mn+1fkw +20(My —Map 1)
k=1 k=20(mp41—my)+1

+0( (s =n)")

2l(mn+17mn)72

—2 1 — 1 k
= " (Mpt1—mn)+ E A2€mn+1_n_k_1w +
k=0
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Namely, changing k to k + 2¢(m,,+1 — my,) in the third sum, it is easily seen
to cancel with the first sum. Further, the third sum contains only a bounded
number of terms, and is of order O(Aszgm,,,) which gives a contribution to the
error term. Finally, changing k to k +n — 2{(my,11 — m,) + 1 in the second
sum, we obtain the above estimate. Now assume that, contrary to (2.6), there
exist points 21, ..., zasx—1 outside the interval [—1, 1] such that

I B, (f32)" < iy G=1,2,0, 2001

where z; = 1 (w; + wj_l), j=1,...,2¢\ — 1. This means that

w; no
|Ag,17n7mn(f;zj)| < (leq]J1 — 171) , j=1,...20A—1 (2.10)

with some constant 7; > 0. Since by (2.3), my4+1 —m,, < A for sufficiently large
n’s, we can apply the first 2€(mn+1 — mn) — 1 relations in (2.10) to (2.9), and

obtain

20(mp41—mp)—2

n—20(mp41—my)+1 2 : kE_ |’LU]| "
w] A2€mn+1fnfk71wj - O p2€q71 - 772 9
k=0

i=1,....20(mysp1 —my) — 1,
where 12 = min (11, 7). Hence by the boundedness of m, 1 — m, we get

22(mn+1fmn)72

k 1 "
Y Armseniewf =0 —m))

k=0
J=1,...,20(mysr —my) — 1,

b
[w;]

where 13 = min . The determinant of this system of equations is a Vander-
J

monian. Solving these we obtain
1 n
| A2em,,py—n—k—1] = O((W - 7)3) )7 k=0,...,20(mpp1 — my) — 2.

We can see from this relations that the subscripts of the A’s attain all integers
s > 2¢m(1) (in fact, the set of consecutive integers for fixed n’s overlap), whence
we have by (2.3) again

—_— 1 lim o7 TR
- 1 s—oo 20mpyi—n
lim |A,[Y* < ( 5001 —773)
§—00 P q

_ 1 T
= <p2eq—1 - 773) <

SRR



186 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

This contradicts the fact that f(z) € A(E,), and Theorem 1 is proved. O

8.3. Equiconvergence (Hermite Interpolation)

For Hermite interpolation we modify the operator (2.4) in the following way.
Let again m = m,, be an increasing sequence of integers such that (2.3) holds,
and set

Aéfl,n,mn (f: Z) = On—1 (h2,2mn71(f - SQZmnfl(fﬁ Z)) (31)

for any f € A(E,). Note that in case £ = 1 this simplifies to

Ao,nm, (f,2) = Sp—1(h2,2mn-1(f) = f32).

In contrast to the case of Lagrange interpolation, here the convergence-diverge-
nce behavior of the operator is different if z € E, or z ¢ E,. First we consider the
case when the point is inside the ellipse of analyticity, and assume that m,, = qn
(the case m,, = gn+const. could also be treated, but it would complicate the
notation).

THEOREM 2. For any f € A(E,) and z € E,, 1 <r < p, we have

o o
Jim Aoy mgn(f;2)|" = =z (3.2)

except at most at 20q points in E,, where the equality sign should be changed to
77< 7)‘

PRrROOF. First we establish an asymptotic expression for the operator (3.1)
(In this part, we use only the conditions (2.3) on the sequence m,,.) We have

F(2) = Saom,1(f32) = D ATi(2)

k=2/m,,

whence, using (1.12), we get

ha,om, 1 (f = Soem,—1(£)i2) = D Axham,1(Tx, 2)
k=2{m,,

oo 2my,—1

§ § A2]mn+kh2 2mn—1(T23mn+k’ Z)

0o 2my,—1

= > D { A, + D2 A, 1l + VIk(=) + Tom, ()]}
j=¢ k=1
00 2my,—1

= Z( ) {AQJmn + Z AQ]m,pHc +]A2(]+1)mnfk]Tk( )}

<.
I
~
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ie., by (3.1)
B n—1
Aé—l,n,mn (f’ Z) Z( 1)j {AQan + Z .7 + 1 AQJmn—Hc"'
=L k=1
+ jAz(jJrl)m,,ﬁk]Tk(Z)}- (3.3)

This yields
- 1
Aé—l,n,mn(f;z) 20(7)7

(p—e)2tmn
ie.

1
l/n - -
nleréo iréax |As Lngma, (f32)] = (p—e)2a

follows by (2.3). Since ¢ > 0 was arbitrary, this yields the upper estimate in
(3.2). In order to prove the second part of the theorem, from now on, we assume
m, = gn. Using (1.4) we obtain

n—1

Aéfl,n,qn(f; Z) = (*1>Z{A2£qn + (6 + 1) Z A2£qn+ka(z)} + Rn
k=1

for z€ E, and 1 < r < p, (3.4)

where

r’ 1 1
o < (p — &)+ Danr > ¢ <<p + e)?www} ¢ <W) ’

provided € > 0 is small enough. Hence

—1)¢ N
D(z) = %[Aéfl,nfl,q(nfl)(f; z) + Alfl,n+l,q(n+l)(f§ z)—
- 2T2Zq(Z)A€—1,n,qn(f; Z)] (35)
Aspgn_1) + Aspgnit) — 2A00gnTorg(2) 2
_ 24q( 1) 2&12 _'Jili 20qn-L2Lq ZAQ[q(n 1)+ka( )
k=1
n n—1
+ Z Aspg(n+1)+kTr(2) Z Aopgnik[Trr2eq(2) + Tip—2eq(2)] + O(Ry).
k=1 k=1

Here the last sum, after changing the running indices k, can be written in the

form
n+20g—1 n—20g—1 20g—1

> Asggn-nskTe(2) + Y Astginrny ek Te(2) + Y Asgginany—1Tk(2)-
k=2£q+1 k=1 k=0

Thus we obtain from the previous expression, after taking into account the

cancellations,

A2Eq(n71) - EAQZq(nJrl) + (E - 1)A2£an2€q(z)

bz) = (+1
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20g—1 n+2£g—1
+ Z [A2eq(n—1)+k — A2eq(n+1)—k) Tk (2 Z Aspgn—1)+xTr(2)
k=1 k=n—1

+ Z Aspgn+1)+kTk(2) + O(Ry,).
k=n—20q

Here, by (2.8), the last two sums are O((p — &)~ (34+1)") which is smaller than
R, if € > 0 is small enough. Thus we obtain

AZEq(nfl) - EAQZq(n+1) + (E - 1)A2€an2Zq(Z)

Diz) = (+1
20g—1
+ Z [AZEq(nfl)qu - AQZq(nJrl)fk}Tk(Z) + O(Rn)
k=1

Now assume that, contrary to the statement of the theorem, for some points
zj € E,, 7=0,1,...,20q we have

~ 1 .
|A[71’n)qn(f;2j)‘ S W = O(Rn), ] = 1, .. ,2£q +1

with some € > 0. Then by (3.4), |D(z;)| = O(R,), j =0,1,...,2{q, whence by
(3.5)

Aoeqn-1) = LAspgns 1)k + (€ — 1) AzpgnTorq(25) N

{+1
24g—1
+ > [Astgno1yk — Azegnn - Te(z) = O(R,), §=0,1,...,2(q.
k=1

Consider this as a system of 2¢q + 1 linear equations for the unknowns

Azpg(n—1)—LA20q(n -
2al 1)g+1 2l +1)7 A2£q(n71)+k - AQZq(nqu)fk (fOI" k = 1,. ~~72£q - 1)

(£=1)Asgn
and s

. The determinant of this system of linear equations consists of
the elements Ty(z;), k,j = 0,...,20g, and because of the linear independence
of the Chebyshev polynomials, is different from zero. Evidently, the solution

satisfies

|A2€q(n71)+k - Aggq(n+1),]€| = O(Rn), k‘ = 1, ceey 2,€q -1 (36)
and
Now we prove that

Aztqn—k Z ( 20q(n+2[4])+(-1)7+1k _Azzq(n+2[ +(- 1)Jk)
7= for k=1,...,20q—1,
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where [-] means integer part. Evidently, this is a telescoping infinite series. In
order to show its convergence, we distinguish two cases. When j is even, the
absolute value of the term on the right hand side becomes

|A2eq(ntj)—k — A2eq(ntj)+kl = [A2eg(nti—1)+(2tq—k) = A2eg(n+j+1)—(20q—k)
= O(Rn+j)

upon applying (3.6) with n + j and 2¢q — k instead of n and k, respectively.
When j is odd we get similarly

| Azeg(ntj—1)+k = Aztgntjr)—k| = O(Rnsj)
upon applying again (3.6) now with n + j instead of n. Thus we obtain

[ee]

1
| A2egn—k| = O Z(p_i_g)w = O(R,), k=1,...,2(q — 1.

Jj=0

This coupled with (3.7) implies
: 1/s 1
limsup A;/% < ——,
5§—00 - p "F 3
which contradicts f € A(E,). O

The next theorem is a similar result for points outside the ellipse of analyt-

icity, but the method of proof is different (and simpler).

THEOREM 3. For any f € A(E,) and z ¢ E, we have

T IA n ‘UJ| 1 -
nlggome_mmn(f;z)|1/ = S T3 (w+w™t), (3.8)
except possibly for at most 20\ points z1, ..., zex ¢ E, where
. |w,| )
T |Ae-sm, (521" < Zgigs G=1200 (3.9)

In other words, we have equiconvergence in the ellipse E 2¢q.
PRrROOF. (2.8) and (3.3) imply for |w| > p

D)+ =R
e+l g ) Z Ao, 110"+

k=1

1 |w|n
© < (=)  (p—e)@Ermn ) '

A@—l,n,mn (.f7 Z) =
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As in (2.9), consider

2(—1)¢ _
B := é+ 1) {Ar1nm, (f32) —w e m")Affl,nH’mnﬂ(f? 2)}
(3.10)
n—1 n
= Z AQfmn-‘rkwk — Z A2£m71’+1+kwk+2z(mn+l*mn)
k=1 k=1
1 |w]™
+ O( (p _ E)Z@mn + (,0 _ <(:-)Q(Z-ﬁ-l)mn—n)'
Here, splitting the sums again, we obtain
2£(My1—mnp) n—1
B:= Z + Z AQ@'mn—)—kwk
k=1 k=20(mp1—mp)+1
n—2€(mpy1—mn)—1 n
_ Z + Z A2£mn+1+kwk+2‘€(mn+l7777/”)
k=1 k=n—20(Mp4+1—mp)
1 jw]"
+ O( (p _ 6)2@7‘@” + (p _ 5)2(£+1)mn—n)

20(Mpq1—mp)+1

—1 2 : k
= —w" A2£mn+n+kw
k=1

o= )
+ (p _ 5)2Zmn + (p _ 6)2(Z+1)mnfn :

This is obtained by changing k to k + 2¢(my,+1 — my,) in the second sum which
then will cancel with the third sum. The first sum has a bounded number of
terms, thus it can be majorized by O(Aae,, ) which can be merged with the
error term. Finally, in the fourth sum & is replaced by k+n—20(my,11—m,)—1,
thus arriving at the fifth sum. Assume now that, contrary to (3.9), there exist

points z1, ..., zaen+1 ¢ E, such that
nlinéo |AZ—1,n,mn (f7 Zj)|1/n < pggqj_;,_l s J=102004 1,
i.e. |
~ w n .
|AhMmMﬁ@ﬂ§(ﬁdH—n),j:JV“J0+1 (3.11)

with some 1 > 0. Using the first 2¢(m,+1 — m,) + 1 of these inequalities, we
get from (3.11)

2z(mn+l 7777/%)“1’1

1 Ui n
Z z42hn,,,+n+l’cw;‘€ :O( (p2£q+1 - ) )

= |w;]

for j=1,...,20(mpy1 —my) + 1,
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provided i > 0 is sufficiently small. The determinant of this system of equations

for the Aggpm, +1’s is again a Vandermonian. Hence we obtain

1 n
Ao, +ntk = O( (W - 771) )7 k=0,1,...,20(mp11 —my), (3.12)

where 77 > 0 is sufficiently small. This implies

1 Hmsup, 0o 37, Tk 1 R |
limsupAs < | =~ —m = ! <-
smoo L\ pPa p3t P’

which contradicts (3.7). O

8.4. Historical Remarks

Theorem 1 in the case A\ = constant and ¢ = 1 was proved by Rivlin [8§]
without the explicit error estimates and without distinguished points. Theorems
2 and 3 are new. Theorems 1, 2 and 3 are special cases of a more general result
of Jakimovski and Sharma [56], [57]. We now give the results of [56] and [57] and
some notations used therein. For their proof the interested reader is referred to
the original papers. The Hermite interpolant to f(z) in the zeros of (T),(2))?
(equivalently (cosnf)P, p > 1) is denoted by

pn—1

hppn—1(f;2) = Z hﬁ,”’")Ta(Z). (4.1)
o=0
The the difference Ag_1 5. m p(f;2). is given by

Al—l,n,m,,p(f; Z) = Sn—l(hp,pm—l(fa )7 Z)_
[ Sl S 112 i p is even
Sn—1(hppm—1(Spi-1)-1ymn—1(f,"));2) if p is odd. (4.2)

When [ =1, p =1, the Hermite interpolant becomes Lagrange interpolant and
the above difference reduces to the case treated by Rivlin [88]. In order to state

our result we need

p,ﬂ% if piseven and R > p
frgp(R) = pp%q ifpisevenand p> R>1 (4.3)

F,(mm&% ifp isodd and R # p-

Write N :={1,2,3,...}, Nt :={0,1,2,3,... }, and e, := 1 when n is odd and
en = 0 when n is even. The following relations are easily proved and will be
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used often:

ep +epr1 = 1, €ps = €p€s , €(e,) = €p, Epst2u—e; = (_1)]61765 +e5,

eepesfl =1- €p€s = €51 + €s€p—1 , (7]-)1) = (71)61) y €—p = €p,

epstj = (=1 epes +ej, (=1)Pepes +epes = 0.
(4.4)
Let n denote the sequence 1o := 1, n;, := 2 for k € NT |

THEOREM A. Assume that p is a positive even integer and s,n are positive
integers. For a function f(z) € A(ER), let

pn—1
hppn-1(fi2) = Y T, (z) (4.5)
o=0

be the Hermite interpolant of order p to f(z) at the zeros of (T,,(2))P. Then we
have:

(i) For each integer o, 0 < o <pn, 2An <o < (2A+2)n, 0 < A < %p -1,

3p—1

“1\ v : p(s+1)+7
hgp) =A, — <p > _1)zp(s+1) 1 7-(2 y
P+ A ;( ) TZ:%( ) P
P p
X 7A S T— n g+—A s - neo ;
<§p8+7=—A (ps+27—2X)n+ %p5+7_+A+_1(P+2+%XH» )
(4.6)
i1) For each even integer p, p € {0,2,4,... ,p — 2},
(i) ger p, p
1 oo %pfl 1
h(p) :A/ _ - p _1 %p(s+1) 1 -
pn on 2770<%p+%p ;( ) Tz:%( )p><

Ip(s+1)+7—1\ (p* — p?)(ps +2
X(zp(s )+ T >(p p?)(ps T)A(pmﬂn (0.7)

p—1 (ps+27)2 — p?

REMARK. It should be observed that in case (i) of the above theorem when
o= (2XA+1)n, we have

A(ps+2‘r72)\)n+a = A(ps+2‘r+1)n = A(ps+2‘r+2()\+1))nfa
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EXAMPLE 1. Applying Theorem A to the case p = 4, we obtain the following:
(i) For o = 0 we have

h = —A Z{Qs+l)(2s—1)A4sn (25 4 2)25A 4512y} »

(ii) For 0 < 0 < 2n

1 o]
() —4 _ = _
hy'! =As 5 SE:1 {(2s4+2)(2s + 1)(2s — 1) Aysn+o
+ (25 + 2)28(28 — 1)14(454’,2)”,0-

— (254 3)(25 + 2)25A(4512)n+0
—(25+3)(2s + 1)28A(4s14yn—0 | »

(iii) For o = 2n we have

o0

1
WD — 4, — . 37 (452 Auen — (25 + 1) Aagyapn) »

s=1

and
(iv) For 2n < o < 4n we have

A=A, — = Z{ (25 +2)(25 + 1)25A (45— 2)nt0r

s=1
+ (25 +1)25(25 — 1) A(4st-ayn—o

— (254 3)(2s +2)(2s + 1) Agsnto
—(2s+2)(2s + 1)25A(45+6)n,g} )

THEOREM B. Assume that p is a positive odd integer. For a function f(z) €
A(ER), let (4.5) give the Hermite interpolant of order p to f(z) at the zeros of
(T (2))?. Then:

(i) For each o satisfying pn <o < (p+1)n (p=0,...,p—1) or for o = pn

where p is an even integer, we have

O (TR A Do) Z (")

X L T A
ps+ 71— 7( —1)+35(p+ep) 2P5n+((P+6p)*(p*1)+2‘r)n*0
p
+ A 5
ps+7—1(p—1)—L(ptey) 2psn+(<p+ep>(p1>+2r>)n+a} (4.8)
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(ii) For each o = pn where p is an odd integer 0 < p < p — 1, we have

(pp_ P)) i(_l)s iz_;(_l)r <p5; T> .

W =15 = A+

1
2

X{ 3(p+0p) ip—p) p

_ A -
ps—ilp—p)+7 ps—ilp+p) +T ps—i—T} (2ps+27—p)n

(4.9)

REMARK. It should be observed that in case (i) of the above theorem when

o = pn and p is even we have

A2psn+((p+e,,) —(p—1)+27)n—0c — A2psn+(— (p—1)+27)n

= A2psn+(—(p+ep)—(p—1)+27-)n+av

and (4.8) becomes simpler.

EXAMPLE 2. Applying Theorem B to the case p = 3 we get the following:
(i) For o =0

1 [e)
h) = 540 +2 ) (—1)° {35(3s = 2)Age—zyn — (35 + 1)(3s — 1) Aesn

s=1

+(38 + 2)(35)A(68+2)n} y

(ii) For 0 < 0 < n,

hg:i) = Aa + Z(_l)s {38(38 - 2) (A(6872)n70 + A(6572)n+0)

s=1

— (38 + 1)(33 - 1) (AGSnfa + A68n+0)
+(3S + 2)38 (A(GSJ’,Q)nfg' + A(Gs+2)n+o)} )

(iii) For o0 = n,

hiﬁ} =A, + Z(_1)9 {(65 - 3)‘4(63—3)77, - (65 - 1)"4(63—1)71
s=1

+(68 + 1)A(6s+1)n} .
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(iv) For n < o < 2n,
. > 3s—1 3s
hg_d) :AU + Z(—l)s { ( 2 >A65n—a + < ) )A(654)"+‘7_
s=1

3s 3s+1
- ( 2 )A(63+2)n—a - ( 9 >A(63—2)n+a

3s+1 35+ 2
+ < 2 > A(65+4)nfo' + < 9 > A6sn+o’} .

(v) For o = 2n,

Wi = Ay, + Z {(8s — 1)>A(gs_2yn — (35)* A6sn

(38 + I)QA(GerQ)n} .

(vi) For 2n < ¢ < 3n,

3s
h(3) =A, + Z { ( >A6sn—a + ( 9 >A(63—4)n+a

3s+1 3s+1
)A(6s—2)n+a + ( )A(6s+4)n—a

2
3542
+< s >A68n+a}~

N}

195

THEOREM C. Let m = m, be a sequence of positive integers such that

1 Al mmp(f3 )V = R).
(s Him sup max [Ar—1nmp(f3 2)] frap(R)

where foqp(R) is given by (4.3). If

p— =z

— 5 € A(E
2pz+p € A(Ey)

f(z) = fu(2) =

m/n — ¢ > 1 as n — oo. Suppose f € A(E,). If p > 1 and l,p are posi-
tive integers, then when p is odd and R > 1, R # p, or, when p is even and
R > p, the following holds:

(4.10)

(4.11)
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then when p is odd and R > 1, R # p, or, when p is even and R > p, we have

lim min [A;_ s2) M= A z) M= R).
A min | Ag—gn,m.p(fi; 2)] i max |Apyn,m.p(fi; 2)] frap(R)
(4.12)

This shows that the bound in (4.10) is sharp and that
Al—l,n,m,p(f;z) —0 as n—

Eor each z in the interior of the ellipse Ep where

P prlatl if p is even,
| pp@I=D+1)g—1 if p is odd.

The next theorems show that instead of (4.10) we have for each function
f € A(E,) and all, but for a finite number of exceptional points z = z; ,

B sup [Ar- 1 m(n),p (> 2) " = frap(R) -

n— 00

When p is an even positive integer we have the following two results.

THEOREM D. Assume p is a positive even integer, | is a positive integer and
p>1.Let m=my, :=qgn+c where ¢ > 2 and c are non-negative integers. Let
feA(E,) ,p>1. Then for all complex numbers z outside the ellipse E, (i.e.,
z = %(w +w™h), |w| = R > p), except perhaps for at most pql points, we have

R

lim sup [A g1 n,m(m).p(f; 2)[ /" =

n—oo

and for at most pql distinguished points zj, z; = %(wj —|—wj_1, lw;j| > p, outside

the ellipse E, we have

|wj|
ppql+1 ’

lim sup |A€71,n,m(n)7p(f; Zj)|1/n < (414)

n—oo

THEOREM E. Suppose the assumptions of Theorem D are satisfied. Let

zj , 1 <j<pgl, z = %(wj +w; 1Y) L |w,| > p, be arbitrary given pair-
wise different numbers outside the ellipse E, . Then there exists a function

f**(z) € A(E,) such that
hmsup |A€—1,n,m(n),p(f**; Z])|1/n < ff,q,p(Rj) for 1 S .] S pql .

where R;j := |wj|.

When p is a positive odd integer we have the following two results.
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THEOREM F. Assume p is a positive odd integer and p > 1 is a real number.
Write my, := qn+c, ¢ > 1, where q and ¢ are integers. Write w := p(20—1)+1,
wg = wq and w, = we. Let f € A(E,) . Then for all complex numbers z ¢
[-1,1] (ie., z= %(w—l—w’l)7 |z| =: R > 1) except, perhaps, for at most wy —2
numbers, we have

1/n _ ‘w|
T pwg—1"

lim sup |A€—1,n,m(n),p(f; Z)'

n—00 P
At most at the wy — 2 exceptional points, say, zj, z; = $(w; +w; ), |w;| =
R;>1, 1<j <wy—2 we have

lim sup |Ag_1_’n’7n(n),p(f;Zj)|1/n < 1

—1
n— oo ,O“’q 1

THEOREM G. Assume p is a positive odd integer and p > 1 is a real number.
Assume pairwise different complex numbers z,... 2z, o ¢ [-1,1], z € E,,
are given (where z; = 3(w; + wj_l), lwj| > 1), |w;| # p. Then there exists a
function f*(z) € A(E,) such that we have

: . |wj |
lim sup |A£,n,m(n),p(f ;Zj)|1/n < .

n— 00 pwq_l

for j=1,... w4 — 2.



CHAPTER 9

WALSH EQUICONVERGENCE
THEOREMS FOR THE FABER SERIES

1. Introducing Faber polynomial and Faber expansions.

In this chapter we obtain equiconvergence theorems related to expansions
of analytic functions into series of polynomials, the Faber polynomials. The
Taylor series expansion and the Chebyshev expansion of analytic functions are

two examples out of the different families of the Faber expansions.
1.1 Faber polynomials and some of their properties.

Let E be a compact (i.e., closed and bounded) subset of the extended complex
plane (, which is not a point, with a complement E° which is simply connected

in the extended complex plane.

According to the Riemann mapping theorem, there exists a conformal map
Yof {we C: |w| > 1} onto E° = {2z : 2 ¢ E, z € €} normalized at infinity
by ¥(00) = 0o and ¢ := ¢'(c0) > 0, where c¢ is called the capacity or infinite
diameter of E. We have the Laurent expansion z = ¢(w) = cw + co + & +

for |w| > 1.

If the boundary OF of the set F is a simple Jordan curve, then the conformal
map ¥ (w) is continuable to a one to one continuous mapping of {w € € : |w| >
1} onto €\ Int E.

When the boundary 9F is a simple Jordan curve we write wy, j := exp(2mki/
(m+1)) (k=0,1,...,m). The associated points z, j := ¥(w, ;) are called the
Fejér nodes with respect to F.

Following Pommerenke [84] we say that OF is an ro-analytic curve (0 < rg <
1), if the conformal map t(w) admits a univalent continuation to {w € € :
|w| > ro}.

The function ¢ (w) from {w € € : |w| > 1} onto E° has an inverse w = ¢(z)
that for all sufficiently large |z| has the expansion w = ¢(z) = dz+dy+ % +--

where cd=1. Also, for all sufficiently large z and each non-negative integer n

we have the convergent Laurent expansion {¢(z2)}" = d"z" + Zz;loo dni 2.

199
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The polynomial part of the Laurent expansion of ¢(z)", given by F,(z) :=
dz" + ZZ;& dniz" is of exact degree n and is called the Faber polynomial
associated with the set F.

It is well known (cf. Curtiss [34]) that for an arbitrary compact set E (not
one point) for which €\ F'is simply connected, the associated Faber polynomials
satisfy

Jim [Fu(w(O)Y" =], 1> 1, (1.1.0)

uniformly on every closed subset of ¢ € € : |¢| > 1. This implies the following

result.

THEOREM 1. To each fized r > 1 there corresponds some positive integer
N = N(r) such that for each n > N(r) all the zeros of Fp,(z) are in G, and,

therefore, all accumulation points of the zeros of (Fp(z))n>1 must lie in E.

From the above Theorem 1 it follows that the polynomial L} (f;z), denoting
the Lagrange interpolants of f at the zeros of the Faber polynomial F,,;1(z),
are well defined for all large n. If OF is an rg-analytic curve, 0 < rg < 1 then
for every sufficiently large n the Faber nodes all lie in the interior of E. It is
known [63] that if E is convex, but not a line segment, then all Faber nodes lie
in the interior of E. In the case when E is the line segment [—1,1], it is well
known that the Faber polynomials for E coincide with the classical Chebyshev
polynomials of the first kind.

The m + 1 zeros of the (m + 1)* Faber polynomial with respect to F are
called the Faber nodes.

For R > 1 denote by Cg the outer level curve of E given by Cg := {¢(w) :
|lw| = R}. If OF is an rg-analytic curve (0 < rg < 1) then Cg and Gg are
defined also for R > ry. When OF is an rg-analytic curve we will assume in the
following that R > rg.

For the following theorem see V.I. Smirnov and N.A. Lebedev [100].

THEOREM 2 (THE FABER EXPANSION THEOREM). (i) Assume f € A}, where

R > 1. Then the function f can be expanded into a series of Faber polynomials
f2) =Y anFu(z) (1.1.1)
k=0

where
1
ar = -
271 KI:T/

F@(O)*Vde, k=0,1,..., (1.1.2)
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for each r'; 1 < v’ < R. The Faber series (1.1.1) is uniformly convergent on

each compact subset of Int E. In this case we have

1
1ilr€nsup|ak|1/k =5 (1.1.3)

(ii) If a Faber series Y oo arFy(z) is convergent in some domain then it
converges in a domain G, uniformly convergent in compact subset of G4, and
it is not convergent for each point outside g,. For this o (1.1.3) holds.

(iil) If a sequence (ay)r>o satisfies (1.1.3) then the Faber seriesy oo axFy(z)

is uniformly convergent in each compact subset of G,.

Given the Faber expansion (1.1.1) of f, the sequence of partial sums is given
by
n
Su(f;2) = arFr(z). (1.1.4)
k=0
Assume that for a non-negative integer n a sequence of pairwise different inter-
polation nodes z, € Gr (k =0,...,n) is given. To the given interpolating
nodes we associate the polynomial wy,(2) = w(2; 2x.n) == [[1_o(z — 2kn)-

1.2 Examples of Faber polynomials.

EXAMPLE 1. If F is the closed unit disk D; then z = w maps univalently
the outside of the circle |w| = 1 onto the outside of E. In this case w = ¢(z) = z
so that F,,(z) = 2" and F,(¢(w)) = w™ = w™ + Y 1, anrw ™% where ap, = 0
for n,k = 0,1, --- . In this case we have ro = 0. The Faber expansion theorem

in this case is the Taylor series expansion.

EXAMPLE 2. Let F be the real closed segment [—1,1]. Then the mapping

1
w=¢(z) =z+ 22—1=z<1+1/1—22>

(where the branch chosen for /1 — z% on E° is the one that takes the value 1 for
z = 00) maps univalently the exterior of £ onto the domain |w| > 1. The closed
segment [—1,1] is mapped continuously onto |w| = 1, but not univalently. In
this example we have z = ¢(w) = 1 (w+ =) for |w| > 1 and ¢ =3. Since the

Laurent expansion at infinity of the function

1 [ 111t
¢(Z)_Z_ z 1 (1 1 z2>
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contains no nonnegative powers of z, the Laurent expansion at infinity of the

function

W:(H\/ﬁ)?ﬁ(z— z2—1)n (1.2.1)

has the same term with non-negative powers of z as the Laurent expansion at

Kn(z) = (6(2))" +

infinity of [¢(2)]" for n = 1,2,... . But K, (z) is a polynomial of degree n, and
hence

Fy(z) =1, F,(z) = (z+\/z271) + (zf 2271) , n=0,1,...
and

1 o0
Fo(yp(w)) =w" + — =w" + g anpw* forn=0,1,2,...
w
k=0

1 whenk=n

where ap, =
n {O otherwise.

Setting z = cost, we obtain
F,(cost) = [(cost +isint)" + (cost —isint)"] = 2cos nt ,
or equivalently
Fo(z) =1, F,(z) =2cos (narccos z), n=1,2,....

Hence the Faber nodes are the zeros of cosnt. We see that in this example the
Faber polynomials turn out to be normalized Chebyshev polynomials of the first
kind.

EXAMPLE 3. Assume § > 1. Write a = (6 + %) and b = (6 — 1). Let Ejs
be the ellipse ‘Z—; + z—z = 1 and its interior. This ellipse has £1 as its foci. The
function z = ¢(w) := (6w + 5= ) maps the exterior of Es univalently onto the
exterior of Dy. In this example we have c=16, and w = ¢(z) = +(z + V2% — 1).
Since the Laurent expansion at infinity of the function

@):62(1—\/1—32):5(2— 22—1>

contains no nonnegative powers of z, the Laurent expansion at infinity of the

function

e 0 = (5 0) s v )
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has the same term with non-negative powers of z as the Laurent expansion at

infinity of [¢(z)]™ for n =1,2,... . But K,(z) is a polynomial of degree n, and
hence

Fo(z) = 1, Fu(z ((z+\/ )) ( ( _ z2l)> n=01,...
and

1 o0

where

62% when k=n
Ank = .
0 otherwise.

In this example 9Fs is an rg-analytic curve with ro = 1/4.

For the Fejér nodes wy, 11,5, where wm_‘_l,km'*'l =1, for0 <k <m, we

have Fr 1 (Y(wmt1k)) = Fns1(4(1)). Hence, since Fro 1 (¢¥(w)) = Finga ($(1))
vanishes at the Fejér nodes z,,,11(2(1)),

wm (Y (w))

m+1
@ (Fon1 ((w)) — Fonga (1(1))

(" (o)

EXAMPLE 4. Let E be the closed interior of the lemniscate |22 — 1| = 1. Tt

is easy to see that the mapping
1\ /2
= e 1 _ — — 2 _ 1
w=ot)=:(1-%)  =vVE-L,

1
(where we choose the branch of (1 — Z%)? which equals 1 at co) maps the
exterior of F, univalently, onto the exterior of D;. The inverse function is given
by

z=9(w) =w 1+— Vw? 4+

k=0

We have

Therefore
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In particular
Fo(2) =1, Fi(2) =2, Fo2) =2 -1, F3(2) =2 — 2z, ...

We have

Aot = v ("o (1)

k=0
[n/2] n/2)

“e e () ()
[n/2] n

- 0 (V)% (5 e

Replacing in the last sum the summation index j by r and using the relation
k+j=r we get

R = un 3 30 o (") (30 o

e E ()
S (OG0 -O0)
Ry =u e 3 <n/2>kro "
- (DR
()t
S ()= (i)
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Using the substitution r = [n/2] 4+ s + 1 we obtain

Fn(p(w)) = w" + (_1)[n/2]m § <[n/2]n-q/-25 . 1) ([n/Zi + s) w125

n

when n is even

=] U TR () ()
when n is odd

w

1)["/2] Zan,sw_s
s=0

So when n is odd and s =0,1,2,... , we have
n n/2 n/2]+s .
st = (—1)ln/2 ([n/2]+s+1) ([ /s] ) when n is odd and s >0
0 otherwise.

2. Extended equiconvergence theorems for Faber expansions

Let f € A%. Assume that for a non-negative integer n a sequence of pair-
wise different interpolation nodes z;, € Gr (kK = 0,... ,n) is given. L, (f;")
denotes the Lagrange interpolant to f € A% in these nodes. Given a posi-
tive integer s then the Hermite interpolant hg s(n41)—1(2) is the polynomial of
lowest degree interpolating the functions f, f’, ..., f&=1 at the interpola-

tion points (zx ). To the given interpolating nodes we associate the polynomial

wn(2) = w(z; 2kn) = [Treo(z — 26n)-

In order to obtain an equiconvergence theorems for the Faber expansion of a

function the Lagrange or Hermite interpolants are replaced by their sections

Sn (Lm(fa '); Z) or Sy (hs,s(erl)fl(f; '); Z) .

We use also the following expressions. Set, for m >n >0 and j >0

S (F;2) =D himr1) Fi(2)- (2.0)

k=0
Clearly Syn0(f;2) = Sn(f;2) and S, (Lm(f;2);2) is the n'h Faber section of
the expansion of L,,(f;z) in terms of Faber polynomials.

We state now, but prove in Section 6 the following theorems.

THEOREM 3. Assume OF is an ro-analytic curve for some ro € [0,1). Sup-
pose f € A%,. Let q be a fized positive integer. Write m = q(n + 1) — 1. Let
Dy n(f; 2) be given by

—
Dy ,e(f32) = Sn(Lim(f3- Smon,i(f52) (2.1)

j=0

,_-



206 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

where Ly, (f; z) is the Lagrange interpolant at the Fejér nodes. Then,

< lw|  |wlre? Jw|rg™!
To,

L sup | Do e (f; 2)] /" < max

n—oo

Rlatl’ R ' Ra ) for |w[> R,

(2.2)

where z = (w), with OF := 0 for any nonnegative integer k and 1/0 := co.
An immediate consequence of Theorem 3 is the following

COROLLARY 1. Assume the assumptions of Theorem 3 are satisfied. Then
we have the equiconvergence result that

limsup Dy, e(f;2) =0 for |w| <A :=min (Rfﬁl,RrJQ,Rqrg(q—”).
(2.3)

The convergence to zero is uniform and geometric for |w| < 6 < A for each
1<d< A

In the same way it will be possible to obtain eqiconvergence theorems from
the subsequent theorems in the section.

The following theorem is an analogue of Theorem 3, where the m + 1 Fejér
nodes are replaced by the m + 1 zeros of the (m + 1)5* Faber polynomial i.e.,
Faber nodes.

THEOREM 4. Assume f € A%. Let £ and q be given positive integers. Write
m:=q(n+1)—1. Let Ay . ,(f;2) be given by

m,n

£—1
A:n,n,f(.f; Z) = Sn(L:n(f7 '); Z) - Z Sm,n,j(f; Z)7 (24)
7=0

where Sy n,;(f;2) is given by (2.0) and L%, (f; z) is the Lagrange interpolant of
f at the Faber nodes. Then we have

lim sup |A::n,n,e(f;z)|1/n < M
n—oo

< 7 for |w| >R where z = (w).

Adding to the assumption that OF is an rp-analytic curve for some r¢ € [0, 1)

we get the following stronger result.

THEOREM 5. Suppose the assumptions of Theorem /J are satisfied and that
OF is an ro-analytic curve for some o € [0,1). Then we have

—1
. 1/n mm{G%’E%;J when £=1
limsup [Ap, ne(f;2)] 7" <

1 w|  Jwlrg”! )
oo max (ﬁ, R|q+|17 T when £ > 1

(2.5)
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THEOREM 6. Let OF be an ro-analytic curve for some ro € [0,1). Suppose
f e Ay, Assume q and s,p are given positive integers. Write m := q(n+1) — 1.
For AP:s (f;z) given by

Ag’fn(f: Z) = Sp(nJrl)fl(hs,s(qul)fl(f; ')5 Z) - Sp(n+1)71(f; Z),

where hg g(m+1y-1(f; 2) denotes the Hermite interpolation polynomial to f, f’,
..., f*Yin the m + 1 Fejér nodes. Then we have

limsup|A§’,fn(f;z)|l/n <A, for z=2z(w) and |w| >R

n—oo
where
max (Tgl‘;ﬁlp, Pl;f’lz, ‘%Lq> when qs < p
2= L mas (g I B Y e o3 and g2
max (‘U}IL;T‘%, ‘;}q‘f) when qs > p and q>p

(2.6)
with 7 :=q when p=qu and 7 :=v whenp=qu+v, 0 <v < q.

THEOREM 7. Assume f € A}. Let q,s,p be positive integers. Write m :=
q(n+1)—1. Let AXP:5(f;2) be given by

s

A:g,’;(f; Z) = Sp(n+1)—1 (h:,s(erl)fl('; f)v Z) - Sp(n+1)—1(f; Z)v

where h:,s(m+1)—1(f? 2) denotes the Hermite interpolant to f, f',--- , fC=1 at
the m + 1 Faber nodes. Then we have

1/n

lim |Af,{’7’$(f; ) < N wlP for 2 = ¢(w), |w| > R,

where

= when p > qs
A* = { n b= (2.7)

1
max (ﬁ7 W) when p < qs.

In the following two theorems we consider the difference of sections of Hermite

interpolants and Lagrange interpolants.

THEOREM 8. Let OF be an ro-analytic curve for some ro € (0,1). Assume
f € A}, and that s,p are two given positive integer. Let Dy, ¢ n(f;2) given by

Dp,s,n(f; Z) = Sp(n+1)—1 ({hs,s(n+1)—1(f; ) - Ls(n+1)—1(f§ )}7 Z)
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where hg gni1)—1(f;2) and Lgmi1y—1(f;2) denote the Hermite and Lagrange
interpolants at Fejér nodes. Then we have

lim sup |Dp7syn(f;z)|l/n < Aw|? for |w| > R,

n—oo

where ,
S when p > s =1,
A:={ max (—R,}H , %) whenp > s> 1, (2.8)
Rls when 1 < p < s.

The following theorem is an analogue of Theorem 8 for Hermite and Lagrange

interpolants at Faber nodes.

THEOREM 9. Assume f € Ag. Let s,p be positive integers. Let Dy . . (f;2)

given by

D;,s,n(f; Z) = Op(n+1)-1 (h:,s(nqu)fl(f; ) - L:(n+1)71(f; '); Z)

where b7 s(n+l)7l(f;z) is the the Hermite interpolant to f at the zeros of
Fry1(2)® and Lynq1)-1(f;2) is the Lagrange interpolant to f at the zeros of
Fynt1)(2). Then we have

|w]®
. 1 T when s > p and |w| > R,
limsup| Dy ., (f:2)" <4 T (2.9)
n—oo TR when s <p and |w| > R.

3. Additional properties of Faber polynomials Let A}, = A% (E) denote
the class of functions f(w) holomorphic in G but not in any Ggr/, R > R.

Consider, for a given R > 1, and z € Gg, the integrals

1 o) 1 s"'(s)ds
2mi Jo, t— zdt © 2w Jig—r Y(s) — 2 (3.1)

connected by the substitution ¢ = 1(s). The path of the integral on the left of
(3.1) can be replaced by a circle of radius R* large enough so that ¢(z)™ has a
uniformly convergent Laurent series on this circle and the value of the integral
will remain the same. The Laurent series can be integrated term by term, and
when this is done the integral reproduces the principal part of the series at
infinity and all the terms with negative exponents vanish because we have for
|z| < R*

(3.2)

% |t|=Rt_Z

1 tk 2k for k>0
dt =
0 for k< —1.
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Thus, by (3.1)
1 s’ (s)ds
2mi Ji=r U(s) — 2
For each fixed z € G the function of s, s¢’(s)/(1(s) — 2), is regular for co >
|s|] > R and has the value 1 at s = oo, so it has a Laurent series
sY'(s)
U(s) =

But the Cauchy formulas for the coefficients in (3.4) are precisely the integrals

Fo.(z) = , n=1,23,...,2€Ggr, R>~;=1. (3.3)

1 1
= 1+P1(Z)g +p2(2)87+--- y sl = R>vx=1, 2€ Gg. (34)

appearing in (3.3), so these coefficients p,,(z) are indeed P, (z) for each n. We
thus have the following generating function for the Faber polynomials

w(s 2 ZFk sTF for [s| > Jw| > =1 (2 =¢(w)). (3.5)
This implies that
Y'(s) - 1 .
= o T (Fr( for |s| > |w| >~y =1.
9~ i) 3 (Fulptw) ~ ) g ;
(3.6)

REMARK 1.. It is easy to see that when JF is a yp—analytic curve (0 < vy <
1) then in (3.3),(3.5) and (3.6) we can replace v = 1 by 7§ = 7.

We obtain now some additional properties of F, (¢(w)). We need the following

notations.

(i) If OE is a yp-analytic curve (0 < 79 < 1) then we choose R; and R so
that 75 = v < R1 < R.

(ii) If nothing is assumed about OF then R; and R are chosen so that v =
1< Ry <R.

Both in case (i) and in case (ii), (3.3) holds for these R; and R. Let z = ¢ (w)
lie in the region Hp, r bounded by Cg, and Cg. (We observe that for a given
w, |w| > Ry, we can always choose R sufficiently large so that z = ¢(w) lies
in H.) The function s"¢’(s)/[¢(s) — ¥ (w)] as a function of s is regular in the

closed region except for a simple pole at s = w. The residue at this the pole is

lim (s — w)M =w".

s—w U(s) — h(w)
Thus by the residue theorem and (3.3) we get for z = ¢(w), |w| > Ry,

Fo(2) = Fa(i(w)) = w" + —— s"'(s)ds

i B, 96) — p(w) © = V) bl > B

(3.7)
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From (3.7) we get immediately

Fn(p(w)) —w™ = O) Ry (3.8)
uniformly in 7§ < Ry < 0 < |w| when Ry > 1, and rp < Ry < 1 when

7% =, 0 <70 < 1.

The integrand on the right of (3.7) is an analytic function of w for |w| > R
and has the value 0 at w = oo. Thus it has a Laurent series in w convergent at
least for |w| > R. We write this series in the form

Fo(p(w)) =w" + > apgw™. (3.9)

The series is convergent for all w, |w| > R;, and uniformly convergent for
|lw| > R* > Ry, where R* is now arbitrary. By the formula for the coefficients

of the Laurent expansion we have

B wh=tsm! (s)dsdw
k= g 7{0 Rzi.{ ) = dw) (3.10)

where Ry > Ry > 1 = ~§ when 75 = 1 and 7§ = 70 < R1 < Rz < 1 when

Y5 =7 < 1.
An immediate consequence of (3.10) is

1< Ri < Ry when 5 =1
| | < O(l)R§R1" for n,k > 1 where Yo <Ri <Ry <1
when 75 < 1.

When 75 < 1, the numbers R; and Ry that satisfy 79 < R; < Rs < 1 are
arbitrary. So we have

RSR? for n,k > 1 for each pair 1 < Ry < Ry

when 5 =1
Qp k= O(l) X
pr+n for m,k > 1 for each 3 satisfying 7§ < 3 < 1

when 75 < 1.
(3.11)

From (3.11) we get for |w| > Ry (where 1 < Ry < Ry when 7§ = 1 and
Yo < R1 < Re <1 when 5=+ <1)

> anw™ =O0MRYY (RQ) =O)R} for |w|>R> R, (3.12)
v=1

v=1 "LU|

The convergence in (3.12) is uniform for |w| > ¢ > Rs.
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For the following inequality see [34, eq.(4.9)]:
|t | < ﬁ for n,keIN. (3.13)

From (3.13), it readily follows that

oo

—v
E gy W
v=1

2 Jw| = 1 1 vn
S\/HZWS\/EZW‘ S\/ﬁg T = —
v=1 v=1

for |[w| > 1 and n € IN. Also

iiamyw_yt—(lﬁ'l) =0(1) QUL 0(1) (3.15)

_ k+1
o i el =1

as n — oo, uniformly for |w| > § > 1, |t| > p, for each § > 1 and p > 1. From
(3.9) and (3.6) we see that

[ee]

P'(s) > 1 .
Y(s) —v(w) *;sm; W (3.16)

=1

The series converges for all w, |w| > Ry, and uniformly for |w| > R*, for each
R* > R;y. Here R; > 1 when 7§ = 1 and when OF is an ro-analytic curve then
v5 =710, 7o <1l and ro < Ry < 1. Always R; > ro.

4. Estimate of the polynomials w,(z) for Fejér and Faber nodes
4.1 Estimates of the polynomials w,(z) for Faber nodes

For the Faber nodes we have wy,(z) = ¢"F,41(z). From (3.9) and (3.14), we
get for any ¢ and ¢ satisfying 1 < |¢t| = r < |¢| = r’ and any integer s > 1,

Frn1(¥(Q)* = Frp1 (¥(1)°
Fm+1(¢(€))s
(e o) — (e o )
(Cm+1+0(1) \}ngll)

s(m m+1 s(m m+1 s
¢otm+D) (1+0(1)Wh) — D (14 0(1) it )

s(m+1 vm+1 *
C ( ) ( <7n+1(f 1))

Cs(m—‘—l) o ﬁS(M-‘rl) \/m -
= D '<1+O“><m+wzn> g
(1+omZ) -1 (1+0) ) -1

Xy L1+ Cs(m+1) — ¢s(m+1) o Cs(m+1) — ¢s(m+1)
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Cs(m+1) _ ts(m+1) \/m
~ S — (VoW

O O(1) =
Cs(m+1) — ¢s(m+1) N Cs(m+1) — ¢s(m+1)

X <14+

- Cs(m+1) _ ts(m+1) m + 1

Thus we have

o (D(Q) — wn(b()) D pslme) VmT1
om@Q)  gomiD (”O(” |<|m+1> (4.2)

as m — oo , uniformly in ¢,{ for 1 <r =|t| <7’ =|¢| < R.

4.2 Estimate of the polynomials w,(z) for Fejér nodes

Write wy, 1= exp(2wki/(m+1)) (k=0,1,... ,m). We recall that the points
Zm,k = (W, ) are called the Fejér nodes with respect to E. We write

{ w(z) = wp(2) :==[[4_o(2 — 2n,k) and for z =¢(w) we have (43)
wn(2) = [Tjo (Y (w) — Y(wn k). .
The function 7, (w) is defined by
I w"(z) f _
T (W) 1= W or z# zpk, z=Y(w),
and is defined by continuity for z = z;. We have
CTT 22k 11 Y(w) = Y(wa )
m(w) =[] P 11 (0w )d (4.4)

k=0 k=0

when w # wyg, |w| > ro. If w = wy, then the k-th factor is to be replaced by
¢’ (wy)/d.

LEMMA 1. Assume OF is an ro-analytic curve, ro € [0,1). Then to each
B, 1 >1r > rg there corresponds a number M = Mg . > 0, depending only on r
and ¢, such that for all sufficiently large n > N

_ wm@w) L
(wm-‘rl _1)dm+1 Wn(w)
<Mpg", |w|>ry, k=0,1,...,n; n>N,

(4.5)
and
’(wm+1 _ 1)dm+1

merl - ml = |Th (W) — n
wm (Y (w)) ( 1)d 1’ | (w) — 1| < Mp
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for lw| >ro, k=0,1,...,n; n>N.

PRrOOF. The function

CUETT RN
x(w,s) = o
d b b)

is clearly an analytic function of s for each fixed w, |s| > rg, |w| > 7¢; and
x(w,00) = x(00,8) = 1. Also, ¢'(0c0)/d = 1. The univalence of ¢(w) implies
that ¢’ (w) cannot vanish for |w| > rg. The roles of w and s can be interchanged
in these remarks. Therefore |x(w, s)| and X := {w : +00 > |w| > ro} % {s:
+00 > |s| > ro}. Hence |x(w, s)| has a finite maximum and a non-zero minimum
on this set X.

Let Log x(w, s) denote the branch of the logarithm for which Log x(w, c0) =
0 on X. For w fixed, |w| > 7¢, this is an analytic function of s for |s| > rg with

a Laurent series expansion around infinity of the form

c1(w) n co(w)

+....
s 52

Log x(w,s) =

The coefficients of this Laurent expansion are given by

1
em(w) = — s Log ¢(w, s)ds.

211 |s|=ro

The boundedness of |x(w, s)| implies that Log x(w, s) is bounded and continu-
ous on X. If M, is the maximum of Log x(w, s), then by the Cauchy estimates

we have |c,, (w)| < My r§*. For the roots of unity (w ;) we have

Z":w ;i _fo if j#0mod(n+1),
rar wE T\ n+1 if j=0mod(n+1).

By (4.4) we get

log m(w) = Y Log x(w,wy) = > ¢j(w)wn ™
j=1

k=0
j(n+1
=+ imin(w) = (n+ )My g™
j=1 =1
so
(n+ 1)rg M,
| log 7 (w)| = |log ‘ < - — 0asn — oo for, |w|>ro.
7Tn<w) 1-— 7”0+1
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If |log z| < & with 0 < e < 1, then

£

|z — 1] = |exp(log2z) — 1] < (1 +¢e/2! +£2/31+...) < :
—c

—_

Let 3 be a given number satisfying ro < # < 1, and choose My = My(8, x) so

that T
n -+ 1)r; " M. n
(1)% < Mys", nZN(T(Jva)-
— o

Then for |w| > ro,

‘ﬂ.n(w> - 1‘ < Moﬁnv n > N(r07MX)7

— 1| < Mys"™ >N M.
7Tn('UJ) ‘_ Oﬂa n = (’1"07 X)a

which completes the proof. (I

Applying (4.5) of Lemma 1 with some 3, 7o < 8 < 1, to each of the terms
in the following fraction we get

wim (Y(€))* — wm(P(1))* _
win (1¥(€))*
(" —1)* A+ 01)B™)° — (¢ —1)°(1 + O(1)p™)°
(1 1T+ 0y
(@ -1)*A+01)p™) — ™ —1)*(1+0(1)8™)
(¢t —=1)*(1+0(1)5™)
(Cm—&-l o 1)5 _ (tm+1 _ 1)3

G

(@ —1)*0n)p™ — (t™* —1)*0(1)p™
x (1 + (<m+1 _ 1)5 _ (tm—i—l _ ]_)s )
(<m+1 _ 1)5 _ (tm+1 _ l)s

— T (1+0(1)8™) (4.6)

5. Integral representations of Lagrange and Hermite interpolants for

Faber expansions

We use in the proofs of the results of this chapter certain integral represen-
tations of the Lagrange, Hermite and a combination of these interpolants in a

form which is relevant to Faber polynomials.

Given a function f € A%, R > 1, we shall assume in all the proofs of this
chapter that the numbers r, 7’ satisfy 1 < r < r’ < R and that the interpolating
points (zj,,) satisfy zj , € G, for all sufficiently large n. The last assumption
is satisfied by the Faber and Fejér nodes.
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Applying the well-known integral formula for the Hermite interpolation (cf.
Chapter 2, (1.0)) we obtain for each 7’ € (1, R)

PO wm(Q) - om(2)
(€)== wm (¥(€))

1
Inlfid) =5 f 16 @ ze@ ()

211

and

V(O @O —wml2) .
WO 2 em@Qy o EC

P s(ms1)-1(f;2) L ]{ _ /f(iﬁ(C))

By (1.1.2) and (1.1.4) the expansion of

Sn(Lm(f; '); Z) and Sn(hs.,s(m-‘rl)—l(f; '); Z)

in terms of Faber polynomials are given by

Sullm(f12) = 5 § Il 3 R

2mi paars
1 1O
=i S T )<2m- e 90 — (D)

me(w(O)_wm(w(t)) - )¢~ (k+1) P
om(B(0) E?“’f ﬁ)ﬂ’ 6%@

and

Sulbustnn 2 ) = 55§ hastmena(F00) D Bl
=r k=0
_ L SR G A (Y
o 271 I¢|=r" f(’(/}(C)) (27” [t|=r 1/’(() - 1/’(t) .

G 0(0) ~ W) = e )
@Oy dt>dc’ e

We set, for m >n >0 and j > 0, as in (2.0),
Sm,n,j(f; Z) = Z ak+j(7n+1)Fk(z)- (55)
k=0

Clearly Syun0(f;2) = Su(f;2) and S, (L (f;2);2) is the n'h Faber section of
the expansion of L,,(f; %) in terms of Faber polynomials.

Now (2.0) and (1.1.2) imply that

Sm.n.j([f;2) . ?i/f(w(<>)c—j<m+1>ZFk(z)g—<k+1>d<, ze Q.

T 2mi
k=0
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Thus we have, for a given integer £ > 1

-1

1 CZ(erl) -1
Z Sm n J(f7 ) 271_2 %{IW f(ﬂ)(C)) C(z 1)(m+1 <m+1 Z Fk (k+1)dC

Jj=0

for ze (5.6)

The function (w) is univalent for |w| > 1 and has a simple pole at infinity
with residue ¢ at oco. Therefore the function % of t is regular but for
one simple pole at t = ¢, for |t| > 1, and lim;_ % = 0. The residue
at t = ¢ of the function _ Q) L of the variable t, for an integer s > 0, is

P(O—p() o

lim;_,¢ % . % = % Using now the residue theorem, we obtain

Lo a1
i Ly D0 — 0 g et (5.7)

Applying this formula with s = 1 and (5.6) for 1 < r < 7/, we get the following
double integral:

S 1 1 WO ¢
par Sm n,J f7 Tm qu_w f(¢(<)) <27TZ ftl_r (g) ( ) E X
" § CZ(TIL+1) —1 iFk(z)Cf(kH»l)dt dé— ; ze (.
¢E=D)(m+1)(¢m+1 1) — (5.8)

In analogy to (5.4) it is easy to see that for 1 <r <7’ < R

S Bl s %) = 5§ SOO)
/ s s p(n+1)—1
b o s el M ‘o
From (5.8) weget for {=1land 1 <r <7 <R
Spinn-1(f52)) =
- G) o 74 - Ww © % N ?Z(fl at | dac.

(5.10)
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6. Proofs of the theorems stated in Section 2

6.1 Proof of Theorem 3

In the proof we assume that 0 < ro < Ry <1 <r <1’ <R, that |t| = and
|¢| =" If f(z) € A} has the Faber expansion f(z) = Y., axFy(z), then by
(1.1.2) and (1.1.4) we have for each 7', 1 <1’ < R,

1 S _
Sul7i2) = g IO LR, zew

By (2.1), (5.3) and (5.8) we get

1 ¥ (<)
Dl fi2)=55 . F00) (27” e )Kmm,g(w,m)dt) .
(6.1.1)
where
Km,n,ﬂ(wy Cv t) =
_ wm(¥(9) wm(¢(t>)< S kY = (k1) ~ (k+1)>
am@©Q)  \ 2 (Ple) =)+ 3wl
_¢,__ ¢ (Z (Pulwlw) - ut) =45 4 3 k)
t C(Z—l)(m+1)(<m+1 _ 1) P k = :
(6.1.2)
We fix a number p = 3, rp < § < 1. By (4.6) with s =1 we can write
wm (¥(C)) — wm (1)) gmt ¢ et e
om@Q) =1 g o1 OO o (619)

uniformly as n — oo on sets of points {((,t) : [t| =r <’ = (} for each pair
1 < r <7 < R. By applying now (6.1.3) and (3.9) the kernel K, » ¢(w,(,t)
can be broken into six parts, K, n¢e(w,(,t) := Z?Zl Kpyno(w, ¢, t,7), where

CmJFl n oo

Knen(w, ¢ t) := 1 Zza,”w vy—(k+1)

k 1v=1
C Cé(m+1) -1 .
B ?g(f Dimt1) (¢mt1 — 1) Zzak w ¢
k=1v=1
1 n_ oo
Km’nyf’Q(wvcat) = o — Zzak w Yt (k+1)
B Histes (6.1.4)
1_ ymtl n oo e
Konntalitn ) = 07 szamw t
k=1v=1

Crn+1(t7z+1 _ wn+1)
(t — w)(CmH — 1)t
C (CnJrl _ wn+1) CZ(erl) -1
St (Cmw)rE (EDimED (g 1)

Km,n,é,él (w7 ¢, t) =
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and

m+1 _ gm+1\(4n+1 _ , n+l
Km,n,@,f)(w7<:t) = O(l)ﬂm (C (t — Uf)t"+zgzm+1 _,Ui) )

tm+1<tn+1 _ wTL+1>
(= wr =1

(6.1.5)

Km,n,é,ﬁ(wv Ca t) = -
By (3.9) the two series on the right hand side of definition of Ky, » ¢(w, (,t) are
uniformly convergent for |w| > 1 and |t| > r > 1.
We write Dy, o(f;2) = Z?:l Dyyone.;(f; 2) where

1 1 V() _
Dryne = i e F@W(0)) <27TZ e me,n,Z,j (w7<7t)dt> d¢

The regularity of the integrands defining D, , ¢,; allows us to replace, indepen-
dently, in each of the integrals defining Dy, ,, ¢,; any given triple Ry, 7o, 1’ by
any other triple Ry, rg, 7’ as long as it satisfies 7o < Ry <1 <r <r' <R.

We estimate now integrands of D,, ,, ¢ ; for 1 < j < 6. In these estimates the
assumptions are that 1o < S <1 <r < <R, |w|>R,|t| =7, |(| =1

Estimate of Dy ne1 By (5.7) we have

1 ¥'(Q) _ 1
) T o R S

% z": iak’uwfucf(lwrl)

k=1v=1

and by (3.11)

1 ¥(¢) _ I e
5 o B00) iy 0 = O0) Gy 2 017

Hence

1/n
1 v'(Q) 1
21 e, B — vy GO = G

lim sup

n—oo

Therefore

. 1
lim sup | Dy e (f; Z)|1/n < (r')ta’

Letting 7' " R we get

1
. 1
11£S£p|Dm,n,g,1| /n < Rl <1 for|w|>R.
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Estimate of Dy, pne2 By (3.11) we have

[Konaa, .8 = O s S by 40,
k=1
Therefore
liyrgsolip |Km,n,e,2(man:€)‘1/n < (g)q :
Hence

q
lim sup [ Dy 0 (f3 )" < (1)

’
n—o00 r

Letting » \, 1 and ' " R we get

1
lim sup |Dm7n,g,2|1/n < T < 1 for |w| <R.

n—oo 4q
Estimate of Dy pne,3 By (3.11) we have

Km,n,€,3 (’LU, G t) = O(l)ﬁm

Hence
. 1
lim sup | K n.e.3| /1< g,

n—oo
Therefore
limsup | Dyn,n,e3(f3 )" < 7.
n—oo

Letting 6\, 7o we get

1/n

limsup [Dynes(w, ¢, 1) <rl <1 for |w| > R.

n—oo
Estimate of Dy p0,a We have % =Y, wktk=(n+D) By applying
(5.7) we see that

1 ¥'(9)

% tjr me,n,ZA(wa Ca t)dt = Km,n,[,él(wa <7 <)

CnJrl — !
(¢ — w)¢(E=Da+D)(n+1)(¢aln+1) — 1)

|w]

cow () e

Hence

1/n

1 P'(¢)
270 Jjyj=r () — ¥ (t)

lim sup

n—oo

Km,n,€,4(w7 <7 t)dt
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Therefore
lim sup |D |1/n o]
s m,n,l,4 (r,)£q+1~
Letting ' R we see that
w|
lim sup | Dy pea(f; )|V < | for |w| > R.
msup [ Dy (1) < s ol

Estimate of Dy, n.e5 From the definition of Ky, ¢ 5(w, ¢, ) it follows imme-
diately that we have

q n
Kones(w, ¢, t) = O(1) <W> as n — oo. (6.1.6)
’ r
Therefore
q
lim sup [ K, n,0,5(w, ¢, t)|1/n < w
n—o00 T
Hence
q
lim up [ D5 (5 )]/ < 12020

n—o00 r

Letting » /" R and (8 \, 1o we get

lim sup [ Dy, e, s(f; )" < fwlro®

n—oo R

for |w| > R.

Estimate of Dy, ne6 From the definition of Ky, ¢6 and (3.16) we get

1 ¥ (<)

2mi t‘_rm Kppnoe(w, ¢, t)dt =

_ 1 1 iia phe—ry | BT w0t
L C_t k tn+1 t—w
tl=r vtk
1
X mdt
1 11 ?{ SNy kb
S S (Rt
¢m+l —1¢ 27 [t|=r I;)JZ:O
oo oo N
FY DY It R ) .
v=1k=1 ;=0
Since
, 1 for p=-1
N . (6.1.7)
278 Sy = 0 for p7 -1
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and k+m—j=k+q(n+1)—1—7j > 0 the integral of the double sum vanishes
and the integral of the triple sum gives contibution only when k = m +1 — j.

Hence we get

211 Jyp= ¥(C) — (1) monto(w, &, E)dt

1 1 c© n .
— 74'7714‘1 1 Z ZZa%m_‘,_l_ijC ( +1>.

v=15=0
From (3.11) we get

1 ¥'(¢)
210 Jjy=r ¥ (C) — ¥(t)
6m+27n|w‘n

_ O(l)W ZZﬁm+1—JﬁuC—(V+l)wJ _ O(]-)W

v=1j=0

Km;“ae;ﬁ(wv C: t)dt =

When 79 = 0 we can choose (3 as near to 0 as we wish. So that

1 ¥'(Q)

20 Ly 00 — () e (0 6 1) = 0.

Hence

1/n ‘wl[?rl when rg > 0
lim sup ‘Km,n,lﬁ(wa Cv t)| < ()
n—oo O When ro = 0

and
when rg > 0

n—oo

lw|p?~"
limsup | Dy n.e.6(f; z)\l/” < (r7)e
0 when r¢ = 0.

Letting 8\, ro and ' /" R we get

q—1
. wir,
lim $up | Dy (3 2) [/ < 12070

0._
msu R for |w| > R where 0" := 0.

Combining the above six estimates we obtain the result

—, =, T
e Req: Rqa 07qu+17 R ) R4

q q—1
Y S I
- 05 qu+17 R ) R .

n 1 1 d q71
limsup|Dm,n7@(f;z)|1/ Smax( jw|  Jwlrg |w|rg )
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6.2 Proof of Theorem 4

We proceed along the lines of the proof of Theorem 3. We assume in the
proof that 1 < r < v’ < R and |w| > R. From (5.3) and (5.8) we obtain an
integral representation for A}, ,(f;z) of (2.4) as the difference of two double
integrals. From (5.3), (5.8), (3.9) and (4.2) we see that for 1 < p<r <1 <R

(with z = ¢(w)) we can write

mnl faz) ZAmnéj faz)

= o K t)dt | d
2t fgor TV 200 B, 500 - w@)z st 6, )t | d¢
where
Km,n,e,l(w7C7t) = Z Zak,nwiutikil
k=1v=1
S CUm+1) _ n_ oo o
L—1)(m+1 m+1 _ Zak W C

t U=1)(m+1)(¢m+ 1) — L

tm+1 = —vy—k—1
Km,n,e,z(w,é,t)=—4m+1 o w Tt

v=1

Vm o+ 1 ¢mtt - gl B ek

K’m,n,ﬂﬁ(vaat) = (1) |C|m+1 Cm+1 ZZO[]C’V’UJ t S

k=1v=1

K (w C t) - tn+1 _ wn+1 B C <n+1 n+1 . Cé(m-‘rl) -1
m,n,0,4\W, §, = ‘(t — w)t”Jrl t (t _ )<n+1 C(@—l)(m+1)(é‘m+1 _ 1)

(6.2.1)
\/m m t"+1 7,wn+1
K n,e5(w, () := O(1) REE - oy (6.2.2)
and
gmtl o gn+l wn+1
Kmfm[,(i(wa Ca t) = _Cerl ' (t — ’U])tn+1 (623)

We estimate now Ay, (f; z) for 1 < j <6.

Estimate of A}, ,1(f;2). By (5.7) and (3.14) we have

1 ,(/} (C) B C(Z—l)(m+1) -1
Tﬂ_i i ’(/}( ) (t) m n,Z,l(w,Cat)dt - _C(é_l)(m+1)(<m+1 _ ]_) X
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3/2
X ZZ% Jw Ve (k+1) _ 0(1)( /)m+1 <1 — 71)

k=1v=1
Therefore
1/n
hmsup &K e1(w, ¢, t)dt / <
n—00 [t|l=r 1/)(0 ¢() Y Y N (T/)q
Hence L
1/n
11£SUP|Amnel(fv 2)| §w~
Letting 7/ R we obtain
limsup |A (f'Z)!l/n<i<1
n—oo m,n4,1 ' - Rq '
Estimate of A}, ,5(f;2). By (3.14) we have
X o P\ m+l 1 -3/2
m,n , G, t) = 1 (*) 1-- .
naatw 6. =0 (5)"7 (1-1)
Hence
: 1/n r\4
lim Sup [ Ko, g2 (w, ¢, 07 < (;)
Therefore
. % 1/n r\19
limsup | A7, 1, ¢2(f;2)] "< (%)
Letting 7 \, 1 and ' /" R we get
. * 1/n 1
hin—?olip |Am’n7£,2(f;z)| < T < 1.
Estimate of Ay, ., 3(f;2). By (3.14) we have
vm+1
Knps(w, ¢, t) = 0(1)|C|T+1'
Hence we get
1
ligl_ilip | Km,es(w, ¢, )™ < )y
which implies
. * 1/n 1
limsup [ AL s (f52)[ 7 < o
Letting 7' " R we get
. * 1/n 1
limsup |AY o 5(f;2)] 7" < — <1 for |w|> R.

= Ra
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Estimate of AY, . ,4(f; 7). Again using the residue theorem, we see that for

jw| > R,
1 ¥'(Q)
7Km,n,€, w, Cat dt = [(m,n,f7 w, CaC
2t Sy 90 — vy el ) w6 0)
<7L+1 — 1 1— C(Z—l)(m+1)
= (€ —w)(n it ’ CEDmFD) (¢mi1 — 1)
0, £=1
) o) (%) , 0>
Hence we get
. 1/n 0 when /=1
lim Sup [ Ko, g4 (w, G077 < { el when (2.
Therefore
n _ 0 when (=1
hﬂﬂp |Am nealfs2 ‘ { (J;‘;Ll when 0>2.
Letting 7' " R we get
. " S \(1/n 0 when /=1
hgis;l;p |Am’n’f’4(f7 Z)| = { R‘ﬂl when ? > 2.

Estimate of Af . ,5(f;2). It is obvious from the expression for Ky, .5

(w,(,t) that for |w| > R >/,
. i o ol Jwl
hmsup|Km7n,e75(waC7t)| < r(cle - 7ﬂ(r/)q'

n—oo

|w]

Hence
. « 1/n
lim sup |Am1n’z75(f§ Z)‘ = 1"((1"/)‘1.

Letting ' R, € \, 0 and then r /" R we get

1/n w
limsup |AY, 45 (f; )‘/ < R|‘1+‘1 for |w|> R.

n—oo

Estimate of A}, ., ,(f;2). We have
| K ,n,e,6(w, ¢, 1) P ()
m,n,, )5 = (r/)m+1(|w| _ ’r‘)’l“”""l.

jwlre™!

Therefore
(r')a

lim sup | K n,e,6(w, ¢, t)|1/n <

n—oo
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Hence

1n jwlra”!
1 VAW :
lfljup| mon6(f32)] (')

Letting » \, 1 and ' R we get

1/n _ |w|
limsup |A < —.
P, p’ mnEG(fv )’ = Ry
On combining the above estimates we see that
|w

hmsup‘Amn@(f;z)F/n < —.

n—oo

O

Proof of Theorem 5 Since JF is an rg-analytic curve for some 0 < rg < 1,

(3.12) leads, for 8 < [t| < (], to

= (10w () ) me

(6.2.4)

An examination of the proof of Theorem 4 shows that by applying (6.2.4) in

the above proof, the estimates of A;‘nyn_[’j(f;z), 1 < j < 6 can be improved.

Applying (3.11) and (6.2.4) we get

1
lim sup |A iz 1/”<—,
nﬁoop‘ m,n,@,l(f )‘ = R
limsup [ A e2(f:2)] /" <
n—o0 T Rq
q
lim sup |Ap,n 1z 1/"<T—O,
n_}oop\ me3(f;2)7 < Ry
and 0 hen /=1
when (=
li A )V <
0SUp | A, .4(f3 2)] { Bl when (> 1.
Using now (3.11) and (6.2.4) we obtain
limsup A5 )]/ < 14078
liisolip m,n,l,5\J ;% = Rqul .

Applying (6.2.3) and (3.16) we get

B () _
Fm,n(w» C) - % ﬁrl MKm,n,Z,G(wa Cv t)dt -

wnJrl

m—+1 n+1
= —4—22&”1&_’“( e ) T =
omi ¢mtl (t—w

v=1 k=1

)tn+1
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- erz Cm+2 ZZC Fwl T 4

k=0 j=0

+ i i z": al,ﬁkcf”wjtmfkfj dt .

v=1k=1;=0
Since k+m —j=k+q(n+1)—1—j > 0, the integral of the double sum
above vanishes and the triple sum gives a contribution for the integral only
when k£ =m + 1 — j, so that

Fon0.) = 0 32 Y maa €

v=1 j=0

Applying now (3.11) for |C| =1’, we have

Fn(w, () = m ZZBVH% HNwl (")

v=1j=0
) é m oo é v on |’LU)j_ <|w'ﬁq_1)n
o(1) <T> Z_:l(”> ;(5 O =y
Thus,
nh—»ngo ‘Am,n,f,ﬁ(f; Z)‘l/n - Iwgg

Combining the six estimates we get when ¢ =1

1 7 lw|rd |w|rd™!
limsup |A 1z 1/ < max —, -9, g, 0
mup A e (3 2)] 7 < (Rq Re’ RiYU T Ra

B 1 Jwlrg™
T\ Re' T Ra
and when ¢ > 1

. 1 1ord Jwl |wlrd |wlrd™
limsup |Ap, ne(f; 2)] m < max | —, -2

oo R1’ R1’ Ra+1l’ Ratl’ Ra
1 -1
— max ( ol Jwirg ) (6.2.5)

R4’ Ra+1’  Ra
(I

6.3 Proof of Theorem 6

Observe that the formula for AL: (f;2) remains the same as the difference
of (5.9) and (5.10). We have to keep in mind that w,(¢(¢)) is based now on
Fejér nodes. When OF is an rg-analytic curve, with ro € [0,1) we have by (4.6)

wn((Q) —wp (U0) _ (€™ =D = (" ) gy e

ws, (¥(C)) (¢mtt —1)s
(6.3.1)
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uniformly on sets {(¢,t) : |¢]/|¢] < a < 1}, for each 0 < ¢ < 1. Here again, we
can write

6
AL (F52) =D A0S, (f32),
j=1
where for j =1,2,3,4,5,6 we have
s _ 1 1 ¥'(<) _
A% RON] (f Z) Tm | f(w(g)) (27_‘_2 lt]=r m[{m,nﬂ (w7€>t)dt> d

The kernels K, . j(w, ¢, t) are defined as follows:

(Cm_H 1 p(n+1)—1 oo p(n+1)—1 oo

. ¢ :
(Cm+1 Z Z wi[:kil T Z w(jgkl:rl

k=1 v=1

(tm+1 1)5 p(n+1)-1 oo

(077
Km7n,2 (w7 47 t) = (Cm+1 Z Z w”tk+1

m+l _qys _ (pmAl _q p(n+1)— ,
Km,n,?)(wvg’t) = O(l)ﬁm (C <<’7V)L+1 f ]_)s ) Z Z ’Oj:l;‘i'l

p(n+1) _ 4 p(nt1) ¢ Cp(n-H) — Pn+1)
(t—w)te( D) ¢ (¢ — w)p(ntD)

Km,nA(wa Cv t) =

(Cm+1 _ 1)s _ (tm+1 _ l)s tp(m+1) _ wp(erl)
((mFT = 1)s ' (t — w)tp(nt1) 7

K’m,n,5(w7 Cv t) = O(l)ﬁm

and
(thrl _ 1)5 tp(n+1) _ wp(n+l)

Km,n,G(wv ¢, t) = (Cm+1 _ l)s ’ (t _ w)tp(nJrl)

We begin now the estimation of AP® . (f;z) for 1 < j < 6. In the proof it is

mn]

assumed that 0 < rg < Ry <1< r <71’ < R, that z = ¢)(w) and that |w| > R.

Estimate of AV® 1 (f;2). By (1.1.4) and (3.14) we have

1 ¥'(¢)

o 7K¢nn EAB) =V
i s 000 — vy il =0

Therefore limsup,, ., [AD* | (f; z)|1/n =0<1

Estimate of A}®, 5(f;2). We have by (3.12)

stma1) P(PTD-1 k s(m
Knnatw. ) =00 (5)"S0 L () o ().

T r !
k=1
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Hence limsup,, .o [Km n,2(w, C,t)|1/n < (%)™ . Therefore

hmsup|Amn2(f7 )|1/n = (i)qs.

/
n—oo r

Letting 7 \, 1 and ' we get

l/n 1
lim sup |A7E, 5 (f:2)] " < g <L
Estimate of A}®, 5(f;2). We have by (3.12)
p(n+1)—1
Kmns(w,¢,t)=01)p™ Y Rir~*t) =0(1)p™,
k=1
Hence
im sup | Ky, (w, ¢, )™ < 57,

Therefore

lim sup |Amn 3(f;z)|1/n < g

n—oo

Letting 6\, 7o we get

hmsup| mn3 (f; )|/ g <1.

Estimate of AV® (f;2). We have by (5.7)

1

21 [t|=r

Km,n,4(wa<7t)dt = m,n74(w7C7t)(w7C7C) = O

Hence
lim sup |Amn4(f;z)|l/n =0<1.

n—oo

Estimate of A}®, 5(f;2). By (3.12) we have
Koms(w, ¢ t) = 0(1) 3™ w1 p=(p(nt1)

Hence
. 1/n B! Pq
limsup | K n5(w, (,8)| 7" < r7|w| ‘

Therefore
lim sup ‘A’,;;‘fms(f; z)‘l/n

n—oo

q
< ﬂi‘wviq'
D
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Letting r /" R and 0\, rg we get

1/n rdlw?
11mSUp|Amn5(f7 )|/ = O|Rp|

Estimate of AV® (f;2). The argument used in the proof now is similar
to that used in part (i.6) of the proof of Theorem 3. From the definition of
Kpme6(w,(,t) and (3.16) we get

1 AN
270 Jy=r ¥(C) — ¥(t)

1 L —
T2 e, (ZtkC ““”ZZ“ e 1)

m n76<w, C, t)dt =

pn=1k=1
(tm+1 _ ) tp(nJrl) _ wp(n+1) 1 "
“ T — 1) t—w tp(n+1)
_ _;L% itkg—(km i(—l)s_j <3> pitma) | o
(Cmtt = 1) 2mi Jjy— \ 2= = J
p(n+1)—1
X > Wy | at
v=0

e ] (fﬁ ) t’wl) x
—_—— Uk
+1 _ M
(Cm 1)5 211 [t|=r o
s

< | S (1) (3) gilm+1) |

Jj=0 J
p(n+1)—1
< | e |t
v=0
4l (6.3.2)

The integrands in the integral with respect to ¢ in I; will vanish (by 6.1.7)
except when k = v — j(n+ 1) > 0. Therefore we have

L e ()

/s D) q(n+1)—1 w\”
- - _1)s5—J ja(n
h=-¢emopy 2 D (j.)c 2 (c) ‘

Jj=0 v>jq(n+1)

We consider now the two possibilities: p < gs and p > gs.

Estimating I when p < gs . We have in this case

o (1522570 - 525
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Therefore

1 |w|p(n+1>—1(T/)q<"+1>["%’éii)61]

(,r/)qs(n+1)+1 (,,J)p(n—&-l)—l

I =0(1)

Write p = qu + v where v € INT and 0 < v < ¢. Then we have

p(n+1>—1} _{q(n+1)(u—1) when v =0
q

+1
aln ){ q(n+1) (n+ u when 0 <v < gq.

Hence

(r)ma(s+)(n+1)—2 when v =10

I = O(1 p(n+1)—1 X
1 (1)[w] (r/)—(qs+v)(n+1)—2 when 0<wv<gq.

Hence

! 7‘1(34’1) h — 0
When ¢s >p limsup|]1|1/":|w|px{ (r') when v

n—o0 (ry—as=v when 0<v <gq.
(6.3.3)
Estimating I, when p > qs. We have min {{% — m} ,s} = s. Then
B |w|p(n+1)71
L =00 e—mm—-

Therefore

li . 1/n |w‘p

imsup [I;| 7" < T when sqg < p. (6.3.4)

Estimating Is. The integrands in the integral with respect to ¢ in Iy will vanish
(by 6.1.7) except when k = j(m + 1) — v > 1. Therefore we have, by applying
(3.11)

1 SN min (p(n+1)—1,sq(n+1)—1) o]\ & -
_ 1g(n+1
B=00) e 3 (2) > (%) s

p=1 v=0 j=1

Write v = v 4+ u(n + 1) where 0 < v < n and 0 < v < min (p, sq) — 1. Then we
get

1 min (p,sq)—1 n ‘w| v+u(n+1) s ( )
_ jq(n+1

j=1
ja(n+1)>v+u(n+1)+1

1 min (p,sq)—1 |w‘ u(n+l) n |w| v
:O(l)(,r,/)sq(n+1) ZO <5> Z;)<ﬂ> X

% Z gjq("-ﬂ)

j=1
ja(nt1)Svtu(nt1)+1
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min (p,sq)—1

1 n
— u(n+1 v
=0(1) (r/)sa(n+1) Z |w] e+ Zo [w[”x

u=0
s

« § ﬂjQ("+1)*U(n+1)*v
j=1
ja(n+1)Zvtu(nt1)+1
min (p,sq)—1 s

1 n
=0 ey 2 |w|“<"+1>z_1‘)|w|v > s,

u=0 j=1
ja(n+1)>v+u(n+1)+1

and since v = v + u(n + 1)

(n+1)-(min (p,sq)) —1 s

1 1% - v

= O ey > Jwl” Y Jul > 8
v=0 v=0 Ja(nt1) S0 fulnt1)+1
[t min psa)

= O(l) (r/)sq(n+1)

Therefore
|w|min (p.sq)

limsup | I|"/" < (6.3.5)

n—oo (r')es
An improved estimate of Is when q > p. Assume ¢ > p (which implies ¢s > p).
In this case (6.3.5) can be improved. We have under this assumption jg(n—+1) >
jp(n+1) >v+1+u(n+1), when 0 < v <nand 0 < u < min (p,sq) — 1.
Hence jg(n+1) —u(n+1) —v > jp(n+1) —u(n+ 1) — v > 1. Therefore

Z I@jq(nJrl)fu(nJrl)fv _

j=0
ja(n+1)>v+u(nt+1)+1
S
— l@(q—P)("'H) E ﬁjp(n—‘rl)—u(n—&-l)—u
j=1
ja(n+1)>v+u(n+1)+1

- O(ng(q-ﬁ)(nﬂ)_

Hence '
I = 0(1) |w|”("(:j;ij( ::’;)("H) when ¢ > p.
Therefore
li;risolip|12|1/" < % when ¢ > p. (6.3.6)

this improves the estimate of (6.3.5) when ¢ > p.
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Final estimate of A}", (f;2). Combining (6.3.2), (6.3.3), (6.3.4) (6.3.6), and
using the notation 7 = ¢ when p = qu and 7 = v when p =qu +v, 0 < v < g,

we get
: v'(<) o
hTILn_>s01(1)p 2mi \t=r WKm,n,G(w, ¢, t)dt <
max ((Thﬂ?\"q“ (i”,‘)q;) when ¢s < p
< ¢ max (\w\Pg:s L (T!;ZQT) when ¢gs>p and ¢>p
max ( 3 OLER (w‘;l;‘sﬂf) when ¢s >p and ¢ <p.
Hence
max ((Tl;’;‘qu,%) when g¢s < p

1/n _ ) max (‘“"pﬁqu %)
lim sup |Afnsn G(fa )| S (rhyas o (r7)asFr
n—oo

when ¢gs >p and g>p

|w]”

when ¢s>p and ¢ <p.

Letting v/ /" R and 8\, 1y we get

P qs
max (R‘:,U,‘qw l%ﬂ,s ) when ¢s <p

[w|?rg " " |w|”
hmsup|Am ne(f,z)}l/n max ( R Rqs+7>

when ¢gs>p and ¢>p

‘;;Jp when ¢s>p and ¢ <p.
Combining the estimates of A} (f;2) for 1 < j <6 we obtain (2.6). O

6.4 Proof of Theorem 7

We assume in the proof that 1 < r < v’ < R. For Faber nodes wy,(z) =
™ E,11(2). Apply (4.1) for [t| = 7, |¢| = 7. Then for each choice p = (1—¢)r’,
0 < e <1, we have

wfn(w( )) wy (’l/)(t)) B Cs(m+1) _ ¢s(m+1) \/—

uniformly on {({,¢) : |t| =r,|¢| = '}. Apply now (5.8) with £ =1 and n given

the value p(n + 1) — 1, respectively, together with (5.3) with n again replaced
by p(n+ 1) — 1. Then we see (since z = ¥(w)) that

( 1 ¥ (€)

m7n7j(f’ ) = 211 [t|=r m

K
2mi figj=r mon (W, ¢, t)dt) dc,
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where

Kmn(w, ¢, t)= wm (¥ (wz(w_ wm (P(t))* Zpk )t~ (kD)

- % : iFk(lﬁ(w))C_(kH)
k=1

QO @@ (NN
00 (k (Flp(e)) =

n Z wkt—(k+1)>

k=

0
C n - n -
_ g (l; Fk(w ,w)) _ k) C (k+1) I ZwkC (k:+1)>

=1

wom () —wm @) ("R e
= " g, ,w ot +
wP(m+1) _ ¢p(n+1)
(w — t)tp(nt1) )

(n+1)—1 n+1) (n+1)
¢ (" (k1) WP — P
AN 2 N TR
_ Cs(rrL+1) _ ts(’m+1) m
Cs(m+1) L+o@) e )
p(nt1)—1 oo p(n+1) _ yp(n+l)
v (k1) w —t
X Z Zak’”w ¢ ++ (wft)ﬁp(”"'l)
k=1 v=1
(n+1)=1 oo n+1) (n+1)
¢ (" v (hny WP =
Cs(m+1) _ ts(erl) wp(n+1) _ tp(n+1) Cs(m+1) _ ts(erl)
= o (mD) -1 (w — t)te(n+1) + Cotm+1) X
p(n+1)—1 oo
% Z ZCk,uwﬁf(kH)
/m, 1 Cs(m+1) _ ts(m+1) wp(nJrl) _ Cp(n+1)
(1) |C|m+1 Cs(m+1) (w _ Z)Cp(nJrl)
(n+1)—1 ~
WAL gD _ glmt) P Okt
+O(1) |<|m+1 ’ Cs(m+1) P — AW t
(n+1)—1 oo n+1) (n+1)
¢’ g1y P —¢p
Y Z Zak’”w ¢ Tt (w— 2)p(ntD)

k=1 v=1
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ComFD) up(nt1) _gp(ntl)  ps(met1) p(ntl) _ gp(ntl)
T I (gt GsmAD) (g — )t D)

ts(m+1) p(n+1)—1 oo
ak_yw_”t_(k+1)

- s(m—+1
C ( ) k=1 v=1

¢s(m+1) p(n+1)—1 i G Jw vt B+

k=1 v=1 ’

Vm 41 ¢t _gs(mtl) gp(nt1) _ gp(nt1)
P D (w — 2D

+ Cs(m+1)

+0(1)

m+ 1 Cs(m+1) _ ts(m+l) p(n+1)—1 oo

. —l/t—()k‘—l—l
|<|m+1 Cs(m+1)

A, W

+0(1)

k=1 v=1

p(n+1)—1 oo wp(n+1) _ Cp(n+1)

(o) _ S
,;1 ;ak,yw ¢ t (w—¢)¢CpintD) (6.4.2)

oy

Applying (6.4.1) and (3.9) we split A7P2(f;2) as

[=2]

rnI.Ln N Z :IL); N j ’ (643)

Jj=1

where

AP 1 1 v'(¢)
w‘?n j(f7 ) 271_2 j{q_w f(d)(C)) (27_” tl=r me,n,j(w, Ca t)dt) dC,
J=12,3,4,5,6.

and the kernels K, , j(w,(,t) (j =1,2,3,4) are given explicitly as follows:

s(m+1 p(n+1)—1 oo
¢stm+D) gy w0+

Km’nxl(wvgat) ::W Pt -

Cp(n+1)—1 S
D DD D e
k=1 v=1

9(m+1) p(n+1)—1
Km,n,Q(w, C,t) = — C (m+1) Z Zak WVt (k+1)

. § p(n+1)—1 oo
mcb(m—b—l) _ ts(m+1) p o
Km,n,B(wa Cvt) = O( ) |C|m+1 Cs(m_;,_l) Ak, W t (kJrl)-

k=1 v=1

(1) _qpp(ntl) ¢ ep(ntl) _gpp(ntl)
Kinn.a(w, (1) = (t — w)tp(nt1) T (¢ — w)¢pintl) 7

(6.4.4)
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ST ¢smD) _ gs(meA1) yp(n1) _ up(n+1)
m+1¢ v . (6.4.5)

Homnslw, 6,8 = O) ¢+t ¢s(m+1) (t — w)tp(nt1)
d
an ts(erl) tp(n+1) _ wp(n+1)
Km,n,fi (w, Cv t) = — CS(mJFl) (t — w)tp(nJrl) (646)

We estimate now A;™" , (f;z) for 1 < j <6.

Estimate of AJY ;| (f;2). By (5.7) we have
1 v'(¢)
— V) e (w, G t)dt = 0.
201 Sy 5O — o) a6
Hence Y
lim sup ‘A:‘f”:l)l(f;z)‘ =0 for |w| > R.

Estimate of AT, ,(f;2). By (3.14) we have

(n+1)—1
Py sm+1) P —kt1 s
K2, ¢,1) = 0(1) () 2 V=0 (7))
Hence sq
lim sup |Km,n,2(w7 Cat)‘l/n < (5) :
This implies
e 1/n PNEY
limsup‘A,f’n/Q(féz)’ < (7) .
n— oo T T
Letting r \, 1 and v’ / R we get
1/n
‘ <rTft <1

limsup’A:f’ZKQ(f;z)
- L,

s (f;2). By (3.14) we have

Estimate of Am,mz,g
vm+1
Km7n73(w7<7t) = 0(1) |C|m+1 :

. n 1
lim sup |Km,n,3(w: C? t)|1/ < (T/)q :

n—oo

Hence

This implies
I A*p s 1/n 1
lggsogp’ m,n,z,g(fvz)\ S e

Letting 7 " R we get

1
limsup‘A::’ieg(f;z)' < —<1.
n—oo T
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Estimate of AP, (f;2). By (5.7) we have

m,n,¢,4
1 Y'(¢)
— =Ky n.a(w, (,t)dt = 0.
2mi Sy, 900 — w6 )
Hence
1/n
lim sup ’A:f”;e_yél(f; 2) =0.

n—oo

Estimate of AP* , (f;z). We have

m,n,l,5

Vm + 1 Jw|p(+h)

Km,n,5(waC7t) :O(l) K‘m+1 pp(n+l) -

Therefore 1l
. w
lim sup | Ko (w, ¢, )] < G
Hence y 1wl
n w
1. ‘A*p7s ; ’ <
msup A, s(fi2)] < )
Letting ' R and then r / R we get
) N 1/n |w|P
hmsup’Aﬁﬁ)eﬁ(f;z)‘ < Tt

n—oo

Estimate of A%, (f;z). We have

m,n,l,6

ps(m+1) |w|p(n+1)
(,,n/)s(m+1) rp(n+l)

Km,n,(i(w: C7 t) = O(l)

Hence
|wlP

. 1/n
llmSU.p|Km,n,6(wa<’t)| < W

n—oo

Therefore
‘ 1/n |wlP

limsup‘A*p’s (f;2) > W

m,n,¢,6
n—00

Letting ', R and r /* R when p — ¢s > 0 but for  \, 1 when p — gs < 0 we

get
|wl?

hen p > ¢s
. . 1/n RP W p
lim sup ’Ayé’:;“(f;z)’ < fol?
n—oo
s when p < gs.

Combining these estimates we get

. i _ | 0 when p > gs
lim sup | AP < L
n—oo |w[P - max (m, W) when p < gs.
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6.5 Proof of Theorem 8

We assume in the proof that 0 < rg < <1 <r <7’ < R and |w| > R. For
wy (1(t)) is based on Fejér nodes, we have by (5.3) and (5.4)

- Lo 3
rolf)= g IO f,_ i e
p(n+1)—1
x 3 Rt *Har
k=1
where
Kon(Ct) = Wa($(Q)* = wa(B()*  wamen)—1(¥(€)) = Watnin—1($(#))

wn (¥(€))* Ws(n+1)—1(1(C))

For |w| > R we have

Plnl)=t Fi(z) Pt — gp(ntD) p(n+1)—1 oo

k=0 k=1
= Appi1(w,t) + Appa(w,t). (6.5.1)
By (3.12) we have
p(n+1)—1 oo p(n+1)—1
Apno(w,t) Z Zak wre kD) =0(1) Z Bl (k1)
v= k=1
= 0(1); (6.5.2)
and
|UJ| (n+1)
Apn1=0(1) <7’> for |w|>R,1<|t| <R. (6.5.3)

From (6.5.1),(6.5.2) and (6.5.3) we get

p(n+1)—1 p(n+1)
Fi.(z w
E tk-(i-l) =0(1) <|r|> for |w| > R,1 < |t| < R. (6.5.4)
k=0

By (4.6) we have, since JF is an ro-analytic curve, for each given 8,1 > 8 > rg
and z = Y(w), |w| > 1,

s(n+1) _ n+l _
Kon(Ct) = (mu rompmy - T D"y O(Uﬁ"))

Cs(n+1) (<n+1 _ 1)
p(n+1)—1
XY Fr(a)t ZKS ni(Co1) (6.5.5)

k=1
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where

9(n+1) -1 (tn+1 - 1)9 p(n+1)—1 Fk(z)
s n, 1(4 t) g(n—l—l) _ (<n+l — 1)3 Z el
k=0

ts(n+1) -1 p(n+1)—1 Fk(Z)

Ks,n,Z(Cat) = O(l)ﬁgnm kz th+1 7
=0

L (= 1) PR )
Ksn3(C,t) =-0(1)B (@) 2 tz“ .
Write for j =1,2,3
1 1 YP'(€) _
a5 =g 16O T K G dic

We have

) — _ (tn+1 —1)° _ ¢e(ntL) 1- t5(7}+1) . (1 — tn1+1)s
S
GO T T GO\ T ey (1 )

<71,+1

¢s(n+1) s 1 1 .
N { oD \ T T Cn+1 ~ et D + CotnTD + ... if s>1

0 if s=1.
Therefore
psn+1) 1l 1)s r( *U;”*ll) ifs>1,
s(n+1) - ( n+1 )sv (1) (D (656)
¢ -1 ("t =1y if s =1.
We have
o ts(n-ﬁ-l) -1 s(n+1) o
OWB™ oz —1 = O sy (6.5.7)
and O ) s
n (tn —1)° ren n

From the above estimates we get

o1 .
Y ifs>1

p
lim sup | K. w, )V < i X
msup Ko p 1 (w, O < 25 ifs=1
1 |w|pﬁs
hTILIl_>SOlcl)p|Ks n 2(’[1) C t)| /71 —= (r’)sr?’_s

) 1 lwl”B3
llmSUp |Ss,n,3(wvgat)| / < (T/)slrp—s
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By the same argument used before for the passage from the estimate of K, ;
(w,(,t)) to that of limsup,,_, |Dp737n,j(f;z)|1/" we get, after letting v’ /' R
and r /* R when the exponent of r is negative or r \, 1 when the exponent of

r is positive, and by letting 5\, 7o,

ol e Hp+1>s>1
By: :limsup\Dpysyn’l(w,gt)\l/”SF 1 ifp+1<s
n—oo
0 if s=1.

P "o henp > s> 1
By = limsuP|Dp,s,n,2(w:<at)|1/n < |wL X { Rp=s whenp=§ =4,

n—oo R ry when 1 < p <s,
wl|P 7o when p>s>1
Bs := limsup |D w,(,t 1/n<|— RP
? n—>oop| b3 (1, G T < Rs To when 1 < p <s.
Hence
limsup |Dp s .n(f; z)|1/n < max (B, B2, B3) = max (Bi,Bs).
Writing out explicitly the values of this max we get Theorem 8. a

6.6 Proof of Theorem 9

We assume in the proof that 1 < r < r’ < R. It is easy to verify that the

following integral representation holds:

Dy sn(fi2) =
1 1 ¥'(Q) PO Fe)

i 9 AN g rsnl\ss d d,
o RN o s e D DR g B

(6.6.1)

where K (¢, 1) is the difference between the kernels of Hermite and Lagrange

interpolants and where 1 < r < ' < R. Then by (5.3) and (5.4)

wn (Y(€))° — wn(Y(t))* wS(n+1)—1<¢(C)) - ws(n—!—l)—l(qb(t))

Ks,7l(<at) = wn(w(g))s o ws(n+1)—1(d)(<))
W®)  wy(() (6.6.2)

_ Ws(n+1)—1 1/}

Wyn1)-1(¥)))  wi((C))

Using (3.2) and (3.14), we then have

¢e(n L) Vm+1
Ks,n(gvt) = Nn-+1 "’
o
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uniformly on closed sets of {0 < [t| =r <1’ = ||¢| < R}, for each triple 1 < r <
r’ = |(|] < R. We have, since z = ¢(w) and |w| > R, that

n+1)—1
ERACY) ra 1 (r/)n 1 ¢s(nt1) (t — w)tp(n+1)
1 gstnpn) POERTE —vy—k—1
+OW) st Gy D awpw ™t
k=1 v=1
. (6.6.3)

Since [t] = r < 7’ = |¢] and because of (3.14) we have

1 S(n_i_l)p(nJrl)fl \/E o 1 o\
=0 () > g =0m (TI(T/)> '

r
k=1

The first term on the right of (6.6.3) can be estimated by

lw[P "\ st
Ji=00) (r’rp (P) '

Therefore we have

1/n
p(n+1)—1 _
. Fk(Z) 1/n 1/n |w|p,r$ P
h’rrlrl—ilip KS,”(Cvt) : kzo n+1 S max (l']ll / a|v]2| / ) S W
When s < p we get by letting v’ ' R and then r /' R
1/n
p(n+1)—1
. Fi(z w|P
llisolip Ksn(C ) - Z tn-(kl) < # when s <p for |w|> R.
k=0
When s > p we get by letting ' R and then r \ 1
1/n
p(n+1)—1
: Fi(2) |wl?
llisotip K (¢, 1) - Z prwe < Tt when s > p, for |w| > R.
k=0
By (6.6.1) the proof of the theorem is complete. O

7. Historical Remarks

Equiconvergece results where related to Faber expansion of analytic functions
were considered by Briick [19], Briick, Sharma and Varga [22, 23] and for rational
interpolats by Saff, Sharma and Varga [92].
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Remarks to Section 2 Following Rivlin [88] we obtain equiconvergence theorems
for the Faber expansion of a function if the Lagrange or Hermite interpolants

are replaced by their sections

Sn (Lin(f;°);2) or Sy (hs,s(m+1)71(f; ); Z) .

Remarks to Corollary 1. In the special case of E = D; (Example 1) where
ro = 0, (2.2) reduces to A = R'*9¢. For ¢ = 1, this gives a result of Rivlin [88,
Theorem 1] and for ¢ = 1, this is a result of Cavaretta, Sharma and Varga [28,
Theorem 1].

We do not know if A in (2.3) is best possible. However, it is possible to
improve (2.3) of Corollary 1 when E = Es (6 > 1) of Example 3. In this example
we have an explicit expression for w((w)) and (ay k)n k>0. Using these explicit

expressions in the proof of Theorem 3 we get for A in Corollary 1 the result

A = min {R'* R /r24, RQq_l/rg(qfl)}.

This is best possible as can be seen by the example f(z) := W. If ¢ = 1,
then A = R.
The previous remark also applies when § = 1, i.e., E = [—1,1] (Example

2). If we use the zeros of the Chebyshev polynomials (the Faber nodes) as

interpolation nodes and the identity

1 m—+1 1
wm (Ph(w)) = (2> w™ (1 - wz(m+1)>

(Example 3 for § = 1) we get, by a minor modification of the proof of Theorem
3,
R?71 for (=1,
A=< R for ¢g=1,
Rl for ¢, f>1.

This is a generalization and a new proof of Theorem 2 of Rivlin [88].

An improvement of Theorem 5 may be achieved in the case of an ellipse Es
(where § > 1 given in Example 3 for which where dF;s is an rg-analytic curve

with 7o = 1/6). An examination of the proof of Theorem 5 shows that in this

case
. To(R/TQ)qul, ! = 1,
~ | min {R(R/r¢)%~'; RIT1}, > 2.
The previous remark also applies to the case of the segment E = [—1, 1](where
5 =1) and gives
Rl =1,
A=< R, q=1,

ratt, £>2.



242 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .
For ¢ = 1, this is Theorem 2 of Rivlin [88].

We do not know if A* of Theorem 6 is best possible. But for Faber expansions
of the sets F of Example 2 and Example 3 the conclusion of Theorem 6 can be
improved (see [23]).

We do not know whether A* in (2.7) of Theorem 7 is best possible. How-
ever (see [23]), if OF is an rp-analytic curve, we can improve the conclusion
of Theorem 7. A further improvement of Theorem 7 may be achieved in the
case where E = Ej is the ellipse treated in Example 3 where this ellipse is an
ro-analytic curve with ro =1/6 < 1.

We do not know if (2.8) of Theorem 8 is the best possible. However (see [23]),
it is possible to improve our Theorem 8 when E is the ellipse Es considered in

Example 3.

We do not know whether A of (2.9) of Theorem 9 is best possible. However
(see [23]) it is possible to improve (2.9) if OF is rg-analytic curve. A further
improvement may be achieved in the case of the ellipse Es (where ¢ > 1)
considered in Example 3 when the OFE0 is an rg-analytic curve with ro = 1/4.



CHAPTER 10

EQUICONVERGENCE ON LEMNISCATES

1. Equiconvergence and Lemniscates In this chapter we consider the
case when the nodes of interpolation are points on a lemniscate and we prove

equiconvergence and sharpness results for them.

Let A > 1 be an integer, and Py(z) an arbitrary fixed monic polynomial of
degree A. We will assume that the greatest common divisor of the multiplicities
of the roots of Py(z) is 1. The set of points satisfying |P(2)| = u* with some
pu > 0 is called a lemniscate (denoted as I'(i)). The set of points satisfying
|Py(2)| < p* consists of at most A disjoint finite regions denoted by G(iu).
Evidently, if 0 < p; < po then G(u1) C G(us2). The class of functions analytic
in G(p) (p > 1) but having a singularity on the boundary of G(p) will be denoted
by AG(p). (We do not require that the functions analytic in connected regions
of G(p) should be analytic continuations of each other.) For an f(z) € AG(p}),
consider the Hermite interpolation polynomial

1 P)\(t)n - P)\(Z)n

Su(f;2) = i fom PO 2) f)dt, 0<R<p  (11)

of degree at most An — 1, interpolating to f(z) in the roots of Py(z) with
multiplicity n. (Recall that Px(z) may have multiple roots, thus the actual
multiplicity of interpolation may be higher.) In the special case Py(z) = z, the
lemniscate is a circle with origin as center and (1.1) is nothing but the Taylor
section of f(z) of order n — 1 (here A = 1).

Evidently, (1.1) can be written in the form

n—1
Sulfi2) =Y aulf;2)Pa(2)" (12)
k=0
where
- b PA(t) = Pa(2)  f(?) _
w(fi2) = 5 é(R) — NS dt, 0<R<k=0,1,...
(1.3)

243
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are polynomials of degree at most A — 1. Hence and from (1.1)

_ Pa(z)\" ()
F(&) = 8ulf:2) = 5 » (Bm) s

:O(‘PA(Z)

DY0! )—>O as n — 00

provided z € G(p). Thus

= Z a(f; 2)Pa2)", (1.4)
k=0

the convergence of the series on the right hand side being uniform in every
compact subset of G(p). Moreover, f(z) € AG(p) is equivalent to

_ 1
Ii )|V = L5
am - max g (f;2)] o (1.5)
Let now r > 1 be an arbitrary fixed integer, and consider
1 P\(t)" —1)" — (P\(2)» —1)"
H)\Tn 1(f,Z) ( ( ) ) (T ( ) ) f(t)dt7
2mi I'(R) (PA(t)» = 1) (t — 2)
for 0 < R < p.
(1.6)

This is a polynomial of degree at most Arn— 1 interpolating fU)(z), j =0,...,r
in the An roots of the polynomial Py(z)™ — 1 which are on I'(1) C G(p). Notice
that the latter polynomial may have at most A — 1 multiple roots (namely, the
roots of P§(z) = 0), therefore this interpolation polynomial may be an Hermite
interpolation of higher order than r at multiple nodes. Of course, in the special
case P\(z) = z, (1.6) is the ordinary Hermite interpolation at the n-th roots of

unity.

We want to compare this Hermite interpolation polynomial with the “shifted
Taylor sections”

1 PA(2)" . 51, (PA(2)")
Sewcl:7) =g |1 g (O~ B )Zﬁ

X &dt

t—=z
of (1.1), where ¢ > 1 is an arbitrary fixed integer, and

r—1
/Bj’l Z<T+.]]€ )(Z—l)k, j=0,1,

k=0
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(see Ch. 2, (1.7)). (Note that for £ = 1 we take the sum as 0, and Sy, 1 is
nothing else but S,.,, from (1.1).) Using the identity (1.6 ) from Ch. 2, this can

be written as

L (Pa(z )"

o o
7 o |1 Ty (PO = PG

Tnl(f? )

szfmz 10

(r+in | t — 2

We now want to compare this with (1.6), therefore we define

A)w"nfl,e(f; Z) = H)\rnfl(f; Z) - Sn,f(f; Z) (17>
1 ﬁ T P)\ f< )

_Z/B], (Pr(z )Zq(r+7 Dtk (f32)Pa(2)F)).

k=0

The analogue of Theorem 6, Ch. 4 is the following:

THEOREM 1. If f(z) € AG(p) (p>1, A >1) and £ > 1 is an integer then

him Hi_‘a()é ‘A/\rn lré(f Z)|1/()\rn) =p —1-£1 max{l,Rl_l/T,Rp_l/T}
n—oo  z€

=K, (p, R). (1.8)

This theorem shows that if R < p'T*/" then we have overconvergence.

PRrOOF. First we prove the upper estimate. (1.5) implies
with an arbitrary € > 0, and we also use
1Bj0 (PA(2)")] < " max{L, PA(2)" 70"}, =1,
(see Lemma 2 in Ch. 2). Thus (1.7) yields
n—1
‘A)\rn 1(('107 )| < cmax{l R(r 1)n}2]r IZ 75 =A[(r4+j-1)n— kRk
=L k=0

Choosing ¢ > 0 properly and distinguishing the cases 0 < R < 1,1 < R <
p, p < R,, we obtain the upper estimates in (1.8).
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In order to show the opposite inequality, we assume that for some € > 0,

A rn—1,0\J3 SKy , —E&. 1.10
22}%)‘ arn—1,0(f; 2)] o(pyp) —¢ (1.10)

Hence and by (1.7)

n—1

Ber(PA(2)™) D rre—1ymsk(f32) Pr(2)F| = (1.11)

k=0

= |A)\Tn717€(f; Z) - A/\rnfl,f(f; Z)| < C(KT,1Z+1(/)7 /1/) - E))\Tn7

since evidently K, ¢(p, 1) is a monotone decreasing function of ¢. Taking into
account the structure of the polynomials G, (see (1.7) in Ch. 2), the latter

relation can be written in the form
n—1 r—1
Z q(r+l71)n+k(f; Z) Z CS,T,ZP)\ (Z)Sn+k << C(Kr,l(pa /j/) - E))\rn7
k=0 s=0

where ¢ ¢ # 0 are some real numbers.

We now make use of the following general remark: if Q(z) is an arbitrary

polynomial of degree at most An — 1, then it can be represented in the form
n—1
Q(2) = > qr(Q; 2)Pa(2)" (1.12)
k=0

where ¢x(Q; z) are polynomials of degree at most A — 1 such that

C

with ¢ > 0 depending only on Py. This follows easily from (1.1) - (1.3) and the
uniqueness of Hermite interpolation.

Thus (1.11) and (1.13) imply

(Kre(p,p) — )™

221;8;) |Gt (rrj—1)n(f32)| < c TAGR R

r—1.

(1.14)

for k=0,1,....,n—1; s=0,..

*

We now distinguish three cases:

CASE 1: 0 < R < 1. Then K, ¢(p, ) = p~ 1= and using (1.14) with s =0
we get

C
Zg}?é) |4t e-nnir(f2)] < (p+ e) =D RAG+D)?
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Representing any integer m > r+ ¢ — 1 in the formm = (r+/¢—1)n+k, 0 <
kE<r+4+/0—2 we get

1/m — Am k) -A -\
lim sup Hﬁx lgm (f; 2)| <11msup(p+€) =(p+e) " <p 7,

m—00

which contradicts f € AG(p).

CAsSE 2: 1 < R < p. Then K, (p,p) = p~1= 5 R'-7, and using (1.14) with
s=r—1 we get

Rk(rfl)n
Zlenra(ﬁ)m(we 1)n+k(f z)| < (p + e) r+=Dn RA(r—1)n+k-+1)

c

:W7 kZO,...,n_L

and this is the same as Case 1.
CASE 3: p < R. Then K, ¢(p,p) = p*k%, and using (1.14) with s = r — 1
again, we get

R)\rn
Zg}f’}ﬁ |9(e-1ntx(f52)] < (p + &) rHOn RA(r—T)n+k+1)

CR/\(n k)
- (p + E))\(TJrE)n ’

Representing any integer m > r+ ¢ — 1 in the form m = (r+£—1)n+k, n —
r—f0+1<k<n-—1, we obtain

A(r+0)n
limsup max \qm(f, 2)[Y™ < limsup(p 4 €) TH0nte = (p4¢)7?,
m—o0 ZGF( m— oo
a contradiction again. The theorem is proved. a

As in Chapter 4, we will call a point z distinguished if there exists an f €
AG(p) such that the maximum in (1.9) is not attained, i.e.

nli_{lgo‘AMn—Lé(f? Z)|1/(/\n) < Ky 4(p, |2]).

We will show that the number of distinguished points not on the lemniscate
|Py(2)| = p* is finite, and that one can characterize whether a given set of

points is distinguished.

To this aim, let Z = {21, 22, ..., 2m } be a given sequence of pairwise different

points and define the m x A matrices
P\(z1)"  z1P\(z1)" ... zi\flPX(zl)i
Xi(Z) = ; : : , i=0,1,....
Py(zm)? zmPr(zm)t ... 2p 7 Pa(zn)’
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Further let U := {ui,...,u,} and V := {vy,...,v,} be two sets of pairwise
different points such that

|PA(UJ)‘<p)\7 J=1..,p (115)
and
|PA(v))] > p*  =1,...,v (1.16)

We also assume that |Py(z)| # 1, z € UUV when ¢ (Px(2)") has a zero such
that |Py(2)] = 1.

Define the p x A(r + ¢ — 1) and v x A(r + £) matrices
X(U) = [Xo(U)X1(U) ... Xr1e—2(U)]

and
X(V):=[Xo(V)X1(V) ... Xoqea(V)],

respectively. Finally, let

X(U)
X(U)

M(X(U),X(V)) = (1.17)

X(V) ’

X(V)

where X (U) and X (V) are repeated r + £ and r + £ — 1 times, respectively (so
that M(X(U),X(V))isan ((r+£0u+(r+£—1)v) x A(r+£—1)(r +¢) matrix).
(Note that we allow the cases U = ) (then p = 0), or V = { (then v = 0). In
the above matrix the X (V)’s begin below the last row of the last X (U).

‘We now state

THEOREM 2. With the above notations, the points UUV form a distinguished
set if and only if

rank M (X (U), X(V)) < Mr+ € — 1)(r +0). (1.18)

COROLLARY 1. There are at most \N(r+£—1)—1 and A\(r+£)—1 distinguished
points in |Py(2)| < p* and |P\(2)| > p*, respectively.
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Namely, assume that (1.18) holds, and g > A(r + ¢ — 1). Then we take that
minor of M which consists of the first L := A(r + ¢ — 1) rows of each X (U) in
M. The determinant of this minor will be the (r + £)t" power of the following

determinant:
1 oug couy ™! Pa(ur) oo w7 Py (un) L Pa(un) T u T Py(ug) 2

)

1 urp ... u’z_l Py(ur) ... ué_IPA(uL) oo Pa(up)t oL ué_IPA(uL)z’l
In order to calculate this determinant, multiply the first A columns by the
subsequent coefficients of the polynomial Py(z), and subtract them from the
(A+1)%* column. Then this column becomes (u7 u3 ... u})T, because Py(2) is
a monic polynomial. Now we multiply the first A + 1 columns of the resulting
determinant by subsequent coefficients of the polynomial zPy(z), and subtract
these columns from the (A + 1)st column. The new (A + 1)%* column will be
(up™ w3 ™ D up )T, Now the pattern is clear: after A(r+£—2) steps, we arrive
at the Vandermonde determinant V' (uq,...,ur) # 0. This contradicts (1.18),
since we have found a minor of size A\(r+£—1)(r +¢) with nonzero determinant.

Similar reasoning applies for the points outside the lemniscate | Py (2)| = p*.

COROLLARY 2. If (r+Op+ (r+ €0 —1v < Xr+ £ —1)(r + £), then the
corresponding points are always distinguished.

Namely, then the number of rows in M is less than the number of columns,
i.e. (1.18) is satisfied.

PROOF OF THEOREM 2. Sufficiency. Suppose (1.18) holds. Then there
exists a nonzero vector b = (bo, ..., bx(4¢—-1)(r+6)—1) such that M -b = 0. By
(1.17), this is equivalent to the following:

r+0—2X—1

Z Z b)\(v(r+g_1)+s)+ksz>\(z)s =0, v=0,...,r+0—1; z € U (1.19a)
s=0 k=0
and

r4+0—12—1

Z Z b)\(v(r+g)+s)+kzkp)\(2)s =0, v=0,...,r+£€—2; z€ V. (1.19b)
s=0 k=0

Define
(r+0—=1)(r+£)—1 A—1 (r+6—1)(r+£)7 1
P
flz):= Z Z bask2"Pr(2)* [1 - ( A§2)> ]
s=0 k=0 P
oo (r+L—1)(r+£)—1 A—1

— Z Z p—u/\(r+€—1)(r+€) Z bks+kaPA(Z)u(r+€—1)(r+€)+s.
u=0 s=0 k=0
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Evidently, f € AG(p), and

A—1

QU(T+€—1)(T+€)+s(f; Z) = p—u)\(r+€—1)(r+f) Z bAs—HcZkv (1'20)
k=0

u=0,...;8=0,...,(r+¢—1)(r+¢) — 1, so that (1.4) takes the form

o (r+f—1)(r+£0)—1
=y > Guir+t-1)(r0)45(f; 2) Pa(2) DO,

Replacing s in (1.20) by v(r+£—1)4+s,v=0,...,7+£—1 and by v(r+£)+s
v=0,...,7+ ¢ — 2, respectively, we obtain from (1.19a)—(1.19b)

r4+0—2
> Qurre—t) o145 (f52)Pa(2)* =0
s=0
for vu=0,...;v=0,...,r+4—1;, z€U
and
r+l—1
Z Qu(r+0— 1)(r+€)+v(r+€)+9( )P)\(Z)
s=0

for wu=0,...;0=0,...,7r+0—-2; z€ V.

On writing v for u(r +¢) + v and u(r + £ — 1) + v in the above equations, they

are equivalent to

r+4—2
> Gorie-nas(f12)Pa(2)* =0,  v=0,1,...;2€U (1.21a)
s=0
and

r4+0—1

Z Qu(r40)+s([32)Pa(2)* =0, v=0,1,...; z €V, (1.21b)
s=0

respectively.

(1.20) implies

_ —An
Jnax [ga(f; 2)|=0(p~").

Hence (1.7) yields

n—1

Axrn—1,0(f;2) == Bre(Pr(2 ZQ(TH Dtk (f32)Pa(2)"
k=0

[e.°]

e | P (=
+0 Z ' Z A((rﬁf\] 1)n+k)

j=0+1
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Thus defining ¢t and s by (r+£ — 1)t +s=(r+n, 0 <s <r+{—1, we get
from (1.21a)

s—1

Axrn—16(f52) = Pa(2) DN g o (i 2) Pa(2)"
k=0
r+0—2

t—1
+ Z P)\(z)(r—‘rf—l)(v—n) Z Gor+e-1)+k (3 Z)P/\(Z)k
v=0

= k=0
1
+0 <p,\(r+£)n>

_ A (P& 1 _ 1
=0 < AT + AT ) T 0 (p+ e\ ) ° z€el,

i.e. U forms indeed a set of distinguished points.

Similarly, defining ¢t and s by (r+ )t =(r+£—1)n+s, 0< s <r+¢, we
get from (1.21b)

s—1
Axrn—1,(f;2) Z(I(r+e Dtk (f527) Pa(z)F
k=0
n—1 4
+ Z P)\(z)(r+£)(v7(r+£71)n) Z Q(r+£)v+k(f§ Z)P,\(Z)k
v=r k=0
[Pa(2)[™
+0 (p)\(r+€+1)n

_ 1 [PA)™ ) _ [PA(2)[™
=0 <p>\(r+£1)n + p)\(r+€+1)n =0 (P + E)A(T+Z)n ’ z & ‘/’
i.e. the points in V are also distinguished.

Necessity. Suppose the points in U UV are distinguished, i.e.

lim sup A,\m,l,g(f;z)l/(m) < Kyo(p,|2]) (1.22)
but
rank M(X(U), X(V)) = A(r+£—1)(r+ £). (1.23)

We show that this leads to a contradiction. (1.11) yields

n—1

Axrn—1,e(f;2) = Ber(Pr(2 ZQ(r+e Dtk (f32)Pr(2)F

+0 (( r,f+1(p7 ‘ZD + E)Arn) ’
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where € > 0 is arbitrarily small. Thus

h(2) == Bro(Pr(2)" ) Asrno1,0(f5 2)

= Bre(Pa(2)")Pa(2) M A gy —1.0(f3 2)
r4+0—2

= Bor(Pr(2)™)Ber (Pr(2)" 1) Z At o—1)ynrk(f32)Pr(2)"
r+6—1 =
- Z q(r+€)n+k(f; 'Z)]D/\(Z)n-HC + AArn—1,€+1(f; Z)ﬁg,T(P/\(Z)n-’—l)
k=0

— Anrna)— 1,041 (3 2) Ber (Pa(2)") Pa(2) 1

On the other hand, by (1.22)
h(z) = O ((Kre(p,2]) = )*™) (18er(Pa(2)")| + 1Ber(Pa(2)" 1)), z€ U UV,

and
Axrn—1,041(f12) = O (Kres1(ps |2]) +2)*™)

by Theorem 1. Thus

r+0—2 1 n
Z drre-1ntk(f;2)Pa(2)" =0 (<p/\(r+€) +5) ) +

k=0
+ O ((Kpe(ps|2]) +2)2)

+ O ((Kre(ps12]) = )™) (1Ber(Pr(2)™)| 71 + B (Pa(2z)" )| 7Y) , 2 € U.

On using Lemma 2 from Ch. 4 we get

r4+0—2 1 n
D derennin(fi2)PA(2)F =0 (<A(r+€1) - 5) ) ,zel
k=0 p

Similarly,

r+0—1 1 n
D duronik(fi2)PA(2)" =0 <<A(r+€) - 5) ) ; zeV.
k=0 P

With the notation

A—1
0n(fi2) =D brngs?® (1.24)
s=0

these relations take the form

r+0—2 A—1 1 n
It (D DL

k=0 s=0
(1.25a)
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and

r4+0—1A—1 1 n
Z Zb,\(r+E)n+,\k+sZ$PA(Z)k =0 ((P’\(TH) - 6) ) ; z€ V. (1.25b)

k=0 s=0

For an arbitrary positive integer v, put n = (r+£fv+t¢, 0 <t <r+¢—11in
(1.25a), and n = (r+ v +1t, 0 <t <r+{¢—2in (1.25b). Then we obtain

r4l—2A—1 1 (r+&)v
Z Z DA(re—1)[(r+yo+tl+7k+52° Pa(2)" =0 ((;erl) - 5) ) ;

k=0 s=0
zeU; t=0,....r+ (-1,

and

rHE—1A—1 1 (r+e—1)v
Z Z DAGr+0)[(rH0yo+t+ 7452 Pa(2)" =0 ((W - 5) ) ;

k=0 s=0
zeV;t=0,....,r+40—2.

Because of (1.23), we can choose A(r + ¢ — 1)(r + ¢) points out of U UV such
that the corresponding system of linear equations is solvable for the unknowns
b)\(r+g_1)(,,.+g)v, Ceey b)\(r+g_1)(r+g)(”+1)_1. Due to the structure of the right hand
sides, for the solution we obtain

1 (r+L=1)(r+0)v
A=) (r+ 05| =O ((p* - E) ) :

for k=0,....,\(r+¢—-1)(r+¢) —1;, andv=0,1,...,

whence by (1.24)
1
limsup max |gn(f;2)|"/ O™ < =,
b man [an(732)] /) < 1

n—oo 2 P

a contradiction to f € AG(p). O

AN EXAMPLE. Let A = 2 and P»(z) = 2% — a?, a > 0 (this leads us to the
so-called Bernoulli lemniscate; cf. also Example 4 in Ch.9). For an arbitrary

f € AG(p?), (1.3) yields

1 t
qk(f1z) ﬁ:(R)(t—i_Z)(tQ—f(QQ))k"Fldt’ k=0,1,....

=

Expanding into partial fractions we obtain

t+Z kl aj bj
<ﬂ—a%ﬂ1:§:<u—@j+u+aw>

Jj=1




254 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

with

(~1)k+1-d oh+1—j 2% — j .
(IJZW (Z+a) k —2a k ) jzlaik—’_]‘

and

(—1)k+t 2k+1—3j 2k —j .
%:W (z—a) f + 2a i , j=1,...,k+1.

Hence using

G U N o I S
o o Grap T G T

we get

k+1
1

ar(f;2) = (*1)k+1 Z (2a)2k+2=3(j — 1)! x

<2k +1- j) |:(_1)j(z +a)fUD(—a) + (2 — a)f(jU(a)}

k
~2a( ) 1000 - (—D“f””(—a)H ,
for k=0,1,....

Choosing r = ¢ =1, let
(a) U ={u}, V=0,
(b) U =A{u}, V={n},
©U=0,V={_n},

(AU =0,V ={v,va},
(e)U =0,V ={v1,vs,v3}.
According to Corollary 2, the set U UV given by the examples (a)—(e) above

are always distinguished.
Now let U = {u1}, V = {v1,v2}. Then

v} —a? v} —an

X() = %) = (tun), XoV) = (7 21 3= (20 A7)

Ul 0 0

0 1 U1

V1 v% —a? v:f —a’n

Vg v% —a? vg — a%vy

1 v v?2—a? v} —a’v M=
2 2 .3 2 , =
1 vy v —a* vy —a“ve

xw) = (

=
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According to Theorem 2, in order that U UV be distinguished, the determinant
of the matrix M must vanish, i.e.

det M = (1}1 - 1)2)(1}1 + vg)(ul - vl)(ul - 1}2) =0. (126)
Since wu; is inside and vy # w9 are outside the lemniscate \22 — a2| = p2, this
condition can be satisfied only if v1 = —vy. For example, the points u; = a >

0, v1 = —v9 = a + p will be distinguished.

By Corollary 1, the maximal number of distinguished points in and out of
the lemniscate |22 — a?| = p? is at most 1 and 3, respectively. However, with

U:{Ul}, V:{’Ul,’UQ,'Ug}

the matrix M (with similar calculations as above) takes the form

1 Ul 0 0

0 0 1 Uy
M=[1 vy v}—a? v}—ad%n

1 vy v3—a® v3—a’vy

1 vy v3—a® v3—a’vs

In order that U UV be distinguished, all fourth order minors of this 5 x 4 matrix
must vanish. Taking the first four rows, we arrive at the same condition as in
(1.26), which means v; = —vy. Now taking the first three rows and the last row
from M we get v = —v3, i.e. v9 = v3, a contradiction. So in this case U UV is
never a distinguished set.

2. Historical Remarks

Theorem 1 was proved by Lou Yuanren [73]. Theorem 2 is new; the special
case A = 1 (i.e. the circle) was considered by Ivanov and Sharma [51]; cf. also
Chapter 4.



CHAPTER 11

WALSH EQUICONVERGENCE AND EQUISUMMABILITY

1. Introduction

In the equiconvergence theorems the convergence to 0 or the order of the
difference of two interpolating operators acting on an analytic function from
some class are considered. In this chapter we consider the regular summability,
instead of convergence, of the difference of the above two operators. Since
convergence is also a regular summability method we get at the same time also

equiconvergence theorems.

In this chapter the equisummability of a sequence of operators (A, (z, f))n>0
that operate on elements of the class Ag , i.e., the class of functions regular in
the disk Dgr = {2 : |z| < R} but not in Dg, R > 1, are considered. The above
operators are defined in Sec. 2.

A star-shaped domain that includes 0 is defined as a domain that is inter-
sected by any linear ray originating at 0 by a single linear segment.

A star-shaped Jordan curve is defined as a closed Jordan curve that contains
0 in its interior and is intersected by any linear ray originating at 0 by a single

point.

The unit disk {z : |z| < 1} is denoted by D.

DEFINITION 1.1. The A-summability considered here is defined in the fol-
lowing way. Suppose X C IR. Let z* € IR be an accumulation point of X.
Let (an(2))n>0 be a given sequence of functions on X. For a sequence (S )n>0
of complex numbers, denote, formally, o(z) := > " an(x)s, (x € X). The
sequence (Sp)p>0 is A-summable to the value s € €, which is written as
A —lim, o0 S, = 8, if the series o(x) is convergent for all x € X, and o(z) — s
as x — z*. In the definition of A-summability the following additional assump-
tions are made: For each 2 € X the power series of z, ¢(x,2) =Y ", an(x)z"
is an entire function. A star-shaped domain G4 C €, 0o € G 4, is given and for
this domain we have D C G, 1 € G 4. and lim, .~ ¢(x,2) =0, Vz € Ga, the

convergence being uniform on compact subsets of G 4. Finally, we require that
257
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lim, .+ ¢(x,1) = 1. By a compact subset of € we mean a closed and bounded

set.

The Mittag-Leffler A-summability (see G.H. Hardy [45,p.77] is given by X =
{z : >0}, 2*:=0 and a,(z) := exp(nlogn — exp(n + 1) log(n + 1)), n > 0.
For the Mittag-Leffler A-summability the associated domain G 4 is the the finite

complex plane less the real ray = > 1.

The function (1 — 22)~! has only two singular points, (£1) in the complex
plane. Therefore the set Sy generated by the Mittag-Leffler A-summability for
this function is the finite complex less the two real rays > 1 and x < —1.

DEFINITION 1.2. Suppose f(z) € Ar, R > 1. The function f(z) is continued
analytically along a ray beginning at 0 and up to the first singular point ¢ on this
ray. This is done along each ray beginning at 0. The union of all the segments
[0,¢), that correspond to all the rays beginning at 0 is denoted by S = Sy and
is called the Mittag-Leffler star-domain of the given function f(z) (see E.Hille
[47,p.38]).

For A-summability we have the following simple result.

LEMMA 1.3. Suppose an A-summability is given. Let p,r be non-negative
integers. Then: (i) For each v € X and z € C\{oco} we have

ot 05 (Yoo

(it) For each z € G 4 we have

= /n
lim < )an(x)znr =0
r—x* P

n=r

where the convergence is uniform in z on any compact and bounded subset of

Gja.

PROOF. By our assumptions ¢(z,z) := .~ a,(x)z" is an entire function
for each z € X and lim,_, .+ ¢(x, z) = 0 where the convergence is uniform in z on
compact and bounded subsets of G 4. Therefore by the Weierstrass double-series
theorem (i) holds and also limg_,;« a,,(z) =0 for n =0,1,2,--- . Also, for each
n=p,p+1,--- lim, (Z) an(x)z"~P = 0 where the convergence is uniform in
z, on bounded subsets of G4 (because 2P (for a fixed n) is uniformly bounded
on bounded sets). (a) Assume first that 0 < < p. Then

oo oo

2 (Z) an(0)2" " =27 ) <Z> an(2) 2P 0 as 7 — o*

n=r n=p
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and the convergence is uniform on closed and bounded subsets of G4 because
zP~" is bounded on such sets. This proves (ii) when 0 < r < p. (b) Assume

r > p. Since limg,_, (Z)an(x)z"—l’ =0 for n = 0,1,---, uniformly in z on
bounded sets, we get from (i) that limg_,« Y (;) an(2)2" P = 0, where the

convergence is uniform on compact and bounded subsets of G 4. Given a compact
and bounded subset K of G4, let v be a rectifiable closed Jordan curve which
is included in G4 and includes 0 and K in its interior. Then d = d(0,v) > 0,
ie., |z| >d Vz € ~. Therefore we have (since v C G is a compact and bounded

set)
[ee] n o0 n
= /n
< d==P) max Z < )an(x)z"p —0asxz — 2" .
zey p
n=r
By the maximum principle it follows that limg Y o (Z)an(x)z”_T =0,
where the convergence is uniform for z € K. ]

2. Definition of the kernels (A2 (z, f))n>1.

2.1 Notations and assumptions used in the definition of the kernels
AP (2, f).

In the definition of the operators (A%#(z, f)),>1 we use the following nota-
tions and assumptions. D, will denote the open disk of radius p and center 0.
For a set U C € which includes a disk D,, n > 0, we write co * U := € and
0xU := {0}. G and G 4 will be open star-shaped sets that include the unit disk,
1¢Gand 1 €Ga.

Let R be a real number satisfying R > 1. Let «, 3 be two distinct complex
numbers satisfying a8 # 0 , and |a| # |8] . Set v := max(|al,|8]) and § :=
max(1, ||, |3]). Assume v < R. For a positive integer v and any given set
AC O let ¢ (A):={w:weC, w e A}

Let ig be a fixed positive integer. For each i, 1 < i < g, let n; be a given
positive integer and let IN; be a finite set of positive integers. When iy > 1 let
MQ(Z')7 e ,M,(L? be non-empty sets of non-negative integers and suppose that to
each i, 1 < i < ip, and each choice of v; € N;, k§i) S M;7 2 < j < g there
corresponds a set Ml(i) = Ml(i)(ui, k%?, e kél)) of non-negative integers with
the property that
(1) min M7 (15 € N, kS € M, 2 < j <ig) = ay’ + 30, alk+all) vy >
0,
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and either .
(2) max M{"(vi € Ny, k) € Mi, 2. <j <o) = 08"+ Y0k 460 vy < o0
j=2

or
(3) maxM{”(v; € Ny, kS € M, 2 < j <ig) = +00,
where (a;l));-io, (bg”);’;o are fixed integers which depend only on i. When

iop = 1 then Ml(io) depends only on the elements of Ny and satisfies (1), (2) and
(3)-

We use the notation k) € M) to mean that kr(f) € MT(L?, cee k%i) € Ml(i)
for 1 <i <,

Let A .= ()\5.”)1857”7 z/)(i) = (1/;§i))1§j§ni, be two given sequences of
integers.

We use the abbreviation (A, k@), = S2%_ Al )k(’), and A . g

j=r "

(A(i), k(i))l,m. (’(/J(i) -)\(i))m) and 99 - A are defined similarly.

We assume that for 1 < i < 45 and for each choice of D ¢ M® we have
A® @ > 0, w(i) A >0 and A® L @ +,¢(i) A0 > 1. (2.1.1)

We further suppose that for each i, 1 < i < iy, and for each positive integer V'
the set of indices k¥ for which A . k() +¢<’3) -k <V holds is finite.

Let 41 be a fixed positive integer. For each i, 1 < i < 41, let m; be a
given positive integer. When i; > 1 let 132(1)7 e ,Pr(rfz be non-empty sets of
non-negative integers and suppose that to each i, 1 <1 < iy, and each choice
of Eg-z) € P}, 2 <j <1 there corresponds a set Pl(’) = Pl(l)(yl,égfl), . ,ES‘)) of
non-negative integers with the property that

: (@) _ () ni (3) p(i)
(1) MG ¢ pi o j<iy Pi7=cy’ + 3 500 >0,
and either
(&) _ 40 | x5 40 (@)
(2) maxegi) P =d, +J§2dj 07 < oo

EP}7 2<5<i1
or

(4)

; ()yn
(3) bupegi)GP;7 2<j<is Pl )

(dy" | are fixed integers

= o0, where (c; )]

Jj=b
which depend only on ¢. When i¢; = 1 then Pl( s a given set of non-negative

integers satisfying (1), (2) and (3).

Moreover let £ := (E( ))ml p® = (,ug.i));’zl, X = (x (i))mi be given
sequences of integers. We use the abbreviation (u(® %), : =D gl)é(l)
and p@ . £ = (u(i)l(i))l’ml.

We also assume that for all ¢ € [0,41] and for any 6D e Pl Egi) €

., PO we have

p@ 0D >0 xD. gD >0 and p® .09 4 xO . 0D >, (2.1.2)
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2.2 Definition of the kernels (A%a’m(z,f))nzl
Let (Agfx'ﬂ)(z, f))n>1 be a sequence of operators that act on functions f € Ar

and having the following representation

AP (5 ) = 5 F%Kn(z,t)dt (2.1.3)

where ':={te C: |t|=7}, <7< R, |z]>7, and

S AP+ Y BY(®). (2.1.4)

1<i<ip 1<i<iy

Using the notation 9 ¢ M® to mean that k,(fi) e Mé?, R k%i) IS Ml(i) for
AD @ 'l[)(i)-k(i)
1 <i < g, the abbreviations n;(t) := (%) (g) , and

&i(t) = ( )M( o (?)Xm.em, we assume that

VRN AR

AD (2, 1) = Z Z b (k) (?)A(U.k(i)(f) (j)y>n

ViEN; k(D)eM@)

for 1 < i < ip, (2.1.5)
n
(@) g0 x @09
() (1) .— N70) a\H B <i<i
B (t): .Z‘cz(f ) (t) (t , for 1 <i<i.
£ ep)

(2.1.6)

where £ € P means ngl)io € PT(JBO,“' ,fgl) € Pl(l). The coefficients b;(k(*))

and ¢;(£%) do not depend on n. We assume that for each 2, 0 < 2 < 1, and for
any positive number d the series

Z Z |bi(k(i))|duixA(i)-k(i)Jr"p(i)-k(i) (2.1.7)
VieN; g(D)ecpm@

is convergent for each i, 1 < i < ig. We assume also that

I (€@ kO (2.1.8)
LV ep®
is convergent for each 4, 1 <7 < i5.
Remark. In the definition of the operators A,(la’ﬂ)(z,t) two parameters «, (3
were used. The results, except for obvious changes, remain the same if only one
parameter « is used, i.e., the powers of % and the parameters associated with

(3 do not appear in the definition of the operators AL (z, f)-
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3. Equiconvergence and equisummability of the operators AS{*’B ) (z, f)

DEFINITION 3.1 OF THE WALSH RADIUS. For R > ~ the Walsh radius R(r)
associated with an operator (Ag{lﬁ)(z, f))n>1 is defined by

R(Ir) (T ’LO’ NlaMZ )‘Z7I¢)) (31)
r A(i)-k(i)/lji r I‘p(l)k(l)/yl
;= inf inf 7‘( 13|
1<i<io e, k@D em® o] 15

~ ~ 1/v
REMARK 3.2. From the definition of R(r) it follows that R(r) > r (%)
and R(R) > R, since (2.1.1) is satisfied.

We have the following equiconvergence theorem.

THEOREM 3.3. Assume conditions (2.1.1) and (2.1.2) are satisfied and that
f € Ag, where R > § := max (1, |a|, |3]) . Then for each ry, 0 < ry < R(R)

1 ming <;<qq N
" Y 1
lim sup max ’A(“’ﬂ) z ’ <max | =,| = . (3.2
msu (=.f) o\ (3.2

The proof of Theorem 3.3 is given in Sec. 4.

In the statement of the next equisummability theorem for operators
AP )(z, f) recall the following assumptions made in defining the operators:
af # 0, |6] # |a|, R > ¢ := max(1l, |a|, |8]. Let S = Sy be the Mittag-
Leffler star-domain of a given function f € Agr and let G = G4 denote the
A-summability domain associated with the A-summability which is given by
(an(z))n>1. We write for 1 <14 < i,

o 1.0 () (D)
c )\()'k()<c Pk

A= 1 ) e Cyi(a) ) Gal:

VieEN; g(ecpm() cgS B

(] A (3.3)

1<i<ig

E:

We have the following equisummability theorem for operators (A,(f"ﬁ ) (2, f))n>1-

THEOREM 3.4. Suppose we are given an A-summability method A (see Defi-
nition 1.1 ). Then for each f € Ap we have A—lim,,_, gbojf)(z f)=0, Vze
E. More precisely, if U(x,z) ==Y " an(z )A;C:_’[f)( ,f) (x € X) then U(x,.) is
an entire function for every fixed x € X, and on any compact and bounded sub-
set K of € there holds |¥(x,z)| < M.maxyep |p(z,w)|, Vz e K, Ve X,
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where M is a constant, and B is a compact subset of G 4. Both M and B depend
on f,a, 8,E and K but not on x.

In Sec. 5 some properties of particular sets are stated and proved. These
results are used in the proof of Theorem 3.4. The proof of Theorem 3.4 is given

in Sec. 6.
4. Proof of Theorem 3.3

First we obtain some properties of the Walsh radius and then prove Theorem
3.3.

LEMMA 4.1. For given numbers «, 3,8 satisfying af # 0 and |a| # |8] =
and 6 = max (1,|a|, |B|) define for any positive number ¢ > & the number H by:

)\(i)_k(l) ,lp(i)_km
_ . . -1 v. [ € C
H=H(c):= inf inf o, | — - .
1<i<io , ey, kDepme | « I5]

(4.1)

Then either H = 0 or H is a positive minimum. In both cases H = R(c).
H wvanishes only in the following case: For some i, 1 < i < ig, and for some

4, 1 < j < ny, the set M]@ is unbounded and either: (1) )\g-i) <0, 1/1§i> <05 or
)
3

) , ’ , ()
2) A <0, D <0, or (3) AD <0, »V >0 and || <1. In all
J J J J (6

)

c
, p ,
other cases the minimum of H is attained for a k:j@ which is either min M;Z
1

or max MJ( ) and for v; which is either max N; or min N;.
3

RAMARK. The conditions when kj(-i) is min MJ@ or max Mj@ and when v;
K3 1
is max N; or min N; are given explicitly in the proof.
The last statement is not exact when the set Ml(i) depends on the sets
MQ(Z)7 o MT(LZ,) The statement is made precise in the proof when the case where

Ml(i) depends on the sets MQ(i), ooy M is considered.

If S =S¢ is the Mittag-LefHler star-domain of some f € Agr, R > 4, then

from Lemma 4.1, we have

COROLLARY 4.2. Let f € Ar, R > 1. Suppose the assumptions of Lemma
4.1 hold. Then

o1 () ()
))\()'k() c Pk

N NN e

1<i<io Vi €N; k() e pm () S
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PRrROOF OF COROLLARY 4.2. We have the obvious relation

b T PARN RS )
( ()Y

o (r 5 D)) = D,,

AD kD 1y, DO kD,
) (7

where a = r( il , Since S¢ has at least one point

la]

common with 0D g, the proof follows from Lemma 4.1. O

Proor or LEMMA 4.1. Since H = min;<;<;, H; where

AOED o\ PR , A
¢ <; ;v €N, 9 e M®

it is enough to prove Lemma 4.1 for each H; (1 < i < ig) separately; hence
without loss of generality we may in the rest of the proof omit the index 7. In
this case we write for ¢ > ¢

H(c) = H<7“; N, (M;)i<j<n, (Aj)i<j<n, (7/)j)1§jgn>

A k/y C /‘/) k/y
= inf ‘ ‘
veNkeM
where k € M means ky, € M,,,--- ,k1 € M. The rest of the proof is divided
into two parts. The first part of the proof considers the case when the set M;
is independent of ks, --- | k,,v. The second part of the proof considers the case
when M is dependent on ko, -+ , k, and v.

Proof of the case when when My is independent of M,,, --- Ms. We use here
the notation k' := (kq,..., k), M’ := (My,..., M,) and k' € M’ means that
kp € My, ..., ko € My. With respect to k; the following cases can occur: (4)
when the set My is bounded or (B) when the set My is unbounded.

The case (A) where My is bounded. In this case we have to consider several
subcases. (i) Assume A\; = ¢; = 0. Then

(()‘k)z n)/V c ((¢k)2 n)/v
H= ’7‘
VEN k’eM'
c (Alk;+()\.k)2,n)/l, c b ki + @) ks ) /v
= inf .7’ c
VEN, k'eM’ 3

where k] = min M;.
(i) Assume A1 # 0, 41 = 0. In this case, since v € N C IN and M; C INT is
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bounded, we have

H= inf

¢ [(AK)2.) /v
H X
VEN,k'eM’

. ((D-k)2.n) /v { |§})\1-(minM1)/u i AL >0
X |= )
ﬁ |g|)\1~(max]v[1)/u if )\1 <0
¢ | ki + AR /| ¢ |k + R0/
= m C.*’ -
VEN, k'eM’ B

where k1 = k7 and k7 = min M7 if Ay > 0 and k} = max M; if A\; <O.

(iii) Assume A\; =0, 11 # 0. As in the previous case we have

) e [(AK)2.) /v
H = inf ‘ X
VEN, k'eM’
11+ (min M) /v
c (("/"k)zn)/l’ ‘% if 41 >0
x E 91 -(max My)/v .
‘ if 4y < 0.
¢ 1K AR v ¢ |Ciki+ @ F)z0) /v
Z/EN k’eM’ ' E

where k1 = k7 and k] = min M; if ¢, > 0, and kf = max M; if ¢ < 0.

(iv) A1 # 0, 11 # 0. In this case the following four cases can occur:
a) A1 > 0,41 > 0. In this case

o ki@ k) ) /v

g

H =

Z/€N k EM'

’(Alkmkk)m)/u

where k1 = k] and k] = min M;.
b) Assume A\; < 0, 91 < 0. In this case

H inf ‘C‘(Alk;+</\“”~k<“)z,n>/u ¢ | (ki@ R/
= 1 — —
g

VEN, k'eM’

where k) = ki and k] = max M;.
¢) Assume \; > 0, ¢ < 0. In this case

¢ kit ARy /o) ¢ |k @20/
H= _nf o] 5

VEN, k'eM’

265
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where
—
>

. . Lo |em
ki =min M, if |—
!

<
g

R >\1 R *wl
k¥ = max M if () < () .
! ! o 18]

d) Assume A\; <0, 1 > 0. As in case c) we get

W ki +@p k)2 ) /v

and

. C
H = inf c —
VEN, k' eM’ 3

' c ’(Alkrﬂ/\-kb,n)/u

Y1 _ 1 _
Wherek‘f:mianif’%‘ 2|g‘ M and k7 = max M, if‘%’ <’a| M n

conclusion we get that

o | ki@ k) ) v
g

where k7 is either equal to min M; or else, equal to max M.

H= inf

‘ c ’()\176;+()\k)2n)/V
VEN, k'eM’

The case (B) when the set My is not bounded. In this case we have to consider
separately the following five cases:

(a) Assume Ay >0, ¢ >0or Ay >0 and ¢ >0.If k:gl) € M, k*?) S
M; and kgl) < kgz) we see that

o | @ik @Rz ) /v

l c ‘(X1k§1)+(/\'k)2,n)/’1
el = b
B

W1k +@p-k)2n) /v

. ¢ ’Ulki”ﬂxk)zn)/u ¢
cl— ) B
B
so that
e 1K +AK)2) /v | ¢ |k + @R /0
H(e) = min ’—‘ e
veN, kW em® B

where k] = min M.

(b) Assume A\ <0, 1 < 0or Ay <0and ¥ < 0. Then by an argument
similar to that of part (a) of the first part of the proof when the set M — 1
is bounded it follows, since now the set M7 is not bounded from above, that

H = 0 which corresponds to k* = oo = sup M;. In this case it is not necessary

1/’1)

to check the other indices ko, ..., kpi1-
(c) Assume A\ >0, ¢y <0 or A\ <0, 11 > 0. Then

. c
H= inf
veN, kW emM®

‘ ‘ (Ak)z, n)/l’ .
— min -
k1€M;

(p-k)2.n) /v <
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We have to consider in this case three possibilities:

(1) If |é}>\l %‘wl > 1 then

ki + A2 ) /v | ¢ (V1K @R /v

C

B

. c
H= inf c‘—’
veN, kP emm '

where k] = min M.

(
@ 1|51 §]" =1 then

W-k)a,n

)

Cc

E '((A'k)Z,n)/U
o g

H=  inf c‘
veN, kD emM®

which corresponds to ki = min M;.
A
B IfF[E]™

corresponds to k* = oo = sup M. In this case it is not necessary to consider all

P
%‘ ' < 1 then since M; is not bounded from above, H = 0 which

other indices ko, ... , k.

(d) Assume A\; =0, 91 = 0. In this case H is independent of k1, and we can
choose k; = ki where kf = min M;.

(e) The same argument is applied now to ke, ... , k,. The final result is that
either H = 0 (and it is known when this happens) or there exist kf,... ,k €

My, ..., M,, respectively such that

MK 4 Akl

1
wlkf+...+wnk:> v

C C
H=infc|| <
ulgNC(a 8

(it is important to remember that the set N is bounded and v > 1)

¢ (Y1kT+.Anky)/v”

g

c ‘(Alk;‘-‘r.“—&-)\nk;)/y*
(6%

= C‘
where v* = max N or min NV according as

5

This completes the proof of the first part of the proof where it is assumed that

ikt n k]

MK oA Ak
>1 or <1, respectively.

c

B

M, is independent of ko, ..., ky,, V.

The second part of the proof when My is dependent on ko, -, ky, v. Two
cases can happen for M. Either (a) minM; = ag + Z?:z a;k; + ant1v, and
max My = by + Z?:z bjk; + bpy1v; or (b) min My = ag + Z?:z a;jk; + any1v
and max M, = +oo.
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Using the same notation as in part (a) of the proof and remembering that ¢ is
omitted in the suffixes, we see that H = H; is obtained when k; is either equal

to min M7 or equal to max M;. Assume first that k; is equal to min M. In this

case we get
c ((ao+Xi_s(Nj+aj)+ant1v)/v
H = inf c‘— e X
VEN,]CIEM' «
¢ (ao+X 7 o (bjtaj)tant1v)/v
X J—
B
If the minimum is obtained for k; = max M; the result will be similar but

with b’s instead of a’s. But the expression obtained for H is exactly the same
as before but with different sequences of constants A, ¢. Therefore the proof is
completed as in the first part. If we have the case (b) then as in the proof of
the first main part either H = 0 in which case the proof is finished, or H is
obtained for k; = min M;. The rest of the proof follows now again from the first

part of the above proof. O

LEMMA 4.3. If PRI 10N '(,b(i) have the property (2.1.1) then E(r) satisfies:

{ () R(r)>r>0 for r>n; (i) R(r) >r for r>n~;
(

iii) R(r) is non-decreasing for r > ~;  (iv) R(r)is continuous for r > .
(4.2)

PROOF. From the definition of R(r) for r > v we get that (i) and (ii) hold.
Now (2.1.1) implies that for given 1 <i <'ig, v; € N, k@ € MY the function
of r in the curly braces in (3.1) is non-decreasing for r > v so that (iii) holds.
It remains to prove that ﬁ(r) is continuous on the left and also continuous on

the right for each r > ~.

For the function

H=H(c):= inf inf
1<i<i49 viEN;, k(i)eM(i)

v; o ﬂ

_ » 2D @ ) (D
o (M)

where ¢ > v, we have H = ]Tl(c) By Lemma 4.1 H is either = 0 or is a positive
minimum. The lemma gives also necessary and sufficient conditions under which
H can vanish.

Proof of the continuity on the left for r > ~. For a fixed v, r > ~, let v <
r1<Te <...<rj<rjt1 / r. By Lemma 4.3(i) E(rj) >r; >0for j > 1, and
by Lemma 4.1

@) 1.5 . (1)) @) 1.5 . G
Ak vy r Yk v

o= () (3)
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where k( 1 is equal either to min Ml(ij) or to max M; (5) k( 5 s equal either to

min MQ( ) or to max PQ( 3) or to max sz(’?;)’

i) ; k(,“ (i) is equal either to min P((i
: gntti _ n

and v(@) is equal either to min NG5 or to max N@). Since 1 < i; < 1o, the
number of possible different values of (4;);>1 is finite, hence there is an infinite
subsequence of (r;);>1 for which all the values i,’s are equal. We may assume
without loss of generality that i; = i for j > 1. Again, since the number of
values of (v .))j>1 is finite, we may assume that 1/() =7 e N®. Since kl
can take only one of two values (either max M) or min M) we can agaln

assume that Vj > 1 kj = %S(),) Repeating the same argument a finite number

of times we see that

where kgi) = (k(li7 . k(l) ij), )\g-i) =m . )\(z) ). Letting j — oo we get

Since R(r) is an increasing function for r > v we have lim,, f{(rj) < R(ro).

Noror

Combining these two inequalities we get lim;_, o E(rj) = R(ro). Therefore R(r)
is continuous on the left for r > rq.

Proof of the continuity on the right for r > ~ Choose rg > 0. E(T) is
non-decreasing for r > 0. Given a strictly decreasing sequence r; \, ro we
have w := lim;_, é(rj) > R(ry). Assume w > R(rg). Choose a number 7
w>n > ﬁ(ro). Hence there are numbers 1 < i < i, k9 c M such that

(i) 1.(0) () ()
B ro Ak /v; ro Pk /v;
R(ro) <ro m m <n<uw.

For each j > 0 we have

)\(i)~k(i)/lj~ 1/)(1)',‘:(1)/1/’

T, { (7’]— ) T~
T — > R(r;).
(%) H 3)

Letting j — oo we get (because r; \, 7o)

o A(i)'k(i)/”i o "/’(Z)
wrwen(m) (5

T )‘(i)'k(i)/’/i T "/’(i)k(i)/v
= lim r; [ = — > lim R(r
LN ] > fig, Rlrs) =

k(i)/VZ
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But this is a contradiction. Hence w = lim R(rj) = R(ro). O

j—oo

PROOF OF THEOREM 3.3. By Lemma 4.3, R(R) > R. Since AP (z,f) is
a holomorphic function, it is enough, by the maximum principle, to prove only
the case |z| = r1, R <1 < R(R). Since R(r) is an increasing and continuous
function for r > « there exists a number r§, § < r§ < R such that for each ro,
g < ro < R we have r; < R(r). Then

. U S
A& (z, f) = 2 I % Ky (2, t)dt

where I':={t € C: |[t| = ro}, 6 <719 < R, and

> AP+ Y, BY®)

1<i<ig 1<i<iy

From the definition of R(rq) it follows that V i € [0,ic], and ¥V k) € MV we

have
AD @ » O kD
~ . v, 70 0
R(r ”13”<> (> ;
=T’ | [l 3

VG a MR e R
o= (@7

By using (4.3), we have (see (2.1.5) for the definition of Agf)(z, t))

or

X

1
e § 2 a0 < Lo mas 50

2O @ w( ) @ v,
i [l 18]
Xz e G G)

v;EN; k(l) EM(i)

viy n—1 )\(i)-k(i)JrQ/)(i)-k(i) ”

(i) 1 O i\
< — b(k — —
<o ((R(TOJ) SO >|(r0) ()

1€EN; k(i)eM(i)

Vi ™ ming <;<ig N; n
<cl =2 <o (=2 n=1,2-
R(To) R(To)

where ¢y is a suitable constant. Hence
l/n minlgjgi[] N,
T1
<| = .
R(ro)

n

f<>A()(z t)dt

lim sup max
P 27i rt—

n—oo |z[=r1
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Since ¢ can be chosen arbitrarily between r§ and R by letting ro tend to R we

1/n mini << Ni
<[ L (44)
R(R)

also have

1 .
L f IO 400 par
2 Jpt—z

limsup max
n—oo |zl=r1

In a similar way we have using (2.1.2) (see (2.1.6) for the definition of Bg)(t))

1 f@) L 1 1 ;
— L B (4yat| < — 2 t)——— ¢V
i B, B0 < 5o rtn_ago|f<>|m_m%c< )
5 (M(i)"e(’i)_"_x(i)ve(i))n
()
To
n—1 ) (i)ue(i)_‘_x(i)'e(i)
Y ONT2A
< - A
< dy () e (2)
£Yept

n
gd(7> n=1,2,...
70

where d is a suitable constant. From the last inequality we obtain, by first
taking the n’th root and then letting ro tend to R,

1/n
1 t ;
limsup max —% SO BW(t)dt < X (4.5)
n—oo |z|l=r1 |2mt [t|=ro t—2z o
Now (3.2) follows from (4.4) and (4.5). O

5. Some Topological Results

5.1. Properties of some compact sets.

LEMMA 5.1.1. Assume K C € is a bounded compact set and 0 ¢ K. Then
the set K= :={w:w™t € K} is compact.

PROOF. Since the map z — 1/z of €\{0, 00} onto itself is one-to-one and
bi-continuous it follows that K ! is compact. Also 0 ¢ K implies the existence
of a disk D¢, ¢ > 0, which is disjoint with K. Hence K-1c Dyye. (I

Assume G is a star-shaped domain (and therefore simply connected). Let
0 < p < 1. By the Riemann mapping theorem 3 g : D; — G which is one-to-one
and onto with ¢g(0) = 0. Let H = H, := g(D,)UD. Obviously D C H, C G.
Since G is star-shaped (see Z.Nehari [80, p.220]), therefore g(D,) and H, =
9(D,) U D are star-shaped. Hence the boundary of g(D,) is a star-shaped and
rectifiable Jordan curve. Since the boundary is a star-shaped and rectifiable

Jordan curve, it follows that 0H, is also a star-shaped rectifiable Jordan curve.
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LEMMA 5.1.2. For each p, 0 < p <1, the set H, is bounded.

PRrROOF. The function g is continuous and g(D,) is compact, and therefore
bounded.
O

DEFINITION 5.1.3. Assume f € Ar, R > 1. Let 0 # |al],|8] < R and for
1<i<ig let kD e MY means ky(fi) € My(fi), cee kiz) € Ml(z). Define for each
0 < p <1 (similar to the definition of A;) and & in (3.3)

B 1.0 OR RO
c )\“'k()(c Pk

AN AT A L C(6o I

VieEN; g ecMmM () cgS ﬁ

and E(p) = ﬂ A;(p).

1<i<ig

In particular if G is replaced by H, then the same result remains true with £
replaced by E(p).

LEMMA 5.1.4. Suppose the assumptions of Definition 5.1.83 are satisfied.
Then for each i, 1 < i < iy and each p, 0 < p < 1, the sets A;(p) and &

are star-shaped domains.

PRrOOF. The relation zo € A;(p) is equivalent to the statement: Vi(1 < i <
io), Vi € Ny, VEY € M® and Ve ¢ S 3¢y € H,, such that

9 10 ) (&)
ui(c AU""”(C Pk

i =c"t — 3 o -
For each 0 < A < 1, we have 0 < A\** < 1. Hence A" € H, . We have
A AR A
vi _ Vi E E Vi
(Az)” = () (ﬁ) (o).

Therefore A\zg € A;(p) . So that A;(p) is star-shaped, which implies that A(p)
is star-shaped. Similarly if we choose now A = 1 + de*®, 0 < ¢ < 2, where

0 > 0 is sufficiently small we get again
/\(’w'k(i)
vi _ i E ¢
(Az0)™ = ¢ (a) <ﬁ

Since H, is open it follows that for a sufficiently small éo > 0, (1 + Jei?)zg €
A;(p). Hence A;(p) is an open star-shaped domain. Now, since £ is a finite

PO kD
) (o).

intersection of open star-shaped domains it is also an open star-shaped domain.
O
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LEMMA 5.1.5. Assume the assumptions of Definition 5.1.3 are satisfied. Let
K be a non-empty set of complex numbers. Then K C &, if and only if,

N )\(1).]9(,,-) ’(/J(i)»k(i)
c= U U U Uz (9)  mice

1<i<ig Vi €N; gD M@ cgS

Proor. We have

K CE&«=>V(eK,Vicllig, Vv; € N;, V& e MY vc¢ S
P () 7.(9)
c /\()'k()<c Pk

cenet (@) )

cgS ﬂ

This is equivalent to the statement that Vi € [1,40], Vv; € Ny, vk e M(i)7

Ve S e
)\(i).k(i) RO
= (9) (ﬂ) K" Ca.

Vi \c c

And the last statement is equivalent to

1 /a AP k® P kO ‘
U U J U (Cz/i (;) <f) K")cG. O

1<i<ig V;€N; k(DM@ cgS

LEMMA 5.1.6. If the set K is bounded, then the set L is bounded.

PrROOF. When the set K is bounded, each of the sets K" is bounded. Now
for each ¢ ¢ S, we have [c| > R and |§| < 1, |%| < 1. Therefore for each ¢ ¢ S

1 rank (BY 1 11
— (= = < < — < =, if d R>1.
c”(c) (c) “ e T R T R’ it v>0 an

The proof follows now from the definition of £ (in Lemma 5.1.5). O

LEMMA 5.1.7. Let K be a bounded and compact set satisfying 0 € K. Then
the set L is bounded, compact and 0 € L.

PrOOF. By Lemma 5.1.6 the set £ is bounded. From 0 € K, it follows that
0 € L. Hence it only remains to show that £ is closed. Assume z,. € £ for r > 1
and that z, — 2. We will prove that zp € £. Toeach z, € L, r=1,2,...,

there correspond numbers i, € [1,4g], v, € Nir’ ksli(’zi)r) € Mff(g)), ceey kgl) €
T
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20 _ (o (Y -
17, ¢r € S and ¢, € K, such that z, = P (w) (CT‘) ¢ where k, =
/\(ir) -k(ir) >0, and j, := 't/)(ir) ~k(i7”) >0 (see 2.1.1). Since 1 < i, < ig for
r > 1, there is an integer 7, 1<i<ip (at least one) such that i, = i for an
infinite subsequence ry < ry < r3 < ... /" oo. Taking a subsequence of the
original sequence (z);>1, which we may assume without loss of generality to
be the original sequence (z,),>1 itself, we may assume i, = iforr=1,2,....
Similarly by passing to subsequences we may assume without loss of generality

that v, =v € Ny forr =1,2,... .

Assume first that (k,),>1 is not bounded. Again by passing to subsequences
we may assume k. — oo. Hence (%)kr — 0, because |¢,;| > R > |a| and we
see in this case that 2z, — 0 = z9 € L (since 0 € K). Similarly if j, — oo
then again zp € K. Assume now that the sequences (k;)r>1 and (jr)r>1 are
bounded. Then we may again assume that the sequences (k;),>1, and (j,)r>1
are constant, i.e., k. = E, and j,. = },r =1,2,.... Now (/" = CE are bounded
because K is bounded. Taking further subsequences we see that we may assume
¢ — ¢ € K and either for some subsequence ¢, — oo, in which case we see
again that z,, — 0 =29 € L, or ¢,, — ¢ & S (because S° is closed). In this
case we get z, = é(ﬂ)%(gﬁgf — C%(%)%(g)}f’ = zp € L, from the definition

cV Cp

of the set £ in Lemma 5.1.5. O

LEMMA 5.1.8. Let K be a compact set satisfying 0 € K and K C €. Then
the set L is compact, 0 € L and L C G.

ProOOF. By Lemma 5.1.5 we have £ C G. By Lemma 5.1.7, £ is compact. [

LEMMA 5.1.9. Let K be a compact and bounded set satisfying 0 € K and
K C &. Then there exists a number pg, 0 < pg < 1, such that for all p, py <
p<1l,LCH,.

PrOOF. The map g : D — G is bi-continuous. By Lemma 5.1.8, £L C G
and therefore g~1(£) C D and g~!(L) is compact. Therefore there exists a
number pg, 0 < po < 1, such that g~'(£) C D,,. This implies that for all
p, (po < p<1), wehave L C g(D,)UD = H,. O

5.2. Some paticular Jordan curves.
By the Riemann mapping theorem 3h = h, : D — £(p) with h(0) = 0. For

any p/, 0 < p’ <1, weset Cp :=h,(Dy) = hy(D,) C E(p). Cp is star-shaped
and 0C, is a star-shaped, rectifiable and closed Jordan curve.
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LEMMA 5.2.1. Let K be a compact and bounded set satisfying 0 € K and
K C&. ThenVp, po<p<1 (pgisdefinedin Lemma 5.1.9) K C E(p). And to
each p, po < p < 1 there corresponds a number p1 = p1(p), 0 < p1 < 1 such that
for all p',p1(p) < p <1, K C hp(Dp/)ghp(Dp/) =Cy C&(p), K C Int Cp,
and K is in the interior of 0C,.

PROOF. a) By Lemma 5.1.9 for all p, po < p <1, L C H,. By Lemma
5.1.5, with G replaced by H,, we get K C E(p). b) h, : D — E(p), h,(0) =0,
is univalent and onto. Since K is compact and bounded and K C &£(p) the
set h, ' (K) is compact and h,'(K) C D. Hence to each p, pg < p < 1, there
corresponds a number p; = p1(p), 0 < p1 < 1 such that for all p/, pi(p) <
p' <1, h,'(K) C Dy, which implies K C hp(Dp/)ghp(Dp/) =Cy CE,, and

in particular K C Int C,. Also, since the domains are star-shaped K is in the
interior of 0C,,. ([l

LEMMA 5.2.2. For each p, 0 < p < 1, we have E(p) D Dy for0<r <R.

Proor. Since for each p, 0 < p <1, D C H,, we obtain from Corollary 4.2
that Dy, C Dy C E(p) for 0 <7 < R. O

LEMMA 5.2.3. Assume that r satisfies max(1,|a|,|B]) =0 < r < R. Then
to each p, 0 < p < 1 there corresponds a number ps = p2(p), 0 < p2 < 1 such

that for each p', pa(p) < p' < 1, we have ER(T) C hy(Dy) ; hp(Dp) =Cly.

PROOF. From the definition of R(r) we see, since 0 < § < r < R, that
R(R) > R(r). By Lemma 5.2.2 we have now for each p, 0 < p < 1, £(p) D
DR(R) D Dé(r)’ Since h, : D — &(p) is onto, one-to-one and bi-continuous, we

see that the preimage h;l(b C D is compact and bounded. Therefore

fi(R))
there exists some pa = p2(p), 0 < p2 < 1, such that hp_l(Dé(R)) C D,,. Hence

for each p', pa(p) < p' <1, Cy :=h,y(D,) % ho(Dy) O Dy gy D Dy, O

LEMMA 5.2.4. Assume that r satisfies max(1,|al,|5]) = 06 < r < R. Set
v := max{|al, |8]}. Suppose p, 0 < p < 1, is given. Let p' satisfy ngp) <p <1
(see Lemma 5.2.3 ). Then for each z € 0C, we have |z| > (%)1/11 > r, where
v* =max ;e Ni < 0.

PRrROOF. By Lemma 5.2.3 we have for p/, ps < p’ < 1,

Dﬁ(r) C h’P(Dp’) ; hp(Dp’) = Cp/.
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Therefore for each z € C,, z ¢ bf%(r) which, by (2.1.1) and Remark 3.2,

1
implies that |z| > R(r) > r (%) T O
5.3. The sets K,;;(z) and their properties.

Let i, 7, %17 ,75” be given non-negative integers satisfying 1 < i < i,
vEN;, ky € M;, -++ k1 € Mj. For the sake of simplicity write v := 7,
k:= Ak and j := 4" k. Then k and j satisfy k >0, j > 0 and k + j > 1. For
0<p<1,set H := C\H, and (H5)™':={we € : L eHS},

REMARK. Some of the following definitions and lemmas remain valid when
it is assumed only that the integers v k,j satisfy v > 1, kK > 0, 5 > 0 and
k+j>1

DEFINITION 5.3.1. For a positive integer v and two non-negative integers
v, k,j, satisfying k >0, 7 >0 and k + j > 1 write

Kojn(z) = {w eqr: w”(;’)k(;)j € z"(H;)—l} :

which is equivalent to

Kyji(2) = ¢, gy, (270 67 (HS) ™) (5.3.1)

We now give a sequence of lemmas which lead to the construction of the star-
shaped closed Jordan curves I', j;(2) that are used later in the proof of Theorem
3.4.

LEMMA 5.3.2. For each p, 0 < p < 1, and three integers v, k, j satifying the
assumptions of Definition 5.3.1 the following assertions hold:

(i) (HS)™' and ¢p,' (HS)™') are star-shaped, compact and bounded,
0e(Hy)™' 0egy ((Hy)™), (H)™ D Dy,
and
¢ (H))™Y) D Dy for = (2 max |Hy|)™" and o' =n'/".
(i) (HS)~' C D, and ¢;," ((HE)™!) C D.

iii) For any finite complex z, z(HS)™' and z¢y,  (HS)™Y) are star-shaped, com-
P v P

pact and bounded.
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(iv) For any finite complex z the sets o z”(HS)_1 and ¢
are star-shaped and compact,

Ly a3 (HE) )

0€a*Biz"(HS)™"  and 0¢ qﬁ;ikﬂ. (a*B72"(HS) ™).

PRrROOF. Proof of (i) and (ii). By Lemma 5.1.1 and the remark made after
its proof and by Lemma 5.1.2 the set (H;)*1 is compact, open, bounded, star-
shaped domain and 0 € (Hg)™'. From H, D D it follows that (H5)~' C D.
Since H,, is compact and bounded the rest of the proof of (i) follows. The proof
for ¢, ((HS) ™) is immediate. (iii) and (iv) are immediate too. O

LEMMA 5.3.3. Assume the assumptions of Definition 5.3.1 are satisfied.
Then for each finite complex z, the set K, i (2) is star-shaped, compact and
bounded, 0 € K, ;1(z), Kyj,(2) includes a disk with center 0 and radius

LN L/ (k)
|of*]3)7 ] !
2max |H,|

and 0K, jk(2) is a rectifiable star-shaped Jordan curve.

PRrROOF. From the definition of K, ;,(z) we get
K. . _ -1 ki v HE¢ -1
u]k(z) - ¢y+j+k;(a ﬁ z ( p) )

By Lemma 5.3.2(i), (H5)™" includes a disk with center 0. Therefore K, ;i (2)
contains a disk with center 0. By Lemma 3.3. 2(iv), the set K, ;i(z) is star-
shaped, compact and bounded. By the remark after the proof of Lemma 5.1.1
0K, ;i(z) is a rectifiable and star-shaped Jordan curve. The rest of the proof
follows from the definition of (HS)™! and Lemma 5.3.1(i).

g

LEMMA 5.3.4. Assume that r satisfies max(1,|a|,|8]) = 0 < r < R and
0 < p < 1. Let p satisfy pa(p) < p' < 1 (where pa(p) is defined in Lemma
5.2.3). ThenVz € Cy, we have K, ;,(z) C S.

PROOF. We have (from the definition of C in Lemma 5.2.1 C,y C £(p). Now
z € E(p) is equivalent to the assertion that for all ¢ ¢ S, for all ¢, 1 < i < 4
and for all i, v, k%l), e k,(f) belonging to N;, Ml(z), e M,(LZ) respectively, and

A )\(()i)7 e )\Sf), (()i)7 e SLO) we have the following chain of equivalent state-
ments:

() 7.(9) () (D)
I o (1o W C A
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)\(i)_k(i) c ('i,).k(ri,) .
()Y F )

) =g (@ (0T (5 ;

B b C )\(i).kw c ’lp(i)k(i) .
(77) z¢ ¢, (c i (a) (B) C) for each (€ H,
) Vi e NP ED e ,‘/)(i)_k(i)
vi(E - for each ¢ € HE
(iv) c #c (a) (»3) or each (€ Hp
b C ADED e ¢(i)_k(i> ”. .
(v) (=~ <B) ¢ 2 (HS)™
From the definition of K, ;x(2) it follows now that for each z € C,/, K, i (2) :=
{we C:w(2)"(2) e2(H) ™} 5. O

LEMMA 5.3.5. Assume that r satisfies max(1,|a|,|3]) =0 < r < R and that
p, 0 < p < 1. Choose Oy so that 1 > 0y > L. Let p' satisfy pa(p) < p' < 1
(where pa(p) is defined in Lemma 5.2.3). Then for each z € 9C, and for
each w € K,ji(z) we have |w| < 6glz| , Uzeacp/ K, ji(z) C Int 6,0C, and
d0Cp; U.coc, Kvir(z) = d>0.

PROOF. By Lemma 5.2.4 for each z € 9C, , where pa(p) < p/ < 1
|z| > r|’;'\1/”* > r > 1. Assume that for some w € K, i, we have |w| > 6|z|.

B
L <wV(w)’“(w)J> € (HS)™' ¢ D (see Lemma 5.3.2(ii)). This implies that
« 5 3. . plies tha

zv [E] ‘
L@ (2)" (%))

wlV w|k
NEH
zl la

J
By Definition 5.3.1 we have wy(g)k<£) € zV(HS)~! which is equivalent to

1> . Hence

, k+j k+j
s <T> > 6, (T) >0 >1.  (53.2)
5} g Y Y

But (5.3.2) is a contradiction. This contradiction implies that |w| < 6g|z].

7w
2 —_
P

Since 0,0C,y and K, ;i (z) are compact, bounded, star-shaped, 0 € K, ;x(z) and
0 is in the interior of 9C, we get Uzean/ K, jk(2) C Int 6,0C,. The set
0C, is a compact, bounded and star-shaped closed Jordan curve. Therefore
d :=d(0C,, 0,0C,) > 0. Combining the last two results we get

d(0Cy, | Kujp)>d>0.
2€0C

O

LEMMA 5.3.6. Suppose the assumptions of Lemma 5.3.5 are satisfied. Then
the set \J,coc , Kvjr(2) is compact, bounded and J,cpe , Kujr(z) C S. Also
P I3
there is a number eg > 0 such that

Ve, 0 <e<eg, U (14+e)K,k(z) C S
ZE@CP/
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and )
d0Cy,(1+¢€")Kyji(2)) > §d

for

-1

" = | 2max U Ky ik(2) > 0.
2€C,/

PRrROOF. By Lemma 5.3.4, z € 0C, implies K, x(z) C S so that V z € 9C,,
U.coc , Kvjr(2) C S. By (5.3.3) we see that
P

Kuje(2) = ¢y gy (" F727(H) ™) (5.3.3)

and S D U,coc, Kuju(2) = ¢;+1k+j (a*B7(0C, )" (HS)™") . By a standard ar-
gument, (since (HS)~' and dC, are compact and bounded) we see that the set

K, i1(2) is compact and bounded, so since S¢ is closed we get
2€C j g
Y ;

d=d| |J Ku(z), 5| >0 (5.3.4)
ZE@CP/

The boundednes of | J, .y , K, jr(2) shows that there exists a sufficiently small
P

€0 > 0 such that for all 0 < € < ¢, U,ce,(1 + €K, jk(2) C S. From

Lemma 5.3.5 it follows (since |, , is compact and bounded) that d(Cy/, (1 +

") Uzeoc,, Kujr(2)) = 5d > 0. -

DEFINITION 5.3.7. Assume the assumptions of Lemma 5.3.6 are satisfied.
For each z € 0C,y and and each ¢ = €(z) > 0, define I?,,jk(z, €) = (14€) Ky ji(2).

LEMMA 5.3.8. Suppose the assumptions of Lemma 5.3.6 are satisfied. Write
€3 := min (g9, 6o, €*) > 0. Then for each €, 0 < € < €3 the set IN(,,jk(z,e) 18
star-shaped, compact and

OEI?V]']C(’%e)ﬂ Zg-[?l/jk(zae)v I?I/jk(z,G) cS (535)

f(l,jk(z, €) DD,y  for somen >0 o
U Kyji(z,€) C U (1+e0)Kyjp C S (5.3.6)

zeacp/ Zeacp/
and
~ 1
d(0Cy, |J Kujr(z.0) > 5> 0. (5.3.7)
ZECP/

PROOF. Suppose 0 < € < e3. By Lemma 5.3.3 K, i (%) contains a disk with
center 0. Therefore for each ¢ > 0, I?ij(,& €) also contains a disk with center
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0. Again by Lemma 5.3.3 for each € > 0 the set (1 + €)K,;5(z) is star-shaped,
compact and bounded.

By Lemma 5.3.6 we have z ¢ I?ij(z,s), and I?l,jk(z,e) C S. Also (5.3.6)
and (5.3.7) follow by Lemma 5.3.6. O

5.4. The curves I',;(z) and their properties.

LEMMA 5.4.1. Assume the assumptions of Lemma 5.3.8 are satisfied. Let
Pl satisfy pa(p) < p' < 1. Write € := ie3, Then T'ji(z) = af(,,jk(z,e) is a

star-shaped and rectifiable closed Jordan curve such that
VzeCy 0eInt I'yjr(z), z€ExtTy(z), Tu(z)CS (5.4.1)

and

V2 €0C,y, V€T ulz),  C(zt) = (f)"(ﬁ)k (ﬁ)j €H, (542)

PRrOOF. By Lemma 5.3.8 for z € 9C, and ¢ = %&3, I?ij(z,e) is star-
shaped, compact and bounded and by Lemma 5.3.3 IN(,,jk.(z, €) includes a disk
with center 0. It follows now from Lemma 5.3.8 that 0 € Int I',;,(2), =z €
Ext Tyjr(z), Tun(z) C S (since Tyix(z) = 0K,k(2) € Kyu(z) C S).
Since Ty jp(z) = {1 + €)K,jx(2)}, and K, ji(2) is star-shaped, we get
k() N Kujk(z) = 0. So for each ¢ € ', ,(2), we have t € K, ;(z), which

j
means that ty(é)k(%> ¢ z'(HS)~'. In other words

(1) (;)k (;) — () R (H) e () R HE & () € B,

so that (5.4.2) holds. Since
Tyjn(2) = 0K, ju(z,€) = 0{(1 + ) Kyji(2)} = (14 €)0K,jn(2).  (5.4.3)

and the boundary of K, ;i(#) is a star-shaped and rectifiable Jordan curve (by
Lemma 5.3.3), it follows that so is I'yjx(2). O

LEMMA 5.4.2. Suppose the assumptions of Lemma 5.4.1 are satisfied, in
particular 0 < p < 1 and pa(p) < p’ < 1 (see Lemma 5.2.4). Let k,j,v be
integers satisfying k > 0,5 > 0,k+j > 1 and v > 0. Then there exist a compact

and bounded set I' and a star-shaped Jordan rectifiable and closed curve Bs
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satisfying

(i) |J Tuiw(z)crcs;
z€0C
(1) {¢(z,t) : 2 € 0C,, t €Tyu(2)} C By C H, C G.

(790) The length Ly;(2) of Tur;(2) is a continuous function for z € 0C,y.

|a|k|ﬂ|j§(r)” ) 1/(v+j+k)

(iv) zeigcf‘p/d (I‘ij(z)p) >0 >0 where o = (1+4¢) ( 2 max H,

PrROOF. (a) By Lemma 5.4.1, Lemma 5.3.8 and Lemma 5.3.6 the set
Uzean/ I'yjx(z) ¢ T' C S is star-shaped, compact and bounded. therefore
there exists a compact and bounded set T' satisfying (i). (b) Now we prove
(ii). By Lemma 5.4.1 to each z € 9C, there exists a rectifiable Jordan curve
Iyjk(z) satisfying 0 € Int (Tyi(2)), 2z € Ext Tuu(z), Tuie(z) C S,
and Vt € T',;k(2), ((2,t) € H, C G. By Lemma 5.1.1 Vz € 9C,/, the set
{t=W+k+i) + ¢ € T, 1.(2)} is compact and bounded. Hence Vz € 9C, B(z) =
Byji(z) == {((2,t) : t € T'yjx(2)} is compact and bounded too. In particular
Vz € 0C,y, B(z)C H, CG. For a positive r and a set E of complex numbers
we have 9p~1(E) = ¢ 1(0F) and (E~') = (OF)~!. By definition 5.3.1 and
(5.3.2) we have

Tujn(z) = (1+ €)@, Ly, (05727 0((Hy) ™). (5.4.4)

From the representation (5.4.4) of I',;x(2z) we see that L, ;,(z) is a continuous
function of z € 9C,. From (5.4.4) Vz € 9C, we have

k37 v
B@):{q@w;terwm@}:zfi%g%Iﬁg
B ozkﬂjz”
1+ e(z))vTithakBizvo(HS) 1

1
(L +e(z))vthti
Thus B(2) = Byji(2) = (1 +€)~+H+RoH .
For each A, 0 < A < 1, we have A\OH, C H, since H, and hence also 0H,

are star-shaped. Now from the definition of € in Lemma 5.3.8 it follows that

O(HS) = (1+¢(2)~ "+ P o,

(i 1
U Bij(Z): U (1+6) ( +J+k)a]'IpC meCHpCG.
2€dC,, €00,

Because H, and hence also 0H, is star-shaped we get

1 —
U Buir(z) € Byi=——H,CH,CG,
1+4+¢
2€0C
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where the set Bj is compact, bounded and B, C H, C G.
Proof of (iv). By Lemma 5.2.3 we have d (0C,|,0) > R(r)). From the relation
Puji(2) = (14 )¢,y (0FF7270((HE) ™))
we have, by applying Lemma 5.3.2(i) at the last stage,

T, — min (1
Zggg 1Tk (2)] zé]%lél,( +e€)

(1<) min (lal*lBP]=l"10((E) 7)™

j /(v+j+k)
z<1+s>('“ |BY (R(r)" )

2max |H,|

Oy by B2 O(H ) )|

6. Proof of Theorem 3.4

We observe that by the maximum principle, instead of proving Theorem 3.4
for arbitrary compact subsets K of S¢, it is enough to prove the theorem for a
family of closed Jordan curves having two properties: (i) each member of the
family is included in Sy and (i4) to each compact and bounded subset K of Sy
there exists at least one element in the family of curves which includes K in its
interior. Lemma 5.2.1 shows the family of curves {0C, } has these properties.
Therefore it is enough to prove the theorem for z € 9C, only.

In the lemmas quoted and applied in this proof for the domain G we choose
the domain G 4, where G 4 is the A-summability domain of the function f € Ag.

We have to estimate the integrals in the representation of A, Jff )(z

f) for z
on compact subsets of £. By the above remark it is enough to prove the theorem

only for the Jordan curves 9C,. We have

A(Oéu@) %
n+1 ’ Z 271 \t=r

when § < r < R and z € 9C,. Choose as in Lemma 5.2.3 p, 0 < p <

1 and pa(p) < p' < 1. Since Cp is compact, we can choose p, 0 < p <

+oo, large enough so that Vz € C,, |z|] < p. By Lemma 5.2.4, Vz €
1

t)dt Y 59 (yar
n+1 +22m f;l e a1 (t)dt,

0C, wehave |z|>7r (%)T > r. For |t| = r and z € C,y we have (again by

Lemma 5.2.4) |z —t| > |z — |t| > r|Z|" =7 > 0.

r
5
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Write ¢(x72> = Zzo:oan(‘r)znv 6(I,9> = maX\C\§9‘¢(I7C)‘7 M =

)\(i)_k(i> ,l/)(i)_k(i) ‘
maxyy— | f(£) and mi(t) = (%) (£) . For all terms A%, (1),
1 <i <'ig, we have, by (2.1.5),
; - 1 f@)
A0 () = n 7% AD (zt)dt
O = 0wy f, L A
1 ) & @)
- - (x)A ()t
i B, 1o L @A
1 £t i @y (1 (2)
- L an(z) Z Z bi (k™) mi(t)
21 Jy=r t—2 = ViEN: k) epm® (t>

where we recall that kY € M@ means that kﬁf) € Mr(f;.), cee k(i) € M(i). So

A= 5 IS T w0 m(5)” Z“n (t)"

[t]=r ViEN: kD epM®

()
o b LSS w3 (3.

[t|=r Vi,eN; k) epm®
p.L PRl A ' ‘
Writing &;(t) := (%) (%) and recalling the notation £ ¢ P

= 0D e P,(niz,...,fgi) € Pl(i), we get by (2.1.6) for all terms B,(LJ)rl( t), 1<
1 < ila

B >—Z @ §, % B0

[t]=r

1 (t) S @) &t)e (x,&(1) -

T 2mi t—
t|=r i )
Itl= €< ) ep®

First we estimate the terms B (z). We have

BO@) < 3 —— Y )] (2
r(%)" —r fDep

Xﬁgﬂaﬁ(w RAG)IE

n@ £<')+X( i) gD
) x

where M := max;—, | f(t)|. Now since p(*) 2D >0, xO. 0D >0 pu0. 004
P LY 10 L0

x@ 9 > 1 and v < r, we get from (2.1.2) |&(@)] < (2) <2
Hence
. M p,( i) e( i) X(L) e(z)
1BO(2)] < e(z, 7) 3 i) ( ) .

r (%) — 29 cpt)
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By (2.1.7) and (2.1.8) we see that for 1 < i < iq the expression D) := Ze“)
i () D Ly () g

e - (X

Therefore

Zf(”eﬂ N D is bounded by a finite number depending on 2, say h; (). Thus

eP()

is bounded by a finite number depending on I.

; M
|BY| < 7Zﬂ h(l) e(z, 1) for 1<i<4;.
r

o S
L
r(%) —r

Now we estimate the terms A(*)(z). Choose an integer V so large that for
each i, 1 < i < ip, C := max,ep, (})V (%)U < 1 (this is possible because
each set N; is finite and 1 <4 < ). As we saw before we have

o=t f 225 S () s 0 )

[t]=r VieN; k& eM®

_ i f) (Ifi) +12(2)> ¢(z,m(t)(§)w)

210 Jiy=p t— 2

= Jl(i) + Jéi)

where

P OED VRN R oD

VieN; k@Ocpm@® VieN; g ecpM@

)\(i)~k<i)+’lﬁ(i)~k(l)<\/ )\(1)~k(i)+‘§b(i)~k(i>2V

By the remark made after (2.1.8) the set of indices k' for which the numbers
A0 g® +«p(“ k@ satisfy A g —l—'t/)(i) k"W < V is finite. First we estimate
J$Y. We have

M 2mr

o o
7Tr(i) -7
v

D= 3 3 k(T

VieN; g ecpM@

/\(i)k(i)—t-’l,b(i)‘k(i)zv

|J2( )| < D@ 5(%0(1‘))7
where

))\(>k()+¢()k()

()"

By the same argument as that used to estimate B(%)(x), we see that

P YT |bi(k<i>)|(Z)A(i)'k(iw(i)'kw (%)

ViEN;: g(HepmM®

A kD p D D sy

Z Z k(l) ( ))\()k()+¢()k()(7)

VieN; k& ecpm@
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Hence ‘JQ( )’ 711 (2)e(z,C¥)) where h;(2) denotes a finite number

depending on X (( o (2 1.7) and (2.1.8) and the estimate of B(*).

Now we estimate the terms of Jl(i). Let v; € N;, kjgi) S Ml(i), A ,kr(fi) € Mr(fz)
be a given set of indices satisfying A0 g —|—'z,/)(i) k) < V. For such a given set
of indices denote, for the sake of brevity, v := v;, k := 2@ ~k(i), ji= 'c/;(i) k@,
We have k > 0, j > 0 and k+j > 1. We consider each term in the sum defining
Jl(i) separately. Let El(f])k be one of these terms. Then

B9 =58, =5 ¢ L0t () oot

where ((z,t) = (%)U(%)k(gy, I = 9D, (also for z € C, z € Ext (D,).
By Lemma 5.4.1 for each z € 9C, there exists a rectifiable Jordan curve
T'jk(z) satisfying 0 € Int (T',;x(2)), 2 € Ext (T'yx(2), Tuj(z) C S, and
Vvt € T,i(2), ((z,t) € H, C G. Denote by L(Z) () the length of T, ;x(2).

Using Cauchy’s integral theorem we get

BO g0 . L T k) (1) 0 .o

vik " 27TZ 'Jk(z) t—

By Lemma 5.4.2 the set (J,c5¢ , ['vji(2) is included in a compact subset I' of
3
S, and there exists a compact and bounded set Ba = Ba(v, j, k) such that

{{(2,t) : 2 € 0C,, t € Tyi(2)} C Ba(v,j,k).
Write

M = 81t1p{|f(t)| :2€ 00y, teTl,u(z)} < I{learx|f(t)\ < 400,

€($,Bg(l/,j,k) =

= Bo(v,j, k) C H )
) Ceg%k)wx,é‘)\, 2(v, 4, k) C Hy, C Ga

Applying now Lemma 5.3.8, Lemma 5.3.6 and (5.4.2) we get

I () e, Batw k) ()

”3k|_ 27r D \o

Since there is only a finite number of terms such that k + j < V we get

|J1i)\ < const; - e(x, U By (v, 4, k))

k+ji<V

Combining the estimates of Jli) and Jg(i) the proof follows. O
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7. Applications of Theorems 3.3 and 3.4.
EXAMPLE 7.1. For a function f E Ay, p>1, f(z) =70, arz®, write as in
Chapter 1,Sec. 1.3, pp—1(f;2) = Z apz®. Let L,_1(f;2) denote the Lagrange

interpolant to f on the zeros of 2 — 1. We have, see Chapter 1,(3.2),

Lua(F59) = por(fi) = 5 [ i )
where
th— 2" 2\ 1 = 1
Kult2) = gy = 10 (?) )ﬁztkﬂ
k=0
1\ =1\ \"
() -2E0)
k=1 k=1

In this example have for 7 > 1

B =ropip (7) =

Applying Theorem 3.3 we get the Walsh equiconvergence theorem.

EXAMPLE 7.2. Let L,_1(f;z) denote the Lagrange interpolant to f on the
zeros of z™ — 1. Write

n—1

pnfl,j(f;z) = Za'k+jnzkv ] :07172a"' (72)
k=0

By Chapter 1,(3.5) and (3.4) we have

n 1 f7 an 1,5 f7 erl - %Kn(t,z) df (73)

where I'g is the circle |t| = R and

In this example have for 7 > 1

T k_ 041
R(r)=r min(7) =7""

Applying now Theorem 3.3 we obtain Theorem 7 of Chapter 1.
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ExXAMPLE 7.3. Let f € A, (p > 1). As in Chapter 2, Sec. 2.1, (1.1), let
hrrn—1(f; z) denote the Hermite interpolant to f in the zeros of (2™ —1)". Then

By yrn—1(f;2) € mpp—1 and it satisfies the conditions
W9 (fiwh) = fOWh), j=01,...,r—=1; k=0,1,...,n—1
where w is a primitive n'® root of unity. Write

rn—1
1 f(t) tTTL _ Z'r‘n

. = k = — T
prn—l,O(fa Z) . Z apz i . t_ g
k=0 R

dt (7.5)

By Chapter 2, (1.4)), we have

Arn—l,l(f; Z) = hr,rn—l(f? ) —Prn—1 0(f7 ) ! A f(t) Kn(t’ Z) dt (76)

270 t—=z

where
P (Zn _ 1)7’

K, (t,z):= o 7(15" )

(7.7)

By Chapter 2, Lemma 1, we have for all ¢ with [¢| > 1,

27 (z—1)" _t—=z Z Bs,r(2) (7.8)

N

where f3;,(z) is a polynomial in z of degree r — 1 given by

Bur(s) =3 <T+Z_1> (—1F, s=1,2,.... (7.9)
k=0

Hence we have

2 (2" — 1)T " — 2" ﬁs r
K"(t’z) = trn B (tn _ 1 r Z

B _zni’“zl( yr—o- 1<r+s_(i—2>(s+;—1> (f)”

s=10=0
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_ig( 1o r+s—oc—2\(s+r—1 - "
B — = s—1 o gstr—1
ir_l( Jyr-o-1 r+s—o—2\(s+r—1\ [z
s=10=0 A tS‘H”
750:“1(71)7,7071 r+s—oc—2\(s+r—1 (E)U)”
- = s—1 terr fstr—o—1 t
s+r—1
ts+r o— Jstr—o—1 x

S D DT (A

X

R () )

SR
EE T GEY
+1(—1)r—u (i : i) <k + Z — 1) <t1k (i)y>n

In this example we get for 7 > 1

~ k/v T\ k/v
R(t)=7- min| min  min (7) , min  min (7)
1<v<r—1 k>r—v \1 1<v<r k>r—v+1 \1

I
3
=
+
.)—‘

EXAMPLE 7.4. For any positive integer £ > 1, set, as in Chapter 2,(1.14),

-1
Arn—l,é(f; Z) = hr,rn—l(f; Z) - hr,rn—l,O(fv Z hT rn—1,j fa Z) (710)
j=1

where
rn—1

h’r,’r'n—l,O(f; Z) = Prn—1 ,0 f7 Z CLkZ
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By Chapter 2, (1.15) and (1.16) we have (where I'p := {t : |t| = R})

f(t K(t 2)
dt, 11
alfi2) = 2m/ MR (7.11)
where
Zrn (Z” o 1)r $n _ n -1 5 (Z”)
K - S 12

_t — 2" .- ﬁs,r(zn) _ ﬁsyr(z")
S (2 0§ )
/BST
trn Z

Applying now the argument used in the previous example we get

co r—1 n

. res_1(T+s—0—=2\/(s+r—1 1

9=2 2.1 ( s—1 )( . et ) %
s=f 0=0

G
-y =0<1)T_s_1<r+2:?_2)(8+;_1) <t+101> .

_i(_l)T51<r:i;2) (tsfrl)n
+i§(1)7-_3_1<r+z:<17—2)(s+2—1)<ts+r161>nx
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In this example we get for 7 > 1
_ T k/v T\ k/v
R(t)=7- min| min min (7> , min  min (f)
1<v<r—1 k>¢+r—v—1 \1 1<v<r k>l+r—v \1

gy
By Theorem 3.3 we obtain another proof of Theorem 1 of Chapter 2.

8. Historical Remarks

R. Briick [17] was the first who replaced the convergence in equiconvergence
theorems by A-summability. R. Briick also determined the equisummability
domains for several pairs of approximation operators. The ideas of Briick were
continued by A. Jakimovski and A. Sharma in [54]. Some of the results of this

chapter are given in [54].

The case of the (0,2) lacunary interpolation is dealt with in detail and its
Walsh radius and domain of equisummability are obtained in [54]. The kernel
in this case is similar but does not fall into the category of the kernels discussed
here. It seems probable that other variations of the kernels considered here can
also be dealt with.
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