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Signeur de Montaigne
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PREFACE

This monograph is centered around a simple and beautiful observation of
J.L. Walsh, in 1932, that if a function is analytic in a disc of radius ρ (ρ > 1)
but not in |z| ≤ ρ, then the difference between the Lagrange interpolant to it
in the nth roots of unity and the partial sums of degree n − 1 of the Taylor
series about the origin, tends to zero in a larger disc of radius ρ2, although both
operators converge to f(z) only for |z| < ρ. This result was stated by Walsh
in 1932 in a short paper [304] and proved in [87]. A precise formulation of this

and Approximation by Rational Functions in the Complex Domain [88, p. 153]).

One of the reasons why this result of Walsh was not noticed until 1980 seems
to be that it is sharp in the sense that if z = ρ2, then there exists a function f(z)
analytic in |z| < ρ, for which the difference, between its Lagrange interpolant
on the nth roots of unity and the partial sum of degree n − 1 of its Taylor
series about the origin, does not tend to zero for z = ρ2. The function which
provides this phenomenon is 1

ρ−z . In 1980 a paper authored by A.S. Cavaretta,
A. Sharma and R.S. Varga [27] gives an extension of the above result in many
new directions.

The object of this monograph is to collect the various results stemming from
this theorem of Walsh which have appeared in the literature, and to give as
well some new results. The first work which gave publicity to this subject was
a paper by R.S. Varga [82] which appeared in 1982 and later a survey paper
by A. Sharma [72] in 1986. T.J. Rivlin, E.B. Saff and R.S. Varga (all students
of Walsh) made significant contributions to extend this result. New directions
were due to V. Totik [85], K. Ivanov and A. Sharma [43], J. Szabados [80],
Lou Yuanren [202], M.P. Stojanova [76], A. Jakimovski and A. Sharma [48] and
others.

T.J. Rivlin in his brief comment on the above result in the selected papers
of Walsh, says that “...by the mid nineties the interest in this theorem had
almost disappeared. The result was probably about 200 published papers”.

xi

interesting result appears in 1935 in the first edition of his book Interpolation
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This comment encouraged us to write this monograph and to present a unified
presentation of the significant results and extensions of this theorem along with
a complete bibliography. (How T.J. Rivlin arrived at the figure of about 200
published papers is not clear to us.)

This book is easily accessible to students who have had a course in complex
variables and have gone, for example, through the book Theory of Approxima-

tion by P.J. Davis, or the book Approximation of Functions by G.G. Lorentz.
Our book is divided into 12 chapters. Chapter 1 begins with elementary results
on Lagrange interpolation to functions defined on |z| ≤ ρ and gives a proof
of the Theorem of Walsh which is the object of the present study. Chapter 2
deals with an extension of Walsh’s theorem to Hermite interpolation. Chapter
3 is concerned with an extension of Walsh’s theorem to rational functions with
given poles outside the circle |z| < ρ. Chapters 4 and 5 deal with sharpness and
converse results respectively. Chapter 6 is concerned with Padé approximation
and Walsh equiconvergence for meromorphic functions with a finite number of
given poles. Chapter 7 deals with quantitative results in the overconvergence
of meromorphic functions of Chapter 6. In Chapter 8, we turn to the study of
equiconvergence of Lagrange and Hermite interpolation for functions analytic
in an ellipse. In Chapter 9 we extend the Walsh equiconvergence by application
of methods of regular summability, which was initiated by R. Brück [16] and
continued by A. Jakimovski and A. Sharma [46]. Chapter 10 deals with Faber
expansions of analytic functions and extensions of Walsh equiconvergence results
for differences of approximation operators on Fejér and Faber nodes. Chapter
11 is concerned with corresponding results for equiconvergence on lemniscates.

We can never thank Prof. R.S. Varga enough for his kindness and constant
encouragement, advice and suggestions over several years. He has been kind
enough to go through the manuscript with constructive corrections and amend-
ments.

We are grateful to Prof. A.S. Cavaretta for his kindness and help by reading
part of this book with care and to Prof. M.G. de Bruin for his critical and
constructive help in Chapters 6 and 7. Without their help we could not complete
these chapters in their present forms.

A. Sharma is particularly grateful to his family for their encouragement and
patience with him during the preparation of this monograph. His son Raja
and his wife Sarla went “the extra mile” beyond their filial duties in caring for
him, and ungrudgingly endured his eccentricities. He records his gratefulness to
the Good Samaritan Society (Mount Pleasant Choice Center) for his care and
nursing during his illness while the work was in preparation.
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We deeply appreciate with thanks the scrupulous care of Vivian Spak in typing
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CHAPTER 1

LAGRANGE INTERPOLATION

AND WALSH EQUICONVERGENCE

1.1 Introduction

Let f(z) be a function analytic in an open domain D and continuous on the
boundary of this domain. Further let n be a positive integer, and z1, . . . , zn pair-
wise different points from D. We shall denote the (unique) Lagrange polynomial
interpolant, of degree at most n−1, of f(z) in these n zeros by Ln−1(f ; z). With
the notation ωn(z) :=

∏n
k=1(z − zk), this polynomial can be represented in the

form

Ln−1(f ; z) =
1

2πi

∫

C

ωn(t) − ωn(z)
ωn(t)

f(t)
t − z

dt,

where C may be any rectifiable Jordan curve in D containing the points z1, . . . ,

zn and z in the interior of the domain bounded by C. Indeed, this is a polynomial
of degree at most n − 1, and by Cauchy’s theorem

Ln−1(f, zk) =
1

2πi

∫

C

f(t)
t − zk

dt = f(zk), k = 1, . . . , n.

The uniqueness of this interpolant follows from the fundamental theorem of
algebra: if there existed two different interpolating polynomials, then their dif-
ference, a polynomial of degree at most n− 1 not identically zero, would vanish
at n points, which is impossible. Most often in this book, we will be concerned
with the special case when the nodes of interpolation are the nth roots of unity,
i.e., when ωn(z) = zn − 1. In 1884, Méray gave a very instructive example of a
function whose Lagrange interpolant in the nth roots of unity does not converge
to it anywhere except at the point 1. Thus if f(z) = 1/z then Ln−1(f ; z) = zn−1

is the polynomial of degree n− 1 which interpolates f(z) in the zeros of zn − 1.

For |z| > 1, lim
n→∞ zn−1 does not exist and for |z| < 1, lim

n→∞ zn−1 = 0, while

for |z| = 1, z �= 1 it diverges so that Ln−1(f ; z) converges to f(z) = z−1 only
at the point 1. The same applies to the case when f(z) = z−k, k > 0. Even for
analytic functions in the closed unit circle |z| ≤ 1, the condition

lim
n→∞

n∏

k=1

|z − zk| 1
n = |z| for |z| > 1 (1.0)

1
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must be satisfied for the nodes of interpolation zk, |zk| = 1, k = 1, . . . , n, in
order to have uniform convergence of the corresponding Lagrange interpolants
in |z| ≤ 1. (For the roots of unity, this is obviously satisfied.) For functions
which are not analytic, we have the following theorem.

Theorem 1.

mann integrable) on the circumference of the unit circle Γ := {z : |z| = 1}. If
Ln−1(f ; z) is the Lagrange interpolant to f(z) in the zeros of zn − 1, then

lim
n→∞ Ln−1(f ; z) =

1
2πi

∫

Γ

f(t)
t − z

dt, |z| < 1, (1.1)

uniformly for |z| ≤ δ < 1.

Proof. Denoting wn = exp 2πi/n, the Lagrange interpolant has the fol-
lowing representation:

Ln−1(f ; z) =
n∑

k=1

f(wk
n) · wk

n(zn − 1)
(z − wk

n)n
. (1.2)

Namely, this is indeed a polynomial of degree at most n− 1, since each wk
n is a

root of the polynomial zn − 1. Moreover,

lim
z→wj

n

zn − 1
z − wk

n

=

{
0 if j �= k,
n

wk
n

if j = k,

i.e., Ln−1(f ; wj
n) = f(wj

n), j = 1, . . . , n as stated. From the definition of the
Riemann integral, we have

F (z) :=
1

2πi

∫

Γ

f(t)
t − z

dt = lim
n→∞

1
2πi

n∑

k=1

f(wk
n)(wk+1

n − wk
n)

wk
n − z

, |z| < 1 (1.3)

and

lim
n→∞[F (z) − Ln(f ; z)] = lim

n→∞

[
1

2πi
+

zn − 1
n(wn − 1)

] n∑

k=1

wk
n(wn − 1)f(wk

n)
wk

n − z
.

Since lim
n→∞ n(wn −1) = 2πi, we see that for |z| < 1, we have (1.1). The uniform

convergence for |z| ≤ δ < 1 is also clear from the last formula. �

If f(z) is analytic for |z| < 1 and continuous for |z| = 1, then f(z) = F (z).
In order to extend this result to other operators, we shall need the following

Let f(z) be defined and continuous (or R-integrable, i.e., Rie-
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Lemma 1. Let f(z) be R-integrable on Γ and let Ln−1(f ; z) be the Lagrange

interpolant to f on the zeros of zn

p

lim
n→∞L

(p)
n−1(f ; z) =

p!
2πi

∫

Γ

f(t)
(t − z)p+1

dt, |z| < 1 (1.4)

the convergence being uniform for |z| ≤ δ < 1.

Proof. Since

Ln−1(f ; z) =
1
n

n−1∑

k=0

f(wk
n)

n−1∑

j=0

w−kj
n zj .

Differentiating the above p times with respect to z, we get

L
(p)
n−1(f ; z) =

p!
n

n−1∑

k=0

f(wk
n)wk

n

(wk
n − z)p+1

− zn

n

p∑

k=0

(
p

k

)

(n)kz−k(p − k)!
n−2∑

�=0

f(w�
n)w�

(w�
n − z)p−k+1

(1.5)

where (n)k = n(n − 1) . . . (n − k + 1). We notice that

lim
n→∞

1
n

n−1∑

k=0

f(wk
n)wk

n

(wk
n − z)p−k+1

=
1

2πi

∫

Γ

f(t)
(t − z)p−k+1

dt,

and that for any k > 0, |z|nnk → 0 uniformly for |z| ≤ δ < 1 as n → ∞. (1.4)
now follows from (1.5). �

If f (j)(z) exists along Γ for j = 0, 1, . . . , r − 1, we denote by hrn−1(f ; z) the
polynomial of degree rn − 1 which satisfies the conditions:

h
(j)
rn−1(f ; wk

n) = f (j)(wk
n), k = 1, . . . , n; j = 0, 1, . . . , r − 1. (1.6)

Then we have

Theorem 2. Let f (r−1)(z) exist and be R-integrable along Γ. If hrn−1(f ; z)
is the Hermite interpolant to f satisfying (1.6), then

lim
n→∞ hrn−1(f ; z) =

1
2πi

∫

Γ

f(t)
t − z

dt, |z| < 1 (1.7)

and uniformly for |z| ≤ δ < 1.

Proof. For r = 1, the theorem is the same as Theorem 1; so it is enough
to consider the case when r > 1. Set

hrn−1(f ; z) = Ln−1(f ; z) +
r−1∑

j=1

(1 − zn)jPn,j(f ; z) (1.8)

− 1. Then, for any fixed nonnegative integer
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where each Pn,j(f ; z) is a polynomial of degree ≤ n − 1. Thus it is enough to
prove that

lim
n→∞Pn,j(f ; z) = 0, j = 1, . . . , r − 1, |z| < 1.

However we shall prove the stronger result that

lim
n→∞P

(�)
n,j(f ; z) = 0, j = 1, 2, . . . , r − 1, � = 0, 1, . . . , |z| < 1. (1.9)

We use induction on j. First let j = 1. Differentiating (1.8) at z = wk
n, we

obtain

wnh′
rn−1(f ; wk

n) = wnf ′(wk
n) = wnL′

n−1(f ;wk
n) − nPn,1(f ; wk

n)

(k = 0, 1, . . . , n − 1)

whence we have

Pn,1(f ; z) =
1
n

[zL′
n−1(f ; z) − Ln−1(zf ′; z)]. (1.10)

Differentiating this � times gives

P
(�)
n,1(f ; z) =

1
n

[zL
(�+1)
n−1 (f ; z) + �L

(�)
n−1(f ; z) − L

(�)
n−1(zf ′; z)] (1.11)

so that by Lemma 1, we see that (1.9) holds for j = 1. Now suppose that (1.9)
has been proved for j, 1 ≤ j ≤ r − 2. From (1.8), we deduce

w(j+1)k
n h

(j+1)
rn−1 (f ; wk

n) = w(j+1)k
n L

(j+1)
n−1 (f ;wk

n) + (−1)j+1(j + 1)!nj+1×
× Pn,j+1(f ; wk

n)

+ w(j+1)k
n

j∑

�=1

j+1∑

s=�

(
j + 1

s

)
( ds

dzs
(1 − zn)�

)
z=wk

n
P

(j+1−s)
n,� (f ; wk

n)

(k = 0, 1, . . . , n − 1).

Because of (1.6), we obtain

(−1)j+1(j + 1)!Pn,j+1(f ; z) =
1

nj+1
Ln−1(zj+1f (j+1); z) − (

z

n
)j+1L

(j+1)
n−1 (f ; z)

−
j∑

�=1

r−1∑

s=j

(
j + 1

s

)
zj+1−s

nj+1
P

(j+1−s)
n,� (f ; z)

�∑

t=1

(
�

t

)

(−1)t(nt)s.

Differentiating � times, using the induction hypothesis and Lemma 1, we see
that (1.9) holds for j + 1 and the proof is complete. �

If we set

hrn−1(f ; z) =
rn−1∑

k=0

γkzk,

then we can define the average of the partial sums of hrn−1(f ; z) and set

Arn−1(f ; z) =
1
rn

rn−1∑

j=0

j∑

k=0

γkzk.

In a similar fashion, one can establish
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Theorem 3. Let f (r−1) exist along Γ and be R-integrable on Γ. Let

Arn−1(f ; z) be the average of the partial sums of the Hermite interpolant of f(z)
satisfying (1.6). Then

lim
n→∞Arn−1(f ; z) =

1
2πi

∫

Γ

f(t)
t − z

dt,

for |z| < 1 and uniformly for |z| ≤ δ < 1.

Proof. By a change in the order of summation we see that

Arn−1(f ; z) = zL
′
n−1(f ; z)+ z

r−1∑

k=0

(rn−k)γkzk = hrn−1(f ; z)− 1
nr

zh
′
rn−1(f ; z).

Now we see from (1.8) that

zh
′
rn−1(f ; z) =zL

′
n−1(f ; z) + z

r−1∑

k=0

(1 − zn)jP
′
n,j(f ; z) − nzn

r−1∑

j=1

j(1 − zn)j−1×

× Pn,j(f ; z).

Thus, using Lemma 1 and

lim
n→∞[hrn−1(f ; z) − Ln−1(f ; z)] = 0, |z| < 1

(which follows from (1.8)-(1.9)), we see that

lim
n→∞

z

n
h

′
rn−1(f ; z) = 0.

This, combined with Theorem 1 proves Theorem 3.

1.2. Least-Square Minimization

For m ≥ n, let Qn−1(f ; z) denote the unique polynomial of degree ≤ n − 1
which minimizes

m−1∑

k=0

|f(wk
m) − p(wk

m)|2, wm
m = 1, (2.1)

over all p(z) ∈ πn−1. If m = n, Qn−1(f ; z) is the Lagrange interpolant to f

at the nth roots of unity. If m > n, then it is easy to see that Qn−1(f ; z) is
obtained by truncating Lm−1(f ; z). More precisely if

Lm−1(f ; z) =
m−1∑

k=0

ckzk, m > n then Qn−1(f ; z) =
n−1∑

ν=0

cνzν ,
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where

cν =
1
m

m−1∑

k=0

f(wk
m)w−νk

m , ν = 0, 1, . . . , n − 1. (2.2)

To see this, we first observe that from

Lm−1(f ; z) =
1
m

m−1∑

n=0

f(wk
m)(zm − 1)wk

(z − wk
m)

it follows that the coefficient of zν in Lm−1(f ; z) is given by (2.2). If we want

to minimize (2.1) and set p(z) =
n−1∑

ν=0
pνzν , then in order to minimize

m−1∑

k=0

∣
∣
∣
∣
∣
f(wk

m) −
n−1∑

ν=0

pνwkν
m

∣
∣
∣
∣
∣

2

we need the orthogonality conditions

m−1∑

k=0

(
f(wk

m) −
n−1∑

ν=0

pνwνk
m

)
w−µk

m = 0, µ = 0, 1, . . . , n − 1.

Simplifying, we see that

m−1∑

k=0

f(wk
m)w−µk

m =
m−1∑

ν=0

pν

m−1∑

k=0

wνk−µk
m = mpµ

which proves that pµ = cµ in (2.2) and proves the assertion. From (2.2) we can
see that

Qn−1(f ; z) =
1

m(wm − 1)

m−1∑

k=0

f(wk
m)(wk+1

m − wk
m)

wk
m − z

+
zn

m

m−1∑

k=0

f(wk
m)w−(n−1)k

m

wk
m − z

= S1 + S2.

We notice that as n → ∞

|S2| = O(|z|n) = o(1) uniformly for |z| ≤ δ < 1.

Since m > n, and lim
n→∞ m(wm − 1) = 2πi we have proved

Theorem 4. If f(z) is R-integrable on Γ and if Qn−1(f ; z) is the unique

polynomial which minimizes (2.1), then

lim
n→∞Qn−1(f ; z) =

1
2πi

∫

Γ

f(t)
t − z

dt, |z| < 1 (2.3)

uniformly for |z| ≤ δ < 1.

The above theorems have a corresponding analogue for Laurent development.
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Theorem 5. Let f(z) be R-integrable on the unit circle Γ and let Qn,n(z)
be the polynomial in z and 1

z of degree n in each, which interpolates f(z) in the

zeros of z2n+1 − 1. If Qn,n(z) = qn(z) + rn(z−1), where

qn(z) = a0 + a1z + · · · + anzn, rn(z−1) = a−1z
−1 + a−2z

−2 + · · · + a−nz−n,

then 




lim
n→∞qn(z) = 1

2πi

∫
Γ

f(t)
t−z dt, |z| < 1

lim
n→∞rn(z−1) = 1

2πi

∫
Γ

f(t)
t−z dt, |z| > 1.

(2.4)

The convergence is uniform in 1
δ ≤ |z| ≤ δ < 1.

If f(z) is analytic in an annulus ρ−1 < |z| < ρ, ρ > 1 then the equations (2.4)
are valid respectively for |z| < ρ and for |z| > 1

ρ and uniformly for |z| ≤ R < ρ

and |z| ≥ 1
R > 1

ρ . Moreover

qn(z) + rn(z−1) → f(z) for
1
ρ

< |z| < ρ,

and uniformly in
1
R

≤ |z| ≤ R < ρ.

1.3. Functions Analytic in Γρ = {z : |z| = ρ}Γρ = {z : |z| = ρ}Γρ = {z : |z| = ρ}
We shall now consider functions which are analytic in the disc of radius

ρ (ρ > 1) but not in Γρ. We shall denote this class of functions by Aρ. It is
known that if f(z) ∈ Aρ and if

f(z) =
∞∑

k=0

akzk

is the power-series expansion of f(z), then the right side converges in |z| < ρ

and

lim
n→∞ |an|1/n =

1
ρ

.

If we set pn−1(f ; z) =
n−1∑

k=0

akzk, the Taylor expansion of f then pn−1(f ; z) con-

verges to f(z) for |z| < ρ, if f(z) ∈ Aρ. Similarly Ln−1(f ; z) (the Lagrange
interpolant to f on the zeros of zn − 1) also converges to f(z) only for |z| < ρ.

However the difference of Ln−1(f ; z) and pn−1(f ; z) converges to 0 for |z| < ρ2.

This beautiful observation is formulated as
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Theorem 6. Let f(z) ∈ Aρ (ρ > 1) and let Ln−1(f ; z) be the Lagrange

interpolant to f on the zeros of zn − 1. Then the sequence Ln−1(f ; z) converges

geometrically to f(z) in any closed subdomain of |z| < ρ. Moreover if pn−1(f ; z)
is the Taylor section of f(z) of degree n − 1, then

lim
n→∞ [Ln−1(f ; z) − pn−1(f ; z)] = 0, (3.1)

geometrically for any closed subdoamin of |z| < ρ2.

Proof. Since f(z) = 1
2πi

∫
ΓR

f(t)
t−z dt where R < ρ, and since

Ln−1(f ; z) =
1

2πi

∫

ΓR

f(t)(tn − zn)
(tn − 1)(t − z)

dt,

we obtain

f(z) − Ln−1(f ; z) =
1

2πi

∫

ΓR

(zn − 1)f(t)
(tn − 1)(t − z)

dt, |z| < R.

We see from the above that

limn→∞|f(z) − Ln−1(f ; z)|1/n ≤ |z|
R

,

which proves the geometric convergence for closed subdomains of |z| < ρ (since
R < ρ was arbitrary). Similarly, we have

Ln−1(f ; z) − pn−1(f ; z) =
1

2πi

∫

ΓR

(tn − zn)f(t)
tn(tn − 1)(t − z)

dt. (3.2)

Hence

limn→∞|Ln−1(f ; z) − pn−1(f ; z)|1/n ≤ max{R, |z|}
R2

, R < ρ.

The result follows from this immediately. �

The quantity ρ2 is the best possible, in the sense that for any point z on
|z| = ρ2, there is a function f(z) ∈ Aρ for which (3.1) does not hold. The
function f(z) = 1

z−ρ is a natural example since in this case

Ln−1(f ; z) − pn−1(f ; z) =
ρn − zn

ρn(ρn − 1)(z − ρ)

when z = ρ2, and we see that this difference becomes 1/(ρ − ρ2) . Many exten-
sions of Theorem 6 have recently been given. We begin with a straightforward
extension. Let us set

pn−1,j(f ; z) :=
n−1∑

k=0

ak+jnzk, j = 0, 1, 2, . . . (3.3)

where the function f(z) ∈ Aρ has the Taylor-series expansion
∞∑

0
akzk. We shall

prove below the following
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Theorem 7. If f(z) ∈ Aρ and if � ≥ 1 is any given integer, then

lim
n→∞ max

|z|≤µ

∣
∣
∣Ln−1(f ; z) −

�−1∑

j=0

pn−1,j(f ; z)
∣
∣
∣
1/n

≤ µ

ρ�+1
, µ < ρ�+1 (3.4)

i.e. the convergence is uniform and geometric for all |z| ≤ µ < ρ�+1. Moreover

the region |z| < ρ�+1 is best possible in the sense that for any point z0 with

|z0| = ρ�+1, there exists a function f0(z) ∈ A0 for which (3.4) does not hold for

z = z0.

Thus if we take z0 = ρ, and f0(z) = (ρ − z)−1, then

pn−1,j(f0, z) =
ρn − zn

(ρ − z)ρ(j+1)n

and
�−1∑

j=0

pn−1,j(f0, z) =
(ρn − zn)(ρ�n − 1)
(ρ − z)ρ�n(ρn − 1)

.

It is easy to see that

lim
n→∞ min

|z|=ρ�+1

∣
∣
∣Ln−1(f0; z) −

�−1∑

j=0

pn−1,j(f0; z)
∣
∣
∣
1/n

≥ 1
ρ�+1 + ρ

> 0.

Proof. As in the proof of Theorem 6, we can express the difference on the
left in (3.4) as a contour integral

1
2πi

∫

ΓR

f(t)(tn − zn)
(t − z)(tn − 1)t�n

dt. (3.5)

For |t| = R and for all |z| ≤ µ < R < ρ�+1 (µ ≥ ρ), we have

∣
∣ t

n − zn

t − z

∣
∣ ≤ µn + Rn

R − µ
,

so that the above integral is bounded above in modulus by

MR(µn + Rn)
(R − µ)(Rn − 1)R�n

where M := maxz∈ΓR
|f(z)|. Taking nth roots we see that

limn→∞





max
|z|≤µ

∣
∣
∣
∣
∣
∣
Ln−1(f ; z) −

�−1∑

j=0

pn−1,j(f ; z)

∣
∣
∣
∣
∣
∣






1/n

≤ µ

R�+1
,
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which proves the desired uniform and geometric convergence of (2.3). �

On letting � → ∞ in (3.4), we see that

Ln−1(f ; z) =
∞∑

j=0

pn−1,j(f ; z)

which shows that if Ln−1(f ; z) =
n−1∑

ν=0
cνzν , then, it can be verified that

cν =
∞∑

λ=0

aν+λn.

In Theorems 6 and 7, we compared two processes of interpolation each of which
separately converges to f(z) only for |z| < ρ, while their difference converges to
zero in a larger region. In view of this, the above phenomenon is often termed as
“overconvergence” or “equiconvergence.” It is natural to ask whether the Taylor
polynomial pn−1(f ; z) can be replaced by the polynomial p̂n−1(f ; z) which is the
polynomial of best uniform approximation to f(z) in |z| ≤ 1. If f0(z) = (ρ−z)−1,

then

p̂n−1(f0; z) =
ρn−1 − zn−1

(ρ − z)ρn−1
+

zn−1

(ρ2 − 1)ρn−2

for all n ≥ 2. Then

Ln−1(f0; z) − p̂n−1(f0; z) =
ρn−1 − zn−1

(ρ − z)(ρn − 1)ρn−1
− zn−1(ρn−2 − 1)

(ρn − 1)(ρ2 − 1)ρn−2

and

p̂n−1(f0; z) − pn−1(f0; z) =
1

ρ(ρ2 − 1)
(z

ρ

)n−1

which converges to zero only for |z| < ρ. If f(z) ∈ Aρ and is also continuous
in Dρ := {z : |z| ≤ ρ}, it is natural to ask if this stronger hypothesis on the
function would make the equiconvergence region larger. The answer to this
question is given by

Theorem 8. Let f(z) ∈ Aρ ∩ C(Dρ). Then for each positive integer �, we

have

lim
n→∞

{
Ln−1(f ; z) −

�−1∑

j=0

pn−1,j(f ; z)
}

= 0, |z| ≤ ρ�+1,

the convergence being uniform for all |z| ≤ ρ�+1 and geometric for all |z| ≤ r <

ρ�+1.
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Proof. For any f(z) ∈ Aρ∩C(Dρ), let sn−1(f ; z) be the polynomial of best
approximation to f from πn−1 on the circle Dρ = {z : |z| ≤ ρ}. Then

En−1(f) := inf
q∈πn−1

‖f − q‖Dn = ‖f − sn−1‖Dρ

and it is known that lim
n→∞En−1(f) = 0. From the linearity of the Lagrange and

Taylor polynomials, we have

Ln−1(f ; z) −
�−1∑

j=0

pn−1,j(f ; z) = Ln−1(f − sn−1; z) −
�−1∑

j=0

pn−1,j(f − sn−1; z),

so that from (3.4), we obtain for R < ρ

Ln−1(f ; z) −
�−1∑

j=0

pn−1,j(f ; z) =
1

2πi

∫

ΓR

(
f(t) − sn−1(f ; t)

) · (tn − zn)
(t − z)(tn − 1)t�n

dt.

This shows that

max
|z|≤ρ�+1

∣
∣
∣Ln−1(f ; z) −

�−1∑

j=0

pn−1,j(f ; z)
∣
∣
∣ ≤ En−1(f)(ρn(�+1) + Rn)R

(ρ�+1 − R)(Rn − 1)R�n
.

Since the left side is independent of R, we get on letting R tend to ρ,

max
|z|≤ρ�+1

∣
∣
∣Ln−1(f ; z) −

�−1∑

j=0

pn−1,j(f ; z)
∣
∣
∣ ≤ En−1(f)(1 + ρ−n�)

ρ�(1 − ρ−�)(1 − ρ−n)
.

But the right side tends to zero as n → ∞, which proves the result. Uniform
and geometric convergence for |z| ≤ r < ρ�+1 follows as in Theorem 7.

1.4. An extension of Walsh’s Theorem

We claim that the sum
�−1∑

j=0

pn−1,j(f ; z)

in (3.3) (Theorem 7) is the Lagrange interpolant in the nth roots of unity of the

polynomial p�n−1(f ; z) =
�n−1∑

k=0

akzk. This is easily seen since

p�n−1(f ; z) =
�−1∑

λ=0

n−1∑

k=0

ak+λnzk+λn =
�−1∑

λ=0

n−1∑

k=0

ak+λn(zλn − 1)zk

+
�−1∑

λ=0

n−1∑

k=0

ak+λnzk
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so that

Ln−1(p�n−1; z) =
�−1∑

λ=0

n−1∑

k=0

ak+λnzk =
�−1∑

λ=0

pn−1,λ(f ; z).

With this simple observation, one can write the formula (3.3) in the equivalent
form

lim
n→∞

[
Ln−1(f ; z) − Ln−1

(
p

�n−1(f ; z); z
)]

= 0 for |z| < ρ�+1. (4.1)

If we denote by Ln−1(f ; α, z) the Lagrange interpolant in the zeros of zn − αn,

when α �= 0, and the Hermite interpolant of order n at 0 when α = 0, then (4.1)
is also equivalent to

lim
n→∞

[
Ln−1(f ; 1, z) − Ln−1

(
L�n−1(f ; 0, z); 1, z)

]
= 0, |z| < ρ�+1.

This train of ideas amply justifies the following

Theorem 9. If m = rn + q, s ≤ q
n < 1 and q

n = s + O( 1
n ) then for each

f(z) ⊂ Aρ and for each α, β ∈ Dρ (α �= β), we have

lim
n→∞∆α,β

n,m(f ; z) := lim
n→∞[Ln−1(f, α, z) − Ln−1

(
Lm−1(f, β, z), α, z

)]
= 0 (4.2)

for |z| < σ, where

σ := ρ/ max
(( |α|

ρ

)r

,

( |β|
ρ

)r+s )
. (4.3)

More precisely, for any µ with ρ < µ < ∞, we have

lim
n→∞ {max

z∈Dµ

|∆α,β
n,m(f ; z)|}1/n ≤ µ

σ
.

Moreover if α, β, m satisfy neither α = β = 0 nor αr = βr when m = rn,

then (4.3) is best possible in the sense that for any z0 with |z0| = σ, there is a

function f0 ∈ Aρ such that (4.2) fails to hold for f0 at z0.

When α = 1, β = 0 and m = �n, (4.2) yields Theorem 7.

Proof. Since α, β ∈ Dρ, we may write

Lm−1(f, β, z) =
1

2πi

∫

ΓR

f(t)(tm − zm)
(t − z)(tm − βm)

dt.

In order to find a similar representation for Ln−1

(
Lm−1(f, β, z), α, z

)
, it is

enough to evaluate

Ln−1

(
tm − zm

t − z
, α, z

)

.
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Since m = rn + q, we have

tm − zm

t − z
=

trn+q − zrn+q

t − z

=
tnr − zrn

t − z
tq + zrn tq − zq

t − z

= tq · trn − zrn

tn − zn
· tn − zn

t − z
+ zrn · tq − zq

t − z
.

From this it is clear that the Lagrange interpolant of (tm − zm)/(t − z) in the
zeros of zn − αn will be given as below:

Ln−1

(
tm − zm

t − z
, α, z

)

= tq
(

trn − αrn

tn − αn

)
tn − zn

t − z
+αrn·

(
tq − zq

t − z

)

, as q < n.

Hence

Ln−1(f, α, z) =
1

2πi

∫

ΓR

f(t)(tn − zn)
(t − z)(tn − αn)

dt,

Ln−1

(
Lm−1(f, β, z), α, z

)
=

1
2πi

∫
f(t)

tm − βm
Ln−1

(
tm − zm

t − z
, α, z

)

dt.

From this we obtain the representation

∆α,β
n,m(f ; z) =

1
2πi

∫

ΓR

f(t)K(t, z)dt (4.4)

where

K(t, z) : =
1

trn+q − βrn+q

[

tq · trn − αrn

tn − αn
· tn − zn

t − z
+ αrn tq − zq

t − z

]

− tn − zn

tn − αn
· 1
t − z

=
βrn+q − αrn · tq

(trn+q − βrn+q)(tn − αn)
· tn − zn

t − z

+
αrn

tnr+q − βrn+q
· tq − zq

t − z
.

Since

|K(t, z)| ≤ c
Rn − |z|n
R − |z| ·max(|β|rn+q, |α|rnRq)

Rrn+qRn
+c

|α|rn

Rrn+q
·R

q − |z|q
R − |z| (|z| < R),

it follows that (4.2) will be proved if

|z|n max(|β|rn+q, |α|rnRq)
Rrn+q+n

< 1 and
|z|q|α|rn

Rrn+q
< 1,
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where q = sn + O(1). In other words taking the nth roots of both sides above,
and letting n → ∞, we see that (4.2) is proved if

|z| < ρ/ max
(( |β|

ρ

)r+s

,
( |α|

ρ

)r
)

=: σ1 and |z| < ρ/

( |α|
ρ

)r/s

=: σ.

Since |α|
ρ < 1 and s < 1, we have

( |α|
ρ

)r/s

>
( |α|

ρ

)r

so that σ1 < σ and this completes the proof. �

Corollary. Let m = rn+ q, s ≤ q
n < 1 and q

n = s+O( 1
n ). If pn,m(n)(f ; z)

denotes the polynomial of degree n − 1 which minimizes

m−1∑

k=0

|f(βwk
m) − p(βwk

m)|2, β ∈ Dρ,

over all polynomials p(z) ∈ πn−1, then

pn,m(n)(f ; z) − Sn−1(f ; z) → 0 for |z| < ρ/

( |β|
ρ

)r+s

and the bound for |z| above is best possible in the same sense as in Theorem 9.

This corollary follows from Theorem 8 on taking α = 0, β = 1.

1.5. Multivariate Extensions of Walsh’s Theorem

In the multivariate case the domain of analyticity of a function f(zzz), where
zzz = (z1, . . . , zm) ∈ Cm, can be defined in two different ways. One possibility is to

consider the ball, i.e., the set defined by
m∑

j=1

|zj |2 < ρ2. The other possibility is to

take the polydisc |zj | < ρj , j = 1, . . . ,m. These two definitions lead to entirely
different theories, since there is no equivalence (i.e. holomorphic mapping)
between the ball and the polydisc. For our purposes, the setup based on a
polydisc is more suitable and convenient. We begin with some fundamental
definitions. Let

1 < ρ1 ≤ ρ2 ≤ · · · ≤ ρm, ρρρ = (ρ1, ρ2, . . . , ρm); (5.1)

we remark that the ordering in (5.1) can be achieved, without loss of generality,
by simply renumbering the components of ρρρ. Then, denote by A(ρρρ) the set of
functions analytic in the polydisc

D(ρρρ) := {zzz = (z1, . . . , zm) : |zj | < ρj , j = 1, . . . ,m}.
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where each such function has a singularity on each of the circles |zj | = ρj ,

j = 1, . . . ,m. (Here singularity may involve either poles or branchpoints on the
circle |zzz| = ρρρ.) The multivariate Cauchy formula

f(zzz) =
1

(2πi)m

∫

D

f(ttt)
m∏

j=1

(tj − zj)
dttt, zzz ∈ D(ρρρ) (5.2)

where the integration is taken over a polydisc D in D(ρρρ) which contains the point
zzz and, with dttt := dt1 . . . dtm, is valid for all f(zzz) ∈ A(ρρρ). Let Γm

n denote set of
all complex polynomials p(zzz) of m variables which are of degree at most n in
each of the variables zj , j = 1, . . . , m. (This set differs from the usual definition
of a polynomial of several variables, having degree at most n, which means that
the total degree of each term is at most n, but our definition here serves a more
useful purpose later.) The (n − 1)th Taylor section of an f(zzz) ∈ A(ρρρ) is then
defined as

Sn−1(f ;zzz) :=
1

(2πi)m

∫

D

f(ttt)
m∏

j=1

zn
j − tnj

tnj (zj − tj)
dttt (5.3)

which, in the sense of the above definition, is an element of Γm
n−1.

Theorem 10. For any f(zzz) ∈ A(ρρρ), the Taylor sections Sn−1(f ;zzz) of (5.3)
converge to f(zzz), uniformly and geometrically in each closed subset of D(ρρρ).

Proof. We have from (5.2) and (5.3) that

f(zzz) − Sn−1(f ;zzz) =
1

(2πi)m

∫

D

f(ttt)
m∏

j=1

(tj − zj)

[
1 −

m∏

j=1

(
1 − zn

j

tnj

)]
dttt.

Here,
∣
∣
∣1 −

m∏

j=1

(
1 − zn

j

tnj

)∣
∣
∣ ≤ C max

1≤j≤m

∣
∣
∣
zj

tj

∣
∣
∣
n

→ 0 as n → ∞

in any closed subset of D, and this proves the theorem. �

We now turn to the definition of the interpolation operator. The problem
of interpolation in the multivariate case is more difficult (in general, existence
and uniqueness are not guaranteed), but, with our definition of the set Γm

n , the
situation simplifies. Consider the polynomial

Ln−1(f ;zzz) =
1

(2πi)m

∫

D

f(ttt)
m∏

j=1

zn
j − tnj

(tnj − 1)(zj − tj)
dttt ∈ Γm

n−1 (5.4)
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where Ln1(f ;zzz) ∈ Γm
n−1, for any f(zzz) ∈ A(ρρρ). As usual, let ω be a primitive

nth root of unity. From the representation (5.4) we can see that, at the points
zzz = (ωk1 , . . . , ωkm) where 0 ≤ kj ≤ n − 1, j = 1, . . . , m, are arbitrary integers,
the polynomial (5.4) has the same values as f(zzz). It will follow from the next
lemma that this interpolation polynomial Ln−1(f ;zzz) is uniquely determined

Lemma 2. If p(zzz) ∈ Γm
n−1 has nm z 1 m) such that

each zj z

Proof. We use induction on m. For m = 1, the statement follows from the
fundamental theorem of algebra. Assume it is true for m−1, and represent p(zzz)
in the form

p(zzz) =
n−1∑

k=0

zk
1pk(zzz∗) (5.5)

where zzz∗ = (z2, . . . , zp) ∈ Cm−1 and pk(zzz∗) ∈ Γm−1
n−1 . Fixing an arbitrary zzz∗ =

(z′2, . . . , z
′
m) where z′j , j = 2, . . . , m − 1, are coordinates of the roots of p(zzz),

then according to our assumption (5.5) vanishes for n different values of z1. But
then

pk(zzz∗) = 0, k = 0, . . . , n − 1.

Here, by our assumption, zzz∗ takes nm−1 different values, and thus, by the
induction hypothesis, the pk are identically zero for k = 0, . . . , n − 1. This
proves the statement for m. �

Since the interpolation points for the polynomial (5.4) satisfy the condition
of Lemma 2, Ln−1(f,zzz) is uniquely determined. The uniform convergence of
Ln−1(f,zzz) to f(zzz) in every closed subset of D(ρρρ) will follow from Theorem 10
and the following overconvergence theorem:

Theorem 11. We have

lim
n→∞ |Ln−1(f,zzz) − Sn−1(f,zzz)|1/n ≤ 1

ρ1

∏

|zj |>ρj

|zj |
ρj

(5.6)

for all f(zzz) ∈ A(ρρρ) and z ∈ Cm

Remarks. 1. In particular if zzz ∈ D(ρρρ), then, as the product is unity in
(5.6), the right hand side of (5.6) is 1/ρ1 < 1 which, coupled with Theorem 10,
yields the uniform convergence of Ln−1(f ;zzz) to f(zzz).

2. If
∏

|zj |>ρj

|zj |
ρj

< ρ1, (5.7)

different roots zz = (z , . . . , z

takes n different values, then p(zz) ≡ 0.

. (Here, the empty product is defined as unity.)
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then we have the overconvergence of the difference Ln−1 − Sn−1. Condition
(5.7) gives an intrinsic relation between the coordinates z1, . . . , zm. The larger
we choose some |zj |’s, the smaller we have to make the remaining |zj |’s. In order
to see more clearly how this works, consider the special case ρ1 = · · · = ρm := ρ.

Then note that (5.7) allows us to select either

|zj | < ρ1+ 1
m , j = 1, . . . , m,

or
|z1| = · · · = |zm−1| = ρ, |zm| < ρ2.

In the first case, one has overconvergence in each coordinates (but with a smaller
radius), while the second case gives no overconvergence in m− 1 variables, but
optimal overconvergence in the final coordinate. Of course, other choices are
also possible.

Proof of Theorem 11. Equations (5.3) and (5.4) imply

∆n−1(f ;zzz) := Ln−1(f ;zzz) − Sn−1(f ;zzz)

=
1

(2πi)m

∫

D

f(ttt)
m∏

j=1

zn
j − tnj
zj − tj

( m∏

j=1

1
tnj − 1

−
m∏

j=1

1
tnj

)
dttt.

(5.8)

Here,

m∏

j=1

1
tnj − 1

−
m∏

j=1

1
tnj

=
m∏

j=1

1
tnj

[ m∏

j=1

(
1 +

1
tnj − 1

)
− 1
]

= O







1

(ρ1 − ε)n
n∏

j=1

(ρj − ε)n







where ε > 0 is an arbitrary small fixed number. Thus, we obtain from (5.8)
that

∆n−1(t;zzz) = O














m∑

j=1

max(|zj |, ρj − ε)

(ρ1 − ε)
m∏

j=1

(ρj − ε)







n






,

i.e.,

lim
n→∞ |∆n−1(f ;zzz)|1/n ≤ 1

ρ1 − ε

∏

|zj |>ρj−ε

|zj |
ρj − ε

whence, the statement of the theorem follows, since ε > 0 was arbitrary. �
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The estimate in (5.6) of Theorem 11 is sharp in the following sense. Consider
the function

f0(zzz) =
m∏

j=1

1
zj − ρj

∈ A(ρρρ).

Evidently

Ln−1(f0;zzz) =
m∏

j=1

zm
j − ρn

j

(1 − ρn
j )(zj − ρj)

,

and from (5.3)

Sn−1(f0;zzz) =
m∏

j=1

zn
j − ρn

j

ρn
j (ρj − zj)

.

Thus

∆n−1(f0;zzz) =
m∏

j=1

zn
j − ρn

j

ρj − zj

( m∏

j=1

1
ρn

j − 1
−

m∏

j=1

1
ρn

j

)

=
m∏

j=1

zn
j − ρn

j

(ρj − zj)ρn
j

O

(
1

ρ2n
1 ρn

2 · · · ρn
m

)

,

whence by (5.1)

lim
n→∞ |∆n−1(f ;zzz)|1/n =

1
ρ1

∏

|zj |>ρj

|zj |
ρj

.

Thus for some functions in A(ρρρ), the result of (5.6) is sharp. However, we can
ask for the following stronger version of sharpness: is it true that

lim
n→∞ max

|zj |=rh

j=1,...,m

|∆n−1(f ;zzz)|1/n =
1
ρ1

∏

rj>ρj

rj

ρj

for any rj > 0, j = 1, . . . ,m and f(z) ∈ A(ρρρ)? The answer to this question is
no, and this is in sharp contrast to the univariate case (cf. Chapter 4). This
can be seen from the following example.

Example. Let m = 2, 1 < ρ1 < ρ2, and consider the function

f1(zzz) =
∞∑

k=0

( z1

ρ1

)3k ∞∑

k=0

( z2

ρ2

)3k

∈ A(ρρρ).

We shall examine the overconvergence case of |z1| = r1 > ρ1, |z2| = r2 > ρ2.
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Formula (5.8) in this case gives

∆n−1(f1;zzz) =
1

(2πi)2

∫

D

f1(ttt)
2∏

j=1

zn
j − tnj

(zj − tj)tnj

[ 1
tn1

+ O
( 1

(ρ1 − ε)2n
+

1
(ρ2 − ε)n

)]
dttt

=
1

(2πi)2

∫

D

2∏

j=1

[ ∞∑

k=0

( tj
ρj

)3k n−1∑

k=0

zk
j

tk+1
j

] 1
tn1

dttt

+ O

((
r1r2

(ρ1 − ε)3(ρ2 − ε)
+

r1r2

(ρ1 − ε)(ρ2 − ε)2

)n
)

=
∑

n≤3k≤2n−1

z3k−n
1

ρ3k

1

·
∑

3k≤n−1

( z2

ρ2

)3k

+ o

((
r1r2

ρ2ρ2

)n)

,

provided ε > 0 is small enough. Now, assume that the integers λn, µn satisfy

3λn < 2n < 3λn+1 and 3µn < n ≤ 3µn+1. (5.9)

Evidently, in the sum
∑

n≤3k≤2n−1 above there is at most one term (for k = λn ;
otherwise it may be empty). Then we can write

|∆n−1(f1;zzz)| = O

(
r3λn−n

1 r3µn

2

ρ3λn

1 ρ3µn

2

)

+ o

((
r1r2

ρ2ρ2

)n)

. (5.10)

By (5.9), µn ≤ λn − 1, and therefore 3µn ≤ 3λn−1 < 2n
3 , whence

r3λn−n

1 r3µn

2

ρ3λn

1 ρ3µn

2

≤
(

r1r
2/3
2

ρ2
1ρ

2/3
2

)n

= o

((
r1r2

ρ2ρ2

)n)

.

Thus, (5.10) yields

|∆n−1(f1;zzz)| = o

((
r1r2

ρ2ρ2

)n)

,

i.e., for this function the error estimate in case r1 > ρ1, r2 > ρ2 is indeed better
than the one provided by Theorem 11.

If we iterate interpolation operators and Taylor series, we can obtain different
types of overconvergence results. (For a detailed account on this subject in the
univariate case, see Ch. 2.) Here we restrict ourselves to one particular case.
Instead of the interpolating polynomial (5.4), let us introduce the operator

Ln−1(f ;ααα;zzz) :=
1

(2πi)m

∫

D

f(ttt)
m∏

j=1

zn
j − tnj

(tnj − αn
j )(zj − tj)

dttt ∈ Γm
n−1, (5.11)



20 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

where ααα = (α1, . . . , αm) ∈ D(ρρρ), αj > 0, j = 1, . . . , m, for any f(zzz) ∈ A(ρρρ).
(5.11) interpolates f at the points zzz = (α1ω

k1 , . . . , αmωkm), where 0 ≤ kj ≤
n − 1, j = 1, . . . , m, are arbitrary integers. This polynomial, just like (5.4), is
uniquely determined. Using also the notation (5.3), we now state

Theorem 12.

lim sup
n→∞

|Ln−1(f − Sλn−1(f);ααα;zzz)|1/n ≤ max
1≤j≤m

(
αj

ρj

)λ

·
m∏

j=1

|zj |
αj

for any f ∈ A(ρρρ) and any zzz = (z1, . . . , zm).

The result shows that we have convergence if

m∏

j=1

|zj | <

∏m
j=1 αj

max1≤j≤m

∣
∣
∣
αj

ρj

∣
∣
∣
λ
.

In particular, if 0 < α1 = · · · = αm = α < ρ1 = · · · = ρm = ρ, then this
condition takes the form

|zj | <
ρλ/m

αλ/m−1
, j = 1, . . . , m,

i.e. we have overconvergence provided λ > m.

Proof of Theorem 12. (5.2), (5.3) and (5.11) yield

Ln−1(f − Sλn−1(f);ααα;zzz) =
1

(2πi)2m

∫

D2

∫

D1

f(uuu)
∏m

j=1(uj − tj)
×

×


1 −
m∏

j=1

(

1 − tλn
j

uλn
j

)

 duuu

m∏

j=1

zm
j − tmj

(tnj − αn
j )(zj − tj)

dttt

=
1

(2πi)2m

∫

D1

f(uuu)
∫

D2

m∏

j=1

zn
j − tnj

(tnj − αn
j )(uj − tj)(zj − tj)

×

×


1 −
m∏

j=1

(

1 − tλn
j

uλn
j

)

 dtttduuu,

where
D1 = {(t1, . . . , tm) : |tj | = αj + ε, j = 1, . . . , m}

and
D2 = {(u1, . . . , um) : |uj | = ρj − ε, j = 1, . . . , m}

If λ > 1 is a fixed integer, then we have
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with an arbitrarily small ε > 0. Here
∣
∣
∣
∣
∣
∣

m∏

j=1

zn
j − tnj

(tnj − αn
j )(uj − tj)(zj − tj)

∣
∣
∣
∣
∣
∣
≤ c

εm

m∏

j=1

|zj |n
αn−1

j

and ∣
∣
∣
∣
∣
∣
1 −

m∏

j=1

(

1 − tλn
j

uλn
j

)∣∣
∣
∣
∣
∣
≤ c max

1≤j≤m

(
αj + ε

ρj − ε

)λn

.

Hence

lim sup
n→∞

|Ln−1(f − Sλn−1(f);ααα;zzz)|1/n ≤ max
1≤j≤m

∣
∣
∣
∣
αj + ε

ρj − ε

∣
∣
∣
∣

λ

·
m∏

j=1

|zj |
αj

.

Since ε > 0 was arbitrary, this yields the statement. �

1.6. Historical Remarks

(a) The nodes satisfying (1.0) are called asymptotically uniformly distributed.
This condition is due to Kalmár [62] (see Gaier [42, p. 64]). Theorems 1 and
5 are due to Walsh [115 , Ch. 7, Theorems 10 and 11], just like the beautiful
observation formulated as Theorem 6 (cf. Walsh [115, Ch. 7, Theorem 1]). The
sharpness of Theorem 6 was shown again in [115, p. 154]. Theorem 3 can
be found in Cavaretta, Dikshit and Sharma [25]. The extension formulated
in Theorem 7 is due to Cavaretta, Sharma and Varga [30]. That the Taylor
sections in the overconvergence theorem cannot be replaced by the polynomials
of best uniform approximation was shown by D. J. Newman (1980) by means
of an example at the end of a lecture by A. Sharma where he was present. The
determination of best approximating polynomial to (ρ − z)−1 is due to Al’per
[3] (see also Rivlin [87]), who estimated the order of best approximation of some
other, related functions as well. In connection with Theorem 8, it was V. Totik
[111] who showed that the additional property of continuity of the function
in Aρ does not essentially improve the error estimate in the overconvergence,
thus answering a question of Szabados raised in [106]. The Corollary is Rivlin’s
generalization [88] of Walsh’s theorem. Section 1.5 is a recent result of Sharma
and Szabados (cf. [97]). A different approach (using balls instead of the polydisc)
was done by Cavaretta, Micchelli and Sharma [26]. With the norm ||zzz|| =√∑m

j=1 |zj |2, for a function analytic in the ball ||zzz|| < 1, they introduced the
operators

Sn−1(f ;zzz) :=
(m − 1)!
(2πi)m

∫

||ttt||=1

f(ttt)
n−1∑

�=0

(
m + � − 1

�

)



m∑

j=1

zjtj





�

dσ(ttt),
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and for rrr = (r1, . . . , rm), 0 < rj < 1, j = 1, . . . , m,

Ln−1(f,rrr,zzz) :=
(m − 1)!
(2πi)m

∫

||ttt||=1

f(ttt)

∑m
j=1

(
m+�−1

�

) (∑m
j=1 zjtj

)�

∏m
j=1(1 − rn

j tnj )
dσ(zzz),

(6.1)
where dσ(zzz) is the Lebesgue measure on ||z|| = 1. These operators are the
analogues of the Taylor series and Lagrange interpolation, respectively. (In
fact, for m = 1, (6.1) is indeed a Lagrange interpolation polynomial, but for
m > 1 no such interpretation exists.) It is proved in [26] that

lim
n→∞ [Ln−1(f,rrr,zzz) − Sn−1(f,zzz)] = 0

for

||zzz|| <
1

max1≤j≤m rj
,

i.e., we have overconvergence.

(b) Concerning overconvergence, Lagrange interpolation on nodes other than
the roots of unity was first considered by Brück. Let

ωα
n(z) :=

(z + α)n+1 − (αz + 1)n+1

1 − αn+1
:=

n∏

k=0

(z − zα
kn), 0 < α < 1,

be a monic polynomial of degree n + 1, where

zα
kn =

wkn − α

1 − αwkn
, wkn := exp

2πik

n + 1
, k = 0, . . . , n.

From this representation, it is easy to see that for |z| > 1,

lim
n→∞ωα

n(z)
1

n+1 = z + α

which implies that the interpolation nodes zα
kn are not asymptotically uniformly

distributed (see Gaier [42, p. 64]). Now if f(z) is analytic in K(R, α) := {z ∈
C : |z + α| < R + α}, Lα

n(f ; z) denotes its Lagrange interpolation to f on the
zeros of ωα

n(z) and Sα
n (f ; z) :=

∑n
k=0 akzk is the Taylor expansion of f(z) about

−α, then

lim
n→∞[Lα

n(f ; z) − Sα
n (f ; z)] = 0, z ∈ E1(R, α),

where

E�(R, α) :=

{

z ∈ C : |z + α| < (R + α)
(

R + α

1 + Rα

)�
}

, � = 1, 2, . . . .
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Moreover for any integer � ≥ 1,

lim
n→∞[Lα

n(f ; z) − S�,n(f ; z)] = 0 for z ∈ E�(R,α),

where

Sα
�,n(f ; z) :=

n∑

k=0

�−1∑

j=0

j(n+1)∑

m=0

(
j(n + 1)

m

)

αj(n+1)−m(1 − α2)mak+m(z + α)k

− α
n∑

k=0

�−1∑

j=0

n−k+j(n+1)∑

m=0

(
n − k + j(n + 1)

m

)

× (1 − α2)mαn−k+j(n+1)−mak+m(1 + αz)k

(see Brück [21]). From Example 2 in [3,p. 132], we see that if f0(z) = 1
ρ−z , then

the polynomial of best uniform approximation to f0(z) of degree at most n− 1
on the disc |z| ≤ 1 is given by

p̂n−1(f0; z) =
1

ρ − z
− czn−1(ρz − 1)

ρ − z
, where c =

1
ρn−1(ρ2 − 1)

.

Then simplifying, we have

p̂n−1(f0; z) =
1

ρ − z
− zn−1(ρz − 1)

(ρ − z)(ρ2 − 1)ρn−1

=
1

ρ − z
− zn−1[ρ(z − ρ) + ρ2 − 1]

(ρ − z)ρn−1(ρ2 − 1)

=
1

ρ − z
+

zn−1

ρn−2(ρ2 − 1)
− zn−1

ρn−1(ρ − z)

=
ρn−1 − zn−1

(ρ − z)ρn−1
+

zn−1

ρn−2(ρ2 − 1)
.

Also for |z| = 1

f0(z) − p̂n−1(f0; z) =
∣
∣
∣
∣
zn−1(ρz − 1)
ρn−1(ρ − z)

∣
∣
∣
∣ =
∣
∣
∣
∣
ρz − 1
z − ρ

∣
∣
∣
∣ = 1,

and because of the maximum principle here the left hand side is ≤ 1 in |z| < 1.



CHAPTER 2

HERMITE AND HERMITE-BIRKHOFF

INTERPOLATION AND WALSH EQUICONVERGENCE

2.1. Hermite Interpolation

As a generalization of Lagrange interpolation, we introduce the notion of
Hermite interpolation. Let f(z) be a function analytic in an open domain D.

Further let n and r be positive integers, and z0, . . . , zn−1 pairwise different
points from D. We shall denote the (unique) Hermite polynomial interpolant
of degree rn − 1 and order r, of f(z) in these n zeros by hr,rn−1(f ; z). This
polynomial is defined by the properties

h
(j)
r,rn−1(f ; zk) = f (j)(zk), k = 0, . . . , n − 1; j = 0, . . . , r − 1.

With the notation ωn(z) :=
∏n−1

k=0(z − zk), this polynomial can be represented
in the form

hr,rn−1(f ; z) =
1

2πi

∫

C

ωn(t)r − ωn(z)r

ωn(t)r

f(t)
t − z

dt, (1.0)

where C may be any rectifiable Jordan curve included with its interior in D

and containing the points z1, . . . , zn and z in its interior. Indeed, (1.0) is a
polynomial of degree at most rn − 1, and by Cauchy’s theorem

h
(j)
r,rn−1(f ; zk) =

(−1)jj!
2πi

∫

C

f(t)
(t − zk)j+1

dt, k = 0, . . . , n − 1; j = 0, . . . , r − 1.

The uniqueness follows from the fundamental theorem of algebra: if we had two
different polynomials with the above properties, then their not identically zero
difference, a polynomial of degree at most rn − 1, together with its first r − 1
derivatives, would vanish at the points z0, . . . , zn−1. Counting multiplicities,
this would result in rn roots for a polynomial of degree at most rn − 1, which
is impossible.

Now let f ∈ Aρ (ρ > 1) and let hr,rn−1(f ; z) denote the Hermite interpolant
to f in the zeros of (zn − 1)r. Then hr,rn−1(f ; z) ∈ πrn−1 and it satisfies the
conditions

h
(j)
rn−1(f ;wk) = f (j)(wk), j = 0, 1, . . . , r − 1; k = 0, 1, . . . , n − 1 (1.1)

25
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where w is a primitive nth root of unity. It is known that

hr,rn−1(f ; z) =
1

2πi

∫

ΓR

f(t)
t − z

· (tn − 1)r − (zn − 1)r

(tn − 1)r
dt (1.2)

where ΓR = {t : |t| = R}, R < ρ.

If f(z) =
∞∑

k=0

akzk, then from (3.3) in Chapter 1

prn−1,0(f ; z) :=
rn−1∑

k=0

akzk =
1

2πi

∫

ΓR

f(t)
t − z

· trn − zrn

trn
dt (1.3)

is the Taylor series of f of degree rn−1 about the origin. From (1.2) and (1.3),
we see that

∆rn−1,1(f ; z) := hr,rn−1(f ; z) − prn−1,0(f ; z) =
1

2πi

∫

ΓR

f(t)Kn(t, z)
t − z

dt (1.4)

where

Kn(t, z) :=
zrn

trn
− (zn − 1)r

(tn − 1)r
. (1.5)

In order to examine the behaviour of Kn(t, z) for large n, we shall prove

Lemma 1. For all t with |t| > 1, the following identity holds:

zr

tr
− (z − 1)r

(t − 1)r
=

t − z

tr

∞∑

s=1

βs,r(z)
ts

(1.6)

where βs,r(z) is a polynomial in z of degree r − 1 given by

βs,r(z) :=
r−1∑

k=0

(
r + s − 1

k

)

(z − 1)k, s = 1, 2, . . . . (1.7)

Proof. From (1.7), we can easily check that






βs+1,r(z) − zβs,r(z) = −
(

r + s − 1
s

)

(z − 1)r

β1,r(z) = zr − (z − 1)r.

(1.8)

From (1.6), on expanding the left side in powers of 1/t, we see that on using
(1.8)

zr

tr
− (z − 1)r

(t − 1)r
=

zr

tr
− (z − 1)r

[ 1
tr

+
1
tr

∞∑

k=1

(
r + k − 1

k

)
1
tk
]
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=
zr − (z − 1)r

tr
− 1

tr

∞∑

k=1

(
r + k − 1

k

)

(z − 1)r

tk

=
β1,r(z)

tr
+

1
tr

∞∑

k=1

βk+1,r(z) − zβk,r(z)
tk

=
t − z

tr+1
β1,r(z) +

∞∑

k=2

βk,r(z)
tr+k

− z

∞∑

k=2

βk,r(z)
tr+k

=
t − z

tr

∞∑

k=1

βk,r(z)
tk

after shifting the summation index in the second sum. This completes the proof.
�

The following two lemmas will give some estimates on the polynomials βj,r(z).
From (1.7), we see that

βj,r(z) =
(

r + j − 1
r

)

r

∫ 1

0

tj−1(z − t)r−1dt, j = 1, 2, . . . . (1.9)

This is easily done on expanding the right side in powers of (z − 1) and then
using Euler’s formula for the Beta-function. We shall prove

Lemma 2. There exists a constant c0 depending only on r such that

|βj,r(z)| ≤ c0j
r−1 max {1, |z|r−1}, j = 1, 2, . . . . (1.10)

Proof. If |z| > 1, then |z − t|r−1 ≤ (|z| + 1)r−1 ≤ 2r−1|z|r−1 for each
t ∈ [0, 1]. If |z| < 1, |z − t|r−1 ≤ 2r−1 for 0 ≤ t ≤ 1. These two inequalities give
the result. �

Lemma 3. (a) If |z| > 1, then there exist constants c1 = c1(r) > 0 and

N1 = N1(r, z) such that

c1j
r−1|z|n(r−1) ≤ |βj,r(zn)|, n ≥ N1. (1.11)

(b) If |z| < 1, then there are constants c2 = c2(r) > 0 and N2 = N2(r, j, z)
such that

c2j
r−1 ≤ |βj,r(zn)| for n ≥ N2. (1.12)
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(c) If βj,r(z) has no zero on the unit circle, then there is a constant c3 =
c3(r) > 0 such that

c3 ≤ |βj,r(z)| when |z| = 1. (1.13)

Proof. (a) We get (1.11) from (1.9) and the fact that for each z with |z| > 1,

we have ∫ 1

0

tj−1(1 − tz−n)r−1dt → 1
j

as n → ∞.

(b) From (1.9), we have

βj,r(0) = (−1)r−1

(
r + j − 2

r − 1

)

�= 0

when |z| < 1, zn → 0 and n → ∞ which proves (1.12).

(c) If βj,r(z) has no zero on the unit circle then the constant c3 in (1.13) can
be taken to be inf

|w|=1
|βj,r(w)| > 0.

There are values of j and r for which βj,r(z) has zeros on |z| = 1. Thus when
j = 1, β1,r(z) = zr − (z − 1)r which has a zero on |z| = 1 when r is a multiple
of 6.

For any positive integer � ≥ 1, we set

∆rn−1,�(f ; z) := hr,rn−1(f ; z) − hr,rn−1,0(f ; z) −
�−1∑

j=1

hr,rn−1,j(f ; z) (1.14)

where

hr,rn−1,0(f ; z) := prn−1,0(f ; z) =
rn−1∑

k=0

akzk

and with ΓR = {z | |z| = R},

hr,rn−1,j(f ; z) : = βj,r(zn)
n−1∑

k=0

ak+n(r+j−1)z
k,

= βj,r(zn)
1

2πi

∫

ΓR

f(t)
t − z

tn − zn

tn(r+j)
dt j = 1, 2, . . . ,

so that

∆rn−1,�(f ; z) =
1

2πi

∫

ΓR

f(t)K(t, z)
t − z

dt, (1.15)

where

K(t, z) :=
zrn

trn
− (zn − 1)r

(tn − 1)r
− tn − zn

trn

�−1∑

j=1

βj,r(zn)
tjn

. (1.16)

We shall now prove
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Theorem 1. If f ∈ Aρ

lim
n→∞ ∆rn−1,�(f ; z) = 0 for |z| < ρ1+ �

r , (1.17)

the convergence being uniform and geometric for all |z| ≤ R < ρ1+ �
r . Moreover

the result of (1.17) is best possible.

Proof. Using (1.6), we see that the kernel K(t, z) in (1.16) can be written
as

K(t, z) =
tn − zn

trn

∞∑

j=�

βj,r(zn)
tjn

. (1.18)

From (1.15) and (1.18) we see that

|∆rn−1,�(f ; z)| ≤ 1
2π

M2πR
|z|n − Rn

Rrn(|z| − R)

∞∑

j=�

|βj,r(zn)|
Rjn

≤ MR(|z|n − Rn)
(|z| − R)Rrn

∞∑

j=�

c1j
r−1|z|n(r−1)

Rjn
(|z| < R)

where the last inequality is obtained on using Lemma 2.

Since
∞∑

j=�

jr−1R−jn < ∞ for R > 1, we see that

|∆rn−1,�(f, z)| ≤ c
|z|rn

Rrn+�n

from which we get (1.17). �

Remark. If � ≥ 1, the operator ∆rn−1,�(f ; z) can be also interpreted as
the Hermite interpolant in the zeros of (zn − 1)r of the difference f(z) −
p(�+r−1)n−1(f ; z) where, as in Ch. 1, pj(f ; z) is the Taylor expansion of degree
j of f. If we set hr,rn−1(f ; 1, z) := hr,rn−1(f ; z) when we want to emphasize the
interpolation in the zeros of (zn − 1)r, we can write

∆rn−1,�(f ; z) = hr,rn−1(f ; 1, z) − hr,rn−1

(
p(�+r−1)n−1(f); 1, z

)
.

Since

p(�+r−1)n−1(f ; z) =
1

2πi

∫

ΓR

f(t)
t − z

· t(�+r−1)n − z(�+r−1)n

t(�+r−1)n
dt,

we see that in (1.15), K(t;z)
t−z is the Hermite interpolant to the difference

(tn − 1)r − (zn − 1)r

(t − z)(tn − 1)r
− t(�+r−1)n − z(�+r−1)n

(t − z)t(�+r−1)n
=
[z(�+r−1)n

t(�+r−1)n
− (zn − 1)r

(tn − 1)r

]
/(t−z) .

(ρ > 1), then for any fixed integer � ≥ 1,
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Since

zn(�+r−1) = (zn − 1 + 1)�+r−1 =
r−1∑

j=0

(
� + r − 1

j

)

(zn − 1)j + (zn − 1)rq(z)

= β�,r(zn) + (zn − 1)rq(z)

where q(z) is a polynomial of degree � − 1 in zn, we see that

K(t, z) =
(tn − 1)rβ�,r(zn) − (zn − 1)rβ�,r(tn)

t(�+r−1)n(tn − 1)r
.

This expression for K(t, z) when compared with (1.18) shows that the following
identity holds:

tn − zn

trn

∞∑

j=�

βj,r(zn)
tjn

=
(tn − 1)rβ�,r(zn) − (zn − 1)rβ�,r(tn)

t(�+r−1)n(tn − 1)r
(1.19)

+
(zn − 1)r(q(z) − q(t))

t(�+r−1)n
.

This identity can be easily proved directly when � = 1, since the left side in
(1.19) because of (1.6) in Lemma 1, becomes

zrn

trn
− (zn − 1)r

(tn − 1)r
. (1.20)

Also for � = 1, the right side becomes, on using (1.8),

(tn − 1)r
(
znr − (zn − 1)r

)− (zn − 1)r
(
tnr − (tn − 1)r

)

trn(tn − 1)r

which simplifies easily into (1.20) and completes the verification for � = 1 since
q(z) = q(t) =constant.

2.2. Generalizations of Theorem 1

We shall first find the Hermite interpolant to a monomial

g(z) = zj+(r+s)n, 0 ≤ j ≤ n − 1

in the zeros of (zn − 1)r. Since

g(z) = zj(zn − 1 + 1)r+s = zj
r−1∑

k=0

(
r + s

k

)

(zn − 1)k + (zn − 1)rq(z)
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where q(z) is a polynomial, it follows that

hr,rn−1(g, 1, z) = zj
r−1∑

k=0

(
r + s

k

)

(zn − 1)k = zjβs+1,r(zn).

Similarly, if we find the Hermite interpolant to g(z) in the zeros of (zn−αn)r,

where α ∈ Dρ, then

hr,rn−1(g; α, z) = zjαn(r+s)βs+1,r(zn/αn). (2.1)

If α, β ∈ Dρ, α, β both not equal to zero, then for any f ∈ Aρ (ρ > 1), we
define

∆α,β
pn,rn(f ; z) := hp,pn−1(f ; α, z) − hp,pn−1(Lrn−1(f, β, z);α, z), (2.2)

where m, p, n, m ≥ pn are positive integers. We shall now prove

Theorem 2. If f ∈ Aρ (ρ > 1) and if α, β ∈ Dρ (ρ > 1), |α| + |β| �= 0,

then

lim
n→∞ ∆α,β

pn,rn(f ; z) = 0 for |z| < σ (2.3)

where

σ = ρ
/

max

{( |α|
ρ

) r+1−p
p

,

( |β|
ρ

)r/p
}

, (2.4)

the convergence being uniform and geometric in |z| ≤ τ < σ and the result is

best possible in the same sense as in Theorem 1.

Proof. Since

Lrn−1(f ; β, z) =
1

2πi

∫

ΓR

f(t)
t − z

· trn − zrn

trn − βrn
dt

it follows that

∆α,β
rn,pn(f ; z) =

1
2πi

∫

ΓR

f(t)K(t, z)dt (2.5)

where K(t, z) is the Hermite interpolant of Λ(z) in the zeros of (zn −αn)p, i.e.,
K(t, z) = hp,pn−1

(
Λ(·); α, z

)
. Here Λ(z) is given by

Λ(z) =
(tn − αn)p − (zn − αn)p

(tn − αn)p(t − z)
− trn − zrn

trn − βrn
· 1
t − z

=
[
zrn − βrn

trn − βrn
− (zn − αn)p

(tn − αn)p

]

/(t − z) = Λ1,n(z) − Λ2,n(z),
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where we set

Λ1,n(z) =
zrn(tn − αn)p − (zn − αn)ptrn

(t − z)(trn − βrn)(tn − αn)p
,

Λ2,n(z) =
βrn[(tn − αn)p − (zn − αn)p]
(t − z)(trn − βrn)(tn − αn)p

.

Since Λ2,n(z) ∈ πnp−1, we have

hp,pn−1(Λ2,n; α, z) = Λ2,n(z). (2.6)

From (2.1) we may replace zrn by its interpolant in the zeros of (zn −αn)p, i.e.,
by αnrβr−p+1,p(zn/αn) in order to find its Hermite interpolant and so

hp,pn−1(Λ1,n;α, z) =

=
αrnβr−p+1,p

(
zn

αn

)
(tn − αn)p − αrnβr−p+1,p

(
tn

αn

)
(zn − αn)p

(t − z)(trn − βrn)(tn − αn)p
.

(2.7)

From (2.6) and (2.7) we see that

K(t, z) = hp,pn−1(Λ1,n; α, z) − Λ2,n(z). (2.8)

Since Λ2,n(z) = |z|np|β|rn

|t|rn+np + O(1) for large n, it follows that Λ2,n(z) tends to
zero as n → ∞ if

|z| ≤ ρ
/
( |β|

ρ

)r/p

. (2.9)

By Lemma 2, βr−p+1,p

(
tn/αn

) ≤ C
( |t|n
|α|n
)p−1 so that

∣
∣
∣
∣
αrnβr−p+1,p(tn/αn)(zn − αn)p

(trn − βrn)(tn − αn)p

∣
∣
∣
∣ ≤ |α|rn |t|n(p−1)

|α|n(p−1)

|z|np

|t|rn+np
(2.10)

and the right side will tend to zero as n → ∞, if

|z| <
ρ

( |α|
ρ

) r−p+1
p

. (2.11)

Similarly,
∣
∣
∣
∣
αrnβr−p+1,p(zn/αn)(tn − αn)p

(tn − αn)p(trn − βrn)

∣
∣
∣
∣ ≤ C|α|rn |z|n(p−1)

|α|n(p−1)|t|rn
(2.12)

and this will tend to zero as n → ∞, if

|z| <
ρ

(
|α|
ρ

) r−p+1
p−1

. (2.13)
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Combining (2.7), (2.10) and (2.11), we see that hp,pn−1

(
Λ1,n; α, z) tends to zero

as n → ∞, if

|z| ≤ min







ρ
(

|α|
ρ

) r−p+1
p−1

,
ρ

(
|α|
ρ

) r−p+1
p





 =

ρ
(

|α|
ρ

) r−p+1
p

. (2.14)

Combining (2.9) and (2.14), we get (2.4) which completes the proof. �

Remark 1. Instead of (2.2), one may consider a slightly more general oper-
ator, viz.,

∆α,β
pn,m(f ; z) := hp,pn−1(f ; α, z) − hp,pn−1(Lm−1(f ; β, z);α; z) (2.15)

where m = rn + q, p ≤ r, q = ns + O(1), 0 ≤ s < 1. In this case no
special difficulties arise and the result is slightly more general. In this case the
expression for σ in (2.4) becomes

ρ
/

max

{( |α|
ρ

) r+1−p
p

,

( |β|
ρ

) r+s
p

}

. (2.16)

If in (2.2), we put β = 1, α = 0, then hp,pn−1(f ; 0, z) is the Taylor section of
degree pn − 1 for f about the origin and we get the Corollary in Chapter 1.

2.3. Mixed Hermite Interpolation

If 1 ≤ p < r are integers, then we consider the operator

Hα,β
pn,rn(f ; z) := hp,pn−1(f ;α, z) − hp,pn−1(hrn−1(f ; β, z);α, z). (3.1)

As in the previous section, we can see that

Hα,β
pn,rn(f ; z) =

1
2πi

∫

ΓR

f(t)K(t, z)dt (3.2)

where K(t, z) is the Hermite interpolant in the zeros of (zn − αn)p of the poly-
nomial K1(t, z), where

K1(t, z) =
(tn − αn)p − (zn − αn)p

(t − z)(tn − αn)p
− (tn − βn)r − (zn − βn)r

(t − z)(tn − βn)r

=
[
(zn − βn)r

(tn − βn)r
− (zn − αn)p

(tn − αn)p

]
1

t − z
.

Since

(zn − βn)r =
r∑

j=0

(
r

j

)

(zn − αn)j(αn − βn)r−j
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with a similar expansion for (tn − βn)r, we see that

K1(t, z) =
(

((tn − αn)p
r∑

j=0

(
r

j

)

(zn − αn)j(αn − βn)r−j

− (zn − αn)p
r∑

j=0

(
r

j

)

(tn − αn)j(αn − βn)r−j

)

/
(
(t − z)(tn − βn)r(tn − αn)p

)
.

From this it is clear that

K(t, z) =
p−1∑

j=0

(
r

j

)
(αn − βn)r−j

(tn − βn)r

{(tn − αn)p−j − (zn − αn)p−j}
(tn − αn)p−j(t − z)

(zn − αn)j

(3.3)
since the right side in (3.3) is a polynomial of degree pn − 1 and the values of
K(t, z) and of K1(t, z) on the zeros of (zn − αn)p are the same.

From (3.3) we see that for |t| = R < ρ, we have

|K(t, z)| ≤ C max
[

max
1≤j≤p−1

{
max (|α|n, |β|n)r−j |z|nj

Rnr

}

,

max
1≤j≤p−1

{ |z|np max (|α|n, |β|n)r−j

Rnr+n(p−j)

} ]

.

From this inequality, we see that the right side will tend to zero when

|z| <
Rr/j

(max (|α|, |β|)(r−j)/j
, j = 1, . . . , p − 1

and

|z| ≤ R
r+p−j

p

max (|α|, |β|) r−p−j
p

.

Therefore (3.2) will tend to zero when n → ∞, provided

|z| < min

{
RR(r−p+1)/p

max (|α|, |β|) r−p+1
p

, min
1≤j≤p−1

Rr/j

max (|α|, |β|) r−j
j

}

= min






R

max
(

|α|
R , |β|

R

) r−p+1
p

, min
1≤j≤p−1

R

max
(

|α|
R , |β|

R

) r−j
j





.

Letting R → ρ, we see that

lim
n→∞ Hα,β

pn,rn(f ; z) = 0 for |z| <
ρ

[
max

(
|α|
ρ , |β|

ρ

)] r−p+1
p

.

We have thus proved

(3.4)
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Theorem 3. If α �= β, α, β ∈ Dρ and if f ∈ Aρ (ρ > 1) then the polynomial

Hα,β
pn,rn

|z| < ρ
/

max
[ |α|

ρ
,
|β|
ρ

] r−p+1
p

.

A different, but similar result is the following. If r, � are positive integers,
m = nq + c, and q ≥ r is a given positive integer, we set

∆α,β
rn−1,�,m(f ; z) := hr,rn−1(f ; α, z) − hr,rn−1

(
h�,�m−1(f ; β, z);α, z

)
.

We shall now prove

Theorem 4. Let r, �, m be positive integers, m = nq + c, q ≥ r and c a

constant. Then

lim
n→∞ ∆α,β

rn−1,�,m(f ; z) = 0 for z ∈ Dσ,

where

σ := ρ/ max






( |β|
ρ

) �q
r

,

( |β|
ρ

) (�−1)q
r
( |α|

ρ

) q+1−r
r

,

( |α|
ρ

) �q+1−r
r





.

More precisely, for any ρ ≤ µ < σ, we have

lim
n→∞

{
max
|z|=ρ

|∆α,β
rn−1,�,m(f ; z)|

}1/rn

≤ µ

σ
.

Taking α = 1, |β| < 1, it is easy to see that σ = ρ
�q+1

r .

If α = 1, β = 0, � = 1, m = nq and q = �′ + r − 1, then we obtain from
(3.11) the following result:

lim
n→∞

[
hr,rn−1(f ; 1, z) −

�′−1∑

j=1

βj,r(zn)pn−1,r+j−1(f ; z)
]

= 0, |z| < ρ1+ �′
r ,

where pn−1,j(f ; z) is given by (3.3) of Ch. 1.

The proof of Theorem 4 will be based on the following:

(3.5)

(3.6)

(3.7)

(3.8)

(f ; z), 1 ≤ p < r, defined by (3.1) tends to zero as n → ∞, when
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Lemma 4. For any α, β ∈ C, we have

(zm − βm)� = (zn − αn)rQ�m−rn(z) + R�,rn−1(z)

where Q�m−rn(z) ∈ π�m−rn and R�,rn−1(z) ∈ πrn−1 is given by

R�,rn−1(z) = (−βm)� +
�∑

n=1

(
�

k

)

(−βm)�−kzkcαnqkβqk−r+1,r(zn/αn)

with βs,r

Proof. The binomial theorem gives

(zm − βm)� = (−βm)� +
�∑

k=1

(
�

k

)

(−βm)�−kzmk

and since zmk = zk(nq+c) = zkc(zn)qk and q > r, we see that

znqk = (zn − αn + αn)qk =
r−1∑

j=0

(
qk

j

)

(zn − αn)j(αn)qk−j + (zn − αn)rqk(z)

= αnqkβqk−r+1,r(zn/αn) + (zn − αn)rqk(z)

where qk(z) ∈ π(k−r)n �

Lemma 5. The operator ∆α,β
rn−1,�,m

tation

∆α,β
rn−1,�,m(f ; z) =

1
2πi

∫

ΓR

f(t)K(t, z)dt (1 < R < ρ)

where

K(t, z) =
(tn − αn)rR�,rn−1(z) − (zn − αn)rR�,rn−1(t)

(tm − βm)�(tn − αn)r(t − z)
.

Proof. Since hr,rn−1 is linear and reproduces polynomials of degree ≤ rn−
1, we see that

∆α,β
rn−1,�,m(f ; z) = hr,rn−1(g;α, z)

where

g(z) = hr,rn−1(f ; α, z) − h�,�m−1(f ;β, z) =
1

2πi

∫

ΓR

f(t)K1(t, z) dt

and

K1(t, z) =
[
(tn − αn)r − (zn − αn)r

(tn − αn)r(t − z)
− (tm − βm)� − (zm − βm)�

(tm − βm)�(t − z)

]

dt.

(3.9)

. From this, observation (3.9) is immediate.

(f ; z) in (3.5) has the integral represen-

(3.10)

(3.11)

(z) defined in (1.7).
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So in order to find K(t, z), it is enough to find the Hermite interpolant of the

1
n −αn)r. Observe that on simplifying,

we have

K1(t, z) =
[ (zm − βm)�

(tm − βm)�
− (zn − αn)r

(tn − αn)r

]
/(t − z)

=
(tn − αn)r(zm − βm)� − (zn − αn)r(tm − βm)�

(tm − βm)�(tn − αn)r(t − z)
.

By Lemma 3, (zm −βm)� = R�,rn−1(z)+Q�m−rn(z)(zn −αn)r, (tm −βm)� =
R�,rn−1(t)
+Q�m−rn(z)(tn − αn r

≤ rn− 1, and since it coincides with K1(t, z) in the zeros of (zn − αn)r, we see
�

Proof of Theorem 4. �,rn−1(z), we see
that K1(t, z) = K2(t, z) + K3(t, z) where

K2(t, z) =
1

(tm − βm)�(t − z)

×
{

(−βm)� +
�∑

k=1

(
�

k

)

(−βm)�−kzkcαnqkβqk−r+1,,r(zn/αn)
}

K3(t, z) = − (zn − αn)r

(tm − βm)�(tn − αn)r(t − z)

×
{

(−βm)� +
�∑

k=1

(
�

k

)

(−βm)�−ktkcαnqkβqk−r+1,r(tn/αn)
}

.

3 3

will tend to zero as n → ∞, if

(A)
|z|nr|β|m�

Rm�+nr
and

|z|nr|β|m(�−k)|α|nqk
(

|R|n
|α|n
)r−1

R�m+nr
, 1 ≤ k ≤ �

tend to zero as n → ∞. Similarly K2(t, z) will tend to zero if

(B)
( |z|
|α|
)n(r−1) (|β|)m(�−k)|α|nqk

R�m
, 1 ≤ k ≤ �

tends to zero as n → ∞. Since m = nq + c (c a constant), we see that the
terms in (A) will tend to zero if

|z| < min
1≤k≤�







R
(

|β|
R

) �q
r

,
R

(
|β|
R

) q(�−k)
r

( |α|
R

) qk+1−r
r





 , 1 ≤ k ≤ �.

kernel K (t, z) of (3.11) in the zeros of (z

) . Since K(t, z) in (3.10) is a polynomial in z of degree

that K(t, z) in (3.10) is the required kernel.

Using the expression (3.9) for R

(3.12)

We see from the expression for K (t, z) in (3.12) on using Lemma 2 that K (t, z)
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The terms in (B) will tend to zero if

|z| ≤ min
1≤k≤�







R
(

|β|
R

) q(�−k)
r−1

(
|α|
R

) qk+1−r
r−1





 .

Letting R → ρ, we see that K(t, z) → 0 as n → ∞ when |z| < min (σ1, σ2)
where

σ1 = ρ
/

max




( |β|

ρ

) �q
r

,

( |β|
ρ

) q(�−1)
r
( |α|

ρ

) q+1−r
r

,

( |α|
ρ

) �q+1−r
r





and

σ2 = ρ
/

max




( |β|

ρ

) q(�−1)
r−1

( |α|
ρ

) q+1−r
r−1

,

( |α|
ρ

) �q+1−r
r−1



 .

Since σ = min (σ1, σ2), the result follows.

�

Remark. 1. If in Theorem 4, where we suppose that m = nq + c, q ≥ r, we
also require that c is not a constant, but that c = sn + O(1), 0 < s < 1

� , then
the details of the proof remain the same with minor changes and the value of σ

depends upon s. Then it is easy to see that in this case

σ = ρ/ max {( |β|
ρ

)
�(q+s)

r , (
|β|
ρ

)(�−1)(q+s)/r(
|α|
ρ

)
q+1−r

r , (
|α|
ρ

)
�q+1−r

r }.

2. If we take α = 0, r = 1, then

∆0,β
n−1,�,m(f ; z) := Sn−1(f ; z) − Sn−1(h�,�m−1(f ; β, ·); z).

2.4. Mixed Hermite and �2�2�2-Approximation

Let f ∈ Aρ (ρ > 1) and let 0 �= α ∈ Dρ. If m > n are fixed positive integers,
let ω be a primitive mth root of unity. We shall consider the problem of finding
the polynomial Prm+n(f ; α, z) ∈ πrm+n for each f ∈ Aρ which satisfies the
Hermite interpolation condition

P
(ν)
rm+n(f ;α, αωk) = f (ν)(αωk), k = 0, 1, . . . , m− 1, ν = 0, 1, . . . , r− 1, (4.1)

and also minimizes
m−1∑

k=0

|P (r)
rm+n(f ; α, αωk) − f (r)(αωk)|2, r ≥ 0 (4.2)

over all polynomials in πrm+n which satisfy (4.1). If Lrm+n(f ;β, z) is the La-
grange interpolant to f in the zeros of zrm+n − βrm+n, we shall prove
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Theorem 5. For each f ∈ Aρ (ρ > 1) and for each non-negative integer

r, let Prm+n(f ; α, z) satisfy (4.1) and (4.2). If 0 ≤ q := lim
n→∞

n
m ≤ 1 and if

α, β ∈ Dρ, then

lim
n→∞ [Prm+n(f ; α, z) − Lrm+n(f ; β, z)] = 0 (4.3)

for all

|z| < σ :=
ρ

max
{

|β|
ρ , |α|

ρ

} 1
r+q

. (4.4)

It is clear from (4.1) that Prm+n(f ; α, z) will have the form

Prm+n(f ;α, z) = hrm−1(f ; α, z) − (zm − αm)rQn(z)

where Qn(z) will be determined by the requirement (4.2). Observe that

dr

dzr
(zm − αm)r]z=αωk = αmr−rω−kr

r∑

ν=0

(−1)r−ν

(
r

ν

)

(mν)r

= αmr−rω−kr · mr · r! (4.5)

where (x)0 = 1 and (x)k = x(x−1) . . . (x−k+1) for any positive integer k. Then
the problem of minimizing (4.2) reduces to finding the polynomial Qn(z) ∈ πn

such that

m−1∑

k=0

|g(αωk) − Qn(αωk)|2 = min
p∈πn

m−1∑

k=0

|g(αωk) − p(αωk)|2 (4.6)

where

g(z) :=
zr · {h(r)

rm−1(f ;α, z) − f (r)(z)}
αmrmr · r! . (4.7)

We shall prove

Lemma 6. The polynomial Qn(z) ∈ πn satisfying (4.6) is explicitly given by

Qn(z) = − 1
2πi

∫

ΓR

f(t)tm−n−1(tn+1 − zn+1)
(t − z)(tm − αm)r+1

dt (4.8)

where 1 < R < ρ and ΓR = {z : |z| = R}.

Proof. The polynomial Qn(z) which minimizes the right side in (4.6) is
obtained by truncating the Lagrange interpolant to g(z) on the zeros of zm−αm.

In order to find Lm−1(g;α, z), we shall calculate g(αωk). To do this we observe
that

hr,rn−1(f ; α, z) − f(z) = − 1
2πi

∫

ΓR

f(t)
(tm − αm)r

K(t, z)dt
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where K(t, z) = (zm−αm)r

t−z . Since

zr dr

dzr
K(t, z)]z=αωk =

mr · r!αmr

(t − αωk)
, k = 0, 1, . . . , m − 1

we see that

g(αωk) = [zr {h(r)
rn−1(f ; α, z) − f (r)(z)}]z=αωk/αmrmr · r!

=
1

2πi

∫

ΓR

f(t)
(tm − αm)r

[
zr dr

dzr
K(t, z)

]
z=αωkdt

=
1

2πi

∫
f(t)

(tm − αm)r

1
t − αωk

dt,

Hence it follows that

Lm−1(g;α, z) =
1

2πi

∫

ΓR

f(t)(tm − zm)
(t − z)(tm − αm)r+1

dt

so that Qn(z) is as given by (4.8). �

Proof of Theorem 5. From Lemma 5 we see that

Prm+n(f ;α, z) − Lrm+n(f ; β, z) =
1

2πi

∫

ΓR

f(t)
t − z

K1(t, z)dt

where after some simplification we have

K1(t, z) = − zrm+n+1 − βrm+n+1

trm+n+1 − βrm+n+1
+
(

zm − αm

tm − αm

)r

· αm − tm−n−1zn+1

tm − αm
.

We write K1(t, z) = K2(t, z) + K3(t, z) + K4(t, z) where

K2(t, z) =
zrm+n+1 − βrm+n+1

trm+n+1 − βrm+n+1
− zrm+n+1

trm+n+1

=
βrm+n+1(zrm+n+1 − trm+n+1)
trm+n+1(trm+n+1 − βrm+n+1)

,

K3(t, z) =
{(z

t

)rm

−
(

zm − αm

tm − αm

)r}
zn+1

tn+1
,

K4(t, z) =
(

zm − αm

tm − αm

)r

·
{

zn+1

tn+1
+

αm − tm−n−1zn+1

tm − αm

}

=
(

zm − αm

tm − αm

)r

· αm(tn+1 − zn+1)
tn+1(tm − αm)

.

From the expressions for K�(t, z) (� = 2, 3, 4), we see that as n → ∞, |K2(t, z)|
→ 0 if |z| < R/( |β|R ).
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From (1.6), we easily have
(

zm

tm

)r

−
(

zm − αm

tm − αm

)r

=
tm − zm

t(r+1)m
· αrm

∞∑

s=0

βs+1,r(zm/αm)αsm

tsm
,

and from Lemma 2, we have

βs+1,r(zm/αm) ≤ c · sr−1

( |z|
|α|
)(r−1)m

.

Thus K3(t, z) → 0 as n → ∞, if |z|rm+n|α|m
R(r+1)m+n → 0, and so we require

|z| <
R

(
|α|
R

)1/(r+q)
.

Lastly, we see from the expression for K4(t, z) that K4(t, z) → 0 as n → ∞ if

|z|rm+n+1|α|m
Rmr+m+n+1

→ 0, i.e., if |z| <
R

(
|α|
R

) m
rm+n+1

.

Since lim n
m = q, on combining the above three and on letting R → ρ, we see

that Prm+n(f ;α, z) − Lrm+n(f ; β, z) → 0 if

|z| ≤ min






ρ
(

|β|
ρ

) ,
ρ

(
|α|
ρ

)1/r
,

ρ
(

|α|
ρ

) 1
r+q





.

From this (4.4) is immediate. �

2.5. A Lemma and Its Applications

We shall consider here the following problem and see how it extends the
result of Theorem 5 on Walsh equiconvergence.

Problem. Let f0(z), . . . . . . , fr−1(z) be r given functions in Aρ (ρ > 1). Let
{p�,j}n−1

j=0 (� = 0, 1, . . . , r− 1) be r sets of given real numbers. For each � and
a set of real numbers {p�,j}n−1

j=0 we define a linear operator L� on the space of
polynomials of degree ≤ n − 1 such that

if Qn(z) =
n−1∑

j=0

cjz
j , then L�(Qn) =

n−1∑

j=0

cjp�,jz
j . (5.1)

The problem is to find the polynomial Pm,n,r(z) which minimizes the sum
r−1∑

�=0

m−1∑

k=0

|f�(ωk) − L�Qn(ωk)|2, ωm = 1, m > n, (5.2)

over all polynomials Qn ∈ πn−1. Let

Lm−1(f�; z) :=
m−1∑

j=0

α(m)
�,j

zj .

Then we can easily prove



42 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

Lemma 7. The polynomial Pm,n,r(z) which minimizes (5.2) is given by
∑n−1

j=0 cjz
j , where

cj =
1

Kj

r−1∑

�=0

p
�,j

α
(m)
�,j , Kj =

r−1∑

�=0

(p�,j)2, j = 0, . . . , n − 1. (5.3)

Proof. Since

|f�(ωk) − L�Qn(ωk)|2 = |Lm−1(f�; ωk) − L�Qn(ωk)|2 = |
m−1∑

j=0

d�jω
kj |2

where

d�,j =






α
(m)
�,j − p

�,j
cj , j = 0, 1, . . . , n − 1,

α
(m)
�,j , j = n, . . . , m − 1,

(5.4)

we see on using the properties of roots of unity that

r−1∑

�=0

m−1∑

k=0

|f�(ωk) − L�Qn(ωk)|2 = m

r−1∑

�=0

m−1∑

j=0

|d�,j |2.

If we put





cj := ρje
iθj , j = 0, 1, . . . , n − 1

α
(m)
�,j := σ�,je

iφ�,j , j = 0, 1, . . . , m − 1; � = 0, 1, . . . , r − 1
(5.5)

then from (5.4), (5.5) we get

|d�,j |2 =






|σ�,je
iφ�,j − p

�,j
ρje

iθj |2, j = 0, 1, . . . , n − 1

|σ�,j |2, j = n, . . . , m − 1

and the problem of finding the minimum of (5.2) is equivalent to finding that
of

r−1∑

�=0

n−1∑

j=0

(p�,j)2ρ2
j +

m−1∑

j=0

σ2
�,j − 2

n−1∑

j=0

p�,jρjσ�,j cos (θj − φ�,j)

where ρj runs over the reals and 0 ≤ θj < 2π.

Elementary calculations now show that ρj and θj are determined by the
following equations:





ρj

∑r−1
�=0 (p�,j)2 −

∑r−1
�=0 p�,jσ�,j cos (θj − φ�,j) = 0

∑r−1
�=0 p�,jσ�,j sin (θj − φ�,j) = 0

(j = 0, . . . ,m − 1).
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Thus we have




sin θj

Aj
= cos θj

Bj
= 1√

A2
j+B2

j

,

Aj =
∑r−1

�=0 p�,jσ�,j sin φ�,j , Bj =
∑r−1

�=0 p�,jσ�,j cos φ�,j

(j = 0, . . . , m − 1).

(5.6)
Therefore

ρj =

√
A2

j + B2
j

∑r−1
�=0 (p�,j)2

=
Bj cos θj + Aj sin θj

Kj
, j = 0, . . . , n − 1. (5.7)

From (5.5), (5.6) and (5.7), we get (5.3). �

We now choose fj(z) := f (j)(z), where f(z) ∈ Aρ. If we set

L�(Qn) :=
n−1∑

j=0

(j)�cjz
j−�,

then L�(Qn) = Q
(�)
n and the problem of minimizing (5.2) is equivalent to mini-

mizing the sum
r−1∑

�=0

m−1∑

k=0

|ωk�f (�)(ωk) − Q(�)
n (ωk)|2, Qn ∈ πn−1. (5.8)

We can then prove

Lemma 8. If f(z) =
∞∑

ν=0
aνzν ∈ Aρ, then the unique polynomial which mini-

mizes (5.8) is given by

Pm,n,r(z) :=
n−1∑

j=0

cjz
j , cj =

1
A0,j(r)

∞∑

λ=0

Aλ,j(r)aj+λm, (5.9)

where Aλ,j(r) =
r−1∑

�=0

(j)�(j + λm)�, λ = 0, 1, . . . .

Proof. In this case p�,j = (j)�. Since

z�f (�)(z) =
∞∑

ν=0

(ν)�aνzν ,

it follows that the Lagrange interpolant to z�f (�)(z) in the mth roots of unity is
m−1∑

j=0

α
(m)
�,j zj , where α

(m)
�,j =

∞∑

λ=0

(j + λm)�aj+λm.

The result (5.9) is now a direct application of (5.3) in Lemma 7. �

If we set

Sn,λ,r(f ; z) :=
n−1∑

j=0

Aλ,j(r)
A0,j(r)

zjaj+λm , λ = 0, 1, 2, . . . (5.10)

then the following theorem is easily proved:
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Theorem 6. Let f(z) ∈ Aρ (ρ > 1) and let m,n be positive integers such

that lim
n→∞

m
n = q > 1. Suppose that for a given positive integer r, Pm,n,r(f ; z)

is the polynomial which minimizes (5.8) on the mth roots of unity. Then for

any integer µ ≥ 1

lim
n→∞ [Pm,n,r(f ; z) −

µ−1∑

λ=0

Sn,λ,r(f ; z)] = 0 for |z| < ρ1+µq.

As another application of Lemma 8, we consider the polynomial P̃sm+n(f ;α
, z) ∈ πsm+n−1 analogous to Psm+n(f ; α, z) in Theorem 5. We now require that
P̃sm+n(f ; α, z) satisfies

P̃
(ν)
sm+n(f ; α, αωk) = f (ν)(αωk), k = 0, 1, . . . ,m−1 ; ν = 0, 1, . . . , s−1 (5.11)

for some α ∈ Dρ and also minimizes

m−1∑

k=0

s+1∑

ν=0

|P̃ (ν)
sm+n(f ; α, ωk) − f (ν)(αωk)|2 (5.12)

over all polynomials in πsm+n−1 satisfying (5.11). We prove the following ana-
logue of Theorem 5:

Theorem 7. For each f ∈ Aρ (ρ > 1) and for each non-negative integer s

and α, β ∈ Dρ, let P̃sm+n(f ;α, z) satisfy (5.11) and (5.12). If lim
n→∞

n
m = q ≤ 1

then

lim
n→∞[P̃sm+n(f ;α, z) − Lsm+n(f ;β, z)] = 0

for all z (|z| < σ) where σ is given by

σ =
ρ

max
{

|β|
ρ ,
(

|α|
ρ

) 1
s+q

} .

Proof. As in the proof of Theorem 5, let

P̃sm+n(f ; α, z) = hs,sm−1(f ; α, z) + (zm − αm)sQn(z)

where Qn will be determined by (5.12). Besides (4.5), we also have

ds+1

dzs+1
(zm − αm)s]z=αωk = ms · (s + 1)!

1
2

s(m− 1)αs(m−1)−1ω−k(s+1). (5.13)
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Then minimizing (5.12) can be shown to be equivalent to minimizing

ms · s!
m−1∑

k=0

1∑

�=0

|L�(Qn)(ωk) − f�(ωk)|2, Qn ∈ πn−1

where f�(z) := [h(s+�)
sm−1(f ;α, z) − f (s+�)(z)]zs+�/ms · s!αms−s−� (� = 0, 1) and

L0,L1 are linear operators on the space πn−1. L0 is the identity operator and

L1(Qn)(z) = (s + 1)
(

1
2

s(m − 1) + z
d

dz

)

Qn

= (s + 1)
n−1∑

j=0

(
1
2

s(m − 1) + j

)

cjz
j

where Qn(z) =
n−1∑

j=0

cjz
j . So

p0j = 1 and p1j = (s + 1)
(

j +
1
2

s(m − 1)
)

, j = 0, 1, . . . , n − 1. (5.14)

Since

hs,sm−1(f ; α, z) − f(z) = − 1
2πi

∫

ΓR

f(t)(zm − αm)s

(tm − αm)s(t − z)
dt,

it follows on using (4.5) and (5.13) that






f0(αωk) = − 1
2πi

∫
ΓR

f(t)
(tm−αm)s

1
t−αωk dt

f1(αωk) = − s+1
2πi

∫
ΓR

f(t)
(tm−αm)s { 1

2 s(m−1)

t−αωk + αωk

(t−αωk)2
} dt ,

k = 0, . . . , m − 1.

(5.15)

From (5.15) we can find the Lagrange interpolants to f0 and f1 on the zeros of
zm − αm. Thus we have

Lm−1(f0; α, z) = − 1
2πi

∫

ΓR

f(t)
(tm − αm)s+1

tm − zm

t − z
dt (5.16)

and

Lm−1(f1; α, z) = − s + 1
2πi

∫

ΓR

f(t)
(tm − αm)s

K(t, z)dt, (5.17)

where

K(t, z) =
[ 1

2 s(m − 1)
tm − αm

tm − zm

t − z
− d

dt

{
t(tm − zm)

(tm − αm)(t − z)

} ]

since the value of d
dt

{
t(tm−zm)

(tm−αm)(t−z)

}
at z = αωk is easily seen to be − αωk

(t−αωk)2
.
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From (5.16) we see that the coefficient of zj in Lm−1(f0;α, z) is given by

α
(m)
0,j = − 1

2πi

∫

ΓR

f(t)tm−j−1

(tm − αm)s+1
dt

and from (5.17) we have for the coefficient of zj in Lm−1(f1;α, z)

α
(m)
1j = − s + 1

2πi

∫

ΓR

f(t)
(tm − αm)s

{1
2

s(m − 1)tm−1−j

tm − αm
− d

dt

( tm−j

tm − αm

)}
dt

= − 1
2πi

∫

ΓR

f(t)tm−1−j

(tm − αm)s+1

{
p1j +

m(s + 1)αm

tm − αm

}
dt.

By Lemma 7, applied with r = 2, Qn(z) =
n−1∑

j=0

cjz
j where

cj =
p0jα

(m)
0j + p1jα

(m)
1j

(p0j)2 + (p1j)2
.

Using (5.14) and the values of α
(m)
0j and α

(m)
1j above, we have

cj = − 1
2πi

∫

ΓR

f(t)tm−1−j

(tm − αm)s+1
dt

− m(s + 1)αm

2πi

p1j

1 + (p1j)2

∫

Γr

f(t)tm−1−j

(tm − αm)s+2
dt.

Therefore Qn(z) = − 1
2πi

∫
ΓR

f(t)K1(t, z)dt where

K1(t, z) =
tm−n(tn − zn)

(tm − αm)s+1(t − z)
+

m(s + 1)αm

(tm − αm)s+2

n−1∑

j=0

p1jt
m−j−1zj

1 + (p1j)2

so we have now

P̃sm+n(f ; α, z) − Lsm+n(f ; β, z) =
1

2πi

∫

ΓR

f(t)K̃(t, z)dt

where

K̃(t, z) =
(tm − αm)s − (zm − αm)s

(tm − αm)s(t − z)
+ (zm − αm)sK1(t, z)

− tsm+n − zsm+n

tsm+n − βsm+n
· 1
t − z

=
1

t − z
[K̃1(t, z) + K̃2(t, z) + K̃3(t, z)] + K̃4(t, z).

Here we have set

K̃1(t, z) :=
zsm+n − βsm+n

tsm+n − βsm+n
− zsm+n

tsm+n
= βsm+n (zsm+n − tsm+n)

tsm+n(tsm+n − βsm+n)
,
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K̃2(t, z) :=
zsm+n

tsm+n
− (zm − αm)s

(tm − αm)s
· zn

tn
=

zn

tn

{zsm

tsm
− (zm − αm)s

(tm − αm)s

}
,

K̃3(t, z) :=
(zm − αm)s

(tm − αm)s

{zn

tn
− tm−nzn − αm

tm − αm

}

=
(zm − αm)s

(tm − αm)s

{αm(tn − zn)
tn(tm − αm)

}
,

K̃4(t, z) :=
m(s + 1)(zm − αm)sαm

(tm − αm)s+2

n−1∑

j=0

p1jt
m−j−1zj

1 + (p1j)2
.

From these expressions for the kernels K̃ν(t, z), ν = 1, . . . , 4, we see that as
n → ∞, K̃1(t, z) → 0 if |z| < R

|β|
R

. Using Lemma 2 and the identity (1.6) in

Lemma 1 we see that K̃2(t, z) tends to zero as n → ∞ if |z| < R

| α
R |

1
s+q

. K̃3(t, z)

also tends to zero for the same bound for |z|. Since 0 <
p1j

1+(p1j)2
< 1, we see

that

|K̃4(t, z)| ≤ m(s + 1)|z|sm|α|m
|R|m(s+2)

Rm−n (|z|n − Rn)
|z| − R

and so K̃4(t, z) tends to zero for |z| < R

| z
R |

1
s+q

. So

P̃sm+n(f ; α, z) − Lsm+n(f ; β, z)

will tend to zero as n → ∞, when

|z| < min






R
|β|
R

,
R

(
|α|
R

) 1
s+q





.

On letting R → ρ, we get the required result. �

2.6. Birkhoff Interpolation

When we state an interpolation problem where not necessarily consecutive
higher order derivatives are prescribed, then we call this lacunary (or Hermite-
Birkhoff, or simply Birkhoff) interpolation. This type of interpolation was in-
troduced by G. Birkhoff [5] at the beginning of the 19th century, but remained
unnoticed for a long time. After the pioneering work of P. Turán in the late 50’s,
the theory of lacunary interpolation gained new momentum, and nowadays it
is a fruitful field in approximation theory.

Since our subject is overconvergence, we will be concerned with one specific
(although rather general) setup. Let f(z) ∈ Aρ (ρ > 1) and let

0 = m0 < m1 < · · · < mq,

q∑

s=1

ms = Mq (q ≥ 1) (6.1)
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be integers. For a given integer n ≥ 1, we would like to construct polynomials
Bn(f ; z) of degree at most (q + 1)n − 1 such that

B(ms)
n (f ; ωt) = f (ms)(ωt), t = 1, . . . , n; s = 1, . . . , q, (6.2)

where ω is a primitive nth root of unity.

In contrast to Hermite interpolation, the existence and uniqueness of such
interpolation polynomials is highly non-trivial. Our first theorem says that for
sufficiently large n’s this is true.

Theorem 8. If

n ≥ max
1≤s≤q

ms

s
(6.3)

then the problem of (0,m1, . . . ,mq) interpolation is uniquely solvable for any

f(z) ∈ Aρ.

The complete proof of this theorem is out of the scope of this monograph; at
the appropriate places we will refer to the literature where the interested reader
can complete the argument.

Sketch of proof. Consider the polynomials

p(z) = zλn+k, k = 0, 1, . . . , n − 1; λ > q.

We look for the polynomial Bn(p, z) in the form

Bn(p; z) =
q∑

j=0

αj,λ,k,nzjn+k ∈ π(q+1)n−1 (6.4)

with some numbers αj,λ,k,n. Conditions (6.2) for f = p can be written as

B(ms)
n (p;ωt) =

q∑

j=0

αj,λ,k,n(jn + k)ms
ωt(k−ms) = (λn + k)ms

ωt(k−ms) (6.5)

(t = 0, 1, . . . , n − 1; s = 0, 1, . . . , q)

where we use the notation (a)ν = a(a−1) . . . (a−ν+1) for non-negative integers
a and ν. (Note that if a < ν then (a)ν = 0; further (a)0 = 1.) This leads to the
following system of linear equations:

q∑

j=0

αj,λ,k,n(jn + k)ms = (λn + k)ms , s = 0, 1, . . . , q. (6.6)
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The determinant of this system is

Mn(k) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 . . . 1

(k)m1 (n + k)m1 . . . (qn + k)m1

...
...

...

(k)mq
(n + k)mq

. . . (qn + k)mq

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (6.7)

Under the condition (6.3), Mn(k) �= 0 (k = 0, . . . , n− 1). The interested reader
may find a proof of this statement in [67, Corollary 4.18].

This means that αj,λ,k,n are uniquely determined and (6.4) satisfies the con-
ditions (6.5). (Note that if λ ≤ q then Bn(p; z) ≡ p(z).) Now if

f(z) =
∞∑

k=0

akzk =
n−1∑

k=0

∞∑

λ=0

aλn+kzλn+k (6.8)

then by the linearity of the operator Bn we obtain

Bn(f ; z) =
(q+1)n−1∑

k=0

akzk +
n−1∑

k=0

∞∑

λ=q+1

aλn+k

q∑

j=0

αj,λ,k,nzjn+k. (6.9)

This proves the existence of the operator Bn for any f(z) ∈ Aρ. Uniqueness
follows from the non-vanishing of (6.7) and the linearity of the operator.

Next we prove the convergence of the operator Bn.

Theorem 9. We have

lim
n→∞ max

|z|∈R
|f(z) − Bn(f ; z)| 1

(q+1)n ≤





1
ρ if 0 ≤ R ≤ 1,

R
ρ if 1 ≤ R < ρ

(6.10)

for any f(z) ∈ Aρ.

The result shows that we have geometric convergence in every closed subdo-
main of |z| < ρ.

Proof. We have to estimate the coefficients αj,λ,k,n in (6.6) for sufficiently
large n’s. First we find a lower estimate for the determinant (6.7). With the
notation x = k

n we get

(jn + k)ms
= nms(x + j)

(
x + j − 1

n

)
. . .
(
x + j − ms − 1

n

)

= nms

[
(x + j)ms + O

( 1
n

)]
(j = 0, 1, . . . , q; s = 1, . . . , q)
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where the constant involved in O(1/n) depends only on q and m1, . . . ,mq. Hence
for Mn(k) we obtain

Mn(k) = nMq

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 . . . 1

xm1 (x + 1)m1 . . . (x + q)m1

...
...

...

xmq (x + 1)mq . . . (x + q)mq

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+ O(nMq−1).

Here the determinant is a so-called generalized Vandermonde determinant for
x ≥ 0 which is known to be postive (cf. e.g. [67, p. 51]). Hence

c1n
Mq ≤ Mn(k) ≤ c2n

Mq (6.11)

where c1, c2 > 0 depend only on q, m1, . . . , mq.

In order to estimate αj,λ,k,n we apply Cramer’s rule for the system (6.6).
To do this, we have to establish lower and upper estimates for the determinant
Mn,j,λ(k) obtained from (6.7) by replacing the (j + 1)-st column by [1 (λn +
k)m1 . . . (λn+k)mq

]T . Applying the same estimate to this determinant as above,
we obtain

Mn,j,λ(k) =

= nMq

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 . . . 1 1 1 . . . 1

xm1 . . . (x + j − 1)m1 (x + λ)m1 (x + j + 1)m1 . . . (x + q)m1

...
...

...
...

...

xmq . . . (x + j − 1)mq (x + λ)mq (x + j + 1)mq . . . (x + q)mq

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+ O(nMq−1) (j = 0, . . . , q; k = 0, . . . , n − 1), (6.12)

where again x = k
n . Expanding the determinant by the (j + 1)-st column we

get

|Mn,j,λ(k)| ≤ c3λ
mqnMq , j = 0, . . . , q; k = 0, . . . , n − 1; λ > q. (6.13)

To obtain a lower estimate, we move the (j + 1)-st column to the last column.
The resulting determinant (which is (−1)q−j times the original determinant) is
again a generalized Vandermonde determinant which is positive for 0 ≤ x ≤ 1,

and its lower bound depends only on λ, q,m1, . . . , mq. Thus

|Mn,j,λ(k)| ≥ c4n
Mq , j = 0, . . . , q; k = 0, . . . , n− 1; q < λ ≤ q + �. (6.14)
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Now (6.11), (6.13) and (6.14) imply

|αj,λ,k,n| =
|Mn,j,λ(k)|

Mn(k)






≤ c5λ
mq , j = 0, . . . , q; k = 0, . . . , n − 1; λ > q,

≥ c6 > 0, j = 0, . . . , q; k = 0, . . . , n − 1;
q < λ ≤ q + �.

(6.15)

After these preliminaries, we can prove the theorem. Taking the difference of
(6.8) and (6.9), on using (6.15) we have

|f(z) − Bn(f ; z)| =
∣
∣
∣

n−1∑

k=0

∞∑

λ=q+1

aλn+kzk
(
1 −

q∑

j=0

αj+λ,k,nzjn
)∣
∣
∣

= O
( n−1∑

k=0

∞∑

λ=q+1

(ρ − ε)−λn−k|z|k max (1, |z|qn)λmq

)

with an arbitrary ε > 0. Now if |z| < ρ − ε then this yields

O
(

max(1, |z|qn)
∞∑

λ=q+1

λmq

(ρε)λn

)
= O

(max(1, |z|qn)
(ρ − ε)(q+1)n

)

which, since ε > 0 was arbitrary, results in (6.10). �

After having settled the convergence, we now turn to the overconvergence
problem. For this we need another operator

Sn,�(f ; z) =
(q+1)n−1∑

k=0

akzk +
n−1∑

k=0

q+�−1∑

λ=q+1

aλn+k

q∑

j=0

αj,λ,k,nzjn+k (6.16)

which contains another fixed parameter � ≥ 1. (In case � = 1, the second term in
(6.16) does not appear, and Sn,1 is simply the Taylor section.) We will consider
the difference of (6.9) and (6.16):

∆n,�(f ; z) := Bn(f ; z) − Sn,�(f ; z) =
n−1∑

k=0

∞∑

λ=q+�

aλn+k

q∑

j=0

αj;λ,k,nzjn+k. (6.17)

Theorem 10. We have for each f(z) ∈ Aρ

lim
n→∞ max

|z|=R
|∆n,�(f ; z)| 1

(q+1)n =






1

ρ
q+�
q+1

if |R| ≤ 1

|z|
q

q+1

ρ
q+�
q+1

if 1 ≤ |R| ≤ ρ

|z|
ρ
1+ �

q+1
if ρ ≤ |R| .

(6.18)
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The theorem shows that the exact radius of overconvergence is ρ1+ �
q+1 .

Proof. First we prove the upper estimates in (6.18). Just like in the proof
of Theorem 2, we obtain from (6.17)

|∆n,�(f ; z)| = O
( n−1∑

k=0

∞∑

λ=q+�

(ρ − ε)−λn−kλmq max(1, |z|qn+k)
)

= O
(
(ρ − ε)−(q+�)n

) n−1∑

k=0

(ρ − ε)−k max(1, |z|qn+k)

=






O
(
(ρ − ε)−(q+�)n if |z| ≤ 1

O
(

|z|qn

(ρ−ε)(q+�)n

)
if 1 ≤ |z| ≤ ρ

O
(

|z|(q+1)n

(ρ−ε)(q+�+1)n

)
if ρ ≤ |z|

which proves the upper estimate since ε > 0 is arbitrary.

Now we turn to proving the equality in (6.18). Let first R ≤ 1, and suppose
there exists f(z) ∈ Aρ and 0 < δ < 1 such that

max
|z|=R

|∆n,�(f ; z)| ≤
( δ

ρq+�

)n

, (6.19)

contrary to (6.18). Dividing (6.17) by zt+1, 0 ≤ t ≤ q + � − 1, and integrating
over |z| = R ≤ 1 we get

1
2πi

∫

|z|=R

∆n,�(f ; z)
zt+1

dt = α0,q+�,t,na(q+�)n+t +
∞∑

λ=q+�+1

α0,λ,t,naλn+t.

Hence using (6.19), (6.15), as well as

|aλn+t| = O
(
(ρ − ε)−λn

)
(6.20)

with an arbitrary ε > 0 we get

a(q+�)n+t = O

(( δ

ρq+�

)n

+
∞∑

λ=q+�+1

λmq

(ρ − ε)λn

)

(6.21)

= O

((
δ

ρq+�

)n

+
1

(ρ − ε)(q+�+1)n

)

= O

((
δ

ρq+�

)n)

, 0 ≤ t ≤ q + � − 1,

provided ε > 0 is small enough. Since the numbers (q+�)n+t with n = 0, 1, . . .

and t = 0, . . . , q + � − 1 exhaust all nonnegative integers, we conclude that

|an| = O
(( δ

ρ

)n)
, 0 < δ < 1 (6.22)
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which contradicts f ∈ Aρ.

Now let 1 ≤ R ≤ ρ, and suppose there exist f ∈ Aρ and 0 < δ < 1 such that

max
|z|=R

|∆n,�(f ; z)| ≤
( δRq

ρq+�

)n

, (6.23)

contrary to (6.18). Dividing (6.17) by zqn+t+1, 0 ≤ t ≤ q+�−1, and integrating
over |z| = R we get

1
2πi

∫

|z|=R

∆n,�(f ; z)
zqn+�+1

dz = αq,q+�,t,na(q+�)n+t +
∞∑

λ=q+�+1

αq,λ,t,naλn+t.

Hence using (6.23), (6.15) and (6.20) we have the same estimate as in (6.21)
and (6.22), again a contradiction.

Finally, let ρ < R, and suppose there exist f ∈ Aρ and 0 < δ < 1 such that

max
|z|=R

|∆n,�(f ; z)| ≤
( δR

ρq+�+1

)n

, (6.24)

contrary to (6.18). Dividing (6.17) by zn−t+1, 0 ≤ t ≤ q + �, and integrating
over |z| = R we get

1
2πi

∫

|z|=R

∆n,�(f ; z)
zn−t+1

dz =α0,q+�,n−t,na(q+�+1)n−t

+
∞∑

λ=q+�+1

α0,λ,n−t,na(λ+1)n−t.

Hence using (6.24), (6.15) and ( 6.20) we obtain

a(q+�+1)n−t = O

(( δ

ρq+�+1

)n

+
∞∑

λ=q+�+1

λmq

(ρ − ε)(λ+1)n

)

= O

(( δ

ρq+�+1

)n

+
1

(ρ − ε)(q+�+2)n

)

= O

(( δ

ρq+�+1

)n
)

, 0 ≤ t ≤ q + �,

provided ε > 0 is small enough. Since the numbers (q + � + 1)n − t with
n = 1, 2, . . . and t = 0, . . . , q + � cover all positive integers, we conclude that
(6.22) holds, a contradiction. �

2.7. Historical Remarks

(a) Theorem 1 is due to Cavaretta, Sharma and Varga [30]. Theorems 2 and
3 are due to Akhlagi, Jakimovski and Sharma [2].
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Theorem 4, even in the more general case when c is not necessarily a constant
but c = sn+O(1), 0 < s ≤ 1/�, was proved by Lou Yuanren [74]. It generalizes

Theorem 5, when α =
1, β = r = 0, reduces to a result of Rivlin [88] on �2-approximation on the mth
roots of unity. The more general case α = 1, β = 0, r ≥ 1 was proved by
Cavaretta, Sharma and Varga [30]. The special case α = 1, β = 0 of Theorem 7
can be found in Cavaretta, Dikshit and Sharma [24].

Theorem 8 can be found in [67], [86] or [94]. Theorems 9 and 10 are new.
Note that the results of Section 2.6 applied with ms = s, s = 1, . . . , q lead to
the results on Hermite interpolation in this chapter (where different methods
were used).

(b) As in the case of Lagrange interpolation, it is possible to get overconver-
gence results for the Hermite interpolation on the roots of the Möbius transform
mentioned in Section 1.6. Let hα

n,p,r(f ; z) be the Hermite interpolation polyno-
mial of order p on the roots

zα
k,n(r) =

rwk,n − α

1 − rwk,n
, k = 0, . . . , n, 0 < α < 1

of the polynomial

ωα
n,r(z) :=

(z + α)n+1 − rn+1(1 + αz)n+1

1 − (rα)n+1
,

where wk,n are the roots of zn+1 − 1. Sharma and Ziegler [99] proved that if
f(z) is analytic in {z ∈ C : |z + α| < R + α}, R > 1, then for 0 < r, s < 1

lim
n→∞[hn,p,r(f ; z) − hn,p,s(f ; z)] = 0,

provided

z ∈
{

z ∈ C : |z + α| <
R + α

(max (r, s))1/p

(
R + α

1 + Rα

)1/p
}

.

For further details refer to Brück [21].

the special case (3.8) due to Ivanov and Sharma [50].



CHAPTER 3

A GENERALIZATION OF THE TAYLOR SERIES TO

RATIONAL FUNCTIONS AND WALSH EQUICONVERGENCE

In this chapter we consider least square approximation when polynomials are
replaced by rational functions with given poles. Equiconvergence of the rational
functions appearing in these considerations will also be investigated. Finally, we
will consider a discrete analogue of the least square approximation for rational
functions.

3.1. Rational Functions with a Minimizing Property

If f(z) =
∞∑

ν=0
aνzν is analytic in and on the circle Γ = {z ∣∣ |z| = 1}, then the

polynomial
n−1∑

ν=0
aνzν is characterized by the property that it minimizes the least

square difference

∮

Γ

|f(z) − p(z)|2|dz|, Γ = {z∣∣ |z| = 1}

over all polynomials p(z) ∈ πn−1. It also interpolates f (ν)(z) (ν = 0, 1, . . . , n−1)
at the origin. We now give a simple generalization of the Taylor series and its
two properties for rationals with given poles.

Theorem 1. Let f(z) be analytic in and on Γ. If α1, . . . , αn are n given

numbers, |αk| > 1 (k = 1, . . . , n), and Rn(z) is the unique rational function of

the form

Rn(z) :=
Qn(z)

n∏

k=1

(z − αk)
, Qn(z) ∈ πn (1.1)

which minimizes ∮

Γ

|f(z) − Rn(z)|2|dz| (1.2)

over all Qn ∈ πn, then Rn(z) interpolates f(z) in the points 0, 1
α1

, . . . , 1
αn

.

Remarks. If one of the factors z − αk in the denominator has multiplicity
λk, then the node 1

αk
has also to have the same multiplicity for interpolation.

55
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If one of the poles αk is infinite, then it is dropped out in (1.1). This shows
that if for any integer m ≥ −1, we consider rational functions of the form

Qn+m(z)
/ n∏

k=1

(z − αk),

then

min
Qn+m∈πn+m

∮

Γ

∣
∣
∣
∣f(z) − Qn+m(z)

n∏

k=1

(z − αk)

∣
∣
∣
∣

2

|dz|

is attained when Qn+m(z) interpolates f(z)
n∏

k=1

(z − αk) at the nodes 0, 1
α1

, . . . ,

1
αn

.

Proof of Theorem 1. Rational functions of the form (1.1) can be inter-
preted as linear combinations of the linearly independent functions

1,
1

z − α1
, . . . ,

1
z − αn

. (1.3)

Taking proper linear combinations of these functions, we can obtain an orthog-
onal system r0(z) ≡ 1, . . . , rn(z) on Γ. By a theorem of Walsh [115, Ch. 6,

Theorem 1], Rn(z) =
n∑

k=0

ckrk(z) will be the solution of the minimization prob-

lem (1.1) if and only if

∮

Γ

[f(z) − Rn(z)] rk(z) |dz| = 0 , k = 0, . . . , n. (1.4)

It is well-known that each function in (1.3) can be expressed as a linear combi-
nation of r0, . . . , rn. Therefore (1.4) is equivalent to

∮

Γ

[f(z) − Rn(z)]
|dz|

z − αk
= 0 , k = 1, . . . , n, (1.5)

and ∮

Γ

[f(z) − Rn(z)] |dz| = 0. (1.6)

We have to show that if Rn(z) is the interpolating rational function of the form
(1.1) to f(z) at 0, 1

α1
, . . . , 1

αn
then (1.5) is satisfied. But (1.5) is equivalent to

∮

Γ

f(z) − Rn(z)
1 − αkz

dz = 0 , k = 1, . . . , n ,

and this is true because of the interpolating property the integrand is an analytic
function. (1.6) is also fulfilled because of the interpolation property at z = 1.
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So far we assumed that the αk’s are pairwise different. The proof easily
extends to the general case by using the corresponding Hermite interpolation
polynomials. �

From Theorem 1, it is easy to see that

f(z) − Rn(z) =
1

2πi

∮

Γ

f(t)K(t, z)dt (1.7)

where

K(t, z) =
z

n∏

ν=1
(aνz − 1)

n∏

ν=1
(t − aν)

t(t − z)
n∏

ν=1
(z − aν)

n∏

ν=1
(aνt − 1)

. (1.8)

If f(z) is analytic in |z| < ρ, ρ > 1 and if the poles αk are ≥ σ > 1, then from
(1.7) and (1.8) we can show that the sequence {Rn(z)} converges to the limit
f(z) for

|z| <
σ2ρ + ρ + 2σ

2σρ + σ2 + 1
(

> min (σ, ρ)
)
. (1.9)

For taking the circle Γρ′ , with 1 < ρ′ < ρ < ρ , we have

∣
∣
∣
∣

t − αk

αkt − 1

∣
∣
∣
∣ <

ρ′ + σ

1 + ρ′σ
and

∣
∣
∣
∣
αkz − 1
z − αk

∣
∣
∣
∣ <

σR − 1
σ − R

, R = |z| < σ.

For n sufficiently large, and for R < ρ′, the kernel K(t, z) will tend to zero if

ρ′ + σ

1 + ρ′σ
· σR − 1

σ − R
< 1.

Simplifying this we get (1.9) on letting ρ′ → ρ.

If ρ = σ, then the right side in (1.7) becomes

σ3 + 3σ

3σ2 + 1
.

If f(z) is analytic at every finite point of the z-plane, then letting ρ → ∞, we
get the region of convergence to be

σ2 + 1
2σ

.

But if we let σ → ∞, then the region of convergence is only the circle |z| < ρ

in which f(z) is analytic and Rn(z) is the Taylor section. Thus Theorem 1 is a
generalization of Taylor’s series.
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If we take f(z) = 1
z−ρ , and let α1 = α2 = · · · = αn = σ, then

Rn(z) =
−z(ρ − σ)n(z − 1

σ )n + ρ(ρ − 1
σ )n(z − σ)n

ρ(ρ − 1
σ )n(z − σ)n(z − ρ)

so that (z−σ)nRn(z) is a polynomial of degree ≤ n which interpolates 1
z−ρ at 0

and at 1
σ (multiplicity n). This shows the sharpness of the bound (1.9), because

f(z) − Rn(z) =
z(z − 1

σ )n(ρ − σ)n

ρ(ρ − 1
σ )n(z − σ)n(z − ρ)

.

If z is on the unit circle, then | zσ−1
z−σ | = 1 and f(z) − Rn(z) will tend to zero if

ρ − σ

ρσ − 1
< 1.

Remark. In Theorem 1, if in (1.1), Qn(z) ∈ πn−1, then it can be seen easily
that in order to minimize (1.2), the polynomial Qn(z) will interpolate f(z) in
the nodes 1

α1
, . . . , 1

αn
.

3.2. Interpolation on roots of zn − σnzn − σnzn − σn

We shall now consider a special case of Theorem 1 and take a rational function
rn+m,n(z) of the form

rn+m,n(z) =
Pn+m(z)
zn − σn

, σ > 0, Pn+m(z) ∈ πn+m (m ≥ −1) (2.1)

which minimizes the integral

∮

Γ

|f(z) − r(z)|2|dz|, (2.2)

r(z) the form (2.1). In this case by Theorem 1 we know that Pn+m(z) interpo-
lates f(z)(zn − σn) in the zeroes of zm+1(zn − σ−n) and we can write

f(z) − rn+m,n(z) =
1

2πi

∮

Γτ

zm+1(zn − σ−n)(tn − σn)f(t)
(zn − σn)(tn − σ−n)tm+1(t − z)

dt (2.3)

where Γτ is the circle |t| = τ , 1 < τ < ρ and f(z) ∈ Aρ.

If m = −1 , it follows from the remark in Section 3.1, that rn−1,n(z) will
interpolate f(z)(zn − σn) in the zeros of (zn − σ−n). When m = −µ, 2 ≤ µ ≤
n, then we shall show that there is a close connection between the rationals
rn−µ,n(z) and rn−1,n(z). More precisely, we have
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Lemma 1.

Pn−µ,n(z) denote the polynomial ∈ πn−µ which attains the minimum

min
Q∈πn−µ

∮

Γ

∣
∣
∣
∣f(z) − Q(z)

zn − σn

∣
∣
∣
∣

2

|dz|, f(z) ∈ Aρ. (2.4)

Then Pn−µ,n(z) is obtained by truncating the polynomial Pn−1,n(z). Indeed, we
have

Pn−µ,n(z) =
1

2πi

∮

Γτ

f(t)tµ−1(tn−µ+1 − zn−µ+1)(−σn)
(t − z)(tn − σ−n)

dt , 1 < τ < ρ . (2.5)

Proof. The problem of minimizing (2.4) is equivalent to the problem of
finding the following minimum

min
aj

∮

Γ

∣
∣f(z) −

n−µ∑

j=1

ajfj(z)
∣
∣2|dz| (2.6)

where fj(z) = zj/(zn − σn). This minimum will be attained if

∮

Γ

{
f(z) −

n−µ∑

j=0

ajfj(z) f�(z)
}
|dz| = 0, � = 0, . . . , n − µ. (2.7)

Since

f�(z) =
1
n

n−1∑

k=0

1
σn−�−1

ωk�+k

z − σωk
, ωn = 1,

and since

1
2πi

∮

Γ

f(z)
z − σω−k

|dz| =
1

2πi

∮

Γ

f(z)
z − σω−k

dz

iz

=
1
2π

∮

Γ

f(z)
z − ωk

σ

dz
1

σω−k

= i
ωk

σ
f
(ωk

σ

)
,

it follows that

1
2πi

∮

Γ

f(z) f�(z) |dz| =
1
n

n−1∑

k=0

1
σn−�−1

∮

Γ

f(z)ω−k�−k

z − σω−k
|dz|

=
i

nσn−�

n−1∑

k=0

f
(ωk

σ

)
ω−k�.

Let ρ > 1, σ > 1 and let µ be a fixed integer, 2 ≤ µ ≤ n. Let
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Similarly

1
2πi

∮

Γ

fj(z) f�(z) |dz| =
i

nσn−�

n−1∑

k=0

(ωk

σ )jω−k�

1
σn − σn

=
i

nσn−�

σ−j

(σ−n − σn)

n−1∑

k=0

ωk(j−�)

=
{ i

(1−σ2n) , j = �

0, j �= �.

So from (2.7) we get

a�

1 − σ2n
=

1
nσn−�

n−1∑

k=0

f
(ωk

σ

)
w−k� =

1
nσn−�

1
2πi

∮

Γ

n−1∑

k=0

f(t)
t − ωk

σ

ω−k�dt

=
1

nσn−�

1
2πi

∮

Γ

f(t)
n−1∑

k=0

ω−k�

t − ωk

σ

.

Since
tn−1−�

tn − σ−n
=

1
n

n−1∑

k=0

(ωk

σ )n−1−�

(ωk

σ )n−1(t − ωk

σ )
=

σ�

n

n−1∑

k=0

ω−k�

t − ωk

σ

,

so
a�

1 − σ2n
=

1
σn

1
2πi

∮

Γ

f(t)tn−1−�

tn − σ−n
dt. (2.8)

Then the polynomial

Pn−µ,n(z) =
n−µ∑

�=0

a�z
�

=
σ−n − σn

2πi

∮

Γ

f(t)tµ−1(tn−µ+1 − zn−µ+1)
(t − z)(tn − σ−n)

dt.

Writing σ−n−σn = σ−n−tn+tn−σn and splitting the above into two integrals,
we get (2.5). From (2.3)

rn−1,n(t) =
1

2πi

∮

Γ

(σn − σ−n)(zn − tn)f(t)
(zn − σn)(tn − σ−n)(t − z)

dt

and it is easily seen that (2.5) is the truncation of this. �

Remark. If we find the polynomial Pn−µ,n(z) ∈ πn−µ, 2 ≤ µ ≤ n which
minimizes

min
Q∈πn−µ

∮

Γ

∣
∣
∣f(z) − Q(z)

ω(z)

∣
∣
∣
2

|dz|, ω(z) =
n∏

j=1

|z − αj | (2.9)
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then the polynomial Pn−µ,n(z) =
n−µ∑

j=0

ajfj(z) is easily obtained by solving the

equations
n−µ∑

j=0

aj

∮

Γ

fj(z) f�(z) |dz| =
∮

Γ

f(z) f�(z) |dz|,

where we have set f�(z) = z�/ω(z) (� = 0, 1, . . . , n − µ). It can be seen by
a simple example, that the interesting property of Lemma 1 does not hold in

general when zn−σn is replaced by ω(z) =
n∏

ν=1
(z−αν), |αν | > 1. In other words,

it is not true in general that Pn−µ,n(z) is obtained by truncating Pn−1,n(z). Thus
for example

min
a,b

∮

Γ

∣
∣
∣f(z) − a

z − α1
− b

z − α2

∣
∣
∣
2

|dz| (2.10)

is attained when

R2(z) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
z−α1

1
z−α2

0

1
1

α1
−α1

1
1

α1
−α2

f( 1
α1

)

1
1

α2
−α1

1
1

α2
−α2

1
α2

f( 1
α2

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

÷
∣
∣
∣
∣
∣
∣

1
1

α1
−α1

1
1

α1
−α2

1
1

α2
−α1

1
1

α2
−α2

∣
∣
∣
∣
∣
∣

. (2.11)

Similarly,

min
a

∮

Γ

∣
∣
∣f(z) − a

(z − α1)(z − α2)

∣
∣
∣
2

|dz|

is attained when

a =
∮

Γ

f(z)
(z − α1)(z − α2)

|dz|
/∮

Γ

1
(z − α1)(z − α2)

· 1
(z − α1)(z − α2)

|dz|.

Simple calculation shows that

a =
1

α1
f( 1

α1
) − 1

α2
f( 1

α2
)

1
α1(

1
α1

−α1)(
1

α1
−α2)

− 1
α2(

1
α2

−α1)(
1

α2
−α2)

.

The value of a obtained from (2.11) on putting z = 0 is different from the value
of a above except when a1 = σ and a2 = −σ.

3.3. Equiconvergence of Rα
n+m,n(z)Rα
n+m,n(z)Rα
n+m,n(z) and rn+m,n(z)rn+m,n(z)rn+m,n(z) for m ≥ −1m ≥ −1m ≥ −1

Let Rα
n+m,n(z) denote the rational function Bn+m(z)

zn−σn , Bn+m(z) ∈ πn+m,

which interpolates (zn −σn) f(z) ∈ Aρ in the zeros of zn+m+1 −αn+m+1 where
0 �= α ∈ Dτ , τ = min (σ, ρ). Then we can write

f(z) − Rα
n+m,n(z) =

1
2πi

∮

Γτ

(zn+m+1 − αn+m+1)(tn − σn)f(t)
(zn − σn)(tn+m+1 − αn+m+1)(t − z)

dt (3.1)
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where 1 < τ < ρ and |z| < τ. From (3.1), it follows that if K = {z : |z| < τ},
then for m fixed

lim
n→∞ |f(z) − Rα

n+m,n(z)|1/n ≤ 1
τ

max {1, |z|} < 1, z ∈ K.

From (3.1), we get

Rα
n+m,n(z) =

1
2πi

∮

Γτ

(tn+m+1 − zn+m+1)(tn − σn)
(tn+m+1 − αn+m+1)(zn − σn)(t − z)

f(t) dt (3.2)

so that if ρ > σ, and f(z) =
∞∑

k=0

akzk, then for |z| > σ, we have

lim
n→∞Rα

n+m,n(z) =






0 if m = −1
1

2πi

∮
Γτ

tm+1−zm+1

t−z · f(t)
tm+1 dt =

m∑

k=0

akzk, m > −1.

(3.3)
The following theorem shows that the difference Rα

n+m,n(z) − rn+m,n(z) con-
verges to zero in a larger region. The proof (in a more general setting; see
Theorem 3 or 4) will be given later.

Theorem 2. Let ρ, σ > 1 and let |α| < min (ρ, σ). If f ∈ Aρ, and if

∆α
n+m,n(z; f) := Rα

n+m,n(z) − rn+m,n(z), (3.4)

then

lim
n→∞∆n+m,n(z; f) = 0






∀ |z| < ρ1, if σ ≥ ρ1

∀ |z| �= σ if σ < ρ1

(3.5)

where ρ1 := ρ2/|α| .

For fixed integers m ≥ −1, n > 1, set N = n+m+1, let 1
σ < |α| < min (σ, ρ),

and

αn,m(z) := αn+m+1 − zm+1σ−n, βn,m(z) := zm+1(zn − σ−n). (3.6)

Let SN,ν(z) ∈ π(ν+1)N−1 which interpolates
(
αn,m(z)

)ν(zn − σn)f(z) in the
Hermite sense in the zeros of

(
βn,m(z)

)ν+1
. We shall now prove

Lemma 2. ρ large,

lim
ν→∞

SN,ν(z)
(
αn,m(z)

)ν = (zn − σn)f(z) (3.7)

If f(z) ∈ A , then for each n sufficiently



A GENERALIZATION OF THE TAYLOR SERIES TO RATIONAL . . . 63

uniformly in |z| ≤ 1. Also

SN,ν(z) − αn,m(z)SN,ν−1(z) =
(
βn,m(z)

)ν
Pα

n+m(z; ν), ν = 1, 2, . . . (3.8)

where Pα
n+m(z; ν) ∈ πN−1. Consequently for |z| ≤ 1,

(zn − σn)f(z) =
∞∑

ν=0

(βn,m(z)
αn,m(z)

)ν

Pα
n+m(z; ν). (3.9)

Remark. When ν = 0, Pα
n+m(z; 0) interpolates (zn − σn)f(z) in the zeros

of βn,m(z) and so from the polynomial Pα
n+m(z; 0) we get

rn+m,n(z) :=
Pα

n+m(z; 0)
zn − σn

and Pα
n+m(z; 1) interpolates (zn−σn)f(z)−P α

n+m(z,0)

βn,m(z) αn,m(z) in the zeros of
βn,m(z).

Proof of Lemma 2. From the interpolation properties of SN,ν(z), we see
that SN,ν−1(z) interpolates (zn − σn)f(z)(αn,m(z))ν−1 in the zeros of
(
βn,m(z)

)ν
, while SN,ν(z) interpolates (zn − σn)f(z)

(
αn,m(z)

)ν in the zeros of
(
βn,m(z)

)ν+1
. It follows that

Sn,ν(z) − αn,m(z)Sn,ν−1(z) =
(
βn,m(z)

)ν
Pα

n+m(z, ν)

where Pα
n+m(z; ν) is a polynomial of degree ≤ N(ν +1)−1−(Nν−1+m+1) =

n + m. This proves (3.8).

In order to prove (3.7) we observe, from the definition of SN,ν(z), that

SN,ν(z) =
1

2πi

∮

Γτ

(
αn,m(t)

)ν(tn − σn)f(t)

(t − z)
(
βn,m(t)

)ν+1 {(βn,m(t)
)ν+1 − (

βn,m(z)
)ν+1}dt

(3.10)
so that

Eν(z) : = (zn − σn)f(z) − SN,ν(z)
(
αn,m(z)

)ν

=
1

2πi

∮

Γτ

{
βn,m(z)
βn,m(t)

}ν+1

·
{ αn,m(t)

αn,m(z)

}ν (tn − σn)f(t)
t − z

dt

where |α| < τ < ρ. Then it follows that

lim
ν→∞ ‖Eν(z)‖1/ν

|z|≤1 <
(1 + σ−n)(|α|n+m+1 + τm+1σ−n)

τm+1(τn − σ−n)(1 − σ−n)
< 1

for n sufficiently large.

(3.9) follows from (3.7) and (3.8). �

Since Bα
n+m(z) ∈ πn+m and it interpolates (zn − σn)f(z) in the zeros of

zn+m+1−αn+m+1, we would like to express Bα
n+m(z) in terms of the polynomials

Pα
n+m(z; ν). This is given by
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Corollary 1. For n > n0 (m, ρ, σ), we have

Bα
n+m(z) =

∞∑

ν=0

Pα
n+m(z; ν). (3.11)

Proof. If ωn+m+1 = 1, then from (3.8)

Bα
n+m(αω) = (zn − σn)f(z)]z=αω

=
∞∑

ν=0

{
βn,m(αω)
αn,m(αω)

}ν

Pα
n+m(αω; ν) =

∞∑

ν=0

Pα
n+m(αω; ν)

since zn+m+1 − αn+m+1 = βn,m(z) − αn,m(z) vanishes for z = αω and so
βn,m(αω) = αn,m(αω).

(3.11) follows from the uniqueness of Lagrange interpolation. �

We set rα
n+m,n(z, ν) := P α

n+m(z;ν)

zn−σn , and for any integer � ≥ 1, put

∆α,�
n+m,n(z; f) := Rα

n+m,n(z) −
�−1∑

ν=0

rα
n+m,n(z; ν).

We can now prove

Theorem 3. Let ρ > 1, σ > 1 and an integer m ≥ −1, be given. If

f(z) ∈ Aρ and if for any given integer � ≥ 1, and |α| < min (ρ, σ) we put

∆α,�
n+m,n(f ; z) := Rα

n+m,n(z) −
�−1∑

ν=0

rα
n+m,n(z; ν)

then

lim
n→∞∆α

n+m,n(f ; z) = 0
{

for |z| < ρ�, if σ ≥ ρ�

for |z| �= σ if σ < ρ�

(3.12)

where

ρ� := ρ�+1/(max (|α|, σ−1))�.

The convergence in (3.12) is uniform and geometric on compact subsets of the

above regions. Moreover, the result is sharp.

Proof. From (3.11), we see that

∆α,�
n+m,n(f ; z) =

∞∑

ν=�

Pα
n+m(z; ν)
zn − σn

. (3.13)
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In order to obtain an integral representation for ∆α,�
n+m,n(f ; z), we observe that

by definition

SN,ν(z) =
1

2πi

∮

Γτ

(tn − σn)f(t)
(
αn,m(t)

)ν{(βn,m(t)
)ν+1 − (

βn,m(z)
)ν+1}

(t − z)
(
βn,m(t)

)ν+1 dt

(3.14)
where τ < min (ρ, σ), so that from (3.7), we have

Pα
n+m(z; ν) =

SN,ν(z) − αn,m(z)Sn,ν−1(z)
(
βn,m(z)

)ν .

Using (3.14) and observing that

1
2πi

∮

Γτ

f(t)(tn − σn)(αn,m(t))ν−1 αn,m(t) − αn,m(z)
t − z

dt = 0

we see that

Pα
n+m(z, ν) =

1
2πi

∮

Γτ

f(t)(tn − σn)
t − z

Kν(t, z)dt

where

Kν(t, z) =
αn,m(z)βn,m(t) − αn,m(t)βn,m(z)

αn,m(t)βn,m(t)

{
αn,m(t)
βn,m(t)

}ν

.

Hence from (3.13), we see that

∆α,�
m+n,n(f ; z) =

1
2πi

∮

Γτ

f(t)
t − z

K(t, z)dt (3.15)

where for |α| < min (ρ, σ) and n sufficiently large

K(t, z) =
tn − σn

zn − σn
·

∞∑

ν=�

Kν(t, z) (3.16)

=
tn − σn

zn − σn
· αn,m(z)βn,m(t) − αn,m(t)βn,m(z)

αn,m(t)βn,m(t)

∞∑

ν=�

(
αn,m(t)
βn,m(t)

)ν

=
tn − σn

zn − σn
· αn,m(z)βn,m(t) − αn,m(t)βn,m(z)

αn,m(t)βn,m(t)

(
αn,m(t)
βn,m(t)

)�

×

× βn,m(t)
tn+m+1 − αn+m+1

=
tn − σn

zn − σn
· αn,m(z)βn,m(t) − αn,m(t)βn,m(z)

βn,m(t)(tn+m+1 − αn+m+1)

(
αn,m(t)
βn,m(t)

)�−1

.
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Denoting γ := min (|α|, σ−1), we obtain by (3.6)

|αn,m(z)| ≤ cγn, |βn,m(z)| ≤ c max (|z|, σ−1)n for all z ∈ C ,

and
|βn,m(t)| ≥ c|t|n if |t| > σ−1.

Hence using term-by-term estimates,

|αn,m(z)βn,m(t) − αn,m(t)βn,m(z)| ≤ cγn[max (|t|, σ−1)n + max (|z|, σ−1)n]

≤ cγn max (|z|, |t|) if |t| > σ−1.

Thus from (3.16) we get

|K(t, z)| ≤ c
max (|t|, σ)n

max (|z|, σ)n

γn max (|z|, |t|)n

|t|n · γn(�−1)

|t|n�

≤ c

[
max (|t|, σ)max (|z|, |t|) · γ�

max (|z|, σ) · |t|�+1

]n

(|z| �= σ, |t| > 1).
(3.17)

Now if σ ≥ ρ�+1

γ� then for |z| < ρ�+1

γ� we get |K(t, z)| ≤ c
[

σ
σ |z| γ�

|t|�+1

]n → 0 if
|t| < ρ is close enough to ρ.

On the other hand, if σ < ρ�+1

γ� then we distinguish two cases:

Case 1: ρ ≤ σ. Then from (3.17)

|K(t, z)| ≤ c

[
max (|t|, σ)γ�

|t|�+1

]n

≤ c

(
σγ�

|t|�+1

)n

→ 0 (n → ∞)

again if |t| < ρ and |t| is close enough to ρ.

Case 2: ρ > σ. Then assuming |t| > σ we get for |z| ≤ |t|

|K(t, z)| ≤ c

[ |t|2 · γ�

σ|t|�+1

]n

< c

(
σ

|t|
)(�−1)n

→ 0,

while for |z| > |t|

|K(t, z)| ≤ c

[ |t|γ�

|t|�+1

]n

= c

(
γ

|t|
)�n

→ 0

provided |t| < ρ is close enough to ρ. This completely proves Theorem 3. �

A similar result can be proved if we set B(z) := z�(m+1)(z�n − β�n), where
|β| < ρ, |β| �= |α| and where L�(m+n)(fσ, B, z) denotes the Hermite-Lagrange
interpolant of degree �(m + n + 1) − 1 to the function fσ(z) := (zn − σn)f(z)
on the zeros of B(z). Let Lm+n(fσ, α, z) denote the Lagrange interpolant to fσ

at the zeros of zm+n+1 − αm+n+1. We can then prove
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Theorem 4. Let f(z) ∈ Aρ If

α �= β (|α|, |β| < min (ρ, σ)) are given and if

∆α,β
m,n(f, z) := Lm+n(fσ, α, z) − Lm+n

(
L�(m+n)(fσ, β, z), α, z

)

then

lim
n→∞

∆α,β
m,n(f, z)
zn − σn

= 0

for |z| < σ1 if σ > σ1 := ρ�+1/
(
max(|α|, |β|))�

and for |z| �= σ if σ < σ1.

For � = 1, β = σ−1, we get Theorem 2.

Proof. Since

L�(m+n)(fσ, β, z) =
1

2πi

∮

Γτ

fσ(t)K(t, z)dt,

where 1 < τ < ρ and K(t, z) = B(t)−B(z)
(t−z)B(t) , in order to find an integral represen-

tation for ∆α,β
m,n(f, z), it is enough to find the Lagrange interpolant of K(t, z) in

the zeros of zm+n+1 − αm+n+1.

Then we obtain

Lm+n

(
K(t, ·), α, z

)
=

1
B(t)

[
t�(m+n+1) − α�(m+n+1)

tm+n+1 − αm+n+1
· tm+n+1 − zm+n+1

t − z

− β�n

(
t�(m+1) − z�(m+1)

)

t − z

]

.

Then
∆α,β

m,n(f, z)
zn − σn

=
1

2πi

∮

Γτ

fσ(t)
K1(z, t)
zn − σn

dt

where

K1(t, z) =
tm+n+1 − zm+n+1

(t − z)(tm+n+1 − αm+n+1)
− Lm+n

(
K(t, z), α, z

)

=
tm+n+1 − zm+n+1

(t − z)(tm+n+1 − αm+n+1)
α�(m+n+1) − t�(m+1)β�n

B(t)

+
β�n

(
t�(m+1) − z�(m+1)

)

(t − z)B(t)
.

Hence with the notation γ := max (|α|, |β|) we obtain
∣
∣
∣

tn − σn

zn − σn
K1(t, z)

∣
∣
∣ ≤ c

{ max (|t|, σ)
max (|z|, σ)

[ max (|t|, |z|)γ�

|t|�+1
+

|β|�
|t|�

]}n

≤ c
[ max (|t|, σ) max (|t|, |z|)γ�

max (|z|, σ)|t|�+1

]n

(|z| �= σ).

(ρ > 1) and let m ≥ −1 be a fixed integer.
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The rest of the analysis is essentially the same as in Theorem 3. �

µ ≥ 2,

then also equiconvergence holds. We can prove

Theorem 5. Let ρ, If f ∈ Aρ, suppose the

rational function Rα
n−µ,n(z) = Bn−µ(z)/(zn −σn

of zn−µ+1 − αn−µ+1 and the rational function rn−µ,n(z) with the denominator

zn − σn, minimizes ∮

Γ

|f(z) − rn−µ,n(z)|2|dz|.

Then

lim
n→∞

(
Rn−µ,n(z) − rn−µ,n(z)

)
= 0

{ ∀ |z| < ρ1, if σ > ρ1

∀ |z| �= σ if σ < ρ1

where ρ1 := ρ2/ max(|α|, σ−1).

Proof. In this case, we see that using (2.5) and (3.2)

Rn−µ,n(z) − rn−µ,n(z) =

=
1

2πi

∮

Γτ

f(t)(tn − σn)(tn−µ+1 − zn−µ+1)(tµ−1αn−µ+1 − σ−n)
(zn − σn)(t − z)(tn − σ−n)(tn−µ+1 − αn−µ+1)

dt

and the result follows as in the proof of Theorem 4. �

In order to bring out the sharpness of the result we take f̂(z) = 1
z−ρ . Then

for n ≥ 2(µ − 1), we can verify that

Bn−µ,n(f̂ , z) =
(zn−µ+1 − αn−µ+1)(ρµ−1αn−µ+1 − σn)

(ρ − z)(ρn−µ+1 − αn−µ+1)
+

σn − zµ−1αn−µ+1

ρ − z

and

Pn−µ,n(f̂ , z) =
(σn − σ−n)ρµ−1

ρn − σ−n
· (ρn−µ+1 − zn−µ+1)

ρ − z
.

From the difference of Bn−µ,n(f̂ , z) − Pn−µ,n(f̂ , z), we can verify that when
σ > ρ1 then for z0 = ρ1 = ρ2

max(|α|,σ−1) , we get

lim
n→∞

∣
∣
∣
Bn−µ,n(f̂ , z0) − Pn−µ,n(f̂ , z0)

zn
0 − σn

∣
∣
∣ =

1
ρ − ρ1

=
1

ρ − ρ2/(max(|α|, σ−1))
,

and when σ = ρ2

|α| then

lim
n→∞

∣
∣
∣
Bn−µ,n(f̂ , z) − Pn−µ,n(f̂ , z)

zn − σn

∣
∣
∣ =

|z|µ−1

|ρ − z| (|z| > σ).

) interpolates f(z) in the zeros

So far we considered m ≥ −1. We shall now show that if m = −µ,

σ > 1 and let µ ≥ 2 be fixed.
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3.4. Hermite Interpolation

We shall see how some of the above theorems hold also for Hermite interpo-
lation. For fixed integers m, r, s (m ≥ −1, 1 ≤ r ≤ s) and N = n + m + 1, let
RsN−1(f, α, z) := CsN−1(f, α, z)/(zn−σn)r, where CsN−1(f, z) is a polynomial
which interpolates (zn − σn)rf(z) in the zeros of (zN − αN )s, where |α| < ρ

and f(z) ∈ Aρ. Suppose SsN−1(f, β, z) = QsN−1(f, β, z)/(zn − σn)s where
QsN−1(f, β, z) interpolates f(z)(zn − σn)r in the zeros of zsN−rn(zn − βn)r,

where β �= α, and max (|α|, |β|) < ρ. If we set

∆α,β
N,r,s(f, z) := RrN−1(f, α, z) − SsN−1(f, β, z) (4.1)

then we can prove

Theorem 6. If f ∈ Aρ (ρ > 1) and α �= β (γ := max (|α|, |β|) < ρ), then

lim
n→∞ ∆α,β

N,r,s(f ; z) = 0 (4.2)

in the following situations:

(a) For |z| < ρ1 := ρ1+ 1
s

γ
1
s

, when σ > ρ1

(b) For |z| < ρ2 := { ρs+1

σrγ } 1
s−r , |z| �= σ, when ρ < σ < ρ1.

(c) For |z| < (ρs−r+1

γ )
1

s−r , |z| �= σ when 1 < σ < ρ.

The convergence is geometric in every compact subset of the corresponding re-

gions.

We shall prove a slightly more general result.

Theorem 7. If f(z) ∈ Aρ (ρ > 1) and if α �= β (γ < ρ) are any complex

numbers then for any integer � ≥ 1, there exist polynomials PsN−1,j(f, z) of

degree sN − 1 (j = 1, 2, . . . , � − 1) such that

lim
n→∞[∆α,β

N,r,s(f, z) −
�−1∑

j=1

PsN−1,j(f, z)/(zn − σn)r] = 0 (4.3)

for z ∈ D, where the region D is given below:

(a) D = {z∣∣ |z| < ρ/
(

γ
ρ

)�/s}, if σ ≥ ρ1+�/s/γ�/s.

(b) D =
{
z
∣
∣ |z| < ρ( ρ

σ )
r

s−r /( γ
ρ )

�
s−r , |z| �= σ

}
if 1 < (σ

ρ )s < ( ρ
γ )�.

(c) D = {z∣∣ |z| < ρ
/
( γ

ρ )
�

s−r , |z| �= σ}, if 1 < σ < ρ.

The convergence is uniform and geometric in every compact subset of D.

Proof. It is easy to see that

∆α,β
N,r,s(f, z) =

1
2πi

∮

Γτ

f(t)
t − z

(
tn − σn

zn − σn

)r

K(t, z)dt, (4.4)
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where 1 < τ < ρ, and

K(t, z) =
(

z

t

)sN−rn(
zn − βn

tn − βn

)r

−
(

zN − αN

tN − αN

)s

= K1(t, z) − K2(t, z)

on setting

K1(t, z) :=
(

z

t

)sN

−
(

zN − αN

tN − αN

)s

, (4.5)

K2(t, z) :=
(

z

t

)sN−rn[(
z

t

)rn

−
(

zn − βn

tn − βn

)r]

. (4.6)

From Lemma 1 of Chapter 2, we know that





K1(t, z) =
tN − zN

tsN

∞∑

s=1

α(j+s−1)N βj,s(zNα−N )
tjN

,

K2(t, z) =
(

z

t

)sN−rn
tn − zn

trn

∞∑

j=1

βj,r(znβ−n)
tjn

β(j+r−1)n.

(4.7)

From (4.4), (4.5), (4.6) and (4.7), we see that

∆α,β
N,r,s(z, f) =

∞∑

j=1

PsN−1,j(f, z)/(zn − σn)r

where PsN−1,j(f, z) are polynomials of degree ≤ sN −1 for each j and are given
by

PsN−1,j(f, z) :=
1

2πi

∮

Γτ

f(t)(tn − σn)rMj(t, z)dt. (4.8)

Mj(t, z) is a polynomial of degree sN − 1 and

Mj(t, z) = Mj,1(t, z) − Mj,2(t, r)

where

Mj,1(t, z) :=
(

α

t

)(j+s−1)N
βjs(zNα−N )

tN
tN − zN

t − z
∈ πsN−1, (4.9)

Mj,2(t, z) :=
(

β

t

)(j+r−1)n
βj,r(znβ−n)

tn
· tn − zn

t − z

(
z

t

)sN−rn

∈ πsN−1.
(4.10)

For any positive integer � ≥ 1, we have

∆α,β
N,r,s(f, z) −

�−1∑

j=1

PsN−1,j(f, z)/(zn − σn)r =
∞∑

j=�

PsN−1,j(f, z)/(zn − σn)r.

(4.11)
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Using Lemma 2 from Chapter 2, we see that for |z| > ρ and |t| < ρ, we have

|Mj,1(t, z)| ≤ |α|(j+s−1)N max(1, |z|N(s−1)|α|−N(s−1))|z|N
|t|sN+jN

js−1

≤ |α|jN |z|N max(|α|(s−1)N , |z|N(s−1))/|t|sN+jN js−1

≤ |α|jN |z|Ns

|t|(s+j)N
js−1.

Similarly from (4.10), we obtain

|Mj,2(t, z)| ≤ |β|jn max(|β|n(r−1), |z|n(r−1))
|t|jn+sN

|z|sN−rn+n jr−1

≤ βjn|z|sN

|t|jn+sN
jr−1.

If |t| = R < ρ and |z| > ρ, then using (4.8), we see that

|(zn − σn)−r|
∣
∣
∣

∞∑

j=�

Psn−1,j(z, f)
∣
∣
∣

≤ C

∣
∣
∣
∣

Rn + σn

|z|n − σn

∣
∣
∣
∣

r ∞∑

j=�

{ |α|jN |z|sN

RjN+sN
js−1 +

|β|jn|z|sN

Rjn+sN
jr−1

}

≤ C

∣
∣
∣
∣

Rn + σn

|z|n − σn

∣
∣
∣
∣

r |z|sn|z|s(m+1)γn

R(s+�)nR(s+�)(m+1)
×

×
∞∑

j=0

{

(j + �)s−1

( |α|
R

)jN

+ (j + �)r−1

( |β|
R

)jn}

≤ C
∣
∣
∣

Rn + σn

|z|n − σn

∣
∣
∣
r |z|snγn

R(s+�)n
.

From (4.11) and the above, we see that (4.3) holds when |z| < ρ1, if σ > ρ1 :=
(

Rs+�

γ�

)1/s

. If ρ < σ < ρ1, then (4.3) holds if

|z| < ρ2 :=
(

Rs+�

σrγ�

)1/(s−r)

and |z| �= σ.

If 1 < σ < ρ, then (4.3) holds if

|z| < ρ3 :=
(

Rs+�−r

γ�

)1/(s−r)

and |z| �= σ.
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These are the regions given in the theorem when R → ρ and completes the
proof of the theorem.

We observe that ρ1 > ρ and ρ3 > ρ, but ρ2 > ρ only if

(
ρ

γ

)�

>

(
σ

ρ

)r

and ρ2 > σ, if
(

σ

ρ

)s

<

(
ρ

γ

)�

.

�

Remark. When s = r, it can be seen from the proof that convergence holds
for |z| �= σ, when σ < ρ1.

3.5. A Discrete Analogue of Theorem 1

As before let Aρ, 1 < ρ < ∞ be the set of functions f(z) analytic in |z| < ρ

but not in |z| ≤ ρ. If q is a fixed positive integer and m = qn + c, 0 ≤ c ≤ q − 1
let Pn−1,m(z, f), m ≥ n denote the polynomial of least square approximation
f(z) on the mth roots of unity. Then

Proposition 1.

f ∈ Aρ, 1 < ρ < ∞, and if Sn−1(z, f) is the Taylor section of f(z) about the

origin of degree ≤ n − 1, then

lim
n→∞ {Pn−1,m(z; f) − Sn−1(z, f)} = 0 for |z| < ρq+1, (5.1)

the convergence being uniform and geometric in |z| ≤ r < ρq+1. Moreover the

result is sharp in the sense that (5.1) fails to be true for every |z| = ρq+1 for an

f ∈ Aρ.

We will not prove this statement, but give an extension to the case of rational
functions with denominator zn − σn, σ > 1. In order to do this we consider the
following problem:

Problem (P1).
(

2πi
qn

)

for f ∈ Aρ. We want to minimize

qn−1∑

k=0

(
f(ωk) − R(ωk, f)

)2 (5.2)

over all rational functions of the form p(z)
zn−σn , p(z) ∈ πn+m.

If q is a fixed integer ≥ 2, m = qn + c, 0 ≤ c ≤ q − 1,

Let m ≥ −1, q ≥ 2 be fixed integers and let ω = exp
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We shall denote this rational minimizing function by

Rn+m,n(z, f) =
Pn+m,n(z)
zn − σn

, Pn+m,n(z, f) = πn+m,

and replace the Taylor section in (5.1) by the rational function rn+m,n(z, f) =
Pn+m,n(z,f)

zn−σn which interpolates f(z) in the zeros of (zn − σn)zm+1.

We shall prove the following:

Theorem 8. ρ

(ρ > 1), then

lim
n→∞ {Rn+m,n(z, f) − rn+m,n(z, f)} = 0

{ |z| < ρ1+q, if σ > ρ1+q

|z| �= σ, if σ < ρ1+q

the convergence being uniform and geometric in any compact subset of the re-

gions described above. Moreover the result is sharp in the sense that for each

|z| = ρ1+q if σ > ρ1+q, there is an f ∈ Aρ for which (5.2) does not hold.

The reason for the choice of rn+m,n(z, f) is Theorem 1 in Section 3.1.

We shall need the following lemmas to prove the result.

Lemma 3. Let

P (z)
zn−σn , where P (z) =

n+m∑

j=0

cjz
j ∈ πn+m. Then the Lagrange interpolant of g(z)

on the (qn)th roots of unity is given by

Lqn−1(z, g) =
qn−1∑

ν=0

Aν,jz
ν

=
m∑

j=)

A0,jz
j +

q−1∑

ν=0

n−1∑

j=m+1

Aνn+jz
j +

q−1∑

ν=1

m∑

j=0

Aνn+jz
j

where

Aν,j = Aνn+j =






λ1cj + λqcj+n, ν = 0, 0 ≤ j ≤ m

λν+1cj , 0 ≤ ν ≤ q − 1, m + 1 ≤ j ≤ n + 1

λν+1cj + λνcj+1, 1 ≤ ν ≤ q − 1, 0 ≤ j ≤ m
(5.3)

where

λν =
σ(q−ν)n

1 − σqn
, ν = 1, . . . , q.

Let m ≥ −1, q ≥ 2 be fixed integers and let σ > 1 . If f ∈ A

m ≥ −1, q ≥ 2 be fixed integers, σ > 1 , and let g(z) =
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Proof. The Lagrange interpolant of (zn−σn)−1 in the (qn)th roots of unity
is given by

Lqn−1

(
z1(zn − σn)−1

)
=

zqn − σqn

(zn − σn)(1 − σqn)
=

q∑

ν=1

λνz(ν−1)n.

Then

P (ωk)
ωkn − σn

= λ1

n+m∑

j=0

cjω
kj + λ2

2n+m∑

j=n

cj−nωkj + · · · + λq

qn+m∑

j=(q−1)n

cj−(q−1)nωkj .

(We make the convention that λq+1 = λ1.)

In each of the q summations above, there are m+1 distinct powers of ωk which
also appear in the preceding sums. If we group the terms involving identical
powers of ωk in separate summations and then rearrange them, then we obtain

P (ωk)
ωkn − σn

=
m∑

j=0

(λ1cj + λqcj+n)ωkj +
q−1∑

ν=0

n−1∑

j=m+1

λν+1cjω
(νn+j)k

+
q∑

ν=1

m∑

j=0

(λν+1cj + λνcj+n)ω(νn+j)k

=
m∑

j=0

A0,jz
jk +

q−1∑

ν=0

n−1∑

j=m+1

Aν,jω
kj +

q∑

ν=1

m∑

j=0

Aν,jω
kj

(5.4)

where the Aν,j ’s are given by (5.3).

We have Lqn−1(ωk, f) =
qn−1∑

j=0

bjω
kj = f(ωk) (k = 0, 1, . . . , qn − 1) with

bj =
1

2πi

∮

Γτ

f(t)tqn−j−1

tqn − 1
dt, j = 0, 1, . . . , qn − 1. (5.5)

Since

Lqn−1(ωk, g) =
m∑

j=0

A0,jω
kj +

q−1∑

r=0

n−1∑

j=m+1

λν+1cjω
(νn+j)k

+
q∑

ν=1

m∑

j=0

(λn+1cj + λνcj+n)ω(2n+j)k

we have
qn−1∑

k=0

|f(ωk) − Lqn−1(ωk, g)|2 =
qn−1∑

ν=0

∣
∣
∣

qn−1∑

j=0

(bj − Aj)ωkj
∣
∣
∣
2

= qn

qn−1∑

j=0

|bj − Aj |2
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so the problem of minimizing (5.2) is equivalent to finding the minimum of

G =
qn−1∑

j=0

|bjAν,j |2 (5.6)

where the Aj ’s are given by (5.3).

We now rewrite

G =
m∑

j=0

|bj − λ1cj − λqcj+n|2 +
q−1∑

ν=0

n−1∑

j=m+1

|bj+νn − λν+1cj |2

+
q−1∑

ν=1

m∑

j=0

|bj+νn − λν+1cj − λνcj+n|2.

Therefore for 0 ≤ j ≤ m, we have

∂G

∂c̄j
= −(bj − λ1cj − λqcj+n)λ1 −

q−1∑

ν=1

(bj+νn − λν+1cj − λνcj+n)λν+1 = 0

∂G

∂c̄j+n
= −(bj − λ1cj − λqcj+n)λq −

q−1∑

ν=1

(bj+νn − λν+1cj − λνcj+n)λν = 0

which on simplifying yields for 0 ≤ j ≤ m,






αcj + βcn+j =
q−1∑

ν=0
λν+1bνn+j

βcj + αcn+j = λqbj +
q−1∑

ν=1
λνbνn+j

(5.7)

where we have set

α = λ2
1 + λ2

2 + · · · + λ2
q =

1 + σqn

1 − σ2n
λq

and

β = λqλ1 + λ1λ2 + · · · + λq−1λq =
σn + σ(q−1)n

1 − σ2n
λq.

For m + 1 ≤ j ≤ n − 1, we have

∂G

∂c̄j
=

q−1∑

ν=0

λ2
ν+1cj −

q−1∑

ν=0

λν+1bj+νn = 0
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which yields

cj =
1
α

q∑

ν=1

λνbj+(ν−1)n, m + 1 ≤ j ≤ n − 1 (5.8)

since α2 − β2 = 1−σ2(q−1)n

1−σ2n · 1
(1−σqn)2 , we find from (5.7)

cj = −bjσ
n +

σ(q−1)n(1 − σ2n)
1 − σ(q−1)2n

q−1∑

ν=1

σ−νnbj+νn, 0 ≤ j ≤ m,

cj+n = bj−n − σ2(q−1)n(1 − σ2n)
1 − σ(q−1)2n

q−1∑

ν=1

σ−νnbj+(ν−1)n, n ≤ j ≤ n + m

and for m + 1 ≤ j ≤ n − 1, we have

cj =
σ(q−1)n(1 − σ2n)

1 + σqn

q−1∑

ν=0

σ−νnbj+νn, m + 1 ≤ j ≤ n − 1.

Thus we have the

Lemma 4. The rational function Rn+m,n(z, f) = Pn+m,n(z,f)
zn−σn which mini-

mizes (5.2) is given by Pn+m,n(z, f) =
n+m∑

j=0

Pνzj where

Pj =






−bjσ
n + σ(q−1)n(1−σ2n)

1−σ(q−1)2n

q−1∑

ν=1
σ−νnbj+νn, 0 ≤ j ≤ m ,

σ(q−1)n(1−σ2n)
1+σqn

q−1∑

ν=0
σ−νnbj+νn, m + 1 ≤ j ≤ n − 1 ,

bj−n − σ2(q−1)n(1−σ2n)
1−σ(q−1)n

q−1∑

ν=1
σ−νnbj+(ν+1)n, n ≤ j ≤ n + m.

(5.9)

Recall that rn+m,n(z, f) = Pn+m,n(z,f)
zn−σn where Pn+m,n(z, f) interpo-

lates f(z)(zn − σn) in the zeros of (zn − σn)zm+1. Thus

Pn+m,n(z, f) =
1

2πi

∮

Γτ

f(t)(tn − σn)
tm+1(tn − σn) − zm+1(zn − σ−n)

tm+1(tn − σ−n)
dt .

Hence

rn+m,n((z, f) =
1

2πi

∮

Γτ

(tn − σn)f(t)
zn − σn

· tm+1(tn − σ−n) − zm+1(zn − σ−n)
tm+1(tn − σ−n)

dt

=
1

2πi

∮

Γτ

(tn − σn)f(t)
zn − σn

3∑

j=1

Aj(t, z)dt
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where we have set

A1(t, z) =
tm+1 − zm+1

tm+1(t − z)
, A2(t, z) =

zm+1(tn−m−1 − zn−m−1)
(tn − σ−n)(t − z)

,

A3(t, z) =
zn(tm+1 − zm+1)

tm+1(tn − σ−n)(t − z)
.

(5.10)

Using the values of Pj ’s in Lemma 4, we see that

Rn+m,n(z, f) =
P1(z) + P2(z) + P3(z)

zn − σn

where





P1(z) = −σn
m∑

j=0

bjz
j + σ(q−1)n(1−σ2n)

1−σ(q−1)2n

q−1∑

ν=1
σ−νn

m∑

j=0

bj+νnzj ,

P2(z) = σ(q−1)n(1−σ2n)
1+σqn

q−1∑

ν=0
σ−2n

n−1∑

j=m+1

bj+νnzj ,

P3(z) =
n+m∑

j=n

bj−nzj − σ2(q−1)n(1−σ2n)
1−σ(q−1)2n

q−1∑

ν=1
σ−νn

n+m∑

j=n

bj+(ν−1)nzj .

(5.11)

We use the formula for bj in (5.5) in the above expressions for P1(z), P2(z) and
P3(z). Thus

Rn+m,n(z, f) =
3∑

j=1

Pj(z)
zn − σn

,

where using (5.9), we have





P1(z) =
m∑

j=0

Pjz
j = −σn

m∑

j=0

bjz
j+

+σ(q−1)n(1 − σ2n)(1 − σ(q−1)2n)−1
q−1∑

ν=1
σ−νn

m∑

j=0

bj+νnzj

P2(z) = σ(q−1)n(1 − σ2n)(1 + σqn)−1
q−1∑

ν=0
σ−νn

n−1∑

j=m+1

bj+νnzj ,

P3(z) =
n+m∑

j=n

bj−nzj − σ2(q−1)n(1 − σ2n)(1 − σ(q−1)2n)−1
q−1∑

ν=1
σ−νn×

×
n+m∑

j=n

bj(ν−1)nzj .

(5.12)
Using (2.5) in the above and simplifying, we obtain

P1(z) = − σn

2πi

∮

Γτ

f(t)tqn

tqn − 1
· tm+1 − zm+1

(t − z)tm+1
+

σ(q−1)n(1 − σ2n)
1 − σ(q−1)2n

×

× 1
2πi

∮

Γτ

f(t)
tqn − 1

m∑

j=0

q−1∑

ν=1

zjtqn−j−νn−1dt

=
1

2πi

∮

Γτ

f(t)
tqn − 1

A1(t, z){σ−(q−2)nB(t, σ) − tqnσn}dt

(5.13)



78 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

where A1(t, z) = tm+1−zm+1

(t−z)tm+1 and B(t, σ) = tn(t(q−1)n−σ−(q−1)n)(1−σ−2n)
(tn−σ−n)(1−σ−2(q−1)n)

. Simi-
larly,

P2(z) =
σ−n − σn

1 + σ−qn

1
2πi

∮

Γτ

f(t)
tqn − 1

· tqn − σ−qn

tn − σ−n

zm+1(tn−m−1 − zn−m−1)
t − z

dt

=
1

2πi

∮

Γτ

f(t)
tqn − 1

· (tqn − σ−qn)(σ−n − σn)
1 + σ−qn

×

× zm+1(tn−m−1 − zn−m−1)
(t − z)(tn − σ−n)

dt (5.14)

where

A2(t, z) =
zm+1(tn−m−1 − zn−m−1)

(t − z)(tn − σ−n)
, B2(t, σ) =

(tqn − σ−qn)(σ−n − σn)
1 + σ−qn

.

Lastly, in the same way from (5.9) and (5.11), we get

P3(z) =
n+m∑

j=n

bj−nzj − σ2(q−1)n(1 − σ2n)
1 − σ(q−1)2n

q−1∑

ν=1

n+m∑

j=n

σ−νnzjbj+(ν−1)n

= zn
m∑

j=0

bjz
j − σ2(q−1)n(1 − σ2n)

1 − σ(q−1)2n
zn

q−1∑

ν=1

m∑

j=0

σ−νnzjbj+νn

= zn 1
2πi

∮

Γτ

f(t)
tqn − 1

m∑

j=0

tqn−j−1zj−

− σ2(q−1)n(1 − σ2n)
1 − σ(q−1)2n

zn

q−1∑

ν=1

m∑

j=0

σ−νnzj 1
2πi

∮

Γτ

f(t)
tqn − 1

tqn−νn−j−1dt

=
zn

2πi

∮

Γτ

f(t)tqn

tqn − 1
tm+1 − zm+1

tm+1(t − z)
dt

− 1 − σ−2n

1 − σ−(q−1)2n
σ2n zn

2πi

∮

Γτ

f(t)tqn

tqn − 1
· (tσ)−n − (tσ)−qn

1 − (tσ)−n
×

× tm+1 − zm+1

(t − z)tm+1
dt.

Putting A3(t, z) = zn(tm+1 − zm+1)((t − z)(tn − σ−n))−1 , we have

P3(z) =
1

2πi

∮

Γτ

f(t)tqn

tqn − 1
(tn − σ−n))A3(t, z)

− 1
2πi

(1 − σ−2n)σn

1 − σ−(q−1)2n

∮

Γτ

tn(t(q−1)n − σ−(q−1)n)
tn − σ−n

f(t)
tqn − 1

A3(t, z)dt

=
1

2πi

∮

Γτ

f(t)
tqn − 1

(tn − σ−n){tqn − σnB(t, σ)}A3(t, z)dt

(5.15)
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where we have set

B(t, σ) =
tn(t(q−1)n − σ−(q−1)n)(1 − σ−2n)

(tn − σ−n)(1 − σ−(q−1)2n)
.

Combining (5.13), (5.14) and (5.15), we have

Rn+m,n(z, f) =
1

2πi

∮

Γτ

f(t)
tqn − 1

A1(t, z)
zn − σn

B1(t, σ)dt

+
1

2πi

∮

Γτ

f(t)
tqn − 1

A2(t, z)
tqn − 1

B2(t, σ)
zn − σn

dt

+
1

2πi

∮

Γτ

f(t)
tqn − 1

A3(t, z)
tqn − 1

B3(t, σ)
zn − σn

dt,

where

B3(t, σ) = (tn − σ−n){tqn − σnB(t, σ)},
B1(t, σ) = σ−(q−2)nB(t, σ) − tqnσn

and

B2(t, σ) =
(tqn − σ−qn)(σ−n − σn)

1 + σ−qn
.

This gives

Rn+m,n(z, f) − rn+m,n(z, f) =
1

2πi

∮

Γτ

3∑

i=1

Aj(t, z)Kj(t, σ)
(zn − σn)(t − z)(tqn − 1)

dt

where

K1(t, z) = σ−(q−2)nB(t, σ) − tqnσn − (tqn − 1)(tn − σn)

= σ−(q−2)nB(t, σ) − t(q+1)n + tn − σn,
(5.16)

K2(t, z) = B2(t, σ) − (tqn − 1)(tn − σn)

=
(tqn − σ−qn)(σ−n − σn)

1 + σ−qn
+ tqnσn − t(q+1)n + tn − σn

=
tqnσ−n(1 + σ−(q−2)n) − σ−qn(σ−n − σn)

1 + σ−qn
− t(q+1)n + tn − σn

(5.17)
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and

K3(t, z) = (tn − σn){tqn − σnB(t, σ)} − (tqn − 1)(tn − σn)

= tqn(tn − σ−n) − σntn(t(q−1)n − σ−(q−1)n)(1 − σ−2n)
1 − σ−2(q−1)n

− t(q+1)n + tn − σn + tqnσn

= tqn(σn − σ−n)
(
1 − 1

1 − σ−2(q−1)n

)
− tnσ−qn(σ2n − 1)

1 − σ−2(q−1)n
+ tn − σn

=
tnσ−qn(σ2n − 1){t(q−1)nσ−(q−1)n − 1}

1 − σ−2(q−1)n
+ tn − σn.

(5.18)
An analysis of the kernels Aj(t, z) and Kj(t, σ), j = 1, 2, 3 above yields the
result.

To prove that the result is sharp, we consider the point z∗ = ρ1+q and the
function f̂(z) = (z − ρ)−1. A direct computation shows that

Rn+m,n(z, f̂) − rn+m,n(z, f̂) =
3∑

j=1

Aj(ρ, z)Kj(ρ, σ)
(zn − σn)(z − ρ)(ρqn − 1)

.

If σ > ρ1+q, we get after some simple calculations that

lim
n→∞ Rn+m,n(ρ1+q, f) − rn+m,n(ρ1+q, f) =

ρq

ρq − 1
.

3.6. Historical Remarks

Theorem 1 is due to Walsh [113]. The special case α = 1 of Theorems 3 and 5
was proved by Saff and Sharma [91]. Case (a) of Theorem 6 with α = 1, β = 0
is a result of Bokhari and Sharma [16]. Theorem 6 with � = 1, β = σ−1 is
Theorem 2.2 from [16]. For � > 1, Theorem 6 and Theorem 3.3 from [16] are
not comparable. Proposition 1 is due to Rivlin [88].



CHAPTER 4

SHARPNESS RESULTS

4.1. Lagrange Interpolation

In Chapter 1, Section 3, we gave upper estimates, for the order of overcon-
vergence in the corresponding domain in case of Lagrange interpolation. Now
we examine how sharp these estimates are.

Theorem 1. If f(z) ∈ Aρ and if � ≥ 1 is any given integer, then

lim
n→∞ max

|z|=µ
|Ln−1(f ; z) −

�−1∑

j=0

pn−1,j(f ; z)|1/n =






1
ρ� if 0 < µ < ρ

µ
ρ�+1 if µ ≥ ρ.

(1.1)

Proof. Let

f(z) =
∞∑

k=0

akzk ∈ Aρ, ρ > 1,

then ak = O
(
(ρ − ε)−k

)
for all ε > 0. Denoting

∆n,�(f ; z) := Ln−1(f ; z) −
�−1∑

j=0

pn−1,j(f ; z) =
∞∑

j=�

n−1∑

k=0

ak+jnzk, (1.2)

let ε > 0 be so small that in case µ < ρ, we have µ < ρ − ε as well. Then

∆n,�(f ; z) =
n−1∑

k=0

a�n+kzk + O
( n−1∑

k=0

|z|k(ρ − ε)−(�+1)n−k
)

=
n−1∑

k=0

a�n+kzk +

{
O
(
(ρ − ε)−(�+1)n

)
if 0 ≤ µ < ρ

O(
(
µn(ρ − ε)−(�+2)n

)
if µ ≥ ρ. (1.3)

Hence, the first upper estimate in (1.1) follows from

∣
∣
∣

n−1∑

k=0

a�n+kzk
∣
∣
∣ = O

(
(ρ − ε)−�n

)
, µ < ρ − ε

81
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when letting ε → 0. The second upper estimate in (1.1) would follow also easily,
but this has already been proved in Theorem 7 of Chapter 1.

So we have to prove the lower estimates in (1.1). We obtain from (1.2) for
0 < µ < ρ

|a�n+k| =
1
2π

∣
∣
∣

∫

Γµ

∆n,�(f ; z)
zk+1

dz
∣
∣
∣ + O

(
(ρ − ε)−(�+1)n

)
, 0 ≤ k ≤ � − 1. (1.4)

Since f ∈ Aρ, there exists a sequence m1 < m2 < . . . , mj = �nj + kj , 0 ≤ kj ≤
� − 1 such that

amj
≥ (ρ + ε)−�nj

for sufficiently large j. Thus we obtain from (1.4)

max
|z|=µ

|∆nj ,�(f ; z)| ≥ c1(ρ + ε)−�nj − c2(ρ − ε)−(�+1)nj ≥ c3(ρ + ε)−�nj

if ε > 0 is small and j is large enough. Hence

lim
n→∞ max

|z|=µ
|∆n,�(f ; z)|1/n ≥ lim

j→∞
max
|z|=µ

|∆nj ,�(f, z)|
1

nj

>= (ρ + ε)−�, 0 < µ < ρ

and this yields the result since ε > 0 was arbitrary.

Finally, let µ ≥ ρ. Then (1.2) leads to

|a�n+k| =
1
2π

∣
∣
∣

∫

Γµ

∆n,�(f ; z)
zk+1

dz
∣
∣
∣+ O

(
(ρ− ε)−(�+2)n

)
, n− �− 1 ≤ k ≤ n− 1.

Choosing a sequence m! < m2 < . . . , mj = �nj + kj , nj − � − 1 ≤ kj ≤ nj − 1
such that

amj
≥ (ρ + ε)−(�+1)nj

for sufficiently large j, we obtain

max
|z|=µ

|∆nj ,�(f ; z)| ≥ C1µ
nj (ρ + ε)−(�+1)nj − C2µ

nj (ρ − ε)−(�+2)nj

≥ C3µ
nj (ρ + ε)−(�+1)nj

provided ε > 0 is small and j is large enough. Hence

lim
n→∞ max

|z|=µ
|∆n,�(f ; z)|1/n ≥ lim

j→∞
max
|z|=µ

|∆nj ,�(f ; z)|
1

nj

≥ µ(ρ + ε)−�−1, µ ≥ ρ
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which proves the second lower estimate in (1.1). �

(1.1) can be reformulated as

lim sup
n→∞

max
|z|=µ

|∆n,�(f ; z)|1/n = K�(ρ, µ) :=
{

ρ−�, if µ ≤ ρ
µ

ρ�+1 , if µ ≥ ρ.

Theorem 1 asserts that on each circle |z| = µ > 0, the best possible error
estimate is indeed attained. The next question which naturally arises is the
following: Is it possible to get, at some points, better estimates than those
stated in (1.1)? More exactly, let

B�(f ; z) := lim sup
n→∞

|∆n,�(f ; z)|1/n

and
δ�,ρ(f) := {z |B�(f ; z) < K�(ρ, |z|)}.

The elements of the set δ�,ρ(f) are called (�, ρ)-distinguished or (�, ρ)−exceptio-

nal points.

First, note that for z = 0, Theorem 1 does not give any information. Indeed,
(1.3) shows that

∆n,�(f ; 0) = a�n + O
(
(ρ − ε)−(�+1)n

)

and evidently there exists f ∈ Aρ such that a� = a2� = a3� = · · · = 0 and then

lim
n→∞ |∆n,�(f ; 0)|1/n ≤ (ρ − ε)−�−1 < ρ−�

if ε > 0 is small enough, i.e., (1.1) is not true for µ = 0 in this case.

In general, it is rather exceptional that the general error term in (1.1) is not
attained. This will be shown in the next theorem.

Theorem 2. Let f(z) ∈ Aρ, ρ > 1. Then

lim
n→∞ |∆n,�(f ; z)|1/n =

1
ρ�

(1.5)

for all but at most � − 1 points in 0 < |z| < ρ; and

lim
n→∞ |∆n,�(f ; z)|1/n =

|z|
ρ�+1

(1.6)

for all but at most � points in |z| > ρ.

SHARPNESS RESULTS
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In other words, the set of distinguished points consists of at most � − 1 and
� elements in |z| < ρ and |z| > ρ, respectively.

Proof. Let first 0 < |z| < ρ − ε with some ε > 0, then

hn(z) : = ∆n,�(f ; z) − z�∆n+1,�(f ; z) (1.7)

=
n−1∑

k=0

a�n+kzk −
n∑

k=0

a�n+�+kz�+k + O
(
(ρ − ε)−(�+1)n

)

=
�−1∑

k=0

a�n+kzk + O
(|z|n(ρ − ε)−(�+1)n

)
.

Assume the contrary: we have 0 < |zj | < ρ, j = 1, . . . , � such that

lim
n→∞ |∆n,�(f ; zj)|1/n <

1
ρ�

, j = 1, . . . , �.

Then by (1.7) we also get

lim
n→∞ |hn(zj)|1/n <

1
ρ�

, j = 1, . . . , �, (1.8)

i.e.,
�−1∑

k=0

a�n+kzk
j = βjn, j = 1, . . . , �, (1.9)

where
βj,n = hn(zj) + O

(|zj |n(ρ − ε)−(�+1)n
)
.

Here by (1.8 ), supposing |zj | < ρ − ε, we get

lim
n→∞ |βj,n|1/n <

1
ρ�

, j = 1, . . . , �.

Solving the system of equations (1.9) for a�n+k, we obtain (since zj are inde-
pendent of n) with m = �n + k, 0 ≤ k ≤ � − 1,

lim
m→∞ |am|1/m ≤ max

1≤j≤�
lim

n→∞ |βj,n| 1
n · n

�n+k <
1
ρ

which contradicts f ∈ Aρ.

Now let |z| > ρ. Then we have

hn(z) =
n−1∑

k=0

a�n+kzk −
n∑

k=0

a�n+�+kz�+k + O
(|z|n(ρ − ε)−(�+2)n

)

(1.10)

= −
�∑

k=0

a(�+1)n+kzn+k + O
(
(ρ − ε)−�n + |z|n(ρ − ε)−(�+2)n

)
.
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Assuming again

lim
n→∞ |∆n,�(f ; zj)|1/n <

|zj |
ρ�+1

, j = 1, . . . , � + 1,

we also have

lim
n→∞ |hn(zj)|1/n <

|zj |
ρ�+1

, j = 1, . . . , � + 1. (1.11)

Thus from (1.10)

�∑

k=0

a(�+1)n+kzk
j = βjn, j = 1, . . . , � + 1 (1.12)

where

βj,n = z−n
j hn(zj) + O

(|zj |−n(ρ − ε)−�n + (ρ − ε)−(�+2)n
)
, j = 1, . . . , � + 1.

Here by (1.11)

lim
n→∞ |βj,n|1/n <

1
ρ�+1

, j = 1, . . . , � + 1

provided ε > 0 is so small that

ρ�+1 < min
(|zj |(ρ − ε)�, (ρ − ε)�+2

)
, j = 1, . . . , � + 1.

But then from (1.10), with m = (� + 1)n + k, 0 ≤ k ≤ �, we get

lim
m→∞ |am|1/m ≤ max

1≤j≤�+1
lim

n→∞ |βj,n|
1
n

n
(�+1)n+k <

1
ρ

,

again a contradiction. �

We now show that distinguished points appearing in Theorem 2 indeed exist.
This will be seen from an example given in the next theorem.

Theorem 3. (i) Given arbitrary points 0 < |zj | < ρ, j = 1, . . . , λ, λ ≤ �−1,

there exists a function f1 ∈ Aρ such that

lim
n→∞ |∆n,�(f1; zj)|1/n ≤ max (|zj |, 1)

ρ�+1
, j = 1, . . . , λ; (1.13)

and at all other points |z| < ρ, (1.5) holds.

(ii) Given arbitrary points |zj | > ρ, j = 1, . . . , λ; λ ≤ �, there exists a function

f2 ∈ Aρ such that

lim
n→∞ |∆n,�(f2; zj)|1/n ≤ max(|zj |, ρ2)

ρ�+2
, j = 1, . . . , λ; (1.14)
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and at all other points |z| > ρ, (1.6) holds.

Proof. (i) The system of equations

λ∑

k=1

ckzk
j = 1, j = 1, . . . , λ (1.15)

has a unique solution in ck’s, since it has a non-zero system determinant (Van-
dermonde). From this solution we construct

f1(z) = z�−λ−1
( λ∑

k=1

ckzk − 1
) ∞∑

m=0

(z

ρ

)�m

∈ Aρ.

This function has the Taylor coefficients

a�m+k :=






0 if 0 ≤ k ≤ � − λ − 2,

−ρ�m if k = � − λ − 1, m = 0, 1, . . . ,

ck−�+λ+1ρ
−�m if � − λ ≤ k ≤ � − 1.

(1.16)

Now (1.16) and (1.15) imply that

�−1∑

k=0

a�m+kzk
j = ρ−�m

(
− z�−λ−1

j +
�−1∑

k=�−λ

ck−�+λ+1z
k
j

)
(1.17)

= ρ−�mz�−λ−1
j

( λ∑

k=1

ckzk
j − 1

)
= 0, j = 1, . . . , λ.

For a positive integer n, let the integers r and s (0 ≤ s < �) be determined such
that �r + s = (� + 1)n. Then by (1.17 ) we get

n−1∑

k=0

a�n+kzk
j = z

�(r−n)
j

s−1∑

k=0

a�r+kzk
j +

r−1∑

ν=n

z
�(ν−n)
j

�−1∑

k=0

a�ν+kzk
j

= z
�(r−n)
j

s−1∑

k=0

a�r+kzk
j

= O
( |zj |�(r−n)

ρ�r

)
= O

( |zj |n
ρ(�+1)n

)
, j = 1, . . . , λ.

Hence by (1.3) and |zj | < ρ (j = 1, . . . , λ) ,

∆n,�(f1; zj) = O
( |zj |n

ρ(�+1)n
+

1
(ρ − ε)(�+1)n

)
, j = 1, . . . , λ,
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and since ε > 0 was arbitrary, (1.13) follows.

In order to show that at all other points 0 < |z| < ρ, (1.5) holds, we get from
(1.7) and (1.16) (denoting c0 = −1)

�−1∑

k=0

a�n+kzk = ρ−�n
�−1∑

k=�−λ−1

ck−�+λ+1z
k = hn(z) + O

(|z|n(ρ − ε)−(�+1)n
)
.

(1.18)
Now if (1.5) does not hold then there exists an a, 0 < a < 1 such that

|∆n,�(f1; z)| = O

(
an

ρ�n

)

, i.e., |hn(z)| = O

(
an

ρ�n

)

.

Thus (1.18) yields

z�−λ−1
λ∑

k=0

ckzk = O
(
an +

|z|nρ�n

(ρ − ε)(�+1)n

)
→ 0 as n → ∞,

provided ε > 0 is so small that 0 < |z| < (ρ−ε)�+1

ρ� . Hence

λ∑

k=1

ckzk = 1,

and therefore by (1.15), z must be one of the zj ’s.

(ii) Again, we consider the system of equations (1.15), but now with |zj | > ρ

and λ ≤ �. The solution of this system defines a function

f2(z) := z�−λ
( λ∑

k=1

ckzk − 1
) ∞∑

m=0

(z

ρ

)(�+1)m ∈ Aρ,

whose Taylor coefficients are

a(�+1)m+k :=






0 if 0 ≤ k ≤ � − λ − 1 ,

−ρ−(�+1)m if k = � − λ ,

ck−�+λρ−(�+1)m if � − λ + 1 ≤ k ≤ � ,

(1.19)

for m = 0, 1, 2, . . . .

Hence and by (1.15)

�∑

k=0

a(�+1)m+kzk
j = ρ−(�+1)m

(
− z�−λ

j +
�∑

k=�−λ+1

ck−�+λzk
j

)
(1.20)

= ρ−(�+1)mz�−λ
j

( λ∑

k=1

ckzk
j − 1

)
= 0, j = 1, . . . , λ.
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For a positive integer n, let the integers r and s (0 ≤ s < �+1) be determined
such that �n + s = (� + 1)r. Then by (1.20)

n−1∑

k=0

a�n+kzk
j =

s−1∑

k=0

a�n+kzk
j +

n−1∑

ν=r

z
(�+1)r−�n
j

�∑

k=0

a(�+1)ν+kzk
j

=
s−1∑

k=0

a�n+kzk
j = O(ρ−�n), j = 1, . . . , λ.

Hence and by (1.3)

∆n,�(f2; zj) = O
(
ρ−�n +

|zj |n
(ρ − ε)(�+2)n

)
= O

(
max(|zj |n, ρ2n)
(ρ − ε)(�+2)n

)

, j = 1, . . . , λ,

whence (1.14) follows, since ε > 0 was arbitrary.

Finally, (1.10) and (1.19) imply (denoting c0 = −1)

�∑

k=0

a(�+1)n+kzk+n = ρ−(�+1)n
�∑

k=�−λ

ck−�+λzk+n (1.21)

= −hn(z) + O
(max(|z|n, ρ2n)

(ρ − ε)(�+2)n

)
.

If (1.6) does not hold then there exists an a, 0 < a < 1, such that

∆n,�(f2; z)| = O
( an|z|n

ρ(�+1)n

)
, i.e., |hn(z)| = O

( an|z|n
ρ(�+1)n

)
.

Thus (1.21) yields

z�−λ
λ∑

k=0

ckzk = O
(
an +

ρ(�+1)n

(ρ − ε)(�+2)n
+

ρ(�+3)n

|z|n(ρ − ε)(�+2)n

)
→ 0 as n → ∞

provided |z| > ρ�+3

(ρ−ε)�+2 . Hence

λ∑

k=0

ckzk = 0

which shows, by (1.15), that z must be one of the zj ’s. �

So far distinguished points on the circle |z| = ρ were excluded. Next we
show that any distinct � + 1 points on this circle can always be preassigned as
distinguished points.
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Theorem 4. Given any distinct �+1 points zj , with |zj | = ρ, j = 1, . . . , �+1,

there exists a function f3(z) ∈ Aρ such that

lim
n→∞ |∆n,�(f3; zj)|1/n ≤ 1

ρ�+1
, j = 1, . . . , � + 1. (1.22)

Proof. Consider the system of equations

�∑

s=0

b(�+1)n+sw
n+s
j =

�−1∑

k=0

b�n+kwk
j , wj = zjρ

−1, j = 1, . . . , � + 1 (1.23)

in the unknowns {b(�+1)n+s}�
s=0. It is uniquely solvable, since the determinant

of the system is Vandermonde:

b(�+1)n+s =
�−1∑

k=0

ck,s,nb�n+k, s = 0, . . . , � (1.24)

where

|ck,s,n| ≤ M1, k = 0, . . . , � − 1; s = 0, . . . , �; n = 1, 2, . . .

(M1 > 0 is independent of n). Let n0 = � + 2 and set b0 = b1 = · · · = b�n0−1 =
b�n0 = 1. Then the next n0 − 1 = � + 1 numbers b�n0+1, . . . , b(�+1)n0−1 can be
determined from the system of equations

n0−1∑

k=0

b�n0+kwk
j = 0, j = 1, . . . , � + 1. (1.25)

Using (1.24) successively with n = n0, n0 + 1, . . . , we determine all the bk, k ≥
(� + 1)n0, in turn uniquely.

We now show that
lim

n→∞ |bn|1/n = 1. (1.26)

For any positive integer ν, let ν = (�+1)n+k, 0 ≤ k < �+1. Then from (1.24)
we have

|bν | ≤ M1� · max
�n≤j<�(n+1)

|bj | ≤ M1� · max
j≤�n+�

|bj | ≤ M1� · max
j≤ν�/(�+1)+�

|bj |.

If we set ϕ(x) = max
ν≤x

|bν | then

ϕ(N) ≤ M1� · max
j≤N�/(�+1)+�

|bj | = M1�ϕ
( �N

� + 1
+ �

)
,
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so that

ϕ(N) ≤ (M1�)sϕ
(( �

� + 1
)s

N + �

s−1∑

j=0

( �

� + 1
)j
)

≤ (M1�)sϕ
(( �

� + 1
)s

N + �(� + 1)
)
, s = 1, 2, . . . .

Now let

s =
[ log N

�(�+1)

log
(
1 + 1

�

)
]

+ 1,

then the previous iterative estimate yields

ϕ(N) ≤ (M1�)sϕ
(
2�(� + 1)

)

whence
lim

n→∞ |bn|1/n ≤ 1. (1.27)

In order to show the opposite inequality, we observe that from the first �

equations in (1.23) we get

b�n+k =
�∑

s=0

ds,k,nb(�+1)n+s, k = 0, . . . , � − 1 (1.28)

where

|ds,k,n| ≤ M2, s = 0, . . . , �; k = 0, . . . , � − 1; n = 1, 2, . . .

(M2 > 0 is independent of n). Let m0 = �n0, and choose m1 > m0 such that

|bm1 | = max
(�+1)n0≤s<(�+1)(n0+1)

|bs|.

Then by (1.28) (with n = n0, k = 0)

1 = bm0 ≤ M2(� + 1)|bm1 |. (1.29)

Proceeding inductively, in general let mt = �nt + kt, 0 ≤ kt < � be defined,
then mt+1 is defined by

|bmt+1 | = max
(�+1)nt≤s<(�+1)(nt+1)

|bs|,

so that by (1.28) (with n = nt, k = kt)

|bmt
| ≤ M2(� + 1)|bmt+1 |, t = 0, 1, . . . .
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Hence and by (1.29),

bmt ≥ (M2(� + 1))−t, t = 0, 1, . . . . (1.30)

Since (� + 1)nt ≤ mt+1, we get

nt =
mt − kt

�
≥ (� + 1)nt−1 − � + 1

�
≥ · · · ≥

(� + 1
�

)t

n0 − � − 1
�

t−1∑

j=0

(� + 1
�

)j

>
(� + 1

�

)t

(n0 − � + 1) >
(� + 1

�

)t

, t = 1, 2, . . . .

Thus

t ≤ log nt

log �+1
�

≤ log mt

�

log �+1
�

,

and (1.30) yields

bmt
≥ (M2(� + 1))− log

mt
� / log �+1

� , t = 1, 2, . . .

whence
lim

t→∞ |bmt
|1/mt ≥ 1.

This together with (1.27) proves (1.26).

We now set ak := ρ−kbk, k = 0, 1, . . . and f3(z) :=
∑∞

0 akzk. From (1.26)
we have lim

n→∞|an|1/n = ρ−1, i.e., f3 ∈ Aρ. Also following the reasoning in (1.7)

and (1.10), we get for |z| = ρ,

hn(z) =
�−1∑

k=0

a�n+kzk −
�∑

k=0

a(�+1)n+kzn+k + O
(
(ρ − ε)−(�+1)n

)
,

whence using (1.23), we have

hn(zj) = ∆n,�(f3; zj) − z�
j∆n+1,�(f3; zj) = O

(
(ρ − ε)−(�+1)n

)
,

j = 1, . . . , � + 1.

Thus

|∆n,�(f3; zj) − z�n
j ∆2n,�(f3; zj)| = |

n−1∑

s=0

z�s
j

(
∆n+s,�(f3, zj) − z�

j∆n+s+1,�(fs; zj)
)

≤
n−1∑

s=0

|∆n+s,�(f3; zj) − z�
j∆n+s+1,�(f3; zj)|

= O
(
n(ρ − ε)−(�+1)n

)
, j = 1, . . . , �,
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whence using (1.1)

|∆n,�(f3; zj)| = |∆2n,�(f3; zj) + O
(
n(ρ − ε)−(�+1)n

)

= O
(
ρ−2�n + n(ρ − ε)−(�+1)n

)
, j = 1, . . . , � + 1,

i.e.,

lim
n→∞|∆n,�(f3; zj)| 1

n ≤ (ρ − ε)−�−1, j = 1, . . . , � + 1.

Since ε > 0 is arbitrary, this proves the theorem.

We now want to give general conditions for a given set of points Z = U ∪ V

to be distinguished, where

U = {u1, . . . , uµ}, V = {v1, . . . , vν}

with

|uj | < ρ (j = 1, . . . , µ), |vj | > ρ (j = 1, . . . , ν).

Set

X =






1 u1 . . . u�−1
1

...
...

...
1 uµ . . . u�−1

µ




 , Y =






1 v1 . . . v�
1

...
...

...
1 vnu . . . v�

ν






and

M = M(X,Y ) =
















X
X

. . .
X

Y
Y

. . .
Y
















,

where X is repeated � + 1 times and Y is repeated � times. (The Y ’s begin
below the last row of the last X.)

Theorem 5.

rankM < �(� + 1).

As a corollary, we obtain the following reformulation of Theorem 2:

The set Z defined above is (�, ρ)-distinguished if and only if



93

Corollary 1. If either µ ≥ � or ν ≥ �+1 (i.e., there are at least � points in

|z| < ρ or at least � + 1 points in |z| > ρ), then Z is not an (�, ρ)-distinguished
set.

Namely, if µ ≥ �, we take the minor of M which consists of the first � rows
of each X in M . Its determinant is the (� + 1)th power of the Vandermonian of
U , thus nonzero. Similar reasoning applies for the set V if ν ≥ � + 1.

The second corollary is a reformulation of Theorem 3:

Corollary 2. If µ + ν ≤ �, ν > 0 or µ < �, ν = 0 then Z is an (�, ρ)-
distinguished set.

Namely, the number of rows in M is µ(�+1)+ν < �(�+1) so that rankM <

�(� + 1).

Suppose rankM < �(�+1). Then there
exists a nonzero vector b = (b0, . . . , b�(�+1)−1) such that

M · bT = 0. (1.31)

Set

f(z) =
∞∑

N=0

aNzN =

[

1 −
(

z

ρ

)�(�+1)
]−1 �(�+1)∑

k=0

bkzk.

Evidently f ∈ Aρ and

aN = bkρ−�(�+1)m, (1.32)

where N = �(� + 1)m + k, k = 0, 1, . . . , �(� + 1)− 1. From (1.30) and (1.31), we
have { ∑�

k=0 a(�+1)m+kzk = 0 , z ∈ U,
∑�−1

k=0 a�m+kzk = 0 , z ∈ V
(1.33)

for each m. For any positive integer n, we can find integers r and s such that
�n + s = (� + 1)r, 0 ≤ s < � + 1. Then (1.32) and (1.33) give

n−1∑

k=0

a�n+kzk =
s−1∑

k=0

z(�+1)m−�n
�∑

k=0

a(�+1)m+kzk

=
s−1∑

k=0

a�n+kzk = O(ρ−�n), z ∈ V.

SHARPNESS RESULTS
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Hence

∆�n−1(f ; z) =
n−1∑

k=0

a�n+kzk + O((K�+1(ρ, |z|) + ε)n) (1.34)

= O(ρ�n + (K�+1(ρ, |z|) + ε)n)

= O((K�+1(ρ, |z|) − ε)n), z ∈ V,

which shows that the set V is indeed (�, ρ)-distinguished.

Now, if for any positive integer n, we determine r and s (0 ≤ s < �) such
that �r + s = (� + 1)n, then we have from (1.32) and (1.33)

n−1∑

k=0

a�n+kzk = z�(r−n)
s−1∑

k=0

a�r+kzk +
r−1∑

m=n

z�(m−n)
�−1∑

k=0

a�m+kzk

= z�(r−n)
s−1∑

k=0

a�r+kzk = O

( |z|�(r−n)

ρ�r

)

= O

( |z|n
ρ(�+1)n

)

= O

(

ρ−�n

( |z|
ρ

)n)

, z ∈ U.

Therefore, we obtain

∆�,n−1(f ; z) = O

((
1
ρ�

− ε

)n

+ K�+1(ρ, |z|) + ε)n

)

(1.35)

= O

((
1
ρ�

− ε

)n)

, z ∈ U,

which shows that the set U is also (�, ρ)-distinguished.

(b) Necessity. Suppose B�(f ; z) < K�(ρ, |z|) for z ∈ Z and that rank M =
�(� + 1). We shall show that this leads to a contradiction. Set

h(z) := ∆�,n−1(f ; z) − z�∆�,n(f ; z).

Then

h(z) =
�−1∑

k=0

a�n+kzk −
�∑

k=0

a(�+1)n+kzn+k + O((K�+1(ρ, |z|) + ε)n).

By supposition we have

h(z) =
�−1∑

k=0

a�n+kzk + O

((
1
ρ

+ ε

)n(�+1)

|z|n +
(

1
ρ�+1

+ ε

)n
)

= O

((
1
ρ�

− ε

)n)

, z ∈ U,
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so that
�−1∑

k=0

a�n+kzk = O

((
1
ρ�

− ε

)n)

, z ∈ U. (1.36)

Similarly

h(z) = −
�∑

k=0

a(�+1)n+kzn+k + O

((
1
ρ

+ ε

)n�

+
( |z|

ρ�+2
+ ε

)n
)

= O

(( |z|
ρ�+1

− ε

)n)

, z ∈ V,

that is
�∑

k=0

a(�+1)n+kzk = O

((
1

ρ�+1
− ε

)n)

, z ∈ V. (1.37)

Since (1.36) and (1.37) are true for every value of n, we put n = (� + 1)m + λ

in (1.36) and n = �m + λ in (1.37). Then we obtain

�−1∑

k=0

a�(�+1)m+�λ+kzk = O

((
1

ρ�(�+1)
− ε

)m)

, z ∈ U, λ = 0, . . . , �, m = 0, 1, . . .

(1.38a)
and

�∑

k=0

a�(�+1)m+(�+1)λ+kzk = O

((
1

ρ�(�+1)
− ε

)m)

, z ∈ V, λ = 0, . . . , � − 1,

,m = 0, 1, . . . . (1.38b)

The matrix of the system of equations (1.38a)-(1.38b) is M which, by hypoth-
esis, has full rank. So the equalities (1.38a)-(1.38b) can be uniquely solved to
determine the ak’s. Hence we have

a�(�+1)m+k = O

((
1

ρ�(�+1)
− ε

)n)

, k = 0, 1, . . . , �(� + 1) − 1,

so that lim supN→∞ |aN |1/N ≤ 1/ρ− ε, which contradicts the fact that f ∈ Aρ.
�

4.2. Hermite Interpolation

In this section we generalize the sharpness results obtained for Lagrange
interpolation, to the case of rth order Hermite interpolation. Although the
methods to be used are similar, new ideas applied to the more complicated
situation are needed.

For the ∆rn−1,�(f ; z) introduced in Chapter 2, (1.14), we first prove
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Theorem 6. Let r, � ∈ IN and ρ > 1. Then for any f ∈ Aρ we have

lim
n→∞ max

|z|=µ
|∆rn−1,�(f ; z)| 1

rn =






ρ−1− �−1
r , if µ ≤ 1,

µ1−1/r

ρ1+(�−1)/r , if 1 ≤ µ ≤ ρ,
µ

ρ1+�/r , if ρ ≤ µ.

Proof. It is easily seen that if f(z) =
∞∑

k=0

akzk then

hrn−1(f ; z) =
rn−1∑

k=0

akzk +
∞∑

j=1

βj,r(zn)
n−1∑

k=0

a(r+j−1)n+kzk,

where βj,n(z) is defined in (1.7) of Chapter 2. On the other hand, from (1.14),
Chapter 2 we get

∆rn−1,�(f ; z) =
∞∑

j=�

βj,r(zn)
n−1∑

k=0

a(r+j−1)n+kzk. (2.1)

Hence and from Lemma 2 of Chapter 1 we obtain

|∆rn−1,�(f ; z)| = O
(

max{1, |z|n(r−1)}
∞∑

j=�

jr−1
n−1∑

k=0

|z|k(ρ − ε)−(r+j−1)n−k
)

where ε > 0 is arbitrary. Hence, distinguishing the cases µ < 1, 1 ≤ µ < ρ and
µ ≥ ρ, we get

lim
n→∞ max

|z|=µ
|∆rn−1,�(f ; z)| 1

rn ≤ ρ−1− �−1
r max {1, µ1− 1

r , µρ−
1
r } := Kr,�(ρ, µ).

(2.2)

To prove the opposite inequality, first notice that (2.1) and (2.2) imply

∆rn−1,�(f ; z) = β�,r(zn)
n−1∑

k=0

a(r+�−1)n+kzk + ∆rn−1,�+1(f ; z) (2.3)

= β�,r(zn)
n−1∑

k=0

a(r+�−1)n+kzk + O
(
(Kr,�+1(ρ, µ) + ε)nr

)

with an arbitrary ε > 0. Dividing by zk+1 and integrating

1
2πi

∫

Γµ

∆rn−1,�(f ; z)
zk+1

dz = β�,r(0)a(r+�−1)n + O
(
µ−k(Kr,�+1(ρ, µ) + ε)nr

)
,

k = 0, . . . , n − 1.
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Since from (4.8), we get β�,r(0) = (−1)r−1

(
r + � − 2

r − 1

)

�= 0, it follows that

|a(r+�−1)n+k| ≤ c1µ
−kmax

|z|=µ
|∆rn−1,�(f ; z)| + O

(
µ−k(Kr,�+1(ρ, µ) + ε)nr

)
,

k = 0, . . . , n − 1. (2.4)

If µ ≤ 1 then putting m = (r + � − 1)n + k, k = 0, . . . , r + � − 2, we get

lim
n→∞ max

|z|=µ
|∆rn−1,�(f ; z)| 1

rn ≥ lim
m→∞[µk|am| − O

(
(Kr,�+1(ρ, µ) + ε)nr

)
]

1
rn

= ρ−1− �−1
r .

If µ > 1 then by (2.1) and by (4.7) of Chapter 2, we have

1
2πi

∫

Γr

∆rn−1,�(f ; z)
z(r−1)n+k+1

dz =
(

r + � − 1
r − 1

)

a(r+�−1)n+k+

+ O
(
µ−(r−1)n−k−1(Kr,�+1(ρ, µ) + ε)nr

)
, k = 1, . . . , n − 1.

(2.5)

Now in case 1 < µ ≤ ρ, set m = (r + �− 1)n + k, k = 0, . . . , r + �− 2. Then as
above

lim
n→∞ max

|z|=µ
|∆rn−1,�(f ; z)| 1

rn ≥ lim
m→∞ [µ(r−1)n|am| − O

(
(Kr,�+1(ρ, µ) + ε)rn

)
]

1
rn

≥ µ1− 1
r ρ−1− �−1

r .

When µ > ρ, we take m = (r + �− 1)n + k, k = n− r − � + 1, . . . n− 1. Then
from (2.5) we have

lim
n→∞ max

|z|=µ
|∆rn−1,�(f ; z)| 1

rn ≥ lim
m→∞ [µrn|am| − O

(
(Kr,�+1(ρ, µ) + ε)rn

)
]

1
rn

≥ µρ−1− �
r .

Theorem 6 is completely proved. �

4.3. The Distinguished Role of the Roots of Unity for the Circle

In the previous sections we described the exact order of magnitude of the
overconvergence in case of the roots of unity as nodes. The question naturally
arises whether these nodes are optimal among all possible systems of nodes. The
conjecture is that the roots of unity play a distinguished role and, as we will
see, this is indeed the situation. However, this is a highly nontrivial statement
which requires a number of new ideas.
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First of all we make the following natural restriction on the nodes of inter-
polation (which can be multiple):

|zk| < ρ, k = 1, . . . , n. (3.1)

This upper limit is the consequence of the fact that the function is analytic (and
defined) only in |z| < ρ.

The other restriction is the following: let ωn(z) =
n∏

k=1

(z − zk), and let

γn(ρ) = the modulus of the first nonzero term of

{
ωn(ρ) if � > 1

ωn(ρ) − ρn if � = 1
(3.2)

(as for �, see (4.4) below). This quantity is always positive, except when ωn(z) =
zn and � = 1. In the latter case let γn(ρ) = 0. Now our restriction is that

µ(ρ) := lim
n→∞ γn(ρ)1/n ≥ 1 for all ρ > 1. (3.3)

In case of roots of unity on the circle |z| = r we have µ(ρ) = r. Thus the
case r < 1 is excluded by (3.3). The reason for this exclusion is that in this
case (as is easily seen) the region of overconvergence is |z| < ρ�+1/r, which is
larger than |z| < ρ�+1, the region of overconvergence for the roots of unity on
|z| = 1. Hence by letting r → 0, the region of overconvergence becomes the
whole complex plane. In order to avoid this situation, we make the restriction
(3.3).

Now the main result of this section is the following: Let Ln−1(f, z, Z) be
the Lagrange (or Hermite, depending on the multiple nodes zk) interpolation
polynomial of f ∈ Aρ based on the nodes Z, and let

∆n,�(f, z, Z) := Ln−1(f, z, Z) −
�−1∑

j=0

pn−1,j(f ; z) (3.4)

(see the analogous definition (1.2) in case of roots of unity on |z| = 1). Further
let

∆�(r, ρ, Z) := sup
f∈Aρ

lim
n→∞

{
max
|z|=r

|∆n,�(f, z, Z)|
}1/n

, (3.5)

and denote by E the matrix of nodes of the roots of unity on |z| = 1.

Theorem 7. Let Z = {zkn}n
k=1 be a system of nodes of Lagrange interpo-

lation satisfying (3.1) and (3.3). Then for any |ẑ| > max
(

ρ�+1

µ(ρ) , ρ
)
there is an

f0 ∈ Aρ such that

lim
n→∞ |∆n,�(f0, ẑ)| = ∞. (3.6)
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In addition we have

∆�(r, ρ, Z) ≥ µ(ρ)r/ρ�+1 ≥ ∆�(r, ρ, E) for all r > ρ > 1. (3.7)

(3.7) shows that indeed, the matrix E is the “best” among all matrices sat-
isfying (3.1) and (3.3).

Proof. Let |u| = ρ and

fu(z) :=
1

u − z
∈ Aρ. (3.8)

A simple computation shows that

Ln−1(fu, z, Z) =
ωn(u) − ωn(z)
ωn(u)(u − z)

,
�−1∑

j=0

pn−1(fu; z) =
(u�n − 1)(un − zn)
(un − 1)(u − z)u�n

.

(3.9)
Thus for any |z| = r > ρ we have

|∆n,�(fu, z, Z)| ≥ |Ωn(u; z)|
(r + ρ)ρ�n|ωn(u)| (3.10)

where

Ωn(u; z) := u�n
(
ωn(u) − ωn(z)

)− u�n − 1
un − 1

(un − zn)ωn(u) (3.11)

is a polynomial in u.

Denote jn, 0 ≤ jn ≤ n, the multiplicity of 0 among the zk’s. Then we can
write

ωn(u) = ujn ω̃n(u), where ω̃n(0) �= 0. (3.12)

Similarly,
Ωn(u; z) = ujn Ω̃n(u; z) (3.13)

where

Ω̃n(u; z) :=
{

u�n − u�n − 1
un − 1

(un − zn)
}

ω̃n(u) − u�n−jnzjn ω̃n(z). (3.14)

(3.12) and (3.13) imply

max
|u|=ρ

∣
∣
∣
Ωn(u; z)
ωn(u)

∣
∣
∣ = max

|u|=ρ

∣
∣
∣
Ω̃n(u; z)
ω̃n(u)

∣
∣
∣. (3.15)
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Let

ω̃n(u) :=
n−jn∏

k=1

′ (u − z′k) with |z′k| < ρ, (3.16)

where the dash indicates that in case jn = n, the product is identically 1. Now

R̃n(u; z) :=
Ω̃n(u; z)

n−jn∏

k=1

′(ρ − z ′
ku

ρ

)
(3.17)

as a function of u, is analytic in |u| ≤ ρ
(

< ρ2

max |z′
k|
)
. Thus by (3.15) and (3.16)

max
|u|=ρ

| R̃n(u; z)| = max
|u|=ρ

|Ω̃n(u; z)|
n−jn∏

k=1

′ ∣∣ρ − z ′
ku

ρ

∣
∣

(3.18)

= max
|u|=ρ

∣
∣
∣
Ω̃n(u; z)
ω̃n(u)

∣
∣
∣ = max

|u|=ρ

∣
∣
∣
Ωn(u; z)
ωn(u)

∣
∣
∣.

Now fix an arbitrary ẑ such that

µ(ρ)| ẑ | > ρ�+1, (3.19)

and let un = un(ẑ) denote a point on |u| = ρ where |R̃n(u; ẑ)| attains its
maximum. By the maximum principle, (3.17) - (3.18) yield

max
|u|=ρ

∣
∣
∣
Ωn(u; ẑ)
ωn(u)

∣
∣
∣ = |R̃n(un; ẑ)| ≥ |R̃n(0; ẑ)| =

|Ω̃n(0; ẑ)|
ρn−jn

. (3.20)

(3.14) implies, with |ẑ| = r,

Ω̃n(0; ẑ) =

{
rn|ω̃n(0)| if � > 1, or � = 1 and jn < n

0 if � = 1 and jn = n.

From the definition (3.2) it follows in all cases that

|Ω̃n(0; ẑ)| =
rnγn(ρ)

ρjn
. (3.21)

Thus combining (3.10), (3.20) and (3.21) yields

|∆n,�(fu, ẑ, Z)| ≥
( r

ρ�+1

)n γn(ρ)
r + ρ

for all n ≥ 1. (3.22)

Recalling the hypothesis (3.3), let ε > 0 be arbitrary such that

(
µ(ρ) − ε

)
r > ρ�+1, | ẑ | = r (3.23)
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(cf. (3.19)), and let n1 < n2 < . . . be a sequence of integers such that

γnj (ρ) ≥ (
µ(ρ) − ε

)nj
, for all j ≥ 1. (3.24)

Then (3.22) yields

|∆nj ,�(fj , ẑ, Z)| ≥ 1
r + ρ

[ (µ(ρ) − ε)r
ρ�+1

]nj

for all j ≥ 1, (3.25)

where, for convenience, we have set fj := funj
. Further let

ρn := max
1≤k≤n

|zk| < ρ, n ≥ 1. (3.26)

We may suppose that there exists a sequence of indices {nj}∞j=1 such that
(3.24), as well as

nj+1 ≥ βnj

( 2ρ�+1

(
µ(ρ) − ε

)
(ρ − ρnj )

)nj

, j = 1, 2, . . . (3.27)

and

|∆nj ;�(fk, ẑ, Z)| ≤ α

βnj

( (
µ(ρ) − ε

)
r

ρ�+1

)nj

for all j > k, k = 1, 2, . . .

(3.28)
hold, where

α =
β − 1

3(r + ρ)
> 0, β = 1 +

12(r + ρ)
r − ρ

. (3.29)

Namely, if this were not true, then for some k0 we would have

|∆n,�(fk0 , ẑ, Z)| ≥ α

βn

( (
µ(ρ) − ε

)
r

ρ�+1

)r

→ ∞ as n → ∞

by (3.23), and this would prove (3.6) with f0 = fk0 .

So assuming (3.27) and (3.28), define

f0(z) :=
∞∑

k=1

fk(z)
nk

=
∞∑

k=1

1
nk(unk

− z)
(3.30)

where |unk
| = ρ for all k ≥ 1. Now (3.27) implies

nk ≥ βk−jnj for all k ≥ j ≥ 1, (3.31)
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i.e. the series (3.30) converges uniformly in |z| < ρ, and f0(z) is analytic in
|z| < ρ. In order to show that f0(z) has a singularity on |z| = ρ, let f0(z) =
∞∑

j=0

cjz
j . Then by (3.30) - (3.31)

|cj | =
∣
∣
∣

∞∑

k=1

1
nkuj+1

nk

∣
∣
∣ ≥ 1

ρ�+1

( 1
n1

−
∞∑

k=2

1
nk

)
≥ β − 2

(β − 1)n1ρj+1
, j = 0, 1, . . . ,

whence lim
j→∞

|cj |1/j ≥ 1/ρ, and so f0 ∈ Aρ.

Now (3.30) implies

|∆nj ,�(f0, ẑ, Z)| ≥ S1 − S2 − S3 − S4

where (see (3.4))

S1 := 1
nj

|∆nj ,�(fj , ẑ, Z)|, S2 :=
∑j−1

k=1
1

nk
|∆nj ,�(fk, ẑ, Z)| ,

S3 :=
∑∞

k=j+1
1

nk
|Lnj−1(fk, ẑ, Z)|, S4 :=

∑∞
k=j+1

1
nk

∣
∣
∣
∑�−1

t=0 pnj−1,t(fk; ẑ)|.

From (3.25) we have

s1 ≥ 1
(r + ρ)nj

((µ(ρ) − ε
)
r

ρ�+1

)nj

, for all j ≥ 1,

while from (3.28) and (3.31) we get

S2 ≤ α

βnj

((µ(ρ) − ε
)
r

ρ�+1

)nj
j−1∑

k=1

1
nk

≤ α

(β − 1)nj

( (
µ(ρ) − ε

)
r

ρ�+1

)nj
, for j ≥ 2.

Next, from the first equation in (3.9) and from (3.26) we obtain

|Lnj−1(fk, ẑ, Z)| ≤ (ρ + ρnj )
nj + (r + ρnj )

nj

(ρ − ρnj )nj (r − ρ)

≤ 2(2r)nj

(ρ − ρnj )nj (r − ρ)
, for all k ≥ j + 1.

Similarly, from the second equation in (3.9), we deduce

∣
∣
∣

�−1∑

t=0

pnj−1,t(fk; ẑ)
∣
∣
∣ ≤ (1 + ρ−�nn)(ρnj + rnj )

(ρnj − 1)(r − ρ)

≤ 4rnj

(ρnj − 1)(r − ρ)
≤ 8rnj

(ρ − ρnj )nj (ρ − r)
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for all k ≥ j + 1 and j large enough.

Thus by (3.31) and (3.27)

S3 + S4 ≤ 4(2r)nj

(ρ − ρnj )nj (r − ρ)

∞∑

k=j+1

1
nk

≤ 4β(2r)nj

(β − 1)(ρ − ρnj )nj (r − ρ)nj+1

≤ 4
(r − ρ)(β − 1)nj

( (µ(ρ) − ε)r
ρ�+1

)nj

,

for all j sufficiently large. On using (3.29), these inequalities imply

S1 − S2 − S3 − S4 ≥ 1
3(r + ρ)nj

( (µ(ρ) − ε)r
ρ�+1

)nj

,

for all j sufficiently large. Hence and by (3.23)

|∆nj ;�(f0, ẑ, Z)| ≥ 1
3(r + ρ)nj

( (µ(ρ) − ε)r
ρ�+1

)nj → ∞ as j → ∞ (3.32)

which proves (3.6).

To conclude the proof of Theorem 6, we note that the above construction is
valid for any choice of the complex number ẑ such that | ẑ | = r > ρ and any ε

with 0 < ε < µ|ρ|. So from (3.32) we get

lim
n→∞

{
max
|z|=r

|∆n(f0, z, Z)|
}1/n

≥ (µ(ρ) − ε)r
ρ�+1

, r > ρ,

and since f0 ∈ Aρ, by (3.5) we have

∆�(r, ρ, Z) ≥ (µ(ρ) − ε)r
ρ�+1

, r > ρ.

Since ε > 0 is arbitrary and ∆�(r, ρ, E) = r
ρ�+1 (cf. Theorem 1) we obtain (3.7).

�

4.4. Equiconvergence of Hermite Interpolation on Concentric Circles

So far we considered the difference of interpolation polynomials and “shifted”
Taylor-type series, or superpositions of these, in order to demonstrate the phe-
nomenon of overconvergence. In this section we will see that differences of
Hermite interpolation polynomials based on roots of unity on concentric circles
also show corresponding properties.
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If f(z) ∈ Aρ (ρ > 1), p ≥ 1 is an integer and 0 < α < ρ, then let
hpn−1(f ;α; z) ∈ πpn−1 denote the Hermite interpolation polynomial to f(z)
in the zeros of (zn − αn)p, i.e.

h(j)
n (f, α, ωk) = f (j)(αkωk), j = 0, . . . , p − 1; k = 0, . . . , n − 1

where ω is a primitive nth root of unity. Let f(z) =
∞∑

k=0

akzk, then using (2.1)

of Ch. 2 we obtain

hpn−1(f, α, z) =
pn−1∑

k=0

akzk +
n−1∑

k=0

{ ∞∑

j=1

αn(p+j−1)βj,p(zn/αn)ak+n(p+j−1)

}
zk

(4.1)
where the polynomials βj,p ∈ πp−1 are defined in (1.7) of Ch. 2.

After these preliminaries, we can state the equiconvergence result. If 0 <

α < γ < ρ, set

∆n(f ;α, γ, z) := hpn−1(f, α, z) − hpn−1(f, γ, z).

Theorem 8. Let f(z) ∈ Aρ (ρ > 1) and 0 < α < γ < ρ. Then

lim
n→∞ |∆n(f, α, γ, z)|1/n =






γ|z|p
ρp+1 if |z| > ρ,

γ|z|p−1

ρp if γ < |z| < ρ,

γp

ρp if 0 < |z| < γ,

(4.2)

with the exception of at most p points in |z| > ρ and p− 1 points in 0 < |z| < ρ,

at which points the left hand side of (4.2) is strictly less than the right hand

The result shows that |z| < ρ1+1/p

γ1/p is the exact domain of overconvergence.

Proof. (4.1) implies

∆n(f, α, γ, z) =
n−1∑

k=0






∞∑

j=1

[
αn(p+j−1)βj,p

( z

α

)n

−

−γn(p+j−1)βj,p

(
z

γ

)n]

ak+n(p+j−1)

}

zk.

In all three cases to be considered, the term j = 1 will dominate. To estimate
the terms corresponding to j ≥ 2, we use ak = O

(
(ρ−ε)−k

)
(k = 0, 1, . . . , ε > 0

arbitrary) as well as Lemma 2 of Ch. 2 to get

∆n(f, α, γ, z) =
n−1∑

k=0

[αpnβ1,p(zn/αn) − βpnβ1,p(zn/γn)]ak+pnzk + εn(z),

side. At |z| = γ and at |z| = ρ, the ≤ holds in (4.2).“ ”
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where

εn(z) =






O
(

β2n|z|pn

(ρ−ε)(p+2)n

)
if β < ρ − ε < |z|,

O
(

γ2n|z|(p−1)n

(ρ−ε)(p+1)n

)
if γ ≤ |z| < ρ − ε,

O
(

γ(p+1)n

(ρ−ε)(p+1)n

)
if |z| ≤ γ.

Since β1,p(z) = zp − (z − 1)p (cf. (1.8) of Ch. 2), we get

∆n(f, α, γ, z) = [(zn − αn)p − (zn − γn)p]
n−1∑

k=0

ak+pnzk + εn(z).

Here

(zn − αn)p − (zn − γn)p =






pz(p−1)nγn + O(|z|(p−1)nαn + |z|(p−2)nγ2n)
if |z| ≥ γ

(−1)p+1γpn + O(αpn + |z|nγ(p−1)n)
if |z| ≤ γ.

Thus we obtain

∆n(f, α, γ, z) = cn(z)
n−1∑

k=0

ak+pnzk + ξn(z), (4.3)

where

cn(z) =

{
pz(p−1)nγn if |z| ≥ γ,

(−1)p+1γpn if |z| ≤ γ
(4.4)

and

ξn(z) =






O
(

γ2n|z|pn

(ρ−ε)(p+2)n + αn|z|pn

(ρ−ε)(p+1)n

)
if |z| > ρ

O
(

γ2n|z|(p−1)n

(ρ−ε)(p+1)n + αn|z|(p−1)n

(ρ−ε)pn

)
if γ ≤ |z| < ρ

O
(

γ(p+1)n

(ρ−ε)(p+1)n + αpn+|z|nγ(p−1)n

(ρ−ε)pn

)
if |z| ≤ γ.

(4.5)

Therefore

|∆n(f, α, γ, z)| =






O
(

γn|z|pn

(ρ−ε)(p+1)n

)
if |z| > ρ

O
(

γn|z|(p−1)n

(ρ−ε)pn

)
if γ ≤ |z| < ρ

O
(

γpn

(ρ−ε)pn

)
if |z| ≤ γ,

SHARPNESS RESULTS
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whence the upper estimate (i.e. “ ≤ ”) in (4.2) follows.

To prove the lower estimate, we distinguish two cases.

Case 1: |z| > γ. Then by (4.3) - (4.5) we have

δn(z) : = γ∆n(f, α, γ, z) − z∆n+1(f, α, γ, z) (4.6)

= pγn+1z(p−1)n
( n−1∑

k=0

ak+pnzk −
n∑

k=0

ak+(n+1)pz
k+p

)
+ O

(
ξn(z)

)

= pγn+1z(p−1)n
( p−1∑

k=0

−
n+p∑

k=n

)
ak+pnzk + O

(
ξn(z)

)

=






−pγn+1zpn
p∑

k=0

ak+(p+1)nzk + O
(

γn|z|(p−1)n

(ρ−ε)pn + ξn(z)
)

if |z| > ρ,

pγn+1z(p−1)n
p−1∑

k=0

ak+pnzk + O
(

γn|z|pn

(ρ−ε)(p+1)n + ξn(z)
)

if γ < |z| < ρ.

Now suppose that for some pairwise different z0, . . . , zp such that |zj | > p

(j = 0, . . . , p) the equality in (4.1) does not hold, i.e.

|∆n(f, α, γ, zj)| = O
(( γ|z|p

(ρ − ε)p+1
− η

)n
)
, j = 0, . . . , p

with some η > 0. Then by (4.6)

|δn(zj)| = O
( ( γ|zj |p

(ρ − ε)p+1
− η

)n
)
, j = 0, . . . , p;

and
p∑

k=0

ak+(p+1)nzk
j = O

(( 1
(ρ − ε)p+1

− η1

)n
)
, j = 0, . . . , p,

provided η1 = η
γ max |zj |p > 0 is small enough. Solving this system of equations

for the unknowns ak+(p+1)n we get

|ak+(p+1)n| = O
(( 1

(ρ − ε)p+1
− η1

)n
)
, k = 0, . . . , p.

Hence lim
n→∞ |an|1/n < 1

ρ−ε − 1

η
1

p+1
, for arbitrary ε > 0. Thus lim

n→∞ |an|1/n < 1
ρ

which contradicts f(z) ∈ Aρ.
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Similarly, suppose that for some pairwise different z0, . . . , zp−1 such that
β < |zj | < ρ the equality in (4.2) does not hold, i.e.

|∆n(f, α, γ, zj)| = O
((γ|zj |p−1

(ρ − ε)p
− η

)n
)
, j = 0, . . . , p − 1 (4.7)

with some η > 0. Then by (4.6)

|δn(zj)| = O
((γ|zj |p−1

(ρ − ε)p
− η

)n
)
, j = 0, . . . , p − 1 (4.8)

and
p−1∑

k=0

ak+pnzk
j = O

(( 1
(ρ − ε)p

− η1

)n
)
, j = 0, . . . , p − 1 (4.9)

provided η1 = η
γ max |zj |p−1 > 0 is small enough. Solving this system we get

ak+pn = O
(( 1

(ρ − ε)p
− η1

)n
)
, k = 0, . . . , p − 1. (4.10)

Hence lim
n→∞ |an|1/n < 1

ρ−ε − 1

η
1/p
1

which leads again to contradiction.

Case 2: 0 < |z| < γ. Then by (4.3)-(4.5) we have

δn(z) : = (−1)p+1(γp∆n − zp∆n+1)

= γp(n+1)
( n−1∑

k=0

ak+pnzk −
n∑

k=0

ak+(n+1)pz
k+p

)
+ O

(
ξn(z)

)

= γp(n+1)
( p−1∑

k=0

−
n+p∑

k=n

)
ak+pnzk + O

(
ξn(z)

)

= γp(n+1)

p−1∑

k=0

ak+pnzk + O
(
ξn(z)

)
.

Again, assuming the existence of z0, . . . , zp−1 such that 0 < |zj | < γ, j =
0, . . . , p − 1 and (4.7) holds, then (4.8) will also be valid. Proceeding as in
(4.9)-(4.10), we arrive at the same conclusion. �

Note that this theorem does not settle the case of exceptional points on the
circles |z| = γ and |z| = ρ.

SHARPNESS RESULTS
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In this section we dwell upon the regularity of (0;m) Pál type interpolation
and obtain an equiconvergence result for it. It differs from (0,m) interpolation
where values and mth derivatives are prescribed at the same nodes. The regu-
larity and equiconvergence for (0,m) interpolation on roots of unity is known.
Here we show that the problem of (0;m) Pál type interpolation on the zeros of
zn − αn and zn + αn is regular and we obtain the precise region of overconver-
gence when f ∈ Aρ.

Let α, 0 < α < ρ, be a real number. By Pál type (0;m) interpolation on
the zeros of zn − αn and of zn + αn, we mean to find a polynomial P2n,m(z)
of degree ≤ 2n− 1 such that P2n,m(z) interpolates a given function f(z) in the
zeros of zn − αn and its mth derivative P

(m)
2n,m(z) interpolates f (m)(z) in the

zeros of zn + αn. We first find an explicit formula for P2n,m(f, z), when

f(z) =
∞∑

k=0

akzk ∈ Aρ.

Since interpolation is a linear process, it is enough to find the value of
P2n,m(fλ, z) when fλ(z) = zλn+k, 0 ≤ k ≤ n − 1 for any positive integer
λ. We try to get our polynomial in the form

P2n,m(fλ; z) = azk + bzn+k,

and require that

P2n,m(fλ; zj) = zλn+k
j , zj = αwj where wn

j = 1,

P
(m)
2n,m(fλ; z′j) = z′

λn+k−m

j (λn + k)m, z′j = αwje
iπ
n ,

where (k)m = k(k − 1) . . . (k − m + 1). We then have

{
a + bαn = αnλ,

a(k)m − (n + k)mbαn = (λn + k)mαλn(−1)λ

Then {
b = α(λ−1)n (k)m−(λn+k)m(−1)λ

(k)m+(n+k)m
=: βλk

a = αλn (λn+k)m(−1)λ+(n+k)m

(k)m+(n+k)m
=: αλk.

(5.1)

If λ = 0, α0k = 1 and β0k = 0. If λ = 1, α0k = 0 and β1k = 1. This proves that
Pál type (0;m) interpolation is regular on the zeros of zn − αn and zn + αn.

Since

f(z) =
n−1∑

k=0

∞∑

λ=0

aλn+kzλn+k

4.5. (0, m)-Pál type Interpolation
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we have

P2n,m(f ; z) =
n−1∑

k=0

∞∑

λ=0

(αλkzk + βλkzn+k)aλn+k.

For any integer � ≥ 1, we set

Sn,�(f ; z) : =
n−1∑

k=0

�−1∑

λ=0

aλn+k(αλkzk + βλkzn+k)

= P2n,m

(
T�n−1(f); z

)

where T�n−1(f) is the Taylor expansion of f of degree �n − 1. (For � = 1 or 2,

evidently Sn,�(f ; z) = T�n−1(f ; z).)

Consider the difference

∆n,�(f ; z) : = P2n,m(f ; z) − Sn,�(f ; z)

=
n−1∑

k=0

∞∑

λ=�

aλn+k(αλkzk + βλkzn+k).
(5.2)

Theorem 9. If f(z) ∈ Aρ, ρ > 1, ρ > α > 0 then

lim
n→∞ |∆n(f ; z)| 1

2n ≤






max {α
1
2 , |z| 12 }α

�−1
2

ρ
�
2

if |z| < ρ

|z|α �−1
2

ρ
�+1
2

if |z| ≥ ρ.

(5.3)

Hence we have overconvergence in the circle |z| < ρ
(

ρ
α

) �−1
2 .

Proof. Let f(z) ∈ Aρ, then |an| = O
(

1
(ρ−ε)n

)
, for ε > 0, n = 0, 1, 2 . . . and

by (5.1),

αλk = O
(
λmαλn

)
, βλk = O

(
λmα(λ−1)n

)
,

(n or λ → ∞, k = 0, 1, . . . , n − 1).

Therefore from (5.2), we get

|∆n,�(f ; z)| = O
( n−1∑

k=0

∞∑

λ=�

λmα(λ−1)n(ρ − ε)−λn−k(|αnz|k + |z|n+k)
)

= O
( n−1∑

k=0

α(�−1)n(ρ − ε)−�n−k(|αnz|k + |z|n+k)
)

SHARPNESS RESULTS



110 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

=






O
(

αn+|z|n
(ρ−ε)�n

)
α(�−1)n if |z| < ρ − ε

O
(

|z|2n

(ρ−ε)(�+1)n

)
α(�−1)n if |z| > ρ − ε.

�

Since ε > 0 is arbitrary, we have (5.3).

Theorem 10. Under the same conditions as in Theorem 1, we have

lim
n→∞ max

|z|=R
|∆n,�(f, z)| 1

2n =






max {α1/2,R1/2}α
�−1
2

ρ�/2 if R < ρ ,

Rα
�−1
2

ρ
�+1
2

if R ≥ ρ.

(5.4)

Proof. From (5.2), we have

∆n,�(f ; z) =
n−1∑

k=0

a�n+k(α�kzk + β�kzn+k)

+ O
( n−1∑

k=0

∞∑

λ=�+1

λm(ρ − ε)−λn−k|α|(λ−1)n(|αnz|k + |z|n+k
)

that is

∆n,�(f ; z) =
n−1∑

k=0

a�n+k(α�kzk + β�kzn+k)

+






O
(

αn+|z|n
(ρ−ε)(�+1)n |α|�n

)
if |z| < ρ − ε

O
(

|z|2n

(ρ−ε)(�+2)n |α|�n
)

if |z| ≥ ρ − ε.

(5.5)

Case 1: R = |z| < ρ. Then divide (2.5) by zk+1 (k = 0, 1, . . . , n − 1) and
integrate on the circle |z| = R. Then

1
2πi

∫

|z|=R

∆n,�(f ; z)
zk+1

dz = α�ka�n+k + O
( |α|(�+1)n

(ρ − ε)(�+1)n

)
,

k = 0, 1, . . . , � − 1.

Since (α�k) ≥ Cmα�n > 0, we get

lim sup
n→∞

(
max
|z|=R

|∆n,�(f ; z)| 1
2n

)
≥ lim sup

n→∞

( α�n

(ρ − ε)�n+k
− α(�+1)n

(ρ − ε)(�+1)n

) 1
2n

=
α

�
2

(ρ − ε)
�
2

.

(5.6)
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Case 2: ρ ≤ |z| = R. Then divide (5.5) by zn+k+1 (0 ≤ k ≤ n − 1) and
integrate. We then have

1
2πi

∫

|z|=R

∆n,�(f ; z)
zn+k+1

dz = β�ka�n+k +






O
(

R−k−1α�n

(ρ−ε)(�+1)n

)
if 1 < |z| < ρ − ε

and 0 ≤ k ≤ � − 1

O
(

Rn−k−1α�n

(ρ−ε)(�+2)n

)
if |z| ≥ ρ − ε

and n − � + 1 ≤ k ≤ n.

Since |β�k| ≥ Cmα(�−1)n, and n − � + 1 ≤ k ≤ n we have

max
|z|=R

|∆n,�(f ; z)| ≥ CmRn+kα(�−1)n|a�n+k|+

+






O
(

Rnα�n

(ρ−ε)(�+1)n

)
if

1 < |z| < ρ − ε ,

0 ≤ k < �

O
(

R2nα�n

(ρ−ε)(�+2)n

)
if

|z| ≥ ρ − ε ,

n − � + 1 ≤ k ≤ n.

Hence

lim sup
n→∞

(
max
|z|=R

|∆n,�(f ; z)|
) 1

2n

≥






lim sup
n→∞

(
Rn+k(ρ − ε)−�n−kα(�−1)n − O

(
Rnα�n

(ρ−ε)(�+1)n

)) 1
2n

,

if 1 ≤ |z| < ρ − ε and 0 ≤ k < �

lim sup
n→∞

(
Rn+k(ρ − ε)−�n−kα(�−1)n − O

(
R2nα�n

(ρ−ε)(�+2)n

)) 1
2n

,

if |z| ≥ ρ − ε and n − � + 1 ≤ k ≤ n

≥






R
1
2 α

�−1
2

(ρ−ε)
�
2

, if 1 ≤ |z| < ρ − ε ,

Rα
�−1
2

(ρ−ε)
�+1
2

, if |z| ≥ ρ − ε.

Combining these lower estimates in Cases 1 and 2 with the upper estimates of
Theorem 1, we get the statements (5.4) of Theorem 11. �

4.6. Historical Remarks

Theorems 1 and 2, as well as the special case λ = � − 1 of Theorem 3 are
due to Totik [111]. Theorem 4 can be found in Ivanov and Sharma [51], where
interesting properties of the distinguished points (i.e., point systems when the
general error term is not attained) can be found. We mention here some of
them.

SHARPNESS RESULTS
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(a) When � = 1, then for any given function f ∈ Aρ there are no (ρ, 1)-
distinguished points in |z| < ρ and there is at most one (ρ, 1)-distinguished
point in |z| > ρ (by Corollary 1).

Similarly, for � − 2, there is at most one point in |z| < ρ and at most two
points in |z| > ρ which are (ρ, 2)-distinguished.

(b) Let � = 2, Z = {z1, z2, z3}, |z1| < ρ < |z2|, |z3|. Then the set Z is (ρ, 2)-
distinguished if and only if z1 = 0 and z2 + z3 = 0.

Namely, M = M(X,Y ) is a 6 × 7 matrix with

X = [1 z1] and Y =
(

1 z2 z2
2

1 z3 z2
3

)

.

Let us denote by Mj the matrix obtained from from M when the jth row is
deleted. From Theorem 5, Z is a (ρ, 2)-distinguished set if and only if |Mj | = 0
for j = 1, . . . , 7. A direct computation shows that (to within a factor ±1) we
have

|M1| = (z2 − z3)2(z2 + z3 − z1), |M3| = z1z2z3(z2 − z3)2(z2z3 − z1z2 − z1z3).

Here |Mj | denotes the determinant of the matrix Mj . If z1 �= 0, then from
|M1| = 0 and |M3| = 0, it follows that z=z2 + z3 and z1(z2 + z3) = z2z3. Hence
z2
1 = z2z3, i.e., ρ2 < |z2z3| = |z1|2 < ρ2, a contradiction. So for Z to be a

(ρ, 2)-distinguised set, we necessarily have z1 = 0. In this case the determinants
of the Mj ’s are easily seen to be the following:

|M1| = (z2 − z3)2(z2 + z3), |M2| = z2z3(z2 − z3)2(z2 + z3),

|M4| = z3(z3 − z2)(z3 + z2), |M5| = z2(z3 − z2)(z3 + z2),

|M3| = |M6| = |M7| = 0.

Hence |Mj | = 0 for j = 1, . . . , 7 implies z2 + z3 = 0. Conversely, if z1 = 0 and
z2 + z3 = 0, we have rankM < 6. This proves the claim.

(c) Let � = 3. In this case, by Corollary 1, we can have at most two points in
|z| < ρ and at most three points in |z| > ρ which are (ρ, 3)-distinguished. The
cases which are not covered by Corollary 2 are:

(I) one point inside and three points outside the circle |z| = ρ;
(II) two points inside and two points outside;

(III) two points inside and three points outside.

Let Z = {z1, z2, z3, z4}. In (I), let |z1| < ρ and |zj | > ρ, j = 2, 3, 4. We
claim that Z is a (ρ, 3)-distinguished set if and only if one of the following cases
occurs:
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(a) z1 = 0 and z2 + z3 + z4 = 0,

(b) z1 = 0 and z−1
2 + z−1

3 + z−1
4 = 0,

(c) z1 − (z2 + z3 + z4) = 0 and

z2
1(z2 + z3 + z4) − z1(z2z3 + z2z4 + z3z4) + z2z3z4 = 0.

Observe in (c) that we necessarily have z1 �= 0, since otherwise we have z2z3z4 =
0, which is impossible. Also remark that the solution of (c) is not vacuous. In
fact, a solution with |z1| < ρ and |z2|, |z3|, |z4| > ρ is easily seen to be:

z1 = a, z2 = −2a, z3, z4 = a

(
3
2

+
i

2
√

3

)

with ρ

√
3
7

< a < ρ.

The proof of this assertion can be found in [51, Sec. 5].

The sharpness of overconvergence results for Hermite interpolation on roots
of unity (Theorem 5) is due to Ivanov and Sharma [50].

The distinguished role of the roots of unity (Theorem 7) was settled by
Szabados and Varga [107] when the roots are in |z| < ρ and satisfy (4.1) and
(4.3).

Results for roots which are sufficiently close to the roots of unity were proved
by Baishanski [4] and Bokhari [7]. The results of Section 4.4 for concentric circles
are new.

Pál-type interpolation was introduced in [82].
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CHAPTER 5

CONVERSE RESULTS

In this chapter we will be concerned with so-called converse theorems of the
theory of equiconvergence. This means that from some convergence properties
of the operator in question we will deduce structural properties of the function
approximated. The results are strongly connected with the sharpness theorems
of Chapter 4, but here our assumptions on the function will be kept minimal so
that the operators can be defined for it: analyticity in |z| < 1 (in order to have
a convergent Taylor series), and continuity in |z| ≤ 1 (in order to make sense of
interpolations).

5.1. Lagrange Interpolation

Theorem 1 of Chapter 4 shows that for Lagrange interpolation and shifted
Taylor series the equiconvergence takes place in |z| < ρ�+1 for functions in
the class Aρ. To state the corresponding converse result, let Aρ, AρC denote,
respectively, the set of functions analytic, at least, in |z| < ρ and analytic, at
least, in |z| < ρ and continuous on |z| ≤ ρ. (In other words, in contrast to Aρ,

here we do not require the function to have singularities on |z| = ρ.)

Theorem 1. Let f ∈ A1C. If the sequence

{∆n,�(f ; z)}∞n=1 =
{

Ln−1(f ; z) −
�−1∑

j=0

pn−1,j(f ; z)
}∞

n=1
(1.1)

is uniformly bounded on every closed subset of |z| < ρ�+1, then f(z) ∈ Aρ

(ρ > 1).

Remark. The example f(z) = (ρ − z)−1 shows that the conclusion of The-
orem 1 is the best possible. Also, notice that we do not require the convergence
of the sequence (1.1) to zero; only the boundednes.

The proof is based on Theorem 1.1 of Chapter 4, as well as the following
lemma.
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Lemma 1. If ak (k = 0, 1, . . . ) are arbitrary complex numbers then

a(3�2+1)m+p − a(6�2+1)m+p =
2�−1∑

j=�

a(3j�+1)m+p +
2�−1∑

s=�+1

2�−1∑

j=�

a(3js+2�+s+1)m+p

(1.2)

−
2�−1∑

s=�

2�−1∑

j=�

a(3js+2�+j+1)m+p

(� ≥ 2, p ≥ 0, m ≥ 1).

Proof. Changing j to j + 1, the first sum on the right hand side can be
written as

a(3�2+1)m+p +
2�−1∑

j=�

a(3j�+3�+1)m+p − a(6�2+1)m+p .

But here the sum is nothing else but the missing term s = � of the first double
sum in (1.2). Thus the right hand side of (1.2) will be

a(3�2+1)m+p − a(6�2+1)m+p +
2�−1∑

s=�

2�−1∑

j=�

a(3js+2�+s+1)m+p

−
2�−1∑

s=�

2�−1∑

j=�

a(3js+2�+j+1)m+p.

Here the double sums are the same, which can be seen by switching the roles of
j and s. �

Proof of Theorem 1. By the remark made at the beginning of Section 4
in Chapter 1, we have

∆n,�(f ; z) = Ln−1

( ∞∑

k=�n

akzk; z
)

provided

f(z) =
∞∑

k=0

akzk.

Thus by assumption

sup
n

max
|z|=r

∣
∣
∣Ln−1

( ∞∑

k=�n

akzk; z
) ∣

∣
∣ := M(r) < ∞ , r < p�+1. (1.3)

Therefore

max
|z|=r

∣
∣
∣L2n−1

( ∞∑

k=2�n

akzk; z
) ∣

∣
∣ ≤ M(r).
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If we denote

L2n−1

( ∞∑

k=2�n

akzk; z
)

=
2n−1∑

k=0

bkzk,

then

|bk| =
1
2π

∣
∣
∣

∫

|z|=r

z−k−1Ln

( ∞∑

k=2�n

akzk; z
)
dz

∣
∣
∣

≤ M(r)
rk

, k = 0, 1, . . . , 2n − 1.

Thus using that the nth roots of unity are also (2n)th roots of unity we obtain

∣
∣
∣Ln−1

( ∞∑

k=2�n

akzk; z
) ∣

∣
∣ =

∣
∣
∣Ln−1

(
L2n−1

( ∞∑

k=2�n

akzk; z
)
; z

) ∣
∣
∣

=
∣
∣
∣

n−1∑

k=0

(bk + bk+n)zk
∣
∣
∣

=≤ M(r)
n−1∑

k=0

(r−k + r−k−n)rk < 2nM(r) , |z| = r.

This together with (1.3) yields

max
|z|=r

∣
∣
∣Ln−1

( 2�n−1∑

k=�n

akzk; z
) ∣

∣
∣ < (2n + 1)M(r). (1.4)

On the other hand, using the obvious property

Ln−1

(
zmng(z); z

) ≡ Ln−1

(
g(z); z

)

several times,

Ln−1

( 2�n−1∑

k=�n

akzk; z
)

=
n−1∑

k=0

( 2�−1∑

j=�

ak+jn

)
zk,

hence and by (1.4)

∣
∣
∣

2�−1∑

j=�

ak+jn

∣
∣
∣ =

1
2π

∣
∣
∣

∫

|z|=r

z−k−1Ln−1

( 2�n−1∑

j=�n

ajz
j ; z

)
dz

∣
∣
∣ (1.5)

≤ r−k(2n + 1)M(r) , k = 0, . . . , n − 1.

Now if � = 1 then this yields for k = n − 2 and k = n − 1

|a2n−2| < r2−n(2n + 1)M(r), |a2n−1| < r1−n(2n + 1)M(r),
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respectively, i.e. lim
n→∞ |an|1/n ≤ r−1/2. But r < ρ�+1 = ρ2 was arbitrary, thus

lim sup
n→∞

|an|1/n ≤ 1/ρ.

This shows that f ∈ Aρ.

So from now on we may assume that � ≥ 2. Using (1.5) with

k = m + p, (2� + s + 1)m + p, (2� + 1)m + p and n = 3�m, 3sm, (3s + 1)m,

respectively, we obtain

∣
∣
∣

2�−1∑

j=�

a(3j�+1)m+p

∣
∣
∣ ≤ r−m−p(6�m + 1)M(r) < 7�mr−mM(r) , 0 ≤ p < m,

∣
∣
∣

2�−1∑

j=�

a(3js+2�+s+1)m+p

∣
∣
∣ ≤ r−(2�+s+1)m−p(6sm + 1)M(r)

< 12�mr−mM(r) , 0 ≤ p < m, � + 1 ≤ s ≤ 2� − 1,

and

∣
∣
∣

2�−1∑

j=�

a(3js+2�+j+1)m+p

∣
∣
∣ ≤ r−(2�+1)m−p[(6s + 2)m + 1]M(r)

< 12�mr−mM(r) , 0 ≤ p < m, � ≤ s ≤ 2� − 1.

Hence Lemma 1 yields

|a(3�2+1)m+p − a(6�2+1)m+p| ≤ 7�mr−mM(r) + 12�2mr−mM(r)

+ 12�2mr−mM(r) (1.6)

≤ 28�2mr−mM(r) , 0 ≤ p < m, � ≥ 2.

Now let
n ≥ (3�2 + 1) max

(
6�2 + 1,

log 9
log r

+ 1
)

(1.7)

represented in the form

n = (3�2 + 1)m + p , 0 ≤ p ≤ 3�2, (1.8)

and define the sequences of integers {rk}∞k=0 and {sk}∞k=0 by

r0 = m, s0 = p, (1.9)
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rk+1 =
[6�2 + 1
3�2 + 1

rk

]
, and sk+1 = sk + (6�2 + 1)rk − (3�2 + 1)

[6�2 + 1
3�2 + 1

rk

]
,

for k = 1, 2, . . . . (1.10)

Then evidently

(6�2 + 1)rk + sk = (3�2+!)rk+1 + sk+1 , k = 0, 1, . . . . (1.11)

We shall prove that

an =
∞∑

k=0

(a(3�2+1)rk+sk
− a(6�2+1)rk+sk

). (1.12)

Namely, (1.8), (1.9) and (1.11) yield that the N th partial sum of this series can
be written as

N∑

k=0

(a(3�2+1)rk+sk
− a(6�2+1)rk+sk

) = an − a(6�2+1)rN+sN
.

The assumption f ∈ A1C implies lim
k→∞

ak = 0, namely if pk−1(z) denotes the

best approximation of f(z) on |z| ≤ 1 by polynomials of degree at most k − 1,

i.e.
max
|z|=1

|f(z) − pk−1(z)| = Ek−1(f),

then

|ak| =
1
2π

∣
∣
∣

∫

|z|=1

z−k−1f(z)dz
∣
∣
∣

=
1
2π

∣
∣
∣

∫

|z|=1

z−k−1[f(z) − pk−1(z)]dz
∣
∣
∣

≤ Ek−1(f) → 0 as k → 0.

From (1.9) - (1.10) it is clear that

(3
2

)k

m ≤ rk ≤ 2km, p ≤ sk ≤ 3(k + 1)�2 , k = 0, 1, . . . , (1.13)

thus lim
N→∞

a(6�2+1)rN+sN
= 0, i.e. (1.12) holds. Since by (1.7) and (1.8)

m ≥ max
(
6�2,

log 9
log r

)
,

we have from (1.13) sk < rk (k = 0, 1, . . . ), and applying (1.6) we get the result.

A more general formulation is the following.
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Theorem 2.

U =
∞⋃

n=1

{
z | z = e2πik/n, k = 0, . . . , n − 1

}
. (1.14)

and {an}∞n=0 is a sequence of complex numbers such that





∆n,�(z) = ∆n,�

(
f, {an}∞n=0; z

)
:= Ln−1(f ; z) −

�−1∑

j=0

n−1∑

k=0

ak+jnzk , � ≥ 1

is uniformly bounded in every compact subset of |z| < ρ�+1.
(1.15)

Then

(i) g(z) :=
∞∑

k=0

akzk is analytic in |z| < ρ,

and

(ii) f(z) − g(z) can be extended analytically to |z| < ρ�+1.

An obvious consequence of this theorem (with f = g) is the following

Corollary 1. If f(z) =
∞∑

n=0
anzn is analytic in |z| < 1 and continuous

on |z| ≤ 1; moreover (1.15) is uniformly bounded in every compact subset of

|z| < ρ�+1, then f(z) is analytic in |z| < ρ.

Proof of Theorem 2. Denote

Sm(z) =
m∑

k=0

akzk,

then evidently

Ln−1(S�n−1; z) =
n−1∑

k=0

�−1∑

j=0

ak+jnzk. (1.16)

Thus by (1.15) we have for 1 < r < ρ�+1,

M(r) := sup
n

max
|z|=r

|∆n,�(z)| = sup
n

max
|z|=r

|f(z) − S�n−1(z)| < ∞. (1.17)

Applying (1.16) with �N instead of �,

Ln−1

(
S�nN−1 − S�n−1; z

)
=

n−1∑

k=0

�N−1∑

j=�

ak+jnzk,

and thus by (1.17) for 0 ≤ k ≤ n − 1,

∣
∣
∣

�N−1∑

j=�

ak+jn

∣
∣
∣ =

1
2π

∣
∣
∣

∫

|z|=r

z−k−1Ln−1

(
S�nN−1 − S�n−1; z

)
dz

∣
∣
∣

(1.18)

≤ M(r)r−k +
1
2π

∣
∣
∣

∫

|z|=r

z−k−1Ln−1

(
f − S�nN−1; z

)
dz

∣
∣
∣.

Suppose f(z) is defined on the set
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Let

LnN−1

(
f − S�nN−1; z

)
=

nN−1∑

t=0

btz
t, (1.19)

then

1
2πi

∫

|z|=r

( N−1∑

ν=0

z−νn
)
z−k−1LnN−1

(
f − S�nN−1; z

)
dz =

N−1∑

ν=0

bk+νn,

while by (1.19)

1
2πi

∫

|z|=r

z−k−1Ln−1

(
f − S�nN−1; z

)
dz

=
1

2πi

∫

|z|=r

z−k−1Ln−1

(
LnN−1(f − S�nN−1; z); t

)
dt

=
1

2πi

∫

|z|=r

z−k−1Ln−1

( nN−1∑

t=0

btz
t; z

)
dt

=
1

2πi

∫

|z|=r

z−k−1
n−1∑

t=0

N−1∑

ν=0

bt+νnztdt

=
N−1∑

ν=0

bk+νn.

Thus (1.18) can be written in the form (using (1.17) again, with nN instead of
n).

∣
∣
∣

�N−1∑

j=�

ak+jn

∣
∣
∣ ≤ M(r)r−k +

1
2π

∣
∣
∣

∫

|z|=r

N−1∑

ν=0

z−νn−k−1LnN−1

(
f − S�nN−1; z

)
dt

∣
∣
∣

(1.20)

≤ M(r)r−k
(
1 +

∞∑

ν=0

r−νn
)
≤ 2rn − 1

rn − 1
M(r)r−k

≤ 2r − 1
r − 1

M(r)r−k , k = 0, . . . , n − 1.

Now we make use of the identity (cf. also Lemma 1)

a(3�+1)�m+p = a(3�+1)�mN+p +
�N−1∑

j=�

a(3�+1)jm+p (1.21)

+
�N−1∑

s=�+1

�N−1∑

j=�

a(3sj+2s+j+�+1)m+p

−
�N−1∑

j=�

�N−1∑

s=�

a(3sj+2s+j+�+1)m+p
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which is easily seen if we add the term s = � so the first double sum on the
right hand side, and subtract it from the first (single) sum. Apply first (1.20)
successively with n = (3� + 1)m, k = p; then with n = (3s + 1)m, k = (2s + � +
1)m+p; and finally with n = (3j +2)m, k = (j + �+1)m+p, where 0 ≤ p < m.

We obtain





∣
∣
∣

�N−1
∑

j=�

aj(3�+1)m+p

∣
∣
∣ ≤ 2r−1

r−1 M(r)r−p,

∣
∣
∣

�N−1∑

j=�

aj(3s+1)m+(2s+�+1)m+p

∣
∣
∣ ≤ 2r−1

r−1 M(r)r−(2s+�+1)m−p

for � + 1 ≤ s ≤ �N − 1,
∣
∣
∣

�N−1∑

s=�

a(3j+2)sm+(j+�+1)m+p

∣
∣
∣ ≤ 2r−1

r−1 M(r)r−(j+�+1)m−p

for � ≤ j ≤ �N − 1.

(1.22)

Hence

∣
∣
∣

�N−1∑

s=�+1

�N−1∑

j=�

a(3js+2s+j+�+1)m+p

∣
∣
∣ ≤ 2r − 1

r − 1
M(r)r−p

�N−1∑

s=�+1

r−2sm

∣
∣
∣

�N−1∑

j=�

�N−1∑

s=�

a(3js+2s+j+�+1)m+p

∣
∣
∣ ≤ 2r − 1

r − 1
M(r)r−p

(
r−(�+1)m

�N−1∑

j=�

r−jm
)
.

Thus using (1.22) in (1.21), we have

|a(3�+1)�m+p| ≤ |a(3�+1)�mN+p| + C(r)r−p.

Letting N → ∞, aN → 0, we obtain

|a(3�+1)�m+p| ≤ C(r)r−p , 0 ≤ p < m.

Hence with n = (3� + 1)�m + p, m − (3� + 1)� ≤ p ≤ m − 1 we obtain

ρ−1 = lim
n→∞ |an|1/n ≤ r−

1
(3�+1)�+1 < 1.

We now show that ρ1 ≥ ρ. If we had ρ1 < ρ, then choose r such that ρ1 <

r
1

�+1 < ρ. Then from (1.20) we have

|a�n+k| ≤
∣
∣
∣

�N−1∑

j=�

ajn+k

∣
∣
∣ +

∣
∣
∣

�N−1∑

j=�+1

ajn+k

∣
∣
∣

≤ c(r)r−k + O
( ∞∑

j=�+1

(ρ1 − ε)−jn−k
)

≤ c(r)r−k + O
(
(ρ1 − ε)−(�+1)n−k

)
, 0 ≤ k ≤ n − 1.
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Using this with n − � ≤ k ≤ n − 1, we see from the definition of ρ−1
1 and the

above inequality that

ρ−1
1 = lim

ν→∞ |aν |1/ν ≤ max
{

r−
1

�+1 , (ρ1 − ε)−
�+z
�+1

}
<

1
ρ1

for sufficiently small ε > 0, a contradiction. This proves that g(z) is analytic in
|z| < ρ.

In order to prove (ii) we observe that by Theorem 1 of Chapter 4, ∆n,�(g; z)
is uniformly bounded on compact subsets of |z| < ρ�+1. Thus by (1.15),

|Ln−1(f − g; z)| ≤ |∆n,�(z)| + |∆n,�(g; z)| ≤ M < ∞
on compact subsets of |z| < ρ�+1. If we apply this to n! instead of n, then
by Vitali’s selection principle there exists a subsequence n1 < n2 < . . . such
that Lnk!−1(f − g; z) converges uniformly to some function F (z) analytic in
|z| < ρ�+1. Since the (1.14) is dense in the unit circle, it follows that F (z) =
f(z) − g(z), z ∈ U. �

Next we investigate the question whether assuming the condition

lim
n→∞ ∆n,�(f ; z) = 0 uniformly in |z| ≤ ρ�+1 (1.23)

is stronger than (1.15), i.e. can we conclude that f(z) is continuous in |z| ≤ ρ .

The negative answer will follow from the following

Theorem 3. If f ∈ Aρ (ρ > 1) and {ϕn}∞n=1 is a positive monotone (in-

creasing or decreasing) sequence with ϕ2n ∼ ϕn, then

max
|z|=ρ�+1

|∆n,�(f ; z)| = O(ϕn) , n → ∞ (1.24)

and

an = O(ρ−nϕn) , n → ∞ (1.25)

are equivalent. (Here an of f.)

Proof. By the assumption on ϕn, there exists a constant c > 0 such that
(cnc)−1 < ϕn < cnc. Thus, using the representation (1.2) from Chapter 4 we
get by (1.25)

|∆n,�(f ; z)| ≤
∞∑

j=�

n−1∑

k=0

|ak+jn| · |z|k

= O
( ∞∑

j=�

n−1∑

k=0

ϕk+jnρ−k−jn+k(�+1)
)

= O
( ∞∑

j=�

jcϕnρ(�−j)n
)

= o(ϕn) , |z| = ρ�+1.

are the Taylor coefficients



124 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

Conversely, for f ∈ Aρ we get

∆n,�(f ; z) =
n−1∑

k=0

ak+�nzk + O
( ∞∑

j=�+1

n−1∑

k=0

ak+jnzk
)

=
n−1∑

k=0

ak+�nzk + O
( ∞∑

j=�+1

n−1∑

k=0

(ρ − ε)−k−jnρk(�+1)
)

=
n−1∑

k=0

ak+�nzk + O
(
(ρ − ε)−(�+2)nρn(�+1)

)
, |z| = ρ�+1

whence by (1.24), for n = �n + k, n − � − 1 ≤ k ≤ n − 1 we obtain

|am| =
1
2π

∣
∣
∣

∫

|z|=ρ�+1

∆n,�(f ; z)
zk+1

dz
∣
∣
∣ + O

(
(ρ − ε)−(�+2)nρ(n−k)(�+1)

)

= O
(
ρ−k(�+1)ϕn + (ρ − ε)−(�+2)n

)
= O(ρ−mϕm),

since k(� + 1) ≥ m− �(� + 1), n(� + 1) ≥ m, and ϕn is of polynomial growth. �

Now we can answer the question raised after the proof of Theorem 1. Let

f(z) =
∞∑

k=1

zk

kρk
∈ Aρ.

This function is not in AρC, since at z = ρ it is not even defined. Nevertheless,

an =
1

nρn
= ρ−nϕn , ϕn =

1
n

and thus by Theorem 3, (1.24) holds which implies (1.23).

Thus uniform convergence of ∆n,�(f ; z) to zero on |z| ≤ ρ�+1 does not imply
even the boundedness of f(z) on |z| ≤ ρ.

5.2. Hermite Interpolation

For any f(z) ∈ Aρ (ρ > 1), r−1 times differentiable on |z| ≤ ρ, let hrn−1(f ; z)
denote the Hermite interpolant to f in the zeros of (zn − 1)r :

h
(j)
rn−1(f ; ωk) = f (j)(ωk), j = 0, . . . , r − 1; k = 0, . . . , n − 1

where ωn = 1 (see (1.1) of Chapter 2). We shall also use the definition of
βs,r(z) in (1.7) and ∆rn−1,�(f ; z) in (1.14) of Chapter 2. Now the analogue of
Corollary 1 can be stated as follows:
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Theorem 4. Assume that f(z) ∈ A1

and

∆rn−1,�(f ; z) is uniformly bounded on every closed subset of |z| < ρ1+�/r.

(2.1)
Then f(z) ∈ Aρ.

Proof. As usual, let f(z) =
∞∑

k=0

akzk be the Taylor expansion of f in |z| < 1.

First we prove the following identity:

∆rn−1,�(f ; z) = hrn−1

( ∞∑

k=(r+�−1)n

akzk; z
)
. (2.2)

Namely, since hrn−1 is a linear operator which reproduces polynomials of degree
at most rn − 1, we have

hrn−1(f ; z) − hrn−1

( ∞∑

k=(r+�−1)n

akzk; z
)

(2.3)

= hrn−1

( (r+�−1)n−1∑

k=0

akzk; z
)

= hrn−1

( rn−1∑

k=0

akzk; z
)

+ hrn−1

( (r+�−1)n−1∑

k=rn

akzk; z
)

=
rn−1∑

k=0

akzk +
(r+�−1)n−1∑

k=rn

akhrn−1(zk; z)

=
rn−1∑

k=0

akzk +
�−1∑

j=1

n−1∑

k=0

ak+(r+j−1)nhrn−1

(
zk+(r+j−1)n; z

)
.

Here, according to (2.1) in Chapter 2 (applied with j = k, s = j−1, and α = 1),
we have

hrn−1

(
zk+(r+j−1)n; z

)
= zkβj,r(zn), j = 1, 2, . . . , 0 ≤ k ≤ n − 1 . (2.4)

Substituting this into (2.3), and using also (1.14) from Chapter 2 we get (2.2).

Now let 1 < R < ρ1+�/r be arbitrary. Then by (2.1) and (2.2)

sup
n

max
|z|=R

∣
∣
∣ brn−1

( ∞∑

k=(r+�−1)n

akzk; z
) ∣

∣
∣ ≤ M(R) < ∞. (2.5)

The last inequality will be used with Nn instead n as well:

max
|z|=R

∣
∣
∣ hNrn−1

( ∞∑

k=N(r+�−1)n

akzk; z
) ∣

∣
∣ ≤ M(R). (2.6)

is r− 1 times differentiable on |z| = 1,



126 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

Thus if we set

hNrn−1

( ∞∑

k=N(r+�−1)n

akzk; z
)

:=
Nrn−1∑

k=0

bkzk (2.7)

we get from Cauchy’s formula

|bk| ≤ M(R)R−k, k = 0, 1, . . . , Nrn − 1. (2.8)

Since the set of (Nn)th roots of unity includes all nth roots of unity, evidently
we have:

hrn−1(g; z) = hrn−1

(
hNrn−1(g; z); z

)
.

Using this with g(z) =
∞∑

k=N(r+�−1)n

akzk successively, as well as (2.4) and (2.7)

to obtain

hrn−1

( ∞∑

k=N(r+�−1)n

akzk; z
)

= hrn−1

(
hNrn−1

( ∞∑

k=N(r+�−1)n

akzk; z
)
; z

)

= hrn−1

( Nrn−1∑

k=0

bkzk; z
)

=
rn−1∑

k=0

bkzk +
(N−1)r−1∑

k=0

bk+rnhrn−1

(
zk+rn; z

)

=
rn−1∑

k=0

bkzk +
n−1∑

k=0

(N−1)r−1∑

λ=0

bk+(r+λ)nhrn−1

(
zk+(r+λ)n; z

)

=
rn−1∑

k=0

bkzk +
(N−1)r−1∑

λ=0

βλ+1,r(zn)
n−1∑

k=0

bk+(r+λ)nzk.

Here, by Lemma 2 of Chapter 2,

max
|z|=R

|βλ+1,r(zn)| ≤ crλ
rR(r−1)n

where cr > 0 depends only on r. Thus we get, using also (2.8)

max
|z|=R

∣
∣
∣ hrn−1

( ∞∑

k=N(r+�−1)n

akzk; z
) ∣

∣
∣ (2.9)

≤ rnM(R) + cr

(N−1)r−1∑

λ=0

λrR(r−1)n
n−1∑

k=0

M(R)R−k−(r+λ)n+k

≤ rnM(R) + crM(R)R−n

(N−1)r−1∑

λ=0

λrR−λn ≤ c′rnM(R)
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with some other constant c′r > 0.

This last estimate can be used as follows. Since

hrn−1

( N(r+�−1)n−1∑

k=(r+�−1)n

akzk; z
)

= hrn−1

( ∞∑

k=(r+�−1)n

akzk; z
)
−

− hrn−1

( ∞∑

k=N(n+�−1)n

a,z
k; z

)
,

(2.5) and (2.9) yield

max
|z|=R

∣
∣
∣ hrn−1

( N(r+�−1)n−1∑

k=(r+�−1)n

akzk; z
) ∣

∣
∣ ≤ (c′rn + 1)M(R). (2.10)

Using again (2.5) we get

hrn−1

( N(r+�−1)n−1∑

k=(r+�−1)n

akzk; z
)

=

=
n−1∑

k=0

(r+�−1)(N−1)−1∑

λ=0

ak+(r+λ+�−1)nhrn−1

(
zk+(r+λ+�−1)n; z

)

=
n−1∑

k=0

(r+�−1)(N−1)−1∑

λ=0

ak+(r+λ+�−1)nzkβ�+λ,r(zn).

Here, by (1.7) of Chapter 2,

β�+λ,r(zn) =
r−1∑

µ=0

(
r + � + λ − 1

µ

)

(zn − 1)µ

=
r−1∑

µ=0

(
r + � + λ − 1

µ

) µ∑

ν=0

(
µ

ν

)

(−1)µ−νzνn

=
r−1∑

ν=0

zνn
r−1∑

µ=0

(−1)µ−ν

(
r + � + λ − 1

µ

) (
µ

ν

)

and thus

hrn−1

( N(r+�−1)n−1∑

k=(n+�−1)n

akzk; z
)

=
n−1∑

k=0

r−1∑

ν=0

zk+νn×

×
r+�−2∑

λ=0

r−1∑

µ=0

(−1)µ−ν

(
n + � + λ − 1

µ

) (
µ

ν

)

ak+(n+λ+�−1)n .
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Applying Cauchy’s formula and (2.10) we get

∣
∣
∣

(r+�−1)(N−1)−1∑

λ=0

r−1∑

µ=ν

(−1)µ−ν

(
r + � + λ − 1

µ

)(
µ

ν

)

ak+(r+�+λ−1)n

∣
∣
∣ ≤

(2.11)

≤ (c′rn + 1)M(R)
Rk+νn

, k = 0, . . . , n − 1; ν = 0, . . . , r − 1.

Denoting

µk,ν,n :=
(r+�−1)(N−1)−1∑

λ=0

r−1∑

µ=0

(−1)µ−ν

(
r + � + λ − 1

µ

)(
µ

ν

)

ak+(r+�+λ−1)n

and summing up for ν we obtain

r−1∑

ν=0

µk,ν,n =
(r+�−1)(N−1)−1∑

λ=0

r−1∑

µ=0

(−1)µ

(
r + � + λ − 1

µ

)

ak+(r+�+λ−1)n×

×
r−1∑

ν=0

(−1)ν

(
µ

ν

)

=
(r+�−1)(N−1)−1∑

λ=0

ak+(r+�+λ−1)n

=
N(r+�−1)−1∑

j=r+�−1

ak+jn.

Thus by (2.10) we get

∣
∣
∣

N(r+�−1)−1∑

j=r+�−1

ak+jn

∣
∣
∣ ≤

r−1∑

ν=0

|µk,ν,n| ≤ r(c′rn + 1)(M(R)
Rk

, k = 0, 1, . . . , n − 1.

From these inequalities we can conclude (just like in the proof of Theorem 1) that
f(z) can be analytically continued from |z| ≤ 1 into a larger circle. Let ρ > 1
be the maximal radius for which f(z) is analytic in |z| < ρ. By Theorem 3(ii)
of Chapter 4, the sequence (2.2) can be bounded in at most r + � − 1 distinct
points in |z| > ρ 1+�/r. From the hypothesis of the theorem, this means that
ρ ≤ ρ, i.e. f(z) is analytic in |z| < ρ. �

5.3. Historical Remarks

Theorem 1 is due to Szabados [106], and later it was extended (in the weaker
form) to Hermite interpolation by Cavaretta, Sharma and Varga [32] (Theo-
rem 4). The stronger form Theorem 2 (and Corollary 1) was proved by Ivanov
and Sharma [52]. The negative answer (Theorem 3) to the question if continu-
ity property of the function is inherited in the order of overconvergence can be
found in Totik [111].



CHAPTER 6

PADÉ APPROXIMATION AND

WALSH EQUICONVERGENCE FOR

MEROMORPHIC FUNCTIONS WITH ν POLES

6.1. Introduction

In the previous chapters extensions of the Walsh equiconvergence theorem
for functions in Aρ, ρ > 1, were estimated. In all these extensions of the Walsh
equiconvergence theorem the differences of two polynomial approximation oper-
ators played a role. In this chapter we bring extensions of the Walsh theorem to
differences of rational approximation operators of a certain type. It seems that
most equiconvergence theorems for polynomial approximation operators can be
extended to equiconvergence theorems for rational interpolants.

For each non-negative integer ν and for each ρ with 1 < ρ < ∞, let Mρ(ν)
denote the set of functions F (z) which are meromorphic with precisely ν poles
(counting multiplicities) in the disc Dρ but not in Dρ and which are regular at
z = 0 and on |z| = 1. A rational function

Un,ν(z)
Vn,ν(z)

, Un,ν(z) ∈ πn and Vn,ν ∈ πν is monic (1.1)

is called of type (n, ν).

For a given F ∈ Mρ(ν), denote by Sn,ν(z) = Sn,ν(F, z) the rational inter-
polant of type (n, ν) to F (z) in the (n + ν + 1)th roots of unity. This means
that if ω is a primitive (n + ν + 1)th root of unity, we require that

Sn,ν(ωk) = F (ωk), 0 ≤ k ≤ n + ν. (1.1a)

When ν = 0 we have Sn,0 = Ln(f, z). Similarly, consider the Hermite-Padé
rational interpolant Rn,ν(F ; z) of type (n, ν) defined by

Rn,ν(F, z) := Rn,ν(z) :=
Pn,ν(z)
Qn,ν(z)

, Pn,ν(z) ∈ πn, Qn,ν(z) ∈ πν is monic

(1.2)
and

Rn,ν(z) − F (z) = O(zn+ν+1) as z → 0. (1.2a)
129
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It is easy to see that for ν = 0, Rn,0 = Sn(F, z).

It is known from a theorem of de Montessus de Ballore [39] that the rational
interpolants Rn,ν(z) and Sn,ν(z) exist and are unique for large n.

The first extension of Walsh theorem of equiconvergence to functions in the
class Mρ(ν) is the following:

Theorem 1. If F ∈ Mρ(ν) (ρ > 1) and if {αj}ν
j=1 are the ν poles of F in

Dρ (listed according to multiplicities), then for the rational interpolants Sn,ν(z)
of (1.1) and Rn,ν(z) of (1.2), we have

lim
n→∞ [Sn,ν(F, z) − Rn,ν(F, z)] = 0, ∀ z ∈ Dρ2\

ν⋃

j=1

{αj}, (1.3)

the convergence being uniform and geometric on any closed subset of Dρ2\ ν∪
j=1

{αj}.

More precisely, on any closed subset H of Dτ\
ν∪

j=1
{αj} with ρ ≤ τ < ∞,

there holds

lim sup
n→∞

{max
z∈H

|Sn,ν(F, z) − Rn,ν(F, z)|}1/n ≤ τ

ρ2
. (1.4)

The result (1.3) is best possible in the sense that for any ν ≥ 0 and for any ρ,

1 < ρ < ∞, there exists an F̃ν ∈ Mρ(ν) such that

lim sup
n→∞

{ min
|z|=ρ2

|Sn,ν(F̃ , z) − Rn,ν(F̃ , z)|} > 0. (1.5)

Note that in the special case ν = 0, this theorem reduces to Walsh’s theorem
in Chapter 1 for functions in the class Aρ.

We illustrate this theorem with an example before stating and proving its
generalization.

Example. For any given ρ with 1 < ρ < ∞ and any fixed α with 0 < |α| < ρ,

|α| �= 1, we consider the function F (z) = 1
z−α + 1

z−ρ which belongs to Mρ(1).
Because there is only one pole inside the disc Dρ, it is easy to check that

Sn,1(F ; z) =
Un,1(z)
Vn,1(z)

and Rn,1(F, z) =
Pn,1(z)
Qn,1(z)

where we write Vn,1(z) = z +λn and Qn,1(z) = z +γn. Observe that Un,1(z)
interpolates F (z)Vn,1(z) in the zeros of zn+2−1. Since F (z)Vn,1(z) = 2+ α+λn

z−α +
ρ+λn

z−ρ , the interpolant to it at the zeros of zn+2 − 1 is clearly

2 +
(α + λn)(zn+2 − αn+2)

(z − α)(1 − αn+2)
+

(ρ + λn)(zn+2 − ρn+2)
(z − ρ)(1 − ρn+2)

.
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In order that it is equal to Un,1(z) which ∈ πn, we choose λn so that the
coefficient of zn+1 in the above vanishes. This gives

λn =
αρn+2 + αn+2ρ − ρ − α

2 − ρn+2 − αn+2
.

(For sufficiently large n, the denominator is different from zero.)

Similarly, we have

γn = −ρα
ρn+1 + αn+1

ρn+2 + αn+2
.

An easy calculation now gives

Un,1(z) = 2 − ρVn,1(ρ)(zn+1 − ρn+1)
(ρn+2 − 1)(z − ρ)

− αVn,1(α)(zn+1 − αn+1)
(αn+2 − 1)(z − α)

,

Pn,1(z) = 2 − Qn,1(ρ)(zn+1 − ρn+1)
ρn+1(z − ρ)

− Qn,1(α)(zn+1 − αn+1)
αn+1(z − α)

.

Since ρ > |α|, both λn and γn tend to −α as n → ∞. Thus the poles of Sn,1(F, z)
and Rn,1(F, z) both tend to the inner pole of F (z) as n → ∞.

A straightforward but lengthy calculation yields

Sn,1(F, z) − Rn,1(F, z) =
zn+2(ρ − α)2(ρ + α − 2z)

ρ2n+4(z − α)3(z − ρ)
+ O(1)

1
ρn

(1.6)

as n → ∞, the last term holding uniformly on any bounded set in C\({α}∪{ρ}).
This shows overconvergence in Dρ2\{α}.

Moreover we have

lim
n→∞

{
min
|z|=ρ2

|Sn,1(F, z) − Rn,1(F ; z)|
}
≥ |ρ − α|2(2ρ2 − ρ − |α|)

(ρ2 + |α|)3(ρ2 + ρ)
> 0.

(1.7)

Thus we have verified the theorem in this case for ν = 1.

The above example can also be modified to yield an example for the case
when ν ≥ 2. In order to do this for any ν ≥ 2, we set

Fν(z) := F (zν ; αν , ρν) :=
1

zν − αν
+

1
zν − ρν

∈ Mρ(ν)

where 0 < |α| < ρ and |α| �= 1. Then the rational interpolants Sn,ν(Fν ; z) and
Rn,ν(Fν , z)are easily seen to be related to the previous case of Sn,1(F1, z) and
Rn,1(F1, z) as below:

S(m+1)ν−1,ν(Fν , z) = Sm,1

(
F (·, αν , βν), zν

)
,

R(m+1)ν−1,ν(Fν , z) = Rm,1

(
F (·, αν , βν), zν

)
, m = 1, 2, . . . .
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It therefore follows from (1.6) that

S(m+1)ν−1,ν(Fν , z) − R(m+1)ν−1,ν(Fν , z) =

=
z(m+1)ν+1(ρν − αν)2(ρν + αν − 2zν)

ρ2(m+1)ν+2(zν − αν)3(zν − ρν)
+ O

( 1
ρ(m+1)ν

)
, as m → ∞

and from (1.7), we get

lim
m→∞

{
min
|z|=ρ2

|S(m+1)ν−1(Fν , z) − R(m+1)ν−1(Fν , z)|
}

≥ |ρν − αν |2(2ρ2ν − ρν − |α|ν)
(ρ2ν + |α|ν)3(ρ2ν + ρν)

> 0.

Hence
lim sup

n→∞

{
min
|z|=ρ2

|Sn,ν(Fν , z) − Rn,ν(Fν , z)|
}

> 0

for each positive integer ν and each ρ with 1 < ρ < ∞. This shows the sharpness
of Theorem 1 in this case.

6.2 A Generalization of Theorem 1

We start with the representation of any function F (z) ∈ Mρ(ν) in the form
f(z)

Bν(z) , where f(z) ∈ Aρ and Bν(z) is a monic polynomial of degree ν which may
have multiple zeros. More precisely, let

f(z) :=
∞∑

k=0

akzk, lim sup
n→∞

|an|1/n =
1
ρ

, f(zj) �= 0,

where

Bν(z) =
µ∏

j=1

(z − zj)λj =
ν∑

k=0

αkzk, αν = 1 and
µ∑

j=1

λj = ν.

For some α ∈ C , |α| < ρ, we first find the (n, ν) Hermite-Padé interpolant
to F (z) ∈ Mρ(ν) on the zeros of zn+r+1 − αn+ν+1. We suppose that ω is an
arbitrary (n + ν + 1)th primitive root of unity (ωn+ν+1 = 1). We shall denote
this Hermite-Padé interpolant by

P∞
n,ν(z) :=

U∞
n (z)

B∞
n,ν(z)

=
∑n

s=0 p∞s,nzs

∑ν
s=0 γ∞

s,nzs
, γ∞

ν,n = 1

where B∞
n,ν(z) is monic of degree ν and U∞

n (z) ∈ πn. We suppose that {αωk}n+ν
k=0

are different from the zeros of Bν(z). For any other β ∈ C with |β| < ρ, |β| �= |α|
let {βωk}n+ν

k=1 be different from the zeros of Bν(z). For any integer 
 ≥ 1 we

(2.1)
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denote the Lagrange interpolant to f(z) on the zeros of z�(n+ν+1) − β�(n+ν+1)

by L�(n+ν+1)(f ; β; z) and for brevity we denote it by Lβ
�(n+ν+1(z). Now write






Lβ
�(n+ν+1)(z) :=

�(n+ν+1)−1∑

k=0

B�
k,nzk, where

B�
k,n =

∞∑

m=0
am�(n+ν+1)+kβm�(n+ν+1), k = 0, 1, . . . , 
(n + ν + 1) − 1.

The Lagrange interpolant to Lβ
�(n+ν+1) on the zeros of zn+ν+1 −αn+ν+1 will be

a polynomial of degree n + ν and we denote it by

Ln+ν+1(L
β
�(n+ν+1);α, z) =

n+ν∑

j=0

A�
j,nzj ,

where on using the value of B�
k,n

A�
j,n =

�−1∑

r=0

B�
r(n+ν+1)+j,nαr(n+ν+1)

=
�−1∑

r=0

∞∑

m=0

a(m�+r)(n+ν+1)+jβ
m�(n+ν+1)αr(n+ν+1), j = 0, 1, . . . , n + ν ,

Set

Gα,β
�,ν (F ; z) :=

Ln+ν+1

(
Lβ

�(n+ν+1);α; z
)

Bν(z)
, 
 ≥ 1

and consider the (n, ν) Hermite-Padé interpolant to Gα,β
�,ν (F ; z) on the zeros of

zn+ν+1 − αn+ν+1. We denote it by

P �
n,ν(z) :=

U �
n(z)

B�
n,ν(z)

=
∑n

s=0 p�
s,nzs

∑ν
s=0 γ�

s,nzs
, γ�

ν,n = 1.

�
n,ν(z) to Gα,β

�,ν (F ; z) can be written
in the form

Bν(αωk)U �
n(αωk) = B�

n,ν(αωk)
n+ν∑

j=0

A�
j,n(αωk)j , k = 0, 1, . . . , n + ν.

Using the estimates an = O
(
(ρ − ε)−n

)
as n → ∞, max (|α|, |β|) < ρ − ε, we

A∞
j,n := lim

�→∞
A�

jn =
∞∑

r=0

ar(n+ν+1)+jα
r(n+ν+1), n, j = 0, 1, . . . .

Thus with this definition of A∞
j,n we can say that the interpolation property

(2.2)

(2.3)

(2.4)

Using (2.3), this interpolation property of P

(2.5)

easily obtain from (2.4)

(2.6)

(2.5) remains valid for 
 = ∞. We now have the following

in (2.2),
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Theorem 2. Let F ∈ Mρ(ν) (ρ > 1, ν ≥ 0), and let α, β ∈ C such that

|α| �= |β| < ρ. Suppose that the poles of F are not on the circles |z| = |α| and
|z| = |β|. Then for z such that Bν(z) �= 0, we have

lim sup
n→∞

∣
∣P∞

n,ν(z) − P �
n,ν(z)

∣
∣1/n ≤






(
γ
ρ

)�

if |z| < ρ

(
γ
ρ

)� |z|
ρ if |z| ≥ ρ,

where γ := max(|α|, |β|,max1≤j≤µ |zj |).

Thus we have overconvergence on compact subsets in |z| < ρ�+1

γ� , with zeros
of Bν(z) deleted.

The proof of this theorem will depend on several lemmas, but we first prove
the unique existence of the operators P �

n,ν and P∞
n,ν for n sufficiently large. Using

Bν(z)U �
n(z) =

ν∑

k=0

αkzk
n∑

s=0

p�
s,nzs =

n+ν∑

s=0

( ∑

k+r=s

αkp�
r,n

)
zs

=
n+ν∑

s=0

( min(ν,s)∑

k=max(0,s−n)

αkp�
s−k,n

)
zs

and

B�
n,ν(z)

n+ν∑

j=0

A�
j,nzj =

ν∑

k=0

γ�
k,nzk

n+ν∑

r=0

A�
r,nzr =

=
n+2ν∑

s=0

( min(ν,s)∑

k=max(0,s−n−ν)

γ�
k,nA�

s−k

)
zs

=
n+ν∑

s=0

(min(ν,s)∑

k=0

γ�
k,nA�

s−k,n

)
zs + zn+ν+1

ν−1∑

s=0

( ν∑

k=s+1

γ�
k,nA�

s+n+ν+1−k,n

)
zs

coincide at the roots of the polynomial zn+ν+1 −αn+ν+1. Evidently this is also
true of the polynomial

n+ν∑

s=0

(min(ν,s)∑

k=0

γ�
k,nA�

s−k,n

)
zs + αn+ν+1

ν−1∑

s=0

( ν∑

k=s+1

γ�
k,nA�

s+n+ν+1−k,n

)
zs.

min(ν,s)∑

k=max(0,s−n)

αkp�
s−k,n =






s∑

k=0

γ�
k,nA�

s−k,n + αn+ν+1
ν∑

k=s+1

γ�
k,nA�

s+n+ν+1−k,n

if 0 ≤ s ≤ ν − 1
ν∑

k=0

γ�
k,nA�

s−k,n, if ν ≤ s ≤ n + ν.

the notation for coefficients introduced in (2.5) means that the polynomials

(2.7)

(2.8)

(2.9)

Thus the polynomial (2.8) (being of degree at most n + ν) is identically equal
to the polynomial (2.7). Comparing coefficients we have
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Remark. For s < 0, we make, for convenience, the convention that

A�
s,n := αn+ν+1A�

n+ν+1+s,n .

First we consider the case when Bν(z) has simple zeros z1, z2, . . . , zν . Since

Bν(z) :

n+ν∑

s=0




min(ν,s)∑

k=0

γ�
k,nA�

s−k,n



 zs
j + αn+ν+1

ν−1∑

s=0

(
ν∑

k=s+1

γ�
k,nA�

s+n+ν+1−k,n

)

zs
j = 0

(1 ≤ j ≤ ν) .

ν∑

k=0

{ ν−k∑

s=0

A�
s,nzs+k

j +
n+ν∑

s=ν+1

A�
s−k,nzs

j + αn+ν+1
ν−1∑

s=0

A�
s+n+ν+1−k,nzs

j

}
γ�

kn = 0

j = 1, . . . , ν.

All formulae so far are also true for 1 ≤ 
 ≤ ∞. Now if 1 ≤ 
 < ∞, then by

A�
s,n = as +

∞∑

m=1

am�(n+ν+1)+sβ
m�(n+ν+1) +

�−1∑

r=1

ar(n+ν+1)+sα
r(n+ν+1)

+
∞∑

m=1

�−1∑

r=1

a(m�+r)(n+ν+1)+sα
r(n+ν+1)βm�(n+ν+1)

= as + O(1)

(( |β|
ρ − ε

)�n

+
( |α|

ρ − ε

)n

+
( |α| · |β|�

(ρ − ε)�+1

)n
)

1
(ρ − ε)s

= as + O(1)
(

γn

(ρ − ε)n+s

)

= O(1)
(
(ρ − ε)−s

)
, s = 0, 1, . . . , 1 ≤ 
 < ∞.

A∞
s,n = as +

∞∑

r=1

ar(n+ν+1)+sα
r(n+ν+1) = as + O

( γn

(ρ − ε)n+s

)
,

s = 0, 1, . . . .

k = O((ρ − ε)−k) :

ν∑

k=0

{
ν−k∑

s=0

asz
s+k
j +

n+ν∑

s=ν+1

as−kzs
j + O(1)

((
γ

ρ − ε

)n)
}

γ�
k,n = 0.

(2.10)

(2.7) and (2.8) are identical this means that (2.8) is zero for the zeros of

Rearranging the left side, and on using the convention (2.10), we get

(2.11)

(2.4), we have,for 0 ≤ s ≤ s + ν, on recalling γ := max(|α|, |β|) < ρ,

(2.12)

Similarly for 
 = ∞, we obtain from (2.6)

(2.13)

Substituting these into (2.11), we get by a

(2.14)
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The two inner sums in the above become

ν−k∑

s=0

asz
s+k
j +

n+ν∑

s=ν+1

as−kzs
j = zk

j

n+ν−k∑

s=0

asz
s
j .

Extending the summation over s to ∞, an error of the same order O
(
( γ

ρ−ε )n
)

is introduced and from
∑∞

s=0 asz
s
j j

�
k,n satisfy

the equations

ν∑

k=0

{

zk
j f(zj) + O

((
γ

ρ − ε

)n)}

γ�
k,n = 0, j = 1, . . . , ν, 1 ≤ 
 ≤ ∞.

Since f(zj) �= 0f or j = 1, . . . , ν by supposition and γ�
ν,n = 1, we have

ν∑

k=0

{

zk
j + O

((
γ

ρ − ε

)n)}

γ�
k,n = −zν

j + O

((
γ

ρ − ε

)n)

for j = 1, . . . , ν and 1 ≤ 
 ≤ ∞.

In this part of the proof the zeros (zj)1≤j≤ν of Bn,ν(z) are distinct. Therefore
for sufficiently large n, this system, in the unknowns γ�

k,n, is uniquely solvable,
because Det {zk

j }0≤k≤ν−1, 1≤j≤ν �= 0. Now Bν(zj) = 0 can be written in the
form

ν−1∑

k=0

αkzk
j = −zν

j , j = 1, . . . , ν.

ν−1∑

k=0

{

γ�
k,n

(

1 + O

(
γ

ρ − ε

)n)

− αk

}

zk
j = O(1)

(
γ

ρ − ε

)n

, j = 1, . . . , ν.

Using Cramer’s rule, we get

γ�
k,n

(

1 + O(1)
(

γ

ρ − ε

)n)

− αk =
Vk(z1, . . . , zν)
V (z1, . . . , zν)

· O(1)
(

γ

ρ − ε

)n

so that

γ�
k,n = αk + O(1)

(
γ

ρ − ε

)n

, 0 ≤ k ≤ ν − 1.

where V (z1, . . . , zν) is the Vandermonde determinant and Vk(z1, . . . , zν) is ob-
tained from V (z1, . . . , zν) on replacing the kth column by (1, 1 . . . )T

implies that lim
n→∞B�

n,ν(z) = Bν(z), 1 ≤ 
 ≤ ∞, uniformly on every compact set
of C. Hence, in particular,

lim sup
n→∞

max
z∈H

∣
∣(B�

n,ν(z)
∣
∣1/n

= lim
n→∞min

z∈H
∣
∣B�

n,ν(z)
∣
∣1/n

= 1

= f(z ), we find from (2.14) that γ

(2.15)

(2.16)

(2.17)

We can rewrite the difference of (2.16) and (2.17) in the form

(2.18)

. As (2.18)

(2.19)
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for every compact setHprovidedzj �∈ H,j = 1, . . . , ν.

A�
s,n − A∞

s,n =
∞∑

m=1

am�(n+ν+1)+sβ
m�(n+ν+1) −

∞∑

r=�

ar(n+ν+1)+sα
r(n+ν+1)

+
∞∑

m=1

�−1∑

r=1

a(m�+r)(n+ν+1)+sα
r(n+ν+1)βm�(n+ν+1)

≤ 1
(ρ − ε)s

O(1)

[( |β|
ρ − ε

)�n

+
( |α|

ρ − ε

)�n

+
( |α|, |β|�

(ρ − ε)�+1

)n
]

= O(1)
γ�n

(ρ − ε)�n+s
, s = 0, 1, . . . .

ν∑

k=0

{
ν−k∑

s=0

A∞
s,nzs+k

j +
n+ν∑

s=ν+1

A∞
s−k,nzs

j + αn+ν+1
ν−1∑

s=0

A∞
s+n+ν+1−k,nzs

j

}

×

× (γ�
k,n − γ∞

k,n) + O(1)
(

γ

ρ − ε

)�n

=
ν∑

k=0

{
ν−k∑

s=0

asz
s+k
j +

n+ν∑

s=ν+1

as−kzs
j + O(1)

(
γ

ρ − ε

)n
}

(γ�
k,n − γ∞

k,n)

+ O(1)
(

γ

ρ − ε

)�n

=
ν∑

k=0

{

zk
j f(zj) + O(1)

(
γ

ρ − ε

)n}

(γ�
k,n − γ∞

k,n) + O(1)
(

γ

ρ − ε

)�n

= 0

for j = 1, . . . , ν. Hence

ν∑

k=0

{

zk
j + O(1)

(
γ

ρ − ε

)n}

(γ�
k,n − γ∞

k,n) = O(1)
(

γ

ρ − ε

)�n

.

This obviously implies that

γ�
k,n − γ∞

k,n = O(1)
(

γ

ρ − ε

)�n

, k = 0, 1, . . . , ν

whence
lim sup

n→∞
max
z∈H

|B�
ν,n(z) − B∞

ν,n(z)|1/n ≤
(γ

ρ

)�

for any compact subset H ⊂ C. So far we have dealt only with the solution of
�
k,n. This system (as also in the case 
 = ∞)

consists of n+ ν +1 equations with the unknowns γ�
k,n (k = 0, 1, . . . , ν − 1) and

Now (2.12) and (2.13) also imply

(2.20)

Thus (2.11) can be written in the following form (using again also (2.13)):

(2.21)

(2.22)

(2.9) with respect to the unknowns γ
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p�
j,n (j = 0, 1, . . . , n). So the number of unknowns and the number of equations

is the same, i.e., n + ν + 1. Hence the rank of the full matrix M is ≤ n + ν + 1

s
j and sum on s for 0 ≤ s ≤ n + ν, we

get the matrix M1 (a Vandermonde matrix) to determine γk,n (k = 0, 1, . . . , ν−
1), since the unknowns p�

s,n drop out as a result of the summation process
using the fact that Bν(zj) = 0. Since the rank of a matrix does not change
by row operations, we may consider the matrix of the system of equations for
ν ≤ s ≤ n + ν, adjoined to the matrix M1. A close examination of the sum on

�
s,n is of the

following form:

M2 =














αν αν−1 αν−2 · · · α0 0
αν αν−1 · · · α1 α0 · · ·
· · · · · · · · · · · ·

αν αν−1 · · · α0

0 αν · · · α1

αν · · · α2

· · · · · ·
αν














.

M2 is a triangular matrix of order n with αν = 1 in the principal diagonal and
so is non-singular. Thus the matrix M

row equivalent to
(

M1 0
A M2

)

where M2 is the algebraic complement of M1,

and A is some matrix. Clearly the determinant of the system
(

M1 0
A M2

)

is

non-zero. Therefore γ�
k,nand p�

s,n can be uniquely determined for n sufficiently
large.

After settling the problem of asymptotic behaviour of the denominators (see

we prove the following

Lemma. We have

lim sup
n→∞

max
z∈Dτ

|U∞
n (z) − U �

n(z)|1/n ≤





(
γ
ρ

)�
if τ < ρ

(
γ
ρ

)� τ
ρ if τ ≥ ρ

and

lim sup
n→∞

max
z∈Dτ

|U∞
n (z)|1/n =

{ 1 if τ < ρ
τ
ρ if τ ≥ ρ.

Proof. Set δk := p∞k,n − p�
k,n,0 ≤ 
 < ∞ with p�

k,n = p∞k,n = 0 for k > n and
p0

k,n := 0. The unknowns p�
k,n

where M is the system (2.9).

If we multiply the equations (2.9) by z

the left in (2.9) shows that for ν ≤ s ≤ n + ν, the matrix for p

for the system of equations (2.9) is

(2.19) and (2.22)), we now turn our attention to the numerators. In this respect

(2.23)

(2.24)

are given by the equations (2.9). Let ν ≤ m ≤ n.
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s−m
j and sum over s from mton+ν. Then

n+ν∑

s=m

ν∑

k=0

αkp�
s−k,nzs−m

j =
ν∑

k=0

γ�
k,n

n+ν∑

s=m

A�
s−k,nzs−m

j .

On putting s = k + m − r, the left side can, as p�
m−r,n = 0 for m − r > n, be

written, since
∑ν

k=0 αkzk
j = Bν(zj) = 0, as

ν∑

k=0

k∑

r=m−n+k−ν

αkp�
m−r,nzk−r

j =
ν∑

k=0

k∑

r=m−n

αkp�
m−r,nzk−r

j

=
ν∑

k=0

(
ν∑

r=m−n

−
ν∑

r=k+1

αkp�
m−r,nzk−r

j

)

= −
ν∑

k=0

ν∑

r=k+1

αkp�
m−r,nzk−r

j

= −
ν∑

r=1

r−1∑

k=0

αkp�
m−r,nzk−r

j

=
ν∑

r=1

(
ν∑

k=r

αkzk−r
j

)

p�
m−r,n ,

So the equations to determine p�
s,n are:

ν∑

r=1

( ν∑

k=r

αkzk−r
j

)
p�

m−r,n =
ν∑

k=0

( n+ν∑

s=m

A�
s−k,nzs−m

j

)
γ�

k,n

with a similar equation for p∞m−r,n. Then subtracting we have (on putting
δm−r := p∞m−r,n − p�

m−r,n),

ν∑

r=1

{ ν∑

k=r

αkzk−r
j

}
δm−r =

ν∑

k=0

γ∞
k,n

n+ν∑

s=m

A∞
s−k,nzs−m

j

−
ν∑

k=0

γ�
k,n

n+ν∑

s=m

A�
s−kzs−m

j , 1 ≤ j ≤ ν.

The coefficient matrix of the {δm−r}ν
r=1 has a typical row consisting of the ν

elements
(

ν∑

k=1

αkzk−1
j ,

ν∑

k=2

αkzk−2
j , . . . ,

ν∑

k=ν−1

αkzk−ν+1
j , αν

)

.

This shows that the coefficient matrix of {δm−r}ν
r=1 is the product of two ma-

trices:

V (z1, . . . , zν) and








α1 α2 · · · αν−1 αν

α2 α3 · · · αν 0
· · · · · · · · · · · · · · ·

αν−1 αν · · · 0 · · · 0
αν 0 · · · 0 0








.

We multiply the equations (2.9) by z
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Thus the determinant of the system of equations is non-zero and using Cramer’s
rule, we have

δm−r =
ν∑

j=1

dr,j

{
ν∑

k=0

γ∞
k,n

n+ν∑

s=m

A∞
s−k,nzs−m

j −
ν∑

k=0

γ�
k,n

n+ν∑

s=m

A�
s−k,nzs−m

j

}

for 1 ≤ r ≤ ν.

Here the dr,j ’s are the minors of the determinants whose elements depend only

on the poles of F (z), the αk’s being coefficients of
ν∏

j=1

(z−zj) and so are uniformly

bounded, i.e. |dr,j | < e5.

Φ :=
ν∑

k=0

(γ∞
k,n − γ�

k,n)
n+ν∑

s=m

A∞
s−k,nzs−m

j +
ν∑

k=0

γ�
k,n

n+ν∑

s=m

(A∞
s−k,n − A�

s−k,n)zs−m
j .

Write Rε = max
( |α|

ρ− ε
2

, |β|
ρ− ε

2

)
. We have

(i) |γ∞
k,n − γ�

k,n| ≤ CR�n
ε ≤ CR�(n+ν+1)

ε from

(ii) |γ�
k,n| ≤ C (since lim

n→∞

ν∑

k=0

γ�
k,nzk = Bν(z)),

(iii) |A∞
s−k,n − A�

s−k,n| ≤
1

(ρ − ε
2 )s−k

[

C1

( |α|
ρ − ε

2

)�(n+ν+1)

+

+C2

( |β|
ρ − ε

2

)�(n+ν+1)
]

≤ C3
(Rε)�(n+ν+1)

(ρ − ε
2 )s−k

for s ≥ k

|A∞
s−k,n − A�

s−k,n| ≤ C4

( |α|
ρ − ε

2

)n+ν+1 1
(ρ − ε

2 )s−k
×

×
[

max
( |α|

ρ − ε
2

,
|β|

ρ − ε
2

)�(n+ν+1)
]

≤ C4

( |α|
ρ − ε

2

)n+ν+1 R
�(n+ν+1)
ε

(ρ − ε
2 )s−k

, for s < k,

(iv)|A∞
s−k,n| =






∣
∣
∣
∣
∣

∞∑

r=0

αr(n+ν+1)ar(n+ν+1)+s−k

∣
∣
∣
∣
∣
≤ C2

1
(ρ − ε)s−k

when s ≥ k,

∣
∣
∣
∣
∣

∞∑

r=1

αr(n+ν+1)ar(n+ν+1)+s−k

∣
∣
∣
∣
∣
< C1

( |α|
ρ − ε

2

)n+ν+1

×

× 1
(ρ − ε

2 )s−k
when s < k and 0 ≤ k ≤ ν

(2.25)

We now estimate the difference in the braces on the right in (2.25). Set

(2.21),
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|Φ| ≤ C
R

�(n+ν+1)
ε

(ρ − ε
2 )s−k

( |α|
ρ − ε

2

)n+ν+1

≤ C
R

�(n+ν+1)
ε

(ρ − ε
2 )m−r

for 0 ≤ r ≤ ν and m ≤ s ≤ n + ν.

k = C
R�(n+ν+1)

ε

(ρ−ε)k , 0 ≤ k ≤ n where C does not
depend on n, k but only on the zj ’s. Now with all these estimates, we come to

max
x∈H

|U∞
n (z) − U �

n(z)| ≤ max
z∈H

∣
∣
∣

n∑

k=0

δkzk
∣
∣
∣ ≤

n∑

k=0

C
R

�(n+ν+1)
ε

(ρ − ε)k
τk

≤ CR�(n+ν+1)
ε

n∑

k=0

( τ

(ρ − ε

)k

≤
{

MR
�(n+ν+1)
ε if τ < ρ − ε

MR
�(n+ν+1)
ε

(
τ

ρ−e

)n if τ ≥ ρ.

Since ε > 0 may be taken arbitrarily small, this gives

lim sup
n→∞

{
max
z∈H

|U∞
n (z) − U �

n(z)|1/n
}
≤
{

R� if τ < ρ

R� τ
ρ if τ ≥ ρ

0
n(z) = 0, it follows that

lim sup
n→∞

{

max
z∈H

|U∞
n (z)|

}1/n

≤
{ 1 if τ < ρ

< τ
ρ if τ ≥ ρ.

�

Proof of Theorem 2. If H is a compact subset of |z| < τ, τ > 0 and if
H ⊂ Dρ\

ν∪
1
{zi}, then recalling that B�

n,ν(z) and B∞
n,ν(z) → Bν(z) as n → ∞,

we have

lim sup
n→∞

{
max
z∈H

|P∞
n+ν+1(z) − P �

n+ν+1(z)|
}1/n

= lim
n→∞

{
max
z∈H

|U∞
n (z)B�

n,ν(z) − U �
n(z)B∞

n,ν(z)|
}1/n

≤ lim
n→∞

{
max
z∈H

|U∞
n (z)|1/n|B�

n,ν(z) − B∞
n,ν(z)|1/n

+ max
z∈H

|B∞
n,ν(z)| · |U∞

n (z) − U �
n(z)|

}1/n

≤ lim
n→∞

{
max
z∈H

|U∞
n (z)|1/n|B�

n,ν(z) − B∞
n,ν(z)|1/n

}

by (2.6). Using these estimates, we have

Therefore from (2.23), we get δ

the proof of (2.21). From (2.19)

(2.26)

which is (2.23). Since U

(2.27)
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+ lim
n→∞n→∞

{
max
z∈H

|B∞
n,ν(z)|1/n|U∞

n (z) − U �
n(z)|1/n

}

≤
[

R� max
(

1,
τ

ρ

)

+ max
(

R�, τ
R�

ρ

)]

= max
(

τR�

ρ
,R�

)

=
τR�

ρ
, if τ > ρ.

�

6.3. Historical Remarks

(a) The first generalization of the Walsh equiconvergence theorem for mero-
morphic and rational functions (Theorem 1 and Example) is due to Saff, Sharma
and Varga [92]. They consider the difference between the (n, ν) rational inter-
polating function at the roots of unity to a meromorphic f(z) and the Padé
approximation by (n, ν) rational functions to f(z).

(b) Theorem 1 is due to Saff et al [92]. The sharpness result (1.5) gives for
ν = 0, the corresponding result of Cavaretta et al [30]. Concerning the monic
polynomials in Rn,ν(F ; z) and Sn,ν(F ; z) they observe that for every compact
set H ⊂ C,

lim sup
n→∞

max
z∈H

|Vn,ν(z) − Qn,ν(z)|1/n ≤ 1
ρ

follows from Theorem B of Saff [90].

Let E be a closed bounded point set in the z-plane whose complement K

(with respect to the extended plane) is connected and regular in the sense that K

possesses a Green function G(z) with pole at infinity [114, p. 65]. Let Γσ, σ > 1
denote generically the locus

Γσ := {z ∈ C : G(z) = log σ},

and denote by Eσ the interior of Γσ. Before giving the proof of Theorem 1, Saff
et al [92] consider a more general situation: the rational interpolation in the
triangular schemes

β
(0)
1

β
(1)
1 , β

(1)
2

β
(2)
1 , β

(2)
2 , β

(2)
3 (3.1)

. . .

β
(n)
1 , β

(n)
2 , . . . , β

(n)
n+1

. . .

on using (2.26) and (2.27).
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and

β
(0)
1

β
(1)
1 , β

(1)
2

β
(2)
1 , β

(2)
2 , β

(2)
3 (3.2)

. . .

β
(ν)
1 , β

(ν)
2 , . . . , β

(ν)
n+1

. . .

We assume that no limit points of the tableaux (3.1) or (3.2) lie exterior to E.

Let rn,ν(F ; z) be the rational function of the form

rn,ν(F ; z) = rn,ν(z) =
pn,ν(z)
qn,ν(z)

,

pn,ν ∈ Πn, qn,ν ∈ Πν , qn,ν monic, which interpolates F (z) in the n + ν + 1
points {β(n+ν)

j }n+ν+1
j=1 , i.e.,

rn,ν(β(n+ν)
j ) = F (β(n+ν)

j ), j = 1, . . . , n + ν + 1. (3.3)

Similarly r̃(F ; z) interpolates F (z) in the points {β(n+ν)
j }n+ν+1

j=1 , i.e.,

r̃n,ν(β(n+ν)
j ) = F (β(n+ν)

j ), j = 1, . . . , n + ν + 1. (3.4)

In order to assume that the tableaux (3.1) and (3.2) are, in some sense, close
to each other, we set

wn(z) =
n+1∏

j=1

(z − β
(n)
j ), w̃n(z) =

n+1∏

j=1

(z − β̃
(n+1)
j ), w̃−1(z) = w−1(z) = 1.

(3.5)
Concerning the triangular schemes (3.1) and (3.2), we suppose

lim
n→∞ |wn(z)|1/n = ∆ exp G(z) (3.6)

uniformly in z in each closed bounded subset of K, where ∆ is the transfinite
diameter (or capacity) [9,Sec. 4.4] of E. The existence of some triangular scheme
{β(n)

j } for E for which (3.6) holds is well known: for example, on defining the

tableaux {β(n)
j } to consist of the Fekete points for E, then (3.6) holds [9, p. 172].

Next, since each wj(z) and w̃j(z) in (3.5) is monic of precise degree j +1, there
are unique constants γj(n), 0 ≤ j ≤ n such that

w̃n(z) = wn(z) +
n∑

j=0

γj(n)wj−1(z), for all n ≥ 1 (3.7)
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For fixed ρ we assume (as in Cavaretta et al [30, Sec. 10]) that there exists a
constant λ with −∞ ≤ λ < 1, such that

lim sup
n→∞






n∑

j=0

|γj(n)(∆j)ρ






1/n

≤ ∆ρλ < ∆ρ. (3.8)

With these assumptions it can be shown that for each n sufficiently large, the
rational interpolants rn,ν(F ; z) and r̃n,ν(F ; z) of F (z) in (3.3) and (3.4) do
indeed exist and are unique. Then the following theorem holds.

Theorem 3.
(3.1) and (3.2) have no limit points exterior to E and satisfy the conditions

(3.3) and (3.4). If F ∈ M(Eρ; ν), ν ≥ 0, and if {αj}ν
j=1 are the ν poles of

F in Eρ \ E (listed according to multiplicities), then the rational interpolants

rn,ν n,ν(F ; z) of (3.5) satisfy

lim
n→∞[r̃n,ν(F ; z) − rn,ν(F ; z)] = 0, for all z ∈ Eρ2−λ \ ∪ν

j=1{αj}, (3.9)

the convergence being uniform and geometric on any closed subset of

Eρ2−λ \ ∪ν
j=1{αj}.

More precisely, on any closed subset H of any Eτ \ {αj} with ρ ≤ τ < ∞, there

holds

lim sup
n→∞

{max
z∈H

|r̃n,ν(F ; z) − rn,ν(F ; z)|}1/n ≤ τ

ρ2−λ
. (3.10)

The proof of Theorem 3 depends on the following extension, due to Saff [90],
of the de Montessus de Ballore Theorem [39]:

Theorem A. Suppose that F ∈ M(Eρ; ν) for some 1 < ρ < ∞, ν ≥ 0, and

let {αj}ν
j=1 denote the ν poles of F in Eρ \ E. Suppose further that the points

of the triangular scheme

b
(0)
1

b
(1)
1 , b

(1)
2

b
(2)
1 , b

(2)
2 , b

(2)
3 (3.11)

. . .

b
(n)
1 , b

(n)
2 , . . . , b

(n)
n+1

. . .

(F ; z) of (3.3) and r̃

Let ρ be fixed with 1 < ρ < ∞, and suppose that the tableaux
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(which need not be distinct in any row) have no limit points exterior to E, and

that

lim
n→∞

∣
∣
∣
∣
∣
∣

n+1∏

j=1

(z − zb
(n)
j )

∣
∣
∣
∣
∣
∣

1/n

= ∆ exp G(z), (3.12)

large, there exists a uniques rational function

sn,ν(z) =
gn,ν(z)
hn,ν(z)

, gn,ν ∈ Πn, hn,ν ∈ Πν , hn,ν monic (3.13)

which interpolates F (z) in the points b
(n+ν)
1 , b

(n+ν)
2 , . . . , b

(n+ν)
n+ν+1. Each sn,ν(z)

ρ \ E. The sequence {sn,ν(z)}∞n=n0
converges to F (z)

on Eρ \ ∪ν
j=1{αj}, uniformly and geometrically on any closed subset of Eρ \

∪ν
j=1{αj}. More precisely, on any closed subset H of any Eτ \ ∪ν

j=1{αj} with

1 < τ < ρ, there holds

lim sup
n→∞

{max
z∈H

|F (z) − sn,ν(z)|1/n ≤ τ

ρ
. (3.14)

(c) Theorem 2 is basically the main result from de Bruin and Sharma [35]
Here the idea of Stojanova

[101] is used, but the unexplained definition

A�
s;n,ν :=

�−1∑

m=0

am(n+ν+1)+s, −ν ≤ s ≤ n + ν; a−1 = · · · = a−ν := 0

Additional results, obtained by A. Jakimovski and A. Sharma [58], extend
equiconvergence theorems for polynomial interpolants to rational Hermite-Padé
interpolants are given now. The complete proof of these theorems is out of the
scope of this monograph; at the appropriate places we will refer to the literature
where the interested reader can complete the argument.

ρ, ρ > 1, and 0 < |α| �= |β| < ρ. We recall that Bν(z)
is a monic polynomial of degree ν with ν zeros, not necessarily simple, in Dρ.

We shall suppose throughout that f(z) does not vanish at the zeros of Bν(z).
Let the Hermite-Padé interpolant to f(z)

Bν(z) on the zeros of (zn+ν − αn+ν)r be

denoted by Pn,ν,r

(
z, α; f(z)

Bν(z)

)
. Then we have

uniformly on each closed and bounded subset of K. Then, for all n sufficiently

there, is replaced by the more reasonable (2.4).

(for multiple nodes cf. de Bruin and Sharma [36]).

the ν poles of F (z) in E

Suppose f(z) ∈ A

has precisely ν finite poles, and as n → ∞, these poles approach, respectively,
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Theorem 4. Suppose f ∈ Aρ, ρ > 1 and 0 < |α| �= |β| < ρ. If Bν(z) is a

monic polynomial with no common zeros with f(z), then

Pn,α+1,1

(

z, α;
f(z)
Bν(z)

)

− Pn,ν+1,1

(

z, α;
Ln+ν(z, α,Hr

r(n+ν+1)−1(·, β, f)

Bν(z)

)

= O(1)|z|−ν

(
max(|α|, |β|)

ρ − ε

)r(n+ν+1)( |z|
ρ − ε

)n

as n → ∞

where O(1) is independent of n and z.

The following interesting connection between the Lagrange and Hermite in-
terpolants was used in the proof of the above theorem.

Lemma 2. Given a function f ∈ Aρ , ρ > 1, numbers 0 < |α| �= |β| < ρ

and a positive integer r, then we have

Ln+ν(z, α, Hr
r(n+ν+1)−1(·, β, f)) = Ln+ν(z, α, f) −

n+ν∑

j=0

cj,n+ν,α,βzj (7.0)

where

cj,n+ν,α,β := (αn+ν+1 − βn+ν+1)r
∞∑

m=0

∞∑

s=0

(
s + r − 1

s

)

aj+(m+s+r)(n+ν+1)×

× αm(n+ν+1)βs(n+ν+1) for 0 ≤ j ≤ n + ν,

and

|cj,n+ν,α,β | ≤ 2rA
(
1 − |α|

ρ−ε

)(
1 − |β|

ρ−ε

)r

(
max(|α|, |β|)

ρ − ε

)r(n+ν+1) 1
(ρ − ε)j

. (7.1)

�

We assume in this section that m = rn + s, 0 ≤ s ≤ r − 1 and pn + q <

m, p ≥ 1. Let Ppn+q−1,(m)(z) denote the unique polynomial P (z) of degree
≤ pn + q − 1 for which

min
P∈πpn+q−1

m−1∑

k=0

∣
∣f(αωk) − P (αωk)

∣
∣2 , ωm = 1, 0 < |α| < ρ, ρ > 1, (3.4)

is attained. It is known [88] that the polynomial satisfying (3.4) is obtained by
truncating the Lagrange interpolant to f(z) on the zeros of zm − αm. Since

Lm−1(z, α, f) =
m−1∑

j=0

cjz
j , cj =

∞∑

σ=0

aj+σmασm,

we have
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Lemma 3. Assume m = rn + s, 0 ≤ s ≤ r − 1 and pn + q < m. Then we

have

Ppn+q−1,(m)(z, α, f) =
pn+q−1∑

j=0

zj
∞∑

σ=0

aj+σmασm =
pn+q−1∑

j=0

c
(m)
j zj (3.5)

where c
(m)
j =

∑∞
σ=0 aj+σmασm.

Theorem 5. Suppose f ∈ Aρ, ρ > 1 and 0 < |α| �= |β| < ρ. If Bν(z) is a

monic polynomial with no common zeros with f(z), then

Pn,0,1

(

z, α;
f(z)
Bν(z)

)

− Pn,0,1

(

z, α;
Ln−1(z, α, Ppn+q−1,(m)(·, β, f)

Bν(z)

)

=

= O(1)|z|−ν max

(( |β|
ρ − ε

)rn+s

,

( |α|
ρ − ε

)pn
)( |z|

ρ − ε

)n−1−ν

as n → ∞,

where m = rn + s, 0 ≤ s ≤ r − 1, pn + q < m, p ≥ 1 and Ppn+q−1(z, β, f)

The region of Walsh equiconvergence given in this case agrees with the one
in Theorem 4 in [2] with the poles deleted.

Theorem 6. Let f ∈ Aρ, ρ > 1. Assume 0 < |α| �= |β| < ρ and that k ≥ r

are two positive integers. Then we have

Pn,0,r

(

z, α;
Hk

kn−1(z, β, f)
Bν(z)

)

− Pn,0,r

(

z, 0;
f(z)
Bν(z)

)

= O(1)|z|−ν

( |z|
ρ − ε

)rn−ν (max(|α|, |β|)
ρ − ε

)n

.

Theorem 7. Suppose f ∈ Aρ, ρ > 1. Suppose 0 < |α| �= |β| < ρ, k > r are

two positive integers and ν ≥ 1 is a given integer. Then we have

Pn,0,r

(

z, α;
f

Bν(z)

)

− Pn,0,r

(

z, α;
Hk

km−1(·, β, f)
Bν(z)

)

= O(1)|z|−ν

( |z|
ρ − ε

)rn−ν−1(max(|α|, |β|)
ρ − ε

)(k+1−r)n

.

The proof of the last theorem requires iteration of two Hermite interpolants
and is based on the following lemma.

is defined as in (3.4).
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Lemma 6. Given a function f ∈ Aρ, ρ > 1, numbers 0 < |α| �= |β| < ρ and

positive integers p, r, p < r, then we have

Hp
pn−1(z, α, Hr

rn−1(·, β, f) = Hp
pn−1(z, α, f) −

pn−1∑

j=0

c∗j,n,α,βzj

where

c∗j,n,α,β = O(1)
(

max(|α|, |β|)
ρ − ε

)n(r−p+1) 1

(ρ − ε)j
, 0 ≤ j ≤ pn − 1.

This agrees with the result in Theorem 1 in [2], where ν = 0.



CHAPTER 7

QUANTITATIVE RESULTS IN THE EQUICONVERGENCE

OF APPROXIMATION OF MEROMORPHIC FUNCTIONS

The subject of this chapter is similar to that of Chapter 4: we determine the
position and number of distinguished points, but now for meromorphic functions
and rational interpolants.

7.1. The Main Theorems

If � is a positive integer or ∞, for a function F (z) ∈ M�(ν) we have defined
the rational functions

P �
n,ν(z, F ) :=

U �
n(z)

B�
n,ν(z)

(1.1)

and have proved the existence and uniqueness of these rational functions for n

sufficiently large. We have equiconvergence of the difference

∆�
n,ν(z, F ) := P∞

n,ν(z, F ) − P �
n,ν(z, F ) (1.2)

and have proved (Ch. 6, Theorem 2) that if α, β ∈ C, |α| �= |β|, γ :=
max(|α|, |β|) and

S�,ν(z, F ) = lim
n→∞ |∆�

n,ν(z, F )| 1
n , 1 ≤ � < ∞,

then S�,ν(z, F ) ≤ K(z), where

K(z) =






(
|α|
ρ

)�

for |z| < ρ

(
|α|
ρ

)�

· |z|
ρ for |z| ≥ ρ.

(1.3)

A point z where S�,ν(z, F ) < K(z) will be called distinguished or exceptional

(cf. Ch.4, Section 4.1).

We now shall prove the following four theorems:

Theorem 1. For any F ⊂ Mρ(ν), there are at most � − 1 distinguished

points in |z| < ρ (i.e., Dρ\{zj}ν
j=1).

149
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Theorem 2. For any set of � − 1 points wj

{zj}ν
j=1, there is a meromorphic function F (z) ∈ Mρ(ν), such that the points

{wj}�−1
j=1 are distinguished for F (z).

Theorem 3. For each F ∈ Mρ(ν), ν ≥ 0 there are at most ν+� distinguished

points in |z| > ρ.

Theorem 4. For any set of � + 1 − ν points wj in |z| > ρ, there exists a

function F ∈ Mρ(ν), ν ≥ 1 such that these �+1− ν points are distinguished for

the function F.

7.2. Some Lemmas

We shall need some lemmas for the proof of these theorems. Set

∆ �
n,ν(z, F ) := B�

n,ν(z)B∞
n,ν(z)∆ �

n,ν(z, F ).

Then we have

Lemma 1. For each z satisfying |z| �= ρ and Bν(z) �= 0 the following state-

ments are equivalent:

(i) S�,ν(z, F ) < K(z),
(ii) ∆ �

n,ν(z, F )−(
z
α

)� ∆ �
n+1,ν(z, F ) = O

(
(qK(z))n

)
for some q, 0 < q < 1.

Proof. Since lim
n→∞ |B�

n,ν(z)| 1
n = 1 for Bν(z) �= 0 (see (2.21) in Ch. 6),

part (ii) of the lemma follows from part (i). We shall now show that (ii) implies
(i). To see this observe that

∆
�

n,ν(z, F ) −
( z

α

)s� ∆ �
n+s,ν(z, F )

=
s−1∑

k=0

[( z

α

)k�

∆ �
n+k,ν(z, F ) −

( z

α

)(k+1)�

∆ �
n+k+1,ν(z, F )

]

= O
( s−1∑

k=0

∣
∣
∣
z

α

∣
∣
∣
k�(

qK(z)
)n+k

)
. (2.1)

(a) Case 1: |z| < ρ. Using (2.1) with s = n and n + 1, respectively, we have

∆ �
n,ν(z, F ) − ( z

α

)n�∆ �
2n,ν(z, F ) = O

( n−1∑

k=0

( z

α

)k�(
qK(z)

)n+k
)

= O
( n−1∑

k=0

( |z|
|α|

)k�
(
q
( |α|

ρ

)�
)n+k)

in 0 < |z| < ρ different from
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=
(
q
( |α|

ρ

)�
)n

O
( n−1∑

k=0

( |z|
|α|

)k�(
q
( |α|

ρ

)�)k
)

=
(
q
( |α|

ρ

)�
)n

O
( n−1∑

k=0

qk
)

and

∆ �
n+1,ν(z, F ) − ( z

α

)(n+1)�∆ �
2n+1,ν(z, F ) = O

((
q
( |α|

ρ

)�)n
)
.

These two relations can be put together and we get

( z

α

)[ n+1
2 ]� ∆ �

n,ν(z, F ) = ∆ �
[ n
2 ],ν(z, F ) + O

((q|α|
ρ

)�
)n

2
.

Let us suppose that S�,ν(z, F ) ≥ q
( |α|

ρ

)�
. Then

∣
∣
∣
z

α

∣
∣
∣
�

S2
�,ν(z, F ) = lim

n→∞

∣
∣
∣ ∆ �

[ n
2 ],ν(z, F )

∣
∣
∣

2
n

= S�,ν(z, F ).

Therefore

S�,ν(z, F ) =
( |α|
|z|

)�

>
( |α|

ρ

)�

= K(z)

which contradicts Theorem 2 of Ch. 6. Thus S�,ν(z, f) ≤ qK(z) < K(z).

(b) Case 2: |z| > ρ. Using (2.1) with s = n and n + 1 we have

∆ �
n,ν(z, F ) − ( z

α

)n� ∆ �
2n,ν(z, F ) = O

(
qn|z|�n|α|�n

( |z|
ρ�+1

)2n)
.

Similarly, we have

∆ �
n,ν(z, F ) − ( z

α

)(n+1)� ∆ �
2n+1,ν(z, F ) = O

(
qn|z|�n|α|�n( |z|

ρ�+1

)2n
)
.

Putting n for 2n (or for 2n + 1), we have

∆ �
[ n
2 ],ν(z, F ) =

( z

α

)[ n+1
2 ]� ∆ �

n,ν(z, F ) + O
(
q1/2

( |z|
|α|

) �
2
( |α|�|z|

ρ�+1

))n

.

Let us suppose that S�(z, F ) = K(z). Then

(
K(z)

)1/2 = lim
n→∞

∣
∣
∣ ∆ �

[ n
2 ],ν(z, F )

∣
∣
∣

1
n
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= lim
n→∞

∣
∣
∣
(∣
∣ z

α

∣
∣
)[ n+1

2 ]�

∆ �
n,ν(z, F )

∣
∣
∣

1
n

=
∣
∣
∣
z

α

∣
∣
∣

�
2
K(z).

This gives

K(z) =
( |α|
|z|

)�

=
∣
∣
∣
ρ

z

∣
∣
∣
�+1

· |z|
ρ

·
(∣
∣
∣
α

ρ

∣
∣
∣
)�

=
∣
∣
∣
ρ

z

∣
∣
∣
�+1

K(z) < K(z).

From this contradiction and from Theorem 2 of Ch. 6, we see that (i) is also
true for |z| > ρ. �

Lemma 2. Let Bν(z) =
ν∑

m=1
αmzm

tion for ∆ �
n,ν(z, F ) :

∆ �
n,ν(z, F ) =

n+2ν∑

s=0

Rs,nzs + εn (2.2)

where

|εn| ≤ c
(
qK(z)

)n

and

n+2ν∑

s=0

Rs,nzs = α�(n+ν+1)Bν(z)
ν∑

k=0

n+ν∑

s=k

αka�(n+ν+1)+s−kzs

+ zn
ν∑

τ=1

ν−τ∑

k=0

ν∑

m=0

(rm,nαk − rk,nαm)am+τzk+τ+m .
(2.3)

Recall that rs,n (0 ≤ s ≤ ν) are given by

rs,n := γ�
s,n − γ∞

s,n , 1 ≤ � < ∞, 0 ≤ s ≤ ν.

Here γ�
s,n, γ∞

s,n ν

The following estimates assumed repeatedly in the sequel are listed below for
ready reference:

(a) lim
n→∞ γ�

s,n = αs,n, |γ�
s,n| < c for all �, s, n ;

(b) rs,n := γ�
s,n − γ∞

s,n, |rs,n| ≤ c
( |α|

ρ − ε

)�(n+ν+1)

;

(c) |aj | ≤ c

(ρ − ε)j
, j ≥ 0 ;

. Then we have the following representa-

depend on the coefficients of B (z).
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(d) A∞
s,n − A�

s,n = a�(n+ν+1)+sα
�(n+ν+1) + εs,n

where εs,n =
c

(ρ − ε)s
·
( |α|

ρ − ε

)(n+ν+1)(�+1)

, s ≥ 0 ;

(e) A∞
s,n − A�

s,n = a�(n+ν+1)+n+ν+1+sα
(�+1)(n+ν+1) + ε∗s,n

where ε∗s,n =
( |α|

ρ − ε

)n+ν+1

|εs+n+ν+1,n|, s < 0 ;

(f) As
� = as + δ�

s,n, |δ�
s,n| ≤

c

(ρ − ε)s
·
( |α|

ρ − ε

)n+ν+1

, 1 ≤ � ≤ ∞, s ≥ 0.

Proof. With U �
n(z) :=

n∑

s=0
p�

s,nzs, the following relation holds between p�
s,n’s

and γ�
k,n’s :

ν∑

k=0

αkp�
s−k,n =

ν∑

k=0

γ�
k,nA�

s−k,n (2.4)

where αk = 0 for k < 0 or k > ν, and p�
s,n = 0 for s < 0 or s > n. Then

Bν(z)U �
n(z) =

ν∑

k=0

αkzk
n∑

s=0

p�
s,nzs

=
n+ν∑

s=0

( ν∑

k=0

αkp�
s−k,n

)
zs =

n+ν∑

s=0

( ν∑

k=0

γ�
k,nA�

s−k,n

)
zs.

(2.5)

We shall need the difference (recall that in A�
s,n the index s can be negative;

see (2.12))

Bν(z)U �(z) − B�
n,ν(z)

n∑

s=0

A�
s,nzs

=
n+ν∑

s=0

( ν∑

k=0

γ�
k,nA�

s−k,n

)
zs −

n∑

s=0

A�
s,nzs

ν∑

k=0

γ�
k,nzk .

Here the first double sum can be split into three sums and

=
ν∑

s=0

( ν∑

k=0

γ�
k,nA�

s−k,n

)
zs +

n∑

s=ν

( ν∑

k=0

γ�
k,nA�

s−k,n

)
zs

+
n+ν∑

s=n+1

( ν∑

k=0

γ�
k,nA�

s−k,n

)
zs,

and the second double sum can be handled similarly:

=
1∑

s=0

( s∑

k=0

γ�
k,nA�

s−k,n

)
zs +

n∑

s=0

( ν∑

k=0

γ�
k,nA�

s−k,n

)
zs

+
n+ν∑

s=n+1

( ν∑

k=s−n

γ�
k,nA�

s−k,n

)
zs.
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The difference of these two can now be seen to be
ν−1∑

s=0

( ν∑

k=s+1

γ�
k,nA�

s−k

)
zs +

n+ν∑

s=n+1

( s−n−1∑

k=0

γ�
k,nA�

s−k,n

)
zs.

Hence interchanging the order of summation in s and k in the above two double
sums,

ν∑

k=1

k−1∑

s=0

γ�
k,nA�

s−k,nzs +
ν−1∑

k=0

n+ν∑

s=n+k+1

γ�
k,nA�

s−k,nzs.

Replacing s by s + k in the above, we have

ν∑

k=1

−1∑

s=−k

γ�
k,nA�

s,nzs+k +
ν−1∑

k=0

n+ν−k∑

s=n+1

γ�
k,nA�

s,nzs+k.

Therefore

Bν(z)U �(z) = B�
n,ν(z)

n∑

s=0

A�
s,nzs +

ν−1∑

k=0

n+ν−k∑

s=n+1

γ�
k,nA�

s,nzs+k

+
ν∑

k=1

−1∑

s=−k

γ�
k,nA�

s,nzs+k, 1 ≤ � ≤ ∞. (2.6)

If we multiply (2.6) with � = ∞ by B�
n,ν(z) and from the product subtract (2.6)

multiplied by B∞
n,ν(z), we get

∆ �
n,ν(z, F ) = B�

n,ν(z)Bν(z)U∞
n (z) − B∞

n,ν(z)Bν(z)U �(z)

= S1 + S2 + S3 (2.7)

where





S1 = B�
n,ν(z)B∞

n,ν(z)
n
∑

s=0
(A∞

s,n − A�
s,n)zs

S2 = B�
n,ν(z)

ν−1∑

k=0

n+ν−k∑

s=n+1
γ∞

k,nA∞
s,nzs+k − B∞

n,ν(z)
ν−1∑

k=0

n+ν−k∑

s=n+1
γ�

k,nA�
s,nzs+k ,

S3 = B�
n,ν(z)

ν∑

k=1

−1∑

s=−k

γ∞
k,nA∞

s,nzs+k − B∞
n,ν(z)

ν∑

k=1

−1∑

s=−k

γ�
k,nA�

s,nzs+k.

(2.8)
We shall write S2 = S2,1 + S2,2 + S2,3 where






S2,1 =
(
B�

n,ν(z) − B∞
n,ν(z)

)ν−1∑

k=0

n+ν−k∑

s=n+1
γ∞

k,nA∞
s,nzs+k ,

S2,2 = B∞
n,ν(z)

ν−1∑

k=0

n+ν−k∑

s=n+1
γ∞

k,n(A∞
s,n − A�

s,n)zs+k ,

S2,3 = B∞
n,ν(z)

ν−1∑

k=0

n+ν−k∑

s=n+1
(γ∞

k,n − γ�
k,n)A�

s,nzs+k.

(2.9)
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We shall prove that

S1 = α�(n+ν+1)
(
Bν(z)

)2
n∑

s=0

a�(n+ν+1)+sz
s + O

[(
qK(z)

)n]
. (2.10)

To see this we use (d) above to get

∣
∣
∣

n∑

s=0

(A∞
s,n − A�

s,n)zs
∣
∣
∣ ≤ C1

( |α|
ρ − ε

)(�+1)(n+ν+1) n∑

s=0

( |z|
ρ − ε

)s

= O
((

qK(z)
)n

)
.

(2.11)
Also, B�

n,ν(z) − Bν(z) =
∑ν

s=0(γ
�
s,n − αs)zs, where |γ�

s,n − αs| ≤ Cqn and
the same holds for B∞

n,ν(z) − Bν(z), so that we may replace B�
n,ν(z)B∞

n,ν(z) by
(
Bν(z) + η

)2 where

|η| < Cqn
ν∑

s=0

|z|s ≤ Cqn.

It follows that replacing B�
n,ν(z)B∞

n,ν(z) by Bν(z)2 brings in an error

η2 ≤ 2|Bν(z)|qnC + (Cqn)2 ≤ Cqn.

This proves (2.10) on using (2.11).

We now estimate S2,1, S2,2, S2,3 in (2.9) in the same way to get






S2,1 =
ν∑

m=0
rm,nzm

ν−1∑

k=0

n+ν−k
∑

s=n+1
αkasz

s+k + O
[(

qK(z)
)n]

,

S2,2 = α�(n+ν+1)Bν(z)
ν−1∑

k=0

n+ν−k∑

s=n+1
αka�(n+ν+1)+sz

s+k + O
[(

qK(z)
)n]

,

S2,3 = −Bν(z)
ν−1∑

k=0

n+ν−k∑

s=n+1
rk,nasz

s+k + O
[(

qK(z)
)n]

.

(2.12)
We now split S3 of (2.8) in three parts as was done for S2 :

S3,1 =
(
B�

n,ν(z) − B∞
n,ν(z)

) ν∑

k=s

−1∑

s=−k

γ∞
k,nA∞

s,nzs+k ,

S3,2 = B∞
n,ν(z)

ν∑

k=1

−1∑

s=−k

γ∞
k,n(A∞

s,n − A�
s,n)zs+k ,

S3,3 = B∞
n,ν(z)

ν∑

k=1

−1∑

s=−k

(γ�
k,n − γ∞

k,n)A�
s,nzs+k.

Using the estimates (a)-(f), we can see that

S3,i = O
[(

qK(z)
)n]

, i = 1, 2, 3. (2.13)
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Using (2.10), (2.11) and (2.13) in the expression of ∆ �
n,γ(z, F ) i.e., in (2.7), we

get

∆ �
n,ν(z, F ) = α�(n+ν+1)

(
Bν(z)

)2
n∑

s=0

a�(n+ν+1)+sz
s

+
ν∑

m=0

rm,nzm
ν−1∑

k=0

n+γ−k∑

s=n+1

αkasz
s+k

+ α�(n+ν+1)Bν(z)
ν−1∑

k=0

n+ν−k∑

s=n+1

αka�(n+γ+1)+sz
s+k

− Bν(z)
ν−1∑

k=0

n+ν−k∑

s=n+1

rk,nasz
s+k + O

[(
qK(z)

)n]
.

(2.14)

This leads to (2.2) and (2.3), if we can prove that the sums in (2.14) can be
rewritten to give (2.3).

Combining the first and third sums on the right in (2.14), we obtain

α�(n+ν+1)Bν(z)
{

Bν(z)
n∑

s=0

a�(n+ν+1)+sα
�(n+ν+1)zs

+
ν−1∑

k=0

n+ν−k∑

s=n+1

αka�(n+ν+1)+sz
s+k

}

= α�(n+ν+1)Bν(z)
{ ν∑

k=0

n∑

s=0

αka�(n+ν+1)+sz
s+k

+
ν−1∑

k=0

n+ν−k∑

s=n+1

αka�(n+ν+1)sz
s+k

}

= α�(n+ν+1)Bν(z)
{ ν∑

k=0

n∑

s=0

αka�(n+ν+1)+sz
s+k

+
ν∑

k=0

n+ν−k∑

s=n+1

αka�(n+ν+1)+sz
s+k

}
.

Observe that in the last double sum we have 0 ≤ k ≤ ν while in the previous
step in the last double sum we have 0 ≤ k ≤ ν − 1.

This is justified since
n+ν−k∑

s=n+1
αka�(n+ν+1)+sz

s+k = 0 for k = ν. Thus on sim-

plifying from the above we have the first and third sums in (2.14) become on
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adding

α�(n+ν+1)Bν(z)
ν∑

k=0

n+ν−k∑

s=0

αka�(n+ν+1)+sz
s+k

= α�(n+ν+1)Bν(z)
ν∑

k=0

n+ν∑

s=k

αka�(n+ν+1)+s−kzs,

which is the first part of (2.3).

Finally the second and fourth sums on the right in (2.14) yield on using the
expression for Bν(z) :

ν∑

m=0

rm,nzm
ν−1∑

k=0

n+ν−k∑

s=n+1

αkasz
s+k −

ν∑

m=0

αmzm
ν−1∑

k=0

n+ν−k∑

s=n+1

rk,nasz
s+k =

=
ν∑

m=0

ν−1∑

k=0

n+ν−k∑

s=n+1

(rm,nαk − rk,nαm)asz
s+k−m.

Now interchange the summations over s and k. First we have 0 ≤ k ≤ ν − 1,

n+1 ≤ s ≤ n+ν−k. This is equivalent to n+1 ≤ s ≤ n+ν and 0 ≤ k ≤ n+ν−s.

Putting s = τ + n, 1 ≤ τ ≤ ν, we have

zn
ν∑

m=0

ν∑

τ=1

ν−τ∑

k=0

(rm,nαk − rk,nαm)aτ+nzτ+k+m

which is the second sum in (2.3). This completes the proof of Lemma 2. �

7.3 Distinguished Points for |z| < ρ|z| < ρ|z| < ρ (proof of Theorems 1 and 2)

Proof of Theorem 1. Assume that there is at least one function F (z) ∈
Mρ(ν) for which there are � distinguished points in |z| < ρ. Let us denote these
points by ω1, . . . , ω�. Then

S�,ν(ωj , F ) < K(ωj), j = 1, . . . , �.

By Lemma 1, we have

∆ �
n,ν(ωj) −

(ωj

α

)� ∆ �
n+1,ν(ωj) = O

[(
qK(ωj)

)n]
, 1 ≤ j ≤ �. (3.1)

We shall use Lemma 2 to replace ∆ �
n,ν and ∆ �

n+1,ν by the corresponding formula
(2.3) where the error made by using it is of the same order

(
qK(ωj)

)n
. But the

rm,n in formula (2.3) depend upon n and so to distinguish rm,n in the expression
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for ∆ �
n,ν from rm,n in ∆ �

n+1,ν , we denote the rm,n in ∆ �
n+1,ν by r̂m,n. Then by

(2.3),

∆ �
n,ν(ωj , F ) − (ωj

α

)� ∆ �
n+1,ν(ωj , F ) = T1 + T2 + O

[(
qK(ωj)

)n]
,

where

T1 = α�(n+ν+1)Bν(ωj)
{ ν∑

k=0

n+ν∑

s=k

αka�(n+ν+1)+s−kωs
j

− (ωj

α

)�
α�(n+ν+1)

ν∑

k=0

n+1−ν∑

s=k

αka�(n+ν+2)+s−kωs
j

}
(3.2)

and

T2 = ωn
j

ν∑

τ=1

ν−τ∑

k=0

ν∑

m=0

(rm,nαk − rk,nαm)aτ+mωk+τ+m
j

− (ωj

α

)�
ωn+1

j

ν∑

τ=1

ν−τ∑

k=0

ν∑

m=0

( r̂m,nαk − r̂k,nαm)aτ+m+1ω
k+τ+m
j .

(3.3)

Using the bounds for r̂m,n, r̂k,n and aτ+n+1, we can see that T2 is of the same
order as

(
qK(ωj)

)n
. Thus from (3.1), we obtain (using T1) :

α�(n+ν+1)Bν(ωj)
{ ν∑

k=0

n+ν∑

s=k

αka�(n+ν+1)+s−kωs
j

− α�
(ωj

α

)�
ν∑

k=0

n+ν+1∑

s=k

αka�(n+ν+2)+s−kωs
j

}

(3.4)

= O
[(

qK(ωj)
)n]

.

We shall simplify (3.4) further. Thus we get for the left hand side of (3.4)

= α�(n+ν+1)Bν(ωj)
{ ν∑

k=0

n+ν∑

s=k

αka�(n+ν+1)+s−kωs
j

−
ν∑

k=0

n+ν+1∑

s=k

αka�(n+ν+1)+�+s−kωs+�
j

}

= α�(n+ν+1)Bν(ωj)
{ ν∑

k=0

n+ν∑

s=k

αka�(n+ν+1)+s−kωs
j

−
ν∑

k=0

n+ν+1+�∑

s=k+�

αka�(n+ν+1)+s−kωs
j

}
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where we have changed s + � to s in the second sum in the braces. Thus we get

α�(n+ν+1)Bν(ωj)
{ ν∑

k=0

k+�−1∑

s=k

αka�(n+ν+1)+s−kωs
j

−
ν∑

k=0

n+ν+1+�∑

s=n+ν+1

αka�(n+ν+1)+s−kωs
j

}
= O

[(
qK(ωj)

)n]
.

(3.5)

Since the Bν(ωj)’s are bounded, |ωj | ≤ qρ, 0 < q < 1, the second sum in
the braces in (3.5) is of the same order as

(
qK(ωj)

)n
. Then (3.5) gives with

τ = s − k :

Bν(ωj)
ν∑

k=0

�−1∑

τ=0

αka�(n+ν+1)+τωτ+k
j = O

[(qK(ωj)
|α|�

)n]

or
(
Bν(ωj)

)2
�−1∑

τ=0

a�(n+ν+1)+τωτ
j = O

((q(Kωj)
α�

)n
)
.

Dividing by Bν(ωj)2 and recalling that K(ωj) =
( |α|

ρ

)� when |ωj | < ρ, we get

�−1∑

τ=0

a�(n+ν+1)+τωτ
j = O

(( q

ρ�

)n+ν+1
)
, j = 1, . . . , �. (3.6)

The above set of � equations in the unknowns a�(n+ν+1)+τ for �(n + ν + 1) ≤
τ ≤ �(n + ν + 1) + � − 1 has a non-vanishing Vandermonde determinant and
applying Cramer’s rule, we obtain

a�(n+ν+1)+j = O
[( q

ρ�

)n+ν+1]
, 0 ≤ j ≤ � − 1.

As �(n+ν +1)+ j, 0 ≤ j ≤ �−1 runs through all integers ≥ �(ν +1) for n ∈ IN,

we have

lim
k→∞

|ak| 1
k = lim

n→∞ |a�(n+ν+1)+j |
1

�(n+ν+1)+j =
q

1
�

ρ
<

1
ρ

.

This contradicts the hypothesis that f(z) ∈ Aρ and completes the proof. �

Proof of Theorem 2. We shall first construct a function f(z) ∈ Aρ which
is analytic in each of the points ωj and which satisfies

S�,ν

(
ωj ;

f(z)
Bν(z)

)
< K(ωj), 1 ≤ j ≤ � − 1.

We define the coefficients {an}n≥0 by the conditions





a�m = ρ−�ma0, a0 �= 0 , m = 1, 2, . . .
�−1∑

s=0
a�m+sω

s
j = 0, 1 ≤ j ≤ � − 1 , m = 0, 1, 2, . . . .

(3.7)
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For m ≥ 0, we can write







ω1 ω2
1 . . . ω�−1

1

ω2 ω2
2 . . . ω�−1

2

. . . . . . . . . . . .
ω�−1 ω2

�−1 . . . ω�−1
�−1













a�m+1

a�m+2

...
a�m+�−1





 = ρ−�ma0








1
1
...

1








.

The determinant of this system of equations is ω1ω2 . . . ω�−1V (ω1, ω2, . . . , ω�−1)
�= 0. By Cramer’s rule

a�m+j = −ρ−�ma0
Vj(ω1, . . . , ω�−1)
V (ω1, . . . , ω�−1)

, 1 ≤ j ≤ � − 1 (3.8)

where Vj(ω1, . . . , ω�−1) is obtained from V (ω1, . . . , ω�−1) by replacing the col-
umn containing ωj

λ by the column (1 1 . . . 1)T. From (3.8) it is clear that

an+� = ρ−�an, n ≥ 0.

Since for an arbitrary m, we can write m = k� + s, k ≥ 0 and 1 ≤ s ≤ �− 1, we
see that

lim
m→∞

m≡s(mod �)

|am| 1
m = lim

k→∞
ρ−

k�
k�+s |as| 1

k�+s ≤ 1
ρ

.

However for m = k�, k ≥ 0, lim
k→∞

|ak�| 1
k = lim

k→∞
ρ−�|ao| 1

k� = 1
ρ� . Therefore

lim
m→∞ |am| 1

m =
1
ρ

,

and the function f(z) =
∞∑

m=0
amzm ∈ Aρ and F (z) = f(z)/Bν(z) ∈ Mρ(ν), if

we choose a0 in such a manner that f(zj) �= 0, 1 ≤ j ≤ ν.

We see on using the representation formula just before (3.6), that for 1 ≤
j ≤ � − 1,

∆ �
n+ν(ωj) −

(ωj

α

)� ∆ �
n+1,ν(ωj) =

(
Bν(ωj)

)2
�−1∑

s=0

a�(n+ν+1)+sω
s
j +O

[(
qK(ωj)

)n]

= O
[(

qK(ωj)
)n]

,

on using the second relation in (3.7). This shows by Lemma 1, that the ωj ’s
are distinguished for F (z). �

7.4. Distinguished Points for |z| ≥ ρ|z| ≥ ρ|z| ≥ ρ (proof of Theorem 3)

We shall need some more lemmas before we come to prove Theorems 3 and
4. We begin with
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Lemma 3. Rs,n of zs in (2.3) satisfy the following estimates:

Rs,n = O
[( |α|

ρ − ε

)�(n+ν+1) 1
(ρ − ε)s

]
, 0 ≤ s ≤ n + 2ν, (4.1)

and

Rs,n = α�(n+ν+1)
ν∑

m=0

ν∑

k=0

αmαka�(n+ν+1)+s−m−k (4.2)

for 2ν ≤ s ≤ n + ν.

Proof. In order to find the coefficient Rs,n of zs in the expansion of
∆ �

n,ν(z, F ) in (2.2), (2.3), we find the coefficient of zs in

α�(n+ν+1)Bν(z)
ν∑

k=0

n+ν∑

s=k

αka�(n+ν+1)+s−kzs (4.3)

and also the contribution to the coefficient of zs in the triple sum in (2.3). Now
the product (4.3) by interchange of order of summation

= α�(n+ν+1)Bν(z)
n+ν∑

τ=0

min(τ,ν)∑

k=0

αka�(n+ν+1)+τ−kzτ

= α�(n+ν+1)
n+2ν∑

s=0

{ s∑

τ=max(0,s−ν)

αs−τ

min(τ,ν)∑

k=0

αka�(n+ν+1)+τ−k

}
zs.

The double sum between the curly brackets contains only a finite number of
terms ((ν + 1)2 to be precise) which leads to an upper bound for the coefficient
of zs in the above expression. This bound is

( |α|
ρ − ε

)�(n+ν+1)

(ρ − ε)−s.

The triple sum in (2.3) also contributes to the coefficient of zs :

zn
ν∑

τ=1

ν−τ∑

k=0

ν∑

m=0

(rm,nαk − rk,nαm)an+τzk+τ+m. (4.4)

Putting τ + 1 for τ in the above we have

zn
ν−1∑

τ=0

ν−τ−1∑

k=0

ν∑

m=0

(rm,nαk − rk,nαm)aτ+n+1z
k+τ+1+m :=

2ν∑

j=1

Cn+jz
n+j ,

where we put j = k + τ + m + 1, so that

Cn+j =
∑

(rm,nαk − rk,nαm)an+τ+1, 1 ≤ j ≤ ν

The coefficients
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where τ + k + m = j − 1, τ, k, m ≥ 0, τ ≤ ν − 1, m ≤ ν, k ≤ ν − 1 − τ. When
1 ≤ j ≤ ν, the above conditions can be replaced by the simpler conditions τ ≥ 0,

k ≥ 0, τ +k ≤ j−1 and m = j−1−τ−k. Therefore we can write for 1 ≤ j ≤ ν :

Cn+j =
j−1∑

τ=0

j−τ−1∑

k=0

(rj−1−τ−k,nαk − rk,nαj−1−τ−k)an+τ+1.

For 0 ≤ τ ≤ j − 1 ≤ ν − 1, the inner sum in the above becomes zero for each
τ. This means that the triple sum in (4.4) contributes to the powers of zs only
for s ≥ n + ν + 1. For n + ν + 1 ≤ s ≤ n + 2ν, there are only a finite number
of terms and their order is also

( |α|
ρ−ε

)n+ν+1(ρ− ε)−s, showing that (4.1) is true
for n + ν + 1 ≤ s ≤ n + 2ν.

In order to prove (4.2), we have to consider powers of zs, 2ν ≤ s ≤ n + ν;
these can arise only as a result of (4.3). There we see that the coefficient of zs

is

α�(n+ν+1)
s∑

τ=max(0,s−ν)

αs−τ

min(τ,ν)∑

k=0

αka�(n+ν+1)+τ−k

where m + τ = s, 0 ≤ m ≤ ν, 0 ≤ τ ≤ n + ν. Since τ = s − m > 2ν − m ≥ ν,

the above sum can be replaced by

α�(n+ν+1)
ν∑

m=0

ν∑

k=0

αmαka�(n+ν+1)+s−m−kα�(n+ν+1),

which is the value of Rs,n in (4.2) for 2ν ≤ s ≤ n+ ν. This completes the proof.
�

Lemma 4. Let all the zeros {zj}ν
j=1 of the monic polynomial Bν(z) =

ν∑

k=0

αkzk, αν = 1, belong to |z| < ρ. Furthermore let the quantities {As}∞s=0

satisfy
ν∑

k=0

αkAs−k = O
[( q

ρ

)s
]
, as s → ∞ (4.5)

for some q, 0 < q < 1. Then

lim sup
s→∞

|As|1/s <
1
ρ

.

Proof. Consider the formal power series

f(z) =
∞∑

s=0

Asz
s.
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From the order relation (4.5) in the lemma, we see that the coefficients Cs of
the formal power series formed by the Cauchy product Bν(z)f(z) satisfy

lim sup
s→∞

|Cs,n| 1s =
q

ρ
<

1
ρ

.

This implies that Bν(z)f(z) is an analytic function at z = 0 with Taylor series
having a radius of convergence R1 > ρ. As all zeros of Bν(z) are in |z| < ρ, the
function

f(z) =
Bν(z)f(z)

Bν(z)

is also analytic on |z| < R1 or equivalently we have lim sup
s→∞

|As| 1s < 1
ρ . �

Proof of Theorem 3. Assume that there is at least one function F (z) ∈
Mρ(ν) with �+ν +1 distinguished points ωj in |z| > ρ. We consider throughout
the case of simple poles. In other words, this implies that

S�,ν(ωj , F ) < K(ωj), 1 ≤ j ≤ � + ν + 1. (4.6)

According to Lemma 1,

∆ := ∆ �
n,ν(ωj , F ) −

(ωj

α

)�

∆ �
n+1,ν(ωj , F ) = O

[(
qK(ωj)

)n]

for some 0 < q < 1. We first use Lemma 2 (relation (2.2)) to show that for
1 ≤ j ≤ � + ν + 1,

∆ =
�−1∑

s=0

Rs,nωs
j +

n+2ν∑

s=�

(
Rs,n − 1

α�
Rs−�,n+1

)
ωs

j

−
n+2ν+�+1∑

s=n+2ν+1

1
α�

Rs−�,m+1ω
s
j + O

[(
qK(ωj)

)n]
.

(4.7)

By Lemma 2, omitting the error terms for simplicity, we have

∆ �
n,ν(ωj) =

n+2ν∑

s=0

Rs,nωs
j

ω�
j ∆ �

n+1,ν(ωj) =
n+2ν+1∑

s=0

Rs,n+1ω
s+�
j =

n+2ν+�+1∑

s=�

Rs−�,n+1ω
s
j .

Then

∆ = ∆ �
n,ν(ωj) −

(ωj

α

)� ∆ �
n+1,ν(ωj)

=
n+2ν∑

s=0

Rs,nωs
j − 1

α�

n+2ν+�+1∑

s=�

Rs−�,n+1ω
s
j

=
�−1∑

s=0

Rs,nωs
j +

n+2ν∑

s=�

(
Rs,n − 1

α�
Rs−�,n+1

)
ωs

j

−
n+2ν+�+1∑

s=n+2ν+1

1
α�

Rs−�,n+1ω
s
j + O

[(
qK(ωj)

)n]
.
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This proves (4.7).

We shall show that (4.7) can be rewritten as

∆ =
n+2ν∑

s=n+ν+1

(
Rs,n − 1

α�
Rs−�,n+1

)
ωs

j +
n+2ν+�+1∑

s=n+2ν+1

( − 1
α�

Rs−�,n+1)ωs
j

= O
[(

qK(ωj)
)n]

. (4.8)

To this end we observe that using (4.1), we have

�−1∑

s=0

Rs,nωs
j = O

[(
q(K(ωj)

)n]
using q =

ρ − ε

min |ωj | < 1. (4.9)

Now

n+ν∑

s=�

(
Rs,n − 1

α�
Rs−�,n+1

)
ωs

j =
2ν+�−1∑

s=�

+
n+ν∑

s=2ν+�

(
Rs,n − 1

α�
Rs−�,n+1

)
ωs

j

= I1 + I2.

The first sum I1 is estimated from above using (4.1) by

C
( |α|

ρ − ε

)�(n+ν+1)

= O
(
(qK(ωj)

)n
)
. (4.10)

In the second sum we use Lemma 3 (4.2) which holds for 2ν ≤ s ≤ n + ν and

α� Rs−�,n+1 =
α�(n+ν+2)

α�

ν∑

m=0

ν∑

k=0

αmαka�(n+ν+1)+�+s−�−m−k

= α�(n+ν+1)
ν∑

m=0

ν∑

k=0

αmαka�(n+ν+1)+s−k−m

= Rs,n

so that
Rs,n − 1

α�
Rs−�,n+1 = 0 for 2ν + � ≤ s ≤ n + ν. (4.11)

Thus combining (4.9), (4.10) and (4.11), we get (4.8).

Put τ = s − n − ν − 1 in (4.8). Then for j = 1, 2, . . . , � + ν + 1, we have

ν−1∑

τ=0

(
Rτ+n+ν+1,n − 1

α�
Rτ+n+ν+1−�,n+1

)
ωτ+n+ν+1

j

+
ν+�∑

τ=ν

(
− 1

α�
Rτ+n+ν+1−�,n+1

)
ωτ+n+ν+1

j = O
[(

qK(ωj)
)n]

.

(4.12)
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In (4.12) replace
(
K(ωj)

)n by
(
K(ωj)

)n+ν+1 and then divide (4.12) by ωn+ν+1
j .

This gives a linear system of ν + �+1 equations in ν + �+1 variables. Applying
Cramer’s rule, we get

Rτ+n+ν+1,n − 1
α�

Rτ+n+ν+1−�,n+1 = O
( q|α|�

(ρ − ε)�+1

)n+ν+1

for 0 ≤ τ ≤ ν − 1 ,

− 1
α�

Rτ+n+ν+1−�,n+1 = O
( q|α|�

(ρ − ε)�+1

)n+ν+1

for ν ≤ τ ≤ n + 2ν + 1 + �.

Replacing τ + n + ν + 1 by m, we have

Rm,n − 1
α�

Rm−�,n+1 = O
( q|α|�

(ρ − ε)�+1

)n+ν+1

,

for n + ν + 1 ≤ m ≤ n + 2ν (4.13)

− 1
α�

Rm−�,n+1 = O
( q|α|�

(ρ − ε)�+1

)n+ν+1

,

for n + 2ν + 1 ≤ m ≤ n + 2ν + � + 1.
(4.14)

Now replace n + 1 by n in (4.14), multiply by −α� and replace m − � by m.

Then we get

Rm,n = O
( q|α|�

(ρ − ε)�+1

)n+ν+1

, max{n+ν+1, n+2ν−�} ≤ m ≤ n+2ν. (4.15)

We now use (4.15) in (4.13) giving − 1
α� Rm−�,n+1. Then multiplying by −α�

and replacing m − � by m, we have

Rm,n+1 =O
[ q|α|�
(ρ − ε)�+1

)n+ν+1]

for max(n + ν − � + 1, n + 2ν − 2�) ≤ m ≤ n + 2ν − �.

Again replace n + 1 by n and replace n + ν in the order term on the right by
n + ν + 1 to obtain

Rm,n = O
[( q|α|�

(ρ − ε)�+1

)n+ν+1]

for

max(n + 2ν − �,m + 2ν − 2� − 1) ≤ m ≤ n + 2ν − � − 1. (4.16)

Thus we have been able to get an estimate for Rm,n for values of m in (4.16)
which have been shifted by � + 1 from the range for m in (4.15). Repeating the
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process a number of times, we can get the validity of the estimate for Rm,n for
n + ν − � < m ≤ n + ν.

We use the explicit form for Rs,n in Lemma 3 (4.2) and combine that form
with (4.16) for � + 1 consecutive values of s and divide by α�(n+ν+1). Then we
have

ν∑

m=0

αm

ν∑

k=0

αka�(n+ν+1)+s−m−k = O
[( q

ρ − ε

)n+ν+1 1
(ρ − ε)�(n+ν+1)

]

for n + ν − � ≤ s ≤ n + ν.

As �(n + ν + 1) + s runs from �(n + ν + 1) + n + ν − � = (� + 1)(n + ν) to
�(n + ν + 1) + n + ν = (� + 1)(n + ν) + �, we can let {�(n + ν + 1) + s}s,n run
through all integers ≥ N0 by letting n run through all integers ≥ N1. Therefore

ν∑

m=0

αm

ν∑

k=0

αkan−m−k = O
[ qn+ν+1

(ρ − ε)(�+1)(n+ν+1)

]

= O
[( q1/�

ρ − ε

)n]
.

By Lemma 4, we get

ν∑

k=0

αkan−m−k = O
((q1

ρ

)n)
for some q1, 0 < q1 < 1.

Applying Lemma 4 again, we get

lim
n→∞|an| 1

n <
1
ρ

,

a contradiction to lim
n→∞ |an| 1

n = 1
ρ . �

7.5. A Lemma and Proof of Theorem 4

For the proof of Theorem 4, we shall need the following technical lemma.

Lemma 5. Let F (z) ∈ Mρ(ν) have simple poles, and let � ≥ ν. If |z| > ρ,

then we have for � ≥ ν and n large, the following relation:

z−n
{

∆ �
n−ν−1,ν(z, F ) − ( z

α

)� ∆ �
n−ν,ν(z, F )

}

= −Bν(z)α�n
−1∑

s=−ν

ν∑

k=−s

αka(�+1)n+sz
s+k (5.1)

− (
Bν(z)

)2
α�n

�−ν∑

s=0

a(�+1)n+sz
s
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− Bν(z)α�n
�∑

s=�−ν+1

�−s∑

k=0

αka(�+1)n+sz
s+k

+ C
(
q
( |α|
ρ − ε

)� |z|
ρ − ε

)n

, 0 < q < 1.

Proof. We begin with the explicit form for ∆ �
n,ν(z, F ) as given in Lemma

2, (2.2) and (2.3). We shall prove that

|rk,n| < C
[(

q
|α|

ρ − ε

)�]n+ν+1

(5.2)

and show that (5.2) allows us to prove that the triple sum in (2.3) is of the same
order as (qK(z))n.

We recall that the system of equations to find the coefficients γ�
k,n, p�

k,n can
be reduced to a system of equations to determine γ�

k,n along with a system of
equations to determine p�

k,n in terms of γ�
k,n. The equations to determine γ�

k,n

(γ�
ν,n = 1) were given by (2.13) of Ch. 6:

ν∑

k=0

γ�
k,n

n+ν∑

s=0

A�
s−k,nzs

j = 0, 1 ≤ j ≤ ν, 1 ≤ � ≤ ∞.

Shifting the summation index we get

ν∑

k=0

γ�
k,nzk

j

n+ν−k∑

s=−k

A�
s,nzs

j = 0, 1 ≤ j ≤ ν, 1 ≤ � ≤ ∞. (5.3)

This easily yields a system of equations to determine rk,n = γ�
k,n − γ∞

k,n where
rν,n = 0 :

ν−1∑

k=0

rk,nzk
j

n+ν−k∑

s=−k

A�
s,nzs

j +
∞∑

k=0

γ∞
k,nzk

j

n+ν−k∑

s=−k

(A�
s,n − A∞

s,n)zs
j = 0. (5.4)

We shall now use the following known estimates:





A�
s,n = αn+ν+1An+ν+1+s, s < 0 and A�

s,n = as + δ�
s,n, s ≥ 0

where

δ�
s,n = C

(ρ−ε)s

(
|α|
ρ−ε

)n+ν+1

, 1 ≤ s < ∞, s ≥ 0.

(5.5)

Using (5.5), we can write the first double sum in (5.4) as below:

ν−1∑

k=0

rk,nzk
j

( n+ν−k∑

s=0

A�
s,nzs

j

)
+

ν−1∑

k=0

rk,nzk
j

{ −1∑

s=−k

αn+ν+1(an+ν+1+s+δ�
n+ν+1+s,n)zs

j

+
n+ν−k∑

s=0

δ�
s,nzs

j

}
= S1 + S2. (5.6)



168 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

Using the estimates on an+ν+1+s and of δ�
n+ν+1+s in (5.5), on the first sum

between curly braces, the second of these three double sums is bounded by:

∣
∣
∣

−1∑

s=−k

αn+ν+1(an+ν+1+s + δ�
n+ν+1+s,n)zs

j

∣
∣
∣ ≤

≤
−1∑

s=−k

C|zj |s
(ρ − ε)s

( |α|
ρ − ε

)n+ν+1( |α|
ρ − ε

)n+ν+1

≤ C1q
n+ν+1, 0 < q < 1.

Similarly,

∣
∣
∣

n+ν−k∑

s=0

δ�
s,nzs

j

∣
∣
∣ ≤

n+ν−k∑

s=0

C
( |zj |

ρ − ε

)s ( |α|
ρ − ε

)n+ν+1

≤ C2q
n+ν+1
1 .

Thus combining the above we get an upper bound for the second part of (5.6),
i.e.,

S2 ≤
ν−1∑

k=0

rk,n|zj |k(C1 + C2)qn+ν , q = max(q1, q2)

≤ C
ν−1∑

k=0

( |α|
ρ − ε

)�(n+ν+1)

ρk(C1 + C2)qn+ν (5.7)

≤ Cqn+ν
( |α|

ρ − ε

)(n+ν+1)�

.

The first double sum in (5.6) can be written as

ν−1∑

k=0

rk,nzk
j

[
f(zj) −

∞∑

s=n+ν−k+1

asz
s
j

]

=
ν−1∑

k=0

rk,nzk
j f(zj)

+ O
( ν−1∑

k=0

( |α|
ρ − ε

)�(n+ν+1) ∞∑

s=n+ν−k+1

|zj |s
(ρ − ε)s

)

= f(zj)
ν−1∑

k=0

rk,nzk
j + O

(( |α|
ρ − ε

)�(n+ν+1)
ν−1∑

k=0

( |z|
ρ − ε

)n+ν+1−k
)

= f(zj)
ν−1∑

k=0

rk,nzn
j + O

(( |α|
ρ − ε

)�(n+ν+1)
qn

)
.

The second sum in (5.4) can be estimated directly on using |γ∞
k,n| < C;

|A�
s,n − A∞

s,n|






≤
(

|α|
ρ−ε

)�(n+ν+1)

+ C
(ρ−ε)s ·

(
|α|
ρ−ε

)�(n+ν+1)

, s > 0

≤
(

|α|
ρ−ε

)(�+1)(n+ν+1)
1

(ρ−ε)s + C
(ρ−ε)s

(
|α|
ρ−ε

)2(n+ν+1)

, s < 0
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and it gives the same estimate as in (5.7).

Thus the set of equations to determine rk,n can be written as

ν−1∑

k=0

rk,nzk
j f(zj) = C

( |α|
ρ − ε

)�(n+ν+1)

qn+ν , 1 ≤ j ≤ ν. (5.8)

Applying Cramer’s rule to the above system of equations, we get

rk,n = O
[(

q
( |α|

ρ − ε

)�)n]
, 0 ≤ k ≤ ν − 1 (5.9)

since f(zj) �= 0, and V (z1, . . . , zν) �= 0. This proves (5.2).

We now use (5.2) in the triple sum in Lemma 2 (2.3). Since there is only a
finite number of terms in the triple sum in (2.3), it is bounded by

Cqn+ν
( |α|

ρ − ε

)�(n+ν)( |z|
ρ − ε

)n+ν

, |z| > ρ.

From (2.3), we see that

∆ �
n,ν(z, F ) = α�(n+ν+1)Bν(z)

ν∑

k=0

n+ν∑

s=k

αna�(n+ν+1)+s + O
[(

qK(z)
)n+ν]

.

Then

∆ �
n−ν−1,ν(z, F ) − ( z

α

)� ∆ �
n−ν,ν(z, F ) = PB + E (5.10)

where PB has Bν(z) as a factor and the error term E is given by

C1q
n−1

[( |α|
ρ − ε

)� |z|
ρ − ε

]n−1

+ C2q
n
[( |α|

ρ − ε

)� |z|
ρ − ε

]n

≤

≤ Cqn
[( |α|

ρ − ε

)� |z|
ρ − ε

]n

.

Now

PB = Bν(z)
[
α�n

ν∑

k=0

n−1∑

s=k

αka�n+s−kzs − z�α�(n+1)

α�

ν∑

k=0

n∑

s=k

αka�(n+1)+s−kzs
]

= α�nBν(z)
ν∑

k=0

αk

{ n−1∑

s=k

a�n+s−kzs −
n+�∑

s=k+�

a�n+s−kzs
}

= α�nBν(z)
ν∑

k=0

αk

{ k+�−1∑

s=k

a�n+s−kzs −
n+�∑

s=n

a�n+s−kzs
}

. (5.11)
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The first sum in (5.10) is easily estimated by

|α|�n
ν∑

k=0

C
k+�−1∑

s=k

|z|s
(ρ − ε)�n+s−k

≤ C
( |α|

ρ − ε

)�n( |z|
ρ − ε

)k+�−1

≤ C
(( |α|

ρ − ε

)�n( |z|
ρ − ε

)n( |ρ − ε|
|z|

)n
)

≤ C
(
K(z)q

)n
,

since |z| > ρ. Thus from (5.10) and (5.11), we see that for |z| > ρ,

∆ �
n−ν−1,ν(z, F ) − ( z

α

)� ∆ �
n−ν,ν(z, F )

= −α�nBν(z)
ν∑

k=0

αk

n+�∑

s=n

a�n+s−kzs + C
(
qK(z)

)n
.
(5.12)

In order to complete the proof of Lemma 5, we examine the double sum S in
the above

S = α�n
ν∑

k=0

n+�∑

s=n

αka�n+s−kzs.

Set t = s − n − k in the above. Then

S = α�nzn
ν∑

k=0

�−k∑

t=−k

αka�n+n+tz
t+k.

Here the region of summation is the parallelogram OABC with vertices O =
(0, 0), A = (�, 0), B = (� − ν, ν), C = (−ν, ν) with t along the horizontal axis
and k along the vertical axis. This region is split into a triangle −ν ≤ t ≤ −1,

a rectangle 0 ≤ t ≤ � − ν and another triangle (� − ν + 1 ≤ t ≤ �). Thus:

S = α�nzn
−1∑

t=−ν

ν∑

k=−t

αkA�n+n+tz
t+k

+ α�nzn
ν∑

k=0

�−ν∑

t=0

a�n+n+tz
t+k

+ α�nzn
�∑

t=�−ν+1

αk

�−k∑

k=0

a(�+1)n+tz
t+k.

The middle sum is

α�nzn
ν∑

k=0

αkzk
�−ν∑

t=0

a(�+1)n+tz
t = α�nznBν(z)

�−ν∑

t=0

a(�+1)n+tz
t.
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Inserting this expression in S, we get from (5.12)

∆ �
n−ν−1,ν(z, F ) −

( z

α

)�

∆ �
n−ν,ν(z, F ) = − α�nznBν(z)2

�−ν∑

t=0

a(�+1)n+tz
t

− α�nznBν(z)
−1∑

t=−ν

a�n+n+tz
t

− α�nznBν(z)
�∑

t=�−ν+1

a�n+n+tz
t,

which is the expression in (5.1) and this completes the proof of Lemma 5. �

Proof of Theorem 4. Let {ωj}, 1 ≤ j ≤ � − ν + 1 be a set of distinct
points in |z| > ρ. We shall then construct a function f(z) ∈ Aρ(ν) so that F (z) =

f(z)/Bν(z) ∈ Mρ(ν). If f(z) =
∞∑

k=0

akzk, we define the sequence {ak}∞k=�+1 by

the following scheme:

a(�+1)r+s = ρ−(�+1)r−s, � + 1 − ν ≤ s ≤ �, r ≥ 1 (5.13)

a(�+1)r+s = 0, 0 ≤ s ≤ � − ν, 1 ≤ r ≤ 2ν − 1. (5.14)

This scheme defines the ak’s for �+1 ≤ k ≤ 2ν(�+1)−1. From this point onwards
only (5.13) contributes to the construction of the ak’s where k = (� + 1)r + s

and r ≥ 2ν and � + 1− ν ≤ s ≤ �. It still remains to construct two sets of ak’s :
(i) the finite set {ak}, 0 ≤ k ≤ �,

(ii) the infinite set {a(�+1)r+s}, with r ≥ 2ν and 0 ≤ s ≤ � − ν.

The set in (ii) is defined inductively on using the following:

�−ν∑

k=0

ωk
j a(�+1)r+k = − 1

(
Bν(ωj)

)
{ −1∑

s=−ν

ν∑

t=−s

αta(�+1)r+sω
s+t
j +

(5.15)

+
�∑

s=�−ν+1

�−1∑

t=0

αta(�+1)r+sω
s+t
j

}

for 0 ≤ s ≤ � − ν, r ≥ 2ν, 1 ≤ j ≤ � − ν + 1. The first and third sums on
the right side above are motivated by the first and third sums on the right
in the expression in Lemma 5. On the left in (5.15), the a(�+1)r+k are for
0 ≤ k ≤ �− ν, but on the right side the a’s have indices of the form (� + 1)r + s

for � − ν + 1 ≤ s ≤ � and we can use (5.13) for r ≥ 2ν. For −ν ≤ s ≤ −1, we
can write (� + 1)r + s = (� + 1)(r − 1) + � + 1 + s with �− ν + 1 ≤ � + 1 + s ≤ �

for r = 2ν − 1 and this again is known by (5.14).
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From (5.13), it is clear that once the ak’s are defined, we have

lim
k→∞

|ak| 1
k =

1
ρ

(5.16)

for the sequences in (5.13), i.e., for subsequences of the form {a(�+1)r+s}∞r=0,

� − ν + 1 ≤ s ≤ � fixed.

We now apply Cramer’s rule to (5.15) to solve for a(�+1)r+s. Then we get

a(�+1)r+t = dtρ
−(�+1)r−t, 0 ≤ t ≤ � − ν, r ≥ 2ν, (5.17)

where dt is a constant which can be given explicitly by

dt =
−1∑

j=−ν

Ct,jρ
t−j +

�∑

j=�−ν+1

Ct,jρ
t−j ,

where Ct,j and Ct,j depend only on wj ’s and αk’s.

Since t runs through only a finite number of values of (5.16), we see that

lim
r→∞ |a(�+1)r+t|

1
(�+1)r+t =

1
ρ

, 0 ≤ t ≤ � − ν.

Together with (5.16), the subsequences cover all natural numbers and we find
that (5.16) holds for the sequence {ak}�

0 itself as the finite set a0, a1, . . . , a� does
not change the lim sup .

The � + 1 numbers a0, a1, . . . , a� are now chosen in such a way that

f∗(z) =
∞∑

k=0

akzk, f∗(ωj) = 1, 1 ≤ j ≤ ν,

and since � ≥ ν, there is always a solution. The function F ∗(z) = f∗(z)
Bν(z) then

satisfies the conditions that

lim
k→∞

|ak| 1
k =

1
ρ

.

By Lemma 5, for ωj (1 ≤ j ≤ � − ν + 1), we have
[
∆ �

n−ν−1,ν(ωj , F
∗) − (ωj

α

)� ∆ �
n−ν,ν(ωj , F

∗)
]

= ωn
j

(
Bν(ωj)

)2
{
− (

B(ωj)
)−1

−1∑

k=−ν

ν∑

t=−k

αka(�+1)n+kωk+t
j

−
�−ν∑

k=0

a(�+1)n+kωk
j − (

B(ωj)
)−1

�∑

k=�−ν

�−k∑

t=0

αka(�+1)n+kωk+t
j

}

+ Cqn
( |α|

ρ − ε

)�n( |ωj |
ρ − ε

)n

= C[qK(ωj)]n+ν+1
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by using (5.15). By Lemma 1, ωj is distinguished for F ∗ (1 ≤ j ≤ �− ν + 1). �

7.6.

Simultaneous Hermite-Padé interpolation has received some attention lately.
This section will discuss the setting of the problem and its solution.

Let d, ν0, ν1, ν2, . . . , νd be natural numbers and let F1, F2, . . . , Fd be d func-
tions, meromorphic in the disks Dρj = {z ∈ C : |z| < ρ}, ρ > 1, given by

Fi(z) :=
fi(z)
Bi(z)

, fi(z) :=
∞∑

k=0

ai,kzk, lim sup
k→∞

|ai,k| =
1
ρ

(6.1)

where

Bi(z) :=
µi∏

j=1

(z − zi,j)λi,j =
νi∑

k=0

αi,kzk, αi,νi
= 1, ,

µi∑

j=1

λi,j = νi. (6.2)

Here it is assumed that the poles given all lie in Dρ and the poles of Fi are
disjoint from those of Fk, k �= i. Let � be an integer and put n = σ + 1, where
σ = ν0 + ν1 + ν2 + . . . νd. It is important for the sequel to remember that the νi

with i = 1, . . . , d are fixed (thus also σ − ν0 = n − ν0 − 1 is fixed) and that ν0

will go to infinity (or, equivalently, n or σ). Let now α = C\{0} satisfy |α| < ρ,

such that the zeros of zn − αn are different from those of the Bi(z) for all i.

Then the Lagrange interpolant to the Taylor sections
∑n�−1

k=0 ai,jz
k on the zeros

of zn − αn will be denoted by

f̃i,�(z) =
n−1∑

j=0

An−1
i,j A�

i,�z
j .

This is the first stage of the problem; explicit formulae for the A�
i,j are easily

derived (cf. [35]). When � = ∞, f̃i,0(z) is the full Taylor series of f̃i(z). For the
sake of completeness the explicit forms for 1 ≤ � ≤ ∞ are given below:

A�
i,s =

�−1∑

r=0

ai,r(σ+1)+sα
r(σ+1) (s ≥ 0), A�

i,s = ασ+1Ai,σ+1+s (s < 0),

(6.3)
The value of � governs how many packets of n successive coefficients from the
Taylor series are used in the Lagrange interpolation; for � = ∞ the full Taylor
series is used. The A�

i,s with s < 0 are needed in the formulae for the second,
simultaneous stage of the problem which can be stated as:
Find d rational functions U �

i (z)/B�(z) with the common denominator and

1. with U �
i =

∑σ−νi

s=0 p�
i,sz

s (1 ≤ i ≤ d), B�(z) =
∑n−ν0−1

k=0 γ�
kzk,

Simultaneous Hermite-Padé Interpolation
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2. that interpolate the d rationals f̃i,�/Bi(z) on the zeros of zn − αn,

3. and B� is monic: γ�
n−ν0−1 = 1.

For details the reader is referred to [37]. Define K(z) by

K(z) :=
( |α|

ρ

)� |z|
ρ

, |z| ≥ ρ; K(z) :=
( |α|

ρ

)�

, |z| < ρ. (6.4)

The two-stage problem has a unique solution for n sufficiently large, a solution
that moreover satisfies

lim
n→∞ γ�

k = α̃k with
n−ν0−1∑

k=0

α̃kzk =
d∏

i=1

Bi(z), 1 ≤ � ≤ ∞ ,
(6.5)

lim sup
n→∞

(

max
z∈H

∣
∣
∣
∣
U∞

i (z)
B∞(z)

− U �
i (z)

B∞(z)

∣
∣
∣
∣

)1/n

≤ K(τ), (6.6)

for each compact subset H of |z| < τ (τ > 0), that omits the singularities of the
functions Fi(z), 1 ≤ i ≤ d. For details the reader is referred to [35].

One of the main results is

Theorem 5. Let r, d, νi, fi, ρi, Bi, zi,j and � be given as above.

(i) For n large, the interpolating problem stated above has a

lim
n→∞ γ�

k = ζk, with

n−ν0−1∑

k=0

ζkzk =
d∏

i=1

Bi(z); 1 ≤ � ≤ ∞. (6.7)

(ii) Let H be a compact subset of |z| < τ, τ > 0, that omit the singularities

of the functions Fi (1 ≤ i ≤ d). Then

lim sup
n→∞

(

max
z∈H

∣
∣
∣
∣
U∞

i (z)
B∞(z)

− U �
i (z)

B�(z)

∣
∣
∣
∣

)1/n

≤
{

R(�−1)r+1(τ/ρi)r (τ ≥ ρi)

R(�−1)r+1 (τ < ρi),
(6.8)

with R = max1≤i≤d
1
ρi

.

(iii) i
−(�−1+1/r),

lim
n→∞

(
U∞

i (z)
B∞(z)

− U �
i (z)

B�(z)

)

= 0 (6.9)

uniformly and geometrically in compact subsets omitting the singularities.

As it is more convenient to study the difference of polynomials than that
of rational functions, we can multiply by the denominators - not changing the
upper bound because of (6.5).

sufficiently

unique solution that satisfies

specifically, we have for |z| < ρ R
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Define

∆�
i,ν0

(z) := Bi(z)B∞(z)B�(z)
(

U∞
i (z)

B∞(z)
− U �

i (z)
B�(z)

)

(6.10)

for z not one of the singularities of the function Fi and the let

S�(z, Fi) := lim sup
n→∞

|∆�
i,ν0

(z)|1/n, (6.11)

Then (6.5) takes the form

S�(z, Fi) ≤ K(z) (for z with Bi(z) �= 0). (6.12)

The question now arises, whether the upper bound K(z) is attained for any z.

The following results from [37].

Theorem 6. For each i ∈ {1, . . . , d} there are at most � − 1 distinguished

points for Fi in |z| < ρ.

Theorem 7. For any set of d(� − 1) points ωj in 0 < |z| < ρ, and any

subdivision into d sets of � − 1 points-say ωi,j (1 ≤ j ≤ � − 1, 1 ≤ i ≤ d)- there
exists a d-tuple of meromorphic function satisfying (6.1) and (6.2) and such that

for each i ∈ {1, . . . , d} the points ωi,j , (1 ≤ j ≤ � − 1) are distinguished for Fi.

Theorem 8. For each i ∈ {1, . . . , d} there are at most σ−ν0+� distinguished

points for Fi in |z| > ρ.

Theorem 9. For any set of d(� + 1 − (σ − ν0)) points ωj in |z| > ρ, and

any subdivision into d sets of � + 1 − (σ − ν0) points − say ωi,j (1 ≤ j ≤
� + 1 − (σ − ν0), 1 ≤ i ≤ d) − there exists d-tuple of meromorphic functions

satisfying (6.1) and (6.2) and such that for each i ∈ {1, . . . , d} the points ωi,j

(1 ≤ j ≤ � + 1 − (σ − ν0)) are distinguished for Fi.

Remark. The ”gap” between Theorems 7 and 8 is obvious; whether this
is a matter of the method of proof in [37] or a question of intrinsic behavior of
rational interpolation, is a matter for further research.

The method of proof of Theorems 1 to 4 is essentially due to Stojanova [102].
Note that there is a gap between Theorems 3 and 4.

Xin Li [116] gave an interesting extension of Walsh’s overconvergence theorem
for rational interpolation. Assume that the set {α0, α1, . . . } has no limit point

7.7. Historical Remarks
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on |z| = 1, its closure does not separate the complex plane, and for the rational
function

Bn(z) =
n∏

k=0

z − αk

1 − αkz

we have
ψ(z) := lim

n→∞ |Bn(z)|1/n �= const.

locally uniformly in |z| ≥ 1 except at the closure of the sequence 1/α0, 1/α1, . . . .
Let zk,n, k = 0, 1, . . . , n, be the roots of Bn(z) = 1 (these are on the unit circle),
and denote

Rn(f ; z) :=
n∑

k=0

f(zk,n)(Bn(z) − 1)
B′

n(zk,n)(z − zk,n)

the rational interpolant to the function f(z) analytic in ψ(z) < ρ (ρ > 1).
Further let rn(f ; z) be the least square (n, n)th degree rational approximation
to f on the unit circle. Then

lim
n→∞[Rn(f ; z) − rn(f ; z)] = 0 for ψ(z) < ρ2.



CHAPTER 8

EQUICONVERGENCE FOR FUNCTIONS

ANALYTIC IN AN ELLIPSE

8.1. Introduction

In the earlier chapters we have been dealing with equiconvergence problems
for functions analytic in the interior of some circle about the origin and its
expansion in a power series. It seems natural to consider functions which are
analytic in other domains. The simplest extension is to consider equiconvergens
results for functions analytic in an ellipse with foci ±1 and their expansion in
terms of Chebyshev series. In this case, similarly to the power series case, there
is a largest ellipse in which the Chebyshev expansion converges to the function,
and the convergence is uniform on each compact set inside this ellipse. Let
Eρ, ρ ≥ 1, be the ellipse in the complex z plane which is the image of the circle
|w| = ρ in the complex w plane by the mapping z = 1

2 (w + w−1). The ellipse
Eρ has foci ±1 and the half-axes a = 1

2 (ρ + 1
ρ ), b = 1

2 (ρ − 1
ρ ) . Notice that an

ellipse with foci ±1 and half axes (in the direction of the x, y-axes) whose sum
is ρ > 1 is necessarily Eρ . The set of functions analytic in the interior of Eρ but
not in Eρ′ , ρ′ > ρ, will be denoted by A(Eρ). Let Tk(z) denote the Chebyshev
polynomial (of the first kind) of degree k. Each z ∈ Eρ , ρ > 1, has a unique
representation z = 1

2 (w + 1
w ) where |w| = ρ > 1. On using the representation

Tk(z) =
1
2

[
(z +

√
z2 − 1)k + (z −

√
z2 − 1)k

]

we have

Tk(z) =
1
2

(

wk +
1

wk

)

, z =
1
2

(

w +
1
w

)

. (1.0)

A function f(z) ∈ A(Eρ) has a unique Chebyshev expansion inside the ellipse
Eρ of the form

f(z) =
1
2
A0 +

∞∑

k=1

AkTk(z). (1.1)

Set Sn(f ; z) := 1
2A0 +

∑n
k=0 AkTk(z). First we need a result on expansion of

functions from the class A(Eρ).

177
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Lemma 1. If f ∈ A(Eρ) then

f(z) =
1
2

A0 +
∞∑

k=1

AkTk(z) (1.1)

where

Ak =
2
π

∫ 1

−1

f(x)Tk(x)√
1 − x2

dx, k = 0, 1, 2, . . . (1.2)

of the Chebyshev expansion. Here the convergence of the

series (1.1) is uniform in every closed subdomain of Eρ.

Proof. With the substitution x = cos t and z = eit we obtain

Ak =
1
π

∫ π

−π

f(cos t) cos kt dt (1.3)

=
1
πi

∫

|z|=1

f
( z + z−1

2

) zk + z−k

2
dz

z
, k = 0, 1, . . . .

Taking an R, 1 < R < ρ, the function g(z) := f
(

z+z−1

2

)
will be analytic in the

closed annulus G = {z : 1
R ≤ |z| ≤ R}. When z is on the boundary of G then

w = 1
2 (z + z−1) is on the boundary of the ellipse ER. Thus (1.3) can be written

as

Ak =
1

2πi

∫

|z|=1/R

g(z)zk−1dz +
1

2πi

∫

|z|=R

g(z)z−k−1dz, k = 0, 1, . . . .

Let M = max
z∈G

|g(z)|, then we get

|Ak| ≤ 2MR−k, k = 0, 1, . . . . (1.4)

Now let r be such that 1 < r < R < ρ, and let z ∈ Er. Then with z = 1
2 (w +

w−1) by (1.0)

|Tk(z)| ≤ 1
2

(|w|k + |w|−k) ≤ 1
2

(rk + r−k) < rk, k = 0, 1, . . . . (1.5)

(1.4) and (1.5) show that the series (1.1) has a convergent numerical majorant
∞∑

k=0

( r
R )k, i.e. the Chebyshev series converges in Er. Since r can be arbitrarily

close to ρ, this proves the lemma. �

It is also clear from the proof of Lemma 1 that the order of best polynomial
approximation of an f ∈ A(Eρ) in any closed subdomain of Eρ is geometric.
We now turn our attention to Lagrange interpolation of functions from the class
A(Eρ). The natural choice for the system of nodes is the roots of the Chebyshev
polynomial Tn(x), and it will turn out that such an interpolation also has good
convergence properties. First we need a special representation of Ln−1(f ; z),
the Lagrange interpolant to f(z) on zeros of Tn(x).

are the coefficients
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Lemma 2. For any f ∈ A(Eρ) with (1.1) we have

Ln−1(f ; z) =
n−1∑

k=0

′
{

Ak +
∞∑

j=1

(−1)j(A2nj−k + A2nj+k)
}

Tk(z) (1.6)

where the dash indicates that the term k = 0 should be halved.

Proof. From (1.1) we get

Ln−1(f ; z) =
∞∑

k=0

′AkLn−1(Tk; z) (1.7)

=
∞∑

j=0

′
2n−1∑

k=0

′A2nj+kLn−1(T2nj+k; z)

where now the dashes indicate that the term corresponding to j = k = 0 should
be halved. Using the identity

Tλ(z) = −Tµ(z) + 2Tλ+µ
2

(z)Tλ−µ
2

(z), λ > µ, λ ≡ µ (mod 2) (1.8)

successively, we get

Ln−1(T2jn+k; z) = Ln−1

( − T2n(j−1)+k + 2Tn(2j−1)+kTn; z
)

(1.9)

= −Ln−1

(
T2n(j−1)+k; z) = · · · = (−1)jLn−1(Tk; z)

=






(−1)jTk(z) if 0 ≤ k < n

0 if k = n

(−1)j+1T2n−k(z) if n < k < 2n.

Thus we obtain from (1.7)

Ln−1(f ; z) =
∞∑

j=0

′
( n−1∑

k=0

′A2nj+k(−1)jTk(z) +
2n−1∑

k=n+1

A2nj+k(−1)j+1T2n−k

)

=
1
2

A0 +
∞∑

j=1

A2nj(−1)j +
n−1∑

k=1

{
Ak +

∞∑

j=1

(−1)j(A2nj+k + A2nj−k)
}

Tk(z)

which proves the lemma. �

A similar representation for the Hermite interpolation polynomial h2,2n−1

of order 2 on the roots of Tn(x) (that is, function values and first derivatives
prescribed) can be established:
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Lemma 3. For any f ∈ A(Eρ) with (1.1), we have

h2,2n−1(f ; z) =
∞∑

j=0

′(−1)jA2nj+

+
2n−1∑

k=1

{ ∞∑

j=0

(−1)j [(j + 1)A2nj+k + jA2n(j+1)−k]
}

Tk(z),
(1.10)

where the dash means halving the term corresponding to j = 0.

Proof. Again from (1.1) we get

h2,2n−1(f ; z) =
∞∑

k=0

′Akh2,2n−1(Tk(z); z) (1.11)

=
∞∑

j=0

′
2n−1∑

k=0

′A2nj+kh2,2n−1(T2nj+k; z)

where the dashes mean that the term with j = k = 0 has to be halved. Here

h2,2n−1(T2nj+k; z) =

{
(−1)j if k = 0,

(−1)j [(j + 1)Tk(z) + jT2n−k(z)] if 1 ≤ k ≤ 2n − 1.
(1.12)

We prove this relation by induction on j. For j = 0,

h2,2n−1(Tk; z) =

{
1 if k = 0,

Tk(z) if 1 ≤ k ≤ 2n − 1

}

= Tk(z) (1.13)

is obviously true. Assume (1.12) is true for j, then from (1.8) and the identity
T2n = 2T 2

n − 1 we obtain

h2,2n−1

(
T2n(j+1)+k; z

)
= h2,2n−1

( − T2n(j−1)+k + 2T2nj+kT2n, z
)

= h2,2n−1

( − T2n(j−1)+k − 2T2nj+k; z
)

=

{ −(−1)j−1 − 2(−1)j

(−1)j [jTk + (j − 1)T2n−k] − 2(−1)j [(j + 1)Tk + jT2n−k]

=

{
(−1)j+1, if k = 0,

(−1)j+1[(j + 2)Tk + (j + 1)T2n−k, if 1 ≤ k ≤ 2n − 1,

i.e., (1.12) holds for j + 1. Applying this to (1.11) we get

h2,2n−1(f ; z) =
∞∑

j=0

′(−1)jA2nj +
2n−1∑

k=1

∞∑

j=0

(−1)j [(j+1)Tk(z)+jT2n−k(z)]A2nj+k
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whence (1.10) follows by changing k to 2n − k in the second term. �

Lemmas 1 and 3 enable us to prove the convergence of Lagrange and Hermite
interpolation.

Lemma 4. If f(z) ∈ A(Eρ) then both Ln−1(f ; z) and h2,2n−1(f ; z) converge

to f(z) as n → ∞, uniformly and geometrically in every closed subdomain of

Eρ.

Proof. (1.1) and (1.6) imply

f(z) − Ln−1(f ; z) =
∞∑

k=n

AkTk(z) −
n−1∑

k=0

′
∞∑

j=1

(−1)j(A2nj−k + A2nj+k)Tk(z)

and

f(z) − h2,2n−1(f ; z) =
∞∑

k=2n

AkTk(z) −
∞∑

j=1

(−1)jA2nj

−
2n−1∑

k=1

∞∑

j=1

(−1)j [(j + 1)A2nj+k + jA2n(j+1)−k]Tk(z).

Now choose r and R such that 1 < r < R < ρ, and let z ∈ Er. Then by (1.4)
and (1.5)

|f(z) − Ln−1(f ; z)| ≤ 2M
∞∑

k=n

(
r

R

)k

+ 4M
n−1∑

k=0

∞∑

j=1

R−2nj(rR)k = O

((
r

R

)n)

and similarly,

|f(z) − h2,2n−1(f ; z)| ≤ 2M
∞∑

k=2n

( r

R

)k

+ 4M
2n−1∑

k=1

∞∑

j=1

[

(j + 1)R−2nj
( r

R

)k

+

+jR−2n(j+1)(rR)k
]

= O

(( r

R

)2n
)

which shows that the convergence is geometric. �

8.2. Equiconvergence (Lagrange Interpolation)

We are interested in exploiting the possible equiconvergence phenomena in
connection with interpolating polynomials and partial sums of Chebyshev series.
Denoting

Sn(f ; z) =
n∑

k=0

′AkTk(z) (2.1)
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the nth partial sum of the Chebyshev series (1.1), we have by (1.6)

Ln−1(f ; z) − Sn−1(f ; z) =
n−1∑

k=0

′
∞∑

j=1

(−1)j(A2nj−k + A2nj+k)Tk(z). (2.2)

Unfortunately, there is no equiconvergence in the classical sense. This can be

seen from the following simple example. Let f0(z) =
∞∑

k=0

′ρ−kTk(z) ∈ A(Eρ).

Then for z0 = 1
2 (ρ + ρ−1) we obtain from (1.0) and (2.2)

Ln−1(f0; z0) − Sn−1(f0; z0) =
1
2

n−1∑

k=0

′
∞∑

j=1

(−1)j(ρk−2nj + ρ−k−2nj)(ρk + ρ−k)

=
1
2

n−1∑

k=0

′(ρk + ρ−k)2
∞∑

j=1

(−1)jρ−2nj

<
1
2
ρ2n−2(−ρ2n + ρ−2n) = − 1

2ρ2
+ O(ρ−2n)

which shows that the left hand side does not go to zero as n → ∞. Similar phe-
nomenon occurs for the Hermite interpolation. In order to establish equiconver-
gence we have to modify our operator. We introduce two parameters: a fixed
integer � ≥ 1, and an increasing sequence of integers mn depending on n such
that

lim
n→∞

mn

n
=: q ≥ 1, and λ := lim

n→∞ {mn+1 − mn} < ∞. (2.3)

With these parameters, our operator is defined as

∆�−1,n,mn(f ; z) := Sn−1

(
Lmn−1

(
f − S2(�−1)mn+n−1(f)

)
; z

)
(2.4)

for any f ∈ A(Eρ). (Here we use the notation (1.6) - (2.1).) Note that in case
� = 1, mn ≥ n this simplifies to

∆0,n,mn
(f ; z) = Sn−1

(
Lmn−1(f) − f ; z

)
.

Our first result gives the precise asymptotic value of this operator.

Theorem 1. For any f ∈ A(Eρ) and z ∈ Er (r > 1) we have

lim
n→∞ |∆�−1,n,mn

(f ; z)|1/n =
r

ρ2�q−1
, (2.5)

except possibly for at most 2�λ − 2 points z1, . . . , z2�λ−2 outside the interval

[−1, 1], where

lim
n→∞ |∆�−1,n,mn(f ; zj)|1/n <

|wj |
ρ2�q−1

, zj =
1
2

(wj+w−1
j ), j = 1, . . . , 2�λ−2.

(2.6)
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In other words, we have equiconvergence in the ellipse Eρ2�q−1 . Note that
(2.5) does not distinguish between the cases r ≤ ρ or r > ρ, in contrast to the
case of functions analytic in a circle.

Proof. First we prove the upper estimate in (2.5). For this purpose we
represent the operator (2.4) in the form

∆�−1,n,mn
(f ; z) =

n−1∑

k=0

′
{ ∞∑

j=�

(−1)j(A2jmn+k + A2jmn−k)
}

Tk(z). (2.7)

To see this, first we write

f(z) − S2(�−1)mn+n−1(f ; z) =
∞∑

k=2(�−1)mn+n

AkTk(z),

and then apply the Lagrange operator Lmn−1 :

Lmn−1

(
f − S2(�−1)mn+n−1(f); z

)
=

2mn−1∑

k=n

A2(�−1)mn+kLmn−1

(
T2(�−1)mn+k; z

)

+
∞∑

j=�

2mn−1∑

k=0

A2jmn+kLmn−1

(
T2jm+k; z

)
.

Using the relation (1.9) we obtain

Lmn−1

(
f − S2(�−1)mn+n−1(f); z

)
=

= (−1)�
2mn−1∑

k=mn+1

A2(�−1)mn+kT2mn−k(z) + (−1)�−1
mn−1∑

k=n

A2(�−1)mn+kTk(z)

+
∞∑

j=�

(−1)j
{ mn−1∑

k=0

A2jmn+kTk(z) −
2mn−1∑

k=mn+1

A2jmn+kT2mn−k(z)
}

= (−1)�
mn−1∑

k=1

A2�mn−kTk(z) + (−1)�−1
mn−1∑

k=n

A2(�−1)mn+kTk(z)

+
∞∑

j=�

(−1)j
{ mn−1∑

k=0

A2jmn+kTk(z) −
mn−1∑

k=1

A2(j+1)mn−kTk(x)
}

,

whence (2.7) follows by replacing j + 1 by j in the second sum and by applying
Sn−1 to both sides. Now the upper estimate in (2.5) follows by using (1.4) and
(1.5):

|A2jmn+k| ≤ 2MR−2jmn−k, |A2jmn−k| ≤ 2MR−2jmn+k , 1 < R < ρ,
(2.8)

|Tk(z)| ≤ rk , z ∈ Er, r > 1,
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whence by (2.7)

|∆�−1,n,mn(f ; z)| ≤ 4M
n−1∑

k=0

∞∑

j=�

Rk−2jmnrk = O(R−2�mn+nrn).

Thus using (2.3) we get

lim
n→∞ max

z∈Er

|∆�−1,n,mn
(f ; z)|1/n ≤ r

R2�q−1
.

Since R < ρ was arbitrary, hence the upper estimate of (2.5). In order to prove
the second part of the theorem, we use (1.0) to estimate (2.7) by the help of
(1.4) and (2.8):

∆�−1,n,mn
(f ; z) =

(−1)�

2

n−1∑

k=1

A2�mn−kwk + O
( n−1∑

k=0

|A2�mn−k| · |w|−k+

+
n−1∑

k=0

∞∑

j=�

|A2jmn+k| |w|k +
∞∑

j=�+1

n−1∑

k=0

|A2jmn−k| · |w|k
)

=
(−1)�

2

n−1∑

k=1

A2�mn−kwk + O

(
1

R2�mn

(

max
( |w|

R
,

R

|w|
))n)

=
(−1)�

2

n−1∑

k=1

A2�mn−kwk + O
(( |w|

ρ2�q−1
− η

)n)

with some constant η > 0, provided R < ρ is close enough to ρ. Hence

A := 2(−1)�[∆�−1,n,mn(f ; z) − w2�(mn−mn+1)∆�−1,n+1,mn+1(f ; z)]

=
n−1∑

k=1

A2�mn−kwk −
n∑

k=1

A2�mn+1−kwk+2�(mn−mn+1) + O
(( |w|

ρ2�q−1
− η

)n)
.

Here we split the two sums into four:

A =




n−2�(mn+1−mn)∑

k=1

+
n−1∑

k=n−2�(mn+1−mn)+1



A2�mn−kwk (2.9)

−



2�(mn+1−mn)∑

k=1

+
n∑

k=2�(mn+1−mn)+1



A2�mn+1−kwk+2�(mn−mn+1)

+ O
(( |w|

ρ2�q−1
− η

)n)

= wn−2�(mn+1−mn)+1

2�(mn+1−mn)−2∑

k=0

A2�mn+1−n−k−1w
k+

+ O
(( |w|

ρ2�q−1
− η

)n)
.
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Namely, changing k to k + 2�(mn+1 − mn) in the third sum, it is easily seen
to cancel with the first sum. Further, the third sum contains only a bounded
number of terms, and is of order O(A2�mn

) which gives a contribution to the
error term. Finally, changing k to k + n − 2�(mn+1 − mn) + 1 in the second
sum, we obtain the above estimate. Now assume that, contrary to (2.6), there
exist points z1, . . . , z2�λ−1 outside the interval [−1, 1] such that

lim
n→∞ |∆�−1,n,mn(f ; zj)|1/n <

|wj |
ρ2�q−1

, j = 1, 2, . . . , 2�λ − 1

where zj = 1
2 (wj + w−1

j ), j = 1, . . . , 2�λ − 1. This means that

|∆�−1,n,mn
(f ; zj)| ≤

( |wj |
ρ2�q−1

− η1

)n

, j = 1, . . . 2�λ − 1 (2.10)

with some constant η1 > 0. Since by (2.3), mn+1 −mn ≤ λ for sufficiently large
n’s, we can apply the first 2�

(
mn+1 − mn

) − 1 relations in (2.10) to (2.9), and
obtain

w
n−2�(mn+1−mn)+1
j

2�(mn+1−mn)−2∑

k=0

A2�mn+1−n−k−1w
k
j = O

(( |wj |
ρ2�q−1

− η2

)n)
,

j = 1, . . . , 2�
(
mn+1 − mn

) − 1,

where η2 = min (η1, η). Hence by the boundedness of mn+1 − mn we get

2�(mn+1−mn)−2∑

k=0

A2�mn+1−n−k−1w
k
j = O

(( 1
ρ2�q−1

− η3

)n)
,

j = 1, . . . , 2�
(
mn+1 − mn

) − 1,

where η3 = min
j

η2
|wj | . The determinant of this system of equations is a Vander-

monian. Solving these we obtain

|A2�mn+1−n−k−1| = O
(( 1

ρ2�q−1
− η3

)n)
, k = 0, . . . , 2�

(
mn+1 − mn

) − 2.

We can see from this relations that the subscripts of the A’s attain all integers
s ≥ 2�m(1) (in fact, the set of consecutive integers for fixed n’s overlap), whence
we have by (2.3) again

lim
s→∞ |As|1/s ≤

( 1
ρ2�q−1

− η3

) lim
s→∞

n
2�mn+1−n−k−1

=
( 1

ρ2�q−1
− η3

) 1
2�q−1

<
1
ρ

.
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This contradicts the fact that f(z) ∈ A(Eρ), and Theorem 1 is proved. �

8.3. Equiconvergence (Hermite Interpolation)

For Hermite interpolation we modify the operator (2.4) in the following way.
Let again m = mn be an increasing sequence of integers such that (2.3) holds,
and set

∆̃�−1,n,mn
(f ; z) := Sn−1

(
h2,2mn−1(f − S2�mn−1(f); z)

)
(3.1)

for any f ∈ A(Eρ). Note that in case � = 1 this simplifies to

∆̃0,n,mn
(f, z) = Sn−1

(
h2,2mn−1(f) − f ; z

)
.

In contrast to the case of Lagrange interpolation, here the convergence-diverge-
nce behavior of the operator is different if z ∈ Eρ or z /∈ Eρ. First we consider the
case when the point is inside the ellipse of analyticity, and assume that mn = qn

(the case mn = qn+const. could also be treated, but it would complicate the
notation).

Theorem 2. For any f ∈ A(Eρ) and z ∈ Er, 1 < r < ρ, we have

lim
n→∞ ∆̃�−1,n,qn(f ; z)|1/n =

1
ρ2�q

(3.2)

except at most at 2�q points in Eρ, where the equality sign should be changed to

<

Proof. First we establish an asymptotic expression for the operator (3.1)
(In this part, we use only the conditions (2.3) on the sequence mn.) We have

f(z) − S2�mn−1(f ; z) =
∞∑

k=2�mn

AkTk(z),

whence, using (1.12), we get

h2,2mn−1

(
f − S2�mn−1(f); z

)
=

∞∑

k=2�mn

Akh2mn−1(Tk, z)

=
∞∑

j=�

2mn−1∑

k=0

A2jmn+kh2,2mn−1(T2jmn+k; z)

=
∞∑

j=�

(−1)j
{

A2jmn
+

2mn−1∑

k=1

A2jmn+k[(j + 1)Tk(z) + jT2mn−k(z)]
}

=
∞∑

j=�

(−1)j
{

A2jmn +
2mn−1∑

k=1

[(j + 1)A2jmn+k + jA2(j+1)mn−k]Tk(z)
}

,

” ”.
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i.e., by (3.1)

∆̃�−1,n,mn
(f ; z) =

∞∑

j=�

(−1)j
{

A2jmn
+

n−1∑

k=1

[(j + 1)A2jmn+k+

+ jA2(j+1)mn−k]Tk(z)
}

. (3.3)

This yields

∆̃�−1,n,mn
(f ; z) = O

( 1
(ρ − ε)2�mn

)
,

i.e.
lim

n→∞ max
z∈Er

|∆̃�−1,n,mn
(f ; z)|1/n ≤ 1

(ρ − ε)2�q

follows by (2.3). Since ε > 0 was arbitrary, this yields the upper estimate in
(3.2). In order to prove the second part of the theorem, from now on, we assume
mn = qn. Using (1.4) we obtain

∆̃�−1,n,qn(f ; z) = (−1)�
{

A2�qn + (� + 1)
n−1∑

k=1

A2�qn+kTk(z)
}

+ Rn

for z ∈ Er and 1 < r < ρ, (3.4)

where

Rn = O

(
rn

(ρ − ε)2(�+1)qn−n

)

= O

(
1

(ρ + ε)2[(�+1)q−1]n

)

= O

(
1

(ρ + ε)2�qn

)

,

provided ε > 0 is small enough. Hence

D(z) :=
(−1)�

� + 1
[∆̃�−1,n−1,q(n−1)(f ; z) + ∆̃�−1,n+1,q(n+1)(f ; z)−

− 2T2�q(z)∆̃�−1,n,qn(f ; z)] (3.5)

=
A2�q(n−1) + A2�q(n+1) − 2A2�qnT2�q(z)

� + 1
+

n−2∑

k=1

A2�q(n−1)+kTk(z)

+
n∑

k=1

A2�q(n+1)+kTk(z) −
n−1∑

k=1

A2�qn+k[Tk+2�q(z) + T|k−2�q|(z)] + O(Rn).

Here the last sum, after changing the running indices k, can be written in the
form
n+2�q−1∑

k=2�q+1

A2�q(n−1)+kTk(z) +
n−2�q−1∑

k=1

A2�q(n+1)+kTk(z) +
2�q−1∑

k=0

A2�q(n+1)−kTk(z).

Thus we obtain from the previous expression, after taking into account the
cancellations,

D(z) =
A2�q(n−1) − �A2�q(n+1) + (� − 1)A2�qnT2�q(z)

� + 1
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+
2�q−1∑

k=1

[A2�q(n−1)+k − A2�q(n+1)−k]Tk(z) −
n+2�q−1∑

k=n−1

A2�q(n−1)+kTk(z)

+
n∑

k=n−2�q

A2�q(n+1)+kTk(z) + O(Rn).

Here, by (2.8), the last two sums are O((ρ− ε)−(2�q+1)n), which is smaller than
Rn if ε > 0 is small enough. Thus we obtain

D(z) =
A2�q(n−1) − �A2�q(n+1) + (� − 1)A2�qnT2�q(z)

� + 1

+
2�q−1∑

k=1

[A2�q(n−1)+k − A2�q(n+1)−k]Tk(z) + O(Rn).

Now assume that, contrary to the statement of the theorem, for some points
zj ∈ Eρ, j = 0, 1, . . . , 2�q we have

|∆̃�−1,n,qn(f ; zj)| ≤ 1
(ρ + ε)2�qn

= O(Rn), j = 1, . . . , 2�q + 1

with some ε > 0. Then by (3.4), |D(zj)| = O(Rn), j = 0, 1, . . . , 2�q, whence by
(3.5)

A2�q(n−1) − �A2�q(n+1)+k + (� − 1)A2�qnT2�q(zj)
� + 1

+

+
2�q−1∑

k=1

[A2�q(n−1)+k − A2�q(n+1)−k]Tk(zj) = O(Rn), j = 0, 1, . . . , 2�q.

Consider this as a system of 2�q + 1 linear equations for the unknowns
A2�q(n−1)−�A2�q(n+1)

�+1 , A2�q(n−1)+k − A2�q(n+1)−k (for k = 1, . . . , 2�q − 1)

and (�−1)A2�qn

�+1 . The determinant of this system of linear equations consists of
the elements Tk(zj), k, j = 0, . . . , 2�q, and because of the linear independence
of the Chebyshev polynomials, is different from zero. Evidently, the solution
satisfies

|A2�q(n−1)+k − A2�q(n+1)−k| = O(Rn), k = 1, . . . , 2�q − 1 (3.6)

and
|A2�qn| = O(Rn). (3.7)

Now we prove that

A2�qn−k =
∞∑

j=0

(
A2�q(n+2[ j

2 ])+(−1)j+1k −A2�q(n+2[ j+1
2 ])+(−1)jk

)

for k = 1, . . . , 2�q − 1,
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where [·] means integer part. Evidently, this is a telescoping infinite series. In
order to show its convergence, we distinguish two cases. When j is even, the
absolute value of the term on the right hand side becomes

|A2�q(n+j)−k − A2�q(n+j)+k| = |A2�q(n+j−1)+(2�q−k) − A2�q(n+j+1)−(2�q−k)|
= O(Rn+j)

upon applying (3.6) with n + j and 2�q − k instead of n and k, respectively.
When j is odd we get similarly

|A2�q(n+j−1)+k − A2�q(n+j+1)−k| = O(Rn+j)

upon applying again (3.6) now with n + j instead of n. Thus we obtain

|A2�qn−k| = O




∞∑

j=0

1
(ρ + ε)2�q(n+j)



 = O(Rn), k = 1, . . . , 2�q − 1.

This coupled with (3.7) implies

lim sup
s→∞

A1/s
s ≤ 1

ρ + ε
,

which contradicts f ∈ A(Eρ). �

The next theorem is a similar result for points outside the ellipse of analyt-
icity, but the method of proof is different (and simpler).

Theorem 3. For any f ∈ A(Eρ) and z /∈ Eρ we have

lim
n→∞ |∆̃�−1,n,mn

(f ; z)|1/n =
|w|

ρ2�q+1
, z =

1
2

(w + w−1), (3.8)

except possibly for at most 2�λ points z1, . . . , z2�λ /∈ Eρ where

lim
n→∞ |∆̃�−1,n,mn

(f ; zj)|1/n <
|wj |

ρ2�q+1
, j = 1, . . . , 2�λ. (3.9)

In other words, we have equiconvergence in the ellipse Eρ2�q .

Proof. (2.8) and (3.3) imply for |w| > ρ

∆̃�−1,n,mn
(f ; z) =

(−1)�(� + 1)
2

n−1∑

k=1

A2�mn+kwk+

O

(
1

(ρ − ε)2�mn
+

|w|n
(ρ − ε)2(�+1)mn−n

)

.
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As in (2.9), consider

B :=
2(−1)�

� + 1
{∆̃�−1,n,mn(f ; z) − w2�(mn+1−mn)∆�−1,n+1,mn+1(f ; z)}

=
n−1∑

k=1

A2�mn+kwk −
n∑

k=1

A2�mn+1+kwk+2�(mn+1−mn)

+ O
( 1

(ρ − ε)2�mn
+

|w|n
(ρ − ε)2(�+1)mn−n

)
.

Here, splitting the sums again, we obtain

B : =




2�(mn+1−mn)∑

k=1

+
n−1∑

k=2�(mn+1−mn)+1



 A2�mn+kwk

−



n−2�(mn+1−mn)−1∑

k=1

+
n∑

k=n−2�(mn+1−mn)



 A2�mn+1+kwk+2�(mn+1−mn)

+ O
( 1

(ρ − ε)2�mn
+

|w|n
(ρ − ε)2(�+1)mn−n

)

= −wn−1

2�(mn+1−mn)+1∑

k=1

A2�mn+n+kwk

+ O
( 1

(ρ − ε)2�mn
+

|w|n
(ρ − ε)2(�+1)mn−n

)
.

This is obtained by changing k to k + 2�(mn+1 −mn) in the second sum which
then will cancel with the third sum. The first sum has a bounded number of
terms, thus it can be majorized by O(A2�mn

) which can be merged with the
error term. Finally, in the fourth sum k is replaced by k+n−2�(mn+1−mn)−1,
thus arriving at the fifth sum. Assume now that, contrary to (3.9), there exist
points z1, . . . , z2�λ+1 /∈ Eρ such that

lim
n→∞ |∆̃�−1,n,mn

(f ; zj)|1/n <
|wj |

ρ2�q+1
, j = 1, . . . , 2�λ + 1,

i.e.

|∆̃�−1,n,mn
|f ; zj)| ≤

( |wj |
ρ2�q+1

− η
)n

, j = 1, . . . , 2�λ + 1

with some η > 0. Using the first 2�(mn+1 − mn) + 1 of these inequalities, we

2�(mn+1−mn)+1∑

k=1

A2�mn+n+kwk
j =O

( ( 1
ρ2�q+1

− η

|wj |
)n

)

for j = 1, . . . , 2�(mn+1 − mn) + 1,

(3.10)

(3.11)

get from (3.11)



EQUICONVERGENCE FOR FUNCTIONS ANALYTIC IN AN ELLIPSE 191

provided η > 0 is sufficiently small. The determinant of this system of equations
for the A2�mn+k’s is again a Vandermonian. Hence we obtain

A2�mn+n+k = O
( ( 1

ρ2�q+1
− η1

)n
)
, k = 0, 1, . . . , 2�(mn+1 − mn),

where η1 > 0 is sufficiently small. This implies

lim sup
s→∞

As ≤
(

1
ρ2�q

− η1

)lim supn→∞
n

2�mn+n+kn

=
(

1
ρ2�q

− η1

) 1
2�q+1

<
1
ρ
,

which contradicts (3.7). �

8.4. Historical Remarks

Theorem 1 in the case λ = constant and � = 1 was proved by Rivlin [88]
without the explicit error estimates and without distinguished points. Theorems
2 and 3 are new. Theorems 1, 2 and 3 are special cases of a more general result
of Jakimovski and Sharma [56], [57]. We now give the results of [56] and [57] and
some notations used therein. For their proof the interested reader is referred to
the original papers. The Hermite interpolant to f(z) in the zeros of (Tn(z))p

(equivalently (cosnθ)p, p ≥ 1) is denoted by

hp,pn−1(f ; z) =
pn−1∑

σ=0

h(p,n)
σ Tσ(z). (4.1)

The the difference ∆�−1,n,m,p(f ; z). is given by

∆l−1,n,m,p(f ; z) := Sn−1(hp,pm−1(f, ·); z)−

−
{

Sn−1(hp,pm−1(Splm−1(f, ·)); z) if p is even
Sn−1(hp,pm−1(S(p(2l−1)−1)m+n−1(f, ·)); z) if p is odd.(4.2)

When l = 1, p = 1, the Hermite interpolant becomes Lagrange interpolant and
the above difference reduces to the case treated by Rivlin [88]. In order to state
our result we need

fl,q,p(R) :=






R
ρplq+1 if p is even and R > ρ

1
ρplq if p is even and ρ > R > 1

R
ρ(p(2l−1)+1)q−1 if p is odd and R �= ρ.

(4.3)

Write N := {1, 2, 3, . . . }, N+ := {0, 1, 2, 3, . . . }, and en := 1 when n is odd and
en := 0 when n is even. The following relations are easily proved and will be

(3.12)
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used often:





ep + ep+1 = 1 , eps = epes , e(ep) = ep , eps+2u−ej
= (−1)jepes + ej ,

eepes−1 = 1 − epes = es−1 + esep−1 , (−1)p = (−1)ep , e−p = ep ,

eps+j = (−1)jepes + ej , (−1)psepes + epes = 0 .
(4.4)

Let ηηη denote the sequence η0 := 1, ηk := 2 for k ∈ N+ .

Theorem A. Assume that p is a positive even integer and s, n are positive

integers. For a function f(z) ∈ A(ER), let

hp,pn−1(f ; z) =
pn−1∑

σ=0

h(p)
σ Tσ(z) (4.5)

be the Hermite interpolant of order p to f(z) at the zeros of (Tn(z))p. Then we

have:

(i) For each integer σ, 0 < σ < pn, 2λn < σ < (2λ + 2)n, 0 ≤ λ ≤ 1
2p − 1,

h(p)
σ = Aσ −

(
p − 1
1
2p + λ

) ∞∑

s=1

(−1)
1
2 p(s+1)

1
2 p−1∑

τ=0

(−1)τ

( 1
2p(s + 1) + τ

p

)

×

×
(

p
1
2ps + τ − λ

A(ps+2τ−2λ)n+σ +
p

1
2ps + τ + λ + 1

A(ps+2τ+2(λ+1))n−σ

)

;

(4.6)

(ii) For each even integer ρ, ρ ∈ {0, 2, 4, . . . , p − 2},

h(p)
ρn = A′

ρn − 1
2
ηρ

(
p

1
2p + 1

2ρ

) ∞∑

s=1

(−1)
1
2 p(s+1)

1
2 p−1∑

τ=0

(−1)τ 1
p
×

×
(1

2p(s + 1) + τ − 1
p − 1

)
(p2 − ρ2)(ps + 2τ)
(ps + 2τ)2 − ρ2

A(ps+2τ)n (4.7)

Remark. It should be observed that in case (i) of the above theorem when
σ = (2λ + 1)n , we have

A(ps+2τ−2λ)n+σ = A(ps+2τ+1)n = A(ps+2τ+2(λ+1))n−σ
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Example 1. Applying Theorem A to the case p = 4, we obtain the following:
(i) For σ = 0 we have

h
(4)
0 =

1
2
A0 −

∞∑

s=1

{
(2s + 1)(2s − 1)A4sn − (2s + 2)2sA(4s+2)n

}
,

(ii) For 0 < σ < 2n

h(4)
σ =Aσ − 1

2

∞∑

s=1

{(2s + 2)(2s + 1)(2s − 1)A4sn+σ

+ (2s + 2)2s(2s − 1)A(4s+2)n−σ

− (2s + 3)(2s + 2)2sA(4s+2)n+σ

−(2s + 3)(2s + 1)2sA(4s+4)n−σ

}
,

(iii) For σ = 2n we have

h
(4)
2n = A2n − 1

4

∞∑

s=1

(
4s2A4sn − (2s + 1)2A(4s+2)n

)
,

and
(iv) For 2n < σ < 4n we have

h(4)
σ =Aσ − 1

6

∞∑

s=1

{
(2s + 2)(2s + 1)2sA(4s−2)n+σ

+ (2s + 1)2s(2s − 1)A(4s+4)n−σ

− (2s + 3)(2s + 2)(2s + 1)A4sn+σ

−(2s + 2)(2s + 1)2sA(4s+6)n−σ

}
.

Theorem B. Assume that p is a positive odd integer. For a function f(z) ∈
A(ER), let (4.5) give the Hermite interpolant of order p to f(z) at the zeros of

(Tn(z))p. Then:

(i) For each σ satisfying ρn < σ < (ρ + 1)n (ρ = 0, . . . , p− 1) or for σ = ρn

where ρ is an even integer, we have

h(p)
σ =A′

σ +
(

p − 1
1
2 (p − 1) − (−1)ρ 1

2 (ρ − eρ) + eρ

) ∞∑

s=1

(−1)s

p−1∑

τ=0

(−1)τ

(
ps + τ

p

)

×

×
{

p

ps + τ − 1
2 (p − 1) + 1

2 (ρ + eρ)
A

2psn+
(
(ρ+eρ)−(p−1)+2τ

)
n−σ

+
p

ps + τ − 1
2 (p − 1) − 1

2 (ρ + eρ)
A

2psn+
(
−(ρ+eρ)−(p−1)+2τ)

)
n+σ

}

;
(4.8)
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(ii) For each σ = ρn where ρ is an odd integer 0 ≤ ρ ≤ p − 1, we have

h(p)
σ = h(p)

ρn = Aρn +
(

p
1
2 (p − ρ)

) ∞∑

s=1

(−1)s

p−1∑

τ=0

(−1)τ

(
ps + τ

p

)

×

×
{ 1

2 (p + ρ)
ps − 1

2 (p − ρ) + τ
+

1
2 (p − ρ)

ps − 1
2 (p + ρ) + τ

− p

ps + τ

}

A(2ps+2τ−p)n.

(4.9)

Remark. It should be observed that in case (i) of the above theorem when

σ = ρn and ρ is even we have

A2psn+((ρ+eρ)−(p−1)+2τ)n−σ = A2psn+(−(p−1)+2τ)n

= A2psn+(−(ρ+eρ)−(p−1)+2τ)n+σ,

and (4.8) becomes simpler.

Example 2. Applying Theorem B to the case p = 3 we get the following:
(i) For σ = 0

h
(3)
0 =

1
2
A0 + 2

∞∑

s=1

(−1)s
{
3s(3s − 2)A(6s−2)n − (3s + 1)(3s − 1)A6sn

+(3s + 2)(3s)A(6s+2)n

}
,

(ii) For 0 < σ < n,

h(3)
σ = Aσ +

∞∑

s=1

(−1)s
{
3s(3s − 2)

(
A(6s−2)n−σ + A(6s−2)n+σ

)

− (3s + 1)(3s − 1)
(
A6sn−σ + A6sn+σ

)

+(3s + 2)3s
(
A(6s+2)n−σ + A(6s+2)n+σ

)}
,

(iii) For σ = n,

h{3}
n = An +

∞∑

s=1

(−1)s
{
(6s − 3)A(6s−3)n − (6s − 1)A(6s−1)n

+(6s + 1)A(6s+1)n

}
.
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(iv) For n < σ < 2n,

h(3)
σ =Aσ +

∞∑

s=1

(−1)s

{(
3s − 1

2

)

A6sn−σ +
(

3s

2

)

A(6s−4)n+σ−

−
(

3s

2

)

A(6s+2)n−σ −
(

3s + 1
2

)

A(6s−2)n+σ

+
(

3s + 1
2

)

A(6s+4)n−σ +
(

3s + 2
2

)

A6sn+σ

}

.

(v) For σ = 2n,

h
{3}
2n = A2n +

∞∑

s=1

(−1)s
{
(3s − 1)2A(6s−2)n − (3s)2A6sn

+(3s + 1)2A(6s+2)n

}
.

(vi) For 2n < σ < 3n,

h(3)
σ = Aσ +

∞∑

s=1

(−1)s

{(
3s − 1

2

)

A6sn−σ +
(

3s

2

)

A(6s−4)n+σ

−
(

3s

2

)

A(6s+2)n−σ

−
(

3s + 1
2

)

A(6s−2)n+σ +
(

3s + 1
2

)

A(6s+4)n−σ

+
(

3s + 2
2

)

A6sn+σ

}

.

Theorem C. Let m = mn be a sequence of positive integers such that

m/n → q > 1 as n → ∞. Suppose f ∈ A(Eρ). If ρ > 1 and l, p are posi-

tive integers, then when p is odd and R > 1, R �= ρ, or, when p is even and

R > ρ, the following holds:

max
f∈A(Eρ)

lim sup
n→∞

max
z∈ER

|∆l−1,n,m,p(f ; z)|1/n = fl,q,p(R). (4.10)

where f�,q,p(R) is given by (4.3). If

f(z) = f∗(z) :=
ρ − z

1 − 2ρz + ρ2
∈ A(Eρ) (4.11)
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then when p is odd and R > 1, R �= ρ, or, when p is even and R > ρ, we have

lim
n→∞ min

z∈ER

|∆l−1,n,m,p(f∗; z)|1/n = lim
n→∞ max

z∈ER

|∆l−1,n,m,p(f∗; z)|1/n = fl,q,p(R).

(4.12)
This shows that the bound in (4.10) is sharp and that

∆l−1,n,m,p(f ; z) → 0 as n → ∞

Eor each z in the interior of the ellipse EP where

P =
{

ρplq+1 if p is even,

ρ(p(2l−1)+1)q−1 if p is odd.

The next theorems show that instead of (4.10) we have for each function
f ∈ A(Eρ) and all, but for a finite number of exceptional points z = zj ,

lim sup
n→∞

|∆l−1,n,m(n),p(f, z)|1/n = fl,q,p(R) .

When p is an even positive integer we have the following two results.

Theorem D. Assume p is a positive even integer, l is a positive integer and

ρ > 1 . Let m ≡ mn := qn + c where q ≥ 2 and c are non-negative integers. Let

f ∈ A(Eρ) , ρ > 1. Then for all complex numbers z outside the ellipse Eρ (i.e.,

z = 1
2 (w + w−1), |w| = R > ρ), except perhaps for at most pql points, we have

lim sup
n→∞

|∆�−1,n,m(n),p(f ; z)|1/n =
R

ρp�q+1
(4.13)

and for at most pql distinguished points zj , zj = 1
2 (wj +wj

−1, |wj | > ρ , outside

the ellipse Eρ we have

lim sup
n→∞

|∆�−1,n,m(n),p(f ; zj)|1/n <
|wj |

ρpql+1
. (4.14)

Theorem E. Suppose the assumptions of Theorem D are Let

zj , 1 ≤ j ≤ pql , zj = 1
2 (wj + wj

−1) , |wj | > ρ, be arbitrary given pair-

wise outside the ellipse Eρ . Then there exists a function

f∗∗(z) ∈ A(Eρ) such that

lim sup
n→∞

|∆�−1,n,m(n),p(f∗∗; zj)|1/n < f�,q,p(Rj) for 1 ≤ j ≤ pql .

where Rj := |wj |.

When p is a positive odd integer we have the following two results.

satisfied.

different numbers
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Theorem F. Assume p is a positive odd integer and ρ > 1 is a real number.

Write mn := qn+c, q > 1, where q and c are integers. Write ω := p(2�−1)+1,

ωq := ωq and ωc := ωc. Let f ∈ A(Eρ) . Then for all complex numbers z �∈
[−1, 1] (i.e., z = 1

2 (w +w−1), |z| =: R > 1 ) except, perhaps, for at most ωq −2
numbers, we have

lim sup
n→∞

|∆�−1,n,m(n),p(f ; z)|1/n =
|w|

ρωq−1
.

At most at the ωq − 2 exceptional points, say, zj , zj = 1
2 (wj + wj

−1), |wj | =
Rj > 1, 1 ≤ j ≤ ωq − 2 we have

lim sup
n→∞

|∆�−1,n,m(n),p(f ; zj)|1/n <
|wj |

ρωq−1
, 1 ≤ j ≤ ωq − 2.

Theorem G. Assume p is a positive odd integer and ρ > 1 is a real number.

1 ωq−2 /∈ [−1, 1], z �∈ Eρ,

are given (where zj = 1
2 (wj + w−1

j ), |wj | > 1), |wj | �= ρ. Then there exists a

function f∗(z) ∈ A(Eρ) such that we have

lim sup
n→∞

|∆�,n,m(n),p(f∗; zj)|1/n <
|wj |

ρωq−1
for j = 1, . . . , ωq − 2.

Assume pairwise different complex numbers z , . . . , z



CHAPTER 9

WALSH EQUICONVERGENCE

THEOREMS FOR THE FABER SERIES

1. Introducing Faber polynomial and Faber expansions.

In this chapter we obtain equiconvergence theorems related to expansions
of analytic functions into series of polynomials, the Faber polynomials. The
Taylor series expansion and the Chebyshev expansion of analytic functions are
two examples out of the different families of the Faber expansions.

1.1 Faber polynomials and some of their properties.

Let E be a compact (i.e., closed and bounded) subset of the extended complex
plane C, which is not a point, with a complement Ec which is simply connected
in the extended complex plane.

According to the Riemann mapping theorem, there exists a conformal map
ψ of {w ∈ C : |w| > 1} onto Ec = {z : z /∈ E, z ∈ C} normalized at infinity

′

diameter of E. We have the Laurent expansion z = ψ(w) = cw + c0 + c1
w +

· · · for |w| > 1.

If the boundary ∂E of the set E is a simple Jordan curve, then the conformal
map ψ(w) is continuable to a one to one continuous mapping of {w ∈ C : |w| ≥
1} onto C\ Int E.

When the boundary ∂E is a simple Jordan curve we write wm,k := exp(2πki/

(m+1)) (k = 0, 1, . . . , m). The associated points zn,k := ψ(wm,k) are called the
Fej·er nodes with respect to E.

Following Pommerenke [84] we say that ∂E is an r0-analytic curve (0 ≤ r0 <

1), if the conformal map ψ(w) admits a univalent continuation to {w ∈ C :
|w| > r0}.

The function ψ(w) from {w ∈ C : |w| > 1} onto Ec has an inverse w = φ(z)
that for all sufficiently large |z| has the expansion w = φ(z) = dz +d0 + d1

z + · · ·
where cd=1. Also, for all sufficiently large z and each non-negative integer n

we have the convergent Laurent expansion {φ(z)}n = dnzn +
∑n−1

k=−∞ dnkzk.
199

by ψ(∞) = ∞ and c := ψ (∞) > 0, where c is called the capacity or infinite
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The polynomial part of the Laurent expansion of φ(z)n, given by Fn(z) :=
dnzn +

∑n−1
k=0 dnkzk is of exact degree n and is called the Faber polynomial

associated with the set E.

It is well known (cf. Curtiss [34]) that for an arbitrary compact set E (not
one point) for which C\E is simply connected, the associated Faber polynomials
satisfy

lim
n→∞ |Fn(ψ(ζ))|1/n = |ζ|, |ζ| > 1, (1.1.0)

uniformly on every closed subset of ζ ∈ C : |ζ| > 1. This implies the following
result.

Theorem 1.

N ≡ N(r) such that for each n > N(r) all the zeros of Fn(z) are in Gr and,

therefore, all accumulation points of the zeros of (Fn(z))n≥1 must lie in E.

From the above Theorem 1 it follows that the polynomial L∗
n(f ; z), denoting

the Lagrange interpolants of f at the zeros of the Faber polynomial Fn+1(z),
are well defined for all large n. If ∂E is an r0-analytic curve, 0 ≤ r0 < 1 then
for every sufficiently large n the Faber nodes all lie in the interior of E. It is
known [63] that if E is convex, but not a line segment, then all Faber nodes lie
in the interior of E. In the case when E is the line segment [−1, 1], it is well
known that the Faber polynomials for E coincide with the classical Chebyshev
polynomials of the first kind.

The m + 1 zeros of the (m + 1)st Faber polynomial with respect to E are
called the Faber nodes.

For R > 1 denote by CR the outer level curve of E given by CR := {ψ(w) :
|w| = R}. If ∂E is an r0-analytic curve (0 ≤ r0 < 1) then CR and GR are
defined also for R > r0. When ∂E is an r0-analytic curve we will assume in the
following that R > r0.

For the following theorem see V.I. Smirnov and N.A. Lebedev [100].

Theorem 2 (The Faber expansion theorem). (i) Assume f ∈ A∗
R where

R > 1. Then the function f can be expanded into a series of Faber polynomials

f(z) =
∞∑

k=0

akFk(z) (1.1.1)

where

ak =
1

2πi

∮

|ζ|=r′
f(ψ(ζ))ζ−(k+1)dζ, k = 0, 1, . . . , (1.1.2)

To each fixed r > 1 there corresponds some positive integer
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for each r′, 1 < r′ < R. The Faber series (1.1.1) is uniformly convergent on

each compact subset of Int E. In this case we have

lim sup
k→∞

|ak|1/k =
1
R

. (1.1.3)

(ii) If a Faber series
∑∞

k=0 akFk(z) is convergent in some domain then it

converges in a domain Gσ, uniformly convergent in compact subset of Gσ, and

it is not convergent for each point outside gσ. For this σ (1.1.3) holds.

(iii) If a sequence (ak)k≥0

∑∞
k=0 akFk(z)

is uniformly convergent in each compact subset of Gσ.

Given the Faber expansion (1.1.1) of f, the sequence of partial sums is given
by

Sn(f ; z) :=
n∑

k=0

akFk(z). (1.1.4)

Assume that for a non-negative integer n a sequence of pairwise different inter-
polation nodes zk,n ∈ GR (k = 0, . . . , n) is given. To the given interpolating
nodes we associate the polynomial ωn(z) ≡ ω(z; zk,n) :=

∏n
k=0(z − zk,n).

1.2 Examples of Faber polynomials.

Example 1. If E is the closed unit disk D1 then z = w maps univalently
the outside of the circle |w| = 1 onto the outside of E. In this case w = φ(z) = z

so that Fn(z) = zn and Fn(φ(w)) = wn ≡ wn +
∑∞

k=0 αnkw−k where αnk = 0
for n, k = 0, 1, · · · . In this case we have r0 = 0. The Faber expansion theorem
in this case is the Taylor series expansion.

Example 2. Let E be the real closed segment [−1, 1]. Then the mapping

w = φ(z) = z +
√

z2 − 1 = z

(

1 +

√

1 − 1
z2

)

(where the branch chosen for
√

1 − 1
z2 on Ec is the one that takes the value 1 for

z = ∞) maps univalently the exterior of E onto the domain |w| > 1. The closed
segment [−1, 1] is mapped continuously onto |w| = 1, but not univalently. In
this example we have z = ψ(w) = 1

2

(
w + 1

w

)
for |w| ≥ 1 and c = 1

2 . Since the
Laurent expansion at infinity of the function

1
φ(z)

= z −
√

z2 − 1 = z

(

1 −
√

1 − 1
z2

)

satisfies (1.1.3) then the Faber series
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contains no nonnegative powers of z, the Laurent expansion at infinity of the
function

Kn(z) := (φ(z))n +
1

(φ(z))n
=

(
z +

√
z2 − 1

)n

+
(
z −

√
z2 − 1

)n

(1.2.1)

has the same term with non-negative powers of z as the Laurent expansion at
infinity of [φ(z)]n for n = 1, 2, . . . . But Kn(z) is a polynomial of degree n, and
hence

F0(z) = 1, Fn(z) =
(
z +

√
z2 − 1

)n

+
(
z −

√
z2 − 1

)n

, n = 0, 1, . . .

and

Fn(ψ(w)) = wn +
1

wn
≡ wn +

∞∑

k=0

αnkw−k for n = 0, 1, 2, . . .

where αnk =
{

1 when k = n

0 otherwise.

Setting z = cos t, we obtain

Fn(cos t) = [(cos t + i sin t)n + (cos t − i sin t)n] = 2 cos nt ,

or equivalently

F0(z) = 1, Fn(z) = 2 cos (n arccos z) , n = 1, 2, . . . .

Hence the Faber nodes are the zeros of cos nt. We see that in this example the
Faber polynomials turn out to be normalized Chebyshev polynomials of the first
kind.

Example 3. Assume δ > 1. Write a = 1
2 (δ + 1

δ ) and b = 1
2 (δ − 1

δ ). Let Eδ

be the ellipse x2

a2 + y2

b2 = 1 and its interior. This ellipse has ±1 as its foci. The
function z = ψ(w) := 1

2 (δw + 1
δw ) maps the exterior of Eδ univalently onto the

exterior of D1. In this example we have c= 1
2δ, and w = φ(z) = 1

δ (z +
√

z2 − 1).
Since the Laurent expansion at infinity of the function

1
φ(z)

) = δz

(

1 −
√

1 − 1
z2

)

= δ
(
z −

√
z2 − 1

)

contains no nonnegative powers of z, the Laurent expansion at infinity of the
function

Kn(z) := (φ(z))n +
1

(φ(z))n
=

(
1
δ

(
z +

√
z2 − 1

))n

+
(

1
δ

(
z −

√
z2 − 1

))n

(1.2.2)
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has the same term with non-negative powers of z as the Laurent expansion at
infinity of [φ(z)]n for n = 1, 2, . . . . But Kn(z) is a polynomial of degree n, and
hence

F0(z) = 1, Fn(z)=
(

1
δ

(
z +

√
z2 − 1

))n

+
(

1
δ

(
z −

√
z2 − 1

))n

, n = 0, 1, . . .

and

Fn(ψ(w)) = wn +
1

δ2nwn
≡ wn +

∞∑

k=0

αnkw−k for n = 0, 1, 2, . . . ,

where

αnk =
{ 1

δ2n when k = n

0 otherwise.

In this example ∂Eδ is an r0-analytic curve with r0 = 1/δ.

For the Fejér nodes wm+1,k, where wm+1,k
m+1 = 1, for 0 ≤ k ≤ m, we

have Fm+1(ψ(wm+1,k)) = Fm+1(ψ(1)). Hence, since Fm+1(ψ(w))−Fm+1(ψ(1))
vanishes at the Fejér nodes zm+1(ψ(1)),

ωm(ψ(w)) =
(

δ

2

)m+1

(Fm+1(ψ(w)) − Fm+1(ψ(1)))

=
(

δ

2

)m+1 (
wm+1 − 1

)
(

1 − 1
(δ2w)m+1

)

Example 4. Let E be the closed interior of the lemniscate |z2 − 1| = 1. It
is easy to see that the mapping

w = φ(z) = z

(

1 − 1
z2

)1/2

=
√

z2 − 1,

(where we choose the branch of
(
1 − 1

z2

) 1
2 which equals 1 at ∞) maps the

exterior of E, univalently, onto the exterior of D1. The inverse function is given
by

z = ψ(w) = w

√

1 +
1

w2
=

√
w2 + 1.

We have

φ(z)n = zn

(

1 − 1
z2

)n

=
∞∑

k=0

(−1)k

(
n/2
k

)

zn−2k.

Therefore

Fn(z) =
[n/2]∑

k=0

(−1)k

(
n/2
k

)

zn−2k.
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In particular

F0(z) = 1, F1(z) = z, F2(z) = z2 − 1, F3(z) = z3 − 3
2
z, ... .

We have

Fn(ψ(w)) =
[n/2]∑

k=0

(−1)k

(
n/2
k

)

wn−2k

(

1 +
1

w2

)n
2 −k

= wn

[n/2]∑

k=0

(−1)k

(
n/2
k

)

w−2k
∞∑

j=0

(n
2 − k

j

)
1

w2j

= wn

[n/2]∑

k=0

(−1)k

(
n/2
k

) ∞∑

j=0

(n
2 − k

j

)
1

w2(k+j)
.

Replacing in the last sum the summation index j by r and using the relation
k + j = r we get

Fn(ψ(w)) = wn + wn

[n/2]∑

r=1

r∑

k=0

(−1)k

(
n/2
k

)(n
2 − k

r − k

)
1

w2r

+
∑

r>[n/2]

1
w2r−n

[n/2]∑

k=0

(−1)k

(
n/2
k

)(n
2 − k

r − k

)

.

Since (
n/2
k

)(n
2 − k

r − k

)

=
(

r

k

)(
n/2
r

)

we get

Fn(ψ(w)) = wn + wn
∑

1≤r≤[n/2]

1
w2r

(
n/2
r

) r∑

k=0

(−1)k

(
r

k

)

+
∑

r>[n/2]

1
w2r−n

(
n/2
r

) [n/2]∑

k=0

(−1)k

(
r

k

)

.

From
r∑

k=0

(−1)k

(
r

k

)

= (1 − 1)r = 0 for r > 0

and
[n/2]∑

k=0

(−1)k

(
r

k

)

= (−1)[n/2]

(
r − 1
[n/2]

)

we get

Fn(ψ(w)) = wn +
∑

r>[n/2]

1
w2r−n

(
n/2
r

)

(−1)[n/2]

(
r − 1
[n/2]

)

.
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Using the substitution r = [n/2] + s + 1 we obtain

Fn(ψ(w)) = wn + (−1)[n/2] 1
w2[n/2]−n+2

∞∑

s=0

(
n/2

[n/2] + s + 1

)(
[n/2] + s

s

)
1

w2s

=






wn when n is even

wn + (−1)[n/2]
∑∞

s=0

(
n/2

[n/2]+s+1

)(
[n/2]+s

s

)
1

w2s+1

when n is odd

≡ wn + (−1)[n/2]
∞∑

s=0

αn,sw
−s.

So when n is odd and s = 0, 1, 2, . . . , we have

αn,2s+1 :=

{
(−1)[n/2]

(
n/2

[n/2]+s+1

)(
[n/2]+s

s

)
when n is odd and s ≥ 0

0 otherwise.

2. Extended equiconvergence theorems for Faber expansions

Let f ∈ A∗
R. Assume that for a non-negative integer n a sequence of pair-

wise different interpolation nodes zk,n ∈ GR (k = 0, . . . , n) is given. Ln(f ; ·)
denotes the Lagrange interpolant to f ∈ A∗

R in these nodes. Given a posi-
tive integer s then the Hermite interpolant hs,s(n+1)−1(z) is the polynomial of
lowest degree interpolating the functions f, f ′, . . . , f (s−1) at the interpola-
tion points (zk,n). To the given interpolating nodes we associate the polynomial
ωn(z) ≡ ω(z; zk,n) :=

∏n
k=0(z − zk,n).

In order to obtain an equiconvergence theorems for the Faber expansion of a
function the Lagrange or Hermite interpolants are replaced by their sections

Sn (Lm(f ; ·); z) or Sn

(
hs,s(m+1)−1(f ; ·); z) .

We use also the following expressions. Set, for m ≥ n ≥ 0 and j ≥ 0

Sm,n,j(f ; z) :=
n∑

k=0

ak+j(m+1)Fk(z). (2.0)

Clearly Sm,n,0(f ; z) = Sn(f ; z) and Sn(Lm(f ; z); z) is the nth Faber section of
the expansion of Lm(f ; z) in terms of Faber polynomials.

We state now, but prove in Section 6 the following theorems.

Theorem 3. Assume ∂E is an r0-analytic curve for some r0 ∈ [0, 1). Sup-
pose f ∈ A∗

R Write m := q(n + 1) − 1. Let

Dm,n(f ; z) be given by

Dm,n,�(f ; z) := Sn(Lm(f ; ·); z) −
�−1∑

j=0

Sm,n,j(f ; z) (2.1)

. Let q be a fixed positive integer.
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where Lm(f ; z) is the Lagrange interpolant at the Fej·er nodes. Then,

lim sup
n→∞

|Dm,n,�(f ; z)|1/n ≤ max

(

r0,
|w|

R�q+1
,
|w|r0

q

R
,
|w|rq−1

0

Rq

)

for |w| > R,

(2.2)

where z = ψ(w), with 0k := 0 for any nonnegative integer k and 1/0 := ∞.

An immediate consequence of Theorem 3 is the following

Corollary 1. Then

we have the equiconvergence result that

lim sup
n→∞

Dm,n,�(f ; z) = 0 for |w| < λ := min
(
R�q+1, Rr−q

0 , Rqr
−(q−1)
0

)
.

(2.3)
The convergence to zero is uniform and geometric for |w| < δ < λ for each

1 < δ < λ.

In the same way it will be possible to obtain eqiconvergence theorems from
the subsequent theorems in the section.

The following theorem is an analogue of Theorem 3, where the m + 1 Fejér
nodes are replaced by the m + 1 zeros of the (m + 1)st Faber polynomial i.e.,
Faber nodes.

Theorem 4. Assume f ∈ A∗
R. Let � and q be given positive integers. Write

m := q(n + 1) − 1. Let ∆∗
m,n,�(f ; z) be given by

∆∗
m,n,�(f ; z) := Sn(L∗

m(f ; ·); z) −
�−1∑

j=0

Sm,n,j(f ; z), (2.4)

where Sm,n,j(f ; z) is given by (2.0) and L∗
m(f ; z) is the Lagrange interpolant of

f at the Faber nodes. Then we have

lim sup
n→∞

∣
∣∆∗

m,n,�(f ; z)
∣
∣1/n ≤ |w|

Rq
for |w| > R where z = ψ(w).

Adding to the assumption that ∂E is an r0-analytic curve for some r0 ∈ [0, 1)
we get the following stronger result.

Theorem 5.

∂E is an r0-analytic curve for some r0 ∈ [0, 1). Then we have

lim sup
n→∞

|∆m,n,�(f ; z)|1/n ≤





max
(

1
Rq ,

|w|rq−1
0

Rq

)
when � = 1

max
(

1
Rq , |w|

Rq+1 ,
|w|rq−1

0
Rq

)
when � > 1

(2.5)

Assume the assumptions of Theorem 3 are satisfied.

Suppose the assumptions of Theorem 4 are satisfied and that
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Theorem 6. Let ∂E be an r0-analytic curve for some r0 ∈ [0, 1). Suppose
f ∈ A∗

R. Assume q and s, p are given positive integers. Write m := q(n+1)−1.

For ∆p,s
m,n(f ; z) given by

∆p,s
m,n(f ; z) := Sp(n+1)−1(hs,s(m+1)−1(f ; ·); z) − Sp(n+1)−1(f ; z),

where hs,s(m+1)−1(f ; z) denotes the Hermite interpolation polynomial to f, f ′,
. . . , fs−1 in the m + 1 Fej r nodes. Then we have

lim sup
n→∞

∣
∣∆p,s

m,n(f ; z)
∣
∣1/n ≤ λ∗, for z = z(w) and |w| > R

where

λ∗ =






max
(

rq
0 |w|p
Rp , |w|p

Rp−qs , |w|qs

Rqs

)
when qs ≤ p

max
(

1
Rqs ,

|w|prq
0

Rp ,
|w|prq−p

0
Rqs , |w|p

Rqs+τ

)
when qs ≥ p and q ≥ p

max
( |w|prq

0
Rp , |w|p

Rqs

)
when qs ≥ p and q > p

(2.6)
with τ := q when p = qu and τ := v when p = qu + v, 0 < v < q.

Theorem 7. Assume f ∈ A∗
R. Let q, s, p be positive integers. Write m :=

q(n + 1) − 1. Let ∆∗p,s
m,n(f ; z) be given by

∆∗p,s
m,n(f ; z) := Sp(n+1)−1

(
h∗

s,s(m+1)−1(·; f); z
)
− Sp(n+1)−1(f ; z),

where h∗
s,s(m+1)−1(f ; z) denotes the Hermite interpolant to f, f ′, · · · , f (s−1) at

the m + 1 Faber nodes. Then we have

lim
n→∞

∣
∣∆∗p,s

m,n(f ; z)
∣
∣1/n ≤ λ∗|w|p for z = ψ(w), |w| > R,

where

λ∗ :=
{ 1

Rp when p ≥ qs

max
(

1
Rp+q , 1

Rqs

)
when p < qs.

(2.7)

In the following two theorems we consider the difference of sections of Hermite
interpolants and Lagrange interpolants.

Theorem 8. Let ∂E be an r0-analytic curve for some r0 ∈ (0, 1). Assume

f ∈ A∗
R and that s, p are two given positive integer. Let Dp,s,n(f ; z) given by

Dp,s,n(f ; z) := Sp(n+1)−1

({hs,s(n+1)−1(f ; ·) − Ls(n+1)−1(f ; ·)}; z)

é
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where hs,s(n+1)−1(f ; z) and Ls(n+1)−1(f ; z) denote the Hermite and Lagrange

interpolants at Fej·er nodes. Then we have

lim sup
n→∞

|Dp,s,n(f ; z)|1/n ≤ λ|w|p for |w| > R,

where

λ :=






r0
Rp when p ≥ s = 1,

max
(

1
Rp+1 , r0

Rp

)
when p ≥ s > 1,

1
Rs when 1 ≤ p < s.

(2.8)

The following theorem is an analogue of Theorem 8 for Hermite and Lagrange
interpolants at Faber nodes.

Theorem 9. Assume f ∈ A∗
R. Let s, p be positive integers. Let D∗

p,s,n(f ; z)
given by

D∗
p,s,n(f ; z) := Sp(n+1)−1

(
h∗

s,s(n+1)−1(f ; ·) − L∗
s(n+1)−1(f ; ·); z

)

where h∗
s,s(n+1)−1(f ; z) is the the Hermite interpolant to f at the zeros of

Fn+1(z)s and Ls(n+1)−1(f ; z) is the Lagrange interpolant to f at the zeros of

Fs(n+1)(z). Then we have

lim sup
n→∞

∣
∣D∗

p,s,n(f ; z)
∣
∣1/n ≤

{ |w|p
Rp+1 when s ≥ p and |w| > R,

|w|p
R2p+1−s when s < p and |w| > R.

(2.9)

3. Additional properties of Faber polynomials Let A∗
R ≡ A∗

R(E) denote
the class of functions f(w) holomorphic in GR but not in any GR′ , R′ > R.

Consider, for a given R > 1, and z ∈ GR, the integrals

1
2πi

∮

CR

φ(t)n

t − z
dt =

1
2πi

∮

|s|=R

snψ′(s)ds

ψ(s) − z
(3.1)

connected by the substitution t = ψ(s). The path of the integral on the left of
(3.1) can be replaced by a circle of radius R∗ large enough so that φ(z)n has a
uniformly convergent Laurent series on this circle and the value of the integral
will remain the same. The Laurent series can be integrated term by term, and
when this is done the integral reproduces the principal part of the series at
infinity and all the terms with negative exponents vanish because we have for
|z| < R∗

1
2πi

∮

|t|=R

tk

t − z
dt =

{
zk for k ≥ 0

0 for k ≤ −1.
(3.2)
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Thus, by (3.1)

Fn(z) =
1

2πi

∮

|s|=R

snψ′(s)ds

ψ(s) − z
, n = 1, 2, 3, . . . , z ∈ GR, R > γ∗

0 = 1. (3.3)

For each fixed z ∈ GR the function of s, sψ′(s)/(ψ(s) − z), is regular for ∞ ≥
|s| ≥ R and has the value 1 at s = ∞, so it has a Laurent series

sψ′(s)
ψ(s) − z

= 1 + p1(z)
1
s

+ p2(z)
1
s2

+ . . . , |s| ≥ R > γ0∗ = 1, z ∈ GR. (3.4)

But the Cauchy formulas for the coefficients in (3.4) are precisely the integrals
appearing in (3.3), so these coefficients pn(z) are indeed Pn(z) for each n. We
thus have the following generating function for the Faber polynomials

sψ′(s)
ψ(s) − z

=
∞∑

k=0

Fk(z)s−k for |s| > |w| > γ∗
0 = 1 (z = ψ(w)). (3.5)

This implies that

ψ′(s)
ψ(s) − ψ(w)

=
1

s − w
+

∞∑

k=0

(
Fk(ψ(w)) − wk

) 1
sk+1

for |s| > |w| > γ∗
0 = 1.

(3.6)

Remark 1.. It is easy to see that when ∂E is a γ0−analytic curve (0 ≤ γ0 <

1) then in (3.3),(3.5) and (3.6) we can replace γ∗
0 = 1 by γ∗

0 = γ0.

We obtain now some additional properties of Fn(ψ(w)). We need the following
notations.

(i) If ∂E is a γ0-analytic curve (0 ≤ γ0 < 1) then we choose R1 and R so
that γ∗

0 = γ0 < R1 < R.

(ii) If nothing is assumed about ∂E then R1 and R are chosen so that γ∗
0 =

1 < R1 < R.

Both in case (i) and in case (ii), (3.3) holds for these R1 and R. Let z = ψ(w)
lie in the region HR1,R bounded by CR1 and CR. (We observe that for a given
w, |w| > R1, we can always choose R sufficiently large so that z = ψ(w) lies
in H.) The function snψ′(s)/[ψ(s) − ψ(w)] as a function of s is regular in the
closed region except for a simple pole at s = w. The residue at this the pole is

lim
s→w

(s − w)
snψ′(s)

ψ(s) − ψ(w)
= wn.

Thus by the residue theorem and (3.3) we get for z = ψ(w), |w| > R1,

Fn(z) = Fn(ψ(w)) = wn +
1

2πi

∮

|s|=R1

snψ′(s)ds

ψ(s) − ψ(w)
. z = ψ(w), |w| > R1.

(3.7)
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From (3.7) we get immediately

Fn(ψ(w)) − wn = O(1)Rn
1 (3.8)

uniformly in γ∗
0 < R1 < δ ≤ |w| when R1 > 1, and r0 < R1 < 1 when

γ∗
0 = γ0, 0 ≤ γ0 < 1.

The integrand on the right of (3.7) is an analytic function of w for |w| > R

and has the value 0 at w = ∞. Thus it has a Laurent series in w convergent at
least for |w| > R. We write this series in the form

Fn(ψ(w)) = wn +
∞∑

k=1

αn,kw−k. (3.9)

The series is convergent for all w, |w| > R1, and uniformly convergent for
|w| ≥ R∗ > R1, where R∗ is now arbitrary. By the formula for the coefficients
of the Laurent expansion we have

αn,k = − 1
4π2

∮

|w|=R2

∮

|s|=R1

wk−1snψ′(s)dsdw

ψ(s) − ψ(w)
, (3.10)

where R2 > R1 > 1 = γ∗
0 when γ∗

0 = 1 and γ∗
0 = γ0 < R1 < R2 < 1 when

γ∗
0 = γ0 < 1.

An immediate consequence of (3.10) is

|αn,k| ≤ O(1)Rk
2R1

n for n, k ≥ 1 where






1 < R1 < R2 when γ∗
0 = 1

γ0 < R1 < R2 < 1
when γ∗

0 < 1.

When γ∗
0 < 1, the numbers R1 and R2 that satisfy γ0 < R1 < R2 < 1 are

arbitrary. So we have

αn,k = O(1) ×






Rk
2Rn

1 for n, k ≥ 1 for each pair 1 < R1 < R2

when γ∗
0 = 1

βk+n for n, k ≥ 1 for each β satisfying γ∗
0 < β < 1

when γ∗
0 < 1.

(3.11)
From (3.11) we get for |w| > R2 (where 1 < R1 < R2 when γ∗

0 = 1 and
γ0 < R1 < R2 < 1 when γ∗

0 = γ0 < 1)

∞∑

ν=1

αn,νw−ν = O(1)Rn
1

∞∑

ν=1

(
R2

|w|
)ν

= O(1)Rn
1 for |w| > R > R2. (3.12)

The convergence in (3.12) is uniform for |w| ≥ δ > R2.
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For the following inequality see [34, eq.(4.9)]:

|αn,k| ≤
√

n

k
for n, k ∈ IN. (3.13)

From (3.13), it readily follows that
∣
∣
∣
∣
∣

∞∑

ν=1

αn,νw−ν

∣
∣
∣
∣
∣
≤ √

n
∞∑

ν=1

|w|−ν

√
ν

≤ √
n

∞∑

ν=1

|w|−ν ≤ √
n

1
|w| ·

1
1 − 1

|w|
=

√
n

|w| − 1
(3.14)

for |w| > 1 and n ∈ IN. Also

n∑

k=1

∞∑

ν=1

αn,νw−νt−(k+1) = O(1)
n∑

k=1

√
k

|w| − 1
· 1
|t|k+1

= O(1) (3.15)

as n → ∞, uniformly for |w| > δ > 1, |t| ≥ µ, for each δ > 1 and µ > 1. From
(3.9) and (3.6) we see that

ψ′(s)
ψ(s) − ψ(w)

=
1

s − w
+

∞∑

j=0

1
sj+1

∞∑

k=1

αj,kw−k. (3.16)

The series converges for all w, |w| > R1, and uniformly for |w| ≥ R∗, for each
R∗ > R1. Here R1 > 1 when γ∗

0 = 1 and when ∂E is an r0-analytic curve then
γ∗
0 = r0, r0 < 1 and r0 < R1 < 1. Always R1 > r0.

4. Estimate of the polynomials ωn(z) for Fejér and Faber nodes

4.1 Estimates of the polynomials ωn(z) for Faber nodes

For the Faber nodes we have ωn(z) = cnFn+1(z). From (3.9) and (3.14), we
get for any t and ζ satisfying 1 < |t| = r < |ζ| = r′ and any integer s ≥ 1,

Fm+1(ψ(ζ))s − Fm+1(ψ(t))s

Fm+1(ψ(ζ))s
=

=

(
ζm+1 + O(1)

√
m+1√
ζ−1

)s

−
(
tm+1 + O(1)

√
m+1√
t−1

)s

(
ζm+1 + O(1)

√
m+1√
ζ−1

)s

=
ζs(m+1)

(
1 + O(1)

√
m+1

ζm+1(
√

ζ−1)

)s

− ts(m+1)
(
1 + O(1)

√
m+1

tm+1(
√

t−1)

)s

ζs(m+1)
(
1 + O(1)

√
m+1

ζm+1(
√

ζ−1)

)s

=
ζs(m+1) − ts(m+1)

ζs(m+1)
·
(

1 + O(1)
√

m + 1
ζm+1(

√
ζ − 1)

)−s

×

×




1 +

(
1 + O(1)

√
m+1√
ζ−1

)s

− 1

ζs(m+1) − ts(m+1)
−

(
1 + O(1)

√
m+1√
t−1

)s

− 1

ζs(m+1) − ts(m+1)





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=
ζs(m+1) − ts(m+1)

ζs(m+1)

(

1 + O(1)
√

m + 1
ζm+1(

√
ζ − 1)

)

×

×




1 +

O(1)
√

m+1√
ζ−1

ζs(m+1) − ts(m+1)
−

O(1)
√

m+1√
t−1

ζs(m+1) − ts(m+1)






=
ζs(m+1) − ts(m+1)

ζs(m+1)

(

1 + O(1)
√

m + 1
|ζ|m+1

)

. (4.1)

Thus we have

ωm(ψ(ζ))s − ωm(ψ(t))s

ωm(ψ(ζ))s
=

ζs(m+1) − ts(m+1)

ζs(m+1)

(

1 + O(1)
√

m + 1
|ζ|m+1

)

(4.2)

as m → ∞ , uniformly in t, ζ for 1 < r = |t| < r′ = |ζ| < R.

4.2 Estimate of the polynomials ωn(z) for Fejér nodes

Write wm,k := exp(2πki/(m+1)) (k = 0, 1, . . . , m). We recall that the points
zm,k := ψ(wm,k) are called the Fejér nodes with respect to E. We write

{
ω(z) ≡ ωn(z) :=

∏n
k=0(z − zn,k) and for z = ψ(w) we have

ωn(z) =
∏n

k=0(ψ(w) − ψ(wn,k)).
(4.3)

The function πn(w) is defined by

πn(w) :=
ωn(z)

(wn+1 − 1)dn+1
for z 	= zn,k, z = ψ(w),

and is defined by continuity for z = zk. We have

πn(w) =
n∏

k=0

z − zn,k

w − wn,k
=

n∏

k=0

ψ(w) − ψ(wn,k)
(w − wn,k)d

(4.4)

when w 	= wk, |w| ≥ r0. If w = wk then the k-th factor is to be replaced by
φ′(wk)/d.

Lemma 1. Assume ∂E is an r0-analytic curve, r0 ∈ [0, 1). Then to each

β, 1 > r > r0 there corresponds a number M ≡ Mβ,c > 0, depending only on r

large n ≥ N

∣
∣
∣
∣

ωm(ψ(w))
(wm+1 − 1)dm+1

− 1
∣
∣
∣
∣ =

∣
∣
∣
∣

1
πn(w)

− 1
∣
∣
∣
∣

≤ Mβn, |w| ≥ r0, k = 0, 1, . . . , n; n ≥ N,
(4.5)

and ∣
∣
∣
∣
(wm+1 − 1)dm+1

ωm(ψ(w))
(wm+1 − 1)dm+1 − 1

∣
∣
∣
∣ = |πn(w) − 1| ≤ Mβn

and c, such that for all sufficiently
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for |w| ≥ r0, k = 0, 1, . . . , n; n ≥ N.

Proof. The function

χ(w, s) =






ψ(w) − ψ(s)
(w − s)d

, w 	= s,

φ′(s)
d

, w = s,

is clearly an analytic function of s for each fixed w, |s| ≥ r0, |w| ≥ r0; and
χ(w,∞) = χ(∞, s) = 1. Also, φ′(∞)/d = 1. The univalence of φ(w) implies
that φ′(w) cannot vanish for |w| > r0. The roles of w and s can be interchanged
in these remarks. Therefore |χ(w, s)| and X := {w : +∞ ≥ |w| ≥ r0} × {s :
+∞ ≥ |s| ≥ r0}. Hence |χ(w, s)| has a finite maximum and a non-zero minimum
on this set X.

Let Log χ(w, s) denote the branch of the logarithm for which Log χ(w,∞) =
0 on X. For w fixed, |w| ≥ r0, this is an analytic function of s for |s| ≥ r0 with
a Laurent series expansion around infinity of the form

Log χ(w, s) =
c1(w)

s
+

c2(w)
s2

+ . . . .

The coefficients of this Laurent expansion are given by

cm(w) =
1

2πi

∮

|s|=r0

sm−1Log ζ(w, s)ds.

The boundedness of |χ(w, s)| implies that Log χ(w, s) is bounded and continu-
ous on X. If Mχ is the maximum of Log χ(w, s), then by the Cauchy estimates
we have |cm(w)| ≤ Mχrm

0 . For the roots of unity (wn,k) we have

n∑

k=0

wn,k
j =

{
0 if j 	= 0 mod(n + 1) ,
n + 1 if j = 0 mod(n + 1) .

By (4.4) we get

log πn(w) =
n∑

k=0

Log χ(w, wk) =
∞∑

j=1

cj(w)wn,k
−j

= (n + 1)
∞∑

j=1

cj(n+1)(w) = (n + 1)Mχ

∞∑

j=1

r
j(n+1)
0

so

| log πn(w)| =
∣
∣
∣
∣log

1
πn(w)

∣
∣
∣
∣ ≤

(n + 1)rn+1
0 Mχ

1 − rn+1
0

→ 0 as n → ∞ for, |w| ≥ r0.
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If | log z| < ε with 0 ≤ ε ≤ 1, then

|z − 1| = | exp(log z) − 1| ≤ ε(1 + ε/2! + ε2/3! + . . . ) ≤ ε

1 − ε
.

Let β be a given number satisfying r0 < β < 1, and choose M0 = M0(β, χ) so
that

(n + 1)rn+1
0 Mχ

1 − rn+1
0

≤ M0β
n, n ≥ N(r0, Nχ).

Then for |w| ≥ r0,

|πn(w) − 1| ≤ M0β
n, n ≥ N(r0,Mχ),

∣
∣
∣
∣

1
πn(w)

− 1
∣
∣
∣
∣ ≤ M0β

n, n ≥ N(r0,Mχ) ,

which completes the proof. �

Applying (4.5) of Lemma 1 with some β, r0 < β < 1, to each of the terms
in the following fraction we get

ωm(ψ(ζ))s − ωm(ψ(t))s

ωm(ψ(ζ))s
=

=
(ζm+1 − 1)s(1 + O(1)βm)s − (tm+1 − 1)s(1 + O(1)βm)s

(ζm+1 − 1)s(1 + O(1)βm)s

=
(ζm+1 − 1)s(1 + O(1)βm) − (tm+1 − 1)s(1 + O(1)βm)

(ζm+1 − 1)s(1 + O(1)βm)

=
(ζm+1 − 1)s − (tm+1 − 1)s

(ζm+1 − 1)s
×

×
(

1 +
(ζm+1 − 1)sO(1)βm − (tm+1 − 1)sO(1)βm

(ζm+1 − 1)s − (tm+1 − 1)s

)

=
(ζm+1 − 1)s − (tm+1 − 1)s

(ζm+1 − 1)s
(1 + O(1)βm) (4.6)

5. Integral representations of Lagrange and Hermite interpolants for
Faber expansions

We use in the proofs of the results of this chapter certain integral represen-
tations of the Lagrange, Hermite and a combination of these interpolants in a
form which is relevant to Faber polynomials.

Given a function f ∈ A∗
R, R > 1, we shall assume in all the proofs of this

chapter that the numbers r, r′ satisfy 1 < r < r′ < R and that the interpolating
points (zk,n) satisfy zk,n ∈ Gr for all sufficiently large n. The last assumption
is satisfied by the Faber and Fejér nodes.
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Applying the well-known integral formula for the Hermite interpolation (cf.
Chapter 2, (1.0)) we obtain for each r′ ∈ (1, R)

Lm(f ; z) =
1

2πi

∮

|ζ|=r′
f(ψ(ζ))

ψ′(ζ)
ψ(ζ) − z

· ωm(ψ(ζ)) − ωm(z)
ωm(ψ(ζ))

dζ, z ∈ C (5.1)

and

hs,s(m+1)−1(f ; z)=
1

2πi

∮

|ζ|=r′
f(ψ(ζ))

ψ′(ζ)
ψ(ζ) − z

· ωm(ψ(ζ))s − ωm(z)s

ωm(ψ(ζ))s
dζ, z ∈ C.

(5.2)
By (1.1.2) and (1.1.4) the expansion of

Sn(Lm(f ; ·); z) and Sn(hs,s(m+1)−1(f ; ·); z)

in terms of Faber polynomials are given by

Sn(Lm(f ; ·); z) =
1

2πi

∮

|t|=r

Lm(ψ(·); t)
n∑

k=0

Fk(z)t−(k+1)dt

=
1

2πi

∮

|ζ|=r′
f(ψ(ζ))

(
1

2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

×

×ωm(ψ(ζ)) − ωm(ψ(t))
ωm(ψ(ζ))

n∑

k=0

Fk(z)t−(k+1)dt

)

dζ, z ∈ C.
(5.3)

and

Sn(hs,s(m+1)−1(f ; ·); z) =
1

2πi

∮

|t|=r

hs,s(m+1)−1(f ; ψ(t)) ·
n∑

k=0

Fk(z)t−(k+1)dt

=
1

2πi

∮

|ζ|=r′
f(ψ(ζ))

(
1

2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

×

×ωs
m(ψ(ζ)) − ωs

m(ψ(t))
ωm(ψ(ζ))s

n∑

k=0

Fk(z)t−(k+1)dt

)

dζ, z ∈ C.
(5.4)

We set, for m ≥ n ≥ 0 and j ≥ 0, as in (2.0),

Sm,n,j(f ; z) :=
n∑

k=0

ak+j(m+1)Fk(z). (5.5)

Clearly Sm,n,0(f ; z) = Sn(f ; z) and Sn(Lm(f ; z); z) is the nth Faber section of
the expansion of Lm(f ; z) in terms of Faber polynomials.

Now (2.0) and (1.1.2) imply that

Sm,n,j(f ; z) =
1

2πi

∮

|ζ|=r′
f(ψ(ζ))ζ−j(m+1)

n∑

k=0

Fk(z)ζ−(k+1)dζ , z ∈ C.
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Thus we have, for a given integer � ≥ 1

�−1∑

j=0

Sm,n,j(f ; z)=
1

2πi

∮

|ζ|=r′
f(ψ(ζ))

ζ�(m+1) − 1
ζ(�−1)(m+1)(ζm+1 − 1)

n∑

k=0

Fk(z)ζ−(k+1)dζ

for z ∈ C (5.6)

The function ψ(w) is univalent for |w| > 1 and has a simple pole at infinity
with residue c at ∞. Therefore the function ψ′(ζ)

ψ(ζ)−ψ(t) of t is regular but for

one simple pole at t = ζ, for |t| > 1, and limt→∞
ψ′(ζ)

ψ(ζ)−ψ(t) = 0. The residue

at t = ζ of the function ψ′(ζ)
ψ(ζ)−ψ(t) · 1

ts of the variable t, for an integer s ≥ 0, is

limt→ζ
(ζ−t)ψ′(ζ)
ψ(ζ)−ψ(t) · 1

ts = 1
ζs . Using now the residue theorem, we obtain

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

· dt

ts
=

1
ζs

, |ζ| > r > 1 . (5.7)

Applying this formula with s = 1 and (5.6) for 1 < r < r′, we get the following
double integral:

�−1∑

j=0

Sm,n,j(f ; z) =
1

2πi

∮

|ζ|=r′
f(ψ(ζ))

(
1

2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

· ζ

t
×

× ζ�(m+1) − 1
ζ(�−1)(m+1)(ζm+1 − 1)

n∑

k=0

Fk(z)ζ−(k+1)dt

)

dζ , z ∈ C.
(5.8)

In analogy to (5.4) it is easy to see that for 1 < r < r′ < R

Sp(n+1)−1(h∗
s(m+1)−1(f ; ·); z) =

1
2πi

∮

|ζ|=r

f(ψ(ζ))×

×


 1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

ws
m(ψ(ζ)) − ws

m(ψ(t))
ws

m(ψ(ζ))

p(n+1)−1∑

k=0

Fk(z)
tk+1

dt



 dζ.
(5.9)

From (5.8) we get for � = 1 and 1 < r < r′ < R

Sp(n+1)−1(f ; z)) =

=
1

2πi

∮

|ζ|=r′
f(ψ(ζ))



 1
2πi

∮

|t|=1

ψ′(ζ)
ψ(ζ) − ψ(t)

ζ

t

p(n+1)−1∑

k=0

Fk(z)
ζk+1

dt



 dζ.
(5.10)
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In the proof we assume that 0 < r0 < R1 < 1 < r < r′ < R, that |t| = r and
|ζ| = r′. If f(z) ∈ A∗

R has the Faber expansion f(z) =
∑∞

k=0 akFk(z), then by
(1.1.2) and (1.1.4) we have for each r′, 1 < r′ < R,

Sn(f ; z) =
1

2πi

∮

|ζ|=r′
f(ψ(ζ))

n∑

k=0

Fk(z)ζ−(k+1)dζ, z ∈ C.

By (2.1), (5.3) and (5.8) we get

Dm,n,�(f ; z)=
1

2πi

∮

|ζ|=r′
f(ψ(ζ))

(
1

2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,�(w, ζ, t)dt

)

dζ .

(6.1.1)
where

Km,n,�(w, ζ, t) =

=
ωm(ψ(ζ)) − ωm(ψ(t))

ωm(ψ(ζ))

( n∑

k=1

(
Fk(ψ(w)) − wk

)
t−(k+1) +

n∑

k=0

wkt−(k+1)

)

− ζ

t
· ζ�(m+1)−1

ζ(�−1)(m+1)(ζm+1 − 1)

( n∑

k=1

(
Fk(ψ(w)) − wk

)
t−(k+1) +

n∑

k=0

wkt−(k+1)

)

.

(6.1.2)

We fix a number ρ = β, r0 < β < 1. By (4.6) with s = 1 we can write

ωm(ψ(ζ)) − ωm(ψ(t))
ωm(ψ(ζ))

=
ζm+1

ζm+1 − 1
− tm+1

ζm+1 − 1
+O(1)βm ζm+1 − tm+1

ζm+1 − 1
(6.1.3)

uniformly as n → ∞ on sets of points {(ζ, t) : |t| = r < r′ = ζ} for each pair
1 < r < r′ < R. By applying now (6.1.3) and (3.9) the kernel Km,n,�(w, ζ, t)
can be broken into six parts, Km,n,�(w, ζ, t) :=

∑6
j=1 Km,n,�(w, ζ, t, j), where

Km,n,�,1(w, ζ, t) :=
ζm+1

ζm+1 − 1

n∑

k=1

∞∑

ν=1

αk,νw−νt−(k+1)

− ζ

t

ζ�(m+1) − 1
ζ(�−1)(m+1)(ζm+1 − 1)

n∑

k=1

∞∑

ν=1

αkνw−νζ−(k+1)

Km,n,�,2(w, ζ, t) := − tm+1

ζm+1 − 1

n∑

k=1

∞∑

ν=1

αkνw−νt−(k+1)

Km,n,�,3(w, ζ, t) = O(1)βm ζm+1 − tm+1

ζm+1 − 1

n∑

k=1

∞∑

ν=1

αkνw−νt−(k+1)

Km,n,�,4(w, ζ, t) :=
ζm+1(tn+1 − wn+1)

(t − w)(ζm+1 − 1)tn+1

− ζ

t

(ζn+1 − wn+1)
(ζ − w)ζn+1

· ζ�(m+1) − 1
ζ(�−1)(m+1)(ζm+1 − 1)

(6.1.4)

6. Proofs of the theorems stated in Section 2

6.1 Proof of Theorem 3
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and

Km,n,�,5(w, ζ, t) = O(1)βm (ζm+1 − tm+1)(tn+1 − wn+1)
(t − w)tn+1(ζm+1 − 1)

Km,n,�,6(w, ζ, t) = − tm+1(tn+1 − wn+1)
(t − w)tn+1(ζm+1 − 1)

.

(6.1.5)

By (3.9) the two series on the right hand side of definition of Km,n,�(w, ζ, t) are
uniformly convergent for |w| > 1 and |t| ≥ r > 1.

We write Dm,n,�(f ; z) =
∑6

j=1 Dm,n,�,j(f ; z) where

Dm,n,�,j =
1

2πi

∮

|ζ|=r′
f(ψ(ζ))

(
1

2πi

∮

|t|=r

ψ′(t)
ψ(ζ) − ψ(t)

Km,n,�,j(w, ζ, t)dt

)

dζ

The regularity of the integrands defining Dm,n,�,j allows us to replace, indepen-
dently, in each of the integrals defining Dm,n,�,j any given triple R1, r0, r′ by
any other triple R1, r0, r′ as long as it satisfies r0 < R1 < 1 < r < r′ < R.

We estimate now integrands of Dm,n,�,j for 1 ≤ j ≤ 6. In these estimates the
assumptions are that r0 < β < 1 < r < r′ < R, |w| > R, |t| = r, |ζ| = r′.

Estimate of Dm,n,�,1 By (5.7) we have

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,�,1(w, ζ, t)dt =
1

(ζm+1 − 1)ζ(�−1)(m+1)
×

×
n∑

k=1

∞∑

ν=1

αk,νw−νζ−(k+1)

and by (3.11)

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,�,1(w, ζ, t)dt = O(1)
1

(r′)�(m+1)

n∑

k=1

βk(r′)−(k+1).

Hence

lim sup
n→∞

∣
∣
∣
∣
∣

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,�,1(w, ζ, t)dt

∣
∣
∣
∣
∣

1/n

≤ 1
(r′)�q

.

Therefore
lim sup

n→∞
|Dm,n,�,1(f ; z)|1/n ≤ 1

(r′)�q
.

Letting r′ ↗ R we get

lim sup
n→∞

|Dm,n,�,1|1/n ≤ 1
R�q

< 1 for |w| > R.
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Estimate of Dm,n,�,2 By (3.11) we have

|Km,n,�,2(w, ζ, t)| = O(1)
rm+1

(r′)m+1

n∑

k=1

βkr−(k+1).

Therefore
lim sup

n→∞
|Km,n,�,2(m, n, �)|1/n ≤

( r

r′
)q

.

Hence
lim sup

n→∞
|Dm,n,�,2(f ; z)|1/n ≤

( r

r′
)q

.

Letting r ↘ 1 and r′ ↗ R we get

lim sup
n→∞

|Dm,n,�,2|1/n ≤ 1
Rq

< 1 for |w| < R.

Estimate of Dm,n,�,3 By (3.11) we have

Km,n,�,3(w, ζ, t) = O(1)βm.

Hence
lim sup

n→∞
|Km,n,�,3|1/q ≤ βq.

Therefore
lim sup

n→∞
|Dm,n,�,3(f ; z)|1/n ≤ βq.

Letting β ↘ r0 we get

lim sup
n→∞

|Dm,n.�,3(w, ζ, t)|1/n ≤ r1
0 < 1 for |w| > R.

Estimate of Dm,n,�,4 We have tn+1−wn+1

tn+1(t−w) =
∑n

k=1 wn−ktk−(n+1). By applying
(5.7) we see that

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,�,4(w, ζ, t)dt = Km,n,�,4(w, ζ, ζ)

=
ζn+1 − wn+1

(ζ − w)ζ((�−1)q+1)(n+1)(ζq(n+1) − 1)

= O(1)
( |w|

(r′)1+�q

)n

, as n → ∞

Hence

lim sup
n→∞

∣
∣
∣
∣
∣

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,�,4(w, ζ, t)dt

∣
∣
∣
∣
∣

1/n

≤ |w|
(r′)�q+1

.
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Therefore

lim sup
n→∞

|Dm,n,�,4|1/n ≤ |w|
(r′)�q+1

.

Letting r′ ↗ R we see that

lim sup
n→∞

|Dm,n,�,4(f ; z)|1/n ≤ |w|
R�q+1

for |w| > R.

Estimate of Dm,n,�,5 From the definition of Km,n,�,5(w, ζ, t) it follows imme-
diately that we have

Km,n,�,5(w, ζ, t) = O(1)
( |w|βq

r

)n

as n → ∞. (6.1.6)

Therefore

lim sup
n→∞

|Km,n,�,5(w, ζ, t)|1/n ≤ |w|βq

r
.

Hence

lim sup
n→∞

|Dm,n,�,5(f ; z)|1/n ≤ |w|βq

r
.

Letting r ↗ R and β ↘ r0 we get

lim sup
n→∞

|Dm,n,�,5(f ; z)|1/n ≤ |w|r0
q

R
for |w| > R.

Estimate of Dm,n,�,6 From the definition of Km,n,�,6 and (3.16) we get

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,�,6(w, ζ, t)dt =

= − 1
2πi

∮

|t|=r

(
1

ζ − t
+

∞∑

ν=1

∞∑

k=1

αν,kt−kζ−(ν+1)

)
tm+1

tn+1

tn+1 − wn+1

t − w
×

× 1
ζm+1 − 1

dt

= − 1
ζm+1 − 1

1
ζ

1
2πi

∮

|t|=r




∞∑

k=0

n∑

j=0

ζ−kwjtk+m−j+

+
∞∑

ν=1

∞∑

k=1

n∑

j=0

αν,kζ−νwjtm−k−j



 dt.

Since
1

2πi

∮

|t|=r

tp =

{
1 for p = −1

0 for p 	= −1
(6.1.7)
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and k +m− j = k + q(n+1)−1− j ≥ 0 the integral of the double sum vanishes
and the integral of the triple sum gives contibution only when k = m + 1 − j.

Hence we get

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,�,6(w, ζ, t)dt =

=
1

ζm+1 − 1
1
ζ

∞∑

ν=1

n∑

j=0

αν,m+1−jw
jζ−(ν+1).

From (3.11) we get

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,�,6(w, ζ, t)dt =

= O(1)
1

(r′)m+2

∞∑

ν=1

n∑

j=0

βm+1−jβνζ−(ν+1)wj = O(1)
βm+2−n|w|n

(r′)m+2
.

When r0 = 0 we can choose β as near to 0 as we wish. So that

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,�,6(w, ζ, t)dt = 0.

Hence

lim sup
n→∞

|Km,n,�,6(w, ζ, t)|1/n ≤
{ |w|βq−1

(r′)q when r0 > 0

0 when r0 = 0

and

lim sup
n→∞

|Dm,n,�,6(f ; z)|1/n ≤
{ |w|βq−1

(r′)q when r0 > 0

0 when r0 = 0.

Letting β ↘ r0 and r′ ↗ R we get

lim sup
n→∞

|Dm,n,�,6(f ; z)|1/n ≤ |w|rq−1
0

Rq
for |w| > R where 00 := 0.

Combining the above six estimates we obtain the result

lim sup
n→∞

|Dm,n,�(f ; z)|1/n ≤ max

(
1

R�q
,

1
Rq

, r0,
|w|

R�q+1
,
|w|rq

0

R
,
|w|rq−1

0

Rq

)

= max

(

r0,
|w|

R�q+1
,
|w|rq

0

R
,
|w|rq−1

0

Rq

)

.

�
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We proceed along the lines of the proof of Theorem 3. We assume in the
proof that 1 < r < r′ < R and |w| > R. From (5.3) and (5.8) we obtain an
integral representation for ∆∗

m,n,�(f ; z) of (2.4) as the difference of two double
integrals. From (5.3), (5.8), (3.9) and (4.2) we see that for 1 < ρ < r < r′ < R

(with z = ψ(w)) we can write

∆∗
m,n,�(f ; z) =

6∑

j=1

∆∗
m,n,�,j(f ; z)

≡ 1
2πi

∮

|ζ|=r′
f(ψ(ζ))



 1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

6∑

j=1

K
(j)
m,n,�(w, ζ, t)dt



 dζ

where

Km,n,�,1(w, ζ, t) =
n∑

k=1

∞∑

ν=1

αk,nw−νt−k−1

− ζ

t

ζ�(m+1) − 1
ζ(�−1)(m+1)(ζm+1 − 1)

n∑

k=1

∞∑

ν=1

αk,νw−νζ−k−1

Km,n,�,2(w, ζ, t) = − tm+1

ζm+1

∞∑

ν=1

αk,νw−νt−k−1

Km,n,�,3(w, ζ, t) = O(1)
√

m + 1
|ζ|m+1

ζm+1 − tm+1

ζm+1

n∑

k=1

∞∑

ν=1

αk,νw−νt−k−1

Km,n,�,4(w, ζ, t) :=
tn+1 − wn+1

(t − w)tn+1
− ζ

t
· ζn+1 − wn+1

(t − w)ζn+1
· ζ�(m+1) − 1
ζ(�−1)(m+1)(ζm+1 − 1)

(6.2.1)

Km,n,�,5(w, ζ, t) := O(1)
√

m + 1
|ζ|m+1

tm · tn+1 − wn+1

(t − w)tn+1
(6.2.2)

and

Km,n,�,6(w, ζ, t) := − tm+1

ζm+1
· tn+1 − wn+1

(t − w)tn+1
(6.2.3)

We estimate now ∆∗
m,n,�,j(f ; z) for 1 ≤ j ≤ 6.

Estimate of ∆∗
m,n,�,1(f ; z). By (5.7) and (3.14) we have

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,�,1(w, ζ, t)dt = − ζ(�−1)(m+1) − 1
ζ(�−1)(m+1)(ζm+1 − 1)

×

6.2 Proof of Theorem 4
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×
n∑

k=1

∞∑

ν=1

αk,νw−νζ−(k+1) = O(1)
1

(r′)m+1

(

1 − 1
r′

)3/2

Therefore

lim sup
n→∞

∣
∣
∣
∣
∣

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,�,1(w, ζ, t)dt

∣
∣
∣
∣
∣

1/n

≤ 1
(r′)q

.

Hence
lim sup

n→∞

∣
∣∆∗

m,n,�,1(f ; z)
∣
∣1/n ≤ 1

(r′)q
.

Letting r′ ↗ R we obtain

lim sup
n→∞

∣
∣∆∗

m,n,�,1(f ; z)
∣
∣1/n ≤ 1

Rq
< 1.

Estimate of ∆∗
m,n,�,2(f ; z). By (3.14) we have

Km,n,�,2(w, ζ, t) = O(1)
( r

r′
)m+1

(

1 − 1
r

)−3/2

.

Hence
lim sup

n→∞
|Km,n,�,2(w, ζ, t)|1/n ≤

( r

r′
)q

.

Therefore
lim sup

n→∞

∣
∣∆∗

m,n,�,2(f ; z)
∣
∣1/n ≤

( r

r′
)q

.

Letting r ↘ 1 and r′ ↗ R we get

lim sup
n→∞

∣
∣∆∗

m,n,�,2(f ; z)
∣
∣1/n ≤ 1

Rq
< 1.

Estimate of ∆∗
m,n,�,3(f ; z). By (3.14) we have

Km,n,�,3(w, ζ, t) = O(1)
√

m + 1
|ζ|m+1

.

Hence we get

lim sup
n→∞

|Km,n,�,3(w, ζ, t)|1/n ≤ 1
(r′)q

which implies

lim sup
n→∞

∣
∣∆∗

m,n,�,3(f ; z)
∣
∣1/n ≤ 1

(r′)q
.

Letting r′ ↗ R we get

lim sup
n→∞

∣
∣∆∗

m,n,�,3(f ; z)
∣
∣1/n ≤ 1

Rq
< 1 for |w| > R.
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Estimate of ∆∗
m,n,�,4(f ; z). Again using the residue theorem, we see that for

|w| > R,

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,�,4(w, ζ, t)dt = Km,n,�,4(w, ζ, ζ)

=
ζn+1 − wn+1

(ζ − w)ζn+1
· 1 − ζ(�−1)(m+1)

ζ(�−1)(m+1)(ζm+1 − 1)

=

{
0, � = 1

O(1)
(

|w|
(r′)1+q

)n

, � ≥ 2.

Hence we get

lim sup
n→∞

|Km,n,�,4(w, ζ, t)|1/n ≤
{

0 when � = 1
|w|

(r′)q+1 when � ≥ 2.

Therefore

lim sup
n→∞

∣
∣∆∗

m,n,�,4(f ; z)
∣
∣1/n ≤

{
0 when � = 1

|w|
(r′)q+1 when � ≥ 2.

Letting r′ ↗ R we get

lim sup
n→∞

∣
∣∆∗

m,n,�,4(f ; z)
∣
∣1/n ≤

{
0 when � = 1
|w|

Rq+1 when � ≥ 2.

Estimate of ∆∗
m,n,�,5(f ; z). It is obvious from the expression for Km,n,�,5

(w, ζ, t) that for |w| > R > r′,

lim sup
n→∞

|Km,n,�,5(w, ζ, t)|1/n ≤ |w|
r|ζ|q =

|w|
r(r′)q

.

Hence

lim sup
n→∞

∣
∣∆∗

m,n,�,5(f ; z)
∣
∣1/n ≤ |w|

r((r′)q
.

Letting r′ ↗ R, ε ↘ 0 and then r ↗ R we get

lim sup
n→∞

∣
∣∆∗

m,n,�,5(f ; z)
∣
∣1/n ≤ |w|

Rq+1
for |w| > R.

Estimate of ∆∗
m,n,�,6(f ; z). We have

|Km,n,�,6(w, ζ, t)| ≤ rm+1(|w|n+1 + rn+1)
(r′)m+1(|w| − r)rn+1

.

Therefore

lim sup
n→∞

|Km,n,�,6(w, ζ, t)|1/n ≤ |w|rq−1

(r′)q
.
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Hence

lim sup
n→∞

∣
∣∆∗

m,n,�,6(f ; z)
∣
∣1/n ≤ |w|rq−1

(r′)q
.

Letting r ↘ 1 and r′ ↗ R we get

lim sup
n→∞

∣
∣∆∗

m,n,�,6(f ; z)
∣
∣1/n ≤ |w|

Rq
.

On combining the above estimates we see that

lim sup
n→∞

∣
∣∆∗

m,n,�(f ; z)
∣
∣1/n ≤ |w|

Rq
.

�

Proof of Theorem 5 Since ∂E is an r0-analytic curve for some 0 ≤ r0 < 1,

(3.12) leads, for β < |t| < |ζ|, to

ωm(ψ(ζ)) − ωm(ψ(t))
ωm(ψ(ζ))

= tm
(

1 + O(1)
(

β

|ζ|
)m)

, m → ∞. (6.2.4)

An examination of the proof of Theorem 4 shows that by applying (6.2.4) in
the above proof, the estimates of ∆∗

m,n,�,j(f ; z), 1 ≤ j ≤ 6 can be improved.
Applying (3.11) and (6.2.4) we get

lim sup
n→∞

|∆m,n,�,1(f ; z)|1/n ≤ 1
Rq

,

lim sup
n→∞

|∆m,n,�,2(f ; z)|1/n ≤ 1
Rq

,

lim sup
n→∞

|∆m,n,�,3(f ; z)|1/n ≤ rq
0

Rq
,

and

lim sup
n→∞

|∆m,n,�,4(f ; z)|1/n ≤
{

0 when � = 1
|w|

Rq+1 when � > 1.

Using now (3.11) and (6.2.4) we obtain

lim sup
n→∞

|∆m,n,�,5(f ; z)|1/n ≤ |w|rq
0

Rq+1
.

Applying (6.2.3) and (3.16) we get

Fm,n(w, ζ) =
1

2πi

∮

|t=r|

ψ′(ζ)
ψ(σ) − ψ(t)

Km,n,�,6(w, ζ, t)dt =

= − 1
2πi

∮

|t| = r

(
1

ζ − t
+

∞∑

ν=1

∞∑

k=1

αν,kt−kζ−(ν+1)

)
tm+1

ζm+1

tn+1 − wn+1

(t − w)tn+1
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= − 1
2πi

∮

|t|=r

1
ζm+2




∞∑

k=0

n∑

j=0

ζ−kwjtk+m−j+

+
∞∑

ν=1

∞∑

k=1

n∑

j=0

αν,kζ−νwjtm−k−j



 dt .

Since k + m − j = k + q(n + 1) − 1 − j ≥ 0, the integral of the double sum
above vanishes and the triple sum gives a contribution for the integral only
when k = m + 1 − j, so that

Fm,n(w, ζ) =
1

ζm+2

∞∑

ν=1

n∑

j=0

αν,m+1−jw
jζ−ν .

Applying now (3.11) for |ζ| = r′, we have

Fm,n(w, ζ) = O(1)
1

(r′)m

∞∑

ν=1

n∑

j=0

βν+m−j |w|j(r′)−ν

= O(1)
(

β

r′

)m ∞∑

ν=1

(
β

r′

)ν n∑

j=0

( |w|
β

)j

= O(1)
( |w|βq−1

(r′)q

)n

.

Thus,

lim
n→∞ |∆m,n,�,6(f ; z)|1/n ≤ |w|rq−1

0

Rq
.

Combining the six estimates we get when � = 1

lim sup
n→∞

|∆m,n,�(f ; z)|1/n ≤ max

(
1

Rq
,

rq
0

Rq
, 0,

|w|rq
0

Rq+1
,
|w|rq−1

0

Rq

)

= max

(
1

Rq
,
|w|rq−1

0

Rq

)

and when � > 1

lim sup
n→∞

|∆m,n,�(f ; z)|1/n ≤ max

(
1

Rq
,

rq
0

Rq
,

|w|
Rq+1

,
|w|rq

0

Rq+1
,
|w|rq−1

0

Rq

)

= max

(
1

Rq
,

|w|
Rq+1

,
|w|rq−1

0

Rq

)

. (6.2.5)

�

6.3 Proof of Theorem 6

Observe that the formula for ∆p,s
m,n(f ; z) remains the same as the difference

of (5.9) and (5.10). We have to keep in mind that wn(ψ(t)) is based now on
Fejér nodes. When ∂E is an r0-analytic curve, with r0 ∈ [0, 1) we have by (4.6)

ws
m(ψ(ζ)) − ws

m(ψ(t))
ws

m(ψ(ζ))
=

(ζm+1 − 1)s − (tm+1 − 1)s

(ζm+1 − 1)s
(1 + O(1)βm) , r0 < β < 1,

(6.3.1)
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uniformly on sets {(ζ, t) : |t|/|ζ| ≤ α < 1}, for each 0 < ζ < 1. Here again, we
can write

∆p,s
m,n(f ; z) =

6∑

j=1

∆p,s
m,n,j(f ; z),

where for j = 1, 2, 3, 4, 5, 6 we have

∆p,s
m,n,j(f ; z)=

1
2πi

∮

|ζ|=r′
f(ψ(ζ))

(
1

2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,j(w, ζ, t)dt

)

dζ.

The kernels Km,n,j(w, ζ, t) are defined as follows:

Km,n,1(w, ζ, t) :=
(ζm+1 − 1)s

(ζm+1 − 1)s

p(n+1)−1∑

k=1

∞∑

ν=1

αk,ν

wνtk+1
− ζ

t

p(n+1)−1∑

k=1

∞∑

ν=1

αk,ν

wνζk+1

Km,n,2(w, ζ, t) := − (tm+1 − 1)s

(ζm+1 − 1)s

p(n+1)−1∑

k=1

∞∑

ν=1

αk,ν

wνtk+1

Km,n,3(w, ζ, t) := O(1)βm (ζm+1 − 1)s − (tm+1 − 1)s

(ζm+1 − 1)s

p(n+1)−1∑

k=1

∞∑

ν=1

αk,ν

wνtk+1

Km,n,4(w, ζ, t) :=
tp(n+1) − wp(n+1)

(t − w)tp(n+1)
− ζ

t
· ζp(n+1) − wp(n+1)

(t − w)ζp(n+1)

Km,n,5(w, ζ, t) := O(1)βm (ζm+1 − 1)s − (tm+1 − 1)s

(ζm+1 − 1)s
· tp(m+1) − wp(m+1)

(t − w)tp(n+1)
,

and

Km,n,6(w, ζ, t) := − (tm+1 − 1)s

(ζm+1 − 1)s
· tp(n+1) − wp(n+1)

(t − w)tp(n+1)
.

We begin now the estimation of ∆p,s
m,n,j(f ; z) for 1 ≤ j ≤ 6. In the proof it is

assumed that 0 < r0 < R1 < 1 < r < r′ < R, that z = ψ(w) and that |w| > R.

Estimate of ∆p,s
m,n,1(f ; z). By (1.1.4) and (3.14) we have

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,1(w, ζ, t) = 0.

Therefore lim supn→∞
∣
∣∆p,s

m,n,1(f ; z)
∣
∣1/n = 0 < 1.

Estimate of ∆p,s
m,n,2(f ; z). We have by (3.12)

Km,n,2(w, ζ, t) = O(1)
( r

r′
)s(m+1)

p(n+1)−1∑

k=1

1
r

(
R1

r

)k

= O(1)
( r

r′
)s(m+1)

.
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Hence lim supn→∞ |Km,n,2(w, ζ, t)|1/n ≤ (
r
r′
)qs

. Therefore

lim sup
n→∞

∣
∣∆p,s

m,n,2(f ; z)
∣
∣1/n ≤

( r

r′
)qs

.

Letting r ↘ 1 and r′ ↗ we get

lim sup
n→∞

∣
∣∆p,s

m,n,2(f ; z)
∣
∣1/n ≤ 1

Rqs
< 1.

Estimate of ∆p,s
m,n,3(f ; z). We have by (3.12)

Km,n,3(w, ζ, t) = O(1)βm

p(n+1)−1∑

k=1

Rk
1r−(k+1) = O(1)βm.

Hence
lim sup

n→∞
|Km,n,3(w, ζ, t)|1/n ≤ βq.

Therefore
lim sup

n→∞

∣
∣∆p,s

m,n,3(f ; z)
∣
∣1/n ≤ βq.

Letting β ↘ r0 we get

lim sup
n→∞

∣
∣∆p,s

m,n,3(f ; z)
∣
∣1/n ≤ rq

0 < 1.

Estimate of ∆p,s
m,n,4(f ; z). We have by (5.7)

1
2πi

∮

|t|=r

Km,n,4(w, ζ, t)dt = Km,n,4(w, ζ, t)(w, ζ, ζ) = 0.

Hence
lim sup

n→∞

∣
∣∆p,s

m,n,4(f ; z)
∣
∣1/n = 0 < 1.

Estimate of ∆p,s
m,n,5(f ; z). By (3.12) we have

Km,n,5(w, ζ, t) = O(1)βm|w|p(n+1)r−(p(n+1)).

Hence

lim sup
n→∞

|Km,n,5(w, ζ, t)|1/n ≤ βq

rp
|w|pq.

Therefore

lim sup
n→∞

∣
∣∆p,s

m,n,5(f ; z)
∣
∣1/n ≤ βq

rp
|w|pq.
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Letting r ↗ R and β ↘ r0 we get

lim sup
n→∞

∣
∣∆p,s

m,n,5(f ; z)
∣
∣1/n ≤ rq

0|w|p
Rp

.

Estimate of ∆p,s
m,n,6(f ; z). The argument used in the proof now is similar

to that used in part (i.6) of the proof of Theorem 3. From the definition of
Kn,m,�,6(w, ζ, t) and (3.16) we get

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,6(w, ζ, t)dt =

= − 1
2πi

∮

|t|=r

( ∞∑

k=0

tkζ−(k+1) +
∞∑

µ=1

∞∑

k=1

αµ,kt−kζ−µ−1

)

×

× (tm+1 − 1)s

(ζm+1 − 1)s

tp(n+1) − wp(n+1)

t − w

1
tp(n+1)

dt

= − 1
(ζm+1 − 1)s

1
2πi

∮

|t|=r

( ∞∑

k=0

tkζ−(k+1)

)


s∑

j=0

(−1)s−j

(
s

j

)

tj(m+1)



×

×



p(n+1)−1∑

ν=0

t−(ν+1)wν



 dt

− 1
(ζm+1 − 1)s

1
2πi

∮

|t|=r

( ∞∑

µ=1

∞∑

k=1

αµ,kt−kζ−µ−1

)

×

×



s∑

j=0

(−1)s−j

(
s

j

)

tj(m+1)



×

×



p(n+1)−1∑

ν=0

t−(ν+1)wν



 dt

≡ I1 + I2. (6.3.2)

The integrands in the integral with respect to t in I1 will vanish (by 6.1.7)
except when k = ν − j(n + 1) ≥ 0. Therefore we have

I1 = − 1
ζ(ζm+1 − 1)s

min ([ p(n+1)−1
q(n+1) ],s)
∑

j=0

(−1)s−j

(
s

j

)

ζjq(n+1)

q(n+1)−1∑

ν≥jq(n+1)

(
w

ζ

)ν

.

We consider now the two possibilities: p ≤ qs and p > qs.

Estimating I1 when p ≤ qs . We have in this case

min
([

p(n + 1) − 1
q(n + 1)

]

, s

)

=
[
p(n + 1) − 1

q(n + 1)

]
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Therefore

I1 = O(1)
1

(r′)qs(n+1)+1

|w|p(n+1)−1(r′)q(n+1)[ p(n+1)−1
q(n+1) ]

(r′)p(n+1)−1
.

Write p = qu + v where u ∈ IN+ and 0 ≤ v < q. Then we have

q(n + 1)
[
p(n + 1) − 1

q(n + 1)

]

=
{

q(n + 1)(u − 1) when v = 0
q(n + 1)u when 0 < v < q.

Hence

I1 = O(1)|w|p(n+1)−1 ×
{

(r′)−q(s+1)(n+1)−2 when v = 0

(r′)−(qs+v)(n+1)−2 when 0 ≤ v < q.

Hence

When qs ≥ p lim sup
n→∞

|I1|1/n = |w|p ×
{

(r′)−q(s+1) when v = 0
(r′)−qs−v when 0 < v < q.

(6.3.3)
Estimating I1 when p > qs. We have min

{[
p
q − 1

q(n+1)

]
, s
}

= s. Then

I1 = O(1)
|w|p(n+1)−1

(r′)(p−qs)(n+1)−1
.

Therefore

lim sup
n→∞

|I1|1/n ≤ |w|p
(r′)p−qs

when sq < p. (6.3.4)

Estimating I2. The integrands in the integral with respect to t in I2 will vanish
(by 6.1.7) except when k = j(m + 1) − ν ≥ 1. Therefore we have, by applying
(3.11)

I2=O(1)
1

(r′)sq(n+1)+1

∞∑

µ=1

(
β

r′

)µ min (p(n+1)−1,sq(n+1)−1)∑

ν=0

( |w|
β

)ν s∑

j=1

βjq(n+1).

Write ν = v + u(n + 1) where 0 ≤ v ≤ n and 0 ≤ u ≤ min (p, sq) − 1. Then we
get

I2 = O(1)
1

(r′)sq(n+1)

min (p,sq)−1∑

u=0

n∑

v=0

( |w|
β

)v+u(n+1) s∑

j=1
jq(n+1)≥v+u(n+1)+1

βjq(n+1)

= O(1)
1

(r′)sq(n+1)

min (p,sq)−1∑

u=0

( |w|
β

)u(n+1) n∑

v=0

( |w|
β

)v

×

×
s∑

j=1
jq(n+1)≥v+u(n+1)+1

βjq(n+1)
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= O(1)
1

(r′)sq(n+1)

min (p,sq)−1∑

u=0

|w|u(n+1)
n∑

v=0

|w|v×

×
s∑

j=1
jq(n+1)≥v+u(n+1)+1

βjq(n+1)−u(n+1)−v

= O(1)
1

(r′)sq(n+1)

min (p,sq)−1∑

u=0

|w|u(n+1)
n∑

v=0

|w|v
s∑

j=1
jq(n+1)≥v+u(n+1)+1

β ,

and since ν = v + u(n + 1)

= O(1)
1

(r′)sq(n+1)

(n+1)·(min (p,sq)) −1∑

ν=0

|w|ν
n∑

v=0

|w|v
s∑

j=1
jq(n+1)≥v+u(n+1)+1

β

= O(1)
|w|(n+1)·min (p.sq)

(r′)sq(n+1)
.

Therefore

lim sup
n→∞

|I2|1/n ≤ |w|min (p,sq)

(r′)qs
(6.3.5)

An improved estimate of I2 when q ≥ p. Assume q ≥ p (which implies qs ≥ p).
In this case (6.3.5) can be improved. We have under this assumption jq(n+1) ≥
jp(n + 1) ≥ v + 1 + u(n + 1), when 0 ≤ v ≤ n and 0 ≤ u ≤ min (p, sq) − 1.

Hence jq(n + 1) − u(n + 1) − v ≥ jp(n + 1) − u(n + 1) − v ≥ 1. Therefore

s∑

j=0
jq(n+1)≥v+u(n+1)+1

βjq(n+1)−u(n+1)−v =

= β(q−p)(n+1)
s∑

j=1
jq(n+1)≥v+u(n+1)+1

βjp(n+1)−u(n+1)−v

= O(1)β(q−p)(n+1).

Hence

I2 = O(1)
|w|p(n+1)βj(q−p)(n+1)

(r′)qs(n+1)
when q ≥ p.

Therefore

lim sup
n→∞

|I2|1/n ≤ |w|pβq−p

(r′)qs
when q ≥ p. (6.3.6)

this improves the estimate of (6.3.5) when q ≥ p.
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Final estimate of ∆p,s
m,n,6(f ; z). Combining (6.3.2), (6.3.3), (6.3.4) (6.3.6), and

using the notation τ = q when p = qu and τ = v when p = qu + v, 0 < v < q,

we get

lim sup
n→∞

∣
∣
∣
∣
∣

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,6(w, ζ, t)dt

∣
∣
∣
∣
∣

1/n

≤

≤






max
(

|w|p
(r′)p−qs , |w|qs

(r′)qs

)
when qs < p

max
(

|w|pβq−p

(r′)qs , |w|p
(r′)qs+τ

)
when qs ≥ p and q ≥ p

max
(

|w|p
(r′)qs , |w|p

(r′)qs+τ

)
when qs ≥ p and q < p.

Hence

lim sup
n→∞

∣
∣∆p,s

m,n,6(f ; z)
∣
∣1/n ≤






max
(

|w|p
(r′)p−qs , |w|qs

(r′)qs

)
when qs < p

max
(

|w|pβq−p

(r′)qs , |w|p
(r′)qs+τ

)

when qs ≥ p and q ≥ p

|w|p
(r′)qs when qs ≥ p and q < p.

Letting r′ ↗ R and β ↘ r0 we get

lim sup
n→∞

∣
∣∆p,s

m,n,6(f ; z)
∣
∣1/n ≤






max
(

|w|p
Rp−qs , |w|qs

Rqs

)
when qs < p

max
( |w|prq−p

0
Rqs , |w|p

Rqs+τ

)

when qs ≥ p and q ≥ p

|w|p
Rqs when qs ≥ p and q < p.

Combining the estimates of ∆p,s
m,n,j(f ; z) for 1 ≤ j ≤ 6 we obtain (2.6). �

6.4 Proof of Theorem 7

We assume in the proof that 1 < r < r′ < R. For Faber nodes wm(z) =
cm+1Fm+1(z). Apply (4.1) for |t| = r, |ζ| = r′. Then for each choice ρ = (1−ε)r′,
0 < ε < 1, we have

ws
m(ψ(ζ)) − ws

m(ψ(t))
ws

m(ψ(ζ))
=

ζs(m+1) − ts(m+1)

ζs(m+1)

(

1 + O(1)
√

m

|ζ|m
)

(6.4.1)

uniformly on {(ζ, t) : |t| = r, |ζ| = r′}. Apply now (5.8) with � = 1 and n given
the value p(n + 1) − 1, respectively, together with (5.3) with n again replaced
by p(n + 1) − 1. Then we see (since z = ψ(w)) that

∆∗p,s
m,n,j(f ; z) :=

1
2πi

∮

|ζ|=r′
f(ψ(ζ))

(
1

2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n(w, ζ, t)dt

)

dζ,
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where

Km,n(w, ζ, t)=
ωm(ψ(ζ))s − ωm(ψ(t))s

ωm(ψ(ζ))s

n∑

k=1

Fk(ψ(w))t−(k+1)

− ζ

t
·

n∑

k=1

Fk(ψ(w))ζ−(k+1)

=
ωm(ψ(ζ))s − ωm(ψ(t))s

ωm(ψ(ζ))s

(
n∑

k=1

(
Fk(ψ(w)) − wk

)
t−(k+1)

+
n∑

k=0

wkt−(k+1)

)

− ζ

t
·
(

n∑

k=1

(
Fk(ψ(w)) − wk

)
ζ−(k+1) +

n∑

k=0

wkζ−(k+1)

)

=
ωm(ψ(ζ))s − ωm(ψ(t))s

ωm(ψ(ζ))s




p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νt−(k+1)+

+
wp(m+1) − tp(n+1)

(w − t)tp(n+1)

)

− ζ

t




p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νζ−(k+1) +
wp(n+1) − ζp(n+1)

(w − z)ζp(n+1)





=
ζs(m+1) − ts(m+1)

ζs(m+1)

(

1 + O(1)
√

m + 1
|ζ|m+1

)

×

×



p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νt−(k+1) + +
wp(n+1) − tp(n+1)

(w − t)tp(n+1)





− ζ

t




p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νζ−(k+1) +
wp(n+1) − ζp(n+1)

(w − ζ)ζp(n+1)





=
ζs(m+1) − ts(m+1)

ζs(m+1)
· 1 · wp(n+1) − tp(n+1)

(w − t)tp(n+1)
+

ζs(m+1) − ts(m+1)

ζs(m+1)
×

×
p(n+1)−1∑

k=1

∞∑

ν=1

ζk,νw−νt−(k+1)

+ O(1)
√

m + 1
|ζ|m+1

ζs(m+1) − ts(m+1)

ζs(m+1)

wp(n+1) − ζp(n+1)

(w − z)ζp(n+1)

+ O(1)
√

m + 1
|ζ|m+1

· ζs(m+1) − ts(m+1)

ζs(m+1)

p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νt−()k+1

− ζ

t

p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νζ−(k+1) − ζ

t

wp(n+1) − ζp(n+1)

(w − z)ζp(n+1)
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=
ζs(m+1)

ζs(m+1)

wp(n+1) − tp(n+1)

(w − t)tp(n+1)
− ts(m+1)

ζs(m+1)

wp(n+1) − tp(n+1)

(w − t)tp(n+1)

− ts(m+1)

ζs(m+1)

p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νt−(k+1)

+
ζs(m+1)

ζs(m+1)

p(n+1)−1∑

k=1

∞∑

ν=1

ζk,νw−νt−(k+1)

+ O(1)
√

m + 1
|ζ|m+1

ζs(m+1) − ts(m+1)

ζs(m+1)

wp(n+1) − tp(n+1)

(w − z)tp(n+1)

+ O(1)
√

m + 1
|ζ|m+1

· ζs(m+1) − ts(m+1)

ζs(m+1)

p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νt−()k+1

− ζ

t

p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νζ−(k+1) − ζ

t

wp(n+1) − ζp(n+1)

(w − ζ)ζp(n+1)
(6.4.2)

Applying (6.4.1) and (3.9) we split ∆∗p,s
m,n(f ; z) as

∆∗p,s
m,n,�(f ; z) =

6∑

j=1

∆∗p,s
m,n,�,j(f ; z), (6.4.3)

where

∆∗p,s
m,n,j(f ; z):=

1
2πi

∮

|ζ|=r′
f(ψ(ζ))

(
1

2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,j(w, ζ, t)dt

)

dζ,

j = 1, 2, 3, 4, 5, 6.

and the kernels Km,n,j(w, ζ, t) (j = 1, 2, 3, 4) are given explicitly as follows:

Km,n,1(w, ζ, t) :=
ζs(m+1)

ζs(m+1)

p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νt−(k+1)

− ζ

t

p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νζ−(k+1)

Km,n,2(w, ζ, t) := − ts(m+1)

ζs(m+1)

p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νt−(k+1)

Km,n,3(w, ζ, t) := O(1)
√

m + 1
|ζ|m+1

ζs(m+1) − ts(m+1)

ζs(m+1)

p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νt−(k+1).

Km,n,4(w, ζ, t) :=
tp(n+1) − wp(n+1)

(t − w)tp(n+1)
− ζ

t

ζp(n+1) − wp(n+1)

(ζ − w)ζp(n+1)
, (6.4.4)
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Km,n,5(w, ζ, t) := O(1)
√

m + 1
|ζ|m+1

ζs(m+1) − ts(m+1)

ζs(m+1)

tp(n+1) − wp(n+1)

(t − w)tp(n+1)
, (6.4.5)

and

Km,n,6(w, ζ, t) := − ts(m+1)

ζs(m+1)

tp(n+1) − wp(n+1)

(t − w)tp(n+1)
. (6.4.6)

We estimate now ∆∗p,s
m,n,�,j(f ; z) for 1 ≤ j ≤ 6.

Estimate of ∆∗p,s
m,n,�,1(f ; z). By (5.7) we have

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,1(w, ζ, t)dt = 0.

Hence

lim sup
n→∞

∣
∣
∣∆∗p,s

m,n,�,1(f ; z)
∣
∣
∣
1/n

= 0 for |w| > R.

Estimate of ∆∗p,s
m,n,�,2(f ; z). By (3.14) we have

Km,n,2(w, ζ, t) = O(1)
( r

r′
)s(m+1)

p(n+1)−1∑

k=1

√
kr−k+1 = O(1)

( r

r′
)s(m+1)

.

Hence
lim sup

n→∞
|Km,n,2(w, ζ, t)|1/n ≤

( r

r′
)sq

.

This implies

lim sup
n→∞

∣
∣
∣∆∗p,s

m,n,�,2(f ; z)
∣
∣
∣
1/n

≤
( r

r′
)sq

.

Letting r ↘ 1 and r′ ↗ R we get

lim sup
n→∞

∣
∣
∣∆∗p,s

m,n,�,2(f ; z)
∣
∣
∣
1/n

≤ r−sq < 1.

Estimate of ∆∗p,s
m,n,�,3(f ; z). By (3.14) we have

Km,n,3(w, ζ, t) = O(1)
√

m + 1
|ζ|m+1

.

Hence
lim sup

n→∞
|Km,n,3(w, ζ, t)|1/n ≤ 1

(r′)q
.

This implies

lim sup
n→∞

∣
∣
∣∆∗p,s

m,n,�,3(f ; z)
∣
∣
∣
1/n

≤ 1
(r′)q

.

Letting r′ ↗ R we get

lim sup
n→∞

∣
∣
∣∆∗p,s

m,n,�,3(f ; z)
∣
∣
∣
1/n

≤ 1
Rq

< 1.
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Estimate of ∆∗p,s
m,n,�,4(f ; z). By (5.7) we have

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Km,n,4(w, ζ, t)dt = 0.

Hence

lim sup
n→∞

∣
∣
∣∆∗p,s

m,n,�,4(f ; z)
∣
∣
∣
1/n

= 0.

Estimate of ∆∗p,s
m,n,�,5(f ; z). We have

Km,n,5(w, ζ, t) = O(1)
√

m + 1
|ζ|m+1

|w|p(n+1)

rp(n+1)
.

Therefore

lim sup
n→∞

|Km,n,5(w, ζ, t)|1/n ≤ 1
(r′)q

|w|p
rp

.

Hence

lim sup
n→∞

∣
∣
∣∆∗p,s

m,n,�,5(f ; z)
∣
∣
∣
1/n

≤ 1
(r′)q

|w|p
rp

.

Letting r′ ↗ R and then r ↗ R we get

lim sup
n→∞

∣
∣
∣∆∗p,s

m,n,�,5(f ; z)
∣
∣
∣
1/n

≤ |w|p
Rp+q

.

Estimate of ∆∗p,s
m,n,�,6(f ; z). We have

Km,n,6(w, ζ, t) = O(1)
rs(m+1)

(r′)s(m+1)

|w|p(n+1)

rp(n+1)
.

Hence

lim sup
n→∞

|Km,n,6(w, ζ, t)|1/n ≤ |w|p
rp−qs(r′)qs

.

Therefore

lim sup
n→∞

∣
∣
∣∆∗p,s

m,n,�,6(f ; z)
∣
∣
∣
1/n

≤ |w|p
rp−qs(r′)qs

.

Letting r′ ↗ R and r ↗ R when p − qs ≥ 0 but for r ↘ 1 when p − qs < 0 we
get

lim sup
n→∞

∣
∣
∣∆∗p,s

m,n,�,6(f ; z)
∣
∣
∣
1/n

≤






|w|p
Rp

when p > qs

|w|p
Rqs

when p ≤ qs.

Combining these estimates we get

lim sup
n→∞

∣
∣∆∗,p,s

m,n

∣
∣1/n ≤

{ |w|p
Rp when p ≥ qs

|w|p · max
(

1
rp+q , 1

Rqs

)
when p < qs.
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6.5 Proof of Theorem 8

We assume in the proof that 0 < r0 < β < 1 < r < r′ < R and |w| > R. For
wn(ψ(t)) is based on Fejér nodes, we have by (5.3) and (5.4)

Ds,p,n(f ; z) =
1

2πi

∮

|ζ|=r′
f(ψ(ζ))

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Ks,n(ζ, t)×

×
p(n+1)−1∑

k=1

Fk(z)t−(k+1)dtζ

where

Ks,n(ζ, t) =
ωn(ψ(ζ))s − ωn(ψ(t))s

ωn(ψ(ζ))s
− ωs(n+1)−1(ψ(ζ)) − ωs(n+1)−1(ψ(t))

ωs(n+1)−1(ψ(ζ))
.

For |w| > R we have

p(n+1)−1∑

k=0

Fk(z)
tk+1

=
tp(n+1) − wp(n+1)

(t − w)tp(n+1)
+

p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νt−k−1

=: Ap,n,1(w, t) + Ap,n,2(w, t). (6.5.1)

By (3.12) we have

Ap,n,2(w, t) =
p(n+1)−1∑

k=0

∞∑

ν=1

αk,νw−νt−(k+1) = O(1)
p(n+1)−1∑

k=1

βkr−(k+1)

= O(1)
β

r
(6.5.2)

and

Ap,n.1 = O(1)
( |w|

r

)p(n+1)

for |w| > R , 1 < |t| < R. (6.5.3)

From (6.5.1),(6.5.2) and (6.5.3) we get

p(n+1)−1∑

k=0

Fk(z)
tk+1

= O(1)
( |w|

r

)p(n+1)

for |w| > R, 1 < |t| < R. (6.5.4)

By (4.6) we have, since ∂E is an r0-analytic curve, for each given β, 1 > β > r0

and z = ψ(w), |w| > 1,

Ks,n(ζ, t) =
(

ts(n+1) − 1
ζs(n+1) − 1

(1 + O(1)βsn) − (tn+1 − 1)s

(ζn+1 − 1)s
(1 + O(1)βn)

)

×

×
p(n+1)−1∑

k=1

Fk(z)t−(k+1) =
3∑

j=1

Ks,n,j(ζ, t) (6.5.5)
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where

Ks,n,1(ζ, t) =
(

ts(n+1) − 1
ζs(n+1) − 1

− (tn+1 − 1)s

(ζn+1 − 1)s

) p(n+1)−1∑

k=0

Fk(z)
tk+1

,

Ks,n,2(ζ, t) = O(1)βsn ts(n+1) − 1
ζs(n+1) − 1

p(n+1)−1∑

k=0

Fk(z)
tk+1

,

Ks,n,3(ζ, t) = −O(1)βn (tn+1 − 1)s

(ζn+1 − 1)s

p(n+1)−1∑

k=0

Fk(z)
tk+1

.

Write for j = 1, 2, 3

Ds,p,n,j(f ; z) =
1

2πi

∮

|ζ|=r′
f(ψ(ζ))

1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Ks,n,j(ζ, t) dtζ.

We have

ts(n+1) − 1
ζs(n+1) − 1

− (tn+1 − 1)s

(ζn+1 − 1)s
=

ts(n+1)

ζs(n+1)






1 − 1
ts(n+1)

1 − 1
ζs(n+1)

−
(
1 − 1

tn+1

)s

(
1 − 1

ζn+1

)s






=

{
ts(n+1)

ζs(n+1)

(
− s

tn+1 − s
ζn+1 − 1

ts(n+1) + 1
ζs(n+1) + . . .

)
if s > 1

0 if s = 1.

Therefore

ts(n+1) − 1
ζs(n+1) − 1

− (tn+1 − 1)s

(ζn+1 − 1)s
= O(1)

{
r(s−1)(n+1)

(r′)s(n+1) if s > 1,

0 if s = 1.
(6.5.6)

We have

O(1)βsn ts(n+1) − 1
ζs(n+1) − 1

= O(1)
rs(n+1)

(r′)s(n+1)
βsn (6.5.7)

and

−O(1)βn (tn+1 − 1)s

(ζn+1 − 1)s
= O(1)

rs(n+1)

(r′)s(n+1)
βn. (6.5.8)

From the above estimates we get

lim sup
n→∞

|Ks,n,1(w, ζ, t)|1/n ≤ |w|p
rp

×
{

rs−1

(r′)s if s > 1

0 if s = 1

lim sup
n→∞

|Ks,n,2(w, ζ, t)|1/n ≤ |w|pβs

(r′)srp−s

lim sup
n→∞

|Ss,n,3(w, ζ, t)|1/n ≤ |w|pβ
(r′)srp−s
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By the same argument used before for the passage from the estimate of Ks,n,j

(w, ζ, t)) to that of lim supn→∞ |Dp,s,n,j(f ; z)|1/n we get, after letting r′ ↗ R

and r ↗ R when the exponent of r is negative or r ↘ 1 when the exponent of
r is positive, and by letting β ↘ r0,

B1 : = lim sup
n→∞

|Dp,s,n,1(w, ζ, t)|1/n ≤ |w|p
Rs

×






1
Rp−s+1 if p + 1 ≥ s > 1
1 if p + 1 < s

0 if s = 1.

B2 := lim sup
n→∞

|Dp,s,n,2(w, ζ, t)|1/n ≤ |w|p
Rs

×
{

rs
0

Rp−s when p ≥ s ≥ 1,

rs
0 when 1 ≤ p < s,

B3 := lim sup
n→∞

|Dp,s,n,3(w, ζ, t)|1/n ≤ |w|p
Rs

×
{ r0

Rp−s when p ≥ s ≥ 1
r0 when 1 ≤ p < s.

Hence

lim sup
n→∞

|Dp,s,n(f ; z)|1/n ≤ max (B1, B2, B3) = max (B1, B3) .

Writing out explicitly the values of this max we get Theorem 8. �

6.6 Proof of Theorem 9

We assume in the proof that 1 < r < r′ < R. It is easy to verify that the
following integral representation holds:

D∗
p,s,n(f ; z) =

=
1

2πi

∮

|ζ|=r′
f(ψ(ζ))



 1
2πi

∮

|t|=r

ψ′(ζ)
ψ(ζ) − ψ(t)

Ks,n(ζ, t)
p(n+1)−1∑

k=0

Fk(z)
tk+1

dt



 dζ,

(6.6.1)

where Ks,n(ζ, t) is the difference between the kernels of Hermite and Lagrange
interpolants and where 1 < r < r′ < R. Then by (5.3) and (5.4)

Ks,n(ζ, t) :=
wn(ψ(ζ))s − wn(ψ(t))s

wn(ψ(ζ))s
− ws(n+1)−1(ψ(ζ)) − ws(n+1)−1(ψ(t))

ws(n+1)−1(ψ(ζ))

=
ws(n+1)−1(ψ(t))
ws(n+1)−1(ψ)))

− ws
n(ψ(t))

ws
n(ψ(ζ))

(6.6.2)

Using (3.2) and (3.14), we then have

Ks,n(ζ, t) =
ts(n+1)

ζs(n+1)
O(1)

√
m + 1

(r′)n+1
,
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uniformly on closed sets of {0 < |t| = r < r′ = ||ζ| < R} , for each triple 1 < r <

r′ = |ζ| < R. We have, since z = ψ(w) and |w| > R, that

Ks,n(ζ, t)
p(n+1)−1∑

k=0

Fk(z)
tn+1

= O(1)
1

(r′)n+1

ts(n+1)

ζs(n+1)
· tp(n+1) − wp(n+1)

(t − w)tp(n+1)

+ O(1)
1

(r′)n+1

ts(n+1)

ζs(n+1)

p(n+1)−1∑

k=1

∞∑

ν=1

αk,νw−νt−k−1

= J1 + J2. (6.6.3)

Since |t| = r < r′ = |ζ| and because of (3.14) we have

J2 = O(1)
1

ρn+1

( r

r′
)s(n+1)

p(n+1)−1∑

k=1

√
k

|w| − 1
|t|−k−1 = O(1)

(
1
r′
( r

r′
)s
)n+1

.

The first term on the right of (6.6.3) can be estimated by

J1 = O(1)
( |w|p

r′rp

)n+1 ( r

r′
)s(n+1)

.

Therefore we have

lim sup
n→∞

∣
∣
∣
∣
∣
∣
Ks,n(ζ, t) ·

p(n+1)−1∑

k=0

Fk(z)
tn+1

∣
∣
∣
∣
∣
∣

1/n

≤ max
(
|J1|1/n, |J2|1/n

)
≤ |w|prs−p

r′rp
.

When s ≤ p we get by letting r′ ↗ R and then r ↗ R

lim sup
n→∞

∣
∣
∣
∣
∣
∣
Ks,n(ζ, t) ·

p(n+1)−1∑

k=0

Fk(z)
tn+1

∣
∣
∣
∣
∣
∣

1/n

≤ |w|p
R2p+1−s

when s ≤ p for |w| > R.

When s > p we get by letting r′ ↗ R and then r ↘ 1

lim sup
n→∞

∣
∣
∣
∣
∣
∣
Ks,n(ζ, t) ·

p(n+1)−1∑

k=0

Fk(z)
tn+1

∣
∣
∣
∣
∣
∣

1/n

≤ |w|p
Rp+1

when s > p, for |w| > R.

By (6.6.1) the proof of the theorem is complete. �

7. Historical Remarks

Equiconvergece results where related to Faber expansion of analytic functions
were considered by Brück [19], Brück, Sharma and Varga [22, 23] and for rational
interpolats by Saff, Sharma and Varga [92].
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Remarks to Section 2 Following Rivlin [88] we obtain equiconvergence theorems
for the Faber expansion of a function if the Lagrange or Hermite interpolants
are replaced by their sections

Sn (Lm(f ; ·); z) or Sn

(
hs,s(m+1)−1(f ; ·); z) .

Remarks to Corollary 1. In the special case of E = D1 (Example 1) where
r0 = 0, (2.2) reduces to λ = R1+q�. For � = 1, this gives a result of Rivlin [88,
Theorem 1] and for q = 1, this is a result of Cavaretta, Sharma and Varga [28,
Theorem 1].

We do not know if λ in (2.3) is best possible. However, it is possible to
improve (2.3) of Corollary 1 when E = Eδ (δ > 1) of Example 3. In this example
we have an explicit expression for ω(ψ(w)) and (αn,k)n,k≥0. Using these explicit
expressions in the proof of Theorem 3 we get for λ in Corollary 1 the result

λ = min {R1+�q, Rl+q/r2q
0 , R2q−1/r

2(q−1)
0 }.

This is best possible as can be seen by the example f(z) := 1
ψ(R)−z . If q = 1,

then λ = R.

The previous remark also applies when δ = 1, i.e., E = [−1, 1] (Example
2). If we use the zeros of the Chebyshev polynomials (the Faber nodes) as
interpolation nodes and the identity

ωm(ψ(w)) =
(

1
2

)m+1

wm+1

(

1 − 1
w2(m+1)

)

(Example 3 for δ = 1) we get, by a minor modification of the proof of Theorem
3,

λ =






R2q−1 for � = 1 ,
R for q = 1 ,
Rq+1 for q, � > 1.

This is a generalization and a new proof of Theorem 2 of Rivlin [88].

An improvement of Theorem 5 may be achieved in the case of an ellipse Eδ

(where δ > 1 given in Example 3 for which where ∂Eδ is an r0-analytic curve
with r0 = 1/δ). An examination of the proof of Theorem 5 shows that in this
case

λ =
{

r0(R/r0)2q−1, � = 1,

min {R(R/r0)2q−1;Rq+1}, � ≥ 2.

The previous remark also applies to the case of the segment E = [−1, 1](where
δ = 1) and gives

λ =






R2q−1, � = 1,

R, q = 1,

rq+1, � ≥ 2.
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For � = 1, this is Theorem 2 of Rivlin [88].

We do not know if λ∗ of Theorem 6 is best possible. But for Faber expansions
of the sets E of Example 2 and Example 3 the conclusion of Theorem 6 can be
improved (see [23]).

We do not know whether λ∗ in (2.7) of Theorem 7 is best possible. How-
ever (see [23]), if ∂E is an r0-analytic curve, we can improve the conclusion
of Theorem 7. A further improvement of Theorem 7 may be achieved in the
case where E = Eδ is the ellipse treated in Example 3 where this ellipse is an
r0-analytic curve with r0 = 1/δ < 1.

We do not know if (2.8) of Theorem 8 is the best possible. However (see [23]),
it is possible to improve our Theorem 8 when E is the ellipse Eδ considered in
Example 3.

We do not know whether λ of (2.9) of Theorem 9 is best possible. However
(see [23]) it is possible to improve (2.9) if ∂E is r0-analytic curve. A further
improvement may be achieved in the case of the ellipse Eδ (where δ > 1)
considered in Example 3 when the ∂Eδ is an r0-analytic curve with r0 = 1/δ.



CHAPTER 10

EQUICONVERGENCE ON LEMNISCATES

1. Equiconvergence and Lemniscates In this chapter we consider the
case when the nodes of interpolation are points on a lemniscate and we prove
equiconvergence and sharpness results for them.

Let λ ≥ 1 be an integer, and Pλ(z) an arbitrary fixed monic polynomial of
degree λ. We will assume that the greatest common divisor of the multiplicities
of the roots of Pλ(z) is 1. The set of points satisfying |Pλ(z)| = µλ with some
µ > 0 is called a lemniscate (denoted as Γ(µ)). The set of points satisfying
|Pλ(z)| < µλ consists of at most λ disjoint finite regions denoted by G(µ).
Evidently, if 0 < µ1 < µ2 then G(µ1) ⊂ G(µ2). The class of functions analytic
in G(ρ) (ρ > 1) but having a singularity on the boundary of G(ρ) will be denoted
by AG(ρ). (We do not require that the functions analytic in connected regions
of G(ρ) should be analytic continuations of each other.) For an f(z) ∈ AG(ρλ),
consider the Hermite interpolation polynomial

Sn(f ; z) =
1

2πi

∮

Γ(R)

Pλ(t)n − Pλ(z)n

Pλ(t)n(t − z)
f(t)dt, 0 < R < ρ (1.1)

of degree at most λn − 1, interpolating to f(z) in the roots of Pλ(z) with
multiplicity n. (Recall that Pλ(z) may have multiple roots, thus the actual
multiplicity of interpolation may be higher.) In the special case Pλ(z) = z, the
lemniscate is a circle with origin as center and (1.1) is nothing but the Taylor
section of f(z) of order n − 1 (here λ = 1).

Evidently, (1.1) can be written in the form

Sn(f ; z) =
n−1∑

k=0

qk(f ; z)Pλ(z)k (1.2)

where

qk(f ; z) =
1

2πi

∮

Γ(R)

Pλ(t) − Pλ(z)
t − z

· f(t)
Pλ(t)k+1

dt, 0 < R < k = 0, 1, . . .

(1.3)
243



244 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

are polynomials of degree at most λ − 1. Hence and from (1.1)

f(z) − Sn(f ; z) =
1

2πi

∮

Γ(R)

( Pλ(z)
Pλ(t)

)n f(t)
t − z

dt

= O
( ∣

∣
∣
∣
Pλ(z)
Pλ(t)

∣
∣
∣
∣

)
→ 0 as n → ∞

provided z ∈ G(ρ). Thus

f(z) =
∞∑

k=0

qk(f ; z)Pλ(z)k, (1.4)

the convergence of the series on the right hand side being uniform in every
compact subset of G(ρ). Moreover, f(z) ∈ AG(ρ) is equivalent to

lim
k=∞

max
z∈Γ(ρ)

|qk(f ; z)|1/k =
1
ρλ

. (1.5)

Let now r ≥ 1 be an arbitrary fixed integer, and consider

Hλrn−1(f ; z) =
1

2πi

∮

Γ(R)

(
Pλ(t)n − 1

)r − (
Pλ(z)n − 1

)r

(
Pλ(t)n − 1

)r(t − z)
f(t)dt,

for 0 < R < ρ.
(1.6)

This is a polynomial of degree at most λrn−1 interpolating f (j)(z), j = 0, . . . , r

in the λn roots of the polynomial Pλ(z)n − 1 which are on Γ(1) ⊂ G(ρ). Notice
that the latter polynomial may have at most λ − 1 multiple roots (namely, the
roots of P ′

λ(z) = 0), therefore this interpolation polynomial may be an Hermite
interpolation of higher order than r at multiple nodes. Of course, in the special
case Pλ(z) = z, (1.6) is the ordinary Hermite interpolation at the n-th roots of
unity.

We want to compare this Hermite interpolation polynomial with the “shifted
Taylor sections”

Srn,�(f ; z) :=
1

2πi

∮

Γ(R)



1 − Pλ(z)rn

Pλ(t)rn
+ (Pλ(t)n − Pλ(z)n)

�−1∑

j=1

βj,r(Pλ(z)n)
Pλ(t)(r+j)n



×

× f(t)
t − z

dt

of (1.1), where � ≥ 1 is an arbitrary fixed integer, and

βj,r(z) =
r−1∑

k=0

(
r + j − 1

k

)

(z − 1)k, j = 0, 1, . . .
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(see Ch. 2, (1.7)). (Note that for � = 1 we take the sum as 0, and Srn,1 is
nothing else but Srn from (1.1).) Using the identity (1.6 ) from Ch. 2, this can
be written as

Srn,�(f ; z) :=
1

2πi

∮

Γ(R)

[

1 − (Pλ(z)n − 1)r

(Pλ(t)n − 1)r
+

(
Pλ(t)n − Pλ(z)n

)×

×
∞∑

j=�

βj,r(Pλ(z)n)
Pλ(t)(r+j)n



 f(t)
t − z

dt.

We now want to compare this with (1.6), therefore we define

∆λrn−1,�(f ; z) := Hλrn−1(f ; z) − Sn,�(f ; z) (1.7)

=
1

2πi

∮

Γ(R)

(Pλ(t)n − Pλ(z)n)
∞∑

j=�

βj,r(Pλ(z)n)
Pλ(t)(r+j)n

f(t)
t − z

dt

=
∞∑

j=�

βj,r(Pλ(z)n)
n−1∑

k=0

q(r+j−1)n+k(f ; z)Pλ(z)k)).

The analogue of Theorem 6, Ch. 4 is the following:

Theorem 1. If f(z) ∈ AG(ρ) (ρ > 1, λ ≥ 1) and � ≥ 1 is an integer then

lim
n→∞ max

z∈Γ(R)
|∆λrn−1,r,�(f ; z)|1/(λrn) = ρ−1− �−1

r max {1, R1−1/r, Rρ−1/r}
:= Kr,�(ρ,R). (1.8)

This theorem shows that if R < ρ1+�/r then we have overconvergence.

Proof. First we prove the upper estimate. (1.5) implies

|qk(f ; z)| = O
(
(ρ − ε)−λk

)
, k = 0, 1, . . . , (1.9)

with an arbitrary ε > 0, and we also use

|βj,r(Pλ(z)n)| ≤ cjr−1 max{1, Pλ(z)(r−1)n}, j = 1, . . .

(see Lemma 2 in Ch. 2). Thus (1.7) yields

|∆λrn−1,�(f ; z)| ≤ cmax {1, R(r−1)n}
∞∑

j=�

jr−1
n−1∑

k=0

(ρ − ε)−λ[(r+j−1)n−kRk.

Choosing ε > 0 properly and distinguishing the cases 0 < R < 1, 1 ≤ R <

ρ, ρ ≤ R,, we obtain the upper estimates in (1.8).
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In order to show the opposite inequality, we assume that for some ε > 0,

max
z∈Γ(R)

|∆λrn−1,�(f ; z)| ≤ Kr,�(ρ, µ) − ε. (1.10)

Hence and by (1.7)
∣
∣
∣
∣
∣
β�,r(Pλ(z)n)

n−1∑

k=0

q(r+�−1)n+k(f ; z)Pλ(z)k

∣
∣
∣
∣
∣
= (1.11)

= |∆λrn−1,�(f ; z) − ∆λrn−1,�(f ; z)| ≤ c(Kr,�+1(ρ, µ) − ε)λrn,

since evidently Kr,�(ρ, µ) is a monotone decreasing function of �. Taking into
account the structure of the polynomials β�,r (see (1.7) in Ch. 2), the latter
relation can be written in the form

n−1∑

k=0

q(r+�−1)n+k(f ; z)
r−1∑

s=0

cs,r,�Pλ(z)sn+k ≤≤ c(Kr,�(ρ, µ) − ε)λrn,

where cs,r,� �= 0 are some real numbers.

We now make use of the following general remark: if Q(z) is an arbitrary
polynomial of degree at most λn − 1, then it can be represented in the form

Q(z) =
n−1∑

k=0

qk(Q; z)Pλ(z)k (1.12)

where qk(Q; z) are polynomials of degree at most λ − 1 such that

max
z∈Γ(R)

∣
∣qk(Q; z)

∣
∣ ≤ c

Rλ(k+1)
max

z∈Γ(R)
|Q(z)|, R > 0, k = 0, 1, . . . , n − 1 (1.13)

with c > 0 depending only on Pλ. This follows easily from (1.1) - (1.3) and the
uniqueness of Hermite interpolation.

Thus (1.11) and (1.13) imply

max
z∈Γ(R)

|qk+(r+j−1)n(f ; z)| ≤ c
(Kr,�(ρ, µ) − ε)λrn

Rλ(sn+k+1)

for k = 0, 1, . . . , n − 1; s = 0, . . . , r − 1.
(1.14)

We now distinguish three cases:

Case 1: 0 < R ≤ 1. Then Kr,�(ρ, µ) = ρ−1− �−1
r , and using (1.14) with s = 0

we get

max
z∈Γ(R)

|q(r+�−1)n+k(f ; z)| ≤ c

(ρ + ε)λ(r+�−1)nRλ(k+1)
, k = 0, . . . , n − 1.
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Representing any integer m ≥ r + � − 1 in the form m = (r + � − 1)n + k, 0 ≤
k ≤ r + � − 2, we get

lim sup
m→∞

max
z∈Γ(R)

|qm(f ; z)|1/m ≤ lim sup
m→∞

(ρ + ε)−
λ(m−k)

m = (ρ + ε)−λ < ρ−λ,

which contradicts f ∈ AG(ρ).

Case 2: 1 < R ≤ ρ. Then Kr,�(ρ, µ) = ρ−1− �−1
r R1− 1

r , and using (1.14) with
s = r − 1 we get

max
z∈Γ(R)

|q(r+�−1)n+k(f ; z)| :≤ Rλ(r−1)n

(ρ + ε)λ(r+�−1)nRλ((r−1)n+k+1)

=
c

(ρ + ε)λ(r+�−1)n
, k = 0, . . . , n − 1,

and this is the same as Case 1.

Case 3: ρ < R. Then Kr,�(ρ, µ) = ρ−1− �
r , and using (1.14) with s = r − 1

again, we get

max
z∈Γ(R)

|q(r+�−1)n+k(f ; z)| :≤ Rλrn

(ρ + ε)λ(r+�)nRλ((r−1)n+k+1)

=
cRλ(n−k)

(ρ + ε)λ(r+�)n
, k = 0, . . . , n − 1,

Representing any integer m ≥ r + � − 1 in the form m = (r + � − 1)n + k, n −
r − � + 1 ≤ k ≤ n − 1, we obtain

lim sup
m→∞

max
z∈Γ(R)

|qm(f ; z)|1/m ≤ lim sup
m→∞

(ρ + ε)
λ(r+�)n
(r+�)n+c = (ρ + ε)−λ,

a contradiction again. The theorem is proved. �

As in Chapter 4, we will call a point z distinguished if there exists an f ∈
AG(ρ) such that the maximum in (1.9) is not attained, i.e.

lim
n→∞|∆λrn−1,�(f ; z)|1/(λn) < Kr,�(ρ, |z|).

We will show that the number of distinguished points not on the lemniscate
|Pλ(z)| = ρλ is finite, and that one can characterize whether a given set of
points is distinguished.

To this aim, let Z = {z1, z2, . . . , zm} be a given sequence of pairwise different
points and define the m × λ matrices

Xi(Z) :=






Pλ(z1)i z1Pλ(z1)i . . . zλ−1
1 Pλ(z1)i

...
...

...
Pλ(zm)i zmPλ(zm)i . . . zλ−1

m Pλ(zm)i




 , i = 0, 1, . . . .
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Further let U := {u1, . . . , uµ} and V := {v1, . . . , vν} be two sets of pairwise
different points such that

|Pλ(uj)| < ρλ, j = 1, . . . , µ (1.15)

and
|Pλ(vj)| > ρλ, j = 1, . . . , ν. (1.16)

We also assume that |Pλ(z)| �= 1, z ∈ U ∪ V when β�,r(Pλ(z)n) has a zero such
that |Pλ(z)| = 1.

Define the µ × λ(r + � − 1) and ν × λ(r + �) matrices

X(U) := [X0(U)X1(U) . . . Xr+�−2(U)]

and
X(V ) := [X0(V )X1(V ) . . . Xr+�−1(V )],

respectively. Finally, let

M(X(U), X(V )) =

















X(U)
X(U)

. . .
X(U)

X(V )
X(V )

. . .
X(V )

















, (1.17)

where X(U) and X(V ) are repeated r + � and r + � − 1 times, respectively (so
that M(X(U), X(V )) is an ((r+ �)µ+(r+ �−1)ν)×λ(r+ �−1)(r+ �) matrix).
(Note that we allow the cases U = ∅ (then µ = 0), or V = ∅ (then ν = 0). In
the above matrix the X(V )′s begin below the last row of the last X(U).

We now state

Theorem 2. With the above notations, the points U∪V form a distinguished

set if and only if

rank M(X(U), X(V )) < λ(r + � − 1)(r + �). (1.18)

Corollary 1. There are at most λ(r+�−1)−1 and λ(r+�)−1 distinguished

points in |Pλ(z)| < ρλ and |Pλ(z)| > ρλ, respectively.
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Namely, assume that (1.18) holds, and µ ≥ λ(r + � − 1). Then we take that
minor of M which consists of the first L := λ(r + � − 1) rows of each X(U) in
M . The determinant of this minor will be the (r + �)th power of the following
determinant:
∣
∣
∣
∣
∣
∣
∣

1 u1 . . . uλ−1
1 Pλ(u1) . . . uλ−1

1 Pλ(u1) . . . Pλ(u1)r+�−2 . . . uλ−1
1 Pλ(u1)r+�−2

...
...

...
...

...
...

...
1 uL . . . uλ−1

L Pλ(uL) . . . uλ−1
L Pλ(uL) . . . Pλ(uL)�−1 . . . uλ−1

L Pλ(uL)�−1

∣
∣
∣
∣
∣
∣
∣
,

In order to calculate this determinant, multiply the first λ columns by the
subsequent coefficients of the polynomial Pλ(z), and subtract them from the
(λ+1)st column. Then this column becomes (uλ

1 uλ
2 . . . uλ

L)T, because Pλ(z) is
a monic polynomial. Now we multiply the first λ + 1 columns of the resulting
determinant by subsequent coefficients of the polynomial zPλ(z), and subtract
these columns from the (λ + 1)st column. The new (λ + 1)st column will be

(uλ+1
1 uλ+1

2

... uλ+1
L )T. Now the pattern is clear: after λ(r+�−2) steps, we arrive

at the Vandermonde determinant V (u1, . . . , uL) �= 0. This contradicts (1.18),
since we have found a minor of size λ(r+�−1)(r+�) with nonzero determinant.
Similar reasoning applies for the points outside the lemniscate |Pλ(z)| = ρλ.

Corollary 2. If (r + �)µ + (r + � − 1)ν < λ(r + � − 1)(r + �), then the

corresponding points are always distinguished.

Namely, then the number of rows in M is less than the number of columns,
i.e. (1.18) is satisfied.

Proof of Theorem 2. Suppose (1.18) holds. Then there
exists a nonzero vector b = (b0, . . . , bλ(r+�−1)(r+�)−1) such that M · b = 0. By
(1.17), this is equivalent to the following:

r+�−2∑

s=0

λ−1∑

k=0

bλ(v(r+�−1)+s)+kzkPλ(z)s = 0, v = 0, . . . , r+�−1; z ∈ U (1.19a)

and
r+�−1∑

s=0

λ−1∑

k=0

bλ(v(r+�)+s)+kzkPλ(z)s = 0, v = 0, . . . , r + � − 2; z ∈ V. (1.19b)

Define

f(z) : =
(r+�−1)(r+�)−1∑

s=0

λ−1∑

k=0

bλs+kzkPλ(z)s

[

1 −
(

Pλ(z)
ρλ

)(r+�−1)(r+�)
]−1

=
∞∑

u=0

(r+�−1)(r+�)−1∑

s=0

ρ−uλ(r+�−1)(r+�)
λ−1∑

k=0

bλs+kzkPλ(z)u(r+�−1)(r+�)+s.

Sufficiency.
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Evidently, f ∈ AG(ρ), and

qu(r+�−1)(r+�)+s(f ; z) = ρ−uλ(r+�−1)(r+�)
λ−1∑

k=0

bλs+kzk, (1.20)

u = 0, . . . ; s = 0, . . . , (r + � − 1)(r + �) − 1, so that (1.4) takes the form

f(z) =
∞∑

u=0

(r+�−1)(r+�)−1∑

s=0

qu(r+�−1)(r+�)+s(f ; z)Pλ(z)u(r+�−1)(r+�)+s.

Replacing s in (1.20) by v(r + �−1)+ s, v = 0, . . . , r + �−1 and by v(r + �)+ s,

v = 0, . . . , r + � − 2, respectively, we obtain from (1.19a)–(1.19b)

r+�−2∑

s=0

qu(r+�−1)(r+�)+v(r+�−1)+s(f ; z)Pλ(z)s = 0

for u = 0, . . . ; v = 0, . . . , r + � − 1; z ∈ U

and

r+�−1∑

s=0

qu(r+�−1)(r+�)+v(r+�)+s(f ; z)Pλ(z)s = 0

for u = 0, . . . ; v = 0, . . . , r + � − 2; z ∈ V.

On writing v for u(r + �) + v and u(r + �− 1) + v in the above equations, they
are equivalent to

r+�−2∑

s=0

qv(r+�−1)+s(f ; z)Pλ(z)s = 0, v = 0, 1, . . . ; z ∈ U (1.21a)

and

r+�−1∑

s=0

qv(r+�)+s(f ; z)Pλ(z)s = 0, v = 0, 1, . . . ; z ∈ V, (1.21b)

respectively.

(1.20) implies
max

z∈Γ(ρ)
|qn(f ; z)| = O

(
ρ−λn

)
.

Hence (1.7) yields

∆λrn−1,�(f ; z) := βr,�(Pλ(z)n)
n−1∑

k=0

q(r+�−1)n+k(f ; z)Pλ(z)k

+ O




∞∑

j=�+1

jr−1
n−1∑

k=0

|Pλ(z)|k
ρλ((r+j−1)n+k)



 .
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Thus defining t and s by (r + � − 1)t + s = (r + �)n, 0 ≤ s ≤ r + � − 1, we get
from (1.21a)

∆λrn−1,�(f ; z) = Pλ(z)(r+�−1)(t−n)
s−1∑

k=0

q(r+�−1)t+k(f ; z)Pλ(z)k

+
t−1∑

v=0

Pλ(z)(r+�−1)(v−n)
r+�−2∑

k=0

qv(r+�−1)+k(f ; z)Pλ(z)k

+ O

(
1

ρλ(r+�)n

)

= O

( |Pλ(z)|n
ρλ(r+�)

+
1

ρλ(r+�)

)

= O

(
1

(ρ + ε)λ(r+�−1)n

)

, z ∈ U,

i.e. U forms indeed a set of distinguished points.

Similarly, defining t and s by (r + �)t = (r + � − 1)n + s, 0 ≤ s < r + �, we
get from (1.21b)

∆λrn−1,�(f ; z) =
s−1∑

k=0

q(r+�−1)n+k(f ; zj)Pλ(z)k

+
n−1∑

v=r

Pλ(z)(r+�)(v−(r+�−1)n)
�∑

k=0

q(r+�)v+k(f ; z)Pλ(z)k

+ O

( |Pλ(z)|rn

ρλ(r+�+1)n

)

= O

(
1

ρλ(r+�−1)n
+

|Pλ(z)|rn

ρλ(r+�+1)n

)

= O

( |Pλ(z)|rn

(ρ + ε)λ(r+�)n

)

, z ∈ V,

i.e. the points in V are also distinguished.

Necessity. Suppose the points in U ∪ V are distinguished, i.e.

lim sup
n→∞

∆λrn−1,�(f ; z)1/(λn) < Kr,�(ρ, |z|) (1.22)

but

rankM(X(U), X(V )) = λ(r + � − 1)(r + �). (1.23)

We show that this leads to a contradiction. (1.11) yields

∆λrn−1,�(f ; z) = β�,r(Pλ(z)n)
n−1∑

k=0

q(r+�−1)n+k(f ; z)Pλ(z)k

+ O
(
(Kr,�+1(ρ, |z|) + ε)λrn

)
,
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where ε > 0 is arbitrarily small. Thus

h(z) := βr,�(Pλ(z)n+1)∆λrn−1,�(f ; z)

− βr,�(Pλ(z)n)Pλ(z)r+�−1∆λ(n+1)−1,�(f ; z)

= β�,r(Pλ(x)n)β�,r(Pλ(z)n+1)
r+�−2∑

k=0

q(r+�−1)n+k(f ; z)Pλ(z)k

−
r+�−1∑

k=0

q(r+�)n+k(f ; z)Pλ(z)n+k + ∆λrn−1,�+1(f ; z)β�,r(Pλ(z)n+1)

− ∆λr(n+1)−1,�+1(f ; z)β�,r(Pλ(z)n)Pλ(z)r+�−1.

On the other hand, by (1.22)

h(z) = O
(
(Kr,�(ρ, |z|) − ε)λrn

) (|β�,r(Pλ(z)n)| + |β�,r(Pλ(z)n+1)|) , z ∈ U ∪ V,

and
∆λrn−1,�+1(f ; z) = O

(
(Kr,�+1(ρ, |z|) + ε)λrn

)

by Theorem 1. Thus

r+�−2∑

k=0

q(r+�−1)n+k(f ; z)Pλ(z)k := O

((
1

ρλ(r+�)
+ ε

)n)

+

+ O
(
(Kr,�+1(ρ, |z|) + ε)λrn

)

+ O
(
(Kr,�(ρ, |z|) − ε)λrn

) (|β�,r(Pλ(z)n)|−1 + |β�,r(Pλ(z)n+1)|−1
)
, z ∈ U.

On using Lemma 2 from Ch. 4 we get

r+�−2∑

k=0

q(r+�−1)n+k(f ; z)Pλ(z)k = O

((
1

ρλ(r+�−1)
− ε

)n)

, z ∈ U.

Similarly,

r+�−1∑

k=0

q(r+�)n+k(f ; z)Pλ(z)k = O

((
1

ρλ(r+�)
− ε

)n)

, z ∈ V.

With the notation

qn(f ; z) :=
λ−1∑

s=0

bλn+sz
s (1.24)

these relations take the form

r+�−2∑

k=0

λ−1∑

s=0

bλ(r+�−1)n+λk+sz
sPλ(z)k = O

((
1

ρλ(r+�−1)
− ε

)n)

, z ∈ U

(1.25a)
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and

r+�−1∑

k=0

λ−1∑

s=0

bλ(r+�)n+λk+sz
sPλ(z)k = O

((
1

ρλ(r+�)
− ε

)n)

, z ∈ V. (1.25b)

For an arbitrary positive integer v, put n = (r + �)v + t, 0 ≤ t ≤ r + � − 1 in
(1.25a), and n = (r + �)v + t, 0 ≤ t ≤ r + � − 2 in (1.25b). Then we obtain

r+�−2∑

k=0

λ−1∑

s=0

bλ(r+�−1)[(r+�)v+t]+λk+sz
sPλ(z)k =O

((
1

ρλ(r+�−1)
− ε

)(r+�)v
)

,

z ∈ U ; t = 0, . . . , r + � − 1,

and

r+�−1∑

k=0

λ−1∑

s=0

bλ(r+�)[(r+�)v+t]+λk+sz
sPλ(z)k =O

((
1

ρλ(r+�)
− ε

)(r+�−1)v
)

,

z ∈ V ; t = 0, . . . , r + � − 2.

Because of (1.23), we can choose λ(r + � − 1)(r + �) points out of U ∪ V such
that the corresponding system of linear equations is solvable for the unknowns
bλ(r+�−1)(r+�)v, . . . , bλ(r+�−1)(r+�)(v+1)−1. Due to the structure of the right hand
sides, for the solution we obtain

|bλ(r+�−1)(r+�)v+k| =O

((
1
ρλ

− ε

)(r+�−1)(r+�)v
)

,

for k = 0, . . . , λ(r + � − 1)(r + �) − 1; and v = 0, 1, . . . ,

whence by (1.24)

lim sup
n→∞

max
z∈Γ(ρ)

|qn(f ; z)|1/(λn) <
1
ρ
,

a contradiction to f ∈ AG(ρ). �

An example. Let λ = 2 and P2(z) = z2 − a2, a > 0 (this leads us to the
so-called Bernoulli lemniscate; cf. also Example 4 in Ch.9). For an arbitrary
f ∈ AG(ρ2), (1.3) yields

qk(f ; z) =
1

2πi

∮

Γ(R)

(t + z)
f(t)

(t2 − a2)k+1
dt, k = 0, 1, . . . .

Expanding into partial fractions we obtain

t + z

(t2 − a2)k+1
=

k+1∑

j=1

(
aj

(t − a)j
+

bj

(t + a)j

)
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with

aj =
(−1)k+1−j

(2a)2k+2−j

[

(z + a)
(

2k + 1 − j

k

)

− 2a

(
2k − j

k

)]

, j = 1, . . . , k + 1

and

bj =
(−1)k+1

(2a)2k+2−j

[

(z − a)
(

2k + 1 − j

k

)

+ 2a

(
2k − j

k

)]

, j = 1, . . . , k + 1.

Hence using

1
2πi

∮

Γ(R)

f(t)
(t ± a)j

dt =
f (j−1)(±a)

(j − 1)!
, j = 1, . . .

we get

qk(f ; z) = (−1)k+1
k+1∑

j=1

1
(2a)2k+2−j(j − 1)!

×

×
[(

2k + 1 − j

k

)[

(−1)j(z + a)f (j−1)(−a) + (z − a)f (j−1)(a)
]

− 2a

(
2k − j

k

)[

f (j−1)(a) − (−1)j−1f (j−1)(−a)
]]

,

for k = 0, 1, . . . .

Choosing r = � = 1, let
(a) U = {u1}, V = ∅,
(b) U = {u1}, V = {v1},
(c) U = ∅, V = {v1},
(d) U = ∅, V = {v1, v2},
(e) U = ∅, V = {v1, v2, v3}.
According to Corollary 2, the set U ∪V given by the examples (a)–(e) above

are always distinguished.

Now let U = {u1}, V = {v1, v2}. Then

X(U) = X0(U) = (1 u1), X0(V ) =
(

1 v1

1 v2

)

, X1(V ) =
(

v2
1 − a2 v3

1 − a2v1

v2
2 − a2 v3

2 − a2v2

)

,

X(V ) =
(

1 v1 v2
1 − a2 v3

1 − a2v1

1 v2 v2
2 − a2 v3

2 − a2v2

)

, M =






1 u1 0 0
0 0 1 u1

1 v1 v2
1 − a2 v3

1 − a2v1

1 v2 v2
2 − a2 v3

2 − a2v2




 .
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According to Theorem 2, in order that U ∪V be distinguished, the determinant
of the matrix M must vanish, i.e.

det M = (v1 − v2)(v1 + v2)(u1 − v1)(u1 − v2) = 0. (1.26)

Since u1 is inside and v1 �= v2 are outside the lemniscate |z2 − a2| = ρ2, this
condition can be satisfied only if v1 = −v2. For example, the points u1 = a >

0, v1 = −v2 = a + ρ will be distinguished.

By Corollary 1, the maximal number of distinguished points in and out of
the lemniscate |z2 − a2| = ρ2 is at most 1 and 3, respectively. However, with

U = {u1}, V = {v1, v2, v3}

the matrix M (with similar calculations as above) takes the form

M =








1 u1 0 0
0 0 1 u1

1 v1 v2
1 − a2 v3

1 − a2v1

1 v2 v2
2 − a2 v3

2 − a2v2

1 v3 v2
3 − a2 v3

3 − a2v3








.

In order that U ∪V be distinguished, all fourth order minors of this 5×4 matrix
must vanish. Taking the first four rows, we arrive at the same condition as in
(1.26), which means v1 = −v2. Now taking the first three rows and the last row
from M we get v1 = −v3, i.e. v2 = v3, a contradiction. So in this case U ∪ V is
never a distinguished set.

2. Historical Remarks

Theorem 1 was proved by Lou Yuanren [73]. Theorem 2 is new; the special
case λ = 1 (i.e. the circle) was considered by Ivanov and Sharma [51]; cf. also
Chapter 4.



CHAPTER 11

WALSH EQUICONVERGENCE AND EQUISUMMABILITY

1. Introduction

In the equiconvergence theorems the convergence to 0 or the order of the
difference of two interpolating operators acting on an analytic function from
some class are considered. In this chapter we consider the regular summability,
instead of convergence, of the difference of the above two operators. Since
convergence is also a regular summability method we get at the same time also
equiconvergence theorems.

In this chapter the equisummability of a sequence of operators (Λn(z, f))n≥0

that operate on elements of the class AR , i.e., the class of functions regular in
the disk DR ≡ {z : |z| < R } but not in DR, R > 1, are considered. The above
operators are defined in Sec. 2.

A star-shaped domain that includes 0 is defined as a domain that is inter-
sected by any linear ray originating at 0 by a single linear segment.

A star-shaped Jordan curve is defined as a closed Jordan curve that contains
0 in its interior and is intersected by any linear ray originating at 0 by a single
point.

The unit disk {z : |z| < 1} is denoted by D.

Definition 1.1. The A-summability considered here is defined in the fol-
lowing way. Suppose X ⊂ IR. Let x∗ ∈ IR be an accumulation point of X.

Let (an(x))n≥0 be a given sequence of functions on X. For a sequence (sn)n≥0

of complex numbers, denote, formally, σ(x) :=
∑∞

n=0 an(x)sn (x ∈ X). The
sequence (sn)n≥0 is A-summable to the value s ∈ C, which is written as
A− limn→∞ sn = s, if the series σ(x) is convergent for all x ∈ X, and σ(x) → s

as x → x∗. In the definition of A-summability the following additional assump-
tions are made: For each x ∈ X the power series of z, φ(x, z) :=

∑∞
n=0 an(x)zn

is an entire function. A star-shaped domain GA ⊂ C, ∞ �∈ GA, is given and for
this domain we have D ⊂ GA, 1 �∈ GA. and limx→x∗ φ(x, z) = 0, ∀z ∈ GA, the
convergence being uniform on compact subsets of GA. Finally, we require that

257
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limx→x∗ φ(x, 1) = 1. By a compact subset of C we mean a closed and bounded
set.

The Mittag-Leffler A-summability (see G.H. Hardy [45,p.77] is given by X ≡
{x : x > 0}, x∗ := 0 and an(x) := exp(n log n − exp(n + 1) log(n + 1)), n ≥ 0.

For the Mittag-Leffler A-summability the associated domain GA is the the finite
complex plane less the real ray x ≥ 1.

The function (1 − z2)−1 has only two singular points, (±1) in the complex
plane. Therefore the set Sf generated by the Mittag-Leffler A-summability for
this function is the finite complex less the two real rays x ≥ 1 and x ≤ −1.

Definition 1.2. Suppose f(z) ∈ AR, R > 1. The function f(z) is continued
analytically along a ray beginning at 0 and up to the first singular point ζ on this
ray. This is done along each ray beginning at 0. The union of all the segments
[0, ζ), that correspond to all the rays beginning at 0 is denoted by S ≡ Sf and
is called the Mittag-Leffler star-domain of the given function f(z) (see E.Hille
[47,p.38]).

For A-summability we have the following simple result.

Lemma 1.3. Suppose an A-summability is given. Let p, r be non-negative

integers. Then: (i) For each x ∈ X and z ∈ C\{∞} we have

dp

dzp
φ(x, z) = p!

∞∑

n=p

(
n

p

)

an(x)zn−p;

(ii) For each z ∈ GA we have

lim
x→x∗

∞∑

n=r

(
n

p

)

an(x)zn−r = 0

where the convergence is uniform in z on any compact and bounded subset of

GA.

Proof. By our assumptions φ(x, z) :=
∑∞

n=0 an(x)zn is an entire function
for each x ∈ X and limx→x∗ φ(x, z) = 0 where the convergence is uniform in z on
compact and bounded subsets of GA. Therefore by the Weierstrass double-series
theorem (i) holds and also limx→x∗ an(x) = 0 for n = 0, 1, 2, · · · . Also, for each
n = p, p+1, · · · limx→x∗

(
n
p

)
an(x)zn−p = 0 where the convergence is uniform in

z, on bounded subsets of GA (because zn−p (for a fixed n) is uniformly bounded
on bounded sets). (a) Assume first that 0 ≤ r ≤ p. Then

∞∑

n=r

(
n

p

)

an(x)zn−r = zp−r
∞∑

n=p

(
n

p

)

an(x)zn−p → 0 as x → x∗
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and the convergence is uniform on closed and bounded subsets of GA because
zp−r is bounded on such sets. This proves (ii) when 0 ≤ r ≤ p. (b) Assume
r > p. Since limx→x∗

(
n
p

)
an(x)zn−p = 0 for n = 0, 1, · · · , uniformly in z on

bounded sets, we get from (i) that limx→x∗
∑∞

n=r

(
n
p

)
an(x)zn−p = 0, where the

convergence is uniform on compact and bounded subsets of GA. Given a compact
and bounded subset K of GA, let γ be a rectifiable closed Jordan curve which
is included in GA and includes 0 and K in its interior. Then d ≡ d(0, γ) > 0,

i.e., |z| ≥ d ∀z ∈ γ. Therefore we have (since γ ⊂ G is a compact and bounded
set)

max
z∈γ

∣
∣
∣
∣
∣

∞∑

n=r

(
n

p

)

an(x)zn−r

∣
∣
∣
∣
∣
= max

z∈γ

{

|z|−(r−p)

∣
∣
∣
∣
∣

∞∑

n=r

(
n

p

)

an(x)zn−p

∣
∣
∣
∣
∣

}

≤

≤ d−(r−p) max
z∈γ

∣
∣
∣
∣
∣

∞∑

n=r

(
n

p

)

an(x)zn−p

∣
∣
∣
∣
∣
→ 0 as x → x∗ .

By the maximum principle it follows that limx→x∗
∑∞

n=r

(
n
p

)
an(x)zn−r = 0,

where the convergence is uniform for z ∈ K. �

2. Definition of the kernels (Λα,β
n (z, f))n≥1.

2.1 Notations and assumptions used in the definition of the kernels
Λα,β

n (z, f).

In the definition of the operators (Λα,β
n (z, f))n≥1 we use the following nota-

tions and assumptions. Dρ will denote the open disk of radius ρ and center 0.

For a set U ⊂ C which includes a disk Dη, η > 0, we write ∞ ∗ U := C and
0∗U := {0}. G and GA will be open star-shaped sets that include the unit disk,
1 �∈ G and 1 �∈ GA.

Let R be a real number satisfying R > 1. Let α, β be two distinct complex
numbers satisfying αβ �= 0 , and |α| �= |β| . Set γ := max(|α|, |β|) and δ :=
max(1, |α|, |β|). Assume γ < R. For a positive integer ν and any given set
A ⊂ C, let φ−1

ν (A) := {ω : ω ∈ C, ων ∈ A}.
Let i0 be a fixed positive integer. For each i, 1 ≤ i ≤ i0, let ni be a given

positive integer and let Ni be a finite set of positive integers. When i0 > 1 let
M

(i)
2 , . . . , M

(i)
ni be non-empty sets of non-negative integers and suppose that to

each i, 1 ≤ i ≤ i0, and each choice of νi ∈ Ni, k
(i)
j ∈ M i

j , 2 ≤ j ≤ i0 there

corresponds a set M
(i)
1 := M

(i)
1 (νi, k

(i)
ni , . . . , k

(i)
2 ) of non-negative integers with

the property that
(1) minM

(i)
1 (νi ∈ Ni, k

(i)
j ∈ M i

j , 2 ≤ j ≤ i0) = a
(i)
0 +

∑ni

j=2 a
(i)
j k

(i)
j +a

(i)
n+1νi ≥

0,
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and either
(2) max M

(i)
1 (νi ∈ Ni, k

(i)
j ∈ M i

j , 2 ≤ j ≤ i0) = b
(i)
0 +

ni∑

j=2

b
(i)
j k

(i)
j +b

(i)
n+1νi < ∞

or
(3) max M

(i)
1 (νi ∈ Ni, k

(i)
j ∈ M i

j , 2 ≤ j ≤ i0) = +∞,

where (a(i)
j )ni

j=0, (b(i)
j )ni

j=0 are fixed integers which depend only on i. When

i0 = 1 then M
(i0)
1 depends only on the elements of N1 and satisfies (1), (2) and

(3).

We use the notation kkk(i) ∈ MMM (i) to mean that k
(i)
ni ∈ M

(i)
ni , . . . , k

(i)
1 ∈ M

(i)
1

for 1 ≤ i ≤ i0,

Let λλλ(i) := (λ(i)
j )1≤j≤ni , ψψψ(i) := (ψ(i)

j )1≤j≤ni , be two given sequences of
integers.

We use the abbreviation (λλλ(i), kkk(i))r,s :=
∑s

j=r λ
(i)
j k

(i)
j , and λλλ(i) · kkk(i) :=

(λλλ(i), kkk(i))1,ni . (ψψψ(i) · λλλ(i))r,s) and ψψψ(i) · λλλ(i) are defined similarly.

We assume that for 1 ≤ i ≤ i0 and for each choice of kkk(i) ∈ MMM (i) we have

λλλ(i) · kkk(i) ≥ 0, ψψψ(i) · kkk(i) ≥ 0 and λλλ(i) · kkk(i) + ψψψ(i) · kkk(i) ≥ 1. (2.1.1)

We further suppose that for each i, 1 ≤ i ≤ i0, and for each positive integer V

the set of indices kkk(i) for which λλλ(i) · kkk(i) + ψψψ(i) · kkk(i) < V holds is finite.

Let i1 be a fixed positive integer. For each i, 1 ≤ i ≤ i1, let mi be a
given positive integer. When i1 > 1 let P

(i)
2 , . . . , P

(i)
mi be non-empty sets of

non-negative integers and suppose that to each i, 1 ≤ i ≤ i1, and each choice
of �

(i)
j ∈ P i

j , 2 ≤ j ≤ i1 there corresponds a set P
(i)
1 := P

(i)
1 (νi, �

(i)
ni , . . . , �

(i)
2 ) of

non-negative integers with the property that
(1) min

�
(i)
j ∈P i

j , 2≤j≤i1
P

(i)
1 = c

(i)
0 +

∑ni

j=2 c
(i)
j �

(i)
j ≥ 0,

and either
(2) max

�
(i)
j ∈P i

j , 2≤j≤i1
P

(i)
1 = d

(i)
0 +

ni∑

j=2

d
(i)
j �

(i)
j < ∞

or
(3) sup

�
(i)
j ∈P i

j , 2≤j≤i1
P

(i)
1 = +∞, where (c(i)

j )ni
j=1, (d(i)

j )ni
j=1 are fixed integers

which depend only on i. When i1 = 1 then P
(i1)
1 is a given set of non-negative

integers satisfying (1), (2) and (3).

Moreover let ���(i) := (�(i)j )mi
j=1, µµµ(i) := (µ(i)

j )mi
j=1, χχχ(i) := (χ(i)

j )mi
j=1 be given

sequences of integers. We use the abbreviation (µµµ(i), ���(i))r,s :=
∑s

j=r µ
(i)
j �

(i)
j ,

and µµµ(i) · ���(i) := (µµµ(i), ���(i))1,mi .

We also assume that for all i ∈ [0, i1] and for any �
(i)
mi ∈ P

(i)
mi , . . . , �

(i)
1 ∈

. . . , P (i), we have

µµµ(i) · ���(i) ≥ 0, χχχ(i) · ���(i) ≥ 0 and µµµ(i) · ���(i) + χχχ(i) · ���(i) ≥ 1. (2.1.2)
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2.2 Definition of the kernels (Λ(α,β)
n (z, f))n≥1

Let (Λ(α,β)
n (z, f))n≥1 be a sequence of operators that act on functions f ∈ AR

and having the following representation

Λ(α,β)
n (z, f) =

1
2πi

∮

Γ

f(t)
t − z

Kn(z, t)dt (2.1.3)

where Γ := {t ∈ C : |t| = τ}, δ < τ < R, |z| > τ, and

Kn(z, t) =
∑

1≤i≤i0

A(i)
n (z, t) +

∑

1≤i≤i1

B(i)
n (t). (2.1.4)

Using the notation kkk(i) ∈ MMM (i) to mean that k
(i)
ni ∈ M

(i)
ni , . . . , k

(i)
1 ∈ M

(i)
1 for

1 ≤ i ≤ i0, the abbreviations ηi(t) :=
(

α
t

)λλλ(i)·kkk(i)(
β
t

)ψψψ(i)·kkk(i)

, and

ξi(t) :=
(

α
t

)µµµ(i)·���(i)(
β
t

)χχχ(i)·���(i)

, we assume that

A(i)
n (z, t) :=

∑

νi∈Ni

∑

kkk(i)∈MMM(i)

bi(kkk
(i))




(α

t

)λλλ(i)·kkk(i)(
β

t

)ψψψ(i)·kkk(i)
(z

t

)νi
)n

for 1 ≤ i ≤ i0, (2.1.5)

B(i)
n (t) :=

∑

���(i)∈PPP (i)

ci(���
(i))




(α

t

)µµµ(i)·���(i)(
β

t

)χχχ(i)·���(i)




n

, for 1 ≤ i ≤ i1.

(2.1.6)
where ���(i) ∈ PPP (i) means �(i)mi0

∈ P
(i)
mi0

, · · · , �
(i)
1 ∈ P

(i)
1 . The coefficients bi(kkk(i))

and ci(���(i)) do not depend on n. We assume that for each x, 0 ≤ x < 1, and for
any positive number d the series

∑

νi∈Ni

∑

kkk(i)∈MMM(i)

|bi(kkk
(i))|dνixλλλ(i)·kkk(i)

+ψψψ(i)·kkk(i)

(2.1.7)

is convergent for each i, 1 ≤ i ≤ i0. We assume also that

∑

���(i)∈PPP (i)

|ci(���
(i))|xµµµ(i)·���(i)

+χχχ(i)·���(i)

. (2.1.8)

is convergent for each i, 1 ≤ i ≤ i1.

Remark. In the definition of the operators Λ(α,β)
n (z, t) two parameters α, β

were used. The results, except for obvious changes, remain the same if only one
parameter α is used, i.e., the powers of β

t and the parameters associated with

β do not appear in the definition of the operators Λ(α)
n (z, f).
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Definition 3.1 of the Walsh radius. For R ≥ γ the Walsh radius R̃(r)
associated with an operator (Λ(α,β)

n (z, f))n≥1 is defined by

R̃(r) ≡ R̃(r; i0, Ni,MMM
i,λλλi,ψψψ) (3.1)

:= inf
1≤i≤i0

inf
νi∈Ni, kkk

(i)∈MMM(i)





r

(
r

|α|
)λλλ(i)·kkk(i)

/νi
(

r

|β|
)ψψψ(i)·kkk(i)

/νi





.

Remark 3.2. From the definition of R̃(r) it follows that R̃(r) ≥ r
(

r
γ

)1/ν∗

and R̃(R) > R, since (2.1.1) is satisfied.

We have the following equiconvergence theorem.

Theorem 3.3.

f ∈ AR, where R > δ := max (1, |α|, |β|) . Then for each r1, 0 < r1 < R̃(R)

lim sup
n→∞

max
|z|≤r1

∣
∣
∣Λ(α,β)

n (z, f)
∣
∣
∣
1/n

≤ max



 γ

R
,

(
r1

R̃(R)

)min1≤i≤i0 Ni


 . (3.2)

The proof of Theorem 3.3 is given in Sec. 4.

In the statement of the next equisummability theorem for operators
Λ(α,β)

n (z, f) recall the following assumptions made in defining the operators:
αβ �= 0, |β| �= |α|, R > δ := max(1, |α|, |β|. Let S ≡ Sf be the Mittag-
Leffler star-domain of a given function f ∈ AR and let G ≡ GA denote the
A-summability domain associated with the A-summability which is given by
(an(x))n≥1. We write for 1 ≤ i ≤ i0,

AAAi :=
⋂

νi∈Ni

⋂

kkk(i)∈MMM(i)

⋂

c�∈S

φ−1
νi



cνi

( c

α

)λλλ(i)·kkk(i)(
c

β

)ψψψ(i)·kkk(i)

GA



 ;

EEE :=
⋂

1≤i≤i0

Ai. (3.3)

We have the following equisummability theorem for operators (Λ(α,β)
n (z, f))n≥1.

Theorem 3.4.

nition 1.1 ). Then for each f ∈ AR we have A−limn→∞ Λ(α,β)
n+1 (z, f) = 0, ∀z ∈

EEE . More precisely, if Ψ(x, z) :=
∑∞

n=0 an(x)Λ(α,β)
n+1 (z, f) (x ∈ X) then Ψ(x, .) is

set K of E there holds |Ψ(x, z)| ≤ M. maxw∈B |φ(x,w)|, ∀z ∈ K, ∀x ∈ X,

3. Equiconvergence and equisummability of the operators Λ(α,β)
n (z, f)

Assume conditions (2.1.1) and (2.1.2) are satisfied and that

Suppose we are given an A-summability method A (see Defi-

an entire function for every fixed x ∈ X, and on any compact and bounded sub-
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where M is a constant, and B is a compact subset of GA. Both M and B depend

on f, α, β, E and K but not on x.

In Sec. 5 some properties of particular sets are stated and proved. These
results are used in the proof of Theorem 3.4. The proof of Theorem 3.4 is given
in Sec. 6.

4. Proof of Theorem 3.3

First we obtain some properties of the Walsh radius and then prove Theorem
3.3.

Lemma 4.1. For given numbers α, β, δ satisfying αβ �= 0 and |α| �= |β| =

H ≡ H(c) := inf
1≤i≤i0

inf
νi∈Ni ,kkk(i)∈MMM(i)

∣
∣
∣
∣
∣
∣
φ−1

νi

(

cνi

(
c

α

)λλλ(i)·kkk(i)(
c

β

)ψψψ(i)·kkk(i))
∣
∣
∣
∣
∣
∣
.

(4.1)
Then either H = 0 or H is a positive minimum. In both cases H = R̃(c).
H vanishes only in the following case: For some i, 1 ≤ i ≤ i0, and for some

j, 1 ≤ j ≤ ni, the set M
(i)
j is unbounded and either: (1) λ

(i)
j < 0, ψ

(i)
j ≤ 0; or

(2) λ
(i)
j ≤ 0, ψ

(i)
j < 0; or (3) λ

(i)
j < 0, ψ

(i)
j > 0 and

∣
∣ c
α
∣
∣λ

(i)
j

∣
∣
∣ cβ

∣
∣
∣
ψ

(i)
j

< 1. In all

other cases the minimum of H is attained for a k
(i)
j which is either min

i
M

(i)
j

or max
i

M
(i)
j and for νi which is either max Ni or min Ni.

Ramark. The conditions when k
(i)
j is min

i
M

(i)
j or max

i
M

(i)
j and when νi

is max Ni or min Ni are given explicitly in the proof.

The last statement is not exact when the set M
(i)
1 depends on the sets

M
(i)
2 , . . . , M

(i)
ni . The statement is made precise in the proof when the case where

M
(i)
1 depends on the sets M

(i)
2 , . . . , M

(i)
ni is considered.

If S ≡ Sf is the Mittag-Leffler star-domain of some f ∈ AR, R > δ, then
from Lemma 4.1, we have

Corollary 4.2. Let f ∈ AR, R > 1. Suppose the assumptions of Lemma

4.1 hold. Then

⋂

1≤i≤i0

⋂

νi∈Ni

⋂

kkk(i)∈MMM(i)

⋂

c�∈S

φ−1
νi

(

cνi

( c

α

)λλλ(i)·kkk(i) (
c

β

)ψψψ(i)·kkk(i)

D1



 = DR̃(R).

and δ = max (1, |α|, |β|) define for any positive number c ≥ δ the number H by:
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Proof of Corollary 4.2. We have the obvious relation

φ−1
νi

(
rνi
( r

α

)λλλ(i)·kkk(i) ( r

β

)ψψψ(i)·kkk(i)

D1

)
= Da,

where a = r
(

r
|α|
)λλλ(i)·kkk(i)

/νi
(

r
|β|
)ψψψ(i)·kkk(i)

/νi

, Since Sc has at least one point

common with ∂DR, the proof follows from Lemma 4.1. �

Proof of Lemma 4.1. Since H = min1≤i≤i0 Hi where

Hi ≡ Hi(c)

:= inf






∣
∣
∣
∣
∣
∣
φ−1

νi



cνi

( c

α

)λλλ(i)·kkk(i)(
c

β

)ψψψ(i)·kkk(i)




∣
∣
∣
∣
∣
∣

: νi ∈ Ni, kkk(i) ∈ MMM (i)






it is enough to prove Lemma 4.1 for each Hi (1 ≤ i ≤ i0) separately; hence
without loss of generality we may in the rest of the proof omit the index i. In
this case we write for c ≥ δ

H(c) ≡ H

(

r; N, (Mj)1≤j≤n, (λj)1≤j≤n, (ψj)1≤j≤n

)

= inf
ν∈N,kkk∈MMM

c
∣
∣
∣
c

α

∣
∣
∣
λλλ·kkkkkkkkk/ν

∣
∣
∣
∣
c

β

∣
∣
∣
∣

ψψψ·kkkkkkkkk/ν

.

where kkk ∈ MMM means kn0 ∈ Mn0 , · · · , k1 ∈ M1. The rest of the proof is divided
into two parts. The first part of the proof considers the case when the set M1

is independent of k2, · · · , kn, ν. The second part of the proof considers the case
when M1 is dependent on k2, · · · , kn and ν.

Proof of the case when when M1 is independent of Mn, · · · M2. We use here
the notation kkk′ := (k2, . . . , kn), MMM ′ := (M2, . . . , Mn) and kkk′ ∈ MMM ′ means that
kn ∈ Mn, . . . , k2 ∈ M2. With respect to k1 the following cases can occur: (A)
when the set M1 is bounded or (B) when the set M1 is unbounded.

The case (A) where M1 is bounded. In this case we have to consider several
subcases. (i) Assume λ1 = ψ1 = 0. Then

H = inf
ν∈N, kkk′∈MMM ′

c
∣
∣
∣
c

α

∣
∣
∣
((λλλ·kkkkkkkkk)2,n)/ν

∣
∣
∣
∣
c

β

∣
∣
∣
∣

((ψψψ·kkkkkkkkk)2,n)/ν

= inf
ν∈N, kkk′∈MMM ′

c
∣
∣
∣
c

α

∣
∣
∣
(λ1k∗

1+(λλλ·kkkkkkkkk)2,n)/ν
∣
∣
∣
∣
c

β

∣
∣
∣
∣

(ψ1k∗
1+(ψψψ·kkkkkkkkk)2,n)/ν

where k∗
1 = min M1.

(ii) Assume λ1 �= 0, ψ1 = 0. In this case, since ν ∈ N ⊂ IN and M1 ⊂ IN+ is



WALSH EQUICONVERGENCE AND EQUISUMMABILITY 265

bounded, we have

H = inf
ν∈N, kkk′∈MMM ′

c
∣
∣
∣
c

α

∣
∣
∣
((λλλ·kkkkkkkkk)2,n)/ν

×

×
∣
∣
∣
∣
c

β

∣
∣
∣
∣

((ψψψ·kkkkkkkkk)2,n)/ν

×
{ ∣
∣ c
α
∣
∣λ1·(min M1)/ν if λ1 > 0

∣
∣ c
α
∣
∣λ1·(max M1)/ν if λ1 < 0

= inf
ν∈N, kkk′∈MMM ′

c
∣
∣
∣
c

α

∣
∣
∣
(λ1k∗

1+(λλλ·kkkkkkkkk)2,n)/ν
∣
∣
∣
∣
c

β

∣
∣
∣
∣

(ψ1k∗
1+(ψψψ·kkkkkkkkk)2,n)/ν

where k1 = k∗
1 and k∗

1 = min M1 if λ1 > 0 and k∗
1 = max M1 if λ1 < 0.

(iii) Assume λ1 = 0, ψ1 �= 0. As in the previous case we have

H = inf
ν∈N, kkk′∈MMM ′

c
∣
∣
∣
c

α

∣
∣
∣
((λλλ·kkkkkkkkk)2,n)/ν

×

×
∣
∣
∣
∣
c

β

∣
∣
∣
∣

((ψψψ·kkkkkkkkk)2,n)/ν

×






∣
∣
∣ cβ

∣
∣
∣
ψ1·(min M1)/ν

if ψ1 > 0
∣
∣
∣ cβ

∣
∣
∣
ψ1·(max M1)/ν

if ψ1 < 0.

= inf
ν∈N, kkk′∈MMM ′

c
∣
∣
∣
c

α

∣
∣
∣
(λ1k∗

1+(λλλ·kkkkkkkkk)2,n/ν
∣
∣
∣
∣
c

β

∣
∣
∣
∣

(ψ1k∗
1+(ψψψ·kkkkkkkkk)2,n)/ν

where k1 = k∗
1 and k∗

1 = min M1 if ψ1 > 0, and k∗
1 = max M1 if ψ1 < 0.

(iv) λ1 �= 0, ψ1 �= 0. In this case the following four cases can occur:
a) λ1 > 0, ψ1 > 0. In this case

H = inf
ν∈N, kkk′∈MMM ′

c
∣
∣
∣
c

α

∣
∣
∣
(λ1k∗

1+(λλλ·kkkkkkkkk)2,n)/ν
∣
∣
∣
∣
c

β

∣
∣
∣
∣

(ψ1k∗
1+(ψψψ·kkkkkkkkk)2,n)/ν

.

where k1 = k∗
1 and k∗

1 = min M1.

b) Assume λ1 < 0, ψ1 < 0. In this case

H = inf
ν∈N, kkk′∈MMM ′

c
∣
∣
∣
c

α

∣
∣
∣
(λ1k∗

1+(λλλ(i)·kkk(i)
)2,n)/ν

∣
∣
∣
∣
c

β

∣
∣
∣
∣

(ψ1k∗
1+(ψψψ·kkkkkkkkk)2,n)/ν

.

where k1 = k∗
1 and k∗

1 = max M1.

c) Assume λ1 > 0, ψ1 < 0. In this case

H = inf
ν∈N, kkk′∈MMM ′

c
∣
∣
∣
c

α

∣
∣
∣
(λ1k∗

1+(λλλ·kkkkkkkkk)2,n)/ν
∣
∣
∣
∣
c

β

∣
∣
∣
∣

(ψ1k∗
1+(ψψψ·kkkkkkkkk)2,n)/ν
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where

k∗
1 = min M1 if

∣
∣
∣
c

α

∣
∣
∣
λ1 ≥

∣
∣
∣
∣
c

β

∣
∣
∣
∣

−ψ1

and

k∗
1 = max M1 if

(
R

|α|
)λ1

<

(
R

|β|
)−ψ1

.

d) Assume λ1 < 0, ψ1 > 0. As in case c) we get

H = inf
ν∈N, kkk′∈MMM ′

c
∣
∣
∣
c

α

∣
∣
∣
(λ1k∗

1+(λλλ·kkkkkkkkk)2,n)/ν
∣
∣
∣
∣
c

β

∣
∣
∣
∣

(ψ1k∗
1+(ψψψ·kkkkkkkkk)2,n)/ν

where k∗
1 = min M1 if

∣
∣
∣ cβ

∣
∣
∣
ψ1 ≥ ∣∣ cα

∣
∣−λ1 and k∗

1 = max M1 if
∣
∣
∣ cβ

∣
∣
∣
ψ1

<
∣
∣ c
α
∣
∣−λ1

. In

conclusion we get that

H = inf
ν∈N, kkk′∈MMM ′

c
∣
∣
∣
c

α

∣
∣
∣
(λ1k∗

1+(λλλ·kkkkkkkkk)2,n)/ν
∣
∣
∣
∣
c

β

∣
∣
∣
∣

(ψ1k∗
1+(ψψψ·kkkkkkkkk)2,n)/ν

where k∗
1 is either equal to minM1 or else, equal to max M1.

The case (B) when the set M1 is not bounded. In this case we have to consider
separately the following five cases:

(a) Assume λ1 > 0, ψ1 ≥ 0 or λ1 ≥ 0 and ψ1 > 0. If k
(1)
1 ∈ M1, k

(2)
1 ∈

M1 and k
(1)
1 < k

(2)
1 we see that

c
∣
∣
∣
c

α

∣
∣
∣
(λ1k

(1)
1 +(λλλ·kkkkkkkkk)2,n)/ν

∣
∣
∣
∣
c

β

∣
∣
∣
∣

(ψ1k
(1)
1 +(ψψψ·kkkkkkkkk)2,n)/ν

< c
∣
∣
∣
c

α

∣
∣
∣
(λ1k

(2)
1 +(λλλ·kkkkkkkkk)2,n)/ν

∣
∣
∣
∣
c

β

∣
∣
∣
∣

(ψ1k
(2)
1 +(ψψψ·kkkkkkkkk)2,n)/ν

,

so that

H(c) = min
ν∈N, kkk(i)∈MMM(i)

c
∣
∣
∣
c

α

∣
∣
∣
(λ1k∗

1+(λλλ·kkkkkkkkk)2,n)/ν
∣
∣
∣
∣
c

β

∣
∣
∣
∣

(ψ1k∗
1+(ψψψ·kkkkkkkkk)2,n)/ν

where k∗
1 = min M1.

(b) Assume λ1 < 0, ψ1 ≤ 0 or λ1 ≤ 0 and ψ1 < 0. Then by an argument
similar to that of part (a) of the first part of the proof when the set M − 1
is bounded it follows, since now the set M1 is not bounded from above, that
H = 0 which corresponds to k∗ = ∞ = supM1. In this case it is not necessary
to check the other indices k2, . . . , kn+1.

(c) Assume λ1 > 0, ψ1 < 0 or λ1 < 0, ψ1 > 0. Then

H = inf
ν∈N, kkk(i)∈MMM(i)

c
∣
∣
∣
c

α

∣
∣
∣
((λλλ·kkkkkkkkk)2,n)/ν

∣
∣
∣
∣
c

β

∣
∣
∣
∣

((ψψψ·kkkkkkkkk)2,n)/ν

min
k1∈M1

·
(
∣
∣
∣
c

α

∣
∣
∣
λ1
∣
∣
∣
∣
c

β

∣
∣
∣
∣

ψ1
)k1

.
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We have to consider in this case three possibilities:

(1) If
∣
∣ c
α
∣
∣λ1
∣
∣
∣ cβ

∣
∣
∣
ψ1

> 1 then

H = inf
ν∈N, kkk(i)∈MMM(i)

c
∣
∣
∣
c

α

∣
∣
∣
(λ1k∗

1+(λλλ·kkkkkkkkk)2,n)/ν
∣
∣
∣
∣
c

β

∣
∣
∣
∣

(ψ1k∗
1+(ψψψ·kkkkkkkkk)2,n)/ν

where k∗
1 = min M1.

(2) If
∣
∣ c
α
∣
∣λ1
∣
∣
∣ cβ

∣
∣
∣
ψ1

= 1 then

H = inf
ν∈N, kkk(i)∈MMM(i)

c
∣
∣
∣
c

α

∣
∣
∣
((λλλ·kkkkkkkkk)2,n)/ν

∣
∣
∣
∣
c

β

∣
∣
∣
∣

(ψψψ·kkkkkkkkk)2,n

,

which corresponds to k∗
1 = min M1.

(3) If
∣
∣ c
α
∣
∣λ1
∣
∣
∣ cβ

∣
∣
∣
ψ1

< 1 then since M1 is not bounded from above, H = 0 which
corresponds to k∗ = ∞ = sup M1. In this case it is not necessary to consider all
other indices k2, . . . , kn.

(d) Assume λ1 = 0, ψ1 = 0. In this case H is independent of k1, and we can
choose ki = k∗

1 where k∗
1 = min M1.

(e) The same argument is applied now to k2, . . . , kn. The final result is that
either H = 0 (and it is known when this happens) or there exist k∗

1 , . . . , k∗
n ∈

M1, . . . , Mn, respectively such that

H = inf
ν∈N

c

(
∣
∣
∣
c

α

∣
∣
∣
λ1k∗

1+···+λnk∗
n

∣
∣
∣
∣
c

β

∣
∣
∣
∣

ψ1k∗
1+...+ψnk∗

n

) 1
ν

(it is important to remember that the set N is bounded and ν ≥ 1)

= c
∣
∣
∣
c

α

∣
∣
∣
(λ1k∗

1+...+λnk∗
n)/ν∗∣∣

∣
∣
c

β

∣
∣
∣
∣

(ψ1k∗
1+...+ψnk∗

n)/ν∗

where ν∗ = maxN or minN according as

∣
∣
∣
c

α

∣
∣
∣
λ1k∗

1+...+λnk∗
n

∣
∣
∣
∣
c

β

∣
∣
∣
∣

ψ1k∗
1+...+ψnk∗

n

≥ 1 or < 1, respectively.

This completes the proof of the first part of the proof where it is assumed that
M1 is independent of k2, . . . , kn, ν.

The second part of the proof when M1 is dependent on k2, · · · , kn, ν. Two
cases can happen for M1. Either (a) minM1 = a0 +

∑n
j=2 ajkj + an+1ν, and

max M1 = b0 +
∑n

j=2 bjkj + bn+1ν; or (b) minM1 = a0 +
∑n

j=2 ajkj + an+1ν

and max M1 = +∞.
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Using the same notation as in part (a) of the proof and remembering that i is
omitted in the suffixes, we see that H ≡ Hi is obtained when k1 is either equal
to min M1 or equal to maxM1. Assume first that k1 is equal to minM1. In this
case we get

H := inf
ν∈N,kkk′∈MMM ′

c
∣
∣
∣
c

α

∣
∣
∣
(a0+

∑n
j=2(λj+aj)+an+1ν)/ν

×

×
∣
∣
∣
∣
c

β

∣
∣
∣
∣

(a0+
∑n

j=2(ψj+aj)+an+1ν)/ν

.

If the minimum is obtained for k1 = maxM1 the result will be similar but
with b’s instead of a’s. But the expression obtained for H is exactly the same
as before but with different sequences of constants λ, ψ. Therefore the proof is
completed as in the first part. If we have the case (b) then as in the proof of
the first main part either H = 0 in which case the proof is finished, or H is
obtained for k1 = min M1. The rest of the proof follows now again from the first
part of the above proof. �

Lemma 4.3. If λλλ(i), kkk(i), ψψψ(i) ˜

{
(i) R̃(r) ≥ r > 0 for r ≥ γ;

(iii) R̃(r) is non-decreasing for r ≥ γ;

(ii) R̃(r) > r for r > γ;

(iv) R̃(r)is continuous for r ≥ γ.
(4.2)

Proof. From the definition of R̃(r) for r ≥ γ we get that (i) and (ii) hold.
Now (2.1.1) implies that for given 1 ≤ i ≤ i0, νi ∈ Ni, kkk(i) ∈ MMM (i) the function
of r in the curly braces in (3.1) is non-decreasing for r ≥ γ so that (iii) holds.
It remains to prove that R̃(r) is continuous on the left and also continuous on
the right for each r ≥ γ.

For the function

H ≡ H(c) := inf
1≤i≤i0

inf
νi∈Ni, kkk

(i)∈MMM(i)

∣
∣
∣
∣φ

−1
νi

(
cνi
( c

α

)λλλ(i)·kkk(i)( c

β

)ψψψ(i)·kkk(i))∣∣
∣
∣

where c ≥ γ, we have H = R̃(c). By Lemma 4.1 H is either = 0 or is a positive
minimum. The lemma gives also necessary and sufficient conditions under which
H can vanish.

Proof of the continuity on the left for r > γ. For a fixed r, r > γ, let γ <

r1 < r2 < . . . < rj < rj+1 ↗ r. By Lemma 4.3(i) R̃(rj) ≥ rj > 0 for j ≥ 1, and
by Lemma 4.1

R̃(rj) = rj

(
rj

|α|
)λλλ(ij)·kkk(ij)

j,1 /ν
(ij)
j

(
rj

|β|
)ψψψ(ij)·kkk(ij)

j,1 /ν
(ij)
j

have the property (2.1.1) then R(r) satisfies:
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where k
(ij)
j,1 is equal either to minM

(ij)
1 or to max M

(ij)
1 , k

(ij)
j,2 is equal either to

minM
(ij)
2 or to max P

(ij)
2 ; k

(ij)

j,n(ij) is equal either to minP
(ij)

n(ij) or to max P
(ij)

n(ij) ,

and ν(ij) is equal either to minN (ij) or to max N (ij). Since 1 ≤ ij ≤ i0, the
number of possible different values of (ij)j≥1 is finite, hence there is an infinite
subsequence of (rj)j≥1 for which all the values ij ’s are equal. We may assume
without loss of generality that ij = ĩ for j ≥ 1. Again, since the number of

values of (ν (̃i)
j )j≥1 is finite, we may assume that ν

(̃i)
j = ν̃ ∈ N (̃i). Since kĩ

j,nĩ

can take only one of two values (either max M (j) or min M (j)) we can again
assume that ∀j ≥ 1 kĩ

j,nĩ
= k̃

(i)

n(ĩ) . Repeating the same argument a finite number
of times we see that

R̃(rj) = rj

(
rj

|α|
)λλλ(̃i)·kkk(̃i)

/ν̃ (
rj

|β|
)ψψψ(̃i)·kkk(̃i)

/ν̃
, ∀j ≥ 1,

where kkk
(i)
j = (k(i)

j,1, . . . , k
(i)
j,nij

), λλλ
(i)
j = (λ(i)

1 , . . . , λ
(i)
nij

). Letting j → ∞ we get

lim
j→∞

R̃(rj) = r0

(
r0

|α|
)λλλ(̃i)·kkk(̃i)

/ν̃ (
r0

|β|
)ψψψ(̃i)·kkk(ĩ)

/ν̃
≥ R̃(r0).

Since R̃(r) is an increasing function for r ≥ γ we have limrj↗r0 R̃(rj) ≤ R̃(r0).
Combining these two inequalities we get limj→∞ R̃(rj) = R̃(r0). Therefore R̃(r)
is continuous on the left for r > r0.

Proof of the continuity on the right for r ≥ γ Choose r0 > 0. R̃(r) is
non-decreasing for r > 0. Given a strictly decreasing sequence rj ↘ r0 we
have w := limj→∞ R̃(rj) ≥ R̃(r0). Assume w > R̃(r0). Choose a number η ,

w > η > R̃(r0). Hence there are numbers 1 ≤ i ≤ i0, kkk(i) ⊂ MMM (i) such that

R̃(r0) ≤ r0

(
r0

|α|
)λλλ(i)·kkk(i)

/νi
(

r0

|β|
)ψψψ(i)·kkk(i)

/νi
< η < w.

For each j > 0 we have

rj

(
rj

|α|
)λλλ(i)·kkk(i)

/νi
(

rj

|β|
)ψψψ(i)·kkk(i)

/νi ≥ R̃(rj).

Letting j → ∞ we get (because rj ↘ r0)

w > η > r0

(
r0

|α|
)λλλ(i)·kkk(i)

/νi
(

r0

|β|
)ψψψ(i)·kkk(i)

/νi

= lim
j→∞

rj

(
rj

|α|
)λλλ(i)·kkk(i)

/νi
(

rj

|β|
)ψψψ(i)·kkk(i)

/νi ≥ lim
j→∞

R̃(rj) = w.
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But this is a contradiction. Hence w ≡ lim
j→∞

R̃(rj) = R̃(r0). �

Proof of Theorem 3.3. By Lemma 4.3, R̃(R) > R. Since Λ(α,β)
n (z, f) is

a holomorphic function, it is enough, by the maximum principle, to prove only
the case |z| = r1, R < r1 < R̃(R). Since R̃(r) is an increasing and continuous
function for r ≥ γ there exists a number r∗0 , δ < r∗0 < R such that for each r0,

r∗0 < r0 < R we have r1 < R̃(r0). Then

Λ(α,β)
n (z, f) =

1
2πi

∮

Γ

f(t)
t − z

Kn(z, t)dt

where Γ := {t ∈ C : |t| = r0}, δ < r0 < R, and

Kn(z, t) =
∑

1≤i≤i0

A(i)
n (z, t) +

∑

1≤i≤i1

B(i)
n (t).

From the definition of R̃(r0) it follows that ∀ i ∈ [0, i0], and ∀ kkk(i) ∈ MMM (i) we
have

R̃(r0)
νi ≤ r

νi
0

(
r0

|α|
)λλλ(i)·kkk(i) (

r0

|β|
)ψψψ(i)·kkk(i)

;

or

R̃(r0)−νi ≥
(

1
r0

)νi
( |α|

r0

)λλλ(i)·kkk(i) ( |β|
r0

)ψψψ(i)·kkk(i)

. (4.3)

By using (4.3), we have (see (2.1.5) for the definition of A
(i)
n (z, t))

∣
∣
∣
∣

1
2πi

∮

Γ

f(t)
t − z

A(i)
n (z, t)dt

∣
∣
∣
∣ ≤

1
2π

2πr0(max
|t|=r0

|f(t)|) · 1
r1 − r0

×

×
∑

νi∈Ni

∑

kkk(i)∈MMM(i)

|b(kkk(i))|



( |α|

r0

)λλλ(i)·kkk(i) ( |β|
r0

)ψψψ(i)·kkk(i) (
r1

r0

)νi





n

≤ c
(i)
1

((
r1

R̃(r0)

)νi
)n−1

∑

i∈Ni

∑

kkk(i)∈MMM(i)

|b(kkk(i))|
(

γ

r0

)λλλ(i)·kkk(i)
+ψψψ(i)·kkk(i) (

r1

r0

)νi

≤ c

((
r1

R̃(r0)

)νi
)n

≤ c2





(
r1

R̃(r0)

)min1≤i≤i0 Nj




n

n = 1, 2, · · · ,

where c2 is a suitable constant. Hence

lim sup
n→∞

max
|z|=r1

∣
∣
∣
∣

1
2πi

∮

Γ

f(t)
t − z

A(i)
n (z, t)dt

∣
∣
∣
∣

1/n

≤
(

r1

R̃(r0)

)min1≤j≤i0 Ni

.
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Since r0 can be chosen arbitrarily between r∗0 and R by letting r0 tend to R we
also have

lim sup
n→∞

max
|z|=r1

∣
∣
∣
∣

1
2πi

∮

Γ

f(t)
t − z

A(i)
n (z, t)dt

∣
∣
∣
∣

1/n

≤
(

r1

R̃(R)

)min1≤j≤i0 Ni

. (4.4)

In a similar way we have using (2.1.2) (see (2.1.6) for the definition of B
(i)
n (t))

∣
∣
∣
∣
∣

1
2πi

∮

|t|=r0

f(t)
t − z

B(i)
n (t)dt

∣
∣
∣
∣
∣
≤ 1

2π
2πr0 max

|t|=r0

|f(t)| 1
r1 − r0

∑

���(i)

|c(���(i))|

×
(

γ

r0

)(µµµ(i)·���(i)
+χχχ(i)·���(i)

)n

≤ d1

(
γ

r0

)n−1 ∑

���(i)∈PPP (i)

|c(���(i))|
(γ

t

)µµµ(i)·���(i)
+χχχ(i)·���(i)

≤ d

(
γ

r0

)n

n = 1, 2, . . .

where d is a suitable constant. From the last inequality we obtain, by first
taking the n’th root and then letting r0 tend to R,

lim sup
n→∞

max
|z|=r1

∣
∣
∣
∣
∣

1
2πi

∮

|t|=r0

f(t)
t − z

B(i)
n (t)dt

∣
∣
∣
∣
∣

1/n

≤ γ

r0
. (4.5)

Now (3.2) follows from (4.4) and (4.5). �

5. Some Topological Results

5.1. Properties of some compact sets.

Lemma 5.1.1. Assume K ⊂ C is a bounded compact set and 0 /∈ K. Then

the set K−1 := {ω : ω−1 ∈ K} is compact.

Proof. Since the map z −→ 1/z of C\{0,∞} onto itself is one-to-one and
bi-continuous it follows that K−1 is compact. Also 0 �∈ K implies the existence
of a disk Dζ , ζ > 0, which is disjoint with K. Hence K−1 ⊂ D1/ζ . �

Assume G is a star-shaped domain (and therefore simply connected). Let
0 < ρ < 1. By the Riemann mapping theorem ∃ g : D1 → G which is one-to-one
and onto with g(0) = 0. Let H ≡ Hρ := g(Dρ)

⋃
D. Obviously D ⊂ Hρ ⊂ G.

Since G is star-shaped (see Z.Nehari [80, p.220]), therefore g(Dρ) and Hρ =
g(Dρ)

⋃
D are star-shaped. Hence the boundary of g(Dρ) is a star-shaped and

rectifiable Jordan curve. Since the boundary is a star-shaped and rectifiable
Jordan curve, it follows that ∂Hρ is also a star-shaped rectifiable Jordan curve.
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Lemma 5.1.2. For each ρ, 0 < ρ < 1, the set Hρ is bounded.

Proof. The function g is continuous and g(Dρ) is compact, and therefore
bounded.

�

Definition 5.1.3. Assume f ∈ AR, R > 1. Let 0 �= |α|, |β| < R and for

1 ≤ i ≤ i0 let kkk(i) ∈ MMM (i) means k
(i)
ni ∈ M

(i)
ni , · · · , k

(i)
1 ∈ M

(i)
1

i

Ai(ρ) :=
⋂

νi∈Ni

⋂

kkk(i)∈MMM(i)

⋂

c�∈S

φ−1
νi



cνi

( c

α

)λλλ(i)·kkk(i)(
c

β

)ψψψ(i)·kkk(i)

Hρ





and E(ρ) :=
⋂

1≤i≤i0

Ai(ρ).

In particular if G is replaced by Hρ then the same result remains true with E
replaced by E(ρ).

Lemma 5.1.4. Suppose the assumptions of 5.1.3 are

Then for each i, 1 ≤ i ≤ i0 and each ρ, 0 < ρ < 1, the sets Ai(ρ) and E
are star-shaped domains.

Proof. The relation z0 ∈ Ai(ρ) is equivalent to the statement: ∀i(1 ≤ i ≤
i0), ∀νi ∈ Ni, ∀kkk(i) ∈ MMM (i) and ∀c �∈ S ∃ζ0 ∈ Hρ such that

zνi
0 = cνi

( c

α

)λλλ(i)·kkk(i)(
c

β

)ψψψ(i)·kkk(i)

ζ0 .

For each 0 < λ < 1, we have 0 < λνi < 1. Hence λνi ∈ Hρ . We have

(λz0)νi = cνi

( c

α

)λλλ(i)·kkk(i)(
c

β

)ψψψ(i)·kkk(i)

(λνiζ0).

Therefore λz0 ∈ Ai(ρ) . So that Ai(ρ) is star-shaped, which implies that A(ρ)
is star-shaped. Similarly if we choose now λ = 1 + δeiφ, 0 ≤ φ < 2π, where
δ > 0 is sufficiently small we get again

(λz0)νi = cνi

( c

α

)λλλ(i)·kkk(i)(
c

β

)ψψψ(i)·kkk(i)

(λνiζ0).

Since Hρ is open it follows that for a sufficiently small δ0 > 0 , (1 + δeiφ)z0 ∈
Ai(ρ). Hence Ai(ρ) is an open star-shaped domain. Now, since E is a finite
intersection of open star-shaped domains it is also an open star-shaped domain.
�

. Define for each

0 < ρ < 1 (similar to the definition of A ) and E in (3.3)

Definition satisfied.
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Lemma 5.1.5.

K be a non-empty set of complex numbers. Then K ⊂ E , if and only if,

L :=
⋃

1≤i≤i0

⋃

νi∈Ni

⋃

kkk(i)∈MMM(i)

⋃

c�∈S

{ 1
cνi

(α

c

)λλλ(i)·kkk(i) (
β

c

)ψψψ(i)·kkk(i)

Kνi} ⊂ G.

Proof. We have

K ⊂ E ⇐⇒ ∀ζ ∈ K, ∀i ∈ [1, i0], ∀νi ∈ Ni, ∀kkk(i) ∈ MMM (i), ∀c /∈ S

ζ ∈
⋂

c�∈S

φ−1
νi



cνi

( c

α

)λλλ(i)·kkk(i)(
c

β

)ψψψ(i)·kkk(i)

G



 .

This is equivalent to the statement that ∀i ∈ [1, i0], ∀νi ∈ Ni, ∀kkk(i) ∈ MMM (i),

∀c �∈ S

1
cνi

(α

c

)λλλ(i)·kkk(i) (
β

c

)ψψψ(i)·kkk(i)

Kνi ⊂ G.

And the last statement is equivalent to

⋃

1≤i≤i0

⋃

νi∈Ni

⋃

kkk(i)∈MMM(i)

⋃

c�∈S

( 1
cνi

(α

c

)λλλ(i)·kkk(i) (
β

c

)ψψψ(i)·kkk(i)

Kνi
) ⊂ G. �

Lemma 5.1.6. If the set K is bounded, then the set L is bounded.

Proof. When the set K is bounded, each of the sets Kν is bounded. Now
for each c /∈ S, we have |c| ≥ R and | α

R | < 1, | β
R | < 1. Therefore for each c /∈ S

∣
∣
∣
∣
∣

1
cν

(α

c

)k
(

β

c

)j
∣
∣
∣
∣
∣
≤ 1

|c|ν ≤ 1
Rν

≤ 1
R

, if ν > 0 and R > 1.

The proof follows now from the definition of L (in Lemma 5.1.5). �

Lemma 5.1.7. Let K be a bounded and compact set satisfying 0 ∈ K. Then

the set L is bounded, compact and 0 ∈ L.

Proof. By Lemma 5.1.6 the set L is bounded. From 0 ∈ K, it follows that
0 ∈ L. Hence it only remains to show that L is closed. Assume zr ∈ L for r ≥ 1
and that zr −→ z0. We will prove that z0 ∈ L. To each zr ∈ L, r = 1, 2, . . . ,

there correspond numbers ir ∈ [1, i0], νr ∈ Nir
, k

(ir)
n(ir) ∈ M

(ir)
n

(ir)
, . . . , k

(ir)
1 ∈

Assume the assumptions of Definition 5.1.3 are satisfied. Let
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M
(ir)
1 , cr �∈ S and ζr ∈ K, such that zr = 1

cνr
r

(
α
cr

)kr
(

β
cr

)jr

ζνr
r where kr :=

λλλ(ir) · kkk(ir) ≥ 0, and jr := ψψψ(ir) · kkk(ir) ≥ 0 (see 2.1.1). Since 1 ≤ ir ≤ i0 for
r ≥ 1, there is an integer ĩ, 1 ≤ ĩ ≤ i0 (at least one) such that ir = ĩ for an
infinite subsequence r1 < r2 < r3 < . . . ↗ ∞. Taking a subsequence of the
original sequence (zr)r≥1, which we may assume without loss of generality to
be the original sequence (zr)r≥1 itself, we may assume ir = ĩ for r = 1, 2, . . . .

Similarly by passing to subsequences we may assume without loss of generality
that νr = ν̃ ∈ Nĩ for r = 1, 2, . . . .

Assume first that (kr)r≥1 is not bounded. Again by passing to subsequences
we may assume kr → ∞. Hence ( α

cr
)kr → 0, because |cr| > R > |α| and we

see in this case that zr −→ 0 = z0 ∈ L (since 0 ∈ K). Similarly if jr → ∞
then again z0 ∈ K. Assume now that the sequences (kr)r≥1 and (jr)r≥1 are
bounded. Then we may again assume that the sequences (kr)r≥1, and (jr)r≥1

are constant, i.e., kr = k̃, and jr = j̃, r = 1, 2, . . . . Now ζνr
r = ζ ν̃

r are bounded
because K is bounded. Taking further subsequences we see that we may assume
ζr → ζ ∈ K and either for some subsequence crp

−→ ∞, in which case we see
again that zrp −→ 0 = z0 ∈ L, or crp −→ c �∈ S (because Sc is closed). In this
case we get zr = 1

cν̃
r

( α
cr

)k̃( β
cr

)j̃ζ ν̃
r → 1

cν̃
(α

c )k̃(β
c )j̃ζ ν̃ = z0 ∈ L, from the definition

of the set L in Lemma 5.1.5. �

Lemma 5.1.8. Let K be a compact set satisfying 0 ∈ K and K ⊂ E . Then

the set L is compact, 0 ∈ L and L ⊂ G.

Proof. By Lemma 5.1.5 we have L ⊂ G. By Lemma 5.1.7, L is compact. �

Lemma 5.1.9. Let K be a compact and bounded set satisfying 0 ∈ K and

K ⊂ E . Then there exists a number ρ0, 0 < ρ0 < 1, such that for all ρ, ρ0 <

ρ < 1, L ⊂ Hρ.

Proof. The map g : D → G is bi-continuous. By Lemma 5.1.8, L ⊂ G

and therefore g−1(L) ⊂ D and g−1(L) is compact. Therefore there exists a
number ρ0, 0 < ρ0 < 1, such that g−1(L) ⊂ Dρ0 . This implies that for all
ρ, (ρ0 < ρ < 1), we have L ⊂ g(Dρ) ∪ D = Hρ. �

5.2. Some paticular Jordan curves.

By the Riemann mapping theorem ∃h ≡ hρ : D → E(ρ) with h(0) = 0. For
any ρ′, 0 < ρ′ < 1, we set Cρ′ := hρ(Dρ′) = hρ(Dρ′) ⊂ E(ρ). Cρ′ is star-shaped
and ∂Cρ′ is a star-shaped, rectifiable and closed Jordan curve.
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Lemma 5.2.1. Let K be a compact and bounded set satisfying 0 ∈ K and

K ⊂ E . Then ∀ρ, ρ0 < ρ < 1 (ρ0

each ρ, ρ0 < ρ < 1 there corresponds a number ρ1 ≡ ρ1(ρ), 0 < ρ1 < 1 such that

for all ρ′, ρ1(ρ) < ρ′ < 1, K ⊂ hρ(Dρ′)⊂
�=

hρ(Dρ′) ≡ Cρ′ ⊂ E(ρ),K ⊂ Int Cρ′ ,

and K is in the interior of ∂Cρ′ .

Proof. a) By Lemma 5.1.9 for all ρ, ρ0 < ρ < 1, L ⊂ Hρ. By Lemma
5.1.5, with G replaced by Hρ, we get K ⊂ E(ρ). b) hρ : D → E(ρ), hρ(0) = 0,

is univalent and onto. Since K is compact and bounded and K ⊂ E(ρ) the
set h−1

ρ (K) is compact and h−1
ρ (K) ⊂ D. Hence to each ρ, ρ0 < ρ < 1, there

corresponds a number ρ1 ≡ ρ1(ρ), 0 < ρ1 < 1 such that for all ρ′, ρ1(ρ) <

ρ′ < 1, h−1
ρ (K) ⊂ Dρ′ , which implies K ⊂ hρ(Dρ′)⊂

�=
hρ(Dρ′) = Cρ′ ⊂ Eρ, and

in particular K ⊂ Int Cρ′ . Also, since the domains are star-shaped K is in the
interior of ∂Cρ′ . �

Lemma 5.2.2. For each ρ, 0 < ρ < 1, we have E(ρ) ⊃ DR̃(r) for 0 < r < R.

Proof. Since for each ρ, 0 < ρ < 1, D ⊂ Hρ, we obtain from Corollary 4.2
that DR̃(r) ⊂ DR̃(R) ⊂ E(ρ) for 0 ≤ r ≤ R. �

Lemma 5.2.3. max(1, |α|, |β|) ≡ δ < r < R. Then

to each ρ, 0 < ρ < 1 there corresponds a number ρ2 ≡ ρ2(ρ), 0 < ρ2 < 1 such

that for each ρ′, ρ2(ρ) < ρ′ < 1, we have DR̃(r) ⊂ hρ(Dρ′)⊂
�=

hρ(Dρ′) ≡ Cρ′ .

Proof. From the definition of R̃(r) we see, since 0 < δ < r < R, that
R̃(R) > R̃(r). By Lemma 5.2.2 we have now for each ρ, 0 < ρ < 1, E(ρ) ⊃
DR̃(R) ⊃ DR̃(r). Since hρ : D → E(ρ) is onto, one-to-one and bi-continuous, we
see that the preimage h−1

ρ (DR̃(R)) ⊂ D is compact and bounded. Therefore
there exists some ρ2 ≡ ρ2(ρ), 0 < ρ2 < 1, such that h−1

ρ (DR̃(R)) ⊂ Dρ2 . Hence

for each ρ′, ρ2(ρ) < ρ′ < 1, Cρ′ := hρ(Dρ′)⊂
�=

hρ(Dρ′) ⊃ DR̃(R) ⊃ DR̃(r). �

Lemma 5.2.4. max(1, |α|, |β|) ≡ δ < r < R. Set
′ satisfy ρ2(ρ) < ρ′ < 1

(see Lemma 5.2.3 ). Then for each z ∈ ∂Cρ′ we have |z| > r
(

r
γ

)1/ν∗

> r, where

ν∗ = max
⋃

1≤i≤i0
Ni < ∞.

Proof. By Lemma 5.2.3 we have for ρ′, ρ2 < ρ′ < 1,

DR̃(r) ⊂ hρ(Dρ′)⊂
�=

hρ(Dρ′) ≡ Cρ′ .

is defined in Lemma 5.1.9) K ⊂ E(ρ). And to

Assume that r satisfies

γ := max{|α|, |β|}. Suppose ρ, 0 < ρ < 1, is given. Let ρ

Assume that r satisfies
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Therefore for each z ∈ ∂Cρ′ , z �∈ DR̃(r) which, by (2.1.1) and Remark 3.2,

implies that |z| > R̃(r) ≥ r
(

r
γ

) 1
ν∗

> r. �

5.3. The sets Kνjk(z) and their properties.

Let ĩ, ν̃, k̃1, · · · , k̃nĩ be given non-negative integers satisfying 1 ≤ ĩ ≤ i0,

ν̃ ∈ Nĩ, k̃ni
∈ M ĩ

nĩ
, · · · , k̃1 ∈ M ĩ

1. For the sake of simplicity write ν := ν̃j ,

k := λλλĩ.k̃kk and j := ψψψĩ.k̃kk. Then k and j satisfy k ≥ 0, j ≥ 0 and k + j ≥ 1. For
0 < ρ < 1, set Hc

ρ := C\Hρ and (Hc
ρ)−1 := {ω ∈ C : 1

ω ∈ Hc
ρ},

Remark. Some of the following definitions and lemmas remain valid when
it is assumed only that the integers ν k, j satisfy ν ≥ 1, k ≥ 0, j ≥ 0 and
k + j ≥ 1.

Definition 5.3.1. For a positive integer ν and two non-negative integers

ν, k, j, satisfying k ≥ 0, j ≥ 0 and k + j ≥ 1 write

Kνjk(z) :=

{

ω ∈ C : ων
(ω

α

)k
(

ω

β

)j

∈ zν(Hc
ρ)−1

}

.

which is equivalent to

Kνjk(z) = φ−1
ν+k+j

(
zναkβj(Hc

ρ)−1
)
. (5.3.1)

We now give a sequence of lemmas which lead to the construction of the star-
shaped closed Jordan curves Γνjk(z) that are used later in the proof of Theorem
3.4.

Lemma 5.3.2. For each ρ, 0 < ρ < 1, and three integers ν, k, j satifying the

(i) (Hc
ρ)−1 and φ−1

ν ((Hc
ρ)−1) are star-shaped, compact and bounded,

0 ∈ (Hc
ρ)−1, 0 ∈ φ−1

ν ((Hc
ρ)−1), (Hc

ρ)−1 ⊃ Dη,

and

φ−1
ν ((Hc

ρ)−1) ⊃ Dη′ for η = (2 max |Hρ|)−1 and η′ = η1/ν .

(ii) (Hc
ρ)−1 ⊂ D, and φ−1

ν ((Hc
ρ)−1) ⊂ D.

(iii) c
ρ

−1 and zφ−1
ν ((Hc

ρ)−1) are star-shaped, com-

pact and bounded.

assumptions of Definition 5.3.1 the following assertions hold:

For any finite complex z, z(H )
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k j ν(Hc
ρ)−1 and φ−1

ν+k+jα
kβjzν(Hc

ρ)−1)
are star-shaped and compact,

0 ∈ αkβjzν(Hc
ρ)−1 and 0 ∈ φ−1

ν+k+j

(
αkβjzν(Hc

ρ)−1
)
.

Proof. Proof of (i) and (ii). By Lemma 5.1.1 and the remark made after
its proof and by Lemma 5.1.2 the set (Hc

ρ)−1 is compact, open, bounded, star-
shaped domain and 0 ∈ (Hc

ρ)−1. From Hρ ⊃ D it follows that (Hc
ρ)−1 ⊂ D.

Since Hρ is compact and bounded the rest of the proof of (i) follows. The proof
for φ−1

ν ((Hc
ρ)−1) is immediate. (iii) and (iv) are immediate too. �

Lemma 5.3.3. Assume the assumptions of 5.3.1 are

complex z, the set Kνjk(z) is star-shaped, compact and

bounded, 0 ∈ Kνjk(z), Kνjk(z) includes a disk with center 0 and radius

( |α|k|β|j |z|ν
2max |Hρ|

)1/(ν+k+j)

,

and ∂Kνjk

Proof. From the definition of Kνjk(z) we get

Kνjk(z) = φ−1
ν+j+k(αkβjzν(Hc

ρ)−1).

By Lemma 5.3.2(i), (Hc
ρ)−1 includes a disk with center 0. Therefore Kνjk(z)

contains a disk with center 0. By Lemma 3.3. 2(iv), the set Kνjk(z) is star-
shaped, compact and bounded. By the remark after the proof of Lemma 5.1.1
∂Kνjk(z) is a rectifiable and star-shaped Jordan curve. The rest of the proof
follows from the definition of (Hc

ρ)−1 and Lemma 5.3.1(i).
�

Lemma 5.3.4. max(1, |α|, |β|) ≡ δ < r < R and

0 < ρ < 1. Let ρ′ 2
′

2

5.2.3). Then ∀z ∈ Cρ′, we have Kνjk(z) ⊂ S.

Proof. We have (from the definition of Cρ′ in Lemma 5.2.1 Cρ′ ⊂ E(ρ). Now
z ∈ E(ρ) is equivalent to the assertion that for all c /∈ S, for all i, 1 ≤ i ≤ i0

and for all i, ν, k
(i)
1 , . . . , k

(i)
n belonging to Ni,M

(i)
1 , . . . , M

(i)
n respectively, and

∀ λ
(i)
0 , . . . , λ

(i)
n , ψ

(i)
0 , . . . , ψ

(0)
n we have the following chain of equivalent state-

ments:

(i) z ∈ φ−1
νi

(
cνi
( c

α

)λλλ(i)·kkk(i)( c

β

)ψψψ(i)·kkk(i)

Hρ

)

(iv) For any finite complex z the sets α β z

Definition satisfied.

Then for each finite

(z) is a rectifiable star-shaped Jordan curve.

Assume that r satisfies

satisfy ρ (ρ) < ρ < 1 (where ρ (ρ) is defined in Lemma
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(ii) z /∈ φ−1
νi

(
cνi
( c

α

)λλλ(i)·kkk(i)( c

β

)ψψψ(i)·kkk(i)

Hc
ρ

)

(iii) z /∈ φ−1
νi

(
cνi
( c

α

)λλλ(i)·kkk(i)( c

β

)ψψψ(i)·kkk(i)

ζ
)

for each ζ ∈ Hc
ρ

(iv)
zνi

ζ
�= cνi

( c

α

)λλλ(i)·kkk(i)( c

β

)ψψψ(i)·kkk(i)

for each ζ ∈ Hc
ρ

(v) cνi
( c

α

)λλλ(i)·kkk(i)( c

β

)ψψψ(i)·kkk(i)

/∈ zνi(Hc
ρ)−1.

From the definition of Kνjk(z) it follows now that for each z ∈ Cρ′ , Kνjk(z) :=
{
ω ∈ C : ων

(
ω
α

)k(ω
β

)j ∈ zν(Hc
ρ)−1

} ⊂ S. �

Lemma 5.3.5.

ρ, 0 < ρ < 1. Choose θ0 so that 1 > θ0 > γ
r . Let ρ′ satisfy ρ2(ρ) < ρ′ < 1

2 5.2.3). Then for each z ∈ ∂Cρ′ and for

each ω ∈ Kνjk(z) we have |ω| < θ0|z| ,
⋃

z∈∂Cρ′ Kνjk(z) ⊂ Int θ0∂Cρ′ and

d(∂Cρ′ ,
⋃

z∈∂Cρ′ Kνjk(z) ≥ d > 0.

Proof. By Lemma 5.2.4 for each z ∈ ∂Cρ′ , where ρ2(ρ) < ρ′ < 1 ,

|z| ≥ r| r
γ |1/ν∗

> r > 1. Assume that for some ω ∈ Kνjk, we have |ω| ≥ θ0|z|.
By Definition 5.3.1 we have ων(ω

α

)k
(

ω
β

)j

∈ zν(Hc
ρ)−1 which is equivalent to

1
zν

(

ων(ω
α

)k
(

ω
β

)j
)

∈ (Hc
ρ)−1 ⊂ D (see Lemma 5.3.2(ii)). This implies that

1 ≥
∣
∣
∣
∣

1
zν (ων(ω

α

)k
(

ω
β

)j

)
∣
∣
∣
∣ . Hence

1 ≥
∣
∣
∣
ω

z

∣
∣
∣
ν ∣∣
∣
ω

α

∣
∣
∣
k
∣
∣
∣
∣
ω

β

∣
∣
∣
∣

j

≥
∣
∣
∣
ω

z

∣
∣
∣
ν
(

r

γ

)k+j

≥ θ0

(
r

γ

)k+j

≥ θ0
r

γ
> 1. (5.3.2)

But (5.3.2) is a contradiction. This contradiction implies that |ω| < θ0|z|.
Since θ0∂Cρ′ and Kνjk(z) are compact, bounded, star-shaped, 0 ∈ Kνjk(z) and
0 is in the interior of ∂Cρ′ we get

⋃
z∈∂Cρ′ Kνjk(z) ⊂ Int θ0∂Cρ′ . The set

∂Cρ′ is a compact, bounded and star-shaped closed Jordan curve. Therefore
d := d(∂Cρ′ , θ0∂Cρ′) > 0. Combining the last two results we get

d(∂Cρ′ ,
⋃

z∈∂Cρ′

Kνjk) ≥ d > 0.

�

Lemma 5.3.6.

the set
⋃

z∈∂Cρ′ Kνjk(z) is compact, bounded and
⋃

z∈∂Cρ′ Kνjk(z) ⊂ S. Also

there is a number ε0 > 0 such that

∀ε, 0 < ε < ε0 ,
⋃

z∈∂Cρ′

(1 + ε)Kνjk(z) ⊂ S

Assume that r satisfies max(1, |α|, |β|) ≡ δ < r < R and that

(where ρ (ρ) is defined in Lemma

Suppose the assumptions of Lemma 5.3.5 are satisfied. Then
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and

d(∂Cρ′ , (1 + ε∗)Kνjk(z)) ≥ 1
2
d

for

ε∗ :=



2 max

∣
∣
∣
∣
∣
∣

⋃

z∈Cρ′

Kνjk(z)

∣
∣
∣
∣
∣
∣





−1

> 0.

Proof. By Lemma 5.3.4, z ∈ ∂Cρ′ implies Kνjk(z) ⊂ S so that ∀ z ∈ ∂Cρ′ ,
⋃

z∈∂Cρ′ Kνjk(z) ⊂ S. By (5.3.3) we see that

Kνjk(z) = φ−1
ν+k+j

(
αkβjzν(Hc

ρ)−1
)
.

and S ⊃ ⋃z∈∂Cρ′ Kνjk(z) = φ−1
ν+k+j

(
αkβj(∂Cρ′)ν(Hc

ρ)−1
)
. By a standard ar-

gument, (since (Hc
ρ)−1 and ∂Cρ′ are compact and bounded) we see that the set

⋃
z∈Cρ′ Kνjk(z) is compact and bounded, so since Sc is closed we get

d∗ := d




⋃

z∈∂Cρ′

Kνjk(z), Sc



 > 0. (5.3.4)

The boundednes of
⋃

z∈∂Cρ′ Kνjk(z) shows that there exists a sufficiently small
ε0 > 0 such that for all 0 < ε ≤ ε0,

⋃
z∈Cρ′ (1 + ε)Kνjk(z) ⊂ S. From

Lemma 5.3.5 it follows (since
⋃

z∈Cρ′ is compact and bounded) that d(Cρ′ , (1+

ε∗)
⋃

z∈∂Cρ′ Kνjk(z)) ≥ 1
2d > 0. �

Definition 5.3.7. Assume the assumptions of Lemma 5.3.6 are satisfied.
For each z ∈ ∂Cρ′ and and each ε ≡ ε(z) > 0, define K̃νjk(z, ε) := (1+ε)Kνjk(z).

Lemma 5.3.8.

ε3 := min (ε0, θ0, ε∗) > 0. Then for each ε, 0 < ε < ε3 the set K̃νjk(z, ε) is

star-shaped, compact and

{
0 ∈ K̃νjk(z, ε), z �∈ K̃νjk(z, ε), K̃νjk(z, ε) ⊂ S

K̃νjk(z, ε) ⊃ Dη′ for some η′ > 0
(5.3.5)

⋃

z∈∂Cρ′

K̃νjk(z, ε) ⊂
⋃

z∈∂Cρ′

(1 + ε0)Kνjk ⊂ S (5.3.6)

and

d(∂Cρ′ ,
⋃

z∈Cρ′

K̃νjk(z, ε)) ≥ 1
2
d > 0. (5.3.7)

Proof. Suppose 0 < ε < ε3. By Lemma 5.3.3 Kνjk(z) contains a disk with
center 0. Therefore for each ε > 0, K̃νjk(z, ε) also contains a disk with center

(5.3.3)

Suppose the assumptions of Lemma 5.3.6 are satisfied. Write
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0. Again by Lemma 5.3.3 for each ε > 0 the set (1 + ε)Kνjk(z) is star-shaped,
compact and bounded.

By Lemma 5.3.6 we have z �∈ K̃νjk(z, ε), and K̃νjk(z, ε) ⊂ S. Also (5.3.6)
and (5.3.7) follow by Lemma 5.3.6. �

5.4. The curves Γνjk(z) and their properties.

Lemma 5.4.1. Let

ρ′ satisfy ρ2(ρ) < ρ′ < 1. Write ε := 1
2ε3, Then Γνjk(z) := ∂K̃νjk(z, ε) is a

∀z ∈ Cρ′ 0 ∈ Int Γνjk(z), z ∈ Ext Γνjk(z), Γνjk(z) ⊂ S (5.4.1)

and

∀z ∈ ∂Cρ′ , ∀t ∈ Γνjk(z), ζ(z, t) :=
(z

t

)ν(α

t

)k
(

β

t

)j

∈ Hρ. (5.4.2)

Proof. By Lemma 5.3.8 for z ∈ ∂Cρ′ and ε = 1
2ε3, K̃νjk(z, ε) is star-

shaped, compact and bounded and by Lemma 5.3.3 K̃νjk(z, ε) includes a disk
with center 0. It follows now from Lemma 5.3.8 that 0 ∈ Int Γνjk(z), z ∈
Ext Γνjk(z), Γνjk(z) ⊂ S (since Γνjk(z) = ∂K̃νjk(z) ⊂ K̃νjk(z) ⊂ S).
Since Γνjk(z) = ∂{(1 + ε)Kνjk(z)}, and Kνjk(z) is star-shaped, we get
Γνjk(z)

⋂
Kνjk(z) = ∅. So for each t ∈ Γνjk(z), we have t �∈ Kνjk(z), which

means that tν
(

t
α

)k
(

t
β

)j

�∈ zν(Hc
ρ)−1. In other words

(
t

z

)ν (
t

α

)k (
t

β

)j

=: ζ(z, t)−1 �∈ (Hc
ρ)−1 ⇔ ζ(z, t) �∈ Hc

ρ ⇔ ζ(z, t) ∈ Hρ

so that (5.4.2) holds. Since

Γνjk(z) := ∂K̃νjk(z, ε) = ∂{(1 + ε)Kνjk(z)} = (1 + ε)∂Kνjk(z). (5.4.3)

and the boundary of Kνjk(z) is a star-shaped and rectifiable Jordan curve (by
Lemma 5.3.3), it follows that so is Γνjk(z). �

Lemma 5.4.2. Suppose the assumptions of Lemma 5.4.1 in

particular 0 < ρ < 1 and ρ2(ρ) < ρ′ < 1 (see Lemma 5.2.4). Let k, j, ν be

integers satisfying k ≥ 0, j ≥ 0, k + j ≥ 1 and ν > 0. Then there exist a compact

and closed curve B2

Assume the assumptions of Lemma 5.3.8 are satisfied.

star-shaped and rectifiable closed Jordan curve such that

are satisfied,

and bounded set Γ and a star-shaped Jordan rectifiable
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satisfying

(i)
⋃

z∈∂Cρ′

Γνjk(z) ⊂ Γ ⊂ S;

(ii) {ζ(z, t) : z ∈ ∂Cρ′ , t ∈ Γνjk(z)} ⊂ B2 ⊂ Hρ ⊂ G.

(iii)The length Lνkj(z) of Γνkj(z) is a continuous function for z ∈ ∂Cρ′ .

(iv) inf
z∈∂Cρ′

d (Γνjk(z), 0) ≥ σ > 0 where σ = (1 + ε)

(
|α|k|β|jR̃(r)ν

2 max Hρ′

)1/(ν+j+k)

.

Proof. (a) By Lemma 5.4.1, Lemma 5.3.8 and Lemma 5.3.6 the set
⋃

z∈∂Cρ′ Γνjk(z) ⊂ Γ ⊂ S is star-shaped, compact and bounded. therefore
there exists a compact and bounded set Γ satisfying (i). (b) Now we prove
(ii). By Lemma 5.4.1 to each z ∈ ∂Cρ′ there exists a rectifiable Jordan curve
Γνjk(z) satisfying 0 ∈ Int (Γνjk(z)), z ∈ Ext (Γνjk(z), Γνjk(z) ⊂ S,

and ∀t ∈ Γνjk(z), ζ(z, t) ∈ Hρ ⊂ G. By Lemma 5.1.1 ∀z ∈ ∂Cρ′ , the set
{t−(ν+k+j) : t ∈ Γνjk(z)} is compact and bounded. Hence ∀z ∈ ∂Cρ′ B(z) ≡
Bνjk(z) := {ζ(z, t) : t ∈ Γνjk(z)} is compact and bounded too. In particular
∀z ∈ ∂Cρ′ , B(z) ⊂ Hρ ⊂ G. For a positive r and a set E of complex numbers
we have ∂ϕ−1(E) = ϕ−1(∂E) and ∂(E−1) = (∂E)−1. By definition 5.3.1 and
(5.3.2) we have

Γνjk(z) = (1 + ε)ϕ−1
ν+k+j(α

kβjzν∂((Hc
ρ)−1). (5.4.4)

From the representation (5.4.4) of Γνjk(z) we see that Lνjk(z) is a continuous
function of z ∈ ∂Cρ′ . From (5.4.4) ∀z ∈ ∂Cρ′ we have

B(z) = {ζ(z, t) : t ∈ Γνjk(z)} =
αkβjzν

(Γνjk(z))ν+k+j

=
αkβjzν

(1 + ε(z))ν+j+kαkβjzν∂(Hc
ρ)−1

=
1

(1 + ε(z))ν+k+j
∂(Hc

ρ) = (1 + ε(z))−(ν+j+k)∂Hρ.

Thus B(z) ≡ Bνjk(z) = (1 + ε)−(ν+j+k)∂Hρ.

For each λ, 0 < λ < 1, we have λ∂Hρ ⊂ Hρ since Hρ and hence also ∂Hρ

are star-shaped. Now from the definition of ε in Lemma 5.3.8 it follows that
⋃

z∈∂Cρ′

Bνjk(z) =
⋃

z∈∂Cρ′

(1 + ε)−(ν+j+k)∂Hρ ⊂ 1
1 + ε

Hρ ⊂ Hρ ⊂ G.

Because Hρ and hence also ∂Hρ is star-shaped we get
⋃

z∈∂Cρ′

Bνjk(z) ⊂ B2 :=
1

1 + ε
Hρ ⊂ Hρ ⊂ G,
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where the set B2 is compact, bounded and B2 ⊂ Hρ ⊂ G.

Proof of (iv). By Lemma 5.2.3 we have d (∂Cρ′ |, 0) ≥ R̃(r)). From the relation

Γνjk(z) = (1 + ε)φ−1
ν+j+k

(
αkβjzν∂((Hc

ρ)−1)
)

we have, by applying Lemma 5.3.2(i) at the last stage,

min
z∈∂Cρ′

|Γνjk(z)| = min
z∈∂Cρ′

(1 + ε)
∣
∣
∣φ−1

ν+j+k(αkβjzν∂(Hρ′)c)−1)
∣
∣
∣

= (1 + ε) min
z∈∂Cρ′

(|α|k|β|j |z|ν |∂((Hc
ρ′)−1)|)1/(ν+j+k)

≥ (1 + ε)

(
|α|k|β|j(R̃(r))ν

2max |Hρ′ |

)1/(ν+j+k)

�

6. Proof of Theorem 3.4

We observe that by the maximum principle, instead of proving Theorem 3.4
for arbitrary compact subsets K of Sf , it is enough to prove the theorem for a
family of closed Jordan curves having two properties: (i) each member of the
family is included in Sf and (ii) to each compact and bounded subset K of Sf

there exists at least one element in the family of curves which includes K in its
interior. Lemma 5.2.1 shows the family of curves {∂Cρ′} has these properties.
Therefore it is enough to prove the theorem for z ∈ ∂Cρ′ only.

In the lemmas quoted and applied in this proof for the domain G we choose
the domain GA, where GA is the A-summability domain of the function f ∈ AR.

We have to estimate the integrals in the representation of Λ(α,β)
n+1 (z, f) for z

on compact subsets of EEE . By the above remark it is enough to prove the theorem
only for the Jordan curves ∂Cρ′ . We have

Λ(α,β)
n+1 (z, f)=

i0∑

i=0

1
2πi

∮

|t|=r

f(t)
t − z

A
(i)
n+1(z; t)dt+

i0∑

i=1

1
2πi

∮

|t|=r

f(t)
z − t

B
(i)
n+1(t)dt,

when δ < r < R and z ∈ ∂Cρ′ . Choose as in Lemma 5.2.3 ρ, 0 < ρ <

1 and ρ2(ρ) < ρ′ < 1. Since Cρ′ is compact, we can choose µ, 0 < µ <

+∞, large enough so that ∀z ∈ Cρ′ , |z| ≤ µ. By Lemma 5.2.4, ∀z ∈
∂Cρ′ we have |z| > r

(
r
γ

) 1
ν∗

> r. For |t| = r and z ∈ Cρ′ we have (again by

Lemma 5.2.4) |z − t| ≥ |z| − |t| ≥ r
∣
∣
∣ rγ

∣
∣
∣

1
ν∗ − r > 0.
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Write φ(x, z) :=
∑∞

n=0 an(x)zn, ε(x, θ) := max|ζ|≤θ |φ(x, ζ)| , M :=

max|t|=τ |f(t)| and ηi(t) :=
(

α
t

)λλλ(i)·kkk(i)(
β
t

)ψψψ(i)·kkk(i)

. For all terms A
(i)
n+1(z; t),

1 ≤ i ≤ i0, we have, by (2.1.5),

A(i)(z) :≡
∞∑

n=0

an(x)
1

2πi

∮

|t|=r

f(t)
t − z

A
(i)
n+1(z; t)dt

=
1

2πi

∮

|t|=r

f(t)
t − z

∞∑

n=0

an(x)A(i)
n+1(z, t)dt

=
1

2πi

∮

|t|=r

f(t)
t − z

∞∑

n=0

an(x)
∑

νi∈Ni

∑

kkk(i)∈MMM(i)

bi(kkk
(i)) ηi(t)

n+1
(z

t

)(n+1)νi

where we recall that kkk(i) ∈ MMM (i) means that k
(i)
ni ∈ M

(i)
ni , . . . , k

(i)
1 ∈ M

(i)
1 . So

A(i)(z) =
1

2πi

∮

|t|=r

f(t)
t − z

∑

νi∈Ni

∑

kkk(i)∈MMM(i)

bi(kkk
(i)) ηi(t)

(z

t

)νi
∞∑

n=0

an(x)ηi(t)
n×

×
(z

t

)nνi

=
1

2πi

∮

|t|=r

f(t)
t − z

∑

νi∈Ni

∑

kkk(i)∈MMM(i)

bi(kkk
(i))ηi(t)

(z

t

)νi

φ(x, ηi(t)
(z

t

)νi

) .

Writing ξi(t) :=
(

α
t

)µµµ(i)·���(i)(
β
t

)χχχ(i)·���(i)

and recalling the notation ���(i) ∈ PPP (i)

⇐⇒ �
(i)
mi ∈ P

(i)
mi , . . . , �

(i)
1 ∈ P

(i)
1 , we get by (2.1.6) for all terms B

(i)
n+1(t), 1 ≤

i ≤ i1,

B(i)(x) ≡
∞∑

n=0

an(x)
1

2πi

∮

|t|=r

f(t)
t − z

B
(i)
n+1(t)dt

=
1

2πi

∮

|t|=r

f(t)
t − z

∑

���(i)∈PPP (i)

ci(���
(i)) ξi(t)φ (x, ξi(t)) .

First we estimate the terms B(i)(x). We have

|B(i)(x)| ≤ M

2π

2πr

r
(

r
γ

) 1
ν∗ − r

∑

���(i)∈PPP (i)

|ci(���
(i))|
(γ

τ

)µµµ(i)·���(i)
+χχχ(i)·���(i)

×

× max
|t|=r

|φ (x, ξi(t))| ,

where M := max|t|=r |f(t)|. Now since µµµ(i) · ���(i) ≥ 0, χχχ(i) · ���(i) ≥ 0, µµµ(i) · ���(i) +
χχχ(i) · ���(i) ≥ 1 and γ < r, we get from (2.1.2) |ξi(t)| ≤

(
γ
r

)µµµ(i)·���(i)
+χχχ(i)·���(i)

≤ γ
r .

Hence

|B(i)(x)| ≤ Mr

r
(

r
γ

) 1
ν∗ − r

ε(x,
γ

r
)
∑

���(i)∈PPP (i)

|ci(���
(i))|

(γ

r

)µµµ(i)·���(i)
+χχχ(i)·���(i)

.
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By (2.1.7) and (2.1.8) we see that for 1 ≤ i ≤ i0 the expression D(i) :=
∑

���(i)∈PPP (i)

|ci(���
(i))| · (γ

r

)µµµ(i)·���(i)
+χχχ(i)·���(i)

is bounded by a finite number depending on γ
r .

Therefore
∑

���(i)∈PPP (i) D(i) is bounded by a finite number depending on γ
r , say hi(γ

r ). Thus

|B(i)| ≤ Mr

r
(

r
γ

) 1
ν∗ − r

hi(
γ

r
) ε(x,

γ

r
) for 1 ≤ i ≤ i1.

Now we estimate the terms A(i)(z). Choose an integer V so large that for
each i, 1 ≤ i ≤ i0, C(i) := maxν∈Ni

(
γ
r

)V (µ
r

)ν
< 1 (this is possible because

each set Ni is finite and 1 ≤ i ≤ i0). As we saw before we have

A(i)(z) =
1

2πi

∮

|t|=r

f(t)
t − z

∑

νi∈Ni

∑

kkk(i)∈MMM(i)

bi(kkk
(i))ηi(t)

(z

t

)νi

φ
(
x, ηi(t)

(z

t

)νi
)

≡ 1
2πi

∮

|t|=r

f(t)
t − z

(
I
(i)
1 + I

(2)
2

)
φ
(
x, ηi(t)

(z

t

)νi
)

≡ J
(i)
1 + J

(i)
2

where
I
(i)
1 =

∑

νi∈Ni

∑

kkk(i)∈MMM(i)

︸ ︷︷ ︸

λλλ(i)·kkk(i)
+ψψψ(i)·kkk(i)

<V

, I
(i)
2 =

∑

νi∈Ni

∑

kkk(i)∈MMM(i)

︸ ︷︷ ︸

λλλ(i)·kkk(i)
+ψψψ(i)·kkk(i)≥V

.

By the remark made after (2.1.8) the set of indices kkk(i) for which the numbers
λλλ(i) · kkk(i) +ψψψ(i) · kkk(i) satisfy λλλ(i) · kkk(i) +ψψψ(i) · kkk(i) < V is finite. First we estimate
J

(i)
2 . We have

|J (i)
2 | ≤ M

2π

2πr

r
(

r
γ

) 1
ν∗ − r

D(i) ε(x, C(i)),

where

D(i) =
∑

νi∈Ni

∑

kkk(i)∈MMM(i)

︸ ︷︷ ︸

λλλ(i)·kkk(i)
+ψψψ(i)·kkk(i)≥V

|bi(kkk
(i))|

(γ

r

)λλλ(i)·kkk(i)
+ψψψ(i)·kkk(i) (µ

r

)νi

.

By the same argument as that used to estimate B(i)(x), we see that

D(i) :=
∑

νi∈Ni

∑

kkk(i)∈MMM(i)

︸ ︷︷ ︸

λλλ(i)·kkk(i)
+ψψψ(i)·kkk(i)≥V

|bi(kkk
(i))|

(γ

r

)λλλ(i)·kkk(i)
+ψψψ(i)·kkk(i) (µ

r

)νi

≤
∑

νi∈Ni

∑

kkk(i)∈MMM(i)

|bi(kkk
(i))|
(γ

τ

)λλλ(i)·kkk(i)
+ψψψ(i)·kkk(i)(µ

τ

)νi

.
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Hence
∣
∣
∣J

(i)
2

∣
∣
∣ ≤ M

( r
γ )

1
ν∗ −1

hi(γ
r )ε(x,C(i)) where hi(γ

τ ) denotes a finite number

depending on γ
τ (see (2.1.7) and (2.1.8) and the estimate of B(i)).

Now we estimate the terms of J
(i)
1 . Let νi ∈ Ni, k

(i)
1 ∈ M

(i)
1 , . . . , k

(i)
ni ∈ M

(i)
ni

be a given set of indices satisfying λλλ(i) · kkk(i)+ψψψ(i) · kkk(i) < V. For such a given set
of indices denote, for the sake of brevity, ν := νi, k := λλλ(i) · kkk(i), j := ψψψ(i) · kkk(i).

We have k ≥ 0, j ≥ 0 and k+ j ≥ 1. We consider each term in the sum defining
J

(i)
1 separately. Let E

(i)
νjk be one of these terms. Then

E(i) ≡ E
(i)
νjk :=

1
2πi

∮

Γ

f(t)
t − z

bi(kkk
(i)) (ζ(z, t)) φ (x, ζ(z, t)) dt,

where ζ(z, t) =
(

z
t

)ν(
α
t

)k(β
t

)j

, Γ = ∂Dr (also for z ∈ ∂Cρ′ z ∈ Ext (Dr).
By Lemma 5.4.1 for each z ∈ ∂Cρ′ there exists a rectifiable Jordan curve
Γνjk(z) satisfying 0 ∈ Int (Γνjk(z)), z ∈ Ext (Γνjk(z), Γνjk(z) ⊂ S, and
∀t ∈ Γνjk(z), ζ(z, t) ∈ Hρ ⊂ G. Denote by L

(i)
νjk(z) the length of Γνjk(z).

Using Cauchy’s integral theorem we get

E(i) = E
(i)
νjk :=

1
2πi

∮

Γνjk(z)

f(t)
t − z

bi(kkk
(i)) (ζ(z, t))φ (x, ζ(z, t)) dt

By Lemma 5.4.2 the set
⋃

z∈∂Cρ′ Γνjk(z) is included in a compact subset Γ of
S, and there exists a compact and bounded set B2 ≡ B2(ν, j, k) such that

{ζ(z, t) : z ∈ ∂Cρ′ , t ∈ Γνjk(z)} ⊂ B2(ν, j, k).

Write

M1 := sup
t

{|f(t)| : z ∈ ∂Cρ′ , t ∈ Γνjk(z)} ≤ max
t∈Γ

|f(t)| < +∞,

ε(x,B2(ν, j, k)) := max
ζ∈B2(ν,j,k)

|φ(x, ζ)|, B2(ν, j, k) ⊂ Hρ ⊂ GA.

Applying now Lemma 5.3.8, Lemma 5.3.6 and (5.4.2) we get

|E(i)
νjk| ≤

M1

2π

L

D

(γ

σ

)k+j

|bi(kkk
(i))|ε(x,B2(ν, j, k))

(µ

σ

)ν

.

Since there is only a finite number of terms such that k + j < V we get

|J (i)
1 | ≤ consti · ε

(

x,
⋃

k+j<V

B2(ν, j, k)
)

.

Combining the estimates of J
(i)
1 and J

(i)
2 the proof follows. �
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Example 7.1. For a function f ∈ Aρ, ρ > 1, f(z) =
∑∞

k=0 akzk, write as in

Chapter 1,Sec. 1.3, pn−1(f ; z) =
n−1∑

k=0

akzk. Let Ln−1(f ; z) denote the Lagrange

interpolant to f on the zeros of zn − 1. We have, see Chapter 1,(3.2),

Ln−1(f ; z) − pn−1(f ; z) =
1

2πi

∫

ΓR

f(t)
t − z

Kn(t, z) dt. (7.1)

where

Kn(t, z) :=
tn − zn

tn(tn − 1)
=
(
1 −

(z

t

)n) 1
tn

∞∑

k=0

1
tkn

=
∞∑

k=1

(
1
tk

)n

−
∞∑

k=1

(
1
tk

(z

t

)1
)n

.

In this example have for τ > 1

R̃(τ) = τ · min
k≥1

(τ

1

)k

= τ2.

Applying Theorem 3.3 we get the Walsh equiconvergence theorem.

Example 7.2. Let Ln−1(f ; z) denote the Lagrange interpolant to f on the
zeros of zn − 1. Write

pn−1,j(f ; z) :=
n−1∑

k=0

ak+jnzk, j = 0, 1, 2, . . . (7.2)

By Chapter 1,(3.5) and (3.4) we have

Ln−1(f ; z) −
�−1∑

j=0

pn−1,j(f ; z) =
1

2πi

∫

ΓR

f(t)
t − z

Kn(t, z) dt. (7.3)

where ΓR is the circle |t| = R and

Kn(t, z) :=
tn − zn

(tn − 1)t�n
=

tn
(
1 − ( z

t

)n)

t(�+1)n
(
1 − 1

t

n)

=
∞∑

k=�

(
1
tk

)n

−
∞∑

k=�

(
1
tk

(z

t

)1
)n

. (7.4)

In this example have for τ > 1

R̃(τ) = τ · min
k≥�

(τ

1

)k

= τ �+1.

Applying now Theorem 3.3 we obtain Theorem 7 of Chapter 1.

7. Applications of Theorems 3.3 and 3.4.
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Example 7.3. Let f ∈ Aρ (ρ > 1). As in Chapter 2, Sec. 2.1, (1.1), let
hr,rn−1(f ; z) denote the Hermite interpolant to f in the zeros of (zn−1)r. Then
hr,rn−1(f ; z) ∈ πrn−1 and it satisfies the conditions

h
(j)
rn−1(f ; wk) = f (j)(wk), j = 0, 1, . . . , r − 1; k = 0, 1, . . . , n − 1

where w is a primitive nth root of unity. Write

prn−1,0(f ; z) :=
rn−1∑

k=0

akzk =
1

2πi

∫

ΓR

f(t)
t − z

· trn − zrn

trn
dt (7.5)

By Chapter 2, (1.4)), we have

∆rn−1,1(f ; z) := hr,rn−1(f ; z)−prn−1,0(f ; z) =
1

2πi

∫

ΓR

f(t)
t − z

Kn(t, z) dt (7.6)

where

Kn(t, z) :=
zrn

trn
− (zn − 1)r

(tn − 1)r
. (7.7)

By Chapter 2, Lemma 1, we have for all t with |t| > 1,

zr

tr
− (z − 1)r

(t − 1)r
=

t − z

tr

∞∑

s=1

βs,r(z)
ts

(7.8)

where βs,r(z) is a polynomial in z of degree r − 1 given by

βs,r(z) :=
r−1∑

k=0

(
r + s − 1

k

)

(z − 1)k, s = 1, 2, . . . . (7.9)

=
r−1∑

k=0

(
r + s − 1

k

) k∑

σ=0

(−1)k−σ

(
k

σ

)

zσ

=
r−1∑

σ=0

(
r + s − 1

σ

)

zσ
r−1∑

k=σ

(−1)k−σ

(
r + s − σ − 1

k − σ

)

=
r−1∑

σ=0

(−1)r−σ−1

(
r + s − σ − 2

s − 1

)(
s + r − 1

σ

)

zσ

=
r−1∑

σ=0

(−1)r−σ−1 1
s + r − σ − 1

(
s + r − 1

r − 1

)(
r − 1

σ

)

zσ .

Hence we have

Kn(t, z) =
zrn

trn
− (zn − 1)r

(tn − 1)r
=

tn − zn

trn

∞∑

s=1

βs,r(zn)
tsn

=
tn − zn

trn

∞∑

s=1

r−1∑

σ=0

(−1)r−σ−1

(
r + s − σ − 2

s − 1

)(
s + r − 1

σ

)(
zσ

ts

)n
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=
∞∑

s=1

r−1∑

σ=0

(−1)r−σ−1

(
r + s − σ − 2

s − 1

)(
s + r − 1

σ

)(
zσ

ts+r−1

)n

−
∞∑

s=1

r−1∑

σ=0

(−1)r−σ−1

(
r + s − σ − 2

s − 1

)(
s + r − 1

σ

)(
zσ+1

ts+r

)n

=
∞∑

s=1

r−1∑

σ=0

(−1)r−σ−1

(
r + s − σ − 2

s − 1

)(
s + r − 1

σ

)(
1

ts+r−σ−1

)n ((z

t

)σ)n

−
∞∑

s=1

r−1∑

σ=0

(−1)r−σ−1

(
r + s − σ − 2

s − 1

)(
s + r − 1

σ

)(
1

ts+r−σ−1

)n

×

×
((z

t

)σ+1
)n

=
∞∑

s=1

(−1)r−1

(
r + s − 2

s − 1

)(
1

ts+r−1

)n

+
∞∑

s=1

r−1∑

σ=1

(−1)r−σ−1

(
r + s − σ − 2

s − 1

)(
s + r − 1

σ

)(
1

ts+r−σ−1

)n

×

×
((z

t

)σ)n

−
∞∑

s=1

r∑

σ=1

(−1)r−σ

(
r + s − σ − 1

s − 1

)(
s + r − 1

σ − 1

)(
1

ts+r−σ

)n ((z

t

)σ)n

=
∞∑

k=1

(−1)r−1

(
k − 1
r − 1

)(
1
tk

)n

+
r−1∑

ν=1

∞∑

k=r−ν

(−1)r−ν−1

(
k − 1
ν − 1

)(
k + ν

k

)(
1
tk

(z

t

)ν
)n

−
r∑

ν=1

∞∑

k=r−ν+1

(−1)r−ν

(
k − 1
r − ν

)(
k + ν − 1

k

)(
1
tk

(z

t

)ν
)n

In this example we get for τ > 1

R̃(τ) = τ · min
(

min
1≤ν≤r−1

min
k≥r−ν

(τ

1

)k/ν

, min
1≤ν≤r

min
k≥r−ν+1

(τ

1

)k/ν
)

= τ
1
r +1.

Example 7.4. For any positive integer � ≥ 1, set, as in Chapter 2,(1.14),

∆rn−1,�(f ; z) := hr,rn−1(f ; z) − hr,rn−1,0(f ; z) −
�−1∑

j=1

hr,rn−1,j(f ; z)

where

hr,rn−1,0(f ; z) := prn−1,0(f ; z) =
rn−1∑

k=0

akzk

(7.10)
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By Chapter 2, (1.15) and (1.16) we have (where ΓR := {t : |t| = R})

∆rn−1,�(f ; z) =
1

2πi

∫

ΓR

f(t)K(t, z)
t − z

dt,

where

K(t, z) :=
zrn

trn
− (zn − 1)r

(tn − 1)r
− tn − zn

trn

�−1∑

j=1

βj,r(zn)
tjn

.

=
tn − zn

trn

( ∞∑

s=1

βs,r(zn)
tsn

−
�−1∑

s=1

βs,r(zn)
tsn

)

=
tn − zn

trn

∞∑

s=�

βs,r(zn)
tsn

Applying now the argument used in the previous example we get

Kn(t, z) =
∞∑

s=�

r−1∑

σ=0

(−1)r−s−1

(
r + s − σ − 2

s − 1

)(
s + r − 1

σ

)(
1

ts+r−σ−1

)n

×

×
((z

t

)σ)n

−
∞∑

s=�

r−1∑

σ=0

(−1)r−s−1

(
r + s − σ − 2

s − 1

)(
s + r − 1

σ

)(
1

ts+r−σ−1

)n

×

×
((z

t

)σ+1
)n

=
∞∑

s=�

(−1)r−s−1

(
r + s − 2

s − 1

)(
1

ts+r−1

)n

+
∞∑

s=�

r−1∑

σ=1

(−1)r−s−1

(
r + s − σ − 2

s − 1

)(
s + r − 1

σ

)(
1

ts+r−σ−1

)n

×

×
((z

t

)σ)n

−
∞∑

s=�

r∑

σ=1

(−1)r−s−1

(
r + s − σ − 1

s − 1

)(
s + r − 1

σ − 1

)(
1

ts+r−σ

)n ((z

t

)σ)n

=
∞∑

k=�+r−1

(−1)2r−k

(
k − 1
r − 1

)(
1
tk

)n

+
r−1∑

ν=1

∞∑

k=�+r−ν−1

(−1)2r−k−ν−2

(
k − 1

r − ν − 1

)(
k + ν

k

)(
1
tk

(z

t

)ν
)n

−
r∑

ν=1

∞∑

k=�+r−ν

(−1)2r−k−ν−1

(
k − 1
r − ν

)(
k + ν − 1

k

)(
1
tk

(z

t

)ν
)n

(7.11)

(7.12)
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In this example we get for τ > 1

R̃(τ) = τ · min
(

min
1≤ν≤r−1

min
k≥�+r−ν−1

(τ

1

)k/ν

, min
1≤ν≤r

min
k≥�+r−ν

(τ

1

)k/ν
)

= τ
�
r +1.

By Theorem 3.3 we obtain another proof of Theorem 1 of Chapter 2.

8. Historical Remarks

R. Brück [17] was the first who replaced the convergence in equiconvergence
theorems by A-summability. R. Brück also determined the equisummability
domains for several pairs of approximation operators. The ideas of Brück were
continued by A. Jakimovski and A. Sharma in [54]. Some of the results of this
chapter are given in [54].

The case of the (0, 2) lacunary interpolation is dealt with in detail and its
Walsh radius and domain of equisummability are obtained in [54]. The kernel
in this case is similar but does not fall into the category of the kernels discussed
here. It seems probable that other variations of the kernels considered here can
also be dealt with.
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