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To the memory of
ALFRED L. FOSTER,

who set me to work
representing algebras.





Preface

My involvement in the line of research leading to this book began in 1963
when I was a graduate student working under the direction of Alfred Foster,
and was first learning about representing algebras as subdirect products.
In particular, for a starter I learned that Stone’s representation theorem
was valid not just for Boolean algebras but for any class of algebras satis-
fying the identities of a primal algebra. Foster perceived in these algebras a
Boolean part whose representation theory could be levered into represent-
ing many other kinds of algebras.

The broad motivation was to break up a complicated algebra into sim-
pler pieces; if the pieces could be understood, then hopefully so could the
whole algebra. The obvious decomposition to try first is a direct product.
The advantage of direct products is the simplicity of their construction.
The overwhelming disadvantage is that most algebras are indecomposable
in this sense, and even when decomposable there may be no ultimate re-
finement. Subdirect products overcome both of these liabilities, as first
demonstrated by Garrett Birkhoff.

The main drawback to subdirect products is that, while factors may be
commonplace and well understood, the transfer of an argument from the
components to the whole algebra may fail because one may not know in suf-
ficient detail how the components fit together to form the original algebra.
Thus one grafts topological spaces onto subdirect products to form signifi-
cantly superior sheaves. Elements of the subdirect product become contin-
uous functions, and are easier to recognize. Boolean spaces are often used
since they arise naturally in representing Boolean algebras and have been
the key to many other representation theorems. However, the topological
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VIII Preface

spaces of algebra are intuitively quite different from the more traditional
topological spaces such as manifolds with a local Euclidean topology. They
may be totally disconnected or not even Hausdorff.

The question we address then is, how far can one go in representing
arbitrary algebras by sheaves over general topologies, and in particular
Boolean spaces? The overall structure of a given algebra should come from
a systematic synthesis of the components, that is, the stalks of the sheaf.
Many questions about any algebra in such a class should be answerable
by analyzing locally what is happening in the components, rather than
working globally with formulas over the whole algebra.

My first exposure to sheaves over Boolean spaces was in a seminar run
by Joseph Kist in the spring of 1972, in which he presented the seminal
paper of Stephen Comer. Here I learned of the rich and productive world
of ring spaces as expounded by Richard Pierce in his memoir.

It was in this seminar that I discovered factor elements, which generalize
central idempotents in rings, and how they correspond to factor congru-
ences. Later, factor bands, ideals, and sesquimorphisms were added. The
goal was to extend the classical representation of regular commutative rings
as subdirect products of fields.

Although general tools are developed, applicable to all algebras, the best
efforts come from settling on those that I dub ‘shells’, which assert the
existence of a zero and a one for a multiplicative operation and perhaps
an addition that otherwise need not satisfy any of the usual identities such
as commutativity and associativity. In this context, one can generalize well
beyond ring theory a number of classical results on biregularity, strong
regularity, and lack of nilpotents.

This monograph adapts the intuitive idea of a metric space to universal
algebra, leading to the useful device of a complex. Then a sheaf is con-
structed directly from a complex.

The core of this book does not look at all congruences of an algebra,
but at only some of them comprising a Boolean subsemilattice of congru-
ences, and more typically, at others splitting the algebra into a product of
complementary factors. Thus there are no restrictions on the whole lattice
of congruences, but only on parts of it. This is one of the themes of this
monograph.

Over the course of time, terms and notations tend to grow like Topsy.
In synthesizing disparate fields and even extending them, inconsistencies
across them pose a dilemma for an author. Should he completely stream-
line the terminology, thereby shutting out the casual reader who is merely
browsing but already knows something of the traditional notation? Or,
should he leave every term as it has originally arisen, thereby making it
difficult for the serious reader to correlate similar ideas? I have taken a
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middle course, respecting most terms and notations already in the liter-
ature, but occasionally changing some to better reflect the overall pic-
ture. For example, congruences that permute elsewhere commute here since
other internal factor objects, such as idempotent endomorphisms, always
commute when creating a product. But I left unchanged directly indecom-
posable and subdirectly irreducible, although one ought to have a common
root word for the many kinds of algebraic atoms. The definitions of the
rather general algebras, shells and half-shells, have broadened over time as
weaker and weaker conditions were observed to create sheaves that would
accomplish most of the same ends. Nullity is used for an element annihi-
lating a binary operation as a zero does in ring theory. And unity is the
term used where others might use ‘unit element’ or ‘identity;’ it even means
‘object’ in categories. Likewise, the adjective unital adds a unity to a ring
or shell.

Many exercises and problems have been included. The distinction be-
tween them is as follows. On the one hand, the exercises come from notes I
wrote to myself while trying to understand the relationships between new
concepts. There was no attempt to create other exercises that might fill
out the book; thus the density of exercises varies from section to section.
The reader may enjoy more healthy exercise by filling in wherever a proof
trails off with a phrase such as ‘straightforward to prove’, ‘trivial’, or ‘left
to the reader’. This is especially so in the categorical sections establishing
adjointness and equivalence.

On the other hand, the problems are open questions that I have not
resolved because I did not take the time. Thus, such problems may range
from the trivial to the significant, perhaps to promising research to pursue.
I have not attempted to distinguish these possibilities.

As for prerequisites, a reader should have a nodding acquaintance with
universal algebra, logic, categories, topology, and Boolean algebra. By re-
calling useful facts about these topics, prerequisites have been kept to a
minimum. All concepts beyond these are defined. However, as the goal is
new theorems, and the ideas already in the literature are lightly illustrated
here, the prospective reader will be well motivated if he is familiar with
some of the classical results that are being generalized.

I am thankful to the participants who asked penetrating questions in
algebra seminars at New Mexico State University, Tennessee Technological
University, the University of Tennessee and Vanderbilt University; some of
these led to additional insights and examples. Fruitful conversations with
Joseph Kist have cleared up a number of murky points. Mai Gehrke pointed
out non sequiturs, and shortened several long-winded proofs. Isadore Fleis-
cher corrected several of the early chapters. Paul Cohn offered suggestions
on the history of the subject, and Ross Willard pointed out a significant
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extension of the concept of a shell. Diego Vaggione quickly dispatched sev-
eral of the original open problems. All of these, including three anony-
mous reviewers, deserve warm handshakes for their many comments and
thought-provoking suggestions. As for remaining faux pas that I should
have caught, may the sympathetic reader forgive me for any difficulties
they might cause.

Albuquerque, New Mexico Arthur Knoebel
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I
Introduction

This chapter has two sections. The first is a history of the ideas and previous
theorems upon which this monograph is based. The second is a survey of
the principal results presented in this book.

1. History

To set the stage, we take a short historical jaunt. This will not be a literal,
detailed history, but a genetic reconstruction of key events that have come
to play a role in this book. There are three areas, as befits its title: sheaves,
algebras, and Boolean algebras. We begin with the last.

The attempt to decompose an involved problem into workable parts is
an old one – it is called the reductionist philosophy. A good starting point
for examining attempts at symbolic decomposition is the work of Gottfried
von Leibniz [Leib66] [Mido65]. While his efforts did not lead directly to
the analysis of algebras, the motivations and flawed solutions shed light on
our work in this book. Leibniz’s dream of a universal calculus of logic for
deriving facts mechanically by combining together basic concepts is, in a
sense, a precursor of Boolean algebra.

This view that algebra could carry the burden of logical manipulation
is already seen in George Peacock’s definition of algebra as “the science
of general reasoning by symbolical language”. [Peac30, p. 1] A part of
this dream was realized independently by Boole [Bool47] and Augustus
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2 I. Introduction

De Morgan [DeMo47] [MacH85, pp. 68–71]. Boole’s book developed an
algebra of logic, which bears his name, although ‘Boolean algebras’ today
are not what he described [Burr00].

We have mentioned Boolean algebras at the outset since they will subse-
quently provide a calculus for decomposing algebras by sheaves. At a higher
and more powerful level of logic, the successful application of the first-order
predicate calculus to mathematics came later; but unfortunately this does
not solve problems in the generality envisioned by Leibniz. Kurt Gödel and
Jacques Herbrand showed how limited automatic problem solving could be
[Mend64].

Having discussed an algebra of logic, we now move on to the discoveries
in linear algebra, such as quaternions, vectors and exterior algebras, which
paved the way to modern algebra. Hermann Grassmann [Gras44], William
Hamilton [Hami44], and later Benjamin Peirce [Peir70], J. Willard Gibbs,
[Gibb81] and Oliver Heaviside [Heav93] invented and studied many dif-
ferent kinds of linear algebras, thereby opening a path to the study of non-
commutative and nonassociative systems. Peirce introduced what is now
called the right Peirce decomposition of a linear algebra: A D iAC.1� i/A,
for an idempotent i , which need not be central. Also important as an-
other example of a noncommutative system is Arthur Cayley’s [Cayl54]
attempted axiomatization of abstract groups, which arose from the study
of the permutation of roots of a polynomial equation.

In another direction, Richard Dedekind [Dede97] first recognized the
notion of a lattice in the context of number theory. Lattice theory is signif-
icant for our history in providing us with laws similar to but not identical
with those of arithmetic, and in generalizing Boolean algebras to nonlogi-
cal examples. The history of algebra in the nineteenth century is rich and
varied; there is much we could mention that would lead into our research,
but, to keep this part of the book short, we refer the interested reader to
the fine histories of Luboš Nový [Nový73] and B. L. van der Waerden
[vdWa85].

11111
The twentieth century saw the flowering of six fields that have influenced

our work and provided examples: rings, lattices, universal algebra, alge-
braic geometry, sheaf theory, and functional analysis. The oldest of these
fields is commutative ring theory.1 We mention two papers as samples of
the influence of David Hilbert and Emmy Noether on the development of
modern algebra with its distinctive perspective and abstract axiomatics.
Hilbert’s work [Hilb96] on invariants cut through the Gordian knot of
case-by-case construction of bases for polynomial invariants by indirect,
qualitative methods – non-constructive, if you like.

1Rings are assumed, in this section, to have a unity, since historically they always had
one; otherwise, throughout the rest of this monograph, they will not, unless designated
‘unital’.
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A most significant event in the history of modern algebra occurred with
the publication of Noether’s [1921] Idealtheorie in Ringbereichen. Noether’s
mathematical philosophy [Noet21] was to replace arguments that manipu-
lated elements by structural proofs using ideals, thereby creating a powerful
theory predicated only on the ascending chain condition on ideals. Here,
for the first time, an ideal in an abstract ring is decomposed as a product
of primary ideals. This notion was systematized by Wolfgang Krull into a
principle: whether a ring R is indecomposable in a certain sense is equiva-
lent to determining whether the intersection of a certain class of ideals in R

is the null ideal [Krull35]. This idea was exploited by Garrett Birkhoff as
the construction of subdirect products in the context of universal algebra
[Birk44].

Another perspective on looking for representations is to specify the kind
of rings we want to draw components from and the candidates in the way of
ideals and congruences that are initially proposed to obtain these building
blocks. A classic example is the class of semisimple rings. The factors must
be quotients by maximal ideals whose intersection is the trivial ideal. But
in general the intersection of all maximal ideals is not the zero ideal –
witness local rings – so the representation is not faithful. Historically, to
overcome this, one appropriately restricts the class of rings, for example, to
those that are Artinian (that is, they satisfy a descending chain condition
on ideals) and contain no nilpotent ideals other than the null ideal. The
Wedderburn-Artin theorem then concludes that such a ring is a direct sum
of a finite number of ideals each of which is isomorphic to the ring of all
linear transformations of a finite-dimensional vector space over a division
ring [Jaco80, vol. 2, p. 203].

In 1929, Krull was one of the first to attain theorems without chain
conditions; these had the advantage of giving representations with an in-
finite number of factors [Krull29]. Gottfried Köthe defines the notion of
a transcendent reducible ring and proves that each transcendent reducible
commutative ring is a direct product of fields [Köthe30, p. 548]. Here, we
see the first theorem in which the quotients have no divisors of zero, which
will be a recurring theme later in this book. John von Neumann defined
regularity of rings and discovered the isomorphism of the lattice of factors
with the lattice of central idempotents [vonN36].

11111
In 1936, Marshall Stone found his far-reaching representation theorem

for Boolean algebras and rings: every such algebra is a subdirect power of
a two-element algebra [Stone36]. Thus, the kernel into which all Boolean
algebras decompose is the two-element Boolean algebra (or ring) of tra-
ditional truth values. Stone’s paper is the spur and inspiration for much
of the work that leads to the work explored in this monograph. Compare
the length of Stone’s original paper to Birkhoff’s much shorter proof of the
same result [Birk44]; this is a considerable distillation to take place within
a decade. In Stone’s paper of the next year, he explored the duality between
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Boolean algebras and Boolean spaces [Stone37]. The power of this theory
to tackle problems about Boolean algebras by going to their correspond-
ing Boolean spaces was subsequently illustrated by Paul Halmos [Halm63,
chap. 28], when he used it to demonstrate William Hanf’s result that Bool-
ean algebras need not have unique roots, in the sense that A2 Š B2 need
not imply A Š B [Hanf57].

Representing Boolean algebras both as rings of sets and topological
spaces stimulated a number of mathematicians. Over a two-year period,
1937–1938, several papers appeared, apparently independently of each
other, giving subdirect representations of special classes of commutative
regular rings in terms of fields, without assuming either the ascending or
descending chain conditions on ideals. The first result of this kind was the
theorem of Neal McCoy and Deane Montgomery, who proved that any p-
ring (commutative, px D 0 and xp D x) is a subdirect product of prime
fields Zp [McCMo37]. A theorem of this type without regard to char-
acteristic is due to McCoy for commutative rings: any commutative, von
Neumann regular ring is a subdirect product of fields [McCoy38]. More
generally, McCoy, using a lemma of [Krull29], showed that any commu-
tative ring without nilpotent elements is a subdirect product of integral
domains. Since each integral domain is embeddable in a field, it follows
that any such ring is a subring of a direct product of fields. Birkhoff sys-
tematized the presentation of such results by proving a lemma suggested
by McCoy: a subdirectly irreducible commutative ring without nilpotents
is a field [Birk44]. Shortly thereafter, Alexandra Forsythe and McCoy ex-
tended this result to the noncommutative case: any regular ring without
nilpotents is a subdirect product of division rings [ForMc46].

Since we will be talking about variants of regular rings shortly, we should
mention the relationship between regularity and nilpotents in the case of
a commutative ring R. On the one hand, it is easy to show that if R is
regular, then it has no nilpotent elements. On the other hand, by the result
of McCoy above, if R has no nilpotent elements, then it is a subring of a
product of fields, which are always regular. Hence, if R has no nilpotent
elements, then R is embeddable in a regular ring, still having no nilpotents.

Richard Arens and Irving Kaplansky give examples showing that, in the
noncommutative case, biregular rings and regular rings are independent no-
tions [AreKa48]. They prove in their theorem 6.2 that, if A is an algebra
over the field GF .p/ in which every element a of A satisfies the equation
ap

n D a for a fixed n, then there is a locally compact, zero-dimensional
space X with a homeomorphism � for which �n D 1, such that A is iso-
morphic to the algebra of all continuous functions f from X to GF .pn/

that vanish outside a compact set and respect � : f .�x/ D Œf .x/�p . The
authors go on to concoct a counterexample built around GF .4/ showing
that the equation, a4 D a, is necessary.
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Reinhold Baer studied the condition that each annihilator is generated by
a projection, which will be significant in some of our applications [Baer52].
Somewhat earlier, the application of topological methods to non-Boolean
rings began with Israel Gel’fand and George Šilov generalizing the Stone
topology of prime ideals in Boolean rings to commutative normed rings
[Gel’Ši41]. Shortly thereafter, Nathan Jacobson generalizes the Stone
topology by adapting it to the set of primitive ideals in an arbitrary ring,
not necessarily with a unity [Jaco45]. It is no longer Hausdorff; but if there
is a unity, it will still be compact.

11111
The writing of a history of representing general algebras is complicated by

the history not being linear. Instead, the history may be thought of as more
like a braided stream with many strands and rivulets, some of them running
in parallel, some bifurcating, and others merging back together. Certainly,
to judge from the references absent in published papers, there must have
been considerable independent effort. How to identify these strands and
how many to pay attention to are matters of opinion. In any case, a strictly
chronological account would be confusing and misleading. So we must often
follow one strand for a while, then back up in time to pursue another. We
now go back to look at the origins of universal algebra.

Alfred North Whitehead, in writing his book on universal algebra, also
had a lofty but less sweeping goal than Leibniz: he wished to create a theory
of algebra capable of unifying and comparing the many linear algebras that
had been proposed in the nineteenth century [Whit98, Fear82].

We follow the current view that the concept of universal algebra as it is
recognized today, despite Whitehead’s treatise by the same name, began
with the two seminal papers of Garrett Birkhoff, who showed that there
were significant theorems simultaneously covering groups, rings, fields and
vector spaces as well as lattices and Boolean algebras. Birkhoff formulated
the concept of a general algebraic system as we know it today [Birk35].
In his next paper on the subject [Birk44], Birkhoff presented the theo-
rem that every algebra is a subdirect product of subdirectly irreducible
algebras. This theorem is fundamental to our purposes and illustrates
how the finitary nature of algebra makes for a good theory with many
applications.

11111
Another stream flowed into universal algebra from logic via Emil Post’s

generalization of classical two-valued logic [Post21]. Post algebras, as de-
fined by Paul Rosenbloom, are to Boolean algebras as n-valued logic is to
two-valued logic [Rosen42]. Following close upon [Birk44], L. I. Wade
established that any Post algebra is a subdirect power of a primal Post
algebra [Wade45], Rosenbloom having proven this first for finite Post
algebras.

The work of Alfred Foster, influenced by that of Wade and McCoy,
was a watershed in the way we view representations of algebras [Fost53].
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Foster realized that a significant property for an algebra to be the kernel
in subdirect representations is primality: all operations on the carrier can
be composed from the fundamental operations. This gave primal algebras
of all finite cardinalities; each was the sole subdirectly irreducible algebra
of the equational class generated by it. Foster identified a Boolean part in
these primal algebras that could be extended into representing the other
algebras of the class. This is achieved by creating Boolean partitions over
a primal algebra and convolving these partitions to define operations.

Primality was seminal and a central strand in the evolution of decom-
position theorems through a sequence of papers of Stone, Foster, and his
students, leading from Boolean algebras through primal algebras to a diver-
sity of generalizations, such as semiprimal and hemiprimal algebras, which
would produce analogous constructions in the varieties generated by them.
The kernels of such representations no longer need to have all operations
derivable from the fundamental operations, but only those preserving some
prescribed structure, such as subalgebras or congruences. (For a history
of these variations, see the surveys of Robert Quackenbush [Quac79] and
Alden Pixley [Pixl96].) The class of algebras being represented need not
look, upon first glance, at all like the traditional classes of rings, groups
or lattices, either in the type of operations or in the identities they satisfy.
Even when the underlying primal algebra only two elements, this kernel
may look superficially very different from the two-element Boolean algebra;
for example, the Sheffer stroke, a functionally complete binary operation,
satisfies many unusual and unexpected identities; hence, so does the equa-
tional class it generates. Foster’s work opened up new vistas, beckoning us
to try to find structural clues independent of the usual operations in which
rings and lattices are defined.

Tah-Kai Hu put Foster’s work into a categorical setting by extending
Stone’s duality between Boolean algebras and Boolean spaces to a natural
equivalence between the category of all algebras satisfying the identities of
a given primal algebra and the dual category of Boolean spaces [Hu69].
Actually, this was done in the more general setting of locally primal algebras,
which is a generalization of primality to infinite algebras. Joachim Lambek
and Basil Rattray gave a categorical proof by means of adjoint functors
[LamRa78].

Another strand in the unfolding of universal algebra also comes from
logic, both in the more general setting of relational structures, as well as
in the desire to represent logics as algebras. New algebraic systems discov-
ered outside universal algebra gave impetus to solving problems within it;
very important among these were the cylindric algebras of Alfred Tarski,
designed to provide an algebraic model of first-order calculus, the next step
after modeling the sentential calculus by Boolean algebra [HenkMT71].
Once a logic is captured algebraically, we want to know how good the match
is. A natural answer to seek is an analog to Stone’s theorem: every algebra
in the class should be a subdirect product of ‘primitive’ algebras defined
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directly from the logic. Examples are the multi-valued algebras invented by
Chen-Chung Chang [Chang58], and the already mentioned Post algebras
studied by Rosenbloom [Rosen42]. Helena Rasiowa’s book describes many
such logics turned into algebra [Rasi74].

11111
A Johnny-come-lately in our history of algebra is the theory of sheaves.

What is missing in the construction of a subdirect product is a criterion
for determining whether an element of the full product belongs to the
subdirect product or not. So we implant topologies into subdirect products,
wherever possible, creating a sheaf space, and incorporate the Boolean part
of an algebra into the topology of the index set, making a base space. Any
element of the subdirect product must be, among other things, a continuous
function from the base space to the sheaf space; this adds a coherence to
subdirect products otherwise lacking.

But the roots of sheaf theory itself are deeper and earlier – they may
be found in the works of Henri Cartan [Cart49], Jean Leray [Leray50],
Jean-Pierre Serre [Serre55], Roger Godement [Gode58], Alexander
Grothendieck and Jean Dieudonné [GroDi60], and Armand Borel
[Borel64]. These pioneers used sheaves in algebraic topology (Poincaré
duality), complex analysis (De Rham’s theorem), algebraic geometry
(Riemann–Roch theorem), and differential equations (distributions). The
history of sheaves is sketched by John Gray [Gray79], Christian Houzel
[Houz98], and Concepción Romo Santos [Romo94].

These early papers and books provided the impetus for other workers to
solve problems in algebra by means of sheaves. For example, John Dauns
and Karl Hofmann [DauHo66], to get around the counterexample of Arens
and Kaplansky [AreKa48] built out of a single finite field, introduced
sheaves and obtained the following theorem. Every biregular ring, not nec-
essarily unital, is isomorphic to the ring of global sections with compact
supports in a sheaf of simple unital rings; the base space is locally com-
pact, totally disconnected, and Hausdorff. Further, if the original ring has
a unity, then the base space is also compact and hence Boolean. Most
importantly, any number of different rings may appear as stalks in the same
sheaf.

The memoir of Richard Pierce has many worthwhile results [Pier67]. In
particular, his theorem 6.6 gives a categorical equivalence between the cat-
egories of rings (the homomorphisms must preserve central idempotents)
and their reduced sheaves. Pierce also gives in his lemma 4.2 a sufficient
condition for a sheaf to be reduced: when the stalks are directly indecom-
posable; if the rings are commutative this condition is also necessary.

Joseph Kist proves for a commutative ring R that, if the space X of min-
imal prime ideals is compact and R has no nilpotents, then R is isomorphic
to a subring of the ring � (A) of all global sections of a sheaf A over X in
which the stalks are integral domains [Kist69]. Further, when R is a Baer
ring, then this isomorphism is onto � (A). Carl Ledbetter, by considerably
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different methods, shows that this last result is still true even when R is
noncommutative [Ledb77]. Hofmann surveys much that is known about
sheaves of rings [Hofm72]. To generalize such results beyond rings, new
techniques are needed, which are discussed next.

11111
Comer realized that the construction of the Pierce sheaf for rings could

be extended to a rather broad class of algebras [Comer71]. These are al-
gebras whose factor congruences form a Boolean algebra. Besides rings,
there are lattices, semilattices, and the shells of this book. This came out
of Comer’s investigation into the question of the decidability of the the-
ory of cylindric algebras [Comer72]. Stanley Burris and Ralph McKenzie
make some unique comments on this portion of our history [BurMc81,
pp. 15–20, 67–70].

Brian Davey pushed the work of Comer further by realizing that all we
need in order to obtain a sheaf over a Boolean space is a Boolean sublattice
of congruences [Davey73]. In this very general set-up, there is the Gel’fand
morphism, named for his work [Gel’f41], that takes the original algebra
to the algebra of all global sections of the sheaf; it is injective, but not
necessarily surjective. Davey notes further, however, that if we start with
a Boolean sublattice of factor congruences, then the Gel’fand morphism is
indeed surjective. Since most of the remaining contributors to the unfolding
of sheaves in general algebra in the 1970s will be discussed more fully in
later chapters, we only list them here: Klaus Keimel [Keim70], Maddana
Swamy [Swam74], Albrecht Wolf [Wolf74], William Cornish [Corn77],
and Peter Krauss and David Clark [KraCl79]. For a survey see [Keim74].

Another area with many examples of interest is this problem: for which
equational classes can one express each algebra as a Boolean product of
a finite number of finite algebras, depending only on the original class?
Unfortunately, as shown by the work of Burris and McKenzie, this tradi-
tional situation in both classical and universal algebra – a Hausdorff sheaf
over a Boolean space with a finite number of finite stalks – is limited by
the generators having to be simple Abelian or quasiprimal [BurMc81].

Sheaves have proved their worth in model theory by establishing theo-
rems in decidability, elementary equivalence and embedding, preservation
and transfer properties, and model completeness. See Sect. XII.3 for defi-
nitions of these concepts and for some sample theorems.

11111
Categories are another general concept useful to us; they help to system-

atize equivalences among diverse classes of mathematical objects. Samuel
Eilenberg and Saunders MacLane [EilMa45] formally presented this con-
cept, although many examples were already known informally before then.
What will be historically significant for us are three such categorical equiv-
alences: Stone’s duality between Boolean algebras and what are now called
Boolean spaces [Stone37], Pierce’s equivalence of the category of rings
with conformal homomorphisms and the category of their sheaves [Pier67],
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and Hu’s equivalence of primal varieties, mentioned earlier [Hu69]. See
[MacL65] for early developments and applications of this rapidly growing
subject.

11111
Modern analysis, and indirectly general topology, has been a source of

inspiration for the ideas in this monograph. Early on we have John von
Neumann’s paper on rings of operators [vonN36]. A later influence on
our efforts came from functional analysis, where Melvin Henrikson and
Meyer Jerison [HenrJe65] and Kist [Kist69] systematically exploited the
spectrum of minimal prime ideals. Kist had moved from functional analysis
to commutative ring theory.

It is easy to appreciate the significance of functional analysis for the type
of theorems we are heading toward. The ring C .X/ of all continuous func-
tions from a topological space X to the real numbers R has the appearance
of a sheaf space X �R, with the obvious projection �WX �R! X , where
X � R is given the product topology. Thus, it is already decomposed into
a subdirect product whose stalks R have no divisors of zero. But its simi-
larity to a sheaf is only that, for the technical condition that � be a local
homeomorphism fails; related to this failure is the fact that each stalk R is
not discrete. (Sometimes we speak of X � R as being merely a ‘bundle’.)
Thus, we might seek a different factoring of C .X/. Marshall Stone has some
intriguing comments in [Stone70, p. 240] about how this interest in C .X/

shifted to concerns with representing algebras by sets of functions subject
to certain constraints. See also the selection of essays [Aull85], edited by
Charles Aull, for some current views on C .X/ as an algebraic object. Hof-
mann has additional comments in [Hofm72, pp. 295–296] on the influence
of functional analysis on the evolution of sheaf theory towards ring theory.

As a beginning to the book, this tour through the evolution of ideas
leading to sheaves is over. Now we are ready to delve into what this book
covers – both known theorems and new ones.

2. Survey of Results

With the historical background of Sect. 1 in mind, we now briefly describe
the principal results of this monograph, chapter by chapter, omitting minor
caveats. The flow of this book as a whole is first to develop tools for con-
structing sheaves that are helpful in understanding the structure of general
algebras, specializing as needed, with applications in the middle chapters,
and finally to close with a backward glance at how some of the earlier
theorems might be extended.

Chapter II lays out the traditional background needed from general al-
gebra. In Sect. 1, there is one novelty: ‘sesquimorphisms’ as a substitute
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for congruences. The three isomorphism theorems are presented both con-
ventionally and in terms of sesquimorphisms.

Section 2 introduces direct and categorical products, and then studies the
five kinds of factor objects that may identify products internally: bands,
congruences, sesquimorphisms, ideals, and elements; the last four coming
in complementary pairs (Theorems II.2.5, II.2.12, II.2.19).

Chapter III outlines the concepts and theorems needed from several dis-
ciplines: equational logic, categories, topology, and Boolean algebras, in-
cluding Stone’s representation of these, the grandfather of many of the
theorems in this book and an essential tool for proving them.

11111
Chapter IV sets the stage for the book proper by introducing the notion

of a complex and showing that it always gives a sheaf of algebras. Crucial
to decomposing an algebra as a subdirect product of quotient algebras is a
measure of how close or far apart the elements of the algebra are. Complexes
originated in the theory of rings and modules, and they are the algebraic
analog of metric spaces. A metric now becomes a binary operation from the
carrier of an algebra, not necessarily going to the real numbers, but taking
as values open sets in some topological space. This binary operation satisfies
axioms similar to both those for a metric space and those for a congruence
preserving the operations of an algebra. Complexes are an intermediate
step on the way to sheaves.

Sheaf constructions next illustrate how a well-developed topological tool
can shed light on a principally algebraic device. Out of each complex, one
constructs a sheaf whose algebra of all global sections contains a subalgebra
isomorphic to the original (Theorem IV.2.1); arguments common to this
construction can now be made once and for all in the context of complexes.
Sheaves have proven their value in many situations, and here they will
also do so.

We also look at systems of congruences from which one obtains a subdi-
rect product. This is proven equivalent to the notion of a complex whenever
the underlying topology is T0 and the equalizers of global sections form a
subbasis (Theorem IV.2.5).

Another concept is the ‘Hausdorff sheaf’, where the sheaf space is T2.
A sheaf being Hausdorff is equivalent to equalizers being clopen and the
base space being Hausdorff (Proposition IV.2.9). When the base space
is also a Boolean space, we have the well-studied notion of a ‘Boolean
product’.

The constructions of this chapter are set into an adjoint situation between
the categories Complex and Sheaf for a given algebraic type (Theorems
IV.3.15 and IV.3.18). The functors and natural transformations entering
into this adjoint situation will be successively specialized in subsequent
chapters.

11111
Another way to capture the separation of two elements of an algebra is

through a congruence by which they are not related. The typical situation
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introduced in Chap. V, which will occur repeatedly throughout this mono-
graph, is where a subset of congruences separating all elements is singled
out for special attention. We want to pick a set of congruences that is ap-
propriate to the algebra at hand and to the aspects of it we wish to study.
It is noteworthy that usable sets of congruences need not be sublattices of
the lattice of all congruences. Such sets need only be closed to intersection
and a complementation respecting the partial ordering of inclusion on con-
gruences. This fragment, to be called a ‘Boolean subsemilattice’, will be
a complemented distributive lattice, in which the join operation may be
greater than that in the complete lattice of all congruences.

To set things up for later ideas covered in the book, we prove Theorem
V.2.1, which states that any Boolean subsemilattice of an algebra deter-
mines a complex over a Boolean space, which in turn determines a sheaf
of algebras over the same space. The original algebra will be a subalge-
bra of the algebra of all global sections of a sheaf of quotient algebras. In
general, the larger the subsemilattice, the more numerous are the stalks
of the sheaf; and the larger the congruences themselves, the smaller the
quotients. But the quotients do not come directly from the congruences
of the Boolean subsemilattice. Instead, the essential construction behind
this theorem is to look at the Boolean space of prime ideals in this se-
lected Boolean algebra of congruences. Each prime ideal has a supremum
that is again a congruence in the given algebra, although not usually in
the Boolean subsemilattice. These suprema are the points of the Boolean
space over which floats the sheaf space of stalks, which are the quotient
algebras by the suprema. The continuous cuts through the sheaf space are
the global sections. The mapping of elements of the original algebra into
them is called the Gel’fand morphism.

But the converse is also true: we prove in Theorem V.2.9 that every
representation of an algebra by a sheaf of algebras over a Boolean space
must arise by the previous construction from some Boolean subsemilattice
of congruences. As one is free to choose the Boolean subsemilattice, so one
is also free to choose the nature of the quotient algebras, and thus to tailor
the extent of their indecomposability. For example, discovering the right
congruences will factor out divisors of zero in shells.

The patchwork, partition, and interpolation properties associated with
sheaves over Boolean spaces make the global sections of such sheaves espe-
cially malleable. Even easier to work with are the more specialized Boolean
products, which have been used to good advantage in universal algebra,
and which are briefly looked at for the sake of comparison. Also included in
Sect. V.3 are Boolean powers, Boolean extensions, and Hausdorff sheaves.

Introduced at the end of Chap. V is the category BooleBraceRed of
reduced Boolean braces – they consist of an algebra and a selected Bool-
ean subsemilattice of congruences. This category forms an adjunction with
the category CompBooleRed of reduced complexes over Boolean spaces
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(Theorem V.4.14). In turn, this last category is a full subcategory of the cat-
egory of all complexes over arbitrary topological spaces, and thus, this ad-
junction, when composed with the adjunction of the last chapter, forms an
adjunction of BooleBraceRed with the category SheafBooleRed of
reduced sheaves over Boolean spaces, which is a full subcategory of Sheaf
(Theorem V.4.17). Reduction limits the number of trivial stalks in a sheaf
and its related structures.

11111
As the set of all congruences of an algebra is a lattice, it is natural to

consider sublattices. Of special interest in Chap. VI are those congruences �
having a complementary partner � 0 in the sense of forming a factorization:
A Š .A=�/ � .A=� 0/. Davey [Davey73] considered a Boolean sublattice
of commuting (= permuting) factor congruences – this sublattice together
with its algebra we call a ‘factorial brace’. As Boolean lattices are equiv-
alent to Boolean algebras, one has a Boolean subsemilattice, the previous
situation. Thus, one obtains a sheaf over a Boolean space. But now we have
an isomorphism: Theorem VI.1.8 states that the algebra of global sections
of this sheaf is isomorphic to the original algebra, that is, the Gel’fand
morphism is also surjective, not just injective, as in Chap. V.

This set-up is important enough to warrant a section devoted to char-
acterizing Boolean algebras of factor congruences alternatively by factor
bands and sesquimorphisms.

Comer postulated in his paper [Comer71] that all the factor congruences
form a distributive sublattice, that is, a Boolean sublattice of the lattice of
all congruences, which is described as the algebra having ‘Boolean factor
congruences’ (BFC). For many algebras occurring in practice, such a con-
dition is easy to check. Section 3 characterizes their sheaves in Theorem
VI.3.15 as those that are ‘reduced’ and ‘factor-transparent’. This is called
the ‘canonical’ sheaf representation of an algebra with BFC. Historically
these results of Comer came before those of Chaps. IV and V, but it is now
easier to present them as a special case of those earlier chapters. But not
all algebras have BFC. Theorems VI.3.2 and VI.3.9 give many conditions
equivalent to an algebra having Boolean factor congruences.

As was done in the previous two chapters, the final section of this chapter
recasts its achievements in categorical terms. If a Boolean brace is taken
into Sheaf and then back again to the algebra of global sections, then the
new Boolean brace has additional properties. The new Boolean subsemi-
lattice now has a distributive sublattice of commuting factor congruences,
creating a factorial brace as examined in the previous paragraph. All re-
duced factorial braces constitute the category FactorBraceRed, which is
isomorphic to a full subcategory of BooleBraceRed. Most importantly,
FactorBraceRed is categorically equivalent to SheafBooleRed, by
Theorem VI.4.2; thus we extend Stone’s representation theorem for Bool-
ean algebras.
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Additionally, if the set of all factor congruences is a Boolean sublattice
of Con A, then these algebras constitute the category AlgBFC of alge-
bras with Boolean factor congruences. By Theorem VI.4.5 it is isomorphic
to the category of reduced and factor-transparent sheaves over Boolean
spaces. Table VI.1 lists the many categories of structures and sheaves that
occur in this book and the various adjunctions and equivalences that exist
among them. Figure 1 summarizes in a Venn diagram the various levels of
generality considered so far, as well as the shells to be discussed next.

Rings Bounded
lattices

Shells

Algebras with BFC

Algebras with a
Boolean subsemilattice

Complexes

Figure 1. Kinds of algebras with a ready-made sheaf structure

11111
In the heart of this monograph, Chap. VII introduces the notion of a

‘unital shell’, which is an algebra hAIC;�; 0; 1 : : : ; !; : : :i with two binary
operations C and �, two constants 0 and 1, and other arbitrary operations
! as desired, in which no identities need hold other than what is expected
of what we call a nullity and unity:

(2.1) 0C a D a D aC 0; 0 � a D 0; 1 � a D a:
The remaining operations !, if any, need not have any relationship to
the first four. Clearly, a nullity is needed in order to talk about divisors
of zero, which will appear in the Chap. VIII. Although addition is not
always needed, a unity for multiplication appears to be needed to obtain
our results on factor objects.

Examples abound: rings and linear algebras with a unity, Boolean alge-
bras with operators, as well as bounded lattices and trellises, perhaps also
with operators. The sparse identities of (2.1) provide all we need to mimic
the factorization of rings by central idempotents. This definition is that of
‘unital shell’ in a strict sense; but we will also use ‘shell’ in a loose sense to
refer to various weakenings of this definition. By omitting C, we prune it
to ‘unital half-shell’. Examples are bounded semilattices, and more gener-
ally, monoids with a nullity. Much of the theory still holds for even weaker
shells, and this will now be explained in detail.
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We start off this chapter with sesqui-elements and sesquishells, tempo-
rary concepts leading us to prove BFC in Theorem VII.1.10 with the weakest
hypothesis possible in the context of shells, with the sheaf being reduced
and factor-transparent. The slightly stronger unital half-shells also have
BFC, and are studied in Sect. 2. Theorems tie factor elements to sesqui-
elements. Within a unital half-shell, the set of its factor elements is now a
Boolean algebra, anti-isomorphic to the Boolean algebra of factor congru-
ences (Theorem VII.2.15).

Products were captured internally in Sect. II.2 by factor congruences,
bands, and sesquimorphisms. In unital shells, we add to this list comple-
mentary pairs of factor ideals and complementary pairs of factor elements.
In Sect. 3, the concept of unital shell is sufficiently stronger to support
a characterization of factor elements solely in terms of factor identities,
as given in Theorem VII.3.4. Better still, Theorems VII.3.7 and VII.3.14
characterize the inner direct product of ideals independently of the other
factor objects, the latter theorem becoming the traditional definition of
inner product in unital rings.

In Sect. 4, we explore the one-to-one correspondences between the five
kinds of factor objects in two-sided unitary shells. (A unitary shell is ‘two-
sided’ if, in addition to (2.1), the equations, a � 0 D 0 and a � 1 D a,
also hold.) Each factor ideal is the 0-coset of a factor congruence, and
the congruence is uniquely determined by its 0-coset. Each factor ideal
is generated by a factor element, which serves as a relative unity, and
conversely, each factor element generates a factor ideal. In a unital shell,
the set of all factor ideals forms a Boolean algebra, and thus, so do the factor
elements, and these Boolean algebras are isomorphic or anti-isomorphic to
the Boolean algebras of the previously defined factor objects. Formulas are
developed for these correspondences and the Boolean operations.

But not all algebras with Boolean factor congruences have factor ele-
ments. ‘Separator algebras’, generalizing shells, are introduced as a device
for proving that any algebra A with BFC is embeddable in a ring or lattice,
whose new factor elements capture the factorizations of A where there were
none before (Theorem VII.5.5).

The category UnitShell of unital shells of a given type is a full
subcategory of AlgBFC of the same type. Theorem VII.6.4 and its corol-
lary establish that this new category is isomorphic to the category of re-
duced and factor-transparent sheaves of unital shells over Boolean spaces.
The morphisms of UnitShell are characterized as those homomorphisms,
called ‘conformal’, that take factor elements into factor elements. Similar
and equivalent categories also exist for the more general unital half-shells
and their sheaves.

11111
One of the high points of this monograph is the generalization to uni-

tal shells of Kist’s theorem [Kist69] on the decomposition of commutative
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Baer unital rings into a sheaf of integral domains over a Boolean space,
which in turn is a generalization of the classical result that every von Neu-
mann regular, commutative, unital ring is a subdirect product of fields.
This application in Chap. VIII illustrates the power of sheaves over spaces
constructed out of factor elements, and for which the previous chapters
have prepared the reader. Here, the adjective ‘Baer’ originally defined for
rings, becomes ‘Baer-Stone’ to include ‘Stone’ lattices: the annihilator of
any element a is generated by a single factor element e, that is, the anni-
hilator is a principal ideal:

a? D fb 2 R j ab D 0g D Œe�:
Theorem VIII.1.13 then states that every two-sided unital half-shell that
is Baer-Stone has a canonical sheaf representation where the stalks are
integral, that is, they have no divisors of zero. Here we apply the crucial
fact that an ideal is integral2 if it is associated with a congruence that is
the supremum of a prime ideal of factor congruences.

The categorical interpretation of Chap. VII can be further specialized to
this result: the category of Baer-Stone two-sided unital shells with confor-
mal homomorphisms is categorically equivalent to the category of sheaves
of integral shells (‘integral’ means no divisors of zero). This theorem can
also be phrased outside of the language of sheaves. Each Baer-Stone shell
is isomorphic to a subdirect product of integral shells.

The biregular rings of Arens and Kaplansky [AreKa48], and Dauns and
Hofmann [DauHo66] present another situation that can be generalized;
this was extended to near-rings by [Szeto77]. But we extend it further
to unital half-shells; they are called biregular if every principal ideal is
generated by a factor element. Theorem VIII.2.3 then reads essentially as
it does for the classical case: a biregular unital half-shell is isomorphic to
the half-shell coming from a reduced and factor-transparent sheaf over a
Boolean space with simple stalks (providing certain technical conditions
hold).

11111
The sheaf representations of the last two chapters were all surjective, that

is, each continuous section represents some element in the original algebra.
Chapter IX relaxes this; an algebra now may be represented merely as some
subalgebra of the algebra of all global sections of some sheaf. This means
that the hypotheses of the last chapter, such as being Baer-Stone, may also
be relaxed.

2This means that if a product of two elements is in the ideal, then one of the factors
must be in there also. In commutative rings, this is synonymous with being a prime
ideal.
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In the first section of Chap. IX, to achieve any results on integrality, one
must first study shells without an addition, a unity, or additional opera-
tions; I dub these new algebras ‘strict half-shells’. Also, one must expect
the multiplication to satisfy certain nilpotent conditionals, too involved to
state here. We then prove in Theorem IX.1.3 that any such half-shell is
isomorphic to a half-shell of some of the global sections of a sheaf over a
Boolean space of half-shells without divisors of zero.

In the second section, consequences of this theorem are explored. We
abstract its conclusion by calling a half-shell semi-integral if it is a subdirect
product of half-shells without divisors of zero, and give several equivalent
formulations of semi-integrality, for example, Theorem IX.2.3.

In the third section, it is further assumed that the strict half-shell has
a unity and consequently every factor ideal is principal, which leads to an
especially transparent form for the factor elements when the half-shell is
semi-integral. Then this section returns to shells where analogous results
hold. But now it is necessary to make some additional assumptions: C sat-
isfies the loop laws; C is distributive over �; and � satisfies the nilpotence
conditions mentioned above. Theorem IX.3.8 tells us that such a strict shell
is isomorphic to a subshell of the Baer-Stone shell coming from a sheaf over
an extremally disconnected base space whose stalks are integral. In some
detail, we trace the relationship of this result to some older theorems in
ring theory.

11111
Chapter X starts off with a new proof of the classical result that any alge-

bra in the variety generated by a primal algebra is isomorphic to the algebra
of all global sections of a sheaf over a Boolean space all of whose stalks are
the primal algebra. Recall that a primal algebra is a finite nontrivial alge-
bra whose operations lead by composition to all finitary functions on the
carrier. It is natural to seek other algebras close to primality whose gener-
ated varieties will have nice sheaf representations. The preprimal algebras
do not disappoint us.

An algebra is preprimal if it is one step away from being primal, that
is, if any one function not composed from its operations is added to them,
then the new algebra is primal. The preprimal algebras fall naturally into
seven classes, identified by relations that all their operations preserve. Most
of the varieties generated by them have BFC (see Table X.1). For three of
the classes we find the stalks in the sheaves of their algebras: those coming
from a preprimal preserving certain permutations (Theorem X.2.1); those
preserving certain Abelian groups (Theorem X.3.2); and those preserving
a proper subalgebra (Theorem X.4.1).

11111
In Chap. XI, we attempt to get away from the language of shells and

half-shells, and return to arbitrary algebras, in so far as possible; there are
two independent sections.
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The first section iterates our sheaf construction for a shell until all quo-
tients have become directly indecomposable. In a commutative unital ring,
the stalks are always directly indecomposable. As surprising as it may seem,
when noncommutative, the stalks need not be directly indecomposable.
Walter Burgess and William Stephenson [BurgSt78] took this opportu-
nity for unital rings to iterate the construction of Pierce sheaves on the
stalks themselves until it could be pushed no further. This forces the ulti-
mate ‘factors’ to be directly indecomposable; but we may no longer have a
sheaf, only a subdirect product. Theorem XI.1.2 adapts this iterative con-
struction to general algebras in varieties with Boolean factor congruences.

The second section looks at the lattice of congruences as a shell and con-
siders how its decomposition might lead to a decomposition of the algebra
itself. The crucial observation upon which Theorem XI.2.3 is based is that
the factor elements of the congruence lattice form a Boolean lattice; hence,
we can obtain its associated Boolean space. This, in turn, induces a sheaf,
and so the Gel’fand morphism maps elements of the given algebra to some
of the global sections.

11111
As this book was being written, it became clear that there were many

related topics to be pursued, and many tempting trails on which to venture.
The techniques introduced in this monograph might well be extended in
any number of directions. In order to draw this book to a close, rather than
try to develop these ideas in detail, Chap. XII outlines additional applica-
tions, without proofs; these point to five regions ripe for research, beyond
what is already known. The first application wants to extend the sheaf rep-
resentations in classical ring and lattice theory to shells and beyond. The
second considers algebras derived from logic. The third is about model
theory: preservation of properties, decidability, and model completeness.
The fourth weakens the metrics of complexes and the topology of Bool-
ean spaces. The fifth ranges over the diverse sheaves that may exist for a
particular algebra.

11111
This introductory chapter delineates the scope of this book. It could

be summarized by saying that there are two approaches to decomposing
algebras by sheaves: (1) take one large algebra at a time and decompose it
into smaller pieces with a sheaf; and (2) take one small algebra, or a finite
collection of finite algebras, and decompose all the algebras in the variety
generated by them. This book concentrates mostly on (1) and only on (2)
in Chap. X about preprimals.

Outlined below is what might have been covered but was not, and a few
topics that are introduced but not pursued at length since there are already
excellent monographs covering these.

Relational structures are not included; most of our examples are algebras,
or they can be made into them, such as lattice-ordered groups. Other struc-
tures omitted are several-sorted algebras, which have more than one carrier,
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and infinitary algebras, which have operations with an infinite number of
arguments. So the book is restricted to single-sorted, finitary algebras.

In the spirit of (2), Burris and McKenzie [BurMc81] characterize those
algebras decomposable as Boolean products, which we mention. The book
of Pinus [Pinus93] is mostly about Boolean products, and consequently
overlaps the book at hand; but the present book starts from a broader
perspective. On the other hand, Pinus’s book has many more results on
Boolean products than we can cover.

In another vein, Clark and Davey [ClaDa98] seek in their natural duality
theory a unique topological representation of all algebras that are subdirect
powers of a particular one. To achieve uniqueness, one must add relations to
the topological spaces. By way of contrast, this book seeks a decomposition
of a large algebra as a sheaf with much smaller, usually nonisomorphic
stalks, hopefully indecomposable in some sense.

Borceux [Borc94] and Johnstone [John82] approach sheaves from the
vantage point of pointless topology, that is locales. This has the advantage
of carving out a large part of an argument without the axiom of choice.
Then, when the axiom of choice is finally invoked, its role is made clear. The
further abstraction to topoi is out of bounds of this book. There are other
approaches starting with categories, algebraic theories, and monads, such
as those by Kennison [Kenn81] and Lambek and Rattray [LamRa78].

Finally, there are many books on traditional areas of sheaf theory that we
only skirt, for example, those by Tennison [Tenn75] and Bredon [Bred97].
Homological algebra in algebraic geometry and topology, presented in Car-
tan [Cart49], Grothendieck and Dieudonné [GroDi60], and Godement
[Gode58], is not written about, mainly because it is restricted to modules
in these books, although it is an important origin of sheaf theory. For sim-
ilar reasons, not covered are sheaves over modules as cultivated by Pierce
[Pier67], although the first part of his monograph on sheaves of rings was
a prime motivation for this book; for more, see [Prest].



II
Algebra

This chapter provides background material; it has two sections. The first
briefly introduces universal algebra. The second surveys the many ways
that products of algebras may be captured both externally and internally.

1. Universal Algebra

To set the stage for general algebraic systems, we quickly review the def-
initions, examples, and theorems that are needed to explain and exploit
their decompositions by sheaves. Some of the topics covered are the iso-
morphism theorems, examples of lattices and shells, and the new notion of
sesquimorphism. If the reader desires amplification, there are a number of
good texts available; closest to our notation are those by Stanley Burris and
H. P. Sankapannavar [BurSa81], George Grätzer [Grät79], and Ralph N.
McKenzie, George F. McNulty and Walter F. Taylor [McMcT87]. Oth-
ers are those by George M. Bergman [Berg98], Paul M. Cohn [Cohn81]
and Richard S. Pierce [Pier68]. Ross Willard outlines some later work
[Will94].

1.1. Definition. An algebra,

A D hAI!1; !2; : : : ; !i ; : : :i
is a nonempty set A, called the carrier, together with a sequence of multi-
place functions !1; !2; : : : from powers of A to A, called operations:

!i WAni ! A:
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This sequence may be finite, infinite and even uncountable, but each opera-
tion !i in it must be finitary, that is, have a finite number ni of arguments.
Call their sequence,

n D hn1; n2; : : : ; ni ; : : :i;
the type of the algebra. To evaluate an operation !i , write as usual

!i .a1; a2; : : : ; ani
/ .a1; a2; : : : ; ani

2 A/:
Implicitly included in the operations of an algebra are the projections:

�ni .a1; a2; : : : ; an/ D ai ;
which allow us to permute and identify variables. An algebra with only one
element will be called trivial.

In practice, the type is fixed and various algebras of this type are con-
sidered simultaneously, in which case we consider !i to be an operation-
symbol and write its evaluation in a particular algebra A as !A

i . However,
we shall be casual about including the superscript. Familiar examples
illustrating this are the operation-symbols C and � acting on the integers,
rational numbers or real numbers, as desired.

Nullary operations !i with no arguments, where ni D 0, are curious but
useful and necessary; each can take on only one value:

!i . / D ci :
Call such an !i a constant and write it simply as an element ci of the
algebra. Most algebras occurring in practice do have constants, often des-
ignated 0 and 1.

To avoid subscripts, we often write ! as the generic operation of n argu-
ments, and the algebra simply as hAI : : : ; !; : : :i. To save space, we often
write the sequence a1; a2; : : : ; an of arguments as a vector Ea, and the eval-
uation as !Ea D !.a1; a2; : : : ; an/.

11111
These concepts are illustrated by many examples: rings, semilattices,

lattices, and Boolean algebras. The set of integers,

Z D f: : : ;�2;�1; 0; 1; 2; : : :g ;
is the carrier of the unital ring of integers,

Z D hZIC;�; 0; 1i;
which is an algebra of type h2; 2; 0; 0i. Of the same type is the ring Zn of
the integers modulo n:

Zn D hZnIC;�; 0; 1i;
where Zn D h0; 1; 2; : : : ; n � 1i with the operations performed modulo n.
There may be divisors of zero; for example, 3 � 4 D 0 in Z12.
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An algebra may have only one binary operation. Such are semilattices,
S = hS I ^i, algebras satisfying the idempotent, commutative and associa-
tive laws for all a; b and c in S :

a ^ a D a;
a ^ b D b ^ a; and

a ^ .b ^ c/ D .a ^ b/ ^ c:
To each semilattice is associated a partial order: a � b iff a ^ b D a. The
identities imply that each pair of elements have a greatest lower bound in
the partial order associated with it.

An example is SL3, a three-element semilattice hf0; a; bgI ^i of type h2i,
whose binary operation is given by the table:

^ 0 a b

0 0 0 0

a 0 a 0

b 0 0 b

It is pictured by its associated partial order presented as a Hasse diagram:

�
0

�a �b.........................................................................
.........
.........
.........
.........
.........
.........
.

This algebra will serve as a counterexample for many conjectures.
A subset T of a semilattice S has an infimum if there is a largest element

less than all elements of S , notated
V
T . The supremum is defined dually,

notated
W
T . If the infimum of each subset of a semilattice exists, then it

is said to be complete.
A lattice hLI _;^i has two binary operations, _ and ^, each a semilattice

operation, such that the absorptive laws also hold for all a and b in L:

a ^ .b _ a/ D a and

a _ .b ^ a/ D a:
The identities for a lattice reflect the property that each pair of elements
must have both a least upper bound and a greatest lower bound in the
partial orders associated with each semilattice, and that they are dually
equal:

a �^ b iff b �_ a:

Traditionally, the order associated with a lattice is that for ^.
In what follows, we state only the basic notions of lattice theory that

are needed in this book. For more detail see the classical text of Birkhoff
[Birk67], the introductory text of Davey and Priestley [DavPr02], or the
advanced text of Grätzer [Grät98].
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By completeness of a lattice we mean that both semilattice operations
are complete. But completeness of one operation in a lattice insures com-
pleteness of the other.

A distributive lattice L is one satisfying the law:

a ^ .b _ c/ D .a ^ b/ _ .a ^ c/ .a; b; c 2 L/:
The other distributive law follows from it and the other lattice identities:

a _ .b ^ c/ D .a _ b/ ^ .a _ c/ .a; b; c 2 L/:
A lattice L is modular if:

a � b) a _ .b ^ c/ D b ^ .a _ c/ .a; b; c 2 L/:
Any distributive lattice is modular.

When there are two elements, 0 and 1, below and above everything else,
we say that the lattice is bounded. A bounded lattice may be written:

L D hLI _;^; 0; 1i with type h2; 2; 0; 0i:
Of necessity, finite lattices are always bounded, although the bounds may
not be part of the type. These are most easily pictured by Hasse diagrams.
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.......
..
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�
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C 3
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..................................................................................................................................................................
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..................................................................................................................................................................
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M3

�
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�

.........
.........
.........
........
.........
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.........
........
..............................................................................................................................................
.........
........
.........
........
.........
........
.........
.

N 5

Note that among these examples the first three satisfy the distributive
laws, which do not generally hold in lattices. The fourth M3 is not dis-
tributive; however, it is modular. The fifth N 5 satisfies neither. The last
three have divisors of zero. The integers Z have operations that turn them
into an unbounded lattice:

m _ n D max.m; n/ and m ^ n D min.m; n/:

In a bounded lattice, an element a may have a complement a0:

a _ a0 D 1; a ^ a0 D 0:
Complements do not always exist, and even when they do, there may be
more than one. In the chain C 3, the middle element has no complement.
In the example of M3, complements of any middle element are not unique.
However, in M2, the complements of all elements exist and are unique.

A bounded distributive lattice in which all elements have a complement
is called Boolean. The distributive law guarantees that complements are
unique. De Morgan’s laws follow:

.a ^ b/0 D a0 _ b0I .a _ b/0 D a0 ^ b0 .a; b 2 L/:
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Examples are C 2 and M 2. Putting complementation within bounded lat-
tices into the type gives us Boolean algebras:

hLI _;^;0 ; 0; 1i of type h2; 2; 1; 0; 0i:
There is more about them in III.4.

Each bounded lattice has within it a Boolean sublattice called the center,
which consists of its complemented neutral elements. As element a of a
lattice L is called neutral if any set of three elements in L containing a
generates a distributive sublattice.

Other examples of algebras are groups, rings, modules, fields, and vector
spaces, with which we assume the reader is familiar. In Chap. VII, shells
of various kinds generalize many of these examples.

11111
There are several ways to relate algebras to one another; we first talk

about subalgebras and homomorphisms. To be compared they must have
the same type. For a subalgebra the new carrier is a nonempty subset of
the old – closure of the new carrier to the old operations is the defining
characteristic. An example is the ring of integers, which is a subalgebra of
the ring of all rational numbers, which in turn is a subalgebra of the ring
of all real numbers, etc. One typically writes A � B for the subalgebra
relationship.

A homomorphism is a function ' from the carrier of one algebra A

to another B of the same type such that any operation ! of the type is
preserved in going from A to B:

'
�
!A.a1; : : : ; an/

� D !B
�
'.a1/; : : : ; '.an/

�
.a1; : : : ; an 2 A/:

Abbreviate this as 'WA ! B. Reducing integers modulo 12 is an example
of a homomorphism from Z onto Z12. Any homomorphism 'WA ! B that
maps A onto B is called surjective. If it is one-to-one, it is called injective.
The examples of lattices given earlier have many homomorphisms, some
surjective and others injective. When a homomorphism is both injective
and surjective, that is bijective, it is called an isomorphism, and notated
A Š B. When a homomorphism goes from an algebra back to itself, we
have an endomorphism. An endomorphism that is also an isomorphism is
an automorphism.

Here is a useful notion that combines subalgebras with homomorphisms.
One algebra B is a retract of another A whenever there are two homomor-
phisms �WA ! B and �WB ! A such that their composition � ı � is the
identity function on B. Of necessity, � is surjective and � is injective. For
example, Z4 is a retract of Z12.

The external effect of a homomorphism, 'WA ! B, can be captured
internally within A itself by the concept of a congruence. A congruence of
an algebra A is an equivalence relation � on its carrier A such that for any
operation ! of A:

if a1 � b1; : : : ; an � bn, then !.a1; : : : ; an/ � !.b1; : : : ; bn/:
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An example is the congruence on Z of the integers modulo 12, another is
the equivalence relation corresponding to the partition ffag; f0; bgg of the
semilattice SL3 given earlier. In analogy with number theory, one some-
times writes a � b .�/ for a � b. For the set of all congruences of an algebra
A write Con A. Also write �.B/ for the smallest congruence of A in which
all elements of a subset B are related. An algebra is called simple if it has
exactly two congruences; of necessity, these will have to be the largest and
smallest congruences. A simple algebra is never trivial. Examples of simple
algebras are Zp for p a prime and the two-element Boolean algebra B2.

Out of each congruence � of an algebra A, a quotient algebra A=� of
the same type is constructed as follows. First, designate the congruence
class fb 2 A j b � ag of � modulo an element a of A as a=� . The carrier of
A=� is the set A=� of congruence classes a=� of � as a runs over A. The
operations !=� on A=� are defined by

!

�

�a1

�
; : : : ;

an

�

�
D !.a1; : : : ; an/

�
.a1; : : : ; an 2 A/:

In algebras with a group operation, one can recover the whole congruence
� from only one congruence class o=� . Rings also do not need congruences
� since every equivalence class is a coset of the ideal 0=� . Thus, it suffices
to work with normal subgroups or more generally ideals.

Unfortunately, as the abundance of congruences in most lattices makes
clear, there is no longer such a handy one-to-one correspondence between
ideals and congruences. To see this consider these two congruences on the
three-element chain C 3.
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The upper two elements in the first lattice are related whereas in the second
they are not. The bottom singleton is insufficient to determine the congru-
ence. So, in lattice theory and in most other algebras without a group
operation, the broader concept of congruence is essential, replacing normal
subgroups and ideals.

Throughout we will implicitly use the three isomorphism theorems origi-
nally formulated for modules and rings by Emmy Noether [Noet26, p. 40],
see also [BurSa81, Sect. II.6]. We label them the ‘homomorphism’,
‘cancellation’, and ‘Noether’ theorems. The first makes precise the
connection between external homomorphisms and internal congruences,
and captures the one-to-one correspondence between them: each homomor-
phism determines a unique congruence, and each congruence determines a
homomorphism that is unique up to a commutative diagram.
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1.2. Theorem (Homomorphism). (a) For any congruence � of an alge-
bra A there is a surjective homomorphism onto the quotient algebra,
'WA ! A=� , given by '.a/ D a=� .

(b) For any surjective homomorphism  WA ! B, there is a congruence �
of A such that A=� Š

�
B. This congruence is defined by

a1 � a2 iff  .a1/ D  .a2/ .a1; a2 2 A/
and the isomorphism � by �.a=�/ D  .a/. This congruence will be called
the kernel of the homomorphism: � D ker .

(c) Starting with a congruence, passing to the surjective homomorphism,
and then to its kernel yields back the original congruence.

(d) Starting with a surjective homomorphism  WA ! B, passing to its
kernel, � D ker , and then to its quotient homomorphism ' yields an
algebra isomorphic to B and a composition of functions equal to the
original  , that is, this diagram commutes.

A B....................................................................................................... ...
.........

 

A
ker 

........................................................ .......
.....'

........
........
........
........
........
................
............ ...................................................

.....

............
�

The set Con A of congruences of an algebra A has some structure, namely
the partial order of inclusion, which turns it into a lattice ConA. The
intersection � \ � of any two congruences � and � is again a congruence;
also for each pair of congruences there is smallest congruence, � _ �, that
includes both. This join is the union of all compositions of � and �; these few
suffice for the union: � ı �, � ı � ı � , � ı � ı � ı �, etc. These two operations
create a lattice. There are always the special congruences: the smallest
0ConA, which is the identity relation, often called the trivial congruence,
and the largest 1ConA, the improper congruence, the other congruences
being called proper.

Thus, ConA is a bounded lattice hCon AI _;^; 0ConA; 1ConA i for any
algebra A. An example is Z4, where ConZ4 is isomorphic to C 3. Also,
Con A is a complete lattice.

1.3. Theorem (Cancellation). For any algebra A and any congruence
� , the sublattice of all congruences � between and including � and 1ConA is
isomorphic to the congruence lattice Con.A=�/ of the quotient algebra. The
isomorphism sends � to �=� where �=� is the congruence on A=� defined by

a

�

�

�

b

�
iff a � b:

Moreover, .A=�/.�=�/ Š A=�.

As an illustration in the ring Z of integers, in the interval within ConZ

from mod 4 to mod 1, there are three congruences: mod 4, mod 2 and mod 1.
By the cancellation theorem, this three-element lattice is isomorphic to
ConZ4, which is C 3, as we already know.



26 II. Algebra

The subalgebras B and congruences � of an algebra interact in the last
isomorphism theorem. For that, extend B to a larger subalgebra, the union
of all those congruence classes of � with at least one member in B:

�B D fc j c � b for some b in B g :
1.4. Theorem (Noether). Let B be a subalgebra of A and � a congruence

of A. Then
�B

� j.�B/ Š
B

� jB ;
where � jB is the restriction of � to B.

11111
Classically, homomorphisms of one algebra onto another are captured by

congruences, as we have just seen. But congruences are relations. Are there
simpler structures that will accomplish the same?

There are several: sesquimorphisms, transversals, and ideals. The first
work universally for all algebras; these are projections that replace endo-
morphisms in earlier investigations. Precursors of sesquimorphisms occur
in [GouGr67] and [HobMc88, def. 2.1], the last as idempotent polynomi-
als restricted to their ranges. The last two, transversals and ideals, which
are subsets of an algebra, are always definable, but have nice one-to-one
correspondences with congruences only for certain algebras.

We define these concepts, give examples, and relate them to each other.
Whenever possible, we would like an axiomatic definition for each concept
that is independent of the others. Our immediate goal is to establish the
isomorphism theorems for sesquimorphisms. Their definition and some of
their properties were formulated in [Knoe07a].

1.5. Definition. A sesquimorphism1 is a function � from the carrier
of an algebra A to itself such that

(i) �
�
�.a/

� D �.a/ .a 2 A/
(ii) �

�
!.�.a1/; : : : ; �.an//

� D ��
!.a1; : : : ; an/

�
.a1; : : : ; a2 2 A/

for all operations ! of A.

Although appearing a bit strange, sesquimorphisms do occur in the lit-
erature, but are rarely given a name. Here are three examples, with three
more given in the next section on products. For any e in a distributive
lattice, Birkhoff [1967, Sect. III. 9] displays the functions,

�WL! L W x 7! e _ x and 	WL! L W x 7! e ^ x:

1Here is the reason for this name. The prefix ‘sesqui’ means a ratio of 3:2. When
written with a sequence Ea of elements of A, formula (ii) becomes �

�
!.�ı Ea/� D �

�
!.Ea/�,

with three occurrences of � as opposed to two in the formula for a homomorphism,
!.� ı Ea/ D �

�
!.Ea/�.
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These are sesquimorphisms, in fact, idempotent endomorphisms. However,
in a Boolean algebra these two functions are no longer endomorphisms, but
they are still sesquimorphisms.

Other examples of sesquimorphisms that are not endomorphisms are
found in the ring of integers Z. For a fixed integer m define

�m.n/ D n mod m

D that k such that 0 � k < m and k � n.mod m/:

The range �mZ is then just the finite set f0; 1; : : : ; m � 1g, with the usual
addition and multiplication reduced modulo m.

While any idempotent endomorphism is a sesquimorphism, an arbitrary
sesquimorphism is not necessarily an endomorphism, as just shown. How-
ever, in the context of products, Proposition 2.14 will show that for many
classical algebras, factor sesquimorphisms are endomorphisms.

Each sesquimorphism � engenders a congruence ��:

a �� b if �.a/ D �.b/;
its induced congruence. Unequal sesquimorphisms, � ¤ 	, may induce
equal congruences, �� D �� .

For a precise one-to-one correspondence between sesquimorphisms and
congruences, we need also the concept of a transversal. The goal is to cap-
ture a homomorphism 'WA ! B internally within A with a sesquimorph-
ism that picks an element from each congruence class of ker'. A transversal
of a congruence � is a subset T of A such that each congruence class of
� has exactly one representative in T . Overall, call T a transversal of an
algebra A if it is the transversal of some congruence of A. In the inte-
gers, the congruence modm has the transversal f0; 1; : : : ; m � 1g, which
is the range of the sesquimorphism �m.n/ D n mod m. Generally, for a
sesquimorphism �, its range, �A D f�a j a 2 Ag, is a transversal of ��.
Conversely, a congruence � and a transversal T of it produce a sesqui-
morphism �:

(1.1) �.a/ D that unique b such that a � b and b 2 T:
These observations may be formalized and proven.

1.6. Proposition. The sesquimorphisms of an algebra A are in one-
to-one correspondence with pairs consisting of a congruence and one of its
transversals.

Proof. The only difficult part might be to show that for any transver-
sal the function � defined by (1.1) is indeed a sesquimorphism. To that end,
let a1; : : : ; an be any sequence of arguments for an operation ! of A. Then,
a1 � �.a1/; : : : ; an � �.an/, and hence

!.a1; : : : ; an/ � !.�.a1/; : : : ; �.a2//:
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By the uniqueness of transversal elements in congruence classes,

�!.a1; a2; : : :/ D �!.�a1; �a2; : : :/: �
1.7. Problem. Which algebras have congruences that can be represented

by transversals that are subalgebras? Vector spaces are an example.

1.8. Definition. We may go further within an algebra A and turn the
range �A of each sesquimorphism � of it into an algebra. To do this,
relativize each operation ! of A to �A:

!�A.a1; a2; : : :/ D �
�
!A.a1; a2; : : :/

�
.a1; a2; : : : 2 �A/:

Thus, �A becomes an algebra �A of the same type as A. Sometimes �A

is called the relativization of A by �.

1.9. Exercise. Consider the four-element Boolean algebra B on the set
f0; a; b; 1g and the unique congruence � with transversal fa; 1g. Find the
corresponding sesquimorphism, and write out the operation tables for the
relativized Boolean operations on the set fa; 1g; this is a again a Boolean
algebra!

That each external homomorphism casts a shadow as an internal sesqui-
morphism gives rise to a new version of the Homomorphism Theorem.

1.10. Theorem (Internal Homomorphism). (a) Any sesquimorphism �

of an algebra A is a surjective homomorphism:

�WA ! �A;

where �A is its transversal.
(b) Any surjective homomorphism  WA ! B is realized internally by a

sesquimorphism �WA ! �A that makes this diagram commute:

A B....................................................................................................... ....
........

 

�A

....................................................... .......
.....� .........

.........
.........
.........
...................
............ ..................................................

.....
............ isom.

Here, � is any sesquimorphism associated with the kernel of  , and
the isomorphism from �A to B is  j.�A/. Thus ker D ker�.

To see what this has to do with the traditional Homomorphism Theorem
phrased in terms of congruences, realize that

A

ker 
Š �A:

The Cancellation Theorem, when phrased in terms of sesquimorphisms,
is simpler than when phrased in terms of congruences. To state it, sesqui-
morphisms need to be partially ordered, using their composition.

1.11. Definition. For sesquimorphisms � and 	 in an algebra A,

� � 	 if � ı 	 D � D 	 ı �:
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Consequently, if � � 	, then

(a) � ı 	 and 	 ı � are sesquimorphisms,
(b) 	.a/ D 	.b/ implies �.a/ D �.b/ .a; b 2 A/,
(c) �.A/ � 	.A/,
(d) �� � �� .
The reversal of ordering in (d) will fit in with the Boolean algebras of factor
objects to be defined in Sect. VI.2, and in particular Theorem VI.3.2. For
now, accept that we are ordering sesquimorphisms by the size of their
transversals.

1.12. Theorem (Internal Cancellation). If � and 	 are sesquimorphims
of an algebra A such that � � 	 and N� D �j.	A/, then N� is a sesquimor-
phism of 	A and � D N� ı 	.

Proof. Since 	.	.a// D 	.a/ and � � 	, then N�.	.a// D �.a/. �

To connect with the traditional Cancellation Theorem, usually couched
in terms of two congruences, � � � , let 	 be a sesquimorphism for �. Choose
a transversal T for � such that T � 	A, thereby determining a sesquimorph-
ism � such that T D �A. Then � � 	. By the Internal Homomorphism
Theorem,

A

�
Š 	A;

A=�

�=�
Š N�	A;

A

�
Š �A:

The conclusion of the Internal Cancellation Theorem yields the traditional
Cancellation Theorem.

n

n

n
n

n

m m m
m

m

m

m

Figure 1. The action of sesquimorphisms.

Figure 1 illustrates the general interaction of two sesquimorphisms, �
and 	, of an algebra A, with corresponding congruences, � � �. Their
congruence classes are outlined in solid and dashed lines, respectively – two
classes for � and four for �. The symbol ? represents arbitrary elements of
A, the symbol ı their images under 	, and � their images under �. Thus,
there is one ı for each congruence class of 	, and one � for each class of �.
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As 	 and � are idempotent, ı and � go to themselves under the respective
sesquimorphisms. If also � � 	, as in Theorem 1.12, then ı and � would
become one and the same in the first and third quadrants of this figure.

1.13. Problem. Given an algebra A, can one choose for each congruence
� a sesquimorphism �� representing it (���

D �) so that altogether they
are compatible:

� � � if, and only if, �� 	 �� .� 2 Con A/‹

The Noether Theorem becomes even simpler when viewed internally.

1.14. Theorem (Internal Noether). Let B be a subalgebra of A. Suppose
� is a sesquimorphism of A such that b 2 B implies �.b/ 2 B. Define
C D ��1B. Then C is a subalgebra of A, and

�C D �B:

Proof. To check closure of C to an n-ary operation ! of A, apply
it to elements c1; : : : ; cn of C . There must be elements bi of B such that
�ci D bi . Thus,

�!.c1; : : : ; cn/ D �!.�b1; : : : ; �bn/ D �!.b1; : : : ; bn/ 2 B;
since � is a sesquimorphism. Hence, !Ec 2 C .
The equality of the subalgebras is straightforward to verify. �

Again, we see simple parallels with congruences. If � is the congruence
determined by �, then C is the subalgebra of A that is the union of all those
congruence classes of � with at least one member in B, that is, C D �B, as
defined in the external Noether theorem. Applying � to both sides of this
equation yields the quotient algebras of Theorem 1.4.

1.15. Problem. (a) When can sesquimorphisms be chosen to be term-
operations or polynomials?

(b) When can sesquimorphisms be chosen to be endomorphisms?

The last internal concept for capturing homomorphisms is that of ‘ideal’.
It depends on fixing one element of the carrier of an algebra as an ‘origin’ o.
For a congruence � , its ideal or o-class is the equivalence class o=� . This
notion captures several common concepts in algebra: in a group an ideal is
a normal subgroup, providing the origin is the unity 1; in a ring or Boolean
algebra, an ideal is the usual notion, providing that o D 0; and in a Boolean
algebra, if o D 1, then we obtain ‘filters’. In these cases, any other element
can also serve as the origin, in the sense that its ideals uniquely determine
the congruences from which they come. Ivan Chajda, Günther Eigenthaler
and Helmut Länger [ChaEL03, p. 64] name this property: an algebra is
regular if any congruence � of A is determined by o=� for any o in A, that
is, for any congruences � and �, and any element o of A, if o=� D o=�,
then � D �. However, an ideal generally does not uniquely determine a
congruence, as shown earlier.
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Classically, the concept of an ideal as an internal determiner of
homomorphisms is defined in terms of equations, as for normal subgroups.
In [ChaEL03, p. 137], ideals are defined in this way with what are called
‘ideal terms’. Their notion agrees with ours for the specific algebras men-
tioned in the last paragraph, but otherwise they may disagree. We do not
pursue how generally equations may be used to capture the concept of
an ideal since our more special interest is in complementary factor ideals,
where these will be characterized in shells by somewhat different sentences
at the end of Sect. VII.3.

Ideals are subalgebras when there is an element o of the algebra such
that for any operation, !.o; o; : : : ; o/ D o; that is, fog is a subalgebra. An
ideal of an algebra is maximal if any larger ideal is the whole algebra.

11111
This section closes with a miscellanea of useful concepts and conventions.

Sometimes we need to forget about some of the operations of an algebra;
this is called a reduct. For example, the group hZIC; 0i of integers is a
reduct of the ring hZIC;�; 0; 1i. The opposite of a reduct is an expanse,
where more operations are adjoined to an algebra.

Other times we want an operation to act on subsets of the carrier rather
than on elements. This is done by mimicking the complex multiplication
often found in group and ring theory:

!.A1; A2; : : : ; An/ D f!.a1; a2; : : : an/ j a1 2 A1; a2 2 A2; : : : ; an 2 Ang :
Occasionally, as in categories and sheaves, we need to relax the totality

of the operations. A partial algebra is an algebra in which some or all of the
operations are not defined everywhere. An example is the notion of a field in
which division by 0 is not allowed. We might specify the field as a partial
algebra hF IC;�;�; =; 0; 1i. A composition of these operations is said to
exist for particular arguments if each stage of evaluation exists. Thus, in a
field, 0C 1=.1C 1/ exists, but 0C 1=.1� 1/ does not. An equation in which
each side is a composition of partial operations is said to be satisfied for
particular arguments if, when one side exists, so does the other, and they
are equal.

The definition of homomorphism for partial algebras also needs a proviso.
A homomorphism of partial algebras, 'WA ! B, must satisfy for each n-
ary operation !:

'.!.a1; a2; : : : ; an/
� D !�

'.a1/; '.a2/; : : : ; '.an/
�

whenever !.a1; a2; : : : ; an/ exists, and thus also !
�
'.a1/; '.a2/; : : : ; '.an/

�

must exist.
The symbols 0 and 1 are used throughout this book in many contexts,

most loosely connected. In a bounded partial order, P D hP I �i, the bot-
tom element is designated 0P and the top 1P . Thus, in the congruence lat-
tice ConA of an algebra A, the identity relation, which is the smallest, is
0ConA, and the universal relation, the largest, is 1ConA. This goes along with
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notations in bounded lattices. Further 1S represents the identity function
on a set S , in other words, 1S is the unity of the semigroup of functions
on S . When obvious, these subscripts may be dropped to improve clarity.
Also, this notation may be used for identity morphisms in a category; we
will see in Sect. IV.3 that the identity morphism 1A of a sheaf A has a
more complicated structure than a simple identity function has on a set.
Chapter VII will use 0 and 1 in shells analogously to their use in unital
rings, monoids and bounded lattices.

Here are other common terms and notations. The power set P.A/ of a
set A is the set of all its subsets. The cardinality of a set A is notated jAj.

The composition of two binary relations � and � is given by:

� ı � D fha; bi j a � x and x � b for some xg :
If � ı � D � ı �, then � and � are said to commute or permute.2 For exam-
ple, in an algebra with a group operation, any two congruences commute.
Generally, the composition of two congruences is not again a congruence;
but when they commute it is.

Composition specializes to functions ˛ and ˇ, when they are considered
as sets of ordered pairs, so that upon evaluation:

.˛ ı ˇ/.a/ D ˛.ˇ.a//:
The next exercise is about commuting sesquimorphisms.

1.16. Exercise. Find proofs and counterexamples.

(a) A composition of sesquimorphism is not necessarily a sesquimorphism.
(b) If two sesquimorphisms commute, then their composition is a sesqui-

morphism.
(c) Even if two sesquimorphisms commute, their congruences may not.
(d) Even if two congruences commute, some corresponding sesquimorph-

isms may not.

The anomalies of Exercise 1.16 will vanish in the next section when
complementary sesquimorphisms create products.

Composition may be extended to functions of more than one argument.
For an m-ary function ˛ and an n-ary function ˇ the composition ˛ ı ˇ is
an mn-ary function.

.˛ ı ˇ/.a11; a12; : : : ; a1n; a21; a22; : : : ; a2n; : : : ; am1 ; am2 ; : : : ; amn /
D ˛�

ˇ.a11; a
1
2; : : : ; a

1
n/; ˇ.a

2
1; a

2
2; : : : ; a

2
n/; : : : ; ˇ.a

m
1 ; a

m
2 ; : : : ; a

m
n /

�
:

It is most convenient to express this by adapting matrix notation:

˛.Mˇ/ D ˛�
ˇ.a11; a

1
2; : : : ; a

1
n/; ˇ.a

2
1; a

2
2; : : : ; a

2
n/; : : : ; ˇ.a

m
1 ; a

m
2 ; : : : ; a

m
n /

�
;

2The traditional term for relations is ‘permute’, but the preferred term in this book
is ‘commute’ since other related notions, such as endomorphisms, traditionally commute.
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where

M D

0

B
B
B
B
@

a11; a12; : : : ; a1n
a21; a22; : : : ; a2n
:::

:::

am1 ; am2 ; : : : ; amn

1

C
C
C
C
A
:

Here, Mˇ is the column vector resulting from ˇ operating on each row, and
˛ operates on this column to produce a single element. Similarly, ˛M is
the row vector resulting from ˛ operating on each column, and ˇ operates
on this row to yield .˛M/ˇ. If ˛.Mˇ/ D .˛M/ˇ, then ˛ and ˇ are said to
commute; equivalently, if ˇ.M T ˛/ D .ˇM T /˛, using the transpose. This
is an extension of commuting functions of one variable. For example, when
˛ and ˇ are binary operations of an algebra, they commute iff

˛
�
ˇ.a; b/; ˇ.c; d/

� D ˇ�
˛.a; c/; ˛.b; d/

�
:

We extend this notation to the preservation of relations by functions.
Let ai be the ith row of the matrix M and aj its j th column. For an
n-ary function ' and an m-ary relation 
, both on the set A, we say that
' preserves 


if 
.a1/; 
.a2/; : : : ; 
.an/; then 
.'.a1/; '.a2/; : : : ; '.am//;

for any m by n matrix M with entries aij in A.

The product ˛ � ˇ of two m-ary relations, ˛ on A and ˇ on B, is an
m-ary relation on A � B given by:

hha1; b1i; : : : ; ham; bmii 2 ˛ � ˇ if ha1; : : : ; ami 2 ˛ and hb1; : : : ; bmi 2 ˛:
It should be clear how to define products of more than two relations and
powers of a single relation.

Since functions are so fundamental, composition of them will often be
abbreviated, ˛ˇ D ˛ ıˇ, and their evaluation, ˛a D ˛.a/. Confusion might
result when composition and evaluation are juxtaposed and iterated, but
associative laws save the day – at least for functions of one argument:

˛ ı .ˇ ı �/ D ˛ˇ� D .˛ ı ˇ/ ı � I
.˛ ı ˇ/.a/ D ˛ˇa D ˛.ˇ.a//:

By ˚ (')(a) where ' is a function and ˚ is a function of functions, we
mean of course

�
˚ (')

�
(a). The domain of a function, 'WA! B, is A; and

its range is denoted: rng ' D f'.a/ j a 2 Ag. If S is a subset of A, then

'.S/ D f'.s/ j s 2 S g and

'jS D fhs; '.s/i j s 2 S g ;
the restriction of a function.

In analogy with the set former
˚
n2 j n 2 Z

�
– the collection of integers

that are squares – we write hn2 j n 2 Zi for the function ' that squares
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integers. We may call this a family when the emphasis is on the range of
values. This function former may also be spelled out as

' W Z! Z W n 7! n2I
more generally,

' W A ! B W a 7! ".a/;

where " is some expression.
To make formulas easily readable we continue to juxtapose symbols when

no confusion arises. For example, in shells the second binary operation-
symbol may be omitted: ab D a � b in rings, and ab D a ^ b in lattices.
These implicit operations have the greatest cohesiveness in groupings; in
lattices for example,

a.bc _ de/ _ f D
�
a ^ �

.b ^ c/ _ .d ^ e/�
�
_ f:

For algebras with a binary operation such as �, we may combine the con-
vention of juxtaposition with complex multiplication:

eA D e � A D fe � a j a 2 Ag D fea j a 2 Ag :
The repeated argument o of a function ! is written

!. Po/ D !.o; o; : : : ; o/:
Here, Po is o repeated enough times to fill out !. It is also convenient in
long derivations to abbreviate the sequence of arguments a1; a2; : : : ; an of
a function ! as Ea. Thus,

!.Ea/ D !.a1; a2; : : : ; an/:
We continue the convention adopted in model theory of distinguishing

between a structure and its carrier: a bold letter for the algebra and an
ordinary font for the carrier, and similarly for a topological space. This
convention breaks down when both operations and a topology are present
on the carrier and the definition of each takes several stages, as in the
definition of sheaves in Sect. IV.1.

This convention continues over functions. Thus, when 'WA ! B is a
homomorphism, '.A/ is a set that is the range of '. But '.A/ is the image
of ' as a subalgebra of B. A similar comment applies to topological spaces.

Operators, such as Con and � , need different conventions. Thus, Con A

is the set of congruences on an algebra A, whereas ConA is the lattice of
congruences. Similarly, � .A/ will be the set of global sections of the sheaf
on an algebra A, whereas � .A/ will be the algebra of such sections.

A few words about emptiness. In general we have excluded empty alge-
bras, the conventional stand, although there are good reasons for including
them. Among these are that each variety would then have a free alge-
bra on zero generators; this free algebra would be the initial object of
the variety when viewed as a category. Also, there would be no need to
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distinguish between subalgebras (ordinarily nonempty) and subuniverses
(possibly empty). When nullary operations are present, empty algebras do
not exist: so in this case, these points are moot. And this is so for most
of our applications. To have included empty algebras in this book would
have meant adding extra clauses and some ad hoc constructions to the
definitions involving specific categories.

2. Products and Factor Objects

Homomorphic images and subalgebras of an algebra are smaller algebras.
We turn our attention now to constructions that create larger algebras:
direct products, subdirect products, and disjoint unions. Decomposing an
algebra into various products of smaller and more manageable pieces is
the foundation for constructing the Pierce sheaf. This will be achieved in
Chap. VI by refining a family of factor congruences into a subdirect product
indexed by a topological space.

This section studies how to factor an arbitrary algebra into a product,
both externally and internally. Relating outer direct products to inner di-
rect products is natural and well developed in classical systems. Jónsson
and Tarski [JónTa47] extended this correspondence to more general alge-
bras (JT-algebras) when they proved uniqueness of direct decompositions
of their finite algebras.

We exhibit the many ways in which factorizations may be characterized.
The external ways are the outer direct product and the categorical prod-
uct. There are up to five ways to recreate these outer products internally.
Complementary factor congruences are well known, and factor bands less
so; there are also complementary factor ideals and elements, the analog of
central idempotents in rings. Complementary factor sesquimorphisms have
been defined up to now in the literature only for special algebras, and often
they are just endomorphisms.

In unital rings and bounded lattices, as well as in their common general-
ization, unital shells, all external and internal concepts are equivalent. But
in general, among all the ways to express factorizations in arbitrary alge-
bras, there is a bijective correspondence between only some of these: outer
direct products, categorical products, bands, complementary congruences
and complementary sesquimorphisms. Equivalence with the remaining two,
elements and ideals, requires something like a weak sum or multiplication
in Chap. VII. This section concludes with subdirect products and disjoint
unions of algebras.

2.1. Definition. The outer direct product P , or just product, of two
algebras A and A0 of the same type has as a carrier the Cartesian product
A � A0, with the operations defined on it coordinate-wise:

!P
�ha1; a0

1i; : : : ; han; a0
ni

� D h!A.a1; : : : ; an/; !
A0

.a0
1; : : : ; a

0
n/i;
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for any n-ary operation ! of the given type with ai in A and a0
i in A0.

Associated with it are the projections: �WP ! AW ha; a0i 7! a and � 0WP !
A0W ha; a0i 7! a0. One writes P D A � A0, and omits the words modifying
‘product’ when clear. For the same factor repeated n times, we have the
power An.

Carried throughout this discussion will be the example of a product of
cyclic rings: Z12 Š Z3�Z4, where the isomorphism is given by projections:
m 7! hm mod 3;m mod 4i.

Power sets, viewed as Boolean algebras, provide more products:

P.A[ B/ � P.A\ B/ Š P.A/ � P.B/:

2.2. Definition. An algebra P is said to be a categorical product of
algebras A and A0 if there are homomorphisms �WP ! A and � 0WP ! A0
such that for any other algebra Q and homomorphisms 
WQ ! A and

0WQ! A0 there is a unique homomorphism 
WQ! P for which 
 D � ı

and 
0 D � 0 ı 
; that is, this diagram commutes:

PA ....................................................................................................
�

A0........................................................................................ ....
........

� 0

Q
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

................................



.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
....................
............


0
.......
......
.......
......
.......
......
............
............




Categorical notions are defined relative to a class of objects and map-
pings between them. For now, it suffices to consider all algebras of a given
type, and all homomorphisms between them. In this case, the outer direct
product A�A0 defined earlier will also be a categorical product. Conversely,
for any categorical product P as notated above, there is the isomorphism,

 W P Š A �A0 (in the defining diagram take Q D A �A0 with 
 and 
0
the Cartesian projections).

One says ‘a’ product since categorically products are defined only up to
isomorphism. For example, in the category of sets, a product of f0; 1; 2g
and f0; 1g may be any six-element set. Note also that the projections are
considered an integral part of a categorical product hP; �; � 0 i. Two cate-
gorical products on the same algebra, hPI�; � 0 i of A and A0, and hPI 
; 
0i
of B and B 0, are said to be isomorphic if there are isomorphisms making
this diagram commute.

P

A

..............
..............

..............
..............

..............
........................
.............. � A0

.............
.............
.............
.............
.............
.......................
............

� 0

B

............................................................................................
....
............ 


...................................................................................
.....
.......
.....
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
............

isom.

B 0

.......................................................................................... ........
....
0

...................................................................................
.....
.......
.....
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
............

isom.

11111
The internal ways of factoring are five in number. If a unital ring factors,

R D S � T , then this product may be captured within R as follows:

(a) By complementary central idempotents, e D h1; 0i and e0 D h0; 1i
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(b) By complementary ideals, I D eR and I 0 D e0R
(c) By complementary endomorphisms onto these ideals, �.r/ D er and

� 0.r/ D e0r
(d) By complementary congruences, � and � 0, where r � s iff er D es, and

r � 0s iff e0r D e0s
(e) By a band, ˇ.r; s/ D er C e0s.
In addition one can talk about an inner direct product, R D eR C e0R,
associated with this outer direct product.

In analogy with analytic geometry, Fig. 2 illustrates these concepts with
the product of rings, Z12 Š Z3 � Z4. Think of the bottom row, the ideal

9 
 h0; 1i D e0 5 
 h2; 1i 1 
 h1; 1i
6 
 h0; 2i 2 
 h2; 2i 10 
 h1; 2i
3 
 h0; 3i 11 
 h2; 3i 7 
 h1; 3i
0 
 h0; 0i 8 
 h2; 0i 4 
 h1; 0i D e

Figure 2. Representing the ring Z12 as Z3 � Z4

4Z12, as the X -axis – this is isomorphic to Z3; and the left-hand column, the
ideal 3Z12, as the Y - or X 0-axis – this is isomorphic to Z4. An X -coordinate
x at the bottom points up and an X 0-coordinate x0 at the left points to
the right, giving us an entry in the body that is ˇ.x; x0/. Endomorphisms
do the opposite: � projects down to the X -axis and � 0 projects left to the
X 0-axis. More generally, ˇ.r; s/ is that entry that is in same column as r
and the same row as s. The corresponding congruences are � D mod 3, and
� 0 D mod 4. As for their congruence classes, the columns are the �-classes
and the rows the � 0-classes.

We now define these internal notions within any general algebra, calling
them collectively factor objects, starting with bands and ending with ele-
ments, prefixing the adjective ‘factor’ to each to indicate their origin in a
product. But to fully capture products by all these notions we will have to
wait till additional assumptions on the algebra are added.

For any product of algebras, P D A �A0, there is the homomorphism,
ˇWP�P ! P , given by ˇ.ha; a0i; hb; b0i/ D ha; b0i. A product given merely
as an isomorphism, P Š A�A0, will carry this binary function back to P .
In any case, it satisfies these equations for elements in P :

ˇ.p; p/ D p;(2.1)

ˇ.ˇ.p; q/; ˇ.s; t// D ˇ.p; t/;(2.2)

ˇ.!.p1; : : : ; pn/; !.q1; : : : ; qn// D !.ˇ.p1; q1/; : : : ; ˇ.pn; qn//;(2.3)

where ! is any n-ary operation of the given type. We call such a binary
function ˇ on any algebra a factor band ; it is also called a decomposition
operation (see [McMcT87, vol. 1, pp. 162 . . . ]). The last equation amounts



38 II. Algebra

to the commutativity of ˇ and !, expressed more compactly: ˇ ı! D ! ıˇ.
In the example of the ring Z12, which is isomorphic to Z3�Z4, one has that
ˇ.r; s/ D 4r C 9s, the coefficients to be found by the Chinese Remainder
Theorem. It follows from its defining identities that a factor band is always
associative:

ˇ.p; ˇ.q; r// D ˇ.ˇ.p; p/; ˇ.q; r// D ˇ.p; r/ D : : : D ˇ.ˇ.p; q/; r/I

hence, the name ‘band’, as it is applied to any idempotent and associa-
tive binary operation. There are the trivial factor bands, ˇ.a; b/ D a and
ˇ.a; b/ D b for all a and b in A, corresponding to factoring an algebra A

as a product of itself with a one-element algebra.
Factor bands may also be obtained directly from the categorical defini-

tion. Let P be the outer direct product A � A0 with projections � and
� 0. As P � P is also an outer direct product, there are two projections
associated with it: ˘;˘ 0WP �P ! P . If we view P as a categorical prod-
uct, there must be a unique ˇWP � P ! P for which � ı ˇ D � ı ˘ and
� 0 ı ˇ D � 0 ı˘ 0. One easily checks that ˇ is the previously defined factor
band. A commutative diagram illustrates this construction.

P�PP .............................................................................
˘ 0

P................................................................. ...
.........

˘

P

.............

.............

.............

.......
.....
.......
.....

ˇ

A ....................................................................................................
�

...................................................................................
.....
.......
.....

�

A0........................................................................................ ...
.........

� 0

...................................................................................
.....
.......
.....

� 0

2.3. Proposition. Two categorical products, hP W �; � 0i and hP W 
; 
0i
of a common algebra P , are isomorphic if, and only if, their respective
factor bands ˇ and � are equal.

Proof. From the diagram above the factor bands are defined by

ˇ.p; q/ D 
h�p; � 0qi;
�.p; q/ D  h
p; 
0qi:

In the first formula, the isomorphism 
 comes from inserting the outer
direct product A �A0 into the definition of categorical product:

P

A

............
............

............
............

............
................................... � A0

............
............
............
............
............
.......................
............� 0

A �A0
...................................................................................
.....
.......
.....




...................................................................................
...
............

...................................................................................... .........
...

In the second formula,  comes from a similar diagram for B �B 0.
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The two directions of logical implication are proven by developing the
next commutative diagram in two different ways.

P

A

............
............

............
............

............
................................... �

B

...............................................................................
....
............




...........................................................................
.....
.......
.....

'

A0

............
............
............
............
............
.......................
............� 0

B 0

................................................................................... ........
....


0
...........................................................................
.....
.......
.....

' 0

A �A0
...................................................................................
.....
.......
.....




...................................................................................
...
............

...................................................................................... .........
...

B �B0.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
............

 

................
................

................
...............

...................................

................
................

................
...............

.......................
............

). Create this diagram from two earlier diagrams for categorical prod-
ucts and their isomorphism. Clearly, 
 D  ı h'; ' 0i. Hence, for all p and
q in P ,

�pq D  h
p; 
0qi D  h'�p; ' 0� 0qi D 
h�p; � 0qi D ˇpq:
(. Create this diagram again by defining h'; ' 0i as  �1 ı 
. �

11111
The four remaining inner factor objects come in pairs.

2.4. Definition. Two congruences � and � 0 of an algebra A are com-
plementary factor congruences if

� \ � 0 D 0ConA;(2.4)

� ı � 0 D 1ConA:(2.5)

Pierce [Pier68, p. 88] calls these decomposition congruences .

It follows from (2.5), by taking the converse of each side, that also
� 0 ı � D 1, and hence for their join that � _� 0 D 1. (More generally, for any
two congruences � and � of an algebra A, � _ � D � ı � iff � ı � D � ı � .)

Conditions (2.4) and (2.5) have useful interpretations. Let � and � 0 be ar-
bitrary congruences of an algebra A, not necessarily complementary. There
is always the canonical homomorphism,

'WA ! A

�
� A

� 0 W a 7!
Da

�
;
a

� 0
E
:

Now (2.4) holds just when ' is injective; and (2.5) just when ' is surjective.
Another viewpoint considers, for any a and b in A, the possible solutions

x to the system of congruences:
(
x � a .�/;
x � b .� 0/:

Condition (2.5) insures that solutions exist, and (2.4) promises uniqueness.
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Up to isomorphism there is a one-to-one correspondence between outer
direct products, factor bands and complementary factor congruences, as
stated next.

2.5. Theorem. (a) An algebra decomposes as a product, P Š A � A0,
if, and only if, P has a pair of complementary factor congruences �
and � 0 such that

A Š P

�
and A0 Š P

� 0 :

(b) In any algebra, via its product decompositions in part (a), factor bands
ˇ correspond one-to-one to pairs h�; � 0i of complementary factor con-
gruences:
(1) ˇ.a; b/ D c if, and only if, a � c and c � 0 b;
(2) a � b if, and only if, ˇ.a; b/ D b; a � 0 b if, and only if, ˇ.a; b/ D a.
Proof. See [McMcT87, Theorem 4.33]. �

Perhaps the meaning of this proposition should be amplified: if a factor
band ˇ comes from a pair of complementary factor congruences � and � 0 by

(b1) and new factor congruences b� and b� 0 are subsequently defined by (b2),

then b� D � and b� 0 D � 0. And vice versa, starting with a factor band and
going full circle via (b2) on through (b1) gives back the original band. Note
that the trivial band ˇ in which ˇ.a; b/ D a for all a and b corresponds to
the trivial congruences 0 and 1.

Observe that Con.Z2 � Z2/ depends on whether we are talking about
groups or rings. For groups it is isomorphic to the lattice M3, whereas for
rings it is isomorphic to M 2 (defined in Sect. 1). This seemingly innocuous
discrepancy will be significant in later chapters.

2.6. Exercise. For any factor band ˇ and its corresponding complemen-
tary factor congruences � and � 0 in an algebra A, prove that

ˇ.a; b/ D ˇ.c; d/ if, and only if, a � c and b � 0 d .a; b; c; d 2 A/
Interpret this as showing that the operation table of any factor band has
a characteristic appearance. Namely, it breaks up into rectangular blocks,
not necessarily contiguous, with each block containing one element of A
and each element of A appearing in one block.

2.7. Exercise. Show that any rectangular band ˇ on a set A is Abelian:

ˇ.a; c/ D ˇ.a; d/) ˇ.b; c/ D ˇ.b; d/;
ˇ.a; c/ D ˇ.b; c/) ˇ.a; d/ D ˇ.b; d/:

But find an Abelian binary function that is not a rectangular band. (For
the general meaning of ‘Abelian’, see Definition V.3.10).

2.8. Problem. When are factor bands term-operations or polynomials?

11111
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As there are outer projections, so there are inner ones, �;�0WA ! A

within an algebra A, to be called ‘factor sesquimorphisms’; but only in
special cases are these endomorphisms, such as in rings, groups and lattices.
We may create them out of a factor band ˇ of A and an element o:

�.a/ D ˇ.a; o/ .a 2 A/;(2.6)

�0.a/ D ˇ.o; a/ .a 2 A/:(2.7)

Here, o is a fixed element of A. From the properties of a factor bands, one
easily verifies the following properties of � and �0.

2.9. Proposition. For a factor band ˇ of an algebra A with the sesqui-
morphisms � and �0 as defined by (2.6) and (2.7):

(a) �.�.a// D �.a/; and �0.�0.a// D �0.a/I
(b) �.�0.a// D �0.�.a//I
(c) for any n-ary operation ! of A,

(1) �.!.�.a1/; : : : ; �.an// D �.!.a1; : : : ; an// and
(2) �0.!.�0.a1/; : : : ; �0.an/// D �0.!.a1; : : : ; an//I

(d) if �.a/ D �.b/ and �0.a/ D �0.b/, then a D b;
(e) for all a and b there is an x such that �.x/ D �.a/ and �0.x/ D �0.b/.

2.10. Definition. Any two functions, �;�0WA ! A, satisfying condi-
tions (a)–(e) of this proposition will be called complementary factor ses-
quimorphisms of an algebra A. And any function � on the carrier of an
algebra for which there exists another function �0 that satisfies these prop-
erties will be called a factor sesquimorphism. (See the previous section for
an introduction to sesquimorphisms.)

Here are three examples of factor sesquimorphisms – three other ex-
amples of sesquimorphisms were given after Definition 1.5. Jónsson and
Tarski algebras (Definition VII.3.17) exhibit factor sesquimorphisms that
are idempotent endomorphisms (see [JónTa47] and [McMcT87, p. 283]).
In a categorical setting, [Hofm72, p. 323] has factor sesquimorphisms,
which are also endomorphisms. In the context of identities, factor sesqui-
morphisms are to be found in [Knoe73, Knoe82]; these are not necessarily
endomorphisms.

Note that the conditions (a)–(e) in Proposition 2.9 do not presuppose a
fixed element o. But they do yield such an element.

2.11. Proposition. In an algebra A with complementary factor sesqui-
morphisms, � and �0, there is an element o of A such that:

�.�0.a// D o D �.o/ D �0.o/ .a 2 A/:
Additionally,

�.�0.a// D �.�0.b// D �0.�.a// D o .a; b 2 A/:
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Proof. To see that ��0a D ��0b for any a and b in A, realize by
property (e) that there exists an x such that �x D �a and �0x D �0b, and
hence

��0a D �0�a D �0�x D ��0x D ��0b:
Call this fixed element o. Then �o D ���0a D ��0a D o, and likewise
�0o D o. �

Call this o the origin of this particular pair of sesquimorphisms. It is
convenient to have an origin common to all the sesquimorphisms chosen to
factor an algebra. To that end, in analogy with pointed spaces in topology,
define a pointed algebra to be a pair hA; oi where A is an algebra and o is
any element of A, called the origin. An origin will also be needed to define
factor ideals and elements. Its choice is arbitrary in general but for specific
systems such as rings it is best to choose the nullity, and for groups the
unity. Choosing the origin of Z12 to be 0 in our running example, we find
from ˇ that �.m/ D 4m and �0.m/ D 9m, so that multiplication effects
the action of a sesquimorphism. Factor sesquimorphisms correlate well with
other factor objects; collate the next theorem with Theorem 2.5.

2.12. Theorem. Let hA; oi be a pointed algebra. There is a one-to-one
correspondence between factor bands ˇ and pairs h�;�0 i of complemen-
tary factor sesquimorphisms with origin o, and another one between these
h�;�0i and pairs h�; � 0i of complementary factor congruences of A. This
means that, with formulas (a)–(d) below, factor objects on the left may be
defined uniquely in terms of those on the right. Going full circle returns
us to the original factor objects. For example, going from a factor band to
a pair of sequimorphisms by (b) and then returning by (a) gives back the
same band:

(a) ˇ.a; b/ D c if, and only if, �.c/ D �.a/ and �0.c/ D �0.b/;
(b) �.a/ D ˇ.a; o/ and �0.a/ D ˇ.o; a/;
(c) a � b iff �.a/ D �.b/ and a � 0b iff �0.a/ D �0.b/;
(d) �.a/ is that unique x such that x � a and x � 0o, and

�0.a/ is that unique y such that y � 0a and y � o.

Also for a factor band ˇ with corresponding sesquimorphisms � and �0:
(e) �ˇ.a; b/ D �.a/ and �0ˇ.a; b/ D �0.b/;
(f) ˇ.�.a/; �0.a// D a.

Proof. It is long but elementary, and so it is not given. Hint: it is
easiest to prove (e) and (f) first. �

This theorem is in contrast to the last section where a transversal as
a well as a congruence was needed in order to uniquely determine a ses-
quimorphism. Note that in a pointed algebra hA; oi the trivial band ˇ, in
which ˇ.a; b/ D a for all a and b, has the trivial sesquimorphisms, �.a/ D a
and �0.a/ D o.
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2.13. Exercise. In the group .Z2/
2 there are three nontrivial decom-

positions as a product. Find the corresponding factor bands and factor
sesquimorphisms, assuming h0; 0i is the origin.

In JT-algebras [JónTa47] (see Definition VII.3.17), factor sesquimorph-
isms are endomorphisms. Generally, this is not the case; for example, com-
plementation in Boolean algebras complicates the situation. But when the
origin is a one-element subalgebra, this is so, and conversely, as shown next.

2.14. Proposition. For the factor sesquimorphisms of a pointed algebra
A with origin o, the following are equivalent:

(a) The singleton fog is a subalgebra of A.
(b) All factor sesquimorphisms are endomorphisms of A.
(c) At least one pair of complementary factor sesquimorphisms are endo-

morphisms of A.
(d) The constant sesquimorphism, x 7! o, is an endomorphism of A.

Proof. (a) ) (b). Use (c) and (d) of Proposition 2.9 to show that
�!Ea D !�Ea. One also needs Proposition 2.11.

(b) ) (d). Obvious
(d)) (c). The complement of the constant sesquimorphism is the iden-

tity map, and it is obviously an endomorphism.
(c) ) (a). That ��0a D o for any a implies, for a generic operation !

with the repeated argument o and endomorphisms � and �0, that

! Po D !.�0�o;�0�o; : : : ; �0�o/ D �0�! Po D o: �

Rings and groups have an obvious origin in the one-element subalgebra 0;
hence all factor sesquimorphisms are endomorphisms. Lattices are another
good example of this proposition, where any element may be taken as the
origin, proving that all factor sesquimorphisms are endomorphisms.

2.15. Exercise. Consider the 4-element Boolean algebra B on the set
f0; a; b; 1g, and write out the operation table for a factor band ˇ corre-
sponding to the nontrivial factorization of B. Be perverse by choosing a
to be the origin o, and describe the corresponding factor sesquimorphisms.
Compare with Exercise 1.9.

2.16. Exercise. Do an exercise similar to the preceding for the ring
Z6 with 2 taken as the origin o; write out the operation tables for the
relativized ring on f2; 5g.

2.17. Exercise. Let ˇ be the factor band for a product A � B, and
choose an origin hao; boi. For the corresponding sesquimorphisms � and �0
show that �.ha; bi D ha; boi and �.ha; bi D hao; bi.

2.18. Problem. Which of the axioms for complementary factor sesqui-
morphisms are independent of the rest?

11111
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As a projection, what does a factor sesquimorphism project onto?
Answer: its image can be turned into an algebra isomorphic to a factor.
To do this, as in Definition 1.8, confine each operation ! of an algebra A

to the subset, �.A/ D f�.a/ j a 2 Ag, and evaluate it by restricting it:

!�.A/.a1; : : : ; an/ D �.!A.a1; : : : ; an// .a1; : : : ; an 2 �.A//I
designate the resulting algebra �.A/. Then call the pair, �.A/ and �0.A/,
complementary factor ideals of the algebra A whenever � and �0 are com-
plementary factor sesquimorphisms. That these are ideals in the sense of
Sect. 1 will surface in the next proposition. An axiomatic definition, inde-
pendent of sesquimorphisms, will have to wait till there is more structure
on A, as in Chap. VII. Also x 2 �.A/ iff �.x/ D x, since � is idempotent.

In our running example where Z12 Š Z3 �Z4 and ˇ.r; s/ D 4r C 9s, we
have that �.Z12/ D f0; 4; 8g and �0.Z12/ D f0; 3; 6; 9g. The ring operations
of C and �, when confined to these factor ideals, do not change, thanks to
the ring identities. For the constants, 0 stays the same, but 1 becomes 4 in
�.Z12/ and 9 in �0.Z12/. See Fig. 2.

Classically, in the presence of a group operation, factor ideals are known
as ‘direct summands’. Thus, inner direct products might just as well be
called sums, and often are, but we have chosen a term consistent with the
previously defined outer direct products of algebras.

The next two results use the commutativity of congruences to connect
complementary factor ideals, �A and �0A, with products and with the
transversals defined in the last section, thereby showing that �A and �0A
are truly ideals in the sense of that section. The proof of the first result is
straightforward.

2.19. Theorem. Let � and �0 be complementary factor sesquimorphisms
corresponding to the factor band ˇ of a pointed algebra A with an origin
o. Then, � and �0 are homomorphisms from A onto �.A/ and �0.A/,
respectively; and A Š �.A/��0.A/ by the isomorphism a 7! h�.a/; �0.a/i,
with inverse ˇ. Further, for the corresponding factor congruences � and � 0,

A

�
Š �.A/ with �.A/ D o

� 0 I and
A

� 0 Š �0.A/ with �0.A/ D o

�
:

2.20. Proposition. Let A be a pointed algebra with an origin o. Two
congruences, � and �, are complementary factor congruences if, and
only if,

(a) � ı � D � ı �;
(b) � \ � D 0ConA;

(c) o=� is a transversal of �,
(d) o=� is a transversal of � .

Proof. ). Clear.
(. We need only to prove that � ı� D 1ConA. Let � be the sesquimorph-

ism coming from the congruence � and the transversal o=�, and let � come
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from � and o=� , as in Sect. II.1. For arbitrary a and b in A,

a � �.a/ � o � �.b/ � bI
thus, a .� _ �/ b: By commutativity, � _� D � ı�; hence � ı� D 1ConA. �

In general, condition (a) of Proposition 2.20 is necessary; the semilattice
SL3 on three elements that is not a chain demonstrates this. Of course, (a)
is automatically fulfilled in varieties with commuting congruences.

2.21. Exercise. Groups and vector spaces, which have natural origins,
are a good place to observe factor bands and other factor objects. In their
common generalization, groups with operators (see Sect. 1), factor ses-
quimorphisms become endomorphisms of a special kind and factor ideals
become normal subgroups.

(a) Interpret our language and propositions into that of groups with op-
erators. For example, two normal subgroups M and N of a group
hGI �; 1; : : : ; !; : : :i with operators form an inner direct product if, and
only if,
(1) M �N D G,
(2) M \N D f1g.

(b) Prove that two functions �;�0WV ! V on a vector space V are com-
plementary factor sesquimorphisms if, and only if, � and �0 are idem-
potent linear transformations such that for all v in V :
(1) �.v/C �0.v/ D v, and
(2) �.�0.v// D �0.�.v//.

(c) Show that any factor band ˇ of a vector space V is of the form:

ˇ.v;w/ DMv CNw .v;w 2 V /
for linear transformations M and N such that M 2 D M , N 2 D N ,
M C N D 1, and MN D 0 D NM . And conversely, show that any
binary function of this form on a vector space is a factor band.

Although �.A/ and �0.A/ appear to form what might be called an ‘inner
product’, there is no longer, in general, a one-to-one correspondence be-
tween pairs of complementary factor ideals and the previous factor objects,
even up to isomorphism or a choice of the origin. To illustrate, consider
the set f0; 1; : : : ; 5g as an algebra A with no operations but with an origin
0. It may be factored in two different ways yielding the same factor ideals,
f0; 1g and f0; 2; 4g.

1 3 5

0 2 4
and

1 5 3

0 2 4

In view of this unfortunate insufficiency of factor ideals to capture inner
products uniquely, it seems reasonable to define this concept with sesqui-
morphisms.
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2.22. Definition. An inner direct product in an arbitrary algebra is
a pair of complementary factor sesquimorphisms. Their images become a
pair of algebras, although not subalgebras, whose product is isomorphic to
the original algebra.

This is as close as we may get to the classical notion of inner product
in groups and rings as a pair of subalgebras satisfying certain conditions.
Of interest here are JT-algebras [JónTa47], where pairs of complementary
factor ideals, now subalgebras, do correspond one-to-one to inner products.
By Theorem 2.12, any pair of complementary factor congruences � and � 0
in a pointed algebra hA; oi gives an inner direct product in which their
ideals o=� and o=� 0 are the images of the corresponding sesquimorphisms.
In unital shells and half-shells, to be studied intensively later, their sets of
factor congruences are Boolean algebras. More generally, we will show in
Sect. VI.2 that, whenever the factor congruences form a Boolean algebra,
their factor ideals can give back the congruences from which they came.
Inner products relate to outer products as follows.

2.23. Proposition. Let hP; �; � 0 i be the outer product of the algebras
A and A0, that is, P D A � A0. Assume that P is pointed with origin o.
Further, assume that ˇ is the induced factor band of P . Write � and �0
for the complementary factor sesquimorphisms created by ˇ via the origin.
There are isomorphisms, A Š �.P/ and A0 Š �.P 0/, such that the outer
product is related to the inner product by this commutative diagram.

P

A

..............
..............

..............
..............

..............
........................
.............. � A0

.............
.............
.............
.............
.............
.......................
............

� 0

�.P/

.............................................................................
...
............ �

...................................................................................
.....
.......
.....
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
............

isom:

�0.P/

................................................................................ .........
...

�0

...................................................................................
.....
.......
.....
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
............

isom:
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Factor elements are the last kind of factor object to be investigated;

these are the counterpart in universal algebra to central idempotents in
ring theory. Like factor ideals they apparently need to be defined in terms
of factor bands or sesquimorphisms, at least in general.

In order to identify factor elements another fixed element is needed. Call
a triple hA; o; t i a doubly pointed algebra when o and t are any elements
of an algebra A – these need not be constant operations; name o the origin,
as before, and t the terminus. Although there are no restrictions on the
choice of o and t for now, when we do come to unital rings hRIC;�; 0; 1i
and their generalizations, it will be most advantages to assume that o is 0
and t is 1.

There are at least three equivalent ways to define factor elements: through
a factor band, through its factor sesquimorphisms, or through the corre-
sponding factor congruences.
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2.24. Definition. Call two elements e and e0 complementary factor
elements of a doubly pointed algebra hA; o; t i if there is a factor band ˇ
of A for which

ˇ.t; o/ D e; and ˇ.o; t/ D e0:
With the corresponding sesquimorphisms, �.t/ D e and �0.t/ D e0. A factor
element is one of such a complementary pair.3

2.25. Proposition. Let e and e0 be complementary factor elements that
come from a factor band ˇ in a doubly pointed algebra hA; o; t i. The factor
congruences corresponding to ˇ uniquely define e and e0 by the relation-
ships:

o� 0e and e� t;

o�e0 and e0� 0t:

By choosing the terminus to be 1 and the origin 0 in the running example
of Z12 with ˇ.a; b/ D 4aC9b, this definition and proposition are illustrated
by computing in several ways its complementary factor elements: e D 4

and e0 D 9. In unital rings, factor elements are central idempotents, which
generate the corresponding factor ideals as principal ideals. Significantly
for the future unfolding of the theory, �.a/ D e � a and �0.a/ D e0 � a.

�0.A/
D o=�
#

! e0 t

!
! �0.b/  b ! ˇ.a; b/

� 0-classes ! # "
! ˇ.b; a/  a

! # �.A/

! o �.a/ e  D o=� 0
" " " " " " "

�-classes

Figure 3. An algebra decomposed as a product

Figure 3 is an abstraction to general algebras of the earlier Fig. 2 for
a product of two unital rings. The box encloses the elements of a doubly
pointed algebra A with origin o and terminus t , sorted into the congruences
classes of two complementary congruences, � and � 0 with the �-classes being
the columns and the � 0-classes the rows. In this picture analogous to the

3Swamy and Murti [SwaMu81a] discuss factor elements in semigroups, where they
call them ‘central’ elements. Central elements are more generally defined as sequences of
elements in [VagSá04] and [SánVa09]. There the origin and terminus become sequences
of unary operations.
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Cartesian plane, the algebra �A (D o=� 0 qua ideal) is the X -axis and �0A
(D o=�) the Y -axis. The sesquimorphisms �, �0 applied to an element a
give its ‘co-ordinates’ and ˇ recovers a by the formula ˇ

�
�.a/; �0.a/

� D a.
Two arbitrary elements a and b go to ˇ.a; b/ and ˇ.b; a/ as indicated. One
should take this figure with a few grains of salt, as there may be some
equalities and collapsing among o, e, t and e0.

Although we have defined factor elements, they may be useless in general.
An example illustrates how there may be no choice for the origin and the
terminus so that each pair of complementary factor elements determines the
factor band from which they came. Consider the lattice of all finite subsets
of an infinite set, with union and intersection being the lattice operations.
Then one can show that, for any choice of the origin and terminus, there are
an infinite number of factor bands yielding the same pair of complementary
factor elements.

One virtue of unital rings is that each of the five kinds of factor objects
uniquely characterize products internally. Especially easy to use are factor
elements. This will also be true of two-sided unital shells. But, in broader
classes of algebras more complicated set-theoretical structures are needed,
such as congruence relations or bands. The less structure needed the better:
elements are better than subsets, such as ideals, and subsets are better than
relations, etc., as shown in Fig. 4.

Factor object as a Structure
Most band binary operation #

widely congruence binary relation #
applicable sesquimorphism unary function Most
" ideal set desirable
" element element to use

Figure 4. Hierarchy of factor objects as structures

2.26. Exercise. Can an origin and a terminus be chosen in each vector
space so as to create pairs of complementary factor elements via factor
bands such that these pairs uniquely determine the factor bands whence
they came? Hint: use Exercise 2.21. This was originally a problem, subse-
quently settled by Diego Vaggione [Vagg10].

2.27. Problem. What properties should an algebra or variety possess
in order to have complementary factor ideals or elements from which all
products may be reconstructed? The shells of Chap. VII are a partial an-
swer. Pedro Sánchez Terraf and Diego Vaggione [SánVa09] have a more
extensive answer; see Theorem VI.3.11.

Although factor elements play a pivotal role in unital rings, and in shells
in subsequent chapters, there is no more to say about them at this point.

11111
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Products of more than two factors are possible. Infinite products lead
to the important subjects of refinements and subdirect products, discussed
only briefly here. As in the case with two factors there are both outer and
inner characterizations. Taking to heart remarks made a page ago, we might
define inner direct products in terms of sesquimorphisms. However, in an-
ticipation of conventional definitions of refinement to come in Sect. VI.2,
we present them equivalently in terms of congruences, leaving their devel-
opment with sesquimorphisms and infinitary bands to the reader.

2.28. Definition. The outer direct product or simply ‘direct product’Q
i2I B i , of the algebras B i indexed by i in I is an algebra P with carrierQ
i2I Bi and each n-ary operation ! defined coordinate-wise, as previously

done with two factors:

!P .hai1 j i 2 I i; : : : ; hain j i 2 I i/ D h!Bi .ai1; : : : ; a
i
n/ j i 2 I i .aij 2 Bi /:

If the index set I is empty, then the product has just one element. For two
factors (or just a few) we write A �B, etc. If ˛ is a congruence of A and
ˇ is a congruence of B, their product ˛ � ˇ in A �B is defined

ha1; b1i .˛ � ˇ/ ha2; b2i if a1 ˛ a2 and b1 ˇ b2 .ai 2 A; bi 2 B/:
A nontrivial algebra is called directly indecomposable if it is not iso-

morphic to a product of two nontrivial algebras.

In order to illuminate the inner factoring of congruences, we develop
some definitions and propositions.

2.29. Definition. For a family of homomorphisms, 'i WA ! B i with i
in I , with common domain, there is the canonical homomorphism ' to
the outer direct product:

' W A !
can.

Y

i2I
B i W a 7! h'i .a/ j i 2 I i:

More generally, assume that � 2 Con A and � � T
� for a collection of

congruences in A with product, P D Q
�2� A=�: Its canonical homomor-

phism,  W A=� !
can.

P , maps a=� 7! ha=� j � 2 �i.
2.30. Proposition. Assume �; � 2 Con A. Then, � and � are comple-

mentary factor congruences if, and only if, the canonical homomorphism,

' W A !
can.

A

�
� A

�
;

is an isomorphism.

2.31. Definition. An inner direct product of a congruence � of an
algebra A is a nonempty collection � of congruences of A such that � DT
� and the canonical homomorphism of quotients is an isomorphism:

A

�
Š
can.

Y

�2�

A

�
:
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Abbreviate this as � D de�. With only two factors, write � D �1 u �2.
An inner direct product of congruences of an algebra A is an inner direct
product of 0ConA.

For the moment we neglect to have an origin, which would return from
complementary � and � 0 the sesquimorphisms of a true inner product in the
sense of Definition 2.22. The cancellation isomorphism theorem of Sect. 1
allows us to pass easily between inner products of algebras and their con-
gruences. Also, any congruence � of an inner direct product of an algebra
is a factor congruence, that is, � and

T
.�
f�g/ are complementary factor

congruences.

2.32. Proposition. A congruence � of an algebra A is an inner direct
product � if, and only if, for any family ha� j � 2 �i of elements of A, the
family of congruences

x � a� .�/ .� 2 �/
has a unique solution x modulo �; that is, if y is another solution, then
x � y .�/.

The next proposition will prove to be useful in Sect. VI.2. Atomic and
complete Boolean algebras are defined near the end of Sect. III.4.

2.33. Proposition. Let � be an inner direct product of congruences of
an algebra A, and consider the collection of all intersections of them:

� D
n\

H j H � �
o
:

(a) Then, � is a complete and atomic Boolean lattice of commuting factor
congruences of A.

(b) If 1ConA … �, then � is anti-isomorphic to the set of all subsets of �;
this is given by the correspondence:

 WP� ! � W H 7!
\
H;

where the lattice operations are transformed:

 .Z [H/ D  .Z/ \  .H/ .Z;H � �/;(2.8)

 .Z \H/ D  .Z/ _  .H/ .Z;H � �/;(2.9)

 .¿/ D 1ConA;(2.10)

 .�/ D 0ConA:(2.11)

Proof. (a) That � is a complete, atomic Boolean algebra follows
from (b) unless 1 2 �. But this makes no difference, since 1 is already in

� as \¿.
View this as a problem in the corresponding outer direct products. Any

partition of �, say H and �
H , produces a product:
Y

�2�

A

�
Š A

T
H
� A

T
.�
H/:

Hence,
T
H and

T
.�
H/ are complementary factor congruences.
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To prove that the congruences of � commute, assume for some a and
b in A that a .

T
Z ıT

H/ b, where Z;H � �; one needs to show that
a .

T
H ıT

Z/ b. Now there exists an x in A such that a
T
Z x and x

T
H b.

So a � x when � 2 Z, and x � b when � 2 H . Because � is an inner product,
there is a solution y to the system of congruences:

y �
(
b .�/ .� 2 Z/;
a .�/ .� 2 H
Z/:

For any � in H \Z, then y � b � x � a. Consequently, a
T
H y

T
Z b.

(b) To show that  is one-to-one, assume that there are two unequal
subsets H and Z of �; the object is to prove that

T
H ¤ T

N . Without
loss of generality, assume that there is an �0 in H but not in Z. Since
�0 ¤ 1ConA, there are a and b in A not related by �0. By solvability in an
inner product, there is an x in A such that

x �
(
a .�/ .� 2 Z/;
b .�0/:

So x � a .TZ/ but x 6� a .TH/.
The passage of the lattice operations through  is clear except for the

second one transforming \ into _. An argument similar to but simpler than
the one for commutation will do the trick. �

2.34. Exercise. Phrase and prove a converse to this proposition.

2.35. Problem. Go beyond factor bands on just two arguments and
fashion a theory of products on arbitrary index sets that includes as many
as possible of the remaining factor objects.

Throughout this section and the previous one, one sees a general philos-
ophy at work: for any outer concept find a corresponding inner concept.
This will reappear in the notion of ‘refinement’ in Sect. VI.3, where the
outer and inner notions diverge.

11111
Decomposing an algebra into a product of other nontrivial algebras is

not always possible, even though the algebra may break up in some other
way. It might be only the subalgebra of a direct product, as developed next.

2.36. Definition. An algebra A is an outer subdirect product of a
family hAi j i 2 I i of algebras all of the same type if A is a subalgebra of
the direct product of the family and each projection �i of A to each factor
Ai is surjective. In notation,

A �
s:d:

Y

i2I
Ai :

Or more briefly, call this a ‘subdirect product’ or even just ‘subproduct’.
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The group Z is a case in point; it is isomorphic to a subproduct of all
groups of prime order:

Z �
s:d:

Z2 � Z3 � Z5 � � � � :

In this example, one maps Z to Zp by projecting each integer z to
it: �p.z/ D z mod p. Since each factor is fully utilized, these projec-
tions are surjective and we have a subproduct. They have an internal
characterization.

2.37. Proposition. An algebra A is an outer subdirect product of a
family hAi j i 2 I i of algebras if, and only if, there are congruences �i of
A such that

Ai Š A=�i .i 2 I /;
\
f�i W i 2 I g D 0ConA:

This proposition suggests a definition.

2.38. Definition. An inner subdirect product in an algebra A is a
collection � of congruences of A such that their intersection is the identity
relation:

\
� D 0ConA:

2.39. Definition. A nontrivial algebra A is called subdirectly irre-
ducible if, for any inner subdirect product in A, at least one of the con-
gruences �i is already the identity relation. Likewise, a congruence � of an
algebra A is subdirectly irreducible if A=� is.

This concept is needed to state a well-known and much used result due
to Birkhoff [Birk44]; see also [BurSa81, Sect. II.8].

2.40. Theorem. Every nontrivial algebra is a subdirect product of sub-
directly irreducible algebras.

Thus subdirect decompositions have the advantage that they always ex-
ist. However, the quotient algebras may be too small for a particular pur-
pose; also it may be impossible to conveniently specify the subalgebra of the
product. Direct products on the other hand may be too coarse. For these
reasons we seek an intermediate path where we take as initial ingredients a
Boolean algebra of congruences, and then take suprema of maximal ideals
of these; these suprema are again congruences, but usually not factor con-
gruences. The quotient algebras coming from these suprema have a trivial
intersection, thereby yielding a subdirect product, and even better, these
stalks, as they will be called, will bind together topologically to form a
sheaf in Theorem V.2.1.
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A Venn diagram of algebras relates different kinds of factors.
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Subdirectly irreducible
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................................................................................................................................................................................................................................................................
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........
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These inclusions are all proper. The three-element semilattice SL3 that is
not a chain is directly indecomposable as a product but it is subdirectly
reducible. And the group Z4 is subdirectly irreducible but not simple.

2.41. Problem. In a subdirect product of two algebras, a factor band
may be approached as for a product, but it is now a partial function,
not defined for all pairs of arguments. Carefully define, if possible, this
new concept of a ‘subdirect band’ so that it corresponds one-to-one to
subdirect products of any number of algebras. Likewise, can these subdirect
definitions and propositions be rephrased in terms of sesquimorphisms?

There is one last construction needed for making sheaves in Chap. IV.

2.42. Definition. For a family fAx j x 2 Xg of algebras of the same
type, consider the disjoint union of their carriers: A D U

x2X Ax : It is not
necessary for the components to be disjoint to start with. To make them
disjoint, employ the set construction:

]

x2X
Ax D fhx; ai j x 2 X and a 2 Ax g :

This disjoint union has the natural structure of a partial algebra of the
same type, A D U

x2X Ax : for a generic operation ! with n arguments,
when a1; : : : ; an 2 Ax for some x in X ,

!A.hx; a1i; : : : ; hx; ani/ D hx; !Ax .a1; : : : ; an/iI
otherwise, it is undefined.

Nullary operations, that is, constants in the type, pose a problem. By
fiat, we postulate that they are undefined in the disjoint union. We also
allow the index set X to be empty, whence the disjoint union is also empty;
so partial algebras in this case may have an empty carrier. This trivial
allowance will be useful in capturing the one-element algebra by a sheaf.

In Chap. VII much more will be said about all the internal factor objects
in the context of shells with binary operations and constants. Inner prod-
ucts, as sums of ideals, will capture external products uniquely. Each kind
of factor object will be defined independently of the others, and directly in
terms of the operations of the shell.
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Tools

This chapter provides more background material; its four sections present
briefly what needs to be known about logic, category theory, point-set
topology, and Boolean algebra.

1. Model Theory

In this short section about logic, model theory and set theory we review
what should probably be already familiar to the reader. From logic, terms
and free algebras are built. From model theory, these terms are satisfied
in algebras. In particular, the basic properties of varieties are developed.
A foundation of set theory with universes allows the rigorous treatment of
varieties and their categories without the need for ad hoc devices to accom-
modate improper sets. A few maverick notations are introduced. References
for this section are [BurSa81] and [McMcT87].

Rationally, this section should come earlier; but this is only a summary
of what a reader should be prepared for, not a strict, rigorous presentation.
In this spirit, set theory is set at the end, although it should be before every
thing else in the book.

We presuppose a first-order applied predicate logic with equality and
operation-symbols !i for functions of several variables, their exact nature
dependent on the type of the algebras, which is presumed fixed. Here are
the usual symbols for Boolean connectives, truth values, and quantifiers:

_;^;);:;>;?;8; 9; 9Š;
the last reading ‘there exists a unique’.

A. Knoebel, Sheaves of Algebras over Boolean Spaces, 55
DOI 10.1007/978-0-8176-4642-4 III,
c� Springer Science+Business Media, LLC 2012
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Recall that out of the operation-symbols !i of a given type we can build
terms or what are sometimes called ‘words’ or ‘polynomial symbols’; we
designate these compositions as t.x1; x2; : : :/, being casual sometimes about
the number of arguments, except that crucially it is always finite.

1.1. Definition. An identity is a pair of terms, t1 and t2, each with the
same variables, and denoted suggestively by t1 � t2.

Formulas in the language are built from identities, the Boolean connec-
tives, and universal and existential quantifiers. For example, in the theory
of fields, a typical sentence defines solvability:

8a; b �
a ¤ 0) 9x .a � x D b/�:

Deduction is should be familiar to the reader. An important part of it is
equational deduction, in which there are five rules: reflexivity, symmetry,
transitivity, substitution of terms for variables, and replacement of a term
by one equated to it already by an identity.

We assume that the reader knows the recursive definition of the interpre-
tation tA of terms t within an algebra A. The interpretation tA is called a
term-operation (often the superscript A will be dropped). An m-ary poly-
nomial p of an algebra A is an n-ary term-operation t with m � n in which
the last variables beyond xm are replaced by elements of A:

p.x1; : : : ; xm/ D t.x1; : : : ; xm; amC1; : : : ; an/:
The set of all term-operations is the clone of A, designated Clo A. The

algebra A satisfies an identity t1 � t2 on n variables if tA1 D tA2 , that is,

t1.a1; a2; : : : ; an/ D t2.a1; a2; : : : ; an/ .a1; a2; : : : ; an 2 A/I
this may be written as

(1.1) A ˆ t1 � t2:
This relation ˆ is a polarity between algebras and identities, and the two
closure operators obtained from it are significant [Birk67].

The set of all identities satisfied by an algebra A is denoted

Id A D ft1 � t2 j A ˆ t1 � t2g :
In analogy with modular arithmetic, we also write

t1 � t2 .Id A/;

for (1.1). Similarly, a set A of algebras satisfies an identity if all algebras
in it do so, and IdA designates the set of all such:

IdA D ft1 � t2 j A ˆ t1 � t2 when A 2 Ag :
An algebra is considered to be a model of a set I of identities if the

algebra satisfies all of them. Write Mod I for the set of all models of I , called
a variety or equational class. The two-fold expression, Id Mod I , turns out
to be the equational closure of the set I of identities. The equational or
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deductive closure of I is the smallest set of identities in the given type
that is closed to the five rules of equational deduction.

Turned around, Mod IdA, for any set A of algebras, is most importantly
HSPA, the semantical closure of A.1 Abbreviate this as VarA, the variety
generated by A, that is, the smallest set of algebras containing A and closed
to taking homomorphic images H, subalgebras S, and products P. A variety
V is finitely generated if it is generated by a finite set A of finite algebras,
that is, V D HSPA. Occasionally, we also need to close up a set A by adding
all isomorphic images IA.

Note that identities are preserved by products:

Id .A �B/ D Id A \ Id B:

This is also true for infinite products. If A is a homomorphic image of
an algebra B, then Id A � Id B. Also, if A is a subalgebra of B, then
Id A � Id B. Most useful for us is preservation of identities under subdirect
products.

1.2. Proposition. If A is a subdirect product of Bi .i 2 I /, then
Id A D

\

i2I
Id B i :

In sheaves over Boolean spaces, sentences more general than identities
are preserved (see Proposition V.2.7).

11111
As an example of these notions, we say that two algebras A and B of

the same type are independent if there is a binary term ' in their type
such that

(1.2) '.x; y/ �
(
x .Id A/I
y .Id B/:

The rings Z3 and Z4 are independent, as witnessed by

'.x; y/ D 4x C 9y:
This is a factor band, which satisfies (2.1–2.3) of Chap. II. It suggests the
following.

1.3. Proposition. Two algebras A and B are independent by a binary
term ' if, and only if, the factor band ˇ for their product is a term-
operation. In either direction of implication, 'A�B D ˇ.

Proof. ) : We assume (1.2) for the product of A and B. Recall the
coordinate-wise definition of operations in a product:

(1.3) 'A�B.ha1; b1i; ha2; b2i/ D h'A.a1; a2/; '
B.b1; b2/i:

By independence, the right side is ha1; b2i. So 'A�B is the factor band for
A �B.

1See [Birk35] and [BurSa81, Sect. II.11].
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( : The factor band ˇ satisfies (1.3) when ' is replaced by ˇ. Realizing
that the left side is just ha1; b2i by virtue of ˇ being a factor band, and sep-
arating the coordinates, we see that a1 D ˇA.a1; a2/ and b2 D ˇB.b1; b2/.
Hence, ˇ witnesses independence. �

Independence leads to the product of varieties.

1.4. Definition. Let V, V1 and V2 be three varieties of the same type.
Their join, V D V1 _V2, is the smallest variety including both. It is seen
to be Mod.IdV1\IdV2/. We say that V1 and V2 are independent if there
is a binary term ' such that

(1.4) '.x; y/ �
(
x .IdV1/;

y .IdV2/:

If V1 and V2 are independent and their join is V, we say that V is a
varietal product of V1 and V2, and write V D V1 ˝V2. It follows that
'A is a factor band decomposing each algebra A of V:

A Š A1 �A2 .A1 2 V1 and A2 2 V2/:

Mal’cev conditions are another example of the interplay between terms
and models. Without defining them in general, we give two illustrations
sufficient for our purposes (for more, see [BurSa81, Sects. 2.12] and
[McMcT87, 4.12]).

1.5. Definition. A variety V has commuting congruences (or is
congruence-commutable) if for all algebras A in V,

� ı � D � ı � .�; � 2 Con A/:

A variety V has distributive congruences if for all algebras A in V,

� \ .� _ �/ D .� _ �/ _ .� _ �/ .�; �; � 2 Con A/:

1.6. Proposition. Let V be a variety of algebras.

(a) V has commuting congruences if, and only if, there is a ternary term
t such that

t.x; x; y/ � y � t.y; x; x/ .IdV/:

(b) V has distributive congruences if there is a ternary term t such that

t.x; x; y/ � y � t.x; y; x/ � t.y; x; x/ .IdV/:

Groups and rings illustrate (a) and lattices (b).
Two algebras, A and B, with the same carrier but not necessarily of the

same type, are said to be term-equivalent or equationally interdefinable
if for each operation ! of A there is a term-operation t of B such that
!A D tB , and vice versa. Two varieties V and W are term-equivalent
if there is a one-to-one correspondence between the algebras of V and W
such that corresponding algebras are term-equivalent with the choice of
terms corresponding to operation symbols being uniform over all algebras
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in the varieties. Two algebras, on the same carrier A but perhaps dissimilar
in type, are said to be polynomially equivalent if they are term-equivalent
when all elements of A are adjoined as constant operations in both algebras;
in other words, they have the same polynomials. Less than term-equivalence
is term-reduction: A is a term-reduct of B if every operation of A is a
term-operation of B.

11111
Our underlying set theory is Zermelo–Fraenkel set theory with the ax-

iom of choice, together with Alexander Grothendieck’s axiom of universes,
which asserts the existence of ever larger universes [Gabr62, p. 328]). This
rather powerful axiom has the virtue of formalizing the informal sequence
of successively larger entities: sets, classes, conglomerates, cartels – each an
element of the next, as suggested by Horst Herrlich and George Strecker
[HerSt79, Appendix]. Very importantly, it avoids the need to prove anew
elementary results in the customary proper classes and beyond that are
already known and proven for sets, since now every thing is a set. For ex-
ample, traditional varieties may be intersected and joined, thereby creating
a ‘lattice’; this lattice would have been a conglomerate, but now ordinary
theorems about lattices hold without further ado. Consult the books of
Bergman [Berg98, Sect. 6.4] and Arthur Kruse [Krus69] for fuller expo-
sitions.

A slight disadvantage of Grothendieck’s axiom is that it makes ambigu-
ous the phrase ‘variety of groups’. Does this mean the variety of all groups
in some universe, or does it mean a subvariety of this, that is, a collection
of groups satisfying certain identities? We sidestep this question by using ‘a
variety of groups’ to mean the latter, and the former is phrased ‘the variety
of all groups in a universe’, but where we will usually drop ‘in a universe’.
We have already used this convention in defining varieties.

Jan Mycielski [Myci06] proposes a significantly different but powerful
set theory, which could also be used for the foundation of this book.

The axiom of choice will typically be used in the form of Zorn’s lemma.

1.7. Lemma. If each chain in a partially ordered set has an upper bound,
then there is a maximal member in the set.

A medley of frequently used conventions and notations in set theory is
found near the end of Sect. II.1.

2. Category Theory

There is a well-known story about the origin of category theory. Historically,
natural transformations were discovered first, such as the isomorphism of a
vector space with its second dual. However, to define natural transforma-
tions in general, functors were needed and so invented. In turn, to define
functors rigorously, categories were created. But we reverse the historical
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origins [EilMa45], and present this subject axiomatically. This section is
mainly a listing of the concepts, notations, and theorems needed in the
sequel, with few proofs. We head for the concept of an adjunction between
two categories, and even better for later, their equivalence. A reference is
[HerSt79]. (See Sect. II.1 for a definition of partial algebras.)

2.1. Definition. A category C is a partial algebra hCI ı;dom; codi of
type h2; 1; 1i satisfying these axioms for all a; b; c in C:

(i) a ı .b ı c/ D .a ı b/ ı c,
(ii) a ı .doma/ D a and .cod a/ ı a D a,
(iii) a ı b exists if, and only if, dom a D cod b.

These equations are to be read with the understanding for partial alge-
bras that if one side of an equation exists, then so does the other side. Thus,
by (ii), the operations ‘dom’ and ‘cod’ (to be read domain and codomain)
must be total, that is, defined everywhere. The binary operation ı is called
composition. The elements of a category are often called morphisms . This
is the nonobjective definition of a category since there are no explicit ‘ob-
jects’. As will soon become apparent, these will be those elements that may
be written as dom a and cod a, serving as identity elements, which will be
called ‘unities’.

Just as groups model permutations and monoids model functions on a
single set, so categories model functions with domains and codomains that
differ according to the function. In fact, monoids are examples of categories
in which doma D cod b for all a; b in the carrier, that is, there is only one
unity; call it 1. This forces composition to be a total operation. Groups are
monoids in which all elements are invertible: for all a there is a b such that

a ı b D 1 and b ı a D 1:
Another example gathers these together and puts them into the category

of all groups in a universe, Groups D hGroupsI ı;dom; codi. Nonobjec-
tively, Groups would be the set of all homomorphisms between groups:

hWG ! H I
with ı being the composition of homomorphisms; and domh D 1G , codh D
1H , where 1G WG ! G is the identity function on G . Notice how the domain
and codomain are an integral part of a morphism, in contrast to the use
of functions in set theory, where there is the range of a function but no
codomain. More generally, any variety of algebras may be turned into the
category of all homomorphisms between members.

2.2. Exercise. Show that any category is isomorphic to a category of
partial one-place functions on a single set. Hint: use left translations or
right ones, as you like.

As our definition of category is novel, a series of propositions should
convince the reader that its three cryptic axioms do indeed define the tra-
ditional concept of a category.
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2.3. Proposition. For all a in the carrier of a category:

(a) dom dom a D doma,
(b) cod dom a D doma,
(c) dom cod a D coda,
(d) cod cod a D coda.

Proof. We first prove (b). Axiom (ii) and the convention on existence
imply that a ı .dom a/ exists. Then axiom (iii) implies (b). Dual to (b) is
the proof of (c). From these parts we obtain (a) (and dually (d)):

dom a D cod dom a D dom cod doma D dom doma: �

Let us agree that dom and cod are more cohesive than ı; so ‘coda ı a’
means .coda/ ı a and not cod.a ı a/. We adopt the convention of denoting
composition by juxtaposition, thus ab D a ı b.

2.4. Definition. An element u in a category is a unity if for all a in it,

au D a whenever the product exists, and

ua D a whenever the product exists.

In the literature, unities may also be called units, unit elements, identi-
ties, identity maps, identity morphisms, or even objects.

2.5. Proposition. These five statements are equivalent in a category:

(a) u is a unity,
(b) u D domu,
(c) u D doma for some a,
(d) u D codu,
(e) u D coda for some a.

Proof. (a) ) (b) By axiom (ii) and the definition of unity,

u D u domu D domu:

(b) ) (c) Trivial.
(c) ) (a) Let u D dom b and suppose au exists. Then a dom b exists,

and by axiom (iii) and the previous proposition,

dom a D cod dom b D dom b:

So by axiom (ii),

au D a dom b D a dom a D a:
Similarly, if ua exists, then ua D a. Thus, u is a unity.

Parts (d) and (e) have dual proofs. �

As a consequence one may write domC for the set of all unities in a
category C. Functional notation is adapted to morphisms in a category C.
By f Wu ! v one means an element f of C such that u D domf and
v D cod f ; colloquially the morphism f goes from u to v.
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2.6. Proposition. If the composition ab exists in a category, then

dom.ab/ D dom b;

cod.ab/ D cod a:

Proof. By associativity,

ab D a .b dom b/ D .ab/ dom bI
and by axiom (iii), applied to the last product,

dom.ab/ D cod dom b D dom b: �

2.7. Proposition. If ab and bc exist in a category, then a.bc/ and .ab/c
exist and are equal.

Proof. By axiom (iii) and the preceding proposition,

doma D cod b D cod.bc/:

Thus, a.bc/ exists. By axiom (i) .ab/c also exists and a.bc/ D .ab/c. �

This proposition demonstrates that our nonobjective definition of cat-
egory is equivalent to the traditional objective definition of a ‘category’
that has two carriers, one for the ‘objects’ and the other “for all mor-
phisms”, separating our unities into objects and identity morphisms, each in
their own carrier. But there is a natural one-to-one correspondence between
these objects a and unities, usually designated as identity morphisms 1a.
We have merged the two, which makes the exposition of category theory
smoother at the expense of conventional usage. Even older is the practice
of defining categories by objects and ‘hom-sets’, a hom-set being the set
homC.u; v/ of all morphisms in a category C from one object or unity u to
another v.

2.8. Exercise. Show that the concept of categories, as defined in this
section, is equivalent to the classical one of hom-sets of morphisms, whose
composition is suitably defined, as given in [MacL65, p. 27].

In applications it is convenient to follow the traditional approach and
specify separately the objects from the morphisms between them. Typically,
for our categories of complexes, sheaves and Boolean braces to appear in
the sequel, the objects, each with their own two carriers and complicated
enough in themselves, are defined first, and then defined second are the
even more structured morphisms, each made up with two ordinary func-
tions, often going in opposite directions between the various carriers. When
verifying that we have indeed defined a category, the first two axioms of
Definition 2.1 will be almost self-evident, but often the hard part will be
to prove (iii) that the composition of two morphisms, when they have a
common middle object, is again a morphism (see, for example, Sect. IV.4).

Another contrast between the conventional view of categories and this
book’s is found in the usual view of categories as enormous things. In
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Bernays–Gödel-von Neumann set theory the examples of categories already
given would typically be proper classes, and not capable of membership in
other classes. However, in Zermelo–Fraenkel set theory, where everything is
a set, and with an axiom ensuring an abundance of universes, each category
is small, that is, it is a member of some other set (see Grothendieck uni-
verses in Sect. 1). This has the advantage that a category may be viewed
like any other algebra, albeit partial. Traditionally, hom-sets are explic-
itly declared to be sets in an axiom, but that is always true here. Concepts
may be defined and constructions carried out without the demand to fitfully
and capriciously enlarge the idea of class beyond the confines of classical
set theory.

11111
Categorical language captures many common concepts, such as isomor-

phism and product, the latter diagrammed already for algebras in Defini-
tion II.2.2. For now, unities and objects are one and the same.

2.9. Definition. A morphism f Wu! v in a category C is invertible or
is an isomorphism if there is another morphism gW v ! u in C such that

fg D v and gf D uI

Since g can be shown to be unique, one may write f �1 for the inverse.
Then u and v are said to be isomorphic.

Note that any unity u is invertible with u�1 D u.

2.10. Definition. In a category C a product of two unities u and u0 is
another unity p with two morphisms, �Wp ! u and � 0Wp ! u0, such that
for any other unity q with morphisms, 
W q ! u and 
0W q ! u0, there is a
unique morphism 
W q ! p such that 
 D � ı 
 and 
0 D � 0 ı 
.

This may be expressed in the language of commutative diagrams :

pu ....................................................................................................
�

u0........................................................................................ ...
.........

� 0

q
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

................................



.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
....................
............


0
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
............




To say that this diagram, or any other directed graph of morphisms, is
commutative is to say that, for any two directed paths starting at one node
and ending at another node, the composition of the morphisms labeling
the arrows is the same regardless of which path is taken.

Products in categories need not exist, and when they do exist they are
unique only up to isomorphism. This was discussed in Sect. II.2.
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There is the dual notion of the coproduct of two unities u and v; it reads
just like the definition for product except all arrows are reversed:

pu ........................................................................................ ....
........

�
u0....................................................................................................

� 0

q

....................................................................................................................... .......
.....




..................................................................................................................
.....
............


0

...................................................................................
.....
.......
.....




One of the good things about varieties of (total) algebras is that products
and coproducts always exist in them, but this bald statement may mask
considerable effort behind the scenes. The existence and construction of
products is fairly straight forward; it is guaranteed by the Cartesian con-
struction in Sect. II.2. The construction of coproducts is more elaborate,
resembling the construction of free algebras; for that reason they are some-
times called free sums. Even more significant is that the product of two
algebras is independent of the variety in which they live, whereas the co-
product definitely depends on their variety. For example, in the category of
Abelian groups, the coproduct of Z with itself is .Z/2; but in the category
of all groups it is the free (non-Abelian) group on two generators.

Passing from categories coming from varieties to categories modeling
algebras in their own right, we may use products and coproducts to define
a lattice as any category satisfying these three properties:

(i) There exist products and coproducts of all pairs of unities.
(ii) There is at most one morphism between any pair of unities.
(iii) (antisymmetry) if f Wu! v and gW v ! u, then u D f D g D v.

As the reader may have guessed, the set of unities is the carrier of a lattice
in the usual sense; the product and coproduct are the usual meet and join;
and a morphism f Wu! v means simply that u � v.

This is a good place to formally define categorical duality, which we
have already seen automatically gives us the notion of coproduct from that
of product. The dual of a category is often described as the ‘reversal’ of
arrows; this forces the order of composition to reverse.

2.11. Definition. The dual or opposite of a category, CDhCI ı;dom;
codi, is the category:

Cop D hCI ıop;domop; codopi;
where, for all a and b in C,

a ıop b D b ı a;
domop a D coda;

codop a D doma:

This notion resembles that of opposite rings, which also reverses the
order of multiplication. But in Boolean algebras, which are commutative,
nothing new is obtained. To get Boolean duality, one must look at Boolean
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algebras qua categories, as we did with lattices. Then the dual Bop of a
Boolean algebra B interchanges meet and join as well as 0 and 1.

Duality has the potential to double the number of categorical concepts
and the theorems about them. Formally, let˙ be a sentence in the language
of categories (with equality), and let ˙op be its dual, that is, the arguments
in any occurrence of ı are reversed, and simultaneously dom is replaced by
cod and cod by dom. Then, for any theorem asserting that a sentence ˙
is true in all categories, there is a dual theorem ˙op that is also true in all
categories. Notice that this is about all categories; without this ‘all’, this
metatheorem is false. For example, in the single category of all finite groups,
any product of two groups exist, but this is no longer true for coproducts.
However, in the category of all finite Abelian groups both exist, for there
the product and coproduct of two groups coincide.

Such theorems may have fragments from which one wants to abstract a
dualizable definition. This may be formalized by considering a first-order
categorical formula ˙.x/ with just one free variable. We say that a is
such a ‘gadget’ in a category C if ˙.a/ is true in C. As an example, a
monomorphism is defined by cancellation on the left; the formula ˙.x/ is:

8a; bŒxa D xb) a D b�:
In varieties, monomorphisms agree with injections, that is, homomorphisms
that are one-to-one; thus one has captured categorically the notion of an
injective homomorphism. A useful convention here is to give categorical
notions a Greek name, and set-theoretical ones a Latin-derived name.

It is harder to capture the concept of a surjective homomorphism within
a category coming from a variety, but it can be done. The difficulty is
that there are epimorphisms, the categorical dual of monomorphisms, that
are not surjective, that is, not onto: this happens in the variety of rings.
One may check that a homomorphism h is surjective in a variety whenever
the condition h D fg for some injective f implies that f is invertible.
This statement may be rephrased in categorical language, thus capturing
surjectivity.

An isomorphism in a variety is a homomorphism that is both injec-
tive and surjective; this is equivalent in categorical language to being in-
vertible. There are many other concepts that can be defined categorically
[McKe96]. But not all common concepts in general algebra are categori-
cal; for example, freedom is not so definable [Knoe83]). (At least not with
only one category of algebras; one also needs the forgetful functor taking
an algebra to its carrier in the category of sets.)

11111
We pass to concepts involving more than one category.

2.12. Definition. One category B is a subcategory of another, say C,
if B � C and B is closed to dom, cod and ı, whenever the latter exists. It
is called full if homB.u; v/ D homC.u; v/ for all u and v in domB.
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Homomorphisms between categories are called functors. Isomorphisms
are functors that are invertible or, alternatively, are both injective and
surjective. These concepts are defined in detail as follows.

2.13. Definition. (a) A functor from one category C to another D is
a function ˚ WC! D such that, for all a; b in C,

(i) ˚.a ı b/ D ˚.a/ ı ˚.b/ whenever a ı b exists;
(ii) ˚.doma/ D dom˚.a/;

(iii) ˚.coda/ D cod˚.a/.
(b) A functor ˚ WC!D is an isomorphism if:

(i) When ˚.a/ D ˚.b/ then a D b; and
(ii) For all b in D there is an a in C such that ˚.a/ D b.

(c) Two categories C and D are isomorphic (C Š D) when there is an
isomorphism ˚ WC!D.

The similarity of categories of diverse natures is more often recognized
by equivalence rather than the more demanding isomorphism. To define
this notion we need skeletons.

2.14. Definition. A category is a skeleton if any two unities that are
isomorphic are in fact equal. A skeleton of a category C is any full sub-
category of C that is a skeleton and that is maximal with respect to this
property. An isomorphism class of a category is a set U of all unities u
isomorphic to a given unity u0 of the category.

In the next proposition, the axiom of choice finds a skeleton in any cat-
egory by shrinking its isomorphism classes to singletons. The notion of
retract, given in Sect. II.1, is adapted to functors.

2.15. Proposition. Any category C has a skeleton. This skeleton is a
retract of C and is unique up to isomorphism.

Proof. Let U , V , W , etc. be the isomorphism classes of C; and from
each of these pick a particular unity uo to represent it: u0 2 U; v0 2 V;w0 2
W; : : : : Set S D fu0; v0; wo; : : :g. Further, let S be the full subcategory of
C on S. Clearly S is a skeleton.

Define a function ˚ WC ! S as follows. For each unity u of U pick
a particular isomorphism puu0

from u to u0, and similarly for the other
unities in their respective isomorphism classes. For any morphism f Wu! v

in C, define

˚.f / D pvv0
ı f ı p�1

uu0
:

One verifies that ˚ is a functor from C to S, and that ˚.s/ D s if s 2 S.
�

2.16. Definition. (a) Two categories C and D are equivalent (C 'D)
when their skeletons are isomorphic.

(b) Categories C and D are dually equivalent (C 'op D) if C and Dop

are equivalent.
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The classical example is the dual equivalence of the category of Boolean
algebras with the category of Boolean spaces (see Sect. 4). The next the-
orem puts the equivalence of categories into a different but perhaps more
intuitive setting, analogous to isomorphism. To that end, for unities u and v
in a category C with a functor ˚ WC!D, we define ˚u;v to be ˚ restricted
to homC.u; v/.

2.17. Theorem. Two categories C and D are equivalent if, and only if,
there is a functor ˚ WC!D such that:

(a) ˚ is faithful: ˚u;v is injective, that is, it maps homC.u; v/ one-to-one
into homD.˚.u/; ˚.v// for all unities u and v in C;

(b) ˚ is full: ˚u;v is surjective, that is, for all unities u and v in C,
homC.u; v/ maps onto homD.˚.u/; ˚.v//;

(c) ˚ is dense: for every unity v in D there is a unity u in C such that
˚.u/ Š v.

A natural transformations passes from one functor to another. The con-
cept is needed to define adjoint functors, which in turn give another charac-
terization of equivalence. Much of the subsequent discussion may be found
in [HerSt79, Sects. 13, 14, 26 and 27], especially the missing proofs.

2.18. Definition. Let ˚ WC! D and � WC! D be two functors from
the category C to the category D. A natural transformation from ˚ to
� is a function �WdomC! D yielding, for each u in domC, a morphism
�.u/W˚.u/! � .u/ in D such that, for each morphism f Wu! v in C,

� .f / ı �.u/ D �.v/ ı˚.f /:
In symbols, this diagram commutes:

˚.u/ � .u/...................................................................................................................... ............
�.u/

˚.v/

...................................................................................
.....
.......
.....

˚.f /

� .v/...................................................................................................................... ............

�.v/

...................................................................................
.....
.......
.....

� .f /

Moreover, this natural transformation is a natural isomorphism if �.u/ is
an isomorphism in D for all u in domC.

A trivial example of a natural transformation is the embedding of integral
domains into their fields of fractions. Let C and D both be the category of
all monomorphisms between integral domains. Let ˚ be the identity func-
tor and � the functor taking a monomorphism of integral domains to the
induced monomorphism of their fields of fractions. A natural transforma-
tion � from ˚ to � takes an integral domain (or more correctly, its identity
morphism) to the monomorphism embedding it in its field of fractions.

11111
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Free algebras on a set of generators motivate the concept of a � -universal
map. The characterizing property of a free group F on a set of generators
is that any other group G generated by this set is a homomorphic image of
F . When this is put into the language of the next definition, C becomes the
category of all groups and D the category of sets. The functor � WC!D
is the ‘forgetful’ functor taking a group to its carrier and taking a homo-
morphism of groups to the underlying function on their carriers.

2.19. Definition. Let � WC ! D be a functor and v 2 domD. A pair
h�; ui with �W v ! � .u/ and u 2 domC is called a � -universal map for v
if, for each u0 in domC and each morphism gW v ! � .u0/ of D, there exists
a unique morphism hWu! u0 of C such that this triangle commutes:

v � .u/................................................................................ ....
........

�

� .u0/

....................................................................................................................... .......
.....

g

.........................................................................
.....
.......
.....

� .h/

u

u0

...................................................................................
.....
.......
.....

h

The following consequences of universal maps are tantamount to an ad-
junction, which will be defined after them. These are in [HerSt79, Theorem
26.11].

2.20. Theorem. Let � WC ! D be a functor such that there exists a
� -universal map h�v; uv i for each v in domD. Let � be the function h�v j
v 2 domDi. Two things follow:

(a) There exists a unique functor ˚ WD! C such that
(1) ˚.v/ D uv for each v in domD, and
(2) �W 1D ! � ı ˚ is a natural transformation.

(b) There is a unique natural transformation "W˚ ı � ! 1C such that
(1) �

�
".u/

� ı ��� .u/� D 1� .u/ .u 2 domC/, and

(2) "
�
˚.v/

� ı˚�
�.v/

� D 1˚.v/ .v 2 domD/.

The natural transformations and their compositions with the functors
occurring in Theorem 2.20 lead into the definition of adjunction.

2.21. Definition. An adjunction consists of two categories C and D,
two functors ˚ and � , and two natural transformations � and " such that:

(i) � WC!D and ˚ WD! C;
(ii) �W 1D ! � ı ˚ and "W˚ ı � ! 1C;

(iii) (1) �
�
".u/

� ı ��� .u/� D 1� .u/ .u 2 domC/, and

(2) "
�
˚.v/

� ı ˚�
�.v/

� D 1˚.v/ .v 2 domD/.

Denote this relationship by

h�; "i W ˚ ���j � W hC;Di:
Call ˚ the left adjoint of � , and � the right adjoint of ˚ .
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Adjunctions capture categorically many useful Galois-like connections in
diverse areas, and for us, they will relate certain varieties of algebras to
their classes of sheaves. Some adjunctions will become equivalences in later
chapters.

Here are several examples of adjunctions. The first embellishes the uni-
versal mapping property of free groups studied earlier. The natural trans-
formation �.S/WS ! .� ı˚/.S/ embeds a set S of generators or variables
into the carrier of the free group of all terms created on them. The nat-
ural transformation ".G /W .˚ ı � /.G / ! G is a quotient morphism: for a
given group G , it is the canonical mapping of the free group created on
the carrier of G (as generators) onto G itself with the generators going to
themselves. This example of free groups may be phrased more generally for
the free algebras in all varieties.

Another example shifts the viewpoint in the previous example of inte-
gral domains: D is still their category, but now C is the category of all
monomorphisms of fields. The functor ˚ creates a field of fractions from
an integral domain, and � is the inclusion functor placing a field into D.

In a third example, ˚ divides any group by its commutator subgroup
to obtain an Abelian group. Again � is the inclusion functor. A Galois
connection between partially ordered sets is a further example of an ad-
junction. A final example is the category of completions of uniform spaces,
which is adjoint to their inclusion in the category of all uniform spaces.

Some of these examples may be phrased more naturally in terms of uni-
versal maps. So the next theorem [HerSt79, Theorem 27.3]) compresses
Theorem 2.20 and completely connects universal maps with adjunctions.

2.22. Theorem. (a) For a functor � WC!D, if each v in dom D has
a � -universal map h�v; uv i, then there is exists a unique adjunction
h�; "i W ˚ ���j � W hC;Di where � D h�v j v 2 domDi and ˚.v/ D uv.

(b) Conversely, for an adjunction h�; "i W ˚ ���j � W hC;Di and for each
unity v in D, there is a � -universal map h�.v/; ˚.v/i.

Here is an alternative form of equivalence needed in the sequel. It comes
from Theorems 14.11, 14.15 and Proposition 27.2 of [HerSt79].

2.23. Theorem. Two categories C and D are equivalent if, and only if,
there is an adjunction h�; "i W ˚ ���j � W hC;Di such that

(a) � is a natural isomorphism and
(b) " is a natural isomorphism.

11111
Two adjunctions may be composed to give a third, and this will be

applied in Sect. V.4. To explain and justify, let two adjunctions be given:

h�1; "1i W ˚1 ���j �1 W hB;Ci; h�2; "2i W ˚2 ���j �2 W hC;Di:
The functors are composed: ˚1 ı ˚2WD!B and �2 ı �1WB!DI they
are abbreviated as

˚ D ˚1 ı ˚2 and � D �2 ı �1:
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The new natural transformations associated with the composite adjunction
are denoted: �W 1D ! � ı ˚ and "W˚ ı � ! 1BI they operate as

�.w/Ww ! �
�
˚.w/

�
.w 2 domD/;

".u/W˚�
� .u/

�! u .u 2 domB/:

Specifically, for any w in dom D and any u in dom B,

�.w/ D �2
�
�1.˚2.w//

� ı �2.w/;(2.1)

".u/ D "1.u/ ı ˚1
�
"2.�1.u//

�
:(2.2)

2.24. Theorem. The functors,

˚ WD � BW�;
together with their natural transformations,

�W 1D ! � ı ˚ and "W˚ ı � ! 1B;

as just given, form an adjunction

h�; "iW˚ ���j � W hB; Di:
Proof. The three parts of Definition 2.21 must be verified. Part (i) is

clear.
For part (ii), the naturality of � follows from that of �1 and �2. That

is, for any morphism f Ww ! w0 in D, the desired commutativity of the
square

w � ˚.w/...................................................................................................................... ...
.........

�.w/

w0

...................................................................................
.....
.......
.....

f

� ˚.w0/...................................................................................................................... ...
.........

�.w0/

...................................................................................
.....
.......
.....

� ˚.f /

follows from those in the interior of the diagram

w �2˚2.w/...................................................................................................................... ............
�2.w/

w0

...................................................................................
.....
.......
.....

f

�2˚2.w
0/...................................................................................................................... ............

�2.w
0/

...................................................................................
.....
.......
.....

�2˚2.f /

�2�1˚1˚2.w/........................................................................................................................................................... ............
�2�1˚2.w/

�2�1˚1˚2.w
0/........................................................................................................................................................... ............

�2�1˚2.w
0/

...................................................................................
.....
.......
.....

�2�1˚1˚2.f /

Commutativity of the second square follows from that for �1 by composing
it with �2 and ˚2, fore and aft. (Most parentheses are omitted.)

Part (iii.1) of Definition 2.21 is the perimeter in Fig. 1. Its commutativity
follows from that of the inner figures. That of the triangles comes from
part (iii.1) for the component adjunctions. And the square comes from the
naturality of �1 or "2. Part (iii.2) is proven by a similar diagram. �
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G2G1 (u) G2 F2 G2 G1 (u)

G2 e2 G1 (u)

G2 G1 (u)

G2 G1 F1 F2 G2 G1 (u)

G2 G1 F1 e2 G1 (u)

G2 G1 F1 G1 (u)

G2 G1 e1 (u)

G2 G1 (u)

G2 h1 F2 G2 G1 (u)

G2 h1 G1 (u)

h2G2G1 (u)

1G2G1(u)

1G2G1(u)

Figure 1. Composite Adjunction, Proof of (iii.1)

For another exposition of such compositions see the book of Herrlich
and Strecker [HerSt79]. They follow an indirect strategy for proving our
Theorem 2.24, which is their proposition 27.8.

11111
Hu’s theorem that any two varieties generated by primal algebras are

categorically equivalent suggests a syntactical connection between different
but categorically similar algebras [Hu69]. McKenzie’s theorem exhibits
this relationship and breaks it into three parts: term-equivalence, equiv-
alence by a matrix power, and equivalence by an invertible, idempotent
term [McKe96]. We will briefly describe this. Hu’s theorem is an ex-
ample of categorical equivalence by an invertible, idempotent term. An-
other example is the term-equivalence of Boolean algebras and Boolean
rings.

2.25. Definition. Two algebras A and B are categorically equivalent
if their generated varieties are categorically equivalent by a functor ˚ from
Var A to Var B such that ˚.A/ Š B.

2.26. Definition. The kth matrix power AŒk	 of an algebra A has car-
rier Ak , whose elements we now write as column vectors. For each nonneg-
ative integer n we construct its n-ary operations as follows. From k terms
t1; t2; : : : ; tk of the type � of A, each of .kn/-arity, define the sequence,
Et D ht1; t2; : : : ; tk i, to be an n-ary operation-symbol of the new type � Œk	.

It is evaluated in AŒk	 for any k by n matrix, a D faij g, with elements aij
in A, and rows ai .1 � i � k/ and columns aj .1 � j � n/, by the formula:

Et.a1; a2; : : : ; an/ D ht1.a/; t2.a/; : : : ; tk.a/i:
This extends to any variety A. The variety AŒk	 is the set of all matrix

powers AŒk	 of algebras A in A, and their isomorphic copies to insure that
it is a variety.
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An example of a matrix power will be the varieties of Chap. X coming
from elementary Abelian p-groups.

2.27. Definition. A unary term s of the type � of an algebra, A D
hAI : : : ; !; : : :i, is idempotent if s ı s � s .Id A/. It creates a new algebra
s.A/, as was done for sesquimorphisms, by restricting its carrier to s.A/
and relativizing its operations to !s.Ea/ D s.!.Ea//. It is invertible if for
some n there are unary terms t1; t2; : : : ; tn and an n-ary term t such that

t
�
s.t1.x//; s.t2.x//; : : : ; s.tn.x//

� � x .Id A/:

This also extends to any variety A. The variety s.A/ is the set of all s.A/
relativized from the A in A.

Term-equivalence was defined in Sect. II.1.

2.28. Theorem. [McKe96]

(a) Two varieties A and D are categorically equivalent, if and only if, there

are varieties B and C such that B D AŒn	 for some positive integer n,
and C D s.B/ for some invertible and idempotent term s, and D is
term-equivalent to C.

(b) Two algebras A and D are categorically equivalent, if and only if, there

are algebras B and C such that B D AŒn	 for some positive integer n,
and C D s.B/ for some invertible and idempotent term s, and D is
term-equivalent to C .

This theorem will be used to prove Theorems VI.3.22 and X.3.2.

3. Topology

This section describes various kinds of topological spaces, including Boolean
spaces, the most widely used in this book. New spaces are built out of old:
subspaces, quotients, and products. Last to be introduced is the important
glue holding sheaves together: continuous functions. For details see the
texts of John Kelly [Kell55] and Paul Halmos [Halm63].

3.1. Definition. A topological space, X D hX; T i, is a set X together
with a collection T of subsets of it that is closed to finite intersections and
arbitrary unions, and contains X and the empty set ¿. The set X is called
the space, the collection T its topology and members of T open sets. The
complement of an open set X in T is said to be closed. Elements of X
are often called points. A neighborhood of a point x is any subset of X
containing an open subset to which x belongs.

Note that spaces may be empty, in contrast to algebras. Throughout this
section let X be a topological space hX; T i.

A subset of X is said to be clopen if it is both open and closed. Clopen
sets are rather rare in classical topological spaces such as the real line R,
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where the only such sets are ¿ and R itself. But in this book they will be
quite common, and exploited. Let Clop X be the set of all clopen subsets
of a topological space X .

The notion of topology is characterized by the closure axioms of
Kuratowski [Kell55, p. 43]. In a topological space, define the closure
U of a subset U of X as the smallest closed set containing it. It satisfies
the four axioms:

¿ D ¿I
U � U .U � X/I
U D U .U � X/I

U [ V D U [ V .U; V � X/:
3.2. Definition. A topological space X is T0 if for every two points in

X there is an open set containing one and not the other. It is T1 if for
every point x, its singleton set fxg is closed. And it is T2, or Hausdorff, if
for every two points in X there are two disjoint open sets containing the
respective points. The topology of a topological space hX; T i is discrete if
every subset is open: T D PX . The antonym is indiscrete: T D f¿; Xg.
The interior of a subset S of a topological space X is the set IntS of points
x for which there is an open set U of X such that x 2 U and U � S .

Recall that T2 implies T1, which in turn implies T0. Spaces that are T0
but not T1 are common in algebraic geometry, as explained in [Berg73].
We proceed to put together the definition of a Boolean space.

3.3. Definition. A cover of a set U in a topological space hX; T i is a
collection of subsets of X whose union includes U ; it is open or clopen as all
the subsets are. A topological space X is compact if every open cover of X
has a finite subcover of X , that is, if for every collection C of open subsets
of X such that

S
C D X , there is finite subcollection F of C such that alsoS

F D X . It is locally compact if every point resides in an open set that
is compact. A topological space is totally disconnected if every open set
of it is the union of those clopen sets contained in it. A topological space
is a Boolean space if it is Hausdorff, compact, and totally disconnected.

3.4. Definition. A basis for a topology T is a subcollection B of T

such that every member of T is a union of some of them. A subbasis for T

is a subcollection B of T such that the collection of all finite intersections
of members of B is a basis for T .

A basis for a Boolean space is its collection of clopen sets.
The purpose of topology is to capture continuity, defined next.

3.5. Definition. Let hX1; T1i and hX2; T2i be topological spaces, and '
a function from X1 to X2. Then ' is said to be continuous if '�1.U / 2 T1
whenever U 2 T2, and open if '.U / 2 T2 whenever U 2 T1. A homeo-
morphism is when ' is bijective and it is both continuous and open; it is
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notated X1 Š X2. The ' will be called a local homeomorphism if it is con-
tinuous and for each x in X1 there exists an open neighborhood U of x in
X1 such that '.U / is open and ' when restricted to U is a homeomorphism
of U onto '.U /.

To check the continuity of a function it is sufficient to check only that
the inverse images of the sets in a subbasis are open. A composition of
continuous functions is continuous.

Like algebras, topological spaces may be manipulated to produce new
ones.

3.6. Definition. A topological space hX1; T1i is a subspace of an-
other hX2; T2i if X1 � X2 and T1 D fU \ X1 j U 2 T2g. With a function
'WX ! Y from a topological space X to a set Y , the quotient topology
for Y is the largest topology on Y that makes ' continuous, giving us the
quotient space. The topological space hX; T i is the product of a family
of topological spaces hXi ; Ti i .i 2 I / if X D Q

i2I Xi and the collection of
sets fx 2 X j xi 2 U g, for i 2 I and U 2 Ti , is a subbasis for T .

The fundamental result about products is often called the Tychonoff
product theorem [Kell55, p. 143].

3.7. Theorem. The product of compact topological spaces is compact.

Examples of Boolean spaces pertinent to this book are finite discrete
topological space (all subsets are open), the Cantor discontinuum, and more
generally, Cantor spaces. A Cantor space is any power of the two-element
discrete space [Kell55, p. 165]. See the next section for how Stone rep-
resented Boolean algebras by Boolean spaces [Stone36], for which reason
Boolean spaces are also called Stone spaces.

4. Boolean Algebras

These algebras are central to this book. Boolean lattices start the dis-
cussion, followed by examples, and then Huntington’s axioms for Boolean
algebras. A topology is created in two ways: the Stone topology through
clopen sets of prime ideals, or equivalently the hull-kernel topology. This
leads to the representation of Boolean algebras by Boolean spaces via a
dual equivalence of categories. A standard reference is [Halm63]; much of
what we need is in [BurSa81, chap. IV].

A Boolean lattice was defined in Sect. II.1 as a bounded distributive
lattice in which all elements have a complement. If these unique comple-
ments in a Boolean lattice are introduced into the type, then we speak of
a Boolean algebra hBI _;^;0 ; 0; 1i of type h2; 2; 1; 0; 0i.

We give three examples: B2, P.S/, and C . The smallest nontrivial Bool-
ean algebra B2 has just two elements, 0 and 1, with the partial order,
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0 < 1, and the expected operations. For any set S , the power set P.S/ has
the natural operations of union, intersection, and complementation on these
subsets, which make it a Boolean algebra P.S/. In the third example, the
carrier of C is the set of all finite and cofinite subsets of Z; as a sublattice
of P.Z/ closed to complementation, it becomes a Boolean algebra.

There are many sets of identities that define Boolean algebras. Here is
a small one due to Edward Huntington [Hunt33], which will be needed in
Sect. V.1.

x _ y � y _ x:(h1)

x _ .y _ z/ � .x _ y/ _ z:(h2)

.x ^ y/ _ .x ^ y0/ � x:(h3)

x ^ x0 � 0:(h4)

x _ x0 � 1:(h5)

Axioms h1–h3 may be viewed as defining Boolean algebras in terms of the
non-constant operations; then axioms h4 and h5 define the constants.

In a Boolean algebra B, if 0 is taken as the origin in the sense of Sect. II.1,
then an ideal is the equivalence class 0=� of some congruence � . On the
other hand, if 1 is taken as an origin, then 1=� is called a filter. These are
related to each other:

1

�
D

�

b0 j b 2 0
�

�

and
0

�
D

�

b0 j b 2 1
�

�

:

Let us review how a topological space is created for any Boolean algebra
B. To do this, we look in detail at the set of all prime ideals P of B; this is
called the spectrum of B and denoted Spec B. In a Boolean algebra, prime
ideals and maximal ideals are one and the same. The following characteri-
zation is useful in studying prime ideals. A subset P of a Boolean algebra
B is a prime ideal if, and only if, for all b and c in B we have that:

b 2 P and c 2 P iff b _ c 2 P I
b 2 P or c 2 P iff b ^ c 2 P I

not b 2 P iff b0 2 P I(4.1)

0 2 P I
1 … P:

There is considerable redundancy in these conditions since some Boolean
operations may be defined in terms of others. For example, the second
and third conditions suffice. Other variations, such as leaving off half of an
equivalence, are possible.

Ultrafilters, which are complements of prime ideals, have a dual charac-
terization, which is logically more appealing as in each clause the connectives
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on each side are of the same kind. But, as we wish to deal also with non-
Boolean rings, where ideals do not have a counterpart in filters, we have
chosen ideals.

In order to endow Spec B with a topology, define for each element b of
a Boolean algebra B a set Ub of prime ideals:

(4.2) Ub D fP 2 Spec B j b 2 P g :
From the nature of prime ideals (4.1), one shows for any b and c in B that

Ub [ Uc D Ub^cI Ub \ Uc D Ub_cI Spec B 
 Ub D Ub0 :

Since Ub \ Uc D Ub_c, the set of all Ub is closed to finite intersections;
it can serve as a basis of open sets for a topology, which is traditionally
called the Stone topology after Stone’s paper [Stone36]. Each open set is
a union of basis sets Ub, which are clopen by (4.1). Thus, prime ideals P
of the Boolean algebra B become points P of a topological space SpecB.

It is also called the hull-kernel topology, and here is why. Consider the
membership relation, b 2 P , between elements b of B and prime ideals P
of B. As does any such binary relation, ‘2’ gives rise to a polarity between
subsets of B and subsets of Spec B, and any polarity creates closure oper-
ators on each of these domains [Birk67, p.1̃22]. For a subset C of B, its
polar h.C / is known as the hull and is given by

h.C / D fP 2 Spec B j 8b 2 C .b 2 P/g :
For a set Y of prime ideals, its polar k.Y /, the kernel, is given by

k.Y / D fb 2 B j 8P 2 Y .b 2 P/g :
These polars satisfy (when C;Ci � B and Y; Yi � Spec B):

C � k�
h.C /

�I if C1 � C2 then h.C1/ � h.C2/I
Y � h�

k.Y /
�I if Y1 � Y2 then k.Y1/ � k.Y2/:

It follows that

h
�
k.h.C //

� D h.C / and k
�
h.k.Y //

� D k.Y /:
Composition is designated:

Y D h�
k.Y /

�
.Y � Spec B/:

This is a closure operator on Spec B:

Y � Y ; Y D Y ; and if Y1 � Y2 then Y1 � Y2:
It can be verified that it is ‘additive’: Y1 [ Y2 D Y1 [ Y2: Also N¿ D ¿,
so it satisfies Kuratowski’s axioms and is a topological closure operator
(Sect. 3). Thus, this is called the hull-kernel topology2 and coincides with
the Stone topology SpecB, as may be proven with the help of [Birk67,
pp. 111–112, 116–117, and 122–126].

2This breakdown of the topological closure into hull and kernel parts is patterned
after Kist’s treatment of the prime spectrum for a commutative semigroup [Kist63].
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As is well known, SpecB is a Boolean space when B is a Boolean algebra.
By this is meant that SpecB is Hausdorff, compact and totally discon-
nected (see Sect. 3 and [Halm63, p.7̃3]).

From any topological space X comes the Boolean algebra, ClopX D
hClop X I [;\;0 ;¿; X i, of its clopen subsets, those that are both closed
and open. As these are closed to union, intersection, and complementation,
they form a Boolean algebra, which leads to the representation theorem
discovered by Stone [Stone36].

4.1. Theorem. For any Boolean algebra B there is the isomorphism:

B Š Clop SpecB:

For any Boolean space X there is the homeomorphism:

X Š SpecClopX :

Most importantly for us is the dual equivalence of these algebras and
spaces, due also to Stone [Stone37], although not phrased in categorical
language. This extends the correspondence between objects to morphisms
among them. A homomorphism ' from one Boolean algebra A to another
B turns into a continuous map 
 from SpecB to SpecA, given by


.P / D '�1.P / .P 2 Spec B/:

A continuous map 
 from one Boolean space X to another Y turns into a
homomorphism ' from ClopY to ClopX , given by

'.U / D 
�1.U / .U 2 Clop Y /:

4.2. Theorem. The category BooleAlg of Boolean algebras is dually
equivalent to the category BooleSpace of Boolean spaces:

BooleAlg 'op BooleSpace:

For a proof see [Halm63, Sect. 18]. Consequently, to any property of
Boolean algebras corresponds a property of its dual space. The next defi-
nition gives such a pair [Halm63, p. 90].

4.3. Definition. A Boolean algebra is complete if for an arbitrary sub-
set S of A its join

W
S and meet

V
S exist. Its dual, an extremally discon-

nected Boolean space, is defined by Stone as the paradoxical property that
the closure of any open set is again open.

We close this section with several notions needed elsewhere. An atom of
a Boolean algebra A is any non-zero element with no element between it
and 0. A Boolean algebra is atomic if every non-zero, non-atomic element
is greater than some atom. The dual of a Boolean algebra hBI _;^;0 ; 0; 1i
is the Boolean algebra hBI ^;_;0 ; 1; 0i with operations interchanged. Two
Boolean algebras, B1 and B2, are anti-isomorphic if B1 is isomorphic to

the dual of B2, written B1

antiŠ B2.



IV
Complexes and their Sheaves

With a little thought one easily adapts the notion of complex, known for
some time in ring and module theory, to universal algebra, where it is
new. The analogy with metric spaces is apt. The preliminary notion of
precomplex then corresponds to that of premetric space. We give many
examples of complexes. Their value lies in the sheaves they generate.

To represent an algebra is to decompose it, that is, to turn its elements
into sequences whose components are in simpler algebras. But generally
not all sequences are required in a subdirect product, and so we need a
criterion for determining whether a sequence is to be in the representation
or not. This leads to a sheaf, adding topology. Its advantage is that the
admissible sequences are certain continuous functions, the global sections.

In the second section, there is the Gel’fand morphism from a precomplex
to the algebra of all global sections of the corresponding sheaf. This is
injective when we start with a complex. It is surjective – highly desirable
but elusive – only when much stronger hypotheses are assumed, as in later
chapters.

Closely related to complexes are systems of congruences, which we define
and compare with complexes. There also is a proposition characterizing
Hausdorff sheaves.

The passage between complexes and sheaves may be put formally into
a categorical setting. For each type of algebra, the third section defines a
pair of categories, Complex and Sheaf. Two functors go back and forth
between them, taking morphisms of one category into the other. Together

A. Knoebel, Sheaves of Algebras over Boolean Spaces, 79
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with a couple of natural transformations, these create an adjoint situa-
tion. For particular classes of algebras, this adjunction will later become a
categorical equivalence.

1. Concepts

We define complexes and sheaves, and develop their properties. Important
is the notion of a global section, which represents an element of an algebra.

1.1. Definition. A precomplex hA; W ;X i consists of an algebra, A D
hAI : : : ; !; : : :i, and a topological space, X D hX; T i, together with a binary
function “:” from the carrier A to the set T of open sets on X satisfying
these postulates:

a Wa D X .a 2 A/I(1.1)

a Wb D b Wa .a; b 2 A/I(1.2)

a Wb \ b Wc � a Wc .a; b; c 2 A/I(1.3)

a1 Wb1 \ a2 Wb2 \ � � � \ an Wbn � !.a1; a2; : : : ; an/ W!.b1; b2; : : : ; bn/:(1.4)

The last inclusion holds for each operation ! of A with n arguments and
for elements a1; a2; : : : ; an, b1; b2; : : : ; bn in A. If, in addition,

a Wb D X implies a D b .a; b 2 A/;(1.5)

then we have a complex. Anticipating when a and b will be elements of a
subdirect product indexed by X , we call a Wb the equalizer of a and b, and
its complement, aIb D X
a Wb, the inequalizer or difference of a and b.

Other notations used for a Wb and aIb, at least in the context of subdi-
rect products, are E.a; b/ and D.a; b/, as well as the suggestive solecisms
ŒŒa D b�� and ŒŒa ¤ b��. We might also call aIb the ‘support’ of a and b, but
this would conflict with the convention in analysis that the support of a
function is the closure of the set of points where it is different from zero.

Here are three examples of precomplexes in modules, rings and general
algebras. For the first, let M be a module over a commutative ring R, and
X the set of all maximal submodules S of M . Define a function, a 7! jaj,
from M to subsets of X by the formula:

jaj D fS 2 X j a 2 S g :
It is easy to verify for all a, b in M and r in R that:

j0j D X; jaj � jraj; and jaj \ jbj � jaC bj:
The set,

B D fjaj j a 2M g ;
may be chosen as a subbasis for a topology T on X . Historically, complexes
were first defined in the context of modules, as in the lecture notes of
Armand Borel [Borel64, 1964, p. II-3] after Jean Leray [Leray50].
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To connect this unary function, j 
 jWM ! B, with our more general
concept, introduce a binary function “ : ” from M to B by defining

a Wb D ja � bj:
It is easy to show that : satisfies the axioms for a precomplex hM ; W;X i.

Ring theory supplies the next example. Let R be a commutative ring
that is regular in the sense of von Neumann: for all a in it there is an x
such that axa D a. Here, it is assumed that R has a unity. This time, take
X to be the set of all prime ideals P of R. Introduce a function from R to
subsets of X by the formula, a 7! jaj,

jaj D fP 2 X j a 2 P g :
To get a precomplex, define a binary operation from R to the these sets
of prime ideals by the same formula as for modules. To show that we
again get a complex requires some effort. Generalizing the subsequent sheaf
representation to shells motivated this book (Theorem VIII.2.1).

For other examples in ring theory, see the manuscript of Kist [Kist69a]
where the spectrums of maximal ideals and minimal ideals are turned into
complexes. See also Borceux and van den Bossche [BorVa91] for a locale-
like presentation of complexes in ring theory. Also, the global subdirect
products of Krauss and Clark [KraCl79] and the lattice products of Volker
Weispfenning [Weis79] could be put into the framework of complexes,
although in the latter case the underlying topological spaces would become
arbitrary bounded lattices.

Creating complexes in arbitrary algebras is more general and encom-
passes the previous two examples as well as all applications to come. Con-
sider an algebra A and a collection X of congruences of A. Define a binary
function “ : ” from A to subsets of X by

a Wb D f� 2 X j a � bg :
The aggregate of all such sets a Wb of congruences serves as a subbasis for a
topology T on X . The properties defining a congruence readily imply that
hA; W ;X i is a precomplex. Turning this into a complex will require strong
hypotheses on the algebra and its congruences.

As a specific example of this process, consider a semilattice, S D hS I ^i,
with its associated partial order � (for their definition, see Sect. II.1). For
each a in A define the principal filter Fa D fb 2 S j a � bg; and let �a be the
corresponding congruence of S that has congruence classes: Fa and S
Fa
(if nonempty). Equivalently �a could have been defined by the clauses:

b �a c iff

(
both a � b and a � c; or

both a — b and a — c:
Then X , the set of all such congruences �a, when endowed with the topology
described in the previous paragraph, not only yields a precomplex, but also
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a complex. The implication (1.5) holds since b W c D X implies that b �a c
for all a in S ; hence b D b ^ c D c when a is set in turn to b and c. It
will follow from Theorem 2.1 in the next section that every semilattice is
a subsemilattice of a sheaf of two-element semilattices.

11111
The task ahead in these notes is to pick appropriate complexes by choos-

ing the family X to be a useful set of factor congruences of A. Such com-
plexes will yield significant representation theorems.

To that end we now turn to the definition of a sheaf by first recalling the
disjoint union,

A D
]

x2X
Ax;

of algebras (see Definition II.2.42). The non-constant operations of A are
defined within each summand, but not across them. To find the index of
an element of a disjoint union, there is the projection,

�WA! X W hx; ai 7! x:

To make a sheaf, A and X are given topologies.

1.2. Definition. A sheaf hA; �;X i of algebras has three parts:

(1) a topological partial algebra A given by a disjoint union of algebras
Ax of the same type and indexed by X ,

(2) the projection �WA! X W hx; ai 7! x, and
(3) a topology T on X ;

that altogether satisfy these three conditions:

(i) within the topology of A each partial operation of A of at least one
argument is continuous;

(ii) for a nullary operation, ! D c, the set
˚hx; cAx i j x 2 X �

is open
in A;

(iii) the projection �WA!X is a local homeomorphism (Definition III.3.5).

Perhaps condition (i) requires explanation. A generic operation ! is a
partial function from An to A. Thus, to say that ! is continuous is to say
that it is continuous with respect to the product topology on An; in other
words, !�1.U / is open in An whenever U is open in A. Condition (iii)
means that locally � has a continuous inverse. A consequence is that � is
an open map, that is, the image of any open set of A is open in X . Thus �
induces the quotient topology on X , its original topology: it is the largest
topology for X such that � is continuous. A curious consequence of (iii) is
that each component Ax , considered as a subspace of A, has the discrete
topology.
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Here is some standard vocabulary for the parts of a sheaf hA; �;X i. The
topological partial algebra A is called the sheaf space, a component Ax

a stalk or fiber. Any element of a stalk is a germ. The topological space X

is called the index or base space, and � the projection.1

As a technical aside, we should point out how all the other information
that some writers build into the definition of a sheaf can be recovered from
ours. In our definition of a sheaf, we are assuming that X is both the
base space and the index set for A. Note that � and X are redundant in
hA; �;X i since the sheaf space A completely determines the other two
parts. This is because the projection � is inherent in the disjoint union,
when both are viewed as a sets of ordered pairs, as at the end of Sect. II.1.
As already noted, this continuous projection being open yields the quotient
topology on the base space. Hence, both � and X can be recovered from
A, and there is no need to explicitly mention them. From now on we need
refer only to A as the sheaf.

As another aside, in ring theory Pierce [Pier67, p. 10] and others use
the term ‘ringed space’ for hX ;Ri, coming from algebraic geometry, for
a topologized disjoint union R of rings together with its continuous pro-
jection onto the base space X . For general algebras this term might be
extended to ‘algebraic space’ for hX ;Ai. As this pair contains the same
information as does A by itself, at least as we have defined it, we forego
this suggestive term.

A global section of a sheaf A is any continuous function � from the base
space X to the sheaf space A that is a right inverse to the projection �, in
symbols � ı � D 1X . More generally, a section is any continuous function
� from an open subset U of X to A such that � ı � D 1U . The equalizer
of two sections � and � is the set of indices in their common domain where
they are equal:

� W� D fx 2 X j �.x/ D �.x/g :
An alternative formulation is

� W� D �.rng � \ rng �/:

We state now four properties of sheaves that will be used repeatedly —
some have already been mentioned.

1.3. Proposition. Let A be a sheaf of algebras with the continuous
projection �WA! X onto the base space X .

(a) The projection � is an open function.
(b) The range of any global section � is an open subset of A.
(c) Any global section � is an open function, and consequently rng � is

homeomorphic to X .
(d) The equalizer � W� of two global sections is open in X .

1One should not confuse this projection with the n-ary projections of Sect. II.1,
implicit in the term-operations of any algebra.
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Proof. (a) Let a be in the open subset U of A. Since � is a local
homeomorphism, there is an open subset Ua of U containing a that is
homeomorphic to an open subset of X ; and the union of these Ua is all of
U. So the union of their images �.Ua/ is open in X .

(b) Let a be in rng � . Desired is a subset U of rng � that is open in A

and contains a. Use the local homeomorphism � to find an open subset V

of A containing a that is homeomorphic to an open subset of X . By the
continuity of � and � the desired open set U is V \ ��1��1V .

(c) If U is open in X , then �U D rng � \ ��1U , and hence it is open in
A by (b). That � is injective follows from �� D 1.

(d) True by (a), (b), and the alternative formulation of equalizer. �
Several overlapping sections may be patched together, as proven next.

Disjoint patching is possible when the base space is Boolean, as will be
proven in Proposition V.2.4.

1.4. Proposition (Overlapping patchwork). Let A be a sheaf of algebras
over the base space X . Suppose that hUi j i 2 I i is an open cover of an
open set U in X , with a corresponding family h�i j i 2 I i of sections such
that each �i is defined over the corresponding Ui . Further assume that these
sections agree on their overlaps; in other words, for all i and j in I ,

�i .x/ D �j .x/ .x 2 Ui \ Uj /:
Then there is a unique section � defined over U such that

�.x/ D �i .x/ .i 2 I and x 2 Ui /:
Proof. As each �i is continuous, so � is continuous. �

11111
1.5. Definition. We designate by � .A/ the set of all global sections of a

sheaf A. This is indeed an algebra � .A/ of the same type as the component
algebras Ax ; the operations are defined pointwise. In fact, � .A/ can always
be naturally identified with a subalgebra of the product

Q
x2X Ax .

The terminology of sheaf theory comes from harvesting wheat, where
vertical stalks are cut horizontally by a scythe as in Fig. 1. A continuous
sweep of its sharp blade across the stalks cuts out a global section. Another
swipe, another global section, and so on. Altogether, these global sections
make up � .A/. See the expository articles of Arthur Seebach, Linda See-
bach and Lynn Steen [SeeSS70] and Christopher Mulvey [Mulv79] for
several classical examples of sheaves in algebraic geometry, complex anal-
ysis, differential forms and ring theory, including the influential sheaves of
local rings of Grothendieck [GroDi60].

Fiber bundles are a rich source of examples of sheaf spaces in algebraic
topology. For example, a Möbius band may be created as a product with
a twist. Cross the interval Œ0; 2�� with another interval Œ0; 1�, and identify
points at the ends: h0; ai with h2�; 1 � ai .a 2 Œ0; 1�. With the product
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rng σ

X

Ax

x

A

Figure 1. The sweep of a scythe, cutting out a global
section � , where X is the base space, Ax is a stalk over x,
and A is the sheaf space, the union of all the disjoint
stalks.

topology this is the sheaf space A. The base space X is the half-open
interval Œ0; 2�/, and the stalks are Œ0; 1�. If one wishes this to be a sheaf of
algebras, then one adds operations to the stalks; for example,

�.a; b; c/ D the median of a; b and c;

	.a/ D 1 � a;
for a; b; c in Œ0; 1�. The global sections are all continuous loops going once
around the band.

There are two ways to present sheaves; as espaces étalés and through
presheaves. Espaces étalés, the sheaves defined in Definition 1.2, are most
natural for algebra, and were the original form given by Leray, but many of
the other early expositions, mentioned in Sect. I.1, were with presheaves.

Davey [Davey73], using presheaves, gives an equivalent but categorical,
and in some ways smoother, approach to � .A/ via morphisms, functors, di-
rect limits, and sections that are not global. See also [Hofm72], [Romo94],
[SeeSS70], and [Tenn75] for expositions of presheaves on classical alge-
braic structures. For comparison, we sketch this approach, softening the
role of categories.

1.6. Definition. Given a topological space X and an algebraic type � ,
a presheaf on X has data of two kinds:

(i) a function ' from open sets of X to algebras of type � ;
(ii) a family of homomorphisms, 
UV W'.V /! '.U /, defined for all pairs

of open sets for which U � V , such that
(1) 
UU D 1 and
(2) 
UW D 
UV ı 
VW .U � V � W /.

When the overlapping patchwork of Proposition 1.4 holds in a presheaf,
it becomes equivalent to a sheaf. We write it as sheaf to distinguish it from
the earlier form of sheaf given in Definition 1.2.

1.7. Definition. A presheaf over X with data ' and 
 is a sheaf when-
ever it has overlapping patchwork: for an open cover hUi j i 2 I i of an
open subset U of X with elements �i in '.Ui /, if
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Ui \Uj ;Ui
.�i / D 
Ui \Uj ;Uj

.�j / .i; j 2 I /;
then there is a unique � defined over U such that


Ui ;U .�/ D �i .i 2 I /:
The transition from a sheaf hA; �;X i to a sheaf over X with data '

and 
 enlarges the language spelled out for sheaf spaces. For an open set
U of X , let � .U;A/ be the set of all sections � from U to A. and � .U;A/

be its algebra, with the operations defined pointwise on stalks. Define '
and 
 by

'.U / D � .U;A/ .U open in X/;


UV .�/ D � jU .U; V open in X and � 2 � .V;A//:
The data ' and 
 on X is then a sheaf.

The other direction showing equivalence is not as trivial. Let a sheaf over
X be given with data ' and � . For each point x of X consider the collection,
Ux D fU 2 T j x 2 U g, of open sets surrounding x. This is a neighborhood
system of x directed by inclusion. The corresponding collection of algebras
'.U / is directed by the homomorphisms, 
UV W'.V /! '.U /. It has a direct
limit Ax since the category of algebras of a given type is complete [Berg98,
Prop. 8.1.6]. The disjoint union of these stalks Ax is given the equalizer
topology of Sect. IV.2, and so we have sheaf. See [Tenn75, chaps. 1 and 2]
for details.

Presheaves arise where sections are defined naturally on some open sets.
This is the case in complex variables for an analytic function of one argu-
ment defined by a power series that converges only on a proper open subset
of the plane. By way of contrast, where stalks come from quotients of an
algebra, a sheaf space is most natural to define first. As this is typical of
the sheaves in this book, we say nothing more about sheaf.

Representing algebras by sheaves has many merits. One is this. Each
operation ! passes pointwise from the stalks to the sheaf. Because of this,
identities are preserved:

\

x2X
Id Ax � Id � .A/:

Here, Id A denotes the set of all identities satisfied by the algebra A. If the
stalks are in a particular equational class, then so is � .A/. This is true
since � .A/ is a subalgebra of a product of the stalks Ax .

Usually, � .A/ is a subdirect product of the stalks Ax , that is each
stalk is exhausted — more precisely, through each element of each stalk
there passes a global section. In the next chapter, we will see that this is
always the case when X is a Boolean space (Proposition V.2.4(b)). Then
sentences of the more general form 89.� D ˝/, where � and ˝ are terms
of the given type, transfer back and forth between the stalks Ax and � .A/
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(Proposition V.2.7). This is so since sheaf topologies give a gluing more
subtle than subdirect products alone can provide.

As an example, let X be any set with the discrete topology and let A be
the disjoint union

U
x2X A of the repeated algebra A D Ax . In this case, A

is X�A. For this sheaf A, also with the discrete topology, we get the direct
power � .A/ D AX . In a related vein, if X is a Boolean space and if, for
each member of the repeated stalk, there is a global section taking only this
value, then we have essentially the Boolean extension of Foster [Fost53],
although he did not invoke topologies. When the stalks may be different
but still over a Boolean space and with the equalizers always clopen, Bur-
ris and Werner [BurWe79] call this sheaf a Boolean product, of which
the Boolean power is a special case. These will be formally discussed in
Sect. V.3.

With Proposition 1.3 in hand, a simpler but equivalent definition of
global section arises by identifying a section with its range. A global section
then becomes any subset of A such that

(i) Each element of � belongs to a distinct stalk
(ii) Every stalk has an element in � and

(iii) � is open in A.

In the sequel, however, we follow the original definition.
Here is an example showing that the topology on the base space X does

not determine that of the sheaf A. Write Q D f0; 1g, which as an algebra has
no operations; set X D Q and A D Q]Q, (using again the original definition
of disjoint union.) Assign to X the indiscrete topology; T D f;;Qg. On A

there are two possible topologies:

f;; fh0; 0i; h1; 0ig; fh0; 1i; h1; 1ig; Ag; or

f;; fh0; 0i; h1; 1ig; fh0; 1i; h1; 0ig; Ag;
which give different sheaves with the same base space X . Contrast this with
the fact that the topology of A always determines that of X as a quotient
space.

We allow the empty sheaf of a given type, meaning that X D ¿, which
makes A empty, and corresponds to an algebra � .A/ with one global
section ¿. To keep this in perspective, one might review the Stone repre-
sentation of Boolean algebras, where the empty topological space is dual
to the one-element Boolean algebra.

2. Constructions

This section constructs sheaves from complexes. Of central importance is
the Gel’fand morphism representing the original algebra in the algebra of
all global sections of its constructed sheaf. Close to complexes are systems
of congruences, which relate complexes to subdirect products. There follows
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a preview of how the construction of sheaves leads to the next chapter. We
close this section with a brief discussion of Hausdorff sheaves.

Any sheaf hA; �;X i naturally yields a complex hA; W ;X i — take A to
be � .A/, the algebra of global sections of the last section, and define a
binary operation,

� W� D fx 2 X j �.x/ D �.x/g ;
which is the natural equalizer of the global sections � and � . Going the
other way from complexes to sheaves is much more interesting and useful.

From a precomplex hA; W ;X i we may construct a sheaf hA; �;X i of
algebras as follows. For each x in X define a congruence �x of A by

a �x b iff x 2 a Wb:
Gather the quotient algebras, Ax D A=�x, into their disjoint union, A DU
x2X Ax . Stated otherwise, A D fŒa�x j a 2 A; x 2 X g, where the germ

Œa�x is hx; a=�x i.2 The projection � is defined as expected: �.Œa�x/ D x.
The operations of A are now partial and defined just when all arguments

are in the same stalk. To introduce a topology, define for each element a of
A and each open set U of X a subset Œa�U of A:

Œa�U D fŒa�x j x 2 U g :
Note that Œa�U \ Œa�V D Œa�U\V . The family of all such subsets of A serves

as a basis for the topology of A.
That the Œa�U have been declared open secures continuity of the projec-

tion, �WA ! X , verifying that A is a sheaf. In fact, this is the smallest
topology that could be put on A that would make � continuous. That
each germ Œa�x comes from an element of A ensures that � is a local
homeomorphism. And finally, that each operation ! of the given type is
continuous in A is explained as follows. If

!.a1; : : : ; an/ D b
in A, then

!.Œa1�x; : : : ; Œan�x/ D Œb�x
in the xth stalk of A. Since !A exists only when all its arguments are in
the same stalk,

!.Œa1�U ; : : : ; Œan�U / D Œb�U ;
for any open set U of X . Hence,

!�1.Œb�U / D
[

!.a1;:::;an/Db
Œa1�U � � � � � Œan�U :

2This definition of the mapping Œa	x of an element a of A into the xth component
of the disjoint union appears convoluted, but care has to be taken not to let Œa	x be just
the coset a=�x since it may be that a=�x D a=�y but x ¤ y. However, the casual reader
may read Œa	x carelessly as a=�x , probably without confusion.
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Therefore, the inverse image under ! of an open set in A is a join of open
sets in the product topology. Thus, ! is continuous in A.

We say that A is the sheaf associated with the complex hA; W ;X i.
Its basis was chosen to guarantee a representation of the original algebra
within the algebra of all global sections of the sheaf. To see this, consider
the function � from A to � .A/ defined by

(2.1) �.a/.x/ D Œa�x .a 2 A; x 2 X/:
This is often called the Gel’fand morphism. Two good things may happen:

(i) this function is injective;
(ii) this function is surjective.

The first is essential in applications, and the second is desirable. Note that,
once the topology on X is given, the topology chosen for the sheaf A is the
largest compatible with � being a projection and with each image �.a/ of
an element a of A being continuous.

Before stating the theorem that relates complexes to sheaves and insures
injectivity, we make a parenthetical comment. We are using the notation
“ : ” for equalizers between global sections of sheaves and also between
elements in complexes. There is no conflict or disparity, at least when the
sheaf comes from a complex, because

�.a/ W�.b/ D fx j Œa�x D Œb�x g D fx j a �x bg D a Wb:
The following result is theorem 1 of Swamy [Swam74] put into the lan-

guage of complexes, and Swamy’s theorem in turn is based on theorem 2.7
of Keimel [Keim71].

2.1. Theorem. Let hA; W ;X i be a precomplex of algebras and A its
associated sheaf. Construct from it the algebra � .A/ of global sections.

(a) The Gel’fand morphism is a homomorphism: � WA ! � .A/.
(b) The precomplex is actually a complex if, and only if, � is an injection.

Proof. Before anything else we must show that the range of � is
within � .A/. That is, we must prove that �.a/ is a global section for each
a in A. This reduces to showing that �.a/WX !A is continuous. It suffices
to demonstrate that the inverse image of any set in the basis of A is again
open. So consider a typical set in the basis: Œa�U D fŒa�x j x 2 U g ; for some
open set U of X . Clearly

�.a/�1.Œa�U / D U;
by the definition of �.a/. Hence, �.a/ is continuous and in � .A/.

(a) By the pointwise definition of the operations, � is a homomorphism.
(b) ). In order to prove that � is an injection when hA; W ;X i is a

complex, it suffices to prove that
T
x2X �x D 0ConA: To that end assume

that a and b are related by the left side, that is, a �x b for all x in X . From
the definition of the �x , we have a Wb D X . Since we started with a complex,
it follows that a D b.
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(. Assume that � is injective and that a Wb D X ; we wish to show
that a D b. The latter means that x 2 a W b for all x in X . Therefore, by
the definitions of �x and � ,

�.a/.x/ D Œa�x D Œb�x D �.b/.x/ .x 2 X/:
Hence �.a/ D �.b/. Since � is injective, a D b. �

With this theorem, we relate the identities of A to those of � .A/.

2.2. Corollary. Let hA; W ;X i be a precomplex and A its sheaf.

(a) Id A � Id � .A/.
(b) If we actually start with a complex, then Id A D Id � .A/.

In other words when we have a precomplex, if A belongs to a particular
equational class, then so does � .A/, and when we have a complex, the
converse is also true.

Proof. (a) This follows from the fact that � .A/ is a subalgebra of a
direct product of homomorphic images of A.

(b) Since � is injective, A is isomorphic to a subalgebra of � .A/. �

Global sections have other characterizations. The first is due to Krauss
and Clark [KraCl79, lemma 2.27]. It should be clear in (b) below that a
finite open cover suffices when X is compact.

2.3. Corollary. For a precomplex hA; W ;X i over a topological space,
X D hX; T i, with the associated sheaf A:

(a) � .A/ D f� WX ! A j 8a2A .�.a/ W� 2 T /g;
(b) � 2 � .A/ if, and only if, there is an open cover hUi j i 2 I i of X and

there are bi in A such that � jUi D �.bi/jUi for i in I .
Proof. (a) There are two inclusions to verify.
�. Obvious.
�. It suffices to verify that ��1.Œa�U / D U \ .�.a/ W�/ for a in A and

U in T .
(b) There are two implications to verify.
). Clear from (a).
(. This follows from part (a) since �.a/ W� D S

i2I
�
Ui\.a Wbi /

�
: �

As regards the condition (ii) that the Gel’fand map, � WA ! � .A/, be
surjective, this is much harder to come by. In fact there is no known useful
criterion that is both necessary and sufficient. A sufficient hypothesis for
surjectivity is that we have a Boolean algebra of factor congruences, and
this will be used extensively from Chap. VI onward,.

The simplest example with � not being surjective arises from the complex
consisting of the three-element distributive lattice, C 3 D hfa; b; cgI _;^i
with a < b < c, over the two-element discrete space, Q D f0; 1g. The
equalizer in this complex is specified completely by its effect on three pairs:
a Wb D f0g; b Wc D f1g, and a Wc D ;. The associated sheaf A will have the
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discrete topology and hence � .A/ is the direct power .C 2/
2. Later chapters

have more examples in which the Gel’fand morphism is not surjective. This
completes the essential points we wanted to make in this section, and now
we round it out with peripheral matters.

11111
Complexes closely resemble subdirect products; in fact, so much so that

one might question the need for a new notion. We briefly examine the
relationship between the two. Call the pair hA; �i a system of congruences
if A is an algebra where each � of � is a congruence of A. If

T
� D 0ConA,

then A is isomorphic to a subdirect product of the quotients A=� as �
runs over all of the congruences in the family �. In any case, A=

T
� is

isomorphic to a subdirect product of all the A=� for � in �.
Each precomplex hA; W ;X i gives rise to a system hA; �i of congruences:

� D f�x j x 2 X g ; where �x D fha; bi j x 2 a Wbg :
Notice that the topology of X is lost. This, of course, plays a role in the
sheaf A constructed from the complex. In fact, it is easy to show directly
from the topology on A that A=

T
� is isomorphic to a subalgebra of

� .A/. As an aside, some of the points of X may coalesce in the sense of
generating equal congruences: �x D �y ; but this does not happen if the
base space is T0 and the equalizers form a subbasis of it. We will elaborate
on this, which is related to the notion of irredundancy of Krauss and Clark
[KraCl79] [1979, p. 10 and p. 41, theorem 3.30].

Going from a system hA; �i of congruences to a precomplex hA; W ;� i is
slightly more subtle. Take the space to be �, and to construct a topology
on � define the equalizer as before, a W b D f� 2 � j a � bg ; and let these
equalizers be a subbasis for a topology T of open sets on �.3 Again, one
shows that A=

T
� is isomorphic to a subalgebra of � .A/, where A is the

sheaf coming from the complex hA; W;� i.
Krauss and Clark call this topology the equalizer topology and � .A/

the global closure of hA; �i, from which they develop their monograph
[KraCl79]. When the Gel’fand morphism is surjective, they call this a
global subdirect product. Their chaps. 2–5 give many criteria for a topol-
ogy to exist on the index set so that a subdirect product is global. Here is
their theorem 2.28, rephrased in our language.

2.4. Theorem. Let hA; �i be a system of congruences with the equalizer
topology T given on �, and let B be its subdirect product. Then the Gel’fand
morphism is surjective if, and only if, for every 
 in

Q
�2� A=� , if 
 W� 2 T

for all � in B, then 
 2 B.

3Davey [Davey73, sect. 2] considers this construction in more generality where a
topology is already specified for �, but it does not always yield a sheaf. He gives several
conditions under which a sheaf is guaranteed, as in his lemma 2.1.
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What if we go full circle? Starting with a system hA; �i of congruences,
going to a precomplex hA; W ;� i and then returning to a system will give
back the same system that we started with. What is less obvious is that
starting with an arbitrary precomplex hA; W ;X i and then going to a system
of congruences will not return us to the original precomplex. The original
base space X may not agree with the new base space � . There may be
collapsing of points, as noted above. But even if not, the old topology may
be finer than the new: we conclude that there might be global sections
in � .AX / that are not in � .A� /, where � .AX / is the sheaf coming
from the complex hA; W ;X i and � .A�/ comes from hA; W;� i. Thus, for a
precomplex there are the embeddings:

A
T
�
!
inj:

� .A�/ !
inj:

� .AX /:

The following theorem sums up this discussion. It states that, under the
hypotheses discovered earlier, one can go full circle without losing anything
essential. We leave its proof to the reader.

2.5. Theorem. (a) If hA; �i is a system of congruences, with hA; W ;X i
being the resulting precomplex, and hA; � i is the system of congruences
obtained from this precomplex, then � D � . The intermediate space X

is T0 and the equalizers form a subbasis.
(b) Suppose that hA; W ;X i is a precomplex, with hA; �i the resulting sys-

tem of congruences, and hA; ?? ;Y i the resulting precomplex. Then there
is a continuous map 'WX ! Y such that '.a W b/ D a ?? b. If X is T0
and the equalizers form a subbasis for X , then ' is a homeomorphism.

Two remarks are in order about part (b). First, lest anyone think that
dealing with just precomplexes is the reason one cannot go exactly full
circle without some hypotheses, note that this theorem remains true even
if one replaces ‘precomplex’ by ‘complex’ and ‘system of congruences’ by
‘system of congruences whose intersection is zero’. Second, although the
hypothesis that the equalizers form a subbasis appears rather weak, we
will not be able to guarantee its fulfillment until �V.2.

We single out an important instance of this construction.

2.6. Definition. For any algebra A its subdirect sheaf representation
is the sheaf as constructed above when � is the set of all subdirectly irre-
ducible congruences of A.

2.7. Theorem. The subdirect sheaf representation of an algebra is in-
jective. When the algebra is nontrivial and not subdirectly irreducible, then
its subdirect sheaf representation is nontrivial, that is, it has at least two
nontrivial stalks.

Proof. By Birkhoff’s Theorem II.2.40,
T
� D 0ConA. Hence we have

a complex. By Theorem 2.1, the representation is injective. �
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One may analyze also the relationship between complexes and sheaves
and to what extent they resemble each other. We have already investigated
how to construct a sheaf A from any complex hA; W ;X i and examined in
detail how the obvious complex h� .A/; W ;X i coming from A relates to
the original complex.

Might we conceivably need some day a sheaf not constructible from a
complex? In the next section, we show that this never happens, that is,
each sheaf satisfying a modest algebraic assumption always comes from a
complex. This so because in general, in going from any sheaf to a com-
plex to a sheaf again, there is a simple relationship between the old and
new sheaves; they are in a nice one-to-one correspondence, at least up to
isomorphism.

Complexes are not essential. We could bypass them in the applications
we are interested in, and many times work directly from Boolean sub-
semilattices, to be defined in the next chapter. However, complexes are a
convenient and intuitive halfway house on the road to sheaf representa-
tions. Each is a repository for all the information needed to bring about a
representation, including the original A and its extension � .A/, as well as
both of the topologies, either explicitly or implicitly.

11111
As some definitions given in this section and later may appear to be back-

wards or upside down to some readers, we discuss the choices that had to
be made. These choices make no difference in the truth of the mathematics,
but they do make a difference in how we intuitively view the construction
of sheaves. Whether to use the equalizer “:” or its complement “;”, the
inequalizer, was a toss-up. Should open or closed sets be the fundamental
notion in topology? Equalizers and open sets fit well together and opting
for them simplifies some proofs. Since this is nontraditional in sheaves of
classical algebras, we explain our reasons.

Stating the axioms of a complex in terms of equalizers brings out their
essence as just the conditions defining a relation to be congruence. Also,
equalizers being open makes their appearance in applications simpler.

On the other hand, the inequalizer measures the extent to which two
elements are separated, and to get a faithful representation – one which
is isomorphic to the original algebra – all pairs of elements of it must be
separated by at least one congruence. The axioms for a precomplex in terms
of inequalizers, which must now be closed subsets of X , become:

aIa D ;;
aIb D b Ia;
aIc � aIb [ b Ic;

!.a1; : : : ; an/I!.b1; : : : ; bn/ � a1 Ib1 [ � � � [ an Ibn:
If, in addition,

aIb D ; implies a D b;
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then all elements are separated and it is a complex. This rewriting makes
the concept of complex look like some kind of generalized metric space.
Thus, it is easy to ‘think metric’.

The deciding factor against using inequalizers as the fundamental notion
is that in applications a negation, such as ‘not a�b’, crops up at the very
beginning, and more negations appear later on to undo it, all adding up
to some unappealing double negatives. By sticking with open sets, most
formulas are positive, making it easier to devise and follow arguments.
We have opted for choices that make transparent the algebraic arguments,
but unfortunately at the expense of classical parallels with analysis and
algebraic geometry. Many who are not algebraists will find it easier to
follow some of the succeeding arguments if they rewrite them in their set-
theoretical duals, using the inequalizer instead.

The discussion should now be closed, but there is one last subtlety that
initially confused the author and that may be bothering some readers. In
analogy with a continuous real-valued function, where the range space is
Hausdorff and hence the set of zero values is always closed, it would appear
that an abstract equalizer also ought to be closed rather than open. How
can the literature have it open in some cases and closed in others; won’t
it make a difference between right and wrong theorems? The nub of the
matter is that the equalizer of continuous functions in general need be
neither open nor closed.

At the other extreme are equalizers that are always both open and closed,
and hence so are their inequalizers. The definition of a sheaf insures that
the equalizer of two global sections will be open. Although peripheral to
our purposes, conditions guaranteeing that the equalizers are also closed
will be sprinkled throughout this book. Clopen equalizers make the sheaf
structure more transparent and are one of the defining properties of Boolean
products, which will be discussed briefly in the next chapter.

One sufficient condition for the equalizers in a sheaf hA; �;X i to be
clopen is that its sheaf space A be Hausdorff. Such sheaves are called Haus-
dorff sheaves and are more general than Boolean products. It will help to
fill out the theory later to have necessary and sufficient conditions assur-
ing this. When the sheaf comes from a complex these appear in [Swam74,
theorem 1] and [KraCl79, lemma 2.32], although their language is different
from ours.

This next proposition has a hypothesis that needs an explanation.
Clearly, � .A/ is a subalgebra of the product

Q
x2X Ax . The only question

is whether we have a subdirect product, that is, whether each projection,

� .A/! Ax W � 7! �.x/;

is surjective. Conceivably, there might be unused elements in some of the
stalks. That is, for each element a in each stalk Ax , is there a global section
� such that a D �.x/? If the sheaf comes from a complex, then this is so.
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If the sheaf is over a Boolean space, we will see in Proposition V.2.4 that
this is again guaranteed. If neither, it must be postulated, as expressed
next.

2.8. Definition.

(SS) Through each point of a sheaf there passes a global section.

Sometimes this is called a ‘subdirect’ sheaf. It is equivalent to saying that,
for each element a of the sheaf space, there is a subset of it containing a
that is homeomorphic by the projection � to the base space X . Most of
the sheaves of subsequent chapters satisfy this proviso.

2.9. Proposition. Let A be a sheaf of algebras that satisfies SS. Then
A is a Hausdorff sheaf if, and only if,

(a) its base space X is a Hausdorff space, and
(b) � W� is clopen .�; � 2 � .A//:

Proof. ). (a) Let x and y be distinct points of X , and assume � 2
� .A/. Since the stalks are disjoint, �.x/ ¤ �.y/; thus, there exist disjoint
neighborhoods U and V respectively of �.x/ and �.y/ in A. Hence ��1.U/
and ��1.V/ are disjoint neighborhoods of x and y in X .

For (b), since inequalizers of global sections in a sheaf are always closed,
it suffices to show that any inequalizer � I� is open. Assume �; � 2 � .A/

and x 2 � I� . Since A is Hausdorff, there are disjoint neighborhoods U

and V of �.x/ and �.x/, respectively. Because the projection, �WA ! X ,
is a local homeomorphism, we may, without loss of generality, shrink U to
U\ rng � so that it is homeomorphic to a neighborhood U of x in X , and
similarly reduce V to be homeomorphic to a neighborhood V of x. What
we have proven is that any x in � I� has a neighborhood U \ V entirely
within � I� . This is true since U \ V D ;.
(. Let ax and by be distinct elements of A in stalks Ax and Ay . By

hypothesis, there are global sections � and � such that �.x/ D ax and
�.y/ D by . There are two cases.

Case 1. x ¤ y. Since X is a Hausdorff space, there are disjoint
neighborhoods U and V of x and y, respectively. And so their inverse
images, ��1.U / and ��1.V /, must be disjoint neighborhoods of ax and by .

Case 2. x D y. As already implicitly shown by the other direction
of implication, there are three neighborhoods – U of �.x/ in A, V of �.x/
in A, and W of x in X – that are all homeomorphic. Since � I� is clopen,
the disjoint sets,

U \ �.� I�/ and V \ �.� I�/;
are neighborhoods of �.x/ and �.x/, respectively. Hence A is Hausdorff. �

As an aside illustrating this proposition and the limitations of our use
of sheaves, consider, without details, the sheaf of germs of holomorphic
functions over C, the complex numbers; this is one of the classical examples
motivating the definition of sheaves [SeeSS70]. Then � W � is open for all
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global sections � and � , by the definition of sheaf. These global sections
in this context are entire: they are holomorphic functions on the whole
complex plane, X D C. Their equalizer is also closed since any two entire
functions, � and � , that agree on an open set, that is, their germs are equal
at a point, agree everywhere on the complex plane. Hence, � W � is clopen
for all global sections, and so A is Hausdorff by the proposition. Therefore,
if � and � are distinct, they must be disjoint, that is, � W� D ;.

From this observation, one might conclude that sheaves over the base
space C are uninteresting and of no importance. On the contrary, if we do
not insist that � .A/ be a subdirect product of the stalks, then, in the sheaf
of germs of holomorphic functions, the exponential function represents a
global section, since it is entire, but the logarithmic function, on the one
hand, is less than a global section since it is not definable at the origin
and, on the other hand, it is ‘more’ since its domain of holomorphy is
multivalued.

3. Categorical Reformulation

An adjunction of their categories relates complexes to sheaves more fully
than was done in the previous sections. We spend time now setting the
stage for each of the final sections of the next several chapters, which will
summarize their principal constructions categorically. Each succeeding con-
struction becomes more specialized, and eventually categorical adjunction
becomes categorical equivalence; see Table 1 at the end of Sect. VI.4. These
constructions can be thought of as generalizing the duality between Bool-
ean algebras and Boolean spaces.

In this section, we define the categories of complexes and sheaves as well
as a pair of functors going from one category to the other. Much that needs
to be proven is routine but sometimes complicated. The main difficulty lies
in keeping track of the various levels of abstraction going all the way from
elements of algebras through topologies up to the natural transformations
defining adjunctions. Otherwise, once the definitions are set up and the
theorems correctly formulated, many of the proofs are inevitable. Details
are gone into only when we want to get a taste of the argument, or when
some special technique or trick is required.

All algebras under discussion are assumed to have the same fixed type.
Recall that categories were introduced nonobjectively in Sect. III.2 as par-
tial algebras of morphisms with the operations of composition, domain, and
codomain, where unities play the role of objects. This style will be followed
when defining Complex, Sheaf, and other categories; but occasionally it
is clearer to write objectively.

3.1. Definition. The category Complex consists of all morphisms be-
tween all complexes hA; W ;X i of a given algebraic type. A morphism from
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one complex, A D hA; W ;X i, to another, B D hB; ?? ;Y i, is a pair h'; 
i
of functions,

'WA ! B and 
WY ! X ; 4

of which ' is a homomorphism and 
 is a continuous function, such that


�1.a1 Wa2/ � '.a1/
?
? '.a2/ .a1; a2 2 A/:

Express this as h'; 
iWA ! B, or in a pinch abbreviate it as h'; 
i. The
domain and codomain of this morphism are the respective unities:

1A D h1A; 1X iWA! A and 1B D h1B; 1Y iWB! B;

or objectively just A and B. The composition of two such morphisms,

h'1; 
1 iW hA; W ;X i ! hB; ?? ;Y i and h'2; 
2iW hB; ?? ;Y i ! hC ; F
F ;Z i;

defined whenever the middle complexes are the same, is the composition of
their component functions:

h'2; 
2 i ı h'1; 
1i D h'2 ı '1; 
1 ı 
2iW hA; W ;X i ! hC ; F
F ;Z i:

3.2. Proposition. Complex is a category.

Proof. Check that the composition of morphisms is again a morphism
of complexes and that Complex satisfies the axioms for a category. �

11111
To define the category of sheaves, several preliminary definitions are

needed, including a special kind of product. As explained in Sect. IV.1,
one may specify a sheaf by a triple hA; �;X i or just by the sheaf space A

alone.

3.3. Definition. Let A be a sheaf with base space X and projection
�WA! X , and similarly let B be a sheaf with base space Y and projection

WB ! Y . Whenever we have a continuous function 
WY ! X , we may
form the pullback:

A �
 Y D fha; y i j �.a/ D 
.y/g:
To give A�
 Y a topology, restrict the product topology on A � Y . Recall
that sheaves are disjoint unions of algebras:

A D
]

x2X
Ax and B D

]

y2Y
By :

Likewise, A�
 Y can also be turned into a partial algebra; it is the disjoint
union of algebras Ax � fyg with 
.y/ D x:

A �
 Y D
]

y2Y

�
A
.y/ � fyg

�
;

4Note that the functions ' and 
 go in opposite directions. This is typical of many
of the compound morphisms in this book.
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where fyg is a one-element algebra, and any operation of the given type is
defined in this union just when all its arguments have the same second co-
ordinate y. By saying that a function,  WA�
Y ! B, is a homomorphism
of these partial algebras, one means that for each y in Y the restriction of
 to A
.y/ � fyg is a homomorphism from A
.y/ � fyg to By .

3.4. Definition. A morphism from a sheaf hA; �;X i to another sheaf
hB; 
;Y i is a pair h ; 
i of functions,

 WA �
 Y ! B and 
WY ! X;

for which  and 
 are continuous,  is a homomorphism of partial alge-
bras, and 


�
 .a; y/

� D y for all ha; y i in A �
 Y .5 That is, this diagram
commutes:

A �
 Y B................................................................................................................................................................... ...
.........

 

Y

............................................................................................................ .......
.....

..................................................................................................................
.....
............




where the left arrow is just the projection onto the second factor. Write this
morphism as h ; 
iWA! B, or simply h ; 
i. It is convenient at times to
restrict  to stalks:

 xy WAx ! By W a 7!  .a; y/ .x D 
.y//;
3.5. Definition. To define the domain and codomain of this morphism,

unities are needed:
1A D h1A; 1X iWA!A

where 1A.a; x/ D a. Then domh ; 
i D 1A. Similarly, codh ; 
i D 1B .
To define the composition of morphisms of sheaves, suppose there are

three sheaves, hA; �;X i, hB; 
;Y i and hC ; �;Z i, and two morphisms,

h 1; 
1iWA! B and h 2; 
2 iWB ! C :

Their composition h ; 
iWA! C is two functions, 
WZ ! X given by


 D 
1 ı 
2;
and  WA �
 Z ! C , evaluated as

 .a; z/ D  2
�
 1.a; 
2.z//; z

�
.when �.a/ D 
.z//:

As expected, composition is defined only when there is a common sheaf in
the middle.

3.6. Definition. The category Sheaf is composed of all morphisms of
sheaves of a given algebraic type.

3.7. Proposition. Sheaf is a category.

5This is lifted directly from Pierce’s definition of morphism for ringed spaces
[Pier67]. Examples will convince the reader that Y must be incorporated in some way
into the domain of  , despite the nonintuitive character of this definition.
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Proof. One must first show that Sheaf is closed to the composition
of morphisms in it. To do this one needs to prove four things about the
composition h ; 
i of the two morphisms in Definition 3.5:

(1) 
 is continuous;
(2) �. .a; z// D z;
(3)  is a homomorphism of partial algebras;
(4)  is continuous.

It is straightforward to prove the first two conditions.
For the third condition, it suffices, by a previous observation, to demon-

strate that the function  xz on stalks,

 xz WAx ! C z W a 7!  .a; z/;

is a homomorphism whenever x D 
.z/. But this is true since  xz is a
composition of homomorphisms:

Ax

. 1/xy����! By

. 2/yz����! C z ;

where x D  1.y/ and y D  2.z/; that is, one has that

. 2/yz.. 1/xy.a// D  2. 1.a; y/; z/ D  .a; z/ D  xz.a/;
by definition of the various  ’s.

For the fourth condition,  is continuous because it is, roughly, a
composition of continuous functions. But a smoother, more rigorous ar-
gument requires more care. Any product of continuous functions, such as
1A � 
2WA �Z !A � Y , is continuous. Thus, its restriction, A �
 Z !
A�
1

Y , is continuous. In a similar way, by constructing projections, with
more products of continuous functions, and their restrictions, one cascades
them to the required continuous function:

A �
 Z

.A �
1
Y / �
2

.A �
 Z /

...........................................................................
.....
.......
.....


2

B �
2
Z

....................................................................
.....
.......
.....

 1

.......................................................................................................
.....
............

C

....................................................................
.....
.......
.....

 2

In the second line of this cascade, the product ‘�
2
’ means that the addi-

tional restriction, y D 
2.z/, holds on its members; the sloping arrow is a
projection onto Z .

Next, the categorical axioms (i)–(iii) of Definition III.2.1, must be veri-
fied. To check associativity (i), add to the morphisms, h 1; 
1iWA! B and
h 2; 
2iWB ! C , defined in the definition of the composition of sheaves,
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a third morphism h 3; 
3 iWC ! D , where D D hD; �;W i. Then the
two-fold composition of these three morphisms, with either association,
evaluates as

�h 1; 
1 i ı h 2; 
2 i ı h 3; 
3i
�
.a; w/

D  3
�
 2

�
 1.a; .
2 ı 
3/.w//; 
3.w//; w

��

.a 2 A and w 2 W /:
The remaining axioms (ii) and (iii) are straightforward to verify. �

3.8. Exercise. Recall Definition III.2.9 that in a category a morphism
is defined to be an isomorphism if it is invertible. Prove that two sheaves,
hA; �;X i and hB; 
;Y i, are isomorphic in Sheaf if, and only if, there are a
homeomorphism  WA! B (of one argument) that is also an isomorphism
of partial algebras, and another homeomorphism 
WX ! Y such that 
 ı
 D 
 ı �.

11111
As noted in Sect. 2, each complex leads to a sheaf, and vice versa.

This correspondence can be formalized as two functors going in oppo-
site directions and adjoint to each other.s First, we will define the func-
tor, ˚1WComplex ! Sheaf. Recall the Gel’fand morphism � , given by
�.a/.x/ D Œa�x , which embeds the algebra A of a complex hA; W ;X i into the
algebra � .A/ of all global sections of the corresponding sheaf, hA; �;X i D
˚1.hA; W ;X i/. Here, A D fŒa�x j a 2 A; x 2 X g and �.Œa�x/ D x.

3.9. Definition. It suffices to say how ˚1 acts on morphisms. Let h'; 
i
be a morphism of complexes from hA; W ;X i to hB; ?? ;Y i with A and B the
associated sheaves created by ˚1. The sheaf A will have X as a base space
and B will have Y . Define ˚1.h'; 
i/ to be h ; 
i where  WA �
 Y ! B

acts as

(3.1)  .Œa�x ; y/ D Œ'.a/�y
whenever a 2 A, x 2 X , y 2 Y , and 
.y/ D x.

3.10. Proposition. ˚1 a functor from Complex to Sheaf.

Proof. Definition III.2.13 tells us that a functor from Complex to
Sheaf would be a function ˚1WComplex ! Sheaf such that, for all mor-
phisms h'1; 
1i, h'2; 
2 i and h'; 
i in Complex,

(i) ˚1.h'1; 
1 i ı h'2; 
2i/ D ˚1.h'1; 
1 i/ ı ˚1.h'2; 
2i/
whenever the composition h'1; 
1i ı h'2; 
2i exists;

(ii) ˚1.domh'; 
i/ D dom˚1.h'; 
i/;
(iii) ˚1.codh'; 
i/ D cod˚1.h'; 
i/.
To prove that ˚1 is a function to Sheaf, that the pair, h ; 
i D ˚1

�h'; 
i�,
is truly a morphism of sheaves whenever h'; 
i is a morphism of complexes,
means checking through the clauses defining a sheaf morphism, given in
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Definition 3.4. Unchanged, 
 is continuous. That 

�
 .Œa�x ; y/

� D y when-
ever 
.y/ D x follows from the definitions of  and 
, which is the pro-
jection from B to Y . Since each  xy is defined from stalk to stalk as a
composition of two homomorphisms,

 xy.Œa�x/ D Œ'.a/�y .a 2 A and x D 
.y//;
then the whole function  is a homomorphism of partial algebras from
A �
 Y to B.

To exhibit the continuity of  , it suffices to show that the inverse image
of any of the sets Œb�V is again open. Here, b 2 B and V is open in Y so
that Œb�V is in the basis for the topology of B. Then

 �1.Œb�V / D fhŒa�x ; y i j '.a/ D b; x D 
.y/; y 2 V g
D

[

'.a/Db
fhŒa�x; y i j x D 
.y/; y 2 V g

D
[

'.a/Db
Œa�
.V / �
 V:

Thus, the inverse image of Œb�V is a union of open sets of the basis for the
topology on A �
 Y .

Now we can move on to prove clauses (i)–(iii) above. To prove (i), that
˚1 preserves the composition of morphisms, assume that there are two
morphisms of complexes with a common middle complex:

h'1; 
1iW hA; W ;X i ! hB; ?? ;Y i and h'2; 
2 iW hB; ?? ;Y i ! hC ; F
F ;Z i:

Within (i), set h'; 
i D h'2; 
2i ı h'1; 
1i. The left side of (i), h l ; 
l i D
˚1.h'; 
i/ with ' D '2 ı '1, is then easy to compute. For  l .Œa�x ; z/ D
Œ'.a/�z when 
l .z/ D x. Also 
l D 
1 ı 
2.

For the right side of (i), set h r ; 
r i D ˚1.h'1; 
1i/ ı˚1.h'2; 
2 i/. Then

r D 
1 ı 
2. If one sets h 1; 
1i D ˚1.h'1; 
1i/, then one knows by (3.1)
that  1.Œa�x ; y/ D Œ'1.a/�y when a 2 A and 
1y D x. Similarly, setting
h 2; 
2i D ˚2.h'2; 
2i/, one knows that  2.Œb�y ; z/ D Œ'2.b/�z when b 2 B
and 
2z D y. One computes, when 
z D x, that

 r .Œa�x ; z/ D  2
�
 1.Œa�x ; 
2.z//; z

� D  2
�
Œ'1.a/�y ; z

�

D Œ'2.'1.a/�z D Œ'.a/�z D  l.Œa�x ; z/:
Proving (ii) and (iii), that ˚1 preserves identity morphisms, is easy. �

In preparation for defining the second functor �1, recall that � .A/ is
the algebra of all global sections of a sheaf A. Recall also that for any
sheaf A over a space X there is the complex h� .A/; W;X i where � W � D
fx j �.x/ D �.x/g.

3.11. Definition. Our second functor, �1WSheaf ! Complex, goes
in the opposite direction from ˚1, producing from any sheaf a complex
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as just described. Given a morphism of sheaves, h ; 
iWA ! B, define a
morphism of their complexes,

h'; 
iW h� .A/; W ;X i ! h� .B/; ?? ;Y i;
where the first component 'W� .A/! � .B/ evaluates as

'.�/.y/ D  �
�.
.y//; y

�
.� 2 � .A/; y 2 Y /:

Set �1.h ; 
i/ D h'; 
i.
3.12. Proposition. �1 is a functor from Sheaf to Complex.

Proof. To prove that �1 is a functor, one must show that mor-
phisms in Sheaf go to morphisms in Complex, that �1 preserves com-
position of morphisms, and that it preserves unities. To prove that sheaf
morphisms go to complex morphisms, one must show four things about
h'; 
i D �1.h ; 
i/:
(1) ' takes global sections of � .A/ to global sections of � .B/;
(2) ' is a homomorphism;
(3) 
 is continuous;
(4) 
�1.�1 W�2/ � '.�1/ ?? '.�2/ .�1; �2 2 � .A//.

For (1), if � 2 � .A/ then '.�/ is continuous, since it is defined as a
composition of continuous functions; also by its definition '.�/ is a right
inverse of the projection 
 of B.

For (2), one proves that ' preserves any operation ! by invoking the
definition of ' again, noting that  is a homomorphism, and using the
pointwise definition of operations ! in � .B/.

In (3), the same old 
 is still continuous.
For (4) one has on the left side that

y 2 
�1.�1 W�2/ iff 
.y/ 2 �1 W�2
iff �1

�

.y/

� D �2
�

.y/

�
:

On the right side, since '.�/.y/ D  
�
�.
.y//; y

�
for all � in � .A/ and y

in Y , it follows that

y 2 '.�1/ ?? '.�2/ iff '.�1/.y/ D '.�2/.y/
iff  

�
�1.
.y//; y

� D  �
�2.
.y//; y

�
:

This settles the inclusion.
To show that �1 preserves the composition of sheaf morphisms, assume

that A
h 1;
1 i�����! B

h 2;
2i�����! C : Let h'1; 
1i and h'2; 
2i be the respective
morphisms of complexes obtained by applying �1, and compose them as
h'l ; 
l i. Let h ; 
iWA! C be the composite of the sheaf morphisms, and
write h'r ; 
r i for its image under �1. In symbols,

h'l ; 
l i D h'2 ı '1; 
1 ı 
2i and h'r ; 
r i D �1
�h 2; 
2 i ı h 1; 
1 i

�
:
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One must demonstrate that h'l ; 
l i D h'r ; 
r i. For the homomorphisms,
the definition of �1 yields

'l.�/.z/ D .'2 ı '1/.�/.z/ D
�
'2.'1.�//

�
.z/ D  2

�
'1.�/.y/; z

�

D  2
�
 1.�.x/; y/; z

� D  �
�.x/; z

� D 'r .�/.z/;
whenever � 2 � .A/, z 2 Z, y D 
2.z/, and x D 
1.y/.

Lastly, one easily shows that identity morphisms pass through �1. �
11111

We are now ready to formulate an adjoint situation, Definition III.2.21.
Before anything else, we define the natural transformations:

�1W 1Complex ! �1 ı ˚1 and "1W˚1 ı �1 ! 1Sheaf:

The first will yield essentially the Gel’fand morphisms already introduced.
To simplify the notation for natural transformations, we break partly with
the nonobjective approach to categories and identify a complex with its
identity morphism, and similarly for sheaves.

3.13. Definition. For the first natural transformation, �1 of a complex,
A D hA; W;X i, is a morphism of complexes,

�1.A/ D h�; 1X iWA! B;

where B D �1
�
˚1.A/

� D h� .A/; ?? ;X i. For the sheaf in the middle, A DU
x2X .A=�x/, where a �x b iff x 2 a Wb. Also � ?? � Dfx 2 X j �.x/D �.x/g.

For the two functions in the morphism, 1X is the identity function on X ,
and � is the Gel’fand morphism, � WA ! � .A/, given already by

�.a/.x/ D Œa�x .a 2 A and x 2 X/:
For the second natural transformation, "1 of a sheaf A over X is a

morphism of sheaves,

"1.A/ D h ; 1X iWB !A;

where B D ˚1
�
�1.A/

� D U
x2X

�
� .A/=�x

�
, and the sheaf B is over the

same base space X . The function  WB �1X
X !A is given by

(3.2)  .Œ��x ; x/ D �.x/ .� 2 � .A/ and x 2 X/:
It is necessary, and unfortunately tedious, to check that �1 and "1 are

natural transformations (and also that "1 is well defined).

3.14. Proposition. (a) �1 is a natural transformation from the functor
1Complex to the functor �1 ı ˚1.

(b) "1 is a natural transformation from ˚1 ı �1 to 1Sheaf.

Proof. First, one verifies that �1 and "1 give morphisms of the re-
quired kind. That �1.A/ is a morphism of complexes for each complex
A is readily seen from its definition, �1.A/ D h�; 1X i, and the fact that
�.a/ ?? �.b/ D a Wb.
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Similarly, one must show for each sheaf A that "1.A/ is a sheaf mor-
phism. There are several clauses to check in the definition of a sheaf mor-
phism; all but one are fairly trivial. The nontrivial argument concerns the
continuity of  WB �1X

X !A, defined in (3.2). For any open subset U of
A, one needs to prove that its inverse image,

 �1.U/ D fhŒ��x ; xi j �.x/ 2 U; � 2 � .A/ and x 2 X g ;
is open in B �1X

X . Since the range of any global section � is open in A,
the set rng � \U is also open. Its projection, U D �.rng � \U/, is open
in X since � is an open function. So an open set Œ��U is obtained in the
basis of the topology of B (see Sect. 2), and then an open set Œ��U �1X

X

in the basis of B �1X
X . But

Œ��U �1X
X D  �1.rng � \U/:

Thus,

 �1.U/ D
[

�2� .A/
 �1.rng � \U/

D
[

�2� .A/
Œ��U �1X

X;

and hence it is a union of open subsets. Therefore,  is continuous.
Second, to complete the proof for both parts (a) and (b), one must

confirm that these two diagrams commute, with h'; 
iWA ! B, a mor-
phism of complexes, and h ; 
iWA ! B, a morphism of sheaves, respec-
tively:

A
�1.A/�����! .�1 ı ˚1/.A/

h';
i
?
?
y

?
?
y.�1ı˚1/.h';
i/

B �����!
�1.B/

.�1 ı ˚1/.B/

.˚1 ı �1/.A/
"1.A/�����! A

.˚1ı�1/.h ;
i/
?
?
y

?
?
yh ;
i

.˚1 ı �1/B �����!
"1.B/

B

The definitions of �1, "1, ˚1, �1 and the Gel’fand morphism will prove
commutativity. Here is the proof for the first diagram; the second is left
to the reader. Now �1.A/ D h�A; 1X i and �1.B/ D h�B; 1Y i where A D
hA; W ;X i and B D hB; ?? ;X i. Tracing the first component of complex
morphisms around the lower left corner yields the homomorphism �B ı
'. To go around the upper right corner, set ˚1.h'; 
i D h ; 
i where
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 .Œa�x ; y/ D Œ'.a/�y when y 2 Y and x D 
.y/; and set �1.h ; 
i D he'; 
i
where e'.�/.y/ D  �

�.x/; y
�

when x D 
.y/. It follows that

e'
�
�A.a/

�
.y/ D  �

�A.a/.x/; y
�

.a 2 A; y 2 Y; x D 
.y//
D  �

Œa�x ; y
�

D Œ'.a/�y
D �B

�
'.a/

�
.y/:

Therefore, e' ı�A D �B ı', thus demonstrating equality of the first compo-
nents around both corners. The second component 
 stays the same. �

3.15. Theorem. The functors,

˚1WComplex � SheafW�1;
together with the natural transformations,

�1W 1Complex! �1 ı ˚1 and "1W˚1 ı �1 ! 1Sheaf;

form an adjunction:

h�1; "1iW˚1 ���j �1W hSheaf;Complexi:
That is, ˚1 is a left adjoint of �1, and �1 is a right adjoint of ˚1.

Proof. Since previous propositions of this section have shown that
˚1 and �1 are functors, and likewise that �1 and "1 are natural transfor-
mations, it suffices to verify clause (iii) in Definition III.2.21 of adjunction.
To do this, prove commutativity of the corresponding diagrams by tracing
elements through them:

�1.A/ �1
�
˚1.�1.A//

�
....................................................................................................... ...

.........
�1

�
�1.A/

�

�1.A/

............................................................................................................................. .......
.....

1�1.A/

....................................................................
.....
.......
.....
�1

�
"1.A/

�

˚1.A/ ˚1
�
�1.˚1.A//

�
....................................................................................................... ...

.........
˚1

�
�1.A/

�

˚1.A/

............................................................................................................................. .......
.....

1˚1.A/

....................................................................
.....
.......
.....
"1

�
˚1.A/

�

where A 2Sheaf and A 2 Complex.
Here is a check of the commutativity of the second diagram. It suffices

to trace just the first component of the sheaf morphisms since the second
component is 1X . Given a complex, A D hA; W ;X i, write ˚1.A/ as the
sheaf hA; �;X i; a typical element of A is Œa�x where a 2 A and x 2 X .
The morphism, �1.A/ D h'; 1i from A to �1˚1A, evaluates by Definition
3.13 as '.a/ D hŒa�x j x 2 X i for a in A. Using Definition 3.9 to apply ˚1
to h'; 1i yields a sheaf morphism h 1; 1i:

 1.Œa�x ; x/ D Œ'.a/�x D ŒhŒa�x j x 2 X i�x :
Now follow this by the downward morphism "1.˚1.A//. The action of its
first component is defined to be  2.Œ��x ; x/ D �.x/ for � in A. So the
composite action is

. 2 ı  1/.Œa�x ; x/ D  2.ŒhŒa�x j x 2 X i�x; x/ D hŒa�x j x 2 X i.x/ D Œa�x :
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Therefore, the composite morphism around the corner is 1˚1.A/ on the
diagonal. �

11111
It is worthwhile to limit our sheaves to those whose global sections form

a subdirect product, as in the next definition.

3.16. Definition. Let SheafAlg be the full subcategory of Sheaf of
sheaves of a given algebraic type that satisfy axiom SS of Definition 2.8,
that is, through each point of the sheaf space there passes a global section.

When so restricted, "1 becomes a natural isomorphism. Since any sheaf
˚1.A/ coming from a complex A has to satisfy axiom SS, the category
SheafAlg will not be mentioned after this chapter. The next proposition
and theorem were reported in the abstract [Knoe92b].

3.17. Proposition. With the functor �1 restricted to SheafAlg, the
natural transformation "1 becomes a natural isomorphism from ˚1 ı �1 to
1SheafAlg.

Proof. To prove that "1 is a natural isomorphism, one needs to show –
using the language of the preceding theorem – that "1.A/ is an isomorphism
of the sheaves B and A. Here, B D ˚1.�1.A// and h ; 1X iWB ! A, as
given in the definition of "1. But what does it means for two sheaves to be
isomorphic? In categorical terms this would mean that there exists a sheaf
morphism h ; 
i inverse to h ; 
i:

h ; 
iWA• BW h ; 
i;
that is, composition in either order should give identity morphisms. Tracing
this through Definitions 3.4 and 3.5 of sheaf morphisms and their compo-
sition, and breaking it down by components, one arrives at four equations
to be proven:

 
�
 .a; 
.x//; x

� D a .a 2 A; x 2 X with �.a/ D 
.x//;
 

�
 .b; 
.y//; y

� D b .b 2 B; y 2 Y with 
.b/ D 
.y//;

 ı 
 D 1X ;


 ı 
 D 1Y :

By the definition of "1, Y D X and 
 D 1X . For the last two equations
to be satisfied, it must also be that 
 D 1X . To define  use axiom SS,
which distinguishes SheafAlg from Sheaf, namely, that for each element
a of A we have a D �.x/ for some global section � and x in X . So, define

 .a; x/ D Œ��x :
It is easy to check that  is well defined and also that h ; 1X i is a sheaf
morphism. Then the first two equations are verified:

 
�
 .a; x/; x

� D  .Œ��x ; x/ D �.x/ D aI
 

�
 .b; x/; x

� D  .�.x/; x/ D Œ� �x D b;
since b D Œ� �x for some � in � .A/. �
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3.18. Theorem. The functors, ˚1WComplex � SheafAlgW�1, appro-
priately restricted, together with the natural transformations,

�1W 1Complex ! �1 ı ˚1 and "1W˚1 ı �1 ! 1SheafAlg;

form an adjunction:

h�1; "1iW˚1 ���j �1W hSheafAlg;Complexi
in which "1 is a natural isomorphism.

Proof. Use the preceeding proposition and theorem. �
Thus, the algebra in a complex is embedded into a potentially larger

algebra, which might be called its ‘completion’. With this in mind, recall
Definition III.2.19 that, for a complex A with a sheaf A D ˚1.A/, by a
�1-universal map h�1.A/;Ai one means that, for each sheaf B and each
complex morphism, h'; 
iWA ! �1.B/, there exists a unique sheaf mor-
phism h ; 
iWA! B such that this triangle commutes:

A �1.A/................................................................................ ....
........

�1.A/

�1.B/

....................................................................................................................... .......
.....

h'; 
i
.............
.............
....................
.....
.......
.....

�1.h ; 
i/
A

B

.............

.............

.............

.......
.....
.......
.....

h ; 
i

where  may be defined by

 .hŒa�x ; y i/ D '.a/.y/ .a 2 A; x D 
.y/; y 2 Y /:
To be precise, one should assert the existence of a sheaf morphism h ;b
i
with a new continuous function b
; but, since one knows a priori that the

’s will be the same, the hat is omitted to simplify the picture.

3.19. Problem. For a complex A, what properties has this completion,
�1.A/WA! �1.A)?

We close this chapter by pointing out that, for most of the sheaves to be
used in this book, their base spaces will be Boolean spaces, or those spaces
weakened to be locally compact. Sheaves used elsewhere have a variety of
base spaces; for example, see [Berg73] and [SeeSS70].

For those readers who have delved into the proofs, the motto for this
section might well be:

“The devil is in the details.”



V
Boolean Subsemilattices

Ever since Stone represented Boolean algebras topologically [Stone36],
many have extended his theorem to diverse algebraic systems. Structurally,
it suffices to discover a fragment of the congruence lattice that is Boolean.
The value of such a fragment, to be called a Boolean subsemilattice in the
first section, is flexibility. By varying the Boolean subsemilattice to suit the
context, different representation theorems follow automatically. In a later
chapter, for example, by looking at all the factor ideals of a unital ring
in which the annihilator of any element is a principal ideal generated by
an idempotent, we obtain stalks with no zero divisors. With sheaves this
theorem can be extended well beyond ring theory.

The main result in the second section is that each Boolean subsemilattice
of congruences of an algebra A has a dual Boolean space of prime ideals
of congruences, and in turn this leads to a representation of A as a sheaf
over the space.

The third section looks at special sheaves that occur frequently in prac-
tice: Boolean products, powers and extensions, and Hausdorff sheaves.

In the final section of this chapter, we introduce for each algebraic type
the new category BooleBraceRed whose objects are algebras with se-
lected Boolean subsemilattices of congruences. The categories defined in
the previous chapter are now restricted to those over Boolean spaces. Some
axioms must be added to the definitions of all these categories in order to
rule out trivia. With appropriately defined functors and natural transforma-
tions, BooleBraceRed and the category CompBooleRed of complexes

A. Knoebel, Sheaves of Algebras over Boolean Spaces, 109
DOI 10.1007/978-0-8176-4642-4 V,
c� Springer Science+Business Media, LLC 2012
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over Boolean spaces form an adjoint situation. This adjoint situation is
inherited from that between complexes and sheaves of the previous chapter
when they are suitably restricted.

1. Identifying the Congruences

The first part of this section defines a Boolean semilattice [Knoe72], and
establishes that it is really a Boolean algebra. The intended application
is to a Boolean algebra of congruences whose join may diverge from the
traditional join of congruences. The middle part discusses its spectrum,
the space of its prime ideals. The last part proves a lemma asserting the
existence of prime ideals extending a given ideal under restrictive side con-
ditions. See Sects. II.1 and III.4 for algebras not defined here.

1.1. Definition. A semilattice with a nullity, B D hBI ^; 0i, is a semi-
lattice with a constant 0 satisfying

0 ^ b D 0 b 2 B:
It is a Boolean semilattice if for each b of B there is a b0 in B satisfying:

(1.1) c ^ b0 D 0 if, and only if, c � b .c 2 B/:
It is a Boolean subsemilattice of another semilattice with a nullity if one
is a subalgebra of the other. Recall that the partial order � of a semilattice
comes from its binary operation: b � c if b ^ c D b: Thus 0 � c for c
in B.

Note the subtle difference between condition (1.1) and pseudocomple-
mentation: for each b of B there is a b0 in B satisfying:

(1.2) c ^ b D 0 if, and only if, c � b0 .c 2 B/:
Pseudocomplementation is not enough to make B a Boolean algebra
[Birk67]. However, the set of pseudocomplements by itself is always a
Boolean algebra [Frink62].

In a bounded lattice hAI _;^; 0; 1i in this paragraph, the chain f0; 1g is
always a Boolean subsemilattice. But so is any other two-element subset
f0; ag, where a 2 A. In .C 2/

3, which is the three-dimensional hypercube,
the subset f h0; 0; 0i; h0; 0; 1i; h0; 1; 0i; h1; 1; 1i g is a Boolean subsemilattice.
More generally in a bounded lattice, its center, defined in Sect. II.1, is a
Boolean sublattice.

The complement of an element b depends very much in which subsemi-
lattice it lives. In Fig. 1a, for example, the complement of b in the solid
two-element sublattice f0; bg is 0, whereas in the whole lattice it is b0.

In general, there is not a unique maximal Boolean subsemilattice. Con-
sider in Fig. 1b the five-element modular lattice M3 that is not distribu-
tive. There are a number of Boolean subsemilattices, of which three are
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1

0

b b¢

a b

Figure 1. Boolean subsemilattices

maximal, each with four elements; one is shown in solid lines. Notice that
the lower four elements of M3 form a meet subsemilattice but this is not
Boolean. The lattice M 3 is the lattice of congruences of the vier-group,
V 4 D Z2 � Z2, and each maximal Boolean subsemilattice corresponds to
a nontrivial product decomposition of V 4. By way of contrast, there may
not exist any maximal Boolean subsemilattices of a bounded lattice, much
less a unique one, as shown in Example 1.7 at the end of this section.

The next proposition justifies the adjective in the phrase ‘Boolean sub-
semilattice’, and incidentally shows that complements are unique.

1.2. Proposition. Let B be a Boolean subsemilattice of a semilattice S

with a nullity 0. Complements in B are unique. Define a constant 1 and a
binary operation t by

1 D 00;(1.3)

b t c D .b0 ^ c0/0 .b; c 2 B/:(1.4)

Then, hBI t;^;0 ; 0; 1i is a Boolean algebra.

Proof. We head for E. V. Huntington’s [Hunt33] defining set of three
axioms for Boolean algebras, as summarized by [Birk67, p. 44], and stated
below as (h1)–(h3); they are also in Sect. III.4. In the statement and the
proof of the preliminary assertions (a)–(g) below let us assume that b 2 B
and b0 is related to b as in (1.1) above; and likewise b00 is related to b0, as well
as b000 to b00. Until assertion (c) is proven, we do not know that complements
are uniquely determined, that complementation is a function. We use fully
the properties of semilattices.

(a) b ^ b0 D 0. This is true since b � b.
(b) b00 D b. First, b00 � b since b00 ^ b0 D 0. Second, it follows from this

that b00 ^ b D b00, and hence b000 D b0 ^ b000. Therefore,

b ^ b000 D b ^ .b0 ^ b000/ D .b ^ b0/ ^ b000 D 0 ^ b000 D 0:
Thus, b � b00 and consequently double complements are unique.

(c) Complements themselves are unique, that is, if b0 and b8 are both re-
lated to b as in (1.1), then b0 D b8. To establish this, let b0; b00; b000 be a
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sequence of successive complementations, and let b8; b88; b888 be another
sequence. Then, b00 D b D b88 by (b). So now our sequences look like:

b

b0

b8

b00 D b88

b000

b888

.........
.........
.........
.........
...

.......................................

.........
.........

..........
.........

....

.........................................

........
........
........
........
....

....................................

� � �

Hence, b000 is not only a double complement of b0 but also of b8. So
b000 D b888. Thus, b0 D b000 D b888 D b8, again by (b).

(d) b � c iff c0 � b0. A series of logical equivalences yields

b � c iff b ^ c0 D 0 iff c0 ^ b00 D 0 iff c0 � b0:

(e) b � c iff b t c D c. Using (d), the definition of �, complementation,
and the definition of t, we obtain in that order,

b � c iff c0 � b0 iff b0 ^ c0 D c0 iff .b0 ^ c0/0 D c iff b t c D c:

(f) b ^ c D .b0 t c0/0. Complement (1.4).
(g) b � d and c � d iff b t c � d . The preceding property yields the

corresponding dual property for ^, which holds in any semilattice.

(h1) b t c D c t b. This commutative law, as well as the associative law
to come next, follow directly from the corresponding laws for ^ and the
definition of t in terms of ^ and 0.

(h2) b t .c t d/ D .b t c/ t d .
(h3) .b ^ c/ t .b ^ c0/ D b.
Designating the left side by L, we see that L � b is implied by an

application of (g). The reverse inequality is harder. Working backwards
while writing the meet ^ as juxtaposition, and noting that L0 D .bc/0.bc0/0,
we find by repeatedly using (1.4) and properties of ^ that

b � L iff bL0 D 0
iff b.bc/0.bc0/0 D 0
iff b.bc/0 � bc0

iff b.bc/0bc0 D b.bc/0
iff b.bc/0c0 D b.bc/0
iff b.bc/0 � c0

iff bc.bc/0 D 0: �

As an aside, we note in a corollary that this proposition yields a simple
set of axioms for Boolean algebras.
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1.3. Corollary. Let B be an algebra hBI ^;0 ; 0i of type h2; 1; 0i. As-
sume the following axioms are satisfied for all b; c; d in B:

b ^ b D b;
b ^ c D c ^ b;

b ^ .c ^ d/ D .b ^ c/ ^ d;
b ^ 0 D 0;

c ^ b0 D 0 iff c ^ b D c:
Then hBI t;^;0 ; 0; 1i is a Boolean algebra, where the additional operations
are defined as before.

When B is a set of congruences, the next proposition is handy to know.

1.4. Proposition. If L is a lattice with nullity, hLI _;^; 0i, and B is a
Boolean subsemilattice of hLI ^; 0i, then

b _ c � b t c .b; c 2 B/;
where t is the join (1.4) of the Boolean algebra in the previous proposition.

Proof. Since b 	 b ^ c, then b � b t c and also c � b t c. Because
b _ c is the least upper bound of b and c in B, the conclusion follows. �

The divergence of these two joins does occur and is easily illustrated in
Fig. 2. In (a), the solid dots are elements of B and the open one is in L
B.
Thus, b _ c D a but b t c D 1. In (b), there are more divergent joins, and
these do not involve the top element.

a

b c

0

1

a b

Figure 2. Divergence of joins
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Let B be a Boolean subsemilattice of ConA, where A is an algebra.

To get a single congruence from each ideal of congruences we take the
join, that is, the supremum

W
P , in ConA of each prime ideal P in B; in

other words,
W
P is the smallest congruence in ConA containing all the

congruences that are in P . These suprema exist since the lattice ConA of
all congruences is complete. It would not do to take this supremum in B

since, after all, B itself may not be complete. In this context, suprema are
unions, as the next proposition spells out.
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1.5. Proposition. If B is a Boolean subsemilattice of the meet semilat-
tice of ConA where A is an algebra, then for any ideal I of B:

_
I D

[
I:

Proof. Since I is upward directed by inclusion,
S
I is a congruence.

Hence it is the least upper bound of I. �

In order to prove in the next section that every Boolean subsemilattice
B of the lattice of congruences of an algebra gives rise to a complex, we
need a typical lemma on extending proper ideals of B to prime ideals.

1.6. Lemma. Let B be a Boolean subsemilattice of ConA. Suppose that
I is a proper ideal of B, and elements a and b in A are such that

ha; bi …
_
I:

Then there exists a prime ideal P of B such that

(1.5) ha; bi …
_
P and I � P:

Proof. Recall our notation that 1B is the unity of B, or what is the
same, the largest congruence of B, which need not be 1ConA, the universal
congruence of A. The proof splits into two cases according to whether a
and b are related by 1B or not.

Case 1: a 1B b. A standard algebraic application of Zorn’s Lemma III.1.7
yields an ideal P of B that is maximal with respect to (1.5). First, note
that P is a proper ideal of B since otherwise 1B 2 P , which contradicts
the assumptions that a 1B b and ha; bi … W

P . The hard part is to show
that P is maximal among all proper ideals of B. In a Boolean algebra
this is equivalent to P being prime. By way of contradiction, suppose not.
From the characterization of prime ideals (property (4.1) of Sect. III.4),
there must exist an element � of B such that � and its complement � 0 are
both not in P . Set J� D ŒP [ f�g�, the ideal of B generated by P and � .
Similarly, define J� 0 . Now by the maximality of P with respect to (1.5),
it must follow that both ha; bi 2 W

J� and ha; bi 2 W
J� 0 . In other words,

there are � and � in P such that ha; bi 2 � t � and ha; bi 2 � t � 0, where
t is the join derived in B. Hence, by distributivity,

ha; bi 2 .� t �/\ .� t � 0/
D .� \ �/ t .� \ � 0/ t .� \ �/ t .� \ � 0/
� � t � t � t 0
D � t �
2 P:

But this contradicts the assumption that ha; bi …W
P .

Case 2: not a 1B b. A standard result in Boolean algebras and ring theory
states, via Zorn’s lemma, that any proper ideal I extends to a prime ideal
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P [Hung74, theorem VIII.2.1]. Since
W
P D S

P � 1B , it follows that
ha; bi …W

P . �

There are many examples of Boolean subsemilattices of the lattice of
congruences of an algebra. Some of these are maximal; see the discussion
concerning Fig. 1b. But contrast this with what comes next.

1.7. Example. Maximal Boolean subsemilattices of ConA need not exist
in a particular algebra A. To exhibit such an algebra, it suffices to use
the representation theorem of Grätzer and Schmidt asserting that every
algebraic lattice is isomorphic to the lattice of all congruences of some
algebra (see [GrätSc63] and [Grät79, Appendix 7]). Let X be any infinite
set and Xfin the collection of its finite subsets. The required lattice L is
Xfin[fXg ordered by set-inclusion. Its compact elements are those in Xfin.
Since X D S

Xfin, every element of L is a union of compact elements. Of
course, this lattice is complete since arbitrary intersections exist. Therefore,
L is algebraic, and thus L Š ConA for some algebra A.

Now let B be any Boolean subsemilattice of ConA; it must be finite.
To see this, assume that b and b0 are nonzero complements in the sense
of (1.1). By Proposition 1.2, B a Boolean algebra. Hence, for all c in B

(like in L),

c D .c \ b/ t .c \ b0/:
Since b and b0 are finite, their intersections with all c can range only over
a finite number of finite subsets. Hence, B is finite.

If 1B 2 Xfin, then double B by joining to each of its elements a fixed,
nonempty finite set F that is disjoint from 1B (while keeping all its original
subsets). Thus B could not have been maximal. If 1B D X , then a more
elaborate process also doubles B, making it again impossible for B to have
been maximal.

A notion similar to a Boolean subsemilattice is defined and studied by
Davey [Davey73, sect. 4]. This appears to be less general than ours but this
is only superficially so. The only significant difference concerns the unity
of the Boolean subsemilattice. In Davey’s presentation it must be 1ConA.
In ours it is floating. But our floating unity, which must be greater than
any other element in B, can always be redefined as 1ConA, still leaving the
rest of B as is. This in no wise affects the sheaf to be constructed presently,
since we will only look at the prime ideals of B, and by definition these
cannot contain the unity, wherever it may be.

Nevertheless, there are some differences in the two approaches. The first
is that our definition of Boolean subsemilattice is quite brief, and this is
often an advantage in verifying it in applications. Secondly, our use of
complexes make the development of a sheaf rather different.

Hofmann [Hofm72, p. 323], has a third approach, a very general formu-
lation within category theory, which he calls the ‘Boolean decomposition
principle’, and which appears to be more restricted, since each congruence
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of B must be the kernel of some endomorphism of A. However, on re-
flection, one sees that his Boolean decomposition principle can handle our
Boolean algebras of sesquimorphisms of the next chapter simply by speci-
fying our sesquimorphisms as his endomorphisms of a category, although it
apparently does not encompass the more general Boolean subsemilattices
of this chapter. Hofmann’s principle could be applied to some structures
that are not algebras. Another version is found in [Keim70].

2. Constructing the Complex

It is time to construct a sheaf out of any Boolean subsemilattice B of the
congruence lattice of an algebra A. We construct this sheaf over a Boolean
space by showing that we have a complex, and then it follows, by the
previous chapter, that we also have a sheaf. There is the converse that
any sheaf over a Boolean space must come in this fashion from a Boolean
subsemilattice of congruences. Along the way we discuss the preservation
of sentences between a sheaf and its stalks. From now on, let us assume
that B has at least two elements whenever A has at least two.

As a prelude before proving anything, this sheaf is briefly described
[Knoe72]. The base space of the sheaf will be SpecB, the topological space
of prime ideals of B, as set forth in Sect. III.4. The sheaf itself will be the
disjoint union of the quotient algebras A=� , where � runs over suprema of
prime ideals of SpecB. To that end introduce the notation,

(2.1) A==B D
] �

A
W
P

ˇ
ˇ
ˇ
ˇP 2 Spec B

�

;

for the sheaf induced by a Boolean subsemilattice B of ConA. An element
of the P th stalk of A==B is written as Œa�P D hP; a=� i where � D W

P . A
basis for the topology of A==B is the collection of sets, Œa�U D fŒa�P j P 2Ug,
running over all a in A and all sets U open in SpecB. The algebra of all
global sections will be the algebra of all continuous functions, � WSpecB !
A==B, for which � ı � D 1SpecB , and which is notated � .A==B/.

An application, to appear in detail in Chap. VII, illustrates this construc-
tion as summarized in the next theorem. In a unital ring R, the central
idempotents form a Boolean algebra: the central idempotents are those
ring elements e satisfying ee D e and ea D ae for all a in R, with Bool-
ean operations e1 _ e2 D e1 C e2 � e1e2, e1 ^ e2 D e1e2, and e0 D 1 � e.
The principal ideals generated by these central idempotents then form a
Boolean subsemilattice B of IdealR, the lattice of all ideals of R. The
idea here is to replace congruences by two-sided ideals, which can always
be done in rings. In fact, Pierce [Pier67] equivalently uses the space dual
to the Boolean algebra of all central idempotents as his base space. In this
situation the sheaf R==B is often called a ‘ringed space’.
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2.1. Theorem. If B is a Boolean subsemilattice of the lattice ConA of
congruences of an algebra A, then hA; W ;SpecB i is a complex with

a Wb D
n
P 2 Spec B j a

_
P b

o
:

Hence, A==B is the corresponding sheaf of algebras with the projection,
�WA==B ! SpecB, being given by �.Œa�P / D P . Thus,

� WA ! � .A==B/

by the injective Gel’fand morphism � defined in equation (IV.2.1):

�.a/.P / D Œa�P .a 2 A and P 2 Spec B/:

Proof. We first show that hA; W ;SpecB i is a precomplex. The first
thing to demonstrate is that a Wb is open in SpecB for any a and b in A. For
this it is sufficient to find, for every prime ideal P in a Wb, a neighborhood
of P contained in a Wb. Since a

W
P b and

W
P D S

P , there is a congruence
� in P such that a � b. The required neighborhood, by Stone duality, is the
open set U� of SpecB associated with � :

U� D fQ 2 Spec B j � 2 Qg :
Now P belongs to U� . Moreover, U� � a W b. This is true since, for any
prime ideal Q in U� , it follows that � 2 Q. Since a�b, then a

W
Q b and

Q 2 a Wb. Thus, each P in a Wb has a neighborhood U� contained in a Wb —
hence a Wb is open.

Since the suprema
W
P are congruences, the four axioms of Sect. IV.1 for

a precomplex are easily checked. Nevertheless, as a sample of the kind of
argument required here, we prove transitivity:

a Wb \ b Wc � a Wc .a; b; c 2 A/:
Suppose a prime ideal P of B is in the left side. Then a

W
P b and b

W
P c.

Therefore, a
W
P c since

W
P is a congruence, and thus P is in the right side.

To demonstrate that we have a complex, rather than just a precomplex,
we must show for any a and b in A that a W b D X implies a D b. To
prove the contrapositive, assume that a 6D b. We have to find a prime ideal
P in Spec B such that ha; bi … W

P , that is, a W b 6D X . But this is just
the content of Lemma 1.6; for this purpose, take the initial ideal I to be
f0ConAg.

That we also obtain the sheaf A==B from the complex hA; W;SpecB i
follows from the construction in Sect. IV.2. �

2.2. Problem. This explores vector spaces as represented by sheaves.
Let V be a vector space over a field F . There are many maximal Boolean
subsemilattices of ConV , but do they all give essentially the same sheaf
representation? Narrow the possibilities with the axiom of choice by finding
a basis B of V . For each subset S of B define a sesquimorphism �S of V :

�S .
X

b2B
fbb/ D

X

b2S
fbb .fb 2 F /:
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The corresponding congruences �S form a Boolean subsemilattice, � D
f�S j S � B g, of ConV . In fact, � is anti-isomorphic to PB. Is it maximal?
Describe the topology of the space Spec� . Finally, with the sheaf created
therefrom, A D A==� , is there an isomorphism, � .A/ Š V ?

11111
Sheaves of algebras over Boolean spaces are significant for a number of

reasons. First, many common algebras have such representations, see for ex-
ample the memoir of Krauss and Clark [KraCl79]. Second, the stalks may
have special properties; examples are the Baer–Stone shells of Chap. VIII,
where the stalks have no divisors of zero. But note that the factors may
be infinite, and so may their number, even up to isomorphism; this con-
trasts sharply with the Boolean products of part II of the memoir of Burris
and McKenzie [BurMc81], where, in their Boolean representable varieties,
there are a finite number of finite stalks, up to isomorphism. Third, the sec-
tions of � .A/ patch nicely in a number of ways; and there are other useful
properties now to be stated, such as interpolation.

The next result shows how to shrink a finite clopen covering in a Boolean
space so it becomes disjoint. This lemma will help to prove Proposition 2.4.

2.3. Lemma. Let x1; x2; : : : ; xn be a finite number of distinct points of
a Boolean space X with clopen neighborhoods U1; U2; : : : ; Un of them that
cover the space. There is a finite disjoint clopen covering V1; V2; : : : ; Vn of
X such that xi 2 Vi and Vi � Ui for i D 1; 2; : : : ; n.

Proof. The Ui generate a finite Boolean subalgebra B of ClopX .
Each xi is in an atom of B, say Ai . If an Ai has only one xi , then set Vi
to Ai . If several of the xi are in the same atom, then split it into disjoint
clopen subsets Vi , a unique one for each xi in it. Any remaining atoms not
used can be adjoined to the Vi so that each Ui includes an enlarged Vi . �

The next proposition describes how global sections satisfy the properties
of patchwork, partitioning and interpolation over Boolean spaces. Being
Boolean is essential for its conclusions. For part (d), remember from (2.1)
of Sect. IV.2 that �.ai /.x/ D Œai �x , which is the component of ai in A

at the stalk A=�x over the point x. The Foster extensions in Sect. 3
use (d).

2.4. Proposition. Let A be a sheaf of algebras over a Boolean space X

with projection �WA! X , and let � .A/ be its algebra of global sections.

(a) (Interpolation) For a finite number of points, a1; : : : ; an in A, with
projections onto X , �.ai / D xi , there is a global section � agreeing
with these, that is,

�.xi / D ai .i D 1; : : : ; n/:
(b) The algebra � .A/ is a subdirect product of the stalks Ax, that is, A

satisfies axiom SS.
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(c) (Disjoint patchwork) If hUi j i 2 I i is a finite family of disjoint clopen
subsets of X and �i are global sections for i in I , then there is a global
section � such that

�.x/ D �i .x/ .i 2 I and x 2 Ui /:
(d) If the sheaf A arises from a complex hA; W;X i over a Boolean space

X , then for each global section � there are a finite number of ele-
ments a1; : : : ; an of A and an equal number of disjoint clopen subsets
Ui ; : : : ; Un covering X such that

�.x/ D �.ai /.x/ .i D 1; : : : ; n and x 2 Ui /:
Proof. (a) From the definition of sheaves, A is locally homeomorphic

to X . Thus, for each ai there is a neighborhood Ui of ai that is homeo-
morphic by � to a clopen neighborhood Ui of xi . The local inverses of �
are sections �i WUi ! Ui . By Lemma 2.3, there is a finite disjoint clopen
covering fVi j i D 1; : : : ; ng such that xi 2 Vi and Vi � Ui . The desired
global section is the piecemeal union of the restricted sections:

� D
n[

iD1
.�i jVi /:

It passes through the original points, and the patchwork of Proposition
IV.1.4 shows that � is a global section.

(b) Applying (a) to single points of A proves that it is a subdirect sheaf.
(c) What is left over, X
S

i2I Ui , is also open, so the overlapping patch-
work property applies (without any overlapping).

(d) Since A comes from a complex, for each x in X there is an element
ax of A such that the global section �.ax/ agrees with � at x. Within their
equalizer � W�.ax/ and about x, there is a clopen set Vx . Clearly these Vx
cover X . Since X is compact there is a finite subcover

˚
Vxi
j 1 � i � n�

of
these. Define the required Ui to be

U1 D V1; U2 D .X
V1/ \ V2; U3 D .X
V1/ \ .X
V2/ \ V3; : : : :
The collection of these intersections is a disjoint clopen cover. (Some of the
these may be empty, but that is of no account.) It follows that

�.x/ D �.ai /.x/ .x 2 Ui and i D 1; : : : ; n/: �

The difference between the overlapping patching of Proposition IV.1.4
and the disjoint patching of Proposition 2.4 is striking. Contrast the dis-
joint patching in sheaves of algebras over Boolean spaces with its complete
opposite in the sheaf of germs of holomorphic functions of one variable.
Holomorphic functions in complex analysis patch upon overlapping open
sets, but disparate functions may not usually be patched together when
they are disjoint, since each function has a unique analytic continuation.
Because of disjoint patching, a sheaf over a Boolean space may be decom-
posed in many ways, as the following corollary makes clear.
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2.5. Corollary. For a sheaf A over a Boolean space X with a clopen
subset U , the algebra � .A/ of global sections decomposes as a product,

� .A/
'Š � .AjU / � � .Aj.X
U //;

where '.�/ D h� jU; � j.X 
 U /i. Here AjU is the sheaf over U with A

restricted to the stalks over it.

Proof. Use Proposition 2.4 to show that ' is an isomorphism, or
define a factor band, ˇ.�; �/ D � jU [ � j.X
U //. �

The partition and patchwork properties are discussed further in
[BurWe79, pp. 271–272 and pp. 306–307], [KraCl79, 1979, sect. 4],
[Pier67, 1967, pp. 12–13], and [Tenn75, 1975, pp. 14 . . . ]. We use these
properties to show what kind of sentences are preserved in passing back and
forth between the stalks of a sheaf over a Boolean space and the algebra of
its global sections. First, we need a lemma. In preparation for it, note how
a term-operation t is evaluated pointwise in a sheaf A,

�
t� .A/.�1; : : : ; �n/

�
.x/ D tAx

�
�1.x/; : : : ; �n.x/

�
.�i 2 � .A/; x 2 X/:

2.6. Lemma. If t and w are n-ary terms in the algebraic type of a sheaf
A over a Boolean space X , and if

tAx .s1; : : : ; sn/ D wAx .s1; : : : ; sn/ .s1; : : : ; sn 2 Ax/
on the xth stalk Ax, then there are global sections �1; : : : ; �n in � .A/ and
a neighborhood U of x such that

�1.x/ D s1; : : : ; �n.x/ D sn; and

tAy
�
�1.y/; : : : ; �n.y/

� D wAy
�
�1.y/; : : : ; �n.y/

�
.y 2 U /:

Proof. As the sheaf A is over a Boolean space, there are global
sections �1; : : : ; �n agreeing with the si ’s at x. Just as the operations of the
type are continuous, so are the term-operations. Hence, t� .A/.�1; : : : ; �n/
and w� .A/.�1; : : : ; �n/ are new global sections. Their equalizer is open by
Proposition IV.1.3d, and it is the required neighborhood U of x. �

An identity is satisfied in a subdirect product if, and only if, it is satisfied
in all factors. For our sheaves this is true for the more general 89-sentences
of identities, since Pierce’s proposition 3.4 of [Pier67] generalizes easily to
our setting in universal algebra.

2.7. Proposition. Let A be a sheaf over a Boolean space X and let v
and w be .mC n/-ary terms in the type of A. Consider the sentence:

(2.2) 8y1; : : : ; ym 9z1; : : : ; zn v.y1; : : : ; ym; z1; : : : ; zn/
� w.y1; : : : ; ym; z1; : : : ; zn/:

This sentence is valid in the algebra � .A/ of all global sections if, and only
if, it is valid in each stalk.
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Proof. ). If the sentence is valid in � .A/ and s1; : : : ; sm are in a
particular stalk Ax , then through these one can use the lemma to find global
sections �1; : : : ; �m that will play the role of the yi ’s in (2.2). In � .A/ there
is a solution �1; : : : ; �n that, when restricted to the stalk in question, gives
a solution there.
(. To prove the other direction of implication, assume that the sentence

(2.2) is true in each stalk. Let �1; : : : ; �m be global sections in � .A/ for
which we must find a solution �1; : : : ; �n.

In a particular stalk Ax there is a solution t1; : : : ; tn to the equation

v.�1.x/; : : : ; �m.x/; t1; : : : ; tn/ D w.�1.x/; : : : ; �m.x/; t1; : : : ; tn/:
Since the base space is Boolean, there exist global extensions �i of the ti .
Consequently,

v.�1; : : : ; �m; �1; : : : ; �n/.x/ D w.�1; : : : ; �m; �1; : : : ; �n/.x/:
By the preceding lemma, for each x in X there is a neighborhood Ux of

x over which this sentence is valid, the �i depending on x. By compactness
and the partition property, there is a finite family U1; : : : ; Uk of disjoint
clopen subsets covering X together with global sections �ij such that

v.�1; : : : ; �m; �1j ; : : : ; �nj /.x/ D w.�1; : : : ; �m; �1j ; : : : ; �nj /.x/:
is valid whenever x 2 Uj and 1 � j � k.

With disjoint patchwork redefine the �i :

�i D .�i1jUi /[ � � � [ .�ikjUk/ .i D 1; : : : ; n/
as new global sections. Clearly

v.�1; : : : ; �m; �1; : : : ; �n/ D w.�1; : : : ; �m; �1; : : : ; �n/:
Thus, our original sentence holds in � .A/. �
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Theorem 2.1, proven earlier in this section, has a partial converse

(Knoebel [1972]). To set the stage, recall Sect. IV.2, where we showed that
h� .A/; W ;X i is a complex over the base space X of a sheaf A. There we
defined the equalizer to be � W � D fx 2 X j �.x/ D �.x/g. In the proof to
come, we will need from Sect. III.4 the Boolean algebra ClopX of all clopen
subsets of X , which is dual to the Boolean space X ; the Boolean opera-
tions are the usual ones on sets. We also need some new notions. ‘Reduced’
insures that trivial stalks are rare.

2.8. Definition. A sheaf A over a space X is reduced if the set of
trivial stalks has an empty interior in X , that is,

(RS) Int Triv A D ¿;
where Triv A D fx 2 X j jAxj D 1g and Ax is the stalk over x.

For each subset U of X , define a congruence �U on � (A) by

(2.3) � �U � if U � � W�:
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That each �U is a congruence follows from the definition of equalizer. We
extend this notation to a collection U of subsets of X : �U D f�U j U 2 Ug :

2.9. Theorem. Let A be a reduced sheaf of algebras over a Boolean space
X . Set A D � .A/ and B D �ClopX .

(a) B is a Boolean sublattice of Con A;
(b) All the congruences of B are factor congruences of A, whose comple-

ments in B are complements as factor congruences;
(c) the sheaves � .A/==B and A are isomorphic.

Proof. (a) Let us first demonstrate that B is closed to the lattice
operations of ConB. From the definition of �U , it is easily seen that

�U \ �V D �U[V .U; V 2 ClopX/:

In order to prove the dual, �U _ �V D �U\V , it suffices to prove that
�U\V � �U ı �V . To that end, suppose that � �U\V � for some global
sections � and � . Define a new global section by patching (see Sect. V.2):

(2.4) 
 D
(
� on U;

� on X 
 U:
Then, U � 
 W � , and consequently U \ V � 
 W � \ � W � � 
 W � . Hence,
V D .U \ V / [ ..X 
 U / \ V / � 
 W � . Thus � �U 
 and 
 �V � , and
� .�U ı �V / � .

Therefore, B is a sublattice of Con� .A/. Distributivity follows quickly
from the formulas just established. From them it also follows that �U_�V D
�U ı �V . Hence, complementation exists: �U ı �X�U D �; D 1ConA and
�U \ �X�U D �X D 0ConA.

(b) Clearly, this follows from the complementation just given.
(c) To verify the isomorphism of the sheaves, use Exercise IV.3.8 by

defining a map,
 WA! � .A/==B;

with
 .�.x// D Œ��Px

.� 2 � .A/ and x 2 X/;
where

(2.5) Px D f�U j x 2 U 2 Clop X g :
This comes from the homeomorphism established earlier in Chap. III:

X

Š SpecBWx 7! Px :

The function  is surjective and well defined because of Proposition 2.4b
and the fact that �.x/ D �.y/ can happen only when x D y. To prove that
it is injective, recall that Œ��Px

D hPx; �=W
Px i. If Œ��Px

D Œ� �Py
, then

x D y since 
 is a homeomorphism, and � �U � for some U such that
x 2 U 2 Clop X ; hence U � � W� , and thus �.x/ D �.y/.

It is routine that  preserves operations; thus  is a homomorphism.
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To finish the proof via Exercise IV.3.8, verify its equation, 
 ı D 
ı�,
where � and 
 are the projection maps in the two sheaves, hA; �;X i and
h� .A/==B; 
;Spec B i. �

Theorem 2.9 anticipates Theorem 4.17 where one of the natural trans-
formations making up an adjunction is a natural isomorphism.

3. Special Sheaves

A variety of comments and propositions about sheaves over Boolean spaces
add to the previous two sections and fill them out. In particular, we discuss
what it might mean for a sheaf to be indecomposable. Hausdorff sheaves,
Boolean products and Boolean extensions are briefly described as special
cases of sheaves over Boolean spaces. We redefine � .A==B/ as a direct
limit. Rounding out this section, the characterization of varieties of Boolean
products built from a finite number of finite algebras is mentioned.

The last section closed by reintroducing the congruences �x coming from
a complex. This naturally leads into asking about the nature of these �x .
If the Boolean subsemilattice B leading into a complex is finite, then the
resulting sheaf gives a product with a finite number of factors A=�x. By
way of contrast, when B is infinite and hence also X , the algebra � .A/

will never be a direct product of the stalks; this is so since � .A/ being
a direct product implies that X must be discrete, which violates its being
simultaneously compact and infinite.

One may wonder why prime ideals of congruences are considered at all.
Why not use the maximal congruences of B rather than its maximal ideals
to create quotient algebras? If we were only interested in Boolean alge-
bras and closely related algebras such as semiprime commutative rings,
we would do this and go directly to a sheaf representation with the base
space SpecB. But in a general algebra, the space of maximal congruences
is not a Boolean space. For example, in Boolean rings without a unity,
it no longer need be compact, only locally compact (Sect. XII.5). Even
for non-Boolean unital rings there are choices since prime ideals may not
be maximal. For instance, the hull-kernel topological spectrum of mini-
mal prime ideals has been extensively studied by Henriksen and Jerison
[HenrJe65], Kist [Kist69], and Peercy [Peer70]. Above all, the set of all
maximal congruences may not faithfully represent an algebra A, that is,
their intersection may not be 0A. Thus, we are led to look at prime ideals
in Boolean subsemilattices.

Another question is: which nontrivial algebras are indecomposable by
sheaves over Boolean spaces? We have to be a bit more precise here since
there appear to be at least two new concepts. On the one hand, we could for
the moment say a nontrivial algebra A is Boolean irreducible if Con A has
no Boolean subsemilattices of more than two elements. If A is subdirectly
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irreducible, then A is Boolean irreducible; for on the contrary, if A is Bool-
ean reducible, then there must be two incomparable nontrivial congruences
� and � whose intersection is 0, and hence A is subdirectly reducible. How-
ever, the ring Z is subdirectly reducible but not Boolean reducible. On the
other hand, let us agree to call a nontrivial algebra Boolean indecompos-
able if it is not isomorphic to � .A/ for some sheaf A over a Boolean space
with at least two nontrivial stalks. But a moment’s thought will convince
one that this notion is the same as being directly indecomposable. To see
this, suppose that A is a sheaf over a Boolean space X with at least two
nontrivial stalks. Then X is the disjoint union of two nonempty clopen sets
that decompose � .A/ as a product. And conversely, being directly decom-
posable immediately gives a nontrivial sheaf over the two-element discrete
space. In summary, we have the following implications:

Subdirect irreducibility

) Boolean irreducibility

) Boolean indecomposability

, Direct indecomposability.

One last comment on this. One might think that the stalks of a sheaf over
a sufficiently large Boolean space would have to be directly indecomposable.
But Pierce [Pier67, lemma 4.2] has shown otherwise for noncommutative
unital rings, even with B taken isomorphic to the Boolean algebra of all
central idempotents. However, Burgess and Stephenson [BurgSt78] have
iterated the sheaf construction for rings to eventually obtain indecompos-
able stalks. We will pursue this in Sect. XI.1 in a setting more general than
rings.

11111
A sheaf space A need not be a Hausdorff space. But the base space X

being Hausdorff (since it is a Boolean space in most later chapters) leads
to a corollary of Proposition IV.2.9 (see [BurWe79, p. 307]).

3.1. Corollary. Let A be a sheaf of algebras over a Boolean space.
Then, A is a Hausdorff space if, and only if,

� W� is clopen .�; � 2 � .A//:

This leads to the equivalent notion of ‘Boolean product’. See [BurMc81,
part II, sec. 1] for a leisurely history of the evolution of this concept. Good
examples are discriminator varieties, where each member is a Boolean prod-
uct of simple members of the variety (see [BurSa81, Sect. IV.9]).

3.2. Definition. A Boolean product is a subdirect product of algebras
indexed by a Boolean space X such that equalizers are clopen and the dis-
joint patching property is satisfied.
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This notion is equivalent to that of ‘Hausdorff sheaf over a Boolean space’
in the sense that either one may be readily constructed from the other with
the techniques already employed.1

3.3. Example. To show that the notion of Boolean product really is a
new concept we should have a counterexample of a sheaf A over a Boolean
space that is not a Boolean product. It suffices to find two global sections
� and � , the equalizer of which is merely open and not closed. We will con-
struct this equalizer within a complex.2 We start with an infinite Boolean
space X . It must have an open subset U that is not closed, since otherwise
each point, which is closed, would have a clopen complement, and thus the
point itself would be clopen; but this would violate compactness in an in-
finite space. For example, in the Cantor middle third set X we could let U
be the open interval .0; 1=4/ [Halm63, p. 74]. Define an algebra A as a set
with only two elements, a and b, and no operations. Turn it into a complex
hA; W;X i by setting a Wb D U . As before we know that the equalizer in the
associated sheaf does not change �.a/ W�.b/ D a Wb. Thus we have a sheaf
of algebras over a Boolean space that is not a Boolean product.

It would be good to have a simpler example of a sheaf over a Bool-
ean space that is not a Boolean product and that is closer to the shells
coming in later chapters. Such is the bounded lattice in example 5.10 of
Crown, Harding and Janowitz [CroHJ96, p. 188]. This distinction be-
tween representations by Boolean products and by sheaves over Boolean
spaces is nicely illustrated by P-algebras and the more general notion of B-
completely normal lattices; consult Sect. XII.2 and the theorems of Cignoli
[Cign78, theorems 3.4 and 3.6].

3.4. Problem. One attraction of Boolean products is their almost alge-
braic characterization by Burris and Werner [BurWe79]. See [BurSa81,
sects. IV.5, IV.8 and pp. 253–254], for details. Make it completely alge-
braic by suppressing the topology; the point is that only the clopen sets of
the Boolean space matter. Concoct a Boolean product along the lines of
a complex by forgetting the details of the subdirect product but keeping
the equalizer. All that we need, really, is an algebra A together with a
binary function ‘ W ’ from A to a Boolean algebra B. Find axioms for it;
start with those for a complex and patching. Exercise this new notion by
proving something about Boolean products without directly using topol-
ogy. For more exercise, replace B by other algebras with known subdirect
representations, such as distributive lattices.

1But beware that a Boolean product is also defined later and differently in
[BigBu90] by patching and the weaker condition that equalizers are merely open. This is
sometimes called a ‘weak Boolean product’ or ‘locally Boolean product’. Its equivalence
with sheaves over Boolean spaces is detailed in [BurWe79, p. 307].

2I am indebted to J. Kist for pointing out the value of complexes in constructing
counterexamples.
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Historically, Boolean products are the most common kind of sheaves
of general algebras to have been studied. More specialized but important
are Boolean powers,3 which are Boolean products when all the stalks are
identical. We present a Venn diagram in Fig. 3 with gradations from sheaves
down to powers, showing the relationship of these constructions to those of
the previous chapter. Here, Boolean products are equated with Hausdorff
sheaves over Boolean spaces.

Sheaves

Sheaves
over
Boolean
spaces

Boolean
products

Boolean
powers

Hausdorff
sheaves

Figure 3. Special sheaves

We might be tempted to enclose this picture with an even vaguer region
labeled ‘subdirect products’. However, for sheaves in general � .A/ need
not be a subdirect product of the stalks; for not all of each stalk may be
needed in � .A/, violating the condition that all projections be surjective in
a subdirect product. Ordinary products can be considered as sheaves when
A and X both have discrete topologies. Then those, and only those, with
a finite number of factors will fall within the circle of Boolean products.

11111
The next result tells us that the distinction between Boolean products

and sheaves over Boolean spaces disappears when the stalks are repeated.
In it we mean by ‘equal stalks’ that Ax D Ay (x; y 2 X). Then the disjoint
union, A DU

x2X Ax , with elements hx; ai will separate them.

3.5. Proposition. Let A be a sheaf with equal stalks such that for each
element a of this common stalk there is a constant global section �a taking
only this value, in the sense that �a.x/ D hax; ai for all x in X . Then A

is a Boolean power if, and only if, A is a sheaf over a Boolean space.

Proof. As already noted, each Boolean product is a sheaf over a Bool-
ean space. In the other direction, consider a sheaf A over a Boolean space
X , all of whose stalks are the same algebra A. We will prove that A is a

3Even though logically a power ought to be just a repeated product, Burris and
Sankappanavar [BurSa81] use this term in a stronger sense and synonymously with
that of Boolean extension. However we find it convenient to make a distinction between
the two, which we will discuss more fully in a moment.
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Boolean product, that is, equalizers are clopen. To that end, since equal-
izers are always open, it suffices to demonstrate that the equalizer of any
two global sections 
 and � is closed.

We check that their inequalizer has the form:


I� D
[

a;b2A
a 6Db

.
 W�a \ � W�b/:

If x 2 
I� , then hx; ai D 
.x/ ¤ �.x/ D hx; bi for some distinct elements
a and b of A; thus x belongs to the union on the right side, and vice versa.
Hence, 
I� is a union of open sets and is itself open. So its complement

 W� is closed, and A is a Boolean power by Definition 3.2. �

We give one more concept in the circle of ideas surrounding the notion of
Boolean power, which is equivalent to it and of historical interest. The first
construction of this kind was the Boolean extension of primal algebras of
Foster [Fost53], who originally defined the concept algebraically, without
any mention of topology, and more generally, the normal subdirect powers
of Gould and Grätzer [GouGr67], which has in its normal transform a
precursor of the quaternary discriminator term, which guarantees patching.

3.6. Definition. First define an A-partition of the Boolean algebra B

as a function f WA! B such that

(i) If a ¤ b then f .a/ ^ f .b/ D 0 and
(ii)

W
a2A f .a/ D 1:

The Boolean extension AŒB� of an algebra A by a Boolean algebra B has
as carrier the set AŒB� of all A-partitions of B and as operations !AŒB	 the
convolving of the operations ! of A:

!AŒB	.f1; f2; : : : ; fn/.a/ D
_

!A.a1;a2;:::;an/Da
f1.a1/ ^ f2.a2/ ^ � � � ^ fn.an/;

where f1; f2; : : : fn 2 AŒB� and a 2 A. Caveat: for the join in the convo-
lution to make sense, A must be finite or B must be complete.

These convolutions appeared in [Fost51] and even earlier in his papers.

3.7. Exercise. Under what hypotheses are Foster extensions equivalent
to Boolean powers?

Figure 4 illustrates the interplay of these different approaches to Boolean
extensions and powers. We represent an element f of the Boolean extension
AŒB� by breaking it into pieces and laying them out as elements of A
over the prime ideals P1; P2; P3; : : : of Spec B, which are laid out on the
horizontal axis. Each of these pieces is to the right of an element of A on
the vertical axis. A dot of a piece appears wherever ai is a member of Pj
(III.4.2). The horizontal stretches of these dots are over clopen subsets of
Spec B, equivalent to elements of B under Stone duality. In other words,
f may be thought of either as a function from A to B in the Boolean
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extension, or as a function from Spec B to A, that is, as a global section in
the corresponding Boolean power, thought of as a sheaf.

a4

a3

a2

a1

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

A

Spec B

Figure 4. Anatomy of an element in a Boolean extension
or Boolean power

For extended treatments of Boolean powers, read [Ribe69], [BurWe79],
[BanNe80], and [BurSa81, Sects. IV.5, IV.8 and pp. 253–254].

Part (b) of the next proposition tells how to recognize Boolean products
in complexes. Part (a) is needed for its proof.

3.8. Proposition. Let hA; W;X i be a complex A over a Boolean space
X . Assume A is the resulting sheaf.

(a) Then each global section � in � .A/ is a disjoint union of sections:

� D �.a1/jU1 [ �.a2/jU2 [ � � � [ �.am/jUm
for some finite number of a1; : : : ; am in A and for some finite disjoint
clopen covering U1; : : : ; Um of X .

(b) If all equalizers of the complex A are clopen, then we have a Boolean
product, that is, all equalizers of global sections are clopen.

Proof. Part (a) is a restatement of property (d) in Proposition 2.4.
Part (b) follows by computing the equalizer of two global sections as a finite
union of clopen sets:

� W� D
[

1�i�m
1�j�n

�
�.ai / W�.bj /

� \ Ui \ Vj ;

where � is as in part (a) and likewise

� D �.b1/jV1 [ �.b2/jV2 [ � � � [ �.bn/jVn: �
A rephrasing of part (a) of this proposition in terms of direct limits

without any recourse to sheaf theory is to be found in [Davey73, theorem
4.4]. Let the set of all finite partitions of B be designated ˘ . It is clearly
ordered by refinement of partitions.

3.9. Proposition. If B is Boolean subsemilattice of ConA for an alge-
bra A, then � .A==B/ is isomorphic to lim�2˘

Q
�2� A=� 0.

11111
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Significant theorems have been discovered about varieties whose members
are Boolean products. Although our main interest in this book is sheaves
more general than these, the results are remarkable enough to outline them
here. Two theorems are stated in two areas: representation, and preserva-
tion of properties. The references to them have excellent expositions of their
proofs, and give ample credit to the many whose earlier work made these
possible. To present them, we need some terms.

3.10. Definition. Each discriminator or quasi-primal algebra A has a
quaternary term-operation t such that

(3.1) t.a; b; c; d / D
(
c if a D bI
d if a ¤ b:

A discriminator variety V is generated by a set of discriminator algebras
having a common discriminator term t .

A variety V is affine if there is a ternary term � such that �.x; y; y/ � x
and �.x; x; y/ � y are identities of V, and for all n-ary operation symbols
! of V there are these identities of V:

�
�
!.x1; : : : ; xn/; !.y1; : : : ; yn/; !.z1; : : : ; zn/

�

� !�
�.x1; y1; z1/; : : : ; �.xn; yn; zn/

�
:

Examples of discriminator varieties are Boolean algebras and their
expansions, such as cylindric algebras [Wern78]. Affine varieties include
modules and their term-reducts with x1�x2Cx3 a term. (‘Affine’ was orig-
inally ‘Abelian’, which now has a more general meaning [McVa89, p. 14].)

For a set K of algebras, � a.K/ is the set of all Boolean products of
algebras in K. (Do not confuse this operator � a with the function � , which
gives all global sections of a sheaf, Definition IV.1.5.) For varietal products
see Definition III.1.4.

Representing finitely generated varieties by Boolean products is due to
Burris and McKenzie [BurMc81, sect. 3 of part II] (see also [Pinus93,
theorem 7.2]).

3.11. Theorem. A variety V has the representation, V D I� a.K/, for
some finite set K of finite algebras if, and only if, V D V1 ˝V2 where V1

is a discriminator variety with V1 D I� a.K1/ for K1 a finite set of finite
algebras of V1, and V2 is an affine variety with V2 D I� a.K2/ for K2 a
finite set of finite algebras of V2.

This theorem leaves open the representation of varieties that are not
finitely generated. It has consequences for groups and rings.

3.12. Corollary. (a) A variety V of groups has the representation,
V D I� a.K/, for some finite set K of finite groups if, and only if,
V is a variety of Abelian groups of bounded exponent.
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(b) A finitely generated variety V of rings has the representation, V D
I� a.K/, for some finite set K of finite rings if, and only if, V D V1˝V2

where V1 is a finitely generated variety of rings with zero multiplication,
and V2 is generated by a finite number of finite fields.

Boolean powers are tight enough that rather general sentences, Horn
formulas, are preserved on passage from an algebra to its stalks and vice
versa. For algebras, a basic Horn formula is a formula of the form

t0 � t 00 ^ t1 � t 01 ^ � � � ^ tn�1 � t 0n�1 ! tn � t 0n; or

t0 � t 00; or

t0 6� t 00 _ t1 6� t 01 _ � � � _ tn�1 6� t 0n�1;
where t0; t

0
0; t1; : : : are terms. A Horn formula starts with a string of quan-

tifiers followed by a conjunction of basic Horn formulas. A formula ' is
preserved relative to a sheaf A just when

' holds in A iff ' holds in all its stalks Ax :

3.13. Proposition. A first-order formula is preserved relative to Bool-
ean powers if, and only if, it is equivalent to a disjunction of Horn formulas.

This was proven in [Burr75, theorem 4.3]; see also [Pinus93,
theorem 3.4]. Compare this with the preservation of identities in subdi-
rect products in Sect. III.1.

4. Categorical Recapitulation

We reformulate the theorems of this chapter categorically. A new adjunc-
tion will serve as a front end for the old adjunction of the last chapter. Their
composition, passing through complexes, produces an adjunction between
the category of sheaves over Boolean spaces and the new category of alge-
bras with selected Boolean subsemilattices of congruences. To achieve this
adjoint situation, the objects appearing in the various categories must be
restricted by limiting their trivial stalks. In order to capture this restriction
we introduce the adjective ‘reduced’ throughout, with the axioms defining
this notion having similar appearances in the three categories. Reduced
sheaves (RS) have already appeared in Definition 2.8.

To simplify, one might require only that there are no trivial stalks at all
in these definitions of ‘reduced’, which was part of the original definition
given by Comer [Comer71], but then converse theorems, such as Theorem
VI.3.15(d), would not be true. In the next definition, implicit use is made
of the topology of the dual Boolean space. Assume a fixed type of algebra
throughout.

4.1. Definition. A Boolean brace hA;B i consists of an algebra A to-
gether with a selected Boolean subsemilattice B of ConA with the proviso
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that B has at least two elements whenever A has at least two. The cate-
gory BooleBraceRed has as objects all Boolean braces hA;B i of a given
algebraic type such that

(RB) Int TrivhA;B i D ¿
where TrivhA;B i D fP 2 Spec B j W

P D 1ConA g, and where ‘Int’ takes
interiors within the topological space dual to the Boolean algebra B. A
Boolean brace satisfying axiom RB is called reduced. This axiom limits in
the resulting sheaf the extent of stalks having only one element. A mor-
phism of objects, hA;B i and hA�;B�i, is a pair h'; � i of homomorphisms,

'WA ! A� and � WB ! B�

for which

'.�/ � �.�/ .� 2 B/;
where '.�/ D fh'.a1/; '.a2/i j ha1; a2 i 2 � g. The composition of two mor-
phisms, h'1; �1i and h'2; �2i, when the Boolean brace between them is the
same, should obviously be h'2 ı '1; �2 ı �1i.

Note that the subsemilattice homomorphism � is required to preserve
only the intersection of congruences and the identity congruence; but it
need not preserve joins. Also note that the image '.�/ may not be a con-
gruence – it might be intransitive – but otherwise it is reflexive, symmetric
and preserves the operations of the algebra.

It is not hard to show that BooleBraceRed does indeed satisfy the
axioms for a category. To compare this new category with the old ones,
we must restrict also the complexes and sheaves occurring in them. In
anticipation of this, recall from the beginning of Sect. IV.2 that for any
element x of X in a complex hA; W;X i the congruence �x is defined by the
clause:

(4.1) a1 �x a2 if, and only if, x 2 a1 Wa2 .a1; a2 2 A/:
Similarly, for any subset U of X ,

(4.2) �U D fha1; a2 i j U � a1 Wa2g D
\

x2U
�x :

Such congruences are likewise defined in the complex of the algebra �1.A/

arising from a sheaf A. In either case, gather them together in

�ClopX D f�U j U is clopen in X g :
4.2. Definition. Let us call a complex, A D hA; W ;X i, reduced if the

following two axioms hold:

(RC1) Int TrivA D ¿
where TrivA D fx 2 X j �x D 1ConA g, and

(RC2) for all U and V in Clop X ; if �U D �V ; then U D V:
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The full subcategory of Complex consisting of reduced complexes over
Boolean spaces is designated CompBooleRed.

The first axiom RC1 insures that most stalks created in the sheaf will be
nontrivial; and the second RC2 promises the injectivity of the function U 7!
�U . Its surjectivity is known as ‘factor-transparency’, which will be defined
later within sheaves. In anticipation of finding a Boolean subsemilattice
of congruences in any reduced complex, we next state and prove several
simple consequences associated with these axioms.

4.3. Lemma. Assume that hA; W ;X i is a complex with U; V;W in ClopX .

(a) �X D 0ConA.
(b) �U \ �V D �U[V .

If, in addition, the complex satisfies axiom RC2, then (c)–(g) are true.
(c) U � V if, and only if, �U � �V :
(d) In �ClopX the ordering � has a join t, and it is given by

�U t �V D �U\V :
(e) For all U there exist a V such that for all W,

�W \ �V D 0ConA if, and only if, �W � �U :
(f) h�ClopX I t;\;0 ; 0ConA; 1ConA i is a Boolean algebra where .�U /

0D �X�U .
(g) This Boolean algebra of (f) is anti-isomorphic to that on Clop X .

Proof. Throughout we apply (4.2).
(a) If a1 �X a2, then X � a1 Wa2 and hence a1 D a2.
(b) This follows directly from (4.2).
(c) Suppose that �U � �V : Then, by (b), �V D �U \ �V D �U[V . There-

fore by (RC2), V D U [ V , and hence U � V . The other direction follows
immediately from (4.2).

(d) We show that �U\V satisfies the definition of join, that is, �U\V
is the smallest congruence of �ClopX containing both �U and �V . Since
U � U \ V , clearly �U � �U \ �V and also �V � �U\V . Now suppose
�U � �W and �V � �W for some clopen W . Then, U � W and V � W by
(c), and so U \ V � W . Hence, �U\V � �W : Therefore, �U\V is the join.

Or more conceptually, since in (c) we have an order-anti-isomorphism
between ClopX and �ClopX , Boolean operations in �ClopX , if they exist,
will be the duals of those in ClopX , which do exist.

(e) We can use (a), (b), and (c), as we did in (d), to translate this
statement in �ClopX into an equivalent statement in the Boolean algebra
of ClopX . All that is needed is to verify that

8U 2 Clop X 9V 2 Clop X 8W 2 Clop X
�
W [ V D X iff W � U �

:

This is seen to be true by choosing the clopen set V to be X 
 U .
(f) Thus, by the previous parts, h�ClopX I \; 0ConA i is a Boolean subsemi-

lattice of ConA. By Proposition 1.2 it becomes a Boolean algebra.
(g) The previous parts together prove this. �



4 Categorical Recapitulation 133

For emphasis, we display these two important Boolean algebras.

4.4. Corollary. In a reduced complex, the Boolean algebras,

ClopX D hClop X I [;\;0 ;¿; X i; and

�ClopX D h�ClopX I t;\;0 ; 0ConA; 1ConA i;
are anti-isomorphic by Lemma 4.3g. The Boolean operations in �ClopX are
given for all U and V in Clop X by:

�U \ �V D �U[V ; �U t �V D �U\V ; .�U /
0 D �X�U :

One might expect that the �U in the next corollary would be factor
congruences, but any three-element semilattice falsifies this. Recall
Definition 2.8 of a reduced sheaf (RS): Int Triv A D ¿ where Triv A D
fx 2 X j jAxj D 1g.

4.5. Definition. The full subcategory of Sheaf of reduced sheaves over
Boolean spaces is designated SheafBooleRed.

Notice, because of patching properties, that any sheaf over a Boolean
space is a member of SheafAlg (Proposition 2.4b), that is to say, through
any point of the sheaf passes a global section (axiom SS).

11111
We need two more functors giving us another adjoint situation, analogous

to that in Sect. IV.3: ˚2WBooleBraceRed• CompBooleRedW�2.
4.6. Definition. The first functor ˚2 creates a complex from a Boolean

brace:

˚2.hA;B i/ D hA; W ;X i;
where X D SpecB and

(4.3) a1 Wa2 D
n
P 2 Spec B

ˇ
ˇ
ˇ a1

_
P a2

o
.a1; a2 2 A/:

To define it also on morphisms, start with a morphism in BooleBrace-
Red, say h'; � iW hA;B i ! hA�;B�i. Write its image as ˚2.h'; � i/ D
h'; 
i. This image, h'; 
iW hA; W ;SpecB i ! hA�; ?? ;SpecB�i, has the
same algebra homomorphism, 'WA ! A�, but the second component,

WSpecB� ! SpecB, now goes in the opposite direction:

(4.4) 
.Q/ D ��1.Q/ D f� 2 B j �.�/ 2 Qg .Q 2 Spec B�/:

4.7. Proposition. ˚2 is a functor from BooleBraceRed to Comp-
BooleRed.

Proof. To confirm this, we prove four things:

(i) ˚2.hA;B i/ is a reduced complex whenever hA;B i is a reduced Bool-
ean brace;

(ii) ˚2.h'; � i/ is a morphism of complexes whenever h'; � i is a morphism
of Boolean braces;
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(iii) ˚2 preserves unities, that is, identity morphisms;
(iv) ˚2 preserves composition of morphisms.

Let ˚2.hA;B i/ D hA; W ;SpecB i. To verify in (i) that this is a complex,
we refer the reader to Theorem 2.1. To prove it is reduced, we make repeated
use of Lemma 4.3. By (4.1) and (4.3), when a1; a2 2 A and P 2 Spec B,

a1 �P a2 iff P 2 a1 Wa2 iff a1
_
P a2:

Therefore, �P D W
P , and thus (RB) implies (RC1).

Axiom RC2 follows from Lemma 1.6 asserting the existence of prime
ideals of congruences in the face of adversity. For suppose V 6D W for some
clopen subsets V and W of SpecB; the object is to prove that �V ¤ �W .
By Boolean duality in Sect. III.4, there must be distinct congruences �
and � of B such that V D U
 and W D U�. Without loss of generality,
assume that there are a1 and a2 such that a1 � a2 but not a1 � a2. By the
lemma already alluded to, there is a prime ideal P such that � 2 P but
not a1

W
P a2. The intention is to show from a1 � a2 that a1 �U�

a2. From
Boolean duality we know that:

U
 D fQ 2 Spec B j � 2 Qg I(4.5)

If Q 2 U
 , then � 2 Q, and a1
W
Q a2. Hence, Q 2 a1 W a2 by (4.3), thus

U
 � a1 Wa2 and so a1 �U�
a2 by (4.2). Likewise, not a1 �U�

a2, since P 2 U�
but P … a1 W a2, again by (4.2). Therefore, �V D �U�

¤ �U�
D �W .

To prove (ii) introduce h'; 
i D ˚2.h'; � i/, with 
WSpec B� ! Spec B,
defined by (4.4). First, we know that prime ideals go to prime ideals and
that 
 is continuous, as outlined in III.4. Second, we must show that h'; 
i
is a complex morphism by verifying Definition IV.3.1:


�1.a1 Wa2/ � '.a1/ ?? '.a2/:
So assume that Q 2 
�1.a1 Wa2/; this implies 
.Q/ 2 a1 Wa2. Set P D 
.Q/.
Hence, a1

W
P a2, and so a1 � a2 for some � in P . Therefore, '.a1/ '.�/

'.a2/; and thus '.a1/ �.�/ '.a2/ since '.�/ � �.�/ by Definition 4.1. Not-
ing that �.�/ 2 �.P / and �.P / D �.
.Q// D �.��1.Q// D Q, we con-
clude that '.a1/

W
Q '.a2/ and finally Q 2 '.a1/ ?? '.a2/. Thus, morphisms

in BooleBraceRed go to morphisms in CompBooleRed.
Parts (iii) and (iv) are straightforward and thus omitted. �

4.8. Definition. Going in the opposite direction, the second functor,

�2WCompBooleRed!BooleBraceRed;

yields a Boolean brace,

�2
�hA; W ;X i� D hA;B i;

where the congruences of B come from clopen subsets: B D �ClopX . To
say what �2 does to morphisms, let h'; 
iW hA; W ;X i ! hA�; ?? ;X �i
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be a morphism of complexes. Define h'; � iW hA;B i ! hA�;B�i, that is,
h'; � i D �2.h'; 
i/, by

�.�U / D �
�1.U / .U is clopen in X/:

4.9. Proposition. �2 is a faithful functor going from CompBooleRed
to BooleBraceRed.

Proof. For �2 we should prove five things, to be labeled (i)–(v). The
first four are analogous to those four parts proven for ˚2 in the proof of
Proposition 4.7. The fifth is that �2 is a faithful.

(i) Set hA;B i D �2.A/ for a reduced complex, A D hA; W ;X i over a
Boolean space X . By assembling the various parts of Lemma 4.3, we see
that B is a Boolean subsemilattice of ConA. So hA;B i is a Boolean brace.

Still left to be proven in (i) is that hA;B i is reduced. We know, from
Stone duality in Sect. III.4, Corollary 4.4 and (4.2), that any prime ideal
P comes from an element x of the base space X :

P D Px D f�U j x 2 U 2 Clop X g :
Let x be a nontrivial point of X , that is, j�xj ¤ 1. We will show thatW
Px ¤ 1. By nontriviality there are elements a1 and a2 such that x … a1 W

a2. Hence, U ª a1 Wa2 whenever x 2 U . Thus it never happens that a1 �U a2
for such U . Hence the relationship a1

W
Px a2 fails. Therefore, nontrivial

points go to proper primes ideals: Triv B � TrivA. Hence, Int Triv B �
Int TrivA, and so (RC1) implies (RB).

To demonstrate (ii) that �2 takes morphisms of complexes to morphisms
of Boolean braces, consider the couple

h'; � i D �2.h'; 
i/;
as spelled out in Definition 4.8. That � preserves all the Boolean operations
in going from B to B� follows from Lemma 4.3, and the preservation of
the Boolean operations on subsets of X by 
�1.

Next, we want to prove that '.�U / � �.�U / for all U in Clop X . To that
end, suppose that hb1; b2i 2 '.�U /. Then b1 D '.a1/ and b2 D '.a2/ where
a1 � a2 for some a1; a2 in A. So U � a1 Wa2 by the definition of �U . Hence,


�1.U / � 
�1.a1 Wa2/ � '.a1/ ?? '.a2/ D b1 ?? b2;
from Definition IV.3.1 of a complex morphism. Therefore, hb1; b2i 2 �
�1.U /,
which is equal to �.�U /, and we conclude that '.�U / � �.�U /.

Conditions (iii) and (iv) are satisfied, roughly since morphisms in both
CompBooleRed and BooleBraceRed are pairs with composition by
components.

To prove (v), that �2 is faithful, let us assume that �2.h'; 
i/ D h'; � i D
�2.h'; i/: We must show that 
 D  . By way of contradiction, suppose
not: that there is an x� in X� such that 
.x�/ ¤  .x�/. From the definition
of �2, we find for the second component that

�
�1.U / D �.�U / D � �1.U / .U 2 Clop X/:
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Corollary 4.4 transfers this equality to its subscripts:

(4.6) 
�1.U / D  �1.U / .U 2 Clop X/:

Since X is Hausdorff, there is a clopen subset U and its complement V in
X such that 
.x�/ 2 U and  .x�/ 2 V . Hence, x� 2 
�1.U /, x� 2  �1.V /,
and so x� …  �1.U /, which (4.6) can not abide. �

11111
Before we state precisely the adjoint situation relating these functors, we

need to discuss the associated natural transformations, which are

�2W 1BooleBraceRed! �2 ı ˚2 and "2W˚2 ı �2 ! 1CompBooleRed:

4.10. Definition. For the first, �2 of a Boolean brace hA;B i will be a
morphism in BooleBraceRed,

�2.hA;B i/ D h1A;e� iW hA;B i ! hA; eB i;
where hA; eB i D �2

�
˚2.hA;B i/

�
: In other words,

eB D �Clop SpecB where eB D f�U j U 2 ClopSpecB g :
The function, e� WB ! eB, is given as

e�.�/ D �U�
.� 2 B/;

where U� D fP 2 Spec B j � 2 P g by (4.5), and by (4.1),

�U�
D fha1; a2i j U� � a1 Wa2g :

For the second, "2 of a complex A over X will be a morphism of com-
plexes,

"2.A/ D h1A;e
iW eA! A;

where
eA D hA;eW ; eX i D ˚2

�
�2.A/

�
:

That is, eX D Spec �ClopX ; and

a1eW a2 D
n
P 2 eX

ˇ
ˇ
ˇ a1

_
P a2

o
.a1; a2 2 A/;

with e
WX ! eX defined by

(4.7) e
.x/ D Px D f�U j x 2 U 2 Clop X g .x 2 X/:
4.11. Proposition. (a) �2 is a natural transformation.

(b) "2 is a natural isomorphism.

Proof. Initially we prove that �2 and "2 yield morphisms of the right
kind, and later demonstrate that the required square diagrams commute.

(a) Let us show for any object, A = hA;B i in BooleBraceRed, that

�2.A/WA! �2
�
˚2.A/

�
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is a morphism in BooleBraceRed. Now �2.A/ D h1A;e� i where e�.�/ D
�U�

. To verify that e� is a homomorphism of Boolean subsemilattices, we
only need recall from Stone duality that

U�\� D U� [ U� ; and U0ConA
D X I

and remember what we proved earlier in Lemma 4.3 that

�U[V D �U \ �V ; and �X D 0:
Thus e� is a homomorphism.

Proving that '.�/ � e�.�/ amounts to proving in this context that � �
�U�

, by using Definition 4.10 extensively. To this end, suppose that a1�a2.
For a prime ideal P of B, if � 2 P , then a1

W
P a2. Hence U� � a1 Wa2 by

(4.3). Therefore, a1 �U�
a2 by (4.2).

(b) Let us show for any complex, A = hA; W ;X i, in CompBooleRed
that the function

"2.A/W˚2
�
�2.A/

�! A

is an isomorphism in CompBooleRed. Write "2.A/ D h1A;e
i where

e
WX ! Spec �ClopX Wx 7! Px

with Px D f�U j x 2 U 2 Clop X g. Since the composition of morphisms in
CompBooleRed is the composition of component functions, it is clear
that the inverse of the morphism, "2.A/ D h1A;e
i, will be h1A;e


�1i, if
it exists. So it suffices to show that e
 is a homeomorphism. By Corol-
lary 4.4, we know that the Boolean algebras �ClopX and ClopX are anti-
isomorphic. Stone duality assures us that the corresponding topological
spaces are homeomorphic:

Spec �ClopX Š SpecClopX Š X :

With elements, this correspondence is Px $ x. Thus, "2.A/ is an isomor-
phism in CompBooleRed.

Second, for naturalness one must show that these two diagrams from
Definition III.2.18 commute, where we start with h'; � iWA ! A�, a mor-
phism of Boolean braces, and h'; 
iWA! A�, a morphism of complexes:

A
�2.A/�����! .�2 ı ˚2/.A/

h';� i
?
?
y

?
?
y.�2ı˚2/.h';� i/

A� �����!
�2.A

�/
.�2 ı ˚2/.A�/

.˚2 ı �2/.A/ "2.A/�����! .A/

.˚2ı�2/.h';
i/
?
?
y

?
?
yh';
i

.˚2 ı �2/.A�/ �����!
"2.A

�/
.A�/
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To prove that the first square commutes, introduce the notations:

�2.A/ D h1A;e� i; �2.A
�/ D h1A� ;e��i;

˚2.h'; � i/ D h'; 
i; �2.h'; 
i/ D h';b� i:
Note that, in tracing the first component of the morphisms, all the functions
are ', 1A or 1A� ; so clearly the first components commute. The second
components are more troublesome. Tracing the second component around
through the lower left corner in the first square, we get

B

B�

....................................................................
.....
.......
.....

�

�Clop SpecB�
......................................................................... ...

.........

�

�.�/

....................................................................
.....
.......
.....

�U�.�/
......................................................................... ...

.........

Going by the upper right corner, we get

B �Clop SpecB......................................................................... ...
.........

��
Clop SpecB

....................................................................
.....
.......
.....
b�

� �U�
........................................................................... ...

.........

b�.�U�
/

....................................................................
.....
.......
.....

We need to demonstrate that �U�.�/
D b�.�U�

/ for any � in B. Now b�.�U�
/ D

�
�1.U� /
by the definition of �2. We will be finished if we can verify that


�1.U�/ D U�.�/. As an inverse function,


�1.U�/ D fQ 2 Spec B j 
.Q/ 2 U� g :
Reasoning with further definitions, such as for U� and ˚2, we see that


.Q/ 2 U� iff � 2 
.Q/ D ��1.Q/ iff �.�/ 2 Q:
Therefore,


�1.U�/ D fQ 2 Spec B j �.�/ 2 Qg
D U�.�/:

To prove commutativity of the second square, we write it explicitly:

hA;eW ; eX i h1A ;e
i�����! hA; W ;X i
h';b
i

?
?
y h';
i

?
?
y

hA�;e?? ; eX�i �����!
h1�

A
;e
� i

hA�; ?? ;X�i

Here, eX D Spec �ClopX and eX� D Spec �ClopX� . Clearly the diagram com-
mutes in the first component: 1A� ı ' D ' ı 1A. The arrows of the sec-
ond components will go in the opposite direction. Let us abbreviate the
composite of the second components through the upper right corner by
U:R: D e
 ı 
, and the composite through the lower left by L:L: D b
 ıe
�.
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We need to prove that U:R: D L:L: To that end we find expressions for
these composites in terms of Definition 4.10, letting x� 2 X�:

U:R:.x�/ De

�

.x�/

� D f�U j 
.x�/ 2 U 2 Clop X g I and

L:L:.x�/ Db

�
e
�.x�/

� D ��1 f�U� j x� 2 U � 2 Clop X�g ;
where � W�ClopX ! �ClopX� is the homomorphism induced by 
 via �2. We
establish their equality by demonstrating inclusion each way.
U:R:.x�/ � L:L:.x�/. To prove this, assume we have �U in the left side

where 
.x�/ 2 U 2 Clop X . Define U � D 
�1.U /. This will be clopen,
and x� 2 U � 2 Clop X�. Does �U 2 ��1.�U�/, anticipating membership in
L:L:.x�/? Well, by Definition 4.8, �.�U / D �
�1.U / D �U� ; and so, yes, it
does.
L:L:.x�/ � U:R:.x�/. Assume that � 2 L:L:.x�/. That is, �.�/ D �U�

for some U � such that x� 2 U � 2 Clop X�. Now � 2 B where B D �ClopX ;
so � D �U for some U in Clop X . We need to show that U and U � are
appropriately related: U � D 
�1.U /. Notice that

�U� D �.�/ D �.�U / D �
�1.U /;

by the definition of � . Since the map U 7! �U is injective by Lemma 4.3,
it follows that U � D 
�1.U /. Because x� 2 U �, it further follows that

.x�/ 2 U . Since U 2 Clop X , then � 2 U:R:.x�/ by its expression above.
We have settled the inclusions in both directions, so equality holds between
L:L:.x�/ and U:R:.x�/, and the diagram commutes. �

In passing we note that, while e� (from Definition 4.10) is always an iso-
morphism of Boolean algebras, �2 itself need not be a natural isomorphism
of categories, but it is close (see Theorem 2.9). If nothing else, the unity of
a Boolean subsemilattice of congruences may float. In other words, conceiv-
ably h1A;e�

�1i may not be a morphism of complexes. All we can be certain
of is parts (a) and (b) of the next corollary. We do have an expected, but
not entirely obvious characterization of isomorphism in part (c). The next
two corollaries come from the preceding proof.

4.12. Corollary. Let �2.A/ be the natural transformation h1A;e� i of a
reduced Boolean brace A.

(a) � � �U�
.� 2 B/.

(b) e� is always an isomorphism: B Š �Clop SpecB .
(c) �2 is a natural isomorphism iff B D �Clop SpecB and e� D 1B.

Proof. (a) By Definition 4.10.
(b) This is true since by definition, e�.�/ D �U�

; we have shown that the
functions � 7! U� and U 7! �U are bijections preserving the dual Boolean
operations: the first by Stone duality, and the second by Lemma 4.3g.
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(c) ). If we have a categorical isomorphism h1A;e� i, then it has an
inverse h1A;e�

�1i, where e��1 is the inverse of e� . By Definition 4.1,

� D 1A.�/ � e�.�/ .� 2 B/; and

� D 1A.�/ � e��1.�/ .� 2 �Clop SpecB/:

Hence,

� �e�.�/ �e��1.e�.�// D �:
Thus, � D e�.�/ D �U�

whenever � 2 B, and the conclusion follows.
(. Obvious. �

A useful consequence of the proof of Proposition 4.11 comes from crank-
ing up the duality one more step.

4.13. Corollary. Let "2.A/ be the natural transformation h1A;e
i of a
reduced complex, A = hA; W ;X i, and assume that U 2 Clop X .

(a) �U�U
D �U :

(b) e
�1.U�U
/ D U:

Proof. Recall for both parts from Stone duality and (4.7) that

B D �ClopX ;

U�U
D fP 2 Spec B j �U 2 P g ;

and each prime ideal P of B is determined by an element x of X as

P D Px D f�U j x 2 U 2 Clop X g :
(a) This amounts to the equivalence: U�U

� a1eW a2 iff U � a1 Wa2. But
this is true since for any prime ideal, Px 2 U�U

iff �U 2 Px iff x 2 U .
(b) Since e
.x/ D Px , the assertion amounts to proving for any x 2 X

that Px 2 U�U
iff x 2 U , which was proven in part (a). �

11111
We are now ready for the first adjunction of this chapter, which will

shortly be composed with the adjunction of the previous chapter.

4.14. Theorem. The functors,

˚2WBooleBraceRed � CompBooleRedW�2;
together with the natural transformations,

�2W 1BooleBraceRed! �2 ı ˚2 and "2W˚2 ı �2 ! 1CompBooleRed;

are an adjunction:

h�2; "2iW˚2 ���j �2W hCompBooleRed;BooleBraceRedi:
That is, ˚2 is a left adjoint of �2, and �2 is a right adjoint of ˚2. Moreover,
"2 is a natural isomorphism.
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Proof. By Theorem III.2.20 it suffices to show that each brace, A D
hA;B i, in BooleBraceRed has a �2-universal map h�2.A/;Ai, where
A D ˚2.A/. By a �2-universal map in this context we mean that for each
complex A� and each morphism, h'; � iWA! �2.A

�/ in BooleBraceRed,
there exists a unique complex morphism, h'; 
iWA! A�, such that

�2.h'; 
i/ ı �2.A/ D h'; � i;
that is, this triangle commutes:

A �2.A/................................................................................ ....
........

�2.A/

�2.A
�/

....................................................................................................................... .......
.....

h'; � i
.........................................................................
.....
.......
.....

�2.h'; 
i/
A

A�

...................................................................................
.....
.......
.....

h'; 
i

In anticipation that ' would not change, we have avoided introducing
notation that would be more honest than necessary. Write out the second
complex as A� D hA; ?? ;X�i. Define the function, 
WX � ! SpecB, as the
dual of the function � on congruences:

(4.8) 
.x�/ D ��1.Px� / .x� 2 X�/:

This proof requires showing the following.

(a) The function h'; 
i is a morphism of complexes:
(1) 
 is continuous,
(2) 
�1.a1 Wa2/ � '.a1/ ?? '.a2/ .a1; a2 2 A/.

(b) The triangle above commutes.
(c) The natural transformation "2 fits in, that is:

(1) �2
�
"2.A/

� ı �2
�
�2.A/

� D 1�2.A/ .A 2 CompBooleRed/,

(2) "2
�
˚2.A/

� ı ˚2
�
�2.A/

� D 1˚2.A/ .A 2BooleBraceRed/.
(d) The morphism h'; 
i is the unique one making the triangle commute.

Formulas (c.1) and (c.2) amount to the commutativity of the diagrams:

�2.A/ �2.˚2.�2.A///..................................................................................................................................... ....
........

�2
�
�2.A/

�

�2.A/

........................................................................................................................................................................... ........
....

1�2.A/

.........................................................................
.....
.......
.....

�2
�
"2.A/

�

˚2.A/ ˚2.�2.˚2.A///...................................................................................................................... ....
........

˚2
�
�2.A/

�

˚2.A/

.............................................................................................................................................................. ........
....

1˚2.A/

.........................................................................
.....
.......
.....

"2
�
˚2.A/

�

These will ensure that the natural transformation "2, already defined, is
indeed the unique one guaranteed by Theorem III.2.20. We defer the proofs
of (a) and (b), which are based upon (c.1), now to be proven. Then, after
proving (a) and (b), we will finish up with (d) and (c.2).

(c.1) We have to prove the commutativity of the triangle on the left.
Let hA;B i D �2.A/ for some orthodox complex A and write h1A;e� i D
�2

�
�2.A/

�
. Clearly the first components of all the morphisms are identities.
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For the second components, we need to verify that the triangle

B �Clop SpecB................................................................................ ...
.........

e�

B

................................................................................................................................. .......
.....

1B

......................................................................
.....
.......
.....
b�

commutes. The notation h1A;e
i D "2.A/ is needed. Remember that

e�.�/ D �U�
.� 2 B; Defn. 4.10/;

b�.�U / D �
�1.U / .U 2 Clop X ; Defn. 4.8/:

We trace a typical element �U of B around the diagram and calculate that

b�
�
e�.�U /

� D b�.�U�U
/ D � Q
�1.U�U

/:

In turn, we recall from Corollary 4.13 that e
�1.U�U
/ D U . Thus, the com-

posite is the identity. So the diagram commutes.
(a) and (b). We prove these parts indirectly, and at a higher level than

the preceding categorical arguments. Since � is a natural transformation,
we may construct from the given morphism h'; � i a commutative diagram
in BooleBraceRed:

A
.........................................................................
.....
.......
.....

h'; � i
�2.˚2.A//.................................................................................................................................................... ............

�2.A/

.........................................................................
.....
.......
.....

�2.˚2.h'; � i//
�2.A

�/ �2.˚2.�2.A
�///................................................................................................................................ ...

.........
�2

�
�2.A

�/
�

�2.A
�/

.............................................................................................................................................................................. ........
....

1�2.A
�/

.........................................................................
.....
.......
.....

�2
�
"2.A

�/
�

The square is the naturalness of �2. The triangle is a copy of (c.1). Since
"2 is a natural isomorphism, �2

�
"2.A

�/
�

is an isomorphism. Therefore,

�2
�
�2.A

�/
�
, as a composition of isomorphisms, is also an isomorphism.

The outer pentagon becomes now the desired commutative triangle de-
monstrating �2-universality, providing we verify that the composition of the
two right vertical morphisms with �2 stripped off is the missing morphism:

"2.A
�/ ı ˚2.h'; � i/ D h'; 
i:

Since "2.A
�/ D h1A� ;e
�i, the first components take care of themselves, and

we are left alone to contemplate the second components acting on elements
x� of X�. These continuous functions go in the opposite direction, and so
compose in the reverse order. Set h';b
i D ˚2.h'; � i/, and use Definitions
4.10, 4.6 and equation (4.8), in that order, to verify that

b

�
e
�.x�/

� Db
.Px�/ D ��1.Px�/ D 
.x�/:
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Thus, we have established the existence of the required morphism h'; 
i of
complexes.

(d) Its uniqueness follows from the faithfulness of �2 in Proposition 4.9.
(c.2) Introduce these notations for any Boolean brace, A D hA;B i:
hA; W ;X i D ˚2.A/I hA;eW ; eX i D ˚2

�
�2.˚2.A//

�I
X D SpecBI eX D Spec �ClopX I

h1A;b
i D ˚2.h1A;e� i/I h1A;e� i D �2.A/I
h1A;e
i D "2

�
˚2.A/

�
:

As a more detailed diagram, here is how (c.2) should commute.

hA; W ;X i hA;eW ; eX i...................................................................................................................... ...
.........

h1A;b
i

hA; W ;X i

....................................................................................................................................................................... ........
....

h1A; 1X i
.........................................................................
.....
.......
.....

h1A;e
i

As expected, the first components of all the morphisms are identities.
The second components may be traced by their action on a prime ideal
Q of B:

Q PQ....................................................................................................

b


Q
.......
.......
.......
.......
.......
.......
.......
.......
.................
............

e


To delineate this, recall from (4.7) that, when going upward,

e
.Q/ D PQ D f�U j Q 2 U 2 Clop X g :
By Boolean duality, since U� D fQ 2 Spec B j � 2 Qg for any � in B,

�U�
2 PQ iff Q 2 U� iff � 2 Q:

Recall also from Definition 4.10 that e�.�/ D �U�
. Therefore,

e�.�/ 2 PQ iff � 2 Q:
And so from Definition 4.6, when going to the left,

b
.PQ/ D e��1.PQ/ D Q: �
11111

We now combine the adjoint situations of this section and Sect. IV.3. In
anticipation of this we restrict the functors ˚1 and �1 to CompBooleRed
and SheafBooleRed, respectively. It is not necessary to have new names
for these restrictions. But to justify this we need a preliminary result check-
ing that reduced objects in one go to reduced objects in the other (see
Definitions 4.2 and 4.5).
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4.15. Proposition. (a) If A is a reduced complex over a Boolean space
X , then ˚1.A/ is a reduced sheaf.

(b) If A is a reduced sheaf, then �1.A/ is a reduced complex.

Proof. Both parts rely on patching arguments, see Sect. 2.
(a) Let us verify axiom RS using axiom RC1. By the definition of ˚1 each

stalk Ax of A is A=�x. Therefore, the trivial stalks of the sheaf are just
those of the complex. Since their base topologies are the same, the interiors
of their sets of trivial points are the same.

(b) Again, since the base spaces stay the same in passing from sheaves
to complexes via ˚2, one need only trace nontrivial points through this
functor in order to verify axiom RC1. For any nontrivial point x in X of
the sheaf A, there are a and b in A such that a 6D b and �.a/ D x D �.b/.
The definition of SheafAlg, of which SheafBooleRed is a subcategory,
guarantees that through both a and b there pass global sections � and � ,
respectively, differing at x of course. Thus, � and � differ on Ax , and so x
is a nontrivial point of the complex �1.A/.

For the proof of axiom RC2, suppose A is a reduced sheaf over X , and
U ,V are clopen subsets of X such that U 6D V ; so there is an x in V 
 U .
By (RS) there must be global sections � , � in � (A) such that �.x/ 6D �.x/.
With Proposition 2.4 patch together a new global section, 
 D � j.X 

U / [ � jU: Then 
.x/ D �.x/ 6D �.x/ and 
jU D � jU . Recall that �U D
fh�1; �2i j U � �1 W�2g. Therefore, 
 �U � but not 
 �V � . �

4.16. Corollary. If ˚1, �1, �1, and "1 are restricted to CompBoole
Red and SheafBooleRed, then there is again an adjunction:

h�1; "1iW˚1 ���j �1W hSheafBooleRed;CompBooleRedi:
Composing this adjunction with the previous one gives a third adjunction

of the functors:

˚1˚2WBooleBraceRed!SheafBooleRed;

�2�1WSheafBooleRed!BooleBraceRed:

Composite notations are:

˚ D ˚1 ı ˚2; and � D �2 ı �1:
A comment is called for on how this new � encompasses the old �

that constructed all global sections in Sect. IV.2. Since the old � produces
the desired algebra, with a slight abuse of notation we may imagine it
simultaneously producing the associated Boolean algebra of congruences,
which is isomorphic to the dual of the base space.

We calculate that

˚.hA;B i/ D
	 ]

P2X

A
W
P
; �;X
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where X D SpecB. Notice how ˚2 first creates X but leaves A untouched
in the intermediate complex; then ˚1 produces the sheaf over the same
Boolean space. Notice a similar division of labor when we calculate

� .A/ D hA;B i;
where A is the algebra of global sections of the sheaf A and B D �ClopX .
The functor �1 first creates A but leaves the base space X untouched
en passant the intermediate complex; then �2 produces the dual Boolean
algebra B.

The new natural transformations associated with the composite adjunc-
tion are denoted as

�W 1BooleBraceRed! � ı ˚ and "W˚ ı � ! 1SheafBooleRed;

and operate like so:

�.A/WA! �
�
˚.A/

�
.A 2 domBooleBraceRed/I

".A/W˚�
� .A/

�!A .A 2 domSheafBooleRed/:

Specifically, from (III.2.1), for any A in dom BooleBraceRed,

�.A/ D �2
�
�1.˚2.A//

� ı �2.A/:
Similarly, for any A in dom SheafBooleRed,

".A/ D "1.A/ ı ˚1
�
"2.�1.A//

�
:

If we compute �.A/ D he';e� iWA! eA, where eA D � �
˚.A/

�
, we find that

e'.a/ D �.a/ and e�.�/ D �U�
.a 2 A; � 2 B/:

If we compute ".A/ D he ;e
iW eA!A, where eA D ˚�
� .A/

�
, we find that

e .Œ��Px
; x/ D �.x/ and e
.x/ D Px .� 2 � .A/; x 2 X/:

We formalize this adjoint situation as the principle theorem of this section,
which was abstracted in [Knoe92b].

4.17. Theorem. The functors,

˚ WBooleBraceRed � SheafBooleRedW�;
together with the natural transformations,

�W 1BooleBraceRed! � ı ˚ and "W˚ ı � ! 1SheafBooleRed;

form an adjunction:

h�; "iW˚ ���j � W hSheafBooleRed; BooleBraceRedi:
In other words, ˚ is a left adjoint of � , and � is a right adjoint of ˚ .
Moreover, " is a natural isomorphism.

Proof. Employ Theorems III.2.24, IV.3.18 and 4.14. �
The categories Complex and CompBooleRed have served their pur-

pose and will no longer be seen, except implicitly when equalizers are
needed.

11111
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We close this section by pointing out how second-order axioms — (RB),
(RC1), (RC2) and (RS)— arose in Definitions 2.8, 4.1 and 4.2. Clearly
they are aimed at ensuring the interdefinability of the different structures.
Starting with a complex, to recover a Boolean subsemilattice of congruences
it appears that one needs an axiom such as (RC2) in order to prove that
complements exist. In turn, starting with a sheaf, to prove (RC2) in the
resulting complex, one needs (RS). But to prove (RS) in a sheaf, when
coming from a complex, one also needs (RC1). Similarly, (RC1) is needed
to prove (RB) for Boolean braces. And, in going from Boolean braces back
to complexes, (RB) proves (RC1). We see that, in order to create functors
passing back and forth between the three kinds of categorical objects, the
choice of axioms is restricted and interlocking.

Here is a preview of what kind of Boolean subsemilattices will be created
in later chapters. In Chaps. VI, VII, and VIII, we will use suprema of factor
congruences to create the base space. In Chap. IX, the base space will be
created out of annihilators, and in Sect. XI.2, it will be Boolean congruences
(yet to be defined).



VI
Sheaves from Factor

Congruences

In studying sheaves of algebras over Boolean spaces, much more can be said
when the chosen congruences are factor congruences and their join agrees
with that of ConA. In this way, factorial braces are defined in the first
section. This notion appeared in the seminal paper of [Davey73], but not
by this name. Its benefit is that internal factor objects are brought to bear
on structural questions. The Gel’fand map � is now an isomorphism.

The second section explores the many equivalent ways to define Bool-
ean algebras of factor objects: bands, congruences and sesquimorphisms.
Commutativity of these is the key.

The third section defines the algebras of [Comer71]. The difference
between the algebras of Davey and Comer is this: in the former a fac-
torial brace starts with some factor congruences, in the latter all factor
congruences are used. Algebras with Boolean factor congruences (BFC) lead
naturally to reduced and factor-transparent sheaves, and pave the way to
representing shells in the next chapter.

The last section captures categorically these algebras by introducing
three the new categories: FactorBraceRed, AlgBFC and Sheaf
BooleRedFt – the last is the category of all reduced and factor-
transparent sheaves. We will find that FactorBraceRed is categorically
equivalent to SheafBooleRed, and AlgBFC to SheafBooleRedFt.
Thus, we have two generalizations of Stone’s representation theorem for
Boolean algebras [Stone37].

A. Knoebel, Sheaves of Algebras over Boolean Spaces, 147
DOI 10.1007/978-0-8176-4642-4 VI,
c� Springer Science+Business Media, LLC 2012
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1. Factorial Braces

The purpose of this section is simple. We abstract the appropriate proper-
ties of the algebra � .A/ of all global sections of a sheaf A over a Boolean
space. This is a special case of Chap. V and it is historically important:
the Boolean subsemilattice will now actually be a sublattice of factor con-
gruences. But more than this is true now: these conditions of [Davey73]
are strong enough to ensure that the Gel’fand map is not only injective
but also surjective: it maps the given algebra onto the algebra of all global
sections. Needed in the development is a discussion about how the selected
congruences may serve as moduli in the solution of various systems of equa-
tions. That pairwise solutions may imply a total solution is the Chinese
remainder theorem; it requires commutativity and distributivity of the
congruences.

Recall from Sect. I.2 that a congruence � of an algebra A is a factor
congruence if there is another congruence � 0 of A such that

� \ � 0 D 0ConA and � ı � 0 D 1ConA:

Call such a pair complementary. Designate the set of all factor congruences
of an algebra A by Con0 A. Remember their significance: to each pair of
complementary congruences corresponds a decomposition of A as a direct
product of two factors.

Because � ı � 0 � � _ � 0 for any congruences � and � 0, we realize that
complimentary factor congruences are also complimentary in the lattice
Con A. But the converse is false, for example, as seen with the three-
element semilattice SL3 that is not a chain:

�
0

�a �b.........................................................................
.........
.........
.........
.........
.........
.........
.

SL3

�
�

�
�

.........
.........

.........
.........

.........
.........

.........
.........

..................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
...

M 2

�
�

�
�
� .........

.........
.........

.........
.........

.........
.........

.........
..................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
...

..........................................................................................................

M 3

This also shows that focusing our attention on factor congruences is a
definite restriction, for there are Boolean subsemilattices of congruences
containing non-factor congruences. For example, in the semilattice SL3

just displayed, its lattice of congruences is the Boolean lattice M 2. Nev-
ertheless, the intermediate congruences are not a pair of complementary
factor congruences.

On the other hand, the set of factor congruences is not always a Boolean
subsemilattice. For example, in the vier group, G D Z2�Z2, complements
in Con G are not unique. For its set of factor congruences, Con0 G D Con G ,
and this is the five-element modular, nondistributive lattice M3.
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More broadly, vector spaces are good examples of algebras in which
Con0 A D Con A, since every linear subspace corresponds to a factor con-
gruence. By way of contrast, the regular non-commutative unital rings
A of von Neumann [vonN36] are historical examples in which usually
Con0 A ¤ Con A:

For these reasons we study algebras in which there is a set of factor
congruences satisfying special restrictions. To see what these might be we
look further into the Boolean braces of Sect. V.2 that are obtained from
sheaves. Conditions (a) and (b) of Theorem V.2.9 define the algebras of
Davey [Davey73, p. 288], to which a name is now attached.

1.1. Definition. A factorial brace hA;B i is an algebra A where

(i) B is a collection of factor congruences of A,
(ii) it is a Boolean sublattice of ConA, written B D hBI _;\;0 ; 0; 1i,

(iii) complements in B are complements as factor congruences.

Commutativity of congruences in B comes for free, as shown next.

1.2. Proposition. Let hA;B i satisfy the statements (i) and (ii) of Def-
inition 1.1. Then the congruences of B commute if, and only if, they satisfy
statement (iii) of it.

Proof. ) : Let � and � be commuting complements in the sublattice
B. It is always the case that �_� D .� ı�/[.� ı� ı�/[.� ı� ı� ı�/[� � � . It
follows that � ı � D � _ � D 1. Therefore, � and � are factor complements.
( : Here is a proof from [Pier68]. Let � and � be factor congruences

that are in B. To prove that � ı� D �ı� , it suffices to show that �_� � � ı�,
since always � ı � � � _ �. To that end, suppose that ha; ci 2 � _ �. Since �
has a factor complement � 0 in B, there is a b such that a � b � 0 c. Conclude
that hb; ci 2 � 0\.�_�/ D � 0\� � �, the equality courtesy of distributivity.
Hence, ha; ci 2 � ı �. �

Recall that the semilattice SL3, with B as the set of all its congruences,
is an example of a Boolean brace that is not factorial, for the reason that
two of the congruences fail to factor. So SL3 satisfies (ii) but not (iii) of
Definition 1.1.

11111
In preparation for Theorem 1.8, we discuss the Chinese remainder theorem

about the simultaneous solution of systems of equations modulo congru-
ences. However, this theorem is about neither numbers, rings, nor algebras;
it is really about equivalence relations. First comes the definition of it as
a property, followed by the theorem, with its proof given by a lemma that
goes to the heart of the matter. See [Grät79, p. 221, exercise 68] for a
different version.
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1.3. Definition. Suppose � is a collection of equivalence relations on a
set A. We say that � satisfies the Chinese Remainder Theorem (CRT) if,
whenever a finite system (for a1; a2; : : : ; an 2 A and �1; �2; : : : ; �n 2 �):

(1.1) x �

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

a1 .�1/;

a2 .�2/;
:::

an .�n/;

is pairwise solvable, then it is totally solvable by a common x.

In the next theorem, the join � _ � of two equivalence relation � and �
is the smallest equivalence relation that includes both.

1.4. Theorem. Let � be a lattice h�I _;\i of equivalence relations on
a set A where they commute: � ı � D � ı � .�; � 2 �/: Then � satisfies
the CRT if, and only if, � is distributive.

Proof. In the presence of commutativity, the distributivity of _ over
\ is equivalent to (1.2) below. The next lemma completes the proof. �

1.5. Lemma. Let � be a set of equivalences on a set A closed to finite
intersections. The CRT holds in � if, and only if, � is distributive in this
special sense:

(1.2) .�1 \ �2/ ı � D .�1 ı �/ \ .�2 ı �/ .�1; �2; � 2 �/:

Proof. ). One direction of inclusion � always holds; we need a proof
of the other inclusion �. To that end, assume that a Œ.�1 ı �/\ .�2 ı �/� b.
Then the system,

(1.3) x �

8
<̂

:̂

a .�1/;

a .�2/;

b .�/;

is pairwise solvable, and by the CRT it is completely solvable. Consequently,
a Œ.�1 \ �2/ ı �� b.
(. From (1.2) we will prove the CRT by induction on n when n 	 3,

going from n�1 to n. Assume that there are two sequences a1; a2; : : : ; an in
A and �1; �2; : : : ; �n in � such that ai � aj .�i ı �j / for all i and j . When
the CRT holds for n�1, there is an x0 such that x0 � ai .�i / whenever i < n.
Since also ai � an .�i ı�n/, we have that x0 � an .�i ı�n/ if i < n, and hence
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that x0 � an .
T
i<n.�i ı �n//. By distributivity, x0 � an ..

T
i<n �i / ı �n/.

Thus, there exist an x in A such that x � x0 ..
T
i<n �i / and x � an .�n/.

Therefore, x � ai .�i / for all i . �

1.6. Proposition. Any factorial brace hA;B i satisfies the Chinese re-
mainder theorem.

1.7. Exercise. (a) Give counterexamples showing that both distribu-
tivity and commutativity of equivalence relations are essential for the
truth of the CRT. Hint: for distributivity use the vier group Z22. For
commutativity use the algebra on three elements that has no opera-
tions.

(b) Generalize pairwise solvability to n-solvability in the obvious way. Give
a counterexample in R3 showing that, with only the commutativity of
equivalence relations, 3-solvability does not imply 4-solvability.

The next and main theorem of this section, due to Davey [Davey73], is
patterned after Pierce’s construction for rings [Pier67]. Krauss and Clark
present it in a rather different manner [KraCl79, pp. 55–59].

1.8. Theorem. Let hA;B i be a factorial brace, and consider its set,
X D Spec B, of prime ideals P of B. Give X the usual Stone topology as
spelled out in Sect. III.4. Let hA; W ;X i be the resulting complex, and let

A D
]

P2X

A
W
P

be the resulting sheaf with the usual equalizer topology. Then A is isomor-
phic by the Gel’fand map � to the algebra � .A/ of all global sections of
the sheaf A over the Boolean space X .

Proof. Since B is a Boolean subsemilattice of Con A, we may con-
struct the sheaf, A D A==B. By Theorem V.2.1, the Gel’fand map, � WA !
� .A/; is an injective homomorphism. All that remains to be proven is that
this injection is an isomorphism. To this end, we will use Proposition 1.6 to
show that � is surjective. Recall that this map is given by �.a/.P / D Œa�P
when P 2 Spec B.

To start, assume that � 2 � .A/; we must prove that there is an element
s in A such that �.s/ D � , that is, �.s/.P / D �.P / for all prime ideals
P in X . This last condition, translated to congruences, would mean that
�.s/

W
P � . Since we are dealing with a sheaf over a Boolean space, we know

by Proposition V.2.4d that there are a finite number n of elements ai in A
and an equal number of disjoint clopen subsets Ui covering X such that

�.P / D �.ai /.P / .P 2 Ui and 1 � i � n/:
But each of these clopen sets may be chosen to have the special form:

Ui D U�i
D fP 2 X j �i 2 P g
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for some �i in B. Recall Theorem III.4.1 establishing the isomorphism
between B and the Boolean algebra ClopSpecB of clopen sets of prime
ideals of B.

We have to find one s that will simultaneously replace all of the ai . To
do this with the CRT, we need only establish pairwise solvability. Since
Ui \ Uj D ; when i ¤ j , we have that �i _ �j D 1 since 1ConA 2 B;
alternatively �i _ �j would otherwise belong to a prime ideal common to
both Ui and Uj . By commutativity, �i ı �j D �i _ �j D 1: Hence there are
sij in A such that ai �i sij �j aj , and we have 2-solvability. Therefore, there
is a common solution to all the equations,

s �i ai .i � n/:
It follows from the form of the Ui and the nature of the stalks that

s
_
P ai .P 2 Ui /;

and hence

�.s/.P / D ˝
P;

s
W
P

˛ D ˝
P;

ai
W
P

˛ D �.ai /.P / D �.P / .P 2 Ui /:

Since the Ui cover X ,

�.s/.P / D �.P / .P 2 X/;
and thus �.s/ D � . This proves the surjectivity of � , and the theorem. �

As Davey did, we established the sheaf representation of factorial braces
without assuming axiom RB, which stipulated that the interior of the set
of trivial stalks is empty. But the corresponding axiom RS, defining re-
duced sheaves, will be necessary when going full circle in order to prove the
equivalence of the categories to come in Sect. 4. We know of no practical
application where (RB) and (RS) are violated.

1.9. Problem. Find an algebra A having a proper ideal P of factor
congruences whose union is an improper congruence, that is,

W
P D 1ConA.

A slightly stronger form of axiom RB has an immediate and useful con-
sequence. For a collection of ideals of congruences, such as Spec B, write
the collection of suprema of its members as

_
Spec B D

n_
P j P 2 Spec B

o
:

As a quotient space, it inherits the topology of SpecB. When all the
suprema

W
P are proper congruences, this is nothing new as the next result

of [Comer71] shows.

1.10. Proposition. Let hA;B i be a factorial brace such that

(1.4)
ˇ
ˇ
_
P

ˇ
ˇ ¤ 1 .P 2 Spec B/:
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(a) Then for prime ideals P of B, the function,

P 7!
_
P;

is bijective. Hence, the Boolean space SpecB of prime ideals of B and
the Boolean space

W
Spec B of their suprema are homeomorphic.

(b) If � and � are different congruences of
W

Spec B, then � ı � D 1ConA.
(c) If P is a prime ideal of B and � 2 B, then

� 2 P if, and only if, � �
_
P:

(d) If � 2 B, then
� D

\ ˚ _
P

ˇ
ˇ � 2 P 2 Spec B

�
:

Proof. (a) It suffices to demonstrate injectivity, that is, for any two
prime ideals M and P , we must encounter a contradiction by assuming
that

W
M D W

P but M ¤ P . Suppose that there is a congruence � in
M 
P . By the nature of prime ideals in a Boolean algebra, it follows that
� 0 2 P . Remember that for any ideal N of B,

W
N D S

N . Therefore,
� �W

M and � 0 �W
P D W

M . Hence, 1 D � ı� 0 �W
M , which violates the

propriety of
W
M guaranteed by (1.4). Thus the quotient map from Spec B

to
W

Spec B is bijective.
(b) Essentially, repeat the proof of (a).
(c) ). This is true since

W
P DS

P by Proposition V.1.5.
(. Assume that � �W

P . If � … P , then � 0 2 P , a prime ideal. Therefore,
� 0 �W

P , and so 1 D � _ � 0 �W
P , which is a contradiction to (1.4).

(d) �. Prove with (c).
�. Prove by the contrapositive. If not a � b, then use Lemma V.1.6 to

find a prime ideal P of B such that � 2 P but not a
W
P b. Thus, a and b

are not related by the right side. �

Note that when (1.4) is satisfied, then part (a) of this proposition justifies
using either space, SpecB or

W
SpecB, as the base space for the construc-

tion of complexes and sheaves. Comer states in [Comer71, proposition 2.3]
a converse to part (a) when Con0 A is a Boolean sublattice of Con A:
such an algebra satisfies (1.4) iff the map going from regular congruences
back to their ideals, ' 7! ˚

� 2 Con0 A j � � '�
, is surjective, onto the

lattice of all ideals of factor congruences. (A congruence � is regular if
� D W ˚

� 2 Con0 A j � � � �
.)

2. Boolean Algebras of Factor Objects

The classical example of an algebra whose factor objects form a Boolean
algebra is any unital ring; the central idempotents, the factor elements
serve as the starting point for constructing a sheaf over a Boolean space.
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Although factor elements may not be available in an arbitrary algebra, one
can still look for algebras in which other kinds of factor objects, such as
factor congruences, form a Boolean algebra; in this case one says that the
algebra has ‘Boolean factor congruences’.

Even when all the factor congruences do not form a Boolean algebra,
some subset nevertheless will. Together 0ConA and 1ConA always do. As
already seen in the previous section, the presence of a Boolean algebra B

of factor congruences of an algebra allows the algebra to be represented as
all global sections of a sheaf over the prime ideal space of B.

Pursued in this section is what it means for a selected set of factor objects
to form a Boolean algebra. There are three parts to it: in the first not all
factor objects need form a Boolean algebra – only a selected set, as in
Sect. 1. In the second part they all must, as developed further in Sect. 3.
In the third part, there are further characterizations, such as the strict
refinement property, which is related to factorable congruences. We start
off by presenting several ways to characterize Boolean algebras of factor
objects: commuting bands, congruences, and sesquimorphisms, which yield
isomorphic Boolean algebras.

As factor bands are most amenable to this analysis, they come first. We
defined a factor band ˇ of an algebra A in Sect. II.2 as a homomorphism
from A � A to A that, as a binary operation, is a rectangular band. Let
Band0 A denote the set of all factor bands of an algebra A. In general, no
structure or operations are to be found on this set. But when we start with
a factorial brace hA;C i, the associated set B of factor bands will have the
form of a Boolean algebra, B D hBI _;^; 0; 0; 1i, where the operations of
A are defined for ˛; ˇ in B and a; b in A:

.˛ _ ˇ/ .a; b/ D ˛ .ˇ .a; b/ ; b/ ;(2.1)

.˛ ^ ˇ/ .a; b/ D ˛ .a; ˇ .a; b// ;(2.2)

ˇ0 .a; b/ D ˇ .b; a/ ;(2.3)

0 .a; b/ D a;(2.4)

1 .a; b/ D b:(2.5)

More generally, these operations may be defined on any factor bands of
any algebra, or even on any binary functions on a set A. However, unless
two factor bands ‘commute’, their join or meet may no longer be a factor
band. Two binary functions ˛ and ˇ on A are said to commute when

˛ .ˇ .a; b/ ; ˇ .c; d// D ˇ .˛ .a; c/ ; ˛ .b; d// .a; b; c; d 2 A/:
In the matrix notation of Sect. II.1,

˛.Mˇ/ D .˛M/ˇ

for all 2 by 2 matrices M over A. The real interest is when this is the
case and these five operations – _;^; 0; 0; 1 – obey the identities of Boolean
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algebras. Note for use in future proofs that, if two factor bands commute,
say ˛ and ˇ on A, then by idempotence, for a; b; c in A:

(2.6) ˛.a; ˇbc/ D ˇ.˛ab; ˛ac/ and ˛.a; ˇab/ D ˇ.a; ˛ab/:

2.1. Definition. A set B of factor bands of an algebra A is called a
Boolean algebra of commuting factor bands if

(i) B is closed to the operations ^ and 0 (and hence closed to _, 0, 1);
(ii) These operations satisfy the identities of Boolean algebras; and
(iii) All the bands of B commute.

George Bergman calls a Boolean algebra of commuting factor bands a
‘B-set’ [Berg91]. Stephen Bloom, Zoltán Ésik and Ernest Manes show
that any Boolean algebra may be represented by a Boolean algebra of
commuting factor bands [BloÉM90].

Recall from Sect. II.2 the relationship between factor bands and pairs of
complementary factor congruences:

(1) a � b if, and only if, ˇ.a; b/ D b;
a � 0b if, and only if, ˇ.a; b/ D a;

(2) ˇ.a; b/ D c if, and only if, a � c and c � 0 b.

When compliments are unique, as in the next proposition, this one-to-one
correspondence may be notated ˇ 7! �ˇ and � 7! ˇ� , dispensing with
the need for pairs of congruences. To bring out the parallel nature of the
concepts of this section, at the risk of redundancy with the last section,
we say that a set � of factor congruences of an algebra A is a Boolean
algebra of commuting factor congruences if hA; �i is a factorial brace.

2.2. Proposition. Let A be an algebra.

(a) For any Boolean algebra B of commuting factor bands of A, the corre-
sponding set �B is a Boolean algebra of commuting factor congruences,
and B Š �B via ˇ 7! �ˇ .

(b) For any Boolean algebra � of commuting factor congruences of A, the
corresponding set ˇ� is a Boolean algebra of commuting factor bands,
and � Š ˇ� via � 7! ˇ� .

(c) These mappings are inverses of each other: ˇ�ˇ
D ˇ and �ˇ�

D � .
Proof. That �ˇ and ˇ� are factor objects follows from Theorem II.2.5.

So does the bijectivity of these maps, as well as the equalities in (c).
(a) To prove the commuting, � ı � D � ı �, of two congruences � and �

in �B , suppose � D �˛ and � D �ˇ for some ˛ and ˇ in B. Assume that
a .� ı �/ b, with the objective of proving that a .� ı �/ b. Now there exists
an x such that a � x and x � b; we need a y such that a � y and y � b.
A proposed solution for y is ˛.b; ˇab/; this is also equal to ˇ.˛ba; b/ for
commuting factor bands. Since a � x � b, ˛ax D x and ˇxb D b. Because
� and � are symmetric relations, also ˛xa D a and ˇbx D x. To prove
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that a � y and y � b, it suffices to prove that ˇay D y and ˛yb D b. From
various identities (2.6) for commuting factor bands,

ˇay D ˇ�
a; ˇ.˛ba; b/

�

D ˇ.a; b/
D ˇ.˛xa; b/
D ˛.ˇxb; ˇab/
D ˛.b; ˇab/
D y:

Hence, a � y. More simply, also ˛yb D b and accordingly y � b. So a .�ı�/ b,
and therefore, the congruences commute.

That the map ˇ 7! �ˇ is a homomorphism will be proven by establishing
the preservation of ^ and 0. For meet we need to prove that �˛^ˇ D �˛\�ˇ .

For one direction of inclusion, suppose a �˛^ˇ b; then b D .˛^ˇ/.a; b/ D
˛.a; ˇab/. First, ˛ab D ˛.a; ˛.a; ˇab// D ˛.a; ˇab/ D b; hence a �˛ b. Sec-
ond, with the help of the last sentence and commutativity, ˇab D ˇ.a; ˛ab/
D b; thus a �ˇ b. Therefore, �˛^ˇ � �˛ \ �ˇ .

For the other direction, assume a.�˛\�ˇ /b. Then ˛ab D b and ˇab D b.
Hence, .˛^ˇ/.a; b/ D ˛.a; ˇab/ D ˛ab D b. Thus a �˛^ˇ b, and therefore,
�˛ \ �ˇ � �˛^ˇ .

Similarly proven but simpler, complementation is preserved: .�˛/
0 D �˛0 .

(b) The preservation of the Boolean operations comes from part (c) and
their preservation in part (a).

Let ˛ and ˇ be factor bands in B; we need to prove their commutativity:

˛.ˇab; ˇcd/ D ˇ.˛ac; ˛bd/ .a; b; c; d 2 A/:
On the left side introduce L D ˛vw where v D ˇab and w D ˇcd ; likewise,
on the right introduce R D ˇyz, where y D ˛ac and z D ˛bd . We must
show that L D R. To that end, let � and �0 be the complementary fac-
tor congruences associated with ˛, and similarly � and � 0 with ˇ. By the
correspondence between bands and congruences, the equation L D ˛vw

implies that v � L and L � 0w; and there are ten more such relationships.
From these we make the chain of relationships:

L � v � a � y � R:

Hence L .� _ �/ R. By parallel arguments, also L . � _ � 0/R, L . �0 _ �/R,
and L . �0 _ � 0/R. Thus, L and R are related by

.� _ �/\ .� _ � 0/ \ .�0 _ �/ \ .�0 _ � 0/;
which, as a Boolean expression, is equal to 0ConA. Therefore, L 0ConA R

and hence L D R. �

In contrast to Boolean subsemilattices, where there may not be a maxi-
mal one, commuting factor objects always yield a maximal Boolean algebra.
There may be more than one, as in the Vier group .Z2/

2.
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2.3. Proposition. In any algebra there is a maximal Boolean algebra of
commuting factor bands.

Proof. Use Zorn’s lemma. �

2.4. Exercise. Let B be a set of factor bands of an algebra A, and let
B be the closure of B under ^ and 0. The following are equivalent.

(a) All the bands of B commute.

(b) All the bands of B commute.

(c) The closure B is the carrier of a Boolean algebra of factor bands, B D
hBI _;^; 0; 0; 1i.

2.5. Exercise. Exercise II.2.21 showed that any factor band ˇ of a vector
space V is of the form, ˇ.v;w/ D Mv CM 0w, for linear transformations
M and M 0 such that M 2 D M , M 02 D M 0, M CM 0 D 1, and MM 0 D 0 D
M 0M . Prove that the join ˛ _ ˇ of two factor bands, ˛.v;w/ D Lv C L0w
and ˇ.v;w/ D MvCM 0w, is again a factor band whenever any pair among
L, L0, M and M 0 commute. Is there is geometrical interpretation of ˛_ˇ?

11111
Analogous results might be phrased and proved for factor congruences

and sesquimorphisms, and perhaps also for factor ideals and elements. But
we shall be content to correlate Boolean algebras of them with those of fac-
tor bands as already done for factor congruences. In general, by a Boolean
algebra of factor objects of whatever kind, we mean a set F of them closed
to the meet and complement appropriate for that kind of factor object such
that under these two operations F forms a Boolean algebra. Keep in mind
that complements over all possible factor objects need not be unique, but
in a Boolean algebra they are. For congruences and ideals, meet is inter-
section; and for sesquimorphisms, it is composition. As always, the other
three standard Boolean operations are definable with these two:

x _ y D .x0 ^ y0/0; 0 D x ^ x0; 1 D 00:

These definitions fit in with the already discussed Boolean algebras of factor
bands and congruences. In special varieties in the subsequent chapters,
many alternative and simpler forms for the Boolean operations of various
factor objects will appear.

To get Boolean algebras of commuting sesquimorphisms, we need to sin-
gle out one element o, called the origin, of an algebra A, that is, hA; oi is
a pointed algebra. The element o need not be a constant term of A.

From a Boolean algebra B of commuting factor bands of A we obtain
a Boolean algebra M of commuting factor sesquimorphisms of A by the
formulas of Theorem II.2.12. Designate the maps passing back and forth
between factor bands and sesquimorphisms by ˇ 7! �ˇ and � 7! ˇ�.
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Two sesquimorphisms � and 	 commute if � ı 	 D 	 ı �. The Boolean
operations of M are

� ^ 	 D � ı 	;
�0 D the factor complement of �;

� _ 	 D �
�0 ı 	0�0

;

0 .a/ D o .a 2 A/;
1 .a/ D a .a 2 A/:

For the next proposition remember that
antiŠ means an anti-isomorphism of

Boolean algebras. Anti-isomorphisms seem inevitable here, unless the Bool-
ean operations on bands or sesquimorphisms are redefined (see Exercise 2.10).
A fuller explanation of the choices made will be given at the end of
Sect. VII.4.

2.6. Proposition. Let hA; oi be a pointed algebra.

(a) For any Boolean algebra B of commuting factor bands of A, the corre-
sponding set �B is a Boolean algebra of commuting factor sesquimorph-

isms, h�B I _;^;0 ; 0; 1i with operations as given above. Then B
antiŠ �B

via ˇ 7! �ˇ where

�ˇ .a/ D ˇ.a; o/ .a 2 A/:
(b) For any Boolean algebra M of commuting factor sesquimorphisms of

A, the corresponding set ˇM is a Boolean algebra of commuting factor
bands, hˇM I _;^;0 ; 0; 1i with operations as given by (2.1)–(2.5). Then

M
antiŠ ˇM via � 7! ˇ� where

ˇ�.a; b/ D c iff �c D �a and �0c D �0b .a; b; c 2 A/:
(c) These mappings are inverses of each other: ˇ�ˇ

D ˇ and �ˇ�
D �.

Proof. With the help of Sect. II.2, one establishes commutativity,
bijectivity and the preservation of Boolean operations. �

2.7. Problem. As an example of Boolean algebras of commuting ses-
quimorphisms, see George Bergman’s article [Berg72]. Could its content
really be that of universal algebra?

In contrast to factor bands, congruences, and sesquimorphisms, Boolean
algebras of factor ideals and elements do not appear yet to be definable
independently of the preceding factor objects (but they will be in Chap.
VII). We defined ideals in Sect. II.1 in terms of congruences, starting with
a pointed algebra hA; oi. From a collection � of congruences define a col-
lection of ideals:

o

�
D

n o

�
j � 2 �

o
:
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2.8. Proposition. Let � be a Boolean algebra of commuting factor
congruences of an algebra A.

(a) If two members of � have a congruence class in common, then they
are equal.

(b) In other words, if c=� D c=� for some c in A and some � and � in �,
then � D �.

(c) If A also has an origin o, then � is isomorphic to the corresponding
Boolean algebra o=� of factor ideals. Its Boolean operation of meet is
intersection, and the complement of o=� is o=� 0.

Proof. (b). It suffices to prove that � 0 and � are complementary:

(1) � 0 _ � D 1 and (2) � 0 \ � D 0:
For (1) suppose that c=� D c=� and that a; b 2 A; we show that a .� 0 _ �/ b:

a � 0 �0.a/ � c � �0.b/ � 0 b:
Here �0 is the factor sesquimorphism associated with � 0 with respect to c
as an origin. The first congruence is by Theorem II.2.12, and the second by
Theorem II.2.19: �0.a/ 2 c=� for any a, and the assumption: c=� D c=�.

For (2) one also obtains symmetrically from (1) that � _ �0 D 1. Com-
plement both sides to finish with � 0 \ � D 0.

(a) follows from (b).
(c) Set c D o in (b) to show that factor ideals uniquely determine the

factor congruences in �. Clearly, o=.� \ �/ D o=� \ o=�: Thus the map
� 7! o=� is an isomorphism. �

Factor elements are defined in terms of factor bands or sesquimorphisms,
starting with a doubly pointed algebra hA; o; t i. From a Boolean algebra
M of commuting sesquimorphisms, define a collection of elements of A:

M.t/ D f�.t/ j � 2M g :
The Boolean operations are defined indirectly through those of M :

�.t/ ^ 	.t/ D .� ı 	/.t/ and .�.t//0 D �0.t/:
It’s an open question as to how much can be said in general about these
factor elements. In the next several chapters, explicit answers will be given
for various types of shells.

2.9. Problem. Define a full house to be a doubly pointed algebra
hA; o; t i in which any Boolean algebra of factor elements is isomorphic
to the Boolean algebra of commuting factor sesquimorphisms from which
it came. Isomorphisms with the other three kind of factor objects follow
from earlier results. For what algebras can an origin o and terminus t be
found so that they are full houses? When can the various factor objects be
independently defined? What does it mean for factor ideals to commute, for
elements? When can their Boolean operations be independently defined?
Chapter VII will give some answers.
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2.10. Exercise. To better understand how natural were the choices
made for the Boolean operations, consider the doubly pointed ring R3

where o D h0; 0; 0i and t D h1; 1; 1i. Describe geometrically within the
three-fold product R � R � R the different kinds of factor objects and the
Boolean operations on them.

11111
We present now a more detailed view of factoring, namely, from the

vantage point of factorable congruences; then proceed to more concepts
equivalent to having Boolean factor congruences, such as the strict refine-
ment property. No doubt these concepts could also be phrased in terms of
factor bands, sesquimorphisms, or ideals. The next definition captures the
idea of a homomorphic image of a product inheriting the product. How it
does this is part of the content of the two propositions that follow it.

2.11. Definition. A congruence � of an algebra A is factored by a pair
of complementary factor congruences � and � 0 if

(2.7) � D .� _ �/\ .� _ � 0/:

Under the circumstances, (2.7) equivalent to

(2.8) � D .� _ �/ u .� _ � 0/;

in the notation of Definition II.2.31. A congruence is factorable if it is
factored by all pairs of complementary factor congruences. An algebra has
factorable congruences if all its congruences are factorable; and a variety
has factorable congruences if all its algebras have them. An algebra has
factorable factor-congruences if (2.7) holds only for factor congruences
�, and complementary factor congruences � and � 0.

Figure 1 illustrates the factorable congruence � in the ring Z12. Set � D
mod 6, � D mod 3, and � 0 D mod 4. The columns are the �-classes and the
rows the � 0-classes. The �-classes are enclosed by lines.

9 1 5

3 7 11

6 10 2

0 4 8

Figure 1. The factorable congruence mod 6 in Z12

Grant Fraser and Alfred Horn [FraHo70] showed that the concept of
factorable congruence is definable by a Mal’cev condition. It is called the
‘Frazer-Horn-Hu property’ by Bigelow and Burris [BigBu90], and ‘directly
decomposable congruence’ by Chajda, Eigenthaler, and Länger [ChaEL03,
p. 35]. It was described in Problem 40 of Grätzer’s book [Grät79, pp.
195, 345].
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Clearly, if an algebra has factorable congruences, then it has also
factorable factor-congruences. This last concept will be shown in the next
section to be equivalent to the better known notion of having ‘Boolean fac-
tor congruences’. Here are some examples: unital nullital semigroups have
factorable factor-congruences; and lattices and unital rings have also fac-
torable congruences. Their proofs and many more examples will appear
subsequently. The four-element semilattice .C 2/

2 has factorable factor-
congruences but not factorable congruences (Bigelow and Burris
[BigBu90]). More general than for lattices, the following is easy to prove.

2.12. Proposition. If ConA is distributive, then A has factorable con-
gruences.

Proof. With distributivity we get (2.7):

.� _ �/ \ .� _ � 0/ D � _ .� \ � 0/ D � _ 0 D �: �

Examples of congruence-distributivity are Dedekind domains, lattices
and median algebras. Even better, lattices with additional operations are
also congruence-distributive, such as lattices with operators (Gehrke and
Jónsson [GehJó04]) and lattice-ordered monoids (Jipsen and Tsinakis
[JipTs02]).

2.13. Problem. (a) Do the sheaves constructed from the factor congru-
ences of nontrivial lattices ever have trivial stalks?

(b) More generally, do such sheaves of nontrivial algebras with factorable
congruences ever have trivial stalks?

Here are some equivalent formulations for a congruence to be factorable
that will help to prove Proposition 2.15. We need the product of congru-
ences. If ˛ 2 Con A and ˇ 2 Con B, their product in A �B is defined:

ha1; b1i .˛ � ˇ/ ha2; b2i if a1 ˛ a2 and b1 ˇ b2:

Not every congruence in a product has this form. However, part (c) in the
next proposition amounts to saying that any factorable congruence in a
product is always the product of congruences.

2.14. Proposition. Suppose that � 2 Con A for some algebra A and that
� and � 0 are complementary factor congruences of A. These statements are
equivalent.

(a) � D .� _ �/ \ .� _ � 0/, that is, � and � 0 factor �.

(b) A
�

�Š A
�_� � A

�_� 0
, where �.a

�
/ D h a

�_� ;
a

�_� 0
i:

(c) '.�/ D � � � 0 for some � in Con.A=�/ and � 0 in Con.A=� 0/, where '
is the canonical isomorphism A

'Š A
�
� A
� 0 :

Proof. The plan is to prove (a) , (b) and (c), (a). These equiva-
lences lean heavily on Chap. II and especially its Sect. 2.
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(a) ) (b). By Proposition II.2.30, � is an inner direct product of � _ �
and � _ � 0, and hence � is an isomorphism.

(b) ) (a). The inclusion, � � .�_ �/\ .�_ � 0/, holds generally. For the
other direction, assume that a

�
.� _ �/ \ .� _ � 0/

�
b. Then

�
�a

�

�
D

� a

� _ � ;
a

� _ � 0
�
D

� b

� _ � ;
b

� _ � 0
�
D �

�b

�

�
:

Since � is injective, a=� D b=�, and thus a � b.
(a) ) (c). Assuming (a), we need to prove that '.�/ D � � � 0 in (c). To

that end, define � D .� _ �/=� and � 0 D .� _ � 0/=� 0. Recall that

a

�

� _ �
�

d

�
iff a .� _ �/ b; and

c

� 0
� _ � 0

� 0
d

� 0 iff c .� _ � 0/ b:

Also recall that, for all a, b, c and d in A,

Da

�
;
a

� 0
E
'.�/

Db

�
;
b

� 0
E

iff a � bI
Da

�
;
c

� 0
E
.� � � 0/

Db

�
;
d

� 0
E

iff
a

�
�
b

�
and

c

� 0 �
0 d
� 0 :

That '.�/ � � � � 0 is clear from the definitions just given.
To prove the other direction, � � � 0 � '.�/, assume that

Da

�
;
c

� 0
E
.� � � 0/

Db

�
;
d

� 0
E
:

Introduce x and y so that a � x � 0 c and b � y � 0 d . Then x � a .� _ �/ b � y:
Likewise, x .� _ � 0/ y: Hence, x .� _ �/\ .� _ � 0/ y; and x � y by (a).
Thus,

Da

�
;
c

� 0
E
D

Dx

�
;
x

� 0
E
'.�/

Dy

�
;
y

� 0
E
D

Db

�
;
d

� 0
E
:

(c) ) (a). Four steps are needed. First, since '.�/ D � � � 0, it follows
that

A

�

'=�Š A=�

�
� A=� 0

� 0 :

Second, one must show that � D .� _ �/=� and � 0 D .� _ � 0/=� 0; only the

first is proven.
� � .� _ �/=�: Assume that .a=�/ � .b=�/: Since '.�/ D � � � 0, then

a � b, by their definitions. Hence .a=�/
�
.� _ �/=�/� .b=�/:

� � .�_�/=�: Suppose that .a=�/
�
.� _ �/=�/� .b=�/:Then, a .� _ �/

b: Thus, there must exist xi such that

a � x1 � x2 � : : : � xn�1 � xn � b:
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Therefore,
a

�
�
x1

�
D x2

�
� : : : D xn�1

�
�
xn

�
D b

�
:

Third, by combining the first two steps of this proof, we find that

A

�
Š A=�

.� _ �/=� �
A=� 0

.� _ � 0/=� 0 :

Š A

� _ �/ �
A

� _ � 0 :

Fourth, since this last is canonical, � D .�_�/\.�_� 0/; which is (a). �

Burris [Burr86] and Werner [Wern74] further characterized factorable
congruences. Factorable congruences are now explained categorically by
adapting a formulation due to Awad A. Iskander [Iska96].

2.15. Proposition. A variety V has factorable congruences if, and only
if, for every factorization, A Š B �B 0, of an algebra A in V, with projec-
tions � and � 0, and for every surjective homomorphism, 
WA ! C , there
is a factorization, C Š D � D 0, with projections 
 and 
0, and together
with surjective homomorphisms,  WB ! D and  0WB 0 ! D 0, such that
this diagram commutes:

A C.................................................................................................................................................... ............



B 0
......................................................... .......

.....
� 0

D0
B

................................................................................................
.....
............

�

D

.............
.............

.............
....................

.....
............



.............

.............
............ .......
.....

0

............. ............. ............. ............. ............. ....................... ...
.........

 

............. ............. ............. ............. ............. ......................... ...
.........

 0

Restricting the 
 in this diagram to those surjective homomorphisms for
which ker
 is a factor congruence characterizes those varieties having fac-
torable factor-congruences.

Proof. ). Given A Š B �B 0 with factorable congruences and with
data �, � 0 and 
 as specified, we must complete the diagram. We use (b)
of Proposition 2.14. Set � D ker�, � 0 D ker� 0, � D ker
, D D A=.� _ �/,
and D0 D A=.� _ � 0/. Without loss of generality, assume that B D A=� ,
B 0 D A=� 0, and C D A=�. Thus, �.a/ D a=� , � 0.a/ D a=� 0, and 
.a/ D
a=�: Finally, define 
WC ! D by 
.a=�/ D a=.� _ �/, and  WB ! D by
 .a=�/ D a=.�_ �/, etc. These easily settle commutativity: 
 ı 
 D  ı �.
(. Given the possibility of factoring any homomorphic image of a prod-

uct with the commutative diagram as indicated, we will prove (c) of Propo-
sition 2.14. To that end, let � be a congruence of A that is to be factored. We
simplify the presentation by replacing isomorphisms by equalities, wherever
possible, as for example ' of (c) by 1A. That is, without loss of general-
ity assume that A D B � B 0. Take 
 to be the canonical homomorphism
from A onto A=� D C The existence of a product for C may be also
taken to be equality, C D D � D0, with 
 adjusted accordingly so that
ker
 D �. Then commutativity of the diagram above simply asserts the
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existence of surjective homomorphisms,  WB ! D and  0WB 0 ! D0, such
that 
 D h ; 0i. Define � D ker and � 0 D ker 0. The equality, � D ��� 0,
now follows easily (for b; c 2 B and b0; c0 2 B 0):

hb; b0i � hc; c0i , 
.hb; b0i/ D 
.hc; c0 i/
, h ; 0i.hb; b0i/ D h ; 0i.hc; c0i/
,  .b/ D  .c/ and  0.b0/ D  0.c0/
, b � c and b0 � 0c0

, hb; b0i. � � � 0 /hc; c0i: �

2.16. Problem. Swamy and Murti [SwaMu81] define the Boolean cen-
ter C of any algebra A to be the set of all factorable factor-congruences
having a factorable complement. They show that C is a Boolean lattice
of factor congruences, which gives a sheaf decomposition of A per Sect. 1.
Note that C D Con0 A iff A has factorable factor congruences.

(a) Is this Boolean center the intersection of all maximal Boolean lattices
of factor congruences of A? Contrast this with Proposition 2.3.

(b) Compare this Boolean center with Elem0 Con A, the Boolean algebra
of Boolean congruences of Sect. XI.2.

11111
In a unitary ring, which always has factorable factor-congruences, factor

elements are defined as those elements that are idempotent and commute
with all other elements of the ring. Thus, they need not be defined in terms
of other factor objects such as bands, which has been the case so far. Notice
in its ‘commutative’ law, er D re; that there are two kinds of ‘variables’:
r which runs over all ring elements and e which is restricted to factor
elements. In Chap. VII (Theorem 3.4 and Exercise 3.12, for example), we
will explore more generally how to characterize factor elements in terms of
such identities.

In preparation, we define the general concept of a ‘factor identity’ and
state a criterion that makes it easy to verify such identities in algebras
more general than rings. For simplicity in this discussion, let A be a doubly
pointed algebra hAI 0; 1; : : : ; !; : : :i in which the origin 0 sand 1 are taken as
constants of A. Recall from Sect. II.2 that complementary factor elements
are elements e and e0 of A such that e D ˇ.1; 0/ and e0 D ˇ.0; 1/ for some
factor band ˇ of A. Remember that in such a general set-up, e and e0 will
not always uniquely determine the factor band, from which they came.

2.17. Definition. A factor identity is an identity

(2.9) t1.x1; x2; : : : ; xm; z1; z
0
1; z2; z

0
2; : : : ; zn; z

0
n/

� t2.x1; x2; : : : ; xm; z1; z0
1; z2; z

0
2; : : : ; zn; z

0
n/

where t1 and t2 are terms of a given type and there are two sorts of variables:
the ordinary variables x1; x2; : : : ; xm; and the ‘factor’ variables, which come
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in pairs z1; z
0
1; z2; z

0
2; : : : ; zn; z

0
n. Not all variables need to occur explicitly.

Such an identity is satisfied in a doubly pointed algebra A if

(2.10) tA1 .a1; a2; : : : ; am; e1; e
0
1; e2; e

0
2; : : : ; en; e

0
n/

D tA2 .a1; a2; : : : ; am; e1; e0
1; e2; e

0
2; : : : ; en; e

0
n/

for all ai in A and all pairs of complementary factor elements ej and e0
j .

2.18. Theorem. Let t1 � t2 be a factor identity in the type of a doubly
pointed algebra, A D hAI 0; 1 : : : ; !; : : :i, with factorable factor-congruences.
Then this identity is satisfied in A if, and only if,

(2.11) tA1 .a1; a2; : : : ; am; c1; c
0
1; c2; c

0
2; : : : ; cn; c

0
n/

D tA2 .a1; a2; : : : ; am; c1; c0
1; c2; c

0
2; : : : ; cn; c

0
n/

for all ai in A and all pairs of complementary constants ci and c
0
i set equal

to 0 and 1 respectively, or to 1 and 0 respectively, with the assignments
chosen independently over all pairs.

Proof. ). Obvious.
(. A proof with two pairs of complementary factor variables suffices

to illustrate the basic idea. Let e1 and e0
1 be the complementary factor

elements coming from a factor band ˇ1. From the latter come the comple-
mentary factor congruences �1 and � 0

1. Let e2 and e0
2 likewise be from ˇ2

with corresponding �2 and � 0
2. Then,

tA1 .a1; a2; : : : ; am; e1; e
0
1; e2; e

0
2/ .�1 _ �2/ tA1 .a1; a2; : : : ; am; 1; 0; 1; 0/

D tA2 .a1; a2; : : : ; am; 1; 0; 1; 0/

.�1 _ �2/ tA2 .a1; a2; : : : ; am; e1; e
0
1; e2; e

0
2/:

Similarly, we prove that the first and last terms are also related by �1 _ � 0
2,

� 0
1 _ �2 and � 0

1 _ � 0
2. These four joins meet at 0Con0 A since the factor-

congruences factor. Thus, these evaluations of the terms t1 and t2 are equal.
�

To prime the reader for the various kinds of shells and elements factoring
them, to be developed in Chap. VII, we pose a leading question.

2.19. Problem. To what extent might this theorem generalize to first-
order formulas?

3. Algebras Having Boolean Factor Congruences

In this section, the factorial braces of Sect. 1 are restricted to those alge-
bras A having Boolean factor congruences, which were first singled out by
Comer [Comer71]: all factor congruences commute and form a Boolean
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sublattice Con0 A of Con A, insuring that the resulting sheaf will be reduced
and factor-transparent. This sheaf representation is unique among those
that are reduced and factor-transparent. It will lead naturally into the rep-
resentation of shells in the next chapter.

3.1. Definition. An algebra A has Boolean factor congruences, BFC,
if Con0 A is a Boolean sublattice of Con A. By this we mean that Con0 A,
the set of factor congruences of A, is closed to the lattice operations of
Con A, and factor congruences have unique complements in Con0 A. Write
Con0 A for this Boolean algebra hCon0 AI _;^;0 ; 0; 1i . Its operations are:

� _ � D � ı �;
� ^ � D � \ �;

� 0 D the � such that � ı � D 1 and � \ � D 0;
0 D 0ConA;

1 D 1ConA:

A variety has BFC is each of its algebras does.

Examples of algebras with BFC are diverse. There are congruence
-distributive algebras, such as the algebras with lattice reducts, listed after
Proposition 2.12. And there are the many instances of unital half-shells
listed after Definition VII.2.1. Chuan-Chong Chen [Chen77] showed that
semilattices have BFC, but its proof falls outside the methods of this book.
Ross Willard [Will90] showed that any centerless algebra has BFC, and
Vaggione and Sanchez [VagSá04] that compact factor congruences im-
ply BFC. Bigelow and Burris [BigBu90] proved implicitly that BFC is a
Mal’cev property of varieties; see also the explicit work of Pedro Sánchez
Terraf [Sánc08]. Conditions equivalent to BFC are given later in Theorems
3.2, 3.9, and 3.11.

The vier-group, V 4 D Z2 � Z2, is an example of an Abelian group that
does not have BFC, but all of its congruences are factor congruences. Its
congruence lattice is the five-element modular, nondistributive lattice M 3,
where complements are not unique.

This example also demonstrates that algebras with BFC are not closed to
products. Therefore, the class of all algebras of a given type with BFC is not
an equational class, by the HSP theorem of Birkhoff [Birk35] in Sect. II.1.

Having BFC is not inherited by subalgebras and homomorphic images.
To see this modify the vier-group, V4 D Z2

2, by adding one more element
4 to obtain a new ‘addition’, as shown in Fig. 2. Here, in order to be brief,
we have coded the ordered pairs of the original group Z2

2: ha; bi 7! 2aCb.
Then the algebra, A D hf0; 1; 2; 3; 4gICi, has Z2

2 as both a subalgebra and
a homomorphic image (identify 3 and 4). However, having a prime number
of elements, A can have no proper factorization. Therefore, A has Boolean
factor congruences whereas Z2

2 does not.
11111
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C 0 1 2 3 Í
Í 4

0 0 1 2 3 Í
Í 3

1 1 0 3 2 Í
Í 2

2 2 3 0 1 Í
Í 1

3 3 2 1 0 Í
Í 0

– – – – – – – – – – C – –
4 3 2 1 0 Í

Í 0

Figure 2. An algebra that has BFC, but contains a group
that does not have BFC.

We give some other ways of viewing BFC. Sufficient conditions are of
many kinds: Boolean algebras of other factor objects, refinements of direct
decompositions, splitting congruences in products, and Mal’cev conditions.
For the moment, assume that hA; oi is a pointed algebra.

The next theorem follows from the previous results and proofs about
commuting factor objects, and equates their Boolean algebras by means
of the formulas of Sect. II.2. Curiously, each factor sesquimorphism carries
just enough more information than its corresponding factor congruence to
insure in part (a) that commutativity alone implies BFC. But the vier-
group V4 shows that commutativity alone is not sufficient in part (c). For
the algebra A in this theorem, let Band0 A, Con0 A and Sesq0 A denote
its sets of factor bands, congruences and sesquimorphisms with origin o;
and likewise their corresponding Boolean algebras by Band0 A, Con0 A and
Sesq0 A, when they exist.

3.2. Theorem. For any pointed algebra hA; oi, the following are equiv-
alent:

(a) Its factor sesquimorphisms commute.
(b) Its factor bands commute.
(c) Its factor congruences commute and form a Boolean algebra. that is,

the algebra has BFC.

When these conditions hold, the factor sesquimorphisms and bands also
form Boolean algebras, and these all are isomorphic or anti-isomorphic:

Con0 A Š Band0 A
antiŠ Sesq0 A:

Proof. Use Propositions 2.2, 2.6, Theorem II.2.12, and variants of
(2.6). �

Also for a pointed algebra with BFC, by Proposition 2.8(c) we may define
the Boolean algebra Ideal0 A on the set Ideal0 A of all factor ideals; it is
isomorphic to Con0 A. We will have to wait till the next chapter about
shells to include factor elements in this list.

Now we name the suprema of factor congruences and ideals that are used
in the next Proposition, which will be used to prove Proposition VIII.1.12.
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3.3. Definition. A congruence � of a pointed algebra hA; oi with BFC
is regular if there is an ideal N of Con0 A such that � D W

N . An ideal I of
A is regular if there exists a regular congruence � such that I D o=� . For
any ideal N of Con0 A, write for the corresponding ideal of factor ideals:

o

N
D

n o

�

ˇ
ˇ
ˇ � 2 N

o
:

From the isomorphism of Con0 A and Ideal0 A, we deduce that any set N
of factor congruences in a pointed algebra A with BFC is a prime ideal of
Con0 A iff o=N is a prime ideal of Ideal0 A. We record several useful char-
acterizations of regular ideals and maximal regular ideals. Here, ‘maximal’
means maximal among all regular ideals.

3.4. Proposition. Let hA; oi be a pointed algebra with BFC.

(a) For any ideal N of Con0 A,
_o

N
D o

W
N
:

(b) For any ideal I of A, I is regular if, and only if, there is an ideal I of
Ideal0 A such that I D W

I.
(c) For any ideal I of A, I is a maximal regular ideal if, and only if, there

is a prime ideal P of Ideal0 A such that I DW
P.

(d) If I is an ideal of factor ideals, then
_

I D
[

I:

(e) If J is a maximal regular ideal of A, then

J D
[ ˚

I 2 Ideal0 A j I � J �
:

Proof. Throughout we will repeatedly make use of the fact thatW
N D S

N for any ideal N of factor congruences (Proposition V.1.5).
(a) � : Suppose a 2 o=W

N , that is, o
W
N a. By the fact just stated, there

is a congruence � in N so that o � a. Hence, a 2 o=� �S
.o=N / �W

.o=N /.
� : Since o=� � o=

W
N for any � in N , and since

W
.o=N / is the

smallest ideal containing all such o=� , this direction of inclusion is clear.
(b) This follows directly from part (a).
(c) If I is a maximal regular ideal, then I D W

.o=P / for some prime
ideal P of Con0 A. We finish by part (a).

Conversely, if I D W
P where P is a prime ideal of Ideal0 A, then, by

the isomorphism used in the proof of part (b), there is a prime ideal P of
Con0 A such that P D o=P , and we finish again by part (a).

(d) Let I be an ideal of factor ideals. By Proposition 2.8(c), Ideal0 A Š
Con0 A, and so there is an ideal N of factor congruences such that I D o=N .
Therefore, by Proposition V.1.5,

_
I D

_ o

N
D o

W
N
D o

S
N
D

[ o

N
D

[
I:
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(e) Using previous parts, we find a prime ideal N of Con0 A such that

J D o
W
N
D

_ o

N
D

[
fo=� j � 2 N g :

We compare this last union with the right side of (e) by replacing I by o=� :

R D
[ ˚

o=�
ˇ
ˇ � 2 Con0 A and o=� � o=

_
N

�
:

Clearly, J � R. For the other direction of inclusion, suppose a 2 R. Then
a � o for some � in the right side. Hence a

W
N o and thus a 2 J . �

More could be said along these lines when
ˇ
ˇ
W
P

ˇ
ˇ ¤ 1 for all prime ideals

P of factor congruences in an algebra with BFC. With that hypothesis in
mind, recall Proposition 1.10 that the function, P 7! W

P , is a one-to-
one correspondence between prime ideals in Con0 A and maximal regular
congruences.

Regular congruences are usually not factor congruences themselves, un-
less each prime ideal of factor congruences is principal; in this special case
the generator of each principal prime ideal would be a co-atom of Con0 A,
and hence the factor congruences would form an atomic Boolean algebra.

3.5. Problem. Let B be a Boolean lattice hBI _;^i of commuting equiv-
alence relations on a set S , with _ as composition and ^ as intersection.
Can B be realized as the Boolean algebra Con0 A of factor congruences
for some algebra A with BFC? There are two possible answers here: the
abstract and the concrete: respectively,

B Š Con0 A and B D Con0 A:

The abstract is easy since B Š Con0 B, but the concrete is open.

11111
Our aim now is to prove that an algebra having factorable factor-congru-

ences is equivalent to having Boolean factor congruences. We also equate
this with the strict refinement property. For comparison we first state the
outer refinement property; for more, see [McMcT87, sect. 5.6].

3.6. Definition. An algebra A is said to have the outer refinement
property if for any two factorizations, A Š Q

i2I B i and A Š Q
j2J C j ;

there is a third factorization A Š Q
i2I; j2J Dij so that B i Š Q

j2J Dij

.i 2 I / and C j ŠQ
i2I Dij .j 2 J /.

Paralleling outer and inner direct products, which are equivalent, there is
also a corresponding inner refinement property, but here, surprisingly, the
inner is stronger than the outer. This property holds in an algebra whenever
any two inner product families of congruences have a common refinement.
Since the inner is what is equivalent to BFC, we say no more about the
outer. For inner direct products, we use the notation in Definition II.2.31.
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3.7. Definition. A congruence � of A is said to have the inner or
strict refinement property (SRP) if any two of its inner direct products,
de
2Z � D � D de�2H �, satisfy

� D de�2H .� _ �/ .� 2 Z/; and

� D de
2Z.� _ �/ .� 2 H/:
A congruence � has the 2-fold strict refinement property if the preceding
holds when Z and H each have only two factors; thus

� D .� _ �/ u .� _ �0/ .�; �0 2 H/;
� D .� _ �/ u .� 0 _ �/ .�; � 0 2 Z/:

Beware that these complements are only in the interval Œ�; 1ConA�.
An algebra A has either of these properties if the trivial congruence 0A

has either of them. These properties are passed on to varieties as well.

Here’s a lemma needed to prove the next theorem.

3.8. Lemma. Suppose that an algebra A has the two-fold strict refinement
property.

(a) Any two factor congruences of A commute.
(b) If � D � u � 0, � D � u �0, � � � and � 0 � �0, then � D � and � 0 D �0.

Proof. (a) For two factor congruences � and �, we have the factoriza-
tion � and � 0 of A, as well as � and �0. The joins in their refinement generate
a Boolean algebra of commuting factor congruences by Proposition II.2.33.

(b) Assume the hypothesis; suppose that a�b. There exist a c such that

c �
(
a .�/;

b .� 0/:

Then, b � a � c since � � �. Similarly, b �0 c. Therefore, b � c, and hence
b � c � a. Thus, � � �. �

Here is the promised theorem equating these disparate definitions. Some
of its proof is taken from the work of Chang, Jónsson, and Tarski
[ChangJT64]. See also Theorem 3.2 and [McMcT87, theorem 5.17] for
more conditions equivalent to these.

3.9. Theorem. For an algebra A, the following are equivalent:

(a) A has factorable factor-congruences;
(b) A has the 2-fold strict refinement property;
(c) A has the strict refinement property, SRP;
(d) A has Boolean factor congruences, BFC.

Consequently, these four conditions are equivalent for a variety of algebras.
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Proof. A cyclic proof is in order: (a) ) (b) ) (c) ) (d) ) (a).
(a)) (b). Let � and � 0 be an inner direct product of A, as well as � and

�0. By Proposition II.2.32 it suffices to prove, for example, that for any a

and a
 0 of A there is a solution x to

(3.1) x �
(
a
 .� _ �/;
a
 0 .� _ � 0/

that is unique modulo �. This can certainly be solved for � and � 0 alone.
Establishing uniqueness up to � requires more. Suppose that y also satis-

fies (3.1). Then, x .� _ �/ a
 .� _ �/ y, and similarly x .� _ � 0/ y. Therefore,
x .� _ �/\ .� _ � 0/ y, and hence x � y by assumption (a).

(b) ) (c). We take for granted the regrouping of the factors of a prod-
uct. Let us start with two inner products: deZ D 0 and deH D 0. Fix a
congruence � of Z and let � range over the congruences of H . Define their

complements: � D T
.Z
f�g/ and � D T

.H
f�g/. Then � u � D 0 and

� u � D 0. Therefore, by the two-fold SRP, � D .� _ �/ u .� _ �/. So,

de�2H .� _ �/ u de�2H .� _ �/ D de�2H
�
.� _ �/ u .� _ �/� D 0:

Always � � �_ � and � � �_ �. Thus, by Lemma 3.8(b), � D de�2H .�_ �/.
(c) ) (d). Suppose ", � and � are factor congruences of an algebra A

satisfying the SRP. With their complements, ", "0 and �, � 0 have a common
refinement, which further refines with �, �0 to

� D f" _ � _ �; " _ � _ �0; " _ � 0 _ �; : : :g:
Hence, this set generates a Boolean sublattice � of ConA by Proposition
II.2.33. Thus, ", � and � satisfy the distributive law, and their joins and
intersections are again factor congruences.

(d) ) (a). Trivial. �

With a hypothesis ruling out trivial subalgebras, there is another condi-
tion equivalent to BFC, which we state without proof. But first a definition.

3.10. Definition. An algebra Ahas definable factor congruences (DFC)
if there a first-order formula ', with say nC 2 free variables, such that for
each factor congruence � there are n elements e1; e2; : : : ; en of A so that

a � b iff '.e1; e2; : : : ; en; a; b/ .a; b 2 A/:
A variety has DFC if all algebras in it have DFC with the same formula.

An example is the unital half-shells hAI �; 0; 1; : : : ; !; : : :i of Lemma
VII.2.3, where the formula ' defining factor congruences � by their fac-
tor elements e is simply: e � a D e � b.

3.11. Theorem ([SánVa09]). Let V be a variety in which each sub-
algebra of a nontrivial algebra is nontrivial. Then V has definable factor
congruences if, and only if, V has Boolean factor congruences.
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3.12. Problem. The collection

f� _ � j � 2 Z and � 2 H g
of Definition 3.7 is called the common refinement of Z and H . Is the
following statement true or false? The common refinement of two inner
products, Z and H , of an algebra is also an inner product iff their corre-
sponding factor bands commute. These factor bands may have more than
two arguments, or even an infinite number. But is finiteness needed?

We pose a problem connecting several threads running through previous
sections. It tries to make a parallel between algebras whose factor congru-
ences are factorable (BFC) and those whose congruences are all factorable,
a condition stronger than BFC. For a start consult [CroHJ96]. Remember
that statement (b) is equivalent to being a Boolean product.

3.13. Problem. For an algebra A with BFC, which of these state-
ments imply other ones? Which are equivalent? For its reduced and factor-
transparent sheaf A over a Boolean space X , we know that � .A/ Š A.

(a) A has factorable congruences.
(b) A is Hausdorff (that is, equalizers are clopen).
(c) For each congruence � of Con � .A/ there is a subset U of X such that

for all global sections � and � of � (A), � � � iff U � � W�:
(d) A has the refinement property for products (not just SRP).

11111
Identifying sheaves that come from algebras having BFC leads to the no-

tions of reduced and factor-transparent sheaves. The principal theorem of
this section may then be paraphrased: any algebra with BFC is faithfully
represented by a reduced and factor-transparent sheaf and vice versa. The
first occurrence of these notions occurs in Pierce’s monograph for rings in
a much different form [Pier67, p. 15]. Adapting this to general algebras,
Comer insisted on nontrivial stalks in his sheaves [Comer71]. However,
Bigelow and Burris weakened this to the set of trivial stalks being topo-
logically small [BigBu90]; then the class of algebras considered by Comer
may be enlarged to all those having BFC.1 To accommodate the more gen-
eral Boolean braces of Chap. V, we have gone further and restricted the
term ‘reduced’ to the half of their definition having to do with stalks, and
now use their term, ‘factor transparent’, for their remaining half having
to do with congruences. The role of reduced and factor-transparency will
be further clarified in the next section when we speak in the language of
categories; we will return to a Pierce-like definition of reduced at the end
of the next chapter. For convenience we repeat the earlier Definition V.2.8.

1See also [Corn77] for another generalization of Comer’s theorem.
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3.14. Definition. Let A be a sheaf of algebras over a Boolean space X .
A sheaf A is reduced (RS) if

Int.Triv A/ D ¿:
The trivial stalks are identified as

Triv A D fx 2 X j jAxj D 1g :
The sheaf A is factor-transparent if

(FS) Con0 � .A/ D �ClopX :

Remember that Clop X contains the clopen sets U of X and that �ClopX

contains all �U for U in Clop X where �U D
˚h�; � i 2 � .A/2 j U � � W� �

.

Recall the sheaf constructed from an algebra A with BFC. Consider its
set, X D SpecCon0 A, of prime ideals of factor congruences. Give X the
Stone topology as spelled out in Sect. III.4. The topology of X induces a
topology on the sheaf space A, a disjoint sum of quotient algebras by the
prime ideals. As before, express A as A==Con0 A, and call it the canonical
sheaf or Pierce sheaf of an algebra with BFC.

3.15. Theorem. ([Comer71], [BigBu90]) Suppose the algebra A has
Boolean factor congruences.

(a) Then, A is isomorphic to the algebra � .A/ of all global sections of the
sheaf, A D A==.Con0 A/, over the Boolean space SpecCon0 A.

(b) Moreover, the sheaf of part (a) is reduced and factor-transparent.
(c) This representation is unique up to isomorphism of reduced and factor-

transparent sheaves over Boolean spaces. That is, if B is another such
sheaf and � .B/ Š A, then B ŠA.

(d) Conversely, if a sheaf A over a Boolean space is reduced and factor-
transparent, then its algebra � .A/ of all global sections has Boolean
factor congruences.

Proof. (a) Clearly, Con0 A is a Boolean subsemilattice of ConA by
the definition of BFC. So we construct the sheaf as described in Theorem
1.8, where the Gel’fand map is an isomorphism, � WA ! � .A/.

(b) Consequently, Con0 A Š Con0 � .A/ by the map � 7! �U�
. Therefore,

every factor congruence of � .A/ is of the required form, and hence A is
factor-transparent.

Duality gives a basis for X with sets: U� D
˚
P 2 SpecCon0 A j � 2 P �

when � 2 Con0 A. For each nonempty U� we may find a P in it such
that

W
P ¤ 1ConA (by Zorn’s lemma, as used in Lemma V.1.6). Thus,

U� 6� Int Triv A. Since this is true for every nonempty member of the
basis, Int Triv A D ¿, and A is reduced.

(c) We are given an isomorphism of the algebras of global sections,
'W� .A/! � .B/ coming from

� .A/ Š A Š � .B/:
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Consequently, ' pushes through the construction of their sheaves:

� .A/==Con0 � .A/ Š � .B/==Con0 � .B/:

It follows from (a) that

A Š � .A/==Con0 � .A/ Š � .B/==Con0 � .B/ Š B:

(d) This follows directly from factor-transparency. �

In a reduced and factor-transparent sheaf over a Boolean space, the factor
bands of � .A/ have an especially simple form. This next corollary will be
used in the proof of the converse Theorem VII.5.5, where algebras with
BFC will be embedded in shells.

3.16. Corollary. Let A be an algebra with BFC, and A its sheaf. For
any factor band ˇ of � .A/, with corresponding complementary factor con-
gruences � and � 0,

ˇ�� D � jU� [ � jU� 0 .�; � 2 � .A//:

Proof. Set 
 to be the right side. Then 
 � � since 
 W � � U� . We
know that ˇ�� � � by Theorem II.2.5. Hence ˇ�� � 
. Similarly ˇ�� � 0 
.
Therefore, ˇ�� D 
. �

3.17. Exercise. Prove that, in an algebra A with BFC, any decomposi-
tion of it into a finite product, A D Qn

iD1Ai , corresponds, via the mapping
� 7! U� , to a finite disjoint clopen covering

Sn
iD1Ui of the base space X of

its canonical sheaf. Conversely, show that any such covering of X yields, via
the mapping U 7! �U , a product decomposition of A, and that these two
processes are inverse to each other. Thus, the common refinement of two
such finite products corresponds to the intersection of their corresponding
partitions of X . Why do these proofs not carry over to products with an
infinite number of factors?

Unital rings have BFC. The stalks of the sheaf constructed for a commu-
tative unital ring by our method are directly indecomposable. Proofs are to
be found in Pierce [Pier67, p. 15] and Johnstone [John82, p. 183]. Under
the assumption that the unital ring is a Baer–Stone ring, we will prove, in
a more extensive setting in Chap. VIII, that the stalks have no divisors of
zero.

Lattices also have BFC. Georgescu [Geor88, proposition 2.5] found a
characterization of those bounded distributive lattices whose canonical
sheaves have stalks with no divisors of zero, which we state later as Propo-
sition XII.2.1, along with other results of a similar nature.

In general, one can say little about the stalks arising in our theorem. But
look at this theorem by Bigelow and Burris in [BigBu90].

3.18. Theorem. Consider a variety with BFC in which the stalks of its
sheaves as constructed above are all directly indecomposable. Then the class
of these stalks is axiomatizable by universal sentences.
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3.19. Problem. In constructing sheaves we have relied on suprema of
congruences. Instead, can any of the other kinds of factor objects be used
by creating limits of them?

3.20. Problem. The phrase ‘reduced sheaf’ would seem to imply a pro-
cess of reduction. Suppose we remove the set Int Triv A from the base space
of a sheaf A, and shrink the sheaf space accordingly. When is this new sheaf
reduced? When is the new algebra of global sections isomorphic to the old?

3.21. Problem. Do the canonical sheaves of Theorem 3.15 help us to
understand any of the congruence-distributive algebras listed after Propo-
sition 2.12?

This section closes by representing primal varieties, which are varieties
generated by a primal algebra P , a finite algebra for which all finitary
functions on the carrier are term-operations. Examples are the p-rings (p a
prime) of McCoy and Montgomery [McCMo37]. See Sect. I.1 for a history
of this influential theorem due primarily to Foster [Fost53] and Hu [Hu69].
With all that has been proven, its proof is quite short.

3.22. Theorem. Any algebra A of a variety generated by a primal algebra
P is isomorphic to a Boolean power of P . Moreover, any primal variety is
categorically equivalent to the category of Boolean algebras.

Proof. Abbreviate Var P as the category V, and write the carrier P
as f0; 1; : : : ; n � 1g. Clearly, P has a lattice term-reduct, say a chain on
P ; hence it has BFC. In order to establish a categorical equivalence with
Boolean algebras, we find in P an invertible idempotent term ı1 relativizing
f0; 1; : : : ; n � 1g to f0; 1g (see Definition III.2.27). To that end define some
characteristic functions, one for each i in P :

(3.2) ıi .a/ D
(
1 if a D i;
0 otherwise;

and an n-ary function t by

t.0; : : : ; 0; 1; 0; : : : ; 0/ D i where 1 is at the ith argument:

By primality these are all term-operations of P , and hence

t
�
ı1.ı0.x//; ı1.ı1.x//; : : : ; ı1.ın�1.x//

� � x
is an identity of P , and consequently also of V. Now the relativization
ı1.P/ of P is term-equivalent to B2, the two-element Boolean algebra (see
Definition II.1.8). So also is the varietal relativization ı1.V/ term-equivalent
to BooleAlg. Thus, Theorem III.2.28 gives the categorical equivalence, V '
BooleAlg. �

3.23. Corollary. Any primal variety is dually equivalent to the category
of Boolean spaces.
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4. Their Categories

Graduating from adjoint situations to categorical equivalences, while leav-
ing complexes behind, we move on to categories of factorial braces and
algebras with BFC. (As always we assume a fixed type of algebras.) The
first will be the equivalence of FactorBraceRed, the category of all
reduced factorial braces, with SheafBooleRed, the category of all re-
duced sheaves over Boolean spaces. The second equivalence will be between
AlgBFC, the category of all algebras with Boolean factor congruences; and
SheafBooleRedFt, the category of all reduced and factor-transparent
sheaves over Boolean spaces. These last two categories are full subcate-
gories of the previous two. These results were abstracted in [Knoe92c].

A simple example shows the need for reduced sheaves if we are to achieve
categorical equivalence. Let the type be empty, that is, we work with sets.
Consider the not reduced sheaf, A D fa; bg]fcg, over the base space fx; yg,
where all the spaces are discrete. Then � .A/ has two global sections, that
is, this algebra is a two-element set, with the two obvious factor congru-
ences. This is a reduced factorial brace, but its sheaf ˚

�
� .A/

�
now has

only two elements over a base space of one element, and so it is reduced.
Thus we need to start with a reduced sheaf in order to return to it.

4.1. Definition. The category FactorBraceRed is the full subcate-
gory of the category BooleBraceRed restricted to factorial braces and
their morphisms.

4.2. Theorem. The adjunction

h�; "iW˚ ���j � W hSheafBooleRed; BooleBraceRedi
of Theorem V.4.17, with BooleBraceRed restricted to Factor�
BraceRed, is a categorical equivalence: FactorBraceRed ' Sheaf�
BooleRed.

Proof. Use Theorem 1.8, which shows that � is a natural isomor-
phism, that is, �.hA;B i/ is an isomorphism whenever hA;B i is a factorial
brace. �

As these two categories are equivalent, so their skeletons are isomorphic.
We now sum up Comer’s results [Comer71] in categorical terms.

4.3. Definition. The category AlgBFC is the full subcategory of
FactorBraceRed with objects all factorial braces hA; Con0 Ai where A

has BFC.

Note well that a morphism in AlgBFC will not be a single homomor-
phism of algebras, but rather a morphism of factorial braces, that is a pair
h'; � i of homomorphisms, 'WA ! A� and � WCon0 A ! Con0 A�, such that
'.�/ � �.�/ for all � in Con0 A.

4.4. Definition. The category SheafBooleRedFt is the full subcat-
egory of SheafBooleRed whose objects are factor-transparent.
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Chap. Algebras Complexes Sheaves

IV Complex a Sheaf

V BooleBraceRed a CompBooleRed a SheafBooleRed

VI FactorBraceRed ' SheafBooleRed

VI AlgBFC ' SheafBooleRedFt

VII UnitHalfShell ' SheafUnitHalfShell

VII UnitShell ' SheafUnitShell

VIII BaerStoneShell ' SheafShellIntegral

VIII BaerRing ' SheafRingIntegral

Sect. III.4 BooleAlg ' BooleSpace

Table 1. Categories of Algebras Represented by Cate-
gories of Sheaves

Our categorical language allows us to put the notions of reduced and
factor-transparent in perspective. It should be clear when everything is
reduced and over Boolean spaces that Con0 � .A/ always maps onto Clop X ,
and its partial inverse, U 7! �U , always maps injectively. These facts follow
from the natural transformation � being an isomorphism. The only thing
standing in the way of full invertibility is the real possibility that not all
factor congruences of � .A/ are utilized, as for example in the case of
factorial braces. But, for algebras with BFC, the sheaves created from them
are factor-transparent; so this possibility can not happen. Predecessors of
the next theorem are [Pier67, theorem 6.6] and [Comer72, theorem 1.2].

4.5. Theorem. The categorical equivalence of Theorem 4.2, restricted to
AlgBFC and SheafBooleRedFt, is another categorical equivalence.

Proof. We have already proven in Theorem 3.15 that algebras with
BFC go over to reduced and factor transparent sheaves and vice versa.
Clearly this restriction is still a categorical equivalence. �

Table 1 summarizes most of the categories that have appeared so far, and
some of those to come. Going down each column takes one from the most
general to the most specific. Any category in a particular column is a full
subcategory of all categories above it. In this chart, ‘a’ means that there
is an adjunction between the two categories, and ‘'’ means a categorical
equivalence. Categories of complexes are not listed after the first two lines
since they are no longer needed; however such categories may easily be filled
in by the reader. We will define the categories in the lower lines and explain
their relationships in Sect. VII.6 and Sect. VIII.1. At the bottom are the
classical Boolean algebras and Boolean spaces, which are not technically
sheaves, but can be made into such if desired.

Categorical equivalence of varieties ought to imply equivalence of their
categories of sheaves created from algebras in them. Some caution is needed
since generally there may be many ways to create sheaves from one algebra
A. With BFC, however, there is the canonical way defined earlier: ˚.A/ D
A==Con0 A.
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4.6. Theorem. If A and B are categorically equivalent varieties of al-
gebras with BFC, then the categories of their sheaves A and B are also
categorically equivalent.

Proof. In any sheaf coming from an algebra in A, replace its stalks,
which must also be in A, by their corresponding algebras in B. Alterna-
tively, for a functor F WA ! B, define F W˚.A/ ! ˚.B/ by catenating
known functors:

˚A
��! A

F�! B
˚�! ˚B: �

Recall Theorem III.2.28, due to McKenzie [McKe96], that any categor-
ical equivalence of varieties is a composition of three special equivalences:
term-equivalence, matrix power and restriction by an idempotent and in-
vertible term. Invoking this theorem leads immediately to three similar
constructions for sheaves. For example, later in Sect. X.3 we will need ma-
trix powers; the construction and proof is straightforward.

4.7. Proposition. For a sheaf A and a positive integer k,
�
� .A/

�Œk	 D � �
AŒk	

�
:

4.8. Exercise. Define the matrix power AŒk	 of a sheaf A so that Propo-
sition 4.7 is true. Hint: Leave the base space the same, and replace each
stalk in A by its matrix power. Less obvious is the topology for the new
sheaf space.



VII
Shells

In the first version of his Treatise on Algebra in 1830,
Peacock defined symbolic algebra as ‘the science which
treats of the combinations of arbitrary signs and symbols
by means of defined though arbitrary laws’. ... Peacock,
however, did not avail himself of the ‘arbitrary laws’ of
combination he advocated, ... In fact, he wrote in 1845
that ‘I believe that no views of the nature of Symbolic
Algebra can be correct or philosophical which made the
selection of its rules of combination arbitrary and inde-
pendent of arithmetic’. Victor Katz [1998, pp. 679–680]
quoting George Peacock

In the spirit of Peacock’s first assertion, we are now ready to specify some
operations and identities in our algebras. But their choice is left mostly to
the reader, contrary to Peacock’s last assertion.

This chapter applies the previous results on representing algebras by
sheaves to algebras called ‘shells’ that have one or two binary operations,
among others, and two constants satisfying extremely weak identities – only
those specifying how nullities and unities interact with the binary opera-
tions. It is a transition from the general theory, applicable to all algebras, to
special classes of algebras in later chapters. The term ‘shell’ has two usages
in this chapter: firstly, as a generic word in the title for a range of algebras
with differing configurations of binary operations and constants; and sec-
ondly, as a specific term for the shells of Sect. 3 that have a particular fixed
type. This chapter develops the tools that lead, in subsequent chapters,

A. Knoebel, Sheaves of Algebras over Boolean Spaces, 179
DOI 10.1007/978-0-8176-4642-4 VII,
c� Springer Science+Business Media, LLC 2012
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to stronger hypotheses with stronger conclusions about representations by
sheaves. The hypotheses imposed on algebras so far have been about their
congruences, not always easily verifiable. But now the weak identities will
typically be immediate to the applications.

Factor objects evolve throughout this chapter. Of the five kinds of in-
ternal factor objects, only congruences, bands and sesquimorphisms have
so far been treated thoroughly. We gave independent definitions of these
three, which led to Boolean algebras of them. Of necessity, the treatment
of factor ideals was incomplete, and factor elements were only mentioned.
But with the introduction of nullities and unities, we can now define factor
ideals independently of the other factor objects; and, as the notion of shell
is refined, factor elements will satisfy more and more identities, until they
are characterized solely by identities.

The first section postulates at least one binary operation, which is treated
like multiplication. With respect to it, ‘sesqui-elements’ are defined in anal-
ogy with factor sesquimorphisms, replacing them by left multiplication.
But sesqui-elements do not capture all products. Their interest lies in their
pointing the way to the existence of one-sided nullities and unities. These
guarantee Boolean factor congruences, and hence canonical sheaf represen-
tations over Boolean spaces.

The next section makes these constants global in ‘unitary half-shells’.
Factor elements become sesqui-elements and they capture all products.
Consequently, factor elements are in one-to-one correspondence with fac-
tor congruences and have a definition independent of the other factor ob-
jects. Each factor ideal is principal, generated by a factor element. When
we relativize the operations of an algebra to a factor ideal, it becomes a
homomorphic image of the algebra.

A ‘unitary shell’ in the third section has both a multiplication and an
addition with a nullity and unity. Now all congruences, not just the factor
congruences, are factored by products, and complementary factor elements
are definable strictly with identities. Better yet, we can also define factor
ideals independently: two such characterizations are given.

The fourth section rounds out this discussion by summarizing in a ta-
ble the various operations that turn the five kinds of factor objects into
isomorphic Boolean algebras. For the special classes of unitary rings and
bounded lattices, we discover simpler alternative formulas for the Boolean
operations of join, meet, and complement on their factor objects.

We prove in the next section that any algebra with Boolean factor con-
gruences (from Chap. VI) is a subalgebra of a reduct of a unitary shell.
‘Separable algebras’ effect this proof. They generalize shells with more flex-
ibility: the stalks of the sheaf constructed for this purpose may be unitary
rings, bounded distributive lattices, or discriminator algebras.

The last section interprets categorically the results of the previous sec-
tions, as we did similarly for Chaps. IV–VI. This situation, at least for-
mally, will be quite similar to that for rings, and, with all that has already
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been done, quite easy to achieve. We introduce the notion of ‘conformal’
homomorphism to restrict the homomorphisms to those that preserve fac-
tor elements. The theorem of this last section asserts that the category
of shells with conformal homomorphisms is equivalent to the category of
reduced sheaves over Boolean spaces.

Some of the theorems of this chapter were announced in [Knoe72],
[Knoe00] and [Knoe07b].

1. Algebras with a Multiplication

Throughout this section we study algebras, A D hAI �; : : : ; !; : : :i, with one
designated binary operation � and any number of other finitary operations
!. Examples are numerous: semilattices, lattices, semigroups and groups,
possibly with operators, such as rings. Abbreviate the product: ab D a�b.

In outline, we start with sesqui-elements, which are somewhat similar
to factor elements but not equivalent to them initially. The first result
of this section observes that each pair of complementary sesqui-elements
decomposes the algebra as a product; but a counterexample shows that not
every product arises in this way. A partial converse finds constants that
point the way to sesquishells. The principal result states that sesquishells,
defined by these constants, have BFC.

1.1. Definition. In an algebra, A D hAI �; : : : ; !; : : :i, a pair of elements
e and e0 are complementary sesqui-elements if:

(i) e.ea/ D ea and e0.e0a/ D e0a .a 2 A/;
(ii) e.e0a/ D e0.ea/ .a 2 A/;
(iii) for each operation !, including �,

(1) e!.ea1; ea2; : : :/ D e!.a1; a2; : : :/ .a1; a2; : : : 2 A/,
(2) e0!.e0a1; e0a2; : : :/ D e0!.a1; a2; : : :/ .a1; a2; : : : 2 A/;

(iv) if ea D eb and e0b D e0b then a D b (a; b 2 A);
(v) for all a; b in A there exists an x in A such that ea D ex and

e0b D e0x.

A sesqui-element is such an element of A having a complement.

These clauses come straight from Definition II.2.10 of complementary
sesquimorphisms. That is, if multiplication by a sesqui-element e is viewed
as a function, �e.a/ D ea, then �e is a sesquimorphism as in Definition
II.1.5.

Note that clause (iii) contains singular distributive laws needed to induce
congruences. Clauses (iv) and (v) insure that each pair of complementary
factor congruences creates a direct product. This last will be accomplished
later by identities alone using the addition in shells. Notice also that (iv)
insures uniqueness of the solution specified in (v).
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Complementary sesqui-elements induce complementary factor congru-
ences as the next proposition demonstrates. To formulate it we need two
definitions: principal algebras and induced congruences. We do not try to
define what would be meant by an ideal in this general setting, but only
what is a principal ideal generated by a sesqui-element, which agrees with
the complemented factor ideals of Sect. II.2,

1.2. Definition. Let e be an element in an algebra, A= hAI �; : : : ; !; : : :i,
with a designated multiplication �. The principal algebra eA generated by
e has the carrier,

eA D fe � a j a 2 Ag ;
and relativized operations: !e D e!. By this we mean that

!e.a1; a2; : : :/ D e � !.a1; a2; : : :/ .a1; a2; : : : 2 eA/:
For example, in a bounded semilattice hAI �; 0; 1i, we find that eA is a

new bounded semilattice,

eA D heAI �; 0; ei
with a new unity e. A similar, but more involved example comes from a
Boolean algebra hAIC;�; 0; 0; 1i where all elements are sesqui-elements.
The principal algebra becomes a new Boolean algebra,

eA D heAIC;�; 0e

; 0; ei;
where a0e D ea0 for a in eA.

Note for any sesqui-element e that in its principal algebra

ea D a .a 2 eA/:
Define its induced congruence �e by

a �e b if ea D eb .a; b 2 A/:
The next theorem correlates principal algebras with factor ideals. An origin
is needed in part (d).

1.3. Theorem. Let A be an algebra hAI �; : : : ; !; : : :i with a designated
binary operation �. If e and e0 are complementary sesqui-elements, then

(a) eA and e0A are complementary factor ideals;
(b) the induced relations �e and �e0 are a pair of complementary factor

congruences;

(c) A=�e
 Š eA and A=�e0

 0

Š e0A, where  . a
�e
/ D ea and  0. a

�e0

/ D e0a;
(d) o=�e D e0A and o=�e0 D eA, where o D e.e0e/;
(e) A

'Š eA � e0A, where '.a/ D hea; e0ai.
Proof. As actions, left multiplications by e and e0 are sesquimorph-

isms, as noted earlier. So use Theorems II.2.12 and II.2.19. �
11111
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Part (d) of this theorem leads us to call eA the principal ideal generated
by e. Not all products are captured in part (e), since an algebra with four
elements and a single binary operation that is constant has many products,
none of which can be created with sesqui-elements. Also, this theorem can
not go full circle so that the resulting factor congruences always recreate the
original sesqui-elements, since different pairs of sesqui-elements may yield
the same pair of congruences. One reason for this we have already seen in
Sect. II.1: different sesquimorphisms may yield the same congruences. But
there is a more subtle reason, as seen next in a counterexample.

1.4. Example. Here is a product decomposition of an algebra A with a
multiplication in which the sesqui-elements may be chosen in many ways.
Start with the algebra hBI �i with the carrier, B D fo; t; 0; 1g, and one
binary operation � given by the multiplication table:

� o t 0 1

o 0 0 0 0

t o t 0 1

0 0 0 0 0

1 o t 0 1

In effect, B has two one-sided unities. This would not be possible in an
algebra with two-sided unities since they would absorb each other. The
desired algebra A will be B2. Define some elements in A:

e D ht; oi; e0 D ho; t i;
f D h1; 0i; f 0 D h0; 1i:

Left to the reader is the verification that e and e0 are complementary sesqui-
elements, and also for the other pair f and f 0. But their induced factor
congruences are the same, and thus so are the corresponding factor bands.
Clearly, the actions of e an f are the same, and likewise for e0 and f 0. It
follows that eA D fA and e0A D f 0A. Thus, all the factor objects agree
except the sesqui-elements. Incidentally, ee0 ¤ e0e.

1.5. Exercise. There is more subtlety in this example. It would seem
that the origin of A for the complementary sesqui-elements e and e0 should
be the value h0; 0i of the terms in part (ii) of Definition 1.1. But the origin
given by the proof of Proposition 1.7 below is ho; oi. Explain this discrep-
ancy.

1.6. Exercise. Theorem 1.3 has a partial converse. Consider two ele-
ments e and e0 of an algebra, A D hAI �; : : : ; !; : : :i; that satisfy clauses
(i) to (iii) in Definition 1.1. Prove that, if

A
'Š eA � e0A where '.a/ D hea; e0ai .a 2 A/;

then e and e0 are complementary sesqui-elements of A.
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The next proposition sets the stage for the algebras of the next section.

1.7. Proposition. There is a pair of complementary sesqui-elements
e and e0 in an algebra, A D hAI � : : : ; !; : : :i if, and only if, there are
elements o and t in A such that, for all a and b in A,

o � a D o � b;
t � a D a:

Proof. ) : As noted at the beginning of this section, there are cor-
responding sesquimorphisms given by �.a/ D ea and �0.a/ D e0a. Let ˇ
be their corresponding factor band, as characterized in Theorem II.2.12a.
Define o D ˇ.e0; e/ and t D ˇ.e; e0/.

Just as for sesquimorphisms in Proposition II.2.11, e.e0.a// D e.e0.b// for
any a and b whatsoever. To establish the first equation, use ˇ commuting
with �:

e.oa/ D ˇ.e; e/�ˇ.e0; e/ˇ.ea; e0a/
�

D ˇ�
e.e0.ea//; e.e.e0a//

�

D ˇ�
e.e0.eb//; e.e.e0b//

�

:::

D e.ob/:
Similarly, e0.oa/ D e0.ob/. Therefore, oa D ob, by (iv) of Definition 1.1.

For the second equation, note that

e.ta/ D ˇ.e; e/�ˇ.e; e0/ˇ.a; a/
�

D ˇ�
e.ea/; e.e0a/

�

D ˇ�
e.ea/; e0.ea/

�

D ea:
and similarly e0.ta/ D e0.a/. Therefore, ta D a.
( : Define the sesqui-elements as o and t . �
A corollary relates sesqui-elements to the factor elements of Sect. II.2; re-

call that the latter come from a factor band ˇ and two designated elements,
an origin o and a terminus t : thus e D ˇ.t; o/ and e0 D ˇ.o; t/:

1.8. Corollary. For any pair e and e0 of complementary sesqui-ele-
ments of an algebra A D hAI � : : : ; !; : : :i, there are elements o and t of
A such that e and e0 are a pair of complementary factor elements of the
doubly pointed algebra hA; o; t i.

Proof. Start with the first paragraph of the previous proof. �
Note that these elements o and t may well depend on the chosen sesqui-

elements, as in Example 1.4. The sesquishells and unital half-shells, which
are coming up, will each have a global origin and terminus. As sesquishells
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are a slight generalization of unital half-shells, the casual reader may cut
directly to the next section.

11111
1.9. Definition. A sesquishell, A D hAI �; 0; : : : ; !; : : :i, is an algebra

with a binary operation �, a constant 0, and perhaps other operations !,
such that 0 is a weak nullity:

(0n�) 0 � a D 0 � b .a; b 2 A/:
It is said to be unital if there is another constant 1 such that

(1U�) 1 � a D a .a 2 A/:
The term ‘sesquishell’ is ad hoc and will be used rarely after this section.

We introduce it here to record the strongest conclusion from the weakest
premise. Its prefix ‘sesqui’ comes from Proposition 1.7.

Many examples abound. However, there appears to be no naturally oc-
curring binary operation that satisfies (0n�) but not also the equation
defining a half-shell:

(0N�) 0 � a D 0 .a 2 A/:
(Half-shells are discussed in the next section.) For example, let A be a
sesquishell, satisfying (0n�), and set z D 0 � 0. If � is associative, then
z is a nullity of �, that is, (0N�) holds for z replacing 0. Alternatively, if
� is commutative and A is unital (1U�), then (0n�) implies (0N�). More
comprehensively, a sesquishell is a half-shell iff 0 � 0 D 0.

Ross Willard1 pointed out that such an algebra, satisfying only (0n�)
and (1U�), must have Boolean factor congruences (BFC), as will be shown
shortly. This has strong implications for the structure of an algebra, as seen
in the previous chapter. This is remarkable, as all that is required among
its operations is a binary operation � that has in its multiplication table
one row that is a constant z and another that is the identity function, as
shown in Fig. 1.

� 0 a b . . . 1
0 z z z . . . z
a
b any thing
:::

1 0 a b . . . 1

Figure 1. Multiplication in a sesquishell

1In a letter sent to the author in 1994, using a criterion in [Will90].
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1.10. Theorem. A unital sesquishell has Boolean factor congruences.
Therefore, it is isomorphic to the unital sesquishell of all global sections of
a reduced and factor-transparent sheaf over a Boolean space.

Proof. In the next section, the proof of Theorem 2.2 and its sup-
porting lemmas are so written as to hold more generally for unital sesqui-
shells. �

2. Half-shells

Unital half-shells are defined, whose axioms slightly strengthen sesquishells.
The factor elements now have a definition independent of the other factor
objects. In fact, the Boolean algebra of factor elements in a unital half-shell
is anti-isomorphic to the Boolean algebra of factor congruences. As unital
half-shells have BFC, so they have a canonical sheaf representation.

In a unital half-shell, each factorization comes from a pair of comple-
mentary sesqui-elements, but the sesqui-elements are not unique. In more
detail, sesqui-elements led to factor congruences in Sect. 1. In this section,
factor congruences lead to sesqui-elements. But these processes may not go
full circle, that is, these new sesqui-elements may not be the original ones.
This will be rectified when the nullities and unities become two-sided later
in this section.

2.1. Definition. A half-shell, A D hAI �; 0; : : : ; !; : : :i, is an algebra
with a binary operation �, a constant 0, and perhaps other operations !
such that

(0N�) 0 � a D 0 .a 2 A/:
The constant in (0N�) is called a nullity with respect to �. If there is
another constant 1 such that

(1U�) 1 � a D a .a 2 A/;
then A is said to be unital. The constant in (1U�) is called a unity with
respect to �.2 More often than not, multiplication is abbreviated by juxta-
position: a � b D ab.

Examples of unital half-shells are unital semigroups with nullity, and
hence also unital rings and bounded lattices with operators. Other examples
are primal algebras, relational algebras, and some classes of near-rings and
semi-rings, as well as many other examples to be given later.

Unital half-shells have Boolean factor congruences. Before proving this,
we review the concept of factor element and notions related to it. In these

2Elsewhere unities are called ‘unit elements’.
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half-shells, hAI �; 0; 1 : : : ; !; : : :i, one normally assumes that complemen-
tary factor elements e and e0 are to be figured with respect to the half-
shell’s nullity and unity, as the origin and terminus. Building on Sect. II.2,
we thus have that

e D ˇ.1; 0/ and e0 D ˇ.0; 1/;
where ˇ is a factor band of the half-shell. Equivalently, for the comple-
mentary factor congruences � and � 0 corresponding to ˇ, e and e0 are the
unique solutions to

(2.1) 0 � 0 e � 1 and 0 � e0 � 0 1:

(To prove equivalence, use Theorem II.2.5(b)(2).) Similarly, one usually
assumes for sesquimorphisms � and �0 of any half-shell that they fix the
nullity: �.0/ D 0 and �0.0/ D 0: For any element e of A, there is the
induced relation �e on A given by:

(2.2) a �e b iff ea D eb:
Under the right circumstances, �e will be a congruence of A.

2.2. Theorem. A unital half-shell has factorable factor-congruences, that
is, it has Boolean factor congruences.

Before proving this theorem, we need two lemmas.

2.3. Lemma. Let � and � 0 be complementary factor congruences in a
unital half-shell hAI �; 0; 1; : : : ; !; : : :i, and let e and e0 be the corresponding
complementary factor elements given by (2.1). Then,

(a) � D �e and .�e/
0 D �e0 I

(b) a � b iff ea D eb .a; b 2 A/.
Proof. (a) �e � �: If a �e b, then ea D eb. Since e � 1, it follows that

a D 1a � ea D eb � 1b D b, and thus a � b.
� � �e : If a � b, then ea � eb. Since 0 � 0 e, it follows that ea � 0 0a D

0b � 0 eb. Therefore, ea .� \ � 0/ eb; and thus ea D eb. Hence a �e b.
(b) Use (a) and (2.2). �

2.4. Lemma. In a unital half-shell A with complementary factor congru-
ences � and � 0 where 0 � 0e � 1 for some element e of A,

if ca D cb; then c.ea/ D c.eb/ .a; b; c 2 A/:
Proof. This uses the same techniques as the previous lemma.

c.ea/ � c.1a/ D ca D cb D c.1b/ � c.eb/; and

c.ea/ � 0 c.0a/ D c.0b/ � 0 c.eb/:

Since � \ � 0 D 0, c.ea/ D c.eb/. �
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Proof of Theorem 2.2. We verify Definition VI.2.11 of factorable
factor-congruences:

.� _ �/ \ .� _ � 0/ D �
for all factor congruences �, � and � 0 of A where � and � 0 are complemen-
tary.
�. Assume that

a .� _ �/ b and a .� _ � 0/ b:
The first join means that there are x1; x2; : : : ; xn in A such that

(2.3) a � x1 � x2 � : : : � xn�1 � xn � b:
Now there are e and d such that 0 � 0 e � 1 and 0 �0 d � 1 for some comple-
ment �0 of �. By Lemma 2.3, the alternating chain (2.3) translates into the
chain

da D dx1; ex1 D ex2; : : : ; dxn�1 D dxn; exn D eb:
Certainly e.da/ D e.dx1/. And by Lemma 2.4, e.dx1/ D e.dx2/, etc. Hence
e.da/ D e.db/, and thus da �e db. Since �e D � by Lemma 2.3, we have
that da � db. Similarly, from a .� _ � 0/ b, it follows that da � 0 db. Therefore,
da D db since � \ � 0 D 0. So we may conclude what was desired: a � b.
�. Always true. �

That a unital half-shell has BFC is used implicitly from now on.

2.5. Theorem. Each unital half-shell A is represented by the reduced
and factor-transparent sheaf, A D A==.Con0 A/, over the Boolean space,
X D SpecCon0 A:

A Š �
�
A==.Con0 A/

�
:

Proof. Use Theorems 2.2 and VI.3.15. �

Recall that this A is called the ‘canonical sheaf’ whenever Con0 A is a
Boolean lattice. Many applications of this theorem will come in Chap. VIII.

2.6. Exercise. Consider a product
Q
i2I Ai of unital half-shells Ai

where I is infinite. An obvious sheaf representation is to take I as the
base space X with the discrete topology; to the sheaf space

U
i2I Ai assign

also the discrete topology. Notice that X is not compact. But by Theorem
2.2 this product has BFC; therefore, it ought to have a sheaf representation
over a Boolean space. Explain this enigma. Hint: What are the prime ideals
in an infinite power of a two-element Boolean algebra?

2.7. Exercise. Theorem 2.2 is important enough to prove it in three
more ways, from the straightforward to the original, more involved method.

(a) Show that any unital half-shell has factorable factor-congruences by
assuming that it has some factorization A �A0. Consider another fac-
torization of this product given by a factor congruence �, which is
equal, by Theorem 2.11 below, to �he;e0i for some factor element he; e0i
in A �A0. Then work with components of this product.
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(b) Show that an algebra having factorable factor-congruences is equivalent
to this condition of Bigelow and Burris [BigBu90] on any factorization
of it, say A1 �A2:

if � 2 Con0.A1 �A2/; then �1.�/ � 0ConA2
� �;

where �1.�/ D fh�1.a1/; �1.a2/ijha1; a2 i 2 �g. Then use this to show
that any unital half-shell has BFC.

(c) Fashion a proof based on Willard’s in [Will90].

2.8. Example. Although unital half-shells have BFC, that is, they have
factorable factor-congruences, they need not have factorable congruences.
To see this, let A be the bounded semilattice hAI ^; 0; 1i:

�
�

�
�

.........
.........

.........
.........

.........
.........

.........
.........

..................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
...

1

0

Let � and � 0 be the complementary factor congruences decomposing A as
the product of two-element semilattices. Further, let � be the congruence
gathering the bottom three elements together; clearly � is not a factor
congruence. Now .� _ �/ D 1 D .� _ � 0/. So .� _ �/ \ .� _ � 0/ D 1 ¤
�. Therefore, � is not congruence-factorable, and this counterexample is
established. But Theorem 3.2 of the next section reveals that this is no
longer possible in unital shells, which also have an addition.

Theorem VI.3.15 tells us that the canonical sheaf created from an algebra
A with BFC is reduced. But in the case of unital half-shells the reduction
is more severe: each stalk has at least two elements, as shown next. This
was in the original definition of ‘reduced’. Recall that the induced relation
�.a; b/ is the smallest congruence relating a and b.

2.9. Proposition. Let A be a unital half-shell.

(a) Then, �.0; 1/ D 1ConA:

(b) Consequently, the supremum of any proper ideal of congruences of A

is a proper congruence of A.
(c) As a result, no stalk is trivial in the canonical sheaf representation of

Theorem 2.5.

Proof. (a). Let a and b be any elements of A. Then,

a D 1a �.0; 1/ 0a D 0 D 0b �.0; 1/ 1b D b:
(b). Suppose that � is a proper ideal of Con0 A. By way of contradiction

suppose that
W
� D 1ConA. Then 0

W
� 1. Since

W
� DS

�, by Proposition
V.1.5, there is a � in � such that 0 � 1. So � D 1ConA by (a). Hence, it is
in �, which implies that � is improper.

(c) This follows immediately from (b). �
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Here is a useful proposition.

2.10. Proposition. For e and e0 complementary factor elements in a
unital half-shell A and for � a factor congruence of A, the following hold.

(a) e � 1 iff �e � � iff 0 � e0.
(b) �e D �.e; 1/.
(c) �e D �.0; e0/.

Proof. As (b) and (c) are immediate consequences of (a), we need
only prove the latter. As e �e 1 and 0 �e e

0, we need only prove two impli-
cations within (a).
e � 1 ) �e � �. Suppose that e � 1 and a �e b; then ea D eb. Therefore,

a D 1a � ea D eb � 1b D b;
and hence a � b.
0 � e0 ) �e � �. Suppose that 0 � e0 and a �e b; then ea D eb. Hence,

e0a � 0a D 0 D 0b � e0b:
Thus, e0a � e0b. Since 1 �e0 e0,

a D 1a �e0 e0a � e0b �e0 1b D b;
and hence a .� _ �e0/ b. By Theorem 2.2, A has BFC, and so by Theorem
VI.3.9, � is factorable: � D .� _ �e0/ \ .� _ �e/. Therefore, a � b. �

Factor elements fit into products of unital half-shells as central idempo-
tents do in unital rings.

2.11. Theorem. Let � and � 0 be complementary factor congruences in a
unital half-shell hAI �; 0; 1 : : : ; !; : : :i, and let ˇ, �, �0, e and e0 be the cor-
responding factor band, complementary factor sesquimorphisms, and com-
plementary factor elements, that is, e D ˇ10 and e0 D ˇ01. Then,
(a) e and e0 are complementary sesqui-elements;
(b) eA and e0A are complementary factor ideals;

(c) A=�
 Š eA and A=� 0  0

Š e0A, where  .a=�/ D ea and  0.a=� 0/ D e0a;
(d) 0=� D e0A and 0=� 0 D eA;

(e) A
'Š eA � e0A, where '.a/ D hea; e0ai;

(f) moreover, these factor elements e and e0 multiply as the sesquimorph-
isms � and �0 act:

ea D �.a/ D ˇ.a; e/ and e0a D �0.a/ D ˇ.a; e0/ .a 2 A/:
Proof. Recall from Lemma 2.3 that � D �e and .�e/

0 D �e0 .
(a) We need to verify axioms (i)–(v) of Definition 1.1 for sesqui-elements.

We can demonstrate (i)–(iii) by showing that both sides are related by � as
well as � 0. By virtue of Theorem 2.18 of Chap. VI this amounts to verifying
these equations when the sesqui-elements are just 0 or 1.

To verify axiom (iv) assume that ea D eb and e0a D e0b. These amount
to saying that a � b and a � 0 b. Since � \ � 0 D 0, it follows that a D b.
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For any a and b in A, since � ı � 0 D 1, there is an x such that a � x � 0 b.
Therefore, ea D ex and e0b D e0x: This proves (v).

Parts (b)–(e) of this theorem follow from (a) and Theorem 1.3.
(f) From the defining properties of factor bands and Theorem II.2.12,

�.a/ D ˇ.a; 0/ D ˇ.1a; 0a/ D ˇ.1; 0/ ˇ.a; a/ D ea; and

�.a/ D ˇ.a; 0/ D ˇ.a; ˇ.1; 0// D ˇ.a; e/: �
There is a subtlety in this theorem: it is possible for different sesqui-

elements to have the same action. However, the next corollary extends the
one-to-one correspondences, begun in Theorem II.2.12 for bands, congru-
ences, and sesquimorphisms, to the remaining two factor objects, elements,
and ideals.

2.12. Corollary. Let A be a unital half-shell.

(a) Each factor element in A comes from a unique congruence, and con-
sequently from a unique factor band.

(b) Likewise, each factor ideal in A uniquely determines its corresponding
factor congruence.

(c) Thus, factor elements and ideals have unique complements.

Proof. In view of Sect. II.2, it suffices to work with the sesquimor-
phisms of a half-shell A. Let h�;�0i and h	; 	0i be pairs of complemen-
tary sesquimorphisms with respective pairs of factor elements, he; e0i and
hf; f 0i, such that e D f . Then by the previous theorem, for all a in A,

�.a/ D ea D fa D 	.a/:
Since complements are unique in the Boolean algebra Sesq0 A, also �0 D 	0.

Uniqueness of factor ideals follows from Proposition VI.2.8 �
11111

In unital half-shells, factor elements satisfy more identities than in ses-
quishells. Even more factor identities will appear as the concept of a shell is
further refined. Already idempotence appears, but not centrality, ea D ae,
which depends on the constants 0 and 1 being two-sided, as in ring theory.

2.13. Proposition. In a unital half-shell A, any elements a, b and
factor element e satisfy

ee D e;
e.ab/ D .ea/b D .ea/.eb/;
e0 D 0;
e1 D e:

Complementary factor elements e and e0 satisfy
ee0 D 0 D e0e:

Two factor elements e and f satisfy

ef D fe:
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Proof. Use Theorem VI.2.18, which tests the validity of identities by
substituting 0s and 1s for the factor elements. �

Of course, the factor elements also satisfy the clauses of Definition 1.1
since they are sesqui-elements by Theorem 2.11.

2.14. Exercise. Show that in a sesquishell the factor identity e.ab/ D
.ea/b may fail for a sesqui-element e. Hint: create a sesquishell having a
regression of zeros, 0a D z1 and zia D ziC1. Show also that the factor
identity ea D ae may fail, even in a unital half-shell.

Recall from Sect. VI.2 that, in an algebra A with Boolean factor congru-
ences, the factor bands and the factor sesquimorphisms form Boolean alge-

bras, isomorphic or anti-isomorphic to one another: Con0 A Š Band0 A
antiŠ

Sesq0 A. In unital half-shells we have in the next theorem also the Boolean
algebra of factor elements, Elem0 A, which is anti-isomorphic to Con0 A.

We are tempted to call Elem0 A the ‘center’, following Birkhoff [Birk67,
p. 67], who uses it to pick out those elements identifying a factorization
of a bounded partial order. But this word is often used in a different
sense to mean the set of elements commuting with all others, as by Kurosh
[Kuro63, p. 105]. For this reason we avoid it.

2.15. Theorem. Let A be a unital half-shell hAI �; 0; 1; : : : ; !; : : :i.
(a) The set Elem0 A of factor elements forms a Boolean algebra,

Elem0 A D hElem0 AI _;�;0 ; 0; 1i;
in which e _ f D .e0 � f 0/0.

(b) Elem0 A
antiŠ Con0 A, with the maps given in each direction by:

e 7! �e where a �eb iff ea D ebI
� 7! e� where 0 � 0 e� � 1:

Proof. (a) In view of the factor identities above and Proposition V.1.2,
we need only prove that Elem0 A is a semilattice and it is a Boolean sub-
semilattice of itself, that is,

ef 0 D 0 iff ef D e .e; f 2 Elem0 A/:

We do this with the help of axiom (iv) in Definition 1.1.
(b) As a one-to-one correspondence has been established in Corollary

2.12, it suffices to show that �e ı �f D �ef , or equivalently:

0 .�e ı �f /0 ef .�e ı �f / 1:
(Remember that factor congruences commute since A has BFC.) To estab-
lish the first relationship, realize by DeMorgan’s laws that

.�e ı �f /0 D � 0
e \ � 0

f D �e0 \ �f 0 :
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But 0 �e0 ef since e00 D 0 D e0ef by the identities just proven. And simi-
larly 0 �f 0 ef . The second relationship is established by taking f to be the
intermediary in the composition. �

Factor elements can now be defined independently of the other factor
objects.

2.16. Proposition. In a unital half-shell A, the elements e and e0 are
a pair of complementary factor elements if, and only if,

(a) ee D e and e0e0 D e0 .a 2 A/;
(b) e1 D e and e01 D e0;
(c) ee0 D 0 and e0e D 0 .a 2 A/;
(d) e.ab/ D .ea/b and e0.ab/ D .e0a/b .a; b 2 A/;
(e) for each operation !, including �,

(1) e!.ea1; ea2; : : :/ D e!.a1; a2; : : :/ .a1; a2; : : : 2 A/,
(2) e0!.e0a1; e0a2; : : :/ D e0!.a1; a2; : : :/ .a1; a2; : : : 2 A/;

(f) if ea D eb and e0b D e0b then a D b (a; b 2 A);
(g) for all a; b in A there is an x in A such that ea D ex and e0b D e0x.

Proof. ) : By Definition 1.1, Theorem 2.11 and Proposition 2.13.
( : Let e and e0 be elements satisfying (a)–(g). These clauses imply

that e and e0 are complementary sesqui-elements. By Theorem 1.3, the
induced relations �e and �e0 of (2.2) are complementary factor congruences.
It suffices to establish (2.1) that 0 �e0 e �e 1 and 0 �e e

0 �e0 1. Now

e00 D e0.ee0/ D .e0e/e0 D 0e0 D 0 D e0e and ee D e D e1:
Hence, by (2.2), 0 �e0 e �e 1. Thus, e is a factor element, and likewise e0. �

The factor identity, e0 = 0, is not needed in this characterization, al-
though it holds in unital half-shells and is derived toward the end of the
proof.

2.17. Corollary. Let e and e0 be a pair of complementary factor ele-
ments in a unital half-shell A. Then

a 2 eA iff ea D a iff e0a D 0 .a 2 A/:
2.18. Exercise. Show that in a unital half-shell A the Boolean opera-

tions on factor elements in Elem0 A may all be defined independently:

(1) e ^ f D e � f ;
(2) e0 is the unique f such that for all g, eg D 0 iff fg D g;
(3) e _ f D .e0 ^ f 0/0.

2.19. Exercise. Pierce [Pier67, p. 15] defines a reduced sheaf of unital
rings as a sheaf hR; �;X i such that

(i) X is a Boolean space, and
(ii) if " 2 Elem0 � .R/, then for all x in X , either ".x/ D 0 or ".x/ D 1.
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Generalize this to unital half-shells as a characterization of our restricted
‘reduced’ and ‘factor-transparent’ of Definition VI.3.14. Compare this with
proposition 2.2 of [Comer71].

Specifically, for a global section � of the canonical sheaf hA; �;X i of a
unital half-shell A, prove that � is a factor element of � .A/ if, and only if,

(2.4) either �.x/ D 0 or �.x/ D 1 .x 2 X/:
Hint: use two facts for a factor element � , that 0 � 0

� � �� 1, and either
�� � W

P or � 0
� �

W
P for a prime ideal P . Vaggione solved this exercise

when it was originally a problem [Vagg10].

11111
Beware still that not all sesqui-elements are factor elements (see Example

1.4). As seen before, different pairs of complementary sesqui-elements might
lead to the same factor congruences. In the extreme, there might be vagrant
pairs of complementary sesqui-elements that are not directly obtainable
from any complementary factor congruences.

This will be resolved when the nullity and unity become two-sided. Fac-
tor elements and sesqui-elements will be one and the same when the cor-
responding sesquimorphisms preserve 0; and the sesqui-elements will be
uniquely determined by the factorizations they create. And these elements
will satisfy more identities.

2.20. Definition. A two-sided half-shell hAI �; 0 : : : ; !; : : :i has a des-
ignated binary operation and constant such that

(0N�N0) 0 � a D 0 D a � 0 .a 2 A/:
It is called unital if there is another constant 1 such that

(1U�U1) 1 � a D a D a � 1 .a 2 A/:
2.21. Theorem. Let A be a two-sided unital half-shell in which comple-

mentary sesqui-elements are anchored at the nullity

ee0 D 0 D e0e:
Then any sesqui-element of A is a factor element, and vice versa.

Proof. Let e and e0 be such a pair of complementary sesqui-elements
in a unital two-sided half-shell hAI �; 0; 1 : : : ; !; : : :i, and let �e and �e0 be
their factor congruences:

(2.5) a �e b iff ea D eb and a �e0 b iff e0a D e0b .a; b 2 A/:
Let f and f 0 be the factor elements derived from them:

(2.6) 0 �e0 f �e 1 and 0 �e f
0 �e0 1:

By Theorem 1.3, �e and �e0 are complementary factor congruences. Hence,
the solutions f and f 0 to (2.6) are unique. If e and e0 were also to solve
(2.6), then the old and new factor elements would be equal. Now

e00 D 0 D e0e and ee D e D e1:
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Hence, by (2.5), 0 �e0 e �e 1. Therefore, e D f and likewise e0 D f 0.
Theorem 2.11a takes care of the vice versa. �

Note how essential, in this proof and the succeeding ones, is the two-
sidedness of the constants. Next, even more factor identities hold for two-
sided half-shells than for one-sided ones. Finally appearing, remarkably
rather late, is the commutative factor identity, ea D ae, which is central
to the definition of factor elements in noncommutative unital rings, but
which could not have appeared earlier since it does not hold generally in
one-sided half-shells.

2.22. Proposition. In a two-sided unital half-shell A any pair of
complementary factor elements e and e0 satisfy the identities and formulas
of Definition 1.1 and Proposition 2.13, and in addition now these:

(a) ea D ae and e0a D ae0 (a 2 A/;
(b) a.eb/ D .ae/b and a.e0b/ D .ae0/b (a; b 2 A);
(c) a.be/ D .ab/e and a.be0/ D .ab/e0 (a; b 2 A);
(d) for each operation ! of A, including �,

!.a1e; a2e; : : :/e D !.a1; a2; : : : /e .a1; a2; � � � 2 A/;
!.a1e

0; a2e0; : : :/e0 D !.a1; a2; : : : /e0 .a1; a2; � � � 2 A/I
(e) ea D 0 if, and only if, e0a D a (a 2 A/:

Proof. Use Theorem VI.2.18. �

These identities and the previous ones are not independent. For example,
the middle associative law (b) follows from (a), (c) and the left-sided asso-
ciative law given in Proposition 2.13. A characterization of factor elements
with only factor identities will have to wait till addition is appended in the
next section. Look ahead to Theorem 3.4 and Exercise 3.12.

With two-sidedness comes a duality of factor identities. Each factor iden-
tity previously established in one-sided unital half-shells has a mirror image
now holding in two-sided unital half-shells. By a mirror image is meant the
reversal of all products in a factor identity. Thus, the mirror image of
e.xy/ � .ex/y in Proposition 2.16d is .yx/e � y.xe/.

3. Shells

Another binary operation supplements the multiplication and constants of
the previous section. It is written additively, with 0 acting as its unity. This
is enough to ensure that products factor all congruences in unital shells,
not merely factor congruences, as in the previous section. Factor identities
alone can now characterize factor elements; this gives a common extension
of their classical definitions in rings and lattices.
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We describe factor ideals in two new ways, independent of the other factor
objects. These simplify when the unital shell is two-sided and distributive.
This fills out the roster of independent definitions for all five factor objects.
Along the way we look at factor ideals as principal ideals generated by factor
elements.

3.1. Definition. A shell, A D hAIC;�; 0; : : : ; !; : : :i, is an algebra with
two binary operations,C and �, a constant 0, and perhaps other operations
! such that for all a in A,

0 � a D 0;(0N�)

0C a D a D aC 0:(0U+U0)

If there is another constant 1 such that

1 � a D a;(1U�)

then A is said to be unital.

Again ! is a generic operation beyond those special operations already
given; there may be many of these additional operations, or none at all.
The constant 0 is called a nullity in axiom 0N�, and 1 is a unity in axiom
1U�. These terms reflect the function of the constant rather than what
symbol represents it. The constant in axiom 0U+U0 is still called a ‘unity’
with respect to C even though it is designated 0.

However, it is useful to have the convention for algebras with two desig-
nated binary operations and two constants, such as rings hRIC;�; 0; 1i or
bounded lattices hLI _;^; 0; 1i, that the second operation, � or ^, deter-
mines the name: 0 for the ‘nullity’ and 1 for the ‘unity’.

One may interpret these shell operations in many different ways. For
example, 1 and 0 may play their usual roles as in number theory, or they
may represent truth and falsity in logic, or they may even be maximal and
minimal elements in a lattice. The binary operations similarly have widely
ranging interpretations: the first operation C may be the summing of mag-
nitudes, the disjunction (OR’ing) of logical quantities, the joining of lattice
elements, or the union of sets, according to need; and the other operation �
can subsume the multiplication of numbers, the conjunction of truth values
(AND’ing), the meet of elements in lattices, and the intersection of sets,
as desired. Thus, shells encompass both unital rings and bounded lattices
as well as expansions and generalizations of them, and yet, as will be seen,
there is a significant common theory.3

3.2. Theorem. A unital shell has factorable congruences; consequently,
it has Boolean factor congruences.

3Vaggione generalizes shells by replacing the nullity and unity by sequences of unary
operations [Vagg96]. For the passage between his shells and those of the author, see
[Knoe00].
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Proof. By Definition VI.2.11 it suffices to prove that

� D .� _ �/ \ .� _ � 0/

for all � in Con A and complementary � and � 0 in Con0 A. One direction of
inclusion, �, is always true. To prove the other, assume that a and b are
related by the right side. Then a .� _ �/ b and a .� _ � 0/ b. So there must
exist sequences of elements x1; x2; : : : ; xm and y1; y2; : : : ; yn in A related
alternately by these relations:

a � x1 � x2 � x3 � � �xm�1 � xm � b and a � y1 �
0 y2 � y3 � � �yn�1 � yn � 0 b:

By repeating the last elements and congruences, these sequences may be
made the same length, m D n. Let e and e0 be the complementary factor
elements defined by the factor band ˇ determined by � and � 0:

e D ˇ.1; 0/ and e0 D ˇ.0; 1/:
Then the relations above become, by Lemma 2.3:

x1 � x2 iff ex1 D ex2I y1 �
0 y2 iff e0y1 D e0y2I etc.

Now e0y1 � e0y2 since e.e0y1/ D .ee0/y1 D 0y1 D 0y2 D .ee0/y2 D e.e0y2/;
by Proposition VI.2.13. Thus ex1Ce0y1 � ex2Ce0y2, and so forth. Therefore,

a D eaCe0a � ex1Ce0y1 .� \ � 0/ ex2Ce0y2 � ex3Ce0y3 � � �
� � � exn�1Ce0yn�1 � exnCe0yn .� \ � 0/ ebCe0b D b:

Since � \ � 0 is equality, it follows that a � b.
It has BFC by Theorem VI.3.9. �

One may well wonder what fortunate consequences might follow from a
shell having factorable congruences. Of course, it follows that each unital
shell A is represented by a reduced and factor-transparent sheaf over a
Boolean space, as in Theorem VI.3.15: A Š �

�
A==.Con0 A/

�
: But more

might be true: for example, see Problem VI.3.13. Also, how general might
the Boolean algebra of factor congruences be in a shell, as suggested next.

3.3. Problem. Show that for any algebra A with BFC there is a unital
shell B such that Con0 A Š Con0 B. Hint: consider Boolean algebras. More
concretely, could this still be true if one insists that A D B and Con0 A D
Con0 B.

11111
The concept of unital shells is sufficiently strong to support a character-

ization of factor elements solely in terms of factor identities.
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3.4. Theorem. Two elements e and e0 of a unital shell A are comple-
mentary factor elements if, and only if, for all a, ai and b in A:

ee D e; e0e0 D e0I
ee0 D 0; e0e D 0I
e0 D 0; e00 D 0I
e1 D e; e01 D e0I

e.ab/ D .ea/b; e0.ab/ D .e0a/bI
e.ab/ D .ea/.eb/; e0.ab/ D .e0a/.e0b/I

a D eaC e0a; a D e0aC eaI
e.aC b/ D eaC eb; e0.aC b/ D e0aC e0bI

e!.ea1; ea2; : : :/ D e!.a1; a2; : : : /; e0!.e0a1; e0a2; : : :/ D e0!.a1; a2; : : : /
(for all operations ! besides C;�; 0 and 1).

The import of this last clause is that the last two factor identities should
hold for all additional operations !, but their truth for C;�; 0 and 1 follows
readily from the previous clauses.

Proof. ). Use Theorem VI.2.18 to verify these factor identities.
(. The clauses of Proposition 2.16 follow readily except possibly its (g);

to prove it, set x D eaC e0b. �
What a lot of factor identities! Most are trivially satisfied in traditional

algebras. We now realize why those classical identities of centrality come
out the way they do. Examples illuminate. Because rings are defined by
many identities, it is necessary to require only a few additional ones in
order to single out those elements that factor the ring. In a commutative
ring with unity, factor elements are just the idempotents. In going from
commutative ring theory to noncommutative, factor elements become cen-
tral idempotents – they must be idempotents commuting with all elements
of the ring. Additionally, if the ring is nonassociative, the factor elements
will not only be central idempotents, as already expected, but they must
associate with all other elements. If further, the ring were not to be even
distributive, then the factor elements would also have to distribute over all
the other elements of the ring.

As one might guess, if a bounded lattice is not distributive, then factor
elements must distribute over everything else, and also the factor identity,
a D eaC e0a, must hold. Why one distributive law, e.aC b/ D eaC eb, is
necessary and not others, such as a.e C b/ D ae C ab, is now understood:
the former is satisfied when we substitute 0 or 1 for e but not in the latter
(see Theorem VI.2.18). More factor identities are given in Proposition 2.22.

What we lack in general, and perhaps appear to need in the theory of
factor elements in shells, is subtraction. Surprisingly, this is not a deficiency.
All that we need is a ‘complement’ f of e satisfying e�f D 0 and eCf D1.
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Such conditions do not need to be explicitly stated for unital rings since
the potential complement f is indeed a subtraction, f D 1 � e. As a
consequence, the expression of the Boolean operations on factor elements
in terms of the shell operations varies according to the kind of algebra;
for example, Boolean join is the usual join in lattices, but in rings it is
e _ f D .e0f 0/0 D e C f � ef . Section 4 has more such expressions.

3.5. Problem. For what classes of algebras does the set of all factor
identities characterize the factor elements? When is there a basis of factor
identities from which the remaining may be derived by a ‘factor logic’
analogous to equational logic? In these questions, the class may be that
of one of the sections of this chapter, or a common class such as rings,
groups or lattices. Ask similar questions about factor formulas (see Problem
VI.2.19).

11111
Factor ideals may now be defined independently of the other factor ob-

jects. Remember from Sect. II.2 that a pair of complementary factor ideals
are given in a general algebra A with an origin o by images of a factor
band: ˇ.A; o/ and ˇ.o;A/, or equivalently as images of the corresponding
factor sesquimorphisms. Recall that complementary factor sesquimorph-
isms always capture the notion of inner direct product, whereas in general
there may be ambiguity with complementary factor ideals (see the dis-
cussion before Definition II.2.22). But, as will be proven, factor ideals in
unital shells have their own unique unities; thus there is no ambiguity in
the product they specify within the shell. Inner direct products can also be
identified in unital shells with complementary factor elements, e D ˇ.1; 0/
and e0 D ˇ.0; 1/, that generate the complementary factor ideals eA and e0A
with unities e and e0. See Theorem 2.11.

Here are several characterizations of pairs of complementary factor ideals
as inner products in unital shells, sometimes two-sided, the last one requir-
ing distributivity of � over C. These are reminiscent of older definitions of
inner products in terms of ideals in classical algebras. We assume in a shell
that all ideals have 0 as their origin. For readability we write a potential
complement of the factor ideal I as J rather than I 0.

Another but temporary notion of ideal is phrased in the traditional lan-
guage of ring theory. It is given the French spelling ‘idéal’ to distinguish it
from the kernels 0=� of congruences � . Its definition will vary over several
sections according to the needs of a particular section. For now, we define
it as follows.

3.6. Definition. In a shell A a subset I of A is an idéal if

(i) 0 2 I .
(ii) If i1; i2 2 I , then i1 C i2 2 I .

(iii) If i 2 I and a 2 A, then ia 2 I .
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3.7. Theorem. In a unital shell, A D hAIC;�; 0; 1 : : : ; !; : : :i, two sub-
sets I and J are complementary factor ideals if, and only if,

(a) I and J are idéals;
(b) each a in A is a unique sum of some aI in I and some aJ in J:

a D aI C aJ I
(c) for each a in A,

aI D 1Ia and aJ D 1JaI
where 1I and 1J come from (b).

(d) whenever i1, i2 2 I and j1, j2 2 J , then
.i1 C j1/C .i2 C j2/ D .i1 C i2/C .j1 C j2/I

(e) whenever i1, i2 2 I and j1, j2 2 J , then
.i1 C j1/.i2 C j2/ D i1i2 C j1j2I

(f) whenever i1; i2; : : : 2 I and j1; j2; : : : 2 J , then for the operations !,

!.i1 C j1; i2 C j2; : : :/ D 1I!.i1; i2; : : :/C 1J!.j1; j2; : : :/:
The operations ! of condition (f) of this theorem need not cover C, �, 0

and 1; but if they do, then (d) and (e) may be omitted. Note that (c) and (f)
have a touch of factor elements in 1I and 1J . By left multiplication, these
become factor sesquimorphisms, thereby filling out the inner direct product
as given in Definition II.2.22. Before proving this theorem, we establish a
preliminary result.

3.8. Lemma. Assume that I and J are subsets of a unital shell A that
satisfy conditions (a)–(e) of Theorem 3.7. Decompose 1 uniquely as e D 1I
and e0 D 1J . We conclude the following for all a and b in A.

(1) a D eaC e0a.
(2) e.aC b/ D eaC eb.
(3) a 2 I iff ea D a iff e0a D 0.
(4) e.ea/ D ea and e0.e0a/ D e0a.
(5) I D eA and J D e0A.

Proof. (1) By unique decomposition, (b) and (c) of Theorem 3.7.
(2) There are the unique decompositions:

aC b D .aC b/I C .aC b/J ; and

aC b D .aI C aJ /C .bI C bJ / D .aI C bI /C .aJ C bJ / by (d).

Finish by (c).
(3) By the repeated use of unique decompositions.
(4) Use (3).
(5) Use (3) and (4). �

With regard to conclusion (5) of this lemma, we say that e generates I
and e0 generates J .
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Proof of Theorem 3.7. (. Assume that I and J are subsets that
satisfy (a)–(f). Define e D 1I , e0 D 1J , and a binary operation ˇ on A by
ˇ.a; b/ D eaC e0b. We verify the three axioms (II.2.1)–(II.2.3) that define
a factor band ˇ, freely using the preceding lemma. For the first,

ˇ.a; a/ D eaC e0a D a:
For the second,

ˇ.ˇ.a; b/; ˇ.c; d// D e.eaC e0b/C e0.ec C e0d/
D .e C 0/.eaC e0b/C .0C e0/.ec C e0d/
D �

e.ea/C 0.e0b/
�C �

0.ec/C e0.e0d/
�

D .eaC 0/C .0C e0d/
D eaC e0d
D ˇ.a; d/:

For the third, which is similar to the second but more involved,

ˇ
�
!.a1; a2; : : :/; !.b1; b2; : : :/

�

D e!.ea1 C e0a1; ea2 C e0a2; : : :/
C e0!.eb1 C e0b1; eb2 C e0b2; : : :/

D e�e!.ea1; ea2; : : :/C e0!.e0a1; e0a2; : : :/
�

C e0�e!.eb1; eb2; : : :/C e0!.e0b1; e0b2; : : :/
�

D e!.ea1; ea2; : : :/C e0!.e0b1; e0b2; : : :/
D !.ea1 C e0b1; ea2 C e0b2; : : :/
D !�

ˇ.a1; b1/; ˇ.a2; b2/; : : :
�
:

Now I is the ideal determined by ˇ since I D eA D eAC e00 D ˇ.A; 0/,
the last by Theorem 3.4.
). For any pair of complementary factor ideals I and J D I 0 in A, we

establish clauses (i)–(iii) in the definition of idéal and conclusions (b)–(f).
Associated with I and J are complementary factor congruences � and � 0,
and complementary factor elements e and e0, as developed in Sect. II.2,
Theorem 2.11, and the preceding sections.

(i) This is true since 0 is the origin.
(ii) Since i1; i2 2 I , then ei1 D i1 and ei2 D i2. Hence, i1 C i2 D

ei1 C ei2 D e.i1 C i2/. That is, i1 C i2 2 I .
(iii) ia D .ei/a D e.ia/; therefore, ia 2 I .
(b) It is already known from Theorem 3.4 that a D eaC e0a. Uniqueness

follows since, if also a D i C j for i in I and j in J , then ea D e.i C j / D
ei C ej D ei D i , because ej D 0, and by Corollary 2.17.

(c) From the proof for (b).
(d) Premultiply each side by e and then e0, and distribute over the sums,

losing terms.
(e) and (f) are similar to (d). �
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3.9. Corollary. Let A be a unital shell with complementary factor
ideals, I and J . The elements, e 2 I and e0 2 J , given as the unique
solution to eCe0 D 1, are the complementary factor elements that generate
I and J . Consequently, they satisfy all the factor identities of Theorem 3.4.

Proof. Two representations of 0 have components in I and J :

0 D 0C 0 and 0 D e0C e00:

By uniqueness, e0 D 0 and e00 D 0. Similarly, e1 D e and e01 D e0. With the
factor band ˇ defined in the proof of the preceding theorem, one concludes
that ˇ.1; 0/ D e1Ce00 D e and likewise, ˇ.0; 1/ D e0. Thus, e and e0 satisfy
the definition of factor elements coming from a factor band, as reviewed at
the beginning of Sect. 2. �

11111
We give several simple consequences of Theorem 3.7. For some of those

we need the merger of ‘two-sided’, ‘unital’ and ‘shell’ of Definitions 2.20
and 3.1.

3.10. Definition. An algebra hAIC;�; 0; 1; : : : ; !; : : :i is a two-sided
unital shell if it satisfies, for all a in A,

0C a Da D aC 0I(0U+U0)

0 � a D0 D a � 0I(0N�N0)

1 � a Da D a � 1:(1U�U1)

3.11. Proposition. Let I and J be a pair of complementary factor ideals
of a unital shell A. Assume that a 2 A, i 2 I , and j 2 J . Conclude that

i C j D j C i; and(a)

.i C j /a D iaC ja:(b)

If A is two-sided, then also

ij D 0; and(c)

a.i C j / D ai C aj:(d)

Proof. (a) Substitute i1 D 0 and j2 D 0 into (d) of Theorem 3.7.
(b) Use that theorem again:

.i C j /a D .i C j /.aI C aJ /
D iaI C jaJ
D .iaI C 0aJ /C .0aI C jaJ /
D .i C 0/.aI C aJ /C .0C j /.aI C aJ /
D iaC ja:

(c) Substitute i2 D 0 and j1 D 0 into (e) of Theorem 3.7.
(d) Redo (b) on the other side. �
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3.12. Exercise. (a) For a two-sided unital shell A (Definition 3.10),
prove directly from Theorem 3.4 and independently of Theorem VI.2.18
that

ea D ae .e 2 Elem0 A; a 2 A/:
(b) Find a one-sided unital shell in which the factor identity of (a) fails.

The next theorem will introduce complex addition and multiplication
into the characterization of inner products:

I C J D fi C j j i 2 I and j 2 J g ; and

I � J D fi � j j i 2 I and j 2 J g :
Using the previous theorem and proposition, we easily prove next that
multiplication and intersection of factor ideals are synonymous.

3.13. Proposition. Let A be a unital shell.

(a) Whenever e1 and e2 are factor elements of A, then

.e1e2/A D e1A \ e2A:
(b) Whenever I and J are factor ideals of a two-sided unital shell, then

I � J D I \ J:
11111

In analogy with factor congruences, we would like to identify factor ideals
with those ideals I for which there is another ideal J such that I C J D A
and I \ J D f0g. We say that an element 1I is a unity of a subset I of a
shell A if, whenever i 2 I , then 1I i D i .

3.14. Theorem. Two subsets, I and J , of a two-sided unital shell A are
a pair of complementary factor ideals if, and only if,

(a) I and J are idéals;
(b) I C J D A;
(c) I \ J D f0g;
(d) I and J have unities 1I and 1J such that, for all a and b in A,

1I .aC b/ D 1IaC 1Ib; and

1J .aC b/ D 1JaC 1J bI
(e) For all i in I , j in J and a in A,

.i C j /a D iaC ja; and
a.i C j / D ai C aj:

(f) for all the operations ! (including C and �) with the unities 1I and
1J of part (d), whenever i1; i2; : : : 2 I and j1; j2; : : : 2 J , then

!.i1 C j1; i2 C j2; : : :/ D 1I!.i1; i2; : : :/C 1J!.j1; j2; : : :/:
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Proof. We show the equivalence of these conditions with those of
Theorem 3.7. To make this clear, prefix the conditions of Theorem 3.7
with ‘A’ and those of the present theorem with ‘B’. We need prove only
the equivalence of (Ab)–(Ae) with (Bb)–(Be) in the presence of the other
conditions, which are the same.
). Assume (Aa)–(Af).
(Bb). This is clear from (Ab).
(Bc). Clearly 0 2 I \ J . Now suppose a 2 I \ J . Then the equations,

a D aC 0 D 0C a;
give two representations of a. Hence, a D 0 since such representations are
unique.

(Bd) It has already been established that factor ideals have unities that
are factor elements (Theorem 2.11 and Corollary 2.17).

(Be). This is Proposition 3.11b,d.
(. Assume (Ba)–(Bf).
(Ab). Using (Bb), define e in I and f in J by eCf D 1. Then by (Be),

for any a in A,

a D 1a D .e C f /a D eaC fa:
This representation is unique, for if a D i C j with i 2 I and j 2 J , and
the conditions of the proposition are freely applied, then

ea D e.i C j / D ei C ej D ei C 0 D ei C f i D .e C f /i D 1i D i:
Likewise, fa D j .

(Ac) Since a D 1a D .1I C 1J /a D 1IaC 1Ja, then 1Ia D aI from (Ab).
(Ad) and (Ae). Use (Bf). �

When the distributive law is assumed, conditions (d) and (e) of this
theorem vanish and (f) may be simplified, as in the next corollary. When
A is a unital ring, distributivity is automatic, and all three are redundant;
idéals are now the same as the traditional ideals of ring theory.

3.15. Corollary. Suppose A is a two-sided unital shell in which �
distributes over C:

a.b C c/ D ab C ac; and .aC b/c D ac C bc .a; b; c 2 A/:
Two subsets I and J of A form an inner direct product of factor ideals if,
and only if,

(a) I and J are idéals;
(b) I C J D A;
(c) I \ J D f0g; and
(d) I has a unity 1I and J has a unity 1J such that 1I C 1J D 1, and for

all operations !,

1I!.1Ia1; 1Ia2; : : :/ D 1I!.a1; a2; : : :/ .a1; a2; : : : 2 A/; and

1J!.1Ja1; 1Ja2; : : :/ D 1J!.a1; a2; : : :/ .a1; a2; : : : 2 A/:
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Proof. ). Use Theorem 3.14.
(. Assume(a)–(d). These imply the clauses of Theorem 3.14, of which

only (f) requires much proof. For it, with distributivity, (c) and (d),

1I!.i1 C j1; i2 C j2; : : :/ D 1I!.1I .i1 C j1/; 1I .i2 C j2/; : : :/
D 1I!.1I i1 C 1Ij1; 1I i2 C 1Ij2; : : :/
D 1I!.1I i1; 1I i2; : : :/
D 1I!.i1; i2; : : :/:

A similar derivation holds for premultiplication by 1J . By distributivity,

!.i1 C j1; i2 C j2; : : :/ D 1I!.i1 C j1; i2 C j2; : : :/
C 1J!.i1 C j1; i2 C j2; : : :/
D 1I!.i1; i2; : : :/C 1J!.j1; j2; : : :/: �

3.16. Counterexample. In this corollary distributivity is essential. To
see otherwise, let A be the nondistributive lattice N 5.

�
�

�
�
�

a

1

b

c

0

........
.........
.........
.........
.........
.........
........
......................................................................................................................................................
.........
.........
........
.........
........
.........
.........

Look at the ideals, I D f0; ag and J D f0; b; cg. They satisfy (a), (b), and
(c); but they do not form an inner direct product.

Although not a shell, a multiplicative counterexample is S 3, the permu-
tation group on the three letters ˛, ˇ, and � . Its subgroups, I D f./; .˛ˇ/g
and J D f./; .˛ˇ�/; .˛�ˇ/g, satisfy (b) and (c) of Corollary 3.15, but they
are not an inner product.

This section closes with several exercises about factor objects in two
other fragments of shells. It is instructive to fit these into our framework.
We assume in these exercises that the sesquimorphisms preserve 0.

The algebras of Jónsson and Tarski [JónTa47] are close to shells, but
sufficiently different not to have a canonical sheaf representation, and there-
fore they will play a minor role in this book.

3.17. Definition. A J-T algebra is an algebra

hAIC; 0; : : : ; !; : : :i of type h2; 0; : : : ; n; : : :i
such that, for all a in A,

0C a D a D aC 0;(0U+U0)

and for all operations ! of A,

!.0; 0; : : : ; 0/ D 0:
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This is a common generalization of many classical algebras, such as
groups, rings, modules, and lattices and semilattices with a unity. As such,
J-T algebras are sometimes written multiplicatively as hAI �; 1; : : : ; !; : : :i.
This concept includes the groups with operators of Kurosh [Kuro63,
p. 99].

J-T algebras have simply defined inner products. Their significance is
that any finite J-T algebra factors as a direct product of directly inde-
composable algebras, unique up to rearranging factors; see [McMcT87,
Theorem 5.8], where J-T algebras are called ‘algebras with a zero’.

3.18. Exercise. In a J-T algebra hAIC; 0; : : : ; !; : : :i, a pair of functions,
� and �0 from A to A is a pair of complementary factor sesquimorphisms
(that is an inner direct product) if, and only if,

(a) � ı � D � and �0 ı �0 D �0,
(b) � ı �0 D �0 ı � D 0 (= the function that is always 0),
(c) �C �0 D �0 C � D 1A (= the identity function on A),
(d) � and �0 are endomorphisms of A.

Some of the last exercises concern algebras like those of Jónsson and
Tarski, except that 0 need not be a one-element subalgebra.

3.19. Exercise. In an algebra hAIC; 0; : : : ; !; : : :i satisfying (0U+U0),
two subsets I and J of it are a pair of complementary factor ideals, meaning
they are images of a pair of complementary factor sesquimorphisms if, and
only if, they satisfy these axioms:

(a) I \ J D f0g;
(b) 8a 2 A 9ŠaI 2 I 9ŠaJ 2 J .a D aI C aJ /,
(c) .aI /J D .aJ /I ;
(d) (1) !

�
.a1/I ; .a2/I ; : : :

�
I
D �

!.a1; a2; : : :/
�
I

.a1; a2; : : : 2 A/;
(2) !

�
.a1/J ; .a2/J ; : : :

�
J
D �

!.a1; a2; : : :/
�
J

.a1; a2; : : : 2 A/.
where ! is any operation of A, including C.

3.20. Exercise. In an algebra hAIC; 0; : : : ; !; : : :i satisfying (0U+U0),
let ˇ be a factor band of it with corresponding factor sesquimorphisms �
and �0. Then,

ˇ.a; b/ D �.a/C �0.b/ .a; b 2 A/:
In view of Exercise 3.20, addition is a kind of universal factor band in

J-T algebras, which is generalized in Exercise 3.21. A surprising converse
is found in Exercise 3.22.

3.21. Exercise. More generally, let A be any algebra. Say that A has
an inner sum operation if there is an binary operation C, not necessarily
a term operation, such that for all complementary factor sesquimorphisms
� and �0,

�.a/C �0.a/ D a .a 2 A/:
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Prove that a binary operation C on A is an inner sum operation iff for all
factor bands ˇ, with corresponding factor sesquimorphisms � and �0,

�.a/C �0.b/ D ˇ.�.a/; �0.b// .a; b 2 A/:
3.22. Exercise. An algebra hAIC; 0; : : : ; !; : : :i is a J-T algebra if, and

only if, for all pairs of complementary factor sesquimorphisms, � and �0,
(a) �C �0 D 1A, and
(b) � and �0 are endomorphisms.

Mirror duality of identities works for two-sided unital shells as it did for
half-sells at the end of Sect. 2. The factor identity e.x C y/ � ex C ey of
Theorem 3.4 becomes, with the reversal of all its operations, .y C x/e �
ye C xe. Both now hold in two-sided unital shells.

4. Reprise

This section gathers together the formulas for the bijections that transform
the five different kinds of factor objects from one into another, and displays
all the Boolean operations that turn them into isomorphic Boolean alge-
bras. We do this only for two-sided unital shells, leaving the investigation of
weaker hypotheses to the reader. The four sets Ideal0 A, Elem0 A, Sesq0 A

and Band0 A, may be converted to Boolean algebras via their connecting
maps with Con0 A by defining their operations from join, intersection and
complementation in Con0 A. However there are more direct definitions of
these Boolean operations, which are presented in the tables to follow. For
rings and lattices, the formulas are even simpler.

Figure 2 illustrates the isomorphisms of these Boolean algebras. The
abbreviation ‘anti’ on an arrow means ‘anti-isomorphism’. Definitions of
the maps making up the links in this pentagon appear in Table 1. Not
shown are more maps that would link these Boolean algebras diagonally.

4.1. Exercise. Find formulas for the five diagonal maps missing in
Fig. 2.

The formulas in Table 1 come from Sect. II.2, Sect. VI.2, and earlier
sections of this chapter. Some particulars follow. The first frame is justified
by Corollary 2.12. The second comes from composing the maps of the first
frame with those of Theorem 2.15, using Theorem 2.11 along the way. The
third frame needs Definition II.2.24, Theorem 3.4 and Exercise 3.20. The
last two frames come from Theorems II.2.12 and II.2.5.

Table 2 recalls formulas for the operations of the five Boolean algebras of
factor objects. Those for congruences are found in Definition VI.3.1; those
for ideals in Proposition 4.2. Theorem 2.15a and Proposition 4.3a have the
formulas for elements; and Propositions 4.3b and VI.2.6a do the same for
sesquimorphisms. Equations (2.1–2.5) of Chap. VI provide those for bands.
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Figure 2. Isomorphisms between Boolean Algebras of
Factor Objects for a Two-sided Unital Shell A.

4.2. Proposition. If Iand J are factor ideals in a two-sided unital shell
A, then

I _ J D I C J I(a)

I ^ J D I \ J I and(b)

I 0 D fa 2 A j ai D 0 for all i in I g :(c)

Proof. (a) Clearly, by the bijection between ideals and congruences
already established in Proposition VI.2.8, it suffices to prove that

0

�
C 0

�
D 0

� _ �;
for any factor congruences � and �.
�. If a 2 0=� and b 2 0=�, then .a C b/ � .0 C b/ � .0 C 0/ D 0, and

aC b 2 0=.� _ �/.
�. Suppose that a 2 0=.� _ �/. Since � _ � D � ı � by commutativity,

there is an x such that 0 � x and x � a. Therefore,

0 D e�0 D e�x and e�x D e�a:
So, by appropriate multiplications, we get 0 D e�e�a by Proposition 2.13.
Hence,

a D e0
�aC .e0

�e�aC e�e�a/ D e0
�aC e0

�e�a:

Since e0
�
A D 0=� , etc., by Theorem 2.11, then e0

�
a 2 0=� and e0

�e�a 2 0=�.
Therefore,

a D e0
�aC e0

�e�a 2
0

�
C 0

�
:

(b) It is trivial to verify that

0

�
\ 0
�
D 0

� \ �:
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I� D 0=�
� 7! I�

Con0 A  ��! Ideal0 A

�I  7 I
�I D the unique � in Con0 A with I D 0=�

eI is the unity of I 0
I 7! eI

Ideal0 A
anti ��! Elem0 A

Ie  7 e
Ie D e0A
�e.a/ D ea
e 7! �e

Elem0 A  ��! Sesq0 A

e�  7 �
e� D �.1/

ˇ�.a; b/ D c iff �.c/ D �.a/ and �0.c/ D �0.b/
� 7! ˇ�

Sesq0 A
anti ��! Band0 A

�ˇ  7 ˇ
�ˇ .a/ D ˇ.a; 0/

a �ˇ b iff ˇ.a; b/ D b
ˇ 7! �ˇ

Band0 A  ��! Con0 A

ˇ�  7 �
ˇ� .a; b/ D c iff a � c and c � 0 b

Table 1. Formulas for the Isomorphisms.

Join Meet Complement

Con0 A � _ � D � ı � � ^ � D � \ � � 0 D unique � with
�\� D 0 & �ı� D 1

Ideal0 A I _ J D I C J I ^ J D I \ J I 0 D annihilator of I

Elem0 A e _ f D .e0f 0/0 e ^ f D ef e0 D unique f with
ef D 0 & eCf D 1

Sesq0 A � _ 	 D .�0	0/0 � ^ 	 D � ı 	 �0 D unique 	 with
�	 D 0 & �C	 D 1

Band0 A
.˛ _ ˇ/.a; b/
D ˛.ˇ.a; b/; b/

.˛ ^ ˇ/.a; b/
D ˛.a; ˇ.a; b// ˛0.a; b/ D ˛.b; a/

Table 2. Boolean Operations on Factor Objects in
Two-sided Unital Shells.

(c) �. Recall from Proposition 3.13 and Theorem 3.14 that I 0I D f0g.
�. If a belongs to the right side, then aeI D 0. Hence a D ae0

I D aeI 0 .
Consequently a 2 I 0. �
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In the next proposition, by �	 D 0 is meant composition .� ı 	/.a/ D 0,
and by �C 	 D 1, addition computed pointwise: .�C 	/.a/ D �.a/C 	.a/
D a.

4.3. Proposition. Let A be a two-sided unital shell.

(a) For a factor element e of A, its complement e0 is the unique f such
that

ef D 0; and e C f D 1:
(b) For a factor sesquimorphism � of A, its complement �0 is the unique

	 such that
�	 D 0; and �C 	 D 1:

Proof. (a) The only thing not proven already in previous sections is
uniqueness. So suppose that f satisfies the two equations. By Theorem 3.4,

f D ef C e0f D 0C e0f D e0e C e0f D e0.e C f / D e01 D e0:
(b) This follows from (a) by the correspondence, �.a/ D ea, in Theorem
2.11(f). �

In certain common algebras in Table 3, the Boolean operations on fac-
tor elements are expressed in terms of the operations of the algebras.
Propositions 4.4 and 4.5 verify these formulas.

e _ f D e C f � ef (unital rings)
D e C f (bounded distributive lattices)

e0 D 1 � e (unital rings)

Table 3. Formulas for the Boolean operations on factor
elements in special shells.

4.4. Proposition. In a two-sided unital shell A in which addition is
idempotent (aC a D a),

e _ f D e C f .e; f 2 Elem0 A/:

Proof. It suffices to show that the right side, e C f , together with
the complement of the left side, e0f 0, are complementary factor elements.
This means verifying the identities of Theorem 4.3(a):

.e C f /e0f 0 D 0; and .e C f /C e0f 0 D 1:
This is done most efficiently by testing them with 0 and 1 replacing the
factor elements, as in Theorem VI.2.18. �

4.5. Proposition. In a unital ring that is not necessarily associative,

e _ f D e C f � ef .e; f 2 Con0 A/I(a)

e0 D 1 � e .e 2 Con0 A/:(b)

Proof. We prove (b) first, since (a) depends on (b). Part (b) is true
since e0 C e D 1 in rings.
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For (a) let L represent the left side and R the right. We demonstrate that
the complement of L is the complement of R by showing that L0 CR D 1
and L0R D 0, as in Theorem 4.3. First,

L0 CR D .e _ f /0 C .e C f � ef /
D e0f 0 C .e C f � ef /
D .1 � e/.1 � f /C .e C f � ef /
D 1 � f � e C ef C e C f � ef
D 1:

Secondly, in a similar fashion, with the distributive law, we see that

L0R D .e _ f /0.e C f � ef /
D 0:

Thus e _ f D e C f � ef . �

We summarize these special results by saying that the meet operation
for factor objects in shells is the obvious operation already available at any
of the five levels: product of elements, intersection of ideals, composition of
sesquimorphisms, intersection of congruences, and composition of bands.
But we cannot always describe the other two operations so easily, and in
general they float free of obvious formulas.

Why were the choices made that led to the unappealing appearance of

anti-isomorphisms in Fig. 2: Band0 A
anti ! Sesq0 A and Ideal0 A

anti !
Elem0 A? These could have been avoided by interchanging joins and meets
so that all links in this figure become isomorphisms; after all, any Boolean
algebra is anti-isomorphic to itself. For example, ‘� ^ 	’ might be notated
‘�_	’ for sesquimorphisms, but this would run counter to the meet of factor
elements in ring theory being the multiplication of central idempotents.
Or mutatis mutandis, the Boolean operations on factor bands could be
redefined, but this would run afoul of the operations on congruences. And
these would be artificial. Strong convention dictates how these Boolean
operations are named.

At one end of the spectrum of factor objects, the congruences of an
algebra have a natural partial ordering of inclusion, and it is conventional
to define the join as the least upper bound, which becomes composition for
commuting factor congruences. A factor sesquimorphism � corresponding
to a factor congruence � ought to be one of those attached to the congruence
as developed in Sect. II.1:

a �� b iff �.a/ D �.b/:
Quite naturally one expects compositions of congruences to correspond to
compositions of sesquimorphisms, consequently the join of sequimorphisms
would seem to be composition. But beware!
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At the other end of the spectrum, factor elements comprise all the el-
ements in Boolean rings, where conventionally multiplication is meet in
their term-equivalents as Boolean algebras. As premultiplication by factor
elements is the same as the action of the corresponding factor sequimor-
phisms:

.ef /a D e.fa/ D �e.�f .a// D .�e ı �f /.a/;
the meet of factor elements should correspond to the meet of factor se-
quimorphisms. But look how compositions clash: the join of factor congru-
ences has become the meet of factor elements,

�e _ �f D �e ı �f D �ef D �e^f :
This settles it for factor congruences, ideals, sesquimorphisms and ele-

ments, leaving only factor bands to consider, where the choice was a toss-
up; it was set to keep company with congruences, which unfortunately runs
afoul of the composition of sesquimorphisms:

.� ^ 	/.a/ D ˇ�.ˇ�.a; 0/; 0/ D .ˇ� _ ˇ�/.a; 0/:
Their isomorphisms and anti-isomorphisms are set down in Theorems II.2.5,

II.2.12, II.2.19 and VII.2.11.

4.6. Exercise. One way to reverse the anti-isomorphisms just discussed
is to reverse the factor elements coming from factor congruences. Redefine
them by the relationships, 0 � e � 0 1 and 0 � 0 e0 � 1. Trace this new definition
through the other factor objects, making appropriate adjustments in other
definitions. What are its advantages and disadvantages?

5. Separator Algebras

While unital shells have Boolean factor congruences and also have factor
elements that determine all the other factor objects, BFC alone is not suf-
ficient to support factor elements. This short section presents ‘separator
algebras’, which generalize shells, but nevertheless have many of their fac-
torization properties. The main result of this section embeds any algebra
with BFC into a separator algebra so that within the latter there are fac-
tor elements realizing the factorizations of the former [Knoe02]. In other
words, we adjoin imaginary factor elements to an algebra with BFC.

5.1. Definition. A separator algebra is an algebra A having a quater-
nary term-operation q and term-constants 0 and 1 satisfying, for all a and
b in A,

q.1; 0; a; b/ D a; and

q.0; 1; a; b/ D b:
A separator variety is an equational class in which there are terms q; 0; 1
satisfying these identities.
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Examples are unital rings and bounded lattices: q.a; b; c; d / D ac C bd ,
and more generally unital shells. In a sense, so are discriminator algebras.
A discriminator algebra is an algebra A with a quaternary term-operation
t satisfying, for all a; b; c and d in A,

t.a; b; c; d / D c if a D b; and

t.a; b; c; d / D d if a ¤ b:
A discriminator algebra is also called quasi-primal

5.2. Proposition. Any discriminator algebra A is polynomially equiv-
alent to a separator algebra, but not conversely.

Proof. When A is nontrivial pick two distinct elements 0, 1 of A, and
define a polynomial q.w; x; y; z/ D t.0; x; y; z/. Then q separates.

For a counterexample, let the separator q.w; x; y; z/ be the positive term
wy _ xz of the two-element lattice on f0; 1g, and consider the separator
algebra hf0; 1gI q; 0; 1i. The operation q is ‘positive’ in the sense that q is
monotonic in each argument, and so is each term composed from it; but
this cannot be true of the discriminator term. �

‘Discriminator’ is an old notion; the newer term ‘separator’ was coined
for this book in analogy with it. Chajda [Cha94] defined the concept of
T.0; 1/-algebras, which are equivalent to separator algebras. This means
that the tolerance4 generated by two constants 0 and 1 is the universal re-
lation. For background on quasiprimal algebras and discriminator varieties,
consult [Pixl96, sect. 2] and [BurSa81, chap. IV, sects. 9, 10].

As Keimel and Werner [KeiWe74] have shown, any variety generated by
a finite discriminator algebra A is dually equivalent to the category of Haus-
dorff sheaves over Boolean spaces with their simple stalks being the subal-
gebras of A (see also Bulman-Fleming and Heinrich Werner [BulWe77]).
We seek something similar for separator algebras; but the stalks remain
unknown in general, as already seen for unital shells, a subclass of them.

5.3. Proposition. Any separator algebra has Boolean factor congru-
ences, and hence has a canonical sheaf representation.

Proof. By Theorem VI.3.2, it suffices to prove that any two fac-
tor bands ˇ and � of a separator algebra A commute: ˇ.�ab; �cd/ D
�.ˇac; ˇbd/. To this end, define the corresponding complementary factor
elements: e D ˇ10 and e0 D ˇ01. For all a and b in A, because factor
bands commute with term operations,

ˇab D ˇ�
q.1; 0; a; b/; q.0; 1; a; b/

�

D q.ˇ10; ˇ01; ˇaa; ˇbb/
D q.e; e0; a; b/:

4A tolerance is a reflexive, symmetric relation that preserves the operations.
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Using this, we prove that

ˇ.�ab; �cd/ D q.e; e0; �ab; �cd/
D q.�ee; �e0e0; �ab; �cd/
D ��

q.e; e0; a; c/; q.e; e0; b; d /
�

D �.ˇac; ˇbd/: �

5.4. Exercise. (a) Show that the converse of this proposition is false,
that is, find an algebra with BFC that does not have a separator term.

(b) Show that separator algebras are more general than unitary shells, that
is, find a separator algebra that is not term-equivalent to a unital shell.

Diego Vaggione [Vagg96a] both generalizes Proposition 5.3 and sharp-
ens it. His ‘Pierce variety‘ generalizes the notion of separator variety, and
in his theorem 5, he proves that any Pierce variety has factorable congru-
ences. In his theorem 8, varieties with factorable congruences in which the
stalks of the canonical sheaf are directly indecomposable are characterized
as certain kinds of Pierce varieties.11111

Now we represent any algebra with BFC within a separator algebra,
thereby creating factor elements for the original algebra.

5.5. Theorem. For any algebra, A D hAI : : : ; !; : : :i, with Boolean factor
congruences, there is a separator algebra, Q D hQI q; 0; 1; : : : ; !; : : :i, whose
type expands that of A by a quaternary operation q and constants 0 and 1,
such that

(a) A is a subalgebra of the reduct hQI : : : ; !; : : :i, and
(b) for any factor band ˇ of A there are complementary factor elements e

and e0 of Q such that

(5.1) ˇ.a; b/ D q.e; e0; a; b/ .a; b 2 A/:
Proof. (a) Recall Theorem VI.3.15 that an algebra A with BFC has

a reduced and factor-transparent sheaf hA; �;X i over the Boolean space
X with stalks Ax . The algebra � .A/ of global sections is isomorphic to A,
and will be used in place of it. Let P be the product of the stalks:

Q
x2X Ax .

Clearly � .A/ is a subalgebra of P . On each stalk impose a separator q
with constants 0 and 1. This can be done in many ways; for example, by
adding lattice operations with bounds 0 and 1. Extend q by co-ordinates
to all of P , and designate Q as the separator algebra hP I q; 0; 1; : : : ; !; : : :i
expanding P .

(b) Consider a factor band ˇ of � .A/ with associated complemen-
tary factor congruences � and � 0. By factor-transparency there are clopen
subsets, U D U� and U 0 D U� 0 , of X such that for all global sections � and
� in � .A/

� � � iff U � � W�; and � � 0 � iff U 0 � � W�:
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By Corollary VI.3.16,

ˇ.�; �/ D � jU [ � jU 0 .�; � 2 � .A//:

Use this formula to extend ˇ from � .A/ to all of the product P. By ma-
nipulating patching, one shows that ˇ is a factor band of Q. (The band
ˇ commutes with q since q is defined pointwise in Q just as the original
operations ! are.)

Now define

e D 1jU [ 0jU 0 and e0 D 0jU [ 1jU 0:

Since e D ˇ10 and e0 D ˇ01, it follows that e and e0 are complementary
factor elements of Q. Equation (5.1) is verified:

q.e; e0; �; �/ D q.ˇ10; ˇ01; ˇ��; ˇ��/
D ˇ�

q.1; 0; �; �/; q.0; 1; �; �/
�

D ˇ��: �

5.6. Corollary. In the previous theorem, the stalks may be chosen to
have a reduct that is a unital ring or a bounded distributive lattice.

Proof. In the previous proof, the stalks are easily chosen to be what-
ever kind of separator algebras one wants, including bounded chains. �

We close this section with some exercises and problems.

5.7. Exercise. Show that the definition of separator variety may be
simplified to the following when the variety has commuting congruences.
There is a ternary term t and constants 0 and 1 satisfying these identities:

t.0; x; y/ � x; and

t.1; x; y/ � y:
5.8. Exercise. Show that taking a subalgebra is essential to the truth

of Theorem 5.5. That is, find an algebra with BFC that is not a reduct of
a separator algebra with the same carrier and factors.

5.9. Exercise. Let hAI q; 0; 1; : : : ; !; : : :i be a separator algebra. Prove
that two elements e and f of A are complementary factor elements if, and
only if, they satisfy these axioms when a; b; c; : : : 2 A:

(i) q.e;f; a; a/ D a,
(ii) q

�
e;f; a; q.e;f; b; c/

� D q.e;f; a; c/ D q�
e;f; q.e;f; a; b/; c

�
,

(iii) q.e;f; 1; 0/ D e and q.e;f; 0; 1/ D f ,
(iv) q

�
e;f; !.a1; a2; :::/; !.b1; b2; :::/

� D !�
q.e;f; a1; b1/; q.e;f; a2; b2/; :::

�
.

Hint. For the ‘only if’ direction, first prove that q.e;f; a; b/ D ˇ.a; b/ for
the factor band associated with e and f .



216 VII. Shells

5.10. Problem. As a counterpart to the previous exercise, find an ax-
iomatic definition for factor ideals in separator algebras.

5.11. Problem. Redo Sect. 4 for separator algebras.

6. Categories of Shells

We specialize further the categories of algebras and their sheaves defined
in the last section of the previous chapter. When the algebras with Bool-
ean factor congruences are restricted to be unital half-shells, their mor-
phisms in the category UnitHalfShell have an especially appealing form.
This is the first order of investigation. The other is its mate, the category
SheafUnitHalfShell of reduced and factor-transparent sheaves of unital
half-shells. These two categories are equivalent, and the equivalence resem-
bles that for rings, as outlined by Pierce [Pier67]. As usual, we assume
a fixed type of unital half-shells hAI �; 0; : : : ; !; : : :i, with perhaps also C
being one of the operations.

6.1. Definition. A homomorphism ' W A ! B between unital half-
shells is conformal if '.e/ is a factor element whenever e is a factor element.
The category UnitHalfShell consists of unital half-shells as objects and
conformal homomorphisms as morphisms.

That factor elements do not automatically go over to factor elements
under arbitrary homomorphisms is seen in this example of bounded lattices.
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This injection ' takes elements of the first lattice to their obvious coun-
terparts in the second, missing one element in the right lattice. They are
all factor elements in the first, but only the top and bottom are now factor
elements in the second. Strict inclusion of the factor elements of one shell
into another is possible, as seen in the left inverse e' of the ' above, where
the two left middle elements coalesce.
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As the objects of the categories UnitHalfShell and AlgBFC are pre-
sented differently, the first as algebras and the second as special Boolean
braces, it is necessary to reconcile these in the next proposition.
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6.2. Proposition. The category UnitHalfShell is isomorphic to a full
subcategory of AlgBFC. The isomorphism takes a unital half-shell to itself,
and a conformal homomorphism 'WA ! B goes to the pair h'; � i where
the homomorphism of Boolean algebras, � WCon0 A ! Con0 B, is induced
by ':

�.�e/ � �'.e/ .e 2 Elem0 A/:

Proof. Right away, one can see that UnitHalfShell is a category
since identity maps are conformal and conformality of homomorphisms is
preserved by composition. Next, one must show that h'; � i is a morphism
in AlgBFC whenever 'WA ! B is a conformal homomorphism of these
shells. It is easy to check that '.�e/ � �.�e/ in Definition V.4.1. Note that
' preserves the complementation 0 of factor elements since the equations
defining complementation of factor elements are preserved by '. Thus '
preserves the Boolean operations of Elem0 A. From Theorem 2.15b we know
that Elem0 A is anti-isomorphic to Con0 A; in turn � preserves the Boolean
operations in Con0 A and is a Boolean homomorphism.

To establish fullness of the embedding, we must show that, whenever A

and B are such shells and h'; � i is a morphism in AlgBFC, then 'WA!
B is a conformal homomorphism in UnitHalfShell. It suffices to prove
that '.e/ 2 Elem0 B when e 2 Elem0 A. Consider any factor congruence
�e determined by the factor element e. As a factor element, e satisfies
0 �e0 e �e 1. Since � takes factor congruences into factor congruences, there
must be a factor element d in B such that �.�e/ D �d .

We need to establish that d D '.e/. Because � is a homomorphism, it
preserves complementation: �.�e0/ D �d 0 . Recall from Definition V.4.1 that
'.�e/ � �.�e/. Using these facts, together with how ' acts on congruences,
we have these relationships between elements and congruences.

0 �d 0 d �d 1S j S j
0 '.�e0/ '.e/ '.�e/ 1

Thus, 0 �d 0 '.e/�d1. By uniqueness of the middle components, '.e/ D d .
Therefore, '.e/ 2 Elem0 B. �

6.3. Definition. The category SheafUnitHalfShell is the full sub-
category of SheafBooleRedFt consisting of sheaves whose stalks are
unital half-shells.

Since unital half-shells have BFC, it follows for every unital half-shell
that its canonical sheaf, which is reduced and factor-transparent, is in
SheafBooleRedFt. So we may proceed to restrict the categorical equiv-
alences of previous chapters. The next theorem needs an isomorphism for
the reason given before Proposition 6.2.
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6.4. Theorem. The categories of UnitHalfShell and SheafUnit-
HalfShell are equivalent; more precisely, when restricted to isomorphic
copies of these categories, the adjunction of Theorem VI.4.2,

h�; "iW˚ ���j � W hSheafBooleRedFt; AlgBFCi;
is still a categorical equivalence.

Proof. Note that unital half-shells are defined equationally. Hence
the stalks of the sheaf representation of a unital half-shell are again uni-
tal half-shells, since they are homomorphic images. Thus, when A is in
UnitHalfShell, so ˆ.A/ is in SheafUnitHalfShell. Conversely, it is
clear that a sheaf A of unital half-shells goes back to a unital half-shell
� .A/. Now use Theorem VI.4.5. �

While this theorem extends Stone’s representation theorem for Boolean
algebras, we note two things. First, in the category of unital half-shells,
not all homomorphisms are allowed, only the conformal ones. Second, the
category of reduced and factor-transparent sheaves of unital half-shells over
Boolean spaces is certainly more involved than just the category of Boolean
spaces themselves. One reason for this is that different sheaves may be
the same topologically, both in their base and sheaf spaces, and yet be
different algebraically. For example, compare the three sheaves coming from
the bounded lattice, M2 D C 2

2, from the unital ring Z2
2 and from the

mixed shell C 2 �Z2. More generally, compare the squares of any two non-
isomorphic product-indecomposable algebras of the same cardinality. It is
also conceivable that there are sheaves of shells over the same base space
but with different sheaf spaces.

We will apply Theorem 6.4 in Chap. VIII.
Adding a binary operation C as one of the generic operations ! with 0 as

its unity creates two new categories, UnitShell and SheafUnitShell as
full subcategories of UnitHalfShell and SheafUnitHalfShell, respec-
tively. The next corollary is a generalization of theorem 6.6 of
[Pier67].

6.5. Corollary. The categories UnitShell and SheafUnitShell are
equivalent.

We noted earlier that a homomorphism does not always take factor ele-
ments to factor elements. However, when a homomorphism of unital shells
is surjective, then it is conformal, as shown next.

6.6. Proposition. If a homomorphism, 'WA ! B, of unital shells is
surjective, then

'.Elem0 A/ � Elem0 B:
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Proof. This inclusion is true since all the equations defining factor
elements in Theorem 3.4 easily go over from A to B. �

A consequence of this observation is that, in a subdirect representation,
the canonical homomorphisms from a unital shell onto its quotients are
conformal.



VIII
Baer–Stone Shells

Von Neumann’s major contribution to lattice theory cen-
tered around his concepts of a ‘continuous geometry’ and
of a ‘regular ring’.

Garrett Birkhoff [Birk58, p. 50]

Out of the concept of von Neumann regular ring comes the more general
notion of Baer ring. Out of the concept of Boolean algebra comes the more
general notion of Stone lattice. A further common generalization of these
two notions we label a ‘Baer–Stone shell’.

This chapter presents several applications of the theory developed earlier.
For every Baer–Stone half-shell A (that is two-sided and unital) there is
a reduced and factor-transparent sheaf A over a Boolean space with the
stalks having no divisors of zero such that A Š � .A/. With all that has
been done in previous chapters, the proof is relatively short. The bulk of
the work in the first section lies in showing that every regular congruence
is integral. Just as the results of the previous chapters may be cast into
categories, so we restate this as the equivalence of two categories.

In the second section, there are two more applications. Each von Neu-
mann regular, commutative and unital ring is isomorphic to the ring of all
global sections of a sheaf of fields over a Boolean space. And every bireg-
ular ring is so represented by a sheaf with simple stalks over a Boolean
space. These results also go over to half-shells when their terms are refined
appropriately.

A. Knoebel, Sheaves of Algebras over Boolean Spaces, 221
DOI 10.1007/978-0-8176-4642-4 VIII,
c� Springer Science+Business Media, LLC 2012
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To avoid continual repetition, some of the adjectives modifying shell, like
‘two-sided’, ‘unital’ and others, will be omitted occasionally in the middle
of proofs. Throughout the chapter, Sect. VII.2 is employed extensively.

1. Integrality

Annihilators and divisors of zero are the focus of this section. The adjective
‘Baer–Stone’ means that each annihilator of a half-shell is a factor ideal.
After formulating several lemmas and propositions, we prove Theorem 1.13
that two-sided unital Baer–Stone half-shells A are representable by sheaves
with stalks having no divisors of zero. By adding a loop to the operations,
the sheaf becomes a Boolean product.

1.1. Definition. In a half-shell, A D hAI �; 0; : : : ; !; : : :i, we define the
right annihilator of an element a of A by

a? D fb 2 A j ab D 0g I
and the left annihilator by

?a D fb 2 A j ba D 0g :
So to speak, ?a gives all one-sided quotients 0=a, and a? gives all quotients
on the other side, an0.

Here is a notation for the principal ideal generated by an arbitrary ele-
ment a in a half-shell A:

Œa� is the smallest ideal 0=� for which a � 0 .� 2 Con A/:

This is equivalent to Œa� being the intersection of all ideals containing a:

Œa� D
\ �

0

�

ˇ
ˇ
ˇ a � 0 and � 2 Con A

�

:

Do not confuse this notation with Œa�x in Sect. IV.2 for the component of
a in the xth stalk of a sheaf. We state a crucial property of Œa�.

1.2. Proposition. If e is a factor element in a unital half-shell A, then
Œe� D eA.

Proof. Œe� � eA. Suppose a 2 Tf 0=� j � 2 Con A and e � 0 g. Since
e �e0 0, it follows that a 2 0=�e0 . Therefore, a 2 eA, by Theorem VII.2.11d.
eA � Œe�. If a 2 eA, then ea D a. For any � in Con A for which e � 0, we

have that a D ea � 0a D 0. Hence, a belongs to the intersection of all such
0=� . �

1.3. Definition. A half-shell A has the Baer–Stone property if each
right annihilator of a single element is a factor ideal and likewise for any
left annihilator.
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Since factor ideals are generated by unique factor elements in a unital
half-shell, being Baer–Stone is equivalent to these two conditions together:

8a 2 A 9 a* 2 Elem0 A .a? D Œa*�/;

8a 2 A 9*a 2 Elem0 A .?a D Œ*a�/:
Examples of Baer–Stone shells are commutative Baer rings1 [Kist63,

pp. 40, 45] and Stone lattices2 [Birk67, p. 130]. In fact, a bounded dis-
tributive lattice is a Stone lattice iff it is a Baer–Stone shell in our sense
[GrätSc57, theorem 3]. Specific examples of these are Boolean lattices and
the ring of all n-by-n matrices over a field. This concept was also studied in
semigroups [Keim71a]. The five-element modular lattice M3 is an example
of a unital half-shell that is not Baer–Stone.
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The Venn diagram of Fig. 1 illustrates the relationships between the various
notions. The intersection contains only one-element algebras.

We show next for certain Baer–Stone half-shells that a* D *a; this yields
our previously defined complements of factor elements.

1.4. Proposition. Let A be a two-sided unital half-shell that is Baer–
Stone, and let a be an element determining factor elements a* and *a, as
they are given after Definition 1.3. Then,

a* D *a .a 2 A/;(a)

e* D e0 D *e .e 2 Elem0 A/:(b)

Proof. (a) First 0 D .*a/a D a.*a/ since *a 2 Elem0 A. Hence,
*a 2 a?, which is a*A. Since a*, as a factor element, is the unity of
the factor ideal it generates, we conclude that *a D .*a/.a*/. Likewise,
a* D .a*/.*a/ D .*a/.a*/ D *a, by commutativity of factor elements.

(b) To show first that e? D Œe0�, we reason this way for any b in A:

b 2 e? iff eb D 0 iff e0b D b iff b 2 Œe0�;

1Kaplansky’s [Kapl68, p. 3] original definition of a Baer ring differs from that of
Kist’s and Hofmann’s [Hofm72, pp. 327–8], and is both more and less than that
of being Baer–Stone in our sense. Kaplansky requires that the annihilator of each subset
of R be a principal ideal generated on one side by an idempotent, which nevertheless
need not be central. In a short personal history near the beginning of his book on rings of
operators, Kaplansky [Kapl68] writes that this is in honor of Reinhold Baer’s [Baer52]
early use of the condition.

2This term arose when Grätzer and Schmidt [GrätSc57] answered a question of
Stone.
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Figure 1. Special Shells.

courtesy of Proposition VII.2.22. Then the generators of the factor ideals,
e? and Œe0�, must be equal: e* D e0. �

So let us agree, under these circumstances, to replace the stars for left
and right complements by the prime, thereby extending the notation0 to all
elements. Thus, if a is in A, then a0 is the unique factor element such that

a? D Œa0� D ?a:
It follows that for any factor element e in a Baer–Stone, two-sided, unital
half-shell,

Œe� D .e0/?:
This discussion shows that annihilators are synonymous with factor ideals.

1.5. Proposition. In a two-sided unital half-shell that is Baer–Stone,
˚
a? j a 2 A� D Ideal0 A:

Being Baer–Stone is equivalent to a superficially stronger condition.
First, extend the annihilator from single elements to arbitrary subsets B
of A:

B? D fa 2 A j ba D 0 for all b in B g D
\

b2B
b?:

1.6. Proposition. A two-sided unital half-shell A is Baer–Stone if, and
only if, each annihilator of any finite subset F of A is a factor ideal.

Proof. We know by the preceding proposition that b? 2 Ideal0 A. But
the latter is a Boolean algebra and hence closed to finite intersections. �

Here is a proposition giving six equivalent formulations of annihilation.

1.7. Proposition. In a two-sided unital half-shell that is Baer–Stone,
these statements are equivalent for all pairs of elements a and b in A:

(a) ab D 0,
(b) ba D 0,
(c) a0b D b,
(d) a00b D 0,
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(e) a 2 Œb0�,
(f) b 2 Œa0�.

Proof. We apply Corollary VII.2.17, which states that for comple-
mentary factor element e and e0 of A,

b 2 Œe� iff eb D b iff e0b D 0 .b 2 A/:
By the definition of Baer–Stone,

ab D 0 iff b 2 Œa0� iff a0b D b iff a00b D 0:
since a0 2 Elem0 A. Thus equations (a), (f), (c), and (d) are equivalent. So
are the remaining dual equations since a? D ?a. �

In this next corollary, the third part has a tricky proof, reminiscent of
bouncing back and forth in a Galois connection, up to three times. It is
crucial to proving that every regular congruence of a shell is integral.

1.8. Corollary. In a Baer–Stone, two-sided and unital half-shell A,
these three statements always hold for all a; b in A and e in Elem0 A:

(a) a 2 Œe� if, and only if, a00 2 Œe�;
(b) a 2 Œa00�;
(c) a00b00 D .ab/00.

Proof. We use Proposition 1.7 and its proof repeatedly.
(a) a 2 eA iff ae0 D 0 iff a00e0 D 0 iff a00 2 eA:
(b) Substitute a00 for e in part (a).
(c) We show separately that each side is equal to a00b00.ab/00. First, from

the proposition and the fact that ab.ab/0 D 0, it follows that a00b.ab/0 D 0,
and hence a00b00.ab/0 D 0, since Boolean elements commute and associate
by Proposition VII.2.22. Therefore, a00b00.ab/00 D a00b00:

Second, the equalities,

a0.ab/D.a0a/bD0bD0
imply that a0.ab/00D0. Hence a00.ab/00D.ab/00. Similarly, b00.ab/00D.ab/00.
Therefore,

a00b00.ab/00 D a00.ab/00 D .ab/00:
Putting everything together, we find that a00b00 D a00b00.ab/00 D .ab/00. �

11111
1.9. Definition. A nontrivial half-shell A is said to have no divisors of

zero if, for all a and b in A,

whenever ab D 0; then a D 0 or b D 0:
Synonymously, A is an integral half-shell.
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This definition should remind one of integral domains. In the case of non-
commutative rings, some say instead that A is ‘dense’, ‘entire’, or ‘com-
pletely prime’. Any chain with a nullity, thought of as a lattice, has no
divisors of zero. In fact, a lattice, with a least element 0, has no divisors
of zero if, and only if, 0 is meet-irreducible, or equivalently, if, and only if,
the lattice is weakly irreducible. (See [Birk44] for definitions.)

We extend the notion of integrality to ideals and congruences. Recall
that an ideal I of a half-shell A is the 0-coset of some congruence � of A,
that is, I D 0=� .

1.10. Definition. A proper ideal I of a half-shell A is integral if,

whenever ab 2 I; then a 2 I or b 2 I .a; b 2 A/:
A congruence � of a half-shell A is integral if its ideal 0=� is integral.

To capture divisors of zero before a quotient is taken motivates this defini-
tion. We had hoped to avoid introducing a new term by a straightforward
adoption of the classical notion of prime ideal in ring theory.3 Unfortu-
nately, only in commutative ring theory do these two notions coincide. In
noncommutative ring theory some prime ideals are not integral. For an
example, see [Hung74, p. 133, ex. 9b].

This terminology parallels commutative ring theory in that, in an integral
domain, the smallest ideal f0g is integral by our definition. More generally,
we observe that a half-shell is integral iff the zero ideal f0g is; that is, the
half-shell has no divisors of zero. In another parallel, just as a ring is semi-
simple if it is a subdirect product of simple rings, we say that a half-shell
is semi-integral if it is a subdirect product of integral half-shells.

1.11. Proposition. In any half-shell A, a congruence � of A is integral if,
and only if, A=� is integral.

Proof. This is a straightforward application of the definitions. �
Recall from Definition VI.3.3 that a congruence � of a unital half-shell A

is ‘regular’ if there is an ideal N of Con0 A such that � D W
N . Its ideal 0=�

is also called ‘regular’. Remember too that a ‘maximal regular congruence’
is maximal only with regard to all regular congruences. Maximal regular
congruences are those coming from prime ideals of factor congruences, as
demonstrated in Proposition VI.3.4.

1.12. Proposition. In a Baer–Stone, two-sided and unital half-shell,
each maximal regular congruence is integral, and so is each maximal regular
ideal.

Proof. Let � be a maximal regular congruence, with P being the
prime ideal of Con0 A such that � DW

P . Suppose ab 2 0=� . Since

3An ideal P of a ring is prime if, whenever JK � P for some ideals J and K, then
J � P or K � P . Here JK is complex multiplication.
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W
P DS

P by Theorem V.1.5, we then have that ab � 0 for some � in
P . By Proposition VII.2.11d, ab 2 Œe� 0�. Therefore, by Corollary 1.8a,c,

a00b00 D .ab/00 2 Œe� 0�:
By the anti-isomorphism of Elem0 A and Ideal0 A in Sect. VII.4,

Œa00� \ Œb00� D Œa00b00� � Œe� 0�:
Since e�

0A 2 0=P where 0=P D f0=� j � 2 P g, and 0=P is an ideal of ideals,

Œa00� \ Œb00� 2 0

P
:

By the primeness of this ideal,

Œa00� 2 0

P
or Œb00� 2 0

P
:

Then by Corollary 1.8 again and Proposition VI.3.4a,

a 2 Œa00� �
_0

P
D 0

W
P
D 0

�
;

or similarly b 2 0=� . �

The next theorem applies the sheaf representation of unital half-shells to
yield stalks with no divisors of zero. Earlier versions are found in [Knoe72,
Knoe00]. Swamy [Swam80] proved it for semigroups.

1.13. Theorem. Every two-sided unital half-shell that is Baer–Stone is
isomorphic to the unital half-shell of all global sections of a reduced and
factor-transparent sheaf over a Boolean space of half-shells without divisors
of zero.

Proof. Recall Theorem VII.2.5: each unital half-shell is isomorphic to
the algebra � .A/ of all global sections of a reduced and factor-transparent
sheaf A with stalks over a Boolean space, X D SpecCon0 A. In this sheaf
each stalk is a quotient A=� by a maximal regular congruence � , which
is the supremum of a prime ideal of Con0 A. Since we have just proven in
Proposition 1.12 that maximal regular congruences in A are integral, the
quotients have no divisors of zero. �

When Theorem 1.13 is applied to Stone lattices, we may compare it to
their representation by subdirect products. Balbes and Horn [BalHo70]
prove the theorem in this setting. A Stone lattice, by traditional definition,
is any pseudo-complemented distributive lattice A in which

a0 _ a00 D 1 .a 2 A/:
In their theorem 2, Grätzer and Schmidt [GrätSc57] tell us that any
bounded distributive lattice is a Stone lattice in this sense if, and only
if, it is Baer–Stone in our sense. Grätzer [Grät69] has shown that, up to
isomorphism, there are only two subdirectly irreducible Stone lattices: the
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two- and three-element chains, C 2 and C 3. In our representation the stalks
may have more than three elements; nevertheless, the stalks will have no
divisors of zero See also [Grät98, pp. 112–] and [Prie74].

We can relate direct indecomposability to integrality. This last theorem
shows that a Baer–Stone half-shell that is unital and two-sided is directly
indecomposable if, and only if, it is integral.

More generally, we can only prove for an arbitrary unital half-shell that,
if it is integral, then it is directly indecomposable. For suppose, on the
contrary, that it is decomposable. Then there are non-zero factor elements
e and e0 for which ee0 D 0. Hence, the half-shell has divisors of zero.

The bounded lattice M5 is a counterexample to the converse. See
[BalHo70] for more results of this kind about Stone lattices.

11111
We now entertain the question about when the Baer–Stone property

leads to a Boolean product. It appears that we must insist on having a
group so that we can translate sections about. Actually, the full strength
of a group is not needed; a loop will do.

Recall from [Bruck58] that a loop is a half-shell hAIC; 0i satisfying
these axioms:

(i) 8a; b 2 A 9Šx 2 A .x C a D b/,
(ii) 8a; b 2 A 9Šy 2 A .aC y D b/,
(iii) 8a 2 A .aC 0 D a D 0C a/.
Although written additively, the operation C need not be commutative. As
in group theory, the x and y in the first two axioms may be different for
the same a and b. These axioms about unique existence define new binary
operations:

b�a D x and aŸb D y:
We would like to use the sign for difference ‘�’ to go along with ‘C’, but
two kinds of subtraction are needed, so we adopt the two slants that are
almost horizontal. In group theory, the inverse operations would be written
multiplicatively as ba�1 and a�1b, respectively; but we must be more
discriminating about inverses in loop theory, as the next example shows.

A non-commutative loop on the set f0; 1; 2; 3; 4g that is not a group is
given by its Cayley table in Fig. 2. Unlike groups, loops may have inverses
that are not two-sided. For example, 0�3 D 1 ¤ 4 D 3Ÿ0:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 4 0 3
2 2 3 0 4 1
3 3 4 1 2 0
4 4 0 3 1 2

Figure 2. Cayley Table of a loop with unequal inverses.
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The following laws do hold in loops:

.b�a/C a D b;
aC .aŸb/ D b;
a�a D 0 D aŸa;

a�0 D a D 0Ÿa:

The theory of loops can be given a strictly equational definition; this tells
us that subloops and homomorphic images are again loops.

With the concept of a loop in hand, we now turn to strengthening The-
orem 1.13; we state it as two logical equivalences to make clearer where
clopen sets play their part. Recall that a Boolean product is a sheaf over
a Boolean space in which each equalizer is not only open but also closed;
equivalently by Corollary V.3.1, a Boolean product is a Hausdorff sheaf
over a Boolean space.

1.14. Proposition. Consider a half-shell, A = hAI �; 0; 1; : : : ; !; : : :i,
that is unital and two-sided. Let A be the resulting sheaf A==Con0 A over
the Boolean space, X D SpecCon0 A, constructed as in Sect. V.2.

(a) A is Baer–Stone if, and only if, each stalk is integral and the equalizer
� W0 is clopen for any global section � of � .A/.

(b) Assume there is a term C of A such that the algebra hAIC; 0i is a
loop. Then A is Baer–Stone if, and only if, A is a Boolean product of
two-sided unital half-shells that are integral.

Proof. (a)) : Integrality has already been proven in Theorem 1.13.
In order to demonstrate clopeness, let � be any global section of � .A/.
Since A is Baer–Stone and hence isomorphic to � .A/, there is a global
section " that is a factor element of � .A/ and such that �? D Œ"�. Because
any stalk is integral, it is indecomposable as a product; hence, for any x in
the base space, ".x/ is 0 or 1, and so " W0 D "0 W1. Therefore, both " W0 and
"I0 are clopen. Since each stalk of A has no divisors of zero, it follows that

� I0 \ "I0 D ;:
To establish that these sets are complementary, it suffices to show

also that

� I0 [ "I0 D X:
To that end suppose, by way of contradiction, that x0 2 X but that �.x0/ D
0 D ".x0/. Since � W0 and " W0 are open, there is a basic clopen subset U of
� W0 \ " W0 containing x0. Let 
 be a global section such that 
.x0/ ¤ 0; this
exists by Proposition VII.2.9(c) and by the interpolation property stated
in Proposition V.2.4(b). Define a new global section � by patching:

�.x/ D
(

.x/ if x 2 U;
0 if x 2 X 
 U:
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Then �.x/�.x/ D 0 for all x in X , and so �� D 0. Hence � 2 �?. But
�.x0/ D 
.x0/ ¤ 0 D ".x0/. Therefore, � ¤ "� , meaning that � … Œ"�,
thereby violating A being Baer-Stone.

Thus, � I0 and "I0 are complementary open subsets of X . Since � I0 is
always closed, � W0 is clopen.
( : Let � be any global section in � .A/. We define a new global section

�ıWX ! A by patching over clopen subsets of X : �ı D 0j.� I0/ [ 1j.� W 0/.
Otherwise stated,

�ı.x/ D
(
0 if �.x/ ¤ 0;
1 if �.x/ D 0:

It is straightforward to check that

�? D f� 2 � .A/ j �ı W0 � � W0g ;
since the stalks have no zero divisors. Clearly, �ı 2 Elem0 � .A/ since �ı and
�ı0 satisfy all the clauses of Proposition VII.2.16 defining a factor element.
Most importantly, �? D Œ�ı�, confirming Baer–Stone:

� 2 �? iff �ı W0 � � W0 iff �ı� D � iff � 2 Œ�ı�:
(b) ) : Since A Š � .A/ for a Baer-Stone A, it suffices to work with

global sections in � .A/ to prove that A is Hausdorff. We need only show
that each equalizer is closed. For any two global sections, � and � , it is
easy to see from the loop structure that � W � D .���/ W0: Hence, we have
reduced the problem to showing that 
 W 0 is closed for any global section

. But this is (a).
( : See (a) again. �

This result is given for unital rings by Peercy [Peer70, theorem 2.2.7] and
Hofmann [Hofm72, pp. 327–328]. See also Krauss and Clark [KraCl79,
pp. 93–96], for a different approach to some of the results of this section
when the Baer–Stone shells are rings.

11111
These special shells fit into the hierarchy of categories mentioned at the

end of Sect. VI. To save space, we omit the adjectives ‘two-sided’ and ‘uni-
tal’ from their names. Let BaerStoneShell be the category of all Baer-
Stone shells that are two-sided and unital, with conformal homomorphisms
as the morphisms; and let SheafShellIntegral be the category of sheaves
over Boolean spaces of two-sided unital shells that are integral. Then these
are full subcategories of UnitHalfShell and SheafUnitHalfShell, re-
spectively; and, therefore, by the theorems of this section and Sect. VII.6,
they are categorically equivalent: BaerStoneShell ' SheafShell�
Integral.

This immediately specializes to the classical equivalences of BaerRing
and SheafRingIntegral, the categories of Baer rings and sheaves of inte-
gral rings over Boolean spaces, respectively, where the rings are assumed to
have two-sided unities. In symbols, BaerRing ' SheafRingIntegral.
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These further specialize to the classical duality between Boolean algebras
and Boolean spaces. Return to the end of Sect. VI.4 for a chart of all the
categories to see how these new ones fit in with the old ones.

1.15. Problem. In Baer–Stone unital half-shells, the existence of a unique
factor element e generating the annihilator of an element a leads to a unary
operation: a 7! a�, where a� D e when a? D Œe�. Introduce this new op-
eration 0 into the type of Baer–Stone half-shells. Then conformal homo-
morphisms are the same as homomorphisms. Study the equational class
generated by these new algebras; it would include Baer–Stone lattices and
rings. What is a simple set of defining identities? Are there half-shells sat-
isfying these identities that are not Baer–Stone? To get started, look up
‘Baer�-rings’.

2. Regularity

This section addresses von Neumann regularity, strong regularity and bireg-
ularity. For a ring R to be regular4 in the sense of von Neumann means
that

8a 2 R 9r 2 R .ara D a/:
We start with a modern version with sheaves of a classical result.

2.1. Theorem. Each von Neumann regular, commutative and unital ring
R is Baer–Stone. Therefore, R is isomorphic to the ring of all global sec-
tions of a reduced and factor-transparent sheaf of fields over a Boolean
space.

Proof. Assume that a ring R satisfies the hypotheses. Let a be an
element of R with a pseudoinverse r , that is, ara D a. One can verify that
1 � ar is an idempotent, and thus it is a factor element in a commutative
ring.

To show that R is Baer–Stone, it suffices to prove that a? D Œ1� ar�: In
one direction of inclusion, if b 2 a?, then ab D 0, and hence

b.1 � ar/ D b � bar D b � 0r D bI
thus, b 2 Œ1�ar�. In the other direction, if b 2 Œ1�ar�, that is, b.1�ar/ D b,
then b � arb D b, and so arb D 0; hence, ab D arab D arba D 0.

That the stalks are fields follows readily from Theorem 1.13, which proves
that the stalks are both integral and regular. The solution in a stalk to
ax D 1 when a ¤ 0 is found in the equation ara D a, since then a.ra�1/ D
ara � a D 0 and hence ra D 1. �

4This concept differs from the regular ideals and congruences studied previously.
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Without sheaves, this theorem is due to Köthe [Köthe30] and
[McCoy38].

With the adjective ‘commutative’ removed from its statement, it becomes
false. Put another way, in noncommutative ring theory, ‘regular’ and ‘Baer–
Stone’ are incomparable notions. On the one hand, we know that the ring
M2.Q/ of 2 by 2 matrices with rational entries is regular and simple, so
the right annihilator of, say,

�
0 1
0 0

�
cannot be a two-sided ideal; thus M2.Q/

is not a Baer–Stone ring. In short, since
�
0 1
0 0

� �
0 1
0 0

� D 0, clearly M2.Q/ has
divisors of zero. On the other hand, we know that the ring Z of integers is
trivially a Baer–Stone ring since there are no divisors of zero; and yet the
only elements with pseudo-inverses are 0 and 1, so Z is not regular. There-
fore, any attempt to generalize Theorem 2.1 directly to noncommutative
rings is doomed.5

But there are several ways to adapt Theorem 2.1 to some noncommuta-
tive rings; we mention the class of strongly regular rings. These are rings
satisfying the property:

8a 2 R 9r 2 R .aar D a/;
which is equivalent to regularity when the ring is commutative. In general,
any strongly regular, unital ring is both regular and biregular (Definition
2.2, but this is nontrivial to show.6 The stalks in the sheaf representation
of strongly regular, unital rings are division rings, in analogy with commu-
tative regular rings where the stalks are fields.

Something similar in spirit is found in near-rings, hAIC;�; 0i, where
hAIC; 0i is a group (not necessarily Abelian), � is a semigroup, and �
distributes over C on one side. These are useful in co-ordinatizing certain
geometric planes and doubly transitive groups. In analogy with the set of all
endomorphisms of an Abelian group forming a ring in a natural way, the set
of all endomorphisms of a group, not necessarily Abelian, generates a near-
ring. Stronger hypotheses allow one to prove more about the stalks: any
von Neumann regular, unital near-ring without nilpotents is isomorphic to
a subdirect product of near-fields. This is theorem 9.158 of [Pilz83, p. 346],
which has references to the discoverers of this theorem.

11111
We end this chapter with a representation theorem for some shells with a

definition superficially similar to that of Baer–Stone shells. Our motivation
for this is the paper of [Szeto77] on biregular near-rings, which in turn
was motivated by the papers of Arens and Kaplansky [AreKa48] and
Dauns and Hofmann [DauHo66], but whose sheaf is a Boolean product
and different from ours.

5See the comments at the beginning of Sect. XII.5 for related notions and references.
6See [AreKa48] and [Ledb77]. See also [ForMc46] and [Goode79, p. 35].
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2.2. Definition. A biregular half-shell A is a half-shell when every
principal ideal is a factor ideal. If the half-shell has a unity, this amounts to:

8a 2 A 9e 2 Elem0 A .Œa� D Œe�/:
(Remember that Œa� is the smallest ideal 0=� containing a.)

This is a direct generalization of what it means for a unitary ring to be
biregular: each principal (two-sided) ideal is generated by a central idem-
potent.7 The theorem coming up will apply to biregular shells in any class
satisfying two rather broad conditions [Knoe91a, Knoe00]. These con-
ditions are satisfied by rings, and more generally by shells in which the
addition is a loop, which was defined in Sect. 1.

2.3. Theorem. Consider a class C of unital half-shells in which:

(i) Any homomorphic image of an algebra in C is again in the class
(ii) Whenever � is a congruence of an algebra in C and � ¤ 0, there is

some non-zero element a such that a � 0.

Then any biregular shell A in C is isomorphic to the unital half-shell of
all global sections of a reduced and factor-transparent sheaf of simple unital
half-shells over a Boolean space.

Proof. We use Theorem VII.2.5 to represent A by a reduced and
factor-transparent sheaf. All that remains is to show that the stalks are
simple.8 A generic stalk is A=� where � is the supremum of a prime ideal
of factor congruences, that is, � D W

P with P 2 SpecCon0 A. By way of
contradiction, assume that this stalk is not simple. With the isomorphism
Theorem II.1.3 we know that Con.A=�/ is isomorphic to the lattice of in-
termediate congruences: f� 2 Con A j � � � g. By nonsimplicity there exists
an intermediate congruence � of A such that � � � � 1: Condition (i) im-
plies that A=� satisfies (ii). And (ii) implies that there is an element a in
A such that a � 0 but not a � 0.

Define a new proper ideal of Con0 A as

N D ˚
� 2 Con0 A j � � ��

:

Corollary VII.2.10 characterizes members of this set by factor elements:

(2.1) e � 0 iff �e0 � � .e 2 Elem0 A/:

In particular, this logical equivalence also holds for �.

7However, when the shell is a lattice, this is nothing new. For, as Mai Gehrke pointed
out, any biregular bounded lattice A is a Boolean lattice. This is true since Œa	 D fxjx �
ag in a lattice. Thus Œa	 D Œe	 implies a D e.

8Consult the book [Diers86] for a strongly categorical approach to sheaves with
simple stalks over Boolean spaces.
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Now biregularity asserts the existence of a factor element e connected
to the a found earlier: Œa� D Œe�: From Corollary VII.2.17 it follows that
a D ea. Consequently,

a � 0 iff e � 0 .� 2 Con A/;

because

a � 0 iff Œa� � 0

�
iff Œe� � 0

�
iff e � 0:

So e � 0 but not e � 0; and thus �e0 � � but �e0 6� �, by (2.1). Hence, �e0 2 N
and �e0 … P . Thus N ¥ P ; so P is not maximal. Therefore, our assumption
of nonsimplicity is wrong. The stalk A=� must be simple. �

2.4. Problem. Can hypotheses (i) and (ii) be eliminated from the the-
orem just proven?

2.5. Problem. Try to convert the class of biregular unital half-shells to
a variety by adding a unary operation, a 7! a�, to the type, where a� is
the unique factor element e such that Œa� D Œe�. What is a simple set of
defining identities? Are there half-shells satisfying these identities that are
not biregular?

Another variant on regularity are the unital near-rings of [Szeto77a] in
which each element is a nontrivial power of itself. Unitary near-rings are
unital half-shells and hence Theorem VII.2.5 may be applied. He proved
independently of this that any such near-ring is bijectively representable
by sheaves of near-fields over Boolean spaces.

Still another variant are the biregular rings lacking a unity. They are
represented in [BurSa81, p. 163] by sheaves not over Boolean spaces, but
over locally compact, totally disconnected, Hausdorff spaces, sometimes
called ‘locally Boolean spaces’. The stalks are simple unital rings.

There are even more ways to represent biregular rings by sheaves; these
are referenced in Sect. XII.5. Biregular semigroups were represented by
Keimel [Keim70].



IX
Strict Shells

The ring Z of integers has many desirable properties, stimulating much
research in more general systems. Among them are cancellation and no
divisors of zero:

md D nd implies m D n if d ¤ 0I(0.1)

mn D 0 implies m D 0 or n D 0:(0.2)

In a commutative ring these conditions are equivalent. In a half-shell, the
first always implies the second, but the three element chain C 3 that is
a semilattice satisfies the second but not the first. So we concentrate on
the more general notion (0.2) of having no divisors of zero, as we did in
Chap. VIII.

There the hypothesis that shells be Baer–Stone is rather restrictive. Now
we replace this by less limiting conditions involving implications between
equations, which are usually easy to verify. For example, commutative rings
without any nilpotent elements properly include Baer rings. Not surpris-
ingly, to obtain a theorem comparable to Theorem VIII.1.13, we must
weaken its conclusion: the algebra can now be represented only as a subal-
gebra of the algebra of all global sections of a sheaf over a Boolean space,
rather than as an isomorphic image. Most importantly, the stalks will still
have no divisors of zero. They are quotients by congruences induced by
annihilators.

The first section introduces the basic notions and proves the theorem just
summarized. This is done in the context of algebras that have only a multi-
plication and one constant, a nullity, which we call strict half-shells. When

A. Knoebel, Sheaves of Algebras over Boolean Spaces, 235
DOI 10.1007/978-0-8176-4642-4 IX,
c� Springer Science+Business Media, LLC 2012
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there is neither another operation of addition nor a unity of multiplication,
life is difficult but not impossible. We must assume the half-shells have no
nilpotents and satisfy a condition called null-symmetry. These assumptions
are implications between products that are zero.

The second section starts by exploring the consequence of having no divi-
sors of zero when the sheaf is a Boolean product: the enveloping half-shell
is then Baer–Stone. When the sheaf space is extremal disconnected, the
enveloping half-shell is completely Baer–Stone. This section continues with
an equivalent characterization of no divisors of zero. It concludes by show-
ing that the assumed implications of Sect. 1 imply all other implications of
null products.

The third section adds a unity to the half-shell; this makes for stronger
and simpler conclusions. It then uses these results to prove a similar theo-
rem when addition is included, that is, for shells themselves. However, for
this to go over, it is necessary to make additional assumptions about the
shells: addition is a loop operation and multiplication distributes over it.
As a corollary we apply this theorem to clusters.

These last results show that the type of the algebra is important. We ob-
viously need a multiplication and a nullity in order to define annihilators.
But, since the congruences are induced by the annihilators, additional oper-
ations may foul these congruences and cause them to be too big. Therefore,
more operations cannot be added without also adding more identities. We
close this last section by comparing various notions of regularity in ring
theory.

There is another way to look at this chapter and put it into context.
We can make many different choices in identifying congruences that form
a Boolean subsemilattice of ConA. In Chaps. VII and VIII, it was factor
congruences. In this chapter, it will be congruences induced by annihilators.
In Sect. XI.2, it will be factor elements of ConA, that is, congruences that
are factor elements in the lattice of congruences.

1. Nilpotents and Null-symmetry

Null-symmetry is a new condition on products that are the nullity, which
is needed to prove the results of this chapter, where the multiplication is
not assumed to be commutative and associative. When these two laws are
present, null-symmetry automatically follows and so its presence is masked
in earlier presentations.1 Roughly, null-symmetry means that if a product

1See, for example,the papers of Keimel [Keim71a], Kennison [Kenn76] and Kist
[Kist63, Kist69]. See also those of Hofmann [Hofm72, p. 330] and Krauss and Clark
[KraCl79, p. 97].
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of elements of the half-shell is the nullity, than so is any rearrangement of
the elements in the product.

We reintroduce annihilators and show that they form a Boolean sub-
semilattice of ideals. The minimal congruences obtained by relating all
elements of each ideal provide a parallel Boolean subsemilattice of congru-
ences. With this, a sheaf over a Boolean space is constructed, and under
suitable hypotheses it is proven to have stalks with no zero divisors.

1.1. Definition. A strict half-shell hA;�; 0i with one binary operation
� and a constant 0, with no other operations, that satisfies

(0N�) 0 � a D 0 .a 2 A/:
It is a strict unital half-shell if it is an algebra hA;�; 0; 1i that also satisfies

(1U�) 1 � a D a .a 2 A/:
They are two-sided if a � 0 D 0 for both, and a � 1 D a for the second. As
before we abbreviate � by juxtaposition: ab D a � b.

This chapter will invoke various combinations of these hypotheses, pos-
tulated to hold in a strict half-shell A for all a, b, c and d in A:

if an D 0; then a D 0 .n 2 ZC/I(I)

if ab D 0; then ba D 0I(II)

a.bc/ D 0 if, and only if, .ab/c D 0I(IIIa)

if a.bc/ D 0; then a.cb/ D 0I(IIIb)

if .ab/.cd/ D 0; then .ac/.bd/ D 0:(IV)

In (I), we are assuming association to the left: an D �
..aa/a/ � � �a�

a:

The following are typical consequences of clauses (I)–(IV):

if ab D 0; then b.ac/ D 0I
if a.ab/ D 0; then b.ba/ D 0I
if .ab/.cd/ D 0; then .ac/.db/ D 0I
if

�
a
�
a..be/c/

��
d D 0; then a

�
b.c.de//

� D 0I
if

�
a
�
a
�
a � � � .aa/:::��� D 0; then a D 0:

Some of these may not be as easy to prove as they look; one has to exercise
caution here. More complicated implications of null products will follow
but only with some work. Even more unexpectedly, postulate IV does not
appear to follow from the previous ones.

Higher-order implications and their relationships will be addressed in
Sect. 2. The casual reader may assume all these hypotheses for the principal
theorems of Sects. 1 and 3, and skip the latter part of Sect. 2 on the
axiomatics of such conditions.

For the time being, in order to focus our discussion, we need to attach
some names to various combinations of these clauses.
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1.2. Definition. When (I) is satisfied in a half-shell, we say that it
has no nilpotents, a nilpotent being any non-zero element some power of
which is zero. For the remaining postulates, we say that a half-shell is null-
symmetric whenever (II), (IIIa), (IIIb) and (IV) all hold. By a null product
we mean any product like these that is equal to zero.

Normally, nilpotence will appear in the presence of the other implica-
tions; therefore, even though we are not assuming the associative law, any
association within a null power of an element typically implies that the
element is the nullity.

Two examples of half-shells satisfying all these conditions are: semilat-
tices with a minimum element, and nullital commutative semigroups with-
out nilpotents.

A commutative ring satisfying (I) is called semi-prime. Classical ring
theory characterizes a semi-prime ideal as an intersection of prime ideals
[McCoy64, p. 69]. That an ideal is prime in the commutative case assures
us that the quotient ring will have no zero divisors. In the noncommuta-
tive rings, the concepts of primeness and lack of zero divisors diverge. For
example, the ring M 2.Q/ of all 2-by-2 matrices over the rational numbers
is simple, and hence prime. But if

A D


0 0

0 1

�

; and B D


0 1

0 0

�

;

then AB D 0. Thus the ring has zero divisors. Also note that BA ¤ 0; so (II)
is violated [Hung74, p. 133, ex. 9]; hence, M2.Q/ is not null-symmetric.

Incidentally, axiom II makes any half-shell A two-sided:

0a D 0 D a0 .a 2 A/:
Our working hypotheses of null-symmetry and no nilpotents, that is,

clauses I to IV, are at the level of elements, and, with fewer operations and
identities satisfied, they are of necessity more involved. This new class of
algebras, not quite in keeping literally with noncommutative ring theory,
but nevertheless in the spirit of commutative ring theory, is justified by the
theorem to come.

In anticipation of breaking half-shells down by means of sheaf construc-
tions, we make a few comments about the nature of these clauses. It would
be convenient in quotient half-shells to be able to use the implications be-
tween equations that define null-symmetry. Unfortunately, implications are
not necessarily preserved by homomorphism. In other words, universal sen-
tences of this form define only a quasivariety, not a variety. Put another
way, quasivarieties are closed to the construction of subdirect products,
but a subdirect decomposition of an algebra in a quasivariety may produce
factors outside the quasivariety.

11111
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We may now state precisely the main result of this section. For it, we
need a name for sheaves whose base space is dually isomorphic to a com-
plete Boolean algebra. Such spaces are called extremally disconnected in
Definition III.4.3: the closure of any open set is again open.

1.3. Theorem. Any null-symmetric strict half-shell A without nilpotents
is isomorphic to a subalgebra of the half-shell � .A/ of all global sections of
a sheaf A over an extremally disconnected Boolean space with stalks that
have no divisors of zero.

The proof is long and splits naturally into three parts, involving a variety
of constructions, subordinate propositions and lemmas. First, we single out
annihilators of subsets of the carrier and show that they form a complete
Boolean semilattice of ideals. Second, from these annihilators we create
congruences, which in turn will form a complete Boolean subsemilattice of
ConA. By Theorem V.2.1, it will follow readily that A is represented by
a subalgebra of a sheaf over a Boolean space. The third point to prove is
that the stalks of this sheaf have no zero divisors. The whole proof is drawn
together after Proposition 1.14.

First, we define idéals of strict half-shells, which will turn out to be
kernel ideals of Sect. II.1, and which are slightly different from the idéals
of Sect. VII.3 since now there is no addition. This new notion is a stepping
stone to annihilators, and will disappear in a few pages.

1.4. Definition. An idéal of a half-shell is a subset I of A such that:

(i) 0 2 I , and
(ii) if a 2 A and i 2 I , then ai 2 I and ia 2 I .

Denote the set of all idéals of a half-shell A by Idéal A.

In a half-shell A, when I and J are idéals of it, the intersection I \ J
and union I [J are also idéals. Thus, the set of idéals is a bounded lattice:

Idéal A D hIdéal AI [;\; f0g; Ai:
1.5. Definition. For any subset B of a half-shell A, define the right

annihilator of B to be

B? D fa 2 A j if b 2 B then ba D 0g :
The left annihilator is naturally

?B D fa 2 A j if b 2 B then ab D 0g :

1.6. Proposition. In a half-shell A, the relation, ab D 0, is a polarity,
and hence we obtain a Galois connection in which the operation of left
annihilation is an anti-isomorphism of the complete lattices of all right
and left annihilators, and right annihilation is its inverse. We can conclude
immediately that whenever B;C � A and Bk � A .k 2 K/:
(a) .?.B?//? D B?;
(b) if B � C , then B? � C?;
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(c)
T
k2K

�
B?
k

� D �S
k2K Bk

�?
;

(d)
˚
B? j B � A� D ˚

B � A j .?B/? D B�
.

Also true are the dual statements in which right and left annihilation are
interchanged.

Proof. Polarities and Galois connections are discussed in Birkhoff’s
book on lattices [Birk67]. �

With condition (II) in the definition of null-symmetry, we no longer need
to distinguish on which side we are annihilating:

B? D ?B .B � A/:
From now on we need use only the right ‘perp’. Hence the notation,

Ideal? A D ˚
B? j B � A�

;

is justified for the set of annihilators in a null-symmetric half-shell A. Thus,
we find that B? is also an idéal:

Ideal? A � IdéalA:

The following lemmas and propositions prove what we need to know about
these lattices.

1.7. Lemma. For idéals I , J of a half-shell A without nilpotents,

I \ J D f0g if, and only if, IJ D f0g;
where IJ D fij j i 2 I and j 2 J g.

Proof. ) : Assume I \ J D f0g. Any element of IJ is of the form
ij where i 2 I and j 2 J . Since I and J are idéals, it follows that ij 2 I
and ij 2 J . Therefore, ij 2 I \ J . Hence ij D 0.
( : Assume that IJ D f0g and that a 2 I \ J . Then aa 2 IJ . Thus

aa D 0. Since A has no nilpotents, a D 0. �

1.8. Proposition. Let A be a null-symmetric half-shell without nilpo-
tents.

(a) The algebra, Ideal? A D hIdeal? AI \;?; 0i, is a Boolean subsemilat-
tice of the semilattice Idéal A.

(b) The two semilattices, Ideal? A and Idéal A, are both complete lattices,
but their suprema may differ. For a family fBk j k 2 K g of annihilators,
we have that

_

k2K
Bk D

[

k2K
Bk

� _
operates in Idéal A

�
;(1)

G

k2K
Bk D

� \

k2K
.B?
k /

�? � G
operates in Ideal? A

�
;(2)

_

k2K
Bk �

G

k2K
Bk :(3)
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Proof. (a) We should first convince ourselves that Ideal? A is closed
to the operations, \ and ?. Closure to these comes from the nature of
a Galois connection. The set f0g is the annihilator of A for the following
reason. If b 2 A?, then ab D 0 for all a in A; in particular, bb D 0 and so
b D 0, by the lack of nilpotents. Thus A? D f0g.

The remaining thing to prove is the Boolean part (Definition V.1.1):

I \ J? D f0g iff I � J .I; J 2 Ideal? A/:

) : Suppose that I \ J? D f0g and i 2 I . Then IJ? D f0g by Lemma
1.7. Hence, ik D 0 for all k in J?. Thus, i 2 J?? D J .
( : On the supposition that I � J and a 2 I \ J?, it follows that

a 2 I � J and a 2 J?. Therefore, aa 2 JJ?. But JJ? D f0g, and hence
a D 0 since there are no nilpotents.

(b) Completeness of these semilattices follows immediately from the def-
initions of idéal and annihilator. Hence, they have joins.

(1) The join
W
k2K Bk is defined to be the smallest idéal containing

all the Bk, and the union
S
k2K Bk is an idéal.

(2) The join
F
k2K Bk is defined to be the smallest annihilator con-

taining all the Bk, and in a Galois connection this is
�S

k2KBk
� ??.

An application of ? to part (c) of Proposition 1.6 completes this
argument.

(3) There are more idéals than annihilators. �

Trying to prove the next lemma motivated much of the preceding
discussion. It is needed at a crucial step in order to prove that the stalks in
the sheaf to be constructed will have no divisors of zero. Note the similarity
to the earlier Lemma VIII.1.8c.

1.9. Lemma. Whenever a and b are elements in a null-symmetric half-
shell A without nilpotents, then

.ab/?? D a?? \ b??;
where we have simplified the notation: a? D fag?.

Proof. � : First, we show that a? � .ab/?. If x 2 a?, then xa D 0,
and also .xa/b D 0. So by null-symmetry x.ab/ D 0, and hence x 2 .ab/?.
Thus a? � .ab/?, and likewise also b? � .ab/?. Therefore, with a reversal
of inclusions, .ab/?? � a?? \ b??;.
� : Since Ideal? A is a Boolean subsemilattice, it suffices to prove:

a?? \ b?? \ .ab/? D f0g:
Suppose that x 2 a?? \ b?? \ .ab/?. We will show that x D 0. Setting
out what membership in each annihilator means, we write down that:

(i) xy D 0 (y 2 a?);
(ii) xz D 0 (z 2 b?);

(iii) x.ab/ D 0.
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The given logical implications between various null products will be used
freely throughout. From (iii), by definition, xa 2 b?. Hence, from (ii)
now, x.xa/ D 0. Thus xx 2 a?. Next from (i), x.xx/ D 0. Therefore,
.xx/.xx/ D 0, and so xx D 0, and finally x D 0, since there are no
nilpotents. �

11111
The second part of the proof of Theorem 1.3 involves converting these

annihilator ideals into congruences so that the machinery of Chap. V may
be started up. The obvious choice is the minimal congruence �.I / that
relates all elements of an idéal I . For half-shells this is the extremely sim-
ple and constructive Rees congruence [Petr77, p. 9] [ChaEL03, p. 187].
Strictness of the half-shells now becomes essential.

1.10. Proposition. Let I and J be idéals of a strict half-shell A.

(a) The minimal congruence �.I / is characterized by the condition:

a �.I / b if, and only if, a; b 2 I or a D b .a; b 2 A/:
(b) We may recover any idéal from its corresponding congruence:

I D 0

�.I /
:

(c) It follows that �.I / D �.J / if, and only if, I D J .
(d) If I � J , then �.I / � �.J /.
(e) �.I /\ �.J / D �.I \ J /.

Proof. (a) Check that the right side of the equivalence defines a
congruence whenever I is an idéal. Clearly, it is minimal; so it is �.I /.

(b) This is clear.
(c) Use (b).
(d) This follows directly from the definition of �.I /.
(e) � : Split this inclusion into the cases defining �.I /.
� : Use part (d). �

1.11. Definition. The set of all congruences associated with annihila-
tors in a half-shell is designated:

Con? A D
n
�.I / j I 2 Ideal? A

o
;

With the obvious operations and justification by part (e) of the previous
proposition, we convert it in the next proposition to an algebra:

Con? A D hCon? AI \;?; 0i;
where �

�.I /
�? D �.I?/ and 0 D �.A?/:

1.12. Proposition. In a null-symmetric strict half-shell A without any
nilpotents, the algebra Con? A is a complete Boolean subsemilattice of
ConA, and it is isomorphic to Ideal? A.
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Proof. The first assertion will follow from the second if we make use
of the corresponding result for Ideal? A in Proposition 1.8. The isomor-
phism is the map, I 7! �.I /; which we already know is bijective. By the
previous proposition, this map preserves intersection, complementation and
the nullity. �

Before proceeding any further, it would be good to take stock of the three
suprema, or infinitary joins, of a set N of congruences in Con? A that we
have accumulated: G

N �
_
N �

[
N:

The first is the new join in Con? A, which exists because this lattice is
complete whenever A is a null-symmetric half-shell without nilpotents.
The second is the traditional join of congruences in ConA. The third is set
union.

1.13. Lemma. Assume that A is a null-symmetric, strict half-shell and
N is any ideal of Con? A.2 Then,

(a)
W
N DS

N ,
(b) 0S

N
D S

0
N

where 0
N
D ˚

0
�
j � 2 N �

.

Proof. (a) See Proposition V.1.5.
(b) If a 2 0=S

N , then there is a congruence � in N such that a � 0, and
hence a 2S

.0=N /; and conversely. �
Now it follows from Theorem V.2.1, that any null-symmetric half-shell

without nilpotents is a subalgebra of the half-shell of all global sections of
a sheaf over SpecCon? A. This leads to the third and last part of the proof
of Theorem 1.3, which is about the lack of zero divisors in the stalks.

1.14. Proposition. For any null-symmetric strict half-shell A without
nilpotents, the stalks of its sheaf A have no divisors of zero. Here, the sheaf
is: A D A==Con?A; and the base space is: X D SpecCon?A.

Proof. Any stalk of the sheaf in Theorem V.2.1 is of the form A=
W
P

where P is a prime ideal of Con? A. Rather than working solely in the
Boolean subsemilattice Con?A, we find it convenient to work also with its
isomorphic cousin Ideal? A. So let P be the corresponding prime ideal of
Ideal? A, that is, P D 0=P .

To prove that any stalk A=
W
P has no divisors of zero, let us suppose that

.a=
W
P/ � .b=W

P/ D 0=
W
P , with the intent of deriving that a=

W
P D 0

or b=
W
P D 0. Since

W
P D S

P by Lemma 1.13, there exists a � in P

such that ab � 0. Let I be 0=� in Ideal? A. Therefore, .ab/?? � I?? D I .
Hence, .ab/?? 2 P, since P, as an ideal, is closed to downward inclusion.

2There is a subtlety here that might mislead the reader. By an ideal, do we mean in

Con? A as a half-shell or as a Boolean algebra? We mean the latter as in Chap. V.
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But .ab/?? D a?? \ b?? by Lemma 1.9. Since P is prime in Con? A,
then P must be prime in Ideal? A, and therefore,

a?? 2 P or b?? 2 P:

Thus,

a?? �
[ 0

P
or b?? �

[ 0

P
:

Hence,

a 2 a?? � 0
W
P

or b 2 a?? � 0
W
P
:

Therefore, A=
W
P has no divisors of zero. �

Proof of Theorem 1.3, a recapitulation. We assume that A is
a null-symmetric strict half-shell without nilpotents. In the first part of the
proof, Proposition 1.6 and Lemma 1.7 set up a calculus of annihilators of
subsets of A, leading to Proposition 1.8, which asserts that the collection
of all annihilators is a complete Boolean algebra.

In the second part, we switch in Proposition 1.10 to the collection of
congruences generated by these annihilators, which by Proposition 1.12 is
a complete Boolean subsemilattice B of Con A. By Theorem V.2.1, A is
isomorphic to a subalgebra of the algebra of all global sections of a sheaf
over a Boolean space X , with stalks induced by the spectrum of B.

In the third part, Lemma 1.13 relates unions and joins of ideals and con-
gruences. We prove in Proposition 1.14, with the help of Lemma 1.9, that
the stalks have no zero divisors. Finally, X is an extremally disconnected
Boolean space because it is dual to the complete Boolean algebra Con? A.
See [Halm63, p. 90 . . . ] for a proof. �

1.15. Problem. A conclusion of Theorem 1.3 is that the base space X

is extremally disconnected, but this is never used to draw any conclusions
about the space of global sections. Are there any to be drawn? Compare
this with the more limited Proposition 2.2 in the next section.

11111
An application of Theorem 1.12 is to commutative semigroups with a

nullity but without nilpotents. Any such semigroup is isomorphic to a sub-
semigroup of the commutative semigroup of all global sections of a sheaf
over a Boolean space with stalks having no zero divisors. Meet semilattices
with a least element are examples of such half-shells. Now it is already
known that any semilattice is a subdirect power of the two-element semi-
lattice [Grät79, p. 155, ex. 27]. This stalk has no divisors of zero, and any
power of it is a sheaf over a Boolean space, as in Stone’s representation
theorem for Boolean algebras. However, in general, this traditional repre-
sentation gives a different sheaf from that developed in this section. For
example, any chain has no divisors of zero and so will not decompose by
our techniques since there are no nontrivial annihilators.
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A half-shell A of Theorem 1.3 can be a proper subalgebra of � .A/. To
see, consider the meet semilattice, A D SL3 given by the Hasse diagram:

� 2�1

�0
....................................................................................

.........
.........

.........
.........

.........
.........

.........
...

SL3

Then, � .A/ will have four elements, so it cannot be isomorphic to A.
This example also shows how divisors of zero cease to be so when they

are spread across the stalks. For 1^2 D 0; and 1? D f0; 2g and 2? D f0; 1g,
generating the prime ideals in Ideal? A that give the two points of the base
space of the sheaf. The stalks over these points each have two elements,
with no divisors of zero.

Another semilattice demonstrates that the supremum of a proper ideal
of Con? A is not necessarily proper. To see this, consider the infinite coun-
terpart of the preceding three-element semilattice:

1 2 3 : : :

� � � � � �
�

.............................................................................................
.......
.......
.......
.......
.......
.......
.......
..

.......
.......
.......
.......
.......
.......
.......
.......
..

0

SL!

It is easy to see that B? D .! 
 B/ [ f0g when B � ! (where ! D
f0; 1; 2; 3; : : :g). Thus, Ideal? SL! D fC � ! j 0 2 C g. The set F of finite

members of Ideal? SL! is an ideal; this certainly has an extension to a
prime ideal P of the Boolean algebra Ideal? SL!. But

W
P D !. All this

translates readily over to Con? SL!. Also, since there are many different
extensions of F to prime ideals, this examples shows that there are distinct
prime ideals P and Q such that

W
P D ! D W

Q. It is not hard to continue
the calculations and see that each principal prime ideal contributes a two-
element stalk to the sheaf representation of SL! and each non-principal
prime ideal contributes a trivial stalk.

1.16. Problem. Is the set of all non-principal prime ideals of the pre-
ceding example an open set in the base space? If so, then this would give
us a brace hA;Con? Ai that is not reduced, that is, in the language of
Sect. V.4, axiom RB is violated: Int TrivhA;Con? Ai ¤ ¿.

We close with some comments on the all-pervasive notion of ideal, of
which there are at least three definitions in the literature. The first is the
idéal, defined variously for half-shells and shells, and reminiscent of tradi-
tional ideals in ring theory. The second is the coset o=� for any congru-
ence � of a pointed algebra hA; oi, which was defined earlier and which
works well for factoring, a chief concern of this book. The ideals in this
second sense include the idéals of strict half-shells. The third is the term-
oriented definition of ideal, originated by Peter Gumm and Aldo Ursini
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[GumUr84] and also found in the book of Chajda, Eigenthaler and Langer
[ChaEL03, p. 137], which we will call a term-ideal, to differentiate it from
our congruence-oriented definition. It is also motivated by ideals in ring
theory. Their definition comes in two parts: an ideal term is a term with
m C n variables such that t. Po; Ea/ D o where Po D ho; o; : : : ; oi repeated m

times and Ea 2 An; and a subset I of A is a term-ideal if t.Ei ; Ea/ 2 I whenever
Ei 2 Im and Ea 2 An. This is a good definition since it agrees with normal
subgroups in group theory, the usual ideals in ring theory, and the idéals
for the null-symmetric strict half-shells of this section; however, it does not
always agree with our notion of factor ideal, and it does not give the usual
ideals in lattice theory unless the lattices are bounded and distributive.

2. Converses and Axiomatics

This section fills out the previous one with three results. The first is a
partial converse to Theorem 1.3. It shows that, if the sheaf A is a Boolean
product with no divisors of zero in the stalks, then � .A/ is Baer–Stone.
The second proves another partial converse to Sect. 1: a strict half-shell has
no divisors of zero if, and only if, it has no nilpotents and is null-symmetric.
The third concludes that, if the strict half-shell is null-symmetric and has
no nilpotents, then any null product implies any other null product in the
same or more variables.

Recall that a factor ideal I of a half-shell A comes from a factor con-
gruence � of A where I D 0=� . Factor ideals and congruences will be
needed whenever we want to show that we have embedded a half-shell into
a Baer–Stone half-shell. Annihilators play their role in its definition.

2.1. Definition. Remember that a half-shell A is called a Baer–Stone
half-shell if the right and left annihilators of every single element of A are
factor ideals. It is called finitely Baer–Stone if the annihilators on both
sides of any finite subset of A are factor ideals. And it is called completely
Baer–Stone if this is true for any subset of A.

An arbitrary subalgebra of a half-shell need not be a factor ideal. And
we should not expect the congruences generated by the annihilators �.I?/
and �.I??/ to be a pair of complementary factor congruences.

Note that even when � is a factor ideal of a half-shell it can happen
that � ¤ �.0=�/: An example of this occurs in this four-element meet-
semilattice. �

��
�0

...........................................................................

.........
....
.........
....
.........
....
.............

.............
.............

.............
.............

.............

�. 0
�
/

�
��

�0
...........................................................................

....................................................................................
....
.........
....
.........
....
.............

.............
.............

.............
.............

.............

�
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A solid line connecting two elements means they are related. Of course,
� � �.0=�/ for any factor congruence � of a half-shell.

We state a proposition concluding that � .A/ is completely Baer-Stone.
For details about extremal disconnectedness in (b), see the end of Sect. III.4.

2.2. Proposition. Let A be a Boolean product of half-shells whose stalks
have no divisors of zero.

(a) Then � .A/ is a finitely Baer-Stone half-shell.
(b) If further, the base space X is extremally disconnected, then � .A/ is

completely Baer-Stone.

Proof. Let � and � be global sections in � .A/. Recall that in a
Boolean product the equalizers � W� are closed, as well as open, and so are
the inequalizers clopen. We prove part (b) first, since a shortening of this
argument will immediately give a proof of (a). Abbreviate � .A/ to � .

(b) Consider any subset ˙ of � ; we must show that its annihilator
˙? is a factor ideal. It suffices to find a factor congruence � of � such that
0=� D ˙?. To that end define

U D
[

�2˙
� I0:

This is the set of indices in the base space X where some element � of
˙ has a component different from 0. Because each stalk of A has no zero
divisors, for the product �� to be 0 it is necessary and sufficient that in
each stalk the component of � vanish, or that the component of � vanish.
Therefore, each global section of ˙? must be 0 on all those components
whose indices are in U . Thus,

˙? D f� 2 � j U � � W0g :

But before doing anything else, we need a topological adjustment. Since
each inequalizer � I0 is open, so is the union U . Since the base space X

is extremally disconnected, the closure U of U is clopen. Now define the
congruences � and � by

� � � iff U � � W�; and

� � � iff X
 U � � W�:

Let us first establish that � and � are a complementary pair of factor
congruences. That they are congruences follows directly from the defin-
ing properties of a complex. To show they are complementary, we prove
that

� \ � D 0Con� ; and � ı � D 1Con� :
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The intersection property is derived directly from their definitions. To
demonstrate the composition property, assume �; � 2 � . Define 
WX ! A

by patching:


.x/ D
(
�.x/ if x 2 U ;
�.x/ if x 2 X
 U ; :

Since U is clopen, 
 2 � by patching. Clearly, U � � W 
, and so � � 
.
Similarly, 
 � � . Therefore, � .� ı �/ � .

We claim now that ˙? D 0=� . With the definition of � in mind, we see
that, if � 2 0=� , then � W0 � U � U , and thus � 2 ˙?. Hence, 0=� � ˙?.
To prove the opposite direction of inclusion, suppose that � 2 ˙?. Then
� W0 � U . But remember that � W0 is clopen. Since U is the intersection of
all closed sets containing U , then � W0 � U . Thus � 2 0=� .

Therefore, the annihilator ˙? of any subset ˙ of � .A/ is a factor ideal,
and hence � .A/ is completely Baer-Stone.

(a) Consider any finite subset ˙ of � ; we must show that ˙? is a
factor ideal. Proceeding as in part (b) above, we observe that it suffices
to find a complementary pair of factor congruences � and � of � such that
0=� D ˙?. The crucial difference with (b) is that U is now a finite union
of clopen subsets � I0 of X , and hence is clopen itself. Thus, no topologi-
cal adjustment is needed, that is, U D U , without the need for extremal
disconnectedness. The argument finishes as before. �

Unfortunately, this proposition is marred by its requiring a Boolean
product. Apparently, we can enlarge � .A/ into a completely Baer–Stone
half-shell in general only at the expense of the compactness of X . In other
words, � .A/ is always a subalgebra of the full product, P D Q

x2X Ax ,
which can be considered a sheaf when X is given the discrete topology. As
all subsets of X are clopen, P is completely Baer–Stone. However, X may
not be compact, and so is not a Boolean space.

But we do have a logical equivalence within subdirect products. Recall
that a half-shell, A D hA;�; 0i, is semi-integral if it is a subdirect prod-
uct of integral half-shells; that is, A �s:d:

Q
i2I Ai where each Ai has no

divisors of zero.

2.3. Theorem. A strict two-sided half-shell, A D hA;�; 0i, is semi-
integral if, and only if, A is null-symmetric and without nilpotents.

Proof. ) : Consider a clause defining null-symmetry: for example,

if ab D 0; then ba D 0:
If a; b 2 A and ab D 0, then this is true on every integral quotient of the
subdirect product, say, indexed by i in I . Thus, aibi D 0. By integrality,
ai D 0 or bi D 0. Hence biai D 0 for all i in I . Therefore, ba D 0. The
other clauses are proven similarly.
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To show that A has no nilpotents, suppose that a 2 A and an D 0. Then

in each stalk, ai
n D 0. Multiply by ai enough times to obtain ai

2k D 0

for some positive integer k. Rearrange by null-symmetry to rewrite this

as ai
2k�1 � ai 2k�1 D 0. Since there are no divisors of zero in the stalk,

ai
2k�1 D 0. By descent, eventually ai D 0 in each stalk. Therefore, a D 0.
( : By Theorem 1.14. �

Putting together previous results, we create a corollary.

2.4. Corollary. Let A be a null-symmetric strict half-shell without
nilpotents whose sheaf A, as constructed from Con? A in Sect. 1, is a
Boolean product. Then its extension � .A/, the half-shell of global sections
of A, is completely Baer–Stone and has no divisors of zero.

Proof. By Theorem 1.3, � .A/ has no divisors of zero. By Proposition
1.12, Con? A is a complete Boolean subsemilattice. Thus, Spec.Con? A/,
the base space X of A, is extremally disconnected. By Proposition 2.2,
� .A/ is completely Baer–Stone. �

Here are suggestions for further research.

2.5. Problem. In Chap. VIII, Baer–Stone shells were proven to be iso-
morphic to the algebra of all global sections of a sheaf over a Boolean space.
In this chapter, while weakening the hypothesis to no nilpotents, only iso-
morphism to a subalgebra of the global sections could be insured. In the
case of commutative unitary rings, it is shown in [Kist69] that the former
is a special case of the latter. Now obtain for shells, à la Kist, the isomor-
phism for Baer–Stone shells as a special case of the proper embedding in
a subdirect product of stalks without any divisors of zero. Are these rep-
resentations semiprime in his sense? If so, fit Chap. VIII into this chapter.

Let us expand more on this. Kist’s theorem 9.6 for commutative rings in
[Kist63] exhibits the isomorphism of the Boolean algebra of idempotents
with the algebra dual to M.R/, the space of all minimal prime ideals. This
says that the base space of our sheaf is homeomorphic to the base space of
Kist’s sheaf, at least in the case of commutative rings. It would be inter-
esting to know if the congruences creating the stalks of our sheaf of shells
correspond to minimal prime ideals in some sense.

In summary, it would be notable if one could redevelop this chapter along
the lines of Kist’s treatment of minimal prime ideals [Kist63, Kist69]. For
a guide as to how this might be done see the paper of Picavet [Pica80].

11111
The remainder of this section demonstrates how axioms I to IV in Sect. 1

imply all similar implications between null products of any number of el-
ements. The next two lemmas prepare us for the proposition to follow
by building up terms. By Pn we mean the set of all terms p in the one
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binary operation � and the n variables, x1; x2; : : : ; xn, each variable ap-
pearing exactly once. For example, x1.x2x3/ and .x3x1/x2 belong to P3,
but

�
x1.x2x1/

�
x3

�
and x1x2 do not.

2.6. Lemma. In any strict half-shell, A D hAI �; 0i, the following three
statements are equivalent:

(a) A is null-symmetric;
(b) For all a1; : : : ; an in A and for all p; q in Pn,

if p.a1; : : : ; an/ D 0; then q.a1; : : : ; an/ D 0I
(c) For all a1; : : : ; an in A and for all p in Pm and q in Pn with m � n,

if p.a1; : : : ; am/ D 0; then q.a1; : : : ; am; amC1; : : : ; an/ D 0:
Proof. We go full circle: (a) ) (b) ) (c) ) (a).

(a) ) (b). This is the hardest implication, and will be split into three
parts. We convince ourselves that: first, it is true when n � 4; second,
any new association of terms of a null product is possible; and third, that
any permutation of the variables is also possible. The last two parts are
established by induction when n 	 5. Details are omitted, and p.a1; : : : ; am/
is abbreviated as p, etc.

Clearly, repeated application of (II), (IIIa) and (IIIb) shows that (b) is
true when n D 3. When is n D 4, it is also clear that any new association
is possible except perhaps with inside cases such as:

if a1
�
.a2a3/a4

� D 0; then a1
�
a2.a3a4/

� D 0:
For this, from the hypothesis, and (IIIb) and (IIIa), we get .a1a4/.a2a3/ D 0.
We obtain the conclusion by applying (IV), (IIIb) and (IIIa), in that order.
In general, for permuting variables when n D 4, the polynomial p may be
first balanced to .a1a2/.a3a4/ by reassociation. Then null-symmetry may
be applied enough times to permute the variables in any way whatsoever.

To do induction on n, assume that n 	 5. First, we show that in a
null product the parenthesis may be pushed around at will (within the
limits, naturally, of well-formed terms). This will be done by proving with
induction on n that an equation of the form p D 0 in n variables implies an
equation of the form r D 0 in the same variables but where the operations
of r are now all associated to the right. It will follow that q D 0, since the
implications defining null-symmetry are reversible.

Now the base step when n � 4 has already been taken care of. Remember
that the variables are not repeated in this lemma. Without loss of generality,
assume that the variables in p appear in the order a1; a2; : : : ; an; this order
will not change in this paragraph.. By associating differently, if necessary,
the four most outer subterms, we may assume from what was proven for
n D 4 that we are starting with

.p1p2/.p3p4/ D 0:
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By thinking of p1p2 as a single new variable, we can apply the induction
hypothesis to re-associate p3p4 to the right. Now interchange the roles of
the two outer terms and end up associating the whole product to the right.
Likewise associate q to the right and equate with p.

By induction on n again we show with the implications available that any
permutation of the indices is possible. To this end it suffices to show that
any two adjacent variables may be transposed, say ai and aj . Rearranging
the association to

p1
�
.aiaj /p2

� D 0;
we may apply the already established case of n � 4 to transpose ai and aj .

(b)) (c). Since p.a1; : : : ; am/ D 0, it follows that p.a1; : : : ; am/�.amC1�
� � � � an/ D 0. By the previous part, q.a1; : : : ; an/ D 0.

(c) ) (a). Trivial. �

2.7. Lemma. In any strict half-shell, A D hAI �; 0i, the following state-
ments are equivalent:

(a) A is null-symmetric with no nilpotents;
(b) For any polynomial p in x1; : : : ; xn, without repetition of these vari-

ables, and for any other polynomial q in the same variables but with
repetitions allowed,

p.a1; : : : ; an/ D 0 iff q.a1; : : : ; an/ D 0:
Proof. There are two directions of implication to establish.
) : Multiplying p by additional elements on the right preserves its

nullity. Any necessary re-associations are taken care of by the previous
lemma.
( : Superfluous repetitions are gotten rid of by the following trick.

Assume that q D 0. Multiply q by enough additional duplications of the
elements already occurring there so that each element occurs the same
number of times. Rearrange and intermingle these occurrences so that this
enlarged q takes on the appearance pk for some positive integer k. By
Lemma 2.6, pk D 0. (Bear in mind that, although variables must appear
only once in the terms of Lemma 2.6, the elements substituted for them
may be equal.) Making use of axiom I that there are no nilpotents, we
deduce that p D 0. If too many occurrences of the ai were eliminated, they
can be put in again with the previous lemma. �

The next proposition can be viewed in two lights. It can be seen as a
consequence of Theorem 1.3 that any null polynomial is implied by any
other with the same or more variables. Or it can be considered a direct
proof of this fact without using Sect. 1.

2.8. Proposition. Suppose p is a term in � and variables x1; : : : ; xm,
and q is a term in � and variables x1; : : : ; xm; xmC1; : : : ; xn with m � n.
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Assume these variables occur at least once in p and q, perhaps repeat-
edly. In a null-symmetric half-shell A having no nilpotents, with a1; : : : ; am;
amC1; : : : ; an in A,

if p.a1; : : : ; am/ D 0; then q.a1; : : : ; am; amC1; : : : ; an/ D 0:
Proof. Lemma 2.7 eliminates repeated elements. Lemma 2.6 adds

new elements. Lemma 2.7 adds repeated elements. �
2.9. Problem. Curiously, in order to prove Theorem 1.3 we did not

need implications between null products with more than three variables.
The proofs were written so that it would be easy to check that (IV) was
never used. But its conclusion of no zero divisors implies null-symmetry by
Theorem 2.3. Is it possible to prove directly that (IV) follows from (I), (II),
(IIIa), and (IIIb)?

3. Adding a Unity or a Loop

We pass to half-shells with a unity or a loop; this simplifies Sect. 1 in several
different ways. Note that the addition of a unity makes no difference in the
formulation of the result of Sect. 1, which gives stalks that have no divisors
of zero. But factor ideals will now be principal and easily described. Recall
from Sect. VII.2 that factor objects in a unital half-shell come in corre-
sponding pairs: congruences � and � 0; elements e and e0 where 0 � 0e � 1
and 0 � 0e0 � 1; and ideals I D 0=� D e0A D Œe0� and I 0 D 0=� 0 D eA D Œe�.
The first part of this section examines the components of factor elements
in subdirect products of integral unital half-shells: we might expect them
to be 0 or 1, but this is not always the case.

The second part includes in the half-shell an addition that is a loop,
and assumes that the multiplication distribute over the addition. If this
algebra is null-symmetric and without nilpotents, then the conclusions of
Proposition 2.2 follow, but without assuming the structure of a Boolean
product.

3.1. Proposition. Let A be a semi-integral, two-sided, strict and unital
half-shell hAI �; 0; 1i, that is, assume that

A �
s.d.

Y

x2X
Ax;

where each quotient Ax has no divisors of zero. Let � and � 0 be compli-
mentary factor congruences of A generated by factor elements " and "0.
Then,

Œ"� D "0 ? and Œ"0� D "?I(a)

Œ"� D f� 2 A j � I0 � "I0g ; and Œ"0� D ˚
� 2 A j � I0 � "0 I0� I(b)

".x/ D 0x if x 2 "0 I0; and "0.x/ D 0x if x 2 "I0 .x 2 X/:(c)
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Proof. By Theorem 2.3, A is null-symmetric and without nilpotents.
Recall from Lemma VII.2.3 that � D �" and � 0 D �"0 , and from Theorem
VII.2.11 that 0=� D "0A D Œ"0� and 0=� 0 D "A D Œ"�: We demonstrate only
the first half of each part.

(a) � : Since Œ"� is the smallest ideal containing ", we may prove this
inclusion by induction. That is, first we show that " belongs to the right
side, and then show that, if r belongs to it, then so do ar and ra for any
a in A. That ""0 D 0 implies that " 2 "0?. To establish the induction step,
assume that r 2 "0? and a 2 A. Then "0r D 0, and hence "0.ra/ D 0 by
null-symmetry. So ra 2 "0? and similarly ar 2 "0?.
� : If r 2 "0?, then "0r D 0 D "00. Therefore, r � 0 0, and r 2 Œ"�.

(b) By the preceding part, Œ"� and Œ"0� are each other’s annihilators.
� : This direction of inclusion is trivial since �" D � whenever � 2 Œ"�,

and hence � I0 � "I0.
� : For this direction, we need only prove that any � on the right

belongs to Œ"�. By Corollary VII.2.17, � 2 Œ"� iff "0� D 0. But this last
equality is clear since � I0 � "I0 � "0 W0.

(c) This is true since ""0 D 0. �

3.2. Corollary. Let A be a half-shell satisfying the hypotheses of Propo-
sition 3.1. For any pair of complementary factor elements " and "0, the
index set X is a disjoint union of three subsets:

(3.1) X D ."I0 \ "0 W0/[ ." W0 \ "0 W0/ [ ." W0 \ "0 I0/:

The stalks Ax from the middle meet are trivial, where ".x/ D 0 D "0.x/.

Proof. Joining "I0 \ "0 I0 to the right side of (3.1) gives the whole
space X , by distributivity. But "I0\ "0 I0 D ¿ by semi-integrality. �

3.3. Counterexample. One might have expected a stronger conclusion
in part (c) of the proposition:

(3.2) ".x/ D
(
1 if x 2 "I0;
0 if x 2 "0 I0;

and similarly for "0. This would give us part of the original definition of
‘reduced’ in Pierce’s monograph for unital rings, where each factor element
takes only the values 0 or 1 on each stalk of a sheaf [Pier67, p. 67]. It
is easy enough to see that this holds for semi-integral, unital, two-sided
shells, for there " C "0 D 1, or equivalently when the stalks are directly
indecomposable [Pier67, lemma 4.2].

But for semi-integral unital half-shells, this need not be, as the following
counterexample shows. Let A be the four-element subsemilattice f0, e, f, 1g
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of the finite meet-semilattice that is the square of a three-element chain C 3

with carrier f0;m; 1g:
�

� �
� � �

�
� �

................................................................................................................................................................................................................................................................................................
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..........
..........
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..........
..........
..........
...........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

.......

...........................................................................................................................................

...........................................................................................................................................

1

e f

0

Thus, 0 D h0; 0i, e D hm; 0i, f D h0;mi, 1 D h1; 1i; and so A is a sub-
direct power of C 3. Let I D f0; eg and J D f0; fg. Then I and J are
complementary factor ideals of A generated by factor elements, e and f.
But e D hm; 0i ¤ h1; 0i.

We mention, before moving on, one realization of (3.2), originated by
Irving Sussman in the context of rings [Suss58], but it is readily definable
more generally. After him we label a unital half-shell to be associate if it
is a subdirect product of integral unital half-shells Ax , and whenever � is
in A, its associate �ı is also in A, where, for the xth component,

�ı.x/ D
(
1 if �.x/ ¤ 0;
0 if �.x/ D 0:

We obtain the following result.

3.4. Proposition. If A is an associate, semi-integral, two-sided, strict,
unital half-shell, then any factor element " is its own associate, and thus it
has the form of (3.2).

Proof. Let "ı be the associate of a factor element " with complement
"0. Now " D "ı" and "ı"0 D 0 by the previous definition; hence "ı 2 "0?,
and "0? D Œ"� by the previous proposition. Thus "ı D "ı" D ". �

Sussman proves that any von Neumann regular ring without nilpotents is
associate. An open question is whether every semi-integral unital half-shell
or shell has a representation that is associate. The counterexample above
shows that being a semi-integral unital half-shell may not insure it being
associate for this representation. More sharply, even though a particular
representation of a semi-integral unital half-shell as a subdirect product
may not be associate (see also [Suss58, p. 328], for a transparent exam-
ple), does our sheaf constructed for A always give an associate subdirect
product?

Of some historical interest, as examples of associate rings, are the peri-
odic rings of Sussman and Foster [SusFo60]. We present the concepts of
their paper, if not all the results, more generally.
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3.5. Definition. A half-shell is power-associative if

a.aa/ D .aa/a
for all elements a in it. It is periodic if it is power-associative and for every
element a there is a positive integer n.a/ greater than one such that

an.a/ D a:
Forerunners of periodic rings are the p-rings of McCoy and Montgomery

[McCMo37] and the pk-rings of [McCoy38].

3.6. Proposition. If a power-associative half-shell is periodic, then it
has no nilpotents; it also is von Neumann regular.

Proof. Suppose for some a, by way of contradiction, that an D a and
am D 0, where n;m 	 2. Choose a positive integer k so that nk > m . Then

a D an D .an/n D : : : D ank D 0: �
Forsythe and McCoy have shown that any regular ring without nilpotents

is a subdirect product of division rings [ForMc46]. But Jacobson [Jaco45]
has proven that any periodic ring is commutative; therefore, even better,
it is a subdirect product of fields. Chinburg and Henriksen proved more in
[ChiHe76]: every periodic ring is the union of a countable ascending chain
of rings R.n/ in which an D a with n 	 2, and n is independent of a in
each R.n/.

3.7. Exercise. Adding a unity is powerful. Show that a two-sided, strict,
unital half-shell A is semi-integral if, and only if, these two statements are
true:

if a2 D 0; then a D 0 .a 2 A/I
if .ab/.cd/ D 0; then .ac/.db/ D 0 .a; b; c; d 2 A/:

11111
To reprove the representation theorem of Sect. 1 for shells without unities

requires adding a few of the ring axioms, but not all of them. Distributivity
is needed to insure that any annihilator is closed to addition and therefore
an ideal. Addition must be like a group operation, or more generally a loop,
in order for each annihilator to be the equivalence class of some congruence.
Although written additively, the loop operation need not be commutative.
Loops were defined and discussed toward the end of Sect. VIII.1.

3.8. Theorem. Let the algebra, A D hAIC;�; 0i, be of type h2; 2; 0i,
and assume that it has three properties:

(i) hAIC; 0i is a loop, with right and left differences, � and Ÿ;
(ii) hAI �; 0i is a null-symmetric half-shell with no nilpotents; and
(iii) multiplication � distributes over addition C on both sides.
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Two conclusions follow.

(a) The algebra A is isomorphic to a subalgebra of the algebra � .A/ of all
global sections of a sheaf A of algebras of the same type but without
divisors of zero in any of the stalks. The base space of this sheaf is
an extremally disconnected Boolean space; it is dual to the complete
Boolean algebra of annihilators of subsets of A.

(b) Further, if � W0 is clopen for each global section � , then A is a Boolean
product and � .A/ is completely Baer–Stone.

Proof. Before starting the proof proper, we give a brief outline of it.
First, we show that annihilators are idéals, in a sense to be made precise.
Second, using the rather special structure of congruences in loops, we char-
acterize in an especially simple way the minimal congruences generated by
these ideals. Third, we demonstrate that these congruences form a com-
plete Boolean subsemilattice of ConA. We finish by invoking the structure
theory developed earlier.

(a) Extend the earlier definition of idéal: a subset I of A is an idéal if

(i) 0 2 I I
(ii) if a 2 A and i 2 I , then ai 2 I and ia 2 I ; and

(iii) if i; j 2 I , then i C j 2 I , i�j 2 I , and iŸj 2 I .

To prove that each annihilator K? is an idéal, only sums and differences
are new to check. The sum condition follows readily from distributivity: if
ki D 0 and kj D 0 whenever k 2 K, then k.i C j / D ki C kj D 0C 0 D 0.
The difference condition is proven in the same way, providing we know
some distributive laws for the subtractions over multiplication:

k.iŸj / D .ki/Ÿ.kj /; and k.i�j / D .ki/�.kj /:

To prove the last, it suffices to show by distributivity for addition that

k.i�j /C kj D k�
.i�j /C j � D ki:

The set, Ideal? A D ˚
I � A j I?? D I �

; forms a Boolean subsemilat-

tice, Ideal? A D hIdeal? AI \;? ; 0i; of the semilattice Idéal A of idéals.
This is so since the statement about Ideal? A being a Boolean
subsemilattice is really only about the strict half-shell of annihilators,
hIdeal? AI \; 0i, studied earlier in Proposition 1.8.

To each such annihilator we associate a congruence of A. This should
be the smallest congruence �.I / such that all elements of the idéal I are
related by it. Because of the presence of a loop operation, the congruence
must take a form different from that of the Rees congruence in half-shells
in the preceding section. For each I in Ideal? A, define a relation �I — a
temporary notation for what will prove to be �.I / — by

a �I b iff a�b 2 I:
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This is analogous to the relationship between ideals and congruences in
ring theory. It is useful to have an alternative characterization:

a �I b if ka D kb for all k 2 I?;

proven by distributivity:

a �I b iff a�b 2 I
iff k.a�b/ D 0 .k 2 I?/
iff .ka/�.kb/ D 0 .k 2 I?/
iff ka D kb .k 2 I?/:

Using what has gone before, we demonstrate, with some work, that �I is
also a congruence of A. The alternative definition quickly yields that it is
an equivalence relation and that addition is preserved. To establish preser-
vation of multiplication, we use the original definition of �I . If a �I b, then
.ca/�.cb/ D c.a�b/ 2 I . Hence, ca �I cb, and similarly for multiplication
on the other side. Thus �I is a congruence.

Next, on our way to proving that �I D �.I /; let us show that 0=�I D I:
On the one hand, if i 2 0=�I , then ki D k0 D 0 whenever k 2 I?; and
hence i 2 I??. On the other, if i 2 I , then i�0 D i implies i �I 0.

To verify that �I is really the smallest congruence relating all the el-
ements of I , suppose that � is a congruence of A such that 0=� � I .
Is � � �I ? Whenever a �I b, then a�b 2 I , and hence by assumption
a�b � 0. We deduce that a D a�b C b � 0 C b D b; proving that
� � �I .

We have just proven that �I is the minimal congruence such that 0=�I D
I . It is also the maximal congruence. In fact, it is the unique congruence
with this property. This is so because + is a loop. Thus, we are justified in
writing �I D �.I /, and dispensing with the temporary notation.

In any case, it immediately follows from the definition of �I that

�.I /\ �.J / D �.I \ J /;
�.I / D �.J / iff I D J:

Thus, the Boolean subsemilattice,

Ideal? A D hIdeal? AI \;? ; 0i;
of Idéal A is isomorphic to the Boolean subsemilattice,

Con? A D hCon? AI \;0 ; 0i;

of ConA, where Con? A D
n
�.I / j I 2 Ideal? A

o
and

�
�.I //0 D �.I?/:

Leaning on Theorem V.2.1, Theorem 1.3 gives us a sheaf A of algebras
over an extremaly connected Boolean space in which the stalks have no
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zero divisors, and A is isomorphic to a subalgebra of � .A/. While the
annihilators of the present proof and those of Theorem 1.3 are the same,
their congruences are usually different; but this is not a concern since the
last few assertions depend only on annihilators.

(b) We can bootstrap � W 0 being clopen to any � W � being clopen, since
hAIC; 0i is a loop. This shows that A is a Boolean product. By Proposition
2.2b, � .A/ is completely Baer–Stone. �

3.9. Example. Commutative unital rings without nilpotents are ex-
amples of algebras satisfying the hypothesis of the theorem: the stalks
have no divisors of zero. Another representation of such rings, but only
as a subdirect product, was obtained by [McCoy38] using a theorem of
[Krull29, p. 735], and also by Birkhoff [Birk44]; the stalks in these rep-
resentations are actually fields. Kist used minimal prime ideals to obtain
a sheaf [Kist69]. However, these different proofs, including the one in this
chapter, give different stalks. For example, our proof does not decompose
the ring Z of integers, that is, the base space has only one element; but Z

does decompose as a nontrivial subdirect product of fields Zp.

3.10. Counterexample. In the statement of the theorem, at least one
of the two hypotheses — that � distributes over C or that C is a loop —
is necessary. A counterexample is the five-element non-modular lattice N 5,
which is subdirectly irreducible but has divisors of zero.

We make this observation about our motivation. In order to extend the
techniques for working with semi-integrality from half-shells to shells, we
fastened onto the most obvious assumptions of a ring-like nature. Unfor-
tunately, these are not enough to handle additional operations. What is
needed to handle the theory of this section, but is not known, is a condi-
tion guaranteeing that annihilators extend uniquely to congruences.

It would be good at this point to see how the theorem of this section
applies to unital rings that are not necessarily commutative. (All rings to
the end of this section are unital.) A classical result [Cohn77, p. 443] about
prime ideals states that:

a ring R is semi-prime if, and only if,

I 2 D f0g ) I D f0g .I any ideal of R/:

Any integral ideal is prime, but not conversely [Hung74, theorem III.2.15].
Hence, any semi-integral ring is semi-prime. We can exhibit these classes
in the Venn diagram of Fig. 1.

The relationship of these classes with von Neumann regular rings is a
bit curious. On the one hand, any regular ring is semiprime [Goode79,
theorem 1.17]. On the other hand, as already mentioned in Sect. VIII.2,
the matrix ring M 2.Q/ is simple and regular but with nilpotents and di-
visors of zero. Hence we have an example of a regular ring that can not be
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Figure 1. Special unital rings

represented as a subdirect product of rings without divisors of zero. Thus,
M2.Q/ is an example of a (semi)prime ring that is not (semi)integral.

Thus von Neumann regularity, if it were put into our picture, would cut
across the interior lines. But two of the regions so cut off would be vacuous,
since a regular ring is strongly regular iff it has no nilpotents. In this way
we see again that strongly regular rings are as far as we can push our
representation theorem into the class of regular rings.3

In commutative rings, many of these classes coalesce, for here integral
ideals and prime ideals are one and the same. As noted earlier, [Kist69]
has proven a similar theorem for commutative rings using the spectrum
of minimal prime ideals: but this spectrum falls short of being a Boolean
space since it need not be compact. It is tantalizing to reflect on whether
this use of minimal prime ideals could be extended to the noncommutative
case or even further.
Clusters are another generalization of rings close to what we are studying.

As originated by [Good48], they are algebras hAIC;�; 0;�i such that
hAIC;�; 0i is a group, not necessarily commutative, and � distributes over
C on both sides. One may demonstrate (most easily in this order) that:

a.b � c/ D ab � ac; .a � b/c D ac � bc;
a0 D 0; 0a D a;

.�a/b D �.ab/; a.�b/ D �.ab/:

3[Goode79, theorems 3.2 and 3.5]. See pp. 35–36 for pertinent historical notes. See
also [Cohn77, p. 112, exercises (4) and (5)].
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Thus, the additive unity is a multiplicative nullity. Also, once one knows
the trick in [Good48], it is easy to show that, in any cluster with a mul-
tiplicative unity, addition is commutative. In other words, a unital cluster
is a non-associative ring.

3.11. Corollary (to Theorem 3.8). A cluster A is semi-integral if, and
only if, it is null-symmetric and has no nilpotents.

Proof. ). Use the proof of Theorem 2.3.
(. Use Theorem 3.8. �



X
Varieties Generated by

Preprimal Algebras

In a tour de force, Ivo Rosenberg completed the discovery of preprimal alge-
bras, those one operation away from being primal [Rose70]. This chapter
tests the theory of previous chapters to see how readily one may find sheaf
representations of algebras in the varieties generated by preprimal algebras.
As any primal variety is equivalent to the category of Boolean spaces, it
is natural to wonder whether this correspondence might extend in some
way to these preprimal varieties, and over what kind of spaces. The results
are generally positive, with some similarities to primal varieties, but also
with some significant differences. We find sheaf representations for most
preprimal varieties, and identify the stalks for some of them. This leaves
open for the others the determination of their stalks. This program was
put forth in [Knoe03].

1. Overview

Here the basic notions are defined, questions about them are posed,
common theorems are set out, and their sheaf representations are out-
lined. A comprehensive source for preprimal algebras is the excellent book
by Klaus-Dieter Denecke [Dene82].

1.1. Definition. An algebra P is primal if it is nontrivial, finite, and
every finitary function on P is a term-operation, that is, expressible in
terms of the basic operations of P . An algebra is preprimal if it is not

A. Knoebel, Sheaves of Algebras over Boolean Spaces, 261
DOI 10.1007/978-0-8176-4642-4 X,
c� Springer Science+Business Media, LLC 2012
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primal but it becomes primal with the addition to its basic operations of
any finitary function that is not already a term-operation. A primal or
preprimal variety is an equational class generated by such an algebra.

As primal varieties have been represented by Theorem VI.3.22, we move
on to preprimals. For each preprimal algebra P , Rosenberg [Rose70]
described an m-ary relation 
 on P such that the n-ary term-operations of
P are precisely the n-ary functions ' on P that preserve 
:

if 
.a1/; 
.a2/; : : : ; 
.an/; then 
.'.a1/; '.a2/; : : : ; '.am//;

for any m by n matrix of elements aij in P with rows ai and columns aj , in
the matrix notation introduced near the end of Sect. II.1. Write P� for P .
Its particular presentation by a type is unimportant since the properties of
interest are preserved by term-equivalence.

These preprimal algebras fall naturally into seven classes. We list them
in Table 1, splitting some classes to better summarize information about
their varieties, sheaf representations and stalks. They are ordered roughly
by the complexity of their defining relations. The first relations are per-
mutations with cycles all the same prime length. The second come from
elementary Abelian p-groups. The third are proper subsets. The fourth are
proper, nontrivial equivalence relations. The fifth are bounded partial or-
ders. The last two are central and h-adic relations. Precise definitions and
explanations of them will be given in subsequent sections.

Algebras in the varieties that preprimal algebras generate are the subject
of investigation. A number of questions spring to mind.

(1) Which algebras have bijective representations by sheaves?
(2) What is the nature of the stalks, the base space, and the sheaf

space?
(3) When does a representation agree with Birkhoff’s subdirect rep-

resentation, which applies to all algebras?
(4) What theorems about primal varieties extend to preprimal?

Some of these are answered in Table 1.
Assorted tools help to partly fill in this table. Many of these varieties are

congruence-distributive, in some others the algebras are shells. Either guar-
antees Boolean factor congruences, and consequently by Theorem VI.3.15,
each algebra has a bijective, reduced, and factor-transparent sheaf repre-
sentation. Some of the sheaves are rather special: Boolean products come
from the classes induced by permutations and subsets; those from elemen-
tary Abelian groups are over Cantor spaces.

But having BFC does not tell us what the stalks are. Although the sub-
directly irreducible algebras are known for all preprimal varieties except
those coming from partial orders [Knoe85], these are not necessarily the
stalks. In fact, the bulk of work in the next two sections is proving that
the stalks are subdirectly irreducible. Left open are the preprimal varieties
where this is unknown.
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Class Form Congs.
Factor
congs.

Sheaf
rep.

Subd.
irreds.

Stalks

Primal U2 shell Arith. FC Bijec. P¿ P¿
Permutation — Arith. FC Bijec. P� P�

Elem.Ab.grp. Vec. sp. Com. Basis Bijec. P˛ , P� P˛,P�

Subset
jS j D 1 U2 shell Arith. FC Bijec. PS PS , S

jS j 	 2 U2 shell Arith. FC Bijec. PS , S PS , S

Equivalence U2 shell Arith. FC Bijec. P";P"=" ???
Partial order

Dist. U2 shell Dist. FC Bijec. Bnd. ???
Not dist. U2 shell — FC Bijec. Unbnd. ???

Central, h	2 U1
2
shell Dist. FC Bijec. P� ???

h-adic — — — Injec. Unbnd. ???

Table 1. Varieties generated by primal and preprimal al-
gebras. ‘U2 shell’ means unital two-sided shell; ‘U 1

2
shell’,

unitary half-shell. ‘Arith’. means arithmetic, that is, the
variety generated is both congruence-distributive and
-commutable (= -permutable). FC stands for factorable
congruences, which implies BFC. ‘Basis’ is explained in
Sect. 3. ‘Bijec’. means bijective. ‘Unbnd’. means un-
bounded in size. The various stalks are defined in Sects.
2–5. A dash means no other property similar to those else-
where in the column is known. Question marks mean
unknown.

Proving the entries in Table 1 variety by variety would be a tedious ma-
nipulation of term-operations. In some cases we lift ourselves out of compli-
cated preprimals into simpler ones by exploiting theorem 3.1 of Denecke and
Lüders [DenLü95], who find up to categorical equivalence unique represen-
tatives of the preprimal algebras, except those coming from bounded partial
orders. McKenzie breaks the categorical equivalence of algebras and their
generated varieties into three more manageable equivalences [McKe96].
Then we invoke Theorem VI.4.6, which says categorically equivalent vari-
eties with Boolean factor congruences have similarly related sheaves.

We discuss these preprimal varieties in detail only for the classes when

 is a permutation, a subset, or comes from a group; for these the stalks
are determined. For permutations, the algebras in the generated variety are
converted to Boolean algebras. For groups we appeal to vector spaces. For
subsets, the stalks are known from the theory of quasi-primal algebras. For
the remaining classes, the stalks have yet to be determined.

1.2. Problem. Find a general theorem that tells when the stalks and
subdirectly irreducibles are one and the same.
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1.3. Problem. Some of these preprimal algebras belong to larger classes
such as arithmetic, quasiprimal, etc. Which of the sheaf representations of
this section extend to these bigger ‘nearly primal’ classes? Consult Pixley
[1996] for a description of these.

2. From Permutations

A pretty preprimal algebra is hf0; 1gI�;0 i where is � is the majority func-
tion on three arguments and 0 interchanges 0 and 1. Its clone is all ‘self-dual’
functions f :

f .a0; b0; : : :/ D �
f .a; b; : : :/

�0
.a; b; : : : 2 f0; 1g/:

In other words, the clone is all finitary functions that commute with the
permutation 0. Adding either constant as an operation makes the algebra
primal, that is, it becomes term-equivalent to a Boolean algebra.

More generally, suppose � is a permutation of a finite set P that has
all cycles of the same prime length. Consider the algebra P� whose op-
erations are all those finitary functions commuting with �. Its type may
well be taken as these operations arranged in some order, that is, they may
type themselves as operation symbols. As a function, � is also a binary re-
lation. Alternatively then, the algebra P� has as operations those finitary
functions preserving �. Note that � itself is among these operations, and
it is an automorphism of P� .

Another term-operation of P� is the quaternary function:

(2.1) t.a; b; c; d / D
(
c if a D bI
d if a ¤ b:

Thus, P� is a discriminator algebra, and hence simple.
Pixley proved that this discriminator term also implies that Var P� is

congruence-distributive and congruence-commutable [Pixl63]. It is essen-
tially a primal variety, although not categorically equivalent to one, since
constants are missing. At any rate, each algebra of Var P� is bijectively
represented by a Hausdorff sheaf, all of whose stalks are isomorphic to
P� . This is now stated formally, and may be proven using theorem IV.9.4
of [BurSa81] about discriminator varieties, or by the proof given below,
which exploits the closeness of P� to primality.

2.1. Theorem. Let P� be the preprimal algebra on a carrier of kp el-
ements whose clone is all finitary functions that preserve a permutation

 with a finite number of k disjoint cycles each of prime length p. Each
algebra A in Var P� is a Boolean power of P� .
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Proof. Since Var P� is congruence-distributive, it has factorable con-
gruences. By Theorem VI.3.15 it is categorically equivalent to all the re-
duced and factor-transparent sheaves over Boolean spaces with stalks yet
to be verified as P� . A more indirect approach will identify these stalks
with a constant-free reduct of a primal algebra. Initially, we prove the theo-
rem for preprimal algebras P� coming from permutations � that have just
one cycle (k D 1).

Set P� D Var P� . Expand the type � of P� to � by adding a constant

symbol c. From any algebra A in P� create an algebra A
c

of type � by
interpreting c as an arbitrary element c D cA of A. Let P� be the collection

of these A
c
, containing an expansion of each A in P� by each element c

in A, so as to create a variety (it is closed to H, S, and P). Since P� is

preprimal without constant operations, P�
c

must be primal.

A crucial claim is that Var P�
c D P� . Since Var P�

c
is primal, it has

no nontrivial subvarieties. Hence P� � Var P�
c
.

The other direction, Var P�
c � P� , will be proven by working instead

with identities, by proving that Id P�
c � Id A

c
for each A in P� , cour-

tesy of the Galois connection between models and identities explained in
Sect. III.1. To that end, assume that A 2 P� and c 2 A, and that

(2.2) t .x1; : : : ; xn/ � w.x1; : : : ; xn/ .Id P�
c
/;

for some n-ary terms t and w of type � . Then, t is of the form t.c; x1; : : : ; xn/
for some .nC 1/-ary term of type � ; similarly, for some w.

Let us first work in the preprimal P� and prove that

(2.3) tP� .a0; a1; : : : ; an/ D wP� .a0; a1; : : : ; an/ .a0; a1; : : : ; an 2 P� /:
Consider specific a0; a1; : : : ; an. Since � is a cyclic permutation, there is a
positive integer e such that �e.c/ D a0. By (2.2),

(2.4) tP� .c; ��e.a1/; : : : ; ��e.an// D wP� .c; ��e.a1/; : : : ; ��e.an//:
As � is a term of type � , and as it preserves all term-operations of that
type, we may apply it e times to each side of (2.4) and move it inside to
obtain (2.3), that is,

tP� .a0; a1; : : : ; an/ D �e
�
tP� .c; ��e.a1/; : : : ; ��e.an//

�

D �e�wP� .c; ��e.a1/; : : : ; ��e.an//
�

D wP� .a0; a1; : : : ; an/:

In other words, t � w .Id P�/.
In the equational class generated by P� , A also satisfies t � w. There-

fore, by putting a0 D c in (2.3), we satisfy (2.2) in A
c
. We have proven

that Var P�
c � P� .

So, if A is in Var P� , then A
c

is in the primal variety P� . Hence, A
c

is

a Boolean power of P�
c

by Theorem VI.3.22. By removing the constant c
from the type, we find that A is a Boolean power of P� .
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Now consider the general case where 
 is a general permutation of k
disjoint cycles of cyclic permutations of length p with k being any positive
integer, and � is the earlier cyclic permutation of length p. Categorical
equivalence , VarP� ' VarP� , as a matrix power, comes from [DenLü95].
This equivalence in turn, by Theorem VI.4.6, gives us Boolean powers in
Var P�. �

3. From Groups

The third class of preprimal varieties of Rosenberg are created out of fi-
nite elementary Abelian p-groups [Rose70]. In the varieties generated by
them there are two non-isomorphic subdirectly irreducibles, which are also
the stalks of a representing sheaf over a Cantor space. Although these
varieties do not have Boolean factor congruences, in each algebra there
is a maximal Boolean algebra of factor congruences, generated by congru-
ences corresponding to the elements of a basis in the sense of linear algebra.
Throughout we use properties of these varieties found in [Knoe85, sect. 3].

3.1. Definition. Let P be a finite, non-trivial, elementary Abelian p-
group hP IC;�; 0i. Define on P the quaternary relation ˛:

ha; b; c; d i 2 ˛ if aC b D c C d .a; b; c; d 2 P/:
This determines a preprimal algebra P˛ whose clone of operations is all
those finitary functions preserving ˛, the affine operations.

In the variety generated by P˛ there are two subdirectly irreducibles P˛

and P�. The algebra P� is P˛ in which each n-ary term-operation ' is
re-interpreted:

'P�.a1; : : : ; an/ D 'P˛ .a1; : : : ; an/� 'P˛ .0; 0; : : : ; 0/:

Alternatively, these are the affine operations preserving 0, or equivalently,
those operations preserving the ternary relation �:

ha; b; ci 2 � if aC b D c .a; b; c 2 P/:
Hence these are called linear.

These irreducibles turn out to be also the stalks in the sheaf created
for any algebra A in Var P˛. But to create the sheaf we need a Boolean
subsemilattice of Con A. There is at least one (although A does not have
Boolean factor congruences) since there is always a maximal Boolean alge-
bra of factor congruences. We state this formally.

3.2. Theorem. For any algebra A in the variety Var P˛ generated by
the preprimal algebra P˛, there is a bijective sheaf representation of it over
a Cantor space on which every stalk is isomorphic to P˛ or P�. Any two
such representations of A are isomorphic.
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Proof. We begin by recalling some useful observations about P˛ and
P�. Any n-ary term-operation ' of P˛ may be written:

(3.1) '.a1; : : : ; an/ D c0 C "1.a1/C : : :C "n.an/
for unique endomorphisms "i of P and a constant, c0 D '.0; 0; : : : ; 0/. When
interpreted in P�, c0 D 0. Hence, both P˛ and P� have the original P as
a reduct, which is a vector space. So another way of looking at the algebras
of Var P˛ is that they are vector spaces with additional unary operations,
the endomorphisms, which are the same as linear transformations.

Any finite elementary Abelian p-group P is a direct power of the cyclic
group Zp on p elements:

P Š .Zp/k:
There are different cases, according to whether k D 1 or k > 1. The burden
of the proof is when k D 1, which we tackle now. The endomorphisms
in (3.1) of Zp are now multiplications by a constant: "i .x/ D cix: This
amounts to repeated addition in Zp. So for the type of P˛ we now need
only C and a constant � that we take to be 1 in P˛ and 0 in P�. Since the
presence or absence of constants does not affect congruences, the theory
simplifies to linear algebra when decomposing an algebra A in Var P˛.

Recall that in a vector space, ideals are subspaces, corresponding to
congruences and sesquimorphisms (see Exercise II.2.21). Any of these might
be used in the proof, but congruences, although unusual in vector spaces,
are chosen since previous theorems are phrased in that language.

To find the sheaf representation when k D 1, let H be a basis of an
algebra A in Var P˛. Subsets of H generate subspaces of A, or equiva-
lently congruences. All these subsets of H forms a complete and atomic
Boolean algebra, corresponding to a maximal Boolean lattice B of factor
congruences of P˛ . They are factor congruences since any subspace of a
vector space has a complement. The topological space dual to B is a Cantor
space, and all Cantor spaces arise in this way (Sect. III.3). Now hA;B i is a
factorial brace, and Theorem VI.1.8 gives a sheaf A such that � .A/ Š A.

Left is the determination that the stalks are P˛ and P�. Since B is
atomic and complete, its prime ideals are principal, and consequently their
suprema are co-atoms � of ConA. The quotient A=� is the vector space
Zp whose type is expanded by the constant c. If cZp D 0, then A=� is P�.

If cZp ¤ 0, then A=� is P˛.
Moving to the general case where k 	 1, we now write ˛k for the original

˛ of Definition 3.1, suggesting that ˛k is the kth power of ˛1. Let B be in
Var P˛k . We want a sheaf representation for it with stalks P˛k and P�k .
Denecke and Lüders [DenLü95] tell us that P˛k is a matrix power of P˛1

(whose variety was just studied):

P˛k Š P˛1
Œk	;
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implying by Definition III.2.25 and Theorem III.2.28 that their varieties
are categorically equivalent [McKe96]:

Var P˛k ' Var
�
P˛1

Œk	
�
' Var.P˛1/:

Hence, any B in Var P˛k is isomorphic to some kth matrix power of an
algebra A in Var P˛1 . Now let A be its sheaf as constructed as earlier in
this proof, that is A Š � .A/. It follows that their kth matrix powers are

isomorphic: AŒk	 Š �
� .A/

�Œk	
. But

�
� .A/

�Œk	 Š �
�
AŒk	

�
by Proposition

VI.4.7. Therefore, any algebra of Var P˛k is represented by a sheaf over a
Cantor space on which every stalk is isomorphic to P˛k or P�k . �

4. From Subsets

The preprimal algebra PS has as term-operations all those finitary func-
tions preserving a proper, nonempty subset S of a finite set P . Foster
and Pixley [FostPi64] call this a semiprimal algebra; they proved that
its variety Var PS has two subdirectly irreducible algebras up to isomor-
phism, PS and S when jS j 	 2, and only PS when jS j D 1. It is easy to
find terms showing that Var PS is congruence-distributive and congruence-
commutable (Proposition III.1.6). Hence, it has factorable congruences
(Proposition VI.2.12), which provide bijective sheaf representations
(Theorem VI.3.15).

But what are the stalks? The answer comes from realizing that PS

is a discriminator algebra, meaning a quasiprimal. Keimel and Werner
[KeiWe74] (see also [BurSa81, 1981, theorem IV.9.4]) showed that the
stalks are among the subalgebras of PS , which are PS and S . Although
S may have only one element, it may still be a stalk. We summarize this
in a theorem, and leave an independent proof of it as a problem.

4.1. Theorem. Each algebra A in Var PS is a Boolean product of PS

and S .

Incidentally, Denecke and Lüders [DenLü95] have shown that there are
two categorical representatives for these semiprimal algebras with one sub-
algebra: f0; 1; 2gf0;1g if jS j 	 2, and f0; 1gf0g if jS j D 1. For the latter, we
have the variety of Boolean rings hAIC;�; 0i, lacking an explicit unity (see
[Halm63, sect. 19, exer. 1]). For the many different ways of representing
Boolean rings by sheaves, look toward the end of Sect. XII.5.

4.2. Problem. Find an independent proof of Theorem 4.1 based on a
Boolean algebra B residing in each algebra A of Var PS . Here is a hint
when PS D f0; 1; 2gf0;1g. Define B as the relativized algebra, �A, where �
comes from a term operation in PS defined as

x 0 1 2
�.x/ 0 1 1

Then lift the topological representation of B to one for A.
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5. Remaining Preprimal Varieties

We mention the remaining four classes of preprimal algebras, which we
know less about. Equivalences, partial orders, and central relations gen-
erate varieties with Boolean factor congruences. But we do not know the
stalks of their canonical sheaves. The last class of h-adic relations is more
mysterious; for them we know only the subdirect sheaf representations,
which are injective but not necessarily surjective.

11111
Equivalences. For any nontrivial, proper equivalence relation " on a

finite set P , the preprimal algebra P" is the algebra on P whose clone of op-
erations is the set of all finitary functions preserving ". Of necessity, it must
have at least three elements. It is among the linear hemiprimal algebras of
Foster [Fost70]. Since Var P" is congruence-distributive (see [Knoe85]),
it has factorable congruences by Proposition VI.2.12, BFC by Theorem
VI.3.9, and canonical sheaf representations over Boolean spaces by Theo-
rem VI.3.15; consequently the sheaves are reduced and factor-transparent.
The remaining open question is whether its subdirectly irreducible alge-
bras are the stalks. Denecke and Lüders [DenLü95] have shown that the
varieties Var P" generated by the P" are all categorically equivalent to the
three-element case, which should simplify the analysis.

11111
Partial Orders. These relations are easy enough to describe, but the

varieties their algebras generate are remarkable. Throughout let � be a
partial order on a finite set P , with distinct lower and upper bounds of 0 and
1. Examples are finite lattice orders. The simplest nontrivial lattice order is
that on two elements. Then the variety Var P� generated is term-equivalent
to bounded distributive lattices, which has the two-element lattice as the
sole subdirectly irreducible. But the sheaves coming from a canonical BFC
decomposition may have other stalks. For example, look at the six-element
product in Fig. 1a, which has two- and three-element chains as BFC stalks,
but just the two-element chain as a subdirect stalk.

Examples of some non-lattice orders � are illustrated in Fig. 1b–d.
The algebra P�, whose clone is all operations preserving �, has a unital

two-sided shell reduct hP IC;�; 0; 1i: here C satisfies 0C a D a D a C 0,
and is 0 otherwise; � satisfies 0� a D 0 D a� 0 and 1� a D a D a� 1, and
is 1 otherwise. So everything already proven about unital shells applies to
any algebra A of Var P�. By Theorem VII.3.2, therefore, A has factorable
congruences, and by Theorems VI.3.9 and VI.3.15 it is represented bijec-
tively by a reduced and factor-transparent sheaf A over a Boolean space,
that is, A is isomorphic to the unital, two-sided shell of all global sections
of A.

In general the stalks are not known, but in some varieties Var P� they
may be numerous, as discussed below. Despite this, Var P� is equationally
maximal, that is, there is no equational class between it and the trivial
variety [Knoe76, Dene78].
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Figure 1. Bounded partial orders

These partial orders split into two classes according to whether the vari-
ety P� is congruence-distributive or not, and this has consequences for the
subdirectly irreducible algebras of Var P�, and consequently also for the
sizes of the stalks, which have the subdirectly irreducibles as homomorphic
images. If it is distributive, as in Fig. 1b,c, then there is one subdirectly
irreducible. If not, as in (d), then McKenzie proved that Var P� has sub-
directly algebras of arbitrarily large cardinality [McKe90].

5.1. Problem. What is the nature of the stalks of the sheaves coming
from bounded partial orders?

11111
Central Relations. Their definition has four clauses. We abbreviate
ha1; a2; : : : ; ahi as Ea.

5.2. Definition. An h-ary relation � on a finite set A is central if

(i) it is totally symmetric, that is, for all Ea in Ah and for all permutations
� of f1; 2; : : : ; hg, if Ea 2 � , then ha�.1/; a�.2/; : : : ; a�.h/i 2 � ;

(ii) it is totally reflexive, that is, for all Ea in Ah with at least two of the
ai equal, we have that Ea 2 � ;

(iii) there is an a1 such that for all a2; : : : ; ah in A we have Ea 2 � ; and

(iv) � ¤ Ah.

The center of � is the set of all those a1 that satisfy (iii).

These clauses work together to force A to have more than h elements.
The preprimal algebra P� has as term-operations all those preserving a
central relation � . Denecke and Lüders have shown that their categorical
equivalence depends only on h, one categorical representative for each h,
except when h D 1 where there are two [DenLü95]. We discuss here the
case when h 	 2; the case when h D 1 was discussed in Sect. 4. When
h 	 2, each representative comes from a particular central relation �h, now
defined.
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5.3. Definition. The relation �h is the universal h-ary relation on the
set f0; 1; : : : ; hg of h C 1 elements, less all permutations of f1; 2; : : : ; hg.
In other words, �h is the only h-ary central relation on f0; 1; : : : ; hg with
center f0g.

Each algebra P�h
has an operation � that is a unital half-shell:

a � b D
(
b; if a D 1I
0; otherwise.

Here 0 is the nullity, and 1 is the one-sided unity. Denecke [1978] estab-
lished the congruence-distributivity of Var P�h

. Either property tells us
that Var P�h

has Boolean factor congruences (Theorem VII.2.2 and Propo-
sition VI.2.12). By Theorem VI.3.15 we have a canonical representation of
any algebra in Var P�h

by a reduced and factor-transparent sheaf over a
Boolean space.

There is one subdirectly irreducible algebra P�h
in each of these cate-

gories [Dene78, Knoe76]. However, the stalks of the sheaves may not be
this algebra; so the stalks have yet to be determined. Theorem VI.4.6 takes
us from the sheaf representations in the special categories Var P�h

to those
in any Var P� , where � is an h-ary central relation with h 	 2.

5.4. Exercise. (a) Show that any preprimal algebra coming from an
h-ary central relation with h D 2 has a two-sided unital shell as a
term-reduct.

(b) Show that no preprimal algebra coming from an h-ary central relation
with h 	 3 can have a two-sided unital shell as a term-reduct.

11111
h-adic Relations. This last class of preprimal algebras of Rosenberg

[Rose70] is the most fascinating in a degenerate way. It does not include
any classical algebras since there are no binary term-operations that take
all values and depend on both arguments. There are many subdirectly ir-
reducible algebras, finite in number up to isomorphism, but growing as
h increases. As algebras in h-adic varieties do not necessarily have Bool-
ean factor congruences, as they did in previous preprimal varieties, there
are not obvious bijective sheaf representations of them. For that reason
this discussion is extremely sketchy, and depends heavily on the analysis
in [Knoe85]. The definition of h-adic relations comes in three parts; we
assume that 3 � h <1 and 1 � k <1.

5.5. Definition. (i) A primary h-adic relation is the h-ary relation �
on a set A of h elements such that ha1; a2; : : : ; ahi 2 � iff at least two
of the ai are equal.

(ii) An elementary h-adic relation is a kth power, � D �k, of a primary
h-adic relation �. It is on the set, B D Ak.
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(iii) An h-adic relation is a preimage � of an elementary h-adic relation �.
In symbols, � D fhc1; : : : ; chi j h'.c1/; : : : ; '.ch/i 2 �g for some sur-
jective function 'WC ! B.

As before, we designate P
 , P� , and P� as the preprimal algebras on a
set P of the right size whose operations preserve these relations.

Denecke and Lüders [DenLü95, theorem 3.1] establish one categorical
representative for each h: namely, Var P
 for � the primary h-adic relation
on the set f1; 2; : : : ; hg. This reduction should aid in the study of these
illusive varieties. The clone of P
 is the set of all unary functions, all
projections, and all other finitary functions with ranges smaller than the
carrier.

These h-adic varieties do not have Boolean factor congruences. To see
this, consider the simplest case of � being the 3-adic primary relation on
the set f0; 1; 2g. Among the subdirectly irreducible algebras in the variety
V
 is AS 3

, as designated in [Knoe85], which has just two elements, say
0 and 1, and whose clone is term equivalent to the constant function 1.
So the variety generated by AS 3

is that of pointed sets with a designated
element 1. In Var AS 3

look at the three element algebra A on f0; 1;1g.
This does not have BFC.

All we can say generally is that these algebras have injective subdirect
sheaf representations (Theorem IV.2.7), leaving open whether they are ever
surjective.

5.6. Problem. Do the algebras in h-adic varieties have bijective sheaf
representations that are natural and useful.

5.7. Problem. Find the stalks in the sheaf representations for the re-
maining preprimal varieties.



XI
Return to General Algebras

Previous chapters have presented clear applications with firm conclusions.
When we left Chap. VI earlier, we turned away from general algebras so
that we could obtain specific results in shells that would directly generalize
theorems about rings, semigroups and other specific algebras. We return
now to arbitrary algebras, speculating about what else might be proven, and
formulating a few theorems that do not yet lead to any useful applications.

The first section shows how the sheaf representation of Chap. VI may be
iterated until all the stalks become directly indecomposable. This extends
the paper of Burgess and Stephenson [BurgSt78] about noncommutative
rings.

The starting point for the second section is the observation that ConA

is a shell; we use this to bootstrap the main theorem of Chap. VII to any
algebra A of any type. This is possible since those congruences of an algebra
A that are factor elements of ConA form a Boolean subsemilattice of it.
A sheaf is created over the Boolean space

W
Spec Elem0 ConA, the space

of suprema of prime ideals of these factor elements. Then A is isomorphic
to the algebra of all its global sections.

1. Iteration

This short section iterates the construction of sheaves over Boolean spaces
as announced in [Knoe91b]. The idea is to create a sheaf for each stalk
of an already constructed sheaf, and iterate the process until it can be
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continued no further. The rationale for this is the surprise that, even for
the Boolean spectrum of a unitary ring, the stalks may be directly decom-
posable. Our presentation follows closely that of Burgess and Stephenson
[BurgSt78], who are the originators of this construction in the context of
noncommutative rings.

As noted by Pierce [Pier67, Lemma 4.2], commutative unitary rings do
not exhibit this phenomenon, that is, the stalks are directly indecompos-
able. The proof of this depends, at a crucial point, on the fact that factor
elements in such a ring are merely idempotents. The Baer–Stone shells of
Chap. VIII are another class of algebras whose stalks are directly indecom-
posable, by virtue of having no divisors of zero.

We develop this iteration for those algebras with Boolean factor congru-
ences whose homomorphic images are also algebras with BFC. So it works
for algebras in varieties with BFC. These include unital shells and half-
shells. When extended as far as possible, until all the stalks are directly
indecomposable, we will have our original algebra expressed as a subdirect
product of directly indecomposable algebras. Of course, if this is all that
we wanted, we could use instead Birkhoff’s theorem to get such a decom-
position for any algebra (Theorem II.2.40, [Birk44]). But even better for
this new construction, the stalks will now be optimal, in a certain sense to
be explained shortly.

As shorthand, we will say for two comparable congruences, � � �, of
A that A=� is a Pierce stalk of A=� whenever �=� 2 W

SpecCon0.A=�/,1
that is, A=� can be decomposed further in the sense of Chap. VI and
.A=�/=.�=�/ is one of the stalks of this new sheaf.

This is in anticipation of recursively decomposing an algebra; we will stay
on one level by invoking the cancellation Theorem II.1.3: .A=�/=.�=�/ Š
A=�; whenever � � �.

1.1. Definition. Let � be an ordinal and let � be a family of proper
congruences of an algebra A, indexed by ordinals less than � :

� D ˚
�ˇ j 0 � ˇ < �

�
:

Then � will be called a Pierce chain whenever

(i) �0 D 0ConA;
(ii) if ˛ < ˇ < � , then �˛ � �ˇ ;
(iii) if ˇ < � and ˇ is not a limit ordinal, then A=�ˇ is a Pierce stalk of

A=�ˇ�1; and
(iv) if ˇ < � and ˇ is a limit ordinal, then �ˇ D

S
˛<ˇ �˛.

1To decipher the dense formula
W
SpecCon0.A=�/, recall that an element of

SpecCon0.A=�/ is a prime ideal of the Boolean algebra Con0.A=�/, whose elements
have the form �=� for certain � in ConA. The join

W
, by the convention near the end

of Sect. II.1, acts on each prime ideal separately, producing a congruence �=� of A=� .
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A congruence � of A is a Pierce congruence if it appears in a Pierce chain;
the set of Pierce congruences of A is denoted P.A/. Denote by M.A/ the
set of Pierce congruences � for which A=� is directly indecomposable, and
call � directly indecomposable.

Because of the strictly monotonic nature of a Pierce chain �, we hope
that eventually a congruence in it will be directly indecomposable. But this
might not be; conceivably the chain could be bounded by a limit ordinal �
and never terminate; consequently we would have that

S
ˇ<� �ˇ D 1ConA.

We work around this possibility in the next proof.

1.2. Theorem. Let A be any algebra with BFC, all of whose homomor-
phic images have BFC. Then A is a subdirect product of directly indecom-
posable quotients A=� where � runs over all congruences in M.A/.

Proof. To show that we have a subdirect product,
\

M.A/ D 0ConA;

it suffices to prove that any pair of distinct elements a and b of A are not
related by some congruence of M.A/. We use transfinite induction.

To set things up, let the congruences � i of M.A/ be indexed by i in I .
For each � i find a Pierce chain �i with � i residing in it:

�i D
n
� iˇ j ˇ < � i

o
;

that is, � i D � i
ˇ

for some ˇ. We construct a maximal Pierce chain �,

�
i0
0 � � i11 � � i22 � � � � � � iˇˇ � � � � .ˇ < �/;

out of the � i
ˇ

such that it is not the case that a �
iˇ
ˇ
b for all ˇ less than � .

Since � i00 D 0ConA, then not a � i00 b. Let us assume that the chain has been

constructed up to the ordinal ˇ, that is, not a � i˛˛ b for all ˛ less than some
ˇ. There are two kinds of inductive steps, nonlimit and limit.

On the one hand, if ˇ is a nonlimit ordinal and �
iˇ�1

ˇ�1 is directly decom-

posable, then by the nature of a Pierce decomposition

�
iˇ�1

ˇ�1 D
\

j2J
�
j

ˇ

where J is the set of those j such that �
iˇ�1

ˇ�1 and �
j

ˇ
are in the same Pierce

chain. In other words, consider all successors to �
iˇ�1

ˇ�1 . Since a �
iˇ�1

ˇ�1 b does

not hold by hypothesis, there must be a jˇ in J such that a �
jˇ

ˇ
b does not

hold. So add it to the chain.
When, on the other hand, ˇ is an infinite limit ordinal, define �

iˇ
ˇ

by:

�
iˇ
ˇ
D

[

˛<ˇ

� i˛˛ :
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Since not a � i˛˛ b .˛ < ˇ/ by hypothesis, then not a �
iˇ
ˇ
b. Therefore, �

iˇ
ˇ

is proper and it should be added to the Pierce chain being constructed.
This last argument also demonstrates that the length � of its completion

can never be a limit ordinal. In this way, we obtain the required Pierce

chain �i	 , whose last congruence �
i	�1

��1 is indecomposable but does not
relate a and b. �

1.3. Problem. In this proof we waltzed around the possibility thatS
ˇ<� �ˇ D 1ConA by showing that the length � of �i	 is never an in-

finite limit ordinal. Can it be otherwise for other Pierce chains? In other
words, does each Pierce chain terminate in an indecomposable congruence?

While the indexing of Pierce chains in the previous proof makes it tempt-
ing to think of these congruences � i˛ as being arranged rectangularly, as in a
matrix, what we really have here is a tree, with diverging branches, perhaps
infinitely long. The leaves are all distinct and indecomposable; and the � i0
are all equal to 0ConA, the root. In between � i0 and the leaves, the nodes
branch. Figure 1 suggests this. More can be said about the congruences of
M.A/; but first a lemma, which helps to shape up the figure.

� � i1.........
.........

....

� � i2.........
.........

....
.........
.........
....

� � i3

...........
...........

...........
...........

...........
...........

...........
...........

.........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

�
� i0 D 0ConA D �j0 D : : :

��j1.........
.........

....

��j2.........
.........
....

��j3.........
.........

....

:::

��j!

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......
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� �k1 D � l1
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��k3.........
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...........
...........
...........
...........
...........
...........
...........
.........
.......
.......
.......
.......
.......
.......
.......
.......
.......
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.......
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:::

.........
.........
.........

� � l2
...........
...........
...........
...........
...........
...........
...........
...........
....

Figure 1. Pierce chains.

1.4. Lemma. Let A be any algebra with BFC whose homomorphic images
have BFC. If � and � are congruences in P.A/, then one of three things
happens:

(a) � is in the Pierce chain defining �, and the Pierce chains of � and �
are identical up to � ;

(b) � is in the Pierce chain defining � , and the Pierce chains of � and �
are identical up to �; or

(c) � ı � D 1.
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Proof. Find Pierce chains � and H to which � and � belong:

� 2 � and � D h�˛ j 0 � ˛ < � i;
� 2 H and H D h�˛ j 0 � ˛ < ıi:

If � D �˛ for some ˛ < ı, or if � D �˛ for some ˛ < � , and the chains are
identical up to that point, then we are finished. Otherwise, let ˇ be the first
ordinal where the chains disagree: �ˇ ¤ �ˇ . So � � �ˇ and � � �ˇ . Since
a Pierce congruence at a limit ordinal is a union of earlier congruences, ˇ
must be a nonlimit ordinal. Therefore, �ˇ�1 D �ˇ�1. This means that �ˇ
and �ˇ are unequal congruences yielding stalks in the sheaf for A=�ˇ�1.

It follows that

(1.1)
�ˇ

�ˇ�1
ı �ˇ

�ˇ�1
D 1Con0.A=�ˇ�1/

:

This is because there are unequal prime ideals M and P of Con0.A=�ˇ�1/
such that �ˇ=�ˇ�1 D

W
M and �ˇ=�ˇ�1 D

W
P: Thus, there is a factor

congruence � of A=�ˇ�1 that is in M 
 P , implying that � 0 2 P . Hence,
.�ˇ=�ˇ�1/ ı .�ˇ=�ˇ�1/ � � ı � 0 D 1.

Equation (1.1) implies that �ˇı�ˇ D 1ConA. Hence �ı� � �ˇı�ˇ D 1. �
A consequence of this trichotomy is this: if a proper congruence � of A is

a member of a Pierce chain, then that Pierce chain is uniquely determined
up to that point by � . For, if � and � each appear in their own Pierce chain
but � D �, then by the lemma, � D � ı � D 1, which is improper. Thus,
Pierce chains never coalesce once they have separated.

We extend Lemma 1.4 to M.A/, where the conclusion is simpler.

1.5. Proposition. Let A be any algebra with BFC whose homomorphic
images have BFC.

(a) If two different congruences � and � are in M.A/, then � ı � D 1.
(b) A congruence � of A belongs to M.A/ if, and only if, it is a maximal

element of P.A/.

Proof. (a) We see that, if � and � satisfy (a) or (b) of the lemma,
then they must be in the same Pierce chain, whence one has to be directly
decomposable and not in M.A/. So (c) of the preceding lemma holds again.

(b) By Definition 1.1. �
1.6. Problem. Burgess and Stephenson [BurgSt78, proposition 1.8]

have a third condition equivalent to the two just given in Proposition 1.5b:

� is a minimal product-indecomposable congruence.

Does such an equivalence hold more generally than in ring theory?

1.7. Problem. Can the iterated construction of sheaves in Theorem 1.2
be done more flexibly to make it applicable to all algebras, not necessarily
to only those having BFC? Could this be done by using Proposition VI.2.3
to find a maximal Boolean algebra of factor congruences at each step?
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The original point of this construction of this section was to find a sub-
direct product of an algebra such that some common properties would
transfer back and forth between it and its quotients in this subdirect prod-
uct. For example, Burgess and Stephenson show that being a von Neumann
regular ring passes between a ring and the stalks in its sheaf, where they
develop a general method for proving such results. However, in the spirit of
this exploratory chapter, we know of no applications beyond those already
to be found in their paper.

They have many more applications to ring theory, such as constructing
a ring with an infinite Pierce chain, and they show that the obvious way of
trying to turn M.A/ into a sheaf does not work.

1.8. Problem. Find applications of this iterative process to algebraic
systems more general than rings.

2. Self Help

The best results so far have been for specific classes of algebras, such as
shells, in which we could uniformly identify Boolean subsemilattices in their
lattices of congruences. How much can this be adapted to general algebras
without special operations or constants? Remarkably, there is a universal
construction working for all algebras. Since it depends on the shells of
Chap. VII, it was not presented earlier. It turns on a simple observation:
any bounded lattice is a shell; therefore, the lattice of congruences of any
algebra A is itself a shell. So, why not use the shell’s decomposition by
factor objects to create a sheaf for A?

This is the direction of our investigation. We show how to use ConA, as
a shell, to embed any algebra A into the algebra of all continuous sections
of a sheaf over a Boolean space. What the significance of this construction
is, and whether it might agree with any of our previous ones, or others in
the literature, are open questions.

The situation is not as straightforward as we make it sound. For the
factor congruences of A may not be the factor elements in the lattice of
congruences. In symbols, we do not know in general that

Elem0 ConA D Con0 A:

To appreciate what inequality might mean, we look later in more detail at
each direction of inclusion.

The congruences in Elem0 ConA are characterized by the equations for
factor elements taken directly out of Theorem VII.3.4 and rephrased for
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the two-sided unital shell, ConA. They are those congruences � for which
there is a congruence � such that for all congruences �, � in ConA:

� \ � D 0;(i)

� _ � D 1;(ii)

� \ .� _ �/ D .� \ �/ _ .� \ �/;(iii.a)

� \ .� _ �/ D .� \ �/ _ .� \ �/:(iii.b)

Any two congruences, � and � , that satisfy these equations will be called a
pair of complementary Boolean congruences. Notice that we have omitted
all those familiar identities holding in any lattice, but that had to be stated
in Chap. VII for factor elements in an arbitrary shell. A consequence of (ii)
and (iii.a), which we will use repeatedly, is

.� \ �/ _ .� \ �/ D �:(iv)

By way of contrast, recall that complementary factor congruences need
satisfy only

� \ � 0 D 0;(i)

� ı � 0 D 1;(v)

Recall two things: (1) that that � _� D 1 does not guarantee that � ı� D 1
and (2) that a congruence may not satisfy the distributive laws.

We have to use a notation � for the new complements in Elem0 ConA

that is different from the old complements � 0 in Con0 A, when they exist.
But the next lemma shows that this is sometimes unnecessary. Remember
that � is already unique since this complement is in a shell.

2.1. Lemma. If � is both a Boolean congruence and a factor congruence
of an algebra A, then the complement � 0 of � is unique and � D � 0.

Proof. Let � 0 be a complement of � . From (iv) we see that

� 0 D .� 0 \ �/ _ .� 0 \ �/ D 0 _ .� 0 \ �/ D � 0 \ �:
And from (iii.b) we get the same meet for � :

� D � \ 1 D � \ .� _ � 0/ D .� \ �/ _ .� \ � 0/ D 0 _ .� \ � 0/ D � \ � 0: �

In the following proposition more is said about Elem0 ConA than could
be said about Con0 A. It has the theorem after it as a consequence.

2.2. Proposition. For any algebra A, Elem0 ConA is a Boolean sub-
semilattice of ConA.

Proof. We need only show (Definition V.1.1) that

�\ � D 0 , � � � .�; � 2 Elem0 ConA/:

The reverse implication is easy, for if � � � , then � \ � � � \ � D 0:
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To prove the forward direction of implication, assume that �\� D 0 and

a � b. Since � D .� \ �/ _ .� \ �/; there are x1; x2; : : : ; xn such that

a .� \ �/ x1 .� \ �/ x2 : : : xn�1 .�\ �/ xn .� \ �/ b:
But � \ � D 0. So x1 D x2, x3 D x4, etc. Thus, a .�\ �/ b. Hence a � b.
Therefore, � � � . �

For Theorems 2.3 and 2.5, recall the abbreviation of (V.2.1):

A==B D
]

P 2SpecB

.A=
_
P/:

Here, B is a Boolean subsemilattice of ConA.

2.3. Theorem. For any algebra A, let B be Elem0 ConA, and let SpecB

be the Boolean space of all prime ideals P of B. Then A is isomorphic to
a subalgebra of the algebra � .A/ of all global sections of the sheaf A over
SpecB where A D A==B.

Proof. Use Proposition 2.2 and Theorem V.2.1. �

This theorem was announced in [Knoe92a]

2.4. Problem. Find consequences of this sheaf representation for an
arbitrary algebra A via its Boolean congruences. Consider this as a com-
pletion of A. Is this extension unique? Does it have any density properties?
Do traditional representations follow from this, as well as some new ones?

11111
We now investigate when an inclusion in one direction or the other holds

between Con0 A and Elem0 ConA.

2.5. Theorem. Suppose every factor congruence in an algebra A is a
Boolean congruence:

Con0 A � Elem0 ConA:

Then Con0 A is a Boolean algebra; that is, A has BFC. Therefore, A Š
�

�
A==.Con0 A/

�
.

Proof. Clearly, Con0 A is distributive by (iii.a) and complemented
by Lemma 2.1. Consequently, it is a Boolean lattice. We finish with the
representation Theorem VI.3.15. �

Distributivity of ConA affords an example of this.

2.6. Proposition. Let A be a congruence-distributive algebra.

(a) Then a congruence � of A is Boolean if, and only if, there is another

congruence � of A such that

� \ � D 0, and � _ � D 1:
(b) Hence, every factor congruence is a Boolean congruence with the same

complement.
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Proof. (a) This reduction of the original definition of Boolean is clear
from distributivity, (iii.a) and (iii.b).

(b) Always � ı � 0 � � _ � 0; so � ı � 0 D 1 implies � _ � 0 D 1. �
As usual, SL3 gives the lie to the converse of (b). Without distribu-

tivity, but still assuming (b), we have already reached in Theorem 2.5 a
conclusion about the sheaf representation. But for commuting congruences
(Dpermutable congruences) the inclusion goes the other way.

2.7. Proposition. In an algebra A with commuting congruences, every
Boolean congruence is a factor congruence with the same complement:

(2.1) Elem0 ConA � Con0 A:

Proof. Commutativity means that �ı� D �ı� and hence �ı� D �_�.
Therefore, join may be replaced by composition. �

2.8. Corollary. If an algebra A is arithmetic, that is to say, Con A has
both distributive and commuting congruences, then the lattices of Boolean
congruences and factor congruences are the same: Elem0 ConA D Con0 A.

2.9. Problem. Let’s take some of the conclusions as hypotheses, and see
what follows. We have already done this in Theorem 2.5 when Con0 A �
Elem0 ConA:

(a) When ConA is commutative, we proved in Proposition 2.7 that ev-
ery Boolean congruence is factorial. Assuming (2.1), we should try to
reprove theorems now established only for congruence-commutable va-
rieties.

(b) As another example, consider the equality: Con0 A D Elem0 ConA:

Assuming this, we might try to show that the equational classes gen-
erated by such an algebra behave like arithmetical equational classes.



XII
Further Examples Pointing

to Future Research

This chapter might well be called an epilogue, but even better it should
be called a prologue. It looks forward in time. It lists many applications of
sheaf theory, and uses them to point to potential research. Specific problems
are rarely pinpointed; rather it paints five broad landscapes, into which the
interested reader may venture.

The first is classical algebra: useful sheaf representations in classical
ring and lattice theory extended to shells and beyond. The second is the
invention of algebras capturing various logics. The third is model theory:
preservation of properties, decidability of first-order theories, and model
completeness. The fourth is three topics that are loosely interrelated:
generalized metrics, the weakening of Boolean algebras, and the mixing
of duality theory with sheaf theory. The fifth is a continuation of the last
and concerns the diverse sheaves that exist for a each algebra: it is well
illustrated by Boolean rings.

Proofs are omitted, but given references.

1. From Classical Algebra

This monograph approaches an algebra, from the top down, to decompose it
as a sheaf. The more traditional approach is to start with a small desirable
set of common algebras and see which algebras can be built, from the
bottom up, with these as stalks. There is a gap. When do these two paths,

A. Knoebel, Sheaves of Algebras over Boolean Spaces, 283
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coming from different directions, merge and give the same theorem? Listed
here are possibilities in three areas: rings, lattices, and categories.
Rings. Now that we have generalized some concepts and theorems of ring

theory, what about others? What other results about regular rings can
be extended to shells? Goodearl is a gold mine of theorems that might
be broadened [Goode79]. For example, a regular ring is characterized as
Abelian if it has no nilpotents; these are the so called strongly regular
rings. Perhaps this is a way to enlarge on our brief discussion of these rings
in Chap. VIII. In another direction, how much of Keimel’s [1971] article
[Keim71], Kist’s [1969] paper [Kist69] and Peercy’s [1970] thesis [Peer70]
may be extended to shells and half-shells? In what sense, if any, are these
notions of Chap. VII minimal with respect to sheaf representations?

How much of the theory of Chap. VII holds for shells without unities?
In Boolean rings, the existence of a unity is closely related to compactness.
As pointed out by Halmos in [Halm63, p. 83, ex. 1], adding a unity to a
Boolean ring without one is a one-point compactification. In general, could
we get along with locally compact spaces?

Traditionally, modules have been the object of study in sheaves of alge-
bras. We have neglected part II of Pierce’s monograph [Pier67] since we
don’t know to define a module over a shell. Would anything worthwhile
turn up by studying semilattices as modules over a fixed bounded lattice?
Lattices. Many papers explore sheaves of these, for example, Crown,

Harding and Janowitz [CroHJ96]. With a canonical sheaf representation,
they start by exploiting the set of factor elements, called the center in lattice
theory, and continue by giving conditions equivalent to it being a Boolean
product. Papers using sheaf theory to represent expanses of lattices are
those of Cignoli [Cign78], George Georgescu [Geor88], and Swamy and
Manikyamba [SwaMa80].

1.1. Problem. Are there sheaf representations for the well-studied resid-
uated lattices in Blount and Tsinakis [BloTs03], and in Jipsen and
Tsinakis [JipTs02]?

Categories. In earlier chapters, we have reformulated our representation
theorems categorically, first as adjoint situations, and then as equivalences
between categories of algebras and sheaves. But there are other ways cat-
egory theory may enter into sheaf theory.

Looking over these sheaves reveals an essential feature of their base
spaces: they are complete lattices of open sets. These have been abstracted
into what are variously called locales, frames, or complete Heyting algebras.
This is not category theory, but in the next step it enters in the works of
Pawe�l Idziak [Idzi89], Michael Fourman and Dana Scott [FouSc79], and
Peter Johnstone [John82]. All of these new style ‘sheaves’ over a fixed
locale form a category. The last step is to abstract the crucial properties
of such categories: these are called toposes. See for example the expository
articles of Saunders MacLane [MacL75] and Johnstone [John83].
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The representation of an equational class generated by a primal algebra
was effected historically through the Boolean powers of Foster [Fost53],
but it can also be done much more differently by means of a categori-
cal argument. This second use of category theory would be to develop
our results anew by applying the techniques of Banaschewski and Nelson
[BanNe80], Hu [Hu69], and Lambek and Rattray [LamRa79] to the
category of shells. We have already adapted some of many examples of
categorical equivalences that appear in Pierce’s monograph [Pier67]. See
Diers’s book [Diers86] for a general categorical approach.

Using sheaf theory, Gerhard Gierz characterizes the Morita equivalence of
varieties generated by single quasi-primal algebras in terms of their inverse
semigroups of inner automorphisms [Gierz96]. (Two algebras are Morita
equivalent if the varieties they generate are categorically equivalent, with
the equivalence taking one algebra into the other.)

1.2. Problem. Use sheaf representations to find other Morita
equivalences.

We close with two miscellanea.

1.3. Problem. The extension of an algebra A obtained by embedding
it into the algebra � .A/ of all global sections of a sheaf A can be thought
of as a completion, called the global completion by Krauss and Clark: A �
� .A/ [KraCl79]. Further, rational completions of rings are characterized
as complete Baer extensions by Peercy [Peer70]. Express this functorially
and extend it beyond rings, if possible. Are these completions unique?

Using Boolean spaces, William Hanf [Hanf57] finds two denumerable
Boolean algebras A and B such that A Š A � B � B but A © A � B.
For other examples and references, see the publications of Burris [Burr75,
theorem 6.1(i)], of Jǐŕı Adámek, Václav Koubek, and Věra Trnková
[AdáKT75], and of McKenzie, McNulty, and Taylor [McMcT87, sect. 5.7].

1.4. Problem. Can these results on pathological Boolean algebras be
adapted by sheaf methods to other algebras, such as those having Boolean
factor congruences?

2. Algebras from Logic

Cultivating logics into algebras yields a rich harvest of representation the-
orems. The oldest is Stone’s theorem for Boolean algebras, invoked re-
peatedly in this book. The logics in this section come from introducing
additional truth values, often with modal connotations. More often than
not, these new algebras are bounded distributive lattices satisfying extra
axioms, possibly with additional operations. As lattices have BFC, the rep-
resentation theorem of Sect. VI.3 applies to these algebras.
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First discussed are representations for P-algebras and their relatives; the
‘P’ stands for a generalization of Post algebras. Then MV-algebras come
next; ‘MV’ stands for multivalued logic.

Typically, the stalks are of a straightforward nature: simple, chains, no
divisors of zero, etc. Sometimes the sheaf is Hausdorff, that is, we have a
Boolean product. There are three things to do: fit the diverse language of
the literature to ours, state the representations, and characterize the stalks.

All the riches in this field could easily fill their own monograph. We only
sample. The corresponding logics are not described, and proofs are omitted.

George Georgescu delineates those bounded distributive lattices whose
canonical sheaf has stalks with no divisors of zero [Geor88, proposition 2.3].
For a subset B of a lattice L, call the lattice B-normal if, whenever a^b D 0
(a; b 2 L), there exist u and v in B such that u_v D 1 and a^u D 0 D b^v.
To say there are no divisors of zero means that a^ b D 0 implies a D 0 of
b D 0. For u to be in Elem0 L is the same as for it to have a complement.

2.1. Proposition. Let L be a bounded distributive lattice with B D
Elem0 L. Then L is B-normal if, and only if, L is isomorphic to the lattice
of global sections of a sheaf over a Boolean space whose stalks have no
divisors of zero.

Earlier Cignoli looked at a smaller class of algebras where the stalks
are bounded chains [Cign78, theorem 3.4]; this is restated in [Geor93,
proposition 2.8]. For a subset B of a lattice L, call the lattice completely
B-normal if for all a and b in L there exist u and v in B such that u_v D 1,
a ^ u � b, and b ^ v � a.

2.2. Proposition. Let L be a bounded distributive lattice with B D
Elem0 L. Then L is completely B-normal if, and only if, L is isomorphic
to the lattice of global sections of a sheaf over a Boolean space whose stalks
are chains.

Cignoli further restricted this to P -algebras, achieving a Boolean product
[Cign78, theorem 3.6]. A P-algebra is a bounded distributive lattice in
which:

(i) For all a and b there is a largest c in Elem0 L such that a^ c � b; we
write c as a) b.

(ii) .a) b/_ .b) a/ D 1 (a; b 2 L).

2.3. Proposition. A bounded distributive lattice is a P -algebra if, and
only if, it is isomorphic to the lattice of global sections of a Hausdorff sheaf
of bounded chains over a Boolean space.

Swamy and Manikyamba give many results of this type [SwaMa80].
Here is their theorem 2.1 (pseudocomplementation is defined after
Definition V.1.1).
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2.4. Proposition. A bounded distributive lattice is pseudocomplemented
if, and only if, each stalk of its canonical sheaf is pseudocomplemented, and
pseudocomplementation is continuous in the sheaf.

11111
MV-algebras are to multivalued logic as Boolean algebras are to two-

valued propositional logic. They are defined as algebras hAI˚;:; 0i of type
h2; 1; 0i satisfying these equations:

0˚ a D a; :0˚ a D :0;
a˚ b D b ˚ a; ::a D a;

a˚ .b ˚ c/ D .a˚ b/˚ c; :.:a˚ b/˚ b D :.:b ˚ a/˚ a:
MV-algebras are term-equivalent to Wasjberg algebras.

There are many representation theorems for MV-algebras and subclasses
of them. Typically, the stalks have relatively simple descriptions. For ex-
ample, any MV-algebra is isomorphic to the algebra of all global sections
of a sheaf of directly indecomposable MV-algebras over a Boolean space.
A smaller class are the quasi local MV-algebras, each of which is bijec-
tively representable by a sheaf over a Boolean space with stalks that are
local MV-algebras. An even smaller class are the dual Stone MV-algebras,
whose stalks are now chains. An excellent survey of these representations
and many more, together with definitions of the preceding MV-algebras, is
given in Di Nola, Esposito, and Gerla [DiNEG07]. Some of these results
appear earlier in Cignoli and Torrens Torrell [CigTo96], and Filipoiu and
Georgescu [FilGe95].

As any MV-algebra has a bounded lattice as a reduct, it is a two-sided
unital shell; so the representation theorem of Sect. VII.3 applies, as well
as all the supporting apparatus of factor congruences, bands, sesquimorph-
isms, ideals, and elements. However, it is not clear to what extent the
representation theorems in the literature agree with those in this book.

2.5. Problem. Compare the applicable theorems in this book with those
cited in this section.

BL-algebras (BL stands for ‘basic logic’) are another variety of algebras
from logic that have a rich assortment of representations by sheaves (Di
Nola and Leuştean [DiNLe03]). These are algebras hAI _;^;ˇ;!; 0; 1i of
type h2; 2; 1; 1; 0; 0i satisfying these conditions:

(i) hAI _;^; 0; 1i is a bounded lattice;
(ii) hAIˇ; 1i is a commutative monoid;
(iii) c � a!b iff aˇ c � b;
(iv) a ^ b D aˇ .a! b/;
(v) .a! b/ _ .a! b/ D 1.

By (i) they are shells. But the representation theorems of Di Nola and
Leuştean appear to be different from what would be obtained by considering
BL-algebras as shells and applying the theorems of this book.
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2.6. Problem. The classes of BL-algebras and MV-algebras have been
broadened; see Jipsen and Montagna [JipMo06], and Galatos and Tsinakis
[GalTs05]. Do some of the sheaf representations mentioned for BL- and
MV-algebras extend to these larger classes?

Gramaglia and Vaggione list many more algebras from logic and else-
where, analyze them in detail, and identify the stalks in their sheaf repre-
sentations [GramVa96, GramVa97].

3. From Model Theory

Sheaves, and modifications of them, have played a significant role in estab-
lishing decidability, elementary equivalence, and model completeness. A full
exposition of the concepts, techniques, and proofs would need a small vol-
ume. So we merely sample a few theorems of this kind, and encourage the
reader to go further.

We assume here a given type of algebras and varieties of them. This
gives us a first-order language of formulas built from equations, logical
connectives, and quantifiers. The theory of a set of algebras is the set all
first-order sentences satisfied by the set. Definitions not given here will be
found in the literature cited and [Hodg97].
Preservation and Transfer. We have, in previous chapters, stated

results of the nature that the truth of certain sentences is preserved in the
passage from an algebra to its stalks, and back. For example, we already
have Proposition III.1.2 and Corollary IV.2.2 about the preservation of
identities in subdirect products and complexes. Further there is Proposi-
tion V.2.7 about 89 equations preserved in sheaves over Boolean spaces
[Burr75], and Proposition V.3.13 about Horn sentences in Boolean prod-
ucts. Left open is the question of what are the most general sentences to
be preserved for particular sheaves. Hugo Volger solves this for the class
of all sheaves over all spaces; his syntactical description of the preserved
sentences is too involved to state here [Volg79].

When not all sentences are preserved in passing from an algebra to the
stalks of its sheaf, it still may by possible to transform them so decidability
and other properties are passed along. The paper [FefVa59] of Solomon
Feferman and Robert Vaught does this. It is extended by [Comer74] and
[Volg76].
Decidability. The decidability, or lack of it, of the first-order theories

of varieties is still open for research. A theory is decidable if there is an
algorithm that takes as an input any sentence and produces a YES or NO
according to whether it is a consequence of the theory. Early positive suc-
cesses without sheaves were Abelian groups [Tars49] and Boolean algebras
[Szmi55].
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By extending the transfer theorem of [FefVa59] to sheaves, Comer proves
that the theories of the following sets of algebras are decidable [Comer74]:

(a) all Boolean extensions of a finite algebra,
(b) those generated by a primal algebra,
(c) post algebras of fixed order n,
(d) unital rings that satisfy xp D x and px D 0 for a fixed prime p,
(e) unital rings that satisfy xm D x (fixed m > 1).

At the same time Christopher Ash [Ash74] also proved with sheaves
that the theory of Post algebras of order n is decidable. Vincent Astier
[Asti08] established the decidability of regular, real-closed, commutative
unital rings. And Werner does this for residually small discriminator vari-
eties [Wern78].

McKenzie and Valeriote tell us when a locally finite variety is decidable
[McVa89]. On the other hand, the theories of unital rings, semilattices and
distributive lattices are not decidable [BurSa81, Sect. V.5]. Pawe�l Idziak
has many references [Idzi99].
Elementary equivalence and embedding.

As an example of the use of sheaf theory we state a theorem of Vincent
Astier [Asti08].

3.1. Definition. Two algebras, A1 and A2, are if their theories are
the same (A1 � A2). An elementary embedding of one algebra A1 into
another A2 is an injective homomorphism with the same theories (A1 �
A2).

A real-closed ring is a ring with an ordering that generalizes real fields.
Its definition is too technical to state briefly; it is in [Cars89, definition
5.6]. The elementary equivalences and embeddings are with respect to the
ring operations alone, not the ordering.

3.2. Theorem. Let R1 and R2 be regular, real-closed, commutative uni-
tal rings, and B1 and B2 their respective Boolean rings of idempotents.

(a) R1 � R2 iff B1 � B2.
(b) R1 � R2 iff R1 � R2 and B1 � B2.

Model completeness.

A first-order theory is model-complete if any embedding of one model
of it into another is elementary. A theorem of Angus Macintyre [Maci77,
theorem 34] illustrates this extensively developed field.

3.3. Theorem. Let T 0 be a model-complete theory of fields. Let T be the
theory of rings of global sections of sheaves with stalks models of T 0 and
over a Boolean space without isolated points. Then T is model-complete.

Further results are found in Andrew Carson’s book [Cars89]; some of
his completions use sections over open regular sets rather than global sec-
tions over the whole space. See also [BurWe79], [Cars73], [Maci73] and
[Weis75].
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3.4. Problem. Try to generalize the model-completeness of commutative
von Neumann regular rings to Baer–Stone shells.

4. Beyond Sheaves over Boolean Spaces

Expanding the notion of sheaf ought to enrich the crop of representation
theorems. We discuss three ways, leaving the exploration of these paths to
the reader. They are generalized metrics, the lifting of a known represen-
tation of a simpler algebra to a more complicated one, and merging sheaf
theory with duality theory.
Generalized metrics. The axioms for a complex, or more correctly

their duals, look like those for a metric space, except that, in place of
the real numbers as a measure of distance, we have open sets to gauge
nearness in a topological space. Can this analogy be exploited rigorously?
Replace the topological space by an algebraic structure, inspired by the real
numbers and emphasizing the aspects of a metric space, that nevertheless,
unlike the field of reals, but like Boolean algebras, would be a subdirect
product of simpler algebras.

When the representation is a Boolean product, we need only clopen sets
to obtain a sheaf representation of the given algebra. When the sheaf is
over a Boolean space, which is a weak Boolean product, we need the bigger
lattice of open sets, which leads to locales, already introduced in Sect. 1.
More broadly we wonder, if the lattice were to be replaced by a semilattice,
would another kind of sheaf structure arise? Ralph Kopperman’s article
[Kopp88], on generalized metrics, may be relevant here, although his value
semigroup and our semilattice of open sets are not directly comparable.
Even more generally, consult the booklet [TriAl78] of Enrique Trillas and
Claudi Alsina.
Boot Strap. The is similar to the previously modified metrics, but

now we propose modifying the choice of congruences. The core we have
usually looked for in any algebra A is a Boolean subsemilattice of ConA,
a Boolean algebra, because its representation as a Boolean space, that
is, a sheaf with two-element stalks, can be lifted to a representation of the
original algebra. But there are many classes of algebras with almost equally
nice representations. Might these be used to lift their sheaves to some less
amenable algebras?

In other words, we should try to broaden the results of this monograph
by algebraically extending the sheaf construction over the dual of a Boolean
algebra to constructions over wider equational classes. For example, choose
the congruences to be in non-Boolean lattices, such as distributive lattices,
or even fragments like semilattices, and use these to induce sheaf struc-
tures. For instance, Werner [Wern79] considers algebras with a distribu-
tive bounded sublattice L of permuting congruences; Cornish [Corn77],
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Swamy [Swam74] and Wolf [Wolf74] have earlier results along this line,
and Michael Johnson and Shu Hao Sun [JohMSu92] a later one. For such
an algebra the Gel’fand morphism � is bijective, that is, it is an isomor-
phism to the algebra of all global sections of a sheaf whose base space is
the dual of L. See also Problem V.3.4.
Duality Theory. David Clark and Brian Davey’s book [ClaDa98]

on natural dualities is almost disjoint from this book on sheaf theory. In
duality theory, typically all stalks are isomorphic to a kernel that can ap-
pear, with modification, on the other side of a categorical equivalence;
whereas this book has been concerned principally with sheaves with many
non-isomorphic stalks. The classical example is Priestley duality for dis-
tributive lattices. The set of prime ideals of a distributive lattice may be
topologized, as done for Boolean algebras, but now non-isomorphic lattices
may yield the same space. Hilary Priestley [Prie70] remedied this by in-
troducing an order on the spaces that served to differentiate lattices. In
general, one starts with a finite kernel that has two guises: a purely alge-
braic one, and a discrete topological one with relations added as necessary
to achieve a categorical equivalence. Although this does not work for all
classes of algebras, when it does it represents many common algebras in a
useful quasi-topological manner.

By way of contrast, this book treats bounded distributive lattices as
unital shells, which have many directly indecomposables, such as chains.
The next problem asks if there is a middle ground.

4.1. Problem. Create new dualities by mixing these two approaches.
Consider a variety with sheaf representations of its algebras whose base
spaces alone are insufficient to differentiate them. Add relations and op-
erations to the base spaces to remedy this. One already sees this in the
example of Boolean rings, to be developed below, where one singles out
a special point to be preserved by the continuous maps determining the
global sections.

4.2. Problem. It might be worthwhile to rework some of the examples
in [ClaDa98] in the spirit of the preceding problem by comparing their
structured Boolean spaces with the alternative of locally compact spaces
having no relations or operations on them, as in Sect. 5.

See also the writings of Romanowska and Smith [RomSm97] for an-
other kind of duality, and Vaggione [Vagg92, Vagg95] for studies beyond
Krauss’s and Clark’s [KraCl79].

The last two problems leads naturally into the next section.

5. Many Choices

Often the same algebra may be represented by several different sheaves.
We list such variation for three classes of algebras, and then, by way of a
detailed example, give four representations of another: Boolean rings.
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Bounded distributive lattices may be represented by spaces created
via BFC or prime ideals. For example, there are the distributive pseudo-
complemented lattices of Cornish [Corn77a].
Unitary rings again use BFC or prime ideals. Bergman [Berg73,

sect. 5] gives three representations studied by Hochster [Hoch69]. See
also the articles by Christopher Mulvey [Mulv79] and Harold Simmons
[Simm84].
Biregular rings have even more ways to be represented by sheaves.

Some require a unity. Theorem VIII.2.3 represents biregular unitary rings
by sheaves over Boolean spaces with simple stalks. In other representa-
tions, the base space is weaker than a Boolean space. In one, it is a locally
compact, totally disconnected, Hausdorff space. Theorems 7.10 and 7.11 of
Krauss and Clark [KraCl79] give some of these. Burris and Sankappanavar
[BurSa81, p. 163] have another.
Boolean rings serve as a rich source of topological representations,

several of them outside the scope of this book. These are commutative rings
hRIC;�; 0i, not necessarily unital, that satisfy rCr D 0 and r �r D r ; the
operation + corresponds to symmetric difference in Boolean algebras. As
such they are almost term-equivalent to Boolean algebras. For background
see Alexander Abian’s introduction to Boolean rings [Abian76].

Each Boolean ring may be doubled to make a Boolean algebra, and each
nontrivial Boolean algebra may be halved to make a Boolean ring. This
subtle difference is enough to skew their sheaf representations.

There are many ways of representing a Boolean ring, which illustrate a
diversity of dualities:

(a) as a Boolean product with stalks that are the subalgebras of a semipri-
mal algebra,

(b) as a sub-Boolean power of the two-element Boolean ring, coming from
the sheaf for the associated Boolean algebra,

(c) as a sheaf over a locally compact, Hausdorff and totally disconnected
space, created by dropping one point from the Boolean space in (b),

(d) as the dual of a pointed Boolean space, by way of Clark–Davey duality.

We discuss these in turn, using ideals instead of congruences. To that end
let 2 be the two-element Boolean ring hf0; 1gIC;�; 0i; and let 21 be the
two-element unital Boolean ring hf0; 1gIC;�; 0; 1i. Then the latter is term-
equivalent to the two-element Boolean algebra, and the properties we need
transfer from one to the other. Each Boolean ring is a subdirect power of
2 as shown in [Abian76]; hence, the variety of Boolean rings is Var 2.

(a) Now 2 has two subalgebras, f0g and 2, and all operations preserving
these are term-operations. Thus, 2 is semiprimal and covered by Sect. X.4.
Consequently, Boolean rings are Boolean products of f0g and 2.

(b) This representation and the next require the ability to pass between
Boolean rings and unital Boolean rings. Roughly, one can paste on top
of any Boolean ring an ‘anti-isomorphic’ copy, where the original ring is
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turned up-side-down, with its 0 becoming the 1 of the enlarged ring. This
is a special case in ring theory of adding a unity to any ring that may not
have one [Hung74, theorem III.1.10]. To see this, let R be a Boolean ring
hRIC;�; 0i that is to be enlarged to a unital Boolean ring, R1 D R Ì 21,
with a carrier R � f0; 1g and with new operations defined for ri in R and
bi in f0; 1g:

hr1; b1i CR1 hr2; b2i D hr1 C r2; b1 C b2i;
hr1; b1i �R1 hr2; b2i D hr1r2 C r1b2 C r2b1; b1b2i;

0R1 D h0; 0i;
1R1 D h0; 1i:

By the Stone representation theorem for Boolean algebras, R1 is a Boolean
power of 21 over the Boolean space X1 of all maximal ideals of R1. There-
fore, R is a (non-unital) subring of this power in which patching holds;
that is, R is a so-called sub-Boolean power of 2. Details are left to the
imagination. Note that R is a maximal ideal of R1, and any ideal of R1

is a Boolean ring. If an ideal I of R1 is proper, then the quotient R1=I is
nontrivial; if the ideal is maximal, then its quotient is isomorphic to 21. In
short, for any Boolean ring R there is the short exact sequence:

f0g ! R ! R1 ! 2! f0g:
(c) A flaw in (b) is that, while R is enlarged to R1, the base space X1

for R1 does not shrink when returning to a representation for R. This is
remedied by removing a particular point from X1 at the expense of its
compactness. That point is the maximal ideal R; call the new base space
X , a subspace of X1, and the new sheaf space A, shrunk from the old sheaf
space A1 for R1 by removing its stalk over R. One may check that now
R is isomorphic to � .A/, and X is locally compact, Hausdorff and totally
disconnected (see [Halm63, p. 83, exercise 1]).

Here is a transparent example showing that the new base space X need
not be compact. Let S be an infinite set, and R the set of all finite sub-
sets of S . Then hRI [;\;¿i is a Boolean ring R, missing the unity S .
Adding the cofinite subsets of S creates a unital Boolean ring isomorphic
to R1. To demonstrate noncompactness of X , it suffices to find a col-
lection of open subsets of X covering it such that no finite subcollection
covers it. To that end, let the covering C be all open subsets of the form,
UF D fM 2 X j F …M g for all F in R. For any finite subcollection,

UF1
[ UF2

[ � � � [ UFn
D UF1[F2[			[Fn

:

By Zorn’s lemma, there is a maximal ideal M containing the union of the
Fi . Hence, X is not covered by any such finite subcollection.
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(d) The last representation is a duality found in [ClaDa98, Table 10.2],
but we do not need all their machinery to explain it. To describe it, we re-
consider how the representation of (c) was created. The troublesome max-
imal ideal R of R1 was eliminated from the space X1, truncating it to X .
Equivalently, this may achieved by fixing the point R in X1, effectively
cutting it from the clopen sets that one does not want in X , as explained
next.

From the topological side of the duality, designate and fix a single point
in each Boolean space, to be preserved by all continuous functions. To see
that these pointed topological spaces X0 faithfully represent Boolean rings
R, look at their open sets that avoid the fixed point. These correspond
one-to-one to continuous maps from X0 to 20, the two-element topological
space f0; 1g with the discrete topology and the fixed point 0. Just as clopen
sets may be combined with symmetric differences and intersections, so may
homomorphisms be combined, creating a Boolean ring.

5.1. Problem. As a starting point for research, find diverse representa-
tions within the table of varieties generated by two-element algebras, listed
in [ClaDa98, sect. 10.7]. A few have been discussed in Chap. X.

5.2. Problem. Which of the many sheaf representations in this section
might be generalized to shells and beyond?

To close this book, let us go back to Leibniz’s dream of a universal
logic, which would automatically answer all objective questions. In its spirit,
Boole’s algebra serves to parse general algebras by sheaves over Boolean
spaces. Their ideas have evolved into useful tools for solving substantial
problems.
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Olomouc, 199?.

http://www.math.uwaterloo.ca/~{}snburris/htdocs/ualg.html.
http://www.math.uwaterloo.ca/~{}snburris/htdocs/ualg.html.


304 References

[ChaEL03] CHAJDA, Ivan, EIGENTHALER, Günther and LÄNGER,
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adjunction, 11, 68, 80
AlgBFC, 13, 176, 177
' SheafBooleRedFt, 177

algebra, 19
BL-, 287
Boolean, see Boolean algebra
Boolean irreducible, 123
categorical equivalence, 71
directly indecomposable, 17, 124,

275
discriminator, 129, 213, 264

examples, 129
doubly pointed, 46
Jónsson-Tarski, 205
linear, 2
MV- (
 Wajsberg), 286
P-, 286
partial, 31, 60, 97
pointed, 42
preprimal, 16, 261, 263

by central rel., 263, 270
by elem. Abel. group, 263, 266

by equivalence rel., 263, 269
by h-adic rel., 263, 272
by partial order, 263, 269
by permutation, 263, 264
by subset, 268

primal, 5–6, 16, 127, 175, 261
representation, 175

principal, 182
quasi-primal, 129, 213, 285
quotient, 24
regular, 30
semiprimal, 268
separator, 14, 212
subdirectly irreducible, 52, 124
trivial, 20
universal, its origins, 5–7

algebras
from logic, 285

Alsina, Claudi, 290
annihilator, 15, 222, 239
anti-isomorphism, 77
Arens, Richard, 4, 7, 15, 232
Ash, Christopher, 289
associate, 254
associative law, 21

A. Knoebel, Sheaves of Algebras over Boolean Spaces, 319
DOI 10.1007/978-0-8176-4642-4,
c� Springer Science+Business Media, LLC 2012



320 Index

Astier, Vincent, 289
atom, 77
Aull, Charles, 9
automorphism, 23

Baer, Reinhold, 5, 223
BaerRing, 230
' SheafRingIntegral, 177,

231
Baer-Stone

implies integral stalks, 227
property, 222

BaerStoneShell, 230
' SheafShellIntegral, 177,

230
Balbes, Raymond, 227, 228
Banaschewski, Bernhard, 128, 285
band, 38

factor, 37, 190
bands

commuting factor
Boolean algebra of, 155, 167,

207
base space, 83
basis, 73
Bergman, George, 19, 59, 107, 155,

158, 292
BFC, 166
Bigelow, David, 125, 160, 161, 172,

174
bijective, 23
biregular, see half-shell, ring, etc.
Birkhoff’s subdirect representation,

52, 262
Birkhoff’s HSP theorem, 57
Birkhoff, Garrett, 3–5, 21, 26, 52,

56, 57, 92, 110, 111, 166, 221,
240, 258, 274

Bloom, Stephen, 155
Blount, Kevin, 284
Boole, George, 1
BooleAlg, 77
' BooleSpace, 77, 177

Boolean algebra, 2, 23, 74
anti-isomorphism, 77
atomic, 77

complete, 77
dual algebra, 64, 77
dual equivalence, 77
of factor objects, 157

cong., etc., 157
pathological, 285
Stone’s representation, 3, 12, 77

Boolean brace, see brace
Boolean extension, 87, 127
Boolean factor congruences, 12,

154, 166, 174
embed in separator alg., 214
equivalent conditions, 167, 170,

171
equivalent to reduced and

factor-transparent sheaf, 173
representation of alg. with, 173

Boolean lattice, see lattice
Boolean power, 87, 126, 264
Boolean product, see product
Boolean semilattice, 110
Boolean space, see topo. space
Boolean subsemilattice, 93, 110

maximal, 115
to complex, 116

BooleBraceRed, 11, 109, 131
a CompBooleRed, 177

BooleSpace, 77, 177
Borceux, Francis, 81
Borel, Armand, 7, 80
brace

Boolean, 11, 130
factorial, 12, 149

representation, 151
reduced, 131

Bredon, Glen, 18
Bruck, Hubert, 228
Bulman-Fleming, Sydney, 213
Burgess, Walter, 17, 124, 273, 274,

277, 278
Burris, Richard, 292
Burris, Stanley, 2, 8, 19, 24, 52,

55, 57, 74, 87, 118, 120, 124–
126, 128, 129, 160, 161, 163,
172, 174, 213, 234, 264, 268,
288



Index 321

canonical, see homomorphism, sheaf,
etc.

Cantor space, 74
carrier, 19
Carson, Andrew, 289
Cartan, Henri, 7, 18
category, 60, 96, 130, 284

dual category, 64
dual equivalence, 66
equivalence, 8, 66, 71

table, 177
nonobjective definition, 60
opposite, 64

Cayley, Arthur, 2
center, 23
central relation, 270
Chajda, Ivan, 30, 160, 213, 242,

246
Chang, Chen-Chung, 7, 170
Chen, Chuan-Chong, 166
Chinburg, Ted, 255
Chinese Remainder Theorem, 150
Cignoli, Roberto, 125, 284, 286,

287
Clark, David, 8, 18, 81, 90, 91, 94,

118, 120, 151, 230, 236, 285,
291, 292, 294

Clark, David M., 291
clone, 56
clopen, 72
closed, 72
closure, 73
cluster, 259
codomain, 60

of complex morphism, 97
of sheaf morphism, 98

Cohn, Paul, 19, 258, 259
Comer, Stephen, 8, 12, 130, 147,

165, 172, 176, 177, 194, 288
common refinement, 172
commutative diagram, 63
commutative law, 21
commute, 32
CompBooleRed, 109, 132
a SheafBooleRed, 177

complement
in a lattice, 22

complete, see (semi)lattice, etc.
completely Baer-Stone,

see half-shell
Complex, 10, 79, 96
a Sheaf, 177

complex, 10, 79, 80
reduced, 131

composition, 32, 60
of complex morphisms, 97
of sheaf morphisms, 98

ConA as a shell, 278
conformal homomorphism,

see homomorphism
congruence, 23

class, 24
decomposition, 39
directly indecomposable, 275
factor, 39, 148

definable, 171
each is a Boolean cong., 280

factored, 160
improper, 25
induced, 27, 182
integral, 226
proper, 25
quotient, 25
Rees, 242
regular, 153, 168

maximal, 226
subdirectly irreducible, 52
trivial, 25

congruences
commutable

(= commuting), 58
commuting, 58
complementary Boolean, 279
complementary factor, 39

Boolean algebra of, 155, 167,
207

distributive, 58
factorable, 160
factorable factor, 160, 170
product of, 161



322 Index

continuous, 73
coproduct, 64
Cornish, William, 8, 172, 290, 292
cover, 73
Crown, Gary, 125, 172, 284
CRT, 150

Dauns, John, 7, 15, 232
Davey, Brian, 8, 12, 18, 21, 91,

115, 128, 147, 151, 152, 291,
294

De Morgan’s laws, 22
De Morgan, Augustus, 2
decidability, 288
decomposition operation, 37
Dedekind, Richard, 2
deductive closure, 57
definable factor congruences, 171
Denecke, Klaus-Dieter, 261, 263,

266–272
Di Nola, Antonio, 287
Diers, Yves, 233, 285
Dieudonné, Jean, 7
direct product, 35
directly indecomposable,

see algebra, congruence, 49
discriminator algebra, see algebra
discriminator term

quaternary, 127
ternary, 129

disjoint union, 53, 97
distributive law, 22
divisors of zero, none, 15, 225, 226,

286
domain, 33, 60

of complex morphism, 97
of sheaf morphism, 98

duality, 64, see Bool.alg., category
natural, 291

Eigenthaler, Günther, 30, 160, 242,
246

Eilenberg, Samuel, 8, 60
element

factor, 47, 190
identity, 195, 197

elementary embedding, 289
elementary equivalence, 289
elements

complementary factor, 47
Boolean algebra of, 192, 207

endomorphism, 23
epimorphism, 65
equalizer, 80, 83, 88, 93
equational class, see variety
equational closure, 57
equationally interdefinable, 58
equivalence, see term, cat., etc.

Ésik, Zoltán, 155
Esposito, I., 287
evaluation of a function, 33
expanse, 31
extremally disconnected, 77

factor band, factor cong., etc., see
band, cong., etc.

factor identity, see identity
factor objects, see band, congru-

ence, element, ideal, sesqui-
morphism, 37–48

Boolean algebra of, see band,
cong., etc., 157

one into another, 207–212
factor-transparent, see sheaf
factorable factor-congruences, see

congruences
FactorBraceRed, 12, 176, 177
' SheafBooleRed, 176, 177

factorial brace, see brace
family, 34
Feferman, Solomon, 288
fiber, 83

bundle, 84
Filipoiu, Alexandru, 287
filter, 75
finitary, 20
finitely Baer-Stone, see half-shell
finitely generated, 57
Forsythe, Alexandra, 4, 232, 255
Foster, Alfred, 5–6, 87, 127, 254,

268, 269, 285
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Fourman, Michael, 284
Fraser, Grant, 160
Frazer-Horn-Hu property, 160
Frink, Orrin, 110
FS, 173
full house, 159
functional analysis, 9
functions

commuting, 33, 154
functor, 66

dense, 67
faithful, 67
full, 67

Gabriel, Pierre, 59
Galatos, Nikolaos, 288
Galois connection, 239
Gehrke, Mai, 161, 233
Gel’fand morphism, 11, 89, 103,

117
Gel’fand, Israel, 5, 8
Georgescu, George, 174, 284, 286,

287
Gerla, Brunella, 287
germ, 83
Gibbs, Willard, 2
Gierz, Gerhard, 285
global closure, 91
global section, see section
global subdirect product, 91
Gödel, Kurt, 2
Godement, Roger, 7, 18
Goodearl, Kenneth, 232, 258, 284
Gould, Matthew, 26, 127
Gramaglia, Hector, 288
Grassmann, Hermann, 2
Grätzer, George, 19, 21, 26, 115,

127, 149, 160, 223, 227, 228,
244

Gray, John, 7
Grothendieck universes, 59, 63
Grothendieck, Alexander, 7, 18,

59, 63
groups with operators, 206
Gumm, Peter, 246

h-adic relation, 272
half-shell, 186

associate, 254
Baer-Stone, 246
biregular, 15, 233

implies simple stalks, 233
completely Baer-Stone, 246
finitely Baer-Stone, 246
integral, see divisors of zero,

none
no nilpotents, 238
null-symmetric, 238
power-associative, 255
semi-integral, 16, 226, 252
strict, 16, 237

null-symmetry implies stalks
have NDZ, 239

semi-integral
iff null-symmetric,
no nilpotents, 248

two-sided, 194, 237
unital, 13, 186, 194, 237

factor objects, 190
has BFC, 187
representation, 188

Halmos, Paul, 4, 74, 77, 125, 268,
284, 293

Hamilton, William, 2
Hanf, William, 4, 285
Harding, John, 125, 172, 284
harvesting wheat, 84
Hasse diagram, 21
Hausdorff sheaf, see sheaf
Heaviside, Oliver, 2
Henriksen, Melvin, 9, 123, 255
Herbrand, Jacques, 2
Herrlich, Horst, 59
Hilbert, David, 2
Hobby, David, 26
Hochster, Melvin, 292
Hodges, Wilfrid, 288
Hofmann, Karl, 7–9, 15, 41, 85,

115, 223, 230, 232, 236
holomorphic function, 95
hom-set, 62
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homeomorphism, 73
homomorphism, 23

canonical, 39, 49
conformal, 216
of partial algebras, 31

Horn formula, 130
Horn, Alfred, 160, 227, 228
Houzel, Christian, 7
Hu, Tah-Kai, 6, 9, 285
hull, 76
Hungerford, Thomas, 226, 238, 293
Huntington, Edward, 75, 111

I, II, IIIa, IIIb, IV, 237
ideal, 3–5, 24, 30

all-pervasive notion, 245
factor, 44, 190, 200, 203, 246
integral, 226
maximal, 31, 75
prime, 11, 75

spectrum of, 75, 116
principal, 15, 183, 222
regular, 168

idéal
of shell, 199
of strict half-shell, 239
with loop, 256

ideals
complementary factor, 44, 199

Boolean algebra of, 167, 207
idempotent law, 21
identities of factor elements, see

element, factor
identity, 56

factor, 164, 195, 197, 198
mirror image, 195, 207
need only 0’s and 1’s, 165
satisfied, 165

identity relation, 31
Idziak, Pawe�l, 284, 289
improper, see congruence, etc.
independent algebras, 57
inequalizer, 80, 93
infimum, 21
injective, 23

Gel’fand morphism, 89, 117
inner direct product, see product
inner sum operation, 206
integral, see divisors of zero, none
integral domain, 15
interior, 73
interpolation property, see sheaf
interpretation, 56
inverse, 63
invertible, 63
irredundancy, 91
Iskander, Awad, 163
isomorphism, 23, 63, 66

categorical, 63, 100
natural, 67

isomorphism class, 66
isomorphism theorems

(external) Noether, 26
(external) cancellation, 25
(external) homomorphism, 24
internal cancellation, 29
internal homomorphism, 28
internal Noether, 30

J-T algebra, 205
Jónsson, Bjarni, 41
Jacobson, Nathan, 5, 255
Janowitz, Melvin, 125, 172, 284
Jerison, Meyer, 9, 123
Jipsen, Peter, 161, 284, 288
Johnstone, Peter, 174, 284
Jónsson, Bjarni, 35, 46, 161, 170,

205
juxtaposed symbols, 34

Kaplansky, Irving, 4, 7, 15, 223,
232

Keimel, Klaus, 8, 89, 116, 213, 223,
234, 236, 268, 284

Kelley, John, 72, 73
Kennison, John, 18, 236
kernel, 25, 76
Kist, Joseph, 7, 9, 14, 81, 123,

125, 223, 236, 249, 258, 284
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Knoebel, Arthur, 26, 41, 65, 106,
110, 116, 121, 145, 176, 181,
196, 212, 227, 233, 261, 262,
266, 269, 271–273, 280

Kopperman, Ralph, 290
Köthe, Gottfried, 3, 232
Koubek, Václav, 285
Krauss, Peter, 8, 81, 90, 91, 94,

118, 120, 151, 230, 236, 285,
291, 292

Krull, Wolfgang, 3, 4, 258
Kruse, Arthur, 59
Kuratowski’s closure axioms, 73,

76

Lambek, Joachim, 6, 18, 285
Länger, Helmut, 30, 160, 242,

246
lattice, 2, 21, 284
B-normal, 286
Boolean, 22
bounded, 22

center of, 23
complete, 22
completely B-normal, 286
distributive, 22
modular, 22
neutral element in, 23
Stone, 15, 221

Ledbetter, Carl, 7, 232
Leibniz, Gottfried von, 1, 5
Leray, Jean, 7, 80
Leuştean, Laurenţiu, 287
limit

direct, 128
local homeomorphism, 74
locale, 284
loop, 228, 255
Lüders, Otfried, 263, 266–270, 272

Macintyre, Angus, 289
MacLane, Saunders, 8, 60, 62, 284
Mal’cev condition, 58
Manes, Ernest, 155
Manikyamba, P., 284, 286

matrix power, 71
McCoy, Neal, 4, 5, 175, 232, 238,

255, 258
McKenzie, Ralph, 8, 19, 26, 41,

65, 72, 118, 124, 129, 169, 170,
178, 263, 270, 289

McNulty, George, 19, 41, 169, 170,
285

metric space, 10, 79, 94
Möbius band, 84
model, 56
model theory, 55, 288
model-completeness, 289
module, 80
monomorphism, 65
Montagna, Franco, 288
Montgomery, Deane, 4, 175, 255
Morita equivalence, 285
morphism, 60

of complexes, 96
of sheaves, 98

Mulvey, Christopher J., 84, 292
Murti, Suryanarayana, 47, 164
Mycielski, Jan, 59

natural isomorphism, 67
natural transformation, 67
near-ring, 232

biregular, 15, 232
neighborhood, 72
Nelson, Evelyn, 128, 285
nilpotent, 238
Noether, Emmy, 2, 3, 24, 26, 30
nonobjective, see category
normal transform, 127
Nový, Luboš, 2
null product, 238, 249
null-symmetry, see half-shell
nullity, 186

object
categorical, 61, 96
factor, 37, 48, 207

open, 72, 73
open vs. closed, 93
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operation, 19
affine, 266
constant, 20
linear, 266
nullary, 20
relativised, 28

operation-symbol, 20
origin, 42, 46
outer subdirect product, 51

partial algebra, see algebra, 98
partition, 127
patchwork property, see sheaf, 119
Peacock, George, 1
Peercy, David, 123, 230, 284, 285
Peirce, Benjamin, 2
permute, 32
Petrich, Mario, 242
Picavet, Gabriel, 249
Pierce chain, 274
Pierce congruence, 275
Pierce stalk, 274
Pierce, Richard, 7, 8, 18, 19, 39,

98, 116, 120, 124, 149, 151,
172, 174, 177, 216, 218, 253,
274, 285

Pilz, Günter, 232
Pinus, Alexander, 18, 130
Pixley, Alden, 213, 264, 268
point, 72
pointed algebra, see algebra
polarity, 239
polynomial, 56
polynomial equivalence, 59
Post, Emil, 5
power

Boolean, see Boolean power
of a relation, 33, 267, 271

power set, 32
precomplex, 79, 80, 89
preservation
89.t1 � t2/, 120
by operation, 33, 262
of identities, 57, 86, 90
of properties, 288

preserved
relative to a sheaf, 130

presheaf, 85
Priestley, Hilary, 21, 228, 291
prime ideal, see ideal
prime ideal despite restraint, 114
product, 35, 74

Boolean, 11, 87, 124
categorical, 36, 63

isomorphism, 36
direct

inner, 46, 49, 50, 200, 203
outer, 35, 49

locally Boolean, 125
of congruences, 161
of relations, 33
subdirect

inner, 52
outer, 51

varietal, 58
weak Boolean, 125

projection
as operation, 20
in product, 36
in sheaf, 82, 83, 88

proper, see ideal, etc.
pseudocomplementation, 110
pullback, 97

Quackenbush, Robert, 6
quasi-primal, see algebra
quotient, see algebra, cong., etc.

range, 33
Rattray, Basil, 6, 18, 285
RB, 131
RC1, 131
RC2, 131
reduced sheaf, brace, complex, etc,

see sheaf, brace, etc.
reduct, 31
refinement property

2-fold strict, 170
inner (= strict), 170
outer, 169
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regular, see congruence, ideal
von Neumann, see ring

relations
commuting, 32
product of, 33

relativize, relativization, 28
repeated argument, 34
representation theorems, see Bool.

alg., lattice, ring, shell, etc.
diverse, 292

retract, 23
Ribenboim, Paulo, 128
ring, 2–3, 5, 7–8, 232, 284

Baer, 15, 221
biregular, 15
Boolean, 292
commutative, 80
of integers, 20
semiprime, 238, 258
strongly regular, 232
unital, 198

special, 258
von Neumann regular, 81, 231,

258
ringed space, 83, 116
Romanowska, Anna B., 291
Romo Santos, Concepción, 7, 85
Rosenberg, Ivo, 261, 262, 266, 271
Rosenbloom, Paul, 5
RS, 121, 173

Sánchez Terraf, Pedro, 47, 48
Sankappanavar, Hanamantagouda,

19, 24, 52, 55, 57, 74, 124–
126, 128, 213, 234, 264, 268,
292

satisfaction, 31, 56
Schmidt, Elégius, 115, 223, 227
Scott, Dana, 284
section, 83

global, 10, 79, 83, 89
as subset, 87

Seebach, Arthur, 84, 107
Seebach, Linda, 84, 107
semantical closure, 57

semi-integral, see half-shell
semilattice, 21, 81, 245

complete, 21
with a nullity, 110

separator algebra, see algebra
Serre, Jean-Pierre, 7
sesqui-element, 181–184, 190
sesquimorphism, 9, 26

factor, 41, 190
sesquimorphisms

commuting, 32, 158
complementary factor, 41

Boolean algebra of, 157, 167,
207

sesquishell, 185
unital, 185

has BFC, 186
set theory, 59

Bernays-Gödel-von Neumann,
63

strong axioms, 59
Zermelo-Fraenkel, 59, 63

Sheaf, 10, 79, 98, 177
sheaf, 7–8, 10, 82

associated with a complex, 89
canonical, 12, 173
empty, 87
factor-transparent, 173
Hausdorff, 94, 96, 124
induced, 116
interpolation property, 11, 118
iteration, 17
partition property, 11
patchwork property, 11, 84, 119
Pierce, 173
reduced, 12, 121, 173, 193

to Boolean sublattice, 122
space, 83
subdirect, 95

SheafAlg, 106, 133
SheafBooleRed, 12, 133, 177
SheafBooleRedFt, 176, 177
SheafRingIntegral, 177, 230
SheafShellIntegral, 177, 230
SheafUnitHalfShell, 177, 217
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SheafUnitShell, 177, 218
shell, 13, 23, 196

Baer-Stone, 15, 221–230
biregular, 15
integral, see divisors of zero, none
unital, 13, 196

has BFC, 196
two-sided, 202

Shilov, George, 5
Simmons, Harold, 292
simple, 24
skeleton, 66
Smith, Jonathan, 291
space, see metric, topological, etc.
spectrum, 75
SRP, 170
SS, 95, 106, 133
stalk, 83

directly indecomposable, 174,
274

simple, 15
stalks

axiomatizable, 174
set of trivial, 121

Steen, Lynn, 84, 107
Stephenson, William, 17, 124, 273,

274, 277, 278
Stone, Marshall, 3, 6, 8–10, 74,

77, 109, 147
Strecker, George, 59, 67
strict half-shell, see half-shell
strict refinement property, 170
subalgebra, 23
subbasis, 73
subcategory, 65

full, 65
subdirect product, 51
subdirect sheaf representation, 92
subdirectly irreducible, see alg.,

cong., 52
subproduct, 51
supremum, 21
supremum of ideal is union, 114
surjective, 23

Gel’fand morphism, 89, 148

Sussman, Irving, 254
Swamy, Maddana, 8, 47, 89, 94,

164, 227, 284, 286, 291
system of congruences, 79, 91
Szeto, George, 15, 232, 234

T.0; 1/-algebra, 213
Tarski, Alfred, 6, 35, 41, 46, 170,

205
Taylor, Walter, 19, 41, 169, 170,

285
Tennison, Barry, 18, 85, 120
term, 56

-equivalent, 58
-operation, 56
-reduct, 59
idempotent, 72
invertible, 72

terminus, 46
topological space, 72

Boolean, 73
extremally disconnected, 77,

239
compact, 73
Hausdorff (= T2), 73
locally compact, 73
quotient, 74, 87
subspace, 74
T0, 73
T1, 73
totally disconnected, 73

topology, 72, 79
discrete, 73
hull-kernel, 76
indiscrete, 73
quotient, 74, 83
Stone, 76

Torres Torrell, Antoni, 287
transversal, 27
Trillas, Enrique, 290
trivial, see algebra, cong., etc.
Trnková, Věra, 285
Tsinakis, Constantine, 161, 284,

288
two-sided, see half-shell, shell
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Tychonoff product theorem, 74
type, 20

unital, see ring, shell, etc.
UnitHalfShell, 216
'SheafUnitHalfShell, 177,

217
UnitShell, 14, 218
' SheafUnitShell, 177,

218
unity, 61, 96, 186, 203
universal calculus, 1
� -universal map, 68
universal relation, 31
Ursini, Aldo, 246

Vaggione, Diego, 47, 48, 194, 196,
214, 288, 291

Valeriote, Matthew, 289
van den Bossche, Gilberte, 81
van der Waerden, B. L., 2
variety, 56, 57

affine, 129
discriminator, 129
independence, 58

join, 58
preprimal, see algebra

sheaf representation, 264,
266, 268, 269, 271, 272

product, 58
Vaught, Robert, 288
vector space, 48, 117
vier-group, 111
Volger, Hugo, 288
von Neumann regular, see ring
von Neumann, John, 3, 9, 81, 149

Wade, L. I., 5
weak nullity, 185
Wedderburn-Artin theorem, 3
Weispfenning, Volker, 81
Werner, Heinrich, 87, 120,

124, 125, 128, 129, 163,
213, 268, 290

Whitehead, Alfred, 5
Willard, Ross, 19, 166, 185
Wolf, Albrecht, 8, 291

Zorn’s lemma, 59
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