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Balsa-wood model of J5 constructed by Gene Miller.1

1Photograph by Marlin Thomas; graphical adjustments by Bulent Atalay.
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Preface

Mathematics evolves through cycles of expansion, fueled by the analysis of new
ideas, and contraction, eventuated by the synthesis of seemingly diverse ideas.

The classical fractals known as Cantor’s set, Sierpiński’s carpet, and
Menger’s sponge may be counted among the first examples of universal spaces
in dimension theory. Originally, circa 1900, these fractals were constructed
by starting with a base-space I, the unit interval, and then recursively cutting
holes in the finite-product spaces Ik.

The unit interval as a base space dominated universal space theorems in
dimension theory up through 1931 when a subspace of I2n+1 was shown to
be universal for the class of n-dimensional separable-metric spaces.

For n-dimensional general (not necessarily separable) metric spaces, the
unit interval continued to be central through the 1960s. It was used to
construct the star space S(A) (hedgehog with |A| prickles — each prickle
being a copy of the unit interval); and a subspace of the infinite-product
S(A)∞ was shown to be universal for the class of n-dimensional weight |A| ≥
ℵ0 metric spaces.

In the general case, however, the search for a universal space was not over
because the exponent of the base-space S(A) is infinite while in the separable
case the exponent (2n + 1) is finite.

After nearly half a century (1931–1975) of using the unit interval to con-
struct universal spaces in dimension theory, a new one-dimensional weight
|A| base-space JA (a topological quotient of Baire’s space N(A)) was intro-
duced, and, a subspace of the finite-product Jn+1

A was shown to be the desired
universal space.

By 2007 it had been shown that JA is a generalized fractal — an attractor
of an infinite iterated function system. So in the beginning classical fractals
served as examples of universal spaces, and a century later (1900–2007), we
find universal spaces that involve a base space that is one of the first examples
of a generalized fractal — to the best of this author’s knowledge, the first
examples of attractors of infinite iterated function systems were derived from
JA-related research.

The construction of JA is simply a generalization of the identify adjacent
endpoints in Cantor’s set construction of the unit interval. Indeed, the idea of
endpoints and adjacent endpoints in Baire spaces led naturally to the identify
adjacent endpoints in the Baire space N(A) construction of JA. As a bonus,
the classical ideas of rationals and irrationals in the unit interval extend to
their counterparts in JA.

To go beyond a superficial understanding of such universal spaces and
generalized fractals, one must merge certain aspects of both dimension theory
and fractal geometry. This book provides such a development.

xi



xii PREFACE

For separable metric spaces, the universal spaces and classical fractals are
well documented in well-known texts. For general (not necessarily separable)
metric spaces, however, most of the research has only appeared in disparate
articles. This book unifies the general theory as it currently exists.

Mastery of the mathematics in this book prepares the reader for original
research in either dimension theory or fractal geometry. This book contains
the motivation and background of several currently open research problems.

In closing this preface, there are those who deserve special thanks. In
1968, when I was employed by the U.S. Navy, I received approval for two years
(1968–1970) of Navy-funded Advanced Study at the University of Virginia.
For his support, I thank Ray Hughey.

During 1968–1969, Gordon Whyburn was my advisor. In the spring of
1969, based on my idea of “closing the closure,” Professor Whyburn said that
I would finish my Ph.D. the following year. Sadly, however, in the summer of
1969, Professor Whyburn passed on. For imparting the self-confidence that
is required to create original mathematics, I will always remember and value
my relationship with Professor Whyburn.

During 1969–1970 Charles Alexander was my advisor. For continuing to
impart self-confidence while opening my eyes to dimension theory, and then
later approving my dissertation Imbedding One-Dimensional Metric Spaces,
I greatly appreciate and thank Professor Alexander.

This book would not exist had it not been for the rich history of insights
of many mathematicians. Among the many, however, I especially thank a
few: Jun-iti Nagata, James Perry, Ivan Ivanšić, and Uroš Milutinović.

Over the last decade, relevant graphics, videos, and models were created.
For developing those concrete representations, I give special thanks to two of
my former students, Chris Dupilka and Gene Miller.

The theorems and propositions presented in this book rest upon substan-
tive research that spans more than a century. Thus the task of obtaining,
evaluating, and organizing these diverse publications into a bibliography was
substantial. For her unfailing assistance over two years, I thank in particular
one of the librarians at the University of Mary Washington, Carla Bailey.

And to my wife Patty, I give thanks for keeping me healthy and happy.

June 2008 S.L.L.
Spotsylvania, Virginia



Introduction

The writings of Euclid and Aristotle clearly show that the intuitive idea of
“dimension” has been around for at least several millennia (Crilly [1999]).
By 1810, Bolzano saw the need for a definition, stating, “At the present time
there is still lacking a precise definition of the most important concepts: line,
surface, solid” (Johnson [1977, page 271]). And circa 1877, Cantor believed
that the “coordinate concept of dimension” was basically flawed.

During the early 1900s there was an emergence of a topological dimension
theory that evolved into an elegant body of mathematics within the context
of separable (weight ≤ ℵ0) metric spaces (Hurewicz and Wallman [1948]).
Almost parallel to the emergence of dimension theory, however, were cer-
tain constructions of spaces, now called classical fractals, that mostly served
as examples of pathological topological spaces or generalizations of well-
known constructions. Among those constructions were Sierpiński’s carpet
and Menger’s sponge (Figure 49.2). The Carpet and Sponge are, respec-
tively, planar and 3-space generalizations of Cantor’s set. In modern terms,
each is simultaneously a fractal and a universal space, the Carpet for planar
compact one-dimensional metric spaces, and the Sponge for compact one-
dimensional metric spaces.

By the 1940s, an extension of the classical (separable metric) dimension
theory to more general spaces seemed improbable. Nevertheless, by the mid-
1960s a surprisingly new and natural theory for general (weight ≥ ℵ0) metric
spaces was rapidly maturing. The extension of the classical theory was ini-
tiated by Stone [1948], who recognized a symbiosis between open coverings
and metric spaces. This symbiosis was further developed (in the context of
general topology) by Bing [1951], Nagata [1950], and Smirnov [1951] in their
metrization theorems. And on that foundation, Katĕtov [1952] and Morita
[1954] created a significant and elegant dimension theory for general (weight
≥ ℵ0) metric spaces.

One of the remaining problems, however, was the absence of an analo-
gous universal space for weight ≥ ℵ0 n-dimensional metric spaces (see the
quotation from Nagata [1967] on page 9 of this text).

In the classical theory the (2n + 1)-dimensional Euclidean cube I2n+1

contains the n-dimensional universal space (Nöbeling [1931]). For weight
|A| ≥ ℵ0 metric spaces, the analogous result appeared in Lipscomb [1975]: A
one-dimensional space JA was obtained by generalizing the identify adjacent
endpoints in Cantor’s-set construction of the unit interval. Indeed, the idea
of endpoints and adjacent endpoints in Baire spaces led naturally to the
identify adjacent-endpoints in the Baire space N(A) construction of JA.

The generalization also extends the classical ideas of rational and irra-
tional to their counterparts in JA (Definition 3.1). It turned out that the

xiii



xiv INTRODUCTION

(n+1)-dimensional Jn+1
A contains the desired n-dimensional weight |A| ≥ ℵ0

universal space.
The method of proof (Lipscomb [1975], and Chapters 7 and 8 in this text)

of the JA Imbedding Theorem was new. And prior to this text, the proof
had only appeared in the research literature.

The space JA was introduced circa 1970 in the context of point-set topol-
ogy (Chapter 1). For example, the Baire space N({0, 1}) is a copy of Cantor’s
set, and J2 = J{0,1} is a topological copy of the unit interval. And as the
self-similarity of Cantor’s set induces self-similarity of (the unit interval) J2,
the “self-similarity” of N(A) induces “self-similarity” in JA (§5).

Indeed, J3 and J4, respectively, are copies of fractals known as Sierpiński’s
triangle and cheese. In fact, Jn+1 for finite n ≥ 2 is a topological copy of the
n-web fractal ωn that is the attractor of a finite iterated function system Fn

whose n + 1 members are contractions by one-half toward the n + 1 vertices
of an n-simplex (Chapter 2, §8).

In particular, J5 lives in 4-space, and had never been viewed in 3-space
until Perry and Lipscomb [2003] constructed an isotopy that moves J5 from 4-
space into 3-space with its fractal dimension preserved (Chapter 2 §8,§9,§10;
Chapter 12). The existence or non-existence of such isotopies for J6 in 5-
space, J7 in 6-space, and J8 in 7-space are open problems.

The term fractal was coined by Mandelbrot [1975] the same year that
the JA Imbedding Theorem was introduced. The idea of viewing fractals as
attractors of finite iterated function systems (IFSs) was introduced in 1981
(Hutchinson [1981]), and then popularized in the late 1980s and early 1990s
following the publication of Barnsley’s [1988] text.

Also in the early 1990s, Lipscomb and Perry [1992], and independently
Milutinović [1992], produced imbeddings of JA into Hilbert’s l2(A) space.
Each imbedding involved an infinite IFS. In 1992, however, the IFS theory
was limited to IFSs that were finite. In 1996, by modifying the topology of
JA, Perry [1996] constructed a subspace ωA

c of the Tychonoff cube IA that
is an attractor of an infinite IFS. Perry also called attention to the open
problem of showing that ωA ⊂ l2(A), a copy of JA, is the attractor of an
infinite IFS (of affine transformations of l2(A)) (§31).

The open problem posed by Perry was solved by Miculescu and Mihail
[2008]. Miculescu and Mihail provided the mathematical context with an
appropriate Hutchinson operator that had ωA as its fixed point, i.e., ωA is
indeed the attractor of an infinite IFS (Chapter 5).

Since the introduction of JA and the JA Imbedding Theorem in the 1970s,
the JA-related research literature has been growing. In particular, Miluti-
nović’s, and, Ivans̆ić and Milutinović’s joint research has been substantial,
spanning more than two decades. For example, by modifying the decomposi-
tion approach used to prove the Jn+1

A Imbedding Theorem, they proved that
(J3)n+1 (recall that J3 is a copy of Sierpiński’s triangle) contains a universal
space for n-dimensional separable metric spaces (Chapter 11 and the graphic
in Figure 55.1).
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In addition, analogous to Urysohn’s [1925a] Metrization Theorem, which
states that a topological space of weight |A| ≤ ℵ0 is metrizable if and only if
it is homeomorphic to a subspace of I∞, the corresponding J∞

A is universal
for metrizable spaces of weight |A| ≥ ℵ0 (Chapter 10).

Finally, consider the problem that is inverse to constructing fractals from
manifolds : The emergence of the classical fractals was viewed as one of cut-
ting holes in manifolds. The inverse problem is that of constructing manifolds
from fractals. In the context of Jn+1, the problem is that of extending the n-
web ωn IFS to an n-simplex IFS. For n = 2, Chapter 13 contains the solution;
and for n = 3, the solution is detailed in Chapter 14. Applications of these
two solutions yield new representations of 2-space, 3-space, the 1-sphere, and
the 2-sphere.

The inverse problem is open for n ≥ 4. This author believes that the
approach used to solve the ω3 case is general enough to serve as a model
for solutions for any n, and the most difficult part of a solution is that of
understanding the hole Δn \ ∪w∈Fnw(Δn) in Δn (§97).

Format, Conventions, and Outline

The style of the text is informal, some definitions are neither numbered nor
offset. A term defined within a paragraph, however, always appears in italics.
In contrast, lemmas, propositions, and theorems always appear in boldface,
are always numbered, and always offset.

The sections are numbered sequentially throughout the text, from §1 in
Chapter 1 to §97 (the last section) in Chapter 14. Then the sections in
the Appendices are also sequential, from §A1 in Appendix 1 to §A14 in
Appendix 3. Each table, lemma, proposition, and theorem is numbered —
in §87 we begin with 87.1 Theorem and then Fig. 87.2, which is followed
by Table 87.3. The only figures that are not numbered are those of “local
interest.” The first numbered equation in each chapter has label “(1)” and
the following such equations in each chapter are then sequentially numbered.

For specific contents of the chapters, let us consider them individually.
Chapter 1. Construction of JA = Jα: Baire’s zero-dimensional spaces are

illustrated and their relevant properties discussed. The adjacent-endpoint
relation is defined and then used to construct JA. Proofs of Lemmas 3.2 and
3.3 are new and substantially more concise than their original counterparts.
The comment section contains an extensive prehistory and history of the
mathematics that led to the construction of JA.

Chapter 2. Self-similarity and Jn+1 for Finite n: The fractal nature of
JA is deduced from that of N(A). Graphic figures of Jn+1 are provided for
small n ≤ 4. The fractal nature of Jn+1 is exposed by showing that Jn+1

is homeomorphic to the attractor ωn of a finite IFS. The open problems
associated with viewing Jn+1 in 3-space for n = 5, 6, and 7 are detailed.

Chapter 3. No-Carry Property of ωA′
: For some fixed z ∈ A (z indicates

zero), A′ = A \ {z}, and a mapping JA → ωA′
from JA into Hilbert space is

introduced. (The mapping is shown to be an imbedding in Chapter 4.) The
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use of star spaces (hedgehogs with |A| prickles) yield the no-carry character-
ization of ωA′

. Several examples serve to motivate the constructions.
Chapter 4. Imbedding JA in Hilbert Space: The mapping JA → ωA′ ⊂

l2(A′) introduced in Chapter 3 is shown to be a homeomorphism. That is,
JA is imbedded into Hilbert’s l2(A′) ⊂ l2(A) space as ωA′

, which satisfies
the no-carry property. We also review Sierpiński’s original formulation of his
triangle, which is the basis for Milutinović’s [1992] construction: Milutinović’s
space MA is a topological copy of JA that resides in the standard simplex
ΔA of l2(A). (For ΔA see Appendix 2.)

Chapter 5. Infinite IFS with Attractor ωA′
: Neighborhoods of subsets of

metric spaces are discussed and illustrated for motivation of the definition of
the Hausdorff metric h on the set BX of all non-empty, bounded, and closed
subsets of X . The when and why (BX , h) is complete, and, the properties
of the related pseudo-metric h∗ are detailed. The definitions of a “bounded
(not necessarily finite) IFS” and the Hutchinson operator for such IFSs are
discussed. We introduce the JA IFS and then show that its attractor is ωA′

.
Chapter 6. Dimension Zero: Each of the subspaces of rationals and

irrationals of JA are shown to be zero-dimensional and dense. The n = 0
case of the Jn+1

A Imbedding Theorem is established. We also show that the
subspace J�

A(n) of �-tuples in J�
A with at most n rational coordinates is n-

dimensional. Each of these “general” JA results is applied for |A| = 2, which
yields corresponding statements about the unit interval.

Chapter 7. Decompositions : We present a careful development of the
decompositions that are key to the proof of the Jn+1

A Imbedding Theorem.
Given an arbitrary n-dimensional metric space X , we systematically decom-
pose X so that the decompositions have enough properties to distinguish
individual points and allow an imbedding of X into Jn+1

A (n). Extensive
graphics, none of which have previously appeared in the literature, serve to
motivate (a) the idea of the dimension function “diml”; (b) “nodes” of a cover
and the “nodal properties”; and (c) the constructions used in the proofs of
the lemmas of the Decomposition Theorem 39.1. New and additional proofs
of the lemmas and theorems are provided. For example, the proof of the
Decomposition Lemma 38.9, which has been extensively applied by Ivans̆ić
and Milutinović in their JA-related research, contains new details. The un-
proven but implied claims in Lipscomb [1975] whose proofs have not previ-
ously appeared in the literature are provided in this chapter. The proof of
the Decomposition Theorem 39.1 is illustrated by a new sequence of graphics
that decompose the unit interval step-by-step according to the constructions
used in the proof.

Chapter 8. The Jn+1
A Imbedding Theorem: We prove the Jn+1

A Imbedding
Theorem. The presentation is a greatly extended version of the one that
appears in Lipscomb [1975]. Nagata’s [1960] and [1963] General Imbedding
Theorems are discussed in the comment section (§46).

Chapter 9. Minimal-Exponent Question: The question of whether the ex-
ponent “n+1” used in the Jn+1

A Imbedding Theorem is minimal is discussed.
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A very brief review of Vietoris homology and a short recap of the homology
sequence of n-spheres Sn is presented. We then follow Borsuk and prove
his theorem the 2-sphere S2 is not topologically contained in the Cartesian
product of two one-dimensional spaces. Details underlying Borsuk’s proof
are added, and the obvious application is that the index “n + 1” in the Jn+1

A

Imbedding Theorem cannot be reduced.
Chapter 10. The J∞

A Imbedding Theorem: The proof of the J∞ Imbed-
ding Theorem is the focus. However, in §51 we compare the Jn+1

A and J∞
A

imbedding theorems with two pairs of their predecessors — the classical (sep-
arable metric) pair of Urysohn [1925a] and Nöbeling [1931], and, the general
(not necessarily separable) metric pair of Kowalsky [1957] and Nagata [1963].

Chapter 11. 1992–2007 JA-Related Research: The chronological and his-
torical context appears in the graphic labeled Figure 55.1. The graphic spans
1875 to 2007 and provides the backdrop for the literature that relates (some
more than others) in some form to JA. The narrative part of the chapter
provides a unifying survey of the JA-related research that has heretofore only
appeared in research articles. Milutinović’s work, and, Ivanšić and Miluti-
nović’s joint work are featured. An example of a Klavžar-Milutinović graph
(i.e., a graph whose structure is based on the adjacent-endpoint relation ap-
plied to finite product sets) is illustrated in §61.

Chapter 12. Isotopy Moves J5 into 3-Space: We discuss the problem of
deciding which Jn+1 can be viewed in 3-space as attractors of finite IFSs.
The J5 case is detailed, and the only remaining open cases (i.e., the J6, J7,
and J8 cases) are identified.

Chapter 13. From 2-Web IFS to 2-Simplex IFS, 2-Space and the 1-Sphere:
The inverse problem of constructing manifolds from fractals in the case of ω2

is solved. That is, the ω2 IFS is minimally extended to a 3-simplex IFS. The
fibers of the corresponding address map for the 3-simplex are characterized,
and the desired representations are obtained.

Chapter 14. From 3-Web IFS to 3-Simplex IFS, 3-Space and the 2-Sphere:
The inverse problem of extending the ω3 IFS to one whose attractor is a
3-simplex is solved. The fibers of the corresponding address map for the
3-simplex are characterized, and an application yields the desired represen-
tations. In §97, the open problem of extending the 4-web IFS to one whose
attractor is a 4-simplex is discussed.

Finally, the book contains three appendices: Appendix 1. Background
Basics; Appendix 2. The Standard Simplex ΔA in l2(A); and Appendix 3.
Measures and Fractal Dimension.



CHAPTER 1

Construction of JA = Jα

Following its emergence during the early 1900s, topological dimension theory
evolved into an elegant body of mathematics within the context of separable
(weight ≤ ℵ0) metric spaces. By the 1940s, when this now classical theory
was well established, an extension to more general spaces seemed improbable.
Nevertheless, by the mid-1960s a surprisingly new and natural theory for
general (weight ≥ ℵ0) metric spaces was rapidly maturing.1

One of the remaining problems, however, concerned the absence of a the-
ory of universal spaces (for n-dimensional weight α ≥ ℵ0 metric spaces) that
was analogous to the classical (weight α ≤ ℵ0) theory.2

In the classical theory it is the product space I2n+1 of 2n + 1 copies of
the unit interval I that contains the universal space. And as it turned out,
an analogous result surfaced in 1975: The product space Jn+1

α of n+1 copies
of the one-dimensional Jα contains the universal (weight α ≥ ℵ0) space.

Originally, circa 1970, Jα was introduced in the context of point-set topol-
ogy. By the early 1990s, an infinite iterated function system operating on
Hilbert’s �2(A) space (cardinality |A| = α) provided a homeomorphic copy
ωA of JA; and by 2007, ωA was shown to be the attractor of such a system.
In this chapter, we focus on the 1970s’ original development of JA = Jα.

§1 Baire’s Zero-Dimensional Spaces

Any countable product ×iAi of discrete spaces Ai = A is a Baire (zero-
dimensional) space N(A) = ×iAi. So the elements of N(A) are simply
sequences a = a1a2 · · · in A; and when a ∈ N(A) has a constant tail, i.e.,
at+1 = at+2 = · · · for some index t, we may write a = a1 · · · atat+1.

For a doubleton or tripleton set A, Figure 1.1 provides “geometrical ap-
proximations”: Baire’s space N({0, 2}) is viewed as a Cantor set, and “Cantor
subspaces” induce a “triangularly organized approximation” to N({0, 1, 2}).

1The extension of the classical theory was initiated by Stone [1948], who recognized a
symbiosis between open coverings and metric spaces. This symbiosis was further developed
(in the context of general topology) by Bing [1951], Nagata [1950], and Smirnov [1951] in
their metrization theorems. And on that foundation, Katětov [1952] and Morita [1954]
created a significant and elegant dimension theory for general metric spaces.

2For a given class C of topological spaces, U ∈ C is universal for C if each member of
C is homeomorphic to a subspace of U . The classical theorem (concerning the universal
space for n-dimensional separable metric spaces and corresponding imbeddings) is due to
Nöbeling [1931]. For timely details and background on the problem of extending Nöbeling’s
work to general metric spaces see Nagata [1965] [1967] and Lipscomb [1973].
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Fig. 1.1 Organized approximations to N({0, 2}) and N({0, 1, 2}).

By extending the (self-similar) pattern of two groupings (|A| = 2) of
“segments” and three groupings (|A| = 3) of “triangles,” we may approximate
N(A) for |A| = 4 using four groupings of “tetrahedra” (Figure 1.2).
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Fig. 1.2 Points on four “tetrahedra” approximate N({0, 1, 2, 3}).

These groupings also expose key features of a basis of N(A) — the subba-
sis of sets A1 × A2 × · · · × Ai−1 × {ai} × Ai+1 × · · · yields covers Bk =
{〈a1, a2, . . . , ak〉 = {a1} × · · · × {ak} × Ak+1 × Ak+2 × · · · } of N(A) (of
pairwise-disjoint sets) which in turn yield a basis B = ∪kBk (Figure 1.3).
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Fig. 1.3 Illustration of B2 relative to N({0, 2}) and N({0, 1, 2}).

Obvious aspects of B coupled with the following theorem expose the basic
properties of the Baire space N(A).
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1.4 Theorem (Morita [1954])(Ind X ≤ n and σ-locally finite bases) Let
X be a metric space. Then for n ≥ 0, we have Ind X ≤ n if and only if X
has a σ-locally finite basis B such that G ∈ B implies Ind B(G) ≤ (n − 1).

1.5 Theorem (basic properties of N(A)) Let |A| = α ≥ 1. Then N(A) and
its basis B have the following properties:

(i) Each Bk ⊂ B is an open-set partition of N(A).
(ii) Each member of B is both open and closed, and thus has

empty boundary.
(iii) Each Bk is locally finite, and B is σ-locally finite.
(iv) When |A| = α is infinite, then N(A) has weight α.
(v) The space N(A) is metrizable and has dimension zero, i.e.,

dimN(A) = IndN(A) = 0.
(vi) The space N(A) is topologically complete.

Proof. (i) Each Bk is a pairwise-disjoint open covering of N(A). (ii) From
(i), we have G ∈ Bk implies G = N(A) \ (∪B∈B′

k
B) where B′

k = Bk \ {G}.
(iii) Use (i) and B = ∪kBk. (iv) The weight of N(A) ≤ |B| = α, and the
weight of N(A) ≥ α because B1 has size α and satisfies (i). (v) Since N(A)
is regular with a σ-locally finite basis B, the Nagata-Smirnov Metrization
Theorem applies. The zero-dimensional part follows from Theorem 1.4 with
n = 0. (vi) Statement (vi) holds because ×iAi is topologically complete if
and only if each Ai is complete.

The usual metric ρ for the Baire space N(A) is given by

ρ(a, b) =
{

1/n when a �= b and n = min {k : ak �= bk};
0 when a = b.

Thus, for a = a1a2 · · · in N(A), the set 〈a1, . . . , ak〉 is the closed ball Bδ(a) =
{y ∈ N(A) : ρ(a, y) ≤ δ} centered at a with radius δ = 1/(k + 1).

1.6 Theorem (Morita [1955])(dim X ≤ n and Baire spaces) Let X be a
metric space. Then dimX ≤ n if and only if there exists a subspace S of
N(A) for suitable A and a closed continuous surjection f : S → X such that
each fiber f−1(x) contains at most n + 1 points.

Applying Theorem 1.6, we may bound the covering dimension of the unit
interval I = [0, 1], i.e., dim I ≤ 1. In detail, let A = {0, 2}; view S = N(A)
as Cantor’s space C and f : C → C/∼ (=t I) as identification of adjacent
endpoints ; and note that each fiber of f contains at most two points.
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§2 Adjacent-Endpoint Relation

In this section we extend the “adjacent-endpoint relation ∼” from Cantor’s
space C =t N({0, 2}) to N(A) where A is an arbitrary non-empty set.

First, recall that the homeomorphism C → N({0, 2}) is exposed by triad-
ically expanding (x �→ a1a2 · · · ) each number x in C, i.e.,

x ∈ C ⇐⇒ x = Σ∞
i=1ai/3i for a unique a1a2 · · · ∈ N({0, 2}).

This bijection induces a bijection of the respective topologies, matching each
member of the σ-locally finite basis B = ∪kBk to a closed and open member
of such a basis for C. For example, 〈0〉 ↔ C ∩ [0, 1/3], 〈2〉 ↔ C ∩ [2/3, 1],
〈0, 0〉 ↔ C ∩ [0, 1/9], 〈0, 2〉 ↔ C ∩ [2/9, 1/3], 〈2, 0〉 ↔ C ∩ [2/3, 7/9], etc.

Second, recall that “endpoints in C” correspond to eventually constant
strings, e.g., 0 ↔ 00 · · · , 1/3 ↔ 022 · · · , 2/3 ↔ 200 · · · , 1 ↔ 22 · · · , etc., and
that “adjacent endpoints in C” encode as “switching tails”, e.g., 1/3 and 2/3
correspond, respectively, to 022 · · · and 200 · · · (See Figure 2.1).
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Fig. 2.1 Abstract picture of adjacent endpoints.

2.2 Definitions (Lipscomb [1973])(adjacent endpoints and the relation)

Let N(A) be a Baire space. A point a = a1a2 · · · in N(A) is an endpoint
of N(A) if there exists an index k such that ak = ak+1 = · · · . Distinct
endpoints a �= b are adjacent endpoints when there exists x �= y in A such
that a = a1a2 · · ·at−1xyyy · · · and b = a1a2 · · · at−1yxxx · · · . If a and b are
adjacent endpoints, the unique index t ≥ 1 is called the tail index of a and
b. The relation ∼ ⊂ N(A) × N(A) given by “a ∼ b” when either a = b or a
and b are adjacent endpoints is called the adjacent-endpoint relation.

2.3 Theorem Let N(A) be a Baire space. Then the adjacent-endpoint rela-
tion ∼ is an equivalence relation on N(A) with the property that each equiv-
alence class contains at most two members.

Proof. The relation ∼ is clearly reflexive and symmetric. For transitivity,
let a ∼ b ∼ c. If a = b or b = c, then clearly a ∼ c. Otherwise a �= b and
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b �= c, and both pairs have the same tail index t. So a1 = b1 = c1, . . . ,
at−1 = bt−1 = ct−1, and, for index t, at = bt+1 = ct, and, for indices k ≥ t,
ak = bt = ck. Thus a = c, making a ∼ c. This transitivity argument also
yields (a �= b and a ∼ b) implies (b = c or a = c).

§3 JA and the Natural Map p

We begin with the key definitions.

3.1 Definitions (Lipscomb [1973])(JA and its rationals and irrationals)

Let |A| = α ≥ 1, let N(A) be a Baire space, and let “∼” denote the adjacent-
endpoint equivalence relation on N(A). Then JA = Jα is the quotient space
N(A)/ ∼ and p : N(A) → JA is the natural mapping given by p(a) = [a]
where “[a]” denotes the equivalence class that contains a ∈ N(A). Moreover,
x ∈ Jα is a rational point (or a rational) when p−1(x) is a doubleton set, and
x is an irrational point (or an irrational) when p−1(x) is a singleton set.

So the mapping p : N(A) → JA is surjective and G ⊂ JA is open in JA

if and only if p−1(G) is open in N(A), i.e., JA has the largest topology that
makes p continuous. And since each fiber p−1(x) of p is either a singleton or
doubleton set, we see a fortiori that each fiber of p is compact. To prove that
p is also a closed mapping, we shall use the following three lemmas.

3.2 Lemma (closed mappings) A quotient mapping f(Y ) = Z is closed if
and only if for each fiber f−1(z) and each open set G ⊃ f−1(z) there is an
open f -inverse set V ⊂ Y such that f−1(z) ⊂ V ⊂ G.

Proof. Suppose f : Y → Z is closed and that G ⊃ f−1(z) is open in Y . Let
F = Y \ G. Then F is closed in Y , making f(F ) closed in Z, and, in turn,
H = Z \ f(F ) open in Z. It follows that V = f−1(H) is the desired open
f -inverse set. Conversely, suppose f is quotient and z ∈ Z implies any open
G ⊃ f−1(z) yields the specified V . Let F be any closed subset of Y such that
f(F ) �= Z. We show that f(F ) is closed in Z: Consider any z ∈ Z \ f(F ).
Then f−1(z) ∩ F = ∅. So G = Y \ F ⊃ f−1(z) being open ensures that
an open f -inverse set V = f−1(H) exists such that f−1(z) ⊂ V ⊂ G. But
because f is a quotient map, H is open in Z. Thus, z ∈ H and H∩f(F ) = ∅,
so z is not in the closure of f(F ), i.e., f(F ) is closed.

3.3 Lemma (p−1(z) is a singleton set) Let p : N(A) → JA be the natural
map, and let p−1(z) = {c} ⊂ G = 〈c1, . . . , ck〉 ∈ Bk where c = c1c2 · · · . Then

V =
{

〈c1, . . . , ck〉 \ {c1 · · · ckx : x �= ck; x ∈ A} if c1 = c2 = · · · ;
〈c1, . . . , ck〉 \ {c1 · · · ckx : x ∈ A} if c is not an endpoint

is an open p-inverse set such that p−1(z) ⊂ V ⊂ G.
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Proof. Clearly, p−1(z) ⊂ V ⊂ G; and V is open because {c1 · · · ckx : x ∈ A}
is closed — each member of the locally finite open partition Bk+1 contains at
most one of the closed singleton sets {c1 · · · ckx}. Moreover, V is a p-inverse
set: Suppose a ∈ V , a ∼ b, and a �= b. Then the definition of V ensures that
the tail index t of a and b must satisfy t ≥ k + 1. So b ∈ V .

3.4 Lemma (p−1(z) is a doubleton set) Let p : N(A) → JA be the natural
map, and let p−1(z) = {c, d} ⊂ G = 〈c1, . . . , ck〉 ∪ 〈d1, . . . , dk〉 where k is
greater than the tail index t of c = c1c2 · · · and d = d1d2 · · · . Then

V = 〈c1, . . . , ck〉 ∪ 〈d1, . . . , dk〉 \ (∪ x,y∈A
x �=ck,y �=dk

{c1 · · · ckx, d1 · · ·dky})

is an open p-inverse set such that p−1(z) ⊂ V ⊂ G.

Proof. Clearly p−1(z) ⊂ V ⊂ G; and as in the previous proof, V is open.
So suppose that a ∈ V and a ∼ b with tail index t′. Then t′ ≥ t: If t′ = t,
then since a ∈ V and k > t, a = c or a = d, and we are finished. If t′ > t,
then t′ ≥ k + 1 (if t′ = k, then we would contradict a ∈ V ). Thus, b ∈ V .

Recall the theorem “p : X → Y perfect and X metrizable implies Y is
metrizable.” (For more information on perfect mappings see Appendix 1.)

3.5 Theorem (p is perfect) The natural mapping p : N(A) → JA is a perfect
mapping.

Proof. Since p is a surjective quotient mapping, an application of the
previous three lemmas shows that p is also closed. Since p is a closed surjective
mapping with compact fibers, p is a perfect mapping.

3.6 Theorem (JA is metrizable and one-dimensional) Let p : N(A) → JA

be the natural mapping. Then JA is a one-dimensional metrizable space.

Proof. Since p is perfect and N(A) is metrizable, JA is metrizable. And
since p : N(A) → JA is at most two-to-one, Theorem 1.6 shows that dim JA ≤
1. But since |A| = α ≥ 2, Cantor’s space is a topological subspace of N(A).
Thus the unit interval I = [0, 1] is a topological subspace of Jα. So by the
subspace theorem, dimJA ≥ 1.

§4 Comments

4.1 Baire’s spaces N(A). These spaces are fundamental in modern di-
mension theory (Engelking [1978] and Nagata [1965] [1983]). For example,
Theorem 1.6 (Morita [1955]) was the key to showing that dim JA = 1; N(A)
is universal for the class of all zero-dimensional weight |A| ≥ ℵ0 metric spaces
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(Engelking [1978, Theorem 4.1.24]); and for |A| = 2, Baire’s space N(A) is a
topological copy of the Cantor set.3

The Cantor set C is a paradigm of a fractal that is a universal space
in dimension theory: On the one hand, C is universal for the class of zero-
dimensional separable metrizable spaces (Kuratowski [1966, page 285] and
Urysohn [1925b, page 77]). On the other hand, it is a classical fractal.

By the 1980s, N(A) for finite A became popularized as code space in the
context of finite iterated function systems and fractal geometry.

4.2 Classical Adjacent-Endpoint Identification. It is most likely
that it was Cantor who introduced classical adjacent-endpoint identification.

Consider the English translation of Cantor [1884] that appears in Edgar
[1993]. On pages 15 and 16 of the translation, Cantor constructs the “Devil’s
Staircase.” (The removal of the open horizontal line segments from the graph
of the Devil’s Staircase exposes the graph of C → I = [0, 1].)

To set the stage for the Devil’s Staircase, Cantor constructs his set C as the
residual set of points obtained by removing a countable number of (pairwise
disjoint) open intervals “(aν , . . . , bν).” Then beginning at the bottom of page
15, Cantor states:

A special case of this type of function was already included in an
example that I mentioned in Acta Mathematica 2, page 407.

The ‘Acta Mathematica 2’ reference is Cantor [1883b]. Then Cantor contin-
ues as follows:

By putting

z =
c1

3
+

c2

32
+ · · · cρ

3ρ
+ · · · , (6)

where the coefficients cρ can take any of the values 0 or 2 and
where the series can have a finite or infinite number of terms . . .

Cantor then represents the right-endpoints bν of the general open intervals
by stating:

. . . all the bν are included in the formula

bν =
c1

3
+

c2

32
+ · · · cμ−1

3μ−1
+

2
3μ

. (7)

3Initially, the Cantor set was evidently introduced by H. J. S. Smith [1875]. Hannabuss
[1996] states, “. . . this set appeared originally in an 1875 paper by . . . Henry Smith . . .,
some eight years before Cantor mentioned it (without giving its recursive geometrical con-
struction) in 1883 (Cantor [1883a]). . ..” We also have Edgar’s [1993, page 11] comments,
“. . . But Smith’s sets seem to be only countable sets of endpoints, not the actual perfect
sets. Of course, before ‘countable’ and ‘uncountable’ were clarified by Cantor, this dis-
tinction would not have seemed important.” Today, Cantor’s set is often viewed as the
attractor of the iterated function system {w0, w1} where each wi is a contraction of the
unit interval by 1/3 with w0 contracting toward “0” and w1 contracting toward “1.” In
this case, N({0, 1}) is the code space.
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The points aν arise . . . from the same formula by taking cρ start-
ing with a certain ρ always equal to 2 so that, by the equation

1 =
2
3

+
2
32

+
2
33

+ · · · ,

one has, by taking cμ = 0, cμ+1 = cμ+2 = · · · = 2,

aν =
c1

3
+

c2

32
+ · · · + cμ−1

3μ−1
+

1
3μ

. (8)

. . .

Cantor then specifies the classical adjacent-endpoint identification:

We now relate the variable z to another variable y defined by the
formula

y =
1
2

(c1

2
+

c2

22
+ · · · + cρ

2ρ
+ · · ·

)
(9)

in which we agree that the coefficients cρ have the same value as
in (6).

It follows that Cantor’s mapping z �→ y is what we now call classical adjacent-
endpoint identification. Technical details of properties (continuous closed
surjection) of z �→ y may be found in Pears [1975, page 162], who concludes
his discussion with the statement:

Thus the space obtained from the Cantor set by identifying pair-
wise the end points of the deleted intervals is the unit interval.

Also see Pervin [1964, §8.3, Problem 3].

4.3 Prehistory of Adjacent-Endpoint Identification N(A) → JA.

To understand the motivation for extending the notion of z �→ y from
N({0, 2}) → I to N(A) → JA for arbitrary A, one needs some historical
context of universal spaces in dimension theory prior to the 1970s.

We begin by going back to the early 1900s, when, based on extensions of
the recursive scheme of cutting holes in the unit interval to create the Cantor
set, other “fractals” and “universal spaces in dimension theory” emerged:
Sierpiński [1916] and Menger [1926a] used recursive schemes of cutting holes
in, respectively, the square I2 and the cube I3 to create universal spaces that
are now known as classical fractals. Sierpiński’s carpet is universal for planar
compact one-dimensional metric spaces; and Menger’s sponge (Figure 49.2)
is universal for compact one-dimensional metric spaces. (For an intuitive
understanding of the universality of Sierpiński’s carpet see Peitgen, Jürgens,
and Saupe [1992, §2.7], and for an English translation of Menger’s 1926 Gen-
eral Spaces and Cartesian Spaces in the Communications to the Amsterdam
Academy of Sciences see Edgar [1993].)
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Menger [1926b] also stated that a compact metric space of dimension less
than or equal to n could be imbedded in the Euclidean cube I2n+1.

By 1931 Nöbeling [1931] had removed the compactness restriction and
proved the Classical Imbedding Theorem for separable metric spaces, i.e.,
he specified a subspace of the Euclidean cube I2n+1 that is universal for
n-dimensional separable metric spaces.4

Three decades later, following the substantial development of a dimension
theory for general (not necessarily separable) metric spaces, Nagata [1960]
used an infinite-dimensional space — Dowker’s [1947] generalized Hilbert
space — to construct a subspace Fnα that is universal for n-dimensional
weight-α ≥ ℵ0 metric spaces. Three years later, however, Nagata [1963] made
a more transparent construction by introducing another universal space Knα.
But again, Knα emerged as a subspace of an infinite-dimensional space P (A)
— P (A) is the countable product of star spaces (star spaces are known in
the literature as hedgehogs with |A| = α prickles).

By 1966, Nagata [1967], contrasting his universal spaces (subspaces of
infinite-dimensional spaces) with the classical universal spaces (subspaces of
finite-dimensional Euclidean cubes), stated:

Comparing the general imbedding theorem with the classical one
for separable metric spaces we notice that P (A) has infinite di-
mension while every n-dimensional separable metric space is imbed-
ded in the (2n+1)-dimensional Euclidean cube I2n+1. This leads
us to the following problem, ‘Improve the general imbedding the-
orem finding another universal n-dimensional space instead of
P (A).’

Nagata’s statement calls attention to the fact that Nöbeling’s [1931] Clas-
sical Imbedding Theorem rests on the one-dimensional unit interval I as the
base space in “I2n+1”. It therefore seemed (to this author) that any general
imbedding theorem (analogous to Nöbeling’s) would require (and be built
upon) a one-dimensional weight α ≥ ℵ0 metric space that would serve as an
analogue of the unit interval.

So prior to the 1970s, it was Nagata’s research and quotation above that
served as motivation for seeking analogues of the unit interval.

Also prior to the 1970s, there were three well-known results that indicated
how to construct such an analogue: First, the unit interval I may be obtained
by Cantor’s identification of adjacent endpoints z �→ y; second, Cantor’s set C
is a topological copy of Baire’s space N({0, 2}); and third, Morita’s Theorem
(Theorem 1.6), which implies that an at most 2-to-1 closed and continuous
image X of any subspace of N(A) has dimX ≤ 1.

4For more detail on the Classical Imbedding Theorem see, e.g., the “Historical and
bibliographic notes” section on page 128 of Engelking [1978], and the “3. Imbedding of a
compact n-dimensional space in I2n+1” and “4. Imbedding of an n-dimensional space in
I2n+1” sections on pages 56–63 in Hurewicz and Wallman [1948].
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From those three results, it seemed natural to try to obtain JA by extend-
ing to N(A) the idea of adjacent endpoints in N({0, 2}).5

4.4 JA in the Context of Fractals. The graphics presented in the
following chapter will elucidate how the adjacent-endpoint relation induces
fractal structures. It should be noted that JA, created within the context of
dimension theory prior to 1973, emerged into a “fractal void” that existed
prior to Mandelbrot’s [1975] introduction of fractal.

It was during the 1980s that fractals (Mandelbrot [1983]), finite iterated
function systems (Hutchinson [1981]), fractal geometry (Falconer [1985]),
code space and address maps (Barnsley [1988]) were popularized.

4.5 Closing Comments. As stated before, the material presented in this
chapter follows Lipscomb [1973]. However, the constructions in Lemmas 3.2
and 3.3 of the desired open p-inverse sets V are new and substantially more
concise than their original counterparts. The new approach specifies the V
externally, i.e., as the result of removing a closed set of points from a basic
open set. The original proofs in Lipscomb [1973] concerned a V defined
internally, i.e., as a union of an infinite number of open sets.

To close these comments, it is instructive to look back and sample the
historical view during the decades of the 1930s through the 1950s expressed
in the introduction of G. T. Whyburn’s [1958] article Topological Character-
ization of the Sierpiński Curve:6

The universal plane curve described by Sierpiński [1916] has proven
highly useful in the development of various phases of topology and
analysis which have gone ahead at such a rapid pace in the inter-
vening period of over forty years. Interest in this curve and its
analogue in 3-space is currently much alive and its role in math-
ematics is surely by no means finished. The curve is obtained
very simply as the residual set remaining when one begins with
a square and applies the operation of dividing it into nine equal
squares and omitting the interior of the center one, then repeats
this operation on each of the surviving 8 squares, . . . and so on
indefinitely. Sierpiński showed that this set contains a topological
image of every plane continuum having no interior point and thus
it has come to be known as the Sierpiński plane universal curve.

5Because JA was conceived as a generalization of the unit interval I, it seemed natural
to select a notation that serves as a mnemonic of the extension — select the letter that
follows the letter I, namely the letter J .

6Whyburn’s 1958 article was based on a lecture that he first presented at the Warsaw
Mathematical Colloquium in the spring of 1930, where he was introduced by Sierpiński.



CHAPTER 2

Self-Similarity and Jn+1 for Finite n

The unit interval [0, 1] =t J2 is two copies [0, 1/2] and [1/2, 1] of itself, each
just touching the other. In this chapter we show that JA is |A| copies of
itself, each “just touching” the others. This feature appears in the graph-
ics where side-by-side approximations of N(A) and JA elucidate adjacent-
endpoint pastings. Six figures serve to illustrate J5. For finite n, an iterated
function system Fn is constructed whose attractor ωn ⊂ R

n is homeomor-
phic to Jn+1. The homeomorphism exposes the Fn-induced address map
φ : N({0, . . . , n}) → ωn as adjacent-endpoint identification.

§5 Self-Similarity of JA

For any Baire space N(A), the partition B1 = {〈a〉 : a ∈ A} contains |A|
pairwise-disjoint homeomorphic copies

〈a〉 = {a} × A × A × · · · (a ∈ A)

of N(A). These copies map to |A| homeomorphic copies p(〈a〉), a ∈ A, of JA.
Furthermore, it is clear that when a �= b the rational {ab, ba} is a member of
both p(〈a〉) and p(〈b〉). We can say more.

5.1 Lemma (just-touching property) Let a, b ∈ A be distinct, and let p be
the natural mapping N(A) → JA. Then |p(〈a〉) ∩ p(〈b〉)| = 1 and the unique
point in the intersection is the rational r = {ab, ba}.

Proof. Let z ∈ p(〈a〉) ∩ p(〈b〉). Then 〈a〉 ∩ 〈b〉 = ∅ implies that there exist
c ∈ 〈a〉 and d ∈ 〈b〉 such that p({c, d}) = z. Since p is at most 2-to-1,
p−1(z) = {c, d}. So c ∼ d, c1 = a, and d1 = b yield z = {c, d} = r.

So each of the |A| copies of JA just touches the others. We shall refer to this
combinatorial property as the just-touching property.

The “self-similarity” of JA continues at each level. The partition B2 =
{〈a, b〉 : a, b ∈ A} contains |A|2 pairwise-disjoint copies

〈a, b〉 = {a} × {b} × A × A × · · · (a, b ∈ A)

of N(A), and again these copies map to |A|2 homeomorphic copies p(〈a, b〉)
of JA. For a fixed a ∈ A, the set {p(〈a, x〉) : x ∈ A} of |A| copies of JA sat-
isfies the just-touching property. That is, if b �= c, then p(〈a, b〉) just touches

S.L. Lipscomb, Fractals and Universal Spaces in Dimension Theory,

DOI 10.1007/978-0-387-85494-6 2, c© Springer Science+Business Media, LLC 2009 11
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p(〈a, c〉) in a unique rational {abc, acb}. The process continues — the level-
k copies of JA consist of all sets p(〈a1, a2, . . . , ak〉) for a1, a2, · · · , ak ∈ A. And
for a fixed (k−1) string a1a2 · · ·ak−1, the two level-k copies p(〈a1, a2, . . . , ak−1, b〉)
and p(〈a1, a2, . . . , ak−1, c〉) meet only at r = {a1a2 · · · ak−1bc, a1a2 · · · ak−1cb}.

§6 Approximations for n + 1 = 2, 3, 4

We begin with Figure 6.1 where A = {0, 2}. In this case N(A) is homeomor-
phic to Cantor’s set. Note that

1/3 = 0/31 + Σ∞
i=22/3i p−→ 1/2 = 0/22 + Σ∞

i=22/2i+1

2/3 = 2/31 + Σ∞
i=20/3i p−→ 1/2 = 2/22 + Σ∞

i=20/2i+1.

It is generally true that the “holes” bounded by adjacent endpoints corre-
spond to the dyadic rationals contained in the interior of the unit interval.
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Fig. 6.1 For |A| = 2, the space J2 is homeomorphic to the unit interval.

Next, we let A = {a, b, c} be of size three (Figure 6.2). In this case we see
that J3 is a copy of the classical fractal known as Sierpiński’s triangle.
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Fig. 6.2 The space J3 is homeomorphic to Sierpiński’s triangle.

In Figure 6.2 note that the “edge” N({a, b}) = [x = a, y = b], a Cantor
subspace of N(A), maps onto the edge [p(x), p(y)], a unit interval subspace
of J3. We also see another Cantor subspace [x′ = ca, y′ = cb] = {c}×{a, b}×
{a, b} × · · · of N(A) mapping onto another copy [p(x′), p(y′)] of the unit
interval.
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In Figure 6.3 below an approximation to the Baire space N({0, 1, 2, 3}) is
presented on the left side (recall Figure 1.2); and on the right side we have
an approximation to J4, the p-image of N({0, 1, 2, 3}).

−→

Fig. 6.3 The space J4 is homeomorphic to the Sierpiński cheese.

So for |A| = n + 1 = 4, Figure 6.3 illustrates a level-1 approximation
to J4, i.e., an approximation to the classical fractal known as the Sierpiński
cheese.

§7 Approximations for n + 1 = 5

In this section we consider a relatively recent construction that allows us to
view J5 in 3-space. We begin with a sequence of figures (Figs. 7.1 to 7.6)
that illustrate the desired combinatorial structure — five congruent figures,
each just touching the other four:

−→

Fig. 7.1 One hexahedron, then two, each just touching the other.
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−→

Fig. 7.2 Three, then four hexahedra, each just touching the others.

Fig. 7.3 Five hexahedra, each just touching the others.
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Fig. 7.4 Fitting the fifth hexahedron.

Fig. 7.5 Approximations to J5 at levels 2 and 3.
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Fig. 7.6 Level-4 approximation to J5.

§8 Jn+1 as an Attractor ωn of an IFS

For n ≥ 1, let Δn denote the n-simplex in n-space R

n whose n + 1 vertices
consist of the origin u0 = (0, . . . , 0) and the terminal points of the n standard
orthonormal basis vectors u1 = (1, 0, . . . , 0), u2 = (0, 1, 0, . . . , 0), . . ., un =
(0, 0, . . . , 0, 1) ∈ R

n. Then Δn is the convex hull of its vertices and

Δn = {v = Σn
0 λiui : Σn

0λi = 1; 0 ≤ each λi ≤ 1}

where the λi are called the barycentric coordinates of v.
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Using Δn ⊂ R

n, we may generate n + 1 scalings of Δn that satisfy the
just-touching property.

To be sure, consider the finite iterated function system (IFS) Fn =
{w0, w1, . . . , wn} where

wi(x) = ui + (1/2)(x− ui) = (1/2)(x + ui) (x ∈ Δn)

is a scaling by 1/2 toward ui. Then by characterizing each wi(Δn) as

wi(Δn) = {v = Σn
0λjuj : Σn

0λj = 1; 0 ≤ each λj ≤ 1; and λi ≥ 1/2},

we may show that these n + 1 scalings of Δn are just touching: For distinct
i, j ∈ A = {0, 1, . . . , n}, we have |wi(Δn) ∩ wj(Δn)| = 1 with (1/2)(ui + uj)
being the point of intersection.

In passing, note that one may easily verify that the inverse w−1
i of wi is

given by the formula w−1
i (x) = 2x− ui for x ∈ wi(Δn).

In general, let A = {0, 1, . . . , n}, and recall that the attractor of Fn is the
unique compact set K characterized by the equation K = ∪i∈Awi(K). From
this equation it follows that K ⊃ wi(K) ⊃ wi ◦ wj(K) for every i and every
j. Each δ = δ1δ2 · · · in code space N(A) thereby determines a nested list
K ⊃ wδ1(K) ⊃ wδ1 ◦ wδ2 (K) ⊃ · · · of compact sets whose diameters go to
zero. The intersection of the sets in this nested list contains exactly one point
pδ ∈ K. This correspondence δ �→ pδ is the address map φ : N(A) → K.

It turns out that the address map φ is identification of adjacent endpoints.
To motivate the theory, we demonstrate the connection with an example.

8.1 Example. Let φ be the address map induced by F1 = {w0, w1}. Then
Δ1 = [0, 1] is the 1-simplex, which is the unit interval, and the code space
is N({0, 1}). So φ : N({0, 1}) → K where K is the attractor of F1. In this
example, we see that

[0, 1] = Δ1 = w0(Δ1) ∪ w1(Δ1) = [0, 1/2]∪ [1/2, 1],

which shows that K = [0, 1] is the unit interval. So the attractor K is
homeomorphic to J2. Now considering the sequence δ = 01 ∈ N({0, 1}) and
the k-fold composition wk

1 = w1 ◦ · · · ◦ w1, we have

w0(wk
1 ([0, 1])) = w0([1 − (1/2k), 1]) = [(1/2) − (1/2k+1), 1/2].

Thus as k → ∞, we find that φ(01) = φ(δ) = pδ = 1/2. Similarly, for the
adjacent endpoint ε = 10 and wk

0 = w0 ◦ · · · ◦ w0, we have

w1(wk
0 ([0, 1])) = w1([0, 1/2k]) = [1/2, 1/2 + 1/2k+1]

which shows that φ(10) = φ(ε) = pε = 1/2. Note, for this δ and this ε, that
δ ∼ ε implies φ(δ) = φ(ε). So could it be that the fibers of the natural map
p : N({0, 1}) → J2 are the fibers of φ : N({0, 1}) → K = [0, 1]?
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8.2 Lemma (the address map φ) Let φ : N(A) → K be the address
map induced by Fn, let wq ∈ Fn, and let δ = δ1δ2 · · · ∈ N(A). Then (a)
wq(φ(δ)) = φ(qδ1δ2 · · · ); (b) w−1

δ1
(φ(δ1δ2 · · · )) = φ(δ2δ3 · · · ); (c) φ(δ) = uq if

and only if δ = q; and (d) φ is a continuous closed surjection.

Proof. First, consider (d): We begin by showing that φ is surjective. Since
x ∈ K = w0(K)∪· · ·∪wn(K), then x ∈ wδ1(K) for some δ1 ∈ A. Inductively,
δ1 yields δ2, i.e.,

x ∈ wδ1(K) = wδ1 ◦ w0(K) ∪ · · · ∪ wδ1 ◦ wn(K)

implies x ∈ wδ1(K) ⊃ wδ1 ◦wδ2(K) for some δ2 ∈ A. An induction argument
shows that δ ∈ N(A) exists such that φ(δ) = x. Next, we show that φ is
continuous. Let δn → δ in N(A). Then for each k ≥ 1, we may choose Nk

such that n > Nk yields δn1 = δ1, . . . , δnk = δk. These equalities imply that
both φ(δn), φ(δ) ∈ Wk = wδ1 ◦ · · · ◦ wδk

(K) where the diameters of the Wk

go to zero as k → ∞. It follows that φ(δn) → φ(δ). Finally, note that φ is
closed because N(A) is compact and φ is continuous.

Second, consider (a): By definition, φ(δ) is the lone element in ∩∞
j=1Wj

where Wj = wδ1 ◦ · · · ◦ wδj (K). So φ(δ) ∈ Wj for each j, showing that
wq(φ(δ)) ∈ wq(Wj) = wq ◦ wδ1 ◦ · · · ◦ wδj (K) for each j. It follows that
wq(φ(δ)) is the lone element in ∩∞

j=1wq(Wj), i.e., wq(φ(δ)) = φ(qδ1δ2 · · · ).
Third, consider (b): From (a) we have wδ1(φ(δ2δ3 · · · )) = φ(δ). Apply

w−1
δ1

to both sides.
Fourth, consider (c): Recall that a contraction has only one fixed point,

and each wq is a contraction such that wq(uq) = uq. In short, wq(x) = x if
and only if x = uq. So now suppose δ = q. Then wq(φ(δ)) = φ(qδ1δ2 · · · ) =
φ(δ), showing that φ(δ) = uq. Conversely, suppose φ(δ) = uq. Then the only
index i such that uq ∈ wi(Δn) is i = q. So δ1 = q. If δ1 = · · · = δk−1 = q,
then w−1

δk−1
◦ · · · ◦ w−1

δ1
(uq) = uq. So (b) shows that

uq = w−1
δk−1

◦ · · · ◦ w−1
δ1

(φ(δ)) = φ(δkδk+1 · · · ) ∈ wδk
(Δn).

Thus, δk = q, and by induction δ = q.

8.3 Definition (n-web) For n ≥ 1, the n-web ωn is the attractor Kn+1 of Fn

whose code space is N({0, 1, . . . , n}). We may also consider ωn ⊂ Δn ⊂ R

n+1

where Δn is the standard simplex (see Appendix 2) and Fn the obvious family
of contractions.

8.4 Theorem (fibers of φ are the fibers of p) Let A = {0, 1, . . . , n}, let
φ : N(A) → ωn be the address map induced by Fn, and let ∼ be the adjacent-
endpoint relation in N(A). Then φ(δ) = φ(ε) if and only if δ ∼ ε.

Proof. First, suppose δ ∼ ε. The case δ = ε is trivial. If δ �= ε, then let t
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be the tail index. With t − 1 applications of Lemma 8.2 (a) we have

(1)
φ(δ) = wδ1 ◦ · · · ◦ wδt−1 (φ(δtεt))
φ(ε) = wδ1 ◦ · · · ◦ wδt−1

(
φ(εtδt)

)
.

Then Lemma 8.2 (c) yields φ(εt) = uεt , and Lemma 8.2 (a) shows that
φ(δtεt) = wδt(uεt) = (1/2)(uεt + uδt). Similarly, φ(εtδt) = wεt(uδt) =
(1/2)(uδt + uεt). It follows from (1) and the fact that wδ1 ◦ · · · ◦ wδt−1 is
one-to-one, that φ(δ) = φ(ε).

Conversely, suppose φ(δ) = φ(ε).
Subcase 1. δ1 �= ε1: Then φ(δ) = φ(ε) ∈ wδ1(Δn) ∩ wε1 (Δn) implies

(2) φ(δ) = φ(ε) = (1/2)(uδ1 + uε1) = (1/2)(φ(δ1) + φ(ε1)).

Lemma 8.2 (b), the definition of w−1
δ1

, and (2) provide

φ(δ2δ3 · · · ) = w−1
δ1

(φ(δ)) = 2φ(δ) − uδ1 = 2φ(δ) − φ(δ1)
= 2
[
(1/2)(φ(δ1) + φ(ε1))

]
− φ(δ1)

= φ(ε1) = uε1 .

So Lemma 8.2 (c) implies δ2δ3 · · · = ε1, i.e., δi = ε1 for each i ≥ 2. Similarly,
we may also deduce that εi = δ1 for each i ≥ 2, i.e., δ ∼ ε.

Subcase 2. δ1 = ε1: Then let t ∈ {2, 3, . . .} be the smallest index such
that δt �= εt. In this case, Lemma 8.2 (a) yields

φ(δ) = wδ1 ◦ · · · ◦ wδt−1(φ(δtδt+1 · · · ))
φ(ε) = wδ1 ◦ · · · ◦ wδt−1(φ(εtεt+1 · · · )).

Since wδ1 ◦ · · ·◦wδt−1 is one-to-one, and φ(δ) = φ(ε), we have φ(δtδt+1 · · · ) =
φ(εtεt+1 · · · ) where δt �= εt. An argument similar to the proof of Subcase 1

shows that δi = εt and εi = δt for each i ≥ t + 1. So δ ∼ ε.

8.5 Theorem (Jn+1 is homeomorphic to ωn) Let A = {0, 1, . . . , n}, let ωn

be the attractor of Fn, let φ : N(A) → ωn be the induced address map, and
let p : N(A) → Jn+1 be the natural mapping. Then f = φ ◦ p−1 : Jn+1 → ωn

is a homeomorphism.

Proof. By Lemma 8.4, the fibers of p are identical to the fibers of φ. So the
mapping f = φ ◦ p−1 is well defined and injective. Moreover, f is surjective
since φ is surjective; f is continuous since φ is continuous and p is closed;
and f is closed since p is continuous and φ is closed.
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§9 Can We “View” Jn+1 in 3-Space?

For n ≥ 1, Jn+1 is homeomorphic to the attractor Kn+1 = ωn of Fn. How-
ever, since ωn lives in n-space, when n ≥ 4 we cannot picture ωn, at least not
directly. This quandary leads naturally to the question, “How do we picture
Jn+1?”

From the Classical Universal Imbedding Theorem, since each Jn+1 is a
separable metric space of (topological) dimension one, it may be topologically
imbedded in the Euclidean cube I3. Such an imbedding, however, may make
it humanly impossible to “see” the self-similarity.

Nevertheless, on the positive side, as illustrated in §7, the self-similarity
of J5 is clearly exposed in 3-space, making the approximations as clear as
those of Sierpiński’s triangle J3.

In general, when considering Jn+1 the subscript n + 1 is fundamental. It
tells us that Jn+1 contains n + 1 copies of itself that satisfy the just touch-
ing property, and it serves to specify the numerator when calculating the
fractal dimension D(ωn) = ln(n + 1)/ ln(2). What we desire, then, is an
imbedding into 3-space that preserves the fractal dimension and exposes the
self-similarity of Jn+1.

If preservation of fractal dimension is important, then it is instructive to
calculate the fractal dimension of the first few ωn:

D(ω1) = 1 < D(ω2) ≈ 1.58 < D(ω3) = 2 < D(ω4) ≈ 2.32 <
< D(ω5) ≈ 2.58 < D(ω6) ≈ 2.81 < D(ω7) = 3 < · · · .

To view (imbed with fractal dimension preserved) ωn in m-space, we
see from Barnsley [1988, Theorem 2, page 202] that it is necessary that
D(ωn) ≤ dim (Rm) = m.

As an application, D(ω2) > dim (R1) = 1 implies that ω2 cannot be
viewed on the real line R

1. For n = 3, however, D(ω3) = 2 = dim (R2), and
so the “necessary condition D(ω3) ≤ dim (R2) = 2” sheds no light on the fact
that ω3, the Sierpiński cheese, cannot be viewed in the plane. Nevertheless,
with the aid of Figure 9.1 we see that a homeomorph of one of the two
Kuratowski forbidden graphs (namely, the complete bipartite graph K3,3) is
a subspace of ω3, and thus ω3 cannot be imbedded in the plane. (Each vertex
in {a, b, c} is “adjacent” to each vertex in {A, B, C} via “edges” a1A, a2B,
a3C, bA, bB, b4C, c5A, cB, and cC.)

The next application of “the necessary condition D(ωn) ≤ dim (Rm) =
m” occurs at the value n = 8: Since

D(ω8) ≈ 3.1699 > dim (R3) = 3

we know that the 8-web ω8 cannot be “viewed” in 3-space R

3. So we are left
with n = 4, 5, 6, 7. The n = 4 case was illustrated in §7, but it is an open
question as to whether any n-web ωn for n = 5, 6, 7 can be “viewed” in R

3.
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Fig. 9.1 The 3-web ω3 cannot be imbedded in the plane.

§10 Comments

The graphics in §7 were created by Chris Dupilka, and similar graphics with
relevant narratives appear in Perry and Lipscomb [2003]. As for the term
n-web, it was introduced in Lipscomb and Perry [1992, page 1159], but it
was motivated by the title A Fractal Skewed Web of plate 143 in Mandel-
brot [1983].

As Lemma 5.1 tells us, if we “see” a copy of the 4-web ω4 in 3-space, then
we should “see” its five level-1 copies “just touching.” Reasoning in reverse,
Perry and Lipscomb [2003] used the self-similarity (Figure 7.3) to construct
an isotopy H : ω4×I → R

4 rel ω3 (homotopy with each Ht a homeomorphism
that is the identity on ω3 ⊂ ω4) where each Ht is a linear transformation
that preserves fractal dimension and where H1 : ω4 → R

3 ⊂ R

4. In other
words, ω4 may be moved into 3-space with its fractal dimension preserved
(Chapter 12).

This “motion” may be intuitively explained with the aid of Figure 10.1,
where cylinders represent line segments. Indeed, suppose we are observers
in 3-space and “t” is a time parameter that moves from time 0 to time 1.
Then at time t, we could see the part of Ht(ω4) ⊂ R

4 that meets 3-space. In
particular, when t ≈ 0, we would see “buds” located at the points where the
light-gray semitransparent cylinders meet the dark-gray opaque cylinders. As
t increases, these buds begin to grow “up” (in the direction of the light-gray
cylinders) toward the other ends of these cylinders. And when t = 1, we
see the structure in Figure 10.1 that contains the light-gray semitransparent
cylinders that were originally (at time t = 0) outside of 3-space (in R

4 \R

3).
The approximation to ω4 in Figure 10.1 should be compared with the one

in Figure 7.3, and the substructure in Figure 10.1 consisting of the dark-gray
cylinders should be compared with the right-side illustration in Figure 6.3.

Parts (a) and (c) of Lemma 8.2 appear in Lipscomb [2007, Lemma 9].
Finally, the phrase “just-touching” as typically used in the context of

iterated function systems refers to the IFS itself, and not the attractor of
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the IFS (Barnsley [1988, pages 121 and 129]). In this chapter, however, we
considered only one type of IFS, namely the Fn, and we used the “just-
touching” phrase to describe the attractors. It so happens that each Fn is
also “just-touching” in the sense of Barnsley [1988, page 129].

Fig. 10.1 An isotopy moves the 4-web ω4 from 4-space into 3-space.



CHAPTER 3

No-Carry Property of ωA′

By the mid 1970s it was known that Jn+1
A for |A| ≥ ℵ0 contains models of

all n-dimensional weight |A| metric spaces. For infinite A, however, JA did
not receive a metric until 1992, when it was imbedded in Hilbert space.

In this chapter we introduce a surjection JA → ωA′
into Hilbert space.

(In Chapter 4 we shall show that this surjection JA → ωA′
is an imbedding.)

The JA-image ωA′
is then characterized in terms of the no-carry property,

i.e., the “no-carry characterization of Sierpiński’s triangle” extends to ωA′
.

To construct the mapping, we use “star spaces,” one in JA and one in
Hilbert space. To motivate the construction, we begin with three examples re-
lated to the Sierpiński triangle. Otherwise, the presentation follows Lipscomb
and Perry [1992], but most of the results were also obtained independently
by Milutinović [1992] (see §18).

§11 Three Examples

Imbedding JA into Hilbert space turns out to be an extension of the “no-
carry characterization of Sierpiński’s triangle T =t J3.” So we begin with
Figure 11.1, which illustrates and specifies the no-carry property.
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T = {(x, y) : there are binary expansions
x = .x1x2 · · · and y = .y1y2 · · · such that

xj = 1 ⇒ yj = 0, and, yj = 1 ⇒ xj = 0}

Fig. 11.1 The no-carry constraint specifies a Sierpiński triangle.

Together, the two implications “xj = 1 ⇒ yj = 0” and “yj = 1 ⇒ xj = 0”
are called the no-carry conditions — for each j = 1, 2, . . . the binary addition
“xj + yj” is a “no-carry addition.”
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11.2 Example. Consider the Sierpiński triangle T with vertices (0, 0), (1, 0),
and (0, 1). Then the x = 1/2 and y = 1/2 coordinates of (1/2, 1/2) ∈ T have
binary expansions x = .x1x2 · · · = .100 · · · and y = .y1y2 · · · = .011 · · · that
satisfy both “xj = 1 implies yj = 0” and “yj = 1 implies xj = 0.”

For motivation of the concept “star space,” let A = {(0, 0), (1, 0), (0, 1)}
and consider A′ = A \ {(0, 0)}. For this particular A′, we define

S(A′) = {(x, y) ∈ R

2 : (0 ≤ x ≤ 1 and y = 0) or (0 ≤ y ≤ 1 and x = 0)}

as a star space with |A′| = 2 arms.

11.3 Example. Using Figure 11.4, we let A = {z, a, b} be of size three, and
view the endpoints z, a, and b in N(A) as vertices of “the N(A) triangle.”

···· ···· ···· ····· · · · · · · ··· ·· ·· ··· · · ·
···· ····· · · ··· ··· ·
···· ····· · · ··· ··· ······ ····
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···· ···· ···· ····· · · · · · · ··· ·· ·· ··· · · ·
···· ····· · · ··· ··· ·
···· ····· · · ··· ··· ······ ···
·

z a

b

δ ∈ N({z, a, b}) implies there are projections

δa = δa
1δa

2 · · · ∈ N({z, a}) and δb = δb
1δ

b
2 · · · ∈ N({z, b})

such that δa
j = a ⇒ δb

j = z, and, δb
j = b ⇒ δa

j = z
δ.............................................................................................................................................................................

....
........
......

δa

δb

Fig. 11.4 The “no-carry property” encoded in N({z, a, b}).

Let δ = ba ∈ N(A). Then viewing “z” as “zero” and “zeroing out all
letters not equal to a” we project

δ = ba �→ δa = za ∈ N({z, a})

where N({z, a}) is a copy of Cantor’s set with endpoints z and a. Similarly,
by “zeroing out all letters not equal to b” we project

δ = ba �→ δb = bz ∈ N({z, b}).

It follows that δa
j = a ⇒ δb

j = z and δb
j = b ⇒ δa

j = z, i.e., these “projections”
encode a “no-carry property in N(A).”

11.5 Example. We illustrate how the no-carry property in N({z, a, b}) en-
codes the no-carry property of the Sierpiński triangle T : First, identify the
letter “a” with “1” and the letter “z” with “0”, inducing a homeomorphism
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N({z, a}) ↔ N({0, 1}). That is, points in N({z, a}) ⊂ N(A) are identified
with strings x1x2 · · · of binary digits. Second, identify these binary strings
x1x2 · · · with points Σ∞

1 (2xj)/3j in Cantor’s set C(0, 1), obtaining a home-
omorphism N({0, 1}) ↔ C(0, 1). And third, use classical identification of
adjacent endpoints Σ∞

1 (2xj)/3j �→ Σ∞
1 xj/2j to map C(0, 1) → I = [0, 1].

In general, δa �→
∑

j
xj

2j ∈ I and δb �→
∑

j
yj

2j ∈ I where (δa
j = a ⇔ xj = 1)

and (δb
j = b ⇔ yj = 1):

δa = δa
1δa

2 · · · ↔ x1x2 · · · ∈ N({0, 1}) ↔
∞∑

j=1

2xj

3j →
∞∑

j=1

xj

2j ∈ I = [0, 1]

δb = δb
1δ

b
2 · · · ↔ y1y2 · · · ∈ N({0, 1}) ↔

∞∑
j=1

2yj

3j →
∞∑

j=1

yj

2j ∈ I = [0, 1].

And in particular, for δ = ba we have

δa = zaa · · · ↔ 011 · · · ∈ N({0, 1}) ↔
∞∑

j=2

2
3j = 1

3 →
∞∑

j=2

1
2j = 1

2 ∈ I

δb = bzz · · · ↔ 100 · · · ∈ N({0, 1}) ↔
1∑

j=1

2
3j = 2

3 →
1∑

j=1

1
2j = 1

2 ∈ I,

i.e., δ → δa and δ → δb yield (δa, δb) which decodes as (1
2 , 1

2 ) ∈ T .

§12 Star Spaces

To illustrate the concept of “star space,” let |A| = 73, z ∈ A be fixed, and
A′ = A \ {z}. Then the “Cantor star” SC(A′), pictured on the left side of
Figure 12.1, consists of the 72 Cantor spaces N({z, a}), a ∈ A′, that meet
only at the point z.
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Fig. 12.1 Picturing SC(A′) and the corresponding S(A′) for |A| = 73.

Then p : N(A) → JA maps this “Cantor star” SC(A′) onto a “JA star” S(A′)
consisting of |A′| = 72 unit-interval subspaces of JA that meet only at p(z).
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12.2 Definition (JA star spaces) For any set A of size at least two, let z ∈ A,
define A′ = A \ {z}, and consider the union ∪b∈A′C(z, b) of Cantor subspaces
C(z, b) = N({z, b}) of N(A). This subspace ∪b∈A′C(z, b) of N(A) is called a
Cantor star space SC(A′) each of whose |A′| arms is a copy of Cantor’s set.
Moreover, the p-image S(A) = p(SC(A′)) ⊂ JA is called a JA star space with
|A′| arms Iβ (β = p(b), b ∈ A′) where each arm Iβ = I(ζ, β) = p(C(z, b))
(ζ = p(z)) is homeomorphic to the unit interval.

When A is infinite, a JA star space S(A) may be viewed as the standard
star space, which is often called a hedgehog with |A| = |A′| prickles.1

§13 The Star Space in l2(A)

Hilbert’s l2(A) space contains a star space (centered at its zero) whose ath
arm (a ∈ A) is the line segment {tua : 0 ≤ t ≤ 1} = [0,ua] where ua is a
unit vector in the standard orthonormal basis of l2(A).

A few comments are in order. Let R

A be the Cartesian product of |A|
copies of the real line R

1. Then Hilbert’s space l2(A) may be viewed as a
metric space that has (1) elements : every x = (xa) = (xa)a∈A ∈ R

A such
that xa = 0 for all but at most countably many a ∈ A and Σax2

a converges;
and (2) topology: that induced by the metric d(x, y) =

√
Σa(xa − ya)2.

The arms of our star subspace of l2(A) are determined by the orthonormal
basis vectors ub = (ub

a)a∈A where ub
a = 0 when a �= b and ub

b = 1. Each ub

provides a copy Ib = {tub : 0 ≤ t ≤ 1} of the unit interval — the subspace Ib

of l2(A) with the induced metric makes the mapping t �→ tub from the unit
interval I with usual metric an isometry: For each b ∈ A,

|t1 − t2| =
√

(t1 − t2)2 =
√

Σa(t1ub
a − t2ub

a)2 = d(t1ub, t2ub).

These isometric copies Ia ⊂ l2(A) of the unit interval are the “arms” of
∪aIa ⊂ l2(A). And ∪aIa is homeomorphic to S(A) = (∪aIa, dS) — the
obvious mapping ∪aIa → ∪aIa ⊂ l2(A) (the isometry Ia → Ia on each
arm Ia of S(A) with “zero” mapping to “zero”) is clearly bijective. And
the ε-ball centered at the zero in S(A) = (∪aIa, dS) maps onto the ε-ball in
∪aIa ⊂ l2(A) centered at the corresponding zero.

1Star spaces S(A) predate the introduction of JA. Indeed, a star space S(A) is defined
as a metric space S(A) = (∪aIa, dS) where the set ∪aIa is the star-shaped set obtained by
identifying the zeros of a disjoint union of |A| ≥ ℵ0 unit intervals Ia (the ath arm), and
the metric dS is given by

dS(x, y) =

{
|x − y| if x and y belong to the same arm
|x + y| if x and y belong to distinct arms.

A detailed proof that a star space S(A) is homeomorphic to the JA star space for infinite
|A| appears in Chapter 10. Historically, star spaces appeared as the base space in product
spaces S(A)∞ that were used by Kowalsky [1957] and Nagata [1963] to construct universal
spaces for metric spaces and for metric spaces of finite covering dimension ≤ n, respectively.
Precise statements of the Kowalsky and Nagata theorems appear in §18.
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§14 Projecting N(A) onto a Cantor-Star Subspace

Let |A| ≥ 2, select any z ∈ A, and let A′ = A\{z}. Then for each b ∈ A′, the
Baire space N(A) contains the subspace C(z, b) of sequences whose values lie
in {z, b}. With each arm C(z, b) of the Cantor star, we have the projection
πb : N(A) → C(z, b) given by

πb : δ = δ1δ2 · · · �→ δb = δb
1δ

b
2 · · · where δb

j =
{

b if δj = b,
z otherwise.

Each projection πb is open: The basic open sets 〈a1, . . . , an〉 in N(A) map
onto open sets in C(z, b), i.e.,

πb(〈a1, . . . , an〉) = 〈ab
1, . . . , a

b
n〉 ⊂ C(z, b).

Each πb is continuous: Given the open-in-C(z, b) set 〈x1, . . . , xn〉, define

Xi =
{

A \ {b} if xi = z
{b} if xi = b,

(i = 1, . . . , n)

and then note that π−1
b (〈x1, . . . , xn〉) = X1 × · · · × Xn × A × A × · · · .

Whether each projection πb is closed or not closed depends on |A|: When
A is finite, then N(A) is compact and each πb is necessarily closed. When A
is infinite, then N(A) is not compact and each πb is not a closed mapping —
let a1, a2, . . . be a sequence in A such that i �= j implies ai �= aj , then

(1) F = {a1ba1, a2a2ba2, a3a3a3ba3, . . .}

is closed in N(A) while πb(F ) is not closed in C(z, b). We summarize these
observations with the following lemma.

14.1 Lemma (properties of πb) The projection πb : N(A) → C(z, b) is a
continuous open mapping. Also, πb is closed if and only if A is finite.

§15 Projecting JA onto a Star Subspace

Continuing with |A| ≥ 2, a fixed z ∈ A, and A′ = A \ {z}, we let p(z) = ζ
be the zero of JA, and, β = p(b) for b ∈ A′, and, pb : C(z, b) → I(ζ, β) the
restriction of p. With these conventions the (commutative) diagram below
yields the projection πβ : JA → I(ζ, β) given by πβ = pb ◦ πb ◦ p−1.

N(A)

JA

p

πb C(z, b)

I(ζ, β)
πβ

pb

......................................................................................................... ..............

............................................................
.....
.........
.....

............................................................
.....
.........
.....

................................................................ ..........

To be sure, πβ is well defined because δ, ε ∈ N(A) and δ ∼ ε yield
πb(δ) ∼ πb(ε), i.e., πb respects the adjacent-endpoint relation, making pb ◦ πb



28 NO-CARRY PROPERTY OF ωA′
CHAPTER 3

constant on each fiber of p. Moreover, since p is a closed map and pb ◦ πb is
continuous, πβ is continuous.

15.1 Lemma (properties of πβ) Let |A| ≥ 2, fix z ∈ A, let b ∈ A′ = A\{z},
and define β = p(b). The projection πβ : JA → I(ζ, β) into the βth-arm of
the star in JA is a well-defined and continuous mapping. Also, πβ is closed
if and only if A is finite; and, πβ is open if and only if |A| = 2.

Proof. By the arguments preceding the lemma, we only need to prove the
“if and only if” claims. Consider the “closed” characterization: On the one
hand, suppose A is infinite. Let F be the closed subset of N(A) defined by
equation (1). Then p(F ) is a closed subset of JA and

F ′ = p−1p(F ) = F ∪ {a1a1b, a2a2a2b, a3a3a3a3b, . . .}

is closed in N(A). But pb(πb(F ′)) = πβ(p(F )) is not closed in I(ζ, β). On
the other hand, suppose A is finite. Then N(A) is compact, making πb, and
hence πβ , closed. Now consider the “open characterization.”: Let |A| = 2.
Then A = {z, b}, N(A) = C(z, b), πb is the identity map 1C(z,b), and p = pb.
So πβ = (p◦1C(z,b))◦p−1 = 1I(ζ,β) is the identity on I(ζ, β), which is an open
map. On the other hand, let πβ be open. Then for B = 〈b, z〉 ⊂ N(A) where
b �= z, let EB = {δ ∈ B : δ3 = δ4 = · · · }, and define G = B \ EB ⊂ N(A).
Now G is open and p−1p(G) = G, making p(G) open in JA. We also have
πb(G) = (〈b, z〉 ∩ C(z, b)) \ {bzb}. But when |A| > 2, then bzz ∈ πb(G) and
pb ◦ πb(G) is the non-open half-closed interval [pb(bzz), pb(bzb)) ⊂ I(ζ, β).

If θ ∈ JA, then θ has a nonzero πβ-projection into I(ζ, β) when πβ(θ) �= ζ.

15.2 Lemma Each member θ of JA has a nonzero πβ-projection into at most
a countable number of the I(ζ, β).

§16 Mapping JA into l2(A′)

The next lemma exhibits a homeomorphism ψβ from the “βth arm” Iβ =
I(ζ, β) of the star ∪βIβ ⊂ JA onto the unit interval [0, 1].

Our goal is to use the isometry [0, 1] ≡ [0,ub] and I(ζ, β)
ψβ←→ [0, 1] to

homeomorphically connect I(ζ, β) ←→ [0, 1] ≡ [0,ub] the βth-arm of the star
in JA to the bth-arm of the star in l2(A′).

16.1 Lemma (matching arms of ∪βIβ ⊂ JA with arms of ∪bI
b ⊂ l2(A′))

Let |A| ≥ 2, fix z ∈ A, select b ∈ A′ = A \ {z}, and let β = p(b). If
ψb : C(z, b) → C(0, 1) is the homeomorphism induced by identifying “z” with
“0” and “b” with “1”, and, pb : C(z, b) → I(ζ, β) and p1 : C(0, 1) → [0, 1] the
appropriate adjacent-endpoint identification maps, then ψβ : I(ζ, β) → [0, 1],
given by

ψβ = p1 ◦ ψb ◦ p−1
b ,



§17 N0-CARRY CHARACTERIZATION OF ωA′
29

is a homeomorphism that makes the following diagram commutative

N(A)

JA

p

πb C(z, b)

I(ζ, β)
πβ

pb

......................................................................................................... ..............

............................................................
.....
.........
.....

............................................................
.....
.........
.....

......................................................................................................... ..............

C(0, 1)

[0, 1].

............................................................
.....
.........
.....

ψβ

ψb

p1

......................................................................................................... ..............

................................................................ ..........

Proof. Since p1 ◦ ψb is a surjection that is constant on each fiber of pb,
we see that ψβ is a well-defined surjection. Since pb is closed and p1 ◦ ψb is
continuous it follows that ψβ is continuous; and since p1 ◦ψb is closed and pb

is continuous ψβ is closed. It is also clear, since ψb is injective and respects
“∼”, that ψβ is injective. So ψβ is a homeomorphism. Finally, the diagram
commutes because the left and right “square subdiagrams” commute.

So for each θ ∈ JA, we may use

θ
πβ−→ θβ ψβ−→ θb where β = p(b) for b ∈ A′,

to define a tuple (θb) = (θb)b∈A′ of numbers such that 0 ≤ θb ≤ 1. Since it
turns out that each Σb[θb]2 < ∞, we have a mapping JA → l2(A′).

§17 No-Carry Characterization of ωA′

Since each θb satisfies 0 ≤ θb ≤ 1, and since at most a countable number
of the θb are nonzero (Lemmas 15.2 and 16.1), if

∑
b∈A′ [θb]2 < ∞, then

(θb) ∈ l2(A′). We show even more in the following lemma.

17.1 Lemma (no-carry property associated with JA) Let |A| ≥ 2, let
z ∈ A be fixed, and let A′ = A \ {z}. Then for each θ ∈ JA, we may choose
binary expansions

.xb
1x

b
2 · · · = θb = ψβ ◦ πβ(θ) (b ∈ A′; β = p(b))

such that xb
i = 1 implies (xc

i = 0 for each c ∈ A′ \ {b}). Moreover, from this
no-carry property, Σb∈A′θb ≤ 1, and consequently (θb)b∈A′ ∈ l2(A′).

Proof. Let φ : JA → N(A) be a “choice function” such that φ(θ) =
a1a2 · · · ∈ θ selects a member φ(θ) of the equivalence class θ ∈ JA. Then
using the commutative diagram in Lemma 16.1, we have

θb = ψβ ◦ πβ(θ) = p1 ◦ ψb ◦ πb(a1a2 · · · ) = p1 ◦ ψb(ab
1a

b
2 · · · ) =

∑∞
i=1x

b
i/2i,

where

(2) xb
i = 1 ⇔ ab

i = b ⇔ ai = b and xb
i = 0 ⇔ ab

i �= b ⇔ ai �= b.



30 NO-CARRY PROPERTY OF ωA′
CHAPTER 3

Now let i ∈ {1, 2, . . .} be fixed and focus on the ith term ai ∈ A of a1a2 · · · .
Since ai ∈ A, there are two cases: First, ai = z. Then xb

i = 0 for every
b ∈ A′. Second, there is exactly one b ∈ A′ such that ai = b. For this unique
b, equation (2) yields xb

i = 1 and xc
i = 0 for every c ∈ A′ \ {b}. Thus (θb)

satisfies the no-carry property.
So now consider the sum Σb∈A′θb. Then Σb∈A′θb ≤ 1 because there is at

most one b ∈ A′ such that the binary expansion of θb has the binary digit 1 in
its first position, thereby contributing 1/2 to Σb∈A′θb. Similarly, the no-carry
condition ensures that there is at most one b ∈ A′ such that the binary expan-
sion of θb has the binary digit 1 in the second position, thereby contributing
1/4 to Σb∈A′θb, and so on (i.e., since there are at most a countable number
of coordinates θb > 0, it follows that

∑
b∈A′ θb =

∑
θb 	=0 θb ≤

∑∞
i=1 1/2i = 1).

And finally, it follows from (0 ≤ θb ≤ 1 implies 0 ≤ [θb]2 ≤ θb) that
∑

b∈A′ [θb]2

converges, i.e., that (θb)b∈A′ ∈ l2(A′).

Lemma 17.1 allows us to define ωA′
as a subset of l2(A′).

17.2 Definition (ωA′
) Let |A| ≥ 2, let z ∈ A be fixed, and let A′ = A \ {z}.

Then define
ωA′

= {(θb) ∈ l2(A′) : θ ∈ JA}
where for each b ∈ A′, the bth-coordinate θb = ψβ ◦ πβ(θ) with β = p(b).

17.3 Theorem (no-carry characterization of ωA′
) For the subspace ωA′

of
l2(A′) defined above, we have ωA′

= {(xb) ∈ l2(A′) : each xb has a binary
expansion xb = .xb

1x
b
2 · · · , and, xb

j = 1 ⇒ xc
j = 0 when c �= b}. In other

words, (xb) ∈ ωA′
if and only if (xb) satisfies the no-carry condition.

Proof. From Lemma 17.1 and Definition 17.2, (xb) ∈ ωA′
implies (xb)

satisfies the no-carry condition. Conversely, suppose (xb) ∈ l2(A′) satisfies
the no-carry condition. We construct a θ ∈ JA such that for each b ∈ A′,

θ
ψβ◦πβ�−→ θb = xb = .xb

1x
b
2 · · · (β = p(b)).

To begin, let i ∈ {1, 2, . . .} be fixed. Then use the following rules to define
the coordinate ai of δ = a1a2 . . . ∈ N(A).

(3) (ai = b ⇐⇒ xb
i = 1) and (ai = z ⇐⇒ xb

i = 0 for every b ∈ A′).

These rules are well defined because the no-carry condition on (xb) ensures
that there is at most one b such that xb

i = 1. We now define θ as the
equivalence class in JA such that δ ∈ θ. Next, let b ∈ A′ be arbitrary but
fixed, and let the index i range over the values 1, 2, . . .. If xb = 0, then for
every index i, we have xb

i = 0, which forces (equation (3)) every ai �= b,
which, in turn, shows that πb(δ) = z. So the Lemma 16.1 diagram yields

θb = ψβ ◦ πβ(θ) = ψβ ◦ pb ◦ πb(δ) = ψβ(ζ) = 0 = xb.
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In the other case, there is an xb
i �= 0, which means that xb

i = 1, making
ai = b. Indeed, the index set K of values of i such that xb

i = 1 is also the
index set of values of i such that ai = b. So the Lemma 16.1 diagram yields

θb = ψβ ◦ πβ(θ) = ψβ ◦ pb ◦ πb(δ) = ψβ ◦ pb(ab
1a

b
2 · · · ) = Σi∈K1/2i = xb.

It follows that θb = xb for each b ∈ A′, making (θb) = (xb).

17.4 Corollary The following restrictions on (xb) ∈ l2(A′) are equivalent:

(i) (xb) ∈ ωA′
.

(ii) there is a θ ∈ JA such that (θb) = (xb).
(iii) (xb) satisfies the no-carry condition.

Proof. It follows from the definition of ωA′
(Definition 17.2) that “(ii) ⇔

(i).” And the last sentence in Theorem 17.3 is the statement, “(i) ⇔ (iii).”

§18 Comments

The “no-carry property” (Figure 11.1) has roots in the work of Kummer
[1852], whose number-theoretical criterion, Kummer’s Criterion, exposes a
Sierpiński triangle pattern of even binomial coefficients in Pascal’s trian-
gle. A discussion of how Kummer’s work relates to the Sierpiński triangle
(also called Sierpiński’s gasket) may be found in Peitgen, Jürgens, and Saupe
[1992]. Moreover, Chapter 5, Section 5.4, of Peitgen, Jürgens, and Saupe
[1992] contains a derivation of the no-carry characterization of the Sierpiński
triangle.

In our Chapter 4 we shall show that the mapping JA → ωA′
given by θ �→

(θb) is a homeomorphism. Thus, the no-carry characterization of Sierpiński’s
triangle is a special case (|A| = 3) of Theorem 17.3. Moreover, Theorem 17.3
coupled with the homeomorphism JA → ωA′

gives meaning to the phrase
“no-carry property of JA.”

Historically, the no-carry property in the context of JA grew out of two
articles: Lipscomb and Perry [1992] and, independently, Milutinović [1992].

Milutinović introduced a subspace MA of the standard simplex ΔA ⊂
l2(A) that is homeomorphic to JA. His construction generalized Sierpiński’s
original [1915] construction that used Δ2. (Both schemes are detailed in
Chapter 4, and, the standard simplex ΔA is developed in Appendix 2.)

Milutinović [1992] also proved the following proposition (Σ(τ) = MA)

Proposition 7. y = (yλ) ∈ Σ(τ) ⇐⇒ there is a sequence (μn),
such that ∀ λ, yλ = 0, δλ,μ1 · · · δλ,μn · · ·

where his binary expansion “0, δλ,μ1 · · · δλ,μn · · · ” of “yλ” is given meaning
by requiring that δλ,μj = 1 when λ = μj , and, that δλ,μj = 0 otherwise.
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The no-carry property of MA, and hence JA, is an obvious corollary to
Milutinović’s Proposition 7, but he made no mention of the fact that δλ,μi = 1
implies δλ′,μi = 0 for all λ′ �= λ. That is, he made no explicit mention of the
no-carry property.

Likewise, Lipscomb and Perry [1992] did not explicitly state the no-carry
characterization of ωA′

. They did state (in their Lemma 7), “. . . for each
subscript i ∈ {1, 2, . . .} there is at most one b ∈ A with xb

i = 1.” In other
words, (xb) ∈ ωA′

implies (xb) satisfies the no-carry condition. But they
did not prove the converse. So Theorem 17.3 seems to be the first explicit
statement that a homeomorph of JA satisfies the no-carry characterization.

In this chapter we unified the finite and infinite A no-carry characteri-
zations of JA. (If |A| = 1, then ω0 is a point and the no-carry property of
JA is trivial.) In addition, since |A′| < |A| when A is finite, we used the A′

notation so that the dimension of the imbedding superspace was kept to a
minimum. If A is infinite, however, an application of Proposition A9.6 (A in-
finite) yields ωA′

=t ωA, and then an application of Milutinović’s Proposition
7 yields MA = ωA.

Historically, star spaces also played a fundamental role in constructing
universal spaces for certain classes of metric spaces.

18.1 Theorem (Kowalsky [1957]) A topological space R is metrizable if and
only if it can be imbedded in a countable product of star spaces.

And the corresponding theorem for finite n-dimensional metric spaces
dovetails nicely with Kowalsky’s Theorem.

18.2 Theorem (Nagata [1963]) A metric space R has (covering) dimension
≤ n if and only if it can be imbedded in the subset Kn of a countable product
P of star spaces, where we denote by Kn the set of points in P at most n of
whose nonvanishing coordinates are rational.



CHAPTER 4

Imbedding JA in Hilbert Space

In this chapter we focus on the surjection JA → ωA′ ⊂ l2(A′) that was
introduced in §16, proving that θ �→ (θb) ∈ ωA′

is an imbedding. We begin
with a characterization of the adjacent-endpoint relation, which is used to
prove that θ �→ (θb) is also injective. We then devote §20 to the proof that
this bijection is also a homeomorphism.

In §21 we review Sierpiński’s original formulation of his triangle, and then
in §22 we provide the parallel formulation of Milutinović’s MA ⊂ l2(A), which
is another homeomorph of JA.

For the proof that JA → ωA′
is an imbedding, we continue to follow

Lipscomb and Perry [1992]; for Sierpiński’s formulation of his triangle, we
follow Sierpiński [1915]; and for Milutinović’s parallel formulation of MA, we
follow Milutinović [1992] [1993].

§19 Characterization of the Adjacent-Endpoint Relation

This section contains the statement and proof of Theorem 19.2. First, how-
ever, we state the following lemma, whose proof is pedestrian.

19.1 Lemma Let |A| ≥ 2, let z ∈ A be fixed, let A′ = A \ {z}, and, let
δ = δ1δ2 · · · and ε = ε1ε2 · · · be members of N(A). Moreover, for each
b ∈ A′, denote πb(δ) and πb(ε) (and their expansions) as

πb(δ) = δb = δb
1δ

b
2 · · · and πb(ε) = εb = εb

1ε
b
2 · · · .

Then

(1) (δi = b ⇔ δb
i = b) and (δb

i = εb
i for each b ∈ A′ =⇒ δi = εi)

where i ∈ {1, 2, . . .} is fixed.

In the proof of the following theorem, note that the “Case 1” part shows
that δb = εb for each b ∈ A′ implies δ = ε. In other words, when points δ
and ε in N(A) project onto the same “values” on each of the |A′| arms of a
Cantor star SC(A′), then those points are equal.

19.2 Theorem (characterization of δ ∼ ε in N(A)) Let |A| ≥ 2, z ∈ A be
fixed, A′ = A \ {z}, and δ, ε ∈ N(A). Then δ ∼ ε if and only if πb(δ) ∼ πb(ε)
for every b ∈ A′.

S.L. Lipscomb, Fractals and Universal Spaces in Dimension Theory,
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Proof. If A = {z, b} has size two, then the proof is trivial because there is
only one projection πb which is the identity mapping. So suppose |A| ≥ 3.
The proof that δ ∼ ε implies πb(δ) ∼ πb(ε) for every b ∈ A′ is straightforward.
For the proof of the converse, we adopt the concise notation in Lemma 19.1.

Case 1: (δb = εb for each b ∈ A′). Then δ = ε from (1), a fortiori, δ ∼ ε.
Case 2: (δb �= εb for some b ∈ A′). Then since δb

∼ εb we may assume,

(2) δb = δb
1 · · · δb

t−1zb ∼ εb = εb
1 · · · εb

t−1bz (δb
i = εb

i , i < t).

So δ = δ1 · · · δt−1δtb and ε = ε1 · · · εt−1bεt+1εt+2 · · · where each εt+k �= b.
Subcase 2.1: (δt = z). Then δ = δ1 · · · δt−1zb, and first, we consider the

possibility that a = εt+k �= z for some k ≥ 1. Then a ∈ A′ \ {b}, and

δa = δa
1 · · · δa

t−1z while εa = εa
1 · · · εa

t−1zεa
t+1 · · · εa

t+k−1aεa
t+k+1 · · ·

which contradicts δa
∼ εa. Thus z = εt+1 = εt+2 = · · · , and so δt = z yields

(3) δ = δ1 · · · δt−1zb and ε = ε1 · · · εt−1bz.

Now we use (3) to calculate that

(4) δc = δc
1 · · · δc

t−1z ∼ εc = εc
1 · · · εc

t−1z (δc
i = εc

i , i < t; c ∈ A′ \ {b}).

Thus, (4) and (2) show that εd
i = δd

i for each i < t and all d ∈ A′. An
application of (1) in Lemma 19.1 then yields εi = δi for all i < t. These t− 1
equalities and (3) show that δ ∼ ε when δt = z.

Subcase 2.2: (δt = a �= z). The expansion of δ that follows (2) yields
δ = δ1 · · · δt−1ab, and therefore

(5) δa = δa
1 · · · δa

t−1az ∼ εa = εa
1 · · · εa

t−1za (δa
i = εa

i , i < t).

So a = εt+1 = εt+2 · · · . Then the expansions of δ and ε that follow (2) yield

(6) δ = δ1 · · · δt−1ab and ε = ε1 · · · εt−1ba.

So for each c ∈ A′ \ {a, b}, we may use (6) to calculate

(7) δc = δc
1 · · · δc

t−1z ∼ εc = εc
1 · · · εc

t−1z (δc
i = εc

i , i < t).

We may also use (6) to calculate

(8) δa = δa
1 · · · δa

t−1az ∼ εa = εa
1 · · · εa

t−1za (δa
i = εa

i , i < t).

Thus, (8), (7), and (2) combine with (1) of Lemma 19.1 to show that δi = εi

for 1 ≤ i ≤ t − 1, which, in turn, coupled with (6), shows once again, and
finally, that δ ∼ ε.
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§20 The Mapping f : JA → ωA′

Let |A| ≥ 2, let z ∈ A be fixed, and let A′ = A \ {z}. Then recall from §16
that f : JA → ωA′

is implicit in the definition of

(9) ωA′
= {(θb) ∈ l2(A′) : θ ∈ JA}.

Indeed, using the commutative diagram in Lemma 16.1 and “[0, 1] ≡ [0,ub]”
to indicate the obvious isometry t �→ tub from [0,1] to [0,ub], we have

N(A)

JA

p

πb C(z, b)

I(ζ, β)
πβ

pb

......................................................................................................... ..............

............................................................
.....
.........
.....

............................................................
.....
.........
.....

......................................................................................................... ..............

C(0, 1)

[0, 1] ≡ [0,ub] ⊂ l2(A′)

............................................................
.....
.........
.....

ψβ

ψb

p1

......................................................................................................... ..............

......................................................................................................... ..............

where for b ∈ A′, the point β = p(b) is the endpoint of the Iβ arm of the
star in JA and the p-image of the endpoint b of the bth arm C(z, b) of the
Cantor star in N(A). With this structure in mind, then, we may view the
bth coordinate θb of (θb) as the number given by θb = ψβ ◦ πβ(θ).

So each θ ∈ JA has |A′| projections θ �→ θβ ∈ I(ζ, β) into the star in JA.
And each θβ bijectively corresponds to a number θb ∈ [0, 1] on the bth arm
[0,ub] of the star in l2(A′).

The numbers θb, b ∈ A′, are then used as coordinates of (θb) ∈ ωA′ ⊂
l2(A′), which is the image f(θ) = (θb) of θ. From this viewpoint, f is the
“l2(A′) synthesis” of the |A′|-mappings θ �→ θβ �→ θb.

20.1 Lemma (f : JA → ωA′
is bijective) Let f be given by θ �→ f(θ) = (θb).

Then f is a bijection.

Proof. By definition (9) of ωA′
, the map f is surjective. To see that f is

injective, let f(θ) = f(ρ), i.e., θb = ρb for each b ∈ A′. It suffices to show
that δ ∈ p−1(θ) and ε ∈ p−1(ρ) imply δ ∼ ε: Since each ψβ : I(ζ, β) → [0, 1]
is bijective, we have

θb = ρb ∈ [0,ub] if and only if θβ = ρβ ∈ I(ζ, β).

And since the diagram above is commutative, we also have

(10) pb ◦ πb(δ) = θβ = ρβ = pb ◦ πb(ε) (whenever β = p(b)).

But (10) yields

(11) πb(δ) ∼ πb(ε) (for every b ∈ A′).

Together, (11) and Theorem 19.2 show that δ ∼ ε.
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To show that f : JA → ωA′
is both continuous and open, we begin with

Figure 20.2 where we introduce, for each b ∈ A′, the mapping gb.

N(A)

JA

p

πb C(z, b)

I(ζ, β)
πβ

......................................................................................................... ..............

...........................................................
......
........
......

......................................................................................................... ..............

C(0, 1)

[0, 1]

...........................................................
......
........
......

ψβ

ψb

p1

......................................................................................................... ..............

......................................................................................................... ..............

gb

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ....................... .............

Fig. 20.2 For b ∈ A′, the mapping gb maps N(A) into [0, 1].

Using the gb mappings, we define g : N(A) → ωA′
by g = f ◦ p(δ) = (gb(δ)),

i.e., if θ = p(δ), then each gb(δ) = θb and g(δ) = (gb(δ)) = (θb) = f(θ).

N(A)

JA

ωA′

............................................................................................. .........
.....

...........
...........
...........
...........
..........
...........
...........
.................
..............

.................................................................................................................................. ..............

p f

g

Since f is injective and g = f ◦ p we see that g and p have the same fibers

g−1 (f(θ)) = p−1 ◦ f−1 (f(θ)) = p−1(θ).

20.3 Proposition The mapping g : N(A) → ωA′
is continuous.

Proof. Let δ = a1a2 · · · ∈ N(A). It suffices to show that if δn → δ in
N(A), then d(g(δn), g(δ)) → 0 where d is the l2(A′) metric. To begin, let
Cδ = {a1, a2, . . .}, let δn = an1an2 . . ., and let Cδn = {an1, an2, . . .}. Next,
let k > 0 be fixed, and define three subsets of A′:

Ak = A′ ∩ {a1, . . . , ak}; A′
k = A′ ∩ (Cδ \ Ak); and A′

nk = A′ ∩ (Cδn \ Cδ).

These sets are pairwise disjoint, and, b ∈ A′ \ (Ak ∪ A′
k ∪ A′

nk) ⇒ gb(δn) =
gb(δ) = 0. Since δn → δ, an N exists where n > N implies ani = ai for i ≤ k.
So n > N , and, gb(δ) = Σ∞

1 xb
i/2i where xb

i = 1 ⇔ ai = b, yield

(d(g(δn), g(δ)))2 =
∑

b∈A′ |gb(δn) − gb(δ)|2
≤
∑

b∈Ak
| · · · | +

∑
b∈A′

k
| · · · | +

∑
b∈A′

nk
| · · · |

≤ k
2k + 1

2k + 1
2k = k+2

2k ,

which completes the proof.
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20.4 Lemma The mapping f : JA → ωA′
is continuous.

Proof. Let G ⊂ ωA′
be open. Then since g : N(A) → ωA′

is continuous,
g−1(G) is open in N(A). But a subset of N(A) is a g-inverse set if and only
if it is a p-inverse set. Since p is a quotient mapping, p(g−1(G)) is therefore
open in JA. Thus, f−1(G) = p(g−1(G)) is open in JA.

20.5 Lemma The mapping f−1 : ωA′ → JA is continuous.

Proof. For the sequence δ1δ2 · · · and point δ in N(A), suppose g(δn) → g(δ)
in ωA′

. The corresponding g fibers are given by

R = g−1g(δ) = p−1p(δ) and Rn = g−1g(δn) = p−1(p(δn)) (n = 1, 2 . . .).

It suffices to show that “Rn → R”; i.e., for every open p-inverse set V ⊃ R,
there is an N such that n > N implies Rn ⊂ V . (Lemmas 3.3 and 3.4 show
that the open p-inverse sets form a local basis at R.)

So let the p-inverse set V ⊃ R be fixed, and suppose “Rn �→ R.” Then
there is an infinite subset M of N and a sequence {εm : m ∈ M} of points
each of which satisfies εm ∈ Rm \ V . There are two possibilities:

Case I. The sequence {εm : m ∈ M} has a convergent subsequence
εm1 , εm2 · · · . Since εmk

→ ε, we have ε �∈ V ⊃ R. So g(ε) �= g(δ), and we
may select disjoint open E, D ⊂ ωA′

with g(ε) ∈ E and g(δ) ∈ D. Then,
since ε ∈ p−1p(ε) ⊂ g−1(E), there is an open p-inverse set W such that

ε ∈ p−1p(ε) ⊂ W ⊂ g−1(E).

Now εmk
→ ε implies that the sequence {εmk

} is eventually in W , and since
W is a p-inverse set, the sequence {δmk

} where δmk
∼ εmk

for each k is
also eventually in W . But then {g(δmk

)} is eventually in E, which, because
g(δmk

) → g(δ) implies {g(δmk
)} is eventually in D, contradicts g(δn) → g(δ).

Case II. The sequence {εm : m ∈ M} has no convergent subsequence.
For εm = εm(1)εm(2) · · · , an i ≥ 1 exists where {εm(i) : m ∈ M} is infinite.1

For such an i, a subsequence {εmk
} of {εm} exists where {εmk

(i)} is infinite
and contains neither z nor any member of {δ1, . . . , δi+1} nor (if |R| = 2) any
member of the first i+1 components of the endpoint adjacent to δ. But then
for any k and any b = εmk

(i),

1/2i+1 ≤ |gb(εmk
) − gb(δ)| ≤ d(g(εmk

), g(δ)),

which contradicts g(δn) → g(δ).

Applications of Lemma 20.1, Lemma 20.4, and Lemma 20.5 yield the
following theorem.

1Otherwise, since {εm(1) : m ∈ M} is finite and {εm} is infinite, we may select an
infinite M1 ⊂ M such that εk, ε� ∈ {εm : m ∈ M1} implies εk(1) = ε�(1). Select m1 ∈
M1. Then similarly construct an infinite M2 ⊂ M1, and select m2 ∈ M2, continuing ad
infinitum. The resulting subsequence {εmk : k = 1, 2, . . .} converges.
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20.6 Theorem (JA is homeomorphic to ωA′
) Let |A| ≥ 2, let z ∈ A be fixed,

and let A′ = A \ {z}. Then the mapping f : JA → ωA′
given by θ �→ (θb)b∈A′

is a homeomorphism.

§21 Sierpiński’s Recursive Construction

In his 1915 article Sur une courbe dont tout point est un point de ramifica-
tion, Sierpiński introduced his now famous fractal. He conveyed his ideas
and indexing in two illustrations, a partial rendition of which appears in
Figure 21.1.
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Fig. 21.1 Sierpiński’s 1915 inductive construction.

With his first two (illustrated) steps we clearly see his faithful indexing:
Starting with the 2-simplex Δ2, we see the (initial) open cuts — first U and
then, at the second step, the additional open cuts U0, U1, and U2, and, we
also see the (initial) residual closed 2-simplexes — first T0, T1, and T2, and
then, at the second step,

Tλ1,λ2 (λ1 = 0, 1, 2; λ2 = 0, 1, 2).

In other words, we obtain the closed set F1 = Δ2 \U = T0∪T1∪T2 = ∪λ1Tλ1

and the closed set

F2 = Δ2 \ (U ∪ U0 ∪ U1 ∪ U2) = ∪λ1λ2Tλ1λ2 .

And thusly Sierpiński introduced his inductive construction of nested F1 ⊃
F2 ⊃ · · · closed subsets of a 2-simplex. He subsequently defined his triangle
as the intersection

(12) F = F1 ∩ F2 ∩ · · · = (∪λ1Tλ1) ∩ (∪λ1,λ2Tλ1,λ2) ∩ · · · .2

2Sierpiński’s indexing of the Tλ1...λn corresponds to the indexing < λ1, . . . , λn >∈
Bn of basis elements of Baire’s space N({0, 1, 2}), and hence also the indexing of the
corresponding 3n copies p(< λ1, . . . , λn >) of J3.
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21.2 Example. Let Δ2 denote a 2-simplex with vertices 0, 1, and 2 as
illustrated in Figure 21.1. Then the 2-simplex T0 may be viewed as the
image w0(Δ2) where w0 : Δ2 → Δ2 is a contraction (a scaling) of Δ2 by
1/2 toward the vertex labeled 0. Similarly, each 2-simplex T1 and T2 may
be viewed, respectively, as w1(Δ2) = T1 and w2(Δ2) = T2 where w1 and w2

are contractions of Δ2 by 1/2 toward the vertices 1 and 2, respectively. In
this example, the set W = {w0, w1, w2} is a finite iterated function system.
The reason for the adjective “iterated” is justified by considering Sierpiński’s
indexing:

F1 = ∪λ1Tλ1 = T0 ∪ T1 ∪ T2 = w0(Δ2) ∪ w1(Δ2) ∪ w2(Δ2)

and the “length-2 iterated compositions” yield

F2 = ∪λ1,λ2Tλ1λ2 = ∪λ1λ2

(
wλ1 ◦ wλ2(Δ

2)
)
.

For example, if λ1 = 1 and λ2 = 0, then wλ1 ◦wλ2(Δ2) = w1(w0(Δ2)) = T10,
which appears in the right-side illustration of Figure 21.1. In general,

(13) Fn = ∪λ1···λnTλ1···λn = ∪λ1···λnwλ1 ◦ · · · ◦ wλn(Δ2).

It follows, by substituting (13) into (12), that

F = F1 ∩ F2 ∩ · · · = (∪λ1wλ1(Δ
2)) ∩ (∪λ1,λ2wλ1 ◦ wλ2 (Δ

2)) ∩ · · · .

Moreover, since F1 ⊃ F2 ⊃ · · · , we have F = ∩n≥1Fn = ∩n≥2Fn = · · · where
w0(Fn) ∪ w1(Fn) ∪ w2(Fn) = Fn+1. And since each w ∈ W is one-to-one,
we have w(∩n≥1Fn) = ∩n≥1w(Fn). These facts, combined with the fact that
the intersection “∩n” distributes over “∪”, yield

w0(F ) ∪ w1(F ) ∪ w2(F ) = ∩n(w0(Fn) ∪ w1(Fn) ∪ w2(Fn)) = ∩n≥2Fn = F.

In other words, Sierpiński’s triangle F is the unique compact set that is the
“fixed point” of the Hutchinson operator X → w0(X)∪w1(X)∪w2(X), which
is equivalent to saying that F is the attractor of the IFS W .3

§22 Milutinović’s Subspace MA of Hilbert Space

Example 21.2 places Sierpiński’s construction within the context of a finite
IFS W = {w0, w1, w2}. Here, we show how Milutinović extended W to an
infinite IFS {wa : a ∈ A} and thereby obtained his MA ⊂ l2(A).

Let us recall (Appendix 2) that the standard orthonormal basis {ua : a ∈
A} of l2(A) consists of those vectors ub = (ub

a) ∈ l2(A), b ∈ A, specified by
ub

a = 0 when a �= b and ub
b = 1; and that the standard simplex ΔA ⊂ l2(A) is

3Compare F = w0(F ) ∪ w1(F ) ∪ w2(F ) ⊂ Δ2 ⊂ R
3 with the development in §8, where

Δ2 ⊂ R
2 is the superspace of the attractor ω2 ⊂ Δ2 ⊂ R

2.



40 IMBEDDING JA IN HILBERT SPACE CHAPTER 4

the closed convex hull of {ua : a ∈ A}. From A9.5, we also know that when
A is infinite, then ΔA = {(xa) ∈ l2(A) : 0 ≤ Σaxa ≤ 1; 0 ≤ each xa ≤ 1}.

22.1 Definition (Milutinović’s infinite IFS) Let A be infinite, let {ua :
a ∈ A} be the standard orthonormal basis for l2(A); and for each a ∈ A, let
wa : l2(A) → l2(A) be given by wa(x) = ua + (1/2)(x− ua) = (1/2)(x + ua)
for each x ∈ l2(A). Then “WA” denotes {wa : a ∈ A}.

So for each b ∈ A, wb is a contraction by 1/2 toward (ub
a). We also note

that the inverse w−1
b of wb is given by w−1

b (x) = 2x − ub.

22.2 Lemma (each wa is a homeomorphism and wa(ΔA) ⊂ ΔA) Let WA

be as specified in Definition 22.1. Then each wa ∈ WA is a homeomorphism
that maps the standard simplex ΔA into itself.

Proof. Since both w−1
a ◦ wa and wa ◦ w−1

a equal the identity on l2(A), it
follows that wa is bijective. To see that wa is a homeomorphism, we show
that both wa and w−1

a are continuous — for d denoting the metric on l2(A),
we have d(wa(x), wa(y)) = (1/2)d(x,y) and d(w−1

a (x), w−1
a (y)) = 2d(x,y).

To see that wa(ΔA) ⊂ ΔA, let (xb)b∈A ∈ ΔA, and note that

0 ≤ Σb∈Axb ≤ 1 =⇒ 0 ≤ (1/2)Σb∈Axb + (1/2) ≤ 1,

which shows that each wa(ΔA) ⊂ ΔA.

22.3 Definition (Milutinović’s space MA) Let WA be as specified in Def-
inition 22.1. Let F1 = ∪a∈Awa(ΔA); F2 = ∪(a,b)∈A2 wa ◦ wb(ΔA); and
Fn = ∪(a1,...,an)∈An wa1 ◦ · · · ◦wan(ΔA). Then MA = F1 ∩F2 ∩· · · = ∩∞

n=1Fn.

§23 Comments

Chapters 3 and 4 document the constructions of two subspaces ωA′
and MA

of Hilbert space, each homeomorphic to JA. The focus in this chapter is ωA′
,

but §18 documents a discussion of MA and how Milutinović’s Proposition 7
shows that MA also satisfies “(xa) ∈ MA if and only if (xa) ∈ ΔA has the no-
carry property.” Historically, both ωA′

and MA were introduced (circa 1992)
entirely within the context of dimension theory. The motivation was the
need to increase the understanding of JA. Except for §21, where Sierpiński’s
construction is cast in terms of the formula for the Hutchinson operator (from
finite IFS theory), the material as presented here is basically as it appears in
the literature.



CHAPTER 5

Infinite IFS with Attractor ωA′

In §8 we showed that ωn ⊂ R

n is the attractor of the finite IFS Fn. In this
chapter we show that an infinite IFS FA has the attractor ωA′ ⊂ l2(A′).

In both cases, the attractors are closed and bounded, which equates to
compactness in the finite case. So here the focus is the family BX of non-
empty closed and bounded subsets of a metric space X . The Hausdorff
metric h on BX is motivated and studied. The space (BX , h) is complete
when (X, ρ) is complete, and an infinite IFS theory evolves. The JA system
FA is then defined and shown to have attractor ωA′

. For the most part, we
follow Miculescu and Mihail [2008]. For the proof that ωA′

is a complete and
closed subspace of l2(A′) we follow Perry [1996].

§24 Neighborhoods of Sets

The distance ρ(a, b) between points a and b in a metric space (X, ρ) has the
basic property that whenever ε > ρ(a, b), then an ε-ball centered at either a
or b is a neighborhood of both a and b. So, if (BX , h) is a metric space, where
BX is any family of subsets of (X, ρ), and ε > h(A, B), then an ε-ball centered
at either A or B must be a neighborhood of both A and B. Figure 24.1 shows
that the usual distance ρ(A, B) does not produce such neighborhoods.
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Fig. 24.1 Distance ε between A and B, and ε-neighborhoods of A and B.

24.2 Example. (Use Figure 24.1.) Let X = R × R be the plane, and
consider the subsets A = {(x, y) : x = −2 and − 1 ≤ y ≤ +1} and B =
{(x, y) : x2 + y2 = 1 and x ≤ 0}. Then ρ(A, B) = inf {ρ(a, B) : a ∈ A}
is the “usual” distance between A and B. Thus, the “usual” distance does
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not necessarily produce ε > ρ(A, B) neighborhoods centered at either A or
B that contain both A and B.

In the following section, we shall develop a metric h on the set of all non-
empty, closed, and bounded subsets of a metric space that has the following
property: If ε > h(A, B), then the so-called ε-collars Aε and Bε contain both
A and B.

§25 Hausdorff Metrics and Pseudo Metrics

We are given a metric space X = (X, ρ) and we induce a metric h on BX

where BX is the set of all non-empty, bounded, and closed subsets of X .
The definition of the metric h, called the Hausdorff metric, is motivated by
Figure 25.1 and Example 25.3.
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Fig. 25.1 h(A, B) = max {aB, bA}; and
h(A, B) ≤ ε ⇔ A ⊂ Bε and B ⊂ Aε.

For the following lemma, recall that the notation for the distance between
a ∈ X and B ⊂ X is given by ρ(a, B) = inf b∈B ρ(a, b) = inf b ρ(a, b).

25.2 Lemma (0 ≤ aB = supa ρ(a, B) < ∞) Let A and B be non-empty and
bounded subsets of (X, ρ), and let aB = supa∈A ρ(a, B) = supa ρ(a, B). Then
0 ≤ aB < ∞.

Proof. Now 0 ≤ ρ(a, b) for each a ∈ A and each b ∈ B implies 0 ≤ ρ(a, B)
for each a ∈ A. So 0 ≤ supa∈A ρ(a, B) = aB. To see aB < ∞, we show
that {ρ(a, B) : a ∈ A} is bounded above: Since A is bounded, its diameter
|A| = sup x,y ∈A ρ(x, y) is finite. So we let both a1 ∈ A �= ∅ and b1 ∈ B �= ∅
be fixed. Then each ρ(a, B) ≤ ρ(a, b1) ≤ ρ(a, a1)+ρ(a1, b1) ≤ |A|+ρ(a1, b1),
which is finite.

A similar argument shows that 0 ≤ bA = supb ρ(b, A) < ∞. To illustrate
the usefulness of the values aB and bA, we present another example.
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25.3 Example. (Use Figure 25.1.) Again, let X = R × R be the plane,
and consider the subsets A = {(x, y) : x = −2 and − 1 ≤ y ≤ +1} and
B = {(x, y) : x2 + y2 = 1 and x ≤ 0}. To visualize aB, fix a ∈ A and let
�a be the line that contains a and the origin (0, 0) (which is the center of
the circle that contains the semicircle B). Then ρ(a, B) is the length of the
subsegment [a, q] of �a where {q} = B∩�a. And to visualize bA, fix b ∈ B and
let �b be the horizontal line that contains b. Then ρ(b, A) is the length of the
subsegment [q, b] where {q} = A ∩ �b. So for ε ≥ h(A, B) = max {aB, bA},
each “ε-collar” contains both A and B.

25.4 Theorem (Hausdorff metric h) Let (X, ρ) be a metric space, BX the
set of non-empty, bounded, and closed subsets of X, and h : BX×BX → [0,∞)
a mapping given by h(A, B) = max {aB, bA} where aB = supa ρ(a, B) with
each ρ(a, B) = infb ρ(a, b). Then (BX , h) is a metric space.

Proof. Let A, B, C ∈ BX . Then h(A, B) ≥ 0 since aB ≥ 0 and bA ≥ 0;
and h(A, B) < ∞ follows from Lemma 25.2. Next, observe that h(A, B) =
h(B, A), and that

h(A, B) = 0 ⇔ aB = 0 = bA ⇔ ρ(a, B) = 0 = ρ(b, A) (a ∈ A, b ∈ B)
⇔ a ∈ B = B and b ∈ A = A (a ∈ A, b ∈ B) ⇔ A = B.

To prove the triangle inequality, let a1 ∈ A and c1 ∈ C. Then

ρ(a1, B) = infb ρ(a1, b) ≤ ρ(a1, c1) + infb ρ(c1, b) ≤ ρ(a1, c1) + cB.

So ρ(a1, B) − cB is a lower bound of ρ(a1, c1) for every c1 ∈ C, which
yields ρ(a1, B) − cB ≤ infc ρ(a1, c) = ρ(a1, C). It follows that a ∈ A im-
plies ρ(a, B) ≤ ρ(a, C) + cB ≤ aC + cB, and, in turn, that aB ≤ aC + cB.
Similarly, bA ≤ bC + cA = cA + bC . Taken together,

h(A, B) = max {aB, bA} ≤ max {aC + cB, cA + bC}
≤ max {aC , cA} + max {cB, bC} = h(A, C) + h(C, B),

which finishes the proof.

25.5 Corollary (Hausdorff pseudo metric h∗) Let (X, ρ) be a metric space,
let MX be the family of all non-empty and bounded subsets of X, and let
h∗ : MX ×MX → [0,∞) be a mapping given by h∗(A, B) = max {aB, bA}
where aB = supa ρ(a, B) with each ρ(a, B) = infb ρ(a, b). Then (MX , h∗) is
a pseudo-metric space.

Proof. Except for the displayed string of equivalences “h(A, B) = 0 ⇔
· · · ⇔ A = B” in the proof of Theorem 25.4, the constraint that A and B be
closed was not required.

The metric h (pseudo metric h∗) induced by (X, ρ) is called a Hausdorff
metric (pseudo metric). Hausdorff metrics and pseudo metrics involve the
ε-collar Cε = {x ∈ X : ρ(x, C) ≤ ε} of C ∈ MX (Figure 25.1).
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We note, since C ∈ MX is both non-empty and bounded, that Cε is also
both non-empty and bounded. Moreover, since the mapping x → ρ(x, C) is
continuous, a straightforward argument shows that Cε ⊂ Cε. So C ∈ MX

implies Cε ∈ BX ⊂ MX .

25.6 Lemma (ε-collars) Let the metric space (X, ρ) induce (MX , h∗). Then
h∗(A, B) ≤ ε if and only if A ⊂ Bε and B ⊂ Aε.

Proof. When h∗(A, B) ≤ ε, both aB and bA ≤ ε. So for a1 ∈ A, we have
ρ(a1, B) ≤ supaρ(a, B) = aB ≤ ε, which yields a1 ∈ Bε, i.e., A ⊂ Bε. A
similar argument shows B ⊂ Aε. Conversely, the two inclusions B ⊂ Aε and
A ⊂ Bε show, respectively, that bA ≤ ε and aB ≤ ε, i.e., h∗(A, B) ≤ ε.

§26 Completeness of (BX , h)

In this section we provide a proof that whenever (X, ρ) is a complete metric
space, then the induced space (BX , h) is also complete.

26.1 Theorem (completeness of (BX , h)) Let (X, ρ) be a complete metric
space, and let BX be the set of non-empty, bounded, and closed subsets of X
with the induced Hausdorff metric h. Then (BX , h) is complete.

Proof. Let S1, S2, . . . be a Cauchy sequence in (BX , h). Then for each
ε > 0, we have h(Sn, Sm) < ε for all large n and m, say all n, m ≥ M . So for
B = SM and k ≥ M , the ε-collar Lemma (Lemma 25.6) yields Sk ⊂ Bε. It
follows that ∪iSi ⊂ S1 ∪ · · · ∪ SM−1 ∪ Bε is bounded. Next, let

A = {x ∈ X : x = lim
mk→∞

ymk
where each mk < mk+1 and each ymk

∈ Smk
}.

First, A is bounded : This claim follows because A ⊂ ∪iSi and ∪iSi (and
hence ∪iSi) is bounded. Second, A is closed : If x ∈ A, then x = limm→∞ am

where each am ∈ A. For each am ∈ A, however, there exists a sequence
ym = ym1ym2 · · · converging to am (where each mk < mk+1 and ymk

∈ Smk
).

y11 y12 · · · → a1

y21 y22 · · · → a2

...
... · · · →

...
x ∈ A

Without loss of generality, we may assume that each ρ(ymm , am) < 1/m and
that mm < (m + 1)m+1 for each m = 1, 2, . . .. Then, since the (diagonal)
sequence y11y22 · · · converges to x and also satisfies the specifications in the
definition of A, it follows that x ∈ A. That is, A = A is closed. So we now
know that A ∈ BX . Next, we show that A ⊂ Bε: Recall (third sentence in
this proof) that ∪k≥MSk ⊂ (SM )ε = Bε. Since ∪k≥MSk contains the tail
ymM ymM+1 · · · of any sequence ym1ym2 · · · satisfying the specifications in the
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definition of A, and since such a tail also satisfies those same specifications,
we see that

(1) A ⊂ ∪k≤MSk ⊂ Bε = Bε = (SM )ε.

Now we show that B ⊂ Aε: Select a sequence m0 < m1 < m2 · · · of positive
integers such that each h(Smk

, Smk+1) < ε/(2k). Since h(SM , Sm) < ε =
ε/(20) for each m ≥ M , we may assume that m0 = M . The list Sm0 , Sm1 , . . .
yields a sequence ym0 , ym1 , . . . in X where each ymk

∈ Smk
and each

(2) ρ(ymk
, ymk+1) < ε/(2k).

Indeed, let ym0 be any point of Sm0 , and then, with ymk
∈ Smk

defined, we
may select ymk+1 ∈ Smk+1 that satisfies (2) because infy∈Smk+1

ρ(ymk
, y) =

ρ(ymk
, Smk+1) and

ρ(ymk
, Smk+1) ≤ supx∈Smk

ρ(x, Smk+1) ≤ h(Smk
, Smk+1) < ε/(2k).

The sequence ym0 , ym1 , . . . is Cauchy and converges to some a ∈ A: For each
δ > 0, select a k > 0 such that ε/(2k−1) < δ. Then for n ≥ 0,

ρ(ymk
, ymk+n+1) ≤ ρ(ymk

, ymk+1) + · · · + ρ(ymk+n
, ymk+n+1)

< ε/(2k) + · · · + ε/(2k+n) < ε/(2k−1) < δ.

So the sequence {ymk
} is Cauchy and therefore converges because X is com-

plete. Also, ymk
→ ay ∈ A because each ymk

∈ Smk
. Moreover, since each

ρ(ym0 , ymk
) < ε, we have limk→∞ ρ(ym0 , ymk

) = ρ(ym0 , ay) ≤ ε, and hence

ρ(ym0 , A) = infa∈Aρ(ym0 , a) ≤ ρ(ym0 , ay) ≤ ε.

Since ym0 may be any member of B = SM , we have supb∈Bρ(b, A) ≤ ε. So
the following inclusion holds:

(3) SM = B ⊂ Aε.

Thus, the ε-collar Lemma (Lemma 25.6) and (1) and (3) yield h(SM , A) ≤ ε.
And, since k ≥ M implies h(Sk, A) ≤ h(Sk, SM ) + h(SM , A) < 2ε, it is clear
that the sequence S1, S2, . . . converges to A. Thus, (BX , h) is complete.

To be certain of the language used in the following lemma, recall that for
a metric space (X, ρ), a c-contraction is a mapping w : X → X that satisfies
ρ(w(x), w(y)) ≤ c ρ(x, y), x, y ∈ X , where

c = supx 	=y

ρ (w(x), w(y))
ρ(x, y)

∈ (0, 1).

Certain c-contractions are also similitudes — a similitude is a c-contraction
such that ρ(w(x), w(y)) = c ρ(x, y) for each x, y ∈ X .
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For an example, recall that each member of the IFS Fn = {wi : i =
0, . . . , n} as defined in §8 is a similitude with c = 1/2.

26.2 Lemma (properties of the Hausdorff pseudo metric h∗) Let (X, ρ) be
a metric space, and (MX , h∗) the induced pseudo metric space of non-empty
and bounded subsets of X. Then

(i) h∗(w(D), w(E)) ≤ c h∗(D, E) for each D, E ∈ MX

for any c-contraction w : X → X; and

(ii) h∗(D, E) = h∗(D, E) ≤ supa h∗(Da, Ea)
for D = ∪aDa, E = ∪aEa, {Da}, {Ea} ⊂ MX , and D, E ∈ MX .

Proof. First, (i): Since ρ(w(x), w(y)) ≤ c ρ(x, y), x, y ∈ X , we have

h∗(w(D), w(E)) = max{w(d)w(E), w(e)w(D)}
= max{ sup w(d)ρ(w(d), w(E)) , sup w(e)ρ(w(e), w(D))}
≤ max{c sup d ρ(d, E) , c sup e ρ(e, D)}
= c max{dE , eD} = c h∗(D, E).

Second, (ii): Observe that D, E ∈ MX , D ⊂ D, and E ⊂ E show not only
that D, E ∈ MX but also that Da, Ea ∈ MX for each a. So claim (ii) is well
defined. The equality in claim (ii) follows from an application of

(4) h∗(D, E) = inf {ε > 0 : D ⊂ Eε and E ⊂ Dε}.

So first we prove (4): By the ε-collars Lemma (Lemma 25.6),

(5) h∗(D, E) ≤ inf {ε > 0 : D ⊂ Eε and E ⊂ Dε}.

And the reverse inequality follows because, for any value h∗(D, E)+ δ where
δ > 0, we may choose ε such that h∗(D, E) ≤ ε < h∗(D, E) + δ, yielding, by
Lemma 25.6, D ⊂ Eε and E ⊂ Dε, which, in turn, shows that

(6) inf {ε > 0 : D ⊂ Eε and E ⊂ Dε} < h∗(D, E) + δ.

Thus, (5) and (6) yield (4). Now since both Eε and Dε are closed, we see
that

(7) D ⊂ Eε ⇔ D ⊂ Eε ⊂ (E)ε and E ⊂ Dε ⇔ E ⊂ Dε ⊂ (D)ε.

From (7) and (4) the equality in claim (ii) holds. To see that the inequal-
ity is also true, note that h∗(Da, Ea) = max{dEa

a , eDa
a } while h∗(D, E) =

max{dE , eD}, and then consider dE = supd∈D ρ(d, E): For each d ∈ D
there is an a such that d ∈ Da. So

(8) ρ(d, E) = inf
e∈E

ρ(d, e) ≤ inf
e∈Ea

ρ(d, e) = ρ(d, Ea) ≤ sup
d∈Da

ρ(d, Ea) = dEa
a .
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From (8), for any d ∈ D we have ρ(d, E) ≤ supa {dEa
a }, which shows that

dE ≤ supa {dEa
a }. Similarly, eD ≤ supa {eDa

a }. It only remains to observe
that h∗(D, E) = max{dE , eD} ≤ supa max{dEa

a , eDa
a } = supa h∗(Da, Ea).

§27 Hutchinson Operator for a Bounded IFS

If an IFS of c-contractions is also “bounded,” then the Hutchinson operator
W : CX → CX may be extended to its counterpart W : BX → BX .

27.1 Definition (bounded IFS) Let (BX , h) be induced from the complete
metric space (X, ρ). For c ∈ (0, 1), let {wa} be a family of c-contractions
X → X such that Z ∈ BX implies ∪a∈Awa(Z) is bounded. Then the IFS
{wa} is called a bounded IFS.

27.2 Theorem (Hutchinson operator for bounded IFSs) Let (BX , h) be
induced from the complete metric space (X, ρ). For c ∈ (0, 1), let {wa} be a
bounded IFS of c-contractions X → X. Then the Hutchinson operator

W(Z) = ∪a∈Awa(Z) (Z ∈ BX)

is an operator from BX to BX that is also a c-contraction.

Proof. Recall that h∗ is an extension of h. Then for any D, E ∈ BX

h (W(D),W(E)) = h∗
(
∪awa(D), ∪awa(E)

)
= h∗ (∪awa(D),∪awa(E))

≤ sup
a

h∗(wa(D), wa(E)) ≤ sup
a

c h(D, E) = c h(D, E)

where the relations among the h∗ quantities follow from (ii) of Lemma 26.2,
and the last inequality follows from (i) of Lemma 26.2.

§28 The Attractor of an Infinite IFS

We continue our study of the infinite bounded IFS {wa} as specified in The-
orem 27.2. We show that each such system has an attractor.

28.1 Theorem Let (BX , h) be induced from the complete metric space
(X, ρ). For c ∈ (0, 1), let {wa} be a bounded IFS of c-contractions X → X.
Then there exists a unique K ∈ BX , called the attractor of {wa}, character-
ized by the equation K = ∪awa(K).

Proof. Since (BX , h) is a complete metric space, Theorem 27.2 shows that
W : BX → BX given by W(Z) = ∪awa(Z) is a c-contraction on BX . There-
fore, since contraction mappings on complete metric spaces have a unique
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fixed point, W has a unique fixed point K ∈ BX . That is, W(K) = K is
characterized by the equation K = ∪awa(K).

With the mathematics developed in §27 and §28, we are in a position to
formulate the infinite iterated function system that has ωA′

as its attractor.

§29 The JA System

Throughout this section, the IFS FA = {wa : a ∈ A} has an index set A
where |A| ≥ 2. In addition, z ∈ A is fixed, and A′ = A \ {z}.

29.1 Definition (JA system) For l2(A′) with the usual metric, let {ua :
a ∈ A′} be the standard orthonormal basis and let uz denote the zero-vector.
Then for each ua, a ∈ A, define the (1/2)-similitude wa(x) = (1/2)(x + ua)
and let FA = {wa : a ∈ A}. The IFS FA will be called the JA system.

To see that indeed each wa in the JA system is a (1/2)-similitude, sim-
ply calculate that ρ(wa(x), wa(y)) = ||wa(x) − wa(y)|| = (1/2)||x − y|| =
(1/2)ρ(x,y).

29.2 Lemma (JA system is a bounded IFS) For |A| ≥ 2, let X = l2(A′)
and let FA be the JA system. Then for each Z ∈ BX , the set ∪awa(Z) is
bounded, i.e., the JA system is a bounded IFS.

Proof. Consider the balls Br (with radius r > 0) centered at the origin of
l2(A′). Since Z is bounded, there is an r > 0 such that Z ⊂ Br, i.e., x ∈ Z
implies ||x|| < r. Thus, for any a ∈ A and any x ∈ Z,

||wa(x)|| = ||(1/2)(x + ua)|| ≤ (1/2) (||x|| + ||ua||) < (r + 1)/2

shows that each wa(Z), and hence ∪awa(Z), is a subset of B(r+1)/2.

§30 The JA System Has Attractor ωA′

In this section we prove that the JA system has attractor ωA′
.

30.1 Lemma (convergence in ωA′
is ultimately convergence in N(A)) Let

A be infinite, and let

δ1 = δ11δ12 · · · δ1j · · ·
δ2 = δ21δ22 · · · δ2j · · ·
...

...
...

...
...

...
...

where {δn} is a sequence in N(A) that has no convergent subsequence. Then
there exists an index j ∈ {1, 2, . . .} such that the set {δ1j, δ2j , . . .} of entries
in the jth column of the matrix above is an infinite subset of A.
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Proof. Suppose otherwise, and then contradict the fact that no subsequence
of {δn} converges by using the argument in the footnote on page 37 with
M = {1, 2, . . .}, ε1 = δ1, . . . , and εm(j) = δmj .

30.2 Theorem (ωA′
is complete and closed in l2(A′)) Let |A| ≥ 2, let z ∈ A

be fixed, and let A′ = A \ {z}. Then ωA′
is closed and complete in l2(A′).

Proof. If |A| = n+1 is finite, then from §8, ωn ⊂ R

n is the attractor of Fn,
which is compact, a fortiori closed and complete. Therefore, we may assume
that A is infinite. Let {xn} be a Cauchy sequence in ωA′

, and observe that
since l2(A′) is complete, xn → x ∈ l2(A′). So suppose that x ∈ l2(A′) \ ωA′

.
Then no subsequence of {xn} converges in ωA′

.
Recall (from Chapter 4) that g = f ◦ p : N(A) → ωA′

where p : N(A) →
JA is perfect and f : JA → ωA′

is a homeomorphism, i.e., convergence in ωA′

is ultimately convergence in N(A).
So select a sequence δ1 ∈ g−1(x1) , δ2 ∈ g−1(x2), · · · in N(A). Then no

subsequence of {δn} converges in N(A), otherwise we are finished.
From Lemma 30.1 there exists an infinite subset {δ1j, δ2j , . . .} of A where

each δkj is the jth “coordinate” of δk ∈ N(A). Because it is only the infinite
aspect of {δkj} that is important, we may assume that z �∈ {δkj}.

For each n, the map g(δn) = xn = (xb
n)b∈A′ is determined by first project-

ing δn into the δnj-arm C(z, δnj) of the star in N(A), and then calculating,
in the context of the corresponding uδnj -arm of the star in l2(A′), the corre-
sponding coordinate x

δnj
n of xn. The calculation yields

(9) xδnj
n ≥ 1/(2j) for each n = 1, 2, . . . .

Another constraint follows from the fact that {xn} is a Cauchy sequence:

(10) ||xm − xk|| < 1/(2j+1) for some N and all k, m > N.

Possible Case I: For a fixed k > N an m > N exists such that the δmj

coordinate of xk, namely, x
δmj

k , satisfies

(11) x
δmj

k ≤ 1/(2j+1).

Then (9) and (11) show that

xδmj
m − x

δmj

k ≥ 1/(2j+1),

and so

||xm − xk|| ≥
(
(xδmj

m − x
δmj

k )2
)1/2

≥ 1/(2j+1),

which contradicts (10).
Possible Case II: For any k, m > N , the δmj coordinate of xk satisfies

(12) x
δmj

k > 1/(2j+1).
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Thus, for k > N , the inequality (12) is true for an infinite number of m,
contradicting xk ∈ l2(A′). So the sequence xn → x ∈ ωA′

.

30.3 Theorem (the JA system has attractor ωA′
) Let X = l2(A′), let

FA = {wa : a ∈ A} be the JA system, let W : BX → BX be given by
W(Z) = ∪awa(Z), and let ωA′ ⊂ l2(A′) be the homeomorphic copy of JA

that is characterized by the no-carry property. Then ωA′
= ∪awa(ωA′

), i.e.,
ωA′

is the attractor of the JA system FA.

Proof. By Theorem 28.1, since ωA′
is a closed subset of l2(A′), it suffices

to show that ωA′
= ∪awa(ωA′

): First, let y ∈ ωA′
. Then y = (yb)b∈A′ ∈

l2(A′) and (yb) satisfies the no-carry property, i.e., each yb has a binary
representation .yb

1y
b
2 · · · and together, for each fixed subscript i, there is at

most one b ∈ A′ such that yb
i = 1. So consider two cases:

Case I: For each b ∈ A′, yb
1 = 0. Let x = w−1

z (y) = 2y = (2yb). Then
each xb = 2yb = 0.yb

2y
b
3 · · · , which shows that x ∈ ωA′

. Since wz(x) = y, we
have y ∈ ∪a∈Awa(ωA′

).
Case II: There exists one and only one d ∈ A′ such that yd

1 = 1. Let

x = w−1
d (y) = 2y − ud = (2yb) − (ub

d) where ub
d =

{
0.00 · · · if b �= d
1.00 · · · if b = d.

Then

xd = 2yd − ud
d = 1.yd

2yd
3 · · · − 1.000 = 0.yd

2yd
3 · · · (b = d);

xb = 2yb − ub
d = 0.yb

2y
b
3 · · · − 0.000 = 0.yb

2y
b
3 · · · (b �= d),

which shows that x ∈ ωA′
. Since wd(x) = y, we have y ∈ wd(ωA′

).
Second, let y ∈ ∪a∈Awa(ωA′

): Then, for some d ∈ A, we have y =
wd(x) = wd((xb)) = (xb/2) + (ub

d/2) where, for each b ∈ A′,

(13) xb/2 = .0xb
1x

b
2 · · · and ub

d/2 =
{

.000 · · · if b �= d

.100 · · · if b = d.

From (9), y = wd(x) satisfies the no-carry property, i.e., y ∈ ωA′
.

§31 Comments

Arguably, point-set topology produced one of the greatest contributions to all
of mathematics, namely the extension of the idea of convergence of numbers
on a real line to abstract structures (any structure with a topology).

Such a “general convergence” is basic in Barnsley [1988], where CX de-
notes the family of compact subsets of a complete metric space X , i.e., the
“points” in CX are compact subsets of X . Convergence takes place in (CX , h)
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where h is the Hausdorff metric: A sequence W (Z), W ◦ W (Z), . . . con-
verges to the “fractal” F , where W is a contractive (Hutchinson) opera-
tor Z �→ ∪iwi(Z) on CX , and, {wi} is a finite IFS of contractive mappings
X → X . For infinite IFSs {wa}, extensions of CX , W , and {wi} are required.

For example, let A be infinite, consider the standard orthonormal basis
B = {ua : a ∈ A} ⊂ l2(A), and define wa : l2(A) → l2(A) as the constant
mapping l2(A) → {ua}. Then for any singleton (hence compact) set Z, we
have W (Z) = ∪awa(Z) = B which is closed and bounded, but not compact.1

Historically, circa 1996, James Perry knew that J2 was a copy of the unit
interval and that J3 was a copy of Sierpiński’s triangle. And he conjectured
that any JA could be realized as an attractor of an IFS. And while he did not
prove his conjecture, Perry [1996] did create an infinite IFS with an attractor.

His construction was based on the observation that ωA, being a subset
of the standard simplex ΔA, is both a subspace of ΔA and a subset of Ty-
chonoff’s cube IA. (Recall that (θa) ∈ ωA implies that each θa satisfies
0 ≤ θa ≤ 1.) So he states:

Let ωA
c denote the space whose underlying set is that of ωA but

whose topology is induced from the Tychonoff cube IA.

By using the compact Tychonoff cube and the (1/2)-contractions associated
with ωA, Perry created a hybrid of arguments that proved that ωA

c is the
attractor of an IFS {wa : a ∈ A} containing affine transformations of R

A.
Perry’s IFS with attractor ωA

c may be the first (nontrivial) example (with
complete proofs) of an infinite IFS with an attractor.

At the end of the Introduction section in Perry [1996], he states:

It is an open problem to construct ωA as the attractor of an IFS
containing affine transformations of l2(A).

More than a decade later, it was Miculescu and Mihail [2008] who provided
a solution, the mathematics of which is the content of this chapter.

This growth, from compactness arguments within CX , to a hybrid of com-
pactness arguments and arguments related to “closed and bounded” sub-
spaces of l2(A), to “closed and bounded” arguments within (BX , h), runs
somewhat parallel to the growth of universal spaces in dimension theory. For
example, the universal Menger sponge and Sierpiński carpet are compact as
are the Euclidean cubes I2n+1 that are fundamental to universal spaces for
n-dimensional separable metric spaces. But a JA space is compact when A
is finite and not compact when A is infinite. Nevertheless, in every case JA

is homeomorphic to ωA′
, which is closed and bounded in l2(A). Looking

back, it now seems most reasonable that it would be the mathematics of
(Bl2(A), h) that would provide infinite IFSs with attractors homeomorphic to
the noncompact JA.

1The basis B is bounded because each ||ua|| = 1; it is closed in l2(A) because for
distinct a, b ∈ A, each ||ua − ub|| =

√
2; and it is not compact because any covering of B

with open balls in l2(A) of radius less than
√

2/2 has no finite subcover of B.
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For references concerning techniques of working with compactness in the
context of functional analysis (in particular l2(A)), see Kolmogorov and
Fomin [1957; §16–§18]. And for dimension in bicompact (compact Haus-
dorff) spaces, see Chapter 8 of Pears [1975], with sections on inverse limits,
a family of examples due to Vopěnka (Vopěnka [1958]), and V. V. Filippov’s
example (Filippov [1970]).

An introductory model for some of the proofs within the BX theory ap-
pears in Gulick [1992, Section 4.4]. For properties of the Hausdorff metric,
one may review Dugunji [1966, page 205, problem 8] and Section 2.4 in
Hutchinson [1981], where Federer [1969] is referenced. For the Hausdorff
metric within the context of hyperspace theory and continuum theory, see,
respectively, Nadler [1978] and Nadler [1992]. And for contractive mappings
and similitudes in the context of fractals see Hutchinson [1981, Sections 2.2
and 2.3].

For variations on the proofs given in this chapter, see Miculescu and
Mihail [2008], where Secelean [2001] is referenced. For example, the use of
the no-carry characterization of ωA′

to prove Theorem 30.3 is new, i.e., it
differs from the original proof that appears in Miculescu and Mihail [2008].

And finally, we note that Milutinović [1992, Corollary 15] provided one of
the first proofs that ωA = MA ⊂ l2(A) is closed and complete in l2(A).



CHAPTER 6

Dimension Zero

In this chapter we prove that both the JA rationals and JA irrationals are
zero-dimensional and dense in JA. As a corollary, using J2, we deduce the
zero-dimensionality and denseness of the rationals and irrationals in the unit
interval. The n = 0 case of the Jn+1

A Imbedding Theorem is established. And
for 0 ≤ n ≤ �, we consider subspaces of J�

A(n) where J�
A(n) consists of those

tuples in J�
A with at most n rational coordinates: We show that the subspace

E�
A(m) of tuples that have exactly m rational coordinates has dimension

zero. Then J�
A(n) = ∪n

m=0E
�
A(m) and an application of the Decomposition

Theorem within dimension theory shows that J�
A(n) is n-dimensional.

§32 Rationals and Irrationals

As a subspace of the unit interval, the union of the sets

{ 1
2}, { 1

4 , 3
4}, { 1

8 , 3
8 , 5

8 , 7
8}, · · · , { 1

2n , 3
2n , 5

2n , 7
2n , . . . , 2n−3

2n , 2n−1
2n }, · · ·

is countable and therefore zero-dimensional. Or, since each finite set in the
list is closed and zero-dimensional, we may apply the Sum Theorem (A6.2).
Moreover, as indicated in Figure 6.1, the unit interval I is homeomorphic to
J2 under a map that sends these dyadic rationals onto the rationals in J2.
That is, there is a homeomorphism

rationals in J2 ←→ dyadic rationals in (0, 1).

So the J2 rationals must also be zero-dimensional.
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Fig. 32.1 The J3 rationals are countable and thus zero-dimensional.

Turning to J3, we see (Figure 32.1) a pattern for defining a list of finite
sets whose union is the set of J3 rationals. Indeed, the 31 = 3 points in the
first set are pictured as “black dots” and the 32 = 9 points in the second set
as “circles.” The pattern tells us that there are 3n points in the nth set. So
the subspace of J3 rationals, being countable, is therefore zero-dimensional.
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32.2 Theorem (subspace of rationals in JA is zero-dimensional) Let
|A| ≥ 2, and let RA ⊂ JA be the subspace of rationals. Then Ind RA = 0.

Proof. We shall apply the Sum Theorem. For each t ∈ {1, 2, . . .}, define

Ft = {z ∈ JA : z rational; t is the tail index of each member of p−1(z)}.

Each Ft is closed in JA: Since p : N(A) → JA is a quotient map, it suffices
to show that p−1(Ft) is closed in N(A). To see that p−1(Ft) is closed, note
that each δ1δ2 · · · ∈ N(A) \ p−1(Ft) is such that either δt = δt+1 or an index
k ≥ t + 1 exists such that δk �= δk+1. So Ft is closed in JA. Next, we show
that each Ft is zero-dimensional: Since p−1(Ft) is discrete (δ = δ1δ2 · · · ∈
p−1(Ft) implies {δ} = 〈δ1, . . . , δt+1〉 ∩ p−1(Ft)), and since p is perfect (hence
hereditarily quotient), Ft must be discrete. So each Ft is zero-dimensional.
It follows from the Sum Theorem, since RA = ∪tFt, that Ind RA = 0.

32.3 Example. The subspace of rationals in R is zero-dimensional: Let
A = {0, 2}, and let RA denote the subspace of JA rationals. Then there exist
two homeomorphisms (the first suggested by Figure 6.1):

(1) RA ←→ dyadic rationals in (0, 1) ←→ rational reals in R.

And since RA is zero-dimensional (Theorem 32.2), the subspace of rational
reals in R must also be zero-dimensional.

32.4 Theorem (subspace of irrationals in JA is zero-dimensional) Let
|A| ≥ 2, and let IA ⊂ JA be the subspace of irrationals. Then Ind IA = 0.

Proof. Since p : N(A) → JA is perfect, p is hereditarily quotient, making
the restriction p′ of p to p−1(IA) a quotient mapping. Since p′ is also one-
to-one, it is a homeomorphism. So, since p′ is a continuous closed surjection
from p−1(IA) ⊂ N(A) onto IA with singleton-set fibers, Theorem 1.6 shows
that IA is zero-dimensional.

32.5 Example. The subspace of irrationals in R is zero-dimensional: Let
A = {0, 2}, and let I ′A denote the subspace of irrationals in JA that con-
tains neither p(0) nor p(2). Then there are two homeomorphisms (the first
suggested by Figure 6.1):

(2) I ′A ←→ (0, 1) \ {dyadic rationals} ←→ irrational reals in R.

And since I ′A ⊂ IA and IA is zero-dimensional, I ′A is zero-dimensional. Thus,
since the composition of homeomorphisms in (2) is a homeomorphism, the
subspace of irrational reals in R must be zero-dimensional.

The following theorem is a result of p : N(A) → JA being continuous.
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32.6 Theorem (rationals and irrationals are dense in JA) Let |A| ≥ 2.
Then the rationals are dense in JA and the irrationals are dense in JA.

As one might suspect, the fact that RA and IA are dense in JA may imply
that the rational and irrational reals are dense in R.

32.7 Example. The rational and the irrational reals are dense in R: Note
that the composite homeomorphism in (1) and the composite homeomor-
phism in (2) are restrictions of a single homeomorphism

J{0,2} \ {p(0), p(2)} ←→ R.

So by Theorem 32.6, the rational and irrational reals are dense in R.

§33 Jn+1
A Imbedding Theorem for n = 0

For separable metric spaces, the Classical Imbedding Theorem states that the
subspace of tuples in I2n+1 with at most n rational coordinates is universal
for separable metric spaces of (covering) dimension ≤ n. Since this theorem
is well known, we shall simply state the n = 0 case for comparison with the
same case of the Jn+1

A Imbedding Theorem.

33.1 Theorem (n = 0 case of the Classical Imbedding Theorem) Let X
be any zero-dimensional separable metric space. Then X can be imbedded in
the subspace of irrationals in the unit interval I.

Analogous to the Classical Imbedding Theorem, the Jn+1
A Imbedding The-

orem states that the subspace of tuples in Jn+1
A with at most n JA-rational

coordinates is universal for weight |A| ≥ ℵ0 metric spaces of covering dimen-
sion ≤ n.

33.2 Theorem (n = 0 case of the Jn+1
A Imbedding Theorem) Let X be

any zero-dimensional weight |A| ≥ ℵ0 metric space. Then X can be imbedded
in the subspace IA of irrationals in JA.

Proof. Recall that any zero-dimensional weight |A| ≥ ℵ0 metric space can
be imbedded in N(A). So it suffices to imbed N(A) into IA. To accom-
plish this, let B1, B2, . . . be a partition of the infinite discrete space A into
subspaces Bj where each |Bj | = |A|. Also, for each j, let Aj = A. These
spaces induce homeomorphisms and imbeddings. In particular, homeomor-
phisms qj : Aj → Bj exist because both of these discrete spaces have the
same size, while the inclusion mappings ij : Bj → Aj = A serve as imbed-
dings. Forming product maps, we then have the imbedding ×jij : ×jBj →
p−1(IA) ⊂ ×jAj = N(A), and, the homeomorphism ×jqj : ×jAj → ×jBj .
These mappings are illustrated in the context of a commutative diagram:
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N(A) = ×jAj ×jBj p−1(IA)

IA

........................................................................... ..............
×jqj

................................................................... ..............
×jij

....................................................................................................
.....
.........
.....

p′

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .......................... .............

where p′ = p|p−1(IA) : p−1(IA) → IA is a homeomorphism. It follows that the
“dashed arrow” is an imbedding of N(A) into IA.

§34 Subspaces of J �
A

For 0 ≤ n < � and m ∈ {0, 1, . . . , n}, we let the subspace J�
A(n) consist of the

�-tuples in J�
A that have at most n rational coordinates, and the subspaces

E�
A(m) consist of the �-tuples with exactly m rational coordinates. In this

section we calculate the dimensions of these spaces.

34.1 Lemma (IndE�
A(m) = 0) Let |A| ≥ 2, m ≥ 0, � > m, and E�

A(m) =
{z ∈ J�

A : z has exactly m rational coordinates}. Then Ind E�
A(m) = 0.

Proof. Recall (proof of Theorem 32.2) that, for each t ∈ {1, 2, . . .},

Ft = {z ∈ JA : z rational; t is the tail index of each member of p−1(z)}

is closed in JA and IndFt = 0. Next, we use the Ft to determine the dimension
of each E�

A(m): Let IA be the subspace of irrationals in JA, and for each S ⊂
{1, 2, . . . , �} that contains exactly m members and each k : S → {1, 2, . . .},
let

F (S, k) = {z ∈ J�
A : zr ∈ Fk(r) if r ∈ S; and zr ∈ IA if r �∈ S}.

Now each F (S, k) is therefore the �-fold product of the m zero-dimensional
Fk(r) spaces, r ∈ S, and �−m copies of IA. So the Product Theorem (A6.2)
shows that F (S, k) itself is zero-dimensional. In addition, each such F (S, k)
is also closed in E�

A(m) — if y ∈ (E�
A(m) − F (S, k)), then either some index

r ∈ S exists such that yr is irrational, or, each yr, for r ∈ S, is rational
but the tail index of at least one such yr is not k(r). So F (S, k) is closed in
E�

A(m). Finally, since the number of such pairs (S, k) is countable and

E�
A(m) = ∪{F (S, k) : |S| = m and k : S → {1, 2, . . .}} ,

the Sum Theorem shows that E�
A(m) is zero-dimensional.
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34.2 Theorem (J�
A(n) spaces) Let |A| ≥ 2, and, for integers 0 ≤ n < �,

let the space X = J�
A(n) = {z ∈ J�

A : z has at most n rational coordinates}.
Then Ind X = n.

Proof. If n = 0, then X = I�
A where IA is the subspace of irrationals in JA.

And since IA is zero-dimensional, the Product Theorem shows that IndX ≤
Ind IA + · · ·+ Ind IA = � · 0 = 0, which finishes the proof. So we may assume
that n > 0. In this case, we begin by showing IndX ≥ n: Since JA contains
a copy of the unit interval I, the product space Jn

A contains a copy of the
cube In, which has dimension n. So the Subspace Theorem (A6.2) yields Ind
Jn

A ≥ Ind In = n. Moreover, Jn
A is homeomorphic to

{q1} × · · · × {q�−n} × Jn
A ⊂ J�

A(n) = X

where q1, . . . , q�−n ∈ JA are � − n irrationals. Thus,

Ind X ≥ Ind ({q1} × · · · × {q�−n} × Jn
A) = n.

To see that Ind X ≤ n, we apply the Decomposition Theorem (A6.2), i.e.,
X = J�

A(n) = ∪n
0 E�

A(m) and Ind E�
A(m) = 0 (Lemma 34.1) for each m. So

Ind X ≤ n and IndX ≥ n shows that X is n-dimensional.

34.3 Corollary (Ind (I2n+1(n)) = n) Let I denote the unit interval, and,
for n ≥ 0, let I2n+1(n) = {x ∈ I2n+1| x has at most n rational coordinates}.
Then Ind (I2n+1(n)) = n.

Proof. Let A = {0, 1}. Then for p : N(A) → JA and q : N(A) → I given by
(a1, a2, . . .) �→ Σ∞

i=1ai/2i, we have φ = pq−1 : I → JA is a homeomorphism.

N(A) I I

JA

q

p

r

φ = pq−1

..................................................................................... ..............

.........................................................................
......
........
......

.................................................................................................................................................
...

..............

......................................................................................................................................

Indeed, if Σ∞
1 ai/2i = Σ∞

1 bi/2i, then let k denote the smallest index k such
that ai �= bi. We assume, without loss of generality, that ai = 1. Then

1/2k + Σk+1ai/2i = Σk+1bi/2i ⇒
{

1 = bk+1 = bk+2 = · · · and
0 = ak+1 = ak+2 = · · · .

In other words, a1a2 · · · and b1b2 · · · are adjacent endpoints, which shows
that p and q have the same fibers (Theorem A4.3). Next, let r : I → I
be a homeomorphism that preserves the natural ordering in I, and, maps
the rational reals in I onto the dyadic rationals in I. Then ψ = φ ◦ r :
I → JA is a homeomorphism that maps the rational reals in I onto the
rationals in JA. So the product map ×iψi : I2n+1 → J2n+1

A with each ψi = ψ
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is a homeomorphism. Moreover, (x1, . . . , x2n+1) ∈ I2n+1 has at most n
rational coordinates if and only if (ψ(x1), . . . , ψ(x2n+1)) ∈ J2n+1

A has at most
n rational coordinates. Thus, since I2n+1(n) is homeomorphic to J2n+1

A (n),
Theorem 34.2 shows that Ind I2n+1(n) = n.

For � = n + 1 in Theorem 34.2, we have the following corollary.

34.4 Corollary (IndJn+1
A (n) = n) Let |A| ≥ 2, let n ≥ 0, and let Jn+1

A (n) =
{z ∈ Jn+1

A : z has at most n rational coordinates}. Then Ind Jn+1
A (n) = n.

§35 Comments

One of the goals of this short chapter was to relate the Jn+1
A Imbedding

Theorem to the Classical Imbedding Theorem for the case n = 0. The
approach involved (i) proving general statements that concern JA for any A
with at least two members; and then (ii) applying these general results to J2

to yield the corresponding results in the classical case.
For the most part, Section 33 and the proof of Theorem 33.2 follow Lip-

scomb [1973]. The proof of Theorem 33.2 is based on the fact that N(A) is
universal for the class of zero-dimensional weight |A| ≥ ℵ0 metric spaces. For
details on the universality of N(A) see Engelking [1978, Theorem 4.1.24].



CHAPTER 7

Decompositions1

Any n-dimensional weight |A| ≥ ℵ0 metric space admits an ℵ0 × (n + 1)
matrix [Wij ] of decompositions that yields an imbedding into the subspace
of (n + 1)-tuples in Jn+1

A that have at most n rational coordinates.
We motivate and construct the decompositions Wij . The approach is a

substantially expanded version of the approach in Lipscomb [1975].

§36 The Dimension Function diml

The Lebesgue or covering dimension “dim” is well known. Here, we construct
another dimension function “diml” and then prove that diml X = dim X
when X is a normal Hausdorff space. The “diml” concept concerns the “local
order of a point,” which is distinct from “order of a point.” For example,
consider a point p in the plane that is a point of tangency for two circles that
bound two (open) 2-discs, say D1 and D2.

•p
..
..
..
...

....
........................................

...
..
..
..
..
..
...

......................
..
..

Then relative to the family {D1, D2}, the “order of p is zero” while the “local
order of p is two.”

36.1 Definition (lordx U and lord U) Let X be a topological space, U a
family of subsets of X , and x ∈ X . Then “lordx U” denotes the local order
of U at x. That is,

lordx U = min {k(Gx) : x ∈ Gx ⊂ X ; Gx open in X}

where k(Gx) is the number (either a non-negative integer or ∞) of U ∈ U
such that Gx ∩ U �= ∅. Moreover,

lord U = sup{lordx U : x ∈ X}

is the local order of U .

36.2 Definition (diml X) Let X be a topological space and n a non-
negative integer. Then X has local dimension ≤ n if each locally finite open

1A locally finite pairwise-disjoint family U of open subsets of X is a decomposition of
X if cl U = {U : U ∈ U} is a cover of X.
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cover V of X has a local order ≤ n + 1 open refinement that covers X . If X
has local dimension ≤ n, we may write “diml X ≤ n”, and when diml X ≤ n
and it is not true that diml X ≤ (n − 1), then X has local dimension n and
we may write “diml X = n”. When no such n exists, then by definition diml
X = +∞. Finally, define diml ∅ = −1.

From Engelking [1978, Dowker’s Theorem 3.2.1], recall that for normal
T2 spaces, “dim X ≤ n” is equivalent to “each locally finite open cover of X
has a locally finite order ≤ n + 1 open refinement that covers X .”

36.3 Proposition (dim X = diml X when X is normal T2) Let X be a
normal Hausdorff space. Then diml X = dim X.

Proof. Since a cover of local order ≤ n + 1 is necessarily a cover of order
≤ n + 1, Dowker’s Theorem shows that diml X ≤ n implies dim X ≤ n. For
the reverse implication, suppose dim X ≤ n; and let V be a locally finite open
cover of X . Since dim X ≤ n the cover V has a locally finite order ≤ n+1 open
refinement U that covers X . From the covering characterization of normal
T2 spaces (§A2), there exists a locally finite open cover U ′ = {U ′

a : a ∈ A}
of X such that cl U ′ = {U ′

a : a ∈ A} precisely refines U . If, for any x ∈ X ,
we define Gx = X \ ∪{U ′

a : a ∈ A; x �∈ U ′
a}, then Gx is open and meets at

most n + 1 of the U ′
a. So lord U ′ ≤ n + 1.

§37 Nodes of a Cover

A family V = {Va : a ∈ A} is nodally indexed if for each non-empty V ∈ V
there is at most a finite number k ≥ 1 of distinct indices a1, . . . , ak such
that V = Va1 = · · · = Vak

. In particular, if V is either faithfully indexed
(distinct a, b ∈ A yield distinct Va, Vb ∈ V), or, pseudo-faithfully indexed
(∅ �= Va = Vb �= ∅ implies a = b), then V is nodally indexed.

37.1 Definition (nodes of locally finite open covers) Let V = {Va : a ∈ A}
be a nodally indexed and locally finite open cover of a space X . Well order
A = (A, <). The one-nodes (1-nodes) of V are the members of a nodal family
O1 = O1(V) = {Oa : a ∈ A} where

Oa = Va \ (∪{Vb : b �= a; b ∈ A}) (a ∈ A).

And in general, the k-nodes of the cover V are the members of a nodal family
Ok = Ok(V) = {Oa1···ak

: a1 < · · · < ak; ai ∈ A} where

Oa1···ak
= (Va1 ∩ · · · ∩ Vak

) \ (∪{Vb : b �= a1, · · · , b �= ak; b ∈ A}).

The collection O(V) = ∪k≥1Ok is called the nodal family of V .
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Fig. 37.2 Cover V = {Va, Vb, Vc} and its nodes.

Nodes of the family V = {Va, Vb, Vc} are illustrated in Figure 37.2. The
three “dashed curves” specify the boundary curves of Va, Vb, and Vc, showing
that the nodes are pairwise disjoint. Collectively, however, these nodes cover
X . So it remains to determine the subsets of the boundary curves included
in each node.

These subsets are pictured in Figure 37.3, where the top and bottom
right-side illustrations provide, respectively, examples of nodal properties (2)
and (4) in Proposition 37.4.
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Fig. 37.3 Nodes of V partition Bdry V = B(Va) ∪ B(Vb) ∪ B(Vc).
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37.4 Proposition (properties of nodal families) Let V = {Va : a ∈ A} be
a nodally indexed and locally finite open covering of a space X. Then the
families of 1-nodes, 2-nodes,. . . satisfy the following properties:

(1) Any two well orderings of A yield the same nodal collections.
(2) O1 is a discrete family of closed sets with each Oa ⊂ Va.
(3) O(V) = ∪k≥1Ok is a pairwise-disjoint locally finite cover of X.
(4) For pseudo-faithful indexing, ord V = k implies O ∈ Ok is open.

and x ∈ O ∈ Ok if and only if ordx V = k.
(5) If the closures of two distinct k-nodes meet, then they meet in a

union of m-nodes where m ranges over indices less than k.
(6) The induced indexing of the members of O(V) is pseudo-faithful.

Proof. Standard arguments yield (1), (3), (4), and (6). For (2), show that
Oa = Va \ (∪{Vb : b �= a; b ∈ A}), and, for the discrete part, that each x is
in some Va and Va meets only one 1-node. For (5), let x ∈ Oa1···ak

∩ Ob1···bk

where at least one aj �∈ {b1, . . . , bk}. Then by (3), x ∈ O = Oc1···cm ∈ O(V),
and by definition, Oc1···cm ⊂ ∩m

i=1Vci . So x is in each Vci , which shows that
each ci ∈ ({aj} ∩ {bj}). Since one of the aj �∈ {bj}, we are finished.

For an example of (5), consider the bottom left-side graphic in Figure 37.3
where the point represented by the leftmost circle, say x, is contained in
the closures Oab and Oac of two distinct 2-nodes Oab and Oac. Then as
illustrated, these closed sets meet at x which is contained in the 1-node Oa.

Property (5) involves points common to the closures of two distinct k-
nodes. But what can we say about points in the closure of a single k-node?
The answer is provided by the Nodal Closure Property:

37.5 Corollary (Nodal Closure Property) Let V = {Va : a ∈ A} be a
locally finite open cover of X, let O = Oa1···ak

be a k-node of V, and let
x ∈ O \ O. Then x ∈ Ob1···bm where m < k and {b1, . . . , bm} is a proper
subset of {a1, . . . , ak}.

Proof. From (3), x ∈ Ob1,...,bm for some m ≥ 1. Also, x �∈ O = Oa1···ak

implies that either x �∈ ∩iVai , or, x ∈ Vb for some b �∈ {ai}. The latter
statement, however, cannot hold because Vb open and Vb ∩O = ∅ contradicts
x ∈ O. So {b1, . . . , bm} is a proper subset of {a1, . . . , ak}.

An application of the nodal closure property provides the following corollary.

37.6 Corollary (unions of nodes, closed and open) Let V = {Va : a ∈ A}
be a locally finite open cover of X. Then for each j ≥ 1, the sets ∪{O : O ∈
j

∪
1
Ok} and ∪{O : O ∈

∞
∪

j+1
Ok} are closed and open, respectively.
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Fig. 37.7 Cover V = {Va, Vb, Vc, Vz}, Va = Vz , and its nodes.

Nodes of the family V = {Va, Vb, Vc, Vz} are illustrated in Figure 37.7. In
this case V is nodally indexed but not faithfully indexed. Again, the nodes
are pairwise disjoint; collectively cover X ; and induce a partition of Bdry V .
The parts of the partition are pictured in Figure 37.8. This example provides
instances of (2), (3), (5), and (6) of Proposition 37.4 for the case where the
indexing is not faithful.
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Fig. 37.8 Nodes of V partition Bdry V = B(Va) ∪ B(Vb) ∪ B(Vc).
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37.9 Definitions (shrinks, puffs-up, and canonical (F ,V) collections) A
family F = {Fλ : λ ∈ Λ} of sets shrinks a family G = {Gλ : λ ∈ Λ} of sets if
F precisely refines G, i.e., for each λ ∈ Λ, we have Fλ ⊂ Gλ. And for such
a pair, the collection U = {Uλ : λ ∈ Λ} puffs-up F in G whenever, for each
λ, we have Fλ ⊂ Uλ ⊂ Gλ. Furthermore, let V = {Va : a ∈ A} be a nodally
indexed locally finite open cover of X , let {Oλ : λ ∈ Λ} be a subfamily of the
nodal collection O(V), and let F = {Fλ}Λ shrink {Oλ}Λ, i.e., each

Fλ ⊂ Oλ = (
k

∩
1
Vai) \ ∪{Vb : b �= a1, . . . , b �= ak; b ∈ A}

with a1 < · · · < ak determined by λ. Then the canonical (F ,V) collection is

the open family {Gλ}Λ where each Gλ =
k

∩
1
Vai .

We close this section with the observation that if F shrinks a family of
nodes of V , then F necessarily shrinks the canonical (F ,V) collection.

§38 Lemmas for the Decomposition Theorem

The proof of the main theorem of this chapter requires several lemmas. We
begin with the constructions illustrated in Figure 38.1, which serve to guide
the reader through the proof of Lemma 38.2.
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G

Ub
Ua

Y ′
b

Ya = Ua \ G

Yb = (Ub \ G) ∪ Y ′
b........

........
........
........
........
........
......................
..............

•

Fig. 38.1 The Ya and Yb constructions in the proof of Lemma 38.2.

38.2 Lemma (refining covers in a neighborhood of a dim ≤ n closed set)

Let n ≥ 0; let F ⊂ H be subspaces of X with F closed, dim F ≤ n, and H
open; and let U = {Ua : a ∈ A} be a nodally indexed locally finite open cover
of X. Then an open cover Y of X and an open subset G of X exist where
F ⊂ G ⊂ G ⊂ H; where Y = {Ya : a ∈ A} precisely refines U ; and where
each Ya = Ua \G or Ya = (Ua \ G) ∪ Y ′

a with each Y ′
a ⊂ Ua defined such that

x ∈ G implies x ∈ O ∈ ∪n+1
1 Ok(Y).

Proof. If F = ∅, then let Y = U and G = ∅. Otherwise, let B = {b ∈ A :
Ub∩F �= ∅}. Then {Ub}b∈B is a locally finite open cover of F . An application
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of the §A6.2 Theorem (refining covers of dim ≤ n closed subspaces) yields
an open precise refinement Y ′ = {Y ′

b : b ∈ B} of {Ub : b ∈ B} that covers
F and has the property that ord Y ′ ≤ n + 1. Now choose G open such that
F ⊂ G ⊂ G ⊂ (∪b∈BY ′

b ) ∩ H .
Since Y ′ is nodally indexed, for each non-empty Y ′ ∈ Y ′ there exists

at most a finite number k ≥ 1 of indices b1, . . . , bk such that Y ′ = Y ′
b1

=
· · · = Y ′

bk
. For each such Y ′ and all except one of b1, . . . , bk, redefine Y ′

b = ∅.
With this adjustment to the indexing of Y ′, the resulting indexed family, also
denoted Y ′, is pseudo-faithfully indexed, and it follows that “ordx Y ′ ≤ n+1”
is equivalent to “x ∈ O ∈ ∪n+1

1 Ok(Y ′).”
Next, for each b ∈ B, let Yb = (Ub \ G) ∪ Y ′

b , and, for each a ∈ A \ B, let
Ya = Ua \ G. Then Y = {Ya : a ∈ A} and G are as claimed.

To motivate the constructions in our next lemma (Lemma 38.5) we shall
use the graphic in Figure 38.3 whose details are explained in Example 38.4.

Assumptions (X1≡ rationals, X2≡ irrationals, X=[0,1], etc.)

0 1 X = [0,1]F1
[ ] [ ]

Ua ◦
Ub◦ U = {Ua,Ub}

Constructions (Y1
1 , Y1

2 )

] [
Oa Oab Ob O1 ∪O2

•
p irrationalY a Oa⊂Ya⊂Y a

◦ ◦ ◦Ua\F1 Y a⊂Ua\F1

•
irrational q Y b Ob⊂Yb⊂Y b

◦ ◦ ◦ Ub\(F1∪Y a) Y b⊂Ub\(F1∪Y a)

◦Ya ◦ Yb Y1
1 = {Ya, Yb}

• •K
K = X\(Ya∪Yb)

• •
Kα = Oα∩K

F = {Oab ∩K}

◦ ◦Uα = Ua∩Ub
(O2,U)= {Ua∩Ub}

• •rational x y rationalY α
Kα⊂Yα⊂Y α

◦ ◦Uα\F2
Y α ⊂Uα\F2

◦ ◦Yα Y1
2 = {Yα}

Fig. 38.3 The Y1
1 and Y1

2 constructions in the proof of Lemma 38.5.
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38.4 Example. The goal is to provide a model for the sets and constructions
detailed in Lemma 38.5: Using Figure 38.3, we let n = 1 and X = [0, 1] (X
is the unit interval). Then the model for the cover U is {Ua, Ub}, and the
models for the closed Fj are F1 and F2 are illustrated in the “Assumptions
Box” of Figure 38.3. The “Constructions Box” provides models Y1

1 and Y1
2

of the discrete families Y1
j , 1 ≤ j ≤ n + 1, in the conclusion of Lemma 38.5.

By reading top-to-bottom in the “Constructions Box,” one may track the
constructions that appear in the proof of Lemma 38.5. The “vertical display
format” provides a means to view the sets as subsets of X by vertically
projecting onto the representation of X in the “Assumptions Box.”

In Lemma 38.5 we construct the “Y1
j families.” The superscript “1” will

currently appear superfluous. But ultimately each Y1
j yields U1

j , which then
determines U2

j and U3
j . These families are fundamental (see Lemma 38.9).

38.5 Lemma (construction of the discrete open Y1
j ) For n ≥ 0 let U =

{Ua : a ∈ A} be a nodally indexed locally finite order ≤ n + 1 open cover of
X. For each j ∈ {1, . . . , n + 1}, let Xj ⊂ X satisfy dim Xj = 0, and, let the
closed Fj ⊂ X satisfy Fj ∩ (∪Oj(U)O) = ∅. Then for each j ∈ {1, . . . , n + 1}
there exists a size ≤ |A| discrete open family Y1

j such that

(7) Y ∩ Fj = ∅ = B(Y ) ∩ Xj (Y ∈ Y1
j ).

Moreover, ∪k
1Y1

j covers ∪k
1Oj(U), and ∪n+1

1 Y1
j covers X and refines U .

Proof. Let j = 1. The discrete closed family O1(U) = O1 = {Oa : a ∈ A}
of 1-nodes shrinks the canonical (O1,U) collection, i.e., Oa ⊂ Ua for each
a ∈ A. Moreover, since F1 ∩Oa = ∅ when a ∈ A, each Oa ⊂ Ua \F1. Now let
a0 be the first member of (the well-ordered) A = (A, <). Then for a = a0, an
application of the §A6.2 Theorem (open sets in the context of a 0-dimensional
set) shows that an open set Ya exists such that

(8)
Oa ⊂ Ya ⊂ Y a ⊂ Ua \

(
F1 ∪ (∪b<aY b)

)
Y a ∩ F1 = ∅ = B(Ya) ∩ X1

Fa = {F1} ∪ {Y b}b≤a ∪ {Ob}b>a is closed discrete

where ∪b<aY b = ∅ when a = a0.2

For the j = 1 inductive step, let a1 > a0 be fixed, assume that for each
a < a1 a Ya that satisfies (8) has been constructed, and then consider

F ′
a1

= {F1} ∪ {Y a}a<a1 ∪ {Oa}a≥a1 .

Since b < a < a1 implies Y b and Y a are disjoint, and, since each Ya ⊂
Y a ⊂ Ua \

(
F1 ∪ (∪b<aY b)

)
, it follows that F ′

a1
\ {F1} is pairwise disjoint

2To see the validity of the last statement in (8), note that the clearly closed and pairwise-
disjoint Fa is locally finite because Fa \ {F1} shrinks U .
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and shrinks U . So F ′
a1

is a closed, pairwise-disjoint and locally finite family,
i.e., it is closed discrete. For a = a1, an open Ya exists that satisfies (8).
By transfinite construction, {Y a}a∈A exists with (8) satisfied by each Ya. It
follows that {Y a}a∈A is pairwise disjoint, closed, and locally finite, i.e., closed
and discrete. Thus,

Y1
1 = {Ya : a ∈ A}

is an open discrete collection of size ≤ |A| with each Ya satisfying (8).
Next, let k ∈ {2, . . . , n+1} be fixed, and suppose, for 1 ≤ j < k, that each

desired Y1
j exists such that Yk−1 = ∪k−1

1 Y1
j is an open cover of ∪k−1

1 Oj(U).
Then define K = X \ (∪{Y : Y ∈ Yk−1}). It follows from the nodal closure
property that F = {O ∩ K : O ∈ Ok(U)} is a discrete closed family.3

With the set Ak = (Ak, <) of indices α of the k-nodes well ordered, the
closed family F shrinks the open canonical G = (F ,U) collection, i.e., for
each α ≡ a1 · · · ak ∈ Ak, Oα ⊂ Uα = Ua1 ∩ · · · ∩ Uak

. So each Oα ∩ K ⊂ Uα.
Moreover, since Fk ∩ Oα = ∅ for each such α, each Oα ∩ K ⊂ Uα \ Fk. Now
let α = α0 be the first α ∈ Ak. Then there exists an open set Yα such that

(9)
Oα ∩ K ⊂ Yα ⊂ Y α ⊂ Uα \

(
Fk ∪ (∪β<αY β)

)
Y α ∩ Fk = ∅ = B(Yα) ∩ Xk

Fα = {Fk} ∪ {Y β}β≤α ∪ {Oβ ∩ K}β>α is closed discrete

where ∪β<αY β = ∅ when α = α0. To finish, use the format of the “j = 1
inductive step” and the following substitutions: Substitute Ak for A; α for a;
α0 for a0; α1 for a1; β for b; Fk for F1; Xk for X1; Oα ∩K for Oa; Oβ ∩K for
Ob; the canonical (Ok,U) collection for U ; and (9) for (8). Thus the desired
Y1

k = {Yα : α ∈ Ak} exists, and by finite induction we are finished.

38.6 Example. Consider Lemma 38.5 where n = 0 and where X = X1 is
the subspace of rationals in the unit interval. Then since U is a locally finite
ord U = 1 open cover of X , we have each B(U) = ∅ and F1 = ∅ because
O1(U) covers X . In this case, we may simply define Y1

1 = U .

38.7 Definition (property Pn−1 and separated families) Let n ≥ 0. Then
the closed subsets F1, . . . , Fn+1 of X satisfy the property Pn−1 whenever
dim (Fj1 ∩ · · · ∩ Fjk

) ≤ n − k for distinct j1, . . . , jk. A family N = {Nb :
b ∈ B} is a separated family or separated collection whenever

(
Na ∩ Nb

)
∪(

Na ∩ N b

)
= ∅ for each distinct pair Na and Nb of sets in N .4

For an example of a separated family that is not a discrete family consider
N = {(0, 1), (1, 2)} containing “adjacent” open intervals on the real line.

3The nodal closure property yields O ∩ K = O ∩ K when O ∈ Ok, which makes O ∩ K
closed because K is closed. Then (3) shows that Ok is locally finite, making F discrete.

4If a separated family N = {Nb}B of subsets of a metric space (X, ρ) is also locally
finite, then there exists a pairwise-disjoint open family M = {Mb}B of sets Mb = {x ∈
X : ρ(x, Nb) < ρ(x,∪a �=bNa)} that puffs-up N and satisfies Mb = ∅ whenever Nb = ∅.
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38.8 Lemma (refinements whose j-nodes avoid given Fj) Let n ≥ 0; let
dim F ≤ n for the closed subspace F of X; let the closed F1, . . . , Fn+1 ⊂ F
satisfy Pn−1; and let U = {Ua : a ∈ A} be a faithfully-indexed locally finite
open cover of X. Then there is a locally finite open refinement Y of U that
covers X; satisfies

(10) F ⊂ int(∪{O : O ∈
n+1
∪
1
Ok}), Fj ∩ O = ∅ when O ∈ Oj

for the nodal families Oj = Oj(Y), 1 ≤ j ≤ n + 1; and has size |Y| ≤ |A|.

Proof. For n = 0, an application of Lemma 38.2 provides the desired
result: In detail, let F , X , and U be as specified in Lemma 38.8, and let
H = X . Then the desired Y is the Y produced by Lemma 38.2, which
is a precise locally finite open refinement of U that covers X and satisfies
ordx Y ≤ n + 1 = 1 for each x ∈ G where G ⊃ F is open. So when x ∈
G ∩ Ya, then x �∈ Yb for each b �= a, i.e., x is in the 1-node Oa ⊂ Ya. Thus,
G ∩ Ya ⊂ int (Oa), which yields the left side of (10). For the right side of
(10), since n + 1 = 1 the lone F1 = Fn+1 satisfies Pn−1 = P−1, i.e., F1 = ∅.
Thus, case n = 0 is valid. Now suppose that Lemma 38.8 is true for values
less than n ≥ 1, and let us focus on the nth case. Define

E = F1 ∪ · · · ∪ Fn+1, Ej = ∪k{Fk ∩ Fj : j < k ≤ n + 1} (1 ≤ j ≤ n).

Then dim E ≤ n − 1 (use each dim Fj ≤ n − 1 and the Sum Theorem)
for the closed subspace E of X ; the closed E1, . . . , En ⊂ E satisfy Pn−2; and
the given U covers X . Thus, with the inductive hypothesis satisfied, there is
a locally finite open refinement V of U that covers X ; satisfies

(11) E ⊂ int(∪{O : O ∈
n

∪
1
Ok(V)}), Ej ∩ O = ∅ when O ∈ Oj(V)

for the nodal families Oj(V), 1 ≤ j ≤ n; and has size |V| ≤ |A|.
Since V has size ≤ |A| we may assume that V = {Vb : b ∈ B1}, |B1| ≤ |A|,

is the nodal indexing that satisfies (11). Letting β ∈ Bj whenever β has
length |β| = j and Oβ ∈ Oj(V), we define B = ∪n+1

1 Bj , and let

N =
n+1
∪
1
Nj where Nj = {Oβ ∩ Fj : Oβ ∈ Oj(V)} = {Nβ : Oβ ∈ Oj}.

Then N = {Nβ : β ∈ B} is both locally finite and separated. (See 38.8.1
below for the proof.) So there exists a locally finite pairwise-disjoint open
family M = {Mβ : β ∈ B} that puffs-up N . Let G = {Gβ : β ∈ B} be the
canonical (N ,V) collection. Then G is locally finite and N shrinks G.

Continuing the spadework, we introduce the family L = {Lβ : β ∈ B}:5
Since each list β ∈ B has a unique length j ∈ {1, . . . , n + 1}, the set

Lβ = [Mβ ∩ Gβ ∩ int(∪{O : O ∈
n

∪
1
Ok})] \ [

n+1
∪

j+1
Fk ∪ (∪{O : O ∈

j−1
∪
1
Ok})],

5Intuitively, we desire a cover whose j-nodes do not meet Fj (as in (10)). Since we
cannot be sure that V has this property, we construct N , a family of “trouble spots” (i.e.,
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where Ok = Ok(V), is well defined. The family L is an open collection and
N shrinks L. (See 38.8.2 below for the proof.) So |L| ≤ |A|.

To distinguish sets in L from those of V (these families may not be dis-
joint), we let B1 → V and B′ → L be indexings where B′ = {β′ : β ∈ B}
with β′ = {′} × {β} �= β and Lβ′ = Lβ. So B1 ∩ B′ = ∅. Then, forming the
disjoint union B1 ∪ B′, we define

(12) V ′ = V ∪ L, V ′ = {V ′
λ : λ ∈ B1 ∪ B′}.

As families of sets, since L shrinks G, we see that L is a locally finite
refinement of V . And since L refines V , and, V refines U , the family V ′

refines U . Furthermore, since both V and L are locally finite, and since V
covers X , the union V ∪ L = V ′ is locally finite and covers X .

The nodal families of V ′ = {V ′
λ : λ ∈ B1∪B′} satisfy the right side of (10).

(See 38.8.3 below for the proof.) So next, we modify V ′ outside of ∪n+1
1 Fj to

obtain the desired Y that satisfies both statements in (10).
The modification involves yet another application of Lemma 38.2: We

shall use V ′ = {V ′
a : a ∈ A}, A = B1 ∪B′, for the U required by Lemma 38.2,

and develop F ′ and H for the required F and H . First, an application of
(11) and the indexing of V ′ show that

F1 ∪ · · · ∪ Fn+1 = E ⊂ int(∪{O : O ∈
n+1
∪
1
Oj(V ′)}).

(See 38.8.4 for the proof.) Second, choose an open set D such that

E ⊂ D ⊂ D ⊂ int(∪{O : O ∈
n+1
∪
1
Oj(V ′)}).

Third, for the “F required by Lemma 38.2” we use F ′ = F ∩ (X \ D), and
for the “H required by Lemma 38.2” we use H = X \E. Then F ′ ⊂ H , F ′ is
closed, H is open, and dim F ′ ≤ n. So for V ′ = {V ′

a : a ∈ A}, A = B1 ∪ B′,
we apply Lemma 38.2, obtaining our desired Y. (See 38.8.5 for the proof that
Y satisfies (10).)

The triple indexing of “38.8.k” of the following five observations (k =
1, 2, 3, 4, 5) is used to remind the reader that each was applied in the proof
of Lemma 38.8.

38.8.1 Proof that N is a separated family. If for each β ∈ B we have
Nβ = ∅, then we are finished. Otherwise, suppose O ∩ Fj and P ∩ Fk are
distinct members of N . First, note that

(O ∩ Fj) ∩ cl(P ∩ Fk) ⊂ (O ∩ Fj) ∩ P ∩ Fk = (O ∩ P ) ∩ Fk ∩ Fj .

a family of “Oβ ∩ Fj” where Oβ is a j-node of V). So we puff up these “spots” with the
open sets in L and form the open cover V ′ = V∪L with a nodal indexing that preserves the
indexing of both V and L. The hope is that since x ∈ Oβ ∩ Fj implies x ∈ Oβ ∈ Oj(V),
then x ∈ Oγ ∈ Oj+1(V ′) because x is also in Lβ . As I now remember, however, the
selection of L was nonintuitive and evolved from an iterative process of adjustments to
arguments that eventually became the proof 38.8.3 given below.
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If j = k, then since O∩Fj and P ∩Fk are distinct, O∩P = ∅. Consequently,
the Nodal Closure Property yields O ∩ P = ∅. And from this equation we
may show that if j �= k, then

(O ∩ P ) ∩ Fk ∩ Fj ⊂ O ∩ P ∩ Em = ∅ where m = min{j, k},

because, if j < k, then m = j, O ∈ Oj(V), and, (11) shows Ej ∩ O = ∅.
On the other hand, if j > k, then P ∈ Ok(V), O ∈ Oj(V), and, the Nodal
Closure Property yields O ∩ P = ∅. It follows that in every case the desired
result holds.

38.8.2 Proof that L is an open family and that N shrinks L. Now
∪n+1

j+1 Fk is closed, and Corollary 37.6 shows that ∪{O : O ∈ ∪j−1
1 Ok} is

closed. So each Lβ is open. For the N shrinks L proof, whenever k ≥ j + 1
and each O ∈ Oj , the right side of (11) shows that O∩Fj ∩Fk ⊂ O∩Ej = ∅.
Thus, ∪n+1

j+1 Fk and Nβ = Oβ ∩ Fj are disjoint. And since the nodal family
O(V) is pairwise disjoint, Nβ ⊂ Oβ ∈ Oj and ∪{O : O ∈ ∪j−1

1 Ok} are also
disjoint. Finally, Nβ ⊂ Mβ ∩Gβ , and, Nβ ⊂ Fj ⊂ E and the left side of (11)
show that Nβ ⊂ int(∪{O : O ∈ ∪n

1Ok}). It follows that Nβ ⊂ Lβ.

38.8.3 Proof that O(V ′) satisfies the right-side property of (10).
Suppose otherwise. Then let x ∈ Fj ∩O′ where O′ is a j-node of V ′. Since L
is pairwise disjoint, either x ∈ Oβ ∈ Oj(V) and x is in no member of L, or,
x ∈ Oβ ∈ Oj−1(V) and x is in a member of L. If the length |β| = j, then
x ∈ Oβ ∩ Fj = Nβ ⊂ Lβ = Lβ′, which contradicts “x is in no member of L.”
So we must have |β| = j−1 and x ∈ Oβ∩Fj∩Lλ for some λ. By the definition
of Lλ, however, Lλ ∩ Oβ = ∅ unless j − 1 ≥ |λ|. But then j > |λ|, and by
the definition of Lλ, Lλ ∩Fj = ∅. So no Lλ contains x, which contradicts “x
is in a member of L.” Thus, since all cases yield contradictions, we conclude
that the statement “x ∈ Fj ∩ O′ where O′ is a j-node of V ′” is false.

38.8.4 Proof that ∪n+1
1 Fj = E ⊂ int

(
∪{O : O ∈ ∪n+1

1 Ok(V ′)}
)
. By (11),

x ∈ E implies x ∈ Gx = int (∪{O : O ∈ ∪n
1Ok(V)}). But y ∈ Gx implies

y ∈ O ∈ Ok(V) for some k ≤ n. If y ∈ Lβ for some β, then, since L is
pairwise disjoint, y ∈ Ok+1 ∈ Ok+1(V ′); or, if y �∈ Lβ for every β, then
y ∈ Ok ∈ Ok(V ′). So x ∈ Gx ⊂ int (∪{O : O ∈ ∪n

1Ok(V)}).

38.8.5 Proof that Y satisfies the left side of (10). Note that F =
[F ∩(X \D)]∪ [F ∩D] = F ′∪(F ∩D) is a partition of F . And also recall that
F ′ ⊂ G ⊂ G ⊂ H = X \ E and E ⊂ D. (See the graphic on the following
page.) So x ∈ F implies either x ∈ G or x ∈ D. First, suppose x ∈ G: Then
Lemma 38.2 shows that x ∈ G ⊂ int (∪{O : O ∈ ∪n+1

1 Ok(Y)}). Otherwise,
x ∈ D: Since Y = {Ya : a ∈ A} precisely refines V ′ = {V ′

a : a ∈ A}, each
y �∈ V ′

a must satisfy y �∈ Ya, i.e., each y ∈ X satisfies ordy Y ≤ ordy V ′. So any
y satisfying y ∈ O′ ∈ Om(V ′), must also satisfy y ∈ O ∈ Ok(Y) for k ≤ m.
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It follows, since D ⊂ ∪{O : O ∈ ∪n+1
1 Om(V ′)}, that D ⊂ ∪{O : O ∈

∪n+1
1 Ok(Y)}. But D is open so D ⊂ int (∪{O : O ∈ ∪n+1

1 Ok(Y)}). Thus,
x ∈ int (∪{O : O ∈ ∪n+1

1 Ok(Y)}).

38.9 Lemma (Uj decompositions)6 Let dim X = n ≥ 0; w(X) = |A| ≥ ℵ0;
and partition X = ∪n+1

1 Xj where each dim Xj = 0. Let W1, . . . ,Wn+1

be decompositions of X; each |Wj | ≤ |A|; each lord Wj ≤ 2; and each
Bdry Wj = ∪F∈FjF where |Fj | ≤ |A| is closed discrete and shrinks an open
family Gj . Let Bdry W1, . . ., Bdry Wn+1 satisfy Pn−1; and let V be an open
cover of X. Then pairwise-disjoint triplets U1

1 ,U2
1 ,U3

1 ; . . . ; U1
n+1,U2

n+1,U3
n+1

of discrete families exist and each decomposition Uj = ∪3
1Uk

j of X satisfies:
(13) lord Uj ≤ 2;

(14) cl U1
j refines V and

n+1
∪
1
U1

j covers X;

(15) x ∈ Bdry Uj implies distinct U1, U2 ∈ Uj where x ∈ B(U1) ∩ B(U2);
(16) Uj covers Xj;
(17) Bdry Uj ∩ Bdry Wj = ∅;
(18) U1

j ∪ U3
j refines Wj;

(19) U1
j ∪ U2

j is a discrete collection; and
(20) U2

j puffs-up Fj in Gj and cl U2
j shrinks Gj.

Proof. Apply Lemma 38.8: Let F1 = Bdry W1, . . . , Fn+1 = Bdry Wn+1

where F = X ; and let U = {Ua : a ∈ A} in the hypothesis of Lemma 38.8
be a locally finite open cover of X such that {Ua : a ∈ A} refines V . Then
the conclusion of Lemma 38.8 provides a locally finite open refinement Y of
U that covers X and satisfies (10). And since F = X , ord Y ≤ n + 1. Using
Y, the Xj, and the Fj = Bdry Wj , we apply Lemma 38.5 and thereby obtain

6Recall that “w(X)” denotes the weight of X; if W is open, then boundary B(W ) = W \
W ; for an open family W , Bdry W = ∪{B(W ) : W ∈ W}; the definition of decomposition
(footnote 1 of this chapter); and for any family S of subsets of X, cl S = {S : S ∈ S},
∪ cl S = ∪{cl(S) : S ∈ S} = ∪{S : S ∈ S}.
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discrete open families Y1
1 , . . . ,Y1

n+1, each of size ≤ |A| such that

(21) Y ∩ Fj = ∅ = B(Y ) ∩ Xj (Y ∈ Y1
j ),

and the union ∪n+1
1 Y1

j covers X and refines Y. Each of these n+1 collections
Y1

j yields a corresponding offspring, namely, the open family

(22) U1
j = {Y ∩ W : Y ∈ Y1

j ; W ∈ Wj}.

Each U1
j has size ≤ |A|, is discrete, and satisfies (BdryU1

j ) ∩ Xj = ∅. (See
38.9.1 and 38.9.2 for the proofs.) Also, Y ∩ W ⊂ Y shows that ∪ cl U1

j ⊂
∪{Y : Y ∈ Y1

j }. Thus, (21) yields each (∪ cl U1
j ) ∩ (∪{F : F ∈ Fj}) = ∅.

Now assume that Gj is pairwise disjoint.7

Then puff up Fj in Gj to a discrete open family U2
j , i.e., for each F ∈ Fj

and corresponding GF ∈ Gj there is an open UF such that

(23) U2
j = {UF : F ∈ Fj} where F ⊂ UF ⊂ UF ⊂ GF ∩ (X \ ∪ cl U1

j ).

Thus each U2
j has size ≤ |A|, covers Bdry Wj , and, since dim Xj = 0, we

may assume that U ∈ U2
j implies B(U) ∩ Xj = ∅. From (23) we also have

(24) (∪ cl U1
j ) ∩ (∪ cl U2

j ) = ∅.

Next, for each j, 1 ≤ j ≤ n + 1, define

(25) U3
j = {W ∩

[
X \ (∪ clU1

j ∪ ∪ clU2
j )
]

: W ∈ Wj}.

Then each |U3
j | ≤ |A|. With the triplets U1

j , U2
j , U3

j defined, let Uj = ∪3
1Uk

j .
The proofs that the Uj satisfy (13), . . . , (20) appear in 38.9.5, . . ., 38.9.9.

38.9.1 Proof that each U1
j is discrete. From (21) and Fj = Bdry Wj ,

(26) ∪{Y : Y ∈ Y1
j } ∩ Bdry Wj = ∅.

If x ∈ Gx = X \ ∪{Y : Y ∈ Y1
j }, then Gx is a neighborhood of x that meets

no member of U1
j . Otherwise, x ∈ Y x ∈ Y1

j . Then by (26), x ∈ Wx ∈ Wj .
Since Y1

j is discrete there is a neighborhood Gx that meets only one Y ∈ Y1
j ,

namely Yx. So Gx ∩ Wx meets only one member Yx ∩ Wx of U1
j .

38.9.2 Proof that each (Bdry U1
j ) ∩ Xj = ∅. Let x ∈ Bdry U1

j . Since
U1

j is discrete there is a unique Y ∈ Y1
j and unique W ∈ Wj such that

x ∈ B(Y ∩ W ) = cl (Y ∩ W ) \ (Y ∩ W ). So x ∈ (Y ∩ W ) \ (Y ∩ W ) shows
that x ∈ Y = B(Y ) ∪ Y , which implies x ∈ B(Y ) or x ∈ Y . But x ∈ Y and

7Since Fj is a separated family, we may use the “M construction” in footnote 4 of this
chapter, and then replace each GF ⊃ F with MF ∩ GF where F ⊂ MF ∩ GF for each
F ∈ Fj and corresponding GF ∈ Gj .
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x �∈ Y ∩W imply x �∈ W . Thus x ∈ Bdry Wj , which contradicts (26). So we
are left with x ∈ B(Y ). Then (21) shows x �∈ Xj .

38.9.3 Proof that each Uj is a decomposition. The open family Uj

is pairwise disjoint because U1
j is discrete (38.9.1); U2

j is discrete (use (23)
where Fj is discrete and Gj pairwise disjoint), and, U1

j and U2
j satisfy (25);

and U3
j satisfies (25) where Wj is pairwise disjoint. Also, cl Uj covers X

because x ∈ (∪ clU1
j ∪ ∪ clU2

j ), or, x ∈ U ∈ U3
j .

38.9.4 Proof that Bdry U3
j ⊂ Bdry U1

j ∪ Bdry U2
j . For any open sets W

and R, we have B(W ∩ R) ⊂ (B(W ) ∩ R) ∪ (W ∩ B(R)). In particular,
this formula holds for B(U) ⊂ Bdry U3

j if U = W ∩ R where W ∈ Wj and
R = X \ (∪cl U1

j ∪ ∪cl U2
j ). The set (B(W )∩R), however, is empty because

B(W ) is covered by a union of members of U2
j . So

B(U) = B(W ∩ R) ⊂ (W ∩ B(R)) ⊂ Bdry U1
j ∪ Bdry U2

j

because B(R) ∩ R = ∅ and R meets no member of U1
j ∪ U2

j .

38.9.5 Proof of (13). Since Uj is a decomposition, x ∈ Ux ∈ Uj implies
lordx Uj = 1. So let x ∈ Bdry Uj = Bdry U1

j ∪ Bdry U2
j where equality follows

from 38.9.4. Since Bdry Wj is covered by U2
j , we conclude that x ∈ W for a

unique W ∈ Wj . So select an open Gx ⊂ W that contains x and meets at
most one member of U1

j ∪ U2
j . Then lordx Uj ≤ 2.

38.9.6 Proof of (14). Using “A < B” to denote “A refines B,” we recall

(27) U1
j

38.9
< Y1

j <
n+1
∪
1
Y1

j

38.5
< Y

38.8
< U < clU

X paracompact
X normal

< V

where the “data above <” indicates the assumption/lemma producing the
refinement. Thus, (27) shows that cl U1

j refines V . To see that ∪n+1
1 U1

j

covers X , let x ∈ X . With Lemma 38.8, and U and F = X as input, Y exists
and ord Y ≤ n + 1. Using Y as the locally finite cover in the hypothesis
of Lemma 38.5, we produce n + 1 families Y1

j whose union covers X and
refines Y. So x is in some k-node of Y, i.e., x ∈ Yx ∈ Y1

j for some j. Then
from (7), x �∈ Fj = Bdry Wj , and so must be in some Wx ∈ Wj . Thus,
x ∈ Yx ∩ Wx ∈ U1

j .

38.9.7 Proof of (15). We show how to ensure that (15) is true. The
idea is motivated by a simple example. Consider the decomposition U =
{(0, 1/2)(1/2, 1]} of the unit interval I = [0, 1]. Then Bdry U = {0, 1/2},
but only one of these boundary points satisfies (15). The solution? Replace
(0, 1/2) with [0, 1/2), thereby creating D = {[0, 1/2), (1/2, 1]} that does sat-
isfy (15). In general, for U ∈ Uk

j , k = 1, 2, 3, define

D = DU = X \ ∪{V : U �= V ∈ Uj} ∈ Dk
j , Dj = D1

j ∪D2
j ∪ D3

j .
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Since Uj is a decomposition, for D = DU , we have

(i) D = U,
(ii) U ⊂ D
(iii) B(D) ⊂ B(U).

Then the Dj families satisfy (13), . . ., (20) whenever the Uj satisfy (13), (14),
and (16), . . ., (20):

First, (i) yields that cl Dj covers X whenever cl Uj covers X . And the
open family Dj is pairwise disjoint because Uj is pairwise disjoint. So each
Dj is a decomposition of X . Second, let us consider properties (13), . . ., (20):

For (13), lordx Uj ≤ 2 implies that x meets at most two members
of cl Uj , so (i) yields lordx Dj ≤ 2. For (14), apply (i) and (ii).

For (15), let x ∈ B(DU ) ⊂ Bdry Dj . Then by (iii), x ∈ B(U),
and there must exist a another U1 ∈ Uj such that x ∈ B(U1).
(Otherwise, x has a neighborhood Gx that does not meet V for
each V �= U in Uj , which places x ∈ int(DU )). So x ∈ B(U) ∩
B(U1). Moreover, x �∈ DU1 because U �= U1, x ∈ U , and U ∩
DU1 = ∅. But x ∈ DU1 because x ∈ U1 and (i) holds. Thus
x ∈ B(DU ) ∩ B(DU1).

For (16) and (17) use (ii) and (iii), respectively.

For (18), “Bdry Uj ∩ Bdry Wj = ∅” coupled with “U1
j ∪U3

j refines
Wj” implies “cl (U1

j ∪ U3
j ) refines Wj .” Then apply (i).

For (19), note that if U1
j ∪ U2

j is discrete, then cl (U1
j ∪ U2

j ) is
discrete. Then apply (i). For (20), use (ii), and then (i) with “cl
U2

j shrinks Gj .”

38.9.8 Proof of (16). The comments following (22) and (23) show (Bdry
U1

j ) ∩Xj = ∅ and, since U2
j discrete, (Bdry U2

j ) ∩Xj = ∅. Then by 38.9.4,
Bdry U3

j ⊂ BdryU1
j ∪BdryU2

j . So the decomposition Uj covers Xj .

38.9.9 Proofs of (17), (18), (19), and (20). Statement (17) follows
because U2

j covers Bdry Wj . The definitions of U1
j , U2

j , and U3
j yield (18)

and (20). Claims 38.9.1 and those surrounding (23) and (24) yield (19).

We close this section with an abstract illustration of a Uj decomposition.
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§39 The Decomposition Theorem

In this section, we state and prove the Decomposition Theorem.

39.1 Theorem (Decomposition Theorem for Finite-Dimensional Spaces)

For n ≥ 0, let X = X1 ∪ · · · ∪ Xn+1 be a partition of the n-dimensional
weight |A| ≥ ℵ0 metric space X where each dim Xj = 0. For each closed
subset F ⊂ X, let {GF

i : i ≥ 1} be a countable collection of open sets such
that F = ∩iG

F
i . Then there exist decompositions Wij = {Wa : a ∈ A}, i ≥ 1,

1 ≤ j ≤ n + 1, with the following properties: For each i ≥ 1,

(28)i for each j, lord Wij ≤ 2;
(29)i for each x ∈ X, x ∈ Wx ∈ Wij for some j where dia(Wx) < 1/i,

and, for each k < i, a Wk ∈ Wkj exists such that Wx ⊂ Wk;
(30)i if x ∈ Bdry Wij, then x ∈ B(W ) ∩ B(W ′) for W �= W ′ in Wij ;
(31)i each Wij covers Xj;
(32)i for k < i and each j, Bdry Wij ∩ Bdry Wkj = ∅;
(33)i if B(U) ∩ B(V ) �= ∅ for U �= V in Wij, then W ∈ {U, V } exists

where W ⊂ Wk ∈ Wkj for each k < i;
(34)i for k < i and each j, W ∈ Wij meets at most two members of Wkj ,

and, for all but at most one of the k < i, W ⊂ Wk ∈ Wkj ;
(35)i for k < i and each j, if B(U) ∩ B(V ) �= ∅ for distinct U, V ∈ Wkj ,

then W ∈ Wij exists such that B(U) ∩ B(V ) ⊂ W ⊂ G
B(U)∩B(V )
i ;

(36)i for k < i and each j, W ∈ Wij meets Bdry Wkj only if a unique
distinct pair U, V ∈ Wkj exists such that B(U) ∩ B(V ) ⊂ W .
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Proof. The proof is by induction on the index i. For i = 1 we apply
Lemma 38.5: Let U be a size ≤ |A| locally finite order ≤ n + 1 open cover of
X such that mesh U < 1. Let F1 = · · · = Fn+1 = ∅, and suppose that the
Xj are as specified in Theorem 39.1. Then Lemma 38.5 provides the discrete
open families Y1

j of size ≤ |A| that satisfy (7) and the covering properties in
Lemma 38.5. We define

W1j = Y1
j ∪ {X \ (∪ clY1

j )} (1 ≤ j ≤ n + 1).

Then (32)1, . . . , (36)1 are vacuously satisfied; and (28)1, (29)1, and (31)1
follow from those of the Y1

j and the definition of W1j . Property (30)1 may
be obtained by modifying each W1j as in the proof of (15) within 38.9.7.8

Thus, Theorem 39.1 holds for i = 1.
Now suppose i > 1 and that Theorem 39.1 is true for each k ≤ i− 1. We

shall construct the Wij by applying Lemma 38.9: Let V be an open cover of
X whose mesh is ≤ 1/i. Then define

Wj = {W1 ∩ · · · ∩ Wi−1 : Wk ∈ Wkj ; 1 ≤ k ≤ i − 1} (1 ≤ j ≤ n + 1).

Each Wj is a size ≤ |A| decomposition of X such that

(37) BdryWj = ∪{BdryWkj : 1 ≤ k ≤ i − 1}, lord Wj ≤ 2.9

Further, from (31)k for 1 ≤ k ≤ i − 1, and the Decomposition Theorem (see
§A6.2), Bdry W1, . . . , Bdry Wn+1 satisfy Pn−1. For each j, define

Fj = {B(U) ∩ B(V ) : for some k ≤ i − 1, U, V ∈ Wkj and U �= V }.

Using (30)k for 1 ≤ k ≤ i − 1, and applying (37), we may also show that
Bdry Wj = ∪{F : F ∈ Fj}. In addition, for 1 ≤ k ≤ i − 1, (28)k implies

{B(U) ∩ B(V ) : U �= V ; U, V ∈ Wkj}

is a discrete collection. Then we may use (32)i−1 to show that for each j, the
closed family Fj is discrete. (Note that |Fj | ≤ |A|.)

Continuing, we now define the Gj : For k ∈ {1, . . . , i − 1} fixed, let

Fkj = FU,V
kj = B(U) ∩ B(V ) ∈ Fj U, V ∈ Wkj .

8In “38.9.7 Proof of (15)” replace Uj with W1j , and define DW = X \ ∪{W ′ : W �=
W ′ ∈ W1j} ∈ Dj . Then for the W1j -induced decomposition Dj , the argument that yielded

(13) yields (28)1; dia(W ) = dia(W ) and W = DW yield (29)1; and W ⊂ DW yields (31)1.
9 The proof that Bdry Wj is a subset of the right-side set in (37) is straightforward. For

the reverse inclusion, let x ∈ Bdry Wkj for some k ≤ i − 1. By (30)k , x ∈ B(W ) ∩ B(W ′)
for distinct W, W ′ ∈ Wkj . Then since Wmj , m ≤ i − 1, is a decomposition of X, use
(32)� for � = max{m, k} to specify (for m �= k) Wm ∈ Wmj such that x ∈ Wm. So for
Wk ∈ {W, W ′}, x ∈ B(W1 ∩ · · · ∩ Wi−1). Next, lordWj ≤ 2: For x ∈ B(W ) ∩ B(W ′) ⊂
BdryWkj , an open Gx, x ∈ Gx, meets only the two W , W ′ ∈ Wkj . With the Wm above,
x ∈ G = W1 ∩ · · · ∩ Wk−1 ∩ Gx ∩ Wk+1 ∩ · · · ∩ Wi−1, and G meets only two sets in Wj .
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If i = 2, let

(38) Wkj = X ⊃ Fkj .

If i ≥ 3 and k = i − 1, use (32)i−1 and (33)i−1 to determine a unique10

(39) Wkj = ∩{Wm : 1 ≤ m < i − 1 = k; Wm ∈ Wmj} ⊃ Fkj .

If i ≥ 3 and k < i − 1, use (34)i−1 and (35)i−1 to determine a unique11

(40) Wkj = ∩{Wm : 1 ≤ m ≤ i − 1; m �= k; Wm ∈ Wmj} ⊃ Fkj .

Also, since lord Wkj ≤ 2 an open set H exists where Fkj ⊂ H and H meets
at most two members of Wkj . Then, for F = FU,V

kj = B(U) ∩ B(V ), let

GF = H ∩ GF
i ∩ Wkj

For each j, define Gj = {GF : F ∈ Fj}. Then each Fj shrinks Gj . Thus, we
may now apply Lemma 38.9, and the Uj thus produced yield

Wij = Uj (1 ≤ j ≤ n + 1).

(For the proof that these Wij satisfy (28)i, . . . , (36)i see 39.1.1.) Thus, with
the induction step complete, we are finished.

39.1.1 Proof that the Wij satisfy (28)i, . . . , (36)i. Note that each
Wij = Uj = ∪3

1Uk
j and Uj is a decomposition. Now consider the following

properties:

For (28)i, apply (13).

For (29)i, (14) provides that ∪n+1
1 U1

j covers X . So x ∈ X implies
x ∈ Wx ∈ U1

j ⊂ Wij for some j. And (14) also provides that each
cl U1

j refines V , making dia(Wx) ≤ mesh V ≤ 1/i. In addition, by
(18), U1

j refines Wj , and so the definition of Wj shows that for
each k < i, a Wk ∈ Wkj exists such that Wx ⊂ Wk.

For (30)i and (31)i, apply (15) and (16), respectively.

For (32)i, apply (17) and (37).

For (33)i, if B(U) ∩ B(V ) �= ∅ for U �= V in Wij , then from (19)
we may assume that either U ∈ U1

j and V ∈ U3
j , or, U ∈ U2

j and
V ∈ U3

j . In either case, (18) and the definition of Wj show that
for each k < i, a Wk ∈ Wkj exists such that V ⊂ Wk.

10By (33)i−1, W ∈ {U, V } exists where W ⊂ Wm ∈ Wmj for each m < i − 1. Further,

by (32)i−1 , W ⊂ Wm for each m < i − 1 and a fortiori, Fkj ⊂ W is a subset of each Wm.
11By (35)i−1, W ∈ W(i−1)j exists such that Fkj ⊂ W . Furthermore, (34)i−1 shows

W ⊂ Wm ∈ Wmj for each m < i − 1 except m = k.
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For (34)i, (18) shows that each member W of U1
j ∪ U3

j ⊂ Wij

is a subset of a member of Wj , and hence for all k < i, W ⊂
Wk ∈ Wkj . So suppose W ∈ U2

j ⊂ Wij . Then by (20) there is
a unique F = B(U) ∩ B(V ) ⊂ W where F ∈ Fj and for some
k ≤ i − 1, U, V ∈ Wkj and U �= V . Moreover, this particular
F = Fkj = FU,V

kj ⊂ Wkj where Wkj is given by one of (38), (39),
or (40). If Wkj = X is given by (38), then i = 2 and k = 1. By
(20), F ⊂ W ⊂ W ⊂ GF = H ∩ GF

1 where H meets at most
two members of W1j . So W meets at most two members of W1,j .
Since i = 2, we are finished. The argument for the cases where
Wkj is given by either (39) or (40) is similar.

For (35)i, we apply (20) with W ∈ U2
j ⊂ Wij because Bdry Wj =

∪{F : F ∈ Fj} and W ⊂ GF ⊂ GF
i where F = B(U) ∩ B(V ).

For (36)i, we may apply (18) and (20) because W ∈ Wij meets
Bdry Wkj for k < i implies W ∈ U2

j .

39.2 Example. Let X = I = [0, 1] be the unit interval, X1 ⊂ I the rational
reals, and X2 = I \X1 the irrationals. Then Figure 39.3 provides an instance
of W11 and W12 as constructed in the proof of Theorem 39.1.

Assumptions (X1≡ rationals, X2≡ irrationals, X=[0,1])
i = 1

X
0 1

◦Va

◦ VbV1

]
Oa [

ObOabO(V1)

◦ ◦W11
Ya YbX\(Y a ∪Y b)

x1 x2

Y1
1 = {Ya, Yb }

F1={{x1}, {x2}}
x1, x2 irrational K = X\(Ya∪Yb)• •

Y1
2 = {Yab} ◦ ◦Yab

◦ ◦W12
Yab

W12={Yab, X\Y ab }

y1 y2

F2={{y1,y2}}
y1, y2 rational

Fig. 39.3 The first step in the proof of the Decomposition Theorem.

Property (28)1 is obvious; (29)1 is satisfied because these decompositions
refine V1; (30)1 is satisfied at Bdry W11 = {x1, x2} and Bdry W12 = {y1, y2};
and (31)1 is satisfied because x1 and x2 are irrational, while y1 and y2 are
rational. The other properties are vacuously satisfied.
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Turning to the inductive construction, we provide a graphic instance of
the step from i = 1 to i = 2. In Figure 39.4, we focus on Bdry W1 =
Bdry W11 = {x1, x2}, whose representation throughout the construction is
indicated with dotted lines. Similarly, in Figure 39.5 we focus on Bdry W2 =
Bdry W12 = {y1, y2}.

Assumptions (W11,W12,F1,F2)
i = 2, j = 1

W1 ◦
x1 ◦

x20 1

◦ ◦Vb

◦Va ◦ VcV2

]
Oa [[

Oab ]
Ob [

Obc OcO(V2)

◦Ya ◦ ◦Yb ◦ YcY1
1 (V2)

◦Ua ◦ ◦Ub ◦ UcU1
1

◦ ◦Uab ◦ ◦UbcU2
1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦U3
1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦W21

Fig. 39.4 Constructing W21 in the proof of the Decomposition Theorem.

Assumptions (W11,W12,F1,F2)
i = 2, j = 2

W2 ◦
y1

◦
y20 1

◦ ◦Vb

◦Va ◦ VcV2

]
Oa [[

Oab ]
Ob [

Obc OcO(V2)

◦Ya ◦ ◦Yb ◦ YcY1
1 (V2)

K=X\∪ cl Y1
1 • • • •

◦ ◦Yab ◦ ◦YbcY1
2

◦ ◦Uab ◦ ◦UbcU1
2

◦ ◦ ◦ ◦U2
2

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦U3
2

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦W22

Fig. 39.5 Constructing W22 in the proof of the Decomposition Theorem.
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W11 ◦
x1 ◦

x20 1

◦Ua ◦ ◦Ub ◦ UcU1
1

◦ ◦ ◦ ◦U2
1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦U3
1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦W21

...
...........

.......................................
...

Fig. 39.6 Viewing members of Wij for j = 1.

W12 ◦
y1

◦
y20 1

◦ ◦Uab ◦ ◦UbcU1
2

◦ ◦ ◦ ◦U2
2

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦U3
2

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦W22

.....
.....................

.........................................................................................................................................
.......

....
.............

.........................................................................................................................................................................................
...........

..

....
................

....................
....................
....

................

................

.....
...........

................

.....
...........

Fig. 39.7 Viewing members of Wij for j = 2.

39.8 Example. The Wij constructed in Figures 39.4 and 39.5 provide models
for the properties listed in the Decomposition Theorem 39.1. In particular,
within Figure 39.6 we see W11 with three members, Bdry W11 = {x1, x2},
W21 with eight members (the union of the two segments in the interior of the
dotted ellipse is one member of U3

1 ⊂ W21), and the points in Bdry W21 are
represented as circles.

Similar observations hold for Figure 39.7: We note from Figure 39.3 that
W12 = {Yab, X\Yab} contains only two members, which accounts for the right
and left halves of a dotted ellipse at the top of Figure 39.7. In other words,
using the three segments [0, y1), (y1, y2), and (y2, 1] displayed at the top of
Figure 39.7, we may represent the decomposition W12 as the family {[0, y1)∪
(y2, 1], (y1, y2)}. In addition, the definitions of triplets U1

2 , U2
2 , U3

2 , given,
respectively, by equations (22), (23), and (25), show that U1

2 contains two
members, U2

2 one member, and U3
2 two members — the “dotted full ellipses

and the dotted half ellipses” serve to indicate the unions of the intervals that
form the members of these families. It follows that W22 = ∪3

1Uk
2 contains five

members.

With this graphical understanding of the four collections W11, W12, W21,
and W22, we are in a position to show that these families satisfy the properties
listed in the Decomposition Theorem 39.1:
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For (28)1 and (28)2, we may simply inspect the graphics.

For (29)1, observe that (trivially) the mesh W11 ∪ W12 is ≤ 1,
and the statement “. . . for each k < 1 . . . Wx ⊂ Wk” is vacuously
satisfied.

For (29)2, note that U1
1 ∪U1

2 = {Ua, Ub, Uc, Uab, Ubc} ⊂ W21∪W22

covers X , the mesh of U1
1 ∪ U1

2 is ≤ 1/2 (this family refines V2),
and, U1

1 refines W11 and U1
2 refines W12.

For (30)i, we may simply inspect the graphics.

For (31)i, notice that the points in Bdry Wi1 may be selected as
irrational (X1 is the subset of rationals) and those in Bdry Wi2

as rational.

For (32)2, observe that U2
j ⊂ W2j covers Bdry W1j .

For (33)2, observe that U1
j ∪ U3

j ⊂ W2j and that U1
j ∪ U3

j ⊂ W1j .

For (34)2, note that U2
j ⊂ W2j covers Bdry W1j and U1

j ∪ U3
j

refines W1j .

For (35)2, note that B(U) ∩ B(V ) equals either {x1} or {x2}
for distinct U, V ∈ W11, and then note that F1 = {{x1}, {x2}}
precisely refines U2

1 ⊂ W21. Similarly, the lone B(U) ∩ B(V ) =
{y1, y2} because the only two distinct members U = Yab and
V = X \ Y ab in W12 serve to define F2 = {{y1, y2}}, which
precisely refines U2

2 .

For (36)2, the two members of U2
1 are the only members of W21

that meet Bdry W11 = {x1, x2}, and each meets two members of
W11. Similarly, the one member W of U2

2 is the only member of
W22 that meets Bdry W12 = {y1, y2}, and W meets two members
of W12.

For (32)1, (33)1, (34)1, (35)1, and (36)1, we note that each is
vacuously satisfied.

§40 Comments

The “diml function” (§36) and the “nodes of covers” (§37) were introduced in
Lipscomb [1973]. The lemmas (§38) and the Decomposition Theorem (§39)
were introduced in Lipscomb [1975].

Within physics, it was the study of “coordinate systems” and “change
of coordinate systems” that eventually led to the intuitive statement that
the laws of physics must be independent of coordinate systems. Roughly, but
also analogously, I view the mathematics of this chapter in a similar vein,
i.e., as an example that the laws of decompositions of metric spaces must be
independent of nodal indexings. Indeed, as illustrated in Figures 37.2 through
37.8, one cover of three sets may be nodally indexed in distinct ways, each
yielding a “coordinate system” for related decompositions. A study of such
indexings appears in §37 and §38. And that study yielded one law (the
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Decomposition Theorem 39.1) concerning decompositions of metric spaces
that is independent of nodal indexings.

So as one might suspect, the idea of nodes and nodal indexings has taken
a back seat to the Decomposition Theorem. In fact, applications, extensions,
modifications, and enhancements of Lemma 38.9 and the Decomposition The-
orem appear in the works of Milutinović and also in the works of Ivanšić and
Milutinović: For example, see Ivanšić and Milutinović [2002], [2003], [2005],
and [2007]; and Milutinović [1992], [1993], and [2006].

The material in this chapter is a greatly expanded and augmented version
of the original presentation, and is a direct result of comments made by the
referee of Lipscomb [1975]: In June of 1974: I received a letter from Steve
Armentrout, who quoted the referee:

I believe that all of the proofs are correct, and that this paper is
an outstanding contribution to dimension theory. The author’s
style is rather terse, and I have included a few comments for him
to consider in case he wishes to do any revision of his manuscript.

The original presentation contained neither graphics, nor examples, nor
the proofs that appear in the footnotes of this chapter, nor proofs 38.8.1
through 38.8.5, nor proofs 38.9.1 through 38.9.9. In addition, the precise
idea of a “nodal indexing” was introduced in this chapter to add precision
to the original arguments. And with the goal of making the ideas more
accessible, even the original arguments were adjusted.

An understanding of the ideas presented in this chapter should serve as a
gateway to all of the very substantial research referenced in this section.

It should be noted that §A6.2 Lemma (covers at points in dim ≤ n closed
subspaces) was used to prove §A6.2 Theorem (refining covers of dim ≤ n
subspaces), which was used to prove Lemma 38.2 (refining covers in a neigh-
borhood of a dim ≤ n closed set). The idea for this sequence was initiated
by the author’s study of Ostrand [1971] — within §A6.2, see the paragraph
in the middle of page 202.



CHAPTER 8

The Jn+1
A Imbedding Theorem

The Classical Imbedding Theorem states that any n-dimensional separable
metric space may be imbedded in the subspace of I2n+1 whose tuples contain
at most n rational coordinates.

In this chapter, we construct a proof of the Jn+1
A Imbedding Theorem that

states that any n-dimensional weight |A| ≥ ℵ0 metric space may be imbedded
in the subspace of Jn+1

A whose tuples contain at most n rational coordinates.
The proof rests on an application of the Decomposition Theorem 39.1 that
yields a commutative diagram that contains the imbedding.

§41 Mappings and the Commutative Diagram

In this section we outline the mappings and methods that produce the desired
imbeddings into Jn+1

A . We begin with a commutative diagram.

N(A)n+1 Y X

Jn+1
A

Z

f

g
ψ = gf−1

q
h

pn+1

.................................................................................................... ...............................................................................................................
....................................................................................
......
........
......

.......................................................................................................................
....
..............

................................................................................................................................ ..........
....

............................................................................
......
........
......
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Fig. 41.1 Decomposition map q; ancestor map h; and imbedding ψ.

Within Figure 41.1, X is any weight |A| ≥ ℵ0 metric space of dimension
n ≥ 0. The mapping pn+1 : N(A)n+1 → Jn+1

A denotes the product map
that has the natural map p : N(A) → JA as each of its factors. Since p
is perfect, pn+1 is perfect (Theorem A5.9). In addition, the two unlabeled
arrows Z → N(A)n+1 and Y → N(A)n+1 denote inclusions.

The decomposition map q : Z → X and ancestor map h : Z → Y shall be
defined below (both mappings are induced from an application of the Decom-
position Theorem 39.1). The decomposition map q is both continuous and
quotient, while the ancestor map h is a homeomorphism. The notations “q”
and “h” are mnemonics, respectively, for “quotient” and “homeomorphism.”

The homeomorphism h has an important property: For each x ∈ X there
is a vx ∈ Jn+1

A that has at most n rational coordinates and h maps the q-
fiber q−1(x) ⊂ Z onto the pn+1-fiber (pn+1)−1(vx) ⊂ Y . This correspondence
x �→ vx is denoted ψ, and ψ is the desired imbedding.
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As indicated in the diagram, ψ = gf−1 where f is given by f = q(h−1)
(since h is one-to-one, f is well defined). Moreover, f is both continuous and
quotient because h is a homeomorphism and q is quotient. The map g is the
restriction of pn+1 to Y , which is closed because Y is a pn+1 inverse set and
pn+1 is perfect. With these aspects of f and g exposed, an application of
Theorem A4.3 shows that ψ = gf−1 : X → ψ(X) is a homeomorphism. And
finally, it follows that ψ = gf−1 = g(hq−1) = pn+1|Y (hq−1).

§42 The Decomposition Map q

Since X is a weight |A| ≥ ℵ0 n-dimensional metric space, we may use the
(dimension theory) Decomposition Theorem (§A6) to select, for each j =
1, . . . , n + 1, zero-dimensional subspaces Yj ⊂ X such that X = ∪n+1

1 Yj .
Then using the Subspace Theorem (§A6), we define X1 = Y1 and, for j > 1,
Xj = Yj \ (∪k<jYk) ⊂ Yj to obtain a partition X = ∪n+1

1 Xj of X into
zero-dimensional subspaces Xj . With these Xj , we apply the Decomposition
Theorem 39.1 and thereby obtain Wij , i ≥ 1 and 1 ≤ j ≤ n + 1, that satisfy
(28)i, . . ., (36)i of the Decomposition Theorem 39.1.

Since each Wij is of size ≤ |A| ≥ ℵ0, we may partition A into sets Aij

such that Wij = {Wa : a ∈ Aij} is a faithful indexing of Wij .
Next, each α = (α1, . . . , αn+1) ∈ N(A)n+1, where αj = α1jα2j · · · is a

sequence in A, may be viewed as an ℵ0 × (n + 1) matrix [αij ] whose entries
αij are members of A. It may happen that each αij ∈ Aij .

In general, suppose x ∈ X . Then since each Wij is a decomposition of
X , we may select, for each i and each j, a Wa ∈ Wij such that x ∈ W a and
then define αij = a. The corresponding matrix [αij ] has n + 1 columns αj ,
and each column αj may be viewed as a sequence in A, i.e., the matrix [αij ]
corresponds to the (n+1)-tuple α = (α1, . . . , αn+1) ∈ N(A)n+1 induced from
the containment x ∈ ∩{Wa : a is an entry of the matrix [αij ]}.

42.1 Definition (the decomposition map q : Z → X) Let X and the
corresponding Wij = {Wa : a ∈ Aij} be as constructed above. Then define
α ∈ Z ⊂ N(A)n+1 and the decomposition map q : Z → X by

α ∈ Z, q(α) = x if and only if {x} = ∩{Wαij : i ≥ 1; 1 ≤ j ≤ n + 1}.

The decomposition map q : Z → X is well defined because of (29)i in Theo-
rem 39.1.

As we shall see in the following two theorems, (28)i, . . ., (36)i of Theo-
rem 39.1 expose key aspects of q : Z → X .

42.2 Theorem Each fiber q−1(x) of q : Z → X is finite.

Proof. Either x is in no Bdry Wij , or, x is in some Bdry W�m. In the
first case, since each Wij is a decomposition, q(α) = q(β) = x implies the
matrices [αij ] ≡ α and [βij ] ≡ β are equal, making q−1(x) a singleton set.
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In the second case, (32)k and (32)i for i > k show that if x ∈ Bdry Wkm

then x �∈ Bdry Wim for all i �= k. So there are only two choices for the mth
column of any [αij ] such that q(α) = x. (Property (30)k shows that there
are distinct U, V ∈ Wkm such that x ∈ B(U) ∩ B(V ); then (28)k shows that
U and V are the only members of Wkm whose closures contain x; and every
other entry αim in the mth column has x interior to Wαim ∈ Wim.) Thus,
since there are only a finite number of columns, there are only finitely many
members of the fiber q−1(x).

42.3 Theorem The surjection q : Z → X is both continuous and quotient.

Proof. The argument in the paragraph preceding Definition 42.1 shows
that q is surjective. So let us show that q is continuous: For α ≡ [αij ] and
β ≡ [βij ] in Z, we say that α is (1/�)-close to β whenever the first � rows of
[αij ] are identical to the first � rows of [βij ]. Then from (29)�, the distance
between q(α) and q(β) is less than 1/� whenever α is (1/�)-close to β. The
continuity of q therefore follows. For the quotient aspect, suppose q−1(G) is
open. We shall show that G ⊂ X is open by showing that each x ∈ G is in
the interior of G. Indeed, for α ∈ q−1(x), let 〈α�〉 be the basic open set

〈α�〉 = 〈α11, . . . , α�1〉 × · · · × 〈α1(n+1), . . . , α�(n+1)〉 ⊂ N(A)n+1.

Also recall that, as was shown in the proof of Theorem 42.2, if x ∈ Bdry
Wkm, then x �∈ Bdry Wim for every i �= k. Thus we may choose � > k for
every k such that x ∈ Bdry Wkj for some j. Further, since q−1(x) is a finite
set and q−1(G) is open, we may assume that � is large enough so that

(1) ∪{〈α�〉 : α ∈ q−1(x)} ⊂ q−1(G).

Now define

Vx = [∩{W : x ∈ W ∈ Wij ; 1 ≤ i ≤ � and 1 ≤ j ≤ n + 1}]
∩
[
∪{W : x ∈ B(W ) and W ∈ Wkm for some k and m}

]
.

Then (30)k and (28)k show that Vx is a neighborhood of x. Further, for y ∈ Vx

and q(β) = y, we have β�j = α�j for each j, forcing y ∈ ∩n+1
1 {Wa : a = α�j}.

Then (34)� shows that β is a member of the left side of (1). So β ∈ q−1(G),
which shows that q(β) = y ∈ G, i.e., the neighborhood Vx of x must be a
subset of G.

§43 The Ancestor Map h

We now turn to the definition of h : Z → Y , where it is assumed that we use
the same decompositions that were used to define q : Z → X . First, however,
we need the concept of ancestors.

43.1 Definition (ancestors of αij ∈ Aij) Let j ∈ {1, . . . , n+1} be fixed; and
let αkj ∈ Akj for k = 1, . . . , i be such that ∩i

k=1Wαkj
�= ∅. Then whenever
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Wαij∩ Bdry Wkj = ∅ for each k < i, we say that αij has no ancestor with
respect to α1j , . . ., α(i−1)j . Otherwise, as proved in the following paragraph,
there is a unique � < i and a unique β�j ∈ A�j such that β�j �= α�j and
Wαij ∩ B(Wα�j

) ∩ B(Wβ�j
) �= ∅. This β�j is called the 1st ancestor of αij

with respect to α1j , . . ., α(i−1)j . The 2nd ancestor of αij with respect to
α1j , . . ., α(i−1)j is the 1st ancestor of β�j with respect to α1j , . . ., α(�−1)j.
The process of determining ancestors of αij terminates after at most i − 1
steps, and we call the final ancestor so determined the last ancestor of αij

with respect to α1j , . . ., α(i−1)j .

A few comments concerning no ancestor, 1st ancestor, . . .,last ancestor
are in order. That “no ancestor” is unambiguous is obvious. In contrast, the
argument that “1st ancestor” is well defined is not so obvious. To address
the subtlety, we prove the following: If

(i) ∩i
k=1 Wαkj

�= ∅ and (ii) Wαij ∩ Bdry W�j �= ∅ for � < i,

then � is unique, and, a unique β�j ∈ A�j exists such that β�j �= α�j and

(iii) Wαij ∩ B(Wα�j
) ∩ B(Wβ�j

) �= ∅.

Indeed, (ii), and then (30)i of Theorem 39.1 show that Wαij∩B(U)∩B(V ) �= ∅
for distinct U, V ∈ W�j ; and (34)� of Theorem 39.1 shows that � is unique.
Next, suppose Wαij �∈ {U, V }. Then using Wi and W� to denote, respectively,
Wαij and Wα�j

, and, Bi and B� the corresponding B(Wi) and B(W�), we
consider

W i ∩ W � = (Bi ∪ Wi) ∩ (B� ∪ W�)
= (Bi ∩ B�) ∪ (Bi ∩ W�) ∪ (Wi ∩ B�) ∪ (Wi ∩ W�).

But reading left-to-right, (Bi ∩ B�) ⊂ Bdry Wij∩ Bdry W�j = ∅ because of
(32)i of Theorem 39.1; (Bi ∩ W�) = ∅ = (Wi ∩ B�) because (34)i implies
Wi ⊂ U ∪ V and (U ∪ V ) ∩ W� = ∅; and (Wi ∩ W�) = ∅ because (34)i says
that Wi meets at most two members of W�j . Thus, W i ∩ W � = ∅, which
contradicts (i). So Wα�j

∈ {U, V }, the unique β�j ∈ A�j exists, β�j �= α�j,
and (iii) is true.

To show that “2nd ancestor” is also well defined, we prove the following:
If β�j ∈ A�j is the 1st ancestor of αij with respect to α1j , . . . , α(i−1)j, then

(iv) ∩�−1
k=1 Wαkj

∩ W β�j
�= ∅.

Indeed, from (iii) we may infer that

(35)i yields (v) B(Wα�j
) ∩ B(Wβ�j

) ⊂ Wαij

and (34)i yields (vi) Wαij ⊂ Wαkj
(1 ≤ k ≤ (� − 1)) .

So from (vi), Wαij ⊂ ∩�−1
k=1Wαkj

, and coupled with (v), we have

∅ �= B(Wα�j
) ∩ B(Wβ�j

) ⊂ Wαij ⊂ ∩�−1
k=1Wαkj

, which yields (iv).
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In short, it should now be clear that the inductive construction of ances-
tors is well defined, and in particular, the concept of “last ancestor” is well
defined.

With the spadework of “ancestors” complete, we are ready for the defini-
tion of h : Z → Y .

43.2 Definition (the ancestor map h : Z → Y ) Let α ∈ Z. Then α ≡ [αij ]
is induced by x = q(α) and the Wij . For each i ≥ 1 and each j ≤ n + 1,
define, with respect to α1j , . . ., α(i−1)j ,

γij =
{

αij if αij has no ancestor;
last ancestor of αij otherwise.

The correspondence αij �→ γij induces the mapping h : Z → h(Z) = Y ⊂
N(A)n+1 given by α �→ h(α) = γ ≡ [γij ].

Since “no ancestor and last ancestor of αij with respect to α1j , . . .,
α(i−1)j” are well defined, h : Z → Y is well defined; and since Y = h(Z)
by definition, h is surjective.

To see that h is also continuous, recall (from the proof of Theorem 42.3)
that β (1/�)-close to α implies βij = αij for all i ≤ � and all j, 1 ≤ j ≤ n+1.
Since these αij determine the corresponding γij where h(α) = γ, and these
same αij = βij determine the corresponding δij where h(β) = δ, we have
δij = γij for all i ≤ � and all j, 1 ≤ j ≤ n+1, i.e., h(β) is (1/�)-close to h(α).
It follows that h : Z → Y ⊂ N(A)n+1 is continuous.

43.3 Lemma (an m exists where αim = h(α)im for any i in an infinite R)

Let q(α) = x ∈ X. Then there is an m ∈ {1, . . . , n+1} and an infinite subset
R ⊂ {1, 2, . . .} such that i ∈ R implies h(α)im = αim; q(α) ∈ Wαim ; and
dia(Wαim) < 1/i.

Proof. Property (29)i of Theorem 39.1 holds for every i ∈ {1, 2, . . .} and
any x ∈ X . So for every i ≥ 1 and x = q(α), a j ∈ {1, . . . , n + 1} exists that
makes (29)i true. Consequently, since j ranges over finitely many values, at
least one j ≤ n + 1, say j = m, and an infinite R ⊂ {1, 2, . . .} exist such
that (29)i is true for each i ∈ R. The inclusion condition in (29)i for i ∈ R
and the definition of no ancestor show that i ∈ R implies h(α)im = αim.
Moreover, since i ∈ R implies that (29)i holds for j = m, x = q(α) ∈ Wαim

where dia(Wαim) < 1/i.

43.4 Lemma Let α, β ∈ Z; let αuv �= βuv for some u and some v; let
i > u; let q(α), q(β) ∈ W ∈ Wiv, and let ∅ �= B(Wαuv ) ∩ B(Wβuv ) ⊂ W .
Then h(α)iv �= h(β)iv.

Proof. Since q(α), q(β) ∈ W ∈ Wiv, we have αiv = βiv. Since ∅ �=
B(Wαuv ) ∩ B(Wβuv ) ⊂ W where αuv �= βuv, (34)i of Theorem 39.1 shows
that βuv is the 1st ancestor of αiv (with respect to α1v, . . . , α(i−1)v) and that
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αuv is the 1st ancestor of βiv (with respect to β1v, . . . , β(i−1)v). By (33)i of
Theorem 39.1, either αuv or βuv has no ancestor, so h(α)iv �= h(β)iv.

43.5 Lemma Let α, β ∈ Z with h(α)im = h(β)im = αim. Then βim = αim.

Proof. By definition of the ancestor map h, with respect to β1m, . . . , β(i−1)m

h(β)im =
{

βim if βim has no ancestor;
last ancestor of βim otherwise.

Note that “h(β)im = βim” is equivalent to “h(β)im is an index in Aim.” (A
last ancestor of βim would be an index in A�m where � < i and A�m∩Aim = ∅.)
It follows that h(β)im = αim ∈ Aim implies βim = αim.

43.6 Theorem The ancestor map h : Z → Y is a homeomorphism.

Proof. From the comments following Definition 43.2, h is both surjective
and continuous. So it suffices to show that h is one-to-one and that h−1

is continuous. To see that h is one-to-one, let α, β ∈ Z and assume that
αuv �= βuv for some u and some v. If q(α) = q(β), then

q(α) = q(β) ∈ B(Wαuv ) ∩ B(Wβuv ) �= ∅

and we may use (35)(u+1) of Theorem 39.1 for j = v to see that there is a
W ∈ W(u+1)v such that B(Wαuv )∩B(Wβuv ) ⊂ W . Then Lemma 43.4 shows
that h(α)(u+1)v �= h(β)(u+1)v. So we are left with the case where q(α) �= q(β).
In this case, Lemma 43.3 provides an m ∈ {1, . . . , n + 1} and an infinite set
R ⊂ {1, 2, . . .} such that i ∈ R implies h(α)im = αim; q(α) ∈ Wαim ; and
dia(Wαim) < 1/i. Since q(α) �= q(β), we let ε > 0 denote the distance
between q(α) and q(β). Now choose i ∈ R such that

(1/i) < (ε/2); q(α) ∈ Wαim ; h(α)im = αim; dia(Wαim) < 1/i.

Then q(β) �∈ Wαim and consequently, h(β)im �= αim = h(α)im.
To see that h−1 is continuous, we shall use the “(1/i)-close” terminology.

(See the third sentence in the proof of Theorem 42.3.) So let α ∈ Z and
� ≥ 1. Then we shall show that k� exists such that h(β) (1/k�)-close to h(α)
implies β (1/�)-close to α. First, however, as in the third sentence of the
proof of Theorem 42.2 shows, we may assume that if q(α) ∈ B(Wαim) for
some i and some m, then i < �. Now consider

(2) G = ∩{Wαij : i ≤ �; j ≤ n + 1; and q(α) ∈ Wαij}.

Then G is open and q(α) ∈ G implies (by Lemma 43.3 for an m and an
infinite R) that there is a k� ∈ R such that k� = k > �; h(α)km = αkm;
and q(α) ∈ Wαkm

⊂ Wαkm
⊂ G. (The inclusion Wαkm

⊂ G follows because
q(α) ∈ G; dia(Wαkm

) < (1/k); and k ∈ R may be arbitrarily large.)
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Consequently, if we suppose that h(β) is (1/k�)-close to h(α), then h(β)ij =
h(α)ij for all i ≤ k� = k and all j ≤ n+1. In particular, h(β)km = h(α)km =
αkm, which shows (by Lemma 43.5) that βkm = αkm. So

q(β) ∈ W βkm
= Wαkm

⊂ G.

It follows from the definition of G that βij = αij for all i ≤ � and all j ≤ n+1
such that q(α) ∈ Wαij . Now consider those pairs in

(3) {(u, v) : q(α) ∈ B(Wαuv ) for u < � and v ≤ n + 1}

where the constraint u < � may be replaced by u ≤ � because of the constraint
placed on � in the statement preceding (2).

We shall finish the proof that h−1 is continuous by showing that αuv �= βuv

for (u, v) in the set defined in (3) contradicts h(β)(u+1)v = h(α)(u+1)v for
u + 1 ≤ � < k�: Indeed, suppose αuv �= βuv. Now for each i, u < i ≤ �, (32)i

(of Theorem 39.1) for j = v shows that q(α) ∈ Wαiv ∈ Wiv. Also, for each i,
1 ≤ i < u < �, (32)u yields q(α) ∈ Wαiv . So q(β) ∈ G implies q(β) ∈ Wαiv

for each i, 1 ≤ i ≤ � such that i �= u. In other words,

α1v = β1v, . . . , α(u−1)v = β(u−1)v, α(u+1)v = β(u+1)v, . . . , α�v = β�v.

Also, q(α) ∈ B(Wαuv ), (30)u for j = v, and (34)� for j = v imply

B(Wαuv ) ∩ B(Wβuv ) �= ∅ because αuv �= βuv.

Further, (36)(u+1) for j = v shows that

∅ �= B(Wαuv ) ∩ B(Wβuv ) ⊂ Wα(u+1)v ∈ W(u+1)v,

which yields (Lemma 43.4) h(α)uv �= h(β)uv. Thus, h−1 is continuous.

§44 Matching q-Fibers with pn+1-Fibers

The adjacent-endpoint relation ∼ ⊂ N(A) × N(A) was introduced within
Definitions 2.2 as the p : N(A) → JA induced equivalence relation. Now,
however, we are concerned with N(A)n+1 where n may be strictly greater
than zero. So we extend the adjacent-endpoint relation as follows: For
γ, δ ∈ N(A)n+1, we write “γ ∼× δ” whenever each pair γj and δj of
corresponding components are ∼ -related. This “product relation” ∼×⊂
N(A)n+1 × N(A)n+1 is the pn+1-induced equivalence relation.

44.1 Lemma (h matches q-fibers with pn+1-fibers) Let q : Z → X be the
decomposition map; h : Z → Y the ancestor map; and α ∈ q−1(x). Then
h(α) ∼× γ implies that there is a β ∈ q−1(x) such that h(β) = γ.
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Proof. It suffices to prove the claim for the case where h(α) and γ differ at
exactly one component.1

To begin, let h(α) and γ differ at only their jth components. We show
below that a unique � ≥ 1 and a unique β�j ∈ A�j exist such that β�j �= α�j

and

(4) B(Wα�j
) ∩ B(Wβ�j

) = ∩{Wαij : i ≥ 1}.

Since q(α) = x is given by {x} = ∩{Wαij : i ≥ 1; j ≤ n + 1}, equation
(4) shows that q(α) ∈ Bdry W�j . Next, introduce β ∈ N(A)n+1 such that
β�j is given in (4), but is otherwise given by βim = αim. Then from (4),
q(β) = q(α).

Using an argument similar to the proof of Lemma 43.4, we may show that
the jth components of h(α) and h(β) are unequal. In addition, equation (8)
below and the definition of the ancestor map h show that h(α)j ∼ h(β)j .
Then h(β) = γ because the size of any ∼ equivalence class is at most two.

With these remarks, it suffices to show that (4) is true: So let h(α) ∼× γ
where h(α) and γ differ only at their jth components. Then let t be the tail
index of the sequence h(α)1jh(α)2j · · · , and consider the 1st ancestor β�j of
α(t+1)j with respect to α1j , . . . , αtj .2

So � < t + 1 and Wα(t+1)j∩ BdryW�j �= ∅, i.e., for i = t + 1,

Wαij ∩ B(Wα�j
) ∩ B(Wβ�j

) �= ∅,

which is statement (iii) in the first paragraph following Definition 43.1. Then
with this statement (iii) again, we may use the argument in the second para-
graph following Definition 43.1 to obtain (v) (in that second paragraph) for
i = t + 1. We index “(v)” as

(5) ∅ �= B(Wα�j
) ∩ B(Wβ�j

) ⊂ Wαij .

Now let r > i = t + 1 be arbitrary but fixed. An argument that is analogous
to the i = t+1 argument that produced (5) tells us that αrj has a 1st ancestor
εuj with respect to α1j , . . . , α(r−1)j such that

(6) ∅ �= B(Wαuj ) ∩ B(Wεuj ) ⊂ Wαrj .

1When h(α) and γ differ at exactly two components, we may construct a δ ∈ N(A)n+1

such that δ ∼× h(α) and δ ∼× γ where δ differs from each of h(α) and γ at exactly one
component. For example, if h(α) = (θ1, θ2, θ3, θ4) and γ = (γ1, θ2, θ3, γ4) are such points
in N(A)4, then consider δ = (γ1, θ2, θ3, θ4). In such a case, the desired β ∈ q−1(x) may
be obtained by applying the “differ by exactly one component” result twice. The general
case, where h(α) and γ differ at exactly k components, then follows from an induction
argument.

2 To see that α(t+1)j has an ancestor, suppose otherwise. Then α(t+1)j has no ancestor,
i.e., h(α)(t+1)j = α(t+1)j . Thus, h(α)(t+1)jh(α)(t+2)j · · · is a constant sequence whose
first term is α(t+1)j . So for k > 1, the last ancestor h(α)(t+k)j of α(t+k)j with respect to
α1j , . . . , α(t+1)j , . . . , α(t+k−1)j is α(t+1)j . But this is a contradiction because no ancestor
can be a member of the “with respect to list.”
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It turns out that u < i = t + 1.3

Then from u < i = t + 1 < r and the inclusion in (6), we find that (34)r

of Theorem 39.1 shows that for i = t + 1

(7) Wαrj ⊂ Wαij .

Consequently, for i = t + 1, (5), (6), and (7) show that for i = t + 1

∅ �= B(Wα�j
) ∩ B(Wβ�j

)
∅ �= B(Wαuj ) ∩ B(Wεuj )

}
⊂ Wαij .

Then for i = t + 1, (34)i of Theorem 39.1 shows that u = �. Moreover, since
the corresponding arguments for each i > t + 1 yield (5), (6) and (7) for
i > t + 1,

(8) B(Wα�j
) ∩ B(Wβ�j

) ⊂ Wαij for all i ≥ t + 1.

Then (4) follows from the constraint

Wαij ⊂ Gi(B(Wα�j
) ∩ B(Wβ�j

))

on the Wαij in (35)i of Theorem 39.1, and the equality

B(Wα�j
) ∩ B(Wβ�j

) =
∞
∩

t+1
Gi(B(Wα�j

) ∩ B(Wβ�j
))

in the hypothesis of Theorem 39.1.

§45 Proof of the Jn+1
A Imbedding Theorem

Using the lemmas and theorems in the preceding sections of this chapter, we
prove the Jn+1

A Imbedding Theorem.

45.1 Theorem (Jn+1
A Imbedding Theorem) A metric space X of weight

|A| ≥ ℵ0 is of dimension ≤ n if and only if it can be imbedded in the subset
of Jn+1

A whose tuples have at most n rational coordinates.

Proof. Suppose X → Jn+1
A (n) is an imbedding. Then since Theorem 34.2

for � = n + 1 shows that the subspace

Jn+1
A (n) = {z ∈ Jn+1

A : z has at most n rational coordinates}
3If u ≥ i = t + 1, then again αuj has a 1st ancestor with respect to α1j , . . . , α(u−1)j .

So by (33)u, εuj has no ancestor, i.e.,

Wεuj ∩ BdryWkj = ∅ (1 ≤ k ≤ u − 1).

Thus, (6) tells us that h(α)rj = εuj ∈ Auj where u ≥ i = t + 1, which contradicts
h(α)rj = h(α)(t+1)j , i.e., contradicts the fact that the last ancestor h(α)(t+1)j of α(t+1)j

belongs to Akj for some k ≤ � < t + 1 ≤ u.
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of Jn+1
A has dimension n, the Subspace Theorem shows that dim X ≤ n.

Conversely, suppose dim X ≤ n. Then we shall use the mappings and com-
mutative diagram in Figure 41.1. That is, ψ = gf−1. From the claims in
§41, and their proofs in §42, §43, and §44, we may deduce that ψ is indeed
an imbedding. So it only remains to show that each tuple ψ(x) ∈ Jn+1

A has
at most n rational coordinates. To specify at least one irrational coordinate
in each ψ(x) we apply Lemmas 43.3 and 44.1. In detail, let α ∈ q−1(x).
Then q(α) = x, and, ψ(x) = pn+1(h(α)). (Use f−1(x) = hq−1(x) and
Lemma 44.1, which shows that h maps the q-fiber q−1(x) onto the pn+1-fiber
(pn+1)−1ψ(x).) Then an application of Lemma 43.3 for this particular α
shows that there is a component, say h(α)m, of h(α) and an infinite subset
R ⊂ {1, 2, . . .} such that i ∈ R implies h(α)im = αim. Consequently, since
Aim ∩Akm = ∅ when i �= k we see that the mth component of h(α) contains
an infinite number αim (i ∈ R) of terms, i.e., the mth component of h(α)
has no constant tail. Thus, the mth component of pn+1(h(α)) = ψ(x) is
irrational.

Finally, we may compare the statement of the JA Imbedding Theorem
with its classical counterpart.

45.2 Theorem (Classical Imbedding Theorem) A metric space X of weight
|A| = ℵ0 is of dimension ≤ n if and only if it can be imbedded in the subset
of I2n+1 whose tuples have at most n rational coordinates.

§46 Comments

For an excellent account (along with relevant references and proofs) of the
classical universal space theorems see Engelking [1978, Section 1.11, pages
118–133].

As discussed in §4.3, Karl Menger [1926a] showed that any compact metric
space of dimension ≤ 1 may be imbedded in the unit cube I3.

The universal space constructed in Menger [1926a] is a well-known frac-
tal called the Menger sponge (Figure 49.2). Additional insight into Menger
[1926a] may be obtained by reading Edgar’s [1993] English translation, where
one finds historical perspective, a color picture of the Sponge (Plate 3), and
additional editorial comments. For example, at the end of the translation,
Edgar points out that, “. . . any separable metric space is homeomorphic to a
subset of a compact metric space with the same topological dimension.” He
also provides references to Menger [1928, Chapter IX, §1] along with Hurewicz
[1927], Kuratowski [1937], and Hurewicz and Wallman [1948, page 65].

Edgar also states:

Menger suggests – but does not prove – that the set Rn
2n+1 is

universal for (separable metric) spaces with topological dimen-
sion n. In Menger [1928], Chapter IX, Menger still provides only
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a ‘sketch’ of the proof. The proof is carried out by S. Lefschetz
[1931].

Four years after Menger’s 1926 work on his “fractals as universal spaces,”
his student Georg Nöbeling [1931] proved Theorem 45.2, the Classical Imbed-
ding Theorem. Nöbeling’s universal space is the subspace of tuples in I2n+1

that have at most n rational coordinates, which is distinct from the “fractals”
used by Menger.

Then three decades later, Jun-iti Nagata [1960] introduced a space that
is universal for the class of general (not necessarily separable) metric spaces
of dimension ≤ n. In more detail, Nagata [1960] states:

Although dimension theory for non-separable metric spaces has
been greatly developed, it still seems that no universal n-dimensional
set for non-separable metric spaces is known. Thus it will be
of some interest to find a universal n-dimensional set for non-
separable metric spaces in a generalized Hilbert space. This paper
is devoted to this purpose.

Nagata then calls f : Ω → R a finite function if ord f = |{α : f(α) �= 0}| is
finite; defines F (Ω) = {f : f is finite} with metric

d(f, g) =
[
Σα∈Ω (f(α) − g(α))2

] 1
2

;

and, for “f” now denoting “(f1, f2, . . .)” where each fi ∈ F (Ω) defines
H ′(Ω) = {f : Σi,α (fi(α))2 < +∞} with metric

ρ(f, g) =
√

Σ∞
1 (d(fi, gi))

2
.

Nagata also specifies the fundamental cube F ′(Ω) ⊂ H ′(Ω) as

F ′(Ω) = {f : 0 ≤ fi ≤ (1/i); ord fi ≥ ord fi+1; i = 1, 2, . . .}

and uses F ′(Ω) to construct the desired universal space.

46.1 Theorem (Nagata [1960]) A metric space has dimension ≤ n if and
only if it can be topologically imbedded in

Fn(Ω) = {f ∈ F ′(Ω) : at most n of fi(α), i = 1, 2, . . .and α ∈ Ω,
are rational and nonvanishing}

for some Ω.

Three years later, Nagata [1963] introduced another such universal space:

Once [previously] we have constructed (Nagata [1960]) a univer-
sal n-dimensional set for general metric spaces which is a rather
complicated subset of C.H.Dowker’s (Dowker [1947]) generalized
Hilbert space. In this brief note we shall show that we can find
a simpler universal n-dimensional set in a countable product of
H. J. Kowalsky’s star-spaces.
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Then, to demonstrate and compare the two applications of star spaces, he
states Kowalsky’s [1957] Theorem and Nagata’s [1963] Theorem. (For precise
statements of the Kowalsky and Nagata theorems, see Theorems 18.1 and 18.2
in Chapter 3, respectively.)

More than a decade later, the Jn+1
A Imbedding Theorem (which is also

more simply called the “JA Imbedding Theorem”) appeared. Ironically, like
the Menger-Nöbeling two-step, i.e., Menger [1926a] (dim ≤ 1) and Nöbeling
[1931] (dim ≤ n) publications, the corresponding JA results occurred in two
steps — Lipscomb [1973] (dim ≤ 1) and Lipscomb [1975] (dim ≤ n).

There is also some history (and overdue thanks) regarding the term ances-
tor : It was Charles Alexander, my 1969–70 thesis advisor at the University
of Virginia, who suggested the term ancestor. In fact, the reason for his
suggestion was simply to intuitively convey the rather technical idea of the
ancestor map h : Z → Y . The context was his reading of the proof of the
Jn+1

A Imbedding Theorem for n ∈ {0, 1} that is contained in my University
of Virginia thesis.

Looking back at the basics that led to the Jn+1
A Imbedding Theorem, I

originally had the idea (in my minds eye) of somehow associating each point
x in a metric space X with either one or at most two sequences of indices
on members of appropriate decompositions of X . If there were two such
sequences, then they were to differ at exactly one index (see the top of the
right-side graphic in Figure 4.1). In such a case, these two sequences had to
be mapped (via the appropriate component hj of ancestor map h) to adjacent
endpoints in N(A) (see the bottom of the right-side graphic in Figure 4.1).

Eventually, the (at most two sequences)-to-(each point x ∈ X) idea was
realized as a result of (32)i, (33)i, and (36)i in the Decomposition Theo-
rem 39.1 and the Definition 42.1 of the decomposition map q. Then the
change of two such sequences to adjacent endpoints in N(A) was realized
by the appropriate idea of “ancestors” in Definition 43.1. The rest of the
development consisted of filling in the gaps and adjusting definitions.



CHAPTER 9

Minimal-Exponent Question

The JA Imbedding Theorem tells us that any metric space X of weight |A| ≥
ℵ0 and dimension n ≥ 0 may be imbedded in Jn+1

A . It is natural to ask,
for n ≥ 1 at least, “Could Jn+1

A be replaced with Jn
A?” And at first blush,

since the 1-sphere S1 may be imbedded in J3 = J1
3 , and since Kuratowski’s

forbidden graphs may be imbedded in the 4-web J5 = J1
5 (see §50), one may

be tempted to guess that the answer is yes. It turns out, however, that Jn+1
A

cannot be replaced with Jn
A because the 2-sphere S2 cannot be imbedded in

the product of two one-dimensional spaces.1

In this chapter, after reviewing a few basics from Borsuk [1967] and Hock-
ing and Young [1988] on Vietoris homology, we recall the homology group
H2(S2) and present the proofs in Borsuk [1975]. Borsuk’s result was mo-
tivated by Nagata’s [1965, page 163] statement of an open problem which,
along with a brief review of the minimal-exponent question in the context of
the Classical Imbedding Theorem, is detailed in §50.

§47 Vietoris Homology

Following a review of basic definitions and terminology presented in Bor-
suk [1967, pages 36–43], we provide a summary of Vietoris [1927] homology
by quoting Hocking and Young [1988]. We learn that on a finite polytope,
the Vietoris homology groups coincide with the simplicial homology groups.
Throughout, we consider only integer coefficients. One of our main goals is
that of precisely defining a true cycle, which is fundamental in Borsuk [1975].

47.1 The Cn(X, Z, ε) Groups. Let X = (X, ρ) be a metric space and
let ε > 0. Then an n-dimensional oriented ε-simplex σ = (a0, . . . , an) is a
set of vertices ai ∈ X with indices i ∈ Nn = {0, 1, . . . , n} such that each
ρ(ai, aj) ≤ ε. Each oriented ε-simplex σ is a mapping from Nn into X , and
these mappings determine either a “1σ” or a “−1σ” ε-simplex according to
the following rules: If at least two of the vertices of σ are equal, then define
σ = 1σ = −1σ = −σ and call σ a degenerate simplex. Otherwise, for n ≥ 1,
σ = (a0, . . . , an), and each permutation i �→ φi of the set Nn, define

(aφ0, . . . , aφn) =
{

σ = 1σ if i �→ φi is even
−σ = −1σ if i �→ φi is odd;

1This result is due to Borsuk [1975], where he remarks that Miss H. Patkowska observed
that an obvious modification of his proof shows that the n-sphere Sn is not homeomorphic
to any subset of the Cartesian product of n one-dimensional spaces.

S.L. Lipscomb, Fractals and Universal Spaces in Dimension Theory,
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for n = 0, define −σ = (−1, a0); and for the (−1)-dimensional case, define
two (−1)-dimensional oriented ε-simplexes as the numbers “1” and “−1.”

For each pair σ and −σ, select one member of {σ,−σ} and call it posi-
tively oriented. The other simplex is then called negatively oriented. Further,
denote the collection of all n-dimensional ε-simplexes of X as Σn(X, ε); the
subfamily of those that are positively oriented as Σn

+(X, ε); the subfamily of
those that are negatively oriented as Σn

−(X, ε); and the subfamily of degen-
erate simplexes as

Σn
0 (X, ε) = Σn

+(X, ε) ∩ Σn
−(X, ε).

Let Z = (Z, +) be the Abelian group of integers under the usual addition,
and define an n-dimensional ε-chain in X over Z as a function

χ : Σn(X, ε) \ Σn
0 (X, ε) → Z; where

χ(−σ) = −χ(σ), χ(σ) �= 0 for finitely many σ.

Those σ such that χ(σ) �= 0 are the simplexes of χ and the vertices of the
simplexes of χ are called the vertices of χ.

Since all such chains have a common domain and common co-domain Z,
we define the addition “χ1 + χ2” of chains χ1 and χ2 by

(χ1 + χ2)(σ) = χ1(σ) + χ2(σ), σ ∈ Σn(X, ε) \ Σn
0 (X, ε).

With respect to this addition, Cn(X, Z, ε) denotes the Abelian group of all n-
dimensional ε-chains. Moreover, for n < −1, Cn(X, Z, ε) denotes the trivial
group.

To develop representations of members of Cn(X, Z, ε), we introduce some
concise notation: For a non-degenerate n-simplex σ and a k ∈ Z, we shall
use “kσ” to denote the chain χ : Σn(X, ε) \ Σn

0 (X, ε) → Z given by

χ(τ) = χkσ(τ) =

⎧⎨
⎩

k ∈ Z if τ = σ;
−k ∈ Z if τ = −σ;
0 ∈ Z if τ �= σ.

And for a degenerate n-simplex σ and a k ∈ Z, we use “kσ” to denote the
zero of the group Cn(X, Z, ε).

In passing, note that the constraint χ(−σ) = −χ(σ) is consistent with
the “kσ” notation because

χkσ(−σ) = −k = −χkσ(σ).

The “kσ” notation allows us to represent any chain χ as a linear combination

(1) χ = k1σ1 + · · · + kmσm for ki ∈ Z and σi ∈ Σn(X, ε).

And in reverse, any such combination is a chain in Cn(X, Z, ε). The represen-
tation (1), however, is not unique, as 2σ = 1σ + 1σ demonstrates. Moreover,
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the notation (1) allows us to write σ − σ = 1σ + (−1σ) = χ1σ + χ(−1σ) = 0
where the “0” is the zero in Cn(X, Z, ε).

47.2 The Boundary Map ∂ : Cn(X, Z, ε) → Cn−1(X, Z, ε). For n > 0 and
any n-simplex σ = (a0, . . . , an), we define the boundary ∂σ of σ by

(2) ∂σ =
n∑
0

(−1)i(a0, . . . , ai−1, ai+1, . . . , an).

So ∂σ is an (n− 1)-chain. In particular, when σ is a degenerate simplex, one
may show that ∂σ is the zero in Cn−1(X, Z, ε). For example, ∂(a0, a1, a2) =
1(a1, a2) + (−1)(a0, a2) + 1(a0, a1), and if (a0, a1, a2) is degenerate, say a1 =
a2, then ∂(a0, a1, a2) = 1(a1, a1) which is the zero in Cn−1(X, Z, ε) because
(a1, a1) is degenerate.

For n = 0, we define ∂(a0) = 1 and ∂(−1, a0) = −1. And finally, for the
case where n ≤ −1, we define ∂σ to be the zero of Cn−1(X, Z, ε).

To specify ∂χ for each chain χ ∈ Cn(X, Z, ε), we let

(3) ∂χ =
�∑
0

mj(∂σj)

where mj(∂σj) is the chain derived by multiplying mj by each of the coeffi-
cients in an expansion (2) with σ = σj .

It is straightforward to show that ∂ : Cn(X, Z, ε) → Cn−1(X, Z, ε) is a
homomorphism. The kernel Zn(X, Z, ε) of ∂ is the set of n-dimensional ε-
cycles in X over Z; and the image Bn−1(X, Z, ε) = ∂Cn(X, Z, ε) of ∂ is the
set of the (n − 1)-dimensional ε-boundaries in X over Z.

One may also show that Bn−1(X, Z, ε) ⊂ Zn(X, Z, ε), which amounts to

∂∂χ = 0 χ ∈ Cn(X, Z, ε).

For example,

∂∂(a0, a1, a2) = ∂(a1, a2) + ∂(−1)(a0, a2) + ∂(a0, a1)
= (a2) − (a1) − (a2) + (a0) + (a1) − (a0) = 0.

47.3 Infinite Chains in X . Let {εi} be a sequence of positive numbers that
converges to zero, and for each i, let χi ∈ Cn(X, Z, εi). Then the sequence
χ = {χi} is an infinite n-dimensional chain in X whenever there exists a
compact subset X0 ⊂ X such that every vertex of every χi is an element of
X0.

The majorant and carrier of χ is the sequence {εi} and the X0, respec-
tively. Any convergent-to-zero sequence {ε′i} such that each ε′i ≥ εi is also a
majorant of χ. And any compact X ′

0 ⊂ X that is a superset of X0 is also a
carrier of χ. We shall denote the infinite chain each of whose components is
the zero chain as 0.
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For infinite n-dimensional chains χ = {χi} and χ′ = {χ′
i}, the sequence

χ+ χ′ = {χi + χ′
i} is an infinite n-dimensional chain in X . Similarly, χ−χ′

denotes the infinite chain {χi − χ′
i}.

47.4 Infinite, Homologous, Essential, and True Cycles in X . An
infinite chain γ = {γi} is an infinite cycle whenever each γi is a cycle. Thus,
for any infinite n-dimensional chain χ = {χi}, we have an infinite (n − 1)-
cycle ∂χ = {∂χi}. Two infinite cycles γ and γ′ are homologous in X , written
γ ∼ γ′, when there exists a chain χ in X such that ∂χ = γ − γ′.

An infinite cycle γ is an essential cycle if it has a carrier in which it is
not homologous to the cycle 0. And an infinite cycle γ = {γi} in X is a true
cycle if the infinite cycle γ′ = {γi+1 − γi} is not homologous to 0 in X .

47.5 The Homology (or Betti) Groups Hn(X) = Hn(X, Z). The set
Zn(X) = Zn(X, Z) of all n-dimensional true cycles in X over Z under the
addition given by

{γi} + {γ′
i} = {γi + γ′

i}
is an Abelian group. The elements in Zn(X) that are homologous to 0
form a subgroup Bn(X) = Bn(X, Z) of Zn(X). The factor group Hn(X) =
Zn(X)/Bn(X) is the n-dimensional homology (or Betti) group of X over Z.

47.6 Maps X
f→ Y Induce Homomorphisms Hn(X)

f∗→ Hn(Y ). Let
σ = (a0, . . . , an) be an n-dimensional simplex in X . Then f(σ), given by

f(σ) = (f(a0), . . . , f(an)),

is an n-dimensional simplex in Y . Since f may not be injective, f(σ) may be
degenerate even when σ is not degenerate. And the formula for f(σ) induces
an f -assignment of n-dimensional chains given by

χ = k1σ1 + · · · + kmσm �→ f(χ) = k1f(σ1) + · · · + kmf(σm).

Since f may not preserve distances, χ may be an ε-chain while f(χ) is not
an ε-chain. Nevertheless, f(χ) does belong to Cn(Y, Z, η) where η depends
on f and ε. And since f is uniformly continuous on any compact set, any
sequence {f(χi)} associated by f with an infinite chain χ = {χi} is also an
infinite chain f(χ) in Y and has a carrier f(X0) where X0 is a carrier of χ.

One may show that ∂f = f∂, which yields the fact that f maps infi-
nite, true, and homologous cycles in X to, respectively, infinite, true, and
homologous cycles in Y . It follows that f induces a homomorphism

f∗ : Hn(X) → Hn(Y ).

Having reviewed the most basic concepts 47.1 – 47.6 of Vietoris homology
theory, we turn to a short summary of the theory by quoting pages 346 and
347 of Hocking and Young [1988]. Our goal is to recall that we may calculate
the Vietoris homology groups of the 2-sphere by using the simplicial homology
theory on finite polytopes. (The reference numbers in the following quotation
match those of this book.)
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Vietoris homology theory. The Vietoris homology theory was
the first of the C̆ech-type homology theories to appear. It was
introduced by Vietoris [1927] and in this form applies only to
metric spaces. While this theory has been used in many research
papers, it has not been discussed so extensively as has the more
general C̆ech theory. Again, for the sake of brevity, we consider
only compact spaces in this presentation. . . .

Let M be a compact metric space, and let ε be a positive number.
We construct the simplicial complex Kε = {V , Σ}, where the
vertices in V are the points of M and where a finite subcollection
of vertices p0, . . . , pn forms an n-simplex in Σ if and only if the
diameter of the set ∪n

i=0{pi}[= max d(pi, pj)] is less than ε. It
is easy to prove that for each ε > 0, Kε is a simplicial complex
. . . Therefore, for each ε > 0 and each integer n ≥ 0, we may
construct the simplicial homology Hn(Kε) of Kε with integral
coefficients.

Given ε1 > ε2 > 0 it is evident that each simplex of Kε2 is also a
simplex of Kε1 and hence that there is an identity injection jε1ε2 of
Kε2 into Kε1 : This injection then induces a homomorphism ∗jε1ε2

of Hn(Kε2) into Hn(Kε1). Furthermore, if ε1 > ε2 > ε3 > 0, then
the induced homomorphisms satisfy the relation

∗jε1ε2∗jε2ε3 = ∗jε1ε3 .

Since the positive real numbers constitute a directed set, the col-
lection {Hn(Kε)} together with the injection-induced homomor-
phisms {∗jεδ} form an inverse limit system of groups and homo-
morphisms. The inverse limit group of this system is the nth
Vietoris homology group Vn(M).

Clearly the complexes Kε are much too large for convenient ma-
nipulation (they can certainly have a nondenumerable number of
simplexes and infinite dimension). The usual technique in using
Vietoris theory involves discussing the existence or, more often,
the nonexistence of certain essential (nonbounding) cycles. In this
way, one studies the connectivity properties of the space M with-
out becoming involved with the complexes Kε. It is known that
the Vietoris groups, the singular groups, and the C̆ech groups
coincide if the underlying space is sufficiently well-behaved. For
instance, all these coincide with the simplicial homology groups
on a finite polytope.

§48 The Vietoris Homology Group H2(S
2)

Since the Vietoris homology groups coincide with the simplicial homology
groups on a finite polytope, we may calculate the second Vietoris homology
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group of the 2-sphere S2 by viewing S2 as the finite polytope induced from
the 2-skeleton (the union of all dimension ≤ 2 simplexes) of a 3-simplex, and
then calculate the simplicial homology group H2(S2).

To calculate H2(S2) in the context of simplicial homology theory, we may
consult almost any book on algebraic topology. For example, in Munkres
[1984, §8], where a complex whose reduced homology vanishes in all dimen-
sions is said to be acyclic, and where H̃n(X) denotes the nth reduced homol-
ogy group of X , we find the following theorem.

48.1 Theorem (simplicial reduced homology groups of spheres) Let σ
be an n-simplex. The complex Kσ consisting of σ and its faces is acyclic.
If n > 0, let Σn−1 denote the complex whose polytope is the boundary of σ.
Orient σ. Then H̃n−1(Σn−1) is infinite cyclic and is generated by the chain
∂σ. Furthermore, H̃i(Σn−1) = 0 for i �= n − 1.

Using Munkres [1984, Theorem 7.2], which provides the exact relation
between the reduced simplicial homology group H̃0(K) and the nonreduced
group H0(K) for the complex K, we may compare the reduced homology
groups “H̃q(Sn)” of the n-sphere with those of the simplicial homology groups
“Hq(Sn).” The binary relation symbol “∼=” denotes group isomorphism:

n > 0 H̃q(Sn) ∼= 0 if q �= 0, n H̃0(Sn) ∼= 0, H̃n(Sn) ∼= Z,

n = 0 H̃q(S0) ∼= 0 if q �= 0, H̃0(S0) ∼= Z.

n > 0 Hq(Sn) ∼= 0 if q �= 0, n H0(Sn) ∼= Z, Hn(Sn) ∼= Z,
n = 0 Hq(S0) ∼= 0 if q �= 0, H0(S0) ∼= Z ⊕ Z.

It follows that the reduced homology sequence differs from the simplicial
homology sequence only at dimension zero. And H2(S2) ∼= Z because our
coefficient group is Z.

So the Vietoris homology group H2(S2) ∼= Z is certainly nontrivial, which
ensures that there exists a 2-dimensional true cycle γ that generates the Betti
group H2(S2).

§49 Borsuk’s Theorem

In this section, we show that the 2-sphere S2 is not topologically contained
in the Cartesian product of two one-dimensional spaces. The presentation
follows Borsuk [1975].

49.1 Lemma (Borsuk [1975]) Let each of the polyhedra C and D be of
dimension ≤ 1; let γ be a true 2-dimensional cycle that is a generator of
the Betti group H2(S2); and let f denote any continuous map S2 → C × D.
Then f(γ) ∼ 0 in C × D.
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Proof. Since f is continuous, we may assume that each of C and D are
connected. Further, since we are only considering homologous cycles in C×D,
we only need to consider the homotopy type of C and D. Thus we assume
that C and D are finite bouquets of circles, i.e.,

C = C1 ∪ · · · ∪ Cm, D = D1 ∪ · · · ∪ Dn

where each Ci and each Dj is a circle and there exist points c ∈ C and d ∈ D
such that

Ci ∩ Ci′ = {c} when i �= i′ Dj ∩ Dj′ = {d} when j �= j′.

Now let αi denote a 1-dimensional true cycle in Ci that generates H1(Ci)
and let βj denote a 1-dimensional true cycle in Dj that generates H1(Dj).
It is well known (by a special case of a theorem of Künneth, see Alexandroff
and Hopf [1935, page 308]) that the true 2-dimensional cycles αi × βj , where
i = 1, . . . , m and j = 1, . . . , n, generate the Betti group H2(C×D). It follows
that there exist integers kij such that

f(γ) ∼
∑
i,j

kij(αi × βj) in C × D.

Next, consider the retractions φi : C → Ci and ψj : D → Dj such that

φi(Ci′) = c for i �= i′ and ψj(Dj′ ) = d for j �= j′.

Define
rij(x, y) = (φi(x), ψj(y)) (x, y) ∈ C × D.

Then each rij : C × D → Ci × Dj is a retraction such that

rij(αi × βj) = αi × βj and rij(αi′ × βj′) ∼ 0 for (i, j) �= (i′j′).

It follows that for each pair (i0, j0), where 1 ≤ i0 ≤ m and 1 ≤ j0 ≤ n, we
have

ri0j0f(γ) ∼
∑
i,j

kijri0j0(αi × βj) ∼ ki0j0(αi0 × βj0).

But ri0j0f maps S2 into the surface Ci0 ×Dj0 , and it is well known that the
degree of such a map is zero. Hence ki0j0 = 0 and consequently f(γ) ∼ 0 in
C × D, which finishes the proof.

In his proof of Theorem 49.5, Borsuk uses the Menger sponge M , which
is universal for compact metric spaces of dimension ≤ 1.2

2For more background on M , and to view M as the attractor of an iterated function
system, see §50.
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Level-0 Level-1 Level-2

Fig. 49.2 Levels of approximation to fractal known as Menger’s Sponge.

In passing, we note that since the Menger sponge M is the intersection of
the nested sequence level-0 ⊃ level-1 ⊃ level-2 ⊃ · · · of approximations, we
have a sequence P0 ⊃ P1 ⊃ P2 ⊃ · · · of 1-dimensional polyhedra that may
be used to “approximate” M — for P0, consider the union of the edges of
the cube, for P1, the union of the edges of all the subcubes at level-1, · · · .
With this sequence of 1-dimensional polyhedra, we may “approximate M” in
the following sense: Using “||x − y||” to denote the usual distance between
x, y ∈ R

3, we see that for any ε > 0, an N > 0 exists such that for each
n > N , the polyhedron Pn satisfies “x ∈ M implies there exists y ∈ Pn such
that ||x − y|| < ε.”

In addition to Menger’s sponge M , Borsuk applies a few concepts con-
cerning continuous mappings: Recall that a continuous surjection f : Y → Y0

is a retraction (Borsuk [1967, page 10]) if f(y) = y for each y ∈ Y0. When a
retraction f : Y → Y0 exists, we shall say that Y0 is a retract of Y .

A closed subset Y0 of a space Y is a neighborhood retract in the space Y
(Borsuk [1967, page 14]) if there exists an open set U ⊃ Y0 in Y such that
Y0 is a retract of U . Moreover, if a compact metric space X has the property
that each homeomorphism X

h→ h(X) = Y0 ⊂ Y such that Y0 is closed in
Y produces a neighborhood retract Y0 in the space Y , then X is called an
absolute neighborhood retract (Borsuk [1967, page 100]), which we denote as
“X ∈ ANR.”

For a proof of the following lemma, see Kuratowski [1968, page 354].

49.3 Lemma Let X be a separable metric space. Then dim X ≤ n if and
only if for each closed F ⊂ X, each continuous mapping F → Sn has a
continuous extension X → Sn.

49.4 Corollary Let Z be a separable metric space where dim Z ≤ 2, and
let S ⊂ Z be homeomorphic to the 2-sphere S2. Then there is a retraction
s : Z → S.

Proof. Let F = S and consider the continuous identity map F → S. Since
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S2 is compact, F = S is closed in Z. An application of the previous lemma
shows that there is a continuous extension s : Z → S, which is the desired
retraction.

49.5 Theorem (Borsuk [1975]) The Cartesian product X × Y of any two
metric spaces X and Y where each of X and Y have dimension ≤ 1 does not
contain any subset S homeomorphic to the 2-sphere S2.

Proof. Suppose such an S ⊂ X × Y does exist. Setting

p(x, y) = x, q(x, y) = y for each (x, y) ∈ X × Y,

we get the two projections p : X × Y → X and q : X × Y → Y . Then X0 =
p(S) and Y0 = q(S) are continua of dimension ≤ 1 such that S ⊂ X0 × Y0.
Thus we may limit ourselves to the case where X and Y are continua. Since
every continuum of dimension ≤ 1 is contained in the universal curve M of
Menger [1926b], we may assume that X = Y = M . Now let us observe that
to every ε > 0 we may assign a retraction

rε : M → Aε

where Aε is a polyhedron and

ρ(x, rε(x)) < ε for every x ∈ M = X = Y.

Since dim(X × Y ) ≤ 2, Corollary 49.4 shows that there exists a retraction
s : X × Y → S. Letting, for each ε > 0,

fε(x, y) = (rε(x), rε(y)) (x, y) ∈ S

and
gε(x, y) = sfε(x, y) (x, y) ∈ S,

we obtain mappings fε : S → Aε × Aε and gε : S → S. It follows from
Lemma 49.1 that the true cycle γ generating H2(S) is mapped by fε onto a
true cycle homologous to zero in Aε × Aε. So gε(γ) ∼ 0 in S.

Now observe that for every η > 0 there is a positive number ε < η such
that

ρ(fε(x, y), sfε(x, y)) < η (x, y) ∈ S

because s is the identity on S and for ε sufficiently small and (x, y) ∈ S the
distance fε(x, y) from S is arbitrarily small.

It follows that

ρ((x, y), gε(x, y)) ≤ ρ((x, y), fε(x, y)) + ρ(fε(x, y), sfε(x, y)) < ε + η < 2η.

But S ∈ ANR and consequently for ε sufficiently small the map gε : S → S
is homotopic to the identity map iS : S → S. Hence gε(γ) ∼ γ in S, which
contradicts the relations gε(γ) ∼ 0 in S and γ �∼ 0 in S.
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§50 Comments

Borsuk’s Theorem (Theorem 49.5) was motivated not by the JA Imbedding
Theorem, but by an open problem cited by Nagata [1965, footnote on page
163]:

. . . it is an open problem whether every n-dimensional metric
space can be topologically imbedded in the topological product
of n one-dimensional metric spaces.

Nagata’s motivation for citing this open problem was natural because
of his proof (Nagata [1958]) that every n-dimensional metric space can be
topologically imbedded in the topological product of (n+1) one-dimensional
metric spaces.

Borsuk’s Theorem answered Nagata’s question in the negative — the 2-
sphere cannot be imbedded in any Cartesian product of two one-dimensional
spaces. Nevertheless, Borsuk’s result shows that the JA Imbedding Theorem
cannot be improved in the sense of reducing the index (n + 1).

In the proof of his theorem, Borsuk used the Menger sponge. From the
iterated function system (IFS) viewpoint, Menger’s sponge is the 3-space gen-
eralization of Sierpiński’s carpet in 2-space, which in turn is a generalization
of Cantor’s set in 1-space.

In detail, the Cantor set may be viewed as the attractor of the IFS {wy}
where y ∈ {0, 1} is on the boundary of the unit interval I and wy is the
1
3 -contraction of I toward y. Analogously, the Sierpiński carpet (Menger
sponge) is the attractor of the IFS {wy} where y lies in the boundary of the
unit square I2 (unit cube I3) and ranges over the eight points in {0, 1

2 , 1} ×
{0, 1

2 , 1} (the 20 points in {0, 1
2 , 1}3) that have at most one component equal

to 1
2 ; and each wy denotes the 1

3 -contraction of I2 (I3) toward y, i.e.,

wy(x) = y + 1
3 (x − y) = 1

3x + 2
3y.

Each of these three fractals, i.e., Cantor’s set, Sierpiński’s carpet, and
Menger’s sponge, are universal spaces for certain subclasses of separable met-
ric spaces: Cantor’s set is universal for zero-dimensional spaces. Sierpiński’s
carpet, as is shown in Sierpiński [1916], is universal for compact subspaces
of the plane that have an empty interior; and, as shown in Sierpiński [1922],
his “assumption of compactness” was not necessary. Menger’s sponge, as
is shown in Menger [1926a], is universal for the class of all compact metric
spaces of dimension ≤ 1. For additional comments concerning various “uni-
versal space” developments, see Engelking [1978, Section 1.11], especially his
“Historical and bibliographic notes” on his pages 128 and 129.

Nöbeling’s [1931] Classical Imbedding Theorem shows that if X is an n-
dimensional separable metric space, then X can be topologically imbedded
in the product I2n+1 of 2n + 1 copies of the one-dimensional unit interval I.

To address the “minimal-exponent question” for the Classical Imbedding
Theorem, consider a related theorem concerning polytopes (see Hocking and
Young [1988, page 215]).
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50.1 Theorem (imbedding n-dimensional polytopes in R

2n+1) Let |K| be
an n-dimensional polytope with a triangulation K. Then |K| may be imbedded
rectilinearly in R

2n+1.

In the polytope case, Flores [1934] showed that the complex consisting
of all faces of dimension ≤ n (the n-skeleton) of a 2n + 2-simplex cannot
be imbedded in R

2n. (For a proof of Flores’ result using the Borsuk-Ulam
Antipodal Theorem, i.e., for every continuous mapping g : Sn → R

n there
exists a point x ∈ Sn such that g(x) = g(−x), see Problem 1.11.F on page
132 of Engelking [1978].)

As an obvious corollary to Flores’ result, we see that the exponent 2n+1
of I2n+1 in the Classical Imbedding Theorem is minimal.

The n = 1 case is of interest in its own right: Flores’ [1934] result implies
that the 1-skeleton of the 4-simplex, which has five vertices, and is well known
in graph theory as the complete graph K5 on five points, cannot be imbedded
in the plane R

2n = R

2. (For a proof using the Jordan Curve Theorem, see
Example 1.11.8 on page 127 of Engelking [1978].)

Four years prior to Flores’ [1934] result, however, Kuratowski [1930]
showed that neither the complete graph K5 nor the complete bipartite graph
K3,3 can be imbedded in the plane. (Recall that the graph K3,3 has as its
vertex set a union of two disjoint size-three sets A and B whose size-nine edge
set consists of all 1-simplexes with one endpoint in A and the other in B.)
Any 1-dimensional metric space X , in particular any graph, that contains a
topological copy of either K5 or K3,3 cannot be imbedded in the plane. In
addition, however, Kuratowski [1930] also showed that a graph that cannot
be imbedded in the plane must contain a topological copy of either K5 or
K3,3. Today, these two graphs are often referred to as Kuratowski’s forbidden
graphs.
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K5 is a
level-0 4-web

K3,3 imbedded in
a level-1 4-web

Fig. 50.2 Imbedding Kuratowski’s Forbidden Graphs K3,3, K5 in J5.

From Figure 50.2, it is clear that Kuratowski’s forbidden graphs K5 and
K33 may be imbedded, respectively, in level-0 and level-1 4-webs.



CHAPTER 10

The J∞
A Imbedding Theorem

Every separable metric space may be imbedded in I∞, and those of dimension
≤ n may be imbedded in I2n+1. Moreover, every general (not necessarily
separable) weight |A| metric space may be imbedded in a countable product
S(A)∞ of star spaces S(A), and those of dimension ≤ n may be imbedded
in an n-dimensional subspace of S(A)∞. Finally, as was shown in Chapter 8,
every weight |A| ≥ ℵ0 metric space of dimension ≤ n may be imbedded in
Jn+1

A . The remaining question is, “Can every metric space of weight |A| be
imbedded in a countably infinite product J∞

A of copies of JA?”
In this chapter we show that J∞

A is indeed universal for the class of weight
|A| topological spaces that are metrizable. The proof shows how to view S(A)
as a subspace of JA. The presentation follows Lipscomb [1976].

§51 Imbedding Theorems

In this section we provide detailed statements of six imbedding theorems that
have appeared over approximately half a century — 1925 through 1976. Each
theorem specifies a universal space, and the theorems fall naturally into three
pairs. One member of each pair provides the description of a universal space
in the n-dimensional case, while the other member provides a universal space
for the general (not necessarily finite-dimensional) case.

As usual, “I” denotes the unit interval; “JA” the image of the perfect
mapping p : N(A) → JA (as detailed in Chapter 1); and “S(A)” the star
space (hedgehog with |A| prickles).

We shall use the “standard metric” of the star space S(A): A star space
is a metric space (S(A), d) where the set S(A) = ∪aIa is the star-shaped set
obtained by identifying the zeros of a disjoint union of |A| ≥ ℵ0 unit intervals
Ia (the ath arm), and the metric d is given by

(1) d(x, y) =
{

|x − y| if x and y belong to the same arm
|x + y| if x and y belong to distinct arms.

The introduction of star spaces, as well as the imbedding theorems that
use them as base spaces, predates the introduction of JA, and the chronology
is preserved in the following list — the three pairs of theorems given below
appear in chronological order.

51.1 Theorem (Urysohn [1925a]) A topological space of weight ℵ0 is metriz-
able if and only if it can be imbedded in I∞.

S.L. Lipscomb, Fractals and Universal Spaces in Dimension Theory,
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51.2 Theorem (Nöbeling [1931]) A topological space of weight ℵ0 is metriz-
able of dimension ≤ n if and only if it can be imbedded in the subspace of
I2n+1 whose tuples contain at most n rational coordinates.

51.3 Theorem (Kowalsky [1957]) A topological space of weight |A| ≥ ℵ0 is
metrizable if and only if it can be imbedded in S(A)∞.

51.4 Theorem (Nagata [1963]) A topological space of weight |A| ≥ ℵ0 is
metrizable of dimension ≤ n if and only if it can be imbedded in the subspace
of S(A)∞ whose tuples contain at most n nonvanishing rational coordinates.

51.5 Theorem (Lipscomb [1975]) A topological space of weight |A| ≥ ℵ0 is
metrizable of dimension ≤ n if and only if it can be imbedded in the subspace
of Jn+1

A whose tuples contain at most n rational coordinates.

51.6 Theorem (Lipscomb [1976]) A topological space of weight |A| ≥ ℵ0

is metrizable if and only if it can be imbedded in J∞
A .

§52 The Lemmas and Proof

From the hypothesis of Theorem 51.6, it is assumed throughout that A is an
infinite set. And since A is infinite, for z ∈ A fixed and A′ = A \ {z}, it is
clear that S(A) and S(A′) are homeomorphic.

So to prove Theorem 51.6, it suffices to prove that S(A′) may be imbedded
in JA. It then follows that S(A)∞ may be imbedded in J∞

A . Thus, the
necessary part of Theorem 51.6 follows from the necessary part of Kowalsky’s
Theorem 51.3. The sufficiency part of Theorem 51.6 follows easily from the
fact that a product of countably many metric spaces is metric. With these
observations, it only remains to prove that S(A′) =t X ⊂ JA.

To imbed S(A′) into JA, we shall use the following theorem (see A4.3).

52.1 Theorem Let p : F → X be surjective and quotient, f : F → S
continuous, and fp−1 : X → S single valued, i.e., f is constant on each fiber
p−1(x). Then fp−1 is continuous. Moreover, fp−1 is closed if and only if
f(H) is closed whenever H is a closed p-inverse set (H = p−1p(H)).

To apply Theorem 52.1, we begin by defining F ⊂ N(A): For α =
a1a2 · · · ∈ N(A), let C(α) = {ai : i = 1, 2, . . .} ⊂ A. We call the mem-
bers of C(α) the characters of α, and whenever C(α) is finite, we shall say
that α is of finite character. With this terminology, we define

(2) F = {α ∈ N(A) : |C(α)| = 1, or , |C(α)| = 2 and z ∈ C(α)}.

And if each F (a) = N({z, a}), we may show that F = ∪{F (a) : a ∈ A′}.
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N(A) ⊃ F X = p(F ) ⊂ JA

S(A′) = S

p

f fp−1

........................................................................................................................ ..............

................................................................................
.....
.........
.....

.................................................................................................................................................
...

..............

Fig. 52.2 Diagram underlying the imbedding of S(A′) into JA.

To define f : F → S = S(A′) as indicated in Figure 52.2, let χ be the
characteristic function of A′ defined on A, i.e., χ(a) = 1 if a ∈ A′, and
χ(a) = 0 if a = z. Then f : F → S(A′) = ∪a∈A′Ia is given by

(3) f(α) =
∞∑

i=1

χ(ai)/2i ∈ Ia α = a1a2 · · · ∈ F (a) for some a ∈ A′.

52.3 Lemma (f is continuous) Let f : F → S = S(A′) be the mapping
specified in (3). Then f is continuous.

Proof. Then given the topologies on F and S(A′), it suffices to show that
for any two points α = a1a2 · · · , β = b1b2 · · · ∈ F such that ai = bi for
i = 1, . . . , k we necessarily have d(f(α), f(β)) ≤ 1/2k−1. The proof of this
fact breaks into two cases: First, suppose there is an a ∈ A′ such that both
α, β ∈ F (a). Then from the definition (3) of f and the definition (1) of the
metric d, we see that

d(f(α), f(β)) =

∣∣∣∣∣
∞∑

i=1

χ(ai)/2i −
∞∑

i=1

χ(bi)/2i

∣∣∣∣∣ ≤
∞∑

i=k+1

1/2i = 1/2k < 1/2k−1.

Second, suppose there is no a ∈ A′ such that both α, β ∈ F (a). Then ai = bi

for 1 ≤ i ≤ k implies that these first k characters satisfy ai = z = bi, which
shows that the corresponding χ values satisfy χ(ai) = 0 = χ(bi). Thus,

d(f(α), f(β)) =
∞∑

i=k+1

χ(ai)/2i +
∞∑

i=k+1

χ(bi)/2i| ≤ 1/2k + 1/2k = 1/2k−1.

Therefore, from the first statement in this proof, we are finished.

52.4 Lemma Let H ⊂ S(A′), let “ 0” denote the “zero” in S(A′), and
suppose that either 0 �∈ H or 0 ∈ H. Then H ∩ Ia closed in Ia for each
a ∈ A′ implies H is closed in S(A′).

Proof. Suppose H is not closed in S(A′). Then x ∈ S(A′) exists such that
x ∈ H \ H . Since either 0 �∈ H or 0 ∈ H , it follows that x �= 0. Thus,
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x ∈ Ia \ {0} for some a ∈ A′. However, since Ia \ {0} is open in S(A′), we
see that if 0 �∈ H , then 0 �∈ H and

x ∈ cl (H ∩ (Ia \ {0})) = cl(H ∩ Ia) = H ∩ Ia

because H ∩ Ia is closed in Ia. Further, if 0 ∈ H , then

x ∈ cl (H ∩ (Ia \ {0})) ⊂ cl(H ∩ Ia) = H ∩ Ia

because (again) H ∩ Ia is closed in Ia. Thus x ∈ H if either 0 ∈ H or 0 ∈ H ,
which contradicts the definition of x.

52.5 Lemma Let z �∈ K ⊂ F where K is closed in F . Then f(z) �∈ f(K).

Proof. If K is closed and z �∈ K, then an m exists such that whenever α ∈ F
and ai = z for each i ≤ m, then α �∈ K. It follows, since {α : d(f(z), f(α) <
1/2m} is disjoint from K, that f(z) �∈ f(K).

52.6 Theorem (f is closed) The continuous f : F → S(A′) is also closed.

Proof. Let K be a closed subset of F . Then there are two cases: First,
suppose z �∈ K. Then since K ∩ F (a) is compact and f is continuous
(Lemma 52.3), f(K ∩ F (a)) = f(K) ∩ Ia is a compact subset of Ia for each
a ∈ A′. It follows that for H = f(K), we have H ∩ Ia closed in Ia for each
a ∈ A′. By Lemma 52.5, we have f(z) = 0 �∈ H = f(K), and then an appli-
cation of Lemma 52.4 shows that H = f(K) is closed in S(A′). So the case
z �∈ K is finished.

Second, suppose z ∈ K. Then f(z) = 0 ∈ H = f(K). Again, since
K ∩ F (a) is compact and f is continuous we see that f(K) is a compact
subset of Ia for each a ∈ A′. Then again H = f(K) is closed in S(A′)
because 0 ∈ H allows an application of Lemma 52.4.

52.7 Theorem (JA contains a star space S(A)) Let |A| ≥ ℵ0. Then the
star space S(A) can be imbedded in JA.

Proof. Since A is infinite, we may select and fix a point z ∈ A, define
A′ = A \ {z}, and obtain a homeomorphism S(A) → S(A′). Thus, it suffices
to show that S(A′) may be imbedded in JA. For the proof, we shall apply
Theorem 52.1 with the notation in the commutative diagram in Figure 52.2:
We use (2) to define F ⊂ N(A) and (3) to define f : F → S = S(A′). We also
let p : F → X = p(F ) ⊂ JA denote the restriction of the perfect (adjacent-
endpoint identification) mapping p : N(A) → JA. Then from Lemmas 52.3
and 52.6, we see, respectively, that f is continuous and closed. Turning to
the mapping p : F → X = p(F ), we note that F = p−1(p(F )), i.e., that
F is a p−1-inverse set. It follows, since p : N(A) → JA is closed, that p
restricted to an inverse set is also closed, and a fortiori quotient. Moreover,



§53 COMMENTS 111

since p : N(A) → JA is continuous, p restricted to F is continuous. It is also
clear that f is constant on each fiber p−1(x). Thus, fp−1 : p(F ) → S(A′)
is well defined and continuous. To see that fp−1 is also closed, we may
invoke the equivalence stated in the last sentence of Theorem 52.1 because,
by Lemma 52.6, f is closed.

§53 Comments

One should note that the six theorems (in §51) that span half a century
(1925–1976) of constructions of universal spaces may be, from a topological
viewpoint, unified. Indeed, the base spaces, i.e., the unit interval I, the
star space S(A), and the space JA are, respectively, topological copies of
N({0, 1})/∼, F/∼, and N(A)/∼. Said differently, the adjacent-endpoint
relation “∼”, as introduced in Lipscomb [1973], provides an “abstract method
for constructing quotient spaces” that yields I, S(A), and JA as examples.
(Recall that the relation “∼” appears in Definitions §2.1 of Chapter 1.)

The proof, as given in this chapter, of the J∞ Imbedding Theorem dodges
the need for constructing “decompositions of metrizable spaces” and ana-
logues of “ancestor maps” which were key to proving the Jn+1

A Imbedding
Theorem. And it is an open problem to obtain a proof that J∞

A is univer-
sal for metrizable spaces of weight |A| ≥ ℵ0 using such decompositions and
ancestor mappings.

In the finite-dimensional case, however, the decompositions of metrizable
spaces that are fundamental to the proof of the Jn+1

A Imbedding Theorem
were extended and modified in Ivanšić and Milutinović [2002] — for |A| = ℵ0

the base space JA in the Jn+1
A theorem may be replaced by J3, yielding a

Jn+1
3 Imbedding Theorem for separable metric spaces.

One very nice aspect of J3 serving as both a fractal and a base space for a
universal space in dimension theory is that of visualization. The same can be
said for the unit interval — it is certainly easy to visualize, and even though
it is not a fractal, it is the attractor of the F1 IFS.

In the J3 case, its most popular representation is the Sierpiński triangle.
And J4 has appeared in textbooks on fractals as the Sierpiński cheese. That
brings us to J5, the 4-web. In our attempts to visualize the 4-web, we have
already presented several approximations (Chapter 2). All of those approxi-
mating representations, however, do not expose J5 as one-dimensional.

In Figure 53.1, the one-dimensional aspect is exposed. The representation
is a level-6 J5. It has 56 × 10 = 156,250 “organized segments,” each a cylin-
drical representation of the unit interval. And for 0 ≤ i ≤ 5, the segments
(pictured as cylinders) at level-i have a larger diameter than those that first
appear at level-(i + 1). So at the scale of the figure, the “forming clouds-
of-segments at level-6” grow darker at level-7 (with 781,250 segments), still
darker at level-8, . . . .
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Fig. 53.1 Chris Dupilka’s graphic representation of J5.



CHAPTER 11

1992–2007 JA-Related Research

The introduction of JA (Chapter 1) and the first proof of the Jn+1
A Imbed-

ding Theorem (Chapters 7 and 8) appeared during the first five years of the
1970s. Moreover, it was 1975 when, independently, both the Jn+1

A Imbed-
ding Theorem and the term “fractal” first appeared in the literature. Slightly
more than a decade later, following Hutchinson [1981] and Barnsley’s [1988]
popular book Fractals Everywhere, the notions of fractal, attractor, IFS, and
Hutchinson operator became well known.

In this chapter we consider the emergence (over the 15 years 1992–2007)
of mathematics that relates either directly or indirectly to JA.

§54 Key Publications

From Cantor [1883b] to Miculescu and Mihail [2008],1 certain publications
have served to merge the mathematics of fractals and universal spaces as
they relate to JA. In this section, we begin with an overview of only a few
— mainly those that directly relate to JA and also contain new mathematics
that has not previously appeared in any book.

54.1 Independently, Milutinović [1992][1993], and, Lipscomb and Perry [1992]
imbedded JA in l2(A) (generalized Hilbert space). Both approaches were
centered around infinite IFSs, and Milutinović [1992] is discussed at length
in this chapter.

54.2 Milutinović [1992] extended the adjacent-endpoint relation (defined on
the infinite product ×∞

1 Ai where each Ai = A) to finite products ×n
1Ai.

He then used his (finite-product) “adjacency relation” to index the decom-
positions Wij provided by the Decomposition Theorem 39.1, subsequently
obtaining the second proof of the JA Imbedding Theorem. In this chapter,
the second proof is compared with the original.

54.3 Klavžar and Milutinović [1997] used the adjacency relation to introduce
a new class of graphs that this author calls Klavžar-Milutinović graphs. These
graphs represent a variant of the classical “Tower of Hanoi” problem.

54.4 Perry [1996] was the first to attempt to view JA entirely within fractal
theory — as a fixed point of an appropriate Hutchinson operator. While
he was unable to show that JA was such a fixed point, he did introduce
an attractor ωA

c of an infinite IFS (a fixed point of a Hutchinson operator).
Perry’s space ωA

c was obtained by modifying the topology of JA. In addition,

1Miculescu and Mihail’s [2008] article was published in 2008, but was posted in 2007.
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Perry’s [1996] research set the stage for Miculescu and Mihail [2008], who
showed that JA is a fixed point of a Hutchinson operator. (Miculescu and
Mihail’s work is detailed in Chapter 5. For Perry’s space ωA

c see §31.)

54.5 Perry and Lipscomb [2003] showed that J5, viewed as a subspace of the
4-simplex Δ4 in 4-space, could be moved, via an isotopy that preserves fractal
dimension, into 3-space. That is, we can see J5. (Graphical approximations
to J5 appear in §7 and §10. The isotopy that moves J5 into 3-space —
graphically approximated in the color plates — is the topic of Chapter 12.)

54.6 Lipscomb [2005][2007] considers the problem that is inverse to con-
structing fractals: For fractals, we start with a manifold and then recursively
cut (via an IFS) holes in the manifold. The inverse problem assumes that an
IFS of a fractal is given. The problem is to extend the IFS to one that has
the manifold as its attractor. The [2005] article extends the 2-web ω2 =t J3

IFS to a 2-simplex IFS, and the [2007] article extends the 3-web ω3 =t J4

IFS to a 3-simplex IFS (Chapters 13 and 14).

54.7 From 2002 to 2007 Ivanšić and Milutinović, and, Milutinović working
alone produced a plethora of new JA-related publications (§60). In their
joint [2002] article we find the Jn+1

3 Imbedding Theorem, i.e., the subspace of
tuples in Jn+1

3 with at most n rational coordinates is universal for the class
of n-dimensional separable metric spaces.

§55 Chronological and Historical Context

Figure 55.1 provides context for the merging of fractals and universal spaces
as they relate to JA. The acronyms translate as follows:

B = Bing K = Kowalsky N = Nagata

Ba = Barnsley Ka = Katětov Nö = Nöbeling

C = Cantor Kl = Klavžar Os = Ostrand

D = Dowker l2(A) = gen. Hilbert space P = Perry

DT = Decomposition Theorem L = Lipscomb Pa = Parisse

E = Engelking Le = Lefschetz Pe = Pears

F = Falconer M = Milutinović Petr= Petr

H = Hutchinson MA = Milutinović’s space Po = Pontryagin

Hi = Hinz Ma = Mandelbrot S = Stone

Hu = Hurewicz Me = Menger Smi = Smirnov

I = Ivanšić Mi = Miculescu T = Tolstowa

IT = Imbedding Theorem Mih = Mihail US = universal space

IFS = Iterated Function System Mo = Morita W = Wallman

In addition, within Figure 55.1 a line segment indicates that the publication
at the top endpoint depends on, or is related to, the one at the bottom.
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1875/83 ◦Cantor’s set
Sm[1875],C[1883a]

◦
C[1883b](C→I)

1916 ◦Carpet,US
S[1916]

1925/26 ◦ I∞ US,
Urysohn[1925a]

◦Sponge, US
Me[1926a]

1931 ◦ I2n+1 IT
Le[1931], Po&T[1931], Hu[1931]

◦ I2n+1(n) US,
Nö[1931]

Use of function spaces and Baire Category
Theorem (Category Method) Hu[1931]

1947/48 ◦ l2(A), US
D[1947]

◦Covers
S[1948]

◦Book
Hu&W[1948]

1950/51 ◦Metrization Theorems
N[1950],B[1951],Smi[1951]

1952/54 ◦Dimension Theory for
general metric spaces
Ka[1952],Mo[1954]

1955/57 ◦ S(A)∞ US K[1957] ◦Mo[1955]
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.

1960/63 ◦Fn(Ω) US
N[1960]

◦ S(A)∞n US N[1963]

1965/67 ◦Dimension Theory
N[1965](Book) N[1967](Survey) ◦....

........

........

........

........

........

........

........

........

........

........

........

........

..

1971 ◦Covering Dimension, Os[1971] ...............
...............

...............
...............

...........1973 ◦ J2
A(1) US, L[1973]

1975 ◦Dimension
Theory: Pe[1975]

◦Borsuk[1975] ◦ Jn+1
A (n) US, L[1975] ◦Fractals

Ma[1975]

.........
.........
.........
..........
.........
.........
.........
..........
.........
.........
.........
.........
..........
.........
.........
.........
..........
.........
.........
.........
..........
.........
........

..........
...........

..........
...........

..........
...........

...........
..........
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..........

...........
...........

..........
...........

..........
...........

...........
..........

...........
..........

...........
...........

..........
...........

..........
...........

...........
..........

...........
.

1976 ◦ J∞
A US, L[1976]

1978/81 ◦Dimension
Theory: E[1978]

◦Fractals
Self-similarity H[1981]

1983/85/88 ◦ Fractals: Ma[1983],
F[1985],Ba[1988]

..............
..............
..............
..............
.............
..............
..............
..............
..............
..............
............

1992 ◦ JA =t ωA⊂l2(A) L&P[1992]
◦ JA =t MA⊂l2(A); MA complete M[1992]

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.....

1996 ◦Perry’s ωA
c attractor of ∞-IFS, ωA complete P[1996]

1997/2002 ◦Kl-M Graphs, Kl&M[1997]; Kl&M&Petr[2002]

2002–2006 ◦ Imbeddings in JA and Jn+1
A (n), I&M[2003][2005], M[2006]

◦ J5 in 3-space, P&L[2003]; J3 IFS to Δ2 IFS, L[2005]

◦Graph Theory: Hi&Kl&M&Pa&Petr[2005]; Kl&Mohar[2005]

◦ Jn+1
3 (n) US, I&M[2002]

2007 ◦ JA as an attractor of infinite IFS, Mi&Mih[2008];
◦ J4 IFS to Δ3 IFS, L[2007]; ◦ Closed Imbeddings I&M[2007]

Fig. 55.1 References that provide context for JA-related research.

For instance, Cantor’s 1983 identification of adjacent endpoints C → I, a
mapping from his set C onto the unit interval I, was fundamental motivation
for this author’s introduction of “adjacent endpoints” in N(A), the goal being
the construction of a one-dimensional analogue of the unit interval.
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§56 Early History of JA and MA

To view JA as a subspace of l2(A), Milutinović [1992] extended Sierpiński’s
original 2-space construction of Sierpiński’s triangle to generalized Hilbert
space l2(A). The result of the extension was the construction of a subspace
MA of the standard simplex ΔA in l2(A).

He then showed that MA is homeomorphic to JA. His approach general-
izes the fact that M3, the Sierpiński triangle, and J3 are homeomorphic.

In particular, for A = {0, 1, 2} the homeomorphism χ : J3 → M3 is
diagramed below, where, for each member wai of the iterated function sys-
tem WA, the mapping q(a1a2 · · · ) = ∩∞

1 wa1 ◦ · · · ◦ wan(Δ2), the map p :
N({0, 1, 2}) → J3 is the natural mapping, and χ(p(a1a2 · · · )) = ∩∞

1 wa1 ◦· · ·◦
wan(Δ2).2

N({0, 1, 2})

J3 M3

p q
.................................................................................................................................................

.........
................

...

................................................................................................................................................
...

..........
.........

....................................................................................................................................................................................................................... ...................
χ

Milutinović’s view of MA was within dimension theory — he neither men-
tioned nor considered the mathematics required to solve the open (1992–2007)
problem of showing that MA is a fixed point of an appropriate Hutchinson
operator. Nevertheless, guided by Sierpiński’s [1915] recursive construction
of the Sierpiński triangle, in 1992 Milutinović used the infinite IFS WA to
define his space MA.3

Similarly, Lipscomb’s [1973] introduction and view of JA was within
dimension theory. At that time, he was unaware of Sierpiński’s triangle.
Working within topology, he was motivated by Nagata’s [1967] quote (§4.3),
Morita’s [1955] Theorem (Theorem 1.6), and Cantor’s classical identification
of adjacent endpoints mapping C → I. (For Cantor’s classical work with
references, see §4.3.)

Prior to 1973, following his formulation of the adjacent-endpoint relation
in Baire spaces N(A) for arbitrary non-empty A, Lipscomb was obviously
very curious about geometric representations of the quotient spaces Jn for
finite n. Beginning with J3, a homeomorph of Sierpiński’s triangle, Lipscomb
deduced the J3 structure by using various (topological) views of the classical
Cantor mapping C → I as indicated below:

The identification of adjacent endpoints in Cantor’s space yields

2The corresponding general diagram (for |A| ≥ 1) appears in Milutinović [1992]. For
the corresponding “fractal diagram” (for A = {0, 1, 2}) where M3 is replaced by its home-
omorph ω2 (i.e., the attractor ω2 of the IFS F2), and q is replaced with the corresponding
address map φ, see Theorem 8.5.

3For Sierpiński’s construction see §21; for the construction of ΔA see Appendix 2; and
for the definitions of the Milutinović space MA and the infinite IFS WA see §22.
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the unit interval I, i.e.,

I =t C/∼ =t N({0, 1})/∼ = J2.

The next problem? Find a geometrical representation of J3. Lip-
scomb obtained the solution as follows: Since a representation
of J2 is a line segment [u0, u1] with endpoints u0 and u1, for J3

consider using three points u0, u1, and u2 in the plane that are
vertices of a triangle,

[ui, uj] =t N({i, j})/∼ = J2, |{i, j}| = 2 and {i, j} ⊂ {0, 1, 2}.

So the edges of the triangle are obtained by identifying adja-
cent endpoints of character two — a1a2 · · · ∈ N({0, 1, 2}) has
character two if it is a nonconstant sequence in one of the sets
{0, 1}, {0, 2}, or {1, 2}. The next problem? Find a geometrical
structure that corresponds to identifying adjacent endpoints in
{i}×N({j, k}) where {i, j, k} = {0, 1, 2}. It is straightforward to
show that the substructure consists of the geometric line segments
(without endpoints) that connect the midpoints of the edges of
the triangle [u0, u1, u2]. And so on ad infinitum.

In fact, it was not until the 1980s, during a Michael Barnsley presentation
on fractals, that this author became aware of the classical Sierpiński triangle
— Professor Barnsley suddenly showed a slide of (an approximation to) the
Sierpiński triangle. After the lecture, this author asked Barnsley if he had
heard of the space JA used in the theory of universal spaces in dimension
theory. As I now recall, Barnsley’s response was that he had not heard of
the space JA.

§57 Adjacency Relation

The adjacent-endpoint relation “∼” (Definitions 2.1) is defined on the Baire
space N(A) whose underlying set is the countably infinite product set ×∞

1 Ai

where each Ai = A. It is therefore natural to consider finite-product sets
An = ×n

1Ai and an analogous “adjacency relation,” which we shall also
denote as “∼”.

57.1 Definition (Milutinović [1992]) (adjacency relation ∼ ⊂ An × An)

Let |A| ≥ 1, let n be a positive integer, and let An = ×n
1Ai where each

Ai = A. Then for points a = a1 · · · an and b = b1 · · · bn in An, we may
write “a ∼ b” if either a = b, or, for distinct members x �= y of A, we have
a = a1 · · · at−1xyy · · · y and b = a1 · · · at−1yxx · · ·x. If distinct a and b satisfy
a ∼ b, then the unique index t ≥ 1 is called the tail index of a and b. The
relation ∼ ⊂ An × An given by “a ∼ b” is called the adjacency relation, and
whenever “a ∼ b” we may say that a is adjacent to b.
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57.2 Theorem Let n ≥ 1, let |A| ≥ 1, and let An = ×n
1Ai where each

Ai = A. Then the adjacency relation ∼ is an equivalence relation on An with
the property that each equivalence class contains at most two members. In
addition, the only points in An that occupy singleton equivalence classes are
the constant points, i.e., the length n strings a = a1 · · · an of members of A
such that a1 = · · · = an.

Proof. One may essentially copy the proof of Theorem 2.2. The only new
aspect is the claim that only the constant points occupy singleton equivalence
classes. But this follows because if a ∼ b where a is a constant, then distinct
x, y ∈ A cannot exist such that a = a1 · · · at−1xyy · · · y. Thus a = b.

§58 Indexing the Decompositions

For an n-dimensional metric space X of weight |A| ≥ ℵ0, the decompositions
of concern are the Wij = {Wa : a ∈ A}, i ≥ 1, 1 ≤ j ≤ n + 1, whose
existence and properties are specified by the Decomposition Theorem 39.1.
In this section we provide an example of the first two steps (i = 1, 2) of
Milutinović’s [1992, §5] indexing scheme.

To demonstrate the basics, we shall use the decompositions Wij , i, j ∈
{1, 2} described in Example 39.8 and illustrated in Figures 39.6 and 39.7. For
i = 1, 2, these four decompositions are decompositions of the unit interval
and they satisfy all of the properties listed in the Decomposition Theorem.

First two steps in indexing scheme (Milutinović [1992, §5]) Select
a partition of A = ∪ijAij where each |Aij | = |A| and well order each Aij .
Then

(1) let W1j = {Wa : a ∈ A1j} = {W[a] : [a] ∈ A1j/∼};

(2α) if W ∈ W2j satisfies W∩ Bdry W1j �= ∅,
then for the unique distinct pair Wa, Wb ∈ W1j that meet W ,
let W[ab] = W where [ab] = {ab, ba} ∈ (A1j ∪ A2j)2/∼; or

(2β) if W ∈ W2j satisfies W∩ Bdry W1j = ∅,
then for the unique Wa such that W ⊂ Wa ∈ W1j , select (the
smallest non-previously selected) b ∈ A2j and let Wab = W .

The following example uses only finite index sets. For the transition to
the infinite case and the recursive construction that yields an indexing for
each i = 1, 2, . . ., see Milutinović [1992].

58.1 Example. For index sets, consider the following finite sets with their
natural orderings:

A11 = {a, b, c}, A12 = {d, e},
A21 = {g, h, i, j, k, l}, A22 = {m, n, o, p}.
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Let W11, W12, W21, and W22 be the decompositions defined in Example 39.8.
So W11 has three members, and we index W11 = {Wa, Wb, Wc} as illustrated
at the top of Figure 58.2. Next, W12 has two members that we index as Wd

and We as illustrated at the top of Figure 58.3.

Wa Wb Wc
W11 ◦

x1 ◦
x20 1

◦
Wag ◦ ◦

Wbj Wcl◦U1
1

◦ ◦
W[ab]

◦ ◦
W[bc]

U2
1

◦ ◦
Wah

◦ ◦ ◦ ◦ ◦ ◦
Wck

U3
1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦W21

..
.....

....................................................
...
.Wbi

Fig. 58.2 Indexing the members of Wij for j = 1.

For the i = 2 cases, note that the graphics in Figure 58.2 immediately
below W11 display nine segments, two of which are interior to a dotted ellipse.
The ellipse is used to indicate that the union of those two segments forms
one member of W21 = ∪3

1Uk
1 . So |W21| = 8. Thus, applying (2α) and (2β),

we have

W21 = ∪3
1Uk

1 = {Wag, Wah, W[ab], Wbi, Wbj , W[bc], Wck, Wcl},

which is illustrated (within the unit interval) at the bottom of Figure 58.2.
Finally, turning to W22, we begin with the graphics in Figure 58.3 where

W12 is indexed with the members of A12 = {d, e}, namely W12 = {Wd, We}.
At first blush, since the graphic shows the unit interval as three segments,
one might think that three indices are required. However, the construction
of W12 is graphically illustrated in Figure 39.3, where we see that

W12 = {[0, y1) ∪ (y2, 1], (y1, y2)},

so we may define Wd = [0, y1) ∪ (y2, 1] and We = (y1, y2).
The construction of W22 = ∪3

1Uk
2 is graphically illustrated in Figure 39.5.

The decomposition W22 is also illustrated in Figure 39.7, where the “dotted
ellipses” appear. Further, detailed observations concerning W22 are provided
in Example 39.8. With this background, the indexing scheme applied to W22

is given by

W22 = {Wdm, W[de], Wen, Weo, Wep},

where the sets are illustrated in Figure 58.3.
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Wd We Wd

W12 ◦
y1 ◦

y2

◦ ◦
Weo

◦ ◦
Wep

U1
2

◦ ◦ W[de] ◦ ◦U2
2

Wdm
◦ ◦ ◦ Wen ◦ ◦ ◦ ◦ ◦

Wdm
U3

2

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦W22

.....
.................

................................................................................................................................................................
.........

.

....
.............

........................................................................................................................................................................................
...........

..

....
..................

......................
......................
....

..................

..................

.....
.............

..................

.....
.............

Fig. 58.3 Indexing the members of Wij for j = 2.

That is, Wdm is the union of the two segments in U3
2 that contain the points

“0” and “1”, and Wen is the other member of U3
2 . The set W[de] is the

lone member of U2
2 . And Weo and Wep are the two members of U1

2 . These
indexings of the Wij for i, j ∈ {1, 2} complete the example of Milutinović’s
indexing scheme.

In passing, note that in this section we are only attempting to provide an
intuitive understanding behind some of the key concepts presented in Miluti-
nović [1992]. The nuances that concern various modifications or extensions
of the decompositions Wij , the notations used to intuitively describe the
families Uk

j , k = 1, 2, 3, and the detailed proofs are not addressed here.
For example, to complete the indexing scheme, Milutinović [1992] lists

seven properties satisfied by the (1), (2α), and (2β) indexing. He then uses
induction on i = 1, 2, . . . to prove the existence of an indexing of the Wij that
satisfies the seven properties.

§59 Proofs of the Jn+1
A Imbedding Theorem

In this section we provide an overview that compares and contrasts the ap-
proaches of Milutinović [1992] and Lipscomb [1975] to proving the Jn+1

A

Imbedding Theorem.
From the beginning, as detailed in §56 “Early History of JA and MA,”

the spaces JA and MA were introduced for two distinct reasons — the for-
mer as a one-dimensional generalization of the unit interval, the latter as a
generalization of Sierpiński’s triangle.

As for proving the Jn+1
A Imbedding Theorem, however, both approaches

apply the Decomposition Lemma 38.9 at the inductive step in a construction
that yields an ℵ0 × (n + 1) matrix [Wij ] of decompositions.

59.1 Lipscomb’s Approach. Lipscomb indexed the decompositions as in
§42, namely Wij = {Wa : a ∈ Aij} where ∪Aij is a partition of A such that
each |Aij | = |A|. With this (nonspecial) indexing, Lipscomb focused on the
ℵ0 × (n + 1) matrices [αij ] where Wαij ∈ Wij . That is, since the indexing of
the members of the decompositions is rather arbitrary, each matrix α = [αij ],
which is naturally a point in N(A)n+1, may or may not be of interest — it
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is of interest if ∩ijWαij �= ∅. The points α ∈ N(A)n+1 of interest define a
set Z ⊂ N(A), which is given in Definition 42.1, i.e.,

α ∈ Z ⊂ N(A)n+1 if and only if {xα} = ∩{Wαij : i ≥ 1; 1 ≤ j ≤ n + 1}.

The problem with Z is that it may happen that for distinct α, β ∈ Z we have
xα = xβ where corresponding columns αj and βj are not adjacent-endpoint
related. In other words, Lipscomb does not consider the adjacent-endpoint
indexing at the point in the proof where the non-empty ∩ijWαij are first con-
sidered, i.e., when Z is defined. Then after Z is defined, Lipscomb addresses
the “adjacent-endpoint indexing” by introducing the ancestor map h given
in Definition 43.2 — the homeomorphism h : Z → h(Z) ⊂ N(A)n+1 essen-
tially shows that the adjacent-endpoint relation is encoded in the members of
Z such that, whenever xα = xβ , the columns h(α)j and h(β)j are adjacent-
endpoint related. In short, in the Lipscomb approach, the “adjacent-endpoint
indexing” is addressed only in the final phase of constructing the imbedding,
i.e., the adjacent-endpoint indexing may be viewed as the last piece of the
puzzle.

59.2 Milutinović’s Approach. Similarly, for the given n-dimensional
weight A metric space X , Milutinović begins with applications of the De-
composition Lemma 38.9 to define an ℵ0 × (n + 1) matrix of decompositions
Wij . Then he applies his indexing scheme (the initial steps illustrated in Ex-
ample 58.1), which is tantamount to the construction of Lipscomb’s mapping
f = q ◦ h−1 where h is the “ancestor map” and q the “decomposition map-
ping.” (see Figure 41.1). That is, instead of creating something equivalent to
q in the first step and then something equivalent to h in the second step, he
presents an indexing scheme that dodges the need for the separate steps of
constructing the “q” and “h” maps. Nevertheless, his indexing scheme also
requires proofs for its construction and its properties. The observation here
is that in contrasting the Lipscomb and Milutinović approaches, the major
distinction occurs in the indexing schemes, and in both cases the proofs are
rather technical.

For more details about Milutinović’s approach, consider that he merges
his two kinds of indices — those with brackets “[a1 · · ·ai]” and those without
brackets “a1 · · · ai.” To use only bracketed strings, he adopts the dodge of
saying that those indices that have brackets have both members legitimate
— the “brackets” tell us that he is concerned with the finite adjacency re-
lation. Otherwise, for an index “a1 · · ·ai” the class [a1 · · · ai] may contain
another member b1 · · · bi ∼ a1 · · · ai which he calls illegitimate. He is care-
ful to precisely keep track of his convention, and he describes several of its
attributes.

Once the indexing scheme is fully understood and its properties detailed,
for a fixed j ∈ {1, . . . , n + 1} he uses the j superscript to indicate that he is
only considering families from the jth column of the ℵ0 × (n + 1) matrix of
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decompositions. He then specifies the function φj : X → MA =t JA by

x ∈ ∩∞
1 W

j

[a1···ai] implies φj(x) = [a1a2 · · · ] = p(a1a2 · · · )

where p : N(A) → JA is the natural mapping, and, most importantly (to
quote Milutinović [1992]):

. . . with the left-side indices chosen in a coherent way, i.e., in such
a way that the representatives of shorter ones are always initial
segments of the representatives of longer ones.

He then proves that

φ = (φ1, . . . , φn+1) : X → Jn+1
A

is an imbedding.

§60 Ivanšić and Milutinović Theorems

In this section, we state and briefly discuss some of the main JA-related
theorems that were introduced by Ivanšić and Milutinović.

Ivanšić and Milutinović [2002] construct an ℵ0× (n+1) matrix of decom-
positions V∗

ij . These decompositions are related to, but distinct from, the Wij

used in Milutinović [1992]. They obtain the V∗
ij decompositions by modifying

other decompositions, which they overview as follows (with substitutions of
mathematical notation and references used in this text):

For a given metrizable separable space X of dimension ≤ n, we
shall construct n + 1 sequences of decompositions V∗

ij , i≥1, j=

1,...,n+1, of special type. These sequences of decompositions will
mimic the behavior of finer and finer triangles in the Sierpiński
curve — see Example 2 — then we shall use an indexing of their
elements in order to describe an embedding of X into Jn+1

3 (n).
That indexing will be a generalization of the standard coding of
points in the Sierpiński curve MA.

They construct the V∗
ij by modifying corresponding decompositions “Vij .”

The Vij are constructed inductively (with respect to the index i = 1, 2 . . .)
using the Decomposition Lemma 38.9 at the inductive step:

V(i−1)j
Lemma 38.9−→ Wij −→ Vij .

The technicalities are rather extensive (there are 14 properties that the de-
sired decompositions must satisfy, and there are also four properties that the
indexing satisfies); the result is impressive.

60.1 Theorem (Ivanšić and Milutinović [2002]) Let n ≥ 0, and let Jn+1
3 (n)

denote the subspace of (n+1)-tuples in Jn+1
3 that have at most n rational co-

ordinates. Then Jn+1
3 (n) is universal for the class of separable metric spaces

of dimension n.
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Thus in the separable case, the classical fractal known as Sierpiński’s tri-
angle is the base space for a universal space.

For the next result, we consider the question of relative imbeddings, “If
X0 is a closed subspace of X , and f0 : X0 → Y is an imbedding of X0, then
is there an extension f : X → Y of f0 that is an imbedding of X?”

With respect to

JA(0) = J1
A(0) = {x ∈ JA : x has at most zero rational coordinates}

= {x ∈ JA : x is irrational},

we have the following theorem.

60.2 Theorem (Ivanšić and Milutinović [2003]) Let dim X = 0 where X
is a metric space of weight |A| ≥ ℵ0. Let X0 be a compact subspace of X.
Then any imbedding f0 : X0 → JA(0) of X0 has an extension f : X → JA(0)
that is an imbedding of X.

Ivanšić and Milutinović [2003] pose the following open problem:

For X0 ⊂ X and f0 : X0 → JA(0), find other conditions on
X0, and perhaps on f0(X0), that guarantee the existence of an
embedding f : X → JA(0) of X that extends f0.

They show that “compact subspace of X” in Theorem 60.2 cannot be
replaced with “closed subspace of X .” In particular, let X0 = JA(0) and let
X ′

0 be a singleton set with trivial topology. Then consider X = X0 ∨ X ′
0

as the disjoint union of X0 and X ′
0, observe that X0 = JA(0) ⊂ X , and let

f0 : X0 → JA(0) be the identity mapping.

For the next result, we consider the case where X is now n-dimensional
but the subspace X0 is only finite and the co-domain Y = Jn+1

A (n).

60.3 Theorem (Finitely Pointed Imbedding Theorem) (Ivanšić and Mi-

lutinović [2005]) Let X be an n-dimensional metric space of weight |A| ≥ ℵ0,
and let X0 ⊂ X be finite. Then any imbedding f0 : X0 → Jn+1

A (n) of X0 has
an extension f : X → Jn+1

A (n) that is an imbedding of X.

And from Theorem 60.3, we have the following obvious corollary:

60.4 Corollary Let |A| ≥ ℵ0 and let y0 ∈ Jn+1
A (n). Then the pointed space

(Jn+1
A (n), y0) is a universal object in the category of pointed metrizable spaces

of dimension ≤ n and weight |A|.

In discussing their approach to the proof of their Finitely Pointed Imbed-
ding Theorem, Ivanšić and Milutinović state the following (with substitutions
of mathematical notation and references used in this text):

This general strategy consists of constructing certain finer and
finer sequences of decompositions and then indexing them in such
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a way that the mappings defined by

x �→ [a1 · · · akxyy · · · ] = [a1 · · · akyxx · · · ]

(when x belongs to the boundaries of the sets indexed by the ini-
tial segments of the sequences a1· · ·akxyy· · · and a1· · ·akyxx· · ·)
or

x �→ [a1 · · · ak · · · ]

(when x belongs to the sets indexed by the initial segments of the
sequence a1 · · ·ak · · · and belongs to no boundary of elements of
the decompositions) will be the n + 1 coordinate functions of an
embedding into Mn+1

A . This means that one may interpret the
indexing of the decompositions as a sort of coordinatization of
the space that mimics the coordinates of Mn+1

A .

For the next result, we consider the density of the set of imbeddings into
Jn+1

A . In this case, there is a classical counterpart, “the density of the set of
imbeddings into R

2n+1” in the n-dimensional separable metric theory.4

At the beginning of Milutinović [2006], we find the following (with sub-
stitutions for mathematical notation and references used in this text):

Results on density of the set of embeddings in the space of maps
abound in topology. Recall the classic results on Nöbeling and
Menger spaces (Engelking [1978], Hurewicz and Wallman [1948],
Nagata [1983]). Most of the proofs in the literature are based on
the Baire category theorem. Because of the topological complete-
ness of Lipscomb’s space (Milutinović [1992], Perry [1996]), it is
possible to prove analogous results for Lipscomb’s space using the
same approach.

Our proof is different. It is based on geometric properties of MA

(which is homeomorphic to Lipscomb’s space). It is done in such
a way that a similar geometric structure is imposed on any metric
space of appropriate dimension and weight (via certain sequences
of decompositions of the space), thus obtaining a more explicit
and graphic description of the approximation.

In the following theorem, JA is identified with MA, which has the metric
“d” inherited from the generalized Hilbert space l2(A) that contains MA.
Thus, we may assume that Jn+1

A is equipped with the metric

d(x, y) = max {d(xj , yj) : j = 1, 2, . . . , n + 1}.
4See Figure 55.1 where Hurewicz [1931], Hurewicz and Wallman [1948], and the “Cat-

egory Method” are listed. The method involves applications of function spaces and the
Baire Category Theorem.
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60.5 Theorem (Milutinović [2006]) Let X be an n-dimensional metrizable
space of weight ≤ |A|. Let f : X → Jn+1

A be a continuous mapping and let ε be
a positive number. Then there exists an embedding ψ : X → Jn+1

A (n) ⊂ Jn+1
A

such that d(f, ψ) ≤ ε.

For Ivanšić and Milutinović’s most recent result, we consider closed imbed-
dings. The topic and corresponding theorem are introduced by Ivanšić and
Milutinović in their 2007 article (with substitutions of mathematical notation
and references used in this text):

If a topological space is embedded into a topologically complete
metrizable space (i.e., into a space that can be endowed by a
complete metric) as a closed subset, it must be topologically
complete metrizable itself. On the other hand, if a topologi-
cally complete metrizable space is embedded into another such
space, the embedding need not be closed (embedding R as an
open interval in itself, or N as {1/m : m ∈ N} into R, are
easy examples for this claim). The problem of the existence of
closed embeddings of topologically complete metrizable spaces
has been extensively treated in the theory of universal spaces.
Tsuda [1985a][1985b], Waśko [1986], Hattori [1989], Olszewski
and Pia̧tkiewicz [1992], and Nagórko [2006] have proved results
about existence of closed embeddings of complete metric spaces
into several universal spaces. This often required special modifi-
cations of the previously known universal spaces. Also, in all cases
the proofs were obtained by the use of the Baire category theorem.
For Lipscomb’s universal space no results on existence of closed
embeddings have appeared yet. In this paper we prove that the di-
rect approach of obtaining embeddings into Lipscomb’s universal
space, developed in Milutinović [1992][1993] and later exploited in
Ivanšić and Milutinović [2002][2003][2005] and Milutinović [2006]
yields closed embeddings with no further changes made, in the
case when the embedded space is topologically complete.

For the following theorems, keep in mind that the set of tuples in Jn+1
A

that have at most n rational coordinates is denoted Jn+1
A (n).

60.6 Theorem (Ivanšić and Milutinović [2007]) Let (X, ρ) be a complete
n-dimensional metric space of weight |A| ≥ ℵ0. Then there is a closed em-
bedding of X into Jn+1

A (n).

60.7 Theorem (Ivanšić and Milutinović [2007]) Let (X, ρ) be a complete
n-dimensional metric space of weight ≤ |A|, and let f : X → Jn+1

A be a
continuous mapping. Then for any ε > 0 there is a closed embedding ψ :
X → Jn+1

A (n) such that for each x ∈ X we have d(f(x), ψ(x)) ≤ ε.
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§61 Comments

Because the goal in this chapter is that of surveying the JA-related mathemat-
ics that has expanded the theories of fractals or universal spaces in dimension
theory either by merging the theories or extending the individual theories,
the JA-induced graph theory was not discussed.

As for the Klavžar-Milutinović graphs, they first appeared as a result
of Milutinović’s knowledge of the adjacency relation (∼ on finite products)
together with Klavžar’s knowledge of graph theory (i.e., Klavžar proposed
that together they apply ∼ to study an induced class of graphs). The class
was introduced in 1997, and its members were defined as follows:

For k ≥ 1 and any n ≥ 1, the Klavžar-Milutinović graph KMnk is the
graph that has vertex set Vnk = ×n

i=1{1, . . . , k}i where each factor equals
{1, . . . , k}; and edge set Enk, whose members are given by

[a1 · · ·at−1xyy · · · y, a1 · · · at−1yxx · · ·x] or
[a1 · · · an−1x, a1 · · · an−1y] or

[xy · · · y, yx · · ·x]

where x, y ∈ {1, . . . , k} and x �= y. For example, in KM2,4 we see that each
of [11, 12], [11, 13], and [11, 14] is an edge of KM2,4, while [11, 22] is not an
edge. The KM2,4 graph is pictured in Figure 61.1:
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Fig. 61.1 The KM2,4 graph.

It turns out, for example, that the graphs KMn,3 are isomorphic to the
graphs of the Tower of Hanoi Problem, and that for all values of n and k,
the graphs KMnk are Hamiltonian. (See Klavžar and Milutinović [1997].)

The four research articles, listed at the top of the “tree” in Figure 55.1
— Hinz, Klavžar, Milutinović, Parisse, and Petr [2005], Klavžar and Mohar
[2005], Klavžar, Milutinović, and Petre [2002], and Klavžar and Milutinović
[1997] — represent a natural and relatively recent newly constructed class of
graphs.5

5It is interesting to note, however, that the Klavžar and Milutinović [1997] article was



Illustration of Chapter 12 Isotopy
That Moves J5 into 3-space1

The J4 subspace of J5 is the Sierpiński cheese, which lives inside of 3-space
and is illustrated below at the start (t = 0) of the isotopy (0 ≤ t ≤ 1).
The variation in color, ranging from red to magenta, is a coloring of the
points of J5 in 4-space at the start of the isotopy. The coloring scheme serves
to indicate distance from 3-space — red-colored points are at distance zero
from 3-space, while those with the magenta color are at a maximum distance
from 3-space. With the colors fixed, note that the isotopy gradually moves
the nonred points from 4-space into 3-space, and that the magenta-colored
points only enter 3-space when t ≈ 1.

1Chris Dupilka generated these color plates using Pov-Ray software to encode the math-
ematics of Chapter 12.
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So as we climb the tree in Figure 55.1, looking at the dates from 2005
through 2007, we see two other articles (Lipscomb [2005] and Lipscomb
[2007]) that pose yet another general problem, the problem that is inverse to
creating fractals from manifolds. Indeed, fractals were viewed historically as
the residual of an infinite process of cutting holes in manifolds. The prime
example is the Sierpiński triangle obtained by cutting holes in a 2-simplex
manifold.

The reverse problem is that of starting with a fractal, and then (in a sense)
reconstructing the manifold. The idea is that the fractal is the attractor of
an IFS acting on a manifold. Can we extend the given IFS to one whose
attractor is the containing manifold? Special cases of this problem are the
topics of Chapters 13 and 14. The mathematics follows Lipscomb [2005] and
[2007].

Another piece of mathematics listed in Figure 55.1 that has not been
addressed in this chapter is the mathematics of moving J5 from 4-space into
3-space with its fractal dimension preserved. That result is due to Perry and
Lipscomb [2003] and is the topic of Chapter 12.

To motivate the material of Chapter 12, however, we first present eight
pages of color plates that show what one would see if he were watching J5

move into 3-space.

received by the Czechoslovak Mathematical Journal in 1994. So one may rightly say
that this new contribution to graph theory, whose roots date back to Cantor’s [1883b]
identification of adjacent endpoints, actually sprouted in 1994.



CHAPTER 12

Isotopy Moves J5 into 3-Space

For finite n = |A|, the space JA = Jn is a one-dimensional separable metric
space. And for small n, it is natural to represent Jn+1 inside of 3-space as
a union of n + 1 congruent just-touching scaled-by- 1

2 copies of itself. For
example, we know that J2 is represented as the unit interval ω1 = [0, 1/2] ∪
[1/2, 1] = f0(ω1) ∪ f1(ω1), J3 as Sierpiński’s triangle ω2 = ∪2

0fi(ω2), and J4

as the Sierpiński cheese (3D-gasket) ω3 = ∪3
0fi(ω3).

In 2003, the homeomorph of J5 that lives in 4-space, namely the 4-web
ω4, was moved into 3-space via an isotopy that preserved the ω4 5-fold
self-similarity. In other words, the isotopy preserves the fractal dimension
D(ω4) = ln(4 + 1)/ ln(2) of ω4. Intuitively, this allows us to “see” J5, just as
we “see” J2, J3, and J4.1

In this chapter we construct the desired isotopy. The mathematics also
yields the fact that for each n ≥ 4, the n-web ωn may be represented in
(n − 1)-space. The presentation follows Perry and Lipscomb [2003].

§62 Representing Jn+1 in 3-Space

From the Classical Imbedding Theorem it is clear that the one-dimensional
separable-metric space Jn+1 may be topologically imbedded in 3-space. But
an arbitrary imbedding may not shed light on the self-similarity feature of
Jn+1 — the natural map p : N({0, 1, . . . , n}) → Jn+1 induces n + 1 just-
touching copies p(〈0〉), . . . , p(〈n〉) of Jn+1 (Lemma 5.1).

Nevertheless, from Theorem 8.5 it is clear that Jn+1 is homeomorphic
to the n-web ωn, which is the attractor of the IFS Fn = {f0, . . . , fn} that
resides in the n-simplex Δn in n-space. In more detail, consider the following
n + 1 vectors ui in n-space R

n:

u0 = (0, . . . , 0), u1 = (1, 0, 0, . . . , 0), . . . , un = (0, 0, . . . , 0, 1).

Then Δn ⊂ R

n is the n-simplex with vertices u0, . . . ,un, and each member
fi(x) = x/2 + ui/2 of Fn is the 1

2 -contraction toward ui.
Since ωn ⊂ R

n, we see that n ≥ 4 implies that we can “see” neither ωn

nor any of its scaled copies fi(ωn). In particular, to “see” ω4 =t J5, the ideal
imbedding of J5 into 3-space would be an isotopy that moves ω4 from 4-space
into 3-space while preserving its fractal dimension. Such an isotopy would
“show” J5 as a union of its five fi(ω4) just-touching self-similar copies.

1The dimension function D used here is the self-similarity dimension (§A14). For ex-
amples, motivation, and a discussion of the self-similarity dimension, see Peitgen, Jürgens,
and Saupe [1992].

S.L. Lipscomb, Fractals and Universal Spaces in Dimension Theory,
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To imbed ωn in m-space R

m with its fractal dimension preserved, it is
necessary that the fractal dimension D(ωn) ≤ dim R

m = m (Barnsley [1988,
Theorem 2, page 202]). So let us look at the fractal dimension D(ωn) =
ln(n + 1)/ ln(2) of the n-webs for small values of n:

D(ω1) = 1 < D(ω2) ≈ 1.58 < D(ω3) = 2 < D(ω4) ≈ 2.32 <
< D(ω5) ≈ 2.58 < D(ω6) ≈ 2.81 < D(ω7) = 3 < · · ·

Thus, D(ω2) > 1 implies that ω2 cannot be viewed on the real line. However,
D(ω3) = 2 = dim (R2) sheds no light on the fact that ω3 cannot be viewed
in the plane, as was discussed in §9.

For n = 4, 5, 6, 7, and 8 we see that

D(ω4) ≈ 2.32 < 3, D(ω5) ≈ 2.58 < 3, D(ω6) ≈ 2.81 < 3,
D(ω7) = 3 ≤ 3, D(ω8) ≈ 3.16 > 3.

Since D(ω8) > 3, we know that the 8-web ω8 cannot be viewed (with fractal
dimension preserved) in R

3. Prior to 2003, it had been an open question as
to whether any n-web ωn for n = 4, 5, 6, 7 can be viewed in R

3.
In this chapter, we show that the 4-web can indeed be “viewed” in 3-

space. The self-similarity of ω4 makes the key observation combinatorial:
Roughly, the 2-web resides in the plane because there exist three congruent
triangles that may be positioned such that each just touches the other two;
the 3-web resides in 3-space because there exist four congruent tetrahedra
that may be positioned such that each just touches the other three; and the
4-web may be viewed in 3-space because there exist five congruent hexahedra
(two tetrahedra pasted along a face) that may be positioned in 3-space such
that each just touches the other four .

§63 The IFS and Five Points in 3-Space

In addition to the definitions given above, for 3-space we let vi = ui (i =
0, 1, 2, 3); and for 4-space, we use the insertion (x, y, z) �→ (x, y, z, 0) ∈ R

4

of 3-space into 4-space so that we may also think of each vi ∈ R

4. We
also define v4 as either (2/3, 2/3, 2/3) or (2/3, 2/3, 2/3, 0), the choice will
be clear from the context. At other times, we denote either the v- or u-
vectors as w-vectors, i.e., wi ∈ {ui,vi}. And we shall also use the notation
“wi” for the terminal point of the vector wi, i.e., the discussion/figures may
concern/illustrate either vectors wi or points wi.

The vectors v0,v1,v2,v3,v4 are the vertices of the hexahedron Λ3. And
given the hexahedron Λ3 ⊂ R

3 as illustrated in Figure 63.1, we associate
the IFS G3 = {g0, g1, . . . , g4}, where gi(x) = x/2 + vi/2. The attractor of
G3 is denoted ω4

3 . Our goal is to show that ω4
3 is homeomorphic to ω4 and

that D(ω4
3) = D(ω4). Since several arguments are essentially the same for

Fn and G3, we also use a variable IFS H ∈ {Fn,G3} that contains functions
hi(x) = x/2 + wi/2.
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Fig. 63.1 The v-vectors and the hexahedron Λ3.

§64 The Isotopy

Recall (from §17) the no-carry characterization of ωn. In particular, ω4

consists of those points x = x1u1 +x2u2 +x3u3 +x4u4 in Δ4 such that there
exist binary representations of x1, x2, x3, and x4 where the sum of any two
representations induces a “no carry.” In other words, x ∈ Δ4 is also in ω4 if
and only if there exists a 4 × ℵ0 matrix [aij ] where the ith row is a binary
expansion of xi and where each column contains at most one “1”.

It follows from this no-carry characterization of ω4, and, since the 3-
simplex Δ3 is the face of Δ4 opposite u4, that the 4-web ω4 contains the
3-web ω3. Intuitively, the isotopy that we construct fixes this 3-web ω3 while
moving (the terminal point of) the vector u4 ∈ R

4 along the line segment
[u4,v4] = {(1 − t)u4 + tv4 | 0 ≤ t ≤ 1} ⊂ R

4 to (the terminal point of) the
vector v4 ∈ R

4. More precisely, let

H : ω4 × I → R

4

be given by

H(x, t) = Ht(x) =

⎡
⎢⎢⎣

1 0 0 2
3 t

0 1 0 2
3 t

0 0 1 2
3 t

0 0 0 (1 − t)

⎤
⎥⎥⎦x (x ∈ ω4 ⊂ R

4; t ∈ I = [0, 1]).

We shall show that H is an isotopy rel ω3 (homotopy with each Ht a home-
omorphism that is the identity on ω3). Since each Ht : R

4 → R

4 is a linear
transformation with an upper-left 3 × 3 identity submatrix, it is clear that
H is a homotopy and that H fixes Δ3, a fortiori, fixes ω3. When t < 1, then
Ht is nonsingular and H−1

t exists. It follows that Ht and H−1
t are bounded,

and we may conclude (Rudin [1966, Theorem 5.10]) that

1
||H−1

t ||
· ||x − y|| ≤ ||Ht(x) − Ht(y)|| ≤ ||Ht|| · ||x − y||.
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Thus, for t < 1, Ht : R

4 → R

4 induces an equivalent metric on R

4 (Barnsley
[1988, page 13, Definition 3]), and from Barnsley [1988, page 180, Theo-
rem 3], Ht preserves fractal dimension, i.e., D(Ht(ω4)) = D(ω4). So linear
algebra and metric space theory suffice to prove that each Ht (t < 1) is a
homeomorphism that both fixes ω3 and preserves fractal dimension.

The proof that H1 is one-to-one (on ω4) and respects fractal dimension,
however, involves F4 and G3, and that is where the choice of “2/3” becomes
critical. For example, if we replace “2/3” with “1”, i.e., if we define

H ′(x, t) =

⎡
⎢⎢⎣

1 0 0 1t
0 1 0 1t
0 0 1 1t
0 0 0 (1 − t)

⎤
⎥⎥⎦x (x ∈ ω4 ⊂ R

4; t ∈ I = [0, 1]),

then for t < 1, an argument similar to the one used in the “2/3” case above
would show that each H ′

t (t < 1) is a homeomorphism that both fixes ω3 and
preserves fractal dimension. But for t = 1, consider the two distinct points
x,y ∈ ω4 whose components are expressed in binary as follows:

x = (.00111 · · · )u1 + (.0000 · · · )u2 + (.0000 · · · )u3 + (.0100 · · · )u4

y = (.10000 · · · )u1 + (.0100 · · · )u2 + (.0011 · · · )u3 + (.0000 · · · )u4.

Then clearly x �= y, but since the binary expansions .b1b2 · · · bk0111 · · ·
and .b1b2 · · · bk1000 · · · represent the same number, H ′

1(x) = y = H ′
1(y),

showing that H ′
1 is not one-to-one.

§65 The Hexahedron

The 3-simplex

Δ3 = {x ∈ R

3 : x = x0u0 + x1u1 + x2u2 + x3u3; xi ≥ 0; Σixi ≤ 1}
= {x ∈ R

3 : x = x1u1 + x2u2 + x3u3; xi ≥ 0; Σixi ≤ 1}.

Recall that the face T0 opposite the zero vertex u0 = 0 is the 2-simplex

T0 = {x ∈ Δ3 : x = x1u1 + x2u2 + x3u3; xi ≥ 0; Σixi = 1}.

The scalars “xi” that define an x ∈ T0 are sometimes called the barycentric
coordinates of x. For n = 3, the face T0 opposite the origin u0 = v0 is a
closed equilateral triangle that contains the point p = (1/3, 1/3, 1/3) at its
barycenter (p is the unique point whose barycentric coordinates are all the
same). By reflecting the 3-simplex Δ3 through T0, we obtain its mirror image
ΔR

3 . Thus, Δ3 ∩ ΔR
3 = T0, and we note that p ∈ T0 and that p = 1

2v4. It
follows that v4 is the mirror image of the origin v0 and consequently a vertex
of the simplex ΔR

3 . Thus, ΔR
3 is just the cone consisting of T0 together with

all line segments that have one endpoint in T0 and the other at the point v4.
The union Δ3 ∪ ΔR

3 as a subspace of R

3 will be called the hexahedron Λ3.
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Fig. 65.1 Tetrahedron Δ3, its face T0 opposite v0, its mirror image ΔR
3 .

An algebraic description of Λ3 will be needed. Our approach is standard
and uses the representation of closed convex subsets of R

n as intersections
of supporting hyperplanes. In short, a hyperplane P = {x ∈ R

n : a · x = c},
where a ∈ R

n and c ∈ R

1 are given, and where “a · x” is the usual inner
product a1x1 + · · · + anxn. Each such P induces two closed half spaces ,
obtained by replacing the equality in the definition of P by either “≤” or
“≥.” A hyperplane P is called supporting for a closed convex set K if P ∩K
is not empty and K is contained in one of the two closed half-spaces that is
bounded by P .

Thus, since the three planes that contain, respectively, the three triangles
with vertices {v0,vi,vj} (where i and j are distinct members of {1, 2, 3}) are
supporting for Λ3, we see that (x1, x2, x3) ∈ Λ3 implies the three inequalities
x1, x2, x3 ≥ 0. Using the other three planes that contain, respectively, the
three triangles with vertices {v4,vi,vj}, we obtain another three inequalities,
namely, for distinct i, j, k = 1, 2, 3, we have xi + xj − (1/2)xk ≤ 1. Thus, for
x denoting (x1, x2, x3) ∈ R

3, we have

(1) Λ3 = {x ∈ R

3 : xi ≥ 0; distinct i, j, k = 1, 2, 3, xi + xj − (1/2)xk ≤ 1}.

65.2 Lemma Let x = (x1, x2, x3) ∈ Λ3. Then 0 ≤ x1 + x2 + x3 ≤ 2, where
x1 + x2 + x3 ≤ 1 implies x ∈ Δ3, and 1 ≤ x1 + x2 +x3 ≤ 2 implies x ∈ ΔR

3 .

Proof. The statement “0 ≤ x1 + x2 + x3 ≤ 2” follows from the fact that
the linear functional x1 + x2 + x3 takes on its extreme values at the extreme
points v0,v1,v2,v3,v4 of Λ3. The other two inequalities follow from the
same observation with x1 + x2 + x3 restricted to Δ3 and ΔR

3 , respectively.

65.3 Lemma Let x = (x1, x2, x3) ∈ ΔR
3 be such that there exist distinct

indices i and j for which xi + xj ≥ 4/3. Then x = v4 = (2/3, 2/3, 2/3).

Proof. From the representation of Λ3 given in (1), we see that

4/3− (1/2)xk ≤ xi + xj − (1/2)xk ≤ 1

and it follows that (2/3) ≤ xk. But since one of either xi ≥ 2/3 or xj ≥ 2/3
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is true, a similar argument shows all three components are ≥ 2/3. Then,
since 2/3 + 2/3 + 2/3 = 2, Lemma 65.2 provides the desired result.

65.4 Lemma Let x = (x1, x2, x3) ∈ Λ3. Then xi = 1 implies x = ui.

Proof. The two inequalities xi +xk − (1/2)xj ≤ 1 and xi +xj − (1/2)xk ≤ 1
with xi = 1 yield 2xj ≤ xk and 2xk ≤ xj , showing that xj = 0 = xk.

65.5 Lemma Let x = (x1, x2, x3) ∈ Λ3. Then each 0 ≤ xi ≤ 1.

Proof. The inequality 0 ≤ xi follows from the definition of Λ3. To see that
xi ≤ 1 for each i, consider x �→ xi as a linear functional, and recall that xi

is maximum at the extreme points of Λ3, i.e., at (0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1), and (2/3, 2/3, 2/3).

§66 IFSs and the Just-Touching Property

At the beginning of §62 and the end of §63 we defined, respectively, Fn and
G3. Here we consider their “just-touching property.”

66.1 Theorem The IFS Fn acting on Δn satisfies the just-touching property.

Proof. Let i and j denote distinct indices in {0, 1, . . . , n}, and let x,y ∈ Δn

be such that fi(x) = fj(y). Then fi(x) = 1
2x + 1

2ui = 1
2y + 1

2uj = fj(y).
Thus, x − y = uj − ui, i.e., in terms of components,

(x1 − y1, ..., xj − yj , ..., xi − yi, ..., xn − yn) = (0, ..., 0, δj, 0, ..., 0,−δi, 0, ..., 0)

where δj , δi ∈ {0, 1} (δk = 0 iff k = 0). We have three cases: (a) δj = 0 �= δi;
(b) δj �= 0 = δi; (c) δj �= 0 �= δi. If (a), then xj − yj = δj = 0 and
xi − yi = −δi = −1. So xj = yj , and, since yi ≤ Σkyk ≤ 1 and xi ≥ 0, we
have xi = 0 �= yi = 1. The definition of Δn shows that y = ui. It follows
that x = u0 = uj = 0. Thus,

(2) fi(x) = fi(uj) = uj/2 + ui/2 = fj(ui) = fj(y),

showing that the point uj/2 + ui/2 ∈ fi(Δn) ∩ fj(Δn). Turning to case (b),
we see that xj − yj = δj = 1 and xi − yi = −δi = 0. So xi = yi, and, since
xj ≤ Σkxk ≤ 1 and yj ≥ 0, we have xj = 1 and yj = 0. And by definition
of Δn, we have x = uj . It follows that y = 0 = u0 = ui. Clearly, (2)
holds in this case also. Finally, for case (c), we have xj − yj = δj = 1 and
xi−yi = −δi = −1. As before, it follows that xj = 1 and yj = 0, while xi = 0
and yi = 1. Then Lemma 65.4 implies both x = ui and y = uj , which in turn
shows that (2) holds in this final case. Thus, (2) holds for every x,y ∈ Δn

such that fi(x) = fj(y), i.e., {uj/2 + ui/2} = fi(Δn) ∩ fj(Δn).

Note that the previous theorem provides existence as well as uniqueness
of the “just-touching” points 1

2 (ui + uj). It turns out, in the context of ad-
dressing, that these points have dual addresses, namely ijjj · · · and jiii · · · .
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The idea of constructing five “just touching and congruent” hexahedra
is basic to building a model of the 4-web in 3-space. An example of such a
combinatorial construction is pictured in Figures 7.1, 7.2, and 7.3.

66.2 Theorem The IFS G3 has the just-touching property on Λ3.

Proof. Consider distinct indices i, j ∈ {0, 1, 2, 3, 4}, and let x and y be
points in Λ3 such that gi(x) = gj(y). Then

gi(x) = x/2 + vi/2 = y/2 + vj/2.

Thus, x − y = vj − vi, i.e.,

(x1 − y1, x2 − y2, x3 − y3) = (δ1, δ2, δ3)

where each δk ∈ {0,±1,±1/3,±2/3}. We break the possibilities into those
where j = 0 (Case I) and those where j �= 0 (Case II).

Case I (j = 0). In this case x−y = −vi for some i ∈ {1, 2, 3, 4}. And the
possibilities are either exactly one component xi − yi = −1 with the others
equal to 0, or x−y = (−2/3,−2/3,−2/3). In the former subcase i ∈ {1, 2, 3},
and then Lemma 65.5 shows that xi = 0 and yi = 1. Then Lemma 65.4 gives
y = vi. It follows that x = v0. Thus, gi(x) = gi(v0) = v0/2 + vi/2 =
vj/2 + vi/2 = gj(y) is the unique point vj/2 + vi/2 that depends only on i
and j, i.e.,

(3) gi(x) = vj/2 + vi/2 = gj(y).

In the latter subcase i = 4, and xk − yk = −2/3 for each k = 1, 2, 3, showing
that yk = xk + 2/3 ≥ 2/3 for each k = 1, 2, 3. It follows from Lemma 65.3
that y = v4 and (consequently) that x = v0. And so (3) also holds when
j = 0 and i = 4. This finishes Case I.

Case II (j �= 0). The possibilities correspond to three subcases, namely
i = 0, 1 ≤ i ≤ 3, and i = 4. If i = 0 and j ∈ {1, 2, 3}, then xj − yj = 1
and xk − yk = 0 when k �= j. Lemma 65.5 then shows that x = vj , and
(consequently) y = v0 = vi. So (3) also holds for j ∈ {1, 2, 3}, and i = 0.
Next, if i = 0 and j = 4, then x − y = (2/3, 2/3, 2/3), showing that xk =
yk +2/3 ≥ 2/3 for each k = 1, 2, 3. Lemma 65.3 shows that x = v4 = vj and
(consequently) that y = v0 = vi. So (3) also holds for i = 0 and j = 4. This
finishes the subcase i = 0. We turn to the subcase 1 ≤ i ≤ 3. If j is also
such that 1 ≤ j ≤ 3, then we may assume that xj − yj = 1, xi − yi = −1,
and xk − yk = 0 where i �= k �= j. Lemmas 65.4 and 65.5 show that the first
of these equations yields x = vj . Then Lemma 65.5 shows that yi = 1, and
then Lemma 65.4 shows y = vi. So (3) also holds for distinct i, j ∈ {1, 2, 3}.
For 1 ≤ i ≤ 3 and j = 4, we have xi − yi = −1/3, and xk − yk = 2/3 for
k �= i. Since there are two values of k that satisfy the last equation, we again
deduce that the sum of two components of x is ≥ 4/3, and then Lemma 65.3
shows that x = v4 = vj . It follows that y = vi, and so (3) also holds when
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1 ≤ i ≤ 3 and j = 4. Finally, consider the subcase i = 4. In this instance
1 ≤ j ≤ 3, and we see that xj − yj = 1/3 and xk − yk = −2/3 for two
indices k �= j. Thus, the sum of two components of y is ≥ 4/3, showing (via
Lemma 65.3) that y = v4 = vi. It follows that x = vj . So (3) also holds for
j = 1, 2, 3 and i = 4. This finishes Case II.

Thus, for every x,y ∈ Λ3 such that gi(x) = gj(y), equation (3) holds. It
follows that {vj/2 + vi/2} = gi(Λ3) ∩ gj(Λ3) for each i �= j.

§67 Addressing and the Isotopy

In this section, we let A = {0, 1, 2, 3, 4}, and use H = {hi : i ∈ A} to denote
one of the iterated function systems F4 or G3. So for each i ∈ A,

hi(x) = x/2 + wi/2 =
{

x/2 + ui/2 when H = F4;
x/2 + vi/2 when H = G3.

For the code space N({0, 1, 2, 3, 4}), each σ ∈ N(A) determines a sequence
{σn}, where σn = σ1 · · ·σn000 · · · , that obviously converges to σ. And the
continuity of the address map φ : N(A) → K shows that the corresponding
sequence {pn = pσn} in the attractor K of H converges to pσ.

With each address σ = σ1σ2 · · · ∈ N(A), we also associate an infinite
matrix Mσ = [aij ]σ (1 ≤ i ≤ 4; 1 ≤ j) of zeros and ones via the nth-
column formula: If σn = 0, then let the nth column contain only zeros; and
if σn = k �= 0, then let akn = 1 be the only 1 in the nth column. Clearly,
then, the rows of Mσ induce binary representations that satisfy the no-carry
condition.

67.1 Theorem Let {wi} ∈ {{ui}, {vi}}, the choice conforming to the choice
of H ∈ {F4,G3}. Let K denote the attractor of H. Let σ ∈ N({0, 1, 2, 3, 4}),
and let pσ be the image of σ under the address map. Then pσ may be written
as a linear combination

(4) pσ = a1w1 + a2w2 + a3w3 + a4w4

where each coefficient ai, 1 ≤ i ≤ 4, has the binary expansion .ai1ai2 · · ·
where ai1ai2 · · · is the ith row of Mσ = [aij ]σ.

Proof. Let {σn} and {pn} denote the sequences defined in the next-to-last
paragraph preceding this theorem. Since the m-fold composition (h0 ◦ · · · ◦
h0)(K) = K/(2m), since hσ1 ◦ · · · ◦ hσn is one-to-one, since pn is the only
point in

∩∞
m=1(hσ1 ◦ · · · ◦ hσn(K/(2m)),

and since {w0} = ∩∞
m=1K/(2m), it follows that pn = hσ1 ◦ · · · ◦ hσn(w0).

Now certainly the origin p0 = 0 corresponds to the sequence 000 · · · ∈ N(A)
of zeros and satisfies the conclusion of the theorem. So inductively, let
σ′ = σ2σ3 · · ·σn000 · · · and suppose that pσ′ satisfies the conclusion of the
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theorem. We show that the image pn of σn = σ1σ2 · · ·σn000 · · · also satisfies
the conclusion of the theorem: Letting σ1 = k ∈ {0, 1, 2, 3, 4}, we have, in
binary, wk/2 = (.1)wk, and so

pn = hσ1 ◦ ··· ◦ hσn(w0) = hk(pσ′ )
= (1/2) [(.a′

11a
′
12···)w1 + ··· + (.a′

41a
′
42···)w4] + (.1)wk

=
{

(.0a′
11a

′
12···)w1 + ··· + (.1a′

k1a
′
k2···)wk + ··· + (.0a′

41a
′
42···)w4 if k �= 0;

(.0a′
11a

′
12···)w1 + ··· + (.0a′

41a
′
42···)w4 if k = 0.

That is, we may obtain pn and Mσn = [aij ]σn using pσ′ and Mσ′ = [a′
ij ].

Indeed, for each i ∈ {1, 2, 3, 4},

an
i wi = (.an

i1a
n
i2 · · · )wi =

{
(.0a′

i1a
′
i2 · · · )wi when σ1 = k �= i;

(.1a′
i1a

′
i2 · · · )wi when σ1 = k = i.

So these “shifted and possibly one added” binary expansions represent the
scalar coefficients an

i of the vectors wi that appear in the sum

pn =
4∑

i=1

an
i wi

which corresponds to (4). Moreover, since the matrix Mσn is obtained from
Mσ′ by shifting the columns of the latter to the right by one index, and
then determining the first column via the value of σ1, it is clear that this
representation of pn satisfies the conclusion of the theorem.

Turning to pσ, we see that σn → σ in N(A) (term-by-term) implies
that Mσn → Mσ (column-by-column), and so the binary representations
.an

i1a
n
i2 · · · an

in000 induced by the rows of the Mσn matrices converge (term-
by-term) to the binary representations .ai1ai2 · · · ainai(n+1) · · · induced by
the corresponding rows of Mσ. That is, an

i → .ai1ai2 · · · . Now suppose
H = F4: Let pσ =

∑4
i=1 biui where the “bi” are the unique scalars that

define the point pσ relative to the basis {ui} of R

4. Then (pn = pσn) → pσ

implies an
i → bi. But an

i → .ai1ai2 · · · , and thus the bi scalars have the
corresponding binary representations .ai1ai2 · · · = ai when H = F4. Finally,
suppose H = G3: Let pσ =

∑3
i=1 bivi where the bi are the unique scalars that

define pσ relative to the basis {v1,v2,v3} of R

3. Then pσn → pσ together
with

pn = pσn =
4∑

i=1

an
i wi =

3∑
i=1

an
i vi +

3∑
i=1

an
4 (2/3)vi =

3∑
i=1

(an
i + (2/3)an

4 )vi

implies (an
i + (2/3)an

4 ) → bi for each i = 1, 2, 3. But an
i → .ai1ai2 · · · = ai for

each i = 1, 2, 3, 4, showing that pσ = a1v1 + a2v2 + a3v3 + a4v4 where the
coefficients ai (i = 1, 2, 3, 4) have the desired binary expansions.
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67.2 Theorem Let H be given as in the hypothesis of Theorem 67.1. Let
p ∈ K where K is the attractor of H, let O ∈ {Δ4, Λ3} correspond to the
choice of H, and let each of two distinct sequences σ and τ address p, i.e.,
p = pσ = pτ . Then there is an index l ≥ 0 such that

σ = j1j2 · · · jlikkk · · · and τ = j1j2 · · · jlkiii · · ·

where k �= i and i, k ∈ A.

Proof. Let l be either the max{j : σ1 = τ1, · · · , σj = τj} or 0 (if σ1 �= τ1).
Then for σ′ = σl+1σl+2 · · · and τ ′ = τl+1τl+2 · · · , we see that

p = pσ = hj1hj2 · · ·hjl
(pσ′) = pτ = hj1hj2 · · ·hjl

(pτ ′).

We let i = σl+1 and k = τl+1. Then k �= i, and pσ′ ∈ hi(O) while pτ ′ ∈ hk(O).
But since hj1 ◦ · · · ◦ hjl

is one-to-one, p′ = pσ′ = pτ ′ , showing that p′ ∈
hi(O)∩hk(O), and therefore must be the “just-touching” point (wi +wk)/2.
For example, if i = 1 and k = 2

Mpσ′ =

⎡
⎢⎢⎣

1 0 0 · · ·
0 1 1 · · ·
0 0 0 · · ·
0 0 0 · · ·

⎤
⎥⎥⎦ and Mpτ′ =

⎡
⎢⎢⎣

0 1 1 · · ·
1 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·

⎤
⎥⎥⎦

By evaluating hj1 ◦ · · · ◦hjl
at p′, we, in effect, move the columns of Mpσ′ and

Mpτ′ l places to the right and then fill in the first l columns as prescribed by
the hjs. The results are Mσ and Mτ , respectively. Thus, by comparing these
two matrices, the desired relation between σ and τ holds.

67.3 Theorem The homotopy H defined in §64 above is an isotopy that
preserves fractal dimension.

Proof. It follows from Theorem 67.2 that the equivalence relation “∼”
induced on N(A) via the address map (in either case where H = F4 or
H = G3) is the one of identifying adjacent endpoints in N(A) (Lipscomb and
Perry [1992]). Since N(A) is compact, the continuous surjective addressing
map from N(A) to the attractor of H is closed, and hence quotient. It
follows that since each of the attractors ω4 and ω4

3 is homeomorphic to the
quotient N(A)/∼, they are homeomorphic to each other. More precisely, the
homeomorphisms (induced from the address maps) α : N(A)/∼ → ω4 and
β : N(A)/∼ → ω4

3 map an equivalence class [σ] ∈ N(A)/∼ to a1u1 + a2u2 +
a3u3 +a4u4 in the former case, and to a1v1 +a2v2 +a3v3 +a4v4 in the latter
case (the unique 4-tuple (a1, a2, a3, a4) being specified as in Theorem 67.3).
It follows that β ◦ α−1 : ω4 → ω4

3 is a homeomorphism that is given by

a1u1 + a2u2 + a3u3 + a4u4 �→ a1v1 + a2v2 + a3v3 + a4v4

Rewriting v4 = (2/3)v1 + (2/3)v2 + (2/3)v3 and substituting, we have x =
(a1, a2, a3, a4) ∈ ω4 implies β ◦ α−1(x) = H1(x). In other words, H1 is one-
to-one on ω4, and so by previous remarks, it follows that H is an isotopy. To
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see that H1 respects the fractal dimension, we recall that F4 and G3 contain
the same number “5” of affine transformations, each with the scale factor of
1/2. It follows that both fractals have dimension ln(5)/ ln(2) ≈ 2.2319.

67.4 Corollary Let n ≥ 4. Then the n-web ωn ⊂ R

n can be imbedded in
R

n−1 with fractal dimension preserved.

Proof. For n = 4, Theorem 67.3 provides the linear transformation H1 :
R

4 → R

4 whose restriction to ω4 is a homeomorphism into R

3 ⊂ R

4 that
preserves fractal dimension. The matrix representation of H1 relative to the
standard basis {u1,u2,u3,u4} is

H1 =

⎡
⎢⎢⎣

1 0 0 2/3
0 1 0 2/3
0 0 1 2/3
0 0 0 0

⎤
⎥⎥⎦ .

So we only need to consider the n > 4 case. In this case, let u1,u2, . . . ,un

denote the standard basis vectors of R

n, and let R

n−4 denote the subspace of
R

n that has basis {u5,u6, . . . ,un}. Identify R

n with R

4 ⊕ R

n−4, and define
Ln : R

n → R

n as the product map Ln = H1×1n−4 where 1n−4 is the identity
(linear) transformation on R

n−4. That is, Ln is given by

H1 × 1n−4 : R

4 ⊕ R

n−4 → R

4 ⊕ R

n−4.

It follows that relative to the basis {ui}n
i=1, the “matrix” H1 and the (n −

4) × (n − 4) identity matrix In−4 may serve as blocks in a block-matrix
representation of Ln, namely

[
H1 0
0 In−4

]
.

With this matrix representation, clearly Ln(ωn) ⊂ {(x1, x2, x3, 0, x5, . . . , xn) ∈
R

n}, i.e., essentially, Ln(ωn) ⊂ R

n−1. Since Ln is linear, it is continu-
ous; and since ωn is compact, it suffices to show that Ln is one-to-one
on ωn. So suppose that x,y ∈ ωn are such that Ln(x) = Ln(y). Then
Ln = H1 × 1n−4 implies that H1(x1, . . . , x4) = H1(y1, . . . , y4) and that
1n−4(x5, . . . , xn) = 1n−4(y5, . . . , yn). Since each of x and y satisfies the
no-carry condition, each of (x1, . . . , x4), (y1, . . . , y4) ∈ R

4 satisfies the no-
carry condition. Hence, they are members of ω4 ⊂ R

4. But since H1 is
one-to-one on ω4, it follows that x = y. To see that Ln preserves the fractal
dimension of ωn, first extend G3 to the IFS Gn = {g0, g1, . . . , gn} by let-
ting vi = ui for i > 4. Second, define ωn

n−1 = Ln(ωn). Then show that
Ln(fi(ωn)) = gi(ωn

n−1) for each i = 0, . . . , n where fi ∈ Fn. Deduce that
ωn

n−1 = ∪igi(ωn
n−1), i.e., that ωn

n−1 is the unique attractor of the IFS Gn. As
in the last paragraph of Theorem 67.3, it follows that D(ωn) = D(ωn

n−1).
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§68 Comments

From the approach used in this chapter, it appears that to solve the open
problems (§62) of determining whether one can visualize (within 3-space) the
self-similarity of the 5-, 6-, or 7-web, respectively J6, J7, or J8, one would need
to construct many candidate polyhedra within 3-space. For example, in the
5-web ω5 case the desired polyhedron would be the convex hull of six points
in 3-space. Suppose P6 denotes such a polyhedron. Then using a computer
and appropriate software, one would contract P6 by 1/2 toward each of its six
vertices and “visually check” for the “just-touching property.” But even if a
candidate P6 were found whose level-1 iterates “visually” appear to satisfy
the just-touching property, a mathematical proof would still be required. And
in such a case, the approach in this chapter could serve as a guide.



CHAPTER 13

From 2-Web IFS to 2-Simplex IFS
2-Space and the 1-Sphere

Sierpiński’s classical construction of his triangle (gasket) begins with a 2-
simplex Δ2 (manifold) and ends with the 2-web ω2 (fractal) subspace. It
is therefore natural (inverse of moving from manifolds to fractals) to seek a
minimal code-space and address-map extension of the n-web system to an
n-simplex system (a fractals-to-manifolds problem).

In this chapter we consider the n = 2 case, and extend the 2-web IFS
system F2 to a 2-simplex IFS system F∗

2 . The extension, when viewed as
identification of certain sequences in code space, yields a representation of
2-space and the 1-sphere. The following chapter provides a solution for the
n = 3 case. Here, however, we follow the presentation in Lipscomb [2005].

§69 Overview

The IFS of interest is F2 = {w0, w1, w2} whose affine transformations

wk(x) = uk + (1/2)(x − uk) = 1/2(x + uk) (x ∈ Δ2; k = 0, 1, 2)

are contractions by 1/2 toward the uk where u0 = (1, 0, 0)T , u1 = (0, 1, 0)T ,
and u2 = (0, 0, 1)T are the standard basis vectors in R

3 and also the vertices
of Δ2. (This definition is a variant of the one given (for n = 2) at the
beginning of §8. In this case we use the standard 2-simplex Δ2 ⊂ R

3 instead
of Δ2 ⊂ R

2.)
This IFS F2 has ω2 as the attractor, and the corresponding address

map φ : N({0, 1, 2}) → ω2 may also be viewed as the natural mapping p :
N({0.1, 2}) → J3 (see Theorem 8.4). From the fractal viewpoint, N({0, 1, 2})
is a code space, and ω2 is Sierpiński’s triangle/gasket. In topological terms,
N({0, 1, 2}) is a Baire space and ω2 is the 2-web (Definition 8.3), which is
homeomorphic to J3.

For A = {0, 1, 2}, we seek a “minimal” extension of both Baire’s space
N(A) and the adjacent-endpoint relation on N(A) that yields, as a quotient
structure, the entire 2-simplex Δ2. In particular, we extend N({0, 1, 2}) to
N({0, 1, 2, 3}), and, ∼ on N({0, 1, 2}) to a relation R ⊃ ∼ on N({0, 1, 2, 3}).
It turns out that the new relation R induces equivalence classes of cardinal-
ities 1, 2, 3, and 6 only. One of the goals here is to emulate the adjacent-
endpoint approach: In a relatively simple way, recognize the basic forms of
the sequences that when identified yield the 2-simplex Δ2. From the fractal
viewpoint, we shall define an IFS F∗

2 = {w0, w1, w2, w3} with attractor Δ2.

S.L. Lipscomb, Fractals and Universal Spaces in Dimension Theory,
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As an application, using the address map φ : N({0, 1, 2, 3}) → Δ2 we
specify φ-inverse sets F, G = (N({0, 1, 2, 3}) \ F ) ⊂ N({0, 1, 2, 3}) such that
φ|F : F → ∂Δ2 and φ|G : G → (Δ2 \ ∂Δ2) are quotient maps, the former
onto a copy of the 1-sphere and the latter onto a copy of 2-space.

§70 The F∗
2 IFS

The intuitive idea behind the desired iterated function system F∗
2 is that of

using one extra digit “3” to encode an iterated pasting — at each level “w3”
serves to “fill the holes” in Sierpiński’s gasket.1
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Fig. 70.1 Decompositions of Δ2; scaled by 1
2 and 1

4 subtriangles.

Recall that when we identify a point x in Δ2 with its column vector
[x0, x1, x2]T in 3-space, we may view the components xk as either barycentric
coordinates or Cartesian coordinates — our 2-simplex Δ2 is the one where
barycentric coordinates and Cartesian coordinates are equal.

With this background, we extend the IFS F2 by considering the barycen-
ter u3 = (1/3)(u0 + u1 + u2) of Δ2, and the affine transformation2

w3(x) = (1/2)Lx + (1/2)u3

where

L =

⎡
⎣ −1/3 2/3 2/3

2/3 −1/3 2/3
2/3 2/3 −1/3

⎤
⎦ .

Since L is not the identity matrix, the affine transformation “w3” is not
a contraction. Nevertheless, w3 is the composition of a 180◦ rotation L (an
isometry) followed by a contraction by 1/2 toward u3. That is, the linear
transformation L is a rotation of 180◦ about the line containing u3 that is

1The phrase iterated pasting is the author’s attempt to intuitively describe what w3 ∈
F∗

2 \F2 contributes in the context of the iteration process. The iterations of the members
of F2 serve to “iteratively cut holes” in the manifold Δ2, while on the other hand, the
addition of the function w3 “surgically repairs” the “cuts” at each level of iteration by
pasting just the right size triangles in the holes. For example, the left-side graphic in
Figure 70.1 shows the first level: The hole Δ2 \ (w0(Δ2) ∪ w1(Δ2) ∪ w2(Δ2)) appears.
But w3(Δ2), the triangle labeled “3” fills the hole. The process is repeated at the second
level where the iterates wi ◦wj(Δ

2) appear in the right-side graphic of Figure 70.1. Again,
those triangles whose label contains the digit “3” fill all holes.

2Also note that w3(x) = 1
2
(v − x) for v = [1, 1, 1]T .



§71 THE QUOTIENT/ADDRESS MAP 143

perpendicular to the plane containing Δ2, and as a consequence, the affine
w3 maps uk to the midpoint of the edge opposite uk.

The extension F∗
2 = {w0, w1, w2, w3} of F2 = {w0, w1, w2} is an IFS

with contractivity factor 1/2. Furthermore, from the left-side graphic of
Figure 70.1 we see that the 2-simplex Δ2 satisfies

Δ2 = w0(Δ2) ∪ w1(Δ2) ∪ w2(Δ2) ∪ w3(Δ2),

showing that the attractor of F∗
2 is Δ2. (The 2-simplex Δ2 is the fixed point

of the Hutchinson operator.) Our goal is to show that the point-inverse sets
of the address map φ

α1α2 · · · �→ ∩∞
j=1

(
wα1 ◦ wα2 ◦ · · · ◦ wαj (Δ

2)
)

from code space N({0, 1, 2, 3}) onto Δ2 define the classes of a relation R that
is a superset of the adjacent-endpoint relation ∼ on N({0, 1, 2}).

As a result, we obtain representations of the 2-space and the 1-sphere.

§71 The Quotient/Address Map

For a sequence α1α2 · · · in {0, 1, 2, 3}, define the subtriangle Tα1 = wα1(Δ2),
and then, for j > 1, recursively define the subtriangle

Tα1α2···αj = wα1(Tα2α3···αj ) = wα1 ◦ wα2 ◦ · · · ◦ wαj (Δ
2).

With this notation, the quotient map (address map) φ is given by φ(α) = x
where {x} = ∩∞

j=1Tα1α2···αj .

Sequences in {0, 1, 2}. For i ∈ {0, 1, 2}, consider y ∈ Ti. Then there ex-
ists a z ∈ Δ2 such that y = wi(z). Represent the barycentric coordinates
zk = .zk1zk2 · · · of z in binary, i.e., each zkj is a binary digit. Then since
multiplication by 1/2 is a “right-shift of these digits,” yk = .δkizk1zk2 · · ·
where δki = 1 when k = i and zero otherwise.

Applying this observation to sequences α in {0, 1, 2}, we see that x ∈ Tα1

implies that there exists y ∈ Δ2 such that x = wα1(y). Thus,

(1) xk = .δkα1yk1yk2 · · ·

where the second binary digit xk2 in this expansion is the first digit yk1 in that
of yk. Moreover, since x ∈ Tα1α2 = wα1(wα2(Δ2)), there also exists a z ∈ Δ2

such that y = wα2(z) and x = wα1(y). It follows that yk = .δkα2zk1zk2 · · · ,
yielding xk = .δkα1δkα2zk1zk2 · · · . In general, if x ∈ ∩∞

j=1Tα1···αj , then
xk = .δkα1δkα2δkα3 · · · where k ∈ {0, 1, 2}. This line of reasoning yields
the following proposition (see Milutinović [1992, Corollary 8]).

71.1 Proposition Let α1α2 · · · ∈ N({0, 1, 2}). Let {x} = ∩∞
j=1Tα1α2···αj ,

and, for each k ∈ {0, 1, 2} and each j = 1, 2, . . ., let xkj = δkαj . Then the
barycentric coordinates xk of x are given by xk = Σ∞

j=1xkj/2j.



144 FROM 2-WEB IFS TO 2-SIMPLEX IFS CHAPTER 13

Sequences in {0, 1, 2, 3}. Let α be a sequence in {0, 1, 2, 3}. In particular, it
is illustrative to consider the constant sequence 333· · · . Then x ∈ T3 implies
x = w3(y) for some y = [y0, y1, y2]T ∈ Δ2. So for {k, �, m} = {0, 1, 2} and
y′

k = 1 − yk, we may use w3(x) = 1
2 (v − x) for v = [1, 1, 1]T to deduce that

xk = (1/2)(y′
k).

Thus, w3 maps yk = .yk1yk2 · · · to

(2) xk = .0y′
k1y

′
k2 · · ·

where each binary digit y′
kj = 1 − ykj . Continuing, since x ∈ T33 there is

also a z ∈ Δ2 such that w3(z) = y, showing that x = 1/4(v + z). Thus
zk = .zk1zk2 · · · maps to

(3) xk = .01zk1zk2 · · · .

And x ∈ T333 provides a t ∈ Δ2 such that w3(t) = z; and then tk = .tk1tk2 · · ·
maps to

(4) xk = .010t′k1t
′
k2 · · · .

The upshot? Equations (2), (3), and (4) expose the alternating pattern
of “primed” and “non-primed.” That is, for a composition involving an odd
number of w3s, the right-shift is followed by an application of “primes,” while
an even number involves only the right-shift, i.e., (y′

km)′ = ykm.
Moreover, when α is the constant sequence of 3s, the containment x ∈

∩∞
j=1wα1 ◦ · · ·wαj (Δ2) yields each xk = .01010101 = Σ∞

j=11/4j = 1/3: The
quotient map maps the constant sequence 333 . . . to the barycenter of the
original triangle.

It follows that any algorithm for calculating the jth binary digit xkj of
the coordinate xk must account for the parity of the number of w3s appearing
in wα1 ◦ · · · ◦ wαj (Δ2).

The parity of the w3s also appears in the basic geometry: While each
subtriangle T0, T1, T2, and T3 in Figure 70.1 has a horizontal edge and cor-
responding opposite vertex, only T3 has the corresponding vertex positioned
below its horizontal edge. (The other triangles “point up.”) However, for two
“3s”, the subtriangle T33 points up. Indeed, a subtriangle Tα1α2···αj points
up if and only if the number of αn (in the list α1, α2, . . . , αj) equaling 3 is an
even integer. In particular, since “zero” is an even integer, all subtriangles
indexed via sequences in {0, 1, 2} “point up,” allowing us, in the Sierpiński
gasket case, to dodge the need for “primes.”

§72 The xkj-Algorithm

Relative to a sequence α in {0, 1, 2, 3}, we shall say that the subscript j (of
αj) is up whenever the number of αn, 1 ≤ n ≤ j, satisfying αn = 3 is even.
Otherwise, j is down. Thus, “j is up” if and only if Tα1···αj “points up.”
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In addition, we introduce the “xkj -algorithm,” which allows us to view
the address map as the composition φ = η ◦ ϑ: The map ϑ : N(0, 1, 2, 3) →
N(0, 1)3 maps α to the ordered triple [x01x02 · · · , x11x12 · · · , x21x22 · · · ]T ∈
N(0, 1)3 calculated via the algorithm, while η : N(0, 1)3 → Δ2 maps each
such triple to the point [.x01x02 · · · , .x11x12 · · · , .x21x22 · · · ]T ∈ Δ2 whose
components have the indicated binary expansions.

72.1 Proposition (xkj-algorithm) Let α be a sequence in {0, 1, 2, 3}. Let
{x} = ∩∞

j=1Tα1α2···αj , and, for each k ∈ {0, 1, 2} and each j = 1, 2, . . ., let

xkj =

⎧⎪⎪⎨
⎪⎪⎩

δkαj j is up and αj �= 3
δ′kαj

j is down and αj �= 3
1 j is up and αj = 3
0 j is down and αj = 3

Then the barycentric coordinates xk of x are given by xk = Σ∞
j=1xkj/2j.

Proof. We begin with an induction argument that shows whenever x =
wα1 ◦ · · · ◦ wαj (y), then the first j values xk1, . . ., xkj output by the xkj -
algorithm are the first j digits in a binary expansion of xk, i.e.,

xk =
{

.xk1 · · ·xkjyk1yk2 · · · j is up; yk = yk1yk2 · · ·

.xk1 · · ·xkjy
′
k1y

′
k2 · · · j is down; yk = yk1yk2 · · · .

So we begin with j = 1. Let x = wα1(y) for some y ∈ Δ2. There are two
cases according to α1 = 3 or α1 �= 3: In the latter case, “j is up and αj �= 3,”
so the xkj -algorithm output is xk1 = δkα1 , which is the first digit xk1 in the
binary expansion .δkα1yk1yk2 · · · of xk. (see equation (1)). In the former
case, “j is down and αj = 3,” so the algorithm output is xk1 = 0, which is
the first digit in the binary expansion .0y′

k1y
′
k2 · · · of xk (see equation (2)).

Thus, the first step in the induction is complete.
Now let j > 1. Let x = wα1 ◦ · · ·wαj (z), i.e.,

x = wα1 ◦ · · · ◦ wαj−1 (y) and y = wαj (z).

Then by the inductive hypothesis,

yk =
{

.δkαj zk1zk2 · · · αj �= 3

.0z′k1z
′
k2 · · · αj = 3.

The inductive hypothesis also tells us that the first j − 1 values xk1, . . .,
xk(j−1) output by the xkj -algorithm are also the first (j − 1) digits in the
binary expansion

xk =
{

.xk1 · · ·xk(j−1)yk1yk2 · · · j − 1 is up

.xk1 · · ·xk(j−1)y
′
k1y

′
k2 · · · j − 1 is down.
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Substituting into these two possible expansions of xk the two possible expan-
sions for yk given above, we obtain

xk =

⎧⎪⎪⎨
⎪⎪⎩

.xk1 · · ·xk(j−1)δkαj zk1zk2 · · · j − 1 is up and αj �= 3

.xk1 · · ·xk(j−1)δ
′
kαj

z′k1z
′
k2 · · · j − 1 is down and αj �= 3

.xk1 · · ·xk(j−1)0z′k1z
′
k2 · · · j − 1 is up and αj = 3

.xk1 · · ·xk(j−1)0′zk1zk2 · · · j − 1 is down and αj = 3.

So there are four possible cases for expansions of xk, depending on whether
αj equals or does not equal 3 and whether “j−1” is “up” or “down.” In each
case, we show that the first j algorithm output-values are the first j digits in
the corresponding expansion: Recall that the induction hypothesis ensures
that the first j − 1 digits are the algorithm output-values, so we only need
to show that the algorithm output for xkj is the jth digit in each of the four
cases: First, suppose “j − 1 is up and αj �= 3.” Then αj �= 3 specifies that
yk1 = δkαj . Also, “j − 1 is up” and “αj �= 3” imply that “j is up”. Thus,
“j is up and αj �= 3,” so the algorithm output is xkj = δkαj = yk1, which
agrees with the first expansion listed above. Second, suppose “j − 1 is down
and αj �= 3.” Then again yk1 = δkαj . Also, “j − 1 is down” and “αj �= 3”
imply that “j is down.” Thus, “j is down and αj �= 3,” so the algorithm
output is xkj = δ′kαj

= y′
k1, which agrees with the second expansion listed

above. Third, suppose “j − 1 is up and αj = 3.” Then yk1 = 0. Also,
“j − 1 is up” and “αj = 3” imply that “j is down.” Thus, “j is down and
αj = 3,” so the algorithm output is xkj = 0 = yk1, which agrees with the
third expansion listed above. Fourth and finally, suppose “j − 1 is down and
αj = 3.” Then again yk1 = 0. Also, “j − 1 is down” and “αj = 3” imply
that “j is up.” Thus, “j is up and αj = 3,” so the algorithm output is
xkj = 1 = 0′ = y′

k1, which agrees with the fourth and final expansion listed
above. This finishes the induction step. It follows that there is a constant
sequence of binary expansions of xk whose jth term has its first j digits xk1,
. . ., xkj calculated via the xkj -algorithm. Since this constant sequence clearly
converges to .xk1xk2 · · · where all digits are calculated via the xkj -algorithm,
the proof is complete.

With Proposition 72.1 and φ(α) = x = [x0, x1, x2]T , we may calculate
each xk using α as input to the xkj -algorithm. For example, consider the
sequence α = 2, 1, 0, 0, 0, · · · . Then φ(α) = [1/4, 1/4, 1/2]T , and the xkj -
algorithm with input α has output x0 = .0011 · · · , x1 = .0100 · · · , and x2 =
.1000 · · · . But as we shall see, as an application of Proposition 74.1(v), there
is no input sequence that will allow the xkj -algorithm to output the given
equivalent binary expansions x0 = x1 = .0100 · · · and x2 = .1000 · · · . It
follows that even though the quotient map φ and the xkj -algorithm have
the same domain N(0, 1, 2, 3) and they are equal when viewed as functions
onto Δ2, the xkj -algorithm cannot produce all “binary representations” of
all points in Δ2.
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§73 Binary Representations

To understand the limitations of the xkj -algorithm, we present several propo-
sitions, the first of which may be deduced from the observation that the
equality Σ∞

j=i1/2j = 1/2i−1 yields the equality .xk1 · · ·xk(i−2)0111 · · · =
.xk1 · · ·xk(i−2)1000 · · · .

73.1 Proposition Let xk ∈ [0, 1] have a binary expansion xk = .xk1xk2 · · · .
That is, xk = Σ∞

j=1xkj/2j where xk1xk2 · · · is a sequence in {0, 1}. Then
xk has another binary expansion .yk1yk2 · · · if and only if the sequences
xk1xk2 · · · and yk1yk2 · · · are adjacent endpoints in N(0, 1) if and only if
xk1xk2 · · · has a tail index.

Thus, since each xk ∈ [0, 1] has at most two binary expansions, there exist
at most 8 = 23 distinct representations [x01x02 · · · , x11x12 · · · , x21x22 · · · ]T ∈
N(0, 1)3 whose components are strings of binary digits (in contrast to the
corresponding triple x = [x0, x1, x2]T ∈ Δ2 whose components are the values
of the corresponding binary expansions). We shall refer to any such rep-
resentation as a binary representation of x ∈ Δ2, and say that for a given
sequence α ∈ N(0, 1, 2, 3), the xkj -algorithm produces a binary representa-
tion of φ(α) = x. To count binary representations of a given point x ∈ Δ2,
we may use the previous proposition and a simple counting argument.

73.2 Proposition Let x ∈ Δ2, and let χ denote the number of barycentric
coordinates xk that have a binary expansion whose sequence of digits has a
tail index. Then the number of binary representations of x is 2χ.

Our next proposition shows that the xkj -algorithm maps N(0, 1, 2, 3) one-
to-one onto the binary representations that it can produce.

73.3 Proposition (ϑ is an injection) Let φ : N(0, 1, 2, 3) → Δ2 be the
quotient map, and let φ(α) = φ(β) = x = [x0, x1, x2]T . If the xkj-algorithm
applied to α and β gives the same binary representation of x, then α = β.

Proof. For the input sequence α, we let .xα
k1x

α
k2 · · · denote the output. Then

the jth digit of the output is “xα
kj .” Likewise, “xβ

kj” has the obvious meaning.
Note that among the components of the ordered triple (xα

0j , x
α
1j , x

α
2j) there is

exactly “one 1” in the case “j is up and αj �= 3,” or exactly “two 1s” in the
case “j is down and αj �= 3,” or exactly “three 1s” in the case “j is up and
αj = 3,” or exactly “zero 1s” in the case “j is down and αj = 3.” Likewise,
we may consider the corresponding ordered triple produced with input β. It
follows, since both inputs α and β produce the same binary representation,
that these ordered triples have the “same number of 1s,” and consequently,
by exhaustive analysis, that αj = βj . This finishes the proof.

It follows that Propositions 73.1, 73.2, and 73.3 yield the following.



148 FROM 2-WEB IFS TO 2-SIMPLEX IFS CHAPTER 13

73.4 Corollary Let x = [x0, x1, x2]T be such that each coordinate xk has a
binary expansion whose sequence of digits in {0, 1} has no tail index. Then
for some input sequence α, the xkj-algorithm yields the unique binary repre-
sentation of x, and {α} = φ−1(x).

§74 Associated Matrices

Let α and β be distinct members of φ−1(x). Then the xkj -algorithm, with
input α and then input β, will output distinct binary representations of x
(Proposition 73.3). It follows that φ−1(x) can contain at most the number
of distinct binary representations of x that the xkj -algorithm can produce,
which, according to Proposition 73.2, is at most 8. To count the exact num-
bers of representations for various points x ∈ Δ2, however, we shall use
certain matrices that will help us understand the algorithm:

Let α be an input sequence to the xkj -algorithm, which then yields x0 =
.x01x02 · · · and x1 = .x11x12 · · · and x2 = .x21x22 · · · . A matrix Mα is
associated with α if

Mα =

⎡
⎣ x�1 x�2 · · ·

xm1 xm2 · · ·
xn1 xn2 · · ·

⎤
⎦

where {�, m, n} = {0, 1, 2}. (The ordering of the rows is not important.) It
is the properties of the columns of these matrices that allow us to better
understand the xkj -algorithm, and subsequently the quotient map itself.

Observe that while there is no restriction on a particular column, i.e.,
a column may contain no “1s”, one “1”, two “1s”, or three “1s”, the xkj -
algorithm places constraints on which columns can be adjacent. The proof
of the following proposition is straightforward and therefore omitted.

74.1 Proposition Let α be input for the xkj-algorithm, and let Mα be as-
sociated with α. Then the columns of Mα satisfy the following:

(i) When α is a sequence in {0, 1, 2}, each column contains exactly one 1.
(ii) When r is the smallest index such that αr = 3, each column preceding

the rth column contains exactly one 1.
(iii) When αr = 3 and the smallest index s > r such that αs = 3 also

satisfies s > r + 1, then each column between the rth and s columns
contains exactly two 1s when r is down, and exactly one 1 when r is up.

(iv) When αr = 3, then the rth column contains only zeros when r is
down and contains only ones when r is up.

(v) Columns with exactly one 1 cannot be adjacent to columns with
exactly two 1s, i.e., these two distinct kinds of columns are separated
by columns of all zeros or columns of all ones.

(vi) Two columns whose entries are all zeros cannot be adjacent, and
two columns whose entries are all ones cannot be adjacent.
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With the aid of Proposition 74.1 and the “matched sequences” introduced
in the following section, we shall be in a position to understand the point-
inverse sets φ−1(x).

In passing, note that Proposition 74.1(i) tells us that for each α in the
code space N(0, 1, 2) of Sierpiński’s gasket, the associated matrix Mα has
exactly one 1 in each column.

§75 Matched Sequences

For a given doubleton subset K of {0, 1, 2}, we use “ai” and “bi”, for each
i = 1, 2, . . ., to denote the elements of K with the constraint that {ai, bi} =
K. In addition, for any such i, we use “ci” to denote the lone element in
{0, 1, 2} − K, and we use “di” to denote any member of {0, 1, 2, 3}. The
following definitions concern sequences in {0, 1, 2, 3}:
Singleton sequences : Constant sequences, sequences with the constant sub-
sequence 33 · · · , sequences with three constant subsequences, or sequences in
a doubleton set K ⊂ {0, 1, 2} with no tail index.

Matched doubleton sequences : Two sequences α, β with no tail index, but
with an index r ≥ 1 and a doubleton subset K of {0, 1, 2} such that

α = d1 · · · dr−1crar+1ar+2 · · ·
β = d1 · · · dr−1 3 br+1br+2 · · · .

Matched tripleton sequences : Three sequences α, β, γ with a common tail
index t ≥ 1, where a doubleton subset K of {0, 1, 2} exists such that

α = a1a2 · · · at−1atat+1

β = a1a2 · · · at−1at+1at

γ = a1a2 · · · at−13ct+1.

Matched hexeton sequences: Six sequences α, β, γ, δ, ε, ζ with a common tail
index t > r ≥ 1 where a doubleton subset K of {0, 1, 2} exists such that

α = d1 · · ·dr−1crar+1 · · ·at−1atat+1

β = d1 · · ·dr−1crar+1 · · ·at−1at+1at

γ = d1 · · ·dr−1crar+1 · · ·at−13ct+1

δ = d1 · · ·dr−1 3 br+1 · · · bt−1atat+1

ε = d1 · · ·dr−1 3 br+1 · · · bt−1at+1at

ζ = d1 · · ·dr−1 3 br+1 · · · bt−13ct+1.

(To avoid confusion, note that the form as presented is clear when t > r + 1,
but for the lone case when t = r + 1, we need to remove each instance



150 FROM 2-WEB IFS TO 2-SIMPLEX IFS CHAPTER 13

of “ar+1 · · · at−1” and each instance of “br+1 · · · bt−1”. For example, when
t = r + 1, then α is simply d1 · · ·dr−1cratat+1.)

To illustrate and motivate these classes of sequences, first consider rational
points in the 2-web ω2. In this case, matched tripleton sequences address
those on the boundary ∂Δ2 of Δ2 (Figure 75.1):
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Fig. 75.1 Matched tripleton sequences address a rational p in ω2 ∩ ∂Δ2.

And as illustrated in Figure 75.2, matched hexeton sequences address points
in ω2 ∩ (Δ2 − ∂Δ2) :
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Fig. 75.2 Matched hexeton sequences — a rational in ω2 ∩ (Δ2 − ∂Δ2).

Second, consider the irrational points in ω2. Such a point p on the edge
[u0,u2] of ∂Δ2 can lie on neither an edge nor a vertex of any triangle Tβ1β2···βj

where any βi = 3. Intuitively, it follows that the lone address of p relative to
ω2 is also the lone address of p relative to Δ2. (So in this case, a (singleton)
sequence in a doubleton set K = {0, 2} ⊂ {0, 1, 2} with no tail index is the
address of p.) But an irrational point p on say the edge common to triangles
T0 and T3 will have a matched doubleton sequence of addresses where r = 1
and K = {1, 2}.

§76 Point-Inverse Sets

Using mostly Proposition 74.1 and matched sequences, we prove the following
propositions:

76.1 Proposition A singleton sequence α has the property that φ−1φ(α) = α.

Proof. First, consider α = kk · · · where k �= 3. Then Proposition 74.1(i)
shows that Mα contains one row of ones and two rows of zeros. Each induced
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sequence of binary digits therefore has no tail index, and Corollary 73.4 then
yields the desired result. Second, if α contains the subsequence 333 · · · , then
Proposition 74.1(iv) shows that the columns of Mα containing all zeros are
infinite in number, as are those containing all ones. Again, apply Corol-
lary 73.4. Third, suppose that the sequence α does not contain the constant
subsequence 33· · · , but it does contain the constant subsequences kk · · · for
each k �= 3. Then eventually all indices are up or all indices are down. In
either case, each sequence corresponding to a row of Mα has no tail index.
Again, apply Corollary 73.4. Fourth and finally, suppose α = a1a2 · · · is a
two-valued sequence in {0, 1, 2} with no tail index. Then Proposition 74.1(i)
shows that each column of Mα contains exactly one 1. And since α is twoval-
ued, Mα has a row of zeros and the corresponding sequence of digits thus
has no tail index. Moreover, since α has no tail index, each of the other
two induced sequences has no tail index. And once again and finally, apply
Corollary 73.4.

76.2 Proposition Let α, β be matched doubleton sequences. Then φ(α) =
φ(β), and if φ(α) = φ(β) = x, then φ−1(x) = {α, β}.

Proof. Let K = {�, m}, and let {n} = {0, 1, 2} − K. Since α and β
have the same first r − 1 values d1, . . . , dr−1, the first (r − 1) columns of
the associated matrices of the matched doubleton sequences define the same
3× (r−1) submatrix D. Moreover, we assume (for illustrative purposes, i.e.,
the general case is similar) that ar+1 = �, ar+2 = m, and ar+3 = �. So first,
with this assumption, we suppose that r − 1 is up relative to α (note that
r − 1 is up relative to β). Then r is up relative to α and down relative to β.
Thus,

Mα =

⎡
⎣D

0 1 0 1 · · ·
0 0 1 0 · · ·
1 0 0 0 00 · · ·

⎤
⎦ and Mβ =

⎡
⎣D

0 1 0 1 · · ·
0 0 1 0 · · ·
0 1 1 1 11 · · ·

⎤
⎦ .

From inspection of the binary expansions induced by these matrices it is
clear that φ maps the matched doubleton sequence to the same point, say
x. Moreover, we see that rows of Mα that correspond to � and m have no
tail index and only the row corresponding to n represents a binary sequence
with a tail index r. It follows (Proposition 73.2) that x has only two binary
representations. Thus, Proposition 73.3 shows that φ−1(x) has size two and
the desired result follows. So second, under the same assumption (ar+1 = �,
ar+2 = m, and ar+3 = �), we now suppose that r−1 is down relative to both
α and β: Then r is down relative to α and up relative to β. Thus,

Mα =

⎡
⎣D

1 0 1 0 · · ·
1 1 0 1 · · ·
0 1 1 1 11 · · ·

⎤
⎦ and Mβ =

⎡
⎣D

1 0 1 0 · · ·
1 1 0 1 · · ·
1 0 0 0 00 · · ·

⎤
⎦ .

An argument similar to the one used in the first case shows that the desired
result is again true. Thus, we are finished.
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76.3 Proposition Let α, β, γ be matched tripleton sequences. Then φ(α) =
φ(β) = φ(γ), and if φ(α) = φ(β) = φ(γ) = x, then φ−1(x) = {α, β, γ}.

Proof. Let K = {�, m}. Since α, β, and γ have the same first t − 1 values
a1, . . . , at−1, the first (t − 1) columns of their associated matrices (with the
same ordering �, m, n of rows) contain the same 3 × (t − 1) submatrix U (a
mnemonic for up) whose entries in the nth row are all zero. Moreover, we
assume (for illustrative purposes, i.e., the general case is similar) that at = �.
Since neither at nor at+1 equals 3, the indices t and t + 1 are up relative to
both α and β, while both of t and t + 1 are down relative to γ. Thus,

Mα=

⎡
⎢⎢⎣U

1 0 0 · · ·
0 1 1 · · ·
0 0 0 · · ·

⎤
⎥⎥⎦, Mβ=

⎡
⎢⎢⎣U

0 1 1 · · ·
1 0 0 · · ·
0 0 0 · · ·

⎤
⎥⎥⎦, Mγ=

⎡
⎢⎢⎣U

0 1 1 · · ·
0 1 1 · · ·
0 0 0 · · ·

⎤
⎥⎥⎦ .

From the binary expansions induced by these matrices, we see that φ is
constant on the matched tripleton sequences. And if we let x = φ(α) =
φ(β) = φ(γ), then since exactly two rows of any of these associated matrices
induce sequences with tail indices, we see (Proposition 73.2) that the image
point x has 4 = 22 binary representations. Three of the four representations
are given by the associated matrices. The fourth representation (matrix) is

⎡
⎢⎢⎣U

1 0 0 · · ·
1 0 0 · · ·
0 0 0 · · ·

⎤
⎥⎥⎦ .

But Proposition 74.1(vi) shows that the xkj -algorithm cannot produce this
matrix. It follows that the size of φ−1(x) is three, and this finishes the proof.

We shall need the following matrices in the proof of the next proposition.

Mα=

⎡
⎢⎢⎣D

0 1 0 1 1 0 0 · · ·
0 0 1 0 0 1 1 · · ·
1 0 0 0 0 0 0 · · ·

⎤
⎥⎥⎦, Mδ =

⎡
⎢⎢⎣D

0 1 0 1 1 0 0 · · ·
0 0 1 0 0 1 1 · · ·
0 1 1 1 1 1 1 · · ·

⎤
⎥⎥⎦

Mβ=

⎡
⎢⎢⎣D

0 1 0 1 0 1 1 · · ·
0 0 1 0 1 0 0 · · ·
1 0 0 0 0 0 0 · · ·

⎤
⎥⎥⎦, Mε=

⎡
⎢⎢⎣D

0 1 0 1 0 1 1 · · ·
0 0 1 0 1 0 0 · · ·
0 1 1 1 1 1 1 · · ·

⎤
⎥⎥⎦

Mγ =

⎡
⎢⎢⎣D

0 1 0 1 0 1 1 · · ·
0 0 1 0 0 1 1 · · ·
1 0 0 0 0 0 0 · · ·

⎤
⎥⎥⎦, Mζ =

⎡
⎢⎢⎣D

0 1 0 1 1 0 0 · · ·
0 0 1 0 1 0 0 · · ·
0 1 1 1 1 1 1 · · ·

⎤
⎥⎥⎦.

76.4 Proposition Let α, β, γ, δ, ε, ζ be matched hexeton sequences. Then
φ(α) = φ(β) = φ(γ) = φ(δ) = φ(ε) = φ(ζ), and if φ(α) = φ(β) = φ(γ) =
φ(δ) = φ(ε) = φ(ζ) = x, then φ−1(x) = {α, β, γ, δ, ε, ζ}.
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Proof. Let K = {�, m}. Similar to the “doubleton sequence case” above,
each of the six associated matrices Mα, . . . , Mζ whose rows are ordered �, m, n
contain the same 3 × (r − 1) submatrix D. We assume (for illustrative pur-
poses, i.e., the general case is similar) that ar+1 = �, ar+2 = m, ar+3 =
at−1 = �, and at = �. So first suppose that r − 1 is up relative to α. Then,
using a boldface font to indicate the tth column, we have the six matrices Mα,
Mβ, Mγ , Mδ, Mε, and Mζ whose entries were detailed prior to the statement
of the theorem.

From the binary expansions given by these matrices, we see that φ is con-
stant on the matched hexeton sequences. And if we let x = φ(α) = φ(β) =
φ(γ) = φ(δ) = φ(ε) = φ(ζ), then since all three rows of any of these asso-
ciated matrices induce sequences with tail indices, we see (Proposition 73.2)
that the image point x has 8 = 23 binary representations, while the associ-
ated matrices account for only six of the eight. Indeed, the two remaining
representations (matrices) are
⎡
⎣D

0 1 0 1 1 0 0 · · ·
0 0 1 0 1 0 0 · · ·
1 0 0 0 0 0 0 · · ·

⎤
⎦ and

⎡
⎣D

0 1 0 1 0 1 1 · · ·
0 0 1 0 0 1 1 · · ·
0 1 1 1 1 1 1 · · ·

⎤
⎦ .

But Proposition 74.1(vi) shows that the xkj -algorithm cannot produce these
representations. If follows that the size of φ−1(x) is six, and thus we are
finished with the first case. So second, suppose that r− 1 is down relative to
α. In this case we may calculate the associated matrices by simply changing
each “1” to “0” and each “0” to “1” in the formula for the six matrices listed
above (in the “up” case). (This property is imbedded in the algorithm, e.g.,
when αj �= 3, the δkαj output may be obtained from the output δ′kαj

by
permuting the zeros and ones.) Thus, in the “down case” the two “missing
representations” will once again exhibit either adjacent columns of all zeros
or adjacent columns of all ones, and such matrices do not lie in the range of
the xkj -algorithm.

§77 The Relation R

The following theorem makes the definition of R obvious.

77.1 Theorem Let φ : N(0, 1, 2, 3) → Δ2 be the quotient/address map, and
let x ∈ Δ2. Then φ−1(x) is a singleton set containing a singleton sequence,
or a doubleton set containing matched doubleton sequences, or a tripleton set
containing matched tripleton sequences, or a hexeton set containing matched
hexeton sequences.

Proof. If x is the φ-image of a singleton sequence, then by Proposition 76.1
we are finished. So suppose x is not the image of a singleton sequence. Since
φ is onto Δ2, there exists a sequence α in {0, 1, 2, 3} such that φ(α) = x. Since
α is not a singleton sequence, it is non constant and eventually in a doubleton
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subset K ⊂ {0, 1, 2}, and whenever all values of α are in K, then α has a
tail index. Consider the last case first. Then α = a1a2 · · ·atat+1, showing
that α is one among three matched tripleton sequences; and an application
of Proposition 76.3 finishes the proof. So we are left with the case where a
doubleton subset K ⊂ {0, 1, 2} and a smallest index r exist such that αi ∈ K
when i > r ≥ 1. There are two subcases, according to whether α has or does
not have a tail index. If α has a tail index t > r, then

α = d1 · · · dr−1crar+1 · · · at−1atat+1 or
α = d1 · · · dr−1 3 ar+1 · · · at−1atat+1

when t > r + 1, and

α = d1 · · ·dr−1cratat+1 or
α = d1 · · ·dr−1 3 atat+1

when t = r + 1. In other words, when α has a tail index, then α is one
among six matched hexeton sequences; and an application of Proposition 76.4
finishes the proof. So, turning to the last subcase where our α has no tail
index, we see that

α = d1 · · · dr−1crar+1ar+2 · · · or
α = d1 · · · dr−1 3 ar+1ar+2 · · · .

In other words, when α has no tail index, then α is one among two matched
doubleton sequences; and an application of Proposition 76.2 finishes the
proof. Since all possibilities for the form of α have been exhausted, and
in every case the theorem was true, the proof is finished.

Since the relation R may be defined as the equivalence relation induced
by the partition {φ−1(x)|x ∈ Δ2}, Theorem 77.1 shows that the classes of R
contain one, two, three, or six elements.

§78 Representations of 2-Space and the 1-Sphere

The boundary ∂Δ2 of Δ2 is closed in Δ2 and is a homeomorphic copy of the
1-sphere, while Δ2 − ∂Δ2 is open in Δ2 and is a copy of Euclidean 2-space.

We use these copies of 2-space R

2 and the 1-space S1 together with the
mathematics of the address map φ : N({0, 1, 2, 3}) → Δ2 induced by the IFS
F∗

2 to obtain a representation of 2-space and the 1-sphere.

78.1 Theorem Let φ be the address map from N(0, 1, 2, 3) onto the 2-simplex
Δ2. Let F be the φ-inverse subspace of N(0, 1, 2, 3) that consists of (1) the
constant sequences 0, 1, and 2; (2) the sequences in a doubleton set K ⊂
{0, 1, 2} with no tail index; and (3) the matched tripleton sequences. Let



§79 COMMENTS 155

G = N(0, 1, 2, 3) − F . Then G is also a φ-inverse subspace of N(0, 1, 2, 3).
Moreover,

φ|G : G → (Δ2 − ∂Δ2) and φ|F : F → ∂Δ2

are quotient maps, the former onto a copy of 2-space, and the latter onto a
copy of the 1-sphere.

Proof. The three φ−1(x) sets where x is a vertex of Δ2 are singleton sets
whose members are the singleton sequences defined in (1). The φ−1(x) sets
where x is an irrational point in (the interior of) one of the edges of Δ2

are singleton sets whose members are the singleton sequences defined in (2).
And the φ−1(x) sets where x is a rational point in one of the edges of Δ2

are tripleton sets whose members are the tripleton sequences defined in (3).
It follows that F = φ−1(∂Δ2) and that G = φ−1(Δ2 − ∂Δ2). Since φ is
continuous, φ|F and φ|G are continuous. In addition, since ∂Δ2 is closed
in Δ2 and (Δ2 − ∂Δ2) is open in Δ2, it follows that both φ|F and φ|G are
quotient maps (see Dugundji [1966, page 122, Theorem 2.1]).

§79 Comments

As for the problem of creating a 3-simplex system that extends the 3-web
system, the approach used in this chapter was not obviously extendable to the
3-simplex case. The 3-simplex case, however, was solved by Lipscomb [2007]
who used another approach which is the topic of the following chapter. While
the solution for the 3-simplex case is intuitive, the number of cardinalities of
inverse sets of the address map is significant. The approach that led to the
solution for the 3-simplex case does seem to be general enough to at least
suggest an approach to the 4-simplex case. The problem appears to be the
number of technicalities that one would encounter. That is, if the increase in
technicalities that occurred in going from the 2-simplex case to the 3-simplex
case is an indication, then it would take a significant effort to track all of the
kinds of sequences that one encounters in the 4-simplex case.

Nevertheless, from the very beginning it was the 4-simplex case that was
the goal of this author. In particular, it was the 3-sphere S3 in an “adjacent-
endpoint identification” IFS context that served as motivation — the one-
dimensional edges of the 4-simplex is a level-1 4-web, i.e., a picture of a level-1
J5. Moreover, topological studies of S3 are both extensive and historically
significant. For an introduction to such studies and models of S3 see, for
example, Bing [1988] and Wilder [1938].



CHAPTER 14

From 3-Web IFS to 3-Simplex IFS
3-Space and the 2-Sphere

The n-web fractal ωn — the attractor of the IFS of n+1 contractions by 1/2
toward the vertices of an n-simplex — emerges from a manifold (n-simplex).
The classical example is Sierpiński’s gasket (2-web) which emerges from a 2-
simplex. It is therefore natural (inverse of moving from manifolds to fractals)
to seek, for each n ≥ 2, an extension of the n-web system to an n-simplex
system. A solution for n = 2 is presented in Chapter 13 where an application
yielded a representation of 2-space and the 1-sphere. In this chapter, we
provide a solution for n = 3, which yields a representation of 3-space and the
2-sphere. The presentation follows Lipscomb [2007].

§80 Overview

The problem of extending the n-web ωn IFS to an n-simplex Δn IFS was
introduced in the previous chapter and then solved for the n = 2 case. In
this chapter we present a solution for n = 3.

We continue to use the standard simplex Δ3 as our model 3-simplex. That
is, we use the four unit basis vectors

u0 = (1, 0, 0, 0) u1 = (0, 1, 0, 0) u2 = (0, 0, 1, 0) u3 = (0, 0, 0, 1)

in 4-space R

4 as the vertices of Δ3. For this Δ3, the barycentric and Cartesian
coordinates of any x ∈ Δ3 are equal.

We also have F3 = {w0, w1, w2, w3} as the ω3 IFS where for each k,
wk(x) = 1/2(x+uk) is a contraction by 1/2 toward uk. The attractor ω3 of F3

is called the 3-web and the code space of F3 is the Baire space N({0, 1, 2, 3}).
Our goal here runs parallel to the goal of Chapter 13, namely to emulate

and extend the adjacent-endpoint approach: Extend the F3 IFS to an IFS
F∗

3 whose address map yields Δ3, and then recognize the basic forms of the
sequences in N({0, 1, 2, 3}) that when identified (via the address mapping)
yield Δ3.

The approach in the 2-web case required one additional affine transfor-
mation that served to iteratively fill the “holes” in ω2. The approach in the
3-web case requires four additional transformations that combine to itera-
tively form octahedra that fill the “holes” in ω3.

S.L. Lipscomb, Fractals and Universal Spaces in Dimension Theory,
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§81 Decomposing the 3-Simplex

Recall the scheme (complex) of triangles displayed in Figure 70.1 that mo-
tivated the 2-simplex extension F∗

2 of F2. Unlike the 2-simplex, where the
“hole” Δ2 \∪2

k=0wk(Δ2) is an (open) 2-simplex, the “hole” Δ3 \∪3
k=0wk(Δ3)

in the 3-simplex is not an (open) 3-simplex. Rather, it is an octahedron minus
its 1-skeleton. Since nonsingular affine transformations map (nondegenerate)
tetrahedra to (nondegenerate) tetrahedra, we decompose this octahedron into
a union of four tetrahedra.

As indicated in Figure 81.1, u0, u1, u2, and u3 denote the vertices of
Δ3, and mij denotes the midpoint of the edge (1-simplex) [ui, uj ]. The line
segment PQ, where P = 1/2(u0 + u1) = m01 and Q = 1/2(u2 + u3) = m23,
is central to the construction — PQ is pictured as the dashed line interior to
the “octahedral hole.” With PQ, the hole decomposes into a union of four
(closed) 3-simplexes T0′ , T1′ , T2′ , and T3′ , exposing Δ3 as the union of eight
(closed) simplexes Tq where q ∈ A = {0, 1, 2, 3, 0′, 1′, 2′, 3′}:

T0 = T1 = T2 = T3 =
[u0, P, m02, m03] [u1, P, m12, m13] [u2, Q,m02, m12] [u3, Q, m03, m13]

T0′ = T1′ = T2′ = T3′ =
[P, Q, m12, m13] [P, Q,m02, m03] [T2′ = [P, Q,m03, m13] [P, Q, m02, m12] .

u1

u0

u3

u2

..................
..................

..................
.................

..................
.................

..................
..................

.................
..................

.................
..................

..................
.................

...............
............

.............
............

.............
.............

............
.............

.............
............

.............
.............

............
.............

.............
............

............
.............

............
.............

.............
............

.............
..............................................................................................................................................................................................................................................................................................................................................................................................

P
.............

.............
............

.............
.............

............
.............

.............
............

.............
.............

................
..................

.................
..................

..................
..................

..................
..........

Q

..........
...........
..........
...........
...........
...........
..........
...........
...........
..........
..........
..........
..........
..........
..........
..........
..........
..........
...

................................................
................................................

.......................................

.......................................

m02

m13

m12 m03

.............
.............

............
.............

.............
............

.............
.............

............
.............

.............
................
..................

.................
..................

..................
..................

..................
..........

..........
...........
..........
...........
...........
...........
..........
...........
...........
..........
..........
..........
..........
..........
..........
..........
..........
..........
...

............................................................................................................................................................................

............................................................................................................................................................................

........................................................................

.........................................................................................
P

Q........................................................................

.........................................................................................

.....................................................................

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

...........
..

Fig. 81.1 A 3-simplex, octahedral-shaped hole, and segment PQ.

Because of our choice of PQ, the set S = {{0, 1}, {2, 3}} plays a special
role. For example, a primed subscript, say i′, where {i, j} ∈ S, indicates that
Ti′ has faces “opposite” the vertices ui and uj. To illustrate, the subscript 0′

indicates that the “hole [Q, m12, m13] opposite u0” and “the face [P, m12, m13]
of T1 opposite u1” are faces of T0′ . In passing, note that PQ is an edge of
each Ti′ .
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§82 A 3-Simplex IFS

We extend F3 to a 3-simplex system F∗
3 according to the decomposition of

Δ3 provided in the previous section. Since we shall express the additional
affine transformations as matrices, we shall write our uk vectors as column
vectors, i.e., we let u0 = [1, 0, 0, 0]T , u1 = [0, 1, 0, 0]T , u2 = [0, 0, 1, 0]T ,
and u3 = [0, 0, 0, 1]T denote the vertices of Δ3. In addition, we consider
the barycenters of the 2-faces of Δ3, namely u0′ = (1/3)[0, 1, 1, 1]T , u1′ =
(1/3)[1, 0, 1, 1]T , u2′ = (1/3)[1, 1, 0, 1]T , and u3′ = (1/3)[1, 1, 1, 0]T . That is,
uk′ is the barycenter of the face opposite vertex uk. We also define

L0 =

⎡
⎢⎢⎣

1 0 0 0

2/3 −1/3 2/3 2/3

−1/3 2/3 −1/3 2/3

−1/3 2/3 2/3 −1/3

⎤
⎥⎥⎦ L1 =

⎡
⎢⎢⎣

−1/3 2/3 2/3 2/3

0 1 0 0

2/3 −1/3 −1/3 2/3

2/3 −1/3 2/3 −1/3

⎤
⎥⎥⎦

and

L2 =

⎡
⎢⎢⎣

−1/3 2/3 −1/3 2/3

2/3 −1/3 −1/3 2/3

0 0 1 0

2/3 2/3 2/3 −1/3

⎤
⎥⎥⎦ L3 =

⎡
⎢⎢⎣

−1/3 2/3 2/3 −1/3

2/3 −1/3 2/3 −1/3

2/3 2/3 −1/3 2/3

0 0 0 1

⎤
⎥⎥⎦ .

Correspondingly, we also define

wk′ (x) = (1/2)Lkx + (1/2)uk′ (k = 0, 1, 2, 3),

and then let F∗
3 = F3 ∪ {w0′ , w1′ , w2′ , w3′}. Each wk′ ∈ F∗

3 is nonsingular
since each Lk has determinant “1”, and except for notation, the subsystem
{w0, w1, w2, w3′} ⊂ F∗

3 restricted to the face [u0, u1, u2] is the 2-simplex sys-
tem F∗

2 . To be sure that F∗
3 has an attractor, however, we show that its

contractivity factor is less than “1”.

82.1 Theorem The contractivity factor of F∗
3 is ≤

√
(4+

√
7)/12 ≈ .744 < 1.

Proof. Let I denote the 4 × 4 identity matrix, and let k = 0, 1, 2, 3. Then
each wk has contractivity factor 1/2: For z = x− y in Euclidean 4-space and
B = (1/2)I, we have

|wk(x)−wk(y)|2 = |(1/2)I(z)|2 = |Bz|2 = zT BT Bz = Σi(1/4)z2
i = (1/4)|z|2.

Turning to the wk′ , we first consider w0′ : In this case, let B = (1/2)L0. Then

|w0′(x) − w0′(y)|2 = |1/2L0(z)|2 = |Bz|2 = zT BT Bz

where M = BT B is a real symmetric matrix. The characteristic equation
det(M − λI) = 0 of M is

(1/4 − λ)2(λ2 − (2/3)λ + (1/16)) =
(1/4 − λ)2(λ − (4 +

√
7)/12)(λ − (4 −

√
7)/12) = 0.
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Since M is real symmetric, there exist matrices

P=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 ( 7+
√

7
14 )1/2 − ( 7−

√
7

14 )1/2

0 1√
3

−
(

7−
√

7
21

)1/2 − ( 7+
√

7
21 )1/2

1√
2

1√
3

( 7−
√

7
84 )1/2 ( 7+

√
7

84 )1/2

− 1√
2

1√
3

( 7−
√

7
84 )1/2 ( 7+

√
7

84 )1/2

⎤
⎥⎥⎥⎥⎥⎥⎦
;P−1MP=

⎡
⎢⎢⎢⎢⎢⎣

1
4 0 0 0

0 1
4 0 0

0 0 4+
√

7
12 0

0 0 0 4−
√

7
12

⎤
⎥⎥⎥⎥⎥⎦

where the columns of P form an orthonormal basis for 4-space (P−1 = PT ),
making P−1MP similar to M . It follows that

|w0′(x) − w0′(y)|2 = zT (BT B)z = (P−1z)T (P−1MP )(P−1z)

≤
(
(4 +

√
7)/12

)
|z|2.

For the remaining wk′ , let ρ denote an order-2 permutation of {1, 2, 3, 4}, and
let Qρ denote the 4×4 permutation matrix obtained from I by interchanging
row i with row ρ(i). Then, using cycle notation, it is easily checked that

Q(12)L0Q(12) = L1, Q(13)(24)L0Q(13)(24) = L2, Q(14)(23)L0Q(14)(23) = L3.

Moreover, for each ρ, we have Q−1
ρ = Qρ = QT

ρ and detQρ = ±1. Thus, for
each k ∈ {1, 2, 3},

det
(
[(1/2)Lk ]T [(1/2)Lk] − λI

)
= det

(
[(1/2)QρL0Qρ]

T [(1/2)QρL0Qρ] − λI
)

= det (Qρ(M − λI)Qρ) = det(M − λI).

So each wk′ is contractive with the same contraction factor as w0′ .

Since the contractivity factor of F∗
3 is less than 1, we know that it has

an attractor. And since the attractor is characterized as the unique compact
set K that satisfies K = ∪a∈Awq(K), it follows from Figure 81.1 that the
attractor of F∗

3 is Δ3.

§83 IFS-Induced Simplicial Complex Kn

Let v0, . . . , vn denote n + 1 linearly independent points in some Euclidean
space. The closed simplex σ = [v0, . . . , vn] with vertices v0, . . . , vn is the set
of points x = Σn

i=0xivi with each xi non-negative and Σixi = 1. The open
simplex (v0, . . . , vn) consists of those x ∈ [v0, . . . , vn] with each xi positive.
It follows that for n = 0, (v0) = [v0] = {v0} is both an open and closed
simplex, and for n ≥ 1, that (v0, . . . , vn) is the interior of [v0, . . . , vn]. By
convention, the empty set is also both an open and closed simplex. For
n ≥ −1, the dimension of a simplex with n + 1 vertices is n. A face (or
k-face for −1 ≤ k ≤ n) of [v0, . . . , vn] is a simplex (of dimension k) whose
vertices form a subset (of size k + 1) of {v0, . . . , vn}.
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A (simplicial) complex K is a finite collection of closed simplexes such
that (1) K contains every face of every σ ∈ K; and (2) if σ1, σ2 ∈ K, then
σ1∩σ2 is a common face of σ1 and σ2. The standard example is the collection
of all faces of a given simplex. The geometrical representation (polyhedron)
|K| of K is the point set (with the Euclidean induced topology) that is the
union of the members of K. A complex K∗ is a subdivision of a complex
K if |K∗| = |K| and each simplex in K∗ is a subset of some member of K.
A subcollection L of K is a subcomplex of K whenever L is also a complex.
The m-skeleton of a complex K is the subcomplex Km of all simplexes in K
whose dimension is ≤ m.

83.1 Lemma Let T = {Tα} be a collection of simplexes with the prop-
erty that each Tα ∩ Tβ is a face common to Tα and Tβ. Then K = {σ :
σ is a face of some T ∈ T } is a simplicial complex.

Proof. Let fα, fβ be faces of Tα, Tβ respectively. We show fα∩fβ = σ ∈ K.
Clearly σ ⊂ F = Tα ∩ Tβ, a face common to Tα and Tβ . Since F and
fα are faces of the simplex Tα, their intersection F ∩ fα is a face of Tα

and a face of F . Likewise, F ∩ fβ is a face of F . Since F is a simplex,
(F ∩ fα) ∩ (F ∩ fβ) = fα ∩ fβ = σ is a face of F , and consequently a face of
Tα, i.e., σ ∈ K.

Let T0 = {Δ3}, and given Tn−1, let Tn be the collection {w(T ) |T ∈
Tn−1 and w ∈ F∗

3 }. Members of Tn may be represented as Tα1···αn = wα1 ◦
· · · ◦ wαn(Δ3).

83.2 Lemma Let each Tn be defined as above. Then (a) Δ3 = ∪q∈ATq and
Tα1···αn−1 = ∪q∈ATα1···αn−1q; and (b) Tα, Tβ ∈ Tn implies Tα ∩ Tβ is a face
common to Tα and Tβ.

Proof. We prove (a) first. Let wα denote wα1 ◦ · · · ◦ wαn−1 . Since Δ3 =
∪q∈Awq(Δ3),

Tα1···αn−1 = wα(Δ3) = wα

(
∪q∈Awq(Δ3)

)
= ∪q∈A

(
wα ◦ wq(Δ3)

)
= ∪q∈ATα1···αn−1q,

which finishes the proof of (a). For the proof of (b), consider that (b) is clearly
true for n ≤ 1. So we assume n ≥ 2 and continue by induction. For each
q ∈ A, we to relate Tγ1···γn−1q in Tn to its supertetra Tγ1···γn−1 in Tn−1:

Δ3 Tγ1···γn−1

Tq Tγ1···γn−1q
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wγ1 ◦ · · · ◦ wγn−1

wγ1 ◦ · · · ◦ wγn−1

Fig. 83.3 Relating members of Tn to those in Tn−1.
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Indeed, viewing the vertical arrows in Figure 83.3 as inclusion mappings,
we see that the eight tetra Tγ1···γn−1q, q ∈ A, “combinatorially reside” in
Tγ1···γn−1 exactly (homeomorphically via the barycentric mapping wγ1 ◦ · · · ◦
wγn−1) as the eight tetra Tq “reside” in Δ3.

So if the ordered (n − 1)-tuples (α1, . . . , αn−1) and (β1, . . . , βn−1) are
equal, then Tα meets Tβ in a common face since Tαn meets Tβn in a common
face. In the other case, Tα1···αn−1 and Tβ1···βn−1 are distinct, but meet (by the
inductive assumption) in a common face F , which is a superset of Tα ∩ Tβ.
We suppose Tα ∩Tβ is non-empty, and then consider the possible dimensions
of F : If F is a 0-simplex, then Tα meets Tβ in a common vertex. If F is a
1-simplex, then using Figure 83.3 with (γ1, . . . , γn−1) = (α1, . . . , αn−1), we
may first identify F with its inverse-image F−1, an edge of Δ3. Since each
Tq meets F−1 in a simplex contained in the barycentric subdivision of F−1,
it follows that F meets Tα in some simplex in the barycentric subdivision
of F . Similarly, using Figure 83.3 for (γ1, . . . , γn−1) = (β1, . . . , βn−1), we
find that Tβ meets F in some simplex in the barycentric subdivision of F .
Since this subdivision of F is itself a complex, Tα meets Tβ in a common
face when F is a 1-simplex. Finally, if F is a 2-simplex, then again we
use Figure 83.3 with (γ1, . . . , γn−1) = (α1, . . . , αn−1). In this case, F−1 is
a 2-face of Δ3. The subdivision of F−1 induced via each Tq is the one of
“connecting midpoints” of its 1-faces. Thus, F meets Tα in some simplex in
the “connecting midpoints” subdivision of F . Similarly, F meets Tβ in some
simplex in the (same) “connecting midpoints” subdivision of F . Since this
subdivision is a complex, Tα meets Tβ in a common face.

Define, for each n ≥ 0, Kn = {σ : σ is a closed face of some T in Tn}.

83.4 Lemma Let each Kn be defined as above. Then Kn is a simplicial
complex, |Kn| = ∪T∈TnT = Δ3, and Kn is a subdivision of Kn−1.

Proof. Since Kn is the collection of all faces of all members of Tn, Lem-
mas 83.1 and 83.2(b) show that Kn is a complex. That |Kn| = ∪T∈TnT = Δ3

follows by induction: For n = 0 the result is obvious. And if these equalities
hold for n−1 ≥ 0, then Tα1···αn−1 = ∪q∈ATα1···αn−1q (Lemma 83.2(a)) shows
that these equalities hold for n. To see that Kn is a subdivision of Kn−1,
note that |Kn| = |Kn−1|, and σ ∈ Kn implies σ ⊂ Tα1···αn ⊂ Tα1···αn−1 .

83.5 Lemma (induction for Δ3) For each n ≥ 2 and each m ∈ {0, 1, 2}, let
Km

n denote the m-skeleton of Kn, i.e., all k-simplexes, k ≤ m, in Kn. Then
Km

n = {wα1 ◦ · · · ◦ wαn−1(σ) : σ ∈ Km
1 }.

Proof. Consider τ ∈ Km
n where n ≥ 2. Then τ is a k-face (k ≤ m) of some

Tα1···αn = wα1 ◦ · · · ◦ wαn(Δ3) ∈ Tn ⊂ Kn. It follows that a k-face τ∗ of Δ3

exists such that τ = wα1 ◦ · · · ◦wαn(τ∗) = wα1 ◦ · · · ◦wαn−1 (wαn(τ∗)) . Thus,
σ = wαn(τ∗) is a k-simplex in Km

1 , yielding Km
n ⊂ {wα1 ◦ · · · ◦wαn−1(σ)|σ ∈

Km
1 }. The reverse inclusion is similarly straightforward.
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§84 The Subcomplex Fn

By restricting Kn to a 2-face of Δ3, we obtain the subcomplex Fn: Let
{{i, j}, {k, �}} = {{0, 1}, {2, 3}}, and let Δ3

ijk be the 2-face of Δ3 that is
opposite u�. Define, for each n ≥ 0, Fn = {σ ∈ Kn : σ ⊂ Δ3

ijk}.

84.1 Lemma Let Δ3
ijk = [ui, uj , uk] and Δ3

rst = [ur, us, ut] be faces of Δ3

of dimension 2, and let q ∈ A. Then wq(Δ3
rst)∩Δ3

ijk contains a 2-simplex if
and only if {r, s, t} = {i, j, k} and q ∈ {i, j, k, �′}.

Proof. The “if” part is clear. Conversely, let wq(Δ3
rst) ∩ Δ3

ijk contain
a 2-simplex. Then, since the 3-simplex wq(Δ3) meets Δ3

ijk in a simplex
of dimension < 2 whenever q �∈ {i, j, k, �′}, we must have q ∈ {i, j, k, �′}.
Keep this q fixed and observe that Δ3

ijk = ∪{wm(Δ3
ijk)|m ∈ i, j, k, �′} where

each distinct pair of the four wm(Δ3
ijk) meet in a simplex of dimension < 2.

Thus, wq(Δ3
rst) meeting Δ3

ijk in a 2-simplex is equivalent to wq(Δ3
rst) meeting

wq(Δ3
ijk) in a 2-simplex, which yields {r, s, t} = {i, j, k}.

84.2 Lemma (representations of Fn and its members) For each n ≥ 0,

(a) the collection Fn is a subcomplex of Kn,
(b) |Fn| = Δ3

ijk,
(c) |Fn| = ∪{σ ∈ Fn| σ is a 2-simplex}, and
(d) Fn = {τ : τ is a face of some 2-simplex σ ∈ Fn}.

And when n ≥ 1,

(e) a 2-simplex σn ∈ Fn ⇔ σn = wα1 ◦ · · · ◦ wαn(Δ3
ijk) for some

α1, . . . , αn ∈ {i, j, k, �′}.

Moreover, the representation given in (e) is unique. That is, if σn = wβ1 ◦
· · · ◦wβn(σ0) ∈ Fn for some 2-simplex σ0 ∈ K0 and some list β1, . . . , βn ∈ A,
then σ0 = Δ3

ijk and each βm = αm.

Proof. First, we prove (e) for each n ≥ 1. The n = 1 case is clear
(Figure 70.1) because a 2-simplex σ1 ∈ F1 if and only if there is a unique
α1 ∈ {i, j, k, �′} such that σ1 = wα1(Δ3

ijk). So suppose n ≥ 2 and that
each 2-simplex in Fn−1 has the indicated unique representation. Consider
any 2-simplex σn ∈ Fn. Then σn ∈ Kn implies σn is a 2-face of some
wα1 ◦ · · · ◦ wαn(Δ3) ∈ Kn, i.e., for some 2-simplex σ0 ∈ K0, we have
σn = wα1 ◦ · · · ◦ wαn(σ0). So σn = wα1(σn−1) for some 2-simplex σn−1 =
wα2 ◦ · · · ◦ wαn(σ0) ∈ Kn−1. We show that σn−1 ⊂ Δ3

ijk : Since the 2-
simplex σn−1 ∈ Kn−1 and Kn−1 is a subdivision of K0, σn−1 is either a
subset of some 2-face Δ3

rst of Δ3 or meets the interior of Δ3. The lat-
ter case is impossible because wα1(int(Δ3)) ⊂ int(Δ3) but we know that
wα1(σn−1) = σn ⊂ Δ3

ijk. So σn−1 ⊂ Δ3
rst. It follows that wα1 (Δ3

rst) ∩ Δ3
ijk

contains a 2-simplex. By Lemma 84.1, {r, s, t} = {i, j, k} and α1 ∈ {i, j, k, �′}.
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Thus, σn−1 = wα2 ◦· · ·◦wαn(σ0) ∈ Fn−1, and the inductive hypothesis shows
that σ0 = Δ3

ijk and that each α2, . . . , αn ∈ {i, j, k, �′} is unique. This finishes
the “representation half” of the proof of (e). For the converse, i.e., each such
“form” yields a 2-simplex σn ∈ Fn, we note that wq(Δ3

ijk) ⊂ Δ3
ijk if and

only if q ∈ {i, j, k, �′}. And so the proof of (e) is complete. Statement (a)
is straightforward. To prove (b) and (c), first let “q” range over the mem-
bers of B = {i, j, k, �′} and let “α” range over the members (α1, . . . , αn−1) of
the product set Bn−1, making “∪q = ∪q∈B” and “∪α = ∪α∈Bn−1 .” And
for each such α, let wα denote wα1 ◦ · · · ◦ wαn−1 . Second, observe that
Δ3

ijk = ∪qwq(Δ3
ijk). Third, since |F0| = Δ3

ijk and |F0| is the union of the
2-simplexes that it contains, assume, for n ≥ 1, that |Fn−1| = Δ3

ijk and that
|Fn−1| is the union of the 2-simplexes that it contains (|Fn−1| = ∪αwα(Δ3

ijk)).
Then

Δ3
ijk = |Fn−1| = ∪αwα(Δ3

ijk)

= ∪αwα

(
∪qwq(Δ3

ijk)
)

= ∪α

(
∪q

(
wα ◦ wq(Δ3

ijk)
))

⊂ |Fn| ⊂ Δ3
ijk,

where the next-to-last inclusion follows from (e). This finishes the proof for
(b) and (c). Finally, to prove (d) let τ ∈ Fn have dimension ≤ 1. From (c),
there is a 2-simplex σ that meets the interior of τ , and since Fn is a complex,
τ = τ ∩ σ must be a face of σ.

84.3 Lemma (induction for Δ3
ijk) For each n ≥ 2 and each m ∈ {0, 1}, let

Fm
n denote the m-skeleton of Fn. Then Fm

n =
{
wα1 ◦ · · · ◦ wαn−1(σ)|σ ∈ Fm

1

and α1, . . . , αn−1 ∈ {i, j, k, �′}} .

Proof. Consider τ ∈ Fm
n . Then from Lemma 84.2 τ is a k-face (k ≤ m)

of some 2-simplex τn ∈ Fnthat has a unique representation τn = wα1 ◦ · · · ◦
wαn(Δ3

ijk). This representation provides σ = wαn(Δ3
ijk) ∈ Fm

1 that satisfies
the required condition. The reverse inclusion is obvious.

§85 Calculating Addresses

Unlike the 2-simplex case, where addresses are readily exposed via Fig-
ure 70.1, the analogous Figure 85.1 for the 3-simplex case is visually compli-
cated. In Figure 85.1, the “dark edges” represent PQ and its eight images
wq(PQ). Indeed, if P is pictured as the midpoint on the left-side edge of
Δ3 and Q the midpoint on the bottom-right edge, then PQ may be pic-
tured as the “long dark segment” connecting those midpoints, and, then the
eight “shorter dark segments” represent the eight wq(PQ) images of PQ.
From that observation, we then see that “four short dark segments” meet
PQ at its midpoint mPQ, which, in turn, reveals that each wk′ -image of the
octahedron-shaped hole meets the 1-simplex [P, Q] at its midpoint mPQ.
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Fig. 85.1 The K2 subdivision of K1.

In Figure 85.2 we see the “level-1 decomposition” {wk′ ◦ wq(Δ3) : wq ∈
F∗

3 } of wk′ (Δ3), which is part of the subdivision K2 of K1. Also note that
the wk′ -image of the octahedron-shaped hole meets the 1-simplex [P, Q] at
its midpoint mPQ.

Fig. 85.2 “Level-1 decomposition” of Tk′ .
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85.3 Lemma (vertices) Let wq ∈ F∗
3 , let φ denote the address map, and let

α ∈ N(A). Then (a) wq(φ(α)) = φ(qα1α2 · · · ); and (b) wq(φ(α)) = φ(α) =
uq if and only if α = q.

Proof. We begin with (a): By definition, φ(α) is the lone element in ∩∞
j=1Wj

where Wj = wα1 ◦ · · · ◦ wαj (Δ
3). So φ(α) ∈ Wj for each j, showing that

wq(φ(α)) ∈ wq(Wj) = wq ◦ wα1 ◦ · · · ◦ wαj (Δ3) for each j. It follows that
wq(φ(α)) is the lone element in ∩∞

j=1wq(Wj), i.e., wq(φ(α)) = φ(qα1α2 · · · ).
Turning to (b), since a contraction has only one fixed point and each wq is a
contraction such that wq(uq) = uq, we have wq(x) = x if and only if x = uq.
Now suppose α = q. Then wq(φ(α)) = φ(qα1α2 · · · ) = φ(α), showing that
φ(α) = uq. Conversely, suppose φ(α) = uq. For q fixed, the only index i such
that uq ∈ wi(Δ3) is i = q. It follows that α1 = q. If α1 = · · · = αn−1 = q,
then wα1 ◦ · · · ◦ wαn−1(uq) = uq. It follows, since uq ∈ wα1 ◦ · · · ◦ wαn(Δ3),
that uq ∈ wαn(Δ3). That is, αn = q, and by induction α = q.

§86 Steps for Determining Fibers

In sequence, we shall calculate fibers of points in the following sets: (i) vertices
and midpoints of edges (Table 87.3); (open) edges (Table 88.2); (open) edges
of the hole and (P, Q) (Tables 88.3 and 88.4); (open) 2-faces (Table 89.2);
and (open) 2-simplexes of K2

1 (Tables 90.3 and 90.4). Then we shall finish
the task by applying Theorem 86.2, which tells us that the fibers of points
in Δ3 \ |K2

1 | are either singleton fibers or “shifts” of those of points in |K2
1 |.

All results are summarized in Parts I and II of Table 93.1.

86.1 Theorem (singleton fibers I) A point x ∈ Δ3 satisfies |φ−1(x)| = 1 if
and only if for each n ≥ 1, x is contained in only one member of Tn.

86.2 Theorem (inductive step) Let A = {0, 1, 2, 3, 0′, 1′, 2′, 3′}. Let x be a
point in Δ3−|K2

1 |, and let φ denote the F∗
3 address map. Then either (a) there

is an (m ≥ 1)-length list ε1, . . . , εm ∈ A such that x ∈ wε1 ◦ · · · ◦ wεm(|K2
1 |),

in which case there is a y ∈ int(Δ3) ∩ |K2
1 | and an r, 1 ≤ r ≤ m, such that

φ−1(x) = {ε1 · · · εrβ | β ∈ φ−1(y)}, or (b) x �∈ wε1 ◦ · · · ◦wεm(|K2
1 |) for every

(m ≥ 1)-list ε1, . . . , εm ∈ A, in which case |φ−1(x)| = 1.

Proof. It is obvious that the hypothesis of either (a) or (b) holds. In the (a)
case, let x = wε1 ◦ · · ·◦wεm(ym) where ym ∈ |K2

1 |. If ym ∈ ∂Δ3, then ym−1 =
wεm(ym) ∈ |K2

1 |, and if ym−1 ∈ ∂Δ3, then ym−2 = wεm−1(ym−1) ∈ |K2
1 |, etc.

In short, since x �∈ |K2
1 | there is an r ≥ 1 such that y = yr ∈ int(Δ3) ∩ |K2

1 |
and x = wε1 ◦ · · · ◦ wεr (y). Moreover, if r > 1, then since q ∈ A implies
wq(int(Δ3)) = int(Tq) ⊂ int(Δ3) − |K2

1 |, each yk (1 ≤ k < r) cannot be
a member of |K2

1 |. From each such yk �∈ |K2
1 |, we may deduce that every

φ-address γ of x must have its first r values given by γ1 = ε1, . . . , γr = εr.
(Otherwise, the minimum k ≤ r among these subscripts such that γk �= εk



§86 STEPS FOR DETERMINING FIBERS 167

yields x ∈ σ3 = Tε1···εk
∩ Tγ1···γk

∈ K2
k , where k > 1 because x �∈ |K2

1 |. So
k ≥ 2. But then x ∈ σ3 = wε1 ◦ · · · ◦ wεk−1(σ) where 1 ≤ k − 1 < r and
σ ∈ K2

1 . Thus x = wε1 ◦ · · · ◦ wεk−1(yk−1) where yk−1 ∈ σ ⊂ |K2
1 |, which

contradicts yk−1 �∈ |K2
1 |.) It follows by Lemma 85.3(a) that each φ-address

β of y determines a φ-address of x via the following formula:

x = wε1 ◦ · · · ◦ wεr (φ(β)) = φ(ε1 · · · εrβ1β2 · · · ).

Now suppose γ is any φ-address of x. Then, (from the argument above)
γ1 = ε1, . . . , γr = εr, and

x = φ(γ1γ2 · · · ) = φ(ε1 · · · εrγr+1γr+2 · · · ) = wε1 ◦ · · · ◦ wεr (φ(β)),

where β1 = γr+1, β2 = γr+2, etc. And since wε1 ◦ · · · ◦ wεr is one-to-one,
φ(β) = y ∈ int(Δ3) ∩ |K2

1 |, showing that when (a) holds, the addresses
of x are determined as claimed. Next, suppose (b): Let ε be an address
of x. Then, since ∂Δ3 ⊂ |K2

1 |, we have x �∈ wε1 (∂Δ3) = ∂Tε1 , showing
x ∈ int(Tε1). And x �∈ wε1 ◦ wε2(∂Δ3) = ∂Tε1ε2 , showing x ∈ int(Tε1ε2), etc.
Thus, Theorem 86.1 shows that |φ−1(x)| = 1, i.e., x has only one address.

86.3 Theorem (addresses for a 2-face) Let x be a point in Δ3
ijk \ |F 1

1 |, and
let φ denote the F∗

3 address map. Then either (a) there is an (m ≥ 1)-length
list δ1, . . . , δm ∈ {i, j, k, �′} such that x ∈ wδ1 ◦ · · · ◦wδm(|F 1

1 |), in which case
there is a y ∈ int(Δ3

ijk) ∩ |F 1
1 | and there is an n, 1 ≤ n ≤ m, such that

φ−1(x) = {δ1 · · · δnβ | β ∈ φ−1(y)}, or (b) x �∈ wδ1 ◦ · · · ◦ wδm(|F 1
1 |) for

every (m ≥ 1)-length list δ1, . . . , δm ∈ {i, j, k, �′}, in which case |φ−1(x)| = 1
and the lone address of x is a sequence in {i, j, k, �′} with either a constant
subsequence �′�′ · · · or three constant subsequences.

Proof. It is obvious that the hypothesis of either (a) or (b) holds. The proof
in the (a) case runs parallel to its counterpart in the proof of Theorem 86.2.
So suppose the hypothesis of (b) holds: Since x ∈ Δ3

ijk it has at least one
address with each of its values in {i, j, k, �′}. (Recall that {wi, wj , wk, w�′} ⊂
F∗

3 generates addresses for Δ3
ijk that correspond in an obvious manner to the

addresses of Δ2 induced from F∗
2 .) So we may select a sequence δ in {i, j, k, �′}

that is an address of x. Since x ∈ Δ3
ijk ⊂ ∂Δ3, we have x ∈ ∂Tδ1 ∩ Δ3

ijk,
i.e., x is in the 2-face [wδ1(ui), wδ1(uj), wδ1(uk)]. In addition, however, since
x �∈ wδ1 (|F 1

1 |) the point x is in the open 2-face (wδ1(ui), wδ1(uj), wδ1(uk))
of Tδ1 . Thus, the only simplex Tq that contains x is Tδ1 . Similarly, x �∈
wδ1 ◦wΔ2(|F 1

1 |) implies that the only 3-simplex Tδ1q that contains x is Tδ1δ2 .
And so on. It follows from Theorem 86.1 that |φ−1(x)| = 1. The lone address
δ has the required properties because the identification of the subsystem
{wi, wj , wk, w�′} with that of F∗

2 matches δ with a singleton sequence in the
int(Δ2).

To illustrate the idea common to Theorems 86.2 and 86.3, consider the
F∗

2 fibers of points in the int(Δ2) (§75 and Theorem 78.1). The nonsingleton
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fibers of points in int(Δ2) are simply shifts of fibers of points in (m01, m02)∪
(m01, m12) ∪ (m02, m12). (In the display below, the addresses of points in
(m01, m02) ∪ (m01, m12) ∪ (m02, m12) are underlined.)

α = d1 · · · dr−1crar+1ar+2 · · ·
β = d1 · · · dr−1 3 br+1br+2 · · ·

, or,

α = d1 · · ·dr−1crar+1 · · · at−1atat+1

β = d1 · · · dr−1crar+1 · · · at−1at+1at

γ = d1 · · ·dr−1crar+1 · · ·at−13ct+1

δ = d1 · · · dr−1 3 br+1 · · · bt−1atat+1

ε = d1 · · ·dr−1 3 br+1 · · · bt−1at+1at

ζ = d1 · · ·dr−1 3 br+1 · · · bt−13ct+1.

In short, the “d1 · · · dr−1-shift” is analogous to the “ε” and “δ” shifts in
Theorems 86.2 and 86.3.

§87 Fibers and the 0-Skeleton K0
1

The 0-skeleton K0
1 contains the empty set and ten 0-simplexes, namely the

four vertices [u0], [u1], [u2], [u3] and the six midpoints [P ] = [m01], [m02],
[m03], [m12], [m13], [Q] = [m23] (Figure 81.1).

87.1 Theorem (addresses of vertices) Let x be a vertex of some Tα1···αt ∈
Tt. Then there is one and only one address of x whose first t terms are
α1, . . . , αt. Moreover, the unique address is α1 · · ·αtr where r ∈ {0, 1, 2, 3}
is the index of the unique vertex ur that satisfies wα1 ◦ · · · ◦ wαt(ur) = x.

Proof. Since each w ∈ F∗
3 is nonsingular and affine, any finite composition

of members of F∗
3 is nonsingular and affine. It follows, since such a compo-

sition maps vertices to vertices, that there is a unique vertex ur of Δ3 such
that wα1 ◦ · · · ◦ wαt(ur) = x. Lemma 85.3(b) followed by t applications of
Lemma 85.3(a) yield the desired result.

Theorem 87.1 along with Figure 87.2 provide information about the fibers
of the vertices.
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Fig. 87.2 Open simplexes in the Δ3-interior of unions of 3-simplexes.
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In more detail, Theorem 87.1 tells us that since there are eight Tq ∈ T1

sharing ten vertices (the points in |K0
1 |), there are 32 = 8 · 4 addresses “qr”

(r = 0, 1, 2, 3) that partition into ten fibers (four of size 1, four of size 4, and
two of size 6). The distinct kinds of fibers may be derived from Figure 87.2
(“X in Δ3-interior of Y ” means X ⊂ (Y ∩G) for some G in the topology of
Δ3.) The details are summarized in Table 87.3. For example, upon selecting
j, k ∈ {0, 1, 2, 3} such that {{i, j}, {k, �}} = {{0, 1}, {2, 3}}, one may find the
fiber of mjk. Table 87.3 is complete (it contains all addresses of all points
in |K0

1 |) because any vertex x of any Tq is Δ3-interior to the union of those
T ∈ T1 that have x as a vertex.

Number and Location F∗
3 Addresses |φ−1(x)| Type

4 Vertices ur (r = 0, 1, 2, 3) r 1 1.1

4 Midpoints mjk jk, kj, i′�, �′i 4 4.1

2 Midpoints mij ij, ji, i′i, j′j, k′�, �′k 6 6.1

Table 87.3 Fibers of vertices and midpoints of edges.

In passing, we note that the “Type” column will serve to classify the F∗
3

fibers and also aid in cross-referencing tables.

§88 Fibers and Open Edges of K1
1

The 1-skeleton K1
1 contains 25 1-simplexes, which partition into two subsets,

one generating the edges of Δ3 and the other the edges of the (octahedral)
hole and [P, Q]. In both cases, we use the following theorem, whose (omitted)
proof is similar to the proof of Theorem 87.1.

88.1 Theorem (transfer of addresses) Let t−1 ≥ 1, and let x be a point in
an open 1-face τ of some Tα1···αt−1 ∈ Tt−1. Then the number of F∗

3 -addresses
of x whose first t−1 terms are α1, . . . , αt−1 is the number of F∗

3 -addresses of
the unique y satisfying x = wα1 ◦ · · · ◦ wαt−1 (y). Moreover, each F∗

3 -address
of x whose first t−1 terms are α1, . . . , αt−1 has the form α1 · · ·αt−1β, where
β is an F∗

3 -address of y.

Fibers of points in open edges of Δ3. We summarize in Table 88.2 where
distinct r, s ∈ {0, 1, 2, 3}; “ars” denotes any address of the midpoint mrs;
and “α(t−1)” denotes α1, . . . , αt−1 ∈ {r, s} or the empty string.

x ∈ (ur, us) Constraints F∗
3 Addresses |φ−1(x)| Type

x α ∈ N(r, s) − {r, s} α 1 1.2

F3-irrational with no tail index

x {r, s} �∈ {{0, 1}, {2, 3}} α(t−1)ars 4 4.1

F3-rational {r, s} ∈ {{0, 1}, {2, 3}} α(t−1)ars 6 6.1

Table 88.2 Fibers of points in open edges of Δ3.
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Consider the “x is irrational” row of Table 88.2. Then x is a Δ3-interior
point of Tα1 ∈ T1, a Δ3-interior point of Tα1α2 ∈ T2, etc. So Theorem 86.1
shows that x satisfies |φ−1(x)| = 1.

For the “x is rational” row, suppose x = mjk is the midpoint of (uj , uk).
If α1, . . . , αt−1 denotes the empty list, then the corresponding addresses ajk

in the third column match those of mjk in Table 87.3. Next, suppose x =
(3/4)uj + (1/4)uk ∈ (uj , uk). Then x is the midpoint of the open 1-face
(uj , mjk) of Tj = Tα1 . (In this instance, t − 1 = 1.) Also, y = mjk is
the unique point that satisfies wα1(y) = wj(mjk) = x. Since the four F∗

3 -
addresses of mjk are known (Table 87.3), an application of (the transfer
addresses) Theorem 88.1 yields the four (indicated) addresses of x.

x Irrational Constraints F∗
3 Size Type

{{i, j}, {k, �}}= α ∈ N(r, s) − {r, s} Addresses of

{{0, 1}, {2, 3}} no tail index Fiber

x ∈ (mjk, mik) {r, s} = {j, i} and kα, �′β 2 2.1

(αm, βm) ∈ {(j, i), (i, j)}
x ∈ (mij , mjk) {r, s} = {i, k}; (αm, βm, jα, �′β, i′γ 3 3.1

γm) ∈ {(i, k, i), (k, i, �)}
x ∈ (P, Q) {r, s} = {0, 1}; (αm, βm, 0′α, 1′β, 4 4.2

γm, δm) ∈ {(0, 1, 3, 2), 2′γ, 3′δ

(1, 0, 2, 3)}

Table 88.3 Fibers of F3-irrational points in open edges of hole and (P, Q).

In Table 88.4 distinct r, s ∈ {0, 1, 2, 3}; “ars” denotes any address of the
midpoint mrs; and “α(t−1)” is α1, . . . , αt−1 ∈ {r, s} or the empty string.

x F3-Rational Constraints F∗
3 Size Type

{{i, j}, {k, �}}= Addresses of

{{0, 1}, {2, 3}} Fiber

x ∈ (mjk, mik) {r, s} = {j, i} and kα(t−1)aji, 2 · 6 12.1

(αm,βm)∈{(j,i),(i,j)} �′β(t−1)aij = 12

x ∈ (mij , mjk) {r, s} = {i, k} and jα(t−1)aik, 3 · 4 12.2

(αm, βm, γm) ∈ �′β(t−1)aki, = 12

{(i, k, i), (k, i, �)} i′γ(t−1)ai�

x ∈ (P, Q) {r, s} = {0, 1} and 0′α(t−1)a01, 4 · 6 24.1

(αm, βm, γm, δm) 1′β(t−1)a10, = 24

∈ {(0, 1, 3, 2), 2′γ(t−1)a32,

(1, 0, 2, 3)} 3′δ(t−1)a23

Table 88.4 Fibers of F3-rational points in open edges of hole and in (P, Q).

Fibers of points in open edges of hole and in (P, Q). These are summarized
in Tables 88.3 and 88.4. To begin, first note that a choice of an open edge
of the hole or the lone (P, Q) forces a choice of (at least one) doubleton set
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{i, j} ∈ {{0, 1}, {2, 3}}, and since (mij , mk�) = (P, Q) is the only open edge
in the interior of Δ3, the three forms (mjk, mik), (mij , mjk), (P, Q) cover all
possibilities. Second, x ∈ (P, Q) implies x �∈ ω3, bringing into question the
meaning of “x is a rational point in (P, Q):”

88.5 Definition (rational and irrational points in (PQ)) A point x in the
open 1-simplex (P, Q) is a rational point if its unique barycentric represen-
tation x = xP P + xQQ is such that xP ∈ {m/2n|1 ≤ m < 2n} for some
n = 1, 2, . . .. Otherwise, x ∈ (P, Q) is an irrational point.

Tables 88.3 and 88.4 show that this definition is consistent with identifi-
cation of adjacent endpoints.

Next, note that the edges of the hole and the 1-simplex [P, Q] first appear
in K1, i.e., are not members of K0. These “new” simplexes exist as a result
of identifications of faces of various distinct Tp, Tq ∈ T1. Along with each
such identification there corresponds an identification of addresses. In detail,
consider the following development for the “x ∈ (mjk, mik)” of Table 88.3.

Fibers of points in (mjk, mik). Figure 87.2 shows (mjk, mik) as a subset of
the Δ3-interior of Tk ∪ T�′ . Both barycentric mappings wk and w�′ map the
open simplex (uj , ui) onto (mjk, mik), the former preserving and the latter
reversing the indicated orientation, i.e.,

mjk = wk(uj) = w�′(ui)
mik = wk(ui) = w�′(uj).

Let θ be the orientation-reversing barycentric map (uj, ui) → (ui, uj), i.e.,

θ(ajuj + aiui) = ajui + aiuj (aj + ai = 1 and aj , ai ≥ 0).

Let ψ = ρ × ρ × · · · be the product map with ρ the transposition (ji), i.e.,

ψ(α1α2 · · · ) = ρ(α1)ρ(α2) · · · α1α2 · · · ∈ N({j, i}) \ {j, i}.

And let φ denote the identification-of-adjacent-endpoints map, i.e., on N(i, j),
the mapping φ is the restriction of the address map (also denoted φ) induced
by F∗

3 . Then, since aj = Σ∞
m=1δ

j
αm

/2m where δj
αm

= 1 when αm = j and 0
otherwise, the diagram in Figure 88.6 is commutative:

N({j, i}) \ {j, i} N({i, j}) \ {i, j}
ψ

....................................................................................................................................... ..............

(uj , ui) (ui, uj)....................................................................................................................................... ..............
θ

(mjk, mik)

.................................................................
......
........
......

φ
.................................................................
......
........
......
φ

........................................................................................... .........
.....

wk

......................................................................................
.....
..............

w�′

Fig. 88.6 Pasting diagram for (mjk, mik).
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For instance, if α ∈ N({j, i}) \ {j, i} is an F∗
3 address of the unique

a ∈ (uj , ui) such that wk(a) = x, then β = ψ(α) is an F∗
3 address of the

unique b = θ(a) ∈ (ui, uj) such that w�′(b) = x, i.e.,

wk(a) = wk(ajuj + aiui) = ajwk(uj) + aiwk(ui)
= ajw�′(ui) + aiw�′(uj) = w�′(ajui + aiuj) = w�′(b)

where b = θ(a), showing that wk(a) = w�′ ◦ θ(a). Moreover,

θ ◦ φ(α) = θ
(
(Σ∞

m=1δ
j
αm

/2m)uj + (Σ∞
m=1δ

i
αm

/2m)ui

)
= (Σ∞

m=1δ
j
αm

/2m)ui + (Σ∞
m=1δ

i
αm

/2m)uj

= (Σ∞
m=1δ

i
βm

/2m)ui + (Σ∞
m=1δ

j
βm

/2m)uj = φ(β) = φ ◦ ψ(α).

It follows that the pair α and β = ψ(α) provide F∗
3 addresses kα1α2 · · · and

�′β1β2 · · · of x where each ordered pair (αn, βn) is a member of {(j, i), (i, j)}.
It remains, however, to compute the entire fiber φ−1(x). So first suppose,
as in the “x ∈ (mjk, mik) row” of Table 88.3, that x is irrational. Then
α and hence β have no tail index, and it follows from Table 88.2 that the
“x ∈ (mjk, mik) row” of Table 88.3 is correct. Second, suppose, as in the
“x ∈ (mjk, mik) row” of Table 88.4, that x is rational. Then α and hence
β have a common tail index, and it follows from Table 88.2 that the “x ∈
(mjk, mik) row” of Table 88.4 is correct.

To see that every address of x ∈ (mjk, mik) has one of the forms indicated
in either Table 88.3 or Table 88.4, let γ be any address of x. Then φ(γ) = x
is Δ3-interior to Tk ∪ T�′ , which yields γ1 ∈ {k, �′}. Suppose, for example,
that γ1 = k. Then x = φ(γ) = wk(φ(γ2γ3 · · · )), showing that γ2γ3 · · · is an
address of a ∈ (uj , ui). But then Table 88.2 shows that γ is among the forms
listed in either the first row of Table 88.3 or the first row of Table 88.4. Since
the γ = �′ case is similar, we conclude that the first rows of Tables 88.3 and
88.4 are complete. For the second rows of these tables, we have a similar
development:

Fibers of points in (mij , mjk). Observe that (mij , mjk) is included in the
Δ3-interior of Tj ∪ T�′ ∪ Ti′ ; and that

mij = wj(ui) = w�′(uk) = wi′(ui)
mjk = wj(uk) = w�′(ui) = wi′(u�).

These equations yield the commutative diagram in Figure 88.7, where θji′ =
θ�′i′ ◦ θj�′ and ψji′ = ψ�′i′ ◦ ψj�′ have the obvious definitions. It follows that
if α ∈ N({i, k}) \ {i, k}, then β = ψj�′(α), and γ = ψji′ (α) are such that
β ∈ N({k, i}) \ {k, i} and γ ∈ N({i, �}) \ {i, �}, and, φ(α) = a ∈ (ui, uk),
φ(β) = b ∈ (uk, ui), and φ(γ) = c ∈ (ui, u�) are such that wj(a) = w�′(b) =
wi′(c) = x. Thus, jα1α2 · · · , �′β1β2 · · · , and i′γ1γ2 · · · are addresses of x.
Moreover, because of the “ψ-mappings”we know that each ordered triple
(αn, βn, γn) ∈ {(i, k, i), (k, i, �)}. Finally, arguments similar to those following
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Figure 88.6 show that the second rows of Tables 88.3 and 88.4 are both
complete and correct.

N({i, k}) \ {i, k} N({i, �}) \ {i, �}

N({k,i})\{k,i}

.................................................................................. ............
..

.................
.................

.................
...............................

..............

........................................................................ .............
.

.......................
........................

.........................
..............

ψji′
............................................................................................................................................................................... ..............

(uk, ui)

(ui, uk) (ui, u�)

......................................................................
.....
.........
.....

.................................................
......
........
......
w�′

............................................................. ........................................................................... ..............
θji′

(mij , mjk)

...............................................................................
......
........
......

φ
...............................................................................
......
........
......

φ

................................................................................................................. .........
.....

wj

............................................................................................................
.....
..............

wi′

Fig. 88.7 Pasting diagram for (mij , mjk).

Fibers of points in (P, Q). In this case, (m01, m23) = (P, Q) ⊂ int(T0′ ∪ T1′ ∪
T2′ ∪ T3′), and

m01 = w0′(u0) = w1′(u1) = w2′(u3) = w3′ (u2)
m23 = w0′(u1) = w1′(u0) = w2′(u2) = w3′ (u3).

A “pasting diagram” similar to those above may be constructed where again,
with orientations in mind, appropriate θ- and ψ-maps may be defined. More-
over, if α ∈ N({0, 1})\{0, 1} and β, γ, and δ are given via (αm, βm, γm, δm) ∈
{(0, 1, 3, 2), (1, 0, 2, 3)}, then 0′α, 1′β, 2′γ, and 3′δ are the addresses of x =
w0′(φ(α)) as listed in Table 88.3. Turning to Table 88.4, the constraints on
(αn, βn), (αn, βn, γn), and (αn, βn, γn, δn) are the same as those in Table 88.3
because the same pasting diagrams apply. (Each diagram is independent of
the points being irrational or rational.) In the rational case, however, every
address is eventually an address of a midpoint, which has a tail index.

§89 Fibers and Open 2-Faces of Δ3

We begin with Table 89.1, (addresses for points in 2-faces via Theorem 86.3).

x ∈ Δ3
ijk \ |F 1

1 | Constraints Addresses Fiber

of x (F∗
3 ) Size

for some m ≥ 1 there is an n ≤ m, δ1 · · · δnay

x ∈ wδ1 ◦ · · · ◦ wδm(|F 1
1 |) x = wδ1 ◦ · · · ◦ wδn(y) (ay is any |φ−1(y)|

where for some y ∈ (mij , mik)∪ address

δ1, . . . , δm ∈ {i, j, k, �′} (mij , mjk) ∪ (mik, mjk) of y)

x �∈ wδ1 ◦ · · · ◦ wδm(|F 1
1 |) one address α ∈N(i,j,k,�′)

for every m ≥ 1 where of x has either �′�′ · · · or α 1
δ1, . . . , δm ∈ {i, j, k, �′} 3 constant subsequences

Table 89.1 Fibers of points in Δ3
ijk \ |F 1

1 |.
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An open 2-face of Δ3 may be expressed as (Δ3
ijk \ |F 1

1 |) ∪ (mjk, mik) ∪
(mij , mjk) ∪(mij , mik). We calculate the fibers of points in this set using
Tables 87.3, 88.2, 88.3, 88.4, and 89.1. First, fibers of points in Δ3

ijk \ |F 1
1 |

are obtained by expanding the “ay” term in Table 89.1. Second, fibers of
points in the other sets follow directly from the other tables.

In Table 89.2 we continue to use the following Notation:

{{i, j}, {k, �}} = {{0, 1}, {2, 3}} , w(n) =
{

identity if n = 0;
wδ1 ◦ · · · ◦ wδn otherwise

where δ1, . . . , δn is a finite, possibly empty, list of members of {i, j, k, �′}. This
list is denoted “δ(n)”. Similarly, “α(t−1)” denotes a finite, possibly empty,
list α1, . . . , αt−1 of members of the doubleton set {r, s} ⊂ {0, 1, 2, 3}. And
for the doubleton set {r, s}, recall that φ(ars) = mrs, i.e., “ars” denotes any
address of the midpoint mrs.

a ∈ (ui, uj , uk) Constraints F∗
3 Addresses Size Type

of a of

Fiber

a �∈ w(n)(|F 1
1 |) α ∈ N(i, j, k, �′) has �′ α 1 1.3

for every or three constant

n ≥ 0 subsequences

a = w(n)(y) : α ∈ N({j, i}) \ {j, i} δ(n)kα, 2 2.1

y ∈ (mjk, mik) has no tail index; δ(n)�′β

is irrational (αm, βm) ∈ {(j, i), (i, j)}
a = w(n)(y) : {r, s} = {j, i} δ(n)kα(t−1)aji, 12 12.1

y ∈ (mjk, mik) (αm, βm) ∈ {(j, i), (i, j)} δ(n)�′β(t−1)aij

is rational

a = w(n)(y) : α ∈ N({i, k}) \ {i, k} δ(n)jα, 3 3.1

y ∈ (mij , mjk) has no tail index; δ(n)�′β,

is irrational (αm, βm, γm) δ(n)i′γ

∈ {(i, k, i), (k, i, �)}
a = w(n)(y) : {r, s} = {i, k}; δ(n)jα(t−1)aik, 12 12.2

y ∈ (mij , mjk) (αm, βm, γm) δ(n)�′β(t−1)aki,

is rational ∈ {(i, k, i), (k, i, �)} δ(n)i′γ(t−1)ai�

Table 89.2 Fibers of points in the open 2-face (ui, uj , uk) ⊂ Δ3
ijk.

In Table 89.2, where the possible forms of fibers are listed, compare the
“underlined strings” to the entries in Tables 88.3 and 88.4, and note that
nonsingleton fibers are simply “shifts” of fibers of points in (mjk, mik) ∪
(mij , mjk) ∪ (mij , mik), which is the pattern in the Δ2 case (end of §86).

Fibers of points a = wδ1 ◦ · · · ◦wδn(y) for an irrational point y ∈ (mjk, mik).
Table 88.3 provides α ∈ N({j, i}) \ {j, i} with no tail index, each (αm, βm) ∈
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{(j, i), (i, j)}, and ay = kα or ay = �′β. So φ−1(a) contains (“∗” indicates a
Δ2-address, i.e., an address in N({i, j, k, �′}))

∗ δ1 · · · δnkα1α2 · · ·
∗ δ1 · · · δn�′β1β2 · · ·

Fibers of points a = wδ1 ◦ · · · ◦wδn(y) for an irrational point y ∈ (mij , mjk).
Table 88.3 provides α ∈ N({i, k})\{i, k} with no tail index, each (αm, βm, γm)
∈ {(i, k, i), (k, i, �)}, and ay = jα, �′β, or i′γ. So φ−1(a) contains (“∗” indi-
cates a Δ2-address, i.e., an address in N({i, j, k, �′}))

∗ δ1 · · · δnjα1α2 · · ·
∗ δ1 · · · δn�′β1β2 · · ·

δ1 · · · δni′γ1γ2 · · ·

Fibers of points a = wδ1 ◦ · · · ◦ wδn(y) for a rational point y ∈ (mjk, mik).
Table 88.4 provides α1, . . . , αt−1 ∈ {j, i} or the empty list; each (αm, βm) ∈
{(j, i), (i, j)}; and ay = kα(t−1)aji or �′β(t−1)aij . So φ−1(a) contains (“∗”
indicates a Δ2-address, i.e., an address in N({i, j, k, �′}))

∗ δ1 · · · δnkα1 · · ·αt−1ij
∗ δ1 · · · δnkα1 · · ·αt−1ji

δ1 · · · δnkα1 · · ·αt−1i
′i

δ1 · · · δnkα1 · · ·αt−1j
′j

δ1 · · · δnkα1 · · ·αt−1k
′�

∗ δ1 · · · δnkα1 · · ·αt−1�
′k

∗ δ1 · · · δn�′β1 · · ·βt−1ij
∗ δ1 · · · δn�′β1 · · ·βt−1ji

δ1 · · · δn�′β1 · · ·βt−1i
′i

δ1 · · · δn�′β1 · · ·βt−1j
′j

δ1 · · · δn�′β1 · · ·βt−1k
′�

∗ δ1 · · · δn�′β1 · · ·βt−1�
′k

Fibers of points a = wδ1 ◦ · · ·◦wδn(y) for a rational point y ∈ (mij , mjk). Ta-
ble 88.4 provides α1, . . . , αt−1 ∈ {i, k} or the empty list; each (αm, βm, γm) ∈
{(i, k, i), (k, i, �)}; and ay = jα(t−1)aik, �′β(t−1)aki, or i′γ(t−1)ai�. So φ−1(a)
contains (“∗” indicates a Δ2-address, i.e., an address in N({i, j, k, �′}))

∗ δ1···δnjα1 · · ·αt−1ik
∗ δ1···δnjα1 · · ·αt−1ki

δ1···δnjα1 · · ·αt−1j
′�

∗ δ1···δnjα1 · · ·αt−1�
′j

∗ δ1···δn�′β1 · · ·βt−1ik
∗ δ1···δn�′β1 · · ·βt−1ki

δ1···δn�′β1 · · ·βt−1j
′�

∗ δ1···δn�′β1 · · ·βt−1�
′j

δ1···δni′γ1 · · ·γt−1i�
δ1···δni′γ1 · · ·γt−1�i

δ1···δni′γ1 · · ·γt−1j
′k

δ1···δni′γ1 · · ·γt−1k
′j

§90 Fibers and Open 2-Simplexes of K2
1

The 2-skeleton K2
1 contains 24 2-simplexes, which partition into three groups:

The 4 · 4 = 16 in the boundary ∂Δ3, the four 2-faces Ti′ ∩ Tk′ that contain
[P, Q] as an edge, and the four 2-faces T� ∩ Tk′ where the tetrahedra T�

(� = 0, 1, 2, 3) meet the octahedral hole (see Figure 90.1). Since the fibers of
points in ∂Δ3 = ∪Δ3

ijk were determined above, here we consider the latter
two groups.
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wi′(uk) =
wk′(ui)

........
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...............

..............

wi′(u�)
................. ..............

wk′ (uj)
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Fig. 90.1 Common face Ti′ ∩ Tk′ (left), and common face T� ∩ Tk′ (right).

Fibers of points in the open 2-simplex (mij , mk�, mj�). This 2-simplex, a
subset of the interior of Ti′ ∪ Tk′ , appears as the shaded area on the left side
of Figure 90.1. Its vertices are given by

mij = wi′(ui) = wk′ (u�)
mk� = wi′(uj) = wk′ (uk)
mj� = wi′(uk) = wk′ (ui)

⎫⎬
⎭which yields Figure 90.2.

φ−1(ui, uj, uk) φ−1(u�, uk, ui)
ψ

.......................................................................................... ..............

(ui, uj, uk) (u�, uk, ui)......................................................................................................... ..............
θ

(mij , mk�, mj�)

....................................................
......
........
......

φ
....................................................
......
........
......
φ

................................................................................... ..........
....wi′

...............................................................................
....
..............

wk′

Fig. 90.2 Pasting diagram for (mij , mk�, mj�).

In Figure 90.2, ψ = ρ×ρ×· · · where ρ is the permutation (i�jk)(i′�′j′k′);
and θ is the barycentric map that identifies Δ3

ijk with Δ3
�ki via ui �→ u�,

uj �→ uk, and uk �→ ui. So
φ ◦ ψ = θ ◦ φ.

(Recall that Table 89.2, as presented, provides the members of φ−1(ui, uj, uk)
with input a ∈ (ui, uj, uk) ⊂ Δ3

ijk . The substitutions ψ and θ appropriately
applied to the data in Table 89.2 yield the corresponding table of members
of φ−1(u�, uk, ui) with input θ(a) ∈ (u�, uk, ui) ⊂ Δ3

�ki.)
Moreover, if a ∈ (ui, uj, uk), then we may calculate that

wi′ (a) = wi′(aiui + ajuj + akuk) = aiwi′ (ui) + ajwi′(uj) + akwi′(uk)
= aiwk′ (u�) + ajwk′(uk) + akwk′ (ui) = wk′(aiu� + ajuk + akui)
= wk′ ◦ θ(a) = wk′ (b)

where θ(a) = b. It follows that if α ∈ φ−1(ui, uj, uk) is an address of the
unique a ∈ (ui, uj, uk) such that wi′ (a) = x, then ψ(α) = β is an address
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of the unique b ∈ (u�, uk, ui) such that wk′ (b) = x. So such an α provides
addresses i′α1α2 · · · and k′β1β2 · · · of x. Details appear in Table 90.3.

Turning to Table 90.3, we again detail the meaning of the notation:
In the “Type” column we use “xx.y” notation — the “xx” denotes the
size of the fiber, while the “y” serves to index the fibers of size xx de-
scribed in the adjacent “F∗

3 Addresses” column. Also recall the assump-
tion {{i, j}, {k, �}} = {{0, 1}, {2, 3}} and the fact that “w(n)” denotes either
wδ1 ◦ · · · ◦ wδn or the identity when n = 0. And in the “F∗

3 Addresses”
column, “δ(n)” denotes either δ1, . . . , δn ∈ {i, j, k, �′} or the empty list when
n = 0, and, “α(t−1)” denotes either α1, . . . , αt−1 ∈ {r, s} ⊂ {0, 1, 2, 3} or the
empty list when t = 1. And recall that “ars” denotes any address of the
midpoint mrs.1

x = wi′(a) Constraints F∗
3 Addresses of x; Type

where ψ = ρ × ρ × · · · where

a ∈ (ui, uj , uk) ρ = (i�jk)(i′�′j′k′)

a �∈ w(n)(|F 1
1 |) α ∈ N({i, j, k, �′}) i′α 2.2

for every w(n) has �′ or 3 constant k′ψ(α)

(n ≥ 0) subsequences

a = w(n)(y) α ∈ N({j, i}) \ {j, i} i′δ(n)kα, 4.3

y ∈ (mjk, mik) no tail index (αm, βm) i′δ(n)�′β

irrational ∈ {(j, i), (i, j)} k′ψ(δ(n)kα), k′ψ(δ(n)�′β)

a = w(n)(y) : {r, s} = {j, i} i′δ(n)kα(t−1)aji 24.2

y ∈ (mjk, mik) (αm, βm) i′δ(n)�′β(t−1)aij

rational ∈ {(j, i), (i, j)} k′ψ(δ(n)kα(t−1)aji)

k′ψ(δ(n)�′β(t−1)aij)

a = w(n)(y) : α ∈ N({i, k}) \ {i, k} i′δ(n)jα, i′δ(n)�′β, 6.2

y ∈ (mij , mjk) no tail index; (αm, βm, i′δ(n)i′γ, k′ψ(δ(n)jα)

irrational γm) ∈ {(i, k, i), (k, i, �)} k′ψ(δ(n)�′β), k′ψ(δ(n)i′γ)

a = w(n)(y) : {r, s} = {i, k} i′δ(n)jα(t−1)aik, 24.3

y ∈ (mij , mjk) (αm, βm, γm) i′δ(n)�′β(t−1)aki

rational ∈ {(i, k, i), (k, i, �)} i′δ(n)i′γ(t−1)ai�

k′ψ(δ(n)jα(t−1)aik)

k′ψ(δ(n)�′β(t−1)aki)

k′ψ(δ(n)i′γ(t−1)ai�)

Table 90.3 Fibers of points in (mij , mk�, mj�).

Fibers of points in the open 2-simplex (m�i, m�j, m�k). This open 2-simplex,
which is interior to T� ∪ Tk′ , appears as the shaded area on the right-side of
Figure 90.1. Its vertices are given by

m�i = w�(ui) = wk′ (uj)
m�j = w�(uj) = wk′ (ui)
m�k = w�(uk) = wk′ (uk).

1For more details on the notation, see the paragraph preceding Table 89.2.
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This case is similar to the previous “2-simplex (mij , mk�, mj�)” case: In Fig-
ure 90.2, replace φ−1(u�, uk, ui) with φ−1(uj , ui, uk), replace ψ with ζ =
ρ × ρ × · · · where ρ is the permutation (ij)(k)(�)(i′j′)(k′)(�′), make θ com-
patible to ζ, i.e., make θ the barycentric map that identifies Δ3

ijk with Δ3
jik via

ui �→ uj , uj �→ ui, and uk �→ uk. Then replace (u�, uk, ui) with (uj , ui, uk),
replace wi′ with w�, and finally replace (mij , mk�, mj�) with (m�i, m�j , m�k).
(It may help to notice the wk′ and w� labels on the right-side graphic in
Figure 90.1.)

The resulting diagram is commutative, implying that if α ∈ φ−1(ui, uj, uk)
is an address of a where w�(a) = x, then β = ζ(α) is an address of θ(a) = b
and w�(a) = x = wk′(b). So each such α produces two addresses �α1α2 · · ·
and k′β1β2 · · · of x. Parallel to the previous case, we know the members of
φ−1(a) from Table 89.2, and we calculate those of φ−1(b) using ζ instead of
ψ and using our newly defined θ. The results are summarized in Table 90.4.

x = wi′(a) Constraints F∗
3 Addresses of x; Type

where ζ = ρ × ρ × · · · where
a ∈ (ui, uj , uk) ρ = (ij)(i′j′)

a �∈ w(n)(|F 1
1 |) α ∈ N({i, j, k, �′}) �α, 2.3

for every w(n) has �′ or 3 constant k′ζ(α)
(n ≥ 0) subsequences

a = w(n)(y) α ∈ N({j, i}) \ {j, i} �δ(n)kα, �δ(n)�′β 4.4

y ∈ (mjk, mik) no tail index; (αm, k′ζ(δ(n)kα), k′ζ(δ(n)�′β)
irrational βm) ∈ {(j, i), (i, j)}
a = w(n)(y) : {r, s} = {j, i} �δ(n)kα(t−1)aji 24.4

y ∈ (mjk, mik) (αm, βm) �δ(n)�′β(t−1)aij

rational ∈ {(j, i), (i, j)} k′ζ(δ(n)kα(t−1)aji)

k′ζ(δ(n)�′β(t−1)aij)

a = w(n)(y) : α ∈ N({i, k}) \ {i, k} �δ(n)jα, �δ(n)�′β, 6.3

y ∈ (mij , mjk) no tail index; (αm, βm, �δ(n)i′γ, k′ζ(δ(n)jα),

irrational γm) ∈ {(i, k, i), (k, i, �)} k′ζ(δ(n)�′β), k′ζ(δ(n)i′γ)

a = w(n)(y) : {r, s} = {i, k} �δ(n)jα(t−1)aik 24.5

y ∈ (mij , mjk) (αm, βm, γm) �δ(n)�′β(t−1)aki

rational ∈ {(i, k, i), (k, i, �)} �(δ(n)i′γ(t−1)ai�)

k′ζ(δ(n)jα(t−1)aik)

k′ζ(δ(n)�′β(t−1)aki)

k′ζ(δ(n)i′γ(t−1)ai�)

Table 90.4 Fibers of points in (m�i, m�j, m�k).

§91 Singleton Fibers

Our first theorem characterizes singleton fibers of points in ∂Δ3.

91.1 Theorem (singleton fibers and ∂Δ3) Let φ be the F∗
3 address map,

and let |φ−1(x)| = 1. Then φ(α) = x ∈ ∂Δ3 if and only if α is either (i)∂
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constant, (ii)∂ in a doubleton K ⊂ {0, 1, 2, 3} and has no tail index, (iii)∂

in a quadruple {i, j, k, �′} and has subsequence �′, or, (iv)∂ in a quadruple
{i, j, k, �′} and has subsequences i, j, and k.

Proof. Since |φ−1(x)| = 1, Tables 87.3 and 88.2 show that φ(α) = x is in an
edge [ur, us] of Δ3 if and only if α satisfies either (i)∂ with α ∈ {0, 1, 2, 3} or
(ii)∂ . Similarly, since |φ−1(x)| = 1, Table 89.2 shows that φ(α) = x is in an
open 2-face (ui, uj, uk) of Δ3 if and only if α satisfies either (i)∂ with α = �′,
or (iii)∂ , or (iv)∂ .

For the results below, we shall use the following notation: For any α ∈
N(A) and any t ≥ 0, we let αt = αt+1αt+2 · · · and refer to αt as a tail of α.
Our next two lemmas combine to characterize those sequences α that occupy
singleton fibers of points x in the interior int(Δ3) of Δ3.

91.2 Lemma (singleton fibers, int(Δ3), a necessary condition) Let φ be
the F∗

3 address map, and let |φ−1(x)| = 1. Then φ(α) = x ∈ int(Δ3) implies
α has either (i)int two (primed) subsequences a′ and b′ (a, b ∈ {0, 1, 2, 3}), or,
(ii)int subsequences � and �′, or, (iii)int subsequences 0, 1, 2, 3.

Proof. Since x ∈ int(Δ3), either x ∈ |K2
1 | ∩ int(Δ3) or x ∈ int(Δ3) \

|K2
1 |. But the former case is not possible because |φ−1(x)| = 1 together

with Tables 88.3 and 88.4 show that x �∈ (P, Q), and |φ−1(x)| = 1 together
with Tables 90.3 and 90.4 show that x is not in a 2-simplex of K2

1 . So
x ∈ int(Δ3) \ |K2

1 |. Next, we note that

x �∈ wδ1 ◦ · · · ◦ wδn(|K2
1 |) for each (n ≥ 1)-list δ1, . . . , δn ∈ A.

(Otherwise, x = wδ1◦· · ·◦wδn(y) for some y ∈ |K2
1 |, and Theorem 86.2 tells us

that y has only one address, which implies by Tables 87.3 through 93.1 that
y ∈ ∂Δ3. Thus, x is in the boundary of the 3-simplex wδ1◦· · ·◦wδn(Δ3) ∈ Kn.
So x, being in the interior of Δ3, must have more than one address, which
contradicts |φ−1(x)| = 1.) It follows, since x = φ(α) = wα1 ◦ · · · ◦wαt(φ(αt)),
that no tail αt = αt+1αt+2 · · · (t ≥ 1) of α is an address of any y ∈ |K2

1 |. And
since x �∈ |K2

1 |, α = α1α2 · · · itself is not an address of any y ∈ |K2
1 |. More

concisely, for each t ≥ 0, φ(αt) �∈ |K2
1 |, which implies (since ∂Δ3 ⊂ |K2

1 |)
that for each t ≥ 0, φ(αt) �∈ ∂Δ3. So Theorem 91.1 tells us that each αt

cannot satisfy any of (i)∂ , (ii)∂, (iii)∂ , or (iv)∂ . That is, each αt is

(P1) not constant;

(P2) not in a doubleton K ⊂ {0, 1, 2, 3}, or,

is in such a K and has a tail index;

(P3) not in an F = {i, j, k, �′}, or,

is in such an F and has no subsequence �′; and

(P4) not in an F = {i, j, k, �′}, or,

is in such an F and has at most two subsequences i, j.

In particular, since each αt satisfies (P1), α must have at least two constant
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subsequences. For the first case, suppose two subsequences are i′ and �′:
Then α satisfies (i)int. For the second case, suppose two subsequences are �
and �′: Then α satisfies (ii)int. For the third case, suppose α satisfies neither
(i)int nor (ii)int, but has two subsequences i and �′. So there is a tail αt with
each of its values in A \ {�, i′, j′, k′} = {i, j, k, �′}. Since αt must satisfy (P3),
however, we have a contradiction. So our third case is impossible. Since the
first three cases exhaust the possibilities of having an �′ as a subsequence
of α, we consider the fourth case, where α has no �′ subsequence, but has
two “unprimed” subsequences i and j: In this case, there is an m ≥ 0 such
that αm is a sequence in {0, 1, 2, 3}. Since each tail of αm is a sequence in
{0, 1, 2, 3} that satisfies (P2), however, αm (and hence α and each tail αt of
α) must have yet another constant subsequence k in {0, 1, 2, 3}. Then, since
each αt has three subsequences i, j, k and also satisfies (P4), each αt cannot
be a sequence in any set of the form {i, j, k, �′}. Thus, each αt must contain
the four subsequences 0, 1, 2, 3. We conclude that α satisfies (iii)int. Since
all possibilities of pairs of subsequences have been exhausted, we conclude
that α satisfies one of (i)int, (ii)int, or (iii)int.

91.3 Lemma (singleton fibers, int(Δ3), a sufficiency condition) Let φ be
the F∗

3 address map, and let α have either (i)int two (primed) subsequences a′

and b′ (a, b ∈ {0, 1, 2, 3}), (ii)int subsequences � and �′, or (iii)int subsequences
0, 1, 2, 3. Then φ(α) = x ∈ int(Δ3) and |φ−1(x)| = 1.

Proof. Tables 87.3, 88.2, 88.3, 88.4, and 89.2 show that each tail of any
address of a boundary point contains neither two constant “primed” subse-
quences, nor, a pair � and �′, nor, the four sequences 0, 1, 2, 3 as subse-
quences. It follows that φ(α) = x ∈ int(Δ3). Likewise, φ(α) = x �∈ (P, Q)
(and similarly, each φ(αt) �∈ (P, Q)), and φ(α) = x �∈ |K2

1 | (and similarly,
each φ(αt) �∈ |K2

1 |). We also claim that

φ(α) �∈ wδ1 ◦ · · · ◦ wδn(|K2
1 |)

for every (n ≥ 1)-list δ1, . . . , δn ∈ A. Suppose otherwise. Then there is a
minimum (n ≥ 1)-list δ1, . . . , δn such that φ(α) = wδ1 ◦ · · · ◦wδn(φ(β)) where
φ(β) ∈ |K2

1 |. Since each δm = αm (see the proof of Theorem 86.2) and since
φ(α) = wα1 ◦ · · · ◦ wαn(φ(αn)), we find that φ(αn) = φ(β) ∈ |K2

1 |. But
this containment contradicts φ(αn) �∈ |K2

1 |. So the displayed equation holds
under the stated conditions, and, then an application of Theorem 86.2 shows
that |φ−1(x)| = 1.

From Lemmas 91.2 and 91.3 we have the following theorem, which char-
acterizes those sequences that occupy singleton fibers of points in int(Δ3).

91.4 Theorem Let φ be the F∗
3 address map, and let φ(α) = x ∈ int(Δ3).

Then |φ−1(x)| = 1 if and only if α has either (i)int two (primed) subsequences
a′ and b′ (a, b ∈ {0, 1, 2, 3}), or, (ii)int subsequences � and �′, or, (iii)int

subsequences 0, 1, 2, 3.
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So Theorems 91.1 and 91.4 yield the following theorem.

91.5 Theorem (singleton fibers II) Let φ be the F∗
3 address map, and let

φ(α) = x. Then |φ−1(x)| = 1 if and only if α is either constant, or, in a
doubleton K ⊂ {0, 1, 2, 3} with no tail index, or, in a quadruple {i, j, k, �′}
with either �′ or each of i,j,k as subsequences, or, is in A and, for some
representation {i, j, k, �, i′, j′, k′, �′} of A, has either (i′ and �′) or (� and �′)
or each of 0, 1, 2, 3 as subsequences.

Each condition listed in Theorem 91.5 concerns constant subsequences:
Call a sequence α “(m, k)” whenever its range has size m and it has exactly
k constant subsequences. Then α is (1,1) if and only if it is constant. And
if α is in a doubleton K ⊂ {0, 1, 2} with no tail index, then it is (2,2). It is
easy to show that in the Δ2-case, a sequence α is a member of a singleton
fiber {α} if and only if it contains the subsequence 3 = 333 · · · or is either
(1, 1), (2, 2), (3, 3), or (4, 3).

§92 Fibers of Points in Δ3 \ |K2
1 |

Knowing all singleton fibers of all points in Δ3 as well as all fibers of all
points in |K2

1 |, we turn to fibers of points in Δ3 \ |K2
1 |. The approach is that

of merging the (singleton fibers II) Theorem 91.5 and the (inductive step)
Theorem 86.2.

x ∈ Δ3 \ |K2
1 | Constraints F∗

3 Addresses |φ−1(x)|
for some m ≥ 1, x ∈ there is an r, 1 ≤ r ε1 · · · εray

wε1 ◦ · · · ◦ wεm (|K2
1 |) ≤ m, x = wε1 ◦ · · · where ay is any |φ−1(y)|

where ε1, . . . , εm ∈ A · · · ◦ wεr (y) for some address of y
y ∈ int(Δ3) ∩ |K2

1 |
x �∈ wε1 ◦ · · · lone address α of x α 1
· · · ◦ wεm (|K2

1 |) for satisfies one of the
every (m ≥ 1)-length conditions in
string ε1, . . . , εm ∈ A Theorem 91.5

Table 92.1 Fibers of points in Δ3 \ |K2
1 |.

So Table 92.1 implies that nonsingleton fibers of points in Δ3 \ |K2
1 | are

“shifts” of those fibers of points in

int(Δ3) ∩ |K2
1 | =

⋃
U

{(mij , mk�, mj�) ∪ (m�i, m�j , m�k) ∪ (mij , mk�)}

where
U = {{i, j}, {k, �}} = {{0, 1}, {2, 3}}.

In other words, the “ay” term in Table 92.1 may be calculated via Ta-
bles 90.3 and 90.4 for points in the open 2-faces, and via Tables 88.3 and 88.4
for points in (mij , mk�).
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§93 Summary Table, Octic Group, Choice of Letters

Cardinalities of fibers of the address map φ of F∗
3 are 1, 2, 3, 4, 6, 12, and 24.

The details appear in the (summary) Table 93.1 (Parts I, II, and III), where
the data are encoded using the letters i, j, k, � such that {{i, j}, {k, �}} =
{{0, 1}, {2, 3}}.

Using this encoding, we classified eight 2-simplexes in K1 (those that meet
the interior of Δ3) into two kinds, namely, [mij , mk�, mj�] and [m�i, m�j , m�k]
(Figure 90.1). In more detail, let us calculate the four (A, B, C, D) of type
[mij , mk�, mj�] — using the constraint {{i, j}, {k, �}} = {{0, 1}, {2, 3}} we
calculate the following:

i=0,j=1
k=2,�=3 → [m01, m23, m13] = A i=1,j=0

k=2,�=3 → [m10, m23, m03] = B

i=0,j=1
k=3,�=2 → [m01, m32, m12] = C i=1,j=0

k=3,�=2 → [m10, m32, m02] = D

i=2,j=3
k=0,�=1 → [m23, m01, m31] = A i=3,j=2

k=0,�=1 → [m32, m01, m21] = C

i=2,j=3
k=1,�=0 → [m23, m10, m30] = B i=3,j=2

k=1,�=0 → [m32, m10, m20] = D.

In turn, these two representations yielded, via corresponding “pastings,”
two permutations ρζ = (ij)(k)(�) and ρψ = (i�jk) which, respectively, fix
and transpose the members of {{i, j}, {k, �}}.

In general, these two permutations form the octic group

G = 〈ρζ , ρψ〉 = {(1, (ij), (k�), (ij)(k�), (i�jk), (kj�i), (ik)(j�), (i�)(jk)},

a subgroup of symmetric group S{i,j,k,�} generated by ρζ and ρψ.
And for the set of letters

Al = {i, j, k, �, i′, j′, k′, �′},

the group G may also be viewed as the subgroup of the symmetric group SAl

with generators

(ij)(k)(�)(i′j′)(k′)(�′) and (i�jk)(i′�′j′k′).

The role of G relative to Table 93.1 may be summarized as follows: Call a
bijection x : {i, j, k, �} → {0, 1, 2, 3} such that {{x(i), x(j)}, {x(k), x(�)}} =
{{0, 1}, {2, 3}} a choice of i, j, k, �. (Or view x : Al → Al as the obvious
extension.) For each choice x, each κ ∈ N(A) has the representation (string
of letters)

κx = x−1 ◦ κ = x−1(κ1)x−1(κ2) · · · ∈ N(Al).
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Notation: A = {0, 1, 2, 3, 0′, 1′, 2′, 3′}, {{i, j}, {k, �}} = {{0, 1}, {2, 3}}, int

denotes 3-space interior, intΔ3 the interior rel Δ3, �′ Type 1.1 & Type 1.3,
δ(n) = δ1, · · · , δn ∈ {i, j, k, �′} or empty list, α(t−1) = α1, · · · , αt−1 ∈ {r, s} or

empty list, ε(r) = ε1, · · · , εr ∈ A or empty list,F = {i, j, k, �′},K ⊂ {0, 1, 2, 3}
denotes a doubleton subset, ars an address of mrs, mrs = (1/2)(ur + us),
ψ = ρ × ρ × · · · where ρ = (i�jk)(i′�′j′k′), ζ = ρ × ρ × · · · where ρ =
(ij)(i′j′), and (P, Q) = (mij , mk�).

Type Addresses Mnemonic In Fiber of Ref.

1.1 a a ∈ {0, 1, 2, 3}∪ vertex or 87.3

{0′, 1′, 2′, 3′} 2-face barycenter 89.2

1.2 α ∈ N(K) non-constant with irrational in 88.2

no tail index an open edge 89.1

1.3 α ∈ N(F ) �′/(i&j&k) point in 2-face 89.2

subsequences Δ3
ijk

1.4 α ∈ N(A) subsequences (i′&�′)/ point in int(Δ3) 91.4

(�&�′)/(0&1&2&3)

2.1 δ(n)kα α, β ∈ N(i, j) of shift of irrational 88.3/.6

δ(n)�′β Type 1.2, each in (mjk, mik) ⊂ 89.2

{αm, βm} = {i, j} intΔ3(Tk ∪ T�′) 87.2

2.2 ε(r)i′α α Type 1.3, (αm, βm) shift of point in 90.3/.2

ε(r)k′β ∈ {(i, �), (j, k), (mij , mk�, mj�) ⊂ 90.1

(k, i), (�′, j′)} int(Ti′ ∪ Tk′) 92.1

2.3 ε(r)�α α Type 1.3, (αm, βm) shift of point in 90.4

ε(r)k′β ∈ {(i, j), (j, i), (m�i, m�j , m�k) ⊂ 92.1

(k, k), (�′, �′)} int(T� ∪ Tk′) 90.1

3.1 δ(n)jα α Type 1.2, shift of point in 88.3/.7

δ(n)�′β (αm, βm, γm) ∈ (mij , mjk) ⊂ intΔ3 89.2

δ(n)i′γ {(i, k, i), (k, i, �)} (Tj ∪ T� ∪ Ti′) 87.2

4.1 α(t−1)ajk ajk ∈ {jk, kj, i′�, �′i} rational in (uj , uk) 87.3

88.2

4.2 ε(r)0′α α Type 1.2, (αm, βm, shift of irrational in 88.3

ε(r)1′β γm, δm) ∈ {(0, 1, 3, 2), (P, Q) ⊂ int(T0′∪ 92.1

ε(r)2′γ (1, 0, 2, 3)} T1′ ∪ T2′ ∪ T3′) 87.2

ε(r)3′δ

4.3 ε(r)i′λ {λ = λα, μ = μβ} ε(r)-shift of point in 90.3

ε(r)i′μ Type 2.1, (mij , mk�, mj�) ⊂ 92.1

ε(r)k′ν ν = ψ(λα), int(Ti′ ∪ Tk′) 90.2

ε(r)k′ξ ξ = ψ(μβ)

4.4 ε(r)�λ {λ = λα, μ = μβ} ε(r)-shift of point in 90.4

ε(r)�μ Type 2.1, (m�i, m�j , m�k) ⊂ 92.1

ε(r)k′ν ν = ζ(λα), int(T� ∪ Tk′)

ε(r)k′ξ ξ = ζ(μβ)

Table 93.1 (Part I) Summary table for fibers of sizes 1, 2, 3, and 4.
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And for any choices x and y, we define the change of choice y−1 ◦x = π ∈ G.
The upshot is that if κx is not in Table 93.1, then for some π = y−1 ◦ x, the
representation κy = π ◦ κx of κ explicitly appears in Table 93.1.

Notation: A = {0, 1, 2, 3, 0′, 1′, 2′, 3′}, {{i, j}, {k, �}} = {{0, 1}, {2, 3}}, int

denotes 3-space interior, intΔ3 the interior rel Δ3, �′ Type 1.1 & Type 1.3,
δ(n) = δ1, · · · , δn ∈ {i, j, k, �′} or empty list, α(t−1) = α1, · · · , αt−1 ∈ {r, s} or

empty list, ε(r) = ε1, · · · , εr ∈ A or empty list,F = {i, j, k, �′},K ⊂ {0, 1, 2, 3}
denotes a doubleton subset, ars an address of mrs, mrs = (1/2)(ur + us),
ψ = ρ × ρ × · · · where ρ = (i�jk)(i′�′j′k′), ζ = ρ × ρ × · · · where ρ =
(ij)(i′j′), and (P, Q) = (mij , mk�).

Type Addresses Mnemonic In Fiber of Ref.

6.1 α(t−1)bnm bnm = nm ∈ {ij, ji, rational point in 87.3

i′i, j′j, k′�, �′k} edge (ui, uj) 88.2

ε(r)i′λ {λ = λα, μ = μβ , ε(r)-shift of point in 90.3

6.2 ε(r)i′μ ν = νγ} Type 3.1, (mij , mk�, mj�) ⊂ 92.1

ε(r)i′ν ξ = ψ(λα), int(Ti′ ∪ Tk′) 90.2

ε(r)k′ξ π = ψ(μβ),

ε(r)k′π σ = ψ(νγ)

ε(r)k′σ

ε(r)�λ {λ = λα, μ = μβ , ε(r)-shift of point in

6.3 ε(r)�μ ν = νγ} Type 3.1, (m�i, m�j , m�k) ⊂ 90.4

ε(r)�ν ξ = ζ(λα), int(T� ∪ Tk′) 92.1

ε(r)k′ξ π = ζ(μβ),

ε(r)k′π σ = ζ(νγ)

ε(r)k′σ

12.1 δ(n)kλα λα, μβ Type 6.1, shift of rational in 88.2

δ(n)�′μβ {αm, βm} = {i, j} (mjk, mik) ⊂ 89.2

intΔ3(Tk ∪ T�′) 88.6

12.2 δ(n)jλα λα, μβ , νγType 4.1, shift of rational in 88.2

δ(n)�′μβ (αm, βm, γm) ∈ (mij , mjk) ⊂ 89.1

δ(n)i′νγ {(i, k, i), (k, i, �)} intΔ3(Tj ∪ T�′ ∪ Ti′) 88.7

Table 93.1 (Part II) Summary table for fibers of sizes 6 and 12.

To illustrate “change of choice” in the context of these tables, consider
a string of letters κx = ε1 · · · εrj

′β1β2 · · · where β1β2 · · · is Type 1.3. Then
κx, except for the “j′” letter, matches the first entry of Type 2.2, i.e., κx

“almost” matches an entry in Table 93.1 (Part I), but in fact does not match
any entry in either part of Table 93.1. But using the choice y, i.e., the
solution to ρζ = (ij)(k)(�)(i′j′)(k′)(�′) = y−1 ◦ x, we have κy = y−1 ◦ κ =
y−1 ◦ (x ◦ x−1) ◦ κ = ρζ ◦ κx, which does match the first entry of Type 2.2 in
Table 93.1 (Part I):

κy = ε1 · · · εri
′α1α2 · · · α1α2 · · · = ρζ(β1β2 · · · ) is of Type 1.3.
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To dovetail these observations with the assumption that {{i, j}, {k, �}} =
{{0, 1}, {2, 3}}, consider the (obviously commutative) diagram in Figure 93.2
which shows the relation between two choices x and y of letters i, j, k, �′.

Notation: A = {0, 1, 2, 3, 0′, 1′, 2′, 3′}, {{i, j}, {k, �}} = {{0, 1}, {2, 3}}, int

denotes 3-space interior, intΔ3 the interior rel Δ3, �′ Type 1.1 & Type 1.3,
δ(n) = δ1, · · · , δn ∈ {i, j, k, �′} or empty list, α(t−1) = α1, · · · , αt−1 ∈ {r, s} or

empty list, ε(r) = ε1, · · · , εr ∈ A or empty list,F = {i, j, k, �′},K ⊂ {0, 1, 2, 3}
denotes a doubleton subset, ars an address of mrs, mrs = (1/2)(ur + us),
ψ = ρ × ρ × · · · where ρ = (i�jk)(i′�′j′k′), ζ = ρ × ρ × · · · where ρ =
(ij)(i′j′), and (P, Q) = (mij , mk�).

Type Addresses Mnemonic In Fiber of Ref.

24.1 ε(r)0′λα λα Type 6.1, shift of rational in 88.4

ε(r)1′μβ (αm, βm, γm, δm) ∈ (P, Q) ⊂ int(T0′∪ 92.1

ε(r)2′νγ {(0, 1, 3, 2), (1, 0, 2, 3)} T1′ ∪ T2′ ∪ T3′) 87.2

ε(r)3′ξδ

24.2 ε(r)i′η {η = ηα, σ = σβ} shift of point in 90.3

ε(r)i′σ Type 12.1, (mij , mk�, mj�) ⊂ 92.1

ε(r)k′ξ ξ = ψ(η), int(Ti′ ∪ Tk′) 90.2

ε(r)k′ω ω = ψ(σ)

ε(r)i′η fiber {η = ηα, σ = σβ, shift of point in 90.3

24.3 ε(r)i′σ τ = τγ} Type 12.2, (mij , mk�, mj�) ⊂ 92.1

ε(r)i′τ ν = ψ(η), int(Ti′ ∪ Tk′) 90.2

ε(r)k′ν ξ = ψ(σ),

ε(r)k′ξ ω = ψ(τ )

ε(r)k′ω

24.4 ε(r)�η fiber {η = ηα, σ = σβ} shift of point in 90.4

ε(r)�σ Type 12.1, (m�i, m�j , m�k) ⊂ 92.1

ε(r)k′ξ ξ = ζ(η), int(T� ∪ Tk′)

ε(r)k′ω ω = ζ(σ)

ε(r)�η fiber {η = ηα, σ = σβ shift of point in 90.4

24.5 ε(r)�σ τ = τγ} Type 12.2, (m�i, m�j , m�k) ⊂ 92.1

ε(r)�τ ν = ζ(η), int(T� ∪ Tk′)

ε(r)k′ν ξ = ζ(σ),

ε(r)k′ξ ω = ζ(τ )

ε(r)k′ω

Table 93.1 (Part III) Summary table for fibers of size 24.

The homeomorphism x−1 : N(Al) → N(Al) (or x−1 : N(A) → N(A) if
no “primes” are involved) matches N(Al) with N(Al), i.e., equates “strings
of letters” κx ∈ N(Al) with sequences κ ∈ N(Al) by identifying i ∈ Al

with x(i) ∈ Al, j ∈ Al with x(j) ∈ Al, etc. Under these identifications,
the connection with Table 93.1 is clear since {{x(i), x(j)}, {x(k), x(�)}} =



186 FROM 3-WEB IFS TO 3-SIMPLEX IFS CHAPTER 14

{{0, 1}, {2, 3}} is equivalent to {{i, j}, {k, �}} = {{0, 1}, {2, 3}}. Moreover,
these identifications allow us to use κx as κ and φ(κx) as φ(κ).

N(Al) N(Al)
π = y−1 ◦ x

φ ◦ x φ ◦ y
N(Al)

............................................................................................................................................................................................................... ..............

.............
.............

.............
.............

.............
.............

.............
.............

..............................

x−1

.............
.............
.............
.............
.............
.............
.............
.............
................
..............

y−1

Δ3

.....................................................................................
.....
.........
.....

φ

................................................................................................................................................................................................................................. .........
.....

............................................................................................................................................................................................................................
.....
..............

Fig. 93.2 Change of choices for Table 93.1.

§94 Octic Group Action and Induced Barycentric Maps

Throughout this section we shall assume, without loss of generality, that
u0 = [1, 0, 0, 0]T , . . . , u3 = [0, 0, 0, 1]T are the standard basis vectors in 4-
space. So the barycentric coordinates of Δ3 are Cartesian coordinates. We
shall also assume that the octic group is represented by

G = {1, (01), (23), (01)(23), (0312), (2130), (02)(13), (03)(12)}.

Then for each π ∈ G, we let the barycentric mapping θπ : Δ3 → Δ3 be
given by Σ3

m=0xmum �→ Σ3
m=0xmuπ(m). The homeomorphism θπ may be

viewed as a restriction of a linear transformation represented by the 4 × 4
permutation matrix Pπ whose (m + 1)st column is uπ(m) = Pπum. That is,
for Σxmum ∈ Δ3,

θπ(Σxmum) = Σxmuπ(m) = Σxm(Pπum) = Pπ(Σxmum).

With these givens we shall show, for each q ∈ Al, that the diagram In Fig-
ure 94.1 is commutative:

N(Al) N(Al)

Δ3 Δ3

Tq Tπ(q)

............................................................................................................................................................................ ..............

............................................................................................................................................................................ ..............

............................................................................................................................................................................ ..............

......................................................................
.....
.........
.....

φ φ
......................................................................
.....
.........
.....

.........................................................................................
......
........
......

.........................................................................................
......
........
......

wq wπ(q)

π

θπ

θπ

Fig. 94.1 Transformation of addresses induced by the octic group.
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94.2 Lemma (lower square of Figure 94.1) Let φ be the address map of
F∗

3 = {wq|q ∈ Al}, let π ∈ G, and let θπ denote the induced barycentric map.
Then for each q ∈ Al, wπ(q) ◦ θπ = θπ ◦ wq.

Proof. For q ∈ {0, 1, 2, 3}, we have

wπ(q)(θπ(Σxmum)) = wπ(q)(Σxmuπ(m)) = (1/2)Σxmuπ(m) + (1/2)uπ(q)

= θπ ((1/2)Σxmum + (1/2)uq) = θπ(wq(Σxmum)).

And for q′ ∈ {0′, 1′, 2′, 3′},

wπ(q′)(θπ(Σxmum)) = wπ(q′)(Σxmuπ(m)) = wp′(Σxmuπ(m))
= (1/2)LpΣxmuπ(m) + (1/2)up′

= (1/2)PπLqP
−1
π (Σxmuπ(m)) + (1/2)uπ(q′)

= θπ ((1/2)LqΣxmum + (1/2)uq′) = θπ(wq′ (Σxmum)).

So the lower square of the Figure 94.1 diagram is commutative.

94.3 Lemma (upper square of Figure 94.1) Let φ be the address map
of F∗

3 , let π ∈ G, and let θπ denote the induced barycentric map. Then
φ ◦ π = θπ ◦ φ.

Proof. Let α ∈ N(Al). Then φ(α) = p is the lone member of ∩j≥1Tα1···αj .
It also follows from Lemma 94.2 that p ∈ Tα1 implies that θπ(p) ∈ Tπ(α1).
So, using induction, we suppose p ∈ Tα1···αn implies θπ(p) ∈ Tπ(α1)···π(αn) is
true and let p ∈ Tα1···αn+1 . Then

θπ(p) ∈ θπ(Tα1···αn+1) = θπ ◦ wα1(Tα2···αn+1) = wπ(α1) ◦ θπ(Tα2···αn+1)
⊂ wπ(α1)(Tπ(α2)···π(αn+1)) = Tπ(α1)···π(αn+1).

So θπ(φ(α)) is the lone member of ∩j≥1Tπ(α1)···π(αj), i.e., φ(π(α)) = θπ(φ(α)).
So the upper square of the diagram in Figure 94.1 is commutative.

We note that θπ permutes not only the vertices, but also midpoints, e.g.,
p ∈ (mij , mk�, mj�) implies θπ(p) ∈ (mπ(i)π(j), mπ(k)π(�), mπ(j)π(�)). Our next
theorem concerns the action of G on the fibers of φ and its (omitted) proof
rests on the fact that the top square in the diagram in Figure 94.1 is com-
mutative.

94.4 Theorem Let φ be the address map of F∗
3 , let π be a member of the

octic group G, and let θπ be the induced barycentric map. Then the fiber
φ−1(θπ(p)) = π(φ−1(p)).

§95 Completeness of Table 93.1

95.1 Theorem Let κ ∈ N(Al). Then for some choice x of i, j, k, �, the string
of letters κx = x−1 ◦ κ = x−1(κ1)x−1(κ2) · · · = κx

1κx
2 · · · is one of the types

listed in Table 93.1.
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Proof. If x exists such that κx is Type 1.1, 1.2, 1.3, or 1.4, we are fin-
ished. So suppose otherwise. Then “not Type 1.4” implies κ has at most one
“primed” constant subsequence.

First, suppose κ has exactly one “primed” constant subsequence. Fix
x such that �′ is the “primed” constant subsequence of κx. Then κx not
Type 1.4 implies � is not a subsequence of κx. And κx not Type 1.3 implies
a minimum r + 1 ≥ 1 exists such that for some εx

r+1 ∈ {i′, j′, k′, �}

(1) κx = εx
1 · · · εx

rεx
r+1α

x αx ∈ N(i, j, k, �′) is Type 1.3.

If εx
r+1 = i′, then κx is Type 2.2. If εx

r+1 = �, then κx is Type 2.3. If
εx

r+1 = k′, then κx = ε(r)k′αx = ε(r)k′β where β = αx is Type 1.3, making
κx Type 2.3. And finally, if εx

r+1 = j′, the change of choice ζ = y−1 ◦x yields

κy = y−1 ◦ κ = ζ ◦ x−1 ◦ κ = ζ(κx) = ε(r)i′ζ(αx), ζ(αx) ∈ N(i, j, k, �′)

where ζ(αx) is Type 1.3. So κy is Type 2.2.
Second, if κ has no “primed” constant subsequence, then “not Type 1.4”

implies

(2) κx = εx
1 · · · εx

rεx
r+1α

x αx ∈ N(i, j, k)

for some choice x where either “(2i),”the prefix εx
1 · · · εx

rεx
r+1 is empty, or

“(2ii),” the prefix is non-empty with εx
r+1 ∈ {�, i′, j′, k′, �′}.

Suppose 2(i) is true. Then κx = αx “not Type 1.3” implies

(3) κx = αx = δ(n)δn+1α α ∈ N(i, j)

where either the prefix δ(n)δn+1 is empty or δn+1 = k; or

(4) κx = αx = δ(n)δn+1α α ∈ N(j, k)

where either the prefix δ(n)δn+1 is empty or δn+1 = i. If (3) holds with an
empty prefix, then κx “not 1.2” implies κx is Type 6.1. And if (3) holds
with a non-empty prefix, then κx is Type 12.1 when α is Type 6.1, and κx is
Type 2.1 when α is Type 1.2. The subcase (4) runs parallel to the subcase
(3), as illustrated in Figure 95.2.

(3)
.........................................................................................................................

...
..............

prefix = ∅

κx 6.1

............................................................................................................................ ...........
...

prefix �= ∅

........................................................................................................................
....

..............

α 6.1

κx 12.1

............................................................................................................................ ..........
....

α 1.2

κx 2.1

(4)
.........................................................................................................................

...
..............

prefix = ∅

κx 4.1

............................................................................................................................ ...........
...

prefix �= ∅

........................................................................................................................
....

..............

α 4.1

κy 12.2
(ζ=y−1◦ x)

............................................................................................................................ ..........
....

α 1.2

κy 3.1
(ζ=y−1◦ x)

Fig. 95.2 Subcases (3) and (4) of 2(i), empty prefix εx
1 · · · εx

r+1 case.
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Finally, suppose 2(ii) is true, i.e., εx
r+1 ∈ {�, i′, j′, k′, �′}: Using the comments

surrounding Figure 93.2, we have εr+1 = εx
r+1 ∈ {�, i′, j′, k′, �′} and φ(α) =

φ(αx) is in the 2-face [ui, uj, uk]. So

wεr+1(φ(α)) = φ(εr+1α) ∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[m�i, m�j , m�k] if εr+1 = �,
[mij , mk�, mj�] if εr+1 = i′,
[mk�, mij , mi�] if εr+1 = j′,
[mj�, mk�, mi�] if εr+1 = k′,
[mjk, mik, mij ] if εr+1 = �′.

The two cases εr+1 ∈ {�, k′} yield φ(εr+1α) ∈ [m�i, m�j , m�k]. If φ(εx
r+1α

x)
is in the interior of this 2-face it must match one of the entries in Table 90.4
(and consequently κx matches an entry in Table 93.1). Otherwise, φ(εx

r+1α
x)

is in an edge of [m�i, m�j , m�k], i.e., in

(m�i, m�j) ∪ (m�j, m�k) ∪ (m�i, m�k) ∪ {m�i, m�j, m�k}.

Consider (m�i, m�j) and midpoint m�j . Then the change of choice π = y−1◦x
= (i)(j)(k�)(i′)(j′)(k′�′) provides a match of εy

r+1α
y with an entry in Ta-

ble 87.3, 88.3, or 88.4. For (m�i, m�k) and the other two midpoints, π =
(ik)(�j)(i′k′)(�′j′) ∈ G yields a match in one of those same tables. For
(m�j , m�k), π = (i�)(kj)(i′�′)(k′j′) provides a match of εy

r+1α
y with an entry

in Table 88.3 or 88.4. Consequently, each corresponding κy matches an entry
in Table 93.1.

In the two cases εr+1 ∈ {i′, j′}, we see that the “j′” case is “equivalent”
to the other via a change of choice (ij)(k)(�)(i′j′)(k′)(�′). So it suffices to
consider φ(i′αx) ∈ [mij , mk�, mj�]. Then i′αx must match either an entry in
Table 90.3, or an entry in Table 87.3, 88.2, 88.3, or 88.4 (and consequently
κx matches an entry in Table 93.1). For the final case, namely εr+1 = �′, we
have φ(εx

r+1α
x) in a 2-simplex of K1 that is a subset of the face [ui, uj, uk].

Thus, εx
r+1α

x must match an entry in Table 87.3 or 89.2. So again there is a
choice x such that κx matches an entry in Table 93.1.

§96 Representations of 3-Space and the 2-Sphere

Recall that in the previous chapter we considered the boundary ∂Δ2 of Δ2,
which is homeomorphic to the 1-sphere, and Δ2\∂Δ2, which is homeomorphic
to Euclidean 2-space. By grouping the fibers according to those that map to
points in the former and then according to those that map to points in the
latter, we obtained representations of the 1-sphere and 2-space, repectively.
In this section, we provide a similar representation of 3-space and the 2-
sphere.

The boundary ∂Δ3 of Δ3 is homeomorphic to the 2-sphere, while Δ3\∂Δ3

is homeomorphic to Euclidean 3-space.

96.1 Theorem Let φ be the address map of F∗
3 = {wq : q ∈ Al} from

N(Al) onto the 3-simplex Δ3. Let F be the φ-inverse subspace of N(Al) that
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contains all of the following fibers: (1) size 1, except those of Type 1.4; (2)
size 2 and Type 2.1; (3) size either 3 or 12; (4) size 4 and Type 4.1; and (5)
size 6 and Type 6.1. Let G = N(A) \F . Then G is also a φ-inverse subspace
of N(A). Moreover,

φ|G : G → (Δ3 \ ∂Δ3) and φ|F : F → ∂Δ3

are quotient maps, the former onto a copy of 3-space and the latter onto a
copy of the 2-sphere.2

Proof. From Table 93.1 it follows that F = φ−1(∂Δ3) and that G =
φ−1(Δ3 \ ∂Δ3). Since φ is continuous, φ|F and φ|G are continuous. In
addition, since ∂Δ3 is closed in Δ3 and (Δ3 \ ∂Δ3) is open in Δ3, it follows
(see, e.g., Dugundji [1966, page 122, Theorem 2.1]) that both φ|F and φ|G
are quotient maps.

§97 Comments

As Barnsley and Sloan [1988] indicate, an IFS may be used to compress a
picture that requires 130 megabytes of memory by a factor of 10,000, requiring
only a manageable 13,000 bytes. Here we used an IFS F∗

3 of size eight to
compress an infinite number of pastings and an infinite number of cuttings
to “picture” a 3-simplex.

The pastings correspond to the affine transformations w0′ , w1′ , w2′ , and
w3′ , while the cuttings correspond to the members w0, w1, w2, and w3 of
the IFS F3 whose attractor is the 3-web ω3 (the Sierpiński cheese). In other
words, we used an IFS to view the (3-dimensional manifold) 3-simplex in the
context of the (1-dimensional fractal) 3-web ω3.

In the context of dimension theory of separable metric spaces at least,
an IFS has some interesting, but yet to be explored features. For example,
consider Morita’s Theorem (Theorem 1.6): A metric-space X has dimension
≤ n if and only if there exists a subspace S of N(A) for suitable A and
a closed continuous mapping f of P onto X such that for each point q ∈
X, f−1(q) consists of at most n + 1 points. Morita’s Theorem places a
nice upper bound “n + 1” on the sizes of the fibers at the cost of having
a rather nebulous domain (some subspace P of N(Ω)). In contrast, an IFS
({wa : a ∈ A}) provides a well-defined domain N(A) (of the closed continuous
address map φ onto its attractor X) at the cost of having rather nebulous
sizes of fibers. An IFS also provides a “built-in” and “uniformly indexed”
sequence Ck (k = 1, 2, . . .) of ever-finer closed coverings of X , namely Ck =
{wa1 ◦ · · · ◦ wak

(X) : a1, . . . , ak ∈ A} that is indexed on the k-fold finite-
product set Ak = A × · · · × A.

Moreover, in this chapter we needed some general formulas (formulas that
apply to any IFS and its address map), e.g., Lemma 85.3 part (a) that concern

2Recall (from §93) that Al = {i, j, k, �, i′, j′, k′, �′} where {{i, j}, {k, �}} =
{{0, 1}, {2, 3}}.
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the interaction between the address map and the members of the IFS. Such
formulas allowed us to navigate between fractals and manifolds, and should
prove key to any solution of the extension problem for n ≥ 4.

As to the open problem of extending the 4-web ω4 IFS to a 4-simplex
Δ4 IFS, the approach developed in this chapter (for the ω3 IFS extension)
could serve as an outline or model for the 4-simplex case. The key problem,
however, is that of understanding the “4-hole” Δ4 \ ∪4

0 wk(Δ4) induced by
the F4 IFS in Δ4.

The fundamental requirement is that of obtaining a well defined descrip-
tion of the “4-hole.” That is, obtain a representation of the “hole” induced by
F4 in Δ4 ⊂ R

5 that is analogous to the 3-hole generated by F3 in Δ3 ⊂ R

4.
Recall that the closure of the 3-hole may be viewed as an octahedron, which in
turn was viewed as a realization of a 3-complex consisting of four tetrahedra.
It is also worth noting that the 2-skeleton of an octahedron is homeomorphic
to a 2-sphere.

To begin the search for the corresponding complex whose realization is
the closure of the “4-hole” in the 4-simplex, this author believes that the
3-space representation of a level-1 J5 should provide an intuitive background
for “picturing the hole.”

For example, the midpoints mij , for distinct i, j ∈ {0, 1, 2, 3, 4}, of edges
[ui, uj] of Δ4 are easily pictured at the level-1 approximation of J5. By
considering all possible edges [mij , mk�] whose endpoints are these midpoints,
one may see, at least combinatorially, five tetrahedra, each just touching the
other four. In addition, one may also see five octahedra with interesting
combinatorial properties. It is easy to conjecture that this subcomplex whose
vertices are the midpoints mij may serve as a model for decomposing the
closure of the 4-hole into 4-simplexes that could then serve to define the
desired F∗

4 .
Another easy conjecture is that the boundary of the 4-hole is homeomor-

phic to a 3-sphere.



APPENDIX 1

Background Basics

We recall (with gateways to references) the most basic of relevant concepts
— notations, covers, and Cartesian poducts (§A1), topological spaces (§A2),
metric spaces (§A3), mappings (§A4), product, biquotient and perfect map-
pings (§A5), and topological dimension theory (§A6).

§A1 Notations, Covers, and Cartesian Products

A1.1 Notations. The set-theoretic notation used in this book is standard.
Nevertheless, we note that f : X → Y does not necessarily imply that f is
surjective; and, as is standard, we may call the inverse image “f−1(y)” of the
point y ∈ Y either a point-inverse set or a fiber of f .

A1.2 Covers. A family C of subsets of X �= ∅ covers X (or is a covering of
X) if each point in X is contained in at least one member of C. When each
C ∈ C is open in (the topological space) X , then C is an open cover.

Any C′ ⊂ C that also covers X is a subcover of C. The cover C itself is
irreducible when it has no proper subcover; it is point finite if each x ∈ X is
contained in only finitely many members of C; and it is locally finite (discrete)
if for each x ∈ X there is an open set Gx such that Gx ∩ C �= ∅ is valid for
only finitely many (for at most one) members C of C.1

A collection B is σ-locally finite (σ-discrete) if B = ∪iBi is a countable
union where each Bi is locally finite (discrete).

Let U and V be coverings of X . Then U refines or is a refinement of V
if for each U ∈ U there is some V ∈ V such that U ⊂ V . In such a case we
may write U ≺ V . If U = {Ua : a ∈ A}, V = {Va : a ∈ A}, and Ua ⊂ Va for
each a ∈ A, then U precisely refines (is a precise refinement of ) V .

For a covering C of X , the star S(x, C) of a point x ∈ X is given by
S(x, C) = ∪{C : x ∈ C ∈ C}. Similarly, the star S(R, C) of R ⊂ X is given
by S(R, C) = ∪{C : C ∩ R �= ∅; C ∈ C}. The induced star-covering C∗ is
given by C∗ = {S(C, C) : C ∈ C}.

A1.3 Cartesian Products. The times notation “×” is used for (Cartesian)
products, e.g., A × B, A × B × C, and ×iAi. The last example is only used

1One must be careful about the choice of indexing. For example, if we simply write
C = {Ca : a ∈ A}, then it may be that for a fixed a′ ∈ A we have a′ �= a but Ca′ = Ca for
an infinite number of a ∈ A. To avoid any confusion, when we say “{Ca : a ∈ A} is locally
finite” it shall be understood that there exists an open set Gx such that Gx ∩ Ca �= ∅ is
valid for only finitely many a ∈ A.
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when the index set and each factor Ai are known. For A �= ∅, we write

N(A) = A × A × · · · = ×iAi (i ∈ N = {1, 2, . . .} and each Ai = A),

which is the set of all sequences in A. The set of all mappings X → Y is
denoted by either “×x∈XYx” (where each Yx = Y ) or “Y X” (which is the
exponential notation). For X = {1, 2, . . . , 2n + 1} and Y = I, we may write

I2n+1 = I1 × I2 × · · · × I2n+1 = {(x1, . . . , x2n+1) : each xi ∈ I},

and when X = {1, 2, . . .} we write I∞ = ×iIi where each factor Ii = I.

§A2 Topological Spaces

A topological space X = (X, T ) consists of a non-empty set X and a family
(the topology) T of subsets of X such that (i) {Gγ |γ ∈ Γ} ⊂ T implies
∪γGγ ∈ T and (ii) {Gγ |γ ∈ Γ} ⊂ T and Γ finite imply ∩γGγ ∈ T . Each
G ∈ T is an open set, and its complement F = X \ G is a closed set.

In this monograph, a neighborhood Nx of the point x is any subset Nx of
X such that x ∈ G ⊂ Nx for some open set G.

Let X be a topological space and let R ⊂ X . With the understanding that
x ∈ G ∈ T is expressed as “Gx”, recall the most basic concepts: The interior
“int(R)” of R is the set of those x such that some Gx satisfies Gx ⊂ R; the
closure “R” of R consists of those x such that every Gx satisfies Gx ∩R �= ∅;
and the boundary “B(R)” of R consists of those x such that every Gx satisfies
both Gx ∩ R �= ∅ and Gx ∩ (X \ R) �= ∅.

It follows that int(R) is open and that R = X − ∪{Gx : Gx ∩ R = ∅} is
closed. In turn, since B(R) = R \ int(R), we see that B(R) is also closed.
When R = G itself is open, then int(R) = R and B(R) = R \R, which yields
B(G) ∩ G = ∅ and G = G ∪ B(G).

A2.1 Separation Axioms. Again, “Gx” and “GA” denote, respectively,
“x ∈ G ∈ T ” and “A ⊂ G ∈ T ”. A topological space X is a T1-space if and
only if each singleton set {x} is a closed set; it is T2 or Hausdorff if x, y ∈ X
and x �= y, then there exist disjoint Gx and Gy; it is T3 or regular if it is a
T1-space and if for each x ∈ X and closed F ⊂ X with x �∈ F there exist
disjoint Gx and GF ; and it is T4 or normal if it is a T1-space, and, F and H
disjoint and closed implies disjoint GF and GH exist.

Theorem (covering characterization of normality) A topological space
X is normal if and only if for each point-finite open covering U = {Ua : a ∈
A} of X there exists an open covering V = {Va : a ∈ A} of X such that
V a ⊂ Ua for each a ∈ A and Va �= ∅ when Ua �= ∅.2

In general, a closed precise refinement V = {V a : a ∈ A} of {Ua : a ∈ A} = U
is called a shrinking of U .

2For a detailed proof see Dugundji [1966, §6, page 152].
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A2.2 Compact and Paracompact. A topological space X is compact if
each open covering C has a finite subcover C′ ⊂ C; and X is paracompact if
each open covering C has a locally finite subcover C′ ⊂ C.

Theorem (sufficient condition for normality) Let X be a topological
space that is both Hausdorff and paracompact. Then X is normal.3

A2.3 Basis, Weight, and Subbasis. A basis B for a topological space
X = (X, T ) is a subcollection of T such that each member of T is a union
of members of B. It follows, since X itself is a member of T that each basis
is an open cover of X . Clearly, T itself is a basis for X .

If X has a countable basis B, i.e., ℵ(B) ≤ ℵ0, then X is separable. Other-
wise, X is nonseparable. The weight of X is the cardinality of a minimum-size
basis for X .

A basis B that is σ-locally finite (σ-discrete) is called a σ-locally finite
(σ-discrete) basis.

Any non-empty collection S of subsets of a non-empty set X generates
or is a subbasis of a topology for X : Since S is a subcollection of the set 2X

of all subsets of X and since 2X is a topology for X , the topology T (S) =
∩{T : S ⊂ T and T is a topology on X} has S as a subbasis. Since T (S) =
{G : G is a union of finite intersections of members of S}, B(S) = {B :
B is a finite intersection of members of S} is a basis for T (S).

§A3 Metric Spaces

Let X be a non-empty set and let ρ : X × X → [0,∞) be such that (i)
ρ(x, y) = 0 if and only if x = y, (ii) ρ(x, y) = ρ(y, x) for every x, y ∈ X , and
(iii) ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for every x, y, z ∈ X . Then X = (X, ρ) is a
metric space and ρ is a a metric or distance function.

For x ∈ X and δ > 0, the open δ-ball Bδ(x) centered at x with radius δ is
given by Bδ(x) = {y ∈ X : ρ(x, y) < δ}, while the corresponding closed ball
is given by Bδ(x) = {y ∈ X : ρ(x, y) ≤ δ}.

On the one hand, the collection S = {Bδ(x) : x ∈ X and δ > 0} of all
open balls is a subbasis for the topology Tρ induced by the metric ρ. If metrics
ρ and ρ′ on X induce identical topologies Tρ = Tρ′ , then they are equivalent
metrics. And when a metric space (X, ρ) is called a topological space, it is
understood that X = (X, Tρ).

On the other hand, a topological space (X, T ) is metrizable if there exists
a metric ρ on X such that Tρ = T .

Characterizations of those regular spaces that are metrizable were created
independently by Bing [1951], Nagata [1950], and Smirnov [1951].4

3For a detailed proof see Dugundji [1966, §2, page 162].
4For metrizable spaces and related topics see Nagata [1968, Chapter VI], and for imbed-

dings and metrization see Kelly [1955]. For characterizations of those T0 and T1 spaces
that are metrizable, namely the Morita, Stone, and Arhangel

,
skii theorems, see Dugundji

[1966, page 196, Theorem 9.5].
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Theorem (Bing’s Metrization Theorem) A regular topological space X
is metrizable if and only if it has a σ-discrete basis.

Theorem (Nagata-Smirnov Metrization Theorem) A regular space X
is metrizable if and only if it has a σ-locally finite basis.

The distance of a point x ∈ X from a set R ⊂ X is given by ρ(x, R) =
inf{ρ(x, y) : y ∈ R}. And the diameter of a set R is given by |R| =
sup{ρ(x, y) : x, y ∈ R}. Some basic properties are listed below.

Theorem (properties of metric spaces) Let X = (X, ρ) be a metric
space. Then
(i) The space X is paracompact and Hausdorff.
(ii) The space X satisfies the first axiom of countability.
(iii) The closure of R ⊂ X is R = {x ∈ X : ρ(x, R) = 0}.
(iv) A sequence xk → x if and only if ρ(xk, x) → 0.
(v) The metric ρ is continuous, i.e., if a sequence (xn, yn) → (x, y)

relative to the product topology, then ρ(xn, yn) → ρ(x, y).

Finally, let X = (X, ρ) be a metric space. Then a ρ-Cauchy sequence
x1, x2, . . . in X is a sequence with the property that for each ε > 0 a positive
integer n exists such that k, m > n implies ρ(xk, xm) < ε. The metric ρ
is complete metric for X if every ρ-Cauchy sequence in X converges to a
point in X . And X is topologically complete whenever X has a complete
metric. For a proof of the following theorem see Dugundji [1966, Chapter
XIV, Theorem 2.5].

Theorem (completeness of countable product spaces) A countable
product space ×iXi is topologically complete if and only if each factor Xi is
topologically complete.

§A4 Mappings

A function f : Y → X from a topological space Y to a topological space X is
continuous if H open in X implies (the inverse image) f−1(H) is open in Y .
A homeomorphism Y → X is a continuous bijection whose inverse X → Y
is also continuous. When a homeomorphism Y → X exists we may say that
Y and X are homeomorphic or that Y and X are topologically equivalent.
Topological equivalence is denoted Y =t X .

Let f : Y → X be a continuous surjection. Then f is a quotient mapping
or identification when f satisfies “the converse of continuity” — f−1(H) open
in Y implies H open in X .

The construction of quotient mappings is fundamental. The standard
method is to begin with a topological space Y , an arbitrary set X , and a
surjective function f : Y → X . Then use f to induce the largest topology on
X that makes f continuous. That is, the identification or quotient topology
T (f) is given by T (f) = {G ⊂ X : f−1(G) is open in Y }.
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Typically, however, one obtains the set X via an equivalence relation ∼

on Y , i.e., one defines X = Y/ ∼. In this case the points of X are the parts of
the partition of Y induced by ∼. The mapping f : Y → X is then specified
as the natural map — the point f(y) = [y] is the part [y] of the partition X
that contains y.

A4.1 Theorem Let Y be a topological space, ∼ an equivalence relation on
Y , and X = Y/ ∼ the induced partition of Y with the quotient topology.
Then the natural mapping f : Y → X is a quotient mapping.

A surjection f : Y → X of topological spaces Y and X is a closed mapping
if F closed in Y implies its image f(F ) is closed in X . Similarly, f is an open
mapping if G open in Y implies its image f(G) is open in X .

A4.2 Theorem Let f : Y → X be a continuous open (or closed) mapping.
Then f is a quotient mapping.

A4.3 Theorem Let f : Y → X be surjective and quotient, g : Y → J
continuous, and gf−1 : X → J single valued, i.e., g is constant on each fiber
f−1(x). Then gf−1 is continuous. Moreover, gf−1 is closed if and only if
g(F ) is closed whenever F is a closed f -inverse set (F = f−1f(F )).

Y X

J

f

g
gf−1

........................................................................................................................ ..............

................................................................................
.....
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.................................................................................................................................................
...

..............

Fig. A4.4 Diagram used in proof of Jn+1
A Imbedding Theorem (see §41).

Proofs of A4.2 and A4.3 appear in Dugundji [1966, pages 121–123].

§A5 Product, Biquotient, and Perfect Mappings

The product ×γXγ provides, for each γ′ ∈ Γ, a projection map

pγ′ : ×γXγ → Xγ′

given by (xγ) �→ x′
γ ∈ Xγ′ . And the mappings fγ : Xγ → Yγ (for each γ ∈ Γ)

yield the product map

f = ×γfγ : ×γXγ → ×γYγ

given by the formula (xγ) �→ (yγ) where each yγ = fγ(xγ).
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When each factor set Xγ is a topological space, ×γXγ inherits the product
topology — the “smallest topology” such that each projection pγ is continu-
ous. The product topology T (S) is generated by the subbasis S of all sets of
the form

〈G〉 = p−1
γ′ (G) = ×γUγ where Uγ =

{
Xγ if γ �= γ′;
G open in Xγ′ if γ = γ′.

It follows that the collection B(S) of sets

〈G1, G2, . . . , Gk〉 = 〈G1〉 ∩ 〈G2〉 ∩ · · · ∩ 〈Gk〉 each Gi open in Xγi

is a basis for the product topology. A Cartesian product ×γXγ with the
product topology is often referred to as a product space.

If ×γXγ and ×γYγ are product spaces and each component fγ of a product
map f = ×γfγ is continuous, then f itself is continuous. Unlike continuous
mappings, a product of quotient mappings is not necessarily quotient.5

A5.1 Definition A continuous surjection f : X → Y is biquotient if for
each y ∈ Y and each open covering U = {Ua : a ∈ A} of f−1(y), finitely
many f(Ua) cover some neighborhood of y ∈ Y .6

It is straightforward to show that each biquotient map is necessarily a
quotient map. The nice behavior of biquotient maps — as opposed to the
behavior of quotient maps in general — with respect to taking products is
stated in the following result which is due to Michael [1968].

A5.2 Theorem Any product of biquotient maps is a biquotient map.
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Fig. A5.3 Mappings and how they relate (open implies biquotient, etc.)

5For an example of a nonquotient product map f × g where both f and g are quotient
see Brown [1968, Example 4, page 102].

6The concept of biquotient was introduced by Ernest Michael [1968] who states that
these mappings are equivalent to “limit lifting maps” as defined in Hájek [1966].
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A5.4 Definition A perfect of proper mapping p : X → Y is a continuous
closed surjection such that each fiber p−1(y) is compact.

A5.5 Definition A continuous surjection h : X → Y is hereditarily quotient
if for each non-empty S ⊂ Y , the restriction of h to h−1(S) is a quotient
mapping h−1(S) → S.

A5.6 Theorem (Arhangel
,
skii [1963]) A continuous surjection h : X →

Y is hereditarily quotient if and only if h(U) is a neighborhood of y ∈ Y
whenever U is a neighborhood of the fiber h−1(y) ⊂ X.

A5.7 Corollary Every biquotient map is hereditarily quotient, and every
closed map is hereditarily quotient.

The equivalence in Theorem A5.6 also yields the fact that any hereditarily
quotient map f : X → Y with compact fibers f−1(y) is biquotient. It follows,
since perfect maps are closed maps, that perfect implies biquotient.

To summarize, within the class of continuous surjections, the inclusions
among the subclasses discussed above may be diagrammed as in Figure A5.3.7

For a proof of the following theorem see Bourbaki [1966, Proposition 4,
page 98] [1961, Chapters 1 and 2]; the former concerns finite products.

A5.8 Theorem Any product of perfect maps is a perfect map.

A5.9 Theorem (Morita and Hanai [1956] and Stone [1956]) Let the map
p : X → Y be a perfect map. Then X metrizable implies Y is metrizable.

§A6 Topological Dimension Theory

For the prehistory of (topological) dimension theory see Crilly [1999]; for
the separable-metric-space theory see Hurewicz and Wallman [1948]; for the
status of dimension theory circa 1955 see Alexandroff [1955]; for the general
(not necessarily separable) metric-space theory see Nagata [1965]; and for
combinations or parts of these two theories along with evolving theories in
general (not necessarily metric) spaces see Nagami (with an appendix by
Kodama) [1970], Pears [1975], and Engelking [1978].

And to this list we add a rather concise and appropriate quotation of
Kuratowski [1966, page 273] on its progress up to the 1950s:8

7For details and closely related references see Lašnev [1966], and, Michael [1972][1974].
8The original statements appear in a footnote that contains additional references. Also,

the formatting of references has been adjusted to conform with those of this book.
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The idea of a definition of dimension was originally due to Henri
Poincaré [1912]. The definition was made precise by Brouwer
[1913]. The dimension theory based on a definition rather close
to that of Poincaré-Brouwer was created and developed indepen-
dently by K. Menger and P. Uryshon in a number of papers be-
ginning from 1922. See particularly Menger [1928] and Urysohn
[1925b] [1926]. For a more modern exposition of dimension theory
see Hurewicz and Wallman [1948]. For a dimension theory based
on the notion of homology, see Alexandroff [1932].

A6.1 Definitions. We recall the definitions of the covering, the strong
inductive, and the weak inductive dimension functions. In each case, X is
any topological space and n is any non-negative integer.

Definition (ordx and ord U) Let U a family of subsets of X , and let x ∈ X .
Then “ordx U” denotes the order of U at x, i.e., the number of members of
U that contain x. If x ∈ U ∈ U for infinitely many U , then ordx U = ∞.
Moreover, the order of U is given by ord U = sup {ordx U|x ∈ X}.9

The concept of ord U yields the covering/Lebesgue dimension.

Definition (covering dimension) The space X has covering dimension
≤ n if for each finite open covering {V1, . . . , Vk} of X there is an open covering
U = {U1, . . . , Uk} such that each Ui ⊂ Vi and ord U ≤ n + 1. When X has
covering dimension ≤ n, we may write “dim X ≤ n”, and when dim X ≤ n
and it is not true that dim X ≤ (n − 1), then X has covering dimension n
and we may write “dim X = n”. When no such n exists, then by definition
dim X = +∞. By convention, we define dim ∅ = −1.10

The definition of the strong inductive dimension “Ind” involves the bound-
ary “B(G)” of G.

Definition (strong inductive dimension) The definition is inductive, ini-
tiated with X = ∅ whose strong inductive dimension is defined as −1. And
when the strong inductive dimension of X equals −1, we may write “Ind
X = −1”. In general, X has strong inductive dimension ≤ n if for each pair
of disjoint closed subsets K and F of X there exists an open set G such that

F ⊂ G ⊂ X − K and Ind B(G) ≤ n − 1.

When X has strong inductive dimension ≤ n, then we may write “Ind X ≤
n”, and when Ind X ≤ n and it is not true that Ind X ≤ (n−1), then X has

9The definition of “order of a cover” varies from author to author: For example, the
definition here agrees with Nagata [1965, page 9] but differs from Engelking [1978, page
54] and Pears [1975, page 111].

10A proof that this definition is equivalent to the one used by Nagata [1965, page 9]
appears in Pears [1975, Proposition 1.2].



§A6 TOPOLOGICAL DIMENSION THEORY 201

strong inductive dimension n and we may write “Ind X = n”. If no such n
exists, then by definition Ind X = +∞.

Definition (weak inductive dimension) The definition is inductive, initi-
ated with X = ∅ whose weak inductive dimension is defined as −1. And when
the weak inductive dimension of X equals −1, we may write “ind X = −1”.
In general, let X be a topological space and let n be a non-negative integer.
Then X has ind inductive dimension ≤ n if for each x ∈ X and each open
set Gx containing x, there exists an open set U such that

x ∈ U ⊂ Gx and ind B(U) ≤ n − 1.

When X has weak inductive dimension ≤ n, then we may write “ind X ≤ n”,
and when ind X ≤ n and it is not true that ind X ≤ (n − 1), then X has
weak inductive dimension n and we may write “ind X = n”. If no such n
exists, then by definition ind X = +∞.

When X is a separable metric space, then the covering, strong inductive,
and weak inductive dimensions are equivalent, i.e., dim X = Ind X = ind X .
And when X is a general (not necessarily separable) metric space dim X =
Ind X . (See Nagata [1965, Theorem II.7, page 27]. The first proofs were due
to Katětov [1952] and, independently, Morita [1954].) However, Prabir Roy
[1962, 1968] provided an example of a (nonseparable) metric space P such
that ind P = 0 while Ind P = dim P = 1.

A6.2 Basic Theorems. Within the context of metric spaces, the most
basic theorems of dimension theory are the Equivalence, Subspace, Sum,
Decomposition, and Product theorems. Detailed proofs of these theorems
appear in either Nagata [1965, Chapter II] or Engelking [1978, Chapter 4,
Section 4.1]. Precise statements of these theorems are provided below, where
it is assumed that X is always a metric space, and the page number and
theorem number are from Engelking [1978].

Equivalence Theorem [page 254, Theorem 4.1.3] For each X, Ind X =
dim X.

Subspace Theorem [page 257, Theorem 4.1.7] Let S ⊂ X. Then Ind S ≤
Ind X.

Sum Theorem [page 257, Theorem 4.1.11] Let {Fγ}γ∈Γ be a locally count-
able closed covering of X such that Ind Fγ ≤ n for each γ. Then Ind X ≤ n.

Decomposition Theorem [page 259, Theorem 4.1.17] Let n ≥ 0. Then Ind
X≤ n if and only if X = ∪n+1

i=1 Xi where each Xi ⊂ X satisfies Ind Xi ≤ 0.

Product Theorem [page 260, Theorem 4.1.21] If Y is either a metric space
or the empty set, then Ind X × Y ≤ Ind X + Ind Y .

For extensions or analogues of these theorems in the context of general (not
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necessarily metric) spaces one may begin by reviewing Pears [1975] and the
references listed therein.

The following theorem is applied in Chapter 7. And as presented below,
the proof follows that of Proposition C) in Nagata [1965, page 12].

Theorem (open sets in the context of a zero-dimensional set) Let
X be a metric space, let X0 ⊂ X where dimX0 = 0, and, let F and F ′

be disjoint closed subsets of X. Then there exists an open set M such that
F ⊂ M ⊂ M ⊂ X \ F ′ and B(M) ∩ X0 = ∅.

Proof. Since X is normal there are open sets V and V ′ such that

F ⊂ V, F ′ ⊂ V ′, and V ∩ V ′ = ∅.

Since Ind X0 = 0, we can find an open and closed set U of the subspace X0

such that
V ∩ X0 ⊂ U ⊂ X0 \ (V ′ ∩ X0).

Since C = F ∪U and D = F ′∪(X0\U) are separated, i.e., (C∩D)∪(C∩D) =
∅, there exist open sets M and N such that

F ∪ U ⊂ M, F ′ ∪ (X0 \ U) ⊂ N, and M ∩ N = ∅.

Now B(M) ∩ X0 = ∅ because N is open and U is both open and closed in
X0. Furthermore, M ⊂ X \ N because M ∩ N = ∅ and N is open. So
X \ N ⊂ X \ F ′ yields M ⊂ X \ F ′. In short, F ⊂ M ⊂ M ⊂ X \ F ′.

The following lemma and the next theorem are applied in Chapter 7. They
are essentially “locally finite” versions of their “finite counterparts” Remark
2 and Remark 3 in Ostrand [1971] — the constructions used to prove the
theorem parallel those of Ostrand in his proof of his Remark 3.

Lemma (covers at points in dim ≤ n closed subspaces) Let X be
a normal Hausdorff space, and let F be a closed subspace of X with 0 ≤
dimF ≤ n. Let U = {Ub : b ∈ B} be a locally finite open family of subsets of
X that cover F . Then there is an open precise refinement V of U that covers
F and satisfies ordx V ≤ n + 1 for each x ∈ F .

Proof. Consider the family {Ub ∩ F}b∈B. This family is a locally finite
open (in F ) cover of F . Since dim F ≤ n, there is a locally finite open (in
F ) precise refinement U ′ of {Ub ∩ F}b∈B such that ord U ′ ≤ n + 1. So for
each b ∈ B there is an open in X subset V ′

b such that V ′
b ∩ F = U ′

b. Then
(V ′

b ∩ Ub) ∩ F = U ′
b. So let Vb = V ′

b ∩ Ub. Then each Vb ⊂ Ub and each Vb is
open in X . So V = {Vb}b∈B is a precise refinement of U . And if x ∈ F , then
ordx U ′ ≤ n + 1 implies there are at most n + 1 distinct U ′ ∈ U ′ that contain
x, which in turn implies there are at most n + 1 distinct V ∩ F that contain
x, i.e., ordx V ≤ n + 1 for each x ∈ F .
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Theorem (refining covers of dim ≤ n closed subspaces) Let X be
a normal Hausdorff space, F ⊂ X be closed with 0 ≤ dimF ≤ n, and
U = {Ub : b ∈ B} be a locally finite open family that covers F . Then there is
an open precise refinement V of U that covers F and satisfies ord V ≤ n+1.

Proof. By the previous lemma, there exists a locally finite open family U ′

that shrinks U and covers F and satisfies ordx U ′ ≤ n + 1 for each x ∈ F .
Consider U ′∪{X \F}, which is a locally finite open cover of X . By normality,
we may shrink this cover to an open cover U ′′ = {U ′′

b : b ∈ B} ∪ {G} where
each U

′′
b ⊂ U ′

b and G ⊂ X \ F . Then U ′′ covers F . Now let

N2 =
{
C = {b1, . . . , bn+2} ⊂ B : U ′′

b1 , . . . , U
′′
bn+2

are distinct
}

.

For C ∈ N2, let YC = ∩{U ′′
b : b ∈ C} and Y = ∪C∈N2YC . Then Y is closed

(the family {YC}C∈N2 is locally finite) and Y ∩F = ∅. So for each b ∈ B, let
Vb = U ′′

b \ Y , and observe that V = {Vb}b∈B is the desired family.

A6.3 Classical Imbedding Theorem. Unless stated otherwise, each space
in this book is a general (not necessarily separable) metric space. In this
section we consider only separable metric spaces and the Classical Imbedding
Theorem. Its statement is provided below, and an extensive discussion and
development may be found in Hurewicz and Wallman [1948].

Any study of the Classical Imbedding Theorem shows that the mathe-
matics used to develop the Classical Theorem is distinct from that used to in
the development of the General JA Imbedding Theorem. Indeed, the math-
ematics behind the Classical Theorem is extensively documented in several
texts, while the mathematics for the JA Theorem had, until the publication
of this monograph, appeared only in the research literature.

Classical Imbedding Theorem (separable metric spaces) Let n ≥ 0,
let I denote the unit interval, let I2n+1 denote the Cartesian product space
of 2n + 1 copies of I, and let

I2n+1(n) = {x ∈ I2n+1 : x has at most n rational coordinates}.

Then Ind I2n+1(n) = n, and, if X is a separable metric space with Ind X ≤ n,
then there exists an imbedding f : X → I2n+1(n).
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The Standard Simplex ΔA in l2(A)

We provide background material (with gateways to references) for the stan-
dard simplex ΔA = {(xa) ∈ l2(A) : 0 ≤ Σaxa ≤ 1; 0 ≤ each xa ≤ 1} and
show that ΔA, like its counterpart Δn = {(xi) ∈ R

n+1 : Σixi = 1; 0 ≤
each xi ≤ 1}, is the closed convex hull of the standard orthonormal basis.

§A7 Real Hilbert Spaces

We consider only real linear spaces. Let R denote the field of real numbers.
Then a real linear space or real vector space is a set V together with vector
addition + : V × V → V denoted (v,w) �→ v + w, and scalar multiplication
R × V → V denoted (λ,v) �→ λv, such that (i) (V, +) is an Abelian group
with identity “0”; and (ii) λ, μ ∈ R and v,w ∈ V implies λ(v+w) = λv+λw,
and, (λ + μ)v = λv + μv, and, λ(μv) = (λμ)v, and, 1v = v.

For any non-empty set A, the set V = R

A of tuples (xa)a∈A (each xa ∈ R)
with operations (xa) + (ya) = (xa + ya) and λ(xa) = (λxa) is a linear space.
In particular, we have Hilbert’s l2(A) space given by1,2

{x = (xa) ∈ R

A : xa �= 0 for only countably many a ∈ A and Σa[xa]2 < ∞}.

A7.1 Linear Combinations and Subspaces. For v1, . . . ,vk in the linear
space V and λ1, . . . , λk ∈ R, the finite sum λ1v1 + · · · + λkvk is called a
linear combination of v1, . . . ,vk. Any non-empty subset S of a linear space
V that contains all linear combinations of its members is a linear subspace
of V . Given n ≥ 1 vectors v1, . . . ,vn, the intersection of all linear subspaces
S ⊃ {v1, . . . ,vn} of V is the linear subspace spanned by v1, . . . ,vn and may
be specified as

{Σn
1λivi : each λi ∈ R} .

A7.2 Independence, Basis, and Dimension. A non-empty finite set of
vectors v1, . . . ,vn in V is linearly independent if Σn

1λivi = 0 implies λ1 =
· · · = λn = 0; and a non-empty arbitrary set {va} ⊂ V is linearly independent
if each of its finite non-empty subsets is linearly independent.

1In 1906 David Hilbert introduced l2(A) (for countably infinite A) in his research on
the theory of integral equations as the natural infinite-dimensional analogue of Euclidean
n-space (see Riesz and Sz-Nagy [1955, page 195] and Taylor [1965, page 155]). When A
is finite, “l2(A)” is often called Euclidean space. When A is uncountable, “l2(A)” may be
called generalized Hilbert space with index set A (Nagata [1968, page 95]).

2The fact that x+ y ∈ l2(A) whenever x, y ∈ l2(A) follows from Minkowski’s inequality[
Σa[xa + ya]2

]1/2 ≤
[
Σa[xa]2

]1/2
+
[
Σa[ya]2

]1/2
(see Rudin [1966, Theorems 3.5 and 3.9]

and use p = 2 and μ as the counting measure on A).
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A maximal linearly independent subset {va} of V is a basis for V . And
when {va} is a basis for V , then for each v ∈ V there is a unique finite subset
F = {vi} of {va} and a unique subset {λi} of R such that v = ΣF λivi.

Except for the trivial space (V = {0}), every vector space V has a basis;
and all bases of V have the same cardinality “dimV ” (the dimension of V ).
If V is the trivial space, then by definition dim V = 0. Otherwise, either
V is finite-dimensional, i.e., dimV = n ≥ 1 is an integer, or, V is infinite-
dimensional. The linear subspace spanned by v1, . . . ,vn is n-dimensional if
and only if the set {v1, . . . ,vn} is linearly independent.

A non-empty finite set of vectors v0,v1, . . . ,vn is geometrically inde-
pendent if Σn

0 λi = 0 and Σn
0λivi = 0 imply that λ0 = · · · = λn = 0.

One may show that {v0, . . . ,vn} is geometrically independent if and only if
{v1 − v0, . . . ,vn − v0} is linearly independent.3

A flat (plane, hyperplane, or linear manifold) is a translation v + S =
{v + w : w ∈ S} of a subspace S of V . If dim S = n, then v + S may
be called an n-flat. (A 2-flat in R

3 corresponds to a plane not necessarily
through the origin.) If {v0, . . . ,vn} is a set of n + 1 points in V , then the
smallest flat that contains v0, . . . ,vn may be specified as4

(1)
{∑n

0
λivi :

∑n

0
λi = 1 ; each λi ∈ R

}

and is an n-flat if and only if {v0, . . . ,vn} is geometrically independent.

A7.3 Normed, Metric, Banach, and Linear Topological Spaces. A
normed linear space is a linear space V with a norm V → R denoted v �→ ‖v‖
such that all v,w ∈ V and all λ ∈ R satisfy ‖v‖ ≥ 0, and, (‖v‖ = 0 ⇔ v = 0),
and, ‖v + w‖ ≤ ‖v‖ + ‖w‖, and, ‖λv‖ = |λ| ‖v‖.

Any normed linear space V is a metric (hence topological) space with
norm-induced metric d(x,y) = ‖x−y‖, and its linear subspaces S are closed
when dim V < ∞. Otherwise, its linear subspaces may not be closed.5

Normed spaces that are complete metric spaces relative to the norm-
induced metric are called Banach spaces.6

Each normed space V is also a linear topological space, i.e., a linear space
with a Hausdorff topology such that vector addition and scalar multiplication
are continuous.7

3For a detailed proof, see Pontryagin [1952, page 3].
4Consider the subspace S =

{
Σn

1 μi(vi − v0) : each μi ∈ R
}
; and then consider v0 +

S =
{
(1 − Σn

1 μi)v0 + Σn
1 μivi : each μi ∈ R

}
= {Σn

0 λivi : Σn
0 λi = 1; each λi ∈ R}.

5Kolmogorov and Fomin [1957, Remark 1, page 73].
6For a proof that R

n is a Banach space see Simmons [1963, Theorem A, page 89]; for a
proof that l2(A) is complete (and hence a Banach space) see Rudin [1966, Theorem 3.11]
and use p = 2 and μ as the counting measure on A.

7For a concise proof see Simmons [1963, Section 46, page 212]. Both R
n and l2(A) are

normed, metric, Banach, and linear topological spaces. For an extensive development of
normed spaces see Kolmogorov and Fomin [1957, Chapter III]. For sufficient conditions for
a linear topological space to be normable see Kelly and Namioka [1963, page 43].
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For v ∈ V , the continuous and mutually inverse translations x �→ x + v
and x �→ x−v are homeomorphisms V → V . Similarly, each scaling x �→ λx
(λ �= 0) is a homeomorphism. So G + v open ⇔ G open ⇔ λG open.

A7.4 Abstract Real Hilbert Spaces. Following Kolmogorov and Fomin8

we say that H is a real Hilbert space when the following axioms are satis-
fied: I. H is a linear space; II. an inner product H × H → R is defined on
H , i.e., for x,y, z ∈ H and λ ∈ R, the inner product (x,y) ∈ R satisfies
(i) (x,y) = (y,x), (ii) (λx,y) = λ(x,y), (iii) (x + y, z) = (x, z) + (y, z),
and (iv) (x,x) > 0 if x �= 0; III. H is complete in the norm-induced met-
ric d(x,y) = ‖x − y‖ where ‖x‖ = (x,x)

1
2 is the norm of x; and IV. H is

infinite-dimensional.
Hilbert spaces are normed, metric, Banach, and linear topological spaces.

Moreover, the inner product function is also continuous, i.e., (xn,yn) →
(x,y) when ‖xn−x‖ → 0 and ‖yn−y‖ → 0. In particular, (xn,xn) → (x,x)
whenever ‖xn − x‖ → 0, showing that the norm x �→ ‖x‖ = (x,x)

1
2 is also

continuous.
For any infinite set A, the space l2(A) is a Hilbert space whose operations

may be summarized as follows: For x = (xa) and y = (ya),

(xa) + (ya) = (xa + ya), λ(xa) = (λxa),
(x,y) = Σaxaya, ‖x‖ = (x,x)1/2 = (Σa(xa)2)1/2,

d((xa), (ya)) = (Σa(xa − ya)2)
1
2 .

A7.5 Orthonormal Bases. Let H be a Hilbert space. Then {ua : a ∈
A} ⊂ H is an orthonormal set if a, b ∈ A implies (ua,ua) = 1 and (ua,ub) =
0 whenever a �= b. A maximal orthonormal set {ua} in H is frequently called
a complete orthonormal set or an orthonormal basis.9

Each l2(A) has its standard orthonormal basis {ua : a ∈ A} given by

ua = (ua
b ) ∈ l2(A) where ua

b =
{

1 if b = a,
0 otherwise.

Every orthonormal set is also a linearly independent set, but a maximal
orthonormal set may not be a maximal linearly independent set. (So an
orthonormal basis need not be a basis.)10

In passing, recall that the standard orthonormal basis {ua : a ∈ A}
of l2(A) provides an “inner-product representation” of values “xa” of each
function x = (xa) ∈ l2(A), namely, xa = (x,ua) for each a ∈ A.

8Kolmogorov and Fomin [1961, Chapter IX]. For complex Hilbert spaces see Rudin
[1966, Chapter 4].

9For characterizations of an orthonormal basis see Rudin [1966, Theorem 4.18] and, for
a concise list of various aspects of Hilbert spaces, see problems H, I, J, K, and L in Kelly
and Namioka [1963, pages 65–67].

10For infinite A, the orthonormal basis {ua : a ∈ A} of l2(A) is not a basis of l2(A): If
x = (xa) ∈ l2(A) where infinitely many xa �= 0, then for each finite F ⊂ {ua} and all λa,
we have x �= ΣF λaua.
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A7.6 Hilbert Space Isomorphisms. For linear spaces V and W , a linear
isomorphism Λ : V → W is a bijective linear transformation, i.e., a bijection
such that Λ(λx + μy) = λΛx + μΛy for any x,y ∈ V and any λ, μ ∈ R.

For Hilbert spaces V and W , a Hilbert-space isomorphism Λ : V → W is
a linear isomorphism such that (Λx, Λy) = (x,y) for every x,y ∈ V .

Any Hilbert space H has an orthonormal basis {ua : a ∈ A} for some set
A, and H is Hilbert-space isomorphic to l2(A).11

It follows that |A| = |B| ≥ ℵ0 if and only if l2(A) is Hilbert-space isomor-
phic to l2(B). In general, the l2(A) spaces provide models for all abstract
Hilbert spaces.

Finally, each Hilbert space isomorphism Λ : V → W is also a metric space
isometry:

dW (Λx, Λy) = ‖Λx− Λy‖ = (Λx, Λy)
1
2 = (x,y)

1
2 = ‖x− y‖ = dV (x,y).

A7.7 Proposition Let A be an infinite set, let z ∈ A, and let A′ = A \ {z}.
Then l2(A) is Hilbert-space isomorphic (and thus homeomorphic) to l2(A′).

Proof. Select a bijection a �→ φa of A → A′; and for each a ∈ A, define
uφa = (uφa

φb ) where uφa
φa = 1 and uφa

φb = 0 when φa �= φb. Then {uφa : a ∈ A}
is the standard orthonormal basis of l2(A′). Define a mapping x �→ Φx of
l2(A) → l2(A′) by specifying that when x = (xa)a∈A, then Φx = (xφa)φa∈A′

where xφa = xa for each a ∈ A. That is, the “ath coordinate xa of x” equals
the “(φa)th coordinate xφa of Φx”:

xa = (x,ua) = xφa = (Φx,uφa).

The map Φ is the desired Hilbert-space isomorphism because

(Φx, Φy) = Σφa∈A′xφayφa = Σa∈Axaya = (x,y).

Thus Φ is also a metric isometry, and hence a homeomorphism.

§A8 Convex Hulls and Closed Convex Hulls

For two points v and w in a vector space V , the set [v,w] = {y : y =
tv + (1 − t)w; 0 ≤ t ≤ 1} is the line segment joining the endpoints v and w.
A non-empty set C ⊂ V is convex if v,w ∈ C implies [v,w] ⊂ C.

Every non-empty subset K ⊂ V is contained in the convex set V . So the
convex hull H(K) = ∩{C : K ⊂ C; C is convex} of K is the smallest convex
set containing K. Closed convex hulls are similarly defined.

The set H(K) may also be viewed as a union of sets: For the following
proposition, we consider each non-empty finite set F = {v1, . . . ,vn} ⊂ K,
and define σ(F ) = {Σn

1λivi : Σn
1 λi = 1; 0 < each λi ≤ 1 }.

11See Rudin [1966, Section 4.19].
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A8.1 Proposition Let V be a linear space and let ∅ �= K ⊂ V . Then the
convex hull H(K) = ∪{ σ(F ) : ∅ �= F ⊂ K is finite }.12

A8.2 Proposition Let V be a linear topological space, and let ∅ �= K ⊂ V .
Then the closed convex hull of K is the closure H(K) of H(K).

Proof. Since K ⊂ H(K) it is clear that K ⊂ H(K). To see that H(K)
is convex, consider distinct vectors x,y ∈ H(K) and let sequences {xn} and
{yn} in H(K) converge, respectively, to x and y. For each t, 0 ≤ t ≤ 1,
it follows (since H(K) is convex and V is a linear topological space) that
txn +(1−t)yn ∈ H(K) converges to tx+(1−t)y. Thus tx+(1−t)y ∈ H(K)
for each such t. To see that H(K) is the smallest closed convex set containing
K, suppose K ⊂ C where C is a closed convex set. Then H(K) ⊂ C by the
previous proposition, and therefore H(K) ⊂ C.

§A9 Standard Simplexes

A9.1 Affine Transformations. An affine transformation T of R

n+1

is a composition of a translation and nonsingular linear transformations.
These mappings map each geometrically independent set of points onto a
geometrically independent set of points. For example, let us suppose that
T (x) = L(x + q) = L(x) + p, where L is nonsingular linear, and that {vi}
is a geometrically independent set of points. If Σiλi = 0 and ΣiλiT (vi) = 0,
then ΣiλiT (vi) = Σiλi (L(vi) + p) = ΣiλiL(vi) + (Σiλi)p = ΣiλiL(vi). So

ΣiλiT (vi) = L(Σiλivi) = 0 ⇒ Σiλivi = 0 ⇒ each λi = 0.

For the standard basis {u1, . . . ,un+1} of R

n+1 the translation x �→ (x −
un+1) maps the n-dimensional plane Pu = {Σn

1λiui : Σn
1λi = 1; λi ∈ R}

onto the vector subspace spanned by {u1 − un+1, . . . ,un − un+1,0}. This
subspace has {ui − un+1}n

1 as a basis. Next, we follow this translation with
a nonsingular linear transformation of R

n+1 that maps, for 1 ≤ i ≤ n, each
(ui − un+1) �→ ui. We thereby obtain an affine transformation S of R

n+1

such that S(un+1) = 0 and S(ui) = ui. Globally, S sends the plane Pu onto
the plane R

n × {0} ⊂ R

n+1 of the first n coordinates in R

n+1.

A9.2 Example. Consider R

2, with u1 = (1, 0) and u2 = (0, 1). Using
x �→ (x−u2) to translate {u1,u2} onto {u1−u2,u2−u2} = {(1,−1), (0, 0)},
we send the line containing (1, 0) and (0, 1) onto the line containing (1,−1)
and (0, 0). Using

u1 =
(

1/
√

2 0
0 1/

√
2

)(
1/

√
2 −1/

√
2

1/
√

2 1/
√

2

)
(u1 − u2),

12For a proof see Dugundji [1966, Appendix One, page 411].
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we then rotate the line containing (1,−1) and (0, 0) counterclockwise by 45◦

and scale by 1/
√

2. In short, we have an affine map that takes the line �1

containing (1, 0) and (0, 1) in R

2 onto the line �2 ⊂ R

1 × {0}. Moreover, the
point λ1(1, 0) + λ2(0, 1) ∈ �1 maps to the point λ1(1, 0) + λ2(0, 0) ∈ �2.

A9.3 Finite-Dimensional Simplexes.13 Given any geometrically inde-
pendent set of vectors v0, . . . ,vn in R

k where k ≥ n, the set

[v0, . . . ,vn] = { Σn
0λivi : Σn

0λi = 1; 0 ≤ each λi ≤ 1 }

is an n-dimensional simplex with vertices v0, . . . ,vn. A point v = Σn
0λivi

in [v0, . . . ,vn] provides a unique set of coefficients λ0, . . . , λn that are called
the barycentric coordinates of v.14

When [v0, . . . ,vn] ⊂ R

k has the induced topology, each barycentric co-
ordinate function v �→ λi = λi(v) is continuous: Using the figure be-
low where Sv is an affine mapping, we note that Sv sends the n-simplex
[v0, . . . ,vn] “barycentrically” onto the n-simplex [u0 = 0,u1, . . .un], i.e.,
Σn

0λivi �→ Σn
0λiui is continuous; πi is the continuous Cartesian coordinate

projection from R

n onto its ith factor R; and λi = λi(v) = πi ◦ Sv(v) is the
barycentric coordinate projection. Since the diagram is commutative, it is
clear that v �→ λi(v) is continuous.

[v0, . . . ,vn]

[0,u1, . . . ,un]

.............................................................................................................
......
........
......

............................................................................................................................................................................................................. ..............

...............
...............

...............
..............

...............
...............

...............
...............

...............
...............

...............
..............
...............

........................
..............

Sv

λi = λi(v)
R

1

πi

Any two n-dimensional simplexes [v0, . . . ,vn] and [w0, . . . ,wn] are home-
omorphic under the barycentric coordinate mapping Σn

0λivi �→ Σn
0λiwi.

The standard n-dimensional simplex Δn ⊂ R

n+1 is [u1, . . . ,un+1] where
{ui} is the standard orthonormal basis of R

n+1, i.e.,

u1 = (1, 0, 0, . . . , 0),u2 = (0, 1, 0, 0, . . . , 0), . . . ,un+1 = (0, . . . , 0, 1).

As discussed in the paragraph preceding Example A9.2, the standard n-
simplex Δn = [u1, . . . ,un+1] is (barycentrically) homeomorphic to Δn =
[0,u1, . . . ,un] ⊂ R

n. The subscript n is a mnemonic that the dimension of
the space containing Δn is “lower than” that of the space containing Δn.

Finally, using Proposition 8.2 and the definition of σ(F ), we may conclude
that H({ui}) = Δn and that H({ui}) is closed in R

n+1, i.e., Δn is the closed
convex hull of the standard orthonormal basis {ui} of R

n+1.15

13See Munkres [1984, §1] and Kolmogorov and Fomin [1957, Theorem 3 page 76].
14If v = Σn

0 μivi = Σn
0 τivi where Σiμi = 1 = Σiτi, then Σi(μi − τi) = 0 and also

Σi(μi − τi)vi = 0 yield μ1 − τ1 = 0, . . ., μn − τn = 0.
15See Engelking and Siekulcki [1992, Section 2.1] and Alexandroff [1956].



§A9 STANDARD SIMPLEXES 211

A9.4 The Infinite-Dimensional Standard Simplex ΔA. Let A be an
infinite set, and let {ua : a ∈ A} be the standard orthonormal basis of l2(A).
Then the standard simplex ΔA is given by

ΔA = {(xa) ∈ l2(A) : 0 ≤ Σaxa ≤ 1; 0 ≤ each xa ≤ 1}.

A9.5 Proposition Let A be an infinite set. Then ΔA is the closed convex
hull H({ua}) of the standard orthonormal basis {ua : a ∈ A} of l2(A).

Proof. It suffices to prove inclusions (i) and (ii):
(i) H({ua}) ⊂ ΔA: First, let x ∈ H({ua}). Then x = (xa) ∈ σ(F )

for some non-empty finite F ⊂ {ua}. So for the finite set AF = {a ∈
A : ua ∈ F}, we have Σaxa = Σa∈AF xa = 1 and 0 ≤ each xa ≤ 1, i.e.,
x ∈ ΔA. Second, let x ∈ H({ua}) \ H({ua}). Then select a sequence
xn ∈ H({ua}) such that xn → x, i.e., (xn

a ) → (xa). Now for each n, we
have xn

a → xa because |xn
a − xa| ≤ ‖xn − x‖. And xn

a → xa coupled with
0 < each xn

a ≤ 1, yields 0 ≤ each xa ≤ 1. Moreover, since addition of real
numbers is continuous, for each non-empty finite set AF ⊂ A, we see that
Σa∈AF xn

a → Σa∈AF xa. It follows, since each Σa∈Axn
a = 1 that the value 1 is

an upper bound of Σaxa. Thus again x ∈ ΔA.
(ii) ΔA ⊂ H({ua}) = cl(H): First, observe that the zero vector u0 = 0

of l2(A) is in both ΔA and cl(H). The former claim is clear, while the latter
may be demonstrated by considering a countably infinite list a1, a2, . . . of
members of A, defining the sequence xn = (xn

a ) in H = H({ua}) by

xn
a1

= · · · = xn
an

= 1/n and xi
ai

= 0 for i ≥ n + 1

and noting that ||xn − u0|| = 1/
√

n. Since u0 is a point in the closed and
convex hull cl(H) of {ua : a ∈ A}, we see that cl(H) is also the closed convex
hull of {ua}A ∪ {u0}.

Now let x = (xa) ∈ ΔA, and then order the elements in {a ∈ A : xa �= 0}
as a1, a2, . . .. We define

xn = xa1ua1 + · · · + xanuan + (1 − Σn
1xai)u0.

Then each xn ∈ H({ua}) because 0 ≤ Σn
1xai ≤ Σaxa ≤ 1 and 0 ≤ each xa ≤

1. Moreover, since ‖xn − x‖2 ≤ Σ∞
n+1(xai)2, which goes to zero as n → ∞,

it follows that x ∈ cl(H).

A9.6 Proposition Let A be infinite, let z ∈ A, and let A′ = A \ {z}. Also
let φ : A → A′ be a bijection, and define Φ : ΔA → ΔA′

by

x = (xa)a∈A �→ Φx = (xφa)φa∈A′ ,

where xφa = xa. Then the ath coordinate of x is the (φa)th coordinate of Φx
and Φ is a homeomorphism.
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Proof. The correspondence Φ is a metric isometry, hence homeomorphism
l2(A) → l2(A′), as detailed in the proof of Proposition 7.7. The only ob-
servation that is required is that of showing Φ(ΔA) = ΔA′

. This equality
follows since (xa) ∈ ΔA is equivalent to 0 ≤ ΣAxa ≤ 1 and 0 ≤ each xa ≤ 1,
which is equivalent to 0 ≤ ΣA′xφa ≤ 1 and 0 ≤ each xφa ≤ 1 because the
coordinates of (xa) are also the coordinates of (xφa).



APPENDIX 3

Measures and Fractal Dimension

This appendix provides a convenient and concise basic development of Haus-
dorff measures that leads to a definition of fractal dimension — Hausdorff
measures and dimension (§A10), The Lebesgue and Hausdorff mp

ε-measures
(§A11), Hausdorff p-measures (§A12), Hausdorff dimension (§A13), and frac-
tal dimension (§A14).

§A10 Hausdorff Measures and Dimension

The mathematics known as measure theory evolved from constructions of
sets, functions, and integrals that were outside of the classical calculus. In-
deed, as stated in the Preface of Rogers [1970], “E. Borel in his 1894 thesis
essentially introduced the Lebesgue outer measure as a means of estimating
the size of certain sets, so that he could construct certain pathological func-
tions, while Lebesgue [1904] applied measure theory to obtain his integral.”

The seeds of Hausdorff measures were planted by Carathéodory [1914],
who introduced “general (Carathéodory) outer measures” and showed how to
construct “p-measures” for certain integer values of p. Subsequently, Haus-
dorff [1919] extended the range of values of p to all positive reals, and also
showed that “in a certain sense” Cantor’s set has “fractional dimension”
log 2/ log 3.

The following few sections contain definitions and propositions that lead
to Hausdorff measures and Hausdorff dimension. An in-depth and careful
development may be found in Rogers [1970].

To begin the spadework, recall that unlike each topological dimension
function DT = ind, Ind, or dim, which was formulated as a topological in-
variant — X homeomorphic to Y implies DT (X) = DT (Y ) — a measure
function typically requires a metric, i.e., the distance function d of a metric
space (X, d), and consequently is not necessarily a topological invariant.

For relevant examples, the unit interval I = [0, 1] as a subset of the real
line R has Lebesgue measure unity, but its homeomorphic image [0, 1/2] in
R given by the imbedding x �→ x/2 has Lebesgue measure 1/2. Similarly,
the subspace of irrational numbers in the unit interval has Lebesgue measure
unity, but its homeomorphic image in Cantor’s space given by the imbed-
ding Σ∞

1 an/2n → Σ∞
1 (2an)/3n has Lebesgue measure zero. In contrast, each

“counting measure” is topologically invariant because homeomorphisms pre-
serve cardinality.1

1Recall that a counting measure μ : 2X → [0,∞] on the family 2X of all subsets of a

213
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§A11 Lebesgue and Hausdorff mp
ε-Measures

The Lebesgue and Hausdorff mp
ε-measures may be unified when viewed as

separate applications of a general method of constructing outer measures
(Taylor [1965, Chapter 4]; Rogers [1970, “Method II”]. Roughly, each ap-
plication yields an outer measure μ∗ : 2X → [0,∞] for a given set X . In
turn, then, μ∗ induces a σ-algebra S ⊂ 2X such that μ∗ restricted to S, i.e.,
μ = μ∗|S : S → [0,∞], is a measure.

Digging deeper, we recall that a σ-algebra (σ-field) is a non-empty family
S of subsets of a non-empty set X that is closed under complementation and
countable unions. It follows since

E ∈ S �= ∅ ⇒ X = E ∪ E∼ ∈ S ⇒ ∅ = X∼ ∈ S,

that both X and ∅ are members of S, and, since

∩nEn = (∪nE∼

n )∼ ∈ S and E − F = E ∩ F ∼ ∈ S

that S is also closed under countable intersections and set difference. An
example of a σ-algebra is the family 2X of all subsets of X .

For a σ-algebra S, a measure μ : S → [0,∞] is a “countably additive”
set function that maps the empty set to zero. In other words, μ(∅) = 0, and,
for each countable list E1, E2, . . . ∈ S of pairwise disjoint sets, μ(∪jEj) =
Σjμ(Ej). In particular, the list E1 = A, E2 = E − A, E3 = ∅, E4 = ∅, . . .
coupled with the countable additivity of μ show that μ is also monotone, i.e.,
A, E ∈ S and A ⊂ E imply μ(A) ≤ μ(E).

An outer measure μ∗ : 2X → [0,∞] is a monotone and “countably
subadditive” set function that maps the empty set to zero. In other words,
μ∗(∅) = 0, μ∗(A) ≤ μ∗(E) when A ⊂ E, and, any countable list E1, E2, . . . ∈
2X yields μ∗(∪jEj) ≤ Σjμ

∗(Ej).2

To construct the μ∗-induced S, we call E ⊂ X μ∗-measurable if μ∗(T ) =
μ∗(T ∩ E) + μ∗(T − E) for all “test sets” T ⊂ X — E is μ∗-measurable
if μ∗ is additive on sets that are separated by E. The collection S of all
μ∗-measurable sets is a σ-algebra, and μ∗ restricted to S (denoted μ) is a
measure on S.

When X = (X, d) is a metric space, an outer measure μ∗ on 2X is a metric
outer measure if μ∗(A ∪B) = μ∗(A) + μ∗(B) whenever the subsets A and B
of X are positively separated, i.e, d(A, B) = inf {d(x, y) : x ∈ A, y ∈ B} > 0.
It turns out that whenever μ∗ is a metric outer measure, then the μ∗-induced
σ-algebra S contains all open (and hence Borel) sets in X .

set X is given by

μ(E) =

{
k if E is a finite set with k elements,
∞ otherwise.

It turns out that the Hausdorff 0-measure m0 is a counting measure.
2 The countably subadditive property does not imply the monotone property, e.g.,

consider X = {1, 2} and let μ∗ : 2X → [0,∞] be given by μ∗({2}) = 1 and μ∗(E) = 0
otherwise.
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With these concepts, we now describe a “general method” for constructing
outer measures. Let G denote a family of subsets of X such that ∅ ∈ G and,
for each E ⊂ X , there is a countable subcollection {Gn} of G whose union
∪nGn is a superset of E. In this case, call the collection {Gn} a G-covering
of E. Next, let λ : G → [0,∞] be any map such that λ(∅) = 0, and, for
E ⊂ X , define

μ∗(E) = inf Σnλ(Gn) {Gn} ⊂ G varies over the G-coverings of E.

Then μ∗ : 2X → [0,∞] is an outer measure.
One application of this “general method” yields Lebesgue outer measures:

For example, let X = R

1, let G contain the empty set and all non-empty
open intervals (a, b), and let λ : G → [0,∞] be the “length function,” i.e.,
λ(a, b) = |(a, b)| = b − a and λ(∅) = 0. Then for E ⊂ X , the (Lebesgue)
outer measure μ∗ : 2R → [0,∞] is given by

μ∗(E) = inf Σnλ(Gn) {Gn} ⊂ G varies over all G-coverings of E.

Again, because μ∗ is a metric outer measure each open subset (and therefore
each Borel subset) of R is Lebesgue measurable.

Another application of the “general method” yields the Hausdorff metric
outer measures mp

ε.

A11.1 Definition (mp
ε metric outer measures) Let X = R

n be Euclidean
n-space with the usual metric d. Let p ∈ [0,∞), let ε > 0, and let G = Gε

denote the collection of subsets G of R

n whose diameter |G| = sup {d(x, y) :
x, y ∈ G} < ε. (The empty set ∅ ∈ G because |∅| = 0 by definition.) Define
λ : Gε → [0,∞] by λ(G) = |G|p. (When p = 0, define |G|p = |G|0 = 0 if
G = ∅, and |G|0 = 1 otherwise.) For each E ⊂ X = R

n, define

mp
ε(E) = inf Σn|Gn|p {Gn} ⊂ Gε varies over all Gε-coverings of E.

Thus, for each p ∈ [0,∞) and each ε > 0, we have the metric outer measure
mp

ε : 2R
n → [0,∞].

These metric outer measures mp
ε are used in the following section to define

the Hausdorff p-measures mp.

§A12 Hausdorff p-Measures

For each fixed p ∈ [0,∞), the Hausdorff p-measure (a metric outer measure)
is given by

mp(E) = supε>0 mp
ε(E).

A12.1 Proposition Let p ∈ [0,∞) be fixed. Then mp(E) = supε>0 mp
ε(E) =

limε→0 mp
ε(E).
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Proof. Since ε′ < ε implies Gε′ ⊂ Gε, we have mp
ε(E) ≤ mp

ε′(E), showing
that mp

ε(E) is nondecreasing as ε → 0. So limε→0m
p
ε(E) exists in [0,∞] and

equals supε>0m
p
ε(E).

A12.2 Proposition (properties of m0) Let (X, d) be a metric space, and
let p ∈ [0,∞). Then
(i) the p-measure is monotone, i.e., F ⊂ E implies mp(F ) ≤ mp(E);
(ii) when E = ∅, m0(E) = 0 and mq(E) = 0 for each q > 0;
(iii) when E = {x1, . . . , xk} is a finite set with k > 0 elements,

m0(E) = k and mq(E) = 0 for each q > 0; and
(iv) when E is infinite, m0(E) = ∞.

Proof. (i) Each cover of E is also a cover of F . (ii) The family {∅} covers E,
|∅|0 = 0 by definition, and 0q = 0 when q > 0. (iii) For ε = min {d(xi, xj) :
i �= j}, a cover Gε has at least k members Gn such that |Gn| < ε. For
p = 0, each |Gn|0 = 1; and for q > 0, each |Gn|q < εq. (iv) Select a tower
E1 ⊂ E2 ⊂ · · · of subsets of E where Ek has size k and apply (i).

In passing, notice that (ii), (iii), and (iv) show that m0 is a “counting
measure.”

12.3 Proposition (p-measure bifurcation) Let (X, d) be a metric space and
let E ⊂ X. If there exists a real number p ≤ inf {r : mr(E) = 0} such that
mp(E) is finite, then

(v) p = inf {q : mq(E) = 0} and mq(E) = 0 if q ∈ (p,∞); and
(vi) if p > 0 is positive, then the p-measure induces a bifurcation

mq(E) =
{

∞ if q ∈ [0, p)
0 if q ∈ (p,∞) and

p = inf {q : mq(E) = 0} = sup {q : mq(E) = ∞}.

Proof. If p = 0, then (v) is valid because 0 ≤ m0(E) < ∞ and properties
(ii) and (iii) of m0 apply. So let p > 0 and q ∈ [0, p)∪ (p,∞). Then q− p �= 0
and

Σn|Gn|q = ΣGn 	=∅(|Gn|p|Gn|q−p) + ΣGn=∅|Gn|q = ΣGn 	=∅(|Gn|p|Gn|q−p)

because |∅|q = 0 when q = 0. For q ∈ (p,∞) and each Gn ∈ Gε, we have
q − p > 0 and |Gn|q−p ≤ εq−p, showing

ΣGn 	=∅(|Gn|p|Gn|q−p) ≤ εq−pΣn|Gn|p.

It follows that q ∈ (p,∞) implies

mq(E) = limε→0 inf Σn|Gn|q ≤
(
limε→0 εq−p

)
mp(E) = 0
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because 0 ≤ mp(E) < ∞. Thus (v) is valid. On the other hand, for q ∈ [0, p)
we have q − p < 0 and each |Gn|q−p ≥ εq−p = 1/εp−q, showing

mq(E) = limε→0 inf Σn|Gn|q ≥
(
limε→0 1/εp−q

)
mp(E) = ∞

when 0 < mp(E) < ∞. The lone remaining case is “q ∈ [0, p) and mp(E) =
0.” We do, however, know:

(vii)
{

if 0 < ms(E) < ∞ and s ≤ inf {r : mr(E) = 0},
then s = inf {r : mr(E) = 0}.

Now suppose “q ∈ [0, p) and mp(E) = 0.” Then mq(E) > 0 — otherwise
p ≤ inf {r : mr(E) = 0} ≤ q while q < p. Since mq(E) > 0, we only need
to show that mq(E) is not finite. But 0 < mq(E) < ∞ and q < p = inf {r :
mr(E) = 0} provide a substitution of q for s in (vii) — so p = q and q < p.
It follows that mq(E) = ∞ when q ∈ [0, p) and mp(E) = 0. Finally, the
bifurcation in (vi) yields the “inf” and “sup” equalities.

§A13 Hausdorff Dimension

The following proposition shows that Hausdorff dimension (defined below) is
well defined.

13.1 Proposition Let (X, d) be a metric space and let E ⊂ X. Then there
is a unique p ∈ [0,∞] such that

mq(E) =
{

∞ if q ∈ [0, p)
0 if q ∈ (p,∞).

Thus, for each subset E of X either mq(E) = ∞ for every q-measure,
or, mq(E) is finite for some q. In the latter case, there exists a unique
p = inf {q : mq(E) = 0}. This correspondence E �→ D(E) given by

D(E) =
{

p = inf {q : mq(E) = 0} if mq(E) is finite for some q
∞ if mq(E) = ∞ for every q

is the Hausdorff dimension function D : 2X → [0,∞].
This bifurcation property applies to any infinite (and hence interesting)

subset E ⊂ R

n for which there is a positive p such that mp(E) ∈ (0,∞).
Indeed, such a p must be unique, and the Hausdorff dimension D(E) = p for
our set E.

(Even though such a p may not be a positive integer, the idea of saying E
is fundamentally “p-dimensional” is nevertheless analogous to the idea that
a square E ⊂ R

2 is fundamentally “2-dimensional,” — when viewed in the
context of Lebesgue measures in R

q, for those integer values q where q < 2
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and q > 2 in particular, we may (in the former case) view E as a “space-
filling” 1-dimensional curve of infinite length, or (in the latter case) view E
as a subset in 3-space with zero volume.)

We close this section by recalling that the Hausdorff dimension of the
Cantor set C is ln(2)/ ln(3). (For a proof, see page 14 of Falconer [1985].)

§A14 Fractal Dimension

From Mandelbrot [1983], a subset E of R

n such that D(E) �= DT (E) is a
fractal where the dimension function “D” is the Hausdorff dimension function
(sometimes called the Hausdorff-Besicovitch dimension function) defined in
§A13, and DT denotes the topological dimension, i.e., any of ind, Ind, or dim.

According to this definition of fractal, we find that the Cantor set C is a
fractal with dimension (for a proof, see page 14 of Falconer [1985])

D(C) = ln(2)/ ln(3) = 0.639 . . . �= 0 = ind C = DT (C).

Over the years, the term “fractal” has taken on various meanings in var-
ious contexts (see for example, Peitgen, Jürgens, and Saupe [1992]).

In this text, we use fractal dimension to mean self-similarity dimension.
To illustrate the basic idea, let us, for the moment at least, follow the opening
of Chapter 2 in Crownover [1995]: Suppose a line segment is divided into N
equal pieces, each being thought of as a scaled copy of the whole segment. If
the scaling ratio is r, then the relation between N and r is Nr = 1.

Similarly, if a square has its sides scaled by the factor r into N equal
subsquares, then Nr2 = 1, and for a cube, Nr3 = 1.

With these examples, it is not difficult to notice that the dimension of the
object being scaled shows up as the exponent of the scaling factor r, i.e.,

Nrd = 1.

To consider non-integral values of the dimension d, suppose r = 1/3 and
consider the Cantor set C. Then since C may be partitioned into N = 2 sets
(C ∩ [0, 1/3]) ∪ (C ∩ [2/3, 1]), we have

Nrd = (2)(1/3)d = 1 =⇒ ln 2 + d (ln(1/3)) = 0 =⇒ d = ln 2/ ln 3.

The value ln 2/ ln 3 = lnN/ ln(1/r), where the scaling factor r = 1/3 and N
is the number 2 of copies of C, agrees with the Hausdorff dimension D(C)
of Cantor’s set. The formula lnN/ ln(1/r) is fundamental in calculating the
self-similarity dimension.

An introductory discussion of the self-similarity dimension may be found
in Chapter 5 of Crownover [1995]. For our purposes, however, suppose there
are similitudes S1, . . . , SN , each with scale factor r such that a compact set
E ⊂ R

n satisfies
E = S1(E) ∪ · · · ∪ SN (E)
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and the Hausdorff d-measure, where d = ln(N)/ ln(1/r), of the overlaps of
the Si(E) sets are zero. Then the self-similarity dimension of E is d =
ln(N)/ ln(1/r).

In particular, for the n-web ωn, we see that the “overlaps” consist of a
finite number of points, and that

ωn = w0(ωn) ∪ · · · ∪ wn(ωn)

where the scale factor of each wi is 1/2. So the fractal dimension, i.e., the
self-similarity dimension, of ωn is ln(n + 1)/ ln(2) (see §A10).
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[2005] Metric properties of the Tower of Hanoi graphs and Stern’s diatomic
sequence, European J. Combin., Vol. 26, 693–708.

J. G. Hocking and G. S. Young

[1988] Topology, Dover reprint of 1961 original (Addison-Wesley, Reading,
MA), Dover Publications, New York.



BIBLIOGRAPHY 225

W. Hurewicz
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[2006] Characterization and topological rigidity of Nöbeling manifolds,
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[1986] Spaces universal under closed embeddings of finite-dimensional com-
plete metric spaces, Bull. London Math. Soc., Vol. 33, 541–546.

G. T. Whyburn

[1958] Topological characterizations of the Sierpiński curve, Fundam.
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