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Preface

Differential problems should not be restricted to vector spaces in general.

The Main Goal of This Book

Ordinary differential equations play a central role in science. Newton’s Second
Law of Motion relating force, mass and acceleration is a very famous and old
example formulated via derivatives. The theory of ordinary differential equations
was extended from the finite-dimensional Euclidean space to (possibly infinite-
dimensional) Banach spaces in the course of the twentieth century. These so-called
evolution equations are based on strongly continuous semigroups.
For many applications, however, it is difficult to specify a suitable normed vector
space. Shapes, for example, do not have an obvious linear structure if we dispense
with any a priori assumptions about regularity and thus, we would like to describe
them merely as compact subsets of the Euclidean space.

Hence, this book generalizes the classical theory of ordinary differential equations
beyond the borders of vector spaces. It focuses on the well-posed Cauchy problem
in any finite time interval.

In other words, states are evolving in a set (not necessarily a vector space) and,
they determine their own evolution according to a given “rule” concerning their
current “rate of change” — a form of feedback (possibly even with finite delay). In
particular, the examples here do not have to be gradient systems in metric spaces.

The Driving Force of Generalization: Solutions via Euler Method

The step-by-step extension starts in metric spaces and ends up in nonempty sets that
are merely supplied with suitable families of distance functions (not necessarily
symmetric or satisfying the triangle inequality).
Solutions to the abstract Cauchy problem are usually constructed by means of the
Euler method and so the key question for each step of conceptual generalization is:
Which aspect of the a priori given structures can be still weakened so that the Euler
method does not fail ?

Diverse Examples Have Always Given Directions ... Towards a Joint
Framework.

In the 1990s, Jean-Pierre Aubin suggested what he called mutational equations and
applied them to systems of ordinary differential equations and time-dependent com-
pact subsets of R

N (equipped with the popular Pompeiu-Hausdorff metric). They
are the starting point of this monograph.
Further examples, however, reveal that Aubin’s a priori assumptions (about the addi-
tional structure of the metric space) are quite restrictive indeed. There is no obvious
way for applying the original theory to semilinear evolution equations.
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Our basic strategy to generalize mutational equations is simple: Consider several
diverse examples successively and, whenever it does not fit in the respective muta-
tional framework, then find some extension for overcoming this obstacle.

Mutational Analysis is definitely not just to establish another abstract term of solu-
tion though. Hence, it is an important step to check for each example individually
whether there are relations to some more popular meaning (like classical, strong,
weak or mild solution).

Here are some of the examples under consideration in this book:

– Feedback evolutions of nonempty compact subsets of R
N

Application to image segmentation
– Birth-and-growth processes of random closed sets (not necessarily convex)
– Semilinear evolution equations in arbitrary Banach spaces
– Nonlocal parabolic differential equations in noncylindrical domains
– Nonlinear transport equations for Radon measures on R

N

– Structured population model with Radon measures on R
+
0

– Stochastic ordinary differential equations with nonlocal sample dependence

In particular, these examples can now be coupled in systems immediately – due to
the joint framework of Mutational Analysis. This possibility provides new tools for
modelling in future.

The Structure of This Extended Book ... for the Sake of the Reader

This monograph is written as a synthesis of two aims: first, the reader should have
quick access to the results of individual interest and second, all mathematical con-
clusions are presented in detail so that they are sufficiently comprehensible.

Each chapter is elaborated in a quite self-contained way so that the reader has the
opportunity to select freely according to the examples of personal interest. Hence
some arguments typical for mutational analysis might appear rather frequently,
but they are always adapted to the respective framework. Moreover, the proofs are
usually collected at the end of each subsection so that they can be skipped easily if
wanted. References to results elsewhere in the monograph are usually supplied with
page numbers. Each example contains a table that summarizes the choice of basic
sets, distances etc. and indicates where to find the main results.

The introductory Chapter 0 summarizes the essential notions and motivates the gen-
eralizations in this book. Many of the subsequent conclusions have their origins in
§§ 1.1 – 1.6 and so these subsections facilitate understanding the modifications later.

Experience has already taught that such a monograph cannot be written free from
any errors or mistakes. I would like to apologize in advance and hope that the gist
of both the approach and examples is clear. Comments are very welcome.

Heidelberg and Frankfurt, January 2010 Thomas Lorenz
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Solutions to Stochastic Ordinary Differential Equations . . . . 233
3.6.3 A Short Cut to Existence of Strong Solutions . . . . . . . . . . . . . 235
3.6.4 A Special Case with Fixed Additive Noise in More Detail . . 238

3.7 Example: Stochastic Morphological Equations for Square
Integrable Random Closed Sets in R

N . . . . . . . . . . . . . . . . . . . . . . . . . 242
3.7.1 The General Assumptions for This Example . . . . . . . . . . . . . . 243
3.7.2 Reachable Sets of Stochastic Differential Inclusions

are to Induce Transitions on RC 2(Ω ,RN) . . . . . . . . . . . . . . . 247
3.7.3 The Main Conclusions About Stochastic Growth Processes . 251
3.7.4 Extensions to Stochastic Birth-and-Growth Processes . . . . . . 254

3.8 Example: Nonlinear Continuity Equations with Coefficients
of BV for L N Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
3.8.1 The Lagrangian Flow in the Sense of Ambrosio . . . . . . . . . . . 262
3.8.2 The Subset L

∞∩1(RN) of Measures and its Pseudo-Metrics 264
3.8.3 Autonomous Linear Continuity Problems Induce

Transitions on L
∞∩1(RN) via Lagrangian Flows . . . . . . . . . . 266

3.8.4 Conclusions About Nonlinear Continuity Equations . . . . . . . 272



xii Contents

3.9 Example: Nonlocal Parabolic Equations in Cylindrical Domains . . . 278
3.9.1 Motivation: Smoothing an Image, but Preserving its Edges . 278
3.9.2 The Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
3.9.3 The Underlying Details in Terms of Mutational Analysis . . . 282

3.10 Example: Semilinear Evolution Equations in Any Banach Spaces . . 291
3.10.1 The Distance Functions (d̃ j) j∈R

+
0
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Chapter 0
Introduction

Think beyond vector spaces !

0.1 Diverse Evolutions Come Together Under the Same Roof

Many applications consist of diverse components and thus, their mathematical
description as functions often starts with long preliminaries (like restrictive as-
sumptions about regularity).
However, shapes and images are basically sets, not even smooth (Aubin [10]).
This observation leads to the question how to specify models in which both real- or
vector-valued functions and shapes are involved. The components usually depend
on time and have a huge amount of influence over each other. Consider e.g.
� A bacterial colony is growing in a nonhomogeneous nutrient broth. For the

bacteria, both speed and direction of expansion depend on the nutrient concen-
tration close to the boundary in particular. On the other hand, the nutrient con-
centration is changing due to consumption and diffusion. (Further applications
of set-valued flows in biological modeling are sketched in [57].)

� A chemical reaction in a liquid is endothermic and depends strongly on the
dissolved catalyst. However, this catalyst is forming crystals due to temperature
decreasing.

� In image segmentation, a computer is to detect the region belonging to one and
the same object. An example of a so-called region growing method (presented
here in § 1.10) is based on constructing time-dependent compact segments so
that an error functional is decreasing in the course of time. So far, smoothing
effects on the image within the current segment are not taken into account.
Basically speaking, it is an example how to extend Lyapunov methods to shape
optimization. Further examples can be found in [58, 71].

� In dynamic economic theory, the results of control theory form the mathemat-
ical basis for important conclusions (e.g. [11]). Coalitions of economic agents,
technological progress and social effects due to migration, however, have an
important impact on the dynamic process that is difficult to quantify by vector-
valued functions. Thus, some parameters ought to be described as sets of per-
missible values and, these subsets might depend on current and former states.

Our goal consists in a joint framework for Cauchy problems of maybe completely
different types. In particular, examples of evolving shapes motivate the substantial
aspect that we dispense with any (additional) linear structure whenever possible.
In other words, the key question here is how to extend ordinary differential equations
beyond vector spaces.

T. Lorenz, Mutational Analysis: A Joint Framework for Cauchy Problems 1
In and Beyond Vector Spaces, Lecture Notes in Mathematics 1996,
DOI 10.1007/978-3-642-12471-6 1, c© Springer-Verlag Berlin Heidelberg 2010
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Why We Need a “Nonvectorial” Approach to Evolving Subsets of R
N

In regard to time-dependent subsets of the Euclidean space R
N , several formulations

in vector spaces have already been suggested and, they have proved to be very use-
ful. Each of these “detours” via a vector space, however, has conceptual constraints
for analytical (but not geometric) reasons. This observation strengthens our interest
in describing shape dynamics on the basis of distances (not vectors).

Osher and Sethian, for example, devised new numerical algorithms for fronts prop-
agating with curvature-dependent speed in 1988 [149]. Describing these fronts as
level sets of a real-valued auxiliary function leads to equations of motion which re-
semble Hamilton-Jacobi equations with parabolic right-hand sides. As an essential
advantage, their numerical methods can handle topological merging and breaking
naturally.
Meanwhile this level set approach has a solid analytical base in the form of viscosity
solutions introduced by Crandall and Lions (see e.g. [51, 52], [43, 44], [24, 175]).
The viscosity approach, however, has two constraints due to the parabolic maximum
principle as its conceptual starting point:

(1.) All these geometric evolutions have to obey the so-called inclusion principle,
i.e., whenever an initial set contains another initial subset, this inclusion is al-
ways preserved while evolving.
De Giorgi even suggested to use this inclusion principle for constructing sub-
solutions and supersolutions whose values are sets with nonsmooth bound-
aries — similarly to Perron’s method for elliptic partial differential equations
[54], [28, 29]. Cardaliaguet extended this notion to set evolutions depending
on their nonlocal properties [36, 37, 38]. However, there is no obvious way
how to apply these concepts to the easy example that the normal velocity at
the boundary is 1

1 + set diameter > 0 .

(2.) There is no popular theory for the existence of viscosity solutions to systems
so far.

Replacing viscosity solutions by weak (distributional) solutions to the equations of
motion, we always have to neglect any influence of subsets with measure 0.
The distance from a given subset might provide a suitable alternative to the charac-
teristic function of this set, but in general, the distance is just Lipschitz continuous.
The choice of the function space is directly related to the regularity of the topologi-
cal boundary. Delfour and Zolésio pointed out that the oriented distance function is
often a more appropriate way to characterize a closed subset K ⊂ R

N , i.e.

R
N −→ R, x �−→

{
dist(x, K) Def.= inf {|x− y| : y ∈ K} if x ∈ R

N \K
− dist(x, ∂K) if x ∈ K.

If its restriction to a neighborhood of the topological boundary ∂K belongs to the
Sobolev space W 2,p

loc with p > N, for example, then the well-known embedding the-
orem of Sobolev implies immediately that the set K is of class C1,α [55, § 5.6.3].
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0.2 Some Introductory Examples

0.2.1 A Region Growing Method of Image Segmentation

An important problem of computer vision is the detection of image segments which
belong to the same object. Meanwhile many concepts have been developed to find
their boundaries on grey-scale images. We mention only few earlier approaches for
clarifying the differing aspects here.

The early methods use real-valued “detectors” to check if a point belongs to the
contours or not. These criteria mostly depend on large changes of the grey values
that are reflected by their gradients. For finding the segments of the same objects,
the detected points have to be combined to boundaries, but the algorithms of each
step lose more information about the image and, errors can hardly be corrected.
For avoiding this weakness, other methods are based on approximations that are
improved in some sense while time is increasing. Active contour models (snakes)
belong to the popular examples that have been implemented efficiently (e.g. [39,
98, 185]). Restricted to two dimensions, they describe each contour as a Jordan
curve that is deformed for minimizing some energy functional. These curves are to
approximate the solution of a variational problem while time is increasing.

Many algorithms of image segmentation rely on analytical concepts that use a
priori assumptions about regularity. Snakes (in their classical form), for example, are
described as Jordan curves that are even twice continuously differentiable. There-
fore edges can be found only in some smoothed shapes. Furthermore it is impossible
to change the topological properties of the resulting segment.
Meanwhile there have been several suggestions to overcome such weaknesses.
Level set methods represent probably the most popular approach [148, 172]. Many
of these ideas follow former directions and develop abstract generalizations which
are to bridge the gaps. Level set methods, for example, use viscosity solutions of
(generalized) Hamilton-Jacobi equations as mentioned before.

On the Way to an Approach (Just) by Means of Set-Valued Analysis

Our goal here is a (hopefully rather simple) region growing method – just on the
basis of evolving compact subsets of R

N , i.e. in comparison with many preceding
approaches, there are:

– no a priori restrictions on the regularity of final contours and
– no parameterization of boundaries while expanding.

Indeed, searching for the (connected) image segment of an object, the basic graph-
ical notion is only to decide which points belong to the segment. If we omit any
additional conditions on regularity we want to detect a compact subset of R

N and
so, the approximations depending on time are described as a set-valued map which
associates each time t ∈ [0,T [ with a nonempty compact subset K(t)⊂ R

N :

K(·) : [0,T [ −→ K (RN).
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For quantifying the “quality” of the approximations
we need a real-valued functional of compact subsets of
R

N . We prefer regarding it as “measurement of error”
to interpreting it as “energy”. The variance of grey
values G|M (restricted to a subset M ⊂ R

N with positive
Lebesgue measure), for example, gives a quantitative
impression of their oscillation in M. More generally, we
consider

Φ : K (RN) −→ R,

M �−→ ψ
(
L N(M),

∫

M
G dx,

∫

M
G2 dx

)

with a function ψ ∈C2
c (]0,∞[×R

2, R). The composition

Φ ◦K : [0,T [ −→ R

is a usual real-valued function which ought to decrease
for improving the approximation K(t)⊂R

N in the course
of time.
Finally, the aim of a region growing method (in a stricter
sense) can be formulated as the following mathematical
problem:

Given: function of grey values G ∈C0
c (RN), N ≥ 2

error functionalΦ : K (RN)−→R

s.t. Φ(M) = ψ
(
L N(M),

∫

M
G dx,

∫

M
G2 dx

)

with some ψ ∈C2
c (]0,∞[×R

2, R),

initial set K0 ∈K (RN).

Wanted: K(·) : [0,T [−→K (RN) (T ∈ ]0,∞]):

(i) K(0) = K0

(ii) K(s)⊂ K(t) whenever s≤ t

(iii) K(·) continuous w.r.t. Hausdorff metric

(iv) Φ ◦K(·) : [0,T [ −→R nonincreasing

(v) M :=
⋃

0≤ t <T K(t) is “critical” w.r.t. Φ

The term of a “critical” set in R
N remains to be specified

precisely. Intuitively we are looking for a (not necessarily
closed) set M ⊂ R

N which cannot be “improved” in
an obvious way by decreasing Φ ◦ K(·) and thus, M
is the final candidate for the wanted image segment
surrounding K0.
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The ansatz for K(t) is based on the notion of prescribing the speed of set expansion
(but not the direction of the corresponding velocity). We can easily avoid restric-
tions of regularity if this speed function is not specified just on the boundary ∂K(t),
but on the whole space R

N . Then for a function c : [0,T [×R
N −→ [0,∞[ given, the

initial compact set K0 ∈K (RN) is deformed to

K(t) :=
{

x(t) ∈ R
N
∣∣ ∃ x(·) ∈W 1,1([0, t],RN) : x(0) ∈ K0,

|x′(s)| ≤ c(s, x(s)) for L 1-almost every s ∈ [0, t]
}
.

In other words, this is the reachable set of K0 and the differential inclusion

x′(·) ∈ Bc(·,x(·))(0) a.e. in [0, t].

Here Bc(s,x(s))(0)⊂R
N denotes the closed ball with center at 0 and radius c(s, x(s)).

The key criterion for constructing c(·, ·) is that the real-valued composition

[0,T [ −→ R, t �−→ Φ(K(t)) = ψ
(
L N(K(t)),

∫

K(t)
G dx,

∫

K(t)
G2 dx

)

should be decreasing. Reynolds Transport Theorem for differential inclusions (in
§ A.6 on page 476 ff.) provides sufficient conditions on c(·, ·) such that each time-
dependent argument

[0,T [ −→ R, t �−→
∫

K(t)
Gk dx (k = 0,1,2)

is absolutely continuous with the (weak) derivative

d
dt

∫

K(t)
Gk dx =

∫

∂K(t)
G(x)k c(t,x) dH N−1x

Here H N−1 denotes the (N− 1)-dimensional Hausdorff measure in R
N . Now the

chain rule for absolutely continuous functions provides the weak derivative of the
relevant composition

d
dt Φ(K(t)) =

∫

∂K(t)
ϕ(x, K(t)) · c(t,x) dH N−1x

with the coefficient function

ϕ(z,M) :=
2

∑
k=0

∂k+1ψ
(
L N(M),

∫

M
G dx,

∫

M
G2 dx

)
· G(z)k .

The basic idea of solving the segmentation problem is quite easy: The composition
Φ ◦K(·) is nonincreasing if the integrand of its (weak) derivative is nonpositive, i.e.
ϕ(x, K(t)) · c(t,x) ≤ 0 for all t ∈ [0,T [, x ∈ ∂ K(t). As a consequence we get the
following criterion of the construction of c(·, ·) : for all t ∈ [0,T [, x ∈ ∂ K(t),

ϕ(x, K(t)) > 0 =⇒ c(t,x) = 0.

Roughly speaking, the sign of ϕ(·,K(t)) ought to be locally “stable” because
Reynolds Transport Theorem (in § A.6) supposes c(·, ·) to be continuous with re-
spect to space (at least). In this context we benefit from the assumption G ∈C0

c (RN)
for the first time:
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Lemma 1. Let K0 ∈K (RN) and x ∈ ∂K satisfy ϕ(x,K0) < 0.
Then there exist both an autonomous Lipschitz continuous function c : R

N −→ [0,∞[
and a time period Δ > 0 such that

[0,Δ ] −→ R, t �−→ Φ
(
K(t)

)

is strictly decreasing with K(t) := ϑBc(·)(0)(t,K0) ⊂ R
N denoting the reachable set

of K0 and the differential inclusion x′ ∈ Bc(x(·))(0) (a.e.) at time t ≥ 0.

The details are presented in § 1.10 (on page 79 ff.) below. In the proof of this lemma,
the sign of ϕ(x,K0) plays a decisive role. Its application fails if ϕ(·,K0) is nonnega-
tive on the boundary of K0 and so, we coin the term of a “critical set” w.r.t. Φ in the
following way:

Definition 2. A set M ⊂R
N with Φ(M) <∞ is called critical with respect to the

integral shape functionalΦ if all boundary points z ∈ ∂M satisfy ϕ(z,M) ≥ 0.

In subsequent section 1.10.2 (on page 83 ff.), we present a method how to con-
struct the speed function c(·, ·) : [0,T [×R

N −→ [0,∞[ piecewise with respect to
time and Lipschitz continuous with respect to space such that the curve of corre-
sponding reachable sets K(·) : [0,T [−→K (RN), t �−→ ϑBc(·,·)(0)(t,K0) solves the
continuous segmentation problem (formulated on page 4).

Some Examples by Means of a Simple Computer Algorithm

For computer images we start with two central as-
pects: The smallest suitable unit of a computer image
is one pixel or one voxel respectively. Moreover the
grey values within each of these units are constant.
Hence we intend a combination: On the one hand we
use the preceding concept of continuous deformation
for decreasing the error functional. On the other hand
we want to restrict ourselves finally to the decision
whether or not a pixel (or a voxel) belongs to the next
approximating set Kn+1.

This combination is based on an explicit ansatz (of the speed function) that describes
the expansion to a neighboring pixel. If the error functional is guaranteed to stay de-
creasing during this deformation then the pixel P is admitted to the next set Kn+1. A
condition sufficient for decreasingΦ is

ϕ(x,Kn) <−δ
with any point x in the tested neighboring pixel P and some “appropriately small”
δ > 0. The final computer algorithm (discussed in § 1.10 on page 79 ff.) is based
on the variance of grey values in combination with Lebesgue measure and thus,
ϕ(x,Kn) is a quadratic polynomial in G(x). Its sign check can be executed more
quickly than the explicit comparison of Φ(Kn) and Φ(Kn ∪ P). This algorithm
is quite simple indeed, but shows remarkable results. More details are in § 1.10.3
(on page 90 ff.).
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Fig. 0.1 Some examples of the discrete region growing method based on a simple sign check.
Left: The initial set K0 with its boundary marked brightly. Right: The resulting set [131].
(a) MR of right human knee. (b) Satellite image of Suez Canal. (c) Fractal sets give an im-
pression of the precision at the boundary. (d) Nerve cells (dorsal root ganglion). The anisotropic
expansion in direction to a given pixel (marked by a small cross in the top left-hand corner) is
succeeded by the standard isotropic sign checks
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0.2.2 Image Smoothing via Anisotropic Diffusion

Image segmentation is just one of the many problems in digital image processing.
Smoothing images, for example, usually has top priority because the quality of all
real photographs is reduced by some form of noise and so, image pre-processing is
regarded as indispensable. The key challenge is to smooth the image in such a way
that the essential information about edges and contours is not lost.

Suitable methods are expected to smooth adaptively in regard to the “relevance”
of the information shown in the respective part of an image. In 1987, Perona and
Malik [156] implemented this notion in a PDE based algorithm, which has become
a pioneer in the expanding field of nonlinear diffusion filters. The basic notion is to
evolve the grey-scale function u0 : R

N −→R of the original image according to the
nonlinear parabolic differential equation

{
∂t u − divx

(
g(|∇u|)∇u

)
= 0

u(0, ·) = u0

The diffusion coefficient g(|∇u|) depends on the spatial gradient of the smoothed
grey-scale function u = u(t,x) via a given cut-off function g ≥ 0. If |∇u(t,x)| is
quite large then we expect to find an edge close to x and thus, diffusion is reduced,
possibly even “switched off” completely due to g(|∇u|) = 0. Otherwise, i.e. if
|∇u(t,x)| rather small, the algorithm is to smooth the grey values close to x by
means of diffusion. Perona and Malik suggested the ansatz

g(s) Def.= λ0
λ 2

s2 + λ 2

with adjustable parameters λ ,λ0 > 0 [156]. This implementation makes a quite
simple and straightforward impression indeed, but it has some mathematical weak-
nesses: The underlying initial value problem is not well-posed in general. Indeed,
the diffusion process may become instable as Weickert explains in more details in
his monograph [183, § 1.3.1].

Many suggestions have been made for overcoming this weakness of the Perona-
Malik model. From the mathematical point of view, the approach of Catté, Lions,
Morel and Coll [41] is very elegant. Their key idea is to regularize the spatial gra-
dient on which the diffusion coefficient depends. The standard tool of convolution
proves to be useful and motivates the following modification

⎧
⎪⎨

⎪⎩

∂t u − divx
(
g(|u ∗∇Gσ |)∇u

)
= 0 in ]0,T [×Ω

∇u · ν∂Ω = 0 on ]0,T ]× ∂Ω
u(0, ·) = u0 in Ω ⊂ R

N

where Gσ (·) is a smoothing kernel, which can be regarded as a “low pass filter”.
The Gaussian function

Gσ (·) : R
N −→ [0,∞[ , x �−→ 1

(2 π σ)N/2 · e−
1

2σ |x|2

is probably the most popular choice in this context.
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Strictly speaking, this diffusion coefficient takes spatially nonlocal properties of the
function u(t, ·) : Ω −→ R into consideration due to the convolution. In contrast to
the Perona-Malik model, the modified initial-boundary value problem is well-posed
as Catté et. al conclude from Schauder fixed point theorem and classical results
about parabolic differential equations [41].

Weickert suggests in his monograph [183] how to improve this concept: The scalar
function g in the diffusion coefficient is replaced by a matrix-valued function
A : R

N×N −→ Sym(RN) ⊂ R
N×N . This form of diffusion can take the direction of

the smoothed spatial gradient into consideration (instead of its absolute value only)
and, it is called anisotropic.
The continuous dependence of the solution on the initial image has significant
practical impact as it ensures “stability” with respect to perturbations of the original
image. This is of importance when considering stereo image pairs, spatio-temporal
image sequences or slices from medical CT or MRI sequences because similar
images remain similar to each other after filtering [183, § 2.3, Remark].
According to Weickert, continuous diffusion filtering uses the unique distributional
solution u ∈C0([0,T ], L2(Ω)) ∩ L2([0,T ], W 1,2(Ω)) to the initial-boundary value
problem with Neumann boundary conditions

⎧
⎪⎨

⎪⎩

∂t u − divx
(
A
(
Gρ ∗ ((u ∗∇Gσ)⊗ (u ∗∇Gσ))

)
∇u
)

= 0 in ]0,T [×Ω
∇u · ν∂Ω = 0 on ]0,T ]× ∂Ω

u(0, ·) = u0 in Ω ⊂ R
N

From the mathematical point of view, this anisotropic diffusion approach and the
preceding image segmentation algorithm in § 0.2.1 (on page 3 ff.) belong to com-
pletely different fields, i.e. parabolic differential equations and set-valued analysis.

The challenging question is now whether these two methods can be handled as
components of one system in a joint analytical framework so that we can apply
them simultaneously: The set-valued approach approximates the image segment of
a wanted object by means of a compact-valued curve [0,T [−→K (RN), t �−→ K(t)
and, the respective compact set K(t)⊂R

N has an explicit influence on the diffusion
coefficient

∂t u − divx
(
Ã
(
K(t), Gρ ∗ ((u ∗∇Gσ)⊗ (u ∗∇Gσ))

)
∇u
)

= 0 in ]0,T [×Ω
Vice versa, the smoothed grey-scale function u(t, ·) : Ω −→ R should have the
opportunity to influence the dynamic evolution of K(t) at each time t.

Such a joint framework for dynamic processes is the main goal of this mono-
graph. It is to specify sufficient conditions for well-posed Cauchy problems both
in and beyond vector spaces in finite time intervals. Evolution equations represent
a form of generalizing ordinary differential equations from the Euclidean space to
Banach spaces. The mutational framework here is to make the step beyond vector
spaces.
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In subsequent section 3.9 (on page 278 ff.), we apply this general framework
to so-called conormal parabolic problems in cylindrical domains, which cover the
continuous diffusion filtering of Weickert as a special case. One of the main results
in this example is the following statement quoting Theorem 3.103 (on page 281 f.):

Theorem 3. Let Ω ⊂ R
N be a bounded domain with C2 boundary and T,λ > 0.

Assume the coefficient functions

A : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ W 1,∞(Ω , Sym(RN×N))

b : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ W 1,∞(Ω , R

N)
c : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)

) −→ L∞(Ω , R
N)

b0 : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ L∞(∂Ω)

c0 : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ L∞(Ω , R)

f : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ W 1,2(Ω , R

N)
g : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)

) −→ L2(Ω , R)
ψ : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)

) −→ L2(∂Ω)

to be uniformly bounded w.r.t. the respective Sobolev norms of their values,
continuous w.r.t. the L∞ or L2 norm of their values respectively and
satisfy the condition of uniform parabolicity ξ T ·A(t,v)(x) ξ ≥ λ |ξ |2

for all t ∈ [0,T ], v ∈W 1,2(Ω), x ∈Ω , ξ ∈ R
N.

Then for every initial u0 ∈W 1,2(Ω), there exists a weak solution u(·) : [0,T ] −→
W 1,2(Ω) to the nonlinear conormal problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− ∂ u
∂ t +divx

(
A|(t,u(t,·)) · ∇u

)
+divx

(
b|(t,u(t,·)) · u

)

+ c|(t,u(t,·)) · ∇u + c0|(t,u(t,·)) u = divx f|(t,u(t,·)) + g|(t,u(t,·))
(
A|(t,u(t,·)) ∇u + b|(t,u(t,·)) u − f|(t,u(t,·))

) · νΩ
+ b0|(t,u(t,·)) u = ψ |(t,u(t,·)) on ∂Ω

u(0, ·) = u0 in Ω

in the sense of Definition 3.101 (on page 279) with the composed coefficient func-
tions

Ǎ := A(·,u(·)) : [0,T ]×Ω −→ R
N×N , (t,x) �−→ A(t, u(t, ·))(x)

b̌ := b(·,u(·)) : [0,T ]×Ω −→ R
N , (t,x) �−→ b(t, u(t, ·))(x) etc.

In fact, u ∈C0
(
[0,T ], L2(Ω)

) ∩ L2
(
[0,T ], W 1,2(Ω)

)
, ∂t u ∈ L2

(
[0,T ], W 1,2(Ω)∗

)
.

Lipschitz continuity of the coefficients A,b,b0,c,c0, f,g (w.r.t. the L∞ or L2 norms of
their values respectively) implies uniqueness of this weak solution and its continuous
dependence on the given data. As a consequence, the existence result can then be
extended to initial functions u0 ∈ L2(Ω) approximatively.
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0.2.3 A Stochastic Differential Game without Precisely Known
Realizations of Opponents

Many processes with aspects of uncertainty are modelled by means of stochastic
differential equations. Now consider the situation that two players play a stochastic
game with each other. Their states are described by real-valued stochastic processes
(Xt)0≤ t≤T , (Yt)0≤ t≤T respectively and, the strategies might take control parameters
u,v ∈ R

N into consideration. Then the underlying system of stochastic differential
equations usually has the form

{
dXt = f1(t,Xt ,Yt ,ut) dt + f2(t,Xt ,Yt ,ut) dWt , ut ∈U⊂ R

N

dYt = g1(t,Xt ,Yt ,vt) dt + g2(t,Xt ,Yt ,vt) dWt , vt ∈V ⊂ R
N

where (Wt)t≥0 is a standard scalar Wiener process. We do not discuss any examples
of payoff functions in detail, but we are interested in the following question instead:

How to modify this stochastic control problem if each player knows all
differential rules, but not the precise current value of the opponent’s
realization ?

A potential way out is to “estimate” the current value of the opponent’s state and,
the expected value is a quite simple candidate that takes all possible states of the
opponent into consideration. Then the stochastic control problem has the form
{

dXt = f1(t,Xt , E(Yt ), ut) dt + f2(t,Xt , E(Yt ),ut) dWt , ut ∈U⊂ R
N

dYt = g1(t,E(Xt), Yt , vt) dt + g2(t,E(Xt), Yt , vt) dWt , vt ∈V ⊂ R
N .

It differs from the counterpart above in the dependence of the right-hand side on
nonlocal properties (with respect to the probability space). Some additional inter-
est in the confidence of the estimator can be quantified by means of the second
moments.

Lacking precise information about current realizations is just one example motivat-
ing the following type of stochastic ordinary differential equations

dXt = f1
(
t,Xt , E(ϕ1(Xt)), E(|Xt |2)

)
dt + f2

(
t,Xt , E(ϕ2(Xt)), E(|Xt |2)

)
dWt

with sufficiently smooth functions f1, f2,ϕ1,ϕ2. The right-hand side does not de-
pend only on the current realization of the random variable Xt , but also on some
properties which are nonlocal with respect to the probability space (not with re-
spect to time). Hence this differential problem differs from what is usually called
“stochastic functional differential equations” (as e.g. in [135, 187]) because we do
not focus on pathwise dependence.
Strong solutions can be constructed via the Euler method and, this type of stochas-
tic differential equations will be handled in the mutational framework in section 3.6
(on page 231 ff.) in detail. The general mutational approach gives us the advantage
that we can solve systems of these nonlocal stochastic differential equations and
any other preceding example (like parabolic conormal problems) immediately, i.e.
without further preliminary work for the respective system.
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0.3 Extending the Traditional Horizon: Evolution Equations
Beyond Vector Spaces

In fact, we regard nonlocal set evolutions just as a motivating example.
When introducing mutational equations in metric spaces, Aubin’s key motivation
was to extend ordinary differential equations to compact subsets of the Euclidean
space. It should provide, for example, the framework for control problems

{
x′(t) = f

(
t, x(t), u(t)

) ∈ R
N

u(t) ∈ U(t) ⊂ R
M

whose compact control set U(t) ⊂ R
M had the opportunity to evolve according to

the current state x(t) and itself (i.e. U(t)).
This approach of mutations has a much larger potential though. Indeed, the main
goal here is a common analytical framework for continuous Cauchy problems
within and beyond the traditional borders of vector spaces.

Whenever a dynamical system proves to fit in this framework, the mutational
theory immediately opens the door to existence results about systems with other
suitable components – no matter whether their mathematical origins are completely
different. A nonlocal geometric evolution can be combined, for example, with an
ordinary differential equation and a semilinear evolution equation. This is the main
advantage of mutational equations – in comparison to more popular concepts like
viscosity solutions and thus, all our generalizations here are to preserve this feature.
It is to lay the foundations of future results about free boundary problems.

If a component does not fit in this framework, however, it might serve as moti-
vation for generalizing the mutational theory and weakening the conditions in its
definitions.

This interaction between the general mutational framework – without the linear
structure of vector spaces – and diverse examples of dynamical systems facilitates
a better understanding of very popular results in functional analysis. How can weak
sequential compactness, for example, be defined in a metric space without linear
structure (and thus, without linear functionals)?

0.3.1 Aubin’s Initial Notion: Regard Affine Linear Maps
Just as a Special Type of “Elementary Deformations”
(Alias Transitions)

Roughly speaking, the starting point consists in extending the term “velocity” from
vector spaces to metric spaces. Then the basic idea of first-order approximation
leads to a definition of derivative for curves in a metric space and step by step, we
can apply the same notions as for ordinary differential equations.



0.3 Extending the Traditional Horizon: Evolution Equations Beyond Vector Spaces 13

First let us focus on velocities of curves [0,T ]−→R
N .

A vector v ∈ R
N represents the velocity of the curve x(·) : [0,T ] −→ R

N at time
t ∈ [0,T [ if it is the limit of difference quotients:

v = lim
h→0

x(t + h) − x(t)
h

.

Such a difference quotient is difficult to specify in metric spaces and thus, we use
an equivalent condition which became very popular in connection with functions
in Banach spaces. Indeed, v ∈ R

N represents the velocity of x(·) : [0,T ] −→ R
N at

time t ∈ [0,T [ if it provides a first-order approximation in the following sense:

lim
h→0

1
h ·
∣
∣x(t + h) − (x(t) + h v

)∣∣ = 0. (∗)

This condition is reflecting a quantitative comparison between the curve of interest
x(t + ·) and the affine linear map h �−→ x(t)+ h v for h −→ 0. Such a comparison
can also be formulated in a metric space as soon as we have specified a counterpart
of the affine linear map.

From a more conceptual point of view, each vector v ∈ R
N determines an affine

linear map of two variables, namely

[0,∞[×R
N −→ R

N , (h, x) �−→ x + h v .

The first argument h can be interpreted as time whereas the second argument x∈R
N

has the geometric meaning of an initial point in the Euclidean space R
N . After the

period h≥ 0, it is moved to the end point x + h v ∈R
N .

Moreover, the asymptotic features leading to time derivatives require comparisons
only for short periods. Thus, for the sake of simplicity, let us always choose h∈ [0,1]
instead of h ∈ [0,∞[.

Passing the traditional borders of vector spaces, we are free to skip the affine linear
structure of this auxiliary map. In a metric space (E,d), a function

ϑ : [0,1]×E −→ E, (h, x) �−→ ϑ(h,x)

is to play the role of such an affine linear map instead. ϑ determines to which point
ϑ(h,x) ∈ E any initial point x ∈ E is moved at time h ∈ [0,1] and thus, it can be
regarded as a kind of “elementary deformation” of E .

Such a function ϑ represents the time derivative of a curve
x(·) : [0,T ] −→ E at time t ∈ [0,T [ if it provides a first-order
approximation in the following sense:

lim
h↓0

1
h · d

(
x(t + h), ϑ(h,x(t))

)
= 0. (∗∗)

This condition is the (almost) exact analogue of preceding statement (∗) as we have
merely restricted the limit to h > 0 tending to 0. Strictly speaking, it is the precise
counterpart of the right-hand Dini derivative of a curve in a vector space like R

N .
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Of course, there might be more than just one of these “elementary deformations”
ϑ : [0,1]×E −→ E satisfying the characterizing condition (∗∗) at time t ∈ [0,T [.
Following the proposal of Aubin in [10], we first specify the class Θ(E,d) of such
functions [0,1]×E −→ E appropriate for the metric space (E,d) under considera-
tion and then, the set of all functions ϑ ∈Θ(E,d) satisfying this condition (∗∗) is
called mutation of the curve x(·) : [0,T ]−→ E at time t ∈ [0,T [:

◦
x (t) :=

{
ϑ ∈Θ(E,d)

∣∣ lim
h↓0

1
h · d

(
ϑ(h, x(t)), x(t + h)

)
= 0
}

.

Here the mutation plays the role of the time derivative, but it may consist of more
than one function inΘ(E,d). There is no obvious additional advantage of boiling it
down to single elements by means of equivalent classes and thus, we use these sets.

Finally, the step to differential equations in a metric space (E,d) is rather small
and based on the notion of feedback.
Indeed, we prescribe such an “elementary deformation” ϑ : [0,1]×E −→ E for
each state y∈ E and at time t ∈ [0,T ] by means of a function E× [0,T ]−→Θ(E,d).
Then the wanted continuous solution x : [0,T ] −→ E to the corresponding muta-
tional equation is expected to obey the underlying law of first-order approximations
(∗∗) — at Lebesgue-almost every time t ∈ [0,T ] at least.

Constructing a differential calculus for curves in a metric space (E,d) can only
succeed if these “elementary deformations” [0,1]×E −→ E are sufficiently regular
with respect to both arguments. In this context, Aubin introduced a set of four con-
ditions on a so-called transition ϑ : [0,1]×E −→ E . His rather local formulations
in [10] (quoted in Definition 1.1 on page 32) imply the following typical features:

(1.) ϑ(0, ·) = IdE ,

(2.) ϑ has the semigroup property for any x ∈ E , h1,h2 ≥ 0 with h1 +h2≤ 1, i.e.

ϑ
(
h2, ϑ(h1,x)

)
= ϑ(h1 + h2, x),

(3.) there exists α(ϑ) < ∞ such that for every h ∈ [0,1] and x,y ∈ E,

d
(
ϑ(h,x), ϑ(h,y)

) ≤ d(x, y) · eα(ϑ ) ·h,

(4.) there exists β (ϑ) < ∞ such that for every h1,h2 ∈ [0,1] and x ∈ E,

d
(
ϑ(h1,x), ϑ(h2,x)

) ≤ β (ϑ) · |h2−h1|.
In other words, transitions are restrictions of semidynamical systems on (E,d)
which are ω-contractive w.r.t. state and uniformly Lipschitz continuous w.r.t. time.
They prove to be appropriate for extending classical results like the existence theo-
rems of Cauchy-Lipschitz and Nagumo from ordinary differential equations in R

N

to the so-called mutational equations in a metric space (E,d). Aubin’s concept is
presented in more detail in Chapter 1.
His typical geometric examples are so-called morphological equations: The set
K (RN) of nonempty compact subsets of R

N is supplied with the classical Pompeiu-
Hausdorff metric dl and, transitions are induced by reachable sets of differential
inclusions (with bounded and Lipschitz continuous right-hand side).
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0.3.2 Mutational Analysis as an “Adaptive Black Box”
for Initial Value Problems

Let us now discuss in more detail how to solve initial value problems by means of
mutational analysis.

The first step consists in specifying the mathematical environment of the problem
under consideration. Basically, we choose a set E �= /0, a metric d : E×E −→R and
a suitable set of transitions [0,1]×E −→ E , denoted byΘ(E,d).

The transitions are usually induced by simpler problems in the same environment,
e.g. on the basis of fixing the coefficients or considering the corresponding linear
problem (instead of the full nonlinear one). It is essential to verify the character-
izing properties of transitions for the respective choice on E , i.e. in particular, the
appropriate continuity with respect to initial state and time.

For constructing wanted solutions approximatively, the two most popular concepts
in analysis are compactness and completeness. Comparing the classical theorem
of Peano (about ordinary differential equations in R

N) with Cauchy-Lipschitz
Theorem reveals that compactness usually opens the door to existence theorems
under weaker assumptions of continuity. Thus, we mostly intend to verify a form
of sequential compactness for the respective mathematical environment (rather than
completeness).

These are the main “ingredients” of mutational analysis.
Indeed, the full problem under consideration is determined by a “feedback” function

f : E× [0,T ] −→Θ(E,d)
and, the theorems in mutational analysis specify sufficient conditions on f such
that for every initial element x0 ∈ E, there exists a Lipschitz continuous curve
x(·) : [0,T ]−→ (E,d) with x(0) = x0 such that at L 1-almost every time t ∈ [0,T [,

◦
x (t) � f

(
x(t), t

)

i.e., lim
h↓0

1
h · d

(
x(t + h), f (x(t), t) (h, x(t))

)
= 0.

This result corresponds to Peano’s Theorem about ordinary differential equations
in R

N and, its proof is based on Euler approximations evaluating transitions suc-
cessively in equidistant partitions of [0,T ]. Moreover, mutational analysis provides
sufficient conditions on f for uniqueness of solutions in bounded time intervals and
their continuous dependence on data. Last, but not least, we can also handle ini-
tial value problems with state constraints leading to the counterpart of Nagumo’s
Theorem.
Strictly speaking, however, all these results deal with curves x(·) : [0,T ] −→ E
in some abstract set E �= /0 — with some supplementary properties in regard to
first-order approximations via transitions.
If we stopped here, mutational analysis would hardly provide new insights in more
traditional fields like partial differential equations.



16 0 Introduction

For this reason, the last step of our method focuses on respective links between such

a solution to the mutational equation
◦
x (·) � f

(
x(·), ·) and a popular concept of

solution (whenever possible).
Such a connection strongly depends on the type of considered problem, of course.
In regard to partial differential equations, for example, it might lead to classical,
strong or weak solutions. Alternatively, for evolution equations, we can often prove
a relation to mild solutions and, some set evolutions in (K (RN),dl) are character-
ized as reachable sets of nonautonomous differential inclusions (whose coefficients
depend on the wanted curve in K (RN)). § 0.3.3 sketches three conceptual ap-
proaches how to establish a link with other solution concepts.

As a precipitate result of this summary, mutational analysis might be regarded as
“just” some complicated formalism providing a very long list of features sufficient
for the convergence of Euler approximation in a mathematical environment without
linear structure.
This evaluation, however, ignores an essential advantage of the mutational frame-
work which we have already mentioned in a preceding subsection:

Mutational analysis can handle systems in regard to existence and stability.

As soon as an example fulfills the conditions on distance, transitions etc., we are im-
mediately free to apply the existence results about systems of mutational equations
and couple this example with any other one fitting in this mutational framework.
Nonlocal set evolutions in R

N , for example, can be combined with nonlinear trans-
port equations for Radon measures.
This flexibility in regard to systems makes mutational analysis very attractive.

Whenever an example does not fit in the mutational framework, it might serve as
motivation for generalizing mutational analysis. In particular, several examples of
Cauchy problems have demonstrated that Aubin’s four conditions on transitions are
quite restrictive for deriving significantly more benefit from this concept. Thus it is
our goal to adapt them step by step — motivated by diverse examples (see § 0.3.4).
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0.3.3 The Initial Problem Decomposition and the Final Link
to More Popular Meanings of Abstract Solutions

Mutational analysis is to provide useful tools for solving dynamical problems that
are continuous in time and have a possibly very complex structure. The main idea is
always to split the full problem up into a class of simpler problems and “feedback”.
In particular, the general mutational framework clarifies the main features of such
decomposition that are relevant to the existence of solutions by means of Euler
method. Then conclusions about the uniqueness of solutions and their continuous
dependence on data are usually drawn via Gronwall’s inequality.

Hence, the initial decomposition of the problem plays a key role, but there is no
global recipe (so far). Each of the simpler initial value problems induces a transition
on the basic set and should be more than just “well-posed”. Indeed, we will use an
appropriate form of Lipschitz continuity with respect to time and initial state —
for ensuring the convergence of Euler approximations later on.
Most of the subsequent examples in Banach spaces have in common that fixing the
coefficients usually leads to linear problems which prove to satisfy the required
conditions on transitions.

Furthermore, the benefit which the mutational framework can bring to a complicated
Cauchy problem depends very much on the question if a solution to such an abstract
mutational equation can be interpreted in a more popular way. Does it prove to be a
classical, strong, weak or mild solution, for example?
Obviously, the answer has to be given for each application separately, but there
are three useful approaches to proving such a connection between the original full
problem denoted here as z′ = F(z, t) (just for a moment) and the related mutational

equation
◦
x(t) � f (x(t), t) (after the problem decomposition):

(1.) The direct check:

Verify that the asymptotic comparison (with the evolution along a transition)
for vanishing time always implies the relevant features of solutions in an
alternative sense. This check is often quite intricate though.

(2.) Use existing solutions z(·) to the nonautonomous, but “simplified” problem
z′ = F(x(t), t) for comparison:

Assume that a solution x(·) to the mutational equation
◦
x � f (x, t) is known.

Prove that a solution z(·) to the nonautonomous problem z′ = F(x(t), t),
whose right-hand side depends only on t, but not on the wanted state z, starts

at x(0) and solves the mutational equation
◦
z(t) � f (x(t), t). Then uniqueness

of solutions to this last simple mutational equation can imply z(·)≡ x(·).



18 0 Introduction

(3.) Both solution criteria are stable w.r.t. the same type of convergence:

Every transition ϑ provides a joint solution y(·) = ϑ(·,y0) of both a simple

original problem and
◦
y(·) � ϑ – by definition. In the mutational framework,

each piecewise Euler approximation solves a “perturbed” mutational equa-
tion and, the Convergence Theorems specify the type of convergence w.r.t.
which the solution property is preserved (e.g. pointwise convergence).
Check if the solution property of the full problem is also preserved by the
same type of convergence. Then the (initially piecewise) equivalence of the
solution criteria for Euler approximation holds for the limit curve.

0.3.4 The New Steps of Generalization in Mutational Analysis

Step (A) Linear Examples in Vector Spaces Exclude Uniform Parameters
of Transitions

The affine linear maps [0,1]×R
N −→ R

N , (h,x) �−→ x + h v with fixed vectors
v ∈ R

N are the first and probably simplest examples of transitions on the Euclidean
space R

N . Obviously, each of them is Lipschitz continuous with respect to both
arguments and thus fulfills Aubin’s conditions on transitions.
This situation changes, however, if the transitions are based on the unique solutions
to linear initial value problems. In connection with a nonlinear continuity equation

∂t u + divx
(
h(u) u

)
= 0 in [0,T ]×R

N,

for example, the linear Cauchy problem with a fixed coefficient function b
{
∂t u + divx

(
b u
)

= 0 in [0,h]×R
N

u(0, ·) = u0 in R
N

provides an obvious ansatz for a transition (h,u0) �−→ u(h, ·) on the correspond-
ing function space, but Aubin’s conditions on transitions reveal obstacles due to
linearity immediately: The family of curves h �−→ u(h, ·) for all permissible initial
functions u0 : R

N −→ R
N can hardly be expected to be Lipschitz continuous with

a globally bounded Lipschitz constant. How to choose the parameter of continuity
β (ϑ) then?

Whenever a parameter cannot be chosen globally, local bounds might be recom-
mendable to check instead. This is our first step for generalizing Aubin’s mutational
framework.
In particular, we need a criterion for which subsets of permissible states each transi-
tion should have uniform parameters of continuity (denoted by α(ϑ),β (ϑ) above).
Another glance at the linear examples in vector spaces motivates us to specify coun-
terparts of the norm. Such an “absolute value” reflects the properties of a single
state whereas a metric usually compares two elements.
In addition to a metric space (E,d), any function �·� : E −→ [0,∞[ is now given
at the very beginning of the (new) mutational framework and, a transition ϑ :
[0,1]×E −→ E on the tuple (E,d,�·�) is supposed to have the following features:



0.3 Extending the Traditional Horizon: Evolution Equations Beyond Vector Spaces 19

(1.) ϑ(0, ·) = IdE ,

(2.) ϑ has the semigroup property for any x ∈ E , h1,h2 ≥ 0 with h1 +h2 ≤ 1, i.e.

ϑ
(
h2, ϑ(h1,x)

)
= ϑ(h1 + h2, x),

(3.’) for every R > 0, there exists α(ϑ ;R) < ∞ such that for every h ∈ [0,1] and
x,y ∈ E with �x� ≤ R and �y� ≤ R,

d
(
ϑ(h,x), ϑ(h,y)

) ≤ d(x, y) · eα(ϑ ;R) ·h,

(4.’) for every R > 0, there exists β (ϑ ;R) < ∞ such that for every h1,h2 ∈ [0,1]
and x ∈ E with �x� ≤ R,

d
(
ϑ(h1,x), ϑ(h2,x)

) ≤ β (ϑ ;R) · |h2−h1|.
This list of conditions has to be extended though. Indeed, the concatenation of

transitions leads to curves x(·) : [0,T ] −→ E for any period T > 1 and, they will
be used for solving mutational equations later on. Thus we are obliged to keep the
“absolute value” �x(·)� : [0,T ] −→ [0,∞[ under control so that the propagation of
initial errors can be estimated properly. Each transition ϑ : [0,1]×E −→ E is ex-
pected to fulfill a growth condition whose structure is preserved by concatenation:

(5.) there exists γ(ϑ) < ∞ such that for every h ∈ [0,1] and x ∈ E ,

�ϑ(h,x)� ≤ (�x� + γ(ϑ) h
) · eγ(ϑ ) ·h.

Now the modified “machinery” of mutational analysis is ready to start again and,
Euler method together with suitable compactness assumptions ensure the existence
of solutions to the Cauchy problem in Chapter 2. One of the consequences is the
following theorem presented in § 2.5.3. It deals with the nonlinear transport equa-
tion for finite real-valued Radon measures on R

N whose set is denoted by M (RN).

Theorem 4 (Existence of solution to nonlinear transport equation).
For f = (f1, f2) : M (RN)× [0,T ]−→W 1,∞(RN ,RN)×W1,∞(RN ,R) suppose

(i) supμ,t

(∥∥f1(μ ,t)
∥
∥

W 1,∞ +
∥
∥ f2(μ , t)

∥
∥

W 1,∞
)

< ∞,

(ii) f is continuous in the following sense: For L 1-almost every t ∈ [0,T ] and any
sequences (tm)m, (μm)m in [0,T ], M (RN) respectively with tm −→ t, μm −→ μ
narrowly for m−→ ∞ and supm |μm|(RN) < ∞, it fulfills

f(μm,tm) −→ f(μ , t) in L∞(RN ,RN)×L∞(RN ,R) for m−→ ∞.

Then for every initial Radon measure μ0 ∈M (RN), there exists a narrowly con-
tinuous distributional solution to the nonlinear transport equation

∂t μt + divx (f1(μt , t)μt) = f2(μt , t) μt in R
N× ]0,T [

in the sense that
∫

RN
ϕ dμt −

∫

RN
ϕ dμ0 =

∫ t

0

∫

RN

(
∇ϕ(x) · f1(μs,s)(x)+ f2(μs,s)(x)

)
dμs(x) ds

for every t ∈ [0,T ] and any test function ϕ ∈C∞
c (RN ,R).
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Mutational Equations on Function Spaces Are “Functional Equations”

The recent example about the nonlinear transport equation reflects a typical feature
of mutational equations on function spaces: Each function (like a Radon measure
here) comes into play as one single element of a basic set E and, the function f (·, ·)
on the right-hand side of the mutational equation

◦
x (t) � f

(
x(t), t

)

is relating each state in E and time in [0,T ] to a transition on (E,d,�·�).
In connection with a function space for E , this relation can take nonlocal properties
of the functions u ∈ E into consideration immediately, but on the other hand, the
hypotheses about the continuity of f might exclude pointwise composition of these
functions.
Due to this structural consequence of f : E× [0,T ] −→Θ(E,d,�·�) as given data,
most examples of mutational equations on a function space belong to the field of
functional differential equations.

Step (B) Admit More Than One Distance Function on the Basic Set E

Compactness often plays the basic role for concluding the existence of a solution
from an approximative sequence. It is very restrictive, however, if a vector space is
supplied with a norm because its closed unit ball is compact if and only if the space
is finite-dimensional. This observation has already aroused the frequent interest in
the weak topology on Banach spaces. Indeed, the weak sequential compactness of
the closed unit ball is equivalent to its reflexivity.

The short excursion to linear functional analysis motivates us to provide simple
access to the mutational framework for the weak topology on metric vector spaces.
Our suggestion is to replace the metric d : E ×E −→ [0,∞[ by a family (d j) j∈I

of distance functions E ×E −→ [0,∞[. It is an excellent opportunity to weaken
the conditions on each distance function d j, j ∈I . The example induced by linear
functionals on a metric vector space makes clear that d j does not have to be positive
definite. In this next step of generalization, we assume each d j : E ×E −→ [0,∞[
to be reflexive, symmetric and to satisfy the triangle inequality. These three proper-
ties characterize a so-called pseudo-metric on E .
Similarly, a family (�·� j) j∈I of functions E −→ [0,∞[ substitutes for �·� indicating
the “absolute value” of states in E . All conditions on transitions and solutions are
then formulated or verified for each d j, j ∈I , simultaneously and hence, this ex-
tension does not have any significant influence on the proofs. It is also implemented
in Chapter 2.
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How to Compare the Evolution of Two Initial States along Two Transitions:
The Key Inequality About Error Propagation

We are still lacking tools how to compare the evolution of two initial states x,y ∈ E
along two (possibly different) transitions ϑ ,τ on (E,(d j) j∈I ,(�·� j) j∈I ). Indeed,
the only inequality about error propagation so far deals with a single transition ϑ
and states that the initial error may grow at most exponentially:

d j
(
ϑ(h,x), ϑ(h,y)

) ≤ d j
(
x, y
) · eα j(ϑ ;R) h

for every h ∈ [0,1] and x,y ∈ E with �x� j, �y� j ≤ R.
In other words, the qualitative influence of initial error has already been clarified.

Now we focus on the effect of two transitions ϑ ,τ on one and the same initial state
x ∈ E . The curves ϑ(·,x), τ(·,x) : [0,1] −→ E are both
continuous with respect to each d j ( j ∈I ) by definition and
thus,

d j
(
ϑ(h,x), τ(h,x)

)−→ 0 for h ↓ 0.

The first-order features of this time-dependent distance might be more informative
and hence, Aubin suggested

sup
x∈E

limsup
h↓0

1
h · d

(
ϑ(h,x), τ(h,y)

)

as distance between two transitions ϑ ,τ on a metric space (E,d). It is always finite
because the triangle inequality of the metric d reveals the upper bound β (ϑ)+β (τ).
Now our two recent steps of generalization lead to the following counterpart for
transitions ϑ ,τ on the tuple (E,(d j) j∈I ,(�·� j) j∈I )

D j(ϑ ,τ; r) := sup
x∈E: �x� j≤r

limsup
h↓0

1
h · d j

(
ϑ(h,x), τ(h,x)

)
< ∞

for any radius r≥ 0 and index j ∈I . (If {x∈E |�x� j ≤ r}= /0, set D j( · , · ; r) := 0.)
If d j is a pseudo-metric on E , then D j(·, ·;r) proves to be a pseudo-metric on the set
of transitions for each r ≥ 0.

This supplementary information about transitions is based on local features because
it takes only joint initial states and short periods into consideration. Now we need
to bridge the gap to curves [0,1] −→ E with possibly different initial points and,
Gronwall’s inequality plays the essential role for this step to estimates in [0,1].
Indeed, the distance function ϕ j : [0,1]−→ [0,∞[, h �−→ d j

(
ϑ(h,x), τ(h,y)

)
is

continuous and, the triangle inequality of d j ensures at every time t ∈ [0,1[

limsup
h↓0

ϕ(t+h)− ϕ(t)
h ≤ α j(ϑ ;R j) · ϕ(t) + D j(ϑ ,τ;R j)

with a sufficiently large radius R j > 0 depending only on �x� j, �y� j, γ j(ϑ), γ j(τ).
Then Gronwall’s inequality provides directly the “global” estimate at any time h≤ 1

d j
(
ϑ(h,x), τ(h,y)

) ≤ (
d j(x, y) + h · D j(ϑ ,τ;R j)

) · eα j(ϑ ;R j) h .

Such a step from an upper Dini derivative to an upper bound in a compact time inter-
val is typical for mutational analysis and, it usually results from some modification
of Gronwall’s Lemma. (Hence, we present several extensions in Appendix A.1.)
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Furthermore, this general inequality of error propagation has a quite intuitive struc-
ture on its right-hand side. Indeed, the initial distance d j(x, y) can be regarded a
term of order 0 (w.r.t. h) whereas the transitions ϑ ,τ contribute to the “term of first
order”, i.e. h · D j(ϑ ,τ;R j). Both of them are free to increase at most exponentially.
This form of influence is quite similar to Taylor expansions in vector spaces.

Step (C) Separate Families of Distances for Regularity in State and Time

Ordinary differential equations in the Euclidean space were extended to Banach
spaces in a very successful way a long time ago. Nowadays, the result is known
as evolution equations and, its conceptual starting points are strongly continuous
semigroups (S(t))t≥0 on a fixed Banach space X and their respective generators A.
This historic background justifies our attempt to deal with evolution equations

z′(t) = A z(t)+ f (z, t)
in the mutational framework. It does not necessarily provide new results about mild
solutions, but it opens the door to coupling evolution equations with other examples
(like nonlocal set evolutions or nonlinear transport equations) immediately.

Strong continuity, however, causes difficulties. Indeed, the variation of constants
formula motivates the following ansatz for a transition

τv : [0,1]×X −→ X , (h,x) �−→ τv(h,x) := S(h) x +
∫ h

0
S(h− s) v ds

with an arbitrarily fixed vector v in the Banach space X . If the semigroup (S(t))t≥0

is assumed to be ω-contractive, then it is easy to verify that initial errors with
respect to norm can grow at most exponentially, i.e. for any x,y ∈ X and
h ∈ [0,1],

∥∥τv(h,x) − τv(h,y)
∥∥

X ≤ ‖x− y‖X · eω h .

In regard to potential transitions on (X ,‖ · ‖X ,‖ · ‖X), the continuity with respect
to time is an obstacle: All curves τv(·,x) : [0,1] −→ X with x in the unit ball of X
are expected to be uniformly Lipschitz continuous and, this condition is likely to
fail whenever the dimension of X is infinite. The situation is much easier in the
following estimate, for example,

∥∥τv(h,x) − S(h) x
∥∥

X ≤
∫ h

0
‖S(h− s) v‖X ds ≤ h eω h ‖v‖X ,

but then it is probably more difficult to verify a counterpart of the exponentially
growing initial error and to provide a link to mild solutions in the end.

Our proposal to overcome this difficulty in the general mutational framework is
to use separate families (d j) j∈I , (e j) j∈I of distance functions E×E −→ [0,∞[ for
the regularity with respect to state and time (if it is advantageous). Then a transition
ϑ : [0,1]×E −→ E on (E,(d j) j∈I , (e j) j∈I ,(�·� j) j∈I ) is expected to satisfy

{
d j
(
ϑ(h, x), ϑ(h, y)

) ≤ d j(x, y) · eα j(ϑ ;r) h

e j
(
ϑ(h1,x), ϑ(h2,x)

) ≤ β j(ϑ ;r) |h1−h2|
for all r ≥ 0, j ∈I , h,h1,h2 ∈ [0,1] and x,y ∈ E with �x� j,�y� j ≤ r.
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In fact, (e j) j∈I is supposed to represent the same “topology” as (d j) j∈I in the
sense that every sequence (xn)n∈N tends to x ∈ E with respect to each e j( j ∈I ) if
and only if it converges to x with respect to each di (i ∈I ). We adhere to distance
functions for specifying continuity in time mainly because we need equi-continuity
of Euler approximations for the continuity of their limit function.

Separate distance functions of the same “topology” for the regularity in state
and time have proved to be a good starting point for handling semilinear evolution
equations with ω-contractive semigroups by means of mutational equations. More
details are discussed in § 3.10.
These results are then used for some initial-boundary value problems with second-
order parabolic differential equations in noncylindrical domains — without assum-
ing any transformation to a reference domain (§ 3.11).

Step (D) How the ω-Contractivity of Transitions Can Become Dispensable

So far, all transitions ϑ (even in their generalized form) are obliged to let the ini-
tial distance grow at most exponentially in time, i.e. for each r > 0 and j ∈I ,
there exists a parameter α j(ϑ ;r) > 0 with

d j
(
ϑ(h, x), ϑ(h, y)

) ≤ d j(x, y) · eα j(ϑ ;r) h

for all h ∈ [0,1] and x,y ∈ E with �x� j,�y� j ≤ r. In the terminology of semidynami-
cal systems, ϑ is said to be (locally) ω-contractive with respect to each d j ( j ∈I ).

In the example of semilinear evolution equations (in § 3.10), however, this condi-
tion implies a significant restriction: the underlying strongly continuous semigroup
(S(t))t∈≥0 is assumed to be ω-contractive so that the variation of constants formula

ensures the corresponding property of τv(h,x) := S(h) x +
∫ h

0
S(h−s) v ds (v∈X).

Mutational analysis would be much more helpful indeed if we could draw essen-
tially the same conclusions about existence of solutions from the weaker hypothesis

d j
(
ϑ(h, x), ϑ(h, y)

) ≤ Cj · d j(x, y) · eα j(ϑ ;r) h

with a constant Cj possibly larger than 1, but then the standard piecewise approach
will fail to estimate the maximal distance between two Euler approximations in
[0,T ] when the partition is refined (and the number of subintervals tends to ∞).

This dilemma can be overcome if we suppose suitable inequalities for the maximal
distance between any Euler approximations in arbitrary time intervals [0,T ].
The main idea presented in § 3.4 is motivated by the well-known step from Hille-
Yosida Theorem (about contractive C0 semigroups) to the Theorem of Feller,
Miyadera and Phillips (about arbitrary C0 semigroups) (e.g. [76, Theorem II.3.8]).



24 0 Introduction

Indeed, we construct a family of auxiliary distance functions ď j ( j ∈I ) which are
“equivalent” to d j respectively such that ϑ is ω-contractive with respect to each ď j.
In contrast to the semigroup theory in Banach spaces, we cannot use the linear re-
solvent operator here, but the construction of ď j is based on the figurative question
how “far away from each other” two states can come along any (nonequidis-
tant) Euler curves after we subtract the potential influence of transitions on the
distance.

The so-called candidates for transitions fulfill all required properties except for
ω-contractivity, but the results of § 3.4 fill this gap via an auxiliary family
(ď j) j∈I .

Step (E) Less Restrictive Conditions on Distance Functions d j,e j ( j ∈I ):
Continuity Assumptions Instead of Triangle Inequality

Examples with stochastic differential equations are quite difficult to consider in
the mutational framework up to now. Let us take a glance at real-valued solutions
(Xt)0≤ t≤T to the stochastic initial value problem

{
d Xt = a(t,Xt) dt + b(t,Xt) dWt

X0 given

with a fixed Wiener process W = (Wt)t≥0 on a complete probability space
(Ω ,A ,P). Under suitable assumptions about the coefficients a,b : [0,T ]×R−→R,
a pathwise unique strong solution (Xt)0≤ t≤T is known to exist and, the following
estimates hold with constants C1,C2,C3 depending only on a(·),b(·),T

E
(|Xt |2

) ≤ (
E
(|X0|2

)
+C2 t

)
eC1 t ,

E
(|Xt −X0|2

) ≤ C3
(
E
(|X0|2

)
+1
)

eC1 t · t .
If we regard these solutions as possible candidates for transitions, then the first in-
equality provides a suitable upper bound of growth. The second inequality indicates
Lipschitz continuity with respect to time – exactly in the form we usually want it,
but the estimate considers the square deviation which does not satisfy the triangle
inequality in general.

This observation exemplifies that the triangle inequality of pseudo-metrics on the
one hand and the familiar types of distance estimates like

⎧
⎪⎪⎨

⎪⎪⎩

d j
(
ϑ(h, x), ϑ(h, y)

) ≤ d j(x, y) · eα j(ϑ ;R j) h

e j
(
ϑ(h1,x), ϑ(h2,x)

) ≤ β j(ϑ ;R j) |h1−h2|
d j
(
ϑ(h, x), τ(h, y)

) ≤ (
d j(x, y) + h · D j(ϑ ,τ;R j)

) · eα j(ϑ ;R j) h

on the other hand might exclude each other. Now we have to make a decision which
aspect to preserve in the mutational framework.

We prefer the key inequality of error propagation to the triangle inequality.
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The main goal of mutational analysis is to extend the familiar results about ordinary
differential equations beyond the traditional borders of vector spaces. Meanwhile we
have even left metric spaces by means of the tuples

(
E,(d j) j∈I ,(e j) j∈I ,�·� j) j∈I

)
,

but the key inequality of error propagation for transitions

d j
(
ϑ(h,x), τ(h,y)

) ≤ (
d j(x, y) + h · D j(ϑ ,τ;R j)

) · eα j(ϑ ;R j) h

still reflects the notion of first-order approximation.
The triangle inequality has become a very popular condition on distance func-

tions and, it seems to be indispensable in many standard textbook about topology
and calculus as it is one of the defining conditions on metrics. A closer look at its
role in proofs reveals that it mostly serves a single purpose: verifying continuity.
In particular, the triangle inequality guarantees that the metric on a set is continuous
with respect to its topology.

In regard to the mutational framework, our new suggestion is to ensure the “con-
tinuity” of each distance function d j, e j ( j ∈I ) by means of explicit hypotheses
about converging sequences in E (instead of the triangle inequality). If, for example,
sequences (xn)n∈N and (yn)n∈N satisfy

{
d j(xn, x) −→ 0

d j(yn, y) −→ 0

for n−→ ∞ and each j ∈I , then we expect for every index i ∈I quite intuitively

di(x, y) = lim
n→∞

di(xn, yn) .

At the beginning of Chapter 3, we list a few conditions on d j, e j, �·� j ( j ∈I ) which
admit all steps on the way to the main results of mutational analysis. As a special
consequence of this step, we obtain the existence of strong solutions to a class of
stochastic functional differential equations (in § 3.6) like

dXt = h1
(
t, E(|Xt |), E(|Xt |2)

) · h2(Xt) dt + b(t) dWt .

Step (F) How to Extend the Weak Topology Beyond Normed Vector Spaces

Many of our subsequent results about the existence of solutions to examples are
based on the counterpart of Peano’s Theorem in the mutational framework. It states
that continuity of the right-hand side and an appropriate form of sequential compact-
ness always guarantee the existence of a solution to the given mutational equation.
Hence, sequential compactness forms the basis for many existence results below —
on the one hand.
On the other hand, evolution equations in an arbitrary Banach space exemplify that
the norm of a vector space is frequently the most obvious choice for (at least) one
of the distance functions d j,ei.
Norm compactness of the unit ball in a vector space, however, implies necessarily
finite dimensions.



26 0 Introduction

The weak topology is the typical way out of this conflict: The (norm-) closed
unit ball in a reflexive Banach space is known to be weakly compact. In contrast
to step (B), this observation encourages us now to generalize the concept of weak
sequential compactness to the tuple (E,(d j) j∈I , (e j) j∈I ,(�·� j) j∈I ), but we are
lacking any linear functionals on a set E in general.

Thus, we suggest starting from another connection between norm and weak
topology of a real vector space X (rather than from linear functionals on X). A
popular characterization of the norm concludes from the Theorem of Hahn-Banach

‖x‖X = sup
{

y′(x)
∣
∣ y′ : (X ,‖ · ‖X)−→R linear, continuous, ‖y′‖Lin(X ,R) ≤ 1

}
.

As a first consequence, we become aware (again) that the substantial difference
between weak and norm convergence of a sequence in X results from switching
limit and supremum. The linear features of the functionals y′ on X are of rather
subordinate importance here.
Secondly, the basic structure of this characterization can be extended to abstract
sets easily: The distance between two points is represented as supremum of further
distance functions.

Now we apply this notion to the tuple (E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I ).
The distance functions d j,e j ( j ∈I ) continue their role for transitions and so-
lutions, but in addition, we assume distance functions d j,κ ,e j,κ : E ×E −→ [0,∞[
(with a further index set J �= /0) such that for each index j ∈I ,

d j = sup
κ∈J

d j,κ , e j = sup
κ∈J

e j,κ .

Then a sequence (xn)n∈N in E is said to converge “weakly” to an element x ∈ E if
for every j ∈I and κ ∈J ,

lim
n→∞

d j,κ(xn,x) = 0.

The families (d j,κ) j∈I ,κ∈J and (e j,κ) j∈I ,κ∈J do not have to consist of pseudo-
metrics, but they are expected to specify the same “topology” on E again. Thus,
we usually suppose the corresponding list of hypotheses as for (d j) j∈I , (e j) j∈I .
In § 3.3.6, we clarify which forms of “weak” sequential compactness and “weak”
continuity (of the right-hand side of mutational equations) are sufficient for extend-
ing Peano’s Theorem about the existence of solutions.
These general results are applied to the nonlinear continuity equation, for example,

{
d
dt μ + divx (f(μ , ·) μ) = 0 in R

N× ]0,T [
μ(0) = ρ0 L N ∈ L

∞∩1(RN)

with a given functional relationship in the form of

f : L
∞∩1(RN)× [0,T ] −→ BVloc(RN ,RN)∩L∞(RN ,RN)

in § 3.8. Here the distributional solutions μ(·) : [0,T ]−→ L
∞∩1(RN) have their val-

ues in L
∞∩1(RN) :=

{
ρL N

∣
∣ ρ ∈ L1(RN)∩L∞(RN), ρ ≥ 0

}
and are constructed

by means of Prokhorov’s Compactness Theorem.
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Step (G) Less Restrictive Conditions on Distance Functions d j,e j ( j ∈I ):
Dispense with Symmetry

The evolution of compact subsets of the Euclidean space R
N might depend explic-

itly on their topological boundary and, we would like to take such an influence
into consideration — still without making any a priori assumptions about regular-
ity. Even simple examples, however, indicate obstacles in the current mutational
framework.

Consider just an annulus expanding isotropically
at a constant speed 1. After a finite period, the
“hole” in the center of the annulus disappears
suddenly. Hence, the topological boundary of the
expanding annulus does not evolve continuously
(in the sense of Painlevé-Kuratowski).

The classical Pompeiu-Hausdorff distance between the boundaries of such an an-
nulus K ⊂ R

N and its expanding counterpart Bt(K) ⊂ R
N does not have to be

continuous with respect to time t and thus, it is unsuitable for comparing topologi-
cal boundaries in regard to transitions.
In search of an alternative pseudo-metric, we realize that some topological compo-
nents of ∂Bt(K) might “disappear” while time t is increasing, but each boundary
point of ∂Bt (K) has close counterparts at earlier sets ∂Bs(K) (with s < t). Indeed,

dist
(
∂Bt (K), ∂Bs(K)

) ≤ t− s

for all 0 ≤ s ≤ t, but a corresponding estimate does not have to hold for 0 ≤ t < s.
In other words, we find properties similar to some requirements for transitions if we
compare only later sets with earlier sets (in regard to their topological boundaries),
but not vice versa.

For this reason, we aim at a mutational framework for a tuple (E, (d j) j∈I , (e j) j∈I ,
(�·� j) j∈I ) without assuming symmetry of d j and e j ( j ∈I ). Broadly speaking,
the first argument of each distance usually refers to the earlier state whereas the
second argument is the later element (in Chapter 4).

The same geometric example also demonstrates an analytical obstacle which we
have to overcome after dispensing with symmetry. Indeed, consider a further initial
set K′ ⊂ R

N . Of course, the preceding inequality still holds for t �−→ ∂Bt (K′), but
the distance of ∂Bt(K) from the other boundary ∂Bt(K′) at the same time t, i.e.

[0,∞[−→ [0,∞[, t �−→ dist
(
∂Bt(K), ∂Bt(K′)

)
,

might be discontinuous. As a general consequence for mutational equations, we
have to ensure (at least) lower semicontinuity of some time-dependent distances
which had always been continuous before so that the adapted program of mutational
analysis still works.



28 0 Introduction

Step (H) Distribution-Like Solutions to Mutational Equations

Examples with compact subsets of R
N evolving according to their topological

boundaries are still difficult to handle in the mutational framework though. Indeed,
an additional challenge is closely related to the regularity of transitions with respect
to state (and its continuity parameter α j(ϑ ;r) < ∞).

It is an essential feature of transitions that the
initial distance between two states may grow at
most exponentially while evolving along one and
the same transition.
Although this condition does not require continuity
of distances with respect to time, the boundaries of
two time-dependent compact sets and their normals
might not satisfy it whenever one of the boundaries
is not continuous with respect to time.
With regard to the geometric situation sketched in the figure on the right, there is no
general rule for compact sets when the next topological component of the boundary
disappears, i.e., when the distance from another boundary might be discontinuous
for the next time.

This obstacle can be overcome in the mutational framework if we introduce a
less restrictive concept of transition and solution.
In the theory of partial differential equations, similar difficulties have already led
to distributions and distributional solutions, but their defining property, i.e. partial
integration with smooth functions, requires more mathematical structure than a set
E �= /0 provides in general. For this reason, we suggest a more general interpretation
of the step from classical to distributional derivatives:

Select an essential property in the “classical” theory and demand
to preserve it (only) for all elements of a given fixed “test set” –
instead of the whole “basic set”.

Usually this important feature is the rule of partial integration and, it is preserved
for smooth test functions with compact support (or Schwartz functions).
In the mutational framework, the inequality of error propagation plays a central role
and specifies in which sense transitions represent first-order approximations:

d j
(
ϑ(h,x), τ(h,y)

) ≤ (
d j(x, y) + h · D j(ϑ ,τ;R j)

) · eα j(ϑ ;R j) h

with the radius R j > 0 just depending on max{�x� j, �y� j}, γ j(ϑ), γ j(τ) < ∞.
At time t ∈ [0,T ], a curve x(·) : [0,T ] −→ E has the “same properties up to first
order” as a transition τ (in a generalized sense) if essentially the same asymptotic
inequalities of error propagation hold for τ(·,x(t)), x(t + ·) and h ↓ 0:

d j
(
ϑ(h,z), τ(h,x(t))

) ≤ (d j(z, x(t)) + h · D j(ϑ ,τ;R j)
) · eα j(ϑ ;R j) h

d j
(
ϑ(h,z), x(t + h)

) ≤ (d j(z, x(t)) + h · D j(ϑ ,τ;R j)
) · eα j(ϑ ;R j) h + o(h).
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Strictly speaking, the latter inequality “in an asymptotic sense for h ↓ 0” means

limsup
h↓0

1
h ·
(

d j
(
ϑ(h,z), x(t + h)

) − d j(z, x(t)) · eα j(ϑ ;R j) h
)
≤ D j(ϑ ,τ;R j). (♦)

In Aubin’s original theory of mutational equations, this condition being satisfied by

all elements z ∈ E and all transitions ϑ proves to be equivalent to τ ∈ ◦x(t) and thus,
it characterizes the mutation of x(·) at time t. All our steps of generalizations before
have not changed this situation. (In fact, we have even preferred the error inequality
of transitions to the triangle inequality of distances in step (E).)
For the step to distribution-like mutations, we are now free to fix a nonempty “test
set” D arbitrarily and to demand the property (♦) for all elements z ∈ D (instead
of E) and all transitions ϑ . This feature is central to the generalized definition of

τ ∈ ◦x (t). Motivated by the finite element methods of Petrov-Galerkin, we avoid the
assumption D ⊂ E deliberately.
More details about this step are presented in Chapter 4. Afterwards this most gen-
eral theory of mutational equations so far is applied to two examples with compact
subsets of R

N evolving according to their graphs of limiting normal cones.

0.4 Mutational Inclusions

In Chapter 5, mutational inclusions are introduced. Correspondingly to differential
inclusions in R

N , they are based on the idea that more than one transition can
be admitted at each element and time. For this purpose, the single-valued func-
tion f : E × [0,T ] −→ Θ (on the right-hand side of the mutational equation) is
replaced by a set-valued map F : E × [0,T ] �Θ and, we are looking for a con-
tinuous curve x(·) : [0,T ] −→ E such that at L 1-almost every time, a transition

ϑ ∈F (x(t),t) ⊂Θ also belongs to the mutation
◦
x (t).

Dispensing with state constraints in § 5.1, we prove a selection principle generaliz-
ing the Theorem of Antosiewicz-Cellina. For technical reasons, however, both the
basic set E and the transition setΘ are supposed to be separable metric spaces. Then
continuity of F and a suitable form of sequential compactness in E are sufficient
for existence of solutions in Theorem 5.4 (on page 388).

Inclusions with state constraints are discussed (only) for morphological transitions
on compact subsets of R

N because we need more compactness properties for mea-
surable curves in the transition set. A quite general viability theorem is presented
and proven in § 5.2. Finally, § 5.3 deals with applications to control problems for
nonlocal set evolutions. It is remarkable that these control equations with state con-
straints have the states in a metric space (and not only the controls).



Chapter 1
Extending Ordinary Differential Equations
to Metric Spaces: Aubin’s Suggestion

This chapter is devoted to Aubin’s original concept of mutational equations intro-
duced in the early 1990s. They provide an interesting extension of ordinary differ-
ential equations to a metric space (instead of the classical Euclidean space R

N).
The main challenge to which Aubin suggested an interesting answer is how to
dispense with any linear structure of the basic set while following the popular track
of ordinary differential equations up to solutions to the initial value problem.

1.1 The Key for Avoiding (Affine) Linear Structures: Transitions

For extending ordinary differential equations beyond the traditional borders of
vector spaces, we start with a given metric space (E,d) as suitable mathematical
environment. Independently from dispensing with any linear structure of the basic
set, we still need a quantitative tool for investigating the asymptotic features of the
relationship between time-dependent states.
Roughly speaking, the starting point now consists in extending elementary terms
like “velocity” (in the sense of time derivative of a curve) from vector spaces to the
given metric space (E,d).

Considering a curve x(·) : [0,T ]−→R
N in the Euclidean space R

N , its derivative
x′(t) at time t ∈ [0,T [ is usually defined as limit of difference quotients, i.e.

x′(t) = lim
h→0

x(t + h) − x(t)
h

.

This definition, however, cannot be extended to a metric space in an obvious way
– due to lacking differences. Hence, we consider the alternative characterization
which is based on affine linear approximation of first order. Indeed, a vector v ∈R

N

represents the time derivative of x(·) at time t ∈ [0,T [ if and only if there exists a
residual function w(·) with lim

h→0

1
h ·w(h) = 0 such that

T. Lorenz, Mutational Analysis: A Joint Framework for Cauchy Problems 31
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x(t + h) = x(t)+ h · v + w(h)

is satisfied for every h ∈ R sufficiently close to 0. The equivalent formulation

lim
h→0

1
h

∣
∣x(t + h) − (x(t)+ h · v)∣∣ = 0

motivates how this classical notion might be extended to a metric space. Indeed, we
now compare the asymptotic features of the curve h �−→ x(t +h) to the affine linear
map h �−→ x(t)+ h · v with respect to the Euclidean metric | · |.
For dispensing with any aspects of affine linearity in a moment, we focus on the
continuous map

[0,∞[×R
N −→ R

N , (h,z) �−→ z+ h · v
for a fixed vector v ∈ R

N of direction. Geometrically speaking, it indicates the final
point z+h ·v to which the initial point z is moved at time h and, it serves as a kind of
“elementary deformation” of the Euclidean space R

N for approximating the curve
x(t + ·) up to first order.
For avoiding any linear structure of the basic set, Aubin suggested to consider such
maps of time and state as counterparts of affine linear maps in vector spaces, i.e. in
the given metric space (E,d), a continuous map

ϑ : [0,1]×E −→ E, (h,z) �−→ ϑ(h,z)

is to play the role of (not necessarily affine linear) “deformations” in a fixed direc-
tion. It specifies the point ϑ(h,z) ∈ E to which each initial point z ∈ E is moved at
time h ∈ [0,1]. Such a map ϑ can be interpreted as first-order approximation of a
curve x(·) : [0,T [−→ E at time t ∈ [0,T [ if it satisfies

lim
h→0

1
h ·d
(
x(t + h), ϑ(h, x(t))

)
= 0.

This is a characterization corresponding to time derivative, but completely free
of any affine linear structure indeed.
Obviously, such a homotopy-like map ϑ can serve as starting point for a differen-
tial calculus in (E,d) only if it satisfies appropriate continuity conditions. Aubin
introduced the term of “transition” in the following way:

Definition 1. Let (E,d) be a metric space. A map ϑ : [0,1]×E −→ E is called
transition on (E,d) if it satisfies the following four conditions:
1.) for everyx ∈ E : ϑ(0,x) = x
2.) for everyx ∈ E, t ∈ [0,1[: lim

h↓0

1
h · d

(
ϑ(t + h, x), ϑ(h, ϑ(t,x))

)
= 0

3.) α(ϑ) := sup
x,y∈E

x�=y

limsup
h↓0

max
{

0,
d(ϑ(h,x), ϑ(h,y)) − d(x,y)

h · d(x,y)

}
< ∞

4.) β (ϑ) := sup
x∈E

limsup
h↓0

d(x, ϑ(h,x))
h

< ∞
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Condition (1.) guarantees that the second argument x of ϑ represents the initial
point at time t = 0. Moreover condition (2.) can be regarded as a weakened form of
the semigroup property. Due to Gronwall’s Lemma, it even implies that ϑ satisfies
the semigroup condition

ϑ(t + h,x) = ϑ(h, ϑ(t,x))

for every element x ∈ E and time t,h ∈ [0,1] with t + h ≤ 1 (as we will verify in
subsequent Corollary 22).
Finally the parameters α(ϑ),β (ϑ) < ∞ guarantee the continuity of ϑ with respect
to both arguments. In particular, condition (4.) implies the uniform Lipschitz conti-
nuity of ϑ with respect to time:

d
(
ϑ(s,x), ϑ(t,x)

) ≤ β (ϑ) · |t− s|
for all times s,t ∈ [0,1] and initial elements x ∈ E (as subsequent Lemma 8 shows
in detail). Due to Condition (3.), the distance of initial points can grow at most
exponentially with respect to time (as we will verify in subsequent Proposition 7):

d
(
ϑ(h,x), ϑ(h,y)

) ≤ d(x,y) · eα(ϑ ) h

for all h ∈ [0,1] and x,y ∈ E. In terms of semigroups or dynamical systems, ϑ is
said to be ω-contractive.

Example 2. The most popular transitions on the Euclidean space (RN , | · |) are
induced by the affine linear functions

ϑv : [0,1]×R
N −→ R

N , (h,x) �−→ x + h · v
in any fixed direction v ∈R

N . Then, α(ϑv) = 0 and β (ϑv) = |v|.

Example 3. The constant velocity v ∈ R
N of translation in R

N is now replaced
by a vector field, i.e. for a given bounded Lipschitz function f : R

N −→R
N , every

initial point x0 ∈ R
N is moving along the unique solution x(·) : [0,∞[−→ R

N to the
ordinary differential equation x′(t) = f (x(t)) .
Hence, ϑ f (t,x0) := x(t) with the unique solution x(·) ∈ C1([0, t],RN) to the
initial value problem {

x′(t) = f (x(t)) ,
x(0) = x0.

The classical Theorem of Cauchy-Lipschitz about ordinary differential equations
can be regarded as a special case of Filippov’s Theorem A.6 about differential
inclusions and, it implies that ϑ f : [0,1]×R

N −→ R
N satisfies the four conditions

on transitions with α(ϑ f ) ≤ Lip f and β (ϑ f ) ≤ ‖ f‖sup.
BLip(RN ,RN) consists of all bounded Lipschitz continuous functions R

N−→R
N .

Example 4. Leaving now the familiar field of points in R
N , we consider compact

subsets of the Euclidean space R
N (instead of single state vectors).

K (RN) denotes the set of all nonempty compact subsets of R
N . Subsets of R

N ,
however, do not have any obvious linear structure, but K (RN) is usually supplied
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with a very useful metric: The so-called Pompeiu-Hausdorff distance between two
sets K1,K2 ∈K (RN) is defined as

dl(K1,K2) := max
{

sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)
}

.

Correspondingly to the preceding Example 3, suppose f : R
N −→ R

N to be a
bounded and Lipschitz vector field. Now the initial points x0 ∈ R

N are replaced
by initial sets K0 ∈K (RN) and, we focus on all points that can be reached by a
solution x(·) of x′(·) = f (x(·)) starting in K0, i.e.

ϑ f : [0,1]×K (RN) −→ K (RN)
(t, K0) �−→

{
x(t)
∣
∣ there exists x(·) ∈ C1([0, t],RN) :

x′(·) = f (x(·)), x(0) ∈ K0
}
.

ϑ f (t,K0) is called reachable set of the vector field f and the initial set K0 at time t.
It provides an approach how to “deform” any compact subset of R

N – without any
regularity assumptions about the set or its topological boundary. In fact, these set
evolutions belong to the basic tools of the so-called velocity method (alias speed
method) and have led Céa, Delfour, Sokolowski, Zolésio and others to excellent re-
sults about shape optimization (e.g. [42, 55, 56, 174, 190]).
The classical Theorem of Cauchy-Lipschitz about ordinary differential equations
provides estimates that are even uniform with respect to the initial point and thus,
the same conclusions as in Example 3 ensure that ϑ f is a transition on (K (RN),dl)
with α(ϑ f ) ≤ Lip f , β (ϑ f ) ≤ ‖ f‖sup (see subsequent Example 54 for details).

Reachable sets of Lipschitz vector fields, however, are always reversible in time.
Indeed, every reachable set ϑ f (t,K0)⊂ R

N can be deformed to the initial set K0 by
means of the flow along − f , i.e.

ϑ− f
(
t, ϑ f (t,K0)

)
= K0

for every set K0 ∈K (RN). This results directly from the uniqueness of solutions
x(·) : ]−∞,∞[−→R

N to the initial value problem
{

x′(t) = f (x(t)) ,
x(0) = x0.

Example 5. The class of set evolutions described as reachable set can be ex-
tended very easily if we admit more than one velocity at each point of the Euclidean
space. Thus, the bounded and Lipschitz vector fields f : R

N −→ R
N mentioned in

Example 4 are now replaced by set-valued maps F : R
N � R

N whose values are
nonempty compact subsets of R

N and, we consider the flow along the differential
inclusion x′(·) ∈ F(x(·)) (Lebesgue-almost everywhere) instead of the ordinary
differential equation x′(·) = f (x(·)).
The reachable set ϑF (t,K0)⊂R

N of the initial set K0 ∈K (RN) and the set-valued
map F : R

N � R
N at time t ≥ 0 consists of all points that can be attained at time t

via an absolutely continuous solution x(·) of x′(·) ∈ F(x(·)) a.e. starting in K0. If
F : R

N �R
N is bounded and Lipschitz continuous with nonempty compact values,

then Filippov’s Theorem A.6 implies that
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ϑF : [0,1]×K (RN) −→ K (RN)
(t, K0) �−→

{
x(t)
∣
∣ there exists x(·) ∈W 1,1([0, t],RN) :

x′(·) ∈ F(x(·)) L 1-a.e. in [0, t], x(0) ∈ K0
}

is a transition on (K (RN),dl) with α(ϑF ) ≤ LipF and β (ϑF) ≤ sup
x∈RN

sup
v∈F(x)

|v|.
Aubin called it morphological transition and used it in most of his examples about
set evolutions. It will be discussed in more detail in § 1.9.2 (on page 60 ff.) below.

Let us now return to a metric space (E,d) and some nonempty set Θ(E,d) of
transitions in the (very general) sense of Definition 1.
The “flow” along these transitions can form the basis for differential calculus (con-
sidering curves in E) only if we have an opportunity to “compare” the evolution
of two arbitrary initial states along two different transitions. For this reason, Aubin
suggested a distance between transitions:

Definition 6. Let (E,d) be a metric space andΘ(E,d) be a nonempty set of tran-
sitions on (E,d). For any ϑ ,τ ∈Θ(E,d), define

D(ϑ ,τ) := sup
x∈E

limsup
h↓0

1
h · d

(
ϑ(h,x), τ(h,x)

)
.

The basic idea of D(ϑ ,τ) is to compare the two curvesϑ(·,x), τ(·,x) :
[0,1] −→ E with the same initial point x ∈ E for h ↓ 0. As each
of these curves is continuous, their joint initial point always implies
d
(
ϑ(h,x), τ(h,x)

)−→ 0 for h ↓ 0. Thus we consider its asymptotic
properties of first order – represented by the factor 1

h in Definition 6.
The parameters of continuity β (ϑ),β (τ) (specified in Definition 1) guarantee that
D(ϑ ,τ) is always finite. Indeed, due to the triangle inequality of the metric d,

D(ϑ ,τ) ≤ sup
x∈E

limsup
h↓0

1
h ·
(
d
(
ϑ(h,x), x

)
+ d
(
x, τ(h,x)

)) ≤ β (ϑ)+β (τ).

Furthermore, D :Θ(E,d)×Θ(E,d) −→ [0,∞[ is symmetric and always satisfies
the triangle inequality, i.e. for any transitions ϑ1,ϑ2,τ on (E,d),

D(ϑ1,ϑ2) ≤ D(ϑ1,τ)+ D(τ,ϑ2).

D(·, ·) is not a metric on Θ(E,d), though, because it does not have to be positive
definite, i.e. D(ϑ ,τ) = 0 does not imply ϑ ≡ τ in general. Indeed, D(ϑ ,τ) focuses
on the transitions ϑ ,τ merely for h ↓ 0.
Now all tools are available for comparing two initial states in E while evolving along
two different transitions respectively:

Proposition 7. Let (E,d) be a metric space and Θ(E,d) be a nonempty set of
transitions on (E,d). For any transitions ϑ ,τ ∈ Θ(E,d) and elements x,y ∈ E,
the following estimate is satisfied at each time h ∈ [0,1[

d
(
ϑ(h,x), τ(h,y)

) ≤ (d(x,y)+ h ·D(ϑ ,τ)
) · eα(ϑ ) h .
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The subdifferential version of Gronwall’s Lemma (Proposition A.2) is the key tool
for concluding global estimates from local information. In this regard, the proof of
Proposition 7 exemplifies the basic technique for most of our subsequent results:

Lemma 8. For every transition ϑ on a metric space (E,d) and initial point x∈E,
the curve ϑ(·,x) : [0,1[−→ E is β (ϑ)-Lipschitz continuous.

Proof. Choose x ∈ E and ε > 0 arbitrarily. Due to conditions (2.),(4.) of
Definition 1, i.e.⎧

⎪⎨

⎪⎩

β (ϑ) Def.= sup
y∈E

limsup
h↓0

1
h · d(y, ϑ(h,y)) < ∞

lim
h↓0

1
h · d

(
ϑ(h, ϑ(t,x)), ϑ(t + h, x)

)
= 0

we obtain for each t ∈ [0,1[ that some sufficiently small δt ∈ ]0,1− t[ satisfies

1
h · d

(
ϑ(t,x), ϑ(t + h,x)

) ≤ β (ϑ)+ ε for all h ∈ ]0,δt ].

For any 0 ≤ s1 ≤ s2 ≤ 1− ε given, covering [s1,s2] with (at most countably many)
subintervals [t, t + δt] (with t ∈ [s1,s2[) and the triangle inequality of d imply

d
(
ϑ(s1,x), ϑ(s2,x)

) ≤ (β (ϑ)+ ε) · (s2 − s1).

As ε > 0 was chosen arbitrarily, ϑ(·,x) is β (ϑ)-Lipschitz continuous in [0,1[. �

Proof (of Proposition 7). The auxiliary function

ψ : [0,1[−→ [0,∞[, h �−→ d
(
ϑ(h,x), τ(h,y)

)

is Lipschitz continuous due to Lemma 8 and the triangle inequality of d. Moreover
it satisfies for every t ∈ [0,1[

limsup
h↓0

ψ(t+h)−ψ(t)
h

= limsup
h↓0

1
h ·
(
d
(
ϑ(t+h, x), τ(t+h, y)

)−d
(
ϑ(t, x), τ(t, y)

))

≤ limsup
h↓0

1
h ·
(
d
(
ϑ(t+h, x), ϑ(h, ϑ(t,x))

)

+ d
(
ϑ(h, ϑ(t,x)),ϑ(h, τ(t,y))

)−d
(
ϑ(t, x),τ(t, y)

)

+ d
(
ϑ(h, τ(t,y)), τ(h, τ(t,y))

)

+ d
(
τ(h, τ(t,y)), τ(t+h, y )

))

≤ 0 + α(ϑ) · ψ(t) + D(ϑ ,τ) + 0.

Finally, the Gronwall estimate in Proposition A.2 implies for each h ∈ [0,1[

ψ(h) ≤ ψ(0) eα(ϑ ) h + D(ϑ ,τ) eα(ϑ)h − 1
α(ϑ ) . �

Remark 9. The same arguments lead to the inequality for any t1, t2 ∈ [0,1[

d
(
ϑ(t1 + h,x), τ(t2 + h,y)

) ≤ (
d
(
ϑ(t1,x), τ(t2,y)

)
+ h ·D(ϑ ,τ)

) · eα(ϑ ) h .
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1.2 The Mutation as Counterpart of Time Derivative

Consider a curve x(·) : [0,T ]−→ E in a metric space (E,d).
A transition ϑ on (E,d) can be regarded as (generalized)
time derivative of x(·) at time t ∈ [0,T [ if the comparison
with x(t + ·) reveals an approximation of first order in the
following sense:

lim
h↓0

1
h · d

(
ϑ(h, x(t)), x(t + h)

)
= 0.

In general this asymptotic condition may be satisfied by more than one transition
since only the properties for h ↓ 0 are taken into consideration. Aubin suggested to
introduce a new term for the set of all these transitions – rather than considering
the underlying equivalent classes of transitions because the latter do not provide
additional mathematical insight:

Definition 10. Let Θ(E,d) be a nonempty set of transitions on a metric space
(E,d) and, x(·) : [0,T ]−→ E denotes a curve. For t ∈ [0,T [, the set

◦
x(t) :=

{
ϑ ∈Θ(E,d)

∣
∣ lim

h↓0

1
h · d

(
ϑ(h, x(t)), x(t + h)

)
= 0
}

is called mutation of x(·) at time t.

Remark 11. For every transition ϑ on (E,d) and initial element x0 ∈ E , the curve
xx0(·) := ϑ(·,x0) : [0,1]−→ E has ϑ in its mutation at each time t ∈ [0,1[:

ϑ ∈ ◦xx0 (t)

for every t ∈ [0,1[. This results directly from condition (2.) in Definition 1.

In regard to real-valued functions, the classical concepts of derivative and integral
are closely related by the fundamental theorem of calculus. Similarly, we can also
start with a curve of transitions and look for an appropriate curve in the metric space:

Definition 12. Let Θ(E,d) be a nonempty set of transitions on a metric space
(E,d) and, ϑ(·) : [0,T ]−→Θ(E,d) denotes a curve of transitions.
A curve x(·) : [0,T ]−→ E is called primitive of ϑ(·) if x(·) is Lipschitz continuous
with respect to d and satisfies for Lebesgue-almost every t ∈ [0,T ]

ϑ(t) ∈ ◦x(t)

i.e. lim
h↓0

1
h · d

(
ϑ(t)(h, x(t)), x(t + h)

)
= 0 for a.e. t ∈ [0,T ].

Lemma 8 and Remark 11 imply that constructing a primitive of ϑ(·) : [0,T ] −→
Θ(E,d) with given initial element x0 ∈ E is particularly easy if ϑ(·) is piecewise
constant with sup

t
β (ϑ(t)) <∞.
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1.3 Feedback Leads to Mutational Equations

Ordinary differential equations are based on the notion that the derivative of the
wanted solution is prescribed by a given function of the current state. This form of
feedback can be extended to curves in a metric space (E,d) and their mutations.
Aubin introduced the following definition:

Definition 13. Let Θ(E,d) be a nonempty set of transitions on a metric space
(E,d). Furthermore, a single-valued function f : E× [0,T ]−→Θ(E,d) is given.
A curve x(·) : [0,T ]−→ E is called solution to the mutational equation

◦
x(·) � f

(
x(·), · )

if x(·) is primitive of the composition f (x(·), ·) : [0,T ] −→Θ(E,d) in the sense of
Definition 12, i.e. x(·) is Lipschitz continuous with respect to d and satisfies

lim
h↓0

1
h · d

(
f (x(t), t)(h, x(t)), x(t + h)

)
= 0

for Lebesgue-almost every t ∈ [0,T ].

Remark 14. At first glance, the symbol � here seems to be contradictory to the

term “equation”. The mutation
◦
x(t), however, is defined as subset of all transitions

in Θ(E,d) providing a first-order approximation of x(t + ·) (Definition 10). The
transition on the “right-hand side” f (x(t), t) ∈Θ(E,d) is required to be one of its
elements at Lebesgue-almost every time t.
Example 2 lays the foundations for applying this framework to Lipschitz continuous
solutions to ordinary differential equations in R

N . In this special case, the mutation
of a Lipschitz continuous curve x : [0,T ] −→ R

N consists of just one vector at
almost every time – as a consequence of Rademacher’s Theorem.

In general, however, the mutation
◦
x(t) might consists of more than one transition.

Adapting the classical arguments about ordinary differential equations, the next
step is now to solve initial value problems with mutational equations. As mentioned
at the end of § 1.2, a primitive of piecewise constant functions is easy to construct
and this opens the door to applying Euler method in the mutational framework.
Aubin has already presented the following counterpart of Cauchy-Lipschitz Theo-
rem about existence and uniqueness of solutions to the initial value problem:

Theorem 15 (Aubin’s adaptation of Cauchy-Lipschitz Theorem).
Let (E,d) be a metric space in which all closed bounded balls are compact.Θ(E,d)
denotes a nonempty set of transitions on (E,d).
Let f : E −→Θ(E,d) be a λ -Lipschitz continuous function, i.e.

D( f (y), f (z)) ≤ λ · d(y,z) for any y,z ∈ E.

Furthermore assume α̂ := sup
z∈E

α( f (z)) < ∞.

Fix an element x0 ∈ E and a curve y(·) : [0,T ]−→ E with
◦
y(t) �= /0 for all t ∈ [0,T ].
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Then there exists a unique solution x(·) : [0,T ]−→ E to the initial value problem
{ ◦

x (·) � f
(
x(·))

x(0) = x0

In addition, it satisfies the following inequality for all t ∈ [0,T ]

d
(
x(t), y(t)

) ≤ d(x0, y(0)) · e(α̂+λ ) t

+
∫ t

0
e(α̂+λ ) (t−s) · inf

ϑ ∈ ◦y(s)
D
(

f (y(s)), ϑ
)

ds.

In particular, this theorem implies for autonomous mutational equations with
Lipschitz continuous right-hand side that solutions depend continuously on the
initial element and the transition function (on the right-hand side). Here D(·, ·) is
usually the distance function used for transitions on (E,d).

The second important result that Aubin extended from ordinary differential
equations to mutational equations is Nagumo’s Theorem. It provides sufficient and
necessary conditions on initial value problems with state constraints.
In addition to the mutational equation, a nonempty subset V ⊂ E is given for spec-
ifying the state constraints and, we want to ensure that each element of V is the
initial point of at least one solution “viable in V ” (i.e. with all its values in V ).
Similarly to the classical form of Nagumo’s Theorem about ordinary differential
equations, the “tangential” properties of the (generalized) directions come into play.
Aubin introduced the following counterpart of Bouligand’s contingent cone:

Definition 16. LetΘ(E,d) �= /0 be a set of transitions on a metric space (E,d).
Fix a nonempty set V ⊂ E and an element x ∈ E.

TV (x) :=
{
ϑ ∈Θ(E,d)

∣∣ liminf
h↓0

1
h · dist

(
ϑ(h,x), V

)
= 0
}

is called the contingent transition set of V at x.

Remark 17. The transitions in TV (x) ⊂Θ(E,d) are specified by means of the
distances of elements from V ⊂ E. By definition,

dist
(
ϑ(h,x), V

) Def.= inf
z∈V

d
(
ϑ(h,x), z

)
.

Example 18. For the affine linear transitions on R
N introduced in Example 2, i.e.

ϑv : [0,1]×R
N −→R

N , (h,x) �−→ x + h · v (with v ∈ R
N),

we can identify the contingent transition set of V ⊂ R
N at x ∈V directly with

TV (x) ∼= {
v ∈ R

N
∣
∣ liminf

h↓0

1
h · dist

(
x + h · v, V

)
= 0
}

and, the latter set is the contingent cone of Bouligand (see Definition 63 on page 68).
In general, such an immediate link cannot be expected for the morphological tran-
sitions on (K (RN),dl) in Example 5.
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Theorem 19 (Aubin’s adaptation of Nagumo’s Theorem).
LetΘ(E,d) be a nonempty set of transitions on a metric space (E,d). Assume that
all closed bounded balls in (E,d) are compact.
Suppose f : (E,d)−→ (Θ(E,d), D) to be continuous with

sup
z∈E

α( f (z)) < ∞, sup
z∈E

β ( f (z)) < ∞.

Then the following two statements are equivalent for any closed subset V ⊂ E :

1. Every element x0 ∈ V is the initial point of at least one solution x : [0,1]−→ E
to the mutational equation

◦
x(·) � f

(
x(·))

with x(t) ∈ V for all t ∈ [0,1].

2. V ⊂ E is a viability domain of f in the sense that f (z) ∈TV (z) for every z ∈ V .

1.4 Proofs for Existence and Uniqueness of Solutions
without State Constraints

In the previous section, some of Aubin’s results about existence and uniqueness of
solutions are quoted. They exemplify the analogies between mutational equations
and ordinary differential equations. but they are restricted to autonomous mutational
equations.
Now we prove these analogies for nonautonomous mutational equations in more
detail. The proofs presented here, however, differ from their counterparts in Aubin’s
monograph because we follow another track which will be generalized successively
in the subsequent chapters.

The following result about existence corresponds to Peano’s Theorem about
ordinary differential equations, i.e. continuity of the “right-hand side” implies exis-
tence of a solution:

Theorem 20 (Peano’s Theorem for nonautonomous mutational equations).
Let (E,d) be a metric space in which all closed bounded balls are compact and,
Θ(E,d) denotes a nonempty set of transitions on (E,d).
Assume f : (E,d)× [0,T ]−→ (Θ(E,d),D) to be continuous with

sup
z∈E

0≤ t≤T

α( f (z,t)) < ∞, sup
z∈E

0≤ t≤T

β ( f (z, t)) < ∞.

Then for every initial element x0 ∈ E, there exists a solution x(·) : [0,T ] −→ E to
the mutational equation

◦
x (·) � f

(
x(·), ·)

with x(0) = x0.
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The proof (presented at the end of this section) is based on Euler’s method in
combination with Arzelà-Ascoli Theorem A.82 about compactness of continuous
functions. In particular, we have to verify the solution property of the limit function
for a convergent subsequence of Euler approximations. This is based on comparing
two solutions to mutational equations:

Proposition 21. Assume for f ,g : E × [0,T ] −→Θ(E,d) and x,y : [0,T ] −→ E

that x(·) is a solution to the mutational equation
◦
x(·) � f (x(·), ·) and y(·) is a

solution to the mutational equation
◦
y(·) � g(y(·), ·).

Furthermore, let α̂ > 0 and ϕ ∈C0([0,T ]) satisfy for L 1-almost every t ∈ [0,T ]
{

α(g(y(t), t)) ≤ α̂
D( f (x(t), t), g(y(t), t)) ≤ ϕ(t).

Then, d(x(t), y(t)) ≤ (d(x(0),y(0))+
∫ t

0
ϕ(s) e−α̂sds

)
eα̂t for any t ∈ [0,T ].

Similarly to the estimate comparing two transitions in Proposition 7, this upper
bound results from generalized Gronwall’s Lemma (Proposition A.2) as we will
verify at the end of this section. It lays the basis for three important conclusions:
Firstly, we can now verify easily that all transitions have the semigroup property in
the following sense:

Corollary 22 (Semigroup property of transitions).
Every transition ϑ on a metric space (E,d) satisfies

ϑ
(
h, ϑ(t,x)

)
= ϑ(t + h, x)

for any x ∈ E and t,h ∈ [0,1] with t + h≤ 1.

Indeed, both [0,1−t]−→ E, h �−→ ϑ(h, ϑ(t,x)) and h �−→ ϑ(t + h,x) solve the

mutational equation
◦
x(·) � ϑ according to Remark 11 (on page 37) and share the

initial element at time h = 0. Essentially the same arguments provide the uniqueness
of primitives as second result:

Corollary 23 (Uniqueness of primitives).
Let ϑ(·) : [0,T ]−→Θ(E,d) satisfy sup

t∈ [0,T ]
α(ϑ(t)) < ∞.

If x(·),y(·) : [0,T ]−→ E are primitives of ϑ(·) with x(0) = y(0), then x(·)≡ y(·).

Finally Proposition 21 even guarantees that the solutions depend on the initial data
and the “right-hand side” in a continuous way — under the additional assumption
that the “right-hand side” of a mutational equation is Lipschitz continuous.
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Proposition 24 (Continuity w.r.t. initial data and the right-hand side).
LetΘ(E,d) be a nonempty set of transitions on a metric space (E,d).
For f : E × [0,T ] −→Θ(E,d) suppose α̂ := supz,t α( f (z, t)) < ∞ and that there
exists λ > 0 such that f (·,t) : (E,d)−→ (Θ(E,d), D) is λ -Lipschitz continuous for
L 1-almost every t ∈ [0,T ].
Let g : E× [0,T ]−→Θ(E,d) fulfill sup

z,s
D( f (z,s), g(z,s)) < ∞,

Then every solutions x(·),y(·) : [0,T ]−→ E to the mutational equations
◦
x(·) � f (x(·), ·) ◦

y(·) � g(y(·), ·)
satisfy the following inequality for every t ∈ [0,T ]

d(x(t), y(t)) ≤ (d(x(0),y(0)) + t · sup
z,s

D( f (z,s),g(z,s))
)

e(α̂+λ ) t.

The combination of Theorem 20 and Proposition 24 implies directly Aubin’s
adaptation of Cauchy-Lipschitz Theorem formulated in Theorem 15 (on page 38).
Let us now prove the three main results of this section:

Proof (of Theorem 20). This existence proof is based on Euler approximations
xn(·) : [0,T ]−→ E (n ∈N with 2n > T ) together with Arzelà-Ascoli Theorem A.82
in metric spaces. Indeed, for each n ∈ N with 2n > T , set

hn := T
2n , t j

n := j hn for j = 0 . . . 2n,

xn(0) := x0,

xn(t) := f (xn(t
j
n), t j

n)
(
t− t j

n, xn(t
j
n)
)

for t ∈ ]t j
n, t j+1

n ], j < 2n.

According to Remark 11,
◦
xn (t) � f (xn(t

j
n), t j

n)

for every t ∈ [t j
n , t j+1

n [ with j ∈ {0,1 . . . 2n−1}.
Due to Lemma 8 and the piecewise construction of each xn(·), the constant
β̂ := supz,s β ( f (z,s)) < ∞ is a uniform Lipschitz constant of every curve xn(·).
Moreover, the set of all values {xn(t) | n ∈ N, t ∈ [0,T ],2n > T} is contained
in the ball B := {y ∈ E | d(x0,y) ≤ β̂ T} which is compact with respect to d by
assumption.

The Arzelà-Ascoli Theorem states that {xn(·) |n ∈ N,2n > T} ⊂ C0([0,T ],B)
is precompact with respect to uniform convergence and therefore, there exists a
subsequence

(
xn j (·)

)
j∈N

converging uniformly to a function x(·) ∈C0([0,T ],B).

Finally, we verify that x(·) solves the mutational equation
◦
x(·) � f (x(·), ·).

Indeed, x(·) is β̂ -Lipschitz continuous with respect to d by virtue of its construc-
tion. Furthermore, using the notation δn := sup[0,T ] d(xn(·),x(·)), we conclude from
Proposition 21 that for any t ∈ [0,T [, h ∈ [0,T − t[ and n ∈ N with 2n > T



1.4 Proofs for Existence and Uniqueness of Solutions without State Constraints 43

d ( f (x(t),t)(h, x(t)), x(t + h))

≤ d
(

f (x(t),t)(h,x(t)), xn(t + h)
)
+ d (xn(t+h), x(t+h))

≤ (δn + h · sup
−hn≤s≤h

y: d(y,x(t+s))≤δn

D( f (x(t), t), f (y, t + s))
)

eα̂ h + δn

with α̂ Def.= sup
z,s

α( f (z,s)) < ∞.

Due to the continuity of f with respect to D, the limit for n−→ ∞ implies that

d
(

f (x(t),t)(h,x(t)), x(t + h)
) ≤ h · sup

0≤ s≤h
D( f (x(t), t), f (x(t + s), t + s)) eα̂ h

and thus,

limsup
h↓0

1
h · d

(
f (x(t), t)(h,x(t)), x(t + h)

) ≤ 0. �

Remark 25. This proof reveals that the continuity of f : E × [0,T ] −→ Θ(E,d)
implies the first-order approximation at even every time t ∈ [0,T [ (and not just at
Lebesgue-almost every time as Definition 13 demands).

Proof (of Proposition 21). Similarly to the proof of Proposition 7 comparing two
transitions, we consider the auxiliary function

ψ : [0,T ] −→ [0,∞[, t �−→ d
(
x(t), y(t)

)
.

It is Lipschitz continuous because any solutions x(·),y(·) to mutational equations
◦
x(·) � f (x(·), ·), ◦

y(·) � g(y(·), ·)
are Lipschitz continuous due to Definition 13.
Furthermore, we obtain for Lebesgue-almost every t ∈ [0,T [

limsup
h↓0

1
h ·d
(
x(t + h), f (x(t), t)(h,x(t))

)
= 0

limsup
h↓0

1
h ·d
(

f (x(t),t)(h,x(t)), g(y(t), t)(h,x(t))
) ≤ D

(
f (x(t), t), g(y(t), t)

)

limsup
h↓0

1
h ·d
(
g(y(t),t)(h,y(t)), y(t + h)

)
= 0

due to Definition 6 and Definition 13. For estimating ψ(t + h), we now use

limsup
h↓0

1
h ·
(
d
(
g(y(t),t)(h,x(t)), g(y(t), t)(h,y(t))

) − ψ(t)
) ≤ α̂ ·ψ(t)

and conclude from the triangle inequality of d

limsup
h↓0

ψ(t + h) − ψ(t)
h

≤ α̂ ·ψ(t) + D
(

f (x(t), t), g(y(t), t)
)

≤ α̂ ·ψ(t) + ϕ(t)

at Lebesgue-almost every time t ∈ [0,T [. Finally the claimed estimate results from
generalized Gronwall’s Lemma (Proposition A.2 on page 440). �
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Proof (of Proposition 24). Assuming f : E× [0,T ]−→Θ(E,d) to be λ -Lipschitz
continuous in the first argument with α̂ := supz,t α( f (z, t)) < ∞, we obtain for any

solutions x(·),y(·) to the mutational equations
◦
x(·) � f (x(·), ·), ◦y(·) � g(y(·), ·) the

following inequality at L 1-almost every time t ∈ [0,T ]

D
(

f (x(t),t), g(y(t),t)
) ≤ D

(
f (x(t), t), f (y(t), t)

)
+ D

(
f (y(t), t), g(y(t), t)

)

≤ λ · d(x(t),y(t)) + sup
z,s

D
(

f (z,s),g(z,s)
)
.

Proposition 21 implies for the Lipschitz continuous auxiliary function

ψ : [0,T ] −→ [0,∞[, t �−→ d
(
x(t),y(t)

)

the implicit integral inequality

ψ(t) ≤ (ψ(0)+
∫ t

0

(
λ ·ψ(s)+ sup D( f (·, ·),g(·, ·))) e−α̂sds

)
eα̂t

at every time t ∈ [0,T ]. Finally the integral version of Gronwall’s Lemma
(Proposition A.1 on page 439) bridges the last gap and provides the claimed
explicit estimate. �

1.5 An Essential Advantage of Mutational Equations:
Solutions to Systems

Roughly speaking, mutational equations provide a joint framework for diverse
time-dependent systems whose evolutions are determined by a form of generalized
differential equation – without requiring any linear structure.
In regard to applications, it is of particular interest that we can consider more than
one mutational equation simultaneously. The analytical origin of the individual
components (like set evolutions in (K (RN),dl)) does not really matter as long
as each component satisfies the conditions on transitions. This opens the door
for coupling nonlocal set evolutions with an ordinary differential equation, for
example.

The main basis for considering systems of mutational equations is the following
counterpart of Peano’s Theorem and thus, all the generalizations of mutational
equations in subsequent chapters are to ensure that the same existence result about
systems holds in the extended framework.

Theorem 26 (Peano’s Theorem for systems of mutational equations).
Let (E1,d1),(E2,d2) be metric spaces in which all closed bounded balls are compact.
Θ(E1,d1) andΘ(E2,d2) denote nonempty sets of transitions on (E1,d1) and (E2,d2)
respectively. Assume

f1 : (E1,d1)× (E2,d2)× [0,T ] −→ (Θ(E1,d1),D1)
f2 : (E1,d1)× (E2,d2)× [0,T ] −→ (Θ(E2,d2),D2)

to be continuous with
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sup
z1, z2, t

{
α( f1(z1,z2, t)), α( f2(z1,z2, t))

}
< ∞,

sup
z1, z2, t

{
β ( f1(z1,z2, t)), β ( f2(z1,z2, t))

}
< ∞.

Then for every elements x0 ∈ E1,y0 ∈ E2, there exist solutions x(·) : [0,T ] −→ E1,
y(·) : [0,T ]−→ E2 to the two mutational equations

{ ◦
x (·) � f1

(
x(·), y(·), ·)

◦
y(·) � f2

(
x(·), y(·), ·)

with x(0) = x0 and y(0) = y0.

In this mutational framework, such an existence result is an immediate consequence
of the following relationship between transitions on two separate metric spaces and
on their product space:

Lemma 27 (Product of transitions and mutations).
Let (E1,d1) and (E2,d2) be metric spaces. Θ(E1,d1) and Θ(E2,d2) denote
nonempty sets of transitions on (E1,d1) and (E2,d2) respectively. The product
space E := E1×E2 is supplied with the metric

d+ : E×E −→ [0,∞[,
(
(x1,x2), (y1,y2)

) �−→ d1(x1,y1)+ d2(x2,x2) .

1. For every ϑ1 ∈Θ(E1,d1) and ϑ2 ∈Θ(E2,d2), the tuple

ϑ := (ϑ1,ϑ2) : [0,1]×(E1×E2
) −→ E1×E2,(

h, (x1,x2)
) �−→ (

ϑ1(h,x1), ϑ2(h,x2)
)

is a transition on (E1×E2, d+) with
⎧
⎪⎨

⎪⎩

α(ϑ) ≤ max
{
α(ϑ1), α(ϑ2)

}

β (ϑ) ≤ max
{
β (ϑ1), β (ϑ2)

}

D+
(
(ϑ1,ϑ2), (τ1,τ2)

) ≤ D1(ϑ1,τ1) + D2(ϑ2,τ2) .

2. Let the product space E
Def.= E1 × E2 be now supplied with the transitions in

Θ(E,d+) := Θ(E1,d1)×Θ(E2,d2). For arbitrary curves x1(·) : [0,T ] −→ E1

and x2(·) : [0,T ]−→ E2 set x(·) :=
(
x1(·),x2(·)

)
: [0,T ]−→ E.

Then ϑ = (ϑ1,ϑ2) ∈ Θ(E,d+) belongs to the mutation
◦
x (t) if and only if

ϑ1 ∈ ◦x1 (t) and ϑ2 ∈ ◦x2 (t).

Proof (of Lemma 27) results directly from the definitions and the essential
estimate of Proposition 7 (on page 35) and thus, we dispense with its details.
Obviously, not every transition on (E1×E2, d+) is necessarily induced by a tuple
of two “decoupled” transitions on the components as in Lemma 27 (1.).
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The close relationship between the mutation of a tuple and the product of the
componentwise mutations cannot be extended to all subsequent generalizations of
mutational equations. For this reason, we present an alternative (and simple) proof
of Theorem 26 whose basic notion will be reused later on.

Proof (of Theorem 26). Correspondingly to the proof of Theorem 20 (page 42),
we use Euler approximations for each component. Arzelà-Ascoli Theorem A.82
applied to the corresponding curves [0,T ]−→ E1×E2 provides a subsequence such
that each component has a continuous limit curve in E1 and E2 respectively. Finally
we verify the solution property for each component separately.
Indeed, for each n ∈ N with 2n > T , set

hn := T
2n , t j

n := j hn for j = 0 . . . 2n,

xn(0) := x0,
yn(0) := y0,

xn(t) := f1(xn(t
j
n), yn(t

j
n), t j

n)
(
t− t j

n, xn(t
j
n)
)

yn(t) := f2(xn(t
j
n), yn(t

j
n), t j

n)
(
t− t j

n, yn(t
j
n)
)

for t ∈ ]t j
n, t j+1

n ], j < 2n.

According to Remark 11,
◦
xn (t) � f1(xn(t

j
n), yn(t

j
n)), t j

n)◦
yn (t) � f2(xn(t

j
n), yn(t

j
n)), t j

n).

for every t ∈ [t j
n , t j+1

n [ with j ∈ {0,1 . . . 2n−1}.
Due to Lemma 8 and the piecewise construction of each xn(·),yn(·), the constant

β̂ := sup
z1,z2,s

{
β ( f1(z1,z2,s)), β ( f2(z1,z2,s))

}
< ∞

is a joint Lipschitz constant of all curves xn(·) : [0,T ] −→ E1, yn(·) : [0,T ] −→ E2

(2n > T ). As a consequence, the sets of all values

{xn(t) |n ∈ N, 2n > T, t ∈ [0,T ]} ⊂ E1,

{yn(t) |n ∈ N, 2n > T, t ∈ [0,T ]} ⊂ E2

are contained in closed balls of radius β̂ · T respectively. Considering now the
sequence of Lipschitz continuous curves

(xn,yn) : [0,T ] −→ (E1×E2,d1 + d2)
the Arzelà-Ascoli Theorem guarantees a subsequence

(
xn j(·),yn j (·)

)
j∈N

converging

uniformly to a continuous curve (x(·),y(·)) : [0,T ]−→ E1×E2.

Finally, we verify that x(·) solves the mutational equation
◦
x(·) � f1(x(·), y(·), ·).

The corresponding proof for y(·) is based on exactly the same steps.
Indeed, x(·) is β̂ -Lipschitz continuous with respect to d1 by virtue of its construc-
tion. Now we focus on the nonautonomous mutational equation in (E1,d1) with

(E1,d1)× [0,T ] −→ Θ(E1,d1), (z1, t) �−→ f1
(
z1, y(t), t

)

on its right-hand side.
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Using the notations α̂1 := sup
z1,z2,s

α( f1(z1,z2,s)) < ∞ and

δ 1
n := sup

[0,T ]
d1(xn(·),x(·)), δ 2

n := sup
[0,T ]

d2(yn(·),y(·)),

Proposition 21 implies for any t ∈ [0,T [, h ∈ [0,T − t[ and n ∈ N

d1
(

f1(x(t), y(t), t) (h, x(t)), x(t + h)
)

≤ d1
(

f1(x(t), y(t), t) (h,x(t)), xn(t + h)
)
+ d1 (xn(t+h), x(t+h))

≤ (δ 1
n + h · sup

−hn≤s≤h
z1: d1(z1,x(t+s))≤δ1

n
z2: d2(z2 ,y(t+s))≤δ2

n

D1 ( f1(x(t), y(t), t), f1(z1,z2, t + s))
)

eα̂1 h + δ 1
n .

Due to the continuity of f1 with respect to D1, the limit for n−→ ∞ reveals

d1
(

f1(x(t), y(t), t) (h, x(t)), x(t + h)
)

≤ h · sup
0≤ s≤h

D1
(

f1(x(t), y(t), t), f1(x(t + s), y(t + s), t + s)
)

eα̂1 h

at every time t ∈ [0,T [ and thus,

limsup
h↓0

1
h · d1

(
f1(x(t),y(t), t)(h,x(t)), x(t + h)

) ≤ 0. �

1.6 Proof for Existence of Solutions Under State Constraints

Theorem 19 (on page 40) specifies Aubin’s adaptation of Nagumo’s Theorem to
mutational equations with state constraint. In this section, we give a slightly modi-
fied proof that the viability condition is sufficient:

Proposition 28.
LetΘ(E,d) be a nonempty set of transitions on a metric space (E,d). Assume that
all closed bounded balls in (E,d) are compact.
Suppose f : (E,d)−→ (Θ(E,d), D) to be continuous with

α̂ := sup
z∈E

α( f (z)) < ∞, β̂ := sup
z∈E

β ( f (z)) < ∞.

For the nonempty closed subset V ⊂ E assume the following viability condition:

f (z) ∈TV (z) for every z ∈ V .

Then every x0 ∈ V is the initial point of at least one solution x : [0,1] −→ E to
the mutational equation

◦
x (·) � f

(
x(·))

with x(t) ∈ V for all t ∈ [0,1].
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For proving this proposition, the first step consists in constructing approximative
solutions satisfying a weakened form of state constraints:

Lemma 29 (Aubin’s construction of approximative solutions).
Choose any ε > 0. Under the assumptions of Proposition 28, there exists a
β̂ -Lipschitz continuous function xε(·) : [0,1] −→ E satisfying with Rε := ε eα̂

(a) xε(0) = x0,

(b) dist
(
xε(t), V

) ≤ Rε for all t ∈ [0,1],
(c)

◦
xε(t) ∩

{
f (z)
∣
∣ z ∈ E : d(z, xε(t))≤ Rε

} �= /0 for all t ∈ [0,1[.

Considering a sequence of these approximative solutions (x1/n(·))n∈N, Arzelà-
Ascoli Theorem A.82 provides a subsequence (x1/n j

(·)) j∈N that converges uni-
formly to a Lipschitz continuous curve x(·) : [0,T ]−→ E. Moreover, x(·) has all its
values in the closed set of constraints V ⊂ E.
Finally we have to verify that x(·) solves the mutational equation

◦
x (·) � f

(
x(·)).

This is a consequence of the following general result:

Theorem 30 (Convergence of solutions to mutational equations).
Let Θ(E,d) be a nonempty set of transitions on a metric space (E,d). Consider
f , fm : E× [0,T ]−→Θ(E,d) and x,xm : [0,T ]−→ E for each m ∈ N and, suppose
the following properties:

1. for each m ∈ N, xm(·) is a solution to the mutational equation
◦
xm (·) �

fm(xm(·), ·)
2. β̂ := sup

m∈N

Lip xm(·) < ∞

3. α̂ := sup
m∈N

sup
z∈E

0≤ t≤T

{
α( fm(z, t)), α( f (z, t))

}
< ∞

4. for Lebesgue-almost every t ∈ [0,T ], any y∈ E and all sequences tm→ t, ym→ y
in [0,T ],E respectively: lim

m→∞
D
(

fm(y, t), fm(ym, tm)
)

= 0

5. for Lebesgue-almost every t ∈ [0,T ] : lim
m→∞

D
(

f (x(t), t), fm(x(t), t)
)

= 0

6. for each t ∈ [0,T ] : lim
m→∞

d
(
x(t), xm(t)

)
= 0.

Then x(·) is a solution to the mutational equation
◦
x (·) � f (x(·), ·).

Proof (of Lemma 29). For ε > 0 fixed, let Aε(x0) denote the set of all tuples
(Tx, x(·)) consisting of some Tx ∈ [0,1] and a β̂ -Lipschitz continuous function
x(·) : [0,Tx]−→ (E,d) such that

(a) x(0) = x0,

(b’) 1.) dist
(
x(Tx), V

) ≤ rε(Tx) with rε (t) := ε eα̂ t t,
2.) dist

(
x(t), V

) ≤ Rε for all t ∈ [0,Tx],

(c)
◦
x(t) ∩ { f (z)

∣
∣ z ∈ E : d(z, x(t))≤ Rε

} �= /0 for all t ∈ [0,Tx[.
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Obviously, Aε(x0) is not empty since it contains (0, x(·)≡ x0). Moreover, an order
relation � on Aε(x0) is specified by

(Tx, x(·)) � (Ty, y(·)) :⇐⇒ Tx ≤ Ty and x = y
∣
∣
[0,Tx]

.

Thus, Zorn’s Lemma provides a maximal element
(
T, xε(·)

) ∈Aε(x0).
As all considered functions with values in E have been supposed to be β̂ -Lipschitz
continuous, xε(·) is also β̂ -Lipschitz continuous in [0,T [. In particular, xε(·) can
always be extended to the closed interval [0,T ]⊂ [0,1] in a unique way.

Assuming T < 1 for a moment, we obtain a contradiction if xε(·) can be extended
to a larger interval [0,T + δ ] ⊂ [0,1] (δ > 0) preserving conditions (b’), (c).
Since closed bounded balls of (E,d) are compact, the closed set V contains an ele-
ment z ∈ E with d(xε(T ),z) = dist(xε (T ), V ) ≤ rε(T ) and, the assumed viability
condition states

f (z) ∈ TV (z) ⊂ Θ(E,d).

Due to Definition 16 of the contingent transition set TV (z), there is a sequence
hm ↓ 0 in ]0,1−T [ such that

dist
(

f (z)(hm,z), V
) ≤ ε hm for all m ∈ N.

Now set for each t ∈ [T, T + h1]

xε(t) := f (z)
(
t−T, xε(T )

)
.

Obviously, Remark 11 implies f (z) ∈ ◦xε (t) for all t ∈ [T, T + h1[. Moreover,
Lemma 8 leads to

d
(
xε(t), z

) ≤ d
(

f (z)(t−T, xε(T )), xε(T )
)
+ d
(
xε (T ), z

)

≤ β̂ · (t−T )+ ε eα̂ T T

≤ Rε

for every t ∈ [T, T +δ [ with δ := min
{

h1, ε eα̂ 1−T
1+ β̂

}
, i.e. conditions (b’) (2.)

and (c) hold in the interval [T,T + δ ].
For any index m ∈N with hm < δ , we conclude from Proposition 7

dist
(
xε(T +hm), V

) ≤ d
(

f (z)(hm, xε(T )), f (z)(hm, z)
)
+ dist

(
f (z)(hm, z), V

)

≤ d
(
xε(T ), z

) · eα̂ hm + ε ·hm

≤ ε eα̂ T T · eα̂ hm + ε ·hm

≤ rε(T + hm),

i.e. condition (b’)(1.) is also satisfied at time t = T + hm with any large m ∈ N.
Finally, xε (·)

∣
∣
[0,T+hm] provides the wanted contradiction and thus, T = 1.

�
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Proof (of Convergence Theorem 30). The limit curve x(·) : [0,T ] −→ E is
β̂ -Lipschitz continuous due to assumption (6.) and the β̂ -Lipschitz continuity of
each xm(·), m ∈ N. (This is an easy consequence of the triangle inequality of d.)
Choose t ∈ [0,T [ and h ∈ [0,T − t[ arbitrarily. Proposition 21 (comparing solutions
to mutational equations on page 41) implies

d
(

f (x(t),t)(h, x(t)), x(t+h)
)

≤ d
(

f (x(t),t)(h, x(t)), xm(t+h)
)

+ d
(
xm(t+h), x(t+h)

)

≤ (d(x(t), xm(t)
)

+ h ·Δ(t, t+h,m)
)

eα̂ h + d
(
xm(t+h), x(t+h)

)

with the abbreviation Δ(t,t + h,m) := sup
t≤ s≤ t+h

D
(

f (x(t), t), fm(xm(s),s)
)
.

As mentioned after Definition 6 (on page 35), D(·, ·) satisfies the triangle inequality
and thus,

Δ(t,t + h,m) ≤ D
(

f (x(t),t), fm(x(t), t)
)

+ sup
t≤ s≤ t+h

D
(

fm(x(t), t), fm(xm(s),s)
)
.

Considering now the limits for m −→ ∞ (with fixed t,h), we conclude from as-
sumption (5.) for Lebesgue-almost every t ∈ [0,T [ and any h ∈ [0,T − t[

d
(
f (x(t),t)(h, x(t)), x(t+h)

) ≤ h eα̂ h · limsup
m→∞

sup
t≤ s≤ t+h

D
(

fm(x(t), t), fm(xm(s),s)
)
.

Finally x(·) is a solution to the mutational equation
◦
x(·)� f (x(·), ·) if we can verify

the following asymptotic condition for Lebesgue-almost every t ∈ [0,T ]

limsup
h↓0

limsup
m→∞

sup
t≤ s≤ t+h

D
(

fm(x(t), t), fm(xm(s),s)
)

= 0.

If this last condition was not correct (at time t), we could find some ε > 0 and
sequences (m j) j∈N, (s j) j∈N satisfying for each j ∈N

t ≤ s j ≤ t + 1
j , D

(
fmj (x(t), t), fmj (xmj (s j),s j)

) ≥ ε > 0

and this would induce a contradiction to assumption (4.) at L 1-a.e. time t.
�

Remark 31. Lemma 27 lays the foundations for extending Proposition 28 to
systems of mutational equations and a joint set of constraints in the product space.
Some examples with compact subsets of R

N are given in subsequent section 1.9.6
(on page 74 ff.).
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1.7 Some Elementary Properties of the Contingent Transition Set

In Definition 16 (on page 39), the contingent transition set of a nonempty set V ⊂ E
at an element x ∈ V was introduced as counterpart of Bouligand’s contingent cone:

TV (x) Def.=
{
ϑ ∈Θ(E,d)

∣
∣ liminf

h↓0

1
h · dist

(
ϑ(h,x), V

)
= 0
}
.

It has proved to be useful in connection with Nagumo’s Theorem 19 about solutions
to mutational equations with state constraints (on page 40).
Now we summarize some properties of the contingent transition set. Most of them
result directly from the definition or can be verified in exactly the same way as
their counterparts about Bouligand’s contingent cone of subsets in R

N (see e.g. [19,
§ 4.1], [162]).

Lemma 32. LetΘ(E,d) �= /0 be a set of transitions on a metric space (E,d).
ϑ ∈Θ(E,d) belongs to the contingent transition set of V ⊂ E at x ∈ V if and only
if there exist sequences (hn)n∈N, (yn)n∈N in ]0,1[ and V respectively satisfying

hn −→ 0, 1
hn
· d(ϑ(hn,x), yn

)−→ 0 for n−→ ∞.
�

Proposition 33. LetΘ(E,d) �= /0 be a set of transitions on a metric space (E,d).
V1,V2,V3 . . . denote nonempty closed subsets of E. Then,

(a) TV1∪V2∪ ... (x) ⊃
⋃

k∈N: x∈Vk

TVk(x) for any x ∈⋃k∈N Vk.

(b) TV1∪V2∪ ...∪V j (x) =
⋃

k∈{1 ... j}: x∈Vk

TVk(x) for any j ∈ N, x ∈ V1 ∪ . . . ∪ V j.

(c) TV1∩V2∩ ... (x) ⊂
⋂

k∈N

TVk(x) for any x ∈ V1 ∩ V2 ∩ . . . ∩ V j.

�

Considering the contingent transition set of an intersection (as in statement (c)),
there is still an “inner” approximation lacking, i.e. a subset of TV1∩V2∩ ... (x) in
(separate) terms of V1,V2 . . . ⊂ E. For this purpose, we introduce the counterpart
of the tangent cone in the sense of Dubovitsky-Miliutin:

Definition 34. Let Θ(E,d) be a nonempty set of transitions on a metric space
(E,d). Fix a nonempty set V ⊂ E and an element x ∈ E.

T DM
V (x) :=

{
ϑ ∈Θ(E,d)

∣
∣ ∃ ε,ρ ∈ ]0,1[ ∀ h ∈ ]0,ε] : Bρ h

(
ϑ(h,x)

) ⊂ V
}

is called Dubovitsky-Miliutin transition set of V at x.
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Remark 35. For a boundary point x of a nonempty set V ⊂ R
N , the tangent cone

in the sense of Dubovitsky-Miliutin is usually defined as

T DM
V (x) :=

{
v ∈R

N
∣
∣ ∃ ε,ρ > 0 : x + ]0,ε] · Bρ (v) ⊂ V

}

(see e.g. [14, Definition 4.3.1]). Adapting such a tangent cone to transitions on a
metric space should be done rather carefully. Indeed, not all elements of E close to
ϑ(h,x) have to be values of a transition close to ϑ and thus in general,

Bρ
(
ϑ(h,x)

) �⊂ {
τ(s,y) ∈ E | τ ∈Θ(E,d), s ∈ [0,1], y ∈ Br(x)

}
.

for fixed h ∈ ]0,1], x ∈ E and even arbitrarily small radii ρ ,r > 0. The Euclidean
space R

N , supplied with affine linear transitions of Example 2, distinguishes from
many other metric examples in regard to this form of local surjectivity.

Lemma 36. Let Θ(E,d) �= /0 be a set of transitions on a metric space (E,d).
Suppose x to belong to the topological boundary of a nonempty closed set V ⊂ E.
Then, T DM

V (x) = Θ(E,d)\TE\V (x).

Proof is an immediate consequence of Definition 16 and 34.

Proposition 37. LetΘ(E,d) �= /0 be a set of transitions on a metric space (E,d).
V1,V2 . . . V j denote nonempty closed subsets of E. Then,

⋃

k∈{1 ... j}

(
TVk(x) ∩

⋂

l �=k

T DM
Vl

(x)
)
⊂ TV1∩ ...∩V j (x)

for every element x ∈ V1 ∩ V2 ∩ . . . ∩ V j ⊂ E.

Proof. Choose any element x ∈ V1 ∩ V2 ∩ . . . ∩ V j and transition ϑ ∈
TV1(x) ∩ T DM

V2
(x) ∩ . . . ∩ T DM

V j
(x). As a consequence of Definition 34 for each

set Vk (k ∈ {2 . . . j}), there exist ε,ρ ∈ ]0,1[ such that for all h ∈ ]0,ε],

Bρ h
(
ϑ(h,x)

) ⊂ V2 ∩ V3 ∩ . . . ∩ V j .

Due to ϑ ∈TV1(x), there is a sequence (hn)n∈N in ]0,ε[ tending to 0 and satisfying

dist
(
ϑ(hn,x), V1

)
< ρ

n hn for all n ∈ N.

For each n ∈N, we can choose an element

yn ∈ V1 ∩ B ρ hn
n

(
ϑ(hn,x)

) ⊂ V1 ∩ V2 ∩ . . . ∩ V j

and thus, ϑ ∈ TV1∩ ...∩V j (x). �
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1.8 Example: Ordinary Differential Equations in R
N

Mutational equations are motivated by the goal of extending ordinary differential
equations to metric spaces. For this reason, we are obliged to verify that ordinary
differential equations fit in the mutational framework as an example.
This example reflects an essential point of mutational analysis. Indeed, the results of
previous sections provide sufficient conditions for the existence of a “generalized”
solution (namely to a mutational equation in the sense of Definition 13). Whenever
we apply this general framework to a classical type of dynamical problem (such as
ordinary differential equations here), we have to investigate the link with a classical
concept of solution. This can be done for each example individually and, the results
prove to be of particular interest when applying them to separate components of a
system of mutational equations as explained in § 1.5.

For linking ordinary differential equations and mutational equations on (RN , | · |),
we consider the maps of Example 2 (on page 33)

ϑv : [0,1]×R
N −→ R

N , (h,x) �−→ x + h · v
for each vector v ∈ R

N and summarize some obvious properties in regard to
Definitions 1 and 6:

Lemma 38. For each vector v ∈ R
N , the affine linear map

ϑv : [0,1]×R
N −→ R

N , (h,x) �−→ x + h · v
is a transition on the Euclidean space (RN , | · |) with

α(ϑv) = 0,
β (ϑv) = |v|,

D(ϑv,ϑw) = |v−w|. �

Basic set E := R
N

Distance Euclidean distance d : R
N ×R

N −→ R, (x,y) �−→ |x− y|
Transition For each vector v ∈R

N ,
ϑv : [0,1]×R

N −→ R
N , (h,x) �−→ x+h · v

Compactness Closed bounded balls are compact due to Heine-Borel Theorem.

Mutational solutions Lipschitz continuous solutions to ordinary differential equations

List of main results
formulated in § 1.8

Classical version of Cauchy-Lipschitz Theorem: Corollary 41
Classical version of Nagumo Theorem: Corollary 42
Classical version of Peano Theorem: Corollary 43
Continuous dependence on data: Corollary 44

Table 1.1 Brief summary in mutational terms: Ordinary differential equations in R
N
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For the sake of simplicity, we identify this transition ϑv : [0,1]×R
N −→ R

N on the
Euclidean space (RN , | · |) with its directional vector v ∈ R

N : Θ(RN , | · |)∼= R
N .

Proposition 39. Let f : R
N× [0,T ]−→R

N be given.
A curve x(·) : [0,T ]−→R

N is a solution to the mutational equation
◦
x(·) � f

(
x(·), ·)

if and only if x(·) is Lipschitz continuous and its weak derivative x′ ∈ L∞([0,T ],RN)
satisfies

x′(t) = f
(
x(t), t

)

at Lebesgue-almost every time t ∈ [0,T ].

This proposition, whose proof is postponed to the end of this section, implies several
well-known results about ordinary differential equations – now, however, as conse-
quences of the theorems in § 1.3 – § 1.6. This is based on the Heine-Borel theorem
ensuring that all closed bounded sets of the Euclidean space R

N are compact.

Corollary 40. Let f : R
N × [0,T ]−→ R

N be continuous.
A curve x(·) : [0,T ]−→R

N is a solution to the mutational equation
◦
x(·) � f

(
x(·), ·)

if and only if x(·) is continuously differentiable and its derivative x′(·) satisfies

x′(t) = f
(
x(t), t

)

at every time t ∈ [0,T ]. �

Corollary 41 (Cauchy-Lipschitz: Classical version for ODEs).
Let f : R

N −→R
N be λ -Lipschitz continuous. Fix x0 ∈R

N and y(·)∈C1([0,T ],RN).
Then there exists a unique continuously differentiable solution x(·) : [0,T ] −→ R

N

to the initial value problem
{

x′(·) = f (x(·))
x(0) = x0.

In addition, it satisfies the following inequality for all t ∈ [0,T ]

|x(t)− y(t)| ≤ |x0− y(0)| eλ t +
∫ t

0
eλ (t−s) ∣∣ f (y(s))− y′(s)

∣∣ ds.

Proof results directly from Theorem 15 (on page 38) with α̂ := sup α( f (·)) = 0.
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Corollary 42 (Nagumo: Classical version for autonomous ODE).
Suppose f : R

N −→ R
N to be continuous and bounded. Then the following two

statements are equivalent for any closed nonempty subset V ⊂ R
N :

1. Every state x0 ∈V is the initial point of at least one solution x(·) : [0,1]−→ R
N

to the ordinary differential equation

x′(·) = f
(
x(·))

with all its values in V.

2. V ⊂ R
N is a viability domain of f in the sense that for every z ∈ V, the vector

f (z) ∈ R
N belongs to Bouligand’s contingent cone of V ⊂ R

N at z, i.e.

liminf
h↓0

1
h · dist

(
z+ h · f (z), V

)
= 0.

Proof is an immediate consequence of Theorem 19 (on page 40) due to the
remarks (about contingent cones) mentioned in Example 18.

Corollary 43 (Peano: Classical version for nonautonomous ODE).
Suppose f : R

N× [0,T ]−→R
N to be continuous and bounded.

Then for every initial state x0 ∈ R
N , there exists a solution x(·) : [0,T ] −→ R

N to
the ordinary differential equation

x′(·) = f
(
x(·), ·)

with x(0) = x0.

Proof results from Theorem 20 (on page 40).

Corollary 44 (Continuity w.r.t. initial data and the right-hand side).
Suppose f : R

N × [0,T ]−→ R
N to be λ -Lipschitz continuous in the first argument.

Let g : R
N × [0,T ]−→ R

N be continuous with Δ := sup
z,s

∣
∣ f (z,s)−g(z,s)

∣
∣< ∞.

Then every continuously differentiable solutions x(·),y(·) : [0,T ] −→ R
N to the

ordinary differential equations
{

x′(·) = f
(
x(·), ·)

y′(·) = g
(
y(·), ·)

satisfy the following inequality for every t ∈ [0,T ]

|x(t)− y(t)| ≤ (|x(0)− y(0)| + Δ · t) eλ t .

Proof is an obvious conclusion from Proposition 24 (on page 42).

Proof (of Proposition 39). The key tool is Rademacher’s Theorem stating that
every Lipschitz continuous function h : R

M −→ R
N is differentiable at Lebesgue-

almost every point of its domain (see e.g. [162]). In particular, the weak derivative
of h coincides with its Fréchet derivative Lebesgue-almost everywhere in R

M.
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“⇐=” Obviously, every Lipschitz continuous curve x(·) : [0,T ] −→ R
N with

x′(t) = f (x(t), t) at Lebesgue-almost every time t ∈ [0,T ] fulfills

lim
h↓0

1
h

∣
∣x(t + h) − (x(t)+ h · f (x(t), t)

)∣∣ = 0

for Lebesgue-almost every t ∈ [0,T ] and thus, x(·) solves the mutational equation
◦
x(·) � f

(
x(·), ·) in the sense of Definition 13 (on page 38).

“=⇒” Let x(·) : [0,T ] −→ R
N be a solution to the mutational equation

◦
x (·) �

f
(
x(·), ·). According to Definition 13, x(·) is Lipschitz continuous and satisfies

0 = lim
h↓0

1
h

∣
∣x(t + h) − (x(t)+ h · f (x(t), t)

)∣∣ = lim
h↓0

∣
∣
∣ x(t+h)− x(t)

h − f (x(t), t)
∣
∣
∣

for Lebesgue-almost every t ∈ [0,T ]. Rademacher’s Theorem ensures the differen-
tiability of x(·) Lebesgue-almost everywhere in [0,T ] and thus, the one-sided differ-
ential quotient even reflects the time derivative, i.e. x′(·) = f (x(·), ·) a.e. in [0,T ].

�
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1.9 Example: Morphological Equations for Compact Sets in R
N

K (RN) consists of all nonempty compact subsets of the Euclidean space R
N .

It is no obvious linear structure though. To be more precise, Minkowski suggested a
very popular definition of the sum, i.e.

K1 + K2
Def.=
{

x + y
∣∣ x ∈ K1, y ∈ K2

} ⊂ R
N

for K1,K2 ∈ K (RN). This addition has the obvious neutral element {0} ⊂ R
N ,

but it is not invertible in general, i.e. for any given K1 ∈ K (RN), the equation
K1 + K2 = {0} does not always have a solution K2 ∈K (RN).
K (RN) can be supplied with a metric instead:

1.9.1 The Pompeiu-Hausdorff Distance dl

Definition 45. The Pompeiu-Hausdorff excesses between two
nonempty subsets K1,K2 ⊂ R

N are defined as

�e⊂(K1,K2) := sup
x∈K1

dist(x, K2),

�e⊃(K1,K2) := sup
y∈K2

dist(y, K1) ∈ [0,∞]

Their maximum is called the Pompeiu-Hausdorff distance dl(K1,K2).

Now some essential properties of the Pompeiu-Hausdorff distance are summarized.
They belong to the key tools whenever we are dealing with nonempty compact sets.
Their proofs, however, are regarded as standard and can be found in many textbooks
about analysis (see e.g. [2, 10, 141, 162]). For this reason, we dispense with the
detailed proof of the next proposition in particular.

Proposition 46. The Pompeiu-Hausdorff distance dl is a metric on K (RN) and
has the equivalent characterizations for any K1,K2 ∈K (RN)

dl(K1,K2) = sup
z∈RN

∣∣dist(z,K1) − dist(z,K2)
∣∣

= inf
{
ρ > 0

∣
∣ K1 ⊂ K2 +ρ B and K2 ⊂ K1 +ρ B

}

with the standard abbreviation B for the closed unit ball in R
N

B := B1(0) Def.=
{

x ∈ R
N
∣
∣ |x| ≤ 1} .

Moreover, the metric space (K (RN),dl) is locally compact in the following sense:

Proposition 47. In the metric space (K (RN),dl), every closed bounded ball

B
dl
R(K) :=

{
K′ ∈K (RN)

∣
∣ dl(K′,K)≤ R

}

with any center K ∈K (RN) and arbitrary radius R≥ 0 is compact.



58 1 Extending Ordinary Differential Equations to Metric Spaces: Aubin’s Suggestion

Basic set E := K (RN)
the set of nonempty compact subsets of the Euclidean space R

N

Distance Pompeiu-Hausdorff metric dl : K (RN)×K (RN)−→ R,

dl(K1,K2) := max
{

sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)
}

Transition For each F ∈ LIP(RN ,RN), i.e. bounded and Lipschitz continu-
ous set-valued map F : R

N � R
N with compact values, define

ϑF : [0,1]×K (RN)−→K (RN)

by means of reachable sets of the autonomous differential inclu-
sion x′(·) ∈ F(x(·)) a.e.:

ϑF(t, K0) :=
{

x(t)
∣∣ there exists x(·) ∈W 1,1([0, t],RN) :

x′(·) ∈ F(x(·)) L 1-a.e. in [0, t],
x(0) ∈ K0

}
.

Compactness Closed bounded balls in (K (RN),dl) are compact:
Proposition 47 (page 57)

Mutational solutions Reachable sets of a nonautonomous differential inclusion
whose set-valued right-hand side is determined via feedback:
Proposition 57 (page 64), Proposition 70 (page 74)

List of main results
formulated in § 1.9

Existence due to compactness (Peano): Proposition 71 (page 75)
Cauchy-Lipschitz Theorem: Proposition 72 (page 75)
Continuity w.r.t. data: Proposition 73 (page 75)
Existence under state constraints (Nagumo): Proposition 74

Key tools Filippov’s Theorem A.6 about differential inclusions (page 443)

Integral funnel equation for reachable sets of nonautonomous
differential inclusions: Proposition A.13 (page 447)

Table 1.2 Brief summary of the example in § 1.9 in mutational terms:
Morphological equations for compact sets in R

N
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Proof. Choose any set K ∈K (RN), radius R ≥ 0 and any sequence (Kn)n∈N in
K (RN) satisfying dl(Kn,K)≤ R for all n ∈N.
Now we prove that some subsequence (Kn j ) j∈N is convergent with respect to the
Pompeiu-Hausdorff distance. Then B

dl
R(K) is sequentially compact with respect to

dl and (as in every metric space) this is equivalent to the property that every open
cover of B

dl
R(K)⊂K (RN) has a finite subcover (see e.g. [170, Chapter 12]).

Using the abbreviation BR+1(K) Def.= {x∈R
N | dist(x,K)≤ R+1}, set for each n∈N

δn : BR+1(K) −→ [0,∞[, z �−→ dist(z,Kn).

Obviously each function δn(·) is 1-Lipschitz continuous and has the uniform bound

δn(·) ≤ diam K + 2 (R + 1).
Arzelà-Ascoli Theorem A.82 implies that a subsequence (δn j ) j∈N converges uni-
formly to a continuous function δ : BR+1(K) −→ [0,∞[. In particular, δ (·) is also
1-Lipschitz continuous.

Then K∞ := {x ∈ BR+1(K) | δ (x) = 0} is the limit of (Kn j ) j∈N with respect to dl.
Indeed, K∞ is closed because δ (·) is continuous. Furthermore, K∞ is nonempty since
any sequence (xn j ) j∈N with xn j ∈ Kn j = δ−1

n j
({0}) for each j ∈N is contained in the

compact subset BR(K) ⊂ R
N and thus, it has an accumulation point x ∈ BR(K).

The uniform convergence of the 1-Lipschitz functions δn j (·) implies δ (x) = 0,

i.e. x ∈ K∞. Hence, K∞ ∈K (RN).
Moreover, δ (z) ≤ dist(z,K∞) holds for every vector z ∈ BR+1(K) ⊂ R

N because
for every element x ∈ K∞, we conclude from the 1-Lipschitz continuity of δ (·)

δ (z) = δ (z)− δ (x) ≤ ∣∣z− x
∣
∣.

For proving the opposite inequality δ (z) ≥ dist(z,K∞) with arbitrary z∈BR+1(K),
we can restrict our considerations to any element z ∈ BR+1(K) with dist(z,K∞) > 0.
In particular, z /∈K∞. Choose any positive r < dist(z,K∞). Then every point y∈Br(z)
does not belong to K∞ either, i.e. δ (y) > 0. Due to the continuity of δ (·), we even
have μ := inf

Br(z)
δ (·) > 0. For all j ∈ N sufficiently large,

sup
x∈BR+1(K)

∣∣δn j(x) − δ (x)
∣∣ < μ

2 .

and thus, all y ∈ Br(z) satisfy δn j (y) > δ (y)− μ
2 > 0. We have just verified

Br(z)∩Kn j = /0 for all large indices j ∈ N. As a consequence,

δ (z) = lim
j→∞

δn j(z) = lim
j→∞

dist(z,Kn j ) ≥ r

with any positive r < dist(z,K∞). Finally, δ (z)≥ dist(z,K∞) for any z ∈ BR+1(K).
The resulting equality δ (·) = dist(·,K∞) in BR+1(K) ⊂ R

N opens the door to
proving the convergence of (Kn j ) j∈N with respect to dl :

dl(Kn j , K∞) = max
{

sup
x∈Kn j

δ (x), sup
y∈K∞

δn j(y)
}

≤ sup
z∈BR+1(K)

∣
∣δ (z)− δn j(z)

∣
∣ j→∞−→ 0.

�
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1.9.2 Morphological Transitions on (K (RN),dl)

As mentioned briefly in Example 5 (on page 34), differential inclusions can serve
as a tool for specifying “deformations” of compact subsets of R

N . The so-called
reachable set of such a differential inclusion at time t ≥ 0 consists of all points x(t)
that can be reached by an absolutely continuous solution x(·) : [0, t] −→ R

N (to
this differential inclusion) starting in the given set. This notion is not necessarily
restricted to autonomous differential inclusions, of course.

Definition 48. Let F : R
N � R

N be a set-valued map. Then the set

ϑF(t, K0) :=
{

x(t)
∣∣ there exists x(·) ∈W 1,1([0, t],RN) :

x′(·) ∈ F(x(·)) L 1-a.e. in [0, t], x(0) ∈ K0
}

is called reachable set of the initial set K0 ∈K (RN) and the map F at time t ≥ 0.
Correspondingly for any set-valued map F̃ : [0,T ]×R

N �R
N , we define the reach-

able set of K0 ∈K (RN) and the map F̃ at time t ∈ [0,T ] as

ϑF̃(t, K0) :=
{

x(t)
∣
∣ there exists x(·) ∈W 1,1([0, t],RN) :

x′(·) ∈ F̃(·,x(·)) L 1-a.e. in [0, t], x(0) ∈ K0
}
.

Filippov’s Theorem A.6 about solutions to differential inclusions provides the
key tool for investigating compact reachable sets of Lipschitz continuous set-valued
maps with nonempty compact values. It motivates the following abbreviation intro-
duced by Aubin:

Definition 49. LIP(RN ,RN) consists of all set-valued maps F : R
N � R

N

satisfying the following two conditions:

1.) F has nonempty compact values that are uniformly bounded in R
N ,

2.) F is Lipschitz continuous with respect to the Pompeiu-Hausdorff distance dl.

Furthermore define for any maps F,G ∈ LIP(RN ,RN)

‖F‖∞ := sup
x∈RN

sup
v∈F(x)

|v|,
dl∞(F,G) := sup

x∈RN
dl
(
F(x),G(x)

)
.

Proposition 50. For any initial sets K1,K2 ∈K (RN) and set-valued maps F,G∈
LIP(RN ,RN) with Λ := max{LipF, LipG}, the reachable sets ϑF (t,K1), ϑG(t,K2)
are closed subsets of R

N and, the Pompeiu-Hausdorff distance between the reach-
able sets at time t ≥ 0 satisfies

dl
(
ϑF (t,K1), ϑG(t,K2)

) ≤ (dl(K1,K2) + t · dl∞(F,G)
) · eΛ t .
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Proof. ϑF (t,K1),ϑG(t,K2) ⊂ R
N are closed due to Filippov’s Theorem A.6 (on

page 443). Due to the symmetry of dl, it is sufficient to prove for every x1 ∈ϑF(t,K1)

dist
(
x1, ϑG(t,K2)

) ≤ (dl(K1,K2) + t · dl∞(F,G)
) · eΛ t .

According to Definition 48, there exists a solution x(·) ∈ W 1,1([0, t],RN) to the
differential inclusion x′(·) ∈ F(x(·)) (L 1-almost everywhere in [0, t]) satisfying

x(0) ∈ K1, x(t) = x1.

Choose now any point y0 ∈ K2 with |x(0)− y0| = dist(x(0), K2) ≤ dl(K1,K2).
Filippov’s Theorem A.6 guarantees a solution y(·) ∈W 1,1([0, t],RN) to the differ-
ential inclusion y′(·) ∈G(y(·)) a.e. in [0, t] satisfying in addition

∣
∣y(t)− x(t)

∣
∣ ≤ ∣∣y0− x(0)

∣
∣ eΛ t +

∫ t

0
eΛ ·(t−s) dist

(
x′(s), G(x(s))

)
ds

≤ dl(K1,K2) eΛ t + t eΛ t dl∞(F,G)

In particular, y(t) ∈ ϑG(t,K2) and thus, dist
(
x1, ϑG(t,K2)

) ≤ |x(t)− y(t)|. �

This proof of Proposition 50 reveals that the same estimate holds for any Lipschitz
continuous set-valued maps with nonempty compact values. The uniform bound of
their set values, in particular, is not required for applying Filippov’s Theorem here.
It is used for the Lipschitz continuity with respect to time instead:

Lemma 51. For any initial set K ∈ K (RN) and map F ∈ LIP(RN ,RN), the
reachable set ϑF (·,K) : [0,∞[�R

N is Lipschitz continuous with respect to dl, i.e.

dl
(
ϑF(s,K), ϑF(t,K)

) ≤ ‖F‖∞ · |s− t| for any s, t ≥ 0.

Proof results directly from Definition 48 because every absolutely continuous
solution x(·) of x′(·) ∈ F(x(·)) is even ‖F‖∞-Lipschitz continuous. �

Lemma 52. For any initial set K ∈ K (RN) and map F ∈ LIP(RN ,RN), the
reachable set ϑF(·,K) : [0,∞[−→ (K (RN),dl

)
has the semigroup property in the

following sense

ϑF
(
h, ϑF(t,K)

)
= ϑF (t + h, K) for any t,h≥ 0.

Proof is an immediate consequence of Definition 48 and the following concate-
nation properties of solutions to differential inclusions: Let x1(·) ∈W 1,1([0, t],RN)
and x2(·) ∈W 1,1([0,h],RN) be solutions to the autonomous differential inclusion
x′j ∈ F(x j) a.e. with x1(t) = x2(0). Then

[0, t + h] −→ R
N , s �−→

{
x1(s) for 0≤ s≤ t
x2(s− t) for t ≤ s≤ t + h

is an absolutely continuous solution of x′ ∈ F(x) a.e. (and vice versa). �
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Now we have collected all the analytical tools for verifying that reachable sets
of maps in LIP(RN ,RN) induce transitions on (K (RN),dl). Aubin called them
morphological transition and used them in most of his examples about evolving
sets.

Proposition 53. For every set-valued map F ∈ LIP(RN ,RN),

ϑF : [0,1]×K (RN) −→ K (RN)
(t, K) �−→ ϑF(t,K)

is a transition on (K (RN),dl) with

α(ϑF) ≤ Lip F,

β (ϑF) ≤ ‖F‖∞,

D(ϑF ,ϑG) ≤ dl∞(F,G).

Proof. Obviously, ϑF(0,K) = K for every initial set K ∈K (RN). According
to Proposition 50 and Lemma 51, the reachable set ϑF (t,K) ⊂ R

N is closed and
bounded for every K ∈K (RN) and t ≥ 0. Thus, ϑF(t,K) is compact due to Heine-
Borel Theorem, i.e. ϑF(t,K) ∈K (RN).
Moreover Lemma 52 implies condition (2.) on transitions (in Definition 1 on
page 32), i.e. for every set K ∈K (RN) and time t ∈ [0,1[

lim
h↓0

1
h · dl

(
ϑF(t + h, K), ϑF(h, ϑF(t,K))

)
= 0.

The estimate in Proposition 50 (applied to G := F) guarantees

α(ϑF) Def.= sup
K1 ,K2∈K (RN )

K1 �=K2

limsup
h↓0

max
{

0,
dl(ϑF(h,K1), ϑF (h,K2))−dl(K1,K2)

h · dl(K1,K2)

}

≤ limsup
h↓0

eLip F ·h−1
h

= Lip F.

Due to Lemma 51, we obtain

β (ϑF) Def.= sup
K∈K (RN)

limsup
h↓0

1
h · dl

(
K, ϑF(h,K)

) ≤ ‖F‖∞.

Finally, Proposition 50 lays also the basis for estimating D(ϑF ,ϑG) (in the sense of
Definition 6) for arbitrary maps F,G ∈ LIP(RN ,RN) and Λ := max{Lip F, Lip G}

D(ϑF ,ϑG) Def.= sup
K∈K (RN)

limsup
h↓0

1
h
· dl(ϑF(h,K), ϑG(h,K)

)

≤ limsup
h↓0

dl∞(F,G) · eΛh

= dl∞(F,G) .

�
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Example 54. In Example 4 (on page 33), we have already mentioned the flow of
compact subsets along a bounded Lipschitz continuous vector field f : R

N −→R
N .

This type of set deformations lays the basis for the so-called velocity method used in
approaches to shape optimization by Céa, Delfour, Sokolowski, Zolésio and others.
Now the flow along such a vector field proves to be a special case of morphological
transitions. Indeed, we just consider a single-valued map f in LIP(RN ,RN).
As an immediate consequence of Proposition 53, the corresponding reachable set
ϑ f (·, ·) induces a transition on (K (RN),dl) with

α(ϑ f ) ≤ Lip f ,

β (ϑ f ) ≤ ‖ f‖sup,

D(ϑ f ,ϑg) ≤ ‖ f −g‖sup

for any bounded and Lipschitz continuous vector fields f ,g : R
N −→ R

N .

Example 55.
Considering a fixed compact convex neighborhood C ⊂ R

N of the origin, we find
a further special case of morphological transitions: the so-called morphological
dilation, that became very popular in image processing, for example, due to publi-
cations of Matheron and Serra:

Each reachable set of the differential inclusion x′(·)∈C (with constant convex right-
hand side) coincides with a Minkowski sum in the following sense

ϑC(h,K) = K + h C
Def.=
{

x + h v
∣
∣ x ∈ K, v ∈C

}

for every initial set K ∈K (RN) and at any time h≥ 0. Indeed, K +h C⊂ ϑC(h,K)
results from the obvious statement that for each x ∈ K and v ∈C, the curve

y(·) : [0,h] −→ R
N , s �−→ x + s v

solves the differential inclusion y′(·) ∈ C. In regard to the opposite inclusion
ϑC(h,K)⊂ K + h C, choose z ∈ ϑC(h,K) arbitrarily. It is related to an initial point
x ∈ K and a Lebesgue-integrable function u(·) : [0,h]−→ R

N with

z = x +
∫ h

0
u(s) ds, u(t) ∈C for every t ∈ [0,h].

Now the convexity of the closed set C ⊂ R
N implies 1

h ·
∫ h

0
u(s) ds ∈ co C = C

and thus, z ∈ x + h C.

In Serra’s framework of “mathematical morphology” [171], the fixed set C ⊂ R
N is

usually called structural element (of the corresponding morphological operations
like dilation). In a figurative sense, every reachable set ϑF(h,K) ⊂ R

N of an ini-
tial set K ∈K (RN) and a set-valued map F ∈ LIP(RN ,RN) can be interpreted as
a generalized dilation of K with the structural element depending on space, namely
F = F(x). This was (probably) Aubin’s motivation for seizing the term “morpho-
logical” in connection with these transitions on (K (RN),dl).
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1.9.3 Morphological Primitives as Reachable Sets

Each morphological transition is induced by a set-valued map in LIP(RN ,RN) by
definition. For the sake of simplicity, we sometimes identify the morphological
transition ϑF on (K (RN),dl) with its corresponding map F ∈ LIP(RN ,RN) repre-
senting the right-hand side of the autonomous differential inclusion.

Definition 56. A curve [0,T ]−→K (RN) is usually called tube in R
N .

According to Definition 10 (on page 37), the (morphological) mutation of a tube
K(·) at time t consists of all morphological transitions providing a first-order ap-
proximation of K(t + ·) with respect to dl. Identifying now morphological transitions
with the respective set-valued maps in LIP(RN ,RN), we obtain

◦
K (t) =

{
F ∈ LIP(RN ,RN)

∣
∣ lim

h↓0

1
h · dl

(
ϑF(h, K(t)), K(t + h)

)
= 0
}
.

Each tube K(·) : [0,T ]� R
N induces a set-valued map

◦
K: [0,T ]� LIP(RN ,RN)

whose values might be empty.

Primitives are linked to this relation in the opposite direction: Now a curve of
morphological transitions is given, i.e.

F : [0,T ] −→ LIP(RN ,RN).

According to Definition 12, a tube K(·) : [0,T ]�R
N is a (morphological) primitive

of F (·) if and only if K(·) is Lipschitz continuous with respect to dl and satisfies at
Lebesgue-almost every time t ∈ [0,T ] :

F (t) ∈ ◦
K (t)

or, equivalently, lim
h↓0

1
h · dl

(
ϑF (t)(h, K(t)), K(t + h)

)
= 0.

This is a differential criterion – in a figurative sense. The following proposition
is an equivalent “integral” characterization of primitives using reachable sets of
nonautonomous differential inclusions:

Proposition 57. Suppose F : [0,T ] −→ (
LIP(RN ,RN),dl∞

)
to be Lebesgue-

measurable with sup
t∈ [0,T ]

(‖F (t)‖∞+Lip F (t)
)
<∞ and define the set-valued map

F̂ : [0,T ]×R
N � R

N , (t,x) �→ F (t)(x).

A tube K : [0,T ]� R
N is a morphological primitive of F (·) if and only if at every

time t ∈ [0,T ], its value K(t) ⊂ R
N coincides with the reachable set of the non-

autonomous differential inclusion x′ ∈ F̂(·,x) a.e. (in the sense of Definition 48), i.e.

K(t) = ϑF̂

(
t, K(0)

)
.
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Proof results directly from the uniqueness of primitives (Corollary 23 on page 41)
and the following lemma about reachable sets:

Lemma 58. Suppose F : [0,T ] −→ (
LIP(RN ,RN),dl∞

)
to be L 1-measurable

with C := sup
t∈ [0,T ]

(‖F (t)‖∞+ Lip F (t)
)

< ∞ and define the set-valued map

F̂ : [0,T ]×R
N � R

N , (t,x) �→ F (t)(x).

Then for every initial set K0 ∈K (RN), the reachable set of the nonautonomous
differential inclusion x′ ∈ F̂(·,x) a.e.

ϑF̂ (·,K0) : [0,T ] −→ K (RN)

is a primitive of F (·).

Proof. ϑF̂ (·, K0) : [0,T ]−→ (K (RN),dl
)

is C-Lipschitz continuous because the
bound C < ∞ of F (·) implies |v| ≤C for all t ∈ [0,T ], x ∈R

N and v ∈ F̂(t,x).

Denote the pointwise convex hull of F̂ as G : [0,T ]×R
N�R

N , (t,x) �→ co F̂(t,x).
Then for Lebesgue-almost every t ∈ [0,T ], the set-valued map G(t, ·) : R

N�R
N is

C-Lipschitz continuous with nonempty compact convex values and ‖G(t, ·)‖∞ ≤C.
For every x ∈ R

N , the map G(·,x) : [0,T ]�R
N is measurable.

Furthermore Relaxation Theorem A.19 of Filippov-Ważewski (on page 453) implies

ϑF̂(t + ·,·)(h,K) = ϑG(t + ·,·)(h,K)

for every initial set K ∈K (RN) and any t,h ∈ [0,T ] with t + h≤ T.

According to Proposition A.13 (on page 447), there exists a set J ⊂ [0,T ] of full
Lebesgue measure (i.e. L 1([0,T ]\ J) = 0) such that at every time t ∈ J and for any
set Kt ∈K (RN),

1
h · dl

(
ϑG(t+· , ·)(h, Kt),

⋃

x∈Kt

(
x + h ·G(t,x)

)) −→ 0 for h ↓ 0.

Applying the same Proposition A.13 to the autonomous differential inclusion with
G(t, ·) : R

N � R
N and arbitrary t ∈ [0,T ], we obtain

1
h · dl

(
ϑG(t, ·)(h, Kt ),

⋃

x∈Kt

(
x + h ·G(t,x)

)) −→ 0 for h ↓ 0.

The triangle inequality of dl implies for every t ∈ J and Kt ∈K (RN)

1
h · dl

(
ϑG(t+· , ·)(h, Kt), ϑG(t, ·)(h, Kt )

)
−→ 0 for h ↓ 0,

i.e. for Kt := ϑF̂ (t,K0) ∈K (RN) with an arbitrary initial set K0 ∈K (RN) :

1
h · dl

(
ϑF̂(t + h, K0), ϑF (t)

(
h, ϑF̂ (t,K0)

)) −→ 0 for h ↓ 0.

Thus, F (t) ∈ LIP(RN ,RN) belongs to the morphological mutation of ϑF̂(·,K0)
at every time t ∈ J. �
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1.9.4 Some Examples of Morphological Primitives

Proposition 57 (on page 64) has just provided an equivalent characterization of
morphological primitives by means of reachable sets. This property can be very
useful as the following tubes exemplify:

Example 59. For a Lipschitz continuous function g : [0,T ] −→ R
N , we consider

the set-valued map (with just one element in each value)

K : [0,T ] � R
N , t �→ {

g(t)
}
.

Due to Rademacher’s Theorem, there is a set J ⊂ [0,T ] of full Lebesgue measure
(i.e. L 1([0,T ]\ J) = 0) such that g(·) is differentiable at every time t ∈ J ⊂ [0,T ].

Now we can easily specify an element Ft of the mutation
◦
K (t) ⊂ LIP(RN ,RN) for

every t ∈ J : Choose any set-valued map Ft ∈ LIP(RN ,RN) with

Ft
( · ) ≡ {g′(t)

} ⊂ R
N

in some neighborhood Ut ⊂ R
N of g(t). Indeed, the differentiability of g(·) at t ∈ J

implies for h ↓ 0

1
h ·dl
(
K(t + h), ϑFt (h,K(t))

)
= 1

h ·
∣
∣g(t + h) − (g(t)+ h ·g′(t))∣∣ −→ 0.

Hence, K(·) is a primitive of any curve F : [0,T ] −→ LIP(RN ,RN), t �−→ Ft with
this feature close to g(·).

Example 60. Let A : [0,T ] −→ R
N×N be a continuous map of real matrices and

K0 ∈K (RN). We focus on the morphological primitive K(·) : [0,T ]� R
N of

[0,T ] −→ LIP(RN ,RN), t �−→ A(t) Id
RN

with K(0) = K0. Due to Proposition 57, K(t) = ϑA(·) Id
RN

(t,K0). For simplifying

this reachable set, let Φ(·) : [0,T ] −→ R
N×N denote the unique matrix-valued

solution to the initial value problem
{
Φ ′(t) = A(t)Φ(t) for every t ∈ [0,T ]
Φ(0) = IdRN×N

and the theory of linear differential equations implies immediately K(t) = Φ(t) K0

for every t ∈ [0,T ].

Example 61. Similarly to the preceding Example 60, let A,B : [0,T ]−→R
N×N be

two continuous maps of real matrices, U ∈K (RN) convex and K0 ∈K (RN) given.
Now we use Proposition 57 for determining the morphological primitive K(·) of

[0,T ] −→ LIP(RN ,RN), t �−→ A(t) Id
RN + B(t) U

with K(0) = K0.
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Using again the fundamental matrix Φ(·) : [0,T ] −→ R
N×N related to A(·), the

well-known variation of constants formula implies for every t ∈ [0,T ]

K(t) = ϑA(·) Id
RN +B(·)U(t,K0) = Φ(t)K0 +

∫ t

0
Φ(t)Φ(s)−1 B(s) U ds

with the set integral at the end to be understood in the sense of Aumann.

Example 62. The product of primitives is always a primitive of the product –
in the following sense: For any two curves F1(·),F2(·) : [0,T ] −→ LIP(RN ,RN),
let Kj(·) : [0,T ]−→K (RN) denote a morphological primitive of Fj(·) for j = 1,2
respectively. Then

K1×K2 : [0,T ] −→ K (RN ×R
N), t �−→ K1(t)×K2(t)⊂ R

N×R
N = R

2N

is a morphological primitive of

F1×F2 : [0,T ] −→ LIP(RN ×R
N , R

N×R
N)

with (F1×F2)(t) : R
N×R

N � R
N×R

N , (z1,z2) �→ F1(z1)×F2(z2).

Indeed, this property results from the representation of morphological primitives as
reachable sets according to Proposition 57.
This example shows once more that mutations have useful features in regard to
cartesian products. Essentially the same statement about primitives holds even for
the product of metric spaces (and their transitions respectively) as we can conclude
from the results of § 1.5 (and the proof of Theorem 26 on page 46, in particular).

1.9.5 Some Examples of Contingent Transition Sets

Considering mutational equations under state constraints, the contingent transition
set plays an essential role. It was introduced in Definition 16 (on page 39) and,
Nagumo’s Theorem 19 (on page 40) uses it for conditions being sufficient and nec-
essary for the existence of solutions under state constraints.

Now we consider the contingent transition set of a nonempty subset V ⊂K (RN).
Using the morphological transitions on the metric space (K (RN),dl), its definition
at K ∈ V can be reformulated as

TV (K) Def.=
{

F ∈ LIP(RN ,RN)
∣
∣ liminf

h↓0

1
h · dist

(
ϑF(h,K), V

)
= 0
}

with dist
(
ϑF(h,K), V

) Def.= inf
S∈V

dl
(
ϑF(h,K), S

)
.

Corollary A.21 of Filippov-Ważewski Relaxation Theorem A.19 (on page 453)
implies ϑF(t,K) = ϑco F(t,K) for any K ∈K (RN), F ∈LIP(RN ,RN) and t ≥ 0 and
thus, we can restrict our search for criteria to convex-valued maps in LIP(RN ,RN).
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Definition 63. Let K ⊂ R
N be a nonempty closed subset and x ∈ K.

TK(x) :=
{

v ∈ R
N
∣
∣ liminf

h ↓ 0

1
h · dist(x + h v, K) = 0

}

is called contingent cone to K at x (in the sense of Bouligand).

The Clarke tangent cone or circatangent cone TC
K (x) is defined (equivalently) by

TC
K (x) := Liminf h↓0,

y−→
K

x

K−y
h

=
{

v ∈ X
∣∣
∣ ∀ hn ↓ 0, yn→ x with yn ∈ K : dist

(
v, K−yn

hn

) n→∞−→ 0
}

=
{

v ∈ X
∣
∣
∣ ∀ hn ↓ 0, yn→ x with yn ∈ K : dist(yn+hn·v, K)

hn

n→∞−→ 0
}
.

Example 64. For a fixed nonempty closed subset M ⊂ R
N , define

V⊂M :=
{

K ∈K (RN)
∣
∣ K ⊂M

}
.

Following the arguments of Anne Gorre [89], we can characterize the contingent
transition setl TV⊂M(K)⊂ LIP(RN ,RN) for each K ∈ V⊂M :

TV⊂M (K) =
{

F ∈ LIP(RN ,RN)
∣
∣ ∀ x ∈ K : co F(x)⊂ TM(x)

}
.

For proving “⊂” choose any set-valued map F ∈ TV⊂M (K) ⊂ LIP(RN ,RN). Then
the definition of TV⊂M(K) provides two sequences (hn)n∈N, (Kn)n∈N in ]0,1[ and
V⊂M ⊂K (RN) respectively satisfying for each n ∈ N

hn ≤ 1
n , 1

hn
· dl(ϑF (hn,K), Kn

) ≤ 1
n .

For each point x ∈ K and velocity v ∈ co F(x), we have to verify v ∈ TM(x). Due
to Filippov’s Theorem A.6, there exists a solution x(·) ∈ W 1,1([0,T ],RN) to the
differential inclusion x′(·) ∈ co F(x(·)) a.e. with x(0) = x and the additional prop-
erty that x(·) is differentiable at t = 0 with x′(0) = v (e.g. [14, Corollary 5.3.2]).
For each n ∈N, select yn ∈ Kn ⊂M with
∣
∣x(hn)−yn

∣
∣ = dist(x(hn), Kn) ≤ dl

(
ϑco F(hn,K),Kn

)
= dl

(
ϑF(hn,K),Kn

) ≤ hn
n .

Then, we obtain
1
hn
· dist

(
x + hn v, M

) ≤ 1
hn
· ∣∣x + hn v− x(hn)

∣∣ + 1
hn
· ∣∣x(hn) − yn

∣∣

≤ ∣∣v − x(hn)− x
hn

∣
∣ + 1

n −→ 0

for n−→ ∞, i.e. v ∈ TM(x).

In regard to the inclusion “⊃”, let F ∈ LIP(RN ,RN) satisfy co F(x) ⊂ TM(x) for
every x ∈ K. The Invariance Theorem about differential inclusions (Proposition A.8
on page 445) ensures that every solution x(·) ∈W 1,1([0,1],RN) of x′(·) ∈ co F(x(·))
with x(0) ∈ K has all its values in M ⊂ R

N and thus,

ϑF(h,K) ⊂ ϑco F(h,K) ⊂ M

for every h ∈ [0,1]. In particular, dist
(
ϑF (h,K), V⊂M

)
= 0 for all h ∈ [0,1],

i.e. F ∈ TV⊂M (K). This completes the proof of the preceding characterization of
the contingent transition set TV⊂M (K) for any nonempty closed subset M ⊂ R

N .
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This Example 64 focuses on a subset V⊂M of the metric space
(
K (RN),dl

)

prescribing a condition on just one compact set. Mutational equations, however,
have the important advantage that many existence results can be extended to sys-
tems as explained in § 1.5 (on page 44). For this reason, we consider now some
examples with tuples of two or even three compact sets.

Strictly speaking, the product K (RN)2 := K (RN)×K (RN) is supplied with the
metric

dl2 :
(
K (RN)×K (RN)

)×(K (RN)×K (RN)
) −→ [0,∞[,

(
(K1,K2), (L1,L2)

) �−→ dl(K1,L1)+ dl(K2,L2)

and, the product of maps in LIP(RN×R
N ,RN) serve as transitions, i.e. for any tuple

(F,G) ∈ LIP(RN×R
N ,RN)×LIP(RN ×R

N ,RN) define

ϑ(F,G) : [0,1]×K (RN)2 −→ K (RN)2

(
h, (K1,K2)

) �−→ {
(x(h), y(h))

∣
∣ ∃ x(·),y(·) ∈W 1,1([0,h],RN) :

x(0) ∈ K1, y(0) ∈ K2,

x′ ∈ F(x,y), y′ ∈ G(x,y) a.e.
}

Indeed, the transition properties of ϑ(F,G)(·, ·) result from Filippov’s Theorem about
differential inclusions for the same reasons as Proposition 53 (on page 62).
Similarly to Example 64, Anna Gorre has already used the so-called paratingent
cones (of Bouligand) and characterized the contingent transition sets of

V∩ :=
{
(K,L) ∈K (RN)2

∣∣ K ∩L �= /0
}

:

Definition 65. Let K,L⊂ R
N be nonempty closed subsets and x ∈ K∩L.

PK
L (x) :=

{
v ∈ R

N
∣
∣ liminf

h↓0
y→x (y∈K)

1
h · dist(y + h v, L) = 0

}

is called Bouligand paratingent cone to L relative to K at x.
Furthermore, the adjacent cone to K at x (in the sense of Bouligand) is defined as

T �
K(x) :=

{
v ∈R

N
∣
∣ lim

h ↓ 0

1
h · dist(x + h v, K) = 0

}
.

Proposition 66 (Gorre [10, Theorem 4.2.4], [90]).

V∩ :=
{
(K,L) ∈K (RN)2

∣
∣ K∩L �= /0

}

is a closed subset of
(
K (RN)2,dl2

)
.

For any tuples (K,L) ∈ V∩ and (F,G) ∈ LIP(RN ×R
N ,RN)2, the following two

statements are equivalent:

1. (F,G) belongs to the contingent transition set of V∩ at (K,L).

2. There exists x ∈ K∩L⊂ R
N with

(
co F(x,x)− co G(x,x)

) ∩ PK
L (x) �= /0.
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For the similar characterization related to

V⊂ :=
{
(K,L) ∈K (RN)2

∣
∣ K ⊂ L

}
,

we prefer the simpler transitions on K (RN)2 that are induced by two decoupled
differential inclusions and thus specified by tuples in LIP(RN ,RN)×LIP(RN ,RN).

Proposition 67 (Gorre). V⊂ is closed in
(
K (RN)2,dl2

)
.

Whenever (F,G) ∈ LIP(RN ,RN)2 belongs to the contingent transition set of V⊂ at
(K,L), then

co F(x) ⊂ co G(x) + TL(x).
holds for every x ∈ K.
For every (K,L) ∈ V⊂, the tuple (F,G) ∈ LIP(RN ,RN)2 belongs the contingent
transition set of V⊂ at (K,L) if every x ∈ K satisfies the inclusion

co F(x) ⊂ co G(x) + TC
L (x).

This implication is a special case of the following statement considering tuples of
three compact sets. Strictly speaking, K (RN)3 Def.= K (RN)×K (RN)×K (RN) is
now supplied with the distance

dl3 : K (RN)3×K (RN)3 −→ [0,∞[,
(
(K1,K2,K3), (L1,L2,L3)

) �−→ dl(K1,L1)+ dl(K2,L2)+ dl(K3,L3)

and, tuples of three morphological transitions serve as transitions on the metric
space (K (RN)3,dl3) – following the notion of Lemma 27 (on page 45). This is
equivalent to considering reachable sets of three decoupled differential inclusions.
The original form of the next proposition also goes back to Anne Gorre [90] and
concerns contingent transition sets as formulated in [10, Theorem 4.2.8]. Here,
however, we prefer a slightly stronger assumption in statement (2.) so that we can
specify sufficient conditions for the “adjacent transition set”. This feature will be
useful for verifying Proposition 69 below. Proofs are again postponed to the end of
this section.

Proposition 68 (Gorre). The subset

V⊂∩ :=
{
(K,L,M) ∈K (RN)3

∣
∣ K ⊂ L∩M

}

is closed in the metric space
(
K (RN)3, dl3

)
. Furthermore,

1. If (F,G,H) ∈ LIP(RN ,RN)3 belongs to the contingent transition set of V⊂∩ at
(K,L,M) ∈ V⊂∩ then

co F(z)+ T �
K(z) ⊂ (

co G(z)+ TL(z)
) ∩ (co H(z)+ TM(z)

)
for every z ∈ K.

2. If (F,G,H) ∈ LIP(RN ,RN)3 satisfies

co F(z) ⊂ (
co G(z)+ TC

L (z)
) ∩ (co H(z)+ TC

M(z)
)

for every z ∈ K

then (F,G,H) even fulfills lim
h↓0

1
h · dist

(
ϑ(F,G,H)(h, (K,L,M)), V⊂∩

)
= 0 and

so, (F,G,H) belongs to the contingent transition set of V⊂∩ at (K,L,M) ∈ V⊂∩.
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Finally we extend this list of Gorre’s earlier results by considering a further set of
constraints in detail:

V∩,∪⊂ :=
{
(K,L,M) ∈K (RN)3

∣∣ K ∩L �= /0, K ∪L ⊂ M
}

Proposition 69. The subset V∩,∪⊂ ⊂ K (RN)3 is closed with respect to dl3.
Moreover,

1. If (F,G,H) ∈ LIP(RN ,RN)3 belongs to the contingent transition set of V∩,∪⊂
at (K,L,M) ∈ V∩,∪⊂ then

⎧
⎨

⎩

/0 �= (
co F(x) − co G(x)

) ∩ PK
L (x) for some x ∈ K ∩L,

co F(z) ⊂ co H(z) + TM(z) for every z ∈ K,
co G(z) ⊂ co H(z) + TM(z) for every z ∈ L.

2. If (F,G,H) ∈ LIP(RN ,RN)3 satisfies
⎧
⎨

⎩

/0 �= (
co F(x) − co G(x)

) ∩ PK
L (x) for some x ∈ K ∩L,

co F(z) ⊂ co H(z) + TC
M(z) for every z ∈ K,

co G(z) ⊂ co H(z) + TC
M(z) for every z ∈ L,

then (F,G,H) belongs to the contingent transition set of V∩,∪⊂ at (K,L,M) ∈
V∩,∪⊂.

Proof (of Proposition 68). First, we verify that V⊂∩ is closed in the metric space(
K (RN)3, dl3

)
. Let

(
(Kn,Ln,Mn)

)
n∈N

be any sequence in V⊂∩ that converges to a
tuple (K,L,M) ∈K (RN)3 with respect to dl3. Then for every ε > 0, there exists an
index nε ∈ N with K ⊂ Bε (Knε ), Lnε ⊂ Bε (L), Mnε ⊂ Bε(M) and thus,

K ⊂ Bε (Knε ) ⊂ Bε (Lnε ∩Mnε ) ⊂ Bε
(
Bε(L)∩Bε (M)

)
.

As K,L,M are nonempty compact subsets of R
N , the limit for ε ↓ 0 provides

K ⊂ L∩M (indirectly), i.e. (K,L,M) ∈ V⊂∩.

(1.) Assume that (F,G,H) ∈ LIP(RN ,RN)3 belongs to the contingent transi-
tion set of V⊂∩ at (K,L,M) ∈ V⊂∩. Without loss of generality, all values of F,G,H
are supposed to be convex in addition. Now fix any z ∈ K, v ∈ F(z) and u ∈ T �

K(z).
We show that v + u ∈ (G(z)+ TL(z)

)∩ (H(z)+ TM(z)
)
.

According to Definition 16 of contingent transition sets, there exist sequences
(hn)n∈N, (εn)n∈N,

(
(Kn,Ln,Mn)

)
n∈N

in R
+
0 and V⊂∩ respectively with εn+hn ≤ 1

n ,

dl
(
ϑF (hn,K), Kn

)
+ dl
(
ϑG(hn,L), Ln

)
+ dl
(
ϑH(hn,M), Mn

) ≤ εn hn

for all n ∈ N. Moreover, there is a sequence (un)n∈N converging to u ∈ T �
K(z) such

that z+hn un ∈ K holds for every n ∈N. Filippov’s Theorem A.6 ensures a solution
zn(·) ∈W 1,1([0,1],RN) of z′n(·) ∈ F(zn(·)) L 1-a.e. with zn(0) = z+ hn un ∈ K and
∣
∣zn(t) − (z+ hn un + t v)

∣
∣ ≤ |v|

Lip F

(
eLip F ·t − 1 − Lip F · t) ≤ const(F) · t2.
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Then, we obtain

zn(hn) ∈ ϑF(hn,K) ⊂ Kn + εn hn B

⊂ Ln∩Mn + εn hn B

⊂ (Bεn hn

(
ϑG(hn,L)

) ∩ Bεn hn

(
ϑH(hn,M)

))
+ εn hn B

for every n ∈ N and, we can select xn ∈ L, yn ∈M with

zn(hn) ∈
(
Bεn hn

(
ϑG(hn,xn)

) ∩ Bεn hn

(
ϑH(hn,yn)

))
+ εn hn B.

In particular, (xn)n∈N and (yn)n∈N have the limit z∈K in common with
(
zn(hn)

)
n∈N

.
Due to εn ↓ 0, Lemma A.14 (on page 448) implies

⎧
⎨

⎩

Limsupn→∞
zn(hn)−xn

hn
⊂ G(z),

Limsupn→∞
zn(hn)−yn

hn
⊂ H(z).

Choosing subsequences for any accumulation points ĝ := lim
k→∞

znk (hnk )−xnk
hnk

∈ G(z)

and ĥ := lim
k→∞

znk (hnk )−ynk
hnk

∈ H(z), the following limits exist
⎧
⎪⎨

⎪⎩

lim
k→∞

xnk − z
hnk

= lim
k→∞

(
xnk − znk (hnk )

hnk
+

znk (hnk )− z
hnk

)
= − ĝ + u + v ∈ TL(z),

lim
k→∞

ynk − z
hnk

= lim
k→∞

(
ynk − znk (hnk )

hnk
+

znk (hnk )− z
hnk

)
= − ĥ + u + v ∈ TM(z).

(2.) Now suppose (F,G,H) ∈ LIP(RN ,RN)3 to have convex values with

F(z) ⊂ (
G(z)+ TC

L (z)
) ∩ (H(z)+ TC

M(z)
)

for every z ∈ K ⊂ L∩M.

Set γ := max
{‖F‖∞ + Lip F, ‖G‖∞+ Lip G, ‖H‖∞+ Lip H

}
as an abbreviation.

Fix ε > 0 arbitrarily. Lemmas A.14 and A.17 (on pages 448, 450 respectively) state
that for every x ∈ K there exists ρ = ρ(ε,x) ∈ ]0,ε[ such that

⎧
⎪⎨

⎪⎩

ϑF(h,y) ⊂ y + h · F(x) + ε h B

y + h · G(y) + h · (TC
L (x)∩B2γ

) ⊂ ϑG(h,L) + ε h B

y + h · H(y) + h · (TC
M(x)∩B2γ

) ⊂ ϑH(h,M) + ε h B

for all y ∈ K ∩Bρ(x) and h ∈ [0,ρ ]. Now finitely many points x1 . . . xk ∈ K suffice
for an open cover of set K ∈K (RN):

K ⊂
⋃

j=1 ...k

Bρ(ε,x j)(x j)◦ .

For each y ∈ K, let j(y) ∈ {1 . . . k} denote an index with
∣
∣y− x j(y)

∣
∣ < ρ(ε,x j) < ε .

Then we obtain for all positive h < min
{
ρ(ε,x j)

∣
∣1≤ j ≤ k

}
< ε

dist
(
ϑF(h,K), ϑG(h,L)

)

≤ dist
( ⋃

y∈K

(
y + h · F(x j(y))

)
,ϑG(h,L)

)
+ ε h

≤ dist
( ⋃

y∈K

(
y + h · (G(x j(y)) + (TC

L (x j(y))∩B2γ)
))

, ϑG(h,L)
)

+ ε h ,
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dist
(
ϑF(h,K), ϑG(h,L)

)

≤ dist
( ⋃

y∈K

(
y + h · (G(y) + (TC

L (x j(y))∩B2γ )
))

, ϑG(h,L)
)
+ (γ+ 1) ε h

≤ ε h+(γ+ 1) ε h.

The corresponding inequality for H and M implies for all h > 0 sufficiently small

ϑF(h,K) ⊂ B(γ+2) ε h

(
ϑG(h,L)

) ∩ B(γ+2) ε h

(
ϑH(h,M)

)

and thus,

lim
h↓0

1
h · dist

(
ϑ(F,G,H)

(
h, (K,L,M)

)
, V⊂∩

)
= 0. �

Proof (of Proposition 69). The set V∩,∪⊂ ⊂K (RN)3 can be regarded as an
intersection of three sets similar to the types investigated by Gorre:

V∩,∪⊂ =
({

(K,L) ∈K (RN)2
∣
∣ K ∩L �= /0

}×K (RN)
)

∩ (K (RN)×{(L,M) ∈K (RN)2
∣
∣ L⊂M

})

∩ {(K,L,M) ∈K (RN)3
∣
∣ K ⊂M, L ∈K (RN) arbitrary

}

As each of these three sets is closed w.r.t. dl3, so is their intersection V∩,∪⊂.

(1.) According to Proposition 33 (c) (on page 51), the contingent tran-
sition set of an intersection is contained in the intersection of the contingent
transition sets. Statement (1.) thus results from Gorre’s characterizations in
Proposition 66 (just with the restricted class of transitions in LIP(RN ,RN)2 in-
stead of LIP(RN×R

N ,RN)2) and Proposition 67 respectively.

(2.) As a consequence of Proposition 66, the tuple (F,G) ∈ LIP(RN ,RN)2 is
contingent to V∩ at (K,L). Hence there exist sequences (hn)n∈N,

(
(Kn,Ln)

)
n∈N

in
]0,1[ and K (RN)2 respectively satisfying for all n ∈ N

hn ≤ 1
n , Kn∩Ln �= /0, dl

(
ϑF(hn,K), Kn

)
+ dl

(
ϑG(hn,L), Ln

) ≤ hn
n .

This implies B hn
n

(
ϑF (hn,K)

) ∩ B hn
n

(
ϑG(hn,L)

) �= /0 for every n ∈ N.

In the proof of Proposition 68, we have just concluded from
{

F(z) ⊂ H(z) + TC
M(z) for every z ∈ K,

G(z) ⊂ H(z) + TC
M(z) for every z ∈ L

that for every ε > 0, all sufficiently small h > 0 fulfill
{
ϑF (h,K) ⊂ Bε h

(
ϑH(h,M)

)

ϑG(h,L) ⊂ Bε h
(
ϑH(h,M)

)

Hence, the inclusion

B hn
n

(
ϑF(hn,K)

) ∪ B hn
n

(
ϑG(hn,L)

) ⊂ B(ε+ 1
n ) hn

(
ϑH(hn,M)

)

holds for all large n ∈ N depending on ε > 0. An appropriate subsequence for
ε ↓ 0 clarifies that (F,G,H) belongs to the contingent transition set of V∩,∪⊂ at
(K,L,M) ∈ V∩,∪⊂. �
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1.9.6 Solutions to Morphological Equations

Now we apply the rather general results about mutational equations to the metric
space (K (RN),dl) and the morphological transitions (represented by the set-valued
maps in LIP(RN ,RN)).
Let F : K (RN)× [0,T ] −→ LIP(RN ,RN) be given. According to Definition 13
(on page 38), a compact-valued tube K(·) : [0,T ]�R

N is a solution to the so-called
morphological equation

◦
K (·) � F

(
K(·), · )

if (and only if) K(·) is a morphological primitive of the composition

F (K(·), ·) : [0,T ] −→ LIP(RN ,RN),

i.e. K(·) is Lipschitz continuous with respect to dl and satisfies

lim
h↓0

1
h · dl

(
ϑF (K(t),t) (h, K(t)), K(t + h)

)
= 0

at Lebesgue-almost every time t ∈ [0,T ].
Proposition 57 (on page 64) has already provided an equivalent characterization of
morphological primitives:

Proposition 70 (Solutions to morphological equations as reachable sets).
Suppose F :

(
K (RN),dl

)× [0,T ] −→ (LIP(RN ,RN),dl∞
)

to be a Carathéodory
function (i.e. here continuous with respect to the first argument and measurable
with respect to time) satisfying

sup
M∈K (RN )

t∈ [0,T ]

(‖F (M, t)‖∞+ Lip F (M, t)
)

< ∞ .

Then a continuous tube K : [0,T ]�R
N is a solution to the morphological equation

◦
K (·) � F

(
K(·), · )

if and only if at every time t ∈ [0,T ], the set K(t)⊂R
N coincides with the reachable

set of the initial set K(0)⊂ R
N and the nonautonomous differential inclusion

x′(·) ∈ F
(
K(·), ·) (x(·)).

Proof. Suppose the tube K(·) : [0,T ]� R
N to be continuous. As a consequence

of the Carathéodory property of F (·, ·), the composition

F (K(·), ·) : [0,T ]−→ LIP(RN ,RN)

is always measurable and thus, we can conclude the claimed equivalence directly
from Proposition 57. �

First we focus on the initial value problem of morphological equations without
state constraints:
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Proposition 71 (Peano’s Theorem for morphological equations).
Suppose F :

(
K (RN),dl

)× [0,T ]−→ (LIP(RN ,RN),dl∞
)

to be continuous

sup
M∈K (RN ), t∈ [0,T ]

(‖F (M, t)‖∞+ Lip F (M, t)
)

< ∞ .

Then for every initial set K0 ∈K (RN), there exists a solution K : [0,T ]� R
N to

the morphological equation
◦
K (·) � F

(
K(·), · )

with K(0) = K0.

Proof results directly from Theorem 20 (on page 40) in combination with
Proposition 47 (on page 57) and Proposition 53 (on page 62). �

Proposition 72 (Cauchy-Lipschitz Theorem for morphological equations).
Suppose the continuous function F :

(
K (RN),dl

)× [0,T ]−→ (LIP(RN ,RN),dl∞
)

to be Lipschitz continuous in the first argument with

sup
M∈K (RN ), t∈ [0,T ]

(‖F (M, t)‖∞+ Lip F (M, t)
)

< ∞ .

Then for every initial set K0 ∈K (RN), there exists a unique solution K : [0,T ]�
R

N to the morphological equation
◦
K (·) � F

(
K(·), · )

with K(0) = K0.

Proof. The existence of a solution results from preceding Proposition 71 and,
Proposition 24 (on page 42) implies uniqueness. �

Proposition 73 (Continuity w.r.t. initial data and the right-hand side).
Suppose F :

(
K (RN),dl

)× [0,T ] −→ (
LIP(RN ,RN),dl∞

)
to be λ -Lipschitz

continuous in the first argument with

α̂ := sup
M∈K (RN ), t∈ [0,T ]

Lip F (M, t) < ∞ .

For G : K (RN)× [0,T ]−→ LIP(RN ,RN) assume sup
M, t

dl∞
(
F (M, t), G (M, t)

)
< ∞.

Then every solutions K1(·), K2(·) : [0,T ]�R
N to the morphological equations

{ ◦
K1 (·) � F

(
K1(·), ·

)

◦
K2 (·) � G

(
K2(·), ·

)

satisfy the following inequality for every t ∈ [0,T ]

dl
(
K1(t), K2(t)

) ≤
(

dl
(
K1(0), K2(0)

)
+ t · sup

M, s
dl∞
(
F (M,s), G (M,s)

))
e(λ+α̂) t .

Proof is also a consequence of Proposition 24 in combination with Proposition 53
(about morphological transitions). �
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Now we consider the initial value problem with state constraints and apply
Nagumo’s Theorem 19 (on page 40) to morphological transitions on (K (RN),dl):

Proposition 74 (Nagumo’s Theorem for morphological equations).
Suppose F : (K (RN),dl)−→ (LIP(RN ,RN), dl∞) to be continuous with

sup
M∈K (RN )

(‖F (M)‖∞+ Lip F (M)
)

< ∞.

Then the following statements are equivalent for any closed subset V ⊂K (RN) :

1. Every set K0 ∈ V is the initial set of at least one solution K : [0,1]−→K (RN)

to the morphological equation
◦
K (·) � F

(
K(·)) with K(t)∈V for all t ∈ [0,1].

2. V ⊂K (RN) is a viability domain of F in the sense that F (M) ∈ TV (M) for
every M ∈ V . �

Corollary 75. Suppose F : (K (RN),dl) −→ (LIP(RN ,RN), dl∞) to be continu-
ous with

sup
M∈K (RN)

(‖F (M)‖∞+ Lip F (M)
)

< ∞.

Let M ⊂ R
N be a nonempty closed set satisfying co F (K)(x) ⊂ TM(x) ⊂ R

N for
every nonempty compact subset K ⊂M and element x ∈ K.

Then for any compact initial set K0⊂M, there exists a solution K(·) : [0,1]�R
N

to the morphological equation
◦
K (·) � F

(
K(·)) with K(0) = K0 and K(t) ⊂ M

for all t ∈ [0,1].

Proof results from Proposition 74 and Example 64 (on page 68). �

As mentioned briefly in Remark 31, the existence of viable solutions can also be
guaranteed for systems of morphological equations. Now Propositions 66 and 68
respectively imply the following statements (as Aubin has already concluded in
[10, §§ 4.3.2, 4.3.3]):

Corollary 76. Suppose F ,G : (K (RN)2,dl2) −→ (LIP(RN ,RN), dl∞) to be
continuous with

⎧
⎪⎨

⎪⎩

sup
M1,M2∈K (RN )

(‖F (M1,M2)‖∞ + Lip F (M1,M2)
)

< ∞,

sup
M1,M2∈K (RN )

(‖G (M1,M2)‖∞ + Lip G (M1,M2)
)

< ∞,

Assume for any sets M1, M2 ∈K (RN) with M1∩M2 �= /0
(
co F (M1,M2)(x) − co G (M1,M2)(x)

) ∩ PM1
M2

(x) �= /0 for some x ∈M1∩M2.
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Then for any sets K0,L0 ∈ K (RN) with K0 ∩ L0 �= /0, there exist solutions
K(·),L(·) : [0,1]� R

N to the morphological equations
{ ◦

K (·) � F
(
K(·), L(·))

◦
L (·) � G

(
K(·), L(·))

with K(0) = K0, L(0) = L0 and K(t)∩L(t) �= /0 for all t ∈ [0,1]. �

Corollary 77.
Suppose F ,G ,H : (K (RN)3,dl3)−→ (LIP(RN ,RN), dl∞) to be continuous with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sup
M̃∈K (RN)3

(‖F (M̃)‖∞ + Lip F (M̃)
)

< ∞,

sup
M̃∈K (RN)3

(‖G (M̃)‖∞ + Lip G (M̃)
)

< ∞,

sup
M̃∈K (RN)3

(‖H (M̃)‖∞ + Lip H (M̃)
)

< ∞,

Assume for any M̃ = (M1,M2,M3)∈K (RN)3 with M1⊂M2∩M3 and every x∈M1

co F (M̃)(x) ⊂ (
co G (M̃)(x)+ TC

M2
(x)
) ∩ (co H (M̃)(x)+ TC

M3
(x)
)

Then for any sets K0,L0,M0 ∈K (RN) with K0 ⊂ L0∩M0, there exist solutions
K(·),L(·),M(·) : [0,1]� R

N to the morphological equations⎧
⎪⎪⎨

⎪⎪⎩

◦
K (·) � F

(
K(·), L(·), M(·))

◦
L (·) � G

(
K(·), L(·), M(·))

◦
M (·) � H

(
K(·), L(·), M(·))

with K(0) = K0, L(0) = L0, M(0) = M0 and K(t)⊂ L(t)∩M(t) for all t ∈ [0,1].�

Finally we extend this list of conclusions here on the basis of Proposition 69 (2.):

Corollary 78. Suppose F ,G ,H : (K (RN)3,dl3)−→ (LIP(RN ,RN), dl∞) to be
continuous with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sup
M̃∈K (RN)3

(‖F (M̃)‖∞ + Lip F (M̃)
)

< ∞,

sup
M̃∈K (RN)3

(‖G (M̃)‖∞ + Lip G (M̃)
)

< ∞,

sup
M̃∈K (RN)3

(‖H (M̃)‖∞ + Lip H (M̃)
)

< ∞,

Assume for any M̃ = (M1,M2,M3)∈K (RN)3 with M1∩M2 �= /0 and M1∪M2 ⊂M3
⎧
⎪⎨

⎪⎩

/0 �= (co F (M̃)(x)−co G (M̃)(x)
)∩ PM1

M2
(x) for some x ∈M1∩M2,

co F (M̃)(z) ⊂ co H (M̃)(z)+TC
M3

(z) for every z ∈M1,

co G (M̃)(z) ⊂ co H (M̃)(z)+TC
M3

(z) for every z ∈M2.
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Then for any sets K0,L0,M0 ∈ K (RN) with K0 ∩ L0 �= /0 and K0 ∪ L0 ⊂ M0,
there exist solutions K(·),L(·),M(·) : [0,1]� R

N to the morphological equations
⎧
⎪⎪⎨

⎪⎪⎩

◦
K (·) � F

(
K(·), L(·), M(·))

◦
L (·) � G

(
K(·), L(·), M(·))

◦
M (·) � H

(
K(·), L(·), M(·))

with K(0) = K0, L(0) = L0, M(0) = M0 and K(t)∩L(t) �= /0, K(t)∪L(t) ⊂M(t)
for all t ∈ [0,1].

�
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1.10 Example: Morphological Transitions for Image
Segmentation

In the introductory section 0.2.1 (on page 3 ff.), we have already made a concrete
suggestion how to formulate the popular problem of image segmentation by means
of set-valued analysis. Demongeot and Leitner were the first to suggest mutational
equations as tools for image segmentation in [58]. Their proposal is mathematically
rather vague though and so it has served as motivation for the rigorous approach in
[131] presented now.

A grey-scale image in R
N (N ≥ 2) is given as a spatial function of real grey values

G : R
N −→R. In the search of an image segment which belongs to one and the same

object, the basic idea is to make a given initial compact set K0 ⊂ R
N expand such

that the composition with a specified “error functional”

Φ : K (RN)−→R, M �−→Φ(M) = ψ
(
L N(M),

∫

M
G dx,

∫

M
G2 dx

)

is a decreasing function of time. The subsequent examples of computer images use
essentially the variation with a form of penalty term α ·L N(M) (α > 0):

Φ(M) := 1
L N(M) ·

∫

M

(
G(x) − 1

L N(M) ·
∫

M
G(y) dy

)2
dx − α ·L N(M)

= 1
L N(M) ·

∫

M
G(x)2 dx − 1

L N(M) ·
(∫

M
G(y) dy

)2 − α ·L N(M).

This set evolution is to be continued as long as possible, i.e. the final set M ⊂ R
N

should not admit any strict decrease in Φ via the same approach of expansion. In
other words, we aim for a descent method in (K (RN),dl) with respect to Φ , but
due to potential difficulties with regularity, we do not insist on the steepest descent
“direction”.

Given: function of grey values G ∈C0
c (RN), N ≥ 2

error functionalΦ : K (RN)−→R

s.t. Φ(M) = ψ
(
L N(M),

∫

M
G dx,

∫

M
G2 dx

)

with some ψ ∈C2
c (]0,∞[×R

2, R),

initial set K0 ∈K (RN).

Wanted: K(·) : [0,T [−→K (RN) (T ∈ ]0,∞]):

(i) K(0) = K0

(ii) K(s)⊂ K(t) whenever s≤ t

(iii) K(·) continuous w.r.t. Hausdorff metric

(iv) Φ ◦K(·) : [0,T [ −→R nonincreasing

(v) M :=
⋃

0≤ t <T K(t) is “critical” w.r.t. Φ
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1.10.1 Analytical Tools of the Continuous Segmentation Problem

The central aspect of constructing K(t) is how the Lebesgue integral depends on
the current set. For the flow along smooth vector fields, the following version of
so-called Reynolds Transport Theorem is well-known (see e.g. [55, § 8.3]):

Proposition 79. Suppose w∈C1(RN ,RN). For a nonempty compact set K0⊂R
N ,

let K(t) = ϑw(t,K0) contain all points x(t) of solutions x(·) ∈ C1([0, t],RN) of
x′ = w(x), x(0) ∈ K0.

Then for everyΨ ∈C1(R×R
N), the function Iw : t �−→

∫

K(t)
Ψ (t,x) dx fulfills

d+

dt+ Iw(0) Def.= lim
t ↓0

Iw(t)−Iw(0)
t =

∫

K0

(
∂tΨ(0,x) + div

(
Ψ(0,x) w(x)

))
dx.

If, in addition, K0 satisfies the assumptions of Gauss’ Integral Theorem then

d+

dt+ Iw(0) =
∫

K0

∂tΨ(0,x) dx +
∫

∂K0

Ψ(0,x) w(x) · νK0(x) dσx

with the exterior unit normal νK0 to K0.

Our construction of K(t), however, prefers reachable sets of differential inclu-
sions x′ ∈ F̃(·,x) (instead of differential equations) because this ansatz covers a
more general class of possibly irreversible set deformations.

This theorem cannot be generalized immediately to the Lebesgue measure of
reachable sets ϑF̃(·,K), but it gives a hint about the form of its derivative at time t:

Naturally K is replaced by ϑF̃(t,K) and all velocities of F̃(t,x) ⊂ R
N have to be

considered (instead of w(x)). Moreover the unit normal vector νK(x) might not
be defined uniquely. If ∂K is not sufficiently smooth there may be more than one
vector satisfying a normal condition instead, and all of them have to be taken into
consideration. We use the following definition of tangent and normal vectors re-
spectively.

Definition 80. Let V ⊂ R
N be a nonempty subset and x belong to the closure of

V . TV (x) denotes Bouligand’s contingent cone, i.e.

TV (x) Def.=
{

w ∈ R
N
∣
∣
∣ liminf

h↓0

1
h · dist(x + hw, V ) = 0

}
.

Bouligand’s normal cone NB
V (x) is defined as its negative polar cone, i.e.

NB
K(x) := TV (x)− Def.=

{
p ∈R

N
∣∣ p ·w ≤ 0 for all w ∈ TV (x)

}
.

As a further abbreviation, set �NB
V (x) := NB

V (x) ∩ B =
{

w ∈ NB
V (x)

∣
∣ |w| ≤ 1

}
.

According to Proposition 79, the derivative of the Lebesgue measure L N(ϑw(·,K))
(at time t = 0) is the surface integral of the normal component of velocity w(x).
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In other words, the graphical interpretation regards it as resulting from the question
how much the initial set K0 is deformed in normal direction at each boundary point
x ∈ ∂K0. For the generalization to the reachable set ϑF̃ (t,K0) this question has to
be modified slightly:

How much is the current set deformed at most
by the normal components of all velocities ?

As a consequence, we expect the integrand w(x) ·νK(x) to be replaced by

sup
{

w · p ∣∣w ∈ F̃(t,x), p ∈ �NB
ϑF̃ (t,K0)(x)

}
= sup

(
F̃(t,x) · �NB

ϑF̃ (t,K0)(x)
)
.

Finally the boundary of ϑF̃(t,K0) does not have to be sufficiently smooth for
the complete definition of the surface integral. This problem of regularity is
avoided by the (N− 1)-dimensional Hausdorff integral. Under the assumptions of
Proposition 79 the latter provides an equivalent result:

d
dt L N(ϑw(t,K))

∣
∣∣
t=0

=
∫

∂K
w(x) ·νK(x) dH N−1x,

but the important difference is that the Hausdorff measure H N−1 is defined for any
subset of R

N (if the value ∞ is tolerated). Combining all these ideas, we presume
that if the derivative of L N(ϑF̃ (t,K0)) exists it has the form

∫

∂ ϑF̃ (t,K0)
sup
(
F̃(t,x) · �NB

ϑF̃ (t,K0)(x)
)

dH N−1x.

The precise result is the following statement of Theorem A.54 (on page 476):

Proposition 81. Assume N ≥ 2. Let ρF̃ ,μF̃ > 0, vF̃ ∈ C0([0,T ]×R
N ,RN) and

F̃ : [0,T ]×R
N �R

N be a Carathéodory map with compact convex values and

BρF̃
(vF̃(t,x)) ⊂ F̃(t,x) ⊂ μF̃ (1+|x|) ·B

for every (t,x) ∈ [0,T ]×R
N. Furthermore assume K0 ∈K (RN), ψ ∈C0(RN).

Then the Lebesgue integral of ψ over the reachable set ϑF̃(t,K0)

IF̃ : [0,T ] −→ R, t �−→
∫

ϑF̃ (t,K0)
ψ(x) dx

is absolutely continuous and has the weak derivative
d
dt IF̃(t) =

∫

∂ ϑF̃ (t,K0)
ψ(x) · sup

(
F̃(t,x) · �NB

ϑF̃ (t,K0)(x)
)

dH N−1x.

Remark 82. The complete proof (presented in [127]) provides some additional
regularity properties of the boundary ∂ϑF̃(t,K0) at L 1-almost every time t ∈ [0,T ]
in terms of geometric measure theory: First, ϑF̃ (t,K0) has locally finite perime-
ter. Second, ∂ϑF̃(t,K0) can be represented as level set of a Lipschitz continuous
function and thus is countably (H N−1,N−1)-rectifiable at L 1-almost every time t.
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In regard to image segmentation, Proposition 81 has an essential disadvantage
though. The set-valued map F̃ : [0,T ]×R

N�R
N is assumed to have all values with

nonempty interior. Hence, the reachable sets always undergo a form of translated
expansion in every boundary point. It is difficult to stop near the boundary of the
wanted segment.
This obstacle motivates us to prefer the following consequence as basis for solving
the continuous segmentation problem. It results from Proposition 81 by means of
vanishing neighborhoods of K0 and monotone convergence of integrals [127, § 5],
but this proof is restricted to autonomous differential inclusions with Lipschitz
continuous right-hand side.

Proposition 83. Assume N ≥ 2. Let F : R
N�R

N be a Lipschitz continuous map
with compact convex values satisfying 0 ∈ F(x)◦ or F(x) = {0} for every x ∈ R

N.
Furthermore assume K0 ∈K (RN), ψ ∈C0(RN).

Then, IF : [0,T ] −→ R, t �−→
∫

ϑF (t,K0)
ψ(x) dx is absolutely continuous with

d
dt IF(t) =

∫

∂ ϑF (t,K0)
ψ(x) · sup

(
F(x) · �NB

ϑF (t,K0)(x)
)

dH N−1x.

Now we need an ansatz for the region growing method in image segmentation.
As explained in § 0.2.1 (on page 5), the reachable sets of K0 and

F : R
N � R

N , x �→ Bc(x)(0) Def.=
{

w ∈ R
N
∣
∣ |w| ≤ c(x)

}

reflect the notion that we prescribe the speed of propagation, but not the directions
of the admitted velocity vectors. The assumptions of the preceding proposition are
satisfied if c : R

N −→ [0,∞[ is Lipschitz continuous. If c(·) is bounded in addition,
this ansatz is an example of a morphological transition in the sense of Example 5
(on page 34 f.).
Due to the rotational symmetry of the balls Bc(·)(0) (with space-dependent radius),
the weak derivative of Ic(·)B(t) does not depend on the normal cones explicitly

d
dt Ic(·)B(t) =

∫

∂ ϑc(·)B(t,K0)
ψ(x) · c(x) dH N−1x

and so, the composition with the given shape functional

Φ : K (RN)−→ R, M �−→Φ(M) = ψ
(
L N(M),

∫

M
G dx,

∫

M
G2 dx

)

has the weak derivative

d
dt Φ

(
ϑc(·)B(t,K0)

)
=
∫

∂ ϑc(·)B(t,K0)
ϕ(x, ϑc(·)B(t,K0)) · c(x) dH N−1x

with the coefficient function, which is a quadratic polynomial in G(x),

ϕ(z, M) :=
2

∑
k=0

∂k+1ψ
(
L N(M),

∫

M
G dx,

∫

M
G2 dx

)
· G(z)k .
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1.10.2 Solving the Continuous Segmentation Problem

For starting deforming the initial set K0 ∈K (RN), we are to construct a bounded
Lipschitz continuous speed function c : R

N −→ [0,∞[ such that the real-valued
composition t �−→ Φ

(
ϑc(·)B(t,K0)

)
is decreasing – for a short period (at least).

The region growing approach in this section has a rather constructive character and
does not apply the general results about continuous mutational equations explicitly
– due to lacking regularity of Φ (in a broad sense).
Indeed, we cannot expect to find the proper answer for all times immediately
since the analytical basis in Proposition 83 implies the restriction to reachable sets
of autonomous differential inclusions. For this reason, we present a construction
which makes the sets evolve piecewise in time.
In more conceptual words, for each compact subset of R

N , we “select” a morpho-
logical transition (represented by a bounded Lipschitz continuous speed function)
which induces a descent direction with respect to Φ , but the regularity of ϕ does
not guarantee the continuity of this selection principle in an obvious way. The final
goal of converging to a “critical” set makes the selection even more difficult.

The sign of ϕ( · , K0) is to play the decisive role where speed c(·) is equal to 0.
In particular, it is sufficient to demand c(x) = 0 whenever ϕ(x,K0) > 0. This con-
nection can serve as a starting point for constructing some Lipschitz continuous
c(·) only if we can rely on the continuity of (t,x) �−→ ϕ(x, ϑc(·)B(t,K0)) (at least).
The assumption G ∈C0

c (RN) proves here to be useful:

Lemma 84. Assume N ≥ 2. Let F : R
N � R

N be a Lipschitz continuous map
with compact convex values satisfying 0 ∈ F(x)◦ or F(x) = {0} for every x ∈ R

N.
Furthermore assume K0 ∈K (RN).

Then, [0,∞[×R
N −→ R, (t,x) �−→ ϕ(x, ϑF(t,K0)) is continuous.

The continuity of ϕ( · , ϑF(·,K0)) gives an opportunity to reduce the error functional
Φ by means of “local” expansion:

Lemma 85. Let K0 ∈K (RN) and x ∈ ∂K0 satisfy ϕ(x,K0) < 0.
Then there exist both a bounded Lipschitz continuous function c : R

N −→ [0,∞[ and
some Δ > 0 such that the composition

[0, Δ ] −→ R, t �−→ Φ(ϑc(·)B(t,K0))

is strictly decreasing.

A strictly increasing sequence (tn)n∈N in [0,∞[ is to describe the partition of the
time axis with respect to which the speed functions cn : R

N −→ [0,∞[ (n ∈ N) are
defined constant in time.
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The expansion property of ϑcn(·)B(·,K0) has an important consequence: It is
impossible to correct mistakes during the image segmentation. Roughly speaking,
whenever the reachable set ϑcn(·)B(t,K0) has passed the wanted contour on the
image there is no opportunity to return. For this reason we prefer a criterion of the
form

ϕ(x,ϑF̃(t,K0)) <−δ
(with a threshold δ > 0 decreasing) to a simple check of the sign. This slight mod-
ification has the additional advantage that the points with larger absolute values of
ϕ are taken into consideration first. In the following let (δm)m∈N denote a sequence
in ]0,1] converging monotonically to 0.

The two preceding notions may be combined to an algorithm providing a solution
of the continuous segmentation problem (on page 79) explicitly. In addition to the
sequence (tn)n∈N, we introduce a monotone sequence (nm)m∈N of indices such that
the deformation during the intervals

[tnm ,tnm+1], [tnm+1, tnm+2] . . . [tnm+1−1, tnm+1 ]

serves the supplementary purpose that

ϕ(x, ϑF̃(tnm+1 , K0)) ≥ − 2δm+1

for all x ∈ ∂ ϑF̃(tnm+1 , K0) ∩ B1/δm+1
(0). This is to guarantee

ϕ(x, M) ≥ 0

for all boundary points x of the final set M :=
⋃

t ϑF̃(t,K0) ⊂ R
N , i.e. M is critical

w.r.t. Φ in the sense of Definition 0.2 (on page 6). We do not insist on the resulting
set M being closed (and thus compact) because ϕ(·, ·) is continuous with respect to
both arguments, but ϕ(·,M) = ϕ(·,M) can be ensured only by means of additional
assumptions like L N(∂M) = 0.
Starting with n0 := 0, t0 := 0 the inductive algorithm is shown in Fig. 1.1 below.
It has four properties whose short (but merely technical) proofs are given in the end
of this section.

Proposition 86. The iterative algorithm in Fig. 1.1 has the following properties:

(i) τ j > 0 for every j ∈ N (if we set inf /0
Def.= ∞)

(ii) nm+1 is finite for each m ∈ N, i.e. starting with index j = nm and time tnm,
the condition ϕ(x, Kj+1) ≥ −2δm+1 for all x ∈ ∂Kj+1 ∩ B1/δm is satisfied
after (at most) finitely many iterations w.r.t. j.

(iii) ϑF̃(·,K0) : [0,T [−→ K (RN) is expanding, i.e. the inclusion ϑF̃(s,K0) ⊂
ϑF̃(t,K0) holds whenever s≤ t.

(iv) M :=
⋃

t ϑF̃(t,K0) ⊂ R
N is critical w.r.t. Φ in the sense of Definition 0.2,

i.e. ϕ(·,M) ≥ 0 on ∂M.
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t0 = 0 — K0,δ1 > 0 given

t1 – K1

t2 – K2

t3 – K3

t4 – K4

...
...

tn1 —

Kn1 is to satisfy

ϕ(x,Kn1 )≥−2δ1

∀ x ∈ ∂Kn1 , |x| ≤ 1
δ1

.

Continue with
smaller δ2 > 0
(finally, δm ↓ 0).

tn1+1 – Kn1+1

...
...

Repeat step m−→ m+1 (with δ := δm+1)

Repeat step t j −→ t j+1 :

Uj := {x ∈ R
N |ϕ(x, Kj) < −δ }

c j : R
N −→ [0,1] with

c j(x) := min{dist(x, R
N \Uj), 1}

Fj : R
N � R

N , x �→ c j(x)B

τ j := inf{τ > 0 |
∃ x ∈ ∂ ϑFj (τ , Kj)∩Uj :

ϕ(x, ϑFj (τ , Kj)) ≥ 0}
∈ ]0, ∞]

t j+1 := t j +min{τ j, 1}
F̃(t, ·) := Fj(·) = c j(·) B ∀ t ∈ [t j, t j+1[,

Kj+1 := ϑFj(t j+1− t j, Kj)

= ϑF̃(t j+1, K0)

Until: ∀ x ∈ ∂Kj+1 ∩ B1/δ (0) :

ϕ(x, Kj+1) ≥ −2δ .

nm+1 := j +1

Fig. 1.1 Iterative algorithm for the solution of the continuous segmentation problem

Proof (of Lemma 84 on page 83). By definition,

ϕ : R
N×K (RN) −→ R,

(z, M) �−→
2

∑
k=0

∂k+1ψ
(
L N(M),

∫

M
G dx,

∫

M
G2 dx

)
· G(z)k

is a quadratic polynomial in G(z) and thus, ψ ∈ C2
c (]0,∞[×R

2, R) implies the
equi-continuity of ϕ(·,M) : R

N −→ R in a neighborhood of each tuple (z,M) with
L N(M) > 0. Moreover, the Lebesgue integral over the reachable set ϑF(t,K0) de-
pends continuously on time t due to Proposition 83 (on page 82) and G ∈C0

c (RN).
These two features guarantee the claimed continuity of the composition

[0,∞[×R
N −→ R, (t,x) �−→ ϕ(x, ϑF (t,K0)).

�
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Proof (of Lemma 85 on page 83). Due to the continuity of ϕ(·,K0), there

exists a bounded neighborhood V ⊂ R
N of x with ϕ(·,K0) ≤ ϕ(x,K0)

2 < 0 in V .
The distance from its complement induces the bounded Lipschitz function

c(·) : R
N −→ [0,1], z �−→ min

{
dist(z, R

N \V ), 1
}
.

Then the corresponding composition [0,∞[×R
N −→R, (t,z) �−→ϕ(z, ϑc(·)B(t,K0))

is continuous due to Lemma 84 and in particular, it is uniformly continuous in the
compact set [0,1]×B1(K0)⊂R×R

N. Hence there exists some Δ ∈ ]0,1] satisfying
{

ϑc(·)B(Δ , K0) ⊂ B1(K0),
ϕ(z, ϑc(·)B(t, K0)) < 0 for all t ∈ [0,Δ ], z ∈V ∩B1(K0).

Then Φ
(
ϑc(·)B(·,K0)

)
is strictly decreasing in [0,Δ ] as a consequence of

Proposition 83 (on page 82). �

The (Elementary, But Complete) Proof of Proposition 86 (on Page 84)

For the sake of simplicity we do not present the detailed induction with respect to m
and suppose δ > 0 to be fixed instead. Moreover the inductive definition of Uj . . .Kj

is continued for any j ∈ N (with the same δ ):

Initialize K̂0 ∈K (RN), L N(K̂0) > 0,

t̂0 ≥ 0 and δ > 0 (fixed).

Repeat step j −→ j + 1 :

Û j :=
{

x ∈ R
N
∣
∣ϕ(x, K̂j) < −δ }

ĉ j : R
N −→ [0,1] with

ĉ j(x) := min
{

dist(x, R
N \Ûj), 1

}

F̂j : R
N � R

N , x �→ ĉ j(x)B

τ̂ j := inf{τ > 0 |
∃ x ∈ ∂ ϑF̂j

(τ, K̂j)∩Û j :

ϕ(x, ϑF̂j
(τ, K̂j)) ≥ 0}

∈ ]0, ∞]

t̂ j+1 := t̂ j + min{τ̂ j, 1}
K̂j+1 := ϑF̂j

(t̂ j+1− t̂ j, Kj)
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Then Proposition 86 is a consequence of the following claims:

(i’) τ̂ j > 0 for every j ∈ N,

(ii’) 0 < L N(K̂j) ≤ max{const(supp ψ), L N(K̂0)} for every j ∈ N,

(iii’) there exists j0 ∈ N such that ϕ(x, K̂j0) ≥ −2δ for all x ∈ ∂ K̂j0 ∩ B1/δ .

The return to the complete iterative algorithm in Fig. 1.1 is based on aborting this
(modified) construction at index j0 and continuing with a smaller value of δ > 0.
Statement (ii’) results directly from the assumption (on page 79) that the support of
ψ is compact.

Lemma 87. τ̂ j > 0 for every j ∈N.

Proof. Due to Lemma 84, [0,∞[×R
N −→ R, (τ,x) �−→ ϕ(x, ϑF̂j

(τ, K̂j)) is

continuous and so, it is uniformly continuous on the compact set [0,1]×B1(K̂j).
Hence there exists some τ0 ∈ ]0,1[ such that all x ∈ B1(K̂j) and τ ∈ ]0,τ0] fulfill

∣
∣ϕ(x, ϑF̂j

(τ, K̂j)) − ϕ(x, K̂j)
∣
∣ < 1

2 δ .

τ ≤ τ0 < 1 and ĉ j(·)≤ 1 imply ϑF̂j
(τ, K̂j)⊂ B1(K̂j) and thus every boundary point

x ∈ ∂ ϑF̂j
(τ, K̂j) ∩ Û j ⊂ B1(K̂j) ∩ Û j satisfies

ϕ(x, ϑF̂j
(τ, K̂j)) < ϕ(x, K̂j)+ 1

2 δ ≤ − 1
2 δ ,

i.e. τ̂ j ≥ τ0 > 0. �

In regard to statement (iii’), the next lemma provides a connection between the
changes of ϕ(x, ϑF(·,K)) and L N(ϑF (·,K)). It is the only context in which the
second derivatives of ψ are used. (The assumption ψ ∈ C1

c (]0,∞[×R
2) is enough

for the remaining conclusions.)

Lemma 88. Let F : R
N � R

N be a Lipschitz continuous map with compact
convex values satisfying 0 ∈ F(x)◦ or F(x) = {0} for every x ∈ R

N (as in Propo-
sition 83). Moreover suppose that G : R

N −→ R is bounded and continuous,
K ∈K (RN) with L N(K)≥ λ > 0 and ψ ∈C2

c (]0,∞[×R
2, R).

Then, for any t ≥ 0 and x ∈ R
N,

∣
∣ϕ(x, ϑF (t,K)) − ϕ(x,K)

∣
∣ ≤ const(ψ ,‖G‖∞,λ ) · (L N(ϑF (t,K))−L N(K)

)
.

Proof. Since all values of F contain 0 the reachable set ϑF(t,K) is expanding
and hence L N(ϑF(t,K)) ≥ L N(K) ≥ λ . Proposition 83 and ψ ∈ C2 imply the
absolute continuity of t �→ ϕ(x, ϑF(t,K)) for each x ∈R

N . The (weak) derivative is

2

∑
j=0

2

∑
k=0

∫

∂ ϑF (t,K)
∂ j+1∂k+1ψ · G(y) j G(x)k · sup

(
F(y) · �NB

ϑF (t,K)(y)
)

dH N−1y
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and, its absolute value has the upper bound
∣∣ d

dt ϕ(x, ϑF (t,K))
∣∣

≤ const
(‖D2ψ‖sup, ‖G‖∞

) ·
∫

∂ ϑF (t,K)
sup
(

F(y) · �NB
ϑF (t,K)(y)

)
dH N−1y

= const
(‖D2ψ‖sup, ‖G‖∞

) · d
dt L N(ϑF (t,K)) .

�

Lemma 89. τ̂ j = ∞ for almost every j ∈ N and thus, t̂ j −→ ∞ for j −→ ∞.

Proof. If τ̂ j < ∞, we obtain a lower estimate of L N(K̂j+1)−L N(K̂j) > 0 :
For any ε > 0 there exist some τ ∈ [τ̂ j, τ̂ j + ε[ and a point x satisfying

{
x ∈ ∂ ϑF̂j

(τ, K̂j) ∩ Û j

ϕ(x, ϑF̂j
(τ, K̂j)) ≥ 0

The definition of Û j implies ϕ(x, ϑF̂j
(τ, K̂j)) − ϕ(x, K̂j) ≥ δ . Now preceding

Lemma 88 leads to an estimate for the change of Lebesgue measure

L N(ϑF̂j
(τ, K̂j))−L N(K̂j) ≥ c δ .

with a constant c = c(ψ , G, L N(K0)) > 0. Due to Levi’s Theorem of Monotone
Convergence, ε −→ 0 provides L N(K̂j+1)−L N(K̂j) ≥ cδ .
Hence the situation τ̂ j < ∞ can arise only for a finite number of indices j ∈ N

until L N(K̂j) leaves the bounded set proj1(supp ψ)⊂ R (and then Û j = /0, τ̂ j = ∞
do not change any longer while j is increasing).

�

Lemma 90. Let K̂∞ :=
⋃

j K̂ j. Then, ϕ(·, K̂j)
j→∞−→ ϕ(·, K̂∞) locally uniformly.

Proof. Due to statement (ii’), the Lebesgue measures of K̂j, j ∈ N, are uni-
formly bounded. As the support of ψ is assumed to be compact, for all x ∈ R

N , the

argument of ∂k+1ψ at ϕ(x, K̂j), i.e.
(
L N(K̂j),

∫

K̂j

G dz,
∫

K̂j

G2 dz
)
, is contained

in a compact subset of ]0,∞[×R
2 (independent of j). Hence the partial derivatives

∂k+1ψ
(
L N(K̂j),

∫

K̂j

G dz,
∫

K̂j

G2 dz
)

are uniformly bounded for all j ∈ N.

As a consequence, the functions ϕ(·, K̂j) =
2

∑
k=0

∂k+1ψ(L N(K̂j) . . . ) ·G(·)k , j ∈ N,

are equi-continuous in any compact subset of R
N .

Moreover ψ ∈C2 and Lebesgue’s Theorem of Dominated Convergence lead to the
pointwise convergence ϕ(x, K̂j) −→ ϕ(x, K̂∞) for every x ∈ R

N and so finally,
these properties provide the locally uniform convergence. �
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Definition 91 ([19, Definition 1.1.1], [162, Definition 4.1]). The upper limit,
alias outer limit, of a sequence (Mn)n∈N of subsets in a metric space (X ,d)

Limsupn→∞ Mn :=
{

x ∈ X
∣
∣ liminf

n→∞
dist(x,Mn) = 0

}

consists of all cluster points of sequences (xn)n∈N with xn ∈Mn.

Lemma 92. ϕ(x, K̂∞)≥−δ for every point x ∈ Limsup j→∞ ∂ K̂j.

Proof. Suppose ϕ(x, K̂∞) < −δ for x ∈ Limsup∂ K̂j . Due to Lemma 90 and the
continuity of ϕ(·, K̂∞), there exist a radius Δ ∈ ]0,1] and an index k ∈ N with

ϕ(z, K̂j) < −δ for all z ∈ B3Δ (x) and j ≥ k.

Hence the construction implies B3Δ (x)⊂ Û j and ĉ j(z)≥ Δ for all z∈B2Δ (x), j≥ k.
According to Lemma 89, there are some j≥ k and y∈ K̂j with τ̂ j =∞, |x−y|< Δ

2 .
Then we conclude for each τ ∈ [0,1] = [0, t̂ j+1− t̂ j]

BΔ ·τ(y) ∩ BΔ (x) = ϑΔ ·B(τ,y) ∩ BΔ (x)
⊂ ϑF̂j

(τ,y)
⊂ ϑF̂j

(τ, K̂j)
⊂ ϑF̂j

(t̂ j+1− t̂ j, K̂j) = K̂j+1,

i.e. BΔ/2(x)⊂ BΔ (y)∩BΔ (x)⊂ K̂j+1 and the expanding property of (K̂n) implies
BΔ/2(x)⊂ K̂n for any n≥ j + 1, but this contradicts x ∈ Limsupn→∞ ∂ K̂n. �

In regard to Proposition 86, the same conclusion implies for the whole iterative algo-
rithm that ϕ(x,M)≥−δ holds for every boundary point x∈ ∂M ⊂ Limsupn→∞ ∂Kn

and any threshold δ > 0, i.e. M is “critical” with respect to Φ .
Now we have the technical preparations at our disposal for proving statement (iii’):

Lemma 93. There exists an index j0 ∈ N such that every boundary point x ∈
∂ K̂j0 ∩ B1/δ (0) satisfies ϕ(x, K̂j0) ≥ −2δ .

Proof. It is based on the continuity of ϕ(·, K̂∞) and the locally uniform con-
vergence of ϕ(·, K̂j). Indeed there is an open neighborhood V of the compact set(
Limsup j→∞ ∂ K̂j

)∩B1/δ with

ϕ(·, K̂∞)≥− 3
2 δ in V .

Lemma 90 provides an index k ∈ N with ϕ(·, K̂j) ≥−2δ in V ∩B1/δ for all j ≥ k.
The final link ∂ K̂j ∩B1/δ ⊂ V ∩B1/δ for every large j ∈ N results from a simple
indirect conclusion. �
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1.10.3 The Application to Computer Images

1.10.3.1 Applying the Continuous Approach to Images

For computer images we start with two central aspects: The smallest suitable unit of
a computer image is one pixel or one voxel respectively. Moreover the grey values
within each of these units are constant.
Hence we intend a combination: On the one hand, we apply the preceding concept
of continuous set deformation (along differential inclusions) for decreasing the error
functional Φ . On the other hand, we want to restrict ourselves just to the decision
whether or not a pixel (or a voxel) belongs to the approximating set.
This combination is based on an explicit ansatz (of the speed function) that de-
scribes the expansion to a single neighboring pixel. If the error functional is surely
nonincreasing during this deformation then the pixel is admitted to the next set.
Before deriving a sufficient condition (on the neighboring pixel) we would like to
point out that it does not result from discretizing but from applying the continu-
ous deformation presented for the continuous segmentation problem in § 1.10.2.
The main advantage of the computer algorithm here is its simplicity in regard to
calculations. Its implementation is essentially based on the successive evaluation of
quadratic polynomials of the grey value – in spite of all the set-valued theory before.

Let Kn denote the finite union of pixels representing the current set at the nth step.
Furthermore suppose P to be a closed neighboring pixel, i.e. P∩K◦n = /0 and P∩Kn

contains (at least) a side of ∂P.
The continuous expansion of Kn to Kn ∪P is described as
reachable set of Kn and Fn(·) = Bcn(·)(0) : R

N � R
N with

cn(·) := dist( · , R
N \ (Kn∪P)),

for example. In more graphical words, ϑFn(·,Kn) starts ex-
panding at the common sides of ∂Kn ∩ ∂P and then keeps
“filling” the interior P◦ while time is increasing. Thus,

Kn∪P◦ =
⋃

t≥0

ϑFn(t,Kn),

lim
t→∞

ϕ(x, ϑFn(t,Kn)) = ϕ(x, Kn∪P◦) = ϕ(x, Kn∪P)

since (Kn ∪P) \ (Kn ∪P◦) ⊂ ∂P has Lebesgue measure 0.
A condition sufficient to make the real-valued composition
Φ ◦ϑFn(·,Kn) : [0,∞[−→ R decrease is

ϕ(x, ϑFn(t,Kn)) < 0 ∀ x ∈ P◦, t > 0. (∗)
Here ϕ(x, ϑFn(t,Kn)) does not dependent on x∈P◦ because
the grey values are constant within each pixel.
The maximal change of t �−→ ϕ(x, ϑFn(t,Kn)) can be estimated by the increase of
Lebesgue measure due to Lemma 88 (on page 87):
∣
∣ϕ(x, ϑFn(t,Kn))−ϕ(x,Kn)

∣
∣ ≤ const(ψ ,‖G‖∞) · (L N(ϑFn(t,Kn))−L N(Kn))
≤ const(ψ ,‖G‖∞) · L N(P).
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It leads to a sufficient condition depending only on Kn (and not on ϑFn(t,Kn), t > 0):
Using the abbreviation δ := const(ψ ,‖G‖∞) ·L N(P) > 0 the condition

ϕ( · , Kn) < −δ in P◦ (∗∗)
guarantees the preceding property (∗) and thus,Φ ◦ϑFn(·,Kn) is decreasing in [0,∞[.

Obviously condition (∗∗) has the same form as the inequality used for solving the
continuous segmentation problem in § 1.10.2, but we want to point out an important
difference between these two concepts:
For solving the continuous segmentation problem iteratively (Fig. 1.1 on page 85),
the parameter δ is given at each step and it determines both the speed c j(·) and the
next time interval (i.e. τ j). Now for computer images, we start with an explicit ansatz
of the radius cn(·) which implies the time interval [0,∞[ for expanding to Kn ∪P◦.
This provides an adequate definition of δ . Both methods have Proposition 83 (on
page 82) as analytical basis in common.

1.10.3.2 A (Very) Simple Implementation for Computer Images

Now condition (∗∗) underlies an implementation for image segmentation. The final
simplicity of this algorithm is to justify dispensing with analytical accuracy for the
first time and following heuristic arguments at three steps.

Firstly, condition (∗∗) is sufficient to prevent that

ϕ(x,ϑF̃n
(t,Kn)) > 0 at some x ∈ ∂ϑF̃n

(t,Kn)∩P◦

while expanding to a neighboring pixel P. It might be much too strong. For weaken-
ing it gradually we replace the fixed value of δ (ψ ,‖G‖∞,L N(P)) by a decreasing
sequence until reaching a given threshold δend .
Similarly to the algorithm in § 1.10.2, this notion has the advantage that boundary
pixels with larger absolute values of ϕ(·,Kn) are taken into consideration first.

Strictly speaking, it is necessary to update Kn and ϕ(·,Kn) after each neighboring
pixel P fulfilling condition (∗∗). But higher accuracy requires much higher costs
of calculation. This observation leads to the second step based on rather heuristic
reasons: Applying ϕ(·,Kn) to all neighboring pixels of Kn is easier to perform since

ϕ(x, Kn) =
2

∑
k=0

∂k+1ψ
(
L N(Kn),

∫

Kn

G dy,
∫

Kn

G2 dy
) · G(x)k

is a quadratic polynomial in the grey value G(x) whose coefficients are calculated
only once. This slightly weakened concept improves the speed of the algorithm
and makes it feasible even for large images. Moreover it prevents the dependence
on the order in which the neighboring pixels are checked (and possibly included),
i.e. this modification preserves the isotropic character of updating.

These two steps motivate the following simple version of implementation:
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Let δ > 0. Suppose that Kn (still) denotes the finite union of pixels representing the
current approximating set. For each neighboring pixel P of Kn, condition (∗∗) is
checked. We define

Kn+1 := Kn ∪
⋃

neighbor P of Kn
P satisfies (∗∗)

P

This step is repeated until Kn+1 = Kn. Then we continue with a smaller value of
δ > 0, e.g. δ2 . Finally the algorithm ends if δ falls below a given threshold δend > 0.

The symmetry properties of the implementation motivate the last step: We con-
sider all closed pixels P satisfying /0 �= Kn ∩ P ⊂ ∂P, i.e. we dispense with the
stronger condition that P and Kn have at least one side of ∂P in common.
This step goes beyond the continuous framework in § 1.10.3.1 because there is no
point of ∂Kn at which the speed cn(·) is positive. But it may keep simple shapes
invariant while expanding. Consider a black rectangle on a white background, for
example. Starting with a small rectangle inside, this modification guarantees that
the approximating sets are also rectangles at any time. The stronger restriction (on
neighboring pixels) instead leads to rhombi temporarily while expanding.

Hence the final implementation is founded on the inductive definition

Kn+1 := Kn ∪
⋃

Pixel P : /0 �=Kn∩P⊂∂P
P satisfies (∗∗)

P

This step is again repeated until Kn+1 = Kn. Then we replace δ > 0 by a smaller
value, e.g. δ2 . The algorithm finishes if δ falls below a given positive threshold δend .

Fig. 1.2 Example: Picture of a 300-year-old globe. Left: The original image. Middle: The
initial set consists of black pixels that are detected by global thresholds. Right: The binary result
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The detection of uniform segments (of the image) may be realized by the error
functional

Φ(M) := Variance(G|M) − αL N(M)

=
1

L N(M)

∫

M
G2 dx − 1

L N(M)2

(∫

M
G dx

)2 − αL N(M)

for all measurable sets M⊂R
N , L N(1pixel) < L N(M) <∞with a weight parame-

ter α ≥ 0. Roughly speaking, the additional term −αL N(M) reduces “sensitivity”
in search of uniform segments. It has the consequence that expansion continues
despite increasing oscillations if their increase is small (in comparison with the
change of Lebesgue measure). Then,

ϕ(x,M) =
1

L N(M)
G(x)2 − 2

∫
M G dy

L N(M)2 G(x) −
∫

M G2 dy
L N(M)2 +

2 (
∫

M G dy)2

L N(M)3 − α.

Hence the implementation depends principally on merely two parameters. K0 and
the difference between α,δend determine where the algorithm starts and when it
stops. They have to be adapted to the given image (somehow – as usual).

Such a simple algorithm cannot be free from weaknesses of course. In particular
the resulting set depends largely on the parameters because they determine its sen-
sitivity to oscillations of grey values and so, this error functional is not really suited
to ignoring strong noise.
Moreover the choice of the initial segment K0 has an influence on which connected
components can be found and on which boundary pixels are detected first. Indeed,
the earlier a pixel of the wanted contour is neighbor of Kn the more often it is
checked later and, whenever it is included in Kn the computer starts searching for
next contour outside.

Despite this weakness, the computer implementation leads to quite good results
for strongly differing images (see also Fig. 0.1 on page 7, for example) and, it has the
important advantage of rather simple computations. Furthermore it does not change
the original image and thus facilitates combining it with other methods of image
processing. Fig. 1.2 (on page 92) illustrates this extension as its binary result can
help us to remove noise from the original picture by different means later.

1.10.3.3 Extensions of the Implementation

There are several aspects how to extend the computer algorithm. Finally we summa-
rize such possibilities that have the analytical basis (presented in §1.10.2) in com-
mon. They exemplify that the preceding concept of set-valued maps provides the
mathematical background of several variants of region growing methods.

Although the algorithm is mostly illustrated with 2-dimensional images, it is in-
dependent of dimension N and the computer implementation may be extended di-
rectly to 3-dimensional images. Then, of course, neighboring pixels in the third
dimension are also taken into consideration during each step.
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Fig. 1.3 Extract of 50 images with slow changes. One car is marked in the first image and then
the discrete algorithm detects it in the subsequent images while passing the crossroads

Fig. 1.4 Example of the anisotropic version: Nerve cells (dorsal root ganglion) Left: Initial set
(small rectangle on the right-hand side) and target pixel P0 (marked by a small cross in the top
left-hand corner). Then the neighboring pixels are checked according to their distances from P0.
Middle: The approximating set when reaching P0. Now the implementation continues with the
isotropic version discussed in § 1.10.3.2 Right: Final segment

Moreover this approach can even be applied to image sequences. Then we con-
sider time τ (of the image sequence) as additional dimension and use coordinates
x̂ = (x,τ) ∈ R

N ×R. The last component of x̂, however, is not related with the
parameter t of set expansion (during segmentation). For example, a sequence of
2-dimensional images is regarded as one image of dimension 3 (see Fig. 1.3).
In comparison with previous results, the only difference concerns the permitted di-
rections of expansion. Information about segmentation should not be transported to
the past, i.e. the expanding sets do not result from trajectories in the opposite τ direc-
tion. Thus the values of F : R

N+1�R
N+1 are contained in R

N× [0,∞[. Considering
the ansatz of F(x̂), the closed balls Bc(x̂)(0)⊂ R

N+1 are replaced by semi-balls

Bc(x̂)(0)+ := Bc(x̂)(0) ∩ (RN× [0,∞[ ).
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In morphological words, we use the new “structuring element” B1(0)+ instead of
B1(0) ⊂ R

N+1 while its size still depends on x̂ (according to the respective speed
function c(·)) as mentioned in Example 55 (on page 63).
Then we can still apply the arguments proving fundamental Proposition 83 (on
page 82) and use these results for image sequences. Furthermore the computer
implementation considers only neighboring pixels which refer to the same or to a
later point of time τ .

Up to now the algorithms presented here have the isotropic property in common,
but they can be enhanced easily with respect to anisotropic expansion.
A slight modification of the computer algorithm concerns the directions of ex-
pansion. Condition (∗∗) (on page 91) provides a sufficient criterion whether a
neighboring pixel is included in the next approximating set. There is no restriction
on the order of checking though. In fact, we can first sort neighboring pixels (of Kn)
by their distances from a given pixel P0, for example. The modified algorithm then
tries to detect a connection with P0. After reaching P0, we return to the isotropic
version and, this combination of methods is more sensitive to considering given
structures. An example is presented in Fig. 1.4.

Last but not least, the analytical results in § 1.10.2 can also be applied to more
general types of error functionals Φ(·) and set constraints. The first modification
is based on transforming the grey values G(·), i.e. we use shape functionals of the
form

Φ(M) := ψ
(∫

M
ρ1(x,G(x)) dx, . . .

∫

M
ρm(x,G(x)) dx

)

for measurable sets M ⊂ R
N , 0 < L N(M) < ∞ with functions ψ : R

m → R,
ρ1 . . .ρm : R

N ×R→ R sufficiently smooth. As a consequence the compositions
ρ j(·,G(·)) replace the grey values G(·) at preceding conclusions.
Weight functions are typical examples. In particular they comprise excluding parts
of the initial set K0 from calculations, i.e. they admit considering

Φ(M) := ψ
(∫

M\E
ρ1(·,G) dx, . . .

∫

M\E
ρm(·,G) dx

)

with some E ⊂ K◦0 . This extension is useful for starting with a large segment K0 but
taking into account only regions along ∂K0. Moreover the integrand may depend on
derivatives of G(·). If G is not differentiable then convolution provides well-known
methods of smoothing (see e.g. [39, 41, 95, 172]).
In comparison with standard level set methods, the segmentation problem in terms
of time-dependent subsets of R

N has the essential advantage that we can formulate
nonlocal set constraints (on the maximal diameter, for example) more easily.
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1.11 Example: Modified Morphological Equations for Compact
Sets in R

N via Bounded One-Sided Lipschitz Continuous
Maps

Reachable sets of differential inclusions can serve as transitions on (K (RN),dl)
only if they are stable with respect to initial set and the right-hand side of the inclu-
sion. For this reason, we have considered Lipschitz continuous maps with uniformly
bounded compact values so far.
In [9, Remark 5.2], Artstein poses the question which other assumptions (alternative
to classical Lipschitz continuity) might guarantee such an estimate of stability as in
Proposition 50 (on page 60) here. Donchev and Farkhi suggest an answer in [69]
introducing the so-called one-sided Lipschitz continuity (with respect to space).
Their existence theorem (quoted in subsequent Theorem A.63 on page 480) pro-
vides an estimate of the distance between a given curve and the wanted solution
being very similar to the inequality of Filippov. Some key aspects of their nonau-
tonomous differential inclusions are summarized in Appendix A.7 (on page 480 f.).

In this section, we use this type of set-valued maps as right-hand side of autonomous
differential inclusions so that their reachable sets induce more general transitions
on (K (RN),dl). In regard to Theorem A.63 applied to autonomous differential
inclusions, we introduce similarly to Definition 49 (on page 60):

Definition 94. OSLIP(RN ,RN) consists of all set-valued maps F : R
N � R

N

satisfying the following three conditions:
1. F has nonempty compact convex values that are uniformly bounded in R

N ,
2. F is upper semicontinuous,
3. F is one-sided Lipschitz continuous, i.e. there is a constant L ∈R such that for

every x,y ∈ R
N and v ∈ F(x), there exists some w ∈ F(y) satisfying

〈x− y, v−w〉 ≤ L |x− y|2.
The smallest constant L ∈ R with this property is usually abbreviated as Lip F.

Remark 95. Every map F ∈ LIP(RN ,RN) with convex values is contained in
OSLIP(RN ,RN). Set-valued maps in OSLIP(RN ,RN), however, do not have to be
continuous in general, just consider the example (in addition to Remark A.62)

R � R, x �→
⎧
⎨

⎩

−1 for x > 0
[−1,1] for x = 0

1 for x < 0

Proposition 96. For any sets K1,K2 ∈K (RN) and maps F,G ∈OSLIP(RN ,RN)
with Λ := max{Lip F, Lip G} ∈ R, the reachable sets ϑF (t,K1), ϑG(t,K2) are
closed subsets of R

N and, the Pompeiu-Hausdorff distance between the reachable
sets at time t ≥ 0 satisfies

dl
(
ϑF(t,K1), ϑG(t,K2)

) ≤ (dl(K1,K2) + t · dl∞(F,G)
) · eΛ t .
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Basic set E := K (RN)
the set of nonempty compact subsets of the Euclidean space R

N

Distance Pompeiu-Hausdorff metric dl : K (RN)×K (RN)−→ R,

dl(K1,K2) := max
{

sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)
}

Transition For each F ∈ OSLIP(RN ,RN), i.e. bounded, upper semicontinu-
ous and one-sided Lipschitz continuous set-valued map F : R

N�
R

N with compact convex values (Definition 94), define

ϑF : [0,1]×K (RN)−→K (RN)

by means of reachable sets of the autonomous differential inclu-
sion x′(·) ∈ F(x(·)) a.e.:

ϑF(t, K0) :=
{

x(t)
∣∣ there exists x(·) ∈W 1,1([0, t],RN) :

x′(·) ∈ F(x(·)) L 1-a.e. in [0, t],
x(0) ∈ K0

}
.

Compactness Closed bounded balls in (K (RN),dl) are compact:
Proposition 47 (page 57)

Mutational solutions Reachable sets of a nonautonomous differential inclusion
whose set-valued right-hand side is determined via feedback

– if the transitions are induced by additionally continuous maps,
i.e. each F ∈ COSLIP(RN ,RN) (Definition 103):

Proposition 105, Corollary 106 (page 101)

List of main results
formulated in § 1.11

Existence due to compactness (Peano): Proposition 99 (page 98)
Cauchy-Lipschitz Theorem: Proposition 100 (page 99)
Continuity w.r.t. data: Proposition 101 (page 99)
Existence under state constraints (Nagumo): Proposition 102

Key tools Filippov-like Theorem A.63 of Donchev and Farkhi [69] about
differential inclusions with one-sided Lipschitz continuous right-
hand side (page 480)

Integral funnel equation for reachable sets of nonautonomous
differential inclusions: Proposition A.13 (page 447)

Table 1.3 Brief summary of the example in § 1.11 in mutational terms:
Modified morphological equations for compact sets in R

N via bounded one-sided Lipschitz maps
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Proof follows from Theorem A.63 (on page 480) in exactly the same way as
Proposition 50 about morphological transitions in LIP(RN ,RN) resulted from
Filippov’s Theorem A.6 (see page 61 for details). �

Obviously, [0,∞[−→ (K (RN),dl
)
, t �−→ ϑF(t,K0) is ‖F‖∞-Lipschitz continuous

for every F ∈ OSLIP(RN ,RN) and, the semigroup property of reachable sets still
holds (as in Lemma 52 on page 61). The same conclusions as for morphological
transitions in § 1.9.2 (on page 60 ff.) now lead to

Proposition 97. For every set-valued map F ∈ OSLIP(RN ,RN),

ϑF : [0,1]×K (RN) −→ K (RN)
(t, K) �−→ ϑF(t,K)

with ϑF(t,K) ⊂ R
N denoting the reachable set of the initial set K ∈K (RN) and

the differential inclusion x′ ∈ F(x) a.e. at time t is a transition on (K (RN),dl) with

α(ϑF ) ≤ max
{

0, Lip F
}
,

β (ϑF) ≤ ‖F‖∞,

D(ϑF ,ϑG) ≤ dl∞(F,G). �

Remark 98. We prefer excluding negative values of the transition parameterα(ϑF )
because Gronwall’s estimate (in form of Proposition A.2 on page 440) often serves
as key analytic tool, but does not cover exponential decrease here.

The next step consists in existence of solutions to initial value problems without
state constraints:

Proposition 99 (Peano’s Theorem for modified morphological equations).
Suppose F :

(
K (RN),dl

)× [0,T ]−→ (OSLIP(RN ,RN),dl∞
)

to be continuous and

sup
M∈K (RN )

t∈ [0,T ]

(‖F (M, t)‖∞+ max{0, Lip F (M, t)})< ∞ .

Then for every initial set K0 ∈K (RN), there exists a solution K : [0,T ]� R
N to

the modified morphological equation
◦
K (·) � F

(
K(·), · )

with K(0) = K0, i.e. K(·) is Lipschitz continuous with respect to dl and satisfies
for L 1-almost every t ∈ [0,T ]

lim
h↓0

1
h · dl

(
ϑF (K(t),t)(h, K(t)), K(t + h)

)
= 0

Proof results directly from Theorem 20 (on page 40) in combination with
Proposition 47 (on page 57) and Proposition 97. �
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Proposition 100 (Cauchy-Lipschitz for modified morphological equations).
Suppose the continuous function F : K (RN)× [0,T ] −→ (OSLIP(RN ,RN),dl∞

)

to be Lipschitz continuous in the first argument with

sup
M∈K (RN )

t∈ [0,T ]

(‖F (M, t)‖∞+ max{0, Lip F (M, t)})< ∞ .

Then for each initial set K0 ∈K (RN), there exists a unique solution K : [0,T ]�R
N

to the modified morphological equation
◦
K (·) � F

(
K(·), · )

with K(0) = K0.

Proof. The existence of a solution results from preceding Proposition 99 and,
Proposition 24 (on page 42) implies uniqueness. �

Proposition 101 (Continuity w.r.t. initial data and the right-hand side).
Suppose F :

(
K (RN),dl

)× [0,T ] −→ (OSLIP(RN ,RN),dl∞
)

to be λ -Lipschitz
continuous in the first argument with

α̂ := sup
M∈K (RN )

t∈ [0,T ]

max{0, Lip F (M, t)} < ∞ .

For G : K (RN)× [0,T ]−→OSLIP(RN ,RN) assume

sup
M, t

dl∞
(
F (M, t), G (M, t)

)
< ∞.

Any solutions K1(·), K2(·) : [0,T ]� R
N to the modified morphological equations

{ ◦
K1 (·) � F

(
K1(·), ·

)

◦
K2 (·) � G

(
K2(·), ·

)

satisfy the following inequality for every t ∈ [0,T ]

dl
(
K1(t), K2(t)

) ≤
(

dl
(
K1(0), K2(0)

)
+ t · sup

M, s
dl∞
(
F (M,s), G (M,s)

))
e(λ+α̂) t .

Proof is also a consequence of Proposition 24 in combination with Proposi-
tion 97. �

Furthermore, the existence of solutions with state constraints is again guaranteed by
a consequence of Nagumo’s general Theorem 19 (on page 40):

Proposition 102 (Nagumo’s Theorem for modified morphological equations).
Suppose F : (K (RN),dl)−→ (OSLIP(RN ,RN), dl∞) to be continuous with

sup
M∈K (RN )

(‖F (M)‖∞+ max{0, Lip F (M)}) < ∞.

Then the following statements are equivalent for any closed subset V ⊂K (RN) :
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1. Every set K0 ∈ V is the initial set of at least one solution K : [0,1]−→K (RN)

to the modified morphological equation
◦
K (·) � F

(
K(·)) with K(t) ∈ V for

all t ∈ [0,1].

2. V ⊂K (RN) is a viability domain of F in the sense that

F (M) ∈ TV (M) ⊂ OSLIP(RN ,RN) for every M ∈ V .
�

This, however, seems to be the critical point at which the obvious analogies to
the morphological equations discussed in § 1.9 (on page 57 ff.) end.
In particular, Proposition 70 (on page 74) specifies the close link between any so-
lution of a morphological equation and reachable sets of a suitable nonautonomous
differential inclusion. Its counterpart for modified morphological equations can be
formulated here only under additional assumptions about the continuity of each
value F (M,t) ∈ OSLIP(RN ,RN).
This results from the following feature: Replacing the Lipschitz continuity of § 1.9
by the one-sided Lipschitz continuity (in combination with upper semicontinuity)
implies an essential gap that is also pointed out in Remark A.64 (on page 481).
Indeed, every map F ∈OSLIP(RN ,RN) satisfies the assumptions of Theorem A.63,
but not every point x0 ∈ R

N and vector v0 ∈ F(x0) has to be related to a solution
x(·) ∈W 1,1([0,T ],RN) of x′(·) ∈ F(x(·)) satisfying x(0) = x0 and

lim
h↓0

1
h ·
(
x(h)− x(0)

)
= v0.

Definition 103. COSLIP(RN ,RN) consists of all maps in OSLIP(RN ,RN) that
are continuous in addition, i.e. every set-valued map F : R

N �R
N satisfying

1. F has nonempty compact convex values that are uniformly bounded in R
N ,

2. F is continuous,
3. F is one-sided Lipschitz continuous, i.e. there is a constant L ∈R such that for

every x,y ∈ R
N and v ∈ F(x), there exists some w ∈ F(y) satisfying

〈x− y, v−w〉 ≤ L |x− y|2.

Lemma 104. Let F : [0,T ] −→ (
COSLIP(RN ,RN),dl∞

)
be L 1-measurable

with sup
t∈ [0,T ]

(‖F (t)‖∞+ max{0, Lip F (t)})< ∞ and define the set-valued map

F̂ : [0,T ]×R
N � R

N , (t,x) �→ F (t)(x).

Then for every set K0 ∈K (RN), the reachable set ϑF̂ (·,K0) : [0,T ] −→ K (RN)
of the nonautonomous differential inclusion x′ ∈ F̂(·,x) a.e. is a modified morpho-
logical primitive of F (·).

Proof results from Proposition A.13 (on page 447) in exactly the same way
as Lemma 58 (on page 65). Indeed, continuity of the set-valued maps with respect
to space (and not Lipschitz continuity) is assumed for proving the integral funnel
equation in Proposition A.13. �
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As a direct consequence of the uniqueness of primitives (Corollary 23 on page 41),
we obtain the counterpart of Proposition 57 (on page 64) and can characterize these
modified morphological primitives as reachable sets of nonautonomous differential
inclusions:

Proposition 105 (Modified morphological primitives as reachable sets).
Suppose F : [0,T ] −→ (

COSLIP(RN ,RN),dl∞
)

to be Lebesgue-measurable with
sup

t∈ [0,T ]

(‖F (t)‖∞+ max{0, Lip F (t)})< ∞ and define the set-valued map

F̂ : [0,T ]×R
N � R

N , (t,x) �→ F (t)(x).

A tube K : [0,T ]� R
N is a modified morphological primitive of F (·) if and only

at every time t ∈ [0,T ], its value K(t) ⊂ R
N coincides with the reachable set of the

nonautonomous differential inclusion x′ ∈ F̂(·,x) a.e.

K(t) = ϑF̂

(
t, K(0)

)
.

Corollary 106 (Solutions to modified morpholog. equations as reachable sets).
Let F :

(
K (RN),dl

)× [0,T ] −→ (COSLIP(RN ,RN),dl∞
)

be a Carathéodory
function (i.e. here continuous with respect to the first argument and measurable
with respect to time) satisfying

sup
M∈K (RN )

t∈ [0,T ]

(‖F (M, t)‖∞+ max {0, Lip F (M, t)}) < ∞ .

Then a continuous tube K : [0,T ]�R
N is a solution to the modified morphological

equation
◦
K (·) � F

(
K(·), · )

if and only if at every time t ∈ [0,T ], the set K(t)⊂R
N coincides with the reachable

set of the initial set K(0)⊂ R
N and the nonautonomous differential inclusion

x′(·) ∈ F
(
K(·), ·) (x(·)).



Chapter 2
Adapting Mutational Equations to Examples
in Vector Spaces: Local Parameters
of Continuity

The notion of transitions instead of affine linear maps in a given direction has proved
to be very powerful. Aubin’s definition of transition (Definition 1.1), however, is
too restrictive.
Indeed, many examples in vector spaces share the feature that the Lipschitz constant
of t �−→ ϑ(t,x) cannot be bounded uniformly for all initial states x. In this chapter
we will study several examples in which the transitions are based on solutions to
linear problems in vector spaces. Doubling the initial state implies doubling the
transition value and thus doubling the Lipschitz constant with respect to time.

The main goal of the subsequent chapters is to weaken the conditions on tran-
sitions and solutions in the mutational framework such that Euler method still
provides existence of (generalized) solutions.
In this chapter, we implement two additional aspects in the recently introduced
terms: Firstly, we use an analog of the absolute value in the metric space (E,d).
Indeed, �·� : E −→ [0,∞[ is just to specify the “absolute magnitude” of each ele-
ment in E , but does not have to satisfy structural conditions such as homogeneity
or triangle inequality. In contrast to a metric, �·� does not serve the comparison of
two elements in E, but the continuity parameters α(ϑ),β (ϑ) will be assumed to be
uniform in all “balls” {x ∈ E | �x� ≤ r} with positive “radius” r > 0. The proofs do
not change substantially if we impose appropriate bounds on the growth of �ϑ(·,x)�
for each initial element x ∈ E.

Secondly, we admit more than just one distance function on E simultaneously.
A family (d j) j∈I of pseudo-metrics on E (i.e. reflexive, symmetric and satisfying
the triangle inequality, but not necessarily positive definite) replaces the metric d
always used in Chapter 1. The weak topology of a Banach space, for example, is
much easier to describe by means of many linear forms than by just a single metric
and, the suitable choice of linear forms will prove to be very helpful for semilinear
evolution equations discussed in subsequent § 2.4.

In a word, these extensions of the mutational framework do not require significant
improvements of the proofs in comparison with the preceding chapter. They share
the basic notion with later generalizations: For implementing additional “degrees of
freedom”, we focus on the question which parameter may depend on which others.

T. Lorenz, Mutational Analysis: A Joint Framework for Cauchy Problems 103
In and Beyond Vector Spaces, Lecture Notes in Mathematics 1996,
DOI 10.1007/978-3-642-12471-6 3, c© Springer-Verlag Berlin Heidelberg 2010
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2.1 The Topological Environment of This Chapter

E always denotes a nonempty set, but we do not restrict our considerations to a
metric space (E,d) as in Chapter 1.

Definition 1. Let E be a nonempty set. A function d : E × E −→ [0,∞[ is
called pseudo-metric on E if it satisfies the following conditions:

1. d is reflexive, i.e. for all x ∈ E : d(x, x) = 0,
2. d is symmetric, i.e. for all x,y ∈ E : d(x, y) = d(y, x)
3. d satisfies the triangle inequality, i.e. for all x,y,z : d(x, z) ≤ d(x, y) + d(y, z).

In particular, a pseudo-metric d on E does not have to be positive definite, i.e.
d(x,y) = 0 does not always imply x = y.

General assumptions for Chapter 2. E is a nonempty set and, I �= /0 denotes
an index set. For each index j ∈I , d j : E×E −→ [0,∞[ is a pseudo-metric on E
and, �·� j : E −→ [0,∞[ is a given function that is lower semicontinuous with respect
to the topology of (di)i∈I , i.e. strictly speaking,

�x� j ≤ liminf
n→∞

�xn� j

for any x ∈ E and sequence (xn)n∈N in E with di(xn,x)
n→∞−→ 0 and supn �xn�i < ∞

for each i ∈I .

Now the main goal of this chapter is to extend the mutational framework from a
metric space to the tuple

(
E,(d j) j∈I ,(�·� j) j∈I

)
. Several examples in vector spaces

like semilinear evolution equations and nonlinear transport equations will follow.

2.2 Specifying Transitions and Mutation on
(
E,(d j) j∈I ,(�·� j) j∈I

)

Definition 2. ϑ : [0,1]×E −→ E is called transition on
(
E,(d j) j∈I ,(�·� j) j∈I

)

if it satisfies the following conditions for each j ∈I :

1.) for everyx ∈ E : ϑ(0,x) = x

2.) for everyx ∈ E, t ∈ [0,1[: lim
h↓0

1
h · d j

(
ϑ(t + h, x), ϑ(h, ϑ(t,x))

)
= 0

3.) there exists α j(ϑ ; ·) : [0,∞[−→ [0,∞[ such that for any x,y ∈ E with

�x� j ≤ r, �y� j ≤ r : limsup
h↓0

d j(ϑ (h,x), ϑ (h,y))− d j(x,y)
h ≤ α j(ϑ ;r) · d j(x,y)

4.) there exists β j(ϑ ; ·) : [0,∞[−→ [0,∞[ such that for any s, t ∈ [0,1] and x ∈ E

with �x� j ≤ r : d j
(
ϑ(s,x), ϑ(t,x)) ≤ β j(ϑ ;r) · |t− s|

5.) there exists γ j(ϑ) ∈ [0,∞[ such that for any t ∈ [0,1] and x ∈ E :

�ϑ(t,x)� j ≤
(�x� j + γ j(ϑ) t

) · eγ j(ϑ ) t
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(
E,(d j) j∈I ,(�·� j) j∈I

)
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Remark 3. In particular, this definition covers the special case of a transition
ϑ : [0,1]× E −→ E on a metric space (E,d) in the sense of Definition 1.1 (on
page 32). Indeed, set I = {0}, d0 := d and �·�0 := 0. Then α(ϑ ; ·) and β (ϑ ; ·)
can be chosen constant for each transition ϑ on (E,d). γ0(ϑ) is defined as 0 arbi-
trarily.

Now the continuity parameters of a transition are fixed for each “ball” {x ∈ E |
�x� j ≤ r} (r > 0, j ∈I ). This does not cause analytical difficulties since condi-
tion (5.) provides a suitable a priori bound of �ϑ(t,x)� j for t ∈ [0,1]. The choice
of its structure is rather arbitrary (we admit), but it covers many examples and, the
following lemma lays the foundations inductively for extending many results of
Chapter 1 to transitions on

(
E,(d j) j∈I ,(�·� j) j∈I

)
.

Lemma 4. Let ϑ1 . . . ϑK be finitely many transitions on
(
E,(d j) j∈I ,(�·� j) j∈I

)

with γ̂ j := sup
k∈{1 ...K}

γ j(ϑk) < ∞ for some j ∈I .

For any x0 ∈ E and 0 = t0 < t1 < .. . < tK with supk tk− tk−1 ≤ 1 define the curve
x(·) : [0,tK ]−→ E piecewise as x(0) := x0 and

x(t) := ϑk
(
t− tk−1, x(tk−1)

)
for t ∈ ]tk−1, tk

]
, k ∈ {1 . . .K}.

Then, �x(t)� j ≤
(�x0� j + γ̂ j · t

) · eγ̂ j ·t at every time t ∈ [0, tK ].

Proof is given via induction with respect to k : The claim is obvious at time t0 = 0.
Assuming this estimate at time tk−1, we conclude for each t ∈ ]tk−1, tk]

�x(t)� j =
⌊
ϑk
(
t− tk−1, x(tk−1)

⌋
j

≤ (�x(tk−1)� j + γ̂ j · (t− tk−1)
) · eγ̂ j ·(t−tk−1)

≤ ((�x0� j + γ̂ j · tk−1
) · eγ̂ j tk−1 + γ̂ j · (t− tk−1)

) · eγ̂ j ·(t−tk−1)

≤ (�x0� j + γ̂ j · t
) · eγ̂ j ·t .

�
The next step is to implement this locally uniform aspect of parameters in the dis-
tance between transitions. Following the basic idea of Definition 1.6 (on page 35),
we introduce

Definition 5. Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)
denotes a nonempty set of transitions on(

E,(d j) j∈I ,(�·� j) j∈I

)
satisfying additionally

D j(ϑ ,τ; r) := sup
x∈E: �x� j≤r

limsup
h↓0

1
h · d j

(
ϑ(h,x), τ(h,x)

)
< ∞

for anyϑ ,τ ∈Θ(E,(d j) j∈I ,(�·� j) j∈I

)
and r≥ 0, j ∈I . (If {x∈E |�x� j ≤ r}= /0,

set D j( · , · ; r) := 0.)
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For each r ≥ 0, the distance function

D j( · , · ;r) : Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)×Θ(E,(d j) j∈I ,(�·� j) j∈I

) −→ [0,∞[

is reflexive, symmetric and satisfies the triangle inequality and thus, D j( · , · ;r) is a
pseudo-metric on the transition setΘ

(
E,(d j) j∈I ,(�·� j) j∈I

)
.

Similarly to Proposition 1.7 (on page 35), we can now compare the evolution of two
states in E along two different transitions:

Proposition 6. Let ϑ ,τ ∈Θ(E,(d j) j∈I ,(�·� j) j∈I

)
be arbitrary, r ≥ 0, j ∈I .

Then for any elements x,y ∈ E with �x� j ≤ r, �y� j ≤ r and times t1, t2 ∈ [0,1[, the
following estimate is satisfied at each time h ∈ [0,1[ with max{t1 + h, t2 + h} ≤ 1

d j
(
ϑ(t1+h,x), τ(t2+h,y)

) ≤ (d j
(
ϑ(t1,x), τ(t2,y)

)
+ h ·D j(ϑ ,τ ;R j)

) · eα j(ϑ ;R j) h

with R j :=
(
r + max{γ j(ϑ), γ j(τ)}

) · emax{γ j(ϑ ), γ j(τ)}.

Proof results from Gronwall’s inequality (in Proposition A.2 on page 440)
applied to the auxiliary function

ψ j : h �−→ d j
(
ϑ(t1 + h,x), τ(t2 + h,y)

)

in exactly the same way as the proof of Proposition 1.7 (on page 36) because con-
dition (5.) of Definition 2 ensures for each h ∈ [0,1]

{
�ϑ(h,x)� j ≤ R j

�τ(h,y)� j ≤ R j �

As in § 1.2 (on page 37), the notion of first-order approximation leads to the
so-called mutation of a curve – as counterpart of its time derivative:

Definition 7. Let x(·) : [0,T ]−→ E be a function. The set
◦
x (t) :=

{
ϑ ∈Θ(E,(d j) j∈I ,(�·� j) j∈I

) ∣∣

∀ j ∈I : lim
h↓0

1
h · d j

(
ϑ(h, x(t)), x(t + h)

)
= 0
}

is called mutation of x(·) at time t ∈ [0,T [ in
(
E,(d j) j∈I ,(�·� j) j∈I

)
.

Remark 8. Remark 1.11 (on page 37) also holds for transitions on the tuple(
E,(d j) j∈I ,(�·� j) j∈I

)
: For every transition ϑ ∈ Θ(E,(d j) j∈I ,(�·� j) j∈I

)
and

initial element x0 ∈ E, the curve xx0(·) :=ϑ(·,x0) : [0,1]−→E has ϑ in its mutation
at each time t ∈ [0,1[:

ϑ ∈ ◦xx0 (t).

This results directly from condition (2.) in Definition 2 and, it lays the basis for
constructing solutions by means of Euler method in the next section.
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2.3 Solutions to Mutational Equations

Now we focus on solving dynamical problems with feedback: For a given function
relating each state in E and time to a transition on

(
E,(d j) j∈I ,(�·� j) j∈I

)
, we are

looking for a curve in E whose mutation obeys this “law” at almost every time.
In comparison with Definition 1.13 (on page 38) for a metric space, however, the
families (d j) j∈I , (�·� j) j∈I should be taken into consideration appropriately:

Definition 9. A single-valued function f : E× [0,T ]−→Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)

is given. x(·) : [0,T ]−→ E is called a solution to the mutational equation
◦
x(·) � f

(
x(·), · )

in
(
E,(d j) j∈I ,(�·� j) j∈I

)
if it satisfies the following conditions for each j ∈I :

1.) x(·) is continuous with respect to d j

2.) for L 1-almost every t ∈ [0,T [: lim
h↓0

1
h · d j

(
f (x(t), t)(h, x(t)), x(t + h)

)
= 0

3.) sup
t∈ [0,T ]

�x(t)� j < ∞ .

A global bound of the continuity parameter β j( · ; R) implies that each solution is
even (locally) Lipschitz continuous with respect to d j.

Lemma 10. For f : E× [0,T ]−→Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)
let x(·) : [0,T ]−→E

be a solution to the mutational equation
◦
x(·) � f (x(·), ·) such that some j ∈I and

Lj,R j ∈R satisfy for all t ∈ [0,T ]
{

�x(t)� j ≤ R j

β j
(

f (x(t), t); R j
) ≤ Lj.

Then x(·) is L j-Lipschitz continuous with respect to d j .

Proof. Fix s ∈ [0,T [ arbitrarily. Then the auxiliary function

ψ j : [s,T ] −→ R, t �−→ d j
(
x(s), x(t)

)

is continuous due to Definition 9 (1.) and, it satisfies for L 1-almost every t ∈ [s,T ]

limsup
h↓0

ψ j(t+h)−ψ j(t)
h ≤ limsup

h↓0

1
h · d j

(
x(t), x(t + h)

)

≤ limsup
h↓0

1
h ·
(

d j
(
x(t), f (x(t), t)(h,x(t))

)

+ d j
(

f (x(t), t)(h,x(t)), x(t + h)
))

≤ Lj + 0 .

Finally ψ j(t) ≤ Lj · (t − s) for all t ∈ [s,T ] results from Gronwall’s inequality
(Proposition A.2 on page 440). �



108 2 Adapting Mutational Equations to Examples in Vector Spaces

2.3.1 Continuity with Respect to Initial States and Right-Hand Side

The continuity of solutions with respect to given data plays a key role for solving
mutational equations by explicit methods such as Euler algorithm. For this reason,
we now extend Proposition 1.21 (on page 41) and Proposition 1.24 (on page 42) to
mutational equations in

(
E,(d j) j∈I ,(�·� j) j∈I

)
:

Proposition 11. Assume for f ,g : E × [0,T ] −→ Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)
and

x,y : [0,T ] −→ E that x(·) is a solution to the mutational equation
◦
x(·) � f (x(·), ·)

and y(·) is a solution to the mutational equation
◦
y(·) � g(y(·), ·).

For some j ∈I , let α̂ j,R j > 0 and ϕ j ∈C0([0,T ]) satisfy for almost every t ∈ [0,T ]
⎧
⎪⎨

⎪⎩

�x(t)� j, �y(t)� j ≤ R j

α j (g(y(t), t); R j) ≤ α̂ j

D j ( f (x(t), t), g(y(t), t); R j) ≤ ϕ j(t).

Then, d j(x(t), y(t)) ≤ (d j(x(0),y(0))+
∫ t

0
ϕ j(s) e−α̂ j ·sds

)
eα̂ j ·t for any t ∈ [0,T ].

By means of monotone approximation in the sense of Daniell-Lebesgue, this esti-
mate can be extended to Lebesgue-integrable functions ϕ j : [0,T ]−→ [0,∞[ easily.
Assuming one of the functions on the right-hand side to be Lipschitz continuous in
addition simplifies the comparison between two solutions w.r.t. a pseudo-metric d j:

Corollary 12. For some j ∈I and each r > 0, suppose f : E × [0,T ] −→
Θ
(
E,(di)i∈I ,(�·�i)i∈I

)
to satisfy α̂ j,r := supz, t α j( f (z, t); r) < ∞ and to fulfill

with a constant λ j,r > 0 that for L 1-almost every t ∈ [0,T ],

f (·,t) : (E,d j) −→
(
Θ
(
E,(di)i∈I ,(�·�i)i∈I

)
, D j( · , · ;r)

)

is λ j,r-Lipschitz continuous. For g : E× [0,T ]−→Θ
(
E,(di)i∈I ,(�·�i)i∈I

)
assume

sup
z,s

D( f (z,s), g(z,s); r) < ∞ for each r > 0.

Then every solutions x(·), y(·) : [0,T ]−→ E to the mutational equations
◦
x(·) � f (x(·), ·) ◦

y(·) � g(y(·), ·)
satisfy the following inequality for every t ∈ [0,T ]

d j(x(t), y(t)) ≤ (d j(x(0),y(0)) + t · sup
z, s

D j( f (z,s),g(z,s)); R j)
)

e
(α̂ j,R j +λ j,R j ) t

with R j := sup
t∈ [0,T ]

{�x(t)� j, �y(t)� j
}

< ∞ .

Proof (of Proposition 11). As in the proof of Proposition 1.21 (on page 43), we
consider the auxiliary function

ψ j : [0,T ] −→ [0,∞[, t �−→ d j
(
x(t), y(t)

)
.
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It is continuous because any solutions x(·), y(·) to mutational equations are contin-
uous with respect to d j due to Definition 9.
Furthermore, we obtain for Lebesgue-almost every t ∈ [0,T [

limsup
h↓0

1
h ·d j

(
x(t + h), f (x(t), t)(h,x(t))

)
= 0

limsup
h↓0

1
h ·d j

(
f (x(t),t)(h,x(t)), g(y(t), t)(h,x(t))

) ≤ D j
(

f (x(t), t), g(y(t), t);R j
)

limsup
h↓0

1
h ·d j

(
g(y(t),t)(h,y(t)), y(t + h)

)
= 0

due to Definition 5 and Definition 9. For estimating ψ j(t + h), we conclude from
the assumed bound of α j(g(y(t), t); R j), i.e.

limsup
h↓0

1
h ·
(
d j
(
g(y(t),t)(h,x(t)), g(y(t), t)(h,y(t))

) − ψ j(t)
) ≤ α̂ j ·ψ j(t),

and the triangle inequality of d j

limsup
h↓0

ψ j(t + h) − ψ j(t)
h

≤ α̂ j ·ψ j(t) + D j
(

f (x(t), t), g(y(t), t); R j
)

≤ α̂ j ·ψ j(t) + ϕ j(t)

at Lebesgue-almost every time t ∈ [0,T [. Finally the claimed estimate results from
generalized Gronwall’s Lemma (Proposition A.2 on page 440). �

Proof (of Corollary 12). It results from Proposition 11 in exactly the same way
as Proposition 1.24 was concluded from Proposition 1.21 (on page 44). �

2.3.2 Limits of Pointwise Converging Solutions:
Convergence Theorem

In preceding Proposition 11, the continuity of solutions (with respect to initial data
and right-hand side) is based on the assumption that two solutions are given. Hence
this result can hardly be used as a tool for proving an existence theorem.

Now we consider a sequence of solutions instead. If it converges with respect to
the topology of (d j) j∈I then the limit function might be a solution to a mutational
equation. The following theorem extends Convergence Theorem 1.30 (on page 48)
and specifies the details.
It is worth pointing out briefly that we do not require uniform convergence of the
sequence with respect to each d j, j ∈I , but just pointwise convergence of subse-
quences, which can even depend on time. Moreover, perturbations of the right-hand
sides are also taken into consideration. This aspect will be very helpful for the Euler
approximations used in subsequent § 2.3.3.
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Theorem 13 (Convergence of solutions to mutational equations).
For each j ∈I , suppose the following properties of

fn, f : E× [0,T ] −→ Θ
(
E,(di)i∈I ,(�·�i)i∈I

)
(n ∈ N)

xn, x : [0,T ] −→ E :

1.) R j := sup
n,t
�xn(t)� j < ∞,

α̂ j := sup
n,t,y

α j
(

fn(y,t); R j
)

< ∞,

β̂ j := sup
n

Lip
(
xn(·) : [0,T ]−→ (E,d j)

)
< ∞,

2.)
◦
xn (·) � fn(xn(·), ·) (in the sense of Definition 9 on page 107) for every n∈N,

3.) lim
n→∞

D j ( fn(x(t), t), fn(yn, tn); R j) = 0 for L 1-almost every t ∈ [0,T ] and

any sequences (tn)n∈N, (yn)n∈N in [t,T ] and E respectively satisfying

lim
n→∞

tn = t and lim
n→∞

di
(
x(t),yn

)
= 0, sup

n∈N

�yn�i ≤ Ri for each i ∈I ,

4.) for Lebesgue-almost every t ∈ [0,T ] and any t̃ ∈ [0,T [, there exists a
sequence nm ↗ ∞ of indices (possibly depending on t, t̃, j) that satisfies
for m−→ ∞ and each i ∈I
⎧
⎪⎨

⎪⎩

(i) D j
(

f (x(t),t), fnm(x(t), t); R j
) −→ 0

(ii) di
(
x(t), xnm(t)

) −→ 0

(iii) d j
(
x(̃t), xnm (̃t)

) −→ 0

Then, x(·) is a solution to the mutational equation
◦
x(·) � f (x(·), ·) in [0,T [.

Proof. Choose the index j ∈I arbitrarily. Then x(·) : [0,T ] −→ (E,d j) is β̂ j-
Lipschitz continuous. Indeed, for Lebesgue-almost every t ∈ [0,T ] and any t̃ ∈ [0,T ],
assumption (4.) provides a subsequence

(
xnm(·))m∈N

satisfying
{

d j
(
x(t), xnm(t)

) −→ 0
d j
(
x(̃t), xnm (̃t)

) −→ 0
for m−→ ∞.

The uniform β̂ j-Lipschitz continuity of xn(·),n∈N, and the properties of d j imply

d j
(
x(t), x(̃t)

) ≤ d j
(
x(t), xnm(t)

)
+ d j

(
xnm(t), xnm (̃t)

)
+ d j

(
xnm (̃t), x(̃t)

)

≤ d j
(
x(t), xnm(t)

)
+ β̂ j |̃t− t| + d j

(
xnm (̃t), x(̃t)

)

−→ 0 + β̂ j |̃t− t| + 0 for m−→ ∞.

This Lipschitz inequality even holds for any t ∈ [0,T ] due to the triangle inequality
of d j. Moreover the general hypothesis about lower semicontinuity of �·� j ensures

�x(̃t)� j ≤ liminf
m→∞

�xnm (̃t)� j ≤ R j.

Finally we verify the solution property

lim
h↓0

1
h · d j

(
f (x(t), t)(h, x(t)), x(t + h)

)
= 0

for Lebesgue-almost every t ∈ [0,T [. Indeed, for Lebesgue-almost every t ∈ [0,T [
and any h ∈ ]0, T − t[, assumption (4.) guarantees a subsequence

(
xnm(·))m∈N

satisfying for each i ∈I and m−→ ∞



2.3 Solutions to Mutational Equations 111

⎧
⎪⎨

⎪⎩

D j
(

f (x(t), t), fnm(x(t), t); R j
) −→ 0

di
(
x(t), xnm(t)

) −→ 0

d j
(
x(t+h), xnm(t+h)

) −→ 0

We conclude from Proposition 6 (on page 106) and Proposition 11 (on page 108)
respectively

d j
(

f (x(t),t)(h, x(t)), x(t + h)
)

≤ d j
(

f (x(t),t) (h, x(t)), fnm(x(t), t)(h, x(t))
)

+ d j
(

fnm(x(t),t)(h, x(t)), xnm(t + h)
)

+ d j
(
xnm(t + h), x(t + h)

)

≤ h eα̂ j h · D j
(

f (x(t),t), fnm(x(t), t); R j
)

+ d j
(
x(t), xnm(t)

)
eα̂ j h + h eα̂ j h · sup

t≤ s≤ t+h
D j
(

fnm(x(t), t), fnm(xnm(s),s); R j
)

+ d j
(
xnm(t + h), x(t + h)

)
.

Now m−→ ∞ leads to the inequality

d j
(

f (x(t),t)(h, x(t)), x(t+h)
)

≤ h eα̂ j h · limsup
m→∞

sup
[t, t+h]

D j
(

fnm(x(t), t), fnm(xnm(·), ·); R j
)
.

For completing the proof, it is sufficient to verify

limsup
h↓0

limsup
m→∞

sup
[t, t+h]

D j
(

fnm(x(t), t), fnm(xnm(·), ·); R j
)

= 0

for Lebesgue-almost every t ∈ [0,T [ and any subsequence
(
xnm(·))m∈N

satisfying

di
(
x(t), xnm(t)

) −→ 0 for m−→ ∞ and each i ∈I .
Indeed, if this limit superior was positive then we could select some ε > 0 and
sequences (hl)l∈N, (ml)l∈N, (sl)l∈N such that

{
D j
(

fnml
(x(t),t), fnml

(xnml
(t + sl), t + sl); R j

) ≥ ε
0 ≤ sl ≤ hl ≤ 1

l , ml ≥ l
for all l ∈ N.

The consequence

di
(
x(t), xnml

(t + sl)
) ≤ di

(
x(t), xnml

(t)
)

+ β̂i sl
l→∞−→ 0

for each i ∈I would lead to a contradiction to equi-continuity assumption (3.) at
Lebesgue-almost every time t ∈ [0,T [. �

Remark 14. The continuity assumptions about (xn(·))n∈N can be weakened easily.
Supposing for each index j ∈I that the sequence (xn(·))n∈N is equi-continuous
with respect to d j (instead of uniformly β̂ j-Lipschitz continuous) admits the same

conclusions and thus, the limit function x(·) is also a solution of
◦
x (·) � f (x(·), ·)

in the sense of Definition 9.
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2.3.3 Existence for Mutational Equations without
State Constraints

Whenever equations are solved constructively, two principles usually bridge the gap
between approximations and the wanted solution: completeness or compactness. In
fact, both principles guarantee the existence of a limit, but compactness refers to
any sequence and focuses on a suitable subsequence whereas the concept of com-
pleteness is restricted to Cauchy sequences. In metric spaces, compactness usually
implies completeness.
For the tuple

(
E,(d j) j∈I ,(�·� j) j∈I

)
, however, we usually prefer compactness as

analytical basis for constructing solutions to mutational equations because a family
(d j) j∈I of pseudo-metrics is admitted (and we have not even supposed the index
set I �= /0 to be at most countable).

Specifying a suitable form of sequential compactness in
(
E,(d j) j∈I ,(�·� j) j∈I

)

plays an essential role in the mutational framework. Indeed, Aubin’s initial concept
(as presented in Chapter 1) considers metric spaces in which all closed bounded
balls are assumed to be compact. Now we have more than just one distance func-
tion and thus, the classical equivalence of compactness (with regard to covers) and
sequential compactness well-known in metric spaces might fail in this environment.

Our main goal is to construct solutions by means of Euler method and thus, the
piecewise Euler approximations using transitions should provide a convergent sub-
sequence. For this reason, we introduce the following version of compactness:

Definition 15 (Euler compact).
The tuple

(
E, (d j) j∈I , (�·� j) j∈I , Θ

(
E,(di)i∈I ,(�·�i)i∈I

))
is called Euler com-

pact if it satisfies the following condition for any initial element x0 ∈ E, time
T ∈]0,∞[ and bounds α̂ j, β̂ j, γ̂ j > 0 ( j ∈I ):
Let N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) denote the (possibly empty) subset of all curves
y(·) : [0,T ]−→E constructed in the following piecewise way: Choosing an arbitrary
equidistant partition 0 = t0 < t1 < .. . < tn = T of [0,T ] (with n > T ) and transitions
ϑ1 . . .ϑn ∈Θ

(
E,(di)i∈I ,(�·�i)i∈I

)
with

⎧
⎪⎨

⎪⎩

supk γ j(ϑk) ≤ γ̂ j

supk α j
(
ϑk; (�x0� j + γ̂ j T ) eγ̂ j T

) ≤ α̂ j

supk β j
(
ϑk; (�x0� j + γ̂ j T ) eγ̂ j T

) ≤ β̂ j

for each index j ∈I , define y(·) : [0,T ]−→ E as

y(0) := x0, y(t) := ϑk (t− tk−1, y(tk−1)) for t ∈ ]tk−1, tk], k = 1,2 . . .n.

Then for each t ∈ [0,T ], every sequence (zn)n∈N in {y(t) | y(·) ∈N } ⊂ E has a
subsequence (znm)m∈N

converging to an element z ∈ E with respect to each pseudo-
metric d j ( j ∈I ).
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Remark 16. Euler compactness weakens the condition that all bounded closed
balls are compact – in the following sense: The family (d j) j∈I of pseudo-metrics
induces a topology of the nonempty set E. If every “ generalized ball” in E

{
y ∈ E

∣
∣ ∀ j ∈I : d j(x0,y)≤ r j, �y� ≤ R j

}

with arbitrary “center” x0 ∈ E and bounds r j,R j ∈ ]0,∞[ ( j ∈I ) is sequentially
compact, then

(
E, (d j) j∈I , (�·� j) j∈I , Θ

(
E,(di)i∈I ,(�·�i)i∈I

))
is Euler compact.

Indeed, fixing the parameters x0,T,(α̂ j, β̂ j, γ̂ j) j∈I arbitrarily, every curve y(·) :

[0,T ]−→ E in N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) satisfies

�y(t)� j ≤ (�x0� j + γ̂ j T ) eγ̂ j T

for each t ∈ [0,T ] and j ∈I according to Lemma 4 (on page 105). Furthermore,
condition (4.) of Definition 2 (about transitions) and the triangle inequality of d j

guarantee for each index j ∈I that y(·) : [0,T ] −→ (E,d j) is β̂ j-Lipschitz contin-
uous and thus,

d j
(
x0, y(t)

) ≤ β̂ j T

for every t ∈ [0,T ]. Hence the set of all values {y(t) | y(·) ∈N , t ∈ [0,T ]} ⊂ E is
contained in such a “generalized ball”.

The bound on the parameter α j is not used explicitly, but it weakens the conditions
of Euler compactness. Indeed, subsequent Theorem 18 about existence assumes
such a bound anyway and thus, the Euler approximations are based on transitions
with uniform bounds on all their parameters α j,β j,γ j.

In a word, Euler compactness ensures the existence of a convergent subsequence for
each point of time separately. This even implies the existence of one and the same
subsequence converging at every time. Specifying this conclusion in the following
lemma, we realize a counterpart of Arzelà-Ascoli Theorem A.82 (on page 491) –
now, however, in the tuple

(
E, (d j) j∈I , (�·� j) j∈I

)
.

Lemma 17 (Uniform sequential compactness due to Euler compactness).
Assume

(
E, (d j) j∈I , (�·� j) j∈I , Θ

(
E,(di)i∈I ,(�·�i)i∈I

))
to be Euler compact.

Using the notation of Definition 15, choose initial element x0 ∈ E, time T ∈ ]0,∞[
and bounds α̂ j, β̂ j, γ̂ j > 0 ( j ∈I ) arbitrarily.

For every sequence (yn(·))n∈N of curves [0,T ] −→ E in N
(
x0,T,(α̂ j, β̂ j, γ̂ j) j∈I

)
,

there exists a subsequence (ynm(·))m∈N
and a function y(·) : [0,T ] −→ E such that

for every j ∈I ,
sup

t∈ [0,T ]
d j
(
ynm(t), y(t)

) −→ 0 for m−→ ∞.

Furthermore if (yn(t0))n∈N is constant for some t0 ∈ [0,T ] then y(·) can be chosen
with the additional property y(t0) = yn(t0).
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The last statement does not result directly from the convergence because the set
E supplied with the topology of (d j) j∈I does not have to be a Hausdorff space.
The proof is postponed to the end of this section. As a consequence, we obtain the
extension of Peano’s Theorem 1.20 (on page 40) to the tuple

(
E, (d j) j, (�·� j) j

)
and

its transitions.

Theorem 18 (Peano’s Theorem for nonautonomous mutational equations).
Suppose

(
E, (d j) j∈I , (�·� j) j∈I , Θ

(
E,(di)i∈I ,(�·�i)i∈I

))
to be Euler compact.

Assume for f : E× [0,T ]−→Θ
(
E,(di)i∈I ,(�·�i)i∈I

)
and each j ∈I , R > 0,

1.) sup
z, t

α j( f (z,t); R) < ∞,

2.) sup
z, t

β j( f (z,t); R) < ∞,

3.) sup
z, t

γ j( f (z,t)) < ∞,

4.) lim
n→∞

D j
(

f (zn,tn), f (z,t); R
)

= 0 for L 1-almost every t ∈ [0,T ] and

any sequences (tn)n∈N in [0,T ] and (zn)n∈N in E satisfying lim
n→∞

tn = t and

lim
n→∞

di(zn,z) = 0, sup
n∈N

�zn�i < ∞ for every i ∈I .

Then for every initial element x0 ∈ E, there exists a solution x(·) : [0,T ] −→ E to
the mutational equation ◦

x (·) � f
(
x(·), ·)

in the tuple
(
E,(d j) j∈I ,(�·� j) j∈I

)
with x(0) = x0.

Proof (of Lemma 17). Fixing the parameters x0,T,(α̂ j, β̂ j, γ̂ j) j∈I arbitrarily, we

can assume the set N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) to be nonempty (since otherwise
the claim is trivial).
Let (yn(·))n∈N be any sequence of functions [0,T ] −→ E in N . Then for every
j ∈I and n ∈N, the curve yn : [0,T ]−→ (E,d j) is β̂ j-Lipschitz continuous due to
condition (4.) of Definition 2 (about transitions) and the triangle inequality of d j.

For each t ∈ [0,T ], the assumption of Euler compactness ensures a subsequence
of
(
yn(t)

)
n∈N

converging with respect to each d j. Cantor’s diagonal construction
provides a subsequence

(
ynm(·))m∈N

of functions [0,T ] −→ E with the additional
property that at every rational time t ∈ [0,T ], an element y(t) ∈ E satisfies

d j
(
ynm(t), y(t)

) −→ 0 for m−→ ∞

and each j ∈I since the subset Q∩ [0,T ] of rational numbers in [0,T ] is countable.

Now we consider any t ∈ [0,T ] \Q. Due to Euler compactness, there exists a sub-
sequence

(
ynml

(t)
)

l∈N
converging to an element y(t) ∈ E with respect to each d j

(but maybe depending on t).
Then we even obtain d j

(
ynm(t), y(t)

) −→ 0 for m −→ ∞ and each j ∈I . Indeed,

the triangle inequality of d j and the β̂ j-Lipschitz continuity of each yn(·), n ∈ N,
imply for every s ∈ [0,T ]∩Q and l,m ∈ N
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d j
(
ynm(t), y(t)

) ≤ d j
(
ynm(t), ynm(s)

)
+ d j

(
ynm(s), ynml

(s)
)

+ d j
(
ynml

(s), ynml
(t)
)
+ d j

(
ynml

(t), y(t)
)

≤ β̂ j |t− s|+ d j
(
ynm(s), ynml

(s)
)

+ β̂ j |t− s|+ d j
(
ynml

(t), y(t)
)
.

l −→∞ leads to the following inequality for every m∈N, s ∈ [0,T ]∩Q and j ∈I

d j
(
ynm(t), y(t)

) ≤ 2 β̂ j |t− s| + d j
(
ynm(s), y(s)

)

and thus, limsup
m→∞

d j
(
ynm(t), y(t)

) ≤ inf
s∈ [0,T ]∩Q

2 β̂ j |t− s| + 0 = 0.

Finally pointwise convergence of
(
ynm(·))m∈N

to y(·) : [0,T ] −→ E and the

β̂ j-Lipschitz continuity of each ynm(·) : [0,T ] −→ (E,d j), m ∈ N, imply uniform
convergence with respect to d j in the compact interval [0,T ] for each index j ∈I .

�

Proof (of Theorem 18). It is based on Euler approximations xn(·) : [0,T ] −→ E
(n ∈ N) on equidistant partitions of [0,T ]. Indeed, for each n ∈ N with 2n > T, set

hn := T
2n , tk

n := k hn for k = 0 . . . 2n,

xn(0) := x0,

xn(t) := f (xn(tk
n), tk

n)
(
t− tk

n , xn(tk
n)
)

for t ∈ ]tk
n , tk+1

n ], k < 2n.

Using the abbreviation γ̂ j := supz, t γ j( f (z, t)) < ∞, Lemma 4 (on page 105)
ensures

�xn(t)� j ≤
(�x0� j + γ̂ j T

) · eγ̂ j T =: R j

for every t ∈ [0,T ], n ∈ N (with 2n > T ) and each j ∈I .
Due to Euler compactness and assumptions (1.)–(3.), Lemma 17 provides a subse-
quence

(
xnm(·))m∈N

and a function x(·) : [0,T ]−→ E with x(0) = x0 and

sup
t∈ [0,T ]

d j
(
xnm(t), x(t)

) −→ 0 for m−→ ∞

and each j ∈I .

Finally we conclude from Convergence Theorem 13 (on page 110) that x(·) is a
solution to the mutational equation

◦
x (·) � f

(
x(·), ·)

in the sense of Definition 9 (on page 107). Indeed, as a consequence of Remark 8
(on page 106), each Euler approximation xn(·) : [0,T ]−→ E, n ∈N, is a solution to
the mutational equation

◦
xn (·) � fn

(
xn(·), ·

)

with the auxiliary function fn : E × [0,T [−→ Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)
that is

defined in a piecewise way: fn(y, t) := f
(
xn(tk

n), tk
n

)
for t ∈ [tk

n , tk+1
n [, k < 2n.
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At Lebesgue-almost every time t ∈ [0,T ], assumption (4.) about the continuity of f
implies indirectly

D j
(

f (x(t),t), fnm(x(t),t); R j
) ≤ sup

s: |s−t|≤hnm

D j
(

f (x(t), t), f (xnm(s),s); R j
)

−→ 0 for m−→ 0,

D j
(

fnm(x(t),t), fnm(ym,tm); R j
) ≤ sup

s: |s−t| ≤hnm
s̃: |s̃−tm|≤hnm

D j
(

f (xnm(s),s), f (xnm(s̃), s̃); R j
)

−→ 0 for m−→ 0

for each j ∈I and any sequences (tm)m∈N, (ym)m∈N in [0,T ], E respectively with
tm −→ t. (A similar indirect conclusion has already been drawn at the end of the
proof of Convergence Theorem 13 on page 111.)
Thus, all hypotheses of Convergence Theorem 13 are satisfied by the subsequence
(xnm(·))m∈N of Euler approximations and x(·). As a consequence, x(·) is a solution

to the mutational equation
◦
x(·) � f

(
x(·), ·). �

Remark 19. A pointwise Cauchy sequence (xn(·))n∈N of solutions concluded
from Theorem 18 always converges to a curve x(·) : [0,T ]−→ E in a pointwise way.
This form of completeness results from Euler compactness of (E,d,Θ(E,d,�·�))
and thus, it does not require assuming completeness of (E,d) additionally.
(This observation will be used in § 5.1.3.)

2.3.4 Convergence Theorem and Existence for Systems

The preceding results about convergence and existence of solutions can be extended
to systems of finitely many mutational equations in a rather obvious way, but this is
an important feature of the mutational framework as we have already pointed out in
§ 1.5 (on page 44 ff.).

Now a (possibly infinite) family (d j) j∈I of pseudo-metrics should be taken into
consideration – instead of a single metric as in Chapter 1.
For this reason, we cannot use the same arguments as in Lemma 1.27 (on page 45)
and supply a product E1×E2 simply with the sum of distance functions. In particu-
lar, the equivalence about componentwise mutations in Lemma 1.27 (2.) might lack
a suitable counterpart for products of tuples

(
E,(di)i∈I ,(�·�i)i∈I

)
.

We prefer an alternative notion that has already been used for proving Peano’s
Theorem 1.26 for systems in metric spaces (on page 46 f.): The wanted mutational
properties are verified for each component separately while the other components
are regarded as additional time-dependent parameters. For proving existence of a
joint solution to the system in particular, we again rely on Euler approximations
for the system and select suitable subsequences successively according to Euler
compactness in each component.
The assumptions, however, are now doubling ...
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Theorem 20 (Convergence of solutions to systems of mutational equations).
Let the tuples

(
E1,(d1

j ) j∈I1 ,(�·�1j) j∈I1

)
and

(
E2,(d2

j ) j∈I2 ,(�·�2j) j∈I2

)
satisfy the

general assumptions of this chapter (on page 104).Θ
(
E1,(d1

j ) j∈I1 ,(�·�1j) j∈I1

)
and

Θ
(
E2,(d2

j ) j∈I2 ,(�·�2j ) j∈I2

)
respectively denote nonempty sets of transitions as in

Definition 5 (on page 105).

For each j1 ∈I1, j2 ∈I2, suppose the following properties of

f 1
n , f 1 : E1×E2× [0,T ] −→ Θ

(
E1,(d1

i )i∈I1 ,(�·�1i )i∈I1

)
(n ∈ N)

f 2
n , f 2 : E1×E2× [0,T ] −→ Θ

(
E2,(d2

i )i∈I2 ,(�·�2i )i∈I2

)
(n ∈ N)

x1
n, x1 : [0,T ] −→ E1 :

x2
n, x2 : [0,T ] −→ E2 :

1.) R1
j1

:= sup
n,t
�x1

n(t)�1j1 < ∞, α̂1
j1

:= sup
n,t,y1,y2

α1
j1

(
f 1
n (y1,y2, t); R1

j1

)
< ∞,

R2
j2

:= sup
n,t
�x2

n(t)�2j2 < ∞, α̂2
j2

:= sup
n,t,y1,y2

α2
j2

(
f 2
n (y1,y2, t); R2

j2

)
< ∞,

β̂ 1
j1

:= sup
n

Lip
(
x1

n(·) : [0,T ]−→ (E,d1
j1
)
)

< ∞,

β̂ 2
j2

:= sup
n

Lip
(
x2

n(·) : [0,T ]−→ (E,d2
j2
)
)

< ∞,

2.)
◦
x 1

n(·) � f 1
n (x1

n(·), x2
n(·), ·)◦

x 2
n(·) � f 2

n (x1
n(·), x2

n(·), ·) (in the sense of Definition 9) for every n ∈ N,

3.) lim
n→∞

D1
j1

(
f 1
n (x1(t), x2(t), t), f 1

n (y1
n, y2

n, tn); R1
j1

)
= 0

lim
n→∞

D2
j2

(
f 2
n (x1(t), x2(t), t), f 2

n (y1
n, y2

n, tn); R2
j2

)
= 0

for L 1-almost every t ∈ [0,T ] and any sequences (tn)n∈N, (y1
n)n∈N, (y2

n)n∈N

in [t,T ], E1 and E2 respectively satisfying

lim
n→∞

tn = t and lim
n→∞

d1
i

(
x1(t),y1

n

)
= 0, sup

n∈N

�y1
n�1i ≤ R1

i for each i ∈I1,

lim
n→∞

d2
i

(
x2(t),y2

n

)
= 0, sup

n∈N

�y2
n�2i ≤ R2

i for each i ∈I2,

4.) for Lebesgue-almost every t ∈ [0,T ] and any t̃ ∈ [0,T [, there exists a
sequence nm ↗ ∞ of indices (possibly depending on t, t̃, j1, j2) that satisfies
for m−→ ∞ and each i1 ∈I1, i2 ∈I2⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) D1
j1

(
f 1(x1(t), x2(t), t), f 1

nm
(x1(t), x2(t), t); R1

j1

) −→ 0

D2
j2

(
f 2(x1(t), x2(t), t), f 2

nm
(x1(t), x2(t), t); R2

j2

) −→ 0

(ii) d1
i1

(
x1(t), x1

nm
(t)
) −→ 0, d2

i2

(
x2(t), x2

nm
(t)
) −→ 0

(iii) d1
j1

(
x1(̃t), x1

nm
(̃t)
) −→ 0, d2

j2

(
x2(̃t), x2

nm
(̃t)
) −→ 0

Then, x1(·) and x2(·) are solutions to the mutational equations
◦
x 1(·) � f 1

(
x1(·), x2(·), ·), ◦

x 2(·) � f 2
(
x1(·), x2(·), ·).
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Theorem 21 (Peano’s Theorem for systems of mutational equations).
Suppose the tuples

(
E1, (d1

j ) j∈I1 , (�·�1j) j∈I1 , Θ
(
E1,(d1

i )i∈I1 ,(�·�1i )i∈I1

))
and(

E2, (d2
j ) j∈I2 , (�·�2j) j∈I2 , Θ

(
E2,(d2

i )i∈I2 ,(�·�2i )i∈I2

))
to be Euler compact.

Assume for

f 1 : E1×E2× [0,T ] −→ Θ
(
E1,(d1

i )i∈I1 ,(�·�1i )i∈I1

)

f 2 : E1×E2× [0,T ] −→ Θ
(
E2,(d2

i )i∈I2 ,(�·�2i )i∈I2

)

and each j1 ∈I1, j2 ∈I2, R > 0 :

1.) sup
z1, z2, t

α1
j1( f 1(z1,z2,t); R) < ∞, sup

z1, z2, t
α2

j2( f 2(z1,z2, t); R) < ∞,

2.) sup
z1, z2, t

β 1
j1( f 1(z1,z2,t); R) < ∞, sup

z1, z2, t
β 2

j2( f 2(z1,z2, t); R) < ∞,

3.) sup
z1, z2, t

γ1
j1( f 1(z1,z2,t)) < ∞, sup

z1, z2, t
γ2

j2( f 2(z1,z2, t)) < ∞,

4.) lim
n→∞

D1
j1

(
f 1(z1

n,z
2
n,tn), f 1(z1,z2, t); R

)
= 0

lim
n→∞

D2
j2

(
f 2(z1

n,z
2
n,tn), f 2(z1,z2, t); R

)
= 0

for L 1-almost every t ∈ [0,T ] and any sequences (tn)n∈N, (z1
n)n∈N (z2

n)n∈N

in [0,T ],E1, E2 respectively satisfying

lim
n→∞

tn = t and lim
n→∞

d1
i

(
z1,z1

n

)
= 0, sup

n∈N

�z1
n�1i < ∞ for each i ∈I1,

lim
n→∞

d2
i

(
z2,z2

n

)
= 0, sup

n∈N

�z2
n�2i < ∞ for each i ∈I2,

Then for any elements x1
0 ∈ E1,x2

0 ∈ E2, there exist solutions x1(·) : [0,T ] −→ E1

and x2(·) : [0,T ]−→ E2 to the mutational equations
⎧
⎨

⎩

◦
x 1(·) � f 1

(
x1(·), x2(·), ·)

◦
x 2(·) � f 2

(
x1(·), x2(·), ·)

with x1(0) = x1
0, x2(0) = x2

0.

The proofs do not really provide new analytical aspects in comparison with the
proofs of Theorem 13 (on page 110 f.) and Theorem 18 (on page 115 f.) respectively.
Thus, we verify only Convergence Theorem 20 in detail and, the formulation is
deliberately analogous to § 2.3.2:

Proof (of Theorem 20). Due to the symmetry with respect to x1(·) and x2(·),
we can restrict ourselves to the solution properties of x1(·).

For each index j1 ∈I1, the function x1(·) : [0,T ] −→ (E,d1
j1
) is β̂ 1

j1
-Lipschitz

continuous. Indeed, for Lebesgue-almost every t ∈ [0,T ] and any t̃ ∈ [0,T ], assump-
tion (4.) provides a subsequence

(
x1

nm
(·))m∈N

with
{

d1
j1

(
x1(t), x1

nm
(̃t)
) −→ 0

d1
j1

(
x1(̃t), x1

nm
(̃t)
) −→ 0

for m−→ ∞.
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Now the uniform β̂ 1
j1

-Lipschitz continuity of x1
n(·),n ∈ N, implies

d1
j1

(
x1(t), x1(̃t)

) ≤ d1
j1

(
x1(t), x1

nm
(t)
)

+ d1
j1

(
x1

nm
(t), x1

nm
(̃t)
)

+ d1
j1

(
x1

nm
(̃t), x1(̃t)

)

≤ d1
j1

(
x1(t), x1

nm
(t)
)

+ β̂ 1
j1
|̃t− t| + d1

j1

(
x1

nm
(̃t), x1(̃t)

)

−→ 0 + β̂ 1
j1
|̃t− t| + 0 for m→ ∞.

This Lipschitz inequality can be easily extended to all t ∈ [0,T ] by means of the
triangle inequality of d1

j1
. Moreover the general hypothesis about lower semiconti-

nuity of �·�1j1 ensures

�x1(̃t)�1j1 ≤ liminf
m→∞

�x1
nm

(̃t)�1j1 ≤ R1
j1 .

Finally we focus on the feature of first-order approximation

lim
h↓0

1
h · d1

j1

(
f 1(x1(t),x2(t), t)(h, x1(t)), x1(t + h)

)
= 0

at Lebesgue-almost every time t ∈ [0,T [. Indeed, for Lebesgue-almost every
t ∈ [0,T [ and any h ∈ ]0, T−t[, assumption (4.) provides a sequence nm ↗ ∞
of indices satisfying for each i1 ∈I1, i2 ∈I2 and m−→ ∞

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D1
j1

(
f 1(x1(t), x2(t), t), f 1

nm
(x1(t), x2(t), t); R1

j1

) −→ 0

d1
i1

(
x1(t), x1

nm
(t)
) −→ 0

d2
i2

(
x1(t), x1

nm
(t)
) −→ 0

d1
j1

(
x1(t+h), x1

nm
(t+h)

) −→ 0 .

We conclude from Proposition 11 (on page 108)

d1
j1

(
f 1(x1(t),x2(t),t)(h, x1(t)), x1(t + h)

)

≤ d1
j1

(
f 1(x1(t),x2(t), t) (h, x1(t)), f 1

nm
(x1(t),x2(t), t)(h, x1(t))

)

+ d1
j1

(
f 1
nm

(x1(t),x2(t), t)(h, x1(t)), x1
nm

(t + h)
)

+ d1
j1

(
x1

nm
(t + h), x1(t + h)

)

≤ h eα̂
1
j1

h · D1
j1

(
f 1(x1(t),x2(t), t), f 1

nm
(x1(t),x2(t), t); R j

)

+ d1
j1

(
x1(t), x1

nm
(t)
)

eα̂
1
j1

h

+ h eα̂
1
j1

h · sup
[t, t+h]

D1
j1

(
f 1
nm

(x1(t),x2(t), t), f 1
nm

(x1
nm

(·),x2
nm

(·), ·); R j
)

+ d1
j1

(
x1

nm
(t + h), x1(t + h)

)
.

Now m−→ ∞ leads to the inequality

d1
j1

(
f 1(x1(t),x2(t),t)(h, x1(t)), x1(t+h)

)

≤ h eα̂
1
j1

h · limsup
m→∞

sup
[t, t+h]

D1
j1

(
f 1
nm

(x1(t),x2(t), t), f 1
nm

(x1
nm

(·),x2
nm

(·), ·); R j
)
.
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For completing the proof, it is sufficient to verify

0 = limsup
h↓0

limsup
m→∞

sup
[t, t+h]

D1
j1

(
f 1
nm

(x1(t),x2(t), t), f 1
nm

(x1
nm

(·),x2
nm

(·), ·); R j
)

for Lebesgue-almost every t ∈ [0,T [ and any subsequence
(
xnm(·))m∈N

satisfying
{

d1
i1

(
x1(t), x1

nm
(t)
) m→∞−→ 0 for each i1 ∈I1,

d2
i2

(
x2(t), x2

nm
(t)
) m→∞−→ 0 for each i2 ∈I2.

Indeed, if this limit superior was positive then we could select some ε > 0 and
sequences (hl)l∈N, (ml)l∈N, (sl)l∈N such that for every l ∈ N,
{

D1
j1

(
f 1
nml

(x1(t),x2(t),t), f 1
nml

(x1
nml

(t + sl),x2
nml

(t + sl), t + sl); R j
) ≥ ε

0 ≤ sl ≤ hl ≤ 1
l , ml ≥ l .

The consequence
⎧
⎨

⎩

d1
i1

(
x1(t), x1

nml
(t + sl)

) ≤ d1
i1

(
x1(t), x1

nml
(t)
)

+ β̂ 1
i1

sl
l→∞−→ 0

d2
i2

(
x2(t), x2

nml
(t + sl)

) ≤ d2
i2

(
x2(t), x2

nml
(t)
)

+ β̂ 2
i2

sl
l→∞−→ 0

for any indices i1 ∈I1 and i2 ∈I2 would lead to a contradiction to equi-continuity
assumption (3.) at Lebesgue-almost every time t ∈ [0,T [. �

2.3.5 Existence for Mutational Equations with Delay

Euler method in combination with Euler compactness proves to be useful indeed.
Essentially the same approximations also provide solutions to mutational equations
with delay. Pichard and Gautier formulated and proved their existence for Aubin’s
form of mutational equations in a metric space [158]. Now we present the coun-
terpart for the tuple

(
E, (d j) j∈I , (�·� j) j∈I

)
. First we have to specify the type of

functions that are admitted as argument in the delay equation:

Definition 22. Let I ⊂ R be a nonempty interval.
BLip

(
I, E; (d j) j∈I , (�·� j) j∈I

)
denotes the set of all functions y(·) : I −→ E

satisfying the following conditions for each index j ∈I :

1.) y(·) : I −→ E is Lipschitz continuous with respect to d j

2.) sup
t∈ I
�y(t)� j < ∞.

Proposition 23 (Existence of solutions to mutational equations with delay).
Suppose

(
E, (d j) j∈I , (�·� j) j∈I , Θ

(
E,(di)i∈I ,(�·�i)i∈I

))
to be Euler compact.

Moreover assume for some fixed τ ≥ 0, the function

f : BLip
(
[−τ,0], E; (d j) j∈I , (�·� j) j∈I

)× [0,T ] −→ Θ
(
E,(di)i∈I ,(�·�i)i∈I

)

and each j ∈I , R > 0 :
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1.) sup
z(·), t

α j( f (z(·), t); R) < ∞,

2.) sup
z(·), t

β j( f (z(·), t); R) < ∞,

3.) sup
z(·), t

γ j( f (z(·), t)) < ∞,

4.) lim
n→∞

D j
(

f (zn(·), tn), f (z(·), t); R
)

= 0 for L 1-almost every t ∈ [0,T ] and

any sequences (zn(·))n∈N, (tn)n∈N in BLip
(
[−τ,0], E; (d j) j∈I , (�·� j) j∈I

)

and [0,T ] respectively satisfying

lim
n→∞

tn = t and lim
n→∞

sup
s∈ [−τ,0]

di
(
zn(s), z(s)

)
= 0,

sup
n∈N

sup
s∈ [−τ,0]

�zn(s)�i < ∞ for every i ∈I .

For every function x0(·) ∈ BLip
(
[−τ,0], E; (d j) j∈I , (�·� j) j∈I

)
, there exists a

curve x(·) : [−τ,T ]−→ E with the following properties:

(i) x(·) ∈ BLip
(
[−τ,T ], E; (d j) j∈I , (�·� j) j∈I

)
,

(ii) for L 1-almost every t ∈ [0,T ], f
(
x(t + ·)∣∣[−τ,0], t

)
belongs to

◦
x (t),

(iii) x(·)∣∣[−τ,0] = x0(·).

In particular, the restriction x(·)∣∣[0,T ] is a solution to the mutational equation

◦
x(t) � f

(
x(t + ·)∣∣[−τ,0], t

)

in the sense of Definition 9 (on page 107).

Proof. Similarly to the proof of Peano’s Theorem 18 (on page 115 f.), we
construct a sequence of Euler approximations on equidistant partitions of [0,T ].
The (only) new aspect is due to the appropriate restrictions as argument of f (·, t).
For every n ∈N with 2n > T, set

hn := T
2n , tk

n := k hn for k = 0 . . . 2n,

xn(·)
∣
∣
[−τ,0] := x0,

xn(t) := f (xn(tk
n + ·)∣∣[−τ,0], tk

n)
(
t− tk

n, xn(tk
n)
)

for t ∈ ]tk
n , tk+1

n ], k < 2n.

With γ̂ j := sup γ j( f (·, ·)) < ∞, Lemma 4 (on page 105) again provides a uniform
bound for every t ∈ [0,T ], n ∈ N (with 2n > T ) and each j ∈I :

�xn(t)� j ≤
(�x0(0)� j + γ̂ j T

) · eγ̂ j T =: R j .

Thus, exactly as in the proof of Peano’s Theorem 18, we conclude from Euler com-
pactness and assumptions (1.)–(3.) that a subsequence

(
xnm(·))m∈N

converges to a
function x(·) : [0,T ]−→ E in the sense that

sup
t∈ [0,T ]

d j
(
xnm(t), x(t)

) −→ 0 for m−→ ∞

and each index j ∈I . In particular, x(0) = x0(0) due to Lemma 17.
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For every t ∈ [0,T ], the estimate �x(t)� j ≤ R j results from the general assumption

about �·� j (on page 104) and, x(·) : [0,T ]−→ (E,d j) is also β̂ j-Lipschitz continuous

with β̂ j := sup β ( f (·, ·)) < ∞. Defining x(·)∣∣[−τ,0] := x0(·), we obtain

x(·) ∈ BLip
(
[−τ,T ], E; (d j) j∈I , (�·� j) j∈I

)
.

Finally it is again the conclusion of Convergence Theorem 13 (on page 110) that

lim
h↓0

1
h · d j

(
f
(
x(t + ·)∣∣[−τ,0], t

)
(h, x(t)), x(t + h)

)
= 0

holds for arbitrarily fixed j ∈I and L 1-almost every t ∈ [0,T ]. Indeed, each Euler
approximation xn(·) : [0,T ]−→ E, n ∈N, can be regarded as a solution of

◦
xn (t) � fn

(
xn(t + ·)∣∣[−τ,0], t

)

with the auxiliary function

fn : BLip
(
[−τ,0], E; (d j) j∈I , (�·� j) j∈I

)× [0,T ]−→Θ
(
E,(d j) j∈I ,(�·� j) j∈I

)
,

fn
(
y(·), t

)
:= f

(
xn(·)

∣
∣
[tk

n−τ, tk
n ], tk

n

)
for any y(·) and t ∈ [tk

n , tk+1
n [, k < 2n.

Fix index j ∈I arbitrarily. At L 1-almost every time t ∈ [0,T ], assumption (4.) has
two indirect consequences. First,

D j
(

f (x(t + ·)|[−τ,0], t), fnm(x(t + ·)|[−τ,0], t); R j
)

≤ sup
s: |s−t|≤hnm

D j
(

f (x(t + ·)|[−τ,0], t), f (xnm(s+ ·)|[−τ,0],s); R j
) m→∞−→ 0,

because for any index i ∈I and s, t ∈ [0,T ],

sup
[−τ,0]

di
(
x(t + ·), xnm(s+ ·)) ≤ sup

[−τ,0]
di
(
x(t + ·), xnm(t + ·)) + β̂i |s− t|

m→∞−→ 0 + β̂i |s− t|.
Second, we obtain for any sequences (tm)m∈N in [0,T ] tending to t and

(ym(·))m∈N in BLip
(
[−τ,0], E; (d j) j∈I , (�·� j) j∈I

)

D j
(

fnm(x(·)|[t−τ, t], t), fnm(ym(·), tm); R j
)

≤ sup
s: |s−t| ≤hnm
s̃: |s̃−tm|≤hnm

D j
(

f (xnm(·)|[s−τ, s],s), f (xnm(·)|[s̃−τ, s̃], s̃); R j
) m→∞−→ 0.

Finally we can now draw exactly the same conclusions as in the proof of Con-
vergence Theorem 13 (on page 110 ff.) – considering, however, x(·) and the subse-
quence (xnm(·))m∈N of Euler approximations restricted to [0,T ]. As a consequence,

lim
h↓0

1
h · d j

(
f
(
x(t + ·)∣∣[−τ,0], t

)
(h, x(t)), x(t + h)

)
= 0

is satisfied for arbitrarily fixed index j ∈I and at L 1-a.e. time t ∈ [0,T ]. �
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2.3.6 Existence Under State Constraints for Finite Index Set I

If the index set I �= /0 consists of at most finitely many elements, then we even can
restrict our considerations to a single index (i.e. I = {0}). Indeed, all conditions
on transitions and solutions respectively are then satisfied by

d0 := max
j∈I

d j : E×E −→ [0,∞[,

�·�0 := max
j∈I
�·� j : E −→ [0,∞[.

Even in this special case, the recent mutational framework is more general than its
counterpart in Chapter 1 because the parameters α, β of transitions and the distance
between transitions require merely “local” bounds, i.e. in every “generalized ball”
{x ∈ E | �x�0 ≤ r} with arbitrary r > 0.
This additional feature, however, does not have any significant consequences for
verifying the existence of solutions with state constraints. Now Proposition 1.28 (on
page 47) has the following counterpart:

Proposition 24 (Existence of solutions under state constraints for I = {0}).
In addition to I = {0}, let (E,d0) be a metric space and assume that for every
r1,r2 > 0 and x0 ∈ E, the (possibly empty) set {x ∈ E |d0(x0,x)≤ r1, �x�0 ≤ r2} is
sequentially compact. For each r > 0, suppose

f : (E,d0)−→
(
Θ
(
E, d0, �·�0

)
, D0(·, ·;r)

)

to be continuous with

α̂(r) := supz∈E α0( f (z);r) < ∞,

β̂ (r) := supz∈E β0( f (z);r) < ∞,
γ̂ := supz∈E γ0( f (z)) < ∞.

Let the nonempty closed subset V ⊂ (E,d0) satisfy the following viability condition
(with the contingent transition set as specified in Definition 1.16 on page 39) :

f (z) ∈TV (z) for every z ∈ V ,

i.e. liminf
h↓0

1
h · inf

y∈V
d0
(

f (z)(h,z), y
)

= 0 for every z ∈ V .

Then every x0 ∈ V is the initial point of at least one solution x : [0,1] −→ E to
the mutational equation

◦
x (·) � f

(
x(·))

with x(t) ∈ V for all t ∈ [0,1].

The proof follows exactly the arguments of Proposition 1.28 and is based on the ap-
proximative solutions in subsequent Lemma 25 in combination with Arzelà-Ascoli
Theorem A.82 and Convergence Theorem 13 (on page 110).
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Lemma 25 (Constructing approximative solutions).
Choose any ε > 0. Under the assumptions of Proposition 24, there always exists a
β̂ -Lipschitz continuous function xε(·) : [0,1]−→ (E,d0) satisfying

(a) xε(0) = x0,

(b) dist
(
xε(t), V

) ≤ ε eα̂ for all t ∈ [0,1],
(c)

◦
xε(t) ∩

{
f (z)
∣
∣ z ∈ E : d0(z, xε(t))≤ ε eα̂

} �= /0 for all t ∈ [0,1[,

(d) �xε(t)�0 ≤
(�x0�0 + γ̂ t

)
eγ̂ t for all t ∈ [0,1].

This lemma differs from Aubin’s metric counterpart in Lemma 1.29 (on page 48)
merely in property (d). Following the proving arguments (on page 48 f.), how-
ever, this upper bound of �x(t)�0 can be implemented easily due to Lemma 4 (on
page 105). Now we dispense with further details verifying Lemma 25 and Proposi-
tion 24.

The analogy to Lemma 1.29 and its proof is a reason for restricting our consider-
ations in this subsection to a finite index set I . Indeed, the indirect arguments for
Lemma 1.29 consider several points of time T +hm, m ∈N, with a sequence hm ↓ 0
related to

liminf
h↓0

1
h · inf

y∈V
d0
(

f (z)(h,z), y
)

= 0

for some z ∈ V . Such a sequence should be chosen appropriately “uniformly” for
all indices j ∈I if more than one distance function d j comes into play.
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2.4 Example: Semilinear Evolution Equations in Reflexive
Banach Spaces

In this example, we consider semilinear evolution equations
d
dt u(t) = A u(t) + f

(
u(t), t

)

with a fixed generator A of a C0 semigroup on a Banach space X . The goal is to
specify sufficient conditions on X , its topology and the generator A so that initial
value problems can be solved in the mutational framework.
Solutions to the corresponding mutational equations prove to be weak solutions.
A proposition of John Ball [20] implies that they are even mild solutions. Consid-
ering these results separately, they have already been well-known, but the essential
advantage of their fitting in the mutational framework is that we are free to combine
these evolution equations with any other example in systems. This opens the door
to coupling, for example, a reaction-diffusion equation (on the whole Euclidean
space) with a modified morphological equation for compact subsets (in the sense of
§ 1.11). Such a result about existence for systems is formulated in Proposition 37
(on page 131) below.

Assumptions for § 2.4.

(1.) (X ,‖ · ‖) is a separable reflexive Banach space.

(2.) The linear operator A generates a C0 semigroup (S(t))t≥0 on X .

(3.) The C0 semigroup (S(t))t≥0 of linear operators on X is ω-contractive, i.e.
there is some ω > 0 such that ‖S(t) x‖ ≤ eω t ‖x‖ for all x ∈ X , t ≥ 0.

(4.) The dual operator A′ of A has a family of unit eigenvectors {v′j} j∈I spanning
the dual space X ′. λ j denotes the eigenvalue of A′ related to v′j for each j ∈I .

(5.) For each index j ∈I , set d j : X ×X −→ [0,∞[, (x,y) �−→ |〈x− y, v′j〉| and
�·� j := ‖ · ‖.

Among these five assumptions, condition (4.) is probably the most restrictive one:
The eigenvectors of A′ are spanning the dual space X ′. First we specify two classes
of operators fulfilling this condition with an even countable family of eigenvectors.
In particular, the separability of the dual space X ′ implies that X is also separable
[188, Chapter V, Appendix § 4].

Example 26. Consider a normal compact operator A : H −→ H on a separable
Hilbert space H generating a C0 semigroup (S(t))t≥0.
Then there exists a countable orthonormal system (ei)i∈Î

of eigenvectors of A with

H = ker A⊕∑i∈Î
R ei [184, Theorem VI.3.2]. Since H is separable, (ei)i∈Î

in-

duces a countable orthonormal basis (ei)i∈I of H with Aei =0 for all i ∈I \ Î .
In fact, each ei (i ∈I ) is also eigenvector of the dual operator A′ as A is normal
[184, Lemma VI.3.1]. Hence, assumption (3.) of this section is satisfied. Symmetric
integral operators of Hilbert-Schmidt type provide typical examples of this class.
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Basic set E := X a separable reflexive Banach space

Distances Let
(
S(t)
)

t≥0 be a strongly continuous semigroup of
linear operators on X with its generator A.
The dual operator A′ of A is supposed to have a family
of unit eigenvectors {v′j} j∈I spanning the dual space X ′.

d j : X ×X −→ [0,∞[, (x,y) �−→ |〈x− y, v′j〉|
Absolute values �·� j := ‖ · ‖ norm of X

Transition For each v ∈ X , set

ϑv : [0,1]×X −→ X, (h,x) �−→ S(h) x +
∫ h

0
S(h− s) v ds,

i.e. variation of constants formula for u′(t) = A u(t)+v, u(0) = x

Compactness All norm-bounded and w.r.t. (d j) j∈I closed balls are sequen-
tially compact due to Alaoglu’s Theorem: Lemma 34 (page 129)

Mutational solutions Mild solutions to semilinear evolution equations

List of main results
formulated in § 2.4

Existence due to compactness (Peano): Theorem 33 (page 129)
Existence for systems with modified morphological equations:
Proposition 37 (page 131)

Key tool Weak solutions to linear evolution equations are mild solutions
(Ball [20], Lemma 36)

Table 2.1 Brief summary of the example in § 2.4 in mutational terms:
Semilinear evolution equations in reflexive Banach spaces
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Example 27. Another example is the generator A : DA −→ H (DA ⊂ H) of a
C0 semigroup (S(t))t≥0 on a Hilbert space H under the assumption that the resolvent
R(λ0,A) := (λ0 · IdH −A)−1 : H −→H is compact and normal for some λ0.
For the same reasons as before, there exists a countable orthonormal system (ei)i∈I

of eigenvectors of R(λ0,A) satisfying H = kerR(λ0,A)⊕∑i∈I R ei = ∑i∈I R ei.
R(λ0,A) ei = μi ·ei implies μi �= 0 and that ei is eigenvector of A corresponding
to the eigenvalue λ0− 1

μi
since (λ0−A) ei = (λ0−A) · 1

μi
R(λ0,A) ei = 1

μi
ei.

This example opens the door to considering strongly elliptic differential operators
in divergence form with smooth (time-independent) coefficients.

The variation of constants formula motivates the following choice of candidates for
transitions on

(
X , (d j) j∈I , (‖ · ‖) j∈I

)
.

Definition 28. For each v ∈ X , the function τv : [0,1]×X −→ X is defined as
mild solution to the initial value problem d

dt u(t) = A u(t)+ v, u(0) = x ∈ X , i.e.

τv(h,x) := S(h) x +
∫ h

0
S(h− s) v ds.

Proposition 29. For each vector v ∈ X fixed, the function τv : [0,1]×X −→ X
has the following properties for every j ∈I , x,y,w ∈ X and t,h ∈ [0,1] with
t + h≤ 1

(1.) τv(0,x) = x

(2.) τv(t + h, x) = τv
(
h, τv(t,x)

)

(3.) limsup
h↓0

1
h

(
d j
(
τv(h,x), τv(h,y)

)−d j(x,y)
) ≤ |λ j| d j(x,y)

(4.) d j
(
x, τv(h,x)

) ≤ (‖x‖+‖v‖) e|λ j | h

(5.) ‖τv(h,x)‖ ≤ (‖x‖+‖v‖ h
)

eω h

(6.) limsup
h↓0

1
h ·d j

(
τv(h,x), τw(h,x)

) ≤ d j(v,w).

For preparing the proof, we summarize the essential tools about C0 semigroups.
Subsequent Lemma 30 bridges the gap between the linear semigroup operators
and their dual counterparts. It is one of the reasons for assuming X to be reflexive.
Afterwards Lemma 31 implies that each vector v′j ( j ∈I ) is a eigenvector of every

dual operator S(t)′ (t ≥ 0) belonging to the eigenvalue eλ j ·t .

Lemma 30 ([76, Proposition I.5.14], [154, Corollary 1.10.6]).
Let (S(t))t≥0 be a C0 semigroup on a reflexive Banach space with generator A.
Then the dual operators S(t)′ (t ≥ 0) provide a C0 semigroup on the dual space
and its generator is the dual operator A′.

Lemma 31 ([76, Corollary IV.3.8]). The eigenspaces of the generator A and
of the C0 semigroup operators S(t) (t ≥ 0), respectively, fulfill for every μ ∈C

ker (μ−A) =
⋂

t≥0

ker
(
eμ t −S(t)

)
.
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Proof (of Proposition 29). Statements (1.) and (2.) result directly from the
semigroup property of (S(t))t≥0.

(3.) For every x,y ∈ X , h ∈ [0,1] and j ∈I , we obtain

d j
(
τv(h,x), τv(h,y)

) − d j(x,y) ≤ |〈x− y, (S(h)′ − IdX ′) v′j〉 |
limsup

h↓0

1
h

(
d j
(
τv(h,x), τv(h,y)

) − d j(x,y)
) ≤ |〈x− y, A′ v′j〉 |
≤ |λ j| · | 〈x− y, v′j〉 |.

(4.) Each v′j ∈ X ′ is unit eigenvector of A′ related to eigenvalue λ j by assumption.
Thus, Lemma 31 implies for every x ∈ X , h ∈ [0,1] and j ∈I

d j
(
x, τv(h,x)

)
=
∣
∣
∣
〈
(S(h)− IdX) x +

∫ h

0
S(h− s) v ds, v′j

〉∣∣
∣

≤ ∣∣〈x, (S(h)′ − IdX ′) v′j
〉∣∣ +

∣∣〈v,
∫ h

0
S(h− s)′ v′j ds

〉∣∣∣

≤ ‖x‖ (e|λ j | h−1)‖v′j‖ + ‖v‖ ∥∥
∫ h

0
eλ j (h−s) v′j ds

∥
∥

≤ (‖x‖ + ‖v‖) e|λ j | h h.

(5.) (S(t))t≥0 is ω-contractive with ω > 0. Thus, for every x ∈ X , h ∈ [0,1]

‖τv(h,x)‖ ≤
∥
∥∥S(h) x +

∫ h

0
S(h− s) v ds

∥
∥∥

≤ eω h ‖x‖ +
∫ h

0
eω (h−s) ds · ‖v‖

≤ eω h ‖x‖ + eω h − 1
ω ‖v‖.

(6.) For arbitrary vectors v,w ∈ X , the functions τv,τw : [0,1]×X −→ X satisfy
for every x ∈ X and h ∈ [0,1]

d j
(
τv(h,x), τw(h,x)

)
=
∣
∣
∣
〈∫ h

0
S(h− s) (v−w) ds, v′j

〉∣∣
∣

=
∣∣
∣
〈
v−w,

∫ h

0
S(h− s)′ v′j ds

〉∣∣
∣

=
∣
∣
∣
〈
v−w,

∫ h

0
eλ j ·(h−s) v′j ds

〉∣∣
∣

≤ ∣∣〈v−w, v′j
〉∣∣ e|λ j | h h

limsup
h↓0

1
h ·d j

(
τv(h,x), τw(h,x)

) ≤ d j(v, w). �

Corollary 32. For each v∈ X , the function τv : [0,1]×X −→ X specified in Defini-
tion 28 is a transition on

(
X , (d j) j∈I , (‖ · ‖) j∈I

)
in the sense of Definition 2 (on

page 104) with
α j(τv; r) := |λ j|
β j(τv; r) := (r + 2 ‖v‖) eω+|λ j |
γ j(τv) := max

{‖v‖, ω}
D j(τv, τw; r) ≤ d j(v, w).
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Theorem 33 (Existence of mild solutions to semilinear evolution equations).
In addition to the general assumptions of § 2.4, suppose for f : X× [0,T ]−→ X

(i) supx,t ‖ f (x,t)‖ < ∞,

(ii) f is weakly continuous in the following sense: For L 1-almost every t ∈ [0,T ]
and any sequences (tm)m, (ym)m in [0,T ], X respectively with tm −→ t and
ym −→ y weakly in X for m−→ ∞, it fulfills

f (ym,tm) −→ f (y, t) weakly in X for m−→ ∞.

Then for every initial vector x0 ∈ X , there exists a solution x(·) : [0,T ] −→ X to
the mutational equation

◦
x (·) � τ f (x(·), · )

on the tuple
(
X , (d j) j∈I , (‖ · ‖) j∈I

)
with x(0) = x0.

Furthermore every solution x(·) : [0,T ]−→ X to this mutational equation is a mild
solution to the semilinear evolution equation

d
dt x(t) = A x(t) + f (x(t), t).

The proof results from Peano’s Theorem 18 (on page 114) and the following three
lemmas:

Lemma 34. (1.) A sequence (ym)m∈N in X converges to y weakly in X if and
only if supm ‖ym‖< ∞ and lim

m→∞
d j(ym,y) = 0 for each index j ∈I .

(2.) Every ball {y ∈ X | ‖y‖ ≤ r} with arbitrary radius r ≥ 0 is sequentially
compact w.r.t. the topology of (d j) j∈I . Hence

(
X , (d j) j, (‖ ·‖) j

)
is Euler compact.

Lemma 35. Under the assumptions of Theorem 33, any solution x(·) : [0,T ]−→ X
to the mutational equation

◦
x (·) � τ f (x(·), · )

on the tuple
(
X , (d j) j∈I , (‖·‖) j∈I

)
has the following properties for every v′ ∈X ′ :

(1.) [0,T ] −→ R, t �−→ 〈 f (x(t), t), v′〉 is continuous at L 1-almost every time t,
(2.) f (x(·), ·) ∈ L∞([0,T ],X),
(3.) [0,T ] −→ R, t �−→ 〈x(t), v′ 〉 is absolutely continuous for every v′ ∈D(A′)⊂

X ′ and d
dt 〈x(t), v′ 〉 = 〈x(t), A′ v′ 〉 + 〈 f (x(t), t), v′ 〉.

Lemma 36 (Ball [20]). Let A be a densely defined closed linear operator on
a real or complex Banach space Y and g ∈ L1([0,T ],Y ).
There exists for each x0 ∈Y a unique weak solution u(·) of

{
d
dt u(t) = A u(t) + g(t) on ]0,T ]

u(0) = x0

i.e. for every v′ ∈D(A′)⊂ Y ′, 〈u(·),v′〉 ∈W 1,1([0,T ]) and
d
dt 〈u(t), v′〉 = 〈u(t), A′ v′〉 + 〈g(t), v′〉 for almost all t,

if and only if A is the generator of a strongly continuous semigroup (S(t))t≥0, and

in this case, u(t) is given by u(t) = S(t) x0 +
∫ t

0
S(t−s) g(s) ds.
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Proof (of Lemma 34). Statement (1.) is a standard result of linear functional
analysis since (v′j) j∈I spans X ′ by assumption (see e.g. [188, § V.1, Theorem 3]).
The sequential compactness (of closed norm balls) in statement (2.) results from
Alaoglu’s Theorem due to the reflexivity of X . Finally we obtain Euler compactness
as a consequence of Remark 16 (on page 113). �

Proof (of Lemma 35). (1.) According to Definition 9 (on page 107), every
solution x(·) : [0,T ]−→ X to the mutational equation

◦
x(·) � τ f (x(·), · )

on the tuple
(
X , (d j) j∈I , (‖ · ‖) j∈I

)
satisfies supt ‖x(t)‖ < ∞ and is continu-

ous with respect to each pseudo-metric d j, j ∈I . Due to preceding Lemma 34,
x(·) : [0,T ] −→ X is weakly continuous. For each linear form v′ ∈ X ′, assump-
tion (ii) of Theorem 33 guarantees the continuity of the composition

[0,T ] −→ R, t �−→ 〈 f (x(t), t), v′〉
at L 1-almost every time t ∈ [0,T ].

(2.) Statement (1.) and the uniform bound

sup
t∈ [0,T ]

|〈 f (x(t), t), v′〉| ≤ ‖ f‖L∞ ‖v′‖X ′ < ∞

imply the weak Lebesgue measurability of f (x(·), ·). Banach space X is separable
by assumption and thus, f (x(·), ·) : [0,T ]−→ X is (strongly) Lebesgue-measurable
due to the Theorem of Pettis (stated and proved in [188, § V.4], for example).

(3.) Choose any index j ∈I . At L 1-almost every time t ∈ [0,T ], x(·) satisfies

0 = lim
h↓0

1
h · d j

(
τ f (x(t),t)(h, x(t)), x(t + h)

)

= lim
h↓0

1
h ·
∣
∣〈τ f (x(t),t)(h, x(t)) − x(t), v′j〉 − 〈x(t + h) − x(t), v′j〉

∣
∣

Due to Definition 28 (on page 127), we obtain for L 1-almost every t ∈ [0,T ]

lim
h↓0

1
h

〈
x(t + h) − x(t), v′j

〉
= 〈x(t), A′ v′j〉 + 〈 f (x(t), t), v′j 〉

and, the right-hand side is L 1-integrable with respect to t. These two properties
ensure that [0,T ] −→ R, t �−→ 〈x(t), v′j〉 is absolutely continuous for every j ∈I .
The corresponding integral equation

〈x(t), v′j〉 − 〈x(0), v′j〉 =
∫ t

0

(〈x(s), A′ v′j〉 + 〈 f (x(s),s), v′j〉
)

ds

with arbitrary t ∈ [0,T ] can be extended to every linear form v′ ∈ D(A′) ⊂ X ′ since
(v′j) j∈I spans the dual space X ′. Hence, [0,T ] −→ R, t �−→ 〈x(t), v′〉 is abso-
lutely continuous for every v′ ∈ D(A′)⊂ X ′ and satisfies

d
dt 〈x(t), v′ 〉 = 〈x(t), A′ v′ 〉 + 〈 f (x(t), t), v′ 〉. �
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Proposition 37 (Existence of solutions to a system with semilinear evolution
equation and modified morphological equation).
In addition to the general assumptions of § 2.4, suppose for

f : X×K (RN)× [0,T ] −→ X ,
G : X×K (RN)× [0,T ] −→ OSLIP(RN ,RN)

(i) sup
x,M,t

(‖ f (x,M,t)‖X + ‖G (x,M, t)‖∞+ max{0, Lip G (x,M, t)})< ∞ .

(ii) f and G are continuous in the following sense:
{

f (yn,Mn,tn) − f (y,M, t) −→ 0 weakly in X
dl∞
(
G (yn,Mn,tn), G (y,M, t)

) −→ 0
for n−→ ∞

holds for L 1-almost every t ∈ [0,T ] and any sequences (tn)n∈N, (Mn)n∈N and
(yn)n∈N in [0,T ],K (RN),X respectively satisfying tn −→ t, dl(Mn,M) −→ 0
and yn −→ y weakly in X for n−→ ∞.

Then for every initial vector x0 ∈ X and set K0 ∈K (RN), there exist solutions
x(·) : [0,T ]−→ X , K(·) : [0,T ]−→K (RN) to the system of mutational equations

{ ◦
x (·) � τ f (x(·),K(·), · )◦

K (·) � G
(
x(·), K(·), · )

with x(0) = x0 and K(0) = K0. In particular,

(1.) x(·) : [0,T ]−→ X is a mild solution to the evolution equation
d
dt x(t) = A x(t) + f (x(t), K(t), t).

(2.) K(·) is Lipschitz continuous w.r.t. dl and satisfies for L 1-almost every t

lim
h↓0

1
h · dl

(
ϑG (x(t),K(t),t)(h, K(t)), K(t + h)

)
= 0.

(3.) If, in addition, the set-valued map G (x(t),K(t), t) : R
N � R

N is continuous
for each t ∈ [0,T ], then the set K(t) ⊂ R

N coincides with the reachable set
ϑG (x(·),K(·),·)(t,K0) of the nonautonomous differential inclusion

y′(·) ∈ G
(
x(·), K(·), · )(y(·))

at every time t ∈ [0,T ].

Proof. It results from Peano’s Theorem 21 about systems of mutational equations
(on page 118), Theorem 33 about mild solutions (on page 129) and Proposition 1.97
in combination with Corollary 1.106 about modified morphological equations (on
pages 98, 101). �
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2.5 Example: Nonlinear Transport Equations for Radon
Measures on R

N

Now the focus of interest is the Cauchy problem of the nonlinear transport equation
d
dt μ + divx

(
f (μ , ·) μ) = g(μ , ·) μ (in R

N× ]0,T [)

together with its distributional solutions μ(·) : [0,T ]−→M (RN) whose values are
Radon measures on the whole Euclidean space R

N . The coefficients f (μ , t), g(μ , t)
are assumed to be uniformly bounded and Lipschitz continuous vector fields on R

N .
Considering them as an example of the mutational framework here, we specify some
sufficient conditions on the coefficients f (·, ·), g(·, ·) for existence, uniqueness of
distributional solutions and even their continuous dependence on data.
In particular, this nonlinear transport equation takes nonlocal dependence into con-
sideration because the arguments of the coefficient functions f (·, t) and g(·, t) are
not restricted to local properties of measures, but consider the Radon measures on
whole R

N . This example provides some technical preparation for the structural pop-
ulation model in § 2.6 below.

2.5.1 The W 1,∞ Dual Metric ρM on Radon Measures M (RN)

For implementing these transport equations in the mutational framework, we first
specify the basic set and an appropriate metric.

Definition 38. C0
c (RN) denotes the space of continuous functions R

N −→ R

with compact support and C0
0(RN) its closure with respect to the supremum norm,

respectively.
Furthermore, M (RN) consists of all finite real-valued Radon measures on R

N , i.e.,
it is the dual space of

(
C0

0(RN), ‖ · ‖∞
)

(due to Riesz theorem [5, Remark 1.57]).
M +(RN) denotes the subset of nonnegative measures μ ∈M (RN), i.e. μ(·)≥ 0.

The weak* topology on M (RN) is a rather obvious choice. There is, however, a
very useful alternative which proves to be equivalent if we restrict our considera-
tions to subsets of Radon measures which are “concentrated not too far away from
each other”.

Definition 39. A sequence (μn)n∈N in M (RN) is said to converge narrowly to
μ ∈M (RN) if for every bounded continuous function ϕ : R

N −→ R,

lim
n→∞

∫

RN
ϕ dμn =

∫

RN
ϕ dμ .

Definition 40. A nonempty subset V ⊂M (RN) is called tight if for every ε > 0,
there exists a compact set Kε ⊂R

N such that the total variations of all μ ∈ V satisfy

sup
μ∈V

∣
∣μ
∣
∣(RN \Kε) < ε.
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Basic set E := M (RN) =
(
C0

0(RN)
)′

the space of all finite real-valued Radon measures on R
N

Distances W 1,∞ dual metric ρM : M (RN)×M (RN) −→ [0,∞[

ρM (μ , ν) := sup
{∫

RN
ψ d(μ−ν)

∣
∣∣ ψ ∈C1(RN),

‖ψ‖∞, ‖∇ψ‖∞ ≤ 1
}

(in tight subsets, it is equivalent to the narrow topology, Prop. 43)

Absolute values �·� := | · |(RN) total variation of the Radon measure

Transition For each b ∈W 1,∞(RN ,RN) and c ∈W 1,∞(RN ,R), define

ϑM (RN ),b, c : [0,1]×M (RN) −→ M (RN), (t,ν0) �−→ μt

as the distributional solution to the linear autonomous problem{
∂t μt + divx (bμt) = c μt in [0,T ]

μ0 = ν0

Compactness Euler compactness since the flow Xb along b implies tightness:
Lemma 52 (page 142)

Mutational solutions Narrowly continuous distributional solution to nonlinear trans-
port equations d

dt μ + divx
(

f (μ , ·) μ) = g(μ , ·) μ in R
N× ]0,T [

List of main results
formulated in § 2.5

Existence due to compactness (Peano): Theorem 53 (page 142)
Uniqueness due to Lipschitz continuity: Theorem 54 (page 143)

Key tools Explicit solutions to autonomous linear transport equations:
Proposition 46 (page 137)

Uniqueness of solutions to nonautonomous linear equations:
Proposition 47 (page 138)

Table 2.2 Brief summary of the example in § 2.5 in mutational terms:
Nonlinear transport equations for Radon measures on R

N
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Remark 41. (1.) On every tight subset of M (RN), the narrow topology is
equivalent to the weak* topology (with respect to M (RN) = C0

0(RN)′).

(2.) Tightness is just one of the many concepts which are often introduced
(merely) for probability measures or positive Radon measures (see e.g. [3, 4, 6]).
Many results also hold in M (RN) by considering the total variation (if necessary).
Here we want to dispense with any global restrictions in regard to sign or total vari-
ation of Radon measures. and so, we cannot simply use any Wasserstein metric (for
probability measures) in particular.

(3.) A nonempty subset V ⊂M (RN) is tight if and only if there is a function
Ψ : R

N −→ [0,∞] whose sublevel set {x ∈ R
N |Ψ (x) ≤ c} is compact for every

c ∈ [0,∞[ and which satisfies

sup
μ∈V

∫

RN
Ψ(x) d|μ |(x) < ∞

[6, Remark 5.1.5]. In regard to total variation |μ |, the last condition is equivalent to

sup
μ∈V

sup
φ ∈C0(RN ):
|φ |≤Ψ

∫

RN
φ(x) dμ(x) < ∞ .

The topology of narrow convergence on M (RN) is metrizable on tight subsets
with uniformly bounded total variation:

Definition 42.

M (RN)×M (RN) −→ [0,∞[

(μ , ν) �−→ sup
{∫

RN
ψ d(μ−ν)

∣
∣
∣ψ ∈C1(RN), ‖ψ‖∞,‖∇ψ‖∞ ≤ 1

}

is called W 1,∞ dual metric ρM on M (RN).

Proposition 43. (1.) For every λ > 0 and μ ,ν ∈M (RN),

ρM (μ , ν) = sup
{

1
λ

∫

RN
ϕ d(μ−ν)

∣∣
∣ ϕ ∈C∞

c (RN), ‖ϕ‖∞ ≤ λ , ‖∇ϕ‖∞ ≤ λ
}

= sup
{

1
λ

∫

RN
ϕ d(μ−ν)

∣
∣
∣ ϕ ∈W 1,∞(RN), ‖ϕ‖∞ ≤ λ , ‖∇ϕ‖∞ ≤ λ

}

= ‖μ−ν‖(W1,∞)′

(2.) For any tight sequence (μn)n∈N and μ in M (RN), the following equivalence
holds⎧
⎨

⎩

lim
n→∞

ρM (μn,μ) = 0

sup
n∈N

|μn|(RN) < ∞

⎫
⎬

⎭
⇐⇒ μn −→ μ weak* for n−→ ∞

⇐⇒ μn −→ μ narrowly for n−→ ∞

(3.) For any r > 0, the set
{
μ ∈M (RN)

∣
∣ |μ |(RN)≤ r

}
is complete w.r.t. ρM .

(4.) Every tight set V ⊂M (RN) with sup
μ∈V

|μ |(RN) < ∞ is relatively compact

with respect to ρM .
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Proof. (1.) Considering the restrictions to an arbitrarily fixed compact subset
of R

N , each function in W 1,∞(RN) can be approximated by elements of C∞
c (RN)⊂

C1(RN)∩W 1,∞(RN) with respect to supremum norm. This implies the equivalent
characterizations of ρM (μ ,ν) claimed here.

(2.) The equivalence of narrow and weak* convergence results from the assump-
tion of tightness according to Remark 41 (1.).

Now let (μn)n∈N be any sequence in M (RN) and μ ∈M (RN) satisfying

lim
n→∞

ρM (μn,μ) = 0, sup
n∈N

|μn|(RN) < ∞ .

In particular,
∫

RN
ϕ dμn −→

∫

RN
ϕ dμ for n−→ ∞ and every ϕ ∈W 1,∞(RN).

We obtain
∫

RN
ϕ dμn −→

∫

RN
ϕ dμ for n−→ ∞ and every ϕ ∈C0

0(RN)

since W 1,∞(RN)∩C0
0(RN) is dense in (C0

0(RN),‖ · ‖∞) and the total variations of
(μn)n∈N are bounded. Thus, the sequence (μn)n∈N converges also weakly* in
M (RN) = C0

0(R
N)′.

Finally, assume the tight sequence (μn)n∈N in M (RN) to converge weakly*
to μ ∈M (RN). Then C := sup

n∈N

|μn|(RN) < ∞ due to the uniform boundedness

theorem and, |μ |(RN) ≤ liminf
n→∞

|μn|(RN) ≤ C. We still have to prove for n−→ ∞

sup
{∫

RN
ϕ d
(
μn− μ

) ∣∣
∣ ϕ ∈C∞

c (RN), ‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1
}
−→ 0 .

Choose ε > 0 arbitrarily. Then there exists a sufficiently large radius R > 0 with

sup
n∈N

∣
∣μn
∣
∣(RN \BR(0)) +

∣
∣μ
∣
∣(RN \BR(0)) ≤ ε

since {μn |n ∈N} is tight. Due to Arzelà-Ascoli Theorem A.82,
{
ϕ ∈C∞

c (BR+1(0))
∣
∣ ‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1

}

is relatively compact in
(
C0(BR+1(0)), ‖ · ‖∞

)
. Hence, there always exist finitely

many functions ϕ̃1 . . . ϕ̃kε ∈ C∞
c (RN) with support in BR+1(0) and ‖ϕ̃i‖∞ ≤ 1,

‖∇ϕ̃i‖∞ ≤ 1 such that
{
ϕ ∈C∞

c (BR+1(0))
∣
∣ ‖ϕ‖∞≤ 1, ‖∇ϕ‖∞≤ 1

} ⊂
⋃

i=1 ...kε

{
ϕ
∣
∣ ‖ϕ− ϕ̃i|BR+1(0)‖∞≤ ε

}
.

This implies

sup
{∫

RN
ϕ d
(
μn− μ

) ∣∣
∣ ϕ ∈C∞

c (RN), ‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1
}

≤ sup
{∫

BR(0)
ϕ d
(
μn− μ

) ∣∣
∣ ϕ ∈C∞

c (RN), ‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1
}

+ ε

≤ sup
{∫

BR(0)
ϕ̃i d

(
μn− μ

) ∣∣∣ 1 ≤ i ≤ kε
}

+ 2C ε+ ε

≤ ε + 2C ε+ ε
for all n ∈ N sufficiently large (merely depending on ε) since μn −→ μ weakly*.
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(3.) Let (μn)n∈N be a ρM -Cauchy sequence satisfying supn∈N |μn|(RN) ≤ r <∞.
The arguments proving the first part “⇒” of statement (2.) imply that (μn)n∈N

is Cauchy sequence with respect to the weak* topology of M (RN). There is the
unique measure μ ∈M (RN) as weak* limit of (μn)n∈N due to [5, Theorem 1.59].
In particular, |μ |(RN) ≤ liminf

n→∞
|μn|(RN) ≤ r.

We still have to verify ρM (μn,μ) −→ 0 for n −→ ∞. Indeed for arbitrary ε > 0,
there exists nε ∈N such that for all m,n≥ nε

ρM (μm,μn)
Def.= sup

{∫

RN
ϕ d
(
μm−μn

) ∣∣∣ϕ ∈C∞
c (RN), ‖ϕ‖∞, ‖∇ϕ‖∞ ≤ 1

}
≤ ε .

Due to the weak* convergence of (μn)n∈N to μ in M (RN) =
(
C0

0(RN), ‖ · ‖∞
)′

,
the limit for n−→ ∞ reveals for every m≥ nε

ρM (μm, μ) Def.= sup
{∫

RN
ϕ d
(
μm− μ

)∣∣
∣ϕ ∈C∞

c (RN), ‖ϕ‖∞, ‖∇ϕ‖∞ ≤ 1
}

≤ sup
{

lim
n→∞

∫

RN
ϕ d
(
μm− μn

)∣∣∣ϕ ∈C∞
c (RN), ‖ϕ‖∞, ‖∇ϕ‖∞ ≤ 1

}

≤ ε.

(4.) Due to the assumption of tightness, the relative compactness of V with
respect to ρM results from its weak* compactness in M (RN) = C0

0(RN)′ and,
the latter is ensured by the Banach-Alaoglu Theorem.
(Alternatively, the so-called Prokhorov Theorem states that bounded and tight sub-
sets of positive Radon measures are sequentially relatively compact with respect
to narrow convergence [3, 6, 169]. Finally the claim about signed Radon measures
here can also be concluded from this compactness statement by means of Jordan
decompositions.) �

2.5.2 Linear Transport Equations Induce Transitions on M (RN)

Among the transport equations for Radon measures, the linear one is much simpler
to solve, of course. Indeed, the method of characteristics even provides an explicit
solution to the initial value problem:

Let b : R
N −→R

N , c : R
N −→R be bounded and Lipschitz continuous. For given

ν0 ∈M (RN), the linear problem here focuses on a measure-valued distributional
solution μ : [0,T ]−→M (RN), t �−→ μt of

{
∂t μt + divx (bμt) = c μt in [0,T ]

μ0 = ν0

in the sense that
∫

RN
ϕ(x) dμt(x) −

∫

RN
ϕ(x) dν0(x) =

∫ t

0

∫

RN

(
∇ϕ(x) ·b(x)+ c(x)

)
dμs(x) ds

for every t ∈ [0,T ] and any test function ϕ ∈C∞
c (RN ,R).
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Definition 44. Xb : [0,T ] × R
N −→ R

N is induced by the flow along b, i.e.
Xb(·,x0) : [0,T ] −→ R

N is the continuously differentiable solution to the Cauchy
problem

{
d
dt x(t) = b(x(t)) in [0,T ],

x(0) = x0.

As a well-known result about ordinary differential equations, solutions to Cauchy
problems are continuously differentiable with respect to initial data and right-hand
side if the vector field (on the right-hand side) is continuously differentiable and,
the following estimates result from the corresponding integral equations and Gron-
wall’s Lemma (see e.g. [92, Chapter V], [93, Chapter 17], [181, § 13]).

Lemma 45. For any vector fields b, b̃ ∈ C1(RN ,RN) ∩W 1,∞(RN ,RN), the
solution maps Xb,Xb̃ : [0,T ]×R

N −→ R
N are continuously differentiable with

Lip Xb(t, ·) ≤ eLip b ·t ,
‖Xb(t, ·)−Xb̃(t, ·)‖∞ ≤ ‖b− b̃‖∞ · t et ·Lip b̃ .

Proposition 46. For any b ∈W 1,∞(RN ,RN), c ∈W 1,∞(RN ,R) and initial mea-
sure ν0 ∈M (RN), a solution μ : [0,T ] −→M (RN), t �−→ μt to the linear problem

{
∂t μt + divx (bμt) = c μt in [0,T ]

μ0 = ν0

(in the distributional sense) is given by
∫

RN
ϕ dμt =

∫

RN
ϕ(Xb(t,x)) · exp

(∫ t

0
c(Xb(s,x)) ds

)
dν0(x)

for all ϕ ∈C1
c (RN).

Proof. First, we verify that the right-hand side provides a distributional solution
to the linear problem with the initial measure ν0. In fact, it is absolutely continuous
with respect to t because for any subinterval [s, t]⊂ [0,T ],
∣
∣
∣
∫

RN
ϕ dμt −

∫

RN
ϕ dμs

∣
∣
∣

=
∣
∣∣
∫

RN

(
ϕ(Xb(t,x)) · e

∫ t
0 c(Xb(r,x)) dr− ϕ(Xb(s,x)) · e

∫ s
0 c(Xb(r,x)) dr

)
dμ0(x)

∣
∣∣

≤
∫

RN

(∣∣
∣
[
ϕ(Xb(σ ,x))

]σ=t
σ=s

∣
∣
∣ et ‖c‖∞+ |ϕ(Xb(s,x))|

[
e
∫ σ

0 c(Xb(r,x)) dr
]σ=t

σ=s

)
d|μ0(x)|

≤
(
‖∇ϕ‖∞ ‖b‖∞ (t− s) et ‖c‖∞+ ‖ϕ‖∞ et ‖c‖∞ ‖c‖∞ (t− s)

)
|μ0|(RN)

At L 1-almost every time t ∈ [0,T ], we conclude from the chain rule for weak
derivatives
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d
dt

∫

RN

(
ϕ(Xb(t,x)) · exp

(∫ t

0
c(Xb(s,x)) ds

))
dν0(x)

=
∫

RN

(
∇ϕ(Xb(t,x)) ·b(Xb(t,x))+ϕ(Xb(t,x)) c(Xb(t,x))

)
e
∫ t

0 c(Xb(r,x)) dr dν0

=
∫

RN

(
∇ϕ(y) ·b(y)+ϕ(y) c(y)

)
dμt(y). �

This solution is already well-known and usually denoted in the form of a push-
forward. Furthermore, it is unique because solutions to the nonautonomous linear
transport equation fulfill the following comparison principle (see also [3, 6, 64]):

Proposition 47 (Maniglia [134, Lemma 3.5, Proposition 3.6]).
Let v : t �−→ vt be a Borel vector field in L1

(
[0,T ]; W 1,∞(RN ,RN)

)
and c(·, ·)

a Borel bounded and locally Lipschitz continuous (w.r.t. the space variable) scalar
function in ]0,T [×R

N.

(1.) For each probability measure μ̂0 on RN (i.e. positive measure μ̂0 ∈M (RN)
with μ̂0(RN) = 1), there exists a unique narrowly continuous μ : [0,T ]−→M (RN),
t �−→ μt solving the initial value problem (in the distributional sense)

∂t μt + divx (vt μt) = ct μt in ]0,T [×R
N , μ0 = μ̂0.

(2.) The comparison principle holds in the following sense: Let σ : t �−→ σt be
a narrowly continuous family of (possibly signed) measures solving

∂t σt + divx (vt σt) = ct σt in ]0,T [×R
N

with σ0 ≤ 0 and
∫ T

0

∫

RN

(
|vt(x)| + |ct(x)|

)
d|σt |(x) dt < ∞

∫ T

0

(
|σt |(B) + sup

B
|vt | + Lip vt |B

)
dt < ∞

∫ T

0

(
|σt |(B) + sup

B
|ct | + Lip ct |B

)
dt < ∞

for any bounded closed set B⊂ R
N . Then, σt ≤ 0 for any t ∈ [0,T [.

Now the solutions to the linear problem lay the basis for transitions on M (RN):

Definition 48. For each b ∈W 1,∞(RN ,RN) and c ∈W 1,∞(RN ,R), define

ϑM (RN ),b, c : [0,1]×M (RN) −→ M (RN), (t,μ0) �−→ μt

with μ : [0,T ] −→M (RN), t �−→ μt denoting the unique solution of

∂t μt + divx (bμt) = c μt in [0,T ]

(in the distributional sense) as specified in Proposition 46.
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Lemma 49. For any b, b̃ ∈C1(RN ,RN)∩W 1,∞(RN ,RN) and c, c̃∈W 1,∞(RN ,R),
the measure-valued maps

ϑM (RN ),b, c, ϑM (RN ), b̃, c̃ : [0,1]×M (RN) −→M (RN)

fulfill for any μ0,ν0 ∈M (RN) and t,h ∈ [0,1] with t + h≤ 1

(a) ϑM (RN ),b, c(0, μ0) = μ0

(b) ϑM (RN ),b, c

(
h, ϑM (RN ),b, c(t,μ0)

)
= ϑM (RN ),b, c(t + h, μ0)

(c)
∣∣ϑM (RN ),b, c(h, μ0)

∣∣(RN) ≤ e‖c‖∞ h · |μ0|(RN)

(d) ρM

(
ϑM (RN ),b, c(t, μ0), ϑM (RN ),b, c(t+h, μ0)

)≤ h
(‖b‖∞+‖c‖∞

)
e‖c‖∞

· |μ0|(RN)

(e) ρM

(
ϑM (RN ),b, c(h, μ0), ϑM (RN ),b, c(h, ν0)

) ≤ ρM (μ0 ν0) e(Lip b+‖c‖W1,∞ )h

(f ) ρM

(
ϑM (RN ),b, c(h, μ0), ϑM (RN ), b̃, c̃(h, μ0)

) ≤
≤ (‖b− b̃‖∞ eh‖∇c‖∞ +‖c− c̃‖∞

)
h eh · (Lip b+ max{‖c‖∞,‖c̃‖∞}) · ∣∣μ0

∣
∣(RN)

The proof in detail is postponed to the end of this section.

Remark 50. Assuming b, b̃ ∈ C1(RN ,RN) in addition to b, b̃ ∈ W 1,∞(RN ,RN)
serves the single purpose that we can use the estimates of preceding Lemma 45
for the comparisons specified in Lemma 49.
The additional regularity of b, b̃ does not have any influence on the inequalities
though. Indeed, for each h ∈ [0,1] and μ0 ∈M (RN), the map

(b,c) �−→ ϑM (RN ),b, c(h, μ0)
is continuous with respect to the L∞ norm according to statement (f). For this rea-
son, we can extend all statements in Lemma 49 to arbitrary b, b̃ ∈W 1,∞(RN ,RN)
because C1(RN ,RN)∩W 1,∞(RN ,RN) is dense in W 1,∞(RN ,RN) with respect to the
L∞ norm and, bounded subsets of M (RN) are complete w.r.t. ρM as specified in
Proposition 43 (3.) (on page 134).

Definition 2 (on page 104) and Definition 5 (on page 105) lead directly to

Proposition 51. For every b ∈W 1,∞(RN ,RN) and c ∈W 1,∞(RN ,R),

ϑM (RN ),b, c : [0,1]×M (RN) −→M (RN)

is a transition on
(
M (RN), ρM , | · |(RN)

)
with

α(ϑM (RN ),b, c; r) := Lip b + ‖c‖W1,∞

β (ϑM (RN ),b, c; r) :=
(‖b‖∞+ ‖c‖∞

)
e‖c‖∞ r

γ(ϑM (RN ),b, c) := ‖c‖∞
D(ϑM (RN ),b, c, ϑM (RN ), b̃, c̃; r) ≤ (‖b− b̃‖∞+‖c− c̃‖∞

)
r

From now on, the set of these transitions on
(
M (RN), ρM , | · |(RN)

)
is abbreviated

as Θ
(
M (RN), ρM , | · |(RN)

)
.
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Proof (of Lemma 49). Statements (a) and (b) result directly from the explicit
formula in Proposition 46 (on page 137) and the semigroup property of the flow
Xb(·, ·)

Xb
(
h, Xb(t,x)

)
= Xb(t + h, x)

for all x ∈ R
N and t,h≥ 0.

(c) The total variation of any measure μ ∈M (RN) in open set A⊂ R
N is

|μ |(A) = sup
{∫

RN
ϕ d μ

∣
∣∣ ϕ ∈C0

c (A), ‖ϕ‖∞ ≤ 1
}

according to [5, Proposition 1.47]. Thus, we conclude from Proposition 46 for every
μ0 ∈M (RN) and h ∈ [0,1]
∣
∣ϑM (RN ),b, c(h, μ0)

∣
∣(RN)

= sup
{∫

RN
ϕ dϑM (RN),b, c(h, μ0)

∣
∣
∣ ϕ ∈C0

c (RN), ‖ϕ‖∞ ≤ 1
}

= sup
{∫

RN
ϕ(Xb(t,x)) · e

∫ h
0 c(Xb(s,x)) ds d μ0 (x)

∣∣
∣ ϕ ∈C0

c (RN), ‖ϕ‖∞ ≤ 1
}

≤ e‖c‖∞ h · sup
{∫

RN
|ϕ(Xb(t,x))| d|μ0|(x)

∣
∣
∣ ϕ ∈C0

c (RN), ‖ϕ‖∞ ≤ 1
}

≤ e‖c‖∞ h · |μ0|(RN).

(d) Let ϕ ∈ C∞
c (RN) be an arbitrary function with ‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1.

Due to Proposition 46 again, we obtain for every μ0 ∈M (RN) and t,h ∈ [0,1] with
t + h≤ 1
∫

RN
ϕ d

(
ϑM (RN ),b, c(t + h, μ0) − ϑM (RN ),b, c(t, μ0)

)

=
∫ t+h

t

d
ds

∫

RN
ϕ(y) dϑM (RN ),b, c(s, μ0)(y) ds

=
∫ t+h

t

∫

RN

(
∇ϕ(y) · b(y) + ϕ(y) c(y)

)
dϑM (RN ),b, c(s, μ0)(y) ds

≤
∫ t+h

t

(‖∇ϕ‖∞ ‖b‖∞ + ‖ϕ‖∞ ‖c‖∞
) ∣∣ϑM (RN ),b, c(s, μ0)

∣∣(RN) ds

≤ h · (‖b‖∞ + ‖c‖∞
)

e‖c‖∞ |μ0|(RN)

as a consequence of statement (c). The supremum with respect to all these functions
ϕ leads to claim (d) about ρM

(
ϑM (RN ),b, c(t, μ0), ϑM (RN ),b, c(t + h, μ0)

)
.

(e) Let ϕ ∈ C∞
c (RN) again denote any function with ‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1.

Then, any measures μ0,ν0 ∈M (RN) satisfy at every time h ∈ [0,1]
∫

RN
ϕ d

(
ϑM (RN ),b, c(h, μ0) − ϑM (RN ),b, c(h, ν0)

)

=
∫

RN
ϕ(Xb(h,x)) · exp

(∫ h

0
c(Xb(s,x)) ds

)
d
(
μ0−ν0

)
(x)

≤ e(Lip b+‖c‖
W1,∞ ) h · ρM (μ0,ν0)
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Indeed, the last estimate results from Proposition 43 (1.) (on page 134) because the
composition

ψh : R
N −→ R

N , x �−→ ϕ(Xb(h,x)) · exp
(∫ h

0
c(Xb(s,x)) ds

)

is continuously differentiable with compact support and, Lemma 45 (on page 137)
implies

‖ψh‖∞ ≤ ‖ϕ‖∞ e‖c‖∞ h ≤ e‖c‖∞ h

‖∇ψh‖∞ ≤ e‖c‖∞ h
(
‖∇ϕ‖∞ ‖∇Xb(h, ·)‖∞+‖ϕ‖∞ ·

∫ h

0
‖∇c‖∞ ‖∇Xb(s, ·)‖∞ ds

)

≤ e‖c‖∞ h
(

eLip b ·h + h ‖∇c‖∞eLip b ·h
)

≤ e(Lip b+‖c‖∞) h (1 + h ‖∇c‖∞
)

≤ e(Lip b+‖c‖∞) h eh ‖∇c‖∞

= e(Lip b+‖c‖W1,∞ ) h .

The supremum with respect to all ϕ ∈C∞
c (RN) satisfying ‖ϕ‖∞≤ 1, ‖∇ϕ‖∞≤ 1

leads to

ρM

(
ϑM (RN ),b, c(h, μ0), ϑM (RN ),b, c(h, ν0)

) ≤ e(Lip b+‖c‖W1,∞ ) h ρM (μ0,ν0).

(f) For estimating ρM

(
ϑM (RN ),b, c(h, μ0), ϑM (RN ), b̃, c̃(h, μ0)

)
with any μ0 ∈

M (RN) and h ∈ [0,1], we again choose an arbitrary function ϕ ∈ C∞
c (RN) with

‖ϕ‖∞ ≤ 1, ‖∇ϕ‖∞ ≤ 1 and consider now an appropriate convex combination ψ :
[0,1]× [0,1]×R

N −→R
N :

ψ(λ ,h,x) := ϕ
(
λ Xb(h,x)+ (1−λ ) Xb̃(h,x)

) · e
∫ h

0 λ ·c(Xb(r,x)) + (1−λ )·c̃(Xb̃(r,x)) dr.

Obviously, ψ is continuously differentiable and, Lemma 45 (on page 137) ensures

∥
∥ ∂
∂ λ

ψ(λ ,h, ·)∥∥∞ ≤ ‖∇ϕ‖∞
∥
∥Xb(h, ·)−Xb̃(h, ·)∥∥∞ · eh·max{‖c‖∞,‖c̃‖∞}

+‖ϕ‖∞ ·
∫ h

0

∥
∥c(Xb(r, ·))− c̃(Xb̃(r, ·))∥∥∞ dr eh ·max{‖c‖∞,‖c̃‖∞}

≤ ‖b− b̃‖∞ h eh ·Lip b · eh ·max{‖c‖∞,‖c̃‖∞}

+h
(‖c− c̃‖∞ + ‖∇c‖∞‖b− b̃‖∞ h eh ·Lip b) eh ·max{‖c‖∞,‖c̃‖∞}

≤ (‖b− b̃‖∞ eh‖∇c‖∞ +‖c− c̃‖∞
)

h eh · (Lip b+max{‖c‖∞,‖c̃‖∞})

Hence we obtain
∫

RN
ϕ d
(
ϑM (RN ),b, c(h, μ0) − ϑM (RN ), b̃, c̃(h, μ0)

)

=
∫

RN

(
ψ(1,h,x) − ψ(0,h,x)

)
dμ0(x)

=
∫

RN

∫ 1

0

∂
∂ λ ψ(λ ,h,x) dλ dμ0(x)

≤ ∥
∥ ∂
∂ λ ψ(λ ,h, ·)∥∥∞

∣
∣μ0
∣
∣(RN)

≤ (‖b− b̃‖∞ eh‖∇c‖∞ +‖c− c̃‖∞
)

h eh · (Lip b+ max{‖c‖∞,‖c̃‖∞}) ∣∣μ0
∣
∣(RN) . �
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2.5.3 Conclusions About Nonlinear Transport Equations

Now we exploit the preparations and draw some conclusions about the nonlinear
transport equation of Radon measures – in the mutational framework. Here Euler
compactness plays the role of a key ingredient to existence, but its slightly technical
proof is postponed to the end of this section (on page 144).

Lemma 52. The tuple
(
M (RN), ρM , | · |(RN), Θ

(
M (RN), ρM , | · |(RN)

))

is Euler compact (in the sense of Definition 15 on page 112), i.e.

choose μ0 ∈M (RN), T > 0, R > 0 arbitrarily and let N = N (μ0,T,R) denote
the subset of all curves μ(·) : [0,T ]−→M (RN) constructed in the following piece-
wise way: Choosing an arbitrary equidistant partition 0 = t0 < t1 < .. . < tn = T
of [0,T ] (with n > T ) and b1 . . . bn ∈W 1,∞(RN ,RN), c1 . . . cn ∈W 1,∞(RN ,R) with

max
{‖bk‖W1,∞ , ‖ck‖W1,∞

∣
∣ 1≤ k ≤ n

} ≤ R,

define μ(·) : [0,T ]−→ E, t �−→ μt as

μt := ϑM (RN ),bk, ck

(
t− tk−1, μtk−1

)
for t ∈ ]tk−1, tk], k = 1,2 . . .n.

Then at each time t ∈ [0,T ], the set {μt | μ(·) ∈N } ⊂M (RN) is relatively se-
quentially compact with respect to the W 1,∞ dual metric ρM .

Furthermore, the set of all measure values of N (μ0,T,R), i.e.
{
μt
∣
∣ t ∈ [0,T ], μ(·) ∈N

}⊂M (RN),

is tight.

Theorem 53 (Existence of solution to nonlinear transport equation).
For f = (f1, f2) : M (RN)× [0,T ]−→W 1,∞(RN ,RN)×W1,∞(RN ,R) suppose

(i) supμ,t

(∥∥f1(μ ,t)
∥
∥

W 1,∞ +
∥
∥ f2(μ , t)

∥
∥

W 1,∞
)

< ∞,

(ii) f is continuous in the following sense: For L 1-almost every t ∈ [0,T ] and
any sequences (tm)m, (μm)m in [0,T ], M (RN) respectively with tm −→ t,
ρM (μm,μ)−→ 0 for m−→ ∞ and supm |μm|(RN) < ∞, it fulfills

f(μm,tm) −→ f(μ , t) in L∞(RN ,RN)×L∞(RN ,R) for m−→ ∞.

Then for every initial Radon measure μ0 ∈ M (RN), there exists a solution
μ(·) : [0,T ]−→M (RN) to the mutational equation

◦
μ (·) � ϑM (RN ), f1(μ(·), ·), f2(μ(·), ·)

on the tuple
(
M (RN), ρM , | · |(RN)

)
with μ(0) = μ0 and, all its values in M (RN)

are tight.
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Furthermore every solution μ(·) : [0,T ]−→M (RN) (to this mutational equation)
with tight values in M (RN) is a narrowly continuous distributional solution to the
nonlinear transport equation

∂t μt + divx (f1(μt , t)μt) = f2(μt , t) μt in R
N× ]0,T [

in the sense that
∫

RN
ϕ dμt −

∫

RN
ϕ dμ0 =

∫ t

0

∫

RN

(
∇ϕ(x) · f1(μs,s)(x)+ f2(μs,s)(x)

)
dμs(x) ds

for every t ∈ [0,T ] and any test function ϕ ∈C∞
c (RN ,R).

Corollary 12 (on page 108) provides sufficient conditions for the uniqueness of
solutions to mutational equations. Moreover, the comparison principle in Proposi-
tion 47 (2.) (on page 138) implies uniqueness for the linear (but) nonautonomous
transport equation. The combination of these two results leads to uniqueness of
measure-valued solutions to the nonlinear transport equation:

Theorem 54 (Uniqueness of solution to nonlinear transport equation).
For f = (f1, f2) : M (RN)× [0,T ]−→W 1,∞(RN ,RN)×W1,∞(RN ,R) suppose

(i) supμ,t

(∥∥f1(μ ,t)
∥
∥

W 1,∞ +
∥
∥ f2(μ , t)

∥
∥

W 1,∞
)

< ∞,

(ii) f is Lipschitz continuous with respect to state in the following sense: There
exists a constant λ > 0 such that for L 1-almost every t ∈ [0,T ] and every
μ0,μ1 ∈M (RN),

∥
∥f(μ0,t) − f(μ1, t)

∥
∥
∞ ≤ λ · ρM (μ0, μ1).

Then for every initial μ0 ∈ M (RN), the solution μ(·) : [0,T ] −→ M (RN)
to the mutational equation

◦
μ (·) � ϑM (RN ), f1(μ(·), ·), f2(μ(·), ·)

on the tuple
(
M (RN), ρM , | · |(RN)

)
with μ(0) = μ0 is unique.

In particular, the distributional solution μ(·) : [0,T ] −→M (RN), t �−→ μt to the
nonlinear transport equation

∂t μt + divx (f1(μt , t)μt) = f2(μt , t) μt in R
N× ]0,T [

being continuous with respect to ρM , having initial Radon measure μ0 ∈M (RN)
at time t = 0 and satisfying sup

t∈[0,T ]
|μt |(RN) < ∞ is unique.

Remark 55. The two preceding theorems exemplify how to benefit from the mu-
tational framework appropriately. Indeed, the results of § 2.3 (on page 107 ff.) cover
a generalized type of solutions, namely to mutational equations. Theorem 53 reveals
the connection to the more popular concept of distributional solutions.
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On this basis, the results of § 2.3 lead to further statements about measure-valued
distributional solutions to nonlinear transport equations with delay or in systems
with other examples of mutational equations. We are not going to formulate them
in detail here.

Proof (of Lemma 52). In regard to Definition 15 (on page 112), choose
μ0 ∈M (RN), T > 0 and R > 0 arbitrarily and let N = N (μ0,T,R) denote
the subset of all curves μ(·) : [0,T ]−→M (RN) constructed in the following piece-
wise way: Choosing an arbitrary equidistant partition 0 = t0 < t1 < .. . < tn = T of
[0,T ] (with n > T ) and b1 . . . bn ∈W 1,∞(RN ,RN), c1 . . . cn ∈W 1,∞(RN ,R) with

max
{‖bk‖W1,∞ , ‖ck‖W1,∞

∣∣ 1≤ k ≤ n
} ≤ R,

define μ(·) : [0,T ]−→M (RN), t �−→ μt as

μt := ϑM (RN ),bk, ck

(
t− tk−1, μtk−1

)
for t ∈ ]tk−1, tk], k = 1,2 . . .n.

Then we have to verify at each time t ∈ [0,T ] : The set {μt |μ(·) ∈N } ⊂M (RN)
is relatively sequentially compact with respect to the W 1,∞ dual metric ρM .

As a consequence of Lemma 49 (c) (on page 139), the total variation |ν|(RN) is
uniformly bounded for all measures ν ∈ {μt | t ∈ [0,T ], μ(·) ∈N } ⊂M (RN) :

|ν|(RN) ≤ eR T |μ0|(RN).

Thus, due to Proposition 43 (4.) (on page 134), it suffices to prove that this set{
μt
∣
∣ t ∈ [0,T ], μ(·) ∈N

}⊂M (RN) is tight.

For every ε > 0, there exists a compact subset Kε ⊂R
N with |μ0|(RN \Kε) < ε .

Then, ∣
∣μt
∣
∣(RN \BRT (Kε )

) ≤ ∣
∣μt
∣
∣(RN \BRt(Kε )

)
< ε eRt ≤ ε eR T

holds for all t ∈ [0,T ] and μ(·) ∈N (μ0,T,R).
Indeed, we consider the underlying equidistant partition 0 = t0 < t1 < .. . < tn = T
of [0,T ] and b1 . . . bn ∈W 1,∞(RN ,RN), c1 . . . cn ∈W 1,∞(RN ,R) with

μt = ϑM (RN ),bk+1, ck+1

(
t− tk, μtk

)
for t ∈ ]tk, tk+1], k = 0,1 . . . n−1.

Then, we obtain for each t ∈ ]tk, tk+1] – via induction with respect to k
∣
∣μt
∣
∣(RN \BRt(Kε )

)

= sup
{∫

RN
ϕ dϑM (RN),bk+1, ck+1

(t− tk, μtk )
∣
∣∣ ϕ∈C0

c (RN \BRt(Kε)), ‖ϕ‖∞≤1
}

≤ sup
{∫

RN
ϕ̃
∣
∣
(Xbk+1

(t−tk ,x))
dμtk(x) e(t−tk) R

∣
∣
∣ ϕ̃∈C0

c (RN \BRt(Kε)), ‖ϕ̃‖∞≤1
}

≤ sup
{∫

RN
ψ(y) dμtk (y) e(t−tk) R

∣
∣
∣ ψ∈C0

c (RN \BRtk(Kε)), ‖ψ‖∞≤1
}

= e(t−tk) R
∣
∣μtk

∣
∣(RN \BRtk(Kε )

)
.

�
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Proof (of Theorem 53). The existence of a solution μ(·) : [0,T ] −→M (RN) to
the mutational equation results directly from Peano’s Theorem 18 (on page 114)
and Proposition 51 (on page 139). Its proof is based on Euler approximations in
combination with Lemma 52 (as presented on page 115 f.).
In addition, with R > 0 denoting the bound of assumption (i), Lemma 52 states that
the values of all Euler approximations in N (μ0,T,R),

{
νt
∣
∣ t ∈ [0,T ], ν(·) ∈N (μ0,T,R)

}⊂M (RN),

are tight. Thus for every ε > 0, there exists a compact set Kε ⊂ R
N satisfying

|νt |(RN \Kε) < ε for all t ∈ [0,T ] and ν(·) ∈N (μ0,T,R).

Since the solution μ(·) : t �−→ μt is constructed as ρM -limit of Euler approxima-
tions, each measure μt is weak* limit of a sequence in

{
νt
∣
∣ ν(·) ∈N (μ0,T,R)

}

due to Proposition 43 (2.) and, the lower semicontinuity of total variation implies
|μt |(RN \Kε) < ε. Hence, {μt | t ∈ [0,T ]} ⊂M (RN) is tight.

Now we provide the claimed link to distributional solutions.
Let μ(·) : [0,T ]−→M (RN), t �−→ μt be a solution to the mutational equation

◦
μ (·) � ϑM (RN ), f1(μ(·), ·), f2(μ(·), ·)

with tight values in M (RN). In particular, μ(·) is continuous w.r.t. ρM and,
R := 1 + supt∈[0,T ] |μt |(RN) < ∞. Due to Proposition 43 (2.) (on page 134),
μ(·) is narrowly continuous.
There exists a L 1-measurable subset A⊂ [0,T ] such that L 1([0,T ]\A) = 0,

lim
h↓0

1
h · ρM

(
μt+h, ϑM (RN ), f1(μt ,t), f2(μt ,t)(h, μt)

)
= 0

for every t ∈ A and that assumption (ii) about the continuity of f is satisfied at every
time t ∈ A. Choosing the test function ϕ ∈C∞

c (RN ,R) arbitrarily, we obtain

lim
h↓0

1
h ·
∫

RN
ϕ d
(
μt+h − ϑM (RN ), f1(μt ,t), f2(μt ,t)(h, μt)

)
= 0

for each t ∈ A. The auxiliary function ψ : [0,T ] −→ R, t �−→
∫

RN
ϕ d μt is con-

tinuous due to the ρM -continuity of μ(·) and, it fulfills at every time t ∈ A⊂ [0,T ]

lim
h↓0

ψ(t+h)−ψ(t)
h = lim

h↓0

1
h

∫

RN
ϕ d

(
ϑM (RN ), f1(μt ,t), f2(μt ,t)(h, μt) − μt

)

= lim
h↓0

1
h

∫

RN

(
ϕ(Xf1(μt ,t)(h,x)) · e

∫ h
0 f2(μt ,t)

(
Xf1(μt , t)(s,x)

)
ds

− ϕ(x)
)

dμt(x)

=
∫

RN

(
∇ϕ(x) · f1(μt , t)(x) + ϕ(x) f2(μt , t)(x)

)
dμt(x) .

In particular, the last integral on the right-hand side is continuous with respect to t
for each t ∈ A. Thus, ψ : [0,T ] −→ R is even absolutely continuous and, its weak
derivative is

d
dt ψ(t) =

∫

RN

(
∇ϕ(x) · f1(μt , t)(x) + ϕ(x) f2(μt , t)(x)

)
dμt(x)
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for L 1-almost every t ∈ [0,T ]. As a consequence, μ(·) is a distributional solution
of

∂t μt + divx (f1(μt , t)μt) = f2(μt , t) μt in R
N× ]0,T [

�

Proof (of Theorem 54). Lipschitz continuity of f with respect to state implies
uniqueness of solutions to mutational equations according to Corollary 12 (on
page 108).

Now let μ(·) : [0,T ]−→M (RN), t �−→ μt be a distributional solution of

∂t μt + divx (f1(μt , t) μt) = f2(μt , t) μt in R
N× ]0,T [

that is continuous with respect to ρM and satisfies supt∈ [0,T ] |μt |(RN) < ∞.
Then we can show that μ(·) is a solution to the mutational equation

◦
μ (·) � ϑM (RN ), f1(μ(·), ·), f2(μ(·), ·)

on the tuple
(
M (RN), ρM , | · |(RN)

)
and thus, it is uniquely determined by

μ0 ∈M (RN). Indeed, the composition

g : [0,T ] −→ W 1,∞(RN ,RN)×W1,∞(RN ,R), t �−→ (
f1(μt , t), f2(μt , t)

)

is continuous with respect to the L∞ norm Lebesgue-almost everywhere in [0,T ].
Theorem 53 (on page 142) guarantees a solution ν(·) : [0,T ]−→M (RN), t �−→ νt

to the mutational equation
◦
ν (·) � ϑM (RN ), g1( ·), g2( ·)

on the tuple
(
M (RN), ρM , | · |(RN)

)
with ν0 = μ0 and, it is a distributional solu-

tions to the nonautonomous linear transport equation

∂t νt + divx (g1(t)νt) = g2(t) νt in R
N× ]0,T [.

Finally the comparison principle in Proposition 47 (2.) (on page 138) implies

ν(·) ≡ μ(·). �
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2.6 Example: A Structured Population Model with Radon
Measures over R

+
0 = [0,∞[

Now we focus on measure-valued solutions to a nonlocal first-order hyperbolic

problem on R
+
0

Def.= [0,∞[ describing a physiologically structured population:
⎧
⎪⎪⎨

⎪⎪⎩

∂t μt + ∂x
(
F2(μt ,t)μt

)
= F3(μt , t) μt , in R

+
0 × [0,T ]

F2(μt ,t)(0) μt(0) =
∫

R
+
0

F1(μt , t)(x) dμt(x), in ]0,T ]

μ0 = ν0,

Avoiding structural restrictions on its coefficients, we specify continuity assump-
tions sufficient for global existence of distributional solutions, whose values are
tight finite Radon measures on R

+
0 , and their continuous dependence on the given

data. These results can be easily extended to systems describing more than one
species because this problem is considered in the mutational framework.

2.6.1 Introduction

A Joint Framework for Both Continuous and Discrete Distributions:
Radon Measures

Global existence and stability of solutions to structured population models were es-
tablished for states defined in Banach space L1 [94, 182]. In this case it was possible
to prove strong continuity and structural stability of solutions. However, it is often
necessary to describe populations in which the initial distribution of the individuals
is concentrated with respect to the structure, i.e., it is not absolutely continuous with
respect to the Lebesgue measure.
In these cases it is relevant to consider initial data in the space of Radon measures as
proposed in [137]. It covers both finite measures of the Euclidean space being abso-
lutely continuous with respect to Lebesgue measure and all Dirac measures that are
suitable for describing discrete distributions.
For linear age-dependent population dynamics, a qualitative theory using semigroup
methods and spectral analysis has been laid out in [137]. The follow-up work [59]
is devoted to constructing nonlinear models. Some analytical results concerning the
existence of solutions are given in [60]. All results there about continuous depen-
dence of solutions on time and initial state are based on the weak∗ topology of
Radon measures. Moreover, there exist even simple counterexamples indicating that
continuous dependence, either with respect to time or to initial state, cannot be ex-
pected in the strong (dual) topology in general [60].

In this section, we use the W 1,∞ dual metric on M (R+
0 ) as introduced in Def-

inition 42 (on page 134). It metrizes both weakly* and narrow topology on each
tight subset of Radon measures with uniformly bounded total variation according to
Proposition 43.
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Furthermore bounded Lipschitz continuous test functions have proved to be
particularly useful for investigating continuity properties of solutions to the linear
subproblems here in § 2.6.2.
In general, using a dual norm can be interpreted in regard to modelling biological
processes. The basic notion of weak* topology is to compare features of two linear
forms individually. Considering the dual space of any topological vector space, the
features of interest result from the effect of a linear form on each vector separately.
Here we use Radon measures μ ,ν on R

+
0 in combination with bounded Lipschitz

continuous functionsϕ : R
+
0 −→R. Then ϕ(x) indicates the relevance of each struc-

tural state x ∈R
+
0 and, the integral

∫
R

+
0
ϕ(x) d(μ−ν)(x) reflects how much μ and

ν differ from each other in regard to this weight function ϕ .
Restricting to bounded Lipschitz continuous functions instead of any real-valued
function vanishing at infinity, however, is based on our interest only in those weight
functions ϕ : R

+
0 −→ R being not too sensitive with respect to structural state. For

modelling biological systems, it is not recommended to take features into consider-
ation which are extremely sensitive with respect to the structure parameter.

The Nonlinear Model of Physiologically Structured Population

The structured population models considered in [94, 182] focus on solutions u(·, t)∈
L1(R+

0 ) to first-order hyperbolic problems of the general form

∂t u(x,t) + ∂x (F2(u(·,t), x,t)u(x, t)) = F3(u(·, t),x, t) u(x, t) in R
+
0 × [0,T ],

F2(u(·,t), 0,t) u(0, t) =
∫

R
+
0

F1(u(·, t), x, t) u(x, t) dx in ]0,T ],

u(x,0) = u0(x) in R
+
0 .

Here x denotes the state of individuals (for example, the size, level of neoplastic
transformation, stage of differentiation) and u(x, t) the density of individuals being
in state x ∈ R

+
0 at time t. By F3(u,x, t) we denote a function describing the individ-

ual’s rate of evolution, such as growth or death rate. F2(u,x, t) describes the rate of
the dynamics of the structure, i.e., the dynamics of the transformation of individual
state. The boundary term describes influx of new individuals to state x = 0. Finally,
u0 denotes initial population density.
In the special case of the so-called Gurtin-MacCumy model, the coefficient func-
tions Fj depend on the integral

∫
R

+
0

u(x, t) dx [182, § 1.3] and, additional weight
functions were taken into consideration later (e.g. [60]).

In this section, we investigate existence of measure-valued solutions μt ∈M (R+
0 )

to the corresponding nonlinear equations
⎧
⎪⎪⎨

⎪⎪⎩

∂t μt + ∂x (F2(μt ,t)μt) = F3(μt , t) μt in R
+
0 × [0,T ]

F2(μt ,t)(0) μt(0) =
∫

R
+
0

F1(μt , t)(x) dμt(x) in ]0,T ]

μ0 = ν0

(2.1)
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and their dependence on both the initial measure ν0 ∈M (R+
0 ) and three coefficient

functions F1,F2,F3 : M (R+
0 )× [0,T ]−→W 1,∞(R+

0 ).
In particular, there are no structural assumptions about the coefficients Fj such
as linearity with respect to the measure μt . Furthermore, the partial differential
equation and the boundary condition on ]0,T ] are nonlocal because the coefficients
depend on the whole measures as elements of the space M (R+

0 ) – and not on their
local properties in R

+
0 .

Problem (2.1) is interpreted in a distributional sense: The wanted solutions are
weakly* continuous curves μ : [0,T ] −→M (R+

0 ) = C0
0(R+

0 )′ satisfying the prob-
lem in a distributional sense, i.e. in duality with all test functions in C∞

c (R+
0 × [0,T ]).

The additional assumption F1(·)≥ 0 guarantees that positivity of initial measure ν0

is preserved by the solution μt constructed here. This feature is of particular interest
for modelling population dynamics. The main results of this section are:

Theorem 56 (Existence of solutions to nonlinear structured population model).
Suppose that F : M (R+

0 )× [0,T ]−→ {(a,b,c) ∈W 1,∞(R+
0 )3 | b(0) > 0

}
satisfies

(i) sup
t∈[0,T ]

sup
ν∈M (R+

0 )
‖F(ν,t)‖W1,∞ < ∞.

(ii) F : (M (R+
0 ),narrow)× [0,T ]−→ (W 1,∞(R+

0 )3,‖ · ‖∞
)

is continuous.

Then, for any initial measure ν0 ∈M (R+
0 ), there exists a narrowly continuous dis-

tributional solution μ : [0,T ] −→M (R+
0 ) to the nonlinear population model (2.1)

with μ(0) = ν0.
If, in addition, ν0 ∈M +(R+

0 ) and F1(ν, t)(·)≥ 0 for every ν ∈M +(R+
0 ), t ∈ [0,T ],

then the solution μ(·) has values in M +(R+
0 ).

Theorem 57 (Lipschitz contin. dependence of distributional solutions on data).
Assume that for F,G : M (R+

0 )× [0,T ]−→ {(a,b,c) ∈W 1,∞(R+
0 )3| b(0) > 0

}
,

(i) MF := sup
t∈[0,T ]

sup
μ∈M (R+

0 )
‖F(μ , t)‖W1,∞(R+

0 )3 < ∞,

MG := sup
t∈[0,T ]

sup
μ∈M (R+

0 )
‖G(μ , t)‖W1,∞(R+

0 )3 < ∞,

(ii) for any R > 0, there are a constant LR > 0 and a modulus of continuity ωR(·)
with ‖F(μ ,s)−F(ν,t)‖L∞(R+

0 ) ≤ LR · ρM (μ ,ν)+ωR(|t− s|)
for all μ ,ν ∈M (R+

0 ) with |μ |(R+
0 ), |ν|(R+

0 )≤ R.

(iii) G : (M (R+
0 ),ρM )× [0,T ]−→ (W 1,∞(R+

0 )3,‖ · ‖∞) is continuous.

Let μ , ν : [0,T ] −→M (R+
0 ) denote ρM -continuous distributional solutions to the

nonlinear population model (2.1) for the coefficients F(·),G(·) respectively such
that supt |μt |(R+

0 )<∞, supt |νt |(R+
0 )<∞ and all their values are tight in M (R+

0 ).

Then there is C =C(MF ,MG, |μ0|(R+
0 ), |ν0|(R+

0 ))∈ [0,∞[ such that for all t ∈ [0,T ],

ρM (μt ,νt) ≤
(
ρM (μ0,ν0) + C t · sup

M (R+
0 )×[0,T ]

‖F(·, ·)−G(·, ·)‖∞
)

eC t .
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Comparison with Earlier Results of Diekmann and Getto

Model (2.1) is a generic formulation of a nonlinear single-species model with a
one-dimensional structure. The model was considered by Diekmann and Getto [60]
in a case where the functions Fi depend on the population density via weighted
integrals

∫
γi(x)dμt . Diekmann and Getto proved the global existence of solutions

and their continuous dependence on time and initial state in the weak* topology of
M (R+

0 ). The results were formulated under the assumptions of Lipschitz continuity
of functions F1, F2 and F3 and the global Lipschitz property of the output function γi.
For solving the fully nonlinear problem, Diekmann and Getto applied the so-called
method of interaction variables. The method consists of replacing the dependence
on the measure μ incorporated in F1, F2 and F3 by input I(t) at time t, and splitting
the nonlinear problem (2.1) into a nonautonomous linear problem coupled with
a fixed point problem. Indeed, their linear problem is determined by parameter
function I(·) of time and, it is solved by extending the concept of semigroup.
The feedback law relates the parameter function I(·) to the wanted solution and
thus provides a fixed point problem equivalent to the original nonlinear problem.
Appropriate assumptions about the coefficients lay the basis for applying Banach’s
contraction principle.

In this section, we investigate the nonlinear problem (2.1) in the mutational
framework. Similarly to § 2.5 about the nonlinear transport equation, the transitions
on
(
M (R+

0 ), ρM , | · |(R+
0 )
)

are induced by the underlying linear problem, i.e.

⎧
⎪⎪⎨

⎪⎪⎩

∂t μt + ∂x (b μt) = c μt , in R
+
0 × [0,T ],

b(0) μt(0) =
∫

R
+
0

a dμt , in ]0,T ],

μ0 = ν0.

(2.2)

with a(·), b(·), c(·) ∈W 1,∞(R+
0 ) and b(0) > 0.

The key estimates for this linear problem are obtained using the concepts of duality
theory applied to transport equations similarly in [64]. In subsequent § 2.6.2, the
smooth solution to a dual partial differential equation provides an integral repre-
sentation of a measure-valued solution μ : [0,T ] −→M (R+

0 ) to equation (2.2). In
particular, this solution exists and depends continuously on the initial measure ν0

and on the coefficients a(·), b(·) and c(·).

In comparison to the approach of Diekmann et al. [59, 60], the connection with the
nonlinear problem (2.1) is not based on the contraction principle, but on Euler com-
pactness in the mutational framework.
It has the advantage that existence of weak solutions to the nonlinear population
model (2.1) does not require Lipschitz continuity of the coefficients F1(·, t), F2(·, t),
F3(·,t), but merely continuity. In addition, assuming Lipschitz continuity of the
model coefficients F1(·,t), F2(·, t), F3(·,t) ensures uniqueness of the weak solution.
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Basic set E := M (R+
0 )

the space of all finite real-valued Radon measures on R
+
0

Distances W 1,∞ dual metric ρM : M (R+
0 )×M (R+

0 ) −→ [0,∞[

ρM (μ , ν) := sup
{∫

R
+
0

ψ d(μ−ν)
∣∣
∣ ψ ∈C1(R+

0 ),

‖ψ‖∞, ‖∇ψ‖∞ ≤ 1
}

(in tight subsets, it is equivalent to the narrow topology, Prop. 43)

Absolute values �·� := | · |(R+
0 ) total variation of the Radon measure

Transition For each a(·),b(·),c(·) ∈W 1,∞(R+
0 ) with b(0) > 0, define

ϑa,b,c : [0,1]×M (R+
0 )−→M (R+

0 ), (h,ν0) �−→ μh

as the narrowly continuous distributional solution to the linear
autonomous problem

⎧
⎪⎪⎨

⎪⎪⎩

∂tμt +∂x (bμt) = c μt in R
+
0 × [0,1],

b(0) μt(0) =
∫

R
+
0

a dμt in ]0,1],

μ0 = ν0

Compactness Euler compactness: Lemma 69 (page 165)

Mutational solutions Narrowly continuous distributional solution to the nonlinear
structured population model
⎧
⎪⎪⎨

⎪⎪⎩

∂t μt + ∂x (F2(μt , t)μt) = F3(μt , t) μt in R
+
0 × [0,T ]

F2(μt , t)(0) μt(0) =
∫

R
+
0

F1(μt , t)(x) dμt(x) in ]0,T ]

μ0 = ν0

with tight values in M (R+
0 )

List of main results
formulated in § 2.6

Existence due to compactness (Peano): Corollary 71 (page 166)
Continuous dependence on data: Proposition 73 (page 167)
Extension to models with delay: Remark 74

Key tools The measure-valued solution to the linear problem is represented
by means of a dual partial differential equation:
Definition 61 (page 153), Proposition 63 (page 154)

The dual PDE problem is equivalent to an integral equation,
which is an inhomogeneous Volterra equation of second type at
the initial point of time t = 0 : Lemma 62 (page 153)

The additional assumption a(·) ≥ 0 about ϑa,b,c preserves posi-
tivity of Radon measures: Corollary 64 (page 155)

Table 2.3 Brief summary of the example in § 2.6 in mutational terms:
A structured population model with Radon measures over R

+
0 = [0,∞[
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2.6.2 The Linear Population Model

Now we consider the linear structured population model

⎧
⎪⎪⎨

⎪⎪⎩

∂tμt + ∂x (b μt) = c μt in R
+
0 × [0,T ],

b(0) μt(0) =
∫

R
+
0

a dμt in ]0,T ],

μ0 = ν0,

(2.3)

where a,b,c : R
+
0 −→ R are bounded and Lipschitz continuous functions with

b(0) > 0 and, ν0 ∈M (R+
0 ) is a given initial Radon measure.

Similarly to § 2.5.2 (about linear transport equations for Radon measures on R
N),

we first assume b(·) ∈C1(R+
0 ) in addition and then extend the subsequent estimates

to b(·) ∈W 1,∞(R+
0 ) by means of L∞ continuity (correspondingly to Remark 50 on

page 139). All proofs of the following results about problem (2.3) are collected at
the end of this subsection.

The Statements

Formal integration by parts motivates how to define a weak solution [0,T ] −→
M (R+

0 ) to the linear problem (2.3).

Definition 58. μ : [0,T ]−→M (R+
0 ), t �−→ μt is called a weak solution to prob-

lem (2.3) if μ is narrowly continuous with respect to time and, for all test functions
ϕ ∈C1(R+

0 × [0,T ])∩W 1,∞(R+
0 × [0,T ]),

∫

R
+
0

ϕ(x,T ) dμT (x) −
∫

R
+
0

ϕ(x,0) dν0(x)

=
∫ T

0

∫

R
+
0

∂tϕ(x,t) dμt(x) dt +
∫ T

0

∫

R
+
0

(
∂xϕ(x, t) b(x)+ϕ(x, t) c(x)

)
dμt(x) dt

+
∫ T

0
ϕ(0, t)

∫

R
+
0

a(x) dμt(x) dt.

Now the key point is an implicit characterization of the solution to the linear prob-
lem (2.3) by an integral equation exploiting the notion of characteristics. This so-
lution is derived for any initial finite Radon measure ν0 ∈M (R+

0 ) and coefficient
b(·) ∈C1(R+

0 )∩W 1,∞(R+
0 ) with b(0) > 0.

Motivated by the application to population dynamics, we then specify a suffi-
cient condition on a(·) for preserving nonnegativity of measures, namely a(·) ≥ 0.
The corresponding solution map can easily be extended to less regular coefficients
b(·) ∈W 1,∞(R+

0 ) as specified in Corollary 66 below (on page 156).

Remark 59. Adapting Definition 44 (on page 137), each function b∈W1,∞(R+
0 ,R)

induces the flow Xb : [0,T ]×R
+
0 −→ R in the following sense: For any initial point

x0 ∈ R
+
0 , the curve Xb(·,x0) : [0,T ]−→ R

+
0 is the continuously differentiable solu-

tion to the Cauchy problem



2.6 Example: A Structured Population Model with Radon Measures over R
+
0 = [0,∞[ 153

{
d
dt x(t) = b(x(t)), in [0,T ],

x(0) = x0 ∈ R
+
0 .

The additional property b(0) > 0 ensures that all values of Xb are in R
+
0 .

The local assumptions b ∈ C1(R+
0 )∩W 1,∞(R+

0 ), b(0) > 0 and Gronwall’s Lemma
imply continuous differentiability of solutions to ordinary differential equations
with respect to parameters and initial data [92, 93, 181]. We summarize in the
counterpart of Lemma 45 (on page 137):

Lemma 60. If b∈C1(R+
0 )∩W 1,∞(R+

0 ) and b(0) > 0, then Xb : [0,T ]×R
+
0 −→R

+
0

is continuously differentiable with

(i) ‖∂xXb(t, ·)‖∞ ≤ e‖∂xb‖∞ t ,

(ii) Lip ∂x Xb(·,x) ≤ ‖∂xb‖∞ e‖∂xb‖∞ T ,

(iii) ‖Xb(t, ·)−Xb̃(t, ·)‖∞ ≤ ‖b− b̃‖∞ t e‖∂xb̃‖∞ t for any b̃ ∈W 1,∞(R+
0 ), b̃(0) > 0.

For every weak solution μ : [0,T ] −→M (R+
0 ), integration by parts provides a

characterization using a dual problem in the form of a partial differential equation:

Definition 61. Let ψ ∈C1(R+
0 )∩W 1,∞(R+

0 ). We call ϕt,ψ ∈C1(R+
0 × [0, t]) the

solution to the dual problem related to ψ(·) and t if it satisfies
{
∂τ ϕt,ψ + b(x)∂xϕt,ψ + c(x)ϕt,ψ + a(x)ϕt,ψ(0,τ) = 0 in R

+
0 × [0, t],

ϕt,ψ (·, t) = ψ in R
+
0 .

(2.4)

The formulation of the dual problem is particularly useful as tool for proving exis-
tence of weak solutions. Knowing the solution to the dual problem, the solution to
the linear problem (2.3) is given by the integral formula explicitly stated in Propo-
sition 63. First we collect the properties of the dual problem though.

Lemma 62. Let a,b,c∈W 1,∞(R+
0 ) and b∈C1(R+

0 ), b(0)> 0. For any function
ψ ∈C1(R+

0 )∩W 1,∞(R+
0 ) and time t ∈ ]0,T ], the solution ϕ := ϕt,ψ to the related

dual problem (2.4) is unique and, its equivalent characterization is given by the
integral equation

ϕ(x,τ) = ψ (Xb(t− τ,x)) · e
∫ t
τ c(Xb(r−τ,x)) dr

+
∫ t

τ
a(Xb(s− τ,x)) ϕ(0,s) e

∫ s
τ c(Xb(r−τ,x)) dr ds. (2.5)
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Moreover, for any t > 0 and ψ ∈C1(R+
0 )∩W1,∞(R+

0 ) fixed, the following holds

(i) ϕ(0, ·) : [0,t] −→ R is a bounded and continuously differentiable solution to
the following inhomogeneous Volterra equation of second type

ϕ(0,τ) = ψ (Xb(t− τ,0)) e
∫ t
τ c(Xb(r−τ,0)) dr

+
∫ t

τ
a(Xb(s− τ,0)) ϕ(0,s) e

∫ s
τ c(Xb(r−τ,0)) dr ds (2.6)

with ‖ϕ(0, ·)‖∞ ≤ sup
z≤‖b‖∞ t

|ψ(z)| · (1 +‖a‖∞ t) e(‖a‖∞+‖c‖∞)t ,

‖∂τϕ(0, ·)‖∞ ≤ const(‖a‖W1,∞ , ‖b‖∞, ‖c‖W1,∞) · max{‖ψ‖∞,‖∂xψ‖∞}·
e2 (‖a‖∞+‖c‖∞)t (1 + t).

(ii) ϕ(x, ·) : [0,t]−→ R is continuously differentiable for each x ∈ R
+
0 with

‖∂τϕ(x, ·)‖∞ ≤ const(‖a‖W1,∞ , ‖b‖∞, ‖c‖W1,∞) · max{‖ψ‖∞,‖∂xψ‖∞}
e2 (‖a‖∞+‖c‖∞)t (1 + t).

(iii) ϕ(·,τ) : R
+
0 −→R is continuously differentiable for every τ ∈ [0, t] and satisfies

‖ϕ(·,τ)‖∞ ≤ ‖ψ‖∞ e2 (‖a‖∞+‖c‖∞)t ,

‖∂xϕ(·,τ)‖∞ ≤ max{‖∂xψ‖∞,1} emax{‖ψ‖∞,1} 3(‖a‖W1,∞+‖∂xb‖∞+‖c‖W1,∞ ) t .

(iv) For every t > 0 and ψ ∈ C1(R+
0 )∩W 1,∞(R+

0 ), there exists a continuously dif-
ferentiable solution ϕ : R

+
0 × [0, t]−→R to integral equation (2.5). It is unique

and has the regularity properties stated in parts (ii) and (iii).

(v) If additionally ψ ∈ C2(R+
0 )∩W 2,∞(R+

0 ), then ∂xϕ(x, ·) : [0, t] −→ R is Lips-
chitz continuous and, its Lipschitz constant has an upper bound depending only
on ‖a‖W1,∞ , ‖b‖W1,∞ , ‖c‖W1,∞ , ‖ψ‖W2,∞ and, in particular, on t in an increas-
ing way.

Proposition 63. Let ϕt,ψ ∈ C1(R+
0 × [0, t]) denote the solution to the dual prob-

lem (2.4) or equivalently, the integral equation (2.5) for any t > 0 andψ ∈C1(R+
0 )∩

W 1,∞(R+
0 ). For any Radon measure μ0 ∈ M (R+

0 ), let μ : [0,T ] −→ M (R+
0 ),

t �−→ μt be given by
∫

R
+
0

ψ(x)dμt(x) =
∫

R
+
0

ϕt,ψ (x,0)dμ0(x). (2.7)

Then

(i) μ satisfies the following form of the semigroup property for every 0≤ s≤ t ≤ T
and ψ ∈C1(R+

0 )∩W 1,∞(R+
0 ) :

∫

R
+
0

ψ(x)dμt(x) =
∫

R
+
0

ϕt,ψ (x,s)dμs(x). (2.8)
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(ii) t �−→
∫

R
+
0

ψ dμt is Lipschitz continuous for everyψ ∈C1(R+
0 )∩W 1,∞(R+

0 ) with

Lipschitz constant ≤ const
(‖a‖W1,∞ ,‖b‖∞,‖c‖W1,∞ ,T

) · ‖ψ‖W1,∞ |μ0|(R+
0 ).

Furthermore, |μt |(R+
0 ) ≤ e2 (‖a‖∞+‖c‖∞)t · |μ0|(R+

0 ).

(iii) μ is a weak solution to the linear problem (2.3) (in the sense of Definition 58).

(iv) For any φ ∈ C0(R+
0 ) such that supp φ ⊂ [‖b‖∞ t,∞[, the following estimate

holds with φ̃(x) := supz≤xφ(z) :
∫

R
+
0

φ̃(x +‖b‖∞t) d|μ0|(x) ≥ e−‖c‖∞ t
∫

R
+
0

φ(x) dμt(x).

We can also exploit the preceding properties to demonstrate that nonnegativity of
finite Radon measures is preserved.

Corollary 64. Under the additional hypothesis that a(·) ≥ 0, all values of the
weak solution μ : [0,T ] −→M (R+

0 ) presented in Proposition 63 are nonnegative
Radon measures for every nonnegative initial measure μ0 ∈M +(R+

0 ).

The preceding results provide more information than just the existence of solutions.
Using the construction of Proposition 63, we obtain a continuous solution map for
the linear problem (2.3). Furthermore, these solutions depend continuously on the
coefficients a(·), b(·), c(·).

Proposition 65.
Let a(·), c(·) ∈ W 1,∞(R+

0 ) and b(·) ∈ C1(R+
0 ) ∩W 1,∞(R+

0 ) satisfy b(0) > 0.
The weak solutions to the linear problem (2.3), characterized in Proposition 63,
induce a map

ϑa,b,c : [0,1]×M (R+
0 ) −→ M (R+

0 ), (t,μ0) �−→ μt

satisfying for any μ0,ν0 ∈M (R+
0 ), t,h ∈ [0,1], ã, c̃ ∈W 1,∞(R+

0 ), b̃∈C1(R+
0 )∩

W 1,∞(R+
0 ) with t + h≤ 1, b̃(0) > 0 :

(i) ϑa,b,c(0, ·) = IdM (R+
0 )

(ii) ϑa,b,c(h, ϑa,b,c(t,μ0)) = ϑa,b,c(t + h,μ0)

(iii)
∣
∣ϑa,b,c(h,μ0)

∣
∣(R+

0 ) ≤ |μ0|(R+
0 ) · e2 (‖a‖∞+‖c‖∞) h

(iv) ρM

(
ϑa,b,c(t,μ0), ϑa,b,c(t+h,μ0)

) ≤ h · C(‖a‖W1,∞ ,‖b‖∞,‖c‖W1,∞) · |μ0|(R+
0 )

(v) ρM

(
ϑa,b,c(h,μ0), ϑa,b,c(h,ν0)

) ≤ ρM (μ0,ν0) · e3 (‖a‖
W1,∞+‖∂xb‖∞+‖c‖

W1,∞ ) h

(vi) ρM

(
ϑa,b,c(h,μ0), ϑã,b̃,c̃(h,μ0)

) ≤ h
∥
∥(a,b,c) − (ã, b̃, c̃)

∥
∥
∞ Ĉ |μ0|(R+

0 )
with a constant Ĉ = Ĉ(‖a‖W1,∞ , ‖ã‖W1,∞ , ‖b‖W1,∞ , ‖b̃‖W1,∞ , ‖c‖W1,∞ , ‖c̃‖W 1,∞)

(vii) If additionally a(·)≥ 0, then ϑa,b,c([0,1],M +(R+
0 ))⊂M +(R+

0 ).
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The additional hypothesis b(·) ∈ C1(R+
0 ) is dispensable – similarly to Remark 50

about the linear transport equation in M (RN) (on page 139):

Corollary 66. For any functions a(·),b(·),c(·) ∈W 1,∞(R+
0 ) satisfying b(0) > 0,

a map ϑa,b,c : [0,1]×M (R+
0 ) −→M (R+

0 ) can be constructed in such a way that
ϑa,b,c(·,μ0) is a weak solution to the linear problem (2.3) for each μ0 ∈M (R+

0 )
and the statements (i)–(vii) of Proposition 65 hold for all μ0,ν0 ∈M (R+

0 ), t,h ∈
[0,1], ã, b̃, c̃ ∈W 1,∞(R+

0 ) with t + h≤ 1, b̃(0) > 0.

In terms of the mutational framework, we have obtained the following statement as
main result of § 2.6.2:

Corollary 67 (Transitions due to linear problem (2.3)).
For arbitrary functions a(·),b(·),c(·) ∈W 1,∞(R+

0 ) satisfying b(0) > 0, the corre-
sponding solution map of linear problem (2.3)

ϑa,b,c : [0,1]×M (R+
0 )−→M (R+

0 )

is a transition on
(
M (R+

0 ), ρM , | · |(R+
0 )
)

with

α(ϑa,b,c; r) := 3 (‖a‖W1,∞ +‖∂xb‖∞+‖c‖W1,∞)
β (ϑa,b,c; r) := C(‖a‖W1,∞ ,‖b‖∞,‖c‖W1,∞) · r
γ(ϑa,b,c) := 2 (‖a‖∞+‖c‖∞)

D(ϑa,b,c, ϑã,b̃,c̃; r) ≤ ∥
∥(a,b,c) − (ã, b̃, c̃)

∥
∥
∞ · Ĉ r

From now on, the set of these transitions on
(
M (R+

0 ), ρM , | · |(R+
0 )
)

is abbreviated
as Θ

(
M (R+

0 ), ρM , | · |(R+
0 )
)
.

The Proofs About the Linear Population Model

Proof (of Lemma 62 on page 153).
We start with the proof of integral characterization (2.5). Fix t > 0 arbitrarily. For
any b̃∈C1(R+

0 )∩W 1,∞(R+
0 ), c̃∈W 1,∞(R+

0 ) and f̃ ∈W 1,∞(R+
0 × [0, t]) with b̃(0)< 0

and every ψ ∈C1(R+
0 ), the semilinear initial value problem

{
∂τξ (x,τ) + b̃(x) ∂xξ (x,τ) + c̃(x) ξ (x,τ) + f̃ (x,τ) = 0 in R

+
0 × [0, t]

ξ (·,0) = ψ in R
+
0

has a unique solution ξ ∈C1(R+
0 × [0, t]) given explicitly by

ξ (x,τ) = ψ
(
X−b̃(τ,x)

) · e−
∫ τ

0 c̃(X−b̃(τ−r,x)) dr

−
∫ τ

0
f̃
(
X−b̃(τ− s,x), s

) · e−
∫ τ

s c̃(X−b̃
(τ−r,x)) dr ds.

This explicit representation of ξ (x,τ) results from the classical method of char-
acteristics. It was presented by Conway [49] for the corresponding problem in R

n

instead of R
+
0 . Since b̃(0) < 0, i.e., R

+
0 is invariant under the characteristic flow of

−b̃(·), the expression obtained in [49] can be restricted to R
+
0 .
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Substituting ϕ(x,τ) := ξ (x,t − τ) yields the solution to the corresponding partial
differential equation with an end-time condition and the coefficients b(·) and c(·)
satisfying b(0) > 0. Indeed, let t > 0, b∈C1(R+

0 )∩W 1,∞(R+
0 ), c ∈W 1,∞(R+

0 ) and
f ∈W 1,∞(R+

0 × [0,t]) be arbitrary with b(0) > 0. For any function ψ ∈ C1(R+
0 ),

the semilinear partial differential equation
{
∂τϕ(x,τ) + b(x) ∂xϕ(x,τ) + c(x) ϕ(x,τ) + f (x,τ) = 0 in R

+
0 × [0, t],

ϕ(·, t) = ψ in R
+
0 ,

has a unique solution ϕ ∈C1(R+
0 × [0, t]) explicitly given by

ϕ(x,τ) = ψ
(
Xb(t− τ,x)

) · e
∫ t
τ c(Xb(r−τ,x)) dr

+
∫ t

τ
f
(
Xb(s− τ,x), s

) · e
∫ s
τ c(Xb(r−τ,x)) dr ds.

Applying this result to f (x,τ) = a(x)ϕ(0,τ), we obtain the equivalence between
equations (2.4) and (2.5) for every function ϕ ∈C1(R+

0 × [0, t]) (with Lipschitz con-
tinuous ϕ(0, ·) : [0,t]−→R).

Now we proceed with the proof of the statements (i)–(v) of Lemma 62:

(i) Volterra equation (2.6) results directly from equation (2.5) by setting x = 0.
The upper bound of |ϕ(0, ·)|, restricted to [0, t], is a consequence of

|ϕ(0,τ)| e‖c‖∞ τ ≤ sup
z≤‖b‖∞ t

|ψ(z)| e‖c‖∞ t + ‖a‖∞
∫ t

τ
|ϕ(0,s)| e‖c‖∞ sds

and Gronwall’s Lemma (Proposition A.1 on page 439).
Moreover, the right-hand side of Volterra equation (2.6) is continuously differen-
tiable with respect to τ and thus, ϕ(0, ·) ∈ C1([0, t]). The product rule reveals that
at every time τ ∈ [0,t]
∣
∣ d

dτ ϕ(0,τ)
∣
∣

≤ e‖c‖∞ (t−τ)
(
‖∂xψ‖∞ · ‖b‖∞ + ‖ψ‖∞

(
‖c‖∞+(t− τ) · ‖∂xc‖∞ · ‖b‖∞

))

+ e‖c‖∞ (t−τ)
(
‖a‖∞ ‖ϕ(0, ·)‖∞+ (t−τ) ·

(
‖∂xa‖∞ · ‖b‖∞ ‖ϕ(0, ·)‖∞

+‖a‖∞ ‖ϕ(0, ·)‖∞
(
‖c‖∞+ t · ‖∂xc‖∞ ‖b‖∞

)))
.

(ii) For arbitrarily fixed x ∈ R
+
0 , ϕ(x, ·) : [0, t] −→ R is continuously differen-

tiable since it satisfies the integral equation (2.5) and ϕ(0, ·) is continuous. The
upper bound of the derivative ‖∂τϕ(x, ·)‖∞ results from considerations similar to
the conclusions concerning sup |∂τϕ(0, ·)| in statement (i).

(iii) The upper bound of ‖ϕ(·,τ)‖∞ results directly from the integral equa-
tion (2.5) and property (i):
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‖ϕ(·,τ)‖∞ ≤ ‖ψ‖∞
(

e‖c‖∞ t +
∫ t

0
‖a‖∞ · (1 +‖a‖∞ s) e(‖a‖∞+‖c‖∞) ·s · e‖c‖∞ s ds

)

≤ ‖ψ‖∞
(

e‖c‖∞ t +‖a‖∞
∫ t

0
(1 +(‖a‖∞+ 2 ‖c‖∞)s) e(‖a‖∞+2 ‖c‖∞) ·s ds

)

= ‖ψ‖∞
(

e‖c‖∞ t +‖a‖∞ t e(‖a‖∞+2 ‖c‖∞) ·t
)

≤ ‖ψ‖∞ e(‖a‖∞+2 ‖c‖∞) ·t
(

1 + ‖a‖∞ t
)

≤ ‖ψ‖∞ e(2 ‖a‖∞+2 ‖c‖∞) ·t .

The last inequality results from 1 + s ≤ es for all s ≥ 0. The form of the right-
hand side of integral equation (2.5) ensures that ϕ(·,τ) : R

+
0 −→R is continuously

differentiable for every τ ∈ [0, t]. Furthermore, for every x ∈R
+
0 , the chain rule and

Lemma 60 (on page 153) imply
∣
∣∣ ∂∂x ϕ(x,τ)

∣
∣∣ · e‖c‖∞ (τ−t)

≤ ‖∂xψ‖∞ · ‖∂xXb(t−τ, ·)‖∞ + ‖ψ‖∞
∫ t

τ
‖∂xc‖∞ · ‖∂xXb(r−τ, ·)‖∞ dr

+
∫ t

τ

(
‖∂xa‖∞ · ‖∂xXb(s−τ, ·)‖∞ + ‖a‖∞

∫ s

τ
‖∂xc‖∞ · ‖∂xXb(r−τ, ·)‖∞ dr

)

|ϕ(0,s)| ds,

and thus due to property (i),

‖∂xϕ‖∞ ≤ ‖∂xψ‖∞e(‖∂xb‖∞+‖c‖∞)t +‖ψ‖∞ ‖∂xc‖∞ e(‖∂xb‖∞+‖c‖∞) t t

+ ‖ψ‖∞ e(2‖a‖∞+‖∂xb‖∞+2‖c‖∞)t
(
‖∂xa‖∞ t +‖a‖∞‖∂xc‖∞ t2

2

)

≤ max{‖∂xψ‖∞,1} e(2‖a‖∞+‖∂xb‖∞+2‖c‖∞) t

(
1 +‖ψ‖∞ (‖∂xc‖∞+‖∂xa‖∞) t + ‖ψ‖∞ ‖a‖∞ ‖∂xc‖∞ t2

2

)

≤ max{‖∂xψ‖∞,1} · emax{‖ψ‖∞,1} ·3 (‖a‖W1,∞+‖∂xb‖∞+‖c‖W1,∞ ) t .

(iv) Volterra equation (2.6) has a unique continuous solution, since the integrand
is Lipschitz continuous with respect to ϕ(0,s) [173, 181]. It induces directly the
unique continuously differentiable solution to equation (2.5) and thus equivalently
to dual problem (2.4).

(v) This feature results from differentiating equation (2.5) with respect to x.
Indeed, due to Lemma 60 (on page 153), the functions [0,T ]−→R, t �−→ ∂x Xb(t,x)
are uniformly Lipschitz continuous for all x ∈ R

+
0 . �

Proof (of Proposition 63 on page 154).
(i) Choose arbitrary 0≤ s < t ≤ T and ψ ∈C1(R+

0 )∩W 1,∞(R+
0 ).

Let ξ ∈C1(R+
0 × [0,s]) denote a solution to the semilinear differential equation

∂τξ + b(x)∂xξ + c(x)ξ + a(x)ξ (0,τ) = 0 in R
+
0 × [0,s],

ξ (·,s) = ϕt,ψ (·,s) in R
+
0 ,
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or (as an equivalent formulation) to the integral equation for (x,τ) ∈ R
+
0 ×[0,s]

ξ (x,τ) = ϕt,ψ
(
Xb(s− τ,x), s

) · e
∫ s
τ c(Xb(r−τ,x)) dr

+
∫ s

τ
a(Xb(σ − τ,x)) ξ (0,σ) e

∫ σ
τ c(Xb(r−τ,x)) dr dσ .

According to Lemma 62 (iv), such a solution exists and is unique since ϕt,ψ (·,s) is
continuously differentiable and bounded in W 1,∞(R+

0 ). Thus, ξ ≡ ϕt,ψ (·, ·)|
R

+
0 ×[0,s]

and, using the duality formula (2.7), we conclude that
∫

R
+
0

ψ(x) dμt(x) =
∫

R
+
0

ϕt,ψ (x,0) dμ0(x)

=
∫

R
+
0

ξ (x,0) dμ0(x) =
∫

R
+
0

ϕt,ψ (x,s) dμs(x).

(ii) The total variation of μt can be characterized as a supremum [5, Proposi-
tion 1.47]. Therefore, due to Lemma 62 (iii),

|μt |(R+
0 ) = sup

{∫

R
+
0

u(x) d μt(x)
∣
∣
∣ u ∈C0

c (R+
0 ), ‖u‖∞ ≤ 1

}

= sup
{∫

R
+
0

u(x) d μt(x)
∣
∣
∣ u ∈C1

c (R+
0 ), ‖u‖∞ ≤ 1

}

(2.7)
= sup

{∫

R
+
0

ϕt,u(x,0) d μ0(x)
∣∣
∣ u ∈C1

c (R+
0 ), ‖u‖∞ ≤ 1

}

≤ sup
{
‖ϕt,u(·,0)‖∞ |μ0|(R+

0 )
∣
∣
∣ u ∈C1

c (R+
0 ), ‖u‖∞ ≤ 1

}

≤ e2 (‖a‖∞+‖c‖∞) ·t |μ0|(R+
0 ).

For arbitrary 0≤ s < t ≤ T and ψ ∈W 1,∞(R+
0 )∩C1(R+

0 ), we obtain
∣
∣
∣
∫

R
+
0

ψ dμt −
∫

R
+
0

ψ dμs

∣
∣
∣ =
∣
∣
∣
∫

R
+
0

ϕt,ψ (x,s) dμs(x) −
∫

R
+
0

ϕt,ψ (x, t) dμs(x)
∣
∣
∣

≤
∫

R
+
0

∣
∣∣ϕt,ψ (x,s) − ϕt,ψ (x, t)

∣
∣∣ d |μs|(x)

≤ (t− s) ‖∂τ ϕt,ψ‖∞ |μs|(R+
0 ).

Lemma 62 (ii) implies Lipschitz continuity due to ψ ∈W 1,∞(R+
0 ).

(iii) First we focus on autonomous functions ψ ∈C2(R+
0 )∩W 2,∞(R+

0 ) and prove

lim
h↓0

1
h ·
(∫

R
+
0

ψ dμt −
∫

R
+
0

ψ dμt−h

)
=
∫

R
+
0

(
b ·∂xψ + c ψ + aψ(0)

)
dμt

for any t ∈ ]0,T ]. Indeed, statement (i) implies for any 0 < h≤ t ≤ T

1
h ·
(∫

R
+
0

ψ dμt −
∫

R
+
0

ψ dμt−h

)
=
∫

R
+
0

ϕt,ψ (x,t−h)− ψ(x)
h dμt−h(x).

In particular, Lemma 62 (ii) and (v) provide upper bounds for the W 1,∞ norm of

R
+
0 −→ R, x �−→ ϕt,ψ (x,t−h)− ψ(x)

h which depend on ‖ψ‖W2,∞ , but not on t,h:
∥
∥
∥
ϕt,ψ (·,t−h)− ψ(·)

h

∥
∥
∥
∞
≤ const(‖a‖W1,∞ , ‖b‖∞, ‖c‖W1,∞ , T ) · ‖ψ‖W1,∞ ,

∥
∥
∥
∂x ϕt,ψ (·,t−h)− ∂xψ(·)

h

∥
∥
∥
∞
≤ const(‖a‖W1,∞ , ‖b‖W1,∞ , ‖c‖W1,∞ , T, ‖ψ‖W2,∞).
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Hence property (ii) provides a constant C(‖a‖W1,∞ ,‖b‖W1,∞ ,‖c‖W1,∞ ,‖ψ‖W2,∞ ,T )
such that for every h ∈ ]0,t],
∣
∣∣ 1

h

(∫

R
+
0

ψ dμt−
∫

R
+
0

ψ dμt−h

)
−
∫

R
+
0

ϕt,ψ (x,t−h)− ψ(x)
h dμt(x)

∣
∣∣ ≤ C ·h · |μ0|(R+

0 ).

In regard to the limit for h ↓ 0, we conclude from ϕt,ψ ∈ C1(R+
0 × [0, t]) solving

the dual problem (2.4)

lim
h↓0

1
h ·
(∫

R
+
0

ψ dμt −
∫

R
+
0

ψ dμt−h

)
= lim

h↓0

∫

R
+
0

ϕt,ψ (x,t−h)− ψ(x)
h dμt(x)

=
∫

R
+
0

(
b ·∂xψ + c ψ + aψ(0)

)
dμt .

Finally we will provide the missing link to weak solutions to the linear prob-
lem (2.3) in the sense of Definition 58 (on page 152). Indeed, for any smooth test
function ϕ ∈C∞

c (R+
0 × [0,T ]), the auxiliary function

ζ : [0,T ]× [0,T ] −→ R, (s, t) �−→
∫

R
+
0

ϕ(x, t) dμs(x)

has continuous partial derivatives

∂
∂ s ζ (s,t) =

∫

R
+
0

(
b ·∂xϕ(·, t) + c ϕ(·, t) + aϕ(0, t)

)
dμs

∂
∂ t ζ (s,t) =

∫

R
+
0

∂tϕ(x, t) dμs(x).

Hence, ζ (·, ·) ∈C1([0,T ]× [0,T ]). Due to the chain rule, the function [0,T ]−→ R,
t �−→ ζ (t,t) is continuously differentiable with

d
d t ζ (t,t) =

∫

R
+
0

(
b ·∂xϕ(·,t) + c ϕ(·, t) + aϕ(0, t)

)
dμt +

∫

R
+
0

∂tϕ(·, t) dμt .

Thus, μ(·) satisfies the integral condition on weak solutions for all smooth test
functions ϕ ∈C∞

c (R+
0 × [0,T ]). This property is easy to extend to all test functions

ϕ ∈C1(R+
0 × [0,T ])∩W 1,∞(R+

0 × [0,T ]) by means of continuity with respect to the
W 1,∞ norm.

(iv) suppφ ⊂ [‖b‖∞ t,∞
[

implies ‖ϕt,φ (0, ·)‖∞ = 0 due to Lemma 62 (i). Hence
the integral equation (2.5) for ϕt,φ simplifies to

ϕt,φ (x,τ) = φ (Xb(t− τ,x)) e
∫ t
τ c(Xb(r−τ,x))dr

for all x ∈ R
+
0 and τ ∈ [0,t]. Finally, we conclude for φ̃(x) := supz≤x φ(z)

e‖c‖∞ t
∫

R
+
0

φ̃ (x + t ‖b‖∞) d|μ0|(x) ≥
∫

R
+
0

φ̃(Xb(t,x)) e
∫ t

0 c(Xb(r,x)) dr d|μ0|(x)

≥
∫

R
+
0

φ(Xb(t,x)) e
∫ t

0 c(Xb(r,x)) dr d μ0(x)

=
∫

R
+
0

ϕt,φ (x,0) dμ0(x) =
∫

R
+
0

φ(x) dμt(x).

�
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Proof (of Corollary 64 on page 155). The construction of μt via equation (2.7)
implies that nonnegativity of measures is preserved if we can ensure that

ψ(·) ≥ 0 =⇒ ϕt,ψ (·,0) ≥ 0.

Setting x = 0 in the integral characterization (2.5) of ϕt,ψ leads to the Volterra
equation (2.6) for ϕt,ψ (0, ·). In particular, supposing ψ(·)≥ 0 implies

ϕt,ψ (0,τ) ≥
∫ t

τ
a(Xb(s− τ,0)) ϕt,ψ (0,s) e

∫ s
τ c(Xb(r−τ,0)) dr ds.

The additional hypothesis a(·)≥ 0 guarantees for all τ ∈ [0, t]

max
{

0, −ϕt,ψ (0,τ)
}

≤max
{

0, −
∫ t

τ
a
(
Xb(s− τ,0)

)
ϕt,ψ (0,s) e

∫ s
τ c(Xb(r−τ,0))dr ds

}

≤
∫ t

τ
a
(
Xb(s− τ,0)

)
max

{
0, −ϕt,ψ (0,s)

}
e
∫ s
τ c(Xb(r−τ,0)) drds.

and, we conclude from Gronwall’s Lemma (Proposition A.1 on page 439) that
ϕt,ψ (·,t) = ψ(·)≥ 0 implies max

{
0, −ϕt,ψ (0, ·)} ≡ 0, i.e. ϕt,ψ (0, ·)≥ 0. �

The next lemma is very useful for proving Proposition 65 (vi) afterwards because it
provides a link between two solutions to the dual problems for different coefficient
functions a(·),b(·),c(·) and ã(·), b̃(·), c̃(·) respectively. Appropriate convex combi-
nations lay the foundations:

Lemma 68. Suppose a, ã, c, c̃ ∈ W 1,∞(R+
0 ), b, b̃ ∈ C1(R+

0 ) ∩W 1,∞(R+
0 ) with

b(0) > 0 and b̃(0) > 0. Fixing t ∈ ]0,1], λ ∈ [0,1] and ψ ∈C1(R+
0 )∩W 1,∞(R+

0 )
arbitrarily, let ϕλ ∈C0(R+

0 × [0, t]) satisfy the integral equation

ϕλ (x,τ) = ψ
∣
∣
∣
(λ Xb(t−τ,x)+(1−λ ) X

b̃
(t−τ,x))

e
∫ t
τ(λ c(Xb(r−τ,x))+(1−λ ) c̃(X

b̃
(r−τ,x)))dr

+
∫ t

τ

(
λ a(Xb(s− τ,x))+ (1−λ ) ã

(
Xb̃(s− τ,x)

)) · ϕλ (0,s) ·

× e
∫ s
τ (λ c(Xb(r−τ,x))+(1−λ ) c̃(X

b̃
(r−τ,x)))dr ds. (2.9)

Then, λ �−→ϕλ (x,τ) is continuously differentiable for every x∈R
+
0 and τ ∈ [0, t]

and there is a constantC =C(‖a‖W1,∞ , ‖ã‖W1,∞ , ‖b‖W1,∞ , ‖b̃‖W1,∞ , ‖c‖W1,∞ , ‖c̃‖W1,∞)
such that ∣

∣
∣ ∂∂ λ ϕ

λ (x,τ)
∣
∣
∣ ≤ C · max{‖ψ‖∞,‖∂xψ‖∞,1} · (t− τ) eC (t−τ) ·

× (‖a− ã‖∞+‖b− b̃‖∞+‖c− c̃‖∞
)
.
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Proof (of Lemma 68). Similarly to Lemma 62 (on page 153 f.),

[0,t]−→ R, τ �−→ ϕλ (0,τ)
is a bounded and Lipschitz continuous solution to the following inhomogeneous
Volterra equation of the second type

ϕλ (0,τ) = ψ
∣
∣∣
(λ Xb(t−τ,0)+(1−λ ) X

b̃
(t−τ,0))

e
∫ t
τ(λ c(Xb(r−τ,0))+(1−λ ) c̃(X

b̃
(r−τ,0)))dr

+
∫ t

τ

(
λ a(Xb(s− τ,0))+ (1−λ ) ã

(
Xb̃(s− τ,0)

)) · ϕλ (0,s) ·
× e

∫ s
τ (λ c(Xb(r−τ,0))+(1−λ ) c̃(X

b̃
(r−τ,0)))dr ds.

The bounds on the L∞ norm and the Lipschitz constant mentioned in Lemma 62 (i)
can be adapted by considering max{‖a‖W1,∞ ,‖ã‖W1,∞} instead of ‖a‖W1,∞ and so
forth.
Furthermore, ϕλ (0,τ) depends on λ in a continuously differentiable way [181,
§ 13] and, using the abbreviations â := max{‖a‖∞, ‖ã‖∞}, ĉ := max{‖c‖∞,‖c̃‖∞},
∣
∣
∣ ∂∂ λ ϕ

λ (0,τ)
∣
∣
∣ e− ĉ·(t−τ)

≤
(
‖∂xψ‖∞ · ∣∣Xb(t− τ,0)−Xb̃(t− τ,0)

∣
∣

+ ‖ψ‖∞ · (t− τ) (‖c− c̃‖∞+‖∂xc‖∞ · sup
[τ,t]

∣
∣Xb|(·−τ,0)−Xb̃|(·−τ,0)

∣
∣)
)

+
∫ t

τ

(
|ϕλ (0,s)| (‖a− ã‖∞+‖∂xa‖∞ ·

∣
∣Xb(s− τ,0)−Xb̃(s− τ,0)

∣
∣)

+ |∂λ ϕλ (0,s)| â

+ |ϕλ (0,s)|̂a · (s−τ) (‖c− c̃‖∞+‖∂xc‖∞ sup
[τ,s]
|Xb|(·−τ,0)−Xb̃|(·−τ,0)|

))
ds.

Lemma 60 (on page 153) provides the estimate

‖Xb(s, ·)−Xb̃(s, ·)‖∞ ≤ ‖b− b̃‖∞ · s e‖∂xb‖∞s

for all s≥ 0 and thus, Gronwall’s Lemma implies the bound
∣
∣∣ ∂∂ λ ϕ

λ (0,τ)
∣
∣∣ ≤ C0 · max

{‖ψ‖∞, ‖∂xψ‖∞, 1
} · (t− τ) eC0 (t−τ)

× (‖a− ã‖∞+‖b− b̃‖∞+‖c− c̃‖∞
)

with a constant C0 = C0(‖a‖W1,∞ , ‖ã‖W1,∞ , ‖b‖W1,∞ , ‖b̃‖W1,∞ , ‖c‖W1,∞ , ‖c̃‖W1,∞).
Integral equation (2.9) ensures that ϕλ (x,τ) is continuously differentiable with

respect to the parameter λ . Similarly to the preceding estimate of
∣
∣
∣ ∂∂ λ ϕ

λ (0,τ)
∣
∣
∣,

the differentiation of equation (2.9) yields for all x ∈ R
+
0 , τ ∈ [0, t]

∣
∣∣ ∂∂ λ ϕ

λ (x,τ)
∣
∣∣ ≤ C · max{‖ψ‖∞,‖∂xψ‖∞,1} · (t− τ) eC (t−τ) ·

× (‖a− ã‖∞+‖b− b̃‖∞+‖c− c̃‖∞
)
.

with a constant C = C(‖a‖W1,∞ , ‖ã‖W1,∞ , ‖b‖W1,∞ , ‖b̃‖W1,∞ , ‖c‖W1,∞ , ‖c̃‖W1,∞). �
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Proof (of Proposition 65 on page 155). (i) It is a consequence of equation (2.7)
in Proposition 63 (on page 154).

(ii) It results from equation (2.8) in Proposition 63 (i), which can be written in
the form

∫

R
+
0

ψ(x) dμt+h(x) =
∫

R
+
0

ϕt+h,ψ(x, t) dμt(x) =
∫

R
+
0

ϕh,ψ(x,0) dμt(x).

for every ψ ∈ C1(R+
0 )∩W 1,∞(R+

0 ). In particular, ϕt+h,ψ(·, t) ≡ ϕh,ψ(·,0) results
from partial differential equation (2.4) characterizing ϕh,ψ since all its coefficients
are autonomous.

(iii) It has already been verified in Proposition 63 (ii).

(iv) It results directly from Proposition 63 (ii) and the definition of ρM (·, ·):
ρM

(
ϑa,b,c(t,μ0),ϑa,b,c(t + h,μ0)

)

= sup
{∫

R
+
0

ψ d
(
ϑa,b,c(t + h,μ0)−ϑa,b,c(t,μ0)

) ∣∣
∣

ψ ∈C1(R+
0 ), ‖ψ‖∞ ≤ 1, ‖∂xψ‖∞ ≤ 1

}

≤ const
(‖a‖W1,∞ , ‖b‖∞, ‖c‖W1,∞

) · |μ0|(R+
0 ) · h.

(v) Choose any ψ ∈ C1(R+
0 ) with ‖ψ‖∞ ≤ 1 and ‖∂xψ‖∞ ≤ 1. Employing the

notation of Proposition 63, we obtain
∫

R
+
0

ψ d
(
ϑa,b,c(h,μ0) − ϑa,b,c(h,ν0)

)
=
∫

R
+
0

ϕh,ψ (x,0) d (μ0−ν0) (x),

and, due to Lemma 62 (iii), x �−→ ϕh,ψ (x, t) is continuously differentiable with

‖ϕh,ψ(·,t)‖∞ ≤ e2 (‖a‖∞+‖c‖∞) h,

‖∂xϕh,ψ(·,t)‖∞ ≤ e3 (‖a‖
W1,∞+‖∂xb‖∞+‖c‖

W1,∞ ) h.

Now Proposition 43 (i) about the W 1,∞ dual metric ρM (·, ·) (on page 134) implies
∫

R
+
0

ϕh,ψ(·,0) d (μ0−ν0)

≤ ρM (μ0,ν0) max
{

e2 (‖a‖∞+‖c‖∞) h, e3 (‖a‖W1,∞+‖∂xb‖∞+‖c‖W1,∞ ) h}

≤ ρM (μ0,ν0) e3 (‖a‖
W1,∞+‖∂xb‖∞+‖c‖

W1,∞ ) h

and thus,

ρM

(
ϑa,b,c(h,μ0), ϑa,b,c(h,ν0)

) ≤ ρM (μ0,ν0) · e3 (‖a‖W1,∞+‖∂xb‖∞+‖c‖W1,∞ ) h.

(vi) It is based on the estimate in Lemma 68 (on page 161) and therefore it uses
notation ϕλ (·, ·) for some arbitrary ψ ∈ C1(R+

0 ) with ‖ψ‖∞ ≤ 1, ‖∂xψ‖∞ ≤ 1
(see equation (2.9)). Indeed, Proposition 63 (on page 154) implies that for every
μ0 ∈M (R+

0 ) and t ∈ [0,1]
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∫

R
+
0

ψ d
(
ϑa,b,c(t,μ0)−ϑã,b̃,c̃(t,μ0)

)
=
∫

R
+
0

(
ϕ1(x,0)−ϕ0(x,0)

)
dμ0(x)

=
∫

R
+
0

∫ 1

0

∂
∂ λ ϕ

λ (x,0) dλ dμ0(x).

Lemma 68 guarantees that for every x ∈ R
+
0∣∣

∣ ∂∂ λ ϕ
λ (x,0)

∣∣
∣ ≤ C · t eC t · (‖a− ã‖∞+‖b− b̃‖∞+‖c− c̃‖∞

)
,

with a constant C = C(‖a‖W1,∞ , ‖ã‖W1,∞ , ‖b‖W1,∞ , ‖b̃‖W1,∞ , ‖c‖W1,∞ , ‖c̃‖W1,∞).
Now we obtain uniformly for all ψ ∈C1(R+

0 ) with ‖ψ‖∞ ≤ 1, ‖∂xψ‖∞ ≤ 1
∫

R
+
0

ψ d
(
ϑa,b,c(t,μ0)−ϑã,b̃,c̃(t,μ0)

) ≤ C · t eC t · |μ0|(R+
0 ) ·

(‖a− ã‖∞+‖b− b̃‖∞+‖c− c̃‖∞
)
.

(vii) If additionally a(·) ≥ 0, then nonnegative initial measures lead to solutions
with nonnegative values in M (R+

0 ) according to Corollary 64 (on page 155). �

Proof (of Corollary 66 on page 156).
The solution map ϑa,b,c : [0,1]×M (R+

0 ) −→M (R+
0 ) is continuous with respect

to the coefficients
(
a(·),b(·),c(·)). In particular, Proposition 65 (vi) (on page 155)

indicates that the distance between two solutions to the problem with the same
initial data but a different coefficient b(·) can be estimated by the L∞ norm of the
difference in the values of b.
Therefore, we can extend our obtained results to the problems with coefficients
b(·) ∈ W 1,∞(R+

0 ) \C1(R+
0 ). Indeed, C1(R+

0 ) ∩W 1,∞(R+
0 ) is dense in W 1,∞(R+

0 )
with respect to the L∞ norm and thus, any b(·) ∈W 1,∞(R+

0 ) can be approximated by
a sequence

(
bn(·))n∈N

in C1(R+
0 )∩W 1,∞(R+

0 ) converging to b(·) in L∞(R+
0 ).

According to Proposition 43 (3.) (on page 134), the subset of Radon measures{
μ ∈M (R+

0 )
∣
∣ |μ |(R+

0 ) ≤ r
}

(with arbitrary r > 0) is complete with respect to
the W 1,∞ dual metric ρM and, the sequence of solutions ϑa,bn,c(t,μ0), n ∈ N, has
uniformly bounded variation due to Proposition 65 (iii) (on page 155). The Cauchy
sequence

(
ϑa,bn,c(t,μ0)

)
n∈N

has a limit ϑa,b,c(t,μ0) ∈M (R+
0 ).

As a consequence, we can extend Proposition 65 to coefficients b(·) ∈W 1,∞(R+
0 )

with b(0) > 0. �

2.6.3 Conclusions About the Full Nonlinear Population Model

As main result of § 2.6.2, the linear population model (2.3) provides transitions
ϑa,b,c(·, ·) on the tuple

(
M (R+

0 ), ρM , | · |(R+
0 )
)

and, Corollary 67 (on page 156)
specifies the underlying parameters of continuity.
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Now we pass to the nonlinear problem
⎧
⎪⎪⎨

⎪⎪⎩

∂t μt + ∂x (F2(μt ,t)μt) = F3(μt , t) μt in R
+
0 × [0,T ]

F2(μt ,t)(0) μt(0) =
∫

R
+
0

F1(μt , t)(x) dμt(x) in ]0,T ]

μ0 = ν0

(2.10)

with F : M (R+
0 )× [0,T ]−→{(a,b,c) ∈W 1,∞(R+

0 )3 | b(0) > 0
}

and ν0 ∈M (R+
0 )

given.
Due to Definition 58 (on page 152), μ : [0,T ] −→M (R+

0 ), t �−→ μt is regarded
as a weak solution to this nonlinear problem (2.10) if it is narrowly continuous and
satisfies for every test function ϕ ∈C1(R+

0 × [0,T ])∩W 1,∞(R+
0 × [0,T ])∫

R
+
0

ϕ(x,T ) dμT (x) −
∫

R
+
0

ϕ(x,0) dν0(x)

=
∫ T

0

∫

R
+
0

(
∂tϕ(x,t)+ ∂xϕ(x, t) ·F2(μt , t)(x)+ϕ(x, t) ·F3(μt , t)(x)

)
dμt(x) dt

+
∫ T

0
ϕ(0,t) ·

∫

R
+
0

F1(μt , t)(x) dμt(x) dt.

Mutational equations (presented in § 2.3) serve as tools for proving existence,
stability and uniqueness of weak measure-valued solutions to problem (2.10). In
particular, we have to focus again on the relationship between solutions to the mu-
tational equation in

(
M (R+

0 ), ρM , | · |(R+
0 )
)

and weak solutions to the nonlinear
problem (2.10) (in the sense of distributions).
Let us formulate the main results of this section before giving all proofs in detail:

Lemma 69. The tuple
(
M (R+

0 ), ρM , | · |(R+
0 ), Θ

(
M (R+

0 ), ρM , | · |(R+
0 )
))

is
Euler compact in the sense of Definition 15 (on page 112) :

For any initial measure μ0 ∈M (R+
0 ), time T ∈ ]0,∞[ and bound M > 0, let N =

N (μ0,T,M) denote the set of all measure-valued functions μ : [0,T ] −→M (R+
0 )

constructed in the following piecewise way: For any finite equidistant partition
0 = t0 < t1 < .. . < tn = T of [0,T ] and n tuples {(an

j ,b
n
j ,c

n
j)}n

j=1 ⊂W 1,∞(R+
0 )3

with bn
j(0) > 0, ‖an

j‖W 1,∞ +‖bn
j‖W1,∞ +‖cn

j‖W1,∞ ≤M for each j = 1 . . . n
define μ : ]0,T ]−→M (R+

0 ), t �−→ μt by

μt := ϑan
j ,b

n
j ,c

n
j

(
t− t j−1, μt j−1

)
for t ∈ ]t j−1, t j], j = 1 . . . n.

Then for each t ∈ [0,T ], the union of all images {μt | μ ∈N } ⊂M (R+
0 ) is tight

and relatively compact in the metric space (M (R+
0 ),ρM ).

Proposition 70 (Solutions to the underlying mutational equation).
Suppose that F : M (R+

0 )× [0,T ]−→ {(a,b,c) ∈W 1,∞(R+
0 )3 | b(0) > 0

}
satisfies

(i) sup
t∈[0,T ]

sup
ν∈M (R+

0 )
‖F(ν,t)‖W1,∞ < ∞.

(ii) F : (M (R+
0 ),ρM )× [0,T ] −→ (

W 1,∞(R+
0 )3,‖ · ‖∞

)
is continuous.
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Then, for any initial Radon measure ν0 ∈ M (R+
0 ), there exists a solution

μ : [0,T ]−→M (R+
0 ), t �−→ μt to the mutational equation

◦
μ t � ϑF(μt ,t)

in
(
M (R+

0 ), ρM , | · |(R+
0 )
)

with μ0 = ν0 and tight values in M (R+
0 ), i.e.

(a) μ(·) is continuous with respect to ρM ,

(b) lim
h↓0

1
h ·ρM

(
ϑF1(μt ,t),F2(μt ,t),F3(μt ,t)(h,μt), μt+h

)
= 0 for L 1-a.e. t ∈ [0,T [,

(c) sup
0≤ t <T

|μt |(R+
0 ) < ∞.

If, in addition, ν0 ∈M +(R+
0 ) and F1(ν, t)(·)≥ 0 for every ν ∈M +(R+

0 ), t ∈ [0,T ],
then this solution μ(·) has values in M +(R+

0 ).

Furthermore every solution μ : [0,T ] −→M (R+
0 ), t �−→ μt to this mutational

equation with tight values in M (R+
0 ) is a narrowly continuous weak solution to

nonlinear population model (2.10).

The continuity conditions on F : M (R+
0 )× [0,T ] −→ W 1,∞(R+

0 )3 can be formu-
lated for the narrow topology on M (R+

0 ) and, we obtain Theorem 56 (on page 149)
as a corollary:

Corollary 71 (Existence of solutions to nonlinear structured population model).
Suppose that F : M (R+

0 )× [0,T ]−→ {(a,b,c) ∈W 1,∞(R+
0 )3 | b(0) > 0

}
satisfies

(i) sup
t∈[0,T ]

sup
ν∈M (R+

0 )
‖F(ν,t)‖W1,∞ < ∞.

(ii) F : (M (R+
0 ),narrow)× [0,T ]−→ (W 1,∞(R+

0 )3,‖ · ‖∞
)

is continuous.

Then, for any initial measure ν0 ∈M (R+
0 ), there exists a narrowly continuous

weak solution μ : [0,T ]−→M (R+
0 ) to the nonlinear population model (2.10) with

μ(0) = ν0.
If, in addition, ν0 ∈M +(R+

0 ) and F1(ν, t)(·)≥ 0 for every ν ∈M +(R+
0 ), t ∈ [0,T ],

then the solution μ(·) has values in M +(R+
0 ).

Lipschitz continuity of the coefficient function F with respect to state measures
implies the opposite inclusion, i.e. every weak solution to population model (2.10)
is also a solution to the corresponding mutational equation.

Proposition 72 (Weak solutions solve the mutational equation).
Suppose that F : M (R+

0 )× [0,T ]−→ {(a,b,c) ∈W 1,∞(R+
0 )3 | b(0) > 0

}
satisfies

(i) sup
t∈[0,T ]

sup
ν∈M (R+

0 )
‖F(ν,t)‖W1,∞ < ∞.

(ii) F : (M (R+
0 ),ρM )× [0,T ] −→ (

W 1,∞(R+
0 )3,‖ · ‖∞

)
is Lipschitz continuous.

Then every narrowly continuous weak solution μ : [0,T ] −→M (R+
0 ), t �−→ μt to

the nonlinear population model (2.10) with tight values and supt |μt |(R+
0 ) < ∞

is a solution to the mutational equation
◦
μ t � ϑF(μt ,t) in

(
M (R+

0 ), ρM , | · |(R+
0 )
)
.
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We conclude uniqueness of weak solutions and their continuous dependence on
data directly from the more general Proposition 11 (on page 108) and Gronwall’s
inequality (Proposition A.2 on page 440). As a consequence, we obtain the estimate
stated already in Theorem 57 (on page 149):

Proposition 73 (Lipschitz continuous dependence of weak solutions on data).
Assume that for F,G : M (R+

0 )× [0,T ]−→ {(a,b,c) ∈W 1,∞(R+
0 )3| b(0) > 0

}
,

(i) MF := sup
t∈[0,T ]

sup
μ∈M (R+

0 )
‖F(μ , t)‖W1,∞ < ∞,

MG := sup
t∈[0,T ]

sup
μ∈M (R+

0 )
‖G(μ , t)‖W1,∞ < ∞,

(ii) for any R > 0, there are a constant LR > 0 and a modulus of continuity ωR(·)
with ‖F(μ ,s)−F(ν,t)‖∞ ≤ LR · ρM (μ ,ν)+ωR(|t− s|)
for all μ ,ν ∈M (R+

0 ) with |μ |(R+
0 ), |ν|(R+

0 )≤ R.

(iii) G : (M (R+
0 ),ρM )× [0,T ]−→ (W 1,∞(R+

0 )3,‖ · ‖∞) is continuous.

Let μ , ν : [0,T ] −→ M (R+
0 ) denote ρM -continuous distributional solutions to

the nonlinear population model (2.10) for the coefficients F(·),G(·) respectively
such that supt |μt |(R+

0 ) < ∞, supt |νt |(R+
0 ) < ∞ and all their values are tight in

M (R+
0 ).

Then there is C =C(MF ,MG, |μ0|(R+
0 ), |ν0|(R+

0 ))∈ [0,∞[ such that for all t ∈ [0,T ],

ρM (μt ,νt) ≤
(
ρM (μ0,ν0) + C t · sup ‖F(·, ·)−G(·, ·)‖∞

)
eC t .

Remark 74. Furthermore, Lemma 69 and Proposition 70 lay the foundations for
applying the mutational tools to a nonlinear population model with delay:
⎧
⎪⎪⎨

⎪⎪⎩

∂t μt + ∂x
(
G2(μ |[t−τ, t], t)μt

)
= G3(μ |[t−τ, t], t) μt in R

+
0 ×[0,T ]

G2(μ |[t−τ, t], t)(0) μt(0) =
∫

R
+
0

G1((μ |[t−τ, t], t)(x) dμt(x) in ]0,T ]

μ |[−τ,0] = ν0

with given initial data ν0 ∈ BLip
(
[−τ,0], M (R+

0 ), ρM , | · |(R+
0 )
)

and

G : BLip
(
[−τ,0], M (R+

0 ), ρM , | · |(R+
0 )
)× [0,T ] −→ {

(a,b,c) ∈W 1,∞(R+
0 )3 |

b(0) > 0
}

for a fixed time interval [−τ,0] �= /0 (BLip is introduced in Definition 22 on
page 120). Indeed,ρM -continuous weak solutions are guaranteed by Proposition 23.

The Proofs About the Nonlinear Population Model

Proof (of Lemma 69 on page 165). Every subset of M (R+
0 ) with exactly one

Radon measure is tight, of course. Therefore, Remark 41 (3.) (on page 134) provides
a nondecreasing continuous functionΨ0 : R

+
0 −→R

+
0 with lim

x→∞ Ψ0(x) =∞ such that
∫

R
+
0

Ψ0 d|μ0| < ∞.
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Setting x̄ := M T ≥ sup
j∈{1...n}

‖bn
j‖∞ T, let us define ψT : R

+
0 −→ R as

ψT (x) :=
{

0 for x≤ x̄,
Ψ0(x− x̄) for x > x̄.

Obviously, ψT is continuous, nondecreasing and thus nonnegative, but unbounded.
Considering any measure-valued function μ(·) ∈N , Proposition 63 (iv) implies a
uniform integral bound for any function φT ∈C0(R+

0 ) satisfying |φT | ≤ ψT and for
each time t ∈ [0,T ]:

∫

R
+
0

φT dμt ≤ e‖c‖∞T
∫

R
+
0

ψT (·+ x̄) d|μ0| ≤ e‖c‖∞T
∫

R
+
0

Ψ0 d|μ0| < ∞

and thus
∫

R
+
0

ψT d|μt | ≤ e‖c‖∞T
∫

R
+
0

Ψ0 d|μ0| < ∞ .

Therefore, the set of all values {μ(t)|μ ∈N , t ∈ [0,T ]} ⊂M (R+
0 ) is tight due to

Remark 41 (3.) (on page 134).
Furthermore, all total variations |μt |(R+

0 ) are uniformly bounded, i.e.

sup μ ∈N
t∈ [0,T ]

|μt |(R+
0 ) < ∞

as a consequence of Proposition 65 (iii), Corollary 66 and the piecewise construc-
tion of each μ(·) ∈ N . Finally the assertion about compactness follows from
Proposition 43 (4.) (on page 134). �

Proof (of Proposition 70 on page 165).
Peano’s Theorem 18 (on page 114) guarantees the existence of a ρM -continuous
solution μ : [0,T ]−→M (R+

0 ), t �−→ μt to the mutational equation
◦
μ t � ϑF(μt ,t)

with μ0 = ν0. Its proof by means of Euler method reveals that the set of all its values
{μt | t ∈ [0,T ]} ⊂M (R+

0 ) is tight – as a consequence of Lemma 69.
Suppose in addition that F1(ν,t) ∈W 1,∞(R+

0 ) is nonnegative for any ν ∈M +(R+
0 ),

t ∈ [0,T ]. Then the piecewise Euler approximations used in Peano’s Theorem 18
have nonnegative values due to Corollary 64 (on page 155). As M +(R+

0 ) is closed
in (M (R+

0 ),ρM ), all values of the resulting solution μ are also in M +(R+
0 ).

For the last step, let μ : [0,T ] −→M (R+
0 ), t �−→ μt denote any solution to the

mutational equation
◦
μ t � ϑF(μt ,t)

with tight image in M (R+
0 ). Then μ : [0,T ] −→M (R+

0 ) is narrowly continuous
due to Proposition 43 (2.) (on page 134).
We have to verify that μ is a distributional solution to the nonlinear model (2.10).
Similarly to the proof for the linear model in § 2.6.2 (Proposition 63 (iii) on
page 154), we first choose an arbitrary test function ψ ∈C∞

c (R+
0 ). Then,

Ψ : [0,T ]−→R. t �−→
∫

R
+
0

ψ(x) dμt(x)

is continuous because Proposition 43 (1.) (on page 134) implies
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∣∣
∣
∫

R
+
0

ψ dμt −
∫

R
+
0

ψ dμs

∣∣
∣ ≤ max

{
1, ‖ψ‖∞, ‖∂xψ‖∞

} · ρM (μt ,μs) .

The solution μ(·) is even Lipschitz continuous with respect to the W 1,∞ dual metric
ρM due to Lemma 10 (on page 107) and thus,Ψ is Lipschitz continuous.
At L 1-almost every time t ∈ [0,T [, the derivative ofΨ is

Ψ ′(t) = lim
h↓0

1
h ·
∫

R
+
0

ψ d
(
ϑF(μt ,t)(h,μt)− μt

)

because Proposition 63 (iii) (on page 154) ensures∣∣
∣
∣

∫

R
+
0

ψ dμt+h −
∫

R
+
0

ψ dμt −
∫

R
+
0

ψ d
(
ϑF(μt ,t)(h,μt)− μt

)
∣∣
∣
∣

=
∣
∣
∣
∣

∫

R
+
0

ψ d
(
μt+h−ϑF(μt ,t)(h,μt)

)
∣
∣
∣
∣

≤ max{1, ‖ψ‖∞, ‖∂xψ‖∞} · ρM

(
μt+h, ϑF(μt ,t)(h,μt)

)

= o(h) for h ↓ 0.

The special form of ϑF(μt ,t)(h,μt) has the consequence

Ψ ′(t) = lim
h↓0

1
h ·
∫ h

0

∫

R
+
0

(
ψ(0) ·F1(μt , t)(x)+ ∂xψ(x) ·F2(μt , t)(x)

+ψ(x) · F3(μt , t)(x)
)

dϑF(μt ,t)(s,μt )(x) ds

for L 1-almost every t ∈ [0,T [.
Finally, this derivative proves to be an integral just with the Radon measure μt :

Ψ ′(t) =
∫

R
+
0

(
ψ(0) ·F1(μt ,t)(x)+∂xψ(x) ·F2(μt , t)(x)+ψ(x) ·F3(μt , t)(x)

)
dμt(x).

Indeed, using the abbreviation M := sup
t∈[0,T ]

sup
ν∈M (R+

0 )
‖F(ν, t)‖W 1,∞ < ∞, Propo-

sition 43 (1.) (on page 134) and Proposition 65 (iv) (on page 155) yield for any
s ∈ ]0,1]
∣
∣
∣
∫

R
+
0

(
ψ(0) ·F1(μt ,t)+ ∂xψ ·F2(μt , t)+ψ ·F3(μt , t)

)
d
(
ϑF(μt ,t)(s,μt) − μt

)∣∣
∣

≤ const(M,‖ψ‖W 1,∞) · ρM

(
ϑF(μt ,t)(s,μt ), μt

)

≤ const(M,‖ψ‖W 1,∞) · const(M,supτ |μτ |(R+
0 )) · s.

The last representation of Ψ ′(t) at L 1-almost every time t ∈ [0,T ] leads to
∫

R
+
0

ψ dμt −
∫

R
+
0

ψ dν0

=
∫ t

0

∫

R
+
0

(
ψ(0) ·F1(μt , t)+ ∂xψ ·F2(μt , t)+ψ ·F3(μt , t)

)
dμs ds

for every t ∈ [0,T ] and ψ ∈ C∞
c (R+

0 ). The more general interpretation of non-
linear equation (2.10) using nonautonomous test functions ϕ ∈ C1(R+

0 × [0,T ])∩
W 1,∞(R+

0 × [0,T ]) results from the chain rule and the continuity with respect to the
W 1,∞ norm in exactly the same way as for Proposition 63 (iii) (on page 159 f.). �
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Proof (of Corollary 71 on page 166). Set M := sup
t∈[0,T ]

sup
ν∈M (R+

0 )
‖F(ν, t)‖W1,∞ <∞

as an abbreviation and, consider the subset N (ν0,T,M) of all Euler approxima-
tions [0,T ]−→M (R+

0 ) as specified in Lemma 69 (on page 165). In fact, the proof
of Lemma 69 (on page 167 f.) reveals that the subset

N[0,T ] :=
{
μt
∣
∣ t ∈ [0,T ], μ(·) ∈N (ν0,T,M)

} ⊂M (R+
0 )

is tight and has uniformly bounded total variations. Hence, narrow convergence
and the W 1,∞ dual metric ρM induce the same topology on N[0,T ] ⊂M (R+

0 ) and,
N[0,T ] is relatively compact according to Proposition 43 (on page 134).
Let N[0,T ] ⊂M (R+

0 ) denote the closure of N[0,T ] with respect to ρM . In particular,

N[0,T ] supplied with the narrow topology is a compact topological space metrized
by ρM . Due to assumption (ii) of this Corollary 71, the restriction

F :
(
N[0,T ], ρM

)× [0,T ] −→ (
W 1,∞(R+

0 )3, ‖ · ‖∞
)

is continuous and, all corresponding transitions on
(
N[0,T ], ρM , | · |(R+

0 )
)

have

their values in N[0,T ]. This lays the basis for continuing with the same conclusions
as in Proposition 70 (on page 165). �

Proof (of Proposition 72 on page 166). Suppose that

F : (M (R+
0 ), ρM ) × [0,T ] −→ (

W 1,∞(R+
0 )3, ‖ · ‖∞

)

is Lipschitz continuous and bounded. Let μ : [0,T ]−→M (R+
0 ), t �−→ μt denote a

narrowly continuous weak solution to the nonlinear population model (2.10) with
tight values and sup

t∈ [0,T ]
|μt |(R+

0 ) < ∞.

As a consequence of Proposition 43 (2.) (on page 134), μ(·) is continuous with
respect to ρM . Now we still have to verify for L 1-almost every t ∈ [0,T ]

lim
h↓0

1
h ·ρM

(
ϑF(μt ,t)(h,μt), μt+h

)
= 0 .

Choosing any ψ ∈C1(R+
0 )∩W 1,∞(R+

0 ) with ‖ψ‖∞≤ 1, ‖∂xψ‖∞ ≤ 1, we conclude
from the definition of weak solution and Proposition 63 (on page 154 f.) respectively
∣
∣
∣
∫

R
+
0

ψ d
(
ϑF(μt ,t)(h,μt) − μt+h

)∣∣
∣

=
∣
∣
∣
∫ t+h

t

(∫

R
+
0

(
ψ(0) ·F1(μt ,t) + ∂xψ ·F2(μt , t) + ψ ·F3(μt , t)

)
d μt

−
∫

R
+
0

(
ψ(0) ·F1(μs,s) + ∂xψ ·F2(μs,s) + ψ ·F3(μs,s)

)
d μs

)
ds
∣
∣∣

≤
∣
∣
∣
∫ t+h

t

∫

R
+
0

(
ψ(0) ·F1(μs,s) + ∂xψ ·F2(μs,s) + ψ ·F3(μs,s)

)
d
(
μt−μs

)
ds
∣
∣
∣

+ h · const
(‖ψ‖W1,∞ , Lip F

) · (
h + sup

t≤ s≤ t+h
ρM (μs,μt)

) · |μt |(R+
0 )

≤ h · const
(‖ψ‖W1,∞ , sup ‖F(·, ·)‖∞

) · sup
t≤ s≤ t+h

ρM (μs,μt)

+ h · const
(‖ψ‖W1,∞ , Lip F

) · (
h + sup

t≤ s≤ t+h
ρM (μs,μt)

) · |μt |(R+
0 )

= o(h) for h ↓ 0 uniformly with respect to ψ with ‖ψ‖∞ ≤ 1, ‖∇xψ‖∞ ≤ 1. �
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2.7 Example: Modified Morphological Equations for Compact
Sets via One-Sided Lipschitz Continuous Maps
of Linear Growth

In comparison to Aubin’s original suggestion in Chapter 1, the extensions of
Chapter 2 lay the basis for a more general type of morphological equations.

Indeed, in § 1.9, we have applied the (original) mutational framework to nonempty
compact subsets of the Euclidean space R

N supplied with the Pompeiu-Hausdorff
distance dl and, we have used reachable sets of differential inclusions as so-called
morphological transitions. The set-valued maps in LIP(RN ,RN) have served as
appropriate right-hand side of these differential inclusions as specified in Proposi-
tion 1.53. According to Definition 1.49 (on page 60), a map F ∈ LIP(RN ,RN) is
characterized by the following two conditions:

1. F has nonempty compact values that are uniformly bounded in R
N ,

2. F is Lipschitz continuous with respect to the Pompeiu-Hausdorff distance dl.

Then, in § 1.11, the Lipschitz continuity has been weakened to one-sided Lipschitz
continuity in combination with upper semicontinuity. Indeed, the set-valued maps
F : R

N � R
N in OSLIP(RN ,RN) lead to differential inclusions whose reachable

sets are transitions on (K (RN),dl) as specified in Proposition 1.97 (on page 98).
According to Definition 1.94 (on page 96), every map F ∈ OSLIP(RN ,RN) has to
satisfy the following three conditions:

1. F has nonempty compact convex values that are uniformly bounded in R
N ,

2. F is upper semicontinuous,
3. F is one-sided Lipschitz continuous, i.e. there exists L ∈ R such that for every

x,y ∈ R
N , v ∈ F(x), there is some w ∈ F(y) with 〈x− y, v−w〉 ≤ L |x− y|2.

The condition of uniformly bounded values is still a severe restriction though.
In particular, the concept of Chapter 1 does not admit simple linear differential
inclusions in R

N for transitions on K (RN). This obstacle is now overcome by
means of a linear growth condition (instead of a uniform bound):

Definition 75. LOSLIP(RN ,RN) consists of all set-valued maps F : R
N � R

N

satisfying the following four conditions:
1. F has nonempty compact convex values,
2. F is upper semicontinuous,
3. F is locally one-sided Lipschitz continuous, i.e. for each radius r > 0, there is

a constant Lr ∈ R such that for every x,y ∈ Br(0) ⊂ R
N and v ∈ F(x), there

exists some w ∈ F(y) satisfying

〈x− y, v−w〉 ≤ Lr |x− y|2.
The smallest constant Lr ∈R with this property is abbreviated as Lip F |Br .

4. F has linear growth, i.e. there is a constant c≥ 0 satisfying for all x ∈R
N ,

supv∈F(x) |v| ≤ c · (1 + |x|).
The smallest constant c≥ 0 with this property is denoted by ‖F‖lg.
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Basic set E := K (RN)
the set of nonempty compact subsets of the Euclidean space R

N

Distance Pompeiu-Hausdorff metric dl : K (RN)×K (RN)−→ R,

dl(K1,K2) := max
{

sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)
}

Absolute value �·� := | · |∞ supremum of Euclidean norms of all elements

Transition For each F ∈ LOSLIP(RN ,RN), i.e. upper semicontinuous and
locally one-sided Lipschitz continuous map F : R

N � R
N with

compact convex values and linear growth (Definition 75), define

ϑF : [0,1]×K (RN)−→K (RN)

by means of reachable sets of the autonomous differential inclu-
sion x′(·) ∈ F(x(·)) a.e.:

ϑF(t, K0) :=
{

x(t)
∣∣ there exists x(·) ∈W 1,1([0, t],RN) :

x′(·) ∈ F(x(·)) L 1-a.e. in [0, t],
x(0) ∈ K0

}
.

Compactness Closed bounded balls in (K (RN),dl) are always compact:
Proposition 1.47 (page 57)

Mutational solutions Reachable sets of a nonautonomous differential inclusion
whose set-valued right-hand side is determined via feedback

– if the transitions are induced by additionally continuous maps,
i.e. each F ∈ CLOSLIP(RN ,RN) (Definition 86):

Proposition 87, Corollary 88 (page 177 f.)

List of main results
formulated in § 2.7

Existence due to compactness (Peano): Proposition 81
Cauchy-Lipschitz Theorem: Proposition 82 (page 175)
Continuity w.r.t. data: Proposition 83 (page 175)
Existence under state constraints (Nagumo): Proposition 84
Existence for equations with delay: Proposition 85 (page 176)

Key tools Filippov-like Theorem A.63 of Donchev and Farkhi [69] about
differential inclusions with one-sided Lipschitz continuous right-
hand side (page 480)

Integral funnel equation for reachable sets of nonautonomous
differential inclusions: Proposition A.13 (page 447)

Table 2.4 Brief summary of the example in § 2.7 in mutational terms:
Modified morphological equations for compact sets via one-sided Lipschitz continuous maps
of linear growth
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Remark 76. Obviously, the following inclusions hold and are even strict:
{

F ∈ LIP(RN ,RN)
∣
∣ F has convex values

} ⊂ OSLIP(RN ,RN)
⊂ LOSLIP(RN ,RN).

The key advantage of the linear growth condition here is concluded from Gronwall’s
inequality in the next lemma:

Definition 77. For any nonempty bounded subset K ⊂R
N , define

|K|∞ := sup
y∈K
|y| ∈ [0,∞[

Lemma 78. For every set-valued map F ∈ LOSLIP(RN ,RN) and any initial set
K0 ∈K (RN), the reachable set at each time t ≥ 0 fulfills

∣
∣ϑF(t,K0)

∣
∣
∞ ≤ (|K0|∞ + ‖F‖lg t) · e‖F‖lg ·t .

In particular, sup
t∈ [0,1]

∣
∣ϑF(t,K0)

∣
∣
∞ ≤ (|K0|∞ + ‖F‖lg) · e‖F‖lg .

Proof. For every point xt ∈ϑF (t,K0), there exists a solution x(·)∈W 1,1([0, t],RN)
to the differential inclusion x′(·)∈F(x(·)) a.e. satisfying x(0)∈K0, x(t) = xt . Then,
for every τ ∈ [0,t],

∣
∣x(τ)− x(0)

∣
∣ ≤

∫ τ

0
|F(x(s))|∞ ds ≤

∫ τ

0
‖F‖lg (1 + |x(s)|) ds

≤ ‖F‖lg τ (1 + |K0|∞) +
∫ τ

0
‖F‖lg

∣
∣x(s)− x(0)

∣
∣ ds

and, Gronwall’s Lemma (Proposition A.1 on page 439) implies
∣
∣x(t)− x(0)

∣
∣ ≤ ‖F‖lg t (1 + |K0|∞) +

∫ t

0
e‖F‖lg ·(t−s) ‖F‖2

lg s (1 + |K0|∞) ds

= (1 + |K0|∞)
(
e‖F‖lg ·t −1

)
,

|xt | ≤ |K0|∞+(1 + |K0|∞)
(
e‖F‖lg ·t −1

)

≤ |K0|∞ e‖F‖lg ·t + ‖F‖lg t e‖F‖lg ·t . �

Proposition 79. Choosing arbitrary r,L > 0 and T > 0, set R := (r + L T ) eL T .
For any sets K1,K2 ∈K (RN) and set-valued maps F,G ∈ LOSLIP(RN ,RN) with

⎧
⎨

⎩

K1,K2 ⊂ Br(0),
‖F‖lg, ‖G‖lg ≤ L,

Λ := max{Lip F |BR+1(0), Lip G|BR+1(0)} ∈ R

the reachable sets ϑF(t,K1), ϑG(t,K2) ⊂ R
N are compact subsets of R

N and, the
Pompeiu-Hausdorff distance between the reachable sets at time t ∈ [0,T ] satisfies

dl
(
ϑF(t,K1), ϑG(t,K2)

) ≤ (dl(K1,K2) + t · dl∞
(
F |BR+1(0), G|BR+1(0)

)) · eΛ t .
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Proof. Whenever compact initial sets K0,K1 are chosen within a ball Br(0)⊂R
N

of arbitrarily fixed radius r > 0, Lemma 78 provides a joint a priori estimate for any
s,t ∈ [0,T ], i.e.

∣
∣ϑF(s,K0)

∣
∣
∞,
∣
∣ϑF(t,K1)

∣
∣
∞ ≤

(
r +‖F‖lg T

)
e‖F‖lg T Def.= R.

Restricting now our considerations to BR+1(0)⊂R
N , we can draw exactly the same

conclusions from Theorem A.63 (on page 480) as we have already done for

• Proposition 1.96 (on page 96) about transitions in OSLIP(RN ,RN) and for
• Proposition 1.50 (on page 60) about morphological transitions in LIP(RN ,RN)

by means of generalized Filippov’s Theorem A.6 respectively. �

In particular, each set-valued map in LOSLIP(RN ,RN) induces a transition on
(K (RN),dl, | · |∞) and, we identify the relevant parameters of continuity easily:

Proposition 80. For every set-valued map F ∈ LOSLIP(RN ,RN),

ϑF : [0,1]×K (RN) −→ K (RN)
(t, K) �−→ ϑF(t,K)

with ϑF(t,K) ⊂ R
N denoting the reachable set of the initial set K ∈K (RN) and

the differential inclusion x′ ∈ F(x) a.e. at time t is a transition on (K (RN),dl, | · |∞)
in the sense of Definition 2 (on page 104) with

α(ϑF ; r) := max
{

0, Lip F |Br+1(0)
}
,

β (ϑF ; r) := ‖F‖lg

(
1 +(r +‖F‖lg) e‖F‖lg

)
,

γ(ϑF) := ‖F‖lg,

D(ϑF , ϑG; r) ≤ dl∞
(
F |Br+1(0), G|Br+1(0)

)
. �

As an abbreviation, we again identify each set-valued map F ∈ LOSLIP(RN ,RN)
with the corresponding transition ϑF : [0,1]×K (RN)−→K (RN).
Now evolving compact subsets of the Euclidean space R

N are regarded in the recent
mutational framework for the tuple (K (RN),dl, | · |∞) and, the results of § 2.3 pro-
vide directly the counterparts of the propositions about existence and continuous
dependence in § 1.11 (on page 98 ff.).

Proposition 81 (Peano’s Theorem for modified morphological equations).
For F : K (RN)× [0,T ]−→ LOSLIP(RN ,RN) and each radius r > 0 suppose

(1.) sup
M∈K (RN )

t∈ [0,T ]

(‖F (M,t)‖lg + max{0, Lip F (M, t)
∣
∣
Br(0)}

)
< ∞ ,

(2.) for L 1-almost every t ∈ [0,T ] and every set K ∈K (RN), the function
(
K (RN), dl

)× [0,T ] −→ (
LOSLIP(RN ,RN), dl∞

( · |Br+1(0), · |Br+1(0)
))

,

(M,s) �−→ F (M,s)
is continuous in (K,t).
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Then for every initial set K0 ∈K (RN), there exists a solution K : [0,T ]� R
N to

the modified morphological equation
◦
K (·) � F

(
K(·), · )

with K(0) = K0, i.e. K(·) is bounded, continuous with respect to dl and satisfies
for L 1-almost every t ∈ [0,T ]

lim
h↓0

1
h · dl

(
ϑF (K(t),t)(h, K(t)), K(t + h)

)
= 0

Proof results from Peano’s Theorem 18 for nonautonomous mutational equations
(on page 114) in combination with preceding Proposition 80. �

Proposition 82 (Cauchy-Lipschitz for modified morphological equations).
Suppose F : K (RN)× [0,T ]−→ LOSLIP(RN ,RN) to satisfy for each radius r > 0

(1.) α̂r := sup
M∈K (RN )

t∈ [0,T ]

(‖F (M,t)‖lg + max{0, Lip F (M, t)
∣
∣
Br(0)}

)
< ∞ ,

(2.) for L 1-almost every t ∈ [0,T ] and every set K ∈K (RN), the function
(
K (RN), dl

)× [0,T ] −→ (
LOSLIP(RN ,RN), dl∞

( · |Br+1(0), · |Br+1(0)
))

,

(M,s) �−→ F (M,s)
is continuous in (K,t),

(3.) there exists λr > 0 such that for L 1-almost every t ∈ [0,T ],
(
K (RN), dl

) −→ (
LOSLIP(RN ,RN), dl∞

( · |Br+1(0), · |Br+1(0)
))

,

M �−→ F (M, t)
is λr-Lipschitz continuous.

Then for every initial set K0 ∈K (RN), the solution K : [0,T ]� R
N to the modified

morphological equation
◦
K (·) � F

(
K(·), ·) with K(0) = K0 exists and is unique.

Proof. Existence due to continuity has just been specified in Proposition 81.
Uniqueness of solutions results from Corollary 12 (on page 108). �

Proposition 83 (Continuity w.r.t. initial data and the right-hand side).
In addition to the assumptions of Proposition 82 about

F : K (RN)× [0,T ]−→ LOSLIP(RN ,RN),
suppose for G : K (RN)× [0,T ]−→ LOSLIP(RN ,RN) and each r > 0

sup
M, t

dl∞
(
F (M, t)|Br(0), G (M, t)|Br(0)

)
< ∞.

Consider any solutions K1(·),K2(·) : [0,T ] � R
N to the modified morphological

equations { ◦
K1 (·) � F

(
K1(·), ·

)

◦
K2 (·) � G

(
K2(·), ·

)

with sup
{|K1(t)|∞, |K2(t)|∞

∣
∣ t ∈ [0,T ]

}≤ R.
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Then the Pompeiu-Hausdorff distance of K1(t), K2(t) satisfies for every t ∈ [0,T ]

dl
(
K1(t), K2(t)

)

≤
(

dl
(
K1(0),K2(0)

)
+ t · sup

M,s
dl∞
(
F (M,s)|BR+1(0), G (M,s)|BR+1(0)

))
e(λR+α̂R) t .

Proof is an immediate consequence of Corollary 12 (on page 108). �

Proposition 84 (Existence of solutions under state constraints).
For F : K (RN)−→ LOSLIP(RN ,RN) and each radius r > 0 suppose

(1.) sup
M∈K (RN)

(‖F (M)‖lg + max{0, Lip F (M)
∣
∣
Br(0)}

)
< ∞ ,

(2.) the function
(
K (RN), dl

) −→ (
LOSLIP(RN ,RN), dl∞

( · |Br+1(0), · |Br+1(0)
))

,

M �−→ F (M)
is continuous.

For the nonempty closed subset V ⊂ (K (RN), dl
)

assume the viability condition:

liminf
h↓0

1
h · inf

N∈V
dl
(
ϑF (M)(h,M), N

)
= 0 for every M ∈ V .

Then every compact set K0 ∈ V is the initial compact set of at least one solution
K(·) : [0,1]−→K (RN) to the modified morphological equation

◦
K (·) � F

(
K(·))

with K(t) ∈ V for all t ∈ [0,1].

Proof. It is a corollary of Proposition 24 (on page 123). �

As a new result in comparison with § 1.11, we now obtain the existence of
solutions to modified morphological equations with delay additionally. Indeed,
Proposition 23 (on page 120) implies the following statement:

Proposition 85 (Existence for modified morphological equations with delay).
Assume for some fixed τ > 0, the function

F : BLip
(
[−τ,0], K (RN); dl, | · |∞

)× [0,T ] −→ LOSLIP(RN ,RN)

and each radius r > 0 :

(1.) sup
M(·), t

(‖F (M(·),t)‖lg + max{0, Lip F (M(·), t)∣∣
Br(0)}

)
< ∞ ,

(2.) lim
n→∞

dl∞
(
F (Mn(·), tn)|Br+1(0), F (M(·), t)|Br+1(0)

)
= 0

for L 1-almost every t ∈ [0,T ] and any sequences (Mn(·))n∈N, (tn)n∈N in
BLip

(
[−τ,0], K (RN); dl, | · |∞

)
and [0,T ] respectively satisfying

lim
n→∞

tn = t, lim
n→∞

sup
s∈ [−τ,0]

dl
(
Mn(s), M(s)

)
= 0.
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For every function K0(·) ∈ BLip
(
[−τ,0], K (RN); dl, | · |∞

)
, there exists a curve

K(·) : [−τ,T ]−→K (RN) with the following properties:

(i) K(·) ∈ BLip
(
[−τ,T ], K (RN); dl, | · |∞

)
,

(ii) for L 1-almost every t ∈ [0,T ], F
(
K(t + ·)∣∣[−τ,0], t

)
belongs to

◦
K (t),

(iii) K(·)∣∣[−τ,0] = K0(·).
In particular, the restriction K(·)∣∣[0,T ] is a solution to the modified morphological
equation

◦
K (t) � F

(
K(t + ·)∣∣[−τ,0], t

)
.

In § 1.9.3 and § 1.9.6 (on pages 64, 74 ff. respectively), we have discussed the
equivalence between solutions to morphological equations and reachable sets of
nonautonomous differential inclusions (whose set-valued right-hand side depends
on the wanted tube).
Then in § 1.11, this relationship is extended to modified morphological equations
by assuming continuity of set-valued maps additionally. It motivated the definition
of COSLIP(RN ,RN) as abbreviation used in Corollary 1.106 (on page 101).
The same additional hypothesis of continuity for all set-valued maps inducing tran-
sitions lays now the foundations for generalizing this equivalence once more – by
means of Proposition A.13 (on page 447).
First we introduce the following abbreviation:

Definition 86. CLOSLIP(RN ,RN) consists of all maps in LOSLIP(RN ,RN)
that are continuous in addition, i.e. every set-valued map F : R

N � R
N satisfying

1. F has nonempty compact convex values,

2. F is continuous,

3. F is locally one-sided Lipschitz continuous, i.e. for each radius r > 0, there is
a constant Lr ∈ R such that for every x,y ∈ Br(0) ⊂ R

N and v ∈ F(x), there
exists some w ∈ F(y) satisfying

〈x− y, v−w〉 ≤ Lr |x− y|2.
4. F has linear growth, i.e. there is a constant c≥ 0 satisfying for all x ∈ R

N ,

supv∈F(x) |v| ≤ c · (1 + |x|).

Proposition 87 (Modified morphological primitives as reachable sets).
For G : [0,T ] −→ CLOSLIP(RN ,RN) and each radius r > 0 suppose that

(1.) sup
t∈ [0,T ]

(‖G (t)‖lg + max{0, Lip G (t)
∣
∣
Br(0)}

)
< ∞ ,

(2.) [0,T ]−→ (CLOSLIP(RN ,RN), dl∞
( · |Br+1(0), · |Br+1(0)

))
, t �−→ G (t)

is Lebesgue measurable.

Moreover define the set-valued map Ĝ : [0,T ]×R
N � R

N , (t,x) �→ G (t)(x).
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A tube K : [0,T ]� R
N solves the modified morphological equation

◦
K (·) � G

( · )

if and only at every time t ∈ [0,T ], its compact value K(t)⊂ R
N coincides with the

reachable set of the nonautonomous differential inclusion x′ ∈ Ĝ(·,x) a.e.

K(t) = ϑĜ

(
t, K(0)

)
.

Corollary 88 (Solutions to modified morphological equations as reachable
sets). Suppose F : K (RN)× [0,T ]−→CLOSLIP(RN ,RN) to satisfy for each r > 0

(1.) sup
M∈K (RN )

t∈ [0,T ]

(‖F (M,t)‖lg + max{0, Lip F (M, t)
∣
∣
Br(0)}

)
< ∞ ,

(2.) F :
(
K (RN), dl

)× [0,T ]−→ (CLOSLIP(RN ,RN), dl∞
( · |Br+1(0), · |Br+1(0)

))

is a Carathéodory function (i.e. here continuous with respect to the first argu-
ment and measurable with respect to time).

Then a continuous tube K : [0,T ]�R
N is a solution to the modified morphological

equation
◦
K (·) � F

(
K(·), · )

if and only if at every time t ∈ [0,T ], the set K(t)⊂R
N coincides with the reachable

set of the initial set K(0)⊂ R
N and the nonautonomous differential inclusion

x′(·) ∈ F
(
K(·), ·) (x(·)).

Both the recent proposition and its corollary result from Proposition 82 about
uniqueness and the following morphological features of reachable sets:

Lemma 89. In addition to the assumptions of Proposition 87 about G : [0,T ] −→
CLOSLIP(RN ,RN), define again Ĝ : [0,T ]×R

N � R
N , (t,x) �→ G (t)(x).

Then for every initial set K0 ∈K (RN), the reachable set

K(·) := ϑĜ(·,K0) : [0,T ] −→ K (RN)

of the nonautonomous differential inclusion x′ ∈ Ĝ(·,x) a.e. is a solution to the
modified morphological equation

◦
K (·) � G

( · ).

Proof. It follows from Proposition A.13 (on page 447) in exactly the same way
as Lemma 1.58 (on page 65).
Indeed, K(·) := ϑĜ(·,K0) : [0,T ] � R

N has compact values and is Lipschitz con-
tinuous with respect to dl for the same reasons as in Proposition 80. In particular,
supt |K(t)|∞ < R for some R > 0 sufficiently large. Thus without loss of generality,
we can assume for Ĝ additionally that ‖Ĝ‖∞ ≤ supt ‖G (t)‖lg · (1 + R) < ∞.
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Now Proposition A.13 guarantees a set J ⊂ [0,T ] of full Lebesgue measure (i.e.
L 1([0,T ]\ J) = 0) such that at every time t ∈ J and for any set M ∈K (RN),

1
h · dl

(
ϑĜ(t+· , ·)(h, M),

⋃

x∈M

(
x + h · Ĝ(t,x)

)) −→ 0 for h ↓ 0.

Applying the same Proposition A.13 to the autonomous differential inclusion with
Ĝ(t, ·) : R

N � R
N and arbitrary t ∈ [0,T ], we obtain

1
h · dl

(
ϑĜ(t, ·)(h, M),

⋃

x∈M

(
x + h · Ĝ(t,x)

)) −→ 0 for h ↓ 0.

Hence, the triangle inequality of dl implies for every t ∈ J and M ∈K (RN)
1
h · dl

(
ϑĜ(t+· , ·)(h, M), ϑĜ(t, ·)(h, M)

)
−→ 0 for h ↓ 0,

i.e. for M := ϑĜ(t,K0) ∈K (RN) and each t ∈ J,

1
h · dl

(
ϑĜ(t + h, K0), ϑG (t)

(
h, ϑĜ(t,K0)

)) −→ 0 for h ↓ 0.

�

Remark 90. Corollary 88 differs from Peano’s Existence Theorem 81 in the
regularity assumptions about F . Indeed, the regularity of a Carathéodory function
is weaker than the continuity of F in every point of K (RN)× J with a subset
J ⊂ [0,1] of full Lebesgue measure (i.e. L 1([0,T ]\ J) = 0).
Scorza-Dragoni Theorem A.9 (on page 446), however, provides a very useful link in
separable metric spaces for drawing conclusions about existence from this weaker
assumption approximatively. Similarly to the proof of Existence Theorem 5.4 (about
mutational inclusions on page 396 ff.) below, the following statement results from
Theorem 81 together with Corollary 88:

Corollary 91. Suppose F : K (RN)× [0,T ] −→ CLOSLIP(RN ,RN) to satisfy
for each r > 0

(1.) sup
M∈K (RN )

t∈ [0,T ]

(‖F (M,t)‖lg + max{0, Lip F (M, t)
∣
∣
Br(0)}

)
< ∞ ,

(2.) F :
(
K (RN), dl

)× [0,T ]−→ (CLOSLIP(RN ,RN), dl∞
( · |Br+1(0), · |Br+1(0)

))

is a Carathéodory function (i.e. here continuous with respect to the first argu-
ment and measurable with respect to time).

Then for every initial set K0 ∈K (RN), there exists a compact-valued Lipschitz con-
tinuous tube K : [0,T ]� R

N such that at every time t ∈ [0,T ], the set K(t) ⊂ R
N

coincides with the reachable set of the initial set K0 and the nonautonomous differ-
ential inclusion

x′(·) ∈ F
(
K(·), ·) (x(·)).



Chapter 3
Less Restrictive Conditions on Distance
Functions: Continuity Instead
of Triangle Inequality

This chapter extends the mutational framework in four essential respects: First,
distances do not have to satisfy the triangle inequality any longer and thus, we can
also use powers of pseudo-metrics, for example.
Second, we use possibly different families of distances (d j) j∈I , (e j) j∈I for the
continuity with respect to state and time. They are to provide the same concept
of sequential convergence, but may differ in quantitative features. This extension
makes the mutational framework applicable to semilinear evolution equations with
a strongly continuous semigroup of bounded linear operators.
Third, the notions of weak convergence and weak compactness are introduced be-
yond vector spaces – just on the basis of distances with an appropriate structure.
The latter serves as a further pillar for proving the existence of solutions.
Fourth, some additional assumptions about Euler curves in any compact time inter-
val make the condition of ω-contractivity on transitions dispensable because we can
construct a family of equivalent distances such that each of the modified distances
between any two states can grow (at most) exponentially along one and the same
transition. This fourth aspect does not change the foundations of the mutational
framework, but it extends the class of examples significantly since the additionally
assumed inequality about Euler curves holds for many nonautonomous problems.
These four respects have already been sketched as Steps (C) – (F) in § 0.3.4.

In a word, the triangle inequality serves essentially the purpose to estimate the
distance between two points by means of a third state. It might be regarded as one
of the simplest ways of providing such a relation.
Mutational analysis, however, requires several parameters (for its transitions) so that
we can verify the key estimate along transitions in Proposition 2.6, for example:

d j
(
ϑ(h,x), τ(h,y)

) ≤ (d j(x,y) + h ·D j(ϑ ,τ ;R j)
) · eα j(ϑ ;R j) h

with x,y∈E and R j :=
(

max{�x� j, �y� j}+ max{γ j(ϑ), γ j(τ)}
) · emax{γ j(ϑ ), γ j(τ)}.

Indeed, the right-hand side of this inequality reflects very well the basic notion of
distinguishing between the “initial error” and “first-order terms”.
For choosing d j and D j suitably in some applications like stochastic analysis, it is
recommendable to dispense with the triangle inequality of d j in its classical form.
Instead we modify the definitions of D j and of solutions to mutational equations
in such way that the basic structural influence of “initial error” and “transitional
error” on comparing estimates is preserved. This “conceptual shift” opens the door
to replacing the triangle inequality of d j and D j(·, ·;r) by appropriate assumptions of
continuity. In particular, the results of preceding chapters prove to be special cases.

T. Lorenz, Mutational Analysis: A Joint Framework for Cauchy Problems 181
In and Beyond Vector Spaces, Lecture Notes in Mathematics 1996,
DOI 10.1007/978-3-642-12471-6 4, c© Springer-Verlag Berlin Heidelberg 2010
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3.1 General Assumptions of This Chapter

E is always a nonempty set and, I �= /0 denotes an index set. For each index j ∈I ,

d j, e j : E×E −→ [0,∞[,
�·� j : E −→ [0,∞[

are supposed to satisfy the following conditions:

(H1) d j and e j are reflexive, i.e. for all x ∈ E: d j(x,x) = 0 = e j(x,x),

(H2) d j and e j are symmetric, i.e. for all x,y ∈ E: d j(x,y) = d j(y,x),
e j(x,y) = e j(y,x),

(H3) (d j) j∈I and (e j) j∈I induce the same concept of convergence in E and are
sequentially (semi-) continuous in the following sense:

(o)
(∀ j ∈I : lim

n→∞
d j(x,xn) = 0

)

⇐⇒ (∀ j ∈I : lim
n→∞

e j(x,xn) = 0
)

for any x ∈ E and (xn)n∈N in E with sup
n∈N

�xn�i <∞ for each i ∈I .

(i) d j(x,y) = lim
n→∞

d j(xn,yn),

e j(x,y) ≤ limsup
n→∞

e j(xn,yn)

for any x,y ∈ E and (xn)n∈N, (yn)n∈N in E fulfilling for each i ∈I ,

lim
n→∞

di(x,xn) = 0 = lim
n→∞

di(yn,y), sup
n∈N

{�xn�i,�yn�i}< ∞ .

(ii) 0 = lim
n→∞

d j(x, xn)

for any x ∈ E and (xn)n∈N, (yn)n∈N in E fulfilling for each i ∈I

lim
n→∞

di(x,yn) = 0 = lim
n→∞

ei(yn,xn), sup
n∈N

{�xn�i,�yn�i}< ∞ .

(iii) 0 = lim
n→∞

d j(x, xn)

for any x ∈ E and (xn)n∈N, (yk)k∈N, (zk,n)k,n∈N in E fulfilling
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

lim
k→∞

ei(x, yk) = 0 for each i ∈I ,

lim
n→∞

di(yk, zk,n) = 0 for each i ∈I ,k ∈ N,

lim
k→∞

sup
n>k

ei(zk,n, xn) = 0 for each i ∈I ,

sup
k,n∈N

{�xn�i,�yk�i,�zk,n�i} < ∞ for each i ∈I .

(H4) �·� j is lower semicontinuous with respect to (di)i∈I , i.e.,

�x� j ≤ liminf
n→∞

�xn� j

for any element x ∈ E and sequence (xn)n∈N in E fulfilling for each i ∈I ,

lim
n→∞

di(xn,x) = 0, sup
n∈N

�xn�i < ∞ .
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Remark 1. In comparison to Chapter 2, these assumptions do not imply the
triangle inequality of d j since d j does not have to be a pseudo-metric in the sense
of Definition 2.1 (on page 104).
But obviously property (H3) is satisfied whenever d j ≡ e j is a pseudo-metric for
each index j ∈I . Hence the topological environment of Chapter 2 is a special case.

A transition ϑ : [0,1]×E −→ E is expected to satisfy essentially the same con-
ditions as in Definition 2.2 (on page 104).
In fact, we can even dispense with the generalized form of semigroup property
since estimates will be done “uniformly” along transitions ϑ(·,x) : [0,1] −→ E
as hypothesis (H7) will clarify in a moment. Indeed, up to now, we have drawn
all quantitative conclusions from the “local” features of transitions close to the
initial element, i.e., for time tending to 0. (See, for example, Definition 2.5 and
Proposition 2.6 on page 105 f.)
As key new aspect about single transitions, we are now free to use different distance
functions (namely d j resp. e j) for the continuity estimates with respect to initial
elements and time. These families of distance functions (d j) j∈I , (e j) j∈I are
linked according to hypothesis (H3). In particular, they induce the same concept of
convergence, but they might differ in quantitative features.
For extending Definition 2.2, we specify the conditions on a transition — now on
the tuple

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I

)
:

Definition 2. A function ϑ : [0,1]× E −→ E is called transition on the tuple(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I

)
if it has the following properties for each j ∈I :

1.) for everyx ∈ E : ϑ(0,x) = x

3.) there exists α j(ϑ ; ·) : [0,∞[−→ [0,∞[ such that for any x,y ∈ E with

�x� j ≤ r, �y� j ≤ r : limsup
h↓0

d j(ϑ (h,x), ϑ (h,y))− d j(x,y)
h ≤ α j(ϑ ;r) · d j(x,y)

4.′) there exists β j(ϑ ; ·) : [0,∞[−→ [0,∞[ such that for any s, t ∈ [0,1] and x ∈ E

with �x� j ≤ r : e j
(
ϑ(s,x), ϑ(t,x)) ≤ β j(ϑ ;r) · |t− s|

5.) there exists γ j(ϑ) ∈ [0,∞[ such that for any t ∈ [0,1] and x ∈ E :

�ϑ(t,x)� j ≤
(�x� j + γ j(ϑ) t

) · eγ j(ϑ ) t

The essential new aspect about comparing two transitions comes now into play as
counterpart of Definition 2.5 (on page 105): Θ̂

(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)

denotes a nonempty set of transitions on
(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
and,

for each j ∈I , the function

D̂ j : Θ̂
(
E,(d j) j,(e j) j,(�·� j) j

) × Θ̂(E,(d j) j,(e j) j,(�·� j) j
) × [0,∞[ −→ [0,∞[

is assumed to satisfy the following conditions:
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(H5) for each r ≥ 0, D̂ j( · , · ; r) is reflexive and symmetric,
for every ϑ ,τ , the function D̂ j(ϑ ,τ; ·) : [0,∞[−→ [0,∞[ is nondecreasing,

(H6) for any r ≥ 0,

D̂ j(·, · ; r) : Θ̂
(
E,(d j),(e j),(�·� j)

)×Θ̂(E,(d j),(e j),(�·� j)
)−→ [0,∞[

is sequentially continuous with respect to (D̂i)i∈I in the following sense:

(i) D̂ j(ϑ , τ; r) = lim
n→∞

D̂ j(ϑn, τn; r)

for any transitions ϑ ,τ and sequences (ϑn)n∈N, (τn)n∈N satisfying
for every i ∈I and R≥ 0

lim
n→∞

D̂i(ϑ , ϑn; R) = 0 = lim
n→∞

D̂i(τ, τn; R) .

(ii) lim
n→∞

D̂ j(ϑ , τn; r) = 0

for any transition ϑ and sequences (ϑn)n∈N, (τn)n∈N satisfying for
every i ∈I and R≥ 0

lim
n→∞

D̂i(ϑ , ϑn; R) = 0 = lim
n→∞

D̂i(ϑn, τn; R) .

(H7) limsup
h↓0

d j
(
ϑ(t1+h,x), τ(t2+h,y)

) − d j(ϑ(t1,x), τ(t2,y)) · eα j(τ;R j)·h

h

≤ D̂ j(ϑ ,τ; R j) < ∞

for any ϑ ,τ ∈ Θ̂(E,(di)i,(ei)i,(�·�i)i
)
, x,y ∈ E , t1, t2 ∈ [0,1[, r ≥ 0, j ∈I

with �x� j, �y� j ≤ r and R j :=
(
r + max{γ j(ϑ),γ j(τ)}

) · emax{γ j(ϑ ),γ j(τ)}.

Not even D̂ j(·, ·;r) has to satisfy the triangle inequality. Instead we restrict our
assumption (H6) to the aspect of continuity. More generally speaking, the triangle
inequality can be regarded as the classical tool for simplifying the verification of
continuity in metric spaces.

Hypothesis (H7) specifies D̂ j(·, ·;r) in a rather global way whereas Definition 2.5
of D j(·, ·;r) (on page 105) was comparing the evolution of one and the same initial
point along two transitions. The criterion here in (H7) is motivated by a question
focusing on vanishing times: Which “first-order terms” of the time-dependent dis-
tance cannot be estimated just by the initial distance growing exponentially in time ?

Remark 3. If d j ≡ e j satisfies the triangle inequality in addition, then the proper-
ties (H5) – (H7) can be concluded from Definition 2.5 and from Proposition 2.6 (on
page 106). Thus, the results of Chapter 2 prove to be a special case based merely on
the additional assumption of the triangle inequality for d j ≡ e j.

Remark 4 (about separate real time components). In some examples, time is
recommendable to be taken into consideration explicitly. One of the easiest ways
is to consider tuples in Ẽ := R× E with the first real component representing
the respective time. In subsequent § 3.5 (on page 221 ff.), we formulate modified
hypotheses allowing the same conclusions as in §§ 3.2 – 3.4.



3.2 The Essential Features of Transitions Do Not Change 185

3.2 The Essential Features of Transitions Do Not Change

Appropriate continuity assumptions (instead of the triangle inequality) and two
families of distance functions do not have any significant consequences for the
features of transitions. We now verify the essential aspects:

Lemma 5. Let ϑ1 . . . ϑK be finitely many transitions on
(
E,(d j),(e j),(�·� j)

)

with γ̂ j := sup
k∈{1 ...K}

γ j(ϑk) < ∞ for some j ∈I .

For any x0 ∈ E and 0 = t0 < t1 < .. . < tK with supk tk− tk−1 ≤ 1 define the curve
x(·) : [0,tK ]−→ E piecewise as x(0) := x0 and

x(t) := ϑk
(
t− tk−1, x(tk−1)

)
for t ∈ ]tk−1, tk

]
, k ∈ {1 . . .K}.

Then, �x(t)� j ≤
(�x0� j + γ̂ j · t

) · eγ̂ j ·t at every time t ∈ [0, tK ].

Proof results from exactly the same arguments as Lemma 2.4 (on page 105). �

The following lemma provides the first tool for applying Gronwall’s estimate (in
Proposition A.2 on page 440). Indeed, it is an immediate consequence of hypothe-
ses (H3) (o), (i) and guarantees that the distance between two continuous curves in
E is always continuous with respect to time.
Our version of Gronwall’s inequality (in the appendix A.1) has the essential advan-
tage that even lower semicontinuity is sufficient for concluding a global estimate
from local properties. (This will be relevant for proving subsequent Proposition 11
on page 189.)

Lemma 6. Let x(·), y(·) : [0,T ] −→ E be continuous with respect to (di)i∈I

(or equivalently with respect to (e j) j∈I ) and bounded with respect to each �·� j

( j ∈I ). Then for each index j ∈I , the distance function

[0,T ] −→ [0,∞[, t �−→ d j
(
x(t), y(t)

)

is continuous. �

Proposition 7. Let ϑ ,τ ∈ Θ̂(E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
, r ≥ 0, j ∈I and

t1,t2 ∈ [0,1[ be arbitrary. For any elements x,y ∈ E suppose �x� j ≤ r, �y� j ≤ r.
Then the following estimate holds at each time h∈ [0,1[ with max{t1 +h, t2 +h}≤ 1

d j
(
ϑ(t1+h,x), τ(t2+h,y)

) ≤
(

d j
(
ϑ(t1,x), τ(t2,y)

)
+ h · D̂ j(ϑ ,τ ;R j)

)
eα j(τ;R j) h

with the constant R j :=
(
r + max{γ j(ϑ), γ j(τ)}

) · emax{γ j(ϑ ), γ j(τ)} < ∞.
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Proof results from Gronwall’s inequality (in Proposition A.2 on page 440)
applied to the auxiliary function

φ j : h �−→ d j
(
ϑ(t1 + h,x), τ(t2 + h,y)

)

similarly to the proofs of Proposition 1.7 (on page 36) and Proposition 2.6 (on
page 106). Indeed, φ j is continuous according to Lemma 6 and the time continu-
ity of transitions (in condition (4.’) of Definition 2). Moreover condition (5.) of
Definition 2 ensures �ϑ(h,x)� j ≤ R j, �τ(h,y)� j ≤ R j for each h ∈ [0,1].

Dispensing with the triangle inequality of d j in this chapter, however, we conclude
directly from hypothesis (H7) about D̂ j(·, ·; R j) for any t and small h > 0

φ j(t + h)−φ j(t)

= d j
(
ϑ(t1+t+h, x), τ(t2+t+h, y)

) − d j
(
ϑ(t1+t, x), τ(t2+t, y)

)

≤ d j
(
ϑ(t1+t+h, x), τ(t2+t+h, y)

) − d j
(
ϑ(t1+t, x), τ(t2+t, y)

)
eα j(τ;R j)h

+d j
(
ϑ(t1+t, x), τ(t2+t, y)

) · eα j(τ;R j)h− d j
(
ϑ(t1+t, x), τ(t2+t, y)

)

and thus, limsup
h↓0

φ j(t+h) − φ j(t)
h ≤ D̂ j(ϑ , τ; R j) + α j(τ; R j) · φ j(t) < ∞ .

Finally, Gronwall’s inequality (in form of Proposition A.2) provides the link to the
claimed estimate. �

3.3 Solutions to Mutational Equations

For any single-valued function f : E× [0,T ]−→ Θ̂
(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
,

a solution x(·) : [0,T ]−→ E to the mutational equation
◦
x(·) � f

(
x(·), · )

is expected to fulfill the same conditions as in Definition 2.9 (on page 107), i.e.,
it should satisfy for each index j ∈I :

1.) x(·) is continuous with respect to d j

2.) for L 1-almost every t ∈ [0,T [: lim
h↓0

1
h · d j

(
f (x(t), t)(h, x(t)), x(t +h)

)
= 0

3.) sup
t∈ [0,T ]

�x(t)� j < ∞ .

Due to the lack of triangle inequality for d j, however, it is much more difficult to
compare such a solution x(t + ·) with a transition starting in another “initial point”.
Indeed, there is no obvious way to draw conclusions about distances d j vanishing in
first order for h ↓ 0.
For the same (rather technical) reason, we have already introduced hypothesis (H7)
(on page 184), which is motivated by the earlier estimate in Proposition 2.6 (on
page 106) and which has just been used in the proof of Proposition 7 here.
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Thus, we specify the term “solution” by a slightly stronger condition (2.′). It
is also motivated by the notion that the first-order properties of x(t + h) cannot be
distinguished from the features of f (x(t), t)(h,x(t)) for h ↓ 0.
As the essential new aspect, however, the direct comparison
via d j, i.e.

h �−→ d j
(

f (x(t),t)(h, x(t)), x(t + h)
)
,

is now replaced by the comparisons with h �→ ϑ(s+ h,z) ∈ E
for any transition ϑ ∈ Θ̂(E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
and

arbitrary initial point ϑ(s,z) ∈ E .
So far the estimate in Proposition 7 and its counterparts in preceding chapters are
the main tool for comparing the evolutions along transitions. Now we employ it for
specifying the notion of “being indistinguishable up to first order”:

Definition 8.
A single-valued function f : E × [0,T ] −→ Θ̂

(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
is

given. x(·) : [0,T ]−→ E is called a solution to the mutational equation
◦
x(·) � f

(
x(·), · )

in
(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
if it satisfies for each j ∈I :

1.) x(·) is continuous with respect to e j, i.e.,
lim
s→t

e j
(
x(s), x(t)

)
= 0 for every t ∈ [0,T ],

2.′) there exists α j(x; ·) : [0,∞[−→ [0,∞[ such that for L 1-a.e. t ∈ [0,T [:

limsup
h↓0

d j(ϑ (s+h, z), x(t+h)) − d j(ϑ (s,z), x(t)) · eα j (x;R j ) h

h ≤ D̂ j
(
ϑ , f (x(t), t); R j

)

is fulfilled for any ϑ ∈ Θ̂(E,(d j),(e j),(�·� j)
)
, s ∈ [0,1[, z ∈ E satisfying

�ϑ(·,z)� j,�x(·)� j ≤ R j,

3.) sup
t∈ [0,T ]

�x(t)� j < ∞ .

The continuity with respect to (e j) j∈I is equivalent to the continuity with respect
to (d j) j∈I due to hypothesis (H3) (o) (on page 182).

Furthermore condition (2.′) always implies the preceding property (2.) because
d j and D̂ j(·, ·,r) are assumed to be reflexive. The inverse conclusion “(2.) =⇒
(2.′)” holds if d j is a pseudo-metric (as in Chapter 2). Indeed, Proposition 2.6
(on page 106) then ensures the equivalence of Definition 2.9 (on page 107) and
Definition 8 here.

By means of Gronwall’s inequality for lower semicontinuous functions again, essen-
tially the same arguments as for Proposition 7 guarantee that the local criterion (2.′)
implies a global estimate of the same type for comparing solutions and transitions:
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Lemma 9. Let x(·) : [0,T ]−→ E be a solution to the mutational equation
◦
x(·) � f

(
x(·), · )

in
(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
according to Definition 8.

Suppose ϑ ∈ Θ̂(E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
, z ∈ E, r ≥ 0, s ∈ [0,1[, t ∈ [0,T [,

j ∈I to be arbitrary with �z� j ≤ r and the abbreviation
R j := max

{
sup �x(·)� j,

(
r + γ j(ϑ)

) · eγ j(ϑ )} < ∞.

Then, d j
(
ϑ(s+ h, z), x(t + h)

)

≤
(

d j
(
ϑ(s,z), x(t)

)
+ h · sup

[t, t+h]
D̂ j
(
ϑ , f (x(·), ·); R j

)) · eα j(x;R j) h

for every h ∈ [0, 1] with s+ h≤ 1 and t + h≤ T . �
In particular, the analogy of Lemma 9 and preceding Proposition 7 reflects

how we interpret the generalized conceptual goal that a solution x(t + ·) cannot be
“distinguished” from the curve f (x(t), t)( · , x(t)) : [0,1]−→ E along the transition
f (x(t),t) “up to first order”.

Finally, we focus on the Lipschitz continuity of solutions. For every transition
ϑ and initial point z ∈ E , the curve [0,1] −→ E, t �−→ ϑ(t,z) is assumed to be
Lipschitz continuous with respect to each e j. For solutions to mutational equations,
the same regularity with respect to d j ( j ∈I ) can be concluded from Lemma 9 by
means of the identity transition IdΘ̂ on E:

Corollary 10 (Sufficient conditions for Lipschitz continuity of solutions).
Assume that Θ̂

(
E,(di)i∈I ,(e j) j∈I ,(�·�i)i∈I

)
contains the identity transition

IdΘ̂ : [0,1]×E −→ E, (h,x) �−→ x .

For f : E× [0,T ]−→ Θ̂
(
E,(d j) j,(e j) j,(�·� j) j

)
let x(·) : [0,T ]−→E be a solution to

the mutational equation
◦
x(·)� f (x(·), ·) in

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I ,(D̂i)i∈I

)

such that some j ∈I and Lj,R j ∈ R satisfy for all t ∈ [0,T ]

�x(t)� j ≤ R j, D̂ j
(
IdΘ̂ , f (x(t), t); R j

) ≤ Lj.

Then x(·) is Lipschitz continuous with respect to d j.

Proof. We use arguments very similar to the proof of Lemma 2.10 (on page 107):
Fix s ∈ [0,T [ arbitrarily. Then, ψ j : [s,T ] −→ R, t �−→ d j

(
x(s), x(t)

)
is con-

tinuous due to hypotheses (H3) (o), (i) and, it satisfies for L 1-a.e. t ∈ [s,T ]

limsup
h↓0

ψ j(t + h)−ψ j(t)
h

= limsup
h↓0

1
h

(
d j
(
IdΘ̂ (h,x(s)), x(t + h)

)−d j
(
x(s), x(t)

))

≤ ψ j(t) · limsup
h↓0

eα j(x; R j) h−1
h

+ Lj

= ψ j(t) · α j(x;R j)+ Lj .

Finally ψ j(t) ≤ Lj eα j(x;R j) T · (t− s) for all t ∈ [s,T ] results from Gronwall’s
inequality (Proposition A.2 on page 440) and ψ j(s) = 0. �
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3.3.1 Continuity with Respect to Initial States and Right-Hand Side

Dispensing with the triangle inequality of distance functions, we have already faced
several difficulties for dealing with further distances vanishing “in first order” for
time h ↓ 0. So far the conclusions proved in preceding chapters have usually served
as motivation for adapting definitions so that we can bridge the gap due to lacking
metric structure.

Now the list of definitions is (almost) completed and, we have to find alternative
ways for investigating the continuity of solutions with respect to initial states and
right-hand side, for example.
The idea is very similar to our way from property (2.) of solutions to condition (2.′)
(in Definition 8): We do not compare two solutions directly by means of d j as in
Proposition 2.11 (on page 108), but we use the respective distances from one and
same (arbitrary) state z ∈ E , i.e. we are interested in an upper estimate of the auxil-
iary distance function [0,T ] −→ [0,∞[, t �−→ inf

z∈E: �z� j <ρ

(
d j
(
z,x(t)

)
+ d j

(
z,y(t)

))
.

Proposition 11. Assume for f ,g : E × [0,T ] −→ Θ̂
(
E,(d j) j,(e j) j,(�·� j) j

)
and

x,y : [0,T ] −→ E that x(·) is a solution to the mutational equation
◦
x(·) � f (x(·), ·)

and y(·) is a solution to the mutational equation
◦
y (·) � g(y(·), ·) in the tuple

(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
.

For some j ∈I , let α̂ j,R j > 0 and ϕ j ∈C0([0,T ]) satisfy for L 1-a.e. t ∈ [0,T ]
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�x(t)� j, �y(t)� j < R j

α j (x; R j) , α j (y; R j) ≤ α̂ j

D̂ j
(

f (x(t), t), g(y(t), t); R j
) ≤ ϕ j(t)

lim
h↓0

D̂ j
(

f (x(t), t), f (x(t+h), t+h); R j
)

= 0.

Then, δ j : [0,T ] −→ [0,∞[, t �−→ inf
z∈E: �z� j <R j

(
d j
(
z,x(t)

)
+ d j

(
z,y(t)

))

fulfills δ j(t) ≤
(
δ j(0) +

∫ t

0
ϕ j(s) e−α̂ j · s ds

) · eα̂ j · t for every t ∈ [0,T ].

Proof. Due to hypotheses (H3) (o), (i), the auxiliary function [0,T ]−→ [0,∞[,
t �−→ d j(z,x(t))+ d j(z,y(t)) is continuous for each element z ∈ E . Hence the infi-
mum δ j(·) with respect to all z ∈ E with �z�< R j is lower semicontinuous.

At L 1-almost every time t ∈ [0,T [, Lemma 9 and the reflexivity of d j, D̂ j(·, ·;R j)
imply for every z ∈ E with �z�< R j and any sufficiently small h≥ 0

δ j(t + h) ≤d j
(

f (x(t),t)(h, z), x(t + h)
)
+ d j

(
f (x(t), t)(h, z), y(t + h)

)

≤
(

d j
(
z, x(t)

)
+ h · sup

[t,t+h]
D̂ j
(

f (x(t), t), f (x(t + ·), t + ·);R j
)) · eα̂ j ·h

+
(

d j
(
z, y(t)

)
+ h · sup

[t,t+h]
ϕ j

)
· eα̂ j ·h .
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The infimum with respect to z ∈ E satisfying �z�< R j additionally leads to

δ j(t + h) ≤ δ j(t) · eα̂ j ·h + sup
[t,t+h]

ϕ j ·h · eα̂ j·h

limsup
h↓0

δ j(t + h)− δ j(t)
h

≤ δ j(t) · limsup
h↓0

eα̂ j ·h−1
h

+ϕ j(t) · limsup
h↓0

eα̂ j ·h

= δ j(t) · α̂ j +ϕ j(t) .

Finally the claim results directly from Gronwall’s inequality (in Proposition A.2).
�

Remark 12. δ (t) ≤ d j(x(t),y(t)) results directly from the reflexivity of d j (due
to hypothesis (H1)). If d j satisfies the triangle inequality in addition, then this
infimum δ (t) is always equal to d j(x(t),y(t)).

3.3.2 Limits of Graphically Converging Solutions:
Convergence Theorem

On our way to the existence of solutions, the next step focuses on the question
which kind of convergence preserves the solution property.

In Theorem 2.13 (on page 110), pointwise convergence has already proved to be
appropriate under the assumptions that all solutions xn(·) : [0,T ] −→ E are uni-
formly Lipschitz continuous and that d j is a pseudo-metric. Now we weaken the
conditions on convergence and admit perturbations with respect to time as specified
in subsequent assumption (4.) — although d j does not have to fulfill the triangle
inequality any longer.

Here the two families of distance functions (d j) j∈I , (e j) j∈I come into play
explicitly for the first time.
In the next theorem, we consider an appropriately converging sequence (xn(·))n∈N

of solutions, each of which is continuous with respect to every e j by definition.
Concluding the continuity of their limit function usually requires some form of
“equi-continuity”. For this purpose, the family (e j) j∈I is used instead of (d j) j∈I

and, we suppose uniform Lipschitz continuity with respect to each e j ( j ∈I ).
Strictly speaking, this Lipschitz continuity is a “quantitative” feature and, we now
separate its distance functions from the other quantitative properties of solutions
(such as condition (2.′) in Definition 8). “Qualitative” aspects like the topological
concepts of convergence and continuity, however, are not concerned — due to
hypothesis (H3) (o).
These separate families of distance functions and the continuity assumptions replac-
ing the triangle inequality are two new aspects of the mutational framework in this
chapter.
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Theorem 13 (Convergence of solutions to mutational equations).
Suppose the following properties of

fn, f : E× [0,T ] −→ Θ̂
(
E,(di)i∈I ,(e j) j∈I ,(�·�i)i∈I

)
(n ∈ N)

xn, x : [0,T ] −→ E :

1.) R j := sup
n,t
�xn(t)� j < ∞,

α̂ j(ρ) := sup
n

α j
(
xn; ρ

)
< ∞ for ρ ≥ 0,

β̂ j := sup
n

Lip
(
xn(·) : [0,T ]−→ (E,e j)

)
< ∞ for every j ∈I ,

2.)
◦
xn (·) � fn(xn(·), ·) (in the sense of Definition 8 on page 187) for every n∈N,

3.) Equi-continuity of ( fn)n at (x(t), t) at almost every time in the following sense:
for L 1-almost every t ∈ [0,T ] : lim

n→∞
D̂ j ( fn(x(t), t), fn(yn, tn); r) = 0 for

each j ∈I , r ≥ 0 and any (tn)n∈N, (yn)n∈N in [t,T ] and E respectively
satisfying lim

n→∞
tn = t and lim

n→∞
di
(
x(t),yn

)
= 0, sup

n∈N

�yn�i ≤ Ri for each i,

4.) For L 1-almost every t ∈ [0,T [ (t = 0 inclusive) and any t̃ ∈ ]t,T [, there is a
sequence nm↗ ∞ of indices (depending on t < t̃) that satisfies for m−→ ∞
⎧
⎪⎨

⎪⎩

(i) D̂ j
(

f (x(t),t), fnm(x(t), t); r
) −→ 0 for all r ≥ 0, j ∈I ,

(ii) there is a sequence δm↘ 0 : d j
(
x(t), xnm(t + δm)

) −→ 0 for all j,

(iii) there is a sequence δ̃m↘ 0 : d j
(
x(̃t), xnm (̃t− δ̃m)

) −→ 0 for all j.

Then, x(·) : [0,T ]−→ E is a solution to the mutational equation
◦
x(·) � f (x(·), ·)

in the tuple
(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Remark 14. Assumptions (4.ii) and (4.iii) admit small perturbations with respect
to time. This is much weaker than pointwise convergence (as in Theorem 2.13 on
page 110) and, it can be regarded as a generalized form of converging graphs.
In regard to the influence of index j ∈I , however, assumptions (3.) and (4) are
slightly stronger than in Theorem 2.13 because we have replaced the triangle in-
equality of distance functions by hypotheses (H3), (H6), which draw conclusions
only from convergence of sequences with respect to all i ∈I simultaneously.

Proof (of Theorem 13). Choose the index j ∈I arbitrarily.
Then x(·) : [0,T ] −→ (E,e j) is β̂ j-Lipschitz continuous. Indeed, for Lebesgue-
almost every t ∈ [0,T [ and any t̃ ∈ ]t,T ], assumption (4.) provides a subsequence(
xnm(·))m∈N

and sequences δm↘ 0, δ̃m↘ 0 satisfying for each i ∈I

{
di
(
x(t), xnm(t + δm)

) −→ 0

di
(
x(̃t), xnm (̃t− δ̃m)

) −→ 0
for m−→ ∞.
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The uniform β̂ j-Lipschitz continuity of xn(·),n ∈ N, with respect to e j and
hypothesis (H3) (i) (on page 182) imply

e j
(
x(t), x(̃t)

) ≤ limsup
m→∞

e j
(
xnm(t + δm), xnm (̃t− δ̃m)

)

≤ limsup
m→∞

β̂ j |̃t− δ̃m − t− δm|
≤ β̂ j |̃t− t| .

This Lipschitz inequality can be extended to any t, t̃ ∈ [0,T ] due to the lower semi-
continuity of e j (according to hypotheses (H3) (o), (i)). Moreover, hypothesis (H4)
about the lower semicontinuity of �·� j ensures

�x(̃t)� j ≤ liminf
m→∞

�xnm (̃t)� j ≤ R j.

Finally we verify the solution property

limsup
h↓0

d j(ϑ (s+h, z), x(t+h)) − d j(ϑ (s,z), x(t)) · eα j (x;ρ) h

h ≤ D̂ j
(
ϑ , f (x(t), t); ρ

)

for L 1-almost every t ∈ [0,T [ and for any ϑ ∈ Θ̂(E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

)
,

s ∈ [0,1[, z ∈ E , ρ ≥ R j with �ϑ(·,z)� j ≤ ρ ,

Indeed, for Lebesgue-almost every t ∈ [0,T [ and any h ∈ ]0, T−t[, assumption (4.)
guarantees a subsequence

(
xnm(·))m∈N

and sequences δm ↘ 0, δ̃m ↘ 0 satisfying
for each i ∈I , r ≥ 0 and m−→ ∞⎧

⎪⎪⎨

⎪⎪⎩

D̂i
(

f (x(t), t), fnm(x(t), t); r
) −→ 0

di
(
x(t), xnm(t + δm)

) −→ 0

di
(
x(t+h), xnm(t+h− δ̃m)

) −→ 0.

Now we conclude from Lemma 9 (on page 188) and the continuity of d j (due to
hypothesis (H3) (i) on page 182) respectively

d j
(
ϑ(s+ h, z), x(t + h)

)

= lim
m→∞

d j
(
ϑ(s+ h− δ̃m, z), xnm(t + h− δ̃m)

)

≤ limsup
m→∞

(
d j
(
ϑ(s+ δm, z), xnm(t + δm)

)

+ h · sup
[t+δm, t+h−δ̃m]

D̂ j
(
ϑ , fnm(xnm(·), ·); ρ)

)
· eα̂ j(ρ) ·(h−δm−δ̃m)

≤
(

d j
(
ϑ(s,z), x(t)

)
+ h · limsup

m→∞
sup

[t+δm, t+h]
D̂ j
(
ϑ , fnm(xnm(·), ·); ρ)

)
· eα̂ j(ρ) h.

(In fact, the last inequality justifies why (H3) (i) provides the continuity of d j and
not just its lower semicontinuity as for e j.) For completing the proof, we verify

limsup
h↓0

limsup
m→∞

sup
[t+δm, t+h]

D̂ j
(
ϑ , fnm(xnm(·), ·); ρ) ≤ D̂ j

(
ϑ , f (x(t), t); ρ

)

for Lebesgue-almost every t ∈ [0,T [ and any subsequence
(
xnm(·))m∈N

satisfying
{

di
(
x(t), xnm(t + δm)

) −→ 0

D̂i
(

f (x(t), t), fnm(x(t), t); r
) −→ 0
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for m −→ ∞ and each i ∈I , r ≥ 0. Indeed, if this inequality was not correct
then we could select some ε > 0 and sequences (hl)l∈N, (ml)l∈N, (sl)l∈N such that
{

D̂ j
(
ϑ , fnml

(xnml
(t + sl), t + sl); ρ

) ≥ D̂ j
(
ϑ , f (x(t), t); ρ

)
+ ε

δml ≤ sl ≤ hl ≤ 1
l , ml ≥ l

for all l ∈ N.

Due to property (H3) (ii), the uniform Lipschitz continuity of (xnm(·))m∈N implies

lim
l→∞

di
(
x(t), xnml

(t + sl)
)

= 0

for each i ∈I . Thus at L 1-almost every time t ∈ [0,T [, assumptions (3.), (4.) (i)
and hypothesis (H6) about the continuity of D̂ j( · , · ; r) (on page 184) lead to a
contradiction because for any r ≥ 0,

lim
l→∞

D̂ j
(
ϑ , fnml

(xnml
(t + sl), t + sl); r

)
= D̂ j

(
ϑ , f (x(t), t); r

)
. �

3.3.3 Existence for Mutational Equations with Delay
and without State Constraints

Although the modified topological assumptions (H1)–(H7) have replaced the
triangle inequality, Euler method in combination with Euler compactness (almost)
leads to the existence of solutions to mutational equations without state constraints.
We can even draw our conclusions for mutational equations with delay in essentially
the same way as in § 2.3.5 (on page 120 ff.). The proofs are again postponed to the
end of this section.

Remark 15. (1.) The set BLip
(
I, E; (d j) j∈I , (�·� j) j∈I

)
consists of all “bounded”

and Lipschitz continuous functions I −→ E as in Definition 2.22 (on page 120).

(2.) The term “Euler compact” was introduced in Definition 2.15 (on page 112)
and does not have to be adapted significantly to the modified topological environ-
ment in this chapter.
Indeed,

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))

is called Euler compact if it satisfies the following condition for any initial ele-
ment x0 ∈ E, time T ∈]0,∞[ and bounds α̂ j, β̂ j, γ̂ j > 0 ( j ∈I ):
Let N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) denote the (possibly empty) subset of all curves
y(·) : [0,T ]−→E constructed in the following piecewise way: Choosing an arbitrary
equidistant partition 0 = t0 < t1 < .. . < tn = T of [0,T ] (with n > T ) and transitions
ϑ1 . . .ϑn ∈ Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

)
with

⎧
⎪⎨

⎪⎩

supk γ j(ϑk) ≤ γ̂ j

supk α j
(
ϑk; (�x0� j + γ̂ j T ) eγ̂ j T

) ≤ α̂ j

supk β j
(
ϑk; (�x0� j + γ̂ j T ) eγ̂ j T

) ≤ β̂ j

for each index j ∈I , define y(·) : [0,T ]−→ E as
y(0) := x0, y(t) := ϑk (t− tk−1, y(tk−1)) for t ∈ ]tk−1, tk], k = 1,2 . . .n.

Then for each t ∈ [0,T ], every sequence (zn)n∈N in {y(t) | y(·) ∈N } ⊂ E has a
subsequence (znm)m∈N

and some z ∈ E with lim
m→∞

d j(znm ,z) = 0 for each j ∈I .
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Since d j and e j are now lacking the triangle inequality, we have to cope with a
further difficulty: Are curves defined by transitions in a piecewise way like

[0,2] −→ E, t �−→
{
ϑ1(t,x0) for t ∈ [0,1]
ϑ2
(
t−1, ϑ1(1,x0)

)
for t ∈ ]1,2]

still always Lipschitz continuous with respect to each e j ? In particular, Lemma 2.10
(on page 107) might fail if d j ≡ e j was not a pseudo-metric.
Corollary 10 (on page 188) has already provided a sufficient condition on the
transition set for verifying Lipschitz continuity with respect to d j, namely via
identity transition. In regard to subsequent results about the existence of solutions,
however, we prefer introducing a separate assumption focusing on Euler approxi-
mations and the distance function e j ( j ∈I ):

Definition 16.
The tuple

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))
is

called Euler equi-continuous if it satisfies the following condition for any initial
element x0 ∈ E, time T ∈]0,∞[ and bounds α̂ j, β̂ j, γ̂ j > 0 ( j ∈I ):
Let N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) denote the (possibly empty) subset of all curves
y(·) : [0,T ]−→ E constructed in the following piecewise way (as in Definition 2.15
on page 112): Choosing an arbitrary equidistant partition 0 = t0 < t1 < .. . < tn = T
of [0,T ] (with n > T ) and transitions ϑ1 . . .ϑn ∈ Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

)

with
⎧
⎪⎨

⎪⎩

supk γ j(ϑk) ≤ γ̂ j

supk α j
(
ϑk; (�x0� j + γ̂ j T ) eγ̂ j T

) ≤ α̂ j

supk β j
(
ϑk; (�x0� j + γ̂ j T ) eγ̂ j T

) ≤ β̂ j

for each index j ∈I , define y(·) : [0,T ]−→ E as

y(0) := x0, y(t) := ϑk (t− tk−1, y(tk−1)) for t ∈ ]tk−1, tk], k = 1,2 . . .n.

Then for each index j ∈I , there is a constant Lj ∈ [0,∞[ such that every curve
y(·) ∈N is Lj-Lipschitz continuous with respect to e j.

Remark 17. If d j ≡ e j is a pseudo-metric then Euler equi-continuity (with Lj := β̂ j)
results directly from the triangle inequality and Lemma 2.10 (on page 107) in a
piecewise way.

This additional hypothesis opens the door to selecting “pointwise converging” sub-
sequences of Euler approximations and, we obtain the counterpart of Lemma 2.17
(on page 113) — but with a weaker type of convergence. The subsequent main result
about existence is based on this pointwise convergence and specifies continuity as-
sumption (4.) in a stricter way than its counterpart in Proposition 2.23 (on page 120):
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Lemma 18 (Euler compact ∧ Euler equi-continuous =⇒ pointwise compact).
Assume

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))
to be

Euler compact and Euler equi-continuous. Using the notation of Definition 16,
choose any initial element x0 ∈E, time T ∈ ]0,∞[ and bounds α̂ j, β̂ j, γ̂ j > 0 ( j ∈I ).

For every sequence (yn(·))n∈N of curves [0,T ] −→ E in N
(
x0,T,(α̂ j, β̂ j, γ̂ j) j∈I

)
,

there exists a subsequence (ynm(·))m∈N
and a function y(·) : [0,T ] −→ E such that

y(·) is Lipschitz continuous with respect to each e j and for every j ∈I , t ∈ [0,T ],

d j
(
ynm(t), y(t)

) −→ 0 for m−→ ∞.

Furthermore if (yn(t0))n∈N is constant for some t0 ∈ [0,T ] then y(·) can be chosen
with the additional property y(t0) = yn(t0).

Theorem 19 (Existence of solutions to mutational equations with delay).
Suppose

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))
to

be Euler compact and Euler equi-continuous. Moreover assume for some fixed
τ ≥ 0, the function

f : BLip
(
[−τ,0], E; (ei)i, (�·�i)i

)× [0,T ] −→ Θ̂
(
E,(di)i,(ei)i,(�·�i)i

)

and each j ∈I , R > 0 :

1.) sup
z(·), t

α j( f (z(·), t); R) < ∞,

2.) sup
z(·), t

β j( f (z(·), t); R) < ∞,

3.) sup
z(·), t

γ j( f (z(·), t)) < ∞,

4.) for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j
(

f (z1
n(·), t1

n), f (z2
n(·), t2

n ); R
)

= 0

for each j ∈I , R ≥ 0 and any sequences (t1
n )n∈N, (t2

n)n∈N in [0,T ] and
(z1

n(·))n∈N, (z2
n(·))n∈N in BLip

(
[−τ,0], E; (e j) j∈I , (�·� j) j∈I

)
satisfying

for every i ∈I and s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞
di
(
z1

n(s), z(s)
)

= 0 = lim
n→∞

di
(
z2

n(s), z(s)
)

sup
n∈N

sup
[−τ,0]

�z1,2
n (·)�i < ∞ .

For every function x0(·)∈BLip
(
[−τ,0], E; (e j) j∈I , (�·� j) j∈I

)
, there exists a curve

x(·) : [−τ,T ]−→ E with the following properties:

(i) x(·) ∈ BLip
(
[−τ,T ], E; (e j) j∈I , (�·� j) j∈I

)
,

(ii) x(·)∣∣[−τ,0] = x0(·),
(iii) the restriction x(·)∣∣[0,T ] is a solution to the mutational equation

◦
x (t) � f

(
x(t + ·)∣∣[−τ,0], t

)

in the sense of Definition 8 (on page 187).
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Proof (of Lemma 18). Fix x0 ∈ E, time T ∈ ]0,∞[ and bounds α̂ j, β̂ j, γ̂ j > 0
( j ∈I ) arbitrarily. Moreover without loss of generality, we assume the set of curves
N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) to be nonempty. Supposing Euler equi-continuity
provides a constant Lj ∈ [0,∞[ for each index j ∈I such that every curve y(·)∈N
is Lj-Lipschitz constant with respect to e j. Let (yn(·))n∈N be any sequence in N .

We focus on a pointwise converging subsequence and adapt the proof of
Lemma 2.17 (on page 114):
For each t ∈ [0,T ], the assumption of Euler compactness ensures a subsequence
of
(
yn(t)

)
n∈N

converging with respect to each d j. Cantor’s diagonal construction
provides a subsequence

(
ynm(·))m∈N

of functions [0,T ] −→ E with the additional
property that at every rational time t ∈ [0,T ], an element y(t) ∈ E satisfies

d j
(
ynm(t), y(t)

) −→ 0 for m−→ ∞

and each j ∈I since the subset Q∩ [0,T ] of rational numbers in [0,T ] is countable.
Now we consider any t ∈ [0,T ] \Q. Due to Euler compactness, there exists a

subsequence
(
ynml

(t)
)

l∈N
maybe depending on t, but converging to an element

y(t) ∈ E with respect to each d j. Lacking the triangle inequality of d j, however, we
conclude from hypothesis (H3) (on page 182)

lim
m→∞

d j
(
ynm(t), y(t)

)
= 0 for each j ∈I .

Indeed, assumption (H3) (i) implies for every s ∈ [0,T ]∩Q and j ∈I

e j
(
y(s), y(t)

) ≤ limsup
l→∞

e j(ynml
(s), ynml

(t)
) ≤ Lj |s− t| .

Now choose any sequence (sk)k∈N in [0,T ]∩Q with sk −→ t (k→ ∞). This implies

sup
n∈N

e j
(
yn(sk), yn(t)

) ≤ Lj |t− sk| −→ 0 for k→ ∞

and each index j ∈I . Together with

lim
m→∞

d j
(
ynm(sk), y(sk)

)
= 0 for every k ∈ N, j ∈I ,

we conclude from hypothesis (H3) (iii) directly

lim
m→∞

d j
(
ynm(t), y(t)

)
= 0 for each j ∈I .

Finally, hypothesis (H3) (i) ensures the Lj-Lipschitz continuity of y(·) w.r.t. e j. �

Remark 20. In this proof of Lemma 18, we have applied hypothesis (H3) (iii)
for the first time. Indeed, all other conclusions are based on hypotheses (H3) (i) or
(H3) (ii) in combination with assumption (H3) (o).
For examples with a separate real time component, we are free to draw the same
conclusions under the additional assumption that either sk ≥ t for all k ∈ N or
sk ≤ t for every k∈N. This opens the door to taking a form of “time orientation” into
consideration as mentioned in Remark 4 (on page 184) and explained in subsequent
§ 3.5 (on page 221 ff.).
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Proof (of Theorem 19). As in the proof of Proposition 2.23 (on page 121 f.),
we use a sequence of Euler approximations on equidistant partitions of [0,T ].
For every n ∈N with 2n > T, set

hn := T
2n , tk

n := k hn for k = 0 . . . 2n,

xn(·)
∣
∣
[−τ,0] := x0,

xn(t) := f (xn(tk
n + ·)∣∣[−τ,0], tk

n)
(
t− tk

n, xn(tk
n)
)

for t ∈ ]tk
n , tk+1

n ], k < 2n.

Due to Euler equi-continuity, there is a constant Lj ∈ [0,∞[ for each index j ∈I
such that every curve xn(·) is Lj-Lipschitz continuous with respect to e j. Setting
γ̂ j := sup γ j( f (·, ·)) < ∞ as further abbreviation, Lemma 5 (on page 185) provides
for every t ∈ [0,T ], n ∈ N (with 2n > T ) and each j ∈I

�xn(t)� j ≤
(�x0(0)� j + γ̂ j T

) · eγ̂ j T =: R j .

Assumptions (1.)–(3.) are combined with Euler compactness and Euler equi-
continuity. Thus, Lemma 18 guarantees that a subsequence

(
xnm(·))m∈N

converges
to a function x(·) : [−τ, T ]−→ E in the sense that for every j ∈I and t ∈ [−τ, T ],

d j
(
xnm(t), x(t)

) −→ 0 for m−→ ∞.

In particular, x(·) = x0(·) in [−τ, 0].

For every t ∈ [0,T ], the estimate �x(t)� j ≤ R j results from hypothesis (H4) about
the lower semicontinuity of �·� j (on page 182) and, x(·) : [−τ, T ] −→ (E,e j) is
also Lj-Lipschitz continuous due to the lower semicontinuity of e j (in hypothesis
(H3) (i)). Hence we obtain

x(·) ∈ BLip
(
[−τ,T ], E; (e j) j∈I , (�·� j) j∈I

)
.

Finally it is a consequence of Convergence Theorem 13 (on page 191) that

limsup
h↓0

d j

(
ϑ (s+h,z), x(t+h)

)
− d j

(
ϑ (s,z), x(t)

)
eα̂ j (ρ)h

h ≤ D̂ j
(
ϑ , f

(
x(t + ·)∣∣[−τ,0], t

)
; ρ
)

holds for L 1-almost every t ∈ [0,T ] and arbitrary j ∈I , ρ ≥ R j, s ∈ [0,1[,
z ∈ E, ϑ ∈ Θ̂(E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

)
with �ϑ(·,z)� j ≤ ρ . Indeed, each

Euler approximation xn(·) : [0,T ]−→ E, n ∈ N, can be regarded as a solution of
◦
xn (·) � f̂n(·)

with the auxiliary function

f̂n : [0,T ]−→ Θ̂
(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
,

f̂n(t) := f
(
xn(·)

∣
∣
[tk

n−τ, tk
n ], tk

n

)
for any t ∈ [tk

n , tk+1
n [, k < 2n.

Similarly set f̂ : [0,T ] −→ Θ̂
(
E,(d j) j∈I ,(e j) j∈I ,(�·� j) j∈I

)
,

t �−→ f
(
x(t + ·)∣∣[−τ,0], t

)
.
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At L 1-almost every time t ∈ [0,T ], assumption (4.) has two key consequences.
First, with the abbreviation tk

nm
:= [ t

hnm
]hnm ∈ N hnm ,

D̂ j
(

f̂ (t), f̂nm(t); ρ
)

= D̂ j
(

f (x(t + ·)|[−τ,0], t), f (xnm(tk
nm

+ ·)|[−τ,0], tk
nm

); ρ
)

m→∞−→ 0,

for every j ∈I and ρ ≥ R j because for any index i ∈I and t ∈ [0,T ], s ∈ [−τ,0],
the pointwise convergence of (xnm(·))m∈N and continuity property (H3) (ii) imply

di
(
x(t + s), xnm(tk

nm
+ s)
) m→∞−→ 0 .

Second, we obtain for any sequence tm −→ t in [0,T ] and for every j ∈I , ρ ≥ R j

D̂ j
(

f̂nm(t), f̂nm(tm); ρ
)

= D̂ j
(

f (xnm(tk
nm

+ ·)|[−τ,0], tk
nm

),

f (xnm(tlm
nm

+ ·)|[−τ,0], tlm
nm

); ρ
) m→∞−→ 0

with the abbreviations tk
nm

:= [ t
hnm

]hnm , tlm
nm

:= [ tm
hnm

]hnm because due to continuity

property (H3) (ii) again, the following convergence holds for any i ∈I , s ∈ [−τ,0]
{

di
(
x(t + s), xnm(tk

nm
+ s)
) m→∞−→ 0

di
(
x(t + s), xnm(tlm

nm
+ s)
) m→∞−→ 0.

Hence the assumptions of Convergence Theorem 13 are satisfied by
◦
xn (·) � f̂n(·)

and thus, x(·)|[0,T ] solves the mutational equation
◦
x (·) � f̂ (·) in the tuple

(
E,(d j) j∈I, (e j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
, i.e., x(·)|[0,T ] is a solution to the muta-

tional equation
◦
x (t) � f

(
x(t + ·)∣∣[−τ,0], t

)
. �

3.3.4 Existence for Systems of Mutational Equations with Delay

Considering mutational equations with delay and without state constraints, the pre-
ceding results about existence and convergence of solutions can be extended easily
to systems. This feature is regarded as an important advantage in regard to applica-
tions as we have already pointed out.

Indeed, starting with the same assumptions as in § 3.3.3 (i.e. Euler compactness
and Euler equi-continuity) for each component, Euler method provides a sequences
of approximative solutions. Then Lemma 18 (on page 195) is applied to each com-
ponent successively so that we can extract a subsequence of approximative solutions
whose components converge pointwise respectively.
Finally it is to verify that each component of the limit solves the corresponding
mutational equation in the sense of Definition 8 (on page 187). For this purpose,
we regard the other components as an additional, but known dependence on time
— as we have already done successfully in the proof of Theorem 2.20 (on page 118).

Now we formulate the results about two mutational equations in detail and then
restrict our considerations of proofs to the aspect of convergence again.
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Theorem 21 (Convergence of solutions to systems of mutational equations).

Let the tuples
(
E1, (d1

j ) j∈I1 , (e1
j) j∈I1 , (�·�1j) j∈I1 , (D̂1

j) j∈I1

)

and
(
E2, (d2

j ) j∈I2 , (e2
j) j∈I2 , (�·�2j) j∈I2 , (D̂2

j) j∈I2

)

satisfy the assumptions of § 3.1 (on page 182 ff.) respectively with nonempty sets
Θ̂
(
E1,(d1

j ) j∈I1 ,(e
1
j ) j∈I1 ,(�·�1j) j∈I1

)
and Θ̂

(
E2,(d2

j ) j∈I2 ,(e
2
j) j∈I2 ,(�·�2j) j∈I2

)
.

Suppose the following properties of

f 1
n , f 1 : E1×E2× [0,T ] −→ Θ̂

(
E1,(d1

i )i∈I1 ,(e
1
i )i∈I1 ,(�·�1i )i∈I1

)
(n ∈ N)

f 2
n , f 2 : E1×E2× [0,T ] −→ Θ̂

(
E2,(d2

i )i∈I2 ,(e
2
i )i∈I2 ,(�·�2i )i∈I2

)

x1
n, x1 : [0,T ] −→ E1

x2
n, x2 : [0,T ] −→ E2 :

1.) for each j1 ∈I1, j2 ∈I2 and every ρ ≥ 0,

R1
j1

:= sup
n,t
�x1

n(t)�1j1 < ∞, α̂1
j1
(ρ) := sup

n,t,y1,y2
α1

j1

(
f 1
n (y1,y2, t); ρ

)
< ∞,

R2
j2

:= sup
n,t
�x2

n(t)�2j2 < ∞, α̂2
j2
(ρ) := sup

n,t,y1,y2
α2

j2

(
f 2
n (y1,y2, t); ρ

)
< ∞,

β̂ 1
j1

:= sup
n

Lip
(
x1

n(·) : [0,T ]−→ (E1,e1
j1
)
)

< ∞,

β̂ 2
j2

:= sup
n

Lip
(
x2

n(·) : [0,T ]−→ (E2,e2
j2
)
)

< ∞,

2.)
◦
x 1

n(·) � f 1
n (x1

n(·), x2
n(·), ·)◦

x 2
n(·) � f 2

n (x1
n(·), x2

n(·), ·) (in the sense of Definition 8 on p.187) for any n,

3.) for L 1-almost every t ∈ [0,T ] :

lim
n→∞

D̂1
j1

(
f 1
n (x1(t), x2(t), t), f 1

n (y1
n, y2

n, tn); ρ
)

= 0

lim
n→∞

D̂2
j2

(
f 2
n (x1(t), x2(t), t), f 2

n (y1
n, y2

n, tn); ρ
)

= 0

for each j1 ∈I1, j2 ∈I2, ρ ≥ 0 and any sequences (tn)n∈N, (y1
n)n∈N, (y2

n)n∈N

in [t,T ], E1 and E2 respectively satisfying

lim
n→∞

tn = t and lim
n→∞

d1
i

(
x1(t),y1

n

)
= 0, sup

n∈N

�y1
n�1i ≤ R1

i for each i ∈I1,

lim
n→∞

d2
i

(
x2(t),y2

n

)
= 0, sup

n∈N

�y2
n�2i ≤ R2

i for each i ∈I2,

4.) for Lebesgue-almost every t ∈ [0,T ] (t = 0 inclusive) and any t̃ ∈ ]t,T [, there

exist a sequence nm↗∞ of indices and sequences δm↘ 0, δ̃m↘ 0 (depending
on t, t̃) satisfying for m−→ ∞ and each j1 ∈I1, j2 ∈I2, ρ ≥ 0
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i) D̂1
j1

(
f 1(x1(t), x2(t), t), f 1

nm
(x1(t), x2(t), t); ρ

) −→ 0

D̂2
j2

(
f 2(x1(t), x2(t), t), f 2

nm
(x1(t), x2(t), t); ρ

) −→ 0

(ii) d1
j1

(
x1(t), x1

nm
(t + δm)

) −→ 0, d2
j2

(
x2(t), x2

nm
(t + δm)

) −→ 0

(iii) d1
j1

(
x1(̃t), x1

nm
(̃t− δ̃m)

) −→ 0, d2
j2

(
x2(̃t), x2

nm
(̃t− δ̃m)

) −→ 0
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Then, x1(·) and x2(·) are solutions to the mutational equations
◦
x 1(·) � f 1

(
x1(·), x2(·), ·), ◦

x 2(·) � f 2
(
x1(·), x2(·), ·)

in
(
E1, (d1

j ) j∈I1 , (e1
j) j∈I1 , (�·�1j) j∈I1 , (D̂1

j) j∈I1

)

and
(
E2, (d2

j ) j∈I2 , (e2
j) j∈I2 , (�·�2j) j∈I2 , (D̂2

j) j∈I2

)

respectively.

Theorem 22 (Existence of solutions to systems with delay).
Suppose each of the tuples
(
E1, (d1

j ) j∈I1 , (e1
j) j∈I1 , (�·�1j) j∈I1 , Θ̂

(
E1,(d1

i )i∈I1 ,(e
1
i )i∈I1 ,(�·�1i )i∈I1

))
(
E2, (d2

j ) j∈I2 , (d2
j ) j∈I2 , (�·�2j) j∈I2 , Θ̂

(
E2,(d2

i )i∈I2 ,(e
2
i )i∈I2 ,(�·�2i )i∈I2

))

to be Euler compact and Euler equi-continuous. For some fixed τ ≥ 0, set

BL k := BLip
(
[−τ,0], Ek; (ek

j) j∈Ik , (�·�kj) j∈Ik

)
(k = 1,2).

Assume for the functions

f 1 : BL 1×BL 2× [0,T ] −→ Θ̂
(
E1,(d1

i )i∈I1 ,(e
1
i )i∈I1 ,(�·�1i )i∈I1

)

f 2 : BL 1×BL 2× [0,T ] −→ Θ̂
(
E2,(d2

i )i∈I2 ,(e
2
i )i∈I2 ,(�·�2i )i∈I2

)

and each j1 ∈I1, j2 ∈I2, R > 0 :

1.) sup
z1, z2, t

α1
j1( f 1(z1,z2,t); R) < ∞, sup

z1, z2, t
α2

j2( f 2(z1,z2, t); R) < ∞,

2.) sup
z1, z2, t

β 1
j1( f 1(z1,z2,t); R) < ∞, sup

z1, z2, t
β 2

j2( f 2(z1,z2, t); R) < ∞,

3.) sup
z1, z2, t

γ1
j1( f 1(z1,z2,t)) < ∞, sup

z1, z2, t
γ2

j2( f 2(z1,z2, t)) < ∞,

4.) for L 1-almost every t ∈ [0,T ] :

lim
n→∞

D1
j1

(
f 1(y1

n,y
2
n,sn), f 1(z1

n,z
2
n, tn); R

)
= 0

lim
n→∞

D2
j2

(
f 2(y1

n,y
2
n,sn), f 2(z1

n,z
2
n, tn); R

)
= 0

for every j1 ∈I1, j2 ∈I2, R > 0 and any sequences (sn, tn)n∈N, (y1
n,z

1
n)n∈N

(y2
n,z

2
n)n∈N in [0,T ], BL 1, BL 2 respectively satisfying for each k ∈ {1,2},

i ∈Ik, s ∈ [−τ,0],

lim
n→∞

sn = t = lim
n→∞

tn, lim
n→∞

dk
i

(
yk

n(s), zk(s)
)

= 0 = lim
n→∞

dk
i

(
zk

n(s), zk(s)
)

sup
n∈N

sup
[−τ,0]

{�yk
n(·)�ki , �zk

n(·)�ki } < ∞ .

Then for any initial functions x1
0 ∈BL 1,x2

0 ∈BL 2 given, there exist curves

x1(·) ∈ BLip
(
[−τ,T ], E1; (e1

j) j∈I1 , (�·�1j) j∈I1

)

x2(·) ∈ BLip
(
[−τ,T ], E2; (e2

j) j∈I2 , (�·�2j) j∈I2

)

with x1(·)|[−τ,0] = x1
0, x2(·)|[−τ,0] = x2

0 whose respective restrictions to [0,T ] solve
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the two mutational equations with delay
⎧
⎨

⎩

◦
x 1(t) � f 1

(
x1(t + ·)|[−τ,0], x2(t + ·)|[−τ,0], t

)

◦
x 2(t) � f 2

(
x1(t + ·)|[−τ,0], x2(t + ·)|[−τ,0], t

)

in
(
E1, (d1

j ) j∈I1 , (e1
j) j∈I1 , (�·�1j) j∈I1 , (D̂1

j) j∈I1

)

and
(
E2, (d2

j ) j∈I2 , (e2
j) j∈I2 , (�·�2j) j∈I2 , (D̂2

j) j∈I2

)
.

Proof (of Theorem 21). We focus on x1(·) and choose the index j ∈I1 arbitrarily.
Then, x1(·) : [0,T ]−→ (E1,e1

j) is β̂ 1
j -Lipschitz continuous as a consequence of as-

sumption (4.) and the lower semicontinuity of e1
j (hypothesis (H3) (i) on page 182).

Hypothesis (H4) about the lower semicontinuity of �·�1j ensures sup �x1(·)�1j ≤ R1
j .

Finally we verify the solution property

limsup
h↓0

1
h ·
(

d1
j

(
ϑ 1(s+ h, z1), x1(t + h)

) − d1
j (ϑ 1(s,z1), x1(t)) · eα̂1

j1
(ρ) h
)

≤ D̂1
j

(
ϑ 1, f 1(x1(t), x2(t), t); ρ

)

for Lebesgue-almost every t ∈ [0,T [ and for any ϑ 1 ∈ Θ̂(E1,(d1
j ),(e

1
j ),(�·�1j)

)
,

s ∈ [0,1[, z1 ∈ E1, ρ ≥ R1
j with �ϑ 1(·,z1)� j ≤ ρ ,

Indeed, for Lebesgue-almost every t ∈ [0,T [ and any h ∈ ]0, T−t[, assumption (4.)
guarantees a subsequence

(
xnm(·))m∈N

and sequences δm ↘ 0, δ̃m ↘ 0 satisfying
for each i1 ∈I1, i2 ∈I2, r ≥ 0 and m−→ ∞

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D̂1
i1

(
f 1(x1(t), x2(t), t), f 1

nm
(x1(t), x2(t), t); r

) −→ 0

d1
i1

(
x1(t), x1

nm
(t + δm)

) −→ 0

d2
i2

(
x2(t), x2

nm
(t + δm)

) −→ 0

d1
i1

(
x1(t+h), x1

nm
(t + h− δ̃m)

) −→ 0

Now we conclude from Lemma 9 (on page 188) and the continuity of d1
j (due to

hypothesis (H3) (i)) respectively for each index j ∈I1

d1
j

(
ϑ 1(s+ h, z1), x1(t + h)

)

= lim
m→∞

d1
j

(
ϑ 1(s+ h− δ̃m, z1), x1

nm
(t + h− δ̃m)

)

≤ limsup
m→∞

(
d1

j

(
ϑ 1(s+ δm, z1), x1

nm
(t + δm)

)

+ h · sup
[t+δm, t+h−δ̃m]

D̂1
j

(
ϑ 1, f 1

nm
(x1

nm
, x2

nm
, ·); ρ)

)
· eα̂1

j (ρ) ·h

≤
(

d1
j

(
ϑ 1(s,z), x1(t)

)
+ h · limsup

m→∞
sup

[t+δm, t+h]
D̂1

j

(
ϑ 1, f 1

nm
(x1

nm
,x2

nm
, ·); ρ)

)
eα̂

1
j1

(ρ) h
.
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For completing the proof, it is sufficient to verify

limsup
h↓0

limsup
m→∞

sup
[t+δm, t+h]

D̂1
j

(
ϑ 1, f 1

nm
(x1

nm
,x2

nm
, ·); ρ) ≤ D̂1

j

(
ϑ 1, f 1(x1(t),x2(t), t); ρ

)

for Lebesgue-almost every t ∈ [0,T [ and any subsequence nm↗ ∞ satisfying
⎧
⎪⎪⎨

⎪⎪⎩

d1
i1

(
x1(t), x1

nm
(t + δm)

) −→ 0

d2
i2

(
x2(t), x2

nm
(t + δm)

) −→ 0

D̂1
i1

(
f 1(x1(t),x2(t), t), f 1

nm
(x1(t),x2(t), t); r

) −→ 0

for m−→ ∞ and each i1 ∈I1, i2 ∈I2, r ≥ 0.
Indeed, if this inequality was not correct then we could select some ε > 0 and
sequences (hl)l∈N, (ml)l∈N, (sl)l∈N fulfilling for all l ∈N

D̂1
j

(
ϑ 1, f 1

nml
(x1

nml
(t+sl), x2

nml
(t+sl), t+sl); ρ

) ≥ D̂1
j

(
ϑ 1, f 1(x1(t), x2(t), t); ρ

)
+ ε,

δml ≤ sl ≤ hl ≤ 1
l , ml ≥ l.

Due to property (H3) (ii), the uniform Lipschitz continuity of (x1
nm

(·))m, (x2
nm

(·))m

implies
{

d1
i1

(
x1(t), x1

nml
(t + sl)

) −→ 0

d2
i2

(
x2(t), x2

nml
(t + sl)

) −→ 0

for l −→ ∞ and each i1 ∈I1, i2 ∈I2. Thus at L 1-almost every time t ∈ [0,T [,
assumptions (3.), (4.) (i) and hypothesis (H6) about the continuity of D̂1

j( · , · ; r)
would lead to a contradiction because for any r ≥ 0,

lim
l→∞

D̂1
j

(
ϑ 1, f 1

nml
(x1

nml
(t+sl), x2

nml
(t+sl), t+sl); r

)
= D̂1

j

(
ϑ 1, f 1(x1(t), x2(t), t); r

)
.

�

3.3.5 Existence Under State Constraints for a Single Index

Similarly to § 2.3.6 (on page 123 f.), we restrict our considerations to the special
case that the index set I �= /0 consists of a single element: I = {0}.
Now the goal is to specify sufficient conditions for the existence of solutions to
mutational equations with state constraints. Aubin’s adaption of Nagumo’s Theorem
(about ordinary differential equations) formulated in Theorem 1.19 (on page 40)
serves as a starting point and provides the viability condition.

In contrast to the counterparts in preceding chapters, we now dispense with
assuming sequential compactness of all “closed balls” in (E,d0). Instead we focus
on the compactness properties of curves which are constructed via transitions in a
piecewise way. But this piecewise construction does not have to be restricted to an
equidistant partition of [0,T ] as in Definitions 2.15 and 16 about Euler compactness
and Euler equi-continuity respectively (on pages 112 and 194).
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Definition 23.
(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i,(ei)i,(�·�i)i

))

is called nonequidistant Euler compact if it satisfies the following condition for any
initial element x0 ∈ E, time T ∈]0,∞[ and bounds α̂ j, β̂ j, γ̂ j,Lj > 0 ( j ∈I ):
Let PN = PN (x0,T,(α̂ j, β̂ j, γ̂ j,Lj) j∈I ) denote the (possibly empty) subset of
all curves y(·) : [0,T [−→ E with the four following properties

(1.) y(0) = x0,

(2.) for each j ∈I , y : [0,T [−→ (E,e j) is Lj-Lipschitz continuous,

(3.) for each j ∈I , sup �y(·)� j ≤ (�x0� j + γ̂ j T ) · eγ̂ j T =: R j.

(4.) for any t ∈ [0,T [, there are s ∈ ]t−1, t] and ϑ ∈ Θ̂(E,(di)i,(ei)i,(�·�i)i
)

with y(s+ ·) = ϑ( · , y(s)) in an open neighborhood I ⊂ [0,1] of [0, t−s]
and α j(ϑ ; R j) ≤ α̂ j, β j(ϑ ; R j) ≤ β̂ j, γ j(ϑ) ≤ γ̂ j,

Then for each t ∈ [0,T [, every sequence (zn)n∈N in {y(t) |y(·) ∈PN } ⊂ E has a
subsequence (znm)m∈N

and an element z ∈ E with d j(znm ,z) −→ 0 for each j ∈I .

The tuple
(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))

is called nonequidistant Euler equi-continuous if for any initial element x0 ∈E, time
T ∈]0,∞[ and bounds α̂ j, β̂ j, γ̂ j > 0 ( j ∈I ), there exists λ j > 0 for each j ∈I
such that

PN (x0, T, (α̂ j, β̂ j, γ̂ j, ∞) j∈I ) = PN (x0, T, (α̂ j, β̂ j, γ̂ j, λ j) j∈I ) ,

i.e., every curve y(·) : [0,T [−→ E satisfying preceding conditions (1.), (3.), (4.)
is λ j-Lipschitz continuous with respect to e j for each j ∈I .

Remark 24. We provide two simple implications for the special case I = {0}:
(1.) If for every r1,r2 > 0 and x0 ∈ E, the set {x ∈ E | e0(x0,x) ≤ r1, �x�0 ≤ r2}
is sequentially compact, then the tuple

(
E, d0, e0, �·�0, Θ̂

)
is always nonequidistant

Euler compact.

(2.) If d0 ≡ e0 is a pseudo-metric, then all curves piecewise constructed by
transitions are Lipschitz continuous due to Lemma 2.10 (on page 107). Finally
nonequidistant Euler equi-continuity (with λ0 = β̂0) results from the triangle in-
equality.

Proposition 25 (Existence of solutions under state constraints for I = {0}).
In addition to I = {0}, let E �= /0 and

d0, e0 : E×E −→ [0,∞[ ,
�·�0 : E −→ [0,∞[ ,
D0 : E×E× [0,∞[ −→ [0,∞[

satisfy hypotheses (H1) – (H7). Assume
(
E, d0, e0, �·�0, Θ̂(E,d0,e0,�·�0)

)
to be

nonequidistant Euler compact and nonequidistant Euler equi-continuous.
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For each r>0, suppose

f : (E,d0)−→
(
Θ̂
(
E, d0, e0, �·�0

)
, D0(·, ·;r)

)

to be continuous with

α̂(r) := supz∈E α0( f (z);r) < ∞,

β̂ (r) := supz∈E β0( f (z);r) < ∞,
γ̂ := supz∈E γ0( f (z)) < ∞.

Let V ⊂ (E,d0) be a closed subset whose projection E � V has always
nonempty values and whose distance function dist(·,V ) : (E,d0)−→ [0,∞[, z �−→
inf

y∈V
d0(y,z) is 1-Lipschitz continuous. Assume the following viability condition

f (z) ∈TV (z) for every z ∈ V ,

i.e. liminf
h↓0

1
h · dist

(
f (z)(h,z), V

)
= 0 for every z ∈ V .

Then every state x0 ∈ V is the initial point of at least one solution x : [0,1]−→ E
to the mutational equation

◦
x (·) � f

(
x(·))

in
(
E, d0, e0, �·�0, D̂0

)
with the state constraint x(t) ∈ V for all t ∈ [0,1].

For proving this proposition, we first construct approximative solutions satisfy-
ing weakened forms of the mutational equation and state constraints. Lemma 1.29
(on page 48) and Lemma 2.25 (on page 124) have the following counterpart with
λ0 > 0 denoting the appropriate Lipschitz constant resulting from nonequidistant
Euler equi-continuity and depending on γ̂, x0 essentially.

Lemma 26 (Constructing approximative solutions).
Choose any ε > 0. Under the assumptions of Proposition 25, there always exists a
λ0-Lipschitz continuous function xε(·) : [0,1]−→ (E,e0) satisfying

(a) xε(0) = x0,

(b) for all t ∈ [0,1], dist
(
xε(t), V

) ≤ ε eα̂

(c) for all t ∈ [0,1[, there exist ϑ ∈ { f (z)
∣
∣ z ∈ E : d0(z, xε(t)) ≤ ε eα̂

} ⊂
Θ̂(E,d0,e0,�·�0) and s ∈ [0, t] with xε(s+ ·) = ϑ(·,xε (s))
in an open neighborhood I ⊂ [0,1] of [0, t−s],

(d) for all t ∈ [0,1], �xε(t)�0 ≤
(�x0�0 + γ̂ t

)
eγ̂ t .

Proof (of Lemma 26). For ε > 0 fixed, let Aε(x0) denote the set of all tuples
(Tx, x(·)) consisting of some Tx ∈ [0,1] and a λ0-Lipschitz continuous function
x(·) : [0,Tx]−→ (E,e0) such that
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(a) x(0) = x0,

(b’) 1.) dist
(
x(Tx), V

) ≤ rε(Tx) with rε(t) := ε eα̂ t t,
2.) dist

(
x(t), V

) ≤ rε (1) for all t ∈ [0,Tx],

(c) for all t ∈ [0,Tx[, there exist ϑ ∈ { f (z)
∣
∣ z∈ E : d0(z, xε(t))≤ rε (1)

}⊂
Θ̂(E,d0,e0,�·�0) and s ∈ [0, t] with xε(s+ ·) = ϑ(·,xε(s)) in an open
neighborhood I ⊂ [0,Tx[ of [0, t−s].

(d) for all t ∈ [0,Tx[, �xε(t)�0 ≤
(�x0�0 + γ̂ t

)
eγ̂ t .

Obviously, Aε(x0) is not empty since it contains (0, x(·)≡ x0). Moreover, an order
relation � on Aε(x0) is specified by

(Tx, x(·)) � (Ty, y(·)) :⇐⇒ Tx ≤ Ty and x = y
∣
∣
[0,Tx]

.

Hence, Zorn’s Lemma provides a maximal element
(
T, xε(·)

) ∈Aε(x0).
As all considered functions with values in E have been supposed to be λ0-Lipschitz
continuous, xε(·) : [0,T [−→ (E,e0) is also λ0-Lipschitz continuous. In particular,
xε(·) can always be extended to the closed interval [0,T ]⊂ [0,1] in a Lipschitz con-
tinuous way because the tuple

(
E, d0, e0, �·�0, Θ̂(E,d0,e0,�·�0)

)
is assumed to be

nonequidistant Euler compact (and for each k ∈N, we are free to extend x(·)|[0,T− 1
k ]

to [0,T ] by means of an arbitrarily fixed transition ϑ ).

Assuming T < 1 for a moment, we obtain a contradiction if xε(·) can be extended
to a larger interval [0,T + δ ] ⊂ [0,1] (δ > 0) preserving conditions (b’), (c), (d).
Due to the assumption about the set-valued projection on V ⊂ E , the closed set V
contains an element z ∈ E with d0(xε(T ),z) = dist(xε(T ), V ) ≤ rε(T ).
As a consequence of the viability condition, there is a sequence hm ↓ 0 in ]0,1−T [
such that dist

(
f (z)(hm,z), V

) ≤ ε hm for all m ∈ N.

Now set for each t ∈ [T, T + h1]
xε(t) := f (z)

(
t−T, xε(T )

)
.

Obviously, this extension of xε(·) satisfies the two conditions (c), (d) in [0, T +h1].
Furthermore, the estimate d0

(
z, xε(T )

) ≤ rε (T ) < rε(1) and the continuity of xε(·)
provide some sufficiently small δ ∈ ]0,h1] with

dist
(
xε(t), V

) ≤ d0
(
xε(t), z

) ≤ rε(1) for every t ∈ [T, T + δ ]
and thus, the extension x(·) fulfills condition (b’)(2.) in the interval [0, T + δ ].
For any index m ∈N with hm < δ , we conclude from the 1-Lipschitz continuity of
dist( · ,V ) with respect to d0 and Proposition 7 (on page 185)

dist
(
xε(T +hm), V

) ≤ d0
(

f (z)(hm, xε(T )), f (z)(hm, z)
)
+ dist

(
f (z)(hm, z), V

)

≤ d0
(
xε(T ), z

) · eα̂ hm + ε ·hm

≤ ε eα̂ T T · eα̂ hm + ε ·hm

≤ rε(T + hm),

i.e. condition (b’)(1.) is also satisfied at time t = T + hm with any large m ∈ N.
Finally, xε (·)

∣
∣
[0,T+hm] provides the wanted contradiction and thus, T = 1. �
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Proof (of Proposition 25). Considering a sequence of approximative solutions
(x1/n(·))n∈N in the sense of Lemma 26, we can select a subsequence (x1/n j

(·)) j∈N

that is converging pointwise to a λ0-Lipschitz continuous curve x(·) : [0,T ]−→ E.
Indeed, this selection is based on the same arguments as Lemma 18 (on page 195 f.).
Moreover, x(·) has all its values in the closed set of constraints V ⊂ E.

Finally we have to verify that x(·) solves the mutational equation
◦
x (·) � f

(
x(·)).

It results from Convergence Theorem 13 (on page 191) and the continuity of f . �

3.3.6 Exploiting a Generalized Form of “Weak” Compactness:
Convergence and Existence without State Constraints

In § 3.3.3 (on page 193 ff.), the combination of Euler compactness and Euler equi-
continuity has laid the foundations for the existence of solutions to the initial value
problem without state constraints (in Theorem 19).

This form of compactness with respect to (d j) j∈I , however, might be very difficult
to verify in many applications. In the simple example of a Banach space with affine
linear transitions (extending Example 1.2 on page 2), we would have to assume
that all transitions have their values (after any positive time) in a finite dimensional
subspace. Undoubtedly, it is a very severe restriction.

Similar obstacles have already led to the concepts of weak convergence and weak
compactness in functional analysis. They are closely related with linear forms in
the considered topological vector space, but such linear functions do not prove to be
appropriate for drawing any conclusions in the general tuple

(
E, (d j) j∈I , (e j) j∈I

)
.

In regard to extending the notion of weak convergence to such a tuple, we suggest
another well-known relation of linear functional analysis as starting point for bridg-
ing the gap between strong and weak topology: In every Banach space (X ,‖ · ‖X)
(with BX denoting its closed unit ball), the norm of any element z ∈ X satisfies

‖z‖X = sup
{

y∗(z)
∣
∣ y∗ : X −→R linear, continuous, supx∈BX

‖y∗(x)‖X ≤ 1
}
.

Skipping now any aspects of linearity, we realize that the metric on X is represented
as supremum of further pseudo-metrics. In particular, weak convergence focuses on
the convergence with respect to all these pseudo-metrics instead of their supremum.
Such a connection via supremum can be extended easily to

(
E, (d j) j∈I , (e j) j∈I

)
.

Additional assumptions for § 3.3.6.

In addition to the general hypotheses (H1)–(H7) about d j,e j : E × E −→ [0,∞[
specified in § 3.1 (on page 182 ff.), let J �= /0 be a further index set. Assume
d j,κ ,e j,κ : E×E −→ [0,∞[ ( j ∈I , κ ∈J ) to satisfy (H1)–(H3) (with index set
I ×J instead of I for distance functions) and additionally
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(H8) d j(x, y) = sup
κ∈J

d j,κ(x,y),

e j(x, y) = sup
κ∈J

e j,κ(x,y) for all x,y ∈ E, j ∈I .

Moreover, we tighten up hypothesis (H4) in the following form:

(H4’) �·� j is lower semicontinuous with respect to (di,κ)i∈I ,κ∈J , i.e.,

�x� j ≤ liminf
n→∞

�xn� j

for any x ∈ E and (xn)n∈N in E fulfilling for each i ∈I ,κ ∈J

lim
n→∞

di,κ(xn,x) = 0, sup
n∈N

�xn�i < ∞ .

Definition 27 (weakly Euler compact).
The tuple

(
E, (d j) j∈I , (d j,κ) j∈I ,κ∈J , (e j) j∈I , (e j,κ) j∈I ,κ∈J , (�·� j) j∈I ,

Θ̂
(
E,(di),(ei),(�·�i)

))
is called weakly Euler compact if it satisfies the following

condition for any element x0 ∈ E, time T ∈]0,∞[ and bounds α̂ j, β̂ j, γ̂ j > 0 ( j ∈I ):
Let N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) denote the (possibly empty) subset of all curves
y(·) : [0,T ]−→ E specified in a piecewise way in Definition 2.15 (on page 112) and
equivalently in Remark 15 (2.) (on page 193).
Then for each t ∈ [0,T ], every sequence (zn)n∈N in {y(t) | y(·) ∈N } ⊂ E has a
subsequence (znm)m∈N

and an element z ∈ E with

lim
m→∞

d j,κ(znm ,z) = 0 for each j ∈I ,κ ∈J .

Now the existence of solutions is proved in this modified environment, i.e. on
the basis of weak Euler compactness, but still by means of Euler approximations.
The next theorems about existence and convergence, however, require a form of
“weak continuity” (with respect to state) for the transitions which occur on the
right-hand of the mutational equation. This is the novelty in assumption (5.) below:

Theorem 28 (Existence due to weak Euler compactness).
Suppose

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))
to

be Euler equi-continuous (in the sense of Definition 16 on page 194) and the tuple(
E, (d j) j, (d j,κ) j,κ , (e j) j, (e j,κ) j,κ , (�·� j) j, Θ̂

(
E,(di)i,(ei)i,(�·�i)i

))
to be

weakly Euler compact.

Moreover assume for some fixed τ ≥ 0, the function

f : BLip
(
[−τ,0], E; (ei)i, (�·�i)i

)× [0,T ] −→ Θ̂
(
E,(di)i,(ei)i,(�·�i)i

)

and each j ∈I , R > 0 :

1.) sup
z(·), t

α j( f (z(·), t); R) < ∞,

2.) sup
z(·), t

β j( f (z(·), t); R) < ∞,

3.) sup
z(·), t

γ j( f (z(·), t)) < ∞,
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4.) for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j
(

f (z1
n(·), t1

n), f (z2
n(·), t2

n ); R
)

= 0

for each j ∈I , R ≥ 0 and any sequences (t1
n )n∈N, (t2

n)n∈N in [0,T ] and
(z1

n(·))n∈N, (z2
n(·))n∈N in BLip

(
[−τ,0], E; (e j) j∈I , (�·� j) j∈I

)
satisfying

for every i ∈I , κ ∈J and s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞
di,κ
(
z1

n(s), z(s)
)

= 0 = lim
n→∞

di,κ
(
z2

n(s), z(s)
)

sup
n∈N

sup
[−τ,0]

�z1,2
n (·)�i < ∞ .

5.) for every z(·) and L 1-a.e. t ∈ [0,T ], the function f (z(·), t)(h, ·) : E −→ E is
“weakly” continuous in the following sense:

lim
n→∞

d j,κ
(

f (z(·), t)(h,y), f (z(·), t)(h,yn)
)

= 0

for each κ ∈J , h ∈ ]0,1], y ∈ E and any sequence (yn)n∈N in E satisfying
di,κ ′(y,yn)−→ 0, supn �yn�i < ∞ for any i ∈I ,κ ′ ∈J .

For every function x0(·) ∈ BLip
(
[−τ,0], E; (e j) j∈I , (�·� j) j∈I

)
, there exists a

curve x(·) : [−τ,T ]−→ E with the following properties:

(i) x(·) ∈ BLip
(
[−τ,T ], E; (e j) j∈I , (�·� j) j∈I

)
,

(ii) x(·)∣∣[−τ,0] = x0(·),
(iii) For L 1-a.e. t ∈ [0,T [, lim

h↓0

1
h ·d j

(
f
(
x(t + ·)∣∣[−τ,0], t

)
(h, x(t)), x(t +h)

)
= 0.

If each d j ( j ∈ J) satisfies the triangle inequality in addition, the restriction

x(·)∣∣[0,T ] is a solution to the mutational equation
◦
x(t) � f

(
x(t + ·)∣∣[−τ,0], t

)

in the sense of Definition 8 (on page 187).

For constructing a candidate x(·) : [−τ,T ] −→ E , we can follow exactly the same
track as for Euler compactness in § 3.3.3 (on page 193 ff.). In particular, the
arguments for preceding Lemma 18 (presented on page 196) provide a subse-
quence of Euler approximations whose restrictions to [0,T ] converge to a function
x(·) : [0,T ]−→ E pointwise with respect to each d j,κ ( j ∈I , κ ∈J ).
Now we still have to focus on the solution property of x(·)∣∣[0,T ]:

Proposition 29 (about “weak” pointwise convergence of solutions).
Suppose the following properties of

fn, f : E× [0,T ] −→ Θ̂
(
E,(di)i∈I ,(e j) j∈I ,(�·�i)i∈I

)
(n ∈ N)

xn, x : [0,T ] −→ E :

1.) R j := sup
n,t
�xn(t)� j < ∞,

α̂ j(ρ) := sup
n

α j
(
xn; ρ

)
< ∞ for ρ ≥ 0,

β̂ j := sup
n

Lip
(
xn(·) : [0,T ]−→ (E,e j)

)
< ∞ for every j ∈I ,
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2.)
◦
xn (·) � fn(xn(·), ·) (in the sense of Definition 8 on page 187) for every n∈N,

3.) Equi-continuity of ( fn)n at (x(t), t) at almost every time in the following sense:

for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j ( fn(x(t), t), fn(yn, tn); r) = 0

for each j ∈I , r ≥ 0 and any (tn)n∈N, (yn)n∈N in [t,T ] and E respectively
satisfying lim

n→∞
tn = t, lim

n→∞
di,κ
(
x(t),yn

)
= 0, sup

n∈N

�yn�i ≤ Ri for any i,κ ,

4.) For L 1-almost every t ∈ [0,T [ (t = 0 inclusive) and any t̃ ∈ ]t,T [, there is a
sequence nm↗ ∞ of indices (depending on t < t̃) that satisfies for m−→ ∞
⎧
⎪⎨

⎪⎩

(i) D̂ j
(

f (x(t),t), fnm(x(t), t); r
) −→ 0 for all r ≥ 0, j ∈I ,

(ii) for all j ∈I ,κ ∈J : d j,κ
(
x(t), xnm(t)

) −→ 0,

(iii) for all j ∈I ,κ ∈J : d j,κ
(
x(̃t), xnm (̃t)

) −→ 0.

5.) Weak continuity of each function f (x(t), t)(h, ·) : E −→ E at L 1-almost every
time t ∈ [0,T ] in the following sense:

lim
n→∞

d j,κ
(

f (x(t), t)(h,y), f (x(t), t)(h,yn)
)

= 0

for each κ ∈J, h ∈ ]0,1], y ∈ E and any sequence (yn)n∈N in E satisfying
di,κ ′(y,yn)−→ 0, supn �yn�i < ∞ for any i ∈I ,κ ′ ∈J .

Then, x(·) is β̂ j-Lipschitz continuous with respect to e j for each index j ∈I and,
at L 1-almost every time t ∈ [0,T ],

lim
h↓0

1
h · d j

(
f (x(t), t)(h, x(t)), x(t + h)

)
= 0

holds for every index j ∈I .

If each d j ( j ∈ J) satisfies the triangle inequality in addition, then the curve

x(·) : [0,T ]−→ E is a solution to the mutational equation
◦
x (·) � f (x(·), ·) in the

tuple
(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Proof (of Proposition 29).
Similarly to the proof of Theorem 13 (on page 191 ff.), choose the index j ∈I
arbitrarily.

Then x(·) : [0,T ] −→ (E,e j) is β̂ j-Lipschitz continuous. Indeed, for Lebesgue-
almost every t ∈ [0,T [ and any t̃ ∈ ]t,T ], assumption (4.) provides a subsequence(
xnm(·))m∈N

satisfying for each i ∈I , κ ∈J
{

di,κ
(
x(t), xnm(t)

) −→ 0

di,κ
(
x(̃t), xnm (̃t)

) −→ 0
for m−→ ∞.

The uniform β̂ j-Lipschitz continuity of xn(·), n ∈ N, with respect to e j and
hypothesis (H3) (i) about (ei,κ )i∈I ,κ∈J imply for every κ ∈J
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e j,κ
(
x(t), x(̃t)

) ≤ limsup
m→∞

e j,κ
(
xnm(t), xnm (̃t)

) ≤ β̂ j |̃t− t|,
e j
(
x(t), x(̃t)

)
= sup

κ∈J
e j,κ
(
x(t), x(̃t)

) ≤ β̂ j |̃t− t|.

This Lipschitz estimate even holds at any points of time t, t̃ ∈ [0,T ] due to the lower
semicontinuity of e j,κ (hypotheses (H3) (o), (i)). Furthermore, hypothesis (H4’)
about the lower semicontinuity of �·� j guarantees the bound

�x(̃t)� j ≤ liminf
m→∞

�xnm (̃t)� j ≤ R j.

Finally we verify at L 1-almost every time t ∈ [0,T [

limsup
h↓0

1
h · d j

(
f (x(t), t)(h, x(t)), x(t + h)

)
= 0.

Indeed, for L 1-almost every t ∈ [0,T [ and any h∈ ]0, T−t[, assumption (4.) ensures
a subsequence

(
xnm(·))m∈N

satisfying for each i ∈I , κ ∈J , r ≥ 0 and m−→ ∞
⎧
⎪⎨

⎪⎩

D̂i
(

f (x(t), t), fnm(x(t), t); r
) −→ 0

di,κ
(
x(t), xnm(t)

) −→ 0

di,κ
(
x(t + h), xnm(t + h)

) −→ 0.

For any indices i ∈I and κ ∈J , we conclude from assumption (5.)

lim
m→∞

di,κ
(

f (x(t), t)(h, x(t)), f (x(t), t)(h, xnm(t))
)

= 0.

Now hypothesis (H3) (i) about (di,κ)i∈I ,κ∈J implies for every κ ∈J

d j,κ
(

f (x(t),t)(h, x(t)), x(t + h)
)

= lim
m→∞

d j,κ
(

f (x(t), t)(h, xnm(t)), xnm(t + h)
)

≤ limsup
m→∞

d j
(

f (x(t), t)(h, xnm(t)), xnm(t + h)
)
.

Lemma 9 (on page 188) provides an estimate with ρ ≥ 0 sufficiently large

d j,κ
(

f (x(t),t)(h, x(t)), x(t + h)
)

≤ h · limsup
m→∞

sup
[t, t+h]

D̂ j
(

f (x(t), t), fnm(xnm(·), ·); ρ) · eα̂ j(ρ) ·h.

For completing the proof, we verify

limsup
h↓0

limsup
m→∞

sup
[t, t+h]

D̂ j
(

f (x(t), t), fnm(xnm(·), ·); ρ) = 0

for L 1-almost every t ∈ [0,T [ and any subsequence
(
xnm(·))m∈N

satisfying
{

di,κ
(
x(t), xnm(t)

) −→ 0

D̂i
(

f (x(t), t), fnm(x(t), t); r
) −→ 0

for m−→∞ and each i ∈I , κ ∈J , r≥ 0. Indeed, if this equation was not correct
then we could select some ε > 0 and sequences (hl)l∈N, (ml)l∈N, (sl)l∈N such that



3.3 Solutions to Mutational Equations 211

{
D̂ j
(

f (x(t), t), fnml
(xnml

(t + sl), t + sl); ρ
) ≥ ε

0 ≤ sl ≤ hl ≤ 1
l , ml ≥ l

for all l ∈ N.

For each i ∈I , every curve xnm : [0,T ]−→ (E,ei) (m ∈N) is β̂i-Lipschitz continu-
ous. Hypothesis (H3) (ii) about (di,κ)i,κ , (ei,κ)i,κ implies for any i ∈I ,κ ∈J

lim
l→∞

di,κ
(
x(t), xnml

(t + sl)
)

= 0 .

Thus at L 1-almost every time t ∈ [0,T [, assumptions (3.), (4.) (i) and hypothe-
sis (H6) about the continuity of D̂ j( · , · ; r) (on page 184) lead to a contradiction
because for any r ≥ 0,

lim
l→∞

D̂ j
(

f (x(t), t), fnml
(xnml

(t + sl), t + sl); r
)

= 0 .

�
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3.3.7 Existence of Solutions due to Completeness:
Extending the Cauchy-Lipschitz Theorem

In general, many theorems about existence of solutions are based either on a form
of compactness or on a version of completeness. Now we prefer the latter analytical
basis and extend the Existence Theorem of Cauchy-Lipschitz to the current muta-
tional framework.
Aubin’s adaptation to mutational equations in metric spaces has already been pre-
sented in Theorem 1.15 (on page 38). It starts with a compactness assumption about
all closed bounded balls (in the metric space) though.
Now the main goal is to formulate its extension assuming merely an appropriate
form of completeness. In return for this weaker structural hypothesis, however, the
right-hand side of the mutational equation is supposed to be Lipschitz continuous –
in an appropriate sense.

Definition 30. The tuple
(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I

)
is called complete

if for every sequence (xn)n∈N in E with
⎧
⎨

⎩

lim
k→∞

sup
m,n≥k

d j(xm, xn) = 0

sup
n∈N

�xn� j < ∞ for each j ∈I ,

there exists an element x ∈ E fulfilling lim
n→∞

d j(xn,x) = 0 for every j ∈I .

Theorem 31 (Extended Cauchy-Lipschitz Theorem for mutational equations).
Suppose the tuple

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I

)
to be complete and the tuple

(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I , Θ̂

(
E,(di)i∈I ,(ei)i∈I ,(�·�i)i∈I

))
to be Euler

equi-continuous For f : E× [0,T ]−→ Θ̂
(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I

)
assume

(1.) For each j ∈I and R > 0,
α̂ j(R) := supx,t α j( f (x, t); R) < ∞,

β̂ j(R) := supx,t β j( f (x, t); R) < ∞,
γ̂ j := supx,t γ j( f (x, t)) < ∞,

(2.) f is Lipschitz continuous w.r.t. state and continuous in the following sense:
for each tuple (r j) j∈I in [0,∞[I , there exist constantsΛ j,μ j ≥ 0 ( j ∈I )
and moduli of continuity (ω j(·)) j∈I such that δ j : E×E −→ [0,∞[,

δ j(x,y) := inf
{

d j(x,z)+ μ j · e j(z,y)
∣
∣ z ∈ E, ∀ i ∈I : �z�i ≤ ri

}

satisfies for every j ∈I

D̂ j
(

f (x,s), f (y, t); r j
) ≤ Λ j ·δ j(x,y)+ω j(|t− s|)

whenever (x,s), (y,t) ∈ E× [0,T ] fulfill max
{�x�i, �y�i

}≤ ri for each i.

Then for every initial element x0 ∈ E, there exists a solution x(·) : [0,T ]−→ E to the

mutational equation
◦
x (·) � f

(
x(·), ·) in the sense of Definition 8 (on page 187)

with x(0) = x0.
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Proof. We use Euler approximations on equidistant partitions of [0,T ] again, but
now we conclude their convergence to a candidate x(·) : [0,T ] −→ E (with respect
to each distance d j, j ∈I ) from completeness. Finally, Convergence Theorem 13
(on page 191) implies that x(·) is a solution to the mutational equation of interest.

For every n ∈N with 2n > T, set

hn := T
2n , tk

n := k hn for k = 0 . . . 2n,

xn(0) := x0,

xn(t) := f (xn(tk
n), tk

n)
(
t− tk

n , xn(tk
n)
)

for t ∈ ]tk
n , tk+1

n ], k < 2n.

Assuming Euler equi-continuity, we obtain a constant Lj ∈ [0,∞[ for each index j
such that every curve xn(·) is Lj-Lipschitz continuous with respect to e j. Moreover,
Lemma 5 (on page 185) guarantees for every t ∈ [0,T ], n ∈N (with 2n > T ), j ∈I

�xn(t)� j ≤
(�x0� j + γ̂ j T

) · eγ̂ j T =: R j .

Assumption (2.) provides constantsΛ j,μ j ≥ 0 ( j ∈I ) related to the tuple (R j) j∈I

such that Lipschitz continuity with respect to the corresponding auxiliary function

δ j : E×E −→ [0,∞[,

(x,y) �−→ inf
{

d j(x,z)+ μ j · e j(z,y)
∣
∣ z ∈ E, ∀ i ∈I : �z�i ≤ Ri

}

holds for every index j ∈I . In particular, we conclude from Proposition 7 about
estimating evolutions along any two transitions (on page 185) in a piecewise way:
For each j ∈I and every n > m, t ∈ ]tk

m, tk+1
m ] ∩ ]tl

n, tl+1
n ],

d j
(
xm(t), xn(t)

) · e− α̂ j(R j) ·(t−tl
n)

≤ d j
(
xm(tl

n), xn(tl
n)
)

+ (t− tl
n)· D̂ j

(
f (xm(tk

m), tk
m), f (xn(tl

n), tl
n); R j

)

≤ d j
(
xm(tl

n), xn(tl
n)
)

+ (t− tl
n) ·
(
Λ j δ j

(
xm(tk

m), xn(tl
n)
)
+ω j(|tl

n− tk
m|)
)

≤ d j
(
xm(tl

n), xn(tl
n)
)

+ (t− tl
n)·
(
Λ j
(
d j(xm(tk

m), xn(tk
m))+μ j · e j(xn(tk

m),xn(tl
n))
)

+ω j(hm)
)

≤ d j
(
xm(tl

n), xn(tl
n)
)

+ (t− tl
n)·
(
Λ j d j(xm(tk

m),xn(tk
m)) +Λ jμ j ·Ljhm +ω j(hm)

)

and thus, sup
s∈[0,t]

d j
(
xm(s), xn(s)

) ≤ const(μ j,Lj,Λ j) · (hm +ω j(hm)) eΛ j · t

for every t ∈ [0,T ]. The sequence of Euler approximation
(
xn(·)

)
n∈N

is (even)
a uniform Cauchy sequence with respect to each d j, j ∈I .

Due to completeness, there exists an element x(t) ∈ E at every time t ∈ ]0,T ]
such that lim

n→∞
d j
(
xn(t), x(t)

)
= 0 holds for every index j ∈I . Setting x(0) := x0

is a rather obvious choice.
As a consequence of Convergence Theorem 13, x(·) : [0,T ] −→ E is a solution to

the mutational equation
◦
x(·) � f

(
x(·), ·) in the sense of Definition 8. This results

from essentially the same arguments as the proof of Theorem 19 (on page 197 f.).
�
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3.4 Local ω-Contractivity of Transitions Can Become
Dispensable

Definition 2 of transitions (on page 183) implies the restriction that the initial dis-
tance between two points may grow (at most) exponentially while evolving along
the same transition ϑ , i.e. for any x,y ∈ E and h ∈ [0,1], j ∈I ,

d j (ϑ(h,x), ϑ(h,y)) ≤ d j(x,y) · eα j h

with a constant α j ∈ [0,∞[ depending on ϑ and max{�x�,�y�} < ∞. The key goal
of this subsection is some way out if the candidates for transitions only satisfy

d j (ϑ(h,x), ϑ(h,y)) ≤ C · d j(x,y) · eα j h

with a constant C > 1.
In a very broad sense, we apply the same notion as for the step from Hille-Yosida
Theorem (about contractive C0 semigroups) to the Theorem of Feller, Miyadera and
Phillips (about arbitrary C0 semigroups) (see e.g. [76, Theorem II.3.8]). Indeed, we
introduce a suitable auxiliary distance ď j being “equivalent” to d j, but in the muta-
tional framework there is no linear resolvent operator available as in the standard
proof of the Theorem of Feller, Miyadera and Phillips. Hence we start from a more
general inequality of error propagation in finite time intervals instead.

General assumptions and notations for § 3.4.

(A1) Θ̌ (E,(d j) j,(e j) j,(�·�) j) is a nonempty set of functions ϑ : [0,1]×E −→ E
satisfying for each j ∈I

(1.) for everyx ∈ E : ϑ(0,x) = x

(3.) there is β j(ϑ ; ·) : [0,∞[−→ [0,∞[ such that for any s, t∈ [0,1], x∈E

with �x� j ≤ r : e j
(
ϑ(s,x), ϑ(t,x)) ≤ β (ϑ ;r) · |t− s|

(4.) there is γ̂ j ∈ [0,∞[ (not depending on ϑ) such that for any t ∈ [0,1]

and x ∈ E : �ϑ(t,x)� j ≤
(�x� j + γ̂ j t

) · eγ̂ j t

Moreover, a parameter function α j : Θ̌ (E,(d j) j,(e j) j,(�·�) j)× [0,∞[−→
[0,∞[ is nondecreasing with respect to its second argument. (Its purpose is
clarified in (A4) below.)

(A2) For any initial element x0∈E, time T ∈]0,∞[ and bounds α̂ j, β̂ j > 0 ( j ∈I ),
the set N = N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) consists of all “Euler curves”
[0,T ]−→ E related to piecewise constant curves in Θ̌ (E,(d j) j,(e j) j,(�·�) j)
as in Remark 15 (2.) (on page 193) – but with the global bound γ̂ j < ∞
(mentioned in (A1) (4.)) instead of γ j(ϑk).

(A3) Ď j : Θ̌(E,(d j) j,(e j) j,(�·�) j)× Θ̌(E,(d j) j,(e j) j,(�·�) j)× [0,∞[ −→ [0,∞[
satisfies hypotheses (H5) and (H6) (on page 184), but not necessarily (H7).
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(A4) There is a nondecreasing function Čj : [0,∞[−→ ]0,∞[ satisfying:

Choose the bounds α̂ j, β̂ j,R j,T > 0 ( j ∈I ) and initial points x0,y0 ∈ E
arbitrarily with max{�x0� j,�y0� j} < R j and set ρ j(t) := (R j + γ̂ j t) eγ̂ j t

for each j ∈I . Then any curves x(·) ∈N (x0,T,(α̂ j, β̂ j, γ̂ j) j∈I ), y(·) ∈
N (y0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) and the corresponding piecewise constant ϑ ,τ :
[0,T ]−→ Θ̌ (E,(d j) j,(e j) j,(�·�) j) (as in Remark 15 on page 193) fulfil

d j
(
x(T ), y(T )

)≤
(

Čj(0) ·d j(x0,y0)

+Čj(T )·
∫ T

0
Ď j (ϑ(s), τ(s); ρ j(s)) · e−α̌

ρ
j (s) ds

)
· eα̌

ρ
j (T )

with the abbreviation α̌ρj (t) :=
∫ t

0
α j(τ(s); ρ j(s)) ds.

(As T is chosen arbitrarily, the restrictions of x(·),y(·) to [0, t] provide this
estimate at even every time t ∈ [0,T ].)

In comparison with the preceding general assumptions of this chapter in § 3.1 (on
page 182 ff.), the essential new aspect is specified in assumption (A4). Indeed, the
details about α j(ϑ ; ·) and Ď j(·, ·;r) are now reduced and, we assume the structural
inequality (of Proposition 7 on page 185) with three modifications:

(i) the initial error is now multiplied by a constant Čj(0) (possibly > 1),

(ii) we suppose this modified inequality for all “Euler curves” related to piecewise
constant curves in Θ̌ (E,(d j) j,(e j) j,(�·�) j) in a finite time interval [0,T ],

(iii) there is an additional factor e−α̌
ρ
j (s) in the integral – for technical reasons, but

this is no severe restriction because we can usually adapt the choice of Čj(T ).

Constructing Auxiliary Distances with Equivalent Concept of Convergence

Now we bridge the gap between functions in Θ̌ (E,(d j) j,(e j) j,(�·�) j) and tran-
sitions (in the strict sense of Definition 2 on page 183) by means of an auxiliary
distance function ď j.
Additionally, further real components are introduced for technical reasons. They are
essentially to record properly to which “ball” {�·� j ≤ r} ⊂ E we have to refer for
the choice of α j,Ď j and each j ∈I . (Indeed, the tuple (x,(ρ j) j∈I ) ∈ E× [0,∞[I

is related to
⋂

j∈I {�·� j ≤ ρ j · eρ j} ⊂ E . This separate exponential factor is just to
facilitate updating the radius along transitions.)

Proposition 32. Consider

Ě := {(x,(ρ j) j∈I ) ∈ E×R
I | for each j ∈I , �x� j ≤ ρ j · eρ j} ⊂ E× [0,∞[I

with the inclusion E −→ Ě, x �−→ (x, (�x� j) j∈I ) and
the projection πi : Ě −→ [0,∞[, (x,(ρ j) j∈I ) �−→ ρi.

Define the extensions of d j(·, ·), e j(·, ·), �·� j and ϑ ∈ Θ̌ (E,(d j) j,(e j) j,(�·�) j) as
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d j : Ě× Ě −→ [0,∞[,
(
(x1,(ρ1

i )), (x2,(ρ2
i ))
) �−→ d j(x1,x2),

e j : Ě× Ě −→ [0,∞[,
(
(x1,(ρ1

i )), (x2,(ρ2
i ))
) �−→ e j(x1,x2),

�·� j : Ě −→ [0,∞[, (x,(ρi)) �−→ �x� j,

ϑ : [0,1]× Ě −→ Ě,
(
h, (x,(ρi))

) �−→ (
ϑ(h,x), (ρi + γ̂i h)i∈I

)
.

For each index j ∈I , there exist some Tj > 1 and a function ď j : Ě×Ě −→ [0,∞[
satisfying for any ϑ ,τ ∈ Θ̌ (E,(di)i,(ei)i,(�·�i)i) , x̌, y̌ ∈ Ě, t1, t2,h≥ 0 with t1 + h,
t2 + h≤ 1 and the abbreviation R j :=

(
max{π j x̌, π j y̌}+ γ̂ j

) · emax{π j x̌,π j y̌}+ γ̂ j

(1.) d j(·, ·) ≤ ď j(·, ·) ≤ Čj(0) · d j(·, ·)
(2.) ď j

(
ϑ(t1+h, x̌), ϑ(t2+h, y̌)

) ≤ ď j
(
ϑ(t1, x̌), ϑ(t2, y̌)

) · eh (1+α j(ϑ ;R j)),

(3.) ď j
(
ϑ(t1+h, x̌), τ(t2+h, y̌)

)

≤
(

ď j
(
ϑ(t1, x̌), τ(t2, y̌)

)
+ h · Čj(Tj) Ď j(ϑ ,τ;R j)

)
· eh (1+α j(τ;R j)) .

In particular, each function ϑ ∈ Θ̌ (E,(d j) j,(e j) j,(�·�) j) induces a unique tran-
sition on the tuple

(
Ě,(ď j) j,(e j) j,(�·� j) j

)
in the sense of Definition 2 (on page 183).

In a word, the auxiliary distance functions ď j, j ∈I , on Ě (instead of E) guarantee
the form of ω-contractivity that we need for transitions (according to statement (2.))
and, they lead to the same concept of sequential convergence as the original distance
functions (d j) j∈I (according to statement (1.)).
In particular, statement (3.) indicates explicitly how to adapt the distance function
Ď j between transitions and the parameter of error propagation.

If we ensure the general hypotheses (H1) – (H3) for ď j : Ě× Ě −→ [0,∞[ ( j ∈I )
additionally, then all preceding results about well-posed Cauchy problems in this
chapter can be applied to the tuple

(
Ě,(ď j) j,(e j) j,(�·� j) j

)
and its (simply ex-

tended) transitions immediately.
As the construction of ď j in the proof below shows, reflexivity and symmetry of
each ď j ( j ∈I ) result from the corresponding properties of d j. The “equivalence”
between ď j and d j lays the basis for verifying hypotheses (H3) (o), (ii), (iii) about
converging sequences (on page 182) easily.
The sequential continuity in the sense of hypothesis (H3) (i) is nontrivial though.
In the next lemma we prove it under the additional assumption that d j is uniformly
continuous on each “ball”. Naturally this form of continuity results from the triangle
inequality if d j is a pseudo-metric, for example. It is worth noticing, however, that
the triangle inequality for any power d p

j (p > 0) also proves to be sufficient here.
This case will be useful in regard to nonlocal stochastic differential equations (§ 3.6).

Lemma 33 (Sequential continuity of ď j: (H3) (i)).
Suppose for some j ∈I that d j : E×E −→ [0,∞[ is locally uniformly continuous
in the following sense: For each r > 0, there exists a modulus of continuity ω j,r(·)
such that for all x,x′,y,y′ ∈ E with max

{�x� j, �x′� j, �y� j, �y′� j
}

< r
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∣
∣d j(x,y) − d j(x′,y′)

∣
∣ ≤ ω j,r (d j(x, x′) + d j(y, y′)) .

Furthermore assume α j( · ;r) to be bounded for each r ≥ 0.
Then the function ď j : Ě× Ě −→ [0,∞[ is sequentially continuous in the sense that

lim
n→∞

ď j (x̌n, y̌n) = ď j (x̌, y̌)

for any x̌, y̌ ∈ Ě and sequences (x̌n)n∈N, (y̌n)n∈N in Ě fulfilling for each i ∈I ,

lim
n→∞

di(x̌, x̌n) = 0 = lim
n→∞

di(y̌n, y̌), sup
n∈N

{�x̌n�i,�y̌n�i}< ∞ .

Proof (of Proposition 32 on page 215 f.). Fix Tj > 1 with Čj(0) · e−Tj+1 ≤ 1
2

and define ď j : Ě× Ě −→ [0,∞[ as

ď j(x̌0, y̌0)

= sup
{

e−t
(

d j
(
x̌(t), y̌(t)

) · e− α̌
ρ
j (t)− Čj(Tj) ·

∫ t

0
Ď j(ϑ(s),τ(s);ρ(s)) · e−α̌

ρ
j (s)ds

) ∣∣
∣

t ∈ [0,Tj], α̂i, β̂i ≥ 0 (i ∈I ),
x̌(·) ∈ N (x̌0, t, (α̂i, β̂i, γ̂i)i) related to piecewise const. ϑ(·) : [0, t]−→ Θ̌ ,

y̌(·) ∈ N (y̌0, t, (α̂i, β̂i, γ̂i)i) related to piecewise const. τ(·) : [0, t]−→ Θ̌ ,

ρ j(t ′) :=
(

max{π j x̌0, π j y̌0}+ γ̂ j t ′
) · emax{π j x̌0,π j y̌0}+γ̂ j t′ ,

α̌ρj (t ′) :=
∫ t′

0
α j(τ(s); ρ j(s)) ds for each t ′ ∈ [0, t]

}
.

(1.) ď j(x̌0, y̌0) ≥ d j(x̌0, y̌0) is obvious for all x̌0, y̌0 ∈ Ě (due to the option t = 0).
ď j(·, ·) ≤ Čj(0) ·d j(·, ·) < ∞ results directly from assumption (A4).

(2.) This claim is a special case of statement (3.) because Ď j(·, ·;ρ) is assumed to
be reflexive in hypothesis (A3).

(3.) Choose any ϑ0,τ0 ∈ Θ̌ (E,(d j) j,(e j) j,(�·�) j) , x̌0, y̌0 ∈ Ě, t1, t2,h ≥ 0 with
t1 + h≤ 1, t2 + h≤ 1 and for s≥−h, define the abbreviation

ρ j(s) :=
(

max{π j ϑ0(t1, x̌0), π j τ0(t2, y̌0)} + γ̂ j · (s+ h)
)·

· emax{π j ϑ0(t1,x̌0), π j τ0(t2,y̌0)}+ γ̂ j ·(s+h) ≤ R j .

In regard to an upper bound of ď j
(
ϑ0(t1+h, x̌0), τ0(t2+h, y̌0)

)
, choose t ∈ [0,Tj],

α̂i, β̂i ≥ 0 (i ∈I ) arbitrarily with α j(τ0;R j) ≤ α̂ j (without loss of generality) and
select any two “Euler curves”

x̌(·) ∈ N
(
ϑ0(t1+h, x̌), t, (α̂i, β̂i, γ̂i)i∈I

)
,

y̌(·) ∈ N
(
τ0(t2+h, y̌), t, (α̂i, β̂i, γ̂i)i∈I

)

related to piecewise constant functions ϑ(·),τ(·) : [0, t]−→ Θ̌ respectively.
Extend x̌(·), y̌(·) and ϑ(·),τ(·) to [−h, t] according to

{
x̌(·) := ϑ0(t1 + h + · , x̌0), ϑ(·) := ϑ0,
y̌(·) := τ0(t2 + h + · , y̌0), τ(·) := τ0

in [−h,0[ .
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Then,

d j
(
x̌(t), y̌(t)

)· e− α̌
ρ
j (t) − Čj(Tj)

∫ t

0
Ď j(ϑ ,τ;ρ j) e− α̌

ρ
j

∣
∣
∣
s
ds

= ehα j(τ0;R j)
(
d j
(
x̌(t), y̌(t)

)· e−
∫ t
−hα j(τ;ρ j) ds− Čj(Tj)

∫ t

−h
Ď j|(ϑ ,τ;ρ j) e−

∫ s
−hα j(τ;ρ j)ds

+ Čj(Tj)
∫ 0

−h
Ď j|(ϑ ,τ;ρ j) e−

∫ s
−hα j(τ;ρ j)ds

)+

and if we now assume t + h≤ Tj in addition,

≤ ehα j(τ0;R j)
(
ď j
(
x̌(−h), y̌(−h)

)
et+h + Čj(Tj)

∫ 0

−h
Ď j(ϑ ,τ;ρ j)

∣
∣
s · 1 ds

)

≤ ehα j(τ0;R j)
(
ď j
(
ϑ0(t1, x̌0), τ0(t2, y̌0)

)
et+h + Čj(Tj) h · Ď j(ϑ0,τ0;R j)

)
.

If t +h > Tj (i.e. Tj−1 ≤ Tj−h < t ≤ Tj), we conclude from assumption (A4)

e− t
(

d j
(
x̌(t), y̌(t)

) · e− α̌
ρ
j (t) − Čj(Tj)

∫ t

0
Ď j(ϑ ,τ;ρ j) e− α̌

ρ
j

∣
∣
∣
s

ds
)

≤ e− t Č j(0) ·d j
(
x̌(0), y̌(0)

)

≤ 1
2 · ď j

(
ϑ0(t1+h, x̌0), τ0(t2+h, y̌0)

)

and so, this second case is not relevant for estimating ď j
(
ϑ0(t1+h, x̌0), τ0(t2+h, y̌0)

)

as a supremum. Finally, the upper bound for t + h≤ Tj leads to the claim. �

Proof (of Lemma 33 on page 216). Assume that d j : E×E −→ [0,∞[ is locally
uniformly continuous in the following sense: For each r > 0, there exists a non-
decreasing modulus of continuity ω j,r(·) such that

∣
∣d j(x,y) − d j(x′,y′)

∣
∣ ≤ ω j,r

(
d j(x, x′) + d j(y, y′)

)

holds for all elements x,x′,y,y′ ∈ E with max
{�x� j, �x′� j, �y� j, �y′� j

}
< r.

Now choose t ∈ [0,Tj] and any piecewise constant functions ϑ(·),τ(·) : [0, t]−→ Θ̌
as in the definition of ď j(x̌0, y̌0) (at the beginning of the previous proof on page 217).
For any initial states x̌0, x̌1, y̌0, y̌1 ∈ Ě , we can easily construct curves x̌0(·), x̌1(·) :
[0,t]−→ Ě related to ϑ(·) and y̌0(·), y̌1(·) : [0, t]−→ Ě related to τ(·) in a piecewise
way. Then assumption (A4) and the reflexivity of Ď j guarantee

{
d j
(
x̌0(t), x̌1(t)

) ≤ Čj(0) · d j
(
x̌0, x̌1

) · eα̌r
j (t)

d j
(
y̌0(t), y̌1(t)

) ≤ Čj(0) · d j
(
y̌0, y̌1

) · eα̌r
j (t)

and thus,
∣
∣d j
(
x̌0(t), y̌0(t)

) − d j
(
x̌1(t), y̌1(t)

)∣∣ ≤ ω j,r

(
Čj(0) eα̌

r
j (t) · (d j(x̌0, x̌1) + d j(y̌0, y̌1)

))

with sufficiently large r > 0 (depending only on �x̌0� j, �x̌1� j, �y̌0� j, �y̌1� j and γ̂ j).
In particular, this estimate is uniform with respect to ϑ(·),τ(·) and thus, we obtain
∣
∣ď j
(
x̌0, y̌0

) − ď j
(
x̌1, y̌1

)∣∣ ≤ ω j,r

(
Čj(0) eα̌

r
j (Tj) · (d j

(
x̌0, x̌1

)
+ d j

(
y̌0, y̌1

)))
. �
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How to Verify Solutions by Means of the Original Distance Functions (d j) j∈I

A solution x̌ : [0,T ]−→ Ě to the mutational equation
◦
x̌ (·) � f̌

(
x̌(·), ·)

in the tuple
(
Ě,(ď j) j,(e j) j, (�·� j) j, Θ̌

)
is obliged to satisfy the condition (2.′) of

Definition 8 (on page 187), i.e. there exists α j(x̌; ·) : [0,∞[−→ [0,∞[ such that for
L 1-almost every t ∈ [0,T [:

limsup
h↓0

ď j (ϑ(s+ h, z), x̌(t + h)) − ď j(ϑ(s,z), x̌(t)) · eα j(x̌;R j) h

h

≤ Čj(Tj) · Ď j
(
ϑ , f̌ (x̌(t), t); R j

)

is fulfilled for any ϑ ∈ Θ̌ , s ∈ [0,1[, ž ∈ Ě satisfying �ϑ(·, ž)� j,�x̌(·)� j ≤ R j.
This condition, however, can be very difficult to verify in examples because it uses
the auxiliary distance functions ď j, j ∈I , which might not be known explicitly.
Hence we are interested in a sufficient condition on a curve x : [0,T ] −→ E such
that its embedded counterpart in Ě solves the corresponding mutational equation in(
Ě, (ď j) j∈I , (e j) j∈I , (�·� j) j∈I

)
.

Proposition 34. Assume for x : [0,T ]−→ E, ϑ : [0,T ]−→ Θ̌ and each j ∈I

(i) x(·) is continuous with respect to d j and satisfies R j := sup
[0,T ]
�x(·)� j < ∞,

(ii) for each r > 0, ϑ(·) is continuous with respect to Ď j( · , · ; r) and satisfies
sup
[0,T ]

{
α j(ϑ(·);r), β j(ϑ(·);r)

}
< ∞,

(iii) the modified inequality in assumption (A4) (on page 215) holds for these
curves x(·),ϑ(·) and any y(·) ∈N (x(0), T,(α̂ j, β̂ j, γ̂ j) j∈I ) with its related
piecewise constant τ : [0,T ]−→ Θ̌ in the following sense: For each t ≤ T ,

d j
(
x(t), y(t)

) ≤ Čj(T ) ·
∫ t

0
Ď j
(
ϑ(s), τ(s); ρ j(s)

)
ds · eα̌

ρ
j (t)

with the abbreviations ρ j(t) := (R j + γ̂ j t) eγ̂ j t , α̌ρj (t) :=
∫ t

0
α j(τ; ρ j) ds.

Then x̌ : [0,T ] −→ Ě, t �−→ (x(t), (�x(t)� j) j∈I

)
is a solution to the mutational

equation
◦
x̌ (·) � ϑ( ·)

in the tuple
(
Ě,(ď j) j∈I ,(e j) j∈I ,(�·� j) j∈I ,(Čj(Tj) · Ď j) j∈I

)
in the sense of

Definition 8 (on page 187).

Proof (of Proposition 34). Its basic notion is to approximate x(·) by means of
Euler curves, whose embedded counterparts in Ě are obviously solutions to some
“perturbed” mutational equations. Then the limit process is to preserve the solu-
tion property for the original equation — as a consequence of assumption (iii) and
Convergence Theorem 13.
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Choose the bounds α̂i, β̂i < ∞ (i ∈I ) sufficiently large such that all values of ϑ(·)
are admissible. For each n ∈ N, the curve ϑn(·) : [0,T ] −→ Θ̌ is constructed as the
piecewise constant extension of ϑ(·) restricted to the points of any finite partition
of [0,T ] with mesh ≤ 1

n . As an indirect consequence of assumption (ii), we obtain
for every radius r > 0, sequence δn ↓ 0 and index j ∈I

lim
n→∞

sup
0≤ s, t≤T
|t−s| ≤ δn

Ď j
(
ϑn(s), ϑ(t); r

)
= 0.

Now in a piecewise way, each ϑn(·) (n ∈ N) induces a continuous curve xn(·) :
[0,T ]−→ E starting at the same point x(0) ∈ E as x(·). Due to assumption (iii), the
resulting sequence

(
xn(·)

)
n∈N

converges uniformly to x(·) with respect to each d j

and thus, the embedded curves
(
x̌n(·)

)
n∈N

converge uniformly to x̌(·) with respect

to each ď j ( j ∈I ). For every n∈N, the curve x̌n(·) solves the mutational equation

◦
x̌n (·) � ϑn( ·)

in the tuple
(
Ě,(ď j) j∈I ,(e j) j∈I ,(�·� j) j∈I ,(Čj(Tj) · Ď j) j∈I

)
. Finally Conver-

gence Theorem 13 (on page 191) ensures that x̌(·) solves the mutational equation
◦
x̌(·) � ϑ( ·).

�
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3.5 Considering Tuples with a Separate Real Time Component

In some examples, it is useful to take time (or rather chronological differences)
into consideration explicitly. Then the product Ẽ := R×E is to play the role of
the basic set and, the first real component represents the respective time. The tilde
usually reflects that we consider such tuples in Ẽ . Now we sketch how this time
component can be implemented easily — without changing any essential aspect of
the preceding conclusions.

Adapting the Hypotheses About the Distance Functions d̃ j, ẽ j ( j ∈I )

Reflexivity and symmetry of each distance function d̃ j, ẽ j : Ẽ× Ẽ −→ [0,∞[ ( j ∈I )
are still obligatory. Thus, hypotheses (H1) and (H2) are not changed.
Continuity hypothesis (H3), however, might be difficult to verify in examples
— particularly if d̃ j(x̃, ỹ) or ẽ j(x̃, ỹ) depend on the time components of x̃, ỹ ∈ Ẽ .
Thus we formulate the following modifications with π1 : Ẽ −→ R, x̃ = (t,x) �−→ t
always denoting the canonical projection on the real time component:

(H3) (̃i) d̃ j(x̃, ỹ) = lim
n→∞

d̃ j(x̃n, ỹn),

ẽ j(x̃, ỹ) ≤ limsup
n→∞

ẽ j(x̃n, ỹn)

for any x̃, ỹ ∈ Ẽ and (x̃n)n∈N, (ỹn)n∈N in Ẽ fulfilling for each i ∈I

lim
n→∞

d̃i(x̃, x̃n) = 0 = lim
n→∞

d̃i(ỹn, ỹ), sup
n∈N

{�x̃n�i,�ỹn�i}< ∞

and for all n ∈ N : π1 x̃n ≤ π1 ỹn .

(H3) (ĩi) 0 = lim
n→∞

d̃ j(x̃, x̃n)

for any x̃ ∈ Ẽ and (x̃n)n∈N, (ỹn)n∈N in E fulfilling for each i ∈I

lim
n→∞

d̃i(x̃, ỹn) = 0 = lim
n→∞

ẽi(ỹn, x̃n), sup
n∈N

{�x̃n�i,�ỹn�i}< ∞ ,

π1 x̃ ≤ π1 ỹn ≤ π1 x̃n ∀ n ∈N or π1 x̃ ≥ π1 ỹn ≥ π1 x̃n ∀ n ∈N.

(H3) (ĩii) 0 = lim
n→∞

d̃ j(x̃, x̃n)

for every index j ∈I , any element x̃ ∈ Ẽ and sequences (x̃n)n∈N,
(ỹk)k∈N, (z̃k,n)k,n∈N in Ẽ fulfilling

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 z̃k,n = π1 ỹk ≤ π1 x̃n = π1 x̃ for each k,n ∈ N,

lim
k→∞

ẽi(x̃, ỹk) = 0 for each i ∈I ,

lim
n→∞

d̃i(ỹk, z̃k,n) = 0 for each i ∈I ,k ∈ N,

lim
k→∞

sup
n>k

ẽi(z̃k,n, x̃n) = 0 for each i ∈I ,

sup
k,n∈N

{�x̃n�i,�ỹk�i,�z̃k,n�i} < ∞ for each i ∈I .
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These assumptions differ from their counterparts in § 3.1 (on page 182) in regard
to additional constraints about the time components. They are even “weaker” than
original hypotheses (H3) (i)–(iii). Hypothesis (H3) (o) about the equivalence of con-
vergence with respect to (d̃ j) j∈I and (ẽ j) j∈I is not changed.

The Time Components of Transitions and Solutions

Whenever we consider curves x̃(·) : [0,T ] −→ Ẽ , the time component is expected
to reflect the evolution of time properly. Hence we usually demand additivity in the
sense of

π1 x̃(t) = π1 x̃(0) + t

for every t ∈ [0,T ]. In particular, transitions and solutions are expected to fulfill this
condition, i.e., we always assume

π1 ϑ̃(h, x̃) = π1 x̃ + h

for every transition ϑ̃ on
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
, time h∈ [0,1] and x̃∈ Ẽ .

Moreover, Definition 8 of solutions (on page 187) is enriched by a further condition:

Definition 35. Let f̃ : Ẽ× [0,T ]−→ Θ̂
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
be given.

A curve x̃(·) : [0,T ]−→ Ẽ is called a timed solution to the mutational equation
◦
x̃(·) � f̃

(
x̃(·), · )

in
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
if it satisfies for each j ∈I :

1.) x̃(·) is continuous with respect to ẽ j,

2.′) there exists α j(x̃; ·) : [0,∞[−→ [0,∞[ such that for L 1-a.e. t ∈ [0,T [:

limsup
h↓0

d̃ j(ϑ̃ (s+h, z̃), x̃(t+h)) − d̃ j(ϑ̃ (s,z̃), x̃(t)) · eα j (x̃;R j ) h

h ≤ D̂ j
(
ϑ̃ , f̃ (x̃(t), t); R j

)

for any ϑ̃ ∈ Θ̂(Ẽ,(d̃ j),(ẽ j),(�·� j)
)
, s<1, z̃∈ Ẽ with �ϑ̃(·, z̃)� j,�x̃(·)� j ≤ R j,

3.) sup
t∈ [0,T ]

�x̃(t)� j < ∞ ,

4.) for every t ∈ [0,T ], π1 x̃(t) = π1 x̃(0) + t.

In our subsequent conclusions about existence and stability of solutions, however,
we are free to restrict all comparisons to states with identical time components. This
leads to a further definition of solution which is slightly weaker than the preceding
one and does not have to be equivalent to it:

Definition 36. Let f̃ : Ẽ× [0,T ]−→ Θ̂
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
be given.

x̃(·) : [0,T ]−→ Ẽ is called a simultaneously timed solution of
◦
x̃(·) � f̃

(
x̃(·), ·)

in
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
if for each j ∈I , it satisfies condi-

tions (1.), (3.), (4.) of Definition 35 and
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2.′′) there exists α j(x̃; ·) : [0,∞[−→ [0,∞[ such that for L 1-a.e. t ∈ [0,T [:

limsup
h↓0

d̃ j(ϑ̃ (s+h, z̃), x̃(t+h)) − d̃ j(ϑ̃ (s,z̃), x̃(t)) · eα j (x̃;R j ) h

h ≤ D̂ j
(
ϑ̃ , f̃ (x̃(t), t); R j

)

for any ϑ̃ ∈ Θ̂(Ẽ,(d̃ j),(ẽ j),(�·� j)
)
, s∈ [0,1[ and z̃∈ Ẽ with s+π1 z̃ = π1 x̃(t)

and �ϑ̃(·, z̃)� j,�x̃(·)� j ≤ R j,

Reformulating Some of the Preceding Results for Timed Solutions in Ẽ

Now we have laid the foundations for drawing exactly the same conclusions as in
the preceding sections 3.2 and 3.3. Some of the results are formulated here explicitly
for taking the time component into consideration properly, but we dispense with the
detailed proofs.
Furthermore, the step from timed solutions to simultaneously timed solutions just
requires restricting distance comparisons to states in Ẽ with identical time compo-
nents, but it does not have any significant influence on the proofs.

Hypothesis (H3)(̃i) implies directly the counterpart of Lemma 6 (on page 185):

Lemma 37. Let x̃(·), ỹ(·) : [0,T ] −→ Ẽ be continuous with respect to (d̃i)i∈I

(or equivalently with respect to (ẽi)i∈I ) and bounded with respect to each �·� j

( j ∈I ). Assume π1 x̃(·) ≤ π1 ỹ(·) in [0,T ].

Then for each index j ∈I , the distance function

[0,T ] −→ [0,∞[, t �−→ d̃ j
(
x̃(t), ỹ(t)

)

is continuous. �

Proposition 38. Let ϑ̃ , τ̃ ∈ Θ̂(Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
, r≥ 0, j ∈I and

t1,t2 ∈ [0,1[ be arbitrary. For any elements x̃, ỹ ∈ Ẽ suppose �x̃� j ≤ r, �ỹ� j ≤ r.
Then the following estimate holds at each time h∈ [0,1[ with max{t1 +h, t2 +h}≤ 1

d̃ j
(
ϑ̃(t1+h, x̃), τ̃(t2+h, ỹ)

) ≤
(

d̃ j
(
ϑ̃(t1, x̃), τ̃(t2, ỹ)

)
+ h · D̂ j(ϑ̃ , τ̃ ;R j)

)
eα j(τ̃;R j) h

with the constant R j :=
(
r + max{γ j(ϑ̃), γ j(τ̃)}

) · emax{γ j(ϑ̃ ), γ j(τ̃)} < ∞.

Proof is the same as for Proposition 7 (on page 185). �

Essentially the same inequality still holds for the comparison of timed solutions and
transitions on Ẽ — correspondingly to Lemma 9 (on page 188):
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Corollary 39 (comparing a timed solution and a curve along transition).
Let x̃(·) : [0,T ]−→ Ẽ be a timed solution to the mutational equation

◦
x̃(·) � f̃

(
x̃(·), · )

in
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
according to Definition 35.

Suppose ϑ̃ ∈ Θ̂(Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
, z̃ ∈ Ẽ, r ≥ 0, s ∈ [0,1[, t ∈ [0,T [,

j ∈I to be arbitrary with �z̃� j ≤ r and the abbreviation

R j := max
{

sup �x̃(·)� j,
(
r + γ j(ϑ̃)

) · eγ j(ϑ̃ )} < ∞.

Then, d̃ j
(
ϑ̃(s+ h, z̃), x̃(t + h)

)

≤
(

d̃ j
(
ϑ̃(s, z̃), x̃(t)

)
+ h · sup

[t,t+h]
D̂ j
(
ϑ̃ , f̃ (x̃(·), ·); R j

)) · eα j(x̃;R j) h

for every h ∈ [0, 1] with s+ h≤ 1 and t + h≤ T . �

For comparing two timed solutions, we formulate the counterpart of Proposition 11
(on page 189):

Proposition 40 (Continuity w.r.t. initial states and right-hand sides).

Assume for f̃ , g̃ : Ẽ × [0,T ] −→ Θ̂
(
Ẽ,(d̃ j) j,(ẽ j) j,(�·� j) j

)
and x̃, ỹ : [0,T ] −→ Ẽ

that x̃(·) is a timed solution to the mutational equation
◦
x̃(·) � f̃ (x̃(·), ·) and

ỹ(·) is a timed solution to the mutational equation
◦
ỹ(·) � g̃(ỹ(·), ·)

in the tuple
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I ,(D̂ j) j∈I

)
.

For some j ∈I , let α̂ j,R j > 0 and ϕ j ∈C0([0,T ]) satisfy for L 1-a.e. t ∈ [0,T ]
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�x̃(t)� j, �ỹ(t)� j < R j

α j (x̃; R j) , α j (ỹ; R j) ≤ α̂ j

D̂ j

(
f̃
(
x̃(t), t

)
, g̃
(
ỹ(t), t

)
; R j

)
≤ ϕ j(t)

lim
h↓0

D̂ j

(
f̃
(
x̃(t), t

)
, f̃
(
x̃(t+h), t+h

)
; R j

)
= 0.

Then, the distance function
δ j : [0,T ] −→ [0,∞[,

t �−→ inf
{

d̃ j
(
z̃, x̃(t)

)
+ d̃ j

(
z̃, ỹ(t)

) ∣∣ z̃ ∈ Ẽ : �z̃� j < R j
}

fulfills δ j(t) ≤
(
δ j(0) +

∫ t

0
ϕ j(s) e−α̂ j · s ds

)
eα̂ j · t for every t ∈ [0,T ].

�

Remark 41. All the preceding inequalities in Proposition 38, Corollary 39 and
Proposition 40 do not require identical time components (as long as we do not con-
sider simultaneously timed solutions instead). Thus we can even estimate perturba-
tions with respect to time – rather than state in E .
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A similar influence of time has already occurred in Convergence Theorem 13 (on
page 191) which we now adapt to timed solutions. In fact, the proof consists of
almost the same steps as before and, assumptions (4.ii), (4.iii) provide additional
properties which ensure π1 x̃(t) = π1 x̃(0) + t for every t ∈ [0,T ].

Theorem 42 (Convergence of timed solutions to mutational equations).
Suppose the following properties of

f̃n, f̃ : Ẽ× [0,T ] −→ Θ̂
(
Ẽ,(d̃i)i∈I ,(ẽ j) j∈I ,(�·�i)i∈I

)
(n ∈ N)

x̃n, x̃ : [0,T ] −→ Ẽ :

1.) R j := sup
n,t
�x̃n(t)� j < ∞,

α̂ j(ρ) := sup
n

α j
(
x̃n; ρ

)
< ∞ for ρ ≥ 0,

β̂ j := sup
n

Lip
(
x̃n(·) : [0,T ]−→ (Ẽ, ẽ j)

)
< ∞ for every j ∈I ,

2.)
◦
x̃n (·) � f̃n(x̃n(·), ·) (in the sense of Definition 35 on page 222) for every n,

3.) Equi-continuity of ( f̃n)n at (x̃(t), t) at almost every time in the following sense:

for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j
(

f̃n(x̃(t), t), f̃n(ỹn, tn); r
)

= 0

for each j ∈I , r ≥ 0 and any (tn)n∈N, (ỹn)n∈N in [t,T ] and Ẽ respectively

satisfying lim
n→∞

tn = t and lim
n→∞

d̃i
(
x̃(t), ỹn

)
= 0, sup

n∈N

�ỹn�i ≤ Ri for each i,

π1 ỹn ↘ π1 x̃(t) for n−→ ∞,

4.) For L 1-almost every t ∈ [0,T [ (t = 0 inclusive) and any t̃ ∈ ]t,T [, there is a
sequence nm↗ ∞ of indices (depending on t < t̃) that satisfies for m−→ ∞

(i) D̂ j
(

f̃ (x̃(t),t), f̃nm(x̃(t), t); r
) −→ 0 for all r ≥ 0, j ∈I ,

(ii) ∃ δm↘0 : ∀ j : d̃ j
(
x̃(t), x̃nm(t + δm)

) −→ 0, π1 x̃nm(t + δm)↘π1 x̃(t)

(iii) ∃ δ̃m↘0 : ∀ j : d̃ j
(
x̃(̃t), x̃nm (̃t− δ̃m)

) −→ 0, π1 x̃nm (̃t− δ̃m)↗π1 x̃(̃t)

Then, x̃(·) is always a timed solution to the mutational equation
◦
x̃ (·) � f̃ (x̃(·), ·)

in the tuple
(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Finally we formulate the counterpart of Existence Theorem 19 (on page 195).
As the time component of each timed solution grows at a constant speed of 1, we
introduce a further abbreviation:

B̃Lip
(
I, Ẽ; (ẽi)i, (�·�i)i

)
consists of all functions x̃(·) ∈ BLip

(
I, Ẽ; (ẽi)i, (�·�i)i

)

satisfying π1 x̃(b) = π1 x̃(a) + b−a for all a,b ∈ I in addition.
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Theorem 43 (Existence of timed solutions to mutational equations with delay).
Suppose

(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , Θ̂

(
Ẽ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

))
to

be Euler compact and Euler equi-continuous. Moreover assume for some fixed
τ ≥ 0, the function

f̃ : B̃Lip
(
[−τ,0], Ẽ; (ẽi)i, (�·�i)i

)× [0,T ] −→ Θ̂
(
Ẽ,(d̃i)i,(ẽi)i,(�·�i)i

)

and each j ∈I , R > 0 :

1.) supz̃(·), t α j( f̃ (z̃(·), t); R) < ∞,

2.) supz̃(·), t β j( f̃ (z̃(·), t); R) < ∞,

3.) supz̃(·), t γ j( f̃ (z̃(·), t)) < ∞,

4.) for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j
(

f̃ (z̃1
n(·), t1

n), f̃ (z̃2
n(·), t2

n ); R
)

= 0

for each j ∈I , R ≥ 0 and any sequences (t1
n )n∈N, (t2

n)n∈N in [0,T ] and
(z̃1

n(·))n∈N, (z̃2
n(·))n∈N in B̃Lip

(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
satisfying

for every i ∈I and s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞
d̃i
(
z̃1

n(s), z̃(s)
)

= 0 = lim
n→∞

d̃i
(
z̃2

n(s), z̃(s)
)

sup
n∈N

sup
[−τ,0]

�z̃1,2
n (·)�i < ∞ .

For every function x̃0(·) ∈ B̃Lip
(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
, there exists

a curve x̃(·) : [−τ,T ]−→ Ẽ with the following properties:

(i) x̃(·) ∈ B̃Lip
(
[−τ,T ], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
,

(ii) x̃(·)∣∣[−τ,0] = x̃0(·),
(iii) the restriction x̃(·)∣∣[0,T ] is a timed solution to the mutational equation

◦
x̃ (t) � f̃

(
x̃(t + ·)∣∣[−τ,0], t

)
.

For verifying the existence of solutions to this mutational equation (via Euler ap-
proximations), all the transitions f̃

(
z̃(·), t) ∈ Θ̂(Ẽ,(d̃i),(ẽi),(�·�i)

))
are required as

functions merely on the subset [0,1]×{ỹ ∈ Ẽ
∣∣ π1 ỹ≥ t

} ⊂ [0,1]× Ẽ.

Implementing the Aspects of “Weak” Convergence in Ẽ

Finally, we adapt the concept of weak Euler compactness and its consequences
in regard to existence of solutions. Correspondingly to § 3.3.6 (on page 206 ff.),
let J �= /0 denote a further index set. For each index ( j,κ) ∈I ×J , the functions

d̃ j,κ , ẽ j,κ : Ẽ× Ẽ −→ [0,∞[

are assumed to fulfill in addition to hypotheses (H1), (H2) and (H3)
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(H4’) �·� j is lower semicontinuous with respect to (d̃i,κ)i∈I ,κ∈J , i.e.,

�x̃� j ≤ liminf
n→∞

�x̃n� j

for any x̃ ∈ Ẽ and (x̃n)n∈N in Ẽ fulfilling for each i ∈I ,κ ∈J

lim
n→∞

d̃i,κ(x̃n, x̃) = 0, sup
n∈N

�x̃n�i < ∞ .

(H8) d̃ j(x̃, ỹ) = sup
κ∈J

d̃ j,κ(x̃, ỹ),

ẽ j(x̃, ỹ) = sup
κ∈J

ẽ j,κ(x̃, ỹ) for all x̃, ỹ ∈ Ẽ, j ∈I .

In a word, the separate time component does not have any significant influence
on the proofs of the main results in § 3.3.6, i.e., Existence Theorem 28 (on page 207)
and Proposition 29 about weakly converging sequences of solutions (on page 208).
Just for the sake of subsequent references, we give the formulation in detail:

Theorem 44 (Existence due to weak Euler compactness).
Suppose

(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , Θ̂

(
Ẽ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

))
to

be Euler equi-continuous (in the sense of Definition 16 on page 194) and the tuple(
Ẽ, (d̃ j) j, (d̃ j,κ) j,κ , (ẽ j) j, (ẽ j,κ) j,κ , (�·� j) j, Θ̂

(
Ẽ,(d̃i)i,(ẽi)i,(�·�i)i

))
to be

weakly Euler compact (in the sense of Definition 27 on page 207).

Moreover assume for some fixed τ ≥ 0, the function

f̃ : B̃Lip
(
[−τ,0], Ẽ; (ẽi)i, (�·�i)i

)× [0,T ] −→ Θ̂
(
Ẽ,(d̃i)i,(ẽi)i,(�·�i)i

)

and each j ∈I , R > 0 :

1.) sup
z̃(·), t

α j( f̃ (z̃(·), t); R) < ∞,

2.) sup
z̃(·), t

β j( f̃ (z̃(·), t); R) < ∞,

3.) sup
z̃(·), t

γ j( f̃ (z̃(·), t)) < ∞,

4.) for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j
(

f̃ (z̃1
n(·), t1

n), f̃ (z̃2
n(·), t2

n ); R
)

= 0

for each j ∈I , R ≥ 0 and any sequences (t1
n )n∈N, (t2

n)n∈N in [0,T ] and
(z̃1

n(·))n∈N, (z̃2
n(·))n∈N in B̃Lip

(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
satisfying

for every i ∈I , κ ∈J and s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞
d̃i,κ
(
z̃1

n(s), z̃(s)
)

= 0 = lim
n→∞

d̃i,κ
(
z̃2

n(s), z̃(s)
)

sup
n∈N

sup
[−τ,0]

�z̃1,2
n (·)�i < ∞ .
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5.) for every z̃(·) and L 1-a.e. t ∈ [0,T ], the function f̃ (z̃(·), t)(h, ·) : Ẽ −→ Ẽ is
“weakly” continuous in the following sense:

lim
n→∞

d̃ j,κ
(

f̃ (z̃(·), t)(h, ỹ), f̃ (z̃(·), t)(h, ỹn)
)

= 0

for each κ ∈J , h ∈ ]0,1], ỹ ∈ Ẽ and any sequence (ỹn)n∈N in Ẽ satisfying
d̃i,κ ′(ỹ, ỹn)−→ 0, supn �ỹn�i < ∞ for any i ∈I ,κ ′ ∈J , π1 ỹ≤ π1 ỹn.

For every function x̃0(·) ∈ B̃Lip
(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
, there exists a

curve x̃(·) : [−τ,T ]−→ Ẽ with the following properties:

(i) x̃(·) ∈ B̃Lip
(
[−τ,T ], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
,

(ii) x̃(·)∣∣[−τ,0] = x̃0(·),

(iii) For L 1-a.e. t ∈ [0,T [, lim
h↓0

1
h · d̃ j

(
f̃
(
x̃(t + ·)∣∣[−τ,0], t

)
(h, x̃(t)), x̃(t +h)

)
= 0.

If each d̃ j ( j ∈ J) satisfies the triangle inequality in addition, x̃(·)∣∣[0,T ]

is a timed solution to the mutational equation
◦
x̃(t) � f̃

(
x̃(t + ·)∣∣[−τ,0], t

)

in the sense of Definition 35 (on page 222).

Proposition 45 (about “weak” pointwise convergence of timed solutions).

Suppose the following properties of

f̃n, f̃ : Ẽ× [0,T ] −→ Θ̂
(
Ẽ,(d̃i)i∈I ,(ẽ j) j∈I ,(�·�i)i∈I

)
(n ∈ N)

x̃n, x̃ : [0,T ] −→ Ẽ :

1.) R j := sup
n,t
�x̃n(t)� j < ∞,

α̂ j(ρ) := sup
n

α j
(
x̃n; ρ

)
< ∞ for ρ ≥ 0,

β̂ j := sup
n

Lip
(
x̃n(·) : [0,T ]−→ (Ẽ, ẽ j)

)
< ∞ for every j ∈I ,

2.)
◦
x̃n (·) � f̃n(x̃n(·), ·) (in the sense of Definition 35 on page 222) for every n∈N,

3.) Equi-continuity of ( f̃n)n at (x̃(t), t) at almost every time in the following sense:

for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j

(
f̃n(x̃(t), t), f̃n(ỹn, tn); r

)
= 0

for each j ∈I , r ≥ 0 and any (tn)n∈N, (ỹn)n∈N in [t,T ] and Ẽ respectively
satisfying lim

n→∞
tn = t, lim

n→∞
d̃i,κ
(
x̃(t), ỹn

)
= 0, sup

n∈N

�ỹn�i ≤ Ri for any i,κ ,
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4.) For L 1-almost every t ∈ [0,T [ (t = 0 inclusive) and any t̃ ∈ ]t,T [, there is a
sequence nm↗ ∞ of indices (depending on t < t̃) that satisfies for m−→ ∞
⎧
⎪⎪⎨

⎪⎪⎩

(i) D̂ j
(

f̃ (x̃(t),t), f̃nm(x̃(t), t); r
) −→ 0 for all r ≥ 0, j ∈I ,

(ii) ∀ j ∈I ,κ ∈J : d̃ j,κ
(
x̃(t), x̃nm(t)

) −→ 0, π1 x̃nm(t)↘π1 x̃(t),

(iii) ∀ j ∈I ,κ ∈J : d̃ j,κ
(
x̃(̃t), x̃nm (̃t)

) −→ 0, π1 x̃nm (̃t)↗π1 x̃(̃t),

5.) Weak continuity of each function f̃ (x̃(t), t)(h, ·) : Ẽ −→ Ẽ at L 1-almost every
time t ∈ [0,T ] in the following sense:

lim
n→∞

d̃ j,κ
(

f̃ (x̃(t), t)(h, ỹ), f̃ (x̃(t), t)(h, ỹn)
)

= 0

for each κ ∈J , h ∈ ]0,1], ỹ ∈ Ẽ and any sequence (ỹn)n∈N in Ẽ satisfying
d̃i,κ ′(ỹ, ỹn)−→ 0, supn �ỹn�i < ∞ for any i ∈I ,κ ′ ∈J , π1 ỹ≤ π1 ỹn.

Then, x̃(·) is β̂ j-Lipschitz continuous with respect to ẽ j for each index j ∈I and,
at L 1-almost every time t ∈ [0,T ],

lim
h↓0

1
h · d̃ j

(
f (x̃(t), t)(h, x̃(t)), x̃(t + h)

)
= 0

holds for every index j ∈I .

If each d̃ j ( j ∈ J) satisfies the triangle inequality in addition, then the curve

x̃(·) : [0,T ] −→ Ẽ is a timed solution to the mutational equation
◦
x̃ (·) � f̃ (x̃(·), ·)

in the tuple
(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Extending the Cauchy-Lipschitz Theorem to Timed Solutions

Similarly the results of § 3.3.7 (on page 212 f.) are rather easy to extend to timed
solutions in Ẽ . The counterpart of Cauchy-Lipschitz Theorem concludes the exis-
tence of a timed solution to a given mutational equation from an appropriate form of
completeness. In particular, using this property for Euler approximations at a fixed
time respectively, we are free to restrict the completeness assumption to sequences
in Ẽ with constant time component.

Definition 46. The tuple
(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I

)
is called timed com-

plete if for every sequence (x̃n)n∈N in Ẽ with
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

lim
k→∞

sup
m,n≥k

d̃ j(x̃m, x̃n) = 0

sup
m,n∈N

∣
∣π1 x̃m − π1x̃n

∣
∣ = 0

sup
n∈N

�x̃n� j < ∞

for each j ∈I ,

there exists x̃ ∈ E fulfilling lim
n→∞

d̃ j(x̃n, x̃) = 0 for every j ∈I and π1 x = π1 xn.
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Theorem 47 (Extended Cauchy-Lipschitz Theorem for timed solutions).
Suppose the tuple

(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I

)
to be timed complete and

(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , Θ̂

(
Ẽ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

))
to be Euler

equi-continuous For f̃ : Ẽ× [0,T ]−→ Θ̂
(
Ẽ, (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I

)
assume

(1.) For each j ∈I and R > 0,
α̂ j(R) := supx̃,t α j( f̃ (x̃, t); R) < ∞,

β̂ j(R) := supx̃,t β j( f̃ (x̃, t); R) < ∞,

γ̂ j := supx̃,t γ j( f̃ (x̃, t)) < ∞,

(2.) f̃ is Lipschitz continuous w.r.t. state and continuous in the following sense:
for each tuple (r j) j∈I in [0,∞[I , there exist constantsΛ j,μ j ≥ 0 ( j ∈I )
and moduli of continuity (ω j(·)) j∈I such that δ j : Ẽ× Ẽ −→ [0,∞[,

δ j(x̃, ỹ) := inf
{

d̃ j(x̃, z̃)+ μ j · ẽ j(z̃, ỹ)
∣
∣ z̃ ∈ Ẽ, π1 z̃ ≤ min{π1 x̃, π1 ỹ},
∀ i ∈I : �z̃�i ≤ ri

}

satisfies for every j ∈I

D̂ j
(

f̃ (x̃,s), f̃ (ỹ, t); r j
) ≤ Λ j ·δ j(x̃, ỹ) + ω j(|t− s|)

whenever the tuples (x̃,s), (ỹ, t) ∈ Ẽ× [0,T ] fulfill π1 x̃≤ π1 ỹ, s≤ t and
max

{�x̃�i, �ỹ�i
} ≤ ri for each index i ∈I .

Then for every initial element x̃0 ∈ Ẽ, there exists a timed solution x̃(·) : [0,T ]−→ Ẽ

to the mutational equation
◦
x̃ (·) � f̃

(
x̃(·), ·) in the sense of Definition 35.

Remark 48. This existence result can also be extended to systems easily.
Now completeness has joined compactness for providing (timed or simultaneously
timed) solutions to mutational equations.
With regard to systems of mutational equations, however, combining the preced-
ing Cauchy-Lipschitz Theorem with Peano-like Existence Theorem 43 should be
treated with some caution. Indeed, each component based on Euler compactness
leads to a pointwise converging subsequence of Euler approximations.
When inserting it in the mutational equations of the remaining components (to
which Cauchy-Lipschitz Theorem is then to be applied), we usually need to assume
some form of uniformity (about the continuity of the right-hand side, for example)
for adapting the constructive proof of Theorem 31 (on page 213), i.e. for verifying
that these components of Euler approximations induce a Cauchy sequence.

Remark 49. The results of § 3.4 can be adapted easily to tuples with separate
real time component, i.e. under suitable additional assumptions the candidates for
transitions do not have to be ω-contractive in the sense that

d̃ j
(
ϑ̃(t1+h, x̃), ϑ̃(t2+h, ỹ)

) ≤ d̃ j
(
ϑ̃(t1, x̃), ϑ̃(t2, ỹ)

) · eα j(ϑ̃ ;R j) h

for all x̃, ỹ ∈ Ẽ, t1,t2,h ∈ [0,1[ and sufficiently large R j > 0. We dispense with
further details here.
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3.6 Example: Strong Solutions to Nonlocal Stochastic
Differential Equations

Stochastic differential equations are very popular for modelling processes with
uncertainties. This is not necessarily restricted to applications in finance, biology
or engineering, of course. Whenever competing with opponents, we might now ex-
actly the rules of each participant, but we are possibly lacking precise information
about the current state of the competitors and so, some form of estimator (like the
expected value modified by means of the second moment) has to come into play.
Such a situation leads to stochastic differential equations of the form

dXt = h1
(
t, E(ϕ1(Xt)), E(|Xt |2), Xt

)
dt + h2

(
t, E(ϕ2(Xt)), E(|Xt |2), Xt

)
dWt .

They differ from what is usually called a “stochastic functional differential equa-
tion” (as e.g. in [135, 187]) because its right-hand side can depend on nonlocal
features of the current random variable Xt : Ω −→ R (instead of the more popular
pathwise dependence).
Now the mutational framework is to provide the (probably) first existence results
for so-called nonlocal stochastic differential equations.

Even a short glance at the standard literature reveals that stochastic differential
equations (in R) are usually considered in combination with the L2 norm on the
corresponding vector space of adapted stochastic processes (with bounded second
moments).
Applying the mutational framework, however, our attempts are likely to fail be-
cause the Itô integral implies asymptotic properties of

√
h for short periods h > 0.

This obstacle has now motivated us to choose the square deviation E(| · − · |2) as
distance function (instead of its square root). Admittedly, this alternative does not
satisfy the triangle inequality, but we can still handle the Cauchy problem by means
of the generalizations in this chapter.

First, in § 3.6.3, we sketch rather briefly how to conclude existence from Cauchy-
Lipschitz Theorem 31 (on page 212) via the weakening modifications in § 3.4.
In regard to mathematical transparency, however, the disadvantage is that distance
functions and transitions (with all their parameters) are not specified explicitly in
this approach and so, we discuss a (very) special case with fixed additive noise in
more detail in § 3.6.4. It deals with stochastic differential equations like

dXt = h
(
t, E(|Xt |), E(|Xt |2)

)
dt + b(t) dWt

with a bounded Lipschitz continuous function h(·). The main existence result of this
case is formulated in subsequent Theorem 56 (on page 240).
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Basic set ẼA :=
{
(t,X)

∣∣ t ≥ 0, X : Ω −→ R is At -measurable,
E(|X|2) <∞

}

with a complete probability space (Ω ,A ,P), a Wiener process
(Wt )t≥0 and a filtration A = (At)t≥0 given

Distance d̃A,P : ẼA ×ẼA −→ R,
(
(s,X), (t,Y )

) �−→ |t− s|+E
(|X−Y |2)

(mean square deviation does not satisfy the triangle inequality,
but d̃A,P is still equivalent to the metric of | · |+‖ · ‖L2(Ω ,A ,P))

Absolute value �·�A,P : ẼA −→ [0,∞[, (t,X) �−→ |t|+E
(|X|2)

Transitions
(i) non-ω-contract.

candidates
For a,b∈W 1,∞(R), consider the strong solution (Xt )0≤ t≤1 to the
linear autonomous stochastic ordinary differential equation

d Xt = a(Xt ) dt + b(Xt ) dWt

with bounded second moment.

(ii) special case
in § 3.6.4

Fix b ∈ L∞(R) for additive noise. Each constant a ∈R induces
a transition on ẼA via the Itô process

Xt = Xt0 +
∫ t

t0
a ds +

∫ t

t0
b(s) dWs

with finite second moment.

Compactness Not available in an obvious way here.
Completeness of L2(Ω ,A ,P) is used instead.

Equi-continuity Euler equi-continuity w.r.t. d̃A,P results from a priori estimates of
strong solutions to nonautonomous stochastic differential equa-
tions in an arbitrary time interval [0,T ].

Mutational solutions Strong solutions to a stochastic ordinary differential equation:
Lemma 54 (page 236)

List of main results
formulated in § 3.6

Existence due to completeness (Cauchy-Lipschitz): Theorem 53
Cauchy-Lipschitz Theorem for fixed additive noise in § 3.6.4:
Theorem 56 (page 240)

Key tools Existence and several a priori estimates of pathwise unique
strong solutions to stochastic ordinary differential equations:
Proposition 51 (page 234)

Table 3.1 Brief summary of the example in § 3.6 in mutational terms:
Strong solutions to nonlocal stochastic differential equations
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3.6.1 The General Assumptions for This Example

(Ω ,A ,P) is assumed to be a complete probability space. (At)t≥0 denotes an in-
creasing family of sub-σ -algebras of A and, W = (Wt)t≥0 is a standard scalar
Wiener process such that (At)t≥0 is right continuous, A0 contains all P-null sets
in A and for all 0≤ s≤ t, Wt is At-measurable with

E(Wt |A0) = 0, E(Wt −Ws |As) = 0 with probability 1.

Following the remarks in [106, § 3.2], the σ -algebra At may be thought of as a
collection of events that are detectable prior to or at time t ≥ 0, so that the At-
measurability of Zt for a stochastic process (Zt )t≥0 indicates its nonanticipativity
with respect to the Wiener process W .
For T ∈ ]0,∞[, we define a class L 2

A ([0,T ]) of functions f : [0,T ]×Ω −→R with

(1.) f is jointly L 1×A -measurable,

(2.)
∫

[0,T ]
E
(| f (t, ·)|2) dt < ∞,

(3.) for every t ∈ [0,T ], E
(| f (t, ·)|2) < ∞ and

(4.) for every t ∈ [0,T ], f (t, ·) : Ω −→ R is At -measurable.

In addition, we consider two functions in L 2
A ([0,T ]) to be identical if they are equal

for all (t,ω) ∈ [0,T ]×Ω except possibly on a subset of L 1×P-measure 0. Then
with the norm

‖ f‖L 2
A ([0,T ]) :=

(∫

[0,T ]
E
(| f (t, ·)|2) dt

) 1
2
,

L 2
A ([0,T ]) (together with the identification mentioned before) is a Banach space.

As Kloeden and Platen have already pointed out [106], the characterizing conditions
on f ∈L 2

A ([0,T ]) are stronger than f ∈ L2([0,T ]×Ω ,L 1×A ,L ×P). Indeed,
Fubini’s Theorem guarantees E

(| f (t, ·)|2) < ∞ only for Lebesgue-almost every t.

3.6.2 Some Standard Results About Itô Integrals and Strong
Solutions to Stochastic Ordinary Differential Equations

In this subsection, we summarize some well-known properties of the Itô integral
and strong solutions. All these results are just quoted and serve as tools for spec-
ifying transitions in the mutational framework later on. The proofs can be found
in standard references such as the monographs of Friedman [85], Øksendal [147],
Karatzas and Shreve [97] or Kloeden and Platen [106].

Proposition 50 ([85, § 4], [106, Theorem 3.2.3], [147, § 3.2]).

The Itô stochastic integral I( f ) : Ω −→ R, ω �−→
∫ T

0
f (s,ω) dWs(ω) has the

following properties for every f ,g ∈L 2
A ([0,T ]) and λ1,λ2 ∈ R :
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(a) I( f ) is AT -measurable,

(b) E
(
I( f )
)

= 0,

(c) I(λ1 f +λ2 g) = λ1 I( f )+λ2 I(g) with propability 1.

(d) Itô isometry: E
(|I( f )|2) =

∫ T

0
E
(| f (t, ·)|2) dt,

(e) E
(
I( f ) I(g)

)
=
∫ T

0
E
(

f (t, ·) g(t, ·)) dt,

(f) Martingale property: E
(
I( f )

∣
∣At
)

=
∫ t

0
f (s, ·) dWs for any t ∈ [0,T ].

Proposition 51 (Existence, uniqueness of strong solutions a priori estimates
[106, Theorems 4.5.3, 4.5.4]).

Suppose

(i) a,b : [0,T ]×R−→ R are jointly L 2-measurable,

(ii) there exists a constantΛ > 0 such that for all t ∈ [0,T ], x,y ∈ R,
{ |a(t,x) − a(t,y)| ≤ Λ |x− y|
|b(t,x) − b(t,y)| ≤ Λ |x− y|

(iii) there exists a constant γ̂ < ∞ such that for all t ∈ [0,T ], x ∈ R,

|a(t,x)|+ |b(t,x)| ≤ γ̂ (1 + |x|),
(iv) X0 :Ω −→R is A0-measurable with E

(|X0|2
)

< ∞.

Then the stochastic differential equation

d Xt = a(t,Xt) dt + b(t,Xt) dWt

has a pathwise unique strong solution (Xt)0≤ t≤T on [0,T ] with initial value X0 and

sup
0≤ t≤T

E
(|Xt |2

)
< ∞,

i.e., there exists a function [0,T ]×Ω −→ R, (t,ω) �−→ Xt(ω) in L 2
A ([0,T ]) with

(1.) for every t ∈ [0,T ], Xt = X0 +
∫ t

0
a(s,Xs) ds +

∫ t

0
b(s,Xs) dWs,

(2.) for every solution Yt of this preceding integral equation with Y0 = X0,

P
(

sup
0≤ t≤T

|Xt −Yt|> 0
)

= 0.

Moreover, for every t ∈ [0,T ], it fulfills following estimates with constants C1,C2,C3

depending only on γ̂,Λ ,T

E
(|Xt |2

) ≤ (E(|X0|2
)
+C2 t

)
eC1 t

E
(|Xt −X0|2

) ≤ C3
(
E
(|X0|2

)
+ 1
)

eC1 t · t .
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3.6.3 A Short Cut to Existence of Strong Solutions

Applying the mutational framework, the first essential steps are always to specify
the basic set, its distance function(s) and the candidates for transitions.

For taking the filtration (At)t≥0 into consideration properly, we use a separate real
component indicating time and hence, we choose as basic set

ẼA :=
{
(t,X)

∣
∣ t ≥ 0, X : Ω −→ R is At-measurable, E(|X |2) < ∞

}
.

Furthermore the last estimate in Proposition 51 indicates that Lipschitz continuity
with respect to time is ensured merely for the square deviation (and not for the
standard L2 norm). This observation motivates the following choice:

d̃A,P : ẼA × ẼA −→ [0,∞[,
(
(s,X), (t,Y )

) �−→ |t− s| + E
(|X−Y |2)

�·�A,P : ẼA −→ [0,∞[, (t,X) �−→ |t| + E
(|X |2) .

On the basis of Proposition 51, solutions to autonomous stochastic ordinary differ-
ential equations provide the candidates for transitions on ẼA . There is a significant
obstacle though: ω-contractivity is usually lacking – as required in Definition 2 (3.)
of transitions (on page 183).
Indeed, the following lemma compares strong solutions to nonautonomous stochas-
tic differential equations by means of their initial values and coefficients. Although
the estimate is a quite simple consequence of Gronwall’s inequality, there is no ob-
vious way for eliminating the constant coefficient > 1 of the initial square deviation
on the right-hand side.

Lemma 52. For k = 1,2, let ak,bk : [0,T ]×R −→ R fulfill the assumptions

of Proposition 51 with
∫ T

0

(‖ak(s, ·)‖2
∞+‖bk(s, ·)‖2

∞
)

ds <∞ and the joint Lipschitz

parameterΛ > 0. (Xk
t )0≤ t≤T denotes a strong solution of

d Xk
t = ak(t, Xk

t ) dt + bk(t, Xk
t ) dWt

with sup
0≤ t≤T

E
(|Xk

t |2
)

< ∞.

Then, there exists a constant C = C(Λ) such that for every t ∈ [0,T ]

E(|X1
t − X2

t |2) ≤
(

3 ·E(|X1
0 − X2

0 |2)
+C ·

∫ t

0

(∥∥a1(s, ·)−a2(s, ·)
∥
∥2
∞+
∥
∥b1(s, ·)−b2(s, ·)

∥
∥2
∞
)
ds
)

eC t·et
.

Although lacking an error estimate sufficient for ω-contractivity, we can still benefit
from the results in § 3.4 (on page 214 ff.) bridging this gap via auxiliary distances.
Indeed, Lemma 52 ensures assumption (A4) there (on page 215) if we choose au-
tonomous stochastic differential equations with Λ -Lipschitz continuous coefficients
as candidates for transitions. In particular, the Lipschitz constant Λ > 0 is fixed.
Moreover this estimate is useful only if both ‖a1− a2‖∞ < ∞ and ‖b1− b2‖∞ < ∞
and so, we restrict our considerations to bounded and Λ -Lipschitz coefficients (in
this subsection 3.6.3).
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Proposition 51 indicates explicitly how to choose further parameters of the
mutational framework for guaranteeing the remaining assumptions of § 3.4. It
leads to the main result of this example:

Theorem 53 (Existence of solutions to nonlocal stochastic diff. equations).
Assume for f̃ = ( f̃1, f̃2) : ẼA −→ W 1,∞(R,R)×W 1,∞(R,R)

(1.) supỸ∈ẼA
‖̃f(Ỹ )‖W1,∞ < ∞ ,

(2.) f̃ is locally Lipschitz continuous in the following sense:
For every R > 0, there exists a constant λR > 0 such that for all Ỹ , Z̃ ∈ ẼA

with max
{�Ỹ�A,P, �Z̃�A,P

}
< R,

∥
∥
∥̃f(Ỹ )(·) − f̃(Z̃)(·)

∥
∥
∥

2

L∞
≤ λR · d̃A,P

(
Ỹ , Z̃
)
.

Then for every initial tuple X̂0 = (t0,X0) ∈ ẼA and period T > 0, there exists a
continuous curve [t0, t0 + T ] −→ ẼA , t �−→ X̃t = (t,Xt) such that the stochastic
process

(
Xt
)

t0≤ t≤ t0+T is a strong solution to the nonlocal stochastic differential
equation

{
d Xt(ω) = f̃1(t,Xt)(Xt(ω)) dt + f̃2(t,Xt)(Xt(ω)) dWt(ω) in [t0, t0 + T ]

Xt0 = X0

and, it belongs to L 2
A ([t0, t0 + T ]).

Indeed, both Proposition 32 and Lemma 33 (on page 215 ff.) provide a superset
ˇ̃EA ⊂ ẼA ×R

+
0 and a distance ďA,P such that the “simultaneously timed” counter-

part of extended Cauchy-Lipschitz Theorem 47 (on page 230) can be applied to the

tuple
( ˇ̃EA , ďA,P, d̃A,P, �·�A,P, ‖ · ‖2

L∞
)

with all those trivial extensions to ˇ̃EA .

Hence, the mutational equation
◦
X̌ � f̃

(
πẼA

X̌
)

has a simultaneously timed solution

X̌ : [t0, t0 + T ] −→ ˇ̃EA , t �−→ (t,Xt ,ρt) starting in
(
t0,X0,�(t0,X0)�A,P

) ∈ ˇ̃EA ,

Lipschitz continuous w.r.t. d̃A,P and bounded w.r.t. �·�A,P.
We (just) have to verify that the corresponding stochastic process

(
Xt
)

t0≤ t≤ t0+T
solves the original stochastic differential equation:

Lemma 54 (Link from mutational to nonlocal stochastic diff. equations).
In addition to the hypotheses of Theorem 53 about f̃ = ( f̃1, f̃2) : ẼA −→W 1,∞(R)2,

suppose [t0, t0 + T ]−→ ˇ̃EA , t �−→ X̌t = (t,Xt ,ρt) to satisfy the four conditions on
simultaneously timed solutions of ◦

X̌ � f̃
(
πẼA

X̌
)

in
( ˇ̃EA , ďA,P, d̃A,P, �·�A,P, ‖ · ‖2

L∞
)

stated in Definition 36 (on page 222).

Then,
(
Xt
)

t0≤ t≤ t0+T is a strong solution to the stochastic differential equation

d Xt(ω) = f̃1(t,Xt)(Xt(ω)) dt + f̃2(t,Xt)(Xt(ω)) dWt(ω) in [t0, t0 + T ].
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Proof (of Lemma 54 on page 236). The compositions

a : [0,T ]×R −→ R, (t,z) �−→ f̃1(X̃t)(z)

b : [0,T ]×R −→ R, (t,z) �−→ f̃2(X̃t)(z)

satisfy the hypotheses of Proposition 51 (on page 234). Hence, there exists a path-
wise unique strong solution (Yt)t0≤ t≤ t0+T to the stochastic differential equation

dYt = a(t,Yt) dt + b(t,Yt) dWt

with the same initial value X0 as (Xt)t0≤ t≤ t0+T and supt �(t,Yt)�A,P ≤ R̂ < ∞.

Then, [t0, t0 + T ] −→ ˇ̃EA, , t �−→ Y̌t :=
(
t,Yt , �(t,Yt)�A

)
is a simultaneously

timed solution to the mutational equation
◦

Y̌ � f̃
(
πẼA

X̌
)
. This results directly from

Proposition 34 (on page 219) in combination with Lemma 52.
Finally we conclude π2 X̌ ≡ π2 Y̌ from the “simultaneously timed” counterpart of
Proposition 40 (on page 224) since the following auxiliary distance is identical to 0:

[t0, t0 + T ] −→ [0,∞[,

t �−→ inf
{

ďA,P
(
Ž, X̌t

)
+ ďA,P

(
Ž,Y̌t
) ∣∣ Ž ∈ ˇ̃EA : π1 Ž = t,
�Ž�A,P < 1 + max {R, R̂}}. �

Proof (of Lemma 52 on page 235). By definition, (Xk
t )0≤ t≤T solves the integral

equation Xk
t = Xk

0 +
∫ t

0
ak(s, Xk

s ) ds +
∫ t

0
bk(s, Xk

s ) dWs at each time t ∈ [0,T ].

Due to the simple inequality (r1 + r2)2 = r2
1 + 2 r1 r2 + r2

2 ≤ 3 (r2
1 + r2

2) for all
r1,r2 ∈ R, we obtain for each t ∈ [0,T ]

E
(|X1

t −X2
t |2
) − 3 · E(|X1

0 −X2
0 |2
)

≤ 3 ·E
(∣∣
∣
∫ t

0
a1|(s,X1

s )−a2|(s,X2
s ) ds +

∫ t

0
b1|(s,X1

s )−b2|(s,X2
s ) dWs

∣
∣
∣
2)

≤ 9 ·E
((∫ t

0

∣∣a1|(s,X1
s )−a2|(s,X2

s )
∣∣ ds

)2
+
(∫ t

0

∣∣b1|(s,X1
s )−b2|(s,X2

s )
∣∣ dWs

)2)

≤ 9 ·
(

t·
∫ t

0
E
(∣∣a1|(s,X1

s )−a2|(s,X2
s )
∣
∣2)ds +

∫ t

0
E
(∣∣b1|(s,X1

s )−b2|(s,X2
s )
∣
∣2) ds

)

≤ 9 · et
(∫ t

0
E
(∣∣a1|(s,X1

s )−a2|(s,X2
s )
∣
∣2)ds +

∫ t

0
E
(∣∣b1|(s,X1

s )−b2|(s,X2
s )
∣
∣2) ds

)

as a consequence of Hölder inequality and Itô isometry (in Proposition 50). In fact,
∫ t

0
E
(∣∣a1(s, X1

s )−a2(s, X2
s )
∣
∣2)ds

≤ 3 ·
∫ t

0

(
E
(∣∣a1(s, X1

s )−a2(s, X1
s )
∣
∣2)+E

(∣∣a2(s, X1
s )−a2(s, X2

s )
∣
∣2)
)

ds

≤ 3 ·
∫ t

0

(∥∥a1(s, ·)−a2(s, ·)
∥∥2
∞ +Λ2 · E(|X1

s −X2
s |2
))

ds

and, the corresponding estimate holds for
∫ t

0
E
(∣∣b1(s, X1

s )−b2(s, X2
s )
∣
∣2) ds.

Finally the claimed upper bound of E
(|X1

t −X2
t |2
)

results from Gronwall’s inequal-
ity (in Proposition A.1) applied to t �→ E

(|X1
t −X2

t |2
) · e−t . �
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3.6.4 A Special Case with Fixed Additive Noise in More Detail

Now we approach nonlocal stochastic differential equations without the auxiliary
construction of § 3.4. In particular, distances and transitions on ẼA in use are
specified explicitly and verified. These full details imply a disadvantage though.
We have to restrict our considerations to the special case of an initially fixed diffu-
sion coefficient b(·) and real-valued drift coefficients (as a function of state in ẼA ).
It leads to nonlocal stochastic differential equations of the form

d Xt(ω) = f̃ (t,Xt(·)) dt + b(t)(ω) dWt(ω)

with a bounded Lipschitz function f̃ : (ẼA , d̃A,P)−→ R.

Stochastic Ordinary Differential Equations with Fixed Additive Noise Induce
Transitions

In contrast to § 3.6.3, we now start from stochastic differential equations only with
constant real-valued drift and fixed diffusion coefficient. Strictly speaking, their
strong solutions are “just” Itô processes, but they have all the features we need for
timed transitions on ẼA .
The only relevant obstacle to Definition 2 (of transitions on page 183) and its timed
counterpart is related to the comparison estimate for evolving random variables.
We restrict it to simultaneously timed states in ẼA so that the Itô integrals do not
occur explicitly in the inequalities.

Lemma 55. Let a, â ∈ R satisfy max{|a|, |â|} ≤ γ̂ and, suppose b : [0,∞[−→R

to be L 1-measurable with ‖b‖L∞ ≤ γ̂ < ∞.

Then the Itô processes

Xt = X̂0 +
∫ t

t0
a ds +

∫ t

t0
b(s) dWs

induce a unique map ϑ̃A,a,b : [0,1]× ẼA −→ ẼA ,
(
h, (t0, X̂0)

) �−→ (t0 +h, Xt0+h)
with the following properties for all X̃ ,Ỹ ∈ ẼA , R≥ 0, t,h1,h2 ∈ [0,1] (h1+h2≤ 1)

(1.) ϑ̃A,a,b(0, ·) = IdẼA

(2.) ϑ̃A,a,b
(
h1 + h2, ·

)
= ϑ̃A,a,b

(
h2, ϑ̃A,a,b(h1, ·)

)

(3.) d̃A,P
(
X̃ , ϑ̃A,a,b(t, X̃)

) ≤ const(γ̂) · (�X̃�A ,P + 1) · t
(4.) �ϑ̃A,a,b(t, X̃)�A,P ≤ e const(γ̂) ·t · (�X̃�A ,P + const(γ̂) · t)
(5.) ∃C = C(R) : if π1 X̃ = π1 Ỹ and max

{�X̃�A,P, �Ỹ�A,P
}≤ R,

lim
h↓0

d̃A,P(ϑ̃A,a,b(h,X̃), ϑ̃A, â,b(h,Ỹ)) − d̃A,P(X̃ ,Ỹ )
h ≤ C · |a − â| .
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Proof. Statements (1.) and (2.) are obvious because the Itô integral is additive
with respect to the interval of integration. Furthermore, statements (3.), (4.) result
from the upper bounds of E

(|Xt −X0|2
)

and E
(|Xt |2

)
in preceding Proposition 51.

Finally, we focus on property (5.) for X̃ = (t0,X), Ỹ = (t0,Y ) ∈ ẼA with Xt and Yt

denoting the Itô processes
⎧
⎪⎪⎨

⎪⎪⎩

Xt = X +
∫ t

t0
a ds +

∫ t

t0
b(s) dWs

Yt = Y +
∫ t

t0
â ds +

∫ t

t0
b(s) dWs

respectively. Then we obtain at every time t ∈ [t0, t0 + 1]

E
(|Xt −Yt |2

)
= E

(∣∣X−Y +(a− â) · (t− t0)
∣
∣2)

= E
(∣∣X−Y |2) + E

(
2 (X−Y ) · (a− â) (t− t0)

)
+ |a− â|2 |t− t0|2

≤ E
(∣∣X−Y |2) + 2 · E(|X |+ |Y |) · |a− â| |t− t0| + |a− â|2 |t− t0|2

≤ E
(∣∣X−Y |2) + E(|X |2 + |Y |2) · |a− â| |t− t0| + |a− â|2 |t− t0|2

and thus,

lim
h↓0

d̃A,P(ϑ̃A,a,b(h,X̃), ϑ̃A, â,b(h,Ỹ )) − d̃A,P(X̃ ,Ỹ )
h ≤ (�X̃�A,P + �Ỹ�A,P

) · |a − â|

because in each of these distances, two simultaneous states in ẼA are compared. �

The Step to Nonlocal Stochastic Equations: Existence of Strong Solutions

For every t ≥ 0, the vector space of At-measurable functions X : Ω −→ R with
E(|X |2) < ∞ is known to be complete with respect to its L2 norm

√
E(| · − · |2).

As an obvious consequence, the tuple
(
Ẽ, d̃A,P, d̃A,P, �·�A,P

)
is timed complete

in the sense of Definition 46 (on page 229). Moreover, Proposition 51 implies Euler
equi-continuity. Hence, these two features are good starting points for concluding
the existence of solutions from Cauchy-Lipschitz Theorem.

First, however, we should clarify what kind of stochastic differential equations is
considered within the mutational framework and what type of solution is obtained.
Indeed, after fixing a bounded L 1-measurable diffusion coefficient b : [0,∞[−→R,
we use the transitions ϑ̃A, ,a,b : [0,1]×ẼA −→ ẼA induced by any constant a∈R and
specified in Lemma 55 (on page 238), i.e., for any initial state (t0, X̂0) ∈ ẼA given,
the second component of ϑ̃A, ,a,b

(
h, (t0, X̂0)

) ∈ ẼA results from the Itô process

Xt = X̂0 +
∫ t

t0
a ds +

∫ t

t0
b(s) dWs

for every t ∈ [t0, t0+h].
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In regard to a mutational equation, we prescribe the real-valued drift a ∈ R as
a function of time t and At-measurable random variable Ω −→ R with bounded
second moment in an appropriately continuous way:

f̃ : ẼA −→ R .

In particular, for any X̃ = (t,X) ∈ ẼA given, f̃ (X̃) ∈ R might depend on the first
or second moment of X : Ω −→ R, for example. We interpret such a dependence
as a functional relationship and thus, our subsequent initial value problems deal
with stochastic functional differential equations. But it differs essentially from the
other examples in the literature such as [135, 187] because it is not a pathwise
dependence. Thus, we regard it as more appropriate to call this problem nonlocal
stochastic differential equation.

Furthermore, the comparative estimate in Lemma 55 (5.) is restricted to states
X̃ ,Ỹ ∈ ẼA with identical time components π1 X̃ = π1 Ỹ — essentially for preserving
the characteristic dependence on “initial error” and “transitional error”.
As a consequence, any bounds of distances between Euler approximations are
available only at identical points of time and, this constraint leads to simultaneously
timed solutions to mutational equations in the sense of Definition 36 (on page 222).
The aspect of required simultaneity concerns only the distances between states in
ẼA , but not the distances between transitions when assuming Lipschitz continuity,
for example, as the detailed proof of Cauchy-Lipschitz Theorem 31 (on page 213)
clarifies.

Theorem 56. Assume for f̃ : ẼA −→ R

(1.) supỸ∈ẼA
| f̃ (Ỹ )| < ∞ ,

(2.) f̃ is locally Lipschitz continuous in the following sense:
For every R > 0, there exists a constant λR > 0 such that for all Ỹ , Z̃ ∈ ẼA

with max
{�Ỹ�A,P, �Z̃�A,P

}
< R,

∣
∣ f̃ (Ỹ ) − f̃ (Z̃)

∣
∣ ≤ λR · d̃A,P

(
Ỹ , Z̃
)
.

Then for every initial tuple X̂0 = (t0,X0) ∈ ẼA and period T > 0, there exists a
simultaneously timed solution [t0, t0 + T ] −→ ẼA , t �−→ X̃t = (t,Xt) to the
mutational equation

◦
X̃ � f̃

(
X̃
)

in the sense of Definition 36 (on page 222) with X̃t0 = X̂0 = (t0,X0).

In particular, the stochastic process
(
Xt
)

t0≤ t≤ t0+T is a strong solution to the non-
local stochastic differential equation

{
d Xt(ω) = f̃ (t,Xt) dt + b(t)(ω) dWt(ω) in [t0, t0 + T ]

Xt0 = X0

and, it belongs to L 2
A ([t0, t0 + T ]).
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Proof. As mentioned briefly in § 3.5, the existence of simultaneously timed
solutions results from exactly the same arguments as Cauchy-Lipschitz Theorem 31
— after restricting the structural estimate (for distances between states evolving
along two transitions) in Proposition 7 to simultaneous states in ẼA .
Due to the transition properties in Lemma 55, there exists a simultaneously timed
solution [t0, t0 + T ] −→ ẼA , t �−→ X̃t = (t,Xt) to the mutational equation

◦
X̃ � f̃

(
X̃
)

in the sense of Definition 36 (on page 222) with X̃t0 = X̂0 and supt �X̃t�A,P ≤ R <∞.
In particular, assumption (1.) provides a constant L > 0 with

d̃A,P
(
X̃s, X̃t

) ≤ L |t− s| for all s, t ∈ [t0, t0+T ].
Now the composition

a : [0,T ] −→ R, t �−→ f̃ (X̃t)

is Lipschitz continuous and together with b ∈ L∞(R+
0 ), it induces the Itô process

Yt = X0 +
∫ t

t0
a(s) ds +

∫ t

t0
b(s) dWs

with the same initial value X0 as (Xt)t0≤ t≤ t0+T and supt �(t,Yt)�A,P ≤ R̂ < ∞.

Then, [t0, t0 + T ] −→ ẼA, , t �−→ Ỹt
Def.= (t,Yt) is a simultaneously timed solu-

tion to the mutational equation
◦

Ỹ � f̃
(
X̃
)
.

Indeed, choosing any t ∈ [t0, t0 + T [ , â ∈ R and At -measurable Zt : Ω −→ R with
bounded second moment, let

(
Zs)t≤ s≤ t0+T denote the auxiliary Itô process

Zs = Zt +
∫ s

t
â ds′ +

∫ s

t
b(s′) dWs′ .

Exactly the same arguments as in the proof of Lemma 55 (5.) (on page 239) provide
a constant C > 0 depending explicitly just on �(t0, X̂0)�A,P, �(t,Zt)�A,P, T, L and
the supremum in assumption (1.) such that

limsup
h↓0

1
h ·
(

d̃A,P

(
ϑ̃A, â,b(h, (t,Zt)), (t+h, Yt+h)

)
− d̃A,P

(
Zt , Yt

))

≤ C · limsup
H ↓0

∣∣â − f̃ (X̃t+H)
∣∣

= C · ∣∣â − f̃ (X̃t)
∣
∣

due to the continuity of f̃ . The “simultaneously timed” counterpart of Proposition 40
(on page 224) implies that the auxiliary distance

[t0, t0 + T ] −→ [0,∞[,

t �−→ inf
{

d̃A,P
(
Z̃, X̃t

)
+ d̃A,P

(
Z̃,Ỹt
) ∣∣ Z̃ ∈ ẼA : π1 Z̃ = t,
�Z̃�A,P < 1 + max {R, R̂}}

is identical to 0 and thus, Xt ≡Yt satisfies the claimed nonlocal stochastic differential
equation in the strong sense. �
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3.7 Example: Stochastic Morphological Equations
for Square Integrable Random Closed Sets in R

N

Many geometric processes in nature share the basic property that aspects of growth
and birth interfere simultaneously and, there is often no obvious way to describe
the birth of additional shape components in a deterministic way. One of the most
popular examples is crystal growth, but such forms of “uncertain shape evolution”
also occur in mineralization, solidification and DNA replication.

This observation motivates us to implement morphological set evolutions in a
stochastic environment. In other words, we now suggest a stochastic counterpart
of morphological equations for describing the evolution of shapes in dependence on
both feedback and random effects.

By comparison with the original morphological equations of Aubin (in § 1.9),
stochastics comes into play in two respects: First, it is not compact subsets of R

N

that evolve according to a given feedback rule, but we consider random closed sets in
R

N , i.e. measurable set-valued maps on a complete probability space with nonempty
closed values in R

N . Second, the shape evolution is not based on solutions to (deter-
ministic) differential inclusions in R

N , but now we use strong solutions to stochastic
differential inclusions. In particular, Theorem A.67 of Da Prato and Frankowska
assumes the central role of Filippov’s Theorem A.6. These two respects are the
starting points of this new example: Stochastic morphological equations in R

N .

This approach to stochastic shape evolution has many advantages in common with
morphological equations: We are not obliged to guarantee any regularity proper-
ties of boundaries (for specifying deformations in normal direction, for example).
Moreover, set evolutions may be determined by nonlocal features of the respective
sets and do not have to obey the inclusion principle.

Last, but not least, this proposal is not restricted to convex sets. In the deterministic
case, integrating a set-valued map of time (only) is usually interpreted in the sense
of Aumann and thus, it always leads to convex subsets. This “curse of convexity”
has been overcome quite easily in § 1.9 by “integrating” along differential inclusions
x′ ∈ F(x,t), whose right-hand side may depend on space explicitly: Their reachable
sets are not necessarily convex any longer. We benefit from the same advantage
of additional feedback now if random closed sets in R

N evolve along stochastic
differential inclusions (instead of just some integration in time).

Random closed reachable sets are always related to their initial set and thus, they can
describe only growth processes (§ 3.7.3). Nucleation means here that an additional
random closed set initiates such a growth process at a possibly later point of time.
This aspect is described as a given set-valued map of time in § 3.7.4.
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3.7.1 The General Assumptions for This Example

Morphological equations for nonempty compact sets in R
N were discussed in § 1.9

(on page 57 ff.) and, their transitions are induced by reachable sets of differential
inclusions in the Euclidean space. Filippov’s Theorem A.6 (on page 443 f.) proved
to be the key tool for verifying the required features in the mutational framework.
Now we are going to draw the corresponding conclusions for random closed sets in
R

N from Da Prato-Frankowska Theorem A.67 about stochastic differential inclu-
sions and so, we start with essentially the assumptions of § A.8.1 (on page 482 ff.).
For the sake of transparency, however, we neglect the aspect of predictability, i.e.
the underlying filtration (At)t≥0 is constant: At := A for all t ≥ 0. (Indeed, this
simplification avoids an additional real component, which is just monitoring the
respective points of time as in § 3.6.)

General assumptions in § 3.7

(i) (Ω ,A ,P) is a complete probability space.

(ii) W = (Wt)t≥0 is an m-dimensional Wiener process.

(iii) For finite T > 0 fixed, define the class L 2
A ([0,T ],RN) of functions f :

[0,T ]×Ω −→R
N with

(1.) f is jointly L 1×A -measurable,

(2.)
∫

[0,T ]
E
(| f (t, ·)|2) dt < ∞,

(3.) for every t ∈ [0,T ], E
(| f (t, ·)|2) < ∞ and

(4.) for every t ∈ [0,T ], f (t, ·) : Ω −→R
N is A -measurable.

(iv) Let Lin(Rm,RN) consist of all linear functions R
m −→R

N .
Set |M|∞ := sup

y∈M
|y| ∈ [0,∞] for any subset M ⊂ R

N (as in Definition 2.77).

(v) I0(X0,γ,σ) denotes the Itô process associated with
the initial state X0 ∈ L2(Ω , A ,P; R

N),
the drift γ ∈L 2

A ([0,T ], R
N) and

the diffusion σ ∈L 2
A ([0,T ], Lin(Rm,RN)), i.e. for t ∈ [0,T ],

I0(X0,γ,σ)(t) := X0 +
∫ t

0
γ(s) ds +

∫ t

0
σ(s) dWs,

∥∥I0(X0,γ,σ)
∥∥

I,[0,t] :=
√

E(|X0|2) + E

(∫ t

0
|γ|2 ds

)
+ E

(∫ t

0
|σ |2 ds

)
.

In the deterministic example of morphological equations, we consider the metric
space (K (RN),dl), i.e. the set of all nonempty compact subset of R

N supplied with
the Pompeiu-Hausdorff metric dl. Stochastic differential equations with a Wiener
process, however, imply the obstacle that the pathwise growth of their solutions is
difficult to bound explicitly. Thus we modify the type of subsets under consideration
and focus on closed sets. Furthermore the class of subsets is to be related with the
probability space (Ω ,A ,P) and thus, we use the concept of measurable set-valued
maps specified in § A.10.1 (on page 489 f.).
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Definition 57 (Random closed set). Let B denote the Borel σ -algebra on R
N .

A random closed set in R
N is a measurable set-valued map (Ω ,A )� (RN ,B)

with nonempty closed values. RC (Ω ,RN) consists of all these random closed sets.

A random closed set M ∈ RC (Ω ,RN) is called square integrable if there exists
a square integrable selection f :Ω −→ R

N of M, i.e. f (·) ∈ L2(Ω ,A ,P;RN) with

f (ω) ∈M(ω) for all ω ∈Ω .

S 2
RC (M) ⊂ L2(Ω ,A ,P; R

N) abbreviates the set of all square integrable selections
Ω −→ R

N of M. The set of square integrable random closed sets Ω � R
N is de-

noted by RC 2(Ω ,RN).

Remark 58. Due to Castaing’s Characterization Theorem A.75 (on page 489), a
set-valued map M : (Ω ,A )� (RN ,B) with nonempty closed values is measurable
if and only if it is the pointwise closure of the union of (at most) countably many
measurable functions fn :Ω −→ R

N (n ∈N):

M(ω) =
⋃

n∈N

fn(ω) for every ω ∈Ω .

Remark 59. (1.) As a consequence of the preceding remark, every square inte-
grable random closed set M :Ω �R

N can be represented by a sequence (gn)n∈N in
L2(Ω ,A ,P; R

N) as

M(ω) =
⋃

n∈N

gn(ω) for every ω ∈Ω .

Indeed, there exists at least one selection g ∈ L2(Ω ,A ,P; R
N) of M by definition

and for each m∈N, the auxiliary function gn,m :Ω −→R
N is square integrable with

gn,m :=
{

fn if m−1≤ | fn|< m
g otherwise.

(2.) The essential purpose of subsequent Lemma 60 is that many conclusions
about any set M ∈RC 2(Ω ,RN) result from just a single pointwise covering family
(gn)n∈N in L2(Ω ,A ,P; R

N) (in the sense of statement (1.) above).

(3.) For every M ∈ RC 2(Ω ,RN), S 2
RC (M) is closed in L2(Ω ,A ,P; R

N) and
so, each separable closed subset of L2(Ω ,A ,P; R

N) induces a square integrable
random closed set uniquely (see also Proposition 65 below). M ∈ RC 2(Ω ,RN),

however, does not have to satisfy E
(|M|2∞

) Def.=
∫

Ω
sup

z∈M(ω)
|z|2 dP(ω) < ∞.

Lemma 60 (Approximation by step-functions [141, Lemma 2.1.3]).

Let the sequence (gn)n∈N in L2(Ω ,A ,P;RN) satisfy M(ω) =
⋃

n∈N

gn(ω) for any ω .

Then for every f ∈ S 2
RC (M) and ε > 0, there exists a finite measurable partition

A1,A2 . . . Am of Ω such that
∥∥
∥ f −

m

∑
j=1

g j · χA j

∥∥
∥

L2(Ω)
< ε .
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Basic set E := RC 2(Ω ,RN)
set of square integrable random closed sets M : Ω � R

N

∼= decomposable closed subsets of L2(Ω,A,P;RN) (as selections)

with a complete probability space (Ω ,A ,P) given

Distance dlRC (M1, M2)2 Def.= max
{

sup
f ∈S 2

RC (M1)
E
(
dist( f , M2)2

)
,

sup
g∈S 2

RC (M2)
E
(
dist(g, M1)2

) } ∈ [0,∞]

square of the so-called mean square Pompeiu-Hausdorff distance
(Definition 61), which does not satisfy the triangle inequality

Absolute value �·� := 0

Transitions:
Non-ω-contractive
candidates

Fix an m-dimensional Wiener process (Wt )t≥0 and Λ > 0. Each
measurable/Λ -Lipschitz (F1,F2) :Ω×R

N � R
N ×Lin(Rm,RN)

with nonempty compact and uniformly bounded values (Def. 69)
induces a possibly non-ω-contractive candidate

ϑF : [0,1]×RC 2(Ω ,RN) −→ RC 2(Ω ,RN)

via the random closed reachable set of the autonomous stochastic
differential inclusion dXt ∈ F1(·, Xt) dt + F2(·, Xt) dWt (Def. 64)

Compactness Not available in an obvious way here.
Completeness w.r.t. dlRC is used instead: Lemma 63 (page 246).

Equi-continuity Nonequidistant Euler equi-continuity w.r.t. dl2
RC results from

a priori estimates for random closed reachable sets of nonauto-
nomous stochastic differential inclusions in any interval [0,T ]:
Proposition 68 (1.) (page 249).

Mutational solutions Random closed reachable sets of nonautonomous stochastic dif-
ferential inclusions whose set-valued right-hand side is deter-
mined via feedback: K(t) = ϑF (K,·)(t,K0) P-almost surely inΩ
for every t .

List of main results
formulated in § 3.7

Existence for growth process (Cauchy-Lipschitz): Theorem 72
Existence for systems of growth process and nonlocal stochastic
differential equation: Corollary 74 (page 253)

Existence for birth-and-growth problems: Theorem 76 (p. 255)
Existence for continuous or expanding nucleation: Corollary 79

Key tools The closure of every nonempty decomposable subset of
L2(Ω,A,P;RN) is the selection set of a square integrable random
closed set Ω � R

N : Corollary 66 (page 248)

Filippov-like Theorem A.67 of Da Prato and Frankowska about
nonautonomous stochastic differential inclusions (page 483)

Table 3.2 Brief summary of the example in § 3.7 in mutational terms:
Stochastic morphological equations for square integrable random closed sets in R

N
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Definition 61. The mean square Pompeiu-Hausdorff excesses and distance

�e⊂RC , �e⊃RC , dlRC : RC 2(Ω ,RN)×RC 2(Ω ,RN) −→ R∪{∞}
are defined as

�e⊂RC (M1, M2) := sup
f ∈S 2

RC (M1)

√
E
(
dist( f , M2)2

)
,

�e⊃RC (M1, M2) := sup
g∈S 2

RC (M2)

√
E
(
dist(g, M1)2

)
,

dlRC (M1, M2) := max
{

�e⊂RC (M1, M2), �e⊃RC (M1, M2)
}

.

Remark 62. (1.) In the following, we do not exclude explicitly that the mean
square Pompeiu-Hausdorff distance between two sets M1,M2 ∈RC 2(Ω ,RN) is ∞.

Indeed, there are some standard transformations for metrics such as dlRC (M1,M2)
1 + dlRC (M1,M2) ,

but they do not provide any additional insight here.

(2.) In combination with Selection Theorem A.74 of Kuratowski and Ryll-
Nardzewski (on page 489), Lemma 60 ensures for any sets M1,M2 ∈RC 2(Ω ,RN)
and a sequence ( fn)n∈N in L2(Ω ,A ,P; R

N) with

M1(ω) =
⋃

n∈N

fn(ω), for every ω ∈Ω :

sup
f ∈S 2

RC (M1)
E
(
dist( f , M2)2) = sup

f ∈S 2
RC (M1)

inf
g∈S 2

RC (M2)
E
(| f −g|2)

= sup
m∈N

inf
g∈S 2

RC (M2)

∥
∥ fm − g

∥
∥2

L2(Ω ;RN) .

As a first consequence, we obtain for any three sets M1,M′1,M2 ∈RC 2(Ω ,RN)

�e⊂RC

(
M1∪M′1, M2

)
= max

{
�e⊂RC (M1, M2), �e⊂RC (M′1, M2)

}

which will be of technical use for birth processes in § 3.7.4. More significantly here,

dlRC (M1, M2) = max
{

sup
f ∈S 2

RC (M1)
inf

g∈S 2
RC (M2)

∥
∥ f − g

∥
∥

L2(Ω ;RN ),

sup
g∈S 2

RC (M2)
inf

f ∈S 2
RC (M1)

∥
∥ f − g

∥
∥

L2(Ω ;RN )

}

= sup
{ ∣
∣ inf

f ∈
S 2
RC

(M1)

‖h− f‖L2 − inf
g∈

S 2
RC (M2)

‖h−g‖L2

∣
∣
∣
∣
∣h ∈ L2(Ω ;RN)

}

is a metric on RC 2(Ω ,RN) — with values in R
+
0 ∪{∞} though.

According to a general result about the Hausdorff metric topology of nonempty
closed subsets in any metric space [27, Theorem 3.2.4 (1.)] [40, Theorem II.3],
the completeness of L2(Ω ,A ,P; R

N) implies directly:

Lemma 63. RC 2(Ω ,RN) is complete with respect to dlRC .
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3.7.2 Reachable Sets of Stochastic Differential Inclusions
are to Induce Transitions on RC 2(Ω ,RN)

In the deterministic case, morphological transitions on (K (RN),dl) are based on
reachable sets of autonomous differential inclusions, i.e.

ϑF(t, K0) :=
{

x(t) ∈ R
N
∣
∣ there exists x(·) ∈W 1,1([0, t],RN) :

x′(·) ∈ F(x(·)) L 1-a.e. in [0, t], x(0) ∈ K0
}

for a given set-valued map F : R
N �R

N according to Definition 1.48 (on page 60).
Filippov’s Theorem A.6 about differential inclusions implies the properties required
for transitions if F ∈ LIP(RN ,RN), that means, if F : R

N � R
N is a Lipschitz con-

tinuous set-valued map with nonempty compact and uniformly bounded values.

Now we extend this approach to stochastic differential inclusions with a given
m-dimensional Wiener process W = (Wt)t≥0.
The definition of “reachable set” uses square integrable strong solutions and then,
Theorem A.67 of Da Prato-Frankowska (on page 483) is the key tool in regard to
transition properties. Hence, as in § A.8, I0(X0,γ,σ) : [0,T ]×Ω −→ R

N denotes
the Itô process associated with

◦ the initial state X0 ∈ L2(Ω , A ,P; R
N),

◦ the drift γ ∈ L 2
A ([0,T ], R

N) and
◦ the diffusion σ ∈ L 2

A ([0,T ], Lin(Rm,RN)),
i.e. for t ∈ [0,T ],ω ∈Ω ,

I0(X0,γ,σ)(t,ω) := X0(ω) +
∫ t

0
γ(s,ω) ds +

∫ t

0
σ(s,ω) dWs(ω).

Definition 64 (Random reachable set).
Consider an m-dim. Wiener process W = (Wt)t≥0 on the complete probability space
(Ω ,A ,P) and a set-valued map F̃ = (F̃1, F̃2) : [0,T ]×Ω×R

N�R
N×Lin(Rm,RN).

The random reachable set ϑF̃(t,M0):Ω�R
N of the stochastic differential inclusion

dXt ∈ F̃1(t, · , Xt) dt + F̃2(t, · , Xt) dWt

and initial set M0 ∈RC 2(Ω ,RN) at time t ∈ [0,T ] is defined via strong solutions as

ϑF̃(t,M0) :=
{

Xt
∣∣ ∃ X0 ∈ L2(Ω ,A ,P; R

N), γ ∈L 2
A ([0,T ], R

N),
σ ∈L 2

A ([0,T ], Lin(Rm,RN)) :

X = I0(X0,γ,σ), X0 ∈M0 P-almost surely

and for (L 1×P)-almost all (s, ω̃) ∈ [0, t]×Ω ,

γ(s, ω̃) ∈ F̃1
(
s, ω̃ , Xs(ω̃)

)
,

σ(s, ω̃) ∈ F̃2
(
s, ω̃ , Xs(ω̃)

) }
.

The random closed reachable set ϑF̃(t,M0) : Ω � R
N is the random closed set

whose set of selections in L2(Ω ,A ,P; R
N) coincides with the closure of all these

solutions Xt ∈ L2(Ω ,A ,P; R
N) starting in M0 P-almost surely.
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Obviously, ϑF̃(0,M0) = M0 holds for every M0 ∈RC 2(Ω ,RN) and set-valued map
F̃ : [0,T ]×R

N�R
N×Lin(Rm,RN) because M0 is characterized by S 2

RC (M0) �= /0.

The next step is to verify that ϑF̃ (t,M0) : Ω � R
N is well-defined in RC 2(Ω ,RN)

– essentially due to pathwise structure of the stochastic differential inclusion. For
this purpose, we quote a general criterion for subsets of L2(Ω ,A ,P; R

N) inducing
random closed sets:

Proposition 65 (Decomposable sets and selections [141, Theorem 2.1.6]).
Let Ξ be a nonempty closed subset of L2(Ω ,A ,P; R

N).
Then there exists a random closed set M : Ω � R

N with S 2
RC (M) = Ξ if and only

if Ξ is decomposable in the following sense: For any ξ1,ξ2 ∈ Ξ and A ∈ A , the
function χA ·ξ1 +(1−χA) ·ξ2 :Ω −→R

N also belongs to Ξ (with χA :Ω −→{0,1}
denoting the characteristic function of A⊂Ω).

The proof of this equivalence as it is presented in the monograph of Molchanov
[141], for example, provides the following implication for the case that the
nonempty set Ξ ⊂ L2(Ω ,A ,P; R

N) is not assumed to be closed:

Corollary 66. Let Ξ be a nonempty subset of L2(Ω ,A ,P; R
N).

If Ξ is decomposable then there exists a square integrable random closed set
M :Ω � R

N whose set S 2
RC (M) of L2 selections is equal to the closure of Ξ .

Corollary 67. For every F̃ : [0,T ]×R
N�R

N×Lin(Rm,RN), M0 ∈RC 2(Ω ,RN)
and t ∈ [0,T ], the set-valued map ϑF̃(t,M0) : Ω � R

N defined via the L2 closure
of solutions Xt ∈ L2(Ω ,A ,P; R

N) starting in M0 is a square integrable random
closed set.

Proof. At time t ∈ [0,T ] consider the set Ξ of all Xt ∈ L2(Ω ,A ,P; R
N) induced

by an Itô process X = I0(X0,γ,σ) which solves the stochastic differential inclusion
dXs ∈ F̃1(s, · , Xs) ds + F̃2(s, · , Xs) dWs and starts in M0, i.e. X0 ∈ S 2

RC (M0) and
for (L 1×P)-almost all (s,ω) ∈ [0,T ]×Ω ,

{
γ(s,ω) ∈ F̃1

(
s, ω , Xs(ω)

)
,

σ(s,ω) ∈ F̃2
(
s, ω , Xs(ω)

)
.

This subset Ξ is decomposable because each integral related to the Itô process
I0(X0,γ,σ) is evaluated pathwise. Hence there exists a set Mt ∈RC 2(Ω ,RN) with
S 2

RC (Mt) = Ξ ⊂ L2(Ω ,A ,P; R
N) and by definition, ϑF̃(t,M0) := Mt . �
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Now the continuity properties of ϑF̃ : [0,T ]×RC 2(Ω ,RN) −→ RC 2(Ω ,RN)
decide whether random closed reachable sets induce transitions on RC 2(Ω ,RN)
with respect to the mean square Pompeiu-Hausdorff distance dlRC .
The Filippov-like Theorem A.67 of Da Prato-Frankowska (on page 483) is the
analytical basis for comparing the evolution of two initial sets in RC 2(Ω ,RN)
— in essentially the same way as we used Filippov’s Theorem A.6 for morphologi-
cal transitions in Proposition 1.50 (on page 60).

Proposition 68. Let F̃ ,G̃ : [0,T ]×Ω×R
N � R

N×Lin(Rm,RN) satisfy

(i) F̃,G̃ have nonempty compact values,

(ii) for every x ∈ R
N, F̃(·, ·,x) and G̃(·, ·,x) are measurable,

(iii) ∃Λ > 0 : for any t ∈ [0,T ],ω ∈Ω : F̃(t,ω , ·), G̃(t,ω , ·) are Λ -Lipschitz,

(iv) ∃ γ̂ > 0 : max
{|F̃(t,ω ,x)|∞, |G̃(t,ω ,x)|∞

}≤ γ̂ holds for all t,ω ,x.

Then the following statements hold for any 0≤ s≤ t and M,M1,M2 ∈RC 2(Ω ,RN)

(1.) dlRC

(
ϑF̃(s,M), ϑF̃ (t,M)

)2 ≤ 18 γ̂2 et · (t− s)

(2.) dlRC

(
ϑF̃(t,M1), ϑG̃(t,M2)

)2

≤C ·
(

dlRC (M1,M2)2 +
∫ t

0
sup

Y ∈L2
dlRC

(
F̃(s, ·,Y ),G̃(s, ·,Y )

)2
ds
)
· eC·(2+t)t

with a constant C ≥ 1 depending only onΛ .

The proof will be given in a moment. We now focus on the consequences:
Firstly, the estimates reveal that Lipschitz continuity with respect to time is verified
for the square distance dlRC (·, ·)2 (rather than the metric dlRC ). Secondly, random
closed reachable sets of autonomous stochastic differential inclusions might not be
ω-contractive with respect to dl2

RC because the constant C in the second estimate
could be larger than 1.
Statement (2.), however, concerns nonautonomous stochastic differential inclusions
and, it enables us to bridge this gap by means of the distance construction in § 3.4
(on page 214 ff.). Indeed, the arguments for Proposition 32 (in the simplified case
�·� ≡ 0) lead directly to the following result about autonomous stochastic differen-
tial inclusions with “measurable/Lipschitz” right-hand side:

Definition 69. For Λ > 0 fixed, MLIPΛ (Ω ,RN ;Rm1 ,Rm2×m3) consists of all set-
valued maps F = (F1,F2) :Ω ×R

N�R
m1×R

m2×m3 with the following properties:

(1.) F has nonempty compact values,

(2.) for every x ∈ R
N , F(·,x) is measurable,

(3.) for every ω ∈Ω , F1(ω , ·) and F2(ω , ·) are Λ -Lipschitz continuous,

(4.) ‖F‖∞ Def.= sup
{|F(ω ,x)|∞

∣
∣ω ∈Ω , x ∈R

N
}

< ∞.
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Corollary 70. Fix the parameterΛ ≥ 0 arbitrarily. Then there exist

ď2
RC : RC 2(Ω ,RN)×RC 2(Ω ,RN)−→ [0,∞[

and a constant č ≥ 1 such that for any F,G ∈ MLIPΛ
(
Ω ,RN ; R

N ,Lin(Rm,RN)
)

and all sets M1,M2 ∈RC 2(Ω ,RN), t1, t2,h≥ 0 with t1 + h, t2 + h≤ 1

(1.) dlRC (·, ·)2 ≤ ď2
RC (·, ·) ≤ č · dlRC (·, ·)2

(2.) ď2
RC

(
ϑF(t1+h,M1), ϑF(t2+h,M2)

) ≤ ď2
RC

(
ϑF (t1,M1), ϑF(t2,M2)

) · eč h,

(3.) ď2
RC

(
ϑF(t1+h,M1), ϑG(t2+h,M2)

)

≤
(

ď2
RC

(
ϑF(t1,M1), ϑG(t2,M2)

)
+ h · č · dl∞

(
F,G
)2
)
· eč h .

Random closed reachable sets of each map F ∈MLIPΛ
(
Ω ,RN ; R

N ,Lin(Rm,RN)
)

induce transitions on the tuple
(
RC 2(Ω ,RN), ď2

RC , dl2
RC , 0

)
.

Proof (of Proposition 68).
(1.) Remark A.66 (on page 483) mentions the general estimate

E
(∣∣I0(X0,γ,σ)(t)

∣
∣2) ≤ 9 et

∥
∥I0(X0,γ,σ)

∥
∥2

I,[0,t]

Def.= 9 et
(

E(|X0|2) + E

(∫ t

0
|γ|2 ds

)
+ E

(∫ t

0
|σ |2 ds

))

for any initial X0 ∈ L2(Ω ,A ,P;RN), drift γ ∈ L 2
A ([0,T ],RN) and diffusion

σ ∈L 2
A ([0,T ],Lin(Rm,RN)). This implies for a solution

X = I0(Xs,γ,σ) : [s, t]−→ L2(Ω ,A ,P;RN)
to the stochastic differential inclusion dXt ∈ F̃1(t, Xt) dt + F̃2(t, Xt) dWt starting in
Xs at time s

E
(∣∣Xt − Xs

∣
∣2) ≤ 9 et · ∥∥I0(0,γ,σ)

∥
∥2

I,[s,t]

≤ 9 et ·
(
E

(∫ t

s
|γ|2 ds

)
+ E

(∫ t

s
|σ |2 ds

))

≤ 9 et ·2 γ̂2 (t− s) .

(2.) Due to the symmetry of dlRC and the definition of ϑF̃ (t,M1) via L2 closure, it
is sufficient to prove for every solution X =I0(X0,γ,σ) : [0, t]−→ L2(Ω ,A ,P;RN)
to the stochastic differential inclusion dXs ∈ F̃1(s, · Xs) ds + F̃2(s, · Xs) dWs starting
in a selection X0 ∈ L2(Ω ,A ,P; R

N) of M1 ∈RC 2(Ω ,RN):

E
(
dist(Xt , ϑG̃(t,M2))2

)

≤ 9 C
(

E
(
dist(X0,M2)2

)
+
∫ t

0
dlRC

(
F̃(s, ·,Xs), G̃(s, ·,Xs)

)2
ds
)
· eC (2+t) t

with a constant C ≥ 1 depending only on Λ .

Choose a selection Y0 ∈ S 2
RC (M2) with ‖X0−Y0‖2

L2 = E
(
dist(X0,M2)2

)
by means

of Proposition A.80 about marginal maps and Selection Theorem A.74 (on
page 489 f.).



3.7 Example: Stochastic Morphological Equations for Random Closed Sets in R
N 251

According to Theorem A.67 of Da Prato-Frankowska (on page 483), there exist a
constant C = C(Λ)≥ 1 and a strong solution Y : [0, t]−→ L2(Ω ,A ,P; R

N) of

dYs ∈ G̃1(s, · , Ys) ds + G̃2(s, · , Ys) dWs

starting in Y0 such that

‖Y − X‖2
I,[0,t] ≤ C ·

(
E
(|Y0−X0|2

)

+
∫ t

0
E

(
dist
(
(γ(s, ·),σ(s, ·)), G̃(s, ·,Xs)

)2
)

ds
)
· eC·(1+t)t

Remark A.66 (on page 483) and the definition of dlRC (·, ·)2 via L2 selections imply

E
(
dist(Xt , ϑG̃(t,M2))2) ≤ E

(|Yt −Xt|2
)

≤ 9 et C ·
(

E
(
dist(X0,M2)2)

+
∫ t

0
dlRC

(
F̃(s, ·,Xs), G̃(s, ·,Xs)

)2
ds
)
· eC·(1+t) t .

�

3.7.3 The Main Conclusions About Stochastic Growth Processes

We have just laid the foundations for applying the mutational framework to the
tuple

(
RC 2(Ω ,RN), ď2

RC ,dl2
RC ,0

)
and the random closed reachable sets ϑF(·, ·)

induced by the set-valued maps in MLIPΛ
(
Ω , R

N ; R
N , Lin(Rm,RN)

)
with an

initially fixed Lipschitz bound Λ ≥ 0.
Proposition 68 and Corollary 70 indicate two essential features: Firstly, the tran-
sition parameters can be chosen as a function of the parameter Λ and secondly,
the corresponding transition distance is defined as č(Λ) · dl∞(·, ·)2 < ∞.

Now we can handle the stochastic counterparts of morphological equations (origi-
nally introduced by Aubin for (K (RN),dl) and discussed in § 1.9 on page 57 ff.),
i.e. the evolution of square integrable random closed sets is prescribed as a function
of their current shape.
The geometric interpretation of a solution plays an important role again. In regard
to (deterministic) morphological equations, Proposition 1.57 (on page 64) provides
the equivalent characterization as reachable sets of nonautonomous differential
inclusions in R

N . Now a similar link with nonautonomous stochastic differential
inclusions results directly from Proposition 34 (on page 219) due to Proposition 68:

Lemma 71. Suppose F : [0,T ] −→ (
MLIPΛ

(
Ω ,RN ; R

N ,Lin(Rm,RN)
)
, dl∞

)

to be continuous with sup[0,T ] ‖F (t)‖∞ < ∞ and define the set-valued map

F̂ : [0,T ]×Ω×R
N � R

N×Lin(Rm,RN), (t,ω ,x) �→ F (t)(ω ,x).

Then for any K0 ∈RC 2(Ω ,RN), the random closed reachable set K(·) :=ϑF̂ (·,K0):

[0,T ]−→RC 2(Ω ,RN) is a solution to the mutational equation
◦
K (t) � F (t)

in the tuple
(
RC 2(Ω ,RN), ď2

RC , dl2
RC , 0, č(Λ) ·dl∞(·, ·)2

)
.
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The extended Cauchy-Lipschitz Theorem 31 (on page 212) guarantees existence of
solutions due to completeness:

Theorem 72 (Cauchy-Lipschitz Theorem for stochastic morpholog. equations).
Assume for Λ > 0 and

F = (F1,F2) : RC 2(Ω ,RN)× [0,T ]−→MLIPΛ
(
Ω ,RN ;RN ,Lin(Rm,RN)

)
:

(1.) there exists γ̂ > 0 such that sup ‖F (·)‖∞ ≤ γ̂ ,

(2.) F is Lipschitz continuous w.r.t. state and continuous in the following sense:
There exist a constant λ > 0 and a modulus of continuity ω(·) such that for
any M1,M2 ∈RC 2(Ω ,RN) and t1, t2 ∈ [0,T ],

dl∞
(
F (M1,t2), F (M2, t2)

)2 ≤ λ ·dlRC

(
M1,M2

)2 + ω(|t1− t2|).

Then, for any initial set K0 ∈ RC 2(Ω ,RN), there exists a unique curve K(·) :
[0,T ]−→RC 2(Ω ,RN) which is Lipschitz continuous with respect to dl2

RC and has
the two following (equivalent) properties:

(i) for Lebesgue-almost every t ∈ [0,T ] :
◦
K (t) � F (K(t), t),

i.e. for any random closed set M ∈ RC 2(Ω ,RN) and bounded set-valued
map G ∈MLIPΛ

(
Ω ,RN ;RN ,Lin(Rm,RN)

)
, it satisfies

limsup
h↓0

1
h ·
(

ď2
RC

(
ϑG(h,M), K(t + h)

) − ď2
RC

(
M, K(t)

) · eč h
)

≤ č · dl∞
(
G, F (K(t), t)

)2

where ď2
RC : RC 2(Ω ,RN)×RC 2(Ω ,RN) −→ [0,∞[ denotes the distance

function and č = č(Λ) the constant mentioned in Corollary 70 (on page 250),

(ii) for every t ∈ [0,T ] : K(t) = ϑF (K,·)(t,K0),

i.e. K(t) always coincides with the random closed reachable set of the non-
autonomous stochastic differential inclusion

dXt(ω) ∈ F1(K(t),t) (ω , Xt(ω)) dt + F2(K(t), t) (ω , Xt(ω)) dWt(ω)

and initial set K0 ∈RC 2(Ω ,RN) (in the sense of Definition 64 on page 247)
P-almost everywhere in Ω .

Remark 73. Property (i) generalizes the criterion for the time derivative of a curve
in RC 2(Ω ,RN) as we have already discussed in the beginning of § 3.3.

Property (ii) can be regarded as “integral” characterization. In a figurative sense,
it is the set-valued counterpart of the well-known integral criterion for absolutely
continuous functions [0,T ]−→ R

N .
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An advantage of this existence result by means of the mutational framework
is that we are immediately free to combine these stochastic growth processes in
RC 2(Ω ,RN) with any other example.
Here we select exemplarily a system with a nonlocal stochastic differential equation.
This kind of dynamic problem occurs in models where a stochastic differential equa-
tion depends on an uncertain control parameter whose control set in RC 2(Ω ,RN)
is prescribed in a closed-loop way.
For the sake of simplicity (merely), we restrict the next corollary to an autonomous
system with At = A for all t ∈ [0,T ].

Alternatively, we can apply the same existence arguments to systems with nonlocal
reaction-diffusion equations in fixed cylindrical domains (discussed in § 3.9 below),
for example.

Corollary 74 (System with a nonlocal stochastic differential equation).
Assume for Λ > 0 and

f =( f1, f2) : L2(Ω ;R)×RC 2(Ω ,RN) −→ W 1,∞(R,R)×W 1,∞(R,R),
F =(F1,F2) : L2(Ω ;R)×RC 2(Ω ,RN) −→ MLIPΛ

(
Ω ,RN;RN,Lin(Rm,RN)

)
:

(1.) sup
(Y,M)

(‖f(Y,M)‖W1,∞ + ‖F (Y,M)‖∞) < ∞ ,

(2.) f and F are Lipschitz continuous in the following sense:
There exists a constant λ > 0 such that for all Y1,Y2 ∈ L2(Ω ,A ,P;R) and
M1,M2 ∈RC 2(Ω ,RN),

∥∥f(Y1,M1)(·) − f(Y2,M2)(·)
∥∥2

L∞ + dl∞
(
F (Y1,M1), F (Y2,M2)

)2

≤ λ ·
(

E
(|Y1−Y2|2

)
+ dlRC

(
M1,M2

)2
)

.

Then for any initial states X0 ∈ L2(Ω ,A ,P;R) and K0 ∈ RC 2(Ω ,RN), there
exist unique curves X : [0,T ] −→ L2(Ω ,A ,P;R) and K : [0,T ] −→ RC 2(Ω ,RN)
with the following properties:

(i) X : [0,T ]−→ L2(Ω ,A ,P; R) is Lipschitz continuous w.r.t. E
(| ·− · |2),

K : [0,T ]−→RC 2(Ω ,RN) is Lipschitz continuous w.r.t. dlRC (·, ·)2.

(ii) X is a strong solution to the stochastic differential equation

d Xs(ω) = f1(Xs, K(s)) (Xs(ω)) ds + f2(Xs, K(s)) (Xs(ω)) dWs(ω)

(iii) for every t ∈ [0,T ], K(t) ∈RC 2(Ω ,RN) coincides with the random closed
reachable set of the stochastic differential inclusion

dYs(ω) ∈ F1(Xs,K(s))
(
ω , Ys(ω)

)
ds + F2(Xs,K(s))

(
ω , Ys(ω)

)
dWs(ω)

and the initial set K0 (P-almost everywhere in Ω).
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3.7.4 Extensions to Stochastic Birth-and-Growth Processes

The evolution of random closed sets along stochastic differential inclusions covers
a quite broad class of growth processes. In particular, it is not restricted to convex-
valued or expanding set evolutions in RC 2(Ω ,RN).
Theorem 72 and Corollary 74 do not consider any form of nucleation though.
Roughly speaking, the growth process is initiated completely by the initial random
closed set K0 ∈RC 2(Ω ,RN) at time t = 0 — and not by some additional random
process starting maybe elsewhere and later.

In this section, we suggest how this restriction can be overcome in some cases by
means of approximation. Obviously, there is no significant difficulty in solving the
following problem in a piecewise way:

⎧
⎪⎪⎨

⎪⎪⎩

◦
K (·) � F

(
K(·), ·) L 1-a.e. in [0,T ]

K(0) = K0

K(t1) = lim
t ↑ t1

K(t) ∪ N1

with given random closed sets K0,N1 ∈ RC 2(Ω ,RN), the time of nucleation
t1 ∈ ]0,T [ and the function

F = (F1,F2) : RC 2(Ω ,RN)× [0,T ]−→MLIPΛ
(
Ω ,RN ;RN ,Lin(Rm,RN)

)

satisfying the assumptions of Theorem 72. Here the limit on the right-hand side is
understood in RC 2(Ω ,RN) with respect to dlRC and, its existence results from the
Lipschitz continuity of solutions with respect to dl2

RC (due to Proposition 68 (1.)).
Lemma 71 applied first to [0,t1] and then to [t1,T ] leads to the geometric character-
ization of the unique solution K(·) : [0,T ]−→RC 2(Ω ,RN):

K(t) =

{
ϑF (K,·)

(
t, K0

)
if 0 ≤ t < t1

ϑF (K,·)
(
t, K0

) ∪ ϑF (K(t1+·), t1+·)
(
t− t1, N1

)
if t1 ≤ t ≤ T.

This simple example is based on a single additional nucleation at time t1 ∈ ]0,T [.
Now the central question is which type of convergence of the time-dependent nu-
cleation is appropriate for extending this piecewise construction approximatively.

Proposition 75 (A priori estimate for countably many nucleation processes).
Fix Λ > 0 and assume for k = 1,2,

F k = (F k
1 ,F k

2 ) : RC 2(Ω ,RN)× [0,T ]−→MLIPΛ
(
Ω ,RN ;RN ,Lin(Rm,RN)

)
:

(1.) there exists γ̂ > 0 such that sup ‖F k(·, ·)‖∞ ≤ γ̂ ,

(2.) F k is Lipschitz continuous w.r.t. state in the following sense: There exists a
constant λ > 0 such that for any M1,M2 ∈RC 2(Ω ,RN) and t ∈ [0,T ],

dl∞
(
F k(M1, t), F k(M2, t)

)2 ≤ λ ·dlRC

(
M1,M2

)2
.
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Let I1, I2 ⊂ [0,T ] be (at most) countable and contain 0. Assume for the functions
N1 : I1 −→RC 2(Ω ,RN) and N2 : I2 −→RC 2(Ω ,RN) that the Hausdorff excesses
between their graphs are bounded with respect to time in the following sense:

I1 �−→ R
+
0 , t �−→ Δ1(t) := inf

s∈ I2 ∩ [0,t]

(
|t− s| + �e⊂RC

(
N1(t), N2(s)

)2
)

I2 �−→ R
+
0 , t �−→ Δ2(t) := inf

s∈ I1 ∩ [0,t]

(
|t− s| + �e⊂RC

(
N2(t), N1(s)

)2
)

are bounded.

Suppose K1,K2 : [0,T ]−→RC 2(Ω ,RN) to fulfill for every t ∈ [0,T ] and k = 1,2

Kk(t) =
⋃

s∈ Ik ∩ [0,t]

ϑF k(Kk(s+·), s+·)
(
t− s, Nk(s)

)
.

Then, there is a constant Ĉ = Ĉ(Λ , γ̂ ,T ) > 0 such that the following estimate
holds for every t ∈ [0,T ]

dlRC

(
K1(t), K2(t)

)2 ≤ Ĉ eĈ t ·
(

sup
k=1,2

Δk|Ik ∩ [0,t] + t · sup dl∞
(
F 1, F 2)2

)
.

This proposition clarifies which “distance” between nucleation rules is relevant
for the corresponding solutions. So far we prescribe the nucleation by means of a
function I −→RC 2(Ω ,RN) with an (at most) countable domain I ⊂ [0,T ].
Now this results is the main tool for solving a birth-and-growth problem approx-
imatively if the domain I of the nucleation function is possibly not countable.
We formulate the characterizing comparison via dlRC because it is not immediately
clear then whether the union for all s ∈ I∩ [0, t] is a random closed set (Remark 77).

Theorem 76 (Existence of solutions to some birth-and-growth problems).
As in Cauchy-Lipschitz Theorem 72 (on page 252), fix Λ > 0 and assume for

F = (F1,F2) : RC 2(Ω ,RN)× [0,T ]−→MLIPΛ
(
Ω ,RN ;RN ,Lin(Rm,RN)

)
:

(1.) there exists γ̂ > 0 such that sup ‖F (·, ·)‖∞ ≤ γ̂ ,

(2.) F is Lipschitz continuous w.r.t. state and continuous in the following sense:
There exist a constant λ > 0 and a modulus of continuity ω(·) such that for
any M1,M2 ∈RC 2(Ω ,RN) and t1, t2 ∈ [0,T ],

dl∞
(
F (M1,t1), F (M2, t2)

)2 ≤ λ ·dlRC

(
M1,M2

)2 + ω(|t1− t2|).
Let I ⊂ [0,T ] contain 0 and, assume for N : I −→ RC 2(Ω ,RN) that a sequence
(sn)n∈N in I satisfies s1 = 0 and

sup
t ∈ I∩ [0,T ]

inf
m∈{1 ...n}:

sm ≤ t

(
|t− sm| + �e⊂RC

(
N(t), N(sm)

)2
)
−→ 0 for n−→ ∞.

Then there exists a function K(·) : [0,T ]−→RC 2(Ω ,RN) with

sup
t ∈ [0,T ]

dlRC

(
K(t),

⋃

s∈ I∩ [0,t]

ϑF (K(s+ ·), s+ ·)
(
t− s, N(s)

))
= 0 .
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Remark 77. The union
⋃

s∈ I∩ [0,t]

ϑF (K(s+ ·), s+ ·)
(
t− s, N(s)

)
: Ω � R

N

consists of possibly uncountably many sets in RC 2(Ω ,RN) and, it is not obvious
if it also belongs to RC 2(Ω ,RN). Each of these random closed reachable sets,
however, is constructed by means of solutions Xt ∈ L2(Ω ,A ,P; R

N) to a stochastic
differential inclusion in a time interval [s, t] and, each set of these L2 functions is
decomposable as mentioned in Corollary 67 (on page 248).
Corollary 66 states the existence of Mt ∈RC 2(Ω ,RN) such that S 2

RC (Mt) coincides
with the L2 closure of the union of all solutions Xt ∈ L2(Ω ,A ,P; R

N) inducing
ϑF (K(s+ ·), s+ ·)

(
t− s, N(s)

)
for any initial time s ∈ I∩ [0, t]. In this selection-wise

sense, Mt can be regarded as the closure of the union above:
⋃

s∈ I∩ [0,t]

ϑF (K(s+ ·), s+ ·)
(
t− s, N(s)

)
= Mt ∈RC 2(Ω ,RN).

Finally, the condition on K(·) : [0,T ]−→RC 2(Ω ,RN) in Theorem 76 is equivalent
to K(t) = Mt for every t ∈ [0,T ].

Remark 78 (extension to possibly empty sets of nucleation). An assumption
of Theorem 76, namely N(t) ∈ RC 2(Ω ,RN) for each t ∈ I, implies that the
sets N(t)(ω) ⊂ R

N are nonempty for all t ∈ I and ω ∈ Ω . It serves essentially
the rather technical purpose that the mean square Pompeiu-Hausdorff excess
�e⊂RC

(
N(t),N(sm)

)
is well-defined in [0,∞] via L2 selections of N(t).

For many applications in modelling, however, this hypothesis is not a significant
obstacle. If all considerations are restricted to random closed sets in a fixed closed
subset K � R

N , for example, then we should assume

F (M,t)(·, ·) = {0} ⊂ R
N×Lin(Rm,RN) in Ω × (RN \K)

for all M ∈ RC 2(Ω ,RN) and t ∈ [0,T ] anyway so that the admissible solutions
to stochastic differential inclusions cannot move outside K. Now we choose some
arbitrary point x0 ∈ R

N \ K and always consider N(t) ∈ RC 2(Ω ,RN) with the
additional feature x0 ∈ N(t,ω) for all ω ∈ Ω . This modification does not have any
explicit influence on the evolution of the random closed sets K(t) ∈RC 2(Ω ,RN).

Corollary 79 (Two special cases of birth-and-growth processes).
In addition to the hypotheses aboutΛ and F in Theorem 76, suppose N : [0,T ]−→
RC 2(Ω ,RN) to fulfill one of the following conditions:

(a) N(·) is continuous with respect to dlRC or,

(b) N(·) is measurable w.r.t. dlRC and expanding in the sense that N(t1) ⊂ N(t2)
P-almost surely in Ω whenever 0≤ t1 ≤ t2 ≤ T.

Then there exists a function K(·) : [0,T ]−→RC 2(Ω ,RN) with

sup
t ∈ [0,T ]

dlRC

(
K(t),

⋃

s∈ I∩ [0,t]

ϑF (K(s+ ·), s+ ·)
(
t− s, N(s)

))
= 0 .
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Now we complete this subsection with the missing proofs:

Proof (of Proposition 75 on page 254). The main tools are the explicit continuity
estimates of random closed reachable sets with respect to time and initial set as
specified in Proposition 68 (on page 249).
Fix ε > 0 arbitrarily. For each s ∈ I1, there exists a point of time r ∈ I2∩ [0,s] with

|s− r| + �e⊂RC

(
N1(s), N2(r)

)2 ≤ Δ1(s)+ ε

by definition of Δ1(s). Moreover, Proposition 68 (1.) states

dlRC

(
K2(r), ϑF 2(K2(r+·), r+·)

(
s− r, K2(r)

))2 ≤ 18 γ̂ 2 es · (s− r)

and, the inclusions

N2(r) ⊂ K2(r)
ϑF 2(K2(r+·), r+·)

(
s− r, K2(r)

) ⊂ K2(s)

hold P-almost surely in Ω due to the characterizing assumption about K2(·).
Thus, we obtain

�e⊂RC

(
N1(s), K2(s)

)2 ≤ 3 ·
(

�e⊂RC

(
N1(s), N2(r)

)2 + �e⊂RC

(
N2(r), K2(s)

)2
)

≤ 3 · max
{

1, 18 γ̂2 eT
} (

Δ1(s)+ ε
)
.

The detailed proof of Proposition 68 (2.) (on page 250 f.) and assumption (2.) about
the Lipschitz continuity of F ensure for every t ∈ [s,T ]

�e⊂RC

(
ϑF 1(K1(s+·), s+·)

(
t− s, N1(s)

)
, ϑF 2(K2(s+·), s+·)

(
t− s, K2(s)

))2

≤ C ·
(

�e⊂RC

(
N1(s),K2(s)

)2 +
∫ t

s
dl∞
(
F 1|(K1(s′),s′),F

2|(K2(s′),s′)
)2

ds′
)
·eC(2+T )T

≤ C ·
(

�e⊂RC

(
N1(s),K2(s)

)2 +
∫ t

s
3 ·
(

supdl∞
(
F 1,F 2

)2

+λ · dlRC

(
K1(s′),K2(s′)

)2
)

ds′
)
·eC(2+T )T

with a constant C ≥ 1 depending only on Λ . As ε > 0 is arbitrarily small, we can
specify a larger constant Ĉ = Ĉ(Λ , γ̂ ,T )≥ 1 such that for every s ∈ I1 and t ∈ [s,T ],
the following estimate holds:

�e⊂RC

(
ϑF 1(K1(s+·), s+·)

(
t− s, N1(s)

)
, K2(t)

)2

≤ �e⊂RC

(
ϑF 1(K1(s+·), s+·)

(
t− s, N1(s)

)
, ϑF 2(K2(s+·), s+·)

(
t− s, K2(s)

))2

≤ Ĉ ·
(
Δ1(s)+ (t− s) · sup dl∞

(
F 1,F 2

)2 + λ ·
∫ t

s
dlRC

(
K1(s′), K2(s′)

)2
ds′
)
.

Remark 62 (2.) (on page 246) has already mentioned that the excess of a (finite)
union from a fixed set in RC 2(Ω ,RN) is the supremum of the excesses. For the
same reasons, countable unions of random closed sets share this property and hence,
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�e⊂RC

(
K1(t), K2(t)

)2 = �e⊂RC

( ⋃

s∈ I1∩ [0,t]

ϑF (K1(s+·), s+·)
(
t− s, N1(s)

)
, K2(t)

)2

≤ sup
s∈ I1∩ [0,t]

�e⊂RC

(
ϑF (K1(s+·), s+·)

(
t− s, N1(s)

)
, K2(t)

)2

≤ Ĉ · sup
s∈ I1∩ [0,t]

(
Δ1(s) + (t− s) · sup dl∞

(
F 1,F 2)2 + λ ·

∫ t

s
dlRC

(
K1, K2

)2
ds′
)

≤ Ĉ ·
(

sup
s∈ I1∩ [0,t]

Δ1(s) + t · sup dl∞
(
F 1,F 2)2 + λ ·

∫ t

0
dlRC

(
K1, K2

)2
ds′
)

is satisfied for every t ∈ [0,T ]. The same arguments lead to

�e⊃RC

(
K1(t), K2(t)

)2

≤ Ĉ ·
(

sup
s∈ I2 ∩ [0,t]

Δ2(s)+ t · sup dl∞
(
F 1,F 2)2 +λ ·

∫ t

0
dlRC

(
K1, K2

)2
ds′
)
.

Finally, the claim about

dlRC

(
K1(t), K2(t)

)2 Def.= max
{

�e⊂RC

(
K1(t), K2(t)

)2
, �e⊃RC

(
K1(t), K2(t)

)2
}

results from Gronwall’s inequality in Proposition A.1 (on page 439).
�

Proof (of Existence Theorem 76 on page 255).
For each n ∈ N, set In := {s1 . . . sn} ⊂ I, and Cauchy-Lipschitz Theorem 72
(on page 252) provides a solution Kn : [0,T ]−→RC 2(Ω ,RN) to the problem

Kn(t) =
⋃

s∈ In ∩ [0,t]

ϑF (Kn(s+ ·), s+ ·)
(
t− s, N(s)

)

for every t ∈ [0,T ] — in a piecewise way as described at the beginning of this
subsection. Proposition 75 and the asymptotic assumption about (sn)n∈N in I imply
the Cauchy property of

(
Kn(·)

)
n∈N

in the following sense:

sup
n1,n2≥m

sup
t ∈ [0,T ]

dlRC

(
Kn1(t), Kn2(t)

)2 −→ 0 for m−→ ∞.

Hence, the completeness of the metric space
(
RC 2(Ω ,RN), dlRC

)
guarantees a

limit function K(·) : [0,T ]−→RC 2(Ω ,RN) with

sup
t ∈ [0,T ]

dlRC

(
Kn(t), K(t)

)2 −→ 0 for n−→ ∞.

The asymptotic hypothesis about (sn)n∈N is uniform w.r.t. t ∈ [0,T ] and so, we
conclude from the detailed proof of Proposition 75 that

�e⊂RC

( ⋃

s∈ I∩ [0,t]

ϑF (K(s+ ·), s+ ·)
(
t− s, N(s)

)
,

⋃

s∈ In ∩ [0,t]

ϑF (K(s+ ·), s+ ·)
(
t− s, N(s)

))

converges to 0 for n −→ ∞ and each t ∈ [0,T ]. Obviously the second argument is
contained in the first union and thus, the corresponding excess �e⊃RC is 0.
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Furthermore Proposition 68 (on page 249) and the Lipschitz continuity of F (·,s) in
assumption (2.) lead to the convergence of

dlRC

( ⋃

s∈ In∩ [0,t]

ϑF (K(s+ ·), s+ ·)
(
t−s, N(s)

)
,

⋃

s∈ In∩ [0,t]

ϑF (Kn(s+ ·), s+ ·)
(
t−s, N(s)

))

to 0 for n−→ ∞ and every t ∈ [0,T ]. Finally the claimed identity results from the
triangle inequality of dlRC .

�

Proof (of Corollary 79 on page 256).
(1.) If N(·) is continuous with respect to dlRC then it is even uniformly continuous
in the compact interval [0,T ]. This implies directly the assumptions of Theorem 76
concerning N(·) and a sequence (sn)n∈N.

(2.) Let N(·) : [0,T ]−→RC 2(Ω ,RN) be measurable and expanding.

Now we use Lusin’s Theorem, that relates measurability to continuity of metric
space-valued curves (Lebesgue-almost everywhere) and that is a special case of
Scorza-Dragoni Theorem A.9 (on page 446) for functions with just one argument
(see e.g. [5, Theorem 1.45], [30, Theorems 7.1.13, 7.14.25], [84, Theorem 2B]):
For every ε > 0, there is a compact subset Sε of [0,T ] such that L 1([0,T ]\Sε) < ε
and the restriction of N(·) to Sε is continuous with respect to dlRC .

The uniform continuity of N|Sε provides finitely many points of time s1 . . . sn in Sε
with min

i= 1 ...n

(|t− si| + dlRC

(
N(t),N(si)

)2)
< ε for every t ∈ Sε ⊂ [0,T ].

Set sn+1 := T additionally. At each time t in the complement (i.e. t ∈ [0,T ] \ Sε),
we can find some t ′ ∈ Sε ∪{T} with t < t ′ ≤ t + ε due to L 1([0,T ]\ Sε) < ε . Now
the expanding property of N(·) implies N(t)⊂N(t ′) P-almost surely in Ω and thus,

min
i= 1 ...n+1

(|t− si| + �e⊂RC

(
N(t), N(si)

)2)

≤ min
i= 1 ...n+1

(
ε+ |t ′ − si| + �e⊂RC

(
N(t ′), N(si)

)2)
< 2 ε.

Finally, we replace the fixed parameter ε > 0 by a sequence εm ↓ 0 and continue this
supplementary selection of finitely many points of time in [0,T ] inductively. This
procedure provides a (not necessarily monotone) sequence (sn)n∈N in [0,T ] with

sup
t ∈ I∩ [0,T ]

inf
m∈{1 ...n}:

sm≤ t

(
|t− sm| + �e⊂RC

(
N(t), N(sm)

)2
)
−→ 0 for n−→ ∞.

�
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3.8 Example: Nonlinear Continuity Equations with Coefficients
of Bounded Variation for L N-Absolutely Continuous
Measures

The continuity equation
d
dt μ + divx (b̃ μ) = 0 (in R

N× ]0,T [)

is the classical analytical tool for describing the conservation of some real-valued
quantity μ = μ(t,x) while “flowing” (or, rather, evolving) along a given vector
field b̃ : R

N × [0,T ] −→ R
N . Thus, it is playing a key role in many applications

of modelling like fluid dynamics and, it has been investigated under completely
different types of assumptions about b̃(·, ·).

In § 2.5 (on page 132 ff.), we have already focused on the nonlinear transport
equation for Radon measures on R

N . Its coefficients were bounded and Lipschitz
continuous vector fields on R

N prescribed as a function of time and the current
Radon measure.
The main goal now is to weaken the regularity conditions on the vector fields con-
sidered as coefficients in the continuity equation. In particular, spatial vector fields
b(·) of bounded variation have aroused interest for weakening the assumption of
(local) Lipschitz continuity.

Recent results of Ambrosio [3, 4] make a suggestion how to specify a flow X :
[0,T ]×R

N −→ R
N along certain vector fields of bounded (spatial) variation in a

unique way. This uniqueness is based on an additional condition of regularity, i.e. the
absolute continuity with respect to Lebesgue measure L N is preserved uniformly:
For any nonnegative function ρ ∈ L1(RN)∩L∞(RN), the measure μ0 := ρ L N

satisfies X(t, ·)� μ0 ≤ C L N for all t ∈ [0,T ] with a constant C independent of t.

This result of Ambrosio about the so-called Lagrangian flow serves as starting point
of this example and thus, it motivates to replace the set M (RN) of finite Radon
measures by

L
∞∩1(RN) :=

{
ρL N

∣
∣ ρ ∈ L1(RN)∩L∞(RN), ρ ≥ 0

}
.

After summarizing some features of the Lagrangian flow, we exploit the corre-
sponding vector fields of (locally) bounded spatial variation for inducing transitions
on these measures. It allows us to deal with nonlinear continuity equations in the
mutational framework.
The main conclusions presented in subsequent § 3.8.4 consist in sufficient conditions
for existence, uniqueness and stability of distributional solutions μ(·) : [0,T ] −→
L
∞∩1(RN) to the Cauchy problem

{
d
dt μ + divx (f(μ , ·) μ) = 0 in R

N× ]0,T [
μ(0) = ρ0 L N ∈ L

∞∩1(RN)

for a given functional relationship in the form of

f : L
∞∩1(RN)× [0,T ] −→ BVloc(RN ,RN)∩L∞(RN ,RN).
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Basic set L
∞∩1(RN) :=

{
ρL N

∣
∣ ρ ∈ L1(RN)∩L∞(RN), ρ ≥ 0

}

Distances d j,L∞∩1(μ , ν) :=
∣
∣ϕ j · (μ−ν)

∣
∣(RN)

with a suitably dense family (ϕ j) j∈I of smooth positive
Schwartz functions satisfying |∇ϕ j(·)| ≤ λ j ·ϕ j(·) (Lemma 86)

Absolute values �μ� := ‖σ‖L1(RN ) + ‖σ‖L∞(RN ) for μ = σL N ∈ L
∞∩1(RN)

Transition Each b ∈ BVloc(RN ,RN)∩L∞ with D ·b = div b L N $ L N

and div b ∈ L∞(RN) induces the unique Lagrangian flow Xb(·, ·).
Set

ϑ
L∞∩1,b : [0,1]×L

∞∩1(RN) −→ L
∞∩1(RN),

(h,μ0) �−→ Xb(h, ·)� μ0

Compactness weak Euler compactness with respect to

d j,κ,κ ′,L∞∩1(μ , ν) :=
∣∣∣
∫

RN
ϕ j (ϕκ −ϕκ ′) d (μ−ν)

∣∣∣ (Def. 87)

essentially due to Prokhorov’s Theorem: Lemma 95 (page 272)

Equi-continuity Euler equi-continuity results from uniform Lipschitz continuity
of transitions and the triangle inequality of d j,L∞∩1 .

Mutational solutions Narrowly continuous distributional solution to nonlin. continuity
equation ∂t μt + divx (f(μt , t) μt) = 0 in R

N× ]0,T [

List of main results
formulated in § 3.8

Existence due to weak* compactness: Theorem 96 (page 272)
Uniqueness due to Lipschitz continuity: Theorem 99 (page 274)
Continuous dependence of solutions on data: Theorem 100

Key tools The Lagrangian flow in the sense of Ambrosio is specified by the
linear continuity equations with coefficients of bounded spatial
variation: § 3.8.1

Explicit solutions to the linear continuity equations with coeffi-
cients in W 1,∞

loc (RN ,RN)∩L∞ (for approximating the Lagrangian
flow): Lemma 92 (page 267)

Table 3.3 Brief summary of the example in § 3.8 in mutational terms:
Nonlinear continuity equations with coefficients of bounded variation for L N -absolutely conti-
nuous measures
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3.8.1 The Lagrangian Flow in the Sense of Ambrosio

Considering the linear continuity equation

d
dt μ + divx (b̃ μ) = 0 (in R

N× ]0,T [),

the regularity of the coefficient b̃ : R
N × [0,T ] −→ R

N plays the decisive role in
the question if the method of characteristics provides an explicit solution directly.
Proposition 2.47 (on page 138), for example, guarantees such a solution if b̃ is
bounded, Lipschitz continuous with respect to space and Lebesgue integrable with
respect to time.
Motivated by the results of DiPerna and Lions [64], Ambrosio has suggested how
to specify characteristics under weaker assumptions about spatial regularity [3, 4].
Now we summarize the properties relevant for our subsequent conclusions in the
following proposition:

Proposition 80 (Ambrosio [3, 4]).
Assume b̃ : [0,T ]×R

N −→R
N to be in L1

(
[0,T ], BVloc(RN ,RN)

)
satisfying

(1.) |b̃|
1+|x| ∈ L1

(
[0,T ], L1(RN)

)
+ L1

(
[0,T ], L∞(RN)

)
,

(2.) divx b̃(t, ·) L N $ L N for L 1-almost every t ∈ [0,T ],
(3.) [divx b̃]− ∈ L1

(
[0,T ], L∞(RN)

)
.

Then there exists a so-called Lagrangian flow X : [0,T ]×R
N −→ R

N such that

(a) X(·,x) : [0,T ]−→R
N is absolutely continuous for L N-almost every x ∈R

N,

X(t,x) = x +
∫ t

0
b̃
(
s, X(s,x)

)
ds for all t ∈ [0,T ],

(b) there is a constant C > 0 satisfying X(t, ·)� (σ L N) ≤ C ‖σ‖∞ L N

for all σ ∈ L1(RN)∩L∞(RN), σ ≥ 0, and t ∈ [0,T ].

X(t, ·) : R
N −→ R

N is unique up to L N-negligible sets for every t ∈ [0,T ] and,
μ(t) := X(t, ·)� μ0 is the unique distributional solution to the continuity equation

d
dt μ + divx (b̃ μ) = 0 in R

N× ]0,T [

for every initial measure μ0 := σ L N with σ ∈ L1(RN)∩L∞(RN), σ ≥ 0.

Mollifying each μ(t) with a joint Gaussian kernel ρ ∈C1(RN , ]0,∞[), the measures
μδ (t) := μ(t)∗ρδ solve the continuity equation

d
dt μδ + divx (b̃δ μδ ) = 0 (in the distributional sense)

with b̃δ (t, ·) := (b̃(t,·) μ(t))∗ρδ
μδ (t) being in L1

(
[0,T ], W 1,∞

loc (RN ,RN)
)
.

In particular, at every time t ∈ [0,T ], μδ (t) −→ μ(t) narrowly (i.e. with respect to
the duality of bounded continuous functions) for δ ↓ 0.
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Remark 81 (about the proof of Proposition 80). This proposition collects several
results of Ambrosio in [3, 4], but it is not formulated in this summarizing form
there. The arguments of its proof are rather widespread in the lecture notes [3].

Indeed, extending [3, Theorem 4.3] to vector fields of locally bounded spa-
tial variation (as stated at the end of [3, § 5]), there exists a Lagrangian flow
X : [0,T ]×R

N −→R
N with properties (a),(b) and, it is unique (up to L N-negligible

sets).

The proof of [3, Theorem 3.5] bridges the gap between the Lagrangian flow and
the measure-valued solution to the continuity equation (by means of push-forward).
The uniqueness of μ(·) results from the comparison principle of the continuity
equation (due to the assumptions about b̃) according to [3, Theorem 4.1].

Finally the proof of [3, Theorem 3.2] implies the narrow sequential compactness
of ηδ :=

(
x,Xb̃δ

(·,x))
�
μδ (0) (using Prokhorov compactness theorem). In particular,

its equation (3.3) implies the narrow convergence of μδ (t) to its unique limit μ(t).

Similarly, [3, Theorem 4.4] and the remarks at the end of [3, § 5] guarantee:

Proposition 82 (Stability of Lagrangian flows, Ambrosio [3]).
Assume b̃, b̃n : [0,T ]×R

N −→ R
N (n ∈ N) to be in L1

(
[0,T ], BVloc(RN ,RN)

)

satisfying conditions (1.)–(3.) of Proposition 80. Furthermore suppose

(i) b̃n −→ b̃ in L1
loc(]0,T [×R

N) for n−→ ∞,
(ii) there exists a constant C > 0 such that for all n ∈N, |b̃n| ≤C,
(iii)

{
[divx b̃n]−

∣∣ n ∈ N
}

is bounded in L1
(
[0,T ], L∞(RN)

)
.

Let Xb̃,Xb̃n
(n ∈ N) denote the Lagrangian flows relative to b̃, b̃n respectively and,

choose μ = ρ L N with ρ ∈ L1(RN),ρ ≥ 0 arbitrarily.

Then, lim
n→∞

∫

RN
max
[0,T ]

min
{∣∣Xb̃n

(·,x) − Xb̃(·,x)
∣∣, ρ(x)

}
dL N x = 0.

Remark 83. In comparison with the nonlinear transport equation investigated in
§ 2.5 (on page 132 ff.), it is remarkable that the linear problem here is stable with
respect to L1 perturbations of the coefficient field whereas all estimates in § 2.5 are
taking the L∞ norm into consideration (see e.g. Lemma 2.49 (f) on page 139 and
consequently Theorem 2.53 on page 142).

Corollary 84. In addition to the hypotheses of Proposition 82, let t ∈ [0,T ] and
μ0 = σ0 L N be arbitrary with σ0 ∈ L1(RN). Then,

Xb̃n
(t, ·)� μ0 −→ Xb̃(t, ·)� μ0 narrowly for n−→ ∞,

i.e., for any bounded and continuous ψ : R
N −→R,

∫

RN
ψ
(
Xb̃n

(t,x)
)
σ0(x) dL Nx −→

∫

RN
ψ
(
Xb̃(t,x)

)
σ0(x) dL Nx . �
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3.8.2 The Subset L
∞∩1(RN) of Measures and its Pseudo-Metrics

In this example, Proposition 80 of Ambrosio is to provide the measure-valued so-
lutions to the linear continuity equation. It motivates our choice of both coefficient
functions and measures on R

N .

Definition 85. Set L
∞∩1(RN) :=

{
ρ L N

∣
∣ ρ ∈ L1(RN)∩L∞(RN), ρ ≥ 0

}
.

In regard to distance functions on L
∞∩1(RN), we suggest the weighted total varia-

tion – with a countable family (ϕ j) j∈I of smooth positive weight functions whose
gradient can be estimated by the function itself. In comparison with the W 1,∞ dual
metric used in § 2.5, this last property proves to be particularly useful for estimating
the effects of distributional derivatives via initial data.

Lemma 86. There exists a countable family (ϕ j) j∈I of smooth Schwartz
functions R

N −→ [0,∞[ with the following properties

(1.) (ϕ j) j∈I is dense in
(
C0

0(RN , [0,∞[), ‖ · ‖∞
)
,

(2.) C∞
c (RN , [0,∞[) is contained in the closure of (ϕ j) j∈I w.r.t. the C1 norm

(3.) for each j ∈I , there exists λ j > 0 with |∇ϕ j(·)| ≤ λ j ·ϕ j(·) in R
N,

Definition 87. Let (ϕ j) j∈I be a family of Schwartz functions as described in
Lemma 86 and, J ⊂I denotes the subset of all indices κ ∈I with 0 < ϕκ ≤ 1.
For each indices j ∈I and κ ,κ ′ ∈J , define

d j,L∞∩1 , d j,κ ,κ ′,L∞∩1 : L
∞∩1(RN)×L

∞∩1(RN) −→ [0,∞[

as

d j,L∞∩1(μ , ν) :=
∣
∣ϕ j · (μ−ν)

∣
∣(RN)

Def.= sup
{ ∞

∑
k=0

∣
∣
∫

Ek

ϕ j d(μ−ν)
∣
∣
∣
∣
∣ (Ek)k∈N pairwise disjoint

Borel sets, R
N =

⋃

k∈N

Ek

}
,

d j,κ ,κ ′,L∞∩1(μ , ν) :=
∣
∣
∣
∫

RN
ϕ j (ϕκ −ϕκ ′) d (μ−ν)

∣
∣
∣ .

Remark 88. Obviously, Gronwall’s Lemma implies ϕ j > 0 in R
N unless ϕ j ≡ 0.

Assuming ϕ j �≡ 0 for all j ∈I from now on, each d j,L∞∩1 takes all points of R
N

into consideration – in a weighted form.
Moreover, all functions d j,L∞∩1, d j,κ ,κ ′,L∞∩1 ( j∈I , κ ,κ ′ ∈J ) are pseudo-metrics
on L

∞∩1(RN), i.e. in particular, they satisfy the triangle inequality.
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Before presenting lacking proofs, we specify the relation between the functions
d j,L∞∩1, d j,κ ,κ ′,L∞∩1 ( j ∈I , κ ,κ ′ ∈J ) and more popular topologies of Radon
measures mentioned in § 2.5.1 (on page 132 ff.). The next lemma enables us to
apply the existence results of § 3.3.6 (concluded from a generalized form of “weak”
compactness on page 206 ff.) later on.

Lemma 89. For every finite Radon measure μ ∈M (RN) and open set A ⊂ R
N ,

the total variation satisfies

|μ |(A) = sup
{∫

RN
ψ d μ

∣
∣
∣ ψ ∈C0

c (A), ‖ψ‖∞ ≤ 1
}

and thus, for all μ ,ν ∈ L
∞∩1(RN),

d j,L∞∩1(μ ,ν) = sup
κ ,κ ′∈J

d j,κ ,κ ′,L∞∩1(μ ,ν).

Lemma 90. (i) Let (μn)n∈N be in L
∞∩1(RN) with bounded total variation.

(μn)n∈N converges weakly* to μ ∈ L
∞∩1(RN) with respect to

(
C0

0(RN), ‖ · ‖sup
)

if and only if for every indices j∈I , κ ,κ ′ ∈J ,

lim
n→∞

d j,κ ,κ ′,L∞∩1

(
μn, μ) = 0.

Assuming in addition that {μn | n ∈ N} is tight (in the sense of Definition 2.40),
this equivalence can be extended to narrow convergence of (μn)n∈N (in the sense of
Definition 2.39 on page 132).

(ii) Let (μn = σn L N)n∈N be a tight sequence in L
∞∩1(RN) with bounded total

variation and consider μ = σ L N ∈ L
∞∩1(RN).

Then, σn −→ σ in L1
loc(R

N) for n−→ ∞ if and only if for every index j ∈I ,

lim
n→∞

d j,L∞∩1

(
μn, μ) = 0.

Proof (of Lemma 86). Such a family of functions ϕ j ∈C∞(RN , [0,∞[) can be
generated by means of convolution.
Indeed, C∞

0 (RN, [0,∞[) is known to be separable with respect to ‖·‖∞. Now consider
a countable dense subset ( fk)k∈N of C∞

c (RN, [0,∞[) together with

ψδ : R
N −→ ]0,∞[, x �−→ cδ ,N · exp(−δ |x|2

1+|x| )

for arbitrarily large δ > 0 and the constant cδ ,N > 0 such that ‖ψδ‖L1(RN ) = 1.

Then, each convolution fk ∗ψδ : R
N −→R is smooth, nonnegative and satisfies

|∇( fk ∗ψδ )| = | fk ∗ (∇ψδ )| ≤ δ fk ∗ψδ
since the auxiliary function ψ̂δ : [0,∞[ −→ ]0,1], r �−→ cδ ,N · exp(−δ r2

1+r ) is
smooth with

d
dr ψ̂δ (r) = −δ r (r+2)

(r+1)2 ψ̂δ (r) ∈ [−δ ,0] · ψ̂δ(r)
and thus, d

dr ψ̂δ (r) = O(r) for r −→ 0+.
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Furthermore, fk ∗ψδ is a Schwartz function because so is ψδ and fk is assumed to
have compact support. ( fk ∗ψδ )k,δ ∈N is dense in

(
C0

0(RN , [0,∞[), ‖ · ‖∞
)

since so
is ( fk)k∈N and (ψδ )δ ∈N is a Dirac sequence.

Finally it satisfies the second required property because for any g ∈C∞
c (RN , [0,∞[)

and subsequence ( fk j ) j∈N with ‖g− fk j‖∞ −→ 0 ( j −→∞), we obtain for j −→ ∞

∇( fk j ∗ψδ ) = fk j ∗ (∇ψδ ) −→ g ∗ (∇ψδ ) = (∇g)∗ψδ uniformly

and, the last convolution converges uniformly to ∇g for δ −→ ∞. �

Proof (of Lemma 89). The representation of total variation as supremum is
proven in [5, Proposition 1.47], for example.
As a consequence of Lemma 86, the set {ϕκ | κ ∈J } is dense in C0

0(RN , [0,1])
with respect to the supremum norm. Thus, {ϕκ − ϕκ ′ | κ ,κ ′ ∈J } is dense in
C0

0(RN , [−1,1]) with respect to the supremum norm. Finally the first equality in this
Lemma 89 implies for every finite Radon measure μ ∈M (RN)

∫

RN
ϕ j d |μ | = sup

κ ,κ ′ ∈J

∫

RN
ϕ j (ϕκ −ϕκ ′) dμ . �

Proof (of Lemma 90). (i) Due to Lemma 86, {ϕκ −ϕκ ′ |κ ,κ ′ ∈J } is dense
in C0

0(RN , [−1,1]) with respect to the supremum norm and thus, {ϕ j (ϕκ −ϕκ ′) |
j ∈I , κ ,κ ′ ∈J } is dense in

(
C0

0(RN), ‖ · ‖sup
)
.

Hence the first claimed equivalence is just a special case of a standard character-
ization of weak* convergence by means of strongly dense subsets (see e.g. [188,
Theorem V.1.10]). The equivalence of narrow and weak* convergence for tight
sequences has already been mentioned in Remark 2.41 (1.) (on page 134).

(ii) It is a direct consequence of tightness and Lemma 86. �

3.8.3 Autonomous Linear Continuity Problems Induce Transitions
on L

∞∩1(RN) via Lagrangian Flows

Motivated by Proposition 80 of Ambrosio (on page 262) again, we introduce an
abbreviation for suitable autonomous vector fields on R

N and specify candidates
for their associated transitions on L

∞∩1(RN):

Definition 91.
BV∞,div

loc (RN) denotes the set of all functions b ∈ BVloc(RN ,RN)∩ L∞(RN ,RN)
satisfying D ·b = div b L N $ L N and div b ∈ L∞(RN).

For each vector field b ∈ BV∞,div
loc (RN), define

ϑ
L∞∩1,b : [0,1]×L

∞∩1(RN)−→ L
∞∩1(RN), (h,μ0) �−→Xb(h, ·)� μ0

with Xb(·, ·) denoting its Lagrangian flow according to Proposition 80.
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Now we first investigate the regularity features of ϑ
L∞∩1,b(·, ·) for more regular

vector fields b ∈W 1,∞
loc (RN ,RN)∩ L∞ with respect to each pseudo-metric d j,L∞∩1

( j ∈I ). Afterwards the approximation via convolution and Ambrosio’s stability
result in Proposition 82 lead to the estimates for b ∈ BV∞,div

loc (RN) in Proposition 94
below.

Lemma 92. Suppose b,b1,b2 ∈W 1,∞
loc (RN ,RN)∩L∞.

Then, for any μ0 = ρ L N , ν0 ∈ L
∞∩1(RN) and j ∈I , s, t,h ∈ [0,1] with t +h≤ 1,

(1.) ϑ
L∞∩1,b(0, ·) = Id

L∞∩1(RN),

(2.) ϑ
L∞∩1,b

(
h, ϑ

L∞∩1,b(t,μ0)
)

= ϑ
L∞∩1,b(t + h, μ0),

(3.) limsup
h↓0

d j,L∞∩1

(
ϑ

L∞∩1,b(h,μ0), ϑL∞∩1,b(h,ν0)
)
− d j,L∞∩1(μ0,ν0)

h d j,L∞∩1(μ0,ν0) ≤ λ j ‖b‖∞,

(4.)
∣
∣ϕ j ϑL∞∩1,b(t,μ0)

)∣∣(RN) ≤ ∣∣ϕ j μ0
∣
∣(RN) · eλ j ‖b‖∞ · t ,

(5.) d j,L∞∩1

(
ϑ

L∞∩1,b(s,μ0), ϑL∞∩1,b(t,μ0)
) ≤ |t− s| ·λ j ‖b‖∞ eλ j ‖b‖∞ ∣∣ϕ j μ0

∣
∣(RN),

(6.) limsup
h↓0

d j,L∞∩1(ϑb1
(h,μ0), ϑb2

(h,μ0))
h ≤ λ j

∣
∣ϕ j |b1−b2| μ0

∣
∣(RN)

≤ λ j ‖ρ‖∞ ·
∥∥ϕ j |b1−b2|

∥∥
L1(RN) .

In regard to the choice of �·� j ( j ∈I ), there are even two candidates now.
The first one is the weighted total variation (as mentioned here in Lemma 92 (4.)).
Dispensing with the weight function ϕ j, however, we find the total variation as
an alternative whose growth also proves to be bounded in the required way. State-
ment (6.) in Lemma 92 motivates us to take the L∞ norm into consideration (if
possible) and thus, we introduce for μ = σL N ∈ L

∞∩1(RN)

�μ� := |μ |(RN) +
∥
∥ μ

L N

∥
∥
∞ = ‖σ‖L1(RN ) + ‖σ‖L∞(RN ) .

Supplying L
∞∩1(RN) with the weak* topology (w.r.t. C0

0(RN)), this functional �·�
is lower semicontinuous and thus, hypothesis (H4’) (on page 207) is fulfilled.

Lemma 93. For every vector field b ∈ BV∞,div
loc (RN) and initial measure

μ = σ L N ∈ L
∞∩1(RN), the Radon-Nikodym derivative σt of ϑ

L∞∩1,b(t,μ) with
respect to Lebesgue measure L N satisfies

‖σt‖∞ ≤ ‖σ‖∞ e‖div b‖∞ t ,∣
∣ϑb(t,μ)

∣
∣(RN) = ‖σt‖L1 ≤ ‖σ‖L1 e2 ‖div b‖∞ t .

The gap between vector fields in W 1,∞
loc (RN ,RN)∩L∞ (as assumed in Lemma 92) and

BV∞,div
loc (RN) can be bridged by means of mollifying as indicated in Proposition 80.

The stability result presented in Corollary 84 implies about the limit for δ ↓ 0:
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Proposition 94. For every vector field b ∈ BV∞,div
loc (RN), the function

ϑ
L∞∩1,b : [0,1]×L

∞∩1(RN) −→ L
∞∩1(RN)

is a transition on the tuple
(
L
∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�) with

α(ϑ
L∞∩1,b; r) := λ j ‖b‖∞

β (ϑ
L∞∩1,b; r) := λ j ‖b‖∞ ‖ϕ j‖∞ eλ j ‖b‖∞ · r

γ(ϑ
L∞∩1,b) := 2 ‖div b‖∞

D̂ j(ϑL∞∩1,b, ϑL∞∩1, b̂; r) := λ j · r e3 ‖div b‖∞ · ∥∥ϕ j |b− b̂|∥∥L1(RN ) .

Moreover, for every h ∈ [0,1] and indices j ∈I , κ ,κ ∈J , the function

ϑ
L∞∩1,b(h, ·) :

(
L
∞∩1(RN), weakly* w.r.t.C0

0

) −→ (
L
∞∩1(RN), d j,κ ,κ ′,L∞∩1

)

is continuous. From now on, the set of these transitions is abbreviated as

Θ̂
(
L
∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�).

The lacking proofs in detail are to complete this section:

Proof (of Lemma 92).
The measure-valued flow ϑ

L∞∩1,b : [0,1]×L
∞∩1(RN) −→ L

∞∩1(RN) still satisfies
the semigroup property and thus statements (1.), (2.).
For any μ0 = ρL N , ν0 = σL N∈L

∞∩1(RN), the definitions of total variation and
push-forward imply

d j,L∞∩1

(
ϑ

L∞∩1,b(h,μ0), ϑL∞∩1,b(h,ν0)
)

=
∣
∣ ϕ j ·

(
Xb(h, ·)� μ0 − Xb(h, ·)� ν0

)∣∣(RN)

≤
∫

RN
ϕ j(Xb(h, ·)) |ρ−σ | d L N

≤
∫

RN

∣
∣ϕ j(Xb(h, ·))−ϕ j

∣
∣ |ρ−σ | d L N +

∣
∣ϕ j · (μ0−ν0)

∣
∣(RN).

The choice of ϕ j (in Lemma 86) has the consequence

limsup
h↓0

1
h ·
(
d j,L∞∩1

(
ϑ

L∞∩1,b(h,μ0), ϑL∞∩1,b(h,ν0)
) − d j,L∞∩1(μ0,ν0)

)

≤ limsup
h↓0

1
h ·
∫

RN

∣
∣ϕ j(Xb(h, ·))−ϕ j

∣
∣ |ρ−σ | d L N

≤
∫

RN
|∇ϕ j(x) · b(x)| |ρ−σ | d L N

≤ ‖b‖∞
∫

RN
λ j ϕ j |ρ−σ | d L N

≤ ‖b‖∞ λ j · d j,L∞∩1(μ0,ν0).

Applying this estimate to ν0 ≡ 0 and ϑ
L∞∩1,b(t,μ0) (instead of μ0), we conclude

property (4.) from Gronwall’s inequality (in Proposition A.2 on page 440) because
the lower semicontinuous auxiliary function

δε : [0,1]−→ R, t �−→ ∣∣ϕ j ϑL∞∩1,b(t,μ0)
∣
∣(RN) =

∣
∣ϕ j(Xb(t, ·)) μ0

∣
∣(RN)

is one-sided differentiable and satisfies d+

dt+ δε(·) ≤ λ j ‖b‖∞ ·δε(·).
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Correspondingly we obtain statement (5.) by estimating the auxiliary function

δ̂ε : [s,1]−→ R, t �−→∣∣ϕ j
(
ϑ

L∞∩1,b(t,μ0)− ϑL∞∩1,b(s,μ0)
)∣∣(RN)

=
∣
∣(ϕ j(Xb(t−s, ·))−ϕ j) ϑL∞∩1,b(s,μ0)

∣
∣(RN)

with s ∈ [0,1[ fixed and

d+

dt+ δ̂ε (t) ≤ λ j ‖b‖∞
∣
∣ϕ j ϑL∞∩1,b(t,μ0)

∣
∣(RN) ≤ λ j ‖b‖∞ eλ j ‖b‖∞ ∣∣ϕ j μ0

∣
∣(RN).

In regard to property (6.), choose any b1,b2 ∈W 1,∞
loc (RN ,RN)∩ L∞ and initial

measure μ0 = ρL N ∈ L
∞∩1(RN). Then, for every h ∈ [0,1],

limsup
h↓0

1
h · d j,L∞∩1

(
ϑ

L∞∩1,b1
(h,μ0), ϑL∞∩1,b2

(h,μ0)
)

≤
∫

RN
limsup

h↓0

|ϕ j(Xb1
(h,·))−ϕ j(Xb2

(h,·))|
h |ρ | d L N

≤
∫

RN
λ j ϕ j |b1−b2| |ρ | d L N

≤ λ j ‖ρ‖∞ ·
∥∥ϕ j |b1−b2|

∥∥
L1(RN ). �

Proof (of Lemma 93). As mentioned in Proposition 80, mollifying with a
Gaussian kernel leads to approximating vector fields bδ ∈W 1,∞

loc (RN ,RN), δ > 0,
with div bδ ∈ L∞. [4, Remark 6.3] implies for all t ≥ 0 and L N-a.e. x ∈R

N

exp
(−t

∥
∥ [divx bδ ]−

∥
∥
∞
) ≤ det Dx Xbδ (t,x) ≤ exp

(
t
∥
∥ [divx bδ ]+

∥
∥
∞
)
.

Now we conclude from the area formula and the transformation of Lebesgue inte-
grals that for any μ = σL N with σ ∈ L1(RN)∩L∞(RN),

∣
∣ϑ

L∞∩1,bδ
(t,μ)

∣
∣(RN) =

∣
∣Xbδ (t, ·)� μ

∣
∣(RN)

=
∫

RN

∣
∣
∣ σ
|det Dx Xbδ (t,·)| ◦Xbδ (t, ·)−1

∣
∣
∣ dL N

≤
∫

RN

∣
∣σ ◦ (Xbδ (t, ·)−1)∣∣ dL N · exp

(
t
∥
∥ [divx bδ ]−

∥
∥
∞
)

≤
∫

RN
|σ | dL N · ∥∥det Dx Xbδ (t, ·)

∥
∥
∞· exp

(
t
∥
∥ [divx bδ ]−

∥
∥
∞
)
.

According to Corollary 84, ϑ
L∞∩1,bδ

(t,μ) converges narrowly to ϑ
L∞∩1,b(t,μ) for

δ ↓ 0. In particular, the total variation is lower semicontinuous with respect to weak*
convergence (see e.g. [5, Theorem 1.59]) and thus,
∣
∣ϑ

L∞∩1,b(t,μ)
∣
∣(RN) ≤ liminf

δ ↓0

∣
∣ϑ

L∞∩1,bδ
(t,μ)

∣
∣(RN) ≤ ‖σ‖L1 e2 ‖div b‖∞ t .

For proving the first statement, we start with the duality relation between L1 and
L∞ and then use the area formula. Indeed, the L∞ norm of σt is equal to
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sup
{∫

ψσt dL N
∣∣
∣ ψ ∈C∞

0 (RN), ‖ψ‖L1 ≤ 1
}

= sup
{

limsup
δ↓0

∫
ψ dϑ

L∞∩1,bδ
(t,μ)

∣
∣∣ ψ ∈C∞

0 (RN), ‖ψ‖L1 ≤ 1
}

= sup
{

limsup
δ↓0

∫
ψ
( σ

det Dx Xbδ (t, ·)
)∣∣∣

Xbδ (t,·)−1
dL N

∣∣∣ ψ ∈C∞
0 (RN),‖ψ‖L1≤1

}

≤ sup
{

limsup
δ↓0

∫
ψ‖σ‖∞ e‖div bδ ‖∞ tdL N

∣∣
∣ ψ ∈C∞

0 (RN), ‖ψ‖L1 ≤ 1
}

≤ ‖σ‖∞ e‖div b‖∞ t . �

Proof (of Proposition 94). Choose a Gaussian kernel ρ ∈ C1(RN , ]0,∞[) and
set ρδ (x) := δ−N ρ( x

δ ) for δ > 0. Each vector field bδ := b ∗ ρδ belongs to

W 1,∞
loc (RN ,RN) and satisfies ‖bδ‖∞ ≤ ‖b‖∞ < ∞, ‖divx bδ ‖∞ ≤ ‖divx b‖∞ < ∞.

Hence, for each b∈BV∞,div
loc (RN) and δ > 0, Lemmas 92 and 93 imply the transition

properties of ϑ
L∞∩1,bδ

(·, ·) : [0,1]×L
∞∩1(RN)−→ L

∞∩1(RN) with the parameters

α(ϑ
L∞∩1,bδ

; r) := λ j ‖bδ‖∞ ≤ λ j ‖b‖∞,

β (ϑ
L∞∩1,bδ

; r) := λ j ‖bδ‖∞ ‖ϕ j‖∞ eλ j ‖bδ ‖∞ r, ≤ λ j ‖b‖∞ ‖ϕ j‖∞ eλ j ‖b‖∞ r

γ(ϑ
L∞∩1,bδ

) := 2 ‖div bδ‖∞ ≤ 2 ‖div b‖∞.

Moreover for arbitrary b, b̂ ∈ BV∞,div
loc (RN), μ1,μ2 ∈ L

∞∩1(RN) and δ , δ̂ > 0,
h ∈ [0,1], we conclude

d j,L∞∩1

(
ϑ

L∞∩1,bδ
(h, μ1), ϑL∞∩1, b̂δ̂

(h, μ2)
)

≤
(

d j,L∞∩1

(
μ1,μ2

)
+ λ j · sup

[0,1]

∥
∥
ϑ

L∞∩1,bδ
(·,μ1)

L N

∥
∥
∞·
∥
∥ϕ j |bδ − b̂δ̂ |

∥
∥

L1(RN)

)
eλ j ‖bδ ‖∞ h

≤
(

d j,L∞∩1

(
μ1,μ2

)
+ λ j · �μ1� e‖div b‖∞ ·∥∥ϕ j |bδ − b̂δ̂ |

∥
∥

L1(RN)

)
eλ j ‖bδ ‖∞ h

from Lemma 92 (6.), Lemma 93 and Gronwall’s inequality in exactly the same way
as for Proposition 2.6 (on page 106). In particular, this estimate motivates

D̂ j(ϑL∞∩1,bδ
, ϑ

L∞∩1, b̂δ̂
; r) := λ j · r e3 ‖div bδ ‖∞ · ∥∥ϕ j |bδ − b̂δ̂ |

∥
∥

L1(RN )

≤ λ j · r e3 ‖div b‖∞ · ∥∥ϕ j |bδ − b̂δ̂ |
∥
∥

L1(RN ) .

For arbitrary vector fields b, b̂ ∈BV∞,div
loc (RN) and measures μ1,μ2 ∈L

∞∩1(RN),
we now consider the limit for δ ↓ 0 and conclude from the narrow convergence
mentioned in Corollary 84

d j,L∞∩1

(
ϑ

L∞∩1,b(h, μ1),ϑL∞∩1, b̂(h, μ2)
)

= sup
κ ,κ ′∈J

d j,κ ,κ ′,L∞∩1

(
ϑ

L∞∩1,b(h, μ1),ϑL∞∩1, b̂(h, μ2)
)

= sup
κ ,κ ′∈J

lim
δ ↓0

d j,κ ,κ ′,L∞∩1

(
ϑ

L∞∩1,bδ
(h, μ1),ϑL∞∩1, b̂δ̂

(h, μ2)
)

≤ limsup
δ ↓0

d j,L∞∩1

(
ϑ

L∞∩1,bδ
(h, μ1), ϑL∞∩1, b̂δ̂

(h, μ2)
)

≤
(

d j,L∞∩1

(
μ1,μ2

)
+ λ j · �μ1� e‖div b‖∞ ·∥∥ϕ j |b− b̂|∥∥L1(RN)

)
eλ j ‖b‖∞ h .
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As a consequence of Lemma 93, ϑ
L∞∩1,b(·, ·) : [0,1]×L

∞∩1(RN) −→ L
∞∩1(RN)

fulfills all conditions on a transition with

α(ϑ
L∞∩1,b; r) := λ j ‖b‖∞

β (ϑ
L∞∩1,b; r) := λ j ‖b‖∞ ‖ϕ j‖∞ eλ j ‖b‖∞ · r

γ(ϑ
L∞∩1,b) := 2 ‖div b‖∞

D̂ j(ϑL∞∩1,b, ϑL∞∩1, b̂; r) := λ j · r e3 ‖div b‖∞ · ∥∥ϕ j |b− b̂|∥∥L1(RN ) .

Finally, we have to verify that for every h ∈ [0,1] and indices j ∈I , κ ,κ ∈J ,
the function

ϑ
L∞∩1,b(h, ·) :

(
L
∞∩1(RN), weakly* w.r.t. C0

0

) −→ (
L
∞∩1(RN), d j,κ ,κ ′,L∞∩1

)

is continuous.
Let

(
μn = σn L N

)
n∈N

be any sequence in L
∞∩1(RN) converging weakly* to μ =

σ L N ∈ L
∞∩1(RN). Choose h ∈ ]0,1], δ > 0 and ϕ ∈C0

0(RN) arbitrarily.
Using a smooth Gaussian kernel ρ as described in Proposition 80 (on page 262),

the mollified measure μδ (t) := ϑ
L∞∩1,b(t,μ)∗ρδ solves the nonautonomous conti-

nuity equation
d
dt μδ + divx (b̃δ μδ ) = 0 (in the distributional sense)

with the time-dependent vector field b̃δ (t, ·) := (b̃μ(t))∗ρδ
μδ (t) belonging to the func-

tion space L1
(
[0,T ], W 1,∞

loc (RN ,RN)
)
. In comparison to the Lagrangian flow of

b∈BV∞,div
loc (RN), the flow Xb̃δ

: [0,T ]×R
N −→R

N along b̃δ has the supplementary
advantage of being continuous and, the solution can be represented as push-forward

μδ (t) = Xbδ (t, ·)� (μ(0)∗ρδ ).
Now we conclude from the well-known features of convolution

∫

RN
ϕ ∗ρδ d ϑ

L∞∩1,b(h,μ) =
∫

RN
ϕ d

(
ϑ

L∞∩1,b(h,μ)∗ρδ
)

=
∫

RN
ϕ d μδ (h)

=
∫

RN
ϕ
(
Xbδ (h, ·))∗ρδ σ dL N

= lim
n→∞

∫

RN
ϕ
(
Xbδ (h, ·))∗ρδ σn dL N = ...

= lim
n→∞

∫

RN
(ϕ ∗ρδ ) d ϑ

L∞∩1,b(h,μn),

i.e.,
∫

RN
ψ d ϑ

L∞∩1,b(h,μ) = lim
n→∞

∫

RN
ψ dϑ

L∞∩1,b(h,μn)

for all functionsψ in a dense subset of
(
C0

0(RN), ‖·‖sup
)
. Due to the uniform bound

of total variation, i.e. supn |ϑL∞∩1,b(h,μn)|(RN) ≤ supn |μn|(RN) · e2 ‖div b‖∞ < ∞,

we obtain ϑ
L∞∩1,b(h,μn) −→ ϑ

L∞∩1,b(h,μ) weakly* with respect to C0
0(RN)

and, thus the claimed continuity of ϑ
L∞∩1,b(h, ·) w.r.t. every d j,κ ,κ ′,L∞∩1. �
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3.8.4 Conclusions About Nonlinear Continuity Equations

Now we specify sufficient conditions on the functional coefficient

f : L
∞∩1(RN)× [0,T ] −→ BV∞,div

loc (RN)

for the nonlinear Cauchy problem
{

d
dt μ + divx (f(μ , ·) μ) = 0 in R

N× ]0,T [
μ(0) = ρ0 L N ∈ L

∞∩1(RN)

being well-posed in the distributional sense. The transitions introduced in
Definition 91 (on page 266) and the general results of § 3.3.6 (about solving
mutational equations via a generalized form of “weak” compactness) are to provide
the required tools for existence. In particular, the additional hypothesis (H4’) (on
page 207) results from the lower semicontinuity of total variation.
After formulating the main results of this example, we collect all proofs at the end.

Lemma 95. (1.) The tuple
(
L
∞∩1(RN), (d j,L∞∩1) j∈I , (d j,κ ,κ ′,L∞∩1) j,κ ,κ ′ ,

(d j,L∞∩1) j∈I , (d j,κ ,κ ′,L∞∩1) j,κ ,κ ′, �·�, Θ̂
(
L
∞∩1(RN), (d j,L∞∩1), (d j,L∞∩1), �·�))

with the pseudo-metrics specified in Definition 87 (on page 264) and the transitions
of Proposition 94 (on page 268) is weakly Euler compact (in the sense of Defini-
tion 27 on page 207).

(2.) The tuple
(
L
∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�) in combination

with the transitions in Θ̂
(
L
∞∩1(RN), (d j,L∞∩1), (d j,L∞∩1), �·�) is Euler equi-con-

tinuous (in the sense of Definition 16 on page 194).

Theorem 96 (Existence of L
∞∩1(RN)-valued solutions).

For f : L
∞∩1(RN)× [0,T ]−→ BV∞,div

loc (RN) suppose

(i) supμ,t

(∥∥f(μ ,t)
∥
∥

L∞ +
∥
∥divx f(μ , t)

∥
∥

L∞
)

< ∞,

(ii) f is continuous in the following sense: For L 1-almost every t ∈ [0,T ] and any
sequences (tm)m∈N, (μm = σm L N)m∈N in [0,T ], L

∞∩1(RN) respectively with
⎧
⎪⎨

⎪⎩

tm −→ t for m−→ ∞,
μm −→ μ weakly* with respect to C0

0(RN) for m−→ ∞,
sup
m∈N

(‖σm‖L1 +‖σm‖L∞
)

< ∞,

it fulfills f(μm,tm) −→ f(μ , t) in L1
loc(R

N ,RN) for m−→ ∞.

Then for every initial measure μ0 = σ0 L N ∈ L
∞∩1(RN), there exists a solution

μ(·) : [0,T ]−→ L
∞∩1(RN) to the mutational equation

◦
μ (·) � ϑ

L∞∩1, f(μ(·), ·)
on the tuple

(
L
∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�, (D̂ j) j∈I

)
satisfying

μ(0) = μ0 and, all its values in L
∞∩1(RN) are tight.
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Moreover every solution μ(·) : [0,T ] −→ L
∞∩1(RN) (to this mutational equation)

with tight values in L
∞∩1(RN) is a narrowly continuous distributional solution to

the nonlinear continuity equation

∂t μt + divx (f(μt , t) μt) = 0 in R
N× ]0,T [

in the sense that for every t ∈ [0,T ] and any test function ϕ ∈C∞
c (RN ,R),

∫

RN
ϕ dμt −

∫

RN
ϕ dμ0 =

∫ t

0

∫

RN
∇ϕ(x) · f1(μs,s)(x) dμs(x) ds.

Remark 97. In § 3.3.6, Theorem 28 (on page 207) states the existence of solu-
tions to mutational equations with delay. Strictly speaking, we can even handle
L
∞∩1(RN)-valued solutions to nonlinear continuity equations with delay.

The uniqueness of L
∞∩1(RN)-valued solutions to the linear, but nonautonomous

continuity equation is guaranteed by Proposition 80 of Ambrosio and, it is the
starting point for the opposite implication:

Proposition 98 (Distributional solutions satisfy mutational equation).
For f : L

∞∩1(RN)× [0,T ]−→ BV∞,div
loc (RN) suppose

(i) supμ,t

(∥∥f(μ ,t)
∥
∥

L∞ +
∥
∥divx f(μ , t)

∥
∥

L∞
)

< ∞,

(ii’) f is continuous in the following sense: For L 1-almost every t ∈ [0,T ] and
any sequences (tm)m∈N, (μm = σm L N)m∈N in [0,T ], L

∞∩1(RN) respectively,
μ = σL N ∈ L

∞∩1(RN) with
⎧
⎪⎨

⎪⎩

tm −→ t for m−→ ∞,
σm −→ σ in L1

loc(R
N) for m−→ ∞,

sup
m∈N

(‖σm‖L1 +‖σm‖L∞
)

< ∞,

it fulfills f(μm,tm) −→ f(μ , t) in L1
loc(R

N ,RN) for m−→ ∞.

Let μ(·) = σ(·)L N : [0,T ]−→ L
∞∩1(RN) be a distributional solution of

∂t μt + divx (f(μt , t) μt) = 0

with the properties

(a) {μ(t) | 0≤ t ≤ T} ⊂ L
∞∩1(RN) is tight,

(b) σ(·) : [0,T ] −→ L1
loc(R

N) is continuous,
(c) ‖σ(·)‖L1(RN ) +‖σ(·)‖L∞(RN) is bounded in [0,T ].

Then, μ(·) solves the mutational equation
◦
μ (·) � ϑ

L∞∩1, f(μ(·), ·)
on the tuple

(
L
∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�, (D̂ j) j∈I

)
.

Uniqueness and continuous dependence on data result directly from the general
statements about mutational equations (in § 3.3.1 on page 189 f.) and the local spec-
ification of transitions in Proposition 94 (on page 268). Thus we even dispense with
their proofs in detail.
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Theorem 99 (Uniqueness of solution to nonlinear continuity equation).
For f : L

∞∩1(RN)× [0,T ]−→ BV∞,div
loc (RN) suppose

(i) supμ,t

(∥∥f(μ ,t)
∥
∥

L∞ +
∥
∥divx f(μ , t)

∥
∥

L∞
)

< ∞,

(ii’) f is continuous in the sense specified in assumption (ii’) of Proposition 98.

(iii) f is Lipschitz continuous with respect to state in the following sense: For each
j ∈I , there exists a constantΛ j > 0 such that for L 1-almost every t ∈ [0,T ]
and every ν1,ν2 ∈ L

∞∩1(RN),
∥
∥ϕ j |f(ν1,t) − f(ν2, t)|

∥
∥

L1(RN ) ≤ Λ j · d j,L∞∩1(ν1, ν2).

Then for every μ0 ∈L
∞∩1(RN), the distributional solution [0,T ]−→L

∞∩1(RN),
t �−→ μt = σ(t)L N to the nonlinear continuity equation

∂t μt + divx
(
f(μt , t) μt

)
= 0 in R

N× ]0,T [

being continuous w.r.t. L1
loc(R

N), bounded w.r.t. ‖ · ‖L1(RN) + ‖ · ‖L∞(RN), having

initial measure μ0 at time t = 0 and tight values in L
∞∩1(RN) is unique.

Theorem 100 (Continuous dependence on initial data and coefficients).
For f, g : L

∞∩1(RN)× [0,T ]−→ BV∞,div
loc (RN) suppose

(i) supμ,t

(∥∥ f(μ ,t)
∥∥

L∞ +
∥∥divx f(μ ,t)

∥∥
L∞
)

< ∞,

supμ,t

(∥∥g(μ ,t)
∥
∥

L∞ +
∥
∥divx g(μ , t)

∥
∥

L∞
)

< ∞,

(ii) f and g are continuous in the sense specified in assumption (ii) of preceding
Existence Theorem 96.

(iii) f is Lipschitz continuous with respect to state as in Uniqueness Theorem 99.

Let μ(·) : [0,T ]−→ L
∞∩1(RN), t �−→ ρ(t)L N be a distributional solution of

∂t μt + divx
(
f(μt , t) μt

)
= 0 in R

N× ]0,T [

being continuous w.r.t. L1
loc(R

N), bounded w.r.t. ‖ · ‖L1(RN) +‖ · ‖L∞(RN ) and having

tight values in L
∞∩1(RN).

For any parameter R > 0, there exist constants Cj > 0 ( j ∈I ) depending only
on f, g, �μ0�, R with the following property:

For every measure ν0 = σ0 L N ∈ L
∞∩1(RN) with ‖σ0‖L1(RN ) + ‖σ0‖L∞(RN ) ≤ R,

there is a narrowly continuous distributional solution ν(·) : [0,T ]−→ L
∞∩1(RN),

t �−→ σ(t)L N to the continuity equation

∂t νt + divx
(
g(νt , t) νt

)
= 0 in R

N× ]0,T [

being bounded w.r.t. ‖ ·‖L1(RN ) +‖ ·‖L∞(RN), having initial measure ν0 at time t = 0
and satisfying for every t ∈ [0,T ] and j ∈I additionally
∥∥ϕ j (ρ(t)−σ(t))

∥∥
L1 ≤

(∥∥ϕ j (ρ0−σ0)
∥∥

L1(RN )+Cj · sup
∥∥ϕ j (f−g)

∥∥
L1(RN)

)
eCj t .
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Proof (of Lemma 95). (1.) In regard to Definition 27 (on page 207) and
Lemma 90 (on page 265), choose μ0 ∈ L

∞∩1(RN), T > 0 and R > 0 arbitrarily and
let N = N (μ0,T,R) denote the subset of all curves μ(·) : [0,T ] −→ L

∞∩1(RN)
constructed in the following piecewise way: Choosing an arbitrary equidistant par-
tition 0 = t0 < t1 < .. . < tn = T of [0,T ] (n > T ) and b1 . . . bn ∈ BV∞,div

loc (RN) with

max
{‖bk‖L∞ , ‖divx bk‖L∞

∣
∣ 1≤ k ≤ n

} ≤ R,

define μ(·) : [0,T ]−→ L
∞∩1(RN), t �−→ μt as

μt := ϑ
L∞∩1,bk

(
t− tk−1, μtk−1

)
for t ∈ ]tk−1, tk], k = 1,2 . . .n.

Then we have to verify at each time t ∈ [0,T ] : The set {μt |μ(·)∈N }⊂L
∞∩1(RN)

⊂M (RN) is relatively sequentially compact with respect to the weak* topology
(w.r.t. (C0

0(RN),‖ · ‖sup)).

Due to Lemma 93 (on page 267), the total variation |ν|(RN) is uniformly
bounded for all measures ν ∈ {μt | t ∈ [0,T ], μ(·) ∈N } ⊂M (RN) :

|ν|(RN) ≤ e2 R T |μ0|(RN).

Finally, all these measures are tight as a consequence of the inequality
∣
∣Xbk (t,x) − x

∣
∣ ≤ R t

(for a.e. x ∈ R
N and all t ∈ [0,T ]) and essentially the same arguments as the proof

of Lemma 2.52 (on page 144) although the Lagrangian flow Xbk(t, ·) : R
N −→ R

N

does not have to be continuous.

(2.) Euler equi-continuity with respect to the pseudo-metrics (d j,L∞∩1) j∈I is a di-
rect consequence of Proposition 94 (on page 268) and the triangle inequality of each
d j,L∞∩1. This implication has already been pointed out in Remark 17 (on page 194).

�

Proof (of Existence Theorem 96).
The existence of a solution to the mutational equation results from Theorem 28

(on page 207) due to the preparations in Lemma 90 (on page 265), Proposition 94
(on page 268) and Lemma 95 (on page 272).

In addition, with R > 0 denoting the bound in assumption (i), the proof of
Lemma 95 (1.) implies that the values of all Euler approximations in N (μ0,T,R),

{
νt
∣∣ t ∈ [0,T ], ν(·) ∈N (μ0,T,R)

}⊂ L
∞∩1(RN),

are tight. Thus for every ε > 0, there exists a compact set Kε ⊂ R
N satisfying

|νt |(RN \Kε) < ε for all t ∈ [0,T ] and ν(·) ∈N (μ0,T,R).

Since the solution μ(·) : t �−→ μt is constructed by means of Euler approximations,
each measure μt is the weak* limit of a sequence in

{
νt
∣
∣ ν(·) ∈N (μ0,T,R)

}
due

to Lemma 90. The lower semicontinuity of total variation implies |μt |(RN \Kε) < ε.
Therefore, {μt | t ∈ [0,T ]} ⊂ L

∞∩1(RN) ⊂ M (RN) is tight.
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Now we verify the claimed distributional property of any solution t �→ μt =
σ(t, ·)L N to the mutational equation

◦
μ (·) � ϑ

L∞∩1, f(μ(·), ·)

on the tuple
(
L
∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�, (D̂ j) j∈I

)
.

Indeed, due to Definition 8 (on page 187), μ(·) is continuous with respect to each
pseudo-metric d j,L∞∩1 ( j ∈I ) and satisfies for each index j ∈I

lim
h↓0

1
h ·
∣
∣ϕ j ·

(
Xf(μt ,t)(h, ·)� μt − μt+h

)∣∣(RN) = 0.

at L 1-almost every time t ∈ [0,T [.
Assuming tight values in addition implies the continuity of μ(·) with respect to
narrow convergence as a consequence of Lemma 90.
Furthermore, the Lagrangian flow Xf(μt ,t) : [0,1]×R

N −→ R
N of the vector field

f(μt ,t) ∈ BV∞,div
loc (RN) satisfies for L N-almost every x ∈R

N

Xf(μt ,t)(h,x) = x +
∫ h

0
f(μt , t)

(
Xf(μt ,t)(s,x)

)
ds for all h ∈ [0,1]

according to Proposition 80 (a) (on page 262). Hence there exists a set I ⊂ [0,T ] of
full Lebesgue measure such that for every t ∈ I, the following right Dini derivative
exists and is uniformly bounded in I

d+

dt+

∫

RN
ϕ j d μt = lim

h↓0

1
h ·
∫

RN

(
ϕ j(Xf(μt ,t)(h,x)) − ϕ j(x)

)
σ(t,x) dL Nx

=
∫

RN
∇ϕ j(x) · f(μt , t)(x) σ(t,x) dL Nx.

The continuous function [0,T [−→ R
+
0 , t �−→

∫

RN
ϕ j d μt is even Lipschitz con-

tinuous as a consequence of Gronwall’s estimate (in Proposition A.2 on page 440)
and, its weak derivative is

d
dt

∫

RN
ϕ j d μt =

∫

RN
∇ϕ j(x) · f(μt , t)(x) d μt (x).

Now every nonnegative test function ϕ ∈C∞
c (RN), ϕ ≥ 0, can be approximated by

(ϕ j) j∈I with respect to the C1 norm due to Lemma 86 (on page 264). Thus,

[0,T [ −→ R
+
0 , t �−→

∫

RN
ϕ dμt

is also absolutely continuous and satisfies at L 1-almost every time t ∈ [0,T [

d
dt

∫

RN
ϕ d μt =

∫

RN
∇ϕ(x) · f(μt , t)(x) d μt (x) .

Moreover the condition ϕ ≥ 0 is not required, i.e., the same features are guaran-
teed for any ϕ ∈ C∞

c (RN). Indeed, choosing any nonnegative auxiliary function
ξ ∈C∞

c (RN) with ξ ≡‖ϕ‖∞+1 in B1(suppϕ)⊂R
N , we apply the previous results

(about absolute continuity and its derivative) to both ϕ(·)+ξ (·)≥ 0 and ξ (·)≥ 0.
�
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Proof (of Proposition 98). Let μ(·) = σ(·)L N : [0,T ] −→ L
∞∩1(RN) be any

distributional solution to the nonlinear continuity equation

∂t μt + divx (f(μt , t) μt) = 0

with the additional properties

(a) {μ(t) | 0≤ t ≤ T} ⊂ L
∞∩1(RN) is tight,

(b) σ(·) : [0,T ] −→ L1
loc(R

N) is continuous,
(c) ‖σ(·)‖L1(RN ) +‖σ(·)‖L∞(RN) is bounded in [0,T ].

Hence μ(·) is continuous with respect to each of the weighted L1 distances d j,L∞∩1

( j ∈I ) due to Lemma 90 (on page 265).
Continuity assumption (ii’) and the transitional distances D̂ j(·, ·;r) ( j ∈I ) speci-
fied in Proposition 94 (on page 268) imply that the function of time

τ : [0,T ] −→
(
Θ̂
(
L
∞∩1(RN), (di,L∞∩1)i∈I , (di,L∞∩1)i∈I , �·�), D̂ j(·, ·; r)

)

t �−→ ϑ
L∞∩1, f(μt ,t)(·, ·)

is continuous for each radius r > 0 and index j ∈I . Theorem 96 (on page 272)
thus provides a solution ν(·) : [0,T ]−→ L

∞∩1(RN) to the mutational equation

◦
ν (·) � τ(·)

on the tuple
(
L
∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�, (D̂ j) j∈I

)
with initial

measure ν0 = μ0 and tight values in L
∞∩1(RN). Furthermore, it is a narrowly con-

tinuous distributional solution to the nonautonomous, but linear equation

∂t νt + divx (f(μt , t) νt) = 0 in R
N× ]0,T [.

Proposition 80 of Ambrosio (on page 262) guarantees that the Cauchy problem of
such a nonautonomous linear continuity equation always has unique solutions with
values in L

∞∩1(RN) and thus, ν(·)≡ μ(·), i.e. μ(·) solves the mutational equation

◦
μ (·) � ϑ

L∞∩1, f(μ(·), ·)

on the tuple
(
L
∞∩1(RN), (d j,L∞∩1) j∈I , (d j,L∞∩1) j∈I , �·�, (D̂ j) j∈I

)
.

�
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3.9 Example: Nonlocal Parabolic Equations
in Cylindrical Domains

3.9.1 Motivation: Smoothing an Image, but Preserving its Edges

In the field of mathematical image processing, the challenge of smoothing images
and detecting edges simultaneously was discussed thoroughly in the popular article
[41] of Catté et al. in 1992.
Indeed, Perona and Malik had proposed to let the given image grey values u0(·)
evolve according to a nonlinear diffusion equation whose smoothing diffusion term
depends on the absolute value of the (spatial) gradient [155, 156]. Indeed, |∇xu|
large indicates a potential edge and thus, diffusion is to be reduced, maybe even
“switched off” (if possible). |∇xu| being small, however, indicates where to smooth
the image locally. Their experimental results had been remarkable in comparison
with other algorithms. From the mathematical point of view, however, the underly-
ing initial value problem of

∂
∂ t u − divx

(
g(|∇u|) ∇u

)
= 0

with a smooth weight function g(·)≥ 0 is not well-posed in general. This drawback
was among the motivations of Catté et al. for suggesting the smoothing of ∇u by
means of a convolution:

⎧
⎨

⎩

∂
∂ t u − divx

(
g(|u ∗∇Gσ |) ∇u

)
= 0 in ]0,T [×Ω

∇u · νΩ = 0 on ]0,T [×∂Ω
u(0, ·) = u0 in Ω ⊂ R

N

with the Gaussian kernel Gσ (x) := 1
(2π σ)N/2 · exp

(− |x|24σ
)
. This nonlinear problem

is rather a nonlocal diffusion equation because the convolution implies the immedi-
ate dependence on all other simultaneous grey-values (in a weighted form though).
Existence of strong solutions, their uniqueness and continuous dependence on data
belong to the main contributions of article [41].
Nonlinear diffusion equations have become the pillar of several image smoothing
algorithms which are not to loose relevant edges. In monograph [183], for example,
Weickert discusses continuous and discrete methods whose weight functions g(·)
take also the direction of the approximated gradient into consideration (and not just
its absolute value). The final diffusion equations are anisotropic.

Now we want to cover a class of nonlinear parabolic equations in a fixed cylin-
drical domain ]0,T [×Ω which generalize the functional dependence on the wanted
function:⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− ∂ u
∂ t + divx

(
A|(t,u(t,·)) · ∇u

)
+ divx

(
b|(t,u(t,·)) · u

)

+ c|(t,u(t,·)) · ∇u + c0|(t,u(t,·)) u = divx f|(t,u(t,·)) + g|(t,u(t,·))
(
A|(t,u(t,·)) ∇u + b|(t,u(t,·)) u − f|(t,u(t,·))

) · νΩ
+ b0|(t,u(t,·)) u = ψ |(t,u(t,·)) on ∂Ω

u(0, ·) = u0 in Ω
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The solutions are always understood in the distributional sense and, νΩ denotes the
inner normal of a bounded domain Ω ⊂ R

N with Lipschitz boundary. The coeffi-
cients are given as suitably bounded continuous functions of time t and the current
spatial function u(t, ·) ∈W 1,2(Ω), i.e.

A : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ W 1,∞(Ω , Sym(RN×N))

b : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ W 1,∞(Ω , R

N)
c : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)

) −→ L∞(Ω , R
N)

b0 : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ L∞(∂Ω)

c0 : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ L∞(Ω , R)

f : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ W 1,2(Ω , R

N)
g : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)

) −→ L2(Ω , R)
ψ : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)

) −→ L2(∂Ω)
Starting from the corresponding linear problems, mutational analysis leads directly
to conditions sufficient for the existence of strong solutions, their uniqueness and
continuous dependence on data.

3.9.2 The Main Result

First we specify the parabolic problem of interest and the concept of weak solu-
tion used in this example. Such a linear parabolic initial-boundary value problem is
called a conormal problem and, it is known to have a weak solution [114, § VI.10].

Definition 101 ([114, § VI.10]).
Let Ω ⊂R

N be a bounded domain with Lipschitz boundary and T > 0, u0 ∈ L2(Ω),

Ǎ ∈ L∞([0,T ]×Ω , Sym(RN×N)), f̌ ∈ L2([0,T ]×Ω , R
N),

b̌, č ∈ L∞([0,T ]×Ω , R
N), ǧ ∈ L2([0,T ]×Ω , R),

b̌0 ∈ L∞([0,T ]× ∂Ω), ψ̌0 ∈ L2([0,T ]× ∂Ω).
č0 ∈ L∞([0,T ]×Ω , R),

A function u : [0,T ]−→ L2(Ω) is called weak solution to the conormal problem
⎧
⎪⎨

⎪⎩

− ∂ u
∂ t + divx

(
Ǎ · ∇u

)
+ divx

(
b̌ · u) + č · ∇u + č0 u = divx f̌ + ǧ

(
Ǎ ∇u + b̌ u − f̌

) · νΩ + b̌0 u = ψ̌0 on [0,T ]×∂Ω
u(0, ·) = u0 in Ω

if it satisfies
(i) u ∈ L2([0,T ]×Ω) and ∇u ∈ L2([0,T ]×Ω),

(ii) for each t ∈ [0,T ], u(t, ·) ∈ L2(Ω) and sup
0≤ s≤T

‖u(s, ·)‖L2(Ω) < ∞,

(iii) for every test function ϕ ∈C1([0,T ]×Ω) vanishing at {T}×Ω ,
∫

[0,T ]

∫

Ω

(
−u ·∂tϕ +

(
Ǎ ∇u + b̌ u− f̌

) · ∇ϕ
− (č · ∇u + č0 u− ǧ

) · ϕ
)

dx dt

=
∫

[0,T ]

∫

∂Ω

(
b̌0 u + ψ̌0

) · ϕ dωx dt +
∫

Ω
u0 · ϕ(0, ·) dx
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Basic set EΩ := W 1,2(Ω)
for a bounded domain Ω ⊂ R

N with boundary ∂Ω of class C2

Distances dΩ := ‖ · − · ‖2
L2(Ω)

eΩ := ‖ · − · ‖2
L1(Ω)

Absolute values �·�Ω := ‖ · ‖W 1,2(Ω)

Transitions: For the autonomous coefficients

Non-ω-contract.
candidates

Ǎ ∈ W 1,∞(Ω , Sym(RN×N)), f̌ ∈ W 1,2(Ω , R
N),

b̌ ∈ W 1,∞(Ω , R
N), ǧ ∈ L2(Ω , R),

č ∈ L∞(Ω , R
N), ψ̌0 ∈ L2(∂Ω),

č0 ∈ L∞(Ω , R), b̌0 ∈ L∞(∂Ω)

with the condition of uniform parabolicity, consider the weak
solution u(·) : [0,1]−→W 1,2(Ω) to the conormal problem
⎧
⎪⎨

⎪⎩

− ∂ u
∂ t +divx

(
Ǎ ·∇u

)
+divx

(
b̌ ·u)+ č · ∇u+ č0 u = divx f̌+ ǧ

(
Ǎ ∇u+ b̌ u− f̌

) · νΩ + b̌0 u = ψ̌0

u(0) = u0

Compactness Every closed norm-bounded ball in W 1,2(Ω) is compact in
L2(Ω) due to Sobolev’s Embedding Theorem. It implies Euler
compactness: Corollary 112 (page 286)

Equi-continuity Euler equi-continuity results from standard a priori estimates for
nonautonomous conormal problems in finite time intervals.

Mutational solutions Weak solutions to nonautonomous conormal problems
with spatially nonlocal dependence of coefficients
(Link to strong solutions: Remark 113 on page 288)

List of main results
formulated in § 3.9

Existence due to compactness,
uniqueness due to Lipschitz continuity and
continuous dependence of solutions on data:
Theorem 103 (on page 281 f.)

Key tools Existence of weak solutions to nonautonomous linear conormal
problems with some a priori estimates:
Proposition 102 (page 281)

Higher regularity of weak solutions to nonautonomous linear
conormal problems and corresponding a priori estimates:
Proposition 105 (page 283)

Comparative estimate for two solutions to nonautonomous linear
conormal problems: Corollary 108 (page 284)

Table 3.4 Brief summary of the example in § 3.9 in mutational terms:
Nonlocal parabolic equations in cylindrical domains
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Proposition 102 ([114, Theorems 6.38, 6.39]).
LetΩ ⊂R

N be a domain with Lipschitz boundary, T > 0 and Ǎ, b̌, b̌0, č, č0, f̌, ǧ, ψ̌0

be measurable functions as in Definition 101. Furthermore assume Ǎ(·) to be uni-
formly parabolic in the sense that a constant λ > 0 satisfies

ξ T · Ǎ(t,x) ξ ≥ λ |ξ |2
for all (t,x) ∈ [0,T ]×Ω and ξ ∈ R

N.
Then for every u0 ∈ L2(Ω), there exists a weak solution u : [0,T ]−→ L2(Ω) of
⎧
⎪⎪⎨

⎪⎪⎩

− ∂ u
∂ t + divx

(
Ǎ · ∇u

)
+ divx

(
b̌ · u) + č · ∇u + č0 u = divx f̌ + ǧ

(
Ǎ ∇u + b̌ u − f̌

) · νΩ + b̌0 u = ψ̌0 on [0,T ]×∂Ω
u(0, ·) = u0 in Ω

Every weak solution u(·) satisfies
∥
∥∇u
∥
∥

L2([0,T ]×Ω) + sup
[0,T ]
‖u(t, ·)‖L2(Ω) ≤ C · eC T (‖f̌‖L2 +‖ǧ‖L2 +‖ψ̌0‖L2 +‖u0‖L2

)

with a constant C > 0 depending only on λ ,N and the L∞ norm of Ǎ, b̌, b̌0, č, č0.

Now these results about the linear problem are extended to the more general case
that the coefficients are prescribed in dependence on the current spatial functions.
This relationship may have nonlocal character in space, of course.

Theorem 103. LetΩ ⊂R
N be a bounded domain with C2 boundary and T,λ > 0.

Assume the coefficient functions

A : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ W 1,∞(Ω , Sym(RN×N))

b : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ W 1,∞(Ω , R

N)
c : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)

) −→ L∞(Ω , R
N)

b0 : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ L∞(∂Ω)

c0 : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ L∞(Ω , R)

f : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ W 1,2(Ω , R

N)
g : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)

) −→ L2(Ω , R)
ψ : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)

) −→ L2(∂Ω)

to be uniformly bounded w.r.t. the respective Sobolev norms of their values,
continuous w.r.t. the L∞ or L2 norm of their values respectively and
satisfy the condition of uniform parabolicity ξ T ·A(t,v)(x) ξ ≥ λ |ξ |2

for all t ∈ [0,T ], v ∈W 1,2(Ω), x ∈Ω , ξ ∈ R
N.

Then for every initial u0 ∈W 1,2(Ω), there exists a weak solution u(·) : [0,T ]−→
W 1,2(Ω) to the nonlinear conormal problem with the composed coefficients

Ǎ := A(·,u(·)) : [0,T ]×Ω −→ R
N×N , (t,x) �−→ A(t, u(t, ·))(x)

b̌ := b(·,u(·)) : [0,T ]×Ω −→ R
N , (t,x) �−→ b(t, u(t, ·))(x) etc.

In fact, u ∈C0
(
[0,T ], L2(Ω)

) ∩ L2
(
[0,T ], W 1,2(Ω)

)
, ∂t u ∈ L2

(
[0,T ], W 1,2(Ω)∗

)
.
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Lipschitz continuity of the coefficients A,b,b0,c,c0, f,g (w.r.t. the L∞ or L2 norms of
their values respectively) implies uniqueness of this weak solution and its continuous
dependence on the given data. As a consequence, the existence result can then be
extended to initial functions u0 ∈ L2(Ω) approximatively.

3.9.3 The Underlying Details in Terms of Mutational Analysis

Now we give the detailed proof of Theorem 103 via the mutational framework.
The use of these analytical tools lay the basis for coupling nonlocal conormal
problems and any other example of mutational equations in systems. In particular,
nonlocal diffusion equations in image processing (mentioned in § 3.9.1 on page 278
and discussed in [41, 183]) can be combined with morphological equations for
compact sets in R

N , which are discussed in § 1.9 and applied to image segmenta-
tion in § 1.10.

The first step is to specify the basic set and the transitions.
Due to Proposition 102, the linear conormal problem serves as a starting point and
so, L2(Ω) is a suitable choice for the basic set E – at first glance. It causes difficul-
ties in regard to time regularity though. Indeed, according to the general theory of
parabolic equations, rather moderate regularity assumptions about the coefficients
guarantee distributional time derivatives of each weak solution in L2, but this does
not lead to a form of Lipschitz continuity in time as it is needed for transitions.
Hence, we prefer another space of measurable functionsΩ −→R with two essential
advantages:

(1.) In each of its “bounded” balls, the L2 norm proves to be equivalent to any
other Lp norm with 1 ≤ p < ∞ so that we will be able to benefit from the
Hölder inequality in regard to time regularity.

(2.) General a priori estimates about parabolic conormal problems provide some
finite maximal radius for all weak solutions (and potential Euler approxima-
tions) related to a given initial function u0 :Ω −→R.

Furthermore, the regularity of weak solutions required for transitions will be con-
cluded from the general theory of parabolic differential equations [112, 114]. These
additional aspects motivate us to consider EΩ := W 1,2(Ω).

Lemma 104. For a nonempty bounded domain Ω ⊂ R
N with Lipschitz boundary

consider

EΩ := W 1,2(Ω),
dΩ := ‖ · − · ‖2

L2(Ω)
eΩ := ‖ · − · ‖2

L1(Ω)
� ·�Ω := ‖ · ‖W1,2(Ω)

Then the tuple
(
EΩ ,dΩ ,eΩ ,�·�Ω

)
satisfies the general assumptions (H1) – (H4)

in § 3.1 (on page 182 ff.).
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Proposition 102 (on page 281) quotes some results about weak solutions to the
linear conormal problem from Lieberman’s monograph [114, § VI]. Now we com-
plete the general statements which we use for discussing this nonlocal example in
the mutational framework afterwards:

Proposition 105 (Weak derivatives of solutions, [112, Remark III.6.3]).
In addition to the hypotheses of Proposition 102 (on page 281), let Ω ⊂ R

N be a
bounded domain with C2 boundary. Suppose the weak spatial derivatives ∇Ǎ, ∇ b̌
to be in L∞ and divx f̌ ∈ L2([0,T ]×Ω) respectively.

Then every weak solution u(·) ∈ L2([0,T ]×Ω) to the linear conormal problem
has square integrable weak partial derivatives w.r.t. time up to order 1 and w.r.t.
space up to order 2, i.e.

∂t u ∈ L2([0,T ]×Ω , R),
∇u ∈ L2([0,T ]×Ω , R

N),
∇2 u ∈ L2([0,T ]×Ω , R

N×N).

u satisfies the parabolic differential equation almost everywhere in [0,T ]×Ω .

Furthermore there exists a constant C > 0 depending on λ , N, Ω and the
L∞ norms of the coefficients Ǎ, ∇Ǎ, b̌, ∇b̌, b̌0, č, č0 such that for every t ∈ [0,T ],

∥
∥∂t u

∥
∥2

L2([0,t]×Ω) +
∥
∥∇u(t, ·)∥∥2

L2(Ω) +
∥
∥∇2 u

∥
∥2

L2([0,t]×Ω)

≤ C · eC t ·
(∥∥∇u(0, ·)∥∥2

L2(Ω) +
∥∥− ∂t u + divx

(
Ǎ · ∇u

)∥∥2
L2([0,t]×Ω)

)
.

Remark 106. (1.) The weak partial derivative ∂t u will be used for verifying
the required Lipschitz continuity of (potential) transitions with respect to time. The
partial derivatives in space are the tools for proving Euler compactness.

(2.) Due to Cauchy’s inequality, the preceding estimate and Proposition 102 en-
sure a constant Ĉ > 0 depending on the same parameters as C such that each weak
solution u(·) ∈ L2([0,T ]×Ω) satisfies at every time t ∈ [0,T ]
∥
∥∂t u

∥
∥2

L2([0,t]×Ω) +
∥
∥∇u(t, ·)∥∥2

L2(Ω) +
∥
∥∇2 u

∥
∥2

L2([0,t]×Ω)

≤ Ĉ eĈt ·
(∥∥∇u(0, ·)∥∥2

L2(Ω) +
∥∥divx f̌

∥∥2
L2([0,t]×Ω) +

∥∥f̌
∥∥2

L2([0,t]×Ω) +
∥∥ǧ
∥∥2

L2([0,t]×Ω)

+ ‖u(0, ·)‖2
L2(Ω) +‖ψ̌0‖2

L2([0,t]×∂Ω)

)
.

(3.) The regularity assumptions about the coefficients concern only derivatives in
space and are still rather moderate (see also details in [111, § III.4], [112, § III.6]).
This will be useful for the step from autonomous linear conormal problems (induc-
ing candidates for transitions) to corresponding Euler approximations.
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Corollary 107 (Lipschitz continuity w.r.t. time).
Under the assumptions of Proposition 105, every weak solution u(·) ∈ L2([0,T ]×
Ω) to the linear conormal problem satisfies for any s, t ∈ [0,T ]

eΩ
(
u(s, ·), u(t, ·))

≤ C |t− s| ·
(
‖u0‖2

W 1,2(Ω) +‖f̌‖2
W1,2([0,T ]×Ω) +‖ǧ‖2

L2([0,T ]×Ω) +‖ψ̌0‖2
L2([0,T ]×∂Ω)

)

with a constant C depending only on λ , N, Ω and the L∞ norms of the coefficients
Ǎ, ∇Ǎ, b̌, ∇b̌, b̌0, č, č0.

Corollary 108 (Comparing solutions of two linear conormal problems).
In addition to the hypotheses of Proposition 105, let v ∈ L2([0,T ]×Ω) denote the
weak solution to the conormal problem associated with further coefficients Â, b̂, b̂0,
ĉ, ĉ0, f̂, ĝ, ψ̂0 of the corresponding regularity and the initial function v0 ∈ EΩ .

Then there exists a constant Ĉ depending only on λ , N, Ω , ‖Ǎ‖L∞ , ‖∇Ǎ‖L∞ , ‖b̌‖L∞ ,
‖∇b̌‖L∞ , ‖b̌0‖L∞ , ‖č‖L∞ , ‖č0‖L∞ and ‖Â‖L∞ , ‖∇Â‖L∞ , ‖b̂‖L∞ , ‖∇b̂‖L∞ , ‖b̂0‖L∞ ,
‖ĉ‖L∞ , ‖ĉ0‖L∞ such that for every t ∈ [0,T ],

dΩ
(
u(t), v(t))

)

≤ Ĉ eĈ t ·
(

dΩ (u0,v0) +
(∥∥(Ǎ, b̌, č, č0

) − (Â, b̂, ĉ, ĉ0
)∥∥2

L∞([0,t]×Ω) · t
+
∥
∥(f̌, ǧ) − (f̂, ĝ)

∥
∥2

L2([0,t]×Ω)

+
∥
∥b̌0− b̂0

∥
∥2

L∞([0,t]×∂Ω) · t + ‖ψ̌0− ψ̂0‖2
L2([0,t]×∂Ω)

)

· (1 + ‖v0‖W 1,2

)2 · Ĉ eĈ t
)
.

Now we specify the autonomous linear conormal problem inducing the candidates
for transitions on the tuple

(
EΩ , dΩ , eΩ , �·�Ω

)
. All proofs are again postponed to

the end of this section.

Proposition 109. Let Ω ⊂R
N be a nonempty bounded domain with C2 boundary

and define EΩ , dΩ , eΩ , �·�Ω as in Lemma 104. For the autonomous coefficients

Ǎ ∈ W 1,∞(Ω , Sym(RN×N)), f̌ ∈ W 1,2(Ω , R
N),

b̌ ∈ W 1,∞(Ω , R
N), ǧ ∈ L2(Ω , R),

č ∈ L∞(Ω , R
N), ψ̌0 ∈ L2(∂Ω),

č0 ∈ L∞(Ω , R), b̌0 ∈ L∞(∂Ω)

with the condition of uniform parabolicity ξ T ·Ǎ(x) ξ ≥ λ |ξ |2 for all x,ξ and any
initial function u0 ∈ EΩ , the unique weak solution ϑ(·,u0) = u(·) : [0,1]−→ L2(Ω)
to the linear conormal problem
⎧
⎪⎨

⎪⎩

− ∂ u
∂ t + divx

(
Ǎ · ∇u

)
+ divx

(
b̌ · u) + č · ∇u + č0 u = divx f̌ + ǧ

(
Ǎ ∇u + b̌ u − f̌

) · νΩ + b̌0 u = ψ̌0 on [0,1]×∂Ω
u(0) = u0

has the following properties for every s, t ∈ [0,1], v0 ∈ EΩ :
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(1.) ϑ(t,u0) ∈ W 1,2(Ω) Def.= EΩ ,
∥
∥ϑ(t,u0)

∥
∥

L2(Ω) ≤ C · eCt ·
(∥
∥u0
∥
∥

L2(Ω) +
∥
∥f̌
∥
∥

L2 +
∥
∥ǧ
∥
∥

L2 +
∥
∥ψ̌0
∥
∥

L2(∂Ω)

)

∥
∥∇ϑ(t,u0)

∥
∥2

L2(Ω) ≤ C · eCt ·
(∥
∥u0
∥
∥2

W1,2(Ω) +
∥
∥f̌
∥
∥2

W 1,2 +
∥
∥ǧ
∥
∥2

L2 +
∥
∥ψ̌0
∥
∥2

L2(∂Ω)

)

(2.) ϑ( · ,u0) has the semigroup property,

(3.) dΩ
(
ϑ(t,u0), ϑ(t,v0)

) ≤ C · dΩ (u0, v0)

(4.) eΩ
(
ϑ(s,u0), ϑ(t,u0)

) ≤ |s− t| · C ·
(∥∥u0

∥∥2
W 1,2 +

∥∥f̌
∥∥2

W 1,2 +
∥∥ǧ
∥∥2

L2 +
∥∥ψ̌0
∥∥2

L2

)

with a constant C depending on λ , N,Ω , ‖Ǎ‖W1,∞ , ‖b̌‖W 1,∞ , ‖b̌0‖L∞ , ‖č‖L∞ , ‖č0‖L∞ .

Furthermore let ϑ2(·,v0) = v(·) : [0,1] −→ L2(Ω) denote the solution associated
with further autonomous coefficients Â, b̂, b̂0, ĉ, ĉ0, f̂, ĝ, ψ̂0 of this kind and the
initial function v0 ∈ EΩ .
Then there exists a constant Ĉ depending only on λ , N,Ω and the respective Sobolev
norm of all the coefficients such that for every t ∈ [0,1],

dΩ
(
ϑ(t,u0),ϑ2(t,v0)

) ≤ Ĉ eĈ t ·
(

dΩ (u0,v0)

+t ·
(∥
∥(Ǎ, b̌, b̌0, č, č0

) − (Â, b̂, b̂0, ĉ, ĉ0
)∥∥2

L∞

+
∥∥(f̌, ǧ) − (f̂, ĝ)

∥∥2
L2 +‖ψ̌0− ψ̂0‖2

L2

)

×(1 +‖v0‖W1,2

)2
ĈeĈt

)
.

In the following, Θ̌Ω denotes the set of all weak solutions ϑ : [0,1]×EΩ −→ EΩ
to linear conormal problems related to coefficients Ǎ, b̌, b̌0, č, č0, f̌, ǧ, ψ̌0 as in
Proposition 109.

Remark 110. (1.) This proposition summarizes essential properties in regard
to transitions on the tuple

(
EΩ , dΩ , eΩ , �·�Ω

)
(in the sense of Definition 2 on

page 183). There are two obstacles though. First, ϑ : [0,1]× EΩ −→ EΩ is not
ω-contractive, but satisfies

dΩ
(
ϑ(t,u0), ϑ(t,v0)

) ≤ C · dΩ (u0, v0)

for all u0,v0 ∈ EΩ and t ∈ [0,1] with a constant C possibly larger than 1. The results
of § 3.4 (on page 214 ff.) based on an auxiliary distance equivalent to dΩ will prove
to be useful for this gap.
Second, statement (1.) does not provide an obvious choice for the parameter γ(ϑ)
such that �ϑ(t,u0)�Ω Def.=

∥
∥ϑ(t,u0)

∥
∥

W 1,2(Ω) ≤
(‖u0‖W1,2(Ω) + γ j(ϑ) t

) · eγ j(ϑ ) t

holds for every u0 ∈ EΩ and t ∈ [0,1]. Possibly the standard inequalities quoted from
[112, 114] can be “improved” slightly, but now we just point out that these explicit
a priori estimates for any time interval [0,T ] are sufficient for excluding “explo-
sions” of any Euler curves in finite time. Hence all the essential arguments in the
mutational framework can still be applied to this example although we cannot use
Lemma 5 (about general a priori bounds of Euler curves on page 185).
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(2.) Statement (4.) formulates that ϑ(·,u0) : [0,1]−→ EΩ is Lipschitz continuous
with respect to eΩ , but it is just a special case of Corollary 107 above. In muta-
tional terms, this corollary even guarantees that the tuple

(
EΩ , dΩ , eΩ , �·�Ω , Θ̌Ω

)

is nonequidistant Euler equi-continuous in the sense of Definition 23 (on page 203).

(3.) Similarly, Corollary 108 is stronger than just the last estimate in Proposi-
tion 109. It ensures that hypothesis (A4) in § 3.4 (on page 215) is satisfied – with
the slight modification that we have explicit a priori estimates for any Euler curves
in each finite time interval (instead of the conclusions via the exponential growth
parameter γ̂).
This lays the foundation for applying the approach of § 3.4 and considering tran-
sitions on ĚΩ := EΩ × R with an auxiliary distance ďΩ : ĚΩ × ĚΩ −→ [0,∞[
equivalent to dΩ in the sense of Proposition 32 (on page 215 f.)

In regard to compactness, we conclude from Sobolev’s Embedding Theorem and
the fact that each norm-closed ball in the Hilbert space W 1,2(Ω) is weakly compact:

Lemma 111.
Every closed ball

{
w ∈ EΩ

Def.= W 1,2(Ω)
∣
∣ ‖w‖W1,2(Ω) ≤ r

}
with finite radius r ≥ 0

is sequentially compact with respect to the L2(Ω) norm.

Then the a priori estimates for the nonautonomous linear conormal problem in
Propositions 102 and 105 guarantee immediately:

Corollary 112 (Nonequidistant Euler compactness).
The tuple

(
EΩ , dΩ , eΩ , �·�Ω

)
in combination with the candidates for transitions in

Θ̌Ω is nonequidistant Euler compact in the sense of Definition 23 (on page 203).
In fact, the following (slightly more general) statement holds:

Fix any bounds λ ,M > 0 and choose sequences of coefficients

Ǎn ∈ L∞([0,T ], W 1,∞(Ω , Sym(RN×N))), f̌n ∈ L∞([0,T ], W 1,2(Ω , R
N)),

b̌n ∈ L∞([0,T ], W 1,∞(Ω , R
N)), ǧn ∈ L∞([0,T ], L2(Ω , R)),

čn ∈ L∞([0,T ], L∞(Ω , R
N)), ψ̌n

0 ∈ L∞([0,T ], L2(∂Ω)),
čn

0 ∈ L∞([0,T ], L∞(Ω , R)) b̌n
0 ∈ L∞([0,T ], L∞(∂Ω))

with the condition of uniform parabolicity ξ T · Ǎn(t,x) ξ ≥ λ |ξ |2 for all n, t,x,ξ ,

max
{‖Ǎn‖L∞(W1,∞), ‖b̌n‖L∞(W 1,∞), ‖b̌n

0‖L∞(L∞), ‖čn‖L∞(L∞), ‖čn
0‖L∞(L∞),

‖f̌n‖L∞(W 1,2), ‖ǧn‖L∞(L2), ‖ψ̌n
0‖L∞(L2)

} ≤ M.

For each n ∈ N, let un(·) ∈ L2([0,T ]×Ω) denote the unique weak solution to the
respective nonautonomous linear conormal problem with a joint initial u0 ∈ EΩ .

Then for every t ∈ [0,T ], a subsequence of
(
un(t, ·))n∈N

converges to a function

in EΩ
Def.= W 1,2(Ω) with respect to dΩ .
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In regard to the proof of Theorem 103 about the full nonlinear conormal problem
(on page 281), we can now draw conclusions from the mutational framework:

Assume the coefficient functions
A : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)

) −→ W 1,∞(Ω , Sym(RN×N))
b : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)

) −→ W 1,∞(Ω , R
N)

c : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ L∞(Ω , R

N)
b0 : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)

) −→ L∞(∂Ω)
c0 : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)

) −→ L∞(Ω , R)
f : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)

) −→ W 1,2(Ω , R
N)

g : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ L2(Ω , R)

ψ : [0,T ]× (W 1,2(Ω), ‖ · ‖L2(Ω)
) −→ L2(∂Ω)

to be uniformly bounded w.r.t. the respective Sobolev norms of their values,
continuous w.r.t. the L∞ or L2 norm of their values respectively and
satisfy the condition of uniform parabolicity ξ T ·A(t,v)(x) ξ ≥ λ |ξ |2

for all t ∈ [0,T ], v ∈W 1,2(Ω), x ∈Ω , ξ ∈ R
N .

Let FΩ (·, ·) abbreviate the tuple of these coefficient functions on [0,T ]×EΩ .

Now the construction in § 3.4 provides both the basic set ĚΩ
Def.= EΩ ×R related to

EΩ
Def.= W 1,2(Ω) and the auxiliary distance ďΩ on ĚΩ equivalent to dΩ such that

the solutions in Θ̌Ω (to autonomous linear conormal problems) induce transitions
on
(
ĚΩ , ďΩ ,eΩ ,�·�Ω

)
. Furthermore this tuple is both nonequidistant Euler compact

and nonequidistant Euler equi-continuous due to Corollary 112 and Remark 110 (3.)
respectively — if we use the explicit a priori estimates for each Euler curve (instead
of the exponential growth parameter γ̂ < ∞).
Hence Existence Theorem 19 (on page 195) states that the mutational equation

◦
ǔ(t) � FΩ

(
t, u(t, ·))

has a solution ǔ : [0,T ] −→ ĚΩ , t �−→ (u(t, ·), ρ(t)) in the tuple
(
ĚΩ , ďΩ , eΩ , �·�Ω ,

const · (‖ · ‖L∞+‖ · ‖L2)
)

for each given initial state (u0,�u0�Ω ) ∈ ĚΩ .

Finally we have to verify that u(·, ·) is a weak solution to the nonlinear conor-
mal problem with the composed coefficients (t,x) �−→F (t,u(t, ·))(x). Indeed, the
nonautonomous, but linear conormal problem in w with these coefficients, i.e.
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− ∂ w
∂ t +divx

(
A|(t,u(t,·)) · ∇w

)
+divx

(
b|(t,u(t,·)) · w

)

+ c|(t,u(t,·)) · ∇w + c0|(t,u(t,·)) w = divx f|(t,u(t,·)) + g|(t,u(t,·))
(
A|(t,u(t,·)) ∇w + b|(t,u(t,·)) w − f|(t,u(t,·))

) · νΩ
+ b0|(t,u(t,·)) w = ψ |(t,u(t,·)) on ∂Ω

w(0, ·) = u0 in Ω

has a unique weak solution w ∈ L2([0,T ]×Ω) according to Proposition 102.
Due to Proposition 105, w : [0,T ] −→W 1,2(Ω) is continuous with respect to the
L1(Ω) norm and bounded with respect to the W 1,2(Ω) norm. The comparative
estimate in Corollary 108 assures the condition sufficient for mutational solutions in
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Proposition 34 (on page 219) and thus,

w̌ : [0,T ] −→ ĚΩ , t �−→ (
w(t, ·), ‖w(t, ·)‖W 1,2(Ω)

)

is a solution to the mutational equation
◦
w̌(t) � FΩ

(
t, u(t, ·))

in the tuple
(
ĚΩ , ďΩ , eΩ , �·�Ω , const·(‖·‖L∞+‖·‖L2)

)
. Due to the joint initial value

u(0) = u0 = w(0, ·), Proposition 11 (about the continuous dependence of mutational
solutions on given data on page 189) implies dΩ

(
u(t), w(t)

)
= 0 for all t ∈ [0,T ].

This completes the proof of Theorem 103.

Remark 113 (about strong solutions). In a word, the proof of Theorem 103 re-
flects a basic strategy of the mutational framework: The general existence theorem
provides a continuous curve ǔ = (u,ρ) : [0,T ] −→ EΩ as a solution to the muta-
tional equation. Its first component u(·) is inserted in the coefficient functions and,
the resulting nonautonomous linear problem has a weak solution w(·) which solves
a (simpler) mutational equation. Thus, u(·)≡ w(·).
The general regularity properties stated in Proposition 105 imply that w(·) is even
a strong solution to the nonautonomous linear conormal problem and so, strictly
speaking, the proof of Theorem 103 guarantees the existence of strong solutions to
the functional conormal problem (on page 281).

The Remaining Proofs About the Basic Set EΩ and the Transition Properties

Proof (of Lemma 104 on page 282). Hypothesis (H1) about reflexivity and (H2)
about symmetry are obvious.

(H3)(o) The claimed equivalence between sequential convergence w.r.t. dΩ and
eΩ results essentially from Sobolev’s Embedding Theorem because all considered
sequences are assumed to be bounded in W 1,2(Ω).
Indeed, let u∈W 1,2(Ω) and (un)n∈N be a bounded sequence in W 1,2(Ω) with ‖un−
u‖L1(Ω) −→ 0 for n −→ ∞. Then a subsequence (unk)k∈N converges to u almost
everywhere in Ω . Due to Sobolev’s Embedding Theorem, a further subsequence
(again denoted by) (unk)k∈N converges to some v∈ L2(Ω) with respect to the L2(Ω)
norm. Then v≡ u almost everywhere in Ω and, we obtain indirectly that the whole
sequence (un)n∈N converges to u in L2(Ω). Hence, the convergence of (un)n∈N w.r.t.
eΩ implies the convergence w.r.t. dΩ .
The opposite implication results directly from Hölder inequality since L N(Ω) <∞.

(H3) (i) – (iii) can now be concluded from the triangle inequality of
√

dΩ and√
eΩ respectively.

(H4) The lower semicontinuity of �·�Ω Def.= ‖ · ‖W1,2(Ω) w.r.t. the L2(Ω) norm
results indirectly from the general facts that each closed ball in the Hilbert space
W 1,2(Ω) is weakly compact and the norm is always lower semicontinuous with
respect to weak convergence. �
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Proof (of Corollary 107 on page 284). It is based on the estimate in
Remark 106 (2.) and the Hölder inequality. Indeed, for any 0≤ s≤ t ≤ T ,

√
eΩ
(
u(s, ·), u(t, ·))

Def.=
∥
∥u(s, ·)−u(t, ·)∥∥L1(Ω)

≤ ∥∥∂t u
∥
∥

L1([s,t]×Ω)

≤
√

L N(Ω) · |t− s| ∥∥∂t u
∥
∥

L2([0,T ]×Ω)

≤
√

L N(Ω) · |t− s|
√

Ĉ ·
(
‖u0‖2

W1,2 +‖f̌‖2
W1,2 +‖ǧ‖2

L2 +‖ψ̌0‖2
L2

)
.

�

Proof (of Corollary 108 on page 284). For an initial function v0 ∈ EΩ and further
coefficients Â, b̂, b̂0, ĉ, ĉ0, f̂, ĝ, ψ̂0, let v ∈ L2([0,T ]×Ω) be the weak solution of
⎧
⎪⎪⎨

⎪⎪⎩

− ∂ v
∂ t + divx

(
Â · ∇v

)
+ divx

(
b̂ · v) + ĉ · ∇v + ĉ0 v = divx f̂ + ĝ

(
Â ∇v + b̂ v − f̂

) · νΩ + b̂0 v = ψ̂0 on [0,T ]×∂Ω
v(0, ·) = v0 in Ω .

The difference w := u− v∈ L2([0,T ]×Ω) satisfies the linear conormal problem
⎧
⎪⎪⎨

⎪⎪⎩

− ∂ w
∂ t + divx

(
Ǎ · ∇w

)
+ divx

(
b̌ · w) + č · ∇w + č0 w = divx f̄ + ḡ

(
Ǎ ∇w + b̌ w − f̄

) · νΩ + b̌0 w = ψ̄0 on [0,T ]×∂Ω
w(0, ·) = u0− v0

with the coefficients

f̄ := f̌ − f̂ − (Ǎ − Â) ·∇v − (b̌ − b̂) · v,
ḡ := ǧ − ĝ − (č − ĉ) ·∇v − (č0 − ĉ0) · v,
ψ̄0 := ψ̌0 − ψ̂0 − (b̌0 − b̂0) · v.

Due to the estimates in Proposition 102 and 105 (on pages 281, 283),

‖v(t, ·)‖W1,2(Ω) ≤ C eCt · (1 + ‖v0‖W1,2(Ω)
)

holds for every t ∈ [0,T ] with a constant C depending only on λ ,N,Ω , ‖Â‖L∞ ,
‖∇Â‖L∞ , ‖b̂‖L∞ , ‖∇b̂‖L∞ , ‖b̂0‖L∞ ,‖ĉ‖L∞ , ‖ĉ0‖L∞ . Hölder’s inequality and the con-
tinuous trace operator on ∂Ω ∈C2 imply for each t ∈ [0,T ]

‖f̄‖L2([0,t]×Ω) ≤‖f̌ − f̂‖L2([0,t]×Ω) +
(
‖Ǎ− Â‖L∞([0,t]×Ω)+‖b̌ − b̂‖L∞([0,t]×Ω)

)
ρt

‖ḡ‖L2([0,t]×Ω) ≤‖ǧ − ĝ‖L2([0,t]×Ω)+
(
‖č − ĉ‖L∞([0,t]×Ω) +‖č0− ĉ0‖L∞([0,t]×Ω)

)
ρt

‖ψ̄0‖L2([0,t]×∂Ω)≤‖ψ̌0− ψ̂0‖L2([0,t]×∂Ω) + C ‖b̌0− b̂0‖L∞([0,t]×∂Ω) ρt

with the abbreviation

ρt := C eC t · (1 + ‖v0‖W1,2(Ω)
) ·√L N(Ω) t.
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The estimate in Proposition 102 ensures a modified constant Ĉ > 0 (determined
merely by λ ,N,Ω , ‖Ǎ‖L∞ , ‖b̌‖L∞ , ‖b̌0‖L∞ ,‖č‖L∞ and ‖č0‖L∞ ) such that for any t,

‖w(t, ·)‖2
L2(Ω) ≤ Ĉ eĈ t

(‖u0− v0‖2
L2(Ω) + ‖f̄‖2

L2([0,t]×Ω) +‖ḡ‖2
L2([0,t]×Ω)

+ ‖ψ̄0‖2
L2([0,t]×∂Ω)

)
.

Together with the preceding inequalities, we obtain the claimed bound of

dΩ
(
u(t, ·), v(t, ·)) = ‖w(t, ·)‖2

L2(Ω). �

Proof (of Proposition 109 on page 284). Existence and uniqueness of the weak
solution u(·) are guaranteed explicitly by Proposition 102 (on page 281). This im-
plies the semigroup property claimed in statement (2.).
Statement (1.) results directly from Proposition 105 (on page 283) in combination
with the estimate in Proposition 102.
Statement (3.), i.e.

∥
∥ϑ(t,u0) − ϑ(t,v0)

∥
∥

L2(Ω) ≤ C · ‖u0− v0‖L2(Ω) for all t ∈ [0,1],
is a consequence of Proposition 102: Due to the linearity of the conormal problem,
ϑ(·,u0)−ϑ(·,v0) solves the homogeneous conormal problem and starts at u0− v0.
Statement (4.) and the final estimate comparing solutions to two problems result
immediately from Corollary 107 and 108 (on page 284) respectively. �

Remark 114 (about extending the results to u0 ∈ L2(Ω)).
Essentially the same proof as for Corollary 108 provides the following estimate

dΩ
(
u(t), v(t))

) ≤ Ĉ eĈ t ·
(

dΩ (u0,v0)+
(∥∥(Ǎ, b̌, č, č0

)− (Â, b̂, ĉ, ĉ0
)∥∥2

L∞([0,t]×Ω)

+
∥
∥(f̌, ǧ) − (f̂, ĝ)

∥
∥2

L2([0,t]×Ω) +
∥
∥b̌0− b̂0

∥
∥2

L∞([0,t]×∂Ω)

+‖ψ̌0− ψ̂0‖2
L2([0,t]×∂Ω)

)

×(1 + ‖v0‖L2 + ‖f̂‖L2 +‖ĝ‖L2 +‖ψ̂0‖L2

)2 · Ĉ eĈ t
)

due to ‖v‖L2([0,t]×Ω) +‖∇v‖L2([0,t]×Ω) ≤ CeC t · (‖v0‖L2 +‖f̂‖L2 +‖ĝ‖L2 +‖ψ̂0‖L2

)
.

In comparison with Corollary 108, the right-hand side depends just on ‖v0‖L2(Ω)
instead of ‖v0‖W1,2(Ω), but it is lacking the factor t, which indicates first-order terms
in the mutational framework.

This modified inequality implies the additional statement in Theorem 103: If the
coefficients A,b,b0,c,c0, f,g are Lipschitz continuous (w.r.t. the L∞ or L2 norms of
their values respectively), then the existence result can then be extended to initial
functions u0 ∈ L2(Ω) approximatively. Indeed, any sequence (un

0)n∈N in W 1,2(Ω)
converging to u0 in L2(Ω) induces a sequence of weak solutions

un(·) : [0,T ]−→W 1,2(Ω) (n ∈ N),
which proves to be a Cauchy sequence in C0([0,T ],L2(Ω)). Hence, there exists
a limit u ∈ C0([0,T ],L2(Ω)). The coefficients being composed with u(·) specify
a nonautonomous, but linear conormal problem with a unique weak solution w ∈
L2([0,T ]×Ω) due to Prop. 102. Finally the estimate applied to w,un ensures u≡ w.
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3.10 Example: Semilinear Evolution Equations
in Arbitrary Banach Spaces

Now we consider semilinear evolution equations again
d
dt u(t) = A u(t) + f

(
u(t), t

)

with a fixed generator A of a strongly continuous semigroup (S(t))t≥0 on a Banach
space X . The goal is to specify sufficient conditions on the semigroup and the
function f : X × [0,T ] −→ X so that initial value problems can be solved in the
mutational framework.
In contrast to the example in § 2.4 (on page 125 ff.), however, we dispense with any
hypotheses about the Banach space X (such as reflexivity and separability) and, we
prefer topological assumptions about the semigroup or the image of f instead.

In particular, a single distance function on X is to cover the strong continuity
of the semigroup appropriately. This challenge has been the main motivation for
introducing two distance functions d,e in the mutational framework recently. The
first distance refers to comparing (mostly simultaneous) states whereas the second
one is rather related to changes in time (as explained in § 45, Step (C) on page 22 f.
and § 3.1 on page 182 ff.).
The required regularity of transitions with respect to time makes now tuples with a
separate real time component (as in § 3.5 on page 221 ff.) very useful indeed.

Assumptions for § 3.10.

(1.) (X , ‖·‖X) is a R-Banach space, X̃ := R×X and π1 : X̃ −→R, (t,x) �−→ t.

(2.) The linear operator A generates a C0 semigroup (S(t))t≥0 of bounded linear
operators on X .

(3.) (S(t))t≥0 is ω-contractive, i.e., there exists a constant ω > 0 such that
‖S(t) x‖X ≤ eω t ‖x‖X for all x ∈ X , t ≥ 0.

Remark 115. All the essential results about semilinear evolution equations in this
section 3.10 can be extended easily to non-ω-contractive C0 semigroups (S(t))t≥0.
For the sake of transparency only, we dispense with the detailed statements here.
There are two arguments why the ω-contractivity of (S(t))t≥0 is not really needed.
First, we have discussed in § 3.4 (on page 214 ff.) that non-ω-contractive candidates
for transitions can fulfill all required conditions in the general mutational framework
if the distance function d on E is replaced appropriately. This conclusion holds in
this example because every C0 semigroup (S(t))t≥0 satisfies an estimate of the form
‖S(t)x‖X ≤M eω t ‖x‖X for all x ∈ X , t ≥ 0 with fixed constants M ≥ 1,ω > 0.
Second, the theory of one-parameter semigroups of bounded linear operators on Ba-
nach spaces even provides an equivalent norm on X with respect to which (S(t))t≥0

is contractive (i.e.ω = 0,M = 1). This explicit construction (via powers of the resol-
vent operator) is the key ingredient in the standard proof of the Generation Theorem
of Feller, Miyadera and Phillips [76, Theorem II.3.8], which provides the link to
Hille-Yosida Theorem about contractive semigroups.
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Basic set X̃ = R×X with any real Banach space X

(The additional real component indicates the respective point of
time for simplifying the aspects of regularity in time.)

(S(t))t≥0 is an ω-contractive C0 semigroup of bounded linear
operators on X with the generator A.
(By means of § 3.4, the main results can be extended easily to
strongly continuous semigroups which are not ω-contractive.)

Distances d̃0 : X̃ × X̃ −→ R
+
0 ,
(
(s,x), (t,y)

) �−→ |t− s|+∥∥x − y
∥
∥

X

ẽ0 : X̃ × X̃ −→ R
+
0 ,
(
(s,x), (t,y)

) �−→ |t− s|+∥∥S(t−s)x− y
∥∥

X
(if s≤ t)

Absolute value ‖ · ‖X̃ : X̃ −→ R
+
0 , (t,x) �−→ |t|+‖x‖X

Transitions: For each vector v ∈ X , the variation of constants formula induces

τ̃v : [0,1]× X̃ −→ X̃,
(
h, (t,x)

) �−→
(

t +h, S(h) x+
∫ h

0
S(h− s) v ds

)

Compactness (i) Assume (S(t))t≥0 to be immediately compact in addition:
§ 3.10.3 (page 300 ff.) — the “standard” situation [76, 154]

(ii) Suppose f to have relatively (weakly) compact image set:
§ 3.10.4 (page 306 ff.)

Equi-continuity Nonequidistant Euler equi-continuity results from representing
any Euler curve by means of the variation of constants formula.

Mutational solutions Mild solutions to the semilinear evolution equation
d
dt x(·) = A x(·) + f

(
x(·), ·)

List of main results
formulated in § 3.10

(i) in § 3.10.3:
Existence due to compactness: Theorem 129 (page 301)
Existence for equations with delay: Corollary 130
Existence for systems with modified morph. equations:
Corollary 132

(ii) in § 3.10.4:
Existence for equations with delay and norm topology:
Theorem 134 (page 307)
Existence for equations with delay and weak topology:
Theorem 136 (page 308)

Key tools Variation of constants formula
Integral representation of the linear resolvent operator

Table 3.5 Brief summary of the example in § 3.10 in mutational terms:
Semilinear evolution equations in arbitrary Banach spaces
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3.10.1 The Distance Functions (d̃ j) j∈R
+
0
,(ẽ j) j∈R

+
0

on X̃ = R×X

In this example, the essential aspect is to take the strong continuity of (S(t))t≥0 into
consideration properly. This regularity has influence on the chronological features
and thus on the family (ẽ j) j of distance functions (rather than (d̃ j) j). In particular,
it is the main motivation for considering tuples with separate time component, i.e.,
X̃ instead of X . As abbreviations, set R

+
0 := [0,∞[ and R

+ :=]0,∞[.

Definition 116.
Under the general assumptions of § 3.10, we define for each index j ∈ R

+
0

d̃ j : X̃× X̃ −→ [0,∞[,
(
(s,x), (t,y)

) �−→ |t− s| +
∥
∥S( j) x − S( j) y

∥
∥

X

‖ · ‖X̃ : X̃ −→ [0,∞[, (t,x) �−→ |t| + ‖x‖X .

ẽ j : X̃× X̃ −→ [0,∞[,
(
(s,x), (t,y)

) �−→ |t− s| +
{∥
∥S( j + t−s) x− S( j) y

∥
∥

X if s < t
∥
∥S( j) x− S( j + s−t) y

∥
∥

X if s≥ t

Obviously, d̃0(·, ·)≡‖·−·‖X̃ holds in X̃× X̃ . In fact, the convergence of norm

bounded sequences with respect to (d̃ j) j∈R+ is equivalent to norm convergence in

X̃ as proved in following Proposition 117. The detour via j ∈R
+ (instead of j = 0)

serves merely the purpose of concluding the convergence with respect to d̃0 from ẽ0.

Proposition 117. For every element x̃ ∈ X̃ and any bounded sequence (x̃n)n∈N

in (X̃ , ‖ · ‖X̃), the following properties are equivalent:

(i) lim
n→∞

‖x̃ − x̃n‖X̃ = 0

(ii) ∀ j ∈ R
+ : lim

n→∞
d̃ j(x̃, x̃n) = 0

(iii) ∀ j ∈ R
+ : lim

n→∞
ẽ j(x̃, x̃n) = 0

(iv) lim
n→∞

ẽ0(x̃, x̃n) = 0 .

This equivalence and subsequent Lemmas 119 – 121 imply directly

Corollary 118. The tuple (X̃ , d̃0, ẽ0) satisfies hypotheses (H1), (H2), (H3) (o),
(H4) (on page 182) and hypotheses (H3) (̃i)–(ĩii) (on page 221). �

Proof (of Proposition 117). “(i) =⇒ (ii)” and “(iv) =⇒ (iii)” are obvious
consequences of Definition 116 since each linear operator S( j) : X −→ X ( j ∈ R

+
0 )

of the C0 semigroup is continuous.

“(ii) =⇒ (i)” Assume for x̃ = (t,x) and the bounded sequence
(
x̃n = (tn,xn)

)
n∈N

in X̃ that d̃ j(x̃, x̃n)
Def.= |t− tn| +

∥
∥S( j) x − S( j) xn

∥
∥

X −→ 0 (n−→ ∞)
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holds for every j ∈R
+. The resolvent R(λ ,A) of the generator A of (S(t))t≥0 is

known to have the representation as limit of Bochner integrals

R(λ ,A) y = lim
τ→∞

∫ τ

0
e−λ t S(t) y dt

for every y ∈ X and λ ∈C with Re λ > ω (see [76, Theorem II.1.10], for example).
As a consequence, Lebesgue’s Theorem about Dominated Convergence leads to

∥∥R(ω+ 2, A)
(
x− xn

)∥∥
X −→ 0 for n−→ ∞.

It implies ‖x− xn‖X −→ 0 since R(ω+ 2, A) : X −→ X is a bijective contraction

with ‖R(ω+ 2, A)‖ ≤ 1
2 .

“(iii) =⇒ (iv)” It also results from the integral representation of the resolvent
R(ω+ 2, A). Indeed, assuming for a norm bounded sequence

(
x̃n = (tn,xn)

)
n∈N

ẽ j(x̃, x̃n)
Def.= |t− tn| +

∥∥S( j +(tn−t)+) x − S( j +(t−tn)+) xn
∥∥

X
n→∞−→ 0

for every j ∈ R
+ (with the abbreviation r+ := max{r,0} for r ∈ R) implies

∥
∥R(ω+ 2, A)

(
S((tn−t)+) x − S((t−tn)+) xn

)∥∥
X

n→∞−→ 0

and thus, ẽ0(x̃, x̃n)
Def.= |t− tn| +

∥
∥S((tn−t)+) x − S((t−tn)+) xn

∥
∥

X
n→∞−→ 0 .

“(ii) =⇒ (iii)” Let the sequence
(
x̃n = (tn,xn)

)
n∈N

and x̃ = (t,x) ∈ X̃ be arbi-

trary with d̃ j(x̃, x̃n) −→ 0 for each j ∈R
+.

First we assume tn ≥ t for all n ∈N in addition. Then,

ẽ j(x̃, x̃n) = |t− tn| +
∥
∥S( j + tn− t) x − S( j) xn

∥
∥

X

≤ |t− tn| +
∥
∥S( j) x − S( j) xn

∥
∥

X +
∥
∥S( j) x − S( j + tn− t) x

∥
∥

X

= d̃ j(x̃, x̃n) + eω j
∥
∥x − S(tn− t) x

∥
∥

X

−→ 0 for n−→ ∞ and each j ∈ R
+.

Similarly we obtain under the additional assumption tn ≤ t for all n ∈N

ẽ j(x̃, x̃n) = |t− tn|+
∥
∥S( j) x − S( j+t−tn) xn

∥
∥

X

≤ |t− tn|+
∥
∥S( j+t−tn) x −S( j+t−tn) xn

∥
∥

X+
∥
∥S( j) x − S( j+t−tn) x

∥
∥

X

≤ |t− tn|+eω (t−tn)
∥∥S( j) x − S( j) xn

∥∥
X + eω j

∥∥x − S(t− tn) x
∥∥

X

≤ eω |t−tn| d̃ j(x̃, x̃n) + eω j
∥∥x − S(t− tn) x

∥∥
X

−→ 0 for n−→ ∞ and each j ∈ R
+.

Applying these cases to subsequences, we conclude without additional assumptions

ẽ j
(
x̃, x̃n) −→ 0 for n−→ ∞ and each j ∈ R

+.

“(iii) =⇒ (ii)” Let the sequence
(
x̃n = (tn,xn)

)
n∈N

and x̃ = (t,x) ∈ X̃ be arbi-
trary with ẽ j(x̃, x̃n) −→ 0 for each j ∈ R

+.

First we suppose tn ≥ t for all n ∈ N in addition. Then,
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d̃ j(x̃, x̃n) = |t− tn| +
∥∥S( j) x − S( j) xn

∥∥
X

≤ |t− tn| +
∥∥S( j + tn− t) x − S( j) xn

∥∥
X +

∥∥S( j) x − S( j + tn− t) x
∥∥

X

= ẽ j(x̃, x̃n) + eω j
∥∥x − S(tn− t) x

∥∥
X

−→ 0 for n−→ ∞ and each j ∈ R
+.

Complementarily we conclude under the additional assumption tn ≤ t for all n ∈ N

d̃ j(x̃, x̃n) = |t− tn| +
∥
∥S( j) xn − S( j) x

∥
∥

X

≤ |t− tn| +
∥
∥S( j

2 − t + tn)
∥
∥
∥
∥S( j

2 +t−tn) xn − S( j
2 +t−tn) x

∥
∥

X

≤ |t− tn| + eω ( j
2−t+tn)

(∥
∥S( j

2 +t−tn) xn − S( j
2) x
∥
∥

X

+
∥
∥S( j

2 +t−tn) x − S( j
2) x
∥
∥

X

)

≤ eω ( j
2 +|t−tn|)

(
ẽ j

2
(x̃, x̃n) +

∥
∥S( j

2 +t−tn) x − S( j
2) x
∥
∥

X

)

−→ 0 for n−→ ∞ and each j ∈ R
+.

Hence, d̃ j
(
x̃, x̃n) −→ 0 holds for n−→ ∞ and every index j ∈ R

+ in general. �

Lemma 119. The tuple (X̃ , d̃0, ẽ0) fulfills hypothesis (H3) (̃i) (on page 221).

Proof. Choose any x̃ = (s,x), ỹ = (t,y) ∈ X̃ and sequences
(
x̃n = (sn,xn)

)
n∈N

,(
ỹn = (tn,yn)

)
n∈N

with

lim
n→∞

d̃0(x̃, x̃n) = 0 = lim
n→∞

d̃0(ỹ, ỹn).

Obviously, d̃0 satisfies the triangle inequality and thus,

d̃0(x̃, ỹ) = lim
n→∞

d̃0
(
x̃n, ỹn

)
.

For verifying the same continuity property of ẽ0, we assume sn ≤ tn for all n ∈ N

sufficiently large. Then, s ≤ t and, we conclude from the semigroup property and
ω-contractivity of (S(·))
∣
∣ẽ0(x̃, ỹ)− ẽ0(x̃n, ỹn)

∣
∣ ≤ ∣

∣|s−t|− |sn− tn|
∣
∣+
∣
∣‖S(t− s)x− y‖X

−‖S(tn−sn)xn− yn‖X
∣
∣

≤ ∣
∣s−t− (sn−tn)

∣
∣+
∥
∥S(tn−sn)xn−S(t−s)x

∥
∥

X

+
∥
∥yn− y

∥
∥

X

≤ |s− sn|+ |t− tn|+
∥
∥S(tn− sn)xn−S(tn−sn)x

∥
∥

X

+
∥
∥S(tn−sn)x−S(t−s)x

∥
∥

X

+
∥
∥yn− y

∥
∥

X

≤ eω |tn−sn| d̃0(x̃, x̃n)+
∥
∥S(tn− sn)x−S(t−s)x

∥
∥

X +d̃0(ỹ, ỹn)
−→ 0 for n−→ ∞ .

Finally, property (H3) (̃i) is fulfilled. �
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Lemma 120. The distance functions d̃ j, ẽ j : X̃× X̃ −→ [0,∞[ ( j ∈R
+) fulfill

hypothesis (H3) (ĩi) (on page 221).

Proof. Let x̃ = (s,x) ∈ X̃ and the sequences
(
x̃n = (sn,xn)

)
n∈N

,
(
ỹn =

(tn,yn)
)

n∈N
in X̃ be arbitrary with

lim
n→∞

d̃ j(x̃, ỹn) = 0 = lim
n→∞

ẽ j(ỹn, x̃n) for every j ∈ R
+.

In particular, tn −→ s and thus, sn −→ s for n−→ ∞.
Under the additional assumption s≤ tn≤ sn for all n∈N, we obtain for every j ∈ R

+

d̃ j(x̃n, x̃) = sn− s+
∥
∥S( j) xn − S( j) x

∥
∥

X

≤ sn− tn +
∥
∥S( j) xn−S( j + sn− tn) yn

∥
∥

X

+
∥
∥S( j + sn− tn) yn−S( j + sn− tn) x

∥
∥

X

+tn− s+
∥∥S( j + sn− tn) x−S( j) x

∥∥
X

≤ ẽ j(x̃n, ỹn)+ eω |sn−tn| · d̃ j(ỹn, x̃)
+tn− s+

∥
∥S( j + sn− tn) x−S( j) x

∥
∥

X

−→ 0 for n−→ ∞ .

Correspondingly, the supplementary hypothesis s≥ tn ≥ sn for all n ∈N leads to

d̃ j(x̃n, x̃) = s− sn +
∥
∥S( j) xn − S( j) x

∥
∥

X

≤ s− sn + ‖S( j
2 + sn− tn)‖L (X ,X) ·

∥
∥S( j

2 + tn− sn) xn − S( j
2) yn

∥
∥

X

+ ‖S( j
2 + sn− tn)‖L (X ,X) ·

∥
∥S( j

2) yn − S( j
2) x
∥
∥

X

+
∥
∥S( j + sn− tn) x − S( j) x

∥
∥

X

≤ s− sn + eω j
(
ẽ j/2(x̃n, ỹn) + d̃ j/2(ỹn, x̃)

)

+
∥
∥S( j + sn− tn) x − S( j) x

∥
∥

X

−→ 0 for n−→ ∞ .

Finally, property (H3) (ĩi) also holds. �

Lemma 121. The tuple (X̃ , d̃0, ẽ0) fulfills hypothesis (H3) (ĩii) (on page 221).

Proof. Choose any element x̃ ∈ X̃ and sequences (x̃n)n∈N, (ỹk)k∈N, (z̃k,n)k,n∈N

in X̃ fulfilling
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 z̃k,n = π1 ỹk ≤ π1 x̃n = π1 x̃ for each k,n ∈ N,

lim
k→∞

d̃0(x̃, ỹk) = 0,

lim
n→∞

d̃0(ỹk, z̃k,n) = 0 for each k ∈N,

lim
k→∞

sup
n>k

ẽ0(z̃k,n, x̃n) = 0,

sup
k,n∈N

{�x̃n�i,�ỹk�i,�z̃k,n�i} < ∞ .
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As abbreviations, set x̃ = (t,x), x̃n = (t,xn), ỹk = (tk,yk), z̃k,n = (tk,zk,n) ∈ X̃ .
Then, lim

k→∞
tk = t results directly from lim

k→∞
d̃0(x̃, ỹk) = 0. The auxiliary elements

ξ̃n = (tn,xn) ∈ X̃ (n ∈ N) fulfill

ẽ0(ξ̃n, x̃) = |tn− t|+∥∥S(t− tn) xn− x
∥
∥

X

≤ t− tn +
∥∥S(t− tn) xn−S(2(t−tn)) zk,n

∥∥
X

+
∥∥S(2(t−tn)) zk,n−S(2(t−tn)) yk

∥∥
X

+
∥
∥S(2(t−tn)) yk−S(2(t−tn)) x

∥
∥

X +
∥
∥S(2(t−tn)) x− x

∥
∥

X

≤ eω |t−tn| ẽ0(x̃n, z̃k,n)+ eω 2 |t−tn| (d̃0(z̃k,n, ỹk) + d̃0(ỹk, x̃)
)

+
∥
∥S(2(t−tn)) x− x

∥
∥

X .

Choosing first k ∈ N and then n ∈ N sufficiently large leads to

lim
n→∞

ẽ0(ξ̃n, x̃) = 0

and due to Proposition 117, limsup
n→∞

d̃0(x̃n, x̃) ≤ lim
n→∞

d̃0(ξ̃n, x̃) = 0. �
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3.10.2 The Variation of Constants Induces Transitions on X̃

Similarly to the preceding example in § 2.4 (on page 125 ff.), a simple affine
linear initial value problem motivates the choice of candidates for transitions.
Definition 2.28 on the basis of the variation of constants formula is now extended
to tuples in X̃ = R×X :

Definition 122. For each v ∈ X , the function τv : [0,1]×X −→ X is defined as
mild solution to the initial value problem d

dt u(t) = A u(t)+ v, u(0) = x ∈ X , i.e.

τv(h,x) := S(h) x +
∫ h

0
S(h− s) v ds.

Furthermore, set τ̃v : [0,1]× X̃ −→ X̃ ,
(
h, (t,x)

) �−→ (
t + h, τv(h,x)

)
.

Lemma 123. For every vector v,w ∈ X, the functions τ̃v, τ̃w : [0,1]× X̃ −→ X̃
have the following properties for every j ∈ R

+
0 , x̃, ỹ ∈ X̃ and s,h ∈ [0,1] with

s+h≤ 1

(1.) τ̃v(0, x̃) = x̃

(2.) τ̃v(s+ h, x̃) = τ̃v
(
h, τ̃v(s, x̃)

)

(3.) ẽ j
(
x̃, τ̃v(h, x̃)

) ≤ h · (1 + eω ( j+1) ‖v‖X
)

(4.) ‖τ̃v(h, x̃)‖X̃ ≤ (‖x̃‖X̃ + h · (1 +‖v‖X)
)

eω h

(5.) d̃ j
(
τ̃v(h, x̃), τ̃w(h, ỹ)

) ≤ d̃ j
(
x̃, ỹ) · eω h + h · eω ( j+h) ‖v−w‖X .

Postponing its proof for a moment, we conclude directly from these estimates in
combination with the semigroup property of τ̃v:

Proposition 124. For each vector v ∈ X , the function τ̃v : [0,1]× X̃ −→ X̃
specified in Definition 122 is a transition on

(
X̃ , (d̃ j) j∈R+ , (ẽ j) j∈R+ , (‖ · ‖X̃) j∈R+

)

in the sense of Definition 2 (on page 183) with

α j(τ̃v; r) := ω
β j(τ̃v; r) := 1 + ‖v‖X · eω ( j+1)

γ j(τ̃v) := max
{

1 +‖v‖X, ω
}

and the additional property π1 τ̃v(h, x̃) = π1 x̃+ h for all x̃ ∈ X̃ , h ∈ [0,1]. �

Inequality (5.) in Lemma 123, applied to j = 0, however, reveals an alternative to
the family (d̃ j) j∈R+ , which is even more popular: the norm of X̃ .

In fact, we even have transitions on the simpler tuple
(
X̃ , d̃0, ẽ0, ‖·‖X̃

)
and, the norm

instead of the family (d̃ j) j∈R+ will provide a direct link between timed solutions
(to mutational equations) and mild solutions (to semilinear evolution equations) in
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subsequent § 3.10.3. In regard to the preceding topological results of § 3.10.1, the
hypotheses (H1) – (H4) are also fulfilled by the latter tuple — due to the equivalence
of convergence in Proposition 117 (on page 293).

Corollary 125. For each vector v ∈ X , the function τ̃v : [0,1]× X̃ −→ X̃ specified
in Definition 122 is a transition on the tuple

(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
with

α0(τ̃v; r) := ω
β0(τ̃v; r) := 1 + ‖v‖X · eω
γ0(τ̃v) := max

{
1 +‖v‖X , ω

}

and the additional property π1 τ̃v(h, x̃) = π1 x̃+ h for all x̃ ∈ X̃ , h ∈ [0,1].
Furthermore setting

D̂0
(
τ̃v, τ̃w, r

)
:= ‖v−w‖X

for any vectors v,w∈ X and radius r≥ 0, the function D̂0( · , · ; r) is a metric of these
transitions on X̃ and, hypotheses (H5) – (H7) (on page 184) are fulfilled.

�
Proof (of Lemma 123). Statements (1.) and (2.) result from the semigroup
property of (S(t))t≥0 in a quite obvious way.

(3.) For every x̃ = (t,x) ∈ X̃ , h ∈ [0,1] and j ∈ R
+
0 ,

ẽ j
(
(t,x), τ̃v(h,(t,x))

)
= t + h− t +

∥
∥
∥S( j)

(
S(h)x +

∫ h

0
S(h− r)vdr

)

−S( j + t + h− t)x
∥
∥
∥

X

= h +
∥
∥
∥
∫ h

0
S( j + h− r)vdr

∥
∥
∥

X

≤ h + h eω( j+h) ‖v‖X .

(4.) In regard to the norm ‖ · ‖X̃ , we obtain for every x̃ = (t,x) ∈ X̃ , h ∈ [0,1]
∥
∥ τ̃v(h, x̃)

∥
∥

X̃ = |t + h| +
∥
∥∥S(h) x +

∫ h

0
S(h− r) v dr

∥
∥∥

X
≤ |t|+ h + eω h ‖x‖X + h eω h ‖v‖X

≤ eω h
(‖x̃‖X̃ + h · (1 +‖v‖X)

)
.

(5.) Finally, the definitions imply for any x̃ = (s,x), ỹ = (t,y) ∈ X̃ and h ∈ [0,1]

d̃ j
(
τ̃v(h,(s,x)), τ̃w(h,(t,y))

)
= |t− s|+

∥∥
∥S( j)

(
S(h)x +

∫ h

0
S(h− r)vdr

)

−S( j)
(

S(h)y +
∫ h

0
S(h− r)wdr

)∥∥
∥

X

≤ |t− s|+ eωh
∥
∥S( j)(x− y)

∥
∥

X + h eω( j+h)‖v−w‖X

≤ d̃ j
(
x̃, ỹ
) · eωh + h eω( j+h)‖v−w‖X .

�
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3.10.3 Mild Solutions to Semilinear Evolution Equations in X
— Using an Immediately Compact Semigroup

The recently proposed transitions on
(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
are based on autonomous

linear evolution equations. Now the mutational framework provides the tools for
the step to nonautonomous semilinear evolution equations and their mild solutions.
For this purpose, we first prove the existence of timed solutions to the corresponding
mutational equations by means of Theorem 43 (on page 226). Then we focus on
the connection between these timed solutions and the more popular concept of mild
solutions (to the underlying semilinear evolution equation in X).

Existence Theorem 43 is based on assuming Euler compactness and Euler equi-
continuity. For the tuple

(
X̃ , d̃0, ẽ0, ‖·‖X̃

)
, however, even the nonequidistant coun-

terparts of these two properties (specified in Definition 23 on page 203) are not
difficult to verify because the variation of constants formula provides a useful inte-
gral representation of every (nonequidistant) Euler approximation.
If the ω-contractive C0 semigroup (S(t))t≥0 on X is immediately compact in addi-
tion, then nonequidistant Euler compactness also holds.

Lemma 126 (Characterization of nonequidistant Euler approximations).
Suppose for x̃0 = (t0,x0)∈ X̃ , γ̂ ≥ 0 and a ‖·‖X̃ -continuous curve ỹ(·) : [0,T [−→ X̃

(1.) ỹ(0) = x̃0,

(2.) for any t ∈ [0,T [, there exist s ∈ ]t−1, t] and v ∈ X with ‖v‖X ≤ γ̂ and
ỹ(s+ ·) = τ̃v( · , ỹ(s)) in an open neighborhood I ⊂ [0,1] of [0, t−s].

Then there exists v(·) ∈ L∞([0,T ], X) with ‖v‖L∞ ≤ γ̂ and for every t ∈ [0,T [,

ỹ(t) =
(

t0 + t, S(t) x0 +
∫ t

0
S(t− r) v(r) dr

)

This representation of an Euler approximation in combination with the proof of
Lemma 123 (3.) implies directly its Lipschitz continuity with respect to ẽ0:

Corollary 127 (nonequidistant Euler equi-continuous).
Every ‖ · ‖X̃ -continuous curve ỹ : [0,T [ −→ X̃ satisfying conditions (1.), (2.)
in Lemma 126 is Lipschitz continuous with respect to ẽ0 and, its Lipschitz con-
stant is ≤ 1 + γ̂ · eω T .
Thus,

(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
together with all the transitions of Corollary 125 is

nonequidistant Euler equi-continuous in the sense of Definition 23 (on page 203).
�

Lemma 128 (nonequidistant Euler compact).
Assume in addition that (S(t))t≥0 is immediately compact, i.e., for every t > 0, the
linear operator S(t) : X −→ X is compact.
Then the tuple

(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
together with all the transitions of Corollary 125

is nonequidistant Euler compact in the sense of Definition 23 (on page 203).
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Now preceding Theorem 43 (on page 226) provides the existence of timed solutions
to mutational equations in

(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
. They prove to induce mild solutions

to the underlying semilinear evolution equation in X :

Theorem 129 (Existence of mild solutions to semilin. evolution equations in X).
Let π2 : X̃ = R×X −→ X , (t,x) �−→ x abbreviates the canonical projection on
the second component and, A denotes the generator of an immediately compact,
ω-contractive C0 semigroup (S(t))t≥0 of linear operators on X. Assume for
f : X× [0,T ]−→ X

(i) supx,t ‖ f (x,t)‖X < ∞,
(ii) for L 1-almost every t ∈ [0,T ], the function f (·, t) : X −→ X is continuous

with respect to ‖ · ‖X.

Then for every x̃0 = (t0,x0) ∈ X̃ , there exists a timed solution x̃(·) : [0,T ] −→ X̃

to the mutational equation
◦
x̃ (·) � τ̃ f (π2 x̃(·), ·) in

(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
.

Moreover if x̃(·) : [0,T ]−→ X̃ is a timed solution to this mutational equation, then
x(·) := π2 x̃(·) : [0,T ]−→ X is a mild solution to the semilinear evolution equation

d
dt x(·) = A x(·) + f

(
x(·), · ) .

In fact, Theorem 43 takes even delays into consideration. Its full generality and
the preceding relation to mild solutions (mentioned in Theorem 129) lead to the
following existence result.

Corollary 130 (Existence of mild solutions to semilinear equations with delay).
Let π2 : X̃ = R×X −→ X , (t,x) �−→ x abbreviates the canonical projection on
the second component and, A denotes the generator of an immediately compact,
ω-contractive C0 semigroup (S(t))t≥0 of linear operators on X. Moreover assume
for fixed τ ≥ 0 and

f : C0
(
[−τ,0], (X , ‖ · ‖X)

) × [0,T ] −→ X

(i) supz(·),t ‖ f (z(·),t)‖X < ∞,

(ii) for L 1-almost every t ∈ [0,T ], lim
n→∞

∥
∥ f (z1

n(·), t1
n ) − f (z2

n(·), t2
n )
∥
∥

X = 0

for any sequences (t1
n )n∈N, (t2

n )n∈N in [0,T ] and (z1
n(·))n∈N, (z2

n(·))n∈N in
C0
(
[−τ,0], (X , ‖ · ‖X)

)
satisfying for every s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞

∥
∥z1

n(s) − z(s)
∥
∥

X = 0 = lim
n→∞

∥
∥z2

n(s) − z(s)
∥
∥

X

sup
n∈N

sup
[−τ,0]

‖z1,2
n (·)‖X < ∞ .

For every Lipschitz continuous function x0(·) : [−τ,0]−→ (X ,‖·‖X), there exists
a curve x̃(·) : [−τ,T ]−→ X̃ with the following properties:
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(i) x̃(·) ∈ B̃Lip
(
[−τ,T ], X̃ ; ẽ0, ‖ · ‖X̃

)
,

(ii) x̃(t) = (t, x0(t)) for every t ∈ [−τ,0],

(iii) the restriction x̃(·)∣∣[0,T ] is a timed solution to the mutational equation
◦
x̃(t) � τ̃

f
(
π2 x̃(t+·)

∣∣
[−τ,0]

, t
)

in the sense of Definition 35.

In particular, the projected restriction π2 x̃(·)∣∣[0,T ] : [0,T ] −→ X is a mild solution
to the semilinear evolution equation with delay

d
dt x(t) = A x(t) + f

(
x(t + ·)∣∣[−τ,0], t

)
in [0,T ].

�

Remark 131. In comparison with standard literature about evolution equations,
neither Theorem 129 nor Corollary 130 are completely new results. The essen-
tial point is, however, that these semilinear evolution equations are solved in the
mutational framework — just by adding a separate time component temporarily
and introducing distance function ẽ0 suitable for handling the strong continuity of
(S(t))t≥0.

In particular, we are free to combine this type of dynamical problem with
any other example fitting in this mutational framework. Correspondingly to
Proposition 2.37 (on page 131), we conclude from Existence Theorem 22 about
systems of mutational equations and from the example in § 1.11 (on page 96 ff.)
immediately:

Corollary 132 (Existence of solutions to a system with semilinear evolution
equation and modified morphological equation).
Suppose A to be the generator of an immediately compact, ω-contractive C0 semi-
group (S(t))t≥0 of linear operators on X and, assume for

f : X×K (RN)× [0,T ] −→ X ,
G : X×K (RN)× [0,T ] −→ OSLIP(RN ,RN)

(i) sup
x,M,t

(‖ f (x,M,t)‖X + ‖G (x,M, t)‖∞+ max{0, Lip G (x,M, t)})< ∞ .

(ii) f and G are continuous in the following sense:
{ ∥

∥ f (yn,Mn, tn) − f (y,M, t)
∥
∥

X −→ 0
dl∞
(
G (yn,Mn, tn), G (y,M, t)

) −→ 0
for n−→ ∞

holds for L 1-almost every t ∈ [0,T ] and any sequences (tn)n∈N, (Mn)n∈N and
(yn)n∈N in [0,T ],K (RN),X respectively satisfying tn −→ t, dl(Mn,M) −→ 0
and ‖yn− y‖X −→ 0 for n−→ ∞.

Then for every initial vector x0 ∈ X and set K0 ∈ K (RN), there exist curves
x(·) : [0,T ] −→ X and K(·) : [0,T ] −→K (RN) with x(0) = x0, K(0) = K0 and
the following properties:
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(1.) x(·) : [0,T ]−→ X is a mild solution to the evolution equation
d
dt x(t) = A x(t) + f (x(t), K(t), t).

(2.) K(·) is Lipschitz continuous w.r.t. dl and satisfies for L 1-almost every t

lim
h↓0

1
h · dl

(
ϑG (x(t),K(t),t)(h, K(t)), K(t + h)

)
= 0.

(3.) If, in addition, the set-valued map G (x(t),K(t), t) : R
N � R

N is continuous
for each t ∈ [0,T ], then the set K(t) ⊂ R

N coincides with the reachable set
ϑG (x(·),K(·),·)(t,K0) of the nonautonomous differential inclusion

y′(·) ∈ G
(
x(·), K(·), · )(y(·))

at every time t ∈ [0,T ]. �

Finally, we close the gap of lacking proofs.

Proof (of Lemma 126). Due to assumption (2.) and the finite Lebesgue mea-
sure of the domain [0,T [, there exists an (at most countable) set of pairs (sl , tl)
(l ∈ N ⊂ N) with the following properties:

(i) for every l ∈ N, 0≤ sl < tl < T and tl− sl ≤ 1,
for some l0 ∈ N, sl0 = 0,

(ii) the intervals ]sl,tl [ (l ∈ N) are pairwise disjoint,
(iii)

⋃

l∈N

[sl ,tl] = [0,T [,

(iv) for every l ∈ N, there exists a vector vl ∈ X with ‖vl‖X ≤ γ̂ and
ỹ(·) = τ̃vl

( · −sl, ỹ(sl)
)

in [sl, tl [.

Setting v(t) := vl for t ∈ [sl ,tl[ (l ∈N), the function v(·) is well-defined Lebesgue-
almost everywhere in [0,T [ and belongs to L∞([0,T [,X). Then the definition of
τ̃vl (·, ·) and the continuity of ỹ(·) (with respect to ‖ · ‖X by assumption) lead to the
claimed integral representation in [0,T [. �

Proof (of Lemma 128). We claim that
(
X̃ , d̃0, ẽ0, ‖ ·‖X̃

)
is nonequidistant Euler

compact in the sense of Definition 23 (on page 203). Due to the integral representa-
tion in Lemma 126 (on page 300), it is sufficient to verify the following statement:

Choose x0 ∈ X and T ∈ ]0,∞[ arbitrarily. Let (vn(·))n∈N be a bounded sequence
in L∞([0,T ],X) and, set

yn : [0,T ] −→ X , t �−→ S(t) x0 +
∫ t

0
S(t− r) vn(r) dr

= S(t) x0 +
∫ t

0
S(s) vn(t− s) ds

for each n∈N. Then for every t̂ ∈ ]0,T ], there exists a subsequence of
(
yn(̂t)

)
n∈N

converging strongly in X .

This proof is based on the supplementary assumption that the semigroup (S(t))t≥0

is immediately compact, i.e., for every t > 0, the operator S(t) : X −→ X is compact.
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For each k ∈ N with 1
k < t̂, the sequence

yn(̂t) −
∫ 1

k

0
S(s) vn(t− s) ds = S( 1

k )
(∫ t̂

1
k

S(s− 1
k ) vn(t− s) ds

)
(n ∈ N)

has a subsequence converging with respect to ‖ ·‖X . Cantor’s diagonal construction
provides a strictly increasing sequence (nl)l∈N of indices and a sequence (zk)k∈N in
X such that for every k ∈N with 1

k < t̂,

ynl (̂t) −
∫ 1

k

0
S(s) vnl (t− s) ds −→ zk for l −→ ∞.

In particular,

limsup
l→∞

∥∥ynl (̂t) − zk
∥∥

X ≤ limsup
l→∞

∥∥
∥
∫ 1

k

0
S(s) vnl (t− s) ds

∥∥
∥

X

≤ 1
k · e

ω
k · supn ‖vn‖L∞ .

Furthermore, (zk)k∈N is a Cauchy sequence in X since for any k1,k2 ∈ N∩ ] 1
t̂
,∞[,

‖zk1 − zk2‖X

= lim
l→∞

∥
∥∥ynl (̂t)−

∫ 1
k1

0
S(s) vnl (t− s) ds− ynl (̂t)+

∫ 1
k2

0
S(s)vnl (t− s)ds

∥
∥∥

X

≤ sup
l∈N

( 1
k1

e
ω
k1 ‖vnl‖L∞ +

1
k2

e
ω
k2 ‖vnl‖L∞

)
.

Hence, (zk)k∈N converges to a limit z ∈ X and, ‖zk − z‖X ≤ eω · supn ‖vn‖L∞
k for all

large k ∈ N. Finally we obtain ‖ynl (̂t)− z‖X −→ 0 for l −→ ∞ simply by means of
the triangle inequality. �

Proof (of Theorem 129).
The existence of a timed solution to the mutational equation

◦
x̃(·) � τ̃ f (π2 x̃(·), ·)

in
(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
results from Theorem 43 (on page 226) due to Corollary 127

and Lemma 128 (on page 300). Indeed, the projection π2 : (X̃ , ‖·‖X̃) −→ (X , ‖·‖X )
is continuous and thus, the composition X̃ × [0,T ] −→ X , (z̃, t) �−→ f (π2 z̃, t)
fulfills the continuity assumptions of Theorem 43.

Now we focus on the second part of the claim: If x̃(·) : [0,T ] −→ X̃ is a timed
solution to this mutational equation, then x(·) := π2 x̃(·) : [0,T ] −→ X is a mild
solution to the semilinear evolution equation

d
dt x(·) = A x(·) + f

(
x(·), · ) .

Indeed, the composition [0,T ] −→ (X ,‖ · ‖X), t �−→ f (x(t), t) is continuous and,
[0,T ] −→L (X ,X), t �−→ S(t) is bounded with respect to the operator norm. Thus,
the auxiliary function

y(·) : [0,T ] −→ (X , ‖ · ‖X), t �−→ S(t) x(0) +
∫ t

0
S(t− s) f

(
x(s), s

)
ds

is continuous, bounded and, it satisfies for every t ∈ [0,T [, h ∈ [0,1]
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τ f (x(t), t)
(
h, y(t)

) Def.= S(h) y(t)+
∫ h

0
S(h− s) f (x(t), t)ds

= S(t + h) x(0)+
∫ t

0
S(t + h− s) f

(
x(s), s

)
ds

+
∫ h

0
S(h− s) f (x(t), t) ds

= S(t + h) x(0)+
∫ t+h

0
S(t + h− s)

× f
(
x(min{s, t}), min{s, t}) ds .

It implies at Lebesgue-almost every time t ∈ [0,T ]

1
h
· ∥∥y(t + h) − τ f (x(t), t)

(
h, y(t)

)∥∥
X

=
1
h

∥
∥
∥
∫ t+h

t
S(t + h− s)

(
f
(
x(s), s

) − f
(
x(t), t

))
ds
∥
∥
∥

X

≤ eω (T+1) · sup
[t, t+h]

∥
∥ f
(
x(·), ·) − f

(
x(t), t

)∥∥
X −→ 0 for h ↓ 0.

As a consequence, this auxiliary function supplied with a real time component,
i.e.,

ỹ(·) : [0,T ] −→ X̃ , t �−→
(
π1 x̃(0) + t, S(t)x(0) +

∫ t

0
S(t− s) f

(
x(s), s

)
ds
)

is a timed solution to the mutational equation
◦
ỹ(·) � τ̃ f (π2 x̃(·), ·)

in
(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
. Finally Proposition 40 (on page 224) ensures

0 = inf
{∥∥z̃− x̃(t)

∥∥
X̃ +
∥∥z̃− ỹ(t)

∥∥
X̃

∣∣ z̃ ∈ X̃ :‖z̃‖X̃ < 1 + sup {‖x̃(·)‖X̃ , ‖ỹ(·)‖X̃}
}

=
∥∥x̃(t) − ỹ(t)

∥∥
X̃

for every t ∈ [0,T ], i.e., x(·)≡ y(·). �
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3.10.4 Exploiting Relatively Compact Terms of Inhomogeneity

Considering an immediately compact semigroups (S(t))t≥0 on X in the preceding
section 3.10.3 has served essentially one single purpose, namely to guarantee Euler
compactness (as formulated in Lemma 128 on 300 and proved on page 303).
In particular, all other conclusions like the connection between mutational equations
and mild solutions to semilinear evolution equations do not require this supplemen-
tary assumption explicitly.
Now we suggest an alternative aspect for compactness to come into play, i.e., the
image of the function f in the semilinear evolution equation

d
dt x(·) = A x(·) + f

(
x(·), · ) .

Lemma 133 (nonequidistant Euler compact).
Let W �= /0 be a compact subset of the Banach space (X ,‖ · ‖X).

Then the tuple
(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
together with the transitions τ̃v : [0,1]× X̃ −→ X̃

induced by any vector v ∈W as in Definition 122 is nonequidistant Euler compact
in the sense of Definition 23 (on page 203).

Proof. According to Lemma 126 (on page 300), every nonequidistant Euler ap-
proximation ỹ(·) : [0,T [−→ X̃ is characterized by a function w(·) ∈ L∞([0,T ], X)
satisfying ‖w‖L∞ ≤ γ̂ and for every t ∈ [0,T [,

ỹ(t) =
(

t0 + t, S(t) x0 +
∫ t

0
S(t− r) w(r) dr

)
.

W0 := co (W ∪ {0}) is convex and compact in X due to [168, II.4.3 Corollary].
At each time t ∈ ]0,T ], the state π2 ỹ(t) is contained in the subset

Vt := S(t) x0 +
∫ t

0
S(s) W0 ds ⊂ X

whose set-valued integral is understood in the sense of Aumann.
Vt is totally bounded in X . Indeed, the function [0, t]×W0 −→ X , (s,x) �−→ S(s) x
is uniformly continuous due to [76, Lemma I.5.2]. Hence for each ε > 0, there exists
a sufficiently large integer nε ∈ N such that

∥
∥S([nε s] 1

nε
) x − S(s) x

∥
∥

X ≤ ε
t

for every x ∈W0 and s ∈ [0,t] (with [r] always denoting the largest integer ≤ r).
This piecewise constant approximation of S(·)|W0 and 0 ∈W0 lead to

Vt ⊂ S(t) x0 +
∫ t

0

(
S([nε s] 1

nε
) W0 + B ε

t
(0)
)

ds

⊂ S(t) x0 + 1
nε
·
[ t

nε ]+1

∑
j=0

S( j
nε

) W0 + Bε (0)

and, the last superset can be covered by finitely many balls of radius 2ε due to the
compactness of W0. Finally, the set Vt is relatively compact in X for each t ∈ [0,T ].

�
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Theorem 134 (Existence of mild solutions to semilinear equations with delay).
Let π2 : X̃ = R×X −→ X , (t,x) �−→ x abbreviates the canonical projection on the
second component and, A denotes the generator of an ω-contractive C0 semigroup
(S(t))t≥0 of linear operators on X. Moreover assume for some fixed τ ≥ 0 and

f : C0
(
[−τ,0], (X , ‖ · ‖X)

) × [0,T ] −→ X

(i) the image of f is relatively compact in X and (thus, in particular) it satisfies
supz(·),t ‖ f (z(·),t)‖X < ∞,

(ii) for L 1-almost every t ∈ [0,T ], lim
n→∞

∥∥ f (z1
n(·), t1

n ) − f (z2
n(·), t2

n )
∥∥

X = 0

for any sequences (t1
n )n∈N, (t2

n )n∈N in [0,T ] and (z1
n(·))n∈N, (z2

n(·))n∈N in
C0
(
[−τ,0], (X , ‖ · ‖X)

)
satisfying for every s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞

∥
∥z1

n(s) − z(s)
∥
∥

X = 0 = lim
n→∞

∥
∥z2

n(s) − z(s)
∥
∥

X

sup
n∈N

sup
[−τ,0]

‖z1,2
n (·)‖X < ∞ .

For every Lipschitz continuous function x0(·) : [−τ,0]−→ (X ,‖·‖X), there exists
a curve x̃(·) : [−τ,T ]−→ X̃ with the following properties:

(i) x̃(·) ∈ B̃Lip
(
[−τ,T ], X̃ ; ẽ0, ‖ · ‖X̃

)
,

(ii) x̃(t) = (t, x0(t)) for every t ∈ [−τ,0],

(iii) the restriction x̃(·)∣∣[0,T ] is a timed solution to the mutational equation
◦
x̃(t) � τ̃

f (π2 x̃(t+·)
∣
∣
[−τ,0]

, t)

in the sense of Definition 35.

In particular, the projected restriction π2 x̃(·)∣∣[0,T ] : [0,T ] −→ X is a mild solution
to the semilinear evolution equation with delay

d
dt x(t) = A x(t) + f

(
x(t + ·)∣∣[−τ,0], t

)
in [0,T ].

�

In regard to an alternative topology on X , Ülger formulated a criterion sufficient
for the relative weak compactness of Bochner-integrable functions in the 1990s and,
we quote it in Proposition A.85 here. It is used for verifying the following lemma
about weak Euler compactness:

Lemma 135 (weakly Euler compact).
Let W �= /0 be a weakly compact subset of the Banach space X.

Then the tuple
(
X̃ , d̃0, ẽ0, ‖ · ‖X̃

)
together with the transitions τ̃v : [0,1]× X̃ −→ X̃

induced by any vector v ∈W as in Definition 122 is weakly Euler compact in the
sense of Definition 27 (on page 207).
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Proof. According to Lemma 126 (on page 300), every nonequidistant Euler
approximation ỹ(·) : [0,T [−→ X̃ is characterized by a function w(·) ∈ L∞([0,T ], X)
satisfying ‖w‖L∞ ≤ γ̂ and for every t ∈ [0,T [,

ỹ(t) =
(

t0 + t, S(t) x0 +
∫ t

0
S(t− r) w(r) dr

)
.

Now we benefit from the additional property that the values of w(·) belong to the
weakly compact set W ⊂ X . Due to Proposition A.85 of Ülger (on page 492),

{
w(·) ∈ L1([0,T ], X)

∣
∣ for all t ∈ [0,T ] : w(t) ∈W

}

is relatively weakly compact in the space L1([0,T ],X) of Bochner-integrable func-
tions with values in Banach space X .
Hence, for any sequence

(
ỹn(·)

)
n∈N

of nonequidistant Euler approximations in

PN = PN (x̃0,T, α̂ , β̂ , γ̂,L) �= /0, there always exists a sequence nk ↗ ∞ of
indices such that the corresponding characterizing functions wnk(·), k ∈ N, in
L∞([0,T ],W ) converge weakly in L1([0,T ],X). Their weak limit is denoted by
w(·) ∈ L1([0,T ],X). In particular, Proposition A.86 implies ‖w‖L∞([0,T ],X) ≤ γ̂ .
As the linear operators S(t) : X −→ X , 0≤ t ≤ T, are uniformly bounded, the weak
convergence of

(
wnk (·)

)
k∈N

to w(·) has the consequence for each t ∈ [0,T ]

ỹnk(t) −
(

t0 + t, S(t) x0 +
∫ t

0
S(t− r) w(r) dr

)
k→∞−→ 0 weakly in R×X .

�

In regard to mild solutions, we now apply Existence Theorem 44 (on page 227 f.)
and use the link between mutational equations and semilinear evolution equations
presented in § 3.10.3.
Indeed, the transitions (based on the variation of constants formula in Defini-
tion 122) are always weakly continuous with respect to state because they are linear
with respect to the initial state and each operator S(t) : X −→ X , t ≥ 0, is assumed
to be bounded.
The final result is very similar to preceding Theorem 134, but takes the weak topol-
ogy on X into consideration.

Theorem 136 (Existence of mild solutions to semilinear equations with delay).
Let π2 : X̃ = R×X −→ X , (t,x) �−→ x abbreviates the canonical projection on the
second component and, A denotes the generator of an ω-contractive C0 semigroup
(S(t))t≥0 of linear operators on X. Moreover assume for some fixed τ ≥ 0 and

f : C0
(
[−τ,0], (X , ‖ · ‖X)

) × [0,T ] −→ X

(i) the image of f is relatively weakly compact in X and (thus, in particular)
supz(·),t ‖ f (z(·),t)‖X < ∞,



3.10 Example: Semilinear Evolution Equations in Any Banach Spaces 309

(ii) for L 1-almost every t ∈ [0,T ] : f (z1
n(·), t1

n ) − f (z2
n(·), t2

n ) n→∞−→ 0 weakly in X

for any sequences (t1
n )n∈N, (t2

n )n∈N in [0,T ] and (z1
n(·))n∈N, (z2

n(·))n∈N in
C0
(
[−τ,0], (X , ‖ · ‖X)

)
satisfying for some z(·) ∈ C0

(
[−τ,0],X

)
and every

s ∈ [−τ,0]
lim

n→∞
t1
n = t = lim

n→∞
t2
n , sup

n∈N

sup
[−τ,0]

‖z1,2
n (·)‖X < ∞ ,

z1
n(s) −→ z(s) weakly (n → ∞)

z2
n(s) −→ z(s) weakly (n → ∞).

For every Lipschitz continuous function x0(·) : [−τ,0]−→ (X ,‖·‖X), there exists
a curve x̃(·) : [−τ,T ]−→ X̃ with the following properties:

(i) x̃(·) ∈ B̃Lip
(
[−τ,T ], X̃ ; ẽ0, ‖ · ‖X̃

)
,

(ii) x̃(t) = (t, x0(t)) for every t ∈ [−τ,0],

(iii) the restriction x̃(·)∣∣[0,T ] is a timed solution to the mutational equation

◦
x̃(t) � τ̃

f (π2 x̃(t+·)
∣
∣
[−τ,0]

, t)

in the sense of Definition 35.

In particular, the projected restriction π2 x̃(·)∣∣[0,T ] : [0,T ] −→ X is a mild solution
to the semilinear evolution equation with delay

d
dt x(t) = A x(t) + f

(
x(t + ·)∣∣[−τ,0], t

)
in [0,T ].

�



310 3 Continuity of Distances Replaces the Triangle Inequality



3.11 Example: Parabolic Differential Equations in Noncylindrical Domains 311

3.11 Example: Strong Solutions to Parabolic Differential
Equations with Zero Dirichlet Boundary Conditions
in Noncylindrical Domains

Applying the previous examples of the mutational framework to partial differential
equations, we can usually handle problems in fixed domains in the Euclidean space.
In particular, the coupling with set evolutions has been restricted to the coefficients
of the differential equations so far – but not via their domains. Proposition 2.37
(on page 131) and Corollary 132 (on page 302), for example, focus on the system

{ d
dt x(t) = A x(t) + f (x(t), K(t), t)
◦
K (t) � G

(
x(t), K(t), t

)

with mild solutions x(·) : [0,T ] −→ X to a semilinear evolution equation, but fixed
generator A of a C0 semigroup.

The next example is a step in the direction of coupling via time-dependent domain.
Indeed, we want to draw conclusions about strong solutions to the semilinear initial-
boundary value problem of parabolic type
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( N

∑
k,l =1

akl(t, ·) ∂ 2

∂xk ∂xl
+

N

∑
k=1

bk(t, ·) ∂
∂xk

+ c(t, ·) − ∂
∂ t

)
u = F (t,u) in Ω(t)

u = 0 on ∂Ω(t)

u(0, ·) = u0 in Ω(0)

with a set-valued map Ω(·) : [0,T ]� R
N that might be determined by a morpho-

logical equation. In particular, the set Ω(t) ⊂ R
N will be free to change some of

its topological properties while time t is increasing. The typical approach based on
time-dependent transformations to a fixed reference domain (as in [32, 107, 116],
for example) is to fail here.

3.11.1 The General Assumptions for This Example

The coefficients

akl : [S,T ]×R
N −→ R (k, l = 1 . . . N)

bk : [S,T ]×R
N −→ R (k = 1 . . . N)

c : [S,T ]×R
N −→ ]−∞, 0]

are assumed to be bounded, continuous and uniformly elliptic, i.e., there is some
μ > 0 such that for any x,y ∈ R

N and t ∈ [S,T ],
N

∑
k,l =1

akl(t,x) yk yl ≥ μ |y|2 .
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Basic set ẼΩ̃ := R × C0
0(Ω̃S)

This example applies essentially the results about semilinear evo-
lution equations in § 3.10 to parabolic differential equations in
a fixed noncylindrical domain Ω̃S with zero Dirichlet boundary
condition.

Due to Lumer and Schnaubelt [133], the linear parabolic problem
with fixed L, Ω̃ induces a contractive C0 semigroup (S (t))t≥0 on
C0

0 (Ω̃S) by means of suitable extensions.

Distances d̃Ω̃ : Ẽ2
Ω̃
−→ R

+
0 ,
(
(s,u), (t,v)

) �−→ |t− s|+∥∥u − v
∥∥

sup

ẽΩ̃ : Ẽ2
Ω̃
−→ R

+
0 ,
(
(s,u), (t,v)

) �−→ |t− s|+∥∥S (t−s)u− v
∥∥

sup
(if s≤ t)

Absolute value | · |Ω̃ : ẼΩ̃ −→ R
+
0 , (t,u) �−→ |t|+‖u‖sup

Transitions: For each function F ∈C0
0(Ω̃S), consider

ϑ̃Ω̃ ,F : [0,1]× ẼΩ̃ −→ ẼΩ̃ ,
(
h, (t,u)

) �−→
(

t +h, S (h)u+
∫ h

0
S (h− s)F ds

)

which is related to the linear parabolic problem⎧
⎪⎨

⎪⎩

L v = F in Ω̃s

v(s, ·) = u(s, ·) in Ω̃(s) ⊂R
N

v = 0 on ∂Ω̃s \ ({s}× Ω̃ (s))
(Theorem 139, Remark 140 and explanations on page 318)

Compactness We apply the existence results in § 3.10.4 (page 306 ff.) based on
relatively compact terms of inhomogeneity.

Equi-continuity Nonequidistant Euler equi-continuity results from representing
any Euler curve by means of the variation of constants formula.

Mutational solutions Strong solution u ∈C0
(
Ω̃0
) ∩ W 1;2

p,loc(Ω̃0) (with any p > N +2)
to an initial-boundary value problem of parabolic type

⎧
⎪⎪⎨

⎪⎪⎩

L u(t, ·) = F (t,u)(·) in Ω̃ (t) for a.e. t ∈ ]0, T̂ [,

u(0, ·) = u0 in Ω̃ (0)⊂ R
N ,

u = 0 on ∂Ω̃0 \ ({0}× Ω̃ (0)).

List of main results
formulated in § 3.11

Existence Theorem 146 (page 317)

Key tools Semigroup approach of Lumer and Schnaubelt [133] to nonauto-
nomous linear parabolic differential equations in noncylindrical
domains: § 3.11.2 (page 313 ff.)

The uniform tusk condition on Ω̃S is a sufficient condition for
approximative Cauchy barriers: Proposition 158 (page 326)

Table 3.6 Brief summary of the example in § 3.11 in mutational terms:
Strong solutions to parabolic differential equations with zero Dirichlet boundary conditions
in noncylindrical domains
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As an abbreviation set L :=
N

∑
k,l =1

akl
∂ 2

∂xk ∂xl
+

N

∑
k=1

bk
∂
∂xk

+ c − ∂
∂ t .

Fixing p > N + 2 arbitrarily, we define for any nonempty open set Ω̃ ⊂ [S,T ]×R
N

Ω̃s := Ω̃ ∩ (]s,T ]×R
N
)
,

Ω̃(s) :=
{

y ∈R
N

∣
∣ (s,y) ∈ Ω̃} for s ∈ [S,T ],

W 1;2
p, loc(Ω̃S) :=

{
u ∈ Lp

loc(Ω̃S)
∣
∣ ∀ Ṽ ⊂ Ω̃ ∩ (]S,T [×R

N) with compact closure :
∂u
∂ t ,

∂u
∂xk

, ∂ 2u
∂xk ∂xl

∈ Lp(Ṽ ) for k, l = 1 . . .N
}

D(L,Ω̃S) :=
{

u ∈C0(Ω̃S)
∣
∣ u ∈W 1;2

p, loc(Ω̃S) and ∃ g ∈C0(Ω̃S) : Lu = g

L N-a.e. in Ω̃ ∩ (]S,T [×R
N)
}

3.11.2 Some Results of Lumer and Schnaubelt About Parabolic
Problems in Noncylindrical Domains

In [133], Lumer and Schnaubelt present a very sophisticated approach for time-
dependent parabolic problems in noncylindrical domains. It is based on Lumer’s
earlier results about so-called local operators and provides a successive construction
of a so-called variable space propagator which can be regarded as a generalization
of strongly continuous evolution families (in the sense of [76, § VI.9]).

In this section, we summarize some of their results in regard to parabolic differential
equations on noncylindrical domains. They serve as tools for specifying transitions
in the mutational framework later on.

Definition 137 ([133, Definition 4.8]). Let I ⊂ R be an interval and for each
t ∈ I, Y (t) denotes a real Banach space which is isomorphic to a subspace Y (t)� of
a fixed Banach space Y �.
A family of linear operators U(t,s) : Y (s) −→ Y (t), (s, t) ∈ I2, s ≤ t, is called
variable space propagator if it satisfies the following conditions:

(i) U(s,s) = IdY (s) for every s ∈ I,

(ii) U(t,s) = U(t,r) ◦U(r,s) for every r,s, t ∈ I with s≤ r ≤ t,

(iii) {(s,t) ∈ I2) | s ≤ t} −→ Y �, (s, t) �−→ (U(t,s) f (s)
)� is continuous

for any function t �→ f (t) ∈ Y (t) whose transformed counterpart
I −→ Y �, t �−→ f (t)� is continuous.

The propagator is called bounded if sup
s≤ t
‖U(t,s)‖Lin(Y (s),Y(t)) < ∞.
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Definition 138 ([133, special case of Definition 3.1]). A nonempty open set
Ω̃ ⊂ ]S,T ]×R

N possesses a so-called Cauchy barrier with respect to L if there exist
a compact set K̃ ⊂ Ω̃ and a function h ∈D(L,Ω̃ \ K̃) satisfying

(i) h > 0 and (L−λ )h ≤ 0 in Ω̃ \ K̃ for some λ ≥ 0,

(ii) for every ε > 0, there exists a compact set K̃ε with K̃ ⊂ K̃ε ⊂ Ω̃ and
0 ≤ h ≤ ε in Ω̃ \ K̃ε .

Now we formulate a special case of [133, Theorem 6.1] restricted to bounded sub-
sets of [S,T ]×R

N and Dirichlet boundary conditions:

Theorem 139 ([133]). Let Ω̃ be a bounded open subset of [S,T ]×R
N, s∈ [S,T [,

f ∈C0
0(Ω̃(s)) and the function F satisfy

(i) Ω̃ ∩ ({t}×R
N
) �= /0 for every t ∈ [S,T ],

(ii) Ω̃S is the intersection of finitely many open subsets of ]S,T ]×R
N each of

which admits a Cauchy barrier with respect to L,

(iii) F ∈C0
(
Ω̃s
)
, F = 0 on ∂Ω̃s \ ({s}× Ω̃(s)) if S < s < T,

F ∈C0
0

(
Ω̃S
)

if s = S.

Then there exists a unique function u ∈C0
(
Ω̃s
) ∩ W 1;2

p, loc(Ω̃s) solving
⎧
⎪⎪⎨

⎪⎪⎩

L u = F in Ω̃s

u(s, ·) = f in Ω̃ (s)⊂ R
N

u = 0 on ∂Ω̃s \ ({s}× Ω̃(s))

If F = 0 in addition, then ‖u‖sup ≤ ‖ f‖sup .
If f and −F are nonnegative in addition, then u is also nonnegative.

Furthermore, there exists a bounded variable space propagator (UΩ̃ (t,s))S≤ s≤ t≤T

depending only on Ω̃ and L such that assuming an extension F0 ∈C0
0

(
Ω̃S
)

of F to

Ω̃S provides the representation

u(t, ·) = UΩ̃ (t,s) f −
∫ t

s
UΩ̃ (t,τ) F0(τ, ·) dτ in Ω̃(t)⊂ R

N.

More generally, considering trivial extensions to R
N by 0 respectively (and indi-

cating it via �), there is a bounded variable space propagator (U �

Ω̃
(t,s))S≤ s≤ t≤T

depending just on L and Ω̃ such that the solution u ∈C0
(
Ω̃s
) ∩ W 1;2

p, loc(Ω̃s) is the
restriction of the continuous function

v : [s,T ]×R
N −→R

with

v(t, ·) = U �

Ω̃
(t,s) f � −

∫ t

s
U �

Ω̃
(t,τ) F�(τ, ·) dτ in R

N.

�
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Remark 140. According to [133, Proposition 4.18], this bounded variable space
propagator (U �

Ω̃
(t,s))S≤ s≤ t≤T is related to a contractive C0 semigroup (S (τ))τ≥0

on the Banach space
(
C0

0(Ω̃S), ‖ · ‖sup
)

in the sense of

S (τ)F : Ω̃S −→ R, (t,x) �−→ U �

Ω̃
(t, t− τ) F �(t− τ, ·)

for every function F ∈C0
0(Ω̃S) and its trivial extension F � : R×R

N −→ R (by 0).
This close relation provides the link with the results in § 3.10.

For applying this existence theorem, a key question is how to guarantee Cauchy
barriers as required in hypothesis (ii). Lumer and Schnaubelt prove the following
sufficient geometric condition:

Proposition 141 ([133, Proposition 6.4]). In addition to the assumptions about
coefficients in § 3.11.1, let Ω̃ be a bounded open subset of [S,T ]×R

N satisfying

(i) Ω̃ ∩ ({t}×R
N
) �= /0 for every t ∈ [S,T ],

(ii) the boundary ∂Ω̃ is given by xi = φk(t,x1 . . . xi−1, xi+1 . . . xn) for some
i ∈ {1 . . . n} and finitely many functions φk that are defined on open sub-
sets of [S,T ]×R

N−1, continuously differentiable with respect to t and twice
continuously differentiable with respect to x,

(iii) Ω̃ is locally on one side of its boundary.

Then, Ω̃S
Def.= Ω̃ ∩ (]S,T ]×R

N
)

possesses a Cauchy barrier with respect to L. �

Their characterization of well-posed Cauchy problems by means of so-called exces-
sive barriers is the basis for concluding from [133, Corollary 3.26] directly:

Lemma 142 ([133]). If the nonempty open set Ω̃ is the intersection of finitely
many open sets each of which admits a Cauchy barrier with respect to L, then Ω̃
possesses a Cauchy barrier with respect to L. �

In their joint publications [132, 133], however, Lumer and Schnaubelt do not specify
any method for extending such results to countably many intersections or to merely
local geometric criteria similar to the exterior cone condition, for example, which
has proved to be very useful for strong solutions to elliptic partial differential equa-
tions of second order (see e.g. [87, Theorem 9.30]).
Roughly speaking, the essential challenge is to construct a global function satisfy-
ing both the zero boundary condition and the differential inequality. For this reason,
we replace the assumption of Cauchy barriers by a weaker condition which serves
exactly the same purposes in the proofs of Lumer and Schnaubelt. The basic idea
is to guarantee the auxiliary “barrier” function not globally (as in Definition 138),
but depending on the special approximative features needed for the respective con-
clusions close to the boundary.
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Definition 143. A nonempty open set Ω̃ ⊂ ]S,T ]×R
N is said to possess a family

of approximative Cauchy barriers with respect to L if there exists a compact set
K̃ ⊂ Ω̃ with the following property: For every compact set K̃′ with K̃ ⊂ K̃′ ⊂ Ω̃
and any scalar 0 < ε1 ≤ ε2, there exists a function h ∈ D(L,Ω̃ \ K̃) satisfying

(i) h > 0 and (L−λ )h ≤ 0 in Ω̃ \ K̃ for some λ ≥ 0,

(ii) h ≥ ε2 in K̃′,
(iii) there exists a compact set K̃′′ with K̃′ ⊂ K̃′′ ⊂ Ω̃ and h ≤ ε1 in Ω̃ \ K̃′′.

Studying the general proof of [133, Theorem 3.25] reveals that assuming a family of
approximative Cauchy barriers (instead of a single Cauchy barrier) also implies the
well-posedness of the linear homogeneous Cauchy problems considered in [133,
§ 3]. Finally we conclude from the same arguments as for preceding Theorem 139
quoting a special case of [133, Theorem 6.1]:

Corollary 144. Theorem 139 holds if its assumption (ii) is replaced by

(ii’) Ω̃S possesses a family of approximative Cauchy barriers with respect to L.
�

Remark 145 (about the proof of Corollary 144). Strictly speaking, we have to ver-
ify that a family of approximative Cauchy barriers enables us to draw essentially the
same conclusions as Lumer and Schnaubelt did in regard to well-posedness and its
consequences. Most of their steps are based on local approximation and comparison
and thus, it is to check whether their “global” Cauchy barrier can be adapted to the
required “accuracy” locally.
In particular, [133, Theorem 3.25] applied to our parabolic problem in a nonempty
bounded open set Õ ⊂ Ω̃S states that the Cauchy problem induced by L is well-posed
in C0

0(Õ) if and only if Õ has a Cauchy barrier with respect to L. We focus on the
sufficient aspect of Cauchy barriers (providing existence of solutions). Although all
sets under consideration here are bounded, we avoid applying [133, Lemma 3.24]
immediately, but instead we start with selecting an expanding sequence W̃n ↑ Õ of
open sets and functions h̃n (n ∈ N) in the family of approximative Cauchy barriers

in an alternating way such that h̃n > n in W̃n and 0≤ h̃n < 1
n in Ω̃ \ W̃n+1.

In a word, h̃n is to take the role of the “global” Cauchy barrier h whenever we
consider restrictions to W̃n+2 ⊂ Õ . Then we can follow essentially the conclu-
sions of Lumer and Schnaubelt for constructing so-called locally excessive barri-
ers as in [133, Lemma 3.24]. For initial functions with compact support in Õ , the
approximative solutions in [133, Corollary 3.9] form a Cauchy sequence due to
the parabolic maximum principle in [133, Theorem 2.29] and, its limit solves the
parabolic Cauchy problem of interest in [133, Theorem 3.25].
This existence of solutions due to approximative Cauchy barriers provides the tools
for verifying further statements in [133, Proposition 3.17 and Theorems 4.11 – 4.14].
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3.11.3 Semilinear Parabolic Differential Equations
in a Fixed Noncylindrical Domain

In this subsection, we consider S < 0 < T̂ < T and assume Ω̃ ⊂ [S,T ]×R
N to be a

fixed open subset of [S,T ]×R
N satisfying the assumptions (i), (ii’) of Theorem 139

and Corollary 144, i.e.,

(i) Ω̃ ∩ ({t}×R
N) �= /0 for every t ∈ [S,T ],

(ii’) Ω̃S possesses a family of approximative Cauchy barriers with respect to L.

The results of Lumer and Schnaubelt focus on existence and uniqueness of solutions

u ∈C0
(
Ω̃s
) ∩ W 1;2

p, loc(Ω̃s) to the inhomogeneous linear parabolic problem
⎧
⎪⎨

⎪⎩

L u = F in Ω̃s

u(s, ·) = f in Ω̃ (s)⊂ R
N

u = 0 on ∂Ω̃s \ ({s}× Ω̃(s))

for given s ∈ [0,T [ , f ∈C0
0(Ω̃ (s)), F ∈C0

(
Ω̃s
)

with F = 0 on ∂Ω̃s \ ({s}× Ω̃(s)).

Our goal is to obtain similar existence results for the semilinear parabolic differen-
tial equations in the smaller time interval [0, T̂ ], i.e., the function F on the right-hand
side is prescribed as a function of time t and the current solution u(t, ·) : Ω̃(t)−→R.
The results are essentially direct conclusions of § 3.10 about evolution equations.
Nevertheless we discuss the steps of proof in detail afterwards.

Theorem 146 (Existence of solutions to semilinear parabolic problem in Ω̃ ).
In addition to the hypotheses of § 3.11.1 (on page 311 f.) and S < 0 < T̂ < T , assume
Ω̃ ⊂ [S,T ]×R

N to be a nonempty bounded open subset of [S,T ]×R
N satisfying

(i) Ω̃ ∩ ({t}×R
N) �= /0 for every t ∈ [S,T ],

(ii’) Ω̃S possesses a family of approximative Cauchy barriers with respect to L.

Furthermore, let F :
⋃

t∈ [0,T̂ ]

({t}×C0
0(Ω̃ (t))

)−→C0
c (R

N) fulfill

(iii) for all t ∈ [0, T̂ ] and v ∈C0
0(Ω̃ (t)) : supp F (t,v) ⊂ Ω̃(t) ⊂ R

N,

(iv) the image {F (t,v) | t ∈ [0, T̂ ], v ∈C0
0(Ω̃(t))

} ⊂C0
c (RN) is bounded, equi-

continuous and, there exist constants α ∈ ]0,1], CF ∈ [0,∞[ such that for all
(t,v) of the domain,

|F (t,v)| ≤ CF · dist
(
(t, ·), R

1+N \ Ω̃S
)α

,

(v) F is continuous in the following sense:
∥∥F (t,v)�−F (tn,vn)�

∥∥
sup −→ 0

for any t ∈ [0, T̂ ], v ∈ C0
0(Ω̃(t)) and sequences (tn)n∈N, (vn)n∈N satisfying

vn ∈C0
0(Ω̃(tn)) for all n∈N and tn −→ t, ‖v�

n− v�‖sup −→ 0 for n−→ ∞.
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Then, for every initial function u0 ∈ C0
0(Ω̃(0)), there exists a strong solution

u ∈C0
(
Ω̃0
) ∩ W 1;2

p, loc(Ω̃0) to the initial-boundary value problem of parabolic type
⎧
⎪⎪⎨

⎪⎪⎩

L u(t, ·) = F (t,u)(·) in Ω̃ (t) for a.e. t ∈ ]0, T̂ [,

u(0, ·) = u0 in Ω̃ (0)⊂ R
N ,

u = 0 on ∂Ω̃0 \ ({0}× Ω̃(0)).

Specifying the Set ẼΩ̃ and Its Distances via the Related Semigroup (S (τ))τ≥0

The vector space C0
0(Ω̃ (t)) (t ∈ [0,T ]) supplied with the supremum norm is a very

obvious choice indeed.
Due to the obstacles of strong continuity and time-dependent domains Ω̃(t),
however, we would prefer a fixed Banach space supplied with a separate real
time component and use the results of § 3.10 (on page 291 ff.). This motivates the
choice of C0

0(Ω̃S) and the supremum norm, but it might lead to difficulties in regard
to defining transitions for all periods h ∈ [0,1] because t +h might be larger than T .

Hence, we return to Remark 140 (on page 315) and use the contractive C0 semi-
group (S (τ))τ≥0 on the Banach space

(
C0

0(Ω̃S), ‖ · ‖sup
)

specified by

S (τ)v : Ω̃S −→ R, (t,x) �−→
{

U �

Ω̃
(t, t− τ) v�(t− τ, ·) if t− τ ≥ S

0 if t− τ < S

for every function v ∈ C0
0(Ω̃S) and its trivial extension v� : R×R

N −→ R (by 0).

In other words, after defining

Ω̃ (s′) := Ω̃(S) ⊂ R
N for every s′ < S

additionally and extending the coefficients of L to ]−∞,S]× Ω̃ (S)⊂ R×R
N con-

stantly (with respect to time), the respective function
(
S (τ) v

)
(t, ·) : Ω̃ (t) −→ R

at time t ≤ T is induced by the unique solution u ∈ C0
(
Ω̃s
) ∩ W 1;2

p, loc(Ω̃s) to the
homogeneous linear parabolic problem starting at time s := t− τ ∈ ]−∞,T ]

⎧
⎪⎪⎨

⎪⎪⎩

L u = 0 in Ω̃s

u(s, ·) = v�(s, ·) in Ω̃(s)⊂ R
N

u = 0 on ∂Ω̃s \ ({s}× Ω̃(s))

In the case of s
Def.= t−τ ≥ S, existence and uniqueness of this solution result directly

from Theorem 139 of Lumer and Schnaubelt and, otherwise (i.e. if t− τ < S), the
parabolic maximum principle excludes any alternative to the trivial solution.
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Strictly speaking, we consider the set

ẼΩ̃ := R × C0
0(Ω̃S)

supplied with the functions

| · |Ω̃ : ẼΩ̃ −→ [0,∞[,
ũ = (t,u) �−→ |t|+‖u‖sup ,

d̃Ω̃ : ẼΩ̃ × ẼΩ̃ −→ [0,∞[,
(
(s,u), (t,v)

) �−→ |s− t| + ∥∥u − v
∥
∥

sup ,

ẽΩ̃ : ẼΩ̃ × ẼΩ̃ −→ [0,∞[,
(
(s,u), (t,v)

) �−→ |s− t| + ∥∥S ((t− s)+
)

u − S
(
(s− t)+

)
v
∥
∥

sup .

using the general abbreviation r+ := max{r,0} for every r ∈R.
Obviously, d̃Ω̃ satisfies the triangle inequality. Furthermore, ẽΩ̃ fulfills the so-called

timed triangle inequality, i.e. whenever ũ, ṽ, w̃ ∈ ẼΩ̃ satisfy π1 ũ ≤ π1 ṽ ≤ π1 w̃, then

ẽΩ̃ (ũ, w̃) ≤ ẽΩ̃ (ũ, ṽ) + ẽΩ̃ (ṽ, w̃).

The analytical “detour” via the contractive C0 semigroup (S (τ))τ≥0 on the fixed
Banach space

(
C0

0(Ω̃S), ‖ · ‖sup
)

has the essential advantage that we can apply the
results of § 3.10 (on page 291 ff.). In particular, the arguments for Corollary 118
ensure that the tuple

(
ẼΩ̃ , d̃Ω̃ , ẽΩ̃ , | · |Ω̃

)
fulfills hypotheses (H1), (H2), (H3), (H4)

required for the mutational framework in § 3.5 (on page 221 ff.).

Specifying Transitions on ẼΩ̃

Due to a glance at mild solutions to semilinear evolution equations (in § 3.10), the
variation of constants formula serves as starting point for specifying transitions on
ẼΩ̃ . The results of § 3.10.2 (on page 298 ff.) lead to:

Definition 147. For any function F ∈C0
0(Ω̃S), define

ϑ̃Ω̃ ,F : [0,1]× ẼΩ̃ −→ ẼΩ̃ ,
(
h, (t,u)

) �−→ (
t + h, ϑΩ̃ ,F(h, (t,u))

)

with the function ϑΩ̃ ,F(h, (t,u)) : Ω̃S −→ R,

ϑΩ̃ ,F(h, (t,u)) := S (h) u +
∫ h

0
S (h− s) F ds .

Lemma 148. For every F ∈ C0
0(Ω̃S), the function ϑ̃Ω̃ ,F : [0,1]× ẼΩ̃ −→ ẼΩ̃

is well-defined and, the continuous function ϑΩ̃ ,F(h,(t,u)) : Ω̃S −→ R maps

(s,x) �−→
(

U �

Ω̃
(s, s−h) u�(s−h, ·) −

∫ s

s−h
U �

Ω̃
(s,τ) F �(τ, ·) dτ

)
(x).

with the variable space propagator (U �

Ω̃
(t,s))S≤ s≤ t≤T mentioned in Theorem 139.
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It has the properties for all ũ, ṽ∈ẼΩ̃ , G∈C0
0(Ω̃S), h,h1,h2 ∈ [0,1] with h1 +h2≤ 1 :

(1.) ϑ̃Ω̃ ,F(0, · ) = IdẼΩ̃
,

(2.) ϑ̃Ω̃ ,F

(
h1, ϑ̃Ω̃ ,F(h2, ·)

)
= ϑ̃Ω̃ ,F(h1 + h2, · ),

(3.) d̃Ω̃
(
ϑ̃Ω̃ ,F(h, ũ), ϑ̃Ω̃ ,G(h, ṽ)

) ≤ d̃Ω̃
(
ũ, ṽ
)

+ ‖F−G‖sup h,

(4.) ẽΩ̃
(
ũ, ϑ̃Ω̃ ,F(h, ũ)

) ≤ (
1 +‖F‖sup

)
h

(5.)
∣
∣ ϑ̃Ω̃ ,F(h, ũ)

∣
∣
Ω̃ ≤ |ũ|Ω̃ + (1 +‖F‖sup) h. �

Corollary 149. For every F ∈C0
0(Ω̃S), the function ϑ̃Ω̃ ,F : [0,1]× ẼΩ̃ −→ ẼΩ̃ is

a transition on
(
ẼΩ̃ , d̃Ω̃ , ẽΩ̃ , | · |Ω̃

)
in the sense of Definition 2 (on page 183) with

α(ϑ̃Ω̃ ,F ; r) := 0

β (ϑ̃Ω̃ ,F ; r) := 1 + ‖F‖sup

γ (ϑ̃Ω̃ ,F) := 1 + ‖F‖sup

D̂(ϑ̃Ω̃ ,F , ϑ̃Ω̃ ,G; r) := ‖F−G‖sup

and the property π1 ϑ̃Ω̃ ,F(h, ũ) = π1 ũ + h for all ũ ∈ ẼΩ̃ , h ∈ [0,1]. �

Remark 150. The timed triangle inequality of distance function ẽΩ̃ and semi-

group property (2.) in Lemma 148 imply directly: The tuple
(
ẼΩ̃ , d̃Ω̃ , ẽΩ̃ , | · |Ω̃

)

together with the transitions in Definition 147 is Euler equi-continuous in the sense
of Definition 16 (on page 194).

Existence of a Timed Solution to the Mutational Equation

Up to now, we are lacking suitable global a priori estimates (for Ω̃ and L) implying
that the C0 semigroup (S (τ))τ≥0 is immediately compact. This gap prevents us
from applying the existence results of § 3.10.3 (on page 300 ff.) and thus, we prefer
the conclusions of § 3.10.4 (on page 306 ff.).

The closure of Ω̃S is compact as Ω̃ is assumed to be bounded. As a consequence,
Arzelà-Ascoli Theorem A.82 (on page 491) provides a characterization of relatively
compact subsets in

(
C0

0(Ω̃S), ‖ · ‖sup
)

in terms of boundedness and equi-continuity.
Now we conclude from Existence Theorem 134 (on page 307) about timed solutions
to the mutational equation and their corresponding mild solutions to the semilinear
evolution equation:
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Proposition 151 (Existence of timed solutions to the mutational equation).
In addition to the hypotheses of § 3.11.1 (on page 311 f.) and S < 0 < T̂ < T , assume
Ω̃ ⊂ [S,T ]×R

N to be a nonempty bounded open subset of [S,T ]×R
N satisfying

(i) Ω̃ ∩ ({t}×R
N) �= /0 for every t ∈ [S,T ],

(ii’) Ω̃S possesses a family of approximative Cauchy barriers with respect to L.

(S (τ))τ≥0 denotes the contractive C0 semigroup on C0
0(Ω̃S) related to differential

operator L as specified on page 318. Furthermore, let f̃ : ẼΩ̃ −→C0
0(Ω̃S) fulfill

(iii) the image of f̃ is bounded in
(
C0

0(Ω̃S), ‖ · ‖sup
)

and equi-continuous,
(iv) f̃ :

(
ẼΩ̃ , d̃Ω̃

) −→ (
C0

0(Ω̃S), ‖ · ‖sup
)

is continuous.

Then for every initial element ũ0 = (t0,u0) ∈ ẼΩ̃ , there exists a timed solution ũ :

[0, T̂ ]−→ ẼΩ̃ to the mutational equation
◦
ũ(·) � ϑ̃Ω̃ , f̃ (ũ(·)) in

(
ẼΩ̃ , d̃Ω̃ , ẽΩ̃ , | · |Ω̃ ,D̂

)

with ũ(0) = ũ0. Its second component is a mild solution to the corresponding semi-
linear evolution equation in

(
C0

0(Ω̃S), ‖ · ‖sup
)
. �

The Step from Mutational Equations to Parabolic Differential Equations

Strictly speaking, we are taking more information into consideration than we need
for the semilinear initial-boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

L u(t, ·) = F (t,u)(·) in Ω̃(t) for L 1-a.e. t ∈]0, T̂ [,

u(0, ·) = u0 in Ω̃(0)⊂ R
N

u = 0 on ∂Ω̃0 \ ({0}× Ω̃(0))

Indeed, the wanted functions u(t, ·) ∈ C0
0(Ω̃ (t)), t ∈ [0,T ], have been replaced by

the states in ẼΩ̃
Def.= R × C0

0(Ω̃S) providing information about the whole domain Ω̃
in space-time (and not just about the spatial set Ω̃(t)⊂ R

N at time t ∈ [0,T ]).
Now the suitable “section” in the cylinder [0,T ]× Ω̃ ⊂ R

2+N is to lay the basis
for the step “back” to the original parabolic problems in the noncylindrical domain
Ω̃ ∩ ([0,T ]×R

N).

For identifying such an appropriate section, we focus on the approximative con-
struction leading to the timed solution in preceding Proposition 151. Indeed, the
proof of Theorem 134 starts with equidistant Euler approximations.

Similarly to Lemma 126 preparing mild solutions to semilinear evolution equations
(on page 300), the variation of constants formula provides an integral character-
ization of all Euler approximations. The proof uses exactly the same (piecewise)
conclusions as for Lemma 126 (on page 303 f.) and thus, it is skipped here.
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Lemma 152 (Characterization of nonequidistant Euler approximations).
Assume for ũ0 = (t0,u0) ∈ ẼΩ̃ , M ≥ 0 and a continuous curve ũ : [0, T̂ ]−→ ẼΩ̃

(1.) ũ(0) = ũ0,

(2.) for any t ∈ [0, T̂ ], there exist s ∈ ]t−1, t] and F ∈C0
0(Ω̃S) with ‖F‖sup ≤M,

ũ(s+ ·) = ϑ̃Ω̃ ,F( · , ũ(s)) in an open neighborhood I ⊂ [0,1] of [0, t−s].

Then there exists a piecewise constant function G(·) ∈ L∞([0, T̂ ], C0
0(Ω̃S)) with (at

most) countably many points of discontinuity in [0, T̂ ], ‖G‖L∞ ≤M and

ũ(t) =
(
t0 + t, u(t)

) ∈ ẼΩ̃

u(t)(s,x) =
(

U �

Ω̃
(s, s−t) u�

0(s−t, ·) −
∫ s

s−t
U �

Ω̃
(s,τ) G(τ− (s−t))� (τ, ·) dτ

)
(x)

for every t ∈ [0, T̂ ] and (s,x) ∈ Ω̃ .

If, in addition, assumption (2.) holds with a finite partition of [0, T̂ ], then G(·)
is piecewise constant with respect to the same finite partition of [0, T̂ ], i.e.,
G(·) has at most finitely many points of discontinuity in [0, T̂ ].

�

Lumer and Schnaubelt’s characterization of unique solutions to the linear problem
(in Theorem 139 on page 314) can be applied to finitely many time intervals succes-
sively. Thus, it provides a link between Euler approximations with finite partition of
[0, T̂ ] on the one hand and parabolic initial-boundary value problems on the other
hand (by focusing on s− t = const, in short).

Corollary 153 (Euler approximations solve parabolic initial value problems).
For any initial state ũ0 ∈ ẼΩ̃ and bounds α̂, β̂ , γ̂ > 0 let N = N

(
ũ0, T̂ ,(α̂, β̂ , γ̂)

)

denote the (possibly empty) subset of all curves ũ(·) : [0, T̂ ]−→ ẼΩ̃ constructed via
transitions in the piecewise way as specified in Remark 15 (2.) (on page 193).

Then for each curve ũ(·)∈N
(
ũ0, T̂ ,(α̂ , β̂ , γ̂)

)
and time parameter t0 ∈]−∞, T̂ [,

the function

Ω̃ ∩ ([t0, t0 + T̂ ]×R
N) −→ R, (t,x) �−→ ũ(t− t0)(t,x)

is a strong solution u(·, ·) to the linear parabolic initial-boundary value problem
⎧
⎪⎪⎨

⎪⎪⎩

L u(t,x) = G(t− t0)�(t,x) for almost every (t,x) ∈ Ω̃ ∩ (]t0, t0 + T̂ ]×R
N)

u(t0, ·) = u�
0(t0, ·) in Ω̃(t0)⊂ R

N

u = 0 on ∂Ω̃t0 \
({t0}× Ω̃(t0)

)

with a piecewise constant function G : [0, T̂ ] −→ C0
0(Ω̃S), ‖G‖L∞([0,T̂ ],L∞) ≤ γ̂ .

�
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Finally, we have to check whether such a relationship also holds for the limit as
the step size of Euler approximations is tending to 0. The main analytical tool is the
following local a priori estimate. In fact, the initial assumption p > N + 2 comes
into play here (again).

Proposition 154 (Interior a priori estimate [112, § IV.10], [114, Th. VII.7.22]).
In addition to the general assumptions of § 3.11.1 (on page 311 f.), let Ω̃ ′ ⊂ R

N be

any bounded subdomain of Ω̃ with Ω̃ ′ ⊂ Ω̃ .

Then there exists a constant CΩ̃ ′ such that every function v ∈W 1;2
p, loc(Ω̃S)∩Lp(Ω̃ )

satisfies

‖∂t v‖Lp(Ω̃ ′) + ‖∂x v‖Lp(Ω̃ ′) + ‖∂ 2
x v‖Lp(Ω̃ ′) ≤ CΩ̃ ′ ·

(‖v‖Lp(Ω̃) + ‖Lv‖Lp(Ω̃)

)
.

Proposition 155. Suppose the assumptions of Proposition 151 (on page 321)
for Ω̃ , L and f̃ : ẼΩ̃ −→C0

0(Ω̃S).

Then for every initial element ũ0 = (0,u0) ∈ ẼΩ̃ , there exist a continuous curve

ũ = (·,u) : [0, T̂ ] −→ (ẼΩ̃ , d̃Ω̃
)

and a strong solution ǔ ∈ C0
(
Ω̃0
) ∩ W 1;2

p, loc(Ω̃0)
to the initial-boundary value problem of parabolic type

⎧
⎪⎪⎨

⎪⎪⎩

L ǔ(t, ·) = f̃ (ũ(t))(t, ·) in Ω̃ (t) for L 1-a.e. t ∈ ]0, T̂ [,

ǔ(0, ·) = u0(0, ·) in Ω̃ (0)⊂ R
N

ǔ = 0 on ∂Ω̃0 \ ({0}× Ω̃(0))

with ǔ(t,x) = u(t)(t,x) for all t ∈ [0, T̂ ], x ∈ R
N with (t,x) ∈ Ω̃ .

Proof (of Proposition 155). Let ũn(·) = (·,un(·)) : [0, T̂ ]−→ ẼΩ̃ , n ∈ N, denote

the sequence of equidistant Euler approximations starting in ũ0 = (0,u0) ∈ ẼΩ̃ and

related with step size hn := T̂
2n (as e.g. in the proof of Existence Theorem 19).

Then for each index n, Corollary 153 always provides a piecewise constant func-
tion Gn ∈ L∞

(
[0, T̂ ], C0

0(Ω̃S)
)

with Gn(t)∈
{

f̃ (ũn(s))
∣
∣s ∈ [0, t]∩Bhn(t)

}
for each t.

There is a sequence nk↗∞ of indices such that there exist w(·) ∈ C0
(
[0, T̂ ],C0

0(Ω̃S)
)

and G(·) ∈ L1
(
[0, T̂ ], C0

0(Ω̃S)
)

with

(i) unk(·) −→ u(·) strongly in
(
C0
(
[0, T̂ ], C0

0(Ω̃S)
)
, ‖ · ‖sup

)
,

(ii) Gnk(·) −→ G(·) weakly in L1
(
[0, T̂ ], C0

0(Ω̃S)
)

for k −→ ∞ .

Indeed, assumption (iii) and Arzelà-Ascoli Theorem A.82 (on page 491) ensure that

the set of trivial extensions
{

f̃ (ṽ)�
∣
∣
Ω̃S

∣
∣ ṽ ∈ ẼΩ̃

}
is compact in

(
C0(Ω̃S), ‖·‖sup

)
.

As a first consequence, the functions un(·), n ∈ N, are equi-continuous. Moreover,
they are pointwise relatively compact due to Lemma 133 (on page 306) and so, we
conclude relative compactness from Arzelà-Ascoli Theorem A.82 (on page 491).
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Second, Ülger’s Proposition A.85 guarantees that {Gn |n ∈ N} is relatively weakly
compact in L1

(
[0, T̂ ], C0

0(Ω̃S)
)
. At every time t ∈ [0, T̂ ], we obtain

u(t) = S (t) u0 +
∫ t

0
S (t− s) G(s) ds ∈ C0

0(Ω̃S).

In particular, [0, T̂ ] �−→ ẼΩ̃ , t �−→ (t, u(t)) is exactly the timed solution to the cor-
responding mutational equation mentioned in Proposition 151.

Further results about convergence, however, can be concluded from Mazur’s
Lemma about strong approximations of weak limits (e.g. [188, Theorem V.1.2])
and the interior a priori estimate in Proposition 154.
According to the well-known Lemma of Mazur, there exists a sequence (Hk)k∈N in
L1
(
[0, T̂ ], C0

0(Ω̃S)
)

converging strongly to G(·) and satisfying

Hk(·) ∈ co
{

Gnk(·), Gnk+1(·) . . .
} ⊂ L1

(
[0, T̂ ], C0

0(Ω̃S)
)
.

An appropriate subsequence (again denoted by) (Hk)k∈N instead ensures in addition
that for Lebesgue-almost every t ∈ [0, T̂ ],

∥
∥Hk(t) − G(t)

∥
∥

sup −→ 0 for k −→ ∞.

Due to Hk(t) ∈ co
{

f̃ (ũnk(s)), f̃ (ũnk+1(s)) . . .
∣∣(t−hnk)

+ ≤ s≤ t
}
, assumption (iv)

about the continuity of f̃ guarantees G(t) = f̃
(
ũ(t)
)

for L 1-a.e. t ∈ [0, T̂ ].

As a further consequence, each function Hk(·), k ∈N, is also piecewise constant,

vk : [0, T̂ ] −→ C0
0(Ω̃S), t �−→ S (t) u0 +

∫ t

0
S (t− s) Hnk(s) ds

belongs to the convex hull of Euler approximations unk(·), unk+1(·) . . . for each k∈N

and thus, at every time t ∈ [0, T̂ ],
∥
∥vk(t) − u(t)

∥
∥

sup −→ 0 for k −→ ∞.
For the same reasons as in Corollary 153, the function

v̌k : Ω̃ ∩ ([0, T̂ ]×R
N) −→ R, (t,x) �−→ vk(t)(t,x) (k ∈ N),

is a strong solution to the linear parabolic initial-boundary value problem
⎧
⎪⎪⎨

⎪⎪⎩

L v̌k (t,x) = Hk(t)(t,x) for almost every (t,x) ∈ Ω̃ ∩ ([0, T̂ ]×R
N)

v̌k(0, ·) = u0(0, ·) in Ω̃(0)⊂ R
N

v̌k = 0 on ∂Ω̃0 \
({0}× Ω̃(0)

)
.

For k −→ ∞, the sequence
(
v̌k(·, ·))k∈N converges pointwise to

ǔ : Ω̃ ∩ ([0, T̂ ]×R
N) −→ R, (t,x) �−→ u(t)(t,x). .

Finally the interior a priori estimate in Proposition 154 and Lebesgue’s Theorem
of Dominated Convergence guarantee for any bounded subdomain Ω̃ ′ of Ω̃ with

Ω̃ ′ ⊂ Ω̃ ∩ ([0, T̂ ]×R
N) that the following Cauchy property holds

sup
k,l≥K

(∥∥∂t (v̌k− v̌l)
∥∥

Lp(Ω̃ ′) +
∥∥∂x (v̌k− v̌l)

∥∥
Lp(Ω̃ ′) +

∥∥∂ 2
x (v̌k− v̌l)

∥∥
Lp(Ω̃ ′)

)
K→∞−→ 0.

Thus, ǔ ∈C0
(
Ω̃0
)∩W 1;2

p, loc(Ω̃0) and for almost every (t,x) ∈ Ω̃ ∩ ([0, T̂ ]×R
N),

L ǔ(t,x) = G(t)(t,x) = f̃ (t, u(t))(t,x). �
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Extending the Functions Prescribed by F from a Subset of C0
0(Ω̃ (t))

to C0
0(Ω̃S)

The last essential gap between Existence Theorem 146 (on page 317) and
Proposition 155 is due to the type of prescribed data.

Existence Theorem 146 focuses on strong solutions u ∈ C0
(
Ω̃0
) ∩ W 1;2

p, loc(Ω̃0) to
the semilinear initial-boundary value problem of parabolic type

⎧
⎪⎪⎨

⎪⎪⎩

L u(t, ·) = F (t,u)(·) in Ω̃(t) for a.e. t ∈]0, T̂ [,

u(0, ·) = u0 in Ω̃(0)⊂ R
N ,

u = 0 on ∂Ω̃0 \ ({0}× Ω̃(0)).

Here for every t ∈ [0, T̂ ] and v ∈ C0
0(Ω̃(t)), we have to specify the function

F (t,v) ∈ C0
0(Ω̃(t)) for the right-hand side of the partial differential equation.

Strictly speaking, it is again a functional relationship because it does not have to be
based on pointwise composition.

In contrast, Proposition 155 assumes a function f̃ : ẼΩ̃ −→ C0
0(Ω̃S) for the right-

hand side of the corresponding mutational equation. The comparison of the values
reveals that more information (namely on whole Ω̃ ⊂R×R

N instead of Ω̃(t)⊂R
N)

is required here.

The following lemma suggests a very easy way to bridge this gap by extending. The
price to pay for its analytical simplicity, however, consists in stronger assumptions
about the decay close to the topological boundary of Ω̃S. Indeed, by assumption,
there exist constants α ∈ ]0,1] and CF ∈ [0,∞[ such that

|F (t,v)(·)| ≤ CF · dist
(
(t, ·), R

1+N \ Ω̃S
)α

holds for all t ∈ [0, T̂ ] and v ∈C0
0(Ω̃ (t)). This very restrictive condition can surely

be weakened whenever an extension operator preserves boundedness and equi-
continuity in an appropriate way. We complete the proof of Existence Theorem 146.

Lemma 156. Let d�Ω̃S
(·) denote the Euclidean distance from the complement

of Ω̃S
Def.= Ω̃ ∩ (]S,T ]×R

N), i.e.

d�Ω̃S
(·) : R×R

N −→ R, (t,x) �−→ inf
{|(s,y)− (t,x)| ∣∣ (s,y) ∈ R

1+N \ Ω̃S
}

.

For each α ∈ ]0,1] and C ≥ 0, the operator
⋃

t∈ [0,T̂ ]

({t}×C0
0(Ω̃ (t))

) −→ C0
0

(
Ω̃S
)

mapping any (t, v) ∈ {t}×C0
0(Ω̃(t)) to the continuous function

Ω̃S −→ R, (s,y) �−→ max
{

min
{

v(y), C · d�Ω̃S
(s,y)α

}
, −C · d�Ω̃S

(s,y)α
}

is continuous with respect to the supremum norm.

Whenever the trivial extensions of some functions (to R
N) are uniformly bounded

or equi-continuous, the set of their images shares the respective property. �
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3.11.4 The Tusk Condition for Approximative Cauchy Barriers

Effros and Kazdan investigated sufficient conditions for the continuity of solutions
to the heat equation at the boundary in [75] and, they formulated a counterpart of the
classical cone condition known for elliptic differential equations of second order.
Later Lieberman took up their boundary condition geometrically similar to a tusk
and extended it to more general parabolic differential equations in 1989 [115].
His essential contribution was to construct a function that serves as local barrier
from earlier time and vanishes (merely) at the peak of the tusk.

In this subsection, we use Lieberman’s local barrier function for concluding
a family of approximative Cauchy barriers (with respect to L) merely from the uni-
form exterior tusk condition.
Now we specify the tusk condition as in Definition A.48 (on page 473) and then
formulate the main result of this subsection:

Definition 157 (Exterior tusk condition [114, § 3], [115]).
A nonempty subset M ⊂ R×R

N is called tusk in (t0,x0) ∈ R×R
N if there exist

constants R,τ > 0 and a point x1 ∈R
N with

M =
{
(t,x) ∈ R×R

N
∣
∣ t0− τ < t < t0,

∣
∣(x− x0) − √t0− t · x1

∣
∣ < R

√
t0− t

}
.

A nonempty subset Ω̃ ⊂ R×R
N satisfies the so-called exterior tusk condition

if for every point (t,x)⊂ ∂Ω̃ belonging to the parabolic boundary of Ω̃ (i.e.
{
(s,y) ∈ R×R

N
∣
∣ |x− y| ≤ ε, t− ε < s < t

} \ Ω̃ �= /0 for any ε > 0),

there exists a tusk M ⊂ R×R
N in (t,x) with M∩ Ω̃ = {(t,x)}.

A nonempty subset Ω̃ ⊂R×R
N is said to fulfill the uniform exterior tusk condition

if it satisfies the exterior tusk conditions and if the scalar geometric parameters
R,τ > 0 of the tusks can be chosen independently of the respective points (t,x) of
the parabolic boundary of Ω̃ .

Proposition 158. Let Ω̃ be a nonempty open subset of [S,T ]×R
N satisfying

(i) Ω̃ is bounded,

(ii) Ω̃ ∩ ({t}×R
N
) �= /0 for every t ∈ [S,T ],

(iii) Ω̃S
Def.= Ω̃ ∩ (]S,T ]×R

N
)

fulfills the uniform exterior tusk condition.

Then Ω̃S possesses a family of approximative Cauchy barriers with respect to L
(in the sense of Definition 143 on page 316).
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The proof of this proposition is based on subsequent Lemma 159.
In fact, [115, Lemma 12.2] implies the following existence of a local barrier func-
tion for a single boundary point — even under weaker assumptions about the
coefficients than the general hypotheses in § 3.11.1 (on page 311 f.):

Lemma 159 (Tusk condition provides local barrier from earlier time [115]).
Let Ω̃ ⊂ ]−∞, 0[×R

N be a nonempty bounded open set such that the complement
of Ω̃ contains a tusk in its boundary point (0,0).
Then for every σ > 0 sufficiently small, there exist positive constants η ,γ1,γ2 and a

continuous function w : Ω̃ \{(0,0)}−→R which is continuously differentiable with
respect to time and twice continuously differentiable with respect to space such that
for every (t,x) ∈ Ω̃ ,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lw(t,x) ≤ −η ·max{|x|, |t| 12 }σ−2

η · max{|x|, |t| 12 }σ ≤ w(t,x) ≤ max{|x|, |t| 12 }σ
|Dw(t,x)| ≤ max{|x|, |t| 12 }σ−1

w(0,y) = γ1 ·
(
1− e−γ2 |y|σ

)
if (0,y) ∈ Ω̃ \ {(0,0)} .

The successive choice of admissible σ > 0 and then of η ,γ1,γ2 > 0 depends only
on the supremum norms of the coefficients of L, its constant of uniform ellipticity,
the diameter of Ω̃ and the geometric parameters R,τ > 0 of the tusk in (0,0).

�

In [115], Lieberman then applies this local barrier from earlier time to parabolic
problems with locally Hölder continuous coefficients for proving the existence of
classical solutions to the first initial-boundary value problem by means of Perron
method.
Now we leave this track of Lieberman and, we focus on merely continuous coeffi-
cients and strong solutions in C0∩W 1;2

p, loc (with p > N + 2) instead.

For each T ′ > 0 and any smooth cut-off function ψ ∈C∞
c (R, [0,1]), the problem

{
Lw̃ = −1 in ]0,T ′]×R

N

w̃(0,y) = γ1 ·
(
1− e−γ2 |y|σ

) · ψ(|y|2) for y ∈ R
N

is known to have a solution w̃ ∈ C0([0,T ′]×R
N) ∩ W 1;2

p, loc(]0,T ′[×R
N) vanishing

at infinity [133]. Due to the parabolic maximum principle quoted in Proposition 161
below, the auxiliary function

(t,x) �−→ w̃(t,x) − ε1 t − ε2 |x|2 ψ(|x|2)
(with ε1,ε2 > 0 sufficiently small) is nonnegative in any compact neighborhood of
(0,0) in [0,T ′]×B|suppψ|∞(0) ⊂ [0,T ′]×R

N . In combination with the local barrier
function from earlier time in Lemma 159, we conclude:
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Corollary 160 (Tusk condition implies local barrier not just from earlier time).
Let Ω̃ ⊂ R×R

N be a nonempty bounded open set such that the complement of Ω̃
contains a tusk in its boundary point (0,0).

Then there exist constants γ,δ ,η ,σ > 0 and a function w ∈ C0
(
Ω̃
) ∩ W 1;2

p, loc(Ω̃ )

such that for Lebesgue-almost every (t,x) ∈ Ω̃ ,
⎧
⎪⎨

⎪⎩

Lw(t,x) < 0

η · max{|x|, |t| 12 }σ ≤ w(t,x) ≤ max{|x|, |t| 12 }σ if t ≤ 0

γ · (|x|2 + t) ≤ w(t,x) if t > 0 .

The suitable choice of γ,δ ,η ,σ > 0 depends only on the supremum norms of the
continuous coefficients of L, its constant of uniform ellipticity, the diameter of Ω̃
and the geometric parameters R,τ > 0 of the tusk in (0,0).

For the sake of completeness, the following parabolic maximum principle on cylin-
drical domains has served as a tool:

Proposition 161 (Bony maximum principle for parabolic PDEs [70, Th.VII.28]).
Let O be a bounded domain in R

N and Q :=]0,T ]×O. Suppose u ∈W 1;2
N+1, loc(Q),

L̂u :=
( N

∑
k,l =1

âkl(t, ·) ∂ 2

∂xk ∂xl
+

N

∑
k=1

b̂k(t, ·) ∂
∂xk

+ ĉ(t, ·) − ∂
∂ t

)
u

where âkl , b̂k, ĉ : Q −→ R are bounded measurable,
(
âkl
)

k,l =1 ...N ≥ 0 and ĉ ≤ 0.

If u attains a nonpositive minimum at (t0,x0) ∈ Q, then

lim ess inf(s,y)→(t0,x0) L̂ u(s,y) ≥ 0 .
�

Proof (of Proposition 158). Due to the assumptions of Proposition 158, Ω̃S

fulfills the uniform exterior tusk condition. Hence, there exist strictly increasing
moduli of continuity ω1(·),ω2(·) : ]0,∞[−→ ]0,∞[ (i.e. ω1(r) +ω2(r) −→ 0 for
r ↓ 0) such that for each boundary point x̃ = (t,x) ∈ ∂Ω̃ with t > S, Corollary 160

provides a function wx̃ ∈C0
(
Ω̃
) ∩ W 1;2

p, loc(Ω̃ ) satisfying for Lebesgue-almost every

(s,y) ∈ Ω̃ ,
{

Lwx̃(s,y) < 0

ω1
(|y− x| + |s− t| 12 ) ≤ wx̃(s,y) ≤ ω2

(|y− x| + |s− t| 12 ) .

In regard to a family of approximative Cauchy barriers with respect to L, choose
0 < ε1 ≤ ε2 and a compact subset K̃′ ⊂ [S,T ]×R

N with K̃′ ⊂ Ω̃S arbitrarily.
The boundary of the bounded set Ω̃ is compact. As a consequence, firstly,

ρ := inf
{
|y− x|+ |s− t| 12

∣
∣∣ (s,y) ∈ K̃′, (t,x) ∈ ∂Ω̃

}
> 0.
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Secondly we can select finitely many points x̃1 = (t1,x1) . . . x̃k = (tk,xk) ∈ ∂Ω̃ with

∂Ω̃ ⊂
k⋃

j=1

{
(s,y) ∈R×R

N
∣
∣
∣ ω2
(|y− x j|+ |s− t j| 12

) ≤ ε1
ω1(ρ)
ε2

}
=: N∂Ω̃ .

Then, w := ε2
ω1(ρ) · min

j=1 ...k
wx̃ j : Ω̃ −→ [0,∞[ also belongs to C0

(
Ω̃
) ∩ W 1;2

p, loc(Ω̃ )

and, it satisfies for L 1-almost every (s,y) ∈ Ω̃ and its related index j ∈ {1 . . . k}
{

Lw(s,y) < 0
ε2

ω1(ρ) · ω1
(|y− x j| + |s− t j| 12

) ≤ w(s,y) ≤ ε2
ω1(ρ) · ω2

(|y− x j| + |s− t j| 12
)
.

In fact, w(s,y) ≥ ε2
ω1(ρ) · inf

l
ω1
(|y− xl|+ |s− tl| 12

) ≥ ε2 for (s,y) ∈ K̃′

and w(s,y) ≤ ε2
ω1(ρ) · ω2

(|y− x j|+ |s− t j| 12
)≤ ε1 for (s,y) ∈ Ω̃S∩N∂Ω̃ .

�

3.11.5 Successive Coupling of Nonlinear Parabolic Problem
and Morphological Equation

We restrict our consideration to a rather simple way of coupling an initial-boundary
value problem of parabolic type with a morphological equation.
If the morphological equation does not depend on the wanted solution to the
parabolic problem, we are free to solve it by means of § 1.9.6 first. This leads
to a time-dependent reachable set of a nonautonomous differential inclusion and,
then its graph provides a noncylindrical domain for the parabolic problem.

In regard to appropriate assumptions, however, we should prefer considera-
tions in the opposite direction. Indeed, Theorem 146 (on page 317) always guar-
antees a strong solution to the parabolic problem if the noncylindrical domain
Ω̃S ⊂ ]S,T ]×R

N has a family of approximative Cauchy barriers with respect to L.
Proposition 158 (on page 326) provides a geometric condition sufficient for such a
family, namely the uniform exterior tusk condition.

Finally we need an appropriate link between this tusk condition and reachable sets
of differential inclusions in R

N because every solution to a morphological equation
is a reachable set of a nonautonomous differential inclusion (according to Proposi-
tion 1.70 on page 74).
In fact, Corollary A.50 (on page 474) provides conditions on the differential inclu-
sion sufficient for such a connection, but we obtain the exterior tusk condition for
the complements of graphs of reachable sets.
Moreover, their exterior tusks are guaranteed to be uniform only after the reachable
sets have evolved for an arbitrarily small period. For “imitating” such an evolution
in the past (i.e., before the initial time t0 = 0), we suppose the uniform exterior ball
condition on the open initial set Ω0 (whose complement starts deforming along a
differential inclusion at time t0 = 0).
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For the sake of transparency, we prefer summarizing this notion in terms of reach-
able sets of nonautonomous differential inclusions (rather than noncompact-valued
solutions to morphological equations). As in § 3.11.3, we suppose S < 0 < T̂ < T .

Proposition 162. Let Ω0 ⊂ R
N be a nonempty bounded open subset satisfying

the uniform exterior ball condition at its boundary.
In regard to Corollary A.50 (on page 474), suppose for G̃ : [0,T ]×R

N � R
N

(a) every value of G̃ is nonempty, compact, convex and has positive erosion of
uniform radius ρ > 0 (see Definition A.25 on page 455),

(b) the Hamiltonian of G̃(t, ·) at each time t ∈ [0,T ]

HG̃(t, ·, ·) : R
N×R

N −→ R, (x, p) �−→ supz∈ G̃(t,x) p · z
is twice continuously differentiable in R

N× (RN \ {0})
(c) there exists λG̃ > 0 such that for L 1-almost every t ∈ [0,T ],

‖HG̃(t, ·, ·)‖C1,1(RN× ∂B1) < λG̃

(iv) for every t ∈ [0,T ], the reachable set ϑG̃(t, R
N \Ω0) is not identical to R

N.

Then the complement of the graph t �−→ ϑG̃(t, R
N \Ω0) induces the set

Ω̃ :=
(
[S,0]×Ω0

) ∪
⋃

t∈ [0,T ]

({t}× (RN \ ϑG̃(t, R
N \Ω0))

) ⊂ [S,T ]×R
N

fulfilling the uniform exterior tusk condition with respect to L and thus, Ω̃ satisfies
the assumptions (i), (ii’) of Existence Theorem 146 (on page 317).

In addition, let F :
⋃

t∈ [0,T̂ ]

({t}×C0
0(Ω̃(t))

) −→ C0
c (RN) satisfy the hypotheses

(iii) – (v) of Theorem 146.

Then, for every initial function u0 ∈ C0
0(Ω̃(0)), there exists a strong solution

u ∈C0
(
Ω̃0
) ∩ W 1;2

p, loc(Ω̃0) to the initial-boundary value problem of parabolic type

⎧
⎪⎪⎨

⎪⎪⎩

L u(t, ·) = F (t,u)(·) in Ω̃(t) for a.e. t ∈ ]0, T̂ [,

u(0, ·) = u0 in Ω̃(0)⊂ R
N ,

u = 0 on ∂Ω̃0 \ ({0}× Ω̃(0)).
�



Chapter 4
Introducing Distribution-Like Solutions
to Mutational Equations

In this chapter, we focus on examples of evolving compact sets in the Euclidean
space and draw them on new useful aspects for generalizing the mutational frame-
work.

Now the normal cones of the compact sets are to have an explicit influence on
the geometric evolution. Reachable sets of differential inclusions still induce the
transitions on K (RN), but we leave the typical metric space of K (RN) supplied
with the Pompeiu-Hausdorff metric dl (as in the preceding sections 1.9, 1.11, 2.7).
Additionally we take the graphs of limiting normal cones into consideration.

This type of problems reveals two obstacles which motivate the main aspects
of generalizing in comparison with Chapter 3. Analytically speaking, these exten-
sions have a weakening effect on how “uniform” the continuity parametersα j(ϑ ;r),
β j(ϑ ;r) of transitions have to be.

For the Regularity in Time: Distance Functions Do Not Have to Be Symmetric

Let us consider first the consequences of the boundary for the continuity of ϑF :
[0,1]×K (RN)−→K (RN) with respect to time.

The key aspect is illustrated easily by an annulus
K� expanding isotropically at a constant speed.
After a positive finite time t3, the “hole” in the
center has disappeared of course.

In general, the topological boundary of a time-dependent reachable set ϑF (·,K) :
[0,∞[� R

N (with K ∈K (RN)) is not continuous with respect to dl. Furthermore,
the normals of later sets find close counterparts among the normals of earlier sets,
but usually not vice versa.

For this reason, we dispense with the symmetry condition (H2) on distance func-
tions. Whenever we consider distances in this chapter, their first arguments refer to
the earlier state and their second arguments to the later state. For the sake of trans-
parency, all general results about mutational equations are formulated for tuples
with separate real time component.

T. Lorenz, Mutational Analysis: A Joint Framework for Cauchy Problems 331
In and Beyond Vector Spaces, Lecture Notes in Mathematics 1996,
DOI 10.1007/978-3-642-12471-6 5, c© Springer-Verlag Berlin Heidelberg 2010
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For the Regularity with Respect to Initial States: The Distributional Notion

Applying now the typical steps of mutational analysis, we encounter analytical
obstacles soon. In particular, [0,1] −→ [0,∞[, t �−→ d j

(
ϑ(t,x1), ϑ(t,x2)

)
does

not have to be continuous for arbitrary initial elements x1,x2.

Consider e.g. reachable sets ϑF(t,K1), ϑF(t,K2)
of a differential inclusion x′(·) ∈ F(x(·)) with
initial sets K1,K2 ∈ K (RN) and a given map
F ∈ LIP(RN ,RN). The figure on the right-hand
side sketches a situation in which the distance
between topological boundaries

[0,1] −→ R
+
0 ,

t �−→ dist(∂ϑF (t,K2), ∂ϑF (t,K1))
cannot be continuous.

Even if we do not take normal cones into account explicitly, it is difficult to find a
(possibly nonsymmetric) distance function on K (RN) depending on the boundary,
but without such a lack of continuity.

As a first important consequence, we require a form of Gronwall’s inequality
which starts from weaker assumptions than its continuous counterpart in stan-
dard textbooks like [10, 92, 181]. The essential advantage of Proposition A.2 (on
page 440) is that only lower semicontinuity of the real-valued function is supposed.
For estimating the distance d j between transitions and (e j) j∈I -continuous curves,
we will use an additional semicontinuity condition on transitions rather than a gen-
eral hypothesis about distances.

Nevertheless, we have to exclude such a discontinuity of evolving boundaries
– for short times at least. In the first subsequent geometric example (in § 4.4 on
page 359 ff.), additional assumptions about K1 are needed. Suitable conditions on
F ∈ LIP(RN ,RN) can guarantee that compact sets with C1,1 boundary preserve this
regularity for short times (see Appendix A.5.3 on page 458 ff.) and, their topologi-
cal properties do not change essentially.

Assuming restrictive conditions on one of the sets K1,K2 ∈K (RN) prevents us
from applying the recent mutational framework, though. Thus we want to introduce
a form of distributional solution.

For a set with families of distance functions, however, there are no obvious gen-
eralizations of linear forms or partial integration and hence, distributions in their
widespread sense cannot be introduced. This gap makes a more general interpreta-
tion of distributional solutions indispensable. In fact, their basic idea is to select an
important property and preserve it (only) for all elements of a given fixed “test set”
– instead of the whole “basic set”.
Usually this important feature is the rule of partial integration and, it is preserved
for smooth test functions with compact support (or Schwartz functions).
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In the mutational framework, one of the most important properties so far has
been the estimate comparing two states while evolving along two transitions, i.e.,
according to Proposition 3.7 (on page 185)

d j
(
ϑ(t1+h,x), τ(t2+h,y)

) ≤
(

d j
(
ϑ(t1,x), τ(t2,y)

)
+ h · D̂ j(ϑ ,τ ;R j)

)
eα j(τ;R j) h

with radius R j :=
(

max{�x� j, �y� j} + max{γ j(ϑ), γ j(τ)}
) · emax{γ j(ϑ ), γ j(τ)} <∞.

As explained in the beginning of § 3.3, it has even laid the foundations for adapting
the definition of solution to a mutational equation in Definition 3.8 (on page 187)
— in form of the condition:

2.′) there exists α j(x; ·) : [0,∞[−→ [0,∞[ such that for L 1-a.e. t ∈ [0,T [:

limsup
h↓0

d j(ϑ (s+h, z), x(t+h)) − d j(ϑ (s,z), x(t)) · eα j (x;R j ) h

h ≤ D̂ j
(
ϑ , f (x(t), t); R j

)

is fulfilled for any ϑ ∈ Θ̂(E,(d j),(e j),(�·� j)
)
, s ∈ [0,1[, z ∈ E satisfying

�ϑ(·,z)� j,�x(·)� j ≤ R j,

These key estimates should be preserved while comparing with all elements z of
a given fixed “test set” D �= /0 (instead of all z ∈ E as in Chapter 3). It is plausible
to demand that such an element z ∈ D stays in the test set D for a short time while
evolving along a transition so that the comparison is feasible for this short period
(at least). This notion leads to a form of distributional solution in the mutational
framework and, it still dispenses with any linear structure.

In addition, it opens the door to making the continuity parameter α j and the tran-
sitional distance D̂ j “less uniform” — in the sense that they are free to depend on
the respective test element of D . In other words, admissible transitions can now be
“less regular” than in Chapter 3.

Motivated by the finite element methods of Petrov-Galerkin in numerics (e.g. [21]),
we do not assume that the fixed test set D has to be a subset of the basic set E .
This additional aspect of freedom will be very useful in the second subsequent geo-
metric example in § 4.5 (on page 372 ff.).
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4.1 General Assumptions of This Chapter

D and E are always nonempty sets and, D̃ := R×D , Ẽ := R×E . (D ⊂ E is not
required in general.) π1 : D̃ ∪ Ẽ −→ R, x̃ = (t,x) �−→ t abbreviates the canonical
projection on the real component. I �= /0 denotes an index set. For each j ∈I ,

d̃ j, ẽ j : (D̃ ∪ Ẽ)× (D̃ ∪ Ẽ) −→ [0,∞[,

�·� j : D̃ ∪ Ẽ −→ [0,∞[

are supposed to satisfy the following conditions:

(H1) d̃ j and ẽ j are reflexive, i.e. for all x̃ ∈ D̃ ∪ Ẽ: d̃ j(x̃, x̃) = 0 = ẽ j(x̃, x̃).

(H3’) (d̃ j) j∈I and (ẽ j) j∈I induce the same concept of convergence in E and are
sequentially (semi-) continuous in the following sense:

( õl)
(∀ j ∈I : lim

n→∞
d̃ j(x̃, x̃n) = 0

)

⇐⇒ (∀ j ∈I : lim
n→∞

ẽ j(x̃, x̃n) = 0
)

for any x̃ ∈ D̃ ∪ Ẽ and (x̃n)n∈N in D̃ ∪ Ẽ with π1 x̃ ≤ π1 x̃n for all n
and sup

n∈N

�x̃n�i < ∞ for each i ∈I .

( õr)
(∀ j ∈I : lim

n→∞
d̃ j(x̃n, x̃) = 0

)

⇐⇒ (∀ j ∈I : lim
n→∞

ẽ j(x̃n, x̃) = 0
)

for any x̃ ∈ D̃ ∪ Ẽ and (x̃n)n∈N in D̃ ∪ Ẽ with π1 x̃n ≤ π1 x̃ for all n
and sup

n∈N

�x̃n�i < ∞ for each i ∈I .

(̃i’) d̃ j(x̃, ỹ) ≤ limsup
n→∞

d̃ j(x̃n, ỹn),

ẽ j(x̃, ỹ) ≤ limsup
n→∞

ẽ j(x̃n, ỹn)

for any x̃, ỹ∈ D̃∪Ẽ and (x̃n)n∈N, (ỹn)n∈N in D̃∪Ẽ s.t. for each i ∈I

lim
n→∞

d̃i(x̃, x̃n) = 0 = lim
n→∞

d̃i(ỹn, ỹ), sup
n∈N

{�x̃n�i,�ỹn�i}< ∞

and for all n ∈ N : π1 x̃ ≤ π1 x̃n ≤ π1 ỹn ≤ π1 ỹ .

(̃i”) d̃ j(z̃, ỹ) ≥ limsup
n→∞

d̃ j(z̃, ỹn),

for any z̃ ∈ D̃ , ỹ ∈ Ẽ and (ỹn)n∈N in Ẽ fulfilling for each i ∈I

lim
n→∞

d̃i(ỹ, ỹn) = 0, sup
n∈N

�ỹn�i < ∞

and for all n ∈ N : π1 z̃ ≤ π1 ỹ ≤ π1 ỹn .

(ĩil) 0 = lim
n→∞

d̃ j(x̃, x̃n)

for any x̃ ∈ Ẽ and (x̃n)n∈N, (ỹn)n∈N in Ẽ fulfilling for each i ∈I

lim
n→∞

d̃i(x̃, ỹn) = 0 = lim
n→∞

ẽi(ỹn, x̃n), sup
n∈N

{�x̃n�i,�ỹn�i}< ∞ ,

π1 x̃ ≤ π1 ỹn ≤ π1 x̃n for all n ∈ N.
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(ĩiil) 0 = lim
n→∞

d̃ j(x̃, x̃n)

for every index j ∈I , any element x̃ ∈ Ẽ and sequences (x̃n)n∈N,
(ỹk)k∈N, (z̃k,n)k,n∈N in Ẽ fulfilling
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 x̃ ≤ π1 z̃k,n = π1 ỹk ≤ π1 x̃n for each k,n ∈ N,

lim
k→∞

d̃i(x̃, ỹk) = 0 for each i ∈I ,

lim
n→∞

d̃i(ỹk, z̃k,n) = 0 for each i ∈I ,k ∈N,

lim
k→∞

sup
n>k

ẽi(z̃k,n, x̃n) = 0 for each i ∈I ,

sup
k,n∈N

{�x̃n�i,�ỹk�i,�z̃k,n�i} < ∞ for each i ∈I .

(ĩiir) 0 = lim
n→∞

d̃ j(x̃n, x̃)

for every index j ∈I , any element x̃ ∈ Ẽ and sequences (x̃n)n∈N,
(ỹk)k∈N, (z̃k,n)k,n∈N in Ẽ fulfilling
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1 x̃n ≤ π1 z̃k,n = π1 ỹk ≤ π1 x̃ for each k,n ∈ N,

lim
k→∞

d̃i(ỹk, x̃) = 0 for each i ∈I ,

lim
n→∞

d̃i(z̃k,n, ỹk) = 0 for each i ∈I ,k ∈ N,

lim
k→∞

sup
n>k

ẽi(x̃n, z̃k,n) = 0 for each i ∈I ,

sup
k,n∈N

{�x̃n�i,�ỹk�i,�z̃k,n�i} < ∞ for each i ∈I .

(H4) �·� j is lower semicontinuous with respect to (d̃i)i∈I , i.e.,

�x̃� j ≤ liminf
n→∞

�x̃n� j

for any element x̃ ∈ Ẽ and sequence (x̃n)n∈N in Ẽ fulfilling for each i ∈I ,

lim
n→∞

d̃i(x̃n, x̃) = 0, π1 x̃n ↗ π1 x̃ for n→ ∞ and sup
n∈N

�x̃n�i < ∞ .

Now we adapt the definition of transition and admit different properties of the time
component for elements of basic set Ẽ and the test set D̃ :
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Definition 1. A function ϑ̃ : [0,1]×(D̃ ∪ Ẽ)−→ (D̃ ∪ Ẽ) is called timed transition
on the tuple

(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I

)
if it satisfies for each j ∈I :

1.) for every x̃ ∈ Ẽ : ϑ̃(0, x̃) = x̃

3.′) for every z̃ ∈ D̃ , there are T j = T j(ϑ̃ , z̃) ∈ ]0,1], α j(ϑ̃ ; z̃, ·) : [0,∞[−→ [0,∞[
such that for any ỹ ∈ Ẽ, t ∈ [0,T j[ with �ỹ� j ≤ r and t + π1 z̃ ≤ π1 ỹ :

limsup
h↓0

d j(ϑ̃ (t+h, z̃), ϑ̃ (h,ỹ))− d j(ϑ̃ (t, z̃), ỹ)
h ≤ α j(ϑ̃ ; z̃, r) · d j

(
ϑ̃(t, z̃), ỹ

)

4.′) there exists β j(ϑ̃ ; ·) : [0,∞[−→ [0,∞[ such that for any r ≥ 0, s, t ∈ [0,1] and

x̃ ∈ Ẽ with �x̃� j ≤ r : e j
(
ϑ̃(s, x̃), ϑ̃(t, x̃)) ≤ β j(ϑ̃ ;r) · |t− s|

5.) there exists γ j(ϑ̃) ∈ [0,∞[ such that for any t ∈ [0,1] and x̃ ∈ Ẽ :

�ϑ̃(t, x̃)� j ≤
(�x̃� j + γ j(ϑ̃) t

) · eγ j(ϑ̃ ) t ,

limsup
h↓0

sup
z̃∈D̃

(�ϑ̃(h, z̃)� j − �z̃� j eγ j(ϑ̃ ) h) ≤ 0,

6.) for every z̃ ∈ D̃ : ϑ̃(h, z̃) ∈ D̃ for all h ∈ [0, T j(ϑ̃ , z̃)[, sup
[0,T j [

⌊
ϑ̃(·, z̃)⌋ j < ∞

7.) for every ỹ ∈ Ẽ : ϑ̃(h, ỹ) ∈ {h +π1 ỹ
}×E ⊂ Ẽ for all h ∈ [0,1],

for every z̃ ∈ D̃ : π1 ϑ̃(h′, z̃) ≤ π1 ϑ̃(h, z̃) ≤ h + π1 z̃ for all h′ ≤ h≤ 1

8.) for every z̃ ∈ D̃ , t < T j(ϑ̃ , z̃) : d̃ j
(
ϑ̃(t, z̃), ỹ

) ≤ limsup
n→∞

d̃ j
(
ϑ̃(t−hn, z̃), ỹn)

for any (hn)n∈N, (ỹn)n∈N in R
+
0 , Ẽ and ỹ ∈ Ẽ with hn −→ 0, ei(ỹn, ỹ)−→ 0

for each i ∈I and π1 ϑ̃(t−hn, z̃) ≤ π1 ỹn↗ π1 ỹ.

Remark 2. (i) Four additional assumptions lead to almost the same environ-
ment as in Chapter 3 (see § 3.5 on page 221 ff. in particular):

(i) D̃ = Ẽ ,
(ii) T j(·, ·)≡ 1,

(iii) each function d̃ j, ẽ j ( j ∈I ) is symmetric,
(iv) continuity parameter α j(ϑ̃ ; z̃,r)≥ 0 does not depend on z̃ ∈ D̃ .

Indeed, the only relevant difference is that condition (3.’) here is restricted to
comparisons with merely earlier test elements. This is indicated by the constraint
t +π1 z̃ ≤ π1 ỹ and, it is consistent with our general intention to sort the arguments
of distances by time.
There is no corresponding condition on time components in Definition 3.35 of timed
solutions (on page 222), for example. Hence, all variants of the mutational frame-
work presented in preceding chapters prove to be special cases.

(ii) Hypothesis (H3’) is to make the timed triangle inequality (p. 319) dispensable.
Condition (8.), however, does not result directly from the timed triangle inequality.
We will need it essentially for applying a semicontinuous version of Gronwall’s
inequality later on (see e.g. Lemma 5 and Proposition 6).



4.1 General Assumptions of This Chapter 337

Θ̂
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I

)
denotes a nonempty set of timed transitions

on
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I

)
and, for each j ∈I , the function

D̂ j : Θ̂
(
Ẽ,D̃ ,(d̃ j) j,(ẽ j) j,(�·� j) j

)2 × D̃ × [0,∞[ −→ [0,∞[

is assumed to satisfy the following conditions:

(H5’) for each z̃∈ D̃ ,r≥ 0, D̂ j( · , · ; z̃, r) is reflexive (but possibly nonsymmetric),
for any z̃ ∈ D̃ and timed transitions ϑ̃ , τ̃ , the function D̂ j(ϑ̃ , τ̃; z̃, ·) :
[0,∞[−→ [0,∞[ is nondecreasing,

(H6’) for each z̃ ∈ D̃ and any r ≥ 0,

D̂ j(·, · ; z̃, r) : Θ̂
(
Ẽ,(d̃ j),(ẽ j),(�·� j)

)×Θ̂(Ẽ,(d̃ j),(ẽ j),(�·� j)
) −→ [0,∞[

is sequentially continuous with respect to (D̂i)i∈I in the following sense:

(i) D̂ j(ϑ̃ , τ̃; z̃, r) = lim
n→∞

D̂ j(ϑ̃n, τ̃n; z̃, r)

for any timed transitions ϑ̃ , τ̃ and sequences (ϑ̃n)n∈N, (τ̃n)n∈N satis-
fying for every i ∈I , z̃′ ∈ D̃ and R≥ 0

lim
n→∞

D̂i(ϑ̃ , ϑ̃n; z̃ ′, R) = 0 = lim
n→∞

D̂i(τ̃n, τ̃; z̃ ′, R) .

(ii) lim
n→∞

D̂ j(ϑ̃ , τ̃n; z̃, r) = 0

for any timed transition ϑ̃ and sequences (ϑ̃n)n∈N, (τ̃n)n∈N satisfy-
ing for every i ∈I , z̃ ′ ∈ D̃ and R≥ 0

lim
n→∞

D̂i(ϑ̃ , ϑ̃n; z̃ ′, R) = 0 = lim
n→∞

D̂i(ϑ̃n, τ̃n; z̃ ′, R) .

(H7’) limsup
h↓0

d̃ j

(
ϑ̃(t1+h,z̃), τ̃(t2+h,ỹ)

)
− d̃ j(ϑ̃(t1,z̃), τ̃(t2,ỹ)) ·eα j (τ̃; z̃,R j )·h

h ≤ D̂ j(ϑ̃ , τ̃; z̃, R j)

for any ϑ̃ , τ̃ ∈ Θ̂(Ẽ,D̃ ,(d̃i)i,(ẽi)i,(�·�i)i
)
, z̃ ∈ D̃ , ỹ ∈ Ẽ , t1, t2 ∈ [0,1[,

r ≥ 0, j ∈I with t1 < T j(ϑ̃ , z̃), t1 +π1 z̃ ≤ t2 + π1 ỹ, �ỹ� j ≤ r and
R j :=

(
r + γ j(τ̃)

) · eγ j(τ̃).

Remark 3. In this chapter, all general results about mutational equations are
formulated for elements in Ẽ and D̃ respectively, i.e. for states with a separate real
time component.
If this time component is not relevant to distances or transitions, however, we are
free to skip it. Indeed, the step from transitions on (E,D) to (Ẽ,D̃) by means of

ϑ̃
(
h, (t,x)

)
=
(
t + h, ϑ(h,x)

)

has already been indicated in § 3.5 (on page 221 ff.). For the sake of consistency,
we then skip the adjective “timed” as well. In particular, we will benefit from this
simplification in the geometric example of § 4.4 (on page 359 ff.), but not in the
second example in § 4.5 (on page 372 ff.).
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4.2 Comparing with “Test Elements” of D̃
along Timed Transitions

Following the typical “mutational track” similarly to § 3.2 (on page 185 f.), we first
mention briefly that the “absolute value” of states in Ẽ evolving along finitely many
transitions is bounded in exactly the same way because the generalizations do not
have any effect on the simple arguments having proved Lemma 2.4 (on page 105).

Lemma 4. Let ϑ̃1 . . . ϑ̃K be finitely many timed transitions on
(
Ẽ, D̃ , (d̃ j) j∈I ,

(ẽ j) j∈I , (�·� j) j∈I

)
with γ̂ j := sup

k∈{1 ...K}
γ j(ϑ̃k) < ∞ for some j ∈I .

For any x̃0 ∈ Ẽ and 0 = t0 < t1 < .. . < tK with supk tk− tk−1 ≤ 1 define the curve
x̃(·) : [0,tK ]−→ Ẽ piecewise as x̃(0) := x̃0 and

x̃(t) := ϑ̃k
(
t− tk−1, x̃(tk−1)

)
for t ∈ ]tk−1, tk

]
, k ∈ {1 . . . K}.

Then, �x̃(t)� j ≤
(�x̃0� j + γ̂ j · t

) · eγ̂ j ·t at every time t ∈ [0, tK ]. �

Due to the possible lack of symmetry of d̃ j ( j ∈I ), we now conclude from con-
dition (8.) on timed transitions (in Definition 1) – instead of the global hypothesis
(H3’) about continuity of distance functions:

Lemma 5. Let x̃(·) : [0,T ]−→ Ẽ be any curve satisfying π1 x̃(t) = t +π1 x(0),
lim
h↓0

ẽ j(x̃(t−h), x̃(t)) = 0 for every t ∈ ]0,T ], j ∈I .

Choose any timed transition ϑ̃ on
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I

)
, element

z̃ ∈ D̃ and points of time t1 ∈ [0,T j(ϑ̃ , z̃)[, t2 ∈ [0,T [ with t1 +π1 z̃ ≤ π1 x̃(t2).

Then each distance function
[
0, min{T j(ϑ̃ , z̃)− t1, T − t2}

[ −→ [0,∞[,

s �−→ d̃ j
(
ϑ̃(t1 + s, z̃), x̃(t2 + s)

)

( j ∈I ) fulfills the following condition of lower semicontinuity at every time s

d̃ j
(
ϑ̃(t1 + s, z̃), x̃(t2 + s)

) ≤ liminf
h↓0

d̃ j
(
ϑ̃(t1 + s−h, z̃), x̃(t2 + s−h)

)
. �

Proposition 6. Let ϑ̃ , τ̃ ∈ Θ̂(Ẽ,D̃ ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
, r ≥ 0, j ∈I

and t1,t2 ∈ [0,1[ be arbitrary. For any elements ỹ ∈ Ẽ and z̃ ∈ D̃ suppose �ỹ� j ≤ r,

t1 ≤ T j(ϑ̃ , z̃) and t1 +π1 z̃ ≤ t2 +π1 ỹ. Set R j :=
(
r + γ j(τ)

) · eγ j(τ) < ∞.

Then at each time h≥ 0 with t1 + h≤ T j(ϑ̃ , z̃) and t2 + h≤ 1,

d̃ j
(
ϑ̃(t1+h, z̃), τ̃(t2+h, ỹ)

) ≤
(
d̃ j
(
ϑ̃(t1, z̃), τ̃(t2, ỹ)

)
+ h · D̂ j(ϑ̃ , τ̃; z̃,R j)

)
eα j(τ̃; z̃,R j) h.
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Proof. It is based on essentially the same arguments as corresponding
Proposition 3.7 (on page 185), but now the rather weak regularity assumptions
of Gronwall’s inequality in Proposition A.2 (on page 440) are exploited to their full
extent.
Consider the auxiliary function

φ j :
[
0, min{T j(ϑ̃ , z̃)− t1, 1− t2}

] −→ R, h �−→ d̃ j
(
ϑ̃(t1 + h, x̃), τ̃(t2 + h, ỹ)

)
.

Indeed, φ j satisfies φ j(t) ≤ limsuph↓0 φ j(t−h) according to preceding Lemma 5.
Furthermore condition (5.) of Definition 1 ensures �τ̃(h, ỹ)� j ≤ R j for each h∈ [0,1]
and due to condition (7.) on timed transitions,

π1 ϑ̃(t1 + h, z̃) ≤ t1 + h +π1 z̃ ≤ t2 + h +π1 ỹ = π1 τ̃(t2 + h, ỹ).

Hypothesis (H7’) about D̂ j(·, ·; R j) (on page 337) implies for every t in the interior
of the domain of φ j

φ j(t +h)−φ j(t)

= d̃ j
(
ϑ̃ (t1 + t +h, z̃), τ̃(t2+t+h, ỹ)

) − d̃ j
(
ϑ̃ (t1 + t, z̃), τ̃(t2+t, ỹ)

)

≤ d̃ j
(
ϑ̃ (t1 + t +h, z̃), τ̃(t2 + t +h, ỹ)

) − d̃ j
(
ϑ̃ (t1 + t, z̃), τ̃(t2 + t, ỹ)

)
eα j(τ̃;z̃,R j)h

+ d̃ j
(
ϑ̃ (t1+t, z̃)), τ̃(t2 + t, ỹ))

) · eα j(τ̃;z̃,R j)h− d̃ j
(
ϑ̃ (t1 + t, z̃), τ̃(t2+t, ỹ)

)

and thus, limsup
h↓0

φ j(t+h) − φ j(t)
h ≤ D̂ j(ϑ̃ , τ̃; z̃, R j) + α j(τ̃ ; z̃,R j) · φ j(t) < ∞ .

Finally, the claimed inequality results directly from Gronwall’s inequality (in form
of Proposition A.2). �

4.3 Timed Solutions to Mutational Equations

In comparison with Definition 3.35 of timed solutions (on page 222) in the muta-
tional framework of Chapter 3, the essential differences are based on two aspects:
First, the arguments of distances are sorted by time and second, only “test elements”
of D̃ evolving along transitions are admissible for comparing distances.
This leads to the following definition:

Definition 7. Let f̃ : Ẽ× [0,T ] −→ Θ̂
(
Ẽ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
be given.

A curve x̃(·) : [0,T ]−→ Ẽ is called a timed solution to the mutational equation
◦
x̃(·) � f̃

(
x̃(·), · )

in
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
if it satisfies for each j ∈I :
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1.′) x̃(·) is continuous with respect to ẽ j in the sense that there exists a modulus
of continuity ω j(x̃; ·) : [0,∞[−→ [0,∞[ with lim

ρ ↓0
ω j(x̃;ρ) = 0 and

ẽ j
(
x̃(s), x̃(t)

) ≤ ω j(x̃, t− s) for every 0≤ s≤ t ≤ T ,

2.′′) for each element z̃ ∈ D̃ , there exists α j(x̃; z̃, ·) : [0,∞[−→ [0,∞[ such that
for L 1-a.e. t ∈ [0,T [:

limsup
h↓0

d̃ j(ϑ̃ (s+h, z̃), x̃(t+h)) − d̃ j(ϑ̃ (s,z̃), x̃(t)) · eα j(x̃;z̃,R j ) h

h ≤ D̂ j
(
ϑ̃ , f̃ (x̃(t), t); z̃,R j

)

for any ϑ̃ ∈ Θ̂(Ẽ,D̃ ,(d̃ j),(ẽ j),(�·� j)
)
, s ∈ [0, T j(ϑ̃ , z̃)

[
with �x̃(·)� j < R j

and s+π1 z̃ ≤ π1 x̃(t),

3.) sup
t∈ [0,T ]

�x̃(t)� j < ∞ ,

4.) for every t ∈ [0,T ], π1 x̃(t) = π1 x̃(0) + t.

In combination with Lemma 5, the same arguments at L 1-almost every time as for
Proposition 6 (on page 339) lead to the following estimate:

Lemma 8 (comparing timed solution and curve in D̃ along transition).
Let x̃(·) : [0,T ]−→ Ẽ be a timed solution to the mutational equation

◦
x̃(·) � f̃

(
x̃(·), · )

in the tuple
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Suppose ϑ̃ ∈ Θ̂(Ẽ, D̃ , (d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i
)
, j ∈I , z̃∈ D̃ , s∈ [0, T j(ϑ̃ , z̃)

[
,

t∈ [0,T [ to be arbitrary with s+π1 z̃ ≤ π1 x̃(t) and set R j := 1+sup �x̃(·)� j <∞
as an abbreviation.

Then,

d̃ j
(
ϑ̃(s+ h, z̃), x̃(t + h)

) ≤
(

d̃ j
(
ϑ̃(s, z̃), x̃(t)

)

+h · sup
[t, t+h]

D̂ j
(
ϑ̃ , f̃ (x̃(·), ·)z̃, R j

)) · eα j(x̃; z̃,R j) h

for every h ∈ [0, 1] with s+ h≤ T j(ϑ̃ , z̃) and t + h≤ T . �
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4.3.1 Continuity with Respect to Initial States and Right-Hand Side

In § 3.3.1 (on page 189 f.), we suggested the auxiliary distance function

[0,T ] −→ [0,∞[, t �−→ inf
z∈E: �z� j <R j

(
d j
(
z,x(t)

)
+ d j

(
z,y(t)

))

for comparing two solutions x(·), y(·) : [0,T ] −→ E to mutational equations.
For taking the separate time component into consideration, this proposal was modi-
fied in Proposition 3.40 (on page 224):

[0,T ] −→ [0,∞[, t �−→ inf
{

d̃ j
(
z̃, x̃(t)

)
+ d̃ j

(
z̃, ỹ(t)

) ∣∣ z̃ ∈ Ẽ : �z̃� j < R j
}
.

Now we have to obey in addition that arguments of distances are sorted by time and
that timed solutions are characterized by comparing with evolving test elements of
D̃ shortly. Thus, it is plausible to consider the auxiliary distance function

t �−→ inf
{

d̃ j
(
z̃, x̃(t)

)
+ d̃ j

(
z̃, ỹ(t)

) ∣∣ z̃ ∈ D̃ :�z̃� j < R j,

π1 z̃ < min{π1 x̃(t), π1 ỹ(t)}}.
This infimum at time t ∈ [0,T [ is approximated by a minimal sequence (z̃n)n∈N in
D̃ whose elements evolve along the transition f̃

(
x̃(t), t

)
characterizing x̃(t + ·).

An additional assumption about its time parameters
T j
(

f̃
(
x̃(t), t

)
, z̃n
)
, n ∈ N, however, is required so that

we can compare the evolutions for a sufficiently long
time. Indeed, without such a lower bound providing
a form of uniformity, the typical approach to a global
estimate by means of Gronwall’s inequality might fail
because two limit processes are exchanged.
The detailed analysis leads to the following versions:

Proposition 9.

Assume for f̃ , g̃ : Ẽ× [0,T ]−→ Θ̂
(
Ẽ,D̃ ,(d̃ j) j,(ẽ j) j,(�·� j) j

)
and x̃, ỹ : [0,T ]−→ Ẽ

that x̃(·) is a timed solution to the mutational equation
◦
x̃(·) � f̃ (x̃(·), ·) and

ỹ(·) is a timed solution to the mutational equation
◦
ỹ(·) � g̃(ỹ(·), ·)

in the tuple
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

For some j ∈I , let α̂ j, γ̂ j,R j > 0 and ϕ j ∈C0([0,T ]) satisfy for every t ∈ [0,T ]
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�x̃(t)� j, �ỹ(t)� j < R j

sup
z̃∈D̃ : �z̃� j <R j

{
α j (x̃; z̃, R j) , α j (ỹ; z̃, R j)

} ≤ α̂ j

γ j
(

f̃ (x̃(t), t)
) ≤ γ̂ j

limsup
h↓0

sup
z̃∈D̃ : �z̃� j <R j

D̂ j

(
f̃ (x̃(t), t), g̃(ỹ(t+h), t+h); z̃, R j

)
≤ ϕ j(t)

limsup
h↓0

sup
z̃∈D̃ : �z̃� j <R j

D̂ j

(
f̃ (x̃(t), t), f̃ (x̃(t+h), t+h); z̃, R j

)
= 0
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For some ϑ̃ ∈ Θ̂(Ẽ,D̃ ,(d̃i)i,(ẽi)i,(�·�i)i
)

assume inf
z̃∈D̃ : �z̃� j <R j

T j(ϑ̃ , z̃) > 0 and

sup
t∈ [0,T ]

sup
z̃∈D̃ : �z̃� j <R j

D̂ j

(
ϑ̃ , f̃ (x̃(t), t); z̃, R j

)
< ∞ .

Considering the distance function
δ j : [0,T ] −→ [0,∞[,

t �−→ inf
{

d̃ j
(
z̃, x̃(t)

)
+ d̃ j

(
z̃, ỹ(t)

) ∣∣ z̃∈D̃ : �z̃� j < R j,

π1 z̃ < min{π1 x̃(t), π1 ỹ(t)}},
suppose at Lebesgue-almost every time t ∈ [0,T ] that the infimum of δ j(t) can be

approximated by a minimal sequence (z̃n)n∈N in D̃ satisfying

supn �z̃n� j < R j,

π1 z̃n ≤ π1 z̃n+1 < min
{
π1 x̃(t), π1 ỹ(t)

}
for every n ∈ N,

inf
n∈N

T j( f̃ (x̃(t), t), z̃n) > 0 .

Then, δ j(t) ≤
(
δ j(0) +

∫ t

0
ϕ j(s) e−α̂ j · s ds

)
eα̂ j · t for every t ∈ [0,T ].

Proposition 10.

Let f̃ , g̃ : Ẽ× [0,T ] −→ Θ̂
(
Ẽ,D̃ ,(d̃ j) j,(ẽ j) j,(�·� j) j

)
, x̃, ỹ : [0,T ] −→ Ẽ, j ∈I ,

α̂ j, γ̂ j,R j > 0 and ϕ j ∈C0([0,T ]) fulfill the same assumptions as in Proposition 9.

Considering the same distance function

δ j : [0,T ] −→ [0,∞[,

t �−→ inf
{

d̃ j
(
z̃, x̃(t)

)
+ d̃ j

(
z̃, ỹ(t)

) ∣∣ z̃∈D̃ : �z̃� j < R j,

π1 z̃ < min{π1 x̃(t), π1 ỹ(t)}},
suppose at every time t ∈ [0,T ] that the infimum of δ j(t) can be approximated by a

minimal sequence (z̃n)n∈N in D̃ satisfying

supn �z̃n� j < R j,

π1 z̃n ≤ π1 z̃n+1 < min
{
π1 x̃(t), π1 ỹ(t)

}
for every n ∈ N,

d̃ j(z̃n, x̃(t)) + d̃ j(z̃n, ỹ(t)) − δ j(t)

T j( f̃ (x̃(t),t), z̃n)
−→ 0 for n−→ ∞ .

Furthermore assume the local equi-continuity of the distance family

d̃ j(z̃, ·) : ]π1 z̃, ∞[ × E −→ R (z̃ ∈ D̃ , �z̃� j < R j)

in the following sense: Every sequence (ξ̃n)n∈N in Ẽ and element ξ̃ ∈ Ẽ with

lim
n→∞

ẽi(ξ̃n, ξ̃ ) = 0 for each i ∈I and π1 ξ̃n ≤ π1 ξ̃n+1 ↗ π1 ξ̃ for n −→ ∞
have the asymptotic property

lim
n→∞

sup
{

d̃ j(z̃, ξ̃ ) − d̃ j(z̃, ξ̃n)
∣∣
∣ z̃ ∈ D̃ : π1 z̃ < π1 ξ̃n, �z̃� j < R j

}
= 0.

Then, δ j(t) ≤
(
δ j(0) +

∫ t

0
ϕ j(s) e−α̂ j · s ds

)
eα̂ j · t for every t ∈ [0,T ].
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Remark 11. On the basis of Remark 2 (i) (on page 336), Proposition 9 implies
the estimates of Propositions 3.11 and 3.40 (on pages 189, 224) as special cases.

Advantageously, Proposition 10 dispenses with supposing a positive bound of the
time parameters like T j( f̃ (x̃(t), t), z̃n), but it makes assumptions about the relative
features of T j( f̃ (x̃(t),t), z̃n) and d̃ j(z̃n, x̃(t))+ d̃ j(z̃n, ỹ(t))− δ j(t) for n→ ∞.

This conclusion, however, results from another semicontinuous version of Gron-
wall’s inequality specified in Proposition A.4 (on page 442) and thus, it requires fur-
ther assumptions about the equi-continuity of d̃ j(z̃, ·) : Ẽ −→R (z̃ ∈ D̃ , �z̃� j < R j).
Note that the timed triangle inequality of d̃ j(·, ·), i.e.

d̃ j(ũ, w̃) ≤ d̃ j(ũ, ṽ) + d̃ j(ṽ, w̃)

whenever ũ, ṽ, w̃ ∈ Ẽ satisfy π1 ũ ≤ π1 ṽ ≤ π1 w̃, is always sufficient for this
supplementary hypothesis.

Proof (of Proposition 9). It is based on the same notion as Proposition 3.11.
Choosing a timed transition ϑ̃ with τϑ̃ := infz̃∈D̃ :�z̃� j<R j

T j(ϑ̃ , z̃) > 0 and

sup
t∈ [0,T ]

sup
z̃∈D̃ : �z̃� j <R j

D̂ j

(
ϑ̃ , f̃ (x̃(t), t); z̃, R j

)
< ∞ ,

Lemma 8 (on page 340) provides a constant C = C(t, j, f̃ , α̂ j) <∞ for each t ∈ ]0,T [
such that for every h ∈ ]0, τϑ̃ [ and z̃ ∈ D̃ with h +π1 z̃ < min{π1 x̃(t), π1 ỹ(t)},
�z̃�i < Ri, the following estimates hold

{
d̃ j
(
ϑ̃(h, z̃), x̃(t)

) ≤ (d̃ j
(
z̃, x̃(t−h)

)
+ C h

) · eC h

d̃ j
(
ϑ̃(h, z̃), ỹ(t)

) ≤ (d̃ j
(
z̃, ỹ(t−h)

)
+ C h

) · eC h .

Due to property (5.) of timed transitions, it implies δ (t) ≤ limsup
h↓0

δ j(t−h).

At L 1-a.e. time t ∈ [0,T [, we can choose a sequence (z̃n)n∈N in D̃ and τ > 0 with⎧
⎪⎨

⎪⎩

supn �z̃n� j < R j,

π1 z̃n ≤ π1 z̃n+1 < min
{
π1 x̃(t), π1 ỹ(t)

}
,

T j( f̃ (x̃(t), t), z̃n) ≥ τ .

Lemma 8 (on page 340) implies for each n ∈ N and h ∈ [0, T j( f̃ (x̃(t), t), z̃n)
[

d̃ j
(

f̃ (x̃(t),t)(h, z̃n), x̃(t + h)
)

≤
(

d̃ j
(
z̃n, x̃(t)

)
+ h · sup

[t, t+h]
D̂ j
(

f̃ (x̃(t), t), f̃ (x̃(·), ·); z̃n, R j
)) · eα̂ j h

and
d̃ j
(

f̃ (x̃(t),t)(h, z̃n), ỹ(t + h)
)

≤
(

d̃ j
(
z̃n, ỹ(t)

)
+ h · sup

[t, t+h]
D̂ j
(

f̃ (x̃(t), t), g̃(ỹ(·), ·); z̃n, R j
)) · eα̂ j h .

Hence, we obtain an upper bound of

δ j(t + h) ≤ d̃ j
(

f̃ (x̃(t),t)(h, z̃n), x̃(t + h)
)

+ d̃ j
(

f̃ (x̃(t), t)(h, z̃n), ỹ(t + h)
)
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for every h ∈ [0,τ[ ⊂ [0, inf
m

T j( f̃ (x̃(t), t), z̃m)
[

and, n−→ ∞ leads to

δ j(t+h) ≤
(
δ j(t)+h · sup

[t, t+h]
sup
z̃∈D̃

D̂ j
(

f̃ (x̃(t), t), f̃ (x̃(·), ·); z̃, R j
)

+h · sup
[t, t+h]

sup
z̃∈D̃

D̂ j
(

f̃ (x̃(t), t), g̃(ỹ(·), ·); z̃, R j
))

eα̂ j h.

Thus,
limsup

h↓0

δ j(t+h)− δ j(t)
h ≤ α̂ j · δ j(t) + 0 + ϕ j(t) < ∞ .

Finally Gronwall’s inequality in Proposition A.2 (on page 440) implies the claim.
�

Proof (of Proposition 10). It draws conclusions very similarly to the preceding
proof of Proposition 9, but cannot rely on uniform positive bounds of the transition
parameter T j(·, ·). For this reason, it uses the modified Gronwall’s inequality in
Proposition A.4 (on page 442) for the first time so far.

Choosing any sequence hn ↓ 0, the assumption about local equi-continuity of d̃ j(z̃, ·)
ensures for every t ∈ ]0,T [
⎧
⎪⎪⎨

⎪⎪⎩

lim
n→∞

sup
z̃∈D̃

{
d̃ j(z̃, x̃(t)) − d̃ j(z̃, x̃(t−hn))

∣
∣
∣ π1 z̃ < π1 x̃(t)−hn, �z̃� j < R j

}
= 0

lim
n→∞

sup
z̃∈D̃

{
d̃ j(z̃, ỹ(t)) − d̃ j(z̃, ỹ(t−hn))

∣
∣
∣ π1 z̃ < π1 ỹ(t)−hn, �z̃� j < R j

}
= 0

and, it implies δ j(t) ≤ liminf
h↓0

δ j(t−h) for every t ∈ ]0,T [.

At every time t ∈ [0,T [, we can choose a sequence (z̃n)n∈N in D̃ with
⎧
⎪⎨

⎪⎩

supn �z̃n� j < R j,

π1 z̃n ≤ π1 z̃n+1 < min
{
π1 x̃(t), π1 ỹ(t)

}
,

d̃ j(z̃n, x̃(t)) + d̃ j(z̃n, ỹ(t)) − δ j(t) ≤ 1
n2 · T j( f̃ (x̃(t), t), z̃n) .

In exactly the same way as for Proposition 9, Lemma 8 (on page 340) provides an
upper bound of

δ j(t + h) ≤ d̃ j
(

f̃ (x̃(t),t)(h, z̃n), x̃(t + h)
)

+ d̃ j
(

f̃ (x̃(t), t)(h, z̃n), ỹ(t + h)
)

for every h ∈ [0, T j( f̃ (x̃(t),t), z̃n)
[

now still depending on n ∈ N though:

δ j(t+h) ≤
(
δ j(t)+ T j( f̃ (x̃(t),t), z̃n)

n2 +h · sup
[t, t+h]

D̂ j
(

f̃ (x̃(t), t), f̃ (x̃(·), ·); z̃n, R j
)

+h · sup
[t, t+h]

D̂ j
(

f̃ (x̃(t), t), g̃(ỹ(·), ·); z̃n, R j
))

eα̂ j h.

Setting h := T j( f̃ (x̃(t),t), z̃n)
n ≤ 1

n for each n ∈ N respectively, the assumptions about
(z̃n)n∈N ensure for n−→ ∞

liminf
h↓0

δ j(t+h)− δ j(t)
h ≤ α̂ j · δ j(t) + 0 + ϕ j(t) < ∞ .

Gronwall’s inequality in Proposition A.4 (on page 442) bridges the gap to the
claimed bound for every t ∈ [0,T ]. �
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4.3.2 Convergence of Timed Solutions

In spite of all the conceptual generalizations presented in Chapter 4 so far, the char-
acterization of timed solutions is stable with respect to the same type of graphical
convergence as in § 3.3.2 (on page 190 ff.) and § 3.5 (on page 221 ff.).
The following theorem lays the foundations for constructing timed solutions to
initial value problems by means of Euler approximations in the next section.

Theorem 12 (Convergence of timed solutions to mutational equations).
Suppose the following properties of

f̃n, f̃ : Ẽ× [0,T ] −→ Θ̂
(
Ẽ,D̃ ,(d̃i)i∈I ,(ẽ j) j∈I ,(�·�i)i∈I

)
(n ∈ N)

x̃n, x̃ : [0,T ] −→ Ẽ :

1.) R j := sup
n,t
�x̃n(t)� j + 1 < ∞,

α̂ j(z̃,ρ) := sup
n

α j
(
x̃n; z̃, ρ

)
< ∞ for each z̃ ∈ D̃ , ρ ≥ 0,

β̂ j := sup
n

Lip
(
x̃n(·) : [0,T ]−→ (Ẽ, ẽ j)

)
< ∞ for every j ∈I .

2.)
◦
x̃n (·) � f̃n(x̃n(·), ·) (in the sense of Definition 7 on page 339) for every n.

3.) Equi-continuity of ( f̃n)n at (x̃(t), t) at almost every time in the following sense:

for any z̃∈D̃ and L 1-a.e. t∈[0,T ] : lim
n→∞

D̂ j
(

f̃n(x̃(t), t), f̃n(ỹn, tn); z̃, r
)

= 0

for each j ∈I , r ≥ 0 and any (tn)n∈N, (ỹn)n∈N in [t,T ] and Ẽ respectively

satisfying lim
n→∞

tn = t and lim
n→∞

d̃i
(
x̃(t), ỹn

)
= 0, sup

n∈N

�ỹn�i ≤ Ri for each i,

π1 ỹn ↘ π1 x̃(t) for n−→ ∞.

4.) For L 1-almost every s ∈ [0,T [ and any t < t ′ in [0,T ], there is a sequence
nm↗ ∞ of indices (depending on s, t, t ′) that satisfies for m−→ ∞

(i) D̂ j
(

f̃ (x̃(s),s), f̃nm(x̃(s),s); z̃, r
) −→ 0 for all z̃ ∈ D̃ , r ≥ 0, j ∈I ,

(ii) ∃ δm↘0 : ∀ j : d̃ j
(
x̃(t), x̃nm(t + δm)

) −→ 0, π1 x̃nm(t + δm)↘π1 x̃(t)

(iii) ∃ δ̃m↘0 : ∀ j : d̃ j
(
x̃nm(t ′− δ̃m), x̃(t ′)

) −→ 0, π1 x̃nm(t ′− δ̃m)↗π1 x̃(t ′)

Then, x̃(·) is always a timed solution to the mutational equation
◦
x̃ (·) � f̃ (x̃(·), ·)

in the tuple
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Remark 13. In comparison with Convergence Theorem 3.13 and its timed coun-
terpart (i.e. Theorem 3.42 on page 225), assumption (4.) is slightly stronger because
convergence property (ii) is now supposed for every t ∈ [0,T [. This modification is
required for proving the Lipschitz continuity of x̃(·) w.r.t. each ẽ j.
It is caused by two differences in general assumptions between Chapter 4 and § 3.5:
First, d̃ j, ẽ j do not have to be symmetric. Second, hypothesis (H3’) (̃i’) (on page 334)
considers only sequences with a stronger condition on their sorted time components
than hypothesis (H3) (̃i’) (on page 221).
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Proof. In comparison with the proof of Theorem 3.13 (on page 191 ff.), we just
have to take two key aspects into consideration properly: Arguments of distances
are sorted by time and, timed solutions are characterized by means of comparisons
with evolving earlier test elements of D̃ .
For the sake of transparency, the analogous formulation is to underline the parallels.

Choose the index j ∈I arbitrarily.
Then x̃(·) : [0,T ] −→ (Ẽ, ẽ j) is β̂ j-Lipschitz continuous. Indeed, for any t < t ′ in
[0,T ], assumption (4.) provides a subsequence

(
x̃nm(·))m∈N

and sequences δm↘ 0,

δ̃m↘ 0 satisfying for each index i ∈I
{

d̃i
(
x̃(t), x̃nm(t + δm)

) −→ 0, π1 x̃nm(t + δm)↘ π1 x̃(t)

d̃i
(
x̃nm(t ′ − δ̃m), x̃(t ′)

) −→ 0, π1 x̃nm(t ′ − δ̃m)↗ π1 x̃(t ′)
for m→ ∞.

Firstly, we conclude π1 x̃(t ′) = t ′ − t + π1 x̃(t) = π1 x̃nm(t ′) for each m ∈ N.

Secondly, the uniform β̂ j-Lipschitz continuity of x̃n(·),n ∈N, with respect to ẽ j and
hypothesis (H3’) (̃i’) (on page 334) imply

ẽ j
(
x̃(t), x̃(t ′)

) ≤ limsup
m→∞

ẽ j
(
x̃nm(t + δm), x̃nm(t ′ − δ̃m)

)

≤ limsup
m→∞

β̂ j |t ′ − δ̃m − t− δm|
≤ β̂ j |t ′ − t| .

Moreover, hypothesis (H4) about the lower semicontinuity of �·� j ensures

�x̃(t ′)� j ≤ liminf
m→∞

�x̃nm(t ′ − δ̃m)� j ≤ R j−1.

Finally we verify the solution property

limsup
h↓0

d̃ j(ϑ̃ (s+h, z̃), x̃(t+h)) − d̃ j(ϑ̃ (s,z̃), x̃(t)) · eα j (x̃;ρ) h

h ≤ D̂ j
(
ϑ̃ , f̃ (x̃(t), t); z̃, R j

)

for L 1-almost every t ∈ [0,T [ and any ϑ̃ ∈ Θ̂(Ẽ,D̃ ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

)
,

z̃ ∈ D̃ , s ∈ [0, T j(ϑ̃ , z̃)[ with s+π1 z̃ ≤ π1 x̃(t).
Indeed, for Lebesgue-almost every t ∈ [0,T [ and any h ∈ ]0, T−t[, assumption (4.)

guarantees a subsequence
(
x̃nm(·))m∈N

and sequences δm ↘ 0, δ̃m ↘ 0 satisfying

for each z̃ ∈ D̃ , i ∈I , r ≥ 0 and m−→ ∞
⎧
⎪⎪⎨

⎪⎪⎩

D̂i
(

f̃ (x̃(t),t), f̃nm(x̃(t),t); z̃, r
) −→ 0,

d̃i
(
x̃(t), x̃nm(t + δm)

) −→ 0, π1 x̃nm(t + δm) ↘ π1 x̃(t),

d̃i
(
x̃nm(t+h− δ̃m), x̃(t+h)

) −→ 0, π1 x̃nm(t+h− δ̃m) ↗ π1 x̃(t+h) .

For every test element z̃ ∈ D̃ and each time s ≥ 0 with s + π1 z̃ ≤ π1 x̃(t) and
s + h < T j(ϑ̃ , z̃), we conclude from condition (8.) on timed transitions that for all
k ∈ ]0,h[ sufficiently small (depending on h,s, t, z̃)

d̃ j
(
ϑ̃(s+ h, z̃), x̃(t + h)

) ≤ d̃ j
(
ϑ̃(s+ h− k, z̃), x̃(t + h)

)
+ h2.
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Lemma 8 (on page 340) and the semicontinuity of d̃ j (in the sense of hypothesis
(H3’) (̃i’) on page 334) imply

d̃ j
(
ϑ̃(s+ h, z̃), x̃(t + h)

) − h2

≤ d̃ j
(
ϑ̃(s+ h− k, z̃), x̃(t + h)

)

≤ limsup
m→∞

(
d̃ j
(
ϑ̃(s, z̃), x̃nm(t + k− δ̃m)

)
+

(h− k) · sup
[t+k−δ̃m, t+h−δ̃m]

D̂ j
(
ϑ̃ , f̃nm(x̃nm , ·); z̃,R j

)) · eα̂ j(z̃,R j) ·(h−k).

Choosing now suitable subsequences (δml )l∈N, (δ̃ml )l∈N and a sequence (kl)l∈N

such that the preceding limit superior for m→ ∞ coincides with the limit for l→ ∞
and δml < kl− δ̃ml < 1

l for each l ∈ N, we obtain successively

lim
l→∞

d̃ j
(
x̃(t), x̃nml

(t + kl− δ̃ml )
)

= 0,

limsup
l→∞

d̃ j
(
ϑ̃(s, z̃), x̃nml

(t + kl− δ̃ml )
) ≤ d̃ j

(
ϑ̃(s, z̃), x̃(t)

)

as consequences of hypotheses (H3’) (ĩil), (̃i”) (on page 334). Now l −→ ∞ leads to

d̃ j
(
ϑ̃(s+ h, z̃), x̃(t + h)

) − 2 h2 − d̃ j
(
ϑ̃(s, z̃), x̃(t)

) · eα̂ j(z̃,R j) h

≤ h · limsup
m→∞

sup
[t+δm, t+h]

D̂ j
(
ϑ̃ , f̃nm(x̃nm(·), ·); z̃,R j

) · eα̂ j(z̃,R j) h.

For completing the proof, we verify

limsup
h↓0

limsup
m→∞

sup
[t+δm, t+h]

D̂ j
(
ϑ̃ , f̃nm(x̃nm(·), ·); z̃,R j

) ≤ D̂ j
(
ϑ̃ , f̃ (x̃(t), t); z̃,R j

)

for L 1-almost every t ∈ [0,T [ and any subsequence
(
x̃nm(·))m∈N

satisfying
{

d̃i
(
x̃(t), x̃nm(t + δm)

) −→ 0

D̂i
(

f̃ (x̃(t), t), f̃nm(x̃(t), t); z̃, r
) −→ 0

for m −→ ∞ and each i ∈I , r ≥ 0. Indeed, if this inequality was not correct
then we could select ε > 0 and sequences (hl)l∈N, (ml)l∈N, (sl)l∈N s.t. for all l∈N,
{

D̂ j
(
ϑ̃ , f̃nml

(x̃nml
(t + sl), t + sl); z̃, R j

) ≥ D̂ j
(
ϑ̃ , f̃ (x̃(t), t); z̃, R j

)
+ ε,

δml ≤ sl ≤ hl ≤ 1
l , ml ≥ l .

Due to property (H3’) (ĩil), the uniform Lipschitz continuity of (x̃nm(·))m∈N implies

lim
l→∞

d̃i
(
x̃(t), x̃nml

(t + sl)
)

= 0

for each i ∈I . Hence, at L 1-a.e. time t, assumptions (3.), (4.) (i) and hypothesis
(H6’) (on page 337) lead to a contradiction with regard to D̂ j

(
ϑ̃ , f̃ (x̃(t), t); z̃, r

)

for any r ≥ 0.
�
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4.3.3 Existence for Mutational Equations with Delay
and without State Constraints

Euler approximations in combination with a suitable form of sequential com-
pactness have proved to be very useful for verifying the existence of solutions to
mutational equations.

The concept of Euler compactness as specified in Definition 2.15 (on page 112)
and Remark 3.15 (2.) (on page 193) focuses on pointwise sequential compactness,
i.e., the convergence of Euler approximations is considered at an arbitrary, but fixed
point of time t ∈ [0,T ].

Preceding Convergence Theorem 12, however, admits vanishing perturbations with
respect to time. In general, this notion of convergence is weaker than pointwise
convergence if we dispense with the symmetry of distances and, it may be rather
associated with “graphical” convergence of curves in Ẽ .

Assuming compactness of Euler approximations with respect to this modified
convergence can be of particular interest whenever the transitions have “smoothen-
ing” effects on the elements of Ẽ instantaneously. Indeed, in subsequent § 4.4 (on
page 359 ff.), we consider geometric evolutions along reachable sets of differential
inclusion which exploit such an effect (see Proposition 36 on page 368).

Definition 14 (transitionally Euler compact).(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , Θ̂

(
Ẽ,D̃ ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

))
is called

transitionally Euler compact if it satisfies the following condition for any element
x̃0 ∈ Ẽ, time T ∈]0,∞[ and bounds α̂ j : D̃ −→ [0,∞[, β̂ j, γ̂ j > 0 ( j ∈I ):

Let N = N (x̃0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) denote the (possibly empty) subset of all curves
ỹ(·) : [0,T ] −→ Ẽ constructed in the following piecewise way: Choosing an arbi-
trary equidistant partition 0 = t0 < t1 < .. . < tn = T of [0,T ] (with n > T ) and timed
transitions ϑ̃1 . . . ϑ̃n ∈ Θ̂

(
Ẽ, D̃ , (d̃i)i∈I , (ẽi)i∈I , (�·�i)i∈I

)
with

⎧
⎪⎨

⎪⎩

supk γ j(ϑ̃k) ≤ γ̂ j

supk α j
(
ϑ̃k; z̃, (�x̃0� j + γ̂ j T ) eγ̂ j T

) ≤ α̂ j(z̃)
supk β j

(
ϑ̃k; (�x̃0� j + γ̂ j T ) eγ̂ j T

) ≤ β̂ j

for each index j ∈I and test element z̃ ∈ D̃ , define ỹ(·) : [0,T ]−→ Ẽ as

ỹ(0) := x̃0, ỹ(t) := ϑ̃k (t− tk−1, ỹ(tk−1)) for t ∈ ]tk−1, tk], k = 1,2 . . .n.

Then for each time t∈ [0,T [ and sequence hm ↓0, every sequence (ỹn(·))n∈N in N
has a subsequence (ỹnm(·))m∈N and some element x̃ ∈ Ẽ satisfying for each j ∈I ,

⎧
⎪⎪⎨

⎪⎪⎩

π1 ỹnm(t) = t +π1 x̃0 = π1 x̃

lim
m→∞

d̃ j
(
ỹnm(t), x̃

)
= 0

lim
k→∞

sup
m≥ k

d̃ j
(
x̃, ỹnm(t + hk)

)
= 0
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Remark 15. If each distance function d̃ j ( j ∈I ) is symmetric in addition, then
Euler compactness (in the form of Remark 3.15 (2.)) always implies transitional
Euler compactness — due to hypothesis (H3’) (ĩil) (on page 334).

Just for avoiding misunderstandings, we reformulate the definition of “Euler
equi-continuous” for the current case of possibly nonsymmetric distance functions.
The main idea coincides with Definition 3.16 (on page 194), but now the arguments
of ẽ j are always sorted by time.

Definition 16.(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , Θ̂

(
Ẽ,D̃ ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

))
is called

Euler equi-continuous if it satisfies the following condition for any element x̃0 ∈ Ẽ,

time T ∈]0,∞[ and bounds α̂ j : D̃ −→ [0,∞[, β̂ j, γ̂ j > 0 ( j ∈I ):

Let N = N (x̃0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) denote the (possibly empty) subset specified in
Definition 14. Then, for each index j ∈I , there exists a constant Lj ∈ [0,∞[ such
that every curve ỹ(·) ∈N satisfies for all s, t ∈ [0,T ] with s≤ t

ẽ j
(
ỹ(s), ỹ(t)

) ≤ Lj · (t− s).

In this particular sense of Lipschitz continuity (i.e. always with the arguments of ẽ j

sorted by time), we also consider B̃Lip
(
I, Ẽ; (ẽi)i, (�·�i)i

)
from now on.

Finally the counterpart of Existence Theorem 3.43 (on page 226) states:

Theorem 17 (Existence of timed solutions to mutational equations with delay).
Suppose

(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , Θ̂

(
Ẽ,D̃ ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

))

to be transitionally Euler compact and Euler equi-continuous. Moreover assume for
a fixed period τ ≥ 0, the function

f̃ : B̃Lip
(
[−τ,0], Ẽ; (ẽi)i, (�·�i)i

)× [0,T ] −→ Θ̂
(
Ẽ, D̃ , (d̃i)i, (ẽi)i, (�·�i)i

)

and each z̃ ∈ D̃ , j ∈I , R > 0 :

1.) supỹ(·), t α j( f̃ (ỹ(·), t); z̃, R) < ∞,

2.) supỹ(·), t β j( f̃ (ỹ(·), t); R) < ∞,

3.) supỹ(·), t γ j( f̃ (ỹ(·), t)) < ∞,

4.) for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j
(

f̃ (ỹ1
n(·), t1

n ), f̃ (ỹ2
n(·), t2

n ); z̃, R
)

= 0

holds for each j ∈I , R≥ 0 and any sequences (t1
n )n∈N, (t2

n )n∈N in [0,T ] and
(ỹ1

n(·))n∈N, (ỹ2
n(·))n∈N in B̃Lip

(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
satisfying

for every i ∈I and s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞
d̃i
(
ỹ(s), ỹ1

n(s)
)

= 0 = lim
n→∞

d̃i
(
ỹ(s), ỹ2

n(s)
)

sup
n∈N

sup
[−τ,0]

�ỹ1,2
n (·)�i < ∞ .



350 4 Introducing Distribution-Like Solutions to Mutational Equations

For every function x̃0(·) ∈ B̃Lip
(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
, there exists

a curve x̃(·) : [−τ,T ]−→ Ẽ with the following properties:

(i) x̃(·) ∈ B̃Lip
(
[−τ,T ], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
,

(ii) x̃(·)∣∣[−τ,0] = x̃0(·),
(iii) the restriction x̃(·)∣∣[0,T ] is a timed solution to the mutational equation

◦
x̃ (t) � f̃

(
x̃(t + ·)∣∣[−τ,0], t

)

in the sense of Definition 7 (on page 339 f.).

Proof. Similarly to the proof of Theorem 3.19 (on page 197 f.), we use a sub-
sequence of Euler approximations for constructing a limit curve x̃ : [−τ,T ] −→ Ẽ
and, Convergence Theorem 12 (on page 345) ensures that the restriction x̃(·)|[0,T ] is
a timed solution to the given mutational equation.

For every n ∈N with 2n > T, set

hn := T
2n , tk

n := k hn for k = 0 . . . 2n,

x̃n(·)
∣
∣
[−τ,0] := x̃0,

x̃n(t) := f̃ (x̃n(tk
n + ·)∣∣[−τ,0], tk

n)
(
t− tk

n, x̃n(tk
n)
)

for t ∈ ]tk
n , tk+1

n ], k < 2n,

x̃n(t) := f̃ (x̃n(T + ·)∣∣[−τ,0], T )
(
t−T, x̃n(T )

)
for t ∈ ]T, T + 1].

Due to Euler equi-continuity, there is a constant Lj ∈ [0,∞[ for each index j ∈I
such that every curve x̃n(·) is Lj-Lipschitz continuous with respect to ẽ j. Setting
γ̂ j := sup γ j( f̃ (·, ·)) < ∞, Lemma 4 (on page 338) guarantees for every t ∈ [0, T +1]
and each j ∈I

�x̃n(t)� j ≤
(�x̃0(0)� j + γ̂ j · (T + 1)

) · eγ̂ j (T+1) =: R j .

The next step focuses on selecting subsequences (x̃nm(·))m∈N, (hn′m)m∈N such that

some x̃(·) : [−τ,T ]−→ Ẽ satisfies x̃(·)|[−τ,0] = x̃0 and for every t ∈ [0,T ], j ∈I
⎧
⎪⎨

⎪⎩

lim
m→∞

d̃ j
(
x̃nm(t−hn′m), x̃(t)

)
= 0

lim
m→∞

d̃ j
(
x̃(t), x̃nm(t + hn′m)

)
= 0

π1 x̃(t) = t + π1 x̃0(0).

Indeed, at every time t ∈ [0,T +1[, transitional Euler compactness provides a se-
quence nk↗∞ of indices and an element x̃(t) ∈ Ẽ satisfying for every index j ∈I

⎧
⎨

⎩

lim
k→∞

d̃ j
(
x̃nk(t), x̃(t)

)
= 0

lim
k→∞

sup
l≥ k

d̃ j
(
x̃(t), x̃nl (t + hk)

)
= 0.

Now Cantor’s diagonal construction lays the foundations for extending this selec-
tion to countably many points of time simultaneously. In particular, there exists a
joint sequence nk ↗ ∞ and a function x̃(·) : [0,T ]∩Q −→ Ẽ such that for every
rational t ∈ [0,T ] and each index j ∈I ,
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⎧
⎪⎪⎨

⎪⎪⎩

lim
k→∞

d̃ j
(
x̃nk(t), x̃(t)

)
= 0

lim
k→∞

sup
l≥ k

d̃ j
(
x̃(t), x̃nl (t + hk)

)
= 0

π1 x̃(t) = t + π1 x̃0(0).

Choose t ∈ [0,T ] \Q arbitrarily. As a consequence of transitional Euler compact-
ness again, there exists a subsequence nkl ↗∞ possibly depending on t such that an
element x̃(t) ∈ Ẽ fulfills for every index j ∈I

⎧
⎪⎪⎨

⎪⎪⎩

lim
l→∞

d̃ j
(
x̃nkl

(t), x̃(t)
)

= 0

lim
l→∞

sup
l′ ≥ l

d̃ j
(
x̃(t), x̃nkl′

(t + hl)
)

= 0.

π1 x̃(t) = t + π1 x̃0(0).

Hypothesis (H3’) (on page 334 f.) even ensures the convergence of
(
x̃nk(·)

)
k∈N

at
this time t ∈ [0,T ]\Q in the following sense for each index j ∈I

⎧
⎨

⎩

lim
k→∞

d̃ j
(
x̃nk(t−hk), x̃(t)

)
= 0

lim
k→∞

d̃ j
(
x̃(t), x̃nk(t + 2hk)

)
= 0.

(∗)

Indeed, assumption (H3’) (̃i’) implies for every s ∈ [0, t[ ∩Q and j ∈I

ẽ j
(
x̃(s), x̃(t)

) ≤ limsup
l→∞

ẽ j(x̃nkl
(s+ hkl), x̃nkl

(t)
) ≤ Lj |s− t| .

Choosing any sequence (sl)l∈N in [0, t[ ∩Q with t − hl < sl < t for all l ∈ N,
we obtain for every index j ∈I

lim
l→∞

d̃ j
(
x̃(sl), x̃(t)

)
= 0,

lim
k→∞

d̃ j
(
x̃nk(sl), x̃(sl)

)
= 0 for each l ∈ N,

lim
l→∞

sup
k∈N

ẽ j
(
x̃nk(t−hl), x̃nk(sl)

) ≤ lim
l→∞

Lj hl = 0.

and thus, hypothesis (H3’) (ĩiir) (on page 335) guarantees

lim
l→∞

d̃ j
(
x̃nl (t−hl), x̃(t)

)
= 0 for each j ∈I .

Similarly any sequence (s′l)l∈N in ]t,T+1]∩Q with t < s′l < t +hl for all l∈N leads
to

lim
l→∞

d̃ j
(
x̃(t), x̃(s′l)

)
= 0,

lim
k→∞

d̃ j
(
x̃(s′l), x̃nk(s

′
l + hl)

)
= 0 for each l ∈ N,

lim
l→∞

sup
k∈N

ẽ j
(
x̃nk(s

′
l + hl), x̃nk(t + 2hl)

) ≤ lim
l→∞

Lj hl = 0

for every index j ∈I and thus, hypothesis (H3’) (ĩiil) (on page 335) implies

lim
l→∞

d̃ j
(
x̃(t), x̃nl (t + 2hl)

)
= 0 for each j ∈I .

In a word, preceding statement (∗) about the convergence of
(
x̃nk(·)

)
k∈N

holds at
every time t ∈ [0,T ].
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For every t ∈ [0,T ], the estimate �x̃(t)� j ≤ R j results from hypothesis (H4’)
about the lower semicontinuity of �·� j (on page 335) and, x̃(·) : [0,T ]−→ (E,e j) is
also Lj-Lipschitz continuous (in time direction) due to the lower semicontinuity of
e j (in hypothesis (H3’) (̃i’)). Defining x̃(·)∣∣[−τ,0] := x̃0(·), we obtain

x̃(·) ∈ B̃Lip
(
[−τ,T ], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
.

Finally, Convergence Theorem 12 (on page 345) is to guarantee that x̃(·)|[0,T ] is
a timed solution to the mutational equation

◦
x̃(t) � f̃

(
x̃(t + ·)∣∣[−τ,0], t

)

in the tuple
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Indeed, each shifted Euler approximation x̃n(·+ 3hn) : [0,T−3hn] −→ Ẽ, n ∈ N,

can be regarded as a timed solution of
◦
ỹ(·) � f̂n(·) with the auxiliary function

f̂n : [0,T ]−→ Θ̂
(
Ẽ,D̃ ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
,

f̂n(t) := f̃
(
x̃n(·)

∣∣
[tk+3

n −τ, tk+3
n ], tk+3

n

)
for any t ∈ [tk

n , tk+1
n [, k < 2n.

(The time shift here is caused by convergence statement (∗) and ensures that all
arguments below are sorted by time properly.)

Similarly set f̂ : [0,T ] −→ Θ̂
(
Ẽ,D̃ ,(d̃ j) j∈I ,(ẽ j) j∈I ,(�·� j) j∈I

)
,

t �−→ f̃
(
x̃(t + ·)∣∣[−τ,0], t

)
.

At L 1-almost every time t ∈ [0,T ], assumption (4.) has two essential consequences.
First, with the abbreviation tl

nk
:=
(
[ t

hnk
]+ 3

)
hnk ∈ ]t + 2hnk, t + 3hnk],

D̂ j
(

f̂ (t), f̂nk(t); z̃, ρ
)

= D̂ j
(

f̃ (x̃(t + ·)|[−τ,0], t), f̃ (x̃nk(t
l
nk

+ ·)|[−τ,0], tl
nk

); z̃, ρ
)

k→∞−→ 0,

for every j ∈I , z̃ ∈ D̃ and ρ > 0 because for any i ∈I and t ∈ [0,T ], s ∈ [−τ,0],
statement (∗) about the convergence of (x̃nk(·))m∈N and hypothesis (H3’) (ĩil) imply

d̃i
(
x̃(t + s), x̃nk(t

l
nk

+ s)
) k→∞−→ 0 .

Second, we obtain for any sequence tk −→ t in [t,T ] and z̃ ∈ D̃ , j ∈I , ρ ≥ 0

D̂ j
(

f̂nk (t), f̂nk (tk); z̃, ρ
)

= D̂ j
(

f̃ (x̃nk(t
l
nk

+ ·)|[−τ,0], tl
nk

),

f̃ (x̃nk(t
lk
nk + ·)|[−τ,0], tlk

nk); z̃, ρ
) k→∞−→ 0

with the abbreviations tl
nk

:=
(
[ t

hnk
] + 3

)
hnk ≤ tlk

nk :=
(
[ tk

hnk
] + 3

)
hnk because

due to hypothesis (H3’) (ĩil) and statement (∗) again, the following convergences
hold for any i ∈I , s ∈ [−τ,0]

d̃i
(
x̃(t + s), x̃nk(t

l
nk

+ s)
) k→∞−→ 0, d̃i

(
x̃(t + s), x̃nk(t

lk
nk + s)

) k→∞−→ 0.

Hence, the assumptions of Convergence Theorem 12 are satisfied and, x̃(·)|[0,T ]

solves the mutational equation
◦
x̃(·) � f̂ (·). �
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4.3.4 Existence of Timed Solutions without State Constraints
due to Another Form of “Weak” Euler Compactness

Now we formulate the counterparts of the results in § 3.3.6 (on page 206 ff.).
The main idea is again that firstly, each distance function d̃ j, ẽ j ( j ∈I ) can be
represented as supremum of further distance functions d̃ j,κ , ẽ j,κ (κ ∈J ) and
secondly, the assumptions about sequential compactness focus on the right conver-
gence with respect to d̃ j,κ ( j ∈I ,κ ∈J ).

In contrast to § 3.3.6, however, we consider the left convergence with respect to
each d̃ j ( j ∈I ). This difference in regard to topology is particularly useful for
proving the adapted Convergence Theorem (in Proposition 21 on page 355 below)
and, it motivates the term “strong-weak” for the current form of transitional Euler
compactness in Definition 18.

Additional assumptions for § 4.3.4.

In addition to the general hypotheses (H1), (H3’), (H5’)–(H7’) about the distance
functions d̃ j, ẽ j : (D̃ ∪E)× (D̃ ∪E) −→ [0,∞[ specified in § 4.1 (on page 334 ff.),
let J �= /0 denote a further index set. For each index ( j,κ) ∈I ×J , the functions
d̃ j,κ , ẽ j,κ : Ẽ× Ẽ −→R

+
0 are assumed to fulfill in addition to hypotheses (H1),(H3’)

(H4’) �·� j is lower semicontinuous with respect to (d̃i,κ)i∈I ,κ∈J , i.e.,

�x̃� j ≤ liminf
n→∞

�x̃n� j

for any x̃ ∈ Ẽ and (x̃n)n∈N in Ẽ fulfilling for each i ∈I ,κ ∈J

lim
n→∞

d̃i,κ(x̃n, x̃) = 0, π1 x̃n↗ π1 x̃ for n→ ∞, sup
n∈N

�x̃n�i < ∞ .

(H8’) d̃ j(·, ·) = sup
κ∈J

d̃ j,κ(·, ·), ẽ j(·, ·) = sup
κ∈J

ẽ j,κ(·, ·) for each j ∈I .

Definition 18 (strongly-weakly transitionally Euler compact).
The tuple

(
Ẽ, D̃ , (d̃ j) j∈I , (d̃ j,κ) j∈I,κ∈J , (ẽ j) j∈I , (ẽ j,κ) j∈I ,κ∈J , (�·� j) j∈I ,

Θ̂
(
Ẽ,D̃ ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

))
is called strongly-weakly transitionally Euler

compact if it satisfies the following condition for any x̃0 ∈ Ẽ, time T ∈]0,∞[ and

bounds α̂ j : D̃ −→ [0,∞[, β̂ j, γ̂ j > 0 ( j ∈I ):

Let N = N (x̃0,T,(α̂ j, β̂ j, γ̂ j) j∈I ) denote the (possibly empty) subset specified in
Definition 14 (on page 348). Then for each time t ∈ [0,T [ and sequence hm ↓ 0,
every sequence (ỹn(·))n∈N in N has a subsequence (ỹnm(·))m∈N

and some element
x̃ ∈ Ẽ satisfying for each j ∈I and κ ∈J ,

⎧
⎪⎪⎨

⎪⎪⎩

π1 ỹnm(t) = t +π1 x̃0 = π1 x̃

lim
m→∞

d̃ j,κ
(
ỹnm(t), x̃

)
= 0

lim
k→∞

sup
m≥ k

d̃ j
(
x̃, ỹnm(t + hk)

)
= 0.
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Remark 19. The essential difference between Definition 18 and its counterpart
in Definition 3.27 (on page 207) used in Theorem 3.44 and Proposition 3.45 (on
page 227 ff.) is that d̃ j,κ is considered only for the right convergence, i.e. for all j,κ ,

lim
m→∞

d̃ j,κ
(
ỹnm(t), x̃

)
= 0,

whereas the left convergence is formulated with respect to d̃ j, i.e. for all j ∈I ,

lim
k→∞

sup
m≥ k

d̃ j
(
x̃, ỹnm(t + hk)

)
= 0.

The main advantage of this stronger type of convergence is that we obtain exis-
tence and convergence results about timed solutions to the mutational equations
— without assuming the triangle inequality for each d̃ j ( j ∈I ) in addition (as in
Theorem 3.44). In the geometric example of subsequent § 4.5 (on page 372 ff.),
this special form of compactness proves to be appropriate indeed.

Theorem 20 (Existence due to strong-weak transitional Euler compactness).
Suppose the tuple

(
Ẽ, D̃ , (d̃ j) j∈I, (d̃ j,κ) j∈I ,κ∈J, (ẽ j) j∈I, (ẽ j,κ) j∈I ,κ∈J, (�·� j) j,

Θ̂
(
Ẽ,D̃ ,(d̃i)i,(ẽi)i,(�·�i)i

))
to be strongly-weakly transitionally Euler compact

and
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , Θ̂

(
Ẽ,D̃ ,(d̃i)i,(ẽi)i,(�·�i)i

))
to be Euler

equi-continuous (in the sense of Definition 16 on page 349).

Moreover assume for a fixed period τ ≥ 0, the function

f̃ : B̃Lip
(
[−τ,0], Ẽ; (ẽi)i, (�·�i)i

)× [0,T ] −→ Θ̂
(
Ẽ, D̃ , (d̃i)i, (ẽi)i, (�·�i)i

)

and each z̃ ∈ D̃ , j ∈I , R > 0 :

1.) supỹ(·), t α j( f̃ (ỹ(·), t); z̃, R) < ∞,

2.) supỹ(·), t β j( f̃ (ỹ(·), t); R) < ∞,

3.) supỹ(·), t γ j( f̃ (ỹ(·), t)) < ∞,

4.) for L 1-almost every t ∈ [0,T ] : lim
n→∞

D̂ j
(

f̃ (ỹ1
n(·), t1

n ), f̃ (ỹ2
n(·), t2

n ); z̃, R
)

= 0

for each j ∈I , R ≥ 0 and any sequences (t1
n)n∈N, (t2

n )n∈N in [0,T ] and
(ỹ1

n(·))n∈N, (ỹ2
n(·))n∈N in B̃Lip

(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
satisfying

for every i ∈I and s ∈ [−τ,0]

lim
n→∞

t1
n = t = lim

n→∞
t2
n , lim

n→∞
d̃i
(
ỹ(s), ỹ1

n(s)
)

= 0 = lim
n→∞

d̃i
(
ỹ(s), ỹ2

n(s)
)

sup
n∈N

sup
[−τ,0]

�ỹ1,2
n (·)�i < ∞ .

For every function x̃0(·) ∈ B̃Lip
(
[−τ,0], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
, there exists

a curve x̃(·) : [−τ,T ]−→ Ẽ with the following properties:

(i) x̃(·) ∈ B̃Lip
(
[−τ,T ], Ẽ; (ẽ j) j∈I , (�·� j) j∈I

)
,

(ii) x̃(·)∣∣[−τ,0] = x̃0(·),
(iii) the restriction x̃(·)∣∣[0,T ] is a timed solution of

◦
x̃(t) � f̃

(
x̃(t + ·)∣∣[−τ,0], t

)
.
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The proof of this Existence Theorem is based on exactly the same conclusions as the
one of preceding Theorem 17 (on page 350 ff.). Indeed, the first key difference is
due to considering d̃ j,κ ( j ∈I ,κ ∈J ) for all statements about right convergence.
Second, we need an adapted form of Convergence Theorem:

Proposition 21 (about “strong-weak” convergence of timed solutions).
Suppose the following properties of

f̃n, f̃ : Ẽ× [0,T ] −→ Θ̂
(
Ẽ,D̃ ,(d̃i)i∈I ,(ẽ j) j∈I ,(�·�i)i∈I

)
(n ∈ N)

x̃n, x̃ : [0,T ] −→ Ẽ :

1.) R j := sup
n,t
�x̃n(t)� j + 1 < ∞,

α̂ j(z̃,ρ) := sup
n,t

α j
(
x̃n; z̃, ρ

)
< ∞ for each z̃ ∈ D̃ , ρ ≥ 0,

β̂ j := sup
n

Lip
(
x̃n(·) : [0,T ]−→ (Ẽ, ẽ j)

)
< ∞ for every j ∈I .

2.)
◦
x̃n (·) � f̃n(x̃n(·), ·) (in the sense of Definition 7 on page 339) for every n.

3.) Equi-continuity of ( f̃n)n at (x̃(t), t) at almost every time in the following sense:

for any z̃∈D̃ and L 1-a.e. t∈[0,T ] : lim
n→∞

D̂ j
(

f̃n(x̃(t), t), f̃n(ỹn, tn); z̃, r
)

= 0

for each j ∈I , r ≥ 0 and any (tn)n∈N, (ỹn)n∈N in [t,T ] and Ẽ respectively

with lim
n→∞

tn = t and lim
n→∞

d̃i
(
x̃(t), ỹn

)
= 0, sup

n∈N

�ỹn�i ≤ Ri for each i,

π1 ỹn ↘ π1 x̃(t) for n−→ ∞.

4’.) For L 1-almost every s ∈ [0,T [ and any t < t ′ in [0,T ], there is a sequence
nm↗ ∞ of indices (depending on s, t, t ′) that satisfies for m−→ ∞

(i) D̂ j
(

f̃ (x̃(s),s), f̃nm(x̃(s),s); z̃, r
) −→ 0 for all z̃ ∈ D̃ , r ≥ 0, j ∈I ,

(ii) ∃δm↘0 : ∀ j : d̃ j
(
x̃(t), x̃nm(t+δm)

)−→ 0, π1 x̃nm(t+δm)↘π1 x̃(t)

(iii)∃ δ̃m↘0 : ∀ j,κ : d̃ j,κ
(
x̃nm(t ′−δ̃m), x̃(t ′)

)−→ 0, π1 x̃nm(t ′− δ̃m)↗π1 x̃(t ′).

Then, x̃(·) is always a timed solution to the mutational equation
◦
x̃ (·) � f̃ (x̃(·), ·)

in the tuple
(
Ẽ, D̃ , (d̃ j) j∈I , (ẽ j) j∈I , (�·� j) j∈I , (D̂ j) j∈I

)
.

Proof (of Proposition 21). It imitates the proof of Convergence Theorem 12 (on
page 346 f.), but takes the right convergence with respect to d̃ j,κ (κ ∈J ) into
consideration appropriately.

Choose the index j ∈I arbitrarily.
Then x̃(·) : [0,T ] −→ (Ẽ, ẽ j) is β̂ j-Lipschitz continuous. Indeed, for any t < t ′ in
[0,T ], assumption (4’.) provides a subsequence

(
x̃nm(·))m∈N

and sequences δm↘ 0,
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δ̃m↘ 0 satisfying for any indices i ∈I ,κ ∈J
{

d̃i
(
x̃(t), x̃nm(t + δm)

) −→ 0, π1 x̃nm(t + δm)↘ π1 x̃(t)

d̃i,κ
(
x̃nm(t ′ − δ̃m), x̃(t ′)

) −→ 0, π1 x̃nm(t ′ − δ̃m)↗ π1 x̃(t ′)
for m→ ∞.

First, we conclude π1 x̃(t ′) = t ′ − t + π1 x̃(t) = π1 x̃nm(t ′) for each m ∈ N.

Second, the uniform β̂ j-Lipschitz continuity of x̃n(·),n ∈ N, with respect to ẽ j and
hypothesis (H3’) (̃i’) about (ẽ j,κ) j∈I ,κ∈J (on page 334) imply for each κ ∈J

ẽ j,κ
(
x̃(t), x̃(t ′)

) ≤ limsup
m→∞

ẽ j,κ
(
x̃nm(t + δm), x̃nm(t ′ − δ̃m)

)

≤ limsup
m→∞

β̂ j |t ′ − δ̃m − t− δm|
≤ β̂ j |t ′ − t| ,

ẽ j
(
x̃(t), x̃(t ′)

) ≤ β̂ j |t ′ − t| .
Moreover, hypothesis (H4’) about the lower semicontinuity of �·� j ensures

�x̃(t ′)� j ≤ liminf
m→∞

�x̃nm(t ′ − δ̃m)� j ≤ R j−1.

Finally we verify the solution property

limsup
h↓0

d̃ j(ϑ̃ (s+h, z̃), x̃(t+h)) − d̃ j(ϑ̃ (s,z̃), x̃(t)) · eα j (x̃;ρ) h

h ≤ D̂ j
(
ϑ̃ , f̃ (x̃(t), t); z̃, R j

)

for L 1-almost every t ∈ [0,T [ and any ϑ̃ ∈ Θ̂(Ẽ,D̃ ,(d̃i)i∈I ,(ẽi)i∈I ,(�·�i)i∈I

)
,

z̃ ∈ D̃ , s ∈ [0, T j(ϑ̃ , z̃)[ with s+π1 z̃ ≤ π1 x̃(t).
Indeed, for Lebesgue-almost every t ∈ [0,T [ and any h ∈ ]0, T−t[, assumption (4.)
guarantees a subsequence

(
x̃nm(·))m∈N

and sequences δm ↘ 0, δ̃m ↘ 0 satisfying

for each z̃ ∈ D̃ , i ∈I , κ ∈J , r ≥ 0 and m−→ ∞
⎧
⎪⎪⎨

⎪⎪⎩

D̂i
(

f̃ (x̃(t),t), f̃nm(x̃(t),t); z̃, r
) −→ 0,

d̃i
(
x̃(t), x̃nm(t + δm)

) −→ 0, π1 x̃nm(t + δm) ↘ π1 x̃(t),

d̃i,κ
(
x̃nm(t+h− δ̃m), x̃(t+h)

) −→ 0, π1 x̃nm(t+h− δ̃m)↗ π1 x̃(t+h) .

For every test element z̃ ∈ D̃ and each time s ≥ 0 with s + π1 z̃ ≤ π1 x̃(t) and
s + h < T j(ϑ̃ , z̃), we conclude from condition (8.) on timed transitions that for all
k ∈ ]0,h[ sufficiently small (depending on h,s, t, z̃)

d̃ j
(
ϑ̃(s+ h, z̃), x̃(t + h)

) ≤ d̃ j
(
ϑ̃(s+ h− k, z̃), x̃(t + h)

)
+ h2

2 .

Due to Lemma 8 (on page 340) and the semicontinuity of d̃ j,κ (in the sense of
hypothesis (H3’) (̃i’) on page 334), the index κ ∈J depending on h,k,s, t, z̃ can be
selected such that
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d̃ j
(
ϑ̃(s+ h, z̃), x̃(t + h)

)−h2≤ d̃ j
(
ϑ̃(s+ h− k, z̃), x̃(t + h)

) − h2

2
≤ d̃ j,κ

(
ϑ̃(s+ h− k, z̃), x̃(t + h)

)

≤ limsup
m→∞

(
d̃ j,κ
(
ϑ̃(s+ h− k, z̃), x̃nm(t + h− δ̃m)

)

≤ limsup
m→∞

(
d̃ j
(
ϑ̃(s, z̃), x̃nm(t + k− δ̃m)

)

+ (h− k) · sup
[t+k−δ̃m, t+h−δ̃m]

D̂ j
(
ϑ̃ , f̃nm(x̃nm , ·); z̃,R j

))

×eα̂ j(z̃,R j) ·(h−k).

From now on, the influence of the index κ ∈J is of no further relevance and,
we continue exactly as in the proof of Convergence Theorem 12:

Indeed, choosing suitable subsequences (δml )l∈N, (δ̃ml )l∈N and a sequence (kl)l∈N

such that the preceding limit superior for m→ ∞ coincides with the limit for l→ ∞
and δml < kl− δ̃ml < 1

l for each l ∈ N, we obtain successively

lim
l→∞

d̃ j
(
x̃(t), x̃nml

(t + kl− δ̃ml )
)

= 0,

limsup
l→∞

d̃ j
(
ϑ̃(s, z̃), x̃nml

(t + kl− δ̃ml )
) ≤ d̃ j

(
ϑ̃(s, z̃), x̃(t)

)

as consequences of hypotheses (H3’) (ĩil), (̃i”) (on page 334). Now l −→ ∞ leads to

d̃ j
(
ϑ̃(s+ h, z̃), x̃(t + h)

) − 2 h2 − d̃ j
(
ϑ̃(s, z̃), x̃(t)

) · eα̂ j(z̃,R j) h

≤ h · limsup
m→∞

sup
[t+δm, t+h]

D̂ j
(
ϑ̃ , f̃nm(x̃nm(·), ·); z̃,R j

) · eα̂ j(z̃,R j) h.

For completing the proof, we verify

limsup
h↓0

limsup
m→∞

sup
[t+δm, t+h]

D̂ j
(
ϑ̃ , f̃nm(x̃nm(·), ·); z̃,R j

) ≤ D̂ j
(
ϑ̃ , f̃ (x̃(t), t); z̃,R j

)

for L 1-almost every t ∈ [0,T [ and any subsequence
(
x̃nm(·))m∈N

satisfying
{

d̃i
(
x̃(t), x̃nm(t + δm)

) −→ 0

D̂i
(

f̃ (x̃(t), t), f̃nm(x̃(t), t); z̃, r
) −→ 0

for m −→ ∞ and each i ∈I , r ≥ 0. Indeed, if this inequality was not correct
then we could select ε > 0 and sequences (hl)l∈N, (ml)l∈N, (sl)l∈N s.t. for all l∈N,
{

D̂ j
(
ϑ̃ , f̃nml

(x̃nml
(t + sl), t + sl); z̃, R j

) ≥ D̂ j
(
ϑ̃ , f̃ (x̃(t), t); z̃, R j

)
+ ε,

δml ≤ sl ≤ hl ≤ 1
l , ml ≥ l .

Due to property (H3’) (ĩil), the uniform Lipschitz continuity of (x̃nm(·))m∈N implies

lim
l→∞

d̃i
(
x̃(t), x̃nml

(t + sl)
)

= 0

for each i ∈I . At L 1-a.e. time t ∈ [0,T [, assumptions (3.), (4.’) (i) and hypothesis
(H6’) (on page 337) lead to a contradiction with regard to D̂ j

(
ϑ̃ , f̃ (x̃(t), t); z̃, r

)

for any r ≥ 0. �
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4.4 Example: Mutational Equations for Compact Sets in R
N

Depending on the Normal Cones

K (RN) consists of all nonempty compact subsets of R
N . One of the main goals in

this chapter is to take the normal cones at the topological boundary of the respective
compact set into consideration explicitly. The introduction has already revealed that
there are some obstacles which we want to overcome by means of nonsymmetric
distance functions and the notion of distribution-like (timed) solutions.
In this section, we present a geometric example in detail. It also uses reachable
sets of autonomous differential inclusions for inducing transitions. A separate time
component, however, is of no additional use here and thus, we simply skip it.

4.4.1 Limiting Normal Cones Induce Distance dK,N on K (RN)

The so-called Pompeiu-Hausdorff excess is an example of a nonsymmetric distance
function on K (RN) that is very similar to Pompeiu-Hausdorff distance dl:

�e⊂(K1,K2) := sup
x∈K1

dist(x,K2)

�e⊃(K1,K2) := sup
y∈K2

dist(y,K1).

for K1,K2 ∈K (RN). Obviously, the link to the Pompeiu-Hausdorff distance is

dl(K1,K2) = max{ �e⊂(K1,K2), �e⊃(K1,K2)}
(see also [10, § 3.2] and [162, § 4.C], for example).

In the following, we prefer taking the boundaries into consideration explicitly.
The Pompeiu-Hausdorff excess �e⊃(K1,K2), however, does not distinguish between
boundary points and interior points of the compact sets K1,K2. Thus, a new distance
function dK,N on K (RN) is defined in a moment. Strictly speaking, we even use
the first-order approximation of the boundary represented by the limiting normal
cones of a set. Following the standard definitions as in [162, 180], the proximal
normal cone NP

C (x) and the limiting normal cone NC(x) of any nonempty closed
subset C ⊂ R

N are introduced in Definition A.23 (on page 454).
As a further abbreviation, we set �NC(x) := NC(x)∩B = {v ∈ NC(x) : |v| ≤ 1}.

Definition 22. Set dK,N : K (RN)×K (RN)−→ [0,∞[ ,

dK,N(K1,K2) := dl(K1,K2) + �e⊃(Graph �NK1 , Graph �NK2).

Obviously, the function dK,N is an example of a so-called quasi-metric on the set
K (RN), i.e., it is positive definite and satisfies the triangle inequality, but in gen-
eral, it is not symmetric.
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The properties of dK,N with respect to convergence depend on the relation be-
tween the normal cones of compact sets Kn (n∈N) and their limit K = Limn→∞ Kn

in the sense of Painlevé-Kuratowski (if it exists).
In general, they do not coincide of course, but each limiting normal vector of
K can be approximated by limiting normal vectors of a subsequence (Kn j ) j∈N.
This asymptotic inclusion is formulated in the next proposition and, its proofs re-
sults from Proposition A.72 (on page 487), [14, Theorem 8.4.6], [50, Lemma 4.1]
or [162, Example 6.18], for example. But the inclusion might be strict.

Proposition 23. Let (Mk)k∈N be a sequence of closed subsets of R
N and

set M := Limsupk→∞ Mk in the sense of Painlevé-Kuratowski. Then,

(1.) Graph NP
M ⊂ Limsupk→∞ Graph NP

Mk
,

(2.) Graph NM ⊂ Limsupk→∞ Graph NMk .

Corollary 24. Let (Mk)k∈N be a sequence of closed subsets of R
N whose limit

M := Limk→∞ Mk exists in the sense of Painlevé-Kuratowski. Then

Graph NM ⊂ Liminfk→∞ Graph NMk .
In particular, ∂M ⊂ Liminfk→∞ ∂Mk.

Proof is an indirect consequence of Proposition 23 due to M = Limk→∞ Mk. �

4.4.2 Reachable Sets of Differential Inclusions Provide Transitions

Now we focus on reachable sets of a differential inclusion
x′(·) ∈ F(x(·)) and the evolution of limiting normal cones
at the topological boundary. In particular, we use the Hamil-
ton condition as a key tool. It implies that roughly speaking,
every boundary point x0 of ϑF(t0,K) and normal vector ν ∈
NϑF (t0,K)(x0) have a solution of x′(·) ∈ F(x(·)) and an adjoint
arc linking x0 to some z∈∂K and ν to NK(z), respectively.

Furthermore the solution and its adjoint arc fulfill a system of partial
differential equations with the so-called (upper) Hamiltonian of the
set-valued map F : R

N �R
N ,

HF : R
N×R

N −→ R
N , (x, p) �−→ sup

y∈F(x)
p · y.

Although the Hamilton condition is known in much more general forms (consider
e.g. [180, Theorem 7.7.1] applied to proximal balls), we use only the following
“smooth” version — due to later regularity conditions on F.
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Basic set E := K (RN)
the set of nonempty compact subsets of the Euclidean space R

N

Test set D := KC1,1 (RN)
the set of all nonempty compact N-dimensional
C1,1 submanifolds of R

N

Distance dK,N(K1,K2) := dl(K1,K2) + �e⊃(Graph �NK1 , Graph �NK2)

with the limiting normal cone NK1 (·) (Definition A.23,
page 454),
�NK1(x) := NK1(x)∩B = {v ∈ NK1(x) : |v| ≤ 1} and
Pompeiu-Hausdorff excess �e⊃(M1,M2) := sup

y∈M2

dist(y,M1)

(It is not symmetric, but satisfies the triangle inequality.)

Absolute value �·� := 0

Transition For each F ∈LIP(H )
λ (RN ,RN), i.e. set-valued map F : R

N �R
N

with compact convex values and C1,1 Hamiltonian (Def.26), set

ϑF : [0,1]×K (RN)−→K (RN)

by means of reachable sets of the autonomous differential inclu-
sion x′(·) ∈ F(x(·)) a.e.:

ϑF(t, K0) :=
{

x(t)
∣
∣ there exists x(·) ∈W 1,1([0, t],RN) :

x′(·) ∈ F(x(·)) L 1-a.e. in [0, t],
x(0) ∈ K0

}
.

Compactness transitionally Euler compact — if the transitions are restricted to

maps F ∈ LIP(H ρ
◦ )

λ (RN ,RN)⊂ LIP(H )
λ (RN ,RN) (Definition 34)

due to smoothing effects of C2 Hamiltonians on interior spheres
in reachable sets (§ A.5.5): Proposition 36 (page 368)

Mutational solutions Reachable sets of a nonautonomous differential inclusion
whose set-valued right-hand side is determined via feedback

— if all set values are C1,1 submanifolds of R
N : Remark 39

List of main results
formulated in § 4.4

Existence due to transitional Euler compactness:
Corollary 37 (page 369)

Existence for equations with delay: Corollary 38

(No appropriate results about uniqueness or continuity w.r.t. data,
however, because lower bounds of T(ϑF ,M) > 0 are lacking for
M ∈ D so far, see § 4.3.1. This gap motivates the next example
in § 4.5 below.)

Key tools The adjoint arc is a necessary condition on boundary points and
their limiting normals: Proposition 25 (page 362)

Boundary regularity of reachable sets of differential inclusions
(by means of adjoint arcs) in Appendix A.5 (page 454 ff.)

Table 4.1 Brief summary of the example in § 4.4 in mutational terms:
Mutational equations for compact sets in R

N depending on the normal cones
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Proposition 25. Suppose for the set-valued map F : R
N �R

N

1. F(·) has nonempty convex compact values,
2. HF(·, ·) is continuously differentiable in R

N× (RN \ {0}),
3. the derivative of HF has linear growth in R

N× (RN \B1), i.e.
‖DHF(x, p)‖ ≤ const · (1 + |x|+ |p|) for all x, p ∈R

N , |p|> 1.

Let K ∈K (RN) be any initial set and t0 > 0.

For every boundary point x0 ∈ ∂ ϑF(t0,K) and normal ν ∈ NϑF (t0,K)(x0)\ {0},
there exist a solution x(·) ∈C1([0, t0],RN) and its adjoint arc p(·) ∈C1([0, t0],RN)
with
{

x′(t) = ∂
∂ p HF(x(t), p(t)) ∈ F(x(t)), x(t0) = x0, x(0) ∈ ∂K,

p′(t) = − ∂
∂x HF(x(t), p(t)), p(t0) = ν, p(0) ∈ NK(x(0)).

These assumptions give a first hint about adequate conditions on F : R
N � R

N

for transitions with respect to dK,N . Supposing DHF to be Lipschitz continuous
(in addition) provides some technical advantages such as global existence of unique
solutions to the Hamiltonian system (see also Remark 30 (a) below).

Definition 26. For any parameter λ > 0, the set LIP(H )
λ (RN ,RN) contains all

set-valued maps F : R
N � R

N with
(1.) F : R

N �R
N has nonempty compact convex values,

(2.) HF(·, ·) ∈ C1,1(RN× (RN \ {0})),
(3.) ‖HF‖C1,1(RN× ∂B1)

Def.= ‖HF‖C1(RN× ∂B1) + Lip DHF |RN× ∂B1
< λ .

The Lipschitz continuity with respect to time is a first (and still rather simple) exam-
ple how the Hamiltonian system in combination with the bounds on the Hamiltonian
can be used:

Lemma 27. For every F ∈ LIP(H )
λ (RN ,RN) and K ∈K (RN), 0≤ s≤ t ≤ T,

dK,N

(
ϑF (s,K), ϑF(t,K)

)
≤ λ (eλ T + 2) · (t− s).

Proof. Obviously, the Pompeiu-Hausdorff distance satisfies for every s, t ≥ 0

dl (ϑF(s,K), ϑF(t,K)) ≤ sup
RN
‖F(·)‖∞ · |t− s| ≤ λ |t− s|.

Proposition 25 guarantees that for every 0 ≤ s < t, x ∈ ∂ ϑF(t,K) and p ∈
�NϑF (t,K)(x) \ {0}, there exist a solution x(·) ∈ C1([s, t],RN) and its adjoint arc
p(·) ∈C1([s,t],RN) satisfying
{

x′(τ) = ∂
∂ p HF(x(τ), p(τ)) ∈ F(x(τ)), x(t) = x, x(s) ∈ ∂ϑF (s,K),

p′(τ) = − ∂
∂x HF(x(τ), p(τ)), p(t) = p, p(s) ∈ NϑF (s,K)(x(s)).
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Obviously, HF is positively homogeneous with respect to its second argument and
thus, |p′(τ)| ≤ λ |p(τ)| for all τ. Moreover |p| ≤ 1 implies that the projection of
p on any cone is also contained in B1. Finally we obtain

dist
(
(x, p), Graph �NϑF (s,K)

)
≤ |x− x(s)| + |p− p(s)|

≤ sup
s≤τ≤ t

(
| ∂
∂ p

HF |+ | ∂∂x
HF |

)∣∣
∣
(x(τ),p(τ))

· (t− s)

≤
(
λ +λ eλ t

)
· (t− s).

�
Now the next question considers the choice of suitable “test sets”.

The difficulties in regard to regularity usually occur when the topological boundary
of the reachable set is not continuous. This rather qualitative observation motivates
the question for which type of compact subsets and differential inclusions we can
exclude such discontinuities — within short periods at least.
In subsequent Appendix A.5 (on page 454 ff.), the regularity of reachable sets is
investigated. Let us summarize some results which are of special interest here:

Definition 28. KC1,1(RN) abbreviates the set of all nonempty compact
N-dimensional C1,1 submanifolds of R

N with boundary.
A closed subset C⊂R

N is said to have positive erosion of radius
ρ > 0 if for every r ∈ ]0,ρ [, there is a closed set M ⊂ R

N with
{

C = {x ∈R
N |dist(x,M) ≤ r},

M = {x ∈C |dist(x,∂C) ≥ r}.
K

ρ
◦ (RN) consists of all sets with positive erosion of radius ρ > 0

and, set K◦(RN) :=
⋃

ρ>0

K ρ
◦ (RN) .

Proposition 29. Let F : R
N �R

N be a map of LIP(H )
λ (RN ,RN). For every

compact N-dimensional C1,1 submanifold K of R
N with boundary, there exist a

time T = T(ϑF ,K) > 0 and a radius ρ > 0 such that for all t ∈ [0,T[,

(1.) ϑF(t,K) ∈ KC1,1(RN) with radius of curvature ≥ ρ ,

(2.) K = R
N
∖
ϑ−F(t, R

N \ϑF(t,K)).

Remark 30. (a) A complete proof is presented in Propositions A.34 and A.36.
For statement (1.), we use the evolution of Graph (NK(·)∩∂B) ⊂ R

N×R
N along

the Hamiltonian system with HF .
Indeed, Lemma A.35 (on page 458) specifies sufficient conditions on the system so
that graphs of Lipschitz continuous functions preserve this regularity for short times.
Applying this lemma to unit normals to reachable sets of K∈KC1,1(RN) requires the
Hamiltonian HF to be in C1,1(RN× (RN \ {0})) instead of C1.
In fact, this Lemma A.35 is an analytical reason for choosing KC1,1(RN) as “test
subset” of K (RN) — instead of compact sets with C1 boundary, for example.
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(b) Together with Proposition 25, statement (2.) provides a connection between the
boundaries ∂K and ∂ ϑF(t,K) — now in both forward and backward time direction.

(c) Sets of positive erosion are closely related to “sets of positive reach” (in the
sense of Federer). Further details are presented in § A.5.1 (on page 454 ff.).

Lemma 31. Assume for F, G ∈ LIP(H )
λ (RN ,RN), K1, K2 ∈K (RN) and ρ ,T > 0

that all the sets ϑF(t,K1) ∈KC1,1(RN) (0 ≤ t ≤ T ) have positive reach ≥ ρ (in
the sense of Definition A.26 on page 455).

Then, for every t ∈ [0,T [,

dK,N
(
ϑF(t,K1), ϑG(t,K2)

)

≤ e(ΛF +λ ) t ·
(

dK,N(K1, K2) + 6 N t ‖HF −HG‖C1(RN×∂B1)

)

with ΛF := 9 e2λ T ‖HF‖C1,1(RN×∂B1) ≤ 9 e2λ T λ < ∞.

Postponing the proof for a moment, we now obtain all the parameters needed for a
transition on K (RN):

Proposition 32. For every λ ≥ 0, the reachable sets of the set-valued maps

in LIP(H )
λ (RN ,RN) induce transitions on (K (RN), KC1,1(RN), dK,N , dK,N , 0)

in the sense of Definition 1 and Remark 3 (on page 336 f.) with

α(ϑF ; · , · ) Def.= 10 λ ,

β (ϑF ; · ) Def.= λ (eλ + 2),

γ(ϑF) Def.= 0,

D̂(ϑF ,ϑG; · , · ) Def.= 6 N ‖HF −HG‖C1(RN×∂B1) .

Proof (of Lemma 31). Proposition 1.50 (on page 60) concludes the following
estimate of the Pompeiu-Hausdorff distance from Filippov’s Theorem A.6 about
differential inclusions (with Lipschitz continuous right-hand side)

dl
(
ϑF(t,K1), ϑG(t,K2)

) ≤ dl(K1,K2) · eλ t + sup
RN

dl
(
F(·),G(·)) · eλ t−1

λ

≤ dl(K1,K2) · eλ t + sup
RN×∂B1

|HF −HG| · t eλ t .

Now we still need an upper bound of �e⊃
(
Graph �NϑF (t,K1), Graph �NϑG(t,K2)

)
.

Choose x ∈ ∂ ϑG(t,K2), p ∈ NϑG(t,K2)(x) ∩ ∂B1 and δ > 0 arbitrarily. According
to Proposition 25 (on page 362), there exist a solution x(·) ∈C1([0, t],RN) relative
to G and its adjoint arc p(·) ∈C1([0, t],RN) with
⎧
⎨

⎩

x′(·) = ∂
∂ p HG(x(·), p(·)) ∈G(x(·)), p′(·) = − ∂

∂x HG(x(·), p(·)) ∈ λ |p(·)| ·B
x(0) ∈ ∂K2, p(0) ∈ NK2(x(0)),
x(t) = x, p(t) = p.
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Gronwall’s inequality guarantees

0 < e−λ t ≤ |p(·)| ≤ eλ t

and hence, p(0) e−λ t ∈ �NK2(x(0))\ {0}.

Now let (y0, q̂0) denote an element of Graph �NK1 with q̂0 �= 0 and

∣∣(y0, q̂0) −
(
x(0), p(0) e−λ t

)∣∣ ≤
≤ �e⊃

(
Graph �NK1 , Graph �NK2

)
+ δ .

Assuming that all sets ϑF(s,K1) ∈
K (RN) (s∈ [0,t]) have uniform pos-
itive reach implies the reversibility
in time due to Proposition A.36 (on
page 461):
R

N \K1 = ϑ−F(t, R
N\ϑF (t,K1)).

In particular, y0 is a boundary point of the (not bounded) N-dimensional C1,1

submanifold R
N\ ◦K1 = ϑ−F(t, RN \ϑF(t,K1)) with boundary and, − q̂0 belongs

to its limiting normal cone at y0. As a consequence of Proposition 25 again and due
to H−F(z,v) = HF(z,−v) for all z,v, we obtain a solution y(·) ∈C1([0, t],RN)
and its adjoint arc q(·) satisfying

⎧
⎨

⎩

y′(·) = ∂
∂ p HF(y(·), q(·)), q′(·) = − ∂

∂y HF(y(·), q(·)),
y(0) = y0, q(0) = q̂0 eλ t �= 0,
y(t) ∈ ∂ ϑF(t,K1), q(t) ∈ NϑF (t,K1)(y(t)).

According to Lemma 33 below, the derivative of HF isΛF -Lipschitz continuous on

R
N× (Beλ T \

◦
Be−λ T ). Thus, the Theorem of Cauchy-Lipschitz leads to

dist
(
(x, p), Graph �NϑF (t,K1)

) ≤ ∣
∣(x, p) − (y(t), q(t))

∣
∣

≤ eΛF · t · ∣∣(x(0), p(0)) − (y0, q̂0 eλ t)
∣
∣+ eΛF · t−1

ΛF
· sup

0≤ s≤ t
|DHF −DHG|

∣
∣∣
(x(s), p(s))

.

HF and HG are positively homogeneous w.r.t. the second argument and thus,
∣∣ ∂
∂x j

(HF −HG)|(x(s), p(s))
∣∣ ≤ eλ t ‖DHF −DHG‖C0(RN×∂B1),

∣
∣ ∂
∂ p j

(HF −HG)|(x(s), p(s))
∣
∣ ≤ 3 · ‖HF −HG‖C1(RN×∂B1).

as the partial derivatives in the proof of Lemma 33 below reveal. Now we obtain

dist
(
(x, p), Graph �NϑF (t,K1)

)

≤ e(ΛF +λ ) t
∣
∣(x(0), p(0) e−λ t) − (y0, q̂0)

∣
∣+ eΛF tt ·6 N eλ t ‖HF −HG‖C1(RN×∂B1)

and, since δ > 0 is arbitrarily small and |p|= 1,

�e⊃
(
Graph �NϑF (t,K1), Graph �NϑG(t,K2)

)

≤ e(ΛF +λ ) t ·
{

�e⊃
(
Graph �NK1 , Graph �NK2

)
+ 6 N t · ‖HF −HG‖C1(RN×∂B1)

}
.
�
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Lemma 33. For every F ∈ LIP(H )
λ (RN ,RN) and radius R > 1, the product

9 R2λ is a Lipschitz constant of the derivative DHF restricted to R
N× (BR\

◦
B 1

R
).

Proof (of Lemma 33). It results essentially from the fact that HF (x, p) is posi-
tively homogeneous with respect to p:

For every (x, p) ∈R
N × (BR\

◦
B 1

R
), we conclude from HF(x, p) = |p|HF (x, p

|p|)

∂HF (x,p)
∂ p j

= ∂
∂ p j
|p| · HF(x, p

|p|) + |p| ·
N

∑
k=1

∂
∂ pk

HF |(x, p
|p| )
· ∂
∂ p j

pk
|p|

= p j
|p| · HF(x, p

|p|) + |p| ·
N

∑
k=1

∂
∂ pk

HF |(x, p
|p| )
·
(
− p j pk

|p|3 + δ jk
|p|
)

= p j
|p| ·

(
HF(x, p

|p|) − p
|p| · ∂

∂ p HF |(x, p
|p| )

)
+ ∂

∂ p j
HF |(x, p

|p| )
.

Thus, the Lipschitz constant of p �−→ ∂
∂ p j

HF(x, p) has the upper bound

Lip (p �→ p j

|p| ) ·
(
‖HF‖C0(RN×∂B1) + 1 · ‖ ∂

∂ p
HF‖C0(RN×∂B1)

)

+1 · Lip (p �→ p
|p| )
(

LipHF |RN×∂B1
+‖ ∂

∂ p
HF‖C0(RN×∂B1) +1 · Lip

× ∂
∂ p

HF |RN×∂B1

)
+Lip (p �→ p

|p| ) · Lip
∂
∂ p

HF |RN×∂B1

≤ 2 R · ‖HF‖C1(RN×∂B1) + 2 R · 2 ‖DHF‖C0(RN×∂B1) + 2 R · 2 Lip
∂
∂ p

HF |RN×∂B1

≤ 6 R · ‖HF‖C1,1(RN×∂B1) .

Correspondingly the Lipschitz constant of x �−→ ∂
∂ p j

HF(x, p) is bounded from

above by 2 ‖DHF‖C0,1(RN×∂B1) ≤ 2 λ and thus,

Lip ∂ HF
∂ p j

≤ max
{

Lip
(
x �→ ∂

∂ p j
HF(x, p)

)
, Lip

(
p �→ ∂

∂ p j
HF(x, p)

)}

R>1≤ 6 R · ‖HF‖C1,1(RN×∂B1).

Furthermore, ∂
∂x j

HF(x, p) = |p| · ∂
∂x j

HF |(x, p
|p| )

has the consequence

Lip
(

x �→ ∂HF
∂x j

)
≤ R ·Lip ∂

∂x HF |RN×∂B1
≤ R ·λ ,

Lip
(

p �→ ∂HF
∂x j

)
≤ 1 · ‖ ∂HF

∂x ‖C0(RN×∂B1) + R ·Lip ∂
∂x HF |RN×∂B1

·Lip (p �→ p
|p|)

≤ λ + R · λ · 2 R
R>1≤ 3 R2 λ . �

Proof (of Proposition 32 on page 364).
The semigroup property of reachable sets implies again

dK,N
(
ϑF(h, ϑF(t,K)), ϑF (t + h, K)

)
= 0,

dK,N
(
ϑF(t + h, K), ϑF(h, ϑF(t,K))

)
= 0

for all F ∈ LIP(H )
λ (RN ,RN), K ∈K (RN), h, t ≥ 0 since dK,N is a quasi-metric.
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According to Proposition 29 (on page 363), every map F ∈ LIP(H )
λ (RN ,RN) and

initial set K1 ∈KC1,1(RN) lead to a time T(ϑF ,K1) > 0 and a radius ρ > 0 such
that ϑF(t,K1)∈KC1,1(RN) has positive reach of radius ≥ ρ for any t < T(ϑF ,K1).
Lemma 31 guarantees for all K1 ∈KC1,1(RN) and K2 ∈K (RN) with K1 �= K2

limsup
h↓0

dK,N(ϑF (h,K1), ϑF (h,K2)) − dK,N(K1,K2)
h dK,N(K1,K2)

≤ limsup
h↓0

1
h

(
e(9 e2λ h λ +λ) · h − 1

)
= 10 λ Def.= α(ϑF ; · , · )

and for every F,G ∈ LIP(H )
λ (RN ,RN)

limsup
h↓0

1
h

(
dK,N (ϑF(h, K1), ϑG(h, K2)) − dK,N (K1, K2) · e10 λ h

)

≤ limsup
h↓0

(
dK,N(K1, K2) · 1

h

(
e(9 e2λ h λ +λ) · h − e10λ h

)

+ 6 N · ‖HF −HG‖C1(RN×∂B1) · e(9 e2λ h λ +λ) · h
)

= 6 N · ‖HF −HG‖C1(RN×∂B1).

This estimate justifies the definition

D̂(ϑF , ϑG; · , · ) Def.= 6 N · ‖HF −HG‖C1(RN×∂B1) .

Moreover Lemma 27 (on page 362) states the uniform Lipschitz continuity with
respect to time

dK,N

(
ϑF(s,K), ϑF(t,K)

)
≤ λ (eλ + 2) · (t− s)

for any 0≤ s≤ t ≤ 1 and K ∈K (RN).

Finally we verify

limsup
h↓0

dK,N
(
ϑF(t−h, K1), K2

) ≥ dK,N
(
ϑF (t,K1), K2

)

for all F ∈LIP(H )
λ (RN ,RN), K1 ∈KC1,1(RN), K2 ∈K (RN) and 0 < t < T(ϑF ,K1)

because in combination with the triangle inequality of dK,N , it implies condition (8.)
on (timed) transitions in Definition 1 (on page 336).
Proposition A.36 (on page 461) ensures the reversibility in time in [0,T(ϑF ,K1)[ ,
i.e. for every 0 < h < t < T(ϑF ,K1),

R
N
∖
ϑF(t−h,K1) = ϑ−F

(
h, R

N \ ϑF (t,K1)
)
.

Assuming F ∈ LIP(H )
λ (RN ,RN) (in the sense of Definition 26 on page 362), the

flow of the Hamiltonian system even induces a Lipschitz homeomorphism between
Graph NϑF (t−h,K1) and Graph NϑF (t,K1) since each limiting normal cone contains
exactly one direction and NϑF (t,K1)(·) = − N

RN \ϑF (t,K1) (·).
Thus, Corollary 24 (on page 360) implies

Graph NϑF (t,K1) = Limh↓0 Graph NϑF (t−h,K1)

and finally, dK,N
(
ϑF(t,K1), ϑF (t−h, K1)

) −→ 0 for h ↓ 0.

The last claim results from the triangle inequality of dK,N . �
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4.4.3 Existence of Solutions due to Transitional
Euler Compactness

For applying the existence results of § 4.3.3 (on page 348 ff.), we now have to
focus on an essential question: What are sufficient conditions on set-valued maps

F ∈ LIP(H )
λ (RN ,RN) for the transitional Euler compactness with respect to dK,N ?

Definition 34. For any λ > 0 and ρ > 0 , the set LIP(H ρ◦ )
λ (RN ,RN) consists

of all set-valued maps F : R
N � R

N satisfying

(1.) F : R
N �R

N has compact convex values in K
ρ
◦ (RN).

(2.) HF(·, ·) ∈ C2(RN× (RN \ {0})),
(3.) ‖HF‖C1,1(RN× ∂B1)

Def.= ‖HF‖C1(RN× ∂B1) + Lip DHF |RN× ∂B1
< λ .

Remark 35. LIP(H ρ◦ )
λ (RN ,RN) is a subset of LIP(H )

λ (RN ,RN) introduced in
Definition 26 (on page 362).
Its set-valued maps, however, even fulfill standard hypothesis (H̃ ρ

◦ ) (specified in
Definition A.39 on page 464). In particular, they make points evolve into convex
reachable sets of positive erosion for short times according to Proposition A.41.
This is the “geometrically smoothening” effect on reachable sets which we are now
using for verifying transitional Euler compactness.

Proposition 36.

For any λ ,ρ > 0, consider the maps F ∈ LIP(H ρ◦ )
λ (RN ,RN) (i.e. their reachable

sets, strictly speaking) as transitions on (K (RN), KC1,1(RN), dK,N , dK,N , 0)
in the sense of Definition 1 and Remark 3 (on page 336 f.).

Then,
(
K (RN), KC1,1(RN), dK,N , dK,N , 0, LIP(H ρ◦ )

λ (RN ,RN)
)

is transitionally
Euler compact in the following sense (see Definition 14 on page 348):

Suppose each Gn : [0,1]−→ LIP(H ρ◦ )
λ (RN ,RN) to be piecewise constant (n ∈ N)

and set with arbitrarily fixed K0 ∈K (RN)

G̃n : [0,1]×R
N � R

N , (t,x) �−→ Gn(t)(x),

Kn(h) := ϑG̃n
(h,K0) for h≥ 0.

Furthermore let (h j) j∈N be a sequence in ]0,1[ with h j ↓ 0 and choose t ∈ ]0,1[ .

Then there exist a sequence nk↗ ∞ of indices and a set K(t) ∈K (RN) satisfying

limsup
k→∞

dK,N
(
Knk(t), K(t)

)
= 0,

limsup
j→∞

sup
k≥ j

dK,N
(
K(t), Knk(t + h j)

)
= 0.
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In fact, we obtain as an immediate consequence of Theorem 17 (on page 349 f.):

Corollary 37 (Existence of compact-valued solutions w.r.t. dK,N).

Let f : K (RN)× [0,T ]−→ LIP(H ρ◦ )
λ (RN ,RN) satisfy

∥
∥H f (K1,t1) −H f (K2,t2)

∥
∥

C1(RN×∂B1)
≤ ω(dK,N(K1,K2) + t2− t1)

for all K1,K2 ∈ K (RN) and 0 ≤ t1 ≤ t2 ≤ T with a modulus ω(·) of continuity

and consider the reachable sets of maps in LIP(H ρ◦ )
λ (RN ,RN) as transitions on

(K (RN), KC1,1(RN), dK,N , dK,N , 0) according to Proposition 32 (on page 364).

Then for every initial compact set K0 ∈K (RN), there always exists a solution

K : [0,T ]−→K (RN) to the mutational equation
◦
K (·) � f (K(·), ·) (in the sense

of Definition 7 on page 339 and Remark 3 on page 337) with K(0) = K0, i.e. here,

(a) limsup
h↓0

1
h ·
(
dK,N

(
ϑ f (K(t), t) (h, M), K(t+h)

) − dK,N(M, K(t)) · e10λ h
) ≤ 0

for every compact N-dimensional submanifold M ⊂ R
N with C1,1 boundary

and L 1-almost every t ∈ [0,T [.

(b) dK,N(K(s), K(t)) ≤ const(λ ,T ) · (t− s) for all 0≤ s < t < T.
�

Corollary 38 (Existence of compact-valued solutions to equations with delay).
Let τ > 0 be a fixed period, λ > 0 and assume for

f : BLip
(
[−τ,0], K (RN); dK,N , 0

)× [0,T ] −→ LIP(H ρ◦ )
λ (RN ,RN)

and L 1-almost every t ∈ [0,T [ :

lim
n→∞

∥
∥H f (Mn(·),tn) −H f (M(·),t)

∥
∥

C1(RN×∂B1)
= 0

holds for any curve M(·) ∈ BLip
(
[−τ,0], K (RN); dK,N , 0

)
and sequences (tn)n∈N,

(Mn(·))n∈N in [0,T ] and BLip
(
[−τ,0], K (RN); dK,N , 0

)
respectively satisfying

lim
n→∞

tn = t, lim
n→∞

dK,N
(
M(s), Mn(s)

)
= 0 for every s ∈ [−τ,0].

For every function K0(·) ∈ BLip
(
[−τ,0], K (RN); dK,N , 0

)
, there exists a curve

K(·) ∈ BLip
(
[−τ,T ], K (RN); dK,N , 0

)
with K(·)∣∣[−τ,0] = K0(·) and

limsup
h↓0

1
h ·
(

dK,N
(
ϑ f (K(t+·)|[−τ,0], t) (h, M), K(t+h)

) − dK,N(M, K(t)) ·e10λ h
)
≤ 0

for L 1-almost every t ∈ [0,T [ and any compact N-dimensional submanifold M of
R

N with C1,1 boundary.
�
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Remark 39. We hesitate using the term “morphological equations” here be-
cause we have usually reserved it for mutational equations in the metric space
(K (RN),dl) with transitions induced by LIP(RN ,RN) — as introduced by Aubin
(see § 1.9 on page 57 ff.). In this section, however, K (RN) is supplied with the
other distance function dK,N and we apply the mutational framework with “test
elements”.
The characterization reveals that every solution to a mutational equation in this
recent generalized sense solves the morphological equation in the sense of Aubin
(see § 1.9.6 on page 74 ff.) whenever all its values are in KC1,1(RN).

Proof (of Proposition 36).
Every closed bounded ball in (K (RN),dl) is compact accord-
ing to Proposition 1.47 (on page 57). Hence, there exist a
sequence of indices nk↗ ∞ and a set K(t) ∈K (RN) with

dl(Knk(t), K(t))−→ 0 (k −→ ∞).

Thus, dl(K(t),Knk (t + h)) ≤ dl(K(t),Knk (t)) + λ h −→ λ h
for k→ ∞. Furthermore Corollary 24 (on page 360) implies

dK,N(Knk(t), K(t)) −→ 0.

Now we want to prove that K(t) satisfies the claim by selecting subsequences of
(nk)k∈N for countably many times and finally applying Cantor’s diagonal construc-
tion.

An important tool is Proposition A.41 (on page 464). After choosing radius r̂ > 0
sufficiently large with

⋃
t∈[0,T ]

n∈N

Kn(t)⊂Br̂−1(0)⊂R
N , it ensures the existence of σ =

σ(λ ,ρ , r̂) > 0 and ĥ = ĥ(λ ,ρ , r̂) > 0 such that the reachable set ϑ− G̃n(t+h−· , ·)(h, z)

is convex and has positive erosion of radius σ h for every h ∈ ]0, ĥ] and z ∈ Br̂(0).
In the following, we assume 0 < h j < ĥ for all j ∈ N without loss of generality.
Moreover, each set Kn(t) at time t > 0 is the closed r-neighborhood of a compact
set with a sufficiently small radius r = r(n, t) > 0.

Now the asymptotic properties of

�e⊃
(

Graph �NK(t), Graph �NKnk (t+h)

)
(k −→ ∞)

have to be investigated for each h ∈ ]0, ĥ].
According to Definition A.23 (on page 454), every limiting normal cone results from
the neighboring proximal normal cones, i.e.

NC(x) Def.= Limsup y→x
y∈C

NP
C (y)

for every nonempty set C ⊂ R
N and point x ∈ ∂C. Thus, Graph NC = Graph NP

C
and from now on, we confine our considerations to the excess

�e⊃
(

Graph �NK(t), Graph �NP
Knk (t+h)

)

for any h ∈ ]0, ĥ].
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Pn,h := Kn(t) ∩ ϑ− G̃n(t+h−· , ·)(h, ∂ Kn(t + h))
is a subset of ∂Kn(t). More precisely, it consists
of all points x∈Kn(t) such that a solution of G̃n

starts in x at time t and reaches ∂ Kn(t + h) at
time t + h. In addition, every boundary point y
of Kn(t + h) is attained by such a solution.

By means of boundary solutions and their adjoint arcs, the Hamiltonian system
in Proposition 25 (on page 362) leads to the following estimate for every n ∈ N

(similarly to Lemma 27)

�e⊃
(

Graph �NKn(t)

∣
∣
∣Pn,h

, Graph �NP
Kn(t+h)

)
≤ const(λ ) · h.

In fact, whenever such an adjoint arc traces a proximal normal vector of Kn(t + h)
back to the boundary of Kn(t), it ends up in a proximal normal vector to Kn(t) (and
not just a limiting normal vector) because each point of the corresponding boundary
solution has evolved into convex sets of positive erosion shortly while time is going
back. Hence, we even obtain the estimate

�e⊃
(

Graph �NP
Kn(t)

∣
∣
∣Pn,h

, Graph �NP
Kn(t+h)

)
≤ const(λ ) · h.

The proximal normal cones NP
RN\Kn(t)

(x) = −NP
Kn(t) (x) contain exactly one

direction for every point x ∈ Pn,h as a consequence of Lemma A.24 (on page 454):

Indeed, first, NP
RN\Kn(t)

(x) �= /0 for all x ∈ ∂Kn(t) since Kn(t) is a r-neighborhood.

Second, NP
Kn(t) (x) �= /0 for all x ∈ Pn,h

because ϑ− G̃n(t+h−· , ·)(h, ∂ Kn(t + h)) is a closed σ h-neighborhood of a compact

set (Proposition A.41) and Kn(t) ∩
(
ϑ− G̃n(t+h−· , ·)(h, ∂ Kn(t + h))

)◦ = /0.

For the same reason, the proximal radius of Kn(t) at each x ∈ Pn,h (in its unique
proximal direction) is ≥ σ h. As this lower bound of proximal radius does not
depend on n ∈ N (but merely on h, λ ,ρ , r̂), Proposition A.72 (1.) (on page 487)
ensures

�e⊃
(

Graph �NK(t), Graph �NP
Knk (t)

∣∣
∣Pn,h

)
−→ 0 (k −→ ∞)

for every h ∈ ]0, ĥ]. The triangle inequality of �e⊃ leads to the estimate for every h,

limsup
k→∞

�e⊃
(

Graph �NK(t), Graph �NP
Knk (t+h)

)
≤ const(λ ) · h.

For completing the proof of transitional Euler compactness, a sequence (h j) j∈N

in ]0, ĥ] with h j −→ 0 is given. By means of Cantor’s diagonal construction, we
obtain a subsequence (again denoted by) (nk)k∈N satisfying for every j ∈N, k≥ j

�e⊃
(
Graph �NK(t), Graph �NP

Knk (t+h j)

) ≤ const(λ ) · h j + 1
k ,

and thus, limsup
j→∞

sup
k≥ j

dK,N(K(t), Knk(t + h j)) = 0.

�
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4.5 Further Example: Mutational Equations for Compact
Sets Depending on the Normal Cones

In the preceding section 4.4, we consider a geometric example with the evolution of
compact subsets of R

N depending on their respective normal cones. Indeed, the set
K (RN) of all nonempty compact subsets of R

N is supplied with the quasi-metric

dK,N(K1,K2)
Def.= dl(K1,K2) + �e⊃(Graph �NK1 , Graph �NK2).

KC1,1(RN) consisting of all nonempty compact subsets with C1,1 boundary is used
for “test elements”. Then for any parameter λ > 0 fixed, the set-valued maps
F : R

N �R
N satisfying

(1.) F : R
N �R

N has nonempty compact convex values,

(2.) HF(x, p) Def.= supv∈F(x) p · v belongs to C1,1(RN × (RN \ {0})),
(3.) ‖HF‖C1,1(RN× ∂B1)

Def.= ‖HF‖C1(RN× ∂B1) + Lip DHF |RN× ∂B1
< λ

induce transitions on
(
K (RN), KC1,1(RN), dK,N , dK,N ,0

)
by means of their reach-

able sets of differential inclusions.
Under stronger assumptions about the Hamiltonian HF , the required properties of
transitional Euler compactness are also verified in Proposition 36 (on page 368) and
thus, we obtain the existence of solutions to the corresponding mutational equations
(in the sense of Definition 1 and Remark 3 on page 336 f.)

The estimates between solutions (presented in § 4.3.1 on page 341 ff.) do not
provide uniqueness though. Indeed, the smooth sets in KC1,1(RN) stay smooth
for short times while evolving along such a differential inclusion, but there is
no obvious lower bound of this period satisfying the approximating hypotheses of
Proposition 9 or 10 (on page 341 f.).
Lacking results about uniqueness are the key obstacle motivating a further example.

In this section, we introduce another distance function for describing evolutions
of compact subsets of R

N in Definition 41 below. In contrast to the example of
§ 4.4, the substantial idea is now to

1. use all nonempty compact subsets as “test elements” (instead of KC1,1(RN)), but

2. take only the proximal normals with an exterior ball of radius
≥ j into consideration simultaneously. Choosing the parameter
j here as positive real number induces a family of distance func-
tions specified in subsequent Definition 41.

The essential geometric advantage is that Proposition A.46 (on page 469) pro-
vides an upper estimate how fast these exterior balls can shrink (at most) and
thus, the corresponding time parameter T j(·, ·) may depend on j, but not on the
“test element”.
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3. “record” the period h > 0 how long the compact set K(s+h)⊂ R
N and the “test

set” ϑF(h,K(s)) have been evolving while being compared. This period deter-
mines the radii of exterior balls that are related with each other for calculating
the “distance” between these two sets.
The separate time component is to provide in-
formation about period h : The compact set
K(s+h) is supplied with a linearly increasing
time component whereas all “test sets” pre-
serve their initial time components. Then the
wanted period results from their difference.

For implementing this notion in the mutational
framework, we introduce an additional com-
ponent being either 0 (for “test elements”)
or 1 (otherwise) and indicating the growth
of the time component while evolving (see
Definition 44 on page 376 below).

4.5.1 Specifying Sets and Distance Functions

Now we consider

E := {1}×K (RN),
D := {0}×K (RN) and thus,

Ẽ := R×{1}×K (RN),
D̃ := R×{0}×K (RN).

In comparison with the earlier geometric example in § 4.4, the main advantage
of this second approach is the uniqueness stated in subsequent Proposition 51 (on
page 383).
From now on, fix the parameter Λ > 0 arbitrarily. It is used for both the distance
function d̃K, j in Definition 41 and the set-valued maps (whose reachable sets induce
candidates for timed transitions) in Definition 43.

Definition 40. Let C ⊂ R
N be a nonempty closed set.

For any ρ > 0, the set NP
C,ρ (x) ⊂ R

N consists of all proximal

normal vectors η ∈ NP
C (x) \ {0} with the proximal radius ≥ ρ

(and thus might be empty). Furthermore �NP
C,ρ (x) := NP

C,ρ (x)∩B.

Definition 41. Set
K̃ �(RN) := R×{1}×K (RN),

K̃ �−(RN) := R×{0}×K (RN).
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Basic set Ẽ := K̃ �(RN) Def.= R×{1}×K (RN)

Test set D̃ := K̃ �−(RN) Def.= R×{0}×K (RN)

(The second component in {0,1} is just to indicate if the real
time component is increasing linearly along transitions or not.)

Distances d̃K, j
(
(s,μ ,C), (t,ν ,D)

)
:=

dl(C,D) + limsup
κ ↓0

∫ ∞

j
ψ(ρ+κ+200Λ |t− s|) ·

�e⊂
(

Graph �NP
D, (ρ+κ+200Λ |t−s|),

Graph �NP
C,ρ

)
dρ

with a fixed nonincreasing weight function ψ ∈C∞
0 ([0,2[, [0,∞[)

and each j ∈ [0,1]. (It satisfies the timed triangle inequality.)

Absolute value �·� := 0

Timed transition For each F ∈ LIP(C2)
Λ (RN ,RN), i.e. set-valued map F : R

N �R
N

with compact convex values and C2 Hamiltonian (Def.43), define

ϑ̃F : [0,1] × (K̃ �−(RN)∪K̃ �(RN)
) −→ K̃ �−(RN)∪K̃ �(RN)

as ϑ̃F
(
h, (t,μ ,K)

)
:=
{ (

t +h, 1, ϑF(h,K)
)

if μ = 1(
t, 0, ϑF(h,K)

)
if μ = 0

by means of reachable sets ϑF(h, K0) of the autonomous differ-
ential inclusion x′(·) ∈ F(x(·)) a.e.

Compactness strongly-weakly transitionally Euler compact

(due to asymptotic properties of proximal normals with positive
proximal radii bounded from below, § A.9): Lemma 49 (p. 381)

Mutational solutions Reachable sets of a nonautonomous differential inclusion
whose set-valued right-hand side is determined via feedback:
a consequence of Proposition 1.57 (page 64)

(This geometric relation holds without the restriction of preced-
ing § 4.4 that all set values have to be C1,1 submanifolds of R

N

as in Remark 39, page 370.)

List of main results
formulated in § 4.5

Existence due to strong-weak transitional Euler compactness:
Proposition 50 (page 381)

Uniqueness due to Lipschitz continuity: Proposition 51

Key tools The adjoint arc is a necessary condition on boundary points and
their limiting normals: Proposition 25 (page 362)

Proximal balls at the boundary of reachable sets of differential in-
clusions (by means of adjoint arcs and matrix Riccati equations)
in Appendix A.5.6 (page 469 ff.)

Table 4.2 Brief summary of the example in § 4.5 in mutational terms:
Mutational equations for compact sets in R

N depending on the normal cones
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For each index j,κ ∈ [0,1], define

d̃K, j,κ : (K̃ �−(RN)∪ K̃ �(RN))× (K̃ �−(RN)∪ K̃ �(RN))−→ [0,∞[ ,

by

d̃K, j,κ
(
(s,μ ,C), (t,ν,D)

)
:=

dl(C,D) +
∫ ∞

j
ψ(ρ+κ+200Λ |t− s|) · �e⊂

(
Graph �NP

D, (ρ+κ+200Λ |t−s|),

Graph �NP
C,ρ

)
dρ

with a fixed nonincreasing weight function ψ ∈C∞
0 ([0,2[), ψ ≥ 0. Furthermore set

d̃K, j
(
(s,μ ,C), (t,ν,D)

)
:= sup

κ∈ ]0,1]
d̃K, j,κ

(
(s,μ ,C), (t,ν,D)

)

= limsup
κ ↓0

d̃K, j,κ
(
(s,μ ,C), (t,ν,D)

)
.

In fact, the second component (being either 0 or 1) does not have any influence on
d̃K, j and d̃K, j,κ . Its purpose will only be to determine the evolution of time com-
ponents for “test elements” and “normal” elements in a different way (as specified
in subsequent Definition 44).

Lemma 42. For each j ∈ [0,1], the function d̃K, j is reflexive and satisfies the

timed triangle inequality on K̃ �−(RN)∪ K̃ �(RN). Moreover, (d̃K, j,κ)κ∈ ]0,1]
satisfies the following generalization of the timed triangle inequality:

d̃K, j,κ+κ ′
(
K̃1, K̃3

) ≤ d̃K, j,κ ′
(
K̃1, K̃2

)
+ d̃K, j,κ

(
K̃2, K̃3

)

for any κ ,κ ′ ∈ ]0,1], K̃1, K̃2, K̃3 ∈ K̃ �−(RN)∪K̃ �(RN) with π1 K̃1≤ π1 K̃2≤ π1 K̃3.

Thus, (d̃K, j) j∈ ]0,1] and (d̃K, j,κ) j,κ∈ ]0,1] fulfill the hypotheses (H1), (H3’) of § 4.1.

Proof. Reflexivity is obvious. For verifying the timed triangle inequality, choose
any (t1,μ1,K1), (t2,μ2,K2), (t3,μ3,K3) ∈ R×{0,1}×K (RN) with t1 ≤ t2 ≤ t3.
Then, we obtain for every κ ,κ ′ > 0

�e⊂
(

Graph �NP
K3, (ρ+κ+κ ′+200Λ (t3−t1)), Graph �NP

K1,ρ

)

≤ �e⊂
(

Graph �NP
K3, (ρ+κ+κ ′+200Λ (t3−t1)), Graph �NP

K2, (ρ+κ+200Λ (t2−t1))

)

+ �e⊂
(

Graph �NP
K2, (ρ+κ+200Λ (t2−t1)), Graph �NP

K1,ρ

)
.

With regard to the weighted integral in d̃K, j,κ+κ ′
(
(t1,μ1,K1), (t3,μ3,K3)

)
, a simple

translation of coordinates (for the first distance term) and the monotonicity of ψ
(related with the second distance term) imply

d̃K, j,κ+κ ′
(
(t1,μ1,K1), (t3,μ3,K3)

)

≤ d̃K, j,κ ′
(
(t1,μ1,K1), (t2,μ2,K2)

)
+ d̃K, j,κ

(
(t2,μ2,K2), (t3,μ3,K3)

)

≤ d̃K, j
(
(t1,μ1,K1), (t2,μ2,K2)

)
+ d̃K, j

(
(t2,μ2,K2), (t3,μ3,K3)

)
. �
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4.5.2 Reachable Sets Induce Timed Transitions
on (K̃ �(RN), K̃ �−(RN))

The Hamilton condition in Proposition 25 (on page 362) is to bridge the gap between
the geometric evolution of proximal normal cones and its analytical description. In
particular, Corollary A.47 (on page 470) gives a bound how fast the exterior ball in
a proximal direction can change its radius at most. For applying this result as a tool
in a moment, we choose the following class of set-valued maps:

Definition 43. For Λ > 0 fixed, the set LIP(C2)
Λ (RN ,RN) consists of all set-

valued maps F : R
N � R

N satisfying

1.) F : R
N �R

N has nonempty compact convex values,
2.) HF(x, p) := sup

v∈F(x)
p · v is twice continuously differentiable in R

N× (RN\{0}),
3.) ‖HF‖C2(RN× ∂B1) < Λ .

These set-valued maps of LIP(C2)
Λ (RN ,RN) induce the candidates for timed transi-

tions on (K̃ �(RN), K̃ �−(RN), (d̃K, j) j∈ ]0,1],(d̃K, j) j∈ ]0,1], 0) in the following sense:

Definition 44. For any set-valued map F ∈ LIP(C2)
Λ (RN ,RN), element (t,μ ,K) ∈

R×{0,1}×K (RN) = K̃ �−(RN) ∪ K̃ �(RN) and time h > 0, set

ϑ̃F
(
h, (t,μ ,K)

)
:=
(
t + μ h, μ , ϑF(h,K)

)

with the reachable set ϑF (h,K)⊂R
N of the differential inclusion x(·) ∈ F(x(·)) a.e.

Proposition 45. The maps

ϑ̃F : [0,1] × (K̃ �−(RN)∪ K̃ �(RN)
) −→ K̃ �−(RN)∪ K̃ �(RN)

of all F ∈ LIP(C2)
Λ (RN ,RN) introduced in Definition 44 induce timed transitions on

the tuple (K̃ �(RN), K̃ �−(RN), (d̃K, j) j∈ ]0,1], (d̃K, j) j∈ ]0,1], 0) with

α j(ϑ̃F ; · , ·) Def.= 10 Λ e2Λ ·τ( j,Λ),

β j(ϑ̃F ; ·) Def.= Λ (1 +‖ψ‖L1 (eΛ + 1)),

γ j(ϑ̃F ) Def.= 0,

T j(ϑ̃F , ·) Def.= min{τ( j,Λ), 1} (mentioned in Corollary A.47),

D̂ j(ϑ̃F , ϑ̃G; · , ·) Def.= (1 + 6N ‖ψ‖L1) · ‖HF −HG‖C1(RN×∂B1) .

The proof consists of several steps which we first summarize and then verify
in detail. They are very similar to the proofs in § 4.4.2 indeed, but take the prox-
imal radii into consideration additionally.
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Lemma 46. For every set-valued map F ∈ LIP(C2)
Λ (RN ,RN), initial element

K̃ = (b,1,K) ∈ K̃ �(RN) and any times 0 ≤ s < t ≤ 1,

d̃K, j

(
ϑ̃F
(
s, K̃
)
, ϑ̃F

(
t, K̃
)) ≤ Λ (1 +‖ψ‖L1 (eΛ + 1)) · |t− s|.

Lemma 47. For any j ∈ ]0,1], let τ( j,Λ) > 0 denote the time period mentioned

in Corollary A.47 (on page 470). Choose any maps F, G ∈ LIP(C2)
Λ (RN ,RN), initial

elements K̃1 = (t1,0,K1) ∈ K̃ �−(RN), K̃2 = (t2,1,K2) ∈ K̃ �(RN) with t1 ≤ t2.

Then for all h ∈ [0,τ( j,Λ)[, the following inequality holds

d̃K, j

(
ϑ̃F (h, K̃1), ϑ̃G(h, K̃2)

)

≤ e(λH +Λ)h ·
(

d̃K, j(K̃1, K̃2)+ (1 + 6N‖ψ‖L1) ·h · ‖HF−HG‖C1(RN×∂B1)

)

with the abbreviation λH := 9Λ e2Λ ·τ( j,Λ).

Corollary 48. Under the assumptions of Lemma 47,

d̃K, j

(
ϑ̃F(t+h, K̃1), ϑ̃G(h, K̃2)

)

≤ e(λH +Λ)h ·
(

d̃K, j(ϑ̃F(t, K̃1), K̃2)+ (1+ 6N‖ψ‖L1)h‖HF −HG‖C1(RN×∂B1)

)

for all h, t ≥ 0 with t + h < τ( j,Λ) and
K̃1 = (t1,0,K1) ∈ K̃ �−(RN), K̃2 = (t2,1,K2) ∈ K̃ �(RN) with t1 ≤ t2.

Proof (of Lemma 46). Obviously, the Pompeiu-Hausdorff distance satisfies for
every s,t ≥ 0

dl
(
ϑF (s,K), ϑF(t,K)

) ≤ sup
RN
‖F(·)‖∞ · |t− s| ≤ Λ |t− s|.

Let τ( j,Λ) > 0 denote the time period mentioned in Corollary A.47 (on page 470).
Without loss of generality, we can now assume 0 < t − s < 1

200Λ τ( j,Λ) as a
consequence of the timed triangle inequality.

For any (x, p) ∈Graph �NP
ϑF (t,K), (ρ+200Λ (t−s)) and ρ ≥ j with ρ+200Λ (t− s)≤ 2,

Corollary A.47 and Proposition 25 (on page 362) provide both a solution
x(·) ∈C1([s,t],RN) and its adjoint arc p(·) ∈C1([s, t],RN) satisfying
{

x′(σ) = ∂
∂ p HF(x(σ), p(σ)) ∈ F(x(σ)), x(t) = x, x(s) ∈ ∂ϑF(s,K),

p′(σ) = − ∂
∂x HF(x(σ), p(σ)), p(t) = p, p(s) ∈ NP

ϑF (s,K)(x(s))

and, p(s) has proximal radius ≥ ρ+ 200Λ (t− s) − 81Λ (t− s) > ρ .
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Obviously, HF is positively homogeneous with respect to its second argument and
thus, its definition implies |p′(σ)| ≤ Λ |p(σ)| for all σ . Moreover |p| ≤ 1
implies that the projection of p on any cone is also contained in B1 and so finally,
we obtain similarly to Lemma 27 (on page 362)

�e⊂
(
(x, p), Graph �NP

ϑF (s,K),ρ

)
≤ |x− x(s)|+ |p− p(s)|

≤ sup
s≤σ≤ t

(
| ∂
∂ p

HF |+ | ∂∂x
HF |

)∣∣
∣
(x(σ),p(σ))

· (t− s)

≤
(
Λ +Λ eΛ t

)
· (t− s).

�

Proof (of Lemma 47). Proposition 1.50 (on page 60) concludes the following
estimate of the Pompeiu-Hausdorff distance from Filippov’s Theorem A.6 about
differential inclusions (with Lipschitz continuous right-hand side)

dl
(
ϑF (h,K1), ϑG(h,K2)

)
≤ dl(K1,K2) · eΛ h + sup

RN
dl
(

F(·),G(·)
)
· eΛ h−1

Λ

≤ dl(K1,K2) · eΛ h + sup
RN×∂B1

|HF −HG| · h eΛ h .

According to Definition 44,

ϑ̃F(h, K̃1) ∈ {t1}×{0}×K (RN) ⊂ K̃ �−(RN),

ϑ̃G(h, K̃2) ∈ {t2 + h}×{1}×K (RN) ⊂ K̃ �(RN).

Now for any κ ∈ ]0,1] and ρ ≥ j with ρ + κ + 200Λ (t2− t1 + h) ≤ 2, we need
an upper bound of �e⊂

(
Graph �NP

ϑG(h,K2), (ρ+κ+200Λ (t2−t1+h)), Graph �NP
ϑF (h,K1), ρ

)
:

Choose any δ > 0, x ∈ ∂ ϑG(h,K2) and p ∈ NP
ϑG(h,K2)(x) ∩ ∂B1 with proximal

radius ≥ ρ + κ + 200Λ (t2 − t1 + h) arbitrarily. According to Corollary A.47
and Proposition 25, there exist a solution x(·) ∈ C1([0,h],RN) and its adjoint arc
p(·) ∈C1([0,h],RN) fulfilling
⎧
⎨

⎩

x′(·) = ∂
∂ p HG(x(·), p(·)) ∈ G(x(·)), p′(·) = − ∂

∂x HG(x(·), p(·)) ∈Λ |p(·)| ·B
x(0) ∈ ∂K2, p(0) ∈ NP

K2
(x(0)),

x(h) = x, p(h) = p,

and, the proximal radius at x(0) in direction p(0) is

≥ ρ+κ+ 200Λ (t2−t1+h)−81Λ h > ρ+κ+ 100Λ h + 200Λ (t2−t1).

Gronwall’s inequality ensures e−Λ h ≤ |p(·)| ≤ eΛ h in [0,h] and hence,

p(0) e−Λ h ∈ �NP
K2

(x(0))\ {0}.
Now let (y0, q̂0) denote an element of Graph �NP

K1, (ρ+100Λ h) with q̂0 �= 0 and
∣
∣∣(y0, q̂0) −

(
x(0), p(0) e−Λ h

) ∣∣∣

≤ �e⊂
(

Graph �NP
K2, (ρ+κ+100Λ h+200Λ (t2−t1)),Graph �NP

K1, (ρ+100Λ h)

)
+ δ .
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As another consequence of Corollary A.47, we get a solution y(·) ∈C1([0,h],RN)
and its adjoint arc q(·) satisfying
⎧
⎪⎨

⎪⎩

y′(·) = ∂
∂ p HF(y(·), q(·)), q′(·) = − ∂

∂y HF(y(·), q(·)) ∈Λ |q(·)| ·B
y(0) = y0, q(0) = q̂0 eΛ h �= 0,
y(h) ∈ ∂ ϑF(h,K1), q(h) ∈ NP

ϑF (h,K1)(y(h))

and the proximal radius at y(h) in direction q(h) is ≥ ρ+100Λ h − 81Λ h > ρ .
HF is assumed to be twice continuously differentiable with ‖HF‖C2(RN× ∂B1) <Λ .

Moreover, HF (x, p) is positively homogeneous with respect to p and thus, the

derivative of HF is λH -Lipschitz continuous in R
N × (BeΛ ·τ( j,Λ ) \

◦
Be−Λ ·τ( j,Λ ))

with the abbreviation λH := 9Λ e2Λ ·τ( j,Λ) (due to Lemma 33 on page 366).
Correspondingly to the proof of Lemma 31 (on page 364), the Theorem of Cauchy-
Lipschitz applied to the Hamiltonian system leads to

�e⊂
(
(x, p), Graph �NP

ϑF (h,K1),ρ

)

≤
∣
∣
∣(x, p)− (y(h), q(h))

∣
∣
∣

≤ eλH ·h ·
∣
∣∣(x(0), p(0))− (y0, q̂0eΛh)

∣
∣∣ + eλH ·h−1

λH
·sup
[0,h]
|DHF −DHG|

∣
∣∣
(x(·),p(·))

.

HF and HG are positively homogeneous with respect to the second argument and
thus, ∣

∣
∣ ∂∂x j

(HF −HG)|(x(s), p(s))

∣
∣
∣ ≤ eΛ h ‖DHF −DHG‖C0(RN×∂B1),

∣
∣
∣ ∂
∂ p j

(HF −HG)|(x(s), p(s))

∣
∣
∣ ≤ 3 · ‖HF −HG‖C1(RN×∂B1).

We obtain

�e⊂
(
(x, p), Graph �NP

ϑF (h,K1),ρ

)
≤ e(λH +Λ) h

(∣∣
∣(x(0), p(0) e−Λ h)− (y0, q̂0)

∣
∣
∣

+h ·6 N ‖HF −HG‖C1(RN×∂B1)

)

and, since δ > 0 is arbitrarily small and |p|= 1,

�e⊂
(

Graph �NP
ϑG(h,K2), (ρ+κ+200Λ (t2−t1+h)), Graph �NP

ϑF (h,K1), ρ

)

≤ e(λH +Λ) h ·
{

�e⊂
(

Graph �NP
K2, (ρ+κ+100Λ h+200Λ (t2−t1)), Graph �NP

K1, (ρ+100Λ h)

)

+ 6 N h · ‖HF −HG‖C1(RN×∂B1)

}
.

With regard to d̃K, j,κ

(
ϑ̃F (h, K̃1), ϑ̃G(h, K̃2)

)
, integrating over ρ and the mono-

tonicity of the weight function ψ (supposed in Definition 40) leads to the claimed
estimate for all h ∈ [0,τ( j,Λ)[. �

Proof (of Corollary 48). It results directly from Lemma 47 since

ϑ̃F(t+h, K̃1) = {t1}×{0}×ϑF(t+h,K1) = ϑ̃F
(
h, ϑ̃F(t, K̃1)

)
,

ϑ̃F(t, K̃1) = {t1}×{0}×ϑF(t,K1) ∈ K̃ �−(RN). �
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Proof (of Proposition 45). The semigroup property ϑ̃F
(
h, ϑ̃F(t, K̃)

)
= ϑ̃F(t+h, K̃)

holds for all F ∈ LIP(C2)
λ (RN ,RN), K̃ ∈ K̃ �−(RN)∪ K̃ �(RN), h, t ≥ 0.

Moreover, Definition 44 has the immediate consequences for every K̃ ∈ K̃ �(RN),
Z̃ ∈ K̃ �−(RN) and h ∈ [0,1]

ϑ̃F (0, K̃) = K̃
ϑ̃F (h, Z̃) ∈ {π1 Z̃}×{0}×K (RN) ⊂ K̃ �−(RN)
ϑ̃F (h, K̃) ∈ {h+π1 K̃}×{1}×K (RN) ⊂ K̃ �(RN)

i.e., conditions (1.), (6.), (7.) of Definition 1 (on page 336) are also satisfied.

Set T j(ϑ̃F , ·) Def.= min{τ( j,Λ),1} with the time parameter τ( j,Λ) > 0 men-
tioned in Corollary A.47 (on page 470). Then, Corollary 48 guarantees for all
Z̃ ∈ K̃ �−(RN), K̃ ∈ K̃ �(RN), t ∈ [0,T j(ϑ̃F , Z̃)[ with t +π1 Z̃ ≤ π1 K̃

limsup
h↓0

d̃K, j

(
ϑ̃F (t+h, Z̃), ϑ̃F (h, K̃)

)
− d̃K, j(ϑ̃F (t,Z̃), K̃)

h d̃K, j(ϑ̃F (t,Z̃), K̃)
≤ λH +Λ ≤ 10Λ e2Λ ·τ( j,Λ).

Lemma 46 implies condition (4.’) of Definition 1 with the Lipschitz constant

β j(ϑ̃F ; ·) Def.= Λ (1 +‖ψ‖L1 (eΛ + 1)) .

Setting for all Z̃ ∈ K̃ �−(RN) and F,G ∈ LIP(C2)
Λ (RN ,RN),

D̂ j(ϑ̃F , ϑ̃G; Z̃, ·) Def.= (1 + 6N ‖ψ‖L1) ‖HF −HG‖C1(RN×∂B1) .

hypotheses (H5’) – (H7’) (on page 337) are fulfilled due to Corollary 48.

Finally condition (8.) of Definition 1 has to be verified, i.e.,

limsup
n→∞

d̃K, j
(
ϑ̃F(t−hn, Z̃), K̃n

) ≥ d̃K, j
(
ϑ̃F(t, Z̃), K̃

)

for all Z̃ ∈ K̃ �−(RN), K̃, K̃n ∈ K̃ �(RN), t ∈ [0,T j(ϑ̃F , Z̃)] and hn ↓ 0 satisfying
π1 Z̃ ≤ π1 K̃n↗ π1 K̃ and d̃K, j

(
K̃n, K̃)−→ 0 for each j ∈ ]0,1].

Indeed, dl
(
ϑF (t−h,Z), ϑF(t,Z)

)−→ 0 holds for h ↓ 0 and any set Z ∈K (RN).
Proposition A.72 (on page 487) states for any 0 < r < ρ and (Kn)n∈N tending to
K ∈K (RN)

Limsupn→∞ Graph �NP
ϑF (t−hn,Z),ρ ⊂ Graph �NP

ϑF (t,Z),ρ

Liminfn→∞ Graph �NP
Kn, r ⊃ Graph �NP

K,ρ

Thus, we obtain for every Z̃ = (a,0,Z) ∈ K̃ �−(RN), K̃ = (b,1,K), K̃n =
(bn,1,Kn) ∈ K̃ �(RN), ρ > 0, κ ∈ ]0,1] and t ∈ [0,T j(ϑ̃F , Z̃)] with a≤ bn↗ b

liminf
n→∞

�e⊂
(

Graph �NP
Kn, (ρ+ κ

2 +200Λ |bn−a|), Graph �NP
ϑF (t−hn,Z),ρ

)

≥ �e⊂
(

Graph �NP
K, (ρ+κ+200Λ |b−a|), Graph �NP

ϑF (t,Z),ρ

)
.

Due to π1 ϑ̃F (t − h, Z̃) = a = π1 ϑ̃F(t, Z̃), this inequality, the monotonicity of
ψ(·) and Fatou’s Lemma imply the wanted relation with respect to d̃K, j. �
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4.5.3 Existence due to Strong-Weak Transitional
Euler Compactness

In §§ 4.3.3, 4.3.4, the results about existence of timed solutions to mutational
equations are based on two appropriate forms of transitional Euler compactness
(see Definitions 14, 18). Considering a converging sequence of compact sets, some
features of their proximal cones are summarized in Appendix A.9 (on page 487 f.).
In particular, the inclusion

Graph NP
K,ρ ⊂ Limsupn→∞ Graph NP

Kn,ρ
does not hold for every radius ρ > 0 in general. This rather technical aspect is the
obstacle why we now prefer the second approach of § 4.3.4 using “strongly-weakly
transitionally Euler compact” and Existence Theorem 20 (on page 354).
In fact, each timed solution K̃(·) = (·,1,K(·)) : [0,T ] −→ K̃ �(RN) induces a
solution to the underlying morphological equation in the sense of Aubin (due to
K̃ �−(RN)∼= K̃ �(RN)∼= R×K (RN)).

Lemma 49. The tuple (K̃ �(RN), K̃ �−(RN), (d̃K, j) j∈ ]0,1], (d̃K, j,κ) j,κ∈ ]0,1],

(d̃K, j) j∈ ]0,1], (d̃K, j,κ) j,κ∈ ]0,1], 0, LIP(C2)
Λ (RN ,RN)) is strongly-weakly transitionally

Euler compact (in the sense of Definition 18 on page 353), i.e. here:

Suppose each function Gn : [0,1] −→ LIP(C2)
Λ (RN ,RN) (n ∈ N) to be piecewise

constant and set with some arbitrarily fixed K̃0 = (t0,1,K0) ∈ K̃ �(RN)
G̃n : [0,1]×R

N � R
N , (t,x) �−→ Gn(t)(x),

K̃n(h) := {t0 + h}×{1}×ϑG̃n
(h,K0) ∈ K̃ �(RN) for h ∈ [0,1].

For any t ∈ [0,1[ and sequence hm↘ 0, there exist a sequence nk↗ ∞ of indices
and an element K̃ = (t,1,K) ∈ K̃ �(RN) satisfying for every j,κ ∈ ]0,1]

lim
k→∞

d̃K, j,κ(K̃nk(t), K̃) = 0,

lim
m→∞

sup
k≥m

d̃K, j(K̃, K̃nk(t+hm)) = 0.

Proposition 50.

Regard the maps ϑ̃F of all set-valued maps F ∈ LIP(C2)
Λ (RN ,RN) (as in Definitions

43, 44) as timed transitions on (K̃ �(RN), K̃ �−(RN), (d̃K, j) j∈ ]0,1], (d̃K, j) j∈ ]0,1], 0)
according to Proposition 45.

For f̃ : K̃ �(RN)× [0,T ]−→ LIP(C2)
Λ (RN ,RN), suppose continuity in the sense that

‖H f̃ (K̃,t)−H f̃ (K̃m,tm)‖C1(RN×∂B1)
m→∞−→ 0

whenever tm↘ t and d̃K,0(K̃, K̃m)−→ 0 (K̃, K̃m ∈ K̃ �(RN), π1 K̃ ≤ π1 K̃m).

Then for every initial element K̃0 ∈ K̃ �(RN), there exists a timed solution K̃ =

(τ,1,K) : [0,T ]−→ K̃ �(RN) to the mutational equation
◦
K̃ (·) � f̃ (K̃(·), ·).

In particular, limsup
h↓0

1
h ·dl
(
ϑ f̃ (K̃(t), t) (h, K(t)), K(t+h)

)
= 0 for L 1-a.e. t

and, K(t)⊂R
N coincides with the reachable set ϑ f̃ (K̃(·), · )

(
t, K(0)

)
for every t.
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Proof (of Lemma 49). It is very similar to the proof of Proposition 36 (on
page 370 ff.), but takes the proximal radii into consideration additionally.

Each closed bounded ball in (K (RN),dl) is compact due to Proposition 1.47
(on page 57). Hence, there exist a sequence nk ↗ ∞ of indices and K̃ = (t,1,K) ∈
K̃ �(RN) with dl(Knk (t), K)−→ 0 (k−→∞). Proposition A.72 (3.) (on page 487)
ensures for all ρ ,κ > 0

�e⊂
(
Graph �NP

K,ρ+κ , Graph �NP
Knk (t),ρ

) −→ 0 (k −→ ∞)

and thus, d̃K, j,κ
(
K̃nk(t), K̃

) −→ 0 for every j,κ ∈ ]0,1].

Now we prove sup
k≥m

d̃K, j
(
K̃, K̃nk (t + hm)

) −→ 0 for m−→ ∞,

i.e. in particular, the convergence is uniform with respect to κ ∈ ]0,1].

Indeed, �e⊂
(

Graph �NP
Knk (t),ρ , Graph �NP

K,ρ

)
−→ 0 (k −→ ∞)

results from Proposition A.72 (1.) (on page 487) for every ρ > 0 and hence,
Lebesgue’s Theorem of Dominated Convergence guarantees

∫ 2

0
�e⊂
(

Graph �NP
Knk (t),ρ , Graph �NP

K,ρ

)
dρ −→ 0 (k −→ ∞).

Thus,

d̃K, j
(
K̃, K̃nk(t)

)

≤ dl
(
K,Knk (t)

)
+‖ψ‖L∞ ·

∫ 2

0
�e⊂
(

Graph �NP
Knk (t),ρ , Graph �NP

K,ρ

)
dρ

−→ 0 (k −→ ∞).

Finally the timed triangle inequality of d̃K, j (according to Lemma 42 on page 375)
and the uniform Lipschitz continuity in time (according to Lemma 46 on page 377)
imply for any sequence hm↘ 0

sup
k≥m

d̃K, j
(
K̃, K̃nk(t + hm)

) −→ 0 (m−→ ∞). �

Proof (of Proposition 50). It results from Existence Theorem 20 (on page 354).
Indeed, d̃K,0 and d̃K, j ( j ∈ ]0,1]) satisfy

dl(K1,K2) ≤ d̃K, j(K̃1, K̃2) ≤ d̃K,0(K̃1, K̃2)

≤ d̃K, j(K̃1, K̃2) + ‖ψ‖L∞ (‖K1‖∞+‖K2‖∞+2) j

for all K̃1 = (t1,μ1,K1), K̃2 = (t2,μ2,K2) ∈ K̃ �(RN)∪ K̃ �−(RN).
For any sequence

(
K̃m = (tm,1,Km)

)
m∈N

in K̃ �(RN) and K̃ = (t,1,K)∈ K̃ �(RN)
suppose tm↘ t and d̃K, j(K̃, K̃m)−→ 0 (m→ ∞) for each j ∈ ]0,1]. Then,

d̃K,0(K̃, K̃m) = limsup
j↓0

d̃K, j(K̃, K̃m) m→∞−→ 0

and finally ‖H f̃ (K̃,t)−H f̃ (K̃m,tm)‖C1(RN×∂B1)
m→∞−→ 0 – as needed for Theorem 20.

The claimed link to reachable sets of the nonautonomous differential inclusion
y′ ∈ f̃ (K̃(·), · )(y) results from Proposition 1.57 (on page 64). �
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4.5.4 Uniqueness of Timed Solutions

In comparison with the preceding geometric example in § 4.4, an essential advan-
tage of the current tuple

(K̃ �(RN), K̃ �−(RN), (d̃K, j) j∈ ]0,1], (d̃K, j) j∈ ]0,1], 0)

is that Proposition 9 (on page 341) leads to sufficient conditions (on the right-hand
side f̃ ) for the uniqueness of timed solutions to the mutational initial value problem.

Proposition 51. For f̃ : (K̃ �(RN)∪K̃ �−(RN))× [0,T ]−→LIP(C2)
Λ (RN ,RN),

suppose that there exist a modulus ω̂(·) of continuity and a constant L≥ 0 with

‖H f̃ (Z̃,s)−H f̃ (K̃,t)‖C1(RN×∂B1) ≤ L · d̃K,0(Z̃, K̃) + ω̂(t− s)

for all 0≤ s≤ t ≤ T and Z̃ ∈ K̃ �−(RN), K̃ ∈ K̃ �(RN) (π1 Z̃ ≤ π1 K̃).

Then for every initial K̃0 ∈ K̃ �(RN), the timed solution K̃ : [0,T ]−→ K̃ �(RN)

to the mutational equation
◦
K̃ (·) � f̃ (K̃(·), ·) with K̃(0) = K̃0 is unique.

Proof. It results from the arguments for Proposition 9 (on page 341 f.) in
combination with the Lipschitz continuity of f̃ :

For any element K̃0 = (t0,1,K0) ∈ K̃ �(RN) fixed, let K̃1(·) = (t0 + ·,1,K1(·))
and K̃2(·) = (t0 + ·,1,K2(·)) denote two timed solutions [0,T ] −→ K̃ �(RN) to

the mutational equation
◦

K̃n (·) � f̃ (K̃n(·), ·) with K̃1(0) = K̃0 = K̃2(0).

Then the continuity of K̃1(·), K̃2(·) with respect to each d̃K, j (in forward time direc-
tion) implies the continuity of the tubes K1(·), K2(·) : [0,T ] −→K (RN) w.r.t. dl.
Hence, R > 1 can be chosen sufficiently large with

K1(t) ∪ K2(t) ⊂ BR−1(0) ⊂ R
N for all t ∈ [0,T [.

Set R̂ := 4 (R + 1) (‖ψ‖L1 + 1) > R as an additional abbreviation.

Without loss of generality, we can restrict our considerations to compact subsets
M1,M2 of the closed ball BR̂(0)⊂ R

N . In particular, for all j ∈ ]0,1], we obtain

d̃K,0 ((t1,0,M1), (t2,1,M2)) ≤ d̃K, j ((t1,0,M1), (t2,1,M2))+‖ψ‖L∞ 2(R̂+ 1) j

implying
∥
∥H f̃ (Z̃,s)−H f̃ (K̃,t)

∥
∥

C1(RN×∂B1) ≤ L · d̃K, j(Z̃, K̃) + L‖ψ‖L∞ 2 (R̂+1) · j + ω̂(t−s)

for all s≤ t ≤ T, Z̃ ∈ K̃ �−(RN), K̃ ∈ K̃ �(RN) with π1 Z̃ ≤ π1 K̃, Z,K ⊂ BR̂(0).
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In regard to Proposition 9, the auxiliary function δ j : [0,T ]−→ [0,∞[

δ j(t) := inf
Z̃∈K̃ �− (RN ),
π1 Z̃ < t0+t

(
d̃K, j(Z̃, K̃1(t)) + d̃K, j(Z̃, K̃2(t))

)

has the obvious upper bound

δ j(t) ≤ dl(K1(t),K2(t))+‖ψ‖L1 (2R + 2) < 1
2 R̂

as the choice of “test element” Z̃ := (t0+t−δ , 0, K1(t)) with any small δ > 0 shows.
Thus, δ j(t) can be described as infimum over all Z̃ = (s,0,Z) ∈ K̃ �−(RN) satisfying
Z ⊂ BR̂(0)⊂ R

N additionally:

δ j(t) = inf
Z̃∈K̃ �− (RN ):

π1 Z̃ < t0+t, ‖Z‖∞≤ R̂

(
d̃K, j(Z̃, K̃1(t)) + d̃K, j(Z̃, K̃2(t))

)
.

Furthermore, the time parameter T j(·, ·) (specified in Proposition 45 on page 376
and characterized in Corollary A.47 on page 470) depends only on j ∈ ]0,1] and Λ .
Due to K̃1(0) = K̃2(0), Proposition 9 and the Lipschitz continuity of H f̃ ( · ,s) men-

tioned before guarantee for each t ∈ [0,T ] and j ∈ ]0,1]

δ j(t) ≤ const(L,Λ , ‖ψ‖L∞ , R̂, T ) · j
j↓0−→ 0

in the same way as we have already proved Proposition 1.24 (on page 44).
Finally, the triangle inequality of the Pompeiu-Hausdorff distance dl implies

dl(K1(t), K2(t)) ≤ inf
j>0

δ j(t) = 0 .

�



Chapter 5
Mutational Inclusions in Metric Spaces

After specifying sufficient conditions for the existence of solutions to mutational
equations (in the successively generalized framework of the preceding chapters),
the next step of interest is based on the notion of admitting more than just one
transition for the mutation of the wanted curve at (almost) every state of the basic
set Ẽ . This goal corresponds to the step from ordinary differential equations to
differential inclusions in the Euclidean space, for example.

In this chapter, we are going to discuss two situations.
First we investigate mutational inclusions with continuous right-hand side in § 5.1.
This direction is motivated by the classical results of Antosiewicz and Cellina [8],
but has to pass the traditional border of vector spaces.
To be more precise, we extend the conclusions of Kisielewicz from separable
Banach spaces in [103] to metric spaces here. In particular, the existence of mea-
surable selections of set-valued maps is a key tool and thus, we restrict these
considerations to the mutational framework with transitions in a metric space.

Second we provide existence results for solutions to inclusions with state constraints
in § 5.2. Following the classical approximation of Haddad for differential inclusions
in R

N , we need more “structure” of “transition curves”. Indeed, this concept uses
weak sequential compactness of curves whose values are transitions. For this rather
technical reason, we focus on morphological inclusions in (K (RN),dl) and find
a counterpart for the well-known viability theorem about differential inclusions in
R

N [14].

Whenever sufficient conditions for the existence of solutions with state constraints
are available, it is not really difficult to formulate and solve control problems whose
states are not in vector spaces. Subsequent § 5.3 gives more details about the special
case of morphological control problems in (K (RN),dl).

T. Lorenz, Mutational Analysis: A Joint Framework for Cauchy Problems 385
In and Beyond Vector Spaces, Lecture Notes in Mathematics 1996,
DOI 10.1007/978-3-642-12471-6 6, c© Springer-Verlag Berlin Heidelberg 2010
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5.1 Mutational Inclusions without State Constraints

In a word, we return to the topological environment of metric spaces and in contrast
to Chapter 2, we take only one metric on E into consideration:

General assumptions for § 5.1

Let (E,d) be a nonempty separable metric space. �·� : E −→ [0,∞[ is supposed to
be lower semicontinuous with respect to d.
Θ(E,d,�·�) denotes a set of transitions in the sense of Definition 2.2 (on page 104).
Supply the transition set Θ(E,d,�·�) with the topology induced by

(
D(·, ·;r)

)
r≥0,

i.e., ϑn −→ ϑ (n −→ ∞) is equivalent to lim
n→∞

D(ϑn,ϑ ;r) = 0 for each r ≥ 0.

In addition,Θ(E,d,�·�) is supposed to be Hausdorff, separable and complete.

Due to Definition 2.5 (on page 105), each function D(ϑ1,ϑ2; ·) : [0,∞[−→ [0,∞[(
ϑ1,ϑ2 ∈ Θ(E,d,�·�)) is nondecreasing and thus, the topology of Θ(E,d,�·�) is

induced by a pseudo-metric like, for example,

Ď(ϑ1,ϑ2) :=
∞

∑
n=1

2−n D(ϑ1,ϑ2; n)
1 + D(ϑ1,ϑ2; n)

.

The supplementary hypothesis about the Hausdorff separation property implies that
Ď(·, ·) is positive definite in addition and thus, Ď(·, ·) is a metric on Θ(E,d,�·�).
Finally,Θ(E,d,�·�) is a complete separable metric space.

5.1.1 Solutions to Mutational Inclusions: Definition and Existence

Solutions to mutational inclusions extend Definition 2.9 (on page 107) about solu-
tions to mutational equations. In particular, they are to satisfy the same conditions
with respect to continuity and boundedness.

Definition 1. Let the set-valued map F : E× [0,T ] � Θ(E,d,�·�) be given.
A curve x : [0,T ]−→ E is called a solution to the mutational inclusion

◦
x(·) ∩ F

(
x(·), · ) �= /0

in
(
E,d,�·�) if it satisfies the following conditions:

(1.) x(·) is continuous with respect to d,

(2.) for L 1-almost every t ∈ [0,T [, there exists a transition ϑ ∈ F (x(t), t) ⊂
Θ(E,d,�·�) with

lim
h↓0

1
h · d

(
ϑ (h, x(t)), x(t + h)

)
= 0,

(3.) sup
t∈ [0,T ]

�x(t)� < ∞ .
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At first glance, the term “inclusion” and the symbol ∩ might make a contradictory

impression, but the mutation
◦
x (t) is defined as set of all transitions providing a

first-order approximation (in Definition 2.7 on page 106). The curve of interest,

x(·) : [0,T ]−→ E, is characterized by the existence of a joint transition in both
◦
x(t)

and the prescribed transition set F (x(t), t)⊂Θ(E,d,�·�) at L 1-almost every time t
— denoted correctly as an intersection condition.
Every solution x(·) : [0,T ]−→ E to a mutational inclusion can be characterized by
an appropriate measurable selection of F (x(·), ·) : [0,T ]�Θ(E,d,�·�).

Proposition 2. Suppose the set-valued map F : E× [0,T ] � Θ(E,d,�·�) to
have the image set F (E × [0,T ]) contained in a compact subset C ⊂Θ(E,d,�·�)
with sup

ϑ∈C
α(ϑ ;R) < ∞ for each R > 0 and sup

ϑ∈C
γ(ϑ) < ∞.

x : [0,T ] −→ E is a solution to the mutational inclusion
◦
x (·)∩F

(
x(·), ·) �= /0

in
(
E,d,�·�) if and only if it has the following properties:

(i) x(·) is continuous with respect to d,

(ii) there exists a measurable function ϑ(·) : [0,T ]−→Θ(E,d,�·�) with{
ϑ(t) ∈ ◦x (t) for Lebesgue-almost every t ∈ [0,T ]

ϑ(t) ∈ F
(
x(t), t

)
for every t ∈ [0,T ]

(iii) sup
t∈ [0,T ]

�x(t)� < ∞ .

The equivalence results from Selection Theorem A.74 of Kuratowski and Ryll-
Nardzewski (on page 489) if the intersection

[0,T ] � Θ(E,d,�·�), t �→ ◦
x(t) ∩ F

(
x(t), t

)

proves to be measurable. The aspect of measurability does not change for this set-
valued map by modifying it on a subset of Lebesgue measure 0. Hence, this feature
can be concluded from the next lemma and Proposition A.77 (on page 490):

Lemma 3. Assume for x(·) : [0,T ]−→ E and C : [0,T ]�Θ(E,d,�·�)
(1.) x(·) is continuous with respect to d,

(2.) R := 1 + sup �x(·)� < ∞ ,

(3.) C is upper semicontinuous with nonempty compact values and satisfies
sup
{
α(ϑ ;R), γ(ϑ)

∣
∣ ϑ ∈ C (t), t ∈ [0,T ]

}
< ∞,

(4.)
◦
x(t) ∩ C (t) is nonempty for Lebesgue-almost every t ∈ [0,T ].

Then the map [0,T ] � Θ(E,d,�·�), t �→ ◦
x (t) ∩ C (t) is Lebesgue-measurable in

the sense of Definition A.73 (on page 489).

Its detailed proof is postponed to § 5.1.3 (on page 395 ff.).
The main result of this section 5.1 is the following existence theorem for mutational
inclusions without state constraints:
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Theorem 4. Assume
(
E, d, �·�,Θ(E,d,�·�)) to be Euler compact in the sense of

Definition 2.15 (on page 112). Let F : E × [0,T ]�Θ(E,d,�·�) be an integrably
bounded compact-valued Carathéodory map in the following sense:

(i) all values of F are nonempty, compact and satisfy for each r ≥ 0

sup
{
α(ϑ ;r), β (ϑ ;r), γ(ϑ)

∣
∣ ϑ ∈F (x, t), x ∈ E, t ∈ [0,T ]

}
< ∞ ,

(ii) for every x ∈ E, F (x, ·) : [0,T ]�Θ(E,d,�·�) is measurable,

(iii) for almost every t ∈ [0,T ], F (·, t) :
(
E,d
)
�
(
Θ(E,d,�·�), Ď

)
is continuous,

(iv) for each R > 0, there exist m̂R(·) ∈ L1([0,T ]) and ϑR ∈Θ(E,d,�·�) such that
for L 1-almost every t,

sup
{

D(ϑR,ϑ ;R)
∣
∣ ϑ ∈F (x, t), x ∈ E, �x� ≤ R

} ≤ m̂R(t).

Then for every initial state x0 ∈ E, there exists a solution x(·) : [0,T ] −→ E
to the mutational inclusion

◦
x(·) ∩ F

(
x(·), · ) �= /0

in the tuple
(
E,d,�·�) with x(0) = x0.

5.1.2 A Selection Principle Generalizing the Theorem
of Antosiewicz-Cellina

In their classical paper [8] in 1975, Antosiewicz and Cellina showed for differential
inclusions x′ ∈ G(x, ·) in finite space dimensions that the Carathéodory regularity
of the set-valued map G(·, ·) is sufficient for the existence of useful selections on
the way of proving existence of solutions. Indeed, their new essential aspect was to
focus on continuous functions g : R

N −→ L1([0,T ],RN) with g(x)(t) ∈ G(x, t) for
L 1-almost every t and every x.
Kisielewicz extended their results to separable Banach spaces in [103] in 1982.
Now we generalize it to the separable metric spaces (E,d),

(
Θ(E,d,�·�),Ď) and

adapt essentially the arguments of Kisielewicz, but avoid measures of noncompact-
ness. Strictly speaking, the statements in this subsection do not use thatΘ(E,d,�·�)
consists of transitions on E and so, they hold for any pair of separable metric spaces
whose second component is complete.

Proposition 5. Let the set-valued map F : E × [0,T ]� Θ(E,d,�·�) fulfill the
following conditions:

(i) all values of F are nonempty, compact and satisfy for each r ≥ 0
sup
{
α(ϑ ;r), β (ϑ ;r), γ(ϑ)

∣
∣ ϑ ∈F (x, t), x ∈ E, t ∈ [0,T ]

}
< ∞ ,

(ii) for every x ∈ E, F (x, ·) : [0,T ]�Θ(E,d,�·�) is measurable,

(iii) for L 1-almost every t ∈ [0,T ], F (·, t) :
(
E,d
)
�Θ(E,d,�·�) is continuous,

(iii’) the family (F (·,t))t∈[0,T ] of maps E�Θ(E,d,�·�) is equi-continuous.
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Then there exists a single-valued function f : E× [0,T ]−→Θ(E,d,�·�) satisfying

(a) at Lebesgue-almost every time t ∈ [0,T ] : f (x, t) ∈F (x, t) for every x ∈ E,

(b) for every x ∈ E, f (x, ·) : [0,T ]−→Θ(E,d,�·�) is measurable,

(c) lim
l→∞

∫

[0,T ]
Ď
(

f (x,t), f (xl , t)
)

dt = 0

whenever a sequence (xl)l∈N in E converges to x ∈ E with respect to d.

Corollary 6. If the set-valued map F : E× [0,T ]�Θ(E,d,�·�) satisfies the
Carathéodory conditions (i)–(iii) of Theorem 4, then there exists a single-valued
function f : E× [0,T ]−→Θ(E,d,�·�) with

(a) at Lebesgue-almost every time t ∈ [0,T ] : f (x, t) ∈F (x, t) for every x ∈ E,

(b) for every x ∈ E, f (x, ·) : [0,T ]−→Θ(E,d,�·�) is measurable,

(c) lim
l→∞

∫

[0,T ]
Ď
(

f (x,t), f (xl , t)
)

dt = 0

whenever a sequence (xl)l∈N in E converges to x ∈ E with respect to d.

The proof follows the approximative arguments initiated by Antosiewicz-Cellina
and continued by Kisielewicz. All these subsequent conclusions do not require the
linear structure of a Banach space and thus, we can apply them in the metric spaces
(E,d),

(
Θ(E,d,�·�),Ď):

Lemma 7. Suppose the assumptions of Proposition 5 about F (·, ·).
For each ε > 0, there exists a function fε : E× [0,T ]−→Θ(E,d,�·�) satisfying

(a) dist
(

fε (x,t), F (x,t)
) Def.= inf

ϑ ∈F (x,t)
Ď
(

fε (x, t), ϑ
) ≤ ε for any x∈E, t < T ,

(b) for every x ∈ E, fε (x, ·) : [0,T ]−→Θ(E,d,�·�) is measurable,

(c) lim
l→∞

∫

[0,T ]
Ď
(

fε (x,t), fε (xl , t)
)

dt = 0

whenever a sequence (xl)l∈N in E converges to x ∈ E with respect to d.

Proof (of Lemma 7). Fix ε > 0 and choose x ∈ E arbitrarily. As in the proof
of [103, Lemma 3.2], the equi-continuity of the set-valued maps F (·, t) : E �
Θ(E,d,�·�), t ∈ [0,T ], provides some δ (x,ε) > 0 with

dlĎ

(
F (y1, t), F (y2, t)

)
< ε

for all t ∈ [0,T ], y1,y2 ∈ Bδ (x,ε)(x) ⊂ E . Here dlĎ denotes the Pompeiu-Hausdorff
distance between nonempty subsets of Θ(E,d,�·�) with respect to the metric Ď
specified in § 5.1 (on page 386), i.e.,
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dlĎ

(
M1, M2

) Def.= max
{

supϑ1∈M1 infϑ2∈M2 Ď(ϑ1,ϑ2),

supϑ2∈M2 infϑ1∈M1 Ď(ϑ1,ϑ2)
}

for any nonempty sets M1,M2 ⊂Θ(E,d,�·�).

The open balls Bδ (x,ε)(x)◦ ⊂ E (with respect to d), x ∈ E , cover E . By assumption
(on page 386), (E,d) is separable and thus, we can select a countable cover of E
from these balls. As a consequence of Stone’s Theorem, a further selection even
provides a countable cover

(
Bδ (xm,ε)(xm)◦

)
m∈N

that is locally finite in addition.
There exists a subordinated continuous partition of unity, ζm : E −→ [0,1] (m ∈N).

This lays the basis for a countable partition of the interval [0,T [ depending on the
element x ∈ E in a continuous way. Indeed, we set for x ∈ E and m = 1, 2 . . . ,

t0(x) := 0,

tm(x) := tm−1(x) + ζm(x) · T
Jm(x) :=

[
tm−1(x), tm(x)

[
.

For each index m∈N, Selection Theorem A.74 of Kuratowski and Ryll-Nardzewski
(on page 489) provides a measurable function

ϑm : [0,T ] −→ Θ(E,d,�·�)
satisfying the condition ϑm(t) ∈ F (xm, t) for every t ∈ [0,T ]
due to assumption (ii) about the measurability of each F (x, ·) : [0,T ]�Θ(E,d,�·�)
and the general hypothesis that the metric space (Θ(E,d,�·�), Ď) is complete and
separable.

Now define fε : E × [0,T ] −→ Θ(E,d,�·�) in a piecewise way with respect to
time:

fε (x, t ) := ϑm(t) if t ∈ Jm(x),

fε (x,T ) := ϑM(T ) with M := inf
{

m ∈ N
∣∣ tm(x) = T

}
< ∞ .

Obviously, fε (x, ·) : [0,T ]−→Θ(E,d,�·�) is measurable for every x ∈ E .

Furthermore, dist
(

fε (x,t), F (x, t)
) ≤ ε holds for every x ∈ E and t ∈ [0,T [.

Indeed, we can choose the unique index m ∈ N with t ∈ Jm(x) = [tm−1(x), tm(x)[.
This implies x ∈ Bδ (xm,ε)(xm) and fε (x, t) = ϑm(t) ∈ F (xm, t). Now we conclude
from the triangle inequality of Ď

dist
(

fε (x,t), F (x,t)
) ≤ dist

(
fε (x, t), F (xm, t)

)
+ dlĎ

(
F (xm, t), F (x, t)

)

≤ 0 + ε ,

i.e., fε (·, ·) satisfies the claimed property (a).
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We still have to verify property (c), i.e.,

lim
l→∞

∫

[0,T ]
Ď
(

fε (x, t), fε (xl , t)
)

dt = 0

whenever a sequence (xl)l∈N in E converges to x ∈ E with respect to d.
Indeed, as the partition of unity (ζm)m∈N is locally finite, there exist a neighborhood
Ux of x and finitely many indices {m1 . . . mηx} ⊂ N with

ηx

∑
k=1

ζmk(·) = 1 in Ux.

Due to the continuity of each auxiliary function tm : E −→ [0,T ] (m∈N), we obtain
for every sequence (xl)l∈N converging to x

sup
{|tmk (x)− tmk(xl)|

∣
∣ k ∈ {1 . . . ηx}

} −→ 0 for l −→ ∞.

As Ď
(

fε (x,t), fε (xl,t)
)

= 0 holds for any t ∈ Jmk(x) ∩ Jmk (xl), we conclude from
Ď(·, ·)≤ 1 that for all large l ∈ N,
∫

[0,T ]
Ď
(

fε(x,t), fε(xl ,t)
)

dt

≤
∫

[0,T ]

ηx

∑
k=1

(
χJmk (x)\Jmk (xl)(t) + χJmk (xl)\Jmk (x)(t)

)
Ď
(

fε (x, t), fε (xl, t)
)

dt

≤
ηx

∑
k=1

(∫

Jmk (x)\Jmk (xl)
1 dt +

∫

Jmk (xl)\Jmk (x)
1 dt

)

−→ 0 for l −→ ∞ .
�

Proof (of Proposition 5 on page 388). For every ε > 0, Lemma 7 guarantees a
function fε : E× [0,T ]−→Θ(E,d,�·�) satisfying both

dist
(

fε(x,t), F (x, t)
) Def.= inf

ϑ ∈F (x,t)
Ď
(

fε (x, t), ϑ
) ≤ ε

for all x ∈ E , t ∈ [0,T [, the measurability of each fε (x, ·) : [0,T ] −→Θ(E,d,�·�)
and the continuity condition that for every x ∈ E and δ > 0, there exists a positive
radius ρ(x,δ ) > 0 such that all y ∈ Bρ(x,δ )(x)⊂ E fulfill

L 1
({t ∈ [0,T ] | Ď( fε (x, t), fε (y, t)) > δ}) < δ .

In particular, the preceding proof of Lemma 7 motivates the following inductive
construction of approximative selections ( fk)k∈N:

There exists such a function f1 : E× [0,T ]−→Θ(E,d,�·�) with

dist
(

f1(x, t), F (x, t)
) ≤ 1

22

for every x ∈ E and t ∈ [0,T [. In combination with assumption (iii’) about the equi-
continuity of F (·,t), t ∈ [0,T ], we can even find a radius δ1(x) > 0 for each x ∈ E
with
{

dlĎ

(
F (x, t), F (y, t)

)
< 1

23 for all y∈Bδ1(x)(x), t∈ [0,T ],

L 1
({t ∈ [0,T ] | Ď( f1(x,t), f1(y, t)) > 1

22 }
)

< 1
22 for all y∈Bδ1(x)(x).
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The same arguments as in the proof of Lemma 7 lead now to a locally finite partition
of unity (ζ 1

m)m∈N and a sequence (x1
m)m∈N such that the support of ζ 1

m(·) ∈C0(E) is
contained in Bδ1(x1

m)(x
1
m)⊂ E for each index m ∈ N.

Due to Proposition A.80 about measurability of marginal maps (on page 490),
there exists a measurable selection ϑ 1

m(·) : [0,T ] −→ Θ(E,d,�·�) for each m ∈ N

satisfying at every time t ∈ [0,T ],
{

ϑ 1
m(t) ∈ F (x1

m, t)

Ď
(
ϑ 1

m(t), f1(x1
m, t)
)

= dist
(

f1(x1
m, t), F (x1

m, t)
)

because each set-valued map F (x1
m, ·) : [0,T ]�Θ(E,d,�·�), m ∈N, is measurable

with nonempty compact values by assumption.

Now we set for x ∈ E and m = 1, 2 . . . successively

t1
0 (x) := 0,

t1
m(x) := t1

m−1(x) + ζ 1
m(x) · T

J1
m(x) :=

[
t1
m−1(x), t1

m(x)
[

and define f2 : E× [0,T ] −→ Θ(E,d,�·�) in a piecewise way again

f2(x, t ) := ϑ 1
m(t) if t ∈ J1

m(x),

f2(x,T ) := ϑ 1
M(T ) with M := inf

{
m ∈ N

∣
∣ t1

m(x) = T
}

< ∞ .

Obviously, f2(x, ·) : [0,T ]−→Θ(E,d,�·�) is measurable for every x ∈ E .

The arguments of the preceding proof even imply continuity property (c) for this
auxiliary function f2(·, ·), i.e.,

lim
l→∞

∫

[0,T ]
Ď
(

f2(x, t), f2(xl, t)
)

dt = 0

whenever a sequence (xl)l∈N in E converges to x ∈ E with respect to d.

Moreover, dist
(

f2(x,t), F (x, t)
) ≤ 1

23 holds for every x ∈ E and t ∈ [0,T [.
Indeed, there always exists a unique index m ∈ N with t ∈ J1

m(x) = [t1
m−1(x), t

1
m(x)[.

Thus, x ∈ Bδ1(x1
m)(x

1
m), f2(x,t) = ϑ 1

m(t) ∈F (x1
m, t) and last, but not least,

dist
(

f2(x,t), F (x,t)
) ≤ dist

(
f2(x, t), F (x1

m, t)
)
+ dlĎ

(
F (x1

m, t), F (x, t)
)

≤ 0 +
1
23 .

Finally,

Ď
(

f2(x,t), f1(x,t)
) ≤ Ď

(
ϑ 1

m(t), f1(x1
m, t)
)
+ Ď
(

f1(x1
m, t), f1(x, t)

)

≤ dist
(

f1(x1
m, t), F (x1

m, t)
)
+ Ď
(

f1(x1
m, t), f1(x, t)

)

≤ 1
22 + Ď

(
f1(x1

m, t), f1(x, t)
)

for every t ∈ [0,T [ has the consequence

L 1
({t ∈ [0,T ] | Ď( f2(x, t), f1(x, t)) > 1

2}
)

< 1
22 .
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By means of induction, we now construct a sequence ( fn)n∈N of functions
E× [0,T ]−→Θ(E,d,�·�) with properties (b), (c) and
{

dist
(

fn(x, t), F (x,t)
) ≤ 1

2n+1 for all x ∈ E, t ∈ [0,T [,

L 1
({t ∈ [0,T ] | Ď( fn(x,t), fn−1(x, t)) > 1

2n−1 }
)

< 1
2n for all x ∈ E .

In particular, due to
N

∑
k=n

2−k = 21−n−2−N for all n < N, the inequality

L 1
({

t ∈ [0,T ]
∣
∣ Ď( fN(x, t), fn(x, t)) > 1

2n−2

})

≤ L 1
( N⋃

k=n+1

{
t ∈ [0,T ]

∣
∣ Ď( fk(x, t), fk−1(x, t)) > 1

2k−1

})

≤
N

∑
k=n+1

1
2k ≤ 1

2n

holds for every element x ∈ E and all indices n < N. Due to the completeness of
L1 spaces for metric space valued functions [6, § 5.4], there exists a function

f : E× [0,T ] −→ Θ(E,d,�·�)
such that for every element x ∈ E , f (x, ·) : [0,T ]−→Θ(E,d,�·�) is measurable and

∫ T

0
Ď( f (x, t), fn(x, t)) dt −→ 0 for n−→ ∞.

All values of F are assumed to be closed and so, a modification of f (x, ·) on a set
of Lebesgue measure 0 leads to the additional property f (x, t) ∈F (x, t) for all x, t.

Finally we have to verify continuity property (c) of f (·, ·), i.e.,

lim
l→∞

∫

[0,T ]
Ď
(

f (x, t), f (xl , t)
)

dt = 0

whenever a sequence (xl)l∈N in E converges to x ∈ E with respect to d.
Indeed, each function fn(·, ·) (n ∈ N) has this feature by construction. Considering
the last inequality for N −→ ∞ leads to the estimate

L 1
({

t ∈ [0,T ]
∣
∣ Ď( f (x, t), fn(x, t)) > 1

2n−2

}) ≤ 1
2n

being uniform with respect to x ∈ E . It implies the current claim about continuity of
f (·,t) : E −→Θ(E,d,�·�) due to Ď(·, ·)≤ 1. �

Proof (of Corollary 6 on page 389).
The assumptions of this corollary differ from their counterparts of Proposition 5
(on page 388) in just one relevant respect: We dispense with hypothesis (iii’), i.e.,
the family

(
F (·,t))t∈ [0,T ] of set-valued maps E �Θ(E,d,�·�) is not supposed to

be equi-continuous.
Now Scorza-Dragoni Theorem quoted in Proposition A.9 (on page 446) provides
the tool for bridging this gap approximatively.
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Indeed, for every ε > 0, Proposition A.9 guarantees a closed subset Iε ⊂ [0,T ]
with L 1

(
[0,T ]\ Iε

)
< ε such that the restriction

F (·, ·)|E×Iε : (E, d)× Iε −→
(
K (Θ(E,d,�·�)), dlĎ

)

is continuous. As Iε is compact, we conclude easily that the family
(
F (·, t))t∈ Iε

of
set-valued maps E�Θ(E,d,�·�) is equi-continuous.

This construction leads to a sequence (In)n∈N of closed subsets of [0,T ] with
L 1
(
[0,T ] \ In

)
< 2−n such that each family

(
F (·, t))t∈ In

is equi-continuous. Set-
ting S1 := I1, Sn+1 := In+1\⋃n

k=1 Ik for each n∈N and choosing an arbitrary tran-
sition ϑ0 ∈Θ(E,d,�·�), the auxiliary maps Fn : E× [0,T ]�Θ(E,d,�·�), n ∈ N,
with

Fn(x,t) :=
{

F (x, t) if t ∈ In,
{ϑ0} if t ∈ [0,T ]\ In

fulfill the assumptions of Proposition 5. For each n ∈ N, there exists a selection
fn : E× [0,T ]−→Θ(E,d,�·�) of Fn(·, ·) satisfying measurability condition (b) and

lim
l→∞

∫

[0,T ]
Ď
(

fn(x, t), fn(xl, t)
)

dt = 0

whenever a sequence (xl)l∈N in E converges to some element x ∈ E w.r.t. d.
Now the function f : E× [0,T ]−→Θ(E,d,�·�) defined by

f (·,t) :=
{

fn(·,t) if t ∈ Sn for some (and then unique) n ∈ N

ϑ0 if t ∈ [0,T ]\ ⋃n∈N Sn = [0,T ]\ ⋃n∈N In

shares property (b) of measurability with each fn and fulfills condition (c) of conti-
nuity as well. Indeed, the construction of (In)n∈N and (Sn)n∈N ensures

L 1
(
[0,T ]

∖ ⋃

n∈N

Sn

)
≤ limsup

n→∞
L 1([0,T ]\ In) = 0

and thus, for any ε > 0, we can select an index Nε ∈N such that

L 1
(
[0,T ] \

Nε⋃

n=1

Sn

)
≤ ε .

Finally, we obtain for every converging sequence (xl)l∈N in E and its limit x ∈ E

limsup
l→∞

∫

[0,T ]
Ď
(

f (x, t), f (xl , t)
)

dt

≤ limsup
l→∞

( Nε

∑
n=1

∫

Sn

Ď
(

f (x, t), f (xl , t)
)

dt +
∫

[0,T ]\⋃Nε
n=1 Sn

1 dt
)

≤ limsup
l→∞

Nε

∑
n=1

∫

Sn

Ď
(

fn(x, t), fn(xl , t)
)

dt + L 1
(
[0,T ] \

Nε⋃

n=1

Sn

)

≤
Nε

∑
n=1

0 + ε .
�
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5.1.3 Proofs on the Way to Existence Theorem 5.4

Now we give two proofs missing in this section 5.1. In particular, we focus on
Lemma 3 (on page 387) stating that the intersection of the mutation and a compact-
valued upper semicontinuous map is always a measurable map [0,T ]�Θ(E,d,�·�)
and Existence Theorem 4 (on page 388).

Proof (of Lemma 3 on page 387).

Without loss of generality, we can assume in addition that there exists a transition
ϑ0 ∈Θ(E,d,�·�) \C ([0,T ]). (It can be constructed by means of a supplementary
auxiliary component, for example – similarly to the disjoint sum of topological
spaces.)
From now on, we mostly consider the union of transition sets with {ϑ0} so that
all closed sets in Θ(E,d,�·�) are nonempty and thus, the general results about
measurability in Appendix A.10 (on page 489 f.) can be applied directly.

Now for each m,n∈N, define the set-valued map Mm,n : [0,T ]�Θ(E,d,�·�) in the
following way: Mm,n(t) consists of ϑ0 and all transitions ϑ ∈ C (t) ⊂Θ(E,d,�·�)
such that

d
(
ϑ(h, x(t)), x(t + h)

) ≤ 1
m h for all h ∈ [0, 1

n ].

The graph of Mm,n is closed. Indeed, let ((tk,ϑk))k∈N
be any convergent sequence

in Graph Mm,n ⊂ [0,T ]×Θ(E,d,�·�) with the limit (t,ϑ). If ϑ = ϑ0, then we
conclude ϑk = ϑ0 for all large k ∈ N due to ϑ0 /∈ C ([0,T ]). Hence, we can restrict
our considerations to {ϑk,ϑ | k ∈ N} ⊂ C ([0,T ]) and in particular, for each k ∈ N,

d (ϑk(h, x(tk)), x(tk + h)) ≤ 1
m h for all h ∈ [0, 1

n ].

The standard estimate about two solutions in Proposition 2.11 (on page 108) implies

d (ϑ(h, x(t)), x(t + h)) = lim
k→∞

d (ϑk(h, x(tk)), x(tk + h)) ≤ 1
m h for all h ∈ [0, 1

n ],

i.e. ϑ ∈Mm,n(t). Thus, Graph Mm,n is closed in [0,T ]×Θ(E,d,�·�).

Furthermore, all values of Mm,n are nonempty and closed. As C is supposed to be
upper semicontinuous with compact values, [19, Proposition 1.4.9] ensures that

Mm,n = Mm,n ∩ (C ∪{ϑ0}) : [0,T ] � Θ(E,d,�·�)
is upper semicontinuous (in the sense of Bouligand and Kuratowski). Finally, it
implies the measurability of Mm,n for each m,n ∈ N due to Corollary A.76 (on
page 489).

Now we bridge the gap between the countable family (Mm,n)m,n∈N of measurable

set-valued maps and [0,T [�Θ(E,d,�·�), t �→ ◦x(t)∩C (t) considered in the claim:
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Due to the definition of Mm,n,
⋃

n∈N

Mm,n(t) ⊂
{
ϑ ∈ C (t)

∣∣
∣ limsup

h↓0

1
h ·d(ϑ(h,x(t)), x(t+h))≤ 1

m

}
∪{ϑ0}

⋃

n∈N

Mm,n(t) ⊃
{
ϑ ∈ C (t)

∣
∣
∣ limsup

h↓0

1
h ·d(ϑ(h,x(t)), x(t+h)) < 1

m

}
∪{ϑ0} .

Now the standard estimate about evolutions along transitions in Proposition 2.6
(on page 106) implies for every t ∈ [0,T [
⋃

n∈N

Mm,n(t) ⊂
{
ϑ ∈ C (t)

∣
∣
∣ limsup

h↓0

1
h ·d(ϑ(h,x(t)), x(t+h))≤ 1

m

}
∪{ϑ0}

⊂
{
ϑ ∈ C (t)

∣∣
∣ limsup

h↓0

1
h ·d(ϑ(h,x(t)), x(t+h))≤ 2

m

}
∪{ϑ0} ,

⋃

n∈N

Mm,n(t) ⊃
{
ϑ ∈ C (t)

∣
∣
∣ limsup

h↓0

1
h ·d(ϑ(h,x(t)), x(t+h))≤ 0

}
∪{ϑ0}

=
{
ϑ ∈ C (t)

∣
∣∣ limsup

h↓0

1
h ·d(ϑ(h,x(t)), x(t+h))≤ 0

}
∪{ϑ0} .

Finally,
⋂

m∈N

⋃

n∈N

Mm,n(t) =
{
ϑ ∈ C (t)

∣
∣
∣ lim

h↓0

1
h ·d(ϑ(h,x(t)), x(t+h)) = 0

}
∪{ϑ0}

=
(◦

x(t) ∩ C (t)
)

∪{ϑ0} .
Proposition A.77 (on page 490) ensures that the closure of a countable union and
the countable intersection preserve measurability of set-valued maps. It completes
the proof of Lemma 3. �

Proof (of Existence Theorem 4 on page 388).

In a word, we use the selection principle in Corollary 6 (on page 389) for a connec-
tion between the mutational inclusion here and the mutational equation discussed
in § 2.3 (on page 104 ff.).
The tuple

(
E, d, �·�,Θ(E,d,�·�)) is Euler compact by assumption.

Let f : E × [0,T ] −→ Θ(E,d,�·�) denote the selection of the set-valued map
F : E× [0,T ]�Θ(E,d,�·�) whose existence is stated in Corollary 6.

Strictly speaking, just one obstacle is preventing us from applying Peano’s Existence
Theorem 2.18 for nonautonomous mutational equations (on page 114) immediately,
namely its assumption (4.) about continuity:
For each R > 0, there is a set I⊂ [0,T ] of L 1 measure 0 such that for any t ∈ [0,T ]\I,

lim
n→∞

D
(

f (xn, tn), f (x, t); R
)

= 0

holds for any sequences (tn)n∈N in [0,T ] and (xn)n∈N in E satisfying lim
n→∞

tn = t and

lim
n→∞

d(xn,x) = 0, sup
n∈N

�xn�< ∞. (In particular, I should not depend on x ∈ E .)



5.1 Mutational Inclusions without State Constraints 397

Similarly to the proof of Corollary 6, Scorza-Dragoni Theorem (in Proposition
A.9 on page 446) ensures for each ε > 0 that there exists a closed subset Iε ⊂ [0,T ]
with L 1

(
[0,T ] \ Iε

)
< ε such that the restriction f (·, ·)|E×Iε : E × Iε −→

Θ(E,d,�·�) is continuous (with respect to the metric Ď onΘ(E,d,�·�)).

Now fε : E× [0,T ] −→ Θ(E,d,�·�) is defined as the extension of f (·, ·)|E×Iε with

fε (x, t) := f (x,st )

for x ∈ E, t ∈ [0,T ]\ Iε and st := sup{s ∈ Iε | s≤ t} ∈ Iε .

Obviously, this extension fε is continuous in the open subset E × ([0,T ] \ ∂ Iε)
(with respect to the metric Ď on Θ(E,d,�·�) again). In particular, ∂ Iε is (at most)
countable because [0,T ] \ ∂ Iε is open with finite Lebesgue measure. As a conse-
quence, fε satisfies continuity assumption (4.) of Peano’s Theorem 2.18.

Fixing the initial state x0 ∈ E arbitrarily, there exists a solution xε : [0,T ] −→ E to
the mutational equation

◦
xε (·) � fε

(
xε(·), ·

)

in the tuple
(
E,d,�·�) with xε(0) = x0 and

sup
[0,T ]
�xε(·)� < (�x0�+ γ̂ T ) eγ̂ T + 1 =: R

using the abbreviation γ̂ := sup
{
γ(ϑ)

∣
∣ ϑ ∈F (x, t), x ∈ E, t ∈ [0,T ]

}
< ∞.

Finally we choose any sequence (εn)n∈N in ]0,1[ with ∑∞n=1 εn < ∞. Then
Proposition 2.11 about the continuity of solutions with respect to data (on page 108)
implies that

(
xεn(·)

)
n∈N

is a Cauchy sequence in C0([0,T ],E) with respect to the
uniform topology. According to Remark 2.19 (on page 116), there exists a pointwise
limit curve x(·) : [0,T ]−→ E .
Furthermore (xεn(·))n∈N

is uniformly Lipschitz continuous with respect to d due to
assumption (i) and thus, x(·) : [0,T ] −→ (E,d) is also Lipschitz continuous. The
lower semicontinuity of �·� : (E,d)−→ [0,∞[ (by assumption) ensures

sup
[0,T ]
�x(·)� ≤ sup

ε∈ ]0,1[
sup
[0,T ]
�xε(·)� < R < ∞ .

x(·) is a solution to the mutational equation
◦
x(·) � f

(
x(·), ·) in the tuple

(
E,d,�·�).

Indeed, Proposition 2.11 (extended to Lebesgue-integrable distances between tran-
sitions approximatively) implies for every m ∈ N, t ∈ [0,T [ and h ∈ [0,1] with
t + h≤ T and Jm :=

⋂
n≥m Iεn ⊂ [0,T ]
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d
(

f (x(t),t)(h, x(t)), x(t + h)
)

= lim
n→∞

d
(

f (x(t), t)(h, x(t)), xεn(t + h)
)

≤ liminf
n→∞

(
d
(
x(t), xεn(t)

)
+
∫ t+h

t

×D
(

f (x(t), t), fεn(xεn(s),s); R
)

ds
)

eα̂ h

≤ liminf
n→∞

eα̂ h ·
( ∫

[t, t+h]\ Jm

2 m̂R(s) ds +
∫

[t, t+h]∩ Jm

D
(

f (x(t), t), f (xεn(s),s); R
)

ds
)
.

with the bound m̂R(·) mentioned in assumption (iv). The continuity of the restriction
f (·, ·)|E×Jm guarantees for all m ∈ N, t ∈ [0,T [, h ∈ [0,1] with t + h≤ T

d
(

f (x(t),t)(h, x(t)),x(t + h)
) ≤

(∫

[t,t+h]\Jm

2 m̂R(s) ds

+
∫

[t, t+h]∩Jm

D
(

f (x(t), t), f (x(s),s);R
)

ds
)

eα̂ h.

Moreover, the set Ĵm of all Lebesgue points of the integrable product χ[0,T [\Jm m̂R :
[0,T ]−→R has full Lebesgue measure due to [189, Theorem 1.3.8] and, these two
properties imply for every m ∈ N and t ∈ Jm∩ Ĵm,
⎧
⎪⎪⎨

⎪⎪⎩

lim
h↓0

1
h

∫

[t, t+h]\ Jm

m̂R(s) ds =
(
χ[0,T [\Jm m̂R

)
(t) = 0,

lim
h↓0

1
h

∫

[t, t+h]∩ Jm

D
(

f (x(t), t), f (x(s),s); R
)

ds = 0.

In combination with

Jm ⊂ Jm+1 for each m ∈ N,

L 1
(
[0,T ]\ Jm) ≤

∞

∑
n=m

L 1([0,T ]\ Iεn) ≤
∞

∑
n=m

εn
m→∞−→ 0,

we obtain for L 1-almost every t ∈ [0,T ]

limsup
h↓0

1
h · d

(
f (x(t), t)(h, x(t)), x(t + h)

) ≤ 0.

�

Remark 8. This proof of Existence Theorem 4 has essentially two pillars:
The selection principle in Corollary 6 connects the existence problem of muta-
tional inclusions with mutational equations and, then we apply Peano’s Existence
Theorem 2.18 (based on Euler compactness).
This selection principle is formulated only for separable metric spaces here (as we
have already pointed out at the beginning of § 5.1.2), but we are still free to combine
it with the existence results in § 3.3. This lays the foundations for extending Exis-
tence Theorem 4 to several examples that require the generalizations in Chapter 3.
In particular, a curve is (sequentially) continuous with respect to a metric if and only
if it is sequentially continuous with respect to some power of an equivalent metric
(no matter whether the latter satisfies the triangle inequality).
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5.2 Morphological Inclusions with State Constraints:
A Viability Theorem

In this section, we focus on the geometric example of the metric space (K (RN),dl)
and consider transitions induced by reachable sets of differential inclusions whose
set-valued right-hand sides belong to LIP(RN ,RN). The corresponding mutational
equations are usually called morphological equations and, they are discussed in
§ 1.9 (on page 57 ff.).

Now morphological inclusions are based on the goal to admit more than just one
transition for each compact subset of R

N . In contrast to the preceding § 5.1, however,
additional state constraints K(t) ∈ V on the wanted tube K(·) : [0,T ] −→K (RN)
are to come into play. This difficulty is handled just by means of the supplementary
“structure” of the morphological transition set LIP(RN ,RN).

The problems of invariance and viability have already been investigated for transi-
tions induced by bounded Lipschitz vector fields (instead of the set-valued maps in
LIP(RN ,RN)).

Indeed, Doyen [74] has given sufficient and some necessary conditions on F (·)
and V ⊂K (RN) for the invariance of V (i.e. all continuous solutions starting in V
stay in V ). His key notion is first to extend Filippov’s existence theorem from differ-
ential inclusions (in R

N) to morphological inclusions in K (RN) [74, Theorem 7.1]
and then to verify dist(K(·),V ) ≤ 0 (under the assumption that the values of F (·)
are contained in the respective contingent transition set to V ) [74, Theorem 8.2].

The corresponding question about viability of V (i.e. at least one continuous
solution has to stay in V ) was pointed out as open by Aubin in [10, § 2.3.3]. A first
answer was given in [122] – but only for transitions induced by bounded Lipschitz
vector fields.
Now we consider the viability problem for morphological inclusions with transi-
tions in LIPco(RN ,RN) in their full generality (as in [121]).

Definition 9. LIPco(RN ,RN) consists of all set-valued maps F ∈ LIP(RN ,RN)
whose values are convex in addition, i.e., every map F : R

N�R
N in LIPco(RN ,RN)

satisfies the following conditions:

1.) F has nonempty compact convex values that are uniformly bounded in R
N ,

2.) F is Lipschitz continuous with respect to the Pompeiu-Hausdorff distance dl.

In fact, the main result of this section, i.e. Theorem 12 (on page 401) below, is
very similar to the viability theorem for differential inclusions in R

N (discussed in
[14] and quoted here in Theorem 11).
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5.2.1 (Well-Known) Viability Theorem for Differential Inclusions

The situation has already been investigated intensively for differential inclusions in
R

N (see e.g. [14, 15]). For clarifying the new aspects of morphological inclusions,
we now quote the corresponding result from [14, Theorems 3.3.2, 3.3.5].

Definition 10 ([14, Definition 2.2.4]). Let X and Y be normed vector spaces. A
set-valued map F : X�Y is called Marchaud map if it has the following properties:

1. F is nontrivial, i.e. Graph F �= /0,
2. F is upper semicontinuous, i.e. for any x ∈ X and neighborhood V ⊃ F(x),

there is a neighborhood U ⊂ X of x: F(U)⊂V,
3. F has compact convex values,
4. F has linear growth, i.e. sup

v∈F(x)
|v| ≤ C (1 + |x|) for all x ∈ X .

Theorem 11 (Viability theorem for diff. inclusions [14, Theorems 3.3.2, 3.3.5]).
Consider a Marchaud map F : R

N � R
N and a nonempty closed subset V ⊂ R

N

with F(x) �= /0 for all x ∈ V. Then for any finite time T ∈ ]0,∞[, the following two
statements are equivalent:

1. For every point x0 ∈V, there is at least one solution x(·) ∈W 1,1([0,T ], R
N)

of x′(·) ∈ F(x(·)) (almost everywhere) with x(0) = x0 and x(t) ∈V for all t.

2. F(x)∩TV (x) �= /0 for all x ∈V.

The implication (1.) =⇒ (2.) is rather obvious. For proving (2.) =⇒ (1.), a stan-
dard approach uses an “approximating” sequence

(
xn(·)

)
n∈N

in W 1,∞([0,1],RN)
such that supt dist(xn(t), V ) −→ 0 (n → ∞) and

(
xn(t), d

dt xn(t)
)

is close to
Graph F ⊂ R

N× R
N for almost every t. Then the theorems of Arzelà-Ascoli

and Alaoglu provide a subsequence
(
xn j(·)

)
j∈N

and limits x ∈ C0([0,1],RN),
w ∈ L∞([0,1],RN) with

xn j (·)−→ x(·) uniformly, d
dt xn j(·)−→ w(·) weakly* in L∞([0,1],RN).

Due to the continuous embedding L∞([0,1],RN) ⊂ L1([0,1],RN), we even obtain
the convergence d

dt xn j (·) −→ w(·) weakly in L1([0,1],RN). Thus, w(·) is the weak
derivative of x(·) in [0,1] and, x(·) is Lipschitz continuous. Finally Mazur’s Lemma
implies

w(t) ∈
⋂

ε>0

co
( ⋃

z∈Bε (x(t))

F(z)
)

= F(x(t)) for almost every t.

Considering now morphological inclusions on (K (RN),dl) (instead of differ-
ential inclusions), an essential aspect changes: The derivative of a curve is not
represented as a function in L1([0,1],RN) any longer, but we are dealing with
LIP(RN ,RN)-valued curves here. Now the classical theorems of Arzelà-Ascoli,
Alaoglu and Mazur might have to be replaced by their counterparts concerning func-
tions with their values in a Banach space (instead of R

N).
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5.2.2 Adapting This Concept to Morphological Inclusions:
The Main Theorem

Now F : K (RN)� LIP(RN ,RN) and a set of constraints V ⊂K (RN) are given.
Correspondingly to Theorem 11 about differential inclusions, we focus on the so-
called viability condition demanding from each compact set K ∈ V that the value
F (K) and the contingent transition set TV (K) ⊂ LIP(RN ,RN) have at least one
morphological transition in common. Lacking a concrete counterpart of Aumann
integral in the metric space (K (RN),dl), the question of its necessity (for the
existence of “in V viable” solutions) is more complicated than for differential in-
clusions in R

N and thus, we skip it here deliberately.
The main result of this section 5.2 is that in combination with appropriate assump-
tions about F (·) and V , the viability condition is sufficient.

Convexity comes into play again, but we have to distinguish between (at least)
two respects:
First, assuming F to have convex values in LIP(RN ,RN) and second, supposing
each set-valued map G∈F (K)⊂ LIP(RN ,RN) (with K ∈K (RN)) to have convex
values in R

N . The latter, however, does not really provide a geometric restriction on
morphological transitions. Indeed, Relaxation Theorem A.19 of Filippov-Ważewski
(on page 453) implies ϑG(t,K) = ϑco G(t,K) for every map G ∈ LIP(RN ,RN),
initial set K ∈K (RN) and time t ≥ 0.
Thus, we suppose the values of F to be in LIPco(RN ,RN) :

Theorem 12 (Viability theorem for morphological inclusions).
Let F : K (RN) � LIPco(RN , R

N) be a set-valued map and V ⊂ K (RN) a
nonempty closed subset satisfying the following conditions:

1.) all values of F are nonempty and convex (i.e. for any G1,G2 ∈ F (K) ⊂
LIPco(RN ,RN) and λ ∈ [0,1], the set-valued map

R
N �R

N , x �→ λ ·G1(x)+ (1−λ ) ·G2(x)
also belongs to F (K)),

2.) A := sup
M∈K (RN )

sup
G∈F (M)

Lip G < ∞,

B := sup
M∈K (RN )

sup
G∈F (M)

‖G‖∞ < ∞,

3.) the graph of F is closed (w.r.t. locally uniform convergence in LIP(RN , R
N)),

4.) TV (K) ∩ F (K) �= /0 for all K ∈ V .

Then for every initial set K0 ∈ V , there exists a compact-valued Lipschitz con-
tinuous solution K(·) : [0,1]� R

N to the morphological inclusion
◦
K(·) ∩ F (K(·)) �= /0

with K(0) = K0 and K(t) ∈ V for all t ∈ [0,1].
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Remark 13. In assumption (3.), the topology on LIP(RN ,RN) is specified.
A sequence (Gn)n∈N in LIP(RN ,RN) is said to converge “locally uniformly” to
G ∈ LIP(RN ,RN) if for every nonempty compact set M ⊂ R

N ,

dl∞(Gn(·)|M , G(·)|M) Def.= sup
x∈M

dl(Gn(x),G(x)) −→ 0 for n−→ ∞

using here the Pompeiu-Hausdorff distance dl on K (RN). This topology can be
regarded as an example induced by the metric Ď in § 5.1 (on page 386).

Due to the uniform bounds in assumption (2.), the image set F (K (RN)) is se-
quentially compact in LIPco(RN ,RN) with respect to this topology (as we prove
in subsequent Lemma 19). Hence, F is upper semicontinuous (in the sense of
Bouligand and Kuratowski) according to [19, Proposition 1.4.8].

Now Viability Theorem 12 is applied to two very special forms of constraints:

V1 :=
{

K ∈K (RN)
∣
∣ K∩M �= /0

}

V2 :=
{

K ∈K (RN)
∣
∣ K ⊂M

}

with some (arbitrarily fixed) nonempty closed subset M ⊂ R
N . Indeed, Gorre has

already characterized the corresponding contingent transition sets — as discussed
in Example 1.64 (on page 68) and quoted in Proposition 1.66. Thus, we conclude
directly:

Corollary 14 (Solutions having nonempty intersection with fixed M ⊂ R
N).

Let F : K (RN)� LIPco(RN , R
N) be a set-valued map and M ⊂ R

N a closed
subset satisfying:

1.) all values of F are nonempty, convex with global bounds (as in Theorem 12),
2.) the graph of F is closed (w.r.t. locally uniform convergence in LIP(RN , R

N)),
3.) for any K∈K (RN) with K∩M �= /0, there exist G ∈F (K), x ∈ K ∩M with

G(x)∩PK
M(x) �= /0.

Then for every compact set K0 ⊂ R
N with K0∩M �= /0, there exists a compact-

valued Lipschitz continuous solution K(·) : [0,1] � R
N to the morphological

inclusion
◦
K(·) ∩ F (K(·)) �= /0 with K(0) = K0 and K(t) ∩ M �= /0 for all t.

Corollary 15 (Solutions being contained in fixed M ⊂ R
N).

Let F : K (RN)� LIPco(RN , R
N) be a set-valued map and M ⊂ R

N a closed
subset satisfying:

1.) all values of F are nonempty, convex with global bounds (as in Theorem 12),
2.) the graph of F is closed (w.r.t. locally uniform convergence in LIP(RN , R

N)),
3.) for any compact set K ⊂M, there exist G ∈F (K) with G(x) ⊂ TM(x) for

every x ∈ K.

Then for every nonempty compact set K0 ⊂ M, there exists a compact-valued
Lipschitz continuous solution K(·) : [0,1]� R

N to the morphological inclusion
◦
K(·) ∩ F (K(·)) �= /0 with K(0) = K0 and K(t)⊂M for all t ∈ [0,1].
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5.2.3 The Steps for Proving the Morphological Viability Theorem

The proof of Viability Theorem 12 uses a concept of approximation developed by
Haddad and others for differential inclusions in R

N (and sketched in § 5.2.1).

For any given “threshold” ε > 0, we verify the existence of an approximative
solution Kε (·) : [0,1] −→K (RN) such that its values have distance ≤ ε from the
set of constraints V ⊂K (RN).
In addition, each Kε (·) is induced by a piecewise constant function

fε (·) : [0,1[−→ LIPco(RN ,RN)

of morphological transitions such that (Kε (t), fε (t)) is close to Graph F at every
time t ∈ [0,T [ (Lemma 16). Proposition A.81 about parameterization (on page 491)
bridges the gap between fε (·) : [0,1[−→ LIPco(RN ,RN) and the auxiliary function
f̂ε (·) : [0,1[−→ BLip(RN×B1, R

N) whose single values are in the Banach space(
C0(RN×B1, R

N), ‖ · ‖∞
)

additionally.

Then, letting ε > 0 tend to 0, we obtain subsequences (Kn(·))n∈N
,
(

f̂n(·)
)

n∈N
that

are converging to some K(·) : [0,1] −→ K (RN) and f̂ : [0,1[−→ BLip(RN×
B1, R

N), respectively, in an appropriate sense – due to compactness (see
Lemma 18).

Last, but not least, we prove that these limits satisfy for L 1-almost every t ∈ [0,T [

f̂ (t)(·,B1) ∈
◦
K(t) ∩ F (K(t)) �= /0.

Indeed, Lemma 20 concludes f̂ (t)(·,B1)∈F (K(t)) for L 1-almost every t ∈ [0,T [
from Lemma 19 stating that the graph of F is sequentially compact. Furthermore,
K(·) can be characterized as reachable set, i.e. ϑ f̂ (·)(·,B1)(t,K0) = K(t) for every t
(Lemma 21). Finally, preceding Proposition 1.57 (on page 64) implies

f̂ (t)(·,B1) ∈
◦
K(t) for L 1-almost every t ∈ ]0,1[.

Let us now formulate these steps in detail and then prove them.

Lemma 16 (Constructing approximative solutions). Choose any ε > 0.
Under the assumptions of Viability Theorem 12, there are a B-Lipschitz continuous
function Kε(·) : [0,1] −→K (RN) and a function fε (·) : [0,1[−→ LIPco(RN , R

N)
satisfying with Rε := ε eA

a) Kε (0) = K0,

b) dist
(
Kε (t), V

) ≤ Rε for all t ∈ [0,1],

c) fε (t) ∈
◦
Kε(t) ∩ F

(
BRε(Kε (t))

) �= /0 for all t ∈ [0,1[,

d) fε (·) is piecewise constant in the following sense: for each t ∈ [0,1[,
there exists some δ > 0 such that fε (·)|[t, t+δ [ is constant.
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Remark 17. As a direct consequence of property (d), the function fε : [0,1[−→
LIPco(RN ,RN) can have at most countably many points of discontinuity. This en-
ables us to apply earlier results about autonomous morphological equations (§ 1.9
on page 57 ff.) to the approximations Kε (·), fε (·) in a “piecewise” way.

Now the “threshold of accuracy” ε > 0 is tending to 0. The “detour” of parameteriza-
tion (Proposition A.81) and the subsequent statements about sequential compactness
lay the basis for extracting subsequences with additional features of convergence:

Lemma 18 (Selecting an approximative subsequence).
Under the assumptions of Viability Theorem 12, there are a constant c = c(N,A,B),
sequences Kn(·) : [0,1]−→K (RN), f̂n(·) : [0,1[−→ BLip(RN×B1, R

N) (n ∈ N)
and K(·) : [0,1] −→ K (RN), f̂ (·) : [0,1[ −→ BLip(RN×B1, R

N) such that for
every j,n ∈ N, t ∈ [0,1[, x ∈ R

N , u ∈ B1 ⊂ R
N

a) K0 = Kn(0) = K(0),
b) K(·) and Kn(·) are B-Lipschitz continuous w.r.t. dl,
c) f̂n(·)(x,u) is piecewise constant (in the sense of Lemma 16 (d)),
‖ f̂n(t)(·, ·)‖∞+ Lip f̂n(t)(·, ·) ≤ c < ∞,

d) dist
(
Kn(t), V

) ≤ 1
n

e) f̂n(t)(·,B1) ∈
◦
Kn(t) ∩ F

(
B1/n(Kn(t))

) �= /0

f) dl
(
Km(·), K(·))−→ 0 uniformly in [0,1] for m→ ∞,

g) f̂m(·)|K̃j×B1
−→ f̂ (·)|K̃j×B1

weakly in L1
(
[0,1],C0(K̃j×B1,R

N)
)

for m→ ∞,

h) ‖ f̂ (t)(·, ·)‖∞+ Lip f̂ (t)(·, ·) ≤ c < ∞,

i) K(t) ∈ V

with the abbreviation K̃j := B j+B(K0)
Def.=
{

x ∈R
N
∣
∣ dist(x,K0)≤ j+B

}∈K (RN).

Lemma 19 (Sequential compactness in the image and graph of F (·)).
In addition to the hypotheses of Viability Theorem 12, let (Gk)k∈N be an arbitrary
sequence in the image set F (K (RN)) =

⋃
M∈K (RN ) F (M) ⊂ LIPco(RN ,RN).

Then, there exist a subsequence (Gkj ) j∈N and a map G ∈ LIPco(RN ,RN) such
that for any compact set M ⊂ R

N , sup
x∈M

dl(Gkj (x), G(x)) −→ 0 ( j −→ ∞) and

Lip G≤ A, ‖G‖∞ ≤ B.

Let now (Kk)k∈N be an arbitrary sequence in K (RN) such that
⋃

k∈N Kk ⊂R
N

is bounded and Gk ∈ F (Kk) for each k ∈ N. Then there exist subsequences
(Kkj ) j∈N, (Gkj ) j∈N, a set K ∈K (RN) and a map G ∈F (K) ⊂ LIPco(RN ,RN)
with

dl(Kkj , K)
j→∞−→ 0 sup

x∈M
dl(Gkj (x), G(x))

j→∞−→ 0 for each M ∈K (RN).



5.2 Morphological Inclusions with State Constraints: A Viability Theorem 405

Lemma 20.
Let the sequences Kn : [0,1]−→K (RN), f̂n : [0,1[−→ BLip(RN×B1, R

N) (n∈N)
and the functions K(·) : [0,1]−→K (RN), f̂ (·) : [0,1[−→ BLip(RN×B1, R

N) be
as in Lemma 18 above.

Then, for L 1-almost every t ∈ [0,1[,

dist
(

f̂ (t)(x,B1), co
{

f̂n(t)(x,B1), f̂n+1(t)(x,B1) . . .
}) n→∞−→ 0

locally uniformly in x ∈R
N and, the coefficients of the approximating convex com-

binations can be chosen independently of t,x.

In particular, f̂ (t)(·,B1) ∈ F (K(t)) ⊂ LIPco(RN ,RN).

Last, but not least, we have to prove f̂ (t)(·,B1) ∈
◦
K(t) at L 1-almost every time t.

Due to Proposition 1.57 (on page 64), we can restrict our considerations to describ-
ing K(t) as reachable set of a nonautonomous differential inclusion, i.e.

ϑ f̂ (·)(·,B1)
(t,K0) = K(t) for every t ∈ ]0,1].

Lemma 21 (K(t) as a reachable set of f̂ (·)(·,B1)).
Let the sequences Kn : [0,1]−→K (RN), f̂n : [0,1[−→BLip(RN×B1, R

N) (n∈N)
and the functions K(·) : [0,1]−→K (RN), f̂ (·) : [0,1[−→ BLip(RN×B1, R

N) be
as in Lemma 18.

Then, for any x(·) ∈C0([0,1],RN) and Lebesgue measurable set J ⊂ [0,1],

dl
(∫

J
f̂n(s)(x(s),B1) ds,

∫

J
f̂ (s)(x(s),B1) ds

)
n→∞−→ 0.

In particular, ϑ f̂ (·)(·,B1)
(t,K0) = K(t) for every t ∈ ]0,1].

The next proposition serves as tool for proving Lemma 21 and focuses on solutions
of nonautonomous differential inclusions in R

N . In a word, this earlier theorem
of Stassinopoulos and Vinter [176] characterizes perturbations (of the set-valued
right-hand side) that have vanishing effect on the sets of continuous solutions.

Proposition 22 (Stassinopoulos and Vinter [176, Theorem 7.1]).
Let D : [0,1]×R

N � R
N and each Dn : [0,1]×R

N � R
N (n ∈ N) satisfy the

following assumptions:
1. D and Dn have nonempty convex compact values,
2. D(·,x), Dn(·,x) : [0,1]� R

N are measurable for every x ∈ R
N,

3. there exists k(·) ∈ L1([0,1]) such that D(t, ·), Dn(t, ·) : R
N � R

N are k(t)-
Lipschitz for L 1-almost every t ∈ [0,1],

4. there exists h(·) ∈ L1([0,1]) such that sup
v∈D(t,x)∪Dn(t,x)

|v| ≤ h(t) for every

x ∈ R
N and L 1-almost every t ∈ [0,1].
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Fixing the initial point a ∈ R
N arbitrarily, the absolutely continuous solutions of

{
y′(·) ∈ Dn(·,y(·)) a.e. in [0,1]
y(0) = a

and

{
y′(·) ∈ D(·,y(·)) a.e. in [0,1]
y(0) = a

respectively form compact subsets of
(
C0([0,1],RN), ‖ ·‖∞

)
denoted by Dn (n ∈N)

and D .

Then, Dn converges to D (w.r.t. the Pompeiu-Hausdorff metric on compact subsets
of C0([0,1],RN)) if and only if for every solution d(·)∈D , Dn(·,d(·)) : [0,1]�R

N

converges to D(·,d(·)) : [0,1]� R
N weakly in the following sense

dl
(∫

J
Dn(s, d(s)) ds,

∫

J
D(s, d(s)) ds

)
n→∞−→ 0

for every measurable subset J ⊂ [0,1]. �

Now let the proofs begin:

Proof (of Lemma 16 on page 403). It imitates the proof of Lemma 1.29 (on
page 48 f.) and uses Zorn’s Lemma: For ε > 0 fixed, let Aε(K0) denote the set
of all tuples (τK , K(·), f (·)) consisting of some τK ∈ [0,1], a B-Lipschitz con-
tinuous function K(·) : [0,τK ] −→ (K (RN),dl) and a piecewise constant function
f (·) : [0,1[−→ LIPco(RN , R

N) such that

a) K(0) = K0,

b’) 1.) dist
(
K(τK), V

) ≤ rε (τK) with rε (t) := ε eAt t,
2.) dist

(
K(t), V

) ≤ Rε for all t ∈ [0,τK ],

c) f (t) ∈ ◦
K(t) ∩ F

(
BRε(K(t))

) �= /0 for all t ∈ [0,τK [.

Obviously, Aε(K0) �= /0 since it contains (0, K(·) ≡ K0, f (·) ≡ f0) with arbitrary
f0 ∈ LIPco(RN , R

N). Moreover, an order relation � on Aε(K0) is specified by

(τK , K(·), f (·)) � (τM , M(·), g(·)) :⇐⇒ τK ≤ τM , M
∣
∣
[0,τK ] = K, g

∣
∣
[0,τK [ = f .

Hence, Zorn’s Lemma provides a maximal element
(
τ, Kε(·), fε (·)

) ∈Aε(K0).
As all considered functions with values in K (RN) have been supposed to be
B-Lipschitz continuous, Kε (·) is well-defined on the closed interval [0,τ]⊂ [0,1].

Assuming τ < 1 for a moment, we obtain a contradiction if Kε(·), fε (·) can be ex-
tended to a larger interval [0,τ+δ ] ⊂ [0,1] (δ > 0) preserving conditions (b’), (c).
Since closed bounded balls of (K (RN),dl) are compact, the closed set V contains
an element Z ∈K (RN) with dl(Kε(τ),Z) = dist(Kε(τ), V ) ≤ rε (τ) and, assump-
tion (4.) of Viability Theorem 12 provides a set-valued map

G ∈ TV (Z) ∩ F (Z) ⊂ LIPco(RN , R
N).

Due to Definition 1.16 of the contingent transition set TV (Z), there is a sequence
hm ↓ 0 in ]0,1−τ[ such that dist(ϑG(hm,Z), V )≤ ε hm for all m ∈N. Now set

Kε (t) := ϑG
(
t− τ, Kε (τ)

)
, fε (t) := G for each t ∈ [τ, τ+ h1[.
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Obviously, G ∈ ◦Kε(t) holds for all t ∈ [τ, τ+ h1[. Moreover, it leads to

dl
(
Kε (t), Z

) ≤ dl
(
ϑG(t− τ, Kε (τ)), Kε(τ)

)
+ dl
(
Kε(τ), Z

)

≤ B · (t− τ) + ε eAτ τ ≤ Rε

for every t ∈ [τ, τ+ δ [ with δ := min
{

h1, ε eA 1− τ
1+B

}
, i.e. conditions (b’)(2.)

and (c) hold in the interval [τ,τ+ δ ]. For any index m ∈ N with hm < δ ,

dist
(
Kε (τ+hm), V

) ≤ dl
(
ϑG(hm, Kε(τ)), ϑG(hm, Z)

)
+ dist

(
ϑG(hm, Z), V

)

≤ dl
(
Kε(τ), Z

) · eA hm + ε ·hm

≤ ε eAτ τ · eA hm + ε ·hm ≤ rε(τ+ hm),

i.e. condition (b’)(1.) is also satisfied at time t = τ+ hm with any large m ∈ N.
Finally, Kε(·)

∣
∣
[0, τ+hm] and fε(·)

∣
∣
[0, τ+hm[ provide the wanted contradiction, i.e. τ = 1.

�

Proof (of Lemma 18 on page 404).

For each n ∈N, Lemma 16 provides
Kn(·) : [0,1] −→ K (RN),
fn(·) : [0,1[ −→ LIPco(RN , R

N)

corresponding to ε := 1
n e−A. Now according to Proposition A.81 (on page 491),

the set-valued map [0,1[×R
N � R

N , (t,x) �→ fn(t)(x) has a parameterization
[0,1[×R

N×B1 −→ R
N that we interpret as f̂n : [0,1[−→ BLip(RN×B1,R

N).
Obviously, they satisfy the claimed properties (a) – (e).
In particular, these features stay correct whenever we consider subsequences instead
and again abbreviate them as (Kn(·))n∈N, ( f̂n(·))n∈N respectively.

For property ( f ) about uniform convergence of (Kn(·)) with respect to dl:

The B-Lipschitz continuity of each Kn(·) has two important consequences, i.e.
1. all curves Kn(·) : [0,1]−→ (K (RN),dl

)
(n ∈ N) are equi-continuous and

2.
⋃

n∈N

t ∈[0,1]

{
Kn(t)

}
is contained in the compact subset BB(K0) of

(
K (RN), dl

)
.

Theorem A.82 of Arzelà-Ascoli (on page 491) provides a subsequence (again
denoted by) (Kn(·))n converging uniformly to a function K(·) : [0,1] −→
(K (RN),dl). In particular, K(·) is also B-Lipschitz continuous with K(0) = K0,
i.e. properties (a) – (f ) are fulfilled completely.

For property (g) about weak convergence of fn(·)|K̃ with a fixed compact K̃ ⊂ R
N :

We cannot follow the same steps as for differential inclusions in R
N any longer.

Indeed, the functions f̂n(·) of morphological transitions have their values in
BLip(RN×B1, R

N), which cannot be regarded as a dual space in an obvious way.
Thus, Alaoglu’s Theorem (stating that closed balls of dual Banach spaces are
weakly* compact) cannot be applied similarly to differential inclusions (§ 5.2.1).



408 5 Mutational Inclusions in Metric Spaces

Alternatively, we restrict our considerations to a compact neighborhood K̃ of⋃
n∈N

t ∈[0,1]
Kn(t)⊂ R

N and use a sufficient condition on relatively weakly compact sets

in L1
(
[0,1], C0(K̃×B1, R

N)
)
. Here C0(K̃×B1, R

N) (supplied with the supremum

norm ‖ ·‖∞) denotes the Banach space of all continuous functions K̃×B1 −→R
N .

According to Proposition A.85 of Ülger (on page 492), if W ⊂C0(K̃×B1, R
N) is

weakly compact then the subset
{

h ∈ L1
(
[0,1], C0(K̃×B1, R

N)
) ∣∣
∣ h(t) ∈W for L 1-almost every t ∈ [0,1]

}

is relatively weakly compact in L1
(
[0,1], C0(K̃×B1, R

N)
)
.

In fact, the set
{

f̂n(t)
∣∣n ∈N, t ∈ [0,1]

}⊂C0(RN×B1, R
N) is uniformly bounded

and equi-continuous (due to property (c)). Due to Theorem A.82 of Arzelà-Ascoli,
the set of their restrictions to the compact set K̃×B1 ⊂ R

N×R
N

W :=
{

f̂n(t)
∣
∣
K̃×B1

∣
∣
∣ n ∈ N, t ∈ [0,1]

}
⊂ C0(K̃×B1, R

N)

is relatively compact with respect to ‖ ·‖∞. Thus,
{

f̂n(·)|K̃×B1

∣
∣n∈N

}
is relatively

weakly compact in L1
(
[0,1], C0(K̃×B1, R

N)
)

and, we obtain a subsequence

(again denoted by) ( f̂n(·))n∈N and some g(·) ∈ L1
(
[0,1], C0(K̃×B1, R

N)
)

with

f̂n(·)|K̃×B1

n→∞−→ g(·) weakly in L1
(
[0,1], C0(K̃×B1, R

N)
)
.

For property (g) about fn(·)|K̃j
with every compact K̃j

Def.= B j+B(K0)⊂R
N ( j ∈N) :

Now this construction of subsequences is applied to

K̃j
Def.= B j+B(K0) =

{
x∈R

N
∣
∣dist(x,K0)≤ j+B

}

for j = 1,2,3 . . . successively.
By means of Cantor’s diagonal construction, we obtain a subsequence (again de-
noted by) ( f̂n(·))n∈N and some g j(·)∈ L1

(
[0,1], C0(K̃j×B1, R

N)
)

(for each j ∈N)
such that for every index j ∈ N,

f̂n(·)|K̃j×B1

n→∞−→ g j(·) weakly in L1
(
[0,1], C0(K̃j×B1, R

N)
)
.

As restrictions to K̃j×B1 of one and the same subsequence ( f̂n(·))n∈N converge
weakly for each j ∈ N, the inclusion K̃j ⊂ K̃j+1 implies for any indices j < k

g j(t)(·) = gk(t)(·)|K̃j×B1
∈C0(K̃j×B1, R

N) for L 1-a.e. t ∈ [0,1].

Hence, (g j(·)) j∈N induces a single function f̂ : [0,1[−→ C0(RN×B1,R
N) def-

ined as

f̂ (t)(x,u) := g j(t)(x,u) for x ∈ K̃j, u ∈ B1 and L 1-a.e. t ∈ [0,1[.
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For property (h) about Lipschitz continuity and bounds of limit function f (·):
Finally, we verify f̂ (t) ∈ BLip(RN×B1, R

N), ‖ f̂ (t, ·, ·)‖∞ + Lip f̂ (t, ·, ·) ≤ c for
almost every t ∈ [0,1[. Indeed, as in the case of differential inclusions (§ 5.2.1),
Mazur’s Lemma (e.g. [188, Theorem V.1.2]) ensures for each fixed index j ∈ N

f̂ (·)|K̃j×B1
∈
⋂

n∈N

co
{

f̂n(·)|K̃j×B1
, fn+1(·)|K̃j×B1

. . .
}

in L1
(
[0,1],C0(K̃j×B1,R

N)
)
.

Thus, f̂ (·)|K̃j×B1
can be approximated by convex combinations of

{
f̂1(·)|K̃j×B1

,

f̂2(·)|K̃j×B1
. . .
}

with respect to the L1 norm. A further subsequence (of these

convex combinations) converges to f̂ (·)|K̃j×B1
L 1-almost everywhere in [0,1].

For L 1-almost every t ∈ [0,1], f̂ (t)|K̃j×B1
belongs to the same compact con-

vex subset of
(
C0(K̃j×B1, R

N), ‖ · ‖∞
)

as f̂1(t)|K̃j×B1
, f̂2(t)|K̃j×B1

. . . , namely
{

w ∈ BLip(K̃j×B1, R
N)
∣
∣‖w‖∞+Lip w≤ c

}
. As the index j ∈N is fixed arbitrar-

ily, we obtain property (h).

Property (i), i.e. K(t) ∈ V for every t ∈ [0,1], results directly from statements (d),
(f) and the assumption that V is closed in

(
K (RN),dl

)
. This completes the proof

of Lemma 18. �

The last step is to verify at Lebesgue-almost every time t ∈ [0,1[ that
f̂ (t)(·,B1) : R

N � R
N belongs to both F (K(t)) and the morphological muta-

tion
◦
K(t).

First we interpret the weak convergence of f̂n(·)|K̃j×B1
−→ f̂ (·)|K̃j×B1

(in L1)

with respect to the corresponding set-valued maps [0,1[×K̃j � R
N and meet the

topology of locally uniform convergence in LIP(RN ,RN).
As a rather technical tool, Lemma 19 (on page 404) clarifies how the uniform
Lipschitz bounds of F (K (RN))⊂ LIPco(RN ,RN) (due to assumption (2.)) imply
useful compactness features which ensure that the limit map f̂ (t)(·,B1) : R

N �R
N

is related to F (K(t)) at L 1-almost every time t.

Proof (of Lemma 19 on page 404).

Applying Parameterization Theorem A.81 (on page 491) to the autonomous maps
Gk : R

N�R
N provides a sequence (gk)k∈N of Lipschitz functions R

N×B1−→R
N

with gk(·,B1) = Gk for each k ∈ N and supk (‖gk‖∞+Lip gk)≤ const(A,B) < ∞.

For any nonempty compact set K ⊂ R
N , Theorem A.82 of Arzelà-Ascoli guaran-

tees a subsequence (gkj ) j∈N converging uniformly in K ×B1. In combination
with Cantor’s diagonal construction, we obtain even a subsequence (again denoted
by) (gkj ) j∈N converging uniformly in each of the countably many compact sets
Bm(0)×B1 ⊂ R

N×R
N (m ∈ N).
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Let hm : R
N×B1 −→R

N denote an arbitrary Lipschitz function with

sup
Bm(0)×B1

|gkj (·)−hm(·)| j→∞−→ 0.

Then we obtain the unique function h : R
N×B1 −→R

N by setting h(x, ·) := hm(x, ·)
for all x ∈ Bm(0), m ∈N and, gkj −→ h ( j→ ∞) locally uniformly in R

N×B1.

In particular, h(·) is also Lipschitz continuous and has the same global Lipschitz
bounds as (gk)k∈N. Hence, G := h(·,B1) : R

N � R
N provides a set-valued map

that is Lipschitz continuous and satisfies

sup
x∈M

dl(Gkj (x), G(x)) ≤ sup
x∈M

sup
u∈B1

|gkj (x,u)−h(x,u)| −→ 0 ( j→ ∞)

for any M ∈K (RN). This convergence of (Gkj ) j∈N implies directly Lip G ≤ A,
‖G‖∞ ≤ B and the convexity of all values of G. Now the first claim is proved.

For verifying the second claim, we extract a convergent subsequence (Kkl )l∈N as
all sets Kk,k ∈N, are contained in one and the same compact subset of R

N . Hence,

there is K ∈K (RN) with dl(Kkl , K) l→∞−→ 0. The same arguments as in the first part
lead to subsequences (again denoted by) (Kkj ) j∈N, (Gkj ) j∈N such that in addition,
the latter converges to a map G ∈ LIPco(RN ,RN) locally uniformly. According to
assumption (3.) of Viability Theorem 12, Graph F ⊂ K (RN)×LIPco(RN ,RN)
is closed with respect to these topologies and thus, it contains (K,G).

�

Proof (of Lemma 20 on page 405).

Lemma 18 (g) specifies the convergence resulting directly from construction

f̂n(·)|K̃j×B1

n→∞−→ f̂ (·)|K̃j×B1
weakly in L1

(
[0,1],C0(K̃j×B1, R

N)
)

for each j∈N with the abbreviation K̃j := B j+B(K0)
Def.=
{

x∈R
N
∣
∣dist(x,K0)≤ j+B

}
.

Fixing the index j ∈N of compact sets arbitrarily, Mazur’s Lemma provides a
sequence

(
h j,n(·)

)
n∈N

with

h j,n(·) ∈ co
{

f̂n(·)|K̃j×B1
, f̂n+1(·)|K̃j×B1

. . .
} ⊂ L1

(
[0,1],C0(K̃j×B1, R

N)
)
,

h j,n(·) −→ f̂ (·)|K̃j×B1
(n→ ∞) strongly in L1

(
[0,1],C0(K̃j×B1, R

N)
)
.

For a subsequence
(
h j,nk(·)

)
k∈N

, we even obtain convergence for L 1-a.e. t ∈ [0,1],

h j,nk(t) −→ f̂ (t)|K̃j×B1
(k→ ∞) in

(
C0(K̃j×B1,R

N), ‖ · ‖∞
)
,

i.e. uniformly in K̃j×B1 ⊂ R
N ×R

N. Now the first claim is proved.
In particular, all values of f̂ (t)(·,B1) : R

N � R
N are convex since each map

f̂n(t)(·,B1) ∈ im F ⊂ LIPco(RN ,RN) has convex values.
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Furthermore, we obtain the following inclusions for L 1-almost every t ∈ [0,1] (and
each index j ∈ N) in a pointwise way

f̂ (t)( · ,B1)
∣
∣
K̃j
∈
⋂

n∈N

h j,n(t)( · ,B1)
∣
∣
K̃j
∪ h j,n+1(t)( · ,B1)

∣
∣
K̃j
∪ . . .

⊂
⋂

n∈N

co
⋃

m≥n

f̂m(t)( · ,B1)
∣∣
K̃j

⊂
⋂

n∈N

co
⋃

m≥n

F
(
B1/m(Km(t))

)∣∣
K̃j

⊂
⋂

ε>0

co F
(
Bε(K(t))

)∣∣
K̃j

due to Lemma 18 (e) and dl(Km(t),K(t)) −→ 0 for m→ ∞ respectively. Here, to
be more precise, the closed convex hull (in the last line) denotes the following set-
valued map

K̃j � R
N , x �→ co

⋃

M∈K (RN )
dl(K(t),M)≤ε

⋃

G∈F (M)

G(x).

Fixing now j ∈ N and δ > 0 arbitrarily, we introduce the abbreviation

Bδ

(
F (K(t)); K̃j

)
:=
{

G ∈ LIPco(RN ,RN)
∣
∣
∣

δ ≥ dist
(

G(·)|K̃j
, F (K(t))|K̃j

)

Def.= inf
Z∈F (K(t))

sup
x∈ K̃j

dl(G(x), Z(x))
}

for the “ball” around the set F (K(t)) containing all maps G ∈ LIPco(RN ,RN)
whose restriction to K̃j has the “uniform distance” ≤ δ from F (K(t)).

For any δ > 0 and each j ∈ N, there exists a radius ρ > 0 with

F
(
Bρ(K(t))

) ⊂ Bδ
(
F (K(t)); K̃j

)

because otherwise there would be two sequences (Mk)k∈N, (Gk)k∈N in K (RN)
and LIPco(RN ,RN) with dl (Mk, K(t)) ≤ 1

k , Gk ∈F (Mk) \Bδ
(
F (K(t)); K̃j

)

for each k ∈ N and, Lemma 19 would lead to a contradiction (similarly to [19,
Proposition 1.4.8] about closed graph and upper semicontinuity of set-valued maps
between metric spaces).
Obviously, Bδ

(
F (K(t)); K̃j

) ⊂ LIPco(RN ,RN) is closed with respect to locally
uniform convergence. Moreover, it is convex with regard to pointwise convex com-
binations because F (K(t)) is supposed to be convex.
Thus, we even obtain the inclusion co F (Bρ (K(t))) ⊂ Bδ

(
F (K(t)); K̃j

)
, i.e.

f̂ (t)( · ,B1)
∣∣
K̃j
∈
⋂

δ >0

Bδ
(
F (K(t)); K̃j

)
for L 1-a.e. t and each j ∈ N.

In particular, there exists some Zj ∈F (K(t)) satisfying

sup
x∈ K̃j

dl ( f (t)(x,B1), Zj(x))≤ 1
j

and, the compactness property of Lemma 19 implies for L 1-almost every time t

f̂ (t)( · ,B1) ∈ F (K(t)). �
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Proof (of Lemma 21 on page 405).

According to the definition of Aumann integral (e.g. [19, § 8.6]),
∫

J
f̂ (s)(x(s),B1) ds

Def.=
{∫

J
f̂ (s)(x(s),u(s)) ds

∣
∣
∣ u(·) ∈ L1(J,B1)

}
.

Fixing u(·) ∈ L1(J,B1) and x(·) ∈ C0([0,1],RN) arbitrarily, we conclude from
Lemma 18 (g)

∫

J
f̂n(s)(x(s),u(s)) ds −→

∫

J
f̂ (s)(x(s),u(s)) ds for n→ ∞

since L1
(
[0,1],C0(K̃j×B1, R

N)
)−→ R, h �−→

∫

J
h(s)(x(s),u(s)) ds

is continuous and linear whenever x([0,1])⊂ K̃j. This implies

both dist
(∫

J
f̂n(s)(x(s),B1) ds,

∫

J
f̂ (s)(x(s),B1) ds

)
−→ 0

and dist
(∫

J
f̂ (s)(x(s),B1) ds,

∫

J
f̂n(s)(x(s),B1) ds

)
−→ 0.

Hence, the first claim holds.

Due to Lemma 18 (c), each f̂n(·)(x,B1) : [0,1[�R
N (n ∈N, x ∈R

N) is piece-
wise constant and thus, it has at most countably many points of discontinuity. We
conclude from Lemma 18 (e) and Proposition 1.57 (about the equivalence between
morphological primitives and reachable sets on page 64)

ϑ f̂n(·)(·,B1)
(t,K0) = Kn(t) for every t ∈ ]0,1] and n ∈N.

dl(Kn(t), K(t)) −→ 0 has already been mentioned in Lemma 18 (f). Now we still
have to verify

dl
(
ϑ f̂n(·)(·,B1)(t,K0), ϑ f̂ (·)(·,B1)

(t,K0)
)
−→ 0 for every t ∈ ]0,1] and n→∞.

If K0 ⊂ R
N consists of only one point, then this convergence results directly

from Proposition 22 of Stassinopoulos and Vinter (on page 405).
For extending it to arbitrary initial sets K0 ∈K (RN), we exploit two features:

first, the reachable set of a union is always the union of the corresponding reachable
sets and second, the Lipschitz dependence (of reachable sets) on the initial sets in the
sense of Proposition 1.50 (on page 60), i.e., for any M1,M2 ∈K (RN) and t ∈ [0,1]

{
dl
(
ϑ f̂n(·)(·,B1)

(t,M1), ϑ f̂n(·)(·,B1)(t,M2)
) ≤ eA dl(M1,M2)

dl
(
ϑ f̂ (·)(·,B1)

(t,M1), ϑ f̂ (·)(·,B1)
(t,M2)

) ≤ eA dl(M1,M2) .

This second general property for nonautonomous differential inclusions is covered
by Filippov’s Theorem A.6 (on page 443 f.) correspondingly to Proposition 1.50.

�
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5.3 Morphological Control Problems for Compact Sets in R
N

with State Constraints

Similarly to classical control theory in R
N , a metric space (U,dU) of control pa-

rameter and a single-valued function f : K (RN)×U −→ LIP(RN ,RN) of state
and control are given. For each initial set K(0) ∈K (RN), we are looking for a
Lipschitz continuous curve K(·) : [0,T ] −→ (K (RN), dl

)
solving the following

nonautonomous morphological equation
◦
K (t) � f (K(t),u(t)) in [0,T [

with a measurable control function u(·) : [0,T ]−→U, i.e. by definition

lim
h↓0

1
h · dl

(
ϑ f (K(t),u(t))(h, K(t)), K(t + h)

)
= 0 for L 1-a.e. t ∈ [0,T ].

This is an open-loop control problem in the metric space (K (RN),dl).

The existence of solutions is closely related to the corresponding morphological
inclusion for which we take all admitted controls into consideration simultaneously.
We introduce the set-valued map

FU : K (RN) � LIP(RN ,RN), K �→ { f (K,u) |u ∈ U} ⊂ LIP(RN ,RN)

and consider the morphological inclusion
◦
K(·) ∩ FU(K(·)) �= /0 in [0,T [.

In § 5.3.2, Proposition 25 (on page 416) specifies sufficient conditions on U and f
such that solutions to this morphological inclusion solve the morphological control
problem and vice versa.
The step from inclusion to control problem requires the existence of a measurable
control function and, it is concluded here from a well-known selection principle of
Filippov whose Euclidean special case is usually applied to differential inclusions
in R

N and classical control theory.

All available results about morphological inclusions can then be used for morpho-
logical control problems. In the following, Viability Theorem 12 (on page 401) plays

a key role. It concerns a morphological inclusion
◦
K(·) ∩ F (K(·)) �= /0 with state

constraints K(t) ∈ V ⊂K (RN) at every time t.
This viability theorem specifies sufficient conditions on F and the nonempty set
of constraints V ⊂ K (RN) such that at least one solution K(·) : [0,1] −→ V ⊂
K (RN) starts at each initial set K(0) ∈ V . In § 5.3.3 (on page 418 ff.), the close
relationship between morphological inclusions and control problems provides di-
rectly sufficient conditions on a morphological control system with state constraints
for the existence of solutions (Proposition 28).
In § 5.3.4, essentially the same approach is then used for solving relaxed control
problems in the morphological framework. They are based on replacing the metric
space U of control parameters by the set of Borel probability measures on U (sup-
plied with the linear Wasserstein metric). As immediate analytical benefit, we can
weaken some conditions of convexity in Proposition 35 (on page 422).
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The Step to Closed-Loop Control Problems for Compact Sets in R
N

Consider morphological control problems with state constraints
{ ◦

K (·) � f (K(·),u), u ∈U a.e. in [0,T [
K(t) ∈ V for every t ∈ [0,T [.

The metric space (U,dU) of control, the function f : K ×U −→ LIP(RN ,RN) and
the closed set of constraints V ⊂K (RN) are given. The morphological viability
condition mentioned before indicates where candidates for a closed-loop control
u : V −→ U can be found, namely among those controls u ∈ U whose reachable
sets ϑ f (K,u)(·,K) are “contingent” to V . This reflects the notion of regulation maps
defined by Aubin for control problems in finite-dimensional vector spaces [14, § 6].

In § 5.3.7 (on page 436 ff.), we specify sufficient conditions on U, f ,V such that
Michael’s famous selection theorem implies the existence of a continuous closed-
loop control (Proposition 52 on page 436). Michael’s selection theorem (quoted
here in Proposition 53), however, focuses on lower semicontinuous set-valued
maps. Now we need information about the semicontinuity properties of these regu-
lation maps.

In this regard, the classical results about finite-dimensional vector spaces serve
as motivation again. The Clarke tangent cone TC

V (x) ⊂ R
N , x ∈ V, to a nonempty

closed set V ⊂ R
N (alias circatangent set, see Definition 37) is known to have

closed graph whereas the Bouligand contingent cone to the same set does not
have such a semicontinuity feature in general [19, 162]. Furthermore, Rockafellar
characterized the interior of the convex Clarke tangent cone TC

V (x) ⊂ R
N by a

topological criterion leading to the so-called hypertangent cone ([161, Theorem 2],
[46, § 2,4] and quoted here in § 5.3.6). The set-valued map of hypertangent cones to
a fixed set V ⊂R

N is lower semicontinuous whenever all these cones are nonempty.

These two concepts, i.e. Clarke tangent cone and hypertangent cone to a given
closed set in R

N , are extended to the morphological framework where the metric
space (K (RN),dl) has replaced the Euclidean space.
In § 5.3.5, we apply Aubin’s definition of “circatangent transition set” [10, Defini-
tion 1.5.4] to (K (RN),dl) together with reachable sets of differential inclusions.
The result proves to be a nonempty closed cone in LIP(RN ,RN) and, its intersection
with BLip(RN ,RN) is convex.
In § 5.3.6, the so-called hypertangent transition set is introduced for a nonempty
closed subset V ⊂ K (RN). Its graph is identical to the interior of the graph of
circatangent transition sets in V ×LIP(RN ,RN).
In particular, this topological characterization proves to be helpful for constructing
closed-loop controls on the basis of Michael’s selection principle in subsequent
Proposition 52 (on page 436).
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5.3.1 Formulation

Now a control parameter is to come into play. Indeed, the so-called control problems
{

d
dt x(t) = f (x(t),u)

u ∈ U
(5.1)

have been studied thoroughly in both finite-dimensional and infinite-dimensional
vector spaces. Our contribution now is to formulate the corresponding problem in
the metric space (K (RN),dl) using the morphological framework for derivatives.

Definition 23.
Let (U,dU) denote a metric space and f : K (RN)×U −→ LIP(RN ,RN) be given.
A tube K : [0,T ]�R

N is called a solution to the morphological control problem

{ ◦
K (·) � f (K(·),u) a.e. in [0,T ]

u ∈ U
(5.2)

if there exists a measurable function u(·) : [0,T [−→ U such that K(·) solves the

nonautonomous morphological equation
◦
K (·) � f (K(·),u(·)), i.e. satisfying

1. K(·) : [0,T ]� R
N is continuous with respect to dl and

2. for L 1-almost every t ∈ [0,T [, f (K(t),u(t)) ∈ LIP (RN ,RN) belongs to
◦
K(t)

or, equivalently, lim
h↓0

1
h · dl

(
ϑ f (K(t),u(t))(h, K(t)), K(t + h)

)
= 0.

Proposition 24 (Solutions as reachable sets).
Assume the metric space (U,dU) to be complete and separable and, consider
LIPco(RN ,RN) with the topology of locally uniform convergence. Suppose f :
K (RN)×U −→ LIPco(RN ,RN) to be continuous with

sup
M∈K (RN )

u∈U

(‖ f (M,u)‖∞+ Lip f (M,u)) < ∞.

Let K : [0,T ]� R
N be any compact-valued solution to the morphological control

problem (5.2).
Then there is a measurable function u(·) : [0,T ] −→ U such that at every

time t ∈ [0,T ], the compact set K(t) ⊂ R
N coincides with the reachable set

ϑ f (K(·),u(·))(t, K(0))⊂ R
N of the nonautonomous differential inclusion

d
dτ x(τ) ∈ f (K(τ),u(τ))

(
x(τ)
) ⊂ R

N L 1-a.e.

Proof. It results from Proposition 1.57 (on page 64) stating the equivalence
between morphological primitives and reachable sets because the composition

f (K(·),u(·)) : [0,T ] −→ LIPco(RN ,RN)

is Lebesgue measurable. �
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5.3.2 The Link to Morphological Inclusions

In vector spaces, the close relationship between control problem (5.1) and the cor-
responding differential inclusion

d
dt x(t) ∈

⋃

u∈U

f (x(t),u) L 1-a.e.

had been realized soon. A measurable selection provides the same link now for
morphological inclusions. In a word, the classical techniques using appropriate
measurable selections (which had been developed for differential inclusions in the
Euclidean space) can also be used in the morphological framework because the
transitions are in a complete separable metric space, namely LIP(RN ,RN).
A main result of this section is the following equivalence:

Proposition 25. Assume the metric space (U,dU) to be complete and separable.
Consider the set LIP(RN ,RN) with the topology of locally uniform convergence.
Let f : K (RN)×U −→ LIP(RN ,RN) be continuous with

sup
M∈K (RN )

u∈U

(‖ f (M,u)‖∞+ Lip f (M,u)) < ∞.

Set FU : K (RN) � LIP(RN ,RN), K �→ { f (K,u) |u ∈ U} ⊂ LIP(RN ,RN).

A tube K(·) : [0,T ]�R
N is a solution to the morphological control problem

{ ◦
K (·) � f (K(·),u) a.e. in [0,T ]

u ∈ U

if and only if K(·) is a solution to the morphological inclusion
◦
K(·) ∩FU(K(·)) �= /0

(in the sense of Definition 1 on page 386).

Obviously, every morphological control problem leads to a morphological inclu-
sion. For proving Proposition 25, we require the inverse connection (i.e. from
inclusion to control problem). In the literature about differential inclusions in vector
spaces, it is usually based on a selection result that is said to go back to Filippov.

Lemma 26 (Filippov [19, Theorem 8.2.10]).
Consider a complete σ -finite measure space (Ω ,A,μ), complete separable metric
spaces X ,Y and a measurable set-valued map H : Ω � X with closed nonempty
images. Let g : X×Ω −→ Y be a Carathéodory function (i.e. continuous in the first
argument and measurable in the second one).
Then for every measurable function k : Ω −→ Y satisfying

k(ω) ∈ g(H(ω),ω) for μ-almost all ω ∈Ω ,

there exists a measurable selection h(·) : Ω −→ X of H(·) such that

k(ω) = g(h(ω),ω) for μ-almost all ω ∈Ω .
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For applying Lemma 26 to morphological inclusions, we focus on two aspects:
First, LIP(RN ,RN) is regarded as a separable metric space. Indeed, we supply
LIP(RN ,RN) with the topology of locally uniform convergence as in § 5.2. Simi-
larly to the beginning of § 5.1 (on page 386), this topology can be metrized by

dLIP : LIP(RN ,RN)×LIP(RN ,RN) −→ [0,1],

(G,H) �−→
∞

∑
j=1

2− j
dl∞
(
G(·)|B j(0), H(·)|B j(0)

)

1 + dl∞
(
G(·)|B j(0), H(·)|B j(0)

)

with the abbreviation dl∞
(
G(·)|B j(0), H(·)|B j(0)

) Def.= sup
x∈RN ,
|x|≤ j

dl(G(x), H(x)) < ∞.

Moreover, LIP(RN ,RN) is separable with respect to dLIP due to the (global)
Lipschitz continuity of each of its set-valued maps and because both domains
and values belong to the separable Euclidean space R

N .

Second, we study measurability of the “derivatives” for any compact-valued so-
lution K(·) : [0,T ]� R

N . Indeed for real-valued functions, it is well-known that
Lipschitz continuity implies a Lebesgue-integrable weak derivative and, the latter
coincides with the differential quotient at Lebesgue-almost every time (as a con-
sequence of Rademacher’s Theorem [162, Theorem 9.60]). In the morphological
framework, however, the derivative is described as a subset of LIP(RN ,RN), i.e.,
the mutation (in the sense of Definition 1.10 on page 37).
In combination with Arzelà-Ascoli Theorem A.82 in metric spaces, we conclude
directly from Lemma 3 (on page 387):

Lemma 27 (Measurability of compact mutation subsets).
For every threshold B ∈ [0,∞[ and continuous tube K(·) : [0,T ]� R

N with values
in K (RN), the following set-valued map of transitions

[0,T ] � LIP(RN ,RN), t �→ ◦
K(t) ∩ {G ∈ LIP(RN ,RN) | ‖G‖∞+ Lip G≤ B}

is Lebesgue-measurable. �

Proof (of Proposition 25).

“⇐=” Let the compact-valued tube K(·) : [0,T ]� R
N be a solution to the mor-

phological inclusion
◦
K(·) ∩ FU (K(·)) �= /0 (in the sense of Definition 1), i.e.

1.) K(·) : [0,T ]� R
N is continuous with respect to dl and

2.) FU (K(t))∩ ◦K(t) �= /0 for L 1-almost every t, i.e. there is some u∈U such that
the set-valued map f (K(t),u) ∈ FU (K(t)) ⊂ LIP(RN ,RN) belongs to the

mutation
◦
K(t) or, equivalently,

lim
h↓0

1
h ·dl

(
ϑ f (K(t),u)

(
h, K(t)

)
, K(t+h)

)
= 0.
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Setting B := sup
M∈K (RN), u∈U

(‖ f (M,u)‖∞+ Lip f (M,u)) < ∞, the set-valued map

[0,T ] � LIP(RN ,RN), t �→ ◦
K(t) ∩{G ∈ LIP(RN ,RN) | ‖G‖∞+ Lip G≤ B}

is Lebesgue-measurable according to Lemma 27. As a consequence of Proposition
A.77 and Selection Theorem A.74 (on page 489 f.), the intersection

[0,T ] � LIP(RN ,RN), t �→ ◦
K(t) ∩FU (K(t))

is also Lebesgue-measurable (with nonempty values at L 1-almost every time) and
thus, it has a measurable selection

k(·) : [0,T ] −→ (
LIP(RN ,RN), dLIP

)
.

Finally, Lemma 26 of Filippov provides a measurable selection u(·) : [0,T ] −→U
of the constant map H(·) ≡ U : [0,T ] � U such that k(t) = f (K(t),u(t)) for
L 1-almost every t ∈ [0,T ]. �

5.3.3 Application to Control Problems with State Constraints

The relationship between morphological control problems and morphological in-
clusions opens the door to applying Viability Theorem 12 immediately. Now we
can specify sufficient conditions on a morphological control problem with state
constraints for having at least one viable solution:

Proposition 28 (Viability theorem for morphological control problems).
Assume the metric space (U,dU) to be compact and separable and, consider the
set LIPco(RN ,RN) with the topology of locally uniform convergence. Suppose for
f : K (RN)×U −→LIPco(RN ,RN) and the nonempty closed subset V ⊂K (RN) :

1.) for any K ∈K (RN), the set { f (K,u) | u∈U} ⊂ LIPco(RN ,RN) is convex,
i.e. for any u1,u2 ∈U and λ ∈ [0,1], there exists some u ∈ U such that
f (K,u) ∈ LIPco(RN ,RN) is identical to the set-valued map

R
N � R

N , x �→ λ · f (K,u1)(x)+ (1−λ ) · f (K,u2)(x),

2.) sup
K∈K (RN )

u∈U

(‖ f (K,u)‖∞+ Lip f (K,u)) < ∞,

3.) f is continuous,

4.) for each K ∈ V , there exists some u ∈U with f (K,u) ∈ TV (K).

Then for every initial set K0 ∈ V , there exists a compact-valued Lipschitz con-
tinuous solution K(·) : [0,1]�R

N to the morphological control problem
◦
K(·) � f (K(·),u), u ∈U

with K(0) = K0 and K(t) ∈ V for all t ∈ [0,1].
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Proof. Define the set-valued map

FU : K (RN)� LIPco(RN ,RN), K �→ { f (K,u) |u∈U}.
Obviously, it has nonempty convex values due to assumption (1.). Moreover, the
graph of FU is a closed subset of K (RN)×LIP(RN ,RN) because f is continuous
and U is compact. Hence, FU satisfies the assumptions of Viability Theorem 12
and thus, for every initial set K0 ∈ V , there exists a compact-valued Lipschitz
continuous solution K(·) : [0,1]� R

N to the morphological inclusion

◦
K(·) ∩ FU (K(·)) �= /0

with K(0) = K0 and K(t) ∈ V for all t ∈ [0,1].
Due to Proposition 25, K(·) is a solution to the morphological control problem

◦
K(·) � f (K(·),u), u ∈U. �

For a given closed subset M ⊂ R
N , we conclude from Gorre’s characterization in

Example 1.64 (on page 68) directly:

Corollary 29.
Assume the metric space (U,dU) to be compact and separable and, consider the
set LIPco(RN ,RN) with the topology of locally uniform convergence. Suppose for
f : K (RN)×U −→ LIPco(RN ,RN) and the nonempty closed subset M ⊂ R

N:

1.) for any K ∈K (RN), the set { f (K,u) | u∈U} ⊂ LIPco(RN ,RN) is convex
(as in Proposition 28),

2.) sup
K∈K (RN )

u∈U

(‖ f (K,u)‖∞+ Lip f (K,u)) < ∞,

3.) f is continuous,
4.) for each nonempty compact set K ⊂M, there exists u ∈U with

f (K,u)(x)⊂ TM(x) for all x ∈ K.

Then for every nonempty compact subset K0 ⊂M, there exists a compact-valued
Lipschitz continuous solution K : [0,1]�R

N to the morphological control problem
{ ◦

K (·) � f (K(·),u)
u ∈ U

with K(0) = K0 and K(t)⊂M for all t ∈ [0,1]. �
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5.3.4 Relaxed Control Problems with State Constraints

Considering the morphological control problem
{ ◦

K (·) � f (K(·),u) in [0,T [
u ∈ U

(and the statements in Proposition 28 or Corollary 29, for example), the convexity
of { f (K,u) |u∈U} ⊂ LIPco(RN ,RN) is a hypothesis that can be difficult to verify.
For basically the same reason, the concept of “relaxed control” has been established
for classical control problems in vector spaces. In a word, it is based on replacing
the metric space U of control parameters by the set of Borel probability measures
on U, from now on denoted by P(U).
Now the goal is to adapt “relaxed controls” to the morphological framework.

Definition 30. Let (U,dU) be a metric space and consider LIP(RN ,RN) with the
topology of locally uniform convergence (metrized by dLIP as in § 5.3.2, page 417).
Suppose g : U −→ LIP(RN ,RN) to be continuous.

For any probability measure μ ∈P(U), the integral
∫

U
g(u) dμ(u) is defined

as set-valued map by
∫

U
g(u) dμ(u) : R

N � R
N , x �→

∫

U
g(u)(x) dμ(u).

Remark 31. Using the notation of Definition 30, for each point x ∈ R
N fixed, the

set-valued map U � R
N , u �→ g(u)(x) is compact-valued and continuous in the

sense of Bouligand and Kuratowski. Thus the integral
∫

U
g(u)(x) dμ(u) ⊂ R

N

is well-defined in the sense of Aumann.

Definition 32.
Let (U,dU) denote a metric space and f : K (RN)×U −→ LIP(RN ,RN) be given.
A tube K(·) : [0,T ] −→K (RN) is called a solution to the morphological relaxed
control problem { ◦

K (·) � f (K(·),u) L 1-a.e. in [0,T ]
u ∈ U

if there is a measurable function μ : [0,T [−→P(U), t �−→ μt such that K(·) solves

the nonautonomous morphological equation
◦
K (t) �

∫

U
f (K(t),u) dμt(u) in [0,T ],

i.e., satisfying

1.) K(·) : [0,T ]� R
N is continuous with respect to dl and

2.) for L 1-a.e. t ∈ [0,T ], the closure
∫

U
f (K(t),u) dμt(u) ∈ LIP(RN ,RN)

belongs to the mutation
◦
K(t).
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The first question is now: Which effects do probability measures (on U) instead
of U have on the corresponding set-valued map FU : K (RN)� LIP(RN ,RN) ?

Proposition 33. Assume the metric space (U,dU) to be compact and separable.
Consider the set LIPco(RN ,RN) with the topology of locally uniform convergence
and the set P(U) of Borel probability measures on U with the topology of nar-
row convergence (i.e. the dual setting with continuous and thus bounded functions
U −→R). Let f : K (RN)×U −→ LIPco(RN ,RN) be continuous with

sup
K∈K (RN )

u∈U

(‖ f (K,u)‖∞+ Lip f (K,u)
)

< ∞

and, set for each K ∈K (RN)

FU (K) :=
{

f (K,u)
∣∣ u ∈U},

F̃U (K) :=
{∫

U
f (K,u) dμ(u)

∣∣
∣ μ ∈P(U)

}
.

Then,

1.) F̃U(·) is a set-valued map K (RN)�LIPco(RN ,RN) with FU(K)⊂ F̃U(K)
for every K∈K (RN).

2.) F̃U(·) has closed convex values with co FU (K) = F̃U(K)⊂ LIPco(RN ,RN)
for every K∈K (RN).

3.) The graph of F̃U(·) is closed.

The proof of this proposition uses some tools about Borel probability measures and
Aumann integrals. It is postponed to the end of this section (on page 423 ff.).
The main notion is now to consider P(U) as control set instead of U. For applying
Proposition 25 about the relationship between control problem and morphological
inclusion, however, the parameter space has to be metric. We need the following
lemma for obtaining the counterparts to Proposition 28 and Corollary 29.
Proposition 35 and Corollary 36 are the main results of this section.

Lemma 34 ([6, §§ 5.1, 7.1]).
Let U �= /0 be a Polish space (i.e. complete and separable metric space) with a
bounded metric dU .

Then the set P(U) of Borel probability measures on U supplied with the topology of
narrow convergence is metrizable and separable. An example for a suitable metric
on P(U) is the linear Wasserstein distance (in its dual representation)

dP(U)
(
μ , ν

)
:= sup

{∫

U
ψ d(μ−ν)

∣
∣
∣ ψ : U −→R 1-Lipschitz continuous

}
.

A subset M ⊂P(U) is relatively compact in P(U) if and only if M is tight, i.e.
for every ε > 0, there exists a compact subset C ⊂ U with μ(U \C) ≤ ε for all
μ ∈M (known as Prokhorov’s Theorem).
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Proposition 35 (Viability theorem for morphological relaxed control prob-
lems). Assume the metric space (U,dU) to be compact and separable. Consider
the set LIPco(RN ,RN) with the topology of locally uniform convergence and the set
P(U) of Borel probability measures on U with the topology of narrow convergence.

Suppose for f : K (RN)×U −→ LIPco(RN ,RN) and the nonempty closed subset
V ⊂K (RN):

(i) sup
K∈K (RN )

u∈U

(‖ f (K,u)‖∞+ Lip f (K,u)) < ∞,

(ii) f is continuous,

(iii) TV (K) ∩ co { f (K,u) |u ∈U} �= /0 for each K ∈ V .

Then for every initial set K0 ∈ V , there exists a compact-valued Lipschitz con-
tinuous solution K(·) : [0,1]�R

N to the morphological relaxed control problem
◦
K(·) � f (K(·),u), u ∈U

(in the sense of Definition 32) with K(0) = K0 and K(t) ∈ V for all t ∈ [0,1].

Proof. Considering
(
P(U), dP(U)

)
as metric parameter space instead of (U,dU),

the set-valued map

F̃U : K (RN) � LIPco(RN ,RN), K �→
{∫

U
f (K,u) dμ(u)

∣
∣
∣ μ ∈P(U)

}

satisfies the assumptions of Viability Theorem 12 according to Proposition 33.
For each K0 ∈ V , there exists a compact-valued Lipschitz continuous solution

K(·) : [0,1]� R
N to the morphological inclusion

◦
K(·) ∩ F̃U (K(·)) �= /0 with

K(0) = K0 and K(t) ∈ V for all t ∈ [0,1].
Finally Proposition 25 guarantees that K(·) is a solution to the morphological con-
trol problem

◦
K(·) �

∫

U
f (K(·),u) dμ(u), μ ∈P(U),

i.e., it solves the relaxed control problem. �

Corollary 36. Assume the metric space (U,dU) to be compact and separable.
Consider the set LIPco(RN ,RN) with the topology of locally uniform convergence
and the set P(U) of Borel probability measures on U with the topology of narrow
convergence. Suppose for f : K (RN)×U −→ LIPco(RN ,RN) and the nonempty
closed subset M ⊂ R

N:

(i) sup
K∈K (RN )

u∈U

(‖ f (K,u)‖∞+ Lip f (K,u)) < ∞,

(ii) f is continuous,

(iii) for each compact K⊂M, there is a set-valued map G∈ co { f (K,u)|u∈U}⊂
LIPco(RN ,RN) satisfying G(x)⊂ TM(x) for every x ∈ K.
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Then for every nonempty compact subset K0 ⊂M, there exists a compact-valued
Lipschitz continuous solution K(·) : [0,1]� R

N to the morphological relaxed

control problem
◦
K (·) � f (K(·),u), u ∈ U (in the sense of Definition 32) with

K(0) = K0 and K(t)⊂M for all t ∈ [0,1].
�

Now we close this section with the proof of Proposition 33.

Proof (of Proposition 33). (1.) As mentioned in Remark 31, the integral∫

U
f (K,u) dμ(u) is a well-defined set-valued map R

N�R
N for each K ∈K (RN),

u ∈U and μ ∈P(U).
Moreover, its closure is convex since all set-valued maps f (K,u) ∈ LIPco(RN ,RN)
have convex values and due to the general properties of Aumann integral (see e.g.
[141, Theorem 2.1.17] or for the special case of nonatomic measures, [19, § 8.6]).
Due to the assumption B := supK,u

(‖ f (K,u)‖∞+ Lip f (K,u)
)

< ∞, all nonempty
compact sets f (K,u)(x) ⊂ R

N (with K ∈K (RN),u ∈U, x ∈ R
N) are contained in

the closed convex ball {y ∈ R
N | |y| ≤ B} and so are all values of the closures of∫

U
f (K,u) dμ(u).

Finally we prove that
∫

U
f (K,u) dμ(u) : R

N � R
N is B-Lipschitz continuous

for each K ∈K (RN). For any x1,x2 ∈R
N , the inclusion

f (K,u)(x1) ⊂ f (K,u)(x2)+BB·|x1−x2|(0) ⊂ R
N

holds for every u ∈U and we conclude from [19, Proposition 8.6.2]
∫

U
f (K,u)(x1) dμ(u) ⊂

∫

U

(
f (K,u)(x2) + BB·|x1−x2|(0)

)
dμ(u)

⊂
∫

U
f (K,u)(x2) dμ(u) + BB·|x1−x2|(0).

(2.) The convexity of F̃ (K) ⊂ LIPco(RN ,RN) (with respect to pointwise
convex combinations as in Theorem 12, assumption (1.) on page 401) results from
the convexity of P(U). Furthermore, co F (K) ⊂ F̃ (K) ⊂ co F (K) can be
concluded easily from the fact that finite convex combinations of Dirac masses are
dense in P(U) (since U is compact separable and due to [26, Corollary 30.5]).

Now we prove that F̃ (K) ⊂ LIPco(RN ,RN) is closed (with respect to locally
uniform convergence) for every K ∈K (RN). Indeed, let (μn)n∈N be any sequence
in P(U) such that

∫

U
f (K,u) dμn(u) n→∞−→ G ∈ LIPco(RN ,RN) locally uniformly in R

N .
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As U is assumed to be compact, the sequence (μn)n∈N is tight and thus relatively
compact in P(U) according to Lemma 34. Hence, a subsequence (μn j ) j∈N con-
verges narrowly to a measure μ∞ ∈P(U). We want to verify for every x ∈ R

N

∫

U
f (K,u)(x) dμ∞(u) = G(x) ⊂ R

N .

Indeed, the set-valued map f (K, ·)(x) : U � R
N is continuous with nonempty

compact convex values. Both the closed integral in the recent claim and G(x) are
nonempty, compact and convex. [19, Proposition 8.6.2] states closed Aumann inte-
gral and support function commute with each other, i.e. here for any vector p ∈ R

N

and any measure ν ∈P(U),

sup
(

p ·
∫

U
f (K,u)(x) dν(u)

)
=
∫

U
sup (p · f (K,u)(x)) dν(u).

Here the single-valued function sup (p · f (K, ·)(x)) : U −→ R is continuous and
bounded. On the one hand, we conclude from the narrow convergence μn j −→ μ∞
for each p ∈R

N

sup
(

p ·
∫

U
f (K,u)(x) dμn j(u)

)
j→∞−→ sup

(
p ·
∫

U
f (K,u)(x) dμ∞(u)

)
.

On the other hand, the initial assumption of locally uniform convergence to G(·)
implies for each p ∈ R

N

sup
(

p ·
∫

U
f (K,u)(x) dμn j(u)

)
j→∞−→ sup (p ·G(x)) .

Hence, the two following convex sets coincide for every x ∈ R
N

∫

U
f (K,u)(x) dμ∞(u) = G(x) ⊂ R

N .

Finally we have verified that F̃ (K)⊂ LIPco(RN ,RN) is closed.

(3.) For proving that Graph F̃ ⊂ K (RN)×LIPco(RN ,RN) is closed, let
(Kn)n∈N, (μn)n∈N be any sequences in K (RN) and P(U) respectively such that

⎧
⎪⎨

⎪⎩

Kn
n→∞−→ K∈K (RN) with respect to dl,

∫

U
f (Kn,u) dμn(u) n→∞−→ G∈ LIP(RN ,RN) locally uniformly in R

N .

Our goal is to verify G ∈ F̃ (K).

Due to the compactness of U, the set {μn | n ∈ N} ⊂P(U) is tight and, there
exists a subsequence (again denoted by) (μn)n∈N converging narrowly to some
μ∞ ∈P(U). In the proof of statement (2.), we have already drawn the conclusion
that for each x ∈ R

N ,
∫

U
f (K,u)(x) dμn(u) n→∞−→

∫

U
f (K,u)(x) dμ∞(u) ⊂ R

N
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Now it is sufficient to verify for each x ∈ R
N

∫

U
f (Kn,u)(x) dμ(u) n→∞−→

∫

U
f (K,u)(x) dμ(u) uniformly in μ ∈P(U)

since it ensures the wanted convergence for every x ∈ R
N

∫

U
f (Kn,u)(x) dμn(u) n→∞−→

∫

U
f (K,u)(x) dμ∞(u) ⊂ R

N

Indeed, the continuous function f : K (RN)×U −→ LIPco(RN ,RN) (between met-
ric spaces) is uniformly continuous on the compact product set {K,Kn |n ∈N}×U.
Evaluating the set-valued maps at a fixed point x ∈ R

N respectively, we obtain for
each ε > 0 that a small radius δ = δ (ε) > 0 satisfies

dl(Kn,K) + dU(u1,u2) ≤ δ =⇒ dl
(

f (Kn,u1)(x), f (K,u2)(x)
) ≤ ε.

In particular, there is some m = m(ε) ∈N with

dl
(

f (Kn,u)(x), f (K,u)(x)
) ≤ ε for all n≥ m, u ∈U.

Since f (Kn,u)(x) and f (K,u)(x) are compact convex subsets of R
N , it implies

for the closure of the Aumann integral with respect to any probability measure
μ ∈P(U) [141, Theorem 2.1.17 (i)]

dl
(∫

U
f (Kn,u) dμ(u),

∫

U
f (K,u) dμ(u)

)
≤ ε for all n≥ m(ε).

�
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5.3.5 Clarke Tangent Cone in the Morphological Framework:
The Circatangent Transition Set

The invariance condition of Nagumo (in Theorem 1.19 on page 40) has already
served Aubin as motivation for extending the contingent cone TV (x) in a normed
vector space to the mutational framework (see Definition 1.16 on page 39).

In this section, we start with the classical definition of Clarke tangent cone intro-
duced by Frank H. Clarke in the seventies (see [46] for details) and extend it to the
morphological framework. Following the alternative nomenclature of Aubin and
Frankowska in [19, Definition 4.1.5 (2)], its counterpart will be called circatangent
transition set – just because this term fits to the established “contingent transition
set”.

Indeed, Aubin introduced circatangent transition sets in the more general frame-
work of metric spaces in [10, Definition 1.5.4] and, Definition 38 below is equivalent
to the special case of (K (RN),dl) and morphological transitions.
Murillo Hernández applied this concept to tuples (v,K) ∈R

N×K (RN) with v ∈ K
and proved an asymptotic relationship between their contingent and circatangent
transition set implying that the latter is closed [144, Theorem 4.6].
In this section we generalize further features from the Euclidean space to the metric
space (K (RN),dl).

Definition 37 ([46, § 2.4], [19, § 4.1.3], [162, § 6.F]). Let K be a nonempty subset
of a normed vector space X and x ∈ X belong to the closure of K.
The Clarke tangent cone or circatangent cone TC

K (x) is defined (equivalently) by

TC
K (x) := Liminf h↓0,

y−→
K

x

K−y
h

=
{

v ∈ X
∣
∣
∣ ∀ hn ↓ 0, yn→ x with yn ∈ K : dist

(
v, K−yn

hn

) n→∞−→ 0
}

=
{

v ∈ X
∣∣
∣ ∀ hn ↓ 0, yn→ x with yn ∈ K : dist(yn+hn·v, K)

hn

n→∞−→ 0
}
.

Definition 38. For a nonempty subset V ⊂K (RN) and any element K ∈ V ,

T C
V (K) :=

{
F ∈ LIP(RN ,RN)

∣
∣∣ ∀ hn ↓ 0, Kn→ K with Kn ∈ V ⊂K (RN) :

1
hn
· dist

(
ϑF(hn,Kn), V

) n→∞−→ 0
}

is called circatangent transition set of V at K (in the metric space (K (RN),dl)).

In fact, we do not have to restrict our considerations to arbitrary sequences (Kn)n∈N

in V ⊂K (RN). An equivalent characterization of T C
V (K) uses all sequences in

K (RN) converging to K :
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Lemma 39. For every nonempty closed subset V ⊂ (K (RN),dl
)

and K ∈ V ,

T C
V (K) =

{
F ∈ LIP(RN ,RN)

∣
∣
∣ ∀ hn ↓ 0, Kn→ K :

limsup
n→∞

dist(ϑF (hn,Kn), V ) − dist(Kn,V )
hn

≤ 0
}

.

So far, the circatangent transition set has been characterized by two sequences
providing the arbitrarily fixed relation between “step size” hn > 0 and neighboring
sets Kn ∈K (RN). The following condition proves to be equivalent and avoids the
aspect of countability:

Lemma 40. Let K ∈K (RN) be any element of the closed set V ⊂ (K (RN),dl
)
.

Then, a set-valued map F ∈ LIP(RN ,RN) belongs to the circatangent transition set
T C

V (K) if and only if there is a function ω : [0,∞[−→ [0,∞[ with lim
δ→0

ω(δ ) = 0,

1
h ·
(
dist
(
ϑF (h,M), V

) − dist(M, V )
) ≤ ω

(
dl(M,K)+ h

)

for all h ∈ ]0,1], M ∈K (RN).

The next proposition indicates further properties which the circatangent transition
set shares with the Clarke tangent cone in normed vector spaces. Indeed, it is a
nonempty closed cone in LIP(RN ,RN).
Convexity, however, is verified here only for morphological transitions in T C

V (K)
which are induced by BLip(RN ,RN), i.e. bounded Lipschitz continuous vector
fields R

N −→ R
N and their ordinary differential equations (rather than set-valued

maps in LIP(RN ,RN) and reachable sets of their respective differential inclusions).

Proposition 41. For every element K ∈K (RN) of a closed set V ⊂(K (RN),dl
)
,

1. the circatangent transition set T C
V (K) ⊂ LIP(RN ,RN) is a nonempty cone,

i.e., for any G∈T C
V (K) and λ ≥ 0, the set-valued map R

N�R
N , x �→ λ ·G(x)

(in the Minkowski sense) also belongs to T C
V (K).

2. for every threshold B ∈ [0,∞[, the intersection

T C
V (K) ∩ {G ∈ LIP(RN ,RN) | ‖G‖∞+ Lip G≤ B}

is closed in LIP(RN ,RN) with the topology of locally uniform convergence.

Proposition 42. Let K ∈K (RN) be in the closed set V ⊂ (K (RN),dl
)
.

Then, T C
V (K) ∩ BLip(RN ,RN) is convex,

i.e., for any g1,g2 ∈ T C
V (K)∩BLip(RN ,RN) and λ ∈ [0,1], the Lipschitz contin-

uous function R
N −→R

N , x �−→ λ ·g1(x)+(1−λ ) ·g2(x) also belongs to T C
V (K).
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Now we provide the missing proofs in regard to the circatangent transition set.

Proof (of Lemma 39). “⊃” is an obvious consequence of Definition 38.

“⊂” For any F ∈ T C
V (K) ⊂ LIP(RN ,RN) choose the arbitrary sequences

(hn)n∈N, (Kn)n∈N in ]0,∞[ and K (RN) respectively with hn−→ 0, dl(Kn,K)−→ 0
for n −→ ∞. Since closed balls in (K (RN),dl) are known to be compact, there
exists a set Mn ∈ V ⊂K (RN) for each n ∈ N satisfying

dl(Kn,Mn) = dist
(
Kn,V ) −→ 0 .

F ∈ T C
V (K) implies 1

hn
·dist

(
ϑF(hn,Mn), V

) −→ 0 for n−→ ∞
and, Proposition 1.50 ensures dl

(
ϑF(hn,Kn), ϑF(hn,Mn)

) ≤ dl(Kn,Mn) · eLip F ·hn

for each n ∈ N. Finally, we obtain

1
hn
·
(

dist
(
ϑF(hn,Kn), V

)−dist
(
Kn, V

))

≤ 1
hn
·
(

dl
(
ϑF(hn,Kn), ϑF(hn,Mn)

)
+ dist

(
ϑF(hn,Mn), V

)−dl(Kn,Mn)
)

≤ dl(Kn,Mn) · eLip F ·hn−1
hn

+ dist(ϑF (hn,Mn), V )
hn

and thus, its limit superior for n−→ ∞ is nonpositive. �

Proof (of Lemma 40 on page 427).
“⇐=” is an immediate consequence of Lemma 39.

“=⇒” The triangle inequality of dl and Lemma 1.51 (on page 61) guarantee

dist
(
ϑF(h,M), V

) − dist(M, V ) ≤ dl
(
M, ϑF(h,M)

) ≤ ‖F‖∞ h

for all h > 0 and M ∈K (RN). Hence the auxiliary function ω : [0,∞[−→ [0,∞[,

ω(δ ) := sup
{

1
h ·
(
dist
(
ϑF (h,M), V

) − dist(M, V )
) ∣∣∣

M ∈K (RN), h ∈]0,1], dl(M,K)+ h ≤ δ
}

is well-defined and bounded for any set-valued map F ∈ LIP(RN ,RN).
For F ∈T C

V (K), however, we still have to verify ω(δ )−→ 0 for δ −→ 0.
If this asymptotic feature was not correct, there would exist some ε > 0 and se-
quences (hn)n∈N, (Mn)n∈N in ]0,1], K (RN) respectively satisfying for all n ∈ N

{
dl(Mn,K)+ hn ≤ 1

n
1
hn
· (dist

(
ϑF (hn,Mn), V

) − dist(Mn, V )
) ≥ ε > 0.

Due to hn ↓ 0 and Mn −→ K, it would contradict F ∈T C
V (K) due to Lemma 39.�

Proof (of Proposition 41 on page 427).

(1.) Obviously, the constant set-valued map G0(·) := {0} : R
N � R

N belongs to
both LIP(RN ,RN) and T C

V (K) because ϑG0(h,K) = K for every K ∈K (RN) and
h≥ 0. Thus, T C

V (K) �= /0.
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For proving the cone property, choose any K ∈ V ⊂ K (RN), G ∈ T C
V (K) ⊂

LIP(RN ,RN) and λ > 0. Moreover, let (hn)n∈N and (Kn)n∈N be arbitrary se-
quences in ]0,∞[ and V ⊂K (RN) respectively with hn −→ 0, dl(Kn,K)−→ 0
(n → ∞). Every solution x(·) ∈W 1,1([0,hn],RN) of x′(·) ∈ λ G(x(·)) induces a
solution y(·) ∈W 1,1([0, hn

λ ],RN) of y′(·)∈G(y(·)) (and vice versa) by time scaling,
i.e. x(t) = y(λ · t). Hence,

ϑλ G(hn,Kn) = ϑG( hn
λ ,Kn).

The assumption G ∈T C
V (K) guarantees now

1
hn
· dist

(
ϑλ G(hn,Kn), V

)
= 1

λ
λ
hn
· dist

(
ϑG( hn

λ ,Kn), V
) −→ 0 for n→ ∞.

(2.) Let (G j) j∈N be a sequence in T C
V (K) with ‖G j‖∞ + Lip G j ≤ B for each

j ∈ N and converging to G(·) ∈ LIP(RN ,RN) locally uniformly in R
N .

Obviously, ‖G‖∞+ Lip G≤ B holds. Our aim is to verify G ∈T C
V (K).

Let (hn)n∈N and (Kn)n∈N be any sequences in ]0,1] and V ⊂K (RN) respectively
with hn −→ 0 and dl(Kn,K)−→ 0 (for n→∞). The last convergence implies that
all Kn, n ∈ N, and K ∈K (RN) are contained in a ball BR(0) ⊂ R

N of sufficiently
large radius R < ∞. Due to sup

n
hn ≤ 1,

⋃

j,n∈N

⋃

0≤ t≤hn

(
ϑGj (t,Kn) ∪ ϑG(t,Kn)

) ⊂ BR+B(0) ⊂ R
N .

On the basis of Proposition 1.50 (on page 60), we obtain the estimate for all j,n∈N

1
hn
·dist

(
ϑG(hn,Kn), V

)

≤ 1
hn
·dl(ϑG(hn,Kn), ϑGj (hn,Kn)

)
+ 1

hn
·dist

(
ϑGj (hn,Kn), V

)

≤ eB hn · sup
|x|≤R+B

dl(G(x), G j(x)) + 1
hn
·dist

(
ϑGj (hn,Kn), V

)
.

For any ε > 0 given, we can fix j ∈ N sufficiently large with

sup
|x|≤R+B

dl(G(x), G j(x)) < ε

and, G j ∈ T C
V (K) guarantees

limsup
n→∞

1
hn
·dist

(
ϑGj (hn,Kn), V

) ≤ ε

with arbitrarily small ε > 0, i.e.,

limsup
n→∞

1
hn
· dist

(
ϑG(hn,Kn), V

)
= 0. �

The subsequent proof of Proposition 42 uses the following auxiliary result about
representing a constant λ as integral mean. A similar statement cannot hold for the
L1 deviation because any integrable function μ : [0,1]−→ {0,1} satisfies for every
t ∈ ]0,1] and λ ∈ [0,1]

1
t ·
∫ t

0
|μ(s)−λ | ds ≥ min{λ ,1−λ}.
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Lemma 43. For every λ ∈ ]0,1[, there exists μ ∈ L1([0,1]) satisfying
⎧
⎨

⎩

1
t ·
∫ t

0
(μ(s)−λ ) ds −→ 0 for t ↓ 0,

μ(·) ∈ {0,1} piecewise constant in ]0,1[.

Proof (of Lemma 43). μ(·) is defined piecewise in each interval
[

1√
n+1

, 1√
n

[
.

Set μ(t) :=

{
0 for 1√

n+1
≤ t < λ√

n+1
+ 1−λ√

n

1 for λ√
n+1

+ 1−λ√
n ≤ t < 1√

n

for each n ∈ N.

Then,
∫ 1√

n

1√
n+1

(μ(s)−λ ) ds = 0 and thus,
∫ 1√

n

0
(μ(s)−λ ) ds = 0.

Moreover,
∫ 1√

n

1√
n+1

|μ(s)−λ | ds = 2 λ (1−λ )
(

1√
n − 1√

n+1

)
implies

sup
1√
n+1
≤ t≤ 1√

n

1
t ·
∣
∣
∣
∣

∫ t

0
(μ(s)−λ ) ds

∣
∣
∣
∣ ≤

√
n + 1 ·

∫ 1√
n

1√
n+1

|μ(s)−λ | ds
n→∞−→ 0.

�

Proof (of Proposition 42 on page 427).

For any functions g1,g2 ∈ T C
V (K)∩BLip(RN ,RN) and λ ∈ ]0,1[, we verify that

g : R
N −→ R

N , x �−→ λ ·g1(x)+ (1−λ ) ·g2(x)

also belongs to T C
V (K).

Obviously, g(·) is bounded, Lipschitz continuous and thus, g ∈ BLip(RN ,RN).
According to Lemma 43, there exists μ ∈ L1([0,1]) satisfying

⎧
⎨

⎩

1
t ·
∫ t

0
(μ(s)−λ ) ds −→ 0 for t ↓ 0,

μ(·) ∈ {0,1} piecewise constant in ]0,1[.

First we compare the evolution of an arbitrary set M ∈ K (RN) along the auto-
nomous differential equation with the right-hand side

g : R
N −→ R

N , x �−→ λ ·g1(x) + (1−λ ) ·g2(x)

and along the nonautonomous differential equation with the right-hand side

f : R
N × [0,1] −→ R

N , (x, t) �−→ μ(t) ·g1(x) + (1− μ(t)) ·g2(x).

In particular, we prove

lim
t ↓0

1
t · dl

(
ϑ f (t,M), ϑg(t,M)

)
= 0 uniformly in M ∈K (RN).

Let x(·)∈W 1,1([0,1],RN) denote any solution to the nonautonomous differential
equation x′(·)∈ f (x(·), ·). There exists a solution y(·)∈W 1,1([0,1],RN) to the initial
value problem y′(·) = g(y(·)), y(0) = x(0) and, we estimate the difference
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|y(t)− x(t)| =
∣
∣
∣
∫ t

0

(
λg1
(
y(s)
) − μ(s)g1

(
x(s)
)
+

(1−λ )g2
(
y(s)
) − (1− μ(s))g2

(
x(s)
))

ds
∣
∣
∣

≤
∣∣
∣
∫ t

0

(
(λ − μ(s)) g1

(
y(s)
)

+ (μ(s)−λ ) g2
(
y(s)
))

ds
∣∣
∣

+
∫ t

0
μ(s) ·Lip g1 · |x(s)− y(s)| ds

+
∫ t

0
(1− μ(s)) ·Lipg2 · |x(s)− y(s)| ds

≤
∣
∣
∣
∫ t

0
(λ − μ(s)) · (g1(x(0))−g2(x(0))

)
ds
∣
∣
∣

+
∫ t

0

∣
∣λ − μ(s)

∣
∣ (Lip g1+Lip g2) |y(s)− x(0)| ds

+ max{Lip g1, Lip g2} ·
∫ t

0
|x(s)− y(s)| ds

≤ c ·
(∣∣∣
∫ t

0
(λ − μ(s)) ds

∣
∣∣ +

∫ t

0
‖g‖sup · s ds +

∫ t

0
|x(s)− y(s)| ds

)

with a constant c > 0 depending only on g1(·), g2(·). Due to Gronwall’s inequality,
|x(t)− y(t)| ≤ o(t) for t ↓ 0 uniformly with respect to the initial point x(0) = y(0).
(In particular, the estimate of Filippov’s Theorem is difficult to be applied here
directly as the integral mean of μ(·)−λ tends to 0 for t ↓ 0, but not of |μ(·)−λ |.)
Thus, for any initial set M ∈K (RN), the reachable sets satisfy

lim
t ↓0

1
t · �e⊂

(
ϑ f (t,M), ϑg(t,M)

)
= 0 uniformly in M ∈K (RN).

The same uniform estimates hold for �e⊂
(
ϑg(t,M), ϑ f (t,M)

)
since the preceding

solutions x(·) and y(·) have required only the joint initial point at time 0. Hence,

lim
t ↓0

1
t · dl

(
ϑ f (t,M), ϑg(t,M)

)
= 0 uniformly in M ∈K (RN).

Finally, we focus on the asymptotic features of ϑ f (·, ·) in regard to the circa-
tangent transition set T C

V (K), i.e. for any ε > 0, we verify the existence of a radius
r > 0 in a moment such that all h ∈ ]0,r] and sets M ∈K (RN) with dl(M,K) ≤ r
satisfy

dist
(
ϑ f (h,M), V

) − dist(M, V ) ≤ ε h.

Then, for any sequences hn ↓ 0 and (Kn)n∈N in V ⊂K (RN) converging to K
1
hn
· dist

(
ϑ f (hn,Kn), V

)−→ 0 for n−→ ∞

and in combination with the uniform convergence mentioned before, we conclude
1
hn
· dist

(
ϑg(hn,Kn), V

)−→ 0 for n−→ ∞,

i.e., g ∈ T C
V (K) due to Definition 38.
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Indeed, applying Lemma 40 (on page 427) to g1,g2 ∈T C
V (K)∩BLip(RN ,RN), we

obtain a joint function ω : [0,∞[−→ [0,∞[ satisfying limδ→0 ω(δ ) = 0 and

1
h ·
(
dist
(
ϑg j (h,M), V

) − dist(M, V )
) ≤ ω

(
dl(M,K)+ h

)

for all j ∈ {1,2}, h ∈ ]0,1] and M ∈K (RN).
Fixing ε > 0 arbitrarily small, there exist a radius R > 0 with sup[0,R] ω(·) ≤ ε
and additionally, some r ∈ ]0, R

2 ] such that r · (1 +‖g1‖∞+‖g2‖∞
)≤ R

2 .

Then, each j ∈ {1,2} and every h ∈ ]0,r], M ∈K (RN) with dl(M,K) ≤ r satisfy
{

dl
(
ϑg j (h,M),K

) ≤ dl(M,K) + ‖g j‖∞ h ≤ R
2

dist
(
ϑg j (h,M), V

) − dist(M, V ) ≤ ω
(
dl(M,K)+ h

) ·h ≤ ε h.

For drawing now conclusions about ϑ f (h,M), we exploit the piecewise constant
structure of auxiliary function μ(·) : [0,1] −→ {0,1} (introduced in Lemma 43).
Indeed, there is a sequence (tk)k∈N tending to 0 monotonically such that μ(·)
is constant in every interval [tk+1, tk[, k ∈ N. The last estimate in each of these
subintervals leads to the following inequalities for every h ∈ ]0,r], M ∈ K (RN)
with dl(M,K) ≤ r and sufficiently large k ∈ N with tk+1 < h≤ tk

dist
(
ϑ f (h,M), V

) − dist(M, V )

≤ dist
(
ϑ f (h− tk+1,ϑ f (tk+1,M)), V

) − dist
(
ϑ f (tk+1,M), V

)

+ dist
(
ϑ f (tk+1,M), V

) − dist
(
ϑ f (tk+2,M), V

) ± . . .

− dist(M, V )

≤ ε · (h− tk+1) + ε · (tk+1− tk+2) + . . .

≤ ε · h.
�
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5.3.6 The Hypertangent Transition Set

For any closed subset of the Euclidean space, the interior of the Clarke tangent cone
has been characterized by Rockafellar in 1979 [161]:

Proposition 44 (Rockafellar [161, Theorem 2], [162, Theorem 6.36]). Let K ⊂
R

N be a closed set and x ∈ K. Then the interior of Clarke tangent cone to K at x
satisfies

TC
K (x)◦ = {v ∈ R

N | ∃ ε > 0 : (K ∩Bε(x)) + ]0,ε[ ·Bε(v)⊂ K}
= {v ∈ R

N | ∃ ε > 0 ∀ y ∈ K∩Bε (x), w ∈ Bε(v), τ ∈ ]0,ε[: y + τw ∈ K}
with Bε (v) abbreviating the closed ball Bε (v) := {w ∈ R

N | |w− v| ≤ ε} and
U◦ denoting always the interior of a set U.

This equivalence is the motivation for introducing “hypertangent cones”:

Definition 45 ([46, § 2, 4]). A vector v in a Banach space X is said to be
hypertangent to the set K ⊂ X at the point x ∈ K if for some ε > 0, all vectors
y ∈ Bε (x)∩K, w ∈ Bε(v)⊂ X and real t ∈ ]0,ε[ satisfy y + t ·w ∈ K.

We now focus on a similar description in the morphological framework. To be more
precise, we are going to specify subsets T H

V (K)⊂ LIP(RN ,RN) of the circatangent
transition sets T C

V (K), K ∈ V , whose graph V � LIP(RN ,RN), K �→ T H
V (K) is

identical to the interior of the graph of T C
V (·) in V ×LIP(RN ,RN).

There is an essential difference between the vector space R
N and the metric space

(K (RN),dl), however, preventing us from applying Definition 45 directly.
Indeed, considering the neighborhood of a vector y + t · v (with y,v ∈ R

N , t > 0),
each of its points can be represented as y+t w with a “perturbed” vector w close to v.
The corresponding statement does not hold for reachable sets of differential inclu-
sions in general: For given F ∈ LIP(RN ,RN), K ∈K (RN), t > 0, not every com-
pact set M ⊂ R

N with arbitrarily small Hausdorff distance from ϑF(t,K) can be
represented as reachable set ϑG̃(t,K) with some G̃ ∈ LIP(RN ,RN) “close to” F.

As a typical example, we can consider M := ϑF(t,K) \ Bε(x0)◦ ∈ K (RN) with an
interior point x0 of ϑF(t,K) and sufficiently small ε > 0.

For this reason, we prefer a different approach to the interior of Graph T C
V (·),

but use the terminology of hypertangents:

Definition 46. Consider the set LIP(RN ,RN) with the topology of locally uni-
form convergence. For a nonempty subset V ⊂K (RN) and any element K ∈ V ,

T H
V (K) :=

{
F ∈ LIP(RN ,RN)

∣
∣
∣ ∃ ε > 0, neighborhood U ⊂ LIP(RN ,RN) of F

∀ G ∈U : lim
h↓0

1
h · dist

(
ϑG(h,M), V

)
= 0

uniformly in M ∈ V ∩Bε (K)
}

is called hypertangent transition set of V at K (in the metric space (K (RN),dl)).
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Lemma 47. Let K ∈K (RN) be in the nonempty closed set V ⊂ (K (RN),dl
)
.

Then, a set-valued map F ∈ LIP(RN ,RN) belongs to the hypertangent transi-
tion set T H

V (K) if and only if there exist a radius ε > 0 and a neighborhood
U ⊂ LIP(RN ,RN) of F such that for each map G ∈ U, a modulus of continuity
ω : [0,1]−→ [0,∞[ (i.e. limδ→0 ω(δ ) = 0) satisfies

1
h ·
(
dist
(
ϑG(h,M), V

) − dist(M, V )
) ≤ ω(h)

for all h ∈ ]0,1] and M ∈ Bε(K)⊂K (RN).

The proof results from essentially the same arguments as Lemma 40 about the circa-
tangent transition set (on page 427). Furthermore, in combination with Lemma 40,
we conclude immediately:

Lemma 48. For every nonempty closed subset V ⊂K (RN) and element K ∈ V ,
the hypertangent transition set T H

V (K) is contained in the interior of the circa-
tangent transition set T C

V (K). �

For the same reason, we obtain an even more general result:

Lemma 49. Consider the set LIP(RN ,RN) with the topology of locally uniform
convergence. For every nonempty closed subset V ⊂K (RN), the graph of hyper-
tangent transition sets

V � LIP(RN ,RN), K �→ T H
V (K)

is contained in the interior of the graph of V � LIP(RN ,RN), K �→ T C
V (K). �

In fact, also the opposite inclusion holds and thus, we have a complete characteri-
zation of the interior of Graph T C

V (·) in V ×LIP(RN ,RN):

Proposition 50. Let V ⊂K (RN) be nonempty and closed with respect to dl.
Then, Graph T H

V (·)⊂ V ×LIP(RN ,RN) is equal to the interior of Graph T C
V (·)

in V ×LIP(RN ,RN).

Proof. Due to Lemma 49, we just have to show: If (K,F) belongs to the interior
of Graph T C

V (·) in V ×LIP(RN ,RN), then F ∈T H
V (K).

There exist a radius ρ > 0 and a neighborhood U ⊂ LIP(RN ,RN) of F (with respect
to locally uniform convergence) such that all tuples (M,G) ∈ (V ∩Bρ (K)

)×U ⊂
K (RN)×LIP(RN ,RN) belong to Graph T C

V (·). For an arbitrary set-valued map
G ∈U, we now prove indirectly

limsup
h↓0

1
h · dist

(
ϑG(h,M), V

)
= 0 uniformly in M ∈ V ∩Bρ(K).
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Otherwise there exist δ > 0 and sequences (hn)n∈N, (Mn)n∈N in ]0,1[ and V ⊂
K (RN) respectively satisfying for all n ∈ N,

⎧
⎪⎨

⎪⎩

dist
(
ϑG(hn,Mn), V

) ≥ δ ·hn,

0 < hn < 1
n ,

dl(Mn,K) ≤ ρ .

In the metric space (K (RN),dl), all bounded closed balls are compact according
to Proposition 1.47 (on page 57). Thus, there is a subsequence (Mn j ) j∈N converging
to a compact set M ∈ V ∩Bρ(K). Due to the choice of ρ and U, we obtain G ∈
T C

V (M) in particular. This contradicts, however,
⎧
⎨

⎩

liminf
j→∞

1
hn j
·dist

(
ϑG(hn j ,Mn j ), V

) ≥ δ > 0

lim
j→∞

dl
(
Mn j , M

)
= 0

completing the indirect proof.
�

Remark 51. Circatangent transition set T C
V (K) and hypertangent transition set

T H
V (K) differ from each other in an essential feature:

The condition on a map F ∈T C
V (K) depends on V ⊂K (RN) close to K, of course,

but only on reachable sets of the set-valued map F. In particular, it does not have
any influence on this condition if we replace such a map F ∈ LIP(RN ,RN) by its
pointwise convex hull R

N � R
N , x �→ co F(x) – due to Relaxation Theorem A.19

of Filippov-Ważewski and its Corollary A.21 (on page 453).

The condition on F ∈T H
V (K), however, takes all set-valued maps G∈ LIP(RN ,RN)

in a neighborhood of F into account. Considering the topology of locally uniform
convergence in LIP(RN ,RN), the values of these neighboring set-valued maps G do
not have to be convex even if F belongs to LIPco(RN ,RN).
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5.3.7 Closed Control Loops for Problems with State Constraints

In this section, we specify sufficient conditions on the morphological control system
and state constraints for the existence of a closed-loop control, i.e., a continuous
function u(·) : V −→U is to provide a feedback law such that for any initial set
K0 ∈ V ⊂K (RN), every solution K(·) : [0,T ]�R

N to the morphological equation
{ ◦

K (·) � f (K(·), u(K(·))) L 1-a.e. in [0,T ]
K(0) ∈ K0

solves the morphological control problem with state constraints
{ ◦

K (·) � f (K(·),u), u ∈U L 1-a.e. in [0,T ]
K(t) ∈ V for each t ∈ [0,T ].

Corresponding to Aubin’s notion of regulation maps [14, § 6], Nagumo’s
Theorem 1.74 (on page 76) motivates us to construct the wanted closed-loop
control u(·) : V −→U as a continuous selection of the set-valued map

V �U, K �→ {u ∈U | f (K,u) ∈ TV (K)}
indicating “consistent” control parameters for preserving values in V .

Applying Michael’s famous Selection Theorem for lower semicontinuous, this ap-
proach has been developed for constrained control problems in the Euclidean space
[14, § 6.6.1]. Our contribution now is to extend it to the morphological framework.

The key challenge is to specify appropriate subsets of the contingent transition set
TV (K) ⊂ LIP(RN ,RN) so that “convenient” assumptions about them ensure the
existence of a closed-loop control. For this purpose, we use circatangent transition
set T C

V (K) and hypertangent transition set T H
V (K) introduced in § 5.3.5 and § 5.3.6.

There is a close relation between these two subsets of the contingent transition set:
Graph T H

V (·) is the interior of the graph of T C
V (·) : V � LIP(RN ,RN) due to

Proposition 50.

Now we can formulate the main result of this section:

Proposition 52 (Closed-loop control for morphological equations).
Let U be a separable Banach space and, consider the set LIP(RN ,RN) with
the topology of locally uniform convergence. For a nonempty closed set V ⊂
(K (RN),dl) and f : K (RN)×U −→ LIP(RN ,RN) suppose:

(1.) f is continuous and bounded in the sense that

sup
{‖ f (M,u)‖∞+ Lip f (M,u)

∣
∣M ∈K (RN), u ∈U

}
< ∞.

(2.) RH : V �U, K �→ {u∈U | f (K,u) ∈T H
V (K)} has nonempty convex values.
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Then, the pointwise closure R
H

: V �U, K �→RH(K) has a selection u∈C0(V ,U).
In particular, every continuous and compact-valued solution K(·) : [0,T ]� R

N to
the morphological equation

{ ◦
K (·) � f (K(·), u(K(·))) a.e. in [0,T [
K(0) ∈ K0

with initial set K0 ∈ V is viable in V , i.e. K(t) ∈ V for all t ∈ [0,T ].

In combination with Nagumo’s theorem 1.74 (on page 76), Michael’s well-known
selection theorem lays the analytical basis. In particular, it requires a Banach space
for the control set U (instead of a metric space as in the preceding subsections of
§ 5.3).

Proposition 53 (Michael [138],[15, Theorem 1.11.1], [19, Theorem 9.1.2]).
Let R : X � Y be a lower semicontinuous set-valued map with nonempty closed
convex values from a compact metric space X to a Banach space Y .
Then R has a continuous selection, i.e. there exists a continuous single-valued func-
tion r : X −→ Y with r(x) ∈ R(x) for every x ∈ X .

Proof (of Proposition 52).
Similarly to the proof of [14, Proposition 6.3.2], we first verify the lower semi-
continuity of

RH : V �U, K �→ {u ∈U | f (K,u) ∈ T H
V (K)}

(in the sense of Bouligand and Kuratowski).
Indeed, choose any K ∈ V and u∈ RH(K). Graph T H

V is open in V ×LIP(RN ,RN)
as a direct consequence of Definition 46. Hence, there is a radius r > 0 with

(
Br(K)×Br

(
f (K,u)

)) ∩ (V ×LIP(RN ,RN)
) ⊂ Graph T H

V ,

i.e. Br
(

f (K,u)
) ⊂ T H

V (M) for all M ∈ Br(K)∩V ⊂K (RN).

Finally the continuity of f provides a smaller radius ρ ∈ ]0,r[ with

f (M,v) ∈ Br
(

f (K,u)
) ⊂ T H

V (M)

for all v∈ Bρ(u)⊂U and M ∈ Bρ (K)∩V ⊂K (RN). In particular, the intersection

of the sets RH(M) Def.= {v∈U | f (M,v) ∈T H
V (M)} for all M ∈ Bρ (K)∩V contains

the ball Bρ(u)⊂U and thus, it is a neighborhood of u ∈ RH(K).
As a consequence, RH(·) : V �U is lower semicontinuous.

Now we consider the pointwise closure of RH , i.e.

R
H

: V �U, K �→ {u ∈U | f (K,u) ∈ T H
V (K)}.

Obviously, R
H(·) has nonempty closed convex values in the Banach space U.

Additionally, it inherits lower semicontinuity from RH(·) as the topological cri-
terion of lower semicontinuity (via neighborhoods) reveals easily.
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For any nonempty compact ball B ⊂ (K (RN),dl
)
, Michael’s Theorem (quoted in

Proposition 53) provides a continuous selection uB : B∩V −→U of the set-valued

restriction R
H
∣
∣
∣
B∩V

: B∩V �U.

Finally we cover the metric space
(
K (RN),dl

)
with countably many balls and,

a locally finite continuous partition of unity leads to a selection u ∈ C0(V ,U) of

R
H

: V �U because all values of R
H

are convex.
�



Appendix A
Tools

A.1 The Lemma of Gronwall and its Generalizations

Gronwall’s estimate plays a key role whenever the growth of a function is bounded
by linear terms of the function itself. Such a bound of the growth can be described
by an integral inequality or a differential inequality.
First we consider the estimate resulting from an integral inequality. It is very popular
indeed for continuous functions and thus can be found in many standard textbooks
such as [10, 92, 181]. Subsequent Proposition A.1, however, provides a similar
estimate (almost everywhere) for any nonnegative function that is merely Lebesgue
integrable.

Proposition 1 (Lemma of Gronwall : Integral version).
Let ψ , g ∈ L1([a,b],R), f ∈C0([a,b]) satisfy ψ(·), f (·) ≥ 0 and

ψ(t) ≤ g(t) +
∫ t

a
f (s) ψ(s) ds for L 1-almost every t ∈ [a,b].

Then, for L 1-almost every t ∈ [a,b],

ψ(t) ≤ g(t) +
∫ t

a
eμ(t)−μ(s) f (s) g(s) ds

with μ(t) :=
∫ t

a
f (s) ds.

Assuming in addition that g(·) is upper semicontinuous and that ψ(·) is lower
semicontinuous or monotone, then this inequality holds for any t ∈ ]a,b[.

Proof. The function ϕ : [a,b] −→ R, t �−→
∫ t

a
f (s) ψ(s) ds is absolutely

continuous and satisfies for almost every t ∈ [a,b] (since f (·) ≥ 0)

ϕ ′(t) = f (t) ψ(t) ≤ f (t) g(t) + f (t) ϕ(t).

439



440 A Tools

Thus, t �−→ e−μ(t) ϕ(t) is also absolutely continuous and has the weak derivative
d
d t

(
e−μ(t) ϕ(t)

)
= e−μ(t) (ϕ ′(t) − f (t) ϕ(t)

) ≤ e−μ(t) f (t) g(t).

Now we obtain for any t ∈ [a,b]

e−μ(t) ϕ(t) ≤ e−μ(a) ϕ(a) +
∫ t

a
e−μ(s) f (s) g(s) ds

ϕ(t) ≤ 0 +
∫ t

a
eμ(t)−μ(s) f (s) g(s) ds

and this estimate implies the assertion for Lebesgue-almost every t ∈ [a,b].
Now suppose that g(·) is upper semicontinuous and that ψ(·) is lower semicon-

tinuous or monotone. Then for every t ∈ ]a,b[, there exists a sequence (tn)n∈N in
]a,b[ such that tn −→ t (n −→ ∞) and

ψ(t) ≤ limsup
n→∞

ψ(tn),

ψ(tn) ≤ g(tn) +
∫ tn

a
eμ(tn)−μ(s) f (s) g(s) ds

for each n ∈ N. As an easy consequence, we obtain

ψ(t) ≤ limsup
n→∞

(
g(tn) +

∫ tn

a
eμ(tn)−μ(s) f (s) g(s) ds

)

≤ g(t) +
∫ t

a
eμ(t)−μ(s) f (s) g(s) ds. �

This integral version of Gronwall’s Lemma now leads to a subdifferential version
which has two new aspects: First, the nonnegative function ψ(·) does not have be
continuous, but just lower semicontinuous (as in [130]). Second, the hypothesis
about an affine linear bound of the upper Dini derivative is not required in the
whole time interval, but just at Lebesgue-almost every time. The proof is based on
a connection to Proposition A.1 by means of a nondecreasing auxiliary function
(in combination with Fatou’s Lemma):

Proposition 2. Let ψ : [a,b] −→ R and f ,g ∈ C0([a,b],R) satisfy f (·),g(·) ≥ 0
and

0 ≤ ψ(t) ≤ limsup
h↓0

ψ(t−h), for every t ∈ ]a, b],

ψ(t) ≥ limsup
h↓0

ψ(t + h), for every t ∈ [a, b[,

limsup
h↓0

ψ(t+h)−ψ(t)
h ≤ f (t) · limsup

h↓0
ψ(t−h) + g(t) for almost every t ∈ ]a, b[.

Then, for every t ∈ [a,b], the function ψ(·) fulfills the upper estimate

ψ(t) ≤ ψ(a) · eμ(t) +
∫ t

a
eμ(t)−μ(s) g(s) ds

with μ(t) :=
∫ t

a
f (s) ds.
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Proof. Obviously, the auxiliary function ξ : [a,b]−→ R
+
0 , t �−→ sup[a,t] ψ(·)

is nonnegative and nondecreasing. The second assumption about ψ(·) implies the
continuity of ξ (·). Furthermore, it satisfies for L 1-almost every t ∈ ]a,b[

limsup
h↓0

ξ (t+h)− ξ (t)
h ≤ f (t) ·ξ (t) + g(t).

Indeed, choose any t ∈ ]a,b[ for which the third assumption about ψ is satisfied.
Then for any δ > 0, there exists some h0 ∈ ]0,b− t[ such that for all h ∈ ]0,h0],

ψ(t+h)−ψ(t)
h ≤ f (t) · ξ (t) + g(t) + δ

i.e. ψ(t + h) ≤ ( f (t) · ξ (t) + g(t) + δ
) · h + ψ(t)

≤ ( f (t) · ξ (t) + g(t) + δ
) · h + ξ (t).

Hence, ξ (t+h) = max
{
ξ (t), sup

[t,t+h]
ψ(·)} fulfills this estimate for all h ∈ ]0,h0] :

ξ (t + h) ≤ ( f (t) · ξ (t) + g(t) + δ
) · h + ξ (t)

ξ (t+h)−ξ (t)
h ≤ f (t) · ξ (t) + g(t) + δ .

As δ > 0 was chosen arbitrarily, we obtain the claimed estimate for the upper Dini
derivative of ξ (·) at t.

In particular, the continuous function ξ (·) is bounded in the compact interval
[a,b] and thus, so is ψ(·). The auxiliary function

[a,b[ −→ R
+
0 , t �−→ limsup

h↓0
ξ (t+h)− ξ (t)

h

is Lebesgue-measurable and bounded Lebesgue-almost everywhere. The well-
known Lemma of Fatou implies for every T ∈ [a,b[

limsup
h↓0

∫ T

0

ξ (t+h)− ξ (t)
h dt ≤

∫ T

0
limsup

h↓0
ξ (t+h)− ξ (t)

h dt

and thus lays the basis for estimating ξ (T )− ξ (0) :

limsup
h↓0

∫ T

0

ξ (t+h)− ξ (t)
h dt = limsup

h↓0
1
h ·
(∫ T

0
ξ (t + h) dt −

∫ T

0
ξ (t) dt

)

= limsup
h↓0

1
h ·
(∫ T+h

T
ξ (t) dt −

∫ h

0
ξ (t) dt

)

= ξ (T ) − ξ (0)

due to the continuity of ξ (·). Now we obtain an estimate for ξ (T ) for every T ∈ [a,b[

ξ (T ) − ξ (0) ≤
∫ T

0
limsup

h↓0
ξ (t+h)− ξ (t)

h dt ≤
∫ T

0

(
f (t) ·ξ (t) + g(t)

)
dt.

Finally, the claim results from Proposition A.1. �
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Remark 3. 1. This subdifferential version of Gronwall’s Lemma also holds
if f ,g : [a,b[−→ R

+
0 are only upper semicontinuous (instead of continuous).

The proof is based on upper approximations of f (·), g(·) by continuous functions.

2. The condition limsup
h↓0

ψ(t+h)−ψ(t)
h ≤ f (t) ·ψ(t) + g(t) (supposed in the

widespread forms of Gronwall’s Lemma) is stronger than the third assumption of
Proposition A.2 due to the semicontinuity condition ψ(t) ≤ limsup

h↓0
ψ(t−h).

A similar statement holds with limits inferior replacing the limits superior — under
the additional assumption, however, that the growth condition is fulfilled at every
time (instead of L 1-almost every time). The proof presented by the author in [130]
is based on a simple indirect argument and thus, it is completely independent of the
integral version in Proposition A.1:

Proposition 4. Let ψ : [a,b]−→ R and f ,g ∈C0([a,b],R) satisfy f (·)≥ 0 and

0 ≤ ψ(t) ≤ liminf
h↓0

ψ(t−h), for every t ∈ ]a, b],

ψ(t) ≥ liminf
h↓0

ψ(t + h), for every t ∈ [a, b[,

liminf
h↓0

ψ(t+h)−ψ(t)
h ≤ f (t) · liminf

h↓0
ψ(t−h) + g(t) for every t ∈ ]a, b[.

Then, for every t ∈ [a,b], the function ψ(·) fulfills the upper estimate

ψ(t) ≤ ψ(a) · eμ(t) +
∫ t

a
eμ(t)−μ(s) g(s) ds

with μ(t) :=
∫ t

a
f (s) ds.

Proof. Let δ > 0 be arbitrarily small. The proof is based on comparing ψ with
the auxiliary function ϕδ : [a,b] −→ R that uses ψ(a) + δ , g(·) + δ instead of
ψ(a), g(·) :

ϕδ (t) :=
(
ψ(a)+ δ

)
eμ(t) +

∫ t

a
eμ(t)−μ(s) (g(s)+ δ ) ds.

Then, ϕ ′δ (t) = f (t) ϕδ (t)+ g(t)+ δ in [a,b[,
ϕδ (sn) > ψ(sn) for some sequence sn ↓ a.

Assume now that there exists some t0 ∈ ]a,b] such that ϕδ (t0) < ψ(t0). Setting

t1 := inf
{

t ∈ [a,t0]
∣
∣ ϕδ (·) < ψ(·) in [t, t0]

} ≥ s1 > a,

we conclude t1 < t0 from the condition ψ(t0) ≤ liminf
h↓0

ψ(t0−h) and the conti-

nuity of ϕδ (·). Moreover, ϕδ (t1) = ψ(t1) is a consequence of

ϕδ (t1) = lim
h↓0

ϕδ (t1−h) ≥ liminf
h↓0

ψ(t1−h) ≥ ψ(t1),

ϕδ (t1) = lim
h↓0

ϕδ (t1 + h) ≤ liminf
h↓0

ψ(t1 + h) ≤ ψ(t1).
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Thus, the definition of t1 implies

liminf
h↓0

ϕδ (t1 + h)−ϕδ(t1)
h

≤ liminf
h↓0

ψ(t1 + h)−ψ(t1)
h

ϕ ′δ (t1) ≤ f (t1) · liminf
h↓0

ψ (t1−h) + g(t1)

f (t1)ϕδ (t1)+ g(t1)+ δ ≤ f (t1) · limsup
h↓0

ϕδ (t1−h) + g(t1)

≤ f (t1) · ϕδ (t1) + g(t1)

— a contradiction. Finally, ϕδ (·)≥ ψ(·) for any δ > 0. �

A.2 Filippov’s Theorem for Differential Inclusions

According to the well-known convention, we define the solutions to a differential
inclusion in the sense of Carathéodory as it is described e.g. in [15, 19]. The Theo-
rem of Filippov represents the counterpart of the Cauchy-Lipschitz Theorem about
ordinary differential equations.

Definition 5. Let F̃ : [0,T ]×R
N� R

N be a set-valued map.
A curve x : [0,T ] −→ R

N is called a solution to the differential inclusion x′(·) ∈
F̃(·,x(·)) a.e. if x(·) is absolutely continuous and its (weak) derivative x′(·) satisfies
x′(t) ∈ F̃(t,x(t)) for Lebesgue-almost every t ∈ [0,T ].

The reachable set of F̃ and a nonempty initial set M ⊂ R
N at time t ∈ [0,T ]

contains the points x(t) of all solutions x(·) of x′(·) ∈ F̃(·,x(·)) a.e. starting in M,
i.e.

ϑF̃(t,M) :=
{

x(t) ∈ R
N
∣
∣
∣ x(·) ∈ W 1,1([0, t], R

N), x(0) ∈M,

x′(·) ∈ F̃(·,x(·)) L 1-almost everywhere in [0, t]
}
.

Theorem 6 (Generalized Theorem of Filippov).
Let O be a relatively open subset of [0,T ]×R

N . Take a set-valued map F̃ : O�R
N ,

an arc y(·) ∈W 1,1([0,T ],RN), a point η ∈ R
N and δ ∈ ]0,∞] such that

N (y,δ ) :=
⋃

0≤ t≤T

{t}×Bδ(y(t)) ⊂ O.



444 A Tools

Assume that
(i) F̃(t,z) �= /0 is closed for every (t,z) ∈N (y,δ ) and

Graph F̃ is L 1×BN measurable,
(ii) there exists k(·) ∈ L1([0,T ]) such that F̃(t,z1) ⊂ F̃(t,z2)+ k(t) |z1− z2| ·B1

for all z1,z2 ∈ Bδ (y(t)) and Lebesgue-almost every t ∈ [0,T ].
Suppose further

e‖k‖L1 ·
(
|η− y(0)| +

∫ T

0
dist
(

y′(t), F̃(t,y(t))
)

dt
)
≤ δ .

Then there exists a solution x(·) ∈W 1,1([0,T ],RN) of x′(·) ∈ F̃(·, x(·)) a.e. satisfy-
ing x(0) = η and

‖x− y‖L∞ ≤ |η− y(0)| e‖k‖L1 +
∫ T

0
e
∫ T

t k(s) ds dist
(

y′(t), F̃(t,y(t))
)

dt .

Now assume that (i) and (ii) are replaced by the stronger hypotheses:

(i′) F̃(t,z) �= /0 is convex and compact for every (t,z) ∈N (y,δ ),
(ii′) there exist ω(·) : [0,∞[−→ [0,∞[ and k∞ ∈ ]0,∞[ such that lim

h↓0
ω(h) = 0,

F̃(t1,z1) ⊂ F̃(t2,z2) +
(

k∞ |z1− z2| + ω(|t1− t2|)
)

B1

for all (t1,z1), (t2,z2) ∈N (y,δ ).
If y(·) is continuously differentiable, then the solution x(·) can be chosen as a
continuously differentiable function too.

Proof is given in [180, Theorem 2.4.3], for example.

For applying Filippov’s Theorem to compact reachable sets in R
N , we combine

some global properties of a set-valued map F̃ : [0,T ]×R
N � R

N of space and
time and coin the new term “Filippov continuous”. It reflects the gist of the feature
“measurable/Lipschitz” defined in [19, Definition 9.5.1] – but in a more detailed
formulation.

Definition 7. A set-valued map F̃ : [0,T ]×R
N � R

N is called Filippov continu-
ous if it satisfies the following conditions:

1.) all values of F̃ are nonempty closed subsets of R
N ,

2.) Graph F̃ ⊂ [0,T ]×R
N×R

N belongs to L 1⊗L N⊗BN ,

3.) F̃ has at most linear growth, i.e. sup
(t,x)∈[0,T ]×RN

sup
v∈F̃(t,x)

|v|
|x|+|t|+1 < ∞.

4.) there is λ (·) ∈ L1([0,T ],R) such that at Lebesgue-almost every time t ∈ [0,T ],
the set-valued map F̃(t, ·) : R

N � R
N is λ (t)-Lipschitz w.r.t. dl.

Here L N consists of all Lebesgue subsets of R
N and, BN denotes the set of all

Borel subsets of R
N . Condition (2.) is equivalent to the measurability of the set-

valued map F̃ according to Characterization Theorem A.75 (on page 489) below.
Furthermore, the linear growth condition (3.) implies first that all values of F̃ are



A.2 Filippov’s Theorem for Differential Inclusions 445

compact and second that Gronwall’s Lemma provides locally uniform bounds for
solutions to the corresponding nonautonomous differential inclusion.
These conditions are slightly stronger than the assumptions of Theorem A.6.
Indeed, Theorem A.6 does not assume the linear growth condition (3.) and,
Lipschitz continuity with respect to space is supposed only locally. These dis-
tinctions result from different emphases: Theorem A.6 focuses on spatially local
aspects of existence of solutions to a differential inclusion. We, however, aim for
conclusions about reachable sets in the whole Euclidean space. The additional linear
growth condition (3.), for example, is to ensure that we can restrict our geometric
considerations to compact neighborhoods of compact initial sets.

Proposition 8 (Invariance Theorem). Let F̃ : [0,T ]×R
N � R

N be Filippov
continuous. Assume the nonempty closed set K ⊂ R

N to satisfy

F(t,x) ⊂ TK(x) for every x ∈ K and L 1-almost every t ∈ [0,T ].

with TK(x)⊂ R
N denoting the contingent cone of K at x in the sense of Bouligand.

Then every solution x(·) ∈ W 1,1([t1, t2],RN) to the differential inclusion
x′(·) ∈ F̃(·,x(·)) a.e. with [t1,t2]⊂ [0,T ] and x(t1) ∈ K has all its values in K.

Proof. It adapts the standard proof of [14, Theorem 5.3.4] that deals with auto-
nomous differential inclusions.
Every solution x(·) ∈ W 1,1([t1, t2],RN) of x′(·) ∈ F̃(·,x(·)) a.e. is even Lipschitz
continuous due to the linear growth condition on F̃ (and Gronwall’s Lemma). The
auxiliary distance function δ : [t1, t2] −→ R, t �−→ dist

(
x(t), K

)
is Lipschitz con-

tinuous. Whenever x(·) and δ (·) are differentiable at time t ∈ [t1, t2], it satisfies with
a projection point yt ∈ K of x(t) (i.e. |x(t)− yt|= dist(x(t),K)) and any v ∈ R

N

δ ′(t) ≤ liminf
h↓0

1
h ·
(

dist(x(t + h), K) − |x(t)− yt |
)

≤ liminf
h↓0

1
h · dist

(
yt +

∫ t+h

t
x′(s) ds, K

)

≤ liminf
h↓0

1
h ·
(

dist
(
yt + h v, K

)
+
∣
∣h v −

∫ t+h

t
x′(s) ds

∣
∣
)

≤ liminf
h↓0

1
h · dist

(
yt + h v, K

)
+
∣
∣v − x′(t)

∣
∣ .

Selecting now v ∈ F̃(t,yt) with |x′(t)− v| ≤ dl(F̃(t,x(t)), F̃(t,yt)), we conclude
from F̃(t,yt)⊂ TK(yt) and the λ (t)-Lipschitz continuity of F̃(t, ·) the estimate

δ ′(t) ≤ 0 + dl(F̃(t,x(t)), F̃(t,yt)) ≤ λ (t) |x(t)− yt| = λ (t) δ (t)

for L 1-almost every t ∈ [t1,t2]. According to Gronwall’s Lemma (Proposition A.2),
δ (0) = 0 implies δ (·)≡ 0 and thus, every value x(t) belongs to the closed set K.

�
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A.3 Scorza-Dragoni Theorem and Applications
to Reachable Sets

The classical theorem of Scorza-Dragoni [167] can be extended to functions be-
tween metric spaces as shown by Ricceri and Villani. A so-called Carathéodory
function depends on two arguments, namely “time” (in a topological space like R)
and “state” (in a metric space). By definition, it is measurable with respect to time
and continuous with respect to state. The key point of Scorza-Dragoni is to guaran-
tee continuity with respect to both arguments on “almost” the whole domain in the
following sense:

Proposition 9 ([160, Theorem 1]). Let S be a compact Hausdorff topological
space, μ a Radon measure on S and X ,Y metric spaces. Suppose X to be separable.

Then every Carathéodory function g : S×X −→ Y satisfies the so-called Scorza-
Dragoni property, i.e. for every ε > 0, there exists a closed subset Sε ⊂ S with
μ(S \ Sε) < ε such that the restriction g|Sε×X is continuous.

Now this proposition can be regarded as a counterpart of well-known Lusin’s
Theorem (relating measurability to continuity almost everywhere) – but now for
functions with two arguments.
In 1977 Jarnik and Kurzweil published an extension of the Scorza-Dragoni Theo-
rem to set-valued maps which are measurable in time and upper semicontinuous in
space [96]:

Proposition 10 ([83, Corollary 2.2], [96]). Let X be a separable metric space.
Suppose that F̃ : [0,T ]×X �R

N has convex closed values and for L 1-almost all
t ∈ [0,T ], F̃(t, ·) is upper semicontinuous. Assume that F̃ is measurably bounded,
i.e. there is a measurable function β : [0,T ] −→ R such that for L 1-almost all
t ∈ [0,T ] and every x ∈ X , |F̃(t,x)|∞ ≤ β (t).

Then there exists a set-valued map F̂ : [0,T ]×X�R
N with closed convex values

satisfying the following conditions:

1. For L 1-almost all t ∈ [0,T ] and for all x ∈ X , F̂(t,x) ⊂ F̃(t,x).

2. For every measurable set Λ ⊂ [0,T ] and any measurable maps u :Λ −→ X ,

v :Λ −→R
N with v(·) ∈ F̃( · ,u(·)) L 1-a.e. in Λ , we have v(·) ∈ F̂( · ,u(·)) a.e.

3. For any ε > 0, there is a closed set Jε ⊂ [0,T ] such that L 1([0,T ] \ Jε) < ε
and F̂ |Jε×X is upper semicontinuous.

This proposition provides a useful tool for investigating nonautonomous differential
inclusions with set-valued maps being measurable in time and upper semicontinuous
in space. Indeed, it bridges the gap to differential inclusions with upper semicontin-
uous right-hand side. Motivated by the nomenclature of Aubin in [14], we introduce
the following abbreviating term for this type of set-valued maps:
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Definition 11. A set-valued map F̃ : [0,T ]×R
N � R

N , (t,x) �→ F̃(t,x) is
called nonautonomous Marchaud map if it has the following properties:

1. F̃ is nontrivial (i.e. Graph F̃ �= /0),
2. F̃(t, ·) is upper semicontinuous for Lebesgue-almost every t ∈ [0,T ],
3. F̃( · ,x) is measurable for every x ∈ R

N ,
4. F̃ has compact convex values and
5. there exists μ(·) ∈ L1([0,T ]) such that F̃(t,x) ⊂ μ(t) (1+ |x|) B for all x ∈R

N

and Lebesgue-almost every t ∈ [0,T ].

Such a Scorza-Dragoni type theorem also holds for set-valued maps being con-
tinuous with respect to space at Lebesgue-almost every time. Frankowska, Plaskacz
and Rzeżuchowski concluded the following version from their counterpart of
Proposition A.10 by means of a single-valued parameterization [83]. Alternatively,
it can be regarded as a special case of Proposition A.9 with values in the metric
space Y := (K (RN),dl).

Proposition 12 ([83, Theorem 2.4]). Let the set-valued map F̃ : [0,T ]×R
N � R

N ,
(t,x) �→ F̃(t,x) have nonempty compact values, be measurable with respect to t and
continuous with respect to x.
Then for every ε > 0, there exists a closed set Jε ⊂ [0,T ] with L 1([0,T ] \ Jε) < ε
for which the restriction F̃ |Jε×RN is continuous.

Applications to Reachable Sets: Integral Funnel Equation

Considering a nonautonomous differential inclusion, the set-valued map on its right-
hand side provides a first-order approximation of the reachable set starting in an
arbitrary point. For various nonautonomous differential inclusions with continuous
right-hand side, this result is well-known as integral funnel equation due to papers
of Kurzhanski, Filippova, Panasyuk, Tolstonogov and others (e.g. [110, 152]).

In [83], Frankowska, Plaskacz and Rzeżuchowski extended such approximating
results to differential inclusions whose right-hand sides are just measurable in time.
Their detailed estimates of the Hausdorff distances, however, are formulated for an
arbitrary initial point in space (rather than initial sets). Now we verify that these
estimates hold even locally uniformly in space and time:

Proposition 13. Let the set-valued map F̃ : [0,T ]×R
N � R

N satisfy
1. F̃ has nonempty closed convex values,
2. for L 1-almost all t ∈ [0,T ], the map R

N � R
N , x �→ F̃(t,x) is continuous,

3. for every x ∈R
N , the map [0,T ]� R

N , t �→ F̃(t,x) is measurable,
4. there exists μ(·) ∈ L1([0,T ]) with

∣
∣F̃(t,x)

∣
∣
∞ ≤ μ(t) for all x ∈ R

N and a.e. t.
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Then, there exists a set J ⊂ [0,T ] of full Lebesgue measure (i.e. L 1([0,T ]\ J) = 0)
such that for every t ∈ J and K ∈K (RN),

1
h · dl

(
ϑF̃(t+· , ·)(h, K),

⋃

x∈K

(
x + h · F̃(t,x)

)) −→ 0 for h ↓ 0.

Proof consists of subsequent Corollary A.15 and Lemma A.16 focusing on the
Pompeiu-Hausdorff excesses

h �−→ dist
(
ϑF̃(t+· , ·)(h, K),

⋃

x∈K

(
x + h · F̃(t,x)

))
,

h �−→ dist
( ⋃

x∈K

(
x + h · F̃(t,x)

)
, ϑF̃(t+· , ·)(h, K),

)

respectively. Indeed, the subsequent inclusions are locally uniform with respect to
the initial point x ∈ K and small time h > 0.

Lemma 14. Let F̃ : [0,T ]×R
N �R

N be a nonautonomous Marchaud map with
nonempty (compact convex) values.
Then there exists a set J ⊂ [0,T ] of full measure (i.e. L 1([0,T ] \ J) = 0) with the
following property: For every t0 ∈ J, x0 ∈ R

N and ε ∈ ]0,1[, there are t1 > 0 and
δ > 0 satisfying for all x ∈ Bδ (x0), h ∈ ]0, t1[.

ϑF̃(t0+ · , ·)(h,x) ⊂ x + h
(
F̃(t0,x0)+ εB

)
.

Applying this result to every time t0 ∈ J ⊂ [0,T ] at which F̃(t, ·) : R
N � R

N is
continuous in addition, we obtain directly:

Corollary 15. Under the assumptions of Proposition A.13, there exists a sub-
set J ⊂ [0,T ] of full measure (i.e. L 1([0,T ] \ J) = 0) with the following property:
For every t0 ∈ J, x0 ∈ R

N and ε ∈ ]0,1[, there are t1 > 0 and δ > 0 satisfying

ϑF̃(t0+ · , ·)(h,x) ⊂ x + h
(
F̃(t0,x)+ 2 εB

)

for all x ∈ Bδ (x0), h ∈ ]0,t1[. �

Before proving Lemma A.14 in detail, we formulate the opposite inclusion cor-
rectly. This completes the proof of Proposition A.13.

Lemma 16. Under the assumptions of Proposition A.13, there exists a subset
J ⊂ [0,T ] of full measure (i.e. L 1([0,T ] \ J) = 0) with the following property:
For every t0 ∈ J, x0 ∈ R

N and ε ∈ ]0,1[, there are t1 > 0 and δ > 0 satisfying

x + h F̃(t0,x) ⊂ ϑF̃(t0+ · , ·)(h,x) + ε h B

for all x ∈ Bδ (x0), h ∈ ]0,t1[.

Finally we now discuss the missing proofs of Lemmas A.14 and A.16:
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Proof (of Lemma A.14). It follows the same arguments of [83, Lemma 2.6] and
thus uses the basic idea of Rzeżuchowski in [166].
Let F̂ : [0,T ]×R

N �R
N denote the set-valued map according to Scorza-Dragoni

type Proposition A.10. For any γ > 0, there exists a closed subset J̃γ ⊂ [0,T ] with
L 1([0,T ]\ J̃γ) < γ such that F̂|J̃γ×RN is upper semicontinuous and

Graph F̂ |J̃γ×RN ⊂ Graph F̃.

Now let Jγ ⊂ J̃γ denote the set of density points of J̃γ that are also Lebesgue points
of μ(·) ·χ[0,T ]\J̃γ (·) : [0,T ]−→R. It satisfies L 1(Jγ) = L 1(J̃γ ) because Lebesgue
points of each Lebesgue-integrable function always have full Lebesgue measure
[189, Theorem 1.3.8] and thus, in particular, density points of any measurable set
also have full Lebesgue measure.

For arbitrary t0 ∈ Jγ , x0 ∈R
N and ε ∈]0,1], the upper semicontinuity of F̂ |Jγ×RN

and the construction of Jγ provide r,δ , t1 > 0 satisfying for every t ∈ [t0, t0+t1]
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

F̂
(
Jγ ∩ [t0,t], Br(x0)

) ⊂ F̂(t0,x0) + ε
3 B ⊂ F̃(t0,x0)+ ε

3 B,

ϑF̃(t0+ · , ·)
(
t− t0, Bδ (x0)

) ⊂ x0 + r B,

L 1([t0,t]∩ J̃γ )
t− t0

F̃(t0,x0) ⊂ F̃(t0,x0) + ε
3 B,

1
t− t0

∫

[t0,t]\ J̃γ
μ(s) ds ≤ ε

3 · (1 + |x0|+ r)−1.

Then for any x ∈ Bδ (x0) and h ∈ [0, t1], we obtain

ϑF̃(t0+ · , ·)(h,x) − x ⊂
⊂
∫

[t0,t0+h]∩ J̃γ
F̂
(
s, Br(x0)

)
ds +

∫

[t0,t0+h]\ J̃γ
F̂
(
s, Br(x0)

)
ds

⊂ L 1([t0,t0+h] ∩ J̃γ ) ·
(

F̃(t0,x0)+ ε
3 B

)
+
∫

[t0,t0+h]\ J̃γ
μ(s) (1+|x0|+r) ds ·B

⊂ h
(

F̃(t0,x0) + ε
3 B + ε

3 B

)
+ ε

3 h B

= h
(
F̃(t0,x0) + ε B

)
.

�

Proof (of Lemma A.16). Choosing γ > 0 arbitrarily small, Proposition A.12
(on page 447) provides a closed subset J̃γ ⊂ [0,T ] with L 1([0,T ]\ J̃γ ) < γ such that
the set-valued restriction F̃|J̃γ×RN is continuous.

As in the proof of Lemma A.14, let Jγ ⊂ J̃γ denote the set of density points of J̃γ
that are Lebesgue points of μ(·) ·χ[0,T ]\J̃γ (·)∈ L1([0,T ]) in addition. It also satisfies

L 1(Jγ) = L 1(J̃γ) > T − γ.
For arbitrary t0 ∈ Jγ , x0 ∈ R

N and ε ∈ ]0,1], the continuity of F̃ |Jγ×RN and the
construction of Jγ guarantee parameters r,δ , t1 ∈ ]0,1] successively such that for
every t ∈ [t0, t0+t1]∩ Jγ , x ∈ Bδ (x0), y ∈ Br(x0)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dl
(
F̃(t,y), F̃(t0,x0)

) ≤ ε
8

x + (t− t0) · F̃(t0,x) ⊂ x0+ r B,

L 1([t0,t]\ J̃γ )
t− t0

F̃(t0,x0) ⊂ ε
4 B,

1
t− t0

∫

[t0,t]\ J̃γ
μ(s) ds ≤ ε

4

δ +
∫

[t0,t]
μ(s) ds ≤ r.

Choose now any x ∈ Bδ (x0) and v ∈ F̃(t0,x). We want to verify for all h ∈ [0, t1]

x + h v ∈ ϑF̃(t0+ · , ·)(h, x) + ε h B.

Since all values of F̃ are assumed to be convex, the projection of v on F̃(·, ·)
[0,T ]×R

N � R
N , (t,y) �→ΠF̃(t,y)(v)

Def.=
{

w ∈ F̃(t,y)
∣
∣ dist(v, F̃(t,y)) = |w− v|}

is single-valued and thus denoted by f : [0,T ]×R
N −→R

N .
Moreover, f (·,y) : [0,T ] −→ R

N is measurable for every y ∈ R
N due to

Proposition A.80 (on page 490). Whenever F̃(t, ·) : R
N � R

N is continuous, its
composition with the projection mapping is upper semicontinuous in the sense of
Painlevé-Kuratowski according to [162, Proposition 4.9] and thus, the single-valued
function f (t, ·) : R

N −→ R
N is continuous. As a consequence, f is a Carathéodory

function in [0,T ]×R
N with the time-dependent absolute bound μ(·) ∈ L1([0,T ])

and, its restriction f |Jγ×RN is continuous because F̃ |Jγ×RN is continuous.

There exists an absolutely continuous solution y(·) : [t0, t0 + t1] −→ R
N to the

ordinary differential equations y′(·) = f
( · ,y(·)) a.e. with y(t0) = x. Then, y(·)

solves the differential inclusion y′(·) ∈ F̃( · ,y(·)) a.e. and satisfies for all h ∈ [0, t1]
∣
∣x + h v − y(t0+h)

∣
∣

≤
∫

[t0,t0+h]∩Jγ

∣
∣v− f (s, y(s))

∣
∣ ds +

∫

[t0,t0+h]\Jγ

(|v| + μ(s)
)

ds

≤
∫

[t0,t0+h]∩Jγ
dist
(
v, F̃(s, y(s))

)
ds +

∫

[t0,t0+h]\Jγ

(|v| + μ(s)
)

ds

≤ 2 ε
8 ·h + 2 ε

4 ·h + ε
4 ·h = ε ·h . �

This proof of Lemma A.16 is quite easy to adapt to the following statement whose
autonomous counterpart is used for verifying Proposition 1.68 (2.) (on page 70):

Lemma 17. In addition to the assumptions of Proposition A.13, let K ⊂R
N be

a nonempty compact subset and R > 0.

Then there exists a subset J ⊂ [0,T ] of full Lebesgue measure such that for every
t0 ∈ J, x0 ∈ K and ε ∈ ]0,1[, there are t1,δ > 0 with

x + h · F̃(t0,x) + h · (TC
K (x0)∩BR

) ⊂ ϑF̃(t0+ · , ·)(h,K) + 2ε h B

for all x ∈ Bδ (x0)∩K, h ∈ ]0,t1[.
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The contribution of the circatangent cone TC
K (x0) to this modification is summarized

in the next lemma:

Lemma 18. Let K,M be nonempty compact subsets of R
N.

For each point x0 ∈ K and every ε > 0, there exists a radius ρ > 0 such that

dist(y + h w, K) − dist(y, K) ≤ ε h

is satisfied for all w ∈ TC
K (x0)∩M, h ∈ [0,ρ ] and y ∈R

N with |y− x0| ≤ ρ .

Proof (of Lemma A.18). Equivalently to Definition 1.63 (on page 68), a vector v∈
R

N belongs to the circatangent cone TC
K (x) in x0 ∈ K if and only if for every ε > 0,

there exists a radius ρ(x0,ε,v) > 0 with

dist(y + h v, K) − dist(y, K) ≤ ε
2 h

for all h ∈ [0,ρ ] and y ∈ R
N with |y− x0| ≤ ρ . This is easy to prove indirectly by

means of the projection on the compact set K ⊂R
N – similarly to the morphological

analogue in Lemma 5.39 (on page 427, see also the Clarke’s “original” definition of
tangents via “generalized directional derivative” in [46, § 2]).
In particular, all vectors w ∈ B ε

2
(v)⊂ R

N have in common:

dist(y + h w, K) − dist(y, K) ≤ ε h

for every h ∈ [0,ρ ] and y ∈ R
N with |y− x0| ≤ ρ due to the triangle inequality.

Hence, the radius ρ > 0 can be chosen locally uniformly with respect to v∈ TC
K (x0),

i.e. for every compact M ⊂ R
N and ε>0, there is ρ = ρ(x0,ε,M)>0 with

dist(y + h w, K) − dist(y, K) ≤ ε h

for all w ∈M∩TC
K (x0), h ∈ [0,ρ ] and y ∈ R

N with |y− x0| ≤ ρ . �

Proof (of Lemma A.17). Fix any γ > 0 and construct closed subsets
Jγ ⊂ J̃γ ⊂ [0,T ] as in the proof of Lemma A.16.
For arbitrary t0 ∈ Jγ , x0 ∈ K and ε ∈ ]0,1], the continuity of F̃|Jγ×RN , the selec-
tion of Jγ and Lemma A.18 (in addition now) provide r,δ , t1 ∈ ]0,1] successively
such that for every t ∈ [t0, t0 +t1] ∩ Jγ , h ∈ [0, t1], x ∈ Bδ (x0), y ∈ Br(x0) and
w ∈ TC

K (x0)∩BR,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dist(y + h w, K) − dist(y, K) ≤ ε h

dl
(
F̃(t,y), F̃(t0,x0)

) ≤ ε
8

x + h · F̃(t0,x) ⊂ x0+ r B,

L 1([t0,t]\ J̃γ )
t− t0

F̃(t0,x0) ⊂ ε
4 B,

1
t− t0

∫

[t0,t]\ J̃γ
μ(s) ds ≤ ε

4

δ + h (R + ε) +
∫

[t0,t]
μ(s) ds ≤ r.
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For all x∈ Bδ (x0), v∈ F̃(t0,x), w ∈ TC
K (x0)∩BR and h∈ [0, t1], we are now to check

x + h (v + w) ∈ ϑF̃(t0+ · , ·)(h, K) + 2 ε h B.

As in the proof of Lemma A.16, the projection of v on F̃(·, ·)
[0,T ]×R

N � R
N , (t,y) �→ΠF̃(t,y)(v)

Def.=
{

w ∈ F̃(t,y)
∣
∣ dist(v, F̃(t,y)) = |w− v|}

induces a single-valued Carathéodory function f : [0,T ]×R
N −→R

N .
The new essential aspect is to base the comparison on an absolutely continuous
solution y(·) : [t0,t0 + t1] −→ R

N that does not start in x, but in a possibly different
point of K:
Choose z = z(x,h,w) ∈ K with |x + h w− z| = dist(x + h w,K) ≤ ε h. In particular,
|z− x0| ≤ δ + h (R + ε) < r. Then there exists an absolutely continuous solution
y(·) : [t0,t0 + t1]−→ R

N to the ordinary differential equations y′(·) = f
( · ,y(·)) a.e.

with y(t0) = z ∈ K. y(·) has all values in Br(x0) and solves the differential inclusion
y′(·) ∈ F̃( · ,y(·)) a.e. again (but depends now on x,h,w).

The comparison with t �→ x + h w+(t− t0) v at time t0 + h leads to the estimate

dist
(
x + h (v + w), ϑF̃(t0+ · , ·)(h,K)

) ≤ ∣
∣x + h (v + w) − y(t0+h)

∣
∣

≤ |x + h w− z| +
∫

[t0,t0+h]∩Jγ

∣∣v− f (s, y(s))
∣∣ ds +

∫

[t0,t0+h]\Jγ

(|v|+μ(s)
)

ds

≤ ε h +
∫

[t0,t0+h]∩Jγ
dist
(
v, F̃(s, y(s))

)
ds +

∫

[t0,t0+h]\Jγ

(|v|+μ(s)
)

ds

≤ ε h + 2 ε
8 ·h + 2 ε

4 ·h + ε
4 ·h

≤ 2 ε h .
�

A.4 Relaxation Theorem of Filippov-Ważewski
for Differential Inclusions

The so-called Relaxation Theorem bridges the gap between a differential inclusion

x′(·) ∈ F̃(·, x(·))
and its relaxed counterpart with (pointwise) convexified values on the right-hand

side, i.e., y′(·) ∈ co F̃(·, y(·)).
In particular, it provides sufficient conditions on the set-valued map F̃ : [0,T ]×R

N

�R
N which make the additional assumption of convex values dispensable in regard

to compact reachable sets.
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Theorem 19 (Relaxation Theorem of Filippov-Ważewski). Suppose for the
set-valued map F̃ : [0,T ]×R

N �R
N and the curve y(·) ∈W 1,1([0,T ],RN) :

(1.) the values F̃ are nonempty closed subsets of R
N,

(2.) for every x ∈ R
N , F(·,x) : [0,T ]� R

N is measurable,

(3.) there exist ρ > 0 and λ (·) ∈ L1([0,T ],R+
0 ) such that for L 1-almost every

t ∈ [0,T ], the restriction F(t, ·)∣∣
Bρ (y(t)) : Bρ (y(t))� R

N is λ (t)-Lipschitz

continuous w.r.t. dl,

(4.) there is μ(·) ∈ L1([0,T ]) with
∣
∣F̃(t,y(t))

∣
∣
∞ ≤ μ(t) for L 1-almost every t.

(5.) [0,T ]−→ R, t �−→ dist
(
y′(t), F̃(t, y(t))

)
is Lebesgue-integrable,

(6.) e‖k‖L1 ·
∫ T

0
dist
(

y′(t), F̃(t,y(t))
)

dt ≤ ρ ,

(7.) y′(t) ∈ co F̃(t, y(t)) for L 1-almost every t ∈ [0,T ].

Then for every δ > 0, there exists a solution x(·) ∈W 1,1([0,T ],RN) to the differ-
ential inclusion x′(·)∈F(·,x(·)) a.e. satisfying x(0) = y(0) and ‖x(·)−y(·)‖L∞ ≤ δ .

Proof is given in [80, Theorem 1.36], for example, as a consequence of Filippov’s
Theorem A.6 and an appropriate selection principle. The autonomous counterpart
and its proof can be found in [15, Theorem 2.4.2].

Aubin and Frankowska have already pointed out a well-known consequence in [19,
Theorem 10.4.4]:

Corollary 20. In addition to the hypotheses of Relaxation Theorem A.19 with ρ=∞,
assume that R(·) ∈ L1([0,T ]) satisfies F̃(t,x)⊂ R(t) B for every x ∈ R

N and a.e. t.

Then the solutions to the differential inclusion x′(·) ∈ F̃(·, x(·)) a.e. are dense in
the set of solutions to the relaxed inclusion y′(·) ∈ co F̃(·, y(·)) a.e. with respect to
the supremum norm. �

Considering now reachable sets of differential inclusions, we obtain

Corollary 21. Let F̃ : [0,T ]×R
N � R

N be Filippov continuous (according to
Definition A.7 on page 444).

Then, ϑF̃(t,K) = ϑ
co F̃(t,K) for every K ∈K (RN) and t ∈ [0,T ].

Proof. Relaxation Theorem A.19 implies

ϑF̃(t,M) = ϑ
co F̃(t,M)

for every nonempty (not necessarily closed) subset M ⊂ R
N and any t ∈ [0,T ].

In addition, the reachable set ϑF̃ (t,K) ⊂ R
N is closed as a consequence of

Filippov’s Theorem A.6 (on page 443). Finally, co F̃ : [0,T ]× R
N � R

N has
Filippov continuity in common with F̃ and thus, ϑ

co F̃(t,K)⊂ R
N is also closed. �
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A.5 Regularity of Reachable Sets of Differential Inclusions

In this section, we focus on the boundary of reachable sets of differential inclusions.
Adjoint arcs are used for describing the time-dependent limiting normal cones. They
serve as tools for sufficient conditions on the differential inclusion for preserving
smooth boundaries shortly, for example.
First we prove in Proposition A.34 that C1,1 boundaries are preserved for short
times. Then according to Proposition A.36, the same hypothesis guarantees that
the evolution of smooth sets is reversible in time. Afterwards, the conditions on
the Hamiltonian function HF are supposed to be stronger for guaranteeing that
points evolve into sets of positive erosion (see Proposition A.41). Finally, we es-
timate the maximal shrinking of exterior or interior balls and focus on exterior tusks.

Definition 22. For any set-valued map F̃ : [0,T ]×R
N � R

N , the support function

HF̃ : [0,T ]×R
N×R

N �−→ R

(t,x, p) �−→ σ
(

p, F̃(t,x)
) Def.= sup

{〈p,v〉 ∣∣ v ∈ F̃(t,x)
}

is called (upper) Hamiltonian of F̃ .

A.5.1 Normal Cones and Compact Sets: Definitions and Notation

This section serves mainly the purpose of clarifying the notation in regard to normal
cones and summarizing some features of compact subsets of R

N .

Definition 23. Let C ⊂ R
N be a nonempty closed set.

A vector η ∈ R
N , η �= 0, is said to be a proximal normal vector to C

at x ∈C if there exists ρ > 0 with Bρ(x +ρ η
|η| ) ∩ C = {x}.

The supremum of all ρ with this property is called proximal radius
of C at x in direction η . The cone of all proximal normal vectors is
called the proximal normal cone to C at x and is abbreviated as NP

C (x).

The so-called limiting normal cone NC(x) to C at x consists of all vectors η ∈ R
N

that can be approximated by sequences (ηn)n∈N, (xn)n∈N satisfying

xn −→ x, ηn −→ η , xn ∈C, ηn ∈ NP
C (xn),

i.e. NC(x) Def.= Limsup y−→x
y∈C

NP
C (y) (in the sense of Painlevé-Kuratowski).

As a further abbreviation, we set �NC(x) := NC(x)∩B =
{

v ∈ NC(x)
∣
∣ |v| ≤ 1

}
.

Convention. In the following we restrict ourselves to normal directions at bound-
ary points, i.e. strictly speaking, Graph NC and Graph �NC are the abbreviations
of Graph NC|∂C and Graph �NC|∂C, respectively.

Lemma 24 ([47, Lemma 6.4]). For a nonempty closed subset M ⊂ R
N, assume

η ∈ NP
RN\M(x)\ {0} and NP

M(x) �= {0}. Then, NP
RN\M(x) = −NP

M(x) = R
+
0 η .
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Definition 25. KC1,1(RN) abbreviates the set of all nonempty compact N-
dimensional C1,1 submanifolds of R

N with boundary.
A closed subset C ⊂ R

N is said to have positive erosion of
radius ρ > 0 if for each r ∈ ]0,ρ [, there exists a closed set
M ⊂ R

N with{
C = {x ∈ R

N |dist(x,M) ≤ r},
M = {x ∈C |dist(x,∂C) ≥ r}.

K
ρ
◦ (RN) consists of all sets with positive erosion of radius

ρ > 0 and, set K◦(RN) :=
⋃

ρ>0

K ρ
◦ (RN) .

Definition 26 (Sets of positive reach [79], [55, Definition 4.7.1]).
A nonempty set M ⊂R

N is said to have positive reach if there exists h > 0 such that
the projection ΠM(x) Def.=

{
y ∈M

∣
∣ |x− y|= dist(x,M)

}
is single-valued for every

x ∈ R
N with dist(x,M) < h. The maximum h > 0 for which this property holds is

called the reach of M.

Remark 27. The morphological term “erosion” is motivated by the fact that a
set C = C◦ ⊂ R

N has positive erosion if and only if the closure RN \C of its
complement has positive reach. This implies a collection of interesting regularity
properties presented (for closed subsets of a Hilbert space) in [47, 48, 159]. Here
we summarize some of the features for subsets of R

N :

Proposition 28 ([47], [48, Theorem 4.1], [55, Theorem 4.7.1], [159, Theorem 4.1]).
Given a nonempty closed subset M ⊂ R

N, the following conditions are equivalent:

(1.) M has positive reach≥ ρ > 0,

(2.) dist(·,M) belongs to C1,1
loc

({0 < dist(·,M) < ρ}),
(3.) dist(·,M) belongs to C1

loc

({0 < dist(·,M) < ρ}),
(4.) ΠM(x)⊂M is single-valued for all points x ∈R

N with 0 < dist(x,M) < ρ ,

(5.) ΠM(x)⊂M is single-valued for all x ∈ R
N with 0 < dist(x,M) < ρ and,

ΠM belongs to C0,1
loc

({0 < dist(·,M) < ρ}),
(6.) dist(·,M)2 belongs to C1,1

loc

({0 < dist(·,M) < ρ}),
(7.) for every r ∈ ]0,ρ [, all points x ∈ R

N with 0 < dist(x,M) < r satisfy
dist(x, M) + dist

(
x, R

N \Br(M)◦
)

= r,

(8.) for any r ∈ ]0,ρ [,
{

dist( · , RN \Br(M)) ≥ r
}

= M,

(9.) every proximal normal vector �= 0 at any x ∈ ∂M has proximal radius ≥ ρ ,

(10.) for any r ∈ ]0,ρ [, each x ∈R
N with dist(x,M) = r satisfies NP

Br(M)(x) �= {0},
(11.) NM(·)∩B

◦
ρ is hypermonotone, i.e. whenever x1,x2 ∈M and vk ∈NM(xk) with

|vk|< ρ (k = 1,2), then (v1− v2) · (x1− x2) ≥ −|x1− x2|2,

(12.) dist(y−x, TM(x)) ≤ 1
2ρ |y−x|2 for any y,x ∈M (global Shapiro property).
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Corollary 29 ([48, Corollary 4.15]).
Every nonempty closed set M ⊂ R

N with positive reach ≥ ρ > 0 fulfills:

(a) the proximal, limiting and Clarke normal cone coincide at each point x ∈M,

(b) for every r ∈ ]0,ρ [ and each point x ∈R
N with dist(x,M) = r,

NP
Br(M)(x) = NBr(M)(x) = R

+
0 ·
(
x− p(x)

)

where p(x) ∈M is the unique closest point to x in M,

(c) for every r ∈ ]0,ρ [, the topological boundary of
{

dist(·,M) ≤ r
}

is a C1,1

submanifold of codimension 1 in R
N.

A.5.2 Adjoint Arcs for Evolving Normal Cones to Reachable Sets

The so-called Hamilton condition is known under very mild assumptions using the
tools of nonsmooth functions. First we quote the version of Vinter’s monograph
[180]. Applying these results to proximal balls leads to a necessary condition on
boundary points of reachable sets and their proximal normal vectors. Approximat-
ing sequences then lay the basis for extending this result to limiting normal vectors
in subsequent Proposition A.32. In particular, it is formulated only for Hamiltonian
functions with continuous partial derivatives ∂xHF̃ ,∂yHF̃ because we exploit the
regularity of solutions to ordinary differential equations in the next sections.

Proposition 30 (Extended Hamilton Condition).
Let x(·) ∈W 1,1([S,T ],RN) be a local minimizer (with respect to perturbations in
W 1,1([0,T ],RN)) of the problem

g(y(S),y(T )) −→ min
over y(·) ∈W 1,1([S,T ],RN) satisfying

y′(t) ∈ F̃(t,y(t)) for Lebesgue-almost every t ∈ [S,T ],
(y(S), y(T )) ∈ C ⊂ R

N×R
N .

Assume also that

(G1) g is locally Lipschitz continuous;

(G2)′ F̃(t,x) �= /0 is convex for each (t,x), F̃ is L 1+N×BN measurable, and
Graph F̃(t, ·) is closed for each t ∈ [S,T ].

Suppose, furthermore, that either of the following hypotheses is satisfied:

(a) There exist k ∈ L1([S,T ]) and ε > 0 such that for almost every t
F̃(t,x1) ∩

(
x′(t) + ε k(t)B

) ⊂ F̃(t,x2) + k(t) |x1− x2|B
for all x1,x2 ∈ Bε (x(t)).

(b) There exist k ∈ L1([S,T ]), K > 0 and ε > 0 such that the following two
conditions are satisfied for almost every t ∈ [S,T ] and all x1,x2 ∈ Bε(x(t))

F̃(t,x1) ∩
(
x′(t) + ε B

) ⊂ F̃(t,x2) + k(t) |x1− x2|B,

inf
{ |v− x′(t)| ∣∣ v ∈ F̃(t,x1)

} ≤ K |x1− x(t)| .
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Then there exist an arc p(·) ∈W 1,1([S,T ],RN) and a constant λ ≥ 0 such that

(i) (p(·), λ ) �= (0,0),
(ii) p′(t) ∈ co

{
η ∈ R

N
∣∣ (η , p(t)) ∈ NGraph F̃(t, · )(x(t), x′(t))

}
for L 1-a.e. t

(iii)
(

p(S), − p(T )
) ∈ λ ∂L g(x(S), x(T )) + NC(x(S), x(T )).

Condition (ii) implies

(iv) p(t) · x′(t) = sup
(

p(t) · F̃(t,x(t))
)

for L 1-a.e. t
(v) p′(t) ∈ co

{−q ∈R
N
∣
∣ (q,x′(t)) ∈ ∂L HF̃(t, ·, ·)|(x(t),p(t))

}
for L 1-a.e. t.

Proof is presented in [180, Theorem 7.7.1], for example.

Remark 31. This adjoint p(·) also satisfies |p′(t)| ≤ k(t) |p(t)| for almost every t
as an immediate consequence of statement (ii) and the so-called Mordukhovich
criterion (see e.g. [162, Theorem 9.40]).

Proposition 32. Suppose for the set-valued map F̃ : [0,T ]×R
N �R

N

1. F̃(·) is measurable with nonempty convex compact values,

2. for L 1-almost every t ∈ [0,T ], HF̃(t, ·, ·) is continuously differentiable in
R

N× (RN \ {0}),
3. there exists k(·) ∈ L1([0,T ] such that for L 1-almost every t ∈ [0,T ],
‖∂(x,p)HF̃(x, p)‖ ≤ k(t) · (1 + |x|+ |p|) for all x, p ∈R

N , |p|> 1.

Let K ∈K (RN) be any initial set and t0 > 0.

For every boundary point x0 ∈ ∂ ϑF̃(t0,K) and normal ν ∈ NϑF̃ (t0,K)(x0) \ {0},
there exist a solution x(·) ∈W 1,1([0, t0],RN) and its adjoint p(·) ∈W 1,1([0, t0],RN)
with
{

x′(t) = ∂
∂ p HF̃(t, x(t), p(t)) ∈ F̃(t, x(t)), x(t0) = x0, x(0) ∈ ∂K,

p′(t) = − ∂
∂x HF̃(t, x(t), p(t)), p(t0) = ν, p(0) ∈ NK(x(0)).

�
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A.5.3 Hamiltonian System Helps Preserving C1,1

Boundaries Shortly

Definition 33. For a set-valued map F̃ : [0,T ]×R
N � R

N , the standard hypo-
thesis (H̃ ) comprises the following conditions on HF̃(t,x, p) := sup p · F̃(t,x)

1. F̃ is measurable and has nonempty compact convex values,

2. HF̃(t, ·, ·) : R
N× (RN\{0})−→ R is continuously differentiable for every t,

3. for every R > 1, there exists λR(·) ∈ L1([0,T ]) such that the derivative

of HF̃(t, ·, ·) restricted to BR × (BR\
◦
B 1

R
) is λR(t)-Lipschitz continuous for

Lebesgue-almost every t ∈ [0,T ],

4. there is kF̃ ∈ L1([0,T ]) such that for a.e. t ∈ [0,T ] and all x, p ∈ R
N (|p| ≥ 1),∥

∥∂(x,p) HF̃(t,x, p)
∥
∥

Lin(RN×RN ,R) ≤ kF̃(t) · (1 + |x|+ |p|).

Proposition 34. Assume standard hypothesis (H̃ ) for F̃ : [0,T ]×R
N �R

N .

For every initial compact set K ∈ KC1,1(RN), there exist τ = τ(F̃ ,K) > 0 and
ρ = ρ(F̃,K) > 0 such that ϑF̃ (t,K) is also a N-dimensional C1,1 submanifold of
R

N with boundary for all t ∈ [0,τ] and, its radius of curvature is ≥ ρ at every
boundary point. In particular, ϑF̃(t,K) has both positive reach and erosion.

The proof of Proposition A.34 is based on the following lemma:

Lemma 35. Suppose for H : [0,T ]×R
N ×R

N −→ R, ψ : R
N −→ R

N and the
Hamiltonian system

{
y′(t) = ∂

∂q H(t, y(t), q(t)), y(0) = y0

q′(t) = − ∂
∂y H(t, y(t), q(t)), q(0) = ψ(y0)

(∗)

the following properties:

1. H(t, ·, ·) is differentiable for every t ∈ [0,T ],
2. for every R > 0, there exists kR ∈ L1([0,T ]) such that the derivative of

H(t, ·, ·) is kR(t)-Lipschitz continuous on BR×BR for L 1-almost every t,
3. ψ is locally Lipschitz continuous,
4. every solution (y(·),q(·)) to the Hamiltonian system (∗) can be extended to

[0,T ] and depends continuously on the initial data in the following sense:
Let each (yn(·),qn(·)) be a solution satisfying yn(tn) −→ z0, qn(tn) −→ q0

for some tn −→ t0, z0,q0 ∈ R
N .

Then (yn(·),qn(·))n∈N converges uniformly to a solution (y(·),q(·)) to the
Hamiltonian system with y(t0) = z0, q(t0) = q0.

For a compact set K ⊂ R
N and t ∈ [0,T ], define

M �→t (K) :=
{

(y(t), q(t))
∣
∣ (y(·), q(·)) solves system (∗), y0 ∈ K

} ⊂ R
N ×R

N.

Then there exist δ > 0 and λ > 0 such that M �→t (K) is the graph of a λ -Lipschitz
continuous function for every t ∈ [0,δ ].
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Proof (of Lemma A.35). It is based on the indirect proof of [80, Lemma 5.5]
about the same Hamiltonian system with y(T ) = yT , q(T ) = qT given (without
mentioning the uniform Lipschitz constant λ explicitly).

Suppose that the claim is false. Then there exists a sequence (tn)n∈N in ]0,T ]
with tn −→ 0 such that either M �→tn (K) is not the graph of a Lipschitz function or
the corresponding Lipschitz constants converge to ∞. In both cases, we can find
distinct solutions (y1

n(·), q1
n(·)), (y2

n(·), q2
n(·)), n∈N, to the Hamiltonian system (∗)

with

εn :=
|y1

n(tn) − y2
n(tn) |

|q1
n(tn)− q2

n(tn) |
−→ 0 for n−→ ∞.

Assumption (4.) and K ∈K (RN) imply
⋃

0≤ t≤T

M �→t (K) ⊂ BR×BR for some R > 0.

Assumption (2.) provides the estimate

|y1
n(t)− y2

n(t)|
≤ |y1

n(tn)− y2
n(tn)| +

∫ tn

t
kR(s)

(
|y1

n(s)− y2
n(s)|+ |q1

n(s)−q2
n(s)|

)
ds

≤ εn |q1
n(tn)−q2

n(tn)| +
∫ tn

t
kR(s)

(
|y1

n(s)− y2
n(s)|+ |q1

n(s)−q2
n(s)|

)
ds

for all t ∈ [0,tn], and the integral version of Gronwall’s inequality (Proposition A.1)
leads to a constant C1 > 0 (independent of n) with

|y1
n(t)− y2

n(t)| ≤ C1

(
εn |q1

n(tn)−q2
n(tn)| +

∫ tn

t
kR(s) |q1

n(s)−q2
n(s)| ds

)
.

Due to supn εn <∞, we obtain a constant C2 > 0 such that for all n ∈N, t ∈ [0, tn],

|q1
n(t)−q2

n(t)|
≤ |q1

n(tn)−q2
n(tn)| +

∫ tn

t
kR(s)

(
|y1

n(s)− y2
n(s)|+|q1

n(s)−q2
n(s)|

)
ds

≤ C2

(
|q1

n(tn)−q2
n(tn)| +

∫ tn

t
kR(s) |q1

n(s)−q2
n(s)| ds

)
.

As a consequence of Gronwall’s Proposition A.1 again, there is a constant C3 > 0
(independent of n) with |q1

n(t)−q2
n(t)| ≤ C3 |q1

n(tn)−q2
n(tn)| for all n, t ∈ [0, tn].

In particular,

ε ′n := sup
0≤ t≤ tn

|y1
n(t) − y2

n(t) |
|q1

n(tn)−q2
n(tn) | ≤ C1

(
εn + C3

∫ tn

0
kR(s) ds

)
n→∞−→ 0.

Similarly we get a constant C4 = C4(‖kR‖L1) > 0 fulfilling

|q1
n(tn) − q2

n(tn)| ≤ C4 |q1
n(0) − q2

n(0)| = C4 |ψ(y1
n(0)) − ψ(y2

n(0))|
for all n ∈ N sufficiently large. Indeed, for all t ∈ [0, tn], assumption (2.) ensures

|q1
n(t)−q2

n(t)|
≤ |q1

n(0)−q2
n(0)| +

∫ t

0
kR(s)

(
|y1

n(s) − y2
n(s) | + |q1

n(s)−q2
n(s)|

)
ds

≤ |q1
n(0)−q2

n(0)| +
∫ t

0
kR(s)

(
ε ′n |q1

n(tn)−q2
n(tn)| + |q1

n(s)−q2
n(s)|

)
ds

and Gronwall’s inequality (Proposition A.1) provides C5 = C5(‖kR‖L1) > 0 such
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that for every n ∈N,

|q1
n(tn) − q2

n(tn)| ≤ C5
2 |q1

n(0) − q2
n(0)| + const(‖kR‖L1) ε ′n |q1

n(tn) − q2
n(tn)| .

Due to ε ′n −→ 0, we obtain |q1
n(tn) − q2

n(tn)| ≤ C5 |q1
n(0) − q2

n(0)| for all
n ∈ N large enough. Finally,

|ψ(y1
n(0)) − ψ(y2

n(0)) |
|y1

n(0) − y2
n(0) | =

|q1
n(0) − q2

n(0) |
|q1

n(tn) − q2
n(tn) |

· |q
1
n(tn) − q2

n(tn) |
|y1

n(0) − y2
n(0) |

≥ 1
C5

· 1
ε ′n

−→ ∞ for n−→ ∞

— contradicting the local Lipschitz continuity of ψ at each joint cluster point of
(y1

n(0))n∈N and (y2
n(0))n∈N in K. �

Proof (of Proposition A.34). Assuming that K∈K (RN) is a N-dimensional C1,1

submanifold of R
N with boundary, the exterior unit normal vectors to K (restricted

to ∂K) can be extended to a Lipschitz continuous function ψ : R
N −→ R

N .
Choosing some cut-off function ϕ ∈C∞([0,∞[, [0,1]) with ϕ |[0, 1

4 ] ≡ 0, ϕ |[ 1
2 ,∞[ ≡ 1,

H(t,x, p) := HF̃(t,x, p) ·ϕ(|p|) satisfies condition (1.), (2.), (4.) of Lemma A.35

due to standard hypothesis (H̃ ).

For arbitrary x0 ∈ ∂K, consider the differential equations
{

x′(t) = ∂
∂ p H(t, x(t), p(t)), x(0) = x0,

p′(t) = − ∂
∂x H(t, x(t), p(t)), p(0) = ψ(x0).

(∗∗)

Due to |ψ(·)|= 1 on ∂K and H ∈C1,1, there exists some τ1 > 0 such that |p(t)|> 1
2

for any t ∈ [0,τ1] and all solutions (x(·), p(·)) of (∗∗) with x0 ∈ ∂K. Thus, H = HF

close to (x(t), p(t)). Now Proposition A.32 can be reformulated as

Graph NϑF (t,K)(·) ⊂
{

(x(t), λ p(t))
∣
∣ (x(·), p(·)) solves system (∗∗),
x0 ∈ ∂K, λ ≥ 0

}
,

for all t ∈ [0,τ1]. Lemma A.35 yields τ ∈ ]0,τ1[ and λM > 0 such that

M �→t (∂K) :=
{

(x(t), p(t))
∣∣ (x(·), p(·)) solves system (∗∗), x0 ∈ ∂K

}

is the graph of a λM-Lipschitz continuous function for each t ∈ [0,τ].

Then for every point z ∈ ∂ϑF̃ (t,K), the limiting normal cone NϑF̃ (t,K)(z) contains
exactly one direction and, its unit vector depends on z in a Lipschitz continuous
way. (The Lipschitz constant is uniformly bounded by a constant depending on λM

because the choice of τ1 ensures |p(·)|> 1
2 on [0,τ1] for each solution of (∗∗).)

Hence, the compact set ϑF̃(t,K) is N-dimensional C1,1 submanifold of R
N with

boundary for all t ∈ [0,τ] and, its radius of curvature has a uniform lower bound.
�
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A.5.4 How to Guarantee Reversibility of Reachable Sets in Time

The Hamilton condition has led to a necessary condition on boundary points
x ∈ ∂ ϑF̃(t,K) and their limiting normal cones in Proposition A.32 (on page 457).
If each set ϑF̃ (t,K) (0 ≤ t ≤ T ) has positive reach ≥ ρ , then standard hypoth-

esis (H̃ ) turns adjoint arcs into sufficient conditions and, we conclude that the
evolution of reachable sets is reversible with respect to time — in the following
sense:

Proposition 36. Suppose standard hypothesis (H̃ ) for F̃ : [0,T ]×R
N � R

N .
Assume for K0 ∈K (RN) and ρ > 0 that every compact reachable set Kt :=
ϑF̃(t,K0) (0≤ t ≤ T ) has positive reach≥ ρ (in the sense of Definition A.26).

Then for every 0≤ s≤ t < T, Ks = R
N
∖
ϑ−F̃(t−·,·)(t− s, R

N\Kt).

Remark 37. 1. K (RN)� R
N , K0 �−→ R

N \ ϑ−F̃(t−·,·)(t, R
N \ϑF̃(t,K0))

generalizes the morphological operation of closing (of sets in K (RN)) that was
introduced by Minkowski and is usually defined as

P(X) � X , K �−→ (K− t B)% (−t B) Def.= {y ∈ X | y− t B⊂ K− t B}
for a vector space X and fixed B⊂ X , t > 0 (see e.g. [10, Definition 3.3.1]).

2. In [25], viscosity solutions to the Hamilton-Jacobi-Bellman equation
∂t u + H(t,x,Du) = 0 are investigated and in a word, the continuous differentia-
bility of u is concluded from the reversibility in time:

If u ∈C0([0,T ]×R
N,R) is a viscosity solution of ∂t u + H(t, · ,Du) = 0

and v(t,x) := u(T − t,x) is a viscosity solution of ∂t v − H(T−t, ·,Dv) = 0
then adequate assumptions about H ensure u ∈C1(]0,T [×R

N).
Referring to the relation between reachable sets and level sets of viscosity solutions,
we draw an inverse conclusion since we assume smoothness and obtain reversibility
in time.

3. The reversibility in time (in the sense of Proposition A.36) can also be
regarded as recovering the initial data. Further results about this problem have al-
ready been published by Rzeżuchowski in [164, 165], for example, but they usually
assume other conditions. Either the initial set consists of only one point or the
Hamiltonian function HF is of class C2.

In Proposition 36, we even suppose a uniform radius ρ of positive reach for

Kt
Def.= ϑF̃(t,K0). The essential advantage for the proof is the relation between the

boundaries of Kt ⊂R
N and Graph (t �−→ Kt) ⊂ R×R

N stated in the next lemma:
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Lemma 38. Suppose for F̃ : [0,T ]×R
N � R

N , K ∈K (RN) and ρ > 0 that the
map [0,T ]� R

N , t �→ ϑF̃(t,K) is λ -Lipschitz continuous (with respect to dl) and
each set ϑF̃ (t,K) (0≤ t ≤ T ) has positive reach of radius ρ .

Then the topological boundary of Graph ϑF̃(·,K)|[0,T ] in R×R
N is

({0}×K
) ∪

⋃

0< t <T

({t}× ∂ϑF̃(t,K)
) ∪ ({T}×ϑF̃(T,K)

)
.

Proof (of Lemma 38). The inclusion
({0}×K

) ∪
⋃

0< t <T

({t}×∂ϑF̃(t,K)
) ∪ ({T}×ϑF̃(T,K)

) ⊂ ∂ Graph ϑF̃(·,K)

is obvious. Due to the Lipschitz continuity of ϑF̃(·,K), we only have to show

∂ Graph ϑF̃(·,K) ∩ (]0,T [×R
N) ⊂

⋃

0< t <T

({t}× ∂ ϑF̃ (t,K)
)
.

Every z ∈ ∂ ϑF̃(t,K) (0 ≤ t ≤ T ) and any unit vector
pz ∈ NP

ϑF̃ (t,K)(z) = NϑF̃ (t,K)(z) satisfy

◦
Bρ (z+ρ pz) ∩ ϑF̃(t,K) = /0

and thus,
({t}× ◦Bρ (z+ρ pz)

) ∩ Graph ϑF̃(·,K) = /0.

The λ -Lipschitz continuity of ϑF̃ (·,K) implies

ζ (t,z, pz) ∩ Graph ϑF̃ (·,K) = /0

for the open set ζ (t,z, pz) :=
{

(s,y) ∈ R
1+N
∣
∣ |z+ρ pz − y|< ρ−λ |s− t|}.

Now choose (t,x) ∈ ∂ GraphϑF̃(·,K) with 0 < t < T arbitrarily. The continuity
of ϑF̃(·,K) guarantees that Graph ϑF̃(·,K) is closed and thus, it contains (t,x).
Moreover there are sequences (tn)n∈N, (xn)n∈N in ]0,T [ , R

N respectively with

(tn,xn) /∈ Graph ϑF̃(·,K) for every n ∈N,

(tn,xn) −→ (t,x) for n−→ ∞.

For each n∈N, let zn be an element of the projection ΠϑF̃ (tn,K)(xn) ⊂ ∂ϑF̃(tn,K).

Then, 0 < |xn− zn| = dist(xn, ϑF̃(tn,K)) ≤ |xn− x|+dist(x, ϑF̃(tn,K)) −→ 0

and pn := xn−zn
|xn−zn | ∈ NP

ϑF̃ (tn,K)(zn) ∩ ∂B1.

As mentioned before, we obtain ζ (tn,zn, pn) ∩ GraphϑF̃ (·,K) = /0 for each n∈N.
Adequate subsequences (again denoted by) (tn)n∈N, (xn)n∈N, (pn)n∈N lead to the
additional convergence pn −→ p ∈ ∂B1 (n−→ ∞). Finally,

ζ (t,x, p) ∩ Graph ϑF̃(·,K) = /0.

In particular,
◦
Bρ (x +ρ p) ∩ ϑF̃(t,K) = /0 implies x ∈ ∂ ϑF̃(t,K).

�
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Proof (of Proposition A.36). ϑF̃(s,K0) ⊂ R
N \ϑ−F̃(t−·,·)(t− s, R

N\Kt) is an
easy indirect consequence of definitions since it is equivalent to

ϑF̃(s,K0) ∩ ϑ−F̃(t−·,·)(t− s, R
N\Kt) = /0.

For proving the inverse inclusion indirectly at time s = 0 (w.l.o.g.), we assume
the existence of t ∈ [0,T [ and y0 ∈ R

N with y0 /∈ K0 ∪ ϑ−F̃(t−·,·)(t, R
N\Kt).

As an immediate consequence of y0 /∈ ϑ−F̃(t−·,·)(t, R
N \Kt), the reachable set

ϑF̃(t,y0) is contained in Kt
Def.= ϑF̃(t,K0). Now set

τ := inf
{

s ∈ [0, t]
∣
∣ ϑF̃(s,y0) ⊂ ϑF̃(s,K0)

}
.

In particular, τ > 0 due to y0 /∈ K0.
and ϑF̃(τ,y0) ⊂ ϑF̃(τ,K0) due to the continuity of the reachable sets.
There are sequences τn ↗ τ and (xn(·))n∈N in W 1,1([0,T ],RN) satisfying

x′n(·) ∈ F̃(·,xn(·)) L 1-a.e., xn(0) = y0, xn(τn) /∈ ϑF̃ (τn,K0).

Standard hypothesis (H̃ ) and the compactness of solutions (as formulated in [180,
Theorem 2.5.3]) lead to subsequences (again denoted by) (τn)n∈N, (xn(·))n∈N and
a solution x(·) ∈W 1,1([0,T ],RN) of x′(·) ∈ F̃(·,x(·)) (L 1-almost everywhere) with

xn(·)−→ x(·) uniformly in [0,T ], x′n(·)−→ x′(·) weakly in L1([0,T ], R
N).

In particular, (τ,x(τ)) has to be in the boundary of Graph ϑF̃(·,K0). Lemma A.38

and 0 < τ ≤ t < T ensure xτ := x(τ) ∈ ∂Kτ
Def.= ∂ ϑF̃ (τ,K0).

Moreover, Kτ
Def.= ϑF̃(τ,K0) is supposed to have positive reach. Its limiting and

proximal normal cone coincide at each boundary point due to Corollary A.29. Thus,

/0 �= NϑF̃ (τ,K0)(xτ ) = NP
ϑF̃ (τ,K0)(xτ) ⊂ NP

ϑF̃ (τ,y0)(xτ ).

For every unit normal vector ν ∈ NϑF̃ (τ,K0)(xτ ), Proposition A.32 provides a solu-

tion z(·) ∈W 1,1([0,τ],RN) and its adjoint arc q(·) ∈W 1,1([0,τ],RN) satisfying the
corresponding Hamiltonian system and z(0) ∈ K0, z(τ) = xτ , q(τ) = ν.
The same Cauchy problem is solved by x(·) and its adjoint arc as well. Stan-
dard hypothesis (H̃ ) implies the uniqueness of solutions and, its consequence
z(0) = x(0) = y0 /∈ K0 leads to a contradiction. �

A.5.5 How to Make Points Evolve into Convex Sets
of Positive Erosion

Our aim consists in sufficient assumptions for the interior ball condition on ϑF (t,K)
— without any regularity assumptions about the initial set K ∈K (RN). In particu-
lar, we focus on K consisting just of a single point. For this purpose, we are willing
to tolerate stronger assumptions about the set-valued map F̃ : [0,T ]×R

N � R
N

than standard hypothesis (H̃ ) (specified in Definition A.33 on page 458).
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Definition 39. For any ρ > 0, a set-valued map F̃ : [0,T ]×R
N � R

N satisfies
the so-called standard hypothesis (H̃ ρ

◦ ) if it has the following properties:

1. F̃ is measurable and, all its values are nonempty convex compact subsets of
positive erosion of radius ρ ,

2. for every t ∈ [0,T ], HF̃(t, ·, ·) ∈ C2(RN× (RN \ {0})),
3. for every R > 1, there exists λR(·) ∈ L1([0,T ]) such that the derivative

of HF̃(t, ·, ·) restricted to BR × (BR\
◦
B 1

R
) is λR(t)-Lipschitz continuous for

Lebesgue-almost every t ∈ [0,T ],

4. there is kF̃ ∈ L1([0,T ]) such that for a.e. t ∈ [0,T ] and all x, p ∈ R
N (|p| ≥ 1),∥

∥∂(x,p) HF̃ (t,x, p)
∥
∥

Lin(RN×RN ,R) ≤ kF̃(t) · (1 + |x|+ |p|).

Remark 40. Standard hypothesis (H̃ ρ
◦ ) differs from its counterpart (H̃ ) in

two respects: The values of F̃ have uniform positive erosion (additionally) and, its
Hamiltonian HF̃(t, ·, ·) is even twice continuously differentiable in R

N×(RN \{0}).
This second restriction has the advantage that we can apply the tools of matrix
Riccati equation (mentioned in subsequent Lemmas A.43 and A.44).

Proposition 41. In addition to standard hypothesis (H̃ ρ
◦ ), assume for the set-

valued map F̃ : [0,T ]×R
N �R

N that some λ (·) ∈ L1([0,T ]) satisfies

‖HF̃(t, ·, ·)‖C1,1(RN× ∂B1)
Def.= ‖HF̃(t, ·, ·)‖C1(RN× ∂B1) + Lip∂HF̃ (t, ·, ·)|

RN× ∂B1

< λ (t)

at L 1-almost every time t ∈ [0,T ]. Choose K ∈K (RN) arbitrarily.

Then there exist σ > 0 and a time τ̂ ∈ ]0,T ] (depending only on ‖λ‖L1 ,ρ ,K)
such that the reachable set ϑF̃(t,x0) is convex and has positive erosion of radius
σ t for any t ∈ ]0, τ̂[, x0 ∈ K.

As a direct consequence, the reachable set ϑF̃(t,K1) is the closed (σ t)-neighbor-
hood of a compact set for all t ∈ ]0, τ̂[ and each nonempty compact subset K1 ⊂ K.

The proof of this proposition uses matrix Riccati equations for Hamiltonian sys-
tems, but these tools of subsequent Lemma A.43 consider initial values induced
by a Lipschitz function ψ . First we specify how to exchange the two components
(x(·), p(·)) (of a solution and its adjoint arc) for preserving the Hamiltonian struc-
ture of their differential equations:

Lemma 42. Assume the Hamiltonian system for x(·), p(·) ∈W 1,1([0,T ],RN)
{

x′(t) = ∂
∂ p H1(t, x(t), p(t))

p′(t) = − ∂
∂x H1(t, x(t), p(t))

a.e. in [0,T ]

with sufficiently smooth H1 : [0,T ]×R
N×R

N −→R. Moreover set

y(t) := − p(t), q(t) := x(t), H2(t, ξ , ζ ) := H1(t, ζ ,−ξ ).
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Then the absolutely continuous functions (y(·),q(·)) satisfy the Hamiltonian system
{

y′(t) = ∂
∂q H2(t, y(t), q(t))

q′(t) = − ∂
∂y H2(t, y(t), q(t))

a.e. in [0,T ].
�

Lemma 43.
In addition to the assumptions (2.)–(4.) of Lemma A.35 (on page 458), suppose for
ψ : R

N −→R
N , H : [0,T ]×R

N×R
N −→R and the Hamiltonian system

{
y′(t) = ∂

∂q H(t, y(t), q(t)), y(0) = y0

q′(t) = − ∂
∂y H(t, y(t), q(t)), q(0) = ψ(y0)

(∗)

1’. H(t, ·, ·) is twice continuously differentiable for every t ∈ [0,T ].

Then for every initial set K ∈K (RN), the following statements are equivalent:

(i) For all t ∈ [0,T ], M �→t (K) :=
{

(y(t), q(t))
∣
∣ (y(·), q(·)) solves (∗), y0 ∈ K

}

is the graph of a locally Lipschitz continuous function,

(ii) For any solution (y(·),q(·)) : [0,T ] −→ R
N×R

N to initial value problem (∗)
and each cluster point Q0 ∈ Limsupz→y0

{∇ψ(z)} ⊂ R
N×N , the following

matrix Riccati equation has a solution Q(·) on [0,T ]
⎧
⎪⎨

⎪⎩

∂t Q + ∂ 2 H
∂ p ∂x (t, y(t), q(t)) Q + Q ∂ 2 H

∂x∂ p (t, y(t), q(t))

+ Q ∂ 2 H
∂ p2 (t, y(t), q(t)) Q + ∂ 2 H

∂x2 (t, y(t), q(t)) = 0,

Q(0) = Q0.

If one of these equivalent properties is satisfied and if ψ is (continuously) differen-
tiable, then M �→t (K) is even the graph of a (continuously) differentiable function.

Proof is given in [80, Theorem 5.3], for the same Hamiltonian system but with
y(T ) = yT , q(T ) = qT given. Hence, this lemma is a direct consequence considering
−H(T −· , · , ·) and (y(T − ·), q(T − ·)). �

For preventing singularities of Q(·), the following comparison principle provides a
bridge to a scalar Riccati equation.

Lemma 44 (Comparison theorem for the matrix Riccati equation, [163, Th.2]).
Let A j,B j,Cj : [0,T [−→ R

N×N ( j = 0,1,2) be bounded continuous matrix-valued

functions such that each Mj(t) :=
(

A j(t)
B j(t)T

B j(t)
Cj(t)

)
is symmetric.

Assume that U0, U2 : [0,T [−→ R
N×N are solutions to the matrix Riccati equation

d
dt Uj = A j + B j Uj + Uj BT

j + Uj Cj Uj

with M2(·)≥M0(·) (i.e. M2(t)−M0(t) is positive semi-definite for every t).

For symmetric U1(0)∈R
N×N with U2(0)≥U1(0)≥U0(0), M2(·)≥M1(·)≥M0(·),

given, there exists a solution U1 : [0,T [−→R
N×N to the Riccati equation with matrix

M1(·). Moreover, U2(t) ≥ U1(t) ≥ U0(t) for all t ∈ [0,T [.
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Proof (of Proposition A.41).
The integrable bound of t �→ ‖HF̃(t, ·, ·)‖C1,1(RN× ∂B1) and Gronwall’s Lemma lead

to a radius R = R(‖λ‖L1 ,K) > 1 and a time T̂ = T̂ (‖λ‖L1 ,K) ∈ ]0,T ] such that

1. ϑF̃(t,K) ⊂ BR for all t ∈ [0,T ],
2. for every solution x(·) of x′(·) ∈ F̃(·,x(·)) starting in K and each adjoint p(·)

with 1
2 ≤ |p(0)| ≤ 2 fulfills 1

R < |p(·)|< R, |p(·)− p(0)|< 1
4R on [0, T̂ ].

A smooth cut-off function provides a map H1 : [0, T̂ ]×R
N×R

N −→R that fulfills
the assumptions of Lemma A.43 and

H1 = HF̃ in [0, T̂ ]×R
N× (RN\B 1

2R
).

Using the transformation of the preceding Lemma A.42, the auxiliary function

H2 : [0,T ]×R
N×R

N −→ R, (t,ξ ,ζ ) �−→ H1(t, ζ ,−ξ )

is still holding the conditions of Lemma A.43. As a consequence, we obtain for any
initial point x0 ∈ K and time τ ∈ ]0, T̂ ] that the following statements are equivalent:

(i) For all t ∈ [0,τ], the set M1
t of all points (p(t), x(t)) with solutions

(x(·), p(·)) ∈W 1,1([0,t],RN×R
N) of

⎧
⎨

⎩

x′(s) = ∂
∂ p H1(s, x(s), p(s)), x(0) = x0

p′(s) = − ∂
∂x H1(s, x(s), p(s)), p(0) ∈ B2 \

◦
B 1

2

is the graph of a continuously differentiable function ft .

(ii) For all t ∈ [0,τ], the set M2
t of all points (y(t), q(t)) with solutions

(y(·),q(·)) ∈W 1,1([0,t],RN×R
N) of

⎧
⎨

⎩

y′(s) = ∂
∂q H2(s, y(s), q(s)), y(0) ∈ B2 \

◦
B 1

2

q′(s) = − ∂
∂y H2(s, y(s), q(s)), q(0) = x0

is the graph of a C1 function gt (and gt(ξ ) = ft(−ξ )) .

(iii) For any solution (y,q) : [0, t]−→ R
N×R

N to the initial value problem (ii)
(t ≤ τ), there is a solution Q : [0, t]−→R

N×N to the Riccati equation
⎧
⎪⎪⎨

⎪⎪⎩

Q′ + ∂ 2 H2
∂q ∂y (s, y(s), q(s)) Q + Q ∂ 2 H2

∂y∂q (s, y(s), q(s))

+ Q ∂ 2 H2
∂q2 (t, y(s), q(s)) Q + ∂ 2 H2

∂y2 (s, y(s), q(s)) = 0,

Q(0) = 0.

(iv) For any solution (x, p) : [0, t]−→ R
N×R

N to the initial value problem (i)
(t ≤ τ), there is a solution Q : [0, t]−→R

N×N to the Riccati equation
⎧
⎪⎪⎨

⎪⎪⎩

Q′ − ∂ 2 H1
∂x∂ p (s, x(s), p(s)) Q − Q ∂ 2 H1

∂ p ∂x (s, x(s), p(s))

+ Q ∂ 2 H1
∂x2 (s, x(s), p(s)) Q + ∂ 2 H1

∂ p2 (s, x(s), p(s)) = 0,

Q(0) = 0.
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Now we give a criterion for the choice of τ̂ ∈ ]0, T̂ ]. Setting

μ(t) := sup
|x| ≤ R

1
R ≤ |p| ≤ R

∥
∥
∥∥
∥

(
∂ 2

∂ p2 HF̃(t,x, p) − ∂ 2

∂x∂ p HF̃(t,x, p)

− ∂ 2

∂ p ∂x HF̃(t,x, p) ∂ 2

∂x2 HF̃(t,x, p)

)∥∥
∥∥
∥

Lin(R2N ,R2N )

the comparison theorem for matrix Riccati equations (Lemma A.44 extended to
integrable coefficients via Lusin’s Theorem and approximation, see also [80, § 5.2])
guarantees existence and uniqueness of such a solution Q ∈W 1,1([0, t], R

N×N) for
every t < min{T, π

2 ‖μ‖L1
}. Indeed, for a(·) =±μ(·) ∈ L1([0,T ]), the scalar Riccati

equation
d
dt u(t) = a(t)+ a(t) u(t)2, u(0) = 0

has the solution u(t) = tan
(∫ t

0
a(s) ds

)
in [0, π

2‖a‖L1
[. Furthermore we obtain the

upper bound ‖Q(t)‖ ≤ tan ‖μ |[0,t] ‖L1 .

All values of F̃ are compact convex sets with positive erosion of radius ρ due to
standard hypothesis (H̃ ρ

◦ ). It implies a constant σ̂ = σ̂(ρ ,K,R) > 0 with

ξ · ∂ 2

∂ p2 HF̃ (t,x, p) ξ ≥ 9 σ̂
∣
∣
∣ξ − ξ · p

|p|2 p
∣
∣
∣
2

for all t ∈ [0,T ], |x| ≤ R, 1
R ≤ |p| ≤ R, ξ . Using the matrix abbreviation

D(t,x, p) := − ∂ 2 HF̃
∂x∂ p (t,x, p) Q(t) − Q(t)

∂ 2 HF̃
∂ p ∂x (t,x, p)

+ Q(t)
∂ 2 HF̃
∂x2 (t,x, p) Q(t),

choose τ̂ = τ̂(λ ,ρ ,K) > 0 small enough such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ̂ < min{ T̂ , π
2 ‖μ‖L1

},
∫ τ̂

0
λ (t) dt < 1,

‖D(t,x, p)‖ ≤ σ̂ for every t ∈ [0, τ̂], |x| ≤ R, 1
R ≤ |p| ≤ R.

As a next step, we conclude that the solution Q(t) of (iv) (restricted to [0, τ̂])
satisfies Q(t)≤− σ̂ t · Id in the (N−1)-dimensional subspace of R

N perpendicular
to p(t). Indeed, let (x(·), p(·)) ∈W 1,1([0, τ̂], R

N×R
N) be a solution to the Hamil-

tonian system (i) and choose an arbitrary unit vector ξ ∈ R
N with |ξ · p(0)|< 1

4R .
Then the auxiliary function

ϕ : [0, τ̂] −→ R
N , t �−→ ξ ·Q(t) ξ + σ̂ t

∣
∣
∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣
∣
∣
2

satisfies ϕ(0) = 0 and is absolutely continuous with ϕ(·)≤ 0. Indeed,

ϕ ′(t) = ξ ·Q′(t) ξ+σ̂
∣
∣∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣
∣∣
2−2 σ̂ t

(
ξ − ξ · p(t)

|p(t)|2 p(t)
)
· d

dt

(
ξ · p(t)
|p(t)|2 p(t)

)

= ξ ·Q′(t) ξ+σ̂
∣
∣∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣
∣∣
2−2 σ̂ t

(
ξ − ξ · p(t)

|p(t)|2 p(t)
)
· ξ · p(t)
|p(t)|2 p′(t)

because ξ − ξ · p(t)
|p(t)|2 p(t) is perpendicular to p(t).
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Now |p(t)− p(0)|< 1
4R , 1

R ≤ |p(t)| ≤ R and |ξ · p(0)| < 1
4R imply

∣
∣
∣ ξ · p(t)
|p(t)|

∣
∣
∣ < 1

2

and 1
2 |ξ | = 1− 1

2 ≤
∣
∣
∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣
∣
∣ ≤ 1 + 1

2 . Thus,

ϕ ′(t) ≤ (−9+4+1) σ̂
∣
∣
∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣
∣
∣
2
+ 2 σ̂ t

∣
∣
∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣
∣
∣ |ξ | |p(t)|
|p(t)|2 |p′(t)|

≤ −4 σ̂
∣
∣
∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣
∣
∣
2
+ 2 σ̂ t

∣
∣
∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣
∣
∣ λ (t)

≤ 2 σ̂
∣
∣
∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣
∣
∣ ·
(
−2
∣
∣
∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣
∣
∣ + λ (t) t

)

≤ 2 σ̂
∣
∣∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣
∣∣ ·
(
−2
(

1−
∣
∣∣ ξ · p(t)
|p(t)|

∣
∣∣
)

+ λ (t) t
)

≤ 2 σ̂
∣
∣
∣ξ − ξ · p(t)

|p(t)|2 p(t)
∣
∣
∣ ·
(
−2
(

1− 1
2

)
+ λ (t) τ̂

)

≤ σ̂ · 3 · ( − 1 + λ (t) τ̂
)
.

Now we obtain ϕ(t)≤ 0 for all t ∈ [0, τ̂] and as a consequence, Q(t) ≤ − σ̂ t · Id is
fulfilled in the subspace of R

N perpendicular to p(t).

Finally we need the geometric interpretation for concluding convexity and posi-
tive erosion of ϑF̃(t,x0) (of radius σ̂ t) for each t ∈ ]0, τ̂[ and x0 ∈ K.
As mentioned before, the existence of the solution Q(·) on [0, τ̂[ implies for all
t ∈ [0, τ̂[ that the set M1

t is the graph of a C1 function ft . Moreover Proposition A.32
(on page 457) guarantees

Graph NϑF̃ (t,x0) ⊂
{
(x(t), λ p(t))

∣
∣(x(·), p(·)) solves (i), λ ≥ 0

}

Def.=
⋃

λ≥0

Graph (λ f−1
t ).

Now we obtain at every time t ∈ ]0, τ̂[ that each p ∈ R
N \ {0} belongs to the

limiting normal cone of a unique boundary point z ∈ ∂ ϑF̃(t,x0) and, z = z(p) is
continuously differentiable.
In particular, every supporting hyperplane of the closed convex hull co ϑF̃(t,x0)
may have at most one point in common with the compact reachable set ϑF̃(t,x0).
Thus, co ϑF̃(t,x0)⊂R

N is even strictly convex and coincides with ϑF̃(t,x0) at each
time t ∈ ]0, τ̂[. It is sufficient to consider the limiting normal cones of ϑF̃(t,x0)
locally at every boundary point.

Well-known properties of variational equations (see e.g. [80]) and the uniqueness
of solutions to the matrix Riccati equation (iv) imply that −Q(s) is the derivative
of the C1 function fs for 0 < s ≤ t < τ̂ . Indeed, for each solution (x(·), p(·))
to the Hamiltonian system (i), set (y(·),q(·)) := (− p(·), x(·)) again and let
(U(·),V (·)) : [0,t]−→R

N×N ×R
N×N denote the solution to the linearized system

⎧
⎪⎪⎨

⎪⎪⎩

U ′(s) = ∂ 2

∂y∂q H2(s, y(s), q(s)) U(s) + ∂ 2

∂q2 H2(s, y(s), q(s)) V (s),

V ′(s) = − ∂ 2

∂y2 H2(s, y(s), q(s)) U(s) − ∂ 2

∂q ∂y H2(s, y(s), q(s)) V (s),

U(0) = IdRN×N , V (0) = 0.
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Then for any s ∈ ]0,t] and initial direction u0 ∈ R
N \ {0}, (U(s)u0, V (s)u0) be-

longs to the contingent cone of M2
s ⊂R

N×R
N at (y(s),q(s)) (due to the variational

equations, see e.g. [80]).
Since M2

s is the graph of a continuously differentiable function gs, we conclude that
firstly, this cone TM2

s
(y(s),q(s)) is a N-dimensional subspace of R

N×R
N and

secondly, |V (s)u0| ≤ const ·λ (s) · |U(s)u0| (due to Remark A.31 on page 457).
The latter property and the uniqueness of the linearized system ensure U(s)u0 �= 0
for all u0 �= 0 and thus, U(s) is invertible. Comparing the dimensions leads to

TM2
s
(y(s),q(s)) = (U(s), V (s)) R

N

and V (s) U(s)−1 is the derivative of gs at y(s).
Hence, −V (s) U(s)−1 is the derivative of fs = gs(−·) at p(s) =−y(s).
Moreover it is easy to check that V (s) U(s)−1 satisfies the matrix Riccati equa-
tion (iii) and thus, its uniqueness implies V (s) U(s)−1 = Q(s) for 0 < s≤ t < τ̂.

Thus for every time t ∈ ]0, τ̂[, the derivative of ft at p(t) is bounded by σ̂ t from
below in a (N−1)-dimensional subspace of R

N .
Since ϑF̃(t,x0) is convex, it implies that ϑF̃(t,x0) has positive erosion of radius
increasing (at least) linearly in time. �

A.5.6 Reachable Sets of Balls and Their Complements

In this section, we investigate the proximal radius of boundary points while sets are
evolving along differential inclusions. Compact balls and their complements exem-
plify the key features for short times (as stated in subsequent Proposition A.46).
They lead to the main results about proximal radii in both forward and backward
time direction as a corollary.
The proofs are based on the Hamiltonian system and its regularity — in the same
way as in § A.5.5.

Definition 45. For Λ > 0 fixed, the set LIP(C2)
Λ (RN ,RN) consists of all set-

valued maps F : R
N �R

N satisfying

1. F : R
N � R

N has nonempty compact convex values,
2. HF (x, p) := sup

v∈F(x)
p · v is twice continuously differentiable in R

N× (RN\{0}),
3. ‖HF‖C2(RN× ∂B1) < Λ .

Proposition 46. Let F be any set-valued map of LIP(C2)
Λ (RN ,RN) and B :=

Br(x0)⊂ R
N a compact ball of positive radius r.

Then there exists a time τ = τ(r,Λ) > 0 such that for all times t ∈ [0,τ(r,Λ)[ ,
1.) ϑF(t,B) is convex and has radius of curvature ≥ r−9Λ (1 + r)2 t,
2.) ϑF(t, R

N \B) is concave and has radius of curvature ≥ r−9Λ (1 + r)2 t.
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Restricting ourselves to 0 < r ≤ 2, the time τ(r,Λ) > 0 can be chosen as an in-
creasing function of r. The claim of Proposition A.46 does not include, however,
that r−9Λ (1+ r)2 t ≥ 0 for all t ∈ [0,τ(r,Λ)[ (because then it is not immediately
clear how to choose τ(r,Λ) > 0 as increasing with respect to all r ∈ ]0,2]).

As an equivalent formulation of statement (1.), the convex set ϑF(t,B) has pos-
itive erosion of radius ρ(t) ≥ r− 9Λ (1 + r)2 t, i.e. there is some Kt ⊂ R

N with
ϑF(t,B) = Bρ(t)(Kt ).
Strictly speaking, statement (2.) is of more interest here: ϑF(t, R

N \B) ⊂ R
N has

positive reach ≥ ρ(t)≥ r−9Λ (1 + r)2 t (in the sense of Federer, see Def. A.26).
Roughly speaking, the proofs of these two statements just differ in a sign and thus,
both of them are mentioned here.

Applying Proposition A.46 to adequate proximal balls, the inclusion principle of
reachable sets and Proposition A.32 (on page 457) have the immediate consequence:

Corollary 47. For every map F ∈ LIP(C2)
Λ (RN ,RN) and radius r0 ∈ ]0,2], there

exists some τ = τ(r0,Λ) > 0 such that for any K ∈K (RN), r ∈ [r0,2] and t ∈ [0,τ[ ,

1. each x1 ∈ ∂ϑF (t,K) and ν1 ∈ NP
ϑF (t,K)(x1) with proximal radius r are linked to

some x0 ∈ ∂K and ν0 ∈ NP
K(x0) with proximal radius ≥ r−81Λ t

by a solution to x′(·) ∈ F(x(·)) and its adjoint arc, respectively.

2. each x0 ∈ ∂K and ν0 ∈ NP
K(x0) with proximal radius r are linked to

some x1 ∈ ∂ϑF (t,K) and ν1 ∈ NP
ϑF (t,K)(x1) with proximal radius ≥ r−81Λ t

by a solution to x′(·) ∈ F(x(·)) and its adjoint arc, respectively. �

For describing the time-dependent limiting normals, we use adjoint arcs and
benefit from the Hamiltonian system they are satisfying together with the solutions
(as formulated in preceding Proposition A.32 on page 457).
In short, the graph of normal cones at time t, Graph NϑF (t,K)(·)|∂ ϑF (t,K), can be
traced back to the beginning by means of the Hamiltonian system with HF .

As in § A.5.5, we take the next order into consideration and, the matrix Riccati
equation provides an analytical access to geometric properties like curvature.
In particular, Lemma A.43 (on page 465) motivates the assumption that HF is twice

continuously differentiable in R
N× (RN \{0})) for all maps F ∈ LIP(C2)

Λ (RN ,RN).

For preventing singularities of the matrix solution Q(·) to the Riccati equation, the
comparison principle in Lemma A.44 (on page 465) provides a connection with
solutions to a scalar Riccati equation again.
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Proof (of Proposition A.46). Similarly to Proposition A.41 (on page 464),
statement (1.) is based on applying Lemma A.43 (on page 465) to the boundary
K := ∂ Br(0) and its exterior unit normals, i.e.ψ(x) := x

r , after assuming B = Br(0)
without loss of generality. Obviously, ψ can be extended to ψ ∈C1(RN ,RN).
(Statement (2.) of Proposition 46 is shown in the same way – just with inverse signs,
i.e. ψ̂(x) :=− x

r instead. Hence, we do not formulate this part in detail.)

For every point y0 ∈ ∂ Br, there exist a solution y(·) ∈ C1([0,∞[,RN) and its
adjoint q(·) ∈C1([0,∞[,RN) satisfying
⎧
⎨

⎩

y′(t) = ∂
∂q HF(y(t), q(t)) ∈ F(y(t)), y(0) = y0,

q′(t) = − ∂
∂y HF(y(t), q(t)), q(0) = ψ(y0)

(∗)

and, F∈LIP(C2)
Λ (RN ,RN) implies the a priori bounds

|y(t)− y0| ≤ Λ t,
e−Λ t ≤ |q(t)| ≤ eΛ t .

After restricting to the finite time interval Ir = [0, tr[ (specified explicitly later),
a simple cut-off function provides a twice continuously differentiable extension
H : R

N ×R
N −→ R of HF |RN×(RN\B◦exp(−Λ tr)(0)) and finally, Lemma A.43 can be

applied to ∂Br, ψ and HF .

Furthermore HF(x, p) Def.= supv∈F(x) p · v is positively homogeneous with respect to

p and thus, the second derivatives of HF are bounded by 9Λ R2 on R
N× (BR\

◦
B 1

R
)

(according to Lemma 4.33 on page 366). Together with the preceding a priori
bounds, we obtain

∥
∥D2 HF(y(t),q(t))

∥
∥

Lin(R2N ,R2N ) ≤ 9Λ e2Λ t .

Let Q(·) denote the solution to the matrix Riccati equation
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t Q + ∂ 2 HF
∂ p ∂x (y(t), q(t)) Q + Q ∂ 2 HF

∂x∂ p (y(t), q(t))

+ Q ∂ 2 HF
∂ p2 (y(t), q(t)) Q + ∂ 2 HF

∂x2 (y(t), q(t)) = 0,

Q(0) = ∇ψ(y0) = 1
r · IdRN .

Due to the comparison principle in Lemma A.44 (on page 465), Q(·) exists (at least)
as long as the two scalar Riccati equations

∂t u± = ±9Λ e2Λ t ± 9Λ e2Λ t u2±, u±(0) = 1
r

have finite solutions and within this period, they fulfill

u−(t) · IdRN ≤ Q(t) ≤ u+(t) · IdRN .

In fact, we get the explicit solutions in Ir :=
[

0, 1
2Λ · log

(
1 + π

9 − 2
9 · arctan 1

r

)[
,

namely u±(t) = tan
(± 9

2 (e2Λ t −1) + arctan 1
r

)
,
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Hence, Q(t) is positive definite with eigenvalues ≥ u−(t) at every time t of the
(maybe smaller) interval I′r := Ir ∩ [0, 1

2Λ · log
(
1 + 2

9 · arctan 1
r

)[
.

Now we focus on the geometric interpretation of Q(·).
Due to Lemma A.43 (on page 465),

M �→t (∂ Br) :=
{

(y(t), q(t))
∣
∣ (y(·), q(·)) solves system (∗), |y0|= r

}

is graph of a continuously differentiable function and, Q(t) is related to its deriva-
tive at y(t) as we clarified in the proof of Proposition A.41 (on page 466 ff.).
Furthermore the Hamilton condition of Proposition A.32 (on page 457) ensures

Graph NϑF (t,Br)(·) ⊂
{

(y(t), λ q(t))
∣
∣
∣(y(·), q(·)) solves (∗), |y0|= r, λ ≥ 0

}

and thus, the graph property of M �→t (∂ Br) implies that each q(t) is a normal vector
to the smooth reachable set ϑF(t,Br) at y(t).
As q(t) �= 0 might not have norm 1, the eigenvalues of Q(t) are not always identical
to the principal curvatures (κ j) j=1...N of ϑF(t,Br) at y(t), but they provide bounds:

e−Λ t · u−(t) ≤ κ j ≤ eΛ t · u+(t)

due to e−Λ t ≤ |q(t)| ≤ eΛ t . Thus, ϑF(t,Br) is convex for all times t ∈ I′r and,
the local properties of principal curvatures have the nonlocal consequence that
ϑF(t,Br)⊂ R

N has positive erosion of radius

ρ(t) ≥ 1
eΛ t ·u+(t) ≥ r−9Λ (1 + r)2 t for all t ∈ I′r.

Indeed, the linear estimate at the end is shown by means of the auxiliary function

t �−→ 1
eΛ t ·u+(t) − r + 9Λ (1 + r)2 t

that is 0 at t = 0, has positive derivative at t = 0 and is convex (due to nonnegative
second derivative in I′r).

The time τ(r,Λ) > 0 is chosen as minimum of 1
2Λ · log

(
1 + π

9 − 2
9 · arctan 1

r

)
,

1
2Λ · log

(
1 + 2

9 · arctan 1
r

)
. The linear estimate does not have to be positive in

[0,τ(r,Λ)[ though. �
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A.5.7 The (Uniform) Tusk Condition for Graphs of Reachable Sets

The so-called exterior tusk condition is an essential tool for verifying the boundary
regularity of solutions to parabolic differential equations of second order. Indeed, its
role is comparable to the exterior cone condition for elliptic differential equations
of second order. Effros and Kazdan investigated it in connection with the heat equa-
tion in [75] and, Lieberman extended it to more general parabolic equations in [115].

Definition 48 ([114, § 3], [115]). A nonempty subset M ⊂ R×R
N is called tusk

in (t0,x0) ∈ R×R
N if there exist constants R,τ > 0 and a point x1 ∈ R

N with

M =
{
(t,x) ∈R×R

N
∣∣ t0− τ < t < t0,

∣∣(x− x0) − √t0− t · x1
∣∣ < R

√
t0− t

}
.

A nonempty subset Ω ⊂ R×R
N satisfies the so-called exterior tusk condition

if for every point (t,x)⊂ ∂Ω belonging to the parabolic boundary of Ω (i.e.

Ω ∩ {(s,y) ∈ R×R
N
∣
∣ |x− y| ≤ ε, t− ε < s < t

} �= /0 for any ε > 0),

there exists a tusk M ⊂ R×R
N in (t,x) with M∩Ω = {(t,x)}.

A nonempty subset Ω ⊂R×R
N is said to fulfill the uniform exterior tusk condition

if it satisfies the exterior tusk conditions and if the scalar geometric parameters
R,τ > 0 of the tusks can be chosen independently of the respective points (t,x) of
the parabolic boundary of Ω .

Now we focus on the exterior tusk condition for graphs of reachable sets.
In particular, its uniform version can be verified for parts of the complement if
the differential inclusion makes every point evolve into convex sets with positive
erosion of increasing radius for short times. Thus, Proposition A.41 (on page 464)
provides sufficient conditions on the nonautonomous differential inclusion — inde-
pendently of the compact initial set.

Proposition 49. For F̃ : [0,T ] × R
N � R

N suppose standard hypothe-
sis (H̃ ) with uniform linear growth of ∂(x,p)HF̃(t, ·, ·) (i.e. kF̃ ∈ L∞([0,T ]) in
Definition A.33) and the following property:

For every set K̃ ∈K ([0,T ]×R
N), there exist τ̂ ∈ ]0,T ] and some nondecreasing

σ : [0, τ̂]−→ [0,∞[ such that the reachable set ϑF̃(t0+·, ·)(s,x0) ⊂ R
N is convex and

has positive erosion of radius σ(s) > 0 for any s∈ ]0, τ̂], (t0,x0)∈ K̃ with t0 +s≤ T .

Then for every initial set K0 ∈ K (RN) and any time parameter τmin ∈ ]0,T [,
the complement of the graph of [0,T ]� R

N , t �→ ϑF̃(t,K0) (as a subset of R×R
N)

satisfies the uniform exterior tusk condition in all boundary points in ]τmin,T [×R
N.
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Corollary 50. In addition to standard hypothesis (H̃ ρ
◦ ) (on page 464), assume

for the set-valued map F̃ : [0,T ]×R
N� R

N that some λ (·) ∈ L∞([0,T ]) satisfies

‖HF̃(t, ·, ·)‖C1,1(RN× ∂B1)
Def.= ‖HF̃(t, ·, ·)‖C1(RN× ∂B1) + Lip∂HF̃ (t, ·, ·)|RN× ∂B1

< λ (t)

at L 1-almost every time t ∈ [0,T ].

Then for every initial set K0 ∈ K (RN) and any time parameter τmin ∈ ]0,T [,
the complement of the graph of [0,T ]� R

N , t �→ ϑF̃(t,K0) (as a subset of R×R
N)

satisfies the uniform exterior tusk condition in all boundary points in ]τmin,T [×R
N.
�

For proving Proposition A.49, we conclude the exterior tusk condition from a
similar property about truncated cones (alias conical frustums). In particular, the
possibility of choosing geometric parameters uniformly does not depend on the
shape of a tusk or a conical frustum. The latter condition, however, is easier to ver-
ify for graphs of reachable sets by means of boundary solutions and their adjoints
(in the sense of Proposition A.32 on page 457).

Lemma 51 (Conical frustum provides suitable tusk).
LetΩ ⊂R×R

N be nonempty. Assume (t0,x0)∈ ∂Ω and x1 ∈R
N , h,λ > 0 to satisfy

λ h < |x0− x1| and

Ω ∩ {(s,y)∈R×R
N
∣
∣t0−h≤ s≤ t0, |y−x1| ≤ |x0−x1|−λ (t0−s)

}
=
{
(t0,x0)

}
.

Then there exists a tusk in (t0,x0) whose closure has only (t0,x0) in common withΩ .
Furthermore the scalar geometric parameters of this tusk depend merely on h,λ .

Lemma 52 (Graphs of reachable sets have interior conical frustums).
Under the assumptions of Proposition A.49, every accumulation point (t0,x0) of
∂
(
Graph ϑF̃ (·,K0)

∣
∣
[0,T ]

) ∩ (]0,T [×R
N
)

with t0 > 0 has an open conical frustum
{
(s,y) ∈ R×R

N
∣
∣ t0−h < s < t0, |y− x1|< |x0− x1|−λ (t0− s)

}

(with suitable parameters h,λ > 0 and x1 ∈ R
N) whose closure has only (t0,x0) in

common with the closed complement of Graph ϑF̃(·,K0)
∣∣
[0,T ] ⊂ R×R

N.

If t0 > τmin with an arbitrarily fixed parameter τmin in addition, the parameters
h,λ > 0 can be chosen independently of (t0,x0), but just depending on K0, F̃ ,T,τmin.

Proof (of Lemma A.51). Consider the following tusk with R := |x0−x1|−λ h√
h

> 0

M :=
{
(s,y) ∈R×R

N
∣
∣ t0−h < s < t0,

∣
∣(y−x0) −

√
t0− s · x1−x0√

h

∣
∣ < R

√
t0− s

}
.

As a simple consequence of the triangle inequality in R
N , M is contained in the

given conical frustum and thus, Ω ∩M = {(t0,x0)}. �
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Proof (of Lemma A.52). As an accumulation point, (t0,x0)∈ ]0,T ]×R
N can be

approximated by a sequence of points in ∂
(
Graph ϑF̃(·,K0)

∣∣
[0,T ]

) ∩ (]0,T [×R
N
)
.

Applying preceding Proposition A.32 (on page 457) to each of these boundary
points, an appropriate subsequence provides a solution x(·) ∈W 1,1([0, t0],RN) and
its adjoint p(·) ∈W 1,1([0,t0],RN) satisfying

{
x′(t) = ∂

∂ p HF̃(t, x(t), p(t)) ∈ F̃(t, x(t)), x(t0) = x0,

p′(t) = − ∂
∂x HF̃(t, x(t), p(t)), |p(t0)| = 1

and the additional properties for every s ∈ [0, t0[
{

x(s) ∈ ∂ ϑF̃ (s,K0)
p(s) ∈ NϑF̃ (s,K0)

(
x(s)
)∖{0}

due to regularity and uniqueness of the Hamiltonian initial value problem.

Choose any compact neighborhood C̃ of the graph of ϑF̃(·,K0) : [0,T ]� R
N in

[0,T ]×R
N . Due to the assumption of Proposition A.49, there exist τ̂ ∈ ]0,T ] and a

nondecreasing function σ : [0, τ̂]−→ [0,∞[ such that ϑF̃(t+·, ·)(s,y)⊂R
N is convex

and has positive erosion of radius σ(s) for any s ∈ ]0, τ̂ ], (t,y) ∈ C̃ with t + s≤ T .
(If some τmin > 0 with τmin ≤ t0 is fixed additionally, replace τ̂ by min{τ̂,τmin}> 0.)
Without loss of generality, we assume τ̂ < t0, (t0− τ̂, x(t0− τ̂)) ∈ C̃.

Set t1 := t0− τ̂ > 0 and t2 := t0− τ̂
2 ∈ ]t1, t0[.

At every time s ∈ [t2,t0[, the point x(s) belongs to the topological boundary of the
convex set ϑF̃(t1+·, ·)

(
s− t1, x(t1)

)
with positive erosion of radius ≥ σ( τ̂2 ) =: ρτ̂ .

Furthermore the inclusion ϑF̃(t1+·, ·)
(
s− t1, x(t1)

) ⊂ ϑF̃ (s,K0) and the convexity

of the reachable set ϑF̃(t1+·, ·)
(
s− t1, x(t1)

)
imply

p(s) ∈ NϑF̃ (s,K0)
(
x(s)
)∖{0} ⊂ NP

ϑF̃(t1+·, · )(s−t1, x(t1))

(
x(s)
)
.

Now the aspects of (uniform) positive erosion and continuity ensure

Bρτ̂
(
x(s)−ρτ̂ p(s)

|p(s)|
) ⊂ ϑF̃(t1+·, ·)

(
s− t1, x(t1)

) ⊂ ϑF̃(s,K0)

for every s ∈ [t2,t0]. Moreover, due to the uniform linear growth of ∂(x,p)HF̃ (t, ·, ·),
the set-valued map [t2,t0]� R

N , s �→ Bρτ̂
(
x(s)−ρτ̂ p(s)

|p(s)|
)

is Lipschitz continuous

with convex values and, its Lipschitz constant Λ depends only on C̃, F̃ ,T, τ̂ .

Finally comparing graphs of Lipschitz set-valued maps implies for any γ > Λ
that the truncated cone

Cγ :=
{
(s,y) ∈ R

1+N
∣
∣
∣ t0− ρτ̂

γ ≤ s < t0,
∣
∣x0−ρτ̂ p(t0)

|p(t0)| − y
∣
∣< ρτ̂ − γ · (t0− s)

}

is a subset of
⋃

s∈ [t2,t0]
({s}×Bρτ̂

(
x(s)−ρτ̂ p(s)

|p(s)|
)) ⊂ R×R

N.

Obviously the modified truncated cone C2γ is contained in the interior of its coun-
terpart Cγ and thus, C2γ belongs to the interior of Graph ϑF̃(·,K0)|[0,T ] ⊂ R×R

N .
�
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A.6 Reynolds Transport Theorem for Differential Inclusions
with Carathéodory Maps

Reynolds Transport Theorem concerns the time derivative of a Lebesgue integral
whose domain is deformed due to a sufficiently smooth vector field (e.g. [55, § 8.3]):

Theorem 53 (Reynolds Transport Theorem). Suppose w ∈ C1(RN ,RN).
For a nonempty compact set K0 ⊂ R

N , let K(t) ⊂ R
N contain all points x(t) of

solutions x(·) ∈C1([0,t],RN) of x′ = w(x), x(0) ∈ K0.

Then for everyΨ ∈C1(R×R
N), the function Iw : t �−→

∫

K(t)
Ψ (t,x) dx fulfills

d+

dt+ Iw(0) Def.= lim
t ↓0

Iw(t)−Iw(0)
t =

∫

K0

(
∂tΨ(0,x) + div (Ψ(0,x) w(x))

)
dx.

If, in addition, K0 satisfies the assumptions of Gauss’ Integral Theorem then

d+

dt+ Iw(0) =
∫

K0

∂tΨ(0,x) dx +
∫

∂K0

Ψ(0,x) w(x) · νK0(x) dσx

with the exterior unit normal νK0 to K0.

Although the name of Osborne Reynolds (1842 – 1912) is used mainly in contin-
uum mechanics this theorem has broad applications, e.g. in shape optimization and
free boundary problems.
Now we focus on the integrals over compact reachable sets of differential inclu-
sions, i.e. for a given function ψ ∈ L1

loc(R
N), we consider

IF̃ : [0,T ] −→ R, t �−→
∫

ϑF̃ (t,K0)
ψ(x) dx.

As a key point, a priori assumptions about the regularity of ∂K0 are avoided com-
pletely. However, F̃ : [0,T ]×R

N � R
N has to fill the gap concerning sufficient

conditions. In particular, any generalization of Theorem A.53 (with a boundary
integral) has to exclude the example that a nonrectifiable set K0 ⊂ R

N is simply
translated. For this reason, F̃ is supposed to have a continuous selection of its inte-
rior F̃(·, ·)◦ and, the main result of this section is

Theorem 54. Assume N ≥ 2. Let ρF̃ ,μF̃ > 0, vF̃ ∈ C0([0,T ]×R
N ,RN) and

F̃ : [0,T ]×R
N �R

N be a Carathéodory map with compact convex values and
BρF̃

(vF̃(t,x)) ⊂ F̃(t,x) ⊂ μF̃ (1+|x|) ·B
for every (t,x) ∈ [0,T ]×R

N. Furthermore assume K0 ∈K (RN), ψ ∈C0(RN).

Then IF̃ : [0,T ] −→ R is absolutely continuous and has the weak derivative

d
dt IF̃ (t) =

∫

∂ ϑF̃ (t,K0)
ψ(x) sup

(
F̃(t,x) · �NB

ϑF̃ (t,K0)(x)
)

dH N−1x.

Here �NB
K(x) denotes the set of Bouligand normal vectors in the unit ball B, i.e.

�NB
K(x) Def.=

{
v ∈ B1(0)

∣
∣ v ·w≤ 0 for all w ∈ TK(x)

} ⊂ R
N .
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Corollary 55 (Reynolds Transport Theorem for differential inclusions).
Let F̃ : [0,T ]×R

N �R
N satisfy the assumptions of Theorem 54. Moreover suppose

K0 ∈K (RN) andΨ ∈C1([0,T ]×R
N).

Then the function [0,T ]−→ R, t �−→
∫

ϑF̃ (t,K0)
Ψ(t,x) dx is absolutely continuous

and has the weak derivative
∫

∂ ϑF̃ (t,K0)
Ψ (t,x) sup

(
F̃(t,x) · �NB

ϑF̃ (t,K0)(x)
)

dH N−1x +
∫

ϑF̃ (t,K0)

∂
∂ t Ψ(t,x) dx.

Corollary 56 (for autonomous differential inclusions, [127, Corollary 3.4]).
The absolute continuity in the preceding Corollary A.55 also holds for an autono-
mous Lipschitz continuous map F : R

N�R
N with nonempty compact convex values

if for each x ∈ R
N, either 0 ∈ F(x)◦ or F(x) = {0}.

Sketch of the Proof for the Special Case of Strictly Expanding Sets (vF̃ ≡ 0)

In the special case vF̃ ≡ 0, the vector 0 belongs to the interior of each value of F̃ .
Then the reachable sets represent strict expansions in the sense that for every s < t,

ϑF̃ (s,K0) ⊂
(
ϑF̃(t,K0)

)◦
.

Due to this observation, we can describe both the reachable sets and their topologi-
cal boundaries easily via the so-called minimal time function τF̃ : R

N −→ [0,∞],

τF̃(x) := inf{ t ∈ [0,T ] | x ∈ ϑF̃(t,K0)},
= inf{ t ∈ [0,T ] | K0 ∩ ϑ−F̃(t−· , ·)(t,x) �= /0}.

In many papers about minimal time functions (e.g. [23, 34, 35, 82, 186]), the con-
dition on admitted solutions usually concerns their final points, i.e.

x �−→ inf
{

t ∈ [0,T ]
∣
∣ ∃ solution z(·) : z(0) = x, z(t) ∈ K0

}
.

Here we consider a state constraint for the initial point instead : z(0) ∈ K0, z(t) = x.
These two definitions can be regarded as equivalent only if the function F̃ does
not depend on time explicitly. For an autonomous Lipschitz map G : R

N � R
N

with compact convex values, the properties of τG(·) have already been investigated
extensively. In particular, τG(·) is the viscosity solution of the Eikonal equation

{
sup
(
G(x) · ∇τG(x)

)
= 1 in ϑG([0,T ],K0)◦,

τG = 0 in K0.

In [127], the detailed proof of Theorem A.54 has a rather geometric character
and verifies the subsequent properties of τF̃(·) (only). In particular, no results about
viscosity solutions are used there. As we consider just the points of differentiability
for a locally Lipschitz continuous function, we do not need stronger regularity as-
sumptions about F̃ . Further characterizations of reachable sets by means of normals
can be found in [45, 65, 68].
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Lemma 57. Let F̃ : [0,T ]×R
N � R

N satisfy the assumptions of Theorem A.54
with vF̃ ≡ 0, i.e. for some μF̃ ,ρF̃ > 0, F̃ is a Carathéodory set-valued map with

compact convex values and ρF̃ B ⊂ F̃(t,x) ⊂ μF̃ (1+|x|)B for every (t,x), and
assume K0 ∈K (RN).
Then the corresponding minimum time function τF̃ : ϑF̃(T,K0) −→ [0,∞[ has the
properties for every t ∈ [0,T ]:

1. τF̃ is Lipschitz continuous in ϑF̃(T,K0),

2. ϑF̃(t,K0) = τ−1
F̃

([0,t]),

3. the topological boundary ∂ ϑF̃(t,K0) is contained in the level set τ−1
F̃

(t).

4. Let DF̃ consist of all points in ϑF̃ (T,K0)◦ \K0 at which τF̃ is differentiable.
Then for every x ∈DF̃ , |∇τF̃(x)| ≥ 1

μF̃ ·(1+|x|) ,
NB
ϑF̃ (τF̃ (x),K0)(x) = [0,∞[ ·∇τF̃(x)

and for every t ∈ ]0,T [, DF̃ ∩ τ−1
F̃

({t}) ⊂ ∂ ϑF̃(t,K0).

5. |∇τF̃(x)| · sup
(

F̃(τF̃ (x), x) · �NB
ϑF̃ (τF̃ (x),K0)(x)

)
= 1 for L N-a.e. x ∈DF̃ .

The ball assumption about the values of F̃ is to guarantee the properties (1.), (4.).
Then the other statements result from the strict expansion property of ϑF̃(·,K0).
Now Theorem A.54 is a consequence of the so-called co-area formula, which is
an important tool in (geometric) measure theory. For any Lipschitz continuous map
f : R

m −→ R
n (m > n), let Cn f (x) denote its n-dimensional co-area factor if f is

differentiable at x :

Cn f (x) Def.=
√

det(D f (x) ·D f (x)T ).

For the minimum time function τF̃ (·) in particular, the dimension n = 1 implies
C1τF̃(x) = |∇τF̃ (x)| for every x ∈DF .

Proposition 58 (Co-area formula, [77, § 3.4.3, Theorem 2], [78, Theorem 3.2.12]).
If f : R

m −→R
n is Lipschitz continuous and m > n, then

∫

Rm
g(x) Cn f (x) dL mx =

∫

Rn

∫

f−1({y})
g(x) dH m−nx dL ny

for every (Lebesgue) L m integrable function g : R
m −→ [−∞,∞]. Here H m−n

denotes the (m− n)-dimensional Hausdorff measure of nonempty subsets in R
m.

Indeed, from a merely formal point of view, this formula applied to

g(x) := ψ(x) · sup
(

F̃(τF̃ (x), x) · �NB
ϑF̃ (τF̃ (x),K0)(x)

)

leads to
∫

ϑF̃ (t,K0)\K0

ψ dx =
∫ t

0

∫

τ−1
F̃

(s)
ψ(y) · sup

(
F̃(s,y) · �NB

ϑF̃ (s,K0)(y)
)

dH N−1y ds

=
∫ t

0

∫

∂ϑF̃ (s,K0)
ψ(y) · sup

(
F̃(s,y) · �NB

ϑF̃ (s,K0)(y)
)

dH N−1y ds.
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Sketch of the Proof for the General Case Via Coordinate Transformation

Restricting to sufficiently short time intervals in [0,T ], the continuous selection
vF̃(·, ·) can be approximated locally by autonomous functions wF̃ ∈ C∞

0 (RN ,RN).
The flow Tt(x) := ϑ−wF̃

(t,x) induced by the velocity field −wF̃(·) is a diffeomor-
phism and maps the reachable set ϑF(t,K0) to Tt(ϑF(t,K0)) = ϑG(t,K0) with the
set-valued map

G̃(t,y) := −wF̃(y) + DTt
(
T−1

t (y)
) · F (t, T−1

t (y)
) ⊂ R

N .

Moreover this map G̃(·, ·) satisfies the assumptions of Theorem A.54 at any point of
an (initially fixed) compact neighborhood of K0 ⊂ R

N and for t ∈ [0,T ] sufficiently
small. Additionally a fixed ball with center at 0 is contained in each value of G̃ and
so, the preceding special case can be applied to integrals over ϑG̃(t,K0).
The remaining challenge is now to verify that the coordinate transformation via Tt

preserves the structure of the integral representation. In particular, all Lebesgue and
Hausdorff integrals have to be well-defined and finite (almost everywhere). This
requires changes of variables for Hausdorff integrals: the so-called area formula.

Proposition 59 (Generalized area formula, [5, Theorem 2.91], [78, Cor. 3.2.20]).
Let f : R

m −→ R
n be a Lipschitz continuous function and E ⊂ R

m a countably
H k-rectifiable set (k≤ n). Then, the multiplicity function

R
n −→R, y �−→H 0(E ∩ f−1(y))

is H k-measurable in R
n and for every Borel function g : R

n −→ R,
∫

Rn
g(y) ·H 0(E ∩ f−1(y)

)
dH ky =

∫

E
g( f (x)) · Jk dE fx dH kx.

Here dE fx denotes the approximate tangential differential of f at x and, Jk abbrevi-

ates the k-dimensional Jacobian, i.e. here Jk dE fx
Def.=
√

det(dE f T
x · dE fx).

The generalized Gauss-Green Theorem is a further tool used in [127, § 6] for
investigating the level sets of τF̃ , τG̃ and their boundaries. It involves the so-called
measure theoretic boundary ∂∗M of a nonempty L n-measurable set M ⊂ R

n, i.e.

∂∗M :=
{

x ∈ R
n
∣
∣
∣ limsup

r→0

L n(Br(x)∩M)
rN > 0, limsup

r→0

L n(Br(x)\M)
rN > 0

}
⊂ ∂M.

Proposition 60 (Generalized Gauss-Green Theorem, [77, § 5.8, Theorem 1]).
Let M ⊂ R

n have locally finite perimeter. Then for H n−1-a.e. x ∈ ∂∗M, there is a
unique measure theoretic unit outer normal νM(x) such that for all ϕ ∈C1

c (Rn,Rn)
∫

M
divϕ dx =

∫

∂∗M
ϕ ·νM dH n−1

Indeed the reachable sets ϑF̃ (t,K0), ϑG̃(t,K0) have locally finite perimeter at L 1-
almost every time t due to their finite H N−1 measures and [77, § 5.11, Theorem 1].
Moreover, every point x ∈ ∂ϑG̃(t,K0) at which τG̃ is differentiable proves to belong
even to the measure theoretic boundary ∂∗ϑG̃(t,K0) and thus we can use the Eikonal
equation in Lemma A.57 (5.).
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A.7 Differential Inclusions with One-Sided Lipschitz
Continuous Maps

In [69], Donchev and Farkhi prove the existence of solutions to another type of
differential inclusions – with a stability estimate as in Filippov’s Theorem A.6
(on page 443) included. Their essential aspect is to replace the classical Lipschitz
condition with respect to space by a weakened form (called one-sided Lipschitz
condition) in combination with upper semicontinuity and convex values:

Definition 61 ([69, Definition 2.1]). A set-valued map F̃ : [0,T ]×R
N � R

N ,
(t,x) �→ F(t,x) is called one-sided Lipschitz continuous with respect to x if there is
a function L(·) ∈ L1([0,T ]) such that for every x,y ∈ R

N , t ∈ [0,T ] and v ∈ F̃(t,x),
there exists an element w ∈ F̃(t,y) satisfying

〈x− y, v−w〉 ≤ L(t) |x− y|2.

Remark 62. 1. As Donchev has already pointed out in several of his papers,
F̃ : [0,T ]×R

N�R
N is one-sided Lipschitz continuous with respect to x if and only

if some L(·) ∈ L1([0,T ]) satisfies

HF̃

(
x− y, F̃(t,x)

) − HF̃

(
x− y, F̃(t,y)

) ≤ L(t) |x− y|2
for every x,y ∈ R

N and t ∈ [0,T ].

2. Obviously, every Lipschitz continuous map is also one-sided Lipschitz con-
tinuous, but not vice versa in general. In particular, one-sided Lipschitz continuous
maps do not have to be upper or lower semicontinuous.

3. The function L(·) ∈ L1([0,T ]) is assumed to be real-valued, but we do not
restrict our considerations to L(·) ≥ 0. The special case of strictly negative L(·)
admits interesting conclusions about asymptotic features which usually do not have
counterparts of the (classically) Lipschitz continuous maps.

Theorem 63 (Filippov-like existence for one-sided Lipschitz maps [69, Th. 3.2]).
Let F̃ : [0,T ]×R

N � R
N , (t,x) �→ F̃(t,x) be a nonautonomous Marchaud map

(in the sense of Definition A.11 on page 447) being one-sided Lipschitz continuous
with respect to x. For y(·) ∈W 1,1([0,T ],RN) and g(·) ∈ L1([0,T ]) suppose

dist
(
y′(t), F̃(t, y(t))

) ≤ g(t)

at Lebesgue-almost every time t ∈ [0,T ].

Then for every initial point x0 ∈R
N , there exists a solution x(·)∈W 1,1([0,T ],RN)

of x′(·) ∈ F̃(·,x(·)) a.e. satisfying x(0) = x0 and for every t ∈ [0,T ]
∣
∣x(t)− y(t)

∣
∣ ≤ |x0− y(0)| e

∫ t
0 L(r) dr +

∫ t

0
e
∫ t

s L(r) dr g(s) ds .
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Remark 64. The existence results of Theorem A.63 and Filippov’s Theorem A.6
differ from each other in an essential aspect:
Under the assumptions of Theorem A.63, not every point x0 ∈ R

N and vec-
tor v0 ∈ F̃(0,x0) has to be related to a solution x(·) ∈ W 1,1([0,T ],RN) of
x′(·) ∈ F̃(·,x(·)) satisfying x(0) = x0 and

lim
h↓0

1
h ·
(
x(h)− x(0)

)
= v0.

An example is given by the following map F̃ and the initial data x0 := 0∈R, v0 := 1
2

F̃ : [0,1]×R � R, (t,x) �→
⎧
⎨

⎩

−1 for x > 0
[−1,1] for x = 0

1 for x < 0

Proposition 65. As in Theorem A.63, let F̃ : [0,T ]×R
N � R

N , (t,x) �→ F̃(t,x)
be a nonautonomous Marchaud map (in the sense of Definition A.11 on page 447)
being one-sided Lipschitz continuous with respect to x.
In addition suppose F̃(·, ·) to be lower semicontinuous at each (t,x) ∈ {0}×R

N.

Then for any x0 ∈ R
N and v0 ∈ F̃(0,x0), there is a solution x(·) ∈W 1,1([0,T ],RN)

of x′(·) ∈ F̃(·,x(·)) a.e. satisfying x(0) = x0 and

lim
h↓0

1
h ·
(
x(t)− x0

)
= v0.

Proof. Theorem A.63 applied to y(t) := x0 + t v0 provides a solution
x(·) ∈W 1,1([0,T ],RN) of x′(·) ∈ F̃(·,x(·)) a.e. satisfying x(0) = x0 and

∣
∣x(h) − x0 − h v0

∣
∣ ≤

∫ h

0
e
∫ h

s L(r) dr dist
(
v0, F̃(s, x0 + s v0)

)
ds

≤ e
‖L‖L1([0,T ])

∫ h

0
dist
(
v0, F̃(s, x0 + s v0)

)
ds .

In particular, the lower semicontinuity of F̃ in (0,x0) implies

dist
(
v0, F̃(s, x0 + s v0)

)−→ 0 for s↘ 0

and thus, limsup
h↓0

1
h ·
∣
∣x(h) − x0 − h v0

∣
∣ ≤ 0. �
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A.8 Stochastic Differential Inclusions in R
N

A.8.1 Filippov-Like Theorem of Da Prato and Frankowska

Now the focus of interest is an existence theorem for stochastic differential inclu-
sions in the Euclidean space R

N . In regard to the mutational framework, we need
a priori estimates that compare a given curve with a solution to the inclusion and,
they should have a form similar to Filippov’s Theorem A.6 (on page 443 f.).
In 1994, Da Prato and Frankowska presented such an existence result for stochastic
differential inclusions with globally Lipschitz continuous drift and diffusion terms
[53]. Their main statements even concern Itô integral inclusions with a strongly
continuous semigroup on a separable Hilbert space. Just one year later, Motyl pub-
lished independent existence and uniqueness results about stochastic differential
inclusions in the Euclidean space under some assumptions of dissipative type [143].
Now we consider only the finite-dimensional case and prove such a Filippov-like
theorem essentially by means of the arguments of Aubin, Da Prato and Frankowska
in [18, Theorem 4.1]. The comparative estimate, however, is slightly modified so
that we can use it more easily in the example of § 3.7 (on page 242 ff.) and thus, the
proof is presented completely here.

General assumptions in § A.8

(i) (Ω ,A ,P) is a complete probability space.

(ii) (At)t≥0 denotes a filtration with the usual conditions, i.e. (At)t≥0 is a right
continuous and increasing family of sub-σ -algebras of A and, A0 contains
all P-null sets.

(iii) W = (Wt)t≥0 is an m-dimensional Wiener process.

(iv) For finite T > 0 fixed, define the class L 2
A ([0,T ],RN) of functions f :

[0,T ]×Ω −→R
N with

(1.) f is jointly L 1×A -measurable,

(2.)
∫

[0,T ]
E
(| f (t, ·)|2) dt < ∞,

(3.) for every t ∈ [0,T ], E
(| f (t, ·)|2) < ∞ and

(4.) for every t ∈ [0,T ], f (t, ·) :Ω −→ R
N is At-measurable.

(v) Let Lin(Rm,RN) consist of all linear functions R
m −→R

N .

(vi) I0(X0,γ,σ) denotes the Itô process associated with
the initial state X0 ∈ L2(Ω , A0,P; R

N),
the drift γ ∈L 2

A ([0,T ], R
N) and

the diffusion σ ∈L 2
A ([0,T ], Lin(Rm,RN)), i.e. for t ∈ [0,T ],

I0(X0,γ,σ)(t) := X0 +
∫ t

0
γ(s) ds +

∫ t

0
σ(s) dWs,

∥
∥I0(X0,γ,σ)

∥
∥

I,[0,t] :=
√

E(|X0|2) + E

(∫ t

0
|γ|2 ds

)
+ E

(∫ t

0
|σ |2 ds

)
.



A.8 Stochastic Differential Inclusions in R
N 483

Remark 66. The general estimate for every Itô process

E
(∣∣I0(X0,γ,σ)(t)

∣∣2) ≤ 9 (1 + t)
∥∥I0(X0,γ,σ)

∥∥2
I,[0,t]

≤ 9 et
∥
∥I0(X0,γ,σ)

∥
∥2

I,[0,t]

results from the Hölder inequality, the Itô isometry (quoted for one dimension in
Proposition 3.50 (d) on page 233 f.) and the simple inequality (r + s)2 ≤ 3 (r2 + s2)
for any r,s ∈ R.

Theorem 67 (Da Prato-Frankowska for stochastic differential inclusions).
Suppose for the set-valued map F̃ = (F̃1, F̃2) : [0,T ]×Ω×R

N�R
N×Lin(Rm,RN):

(i) F̃ has nonempty compact values,

(ii) for every x ∈ R
N, F̃(·, ·,x) is measurable,

(iii) there is Λ > 0 such that for each t ∈ [0,T ], ω ∈Ω , F̃(t,ω , ·) is Λ -Lipschitz,

(iv) there is γ > 0 such that |F̃(t,ω ,0)|∞ ≤ γ holds for all t ∈ [0,T ], ω ∈Ω .

Furthermore let Y := I0(Y0,γ0,σ0) be any Itô process with drift γ0 ∈L 2
A ([0,T ], R

N)
and diffusion σ0 ∈L 2

A ([0,T ], Lin(Rm,RN)).

For every initial random variable X0 ∈ L2(Ω ,A0,P; R
N), there exist a drift

γ ∈ L 2
A ([0,T ], R

N) and a diffusion σ ∈ L 2
A ([0,T ], Lin(Rm,RN)) such that the

related Itô process X := I0(X0,γ,σ) satisfies both
{
γ(t,ω) ∈ F̃1

(
t, ω , Xt(ω)

)

σ(t,ω) ∈ F̃2
(
t, ω , Xt(ω)

)

for (L 1×P)-almost all (t,ω) ∈ [0,T ]×Ω and for each t ∈ [0,T ]

‖X − Y‖2
I,[0,t] ≤ C ·

(
E
(|X0−Y0|2

)
+

∫ t

0
E

(
dist
(
(γ0(s),σ0(s)), F̃(s,Ys)

)2
)

ds
)
· eC·(1+t) t

with a constant C > 0 depending merely on Λ .

The proof is based on essentially the same iterative construction of approximate
solutions as [18, Theorem 4.1].
We use the following lemma, which is easy to verify by means of partial integration:

Lemma 68 ([10, Lemma 1.4.3], [18, Lemma 4.2]). Every Lebesgue-integrable
function g : [0,T ]−→R fulfills for each n ∈ N

∫ T

0

∫ t

0
g(s) (t−s)n−1

(n−1)! ds dt =
∫ T

0
g(s) (T−s)n

n! ds
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Proof (of Theorem A.67).
Proposition A.80 about measurable marginal maps (on page 490) and Selection
Theorem A.74 (of Kuratowski and Ryll-Nardzewski on page 489) guarantee the
existence of γ1 ∈ L 2

A ([0,T ], R
N) and σ1 ∈ L 2

A ([0,T ], Lin(Rm,RN)) satisfying
for every (t,ω) ∈ [0,T ]×Ω
{
γ1(t,ω) ∈ F̃1

(
t,ω , Yt(ω)

)
,
∣
∣ γ0|(t,ω) − γ1|(t,ω)

∣
∣ = dist

(
γ0|(t,ω), F̃1|(t,ω,Yt (ω))

)

σ1(t,ω) ∈ F̃2
(
t,ω , Yt(ω)

)
,
∣
∣σ0|(t,ω) − σ1|(t,ω)

∣
∣ = dist

(
σ0|(t,ω), F̃2|(t,ω,Yt (ω))

)
.

Then the Itô process X1 := I0(X0,γ1,σ1) fulfills
∥∥X1−Y

∥∥2
I,[0,t] = E

(|X0−Y0|2
)

+ E

(∫ t

0
|γ1− γ0|2 ds

)
+ E

(∫ t

0
|σ1−σ0|2 ds

)

= E
(|X0−Y0|2

)
+ E

(∫ t

0
dist
(
(γ0,σ0), F̃(s, · , Ys)

)2
ds
)

at every time t ∈ [0,T ]. Now we iterate this construction and obtain three se-
quences (γn)n∈N, (σn)n∈N, (Xn)n∈N in L 2

A ([0,T ], R
N), L 2

A ([0,T ], Lin(Rm,RN))
and L 2

A ([0,T ], R
N) respectively with

⎧
⎪⎪⎨

⎪⎪⎩

γn+1|(t,ω) ∈ F̃1|(t,ω,Xn
t (ω)),

∣
∣ γn|(t,ω)− γn+1|(t,ω)

∣
∣ = dist

(
γn|(t,ω), F̃1|(t,ω,Xn

t (ω))
)

σn+1|(t,ω) ∈ F̃2|(t,Xn
t (ω)),

∣
∣σn|(t,ω)− σn+1|(t,ω)

∣
∣ = dist

(
σn|(t,ω), F̃2|(t,ω,Xn

t (ω))
)

Xn+1 = I0
(
X0, γn+1, σn+1

)

for all (t,ω)∈ [0,T ]×Ω . Then the uniformΛ -Lipschitz continuity of F(t,ω , ·) and
Remark A.66 imply

∥
∥Xn+1−Xn

∥
∥2

I,[0,t] = E

(∫ t

0
|γn+1− γn|2 ds

)
+ E

(∫ t

0
|σn+1−σn|2 ds

)

= E

(∫ t

0
dist
((
γn(s, ·), σn(s, ·)

)
, F̃(s, ·, Xn

s )
)2

ds
)

≤ E

(∫ t

0
dl
(
F̃(s, ·, Xn−1

s ), F̃(s, ·, Xn
s )
)2

ds
)

≤ Λ2 · E
(∫ t

0

∣
∣Xn−1

s − Xn
s

∣
∣2 ds

)

≤ Λ2 · 9 (1 + t) ·
∫ t

0

∥∥Xn − Xn−1
∥∥2

I,[0,s] ds.

By means of induction with respect to n, we obtain for every n ∈N and t ∈ [0,T ]
∥
∥Xn+1−Xn

∥
∥2

I,[0,t]

≤ (
9Λ2 (1 + t)

)n ·
∫ t

0
dsn

∫ sn

0
dsn−1 . . .

∫ s2

0

∥
∥X1 − Y

∥
∥2

I,[0,s1] ds1

≤ (
9Λ2 (1 + t)

)n ·
∫ t

0

∥
∥X1 − Y

∥
∥2

I,[0,sn]
(t−sn)n−1

(n−1)! dsn

≤ 1
n!

(
9Λ2 (1 + t) t

)n · ∥
∥X1 − Y

∥
∥2

I,[0,t]

≤ 1
n!

(
3Λ (1 + t)

)2n · ∥∥X1 − Y
∥∥2

I,[0,t]

due to Lemma A.68.
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The series

c(t) :=
∞

∑
n=0

1√
n!

(3Λ (1 + t))n

is absolutely convergent for every t ∈ R as d’Alembert’s ratio test reveals. Hence,
(Xn)n∈N is a Cauchy sequence with respect to ‖ · ‖I,[0,t] for each t ∈ [0,T ].

Then there exist limits γ ∈L 2
A ([0,T ], R

N), σ ∈L 2
A ([0,T ], Lin(Rm,RN)) and X ∈

L 2
A ([0,T ], R

N) of (γn)n∈N, (σn)n∈N, (Xn)n∈N respectively with

X = I0
(
X0,γ,σ).

Furthermore, we conclude

γ(t,ω) ∈ F̃1
(
t, ω , Xt(ω)

)
, σ(t,ω) ∈ F̃2

(
t, ω , Xt(ω)

)

for (L 1×P)-almost all (t,ω) ∈ [0,T ]×Ω from the facts that some subsequences
of (γn)n∈N, (σn)n∈N, (Xn)n∈N converge to their respective limits pointwise almost
everywhere in [0,T ]×Ω and that F̃(t,ω , ·) is continuous by assumption (iii).

Finally, X satisfies at each time t ∈ [0,T ]
∥∥X−Y

∥∥
I,[0,t] ≤

∞

∑
n=1

∥∥Xn+1−Xn
∥∥

I,[0,t] +
∥∥X1−Y

∥∥
I,[0,t]

≤
∞

∑
n=1

(3Λ (1+t))n
√

n!

∥
∥X1 − Y

∥
∥

I,[0,t] +
∥
∥X1−Y

∥
∥

I,[0,t]

=
∞

∑
n=0

(3Λ (1+t))n
√

n!

∥
∥X1 − Y

∥
∥

I,[0,t],

i.e.
∥
∥X−Y

∥
∥2

I,[0,t] ≤ c(t)2
∥
∥X1 − Y

∥
∥2

I,[0,t]

= c(t)2
(

E
(|X0−Y0|2

)
+E

(∫ t

0
dist
(
(γ0,σ0), F̃(s, Ys)

)2
ds
))

.

In regard to the claimed estimate, we have to verify c(t)2 ≤ const · e const ·(1+t) t .
Due to absolute convergence, c(·) > 0 is analytic in [0,∞[ and,

0 ≤ d
dt c(t) =

∞

∑
n=1

n√
n!

(3Λ)n (1 + t)n−1

= 3Λ +
∞

∑
n=2

√
n

(n−1)! (3Λ)n (1 + t)n−1

≤ 3Λ +
∞

∑
n=2

√
2

(n−2)! (3Λ)n (1 + t)n−1

= 3Λ +
√

2 (3Λ)2 (1 + t) ·
∞

∑
m=0

1√
m!

(3Λ)m (1 + t)m

= 3Λ +
√

2 (3Λ)2 (1 + t) · c(t)
implies

c(t) ≤ (c(0) + 3Λ t
) · e18Λ2 (1+t) t ≤ (c(0)+ 1) · e3Λ (1+6Λ)(1+t) t

for all t ≥ 0 by means of Gronwall’s inequality. (This upper bound is quite simple
to prove, but obviously not optimal.) �
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A.8.2 A Sufficient Condition on Invariant Subsets

In the field of stochastic differential inclusions, the aspects of invariance and viabil-
ity have been investigated thoroughly by several authors like Aubin, Da Prato and
Frankowska [18], Michta [139, 140], Motyl [142], Truong-Van & Truong [178].
A broad survey is presented in [104].

For the sake of completeness, we introduce the required notions of contingent
cone briefly and then just quote the sufficient result, which can be regarded as the
stochastic counterpart of Proposition A.8 (on page 445).

Definition 69 (Stochastic contingent set [17, Definition 1.1], [18]).
Let K :Ω �R

N ,ω �→ Kω be a random closed set, i.e. here: K is an A0-measurable
set-valued map with nonempty closed values. For some t ≥ 0, consider a At-
measurable selection x : Ω −→ R

N of K.
The stochastic contingent set T S

K (t,x) to K at x with respect to At is defined as the
set of pairs (η ,v) of At-random variables satisfying the following property: There
exist sequences (hn)n∈N in ]0,∞[ and (an)n∈N, (bn)n∈N of At+hn-random variables
such that ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

hn −→ 0 for n−→ ∞,

E
(|an|2

) −→ 0 for n−→ ∞,

E
(|bn|2

) −→ 0 for n−→ ∞,

E(bn) = 0,

bn is independent of At

and for each n ∈ N, the sum x+ v
(
Wt+hn −Wt

)
+hnη+hn an +

√
hn bn is a square

integrable selection of K.

Proposition 70 (Sufficient condition for invariance, [18, Theorem 5.1]).
Let F = (F1,F2) : R

N � R
N ×Lin(Rm,RN) be a Lipschitz continuous set-valued

map with nonempty compact values. Suppose K :Ω � R
N to be an A0-measurable

set-valued map with nonempty closed values satisfying for all t ≥ 0 and each At -
measurable selection x : Ω −→ R

N of K

F(x) ⊂ T S
K (t,x) almost everywhere in Ω .

Then the random closed set K is invariant under F in the following sense: Every Itô
process X := I0(X0,γ,σ) starting in K and solving the stochastic diff. inclusion

dXt ∈ F1(Xt)dt + F2(Xt) dWt

i.e. X0 ∈ L2(Ω ,A0,P; R
N), γ ∈L 2

A ([0,T ], R
N) and σ ∈L 2

A ([0,T ], Lin(Rm,RN))
with ⎧

⎪⎨

⎪⎩

X0 ∈ K a.e.,

γ(t,ω) ∈ F1
(
Xt(ω)

)

σ(t,ω) ∈ F2
(
Xt(ω)

)

for (L 1×P)-almost all (t,ω) ∈ [0,T ]×Ω , satisfies Xt ∈ K almost everywhere in Ω
for each t ≥ 0.
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A.9 Proximal Normals of Set Sequences in R
N

Comparing the proximal normals of a converging sequence (Kn)n∈N in (K (RN),dl)
with the normals of its limit K ∈K (RN), the following inclusion is not difficult to
prove by means of exterior balls and, it has already been quoted in Proposition 4.23
(on page 360)

Graph NP
K ⊂ Limsupn→∞ Graph NP

Kn

(see e.g. [50, Lemma 4.1]). Of course, the equality here is not fulfilled in general. A
key advantage of the subset NP

K,ρ (ρ > 0) specified equivalently in Definition 4.40
(on page 373) is that an inverse inclusion is satisfied.
The following proposition provides the inclusions in both directions and their
proofs.

Definition 71. Let C ⊂ R
N be a nonempty closed set.

For any ρ > 0, the set NP
C,ρ (x) ⊂ R

N consists of all proximal

normal vectors η ∈ NP
C (x)\{0} with the proximal radius≥ ρ (and

thus might be empty).
Furthermore define �NP

C,ρ(x) := NP
C,ρ(x)∩B.

Proposition 72. Let (Kn)n∈N be a converging sequence in K (RN) and K its
limit. ΠKn , ΠK : R

N � R
N denote the projections on Kn, K (n ∈ N) respectively,

i.e., ΠK : R
N � R

N , x �→ {
y ∈ K

∣
∣ |y− x| = dist(x,K)

} ⊂ R
N .

Then,

(1.) Limsupn→∞ Graph �NP
Kn,ρ ⊂ Graph �NP

K,ρ for any ρ > 0,

(2.) Limsup y→x
n→∞ ΠKn(y) ⊂ ΠK(x) for any x ∈ R

N ,

(3.) Graph �NP
K,ρ ⊂ Liminfn→∞ Graph �NP

Kn, r for any 0 < r < ρ .

Proof.
(1.) Choose any converging sequence

(
(xn j , pn j)

)
j∈N

with pn j ∈NP
Kn j ,ρ

(xn j )∩∂B

and set x := lim
j→∞

xn j ∈ K, p := lim
j→∞

pn j ∈ ∂B. According to Definition A.23

(on page 454), each Kn j is contained in the complement of the open ball with center
xn j +ρ pn j and radius ρ ,

Kn j ⊂ R
N \ ◦Bρ

(
xn j +ρ pn j

)
.

As an indirect consequence, j −→ ∞ leads to

K ⊂ R
N \ ◦Bρ(x +ρ p) ,

i.e. p ∈ NP
K,ρ (x).
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(2.) Let r > 0 and n ∈N be arbitrary. For y ∈ Br(x) given, choose any z ∈ΠKn(y)
and ξ ∈ΠK(z). Then,

|ξ − z| ≤ dl(Kn,K)
and

|x− ξ | ≤ |x− y| + |y− z| + |z− ξ |
≤ |x− y| + dist(y,K) + dl(K,Kn) + |z− ξ |
≤ |x− y| + |y− x| + dist(x,K) + dl(K,Kn) + dl(Kn,K)
≤ 2 r + dist(x,K) + 2 dl(Kn,K).

Thus, ΠKn(y) ⊂ Bdl(Kn,K)

(
K ∩ B2 r + dist(x,K)+ 2 dl(Kn,K)(x)

)
for any y ∈ Br(x).

The set-valued map [0,∞[� R
N , r �→ K∩Br(x) is upper semicontinuous (due

to [19, Corollary 1.4.10]) and in the closed interval [dist(x,K),∞[, it has nonempty
compact values. For every η > 0, there exists ρ = ρ(x,η) ∈ ]0,η [ such that

K ∩ Br′(x) ⊂ Bη
(
ΠK(x)

)

for all r′ ∈ [dist(x,K), dist(x,K)+ 2ρ
]
. Due to dl(Kn,K)−→ 0 (n −→ ∞), there

is an index m∈N with dl(Kn,K)≤ ρ
4 for all n≥m. Thus we obtain for every point

y ∈ Bρ/4(x) ∩ Br(x) and index n≥ m

ΠKn(y) ⊂ B ρ
4

(
K ∩ B2 ρ

4 +dist(x,K)+2 ρ
4
(x)
)

= B ρ
4

(
K ∩ Bdist(x,K)+ρ(x)

)

⊂ B ρ
4

(
Bη (ΠK(x))

) ⊂ B2η
(
ΠK(x)

)
,

i.e. Limsup y→x
n→∞ ΠKn(y) ⊂ ΠK(x).

(3.) Choose any x ∈ ∂K and p ∈ NP
K,ρ (x) �= /0 with |p|= 1.

Then x is the unique projection of x + δ p on the set K for every δ ∈ ]0,ρ [.
Considering now a sequence (xn)n∈N with xn ∈ ΠKn(x + δ p) ⊂ Kn, the preceding
statement (2.) implies xn −→ x and, the definition of proximal normal ensures

pn :=
x + δ p − xn

|x + δ p − xn| ∈
�NP

Kn
(xn)

converging to p for n−→ ∞.
Finally the proximal radius of pn is ≥ |x + δ p − xn| ≥ δ −|x− xn|, and thus,

(x, p) ∈ Liminfn→∞ Graph �NP
Kn, r for every 0 < r < δ < ρ .

�
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A.10 Tools for Set-Valued Maps

A.10.1 Measurable Set-Valued Maps

In this section we summarize some useful results about set-valued maps in regard
to measurability. The monograph of Castaing and Valadier [40] is usually regarded
as a standard reference providing many of the well-known results. Here we quote
the corresponding theorems from the monograph of Aubin and Frankowska [19].

Definition 73 ([19, Definition 8.1.1]). Consider a measurable space (Ω ,A ),
a complete separable metric space E and a set-valued map F : Ω � E with closed
images.
F is called measurable if the inverse image of each open set is a measurable set,
i.e., for every open set O⊂ E ,

F−1(O) Def.=
{
ω ∈Ω ∣∣ F(ω)∩O �= /0

} ∈ A .

Theorem 74 (Kuratowski and Ryll-Nardzewski [109], [19, Theorem 8.1.3]).
Let E be a complete separable metric space, (Ω ,A ) a measurable space, F :Ω�E
a measurable set-valued map with nonempty closed values.
Then there exists a measurable selection of F, i.e., a measurable single-valued
function f : Ω −→ E satisfying f (ω) ∈ F(ω) for every ω ∈Ω .

Theorem 75 (Characterization Theorem [19, Theorem 8.1.4]). Let (Ω ,A ,μ)
be a complete σ -finite measure space, E a complete separable metric space and
F : Ω � E a set-valued map with nonempty closed values.
Then the following properties are equivalent:

(i) F is measurable.
(ii) The graph of F belongs to A ⊗B.
(iii) F−1(C) ∈A for every closed set C ⊂ E.
(iv) F−1(B) ∈A for every Borel set B⊂ E.
(v) For each element x∈ E, the function dist(x,F(·)) :Ω −→ [0,∞[ is measurable.
(vi) There exists a sequence ( fn)n∈N of measurable selections of F such that

F(ω) =
⋃

n∈N

fn(ω) for every ω ∈Ω .

Corollary 76 (Upper and lower semicontinuous maps [19, Proposition 8.2.1]).
Consider a metric space Ω and a complete σ -finite measure space (Ω ,A ,μ) such
that A contains all open subsets of Ω . Let E be a complete separable metric space
and F : Ω � E a set-valued map with nonempty closed images.

If F is upper semicontinuous, then F is measurable.
If F is lower semicontinuous, then F is measurable.
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Proposition 77 (Closed union and intersection [19, Theorem 8.2.4]).
Let (Ω ,A ,μ) be a complete σ -finite measure space, E a complete separable metric
space and Fn :Ω � E (n ∈ N) set-valued maps with nonempty closed values.

Then the following set-valued maps are measurable:

Ω � E, ω �→
⋃

n∈N

Fn(ω),

Ω � E, ω �→
⋂

n∈N

Fn(ω) .

Proposition 78 (Direct image [19, Theorem 8.2.8]).
Let (Ω ,A ,μ) be a complete σ -finite measure space, E1,E2 complete separable
metric spaces and F : Ω � E1 a measurable set-valued map with nonempty closed
values. Consider a Carathéodory set-valued map G :Ω ×E1� E2, i.e.,
for every x ∈ E1, the map G( · , x) : Ω � E2 is measurable and
for every ω ∈Ω , the map G(ω , ·) : E1� E2 is continuous.

Then the set-valued map Ω � E2, ω �→ G(ω , F(ω)) is measurable.

Proposition 79 (Inverse image, Filippov selection [19, Theorems 8.2.9, 8.2.10]).
Consider a complete σ -finite measure space (Ω ,A ,μ), complete separable met-
ric spaces E1,E2 and measurable set-valued maps F : Ω � E1, G : Ω � E2 with
nonempty closed values. Let g :Ω ×E1 −→ E2 be a Carathéodory function.

Then the set-valued map
Ω � E1, ω �→ {

x ∈ F(ω)
∣∣ g(ω ,x) ∈ G(ω)

}⊂ E1

is measurable.

Consequently, if g(ω ,F(ω))∩G(ω) is nonempty for every ω ∈Ω , then there exists
a measurable selection f : Ω −→ E1 of F such that for every ω ∈ Ω , the element
g(ω , f (ω)) belongs to G(ω).

In particular, for every measurable function h : Ω −→ E2 with h(ω) ∈ g(ω ,F(ω))
for almost all ω ∈ Ω , there exists a measurable selection f : Ω −→ E1 of F with
h = g(·, f (·)) almost everywhere in Ω .

Proposition 80 (Marginal map [19, Theorem 8.2.11]).
Consider a complete σ -finite measure space (Ω ,A ,μ), a complete separable met-
ric space E, a measurable set-valued map F : Ω � E with nonempty closed values
and a real-valued Carathéodory function f : Ω ×E −→R.

Then the so-called marginal function

Ω −→ R∪{−∞}, ω �−→ inf
x∈F(ω)

f (ω ,x)

is measurable. Furthermore the so-called marginal map

Ω � E, ω �→
{

x ∈ F(x)
∣
∣
∣ f (ω ,x) = inf

y∈F(ω)
f (ω ,y)

}
⊂ E

is measurable.
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A.10.2 Parameterization of Set-Valued Maps

Proposition 81 ([19, Theorem 9.7.2]).
Consider a metric space X and a set-valued map G : [a,b]×X� R

N satisfying
1. G has nonempty compact convex values,
2. G(·,x) : [a,b]� R

N is measurable for every x ∈ X ,
3. there exists k(·) ∈ L1([a,b]) such that for every t ∈ [a,b], the set-valued map

G(t, ·) : X � R
N is k(t)-Lipschitz continuous.

Then there exists a single-valued function g : [a,b]×X×B1−→R
N (with the closed

unit ball B1 ⊂ R
N) fulfilling for all t ∈ [a,b], x ∈ X , u,v ∈ B1 respectively

1. G(t,x) =
⋃

w∈B1
g(t,x,w),

2. g(·,x,u) : [a,b]−→ R
N is measurable,

3. g(t, ·,u) : X −→ R
N is c · k(t)-Lipschitz continuous

4. |g(t,x,u)−g(t,x,v)| ≤ c ‖G(t,x)‖∞ |u− v|
with a constant c > 0 independent of G.

A.11 Compactness of Continuous Functions Between
Metric Spaces

The essential compactness result about continuous functions between metric spaces
is the Arzelà-Ascoli Theorem. We use it in the following version of Green and
Valentine:

Theorem 82 (Arzelà-Ascoli in metric spaces [88]).
Let (E1,d1), (E2,d2) be two precompact metric spaces, i.e. for any ε > 0, each
set Ei (i = 1,2) can be covered by finitely many ε-balls with respect to metric di.
Moreover, suppose the sequence ( fn)n∈N of functions E1 −→ E2 to be uniformly
equi-continuous (i.e. with a common modulus of continuity in E1).
Then there exists a subsequence ( fn j ) j∈N being Cauchy sequence with respect to
uniform convergence. If (E2,d2) is complete in addition, then ( fn j ) j∈N converges
uniformly to a continuous function E1 −→ E2.

Kisielewicz characterized weakly compact sets in the space of Banach-valued
continuous functions. His result can be interpreted as a “weak counterpart” of the
Arzelà-Ascoli Theorem.

Proposition 83 (Kisielewicz [102, Theorem 4]).
Let S be a compact Hausdorff space and X a Banach space.

A subset W ⊂ C0(S,X) is weakly compact in
(
C0(S,X), ‖ · ‖sup

)
if it is bounded,

equi-continuous and if for every s ∈ S, the set { f (s) | s ∈ S} is relatively weakly
compact in X.
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A.12 Bochner Integrals and Weak Compactness in L1

The so-called Bochner integral extends the familiar concept of integration from
real-valued functions to Banach-valued functions on the basis of “simple” functions.

Definition 84 ([63]). Let (Ω ,Σ ,μ) be a finite measure space and X a Banach
space. A function f : Ω −→ X is called simple if there exist x1,x2 . . .xn ∈ X and
E1,E2 . . .En ∈ Σ such that f = ∑n

j=1 x j χE j with χE j : Ω −→ {0,1} denoting the
characteristic function of E j ⊂Ω .
A function f :Ω −→ X is called μ-measurable if there exists a sequence ( fn)n∈N of
simple functions Ω −→ X with ‖ f − fn‖X −→ 0 μ-almost everywhere for n→ ∞.
A μ-measurable function f : Ω −→ X is called Bochner integrable if there exists a
sequence ( fn)n∈N of simple functions Ω −→ X such that

lim
n→∞

∫

Ω
‖ f − fn‖X dμ = 0.

Then, the Bochner integral of f over E ∈Σ is defined by
∫

E
f dμ := lim

n→∞

∫

E
fn dμ .

Let L1(μ ,X) denote the Banach space of Bochner integrable functions Ω −→ X
equipped with its usual L1 norm.

In the nineties, Ülger proved that restricting the values of Bochner integrable
functions to a weakly compact subset of X implies the relative weak compactness
of these functions in L1(μ ,X). For real-valued Lebesgue integrable functions, this
is closely related with Alaoglu’s Theorem and a compact embedding.

Proposition 85 ([179, Proposition 7]). Let (Ω ,Σ ,μ) be a probabilistic space,
X an arbitrary Banach space. For any weakly compact subset W ⊂ X , the set

{
h ∈ L1(μ ,X)

∣∣ h(ω) ∈W for μ-almost every ω ∈Ω}

is relatively weakly compact.

An earlier version of this result is presented in [61] and, [62] considers weak com-
pactness of Bochner integrable functions with values in an arbitrary Banach space
under weaker assumptions (see also [22]). The next proposition of Ülger provides a
“weakly pointwise” characterization of weakly convergent sequences in L1(μ ,X).

Proposition 86 ([179, Corollary 5]). Let (Ω ,Σ ,μ) be a probabilistic space and
X an arbitrary Banach space as in preceding Proposition A.85.
Set W :=

{
g ∈ L1(μ ,X)

∣∣ |g(ω)| ≤ 1 for μ-almost every ω ∈Ω}.
A sequence

(
gn(·)

)
n∈N

in W ⊂ L1(μ ,X) converges weakly to g ∈ L1(μ ,X) if and
only if for any subsequence

(
gnk(·)

)
k∈N

given, there exists a sequence
(
hk(·)

)
k∈N

with hk ∈ co
{

gnk , gnk+1 . . .
}

such that for μ-almost every ω ∈Ω ,
hk(ω) −→ g(ω) (k −→ ∞) weakly in X .



Appendix B
Bibliographical Notes

Chapter 1

This chapter reflects the theory of mutational equations as it was introduced by Jean-
Pierre Aubin in the 1990s [10, 12, 13]. It extends earlier results about integral funnel
equations – for describing set evolutions with feedback. Similar concepts have been
introduced by Russian mathematicians in the 1980s and 1990s. Among the more
popular examples for metric spaces are the so-called quasidifferential equations of
Panasyuk (see [150, 153] and references there). Further approaches to generalized
differential equations in metric spaces are suggested in [31, 108, 113, 146] later.
Both the structure and the proofs in Chapter 1 are adapted to the generalizations in
subsequent chapters so that the new aspects there are easier to identify.

§ 1.9.3 provides new results in comparison with Aubin’s monograph [10]: The link
between morphological primitives and reachable sets of nonautonomous differential
inclusions. The analytical tools are summarized in Appendix A.3.
The examples of morphological primitives in § 1.9.4 are motivated by several ques-
tions of Robert Baier during our joint research stay at the Hausdorff Research Insti-
tute for Mathematics (HIM) in Bonn in spring 2008.
§ 1.9.5 is mostly based on earlier results of Anne Gorre quoted in Aubin’s mono-
graph [13]. Proposition 69 provides a partial answers to an open question that Jean-
Pierre Aubin posed the author in November 2007. The closely related conclusions
are drawn in Corollary 78.

§ 1.10 presents a set-valued approach to image segmentation that was published by
the author in [131] in 2001.

§ 1.11 was developed during the stay at HIM in Bonn after the author had learned
more about one-sided Lipschitz maps in the survey lectures of Tzanko Donchev.

493
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Chapter 2

This chapter provides the first extensions of the mutational framework in compari-
son with Aubin’s monograph [10]. They are based on the key notion that the param-
eters of transitions are just locally uniform.
Continuity parameters with linear growth were introduced in the first version of
preprint [129] about transport equations for Radon measures in 2005. Later the lin-
ear growth condition was weakened to locally uniform bounds as in this chapter.
These details were presented in the preprint [126] for the first time and used in [91].
The results about existence with delay and under state constraints in § 2.3.5 and
§ 2.3.6 respectively have been developed in the initial version of this monograph,
i.e. habilitation thesis [117].

The example in § 2.4 dealing with semilinear evolution equations (and the weak
topology) in the mutational framework has already been suggested in the author’s
Ph.D. thesis [130] in 2004.

The Cauchy problem of nonlinear transport equations for Radon measures on R
N

was discussed in the preprint [126] with the same kind of transitions, but another
metric and restricted to positive Radon measures with compact support. Hence the
results of § 2.5 using the W 1,∞ dual metric and solutions in the mutational frame-
work are new in the initial version [117] of this book.

The nonlinear structured population model in § 2.6 provides the main conclusions
of [91], which was jointly elaborated with Piotr Gwiazda (Warsaw) and Anna
Marciniak-Czochra (Heidelberg).

In § 2.7, morphological equations are modified in a very “natural” way as transitions
on K (RN) are now induced by reachable sets of differential inclusions with linear
growth. In particular, this opens the door to applying the mutational framework to
reachable sets of linear differential inclusions.

Chapter 3

It provides three substantial contributions of this monograph to mutational analysis:

1. Continuity conditions on distances make the triangle inequality dispensable,

2. sequential continuity of transitions with respect to state and time are handled
by separate families of distances,

3. ω-contractivity of transitions (in the sense that the initial distance between
states may grow at most exponentially while evolving along one and the same
transition) proves to be dispensable under additional assumptions.

Currently the author is not aware of any other approach similar to mutational or
quasidifferential equations beyond metric spaces.
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Nonlocal stochastic differential equations as discussed in § 3.6 were introduced in
the initial version [117] of this monograph (to the best of our knowledge). A rele-
vant extension to nonadditive noise is sketched in [119] and generalized in [105].

In comparison with the thesis [117], the statements about time-dependent random
closed sets in § 3.7 and nonlocal parabolic equations in cylindrical domains in § 3.9
belong to the new contributions here.

The only further suggestion (for constructing stochastic birth-and-growth processes
via random closed sets in continuous time) which the author has found in the litera-
ture so far was made by Aletti, Bongiorno and Capasso in the preprint [1] in 2008.
Their proposal is based on random closed sets in a reflexive Banach space and
takes the aspect of predictability (via filtration) into consideration explicitly.
Due to the Aumann integral as an essential ingredient, however, it is restricted
to both convex-valued and expanding growth processes [1, Theorem 1.3.2].
Moreover, it assumes the nucleation process to be expanding and so, the final
birth-and-growth processes are expanding P-almost surely in Ω [1, Theorem 1.4.9].
The set-valued approach in § 3.7 here has been developed independently (as a part
of a DFG project, the author applied for in 2007). From our current point of view,
this concept can be adapted to random closed sets in a separable Banach space Y
if RC 2(Ω ,Y ) proves to be complete with respect to dlRC and if a counterpart of the
Da Prato-Frankowska Theorem A.67 holds (see e.g. the original article [53]).

With regard to § 3.8, nonlinear continuity equations with coefficients of bounded
variation were investigated as examples of mutational equations in the preprint [129]
after attending the lectures of Prof. Ambrosio in a C.I.M.E. summer school in 2005.

The conclusions about semilinear evolution equations in § 3.10 and about parabolic
differential equations in noncylindrical domains in § 3.11 respectively are also de-
veloped originally in the author’s thesis [117] and published here now.

During the Czech-German-French Conference on Optimization in Heidelberg in
September 2007 and a workshop at HIM Bonn in March 2008, José Alberto
Murillo Hernández (Cartagena, Spain) reported about the heat equation in a domain
governed by a morphological equation — similarly to § 3.11.5.
His conclusions were based on the results [116] of Lı́maco, Medeiros and Zuazua
and thus, the noncylindrical domain had to obey bi-Lipschitz transformations to a
reference domain. As a consequence, the morphological transitions were restricted
to bounded Lipschitz continuous vector fields (instead of the set-valued maps in
LIP(RN ,RN)).
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Chapters 4 and 5

The author suggested the notion of distribution-like solutions in his Ph.D. thesis
[130], but still for tuples with non-symmetric distance functions which fulfill the
timed triangle inequality. The example in § 4.4 was also presented in [124, 130].
The second geometric example here in § 4.5 was introduced in [120] in 2008.

In regard to mutational inclusions, the existence results of § 5.1 have been devel-
oped in connection with the thesis [117] recently and, they are published in [118].
§ 5.2 about the viability theorem for morphological inclusions was prepared in [122]
and published in its full generality in [121].
The corresponding approach to control problems (in § 5.3) has its origin in preprint
[125] and was motivated by conversations with Zvi Artstein at Weizmann Institute
of Science in Rehovot (Israel) in summer 2007.

Appendix A

The generalizations of Gronwall’s inequality are essentially new. In particular,
Proposition A.2 has less restrictive assumptions than all the other versions which
the author found in the literature. It lays the foundations for concluding global
estimates from local properties (Lebesgue-almost everywhere). Proposition A.4 has
already been presented in Ph.D. thesis [130].

Section A.3 provides the tools for the link between morphological primitives and
reachable sets: the integral funnel equation in Proposition A.13. Following a strategy
close to the one of Frankowska, Plaskacz and Rzeżuchowski in [83], the author has
proved this connection in 2006 and reused these arguments in [121, Corollary 3.14]
and [122] later. He developed these proofs independently from earlier results of
Tolstonogov [177], which the author found while writing his thesis [117] since
2008.

Most of the results in section A.5 were introduced and proved in [120, 124, 130].
In particular, they were developed by the author independently from the article [33]
of Cannarsa and Frankowska (about the interior sphere property of reachable sets
of control equations). The consequences of the uniform tusk condition in A.5.7 are
presented in [117] and published here for the first time.
Originally Reynolds Transport Theorem in § A.6 was extended to differential in-
clusions for applications in image segmentation [131]. The author published its
complete proof in [127].

Sections A.2, A.4, A.7, A.8 and A.10 – A.12 summarize standard results which are
mostly quoted and prove to be useful in this monograph.
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Université de Nice



Index of Notation

χA, 248
∂∗M, 479
ΠK ,ΠF̃(t ,y), 450, 455, 487
π1, 221, 334
ρM , 134
ϑ f (t,M), 34
ϑF(t,M), ϑF̃(t,M), 34, 60, 443
Θ
(
E, (d j) j∈I , (�·� j) j∈I

)
, 105

Θ̂
(
E, (d j) j∈I , (e j) j∈I , (�·� j) j∈I

)
, 183

Θ̂
(
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E, (di), (ei), (�·�i), (D̂i)
)
, 199

in
(
E, (di)i∈I , (�·�i)i∈I

)
, 110

in
(
E, (di), (ei), (�·�i), (D̂i)

)
, 191

in
(
Ẽ, (d̃i), (ẽi), (�·�i), (D̂i)

)
, 225

in
(
Ẽ, D̃, (d̃i), (ẽi), (�·�i), (D̂i)

)
, 345,

355
in metric space, 48

Critical set w.r.t. Φ , 6

Decomposable, 248
Differential inclusion

Filippov Theorem, 443
Filippov-like Theorem about one-

sided Lipschitz ∼, 480
Filippov-like Theorem about stochas-

tic ∼, 483
Reachable set, 443
Stochastic ∼, 482
Viability theorem, 400

Dilation
Morphological, 63

Distance
Mean square Pompeiu-Hausdorff, 246
Pompeiu-Hausdorff, 34, 57, 359

Dual metric
W 1,∞ ∼ on Radon measures, 134

Dubovitsky-Miliutin tangent cone, 52
Dubovitsky-Miliutin transition set, 51

Equi-continuous
Euler ∼, 194, 349
Nonequidistant Euler ∼, 203

Erosion
Set of positive∼ of radius ρ , 363, 455

Euler compact, 112, 193
Nonequidistant ∼, 203
Strongly-weakly transitionally ∼, 353
Transitionally ∼, 348

Euler equi-continuous, 194, 349
Nonequidistant ∼, 203

Excess
Mean square Pompeiu-Hausdorff, 246
Pompeiu-Hausdorff, 57, 359

506
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Exterior tusk condition, 326, 473

Family of approximative Cauchy barriers,
316

Filippov
-like Theorem about one-sided Lips-

chitz differential inclusions, 480
-like Theorem about stochastic differ-

ential inclusions, 483
Generalized Theorem of ∼, 443

Filippov continuous map, 444
Flow

∼ along vector field, 137
Lagrangian ∼, 262

Formula
Area ∼, 479
Co-area ∼, 478

Fundamental matrix, 67

Generalized area formula, 479
Global Shapiro property, 455
Gronwall estimate, 439, 440, 442

Hamilton Condition, Extended, 456
Hamiltonian, 360, 454
Hypermonotone, 455
Hypertangent cone, 414, 433
Hypertangent transition set, 414, 433

Identity transition, 188
Inclusion principle, 2, 242
Integral funnel equation, 447

Lagrangian flow, 262
Lipschitz continuous

Locally one-sided ∼, 171
One-sided, 96, 171, 480

Locally one-sided Lipschitz continuous, 171
Lusin Theorem, 259, 446

Marchaud map, 400
nonautonomous, 447

Marginal map, 490
Maximum principle for parabolic equations,

328
Measurable selection, 489
Measurable set-valued map, 489
Metric

W 1,∞ dual ∼ on Radon measures, 134
Minimal time function, 477
Morphological control problem

Solution, 415
Viability theorem, 418

Morphological equation, 74

Cauchy-Lipschitz Theorem, 75
Nagumo’s Theorem, 76
Peano’s Theorem, 75
Solution, 74

Morphological inclusion
Viability theorem, 401

Morphological relaxed control problem
Solution, 420
Viability theorem, 422

Mutation
in
(
E, (d j) j∈I , (�·� j) j∈I

)
, 106

in metric space, 37
Mutational equation

Cauchy-Lipschitz Theorem, 38
Convergence Theorem for systems in(

E, (di)i∈I , (�·�i)i∈I

)
, 117

Convergence Theorem for systems in(
E, (di), (ei), (�·�i), (D̂i)

)
, 199

Convergence Theorem in(
E, (di)i∈I , (�·�i)i∈I

)
, 110

Convergence Theorem in(
E, (di), (ei), (�·�i), (D̂i)

)
, 191

Convergence Theorem in(
Ẽ, (d̃i), (ẽi), (�·�i), (D̂i)

)
, 225

Convergence Theorem in(
Ẽ, D̃, (d̃i), (ẽi), (�·�i), (D̂i)

)
,

345, 355
Convergence Theorem in metric

space, 48
Nagumo’s Theorem in metric space,

40, 47
Peano’s Theorem, 40, 114
Peano’s Theorem for systems, 44, 118
Simultaneously timed solution in(

Ẽ, (d̃ j), (ẽ j), (�·� j), (D̂ j)
)
, 222

Solution in
(
E, (d j), (�·� j)

)
, 186

Solution in
(
E, (d j), (e j), (�·� j), (D̂ j)

)
,

187
Solutionin

(
E, (d j) j∈I , (�·� j) j∈I

)
,107

Solution in metric space, 38
Systems in metric space, 44
Timed solution in(

Ẽ, (d̃ j), (ẽ j), (�·� j), (D̂ j)
)
, 222

Timed solution in(
Ẽ, D̃ ,(d̃ j), (ẽ j), (�·� j), (D̂ j)

)
,

339
Weak Convergence Theorem in(

E, (di), (di,κ), (ei), (ei,κ ),
(�·�i), (D̂i)

)
, 208

Weak Convergence Theorem in(
Ẽ, (d̃i), (d̃i,κ), (ẽi), (ẽi,κ ),

(�·�i), (D̂i)
)
, 228

Mutational inclusion
Solution in

(
E,d,�·�), 386
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Narrow convergence in M (RN), 132
Nonequidistant Euler compact, 203
Nonequidistant Euler equi-continuous, 203
Nonlinear continuity equation for L N -

abs.cont. measures, 260
Nonlinear transport equation for Radon

measures, 132
Nonlocal stochastic differential equation

Strong solution, 231
Normal cone

Bouligand ∼, 80, 476
Proximal ∼, 373, 454, 487

Nucleation, 254

One-sidedLipschitzcontinuous,96,171,480
Outer limit, 89

Parabolic boundary, 326, 473
Paratingent cone, 69
Pompeiu-Hausdorff distance, 34, 57, 359

Mean square ∼, 246
Pompeiu-Hausdorff excess, 57, 359

Mean square ∼, 246
Positive erosion of radius ρ , 363, 455
Primitive

in metric space, 37
Morphological ∼, 64

Prokhorov Theorem, 421
Proximal normal cone, 373, 454, 487
Pseudo-metric, 104

Quasi-metric, 359

Radon measures, 132
Random closed set, 244

Square integrable ∼, 244
Random reachable set, 247

Closed ∼, 247
Reach

Set of positive ∼, 455
Reachable set

of differential inclusion, 443
of set-valued map, 5, 34, 60, 443
of vector field, 34

Relaxation Theorem of Filippov-Ważewski,
453

Scorza-Dragoni Theorem
for set-valued maps, 446
in metric space, 446

Selection
Measurable ∼, 489

Semilinear evolution equations, 125
Set

Critical ∼ w.r.t. Φ , 6
of positive erosion, 363, 455, 470
of positive reach, 455, 470

Set-valued map
Measurable ∼, 489

Shapiro property
Global ∼, 455

Simple function, 492
Snakes, 3
Speed method, 34
Standard hypothesis

(H̃ ), 458
(H̃ ρ
◦ ), 464

Stochastic contingent set, 486
Stochastic differential equation

Strong solution, 231
Strongly-weakly transitionally Euler com-

pact, 353
Structured population model, 147

Tangent cone
Clarke ∼, 68, 414, 426
Hyper∼, 414, 433

Theorem
Cauchy-Lipschitz ∼

in
(
Ẽ, (d̃ j) j, (ẽ j) j, (�·� j) j

)
, 230

Cauchy-Lipschitz ∼ in (K (RN),dl),
75, 99

Cauchy-Lipschitz ∼ in R
N , 54

Cauchy-Lipschitz ∼ in(
E, (d j) j, (e j) j , (�·� j) j

)
, 212

Cauchy-Lipschitz ∼ in metric space,
38

Convergence ∼ for systems in(
E, (di)i∈I , (�·�i)i∈I

)
, 117

Convergence ∼ for systems in(
E, (di), (ei), (�·�i), (D̂i)

)
, 199

Convergence ∼ in(
E, (di)i∈I , (�·�i)i∈I

)
, 110

Convergence ∼ in(
E, (di), (ei), (�·�i), (D̂i)

)
, 191

Convergence ∼ in(
Ẽ, (d̃i), (ẽi), (�·�i), (D̂i)

)
, 225

Convergence ∼ in(
Ẽ, D̃, (d̃i), (ẽi), (�·�i), (D̂i)

)
,

345, 355
Convergence ∼ in metric space, 48
Da Prato-Frankowska ∼, 483
Filippov ∼ about differential inclu-

sions, 443
Filippov-like ∼ about one-sided Lips-

chitz differential inclusions, 480



Index 509

Filippov-like ∼ about stochastic dif-
ferential inclusions, 483

Lusin ∼, 259, 446
Nagumo ∼ in (K (RN),dl), 76, 99
Nagumo ∼ in R

N , 55
Nagumo ∼ in metric space, 40, 47
Peano ∼ for systems in(

E, (d j) j∈I , (�·� j) j∈I

)
, 118

Peano ∼ for systems in metric space,
44

Peano ∼ for systems with delay, 200
Peano ∼ in

(
E, (d j) j∈I , (�·� j) j∈I

)
,

114
Peano ∼ in (K (RN),dl), 75, 98
Peano ∼ in R

N , 55
Peano ∼ in metric space, 40
Peano ∼ with delay, 120, 195, 226,

349, 354
Prokhorov ∼, 136, 421
Relaxation ∼ of Filippov-Ważewski,

453
Reynolds transport ∼ for differential

inclusions, 477
Scorza-Dragoni ∼ for set-valued

maps, 446
Scorza-Dragoni ∼ in metric space,

446
Selection ∼ of Kuratowski and Ryll-

Nardzewski, 489
Viability ∼ for differential inclusions,

400
Viability ∼ for morphological control

problem, 418
Viability ∼ for morphological inclu-

sion, 401
Viability∼ for morphological relaxed

control problem, 422
Weak Convergence ∼ in(

E, (di), (di,κ ), (ei), (ei,κ ),
(�·�i), (D̂i)

)
, 208

Weak Convergence ∼ in(
Ẽ , (d̃i), (d̃i,κ ), (ẽi), (ẽi,κ ),

(�·�i), (D̂i)
)
, 228

Tight sets
of probability measures, 421
of Radon measures, 132

Tightness
conditiononprobabilitymeasures, 421
condition on Radon measures, 132

Timed triangle inequality, 319, 343, 375
Transition

Identity ∼, 188
in
(
E, (d j), (e j), (�·� j)

)
, 183

in
(
E, (d j) j∈I , (�·� j) j∈I

)
, 104

in metric space, 32
Morphological ∼, 35, 62, 98, 174
Timed ∼ in

(
Ẽ, D̃, (d̃ j), (ẽ j), (�·� j)

)
,

336
Transition set

Circatangent ∼, 414
Contingent ∼, 39, 51
Hypertangent ∼, 414

Transitionally Euler compact, 348
Strongly-weakly, 353

Transport equation
Nonlinear ∼ for Radon measures, 132

Tube, 64
Tusk, 326, 473

Uniform exterior tusk condition, 326, 473
Upper Hamiltonian, 454
Upper limit, 89

Variable space propagator, 313
Variation of constants formula, 67, 127, 298
Velocity method, 34, 63
Viability theorem

∼ for differential inclusions, 400
∼ for morphological control problem,

418
∼ for morphological inclusion, 401
∼ for morphological relaxed control

problem, 422

Weak Convergence Theorem
in
(
E, (di), (di,κ ), (ei), (ei,κ),

(�·�i), (D̂i)
)
, 208

in
(
Ẽ, (d̃i), (d̃i,κ ), (ẽi), (ẽi,κ),

(�·�i), (D̂i)
)
, 228

Weakly Euler compact, 207
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Vol. 1837: S. Tavaré, O. Zeitouni, Lectures on Probabil-
ity Theory and Statistics. Ecole d’Eté de Probabilités de
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Saint-Flour XXXIII-2003. Editor: J. Picard (2005)
Vol. 1870: V.I. Gurariy, W. Lusky, Geometry of Mntz
Spaces and Related Questions. (2005)
Vol. 1871: P. Constantin, G. Gallavotti, A.V. Kazhikhov,
Y. Meyer, S. Ukai, Mathematical Foundation of Turbu-
lent Viscous Flows, Martina Franca, Italy, 2003. Editors:
M. Cannone, T. Miyakawa (2006)
Vol. 1872: A. Friedman (Ed.), Tutorials in Mathemati-
cal Biosciences III. Cell Cycle, Proliferation, and Cancer
(2006)
Vol. 1873: R. Mansuy, M. Yor, Random Times and En-
largements of Filtrations in a Brownian Setting (2006)
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Stochastic Geometry, Martina Franca, Italy, 2004. Editor:
W. Weil (2007)
Vol. 1893: H. Hanßmann, Local and Semi-Local Bifur-
cations in Hamiltonian Dynamical Systems, Results and
Examples (2007)
Vol. 1894: C.W. Groetsch, Stable Approximate Evaluation
of Unbounded Operators (2007)
Vol. 1895: L. Molnár, Selected Preserver Problems on
Algebraic Structures of Linear Operators and on Function
Spaces (2007)
Vol. 1896: P. Massart, Concentration Inequalities and
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