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Preface

It is the intention of this monograph to provide an introduction to the spe-
cial theory of relativity that is mathematically rigorous and yet spells out in
considerable detail the physical significance of the mathematics. Particular
care has been exercised in keeping clear the distinction between a physi-
cal phenomenon and the mathematical model which purports to describe
that phenomenon so that, at any given point, it should be clear whether we
are doing mathematics or appealing to physical arguments to interpret the
mathematics.

The Introduction is an attempt to motivate, by way of a beautiful theo-
rem of Zeeman [Z1], our underlying model of the “event world.” This model
consists of a 4-dimensional real vector space on which is defined a nondegen-
erate, symmetric, bilinear form of index one (Minkowski spacetime) and its
associated group of orthogonal transformations (the Lorentz group).

The first five sections of Chapter 1 contain the basic geometrical infor-
mation about this model including preliminary material on indefinite inner
product spaces in general, elementary properties of spacelike, timelike and
null vectors, time orientation, proper time parametrization of timelike curves,
the Reversed Schwartz and Triangle Inequalities, Robb’s Theorem on measur-
ing proper spatial separation with clocks and the decomposition of a general
Lorentz transformation into a product of two rotations and a special Lorentz
transformation. In these sections one will also find the usual kinematic dis-
cussions of time dilation, the relativity of simultaneity, length contraction,
the addition of velocities formula and hyperbolic motion as well as the con-
struction of 2-dimensional Minkowski diagrams and, somewhat reluctantly,
an assortment of the obligatory “paradoxes.”

Section 6 of Chapter 1 contains the definitions of the causal and chrono-
logical precedence relations and a detailed proof of Zeeman’s extraordinary
theorem characterizing causal automorphisms as compositions T ◦ K ◦ L,
where T is a translation, K is a dilation, and L is an orthochronous orthogonal

vii



viii Preface

transformation. The proof is somewhat involved, but the result itself is used
only in the Introduction (for purposes of motivation) and in Appendix A to
construct the homeomorphism group of the path topology.

Section 1.7 is built upon the one-to-one correspondence between vectors
in Minkowski spacetime and 2× 2 complex Hermitian matrices and contains
a detailed construction of the spinor map (the two-to-one homomorphism of
SL(2,C) onto the Lorentz group). We show that the fractional linear trans-
formation of the “celestial sphere” determined by an element A of SL(2,C)
has the same effect on past null directions as the Lorentz transformation
corresponding to A under the spinor map. Immediate consequences include
Penrose’s Theorem [Pen1] on the apparent shape of a relativistically mov-
ing sphere, the existence of invariant null directions for an arbitrary Lorentz
transformation, and the fact that a general Lorentz transformation is com-
pletely determined by its effect on any three distinct past null directions. The
material in this section is required only in Chapter 3 and Appendix B.

In Section 1.8 (which is independent of Sections 1.6 and 1.7) we introduce
into our model the additional element of world momentum for material parti-
cles and photons and its conservation in what are called contact interactions.
With this one can derive most of the well-known results of relativistic particle
mechanics and we include a sampler (the Doppler effect, the aberration for-
mula, the nonconservation of proper mass in a decay reaction, the Compton
effect and the formulas relevant to inelastic collisions).

Chapter 2 introduces charged particles and uses the classical Lorentz
World Force Law

(
FU = m

e
dU
dτ

)
as motivation for describing an electromag-

netic field at a point in Minkowski spacetime as a linear transformation F
whose job it is to tell a charged particle with world velocity U passing through
that point what change in world momentum it should expect to experience
due to the presence of the field. Such a linear transformation is necessarily
skew-symmetric with respect to the Lorentz inner product and Sections 2.2,
2.3 and 2.4 analyze the algebraic structure of these in some detail. The essen-
tial distinction between regular and null skew-symmetric linear transforma-
tions is described first in terms of the physical invariants

⇀

E ·
⇀

B and |
⇀

B|2−|
⇀

E|2
of the electromagnetic field (which arise as coefficients in the characteristic
equation of F ) and then in terms of the existence of invariant subspaces. This
material culminates in the existence of canonical forms for both regular and
null fields that are particularly useful for calculations, e.g., of eigenvalues and
principal null directions.

Section 2.5 introduces the energy-momentum transformation for an arbi-
trary skew-symmetric linear transformation and calculates its matrix entries
in terms of the classical energy density, Poynting 3-vector and Maxwell stress
tensor. Its principal null directions are determined and the Dominant Energy
Condition is proved.

In Section 2.6, the Lorentz World Force equation is solved for charged
particles moving in constant electromagnetic fields, while variable fields are
introduced in Section 2.7. Here we describe the skew-symmetric bilinear form
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(bivector) associated with the linear transformation representing the field and
use it and its dual to write down Maxwell’s (source-free) equations. As sample
solutions to Maxwell’s equations we consider the Coulomb field, the field of a
uniformly moving charge, and a rather complete discussion of simple, plane
electromagnetic waves.

Chapter 3 is an elementary introduction to the algebraic theory of spinors
in Minkowski spacetime. The rather lengthy motivational Section 3.1 traces
the emergence of the spinor concept from the general notion of a (finite di-
mensional) group representation. Section 3.2 contains the abstract definition
of spin space and introduces spinors as complex-valued multilinear function-
als on spin space. The Levi-Civita spinor ε and the elementary operations
of spinor algebra (type changing, sums, components, outer products, (skew-)
symmetrization, etc.) are treated in Section 3.3.

In Section 3.4 we introduce the Infeld-van der Waerden symbols (essen-
tially, normalized Pauli spin matrices) and use them, together with the spinor
map from Section 1.7, to define natural spinor equivalents for vectors and cov-
ectors in Minkowski spacetime. The spinor equivalent of a future-directed null
vector is shown to be expressible as the outer product of a spin vector and its
conjugate. Reversing the procedure leads to the existence of a future-directed
null “flagpole” for an arbitrary nonzero spin vector.

Spinor equivalents for bilinear forms are constructed in Section 3.5 with the
skew-symmetric forms (bivectors) playing a particularly prominant role. With
these we can give a detailed construction of the geometrical representation
“up to sign” of a nonzero spin vector as a null flag (due to Penrose). The
sign ambiguity in this representation intimates the “essential 2-valuedness”
of spinors which we discuss in some detail in Appendix B.

Chapter 3 culminates with a return to the electromagnetic field. We intro-
duce the electromagnetic spinor φAB associated with a skew-symmetric lin-
ear transformation F and find that it can be decomposed into a symmetrized
outer product of spin vectors α and β. The flagpoles of these spin vectors are
eigenvectors for the electromagnetic field transformation, i.e., they determine
its principal null directions. The solution to the eigenvalue problem for φAB

yields two elegant spinor versions of the “Petrov type” classification theorems
of Chapter 2. Specifically, we prove that a skew-symmetric linear transforma-
tion F on M is null if and only if λ = 0 is the only eigenvalue of the associated
electromagnetic spinor φAB and that this, in turn, is the case if and only if
the associated spin vectors α and β are linearly dependent. Next we find that
the energy-momentum transformation has a beautifully simple spinor equiv-
alent and use it to give another proof of the Dominant Energy Condition.
Finally, we derive the elegant spinor form of Maxwell’s equations and briefly
discuss its generalizations to massless free field equations for arbitrary spin
1
2n particles.

Chapter 4, which is new to this second edition, is intended to serve
two purposes. The first is to provide a gentle Prologue to the steps one
must take to move beyond special relativity and adapt to the presence of
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gravitational fields that cannot be considered negligible. Section 4.2 describes
the philosophy espoused by Einstein for this purpose. Implementing this phi-
losophy, however, requires mathematical tools that played no role in the first
three chapters so Section 4.3 provides a very detailed and elementary intro-
duction to just enough of this mathematical machinery to accomplish our
very modest goal. Thus supplied with a rudimentary grasp of manifolds,
Riemannian and Lorentzian metrics, geodesics and curvature we are in a
position to introduce, in Section 4.4, the Einstein field equations (with cos-
mological constant Λ) and learn just a bit about one remarkable solution.
This is the so-called de Sitter universe dS and it is remarkable for a number
of reasons. It is a model of the universe as a whole, that is, a cosmological
model. Indeed, we will see that, depending on one’s choice of coordinates, it
can be viewed as representing an instance of any one of the three standard
Robertson-Walker models of relativistic cosmology. Taking Λ to be zero, dS
can be viewed as a model of the event world in the presence of a mass-energy
distribution due to a somewhat peculiar “fluid” with positive density, but
negative pressure. On the other hand, if Λ is a positive constant, then dS
models an empty universe and, in this sense at least, is not unlike Minkowski
spacetime. The two have very different properties, however, and one might be
tempted to dismiss dS as a mathematical curiosity were it not for the fact that
certain recent astronomical observations suggest that the expansion of our
universe is actually accelerating and that this weighs in on the side of the de
Sitter universe rather than the Minkowski universe. Thus, this final chapter
is also something of an Epilogue to our story in which the torch is, perhaps,
passed to a new main character. Section 4.5 delves briefly into a somewhat
more subtle difference between the Minkowski and de Sitter worlds that one
sees only “at infinity.” Following Penrose [Pen2] we examine the asymptotic
structures of dS and M by constructing conformal embeddings of them into
the Einstein static universe. Penrose developed this technique to study mass-
less spinor field equations such as the source-free Maxwell equations and the
Weyl neutrino equation with which we concluded Chapter 3.

The background required for an effective reading of the first three chap-
ters is a solid course in linear algebra and the usual supply of “mathematical
maturity.” In Chapter 4 we will require also some basic material from real
analysis such as the Inverse Function Theorem. For the two appendices we
must increment our demands upon the reader and assume some familiar-
ity with elementary point-set topology. Appendix A describes, in the spe-
cial case of Minkowski spacetime, a remarkable topology devised by Hawk-
ing, King and McCarthy [HKM] and based on ideas of Zeeman [Z2] whose
homeomorphisms are just compositions of translations, dilations and Lorentz
transformations. Only quite routine point-set topology is required, but the
construction of the homeomorphism group depends on Zeeman’s Theorem
from Section 1.6.

In Appendix B we elaborate upon the “essential 2-valuedness” of spinors
and its significance in physics for describing, for example, the quantum
mechanical state of a spin 1/2 particle, such as an electron. Paul Dirac’s
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ingenious “Scissors Problem” is used, as Dirac himself used it, to suggest, in
a more familiar context, the possibility that certain aspects of a physical sys-
tem’s state may be invariant under a rotation of the system through 720◦, but
not under a 360◦ rotation. To fully appreciate such a phenomenon one must
see its reflection in the mathematics of the rotation group (the “configuration
space” of the scissors). For this we briefly review the notion of homotopy
for paths and the construction of the fundamental group. Noting that the
3-sphere S3 is the universal cover for real projective 3-space RP 3 and
that RP 3 is homeomorphic to the rotation group SO(3) we show that
π1(SO(3)) ∼= Z2. One then sees Dirac’s demonstration as a sort of physi-
cal model of the two distinct homotopy classes of loops in SO(3). But there
is a great deal more to be learned here. By regarding the elements of SU 2

(Section 1.7) as unit quaternions we find that, topologically, it is S3 and
then recognize SU 2 and the restriction of the spinor map to it as a concrete
realization of the covering space for SO(3) that we just used to calculate
π1(SO(3)). One is then led naturally to SU 2 as a model for the “state space”
(as distinguished from the “configuration space”) of the system described
in Dirac’s demonstration. Recalling our discussion of group representations
in Section 3.1 we find that it is the representations of SU 2, i.e., the spinor
representations of SO(3), that contain the physically significant information
about the system. So it is with the quantum mechanical state of an electron,
but in this case one requires a relativistically invariant theory and so one
looks, not to SU 2 and the restriction of the spinor map to it, but to the full
spinor map which carries SL(2,C) onto the Lorentz group.

Lemmas, Propositions, Theorems and Corollaries are numbered sequen-
tially within each section so that “p.q.r” will refer to result #r in Section
#q of Chapter #p. Exercises and equations are numbered in the same way,
but with equation numbers enclosed in parentheses. There are 232 exercises
scattered throughout the text and no asterisks appear to designate those that
are used in the sequel; they are all used and must be worked conscientiously.
Finally, we shall make extensive use of the Einstein summation convention
according to which a repeated index, one subscript and one superscript, indi-
cates a sum over the range of values that the index can assume. For example,
if a and b are indices that range over 1, 2, 3, 4, then

xaea =
4∑

a=1

xaea = x1e1 + x2e2 + x3e3 + x4e4,

Λa
bx

b =
4∑

b=1

Λa
bx

b = Λa
1x

1 + Λa
2x

2 + Λa
3x

3 + Λa
4x

4,

ηabυ
awb = η11υ

1w1 + η12υ
1w2 + η13υ

1w3 + η14υ
1w4

+ η21υ
2w1 + · · · + η44υ

4w4,

and so on.

Gregory L. Naber
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Introduction

All beginnings are obscure. Inasmuch as the mathematician operates
with his conceptions along strict and formal lines, he, above all, must
be reminded from time to time that the origins of things lie in greater
depths than those to which his methods enable him to descend.

Hermann Weyl, Space, Time, Matter

Minkowski spacetime is generally regarded as the appropriate arena within
which to formulate those laws of physics that do not refer specifically to
gravitational phenomena. We would like to spend a moment here at the
outset briefly examining some of the circumstances which give rise to this
belief.

We shall adopt the point of view that the basic problem of science in gen-
eral is the description of “events” which occur in the physical universe and
the analysis of relationships between these events. We use the term “event,”
however, in the idealized sense of a “point-event,” that is, a physical occur-
rence which has no spatial extension and no duration in time. One might
picture, for example, an instantaneous collision or explosion or an “instant”
in the history of some (point) material particle or photon (to be thought
of as a “particle of light”). In this way the existence of a material particle
or photon can be represented by a continuous sequence of events called its
“worldline.” We begin then with an abstract set M whose elements we call
“events.” We shall provide M with a mathematical structure which reflects
certain simple facts of human experience as well as some rather nontrivial
results of experimental physics.

Events are “observed” and we will be particularly interested in a certain
class of observers (called “admissible”) and the means they employ to describe
events. Since it is in the nature of our perceptual apparatus that we identify
events by their “location in space and time” we must specify the means by
which an observer is to accomplish this in order to be deemed “admissible.”

, : An Introduction 
, Applied Mathematical Sciences 92,

G.L. Naber The Geometry of Minkowski Spacetime to the Mathematics 1
of the Special Theory of Relativity
DOI 10.1007/978-1-4419-7838-7_ , © Springer Science+Business Media, LLC 20120



2 Introduction

Each admissible observer presides over a 3-dimensional, right-handed,
Cartesian spatial coordinate system based on an agreed unit of length
and relative to which photons propagate rectilinearly in any direction.

A few remarks are in order. First, the expression “presides over” is not
to be taken too literally. An observer is in no sense ubiquitous. Indeed, we
generally picture the observer as just another material particle residing at
the origin of his spatial coordinate system; any information regarding events
which occur at other locations must be communicated to him by means we
will consider shortly. Second, the restriction on the propagation of photons
is a real restriction. The term “straight line” has meaning only relative to a
given spatial coordinate system and if, in one such system, light does indeed
travel along straight lines, then it certainly will not in another system which,
say, rotates relative to the first. Notice, however, that this assumption does
not preclude the possibility that two admissible coordinate systems are in
relative motion. We shall denote the spatial coordinate systems of observers
O, Ô, . . . by Σ(x1, x2, x3), Σ̂(x̂1, x̂2, x̂3), . . . .

We take it as a fact of human experience that each observer has an innate,
intuitive sense of temporal order which applies to events which he experiences
directly, i.e., to events on his worldline. This sense, however, is not quantita-
tive; there is no precise, reliable sense of “equality” for “time intervals.” We
remedy this situation by giving him a watch.

Each admissible observer is provided with an ideal standard clock based
on an agreed unit of time with which to provide a quantitative temporal
order to the events on his worldline.

Notice that thus far we have assumed only that an observer can assign a
time to each event on his worldline. In order for an observer to be able to
assign times to arbitrary events we must specify a procedure for the place-
ment and synchronization of clocks throughout his spatial coordinate system.
One possibility is simply to mass-produce clocks at the origin, synchronize
them and then move them to various other points throughout the coordinate
system. However, it has been found that moving clocks about has a most
undesirable effect upon them. Two identical and very accurate atomic clocks
are manufactured in New York and synchronized. One is placed aboard a
passenger jet and flown around the world. Upon returning to New York it is
found that the two clocks, although they still “tick” at the same rate, are no
longer synchronized. The travelling clock lags behind its stay-at-home twin.
Strange, indeed, but it is a fact and we shall come to understand the reason
for it shortly.

To avoid this difficulty we shall ask our admissible observers to build their
clocks at the origins of their coordinate systems, transport them to the de-
sired locations, set them down and return to the master clock at the origin.
We assume that each observer has stationed an assistant at the location of



Introduction 3

each transported clock. Now our observer must “communicate” with each
assistant, telling him the time at which his clock should be set in order that
it be sychronized with the clock at the origin. As a means of communication
we select a signal which seems, among all the possible choices, to be least
susceptible to annoying fluctuations in reliability, i.e., light signals. To per-
suade the reader that this is an appropriate choice we shall record some of
the experimentally documented properties of light signals, but first, a little
experiment. From his location at the origin O an observer O emits a light
signal at the instant his clock reads t0. The signal is reflected back to him
at a point P and arrives again at O at the instant t1. Assuming there is no
delay at P when the signal is bounced back, O will calculate the speed of
the signal to be distance (O, P )/ 1

2 (t1− t0). This technique for measuring the
speed of light we call the Fizeau procedure in honor of the gentleman who
first carried it out with care (notice that we must bounce the signal back to
O since we do not yet have a clock at P that is synchronized with that at O).

For each admissible observer the speed of light in vacuo as determined
by the Fizeau procedure is independent of when the experiment is per-
formed, the arrangement of the apparatus (i.e., the choice of P), the
frequency (energy) of the signal and, moreover, has the same numer-
ical value c (approximately 3.0 × 108 meters per second) for all such
observers.

Here we have the conclusions of numerous experiments performed over the
years, most notably those first performed by Michelson-Morley and Kennedy-
Thorndike (see Ex. 33 and Ex. 34 of [TW] for a discussion of these exper-
iments). The results may seem odd. Why is a photon so unlike an electron
whose speed certainly will not have the same numerical value for two ob-
servers in relative motion? Nevertheless, they are incontestable facts of na-
ture and we must deal with them. We shall exploit these rather remarkable
properties of light signals immediately by asking all of our observers to mul-
tiply each of their time readings by the constant c and thereby measure time
in units of distance (light travel time, e.g., “one meter of time” is the amount
of time required by a light signal to travel one meter in vacuo). With these
units all speeds are dimensionless and c = 1. Such time readings for observers
O, Ô, . . . will be designated x4(= ct), x̂4(= ct̂), . . . .

Now we provide each of our observers with a system of synchronized clocks
in the following way: At each point P of his spatial coordinate system place
a clock identical to that at the origin. At some time x4 at O emit a spherical
electromagnetic wave (photons in all directions). As the wavefront encounters
P set the clock placed there at time x4+ distance (O, P) and set it ticking,
thus synchronized with the clock at the origin.

At this point each of our observers O, Ô, . . . has established a frame of
reference S(x1, x2, x3, x4), Ŝ(x̂1, x̂2, x̂3, x̂4), . . . . A useful intuitive visualiza-
tion of such a reference frame is as a latticework of spatial coordinate lines
with, at each lattice point, a clock and an assistant whose task it is to record
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locations and times for events occurring in his immediate vicinity; the data
can later be collected for analysis by the observer.

How are the Ŝ-coordinates of an event related to its S-coordinates?
That is, what can be said about the mapping F : R4 → R4 defined by
F(x1, x2, x3, x4) = (x̂1, x̂2, x̂3, x̂4)? Certainly, it must be one-to-one and onto.
Indeed, F−1 : R4 → R4 must be the coordinate transformation from hat-
ted to unhatted coordinates. To say more we require a seemingly innocuous
“causality assumption.”

Any two admissible observers agree on the temporal order of any two
events on the worldline of a photon, i.e., if two such events have coor-
dinates (x1, x2, x3, x4) and

(
x1

0, x
2
0, x

3
0, x

4
0

)
in S and (x̂1, x̂2, x̂3, x̂4) and(

x̂1
0, x̂

2
0, x̂

3
0, x̂

4
0

)
in Ŝ, then x4 − x4

0 and x̂4 − x̂4
0 have the same sign.

Notice that we do not prejudge the issue by assuming that Δx4 and Δx̂4 are
equal, but only that they have the same sign, i.e., that O and Ô agree as to
which of the two events occurred first. Thus, F preserves order in the fourth
coordinate, at least for events which lie on the worldline of some photon.
How are two such events related? Since photons propagate rectilinearly with
speed 1, two events on the worldline of a photon have coordinates in S which
satisfy

xi − xi
0 = vi

(
x4 − x4

0

)
, i = 1, 2, 3,

for some constants v1, v2 and v3 with (v1)2 + (v2)2 + (v3)2 = 1 and
consequently(

x1 − x1
0

)2
+
(
x2 − x2

0

)2
+
(
x3 − x3

0

)2 − (x4 − x4
0

)2
= 0. (0.1)

Geometrically, we think of (0.1) as the equation of a “cone” in R4 with
vertex at

(
x1

0, x
2
0, x

3
0, x

4
0

)
(compare (z − z0)2 = (x − x0)2 + (y − y0)2 in R3).

But all of this must be true in any admissible frame of reference so F must
preserve the cone (0.1). We summarize:

The coordinate transformation map F : R4 → R4 carries the cone (0.1)
onto the cone(

x̂1 − x̂1
0

)2
+
(
x̂2 − x̂2

0

)2
+
(
x̂3 − x̂3

0

)2 − (x̂4 − x̂4
0

)2
= 0 (0.2)

and satisfies x̂4 > x̂4
0 whenever x4 > x4

0 and (0.1) is satisfied.
Being simply the coordinate transformation from hatted to unhatted co-

ordinates, F−1 : R4 → R4 has the obvious analogous properties. In 1964,
Zeeman [Z1] called such a mapping F a “causal automorphism” and proved
the remarkable fact that any causal automorphism is a composition of the
following three basic types:

1. Translations: x̂a = xa + Λa, a = 1, 2, 3, 4, for some constants Λa.
2. Positive scalar multiples: x̂a = kxa, a = 1, 2, 3, 4, for some positive

constant k.
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3. Linear transformations

x̂a = Λa
bx

b, a = 1, 2, 3, 4, (0.3)

where the matrix Λ = [Λa
b]a,b=1,2,3,4 satisfies the two conditions

ΛT ηΛ = η, (0.4)

where T means “transpose” and

η =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤⎥⎥⎦ ,

and
Λ4

4 ≥ 1. (0.5)

This result is particularly remarkable in that it is not even assumed at
the outset that F is continuous (much less, linear). We provide a proof in
Section 1.6.

Since two frames of reference related by a mapping of type 2 differ only
by a trivial and unnecessary change of scale we shall banish them from fur-
ther consideration. Moreover, since the constants Λa in maps of type 1 can
be regarded as the Ŝ-coordinates of S’s spacetime origin we may request
that all of our observers cooperate to the extent that they select a common
event to act as origin and thereby take Λa = 0 for a = 1, 2, 3, 4. All that
remain for consideration then are the admissible frames of reference related
by transformations of the form (0.3) subject to (0.4) and (0.5). These are the
so-called “orthochronous Lorentz transformations” and, as we shall prove in
Chapter 1, are precisely the maps which leave invariant the quadratic form
(x1)2 + (x2)2 + (x3)2 − (x4)2 (analogous to orthogonal transformations of
R3 which leave invariant the usual squared length x2 + y2 + z2) and which
preserve “time orientation” in the sense described immediately after (0.2). It
is the geometry of this quadratic form, the structure of the group of Lorentz
transformations and their various physical interpretations that will be our
concern in the text.

With this we conclude our attempt at motivation for the definitions that
confront the reader in Chapter 1. There is, however, one more item on the
agenda of our introductory remarks. It is the cornerstone upon which the
special theory of relativity is built.

The Relativity Principle: All admissible frames of reference are com-
pletely equivalent for the formulation of the laws of physics.

The Relativity Principle is a powerful tool for building the physics of spe-
cial relativity. Since our concern is primarily with the mathematical structure
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of the theory we shall have few occasions to call explicitly upon the Principle
except for the physical interpretation of the mathematics and here it is vital.
We regard the Relativity Principle primarily as an heuristic principle assert-
ing that there are no “distinguished” admissible observers, i.e., that none
can claim to have a privileged view of the universe. In particular, no such
observer can claim to be “at rest” while the others are moving; they are all
simply in relative motion. We shall see that admissible observers can disagree
about some rather startling things (e.g., whether or not two given events are
“simultaneous”) and the Relativity Principle will prohibit us from preferring
the judgment of one to any of the others. Although we will not dwell on
the experimental evidence in favor of the Relativity Principle it should be
observed that its roots lie in such commonplace observations as the fact that
a passenger in a (smooth, quiet) airplane travelling at constant groundspeed
in a straight line cannot “feel” his motion relative to the earth, i.e., that no
physical effects are apparent in the plane which would serve to distinguish it
from the (quasi-) admissible frame rigidly attached to the earth.

Our task then is to conduct a serious study of these “admissible frames
of reference”. Before embarking on such a study, however, it is only fair to
concede that, in fact, no such thing exists. As is the case with any intellec-
tual construct with which we attempt to model the physical universe, the
notion of an admissible frame of reference is an idealization, a rather fanciful
generalization of circumstances which, to some degree of accuracy, are en-
countered in the world. In particular, it has been found that the existence of
gravitational fields imposes severe restrictions on the “extent” (both in space
and in time) of an admissible frame. Knowing this we will intentionally avoid
the difficulty (until Chapter 4) by restricting our attention to situations in
which the effects of gravity are “negligible.”



Chapter 1

Geometrical Structure of M

1.1 Preliminaries

We denote by V an arbitrary vector space of dimension n ≥ 1 over the real
numbers. A bilinear form on V is a map g : V × V → R that is linear
in each variable, i.e., such that g(a1v1 + a2v2, w) = a1g(v1, w) + a2g(v2, w)
and g(v, a1w1 + a2w2) = a1g(v, w1) + a2g(v, w2) whenever the a’s are real
numbers and the v’s and w’s are elements of V . g is symmetric if g(w, v) =
g(v, w) for all v and w and nondegenerate if g(v, w) = 0 for all w in V implies
v = 0. A nondegenerate, symmetric, bilinear form g is generally called an
inner product and the image of (v, w) under g is often written v · w rather
than g(v, w). The standard example is the usual inner product on Rn: if v =
(v1, . . . , vn) and w = (w1, . . . , wn), then g(v, w) = v ·w = v1w1 + · · ·+vnwn.
This particular inner product is positive definite, i.e., has the property that if
v �= 0, then g(v, v) > 0. Not all inner products share this property, however.

Exercise 1.1.1 Define a map g1 : Rn × Rn → R by g1(v, w) = v1w1 +
v2w2 + · · ·+ vn−1wn−1 − vnwn. Show that g1 is an inner product and exhibit
nonzero vectors v and w such that g1(v, v) = 0 and g1(w, w) < 0.

An inner product g for which v �= 0 implies g(v, v) < 0 is said to be negative
definite, whereas if g is neither positive definite nor negative definite it is said
to be indefinite.

If g is an inner product on V , then two vectors v and w for which
g(v, w) = 0 are said to be g-orthogonal, or simply orthogonal if there
is no ambiguity as to which inner product is intended. If W is a sub-
space of V , then the orthogonal complement W⊥ of W in V is defined by
W⊥ = {v ∈ V : g(v, w) = 0 for all w ∈ W}.

Exercise 1.1.2 Show that W⊥ is a subspace of V .

The quadratic form associated with the inner product g on V is the map
Q : V → R defined by Q(v) = g(v, v) = v · v (often denoted v2). We ask

, : An Introduction 
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8 1 Geometrical Structure of M

the reader to show that distinct inner products on V cannot give rise to the
same quadratic form.

Exercise 1.1.3 Show that if g1 and g2 are two inner products on V which
satisfy g1(v, v) = g2(v, v) for all v in V , then g1(v, w) = g2(v, w) for all v and
w in V . Hint : The map g1 − g2 : V × V → R defined by (g1 − g2)(v, w) =
g1(v, w)−g2(v, w) is bilinear and symmetric. Evaluate (g1−g2)(v+w, v+w).

A vector v for which Q(v) is either 1 or −1 is called a unit vector. A ba-
sis {e1, . . . , en} for V which consists of mutually orthogonal unit vectors is
called an orthonormal basis for V and we shall now prove that such bases
always exist.

Theorem 1.1.1 Let V be an n-dimensional real vector space on which is de-
fined a nondegenerate, symmetric, bilinear form g : V × V → R. Then there
exists a basis {e1, . . . , en} for V such that g(ei, ej) = 0 if i �= j and
Q(ei) = ±1 for each i = 1, . . . , n. Moreover, the number of basis vectors
ei for which Q(ei) = −1 is the same for any such basis.

Proof: We begin with an observation. Since g is nondegenerate there exists
a pair of vectors (v, w) for which g(v, w) �= 0. We claim that, in fact, there
must be a single vector u in V with Q(u) �= 0. Of course, if one of Q(v) or
Q(w) is nonzero we are done. On the other hand, if Q(v) = Q(w) = 0, then
Q(v+w) = Q(v)+2g(v, w)+Q(w) = 2g(v, w) �= 0 so we may take u = v+w.

The proof of the theorem is by induction on n. If n = 1 we select any u in
V with Q(u) �= 0 and define e1 = (|Q(u)|)−1/2u. Then Q(e1) = ±1 so {e1} is
the required basis.

Now we assume that n > 1 and that every inner product on a vector space
of dimension less than n has a basis of the required type. Let the dimension
of V be n. Again we begin by selecting a u in V such that Q(u) �= 0 and
letting en = (|Q(u)|)−1/2u so that Q(en) = ±1. Now we let W be the orthog-
onal complement in V of the subspace Span {en} of V spanned by {en}. By
Exercise 1.1.2, W is a subspace of V and since en is not in W , dim W < n.
The restriction of g to W × W is an inner product on W so the induction
hypothesis assures us of the existence of a basis {e1, . . . , em}, m = dim W ,
for W such that g(ei, ej) = 0 if i �= j and Q(ei) = ±1 for i = 1, . . . , m. We
claim that m = n − 1 and that {e1, . . . , em, en} is a basis for V .

Exercise 1.1.4 Show that the vectors {e1, . . . , em, en} are linearly
independent.

Since the number of elements in the set {e1, . . . , em, en} is m + 1 ≤ n, both of
our assertions will follow if we can show that this set spans V . Thus, we let v be
an arbitrary element of V and consider the vector w = v− (Q(en)g(v, en))en.
Then w is in W since g(w, en) = g(v − (Q(en)g(v, en))en, en) = g(v, en) −
(Q(en))2g(v, en) = 0. Thus, we may write v = w1e1 + · · · + wmem +
(Q(en)g(v, en))en so {e1, . . . , em, en} spans V .
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To show that the number r of ei for which Q(ei) = −1 is the same for
any orthonormal basis we proceed as follows: If r = 0 the result is clear since
Q(v) ≥ 0 for every v in V , i.e., g is positive definite. If r > 0, then V will
have subspaces on which g is negative definite and so will have subspaces of
maximal dimension on which g is negative definite. We will show that r is the
dimension of any such maximal subspace W and thereby give an invariant
(basis-independent) characterization of r. Number the basis elements so that
{e1, . . . , er, er+1, . . . , en}, where Q(ei) = −1 for i = 1, . . . , r and Q(ei) = 1
for i = r + 1, . . . , n. Let X = Span{e1, . . . , er} be the subspace of V spanned
by {e1, . . . , er}. Then, since g is negative definite on X and dim X = r, we
find that r ≤ dim W . To show that r ≥ dim W as well we define a map
T : W → X as follows: If w =

∑n
i=1 wiei is in W we let Tw =

∑r
i=1 wiei.

Then T is obviously linear. Suppose w is such that Tw = 0. Then for each
i = 1, . . . , r, wi = 0. Thus,

Q(w) = g

⎛⎝ n∑
i=r+1

wiei,

n∑
j=r+1

wjej

⎞⎠ =
n∑

i,j=r+1

g(ei, ej)wiwj =
n∑

i=r+1

(wi)2

which is greater than or equal to zero. But g is negative definite on W so
we must have wi = 0 for i = r + 1, . . . , n, i.e., w = 0. Thus, the null space
of T is {0} and T is therefore an isomorphism of W onto a subspace of X .
Consequently, dimW ≤ dimX = r as required. �

The number r of ei in any orthonormal basis for g with Q(ei) = −1 is called
the index of g. Henceforth we will assume that all orthonormal bases are
indexed in such a way that these ei appear at the end of the list and so are
numbered as follows:

{e1, e2, . . . , en−r, en−r+1, . . . , en}

where Q(ei) = 1 for i = 1, 2, . . . , n−r and Q(ei) = −1 for i = n−r+1, . . . , n.
Relative to such a basis if v = viei and w = wiei, then we have

g(v, w) = v1w1 + · · · + vn−rwn−r − vn−r+1wn−r+1 − · · · − vnwn.

1.2 Minkowski Spacetime

Minkowski spacetime is a 4-dimensional real vector space M on which is
defined a nondegenerate, symmetric, bilinear form g of index 1. The elements
of M will be called events and g is referred to as a Lorentz inner product on
M. Thus, there exists a basis {e1, e2, e3, e4} for M with the property that if
v = vaea and w = waea, then

g(v, w) = v1w1 + v2w2 + v3w3 − v4w4.
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The elements of M are “events” and, as we suggested in the Introduction,
are to be thought of intuitively as actual or physically possible point-events.
An orthonormal basis {e1, e2, e3, e4} for M “coordinatizes” this event world
and is to be identified with a “frame of reference”. Thus, if x = x1e1 +x2e2 +
x3e3 + x4e4, we regard the coordinates (x1, x2, x3, x4) of x relative to {ea}
as the spatial (x1, x2, x3) and time (x4) coordinates supplied the event x by
the observer who presides over this reference frame. As we proceed with the
development we will have occasion to expand upon, refine and add additional
elements to this basic physical interpretation, but, for the present, this will
suffice.

In the interest of economy we shall introduce a 4 × 4 matrix η defined by

η =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤⎥⎥⎦ ,

whose entries will be denoted either ηab or ηab , the choice in any particular
situation being dictated by the requirements of the summation convention.
Thus, ηab = ηab = 1 if a = b = 1, 2, 3, −1 if a = b = 4 and 0 otherwise.
As a result we may write g(ea, eb) = ηab = ηab and, with the summation
convention, g(v, w) = ηabv

awb.
Since our Lorentz inner product g on M is not positive definite there exist

nonzero vectors v in M for which g(v, v) = 0, e.g., v = e1 + e4 is one such
since g(v, v) = Q(e1) + 2g(e1, e4) + Q(e4) = 1 + 0 − 1 = 0. Such vectors are
said to be null (or lightlike, for reasons which will become clear shortly) and
M actually has bases which consist exclusively of this type of vector.

Exercise 1.2.1 Construct a null basis for M, i.e., a set of four linearly
independent null vectors.

Such a null basis cannot consist of mutually orthogonal vectors, however.

Theorem 1.2.1 Two nonzero null vectors v and w in M are orthogonal if
and only if they are parallel, i.e., iff there is a t in R such that v = tw.

Exercise 1.2.2 Prove Theorem 1.2.1. Hint : The Schwartz Inequality for R3

asserts that if x = (x1, x2, x3) and y = (y1, y2, y3), then

(x1y1 + x2y2 + x3y3)2 ≤ ((x1)2 + (x2)2 + (x3)2)((y1)2 + (y2)2 + (y3)2)

and that equality holds if and only if x and y are linearly dependent. �

Next consider two distinct events x0 and x for which the displacement vector
v = x − x0 from x0 to x is null, i.e., Q(v) = Q(x − x0) = 0. Relative to any
orthonormal basis {ea}, if x = xaea and x0 = xa

0ea, then(
x1 − x1

0

)2
+
(
x2 − x2

0

)2
+
(
x3 − x3

0

)2 − (x4 − x4
0

)2
= 0. (1.2.1)
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Fig. 1.2.1

But we have seen this before. It is precisely the condition which, in the
Introduction, we decided describes the relationship between two events that
lie on the worldline of some photon. For this reason, and because of the formal
similarity between (1.2.1) and the equation of a right circular cone in R3, we
define the null cone (or light cone) CN(x0) at x0 in M by

CN (x0) = {x ∈ M : Q(x − x0) = 0}

and picture it by suppressing the third spatial dimension x3 (see Figure 1.2.1).
CN (x0) therefore consists of all those events in M that are “connectible to
x0 by a light ray”. For any such event x (other than x0 itself) we define the
null worldline (or light ray) Rx0,x containing x0 and x by

Rx0,x = {x0 + t(x − x0) : t ∈ R}

and think of it as the worldline of that particular photon which experiences
both x0 and x.

Exercise 1.2.3 Show that if Q(x − x0) = 0, then Rx,x0 = Rx0,x.

CN (x0) is just the union of all the light rays through x0. Indeed,

Theorem 1.2.2 Let x0 and x be two distinct events with Q(x−x0)= 0. Then

Rx0,x = CN(x0) ∩ CN(x). (1.2.2)

Proof: First let z = x0 + t(x − x0) be an element of Rx0,x. Then z − x0 =
t(x−x0) so Q(z−x0) = t2Q(x−x0) = 0 so z is in CN (x0). With Exercise 1.2.3
it follows in the same way that z is in CN (x) and so Rx0,x ⊆ CN (x0)∩CN (x).
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To prove the reverse containment we assume that z is in CN (x0) ∩ CN (x).
Then each of the vectors z − x, z − x0 and x0 − x is null. But z − x0 =
(z−x)−(x0−x) so 0 = Q(z−x0) = Q(z−x) − 2g(z−x, x0 − x)+Q(x0−x) =
−2g(z−x, x0−x). Thus, g(z−x, x0−x) = 0. If z = x we are done. If z �= x,
then, since x �= x0, we may apply Theorem 1.2.1 to the orthogonal null
vectors z − x and x0 − x to obtain a t in R such that z − x = t(x0 − x) and
it follows that z is in Rx0,x as required. �

For reasons which may not be apparent at the moment, but will become
clear shortly, a vector v in M is said to be timelike if Q(v) < 0 and spacelike
if Q(v) > 0.

Exercise 1.2.4 Use an orthonormal basis for M to construct a few vectors
of each type.

If v is the displacement vector x − x0 between two events, then, relative to
any orthonormal basis for M, Q(x − x0) < 0 becomes (Δx1)2 + (Δx2)2 +
(Δx3)2 < (Δx4)2 (x − x0 is inside the null cone at x0). Thus, the (squared)
spatial separation of the two events is less than the (squared) distance light
would travel during the time lapse between the events (remember that x4 is
measured in light travel time). If x−x0 is spacelike the inequality is reversed,
we picture x−x0 outside the null cone at x0 and the spatial separation of x0

and x is so great that not even a photon travels quickly enough to experience
both events.

If {e1, e2, e3, e4} and {ê1, ê2, ê3, ê4} are two orthonormal bases for M, then
there is a unique linear transformation L : M → M such that L(ea) = êa for
each a = 1, 2, 3, 4. As we shall see, such a map “preserves the inner product
of M”, i.e., is of the following type: A linear transformation L : M → M is
said to be an orthogonal transformation of M if g(Lx ,Ly) = g(x, y) for all x
and y in M.

Exercise 1.2.5 Show that, since the inner product on M is nondegener-
ate, an orthogonal transformation is necessarily one-to-one and therefore an
isomorphism.

Lemma 1.2.3 Let L : M → M be a linear transformation. Then the fol-
lowing are equivalent:

(a) L is an orthogonal transformation.
(b) L preserves the quadratic form of M, i.e., Q(Lx) = Q(x) for all x in M.
(c) L carries any orthonormal basis for M onto another orthonormal basis

for M.

Exercise 1.2.6 Prove Lemma 1.2.3. Hint : To prove that (b) implies (a)
compute L(x + y) · L(x + y) − L(x − y) · L(x − y). �

Now let L :M→M be an orthogonal transformation of M and
{e1, e2, e3, e4} an orthonormal basis for M. By Lemma 1.2.3, ê1 =Le1, ê2 =
Le2, ê3 = Le3 and ê4 =Le4 also form an orthonormal basis for M. In
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particular, each eu, u = 1, 2, 3, 4, can be expressed as a linear combination
of the êa:

eu = Λ1
uê1 + Λ2

uê2 + Λ3
uê3 + Λ4

uê4 = Λa
uêa, u = 1, 2, 3, 4, (1.2.3)

where the Λa
u are constants. Now, the orthogonality conditions g(ec, ed)= ηcd ,

c, d = 1, 2, 3, 4, can be written

Λ1
cΛ1

d + Λ2
cΛ2

d + Λ3
cΛ3

d − Λ4
cΛ4

d = ηcd (1.2.4)

or, with the summation convention,

Λa
cΛb

dηab = ηcd, c, d = 1, 2, 3, 4. (1.2.5)

Exercise 1.2.7 Show that (1.2.5) is equivalent to

Λa
cΛb

dη
cd = ηab, a, b = 1, 2, 3, 4. (1.2.6)

We define the matrix Λ = [Λa
b]a,b=1,2,3,4 associated with the orthogonal

transformation L and the orthonormal basis {ea} by

Λ =

⎡⎢⎢⎣
Λ1

1 Λ1
2 Λ1

3 Λ1
4

Λ2
1 Λ2

2 Λ2
3 Λ2

4

Λ3
1 Λ3

2 Λ3
3 Λ3

4

Λ4
1 Λ4

2 Λ4
3 Λ4

4

⎤⎥⎥⎦ .

Observe that Λ is actually the matrix of L−1 relative to the basis {êa}.
Heuristically, conditions (1.2.5) assert that “the columns of Λ are mutually
orthogonal unit vectors”, whereas (1.2.6) makes the same statement about
the rows.

We regard the matrix Λ associated with L and {ea} as a coordinate trans-
formation matrix in the usual way. Specifically, if the event x in M has co-
ordinates x = x1e1 +x2e2 +x3e3 +x4e4 relative to {ea}, then its coordinates
relative to {êa} = {Lea} are x = x̂1ê1 + x̂2ê2 + x̂3ê3 + x̂4ê4, where

x̂1 = Λ1
1x

1 + Λ1
2x

2 + Λ1
3x

3 + Λ1
4x

4,

x̂2 = Λ2
1x

1 + Λ2
2x

2 + Λ2
3x

3 + Λ2
4x

4,

x̂3 = Λ3
1x

1 + Λ3
2x

2 + Λ3
3x

3 + Λ3
4x

4,

x̂4 = Λ4
1x

1 + Λ4
2x

2 + Λ4
3x

3 + Λ4
4x

4,

which we generally write more concisely as

x̂a = Λa
bx

b, a = 1, 2, 3.4. (1.2.7)

Exercise 1.2.8 By performing the indicated matrix multiplications show
that (1.2.5) [and therefore (1.2.6)] is equivalent to

ΛT ηΛ = η, (1.2.8)

where T means “transpose”.
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Notice that we have seen (1.2.8) before. It is just equation (0.4) of the
Introduction, which perhaps seems somewhat less mysterious now than it
did then. Indeed, (1.2.8) is now seen to be the condition that Λ is the
matrix of a linear transformation which preserves the quadratic form of
M. In particular, if x − x0 is the displacement vector between two events
for which Q(x − x0) = 0, then both (Δx1)2 + (Δx2)2 + (Δx3)2 − (Δx4)2

and (Δx̂1)2 + (Δx̂2)2 + (Δx̂3)2 − (Δx̂4)2, where the Δx̂a are, from (1.2.7),
Δx̂a = Λa

bΔxb, are zero. Physically, the two observers presiding over the
hatted and unhatted reference frames agree that x0 and x are “connectible
by a light ray”, i.e., they agree on the speed of light.

Any 4× 4 matrix Λ that satisfies (1.2.8) is called a general (homogeneous)
Lorentz transformation. At times we shall indulge in a traditional abuse of
terminology and refer to the coordinate transformation (1.2.7) as a Lorentz
transformation. Since the orthogonal transformations of M are isomorphisms
and therefore invertible, the matrix Λ associated with such an orthogonal
transformation must be invertible [also see (1.3.6)]. From (1.2.8) we find that
ΛT ηΛ = η implies ΛT η = ηΛ−1 so that Λ−1 = η−1ΛT η or, since η−1 = η,

Λ−1 = ηΛT η. (1.2.9)

Exercise 1.2.9 Show that the set of all general (homogeneous) Lorentz
transformations forms a group under matrix multiplication, i.e., that it is
closed under the formation of products and inverses. This group is called the
general (homogeneous) Lorentz group and we shall denote it by LGH .

We shall denote the entries in the matrix Λ−1 by Λa
b so that, by (1.2.9),⎡⎢⎢⎣

Λ1
1 Λ2

1 Λ3
1 Λ4

1

Λ1
2 Λ2

2 Λ3
2 Λ4

2

Λ1
3 Λ2

3 Λ3
3 Λ4

3

Λ1
4 Λ2

4 Λ3
4 Λ4

4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Λ1

1 Λ2
1 Λ3

1 −Λ4
1

Λ1
2 Λ2

2 Λ3
2 −Λ4

2

Λ1
3 Λ2

3 Λ3
3 −Λ4

3

−Λ1
4 −Λ2

4 −Λ3
4 Λ4

4

⎤⎥⎥⎦ . (1.2.10)

Exercise 1.2.10 Show that

Λa
b = ηacη

bdΛc
d, a, b = 1, 2, 3, 4, (1.2.11)

and similarly
Λa

b = ηacηbdΛc
d, a, b = 1, 2, 3, 4. (1.2.12)

Since we have seen (Exercise 1.2.9) that Λ−1 is in LGH whenever Λ is it must
also satisfy conditions analogous to (1.2.5) and (1.2.6), namely,

Λa
cΛb

dηab = ηcd, c, d = 1, 2, 3, 4, (1.2.13)

and
Λa

cΛb
dηcd = ηab, a, b = 1, 2, 3, 4. (1.2.14)
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The analogues of (1.2.3) and (1.2.7) are

êu = Λu
aea, u = 1, 2, 3, 4, (1.2.15)

and
xb = Λa

bx̂a, b = 1, 2, 3, 4. (1.2.16)

1.3 The Lorentz Group

Observe that by setting c = d = 4 in (1.2.5) one obtains
(
Λ4

4

)2
= 1 +(

Λ1
4

)2 +
(
Λ2

4

)2 +
(
Λ3

4

)2 so that, in particular,
(
Λ4

4

)2 ≥ 1. Consequently,

Λ4
4 ≥ 1 or Λ4

4 ≤ −1 (1.3.1)

An element Λ of LGH is said to be orthochronous if Λ4
4 ≥ 1 and

nonorthochronous if Λ4
4 ≤ −1. Nonorthochronous Lorentz transforma-

tions have certain unsavory characteristics which we now wish to expose.
First, however, the following extremely important preliminary.

Theorem 1.3.1 Suppose that v is timelike and w is either timelike or null
and nonzero. Let {ea} be an orthonormal basis for M with v = vaea and
w = waea. Then either

(a) v4w4 > 0, in which case g(v, w) < 0, or
(b) v4w4 < 0, in which case g(v, w) > 0.

Proof: By assumption we have g(v, v)=(v1)2 + (v2)2 + (v3)2 − (v4)2 < 0
and (w1)2 + (w2)2 + (w3)2−(w4)2 ≤ 0 so (v4w4)2 > ((v1)2 + (v2)2 +
(v3)2)((w1)2 +(w2)2 +(w3)2) ≥ (v1w1 +v2w2 +v3w3)2, the second inequality
following from the Schwartz Inequality for R3 (see Exercise 1.2.2). Thus, we
find that ∣∣v4w4

∣∣ > ∣∣v1w1 + v2w2 + v3w3
∣∣,

so, in particular, v4w4 �= 0 and, moreover, g(v, w) �= 0. Suppose that
v4w4 > 0. Then v4w4 = |v4w4| > |v1w1+v2w2+v3w3| ≥ v1w1+v2w2 +v3w3

and so v1w1 + v2w2 + v3w3 − v4w4 < 0, i.e., g(v, w) < 0. On the other hand,
if v4w4 < 0, then g(v, −w) < 0 so g(v, w) > 0. �

Corollary 1.3.2 If a nonzero vector in M is orthogonal to a timelike vector,
then it must be spacelike.

We denote by τ the collection of all timelike vectors in M and define a
relation ∼ on τ as follows: If v and w are in τ , then v ∼ w if and only if
g(v, w) < 0 (so that v4 and w4 have the same sign in any orthonormal basis).
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Exercise 1.3.1 Verify that ∼ is an equivalence relation on τ with precisely
two equivalence classes. That is, show that ∼ is

1. reflexive (v ∼ v for every v in τ),
2. symmetric (v ∼ w implies w ∼ v),
3. transitive (v ∼ w and w ∼ x imply v ∼ x)

and that τ is the union of two disjoint subsets τ+ and τ− with the property
that v ∼ w for all v and w in τ+, v ∼ w for all v and w in τ− and v /∼ w if
one of v or w is in τ+ and the other is in τ−.

Fig. 1.3.1

We think of the elements of τ+ (and τ−) as having the same time orientation.
More specifically, we select (arbitrarily) τ+ and refer to its elements as future-
directed timelike vectors, whereas the vectors in τ− we call past-directed.

Exercise 1.3.2 Show that τ+ (and τ−) are cones, i.e., that if v and w are
in τ+(τ−) and r is a positive real number, then rv and v + w are also in
τ+(τ−).

For each x0 in M we define the time cone CT (x0), future time cone C+
T (x0)

and past time cone C−
T (x0) at x0 by

CT (x0) = {x ∈ M : Q(x − x0) < 0} ,

C+
T (x0) =

{
x ∈ M : x − x0 ∈ τ+

}
= CT (x0) ∩ τ+,

and

C−
T (x0) =

{
x ∈ M : x − x0 ∈ τ−} = CT (x0) ∩ τ−.

We picture CT (x0) as the interior of the null cone CN (x0). It is the disjoint
union of C+

T (x0) and C−
T (x0) and we shall adopt the convention that our

pictures will always be drawn with future-directed vectors “pointing up” (see
Figure 1.3.1).
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We wish to extend the notion of past- and future-directed to nonzero null
vectors as well. First we observe that if n is a nonzero null vector, then
n · v has the same sign for all v in τ+. To see this we suppose that there
exist vectors v1 and v2 in τ+ such that n · v1 < 0 and n · v2 > 0. We may
assume that |n · v1| = n · v2 since if this is not the case we can replace
v1 by (n · v2/|n · v1|)v1, which is still in τ+ by Exercise 1.3.2 and satisfies
g(n, (n ·v2/|n ·v1|)v1) = (n ·v2/|n ·v1|)g(n, v1) = −n ·v2. Thus, n ·v1 = −n ·v2

so n·v1+n·v2 = 0 and therefore n·(v1+v2) = 0. But, again by Exercise 1.3.2,
v1 + v2 is in τ+ and so, in particular, is timelike. Since n is nonzero and null
this contradicts Corollary 1.3.2. Thus, we may say that a nonzero null vector
n is future-directed if n · v < 0 for all v in τ+ and past-directed if n · v > 0 for
all v in τ+.

Exercise 1.3.3 Show that two nonzero null vectors n1 and n2 have the same
time orientation (i.e., are both past-directed or both future-directed) if and
only if n4

1 and n4
2 have the same sign relative to any orthonormal basis for M.

For any x0 in M we define the future null cone at x0 by C+
N (x0) =

{x ∈ CN(x0) : x − x0 is future-directed} and the past null cone at x0 by
C−

N (x0) = {x ∈ CN(x0) : x − x0 is past-directed}. Physically, event x is in
C+

N (x0) if x0 and x respectively can be regarded as the emission and recep-
tion of a light signal. Consequently, C+

N (x0) may be thought of as the history
in spacetime of a spherical electromagnetic wave (photons in all directions)
whose emission event is x0 (see Figure 1.3.2).

The disagreeable nature of nonorthochronous Lorentz transformations is
that they always reverse time orientations (and so presumably relate reference
frames in which someone’s clock is running backwards).

Theorem 1.3.3 Let Λ = [Λa
b]a,b=1,2,3,4 be an element of LGH and

{ea}a=1,2,3,4 an orthonormal basis for M. Then the following are equivalent:

(a) Λ is orthochronous.
(b) Λ preserves the time orientation of all nonzero null vectors, i.e., if v =

vaea is a nonzero null vector, then the numbers v4 and v̂4 = Λ4
bv

b have
the same sign.

(c) Λ preserves the time orientation of all timelike vectors.

Proof: Let v = vaea be a vector which is either timelike or null and nonzero.
By the Schwartz Inequality for R3 we have

(
Λ4

1v
1 + Λ4

2v
2 + Λ4

3v
3
)2 ≤

(
3∑

i=1

(
Λ4

i

)2)( 3∑
i=1

(
vi
)2)

. (1.3.2)

Now, by (1.2.6) with a = b = 4, we have(
Λ4

1

)2
+
(
Λ4

2

)2
+
(
Λ4

3

)2 − (Λ4
4

)2
= −1 (1.3.3)
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Fig. 1.3.2

and so
(
Λ4

4

)2
>
(
Λ4

1

)2+
(
Λ4

2

)2+
(
Λ4

3

)2. Moreover, since v is either timelike
or null, (v4)2 ≥ (v1)2 + (v2)2 + (v3)2. Since v is nonzero, (1.3.2) therefore
yields

(
Λ4

1v
1 + Λ4

2v
2 + Λ4

3v
3
)2

<
(
Λ4

4v
4
)2

, which we may write as(
Λ4

1v
1 + Λ4

2v
2 + Λ4

3v
3 − Λ4

4v
4
) (

Λ4
1v

1 + Λ4
2v

2 + Λ4
3v

3 + Λ4
4v

4
)

< 0.
(1.3.4)

Define w in M by w = Λ4
1e1 + Λ4

2e2 + Λ4
3e3 + Λ4

4e4. By (1.3.3), w is
timelike. Moreover, (1.3.4) can now be written

(v · w)v̂4 < 0. (1.3.5)

Consequently, v · w and v̂4 have opposite signs.
We now show that Λ4

4 ≥ 1 if and only if v4 and v̂4 have the same sign.
First suppose Λ4

4 ≥ 1. If v4 > 0, then, by Theorem 1.3.1, v ·w < 0 so v̂4 > 0
by (1.3.5). Similarly, if v4 < 0, then v ·w > 0 so v̂4 < 0. Thus, Λ4

4 ≥ 1 implies
that v4 and v̂4 have the same sign. In the same way, Λ4

4 ≤ −1 implies that
v4 and v̂4 have opposite signs. �

Notice that we have actually shown that if Λ is nonorthochronous, then it
necessarily reverses the time orientation of all timelike and nonzero null vec-
tors. For this reason we elect to restrict our attention henceforth to the or-
thochronous elements of LGH . Since such a Lorentz transformation never
reverses the time orientation of a timelike vector we may also limit ourselves
to orthonormal bases {e1, e2, e3, e4} with e4 future-directed. At this point
the reader may wish to return to the Introduction with a somewhat better
understanding of why the condition Λ4

4 ≥ 1 appeared in Zeeman’s Theorem.
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There is yet one more restriction we would like to impose on our
Lorentz transformations. Observe that taking determinants on both sides
of (1.2.8) yields (det ΛT )(det η)(det Λ) = det η so that, since det ΛT =
det Λ, (det Λ)2 = 1 and therefore

detΛ = 1 or detΛ = −1. (1.3.6)

We shall say that a Lorentz transformation Λ is proper if det Λ = 1 and
improper if detΛ = −1.

Exercise 1.3.4 Show that an orthochronous Lorentz transformation is im-
proper if and only if it is of the form⎡⎢⎢⎣

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦Λ, (1.3.7)

where Λ is proper and orthochronous.

Notice that the matrix on the left in (1.3.7) is an orthochronous Lorentz
transformation and, as a coordinate transformation, has the effect of chang-
ing the sign of the first spatial coordinate, i.e., of reversing the spatial orienta-
tion (left-handed to right-handed or right-handed to left-handed). Since there
seems to be no compelling reason to make such a change we intend to restrict
our attention to the set L of proper, orthochronous Lorentz transformations.
Having done so we may further limit the orthonormal bases we consider by
selecting an orientation for the spatial coordinate axes. Specifically, we de-
fine an admissible basis for M to be an orthonormal basis {e1, e2, e3, e4}
with e4 timelike and future-directed and {e1, e2, e3} spacelike and “right-
handed”, i.e., satisfying e1 × e2 · e3 = 1 (since the restriction of g to the
span of {e1, e2, e3} is the usual dot product on R3, the cross product and dot
product here are the familiar ones from vector calculus). At this point we
fully identify an “admissible basis” with an “admissible frame of reference”
as discussed in the Introduction. Any two such bases (frames) are related by
a proper, orthochronous Lorentz transformation.

Exercise 1.3.5 Show that the set L of proper, orthochronous Lorentz trans-
formations is a subgroup of LGH , i.e., that it is closed under the formation
of products and inverses.

Generally, we shall refer to L simply as the Lorentz group and its elements
as Lorentz transformations with the understanding that they are all proper
and orthochronous. Occasionally it is convenient to enlarge the group of coor-
dinate transformations to include spacetime translations (see the statement
of Zeeman’s Theorem in the Introduction), thereby obtaining the so-called
inhomogeneous Lorentz group or Poincaré group. Physically, this amounts to
allowing “admissible” observers to use different spacetime origins.
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The Lorentz group L has an important subgroup R consisting of those
R = [Ra

b] of the form

R =

⎡⎢⎢⎣
0[

Ri
j

]
0
0

0 0 0 1

⎤⎥⎥⎦ ,

where [Ri
j ]i,j=1,2,3 is a unimodular orthogonal matrix, i.e., satisfies

det[Ri
j ] = 1 and [Ri

j ]T = [Ri
j ]−1. Observe that the orthogonality con-

ditions (1.2.5) are clearly satisfied by such an R and that, moreover, R4
4 = 1

and detR = det[Ri
j ] = 1 so that R is indeed in L. The coordinate transfor-

mation associated with R corresponds physically to a rotation of the spatial
coordinate axes within a given frame of reference. For this reason R is called
the rotation subgroup of L and its elements are called rotations in L.

Lemma 1.3.4 Let Λ = [Λa
b]a,b=1,2,3,4 be a proper, orthochronous Lorentz

transformation. Then the following are equivalent:

(a) Λ is a rotation,
(b) Λ1

4 = Λ2
4 = Λ3

4 = 0,
(c) Λ4

1 = Λ4
2 = Λ4

3 = 0,
(d) Λ4

4 = 1.

Proof: Set c = d = 4 in (1.2.5) to obtain(
Λ1

4

)2
+
(
Λ2

4

)2
+
(
Λ3

4

)2 − (Λ4
4

)2
= −1. (1.3.8)

Similarly, with a = b = 4, (1.2.6) becomes(
Λ4

1

)2
+
(
Λ4

2

)2
+
(
Λ4

3

)2 − (Λ4
4

)2
= −1. (1.3.9)

The equivalence of (b), (c) and (d) now follows immediately from (1.3.8) and
(1.3.9) and the fact that Λ is assumed orthochronous. Since a rotation in L
satisfies (b), (c) and (d) by definition, all that remains is to show that if Λ
satisfies one (and therefore all) of these conditions, then

[
Λi

j

]
i,j=1,2,3

is a
unimodular orthogonal matrix.

Exercise 1.3.6 Complete the proof. �

Exercise 1.3.7 Use Lemma 1.3.4 to show that R is a subgroup of L, i.e.,
that it is closed under the formation of inverses and products.

Exercise 1.3.8 Show that an element of L has the same fourth row as
[Λa

b]a,b=1,2,3,4 if and only if it can be obtained from [Λa
b] by multiplying on

the left by some rotation in L. Similarly, an element of L has the same fourth
column as [Λa

b] if and only if it can be obtained from [Λa
b] by multiplying

on the right by an element of R.
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There are 16 parameters in every Lorentz transformation, although, by
virtue of the relations (1.2.5), these are not all independent. We now derive
simple physical interpretations for some of these parameters. Thus, we con-
sider two admissible bases {ea} and {êa} and the corresponding admissible
frames of reference S and Ŝ. Any two events on the worldline of a point
which can be interpreted physically as being at rest in Ŝ have coordinates in
Ŝ which satisfy Δx̂1 = Δx̂2 = Δx̂3 = 0 and Δx̂4 = the time separation of the
two events as measured in Ŝ. From (1.2.16) we find that the corresponding
coordinate differences in S are

Δxb = Λa
bΔx̂a = Λ4

bΔx̂4. (1.3.10)

From (1.3.10) and the fact that Λ4
4 and Λ4

4 are nonzero it follows that the
ratios

Δxi

Δx4
=

Λ4
i

Λ4
4 = −Λ4

i

Λ4
4
, i = 1, 2, 3,

are constant and independent of the particular point at rest in Ŝ we choose
to examine. Physically, these ratios are interpreted as the components of the
ordinary velocity 3-vector of Ŝ relative to S:

⇀
u = u1e1 + u2e2 + u3e3, where ui =

Λ4
i

Λ4
4 = −Λ4

i

Λ4
4
, i = 1, 2, 3 (1.3.11)

(notice that we use the term “3-vector” and the familiar vector notation
to distinguish such highly observer-dependent spatial vectors whose physical
interpretations are not invariant under Lorentz transformations, but which
are familiar from physics). Similarly, the velocity 3-vector of S relative to Ŝ is

⇀

û = û1ê1 + û2ê2 + û3ê3, where ûi =
Λi

4

Λ4
4
− Λi

4

Λ4
4 , i = 1, 2, 3. (1.3.12)

Next observe that
∑3

i=1(Δxi/Δx4)2 = (Λ4
4)−2
∑3

i=1(Λ
4
i)2 = (Λ4

4)−2 ·
[(Λ4

4)2 − 1]. Similarly,
∑3

i=1(Δx̂i/Δx̂4)2 = (Λ4
4)−2[(Λ4

4)2 − 1]. Physically,
we interpret these equalities as asserting that the velocity of Ŝ relative to S
and the velocity of S relative to Ŝ have the same constant magnitude which
we shall denote by β. Thus, β2 = 1 − (Λ4

4)−2, so, in particular, 0 ≤ β2 < 1
and β = 0 if and only if Λ is a rotation (Lemma 1.3.4). Solving for Λ4

4 (and
taking the positive square root since Λ is assumed orthochronous) yields

Λ4
4 = (1 − β2)−

1
2 (= Λ4

4). (1.3.13)

The quantity (1 − β2)−1/2 will occur frequently and is often designated γ.
Assuming that Λ is not a rotation we may write

⇀
u as

⇀
u = β

⇀

d = β(d1e1 + d2e2 + d3e3), di = ui/β, (1.3.14)
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where
⇀

d is the direction 3-vector of Ŝ relative to S and the di are interpreted
as the direction cosines of the directed line segment in

∑
along which the

observer in S sees
∑̂

moving. Similarly,
⇀

û = β
⇀

d̂ = β(d̂1ê1 + d̂2ê2 + d̂3ê3), d̂i = ûi/β. (1.3.15)

Exercise 1.3.9 Show that the di are the components of the normalized
projection of ê4 onto the subspace spanned by {e1, e2, e3}, i.e., that

di =

⎛⎝ 3∑
j=1

(ê4 · ej)2

⎞⎠− 1
2

(ê4 · ei), i = 1, 2, 3, (1.3.16)

and similarly

d̂i =

⎛⎝ 3∑
j=1

(e4 · êj)2

⎞⎠− 1
2

(e4 · êi), i = 1, 2, 3. (1.3.17)

Exercise 1.3.10 Show that ê4 = γ(β
⇀

d +e4) and, similarly, e4 = γ(β
⇀

d̂ + ê4)
and notice that it follows from these that e4 · ê4 = ê4 · e4 = −γ.

Comparing (1.3.11) and (1.3.14) and using (1.3.13) we obtain

Λ4
i = −Λ4

i = β(1 − β2)−
1
2 di, i = 1, 2, 3, (1.3.18)

and similarly

Λi
4 = −Λi

4 = β(1 − β2)−
1
2 d̂i, i = 1, 2, 3. (1.3.19)

Equations (1.3.13), (1.3.18) and (1.3.19) give the last row and column of Λ
in terms of physically measurable quantities and even at this stage a number
of interesting kinematic consequences become apparent. Indeed, from (1.2.7)
we obtain

Δx̂4 = −βγ
(
d1Δx1 + d2Δx2 + d3Δx3

)
+ γΔx4 (1.3.20)

for any two events. Let us consider the special case of two events on the
worldline of a point at rest in S. Then Δx1 = Δx2 = Δx3 = 0 so (1.3.20)
becomes

Δx̂4 = γΔx4 =
1√

1 − β2
Δx4. (1.3.21)

In particular, Δx̂4 = Δx4 if and only if Λ is a rotation. Any relative motion
of S and Ŝ gives rise to a time dilation effect according to which Δx̂4 > Δx4.
Since our two events can be interpreted as two readings on one of the clocks
at rest in S, an observer in Ŝ will conclude that the clocks in S are running
slow (even though they are, by assumption, identical).
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Exercise 1.3.11 Show that this time dilation effect is entirely symmetrical,
i.e., that for two events with Δx̂1 = Δx̂2 = Δx̂3 = 0,

Δx4 = γΔx̂4 =
1√

1 − β2
Δx̂4. (1.3.22)

We shall return to this phenomenon of time dilation in much greater detail
after we have introduced a geometrical construction for picturing it. Never-
theless, we should point out at the outset that it is in no sense an illusion;
it is quite “real” and can manifest itself in observable phenomena. One such
instance occurs in the study of cosmic rays (“showers” of various types of
elementary particles from space which impact the earth). Certain types of
mesons that are encountered in cosmic radiation are so short-lived (at rest)
that even if they could travel at the speed of light (which they cannot) the
time required to traverse our atmosphere would be some ten times their nor-
mal life span. They should not be able to reach the earth, but they do. Time
dilation, in a sense, “keeps them young”. The meson’s notion of time is not
the same as ours. What seems a normal lifetime to the meson appears much
longer to us. It is well to keep in mind also that we have been rather vague
about what we mean by a “clock”. Essentially any phenomenon involving ob-
servable change (successive readings on a Timex, vibrations of an atom, the
lifetime of a meson, or a human being) is a “clock” and is therefore subject
to the effects of time dilation. Of course, the effects will be negligibly small
unless β is quite close to 1 (the speed of light). On the other hand, as β → 1,
(1.3.21) shows that Δx̂4 → ∞ so that as speeds approach that of light the
effects become infinitely great.

Another special case of (1.3.20) is also of interest. Let us suppose that our
two events are judged simultaneous in S, i.e., that Δx4 = 0. Then

Δx̂4 = −βγ
(
d1Δx1 + d2Δx2 + d3Δx3

)
. (1.3.23)

Again assuming that β �= 0 we find that, in general, Δx̂4 will not be zero,
i.e., that the two events will not be judged simultaneous in Ŝ. Indeed, S and
Ŝ will agree on the simultaneity of these two events if and only if the spatial
locations of the events in

∑
bear a very special relation to the direction in∑

along which
∑̂

is moving, namely,

d1Δx1 + d2Δx2 + d3Δx3 = 0 (1.3.24)

(the displacement vector in
∑

between the locations of the two events is
either zero or nonzero and perpendicular to the direction of

∑̂
’s motion in∑

). Otherwise, Δx̂4 �= 0 and we have an instance of what is called the
relativity of simultaneity. Notice, incidentally, that such disagreement can
arise only for spatially separated events. More precisely, if in some admissible
frame S two events x and x0 are simultaneous and occur at the same spatial
location, then Δxa = 0 for a = 1, 2, 3, 4 so x − x0 = 0. Since the Lorentz
transformations are linear it follows that Δx̂a = 0 for a = 1, 2, 3, 4, i.e., the
events are also simultaneous and occur at the same spatial location in Ŝ.
Again, we will return to this phenomenon in much greater detail shortly.
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It will be useful at this point to isolate a certain subgroup of the Lorentz
group L which contains all of the physically interesting information about
Lorentz transformations, but has much of the unimportant detail pruned
away. We do this in the obvious way by assuming that the spatial axes
of S and Ŝ have a particularly simple relative orientation. Specifically, we
consider the special case in which the direction cosines di and d̂i are given
by d1 = 1, d̂1 = −1 and d2 = d̂2 = d3 = d̂3 = 0. Thus, the direction vectors

are
⇀

d = e1 and
⇀

d̂ = −ê1. Physically, this corresponds to the situation in
which an observer in S sees

∑̂
moving in the direction of the positive x1-axis

and an observer in Ŝ sees
∑

moving in the direction of the negative x̂1-axis.
Since the origins of the spatial coordinate systems of S and Ŝ coincided at
x4 = x̂4 = 0, we picture the motion of these two systems as being along their
common x1-, x̂1-axis. Now, from (1.3.13), (1.3.18) and (1.3.19) we find that
the Lorentz transformation matrix Λ must have the form

Λ =

⎡⎢⎢⎣
Λ1

1 Λ1
2 Λ1

3 −βγ
Λ2

1 Λ2
2 Λ2

3 0
Λ3

1 Λ3
2 Λ3

3 0
−βγ 0 0 γ

⎤⎥⎥⎦ .

Exercise 1.3.12 Use the orthogonality conditions (1.2.5) and (1.2.6) to
show that Λ must take the form

Λ =

⎡⎢⎢⎣
γ 0 0 −βγ
0 Λ2

2 Λ2
3 0

0 Λ3
2 Λ3

3 0
−βγ 0 0 γ

⎤⎥⎥⎦ , (1.3.25)

where
[
Λi

j

]
i,j=2,3

is a 2× 2 unimodular orthogonal matrix, i.e., a rotation of
the plane R2.

To discover the differences between these various elements of L we con-
sider first the simplest possible choice for the 2 × 2 unimodular orthogo-
nal matrix [Λi

j ]i,j=2,3, i.e., the identity matrix. The corresponding Lorentz
transformation is

Λ =

⎡⎢⎢⎣
γ 0 0 −βγ
0 1 0 0
0 0 1 0

−βγ 0 0 γ

⎤⎥⎥⎦ (1.3.26)

and the associated coordinate transformation is

x̂1 = (1 − β2)−
1
2 x1 − β(1 − β2)−

1
2 x4,

x̂2 = x2,

x̂3 = x3,

x̂4 = −β(1 − β2)−
1
2 x1 + (1 − β2)−

1
2 x4.

(1.3.27)
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Fig. 1.3.3

By virtue of the equalities x̂2 = x2 and x̂3 = x3 we view the physical re-
lationship between

∑
and
∑̂

as shown in Figure 1.3.3. Frames of reference
with spatial axes related in the manner shown in Figure 1.3.3 are said to be
in standard configuration. Now it should be clear that any Lorentz transfor-
mation of the form (1.3.25) will correspond to the physical situation in which
the x̂2- and x̂3-axes of Ŝ are rotated in their own plane from the position
shown in Figure 1.3.3.

By (1.2.10) the inverse of the Lorentz transformation Λ defined by
(1.3.26) is

Λ−1 =

⎡⎢⎢⎣
γ 0 0 βγ
0 1 0 0
0 0 1 0

βγ 0 0 γ

⎤⎥⎥⎦ (1.3.28)

and the corresponding coordinate transformation is

x1 = (1 − β2)−
1
2 x̂1 + β(1 − β2)−

1
2 x̂4,

x2 = x̂2,

x3 = x̂3,

x4 = β(1 − β2)−
1
2 x̂1 + (1 − β2)−

1
2 x̂4.

(1.3.29)

Any Lorentz transformation of the form (1.3.26) or (1.3.28), i.e., with Λ2
4 =

Λ3
4 = Λ4

2 = Λ4
3 = 0 and

[
Λi

j

]
i,j=2,3

equal to the 2 × 2 identity matrix, is
called a special Lorentz transformation. Since Λ and Λ−1 differ only in the
signs of the (1,4) and (4,1) entries it is customary, when discussing special
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Lorentz transformations, to allow −1 < β < 1. By choosing β > 0 when
Λ1

4 < 0 and β < 0 when Λ1
4 > 0 all special Lorentz transformations can be

written in the form (1.3.26) and we shall henceforth adopt this convention.
For each real number β with −1 < β < 1 we therefore define γ = γ(β) =
(1 − β2)−1/2 and

Λ(β) =

⎡⎢⎢⎣
γ 0 0 −βγ
0 1 0 0
0 0 1 0

−βγ 0 0 γ

⎤⎥⎥⎦ .

The matrix Λ(β) is often called a boost in the x1-direction.

Exercise 1.3.13 Define matrices which represent boosts in the x2- and x3-
directions. One can define a boost in an arbitrary direction by first rotating,
say, the positive x1-axis into that direction and then applying Λ(β).

Exercise 1.3.14 Suppose −1 < β1 ≤ β2 < 1. Show that

(a)
∣∣∣∣ β1 + β2

1 + β1β2

∣∣∣∣ < 1. Hint : Show that if a is a constant satisfying −1 < a < 1,

then the function f(x) =
x + a

1 + ax
is increasing on −1 ≤ x ≤ 1.

(b) Λ(β1)Λ(β2) = Λ
(

β1 + β2

1 + β1β2

)
. (1.3.30)

It follows from Exercise 1.3.14 that the composition of two boosts in the
x1-direction is another boost in the x1-direction. Since Λ−1(β) = Λ(−β) the
collection of all such special Lorentz transformations forms a subgroup of L.
We point out, however, that the composition of two boosts in two different
directions is, in general, not equivalent to a single boost in any direction.

By referring the three special Lorentz transformations Λ(β1), Λ(β2) and
Λ(β1)Λ(β2) to the corresponding admissible frames of reference one arrives
at the following physical interpretation of (1.3.30): If the speed of Ŝ relative

to S is β1 and the speed of ˆ̂S relative to Ŝ is β2, then the speed of ˆ̂S relative
to S is not β1 + β2 as one might expect, but rather

β1 + β2

1 + β1β2
,

which is always less than β1 + β2 provided β1β2 �= 0. Equation (1.3.30) is
generally known as the relativistic addition of velocities formula. It, together
with part (a) of Exercise 1.3.14, confirms the suspicion, already indicated by
the behavior of (1.3.21) as β → 1, that the relative speed of two admissible
frames of reference is always less than that of light (that is, 1). Since any ma-
terial object can be regarded as at rest in some admissible frame we conclude
that such an object cannot attain (or exceed) the speed of light relative to
an admissible frame.
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Despite this “nonadditivity” of speeds in relativity it is often convenient to
measure speeds with an alternative “velocity parameter” θ that is additive.
An analogous situation occurs in plane Euclidean geometry where one has
the option of describing the relative orientation of two Cartesian coordinate
systems by means of angles (which are additive) or slopes (which are not).
What we would like then is a measure θ of relative velocities with the property
that if θ1 is the velocity parameter of Ŝ relative to S and θ2 is the velocity
parameter of ˆ̂S relative to Ŝ, then the velocity parameter of ˆ̂S relative to S,
is θ1 + θ2. Since θ is to measure relative speed, β will be some one-to-one
function of θ, say, β = f(θ). Additivity and (1.3.30) require that f satisfy
the functional equation

f(θ1 + θ2) =
f(θ1) + f(θ2)

1 + f(θ1) f(θ2)
. (1.3.31)

Being reminiscent of the sum formula for the hyperbolic tangent, (1.3.31)
suggests the change of variable

β = tanh θ or θ = tanh−1 β. (1.3.32)

Observe that tanh−1 is a one-to-one differentiable function of (−1, 1) onto
R with the property that β → ±1 implies θ → ±∞, i.e., the speed of light
has infinite velocity parameter. If this change of variable seems to have been
pulled out of the air it may be comforting to have a uniqueness theorem.

Exercise 1.3.15 Show that there is exactly one differentiable function β =
f(θ) on R (namely, tanh) which satisfies (1.3.31) and the requirement that,
for small speeds, β and θ are nearly equal, i.e., that

lim
θ→0

f(θ)
θ

= 1.

Hint : Show that such an f necessarily satisfies the initial value problem
f ′(θ) = 1−(f(θ))2, f(0) = 0 and appeal to the standard Uniqueness Theorem
for solutions to such problems. Solve the problem to show that f(θ) = tanh θ.

Exercise 1.3.16 Show that if β = tanh θ, then the hyperbolic form of the
Lorentz transformation Λ(β) is

L(θ) =

⎡⎢⎢⎣
cosh θ 0 0 − sinh θ

0 1 0 0
0 0 1 0

− sinh θ 0 0 cosh θ

⎤⎥⎥⎦ .

Earlier we suggested that all of the physically interesting behavior of
proper, orthochronous Lorentz transformations is exhibited by the special
Lorentz transformations. What we had in mind is the following theorem
which asserts that any element of L differs from some L(θ) only by at most
two rotations. This result will also be important in Section 1.7.
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Theorem 1.3.5 Let Λ = [Λa
b]a,b=1,2,3,4 be a proper, orthochronous Lorentz

transformation. Then there exists a real number θ and two rotations R1 and
R2 in R such that Λ = R1L(θ)R2.

Proof: Suppose first that Λ1
4 = Λ2

4 = Λ3
4 = 0. Then, by Lemma 1.3.4,

Λ is itself a rotation and so we may take R1 = Λ, θ = 0 and R2 to be
the 4 × 4 identity matrix. Consequently, we may assume that the vector(
Λ1

4, Λ2
4, Λ3

4

)
in R3 is nonzero. Dividing by its magnitude in R3 gives a

vector
⇀
u1 = (α1, α2, α3) of unit length in R3. Let

⇀
u2 = (β1, β2, β3) and

⇀
u3 = (γ1, γ2, γ3) be vectors in R3 such that {⇀

u1,
⇀
u2,

⇀
u3} is an orthonormal

basis for R3. Then ⎡⎣α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

⎤⎦
is an orthogonal matrix in R3 which, by a suitable ordering of the basis
{⇀
u1,

⇀
u2,

⇀
u3}, we may assume unimodular, i.e., to have determinant 1.

Thus, the matrix

R1
′ =

⎡⎢⎢⎣
α1 α2 α3 0
β1 β2 β3 0
γ1 γ2 γ3 0
0 0 0 1

⎤⎥⎥⎦
is a rotation in R and so R1

′Λ is in L. Now, since
⇀
u2 and

⇀
u3 are orthogonal

in R3, the product R1
′Λ must be of the form

R1
′Λ =

⎡⎢⎢⎣
a11 a12 a13 a14

a21 a22 a23 0
a31 a32 a33 0
Λ4

1 Λ4
2 Λ4

3 Λ4
4

⎤⎥⎥⎦ ,

where a14 = α1Λ1
4 + α2Λ2

4 + α3Λ3
4 =
((

Λ1
4

)2 +
(
Λ2

4

)2 +
(
Λ3

4

)2 ) 1
2 > 0.

Next consider the vectors
⇀
v 2 = (a21, a22, a23) and

⇀
v 3 = (a31, a32, a33)

in R3. Since R1
′Λ is in L,

⇀
v 2 and

⇀
v 3 are orthogonal unit vectors in R3.

Select
⇀
v 1 = (c1, c2, c3) in R3 so that {⇀

v 1,
⇀
v 2,

⇀
v 3} is an orthonormal basis

for R3. As for R1
′ above we may relabel if necessary and assume that

R2
′ =

⎡⎢⎢⎣
c1 a21 a31 0
c2 a22 a32 0
c3 a23 a33 0
0 0 0 1

⎤⎥⎥⎦
is a rotation in R. Thus, B = R1

′ΛR2
′ is also in L.

Exercise 1.3.17 Use the available orthogonality conditions (the fact that
R1

′Λ and R2
′ are in L) to show that
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B =

⎡⎢⎢⎣
b11 0 0 a14

0 1 0 0
0 0 1 0

b41 0 0 Λ4
4

⎤⎥⎥⎦ ,

where b11 = a11c1 + a12c2 + a13c3 and b41 = Λ4
1c1 + Λ4

2c2 + Λ4
3c3.

Thus, from the fact that B is in L we obtain

b11a14 − b41Λ4
4 = 0, (1.3.33)

b2
11 − b2

41 = 1. (1.3.34)

a2
14 −
(
Λ4

4

)2
= −1. (1.3.35)

Exercise 1.3.18 Use (1.3.33), (1.3.34) and (1.3.35) to show that neither b11

nor b41 is zero.

Thus, (1.3.33) is equivalent to Λ4
4/b11 = a14/b41 = k for some k, i.e., Λ4

4 =
kb11 and a14 = kb41. Substituting these into (1.3.35) gives k2

(
b2
11 − b2

41

)
= 1.

By (1.3.34), k2 = 1, i.e., k = ±1. But k = −1 would imply det B = −1,
whereas we must have det B = 1 since B is in L. Thus, k = 1 so

B =

⎡⎢⎢⎣
Λ4

4 0 0 a14

0 1 0 0
0 0 1 0

a14 0 0 Λ4
4

⎤⎥⎥⎦ .

Now, it follows from (1.3.35) that Λ4
4 + a14 =

(
Λ4

4 − a14

)−1 so
ln
(
Λ4

4 − a14

)
= − ln

(
Λ4

4 + a14

)
. Define θ by

θ = − ln
(
Λ4

4 + a14

)
= ln(Λ4

4 − a14).

Then eθ = Λ4
4−a14 and e−θ = Λ4

4 +a14 so cosh θ = Λ4
4 and sinh θ = −a14.

Consequently, B = L(θ). Since B = R1
′ΛR2

′ = L(θ), we find that if R1 =(
R1

′)−1
and R2 =

(
R2

′)−1
then Λ = R1L(θ)R2 as required. �

The physical interpretion of Theorem 1.3.5 goes something like this: The
Lorentz transformation from S to Ŝ can be accomplished by (1) rotating the
axes of S so that the x1-axis coincides with the line along which the relative
motion of

∑̂
and
∑

takes place (positive x1-direction coinciding with the
direction of motion of

∑̂
relative to

∑
), (2) “boosting” to a new frame whose

spatial axes are parallel to the rotated axes of S and at rest relative to
∑̂

(via
L(θ)) and (3) rotating these spatial axes until they coincide with those of Ŝ.
In many elementary situations the rotational part of this is unimportant and
it suffices to restrict one’s attention to special Lorentz transformations.

The special Lorentz transformations (1.3.27) and (1.3.29) correspond to a
physical situation in which two of the three spatial coordinates are the same
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in both frames of reference. By suppressing these two it is possible to produce
a simple, and extremely useful, 2-dimensional geometrical representation of
M and of the effect of a Lorentz transformation. We begin by labeling two
perpendicular lines in the plane “x1” and “x4”. One should take care, how-
ever, not to attribute any physical significance to the perpendicularity of
these lines. It is merely a matter of convenience and, in particular, is not
to be identified with orthogonality in M. Each event then has coordinates
relative to e1 and e4 which can be obtained by projecting parallel to the
opposite axis. The x̂4-axis is to be identified with the set of all events with
x̂1 = 0, i.e., with x1 = βx4 (= (tanh θ)x4) and we consequently picture the
x̂4-axis as coinciding with this line. Similarly, the x̂1-axis is taken to lie along
the line x̂4 = 0, i.e., x4 = βx1. In Figure 1.3.4 we have drawn these axes
together with one branch of each of the hyperbolas (x1)2 − (x4)2 = 1 and
(x1)2 − (x4)2 = −1.

Fig. 1.3.4

Since the transformation (1.3.27) leaves invariant the quadratic form on M
and since x̂2 = x2 and x̂3 = x3, it follows that the hyperbolas (x1)2−(x4)2 = 1
and (x1)2 − (x4)2 = −1 coincide with the curves (x̂1)2 − (x̂4)2 = 1 and
(x̂1)2 − (x̂4)2 = −1 respectively. From this it is clear that picturing the x̂1-
and x̂4-axes as we have has distorted the picture (e.g., the point of intersection
of (x1)2−(x4)2 = 1 with the x̂1-axis must have hatted coordinates (x̂1, x̂4) =
(1, 0)) and necessitates a change of scale on these axes. To determine precisely
what this change of scale should be we observe that one unit of length on
the x̂1-axis must be represented by a segment whose Euclidean length in the
picture is the Euclidean distance from the origin to the point (x̂1, x̂4) =
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(1, 0). This point has unhatted coordinates (x1, x4) = ((1 − β2)−
1
2 ,

β(1 − β2)−
1
2 ) (by (1.3.29)) and the Euclidean distance from this point to

the origin is, by the distance formula, (1 + β2)
1
2 (1 − β2)−

1
2 . A similar ar-

gument shows that one unit of time on the x̂4-axis must also be represented
by a segment of Euclidean length (1 + β2)

1
2 (1 − β2)−

1
2 . However, before we

can legitimately calibrate these axes with this unit we must verify that all
of the hyperbolas (x1)2 − (x4)2 = ±k2 (k > 0) intersect the x̂1- and x̂4-axes
a Euclidean distance k(1 + β2)

1
2 (1 − β2)−

1
2 from the origin (the calibration

must be consistent with the invariance of these hyperbolas under (1.3.27)).

Exercise 1.3.19 Verify this.

With this we have justified the calibration of the axes shown in Figure 1.3.5.

Fig. 1.3.5

Exercise 1.3.20 Show that with this calibration of the x̂1- and x̂4-axes the
hatted coordinates of any event can be obtained geometrically by projecting
parallel to the opposite axis.

From this it is clear that the dotted lines in Figure 1.3.5 parallel to the x̂1-
and x̂4-axes and through the points (x̂1, x̂4) = (0, 1) and (x̂1, x̂4) = (1, 0)
are the lines x̂4 = 1 and x̂1 = 1 respectively.

Exercise 1.3.21 Show that, for any k, the line x̂4 = k intersects the hyper-
bola (x1)2 − (x4)2 = −k2 only at the point (x̂1, x̂4) = (0, k), where it is, in
fact, the tangent line. Similarly, x̂1 = k is tangent to (x1)2 − (x4)2 = k2 at
(x̂1, x̂4) = (k, 0) and intersects this hyperbola only at that point.
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Next we would like to illustrate the utility of these 2-dimensional
Minkowski diagrams, as they are called, by examining in detail the basic
kinematic effects of special relativity (two of which we have already en-
countered). Perhaps the most fundamental of these is the so-called relativity
of simultaneity which asserts that two admissible observers will, in general,
disagree as to whether or not a given pair of spatially separated events were si-
multaneous. That this is the case was already clear in (1.3.23) which gives the
time difference in Ŝ between two events judged simultaneous in S. Since, in
a Minkowski diagram, lines of simultaneity (x4 = constant or x̂4 = constant)
are lines parallel to the respective spatial axes (Exercise 1.3.20) and since the
line through two given events cannot be parallel to both the x1- and x̂1-axes
(unless β = 0), the geometrical representation is particularly persuasive (see
Figure 1.3.6).

Notice, however, that some information is lost in such diagrams. In partic-
ular, the two lines of simultaneity in Figure 1.3.6 intersect in what appears
to be a single point. But our diagram intentionally suppresses two spatial
dimensions so the “lines” of simultaneity actually represent “instantaneous
3-spaces” which intersect in an entire plane of events and both observers judge
all of these events to be simultaneous (recall (1.3.24)). One can visualize at
least an entire line of such events by mentally reinserting one of the missing
spatial dimensions with an axis perpendicular to the sheet of paper on which
Figure 1.3.6 is drawn. The lines of simultaneity become planes of simultaneity
which intersect in a “line of agreement” for S and Ŝ.

And so, it all seems quite simple. Too simple perhaps. One cannot escape
the feeling that something must be wrong. Two events are given (for dramatic
effect, two explosions). Surely the events either are, or are not, simultaneous

Fig. 1.3.6
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and there is no room for disagreement. It seems inconceivable that two equally
competent observers could arrive at different conclusions. And it is difficult to
conceive, but only, we claim, because very few of us have ever met “another”
admissible observer. We are, for the most part, all confined to the same frame
of reference and, as is often the case in human affairs, our experience is too
narrow, our view too parochial to comprehend other possiblities. We shall
try to remedy this situation by moving the events far away from our all-
too-comfortable earthly reference frame. Before getting started, however, we
recommend that the reader return to the Introduction to review the procedure
outlined there for synchronizing clocks as well as the properties of light signals
enumerated there. In addition, it will be important to keep in mind that
“simultaneity” becomes questionable only for spatially separated events. All
observers agree that two given events either are, or are not, “simultaneous at
the same spatial location”.

Thus we consider two events (explosions) E1 and E2 occurring deep in
space (to avoid the psychological inclination to adopt any large body nearby
as a “standard of rest”). We suppose that E1 and E2 are observed in two
admissible frames S and Ŝ whose spatial axes are in standard configuration
(Figure 1.3.3). Let us also suppose that when the explosions take place they
permanently “mark” the locations at which they occur in each frame and,
at the same time, emit light rays in all directions whose arrival times are
recorded by local “assistants” at each spatial point within the two frames.
Naturally, an observer in a given frame of reference will say that the events
E1 and E2 are simultaneous if two such assistants, each of whom is in the
immediate vicinity of one of the events, record times x4

1 and x4
2 for these events

which, when compared later, are found to be equal. It is useful, however, to
rephrase this notion of simultaneity in terms of readings taken at a single
point. To do so we let 2d denote the distance between the spatial locations of
E1 and E2 as determined in the given frame of reference and let M denote the
midpoint of the line segment in that frame which joins these two locations:

Fig. 1.3.7

Since x4
1 = x4

2 if and only if x4
1 + d = x4

2 + d and since x4
1 + d is, by definition,

the time of arrival at M of a light signal emitted with E1 and, similarly, x4
2+d

is the arrival time at M of a light signal emitted with E2 we conclude that E1

and E2 are simultaneous in the given frame of reference if and only if light
signals emitted with these events arrive simultaneously at the midpoint of the
line segment joining the spatial locations of E1 and E2 within that frame.

Now let us denote by A and Â the spatial locations of E1 in S and Ŝ
respectively and by B and B̂ the locations of E2 in S and Ŝ. Thus, the points
A and Â coincide at the instant E1 occurs (they are the points “marked”
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by E1) and similarly B and B̂ coincide when E2 occurs. At their convenience
the two observers O and Ô presiding over S and Ŝ respectively collect all
of the data recorded by their assistants for analysis. Each will inspect the
coordinates of the two marked points, calculate from them the coordinates
of the midpoint of the line segment joining these two points in his coordinate
system (denote these midpoints by M and M̂) and inquire of his assistant
located at this point whether or not the light signals emitted from the two
explosions arrived simultaneously at his location. In general, of course, there
is no reason to expect an affirmative answer from either, but let us just
suppose that in this particular case one of the observers, say O, finds that the
light signals from the two explosions did indeed arrive simultaneously at the
midpoint of the line segment joining the spatial locations of the explosions in∑

. According to the criteria we have established, O will therefore conclude
that E1 and E2 were simultaneous so that, from his point of view, A and
Â, M and M̂ and B and B̂ all coincide “at the same time”.

Fig. 1.3.8

Continuing to analyze the situation as it is viewed from S we observe that, by
virtue of the finite speed at which the light signals propagate, a nonzero time
interval is required for these signals to reach M and that, during this time
interval, M and M̂ separate so that the signals cannot meet simultaneously
at M̂ .

Fig. 1.3.9

Indeed, if the motion is as indicated in Figures 1.3.8 and 1.3.9, the light from
E2 will clearly reach M̂ before the light from E1. Although we have reached
this conclusion by examining the situation from the point of view of O, any
other admissible observer will necessarily concur since we have assumed that
all such observers agree on the temporal order of any two events on the
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worldline of a photon (consider a photon emitted at E2 and the two events
on its worldline corresponding to its encounters with M̂ and the light signal
emitted at E1). In particular, Ô must conclude that E2 occurred before E1

and consequently that these two events are not simultaneous. When O and Ô
next meet they compare their observations of the two explosions and discover,
much to their chagrin, that they disagree as to whether or not these two
events were simultaneous. Having given the matter some thought, O believes
that he has resolved the difficulty. The two events were indeed simultaneous
as he had claimed, but they did not appear so to Ô because Ô was moving
(running toward the light signal from E2 and away from that of E1). To this
Ô responds without hesitation “I wasn’t moving — you were! The explosions
were not simultaneous, but only appeared so to you because of your motion
toward E1 and away from E2”. This apparent impasse could, of course, be
easily overcome if one could determine with some assurance which of the two
observers was “really moving”. But it is precisely this determination which
the Relativity Principle disallows: One can attach no objective meaning to
the phrase “really at rest”. The conclusion is inescapable: It makes no more
sense to ask if the events were “really simultaneous” than it does to ask if O
was “really at rest”. “Simultaneity”, like “motion” is a purely relative term.
If two events are simultaneous in one admissible frame of reference they will,
in general, not be simultaneous in another such frame.

The relativity of simultaneity is not easy to come to terms with, but it
is essential that one do so. Without it even the most basic contentions of
relativity appear riddled with logical inconsistencies.

Exercise 1.3.22 Observer Ô is moving to the right at constant speed β rel-
ative to observer O (along their common x1-, x̂1-axes with origins coinciding
at x4 = x̂4 = 0). At the instant O and Ô pass each other a flashbulb emits
a spherical electromagnetic wavefront. O observes this spherical wavefront
moving away from him with speed 1. After x4

0 meters of time the wavefront
will have reached points a distance x4

0 meters from him. According to O, at
the instant the light has reached point A in Figure 1.3.10 it has also reached
point B. However, Ô regards himself as at rest with O moving so he will also
observe a spherical wavefront moving away from him with speed 1. But as the
light travels to A, Ô has moved a short distance to the right of O so that the
spherical wavefront observed by Ô is not concentric with that observed by O.
In particular, when the light arrives at A, Ô will contend that it also reaches
(not B yet, but) C. They cannot both be right. Resolve the “paradox”. Hint :
There is an error in Figure 1.3.10. Compare it with Figure 1.3.11 after you
have filled in the blanks.

To be denied the absolute, universal notion of simultaneity which the
rather limited scope of our day-to-day experience has led us to accept uncriti-
cally is a serious matter. Disconcerting enough in its own right, this relativity
of simultaneity also necessitates a profound reevaluation of the most basic
concepts with which we describe the world. For example, since our observers
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Fig. 1.3.10

O and Ô need not agree on the time lapse between two events even when one
of them measures it to be zero, one could scarcely expect them to agree on
the elapsed time between two arbitrarily given events. And, indeed, we have
already seen in (1.3.20) that Δx4 and Δx̂4 are generally not equal. This effect,
known as time dilation, has a particularly nice geometrical representation in
a Minkowski diagram (see Figure 1.3.12). E1 (resp., E2) can be identified
physically with the appearance of the reading “1” on the clock at the origin
of S (resp., Ŝ). In S, E1 is simultaneous with E3 which corresponds to a
reading strictly less than 1 on the clock at the origin in Ŝ. Since the clocks
at the origins of S and Ŝ agreed at x4 = x̂4 = 0, O concludes that Ô’s
clock is running slow. Indeed, (1.3.21) and (1.3.22) show that each observes
the other’s time dilated by the same constant factor γ = (1 − β2)−

1
2 . The

moral of the story, perhaps a bit too tersely stated, is that “moving clocks
run slow”.

Exercise 1.3.23 Pions are subatomic particles which decay spontaneously
and have a half-life (at rest) of 1.8 × 10−8 sec (= 5.4m). A beam of pions
is accelerated to a speed of β = 0.99. One would expect that the beam
would drop to one-half its original intensity after travelling a distance of
(0.99)(5.4m) = 5.3m. However, it is found experimentally that the beam
reaches one-half intensity after travelling approximately 38m. Explain! Hint :
Let S denote the laboratory frame of reference, Ŝ the rest frame of the pi-
ons and assume that S and Ŝ are related by (1.3.27) and (1.3.29). Draw a
Minkowski diagram which represents the situation.

Return for a moment to Figure 1.3.12 and, in particular, to the line x̂4 = 1.
Each point on this line can be identified with the appearance of the reading
“1” on a clock that is stationary at some point in

∑̂
. These all occur “simul-

taneously” for Ô because his clocks have been synchronized. However, each
of these events occurs at a different “time” in S so O will disagree. Clocks at
different locations in

∑̂
read 1 at different “times” so, according to O, they

cannot be synchronized.
Here is an old, and much abused, “paradox” with its roots in the phe-

nomenon of time dilation, or rather, in a basic misunderstanding of that
phenomenon. Suppose that, at (0, 0, 0, 0), two identical twins part company.
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Fig. 1.3.11

One remains at rest in the admissible frame in which he was born. The other
is transported away at some constant speed to a distant point in space where
he turns around and returns at the same constant speed to rejoin his brother.
At the reunion the stationary twin finds that he is considerably older than his
more adventurous brother. Not surprising; after all, moving clocks run slow.
However, is it not true that, from the point of view of the “rocket” twin, it
is the “stationary” brother who has been moving and must, therefore, be the
younger of the two?

Fig. 1.3.12
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The error concealed in this argument, of course, is that it hinges upon a
supposed symmetry between the two twins which simply does not exist. If
the stationary twin does, in fact, remain at rest in an admissible frame, then
his brother certainly does not. Indeed, to turn around and return midway
through his journey he must “transfer” from one admissible frame to another
and, in practice, such a transfer would require accelerations (slow down, turn
around, speed up) and these accelerations would be experienced only by the
traveller and not by his brother. Nothing we have done thus far equips us
to deal with these accelerations and so we can come to no conclusions about
their physical effects (we will pursue this further in Section 1.4). That they
do have physical effects, however, can be surmised even now by idealizing the
situation a bit. Let us replace our two twins with three admissible frames: S
(stationary twin), Ŝ (rocket twin on his outward journey) and ˆ̂S (rocket twin
on his return journey). What this amounts to is the assumption that the two
individuals involved compare ages in passing (without stopping to discuss it)
at the beginning and end of the trip and that, at the turnaround point, the
traveller “jumps” instantaneously from one admissible frame to another (he
cannot do that, of course, but it seems reasonable that, with a sufficiently
durable observer, we could approximate such a jump arbitrarily well by a
“large” acceleration over a “small” time interval). Figure 1.3.13 represents
the outward journey from O to the turnaround event T .

Fig. 1.3.13

Notice that, in Ŝ, T is simultaneous with the event P on the worldline
of the stay-at-home. In S, P is simultaneous with some earlier event on the
worldline of the traveller. Each sees the other’s time dilated. Figure 1.3.14
represents the return journey. Notice that, in ˆ̂S, T is simultaneous with (not
P , but) the event Q on the worldline of the stationary twin, whereas, in S, Q
is simultaneous with some later event on the traveller’s worldline. Each sees
the other’s time dilated. Now, put the two pictures together in Figure 1.3.15
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Fig. 1.3.14

and notice that in “jumping” from Ŝ to ˆ̂S, our rocket twin has also jumped
over the entire interval from P to Q on the worldline of his brother; an interval
over which his brother ages, but he does not. The lesson to be learned is that,
while all motion is indeed relative, it is not all physically equivalent.

Exercise 1.3.24 Account, in a sentence or two, for the “missing” time in

Figure 1.3.15. Hint :
2β

1 + β2
> β for 0 < β < 1.

There is one last kinematic consequence of the relativity of simultaneity,
as interesting, as important and as surprising as time dilation. To trace its
origins we return once again to the explosions E1 and E2, observed by S and
Ŝ and discussed on pages 33–36. Recall that the points A in

∑
and Â in

∑̂
coincided when E1 occurred, whereas B in

∑
and B̂ in

∑̂
coincided when E2

occurred. Since the two events were simultaneous in S, the observer O will
conclude that A coincides with Â at the same instant that B coincides with
B̂ and, in particular, that the segments AB and ÂB̂ have the same length
(see Figure 1.3.8). However, in Ŝ, E2 occurred before E1 so B coincides
with B̂ before A coincides with Â and Ô must conclude that the length
of ÂB̂ is greater than the length of AB. More generally, two objects (say,
measuring rods) in relative motion are considered to be equal in length if,
when they pass each other, their respective endpoints A, Â and B, B̂ coincide
simultaneously. But, “simultaneously” according to whom? Here we have two
events (the coincidence of A and Â and the coincidence of B and B̂) and we
have seen that if one admissible observer claims that they are simultaneous
(i.e., that the lengths AB and ÂB̂ are equal), then another will, in general,
disagree and we have no reason to prefer the judgment of one such observer to
that of another (Relativity Principle). “Length”, we must conclude, cannot
be regarded as an objective attribute of the rods, but is rather simply the
result of a specific measurement which we can no longer go on believing
must be the same for all observers. Notice also that these conclusions have
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nothing whatever to do with the material construction of the measuring rods
(in particular, their “rigidity”) since, in the case of the two explosions, for
example, there need not be any material connection between the two events.
This phenomenon is known as length contraction (or Lorentz contraction)
and we shall now look into the quantitative side of it.

Fig. 1.3.15

To simplify the calculations and to make available an illuminating
Minkowski diagram we shall restrict our discussion to frames of reference
whose spatial axes are in standard configuration (see Figure 1.3.3) and whose
coordinates are therefore related by (1.3.27) and (1.3.29). For the picture let
us consider a “rigid” rod resting along the x̂1-axis of Ŝ with ends fixed at
x̂1 = 0 and x̂1 = 1. Thus, the length of the rod as measured in Ŝ is 1. The
worldlines of the left and right ends of the rod are the x̂1-axis and the line
x̂1 = 1 respectively. Geometrically, the measured length of the rod in S is
the Euclidean length of the segment joining two points on these worldlines at
the same instant in S (“locate the ends of the rod simultaneously and com-
pute the length from their coordinates at this instant”). Since the Euclidean
length of such a segment is clearly the same as the x1-coordinate of the point
P in Figure 1.3.16 and since this is clearly less than 1, length contraction is
visually apparent.

For the calculation we will be somewhat more general and consider a rod
lying along the x̂1-axis of Ŝ between x̂1

0 and x̂1
1 with x̂1

0 < x̂1
1 so that its

measured length in Ŝ is Δx̂1 = x̂1
1− x̂1

0. The worldline of the rod’s left- (resp.,
right-) hand endpoint has Ŝ-coordinates

(
x̂1

0, 0, 0, x̂4
)

(resp.,
(
x̂1

1, 0, 0, x̂4
)
),

with −∞ < x̂4 < ∞. S will measure the length of this rod by locating
its endpoints “simultaneously”, i.e., by finding one event on each of these
worldlines with the same x4 (not x̂4). But, for any fixed x4, the transformation
equations (1.3.27) give

x̂1
0 = (1 − β2)−

1
2 x1

0 − β(1 − β2)−
1
2 x4,

x̂1
1 = (1 − β2)−

1
2 x1

1 − β(1 − β2)−
1
2 x4,
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Fig. 1.3.16

so that Δx̂1 = (1 − β2)−
1
2 Δx1 and therefore

Δx1 = (1 − β2)
1
2 Δx̂1. (1.3.36)

Since (1 − β2)
1
2 < 1 we find that the measured length of the rod in S is less

than its measured length in Ŝ by a factor of
√

1 − β2. By reversing the roles
of S and Ŝ we again find that this effect is entirely symmetrical.

Exercise 1.3.25 Return to Exercise 1.3.23 and offer another explanation
based, not on time dilation, but on length contraction.

As it is with time dilation, the correct physical interpretation of the
Lorentz contraction often requires rather subtle and delicate argument.

Exercise 1.3.26 Imagine a barn which, at rest, measures 8 meters in length.
A (very fast) runner carries a pole of rest length 16 meters toward the barn
at such a high speed that, for an observer at rest with the barn, it appears
Lorentz contracted to 8 meters and therefore fits inside the barn. This ob-
server slams the front door shut at the instant the back of the pole enters
the front of the barn and so encloses the pole entirely within the barn. But
is it not true that the runner sees the barn Lorentz contracted to 4 meters
so that the 16 meter pole could never fit entirely within it? Resolve the diffi-
culty! Hint : Let S and Ŝ respectively denote the rest frames of the barn and
the pole and assume that these frames are related by (1.3.27) and (1.3.29).
Calculate β. Suppose the front of the pole enters the front of the barn at
(0, 0, 0, 0). Now consider the two events at which the front of the pole hits
the back of the barn and the back of the pole enters the front of the barn.
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Finally, think about the maximum speed at which the signal to stop can be
communicated from the front to the back of the pole.

The underlying message of Exercise 1.3.26 would seem to be that the
classical notion of a perfectly “rigid” body has no place in relativity, even as
an idealization. The pole must compress since otherwise the signal to halt
would proceed from the front to the back instantaneously and, in particular,
the situation described in the exercise would, indeed, be “paradoxical”, i.e.,
represent a logical inconsistency.

1.4 Timelike Vectors and Curves

Let us now consider in somewhat more detail a pair of events x0 and x for
which x− x0 is timelike, i.e., Q(x− x0) < 0. Relative to any admissible basis
{ea} we have (Δx1)2 + (Δx2)2 + (Δx3)2 < (Δx4)2. Clearly then, Δx4 �= 0
and we may assume without loss of generality that Δx4 > 0, i.e., that x− x0

is future-directed. Thus, we obtain

((Δx1)2 + (Δx2)2 + (Δx3)2)
1
2

Δx4
< 1.

Physically, it is therefore clear that if one were to move with speed

((Δx1)2 + (Δx2)2 + (Δx3)2)
1
2

Δx4

relative to the frame S corresponding to {ea} along the line in
∑

from(
x1

0, x2
0, x3

0

)
to (x1, x2, x3) and if one were present at x0, then one would also

experience x, i.e., that there is an admissible frame of reference Ŝ in which
x0 and x occur at the same spatial point, one after the other. Specifically, we
now prove that if one chooses β = ((Δx1)2 + (Δx2)2 + (Δx3)2)1/2/Δx4 and
lets d1, d2 and d3 be the direction cosines in

∑
of the directed line segment

from
(
x1

0, x2
0, x3

0

)
to (x1, x2, x3), then the basis {êa} for M obtained from

{ea} by performing any Lorentz transformation whose fourth row is Λ4
i =

−β(1−β2)−1/2 di, i = 1, 2, 3, and Λ4
4 = (1−β2)−1/2 = γ, has the property

that Δx̂1 = Δx̂2 = Δx̂3 = 0.

Exercise 1.4.1 There will, in general, be many Lorentz transformations
with this fourth row. Show that defining the remaining entries by Λi

4 =
−βγdi, i = 1, 2, 3, and Λi

j = (γ − 1)didj + δi
j , i, j = 1, 2, 3 (δi

j being the
Kronecker delta) gives an element of L.

To prove this we compute Δx̂4 = Λ4
bΔxb. To simplify the calculations we

let Δ
⇀
x = ((Δx1)2+(Δx2)2+(Δx3)2)1/2. We may clearly assume that Δ

⇀
x �= 0

since otherwise there is nothing to prove. Thus, β2 = Δ
⇀
x2/(Δx4)2, γ =

Δx4/
√
−Q(x − x0), βγ = Δ

⇀
x/
√
−Q(x − x0) and di = Δxi/Δ

⇀
x for i =

1, 2, 3. From (1.3.20) we therefore obtain
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Δx̂4 = − Δ
⇀
x√

−Q(x − x0)
(Δ

⇀
x) +

(Δx4)2√
−Q(x − x0)

=
√
−Q(x − x0).

Consequently, Q(x − x0) = −(Δx̂4)2. But, computing Q(x − x0) relative to
the basis {êa} we find that Q(x− x0) = (Δx̂1)2 + (Δx̂2)2 + (Δx̂3)2 − (Δx̂4)2

so we must have (Δx̂1)2 + (Δx̂2)2 + (Δx̂3)2 = 0, i.e., Δx̂1 = Δx̂2 = Δx̂3 = 0
as required.

For any timelike vector v in M we define the duration τ(v) of v by τ(v) =√
−Q(v). If v is the displacement vector v = x − x0 between two events x0

and x, then, as we have just shown, τ(x − x0) is to be interpreted physically
as the time separation of x0 and x in any admissible frame of reference in
which both events occur at the same spatial location.

A subset of M of the form {x0+t(x−x0) : t ∈ R}, where x−x0 is timelike,
is called a timelike straight line in M. A timelike straight line which passes
through the origin is called a time axis. We show that the name is justified
by proving that if T is a time axis, then there exists an admissible basis {êa}
for M such that the subspace of M spanned by ê4 is T. To see this we select
an event ẽ4 on T with ẽ4 · ẽ4 = −1 and let Span {ẽ4} be the linear span of
ẽ4 in M. Next let Span {ẽ4}⊥ be the orthogonal complement of Span {ẽ4}
in M. By Exercise 1.1.2, Span {ẽ4}⊥ is also a subspace of M. We claim that
M = Span{ẽ4}⊕ Span {ẽ4}⊥ (recall that a vector space V is the direct sum
of two subspaces W1 and W2 of V , written V = W1 ⊕W2, if W1 ∩W2 = {0}
and if every vector in V can be written as the sum of a vector in W1 and a
vector in W2). Since every nonzero vector in Span {ẽ4} is timelike, whereas,
by Corollary 1.3.2, every nonzero vector in Span {ẽ4}⊥ is spacelike, it is clear
that these two subspaces intersect only in the zero vector. Next we let v
denote an arbitrary vector in M and consider the vector w = v + (v · ẽ4)ẽ4

in M. Since w · ẽ4 = v · ẽ4 + (v · ẽ4)(ẽ4 · ẽ4) = 0 we find that w is in Span
{ẽ4}⊥. Thus, the expression v = −(v · ẽ4)ẽ4 + w completes the proof that
M = Span{ẽ4} ⊕ Span{ẽ4}⊥. Now, the restriction of the M-inner product
to Span {ẽ4}⊥ is positive definite so, by Theorem 1.1.1, we may select three
vectors ẽ1, ẽ2 and ẽ3 in Span {ẽ4}⊥ such that ẽi · ẽj = δij for i, j = 1, 2, 3.
Thus, {ẽ1, ẽ2, ẽ3, ẽ4} is an orthonormal basis for M. Now let us fix an
admissible basis {ea} for M. There is a unique orthogonal transformation
of M that carries ea onto ẽa for each a = 1, 2, 3, 4. If the corresponding
Lorentz transformation is either improper or nonorthochronous or both we
may multiply ẽ1 or ẽ4 or both by −1 to obtain an admissible basis {êa}
for M with Span {ê4} = T and so the proof is complete. Any time axis is
therefore the x4-axis of some admissible coordinatization of M and so may be
identified with the worldline of some admissible observer. Since any timelike
straight line is parallel to some time axis we view such a straight line as the
worldline of a point at rest in the corresponding admissible frame (say, the
worldline of one of the “assistants” to our observer).
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Exercise 1.4.2 Show that if T is a time axis and x and x0 are two events,
then x − x0 is orthogonal to T if and only if x and x0 are simultaneous in
any reference frame whose x4-axis is T .

Exercise 1.4.3 Show that if x − x0 is timelike and s is an arbitrary non-
negative real number, then there is an admissible frame of reference in which
the spatial separation of x and x0 is s. Show also that the time separation of
x and x0 can assume any real value greater than or equal to τ(x− x0). Hint :
Begin with a basis {ea} in which Δx1 = Δx2 = Δx3 = 0 and Δx4 = τ(x−x0).
Now perform the special Lorentz transformation (1.3.27), where −1 < β < 1
is arbitrary.

According to Exercise 1.4.3, τ(x − x0) is a lower bound for the temporal
separation of x0 and x and, for this reason, it is often called the proper
time separation of x0 and x; when no reference to the specific events under
consideration is required τ(x − x0) is generally denoted Δτ .

Any timelike vector v lies along some time axis so τ(v) can be regarded
as a sort of “temporal length” of v (the time separation of its tail and tip
as recorded by an observer who experiences both). It is a rather unusual
notion of length, however, since the analogues of the basic inequalities one is
accustomed to dealing with for Euclidean lengths are generally reversed.

Theorem 1.4.1 (Reversed Schwartz Inequality) If v and w are timelike vec-
tors in M, then

(v · w)2 ≥ v2w2 (1.4.1)

and equality holds if and only if v and w are linearly dependent.

Proof: Consider the vector u = av − bw , where a = v ·w and b = v ·v = v2.
Observe that u · v = av2 − bv · w = v2(v · w) − v2(v · w) = 0. Since v
is timelike, Corollary 1.3.2 implies that u is either zero or spacelike. Thus,
0 ≤ u2 = a2v2 + b2w2 − 2abv · w, with equality holding only if u = 0.
Consequently, 2abv · w ≤ a2v2 + b2w2, i.e.,

2v2(v · w)2 ≤ v2(v · w)2 + (v2)2w2,

2(v · w)2 ≥ (v · w)2 + v2w2 (since v2 < 0),

(v · w)2 ≥ v2w2,

and equality holds only if u = 0. But u = 0 implies av − bw = 0 which, since
a = v ·w �= 0 by Theorem 1.3.1, implies that v and w are linearly dependent.
Conversely, if v and w are linearly dependent, then one is a multiple of the
other and equality clearly holds in (1.4.1). �
Theorem 1.4.2 (Reversed Triangle Inequality) Let v and w be timelike vec-
tors with the same time orientation (i.e., v · w < 0 ). Then

τ(v + w) ≥ τ(v) + τ(w) (1.4.2)

and equality holds if and only if v and w are linearly dependent.
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Proof: By Theorem 1.4.1, (v · w)2 ≥ v2w2 = (−v2)(−w2) so |v · w| ≥√
−v2

√
−w2. But (v · w) < 0 so we must have v · w ≤ −

√
−v2

√
−w2 and

therefore
− 2v · w ≥ 2

√
−v2
√
−w2. (1.4.3)

Now, by Exercise 1.3.2, v + w is timelike. Moreover, −(v + w)2 = −v2 − 2v ·
w − w2 ≥ −v2 + 2

√
−v2

√
−w2 − w2 by (1.4.3). Thus,

−(v + w)2 ≥
(√

−v2 +
√
−w2
)2

,√
−(v + w)2 ≥

√
−v2 +

√
−w2,√

−Q(v + w) ≥
√
−Q(v) +

√
−Q(w),

τ(v + w) ≥ τ(v) + τ(w),

as required. If equality holds in (1.4.2), then, by reversing the preceding steps,
we obtain

−2v · w = 2
√

v2
√
−w2

and therefore (v · w)2 = v2w2 so, by Theorem 1.4.1, v and w are linearly
dependent. �

To extend Theorem 1.4.2 to arbitrary finite sums of similarly oriented
timelike vectors (and for other purposes as well) we require:

Lemma 1.4.3 The sum of any finite number of vectors in M all of which
are timelike or null and all future-directed (resp., past-directed) is timelike
and future-directed (resp., past-directed) except when all of the vectors are
null and parallel, in which case the sum is null and future-directed (resp.,
past-directed).

Proof: It suffices to prove the result for future-directed vectors since the
corresponding result for past-directed vectors will then follow by changing
signs. Moreover, it is clear that any sum of future-directed vectors is, indeed,
future-directed.

First we observe that if v1 and v2 are timelike and future-directed, then
v1 · v1 < 0, v2 · v2 < 0 and v1 · v2 < 0 so (v1 + v2) · (v1 + v2) = v1 · v1 + 2v1 ·
v2 + v2 · v2 < 0 and therefore v1 + v2 is timelike.

Exercise 1.4.4 Show that if v1 is timelike, v2 is null and both are future-
directed, then v1 + v2 is timelike and future-directed.

Next suppose that v1 and v2 are null and future-directed. We show that v1+v2

is timelike unless v1 and v2 are parallel (in which case, it is obviously null).
To this end we note that (v1 + v2) · (v1 + v2) = 2v1 · v2. By Theorem 1.2.1,
v1 · v2 = 0 if and only if v1 and v2 are parallel. Suppose then that v1 and
v2 are not parallel. Fix an admissible basis {ea} for M and let v1 = va

1ea

and v2 = va
2ea. For each n = 1, 2, 3, . . . , define wn in M by wn = v1

1e1 +
v2
1e2 + v3

1e3 +
(
v4
1 + 1

n

)
e4. Then each wn is timelike and future-directed.
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By Theorem 1.3.1, 0 > wn · v2 = v1 · v2 − 1
nv4

2 , i.e., v1 · v2 < 1
nv4

2 for every n.
Thus, v1 · v2 ≤ 0. But v1 · v2 �= 0 by assumption so v1 · v2 < 0 and therefore
(v1 + v2) · (v1 + v2) < 0 as required.

Exercise 1.4.5 Complete the proof by induction. �

Corollary 1.4.4 Let v1, . . . , vn be timelike vectors, all with the same time
orientation. Then

τ(v1 + v2 + · · · + vn) ≥ τ(v1) + τ(v2) + · · · + τ(vn) (1.4.4)

and equality holds if and only if v1, v2, . . . , vn are all parallel.

Proof: Inequality (1.4.4) is clear from Theorem 1.4.2 and Lemma 1.4.3. We
show, by induction on n, that equality in (1.4.4) implies that v1, . . . , vn are
all parallel. For n = 2 this is just Theorem 1.4.2. Thus, we assume that the
statement is true for sets of n vectors and consider a set v1, . . . , vn, vn+1 of
timelike vectors which are, say, future-directed and for which

τ(v1 + · · · + vn + vn+1) = τ(v1) + · · · + τ(vn) + τ(vn+1).

v1 + · · · + vn is timelike and future-directed so, again by Theorem 1.4.2,

τ(v1 + · · · + vn) + τ(vn+1) ≤ τ(v1) + · · · + τ(vn) + τ(vn+1).

We claim that, in fact, equality must hold here. Indeed, otherwise we have
τ(v1 + · · · + vn) < τ(v1) + · · · + τ(vn) and so (Theorem 1.4.2 again) τ(v1 +
· · · + vn−1) < τ(v1) + · · · + τ(vn−1). Continuing the process we eventually
conclude that τ(v1) < τ(v1) which is a contradiction. Thus,

τ(v1 + · · · + vn) = τ(v1) + · · · + τ(vn)

and the induction hypothesis implies that v1, . . . , vn are all parallel. Let
v = v1 + · · ·+vn. Then v is timelike and future-directed. Thus, τ(v+vn+1) =
τ(v)+τ(vn+1) and one more application of Theorem 1.4.2 implies that vn+1 is
parallel to v and therefore to all of v1, . . . , vn and the proof is complete. �

Corollary 1.4.5 Let v and w be two nonparallel null vectors. Then v and w
have the same time orientation if and only if v · w < 0.

Proof: Suppose first that v and w have the same time orientation. By
Lemma 1.4.3, v + w is timelike so 0 > (v + w) · (v + w) = 2v ·w so v ·w < 0.
Conversely, if v and w have opposite time orientation, then v and −w have
the same time orientation so v · (−w) < 0 and therefore v · w > 0. �

The reason that the sense of the inequality in Theorem 1.4.2 is “reversed”
becomes particularly transparent by choosing a coordinate system relative to
which v = (v1, v2, v3, v4), w = (w1, w2, w3, w4) and v+w = (0, 0, 0, v4+w4)
(this simply amounts to taking the time axis through v + w as the x4-axis).
For then τ(v) = ((v4)2 − (v1)2 − (v2)2 − (v3)2)

1
2 < v4 and τ(w) < w4, but

τ(v + w) = v4 + w4.
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A timelike straight line is regarded as the worldline of a material particle
that is “free” in the sense of Newtonian mechanics and consequently is at rest
in some admissible frame of reference. Not all material particles of interest
have this property (e.g., the “rocket twin”). To model these in M we will
require a few preliminaries. Let I ⊆ R be an open interval. A map α : I → M
is a curve in M. Relative to any admissible basis {ea} for M we can write
α(t) = xa(t)ea for each t in I. We will assume that α is smooth, i.e., that
each component function xa(t) is infinitely differentiable and that α’s velocity
vector

α′(t) =
dxa

dt
ea

is nonzero for each t in I.

Exercise 1.4.6 Show that this definition of smoothness does not depend on
the choice of admissible basis. Hint : Let {êa} be another admissible basis,
L the orthogonal transformation that carries ea onto êa for a = 1, 2, 3, 4 and
[Λa

b] the corresponding element of L. If α(t) = x̂a(t)êa, then x̂a(t) = Λa
bx

b(t)
so dx̂a

dt = Λa
b

dxb

dt . Keep in mind that [Λa
b] is nonsingular.

A curve α : I → M is said to be spacelike, timelike or null respectively if its
velocity vector α′(t) has that character for every t in I, that is, if α′(t) ·α′(t)
is > 0, < 0 or = 0 respectively for each t. A timelike or null curve α is future-
directed (resp., past-directed) if α′(t) is future-directed (resp., past-directed)
for each t. A future-directed timelike curve is called a timelike worldline or
worldline of a material particle. We extend all of these definitions to the
case in which I contains either or both of its endpoints by requiring that
α : I → M be extendible to an open interval containing I. More precisely,
if I is an (not necessarily open) interval in R, then α : I → M is smooth,
spacelike, . . . if there exists an open interval Ĩ containing I and a curve
α̃ : Ĩ → M which is smooth, spacelike, . . . and satisfies α̃(t) = α(t) for each
t in I. Generally, we will drop the tilda and use the same symbol for α and
its extension.

If α : I → M is a curve and J ⊆ R is another interval and h : J → I,
t = h(s), is an infinitely differentiable function with h′(s) > 0 for each s in
J , then the curve β = α ◦h : J → M is called a reparametrization of α.

Exercise 1.4.7 Show that β′(s) = h′(s)α′(h(s)) and conclude that all of
the definitions we have given are independent of parametrization.

We arrive at a particularly convenient parametrization of a timelike worldline
in the following way: If α : [a, b] → M is a timelike worldline in M we define
the proper time length of α by

L(α) =
∫ b

a

|α′(t) · α′(t)|
1
2 dt =

∫ b

a

√
−ηab

dxa

dt

dxb

dt
dt.
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Exercise 1.4.8 Show that the definition of L(α) is independent of
parametrization.

As the appropriate physical interpretation of L(α) we take

The Clock Hypothesis: If α : [a, b] → M is a timelike worldline in M,
then L(α) is interpreted as the time lapse between the events α(a) and α(b)
as measured by an ideal standard clock carried along by the particle whose
worldline is represented by α.

The motivation for the Clock Hypothesis is at the same time “obvious” and
subtle. For it we shall require the following theorem which asserts that two
events can be experienced by a single admissible observer if and only if some
(not necessarily free) material particle has both on its worldline.

Theorem 1.4.6 Let p and q be two points in M. Then p− q is timelike and
future-directed if and only if there exists a smooth, future-directed timelike
curve α : [a, b] → M such that α(a) = q and α(b) = p.

We postpone the proof for a moment to show its relevance to the Clock
Hypothesis. We partition the interval [a, b] into subintervals by a = t0 <
t1 < . . . < tn−1 < tn = b. Then, by Theorem 1.4.6, each of the displace-
ment vectors vi = α(ti) − α(ti−1) is timelike and future-directed. τ(vi) is
then interpreted as the time lapse between α(ti−1) and α(ti) as measured by
an admissible observer who is present at both events. If the “material parti-
cle” whose worldline is represented by α has constant velocity between the
events α(ti−1) and α(ti), then τ(vi) would be the time lapse between these
events as measured by a clock carried along by the particle. Relative to any
admissible frame,

τ(vi) =
√
−ηabΔxa

i Δxb
i =

√
−ηab

Δxa
i

Δti

Δxb
i

Δti
Δti.

By choosing Δti sufficiently small, Δx4
i can be made small (by continuity

of α) and, since the speed of the particle relative to our frame of reference
is “nearly” constant over “small” x4-time intervals, τ(vi) should be a good
approximation to the time lapse between α(ti−1) and α(ti) measured by the
material particle. Consequently, the sum

n∑
i=1

√
−ηab

Δxa
i

Δti

Δxb
i

Δti
Δti (1.4.5)

approximates the time lapse between α(a) and α(b) that this particle mea-
sures. The approximations become better as the Δti approach 0 and, in the
limit, the sum (1.4.5) approaches the definition of L(α).

The argument seems persuasive enough, but it clearly rests on an assump-
tion about the behavior of ideal clocks that we had not previously made
explicit, namely, that acceleration as such has no effect on their rates, i.e.,
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that the “instantaneous rate” of such a clock depends only on its instanta-
neous speed and not on the rate at which this speed is changing. Justifying
such an assumption is a nontrivial matter. One must perform experiments
with various types of clocks subjected to real accelerations and, in the end,
will no doubt be forced to a more modest proposal (“The Clock Hypothesis is
valid for such and such a clock over such and such a range of accelerations”).

For the proof of Theorem 1.4.6 we will require the following preliminary
result.

Lemma 1.4.7 Let α : (A, B) → M be smooth, timelike and future-directed
and fix a t0 in (A, B). Then there exists an ε > 0 such that (t0 − ε, t0 + ε)
is contained in (A, B), α(t) is in the past time cone at α(t0) for every t
in (t0 − ε, t0) and α(t) is in the future time cone at α(t0) for every t in
(t0, t0 + ε).

Proof: We prove that there exists an ε1 > 0 such that α(t) is in C+
T (α(t0))

for each t in (t0, t0 + ε1). The argument to produce an ε2 > 0 with α(t) in
C−

T (α(t0)) for each t in (t0 − ε2, t0) is similar. Taking ε to be the smaller of
ε1 and ε2 proves the lemma.

Fix an admissible basis {ea} and write α(t) = xa(t)ea for A < t < B.
Now suppose that no such ε1 exists. Then one can produce a sequence t1 >
t2 > · · · > t0 in (t0, B) such that limn→∞ tn = t0 and such that one of the
following is true:

(I) Q(α(tn) − α(t0)) ≥ 0 for all n (i.e., α(tn) − α(t0) is spacelike or null for
every n), or

(II) Q(α(tn)−α(t0)) < 0, but α(tn)−α(t0) is past-directed for every n (i.e.,
α(tn) is in C−

T (α(t0)) for every n).

We show first that (I) is impossible. Suppose to the contrary that such a
sequence does exist. Then

Q
(

α(tn) − α(t0)
tn − t0

)
≥ 0

for all n so

Q
(

x1(tn) − x1(t0)
tn − t0

, . . . ,
x4(tn) − x4(t0)

tn − t0

)
≥ 0.

Thus,

lim
n→∞Q

(
x1(tn) − x1(t0)

tn − t0
, . . . ,

x4(tn) − x4(t0)
tn − t0

)
≥ 0,

Q
(

lim
n→∞

x1(tn) − x1(t0)
tn − t0

, . . . , lim
n→∞

x4(tn) − x4(t0)
tn − t0

)
≥ 0,

Q
(

dx1

dt
(t0), . . . ,

dx4

dt
(t0)
)

≥ 0,

Q (α′(t0)) ≥ 0,

and this contradicts the fact that α′(t0) is timelike.
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Exercise 1.4.9 Apply a similar argument to g(α(tn)−α(t0), α′(t0)) to show
that (II) is impossible.

We therefore infer the existence of the ε1 as required and the proof is
complete. �

Proof of Theorem 1.4.6: The necessity is clear. To prove the sufficiency we
denote by α also a smooth, future-directed timelike extension of α to some
interval (A, B) containing [a, b]. By Lemma 1.4.7, there exists an ε1 > 0 with
(a, a + ε1) ⊆ (A, B) and such that α(t) is in C+

T (q) for each t in (a, a + ε1).
Let t0 be the supremum of all such ε1. Since b < B it will suffice to show
that t0 = B and for this we assume to the contrary that A < t0 < B.

According to Lemma 1.4.7 there exists an ε > 0 such that (t0−ε, t0+ε) ⊆
(A, B), α(t) ∈ C−

T (α(t0)) for t in (t0 − ε, t0) and α(t) ∈ C+
T (α(t0)) for t in

(t0, t0 + ε). Observe that if α(t0) were itself in C+
T (q), then for any t in

(t0, t0 + ε), (α(t0) − q) + (α(t) − α(t0)) = α(t) − q would be future-directed
and timelike by Lemma 1.4.3 and this contradicts the definition of t0. On
the other hand, if α(t0) were outside the null cone at q, then for some t’s in
(t0 − ε, t0), α(t) would be outside the null cone at q and this is impossible
since, again by the definition of t0, any such α(t) is in C+

T (q). The only
remaining possibility is that α(t0) is on the null cone at q. But then the past
time cone at α(t0) is disjoint from the future time cone at q and any t in
(t0 − ε, t0) gives a contradiction. We conclude that t0 must be equal to B
and the proof is complete. �

As promised we now deliver what is for most purposes the most useful
parametrization of a timelike worldline α : I → M. First let us appeal to
Exercises 1.4.7 and 1.4.8 and translate the domain of α in the real line if
necessary to assume that it contains 0. Now define the proper time function
τ(t) on I by

τ = τ(t) =
∫ t

0

|α′(u) · α′(u)|
1
2 du.

Thus, dτ
dt = |α′(t) ·α′(t)|1/2 which is positive and infinitely differentiable since

α is timelike. The inverse t = h(τ) therefore exists and dh
dτ =

(
dτ
dt

)−1
> 0 so we

conclude that τ is a legitimate parameter along α (physically, we are simply
parametrizing α by time readings actually recorded along α). We shall abuse
our notation somewhat and use the same name for α and its coordinate
functions relative to an admissible basis when they are parametrized by τ
rather than t:

α(τ) = xa(τ)ea. (1.4.6)

Exercise 1.4.10 Define α : R → M by α(t) = x0 + t(x − x0), where
Q(x − x0) < 0 and t is in R. Show that τ = τ(x − x0)t and write down
the proper time parametrization of α.

The velocity vector α′(τ) = dxa

dτ ea of α is called the world velocity (or
4-velocity) of α and denoted U = Uaea. Just as the familiar arc length



1.4 Timelike Vectors and Curves 51

parametrization of a curve in R3 has unit speed, so the world velocity of a
timelike worldline is always a unit timelike vector.

Exercise 1.4.11 Show that

U · U = −1 (1.4.7)

at each point along α.

The second proper time derivative α′′(τ) = d2xa

dτ2 ea of α is called the world
acceleration (or 4-acceleration) of α and denoted A = Aaea. It is always
orthogonal to U and so, in particular, must be spacelike if it is nonzero.

Exercise 1.4.12 Show that

U · A = 0 (1.4.8)

at each point along α. Hint : Differentiate (1.4.7) with respect to τ .

The world velocity and acceleration of a timelike worldline are, as we shall
see, crucial to an understanding of the dynamics of the particle whose world-
line is represented by α. A given admissible observer, however, is more likely
to parametrize a particle’s worldline by his time x4 than by τ and so will
require procedures for calculating U and A from this parametrization. First
observe that since α(τ) = (x1(τ), . . . , x4(τ)) is smooth, x4(τ) is infinitely dif-
ferentiable. Since α is future-directed, dx4

dτ is positive so the inverse τ = h(x4)
exists and h′(x4) = (dx4

dτ )−1 is positive. Thus, x4 is a legitimate parameter
for α. Moreover,

dτ

dx4
=
∣∣α′(x4) · α′(x4)

∣∣ 12
=

√√√√1 −
[(

dx1

dx4

)2

+
(

dx2

dx4

)2

+
(

dx3

dx4

)2
]

=
√

1 − β2(x4),

where we have denoted by β(x4) the usual instantaneous speed of the particle
whose worldline is α relative to the frame S(x1, x2, x3, x4). Thus,

dx4

dτ
= (1 − β2(x4))−

1
2

which we denote by γ = γ(x4). Now, we compute

U i =
dxi

dτ
=

dxi

dx4

dx4

dτ
= γ

dxi

dx4
, i = 1, 2, 3,

and
U4 = γ,
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so

U = Uaea = γ
dx1

dx4
e1 + γ

dx2

dx4
e2 + γ

dx3

dx4
e3 + γe4

which it is often more convenient to write as(
U1, U2, U3, U4

)
= γ

(
dx1

dx4
,
dx2

dx4
,
dx3

dx4
, 1
)

(1.4.9)

or, even more compactly as

(U1, U2, U3, U4) = γ(
⇀
u, 1), (1.4.10)

where
⇀
u is the ordinary velocity 3-vector of α in S. Similarly, one computes

Ai = γ
d

dx4

(
γ

dxi

dx4

)
, i = 1, 2, 3,

and

A4 = γ
d

dx4
(γ),

so that

(A1, A2, A3, A4) = γ
d

dx4
(γ

⇀
u, γ). (1.4.11)

Exercise 1.4.13 Using (in this exercise only) a dot to indicate differentia-
tion with respect to x4 and E : R3 ×R3 → R for the usual positive definite
inner product on R3, prove each of the following in an arbitrary admissible
frame of reference S:

(a) γ̇ = γ3ββ̇.

(b) E(
⇀
u,

⇀
u) = |⇀u |2 = β2.

(c) E(
⇀
u,

⇀̇
u) = E(

⇀
u,

⇀
a ) = ββ̇ (

⇀
a =

⇀̇
u is the usual 3-acceleration in S).

(d) g(A, A) = γ4E(
⇀
a ,

⇀
a ) + γ6β2(β̇)2 = γ4|⇀a |2 + γ6β2(β̇)2.

At each fixed point α(τ0) along the length of a timelike worldline α, U(τ0)
is a future-directed unit timelike vector and so may be taken as the timelike
vector e4 in some admissible basis for M. Relative to such a basis, U(τ0) =
(0, 0, 0, 1). Letting x4

0 = x4(τ0) we find from (1.4.9) that(
dxi

dx4

)
x4=x4

0

= 0, i = 1, 2, 3,

and so β
(
x4

0

)
= 0 and γ

(
x4

0

)
= 1. The reference frame corresponding to

such a basis is therefore thought of as being “momentarily
(
x4 = x4

0

)
at rest”

relative to the particle whose worldline is α. Any such frame of reference
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is called an instantaneous rest frame for α at α(τ0). Notice that Exer-
cise 1.4.12(d) gives

g(A, A) = |⇀a |2 (1.4.12)

in an instantaneous rest frame. Since g(A, A) is invariant under Lorentz trans-
formations we find that all admissible observers will agree, at each point along
α, on the magnitude of the 3-acceleration of α relative to its instantaneous
rest frames.

As an illustration of these ideas we will examine in some detail the follow-
ing situation. A futuristic explorer plans a journey to a distant part of the
universe. For the sake of comfort he will maintain a constant acceleration of
1g (one “earth gravity”) relative to his instantaneous rest frames (assuming
that he neither diets nor overindulges his “weight” will remain the same as on
earth throughout the trip). We begin by calculating the explorer’s worldline
α(τ). As usual we denote by U(τ) and A(τ) the world velocity and world
acceleration of α respectively. Thus, (1.4.7), (1.4.8) and (1.4.12) give

U · U = −1, (1.4.13)
U · A = 0, (1.4.14)

A · A = g2 (a constant). (1.4.15)

We examine the situation from an admissible frame of reference in which the
explorer’s motion is along the positive x1-axis. Thus, U2 = U3 = A2 = A3 =0
and (1.4.13), (1.4.14) and (1.4.15) become

(U1)2 − (U4)2 = −1, (1.4.16)

U1A1 − U4A4 = 0, (1.4.17)

(A1)2 − (A4)2 = g2. (1.4.18)

Exercise 1.4.14 Solve these last three equations for A1 and A4 to obtain
A1 = gU 4 and A4 = gU 1.

The result of Exercise 1.4.14 is a system of ordinary differential equations for
U1 and U4. Specifically, we have

dU1

dτ
= gU4 (1.4.19)

and

dU4

dτ
= gU1. (1.4.20)

Differentiate (1.4.19) with respect to τ and substitute into (1.4.20) to obtain

d2U1

dτ2
= g2U1. (1.4.21)
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The general solution to (1.4.21) can be written

U1 = U1(τ) = a sinh gτ + b cosh gτ.

Assuming that the explorer accelerates from rest at τ =0(U1(0)=0,
A1(0) = g) one obtains

U1(τ) = sinh gτ. (1.4.22)

Equation (1.4.19) now gives

U4(τ) = cosh gτ. (1.4.23)

Integrating (1.4.22) and (1.4.23) and assuming, for convenience, that x1(0) =
1/g and x4(0) = 0, one obtains⎧⎪⎨⎪⎩

x1 =
1
g

cosh gτ,

x4 =
1
g

sinh gτ.
(1.4.24)

Observe that (1.4.24) implies that (x1)2− (x4)2 = 1/g2 so that our explorer’s
worldline lies on a hyperbola in the 2-dimensional representation of M (see
Figure 1.4.1).

Exercise 1.4.15 Assume that the explorer’s point of departure (at x1 =
1/g) was the earth, which is at rest in the frame of reference under consid-
eration. How far from the earth (as measured in the earth’s frame) will the
explorer be after

Fig. 1.4.1
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(a) 40 years as measured on earth? (How much time will have elapsed on the
rocket?) Answers : 39 light years (4.38 years).

(b) 40 years as measured on the rocket? (How much time will have elapsed
on earth?) Answers : 1017 light years (1017 years).

Hint : It will simplify the arithmetic to measure in light years rather than
meters. Then g ≈ 1 (light year)−1.

We conclude this section with a theorem which asserts quite generally
that an accelerated observer such as the explorer in the preceding discussion
of hyperbolic motion or the “rocket twin” in the twin paradox must always
experience a time dilation not experienced by those of us who remain at rest
in an admissible frame.

Theorem 1.4.8 Let α : [a, b] → M be a timelike worldline in M from
α(a) = q to α(b) = p. Then

L(α) ≤ τ(p − q) (1.4.25)

and equality holds if and only if α is a parametrization of a timelike straight
line joining q and p.

Proof: By Theorem 1.4.6, p − q is timelike and future-directed so we may
select a basis {ea} with q = x1

0e1 + x2
0e2 + x3

0e3 + x4
qe4, p = x1

0e1 + x2
0e2 +

x3
0e3 + x4

pe4 and τ(p − q) = x4
p − x4

q = Δx4. Now parametrize α by x4. Then

L(α) =
∫ x4

p

x4
q

√√√√1 −
[(

dx1

dx4

)2

+
(

dx2

dx4

)2

+
(

dx3

dx4

)2
]
dx4

≤
∫ x4

p

x4
q

dx4 = Δx4 = τ(p − q).

Moreover, equality holds if and only if dx i

dx4 = 0 for i = 1, 2, 3, that is, if
and only if xi is constant for i = 1, 2, 3 and this is the case if and only if
α(x4) = x1

0e1 + x2
0e2 + x3

0e3 + x4e4 for x4
q ≤ x4 ≤ x4

p as required. �

1.5 Spacelike Vectors

Now we turn to spacelike separations, i.e., we consider two events x and x0

for which Q(x − x0) > 0. Relative to any admissible basis we have (Δx1)2 +
(Δx2)2 +(Δx3)2 > (Δx4)2 so that x−x0 lies outside the null cone at x0 and
there is obviously no admissible basis in which the spatial separation of the
two events is zero, i.e., there is no admissible observer who can experience
both events (to do so he would have to travel faster than the speed of light).
However, an argument analogous to that given at the beginning of Section 1.4
will show that there is a frame in which x and x0 are simultaneous.
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Exercise 1.5.1 Show that if Q(x − x0) > 0, then there is an admissible
basis {êa} for M relative to which Δx̂4 = 0. Hint : With {ea} arbitrary, take
β = Δx4

Δ
⇀
x

and di = Δxi

Δ
⇀
x

and proceed as at the beginning of Section 1.4.

Exercise 1.5.2 Show that if Q(x−x0) > 0 and s is an arbitrary real number
(positive, negative or zero), then there is an admissible basis for M relative
to which the temporal separation Δx4 of x and x0 is s (so that admissible
observers will, in general, not even agree on the temporal order of x and x0).

Since ((Δx1)2 + (Δx2)2 + (Δx3)2)
1
2 =
√

(Δx4)2 + Q(x − x0) in any admis-
sible frame and since (Δx4)2 can assume any non-negative real value, the
spatial separation of x and x0 can assume any value greater than or equal
to
√
Q(x − x0); there is no frame in which the spatial separation is less than

this value. For any two events x and x0 for which Q(x − x0) > 0 we define
the proper spatial separation S(x − x0) of x and x0 by

S(x − x0) =
√

Q(x − x0),

and regard it as the spatial separation of x and x0 in any frame of reference
in which x and x0 are simultaneous.

Fig. 1.5.1

Let T be an arbitrary timelike straight line containing x0. We have seen
that T can be identified with the worldline of some observer at rest in an
admissible frame, but not necessarily stationed at the origin of the spatial
coordinate system of this frame (we consider the special case of a time axis
shortly). Let x in M be such that x−x0 is spacelike and let x1 and x2 be the
points of intersection of T with CN(x) as shown in Figure 1.5.1. We claim that

S2(x − x0) = τ(x0 − x1)τ(x2 − x0) (1.5.1)
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(a result first proved by Robb [R]). To prove (1.5.1) we observe that, since
x − x1 is null,

0 = Q(x − x1) = Q((x0 − x1) + (x − x0)),

0 = −τ2(x0 − x1) + 2(x0 − x1) · (x − x0) + S2(x − x0). (1.5.2)

Similarly, since x2 − x is null,

0 = −τ2(x2 − x0) − 2(x2 − x0) · (x − x0) + S2(x − x0). (1.5.3)

There exists a constant k > 0 such that x2 − x0 = k(x0 − x1) so τ2(x2 −
x0) = k2τ2(x0−x1). Multiplying (1.5.2) by k and adding the result to (1.5.3)
therefore yields

−(k + k2)τ2(x0 − x1) + (k + 1)S2(x − x0) = 0.

Since k + 1 �= 0 this can be written

S2(x − x0) = kτ2(x0 − x1)
= τ(x0 − x1)(kτ(x0 − x1))
= τ(x0 − x1)τ(x2 − x0)

as required.
Suppose that the spacelike displacement vector x−x0 is orthogonal to the

timelike straight line T . Then (with the notation as above) (x0−x1)·(x−x0) =
(x2 − x0) · (x− x0) = 0 so (1.5.2) and (1.5.3) yield S(x− x0) = τ(x2 − x0) =
τ(x0 − x1) which we prefer to write as

S(x − x0) = 1
2 (τ(x0 − x1) + τ(x2 − x0)). (1.5.4)

In particular, this is true if T is a time axis. We have seen that, in this
case, T can be identified with the worldline of an admissible observer O and
the events x and x0 are simultaneous in this observer’s reference frame. But
then S(x − x0) is the distance in this frame between x and x0. Since x0

lies on T we find that (1.5.4) admits the following physical interpretation:
The O-distance of an event x from an admissible observer O is one-half the
time lapse measured by O between the emission and reception of light signals
connecting O with x.

Exercise 1.5.3 Let x, x0 and x1 be events for which x− x0 and x1 − x are
spacelike and orthogonal. Show that

S2(x1 − x0) = S2(x1 − x) + S2(x − x0) (1.5.5)

and interpret the result physically by considering a time axis T which is
orthogonal to both x − x0 and x1 − x.
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Suppose that v and w are nonzero vectors in M with v · w = 0. Thus
far we have shown the following: If v and w are null, then they must
be parallel (Theorem 1.2.1). If v is timelike, then w must be spacelike
(Corollary 1.3.2). If v and w are spacelike, then their proper spatial lengths
satisfy the Pythagorean Theorem S2(v+w) = S2(v)+S2(w) (Exercise 1.5.3).

Exercise 1.5.4 Can a spacelike vector be orthogonal to a nonzero null
vector?

1.6 Causality Relations

We begin by defining two order relations � and < on M as follows: For x
and y in M we say that x chronologically precedes y and write x � y if
y − x is timelike and future-directed, i.e., if y is in C+

T (x). We will say that x
causally precedes y and write x < y if y − x is null and future-directed, i.e.,
if y is in C+

N (x). Both � and < are called causality relations because they
establish a causal connection between the two events in the sense that the
event x can influence the event y either by way of the propagation of some
material phenomenon if x � y or some electromagnetic effect if x < y.

Exercise 1.6.1 Prove that � is transitive, i.e., that x � y and y � z
implies x � z, and show by example that < is not transitive.

It is an interesting, and useful, fact that each of the relations � and < can
be defined in terms of the other.

Lemma 1.6.1 For distinct points x and y in M,

x < y if and only if

{
x �� y and

y � z implies x � z.

Proof: First suppose x < y. Then Q(y−x) = 0 so x �� y is clear. Moreover,
if y � z, then z − y is timelike and future-directed. Since y − x is null and
future-directed, Lemma 1.4.3 implies that z−x = (z−y)+(y−x) is timelike
and future-directed, i.e., x � z.

For the converse we suppose x ≮ y and show that either x � y or there
exists a z in M with y � z, but x �� z. If x ≮ y and x �� y, then y−x is either
timelike and past-directed, null and past-directed or spacelike. In the first case
any z with x < z has the property that z−y = (z−x)+(x−y) is timelike and
future-directed (Lemma 1.4.3 again) so y � z, but x �� z. Finally, suppose
y−x is either null and past-directed or spacelike (see Figure 1.6.1 (a) and (b)
respectively). In each case we produce a z in M with y � z, but x �� z in the
same way. Fix an admissible basis {ea} for M with x = xaea and y = yaea.
If y−x is null and past-directed, then x4−y4 > 0. If y−x is spacelike we may
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Fig. 1.6.1

choose {ea} so that x4−y4 > 0 (Exercise 1.5.2). Now, for each n = 1, 2, 3, . . . ,
define zn in M by zn = y1e1 + y2e2 + y3e3 +

(
y4 + 1

n

)
e4. Then zn − y = 1

ne4

is timelike and future-directed so y � zn for each n. However,

Q(zn − x) = ((zn − y) + (y − x))2

= Q(zn − y) + 2(zn − y) · (y − x) + Q(y − x)

= − 1
n2 + 2

n (x4 − y4) + Q(y − x)

= Q(y − x) + 1
n

[
2(x4 − y4) − 1

n

]
.

Since Q(y −x) ≥ 0 and x4 − y4 > 0 we can clearly choose n sufficiently large
that Q(zn − x) > 0. For this n, z = zn satisfies y � z, but x �� z. �

Exercise 1.6.2 Show that, for distinct x and y in M,

x � y if and only if

{
x ≮ y and
x < z < y for some z in M.

A map F : M → M is said to be a causal automorphism if it is one-to-one,
onto and both F and F−1 preserve <, i.e., x < y if and only if F (x) < F (y).
Note that, in particular, F is not assumed to be linear (or even continuous).
We will eventually prove that this actually follows from the definition.

Exercise 1.6.3 Show that a one-to-one map F of M onto M is a causal
automorphism if and only if both F and F−1 preserve �, i.e., x � y if and
only if F (x) � F (y).
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We propose next to embark upon a proof of the remarkable result of
Zeeman [Z1] to which we referred in the Introduction.1 For the statement
of the theorem we define a translation of M to be a map T : M → M of
the form T (v) = v + v0 for some fixed v0 in M and a dilation to be a map
K : M → M such that K(v) = kv for some positive real number k. An or-
thogonal transformation L : M → M is said to be orthochronous if x·Lx < 0
for all timelike or null and nonzero x.

Exercise 1.6.4 Show that any translation, dilation, orthochronous orthog-
onal transformation, or any composition of such mappings is a causal auto-
morphism.

Zeeman’s Theorem asserts that we have just enumerated them all.

Theorem 1.6.2 Let F : M → M be a causal automorphism of M. Then
there exists an orthochronous orthogonal transformation L : M → M, a
translation T : M → M and a dilation K : M → M such that F = T ◦K ◦L.

For the proof we will require a sequence of five lemmas, the first of which, at
least, is easy.

Lemma 1.6.3 A causal automorphism F : M → M maps light rays to light
rays. More precisely, if x < y and Rx,y is the light ray through x and y, then

F (Rx,y) = RF (x),F (y).

Proof: Since both F and F−1 preserve <, F maps null cones to null cones
so F (CN (x)) = CN (F (x)) and F (CN (y)) = CN(F (y)). By Theorem 1.2.2,
Rx,y = CN (x) ∩ CN (y) and RF (x),F (y) = CN (F (x)) ∩ CN (F (y)). Thus,

F (Rx,y) = F (CN (x) ∩ CN (y))
= F (CN (x)) ∩ F (CN (y))
= CN(F (x)) ∩ CN (F (y))
= RF (x),F (y). �

Lemma 1.6.4 A causal automorphism F : M → M maps parallel light rays
onto parallel light rays.

Proof: Let R1 and R2 be two distinct parallel light rays in M and P the
(2-dimensional) plane containing them. Any plane in M is the translation of
a plane through the origin which contains 0, 1 or 2 independent null vectors
(depending on whether the plane is outside the null cone to each of its points,
tangent to these null cones or intersects all of its time cones). Only the second
two cases are relevant to P however.

1The proof is considerably more demanding than anything we have attempted thus far and

might reasonably be omitted on a first reading.
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Suppose first that P contains two independent null directions. Then it
contains two families {Rα} and {Sβ} of light rays with all of the Rα parallel
to R1 and R2 and all of the Sβ parallel to some light ray which intersects
both R1 and R2. Thus, the families {F (Rα)} and {F (Sβ)} are two families
of light rays in M with the following properties:

1. No two of the F (Rα) intersect.
2. No two of the F (Sβ) intersect.
3. Each F (Rα) intersects every F (Sβ).

To show that F (R1) and F (R2) are parallel it will suffice (since they do not
intersect) to show them coplanar. Suppose not. Then F (R1) and F (R2) lie
in some 3-dimensional affine subspace R3 of M. Since each F (Sβ) intersects
both F (R1) and F (R2), it too must lie in R3. Thus, by #3 above, all of the
F (Rα) are contained in R3. We claim that, as a result, no F (Rα) can be
coplanar with either F (R1) or F (R2) (unless α = 1 or α = 2). For suppose
to the contrary that some F (Rα) were coplanar with, say, F (R1). Every
F (Sβ) intersects both F (Rα) and F (R1) so it too must lie in this plane.
Since F (R2) does not (by assumption) lie in this plane it can intersect the
plane in at most one point. Thus, F (R2) intersects at most one F (Sβ) and
this contradicts #3 above. Consequently, we may select an F (R3) such that
no two of {F (R1), F (R2), F (R3)} are coplanar. Since {F (Sβ)} is then the
family of straight lines in R3 intersecting all of {F (R1), F (R2), F (R3)} it
is the family of generators (rulings) for a hyperboloid of one sheet in R3

(this old, and none-too-well-known, result in analytic geometry is proved on
pages 105–106 of [Sa]). In the same way one shows that {F (Rα)} is the other
family of rulings for this hyperboloid. But then each F (Rα) would be parallel
to some F (Sβ) and this again contradicts #3 above.

Finally, we consider the case in which P contains only one independent
null direction (and so is tangent to each of its null cones). Any point in M has
through it a light ray parallel to both R1 and R2. Since the tangent space to
the null cone at each point of R1 is (only) 3-dimensional and since the same
is true of R2 we may select a light ray R3 parallel to both R1 and R2 and not
in either of these tangent spaces. Thus, the argument given above applies to
R1 and R3 as well as R2 and R3. Consequently, F (R1) and F (R2) are both
parallel to F (R3) and so are parallel to each other. �

Let Rx,y = {x + r(y − x) : r ∈ R} be a light ray and F (Rx,y) = {F (x) +
s(F (y) − F (x)) : s ∈ R} its image under F . We regard s as a function
of r : s = f(r). Our next objective is to show that f is linear, i.e., that
f(r + t) = f(r) + f(t) and f(tr) = tf (r) for all r and t in R. First though,
a few preliminaries. A map g : Rx,y → Rx,y is called a translation of Rx,y if
there exists a fixed t in R such that

g(x + r(y − x)) = x + (r + t)(y − x)
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for all r in R. We shall say that a translation g of a light ray R lifts to F (R)
if there is a translation e : F (R) → F (R) such that the diagram

commutes, i.e., such that F ◦ g = e ◦F . We show next that, in fact, every
translation of R lifts to F (R).

Lemma 1.6.5 Let R be a light ray, g:R → R a translation of R and F :M →
M a causal automorphism. Then g lifts to a translation e : F (R) → F (R)
of F (R).

Proof: For the proof we will construct a family of translations of R which
clearly do lift and then prove that this family exhausts all the translations
of R.

Select a light ray R1 parallel to R and such that the plane of R and
R1 contains two independent null directions. This plane therefore contains
a family {Sβ} of parallel light rays all of which meet R and R1. The family
{Sβ} therefore determines an obvious parallel displacement map g1 of R onto
R1 (see Figure 1.6.2). Since F carries parallel light rays to parallel light rays
there is a parallel displacement e1 of F (R) onto F (R1) for which the diagram
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Fig. 1.6.2

commutes. Now choose a light ray R2 parallel to R1 (and therefore to R) such
that the planes of R1 and R2 and of R and R2 both contain two independent
null directions. Construct g2, e2 and g3, e3 as above so that all of the following
diagrams commute.

Now compose to get



64 1 Geometrical Structure of M

Observe that if R, R1 and R2 were all coplanar, then g and e would both
necessarily be the identity. As it is g and e, being compositions of parallel
displacements, are translations of R and F (R) respectively. Consequently,
any translation g of R constructed in this way as a composition of three such
parallel displacements lifts to F (R).

We claim now that the proof will be complete if we can show that
for some particular light ray R̃ every translation of R̃ is realizable as
such a composition. Indeed, if this has been proved for some R̃ we show
that it is also true for R as follows: Select some composition G of a
translation and an orthochronous orthogonal transformation that carries R
onto R̃ (convince yourself that this can be done, or see Theorem 1.7.2).
Since G is affine, a translation g of R gives rise to a translation g̃ =
G ◦ g ◦G−1 of R̃. Now represent g̃ as a composition g̃ = g̃3 ◦ g̃2 ◦ g̃1 of par-
allel displacements as indicated above. Then g = G−1 ◦ g̃3 ◦ g̃2 ◦ g̃1 ◦G =
(G−1 ◦ g̃3 ◦G) ◦ (G−1 ◦ g̃2 ◦G) ◦ (G−1 ◦ g̃3 ◦G). Moreover, since G and G−1

are causal automorphisms and so preserve parallel light rays by Lemma 1.6.4,
we have produced a decomposition

R = G−1(R̃)−−−−→
g1

G−1(R̃1)−−−−→
g2

G−1(R̃2)−−−−→
g3

G−1(R̃) = R

of g into a composition of parallel displacements gi = G−1 ◦ g̃i ◦G as required.
The particular light ray we choose to focus our attention on is obtained as

follows: Fix an admissible basis {ea} and take R̃ to be the light ray through
x = (0, 0, 0, 0) and y = (0, 0, 1, 1). Now consider a translation g̃ of R̃ defined
by g̃(x+r(y−x)) = g̃(0, 0, r, r) = (0, 0, r+t, r+t). In particular, g̃ carries x =
(0, 0, 0, 0) to g̃(x) = (0, 0, t, t). Let x1 = (0,−t, 0, t) and x2 = (0, 0, 0, 2t) and
take R̃1 and R̃2 to be the light rays parallel to R̃ and through x1 and x2

respectively. We claim that the required parallel displacements g̃1, g̃2 and g̃3

are defined and moreover that

x−−−−→
g̃1

x1 −−−−→
g̃2

x2 −−−−→
g̃3

g̃(x) (1.6.1)

so that g̃(x) = (g̃3 ◦ g̃2 ◦ g̃1)(x). Since g̃3 ◦ g̃2 ◦ g̃1 is a translation of R̃ that
agrees with g̃ at x = (0, 0, 0, 0) it follows that g̃ = g̃3 ◦ g̃2 ◦ g̃1. All the verifi-
cations in (1.6.1) are the same so we illustrate by showing that g̃1(x) = x1
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Fig. 1.6.3

(see Figure 1.6.3). Note that the plane of R̃ and R̃1 can contain at most two
families of parallel light rays. The light rays parallel to R̃ (and R̃1) form one
such family. Since the line joining x and x1 is also null and not parallel to R̃
it must be in the second family. Thus, g̃1 exists and, obviously, g̃1(x) = x1.

�

With Lemma 1.6.5 we can show that a causal automorphism is linear on
each light ray. More precisely, we prove:

Lemma 1.6.6 Let R = {x + r(y − x) : x < y, r ∈ R} be a light ray,
F : M → M a causal automorphism and F (R) = {F (x) + s(F (y) − F (x)) :
s ∈ R} the image of R under F. Then, regarding s as a function of r, say,
s = f(r), we have f(r + t) = f(r) + f(t) and f(tr) = tf (r) for all r and t
in R.

Proof: Observe first that f(0) = 0. Now, fix a t in R. We wish to show
that, for any r in R, f(r + t) = f(r) + f(t), i.e., that

F (x + (r + t)(y − x)) = F (x) + (f(r) + f(t))(F (y) − F (x)). (1.6.2)

Let g : R → R denote the translation of R by t, i.e., g(x+r(y−x)) = x+(r+
t)(y−x). By Lemma 1.6.5, there exists a translation e : F (R) → F (R) of F (R)
such that F ◦g = e◦F . Suppose that e is the translation of F (R) by u = u(t),
i.e., that e(F (x) + s(F (y) − F (x))) = F (x) + (s + u(t))(F (y) − F (x)). Then



66 1 Geometrical Structure of M

F (x + (r + t)(y − x)) = F (g(x + r(y − x)))

= F ◦ g(x + r(y − x))

= e ◦ F (x + r(y − x))

= e(F (x) + f(r)(F (y) − F (x)))

= F (x) + [f(r) + u(t)](F (y) − F (x))

so that f(r+t) = f(r)+u(t) for any r. Setting r = 0 gives f(t) = f(0)+u(t) =
u(t) so we obtain f(r + t) = f(r) + f(t) as required.

In particular, f(2r) = f(r + r) = f(r) + f(r) = 2f(r) and, by induction,
f(nr) = nf (r) for n = 0, 1, 2, . . . . Moreover, f(r) = f(−r + 2r) = f(−r) +
2f(r) so f(−r) = −f(r) and, again by induction, f(nr) = nf (r) for n = 0,
±1,±2, . . . . If m is also an integer and n is a nonzero integer, nf

(
m
n r
)

=
f(mr) = mf (r) so f

(
m
n r
)

= m
n f(r). Thus, f(tr) = tf (r) for any rational

number t. Finally, observe that, since F preserves < in M, f preserves < in
R and is therefore continuous on R. Since any real number t is the limit of
a sequence of rational numbers we find that f(tr) = tf (r) for any t in R and
the proof is complete. �

We conclude from Lemma 1.6.6 that if Rx,y = {x + r(y − x) : r ∈ R}
is a light ray and F is a causal automorphism, then there exists a nonzero
constant k such that F (Rx,y) = {F (x)+kr (F (y)−F (x)) : r ∈ R}. However,
since r = 1 on Rx,y gives y, r = 1 on F (Rx,y) must give F (y) and so k = 1
and we have F (Rx,y) = {F (x) + r(F (y) − F (x)) : r ∈ R}.

Lemma 1.6.7 Let F : M → M be a causal automorphism. Then F is an
affine mapping, i.e., its composition with some translation of M (perhaps the
identity) is a linear transformation.

Proof: By first composing with a translation if necessary we may assume
that F (0) = 0 and so the problem is to show that F is linear (the compo-
sition of a causal automorphism and a translation is clearly another causal
automorphism).

Select a basis {v1, v2, v3, v4} for M consisting of null vectors (Exercise
1.2.1). Define a map G : M → M by

G(y) = G

(
4∑

i=1

yivi

)
=

4∑
i=1

yiF (vi)

for each y =
∑4

i=1 yivi (for the remainder of this proof we temporarily sus-
pend the summation convention and use a

∑
whenever a summation is in-

tended). G is obviously linear and we shall prove that F is linear by showing
that, in fact, F = G. For each i = 1, 2, 3, 4 we let Mi denote the subspace
of M spanned by {vj : j ≤ i}. Thus, M1 is a light ray and M4 is all of
M. We prove F |Mi = G |Mi for all i = 1, 2, 3, 4. For i = 1 this is clear
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Fig. 1.6.4

since F (v1) = G(v1) and, by Lemma 1.6.6, F is linear on M1. Now assume
that i = 2, 3 or 4 and that F |Mi−1 = G |Mi−1. We show from this that
F |Mi = G |Mi as follows: Any y in Mi can be uniquely represented as
y = x + yivi, where x is in Mi−1 and there is no sum over i in yivi. Thus,
y − x = yivi is null since vi is null. We consider two light rays, the first (R1)
through x and y and the second (R2) through 0 and yivi (see Figure 1.6.4).
R1 and R2 are parallel so F (R1) and F (R2) are parallel by Lemma 1.6.4.
Consequently,

F (R1) = {F (x) + r(F (y) − F (x)) : r ∈ R}

and

F (R2) =
{
F (0) + r(F (yivi) − F (0)) : r ∈ R

}
= {0 + r(F (yivi) − 0) : r ∈ R}.

Since F (R1) and F (R2) are parallel and r = 0 gives 0 on F (R2) and F (x)
on F (R1), translation of F (R2) by F (x) gives F (R1). For r = 1 this gives

F (x) + [0 + (F (yivi) − 0)] = F (x) + (F (y) − F (x)),

that is,

F (yivi) = F (y) − F (x).
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Thus,

F (y) = F (x) + F (yivi)

= G(x) + F (yivi) since x ∈ Mi−1

= G(x) + yiF (vi) by Lemma 1.6.6

= G(x) + yiG(vi)

= G(x + yivi)
= G(y)

and the proof is complete. �

Finally, we are prepared for:

Proof of Theorem 1.6.2: According to Lemma 1.6.7 there is a transla-
tion, which we write T−1 : M → M, such that T−1◦F is linear. To complete
the proof we need only produce a positive constant 1

k such that 1
k T−1 ◦ F

preserves the quadratic form on M. For then, by Lemma 1.2.3, 1
k T−1 ◦ F is

a (necessarily orthochronous) orthogonal transformation L. Denoting by K
the dilation K(v) = kv , 1

k T−1 ◦ F = L therefore gives F = T ◦ K ◦ L as
required.

Since both T−1 ◦ F and its inverse take 0 to 0 and preserve <, T−1 ◦ F
must carry the null cone CN (0) onto itself, i.e., Q(x) = 0 if and only if
Q(T−1 ◦F (x)) = 0. Since T−1 ◦F is linear, both Q(x) and Q(T−1 ◦F (x)) are
quadratic forms and, as we have just observed, they have the same kernel,
i.e., vanish for the same x’s. But two indefinite quadratic forms with the same
kernel differ at most by a multiplicative constant (Theorem 14.10 of [K]) so
there exists a constant k′ such that Q(x) = k′Q(T−1 ◦ F (x)) for all x. But
T−1 ◦ F is a causal automorphism and so preserves the upper time cone. In
particular, Q(x) < 0 if and only if Q(T−1 ◦F (x)) < 0, so k′ must be positive.
Letting k = (k′)−1/2 we therefore have Q(x) = Q

(
1
kT−1 ◦ F (x)

)
so 1

k T−1◦F
preserves the quadratic form on M and the proof is complete. �

Remark: For those with some basic topology, [Nan] contains a simple
argument that reduces the proof of linearity in Zeeman’s Theorem to an
appeal to the so-called Fundamental Theorem of Projective Geometry.

1.7 Spin Transformations and the Lorentz Group

In this section we develop a new and very powerful technique for the con-
struction and investigation of Lorentz transformations. The principal tool is
a certain homomorphism (called the “spinor map”) from the group of 2 × 2
complex matrices with determinant 1 onto the Lorentz group L. With it we
uncover a remarkable connection between Lorentz transformations and the
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familiar fractional linear transformations of complex analysis. This, in turn,
has some rather startling things to say about the Lorentz group and the
phenomenon of length contraction.

We begin by establishing some notation. C 2×2 denotes the set of all 2× 2
matrices

A = [aij ] =
[
a11 a12

a21 a22

]
with complex entries. Using an overbar to designate complex conjugation,
the conjugate transpose ACT of A is defined by

ACT =
[
ā11 ā21

ā12 ā22

]
.

An H in C 2×2 is said to be Hermitian if HCT = H and we denote by H2

the set of all such.

Exercise 1.7.1 Show that any Hermitian H in C 2×2 is uniquely expressible
in the form

H =
[

x3 + x4 x1 + ix2

x1 − ix2 −x3 + x4

]
, (1.7.1)

where xa, a = 1, 2, 3, 4, are real. Show, moreover, that the representation
(1.7.1) is equivalent to

H = x1σ1 + x2σ2 + x3σ3 + x4σ4, (1.7.2)

where σi, i = 1, 2, 3, are the Pauli spin matrices

σ1 =
[
0 1
1 0

]
, σ2 =

[
0 i
−i 0

]
, σ3 =

[
1 0
0 −1

]
and σ4 is the 2 × 2 identity matrix.

We denote by SL(2,C) the set of all A in C 2×2 with determinant 1. SL(2,C) is
called the special linear group of order 2 and is, indeed, a group of matrices,
that is, closed under the formation of products and inverses. Elements of
SL(2,C) are often called spin transformations. Each A in SL(2,C) gives rise
to a mapping MA : H2 → H2 defined by

MA(H) = AHACT

for every H in H2(MA(H) is in H2 since (AHACT )CT = (ACT )CT ·
(AH )CT = AHCTACT = AHACT ). Moreover, det MA(H) = det(AHACT )
= (detA)(det H)(det ACT ) = detH . But MA(H) can be uniquely written in
the form

MA(H) =
[

x̂3 + x̂4 x̂1 + ix̂2

x̂1 − ix̂2 −x̂3 + x̂4

]
(1.7.3)
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for some real numbers x̂a, a = 1, 2, 3, 4. Computing the determinants in
(1.7.1) and (1.7.2) therefore gives

(x̂1)2 + (x̂2)2 + (x̂3)2 − (x̂4)2 = (x1)2 + (x2)2 + (x3)2 − (x4)2. (1.7.4)

Thus, the mapping [xa] → [x̂a] defined by[
x̂3 + x̂4 x̂1 + ix̂2

x̂1 − ix̂2 −x̂3 + x̂4

]
= A

[
x3 + x4 x1 + ix 2

x1 − ix 2 −x3 + x4

]
ACT , (1.7.5)

which is clearly linear, preserves the quadratic form ηabx
axb. According to

Lemma 1.2.3, the matrix of this map is therefore a general, homogeneous
Lorentz transformation. We intend to construct this matrix explicitly from
the entries of

A =
[
α β
γ δ

]
.

Letting h11 = x3 + x4, h12 = x1 + ix 2, h21 = x1 − ix 2, h22 = −x3 + x4 (and
ĥ11 = x̂3 + x̂4, etc.) we have⎡⎢⎢⎣

h11

h12

h21

h22

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 0 1 1
1 i 0 0
1 −i 0 0
0 0 −1 1

⎤⎥⎥⎦
⎡⎢⎢⎣
x1

x2

x3

x4

⎤⎥⎥⎦
which we will write more compactly as

[hij ] = G [xi]

and similarly for [ĥij ]. Moreover, it is easy to check that

G−1 =
1
2

⎡⎢⎢⎣
0 1 1 0
0 −i i 0
1 0 0 −1
1 0 0 1

⎤⎥⎥⎦ .

Exercise 1.7.2 Write out the product

AHACT =
[
α β
γ δ

] [
h11 h12

h21 h22

] [
ᾱ γ̄
β̄ δ̄

]
explicitly and show that MA(H) = AHACT is equivalent to⎡⎢⎢⎣

ĥ11

ĥ12

ĥ21

ĥ22

⎤⎥⎥⎦ =

⎡⎢⎢⎣
αᾱ αβ̄ ᾱβ ββ̄
αγ̄ αδ̄ βγ̄ βδ̄
ᾱγ β̄γ ᾱδ β̄δ
γγ̄ γδ̄ γ̄δ δδ̄

⎤⎥⎥⎦
⎡⎢⎢⎣
h11

h12

h21

h22

⎤⎥⎥⎦
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which we will write more concisely as[
ĥij

]
= RA [hij ].

Consequently, the map [xa] → [x̂a] defined by (1.7.5) is given by

[xa]−−−−→
G

[hij ]−−−−→
RA

[ĥij ]−−−−→
G−1

[x̂a] (1.7.6)

and the Lorentz transformation ΛA determined via (1.7.5) [or (1.7.6)] by A is

ΛA = G−1RAG.

Exercise 1.7.3 Calculate the product G−1RAG explicitly to show that the
entries Λa

b of ΛA are given by

Λ1
1 = 1

2 (αδ̄ + β̄γ + βγ̄ + ᾱδ), Λ1
2 = i

2 (αδ̄ + β̄γ − βγ̄ − ᾱδ),

Λ2
1 = i

2 (−αδ̄ + β̄γ − βγ̄ + ᾱδ), Λ2
2 = 1

2 (αδ̄ − β̄γ − βγ̄ + ᾱδ),

Λ3
1 = 1

2 (αβ̄ − γδ̄ + ᾱβ − γ̄δ), Λ3
2 = i

2 (αβ̄ − γδ̄ − ᾱβ + γ̄δ),

Λ4
1 = 1

2 (αβ̄ + γδ̄ + ᾱβ + γ̄δ), Λ4
2 = i

2 (αβ̄ + γδ̄ − ᾱβ − γ̄δ),

Λ1
3 = 1

2 (αγ̄ + ᾱγ − βδ̄ − β̄δ), Λ1
4 = 1

2 (αγ̄ + ᾱγ + βδ̄ + β̄δ),

Λ2
3 = i

2 (−αγ̄ + ᾱγ + βδ̄ − β̄δ), Λ2
4 = i

2 (−αγ̄ + ᾱγ − βδ̄ + β̄δ),

Λ3
3 = 1

2 (αᾱ − γγ̄ − ββ̄ + δδ̄), Λ3
4 = 1

2 (αᾱ − γγ̄ + ββ̄ − δδ̄),

Λ4
3 = 1

2 (αᾱ + γγ̄ − ββ̄ − δδ̄), Λ4
4 =

1
2
(αᾱ + ββ̄ + γγ̄ + δδ̄). (1.7.7)

Observe that the (4,4)-entry of ΛA is positive so ΛA is orthochronous. More-
over, detΛA = det(G−1RAG) = (det G−1)(det RA)(det G) = detRA and
one shows by direct calculation that det RA = (αδ − βγ)2(ᾱδ̄ − β̄γ̄)2 = 1 so
that ΛA is proper. The map A → ΛA of SL(2,C) to L is called the spinor
map. Note that if A and B are both in SL(2,C), then

ΛAΛB = (G−1RAG)(G−1RBG) = G−1(RARB)G. (1.7.8)

But since MAB (H) = (AB)H(AB)CT = ABHBCTACT = A(BHBCT )ACT

= MA(BHBCT ) = MA(MB(H)) = MA ◦ MB(H) we conclude that MAB =
MA ◦ MB and so RAB = RARB . Thus, (1.7.8) gives ΛAΛB = G−1RABG
and so

ΛAΛB = ΛAB . (1.7.9)
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Thus, the spinor map preserves matrix multiplication, i.e., is a group
homomorphism of SL(2,C) to L. It is not one-to-one since it is clear from
(1.7.7) that both A and −A have the same image in L. In fact, we claim that it
is precisely two-to-one, i.e., that if A and B are in SL(2,C) and ΛA = ΛB, then
A = ±B. To see this note that AB−1 is in SL(2,C) and, since the spinor map
is a homomorphism, ΛAB−1 = ΛAΛB−1 = ΛA(ΛB)−1 = ΛA(ΛA)−1 = identity
matrix.

Exercise 1.7.4 Let AB−1 =
[
α β
γ δ

]
and use (1.7.7) for ΛAB−1 (= identity)

to show that AB−1 = ±
[
1 0
0 1

]
, i.e., that A = ±B.

Exercise 1.7.5 For each real number θ define a 2 × 2 matrix A(θ) by

A(θ) =

[
cosh θ

2 − sinh θ
2

− sinh θ
2 cosh θ

2

]
.

Show that A(θ) is in SL(2,C) and that

ΛA(θ) = L(θ) =

⎡⎢⎢⎣
cosh θ 0 0 − sinh θ
0 1 0 0
0 0 1 0

− sinh θ 0 0 cosh θ

⎤⎥⎥⎦ .

An element A =
[
α β
γ δ

]
of SL(2,C) is said to be unitary if A−1 = ACT , i.e., if

[
α β
γ δ

] [
ᾱ γ̄
β̄ δ̄

]
=
[
αᾱ + ββ̄ αγ̄ + βδ̄
ᾱγ + β̄δ γγ̄ + δδ̄

]
=
[
1 0
0 1

]
. (1.7.10)

The set of all such matrices is denoted SU 2 and is a subgroup of SL(2,C),
i.e., SU 2 is also closed under the formation of products and inverses.

Exercise 1.7.6 Verify this.

Notice that if A is in SU 2, then, by (1.7.10), the (4,4)-entry of ΛA is 1
2 (αᾱ +

ββ̄ + γγ̄ + δδ̄) = 1
2 (1 + 1) = 1 and so ΛA is a rotation in L by Lemma 1.3.4.

Thus, the spinor map carries SU 2 into the rotation subgroup R of L. We
show that, in fact, it maps SU 2 onto R. To do this we borrow a result from
linear algebra (or mechanics, depending on one’s field) which asserts that any
3 × 3 rotation matrix

[
Ri

j

]
i,j=1,2,3

can be represented in terms of its “Euler
angles” φ1, θ and φ2 as
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[
Ri

j

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosφ2 cosφ1 − cosφ2 sinφ1 sin φ2 sin θ

− cos θ sinφ1 sin φ2 − cos θ cosφ1 sinφ2

sin φ2 cosφ1 − sinφ2 sin φ1 − cosφ2 sin θ

+ cos θ sinφ1 cosφ2 + cos θ cosφ1 cosφ2

sin θ sin φ1 sin θ cosφ1 cos θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(this is proved, for example, in [GMS]).

Exercise 1.7.7 Show that

A =

[
cos θ

2e
1
2 i(φ1+φ2) i sin θ

2e−
1
2 i(φ2−φ1)

i sin θ
2e

1
2 i(φ2−φ1) cos θ

2e−
1
2 i(φ1+φ2)

]

is in SU 2 and maps onto

⎡⎢⎢⎣
0[

Ri
j

]
0
0

0 0 0 1

⎤⎥⎥⎦ under the spinor map.

With this we can now show that the spinor map is surjective, i.e., that ev-
ery proper, orthochronous Lorentz transformation Λ is Λ±A for some A in
SL(2,C). By Theorem 1.3.5, there exists a real number θ and two rotations
R1 and R2 in L such that Λ = R1L(θ)R2. There exist elements A1 and A2

of SU 2 ⊆ SL(2,C) which the spinor map carries onto R1 and R2 respec-
tively. Moreover, A(θ) (as defined in Exercise 1.7.6) maps onto L(θ). Since
the spinor map is a homomorphism, A1A(θ)A2 maps onto R1L(θ)R2 = Λ
and the proof is complete.

And so the elements of SL(2,C) generate Lorentz transformations. But
they do other things as well, perhaps more familiar. Specificially, each 2 × 2
complex unimodular matrix defines a (normalized) fractional linear transfor-
mation of the Riemann sphere (extended complex plane). There is, in fact, a
rather surprising connection between these two activities which we intend to
explore since it sheds much light on both the mathematics and the kinematics
of the Lorentz group. First though, a few preliminaries.

Thus far we have thought of a Lorentz transformation Λ exclusively as a
coordinate transformation matrix; what some call a passive transformation
(leaving points fixed, but changing coordinate systems). It will be useful
now, however, to realize that Λ admits an equally natural interpretation as
an active transformation (leaving the coordinate system fixed, but moving
points about). More precisely, let us consider an orthogonal transformation
L : M → M and fix a basis {ea}. Then {êa} = {Lea} is the image basis and,
if we write eb = Λa

b êa, then the corresponding Lorentz transformation Λ is
defined by
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Λ =

⎡⎢⎢⎣
Λ1

1 Λ1
2 Λ1

3 Λ1
4

Λ2
1 Λ2

2 Λ2
3 Λ2

4

Λ3
1 Λ3

2 Λ3
3 Λ3

4

Λ4
1 Λ4

2 Λ4
3 Λ4

4

⎤⎥⎥⎦ .

We emphasize again that Λ is the matrix of L−1 relative to the basis {êa}.
Now, for each x in M we may write x = xaea = x̂aêa, where [x̂a] = Λ[xa].
Thus, we think of Λ as acting on the coordinates of a fixed point to give the
coordinates of the same point in a new coordinate system. However, observe
that L−1x = L−1(x̂aêa) = x̂aL−1êa = x̂aea so we may equally well view Λ as
acting on the coordinates [xa] of some point relative to {ea} and yielding the
coordinates [x̂a] of a new point (namely, L−1x) in the same coordinate system.
It will be crucial somewhat later to observe that, with this new interpretation
of Λ, L−1x has the same position and time in S that x has in Ŝ.

We will be much concerned in the remainder of this section with “past
null directions” and the effect had on them by Lorentz transformations. For
each x in the past null cone C−

N (0) at 0 in M we define the past null direction
R−

x through x by

R−
x = {αx : α ≥ 0}.

Future null directions are defined analogously and all of our results will have
obvious “future duals”. The null direction through x is the set of all real
multiples of x, i.e., R0,x. Obviously, if y is any positive scalar multiple of x,
then R−

y = R−
x . Observe that if L : M → M is an orthogonal transformation

corresponding to any orthochronous Lorentz transformation Λ, then x ∈
C−

N (0) implies Lx ∈ C−
N (0) so R−

Lx is defined. Moreover, L (R−
x ) = L({αx :

α ≥ 0}) = {L(αx) : α ≥ 0} = {αLx : α ≥ 0} = R−
Lx , i.e.,

L
(
R−

x

)
= R−

Lx. (1.7.11)

Consequently, L (and therefore L−1 and so Λ also) can be regarded as a map
on past null directions.

In order to unearth the connection between Lorentz and fractional linear
transformations we observe that there is a natural one-to-one correspondence
between past null directions and the points on a copy of the Riemann sphere.
Specifically, we fix an admissible basis {ea} for M and denote by S− the
intersection of the past null cone C−

N(0) at 0 with the hyperplane x4 = −1:

S− =
{
x = xaea : x ∈ C−

N (0), x4 = −1
}

.

Observe that, since x ∈ C−
N(0) if and only if (x1)2 + (x2)2 + (x3)2 =

(x4)2, S− = {x = xaea : (x1)2 + (x2)2 + (x3)2 = 1} and so is a copy of the
ordinary 2-sphere S2 in the instantaneous 3-space x4 = −1 (see Figure 1.7.1).
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Fig. 1.7.1

Exercise 1.7.8 Show that any past null direction intersects S− in a single
point.

Conversely, every point on S− determines a unique past null direction in M.
To obtain an explicit representation for this past null direction we wish to
regard S− as the Riemann sphere, that is, we wish to identify the points
of S− with extended complex numbers via stereographic projection (see, for
example, [A]). To this end we take N = (0, 0, 1,−1) in S− as the north
pole and project onto the 2-dimensional plane C in x4 = −1 given by
x3 = 0 (see Figure 1.7.2). The relationship between a point P (x1, x2, x3,−1)
other than N on S− and its image ζ in the complex plane C under stereo-
graphic projection from N is easily calculated and is summarized in (1.7.12)
and (1.7.13):

ζ =
x1 + ix2

1 − x3
, (1.7.12)

x1 =
ζ + ζ̄

ζζ̄ + 1
,

x2 =
ζ − ζ̄

i(ζζ̄ + 1)
, (1.7.13)

x3 =
ζζ̄ − 1
ζζ̄ + 1

,

x4 = −1.
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Fig. 1.7.2

Of course, the north pole N(0, 0, 1,−1) on S− corresponds to the point at
infinity in the extended complex plane C̄. In order to avoid the need to deal
with the point at infinity we prefer to represent extended complex numbers

ζ in so-called “projective homogeneous coordinates”, that is, by a pair
[

ξ
η

]
of complex numbers, not both zero, which satisfy

ζ =
ξ

η

(any pair
[

ξ
0

]
with ξ �= 0 gives the point at infinity).

Exercise 1.7.9 Show that if ζ = ξ′

η′ also, then ξ′ = λξ and η′ = λη for some
nonzero complex number λ.

In terms of
[

ξ
η

]
, (1.7.13) becomes

x1 =
ξη̄ + ξ̄η

ξξ̄ + ηη̄
,

x2 =
ξη̄ − ξ̄η

i(ξξ̄ + ηη̄)
, (1.7.14)

x3 =
ξξ̄ − ηη̄

ξξ̄ + ηη̄
,

x4 = −1.
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Reversing our point of view we find that any pair
[
ξ
η

]
of complex numbers,

not both zero, gives rise to a point P (x1, x2, x3,−1) on S− given by (1.7.14).
Being on S− (and therefore on C−

N (0)) this point determines a past null
direction R−

P which, for emphasis, we prefer to denote R−[
ξ
η

]. Multiplying

P by the positive real number ξξ̄ + ηη̄ gives rise to another point X on
C−

N (0) : X = Xaea, where

X1 = ξη̄ + ξ̄η, X3 = ξξ̄ − ηη̄,

X2 = 1
i (ξη̄ − ξ̄η), X4 = −(ξξ̄ + ηη̄).

(1.7.15)

X , of course, also determines a past null direction R−
X and, indeed,

R−
X = R−[

ξ
η

]. (1.7.16)

Finally, we are in a position to tie all of these loose ends together. We

begin with an element A =
[α β
γ δ

]
of SL(2,C). Then A defines a map which

carries any pair
[
ξ
η

]
, not both zero, onto another such pair which we denote

[
ξ̂
η̂

]
= A

[
ξ
η

]
=
[
α β
γ δ

] [
ξ
η

]
=
[
αξ + βη
γξ + δη

]
. (1.7.17)

Observe that, thought of as a mapping on S− (or C̄), (1.7.17) defines a
fractional linear transformation. Indeed, in terms of the extended complex
number ζ = ξ/η, (1.7.17) is equivalent to

ζ̂ =
αζ + β

γζ + δ
.

Now,
[
ξ̂
η̂

]
determines an X̂ in C−

N (0) by (1.7.15) (with hats) and this, in turn,

determines a past null direction R−
X̂

= R−[
ξ̂
η̂

]. On the other hand, A also gives

rise, via the spinor map, to a proper, orthochronous Lorentz transformation
ΛA which, regarded as an active transformation, carries X onto a point ΛAX
on C−

N (0). Our objective is to prove that X̂ and ΛAX are, in fact, the same
point so that, in particular, the effect of the fractional linear transformation
(1.7.17) determined by A on past null directions is the same as the effect of
the Lorentz transformation ΛA determined by A, i.e.,
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R−⎡⎣ ξ̂
η̂

⎤⎦ = R−
ΛAX . (1.7.18)

To prove all of this we proceed as follows: Begin by solving (1.7.15) for the
four products ξη̄, ξ̄η, ξξ̄ and ηη̄ to obtain

ξξ̄ = 1
2

(
X3 + X4

)
, ξη̄ = 1

2 (X1 + iX2),

ξ̄η = 1
2

(
X1 − iX2

)
, ηη̄ = 1

2 (−X3 + X4),

so that

1
2

[
X3 + X4 X1 + iX2

X1 − iX2 −X3 + X4

]
=
[
ξξ̄ ξη̄
ξ̄η ηη̄

]
=
[
ξ
η

] [
ξ̄ η̄
]
. (1.7.19)

Now perform the unimodular transformation (1.7.17) to obtain
[
ξ̂
η̂

]
. The

corresponding point X̂ = X̂aea given by (1.7.15) with hats must satisfy
(1.7.19) with hats, i.e.,

1
2

[
X̂3 + X̂4 X̂1 + iX̂2

X̂1 − iX̂2 −X̂3 + X̂4

]
=

1
2

[
X̂3 + X̂4 X̂1 + iX̂2

X̂1 − iX̂2 −X̂3 + X̂4

]CT

=
[[

ξ̂
η̂

] [ ¯̂
ξ ¯̂η
]]CT

=
[ ¯̂
ξ ¯̂η
]CT

[
ξ̂
η̂

]CT

=
[
ξ̂
η̂

] [
A

[
ξ
η

]]CT

= A

[
ξ
η

] [
ξ
η

]CT

ACT

= A

[[
ξ
η

]
[ξ̄ η̄]
]
ACT

=
1
2
A

[
X3 + X4 X1 + iX 2

X1 − iX 2 −X3 + X4

]
ACT .

Thus,[
X̂3 + X̂4 X̂1 + iX̂2

X̂1 − iX̂2 −X̂3 + X̂4

]
= A

[
X3 + X4 X1 + iX 2

X1 − iX 2 −X3 + X4

]
ACT . (1.7.20)

Comparing (1.7.20) and (1.7.5) and the definition of ΛA we find that, indeed,

X̂ = ΛAX,

so that (1.7.18) is proved.
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Since the spinor map is surjective, every element of L is ΛA for some A in
SL(2, C) and so every element of L determines a fractional linear transfor-
mation of S− which has the same effect on past null directions (±A give rise
to the same fractional linear transformation). Conversely, since the past null
vectors span M (reconsider Exercise 1.2.1 and select only past-directed vec-
tors), a Lorentz transformation is completely determined by its effect on past
null directions. Some consequences of this correspondence between elements
of L and fractional linear transformations of S− are immediate.

Theorem 1.7.1 A proper, orthochronous Lorentz transformation, if not the
identity, leaves invariant at least one and at most two past null directions.

This follows at once from the familiar fact that any fractional linear trans-
formation of the Riemann sphere, if not the identity, has two (possibly co-
incident) fixed points (see [A]). Another well-known property of fractional
linear transformations is that they are completely determined by their values
on any three distinct points in the extended complex plane (see [A]). Hence:

Theorem 1.7.2 A proper, orthochronous Lorentz transformation is com-
pletely determined by its effect on any three distinct past null directions. More
precisely, given two sets of three distinct past null directions there is one and
only one element of L which carries the first set (one-to-one) onto the sec-
ond set.

As our final application we will derive a remarkable result of Penrose
[Pen1] related to what has been called the “invisibility of the Lorentz contrac-
tion”. An admissible observerO “observes” in a quite specific and well-defined
way. One pictures the observer’s frame of reference as a spatial coordinate
grid with clocks located at the lattice points of the grid and either recording
devices or assistants stationed with the clocks to take all of the required local
readings. O then “observes”, say, a moving sphere by either turning on the
devices or alerting the assistants to record the arrival times at their locations
of various points on the sphere. When things have calmed down again O will
collect all of this data for analysis. He may then, for example, construct a
“picture” of the sphere by selecting (arbitrarily) some instant of his time,
collecting together all of the locations in his frame which recorded the pas-
sage of a point on the boundary of the sphere at that instant and “plotting”
these points in his frame. In this way he will find himself constructing, not a
sphere, but an ellipsoid due to length contraction in the direction of motion.

What our observer O actually “sees” (through his eye or a camera lens),
however, is not so straightforward. We wish to construct an (admittedly ide-
alized) geometrical representation in M of this “field of vision”.

It is a clear evening and, as you stroll outside, you glance up and see
the Big Dipper. More precisely, you direct the surface of your eye toward a
group of incoming photons (idealize and assume one from each star in the
constellation). Regardless of when they left their sources these photons arrive
at this surface simultaneously (in your reference frame) and thereby create
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a pattern (image) which is recorded by your brain. This pattern is what
you “see”. Where can we find it in M? Each of the photons you see has a
worldline in M which lies along the past null cone C−

N (0) (you are located
at the origin of your coordinate system and the image is registered in your
brain at x4 = 0). Just slightly before x4 = 0 the photons impacted the surface
of your eye and formed their image. At x4 = −1 the photons were all on a
sphere of radius 1 about the origin of your coordinate system and formed on
this sphere the same pattern that your eye registered a bit later. Projecting
this image down to the plane x4 = −1 in M we find the worldlines of these
photons intersecting S− in the very image that you “see”. As a geometrical
representation of what you see (at the event x1 = x2 = x3 = x4 = 0) we
therefore take the intersections with S− of the worldlines of all the photons
that trigger your brain to record an image at x4 = 0.

Now we ask the following question. Suppose that what you see is not the
Big Dipper, but something with a circular outline, e.g., a sphere at rest in
your reference frame. What is seen by another admissible observer, moving
relative to your frame, but momentarily coincident with you at the origin?
According to the new observer the sphere is moving and so certainly must
“appear” contracted in the direction of motion. Surely, he must “see” an
elliptical, not a circular image.

But he does not! We propose to argue that, despite the Lorentz contraction
in the direction of motion, the sphere will still present a circular outline
to Ô (although, in a degenerate case, the circle may “appear” straight).
Indeed, this is merely a reflection of yet another familiar property of fractional
linear transformations of the Riemann sphere: they carry circles onto circles.
Thus, if Λ is the Lorentz transformation relating S and Ŝ, then, regarded
as an active transformation on past null directions, it carries any family of
such null directions which intersect S− in a circle onto another such family.
In somewhat more detail we recall (page 74) that, for each x in M, Λ(x)
(= L−1(x)) has the same position and time in S that x has in Ŝ. In particular,
Λ(x) ∈ S− if and only if x ∈ Ŝ−. Thus, Λ (R−

x ) = R−
Λ(x) “looks the same”

to O at x̂4 = 0 as R−
x “looks” to Ô at x̂4 = 0 (same relative position in the

sky). Now, if we have a family N of past null directions (forming a certain
“image” for O at x4 = 0) it follows that the appearance of this image for Ô
at x̂4 = 0 will be the same as the appearance of Λ(N ) to O at x4 = 0. If
the rays in N present a circular outline to O at x4 = 0, so will Λ(N ) and
therefore Ô will also see a circular outline at x4 = 0. O and Ô both “see” a
circular outline.

Exercise 1.7.10 Describe the “degenerate case” in which the circle
“appears” straight.

Exercise 1.7.11 Offer a plausible physical explanation for this “invisibility
of the Lorentz contraction”. Hint : For O the photons which arrive simul-
taneously at the surface of his eye to form their image also left the sphere
simultaneously. Is this true for Ô?
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1.8 Particles and Interactions

A billiard ball rolling with constant speed in a straight line collides with
another billiard ball, initially at rest, and the two balls rebound from the
impact. The actual physical mechanisms involved in such an interaction are
quite complicated, having to do with the electrical repulsion between elec-
trons in the atoms at the surfaces of the two balls. Nevertheless, much can
be said about the motion which results from such a collision even without
detailed information about this electromagnetic interaction. What makes this
possible is the idea (one of the most profound and powerful in all of physics)
that such situations are often governed by conservation laws. Specifically,
the conservation of Newtonian momentum has immediate implications for
the motion of our billiard balls (for example, that, assuming the collision is
glancing rather than head-on, they will separate along paths that form a right
angle) and these predictions were well borne out by observation, at least until
the 20th century. However, Newtonian physics would make precisely the same
predictions if the billiard balls were replaced by protons travelling at speeds
comparable to that of light and here the observational evidence does not
support these conclusions (e.g., the protons generally separate along paths
which form an angle less than 90◦). In this section we shall investigate the
relativistic alternative to the classical principles of the conservation of mo-
mentum and energy and draw some elementary consequences from it. First,
though, some definitions.

A material particle in M is a pair (α, m), where α : I → M is a timelike
worldline parametrized by proper time τ and m is a positive real number
called the particle’s proper mass (and is to be identified intuitively with the
“inertial mass” of the particle from Newtonian mechanics). (α, m) is called a
free material particle if α is of the form α(τ) = x0 + τU for some fixed event
x0 and unit timelike vector U . Recall that, for any timelike worldline α(τ)
the proper time derivative α′(τ) is called the world velocity of α and denoted
U = U(τ). The world momentum (or 4-momentum) of (α, m) is denoted P
and defined by

P = P (τ) = mU (τ).

Notice that, since U · U = −1 (Exercise 1.4.11), we have

P · P = −m2. (1.8.1)

Now fix an arbitrary admissible basis {ea}. Writing P = P aea and using
notation analogous to that established in (1.4.9) and (1.4.10) we have

P = (P 1, P 2, P 3, P 4) = mγ(
⇀
u, 1) = (

⇀
p , mγ),

where
⇀
p = (P 1, P 2, P 3) is called the relative 3-momentum of (α, m) in {ea}.

Notice that if γ = ( 1− β2)−
1
2 is near 1, i.e., if the speed of (α, m) relative to

{ea} is small, then
⇀
p is approximately equal to m

⇀
u , the classical Newtonian
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momentum of (α, m) in {ea}. The quantity mγ = m√
1−β2

is sometimes re-

ferred to as the “relativistic mass” of (α, m) relative to {ea} since it permits
one to retain a formal similarity between the Newtonian and relativistic def-
initions of momentum (“mass times velocity”). Inertial mass was regarded
in classical physics as a measure of the particle’s resistance to acceleration.
From the relativistic point of view this resistance must become unbounded
as β → 1 and mγ certainly has this property. We prefer, however, to avoid
the quite misleading attitude that “mass increases with velocity” and simply
abandon the Newtonian view that momentum is a linear function of velocity.

We shall denote by |
⇀
p | the usual Euclidean magnitude of the relative

3-momentum in {ea}, i.e., |
⇀
p |2 = (P 1)2 +(P 2)2 + (P 3)2. To see more clearly

the relationship between P and more familiar Newtonian concepts we use the
binomial expansion

γ = (1 − β2)−
1
2 = 1 + 1

2β2 + 3
8β4 + · · · (1.8.2)

of γ (valid since |β | < 1) to write

P i = mγui = mui + 1
2muiβ2 + · · · , i = 1, 2, 3, and (1.8.3)

P 4 = mγ = m + 1
2mβ2 + · · · . (1.8.4)

The nonlinear terms in (1.8.3) are absent from the Newtonian definition, but
are crucial to the relativistic theory since they force |

⇀
p | to become unbounded

as β → 1, i.e., they impose the “speed limit” on material particles relative to
admissible frames of reference.

The physical interpretation of (1.8.4) is much more interesting. Notice,
in particular, the appearance of the term 1

2mβ2 corresponding to the clas-
sical kinetic energy. The presence of this term leads us to call P 4 the total
relativistic energy of (α, m) in {ea} and denote it E.

E = −P · e4 = P 4 = mγ = m + 1
2mβ2 + · · · . (1.8.5)

Exercise 1.8.1 Show that, relative to any admissible basis {ea},

m2 = E2 − |
⇀
p |2. (1.8.6)

A few words of caution are in order here. The concept of “energy” in clas-
sical physics is quite a subtle one. Many different types of energy are de-
fined in different situations, but each is in one way or another intuitively
related to a system’s “ability to do work”. Now, simply calling P 4 the total
relativistic energy of our particle does not ensure that this intuitive inter-
pretation is still valid. Whether or not the name is appropriate can only be
determined experimentally. In particular, one should determine whether or
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not the presence of the term m in (1.8.5) is consistent with this interpreta-
tion. Observe that when β = 0 (i.e., in the instantaneous rest frame of the
particle) P 4 = E = m (= mc2 in traditional units) so that even when the
particle is at rest relative to an admissible frame it still has “energy” in this
frame, the amount being numerically equal to m. If this is really “energy”
in the classical sense, it should be capable of doing work, i.e., it should be
possible to “liberate” (and use) it. That this is indeed possible is demon-
strated daily in particle physics laboratories and, fortunately not so often, in
the explosion of atomic and nuclear bombs.

It is remarkable that the classically distinct concepts of momentum, energy
and mass find themselves so naturally integrated into the single relativistic
notion of world momentum (energy-momentum). We ask the reader to show
that the process was indeed natural in the sense that if one believes that
relativistic momentum should be represented by a vector in M and that the
first three components of P = mU are “right”, then one has no choice about
the fourth component.

Exercise 1.8.2 Show that two vectors v and w in M with the same spatial
components relative to every admissible basis (i.e., v1 = w1, v2 = w2 and
v3 = w3 for every {ea}) must, in fact, be equal. Hint : It will be enough to
show that a vector whose first three components are zero in every admissible
coordinate system must be the zero vector.

Special relativity is of little interest to those who study colliding billiard
balls (the relative speeds are so small that any “relativistic effects” are negli-
gible). On the other hand, when the colliding objects are elementary particles
(protons, neutrons, electrons, mesons, etc.) these relativistic effects are the
dominant features. Such interactions between elementary particles, however,
very often involve not only material particles, but photons as well and we wish
to include these in our study. Now, a photon is, in many ways, analogous to
a free material particle. Relative to any admissible frame of reference it trav-
els along a straight line with constant speed, i.e., it has a linear worldline.
Since this worldline is null, however, it has no proper time parametrization
and so no world velocity. Nevertheless, photons do possess “momentum” and
“energy” and so should have a “world momentum” (witness, for example, the
photoelectric effect in which photons collide with and eject electrons from
their orbits in an atom). Unlike a material particle, however, the photon’s
characteristic feature is not mass, but energy (frequency, wavelength) and
this is highly observer-dependent (e.g., wavelengths of photons emitted from
the atoms of a star are “red-shifted” (lengthened) relative to those measured
on earth for the same atoms because the stars are receding from us due to the
expansion of the universe). A hint as to how these features can be modelled
in M is provided by:
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Exercise 1.8.3 Let N be a future-directed null vector in M and {ea} an
admissible basis with N = Naea. Show that

N = ε(
⇀
e + e4), (1.8.7)

where ε = −N · e4 = N4 and
⇀
e is the direction 3-vector of N relative to

{ea}, i.e.,

⇀
e = ((N1)2 + (N2)2 + (N3)2)−

1
2 (N1e1 + N2e2 + N3e3).

Now, we define a photon2 in M to be a pair (α, N), where N is a future-
directed null vector called the photon’s world momentum (or 4-momentum)
and α : I → M (I an interval in R containing 0) is given by α(t) = x0 + tN
for some fixed event x0 in M and all t in I. Relative to any admissible basis
{ea} the positive real number

ε = −N · e4 = N4

is called the energy of (α, N) in {ea} (see Figure 1.8.1). The frequency ν and
wavelength λ of (α, N) in {ea} are defined by ν = ε/h and λ = 1/ν, where h
is a constant (called Planck’s constant).

Fig. 1.8.1

2No quantum mechanical subtleties are to be inferred from our use of the term “photon”.
Our definition is intended to model any “massless” particle travelling at the speed of light.
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It is interesting to compare the energies of a photon (α, N) in two different
frames of reference. Thus, we let {ea} and {êa} be two admissible bases
and write N = ε(

⇀
e + e4) = ε̂(

⇀

ê + ê4), where ε = −N · e4 and ε̂ = −N · ê4.

Exercise 1.8.4 Show that ε̂ = γε (1− β(
⇀
e ·

⇀

d )). Hint : Use Exercise 1.3.10.

But
⇀
e and

⇀

d both lie in the subspace spanned by e1, e2 and e3 and the
restriction of the Lorentz inner product to this subspace is just the usual
positive definite inner product on R3. Thus,

⇀
e ·

⇀

d = cos θ, where θ is the
angle in

∑
(the spatial coordinate system of the frame corresponding to {ea})

between the direction of the photon and the direction of
∑̂

. We therefore
obtain

ε̂

ε
=

ν̂

ν
= γ(1 − β cos θ) =

1 − β cos θ√
1 − β2

(1.8.8)

which is the relativistic formula for the Doppler effect. Using the binomial
expansion (1.8.2) for γ gives

ε̂

ε
=

ν̂

ν
= (1 − β cos θ) +

1
2
β2(1 − β cos θ) + · · · . (1.8.9)

The first term 1−β cos θ is the familiar classical formula for the Doppler effect,
whereas the remaining terms constitute the relativistic correction contributed
by time dilation. Three special cases of (1.8.8) are of particular interest.

θ = 0(so
⇀

d =
⇀
e ) =⇒ ν̂

ν
=

√
1 − β

1 + β
, (1.8.10)

θ = π(so
⇀

d = −⇀
e ) =⇒ ν̂

ν
=

√
1 + β

1 − β
, (1.8.11)

θ =
π

2
(so

⇀
e ·

⇀

d = 0) =⇒ ν̂

ν
=

1√
1 − β2

. (1.8.12)

The classical theory predicts no Doppler shift in the case θ = π/2 so that
the formula (1.8.12) for the so-called transverse Doppler effect represents a
purely relativistic phenomenon. Experimental verification of (1.8.12) was first
accomplished by Ives and Stilwell [IS] and is regarded as direct confirmation
of the reality of time dilation.

Next we wish to compare the angles θ and θ̂ defined by cos θ =
⇀
e ·

⇀

d

and cos θ̂ =
⇀

ê ·
⇀

d̂ .

Exercise 1.8.5 Let
⇀

û denote the velocity 3-vector of S relative to Ŝ
((1.3.12) and (1.3.15)) and show that

⇀

û = −γβ(
⇀

d + βe4). (1.8.13)
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From (1.8.13) we conclude that
⇀

d̂ = −γ(
⇀

d + βe4). (1.8.14)

Since N = ε(
⇀
e + e4) = ε̂(

⇀

ê + ê4) we obtain from the definitions of θ and θ̂

⇀

d · N = ε cos θ and
⇀

d̂ · N = ε̂ cos θ̂. (1.8.15)

Now, ε̂ cos θ̂ =
⇀

d̂ ·N = −γ(
⇀

d ·N + βe4 ·N) = −γ(ε cos θ − βε) = −γε cos θ +
γβε. Thus,

ε̂

ε
cos θ̂ = γ(β − cos θ)

Fig. 1.8.2

which, by (1.8.8), we may write as

γ(1 − β cos θ) cos θ̂ = γ(β − cos θ),

or
cos θ̂ =

β − cos θ

1 − β cos θ
. (1.8.16)

Generally, however, one would be more interested in comparing the angles θ
and θ′ = π − θ̂, e.g., when the spatial axes are in standard orientation as in
Figure 1.8.2. Since cos θ′ = − cos θ̂, (1.8.16) becomes the standard relativistic
aberration formula

cos θ′ =
cos θ − β

1 − β cos θ
. (1.8.17)

At this point we have assembled enough machinery to study some of the
physical interactions to which the special theory of relativity is routinely
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applied. Henceforth, we shall use the term free particle to refer to either a
free material particle or a photon. If A is a finite set of free particles, then
each element of A has a unique world momentum vector. The sum of these
vectors is called the total world momentum (or total 4-momentum) of A.
A contact interaction in M is a triple (A, x, Ã), where A and Ã are two
finite sets of free particles, neither of which contains a pair of particles with
linearly dependent world momenta, and x is an event such that

(a) x is the terminal point of all the particles in A (i.e., for each (α, m) in A
with α : [a, b] → M, we have α(b) = x),

(b) x is the initial point of all the particles in Ã, and
(c) the total world momentum of A equals the total world momentum of Ã.

Intuitively, the event x should be regarded as the collision of all the particles
in A, from which emerge all the particles in Ã (which may be physically
quite different than those in A, e.g., it has been observed that the collision of
two electrons can result in three electrons and a positron). The prohibition
on pairs of particles with linearly dependent world momenta in the same set
is based on the presumption that two such particles would be physically in-
distinguishable. Property (c) is called the conservation of world momentum
and contains the appropriate relativistic generalizations of two classical con-
servation principles: the conservation of momentum and the conservation of
energy.

Several conclusions concerning contact interactions can be drawn directly
from the results we have available. Consider, for example, an interaction
(A, x, Ã) in which Ã consists of a single photon. Then the total world mo-
mentum of Ã is null so the same must be true of A. Since the world momenta
of the individual particles in A are all either timelike or null and all are future-
directed, Lemma 1.4.3 implies that all of these world momenta must be null
and parallel. Since A cannot contain two distinct photons with parallel world
momenta, A must also consist of a single photon which, by (c), must have the
same world momentum as the photon in Ã. In essence, “nothing happened
at x”. We conclude that no nontrivial interaction of the type modelled by our
definition can result in a single photon and nothing else.

A contact interaction (A, x, Ã) is called a disintegration or decay if A
consists of a single free particle.

Exercise 1.8.6 Analyze a disintegration (A, x, Ã) in which A consists of a
single photon.

Suppose that A consists of a single free material particle of proper mass
m0 and Ã consists of two material particles with proper masses m1 and m2

(such disintegrations do, in fact, occur in nature, e.g., in α-emission). Let
P0, P1 and P2 be the world momenta of the particles with masses m0, m1

and m2 respectively. Appealing to (1.8.1), the Reversed Triangle Inequality
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(Theorem 1.4.2) and the fact that P1 and P2 are linearly independent we
find that

m0 > m1 + m2. (1.8.18)

The excess mass m0 − (m1 + m2) of the initial particle is regarded as a
measure of the amount of energy required to split m0 into two pieces. Stated
somewhat differently, when the two particles in Ã were held together to form
the single particle in A the “binding energy” contributed to the mass of this
latter particle, while, after the decay, the difference in mass appears in the
form of kinetic energy of the generated particles.

Exercise 1.8.7 Show that a free electron cannot emit or absorb a photon.
Hint : The contradiction arises from the constancy of the proper mass me

of an electron. A more complicated system such as an atom or molecule
whose proper mass can vary with its energy state (these being determined
by the principles of quantum mechanics) is not prohibited from absorbing or
emitting photons.

Next we consider two examples of more detailed calculations for specific
interactions, each of which models an important reaction in particle physics.
We should emphasize at the outset, however, that the conservation of world
momentum alone is almost never sufficient to determine all of the details of
the resulting motion. Additional conservation laws (e.g., of “spin”) can reduce
the degree of indeterminacy, but quantum mechanics imposes a positive lower
bound on the extent to which this is possible. As final preparation for our
examples we will need to record the conservation of world momentum in
component form relative to an arbitrary admissible basis {ea}. Thus we write∑

A
mγui +

∑
A

hνei =
∑
Ã

m̃γ̃ũi +
∑
Ã

hν̃ẽi, i = 1, 2, 3, (1.8.19)

∑
A

mγ +
∑
A

hν =
∑
Ã

m̃γ̃ +
∑
Ã

hν̃, (1.8.20)

where the first and third sums in each are over all the material particles in
A and Ã respectively, whereas the second and fourth sums are over all of the
photons in A and Ã respectively.

In our first example we describe the so-called Compton effect. The physical
situation we propose to model is the following: A photon collides with an
electron and rebounds from it (generally with a different frequency), while
the electron recoils from the collision. Thus, we consider a contact interaction
(A, x, Ã), where A consists of a photon with world momentum N and a
material particle with proper mass me and world velocity U and Ã consists
of a photon with world momentum Ñ and a material particle with proper
mass me and world velocity Ũ . We analyze the interaction in a frame of
reference in which the material particle in A is at rest (time axis parallel
to the worldline of the particle). In this frame the conservation of world
momentum equations (1.8.19) and (1.8.20) become (since ui = 0, γ = 1)
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Fig. 1.8.3

meγ̃ũi + hν̃ẽi = hνei, i = 1, 2, 3, (1.8.21)
meγ̃ + hν̃ = me + hν. (1.8.22)

Let ξ = ν̃/ν and k = hν/me. We denote by θ the angle between the direction
vectors of the two photons in the given frame of reference, i.e., cos θ = e1ẽ1 +
e2ẽ2 + e3ẽ3 (see Figure 1.8.3). With this notation (1.8.21) and (1.8.22) can
be written

γ̃ũi = kei − ξkẽi, i = 1, 2, 3, (1.8.23)
γ̃ − 1 = k(1 − ξ). (1.8.24)

Since β̃2 = (ũ1)2 + (ũ2)2 + (ũ3)2 = 1 − γ̃−2, when we (Euclidean) dot each
side of (1.8.23) with itself we obtain

γ̃2β̃2 = k2(1 − 2ξ cos θ + ξ2) = γ̃2 − 1.

Thus,

γ̃ + 1 =
k2(1 − 2ξ cos θ + ξ2)

γ̃ − 1
=

k(1 − 2ξ cos θ + ξ2)
1 − ξ

(1.8.25)

by (1.8.24). Subtracting (1.8.24) from (1.8.25) we next obtain

2 =
k(1 − 2ξ cos θ + ξ2) − k(1 − ξ)2

1 − ξ
=

k(2ξ − 2ξ cos θ)
1 − ξ

=
2kξ(1 − cos θ)

1 − ξ
=

4kξ sin2
(

θ
2

)
1 − ξ

.



90 1 Geometrical Structure of M

Thus, 2kξ sin2
(

θ
2

)
= 1−ξ and therefore ξ = 1

1+2k sin2(θ/2)
so ν̃ = ν

1+2k sin2(θ/2)
.

From this we compute

λ̃ − λ =
1
ν̃
− 1

ν
=

1 + 2k sin2
(

θ
2

)
ν

− 1
ν

=
2k sin2

(
θ
2

)
ν

.

We conclude that

λ̃ − λ =
2h

me
sin2
(

θ
2

)
(1.8.26)

which gives the change in wavelength of the photon as a function of the angle
θ through which it is deflected (in the frame in which the electron is initially
at rest). Observe that this change in wavelength does not depend on the
wavelength λ of the incident photon, but only on the angle through which
it is deflected. Moreover, this difference ranges from a minimum of 0 when
θ = 0 (the photon and electron do not interact physically) to a maximum of

Δλmax =
2h

me
(1.8.27)

when θ = π (the photon is thrown straight back). This maximum change in
wavelength is a characteristic feature of the electron; the quantity h/me is
called the Compton wavelength of the electron.

Next we consider an inelastic collision between two material particles.
The situation we have in mind is as follows: two free material particles with
masses m1 and m2 collide and coalesce to form a third material particle of
mass m3. Classically it is assumed that m3 = m1+m2 and on the basis of this
assumption (and the conservation of Newtonian momentum) one finds that
kinetic energy is lost during the collision. In Newtonian mechanics this lost
kinetic energy disappears entirely from the mechanical picture in the sense
that it is viewed as having taken the form of heat in the combined particle and
therefore cannot be discussed further by the methods of mechanics. We shall
see that this rather unsatisfactory feature of Newtonian mechanics is avoided
in relativistic mechanics by observing that conservation of world momentum
(which includes the conservation of energy) requires that the “hot” combined
particle have a proper mass which is greater than the sum of the two masses
from which it is formed, the difference m3 − (m1 + m2) being a measure of
the energy required to bind the two particles together; this energy “acts like
mass” in the combined particle.

We shall therefore consider a contact interaction (A, x, Ã), where A con-
sists of two free material particles with proper masses m1 and m2 and world
velocities U1 and U2 respectively and Ã consists of one free material particle
with proper mass m3 and world velocity U3. Conservation of world momen-
tum requires that

m3U3 = m1U1 + m2U2. (1.8.28)
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Again observe that the Reversed Triangle Inequality (Theorem 1.4.2) gives
m3 > m1 + m2. Moreover, since U1 · U1 = U2 · U2 = U3 · U3 = −1 we obtain
(by dotting both sides of (1.8.28) with itself and using any admissible frame
of reference)

m2
3 = m2

1 + m2
2 − 2m1m2U1 · U2,

m2
3 = m2

1 + m2
2 − 2m1m2γ1γ2(

⇀
u 1, 1) · (⇀

u2, 1), (1.8.29)

m2
3 = m2

1 + m2
2 + 2m1m2γ1γ2(1 − ⇀

u1 ·
⇀
u2),

which yields the resultant mass m3 in terms of m1, m2 and the quantities ui
1

and ui
2, i = 1, 2, 3, which can be measured in the given frame of reference.

From (1.8.28) one can then compute U3.
We wish to obtain an approximate formula for m3 which can be compared

with the Newtonian expression for the loss in kinetic energy. Assume that β1

and β2 are small so that γ1 and γ2 are approximately 1 (the frame of reference
is then no longer arbitrary, of course). We will eventually take γ1γ2 ≈ 1, but
first we consider the somewhat better approximations

γj ≈ 1 + 1
2β2

j , j = 1, 2,

obtained from the binomial expansion (1.8.2). Then

γ1γ2 ≈
(
1 + 1

2β2
1

) (
1 + 1

2β2
2

)
= 1 + 1

2β2
1 + 1

2β2
2 + 1

4β2
1β2

2 ,

γ1γ2 ≈ 1 + 1
2β2

1 + 1
2β2

2 . (1.8.30)

Exercise 1.8.8 Show that (1.8.29) and (1.8.30) yield

m2
3 ≈ (m1 + m2)2 + m1m2

(
β2

1 + β2
2 − 2γ1γ2(

⇀
u 1 ·

⇀
u2)
)
. (1.8.31)

Now taking γ1γ2 ≈ 1 in (1.8.31) we obtain

m2
3 ≈ (m1 + m2)2 + m1m2|

⇀
v |2, (1.8.32)

where |⇀v |2 is the squared magnitude of the relative velocity
⇀
v =

⇀
u1 − ⇀

u2

of the two particles in A as measured in the given frame. From (1.8.32) we
obtain

m3 ≈ m1 + m2 +
m1m2

m1 + m2 + m3
|⇀v |2.

Assuming that m3 ≈ m1 + m2 in the denominator we arrive at

m3 ≈ m1 + m2 + 1
2

m1m2

m1 + m2
|⇀v |2, (1.8.33)

where the last term represents the approximate gain in proper mass as a
result of the collision.
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Now, in Newtonian mechanics it is assumed that m3 = m1 + m2 so that
conservation of Newtonian momentum requires that

(m1 + m2)
⇀
u3 = m1

⇀
u1 + m2

⇀
u2. (1.8.34)

Taking the Euclidean dot product of each side of (1.8.34) with itself then
yields

(m1 + m2)2|
⇀
u3|2 = m2

1|
⇀
u1|2 + m2

2|
⇀
u2|2 + 2m1m2(

⇀
u 1 ·

⇀
u2). (1.8.35)

Exercise 1.8.9 Use (1.8.35) to show that the classical loss in kinetic energy
due to the collision is given by

1
2
m1|

⇀
u1|2 +

1
2
m2|

⇀
u2|2 −

1
2
(m1 + m2)|

⇀
u3|2 =

1
2

m1m2

m1 + m2
|⇀v |2,

where |⇀v |2 = |⇀u 1 −
⇀
u2|2.

Consequently, the Newtonian expression for the lost kinetic energy coincides
with the relativistic formula (1.8.33) for the approximate gain in proper mass
of the combined particle.



Chapter 2

Skew-Symmetric Linear
Transformations and
Electromagnetic Fields

2.1 Motivation via the Lorentz Law

A charged particle in M is a triple (α, m, e), where (α, m) is a material
particle and e is a nonzero real number called the charge of the particle.
A free charged particle is a charged particle (α, m, e), where (α, m) is a free
material particle. Charged particles do two things of interest to us. By their
very presence they create electromagnetic fields and they also respond to the
fields created by other charges. Our objective in this chapter is to isolate the
appropriate mathematical object with which to model an electromagnetic
field in M, derive many of its basic properties and then investigate these two
activities.

Charged particles “respond” to the presence of an electromagnetic field
by experiencing changes in world momentum. The quantitative nature of
this response is expressed by a differential equation relating the proper time
derivative of the particle’s world momentum to the field. This equation of
motion is generally taken to be the so-called Lorentz World Force Law (or
Lorentz 4-Force Law) which expresses the rate at which the particle’s world
momentum changes at each point on the worldline as a linear function of the
particle’s world velocity:

dP
dτ

= eFU , (2.1.1)

where U = U(τ) is the particle’s world velocity, P = mU its world momentum
and, at each point, F : M → M is a linear transformation defined in terms of
the classical “electric and magnetic 3-vectors

⇀

E and
⇀

B” at that point ((2.1.1)
is an abbreviated version of the somewhat more accurate and considerably
more cumbersome dP(τ)

dτ = eFα(τ)(U(τ)), where Fα(τ) is the appropriate
linear transformation at α(τ) ∈ M). We should point out that (2.1.1) can
be regarded as an appropriate equation of motion for charged particles in an
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electromagnetic field only if the charges whose motion is to be governed by it
have negligible contribution to the ambient field. It must be possible to regard
the field as “given” and the charged particles as “test charges”. The much
more difficult question of the interactions between the given field and the
fields created by the moving charges will not be considered here (see [Par]).

We argue now that the form of the Lorentz Law (2.1.1) suggests that the
linear transformations F must be of a particular type (“skew-symmetric”).
Indeed, rewriting (2.1.1) at each fixed point of M as

FU =
m

e

dU
dτ

and dotting both sides with U gives

FU · U =
m

e

dU
dτ

· U =
m

e
A · U = 0

since a material particle’s world velocity and world acceleration are always
orthogonal (Exercise 1.4.12). Since any unit timelike vector u ∈ M is the
world velocity of some charged particle (construct one!) we find that, for any
such u, Fu ·u = 0. Linearity therefore implies that Fv · v = 0 for all timelike v.
Now, if u and v are timelike and future-directed, then u + v is also timelike
and so 0 = F (u + v) · (u + v) = (Fu + Fv) · (u + v) = Fu · v + Fv ·u = Fu · v +
u ·Fv . Thus, Fu · v = −u · Fv . But M has a basis of future-directed timelike
vectors so it follows that F must satisfy

Fx · y = −x · Fy (2.1.2)

for all x and y in M. A linear transformation F : M → M which satisfies
(2.1.2) for all x and y in M is said to be skew-symmetric (with respect to
the Lorentz inner product on M).

At each fixed point in M we therefore elect to model an electromagnetic
field by a skew-symmetric linear transformation F whose job it is to assign
to the world velocity U of a charged particle passing through that point
the change in world momentum dP

dτ = eFU that the particle should expect
to experience due to the field. One would picture the electromagnetic field
in toto therefore as a smooth assignment of such a linear transformation
to each point in (some region of) M (although we shall find that nature
imposes a condition—Maxwell’s Equations—on the manner in which such an
assignment can be made). In the next four sections we carry out a general
investigation of skew-symmetric linear transformations on M and then turn
to some physical applications in the last two sections.
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2.2 Elementary Properties

Throughout this section F will represent a nonzero, skew-symmetric linear
transformation on M. The most obvious consequence of the definition (2.1.2)
of skew-symmetry is that

Fx · x = x · Fx = 0 (2.2.1)

for all x in M. If {ea}4
a=1 is an arbitrary admissible basis for M and we write

Feb = F a
bea = F 1

be1 + F 2
be2 + F 3

be3 + F 4
be4, then (2.2.1) implies F a

a = 0
for a = 1, 2, 3, 4, i.e., the diagonal entries in the matrix of F are all zero. In
addition, for i, j = 1, 2, 3, F j

i = −F i
j , whereas F 4

i = F i
4. Thus, the matrix

of F relative to any admissible basis has the form

[F a
b ] =

⎡⎢⎢⎣
0 F 1

2 F 1
3 F 1

4

−F 1
2 0 F 2

3 F 2
4

−F 1
3 −F 2

3 0 F 3
4

F 1
4 F 2

4 F 3
4 0

⎤⎥⎥⎦ . (2.2.2)

Observe that, due to the fact that the inner product on M is indefinite,
the matrix of a skew-symmetric linear transformation on M is not a skew-
symmetric matrix (in the “time” part).

In order to establish contact with the notation usually used in physics we
introduce, in each admissible basis {ea}, two 3-vectors

⇀

E = E1e1 + E2e2 +
E3e3 and

⇀

B = B1e1 + B2e2 + B3e3, where E1 = F 1
4, E2 = F 2

4, E3 =
F 3

4, B1 = F 2
3, B2 = −F 1

3 and B3 = F 1
2. Thus, (2.2.2) can be written

[F a
b] =

⎡⎢⎢⎣
0 B3 −B2 E1

−B3 0 B1 E2

B2 −B1 0 E3

E1 E2 E3 0

⎤⎥⎥⎦ . (2.2.3)

If F is thought of as describing an electromagnetic field at some point of
M, then

⇀

E and
⇀

B are regarded as the classical electric and magnetic field
3-vectors at that point as measured in {ea}.

We consider two simple examples which, in Section 2.4, we will show to be
fully and uniquely representative in the sense that for any skew-symmetric
F : M → M there exists a basis relative to which the matrix of F has one
of these forms, but no basis in which it has the other. First fix an admissible
basis {ea} and a positive real number α and define a linear transformation
FN on M whose matrix relative to this basis is⎡⎢⎢⎣

0 0 0 0
0 0 α 0
0 −α 0 α
0 0 α 0

⎤⎥⎥⎦ .
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Then FN is clearly skew-symmetric,
⇀

E = αe3 and
⇀

B = αe1, so an observer in
this frame measures electric and magnetic 3-vectors that are perpendicular
and have the same magnitude.

Next, fix an admissible basis {ea} and two non-negative real numbers δ
and ε and let FR : M → M be the linear transformation whose matrix
relative to {ea} is ⎡⎢⎢⎣

0 δ 0 0
−δ 0 0 0

0 0 0 ε
0 0 ε 0

⎤⎥⎥⎦ .

Again, FR is skew-symmetric. Moreover,
⇀

E = εe3 and
⇀

B = δe3 so an ob-
server in this frame will measure electric and magnetic 3-vectors in the same
direction and of magnitude ε and δ respectively.

Relative to another admissible basis {êa} all of the F̂ a
b, Êi and B̂i are

defined in the same way. Thus, if Λ is the Lorentz transformation associated
with the orthogonal transformation L that carries {ea} onto {êa}, i.e., the
matrix of L−1 relative to {êa}, then the matrix of F relative to {êa} is
Λ [F a

b] Λ−1, i.e., F̂ a
b = Λa

αΛb
βFα

β.

Exercise 2.2.1 With [F a
b] as in (2.2.3) and Λ = Λ(β) for some β in (−1, 1),

show that

Ê1 = E1, Ê2 = γ(E2 − βB3), Ê3 = γ(E3 + βB2),

B̂1 = B1, B̂2 = γ(βE3 + B2), B̂3 = −γ(βE2 − B3).
(2.2.4)

Exercise 2.2.2 Show that, for FN , any other admissible observer mea-
sures electric and magnetic 3-vectors that are perpendicular and have the
same magnitude. Hint : This is clear if the Lorentz transformation Λ relating
the two frames is a rotation. Verify the statement for Λ(β) and appeal to
Theorem 1.3.5.

Exercise 2.2.3 Show that, for FR, another admissible observer will, in gen-
eral, not measure

⇀

E and
⇀

B in the same direction.

Of particular interest is the special case of (2.2.4) when either
⇀

B or
⇀

E is
zero (so that O observes either a purely electric or a purely magnetic field):
If

⇀

B =
⇀

O, then

Ê1 = E1, Ê2 = γE2, Ê3 = γE3,

B̂1 = 0, B̂2 = βγE3, B̂3 = −βγE2.
(2.2.5)

If
⇀

E =
⇀

O we have

Ê1 = 0, Ê2 = −βγB3, Ê3 = βγB2,

B̂1 = B1, B̂2 = γB2, B̂3 = γB3.
(2.2.6)
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The essential feature of (2.2.5) and (2.2.6) is that “purely electric” and
“purely magnetic” are not relativistically meaningful notions since they are,
in general, not invariant under Lorentz transformations. How much of an
electromagnetic field is “electric” and how much “magnetic” depends on the
frame of reference from which it is being observed. This is the familiar phe-
nomemon of electromagnetic induction. For example, a charge deemed “at
rest” in one frame will give rise to a purely electric field in that frame, but,
viewed from another frame, will be “moving” and so will induce a nonzero
magnetic field as well.

Since
⇀

E and
⇀

B are spacelike one can, beginning with any admissible ba-
sis {e1, e2, e3, e4}, choose a right-handed orthonormal basis {ê1, ê2, ê3} for
Span{e1, e2, e3} such that

⇀

E and
⇀

B both lie in Span{ê1, ê2} (so that Ê3 =
B̂3 = 0). Choosing a rotation

[
Ri

j

]
i,j=1,2,3

in this 3-dimensional Euclidean
space that accomplishes the change of coordinates x̂i = Ri

jx
j , i = 1, 2, 3,

the corresponding rotation [Ra
b]a,b=1,2,3,4 in L yields a new admissible coor-

dinate system in which the third components of
⇀

E and
⇀

B are zero. The gist
of all this is that one can, with little extra effort, work in a basis relative to
which the matrix of F has the form⎡⎢⎢⎣

0 0 −B2 E1

0 0 B1 E2

B2 −B1 0 0
E1 E2 0 0

⎤⎥⎥⎦ . (2.2.7)

Next we collect a few facts that will be of use in the remainder of the chap-
ter. We define the range and kernel (null space) of a linear transformation
T : M → M by

rng T = {y ∈ M : y = Tx for some x ∈ M}

and
ker T = {x ∈ M : Tx = 0}.

Both rng T and ker T are obviously subspaces of M and, consequently, so
are their orthogonal complements (rng T )⊥ and (ker T )⊥ (Exercise 1.1.2).

Proposition 2.2.1 If F : M → M is any nonzero, skew-symmetric linear
transformation on M, then

(a) ker F = (rng F )⊥,
(b) rng F = (ker F )⊥,
(c) dim(ker F ) is either 0 or 2 so dim(rng F ) is either 4 or 2, respectively.

Proof: (a) First let x ∈ (rng F )⊥. Then x · Fy = 0 for all y in M. Thus,
Fx · y = 0 for all y in M. But the inner product on M is nondegenerate
so we must have Fx = 0, i.e., x ∈ ker F . Next suppose x ∈ ker F . Then
Fx = 0 implies Fx · y = 0 for all y in M so x · Fy = 0 for all y in M, i.e.,
x ∈ (rng F )⊥.
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Exercise 2.2.4 Show that, for any subspace U of M, (U⊥)⊥ = U and
conclude from (a) that (b) is true. Hint : Use the fact that U and U⊥ have
complementary dimensions, i.e., dimU + dimU⊥ = dimM (see Theorem 16,
Chapter 4 of [La]).

(c) Without loss of generality select a basis {ea} relative to which the matrix
of F has the form (2.2.7). Then, for any v ∈ M, Fv has components given by⎡⎢⎢⎣

0 0 −B2 E1

0 0 B1 E2

B2 −B1 0 0
E1 E2 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

v1

v2

v3

v4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−B2v3 + E1v4

B1v3 + E2v4

B2v1 − B1v2

E1v1 + E2v2

⎤⎥⎥⎦
which is zero if and only if{

−B2v3 + E1v4 = 0,
B1v3 + E2v4 = 0 and

{
B2v1 − B1v2 = 0,
E1v1 + E2v2 = 0.

Notice that the determinant of the coefficient matrix in the first system is
−

⇀

E ·
⇀

B and, in the second,
⇀

E ·
⇀

B. If
⇀

E ·
⇀

B �= 0 both systems have only the
trivial solution so the kernel of F consists of 0 alone and dim(ker F ) = 0. Since
4 = dim M = dim(ker F ) + dim(rng F ), dim(rng F ) = 4. If

⇀

E ·
⇀

B = 0, each
system has nontrivial solutions, say, (v3, v4) =

(
v3
0 , v

4
0

)
and (v1,v2) =

(
v1
0 , v

2
0

)
.

Since F �= 0, all of the nontrivial solutions to the first system are of the form
b
(
v3
0 , v

4
0

)
, b ∈ R, and, for the second, a(v1

0 , v
2
0), a ∈ R. Thus, the kernel of

F is the set of ⎡⎢⎢⎣
v1

v2

v3

v4

⎤⎥⎥⎦ = a

⎡⎢⎢⎣
v1
0

v2
0

0
0

⎤⎥⎥⎦+ b

⎡⎢⎢⎣
0
0
v3
0

v4
0

⎤⎥⎥⎦ ,

so dim(ker F ) = 2 and therefore dim(rng F ) = 2. �

Recall that a real number λ is an eigenvalue of F if there exists a nonzero
x ∈ M such that Fx = λx and that any such x is an eigenvector of F
corresponding to λ. The eigenspace of F corresponding to λ is {x ∈ M :
Fx = λx}, i.e., the set of eigenvectors for λ together with 0 ∈ M, and it is
indeed a subspace of M. A subspace U of M is said to be invariant under F
if F maps U into U , i.e., if FU ⊆ U . Any eigenspace of F is invariant under
F since Fx = λx implies F (Fx ) = F (λx) = λFx .

Proposition 2.2.2 If F : M → M is any nonzero, skew-symmetric linear
transformation on M, then

(a) Fx = λx implies that either λ = 0 or x is null (or both),
(b) FU ⊆ U implies F (U⊥) ⊆ U⊥.
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Proof: (a) Fx = λx implies Fx · x = λ(x · x) so λ(x · x) = 0 and either
λ = 0 or x · x = 0.

(b) Suppose FU ⊆ U and let v ∈ U⊥. Then, for every u ∈ U , Fv · u = − v ·
Fu = 0 because Fu ∈ U and v ∈ U⊥. Thus, Fv ∈ U⊥ as required.

�

The eigenvalues of a linear transformation are found by solving its char-
acteristic equation. For a skew-symmetric linear transformation on M and
with the notation established in (2.2.3) this equation is easy to write down
and quite informative.

Theorem 2.2.3 Let F : M → M be a skew-symmetric linear transforma-
tion and {ea}4

a=1 an arbitrary admissible basis for M. With the matrix [F a
b]

written in the form (2.2.3) and I the 4 × 4 identity matrix we have

det ([F a
b] − λI) = λ4 +

(
|
⇀

B|2 − |
⇀

E|2
)
λ2 − (

⇀

E ·
⇀

B)2 , (2.2.8)

where |
⇀

E|2 = (E1)2 + (E2)2 + (E3)2, |
⇀

B|2 = (B1)2 + (B2)2 + (B3)2 and
⇀

E ·
⇀

B = E1B1 + E2B2 + E3B3.

Exercise 2.2.5 Prove Theorem 2.2.3. �

Consequently, the eigenvalues of F are the real solutions to

λ4 +
(
|
⇀

B|2 − |
⇀

E|2
)
λ2 − (

⇀

E ·
⇀

B)2 = 0. (2.2.9)

Since the roots of the characteristic polynomial are independent of the choice
of basis and since the leading coefficient on the left-hand side of (2.2.9) is
one it follows that, while

⇀

E and
⇀

B will, in general, be different in different
admissible bases, the algebraic combinations |

⇀

B|2−|
⇀

E|2 and
⇀

E ·
⇀

B are Lorentz
invariants, i.e., the same in all admissible frames. In particular, if both are
zero (i.e., if

⇀

E and
⇀

B are perpendicular and have the same magnitude) in
one frame, the same will be true in any other frame. We shall say that F is
null if |

⇀

B|2 − |
⇀

E|2 =
⇀

E ·
⇀

B = 0 in any (and therefore every) admissible basis;
otherwise, F is regular. As defined earlier in this section, FN is null and FR

is regular.

Exercise 2.2.6 Show that F is invertible iff
⇀

E ·
⇀

B �= 0.

2.3 Invariant Subspaces

Our objective in this section is to obtain an intrinsic characterization of
“null” and “regular” skew-symmetric linear transformations on M that will
be used in the next section to derive their “canonical forms”. Specifically,
we will show that every skew-symmetric F : M → M has a 2-dimensional
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invariant subspace and that F is regular if and only if U ∩ U⊥ = {0} for
some such subspace U (so F is null if and only if U ∩ U⊥ �= {0} for every
2-dimensional invariant subspace U).

We begin with a few observations on invariant subspaces in general. Let V
be a real vector space of dimension at least 2 and T : V → V a nonzero linear
transformation. Observe that if the characteristic equation det(T − λI) = 0
has a real root λ, then T has an eigenvector, i.e., there is a nonzero v ∈ V
such that Tv = λv. Consequently, Span{v} is a non-trivial invariant subspace
for T . If there are no real roots the situation is less simple.

Lemma 2.3.1 Let V be a real vector space of dimension greater than or
equal to 2 and T : V → V a nonzero linear transformation. If det(T −λI) = 0
has a complex solution λ = α + βi, β �= 0, then there exist nonzero vectors x
and y in V such that

Tx = αx − βy and Ty = αy + βx. (2.3.1)

In particular, Span{x, y} is a nontrivial invariant subspace for T .

Proof: Select a basis for V and let [aij ]i,j=1,...,n be the matrix of T in this
basis. Since det(T − λI) = 0 when λ = α + βi, the system⎧⎪⎨⎪⎩

a11z1 + · · · + a1nzn = (α + βi)z1

...
...

...
an1z1 + · · · + annzn = (α + βi)zn

as a nontrivial complex solution z1 = x1 + iy1, . . . , zn = xn + iyn. Thus,⎧⎪⎨⎪⎩
a11(x1 + iy1) + · · · + a1n(xn + iyn) = (α + βi)(x1 + iy1)

...
...

...
an1(x1 + iy1) + · · · + ann(xn + iyn) = (α + βi)(xn + iyn) .

Separating into real and imaginary parts gives⎧⎪⎨⎪⎩
a11x1 + · · · + a1nxn = αx1 − βy1

...
...

...
an1x1 + · · · + annxn = αxn − βyn

(2.3.2)

and ⎧⎪⎨⎪⎩
a11y1 + · · · + a1nyn = αy1 + βx1

...
...

...
an1y1 + · · · + annyn = αyn + βxn.

(2.3.3)

Let x and y be the vectors in V whose components relative to our basis are
x1, . . . , xn and y1, . . . , yn respectively. Then Tx = αx−βy and Ty = αy+βx
as required. Notice that neither x nor y is zero since if x = 0, (2.3.2) and the
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fact that β �= 0 imply y = 0 so z1 = · · · = zn = 0, which is a contradiction.
Similarly, y = 0 implies x = 0 so, in fact, neither can be zero. �

In order to apply this result to the case of interest to us we require two final
preliminary results.

Lemma 2.3.2 Let A and B be real numbers with B �= 0. Then the equation
λ4 + Aλ2 − B2 = 0 has a complex solution.

Proof: Regard λ4 + Aλ2 − B2 = 0 as a quadratic in λ2 to obtain λ2 =
1
2 (−A±

√
A2 + 4B2). Choosing the minus sign gives a negative λ2 and there-

fore complex λ. �

Lemma 2.3.3 Let F : M → M be a nonzero, skew-symmetric linear trans-
formation. If the characteristic equation

λ4 + (|
⇀

B|2 − |
⇀

E|2)λ2 − (
⇀

E ·
⇀

B)2 = 0

has two distinct nonzero, real solutions, then there exists a 2-dimensional
subspace U of M which is invariant under F and satisfies U ∩ U⊥ = {0}.

Proof: Let λ1 and λ2 be the two distinct nonzero real eigenvalues. Then
there exist nonzero vectors x and y such that Fx = λ1x and Fy = λ2y. By
Proposition 2.2.2(a), x and y are null. Observe next that x and y are linearly
independent. Indeed, ax + by = 0 implies

aFx + bFy = 0,

a(λ1x) + b(λ2y) = 0,

λ1(ax ) + λ2(by) = 0,

λ1(ax ) + λ2(−ax ) = 0,

(λ1 − λ2)ax = 0.

Since λ1 − λ2 �= 0, ax = 0, but x is nonzero so a = 0. Similarly, b = 0 so x
and y are independent. Thus, U = Span{x, y} is 2-dimensional; it is clearly
invariant under F . Now suppose ax + by ∈ U ∩ U⊥. Then, in particular,

(ax + by) · x = 0,

a(x · x) + b(x · y) = 0,

b(x · y) = 0.

But x and y are null and nonparallel so x · y �= 0 and therefore b = 0.
Similarly, a = 0 so U ∩ U⊥ = {0}. �

Theorem 2.3.4 Let F : M → M be a nonzero, skew-symmetric linear
transformation on M. If F is regular, then there exists a 2-dimensional sub-
space U of M which is invariant under F and satisfies U ∩ U⊥ = {0}.
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Proof: Relative to any admissible basis, at least one of
⇀

E ·
⇀

B or |
⇀

B|2 − |
⇀

E|2
must be nonzero and F ’s characteristic equation is

λ4 + (|
⇀

B|2 − |
⇀

E|2)λ2 − (
⇀

E ·
⇀

B)2 = 0. (2.3.4)

We consider four cases:

1.
⇀

E ·
⇀

B = 0 and |
⇀

B|2 − |
⇀

E|2 < 0.

In this case (2.3.4) becomes λ2(λ2 + (|
⇀

B|2 − |
⇀

E|2)) = 0 and the solutions

are λ = 0 and λ = ±
√
|
⇀

E|2 − |
⇀

B|2. The latter are two distinct, nonzero real
solutions so Lemma 2.3.3 yields the result.

2.
⇀

E ·
⇀

B = 0 and |
⇀

B|2 − |
⇀

E|2 > 0.

The solutions of (2.3.4) are now λ = 0 and λ = ±βi, where β =
√
|
⇀

B|2 − |
⇀

E|2.
Lemma 2.3.1 implies that there exist nonzero vectors x and y in M such that

Fx = −βy and Fy = βx. (2.3.5)

We claim that x and y are linearly independent. Indeed, suppose ax +by = 0
with, say, b �= 0. Then y = kx , where k = −a/b. Then Fx = −βy implies
Fx = (−βk)x. But F ’s only real eigenvalue is 0 and β �= 0 so k = 0 and
therefore y = 0, which is a contradiction. Thus, b = 0. Since x �= 0, ax = 0
implies a = 0 and the proof is complete.

Thus, U = Span{x, y} is a 2-dimensional subspace of M that is invariant
under F . We claim that U ∩ U⊥ = {0}. Suppose ax + by ∈ U ∩ U⊥.

Then ax + by is null so (ax + by) · (ax + by) = 0, i.e.,

a2(x · x) + 2ab(x · y) + b2(y · y) = 0.

But x · y = x · (− 1
β Fx) = − 1

β (x · Fx ) = 0 so

a2(x · x) + b2(y · y) = 0,

a2x ·
(

1
β

Fy
)

+ b2y ·
(
− 1

β
Fx
)

= 0,(
a2

β

)
x · Fy −

(
b2

β

)
y · Fx = 0,(

a2

β

)
x · Fy +

(
b2

β

)
x · Fy = 0,(

a2 + b2

β

)
x · Fy = 0.

Now, if a2 + b2 �= 0, then x · Fy = 0 so x · (βx) = 0 and x · x = 0. Similarly,
y · y = 0 so x and y are orthogonal null vectors and consequently parallel.
But this is a contradiction since x and y are independent. Thus, a2 + b2 = 0
so a = b = 0 and U ∩ U⊥ = {0}.
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3.
⇀

E ·
⇀

B �= 0 and |
⇀

B|2 − |
⇀

E|2 = 0.

In this case (2.3.4) becomes λ4 = (
⇀

E ·
⇀

B)2 so λ2 = ±|
⇀

E ·
⇀

B|. λ2 = |
⇀

E ·
⇀

B|
gives two distinct, nonzero real solutions so the conclusion follows from
Lemma 2.3.3.

4.
⇀

E ·
⇀

B �= 0 and |
⇀

B|2 − |
⇀

E|2 �= 0.

Lemma 2.3.2 implies that (2.3.4) has a complex root α + βi(β �= 0). Thus,
Lemma 2.3.1 yields nonzero vectors x and y in M with

Fx = αx − βy and Fy = αy + βx.

There are two possibilities:

i. x and y are linearly dependent. Then, since neither is zero, y = kx for
some k ∈ R with k �= 0. Thus, Fx = αx−βy = αx−kβx = (α−kβ)x and
Fy = αy + βx = αy + β

k y =
(
α + β

k

)
y. Since α + β

k �= α − kβ and since
0 is not a solution to (2.3.4) in this case we find that F has two distinct,
nonzero real eigenvalues and again appeal to Lemma 2.3.3.

ii. x and y are linearly independent. Then U = Span{x, y} is a 2-dimensional
subspace of M that is invariant under F .

Exercise 2.3.1 Complete the proof by showing that U ∩ U⊥ = {0}. �

To complete our work in this section we must show that a nonzero null
skew-symmetric F : M → M has 2-dimensional invariant subspaces and that
all of these intersect their orthogonal complements nontrivially. We address
the question of existence first.

Proposition 2.3.5 Let F : M → M be a nonzero, null, skew-symmetric
linear transformation on M. Then both ker F and rng F = (ker F )⊥

are 2-dimensional invariant subspaces of M and their intersection is a
1-dimensional subspace of M spanned by a null vector.

Proof: ker F and rng F are obviously invariant under F . Since F is null,
⇀

E ·
⇀

B = 0 so, by Exercise 2.2.6, F is not invertible. Thus, dim(ker F ) �= 0.
Proposition 2.2.1(c) then implies that dim(ker F ) = 2 and, consequently,
dim(rng F ) = 2.

Now, since rng F ∩ ker F = rng F ∩ (rng F )⊥ by Proposition 2.2.1(a), if
this intersection is not {0}, it can contain only null vectors. Being a subspace
of M it must therefore be 1-dimensional. We show that this intersection
is, indeed, nontrivial as follows: For a null F the characteristic polynomial
(2.3.4) reduces to λ4 = 0. The Cayley-Hamilton Theorem (see [H]) therefore
implies that

F 4 = 0 (F null). (2.3.6)
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Next we claim that ker F � ker F 2. ker F ⊆ ker F 2 is obvious. Now, suppose
ker F = ker F 2, i.e., Fx = 0 iff F 2x = 0. Then

F 3x = F 2(Fx ) = 0 =⇒ Fx ∈ ker F 2 = ker F

=⇒ F (Fx ) = 0

=⇒ F 2x = 0
=⇒ Fx = 0 by assumption,

so F 3x = 0 =⇒ Fx = 0 and we conclude that ker F 3 = ker F . Repeating the
argument gives ker F 4 = ker F . But by (2.3.6), ker F 4 = M so ker F = M
and F is identically zero, contrary to hypothesis. Thus, ker F � ker F 2 and
we may select a nonzero v ∈ M such that F 2v = 0, but Fv �= 0. Thus,
Fv ∈ rng F ∩ ker F as required. �

Exercise 2.3.2 Show that if F :M → M is a nonzero, null, skew-symmetric
linear transformation on M, then F 2v is null (perhaps 0) for every v ∈ M.
Hint : Begin with (2.3.6).

All that remains is to show that if F is null, then every 2-dimensional invari-
ant subspace U satisfies U ∩ U⊥ �= {0}.

Lemma 2.3.6 Let F : M → M be a nonzero, skew-symmetric linear trans-
formation on M. If there exists a 2-dimensional invariant subspace U for F
with U ∩ U⊥ = {0}, then U⊥ is also a 2-dimensional invariant subspace for
F and there exists a real number α such that F 2u = αu for every u ∈ U .

Proof: U⊥ is a subspace of M (Exercise 1.1.2) and is invariant under F
(Proposition 2.2.2(b)). Notice that the restriction of the Lorentz inner prod-
uct to U cannot be degenerate since this would contradict U ∩ U⊥ = {0}.
Thus, by Theorem 1.1.1, we may select an orthonormal basis {u1, u2} for U .
Now, let x be an arbitrary element of M. If u1 and u2 are both spacelike,
then v = x− [(x ·u1)u1 +(x ·u2)u2] ∈ U⊥ and x = v + [(x ·u1)u1 +(x ·u2)u2]
so x ∈ U + U⊥.

Exercise 2.3.3 Argue similarly that if {u1, u2} contains one spacelike and
one timelike vector, then any x ∈ M is in U + U⊥ and explain why this is
the only remaining possibility for the basis {u1, u2}.

Since U ∩ U⊥ = {0} we conclude that M = U
⊕

U⊥ so dim U⊥ = 2.
Now we let {u1, u2} be an orthonormal basis for U and write Fu1 = au1 +

bu2 and Fu2 = cu1 + du2. Then, since neither u1 nor u2 is null, we have
0 = Fu1 · u1 = (au1 + bu2) · u1 = ±a so a = 0 and, similarly, d = 0.
Thus, Fu1 = bu2 and Fu2 = cu1, so F 2u1 = F (bu2) = bFu2 = bcu1 and
F 2u2 = bcu2. Let α = bc. Then, for any u = βu1 + γu2 ∈ U we have
F 2u = βF 2u1 +γF 2u2 = β(αu1)+γ(αu2) = α(βu1 +γu2) = αu as required.

�
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With this we can show that if F is null and nonzero and U is a 2-
dimensional invariant subspace for F , then U ∩ U⊥ �= {0}. Suppose, to the
contrary, that U ∩U⊥ = {0}. Lemma 2.3.6 implies the existence of an α ∈ R

such that F 2u = αu for all u in U . Thus, F 4u = F 2(F 2u) = F 2(αu) =
αF 2u = α2u for all u ∈ U . But, by (2.3.6), F 4u = 0 for all u ∈ U so α = 0
and F 2 = 0 on U . Again by Lemma 2.3.6 we may apply the same argument
to U⊥ to obtain F 2 = 0 on U⊥. Since U and U⊥ are 2-dimensional and
U ∩ U⊥ = {0}, M = U

⊕
U⊥ so F 2 = 0 on all of M. But then, for every

u ∈ M, F 2u ·u = 0 so Fu ·Fu = 0, i.e., rng F contains only null vectors. But
then dim(rng F ) = 1 and this contradicts Proposition 2.2.1(c) and we have
proved:

Theorem 2.3.7 Let F : M → M be a nonzero, skew-symmetric linear
transformation on M. If F is null, then F has 2-dimensional invariant sub-
spaces and every such subspace U satisfies U ∩ U⊥ �= {0}.

Combining this with Theorem 2.3.4 gives:

Corollary 2.3.8 Let F : M → M be a nonzero, skew-symmetric linear
transformation on M. Then F has 2-dimensional invariant subspaces and F
is regular i f f there exists such a subspace U such that U ∩U⊥ = {0} (so F is
null i f f U ∩ U⊥ �= {0} for every such subspace).

2.4 Canonical Forms

We now propose to use the results of the preceding section to prove that, for
any skew-symmetric linear transformation F : M → M, there exists a basis
for M relative to which the matrix of F has one of the two forms⎡⎢⎢⎣

0 δ 0 0
−δ 0 0 0

0 0 0 ε
0 0 ε 0

⎤⎥⎥⎦ or

⎡⎢⎢⎣
0 0 0 0
0 0 α 0
0 −α 0 α
0 0 α 0

⎤⎥⎥⎦ ,

depending on whether F is regular or null respectively. We begin with the
regular case.

Thus, we suppose F : M → M is a nonzero, skew-symmetric linear trans-
formation and that (Corollary 2.3.8) there exists a 2-dimensional subspace U
of M which satisfies FU ⊆ U and U ∩ U⊥ = {0}. Then (Lemma 2.3.6) U⊥ is
also a 2-dimensional invariant subspace for F and there exist real numbers α
and β such that

F 2u = αu for all u ∈ U and (2.4.1)

F 2v = βv for all v ∈ U⊥. (2.4.2)
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Since M = U
⊕

U⊥ and U⊥⊥ = U we may assume, without loss of generality,
that the restriction of the Lorentz inner product to U has index 1 and its
restriction to U⊥ has index 0.

We claim now that α ≥ 0 and β ≤ 0. Indeed, dotting both sides of (2.4.1)
with itself gives F 2u ·u = α(u ·u), or −Fu ·Fu = α(u ·u) for any u in U . Now
if u ∈ U is timelike, then Fu is spacelike or zero so u · u < 0 and Fu · Fu ≥ 0
and this implies α ≥ 0. Thus, we may write α = ε2 with ε ≥ 0 so (2.4.1)
becomes

F 2u = ε2u for all u ∈ U . (2.4.3)

Exercise 2.4.1 Show that, for some δ ≥ 0,

F 2v = −δ2v for all v ∈ U⊥. (2.4.4)

Now, select a future-directed unit timelike vector e4 in U . Then Fe4 is
spacelike or zero and in U so we may select a unit spacelike vector e3 in U
with Fe4 = ke3 for some k ≥ 0. Observe that ε2e4 = F 2e4 = F (Fe4) =
F (ke3) = kFe3. Thus,

kFe3 · e4 = ε2e4 · e4,

k(−e3 · Fe4) = ε2(−1),

k(e3 · (ke3)) = ε2,

k2e3 · e3 = ε2,

so k2 = ε2 and k = ε (since k ≥ 0 and ε ≥ 0). Thus, we have

Fe4 = εe3. (2.4.5)

Notice that {e3, e4} is an orthonormal basis for U .

Exercise 2.4.2 Show that, in addition,

Fe3 = εe4. (2.4.6)

Now, let e2 be an arbitrary unit spacelike vector in U⊥. Then Fe2 is space-
like or zero and in U⊥ so we may select another unit spacelike vector e1 in
U⊥ and orthogonal to e2 with Fe2 = ke1 for some k ≥ 0 (if e1 × e2 · e3 is −1
rather than 1, then relabel e1 and e2).

Exercise 2.4.3 Show that k = δ.

Thus,
Fe2 = δe1 (2.4.7)

and, as for (2.4.6),
Fe1 = −δe2. (2.4.8)
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Now, {e1, e2, e3, e4} is an orthonormal basis for M and any basis constructed
in this way is called a canonical basis for F. From (2.4.5)–(2.4.8) we find that
the matrix of F relative to such a basis is⎡⎢⎢⎣

0 δ 0 0
−δ 0 0 0

0 0 0 ε
0 0 ε 0

⎤⎥⎥⎦ . (2.4.9)

This is just the matrix of the FR defined in Section 2.2. In a canonical basis
an observer measures electric and magnetic fields in the x3-direction and of
magnitudes ε and δ respectively. We have shown that such a frame exists
for any regular F . Observe that |

⇀

B|2 − |
⇀

E|2 = δ2 − ε2 and
⇀

E ·
⇀

B = δε.
Since these two quantities are invariants, δ and ε can be calculated from the
electric and magnetic 3-vectors in any frame. The canonical form (2.4.9) of
F is particularly convenient for calculations. For example, the fourth power
of the matrix (2.4.9) is easily computed and found to be⎡⎢⎢⎣

δ4 0 0 0
0 δ4 0 0
0 0 ε4 0
0 0 0 ε4

⎤⎥⎥⎦ ,

so that, unlike the null case, F 4 �= 0. The eigenvalues of F are of some interest
and are also easy to calculate since the characteristic equation (2.3.4) becomes
λ4+(δ2−ε2)λ2−δ2ε2 = 0 i.e., (λ2−ε2)(λ2+δ2) = 0 whose only real solutions
are λ = ±ε. The eigenspace corresponding to λ = ε is obtained by solving⎡⎢⎢⎣

0 δ 0 0
−δ 0 0 0

0 0 0 ε
0 0 ε 0

⎤⎥⎥⎦
⎡⎢⎢⎣

v1

v2

v3

v4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
εv1

εv2

εv3

εv4

⎤⎥⎥⎦ ,

i.e., ⎡⎢⎢⎣
δv2

−δv1

εv4

εv3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
εv1

εv2

εv3

εv4

⎤⎥⎥⎦ .

If ε = 0 and δ �= 0, then v1 = v2 = 0, whereas v3 and v4 are arbitrary. Thus,
the eigenspace is Span{e3, e4}. Similarly, if ε �= 0 and δ = 0, v1 = v2 = 0
and v3 = v4 so the eigenspace is Span{e3 + e4}. If εδ �= 0, δv2 = εv1 and
−δv1 = εv2 again imply v1 = v2 = 0; in addition, v3 = v4 so the eigenspace
is Span{e3 + e4}. In the first case the eigenspace contains two independent
null directions (those of e3 + e4 and e3 − e4), whereas in the last two cases,
there is only one (e3 + e4). For λ = −ε, the result is obviously the same in
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the first case, while in the second and third the eigenspace is spanned by
e3 − e4. The null directions corresponding to e3 ± e4 are called the principal
null directions of F .

Now we turn to the case of a nonzero, null, skew-symmetric linear trans-
formation F : M → M and construct an analogous “canonical basis”. Begin
with an arbitrary future-directed unit timelike vector e4 in M.

Exercise 2.4.4 Show that Fe4 is spacelike. Hint : Fe4 = 0 would imply
e4 ∈ (rng F )⊥.

Thus, we may select a unit spacelike vector e3 in M such that e3 · e4 = 0 and

Fe4 = αe3 (2.4.10)

for some α > 0. Observe that e3 = F
(

1
αe4

)
∈ rng F . Next we claim that

Fe3 is a nonzero vector in rng F ∩ ker F . Fe3 �= 0 is clear since Fe3 = 0 =⇒
e3 ∈ rng F ∩ker F , but e3 is spacelike and this contradicts Proposition 2.3.5.
Fe3 ∈ rng F is obvious. Now, by Exercise 2.3.2, F 2e3 is either zero or null and
nonzero. F 2e3 = 0 implies F (Fe3) = 0 so Fe3 ∈ ker F as required. Suppose,
on the other hand, that F 2e3 is null and nonzero. Fe3 ·F 2e3 = 0 implies that
Fe3 is not timelike. Fe3 ·e3 = 0 implies that Fe3 is not spacelike since then rng
F would contain a null and two orthogonal spacelike vectors, contradicting
Proposition 2.3.5. Thus, Fe3 is null and nonzero. But then {e3,Fe3} is a
basis for rng F and Fe3 is orthogonal to both so Fe3 ∈ (rng F )⊥ = ker F as
required.

Now we wish to choose a unit spacelike vector e2 such that e2 · e4 = 0,
e2 · e3 = 0 and Span{e2 + e4} = rng F ∩ ker F . To see how this is done select
any null vector N spanning rng F ∩ ker F such that N · e4 = −1. Then let
e2 = N − e4. It follows that e2 · e2 = (N − e4) · (N − e4) = N ·N − 2N · e4 +
e4 ·e4 = 0−2(−1)−1 = 1 so e2 is unit spacelike. Moreover, e2+e4 = N spans
rng F ∩ ker F . Also, e2 · e4 = (N − e4) · e4 = N · e4 − e4 · e4 = −1− (−1) = 0.
Finally, e2 + e4 ∈ (rng F )⊥ implies 0 = (e2 + e4) · e3 = e2 · e3 + e4 · e3 = e2 · e3

and the construction is complete. Now, there exists an α′ > 0 such that
Fe3 = α′(e2 + e4). But α = e3 · (αe3) = e3 · Fe4 = −e4 · [α′(e2 + e4)] =
−α′[e4 · e2 + e4 · e4] = −α′[0 − 1] = α′ so

Fe3 = α(e2 + e4). (2.4.11)

Next we compute Fe2 = F (N − e4) = FN − Fe4 = 0 − αe3 so

Fe2 = −αe3. (2.4.12)

Finally, we select a unit spacelike vector e1 which is orthogonal to e2, e3 and
e4 and satisfies e1 × e2 · e3 = 1 to obtain an admissible basis {ea}4

a=1.

Exercise 2.4.5 Show that
Fe1 = 0. (2.4.13)

Hint : Show that Fe1 · ea = 0 for a = 1, 2, 3, 4.



2.5 The Energy-Momentum Transformation 109

A basis for M constructed in the manner just described is called a canon-
ical basis for F . The matrix of F relative to such a basis (read off from
(2.4.10)–(2.4.13)) is ⎡⎢⎢⎢⎣

0 0 0 0
0 0 α 0
0 −α 0 α

0 0 α 0

⎤⎥⎥⎥⎦ (2.4.14)

and is called a canonical form for F . This is, of course, just the matrix of the
transformation FN introduced in Section 2.2 and we now know that every
null F takes this form in some basis. An observer in the corresponding frame
sees electric

⇀

E = αe3 and magnetic
⇀

B = αe1 3-vectors that are perpendicular
and have the same magnitude α.

Exercise 2.4.6 Calculate the third power of the matrix (2.4.14) and im-
prove (2.3.5) by showing

F 3 = 0 (F null). (2.4.15)

For any two vectors u and v in M define a linear transformation u∧v : M →
M by u ∧ v(x) = u(v · x) − v(u · x).

Exercise 2.4.7 Show that, if F is null, then, relative to a canonical basis
{ea}4

a=1,
F = Fe3 ∧ e3. (2.4.16)

The only eigenvalue of a null F is, of course, λ = 0.

Exercise 2.4.8 Show that, relative to a canonical basis {ea}4
a=1, the

eigenspace of F corresponding to λ = 0, i.e., ker F , is Span{e1, e2 + e4}
and so contains precisely one null direction (which is called the principal null
direction of F ).

2.5 The Energy-Momentum Transformation

Let F : M → M be a nonzero, skew-symmetric linear transformation on M.
The linear transformation T : M → M defined by

T =
1
4π

[
1
4
tr(F 2)I − F 2

]
, (2.5.1)

where F 2 = F ◦ F, I is the identity transformation I(x) = x for every x
in M and tr(F 2) is the trace of F 2, i.e., the sum of the diagonal entries
in the matrix of F 2 relative to any basis, is called the energy-momentum
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transformation associated with F . Observe that T is symmetric with respect
to the Lorentz inner product, i.e.,

Tx · y = x · Ty (2.5.2)

for all x and y in M.

Exercise 2.5.1 Prove (2.5.2).

Moreover, since tr(I) = 4, T is trace-free, i.e.,

tr T = 0. (2.5.3)

Relative to any admissible basis for M the matrix [T a
b] of T has entries

given by

T a
b = 1

4π

[
1
4Fα

β F β
α δa

b − F a
α Fα

b

]
, a, b = 1, 2, 3, 4. (2.5.4)

Although not immediately apparent from the definition, T contains all of
the information relevant to describing the classical “energy” and “momen-
tum” content of the electromagnetic field represented by F in each admissible
frame. To see this we need the matrix of T in terms of the electric and mag-
netic 3-vectors

⇀

E and
⇀

B.

Exercise 2.5.2 With the matrix of F relative to {ea} written in the form
(2.2.3), calculate the matrix of F 2 relative to {ea} and show that it can be
written as⎡⎢⎢⎢⎢⎣

(E1)2 − (B2)2 − (B3)2 E1E2 + B1B2 E1E3 + B1B3 E2B3 − E3B2

E1E2 + B1B2 (E2)2 − (B1)2 − (B3)2 E2E3 + B2B3 E3B1 − E1B3

E1E3 + B1B3 E2E3 + B2B3 (E3)2 − (B1)2 − (B2)2 E1B2 − E2B1

E3B2 − E2B3 E1B3 − E3B1 E2B1 − E1B2 |⇀E|2

⎤⎥⎥⎥⎥⎦
(2.5.5)

Now, 1
4π times the off-diagonal entries in (2.5.5) are the off-diagonal entries

in [T a
b]. Adding the diagonal entries in (2.5.5) gives tr(F 2) = 2(|

⇀

E|2 − |
⇀

B|2)
so 1

4 tr(F 2) = 1
2 ((E1)2 +(E2)2 +(E3)2− (B1)2 − (B2)2 − (B3)2). Subtracting

the diagonal entries in (2.5.5) from the corresponding diagonal entries in
1
4 tr(F 2)I gives 4π times the diagonal entries in [T a

b]. Thus,

T 1
1 = 1

8π [−(E1)2 + (E2)2 + (E3)2 − (B1)2 + (B2)2 + (B3)2],

T 2
2 = 1

8π [(E1)2 − (E2)2 + (E3)2 + (B1)2 − (B2)2 + (B3)2],

T 3
3 = 1

8π [(E1)2 + (E2)2 − (E3)2 + (B1)2 + (B2)2 − (B3)2], (2.5.6)

T 4
4 = − 1

8π

[
|
⇀

E|2 + |
⇀

B|2
]
.

Notice once again that the nonzero index of the Lorentz inner product has
the unfortunate consequence that the matrix of a symmetric linear transfor-
mation on M is not (quite) a symmetric matrix.
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In classical electromagnetic theory the quantity 1
8π [|

⇀

E|2 + |
⇀

B|2]
(
= −T 4

4

)
is called the energy density measured in the given frame of reference for the
electromagnetic field with electric and magnetic 3-vectors

⇀

E and
⇀

B. The
3-vector 1

4π

⇀

E ×
⇀

B = (E2B3 − E3B2)e1 + (E3B1 − E1B3)e2 + (E1B2 −
E2B1)e3 = T 1

4e1 + T 2
4e2 + T 3

4e3 = −
(
T 4

1e1 + T 4
2e2 + T 4

3e3

)
is called

the Poynting 3-vector and describes the energy density flux of the field. Fi-
nally, the 3 × 3 matrix

[
T i

j

]
i,j=1,2,3

is known as the Maxwell stress tensor
of the field in the given frame. Thus, the entries in the matrix of T relative
to an admissible basis all have something to say about the energy content of
the field F measured in the corresponding frame.

Notice that the (4, 4)-entry in the matrix [T a
b] of T relative to {ea} is

T 4
4 = −Te4 ·e4 = − 1

8π [|
⇀

E|2+|
⇀

B|2]. Thus, we define, for every future-directed
unit timelike vector U , the energy density of F in any admissible basis with
e4 = U to be TU · U . In the sense of the following result, the energy density
completely determines the energy-momentum transformation.

Theorem 2.5.1 Let S and T be two nonzero linear transformations on M
which are symmetric with respect to the Lorentz inner product, i.e., satisfy
(2.5.2). If SU · U = TU · U for every future-directed unit timelike vector U,
then S = T .

Proof: Observe first that the hypothesis, together with the linearity of S
and T imply that SV · V = TV · V for all timelike vectors V . Now select a
basis {Ua}4

a=1 for M, consisting exclusively of future-directed unit timelike
vectors (convince yourself that such things exist). Thus, SU a ·Ua = TU a ·Ua

for each a = 1, 2, 3, 4. Next observe that, for all a, b = 1, 2, 3, 4, Lemma 1.4.3
implies that Ua + Ub is timelike and future-directed so that

S(Ua + Ub) · (Ua + Ub) = T (Ua + Ub) · (Ua + Ub),
SU a · Ua + 2SU a · Ub + SU b · Ub = TU a · Ua + 2TU a · Ub + TU b · Ub,

SU a · Ub = TU a · Ub.

Exercise 2.5.3 Show that

Sx · y = Tx · y (2.5.7)

for all x and y in M.

Now, let {ea}4
a=1 be an orthonormal basis for M. Then (2.5.7) gives

Sea · eb = Tea · eb (2.5.8)

for all a, b = 1, 2, 3, 4. But (2.5.8) shows that the matrices of S and T relative
to {ea} are identical so S = T . �

We investigate the eigenvalues and eigenvectors of T by working in a canon-
ical basis for F . First suppose F is regular and {ea} is a canonical basis for
F . Then the matrix [F a

b] of F relative to {ea} has the form (2.4.9) and a
simple calculation gives
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[F a
b]

2 =

⎡⎢⎢⎣
−δ2 0 0 0

0 −δ2 0 0
0 0 ε2 0
0 0 0 ε2

⎤⎥⎥⎦
so tr(F 2) = 2(ε2−δ2) and therefore [T a

b] = 1
4π [14 tr(F 2)I− [F a

b]
2] is given by

[T a
b] =

1
8π

(ε2 + δ2)

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎦ .

det(T −λI) = 0 therefore gives (λ+ ε2+δ2

8π )2(λ− ε2+δ2

8π )2 = 0 so λ = ± ε2+δ2

8π =
∓T 4

4 (the energy density). The eigenvectors corresponding to λ = ε2+δ2

8π are
obtained by solving

ε2 + δ2

8π

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎦
⎡⎢⎢⎣

v1

v2

v3

v4

⎤⎥⎥⎦ =
ε2 + δ2

8π

⎡⎢⎢⎣
v1

v2

v3

v4

⎤⎥⎥⎦ ,

i.e., ⎡⎢⎢⎣
v1

v2

−v3

−v4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
v1

v2

v3

v4

⎤⎥⎥⎦ ,

so v3 = v4 = 0, whereas v1 and v2 are arbitrary. Thus, the eigenspace is
Span{e1, e2} which contains only spacelike vectors. Similarly, the eigenspace
corresponding to λ = − ε2+δ2

8π is Span{e3, e4} which contains two independent
null directions (e3 ± e4) called the principal null directions of T .

If F is null and {ea} is a canonical basis, then [F a
b] has the form (2.4.14) so

[F a
b]

2 =

⎡⎢⎢⎣
0 0 0 0
0 −α2 0 α2

0 0 0 0
0 −α2 0 α2

⎤⎥⎥⎦
and therefore tr F 2 = 0 so

[T a
b] = − 1

4π
[F a

b]
2 =

α2

4π

⎡⎢⎢⎣
0 0 0 0
0 1 0 −1
0 0 0 0
0 1 0 −1

⎤⎥⎥⎦ .
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Exercise 2.5.4 Show that λ = 0 is the only eigenvalue of T and that the
corresponding eigenspace is Span{e1, e3, e2 + e4}, which contains only one
null direction (that of e2 + e4), again called the principal null direction of T.

Exercise 2.5.5 Show that every eigenvector of F is also an eigenvector of
T (corresponding to a different eigenvalue, in general).

Exercise 2.5.6 Show that the energy-momentum transformation T satisfies
the dominant energy condition, i.e., has the property that if u and v are
timelike or null and both are future-directed, then

Tu · v ≥ 0. (2.5.9)

Hint : Work in canonical coordinates for the corresponding F .

2.6 Motion in Constant Fields

Thus far we have concentrated our attention on the formal mathematical
structure of the object we have chosen to model an electromagnetic field at
a fixed point of M, that is, a skew-symmetric linear transformation. In or-
der to reestablish contact with the physics of relativistic electrodynamics we
must address the issue of how a given collection of charged particles gives
rise to these linear transformations at each point of M and then study how
the worldline of another charge introduced into the system will respond to
the presence of the field. The first problem we defer to Section 2.7. In this
section we consider the motion of a charged particle in the simplest of all
electromagnetic fields, i.e., those that are constant. Thus, we presume the
existence of a system of particles that determines a single skew-symmetric
linear transformation F : M → M with the property that any charged par-
ticle (α, m, e) introduced into the system will experience changes in world
momentum at every point on its worldline described by (2.1.1). More partic-
ularly, we have in mind fields with the property that there exists a frame of
reference in which the field is constant and either purely magnetic (

⇀

E =
⇀
0 )

or purely electric (
⇀

B =
⇀
0 ). To a reasonable degree of approximation such

fields exist in nature and are of considerable practical importance. Such a
field, however, can obviously not be null (without being identically zero) so
we shall restrict our attention to the regular case and will work exclusively
in a canonical basis.

Suppose then that F : M → M is nonzero, skew-symmetric and regular.
Then there exists an admissible basis {ea}4

a=1 for M and two real numbers
ε ≥ 0 and δ ≥ 0 so that the matrix of F in {ea} is
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[F a
b] =

⎡⎢⎢⎣
0 δ 0 0

−δ 0 0 0
0 0 0 ε
0 0 ε 0

⎤⎥⎥⎦ ,

so that
⇀

E = εe3 and
⇀

B = δe3. Let (α, m, e) be a charged particle with world
velocity U = U(τ) = Ua(τ)ea which satisfies

dU
dτ

=
e

m
FU (2.6.1)

at each point of α. Thus,⎡⎢⎢⎣
dU 1/dτ

dU 2/dτ

dU 3/dτ

dU 4/dτ

⎤⎥⎥⎦ =
e

m

⎡⎢⎢⎣
0 δ 0 0

−δ 0 0 0
0 0 0 ε
0 0 ε 0

⎤⎥⎥⎦
⎡⎢⎢⎣
U1

U2

U3

U4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
ωU2

−ωU1

νU4

νU3

⎤⎥⎥⎦ ,

where ω = δe
m and ν = εe

m . Thus, we have⎧⎪⎪⎨⎪⎪⎩
dU 1

dτ
= ωU2

dU 2

dτ
= −ωU1

(2.6.2)

and ⎧⎪⎪⎨⎪⎪⎩
dU 3

dτ
= νU4

dU 4

dτ
= νU3.

(2.6.3)

We (temporarily) assume that neither ε nor δ is zero so that ων �= 0. Differ-
entiating the first equation in (2.6.2) with respect to τ and using the second
equation gives

d2U1

dτ2
= −ω2U1 (2.6.4)

and similarly for (2.6.3),
d2U3

dτ2
= ν2U3. (2.6.5)

The general solution to (2.6.4) is

U1 = A sin ωτ + B cosωτ (2.6.6)

and, since U2 = 1
ω

dU 1

dτ ,

U2 = A cosωτ − B sin ωτ. (2.6.7)
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Similarly,
U3 = C sinh ντ + D cosh ντ (2.6.8)

and
U4 = C cosh ντ + D sinh ντ. (2.6.9)

Exercise 2.6.1 Integrate (2.6.6) and (2.6.7) and show that the result can
be written in the form

x1(τ) = a sin(ωτ + φ) + x1
0 (2.6.10)

and
x2(τ) = a cos(ωτ + φ) + x2

0, (2.6.11)

where a, φ, x1
0 and x2

0 are constants and a > 0.

Integrating (2.6.8) and (2.6.9) gives

x3(τ) = C
ν cosh ντ + D

ν sinh ντ + x3
0 (2.6.12)

and
x4(τ) = C

ν sinh ντ + D
ν cosh ντ + x4

0. (2.6.13)

Observe now that if ε = 0 and δ �= 0, (2.6.10) and (2.6.11) are unchanged,
whereas dU 3

dτ = dU 4

dτ = 0 imply that (2.6.12) and (2.6.13) are replaced by

x3(τ) = C3τ + x3
0 (ε = 0) (2.6.14)

and
x4(τ) = C4τ + x4

0 (ε = 0). (2.6.15)

Similarly, if ε �= 0 and δ = 0, then (2.6.12) and (2.6.13) are unchanged, but
(2.6.10) and (2.6.11) become

x1(τ) = C1τ + x1
0 (δ = 0) (2.6.16)

and
x2(τ) = C2τ + x2

0 (δ = 0). (2.6.17)

Now we consider two special cases. First suppose that ε = 0 and δ �= 0
(so that an observer in {ea} sees a constant and purely magnetic field in the
e3-direction). Then (2.6.10), (2.6.11), (2.6.14) and (2.6.15) give

α(τ) =
(
a sin(ωτ + φ) + x1

0, a cos(ωτ + φ) + x2
0, C

3τ + x3
0, C

4τ + x4
0

)
so that

U(τ) = (aω cos(ωτ + φ),−aω sin(ωτ + φ), C3, C4).
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Now, U ·U = −1 implies a2ω2 + (C3)2 − (C4)2=− 1. Since C4 =U4 = γ > 0,

C4 = (1 + a2ω2 + (C3)2)
1
2 so

α(τ) =
(
x1

0, x
2
0, x

3
0, x

4
0

)
+ (a sin(ωτ + φ), a cos(ωτ + φ),

C3τ, (1 + a2ω2 + (C3)2)
1
2 τ). (2.6.18)

Note that
(
x1 − x1

0

)2 +
(
x2 − x2

0

)2 = a2. Thus, if C3 �= 0, the trajectory in
{e1, e2, e3}-space is a spiral along the e3-direction (i.e., along the magnetic
field lines). If C3 = 0, the trajectory is a circle. This latter case is of some
practical significance since one can introduce constant magnetic fields in a
bubble chamber in such a way as to induce a particle of interest to follow
a circular path. We show now that by making relatively elementary mea-
surements one can in this way determine the charge-to-mass ratio e

m for the
particle. Indeed, with C3 = 0, (2.6.18) yields by differentiation

U(τ) =
(
aω cos(ωτ + φ),−aω sin(ωτ + φ), 0, (1 + a2ω2)

1
2

)
. (2.6.19)

But U = γ(
⇀
u, 1) by (1.4.10) so

⇀
u =

(
aω
γ cos(ωτ + φ),−aω

γ sin(ωτ + φ), 0
)

and thus

β2 = |⇀u |2 =
a2ω2

γ2
=

a2ω2

1 + a2ω2
=

1
m2

a2e2δ2 + 1
.

Exercise 2.6.2 Assume e > 0 and β > 0 and solve for e
m to obtain

e

m
=

1
a|δ|

β√
1 − β2

.

Finally, we suppose that δ = 0 and ε �= 0 (constant and purely electric
field in the e3-direction). Then (2.6.12), (2.6.13), (2.6.16) and (2.6.17) give

α(τ) =
(
C1τ + x1

0, C
2τ + x2

0,
C
ν cosh ντ + D

ν sinh ντ + x3
0 ,

C
ν sinh ντ + D

ν cosh ντ + x4
0

)
.

Consequently,

U(τ) = (C1, C2, C sinh ντ + D cosh ντ, C cosh ντ + D sinh ντ).

We consider the case in which α(0) = 0 so that x1
0 = x2

0 = 0, x3
0 = −C

ν

and x4
0 = −D

ν . Next we suppose that
⇀
u(0) = e1 (the initial velocity

of the particle relative to {ea}4
a=1 has magnitude 1 and direction per-

pendicular to that of the field
⇀

E= εe3). Then C1 = 1, C2 = 0 and
D = 0, i.e., U(τ) = (1, 0, C sinh ντ, C cosh ντ). Moreover, U · U = −1 gives
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−1 = 12 + 02 + C2 sinh2 ντ − C2 cosh2 ντ = 1 − C2 so C2 = 2. Since
C = γ(0) > 0, we have C =

√
2. Thus,

α(τ) =

(
τ, 0,

√
2

ν
(cosh ντ − 1),

√
2

ν
sinh ντ

)
.

The trajectory in {e1, e2, e3}-space is the curve τ →
(
τ, 0,

√
2

ν (cosh ντ − 1)
)
.

Thus, x3 =
√

2
ν (cosh(νx1) − 1), i.e.,

x3 =
m
√

2
eε

(
cosh
(eε

m
x1
)
− 1
)

which is a catenary in the x1x3-plane (see Figure 2.6.1).

Fig. 2.6.1

2.7 Variable Electromagnetic Fields

Most electromagnetic fields encountered in nature are not constant. That is,
the linear transformations that tell a charged particle how to respond to the
field generally vary from point to point along the particle’s worldline. To
discuss such phenomena we shall require a few preliminaries.

A subset R of M is said to be open in M if, for each x0 ∈R, there
exists a positive real number ε such that the set NE

ε (x0) =
{
x ∈ M :

(
(
x1 − x1

0

)2 +
(
x2 − x2

0

)2 +
(
x3 − x3

0

)2 +
(
x4 − x4

0

)2) 1
2 < ε

}
is contained

entirely in R (in Section A.1 of Appendix A we show that this definition
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does not depend on the particular admissible basis relative to which the co-
ordinates are calculated). This is the usual Euclidean notion of an open set
in R4 so, intuitively, one thinks of open sets in M as those sets which do not
contain any of their “boundary points”. Open sets in M will be called regions
in M. A real-valued function f : R → R defined on some region R in M
is said to be smooth if it has continuous partial derivatives of all orders and
types with respect to x1, x2, x3 and x4 for any (and therefore all) admissi-
ble coordinate systems on M. For convenience, we shall denote the partial
derivative ∂f

∂xa of such a function by f,a. Now, suppose we have assigned to
each point p in some region R of M a linear transformation F (p) : M → M.
Relative to an admissible basis each F (p) will have a matrix [F a

b(p)]. If the
entries in this matrix are smooth on R we say that the assignment p

F−→F (p)
itself is smooth. If each of the linear transformations F (p) is skew-symmetric,
the smooth assignment p

F−→F (p) is a reasonable first approximation to the
definition of an “electromagnetic field on R”. However, nature does not grant
us so much freedom as to allow us to make such assignments arbitrarily. The
rules by which we must play the game consist of a system of partial differ-
ential equations known as “Maxwell’s equations”. In regions that are free of
charge and in terms of the electric and magnetic 3-vectors

⇀

E and
⇀

B these
equations require that

div
⇀

E = 0, curl
⇀

B − ∂
⇀
E

∂x4 =
⇀
0 ,

div
⇀

B = 0, curl
⇀

E + ∂
⇀
B

∂x4 =
⇀
0 ,

(2.7.1)

where div and curl are the familiar divergence and curl from vector analysis
in R3. We now translate (2.7.1) into the language of Minkowski spacetime.

A mapping V : R → M which assigns to each p in some region R of M
a vector V (p) in M is called a vector field on R. Relative to any admissible
basis {ea} for M we write V (p) = V a(p)ea, where V a : R → R, a = 1, 2, 3, 4,
are the component functions of V relative to {ea}. A vector field is said to
be smooth if its component functions relative to any (and therefore every)
admissible basis are smooth. Now consider a smooth assignment p

F−→F (p)
of a linear transformation to each p ∈ R. We define a vector field div F , called
the divergence of F , by specifying that its component functions relative to
any {ea} are given by

(div F )b = ηbβFα
β,α, b = 1, 2, 3, 4. (2.7.2)

Thus, (div F )i = Fα
i,α for i = 1, 2, 3 and (div F )4 = −Fα

4,α.
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Exercise 2.7.1 A vector v in M has components relative to two admissible
bases that are related by v̂a = Λa

bv
b. Show that (2.7.2) does indeed define a

vector in M by showing that it has the correct “transformation law”:(
d̂iv F

)a

= Λa
b(div F )b, a = 1, 2, 3, 4, (2.7.3)

where (d̂iv F )a = ηaγF̂α
γ,α and F̂ a

b,c = ∂
∂x̂c F̂ a

b. Hint : Use the change of
basis formula

F̂ a
b = Λa

αΛb
βFα

β (2.7.4)

and the chain rule to show first that

F̂ a
b,c = Λa

αΛb
βΛc

γFα
β,γ . (2.7.5)

Exercise 2.7.2 Show that if p
F−→F (p) and p

G−→G(p) are two smooth as-
signments of linear transformations to points in the region R and F + G is
defined at each p ∈ R by (F + G)(p) = F (p) + G(p), then

div(F + G) = div F + div G. (2.7.6)

Exercise 2.7.3 Show that, if each F (p) is skew-symmetric, then, in terms
of the 3-vectors

⇀

E and
⇀

B,

(div F )i =
[

∂
⇀

E

∂x4
− curl

⇀

B

]
· ei, i = 1, 2, 3, (2.7.7)

(div F )4 = −div
⇀

E. (2.7.8)

We conclude from Exercise 2.7.3 that the first pair of equations in (2.7.1) is
equivalent to the single equation

div F = 0, (2.7.9)

where 0 is, of course, the zero vector in M.
The second pair of equations in (2.7.1) is most conveniently expressed in

terms of a mathematical object closely related to F , but with a matrix that
is skew-symmetric. Thus, we define for each skew-symmetric linear transfor-
mation F : M → M an associated bilinear form

F̃ : M×M → R

by
F̃ (u, v) = u · Fv (2.7.10)

for all u and v in M. Then F̃ is skew-symmetric, i.e., satisfies

F̃ (v, u) = −F̃ (u, v). (2.7.11)
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The matrix [Fab ] of F̃ relative to an admissible basis {ea} has entries given by

Fab = F̃ (ea, eb) = ea · Feb = ηacF
c
b (2.7.12)

and is clearly a skew-symmetric matrix (notice how the position of the indices
is used to distinguish the matrix of F̃ from the matrix of F ).

Exercise 2.7.4 Show that if u = uaea and v = vbeb, then F̃ (u, v) =
Fabu

avb.

The entries Fab are often called the components of F̃ in the basis {ea}. If {êa}
is another admissible basis, related to {ea} by the Lorentz transformation
[Λa

b], then the components of F̃ in the two bases are related by

F̂ab = Λa
αΛb

βFαβ , a, b = 1, 2, 3, 4. (2.7.13)

To prove this we observe that, by definition, F̂ab = ηacF̂
c
b = ηacΛc

γΛb
βF γ

β .
Now, (1.2.12) gives Λc

γ = ηcρηγαΛρ
α so F̂ab = ηacη

cρηγαΛρ
αΛb

βF γ
β =

ηacη
cρΛρ

αΛb
β (ηγαF γ

β) = δρ
aΛρ

αΛb
βFαβ = Λa

αΛb
βFαβ as required.

Computing the quantities ηacF
c
b in terms of

⇀

E and
⇀

B gives

[Fab ] =

⎡⎢⎢⎣
0 B3 −B2 E1

−B3 0 B1 E2

B2 −B1 0 E3

−E1 −E2 −E3 0

⎤⎥⎥⎦ . (2.7.14)

Every smooth assignment p
F−→F (p) of a skew-symmetric linear transfor-

mation to each point in some region in M therefore gives rise to an assignment

p
F̃−→ F̃ (p) which is likewise smooth in the sense that the entries in the matrix

(2.7.14) are smooth real-valued functions. As usual, we denote the derivatives
∂Fab/∂xc by Fab,c.

Exercise 2.7.5 Show that the second pair of equations in (2.7.1) is equiv-
alent to

Fab,c + Fbc,a + Fca,b = 0, a, b, c = 1, 2, 3, 4. (2.7.15)

Now we define an electromagnetic field on a region R in M to be a smooth
assignment p

F−→F (p) of a skew-symmetric linear transformation to each

point p in R such that it and its associated assignment p
F̃−→ F̃ (p) of skew-

symmetric bilinear forms satisfy Maxwell’s equations (2.7.9) and (2.7.15).
We remark in passing that a skew-symmetric bilinear form is often referred

to as a bivector and a smooth assignment of one such to each p in R is called a
2-form on R. In the language of exterior calculus the left-hand side of (2.7.15)
specifies what is called the exterior derivative of F̃ (a 3-form) and denoted
dF̃ . Then (2.7.15) becomes

dF̃ = 0.
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Since most modern expositions of electromagnetic theory are phrased in terms
of these differential forms and because it will be of interest to us in Chap-
ter 3, we show next that the first pair of equations in (2.7.1) (or equivalently,
(2.7.9)) can be written in a similar way. Indeed, the reader may have no-
ticed a certain “duality” between the first and second pairs of equations in
(2.7.1). Specifically, the first pair can be obtained from the second by for-
mally changing the

⇀

B to an
⇀

E and the
⇀

E to −
⇀

B (and adjusting a sign). This
suggests defining the “dual” of the 2-form F̃ to be a 2-form ∗F̃ whose matrix
at each point is obtained from (2.7.14) by formally making the substitutions
Bi → Ei and Ei → −Bi so that the first pair of equations in (2.7.1) would be
equivalent to d∗F̃ = 0. In order to carry out this program rigorously we will
require a few preliminaries. First we introduce the Levi-Civita symbol εabcd
defined by

εabcd =

⎧⎪⎨⎪⎩
1 if abcd is an even permutation of 1234

−1 if abcd is an odd permutation of 1234
0 otherwise.

Thus, for example, ε1234 = ε3412 = ε4321 = 1, ε1324 = ε3142 = −1 and ε1224 =
ε1341 = 0. The Levi-Civita symbol arises most naturally in the theory of
determinants where it is shown that, for any 4×4 matrix M = [Ma

b]a,b=1,2,3,4,

Mα
a Mβ

b Mγ
c M δ

d εαβγδ = εabcd(det M). (2.7.16)

Exercise 2.7.6 Let F be a skew-symmetric linear transformation on M and
F̃ its associated bilinear form. For a, b = 1, 2, 3, 4 define

∗Fab = −1
2
εαβab Fαβ , (2.7.17)

where Fαβ = ηαμ ηβν Fμν . Show that, in terms of
⇀

E and
⇀

B, the matrix [∗Fab ]
is just (2.7.14) after the substitutions Bi → Ei and Ei → −Bi have been
made, e.g., ∗F12 = E3. Hint : Just calculate − 1

2εαβab Fαβ in terms of
⇀

E and
⇀

B for various choices of a and b and use the skew-symmetry of ∗Fab and Fab

to minimize the number of such choices you must make.

Exercise 2.7.7 Let {ea} and {êa} be two admissible bases for M, F a
skew-symmetric linear transformation on M and F̃ its associated bilinear
form. Define ∗Fab = − 1

2εαβab Fαβ and ∗F̂ab = − 1
2εαβab F̂αβ , where F̂αβ =

ηαμ ηβν F̂μν and F̂μν = ημσ F̂ σ
ν . Show that for any two vectors u = uaea =

ûaêa and v = vbeb = v̂bêb in M,

∗Fab ua vb = ∗F̂ab ûa v̂b. (2.7.18)

Hint : First show that (2.7.13) is equivalent to

F̂ ab = Λa
α Λb

β Fαβ (2.7.19)

and use (2.7.16).
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The equality in (2.7.18) legitimizes the following definition: If F is a skew-
symmetric linear transformation on M and F̃ is its associated bilinear form
we define the dual of F̃ to be the bilinear form ∗F̃ : M × M → R whose
value at (u, v) ∈ M×M is

∗F̃ (u, v) = ∗Fabu
avb. (2.7.20)

Exercise 2.7.7 assures us that this definition is independent of the partic-
ular admissible basis in which the calculations are performed. Moreover,
Exercise 2.7.6 and the above-mentioned duality between the first and sec-
ond pairs of equations in (2.7.1) make it clear that the first of Maxwell’s
equations (2.7.9) is equivalent to

∗Fab,c + ∗Fbc,a + ∗Fca, b = 0, a, b, c = 1, 2, 3, 4, (2.7.21)

or, more concisely,
d∗F̃ = 0.

We should point out that the linear transformation F , its associated bilinear
form F̃ and the dual ∗F̃ of F̃ all contain precisely the same information
from both the mathematical and the physical points of view (examine their
matrices in terms of

⇀

E and
⇀

B). Some matters are more conveniently discussed
in terms of F . For others, the appropriate choice is F̃ or ∗F̃ . Some calculations
are simplest when carried out with the F a

b, whereas for others one might
prefer to work with Fab , or F ab , or ∗Fab . One must become comfortable with
this sort of shifting perspective. In particular, one must develop a facility
for the “index gymnastics” that, as we have seen already in this section, are
necessitated by such a shift. To reinforce this point, to prepare gently for
Chapter 3 and to derive a very important property of the energy-momentum
transformation, we pause to provide a bit more practice.

Exercise 2.7.8 Show that, for any skew-symmetric linear transformation
F : M → M, 1

2FabF
ab = |

⇀

B|2 − |
⇀

E|2 and 1
4
∗FabF

ab =
⇀

E ·
⇀

B.

Next we consider a skew-symmetric linear transformation F : M → M
and its associated energy-momentum transformation T : M → M given by
(2.5.1). Define a bilinear form T̃ : M×M → R by T̃ (u, v) = u · Tv for all
(u, v) ∈ M × M. Then T̃ is symmetric, i.e., T̃ (v, u) = T̃ (u, v) by (2.5.2).
Now let {ea} be an admissible basis and [T a

b] the matrix of T relative to this
basis (see (2.5.4)). For all a, b = 1, 2, 3, 4, we let Tab = T (ea, eb) = ea · Teb =
ηaγ T γ

b. Then, if u = uaea and v = vbeb, we have T (u, v) = Tabu
avb just as

in Exercise 2.7.4. As an exercise in index manipulation and because we will
need the result in Chapter 3 we show that Tab can be written in the form

Tab = 1
4π

[
Faα Fb

α − 1
4 ηab Fαβ Fαβ

]
, (2.7.22)
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where Fb
α = ηbμ Fμα. Begin with (2.5.4).

4π Tab = 4π ηaγ T γ
b = ηaγ

[
1
4 Fα

β F β
α δγ

b − F γ
α Fα

b

]
= 1

4Fα
β F β

α (ηaγ δγ
b ) − (ηaγ F γ

α)Fα
b

= 1
4Fα

β F β
α ηab − Faα Fα

b

= 1
4ηab(ηαγ Fγβ)(ηασ F βσ) − Faα ηbγ Fαγ

= 1
4ηab(ηαγ ηασ)Fγβ F βσ + Faα ηbγ F γα

= 1
4ηab δγ

σ Fγβ F βσ + Faα Fb
α = 1

4 ηab Fγβ F βγ + Faα Fb
α

= Faα Fb
α − 1

4 ηab Fγβ F γβ = Faα Fb
α − 1

4 ηab Fαβ Fαβ

as required.

Exercise 2.7.9 Show that if u = uaea and v = vbeb are timelike or null and
both are future-directed, then the dominant energy condition (2.5.9) can be
written

Tab ua vb ≥ 0.

Now let p
F−→F (p) be an electromagnetic field on some region R in M.

Assign to each p in R a linear transformation T (p) which is the energy-
momentum transformation of F (p).

Exercise 2.7.10 Show that the assignment p
T−→T (p) is smooth and that

div T = 0. (2.7.23)

Hints : From (2.5.4) and the product rule show that 4πT a
b,c = −F a

αFα
b,c −

Fα
bF

a
α,c + 1

4

(
Fα

βF β
α,c + F β

αFα
β,c

)
δa
b . Next show that 4πT a

b,a =
−F a

α,aFα
b − F a

αFα
b,a + 1

2Fα
β,bF

β
α. Finally, observe that F a

αFα
b,a =

F aαFαb,a(F aα−Fαa)=−1
2Fαa(Fαb,a−Fab,α) and F a

α,aFα
b=(ηcγF a

γ,a)Fcb .

With the definitions behind us we can now spend some time looking at
examples and applications. Of course, we have already encountered several
examples since any assignment of the same skew-symmetric linear transfor-
mation to each p in R is obviously smooth and satisfies Maxwell’s equations
and these constant electromagnetic fields were investigated in Section 2.6.
As our first nontrivial example we examine the so-called Coulomb field of a
single free charged particle.

We begin with a free charged particle (α, m, e). Since α : R → M we may
let W = α(R). Then W is a timelike straight line which we may assume,
without loss of generality, to be a time axis with α(0) = 0. Let {ea}4

a=1 be
an admissible basis with W = Span{e4}, i.e., a rest frame for the particle.
We define an electromagnetic field F on M−W by specifying, at each point,
its matrix relative to {ea} and decreeing that its matrix in any other basis
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is obtained from the change of basis formula (2.7.4). Thus, at each point of
M − W we define the matrix of the Coulomb field F = F (x1, x2, x3, x4) of
(α, m, e) relative to a rest frame for (α, m, e) to be

[F a
b] = e

⎡⎢⎢⎣
0 0 0 x1/r3

0 0 0 x2/r3

0 0 0 x3/r3

x1/r3 x2/r3 x3/r3 0

⎤⎥⎥⎦ , (2.7.24)

where r3 = ((x1)2 + (x2)2 + (x3)2)3/2. Thus,
⇀

B =
⇀
0 and

⇀

E = e
r3

⇀
r , where

⇀
r = x1e1 + x2e2 + x3e3. Thus, |

⇀

E|2 = ( e2

r6 )
⇀
r · ⇀

r = e2

r4 so |
⇀

E| = |e|
r2 . Any two

bases {ea} and {êa} with W = Span{e4} are related by a rotation in R (by
Lemma 1.3.4). We ask the reader to show that our definition of the Coulomb
field is invariant under rotations and so the field is well-defined.

Exercise 2.7.11 Suppose R = [Ra
b]a,b=1,2,3,4 ∈ R is a rotation and x̂a =

Ra
bx

b, a = 1, 2, 3, 4. Show that r̂2 = (x̂1)2 + (x̂2)2 + (x̂3)2 = r2 and that
the matrix [F̂ a

b] = R [F a
b] R−1 of the Coulomb field (2.7.24) in the hatted

coordinate system is

e

⎡⎢⎢⎣
0 0 0 x̂1/r̂3

0 0 0 x̂2/r̂3

0 0 0 x̂3/r̂3

x̂1/r̂3 x̂2/r̂3 x̂3/r̂3 0

⎤⎥⎥⎦ .

To justify referring to the Coulomb field as an electromagnetic field we must,
of course, observe that it is smooth on the region M−W and verify Maxwell’s
equations (2.7.9) and (2.7.15). Since (div F )b = ηbβFα

β,α we obtain, from
(2.7.24), (div F )i = ηβiFα

β,α = Fα
i,α = F 1

i,1 + F 2
i,2 + F 3

i,3 + F 4
i,4 =

0 + 0 + 0 + 0 = 0. Moreover,

(div F )4 = ηβ4Fα
β,α = −Fα

4,α

= −e

[
∂

∂x1

(
x1

r3

)
+

∂

∂x2

(
x2

r3

)
+

∂

∂x3

(
x3

r3

)
+ 0

]

= − e

r6

[
r3 − x1

(
3r2 ∂r

∂x1

)
+ r3 − x2

(
3r2 ∂r

∂x2

)
+ r3 − x3

(
3r2 ∂r

∂x3

)]

= − e

r6

[
3r3 − x1

(
3r2
(

x1

r

))
− x2

(
3r2
(

x2

r

))
− x3

(
3r2
(

x3

r

))]
= − e

r6
[3r3 − 3r((x1)2 + (x2)2 + (x3)2)]

= − e

r6
[3r3 − 3r3] = 0.
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Next observe that, from (2.7.24) and (2.7.14) we obtain

[Fab ] = e

⎡⎢⎢⎣
0 0 0 x1/r3

0 0 0 x2/r3

0 0 0 x3/r3

−x1/r3 −x2/r3 −x3/r3 0

⎤⎥⎥⎦ .

Thus, (2.7.15) is automatically satisfied if all of a, b and c are in {1, 2, 3}. The
remaining possibilities are all easily checked one-by-one, e.g., if a = 1, b = 2
and c = 4 we obtain

F12, 4 + F24, 1 + F41, 2 =
∂

∂x4
(0) +

∂

∂x1

(
x2

r3

)
+

∂

∂x2

(
−x1

r3

)
= 0 + x2

(
−3r−4

(
x1

r

))
+ x1

(
3r−4

(
x2

r

))
= 0.

Exercise 2.7.12 Calculate the matrix of the energy-momentum transfor-
mation (2.5.1) for the Coulomb field (2.7.24) in its rest frames and show, in
particular, that T 4

4 = − e2

8πr4 .

Recalling that −T 4
4 is interpreted as the energy density of the electromag-

netic field F as measured in the given frame of reference, we seem forced to
conclude from Exercise 2.7.12 that the total energy contained in a sphere of
radius R > 0 about a point charge (which would be obtained by integrating
the energy density over the sphere) is∫ 2π

0

∫ π

0

∫ R

0

e2

8πr4
r2 sin φ dr dφ dθ =

e2

2

∫ R

0

1
r2

dr

and this is an improper integral which diverges. The energy contained in such
a sphere would seem to be infinite. But then (1.8.6) would suggest an infinite
mass for the charge in its rest frames. This is, of course, absurd since finite
applied forces are found to produce nonzero accelerations of point charges.
Although classical electromagnetic theory is quite beautiful and enormously
successful in predicting the behavior of physical systems there are, as this
calculation indicates, severe logical difficulties at the very foundations of the
subject and, even today, these have not been resolved to everyone’s satisfac-
tion (see [Par] for more on this).

As an application we wish to calculate the field of a uniformly moving
charge. Special relativity offers a particularly elegant solution to this problem
since, according to the Relativity Principle, it matters not at all whether we
view the charge as moving relative to a “fixed” frame of reference or the
frame as moving relative to a “stationary” charge. Thus, in effect, we need
only transform the Coulomb field to a new reference frame, moving relative to
the rest frame of the charge. More specifically, we wish to calculate the field
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due to a charge moving uniformly in a straight line with speed β relative
to some admissible frame Ŝ at the instant the charge passes through that
frame’s spatial origin. We may clearly assume, without loss of generality, that
the motion is along the negative x̂1-axis and that the charge passes through
(x̂1, x̂2, x̂3) = (0, 0, 0) at x̂4 = 0. If S is the frame in which the charge is at rest
we need only transform the Coulomb field to Ŝ with a boost Λ(β) and evaluate
at x4 = x̂4 = 0. The Coulomb field in S has Ei = e(xi/r3), i = 1, 2, 3, and
Bi = 0, i = 1, 2, 3, so, from Exercise 2.2.1,

Ê1 = e

(
x1

r3

)
, Ê2 = eγ

(
x2

r3

)
, Ê2 = eγ

(
x3

r3

)
,

B̂1 = 0, B̂2 = eβγ

(
x3

r3

)
, B̂3 = −eβγ

(
x2

r3

)
.

We wish to express these in terms of measurements made in Ŝ. Setting x̂4 = 0
in (1.3.29) gives x1 = γx̂1, x2 = x̂2 and x3 = x̂3 so that r2 = (x1)2 +(x2)2 +
(x3)2 = γ2(x̂1)2 + (x̂2)2 + (x̂3)2, which we now denote r̃2. Thus,

Ê1 = eγ(x̂1/r̃3), Ê2 = eγ(x̂2r̃3), Ê3 = eγ(x̂3/r̃3),

B̂1 = 0, B̂2 = eβγ(x̂3/r̃3), B̂3 = −eβγ(x̂2/r̃3),

so
⇀

Ê =
eγ

r̃3

(
x̂1ê1 + x̂2ê2 + x̂3ê3

)
=

eγ

r̃3

⇀

r̂

and
⇀

B̂ =
eγ

r̃3

(
0 · ê1 + βx̂3ê2 − βx̂2ê3

)
=

eγ

r̃3

(
βx̂3ê2 − βx̂2ê3

)
=

eγ

r̃3

∣∣∣∣∣∣
ê1 ê2 ê3

−β 0 0
x̂1 x̂2 x̂3

∣∣∣∣∣∣
=

eγ

r̃3

(
β(−ê1) ×

⇀

r̂
)

=
eγ

r̃3

(⇀

û ×
⇀

r̂
)
.

Observe that, in the nonrelativistic limit (γ ≈ 1) we obtain
⇀

Ê ≈ e

r̂3

⇀

r̂ (γ ≈ 1)

and ⇀

B̂ ≈ e

r̂3

(⇀

û ×
⇀

r̂
)

(γ ≈ 1).
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The first of these equations asserts that the field of a slowly moving charge
is approximately the Coulomb field, whereas the second is called the Biot-
Savart Law.

Observe that the Coulomb field is certainly regular at each point of M−W

since |
⇀

B|2−|
⇀

E|2 = 0− |e|
r2 = − |e|

r2 which is nonzero. As a nontrivial example of
an electromagnetic field that is null we consider next what are called “simple,
plane electromagnetic waves”.

Let K : M → M denote some fixed, nonzero, skew-symmetric linear
transformation on M and S : M → R a smooth, nonconstant real-valued
function on M. Define, for each x ∈ M, a linear transformation F (x) :
M → M by F (x) = S(x)K. Then the assignment x

F−→ F (x) is obviously
smooth and one could determine necessary and sufficient conditions on S
and K to ensure that F satisfies Maxwell’s equations and so represents an
electromagnetic field. We limit our attention to a special case. For this we
begin with a smooth, nonconstant function P : R → R and a fixed, nonzero
vector k ∈ M. Now take S(x) = P (k · x) so that

F (x) = P (k · x)K. (2.7.25)

Observe that F takes the same value for all x ∈ M for which k · x is a con-
stant, i.e., F is constant on the 3-dimensional hyperplanes {x ∈ M : k · x =
r0} for some real constant r0. We now set about determining conditions on
P, k and K which ensure that (2.7.25) defines an electromagnetic field on M.

Fix an admissible basis {ea}4
a=1. Let k = kaea and x = xaea and suppose

the matrix of K relative to this basis is [Ka
b]. Then F a

b = P (k · x)Ka
b =

P (ηαβ kα xβ)Ka
b. First we consider the equation div F = 0. Now, (div F )i =

Fα
i,α, i = 1, 2, 3 and (div F )4 = −Fα

4,α. But

F a
b,c =

∂

∂xc
(P (k · x)Ka

b)

= P ′(k · x)
∂

∂xc
(k · x)Ka

b

so
F a

b,i = P ′(k · x)kiKa
b, i = 1, 2, 3,

and
F a

b,4 = −P ′(k · x)k4Ka
b.

Now, for i = 1, 2, 3,

(div F )i = F 1
i,1 + F 2

i,2 + F 3
i,3 + F 4

i,4

= P ′(k · x)k1K1
i + P ′(k · x)k2K2

i + P ′(k · x)k3K3
i − P ′(k · x)k4K4

i

= P ′(k · x)
[
k1K1

i + k2K2
i + k3K3

i − k4K4
i

]
.
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But P ′(k · x) is not identically zero since P is not constant so (div F )i = 0
implies

k1K1
i + k2K2

i + k3K3
i − k4K4

i = 0, i = 1, 2, 3,

that is,

ηabk
aKb

i = 0, i = 1, 2, 3.

Exercise 2.7.13 Show that (div F )4 = 0 requires that ηabk
aKb

4 = 0.

Thus, div F = 0 for an F given by (2.7.25) becomes

ηabk
aKb

c = 0, c = 1, 2, 3, 4. (2.7.26)

Next we consider (2.7.15). For this we observe that [Fab ] = [P (k · x)Kab ] so
Fab,c = ∂

∂xc (P (k · x)Kab) = P ′(k · x) ∂
∂xc (k · x)Kab and therefore

Fab, i = P ′(k · x)kiKab

and
Fab, 4 = −P (k · x)k4Kab .

Thus, Fab, c + Fbc, a + Fca, b = 0 implies

P ′(k · x)
[
Kab

∂

∂xc
(k · x) + Kbc

∂

∂xa
(k · x) + Kca

∂

∂xb
(k · x)

]
= 0.

Again, P ′(k · x) �≡ 0 so the expression in brackets must be zero, i.e.,

Kab
∂

∂xc
(k · x) + Kbc

∂

∂xa
(k · x) + Kca

∂

∂xb
(k · x) = 0.

If a, b and c are chosen from {1, 2, 3} this becomes

Kab kc + Kbc ka + Kca kb = 0, a, b, c = 1, 2, 3. (2.7.27)

If any of a, b or c is 4, then the terms with a k4 have a minus sign. This, and
(2.7.26) also, become easier to write if we introduce the notation

kb = ηabk
a, b = 1, 2, 3, 4.

Thus, ki = ki for i = 1, 2, 3, but k4 = −k4. Now (2.7.26), (2.7.27) and the
equation corresponding to (2.7.27) when a, b or c is 4 can be written

kbK
b
c = 0, c = 1, 2, 3, 4, (2.7.28)

and
Kab kc + Kbc ka + Kca kb = 0, a, b, c = 1, 2, 3, 4, (2.7.29)

and we have proved:
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Theorem 2.7.1 Let K : M → M be a nonzero, skew-symmetric linear
transformation of M, k a nonzero vector in M and P : R → R a smooth,
nonconstant function. Then F (x)= P (k · x)K defines a smooth assignment
of a skew-symmetric linear transformation to each x ∈ M and satisfies
Maxwell’s equations if and only if (2.7.28) and (2.7.29) are satisfied.

Any F (x) of the type described in Theorem 2.7.1 for which (2.7.28) and
(2.7.29) are satisfied is therefore an electromagnetic field and is called a simple
plane electromagnetic wave. We have already observed that such fields are
constant on hyperplanes of the form

k1x1 + k2x2 + k3x3 − k4x4 = r0 (2.7.30)

and we now investigate some of their other characteristics. First observe that
if x and x0 are two points in the hyperplane, then the displacement vector
x − x0 between them is orthogonal to k since (x − x0) · k = x · k − x0 · k =
r0− r0 = 0. Thus, k is the normal vector to these hyperplanes. We show next
that k is necessarily null. Begin with (2.7.29). Multiply through by kc and
sum as indicated.

Kabkc kc + Kbc ka kc + Kcakbk
c = 0, a, b = 1, 2, 3, 4.

Thus,

Kab(k · k) + (Kbck
c)ka + (Kcakc)kb = 0, a, b = 1, 2, 3, 4. (2.7.31)

But now observe that, by (2.7.28),

0 = Kb
ckb = ηbβKβcηαbk

α

= (ηβbηαb)Kβck
α = δβ

αKβck
α

= Kαck
α = Kbck

b = −Kbck
c.

Thus, Kbck
c = 0 = Kcakc, so (2.7.31) gives Kab(k · k) = 0, for all a, b =

1, 2, 3, 4. But for some choice of a and b, Kab �= 0 so

k · k = 0

and so k is null.
Next we show that a simple plane electromagnetic wave F (x) = P (k ·x)K

is null at each point x. Indeed, suppose x0 ∈ M and F (x0) = P (k · x0)K
is regular (and, in particular, nonzero). Then P (k · x0) �= 0 so K must be
regular (compute

⇀

E ·
⇀

B and |
⇀

B|2 − |
⇀

E|2). Relative to a canonical basis for K
we have
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[Ka
b] =

⎡⎢⎢⎣
0 K1

2 0 0
K2

1 0 0 0
0 0 0 K3

4

0 0 K4
3 0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 δ 0 0

−δ 0 0 0
0 0 0 ε
0 0 ε 0

⎤⎥⎥⎦ .

We write out (2.7.28) for c = 1, 2, 3 and 4:

c = 1 : kbK
b
1 = 0 = k2K

2
1 = −δk2,

c = 2 : kbK
b
2 = 0 = k1K

1
2 = δk1,

c = 3 : kbK
b
3 = 0 = k4K

4
3 = εk4,

c = 4 : kbK
b
4 = 0 = k3K

3
4 = εk3.

Now, k is null so k4 �= 0 and therefore ε = 0. Thus, δ �= 0 so k1 = k2 = 0.
Next we write out (2.7.29) with a = 1, b = 2 and c = 3:

K12k3 + K23k1 + K31k2 = 0,

K12k3 = 0,

δk3 = 0.

But δ = 0 would imply K = 0 and k3 = 0 would imply k4 = 0 and so k = 0.
Either is a contradiction so F must be null at each point.

Next we tie these last two bits of information together and show that the
null vector k is actually in the principal null direction of the null transforma-
tion K. We select a canonical basis for K so that

[Ka
b] =

⎡⎢⎢⎣
0 0 0 0
0 0 α 0
0 −α 0 α
0 0 α 0

⎤⎥⎥⎦ (α �= 0).

Now we write out (2.7.28) for c = 2 and 3 (c = 1 contains no information
and c = 4 is redundant):

c = 2 : kbK
b
2 = 0 = −α k3 =⇒ k3 = 0,

c = 3 : kbK
b
3 = 0 = α k2 + α k4 =⇒ k4 = −k2.

Thus, k3 = 0 and k4 = k2 so k null implies k1 = 0, i.e., k = k2(e2 + e4)
in canonical coordinates. But e2 + e4 is in the principal null direction of K
(Exercise 2.4.8) so we have proved half of the following theorem.

Theorem 2.7.2 Let K : M → M be a nonzero, skew-symmetric linear
transformation of M, k a nonzero vector in M and P : R → R a smooth
nonconstant function. Then F (x) = P (k · x)K defines a simple plane elec-
tromagnetic wave (i.e., satisfies Maxwell’s equations (2.7.28) and (2.7.29))
if and only if K is null and k is in the principal null direction of K.
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Proof: We have already proved the necessity. For the sufficiency we assume
K is null and k is in its principal null direction. Relative to canonical co-
ordinates, the only nonzero entries in [Ka

b] and [Kab ] are K2
3 = K3

4 =
K4

3 = −K3
2 = α and K23 = K34 = −K43 = −K32 = α. Moreover, k is

a multiple of e2 + e4, say, k = m(e2 + e4) so k1 = k3 = k1 = k3 = 0 and
k2 = k4 = k2 = −k4 = m.

Exercise 2.7.14 Verify (2.7.28) and (2.7.29). �

Thus, we can manufacture simple plane electromagnetic waves by begin-
ning with a nonzero null K : M → M, finding a nonzero null vector k in the
principal null direction of K, selecting any smooth, non-constant P : R → R

and setting F (x) = P (k · x)K. In fact, it is even easier than this for, as we
now show, given an arbitrary nonzero null vector k we can produce a nonzero
null K : M → M which has k as a principal null direction. To see this, select
a nonzero vector l in Span{k}⊥ and set K = k ∧ l (see Exercise 2.4.7). Thus,
for every v ∈ M, Kv = (k ∧ l)v = k(l · v) − l(k · v).

Exercise 2.7.15 Show that, relative to an arbitrary admissible basis
{ea}, Ka

b = kalb − lakb and Kab = kalb − lakb.

Now one easily verifies (2.7.28) and (2.7.29). Indeed, kbK
b
c = kb(kblc − lbkc) =

(kbk
b)lc − (kbl

b)kc = (k · k)lc − (k · l)kc = 0 · lc − 0 · kc = 0 since k is null and
l ∈ Span{k}⊥.

Exercise 2.7.16 Verify (2.7.29).

Since K is obviously skew-symmetric we may select an arbitrary smooth
nonconstant P : R → R and be assured that F (x) = P (k · x)K represents
a simple plane electromagnetic wave. Most choices of P : R → R, of course,
yield physically unrealizable solutions F . One particular choice that is im-
portant not only because it gives rise to an observable field, but also because,
mathematically, many electromagnetic waves can be regarded (via Fourier
analysis) as superpositions of such waves, is

P (t) = sinnt ,

where n is a positive integer. Thus, we begin with an arbitrary nonzero, null,
skew-symmetric K : M → M and let {ea} be a canonical basis for K. Then
k = e2 + e4 is along the principal null direction of K so

F (x) = sin(nk · x)K
= sin(n(e2 + e4) · x)K

= sin(n(x2 − x4))K
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defines a simple plane electromagnetic wave. For some nonzero α in R,

[F a
b] =

⎡⎢⎢⎣
0 0 0 0
0 0 α sin(n(x2 − x4)) 0
0 −α sin(n(x2 − x4)) 0 α sin(n(x2 − x4))
0 0 α sin(n(x2 − x4)) 0

⎤⎥⎥⎦ .

Thus,
⇀

E = α sin(n(x2 −x4))e3 and
⇀

B = α sin(n(x2−x4))e1. F is constant on
the 3-dimensional hyperplanes x2 − x4 = r0. At each fixed instant x4 = x4

0

an observer in the canonical reference frame sees his instantaneous 3-space
layered with planes x2 = x4

0 + r0 on which F is constant (see Figure 2.7.1).
Next, fix not x4, but x2 = x2

0 so that
⇀

E = α sin
(
n
(
x2

0 − x4
))

e3 and
⇀

B =
α sin

(
n
(
x2

0 − x4
))

e1. Thus, at a given location,
⇀

E and
⇀

B will always be in
the same directions (except for reversals when sin changes sign), but the
intensities vary periodically with time.

Fig. 2.7.1

Exercise 2.7.17 Show that, for any electromagnetic field, each of the func-
tions Fab satisfies the wave equation

∂2Fab

(∂x1)2
+

∂2Fab

(∂x2)2
+

∂2Fab

(∂x3)2
=

∂2Fab

(∂x4)2
. (2.7.32)
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Hints : Differentiate (2.7.15) with respect to xμ, multiply by ημc and sum as
indicated. Then use (2.7.9) to show that two of the three terms must vanish.

Of course, not everything that satisfies a wave equation is “wavelike”
(e.g., constant fields satisfy (2.7.32)). However, historically the result of
Exercise 2.7.17 first suggested to Maxwell that there might exist electromag-
netic fields with wavelike characteristics (and which propagate with speed 1).
Our last examples are obviously of this sort and the electromagnetic theory
of light is based on the study of such solutions to Maxwell’s equations.



Chapter 3

The Theory of Spinors

3.1 Representations of the Lorentz Group

The concept of a “spinor” emerged from the work of E. Cartan on the repre-
sentations of simple Lie algebras. However, it was not until Dirac employed a
special case in the construction of his relativistically invariant equation for the
electron with “spin” that the notion acquired its present name or its current
stature in mathematical physics. In this chapter we present an elementary
introduction to the algebraic theory of spinors in Minkowski spacetime and
illustrate its utility in special relativity by recasting in spinor form much
of what we have learned about the structure of the electromagnetic field in
Chapter 2. We shall not stray into quantum mechanics and, in particular,
will not discuss the Dirac equation (for this, see the encyclopedic monograph
[PR] of Penrose and Rindler). Since it is our belief that an intuitive appreci-
ation of the notion of a spinor is best acquired by approaching them by way
of group representations, we have devoted this first section to an introduction
to these ideas and how they arise in special relativity. Since this section is
primarily motivational, we have not felt compelled to prove everything we say
and have, at several points, contented ourselves with a reference to a proof
in the literature.

A vector v in M (e.g., a world momentum) is an object that is decribed in
each admissible frame of reference by four numbers (components) with the
property that if v = vaea = v̂aêa and [Λa

b] is the Lorentz transformation
relating {ea} and {êa} (i.e., eb = Λa

bêa), then the components va and v̂a are
related by the “transformation law”

v̂a = Λa
bv

b, a = 1, 2, 3, 4. (3.1.1)

A linear transformation L : M → M (e.g., an electromagnetic field) is an-
other type of object that is again described in each admissible basis by a set
of numbers (the entries in its matrix relative to that basis) with the property
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that if [La
b] and [L̂a

b] are the matrices of L in {ea} and {êa}, then

L̂a
b = Λa

αΛb
βLα

β , a, b = 1, 2, 3, 4, (3.1.2)

where
[
Λa

b
]
is the inverse of [Λa

b], i.e., Λa
αΛb

α = Λα
aΛα

b = δa
b ((3.1.2) is just

the familiar change of basis formula). As we found in Chapter 2, it is often
convenient to associate with such a linear transformation a corresponding
bilinear form L̃ : M × M → R defined by L̃(u, v) = u · Lv . Again, L̃ is
described in each admissible basis by its set of components Lab = L̃(ea, eb)
and components in different bases are related by a specific transformation law:

L̂ab = Λa
αΛb

βLαβ , a, b = 1, 2, 3, 4. (3.1.3)

Such bilinear forms can, of course, arise naturally of their own accord without
reference to any linear transformation. The Lorentz inner product is itself
such an example. Indeed, if we define g : M×M → R by

g(u, v) = u · v,

then, in all admissible bases, gab = g(ea, eb) = ea · eb = ηab = g(êa, êb) = ĝab .
In this very special case the components are the same in all admissible bases,
but, nevertheless, (1.2.14) shows that the same transformation law is satisfied:

ĝab = Λa
αΛb

βgαβ , a, b = 1, 2, 3, 4.

The point of all of this is that examples of this sort abound in geometry
and physics. In each case one has under consideration an “object” of geomet-
rical or physical significance (an inner product, a world momentum vector,
an electromagnetic field transformation, etc.) which is described in each ad-
missible basis by a set of numerical “components” and with the property that
components in different bases are related by a specific linear transformation
law that depends on the Lorentz transformation relating the two bases. Dif-
ferent “types” of objects are distinguished by their number of components
in each basis and by the precise form of the transformation law. Classically,
such objects were called “world tensors” or “4-tensors” (we give the precise
definition shortly). World tensors are well suited to the task of expressing
“Lorentz invariant” relationships since, for example, a statement which as-
serts the equality, in some basis, of the components of two world tensors of
the same type necessarily implies that their components in any other basis
must also be equal (since the “transformation law” to the new basis compo-
nents is the same for both). This is entirely analogous to the use of 3-vectors
in classical physics and Euclidean geometry to express relationships that are
true in all Cartesian coordinate systems if they are true in any one. For
many years it was tacitly assumed that any valid Lorentz invariant state-
ment (in particular, any law of relativistic physics) should be expressible as
a world tensor equation. Dirac put an end to this in 1928 when he proposed
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a law (equation) to describe the relativistic electron with spin that was man-
ifestly Lorentz invariant, but not expressed in terms of world tensors. To
understand precisely what world tensors are and why they did not suffice for
Dirac’s purposes we must take a more careful look at “transformation laws”
in general.

Observe that if v is a vector with components va and v̂a in two admis-
sible bases and if we write these components as column vectors, then the
transformation law (3.1.1) can be written as a matrix product:⎡⎢⎢⎣

v̂1

v̂2

v̂3

v̂4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Λ1

1 Λ1
2 Λ1

3 Λ1
4

Λ2
1 Λ2

2 Λ2
3 Λ2

4

Λ3
1 Λ3

2 Λ3
3 Λ3

4

Λ4
1 Λ4

2 Λ4
3 Λ4

4

⎤⎥⎥⎦
⎡⎢⎢⎣
v1

v2

v3

v4

⎤⎥⎥⎦ .

By virtue of their linearity the same is true of (3.1.2) and (3.1.3). For example,
writing the La

b and L̂a
b as column matrices, (3.1.2) can be written in terms

of the 16 × 16 matrix
[
Λa

αΛb
β
]

as⎡⎢⎢⎢⎣
L̂1

1

L̂1
2

...
L̂4

4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Λ1

1Λ1
1 Λ1

1Λ1
2 · · · Λ1

4Λ1
4

Λ1
1Λ2

1 Λ1
1Λ2

2 · · · Λ1
4Λ2

4

...
...

...
Λ4

1Λ4
1 Λ4

1Λ4
2 · · · Λ4

4Λ4
4

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

L1
1

L1
2

...
L4

4

⎤⎥⎥⎥⎦ .

Exercise 3.1.1 Write (3.1.3) as a matrix product.

In this way one can think of a transformation law as a rule which assigns
to each Λ ∈ L a certain matrix DΛ which transforms components in one
basis {ea} to those in another {êa}, related to {ea} by Λ. Observe that, for
each of the examples we have considered thus far, these rules Λ → DΛ carry
the identity matrix in L onto the corresponding identity “transformation
matrix” (as is only fair since, if the basis is not changed, the components
of the “object” should not change). Moreover, if Λ1 and Λ2 are in L and
Λ1Λ2 is their product (still in L), then Λ1Λ2 → DΛ1Λ2 = DΛ1 DΛ2 (this is
obvious for (3.1.1) since DΛ = Λ and follows for (3.1.2) and (3.1.3) either
from a rather dreary calculation or from standard facts about change of
basis matrices). This also makes sense, of course, since the components in
any basis are uniquely determined so that changing components from basis
#1 to basis #2 and then from basis #2 to basis #3 should give the same
result as changing directly from basis #1 to basis #3. In order to say all of
this more efficiently we introduce some terminology.

Let n be a positive integer. A matrix group of order n is a collection G of
n × n invertible matrices that is closed under the formation of products and
inverses (i.e., if G, G1, and G2 are in G, then G−1 and G1G2 are also in G).
We have seen numerous examples, e.g., the Lorentz group L is a matrix group
of order 4, whereas SL(2,C) is a matrix group of order 2. The collection of
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all n×n invertible matrices (with either real or complex entries) clearly also
constitutes a matrix group and is called the general linear group of order n
and written either GL(n,R) or GL(n,C) depending on whether the entries are
real or complex. Observe that a matrix group of order n necessarily contains
the n × n identity matrix In = I since, for any G in the group, GG−1 = I.
If G is a matrix group and G′ is a subset of G, then G′ is called a subgroup
of G if it is closed under the formation of products and inverses, i.e., if it is
itself a matrix group. For example, the set R of rotations in L is a subgroup
of L (Exercise 1.3.7), SU 2 is a subgroup of SL(2,C) (Exercise 1.7.6) and,
of course, any matrix group is a subgroup of some general linear group. A
homomorphism from one matrix group G to another H is a map D : G → H
that preserves matrix multiplication, i.e., satisfies D(G1G2) = D(G1)D(G2)
whenever G1 and G2 are in G. As is customary we shall often write the image
of G under D as DG rather than D(G) and denote the action of D on G by
G → DG. If G has order n and H has order m, then D necessarily carries
In onto Im since D(In) = D(InIn) = D(In)D(In) so that D(In)(D(In))−1 =
D(In)D(In)(D(In))−1 and therefore Im = D(In)Im = D(In).

Exercise 3.1.2 Show that a homomorphism D : G → H preserves inverses,
i.e., that D(G−1) = (D(G))−1 for all G in G.

Exercise 3.1.3 Show that if D : G → H is a homomorphism, then its image
D(G) = {D(G) : G ∈ G} is a subgroup of H.

A homomorphism of one matrix group G into another H is also called a (finite
dimensional) representation of G. For reasons that will become clear shortly,
we will be particularly concerned with the representations of L and SL(2,C).
If H is of order m and Vm is an m-dimensional vector space (over C if the
entries in H are complex, but otherwise arbitrary), then the elements of H
can, by selecting a basis for Vm, be regarded as linear transformations or,
equivalently, as change of basis matrices on Vm. In this case the elements of
Vm are called carriers of the representation. M itself may be regarded as a
space of carriers for the representation D : L → GL(4,R) of L correspond-
ing to (3.1.1), i.e., the identity representation Λ → DΛ = Λ. Similarly, the
vector space of linear transformations from M to M and that of bilinear
forms on M act as carriers for the representations [Λa

b] →
[
Λa

αΛb
β
]

and
[Λa

b] →
[
Λa

αΛb
β
]

corresponding to (3.1.2) and (3.1.3), respectively. It is
rather inconvenient, however, to have different representations of L acting on
carriers of such diverse type (vectors, linear transformations, bilinear forms)
and we shall see presently that this can be avoided.

The picture we see emerging here from these few examples is really quite
general. Suppose that we have under consideration some geometrical or phys-
ical quantity that is described in each admissible basis/frame by m uniquely
determined numbers and suppose furthermore that these sets of numbers cor-
responding to different bases are related by linear transformation laws that
depend on the Lorentz transformation relating the bases (there are objects
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of interest that do not satisfy this linearity requirement, but we shall have no
occasion to consider them). In each basis we may write the m numbers that
describe our object as a column matrix T = col[T1 · · ·Tm]. Then, associated
with every Λ ∈ L there will be an m×m matrix DΛ whose entries depend on
those of Λ and with the property that T̂ = DΛT if {ea} and {êa} are related
by Λ. Since the numbers describing the object in each basis are uniquely de-
termined, the association Λ → DΛ must carry the identity onto the identity
and satisfy Λ1Λ2 → DΛ1Λ2 = DΛ1DΛ2 , i.e., must be a representation of the
Lorentz group. Thus, the representations of the Lorentz group are precisely
the (linear) transformation laws relating the components of physical and ge-
ometrical objects of interest in Minkowski spacetime. The objects themselves
are the carriers of these representations. Of course, an m×m matrix can be
thought of as acting on any m-dimensional vector space so the precise math-
ematical nature of these carriers is, to a large extent, arbitrary. We shall find
next, however, that one particularly natural choice recommends itself.

We denote by M∗ the dual of the vector space M, i.e., the set of all real-
valued linear functionals on M. Thus, M∗ = {f : M → R : f(αu + βv) =
αf(u) + βf(v) ∀ u, v ∈ M and α, β ∈ R}. The elements of M∗ are called
covectors. The vector space structure of M∗ is defined in the obvious way,
i.e., if f and g are in M∗ and α and β are in R, then αf + βg is defined
by (αf + βg)(u) = αf(u) + βg(u). If {ea} is an admissible basis for M, its
dual basis {ea} for M∗ is defined by the requirement that ea(eb) = δa

b for
a, b = 1, 2, 3, 4. Let {êa} be another admissible basis for M and {êa} its dual
basis. If Λ is the element of L relating {ea} and {êa}, then

êa = Λa
αeα, a = 1, 2, 3, 4, (3.1.4)

and
êa = Λa

αeα, a = 1, 2, 3, 4. (3.1.5)

We prove (3.1.5) by showing that the left- and right-hand sides agree on
the basis {êb} ((3.1.4) is just (1.2.15)). Of course, êa(êb) = δa

b . But also

Λa
αeα(êb) = Λa

αeα
(
Λb

βeβ

)
= Λa

αΛb
βeα(eβ) = Λa

αΛb
βδα

β = Λa
αΛb

α = δa
b

since [Λa
α] and

[
Λb

β
]

are inverses.
Recall that each v ∈ M gives rise, via the Lorentz inner product, to a

v∗ ∈ M∗ defined by v∗(u) = v · u for all u ∈ M. Moreover, if v = vaea, then
v∗ = vaea, where va = ηaαvα since va = v∗(ea) = v ·ea = (vαeα) ·ea = vα(eα ·
ea) = ηaαvα. Moreover, relative to another basis, v∗ = v̂aêa = v̂a (Λa

αeα) =
(Λa

αv̂a) eα so vα = Λa
αv̂a and, applying the inverse, v̂a = Λa

αvα.
With this we can show that all of the representations of L considered thus

far can, in a very natural way, be regarded as acting on vector spaces of
multilinear functionals (defined shortly). Consider first the collection T 0

2 of
bilinear forms L : M × M → R on M. If L, T ∈ T 0

2 and α ∈ R, then
the definitions (L + T )(u, v) = L(u, v) + T (u, v) and (αL)(u, v) = αL(u, v)
are easily seen to give T 0

2 the structure of a real vector space. For any two
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elements f and g in M∗ we define their tensor product f ⊗ g : M×M → R

by f ⊗ g(u, v) = f(u)g(v). Then f ⊗ g ∈ T 0
2 .

Exercise 3.1.4 Show that, if {ea} is the dual of an admissible basis, then
{ea ⊗ eb : a, b = 1, 2, 3, 4} is a basis for T 0

2 and that, for any L ∈ T 0
2 ,

L = L(ea, eb)ea ⊗ eb = Labe
a ⊗ eb. (3.1.6)

Now, in another basis, L(êa, êb) = L
(
Λa

αeα, Λb
βeβ

)
= Λa

αΛb
βL(eα, eβ) so

L̂ab = Λa
αΛb

βLαβ . (3.1.7)

Thus, components relative to bases of the form {ea ⊗ eb : a, b = 1, 2, 3, 4} for
T 0

2 transform under the representation [Λa
b] →

[
Λa

αΛb
β
]

of (3.1.3) and we
may therefore regard the bilinear forms in T 0

2 as the carriers of this represen-
tation. Elements of T 0

2 are called world tensors of contravariant rank 0 and
covariant rank 2 (we will discuss the terminology shortly).

Next we consider the representation [Λa
b] →

[
Λa

αΛb
β
]

of L appropriate to
(3.1.2). Let T 1

1 denote the set of all real-valued functions L : M∗ ×M → R

that are linear in each variable, i.e., satisfy L(αf + βg, u) = αL(f, u) +
βL(g, u) and L(f, αu + βv) = αL(f, u) + βL(f, v) whenever α, β ∈ R, f, g ∈
M∗ and u, v ∈ M. The vector space structure of T 1

1 is defined in the obvious
way: If L, T ∈ T 1

1 and α, β ∈ R, then αL + βT ∈ T 1
1 is defined by (αL +

βT )(f, u) = αL(f, u) + βT (f, u). For u ∈ M and f ∈ M∗ we define u ⊗ f :
M∗ × M → R by u ⊗ f (g, v) = g(u)f(v). Again, it is easy to see that
u ⊗ f ∈ T 1

1 , that {ea ⊗ eb : a, b = 1, 2, 3, 4} is a basis for T 1
1 and that, for

any L in T 1
1 ,

L = L(ea, eb)ea ⊗ eb = La
bea ⊗ eb. (3.1.8)

In another basis, L(êa, êb) = L
(
Λa

αeα, Λb
βeβ

)
= Λa

αΛb
βL(eα, eβ) =

Λa
αΛb

βLα
β so

L̂a
b = Λa

αΛb
βLα

β. (3.1.9)

Thus, components relative to bases of the form {ea ⊗ eb : a, b = 1, 2, 3, 4}
transform under the representation [Λa

b] →
[
Λa

αΛb
β
]

of (3.1.2) so that the
elements of T 1

1 are a natural choice for the carriers of this representation. The
elements of T 1

1 are called world tensors of contravariant rank 1 and covariant
rank 1.

The appropriate generalization of these ideas should by now be clear. Let
r ≥ 0 and s ≥ 0 be integers. Denote by T r

s the set of all real-valued functions
defined on

M∗ × · · · ×M∗︸ ︷︷ ︸
r factors

×M× · · · ×M︸ ︷︷ ︸
s factors

that are linear in each variable separately (these are called multilinear
functionals). T r

s is made into a real vector space by the obvious pointwise
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definitions of addition and scalar multiplication. If u1, . . . , ur ∈ M and
f1, . . . , fs ∈ M∗ one defines u1 ⊗ · · · ⊗ ur ⊗ f1 ⊗ · · · ⊗ fs in T r

s by

u1 ⊗ · · · ⊗ ur ⊗ f1 ⊗ · · · ⊗ fs(g1, . . . , gr, v1, . . . , vs)
= g1(u1) · · · gr(ur) · f1(v1) · · · fs(vs)

and finds that the set of ea1 ⊗ · · ·⊗ ear ⊗ eb1 ⊗ · · ·⊗ ebs , a1, . . . , ar = 1, 2, 3, 4
and b1, . . . , bs = 1, 2, 3, 4, form a basis for T r

s . Moreover, if L ∈ T r
s , then

L = L(ea1 , . . . , ear , eb1 , . . . , ebs)ea1 ⊗ · · · ⊗ ear ⊗ eb1 ⊗ · · · ⊗ ebs

= La1···ar
b1···bsea1 ⊗ · · · ⊗ ear ⊗ eb1 ⊗ · · · ⊗ ebs .

(3.1.10)

Relative to another basis,

L(êa1 , . . . , êar , êb1 , . . . , êbs)

= L
(
Λa1

α1
eα1 , . . . ,Λar

αr
eαr , Λb1

β1eβ1 , . . . ,Λbs

βseβs

)
= Λa1

α1
· · ·Λar

αr
Λb1

β1 · · ·Λbs

βsL(eα1 , . . . , eαr , eβ1 , . . . , eβs)

so

L̂a1···ar
b1··· bs = Λa1

α1
· · ·Λar

αr
Λ β1

b1
· · ·Λbs

βsLα1···αr
β1···βs . (3.1.11)

The elements of T r
s are called world tensors (or 4-tensors) of contravariant

rank r and covariant rank s. “Contravariant rank r” refers to the r indices
a1, . . . , ar that are written as superscripts in the expression for the compo-
nents and which appear in the transformation law attached to an entry in Λ
(rather than Λ−1). Covariant indices are written as subscripts in the compo-
nents and transform under Λ−1. An element of T r

s has 4r+s components and
if these are written as a column matrix, then the transformation law (3.1.11)
can be written as a matrix product thus giving rise to an assignment

[Λa
b] →

[
Λa1

α1 · · ·Λar
αrΛb1

β1 · · ·Λbs

βs

]
to each element of L of a 4r+s × 4r+s matrix which can be shown to be a
representation of L and is called the world tensor (or 4-tensor) representation
of contravariant rank r and covariant rank s. Notice that even the identity
representation of L corresponding to (3.1.1) is included in this scheme (with
r = 1 and s = 0). The carriers, however, are now viewed as linear functionals
on M∗, i.e., we are employing the standard isomorphism of M onto M∗∗

(x ∈ M → x∗∗ ∈ M∗∗ defined by x∗∗(f) = f(x) for all f ∈ M∗). The
elements of T 1

0 are sometimes called contravariant vectors, whereas those of
T 0

1 are covariant vectors or covectors.
World tensors were introduced by Minkowski in 1908 as a language in

which to express Lorentz invariant relationships. Any assertion that two world
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tensors L and T are equal would be checked in a given admissible basis/frame
by comparing their components La1··· ar

b1··· bs and T a1··· ar
b1··· bs in that basis

and, if these are indeed found to be equal in one basis, then the components
in any other basis must necessarily also be equal since they both transform
to the new basis under (3.1.11). World tensor equations are true in all admis-
sible frames if and only if they are true in any one admissible frame, i.e., they
are Lorentz invariant. World tensors were introduced, in analogy with the
3-vectors of classical mechanics, to serve as the basic “building blocks” from
which to construct the laws of relativistic (i.e., Lorentz invariant) physics. So
admirably suited were they to this task that it was not until attempts got
under way to reconcile the principles of relativistic and quantum mechanics
that it was found that there were not enough “building blocks”. The reason
for this can be traced to the fact that the underlying physically significant
quantities in quantum mechanics (e.g., wave functions) are described by com-
plex numbers ψ, whereas the result of a specific measurement carried out on
a quantum mechanical system is a real number that depends only on quan-
tities of the form ψψ̄ and these last quantities are insensitive to changes in
sign, i.e., (−ψ)(−ψ) = ψψ̄. Consequently, ψ and −ψ give rise to precisely the
same predictions as to the result of any experiment and so must represent the
same state of the system. As a result, transforming the state’s description in
one admissible frame to that in another (related to it by Λ) can be accom-
plished by either one of two matrices ±DΛ. As we shall see in Section 3.5 this
ambiguity in the sign is often an essential feature of the situation and cannot
be consistently removed by making one choice or the other. This fact leads
directly to the notion of what Penrose [PR] has called a “spinorial object”
and which we shall discuss in some detail in Appendix B. For the present we
will only take these remarks as motivation for introducing what are called
“two-valued representations” of the Lorentz group (intuitively, assignments
Λ → ±DΛ of two component transformation matrices, differing only by sign,
to each Λ ∈ L).

In Section 1.7 we constructed a mapping of SL(2,C) onto L called the
spinor map which we now designate

Spin : SL(2,C) → L.

Spin was a homomorphism of the matrix group SL(2,C) onto the matrix
group L that mapped the unitary subgroup SU 2 of SL(2,C) onto the rota-
tion subgroup R of L and was precisely two-to-one, carrying ±G in SL(2,C)
onto the same element of L (which we denote either Spin(G) = Spin(−G) or
ΛG = Λ−G). Next we observe that any representation D̃ : L → H “lifts” to
a representation of SL(2,C). More precisely, we define D :SL(2,C) → H
by D = D̃ ◦ Spin. Of course, D has the property that, for every G ∈
SL(2,C), D−G = D̃(Spin(−G)) = D̃(Spin(G)) = DG. Conversely, suppose
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D : SL(2,C) → H is a representation of SL(2,C) with the property that
D−G = DG for every G ∈ SL(2,C). We define D̃ : L → H as follows:
Let Λ ∈ L. Then there exists a G ∈ SL(2,C) such that ΛG = Λ. Define
D̃(Λ) = D̃(ΛG) = DG. Then D̃ is a representation of L since D̃(Λ1Λ2) =
D̃(ΛG1ΛG2) = D̃(ΛG1G2) = DG1G2 = DG1 DG2 = D̃(Λ1)D̃(Λ2). Thus, there
is a one-to-one correspondence between the representations of L and the rep-
resentations of SL(2,C) that satisfy D−G = DG for all G ∈ SL(2,C).

Before proceeding with the discussion of those representations of SL(2,C)
for which D−G �= DG we introduce a few more definitions. Thus, we let G
and H be arbitrary matrix groups and D : G → H a representation of G.
If the order of H is m, we let Vm stand for any space of carriers for D. A
subspace S of Vm is said to be invariant under D if each DG, thought of as
a linear transformation of Vm, carries S into itself, i.e., satisfies DGS ⊆ S.
For example, Vm itself and the trivial subspace {0} of Vm are obviously
invariant under any D. If {0} and Vm are the only subspaces of Vm that are
invariant under D, then D is said to be irreducible; otherwise, D is reducible.
It can be shown (see [GMS]) that all of the representations of SL(2,C) can
be constructed from those that are irreducible. Finally, two representations
D(1) : G → H1 and D(2) : G → H2, where H1 and H2 have the same order,
are said to be equivalent if there exists an invertible matrix P such that

D
(2)
G = P−1D

(1)
G P

for all G ∈ G. This is clearly equivalent to the requirement that, if Vm is a
space of carriers for both D(1) and D(2), then there exist bases {v(1)

a } and
{v(2)

a } for Vm such that, for every G ∈ G, the linear transformation whose
matrix relative to {v(1)

a } is D
(1)
G has matrix D

(2)
G relative to {v(2)

a }.

Theorem 3.1.1 (Schur’s Lemma) Let G and H be matrix groups of order
n and m respectively and D : G → H an irreducible representation of G. If
A is an m × m matrix which commutes with every DG, i.e., ADG = DGA
for every G ∈ G, then A is a multiple of the identity matrix, i.e., A = λI for
some (in general, complex) number λ.

Proof: We select a space Vm of carriers and regard A and all the DG as
linear transformations on Vm. Let S = ker A. Then S is a subspace of
Vm. For each s ∈ S, As = 0 implies A(DGs) = DG(As) = DG(0) = 0 so
DGs ∈ S, i.e., S is invariant under D. Since D is irreducible, either S = Vm

or S = {0}. If S = Vm, then A = 0 = 0 · I and we are done. If S = {0},
then A is invertible and so has a nonzero (complex) eigenvalue λ. Notice that
(A − λI)DG = ADG − (λI)DG = DGA − DG(λI) = DG(A − λI) so A − λI
commutes with every DG. The argument given above shows that A − λI is
either 0 or invertible. But λ is an eigenvalue of A so A − λI is not invertible
and therefore A − λI = 0 as required. �
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Corollary 3.1.2 Let G be a matrix group that contains −G for every G ∈ G
and D : G → H an irreducible representation of G. Then

D−G = ±DG. (3.1.12)

Proof: −G = (−I)G so D−G = D(−I)G = D−IDG and it will suffice to
show that D−I = ±I. For any G′ ∈ G, D−IDG′ = D(−I)G′ = DG′(−I) =
DG′D−I so D−I commutes with each DG′ , G′ ∈ G. By Schur’s Lemma,
D−I = λI for some λ. But D−ID−I = D(−I)(−I) = DI = I so (λI)(λI) =
λ2 I = I. Thus, λ2 = 1 so λ = ±1 and D−I = ±I. �

Since SL(2,C) clearly contains −G for every G ∈ SL(2,C), we find that
every irreducible representation D of SL(2,C) satisfies either D−G = DG

or D−G = −DG. As we have seen, those of the first type give representa-
tions of the Lorentz group. Although those that satisfy D−G = −DG cannot
legitimately be regarded as representations of L (not being single-valued),
it has become customary to refer to such a representation of SL(2,C) as a
two-valued representation of L and we shall adhere to the custom.

The problem of determining the finite-dimensional, irreducible represen-
tations of SL(2,C) is thus seen to be a matter of considerable interest in
mathematical physics. As it happens, these representations are well-known
and rather easy to describe. Moreover, such a description is well worth the ef-
fort required to produce it since it leads inevitably to the notion of a “spinor”,
which will be our major concern in this chapter.

In order to enumerate these representations of SL(2,C) it will be conve-
nient to reverse our usual procedure and specify first a space of carriers and a
basis and then describe the linear transformations whose matrices relative to
this basis will constitute our representations. If m ≥ 0 and n ≥ 0 are integers
we denote by Pmn the vector space of all polynomials in z and z̄ with complex
coefficients and of degree at most m in z and at most n in z̄, i.e.,

Pmn = {p(z, z̄) = p00 + p10z + p01z̄ + p11zz̄ + · · ·
+ pmnzmz̄n = prsz

rz̄s : prs∈C},

with the usual coefficientwise addition and scalar multiplication, i.e., p(z, z̄)+
q(z, z̄) = [p00 + p10z + · · · + pmnzmz̄n] + [q00 + q10z + · · · + qmnzmz̄n] =
[p00 + q00] + [p10 + q10]z + · · · + [pmn + qmn ]zmz̄n and αp(z, z̄) = (αp00) +
(αp10)z+ · · · +(αpmn)zmz̄n. The basis implicit here is {1, z, z̄, zz̄, . . . , zmz̄n}
so dim Pmn = (m+1)(n+1). Now, for each G =

[
a b
c d

]
∈ SL(2,C) we define

D
(m

2 , n
2 )

G : Pmn → Pmn by

D
( m

2 , n
2 )

G (p(z, z̄)) = D
( m

2 , n
2 )

G (prsz
rz̄s) = (bz + d)m(b̄z̄ + d̄)np(w, w̄),
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where
w =

az + c

bz + d
.

Then D
( m

2 , n
2 )

G is clearly linear in p(z, z̄) and maps Pmn to Pmn . Although

algebraically a bit messy it is straightforward to show that D
(m

2 , n
2 )

G has the
properties required to determine a representation of SL(2,C). We leave the
manual labor to the reader.

Exercise 3.1.5 Show that D
( m

2 , n
2 )

I is the identity transformation on Pmn

and that if G1 and G2 are in SL(2,C), then

D
(m

2 , n
2 )

G1G2
= D

(m
2 , n

2 )
G1

◦ D
( m

2 , n
2 )

G2
.

Thus, the matrices of the linear transformations D
(m

2 , n
2 )

G relative to the basis
{1, z, z̄, . . . , zmz̄n} for Pmn constitute a representation of SL(2,C) which we
also denote

G −→ D
(m

2 , n
2 )

G

and call the spinor representation of type (m, n). Although it is by no means
obvious the spinor representations are all irreducible and, in fact, exhaust all
of the finite-dimensional, irreducible representations of SL(2,C) (we refer the
interested reader to [GMS] for a proof of Theorem 3.1.3).

Theorem 3.1.3 For all m, n = 0, 1, 2, . . ., the spinor representation D(m
2 , n

2 )

of SL(2,C) is irreducible and every finite-dimensional irreducible representa-
tion of SL(2,C) is equivalent to some D(m

2 , n
2 ).

We consider a few specific examples. First suppose m = 1 and n = 0 : P10 =

{p(z, z̄) = p00 + p10z : prs ∈ C}. For G =
[
a b
c d

]
∈ SL(2,C),

D
( 1

2 ,0)
G (p(z, z̄)) = (bz + d)1(b̄z̄ + d̄)0p(w, w̄)

= (bz + d)
(

p00 + p10

(
az + c

bz + d

))
= (bz + d)p00 + (az + c)p10

= (cp10 + dp00) + (ap10 + bp00)z

= p̂00 + p̂10z,

where [
p̂10

p̂00

]
=
[
a b
c d

] [
p10

p00

]
.
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Thus, the representation G → D
( 1

2 ,0)
G is given by[

a b
c d

]
−→ D

( 1
2 ,0)[
a b
c d

] =
[
a b
c d

]
,

i.e., D( 1
2 ,0) is the identity representation of SL(2,C).

Exercise 3.1.6 Show in the same way that D(0, 12 ) is the conjugation rep-
resentation [

a b
c d

]
−→ D

(0, 1
2 )[

a b
c d

] =
[
ā b̄
c̄ d̄

]
.

Exercise 3.1.7 Show that D( 1
2 ,0) and D(0, 1

2 ) are not equivalent represen-
tations of SL(2,C), i.e., that there does not exist an invertible matrix P

such that P−1GP = Ḡ for all G ∈ SL(2,C). Hint : Let G =
[
i 0
0 −i

]
and

P =
[

0 i
−i 0

]
. Show that P−1GP = Ḡ and that P and its nonzero scalar mul-

tiples are the only matrices for which this is true. Now find a G′ ∈ SL(2,C)
for which P−1G′P �= G′.

Before working out another example we include a few more observations
about D( 1

2 ,0) and D(0, 1
2 ). First note that if G → DG is any representation

of SL(2,C), then the assignment G →
(
D−1

G

)T
=
(
DT

G

)−1 of the trans-
posed inverse of DG to each G is also a representation of SL(2,C) since
I →

(
D−1

I

)T
= (I−1)T = IT = I and G1G2 → ((DG1G2)−1)T =

((DG1DG2)−1)T =
(
D−1

G2
D−1

G1

)T
=
(
D−1

G1

)T (
D−1

G2

)T
(note that inversion or

transposition alone would not accomplish this since each reverses products).
Applying this, in particular, to the identity representation D( 1

2 ,0) gives

G =
[
a b
c d

]
−→ (G−1)T = (GT )−1 =

[
d −c

−b a

]
.

Letting ε =
[
0 −1
1 0

]
it is easily checked that ε−1 = −ε and

(G−1)T = ε−1Gε.

Thus, G → (G−1)T = (GT )−1 is equivalent to D( 1
2 ,0) and we shall denote

it D̃( 1
2 ,0). Similarly, one can define a representation D̃(0, 1

2 ) equivalent to
conjugation by

G −→ (Ḡ−1)T = (ḠT )−1 = ε−1Ḡε.
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These equivalent versions of D( 1
2 ,0) and D(0, 12 ) as well as analogous versions

of D( m
2 , n

2 ) are often convenient and we shall return to them in the next
section.

Now let m = n = 1. Then P11 = {p(z, z̄) = p00 + p10z + p01z̄ + p11zz̄ :

prs ∈ C} and for each G =
[
a b
c d

]
∈ SL(2,C) one has

D
( 1

2 , 1
2 )

G (p(z, z̄)) = (bz + d)1(d̄z̄ + d̄)1(p00 + p10w + p01w̄ + p11ww̄),

where w = az+c
bz+d . Multiplying out and rearranging yields

D
( 1

2 , 12 )
G (p(z, z̄)) = p̂00 + p̂10z + p̂01z̄ + p̂11zz̄,

where ⎡⎢⎢⎣
p̂11

p̂10

p̂01

p̂00

⎤⎥⎥⎦ =

⎡⎢⎢⎣
aā ab̄ āb bb̄
ac̄ ad̄ bc̄ bd̄
āc b̄c ād b̄d
cc̄ cd̄ c̄d dd̄

⎤⎥⎥⎦
⎡⎢⎢⎣
p11

p10

p01

p00

⎤⎥⎥⎦ , (3.1.13)

so that

D
( 1

2 , 12 )[
a b
c d

] =

⎡⎢⎢⎣
aā ab̄ āb bb̄
ac̄ ad̄ bc̄ bd̄
āc b̄c ād b̄d
cc̄ cd̄ c̄d dd̄

⎤⎥⎥⎦ .

Proceeding in this manner with the notation currently at our disposal would
soon become algebraically unmanageable. For this reason we now introduce
new and powerful notational devices that will constitute the language in
which the remainder of the chapter will be written. First we rephrase the
example of D( 1

2 , 1
2 ) in these new terms. We begin by rewriting each p(z, z̄) as

a sum of terms of the form
φAẊzAz̄Ẋ ,

where A = 1, 0 and Ẋ = 1̇, 0̇ (the dot is used only to indicate a power of z̄

rather than z and 1̇, 0̇ are treated exactly as if they were 1, 0, i.e., z̄0̇ = 1,
z̄1̇ = z̄, 0̇ + 1̇ = 1̇, etc.). Thus,

p00 + p10z + p01z̄ + p11zz̄ = φ00̇z
0z̄0̇ + φ10̇z

1z̄0̇ + φ01̇z
0z̄1̇ + φ11̇z

1z̄1̇,

where φ00̇ = p00, φ10̇ = p10, φ11̇ = p11. With the summation convention
(over A = 1, 0, Ẋ = 1̇, 0̇),

p(z, z̄) = φAẊzAz̄Ẋ .

To set up another application of the summation convention we henceforth
denote the entries in G ∈ SL(2,C) as
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G =
[
GA

B
]

=

[
G1

1 G1
0

G0
1 G0

0

]

and write the conjugate Ḡ of G as

Ḡ =
[
ḠẊ

Ẏ
]

=

[
Ḡ1̇

1̇ Ḡ1̇
0̇

Ḡ0̇
1̇ Ḡ0̇

0̇

]
.

Convention: Henceforth, conjugating a term with undotted indices dots them
all and introduces a bar, whereas conjugating a term with dotted indices
undots them and removes the bar. Whenever possible we will select undotted
index names from the beginning of the alphabet (A, B, C, . . .) and dotted
indices from the end (. . . , Ẋ, Ẏ , Ż).

Now, if we let D
( 1

2 , 1
2 )

G (φAẊzAz̄Ẋ) = φ̂AẊzAz̄Ẋ we find from (3.1.13) that⎡⎢⎢⎢⎢⎣
φ̂11̇

φ̂10̇

φ̂01̇

φ̂00̇

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
G1

1Ḡ1̇
1̇ G1

1Ḡ1̇
0̇ G1

0Ḡ1̇
1̇ G1

0Ḡ1̇
0̇

G1
1Ḡ0̇

1̇ G1
1Ḡ0̇

0̇ G1
0Ḡ0̇

1̇ G1
0Ḡ0̇

0̇

G0
1Ḡ1̇

1̇ G0
1Ḡ1̇

0̇ G0
0Ḡ1̇

1̇ G0
0Ḡ1̇

0̇

G0
1Ḡ0̇

1̇ G0
1Ḡ0̇

0̇ G0
0Ḡ0̇

1̇ G0
0Ḡ0̇

0̇

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
φ11̇

φ10̇

φ01̇

φ00̇

⎤⎥⎥⎥⎥⎦ (3.1.14)

which all collapses quite nicely with the summation convention to

φ̂AẊ = GA
BḠẊ

Ẏ φBẎ , A = 1, 0, Ẋ = 1̇, 0̇. (3.1.15)

For D( 1
2 ,0) we would write p00 + p10z = φ0z

0 + φ1z
1 = φAzA and

D
( 1

2 ,0)
G (φAzA) = φ̂AzA, where

φ̂A = GA
BφB , A = 1, 0. (3.1.16)

Similarly, for D(0, 1
2 ), p00+p01z̄ = φ0̇z̄

0̇+φ1̇z̄
1̇ = φẊ z̄Ẋ and D

(0, 1
2 )

G (φẊ z̄Ẋ) =
φ̂Ẋ z̄Ẋ , where

φ̂Ẋ = ḠẊ
Ẏ φẎ , Ẋ = 1̇, 0̇. (3.1.17)

Notice that the 4× 4 matrix in (3.1.14) is precisely D
( 1

2 , 1
2 )

G and that anal-
ogous statements would be true of (3.1.16) and (3.1.17) if these were written
as matrix products. The situation changes somewhat for larger m and n so
we wish to treat one more example before describing the general case. Thus,
we let m = 2 and n = 1. An element p(z, z̄) = p00 + p10z + · · · + p21z

2z̄ is
to be written as a sum of terms of the form φA1A2ẊzA1zA2 z̄Ẋ . For example,
the constant term p00 is written φ000̇z

0z0z̄0̇ so φ000̇ = p00 and p10z becomes
φ100̇z

1z0z̄0̇ + φ010̇z
0z1z̄0̇ and we take φ100̇ = φ010̇ = 1

2p10, and so on. The
result is
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p(z, z̄) = φ000̇z
0z0z̄0̇ + φ100̇z

1z0z̄0̇ + φ010̇z
0z1z̄0̇

+ φ001̇z
0z0z̄1̇ + φ101̇z

1z0z̄1̇ + φ011̇z
0z1z̄1̇

+ φ110̇z
1z1z̄0̇ + φ111̇z

1z1z̄1̇,

where we take

φ000̇ = p00, φ100̇ = φ010̇ = 1
2p10, φ001̇ = p01,

φ101̇ = φ011̇ = 1
2p11, φ110̇ = p20, φ111̇ = p21,

so that, in particular, φA1A2Ẋ is symmetric in A1 and A2, i.e., φA2A1Ẋ =
φA1A2Ẋ for A1, A2 = 1, 0. Thus, with the summation convention,

p(z, z̄) = φA1A2ẊzA1zA2 z̄Ẋ = φA1A2ẊzA1+A2 z̄Ẋ .

Now,

D
( 2

2 , 1
2 )

G (p(z, z̄)) =
(
G1

0z + G0
0
)2 (

Ḡ1̇
0̇z̄ + Ḡ0̇

0̇
)1

(φA1A2ẊwA1+A2w̄Ẋ),

where

w =
G1

1z + G0
1

G1
0z + G0

0 ,

so

D
( 2

2 , 1
2 )

G (p(z, z̄)) = φA1A2Ẋ

(
G1

1z + G0
1
)A1+A2 (

G1
0z + G0

0
)2−A1−A2

·
(
Ḡ1̇

1̇z̄ + Ḡ0̇
1̇
)Ẋ (

Ḡ1̇
0̇z̄ + Ḡ0̇

0̇
)1−Ẋ

= φ000̇

(
G1

0z + G0
0
) (

G1
0z + G0

0
) (

Ḡ1̇
0̇z̄ + Ḡ0̇

0̇
)

+ φ100̇

(
G1

1z + G0
1
) (

G1
0z + G0

0
) (

Ḡ1̇
0̇z̄ + Ḡ0̇

0̇
)

+ φ010̇

(
G1

1z + G0
1
) (

G1
0z + G0

0
) (

Ḡ1̇
0̇z̄ + Ḡ0̇

0̇
)

+ φ110̇

(
G1

1z + G0
1
) (

G1
1z + G0

1
) (

Ḡ1̇
0̇z̄ + Ḡ0̇

0̇
)

+ φ001̇

(
G1

0z + G0
0
) (

G1
0z + G0

0
) (

Ḡ1̇
1̇z̄ + Ḡ0̇

1̇
)

+ φ101̇

(
G1

1z + G0
1
) (

G1
0z + G0

0
) (

Ḡ1̇
1̇z̄ + Ḡ0̇

1̇
)

+ φ011̇

(
G1

1z + G0
1
) (

G1
0z + G0

0
) (

Ḡ1̇
1̇z̄ + Ḡ0̇

1̇
)

+ φ111̇

(
G1

1z + G0
1
) (

G1
1z + G0

1
) (

Ḡ1̇
1̇z̄ + Ḡ0̇

1̇
)

.
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Multiplying out and collecting terms gives D
( 2

2 , 12 )
G (φA1A2ẊzA1+A2 z̄Ẋ) =

φ̂A1A2ẊzA1+A2 z̄Ẋ , where

φ̂A1A2Ẋ = GA1
B1GA2

B2ḠẊ
Ẏ φB1B2Ẏ , A1, A2 = 1, 0, Ẋ = 1̇, 0̇. (3.1.18)

Exercise 3.1.8 Write out all terms in the expansion of D
( 2

2 , 12 )
G (p(z, z̄)) that

contain z2z̄ and show that they can be written in the form

G1
B1G1

B2Ḡ1̇
Ẏ φB1B2Ẏ zB1zB2 z̄Ẏ

and so verify (3.1.18) for A1 = A2 = 1, Ẋ = 1̇. Similarly, find the constant
term and the terms with z, z2, z̄ and zz̄ to verify (3.1.18) for all A1, A2 and Ẋ .

Now observe that by writing the φ̂A1A2Ẋ as a column matrix [φ̂A1A2Ẋ ] =
col[φ̂111̇ φ̂101̇ φ̂011̇ φ̂001̇ φ̂110̇ φ̂100̇ φ̂010̇ φ̂000̇], and similarly for the φB1B2Ẏ ,
(3.1.18) can be written as a matrix product⎡⎢⎢⎢⎢⎢⎣

φ̂111̇

φ̂101̇

...

φ̂000̇

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
G1

1G1
1Ḡ1̇

1̇ G1
1G1

0Ḡ1̇
1̇ G1

0G1
1Ḡ1̇

1̇ · · ·
G1

1G0
1Ḡ1̇

1̇ G1
1G0

0Ḡ1̇
1̇ G1

0G0
1Ḡ1̇

1̇ · · ·
...

...
...

G0
1G0

1Ḡ0̇
1̇ G0

1G0
0Ḡ0̇

1̇ G0
0G0

1Ḡ0̇
1̇ · · ·

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
φ111̇

φ101̇

...
φ000̇

⎤⎥⎥⎥⎥⎦ .

Unlike (3.1.14), however, the 8 × 8 coefficient matrix here is not D
( 2

2 , 1
2 )

G . In-
deed, the representation G → [GA1

B1GA2
B2ḠẊ

Ẏ ] which assigns this matrix
to G is not even equivalent to the spinor representation of type (2,1) since
the latter has order (2 + 1)(1 + 1) = 6, not 8. The reason is that, in writing
the elements of P21 in the form φA1A2ẊzA1zA2 z̄Ẋ , we are not finding com-
ponents relative to the basis {1, z, z̄, . . . , z2z̄} since, for example, z1z0z̄1̇ and
z0z1z̄1̇ are both zz̄. Nevertheless, it is the transformation law (3.1.18) that
is of most interest to us.

The general case proceeds in much the same way. Pmn consists of all
p(z, z̄) = p00 + p10z + · · · + pmnzmz̄n = prsz

rz̄s, r = 0, . . . , m, s = 0, . . . , n.
Each of these is written as a sum of terms of the form

φA1···AmẊ1···Ẋn
zA1 · · · zAm z̄Ẋ1 · · · z̄Ẋn ,

where A1, . . . , Am = 1, 0 and Ẋ1, . . . , Ẋn = 1̇, 0̇, and φA1...AmẊ1...Ẋn

is completely symmetric in A1, . . . , Am (i.e., φA1···Ai···Aj ···AmẊ1···Ẋn
=

φA1···Aj ···Ai···AmẊ1···Ẋn
for all i and j) and completely symmetric in the

Ẋ1, . . . , Ẋn. For example,
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p22z
2z̄2 = φ110···01̇1̇0̇···0̇ z1z1z0 · · · z0︸ ︷︷ ︸

m

z̄1̇z̄1̇z̄0̇ · · · z̄0̇︸ ︷︷ ︸
n

+ φ1010···01̇0̇1̇0̇···0̇z
1z0z1z0 · · · z0z̄1̇z̄0̇z̄1̇z̄0̇ · · · z̄0̇

+ · · · + φ00···0110̇0̇···0̇1̇1̇z
0z0 · · · z0z1z1z̄0̇z̄0̇ · · · z̄0̇z̄1̇z̄1̇.

There are
(

m
2

)(
n
2

)
terms in the sum so we may take

φA1···AmẊ1···Ẋn
=

1(
m
2

)(
n
2

)p22,

where A1+ · · ·+Am = 2 and Ẋ1+ · · ·+Ẋn = 2̇. Similarly, for each 0 ≤ r ≤ m
and 0 ≤ s ≤ n, if A1, . . . , Am take the values 1 and 0 with A1 + · · ·+Am = r
and Ẋ1, . . . , Ẋn take the values 1̇ and 0̇ with Ẋ1 + · · · + Ẋn = ṡ, we define

φA1···AmẊ1···Ẋn
=

1(
m
r

)(
n
s

)prs .

Then

prsz
rz̄s =

∑
A1 + · · · + Am = r

Ẋ1 + · · · + Ẋn = ṡ
Ai = 1, 0

Ẋi = 1̇, 0̇

φA1···AmẊ1···Ẋn
zA1 · · · zAm z̄Ẋ1 · · · z̄Ẋn ,

where there is no sum on the left. Summing over all r = 0, . . . , m and s =
0, . . . , n and using the summation convention on both sides gives

p(z, z̄) = prsz
rz̄s = φA1···AmẊ1···Ẋn

zA1 · · · zAm z̄Ẋ1 · · · z̄Ẋn

= φA1···AmẊ1···Ẋn
zA1+···+Am z̄Ẋ1+···+Ẋn .

Again we observe that the φ’s are symmetric in A1, . . . , Am and symmetric

in Ẋ1, . . . , Ẋn. Applying the transformation D
(m

2 , n
2 )

G to p(z, z̄) yields

D
(m

2 , n
2 )

G

(
φA1···AmẊ1···Ẋn

zA1+···+Am z̄Ẋ1+···+Ẋn

)
= φ̂A1···AmẊ1···Ẋn

zA1+···+Am z̄Ẋ1+···+Ẋn ,

(3.1.19)

where

φ̂A1···AmẊ1···Ẋn
= GA1

B1 · · ·GAm

BmḠẊ1

Ẏ1 · · · ḠẊn

ẎnφB1···BmẎ1···Ẏn
,

(3.1.20)
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and the sum is over all r = 0, . . . , m, B1+· · ·+Bm = r with B1, . . . , Bm = 1, 0
and all s = 0, . . . , n, Ẏ1 + · · · + Ẏn = ṡ with Ẏ1, . . . , Ẏn = 1̇, 0̇.

The transformation law (3.1.20) is typical of a certain type of “spinor”

(those of “valence”
(

0 0
m n

)
) that we will define in the next section. For the

precise definition we wish to follow a procedure analogous to that employed
in our definition of a world tensor. The idea there was that the underlying
group being represented (L) was the group of matrices of orthogonal trans-
formations of M relative to orthonormal bases and that a world tensor could
be identified with a multilinear functional on M and its dual. By analogy
we would like to regard the elements of SL(2,C) as matrices of the structure
preserving maps of some “inner-product-like” space ß and identify “spinors”
as multilinear functionals. This is, indeed, possible, although we will have to
stretch our notion of “inner product” a bit.

Since the elements of SL(2,C) are 2 × 2 complex matrices, the space ß

we seek must be a 2-dimensional vector space over C. Observe that if
[
φ1

φ0

]
and
[
ψ1

ψ0

]
are two ordered pairs of complex numbers and G =

[
GA

B
]

is in

SL(2,C) and if we define
[
φ̂1

φ̂0

]
and
[
ψ̂1

ψ̂0

]
by

[
φ̂1

φ̂0

]
=

[
G1

1 G1
0

G0
1 G0

0

] [
φ1

φ0

]
=

[
G1

1φ1 + G1
0φ0

G0
1φ1 + G0

0φ0

]

and similarly for
[
ψ̂1

ψ̂0

]
, then

∣∣∣∣∣φ̂1 ψ̂1

φ̂0 ψ̂0

∣∣∣∣∣ =
∣∣∣∣∣
[
G1

1 G1
0

G0
1 G0

0

][
φ1 ψ1

φ0 ψ0

]∣∣∣∣∣
=

∣∣∣∣∣G1
1 G1

0

G0
1 G0

0

∣∣∣∣∣
∣∣∣∣∣φ1 ψ1

φ0 ψ0

∣∣∣∣∣
=

∣∣∣∣∣φ1 ψ1

φ0 ψ0

∣∣∣∣∣
and so

φ̂1ψ̂0 − φ̂0ψ̂1 = φ1ψ0 − φ0ψ1. (3.1.21)

Conversely, if (3.1.21) is satisfied, then G must be in SL(2,C). Thus, if we
define on the vector space

C2 =
{

φ =
[
φ1

φ0

]
: φA ∈ C for A = 1, 0

}
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a mapping
< , >: C2 × C2 → C

by
< φ, ψ > = φ1ψ0 − φ0ψ1,

then the elements of SL(2,C) are precisely the matrices that preserve < , >.

Exercise 3.1.9 Verify the following properties of < , >.

1. < , > is bilinear, i.e., < φ, aψ + bξ > = a < φ, ψ > + b < φ, ξ > and
< aφ + bψ, ξ > = a < φ, ξ > + b < ψ, ξ > for all a, b ∈ C and
φ, ψ, ξ ∈ C2.

2. < , > is skew-symmetric, i.e., < ψ, φ > =− < φ, ψ >.
3. < φ, ψ > ξ + < ξ, φ > ψ + < ψ, ξ > φ = 0 for all φ, ψ, ξ ∈ C2.

With these observations as motivation we proceed in the next section with
an abstract definition of the underlying 2-dimensional complex vector space
ß whose multilinear functionals are “spinors”.

3.2 Spin Space

Spin space is a vector space ß over the complex numbers on which is defined
a map < , >: ß × ß → C which satisfies:

1. there exist φ and ψ in ß such that < φ, ψ > �= 0,
2. < ψ, φ > = − < φ, ψ > for all φ, ψ ∈ ß,
3. < aφ + bψ, ξ > = a < φ, ξ > + b < ψ, ξ > for all φ, ψ, ξ ∈ ß and all

a, b ∈ C,
4. < φ, ψ > ξ + < ξ, φ > ψ + < ψ, ξ > φ = 0 for all φ, ψ, ξ ∈ ß.

An element of ß is called a spin vector. The existence of a vector space of the
type described was established in Exercise 3.1.9.

Lemma 3.2.1 Each of the following holds in spin space.

(a) < φ, φ > = 0 for every φ ∈ ß.
(b) < , > is bilinear, i.e., in addition to #3 in the definition we have

< φ, aψ + bξ > = a < φ, ψ > + b < φ, ξ > for all φ, ψ, ξ ∈ ß and
all a, b ∈ C.

(c) Any φ and ψ in ß which satisfy < φ, ψ > �= 0 form a basis for ß. In
particular, dim ß = 2.

(d) There exists a basis {s1, s0} for ß which satisfies < s1, s0 > = 1 =
− < s0, s1 > (any such basis is called a spin frame for ß).

(e) If {s1, s0} is a spin frame and φ = φ1s1 + φ0s0 = φAsA, then φ1 =
< φ, s0 > and φ0 = − < φ, s1 >.

(f) If {s1, s0} is a spin frame and φ = φAsA and ψ = ψAsA, then

< φ, ψ >=
∣∣∣∣φ1 ψ1

φ0 ψ0

∣∣∣∣ = φ1ψ0 − φ0ψ1.
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(g) φ and ψ in ß are linearly independent if and only if < φ, ψ > �= 0.
(h) If {s1, s0} and {ŝ1, ŝ0} are two spin frames with s1 = G1

1ŝ1 + G0
1ŝ0 =

GA
1ŝA and s0 = G1

0 ŝ1 + G0
0ŝ0 = GA

0ŝA, i.e.,

sB = GA
B ŝA, B = 1, 0, (3.2.1)

then G =
[
GA

B
]

=
[
G1

1 G1
0

G0
1 G0

0

]
is in SL(2,C).

(i) If {s1, s0} and {ŝ1, ŝ0} are two spin frames and φ = φAsA = φ̂AŝA, then[
φ̂1

φ̂0

]
=

[
G1

1 G1
0

G0
1 G0

0

][
φ1

φ0

]
,

i.e.,
φ̂A = GA

BφB, A = 1, 0, (3.2.2)

where the GA
B are given by (3.2.1).

(j) A linear transformation T : ß → ß preserves < , > (i.e., satisfies
< Tφ, Tψ > = < φ, ψ > for all φ, ψ ∈ ß) if and only if the matrix of
T relative to any spin frame is in SL(2,C).

Proof:

Exercise 3.2.1 Prove (a) and (b).

(c) From (a) and (b) it follows that < λφ, φ > = < φ, λφ > = 0 for all λ ∈ C

and all φ ∈ ß. Consequently, if < φ, ψ > �= 0, neither φ nor ψ can be a
multiple of the other, i.e., they are linearly independent. Moreover, for
any ξ ∈ ß, #4 gives < φ, ψ > ξ = −< ξ, φ > ψ−< ψ, ξ > φ so, since
< φ, ψ > �= 0, ξ is a linear combination of φ and ψ so {φ, ψ} is a basis
for ß.

(d) Suppose < φ, ψ > �= 0. By switching names if necessary and using #2
we may assume < φ, ψ > > 0. By (c), φ and ψ form a basis for ß and
therefore so do s1 = < φ, ψ >− 1

2 φ and s0 =< φ, ψ >− 1
2 ψ. But then

bilinearity of < , > gives < s1, s0 >= 1 and so, by #2, < s0, s1 > = −1.
(e) φ = φ1s

1 + φ0s
0 ⇒< φ, s0 > = φ1 < s1, s0 > + φ0 < s0, s0 > = φ1, and,

similarly, < φ, s1 > =−φ0.
(f) < φ, ψ > = < φ1s

1 + φ0s
0, ψ1s

1 + ψ0s
0 > = φ1ψ1 < s1, s1 > + φ1ψ0

< s1, s0 > + φ0ψ1 < s0, s1 > + φ0ψ0 < s0, s0 > = φ1ψ0−φ0ψ1.
(g) < φ, ψ > �= 0 implies φ and ψ linearly independent by (c). For the converse

suppose < φ, ψ > = 0. If φ = 0 they are obviously dependent so assume
φ �= 0. Select a spin frame {s1, s0} and set φ = φAsA and ψ = ψAsA.
Suppose φ1 �= 0 (the proof is analogous if φ0 �= 0). By (f), < φ, ψ > = 0
implies φ1ψ0 − φ0ψ1 = 0 so ψ0 = (φ0/φ1)ψ1 and therefore[

ψ1

ψ0

]
=

ψ1

φ1

[
φ1

φ0

]
,

so ψ = (ψ1/φ1)φ and φ and ψ are linearly dependent.
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(h) < s1, s0 > = 1 implies 1 = < G1
1ŝ1 + G0

1ŝ0, G1
0ŝ1 + G0

0ŝ0 > =G1
1G1

0

< ŝ1, ŝ1 > + G1
1G0

0 < ŝ1, ŝ0 > + G0
1G1

0 < ŝ0, ŝ1 > + G0
1G0

0

< ŝ0, ŝ0 > = G1
1G0

0 − G0
1G1

0 = det G as required.
(i) φ̂1ŝ

1 + φ̂0ŝ
0 = φ1s

1 + φ0s
0 = φ1

(
G1

1ŝ1 + G0
1ŝ0
)
+φ0

(
G1

0ŝ1 + G0
0ŝ0
)

=(
G1

1φ1 + G1
0φ0

)
ŝ1 +
(
G0

1φ1 + G0
0φ0

)
ŝ0 so the result follows by equat-

ing components.
(j) Let T : ß → ß be a linear transformation and {s1, s0} a spin frame. Let[

TA
B
]

be the matrix of T relative to {s1, s0}. Then, for all φ and ψ in ß,
Tφ = TA

BφB, Tψ = TA
BψB and

< φ, ψ > =
∣∣∣∣φ1 ψ1

φ0 ψ0

∣∣∣∣ .
Now compute

< Tφ, Tψ > =

∣∣∣∣∣T1
1φ1 + T1

0φ0 T1
1ψ1 + T1

0ψ0

T0
1φ1 + T0

0φ0 T0
1ψ1 + T0

0ψ0

∣∣∣∣∣
=

∣∣∣∣∣
[
T1

1 T1
0

T0
1 T0

0

][
φ1 ψ1

φ0 ψ0

]∣∣∣∣∣
=

∣∣∣∣∣T1
1 T1

0

T0
1 T0

0

∣∣∣∣∣
∣∣∣∣∣φ1 ψ1

φ0 ψ0

∣∣∣∣∣ .
Thus, < Tφ, Tψ > = < φ, ψ > if and only if det

[
TA

B
]

= 1, i.e., if and only
if
[
TA

B
]
∈ SL(2,C). �

Comparing (3.2.2) and (3.1.16) we see that spin vectors are a natural
choice as carriers for the identity representation D( 1

2 ,0) of SL(2,C). To find
an equally natural choice for the carrier space of the equivalent representation
D̃( 1

2 ,0) we denote by ß∗ the dual of the vector space ß and by {s1, s0} the
basis for ß∗ dual to the spin frame {s1, s0}. Thus,

sA(sB) = δB
A , A, B = 1, 0. (3.2.3)

The elements of ß∗ are called spin covectors. For each φ ∈ ß we define
φ∗ ∈ ß∗ by

φ∗(ψ)= < φ, ψ >

for every ψ ∈ ß (φ∗ is linear by (b) of Lemma 3.2.1).

Lemma 3.2.2 Every element of ß∗ is φ∗ for some φ ∈ ß.

Proof: Let f ∈ ß∗. Select a spin frame {s1, s0} and define φ ∈ ß by
φ = f(s0)s1 − f(s1)s0. Then, for every ψ ∈ ß, φ∗(ψ) = < φ, ψ > = <
f(s0)s1 − f(s1)s0, ψ > = f(s0) < s1, ψ > −f(s1) < s0, ψ > = −f(s0) <
ψ, s1 > + f(s1) < ψ, s0 > = f(s1)ψ1+f(s0)ψ0. But f(ψ) = f(ψ1s

1+ψ0s
0) =

ψ1f(s1) + ψ0f(s0) = φ∗(ψ) so f = φ∗. �
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Now, for every φ ∈ ß, we may write φ = φAsA and φ∗ = φAsA for some con-
stants φA and φA, A = 1, 0. By (3.2.3), φ∗(s1) = (φAsA)(s1) = φ1s1(s1) =
φ1 and, similarly, φ∗(s0) = φ0. On the other hand, φ∗(s1)=< φ, s1 > =
< φ1s

1 + φ0s
0, s1 > = −φ0 and, similarly, φ∗(s0) = φ1 so we find that{

φ1 = −φ0

φ0 = φ1.
(3.2.4)

Now, if {ŝ1, ŝ0} is another spin frame with sB = GA
B ŝA as in (3.2.1), then,

by (i) of Lemma 3.2.1, we have[
φ̂1

φ̂0

]
=

[
G1

1 G1
0

G0
1 G0

0

] [
φ1

φ0

]

for every φ = φAsA = φ̂AŝA in ß. Letting[
G1

1 G1
0

G0
1 G0

0

]
=

[
G0

0 −G0
1

−G1
0 G1

1

]
=
([

GA
B
]−1
)T

,

we find that [
G1

1 G1
0

G0
1 G0

0

][
φ1

φ0

]
=

[
G0

0 −G0
1

−G1
0 G1

1

][
−φ0

φ1

]

=

[
−G0

BφB

G1
BφB

]
=

[
−φ̂0

φ̂1

]

=

[
φ̂1

φ̂0

]
,

so

φ̂A = GA
BφB, A = 1, 0. (3.2.5)

Consequently, spin covectors have components relative to dual spin frames
that transform under D̃( 1

2 ,0) so ß∗ is a natural choice for a space of carriers
of this representation of SL(2,C).

Exercise 3.2.2 Verify that GA
CGB

C = GC
AGC

B = δA
B and show that

ŝA = GA
BsB (3.2.6)

and
ŝA = GA

BsB (3.2.7)

and therefore
sB = GA

B ŝA. (3.2.8)
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Exercise 3.2.3 For each φ ∈ ß define φ∗∗ : ß∗ → C by φ∗∗(f) = f(φ) for
each f ∈ ß∗. Show that φ∗∗ is a linear functional on ß∗, i.e., φ∗∗ ∈ (ß∗)∗, and
that the map φ → φ∗∗ is an isomorphism of ß onto (ß∗)∗.

From Exercise 3.2.3 we conclude that, just as the elements of ß∗ are linear
functionals on ß, so we can regard the elements of ß as linear functionals on
ß∗. Of course, the transformation law for components relative to a double
dual basis for (ß∗)∗ is the same as that for the spin frame it came from since
one takes the transposed inverse twice. The point is that we now have carrier
spaces for D( 1

2 ,0) and D̃( 1
2 ,0) that are both spaces of linear functionals (on

ß∗ and ß, respectively).
Next consider a bilinear functional on, say, ß∗ × ß∗ : ξ : ß∗ × ß∗ →

C. If {s1, s0} is a spin frame and {s1, s0} its dual, then for all φ∗ =
φAsA and ψ∗ = ψAsA in ß∗ we have ξ(φ∗, ψ∗) = ξ(φAsA, ψBsB) =
ξ(sA, sB)φAψB. Letting ξAB = ξ(sA, sB) we find that ξ(φ∗, ψ∗) = ξABφAψB.
Now, if {ŝ1, ŝ0} is another spin frame with dual {ŝ1, ŝ0}, then ξ̂AB =
ξ(ŝA, ŝB) = ξ

(
GA

CsC , GB
DsD
)

= GA
CGB

Dξ(sC , sD) = GA
CGB

DξCD

which we write as

ξ̂A1A2 = GA1
B1GA2

B2ξB1B2 , A1, A2 = 1, 0, (3.2.9)

and recognize as being the transformation law (3.1.20) with m = 2 and n = 0.
Multilinear functionals on larger products ß∗× ß∗× · · ·× ß∗ will, in the same
way, have components which transform according to (3.1.20) for larger m and
n = 0 (we will consider nonzero n shortly). For a bilinear ξ : ß × ß → C

we find that ξ(φ, ψ) = ξ(φAsA, ψBsB) = ξ(sA, sB)φAψB = ξABφAψB and,
in another spin frame,

ξ̂C1C2 = GC1
D1GC2

D2ξ
D1D2 , C1, C2 = 1, 0, (3.2.10)

and similarly for larger products.

Exercise 3.2.4 Verify (3.2.10). Also show that if ξ : ß∗×ß → C is bilinear,
{sA} and {ŝA} are spin frames with duals {sA} and {ŝA}, ξA

C = ξ(sA, sC)

and ξ̂A
C

= ξ(ŝA, ŝC), then, for any φ = φAsA = φ̂AŝA ∈ ß and ψ∗ = ψAsA =
ψ̂AŝA ∈ ß∗ we have ξ(ψ∗, φ) = ξA

CψAφC = ξ̂A
C ψ̂Aφ̂C and

ξ̂A1
C1 = GA1

B1GC1
D1ξB1

D1 , A1, C1 = 1, 0. (3.2.11)

All of this will be generalized shortly in our definition of a “spinor”, but
first we must construct carriers for D(0, 12 ) and D̃(0, 1

2 ). For this we shall
require a copy ß̄ of ß that is distinct from ß. For example, we might take
ß̄ = ß×{1} so that each element of ß̄ is of the form (φ, 1) for some φ ∈ ß. We
denote by φ̄ the element (φ, 1) ∈ ß̄. Thus,

ß̄ = {φ̄ : φ ∈ ß}.
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We define the linear space structure on ß̄ as follows: For φ̄, ψ̄ and ξ̄ in ß̄ and
c ∈ C we have

φ̄ + ψ̄ = φ + ψ

and
cφ̄ = c̄φ

(this last being equivalent to λ̄φ̄ = λφ, where c̄ and λ̄ are the usual conjugates
of the complex numbers c and λ). Thus, the map φ → φ̄ of ß to ß̄, which is
obviously bijective, is a conjugate (or anti-) isomorphism, i.e., satisfies

φ + ψ −→ φ̄ + ψ̄

and
cφ −→ c̄φ̄.

The elements of ß̄ are called conjugate spin vectors.
Let {s1, s0} be a spin frame in ß and denote by s̄1̇ and s̄0̇ the images of s1

and s0 respectively under φ → φ̄. Then {s̄1̇, s̄0̇} is a basis for ß̄. Moreover,
if φ = φ1s

1 + φ0s
0 is in ß, then φ̄ = φ̄1̇s̄

1̇ + φ̄0̇s̄
0̇ (recall our notational

conventions from Section 3.1 concerning dotted indices, bars, etc.). Now, if
{ŝ1, ŝ0} is another spin frame, related to {sA} by (3.2.6), and {¯̂s1̇, ¯̂s0̇} is
its image under φ → φ̄, then ŝ1 = G1

BsB = G1
1s

1 + G1
0s

0 implies ¯̂s1̇ =
Ḡ1̇

1̇s̄
1̇ + Ḡ 1̇

0̇s̄
0̇ and similarly for ¯̂s0̇ so

¯̂sẊ = ḠẊ
Ẏ s̄Ẏ , Ẋ = 1̇, 0̇, (3.2.12)

and so
s̄Ẏ = ḠẊ

Ẏ ¯̂sẊ , Ẏ = 1̇, 0̇. (3.2.13)

It follows that if φ̄ = φ̄Ẏ s̄Ẏ = ¯̂
φẊ

¯̂sẊ , then

¯̂
φẊ = ḠẊ

Ẏ φ̄Ẏ , Ẋ = 1̇, 0̇, (3.2.14)

and
φ̄Ẏ = ḠẊ

Ẏ
¯̂
φẊ , Ẏ = 1̇, 0̇. (3.2.15)

The elements of the dual ß̄∗ of ß̄ are called conjugate spin covectors and the
bases dual to {s̄Ẋ} and {¯̂sẊ} are denoted {s̄Ẋ} and {¯̂sẊ} respectively. Just
as before we have

¯̂sẊ = ḠẊ
Ẏ s̄Ẏ , Ẋ = 1̇, 0̇, (3.2.16)

and
s̄Ẏ = ḠẊ

Ẏ
¯̂sẊ , Ẏ = 1̇, 0̇. (3.2.17)
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For each φ∗ = φAsA = φ̂AŝA ∈ ß∗ we define φ̄∗ ∈ ß̄∗ by φ̄∗ = φ̄Ẋ s̄Ẋ =
¯̂
φẊ ¯̂sẊ . Then

¯̂
φẊ = ḠẊ

Ẏ φ̄Ẏ , Ẋ = 1̇, 0̇, (3.2.18)

and
φ̄Ẏ = ḠẊ

Ẏ ¯̂
φẊ , Ẏ = 1̇, 0̇. (3.2.19)

Before giving the general definitions we once again illustrate with a specific
example. Thus, consider a multilinear functional ξ : ß × ß̄ × ß∗ × ß̄∗ → C.
If φ = φAsA, ψ̄ = ψ̄Ẋ s̄Ẋ , ζ = ζBsB and ν̄ = ν̄Ẏ s̄Ẏ are in ß, ß̄, ß∗ and ß̄∗

respectively, then

ξ(φ, ψ̄, ζ, ν̄) = ξ(φAsA, ψ̄Ẋ s̄Ẋ , ζBsB, ν̄Ẏ s̄Ẏ )

= ξ(sA, s̄Ẋ , sB, s̄Ẏ )φAψ̄ẊζB ν̄Ẏ

= ξAẊ
BẎ φAψ̄ẊζB ν̄Ẏ ,

where ξAẊ
BẎ = ξ(sA, s̄Ẋ , sB, s̄Ẏ ) are the components of ξ relative to the

spin frame {s1, s0} (and the related bases for ß̄, ß∗ and ß̄∗). In another spin
frame {ŝ1, ŝ0} we have ξ(φ, ψ̄, ζ, ν̄) = ξ̂AẊ

BẎ φ̂A
¯̂
ψẊ ζ̂B ¯̂νẎ , where

ξ̂AẊ
BẎ = ξ(ŝA, ¯̂sẊ , ŝB, ¯̂sẎ )

= ξ
(
GA

A1 sA1 , ḠẊ
Ẋ1

s̄Ẋ1 , GB
B1 sB1 , ḠẎ

Ẏ1 s̄Ẏ1

)
= GA

A1 ḠẊ
Ẋ1

GB
B1 ḠẎ

Ẏ1 ξA1Ẋ1
B1Ẏ1

which, as we shall see, is the transformation law for the components relative

to a spin frame of a “spinor of valence
(

1 1
1 1

)
”. With this we are finally

prepared to present the general definitions.

A spinor of valence
(

r s
m n

)
, also called a spinor with m undotted lower

indices, n dotted lower indices, r undotted upper indices, and s dotted upper
indices is a multilinear functional

ξ : ß × · · · × ß︸ ︷︷ ︸
r factors

× ß̄ × · · · × ß̄︸ ︷︷ ︸
s factors

× ß∗ × · · · × ß∗︸ ︷︷ ︸
m factors

× ß̄∗ × · · · × ß̄∗︸ ︷︷ ︸
n factors

−→ C.

If {s1, s0} is a spin frame (with associated bases {s̄1̇, s̄0̇}, {s1, s0} and {s̄1̇, s̄0̇}
for ß̄, ß∗ and ß̄∗), then the components of ξ relative to {sA} are defined by

ξA1···ArẊ1···Ẋs
B1···BmẎ1···Ẏn

= ξ
(
sA1 , . . . , sAr , s̄Ẋ1 , . . . , s̄Ẋs ,

sB1 , . . . , sBm , s̄Ẏ1
, . . . , s̄Ẏn

)
,

A1, . . . , Ar, B1, . . . , Bm = 1, 0,

Ẋ1, . . . , Ẋs, Ẏ1, . . . , Ẏn = 1̇, 0̇.

(3.2.20)



160 3 The Theory of Spinors

Exercise 3.2.5 Show that, if {ŝ1, ŝ0} is another spin frame, then

ξ̂A1···ArẊ1···Ẋs
B1···BmẎ1···Ẏn

= GA1
C1 · · · GAr

Cr ḠẊ1

U̇1
· · · ḠẊs

U̇s
GB1

D1 · · ·

GBm

DmḠ V̇1

Ẏ1
· · · Ḡ V̇n

Ẏn
ξC1···CrU̇1···U̇s

D1···DmV̇1···V̇n
.

(3.2.21)

It is traditional, particularly in the physics literature, to define a “spinor
with r contravariant and m covariant undotted indices and s contravariant
and n covariant dotted indices” to be an assignment of 2r+m+s+n complex
numbers {ξA1···ArẊ1···Ẋs

B1···BmẎ1···Ẏn
} to each spin frame (or, rather, an as-

signment of two such sets of numbers {± ξA1...ArẊ1···Ẋs
B1···BmẎ1···Ẏn

} to each
admissible basis for M) which transform according to (3.2.21) under a change
of basis. Although our approach is more in keeping with the “coordinate-free”
fashion that is currently in vogue, most calculations are, in fact, performed
in terms of components and the transformation law (3.2.21). Observe also
that, when r = s = 0, (3.2.21) coincides with the transformation law (3.2.20)
for the carriers of the representation D(m

2 , n
2 ) of SL(2,C). There is a dif-

ference, however, in that the φA1···AmẊ1···Ẋn
constructed in Section 3.1 are

symmetric in A1, . . . , Am and symmetric in Ẋ1, . . . , Ẋn and no such sym-

metry assumption is made in the definition of a spinor of valence
(

0 0
m n

)
.

The representations of SL(2,C) corresponding to the transformation laws
(3.2.21) will, in general, be reducible, unlike the irreducible spinor represen-
tations of Section 3.1. One final remark on the ordering of indices is apropos.
The position of an index in (3.2.20) indicates the “slot” in ξ into which the
corresponding basis element is to be inserted for evaluation. For two indices
of the same type (both upper and undotted, both lower and dotted, etc.) the
order in which the indices appear is crucial since, for example, there is no
reason to suppose that ξ(s1, s0, . . .) and ξ(s0, s1, . . .) are the same. However,
since slots corresponding to different types of indices accept different sorts
of objects (e.g., spin vectors and conjugate spin covectors) there is no reason
to insist upon any relative ordering of different types of indices and we shall
not do so. Thus, for example, ξA1A2Ẋ1

B1
= ξA1Ẋ1A2

B1
= ξA1

B1
A2Ẋ1 etc., but

these need not be the same as ξA2A1Ẋ1
B1

, etc.

3.3 Spinor Algebra

In this section we collect together the basic algebraic and computational tools
that will be used in the remainder of the chapter. We begin by introducing
a matrix that will figure prominantly in many of the calculations that are
before us. Thus, we let ε denote the 2 × 2 matrix defined by
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ε =
[
0 −1
1 0

]
=
[
ε11 ε10
ε01 ε00

]
= [εAB ].

Depending on the context and the requirements of the summation convention
we will also denote the entries of ε in any of the following ways:

ε = [εAB ] = [εAB ] = [ε̄ẊẎ ] = [ε̄ẊẎ ].

Observe that ε−1 = −ε. Moreover, if φ and ψ are two spin vectors and {s1, s0}
is a spin frame with φ = φAsA and ψ = ψBsB, then, with the summation
convention, εABψAφB = ε10ψ1φ0 + ε01ψ0φ1 = φ1ψ0 −φ0ψ1 = < φ, ψ >. Also
let φ∗ = φAsA and ψ∗ = ψAsA be the corresponding spin covectors.

Exercise 3.3.1 Verify each of the following:

< φ, ψ > = εABψAφB = −εABφAψB, (3.3.1)

φA = εABφB = −φBεBA, (3.3.2)

φA = φBεBA = −εABφB , (3.3.3)

φAψA = < φ, ψ > = −φAψA, (3.3.4)

εAC εBC = δA
B = εCAεCB , (3.3.5)

(εCBφB)εCA = φA and εAC (φBεBC ) = φA, (3.3.6)

εABεAB = 2 = εAB εAB . (3.3.7)

Of course, each of the identities (3.3.1)–(3.3.7) has an obvious “barred and
dotted” version, e.g., (3.3.6) would read (ε̄ŻẎ φ̄Ẏ )ε̄ŻẊ = φ̄Ẋ . In addition to
these we record several more identities that will be used repeatedly in the
sequel.

εAB εCD + εAC εDB + εADεBC = 0, A, B, C, D = 1, 0. (3.3.8)

To prove (3.3.8) we suppose first that A = 1. Thus, we consider ε1BεCD +
ε1CεDB + ε1DεBC . If B = 1 this becomes ε1CεD1 + ε1Dε1C . C = 1 or D = 1
gives 0 for both terms. For C = 0 and D = 0 we obtain ε10ε01 + ε10ε10 =
(−1)(1) + (−1)(−1) = 0. On the other hand, if B = 0 we have ε10εCD +
ε1CεD0 + ε1Dε0C . C = D gives 0 for each term. For C = 0 and D = 1 we
obtain ε10ε01 + ε10ε10 + ε11ε00 = (−1)(1) + (−1)(−1) + 0 = 0. If C = 1 and
D = 0, ε10ε10 + ε11ε00 + ε10ε01 = (−1)(−1) + 0 + (−1)(1) = 0. Thus, (3.3.8)
is proved if A = 1 and the argument is the same if A = 0. Next we show that
if G =

[
GA

B
]
∈ SL(2,C), then

GA
A1GB

B1εA1B1 = εAB , A, B = 1, 0. (3.3.9)
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This follows from

GA
A1GB

B1εA1B1 = GA
1GB

0ε10 + GA
0GB

1ε01

= GA
0GB

1 − GA
1GB

0

=

⎧⎪⎨⎪⎩
0 , if A = B

det G, if A = 0, B = 1
− det G, if A = 1, B = 0

= εAB (det G)
= εAB

since det G = 1. Similarly, if G = [GA
B ] = ([GA

B]−1)T ,

GA
A1GB

B1ε
A1B1 = εAB , A, B = 1, 0, (3.3.10)

and both (3.3.9) and (3.3.10) have barred and dotted versions. Observe
that the bilinear form < , > : ß × ß → C is, according to our definitions in

Section 3.2, a spinor of valence
(

2 0
0 0

)
and has components in any spin

frame given by < sA, sB > = −εAB and that (3.2.10), with ε̂AB = εAB , sim-
ply confirms the appropriate transformation law. In the same way, (3.3.9)
asserts that the εAB can be regarded as the (constant) components of a

spinor of valence
(

0 0
2 0

)
, whereas the barred and dotted versions of these

make similar assertions about the ε̄ẊẎ and ε̄ẊẎ .

Exercise 3.3.2 Write out explicitly the bilinear forms (spinors) whose com-
ponents relative to every spin frame are εAB , ε̄ẊẎ and ε̄ẊẎ .

The first equality in (3.3.2) asserts that, given a spin vector φ and the
corresponding spin covector φ∗, then, relative to any spin frame, the com-
ponents of φ∗ = φAsA are mechanically retrievable from those of φ = φBsB

by forming the sum εABφB . This process is called raising the index of φB .
Similarly, obtaining the φA from the φB according to (3.3.3) by computing
φBεBA is termed lowering the index of φB. Due to the skew-symmetry of
the εAB care must be exercised in arranging the order of the factors and the
placement of the indices when carrying out these processes. As an aid to the
memory, one “raises on the left and lowers on the right” with the summed in-
dices “adjacent and descending to the right”. The equalities in (3.3.6) assert
that these two operations are consistent, i.e., that lowering a raised index or
vice versa returns the original component. The operations of raising and low-
ering indices extend easily to higher valence spinors. Consider, for example, a
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spinor ξ of valence
(

2 0
1 0

)
. In each spin frame ξ has components ξAB

C and

we now define numbers ξA
B

C in this frame by

ξA
B

C = ξA1B
CεA1A.

In another spin frame we have ξ̂A
B

C = ξ̂A1B
CεA1A and we now show that

ξ̂A
B

C = GA
A1GB

B1GC
C1ξA1

B1
C1

, (3.3.11)

so that the ξA
B

C transform as the components of a spinor of valence
(

1 0
2 0

)
.

This last spinor we shall say is obtained from ξ by “lowering the first (undot-
ted) upper index”. To prove (3.3.11) we use (3.3.9) and the transformation
law for the ξAB

C as follows:

ξ̂A
B

C = ξ̂A1B
CεA1A =

(
GA1

A2GB
B1GC

C1ξA2B1
C1

) (
GA1

A3GA
A4εA3A4

)
=
(
GA1

A2GA1
A3
) (

GB
B1GC

C1GA
A4
) (

ξA2B1
C1

εA3A4

)
= δA3

A2

(
GB

B1GC
C1GA

A4
) (

ξA2B1
C1

εA3A4

)
=
(
GB

B1GC
C1GA

A4
) (

ξA3B1
C1

εA3A4

)
= GB

B1GC
C1GA

A4ξA4
B1

C1

= GA
A4GB

B1GC
C1ξA4

B1
C1

= GA
A1GB

B1GC
C1ξA1

B1
C1

as required.

Exercise 3.3.3 With ξ as above, let ξABC = εCC1ξAB
C1

in each spin frame.
Show that ξ̂ABC = GA

A1GB
B1GC

C1ξ
A1B1C1 and conclude that the ξABC

determine a spinor of valence
(

3 0
0 0

)
.

The calculations in these last examples make it clear that a spinor of any
valence can have any one of its lower (upper) indices raised (lowered) to yield
a spinor with one more upper (lower) index. Applying this to the constant
spinors εAB and εAB and using (3.3.5) yields the following useful identities.

εA
B = εBC εAC = δB

A (3.3.12)

and

εA
B = εAC εCB = −δA

B. (3.3.13)
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We derive a somewhat less obvious identity by beginning with (3.3.8) and
first raising C.

εABεCD + εAC εDB + εADεBC = 0,

εAB (εCEεED ) + (εCE εAE )εDB + εAD (εCEεBE ) = 0,

εABεC
D + εA

CεDB + εADεB
C = 0,

−εABδC
D + δC

AεDB + εADδC
B = 0.

Now, raise D.

−εAB

(
εDEδC

E

)
+ δC

A(εDE εEB) + (εDE εAE )δC
B = 0,

−εABεDC + δC
AεD

B + εA
DδC

B = 0,

−εAB εDC − δC
AδD

B + δD
A δC

B = 0.

Using εDC = −εCD we finally obtain

εABεCD = δC
AδD

B − δD
A δC

B , A, B, C, D = 1, 0. (3.3.14)

It will also be useful to introduce, for each [GA
B ] =

[
G1

1 G1
0

G0
1 G0

0

]
in SL(2,C),

an associated matrix [GA
B] =

[
G1

1 G0
1

G1
0 G0

0

]
, where

GA
B = εAA1GA1

B1εB1B, A, B = 1, 0.

Exercise 3.3.4 Show that[
G1

1 G0
1

G1
0 G0

0

]
=

[
−G0

0 G1
0

G0
1 −G1

1

]
= −
[
G1

1 G0
1

G1
0 G0

0

]
(3.3.15)

and that
GA

A1G
B

B1ε
A1B1 = εAB , A, B = 1, 0. (3.3.16)

As usual, all of these have obvious barred and dotted versions.

We shall denote by ßrs
mn the set of all spinors of valence

(
r s
m n

)
. Being a

collection of multilinear functionals, ßrs
mn admits a natural “pointwise” vector

space structure. Specifically, if ξ, ζ ∈ ßrs
mn and

1

φ, . . . ,
r

φ ∈ ß,
1

ψ̄, . . . ,
s

ψ̄ ∈
ß̄,

1
μ, . . . ,

m
μ ∈ ß∗ and

1
ν̄, . . . ,

n
ν̄ ∈ ß̄∗, then

(ξ + ζ)
(

1

φ, . . . ,
n
ν̄

)
= ξ

(
1

φ, . . . ,
n
ν̄

)
+ ζ

(
1

φ, . . . ,
n
ν̄

)
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and, for α ∈ C,

(αξ)
(

1

φ, . . . ,
n
ν̄

)
= α

(
ξ

(
1

φ, . . . ,
n
ν̄

))
.

If {s1, s0} is a spin frame, {s1, s0} its dual basis for ß∗, {s̄1̇, s̄0̇} the corre-
sponding conjugate basis for ß̄ and {s̄1̇, s̄0̇} its dual, we define sA1⊗. . .⊗sAr ⊗
s̄Ẋ1

⊗· · ·⊗s̄Ẋs
⊗sB1⊗· · ·⊗sBm⊗s̄Ẏ1⊗· · ·⊗s̄Ẏn , abbreviated sA1⊗· · ·⊗s̄Ẏn , by

sA1 ⊗ · · · ⊗ s̄Ẏn

(
1

φ, . . . ,
n
ν̄

)
= sA1

(
1

φ

)
· · · s̄Ẏn

(n
ν̄
)

=
1

φ A1 · · ·
n
ν̄ Ẏn

.

Thus, for example, in ß11
10 we have s1 ⊗ s̄0̇ ⊗ s0 defined by s1 ⊗ s̄0̇ ⊗ s0 (φ, ψ̄, μ)

= s1(φ)s̄0̇(ψ̄)s0(μ) = φ1ψ̄0̇μ
0, where φ = φAsA, ψ̄ = ψ̄Ẋ s̄Ẋ and μ = μAsA.

For ξ ∈ ßrs
mn we define

ξA1···Ẋs

B1···Ẏn
= ξ
(
sA1 , . . . , s̄Ẋs , sB1 , . . . , s̄Ẏn

)
(3.3.17)

for Ai, Bi = 1, 0 and Ẋi, Ẏi = 1̇, 0̇.

Exercise 3.3.5 Show that the elements sA1 ⊗ · · · ⊗ s̄Ẏn of ßrs
mn are linearly

independent and that any ξ ∈ ßrs
mn can be written

ξ = ξA1···Ẋs
B1···Ẏn

sA1 ⊗ · · · ⊗ s̄Ẋs
⊗ sB1 ⊗ · · · ⊗ s̄Ẏn .

From Exercise 3.3.5 we conclude that the sA1 ⊗ · · · ⊗ s̄Ẏn form a basis for
ßrs
mn which therefore has dimension 2r+s+m+n. For each ξ ∈ ßrs

mn the numbers
ξA1···Ẋs

B1···Ẏn
defined by (3.3.17) are the components of ξ relative to the basis

{sA1 ⊗ · · · ⊗ s̄Ẏn} and, in terms of them, the linear operations on ßrs
mn can be

expressed as

(ξ + ζ)A1···Ẋs
B1···Ẏn

= ξA1···Ẋs
B1···Ẏn

+ ζA1···Ẋs
B1···Ẏn

and

(αξ)A1···Ẋs
B1···Ẏn

= αξA1···Ẋs
B1···Ẏn

.

The next algebraic operation on spinors that we must consider is a general-
ization of the procedure we just employed to construct a basis for ßrs

mn from a

spin frame. Suppose ξ is a spinor of valence
(

r1 s1

m1 n1

)
and ζ is a spinor of va-

lence
(

r2 s2

m2 n2

)
. The outer product of ξ and ζ is the spinor ξ ⊗ ζ of valence
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r1+r2 s1+s2

m1+m2 n1+n2

)
defined as follows. If

1

φ, . . . ,
r1+r2

φ ∈ ß,
1

ψ̄, . . . ,
s1+s2

ψ̄ ∈

ß̄,
1
μ, . . . ,

m1+m2
μ ∈ ß∗ and

1
ν̄, . . . ,

n1+n2
ν̄ ∈ ß̄∗, then

(ξ ⊗ ζ)

(
1

φ, . . . ,
r1+r2

φ ,
1

ψ̄, . . . ,
s1+s2

ψ̄ ,
1
μ, . . . ,

m1+m2
μ ,

1
ν̄, . . . ,

n1+n2
ν̄

)

= ξ

(
1

φ, . . . ,
r1
φ,

1

ψ̄, . . . ,
s1

ψ̄,
1
μ, . . . ,

m1
μ ,

1
ν̄, . . . ,

n1
ν̄

)

× ζ

(
r1+1

φ , . . . ,
r1+r2

φ ,
s1+1

ψ̄ , . . . ,
s1+s2

ψ̄ ,
m1+1

μ , . . . ,
m1+m2

μ ,
n1+1

ν̄ , . . . ,
n1+n2

ν̄

)
.

It follows immediately from the definition that, in terms of components,

(ξ ⊗ ζ)A1···Ar1+r2Ẋ1···Ẋs1+s2
B1···Bm1+m2 Ẏ1···Ẏn1+n2

=(
ξA1···Ar1Ẋ1···Ẋs1

B1···Bm1 Ẏ1···Ẏn1

)(
ζ

Ar1+1···Ar1+r2Ẋs1+1···Ẋs1+s2

Bm1+1···Bm1+m2 Ẏn1+1···Ẏn1+n2

)
.

Moreover, outer multiplication is clearly associative ((ξ⊗ζ)⊗v = ξ⊗ (ζ⊗v))
and distributive (ξ⊗(ζ +v) = ξ⊗ζ +ξ⊗v and (ξ+ζ)⊗v = ξ⊗v+ζ⊗v), but
is not commutative. For example, if {s1, s0} is a spin frame, then s1⊗s0 does
not equal s0 ⊗ s1 since s1 ⊗ s0(φ∗, ψ∗) = φ1ψ0, but s0 ⊗ s1(φ∗, ψ∗) = φ0ψ1

and these are generally not the same.

Next we consider a spinor ξ of valence
(

r s
m n

)
and two integers k and l

with 1 ≤ k ≤ r and 1 ≤ l ≤ m. Then the contraction of ξ in the indices Ak

and Bl is the spinor Ckl(ξ) of valence
(

r−1 s
m−1 n

)
whose components relative

to any spin frame are obtained by equating Ak and Bl in those of ξ and
summing as indicated, i.e., if

ξ = ξA1···Ak···ArẊ1···Ẋs
B1···Bl···BmẎ1···Ẏn

sA1 ⊗ · · · ⊗ s̄Ẏn ,

then

Ckl(ξ) = ξA1···A···ArẊ1···Ẋs
B1···A···BmẎ1···Ẏn

sA1 ⊗ · · · ⊗ s̄Ẏn , (3.3.18)

where, in this last expression, it is understood that sAk
and sBl are missing

in sA1 ⊗ · · · ⊗ s̄Ẏn . Thus, for example, if ξ is of valence
(

1 1
1 0

)
with

ξ = ξA1Ẋ1
B1

sA1 ⊗ s̄Ẋ1
⊗ sB1
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and k = l = 1, then C11(ξ) is the spinor of valence
(

0 1
0 0

)
given by

C11(ξ) = ξAẊ1
As̄Ẋ1

=
(
ξ1Ẋ1

1 + ξ0Ẋ1
0

)
s̄Ẋ1

.

Unlike our previous definitions that were coordinate-free, contractions are
defined in terms of components and so it is not immediately apparent that
we have defined a spinor at all. We must verify that the components of Ckl(ξ)
as defined by (3.3.18) transform correctly, i.e., as the components of a spinor

of valence
(

r−1 s
m−1 n

)
. But this is clearly the case since, in a new spin frame,

ξ̂A1···A···ArẊ1···Ẋs
B1···A···BmẎ1···Ẏn

= GA1
C1 · · · GA

Ck
· · · GAr

Cr ḠẊ1
U̇1

· · · ḠẊs
U̇s

GB1
D1 · · ·GA

Dl · · ·

GBm

DmḠẎ1

V̇1 · · · ḠẎn

V̇nξC1···Ck···CrU̇1···U̇s
D1···Dl···DmẎ1···Ẏn

=
(
GA

Ck
GA

Dl
)
GA1

C1 · · · ḠẎn

V̇nξC1···Ck···CrU̇1···U̇s
D1···Dl···DmẎ1···Ẏn

= δDl

Ck
GA1

C1 · · · ḠẎn

V̇nξC1···Ck···CrU̇1···U̇s
D1···Dl···DmẎ1···Ẏn

= GA1
C1 · · · ḠẎn

V̇nξC1···A···CrU̇1···U̇s
D1···A···DmẎ1···Ẏn

.

One can, in the same way, contract a spinor ξ of valence
(

r s
m n

)
in two

dotted indices k̇ and l̇, one upper and one lower, to obtain a spinor Ck̇l̇(ξ) of

valence
(

r s−1
m n−1

)
. Observe that the processes of raising and lowering indices

discussed earlier are actually outer products (with an ε spinor) followed by a
contraction.

Exercise 3.3.6 Let φ be a spinor of valence
(

0 0
2 0

)
and denote its compo-

nents in a spin frame by φAB . Show that

1. φ1
1 = −φ10, φ0

0 = φ01, φ1
0 = φ11, φ0

1 = −φ00,

2. φ11 = φ00, φ00 = φ11, φ10 = −φ01, φ01 = −φ10,

3. φABφAB = 2 det
[
φ11 φ10

φ01 φ00

]
= 2 det

[
φ1

1 φ1
0

φ0
1 φ0

0

]
,

4. φAC φB
C =

⎧⎨⎩ 0, A = B
det[φAB ], A = 0, B = 1

− det[φAB ], A = 1, B = 0.

Let ξ denote a spinor with the same number of dotted and undotted indices,

say, of valence
[
r r
0 0

]
. We define a new spinor denoted ξ̄ and called the
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conjugate of ξ by specifying that its components ξ̄Ȧ1···ȦrX1···Xr in any spin
frame are given by

ξ̄Ȧ1···ȦrX1···Xr = ξA1···ArẊ1···Ẋr

(here we must depart from our habit of selecting dotted/undotted indices
from the end/beginning of the alphabet). Thus, for example, if ξ has compo-
nents ξAẊ , then the components of ξ̄ are given by ξ̄0̇1 = ξ01̇, ξ̄1̇1 = ξ11̇, etc.

Exercise 3.3.7 Show that we have actually defined a spinor of the required
type by verifying the appropriate transformation law, i.e.,

¯̂
ξȦ1···ȦrX1···Xr = ḠȦ1

Ċ1
· · · ḠȦr

Ċr
GX1

U1 · · · GXr
Ur ξ̄

Ċ1···ĊrU1···Ur .

Entirely analogous definitions and results apply regardless of the positions
(upper or lower) of the indices, provided only that the number of dotted
indices is the same as the number of undotted indices. We shall say that
such a spinor ξ is Hermitian if ξ̄ = ξ. Thus, for example, if ξ is of va-

lence
(

r r
0 0

)
, then it is Hermitian if ξ̄A1···ArẊ1···Ẋr = ξA1···ArẊ1···Ẋr for all

A1, . . . , Ar, Ẋ1, . . . , Ẋr, i.e., if

ξȦ1···ȦrX1···Xr = ξA1···ArẊ1···Ẋr ,

e.g., if r = 1, ξ0̇1 = ξ01̇, ξ00̇ = ξ0̇0, etc.
As a multilinear functional a spinor ξ operates on four distinct types of

objects (elements of ß, ß̄, ß∗ and ß̄∗) and, if the valence is
(

r s
m n

)
, has

r + s + m + n “slots” (variables) into which these objects are inserted for
evaluation, each slot corresponding to an index position in our notation
for ξ’s components. If ξ has the property that, for two such slots of the
same type, ξ(. . . , p, . . . , q, . . .) = ξ(. . . , q, . . . , p, . . .) for all p and q of the
appropriate type, then ξ is said to be symmetric in these two variables (if
ξ(. . . , p, . . . , q, . . .) = −ξ(. . . , q, . . . , p, . . .), it is skew-symmetric). It follows at
once from the definition that ξ is symmetric (skew-symmetric) in the vari-
ables p and q if and only if the components of ξ in every spin frame are
unchanged (change sign) when the corresponding indices are interchanged.
We will be particularly interested in the case of spinors with just two indices.

Thus, for example, a spinor φ of valence
(

0 0
2 0

)
is symmetric (in its only two

variables) if and only if, in every spin frame, φBA = φAB for all A, B = 1, 0; φ
is skew-symmetric if φBA = −φAB for all A and B. On the other hand, an

arbitrary spinor ξ of valence
(

0 0
2 0

)
has a symmetrization whose components

in each spin frame are given by

ξ(AB) = 1
2 (ξAB + ξBA)
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and a skew-symmetrization given by

ξ[AB ] = 1
2 (ξAB − ξBA).

The symmetrization (skew-symmetrization) of ξ clearly defines a spinor, also

of valence
(

0 0
2 0

)
, that is symmetric (skew-symmetric).

Exercise 3.3.8 Let α and β be two spin vectors. The outer product α ⊗ β

is a spinor of valence
(

0 0
2 0

)
whose components in any spin frame are given

by αAβB, A, B = 1, 0. Let φ be the symmetrization of α ⊗ β so that

φAB = α(AβB) = 1
2 (αAβB + αBβA).

Show that φAB = 1
2 (αAβB + αBβA) and that

φABφAB = − 1
2 < α, β >2 .

3.4 Spinors and World Vectors

In this section we will establish a correspondence between spinors of valence(
1 1
0 0

)
and vectors in Minkowski spacetime (also called world vectors

or 4-vectors). This correspondence, which we have actually seen before
(in Section 1.7), is most easily phrased in terms of the Pauli spin matrices.

Exercise 3.4.1 Let σ1 =
[
0 1
1 0

]
, σ2 =

[
0 i
−i 0

]
, σ3 =

[
1 0
0 −1

]
, and σ4 =[

1 0
0 1

]
. Verify the following commutation relations:

σ1
2 = σ2

2 = σ3
2 = σ4

2 = σ4,

σ1σ2 = −σ2σ1 = −iσ3,

σ1σ3 = −σ3σ1 = iσ2,

σ2σ3 = −σ3σ2 = −iσ1.

For what follows it will be convenient to introduce a factor of 1√
2

and some
rather peculiar looking indices, the significance of which will become clear
shortly. Thus, for each A = 1, 0 and Ẋ = 1̇, 0̇, we define matrices

σa
AẊ =

[
σa

11̇ σa
10̇

σa
01̇ σa

00̇

]
, a = 1, 2, 3, 4,
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by

σa
AẊ = 1√

2
σa, a = 1, 2, 3, 4.

Thus,

σ1
AẊ = 1√

2

[
0 1
1 0

]
, σ2

AẊ = 1√
2

[
0 i
−i 0

]
,

σ3
AẊ = 1√

2

[
1 0
0 −1

]
, σ4

AẊ = 1√
2

[
1 0
0 1

]
.

We again adopt the convention that the relative position of dotted and undot-
ted indices is immaterial so σa

AẊ = σa
ẊA. Undotted indices indicate rows;

dotted indices number the columns. Observe that each of these is a Hermitian
matrix, i.e., equals its conjugate transpose (Section 1.7).

Now we describe a procedure for taking a vector v ∈ M, an admissible
basis {ea} for M and a spin frame {sA} and constructing from them a spinor

V of valence
(

1 1
0 0

)
. We do this by specifying the components of V in every

spin frame and verifying that they have the correct transformation law. We
begin by writing v = vaea. Define the components V AẊ of V relative to
{sA} by

V AẊ = σa
AẊva, A = 1, 0, Ẋ = 1̇, 0̇. (3.4.1)

Thus,

V 11̇ = 1√
2
(v3 + v4),

V 10̇ = 1√
2
(v1 + iv2),

V 01̇ = 1√
2
(v1 − iv2), (3.4.2)

V 00̇ = 1√
2
(−v3 + v4)

(cf. Exercise 1.7.1). Now, suppose {ŝ1, ŝ0} is another spin frame, related to
{sA} by (3.2.1) (sB = GA

B ŝA) and (3.2.6) (ŝA = GA
BsB). We define the

components V̂ AẊ of V relative to {ŝA} as follows: Let Λ = ΛG = Spin(G) be
the element of L that G maps onto under the spinor map and v̂a = Λa

bv
b, a =

1, 2, 3, 4. Now let

V̂ AẊ = σa
AẊ v̂a, A = 1, 0, Ẋ = 1̇, 0̇. (3.4.3)



3.4 Spinors and World Vectors 171

That we have actually defined a spinor of valence
(

1 1
0 0

)
is not obvious, of

course, since it is not clear that the V AẊ transform correctly. To show this
we must prove that

V̂ AẊ = GA
BḠẊ

Ẏ V BẎ , A = 1, 0, Ẋ = 1̇, 0̇. (3.4.4)

For this we temporarily denote the right-hand side of (3.4.4) by Ṽ AẊ , i.e.,
Ṽ AẊ = GA

BḠẊ
Ẏ

V BẎ . Writing this as a matrix product gives⎡⎢⎢⎢⎢⎢⎣
Ṽ 11̇

Ṽ 10̇

Ṽ 01̇

Ṽ 00̇

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
G1

1Ḡ1̇
1̇

G1
1Ḡ1̇

0̇
G1

0Ḡ1̇
1̇

G1
0Ḡ1̇

0̇

G1
1Ḡ0̇

1̇
G1

1Ḡ0̇
0̇

G1
0Ḡ0̇

1̇
G1

0Ḡ0̇
0̇

G0
1Ḡ1̇

1̇
G0

1Ḡ1̇
0̇

G0
0Ḡ1̇

1̇
G0

0Ḡ1̇
0̇

G0
1Ḡ0̇

1̇
G0

1Ḡ0̇
0̇

G0
0Ḡ0̇

1̇
G0

0Ḡ0̇
0̇

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
V 11̇

V 10̇

V 01̇

V 00̇

⎤⎥⎥⎥⎥⎥⎦ . (3.4.5)

But if we let

G =

[
G1

1 G1
0

G0
1 G0

0

]
=
[
α β
γ δ

]
,

then (3.4.5) becomes⎡⎢⎢⎢⎣
Ṽ 11̇

Ṽ 10̇

Ṽ 01̇

Ṽ 00̇

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
αᾱ αβ̄ ᾱβ ββ̄

αγ̄ αδ̄ βγ̄ βδ̄

ᾱγ β̄γ ᾱδ β̄δ

γγ̄ γδ̄ γ̄δ δδ̄

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

V 11̇

V 10̇

V 01̇

V 00̇

⎤⎥⎥⎥⎦ . (3.4.6)

Now, using (3.4.2) and the corresponding equalities for V̂ AẊ it follows from
Exercise 1.7.2 (with the appropriate notational changes) that the right-hand
side of (3.4.6) is equal to

1√
2

⎡⎢⎢⎣
v̂3 + v̂4

v̂1 + iv̂2

v̂1 − iv̂2

−v̂3 + v̂4

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
V̂ 11̇

V̂ 10̇

V̂ 01̇

V̂ 00̇

⎤⎥⎥⎥⎦ ,

where the v̂a are the images of the va under Λ = ΛG . Substituting this into
(3.4.6) then gives [Ṽ AẊ ] = [V̂ AẊ ] and this proves (3.4.4). Observe that, since[

G1
1 G1

0

G0
1 G0

0

]
= −
[
G1

1 G1
0

G0
1 G0

0

]
,

(3.4.4) can also be written as

V̂ AẊ = GA
BḠẊ

Ẏ V BẎ , A = 1, 0, Ẋ = 1̇, 0̇. (3.4.7)
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We conclude then that the procedure we have described does indeed define a

spinor of valence
(

1 1
0 0

)
which we shall call the spinor equivalent of v ∈ M

(somewhat imprecisely since V depends not only on v, but also on the initial
choices of {ea} and {sA}). Observe that the conjugate V̄ of V has components
V̄ AẊ = V ȦX = σa

ȦXva = σa
ȦXva = σa

AẊva = V AẊ since the matrices
σa

AẊ are Hermitian and the va are real. Thus, the spinor equivalent of any
world vector is a Hermitian spinor.

With (3.4.4) we can now justify the odd arrangement of indices in the
symbols σa

AẊ by showing that the σa
AẊ are constant under the combined

effect of a G ∈ SL(2,C) and the corresponding Λ = ΛG in L, i.e., that

Λa
bGA

BḠẊ
Ẏ

σb
BẎ = σa

AẊ , a = 1, 2, 3, 4, A = 1, 0, Ẋ = 1̇, 0̇ (3.4.8)

(one might say that the σa
AẊ are the components of a constant “spinor-

covector”). To see this we select an arbitrary admissible basis and spin frame.
Fix A and Ẋ. Now let v = vaea be an arbitrary vector in M. Then V AẊ =
σa

AẊva. In another spin frame, related to the original by G, we have

V̂ AẊ = σa
AẊ v̂a.

But also,

V̂ AẊ = GA
B ḠẊ

Ẏ
V BẎ = GA

BḠẊ
Ẏ

(
σb

BẎ vb
)

= GA
B ḠẊ

Ẏ
σb

BẎ
(
δb
cv

c
)

= GA
B ḠẊ

Ẏ
σb

BẎ
(
Λa

bΛa
cv

c
)

= Λa
bGA

BḠẊ
Ẏ

σb
BẎ (Λa

cv
c)

= Λa
bGA

BḠẊ
Ẏ

σb
BẎ v̂a.

Thus,

Λa
bGA

BḠẊ
Ẏ

σb
BẎ v̂a = σa

AẊ v̂a.

But v was arbitrary so we may successively select v’s that give (v̂1, v̂2, v̂3, v̂4)
equal to (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1) and thereby obtain
(3.4.8) for a = 1, 2, 3 and 4, respectively. Since

[
GA

B

]
= −
[
GA

B

]
we again

find that (3.4.8) can be written

Λa
bGA

BḠẊ
Ẏ

σb
BẎ = σa

AẊ , a = 1, 2, 3, 4, A = 1, 0, Ẋ = 1̇, 0̇. (3.4.9)

Exercise 3.4.2 Show that

GA
BḠẊ

Ẏ
σa

BẎ = Λα
aσα

AẊ , a = 1, 2, 3, 4, A = 1, 0, Ẋ = 1̇, 0̇. (3.4.10)
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From all of this we conclude that the σa
AẊ behave formally like a combined

world covector and spinor of valence
(

1 1
0 0

)
. Treating them as such we raise

the index a and lower A and Ẋ, i.e., we define

σa
AẊ = ηab

(
σb

BẎ εBA

)
ε̄Ẏ Ẋ

for a = 1, 2, 3, 4, A = 1, 0 and Ẋ = 1̇, 0̇. Thus, for example, if a = 1, σ1
AẊ =

η1b
(
σb

BẎ εBA

)
ε̄Ẏ Ẋ = η11

(
σ1

BẎ εBA

)
ε̄Ẏ Ẋ = σ1

BẎ εBAε̄Ẏ Ẋ . If A = 1, this

becomes σ1
1Ẋ = σ1

BẎ εB1ε̄Ẏ Ẋ = σ1
0Ẏ ε01ε̄Ẏ Ẋ = σ1

0Ẏ ε̄Ẏ Ẋ = σ1
01̇ε̄1̇Ẋ +

σ1
00̇ε̄0̇Ẋ . Thus, for Ẋ = 1̇, σ1

11̇ = σ1
01̇ε̄1̇1̇ + σ1

00̇ε̄0̇1̇ = σ1
00̇ = 0 and, for

Ẋ = 0̇, σ1
10̇ = σ1

01̇ε̄1̇0̇ + σ1
00̇ε̄0̇0̇ = −σ1

01̇ = − 1√
2
. Similarly, σ1

01̇ = − 1√
2

and σ1
00̇ = 0 so

σ1
AẊ =

[
σ1

11̇ σ1
10̇

σ1
01̇ σ1

00̇

]
= − 1√

2

[
0 1
1 0

]
= −σ1

AẊ .

Exercise 3.4.3 Continue in this way to prove the remaining equalities in

σ1
AẊ = −σ1

AẊ = − 1√
2

[
0 1
1 0

]
,

σ2
AẊ = σ2

AẊ =
1√
2

[
0 i

−i 0

]
,

σ3
AẊ = −σ3

AẊ = − 1√
2

[
1 0
0 −1

]
,

σ4
AẊ = −σ4

AẊ = − 1√
2

[
1 0
0 1

]
.

(3.4.11)

We enumerate a number of useful properties of these so-called Infeld-van der
Waerden symbols σa

AẊ and σa
AẊ .

σa
AẊ = ηab ε̄

ẊẎ
(
εABσb

BẎ

)
, (3.4.12)

σa
AẊσb

AẊ = −δb
a, (3.4.13)

σa
AẊσa

BẎ = −δA
BδẊ

Ẏ
, (3.4.14)

σa
AẊσa

BẎ σb
BẎ = −σb

AẊ . (3.4.15)

For the proof of (3.4.12) we insert σb
BẎ = ηbc(σc

CŻεCB)ε̄ŻẎ into the right-
hand side to obtain

ηab ε̄
ẊẎ
(
εABσb

BẎ

)
= ηab ε̄

ẊẎ εABηbcσc
CŻεCB ε̄ŻẎ

= (ηabη
bc)(ε̄ẊẎ ε̄ŻẎ )(εAB εCB)σc

CŻ
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= δc
aδẊ

Ż
δA
Cσc

CŻ

= σa
AẊ ,

where we have used (3.3.5) and its barred and dotted equivalent.

Exercise 3.4.4 Prove (3.4.13), (3.4.14) and (3.4.15).

Similar exercises in index gymnastics yield the analogues of (3.4.8) and
(3.4.10):

Λa
bGA

BḠẊ
Ẏ σb

BẎ = σa
AẊ (3.4.16)

and

GA
BḠẊ

Ẏ σa
BẎ = Λα

aσα
AẊ . (3.4.17)

Exercise 3.4.5 Prove (3.4.16) and (3.4.17) and use (3.4.16) to show that

GA
BḠẊ

Ẏ σa
AẊ = Λa

bσ
b
BẎ . (3.4.18)

Given v ∈ M, {ea} and {sA} we have constructed a spinor V AẊ =
σa

AẊva. The σa
AẊ allow us to retrieve the va from the V AẊ . Indeed, mul-

tiplying on both sides of V AẊ = σb
AẊvb by σa

AẊ and summing as indi-
cated gives

V AẊσa
AẊ = σa

AẊ
σb

AẊvb

= −δa
b vb

= −va,

so

va = −V AẊσa
AẊ , a = 1, 2, 3, 4. (3.4.19)

Note that if the V AẊ were the components of an arbitrary spinor of valence(
1 1
0 0

)
, then the numbers −V AẊσa

AẊ would, in general, be complex and

so would not be the components of any world vector. However, we show
next that if V AẊ is Hermitian, then the −V AẊσa

AẊ are real and, moreover,
determine a world vector. Indeed,

V AẊσa
AẊ = V 11̇σa

11̇ + V 10̇σa
10̇ + V 01̇σa

01̇ + V 00̇σa
00̇

= V 11̇σa
11̇ + V 10̇σa

10̇ + V 01̇σa
01̇ + V 00̇σa

00̇

= V 1̇1σa
11̇ + V 0̇1σa

0̇1 + V 1̇0σa
1̇0 + V 0̇0σa

00̇

= V̄ 11̇σ̄a
11̇

+ V̄ 01̇σ̄a
01̇

+ V̄ 10̇σ̄a
10̇

+ V̄ 00̇σ̄a
00̇

= V 11̇σa
11̇ + V 01̇σa

01̇ + V 10̇σa
10̇ + V 00̇σa

00̇

= V AẊσa
AẊ

and so V AẊσa
AẊ is real.
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Exercise 3.4.6 Show that if V AẊ is a spinor that satisfies V̄ AẊ = −V AẊ ,
then V AẊσa

AẊ is pure imaginary so iV AẊ is Hermitian.

Now, given a Hermitian spinor V of valence
(

1 1
0 0

)
, a spin frame {sA} and an

admissible basis {ea}, we define a vector v ∈ M by specifying its components
in every admissible basis in the following way: Write V = V AẊsA ⊗ s̄Ẋ and
define the components va of v relative to {ea} by

va = −V AẊσa
AẊ , a = 1, 2, 3, 4.

Next suppose {êa} is another admissible basis for M, related to {ea} by
Λ ∈ L. Let Λ = Λ±G = Spin(±G) and let {ŝA} be the spin frame related to
{sA} by G (or −G). Then V = V̂ AẊ ŝA ⊗ ¯̂sẊ , where V̂ AẊ = GA

BḠẊ
Ẏ

V BẎ

(−G gives the same components). We define the components of v relative to
{êa} by

v̂a = −V̂ AẊσa
AẊ , a = 1, 2, 3, 4.

To justify the definition we must, as usual, verify that the va transform
correctly, i.e., that Λa

bv
b = −V̂ AẊσa

AẊ . But

−V̂ AẊσa
AẊ = −GA

BḠẊ
Ẏ V BẎ σa

AẊ

= −
(
GA

B ḠẊ
Ẏ σa

AẊ

)
V BẎ

= −
(
Λa

bσ
b
BẎ

)
V BẎ by (3.4.18)

= Λa
b

(
−V BẎ σb

BẎ

)
= Λa

bv
b

as required. We summarize:

Theorem 3.4.1 Let {ea} be an admissible basis for M and {sA} a spin
frame for ß. The map which assigns to each vector v ∈ M (v = vaea) its
spinor equivalent (V = V AẊsA ⊗ s̄Ẋ, where V AẊ = σa

AẊva) is one-to-one

and onto the set of all Hermitian spinors of valence
(

1 1
0 0

)
.

Recall (Section 3.1) that every v ∈ M gives rise to a v∗ ∈ M∗ (the
dual of M) defined by v∗(u) = v · u and that every element of M∗, i.e.,
every covector, arises in this way from some v ∈ M. Moreover, if {ea} is an
admissible basis for M and {ea} is its dual basis for M∗ and if v = vaea,
then v∗ = vaea, where va = ηaαvα. Now, for A = 1, 0 and Ẋ = 1̇, 0̇, define

VAẊ = σa
AẊva. (3.4.20)
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Exercise 3.4.7 Show that

VAẊ = V BẎ εBAε̄Ẏ Ẋ , (3.4.21)

where V BẎ = σb
BẎ vb.

Since V BẎ are the components, relative to a spin frame {sA}, of a spinor of

valence
(

1 1
0 0

)
and (3.4.21) exhibits the VAẊ as the result of two successive

contracted outer products of this spinor (with ε and ε̄), we conclude that

the VAẊ are the components, relative to {sA}, of a spinor of valence
(

0 0
1 1

)
which we call the spinor equivalent of the covector v∗.

Exercise 3.4.8 Show that, in another spin frame {ŝA} related to {sA} by
(3.2.1) and (3.2.6),

V̂AẊ = σa
AẊ v̂a, (3.4.22)

where v̂a = Λa
bvb, Λ being Λ±G .

Theorem 3.4.2 Let {ea} be an admissible basis for M and {sA} a spin
frame for ß. The map which assigns to each covector v∗ ∈ M∗ (v∗ = vaea)
its spinor equivalent (VAẊsA ⊗ s̄Ẋ , where VAẊ = σa

AẊva) is one-to-one and

onto the set of all Hermitian spinors of valence
(

0 0
1 1

)
.

Exercise 3.4.9 Complete the proof of Theorem 3.4.2. �

Now, let us fix an admissible basis {ea} and a spin frame {sA}. Let v =
vaea and u = uaea be in M and V = V AẊsA ⊗ s̄Ẋ and U = UAẊsA ⊗ s̄Ẋ the
spinor equivalents of v and u. We compute UAẊV AẊ = (σa

AẊua)(σb
AẊvb) =

(uavb)(σa
AẊσb

AẊ) = uav
b(−δa

b ) = −uav
a = −ηabu

bva = −u · v so

UAẊV AẊ = −u · v. (3.4.23)

Observe that if we let

[V AẊ ] =

[
V 11̇ V 10̇

V 01̇ V 00̇

]
=

1√
2

[
v3 + v4 v1 + iv2

v1 − iv2 −v3 + v4

]
,

then det[V AẊ ] = − 1
2v · v so

VAẊV AẊ = 2 det[V AẊ ] = −v · v. (3.4.24)

Consequently, if v is null, det[V AẊ ] = 0 so, assuming v �= 0, [V AẊ ] has
rank 1.
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Exercise 3.4.10 Show that if
[
a b
c d

]
is a 2 × 2 complex matrix of rank 1,

then there exist pairs (φ1, φ0) and (ψ1, ψ0) of complex numbers such that[
a b
c d

]
=
[
φ1

φ0

] [
ψ̄1̇ ψ̄0̇

]
=

[
φ1ψ̄1̇ φ1ψ̄0̇

φ0ψ̄1̇ φ0ψ̄0̇

]
.

Consequently, if v ∈ M is null and nonzero we may write V AẊ = φAψ̄Ẋ for
A = 1, 0 and Ẋ = 1̇, 0̇. Observe that, in another spin frame,

V̂ AẊ = GA
BḠẊ

Ẏ
V BẎ

= GA
BḠẊ

Ẏ
φBψ̄Ẏ

=
(
GA

BφB
)(

ḠẊ
Ẏ

ψ̄Ẏ
)

.

Thus, if we define φ̂A = GA
BφB and ¯̂

ψẊ = ḠẊ
Ẏ

ψ̄Ẏ , then

V̂ AẊ = φ̂A ¯̂
ψẊ .

Consequently, if we let φ be the spin vector whose components in {sA} are φA

and ψ̄ be the conjugate spin vector whose components in {s̄A} are ψ̄Ẋ , then
V is the outer product φ ⊗ ψ̄ of φ and ψ̄. Even more can be said, however.

Exercise 3.4.11 Suppose z1 and z2 are two complex numbers for which
z1z̄2 is real. Show that one of z1 or z2 is a real multiple of the other.

Now, V 11̇ and V 00̇ are both real (±v3 + v4) so φ1ψ̄1̇ and φ0ψ̄0̇ are real
and, since v is null, but not zero, not both can be zero. Exercise 3.4.11 gives
an r1 ∈ R such that either ψ1 = r1φ

1 or φ1 = r1ψ
1 and also an r0 ∈ R such

that either ψ0 = r0φ
0 or φ0 = r0ψ

0. Since at least one of r1 or r0 is nonzero
we may assume without loss of generality that[

ψ1

ψ0

]
=
[
r1φ

1

r0φ
0

]
.

We claim that, in fact, there exists a single real number r such that[
ψ1

ψ0

]
= r

[
φ1

φ0

]
. (3.4.25)

To prove this we first suppose φ1 = 0. Then ψ1 = 0 so
[
ψ1

ψ0

]
=
[

0
ψ0

]
=

r0

[
0
φ0

]
= r0

[
φ1

φ0

]
. Similarly, if φ0 = 0, then

[
ψ1

ψ0

]
= r1

[
φ1

φ0

]
. Now, suppose

neither φ1 nor φ0 is zero. Then, since V 10̇ = V 01̇,
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φ1ψ̄0̇ = φ0ψ̄1̇,

φ̄1̇ψ0 = φ0ψ̄1̇, (3.4.26)

φ̄1̇

φ0
ψ0 = ψ̄1̇.

Thus, ψ̄1̇ = 0 would give ψ0 = 0 and ψ1 = 0 so [V AẊ ] =
[
0 0
0 0

]
and this gives

v1 = v2 = v3 = v4 = 0, contrary to our assumption that v �= 0. Similarly,
ψ0 = 0 implies v = 0, again a contradiction. Thus, ψ1 and ψ0 are nonzero so
(3.4.26) gives

φ̄1̇

φ0
=

ψ̄1̇

ψ0
=

r1φ̄
1̇

r0φ0

(since r1 ∈ R). Consequently, r1 = r0 so
[
ψ1

ψ0

]
=
[
r1φ

1

r1φ
0

]
= r1

[
φ1

φ0

]
and

(3.4.25) is proved with r = r1. From this it follows that

V AẊ = φAψ̄Ẋ = φA(rφ̄Ẋ)

= ±
(
|r| 12 φA

)(
|r| 12 φ̄Ẋ

)
(+ if r > 0 and − if r < 0). Now we define a spin vector ξ by ξA = |r| 12 φA

(relative to {sA}). Then ξ̄Ẋ = |r| 12 φ̄Ẋ since |r| 12 is real. Thus,

V AẊ = ±ξAξ̄Ẋ .

Finally, observe that v3 + v4 = V 11̇ = rφ1φ̄1̇ and −v3 + v4 = V 00̇ = rφ0φ̄0̇ so

v4 = 1
2r
(
|φ1| 12 + |φ0| 12

)
and, in particular, r > 0 if and only if v4 > 0. We have therefore proved

Theorem 3.4.3 Let {ea} be an admissible basis for M and {sA} a spin
frame for ß. Let v ∈ M be a nonzero null vector, v = vaea, and V its spinor
equivalent, V = V AẊsA ⊗ s̄Ẋ = (σa

AẊva)sA ⊗ s̄Ẋ . Then there exists a spin
vector ξ such that:

(a) If v is future-directed, then

V AẊ = ξAξ̄Ẋ ,

and,
(b) If v is past-directed, then

V AẊ = −ξAξ̄Ẋ .
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Notice that ξ in the theorem is certainly not unique since if νA = eiθξA

(θ ∈ R), then ν̄Ẋ = e−iθ ξ̄Ẋ so νAν̄Ẋ = ξAξ̄Ẋ = V AẊ .
Observe that the process we have just described can be reversed as well.

That is, given a nonzero spin vector ξA we define the spinor V AẊ = ξAξ̄Ẋ .
Then det[V AẊ ] = ξ1ξ̄1̇ξ0ξ̄0̇ − ξ1ξ̄0̇ξ0ξ̄1̇ = 0 so the vector equivalent va =
−σa

AẊV AẊ gives a null vector v ∈ M and, moreover, v4 = −V AẊσ4
AẊ =

−
(
− 1√

2

)(
V 11̇σ4

11̇ + V 00̇σ4
00̇

)
= 1√

2
(V 11̇ + V 00̇) = 1√

2
(ξ1ξ̄1̇ + ξ0ξ̄0̇) =

1√
2
(|ξ1|2 + |ξ0|2) > 0 so v is future-directed. Thus, every nonzero spin vector

ξ gives rise in a natural way to a future-directed null vector v which we will
call the flagpole of ξ and which will play a prominant role in the geometrical
representation of ξ that we construct in the next section.

3.5 Bivectors and Null Flags

We recall (Section 2.7) that a bivector on M is a real-valued bilinear form
F̃ : M × M → R that is skew-symmetric (F̃ (u, v) = −F̃ (v, u) for all u
and v in M). Thus, F̃ is a skew-symmetric world tensor of covariant rank
2 and contravariant rank 0. We have already seen that bivectors are useful
for the description of electromagnetic fields and will return to their role in
electromagnetic theory in the next section. For the present our objective
is to find a “spinor equivalent” for an arbitrary bivector, show how a spin
vector gives rise, in a natural way, to a bivector and construct from it a
geometrical representation (“up to sign”) for an arbitrary nonzero spin vector.
This geometrical picture of a spin vector, called a “null flag”, emphasizes
what is perhaps its most fundamental characteristic, that is, an essential
“two-valuedness”.

Now fix an admissible basis {ea} for M and a spin frame {sA} for ß.
The components of F̃ relative to {ea} are given by Fab = F̃ (ea, eb) and, by
skew-symmetry, satisfy

Fab = 1
2 (Fab − Fba) = F[ab]. (3.5.1)

For A, B = 1, 0 and Ẋ, Ẏ = 1̇, 0̇ we define

FAẊBẎ = FABẊẎ = σa
AẊσb

BẎ Fab

and take these to be the components of the spinor equivalent of F̃ relative
to {sA}. Thus, in another spin frame {ŝA}, related to {sA} by (3.2.1) and
(3.2.6),

F̂AẊBẎ = GA
A1Ḡ Ẋ1

Ẋ
GB

B1Ḡ Ẏ1

Ẏ
FA1Ẋ1B1Ẏ1

= GA
A1Ḡ Ẋ1

Ẋ
GB

B1Ḡ Ẏ1

Ẏ

(
σα

A1Ẋ1
σβ

B1Ẏ1
Fαβ

)
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=
(
GA

A1Ḡ Ẋ1

Ẋ
σα

A1Ẋ1

)(
GB

B1Ḡ Ẏ1

Ẏ
σβ

B1Ẏ1

)
Fαβ

= (Λa
ασa

AẊ)
(
Λb

βσb
BẎ

)
Fαβ by (3.4.17)

= σa
AẊσb

BẎ

(
Λa

αΛb
βFαβ

)
,

where Λ = ΛG . Thus,

F̂AẊBẎ = σa
AẊσb

BẎ F̂ab . (3.5.2)

We list some useful properties of the spinor equivalent of a bivector.

Fab = σa
AẊσb

BẎ FAẊBẎ , a, b = 1, 2, 3, 4, (3.5.3)

F̄AẊBẎ = FAẊBẎ , i.e., FAẊBẎ is Hermitian, (3.5.4)

FBẎ AẊ = −FAẊBẎ . (3.5.5)

The proof of (3.5.5) proceeds as follows: FBẎ AẊ = σa
BẎ σb

AẊFab =
σa

BẎ σb
AẊ(−Fba) = −σb

AẊσa
BẎ Fba = −σa

AẊσb
BẎ Fab = −FAẊBẎ .

Exercise 3.5.1 Prove (3.5.3) and (3.5.4).

Now we use (3.5.5) to write

FAẊBẎ = 1
2 [FAẊBẎ − FBẎ AẊ ]

= 1
2 [FAẊBẎ − FBẊAẎ + FBẊAẎ − FBẎ AẊ ]

= 1
2 [FAẊBẎ − FBẊAẎ ] + 1

2 [FBẊAẎ − FBẎ AẊ ].

Observe that by (3.3.14), εABεCDFCẊDẎ =
(
δC
AδD

B − δD
A δC

B

)
FCẊDẎ =

FAẊBẎ − FBẊAẎ and, similarly, ε̄ẊẎ ε̄U̇V̇ FBU̇AV̇ = FBẊAẎ − FBẎ AẊ so

FAẊBẎ = 1
2εAB εCDFCẊDẎ + 1

2 ε̄ẊẎ ε̄U̇V̇ FBU̇AV̇

= εAB

(
1
2εCDFCẊDẎ

)
+ ε̄ẊẎ

(
1
2εU̇ V̇ FBU̇AV̇

)
= εAB

(
1
2FCẊ

C
Ẏ

)
+ ε̄ẊẎ

(
1
2FBU̇A

U̇
)

FAẊBẎ = εAB

(
1
2FCẊ

C
Ẏ

)
+ ε̄ẊẎ

(
1
2FU̇B

U̇
A

)
(3.5.6)

Now define φAB by

φAB = 1
2FU̇A

U̇
B, A, B = 1, 0.
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Then we claim that
φBA = φAB (3.5.7)

and
φ̄ẊẎ = 1

2FCẊ
C

Ẏ
. (3.5.8)

To prove (3.5.7) we compute

φBA = 1
2FU̇B

U̇
A

= − 1
2F U̇

AU̇B by (3.5.5)

= − 1
2

[
ε̄U̇ V̇ FV̇ A

Ẇ
B ε̄Ẇ U̇

]
= − 1

2

[
FV̇ A

Ẇ
B

(
ε̄U̇V̇ ε̄Ẇ U̇

)]
= − 1

2

[
FV̇ A

Ẇ
B

(
−ε̄U̇V̇ ε̄U̇Ẇ

)]
= − 1

2

[
FV̇ A

Ẇ
B

(
−δV̇

Ẇ

)]
= 1

2FV̇ A
V̇

B = φAB .

Exercise 3.5.2 Prove (3.5.8).

With this we may write (3.5.6) as

FAẊBẎ = εAB φ̄ẊẎ + φAB ε̄ẊẎ . (3.5.9)

We observe next that the process which just led us from F̃ to FAẊBẎ to
φAB can be reversed in the following sense: Given a symmetric spinor φAB

of valence
(

0 0
2 0

)
we can define FAẊBẎ = εAB φ̄ẊẎ + φAB ε̄ẊẎ and obtain a

spinor of valence
(

0 0
2 2

)
which satisfies (3.5.4) since F̄AẊBẎ = (FȦXḂY ) =

(FXȦY Ḃ) = (εXY φ̄ȦḂ + φXY ε̄ȦḂ) = ε̄ẊẎ φAB + φ̄ẊẎ εAB = εAB φ̄ẊẎ +
φAB ε̄ẊẎ = FAẊBẎ , and (3.5.5) since FBẎ AẊ = εBAφ̄Ẏ Ẋ + φBAε̄Ẏ Ẋ =
(−εAB )φ̄ẊẎ + φAB (−ε̄ẊẎ ) = −FAẊBẎ . Now define Fab by (3.5.3), i.e.,

Fab = σa
AẊσb

BẎ FAẊBẎ .

Relative to another spin frame {ŝA}, related to {sA} by (3.2.1) and (3.2.6),
F̂AẊBẎ = GA

A1ḠẊ
Ẋ1GB

B1ḠẎ
Ẏ1FA1Ẋ1B1Ẏ1

.

Exercise 3.5.3 Show that σa
AẊσb

BẎ F̂AẊBẎ = Λa
αΛb

βFαβ , where Λ = ΛG .

Thus, defining F̂ab = σa
AẊσb

BẎ F̂AẊBẎ , we find that the Fab transform as
the components of a bivector and we may define F̃ : M×M → R by
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F̃ (u, v) = F̃ (uaea, vbeb)

= F̃ (ea, eb)uavb

= Fabu
avb

relative to any admissible basis. Thus, every symmetric spinor φ of valence(
0 0
2 0

)
gives rise, in a natural way, to a bivector F̃ .

Next we use the information accumulated thus far to construct a geomet-
rical representation (“up to sign”) of an arbitrary nonzero spin vector ξ. We
begin, as at the end of Section 3.4, by constructing the flagpole v of ξ (the
future-directed null vector equivalent of V AẊ = ξAξ̄Ẋ). Observe that every
spin vector in the family {eiθξ : θ ∈ R} has the same flagpole as ξ since, if ξA

is replaced by eiθξA, then ξ̄Ẋ becomes e−iθ ξ̄Ẋ and (eiθξA)(e−iθ ξ̄Ẋ) = ξAξ̄Ẋ .
We call eiθ the phase factor of the corresponding member of the family.

Exercise 3.5.4 Show that, conversely, if ψ is a spin vector with the same
flagpole as ξ, then ψA = eiθξA for some θ ∈ R. Hint : Write out v1, v2, v3 and
v4 in terms of ξA and ψA, show that ψ1 = eiθ1ξ1 and ψ0 = eiθ0ξ0 and then
show θ1 = θ0 + 2nπ for some n = 0,±1, . . . .

Our geometrical representation of ξ must therefore contain more than just
the flagpole if it is to distinguish spin vectors which differ only by a phase
factor. To determine this additional element in the picture we now observe

that ξ also determines a symmetric spinor φ of valence
(

0 0
2 0

)
defined by

φAB = ξAξB.

As we saw in the discussion following (3.5.9), φAB gives rise to a spinor of

valence
(

0 0
2 2

)
defined by

FAẊBẎ = εAB φ̄ẊẎ + φAB ε̄ẊẎ ,

which satisfies (3.5.4) and (3.5.5) and which, in turn, determines a bivector
F̃ given by Fab = σa

AẊσb
BẎ FAẊBẎ , i.e.,

Fab = σa
AẊσb

BẎ (εAB ξ̄Ẋ ξ̄Ẏ + ξAξB ε̄ẊẎ ). (3.5.10)

To simplify (3.5.10) we select a spin vector η which, together with ξ, form a
spin frame {ξ, η} with

< η, ξ > = ξAηA = 1 = −ξAηA.

Exercise 3.5.5 Show that

ξAηB − ξBηA = εAB (3.5.11)
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and
ξ̄Ẋ η̄Ẏ − ξ̄Ẏ η̄Ẋ = ε̄ẊẎ . (3.5.12)

Substitute (3.5.11) and (3.5.12) into (3.5.10) to obtain

Fab = σa
AẊσb

BẎ [(ξAηB − ξBηA)ξ̄Ẋ ξ̄Ẏ + (ξ̄Ẋ η̄Ẏ − ξ̄Ẏ η̄Ẋ)ξAξB]

= σa
AẊσb

BẎ ξAηB ξ̄Ẋ ξ̄Ẏ − σa
AẊσb

BẎ ξBηAξ̄Ẋ ξ̄Ẏ

+ σa
AẊσb

BẎ ξ̄Ẋ η̄Ẏ ξAξB − σa
AẊσb

BẎ ξ̄Ẏ η̄ẊξAξB

=
(
σa

AẊξAξ̄Ẋ

)(
σb

BẎ ηB ξ̄Ẏ + σb
BẎ ξB η̄Ẏ

)
−
(
σb

BẎ ξB ξ̄Ẏ

)(
σa

AẊηAξ̄Ẋ + σa
AẊξAη̄Ẋ

)
= vaσb

BẎ (ηB ξ̄Ẏ + ξB η̄Ẏ ) − vbσa
AẊ(ηAξ̄Ẋ + ξAη̄Ẋ).

Now define a spinor of valence
(

0 0
1 1

)
by

WAẊ = ηAξ̄Ẋ + ξAη̄Ẋ

and observe that WAẊ is Hermitian since W̄AẊ = WȦX = (η̄ȦξX + ξ̄ȦηX) =
ηAξ̄Ẋ + ξAη̄Ẋ = WAẊ . Consequently (Theorem 3.4.2), we may define a cov-
ector w∗ ∈ M∗ by

wa = −σa
AẊWAẊ = −σa

AẊ(ηAξ̄Ẋ + ξAη̄Ẋ).

Thus, our expression for Fab now becomes

Fab = vbwa − vawb. (3.5.13)

Notice that, by (3.4.22),

v · w = −V AẊWAẊ = −ξAξ̄Ẋ(ηAξ̄Ẋ + ξAη̄Ẋ)

= −ξAηA(ξ̄Ẋ ξ̄Ẋ) − ξ̄Ẋ η̄Ẋ(ξAξA)
= −(−1)(0)− (−1)(0)
= 0.

Thus, w is orthogonal to v. Since v is null, w is spacelike.

Exercise 3.5.6 Show that, in fact, w · w = 2.

Thus far we have found that the spin vector ξ determines a future-directed
null vector v (its flagpole) and a bivector Fab = vbwa − vawb, where w is a
spacelike vector orthogonal to v. However, w is not uniquely determined by ξ
since our choice for the “spinor mate” η for ξ is not unique. We now examine
the effect on w of making a different selection η̃ for η (still with < η̃, ξ > = 1).



184 3 The Theory of Spinors

But < η, ξ > = < η̃, ξ > = 1 implies < η − η̃, ξ > = < η, ξ > − < η̃, ξ > =
1 − 1 = 0 so, by (g) of Lemma 3.2.1 and the fact that ξ is not the zero
element of ß, η̃ − η = λξ for some λ ∈ C, i.e.,

η̃ = η + λξ.

The new vector w̃ is then determined by

w̃a = −σa
AẊ(η̃Aξ̄Ẋ + ξA

¯̃ηẊ)

= −σa
AẊ((ηA + λξA)ξ̄Ẋ + ξA(η̄Ẋ + λ̄ξ̄Ẋ))

= −σa
AẊ(ηAξ̄Ẋ + ξAη̄Ẋ) − (λ + λ̄)σa

AẊξAξ̄Ẋ

= wa + (λ + λ̄)va,

Fig. 3.5.1

so
w̃ = w + (λ + λ̄)v. (3.5.14)

It follows that w̃ lies in the 2-dimensional plane spanned by v and w and is
a spacelike vector orthogonal to v (again, w̃ · w̃ = 2). Thus, ξ uniquely de-
termines a future-directed null vector v and a 2-dimensional plane spanned
by v and any of the spacelike vectors w, w̃, . . . determined by (3.5.14). This
2-dimensional plane lies in the 3-dimensional subspace (Span{v})⊥, which is
tangent to the null cone along v. In a 3-dimensional picture, the null cone
and (Span{v})⊥ appear 2-dimensional so this 2-dimensional plane is a line.
However, to stress its 2-dimensionality we shall draw it as a “flag” along v
as in Figure 3.5.1. The pair consisting of v and this 2-dimensional plane in
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(Span{v})⊥ is called the null flag of ξ and is, we claim, an accurate geomet-
rical representation of ξ “up to sign”. To see this we examine the effect of a
phase change

ξA −→ eiθξA (θ ∈ R).

Of course, the flagpole v is unchanged, but ξ̄Ẋ → e−iθ ξ̄Ẋ so Fab →
σa

AẊσb
BẎ (e−2θiεAB ξ̄Ẋ ξ̄Ẏ + e2θiξAξB ε̄ẊẎ ). A spinor mate for eiθξA must

have the property that its ß-inner product with eiθξA is 1. Since dim ß = 2,
it must be of the form

e−iθηA + kξA

for some k ∈ C. Thus,

wa −→ −σa
AẊ [(e−iθηA + kξA)(e−iθ ξ̄Ẋ) + (eiθξA)(eiθ η̄Ẋ + k̄ξ̄Ẋ)]

= −σa
AẊ [e−2θiηAξ̄Ẋ + ke−iθξAξ̄Ẋ + e2θiξAη̄Ẋ + k̄eiθξAξ̄Ẋ ]

= −σa
AẊ(e2θiξAη̄Ẋ + e−2θiηAξ̄Ẋ) − (ke−iθ + k̄eiθ)(σa

AẊξAξ̄Ẋ)

= −σa
AẊ [(cos 2θ + i sin 2θ)ξAη̄Ẋ + (cos 2θ − i sin 2θ)ηAξ̄Ẋ ] + rva

= cos 2θ
(
−σa

AẊ(ξAη̄Ẋ + ηAξ̄Ẋ)
)

+ sin 2θ
(
−σa

AẊ i(ξAη̄ẊηAξ̄Ẋ)
)

+ rva,

where r = ke−iθ + k̄eiθ = ke−iθ + (ke−iθ) ∈ R. Now, −σa
AẊ(ξAη̄Ẋ+ηAξ̄Ẋ) =

wa. Moreover, observe that if UAẊ = ξAη̄Ẋ − ηAξ̄Ẋ , then ŪAẊ = −UAẊ

so, by Exercise 3.4.6, iU AẊ is Hermitian and therefore, by Theorem 3.4.2,
ua = −σa

AẊ iU AẊ defines a covector u∗ in M∗. Thus, wa → wa cos 2θ +
ua sin 2θ + rva so the phase change ξA → eiθξA leaves v alone and gives a
new w of

w −→ (cos 2θ)w + (sin 2θ)u + rv .

Exercise 3.5.7 Compute waua, vaua and uaua to show that u is orthogonal
to w and v and satisfies u · u = 2.

Thus, we picture w and u as perpendicular spacelike vectors in the 3-space
(Span{v})⊥ tangent to the null cone along v. Then (cos 2θ)w + (sin 2θ)u
is a spacelike vector in the plane of w and u making an angle of 2θ with
w. After a phase change ξA → eiθξA the new w is in the plane of v and
(cos 2θ)w+(sin 2θ)u. The 2-plane containing v and this new w is the new flag.
Thus, a phase change ξA → eiθξA leaves the flagpole v unchanged and rotates
the flag by 2θ in the plane of w and u (in Figure 3.5.2 we have drawn the
flagpole vertically even though it lies along a null line). Notice that if θ = π,
then the phase change ξA → eπiξA = −ξA carries ξ to −ξ, but the null flag
is rotated by 2π and so returns to its original position. Thus, ξ determines a
unique null flag, but the null flag representing ξ also represents −ξ. Hence,
null flags represent spin vectors only “up to sign”. This is a reflection of what
might be called the “essential 2-valuedness” of spinors, which has its roots in
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the fact that the spinor map is two-to-one and which has been used to model
some quite startling physical phenomena. We shall take up these matters in
somewhat more detail in Appendix B.

Fig. 3.5.2

3.6 The Electromagnetic Field (Revisited)

In this section we shall reexamine some of our earlier results on electromag-
netic fields at a point and find that, in the language of spinors, they often
achieve a remarkable elegance and simplicity. We begin with a nonzero skew-
symmetric linear transformation F : M → M (i.e., the value of an electro-
magnetic field at some point in M). Select a fixed, but arbitrary admissible
basis {ea} and spin frame {sA}. The bivector F̃ associated with F is de-
fined by (2.7.10) and has components in {ea} given by Fab = F̃ (ea, eb). The
spinor equivalent of F̃ is defined by FAẊBẎ = σa

AẊσb
BẎ Fab . Associated

with FAẊBẎ is a symmetric spinor φAB of valence
(

0 0
2 0

)
such that

FAẊBẎ = εAB φ̄ẊẎ + φAB ε̄ẊẎ . (3.6.1)

We call φAB the electromagnetic spinor associated with F .
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Exercise 3.6.1 Show that if ξ is any spin vector, then φABξAξB is an in-
variant, i.e., that, relative to another spin frame,

φ̂AB ξ̂Aξ̂B = φABξAξB .

Our first objective is to obtain a canonical decomposition of φAB into
a symmetrized outer product of spin vectors. To this end we compute the

invariant in Exercise 3.6.1 for spin vectors of the form
[
ξ1

ξ0

]
=
[
z
1

]
, where

z ∈ C.

φABξAξB = φ11ξ
1ξ1 + φ10ξ

1ξ0 + φ01ξ
0ξ1 + φ00ξ

0ξ0

= φ11z
2 + φ10z + φ01z + φ00

= φ11z
2 + 2φ10z + φ00

since φ01 = φ10. Notice that this is a quadratic polynomial in the complex
variable z with coefficients in C. Consequently, it factors over C, i.e., there
exist α1, α0, β1, β0 ∈ C such that

φ11z
2 + 2φ10z + φ00 = (α1z + α0)(β1z + β0) (3.6.2)

(these are not unique, of course, since replacing αA by αA/γ and βA by γβA

for any nonzero γ ∈ C also gives a factorization). Equating coefficients in
(3.6.2) gives

φ11 = α1β1 = 1
2 (α1β1 + α1β1)

φ00 = α0β0 = 1
2 (α0β0 + α0β0)

φ10 = 1
2 (α1β0 + α0β1).

Since φ01 = φ10 this last equality may be written

φ01 = 1
2 (α0β1 + α1β0).

Thus, for all A, B = 1, 0, we have

φAB = 1
2 (αAβB + αBβA). (3.6.3)

Next observe that if, in another spin frame, we define α̂A = GA
A1αA1 and

β̂B = GB
B1βB1 , i.e., if we regard α and β as spin vectors, then
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1
2 (α̂Aβ̂B + α̂B β̂A) = 1

2

((
GA

A1αA1

) (
GB

B1βB1

)
+
(
GB

B1αB1

) (
GA

A1αA1

))
= 1

2GA
A1GB

B1(αA1βB1 + αB1βA1)

= GA
A1GB

B1φA1B1

= φ̂AB .

Consequently, φ is the symmetrized outer product of the spin vectors α and
β, i.e., in any spin frame,

φAB = 1
2 (αAβB + αBβA) = α(AβB). (3.6.4)

Although we will have no need to do so this argument, which depends only
on the symmetry of φ, extends easily to produce analogous decompositions
of higher valence symmetric spinors.

The spin vectors α and β are intimately connected with the electromag-
netic field F . We will eventually show that our characterization of null and
regular F ’s (Corollary 2.3.8) has a remarkably simple reformulation in terms
of α and β (Corollary 3.6.2 asserts that F is null if and only if α and β are
parallel). For the present we will content ourselves with showing that the
future-directed null vectors associated with α and β (i.e., their flagpoles) are
eigenvectors of the electromagnetic field F (see Section 2.4). Thus, we define
future-directed null vectors v and w by

va = −σa
AẊαAᾱẊ and wa = −σa

AẊβAβ̄Ẋ .

The null directions determined by v and w are called the principal null di-
rections of φAB . Letting F a

b = ηacFcb denote the entries in the matrix of F
relative to {ea} we compute

F a
bv

b = ηacFcbv
b = ηacσc

AẊσb
BẎ FAẊBẎ vb

= −ηacσc
AẊσb

BẎ (εAB φ̄ẊẎ + φAB ε̄ẊẎ )
(
σb

DŻαDᾱŻ
)

= −ηacσc
AẊ
(
σb

BẎ σb
DŻ

)
(εAB φ̄ẊẎ + φAB ε̄ẊẎ )αDᾱŻ

= −ηacσc
AẊ
(
−δB

DδẎ
Ż

)
(εAB φ̄ẊẎ + φAB ε̄ẊẎ )αDᾱŻ

= ηacσc
AẊ(εAB φ̄ẊẎ + φAB ε̄ẊẎ )αBᾱẎ

= ηacσc
AẊ
[
(εABαB)(φ̄ẊẎ ᾱẎ ) + (φABαB)(ε̄ẊẎ ᾱẎ )

]
F a

bv
b = ηacσc

AẊ
[
(−αA)(φ̄ẊẎ ᾱẎ ) + (φABαB)(−ᾱẊ)

]
. (3.6.5)
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Exercise 3.6.2 Show that φABαB = 1
2 (α1β0 − α0β1)αA and φ̄ẊẎ ᾱẎ =

1
2 (α1β0 − α0β1)ᾱẊ .

Letting μ = 1
2 (α1β0 − α0β1) we obtain, from Exercise 3.6.2,

φABαB = μαA (3.6.6)

and

φ̄ẊẎ ᾱẎ = μ̄ᾱẊ , (3.6.7)

which we now substitute into (3.6.5).

F a
bv

b = −ηacσc
AẊ(αA(μ̄ᾱẊ) + (μαA)ᾱẊ)

= −ηacσc
AẊ(μ + μ̄)(αAᾱẊ)

= −(μ + μ̄)ηac(σc
AẊαAᾱẊ)

= −(μ + μ̄)ηacvc

= −(μ + μ̄)va.

If we let

λ = −(μ + μ̄) = −2Re(μ) = −2Re
(

1
2 (α1β0 − α0β1)

)
= −Re(α1β0 − α0β1)
= −Re < α, β >,

we obtain
F a

bv
b = λva = −Re < α, β > va, (3.6.8)

or, equivalently,
Fv = λv = −Re < α, β > v, (3.6.9)

so v is an eigenvector of F with eigenvalue λ = −Re < α, β >.

Exercise 3.6.3 Show in the same way that

Fw = −λw = Re < α, β > w. (3.6.10)

We conclude that the flagpoles of α and β are two (possibly coincident)
future-directed null eigenvectors of F with eigenvalues −Re < α, β > and
Re < α, β > respectively.

Let us rearrange (3.6.6) a bit.

φAC αC = μαA,

φAC (εCBαB) = μαA,

(φAC εCB)αB = μαA,

(−εBCφAC )αB = μαA,

φA
BαB = −μαA. (3.6.11)
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Thinking of
[
φA

B

]
as the matrix, relative to {sA}, of a linear transformation

φ : ß → ß on spin space motivates the following definitions. A complex number
λ is an eigenvalue of φAB if there exists a nonzero spin vector α ∈ ß, called
an eigenspinor of φAB , such that φA

BαB = λαA. Such an α will exist if and
only if λ satisfies

det
[[

φ1
1 φ1

0

φ0
1 φ0

0

]
− λ

[
1 0
0 1

]]
= 0,

which, when expanded, gives

λ2 −
(
φ1

1 + φ0
0
)

+ det
[
φA

B
]

= 0. (3.6.12)

However, #1 of Exercise 3.3.6 and the symmetry of φAB gives φ1
1 +φ0

0 = 0,
whereas #3 of that same Exercise gives det

[
φA

B
]

= det [φAB ] = 1
2φABφAB ,

so the solutions to (3.6.12) are

λ = ±(− det[φAB ])
1
2 = ±

(
− 1

2φABφAB
) 1

2 . (3.6.13)

The physical significance of these eigenvalues of φAB will emerge when we
compute det[φAB ] in terms of the 3-vectors

⇀

E and
⇀

B, which we accomplish
by means of (2.7.14). First observe that

φAB = 1
2FU̇A

U̇
B = 1

2

[
F1̇A

1̇
B + F0̇A

0̇
B

]
= 1

2

[
ε̄1̇ẊF1̇AẊB + ε̄0̇ẊF0̇AẊB

]
= 1

2

[
ε̄1̇0̇F1̇A0̇B + ε̄0̇1̇F0̇A1̇B

]
= 1

2 [−F1̇A0̇B + F0̇A1̇B] = 1
2 [FA0̇B1̇ − FA1̇B0̇].

Thus, for example,

φ11 = 1
2 [F10̇11̇ − F11̇10̇] = 1

2 [F10̇11̇ − (−F10̇11̇)]

= F10̇11̇ = σa
10̇σ

b
11̇Fab .

Now, if a = b the corresponding term in this sum is zero since Faa = 0. The
a = 3, 4 and b = 1, 2 terms vanish by the definitions of the σa

AẊ . Thus, only
the ab = 13, 14, 23, 24 terms survive so
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φ11 = σ1
10̇σ

3
11̇F13 + σ1

10̇σ
4
11̇F14 + σ2

10̇σ
3
11̇F23 + σ2

10̇σ
4
11̇F24

=
(
− 1√

2

)(
− 1√

2

)
F13 +

(
− 1√

2

)(
− 1√

2

)
F14

+
(

i√
2

)(
− 1√

2

)
F23 +

(
i√
2

)(
− 1√

2

)
F24

= 1
2 (−B2) + 1

2 (E1) − 1
2 i(B1) − 1

2 i(E2)

φ11 = 1
2 [(E1 − B2) − i(E2 + B1)]. (3.6.14)

Exercise 3.6.4 Continue in the same way to show

φ10 = φ01 = 1
2 (−E3 + iB3) (3.6.15)

and

φ00 = 1
2 [−(E1 + B2) + i(−E2 + B1)]. (3.6.16)

Exercise 3.6.5 Compute φ11φ00–φ10φ01 from (3.6.14)–(3.6.16) to show that

det[φAB ] = 1
4

(
|
⇀

B|2 − |
⇀

E|2
)

+ 1
2 (

⇀

E ·
⇀

B)i. (3.6.17)

Returning now to (3.6.13) we find that the eigenvalues of the electromagnetic
spinor φAB are given by

λ = ±
[
− 1

4 (|
⇀

B|2 − |
⇀

E|2) − 1
2 (

⇀

E ·
⇀

B)i
] 1

2
. (3.6.18)

But then λ = 0 if and only if |
⇀

B|2 − |
⇀

E|2 =
⇀

E ·
⇀

B = 0 so F is null if and only
if the only eigenvalue of φAB is 0 and we have proved:

Theorem 3.6.1 Let F : M → M be a nonzero, skew-symmetric linear
transformation, F̃ its associated bivector, FAẊBẎ the spinor equivalent of
F̃ and φAB the symmetric spinor for which FAẊBẎ = εAB φ̄ẊẎ + φAB ε̄ẊẎ .
Then F is null if and only if λ = 0 is the only eigenvalue of φAB .

Another equally elegant form of this characterization theorem is:

Corollary 3.6.2 Let F : M → M be a nonzero, skew-symmetric linear
transformation, F̃ its associated bivector, FAẊBẎ the spinor equivalent of
F̃ , φAB the symmetric spinor for which FAẊBẎ = εAB φ̄ẊẎ + φAB ε̄ẊẎ , and
α and β spin vectors for which φAB = α(AβB). Then F is null if and only if
α and β are linearly dependent.
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Proof: First we compute

φABφAB = 1
2 (αAβB + αBβA) 1

2

(
αAβB + αBβA

)
= 1

4

[(
αAαA

) (
βBβB

)
+
(
αAβA

) (
βBαB

)
+
(
αBβB

) (
βAαA

)
+
(
αBαB

) (
βAβA

)]
= 1

4 [(0)(0)+ < β, α > < α, β > + < β, α > < α, β > + (0)(0)]

= 1
4 [− < α, β > < α, β > − < α, β > < α, β >]

= − 1
2 < α, β >2 .

Thus, (3.6.13) gives

λ = ±
(

1
4 < α, β >2

) 1
2 = ± 1

2 < α, β > .

Theorem 3.6.1 therefore implies that F is null if and only if < α, β > = 0
which, by Lemma 3.2.1 (g), is the case if and only if α and β are linearly
dependent. �

We have defined the spinor equivalent of a bivector in Section 3.5, but
the same definition yields a spinor equivalent of any bilinear form on M.
Specifically, if we fix an admissible basis {ea} and a spin frame {sA} and let
H : M×M → R be a bilinear form on M, then the spinor equivalent of H

is the spinor of valence
(

0 0
2 2

)
whose components in {sA} are given by

HAẊBẎ = σa
AẊσb

BẎ Hab ,

where Hab = H(ea, eb).

Exercise 3.6.6 Show that, in another spin frame {ŝA}, related to {sA} by
(3.2.1) and (3.2.6), ĤAẊBẎ = σa

AẊσb
BẎ Ĥab , where Ĥab = Λa

αΛb
βHαβ , Λ

being ΛG .

A particularly important example of a bilinear form is the Lorentz inner
product itself: g : M×M → R, defined by g(u, v) = u · v. Relative to any
{ea}, the components of g are

g(ea, eb) = ea · eb = ηab .

The spinor equivalent of g is defined by

gAẊBẎ = σa
AẊσb

BẎ ηab

gAẊBẎ = σ1
AẊσ1

BẎ + σ2
AẊσ2

BẎ + σ3
AẊσ3

BẎ − σ4
AẊσ4

BẎ . (3.6.19)
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We claim that
gAẊBẎ = −εAB ε̄ẊẎ . (3.6.20)

One verifies (3.6.20) by simply considering all possible choices for A, B, Ẋ
and Ẏ . For example, if either (i) A and B are the same, but Ẋ and Ẏ are
different, or (ii) Ẋ and Ẏ are the same, but A and B are different, then
both sides of (3.6.20) are zero (every σa

AẊ has either σa
11̇ = σa

00̇ = 0 or
σa

10̇ = σa
01̇ = 0, so all of the σa

AẊσa
BẎ in (3.6.19) are zero). All that

remain then are the cases in which (iii) A = B and Ẋ = Ẏ , or (iv) A �= B
and Ẋ �= Ẏ , i.e., AẊBẎ = 11̇11̇, 10̇10̇, 01̇01̇, 00̇00̇, 11̇00̇, 10̇01̇, 01̇10̇, 00̇11̇.
For example,

g10̇01̇ = σ1
10̇σ

1
01̇ + σ2

10̇σ
2
01̇ + σ3

10̇σ
3
01̇ − σ4

10̇σ
4
01̇

= σ1
10̇σ

1
01̇ + σ2

10̇σ
2
01̇ =

(
− 1√

2

)(
− 1√

2

)
+
(

i√
2

)(
− i√

2

)
= 1

2 − 1
2 i2 = 1

2 + 1
2

= 1

= −ε10ε̄0̇1̇.

Exercise 3.6.7 Verify the remaining cases.

The energy-momentum transformation T : M → M of an electromagnetic
field F : M → M also has an associated (symmetric) bilinear form T̃ :
M×M → R defined by T̃ (u, v) = u·Tv and with components Tab = T (ea, eb)
given, according to Exercise 2.7.8, by

Tab = 1
4π

[
FaαFb

α − 1
4ηabFαβFαβ

]
. (3.6.21)

We show next that the spinor equivalent of T̃ takes the following particularly
simple form:

TAẊBẎ = 1
2π φAB φ̄ẊẎ , (3.6.22)

where φAB is the electromagnetic spinor associated with F . By definition,
the spinor equivalent of T̃ is given by

TAẊBẎ = σa
AẊσb

BẎ Tab = 1
4π σa

AẊσb
BẎ

[
FaαFb

α − 1
4ηabFαβFαβ

]
= 1

4π

[
σa

AẊσb
BẎ FaαFb

α − 1
4

(
σa

AẊσb
BẎ ηab

)
FαβFαβ

]
TAẊBẎ = 1

4π

[
σa

AẊσb
BẎ FaαFb

α + 1
4εAB ε̄ẊẎ (FαβFαβ)

]
(3.6.23)

by (3.6.20). We begin simplifying (3.6.23) with two observations:

FαβFαβ = FCŻDẆ FCŻDẆ (3.6.24)
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and

σa
AẊσb

BẎ FaαFb
α = −FAẊCŻFBẎ

CŻ . (3.6.25)

For the proof of (3.6.24) we compute

FCŻDẆ FCŻDẆ = FCŻDẆ εCC1 ε̄ŻŻ1εDD1 ε̄ẆẆ1FC1Ż1D1Ẇ1

=
(
σa

CŻσb
DẆ Fab

)
εCC1 ε̄ŻŻ1εDD1 ε̄ẆẆ1

(
σα

C1Ż1
σβ

D1Ẇ1
(ηαμηβνFμν)

)
=
(
εCC1 ε̄ŻŻ1ημασα

C1Ż1

)(
εDD1 ε̄ẆẆ1ηνβσβ

D1Ẇ1

)
σa

CŻσb
DẆ FabF

μν

= σμ
CŻσν

DẆ σa
CŻσb

DẆ FabF
μν =

(
σμ

CŻσa
CŻ

)(
σν

DẆ σb
DẆ

)
FabF

μν

=
(
−δa

μ

) (
−δb

ν

)
FabF

μν = FabF
ab .

Exercise 3.6.8 Prove (3.6.25).
Substituting (3.6.24) and (3.6.25) into (3.6.23) gives

TAẊBẎ = 1
4π

[
−FAẊCŻFBẎ

CŻ + 1
4εAB ε̄ẊẎ FCŻDẆ FCŻDẆ

]
. (3.6.26)

Now we claim that if FAẊBẎ = εAB φ̄ẊẎ + φAB ε̄ẊẎ , then

FCŻDẆ FCŻDẆ = 2
(
φCDφCD + φ̄ŻẆ φ̄ŻẆ

)
(3.6.27)

and

FAẊCŻFBẎ
CŻ = −2φAB φ̄ẊẎ + εAB φ̄ẊŻ φ̄Ẏ

Ż + ε̄ẊẎ φAC φB
C . (3.6.28)

We prove (3.6.27) as follows:

FCŻDẆ FCŻDẆ =
(
εCD φ̄ŻẆ + φCD ε̄ŻẆ

) (
εCD φ̄ŻẆ + φCD ε̄ŻẆ

)
=
(
εCDεCD

) (
φ̄ŻẆ φ̄ŻẆ

)
+
(
εCDφCD

) (
φ̄ŻẆ ε̄ŻẆ

)
+
(
φCDεCD

) (
ε̄ŻẆ φ̄ŻẆ

)
+
(
φCDφCD

) (
ε̄ŻẆ ε̄ŻẆ

)
.

But observe that, by symmetry of φ, εCDφCD = ε10φ
10 + ε01φ

01 = −φ10 +
φ01 = 0 and, similarly, ε̄ŻẆ φ̄ŻẆ = 0. Moreover, by (3.3.7), εCDεCD =
ε̄ŻẆ ε̄ŻẆ = 2 so

FCŻDẆ FCŻDẆ = 2φ̄ŻẆ φ̄ŻẆ + 0 + 0 + 2φCDφCD

which gives (3.6.27).
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Exercise 3.6.9 Prove (3.6.28).

With (3.6.27) and (3.6.28), (3.6.26) becomes

TAẊBẎ = 1
4π

[
2φAB φ̄ẊẎ − εAB φ̄ẊŻ φ̄Ẏ

Ż − ε̄ẊẎ φAC φB
C

+ 1
2εAB ε̄ẊẎ

(
φCDφCD + φ̄ŻẆ φ̄ŻẆ

)]
.

TAẊBẎ = 1
4π

[
2φAB φ̄ẊẎ − εAB φ̄ẊŻ φ̄Ẏ

Ż − ε̄ẊẎ φAC φB
C

+ (det[φAB ])εAB ε̄ẊẎ + (det[φ̄ẊẎ ])εAB ε̄ẊẎ

]
, (3.6.29)

where we have appealed to part (3) of Exercise 3.3.6 and its conjugated ver-
sion. For the remaining simplifications we use part (4) of this same exercise.
If either A = B or Ẋ = Ẏ all the terms on the right-hand side of (3.6.29)
except the first are zero so TAẊBẎ = 1

2π φAB φ̄ẊẎ and (3.6.22) is proved. The
remaining cases are AẊBẎ = 11̇00̇, 10̇01̇, 01̇10̇ and 00̇11̇ and all are treated
in the same way, e.g.,

T11̇00̇ = 1
4π

[
2φ10φ̄1̇0̇ − ε10φ̄1̇Ż φ̄0̇

Ż − ε̄1̇0̇φ1Cφ0
C

+ (det[φAB ])ε10ε̄1̇0̇ + (det[φ̄ẊẎ ])ε10ε̄1̇0̇
]

= 1
4π [2φ10φ̄1̇0̇ − (−1)(− det[φ̄ẊẎ ]) − (−1)(− det[φAB ])
+ (det[φAB ])(−1)(−1) + (det[φ̄ẊẎ ])(−1)(−1)]

= 1
4π [2φ10φ̄1̇0̇]

= 1
2π φ10φ̄1̇0̇.

Exercise 3.6.10 Check the remaining cases to complete the proof of
(3.6.22).

We use the spinor equivalent TAẊBẎ = 1
2π φAB φ̄ẊẎ of the energy-

momentum T of F to give another proof of the dominant energy condition
(Exercise 2.5.6) that does not depend on the canonical forms of F . Begin
with two future-directed null vectors u = uaea and v = vbeb in M. By The-
orem 3.4.3, the spinor equivalents of u and v can be written UAẊ = μAμ̄Ẋ

and V AẊ = νAν̄Ẋ , where μ and ν are two spin vectors. Thus, we may write
ua = −σa

AẊμAμ̄Ẋ and vb = −σb
BẎ νB ν̄Ẏ so that

Tu · v = Tabu
avb = Tab

(
−σa

AẊμAμ̄Ẋ
)(

−σB
BẎ νB ν̄Ẏ

)
=
(
σa

AẊσb
BẎ Tab

)
μAμ̄ẊνB ν̄Ẏ

= TAẊBẎ μAμ̄ẊνB ν̄Ẏ

= 1
2π φAB φ̄ẊẎ μAμ̄ẊνB ν̄Ẏ

= 1
2π (φABμAμB)(φ̄ẊẎ μ̄Ẋ ν̄Ẏ ),
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so
Tu · v = 1

2π |φABμAνB|2. (3.6.30)

In particular, Tu · v ≥ 0.

Exercise 3.6.11 Show that Tu ·v ≥ 0 whenever u and v are timelike or null
and both are future-directed. Hint : Any future-directed timelike vector can
be written as a sum of two future-directed null vectors.

We recall from Section 2.5 that, for any future-directed unit timelike vector
U, TU · U = 1

8π [|
⇀

E|2 + |
⇀

B|2] is the energy density in any admissible frame
with e4 = U . Consequently, if F is nonzero, Tu · u �= 0 for any timelike
vector u. We now investigate the circumstances under which Tv · v = 0 for
some future-directed null vector v. Suppose then that v is null and future-
directed and Tv · v = 0. Write va = −σa

AẊνAν̄Ẋ for some spin vector ν

(Theorem 3.4.3). Then, by (3.6.30), φABνAνB = 0. Using the decomposition
(3.6.4) of φ this is equivalent to

(αAβB + αBβA)(νAνB) = 0,

(αAνA)(βBνB) + (αBνB)(βAνA) = 0,

2 < ν, α > < ν, β > = 0

which is the case if and only if either < ν, α > = 0 or < ν, β > = 0. But
< ν, α > = 0 if and only if ν is a multiple of α (Lemma 3.2.1(g)) and similarly
for < ν, β > = 0. But if ν is a multiple of either α or β, then v is a multiple of
one of the two null vectors determined by α or β, i.e., v is along a principal
null direction of φAB . Thus, a future-directed null vector v for which Tv ·v = 0
must lie along a principal null direction of φAB . Moreover, by reversing the
steps above, one finds that the converse is also true so we have proved that a
nonzero null vector v satisfies Tv · v = 0 if and only if v lies along a principal
null direction of φAB .

Exercise 3.6.12 Let F : M → M be a nonzero, skew-symmetric linear
transformation, F̃ the associated bivector and ∗F̃ the dual of F̃ (Section 2.7).
By (2.7.16) (with M = Λ), the Levi-Civita symbol εabcd defines a (con-
stant) covariant world tensor of rank 4. We define its spinor equivalent by
εAẊBẎ CŻDẆ = σa

AẊσb
BẎ σc

CŻσd
DẆ εabcd . Show that

εAẊBẎ CŻDẆ = i(εAC εBD ε̄ẊẆ ε̄Ẏ Ż − εADεBC ε̄ẊŻ ε̄Ẏ Ẇ )

and then raise indices to obtain

εAẊBẎ
CŻDẆ = i

(
δC
AδD

B δẆ
Ẋ

δŻ
Ẏ
− δD

A δC
BδŻ

Ẋ
δẆ
Ẏ

)
.

Now show that the spinor equivalent of ∗F̃ is given by

∗FAẊBẎ = i(εAB φ̄ẊẎ − φAB ε̄ẊẎ ).
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Exercise 3.6.13 Define the spinor equivalent of an arbitrary world tensor
(Section 3.1) of contravariant rank r and covariant rank s, being sure to verify
the appropriate transformation law, and show that any such spinor equivalent
is Hermitian. Find an “inversion formula” analogous to (3.4.19) and (3.5.3)
that retrieves the world tensor from its spinor equivalent. For what type of
spinor can this process be reversed to yield a world tensor equivalent?

We conclude our discussion of electromagnetic theory by deriving the el-
egant spinor form of the source-free Maxwell equations. For this we fix an
admissible basis {ea} and a spin frame {sA} and let F denote an electro-
magnetic field on (a region in) M. As usual, we denote by Fab = ηaαFα

b

the components of the corresponding bivector F̃ , all of which are functions of
(x1, x2, x3, x4). Then the spinor equivalent of F̃ is FAẊBẎ = σa

AẊσb
BẎ Fab

and the electromagnetic spinor φAB is given by

φAB = 1
2FU̇A

U̇
B

= 1
2 [FA0̇B1̇ − FA1̇B0̇].

Next we introduce “spinor equivalents” for the differential operators ∂a =
∂

∂xa , a = 1, 2, 3, 4. Specifically, we define, for each A = 1, 0 and Ẋ = 1̇, 0̇, an
operator ∇AẊ by

∇AẊ = σa
AẊ∂a = σa

AẊ(ηaα∂α).

Thus, for example,

∇11̇ = σa
11̇∂a = σ1

11̇∂1 + σ2
11̇∂2 + σ3

11̇∂3 + σ4
11̇∂4

= σ3
11̇∂3 + σ4

11̇∂4 = 1√
2
∂3 + 1√

2
∂4

= 1√
2
(∂3 − ∂4).

Exercise 3.6.14 Prove the remaining identities in (3.6.31):

∇11̇ = 1√
2
(∂3 − ∂4), ∇10̇ = 1√

2
(∂1 + i∂2),

∇01̇ = 1√
2
(∂1 − i∂2), ∇00̇ = − 1√

2
(∂3 + ∂4).

(3.6.31)

With this notation we claim that all of the information contained in the
source-free Maxwell equations (2.7.15) and (2.7.21) can be written con-
cisely as

∇AẊφAB = 0, A = 1, 0, Ẋ = 1̇, 0̇. (3.6.32)

Equations (3.6.32) are the spinor form of the source-free Maxwell equations.
To verify the claim we write

φ11 = 1
2 [(F13 + F14) + i(F32 + F42)],

φ10 = φ01 = 1
2 [F43 + iF 12],

φ00 = 1
2 [(F41 + F13) + i(F42 + F23)]
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(see (3.6.14)–(3.6.16)). Now compute, for example,

∇A1̇φA0 = ∇11̇φ10 + ∇01̇φ00 = 1
2
√

2
{(∂3 − ∂4)(F43 + iF 12)

+ (∂1 − i∂2)((F41 + F13) + i(F42 + F23))}
= 1

2
√

2
{[−(F14,1 + F24,2 + F34,3) + (F13,1 + F23,2 − F43,4)]

+ i[(F12,3 + F31,2 + F23,1) − (F12,4 + F41,2 + F24,1)]}

= 1
2
√

2

{[
−div

⇀

E −
[
(curl

⇀

B) · e3 − ∂E3

∂x4

]]
+ i
[
div

⇀

B −
[
(curl

⇀

E) · e3 + ∂B3

∂x4

]]}
.

Exercise 3.6.15 Calculate, in the same way, ∇A1̇φA1, ∇A0̇φA1, and
∇A0̇φA0, and show that (3.6.32) is equivalent to Maxwell’s equations.

Generalizations of (3.6.32) are used in relativistic quantum mechanics as
field equations for various types of massless particles. Specifically, if n is a

positive integer and φA1A2···An is a symmetric spinor of valence
(

0 0
n 0

)
, then

∇AẊφAA2···An = 0, A2, . . . , An = 1, 0, Ẋ = 1̇, 0̇,

is taken to be the massless free-field equation for arbitrary spin 1
2n particles

(see 5.7 of [PR]). In particular, if n = 1, then φA is a spin vector and one
obtains the Weyl neutrino equation

∇AẊφA = 0, Ẋ = 1̇, 0̇,

which suggested the possibility of parity nonconservation in weak interactions
years before the phenomenon itself was observed (see [LY]).



Chapter 4

Prologue and Epilogue: The de Sitter
Universe

4.1 Introduction

In this final chapter we would like to take one small step beyond the special
theory of relativity in order to briefly address two issues that have been con-
scientiously swept under the rug to this point. These are related, although
perhaps not obviously so. The first is the issue of gravitation which we quite
explicitly eliminated from consideration very early on. We have proposed
Minkowski spacetime as a model of the event world only when the effects of
gravity are “negligible”, that is, for a universe that is effectively “empty”, but
it is doubtful that anything in our development has made it clear why such a
restriction was necessary. Here we will attempt to provide an explanation as
well as a gentle prologue to how one adapts to the presence of gravitational
fields. Then, as an epilogue to our story, we will confront certain recent astro-
nomical observations suggesting that, even in an empty universe, the event
world may possess properties not reflected in the structure of Minkowski
spacetime, at least on the cosmological scale. Remarkably, there is a viable
alternative, nearly 100 years old, that has precisely these properties and we
will devote a little time to becoming acquainted with it.

4.2 Gravitation

An electromagnetic field is a 2-form on Minkowski spacetime M that satisfies
Maxwell’s equations. A charged particle responds to the presence of such a
field by experiencing changes in 4-momentum specified by the Lorentz 4-Force
Law. This is how particle mechanics works. A physical agency that affects the
shape of a particle’s worldline is isolated and described mathematically and
then equations of motion are postulated that quantify this effect. It would
seem then that the next logical step in such a program would be to carry

, : An Introduction 
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out an analogous procedure for the gravitational field. In the early days of
relativity theory many attempts were made (by Einstein and others) to do
just this, but they all came to naught. However one chose to model a gravi-
tational field on M and however the corresponding equations of motion were
chosen, the numbers simply did not come out right; theoretical predictions
did not agree with the experimental facts (an account of some of these early
attempts is available in Chapter 2 of [MTW]). In hindsight, the reason for
these failures appears quite simple (once it is pointed out to you by Einstein,
that is). An electromagnetic field is something “external” to the structure of
spacetime, an additional field defined on and (apparently) not influencing the
mathematical structure of M. Einstein realized that a gravitational field has
a very special property which makes it unnatural to regard it as something
external to the nature of the event world. Since Galileo it has been known
that all objects with the same initial position and velocity respond to a given
gravitational field in the same way (i.e., have identical worldlines) regardless
of their material constitution (mass, charge, etc.). This is essentially what
was verified at the Leaning Tower of Pisa and contrasts markedly with the
behavior of electromagnetic fields. These worldlines (of particles with given
initial conditions of motion) seem almost to be natural “grooves” in space-
time that anything will slide along once placed there. But these “grooves”
depend on the particular gravitational field being modeled and, in any case,
M simply is not “grooved” (its structure does not distinguish any collection
of curved worldlines). One suspects then that M itself is somehow lacking,
that the appropriate mathematical structure for the event world may be more
complex when gravitational effects are nonnegligible.

To see how the structure of M might be generalized to accommodate the
presence of gravitational fields let us begin again as we did in the Introduction
with an abstract set M whose elements we call “events”. One thing at least is
clear. In regions that are distant from the source of any gravitational field no
accommodation is necessary and M must locally “look like” M. But a great
deal more is true. In his now famous Elevator Experiment Einstein observed
that any event has about it a sufficiently small region of M which “looks
like” M. To see this we reason as follows. Imagine an elevator containing an
observer and various other objects that is under the influence of some uniform
external gravitational field. The cable snaps. The contents of the elevator are
now in free fall. Since all of the objects inside respond to the gravitational
field in the same way they will remain at relative rest throughout the fall.
Indeed, if our observer lifts an apple from the floor and releases it in mid-air
it will appear to him to remain stationary. You have witnessed these things
for yourself. While it is unlikely that you have had the misfortune of seeing a
falling elevator you have seen astronauts at play inside their space capsules
while in orbit (i.e., free fall) about the earth. The objects inside the elevator
(capsule) seem then to constitute an archetypical inertial frame. By estab-
lishing spacetime coordinates in the usual way our observer thereby becomes
an admissible observer, at least within the spatial and temporal constraints
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imposed by his circumstances. Now, picture an arbitrary event. There are any
number of vantage points from which the event can be observed. One is from
a freely falling elevator in the immediate spatial and temporal vicinity of the
event and from this vantage point the event receives admissible coordinates.
There is then a local admissible frame near any event in M .

The operative word is local. The “spatial and temporal constraints” to
which we alluded arise from the non-uniformity of any real gravitational field.
For example, in an elevator that falls freely in the earth’s gravitational field,
all of the objects inside are pulled toward the earth’s center so that they do,
in fact, experience some slight relative acceleration (toward each other). Such
motion, of course, goes unnoticed if the elevator falls neither too far nor too
long. Indeed, by restricting our observer to a sufficiently small region in space
and time these effects become negligible and the observer is indeed inertial.
But then, what is “negligible” is in the eye of the beholder. The availability of
more sensitive measuring devices will require further restrictions on the size
of the spacetime region that “looks like” M and so one might say that M is
locally like M in the same sense that the sphere x2 + y2 + z2 = 1 is locally
like the plane R2. In the 19th century this would have been expressed by
saying that each point of the sphere has about it an “infinitesimal neighbor-
hood” that is identical to the plane. Today we prefer to describe the situation
in terms of local coordinate systems and tangent planes, but the idea is the
same.

What appears to be emerging then as the appropriate mathematical struc-
ture for M is something analogous to a smooth surface, albeit a 4-dimensional
one. As it happens there is in mathematics a notion (that of a “smooth man-
ifold”) that generalizes the definition of a smooth surface to higher dimen-
sions. With each point in such a manifold is associated a flat “tangent space”
analogous to the tangent plane to a surface. These are equipped with inner
products, varying smoothly from point to point, with which one can compute
magnitudes of tangent vectors that can then be integrated to obtain lengths of
curves. Such a smoothly varying family of inner products is called a “metric”
(“Riemannian” if the inner products are positive definite and “Lorentzian”
if they have index one) and with such a thing one can do geometry. In par-
ticular, one can introduce a notion of “curvature” which, just as for surfaces,
describes quantitatively the extent to which the manifold locally deviates
from its tangent spaces, that is, from flatness. In the particular manifolds of
interest in relativity (called “Lorentzian manifolds” or “spacetimes”) these
deviations are taken to represent the effects of a non-negligible gravitational
field. An object in free fall in such a field is represented by a curve that is
“locally straight” since it would indeed appear straight in a nearby freely
falling elevator (local inertial frame). These are called “geodesics” and cor-
respond to the “grooves” to which we referred earlier (the analogous curves
on the sphere are its great circles). Not every Lorentzian metric represents
a physically realistic gravitational field any more than every 2-form on M
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represents an electromagnetic field and Einstein postulated field equations
(analogous to Maxwell’s equations) that should be satisfied by any metric
worthy of physical consideration.

The study of these spacetime manifolds and their physical interpretation
and implications is called the General Theory of Relativity. The subject is
vast and beautiful, but our objective in this chapter is modest in the extreme.
We will introduce just enough mathematics to describe a few of the most
elementary examples and study them a bit. We will find, remarkably enough,
that the field equations of general relativity admit solutions that correspond
to an “empty” universe, but differ from Minkowski spacetime and it is one of
these that we will briefly consider as a possible alternative to the model we
have been investigating.

4.3 Mathematical Machinery

In truth, the mathematical machinery required to study general relativity
properly is substantial (a good place to begin is [O’N]), but our goal here
is not so lofty. The examples of interest to us are rather simple and we will
introduce just enough of this machinery to understand these and gain some
sense of what is required to proceed further. We begin with a synopsis of some
standard results from real analysis taking [Sp1] as our guide and reference.

For n ≥ 1 we denote by Rn the n-dimensional real vector space of ordered
n-tuples of real numbers.

Rn = {p = (p1, . . . , pn) : p1, . . . , pn ∈ R}

The standard basis for Rn will be written e1 = (1, 0, . . . , 0, 0), . . . , en =
(0, 0, . . . , 0, 1) and, for i = 1, . . . , n, the standard coordinate functions

ui : Rn → R

are defined by
ui(p) = ui(p1, . . . , pn) = pi.

The usual Euclidean inner product on Rn is defined by

〈p, q〉 = p1q1 + · · · + pnqn

and its corresponding norm ‖ ‖ and distance function d are given by

‖ p ‖2= 〈p, p〉

and
d(p, q) = ‖ q − p ‖ .
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For any p ∈ Rn and any ε > 0 the open ball of radius ε about p is

Uε(p) = {q ∈ Rn : d(p, q) < ε}.

A subset U of Rn is said to be open in Rn if, for each p ∈ U , there is an ε > 0
such that Uε(p) ⊆ U . A subset K of Rn is closed in Rn if its complement
Rn − K is open in Rn. More generally, if X is an arbitrary subset of Rn,
then U ′ ⊆ X is said to be open in X if there is an open set U in Rn with
U ′ = U ∩ X . A subset K ′ of X is closed in X if X − K ′ is open in X and
this is the case if and only if there is a closed set K in Rn with K ′ = K ∩X .

If X ⊆ Rn and Y ⊆ Rm, then any mapping F : X → Y has coordinate
functions F i, i = 1, . . . , m, defined by

F (x) = (F 1(x), . . . , Fm(x))

for every x ∈ X. F is continuous on X if, for every open set V ′ in Y, F−1(V ′)
is open in X and this is the case if and only if each F i : X → R is a
continuous real-valued function on X . If U ⊆ Rn is open, then a continuous
map F : U → Rm of U into Rm is said to be smooth (or C∞) on U if
its coordinate functions F i : U → R, i = 1, . . . , m, have continuous partial
derivatives of all orders and types at every point of U . More generally, if X
is an arbitrary subset of Rn and F : X → Rm, then F is said to be smooth
(or C∞) on X if, for each x ∈ X , there is an open set U in Rn containing
x and a smooth map F̂ : U → Rm such that F̂ | U ∩ X = F | U ∩ X . A
bijection F : X → Y is called a homeomorphism if F and F−1 : Y → X are
both continuous; if F and F−1 are both smooth, then F is a diffeomorphism.
We will leave it to the reader to check that identity maps are smooth and
restrictions and compositions of smooth maps are smooth.

We are, in fact, not particularly interested in arbitrary subsets of Euclidean
spaces, but only in rather special ones. As motivation for the definition to
come we will first work out an example. The n-dimensional sphere Sn is the
subset of Rn+1 consisting of all points p with ‖ p ‖2= 1.

Sn = {p = (p1, . . . , pn, pn+1) ∈ Rn+1 :‖ p ‖2 = 1}

The north pole of Sn is the point N = (0, . . . , 0, 1) and the south pole is
S = (0, . . . , 0,−1). We define two open subsets US = Sn − {N} and UN =
Sn − {S} of Sn and two maps

ϕS : US −→ Rn

and
ϕN : UN −→ Rn.

Geometrically, these maps are quite simple. For each p ∈ US, ϕS(p) is the
intersection with the coordinate hyperplane un+1 = 0 of the straight line in
Rn+1 from N through p (see Figure 4.3.1).
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N

p

S

'S (p)

Fig. 4.3.1

A simple computation gives

ϕS (p) = ϕS (p1, . . . , pn, pn+1) (4.3.1)

=
(

p1

1 − pn+1
, . . . ,

pn

1 − pn+1

)
= (x1, . . . , xn).

Notice that ϕS is clearly smooth on US . It is, in fact, a bijection onto Rn

since it is a simple matter to check that its inverse

ϕ−1
S : Rn −→ US

is given by

ϕ−1
S (x) = ϕ−1

S (x1, . . . , xn) =
1

1+ ‖ x ‖2
(2x1, . . . , 2xn, ‖ x ‖2 −1). (4.3.2)

Since ϕ−1
S is clearly also smooth we find that ϕS is a diffeomorphism of US

onto Rn and so ϕ−1
S is a diffeomorphism of Rn onto US.

Similarly, for each p ∈ UN , ϕN (p) is the intersection with un+1 = 0 of the
straight line in Rn+1 from S through p (see Figure 4.3.2). One finds that

ϕN (p) = ϕN (p1, . . . , pn, pn+1) (4.3.3)

=
(

p1

1 + pn+1
, . . . ,

pn

1 + pn+1

)
= (y1, . . . , yn)
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p

S

'N (p)

Fig. 4.3.2

which is a smooth bijection with inverse

ϕ−1
N : Rn −→ UN

given by

ϕ−1
N (y) = ϕ−1

N (y1, . . . , yn) =
1

1+ ‖ y ‖2
(2y1, . . . , 2yn, 1− ‖ y ‖2) (4.3.4)

and this is also smooth. Consequently, ϕN : UN → Rn and ϕ−1
N : Rn → UN

are also inverse diffeomorphisms.
We think of the diffeomorphism ϕS as identifying US with Rn and thereby

supplying the points of US with n coordinates, called (x1, . . . , xn) above.
Similarly, ϕN provides points in UN with n coordinates (y1, . . . , yn). Notice
that a point p in US ∩ UN = Sn−{N, S} is therefore supplied with two sets of
coordinates. These are related by the coordinate transformations ϕN ◦ ϕ−1

S :
ϕS(US ∩ UN ) → ϕN (US ∩ UN ) and ϕS ◦ ϕ−1

N : ϕN (US ∩ UN) → ϕS(US ∩
UN ). But

ϕS(US ∩ UN ) = ϕN (US ∩ UN ) = Rn − {(0, . . . , 0)}

and it is easy to check that

ϕN ◦ ϕ−1
S (x) = ϕN ◦ ϕ−1

S (x1, . . . , xn) =
1

‖ x ‖2
(x1, . . . , xn) (4.3.5)
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and

ϕS ◦ ϕ−1
N (y) = ϕS ◦ ϕ−1

N (y1, . . . , yn) =
1

‖ y ‖2
(y1, . . . , yn). (4.3.6)

The essential content of all this is that Sn is “locally diffeomorphic to Rn”
in the sense that each point of Sn is contained in an open subset of Sn that
is diffeomorphic to Rn. This is the prototype for our next definition.

Let n and m be positive integers with n ≤ m. A subset M of Rm is called
an n-dimensional smooth manifold (or smooth n-manifold) if, for each p ∈ M ,
there is an open set U in M containing p and a diffeomorphism ϕ : U → ϕ(U)
of U onto an open subset ϕ(U) of Rn. Thus, Sn is an n-dimensional smooth
manifold in Rn+1.

Remark: There is a more general definition of “smooth manifold” that does
not require M to be a subset of a Euclidean space (see Chapter 5 of [N3]),
but this will suffice for our purposes.

Exercise 4.3.1 Show that every open ball in Rn is diffeomorphic to Rn and
conclude that every point in a smooth n-manifold M is contained in an open
subset of M that is diffeomorphic to all of Rn.

The pair (U, ϕ) is called a chart on M . A smooth n-manifold is just a subset
M of some Euclidean space for which there exists a family {(Uα, ϕα) : α ∈ A}
of charts

ϕα : Uα −→ ϕα(Uα) ⊆ Rn

with
⋃

α∈A Uα = M . Each ϕα supplies the points of Uα with n coordinates,
namely, those of its image in ϕα(Uα). If Uα ∩Uβ �= ∅, then a point p ∈ Uα ∩Uβ

is supplied with two sets of coordinates, say,

ϕα (p) = (x1, . . . , xn)

and
ϕβ (p) = (y1, . . . , yn).

These are related by the transformation equations

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ) −→ ϕα(Uα ∩ Uβ)

(x1, . . . , xn) =
(
ϕα ◦ ϕ−1

β

)
(y1, . . . , yn)

and

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) −→ ϕβ(Uα ∩ Uβ)

(y1, . . . , yn) =
(
ϕβ ◦ ϕ−1

α

)
(x1, . . . , xn).

Rn is itself a smooth n-manifold with a global chart (Rn, idRn). The corre-
sponding coordinates are just the standard coordinates u1, . . . , un. The same
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is true of any open subset of Rn. To produce more interesting examples we
will need to develop a technique for manufacturing charts. One particularly
simple case is contained in the following exercise.

Exercise 4.3.2 Let V be an open set in Rn and g : V → R a smooth
real-valued function on V . Show that the graph {(x, g(x)) : x ∈ V } of g in
Rn+1 = Rn ×R is a smooth n-manifold with a global chart.

The sphere Sn is not the graph of a function of n variables, but it can
be covered by open sets each of which is the graph of a function, e.g., the
hemispheres with ui > 0 and ui < 0 for i = 1, . . . , n + 1. These functions
“parametrize” the hemispheres of Sn and the projections back onto the do-
mains provide charts. There are, however, many other ways of parametrizing
regions on the sphere. For example, the map

χ : [0, π] × [0, 2π] −→ R3

defined by
χ(φ, θ) = (sin φ cos θ, sinφ sin θ, cosφ) (4.3.7)

maps into (in fact, onto) the 2-sphere S2 in R3 and parametrizes S2 by
standard spherical coordinates. The geometrical interpretation of φ and θ is

N

f

q

( sin f cos q, sin f sin q, cos f )

S

Fig. 4.3.3

the usual one from calculus (see Figure 4.3.3). Notice that χ is one-to-one on
(0, π) × (0, 2π) and covers all of S2 except the north and south poles and
the longitudinal curve at θ = 0 (or θ = 2π) joining them. On this open set
in S2, χ has an inverse and this has a chance of being a chart. In this case
one can actually calculate this inverse explicitly and show that it is, indeed,
smooth and therefore a chart. To obtain a chart covering the longitudinal
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curve joining the north and south poles (but not N and S themselves) one
can use the same map χ, but on the open set (0, π) × (−π, π). To cover N
and S themselves one simply defines an analogous map, but measuring the
angle φ from a different axis. It is customary to be a bit sloppy and refer to
all of these collectively as “spherical coordinates” on S2.

We would like to apply this same idea in much more generality. Given
a subset M of Rm we will find parametrizations of regions in M and hope
to “invert” them to obtain charts. More often than not, however, such in-
verses are difficult or impossible to compute explicitly. Fortunately, there is a
remarkable result from real analysis that can often relieve one of the responsi-
bility of doing this. We will now state this result in the form most convenient
for our purposes and refer to [Sp1] for details.

If U is an open set in Rn and F : U → Rm is a smooth map we will write
F = (F 1, . . . , Fm) for the coordinate functions of F, DjF

i for the jth partial
derivative of F i and, for each a ∈ U , the Jacobian of F at a will be written

F ′(a) = (Dj F i (a))1 ≤ i ≤ m
1 ≤ j ≤ n

=

⎛⎜⎝D1F
1(a) · · · DnF 1(a)
...

...
D1F

m(a) · · · DnFm(a)

⎞⎟⎠ .

The Inverse Function Theorem applies to the special case in which m = n
and says that when the Jacobian F ′(a) is nonsingular, then F is a local
diffeomorphism near a. More precisely, we have

The Inverse Function Theorem: Let U be an open subset of Rn and
F : U → Rn a smooth map. Suppose a ∈ U and F ′(a) is nonsingular (i.e.,
detF ′(a) �= 0). Then there exist open sets V and W in Rn with a ∈ V ⊆ U
and F (a) ∈ W ⊆ Rn such that the restriction of F to V

F | V : V −→ W

is a diffeomorphism onto W, i.e., a smooth bijection with a smooth inverse

(F | V )−1 : W −→ V.

Moreover, (
(F | V )−1

)′
(F (a)) = (F | V )′ (a) .

Now let us suppose that we did not wish to go to the trouble of inverting
the spherical coordinate parametrization

χ : (0, π) × (0, 2π) −→ R3

χ(φ, θ) = (sin φ cos θ, sin φ sin θ, cosφ)

explicitly on its image in S2. We would like to use the Inverse Function
Theorem to conclude nevertheless that it provides a chart at each point in
the image. Let’s write χ in more familiar notation as
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x = sin φ cos θ

y = sin φ sin θ. (4.3.8)
z = cosφ

Then the Jacobian of χ is given by

χ′(φ, θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂φ

∂x

∂θ

∂y

∂φ

∂y

∂θ

∂z

∂φ

∂z

∂θ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
cosφ cos θ − sin φ sin θ

cosφ sin θ sin φ cos θ

− sin φ 0

⎞⎟⎟⎟⎠ .

We claim that, at each (φ, θ) ∈ (0, π)× (0, 2π), χ′(φ, θ) has maximal rank
(namely, 2). To see this we compute the determinants of the various 2 × 2
submatrices. ∣∣∣∣∣∣∣∣

∂x

∂φ

∂x

∂θ

∂y

∂φ

∂y

∂θ

∣∣∣∣∣∣∣∣ = cosφ sin φ

∣∣∣∣∣∣∣∣
∂x

∂φ

∂x

∂θ

∂z

∂φ

∂z

∂θ

∣∣∣∣∣∣∣∣ = − sin2 φ sin θ

∣∣∣∣∣∣∣∣
∂y

∂φ

∂y

∂θ

∂z

∂φ

∂z

∂θ

∣∣∣∣∣∣∣∣ = sin2 φ cos θ

For φ ∈ (0, π), sin φ �= 0 so, for any (φ, θ) ∈ (0, π) × (0, 2π), at least one
of these is nonzero. Let’s suppose we are at a point a = (φ0, θ0) at which∣∣∣∣∣∣∣∣

∂x

∂φ
(a)

∂x

∂θ
(a)

∂y

∂φ
(a)

∂y

∂θ
(a)

∣∣∣∣∣∣∣∣ �= 0

(the other cases are treated in the same way). Define an open set

Ũ = (0, π) × (0, 2π) ×R
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in R3 and extend χ to a smooth map

χ̃ : Ũ −→ R3

by

χ̃(φ, θ, t) = (x(φ, θ), y(φ, θ), z(φ, θ) + t)
= (sin φ cos θ, sin φ sin θ, cosφ + t).

The Jacobian of χ̃ is ⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂x

∂φ

∂x

∂θ
0

∂y

∂φ

∂y

∂θ
0

∂z

∂φ

∂z

∂θ
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and this is nonsingular at (a, 0) = (φ0, θ0, 0) ∈ R3. Since χ̃(a, 0) = χ(a),
the Inverse Function Theorem implies that there are open sets V and W in
R3 with (a, 0) ∈ V ⊆ Ũ and χ(a) ∈ W ⊆ R3 such that χ̃|V : V → W is
a diffeomorphism. The restriction of this diffeomorphism to V ∩ ((0, π) ×
(0, 2π)×{0}) is therefore a diffeomorphism of an open set in (0, π)× (0, 2π)
(identified with (0, π) × (0, 2π)× {0}) containing a onto the intersection of
the image of χ : (0, π) × (0, 2π) → R3 with W . But this intersection is an
open set in S2 containing χ(a) so the inverse of this last diffeomorphism is a
chart for S2 at χ(a).

The bottom line here is this. The smooth parametrization (4.3.8) has
maximal rank at each point of (0, π) × (0, 2π) and from this alone the
Inverse Function Theorem implies that it can be smoothly inverted on an
open set about any point in (0, π) × (0, 2π), thus providing a chart in S2

near the image of that point. This is a very powerful technique that we will
use repeatedly, but one should not get carried away. Had we not known in
advance that χ : (0, π) × (0, 2π) → R3 is one-to-one, this would in no way
follow from what we have done with the Inverse Function Theorem, which
guarantees invertibility only near a point where the Jacobian is nonsingular.
Of course, since we do know that χ is one-to-one on (0, π)×(0, 2π) our argu-
ments show that its inverse is smooth (a map on S2 is smooth, by definition,
if it is smooth on some open set about each point).

In order to avoid repeating the same argument over and over again we
will now prove a general result that can be applied whenever we need to
manufacture a chart. Thus, let us suppose that M is a subset of some Rm, U
is an open set in Rn, where n ≤ m, and

χ : U −→ Rm
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is a smooth map with χ(U) ⊆ M . Write x1, . . . , xn for the standard
coordinates on Rn and χ1, . . . , χn, . . . , χm for the coordinate functions of χ.
Suppose a ∈ U is a point at which the Jacobian χ′(a) has rank n. Then some
n×n submatrix of χ′(a) is nonsingular and, by renumbering the coordinates
if necessary, we may assume that⎛⎜⎝D1χ

1(a) · · · Dnχ1(a)
...

...
D1χ

n(a) · · · Dnχn(a)

⎞⎟⎠ =
∂(χ1, . . . , χn)
∂(x1, . . . , xn)

(a)

is nonsingular. If m = n, then the Inverse Function Theorem implies that χ
gives a chart at χ(a). Now assume n < m, define Ũ = U ×Rm−n and let

χ̃ : Ũ −→ Rm

be defined by

χ̃(x, t) = χ̃(x1, . . . , xn, t1, . . . , tm−n)
= (χ1(x), . . . , χn(x), χn+1(x) + t1, . . . , χm(x) + tm−n).

Then χ̃ is smooth and its Jacobian at (a, 0) is⎛⎜⎜⎜⎝
∂(χ1, . . . , χn)
∂(x1, . . . , xn)

(a) O

∂(χn+1, . . . , χm)
∂(x1, . . . , xn)

(a) I

⎞⎟⎟⎟⎠ ,

where O is the n × (m − n) zero matrix and I is the (m − n) × (m − n)
identity matrix. This is nonsingular so the Inverse Function Theorem implies
that there exist open sets V and W in Rm with (a, 0) ∈ V ⊆ Ũ and χ̃(a, 0) =
χ(a) ∈ W ⊆ Rm such that χ̃|V : V → W is a diffeomorphism. The restriction
of this diffeomorphism to V ∩ (U × {0}) is therefore a diffeomorphism of an
open set in U (identified with U × {0}) containing a onto the intersection of
the image of χ : U → Rm with W . But this intersection is an open set in M
containing χ(a) so the inverse of this last diffeomorphism is a chart for M
at χ(a). We will refer to a smooth map χ : U → M ⊆ Rm, where U is open
in Rn and χ′(a) is nonsingular for each a in U , as a coordinate patch for M .
Thus, each point in the image χ(U) ⊆ M is contained in an open subset of
M on which χ−1 is a chart for M .

We will have occasion to use a great variety of charts (i.e., coordinate
systems) on the manifolds of interest to us so we will pause now to write out
some of these.

Example 4.3.1 We begin with a simple, but useful generalization of the
spherical coordinate parametrization of S2. We define a map

χ : [0, π] × [0, π] × [0, 2π] −→ R4
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by

χ(φ1, φ2, θ)= (sin φ1 cos φ2, sin φ1 sin φ2 cos θ, sin φ1 sin φ2 sin θ, cos φ1).

Thus,

u1 = sin φ1 cosφ2

u2 = sin φ1 sin φ2 cos θ

u3 = sin φ1 sin φ2 sin θ (4.3.9)
u4 = cosφ1.

A little trigonometry shows that (u1)2 +(u2)2 +(u3)2 +(u4)2 = 1 so χ maps
into (in fact, onto) S3. The Jacobian is⎛⎜⎜⎜⎜⎝

cosφ1 cosφ2 − sinφ1 sin φ2 0

cosφ1 sin φ2 cos θ sinφ1 cosφ2 cos θ − sinφ1 sin φ2 sin θ

cosφ1 sinφ2 sin θ sin φ1 cosφ2 sin θ sin φ1 sin φ2 cos θ

− sinφ1 0 0

⎞⎟⎟⎟⎟⎠ .

Computing the determinants of all of the 3 × 3 submatrices we obtain

sin2 φ1 cosφ1 sinφ2

− sin3 φ1 sin2 φ2 sin θ

sin3 φ1 sin2 φ2 cos θ

− sin3 φ1 sin φ2 cosφ2.

Note that φ1 = 0 gives the point N = (0, 0, 0, 1) and φ1 = π gives S =
(0, 0, 0,−1) and that all of the 3 × 3 determinants vanish at these points.
These determinants also vanish when φ2 = 0 and φ2 = π. For (φ1,, φ2) ∈
(0, π)× (0, π) one of the second or third determinants above is nonzero. We
conclude, in particular, that each point of (0, π)×(0, π)×(0, 2π) is contained
in an open set on which χ is a diffeomorphism onto an open set in S3 and the
inverse of this is a chart on S3 with coordinate functions (φ1,, φ2, θ). As for
S2 one obtains charts at the remaining points of S3 by either replacing (0, 2π)
with (−π, π) or interchanging the roles of some of the standard coordinates
on R4 and these charts are collectively called spherical (or hyper-spherical)
coordinates on S3. An obvious modification provides, for any ρ > 0, spherical
coordinates

u1 = ρ sinφ1 cosφ2

u2 = ρ sinφ1 sinφ2 cos θ

u3 = ρ sinφ1 sinφ2 sin θ (4.3.10)
u4 = ρ cosφ1
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on the sphere
(u1)2 + (u2)2 + (u3)2 + (u4)2 = ρ2

of radius ρ in R4.

Exercise 4.3.3 Show that, for ρ > 0 and for φ1, φ2 and θ exactly as in the
case of S3, (4.3.10) determines a chart at each point of R4 except the origin.

Next we turn to the manifold that will occupy most of our time. It is a 4-
dimensional manifold in R5 and upon it we will build the de Sitter universe.
Various different coordinate systems on it elucidate different aspects of its
geometrical and physical structure so we will spend some time introducing a
number of them.

We consider the subset D of R5 given in terms of standard coordinates
u1, u2, u3, u4, u5 by

(u1)2 + (u2)2 + (u3)2 + (u4)2 − (u5)2 = 1.

Notice that the intersection of D with u5 = 0 is just S3 and, more generally,
setting u5 equal to some constant value u5

0 gives a slice of D that is just a

3-sphere of radius
√

1 + (u5
0)

2.

Exercise 4.3.4 Show that, in fact, D is diffeomorphic to S3 × R. Hint:
Consider the map F : D → S3 ×R given by

F (u1, u2, u3, u4, u5) =
((

1 + (u5)2
)− 1

2 u1,
(
1 + (u5)2

)− 1
2 u2,(

1 + (u5)2
)− 1

2 u3,
(
1 + (u5)2

)− 1
2 u4, u5

)
.

By virtue of the analogy between D and x2 + y2 − z2 = 1 in R3 we picture D
as a “hyperboloid” in R5 whose cross-sections at constant u5 are 3-spheres
rather than circles (see Figure 4.3.4).

Example 4.3.2 Our first parametrization of D is the most natural one in
light of this picture. We view D as a family of 3-spheres, one for each −∞ <
u5 < ∞, with radii evolving hyperbolically and each such sphere parametrized
as in (4.3.10). Specifically, we define

u1 = cosh tG sinφ1 cosφ2

u2 = cosh tG sinφ1 sinφ2 cos θ

u3 = cosh tG sinφ1 sinφ2 sin θ (4.3.11)

u4 = cosh tG cosφ1

u5 = sinh tG
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u5

S3

Fig. 4.3.4

for 0 ≤ φ1 ≤ π, 0 ≤ φ2 ≤ π, 0 ≤ θ ≤ 2π, and −∞ < tG < ∞. Then
(u1)2 + (u2)2 + (u3)2 + (u4)2 − (u5)2 = 1 and the image of the map is all
of D. For any fixed t0G, the slice at u5 = sinh t0G is the spherical coordinate
parametrization of the 3-sphere of radius cosh t0G.

Exercise 4.3.5 Write out the Jacobian of the map (4.3.11) and show that
it has rank 4 on

0 < φ1 < π, 0 < φ2 < π, 0 < θ < 2π, −∞ < tG < ∞

and
0 < φ1 < π, 0 < φ2 < π, −π < θ < π, −∞ < tG < ∞

and so provides a chart at the image of each such point. Note that charts
at points with φ1 = 0, π and φ2 = 0, π can be obtained by interchanging
standard coordinates on R5.

We conclude that each point of D is contained in an open set on which
(φ1, φ2, θ, tG) are local coordinates and for this reason they are often called
global coordinates for D, although the charts themselves are not globally
defined on D. The motivation behind the remaining parametrizations of D
that we intend to introduce now may appear rather obscure, but will become
clear after we have introduced some geometry into our picture.
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Example 4.3.3 The parametrization of D we introduce here differs from
the global coordinates (φ1, φ2, θ, tG) only in that we will replace tG by a
new fourth coordinate tC that we would like to be related to tG by

dtG

dtC
= cosh tG

tC = 0 ⇐⇒ tG = 0

(the reason we would like this will emerge shortly). Separating variables,
integrating the equation and using the initial condition gives

tC = 2 arctan(etG) − π

2
(4.3.12)

so that
−π

2
< tC <

π

2
.

Exercise 4.3.6 Show that

cosh tG =
1

cos tC

for −π
2 < tC < π

2 .

It follows that the mapping (φ1, φ2, θ, tC) → (φ1, φ2, θ, tG) is smooth with
nonsingular Jacobian for −π

2 < tC < π
2 and is therefore a local diffeomor-

phism. Composing this with the global coordinate parametrization of D we
find that each point of D is contained in an open set on which (φ1, φ2, θ, tC)
are coordinates. For reasons that we will describe in Section 4.5 these are
called conformal coordinates.

Example 4.3.4 Next we introduce what are called planar coordinates.
These are denoted (tP , x1, x2, x3) and cover only half of D. They arise
from the mapping

χ : R4 −→ R5

defined by

u1 = x1 etP

u2 = x2 etP

u3 = x3 etP (4.3.13)

u4 = cosh tP − 1
2

((
x1
)2

+
(
x2
)2

+
(
x3
)2)

etP

u5 = sinh tP + 1
2

((
x1
)2

+
(
x2
)2

+
(
x3
)2)

etP .

It is easy to check that (u1)2 + (u2)2 + (u3)2 + (u4)2 − (u5)2 = 1, but in this
case

u4 + u5 = etP
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so only the portion u4 + u5 > 0 of D is covered by the image. For these,
tP = ln(u4 + u5) and so

x1 =
u1

u4 + u5

x2 =
u2

u4 + u5
(4.3.14)

x3 =
u3

u4 + u5

tP = ln(u4 + u5).

We will denote by D+ this portion of D. The tP = t0P slices of D+ are the
intersections with D+ of the hyperplanes u4 + u5 = et0P (see Figure 4.3.5).

u4 + u5 = eto
P

u4 + u5  = 0

u5

Fig. 4.3.5

Exercise 4.3.7 Compute the Jacobian of (4.3.13) and show that it has rank
4 at each point of R4.

Thus, each point of D+ is contained in an open subset of D+ on which
(x1, x2, x3, tP ) are coordinates.



4.3 Mathematical Machinery 217

Example 4.3.5 Our final parametrization of D provides it with what are
called hyperbolic coordinates (φ, θ, ψ, tH). We will leave the details to the
reader.

Exercise 4.3.8 Define a smooth map of R4 into R5 by

u1 = cosφ sinh tH sinh ψ

u2 = sin φ cos θ sinh tH sinh ψ

u3 = sin φ sin θ sinh tH sinh ψ (4.3.15)
u4 = cosh tH

u5 = sinh tH coshψ

(a) Verify that (u1)2 + (u2)2 + (u3)2 + (u4)2 − (u5)2 = 1.
(b) Let t0H be a constant and consider the tH = t0H slice of D. Show that if

t0H = 0 this slice is a point and if t0H �= 0 the points on the slice have
u4 = cosh t0H and

(u1)2 + (u2)2 + (u3)2 − (u5)2 = − sinh2 t0H .

(c) Let t0H and ψ0 be two nonzero constants and consider the set of points in
D with tH = t0H and ψ = ψ0. Show that u4 and u5 are constant and φ
and θ parametrize a 2-sphere in (u1, u2, u3)-space.

(d) Compute the Jacobian of (4.3.15) and show that it is nonsingular for
0 < φ < π, 0 < θ < 2π, ψ �= 0, and tH �= 0.

With these examples in hand we now return to the general development.
Each point on a smooth surface in R3 has associated with it a 2-dimensional
“tangent plane” consisting of all the velocity vectors to all smooth curves
in the surface through that point. The analogous construction on a smooth
n-manifold M in Rm proceeds as follows. We will write u1, . . . , um for the
standard coordinates in Rm and use x1, . . . , xn for standard coordinates in
Rn. If I ⊆ R is a (nondegenerate) interval, then a continuous map

α : I −→ M

α(t) = (u1(t), . . . , um(t))

is called a curve in M . α is said to be smooth if each ui(t), i = 1, . . . , m, is
C∞ and if α’s velocity vector (or tangent vector)

α′(t) =
(

du1

dt
, . . . ,

dum

dt

)
is nonzero for each t in I. Useful examples of smooth curves can be con-
structed from a coordinate patch

χ : U −→ M ⊆ Rm

χ(x1, . . . , xn) = (u1(x1, . . . , xn), . . . , um(x1, . . . , xn)).
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For each i = 1, . . . , n, the ith coordinate curve of χ is obtained by holding
all xj , j �= i, fixed (so t = xi); its velocity vector is denoted

χi =
∂χ

∂xi
=
(

∂u1

∂xi
, . . . ,

∂um

∂xi

)
.

If p = χ
(
x1

0, . . . , x
n
0

)
we will write χi(p) rather than the more accurate

χi

(
x1

0, . . . , xn
0

)
and adopt the usual custom of picturing χi(p) with its tail

at p in Rm (Figure 4.3.6). The χi are called coordinate velocity vectors corre-
sponding to χ. Being columns of the Jacobian these are linearly independent
at each p ∈ χ(U) and so span an n-dimensional linear subspace of Rm called
the tangent space to M at p and denoted

Tp(M) = Span {χ1(p), . . . , χn(p)}.

�−1( p)

�j( p)

�i( p)

�(U )

p

IRn

xi

�

U

xj

M ⊆ IRm

Fig. 4.3.6

To see that the subspace Tp(M) does not depend on the particular coordinate
patch χ with which it is defined we will obtain a more intrinsic description
of it. Let α : I → M be a smooth curve in M that passes through p at
t = t0 (α(t0) = p). By continuity of α there is some subinterval J of I
containing t0 which α maps entirely into the image χ(U) of the coordinate
patch χ. Then χ−1 ◦α is a smooth curve t → (x1(t), . . . , xn(t)) in U so α can
be written

α(t) = χ(x1(t), . . . , xn(t)), t ∈ J.

By the chain rule,

α′(t0) =
dx i

dt
(t0)χi(p). (4.3.16)

Thus, the velocity vector to every smooth curve in M through p is in Tp(M).
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Exercise 4.3.9 Show that, conversely, every nontrivial linear combina-
tion of χ1(p), . . . , χn(p) is the velocity vector of some smooth curve in M
through p.

Thus, Tp(M) can be identified with the set of velocity vectors to smooth
curves in M through p (together with the zero vector which one can think
of as the velocity vector to the, admittedly nonsmooth, constant curve in
M through p). In particular, the coordinate velocity vectors for any other
coordinate patch

χ̃ : Ũ −→ M

with p ∈ χ̃(Ũ) lie in Tp(M) and so span the same subspace of Rm.

Exercise 4.3.10 Let x1, . . . , xn and x̃1, . . . , x̃n denote the coordinates in U
and Ũ , respectively, and χ : U → M and χ̃ : Ũ → M coordinate patches
with χ(U) ∩ χ̃(Ũ) �= ∅. Then on χ−1(χ(U) ∩ χ̃(Ũ)) the map χ̃−1 ◦χ gives
x̃1, . . . , x̃n as functions of x1, . . . , xn

x̃i = x̃i(x1, . . . , xn), i = 1, . . . , n,

and
χ(x1, . . . , xn) = χ̃(x̃1(x1, . . . , xn), . . . , x̃n(x1, . . . , xn)).

Show that, at each point of χ−1(χ(U) ∩ χ̃(Ũ )),

χi =
∂x̃j

∂xi
χ̃j , i = 1, . . . , n.

Show, moreover, that if p ∈ χ(U) ∩ χ̃(Ũ) and v ∈ Tp(M) with v = viχi(p)
and v = ṽj χ̃j(p), then

ṽj =
∂x̃j

∂xi
(χ−1(p))vi, j = 1, . . . , n.

The elements of Tp(M) are called tangent vectors to M at p.
Since we have determined that the event world is “locally like M” at each

of its points we elect to model it by a smooth 4-manifold whose tangent spaces
are all provided with the structure of Minkowski spacetime, i.e., a Lorentz
inner product. A smooth assignment of an inner product to each tangent
space of a manifold is called a “metric” on M (not to be confused with the
term used in topology for a “distance function”, although there are some
connections). More precisely, a metric (or metric tensor) g on a manifold M
is an assignment to each tangent space Tp(M), p ∈ M , of an inner product
gp = 〈 , 〉p such that the component functions gij defined by

gij (x1, . . . , xn) = gp(χi(p), χj(p)) = 〈χi(p), χj(p)〉p

are smooth on U for each coordinate patch χ : U → M . If each inner
product gp has index zero, g is called a Riemannian metric on M ; if each
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gp has index 1, then g is a Lorentzian (or Lorentz ) metric. A spacetime is
a smooth 4-manifold on which is defined a Lorentzian metric. In Euclidean
space Rn, for example, one can take the identity map χ = idRn as a global
chart so that χ1, . . . , χn are constant and equal to the standard basis vectors
e1, . . . , en for Rn. Each Tp(Rn) can therefore be identified with Rn and one
can define a Riemannian metric g on Rn by simply taking gp = 〈 , 〉 for
each p ∈ Rn. Then gij (p) = δij , i, j = 1, . . . , n, for each p. On R4 one can
define a Lorentzian metric g by specifying that the inner product gp on each
Tp(R4) = R4 satisfies gp (χi(p), χj(p)) = gp(ei, ej) = ηij , i, j = 1, 2, 3, 4. The
resulting spacetime is often denoted R3,1 although, morally at least, it is just
Minkowski spacetime M.

Exercise 4.3.11 Suppose M is a manifold and g is a metric defined on
M . Let χ : U → M and χ̃ : Ũ → M be coordinate patches for M with
χ(U)∩ χ̃(Ũ) �= ∅ and with coordinates x1, . . . , xn on U and x̃1, . . . , x̃n on Ũ .
Show that

g̃ij =
∂xk

∂x̃i

∂xl

∂x̃j
gkl , i, j = 1, . . . , n.

and conclude that, if the gkl are smooth, then so are the g̃kl . Thus, at any
point it is enough to check smoothness in a single coordinate patch.

The examples of interest to us here (but certainly not all interesting ex-
amples) arise in a very simple way. If M is an n-manifold in Rm, then one
can endow Rm with various inner products and simply “restrict” these to
each Tp(M). We will illustrate the idea first for S2 ⊆ R3.

Consider a spherical coordinate parametrization

χ(φ, θ) = (sinφ cos θ, sin φ sin θ, cosφ)

of S2(x1 = φ, x2 = θ). The coordinate velocity vectors (columns of the
Jacobian) are

χ1 = χφ = (cosφ cos θ, cosφ sin θ, − sinφ)

and
χ2 = χθ = (− sin φ sin θ, sin φ cos θ, 0).

At each point in the image of χ these are tangent vectors which we can regard
as vectors in R3 and compute the R3-inner products

〈χ1, χ1〉 = cos2 φ cos2 θ + cos2 φ sin2 θ + sin2 φ = 1
〈χ2, χ2〉 = sin2 φ sin2 θ + sin2 φ cos2 θ = sin2 φ

〈χ1, χ2〉 = 〈χ2, χ1〉 = 0.

Thus, if we define a (Riemannian) metric g on S2 by taking gp(v, w) = 〈v, w〉
for each p ∈ S2 and all v, w ∈ Tp(S2) ⊆ R3 the components gij , i, j = 1, 2,
are given by
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g11 g12

g21 g22

)
=
(

1 0
0 sin2 φ

)
(4.3.17)

and these are certainly smooth.

Exercise 4.3.12 Define a Riemannian metric on S3 by restricting the usual
Euclidean inner product 〈 , 〉 on R4 to each Tp(S3), p ∈ S3. Show that the
metric components gij , i, j = 1, 2, 3, relative to the spherical coordinates
x1 = φ1, x2 = φ2, x3 = θ given by (4.3.9) are⎛⎝g11 g12 g13

g21 g22 g23

g31 g32 g33

⎞⎠ =

⎛⎝1 0 0
0 sin2 φ1 0
0 0 sin2 φ1 sin2 φ2

⎞⎠ .

To obtain examples of Lorentz metrics in this way we will need to be-
gin with an inner product of index one on some Rm to restrict to a man-
ifold M ⊆ Rm. This can be done in any dimension, but we will restrict
our attention to the one example we would like to understand, that is, the
de Sitter spacetime. For this we begin with the 5-dimensional analogue of
Minkowski spacetime. Specifically, on R5 with standard coordinate functions
u1, . . . , u4, u5 we introduce an inner product denoted ( , ) and defined by

(p, q) = ((p1, . . . , p4, p5), (q1, . . . , q4, q5))
= p1q1 + · · · + p4q4 − p5q5

= ηij p
iqj ,

where

ηij =

⎧⎪⎨⎪⎩
1 , i = j = 1, 2, 3, 4

−1 , i = j = 5
0 , i �= j

(using η for this as well as the corresponding matrix for M should lead to no
confusion since the context will always indicate which is intended). We will
denote by M5 the real vector space R5 with this inner product. Notice that
the manifold D in R5 is just the set of points p in M5 with

(p, p) = 1.

We now appropriate for M5 all of the basic terminology and notation in-
troduced for Minkowski spacetime, e.g., v ∈ M5 is spacelike if (v, v) > 0,
timelike if (v, v) < 0 and null if (v, v) = 0, the null cone CN (x0) at any
x0 ∈ M5 is the set CN(x0) = {x ∈ M5 : (x−x0, x−x0) = 0}, the time cone
at x0 is CT (x0) = {x ∈ M5 : (x − x0, x − x0) < 0}, and so on. Indeed, all of
the basic geometry of M is completely insensitive to the number of “spatial
dimensions” and so generalizes immediately to M5. Use the following few
exercises as an opportunity to persuade yourself that this is true.
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Exercise 4.3.13 Prove that two nonzero null vectors v and w in M5 are
orthogonal if and only if they are parallel.

Exercise 4.3.14 Let {e1, . . . , e4, e5} be any orthonormal basis for M5

((ei, ej) = ηij ). Show that if v = viei is timelike and w = wjej is either
timelike or null and nonzero, then either

(a) v5w5 > 0, in which case (v, w) < 0, or
(b) v5w5 < 0, in which case (v, w) > 0.

With this last exercise one can introduce time orientations (future-directed
and past-directed) for timelike and nonzero null vectors in M5 in precisely
the same way as it was done in Minkowski spacetime (Section 1.3).

Exercise 4.3.15 Prove that the sum of any finite number of vectors in M5,
all of which are timelike or null and all future-directed (resp., past-directed)
is timelike and future-directed (resp., past-directed) except when all of the
vectors are null and parallel, in which case the sum is null and future-directed
(resp., past-directed).

The causality relations � and < are defined on M5 just as they are on
M (x � y ⇐⇒ y − x is timelike and future-directed and x < y ⇐⇒ y − x is
null and future-directed) and all of their basic properties are proved in the
same way.

Exercise 4.3.16 Show that, for distinct points x and y in M5,

x < y if and only if

{
x /� y and
y� z =⇒ x � z

.

An orthogonal transformation of M5 is a linear transformation L :M5 →
M5. satisfying (Lx ,Ly) = (x, y) for all x, y ∈ M5 and these have matri-
ces Λ =

(
Λi

j

)
i,j=1,2,3,4,5

relative to orthonormal bases defined exactly as in
M (Section 1.2) which satisfy ΛT ηΛ = η, where η = (ηij )i,j=1,2,3,4,5. Those
which satisfy, in addition, Λ5

5 ≥ 1 are called orthochronous and these pre-
serve the time orientation of all timelike and nonzero null vectors and so pre-
serve the causality relations (x � y ⇐⇒ Lx � Ly and x < y ⇐⇒ Lx < Ly).
Just as in M, ΛT ηΛ = η implies det Λ = ±1 and we single out those with
detΛ = 1 to refer to as proper. The collection

L5 =
{
Λ =
(
Λi

j

)
i,j=1,2,3,4,5

: ΛT ηΛ = η, Λ5
5 ≥ 1, detΛ = 1

}
is the analogue in M5 of the proper, orthochronous Lorentz group L.

And so the story goes. Essentially everything purely geometrical that we
have said about M and L is equally true of M5 and L5. Indeed, even
Zeeman’s Theorem 1.6.2 remains true for M5. More precisely, a bijection
F : M5 → M5 satisfying x < y if and only if F (x) < F (y) (or, equivalently,
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x � y if and only if F (x) � F (y)) is called a causal automorphism and one
proves, essentially as in Section 1.6, that any such is the composition of an
orthochronous orthogonal transformation of M5, a translation of M5 and
a dilation of M5. We will not belabor this point any further here, but will
simply leave it to the skeptical reader to check that when we need a result
proved for M to be true in M5, it is.

Of course, something is lost in moving from M to M5 and that is the
physical interpretation (the event world is, to the best of our knowledge,
4-dimensional, not 5-dimensional). To return to physics we must return to
D ⊆ M5.

Our intention is to do for D ⊆ M5 what we did for S2 ⊆ R3 and S3 ⊆ R4,
that is, restrict the inner product of the ambient space to each tangent space
of the manifold, thereby defining a metric.

Remark: The fact that we actually get a metric in this way is not as obvious
as it was in the positive definite case. The restriction of ( , ) to each Tp(D)
is surely bilinear and symmetric, but is not obviously nondegenerate nor is
it obviously of index one. That it is, in fact, nondegenerate and of index one
will follow from the calculations we are about to perform.

We will describe the metric components first in global coordinates (x1 = φ1,
x2 = φ2, x3 = θ, x4 = tG). The coordinate velocity vectors are, from
Example 4.3.2,

χ1 = χφ1 = (cosh tG cosφ1 cosφ2, cosh tG cosφ1 sinφ2 cos θ,

cosh tG cosφ1 sinφ2 sin θ, − cosh tG sin φ1, 0)

χ2 = χφ2 = (− cosh tG sin φ1 sin φ2, cosh tG sin φ1 cosφ2 cos θ,

cosh tG sin φ1 cosφ2 sin θ, 0, 0)

χ3 = χθ = (0, − cosh tG sin φ1 sin φ2 sin θ,

cosh tG sin φ1 sinφ2 cos θ, 0, 0)

χ4 = χtG = (sinh tG sin φ1 cosφ2, sinh tG sinφ1 sinφ2 cos θ,

sinh tG sin φ1 sin φ2 sin θ, sinh tG cosφ1, cosh tG).

Thus, for example,

g11 = (χ1, χ1) = cosh2 tG cos2 φ1 cos2 φ2 + cosh2 tG cos2 φ1 sin2 φ2 cos2 θ

+ cosh2 tG cos2 φ1 sin2 φ2 sin2 θ + cosh2 tG sin2 φ1 − 0

= cosh2 tG [cos2 φ1 cos2 φ2 + cos2 φ1 sin2 φ2 + sin2 φ1]

= cosh2 tG

g44 = (χ4, χ4) = sinh2 tG sin2 φ1 cos2 φ2 + sinh2 tG sin2 φ1 sin2 φ2 cos2 θ

+ sinh2 tG sin2 φ1 sin2 φ2 sin2 θ + sinh2 tG cos2 φ1

− cosh2 tG



224 4 Prologue and Epilogue: The de Sitter Universe

= sinh2 tG
[
sin2 φ1 cos2 φ2 + sin2 φ1 sin2 φ2 cos2 θ

+ sin2 φ1 sin2 φ2 sin2 θ + cos2 φ1

]
− cosh2 tG

= sinh2 tG − cosh2 tG

= −1

g23 = (χ2, χ3) = 0 − cosh2 tG sin2 φ1 sin φ2 cosφ2 sin θ cos θ

+ cosh2 tG sin2 φ1 sin φ2 cosφ2 sin θ cos θ

= 0

Exercise 4.3.17 Compute the rest and show that the only nonzero
gij , i, j = 1, 2, 3, 4, are

g11 = cosh2 tG

g22 = cosh2 tG sin2 φ1

g33 = cosh2 tG sin2 φ1 sin2 φ2

g44 = −1

Notice that the restriction of the M5 inner product does, indeed, define a
Lorentz metric on D since, at each point p ∈ D, there is a basis e1, e2, e3, e4

for the tangent space Tp(D) satisfying g(ei, ej) = ηij , i, j = 1, 2, 3, 4. Indeed,
one can take e4 = χ4(p) and let e1, e2, e3 be the normalized versions of
χ1, χ2, χ3, i.e.,

e1 =
1

cosh tG
χ1(p)

e2 =
1

cosh tG sin φ1
χ2(p)

e3 =
1

cosh tG sin φ1 sin φ2
χ3(p).

With this Lorentz metric, D is called the de Sitter spacetime and will be
denoted dS.

Before recording more examples we will introduce a more traditional and
generally more convenient means of displaying the metric components. We
will illustrate the idea first for the 2-sphere S2. To facilitate the notation we
will (temporarily) denote the standard spherical coordinates φ and θ on S2

by x1 and x2, respectively.

χ : (0, π) × (0, 2π) −→ S2

χ(x1, x2) = (sin(x1) cos(x2), sin(x1) sin(x2), cos(x1))
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Let α : [a, b] → S2 be a smooth curve in S2 given by

α(t) = χ(x1(t), x2(t))
= (sin(x1(t)) cos(x2(t)), sin(x1(t)) sin(x2(t)), cos(x1(t))).

For each t in [a, b], the Chain Rule gives

α′(t) =
dx 1

dx
χ1(x1(t), x2(t)) +

dx 2

dt
χ2 (x1(t), x2(t))

=
dx i

dt
χi(x1(t), x2(t)).

The Riemannian metric g we have defined on S2 allows us to compute the
squared magnitude of α′(t) as follows.

g(α′(t), α′(t)) = g

(
dx i

dt
χi,

dx j

dt
χj

)

=
dx i

dt
dx j

dt
g(χi, χj)

= gij
dx i

dt
dx j

dt

The square root of g(α′(t), α′(t)) is the curve’s “speed” which, when inte-
grated from a to t gives the arc length s = s(t). Consequently,(

ds
dt

)2

= gij
dx i

dt
dx j

dt

which it is customary to write more succinctly in “differential form” as

ds2 = gij dx i dx j .

Reverting to φ and θ and substituting the values of gij that we have computed
((4.3.17)) gives

ds2 = dφ2 + sin2 φdθ2. (4.3.18)

This is generally called the line element of S2. We regard it as a horizontal
display of the metric components g11 = 1, g22 = sin2 φ, g12 = g21 = 0 and a
convenient way to remember how to compute arc lengths.

Remark: The symbols in (4.3.18) can all be given precise meanings in the
language of differential forms, but we will have no need to do so.

The same notational device is employed for any Riemannian or Lorentz
metric. For example, writing x1 = x, x2 = y, x3 = z for the standard
coordinates on R3 one has

ds2 = dx 2 + dy2 + dz 2
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(g11 = g22 = g33 = 1 and gij = 0 for i, j = 1, 2, 3, i �= j), whereas, in spherical
coordinates on R3,

ds2 = dρ2 + ρ2(dφ2 + sin2 φdθ2). (4.3.19)

For R3,1 it would be

ds2 = (dx 1)2 + (dx 2)2 + (dx 3)2 − (dx 4)2, (4.3.20)

while for S3 with spherical coordinates φ1, φ2, θ,

ds2 = dφ2
1 + sin2 φ1

(
dφ2

2 + sin2 φ2dθ2
)
. (4.3.21)

Finally, for de Sitter spacetime in global coordinates, Exercise 4.3.17 gives

ds2 = cosh2 tG
(
dφ2

1 + sin2 φ1

(
dφ2

2 + sin2 φ2dθ2
))

− dt2
G. (4.3.22)

Exercise 4.3.18 Show that the line element for de Sitter spacetime, written
in conformal coordinates (φ1, φ2, θ, tC) is

ds2 =
1

cos2 tC

(
dφ2

1 + sin2 φ1

(
dφ2

2 + sin2 φ2dθ2
)
− dt2

C

)
.

Exercise 4.3.19 Show that the line element for de Sitter spacetime, written
in planar coordinates (x1, x2, x3, tP ) is ds2 = e2tP ((dx 1)2 + (dx 2)2 +
(dx 3)2) − dt2

P , or, using spherical coordinates for x1, x2, x3,

ds2 = e2tP (dρ2 + ρ2(dφ2 + sin2 φdθ2)) − dt2
P .

Exercise 4.3.20 Show that the line element for de Sitter spacetime, written
in hyperbolic coordinates (φ, θ, ψ, tH) is

ds2 = sinh2 tH(dψ2 + sinh2 ψ(dφ2 + sin2 φdθ2)) − dt2
H .

One should notice, however, that in the case of dS (or any other Lorentz
manifold) the interpretation of the line element requires some care. Just as
in Minkowski spacetime, a curve in dS might well have a velocity vector that
is null at each point so that gij

dx i

dt
dx j

dt is zero everywhere and its “arc length”

is zero. If the velocity vector is timelike everywhere, then
(
ds
dt

)2
= gij

dx i

dt
dx j

dt

would make ds
dt pure imaginary. To exercise the proper care we mimic our

definitions for M.
If M is a spacetime, then a smooth curve α : I → M is said to be spacelike,

timelike, or null if its tangent vector α′(t) satisfies gα(t)(α′(t), α′(t)) > 0,
gα(t)(α′(t), α′(t)) < 0, or gα(t)(α′(t), α′(t)) = 0 for each t ∈ I. If I has
an endpoint t0 we require that these conditions be satisfied there as well in
the sense that any smooth extension of α to an open interval about t0 has a
tangent vector at t0 satisfying the required condition. Notice that in dS this



4.3 Mathematical Machinery 227

simply amounts to the requirement that each α′(t), regarded as a vector in
M5 is spacelike, timelike or null in M5. We will say that a timelike or null
curve in dS is future-directed (resp., past-directed) if each α′(t), regarded as
a vector in M5, is future-directed (resp., past-directed).

Remark: The notion of a spacetime, as we have defined it, is very general
and there are examples in which it is not possible to define unambiguous
notions of future-directed and past-directed (see [HE], page 130). This is
essentially a sort of “orientability” issue analogous to the fact that, for some
surfaces in R3 such as the Möbius strip, it is impossible to define a continuous
nonzero normal vector field over the entire surface. We care only about M
and dS and so the issue will not arise for us.

A future-directed timelike curve in dS is called a timelike worldline and we
ascribe to such a curve the same physical interpretation we did in M (the
worldline of some material particle). Just as in M one can define the proper
time length L(α) of such a curve α : [a, b] → dS by

L(α) =
∫ b

a

√
−(α′(t), α′(t)) dt

and a proper time parameter τ = τ(t) along α by

τ = τ(t) =
∫ t

a

√
−(α′(u), α′(u)) du .

We will go even further and induce causality relations on dS from those on
M5. Specifically, for distinct points x and y in dS we will define x � y if and
only if y − x is timelike and future-directed in M5 and x < y if and only if
y − x is null and future-directed in M5.

Remark: Although we will have no need of the result, we point out that,
with these definitions, Zeeman’s Theorem 1.6.2 remains true in dS in the
following sense. A bijection F : dS → dS that preserves < in both directions
also preserves � in both directions and is, in fact, the restriction to dS of
some orthochronous orthogonal transformation of M5 (see [Lest]).

Let us think for a moment about the sort of timelike curve in dS that
should model the worldline of a material particle that is “free”, i.e., in free
fall. As we saw in Section 4.2, at each point on such a worldline there is a
local inertial frame (freely falling elevator) from which it can be observed
and that, relative to such a frame, the worldline will appear (approximately)
“straight.” Curves in a manifold with (Riemannian or Lorentz) metric that
are “locally straight” are called geodesics. There are various approaches to the
formulation of a precise definition, but we will follow a path that is adapted
to the simplicity of the examples we wish to consider. The motivation for our
approach is most easily understood in the context of smooth surfaces in R3

so we will first let the reader work through some of this.
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Exercise 4.3.21 Let M be a smooth surface (i.e., 2-manifold) in R3 with
Riemannian metric g obtained by restricting the R3-inner product 〈 , 〉 to each
tangent space. Let χ : U → M ⊆ R3 be a coordinate patch for M and let
α = α(t) be a smooth curve in M whose image is contained in χ(U). At each
t the tangent vector α′(t) is, by definition, in Tα(t)(M), but the acceleration
α′′(t) in general will not lie in Tα(t)(M) since it will have both tangential and
normal components, i.e.,

α′′(t) = α′′
tan(t) + α′′

nor(t),

where α′′
tan(t) ∈ Tα(t)(M) and 〈α′′

nor(t), v〉 = 0 for every v ∈ Tα(t)(M).

(a) Write α(t) = χ(x1(t), x2(t)) and show that

α′′(t) =
d2xi

dt2 χi(x1(t), x2(t)) +
dx i

dt
dx j

dt
χij (x1(t), x2(t)),

where

χij =
∂

∂xj
χi =

(
∂2u1

∂xj∂xi
,

∂2u2

∂xj∂xi
,

∂2u3

∂xj∂xi

)
.

(b) Show that the cross product χ1 × χ2 is nonzero at each point of χ(U)
and so N = χ1 × χ2/‖χ1 × χ2‖ is a unit normal vector to each point
of χ(U). Note: This normal vector field generally exists only locally on
χ(U). There are surfaces (such as the Möbius strip) on which it is not
possible to define a continuous, nonvanishing field of normal vectors.

(c) Resolve χij into tangential and normal components to obtain

χij = Γr
ijχr + Lij N,

where 〈χij , χk〉 = Γr
ij grk and Lij = 〈χij , N〉.

(d) Define Γr,ij = grlΓl
ij and show that

∂gij

∂xk
= Γi,jk + Γj,ik . (4.3.23)

(e) Denote by (gij ) the inverse of the matrix (gij ) and show that

Γr
ij =

1
2
grk

(
∂gik

∂xj
+

∂gjk

∂xi
− ∂gij

∂xk

)
. (4.3.24)

Hint: Permute the indices i j k in (4.3.23) to obtain expressions for each
of the derivatives in (4.3.24) and combine them using the symmetries
Γi,jk = Γi,kj , i, j, k = 1, 2.
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(f) Conclude that

α′′
tan(t) =

(
d2xr

dt2
+ Γr

ij (x
1(t), x2(t))

d xi

dt
d xj

dt

)
χr(x1(t), x2(t))

and
α′′

nor(t) = Lij (x1(t), x2(t)) N(x1(t), x2(t)).

If, in Exercise 4.3.21, t = s is the arc length parameter for α, then α′′(s) is
the curvature vector of α. One regards α′′

nor as that part of α’s curvature that
it must possess simply by virtue of the fact that it is constrained to remain
in M , whereas α′′

tan is the part α contributes on its own by “curving in M .”
Curves with α′′

tan = 0 are thought to “curve only as much as they must to
remain in M” and so are the closest thing in M to a straight line (we will
see shortly that in S2 these are just constant speed parametrizations of great
circles, i.e., intersections of S2 with planes through the origin in R3).

There is only one obstacle to carrying out the entire calculation in
Exercise 4.3.21 for any χ(U) on an n-manifold M in Rm and that is ex-
istence of the unit normal field N . In Rm, m > 3, there is no natural
concept of a cross product and, in any case, the tangent space Tp(M) is
not spanned by just two vectors. For the simple examples of interest to us,
however, the obstacle is easily overcome. At each point p on the n-sphere
Sn ⊆ Rn+1, for instance, the vector p in Rn+1 is itself a unit normal vector
to Tp(Sn). Indeed, if α is any smooth curve in Sn through p at t = t0, then
α(t) = (u1(t), . . . , un+1(t)) implies

(u1(t))2 + · · · + (un+1(t))2 = 1

so

2u1(t)
du1

dt
+ · · · + 2un+1(t)

dun+1

dt
= 0

which, at t = t0, gives
〈p, α′(t0)〉 = 0.

Similarly, if p ∈ dS ⊆ M5 and α(t) = (u1(t), · · · , u5(t)) is a smooth curve in
dS with α(t0) = p, then

(u1(t))2 + · · · + (u4(t))2 − (u5(t))2 = 1

gives
(p, α′(t0)) = 0

so p is a unit normal vector to Tp(dS ) (“unit” and “normal” now refer to the
Lorentz metric of dS, of course).
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In either of these cases the calculations in Exercise 4.3.21 (with N replaced
by N(p) = p) can be repeated verbatim to resolve the acceleration α′′(t) of
a smooth curve into tangential and normal components with

α′′
tan(t) =

(
d2xr

d t2
+ Γr

ij

d xi

dt
d xj

dt

)
χr (4.3.25)

in any coordinate patch, where

Γr
ij =

1
2
grk

(
∂gik

∂xj
+

∂gjk

∂xi
− ∂gij

∂xk

)
(4.3.26)

(these are called the Christoffel symbols of the metric in the given coordinate
system).

Those curves for which α′′
tan(t) = 0 for each t are called geodesics and they

satisfy
d2xr

dt2 + Γr
ij

d xi

dt
d xj

dt
= 0 (4.3.27)

in any coordinate patch.

Remark: Geodesics can be introduced in many ways and in much more
general contexts, but the end result is always the system (4.3.27) of ordinary
differential equations. Notice that equations (4.3.27) are trivially satisfied by
any constant curve α(t) = p ∈ M . Even though such constant curves are not
smooth in our sense we would like them to “count” and so we will refer to
them as degenerate geodesics.

To get some sense of the complexity of the equations (4.3.27) we should
write them out in the case of most interest to us. Thus, we consider de Sitter
spacetime dS in global coordinates x1 = φ1, x2 = φ2, x3 = θ, x4 = tG. From
Exercise 4.3.17,

(gij ) = diag(cosh2 tG, cosh2 tG sin2 φ1, cosh2 tG sin2 φ1 sin2 φ2, −1)

so (gij ) is the diagonal matrix whose entries are the reciprocals of these.
Because both of these are diagonal and independent of x3 = θ, the Christoffel
symbols (4.3.26) simplify a bit to

Γr
ij =

1
2
grr

(
∂gir

∂xj
+

∂gjr

∂xi
− ∂gij

∂xr

)
,

where there is no sum over r, all x3-derivatives vanish and all gkl with k �= l
are zero. We compute a few of these.

Γ4
11 =

1
2
g44

(
0 + 0 − ∂g11

∂x4

)
=

1
2
(−1)(−2 cosh tG sinh tG)

= cosh tG sinh tG
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Γ1
22 =

1
2
g11

(
0 + 0 − ∂g22

∂x1

)
=

1
2

(
1

cosh2 tG

)
(cosh2 tG(−2 sinφ1 cosφ1))

= − sinφ1 cosφ1

Γ3
43 =

1
2
g33

(
0 +

∂g33

∂x4
− 0
)

=
1
2

(
1

cosh2 tG sin2 φ1 sin2 φ2

)
·(

2 cosh tG sinh tG sin2 φ1 sin2 φ2

)
=

sinh tG
cosh tG

Γ2
21 =

1
2
g22

(
∂g22

∂x1
+ 0 − 0

)
=

1
2

(
1

cosh2 tG sin2 φ1

)
·

cosh2 tG(2 sinφ1 cosφ1)

=
cosφ1

sinφ1
.

Exercise 4.3.22 Show that the only nonvanishing Christoffel symbols for
dS in global coordinates are as follows.

Γ4
11 = cosh tG sinh tG

Γ4
22 = cosh tG sinh tG sin2 φ1

Γ4
33 = cosh tG sinh tG sin2 φ1 sin2 φ2

Γi
4i = Γi

i4 =
sinh tG
cosh tG

, i = 1, 2, 3

Γ1
22 = − sinφ1 cosφ1

Γ1
33 = − sinφ1 cosφ1 sin2 φ2

Γ2
33 = − sinφ2 cosφ2

Γ2
21 = Γ2

12 =
cosφ1

sinφ1
= Γ3

31 = Γ3
13

Γ3
32 =

cosφ2

sinφ2
= Γ3

23.

With these one can write out the geodesic equations (4.3.27) for r = 1, 2, 3, 4.
For example, if r = 1,

d2x1

dt2
+ Γ1

ij

dxi

dt
dxj

dt
= 0

becomes

d2x1

dt2
+ Γ1

22

(
dx2

dt

)2

+ Γ1
33

(
dx3

dt

)2

+ 2Γ1
41

dx4

dt
dx1

dt
= 0,
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or

d2φ1

dt2
− sin φ1 cosφ1

(
dφ2

dt

)2

− sin φ1 cosφ1 sin2 φ2

(
dθ

dt

)2

+ 2
sinh tG
cosh tG

dtG
dt

dφ1

dt
= 0.

Exercise 4.3.23 Write out the r = 2, 3, and 4 equations to obtain a system
of four coupled second order ordinary differential equations for the geodesics
of dS.

The problem of explicitly solving the geodesic equations can be formidable.
However, a few basic facts about systems of ordinary differential equations
(and some inspired guesswork) will relieve us of this burden. For instance,
(4.3.27) is nothing more that a system of second order ordinary differential
equations for the functions xi(t) so that standard existence and uniqueness
theorems for such systems imply that, for any given initial position α(t0) and
initial velocity α′(t0) there is a unique solution α(t) defined on some interval
about t0 satisfying these initial conditions. More precisely, one obtains the

Existence and Uniqueness Theorem: Let M be a manifold with
(Riemannian or Lorentzian) metric g and fix some t0 ∈ R. Then for any
p ∈ M and any v ∈ Tp(M) there exists a unique geodesic αv : Iv → M
such that

1. αv(t0) = p, α′
v(t0) = v, and

2. the interval Iv is maximal in the sense that if α : I → M is any geodesic
satisfying α(t0) = p and α′(t0) = v, then I ⊆ Iv and α = αv | I.

We will find the uniqueness asserted in this result particularly useful since
it assures us that if we have somehow managed to conjure up geodesics in
every direction v at p, then we will, in fact, have all the geodesics through p.
We will apply this procedure to a few examples shortly (e.g., by “guessing”
that the geodesics of S2 should be great circles). First, however, we must
come to understand that a geodesic is more than its image in M , which must
be parametrized in a very particular way if it is to satisfy (4.3.27). First we
show that a given geodesic can be reparametrized in only a rather trivial way
if it is to remain a geodesic.

Lemma 4.3.1 Let M be a manifold with (Riemannian or Lorentzian) metric
g and let α : I → M be a nondegenerate geodesic. Suppose J ⊆ R is an
interval and h : J → I, t = h(s), is a smooth function with h′(s) > 0 for
each s ∈ J . Then the reparametrization

β = α ◦ h : J −→ M

of α is a geodesic if and only if h(s) = as + b for some constants a and b.
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Proof: The Chain Rule gives

β′(s) = α′(h(s))h′(s)

and
β′′(s) = α′′(h(s))(h′(s))2 + α′(h(s))h′′(s)

so
β′′

tan(s) = α′(h(s))h′′(s)

(α is a geodesic). Thus, β is a geodesic if and only if α′(h(s))h′′(s) = 0. Since
α is a nondegenerate geodesic, α′ is never zero (otherwise uniqueness would
imply that α is the constant curve). Thus, h′′(s) = 0 for every s in J so
h(s) = as + b for some constants a and b. �

We can say much more about the parametrizations of a geodesic, however.
We will now prove that geodesics are always constant speed curves.

Theorem 4.3.2 Let M be a manifold with (Riemannian or Lorentzian) met-
ric g. Suppose α : I → M is a geodesic. Then g(α′(t), α′(t)) is constant on I.

Proof: We will show that d
dt g(α′(t), α′(t)) = 0 at each t in I. It will clearly

suffice to focus our attention on some subinterval of I that maps into χ(U) for
some coordinate patch χ : U → M ⊆ Rm. Writing α(t) = χ(x1(t), . . . , xn(t))
we have

d

dt
(g(α′(t), α′(t))) =

d

dt

(
gij (x1(t), . . . , xn(t))

d xi

dt
d xj

dt

)
.

To simplify the notation we will drop the arguments x1(t), . . . , xn(t) and
compute

d

dt

(
gij

dxi

dt
dxj

dt

)
= gij

dxi

dt
d2xj

dt2 + gij
dxj

dt
d2xi

dt2 +
dg ij

dt
dxi

dt
dxj

dt
d

dt

(
gij

dxi

dt
dxj

dt

)
= 2gij

dxi

dt
d2xj

dt2
+

∂gij

∂xk

dxk

dt
dxi

dt
dxj

dt
(4.3.28)

Now, d2xj

dt2
= −Γj

ab
dxa

dt
dxb

dt since α is a geodesic so

2 gij
d xi

dt
d2 xj

dt2 = −2 gijΓ
j
ab

d xi

dt
d xa

dt
d xb

dt
.

Moreover,

gijΓ
j
ab =

1
2
gij gjk

(
∂gak

∂xb
+

∂gbk

∂xa
− ∂gab

∂xk

)
=

1
2
δk
i

(
∂gak

∂xb
+

∂gbk

∂xa
− ∂gab

∂xk

)
=

1
2

(
∂gai

∂xb
+

∂gbi

∂xa
− ∂gab

∂xi

)
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so

2 gij
d xi

dt
d2 xj

dt2 = −
(

∂gai

∂xb
+

∂gbi

∂xa
− ∂gab

∂xi

)
d xi

dt
d xa

dt
d xb

dt

= −∂gai

∂xb

d xb

dt

(
d xi

dt
d xa

dt

)
−(

∂gib

∂xa
− ∂gab

∂xi

)
d xb

dt

(
d xi

dt
d xa

dt

)
.

Notice that the second term is skew-symmetric in a and i so the sum vanishes.
Consequently,

2 gij
dx i

dt
d2xj

dt2 = −∂ gai

∂ xb

dx b

dt

(
dx i

dt
dxa

dt

)

= −∂ gij

∂ xk

dxk

dt
dx i

dt
dx j

dt

so (4.3.28) gives d
dt

(
gij

dx i

dt
dxj

dt

)
= 0 as required. �

Remark: It follows, in particular, from Theorem 4.3.2 that a geodesic in
a spacetime manifold has the same causal character (spacelike, timelike, or
null) at each point. This is, of course, not true of an arbitrary smooth curve.

Example 4.3.6 No inspired guesswork is required to compute the geodesics
of Rn, or R3,1, or any manifold with a global chart in which the metric
components gij are constant. Here the Christoffel symbols Γr

ij are all zero
so the geodesic equations reduce to d2xr

dt2
= 0 and the solutions are linear

functions of the coordinates.

Example 4.3.7 We consider the 2-sphere S2 with the Riemannian metric g
obtained by restricting the Euclidean inner product 〈 , 〉 to each Tp(S2). Thus,

Tp(S2) = {v ∈ R3 : 〈p, v〉 = 0}.

We determine all of the geodesics of S2 through a fixed, but arbitrary point p.
Of course, the degenerate geodesic is α0 : R → S2, defined by α0(t) = p for
each t ∈ R. Now fix some nonzero v ∈ Tp(S2). Then e = v/〈v, v〉 1

2 is a unit
vector in R3 orthogonal to the unit vector p. Thus,

Span{e, p} = {ae + bp : a, b ∈ R}

is a 2-dimensional plane through the origin in R3. Its intersection with S2 is
the great circle on S2 consisting of all ae + bp with 〈ae + bp, ae + bp〉 = 1,
i.e., a2 + b2 = 1. If we parametrize this circle by

αv(t) = (sin kt)e + (cos kt)p,−∞ < t < ∞,
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where k = 〈v, v〉 1
2 , then

αv(0) = p

α′
v(0) = ke = v.

Fig. 4.3.7

Moreover, g (α′
v(t), α′

v(t)) = k2 = 〈v, v〉 is constant and α′′
v (t) = −k2αv(t) =

−〈v, v〉αv(t) is everywhere normal to S2. Thus, αv(t) is the unique geodesic
of S2 through p in the direction v. Since p and v were arbitrary we have found
all of the geodesics of S2.

Remark: Two of the fundamental undefined terms of classical plane
Euclidean geometry are “point” and “straight line.” Identifying these un-
defined terms with “point on S2” and “geodesic of S2,” respectively, one
obtains a system in which all of the axioms of plane Euclidean geometry
are satisfied except the so-called Parallel Postulate (any two “straight lines”
in S2 intersect; see Figure 4.3.7). This is Riemann’s spherical model of
non-Euclidean geometry.

Exercise 4.3.24 Show in the same way that the nondegenerate geodesics
of the 3-sphere S3 are the constant speed parametrizations of its great circles
(intersections with S3 of 2-dimensional planes through the origin in R4).

Example 4.3.8 Next we consider the de Sitter spacetime dS with the
Lorentz metric g obtained by restricting the 5-dimensional Minkowski in-
ner product of M5 to each tangent space. According to the Remark follow-
ing Theorem 4.3.2, we must now expect geodesics of three types (spacelike,
timelike, and null), but the procedure for finding them is virtually identical
to what we have done for S2.
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Fix some p ∈ dS and a nonzero v ∈ Tp(dS ) (the zero vector in Tp(dS )
clearly determines the degenerate geodesic through p). The tangent vector v
could be spacelike, timelike, or null in Tp(dS ) and we consider these possibil-
ities in turn. We have already observed that, in any case, p ∈ M5 is itself a
unit (spacelike) vector in M5 orthogonal to v.

Suppose v is spacelike. Then e2 = v/gp(v, v)
1
2 = v/(v, v)

1
2 is a unit space-

like vector in M5 orthogonal to p so p and e2 form an orthonormal basis for
the 2-dimensional plane

Span {p, e2} = {ap + be2 : a, b ∈ R}

through the origin in M5 = R5. Its intersection with dS consists of all ap+be2

with (ap + be2, ap + be2) = 1, i.e., a2 + b2 = 1. Letting k = (v, v)
1
2 we

parametrize this circle in Span{p, e2} by

αv(t) = (cos kt)p + (sin kt)e2, −∞ < t < ∞,

to obtain a smooth curve with αv(0) = p, α′
v(0) = ke2 = v, g (α′

v(t), α′
v(t)) =

k2 = (v, v) for every t, and α′′
v (t) = −k2αv(t) for every t. Thus, α′′

v is every-
where normal to dS and so αv(t) is the unique geodesic of dS through p in
the direction v. It is, of course, spacelike (see Figure 4.3.8).

au

p

dS

u (spacelike)

Fig. 4.3.8

Remark: Do not be deceived by the “elliptical” appearance of αv which is
due solely to the fact that the picture is drawn in the plane of the page. It is
a circle in the geometry of the plane Span{p, e2}.
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Next suppose v is timelike. Then e4 = v/(−gp(v, v))
1
2 = v/(−(v, v))

1
2 is

a unit timelike vector orthogonal to p in M5 so

Span {p, e4} = {ap + be4 : a, b ∈ R}

is a 2-dimensional plane through the origin in M5 and its intersection with
dS consists of those points with (ap+be4, ap+be4) = 1, i.e., a2−b2 = 1. This
consists of both branches of a hyperbola in Span{p, e4}. We parametrize the
branch containing p by

αv(t) = (cosh kt)p + (sinh kt)e4, −∞ < t < ∞,

where k = (−(v, v))
1
2 . Then αv(0) = p, α′

v(0) = ke4 = v, gp (α′
v(t), α′

v(t)) =
k2(sinh2 kt − cosh2 kt) = (v, v) for every t, and α′′

v (t) = k2αv(t) for every t.
Again, α′′

v is everywhere normal to dS so αv(t) is the unique geodesic of dS
through p in the direction v (see Figure 4.3.9).

dS

u (timelike)

p

au

Fig. 4.3.9

Finally, we suppose that v is null. Then {p, v} is an orthogonal basis for
Span{p, v} = {ap + bv : a, b ∈ R} and the intersection with dS consists
of those ap + bv with (ap + bv , ap + bv) = 1, i.e., a2 = 1, so a = ±1.
Thus, the intersection consists of two null straight lines {p + bv : b ∈ R} and
{−p + bv : b ∈ R}. Parametrizing the line containing p by

αv(t) = p + tv , −∞ < t < ∞,
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we find that αv(0) = p, α′
v(0) = v, g (α′

v(t), α′
v(t)) = (v, v) = 0 for each t,

and α′′
v (t) = 0 ∈ M5 for each t. Thus, αv is the unique geodesic of dS through

p in the direction v. It is, in fact, just a null straight line in M5 that happens
to live in dS (see Figure 4.3.10).

Notice that, although the Existence and Uniqueness Theorem guarantees
only the local existence of a geodesic on some interval, the examples we have
found thus far are all defined on all of R. A manifold with (Riemannian or
Lorentzian) metric is said to be complete if each of its maximal geodesics is
defined on all of R. Notice also that in S2 and S3 any two points can be
joined by a geodesic (because they are contained in a great circle). In the
Riemannian case this property is actually equivalent to completeness (see
Theorem 18, Chapter 9, of [Sp 2], Volume I). We show now that this is not
the case for Lorentzian manifolds. In fact, we will use what we have just
proved about the geodesics of dS to determine precisely when two distinct
points p and q can be joined by a geodesic.

dS

u (null)p

au

Fig. 4.3.10

First notice that two antipodal points p and −p of dS never lie on the
same timelike or null geodesic (e.g., p and −p are on disjoint branches of the
hyperbolas determining timelike geodesics through p). However, if e ∈ Tp(dS )
is any unit spacelike vector at p, then the spacelike geodesic

αe(t) = (sin t)e + (cos t)p, −∞ < t < ∞,
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satisfies αe(0) = p and αe(π) = −p. Thus, antipodal points can be joined by
(many) spacelike geodesics.

Now suppose p and q are distinct, non-antipodal points in dS. Being in
dS, p and q are independent and so determine a unique 2-dimensional plane

Π = Span {p, q}

through the origin in M5. By what we have proved about the geodesics of dS,
the only geodesic that could possibly join p and q is some parametrization
of (a part of) dS ∩ Π. Now, the restriction of the M5-inner product to Π,
which we continue to denote ( , ), is clearly symmetric and bilinear. It may
be degenerate, or it may be nondegenerate and either of index zero or index
one. We consider these possibilities one at a time.

Suppose first that the restriction of ( , ) to Π is positive definite. Since p
and q are unit spacelike vectors, dS ∩ Π is a circle and the parametrization

αq(t) = (cos t)p + (sin t)q, −∞ < t < ∞,

is a geodesic satisfying αq(0) = p and αq

(
π
2

)
= q. In this case we claim that

we must have −1 < (p, q) < 1. To see this note that p ± q are nonzero so
that, since ( , ) is positive definite on Π,

0 < (p + q, p + q) = (p, p) + 2 (p, q) + (q, q) = 2 + 2 (p, q)

implies −1 < (p, q) and, similarly, 0 < (p − q, p − q) gives (p, q) < 1.
Next suppose that the restriction of ( , ) to Π is nondegenerate of index one.

Then dS ∩Π consists of two branches of a hyperbola. We show that p and q lie
on the same branch if and only if (p, q) > 1 (in which case p and q are joined
by a timelike geodesic) and on different branches if and only if (p, q) < −1 (in
which case no geodesic joins p and q). To see this we choose an orthonormal
basis {e1, e2, e3, e4, e5} for M5 with (e5, e5) = −1 and Π = Span{e1, e5}.
Then dS ∩ Π = {x1e1 +x5e5 : (x1)2−(x5)2 = 1} and the two branches of the
hyperbola are given by x1 ≥ 1 and x1 ≤ −1. We parametrize these branches
by α1(t) = (cosh t)e1 + (sinh t)e5 and α2(t) = (− cosh t)e1 + (sinh t)e2. Now,
if p and q are on the same branch, then for some i = 1, 2, p = αi(t0) and
q = αi(t1) for some t0 �= t1 in R. Thus,

(p, q) = cosh t0 cosh t1 − sinh t0 sinh t1 = cosh (t0 − t1) > 1.

On the other hand, if p and q are on different branches, then p = αi(t0) and
q = αj(t1), where i �= j, so

(p, q) = − cosh t0 cosh t1 − sinh t0 sinh t1 = − cosh (t0 + t1) < −1

as required.
Finally, suppose that the restriction of ( , ) to Π is degenerate. Then dS ∩Π

consists of two parallel null straight lines
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α1(t) = p + tv

α2(t) = −p + tv,

where v ∈ Tp(dS ) satisfies (p, v) = 0 and (v, v) = 0. If p and q are on the
same line, then q = p + t0v for some t0 ∈ R so

(p, q) = (p, p + t0v) = (p, p) + t0(p, v) = 1.

and, if p and q are on different lines, then q = −p + t0v for some t0 ∈ R so

(p, q) = (p, −p + t0v) = (p, −p) + t0(p, v) = −1.

Now, since the conditions −1 < (p, q) < 1, (p, q) = 1, (p, q) > 1, and
(p, q) ≤ −1 are mutually exclusive we can summarize all of this as follows.

Theorem 4.3.3 Let p and q be distinct points of dS and denote by ( , ) the
Minkowski inner product on M5. Then

(a) If p and q are antipodal points of dS (q = −p), then p and q cannot be
joined by a timelike or null geodesic, but there are infinitely many spacelike
geodesics joining p and q.

If p and q are not antipodal points, then

(b) (p, q) > 1 ⇐⇒ p and q lie on a unique geodesic of dS which is timelike,
(c) (p, q) = 1 ⇐⇒ p and q lie on a unique geodesic of dS which is null,
(d) −1 < (p, q) < 1 ⇐⇒ p and q lie on a unique geodesic of dS which is

spacelike,
(e) (p, q) ≤ −1 ⇐⇒ there is no geodesic of dS joining p and q.

It is worth pointing out that, for p, q ∈ dS , one has (p−q, p−q) = 2(1−(p, q))
so that

(p, q) = 1 ⇐⇒ (p − q, p − q) = 0
(p, q) > 1 ⇐⇒ (p − q, p − q) < 0

−1 < (p, q) < 1 ⇐⇒ 0 < (p − q, p − q) < 4
(p, q) ≤ −1 ⇐⇒ (p − q, p − q) ≥ 4.

We will leave it to the reader to carry out a similar analysis of the important
example of hyperbolic 3-space H3(r).

Exercise 4.3.25 M will denote (ordinary, 4-dimensional) Minkowski space-
time and we will write x · y for the Minkowski inner product of x, y ∈ M.
Standard admissible coordinates on M will be written x1, x2, x3, x4. For
any positive real number r we let H3(r) denote the subset of M defined by

H3(r) = {x ∈ M : x · x = −r2, x4 > 0},
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that is,
(x1)2 + (x2)2 + (x3)2 − (x4)2 = −r2, x4 > 0.

(a) Show that H3(r) is diffeomorphic to R3.
(b) Define a smooth map from R3 to M(= R4) by

x1 = r cosφ sinh ψ

x2 = r sin φ cos θ sinh ψ

x3 = r sin φ sin θ sinh ψ

x4 = r coshψ.

Verify that (x1)2+(x2)2+(x3)2−(x4)2 = −r2 and find appropriate ranges
for φ, θ, and ψ to ensure that each point in H3(r) is contained in an open
subset of H3(r) on which (φ, θ, ψ) are coordinates.

H3(r)

Fig. 4.3.11

(c) Restrict the Minkowski inner product of M to each tangent space
Tp(H3(r)) to define a metric g on H3(r) and show that this metric is
Riemannian with line element

ds2 = r2
(
dψ2 + sinh2 ψ(dφ2 + sin2 φdθ2)

)
.

(d) Show that Tp(H3(r)) = {v ∈ M : p · v = 0} and conclude that every
element of Tp(H3(r)) is spacelike in M.

(e) For each p ∈ H3(r) and each v ∈ Tp(H3(r)) determine the geodesic αv of
H3(r) with αv(0) = p and α′

v(0) = v.
(f) Describe the tH = constant slices of de Sitter spacetime in hyperbolic

coordinates (Example 4.3.5).

We arrive now at the final item in our agenda of mathematical tools. It is
arguably the most fundamental concept in both geometry and relativity, but
it is subtle. The issue involved, however, is not subtle at all. Let us compare
for a moment the sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}
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and the cylinder
C = {(x, y, z) ∈ R3 : x2 + y2 = 1}

in R3 (see Figure 4.3.12). From our vantage point in R3 both appear “curved,”
but there is a very real sense in which this vantage point is misleading us in
regard to the cylinder. Each is a 2-manifold, of course, and so is “locally like”

S2 C

Fig. 4.3.12

the plane, i.e., locally diffeomorphic to R2, but C is “more like” the plane
than S2. Intuitively, at least, one can see this as follows. Cutting the cylinder
vertically along a straight line one can then flatten it out onto the plane
and, in the process, all distances, angles, areas, and, indeed, all of the basic
ingredients of geometry, are unaltered (see Figure 4.3.13). The sphere is a
different matter. However small a region of S2 one chooses to examine any
“flattening out” onto the plane must distort distances, angles, and areas.
Since all of the geometry of a surface is ultimately defined from the metric
g of the surface one can say this more precisely as follows. Each point of the
cylinder is contained in an open set on which there exist coordinates x1 and
x2 relative to which the metric components gij are the same as those of the
plane in standard coordinates, i.e., gij = δij , i, j = 1, 2, but no such local
coordinates exist on S2. The cylinder is “locally flat”, but the sphere is not.

Exercise 4.3.26 Show that χ : [0, 2π] × (−∞,∞) → R3 defined by

χ(x1, x2) = (cos (x1), sin (x1), x2)

parametrizes the cylinder C. Let g be the Riemannian metric on C obtained
by restricting the R3-inner product 〈 , 〉 to each tangent space Tp(C). Show
that the metric components relative to χ are gij = δij , i, j = 1, 2.
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Fig. 4.3.13

How does one prove that S2 is not locally flat? Is there a computation one
can perform that will decide the issue of whether or not a given surface in R3

is locally flat? The answer has been provided by Gauss who defined a certain
real-valued function κ on the surface, the vanishing of which on an open set
is equivalent to the existence of local coordinates relative to which the metric
components are gij = δij . The function is called the Gaussian curvature of
the surface and can be described in a coordinate patch χ by

κ =
det (Lij )
det (gij )

,

where the Lij are defined in Exercise 4.3.21 (c).

Remark: It is not immediately apparent that this definition of κ is inde-
pendent of the coordinate patch from which it is computed, but this is true
so κ can actually be regarded as a function on the surface.

Exercise 4.3.27 Show that the Gaussian curvature of the cylinder C is
identically zero and the Gaussian curvature of S2 is equal to one at each point.

One can ask exactly the same question in higher dimensions. Given a
smooth n-manifold M with (Riemannian or Lorentzian) metric g, when will
there exist local coordinates on M relative to which the metric components
are gij = δij (or ηij in the case of a spacetime)? When n ≥ 3, however, the
question cannot be decided by a single real-valued function. It can be decided,
but the object one must compute to do so (called the “Riemann curvature
tensor”) is considerably more complicated than the Gaussian curvature so we
will take a moment to see where it comes from.

We consider a smooth n-manifold M in Rm with Riemannian metric g
(we leave it to the reader to make the modest alterations required in the
Lorentzian case). Let χ : U → M be a coordinate patch with coordinates
x1, . . . , xn and in which the metric components are gij = g(χi, χj), i, j =
1, . . . , n. Then the matrix (gij ) is nonsingular at each point and we denote its
inverse by (gij ). Now let us suppose that there is another coordinate patch
χ̃ : Ũ → M with coordinates x̃1, . . . , x̃n such that χ(U) ∩ χ̃(Ũ) �= ∅ and in
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which the metric components g̃ij are g̃ij = δij (so that the line element is
ds2 = (dx̃1)2 + · · · + (dx̃n)2). According to Exercise 4.3.11,

gij =
∂x̃a

∂xi

∂x̃b

∂xj
g̃ab

=
∂x̃a

∂xi

∂x̃b

∂xj
δab

gij =
n∑

a=1

∂x̃a

∂xi

∂x̃a

∂xj
, i, j = 1, . . . , n (4.3.29)

on the intersection. Now, (4.3.29) is equivalent to the matrix equation

(gij ) =
(

∂x̃a

∂xi

)� (
∂x̃a

∂xj

)
. (4.3.30)

For any invertible matrices A and B,

A = B� B =⇒ A−1 = B−1(B�)−1 =⇒ BA−1 B� = id

so (4.3.30) implies (
∂x̃a

∂xj

)
(gij )

(
∂x̃a

∂xi

)�
= id.

Written out in detail this gives

∂x̃a

∂xi
gij ∂x̃b

∂xj
= δab , a, b = 1, . . . , n. (4.3.31)

Now differentiate (4.3.29) with respect to xk to obtain

∂gij

∂xk
=

n∑
a=1

(
∂x̃a

∂xj

∂2x̃a

∂xi∂xk
+

∂x̃a

∂xi

∂2x̃a

∂xj∂xk

)
.

Exercise 4.3.28 Write out similar expressions for ∂gik

∂xj and ∂gjk

∂xi and combine
them to get

1
2

(
∂gij

∂xk
+

∂gik

∂xj
− ∂gjk

∂xi

)
=

n∑
a=1

∂2x̃a

∂xj∂xk

∂x̃a

∂xi
. (4.3.32)

Next fix some index b = 1, . . . , n and multiply on both sides of (4.3.32) by

giβ ∂x̃b

∂xβ
(summed over β = 1, . . . , n)
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and then sum over i as required by the summation convention to obtain[
1
2

gβi

(
∂gij

∂xk
+

∂gik

∂xj
− ∂gjk

∂xi

)]
∂x̃b

∂xβ
=

n∑
a=1

(
∂x̃a

∂xi
giβ ∂x̃b

∂xβ

)
∂2x̃a

∂xj∂xk

=
n∑

a=1

δab ∂2x̃a

∂xj ∂xk

=
∂2x̃b

∂xj∂xk
.

Thus,
∂2x̃b

∂xj∂xk
= Γβ

jk

∂x̃b

∂xβ
, b, j, k = 1, . . . , n. (4.3.33)

Now fix an index b = 1, . . . , n and let

Jb = (Jb1, . . . , Jbn) =
(

∂x̃b

∂x1
, . . . ,

∂x̃b

∂xn

)
be the vector whose components are the entries in the bth row of the Jacobian.
Then (4.3.33) can be written

∂Jbj

∂xk
= Γβ

jk Jbβ , j, k = 1, . . . , n.

For each j, k, l = 1, . . . , n, we must have

∂2Jbj

∂xl ∂xk
=

∂2Jbj

∂xk∂xl

so

∂

∂xl

(
Γβ

jk Jbβ

)
=

∂

∂xk

(
Γβ

jl Jbβ

)
Γβ

jk

∂Jbβ

∂xl
+

∂Γβ
jk

∂xl
Jbβ = Γβ

jl

∂Jbβ

∂xk
+

∂Γβ
jl

∂xk
Jbβ

Γβ
jk Γγ

βl Jbγ +
∂Γγ

jk

∂xl
Jbγ = Γβ

jl Γγ
βk Jbγ +

∂Γγ
jl

∂xk
Jbγ(

∂Γγ
jl

∂xk
+ Γβ

jl Γγ
βk −

∂Γγ
jk

∂xl
− Γβ

jk Γγ
βl

)
Jbγ = 0. (4.3.34)

Now for some notation. For each γ, j, k, l = 1, . . . , n, let

Rγ
jkl =

∂Γγ
jl

∂xk
+ Γβ

jlΓ
γ
βk −

∂Γγ
jk

∂xl
− Γβ

jkΓγ
βl . (4.3.35)
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Then we can write (4.3.34) as

Rγ
jkl Jbγ = 0, j, k, l = 1, . . . , n.

We conclude that

Rγ
jkl

∂x̃b

∂xγ
= 0, b, j, k, l = 1, . . . , n. (4.3.36)

Now, for any fixed j, k, l = 1, . . . , n, (4.3.36) can be regarded as a homoge-
neous system of linear equations in

R1
jkl , . . . , R

n
jkl

and, since the Jacobian
(

∂x̃b

∂xγ

)
is nonsingular, we conclude that

Rγ
jkl = 0, γ, j, k, l = 1, . . . , n. (4.3.37)

The conclusion of this long and rather annoying calculation is this. If there
exist coordinates x̃1, . . . , x̃n on some open set χ̃(Ũ) in M relative to which
the metric components are g̃ij = δij , i, j = 1, . . . , n, then, for any other co-
ordinates x1, . . . , xn on some open set χ(U) with χ(U) ∩ χ̃(Ũ) �= ∅, the
functions Rγ

jkl of x1, . . . , xn defined by (4.3.35) must vanish identically on
χ−1(χ(U) ∩ χ̃(Ũ)).

Remarkably enough, the converse is also true, in the following sense.
Rather than supposing the existence of coordinates x̃1, . . . , x̃n with ds2 =
(dx̃1)2 + · · ·+ (dx̃n)2 and regarding (4.3.29) as a consequence, let us think of

n∑
a=1

∂x̃a

∂xi

∂x̃a

∂xj
= gij , i, j = 1, . . . , n. (4.3.38)

as a system of partial differential equations to be solved for x̃1, . . . , x̃n.
A solution would provide the transformation equations to a new system of
coordinates in which g̃ij = δij and it can be shown that a solution exists
whenever the “integrability conditions” Rγ

jkl = 0, γ, j, k, l = 1, . . . , n, are sat-
isfied (see pages 200–204 of [Sp2], Volume III).

Consequently, the 4n functions Rγ
jkl defined by (4.3.35) are the replacement

for the Gaussian curvature of a surface in dimensions greater than or equal
to 3. These are called the components (relative to χ) of the Riemann curvature
tensor R for M .

Remark: We have not defined the unmodified term “tensor” and will have
no need to do so. However, our experience with 4-tensors in Section 3.1
should leave little room for doubt as to the proper definition. Recall that
a 4-tensor of contravariant rank 1 and covariant rank 3 can be thought of
as an object described in each admissible frame of reference by 44 = 256
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numbers T a
bcd , a, b, c, d = 1, 2, 3, 4, with the property that if two admissible

frames are related by x̂a = Λa
bx

b, a = 1, 2, 3, 4, then the numbers that
describe the 4-tensor in the two frames are related by

T̂ a
bcd = Λa

α Λb
β Λc

γ Λd
δ T α

βγδ,

a, b, c, d = 1, 2, 3, 4. Noting that Λa
α = ∂x̂a

∂xα and Λb
β = ∂xβ

∂x̂b , etc., this can be
written

T̂ a
bcd =

∂x̂a

∂xα

∂xβ

∂x̂b

∂xγ

∂x̂c

∂xδ

∂x̂d
T α

βγδ.

The transformation law for the metric in Exercise 4.3.11 together with a very
healthy supply of persistence gives an entirely analogous transformation law

R̃a
bcd =

∂x̃a

∂xα

∂xβ

∂x̃b

∂xγ

∂x̃c

∂xδ

∂x̃d
Rα

βγδ

for the components of R and it is this transformation law that qualifies R as
a “tensor.”

In dimension 4 the Riemann curvature tensor has 44 = 256 components in
every coordinate system, although various symmetries reduce the number of
independent components to 20. Computing even one of these directly from the
definition (4.3.35) is, needless to say, an arduous task in general. Nevertheless,
everyone should do it once in their lives.

Example 4.3.9 We consider the de Sitter spacetime dS in global coordi-
nates x1 = φ1, x2 = φ2, x3 = θ and x4 = tG. The nonvanishing Christoffel
symbols (from Exercise 4.3.22) are

Γ4
11 = cosh tG sinh tG Γ4

22 = cosh tG sinh tG sin2 φ1

Γ4
33 = cosh tG sinh tG sin2 φ1 sin2 φ2

Γi
4i = Γi

i4 =
sinh tG
cosh tG

, i = 1, 2, 3

Γ1
22 = − sin φ1 cosφ1 Γ1

33 = − sinφ1 cosφ1 sin2 φ2

Γ2
33 = − sin φ2 cosφ2

Γ2
21 = Γ2

12 = Γ3
31 = Γ3

13 =
cosφ1

sin φ1

Γ3
32 = Γ3

23 =
cosφ2

sin φ2
.

We will compute

R4
343 =

∂Γ4
33

∂x4
+ Γβ

33Γ
4
β4 −

∂Γ4
34

∂x3
− Γβ

34Γ
4
β3.
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First note that

∂Γ4
33

∂x4
=

∂

∂tG
(cosh tG sinh tG sin2 φ1 sin2 φ2)

= (cosh2 tG + sinh2 tG) sin2 φ1 sin2 φ2

and
∂Γ4

34

∂x3
=

∂

∂θ
(0) = 0.

Next we have

Γβ
33Γ

4
β4 = Γ1

33Γ
4
14 + Γ2

33Γ
4
24 + Γ3

33Γ
4
34 + Γ4

33Γ
4
44 = 0

since each Γ4
β4 = 0. Finally,

Γβ
34Γ

4
β3 = Γ1

34Γ
4
13 + Γ2

34Γ
4
23 + Γ3

34Γ
4
33 + Γ4

34Γ
4
43

= 0 + 0 + Γ3
34Γ

4
33 + 0

=
(

sinh tG
cosh tG

)
(cosh tG sinh tG sin2 φ1 sin2 φ2)

= sinh2 tG sin2 φ1 sin2 φ2.

Thus,
R4

343 = cosh2 tG sin2 φ1 sin2 φ2.

Exercise 4.3.29 Show that, for the de Sitter spacetime in global coordi-
nates,

Ri
4i4 = −1

for i = 1, 2, 3.

Remark: Observe that, in dS,

δ4
4g33 − δ4

3g34 = g33 = cosh2 tG sin2 φ1 sin2 φ2 = R4
343

(δa
b = 1 if a = b and 0 if a �= b is just the Kronecker delta). Also,

δi
ig44 − δi

4g4i = g44 = −1 = Ri
4i4

for i = 1, 2, 3. As it happens, one can show that

Rγ
jkl = δγ

kgjl − δγ
l gjk (4.3.39)

for all γ, i, j, k = 1, 2, 3, 4. Thus, for example, setting k = γ and summing
over γ gives

Rγ
jγl = δγ

γgjl − δγ
l gjγ = 4gjl − gjl = 3gjl .

Remark: A manifold M with metric g is said to have constant (sectional)
curvature if there is a constant K such that

Rγ
jkl = K (δγ

kgjl − δγ
l gjk )
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in any local coordinate system. de Sitter spacetime dS therefore has constant
curvature K = 1. We will encounter this notion again in the next section.

The Riemann curvature tensor contains all of the information about a
manifold’s local deviations from “flatness” and, in the case of a spacetime,
this is precisely what we mean by a gravitational field (see Section 4.1). It is,
however, a rather cumbersome creature and one can often make due (both
mathematically and physically) with somewhat simpler objects that we now
introduce. For any n-manifold M with (Riemannian or Lorentzian) metric g
we define, in any local coordinate system on M , the components of the Ricci
tensor Rij by

Rij = Rγ
iγj (sum over γ = 1, . . . , n)

for i, j = 1, . . . , n. The scalar curvature R of M is then defined by

R = gij Rij (sum over i, j = 1, . . . , n).

According to the previous Remark, the Ricci tensor of de Sitter spacetime
dS is

Rij = 3gij

and so
R = gijRij = gij (3gij) = 3gijgji = 3δj

j = 3(4) = 12.

Remark: The scalar curvature is generally a real-valued function on M ,
but in the case of dS happens to be a constant function.

Finally, we define, in any local coordinate system for M , the components of
the Einstein tensor Gij by

Gij = Rij −
1
2

Rg ij

for i, j = 1, . . . , n. Thus, for dS,

Gij = 3gij −
1
2
(12) gij = −3gij .

Exercise 4.3.30 Show that Gij = 0 for all i, j = 1, . . . , n if and only if
Rij = 0 for all i, j = 1, . . . , n. Hint: Assuming Gij = 0, consider gijGij .

4.4 The de Sitter Universe dS

A spacetime, as we have defined it, is a 4-dimensional manifold with a Lorentz
metric. The motivation behind the definition was an attempt to model the
event world when gravitational effects cannot be regarded as negligible. It
is certainly not the case, however, that every spacetime represents some
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physically realistic gravitational field. Einstein’s idea was that the space-
time should be “determined” by the mass-energy distribution giving rise to
the gravitational field and he struggled for many years to arrive at equations
that specified just how the latter determined the former. The end result of
the struggle was a set of ten coupled nonlinear partial differential equations
for the metric components gij called the Einstein field equations. It is with
these that the general theory of relativity begins and we will not be so bold
as to offer a precis of their derivation. We simply record the equations, make
a few unremarkable observations and then move on to their relevance to our
story. A spacetime M with Lorentz metric g is said to satisfy the Einstein
field equations if, in any local coordinate system,

Rij −
1
2
Rg ij + Λgij = 8πTij , i, j = 1, 2, 3, 4, (4.4.1)

where Rij − 1
2 Rg ij = Gij is the Einstein tensor, Λ is a constant, called the

cosmological constant, and Tij is called the energy-momentum tensor and is
a direct analogue of the energy-momentum transformation for the electro-
magnetic field on Minkowski spacetime that we introduced in Section 2.5.
The role of Tij is to describe the mass-energy distribution giving rise to the
gravitational field being modeled by gij . The equations relate the geometry
of the spacetime, described by the left-hand side, to the mass-energy distri-
bution, described by the right-hand side. Together with the so-called geodesic
hypothesis that free particles have worldlines in M that are timelike or null
geodesics, (4.4.1) contains essentially the entire content of general relativity.

The left-and right-hand sides of (4.4.1) have the same transformation law

to a new system of local coordinates
(

F̃ij =
∂xk

∂x̃i

∂xl

∂x̃j
Fkl

)
so, if they are

satisfied for one set of charts covering M , they are satisfied in any coordinate
system (they are “tensor equations”). In particular, it makes sense to define
an empty space solution to Einstein’s equations to be a spacetime satisfying
(4.4.1) with Tij = 0, i, j = 1, 2, 3, 4.

Exercise 4.4.1 Show that the de Sitter spacetime dS is an empty space
solution to the Einstein equations with Λ = 3.

Remark: It may strike the reader as peculiar that we introduce “empty
space solutions” since our motivation has been to model nontrivial gravita-
tional fields. Let us explain. When Λ = 0 the empty space equations are
Gij = 0 which, by Exercise 4.3.30, are the same as

Rij = 0. (4.4.2)

Manifolds satisfying (4.4.2) are said to be Ricci flat and, in general relativ-
ity, they are regarded as an analogue of the source free Maxwell equations
introduced in Section 2.7. Solutions describe gravitational fields in regions of
spacetime in which the mass-energy giving rise to the field is “elsewhere.”
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The best known example is the Schwarzschild solution describing the field
exterior to a spherically symmetric mass/star (see Chapter Six of [Wald]).
On the other hand, when Λ �= 0, the empty space equations are

Gij + Λgij = 0 (4.4.3)

and here the interpretation is more subtle. One might, for example, rewrite
(4.4.3) as

Gij = 8π

(
− Λ

8π
gij

)
(4.4.4)

and regard
T vac
ij = − Λ

8π
gij (4.4.5)

as an energy-momentum tensor for some unspecified mass-energy distribution
and (4.4.4) as the Einstein equations with cosmological constant zero. In this
interpretation, (4.4.5) is often thought of as the energy-momentum of the vac-
uum, due perhaps to quantum fluctuations of the vacuum state required by
quantum field theory. In this guise, T vac

ij is often attributed to what has come
to be called “dark energy.” Alternatively, one could simply regard the cosmo-
logical term Λgij in Einstein’s equations (4.4.1) as a necessary ingredient in
the basic laws of physics, independent of any mass-energy interpretation. In
this case one has solutions like dS representing a genuinely “empty” universe,
but which are, nevertheless, not flat (dS has nonzero curvature tensor). Such
solutions therefore represent alternatives to Minkowski spacetime with very
different mathematical and, as we shall see, physical properties.

It is not the usual state of affairs, of course, to be given a spacetime and an
energy-momentum tensor and be asked to check (as in Exercise 4.4.1) that
together they give a solution to the Einstein equations. Rather, one would
begin with some physical distribution of matter and energy (an electromag-
netic field, a single massive object such as a star, or an entire universe full
of galaxies) and one would attempt to solve the equations (4.4.1) for the
metric. Aside from the enormous complexity of the equations (express Rij

and R directly in terms of gij and substitute into (4.4.1)) there are subtleties
in this that may not be apparent at first glance. The Einstein equations are
written in coordinates, but coordinates on what? The objective is to con-
struct the manifold and its metric so neither can be regarded as given to
us. To solve (4.4.1) one must begin with a guess (physicists prefer the term
“ansatz”) based on one’s physical intuition concerning the field being mod-
eled as to what at least one coordinate patch on the sought after manifold
might look like. Even if one should succeed in this, the end result will be no
more than a local expression for the metric in one coordinate system; the
rest of the manifold is still hidden from view. Moreover, it is the metric it-
self that determines the spacetime measurements in the manifold. Since one
cannot describe energy and momentum without reference to space and time
measurements, even Tij cannot be regarded as given, but depends on the un-
known metric components gij . Even the true physical meaning of the ansatz
coordinates cannot be known until after the equations are solved.
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All of these subtleties add spice to the problem of solving the Einstein
equations, but this is not really our concern here. We would, however, like to
say a few words about the ansatz appropriate to what are called cosmological
models (spacetimes intended to model the global structure of the universe as
a whole). For this we need just one more mathematical tool.

Let M1 and M2 be two smooth manifolds and F : M1 → M2 a smooth
map. At each point p ∈ M , we define the derivative F∗p of F at p to be
the map

F∗p : Tp(M1) → TF (p) (M2)

that carries the velocity vector of a smooth curve α in M1 through p to the
velocity vector of its image F ◦ α under F , i.e.,

F∗p(α′ (t0)) = (F ◦ α)′ (t0).

In this way smooth maps carry tangent vectors in the domain to tangent
vectors in the range. Now suppose M1 and M2 have metrics g1 and g2, re-
spectively (both Riemannian or both Lorentzian) and that F : M1 → M2 is
a diffeomorphism. Then F is called an isometry if it preserves inner products
at each point, i.e., if

g1(α′ (t0), β′ (t1)) = g2 ((F ◦ α)′ (t0), (F ◦ β)′ (t1))

for all smooth curves α and β in M1 with α(t0) = β(t1). In particular,
an isometry of a manifold M with metric onto itself is the analogue of an
orthogonal transformation of a vector space with inner product onto itself. In
particular, the collection of all such form a group, called the isometry group
of M . For dS this group is precisely the set of restrictions to dS of orthogonal
transformations of M5 and is called the de Sitter group (this result is not
obvious, but we do not need it and so will not prove it). For spacetimes,
isometries are our new Lorentz transformations.

The two most basic physical assumptions that go into the construction of a
cosmological model in general relativity are called “spatial homogeneity” and
“spatial isotropy.” Intuitively, these assert that, at any “instant”, all points
and all directions in “space” should “look the same.” Since “instant” and
“space” are the very things that relativity forbids us ascribing a meaning to
independent of some observer, it is not so clear what this is supposed to mean.
We will attempt a somewhat more precise statement of what is intended. A
spacetime M is said to be spatially homogeneous and isotropic if the following
conditions are satisfied (see Figure 4.4.1).

(A) There exists a family of free observers (future-directed, timelike
geodesics) with worldlines filling all of M (for each p ∈ M there exists
one and only one of these geodesics αp with αp(tp) = p for some value
tp of proper time on αp.
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(B) There exists a 1-parameter family of spacelike hypersurfaces Σt (3-
dimensional manifolds in M on which the restriction of the spacetime
metric g is positive definite) that are pairwise disjoint and fill all of M .

(C) If p ∈ M is in Σtp , then α′
p(tp) is orthogonal to Tp(Σtp) (so that the

hypersurfaces can be regarded as common “instantaneous 3-spaces” for
the observers).

(D) If p, q ∈ Σt, then there is an isometry of M onto itself that carries p to
q (“at each instant all points of space look the same”).

(E) If p = αp(tp) is in Σtp and u1 and u2 are two directions (unit vectors)
in Tp(Σtp), then there is an isometry of M onto itself that leaves p and
α′

p(tp) fixed, but “rotates” u1 onto u2 (“at each instant all directions
at any point in space look the same to the observer experiencing that
event”).

ap(tp)

p

ap

q Σtp

Fig. 4.4.1

As it happens, these conditions are quite restrictive. Based on them one
can show (see Section 5.1 of [Wald]) that each of the spacelike hypersurfaces
Σ in (B), with the metric obtained by restricting g to Σ, is a manifold of
constant curvature (see the Remark following (4.3.39)). Now, up to certain
“topological” variations that are not relevant to our purpose here, one can
enumerate all of the 3-dimensional Riemannian manifolds of constant curva-
ture. They are 3-spheres (K > 0), 3-dimensional Euclidean spaces (K = 0)
and hyperbolic 3-spaces (K < 0), all of which we have seen before.

The idea behind the “cosmological ansatz” can then be described as fol-
lows. Select one of the spacelike hypersurfaces Σ and choose coordinates on it
so that its line element is of one of the following forms (we will use the same
names for the coordinates in all cases in order to exhibit the similarities).
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dψ2 + sin2 ψ(dφ2 + sin2 φ dθ2) (Σ = S3)

dψ2 + ψ2(dφ2 + sin2 φdθ2) (Σ = R3)

dψ2 + sinh2 ψ(dφ2 + sin2 φ dθ2) (Σ = H3(1))

Each of our free observers has a worldline that intersects Σ at, without loss
of generality, t = 0. Now “move” the coordinates of Σ along these worldlines
by fixing each observer’s spatial coordinates ψ, φ, θ at the values they have
at t = 0 on Σ and taking the fourth coordinate of each event to be the proper
time t of the observer that experiences that event. Allowing the “scale” of the
spatial cross sections to (perhaps) vary with t and recalling that the observer
worldlines are orthogonal to these cross sections we conclude that, in these
coordinates, the line element of M should have one of the forms

−dt2 + a2(t)

⎧⎪⎨⎪⎩
dψ2 + sin2 ψ(dφ2 + sin2 φdθ2)

dψ2 + ψ2(dφ2 + sin2 φdθ2)

dψ2 + sinh2 ψ(dφ2 + sin2 φdθ2)

where a(t) is some positive function of t. These are called Robertson-Walker
metrics and our conclusion (or, rather, now our ansatz) is that a spatially
homogeneous and isotropic spacetime should admit coordinate systems in
which the spacetime metric g assumes one of these forms.

If we were in the business of doing cosmology (which we are not) we
would choose one of these, substitute into the Einstein equations (for some
choice of Λ and some Tij ) and determine the scale function a(t). Our inter-
est in the Robertson-Walker metrics is that we have seen them all before
and all in the same place. Indeed, except for the names of the variables,
the metric for dS in global coordinates given by (4.3.22) is the Robertson-
Walker metric with spherical spatial cross sections and a(t) = cosh t; in
planar coordinates, Exercise 4.3.19 gives the same metric as a Robertson-
Walker metric with flat spatial cross sections and a(t) = e2t; in hyperbolic
coordinates, Exercise 4.3.20 exhibits the metric of dS as a Robertson-
Walker metric with spatial cross sections that are hyperbolic 3-spaces and
a(t) = sinh t. These three represent very different physical situations, of
course, but they are all simply different descriptions of the same underlying
spacetime (or a part of it).

It is certainly interesting, but perhaps not so terribly surprising that
entirely different physical pictures of the universe can be modeled in a sin-
gle spacetime. Certain things about a spacetime manifold are “absolute”,
i.e., independent of observer. The geodesics, for example, and the Riemann
curvature tensor, as well as the causality relations between events are all de-
termined entirely by the manifold and its metric. However, a spacetime such
as dS admits many families of timelike geodesics filling the manifold (e.g., the
tG−, tp−, and tH–coordinate curves), each with as much right as the other to
claim for itself the title of “cosmic observer” and determine its own “instan-
taneous 3-spaces.” This is entirely analogous to the situation in Minkowski
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spacetime where different admissible observers disagree as to which sets of
events count as instantaneous 3-spaces (although in this case they all agree
that “space” is R3).

Perhaps more interesting is the fact that all of these various observers agree
that they are in an empty universe (Exercise 4.4.1), not unlike an admissible
observer in Minkowski spacetime, but they see the world quite differently
than their Minkowskian colleague. Aside from the fact that they may see
“space” as spherical or hyperbolic, they also see it as expanding (indeed,
expanding at an exponentially increasing rate) due to the presence of the
scale factors a(t) = cosh t, e2t, and sinh t. Any two observers in the family
of cosmic observers have fixed spatial coordinates, but even so their spatial
separation is increasing exponentially with t (in the spherical case one might
picture a balloon being blown up). Remarkably enough, recent astronomical
observations suggest that the expansion of our universe is, indeed, accelerat-
ing and this has prompted a renewed interest in the de Sitter universe as a
potential alternative to Minkowski spacetime (see, for example, [CGK]). As
we have seen, these two models of the empty universe have quite different
properties and we will conclude by describing yet one more such property,
this one related to the asymptotic behavior of worldlines.

4.5 Infinity in Minkowski and de Sitter Spacetimes

We propose to offer a precise definition of “infinity” in both Minkowski and
de Sitter spacetimes and then show how the two differ in the behavior of
their timelike and null curves “at infinity.” This will lead to the notions of
particle and event “horizons” in dS that do not exist in M (since we are now
regarding Minkowski spacetime as a Lorentzian manifold it would probably
be more appropriate to call it R3,1, but we’ll stick with M). The idea behind
all of this is due to Roger Penrose and amounts to “squeezing” both M and dS
into finite regions of yet another spacetime in such a way that the boundaries
of these regions can be identified with “infinity” in M and dS. The spacetime
into which we squeeze them is, moreover, of considerable significance, at least
historically. It is called the Einstein static universe and we shall denote it E .

Remark: Here, very briefly, is the story of E . As Einstein originally pro-
posed them, the field equations did not contain a cosmological constant (they
were our (4.4.1) with Λ = 0). Einstein applied these equations to a spatially
homogeneous and isotropic universe with S3 spatial cross sections and filled
with a uniform “dust” of galaxies (Tij was the energy-momentum tensor for
what is called a perfect fluid with zero pressure). He found, much to his cha-
grin, that the solution described an expanding universe. He was chagrined by
this because, at the time, there was no reason to believe that the universe
was anything but what it had been assumed for centuries to be, that is, fixed
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and immutable. He then, very reluctantly, modified his field equations by in-
cluding the cosmological term Λgij because he could then, for a very specific
choice of Λ, find a static solution E . Then, of course, along came Edwin Hub-
ble who interpreted the observed redshift of light from distant galaxies as a
Doppler shift and concluded that the universe is, in fact, expanding. Einstein
(and almost everyone else) then abandoned E along with the cosmological
constant that gave rise to it. As we have seen however, there may be reason
to resurrect Λ and there are those who believe that E also deserves a reprieve
(see [DS]).

Our first task then is to construct the spacetime into which we will squeeze
M and dS. Since E can be described in terms very much like those with which
we described dS we will leave some of the details to the reader. As a set, E
consists of those points (u1, u2, u3, u4, u5) in R5 satisfying

(u1)2 + (u2)2 + (u3)2 + (u4)2 = 1

and so is pictured as a cylinder setting on the 3-sphere in R5.

Exercise 4.5.1 Show that E is diffeomorphic to S3 × R (and therefore
to dS ).

Now define a map from R4 to R5 by

u1 = sin φ̄1 cos φ̄2

u2 = sin φ̄1 sin φ̄2 cos θ̄

u3 = sin φ̄1 sin φ̄2 sin θ̄ (4.5.1)

u4 = cos φ̄1

u5 = tE .

Exercise 4.5.2 Show that the image of the map (4.5.1) is all of E and that
each point in E is contained in an open subset of E on which the inverse of
the map is a chart.

Thus, with the usual caveat regarding appropriate ranges for the variables,
(φ̄1, φ̄2, θ̄, tE) are global coordinates on E . In Figure 4.5.1 the cylinder E
is represented by suppressing the coordinates φ̄2 and θ̄ and regarding φ̄1 as
an angular coordinate on a copy of S1 in S3 (more precisely, Figure 4.5.1
represents a slice of E obtained by holding φ̄2 and θ̄ fixed).

Exercise 4.5.3 Restrict the M5-inner product to each tangent space
Tp(E), p ∈ E , and show that the corresponding line element in (φ̄1, φ̄2, θ̄, tE)-
coordinates is

ds2 = dφ̄1
2 + sin2 φ̄1

(
dφ̄2

2 + sin2 φ̄2 dθ̄2
)
− dt2

E . (4.5.2)

Remark: The reader may wish to pause and compare (4.5.2) with the result
of Exercise 4.3.18. We will have more to say about this shortly. It should also



4.5 Infinity in Minkowski and de Sitter Spacetimes 257

−f1
−f1

−f1 = 0

−f1 = π

tE = 0 (S3)

Fig. 4.5.1

be clear from (4.5.2) why E is called the Einstein “static” universe. The
spatial cross sections S3 of constant tE all have the same geometry, given by
dφ̄2

1 +sin2 φ̄1

(
dφ̄2

2 + sin2 φ̄2dθ̄2
)
; there is no time-dependent scale factor such

as one sees in the Robertson-Walker metrics we have described for dS.

This completes the description of the spacetime E , but we will also need
some information about its geodesics. Rather than computing Christoffel
symbols and trying to solve (4.3.27) we notice that, just as for dS, there
is a simple normal vector to each point of E with which we can pick out those
curves in E with α′′

tan(t)= 0 for each t.
Any smooth curve in E can be written α(t) = (u1(t), u2(t), u3(t), u4(t),

u5(t)), where (u1(t))2 +(u2(t))2 +(u3(t))2 +(u4(t))2 = 1. Differentiating with
respect to t gives

0 = u1(t)
du1

dt
+ u2(t)

du2

dt
+ u3(t)

du3

dt
+ u4(t)

du4

dt
− 0 · du5

dt

which says that the M5-inner product of α′(t) with the projection of α(t)
into S3, i.e., with (u1(t), u2(t), u3(t), u4(t), 0), is zero. Thus, for any p =
(p1, p2, p3, p4, p5) ∈ E , the vector (p1, p2, p3, p4, 0) in M5 is orthogonal to
Tp(E). We conclude that Tp(E) can be viewed as the orthogonal complement
in M5 of the vector (p1, p2, p3, p4, 0). Moreover, a smooth curve α(t) in E
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is a geodesic of E if and only if its acceleration α′′(t) =
(

d2u1

dt2
, . . . , d2u4

dt2
, d2u5

dt2

)
is a multiple of (u1(t), . . . , u4(t), 0) for each t. In particular, u5 must be a
linear function of t so a geodesic must be of the form

α(t) = (u1(t), u2(t), u3(t), u4(t), at + b) (4.5.3)

for some constants a and b. Moreover, the projection

απ(t) = (u1(t), u2(t), u3(t), u4(t)) (4.5.4)

of α into S3 has the property that α′′
π(t) is a multiple of απ(t) for each t so,

by Exercise 4.3.24, απ is a geodesic of S3 and therefore either a constant if
it is degenerate or a constant speed parametrization of a great circle in S3 if
it is not.

Exercise 4.5.4 Let α be a nondegenerate geodesic of E written in the form
(4.5.3) and απ its projection into S3 as in (4.5.4). Prove each of the following
(see Figure 4.5.2).

(a) If a = 0, then α is a constant speed parametrization of a great circle in
the 3-sphere at “height” u5 = b and is spacelike.

(b) If απ(t) is degenerate (say, απ(t) =
(
u1

0, u2
0, u3

0, u4
0

)
for all t), then α

is a constant speed parametrization of a “vertical” straight line and is
timelike.

(c) If a �= 0 and απ is not degenerate, then α is a “helix” sitting over some
great circle in S3 and (α′(t), α′(t)) = (α′

π(t), α′
π(t)) − a2 so

α is

⎧⎪⎨⎪⎩
null , if (α′

π(t), α′
π(t)) = a2

timelike , if 0 < (α′
π(t), α′

π(t)) < a2

spacelike , if (α′
π(t), α′

π(t)) > a2

.

Notice that Figure 4.5.2 exhibits a feature of the Einstein static universe
that we have not encountered before. Two points can be joined by both a
timelike and a null geodesic (both future-directed if this is defined, as for
dS, in terms of the relations � and < in M5). Notice also that, since any
linear reparametrization of a geodesic is also a geodesic, when a �= 0 we may
assume that it is 1 and b = 0. In particular, the null geodesics of E can all be
described as

α(t) = (απ(t), t),

where
(α′

π(t), α′
π(t)) = 1

for −∞ < t < ∞ so that απ is a unit speed parametrization of a great circle
in S3.
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tE

spacelike

timelike

timelike

spacelike

null

Fig. 4.5.2

The next order of business is to formulate a precise notion of what it means
to “squeeze” one manifold with metric into another. We have seen already
that if M1 and M2 are manifolds with metrics g1 and g2, respectively, then
an isometry from M1 to M2 is a diffeomorphism F : M1 → M2 that preserves
inner products at each point in the sense that

g2 ((F ◦ α)′ (t0), (F ◦ β)′ (t1)) = g1 (α′ (t0), β′ (t1))

for all smooth curves α and β in M1 with α(t0) = β(t1). If such an isometry
exists, then, in particular, M1 and M2 are the same as manifolds (diffeomor-
phic), but they are geometrically the same as well since F preserves lengths
of curves, carries geodesics to geodesics, and preserves the curvature; there is
no “squeezing” going on here. To achieve this we will relax the requirement
that F preserve inner products at each point and require only that these
inner products change by at most some positive multiple at each point. More
precisely, we define a conformal diffeomorphism from M1 to M2 to be a dif-
feomorphism F : M1 → M2 with the property that, for each p ∈ M1 and all
smooth curves α and β in M1 with p = α(t0) = β(t1),

g2 ((F ◦ α)′ (t0), (F ◦ β)′ (t1)) = Ω2(p)g1 (α′ (t0), β′ (t1))

for some smooth, positive function

Ω : M1 → R.

To facilitate the comparison of the two metrics and their geometries it is
often convenient to have them both live on the same manifold (or, rather,
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the same copy of the single manifold that both M1 and M2 are diffeomorphic
to). For this we define the pullback of g2 to M1 to be the metric F ∗g2 on M1

defined by

(F ∗g2) (α′ (t0), β′ (t1)) = g2 ((F ◦ α)′ (t0), (F ◦ β)′ (t1))

for all smooth curves α and β in M1 with α(t0) = β(t1). Then the condition
that F be a conformal diffeomorphism says simply that

F ∗g2 = Ω2 g1

and in this case we will refer to g1 and F ∗g2 as conformally related metrics
on M1.

If F happens not to be surjective, but maps only onto some manifold
F (M1) contained in M2, then F is called a conformal embedding of M1 into
M2 and, if 0 < Ω(p) < 1 for each p ∈ M1, is thought of as “squeezing” M1

into M2.

Example 4.5.1 We define a map F : dS → E as follows. Let (φ1, φ2, θ, tC)
denote the conformal coordinates on dS (Example 4.3.3) and (φ̄1, φ̄2, θ̄, tE)
the coordinates on E defined by (4.5.1). Our map will send the point in
dS with coordinates (φ1, φ2, θ, tC) to the point in E with coordinates
(φ̄1, φ̄2, θ̄, tE). Somewhat more precisely, we write χ and χ̄ for the co-
ordinate patches on dS and E corresponding to these coordinates and define
F by

(χ̄−1 ◦ F ◦ χ) (φ1, φ2, θ, tC) = (φ̄1, φ̄2, θ̄, tE),

that is,

φ̄1 = φ1

φ̄2 = φ2

θ̄ = θ (4.5.5)

tE = tC .

Since −π
2 < tC < π

2 , the image of dS in E is the finite cylinder S3×
(
−π

2 , π
2

)
.

Now let α be a smooth curve in dS written as

α(t) = χ(φ1(t), φ2(t), θ(t), tC(t)).

Then

α′(t) =
dφ1

dt
χ1 +

dφ2

dt
χ2 +

dθ

dt
χ3 +

dtC

dt
χ4,
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where each χi is evaluated at α(t). Moreover,

(F ◦ α) (t) = (F ◦ χ) (φ1(t), φ2(t), θ(t), tC(t))

= χ̄
(
(χ̄−1 ◦ F ◦ χ) (φ1(t), φ2(t), θ(t), tC(t))

)
= χ̄(φ̄1(t), φ̄2(t), θ̄(t), tE(t))

so

(F ◦ α)′(t) =
dφ̄1

dt
χ̄1 +

dφ̄2

dt
χ̄2 +

dθ̄

dt
χ̄3 +

dtE

dt
χ̄4

=
dφ1

dt
χ̄1 +

dφ2

dt
χ̄2 +

dθ

dt
χ̄3 +

dtC

dt
χ̄4

= F∗α(t) (α′(t)),

where each χ̄i is evaluated at F (α(t)). In particular,

F∗p(χi(p)) = χ̄i(F (p)), i = 1, 2, 3, 4.

Writing gE for the restriction to S3×
(
−π

2 , π
2

)
⊆ E of the metric on E given by

(4.5.2) we compute the components of F ∗gE in conformal coordinates on dS.

(F ∗gE) (χi(p), χj(p)) = gE
(
F∗p(χi(p)), F∗p(χj(p))

)
= gE(χ̄i(F (p)), χ̄j(F (p)))

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 , i �= j

1 , i = j = 1
sin2 φ̄1(F (p)) , i = j = 2
sin2 φ̄1(F (p)) sin2 φ̄2(F (p)) , i = j = 3
−1 , i = j = 4

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 , i �= j

1 , i = j = 1
sin2 φ1(p) , i = j = 2
sin2 φ1(p) sin2 φ2(p) , i = j = 3
−1 , i = j = 4

Consequently, the line element for the metric F ∗gE on dS in conformal coor-
dinates (φ1, φ2, θ, tC) is

dφ2
1 + sin2 φ1

(
dφ2

2 + sin2 φ2 dθ2
)
− dt2

C

and this, according to Exercise 4.3.18, is cos2 tC times the line element for
the metric gdS of dS in conformal coordinates. We conclude therefore that

F ∗gE = Ω2gdS
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where Ω(φ1, φ2, θ, tC) = cos tC . Thus, F ∗gE and gdS are conformally related
metrics on dS or, said otherwise, F is a conformal embedding of dS into E .

We will have more to say about this particular example shortly, but first
we will need to develop a few general results on conformally related metrics.
First observe that a conformal diffeomorphism of one spacetime manifold to
another carries spacelike, timelike and null curves onto curves of the same
type since

g2((F ◦ α)′ (t), (F ◦ α)′ (t)) = Ω2 (α(t)) g1 (α′ (t), α′ (t))

so the causal character of the tangent vector is preserved at each point. It is
not the case, however, that conformal diffeomorphisms always carry geodesics
onto geodesics. However, we will show that a conformal diffeomorphism on
a spacetime manifold carries a null geodesic onto a (reparametrization of a)
null geodesic.

We begin by having another look at the geodesic equations

d2xr

dt2 + Γr
ij

dx i

dt
dx j

dt
= 0, r = 1, . . . , n (4.5.6)

in an n-manifold M with metric g. We recall (Lemma 4.3.1) that these
geodesic equations are not independent of parametrization. Indeed, a geodesic
must be parametrized in a very particular way in order for its coordinate
functions to satisfy (4.5.6). These are called affine parametrizations and they
differ from each other by simple linear functions. Of course, any curve can be
reparametrized anyway you like and we would like to see what the geodesic
equations look like in an arbitrary parametrization. Thus, we assume that
(4.5.6) is satisfied and introduce a reparametrization t = h(s), where h is
some smooth function with h′(s) > 0 for all s. Then

dxa

ds
=

dxa

dt
dt
ds

d2xa

ds2 =
d2xa

dt2

(
dt
ds

)2

+
dxa

dt
d2t

ds2

and so

d2xr

ds2 + Γr
ij

dx i

ds
dx j

ds
=

d2xr

dt2

(
dt
ds

)2

+
dx r

dt
d2t

ds2 + Γr
ij

dx i

dt
dx j

dt

(
dt
ds

)2

=
(

dt
ds

)2
(

d2xr

dt2 + Γr
ij

dx i

dt
dx j

dt

)
+

dx r

dt
d2t

ds2

=
d2t

ds2

dx r/ds
dt/ds
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d2xr

ds2 + Γr
ij

dx i

ds
dx j

ds
=
(

d2t/ds2

dt/ds

)
dx r

ds
, r = 1, . . . , n. (4.5.7)

Thus, (4.5.7) are the equations satisfied by a geodesic when expressed in
terms of an arbitrary parameter s. Of course, when s is a linear function of
the affine parameter t, they reduce to (4.5.6).

Notice that if we are given some smooth curve α(s) in M that satisfies

d2xr

ds2 + Γr
ij

dx i

ds
dx j

ds
= f(s)

dx r

ds
, r = 1, . . . , n (4.5.8)

for some function f(s), we can introduce a parameter t by setting

d2t/ds2

dt/ds
= f(s)

and solve
d2t

ds2 − f(s)
dt
ds

= 0

to obtain
dt
ds

= e
∫

s
a

f(ξ)dξ

where a is an arbitrary constant. Reparametrized in terms of t, α(t) satisfies
(4.5.6) and is therefore a geodesic of M . We will write out a specific example
shortly, but first we use this to show that if α(t) is a null geodesic in a
spacetime manifold M (with affine parameter t), then α(t) is also a null
geodesic in any conformally related metric, although t need not be an affine
parameter for it. Thus, conformal diffeomorphisms preserve null geodesics, up
to parametrization. For the proof we will first need to compute the Christoffel
symbols of a conformally related metric.

We let M denote an n-manifold with metric g and suppose ḡ = Ω2g is a
conformally related metric on M . In any coordinate system x1, . . . , xn the
metric components are gij and ḡij = Ω2gij and the entries of the inverse
matrices are related by ḡij = Ω−2gij . By definition, the Christoffel symbols
for g in these coordinates are

Γr
ij =

1
2
grk

(
∂gik

∂xj
+

∂gjk

∂xi
− ∂gij

∂xk

)
, r, i, j = 1, . . . , n
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and those for ḡ are

Γ̄r
ij =

1
2
ḡrk

(
∂ḡik

∂xj
+

∂ḡjk

∂xi
− ∂ḡij

∂xk

)
=

1
2

Ω−2 grk

(
∂

∂xj

(
Ω2 gik

)
+

∂

∂xi

(
Ω2 gjk

)
− ∂

∂xk

(
Ω2 gij

))
=

1
2

Ω−2 grk

(
Ω2 ∂gik

∂xj
+ 2Ω

∂Ω
∂xj

gik +

Ω2 ∂gjk

∂xi
+ 2Ω

∂Ω
∂xi

gjk −

Ω2 ∂gij

∂xk
− 2Ω

∂Ω
∂xk

gij

)
= Γr

ij + Ω−1

(
∂Ω
∂xj

grkgik +
∂Ω
∂xi

grkgik − ∂Ω
∂xk

grkgij

)
= Γr

ij + Ω−1

(
δr
i

∂Ω
∂xj

+ δr
j

∂Ω
∂xi

− grkgij
∂Ω
∂xk

)
.

Thus,

Γ̄r
ij = Γr

ij + δr
i

∂

∂xj
(ln Ω) + δr

j

∂

∂xi
(ln Ω) − grkgij

∂

∂xk
(ln Ω). (4.5.9)

Next we consider a curve α(t) in a spacetime M that is null relative to g,
and therefore also relative to ḡ. Thus,

gij
dx i

dt
dx j

dt
= 0 (4.5.10)

for all t. We claim that (4.5.10) implies

d2xr

dt2 + Γ̄r
ij

dx i

dt
dx j

dt
=

d2xr

dt2 + Γr
ij

dx i

dt
dx j

dt
+

d

dt
(2 ln Ω)

dx r

dt
(4.5.11)

for r = 1, 2, 3, 4. Indeed, multiplying (4.5.9) by dx i

dt
dx j

dt and summing as indi-
cated gives

Γ̄r
ij

dx i

dt
dx j

dt
− Γr

ij

dx i

dt
dx j

dt

= δr
i

∂

∂xj
(ln Ω)

dx i

dt
dx j

dt
+ δr

j

∂

∂xi
(ln Ω)

dx i

dt
dx j

dt

− grk ∂

∂xk
(ln Ω) gij

dx i

dt
dx j

dt

=

(
∂

∂xj
(ln Ω)

dx i

dt
+

∂

∂xi
(ln Ω)

dx i

dt

)
dx r

dt
− 0
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=

(
2

∂

∂xi
(ln Ω)

dx i

dt

)
dx r

dt

=
(

2
d

dt
(ln Ω)

)
dx r

dt

from which (4.5.11) is immediate.
Now we can fulfill our promise about null geodesics. Suppose that α(t) is

a null geodesic of g with affine parameter t. Then (4.5.10) is satisfied and,
moreover,

d2xr

dt2 + Γr
ij

dx i

dt
dx j

dt
= 0, r = 1, 2, 3, 4.

Thus, (4.5.11) gives

d2xr

dt2 + Γ̄r
ij

dx i

dt
dx j

dt
=

d

dt
(2 lnΩ)

dx r

dt
, (4.5.12)

for r = 1, 2, 3, 4. It follows from (4.5.8) that α(t) is also a (null) geodesic of ḡ,
but that t is not an affine parameter for it. From the discussion immediately
following (4.5.8) we can introduce an affine parameter μ for this null geodesic
of ḡ by

dμ

dt
= exp

(∫ t

a

d

dξ
(2 ln Ω)dξ

)
.

Taking the multiplicative constant to be one,

dμ

dt
= Ω2

(
x1(t), . . . , x4(t)

)
(4.5.13)

so μ(t) can be found by integration.

Example 4.5.2 We return to the conformally related metrics gdS and
F ∗gE on dS discussed in Example 4.5.1. Here F ∗gE = Ω2gdS , where
Ω(φ1, φ2, θ, tC) = cos tC . Every null geodesic in dS (relative to gdS ) can
be described as follows.

Fix a point p ∈ dS and a null vector v in M5 orthogonal to p in M5((v, v) = 0
and (p, v) = 0). Then any linear parametrization α(t) = p + tv , −∞ < t <
∞, of the straight line through p in the direction v is a null geodesic of
dS. Any such t is an affine parameter for the geodesic since the acceleration
is zero which is certainly M5-orthogonal to Tα(t)(dS ) for each t and this,
as we have seen, implies that the geodesic equations (4.3.27) are satisfied
in any coordinate system. Since a null straight line in M5 can be linearly
parametrized by u5 we can assume that p is in the “bottleneck” u5 = 0 in dS
and simply take t to be u5.

Exercise 4.5.5 Show that u5 = tan(tC) for −π
2 < tC < π

2 .

Now, we have seen that α is also a reparametrization of a null geodesic of
F ∗gE and that an affine parameter μ for this F ∗gE-geodesic is determined by
(4.5.13) which, in this case, is
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dμ

dt
= cos2 (tC(t))

= cos2 (arctan t) by Exercise 4.5.5

=
1

1 + t2

so
μ = μ(t) = arctan t + k = tC + k

for some constant k. Taking k = 0 so that

μ = 0 ⇐⇒ t = 0 ⇐⇒ tC = 0

we find that
μ = tC

is an affine parameter for α(t) with respect to F ∗gE .
Rephrasing all of this we conclude that the image in E of the null geodesic

α(t) in dS under the conformal diffeomorphism F is that portion of a null
geodesic (“helix”) in E affinely parametrized by tE = tC for −π

2 < tE < π
2

(see Figure 4.5.3). The most important conclusion we wish to draw from this
is that, on null geodesics,

t −→ ∞ ⇐⇒ tE −→ π

2

and
t −→ −∞ ⇐⇒ tE −→ −π

2
.

Thus, the entire history of a null geodesic in dS is “squeezed” into the finite
region −π

2 < tE < π
2 of E and the slices tE = −π

2 and tE = π
2 accurately

represent “infinity” for null geodesics in dS. The 3-sphere tE = −π
2 in E is

denoted I− and called the past null infinity of dS ; tE = π
2 , denoted I+, is

the future null infinity of dS. If we identify dS with its “squeezed” version
in E , one can think of null geodesics as being born on I− in the infinite past
(t = −∞) and dying on I+ in the infinite future (t = ∞).

There is a great deal of information in this conformal picture about the
causal structure of dS, much of which contrasts rather sharply with what
we know about Minkowski spacetime. It is all much more easily visualized,
however, if we construct something analogous to the 2-dimensional Minkowski
diagrams employed in Chapter 1. These are called Penrose diagrams and are
based on the simple fact that the helices representing null geodesics of E in
Figures 4.5.2 and 4.5.3 are precisely the curves on the cylinder that one gets
from diagonal straight lines in the plane by wrapping the plane around itself
to build the cylinder. We reverse this procedure by cutting the cylinder in
Figure 4.5.3 along the vertical line at φ1 = π and flattening it onto the plane.
The result is Figure 4.5.5 which also has labeled a number of additional items
that we will now endeavor to explain.
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f1 = π

tE = 0 

f1 = 0 

tE = −  
π  (t → - ∞)2−

tE = π  (t →  ∞)2−

Fig. 4.5.3

We will identify the timelike hyperbolas in Figure 4.5.4 with the worldlines
of a family of cosmic observers in dS for which φ1 (as well as φ2 and θ) are
held fixed and will (arbitrarily) decree that the observer with φ1 = 0 resides
at the north pole of S3 Then φ1 = π corresponds to an observer at the south
pole. These worldlines map to vertical straight lines in the conformal image of
dS in E and we will now identify these, parametrized by −π

2 < tE < π
2 , with

our cosmic observers. The points on these vertical straight lines with tE = π
2

and tE = −π
2 do not arise from points on the hyperbolas in dS. Rather, they

are to be regarded as the asymptotic limits of these worldlines as t → ∞ and
t → −∞, respectively.

We begin by focusing attention on some point p on the worldline of the
observer O residing at the north pole. The null geodesics through p (or any
other point) appear as straight lines inclined 45◦ to the horizontal. We will,
somewhat inaccurately, refer to this pair of lines as the “null cone” at p
(technically, the null cone lives in the tangent space at p). The events on the
lower (past) null cone at p are those visible to O at p. Notice that some of
our cosmic observers have worldlines that intersect this past null cone at p
(e.g., O′ at p′1), but others. do not (e.g., O′′) and the latter are not visible to
O at p. By contrast, in Minkowski spacetime, the past null cone at any event
on any timelike straight line intersects every other timelike straight line. The
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dS

f1 = p (south pole)

f1 = 0 (north pole)

Fig. 4.5.4

past null cone at p is called the particle horizon of O at p since it is the
boundary between the particles that are visible to O at or before p and those
that are not; such things do not exist in M. The observer O′′ does eventually
become visible to O since the point p′′1 on its worldline is also on the past null
cone at p1. The same cannot be said of an observer stationed at the south
pole, however, since no past null cone to any point on O’s worldline intersects
the vertical line at φ1 = π.

The past null cone at the point in E with φ1 = 0 and tE = π
2 does not

correspond to any point on the worldline of O, but is rather to be regarded
as a limiting position for O’s past null cones as t → ∞. This is called the
past event horizon of the worldline and is the boundary between the events
that will eventually be visible to O and those that will not. Notice that the
worldlines of O′ and O′′ both intersect this past event horizon (at p′2 and
p′′2). These are perfectly ordinary points on the worldlines of O′ and O′′, but
O never sees them because an infinite proper time elapses on O’s worldline
before they occur. O sees a finite part of the history of both O′ and O′′ in an
infinite amount of his proper time. Physicists would express this by saying
that signals received by O from either O′ or O′′ are redshifted by an amount
that becomes infinite as the points p′2 and p′′2 are approached.

Analogously, the future null cone at p encloses all of the events that O
can influence at or after p. The corresponding future null cone at the point
of E with φ1 = 0 and tE = −π

2 encloses all of the events that O could
ever influence and is called the future event horizon of O’s worldline. The
shaded region in Figure 4.5.5 between the past and future event horizons of
O therefore consists of events that are completely inaccessible to O, who can
neither influence nor be influenced by them.
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f1 = 0f1 = π

Particle Horizon at p Particle Horizon at p

Past Event Horizon of

Future Event Horizon of

Past Event Horizon of

Future Event Horizon of

p

p1

p2

p1 p1

p2

f1 = π

 + (tE = π ; t → ∞ )2−

 − (tE = −   π ; t → −∞ )2−

" '

"

" '

'

Fig. 4.5.5

All of the behavior we have just described is, of course, completely unheard
of in M. The structure of “infinity” in Minkowski spacetime is clearly differ-
ent than that of de Sitter spacetime. To understand more precisely just what
these differences are we would like to conclude by guiding the reader through
a sequence of exercises that construct an analogous conformal embedding of
M into E and the resulting Penrose diagram for Minkowski spacetime. The
first objective is an analogue of conformal coordinates for M.

It will be convenient to construct these conformal coordinates for M in
stages. We will denote by u1, u2, u3, and u4 the standard coordinates on
M(R4) relative to which the Minkowski line element is

ds2 = (du1)2 + (du2)2 + (du3)2 − (du4)2.

Identifying R4 with R3 ×R, introducing spherical coordinates ρ, φ, θ on R3

and denoting by t the coordinate on R we have

u1 = ρ sinφ cos θ

u2 = ρ sinφ sin θ

u3 = ρ cosφ

u4 = t

and
ds2 = dρ2 + ρ2(dφ2 + sin2 φ dθ2) − dt2.

We remind the reader of all the usual caveats concerning spherical coordi-
nates. All of M is parametrized by ρ, φ, θ, t with ρ ≥ 0, 0 ≤ φ ≤ π,
0 ≤ θ ≤ 2π, and −∞ < t < ∞, but to obtain charts one restricts
these to either ρ > 0, 0 < φ < π, 0 < θ < 2π, −∞ < t < ∞, or
ρ > 0, 0 < φ < π, −π < θ < π, −∞ < t < ∞. These two charts cover
all of M except the u3-axis for each u4(= t). One can cover these points,
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except for ρ = 0, with analogous spherical coordinates with, say, φ measured
from the u1-axis and θ in the u2u3-plane. Finally, to cover the points with
ρ = 0, −∞ < t < ∞, i.e., the t-axis, one selects some other point as the
“origin” for an entirely analogous spherical coordinate chart. As is custom-
ary, we sweep all of these variants under the rug and use ρ, φ, θ, t for the
coordinates in any one of these charts.

Next we introduce what are called advanced and retarded null coordinates
v and w by letting v = t + ρ and w = t− ρ. In somewhat more detail, we let

ρ =
1
2

(v − w)

φ = φ

θ = θ (4.5.14)

t =
1
2

(v + w)

Exercise 4.5.6
(a) Show that v, w, φ, θ parametrize all of M for −∞ < w ≤ v < ∞, 0 ≤

φ ≤ π and 0 ≤ θ ≤ 2π and that each point of M is contained in an open
set on which v, w, φ, θ are the coordinates of a chart for M.

(b) Show that, if a and b are constants, then the set of points in M with v = a
is the lower half of the null cone at (u1, u2, u3, u4) = (0, 0, 0, a) and
w = b is the upper half of the null cone at (u1, u2, u3, u4) = (0, 0, 0, b).

(c) Show that the line element for M in these coordinates is

ds2 =
1
4

(v − w)2(dφ2 + sin2 φ dθ2) − dv dw .

Exercise 4.5.6 (b) provides a nice geometrical and physical interpretation of
the new coordinates v and w. One finds v and w geometrically at a point x
in M by locating points on the u4-axis at which the lower and upper null
cones intersect at x. Physically, one can express this in the following way.
For v(x) one finds a spherical electromagnetic wave that is “incoming” to
the origin and experiences x, while for w(x) one finds such a wave that is
“outgoing” from the origin. Then v(x) is the time t at which the incoming
wave reaches the origin and w(x) is the time t at which the outgoing wave
left the origin. Succinctly, one connects x to the origin with light rays and
uses the departure and arrival times as coordinates. Thus, v(x) (respectively,
w(x)) is an advanced (respectively, retarded) null coordinate. Suppressing φ
and θ we can picture this in the ρt-plane as in Figure 4.5.6.

Next we once again use the arctangent function to “make infinity finite”,
as Penrose and Rindler [PR2] put it. Specifically, we replace v and w by two
new coordinates p and q defined by p = arctan v and q = arctanw. In more
detail, we define
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v = tan p

φ = φ

θ = θ (4.5.15)

w = tan q

for −π
2 < p < π

2 and −π
2 < q < π

2 . Notice that

w ≤ v =⇒ q ≤ p.
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Exercise 4.5.7
(a) Show that p, q, φ, θ parametrize all of M for −π

2 < q ≤ p < π
2 , 0 ≤ φ ≤ π

and 0 ≤ θ ≤ 2π and that each point of M is contained in an open set on
which p, q, φ, θ are the coordinates of a chart for M.

(b) Show that the line element for M in these coordinates is

ds2 =
1
4

sec2 p sec2 q
(
−4dp dq + sin2 (p − q)

(
dφ2 + sin2 φ dθ2

))
.

Now, one final maneuver to bring this last line element into a more familiar
form. Specifically, we introduce two new coordinates t′ and ρ′ by t′ = p + q
and ρ′ = p − q, i.e.,

p =
1
2
(t′ + ρ′)

φ = φ

θ = θ (4.5.16)

q =
1
2
(t′ − ρ′)

for −π < t′ < π and 0 ≤ ρ′ < π.

Exercise 4.5.8
(a) Show that ρ′, φ, θ, t′ parametrize all of M for 0 ≤ ρ′ < π, 0 ≤ φ ≤

π, 0 ≤ θ ≤ 2π, −π < t′ < π, and that each point of M is contained in
an open set on which ρ′, φ, θ, t′ are the coordinates of a chart for M.

(b) Show that

2t = tan
(

1
2

(t′ + ρ′)
)

+ tan
(

1
2

(t′ − ρ′)
)

2ρ = tan
(

1
2

(t′ + ρ′)
)
− tan

(
1
2

(t′ − ρ′)
)

.

(c) Show that the line element for M in these coordinates is

ds2 =
1
4

sec2

(
1
2

(t′ + ρ′)
)

sec2

(
1
2

(t′ − ρ′)
) (

dρ′2 +

sin2 ρ′(dφ2 + sin2 φdθ2) − dt ′2
)
. (4.5.17)

Now we find ourselves in a familiar position. Except for the names of the
variables, dρ′2 + sin2 ρ′(dφ2 + sin2 φdθ2) − dt ′2 has precisely the same form
as the line element (4.5.2) of the Einstein static universe in its standard
coordinates and the line element for M relative to (ρ′, φ, θ, t′) is just
a positive multiple of this. We now ask the reader to argue as we did in
Example 4.5.1 and draw the same conclusion.
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Exercise 4.5.9 Define a mapping F of M into E by

φ̄1 = ρ′

φ̄2 = φ

θ̄ = θ

tE = t′

for 0 ≤ ρ′ < π, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π and −π < t′ < π. Show that F is a
conformal embedding of M into the region S3 × (−π, π) in E with

F ∗gE = Ω2gM,

where gM is the Lorentz metric on M and

Ω(ρ′, t′) = 2 cos
(

1
2

(t′ + ρ′)
)

cos
(

1
2

(t′ − ρ′)
)

. (4.5.18)

The image of the conformal embedding of dS into E was all of
S3 ×

(
−π

2 , π
2

)
, but it is not the case that the map F in Exercise 4.5.9 maps

onto S3 × (−π, π). To find the image we first find its boundary (which will
eventually play the role of “infinity” in M)). As before we will construct our
picture on the 2-dimensional cylinder by holding φ and θ fixed.

The “finite part” of M corresponds to −π
2 < q ≤ p < π

2 so −π < t′ + ρ′ <
π, −π < t′ − ρ′ < π, and 0 ≤ ρ′ ≤ π. Since φ̄1 = ρ′ and tE = t′, these
translate to −π < tE + φ̄1 < π, −π < tE − φ̄1 < π, and 0 ≤ φ̄1 < π. Thus,
the boundary of the image of M in E is determined by tE + φ̄1 = ±π and
tE − φ̄1 = ±π, subject to 0 ≤ φ̄1 ≤ π and −π ≤ tE ≤ π. Observe first that

tE + φ̄1 = −π, tE ≥ −π, and φ̄1 ≥ 0 =⇒ (tE , φ̄1) = (−π, 0)

and

tE − φ̄1 = π, tE ≤ π, and φ̄1 ≥ 0 =⇒ (tE , φ̄1) = (π, 0)

These two points in our picture we will denote

i− : tE + φ̄1 = −π
(
p = −π

2
, q = −π

2

)
and

i+ : tE − φ̄1 = π
(
p =

π

2
, q =

π

2

)
and, for reasons to be explained shortly, call them, respectively, past and
future timelike infinity of M, while those satisfying

tE − φ̄1 = −π
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will be denoted I− and called past null infinity of M, while those satisfying

tE + φ̄1 = π

are denoted I+ and called future null infinity of M. The intersection of
these two is just the point (tE , φ̄1) = (0, π) which is denoted i◦ and called
space-like infinity of M.

Note: One should observe that the boundary points i−, i+, I−, I+ and i◦

we have just isolated are precisely the points at which the conformal factor
Ω given by (4.5.18) vanishes.

We visualize I− and I+ using the same device employed for the conformal
embedding of dS in E . Unfolding the 2-dimensional Einstein cylinder onto
the φ̄1 tE-plane, the equations tE − φ̄1 = −π and tE + φ̄1 = π determine
straight lines. This is depicted in Figure 4.5.7, but a bit of care is required
in interpreting the picture. Since (φ̄1, tE) = (π, 0) and (φ̄1, tE) = (−π, 0)
come from the same point on the cylinder we have identified them and drawn
both of the straight lines twice on opposite sides of the tE-axis. When the
plane is folded back up into the cylinder these become the curves labeled I−

and I+ in Figure 4.5.8.

− π

π π

π

t E 
+ f 1 

= π  

−

tE + f
1 = π  

−

t E 
− f 1 

= − π  

−

tE − f
1 = − π  

−

tE 

f1
−

Fig. 4.5.7

The justification for the names we have attached to the various components
of the conformal boundary of M is arrived at by examining the images in E
of geodesics in M. We begin with future-directed null geodesics in M. We
have shown already that these map to (reparametrizations of) null geodesics



4.5 Infinity in Minkowski and de Sitter Spacetimes 275

f1

−

f1
−

f1 = π
−

f1 = 0
−

tE = −π

tE = π

tE = 0

+ i +

i 0

I −

i −

i 0

I

Fig. 4.5.8

in E , but our interest now is in where they begin and end. To simplify the
arithmetic we will consider geodesics that pass through the origin of M, but
the same conclusions follow for those that do not. Thus, we consider a curve
α : R → M given by

α(s) = s(v1, v2, v3, v4)

where (v1)2 + (v2)2 + (v3)2 − (v4)2 = 0 and v4 > 0. Then, on α, ρ2 =
(sv1)2 + (sv2)2 + (sv3)2 = (sv4)2 so, for s ≥ 0, ρ = v4s. But ρ2 − t2 = 0
then gives t = v4s as well so (ρ, t) = (v4s, v4s). In particular, t − ρ = 0
and t + ρ = 2v4s → ∞ as s → ∞. Thus, w = 0 and v → ∞ so q = 0 and
p → π

2 as s → ∞. Consequently, t′ → π
2 and ρ′ → π

2 and so the image of the
null geodesic under the conformal embedding F of M into E (Exercise 4.5.9)
satisfies

tE + φ̄1 → π
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and so approaches I+. In the same way the image of α approaches I− as
s → −∞. Although I− and I+ do not lie in M one thinks of future-directed
null geodesics as beginning on I− and ending on I+.

A future-directed timelike geodesic through the origin in M is a curve
α : R → M that can be written in the form

α(s) = s(v1, v2, v3, v4)

where (v1)2+(v2)2+(v3)2−(v4)2 = −1 and v4 > 0. The image of α under the
conformal embedding of M into E need not be a geodesic, but it is a timelike
curve which we now ask the reader to show must begin on i− and i+.

Exercise 4.5.10 Show that the image in E of the future-directed timelike
geodesic α approaches i− as s → ∞ and i+ as s → ∞.

A spacelike geodesic α :R → M in M can be written as α(s) =
s(v1, v2, v3, v4), where (v1)2 +(v2)2 +(v3)2− (v4)2 = 1 and one can assume
without loss of generality that v4 ≥ 0. The image of α under the conformal
embedding of M into E need not be a geodesic, but it is a spacelike curve.

Exercise 4.5.11 Show that the image in E of the spacelike geodesic α ap-
proaches i◦ as s → ∞ and also as s → −∞.

i 0
i 0

i −

i +

I −I −

I + I +

Fig. 4.5.9

Figure 4.5.9 is just Figure 4.5.7 again with all of the various pieces of the con-
formal boundary of M identified by name and images in E of a few geodesics
of each type in M included. This is the Penrose diagram of Minkowski space-
time and, contrasted with the corresponding diagram for dS (Figure 4.5.5),
it does much to elucidate the differences in causal structure between the two.
There are, for example, no particle or event horizons in M precisely because
timelike geodesics “focus” on i− and i+ rather than I− and I+ so that the
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null cone at any point “catches” all of the timelike worldlines. This technique
has been used to great effect in general relativity, but it goes much further
than this. Penrose devised the technique to study the asymptotic behavior
of solutions to massless free-field equations in spinor form such as those with
which we concluded Section 3.6. The behavior of interest is conformally in-
variant and so, rather than employing complicated limiting procedures, one
can analyze the behavior at points of I− and I+ using the more familiar
local techniques of geometry and analysis. This is quite another story, how-
ever, and the best service we can provide for those interested in pursuing the
matter is to send them from here to [Pen2].



Appendix A

Topologies For M

A.1 The Euclidean Topology

In this appendix we wish to lay before the reader certain material which
requires a bit more in the way of background than the text itself and which
admittedly has not had a profound impact on subsequent research in rela-
tivity, but which is nonetheless remarkable from both the physical and the
mathematical points of view. We will assume a very basic familiarity with
elementary point-set topology and adopt [Wi] as our canonical reference.

The subject we wish to address had its origins in the extraordinary paper
[Z2] of Zeeman in 1967. Zeeman observed that the ordinary Euclidean topol-
ogy for M (defined below) has, from the relativistic viewpoint, no physical
significance or justification and proposed an alternative he called the “fine”
topology. This topology was easy to describe, physically well motivated and
had the remarkable property that its homeomorphism group (also defined
below) was essentially just the Lorentz group (together with translations and
nonzero scalar multiplications). Thus, perhaps the most important group in
all of physics is seen to emerge at the very primitive level of topology, i.e.,
from just an appropriate definition of “nearby” events. The fine topology is,
however, from the technical point of view, rather difficult to work with and
the arguments in [Z2] are by no means simple. In 1976, Hawking, King and
McCarthy [HKM] described another topology on M which seemed physi-
cally even more natural, had precisely the same homeomorphism group as
Zeeman’s fine topology and required for the proof of this nothing beyond
the most rudimentary point-set topology and Zeeman’s Theorem 1.6.2. This
so-called “path topology” for M is the object of our investigations in this
appendix.

We begin by transferring to M the standard Euclidean topology ofR4 via a
linear isomorphism. Specifically, we select some fixed admissible basis {ea}4

a=1

for M (this determines an obvious linear isomorphism of M onto R4). If x =
xaea and x0 = xa

0ea are two points in M we define the E-distance from x0 to

, : An Introduction 
, Applied Mathematical Sciences 92,

G.L. Naber The Geometry of Minkowski Spacetime to the Mathematics 
of the Special Theory of Relativity
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x by dE(x0, x) =
((

x1 − x1
0

)2 +
(
x2 − x2

0

)2 +
(
x3 − x3

0

)2 +
(
x4 − x4

0

)2)1/2

.
Then dE is a metric on M, i.e., satisfies (1) dE(x, x0) = dE(x0, x), (2)
dE(x0, x) ≥ 0 and dE(x0, x) = 0 if and only if x = x0, and (3) dE(x0, x) ≤
dE(x0, y)+dE(y, x) for all x0, x and y in M. Consequently, dE determines, in
the usual way (3.2 of [Wi]) a topology E for M called the Euclidean (or E-)
topology. Specifically, if x0 is in M and ε > 0 we define the E-open ball of
radius ε about x0 by

NE
ε (x0) = {x ∈ M : dE(x0, x) < ε}.

A subset V of M is then said to be E-open if for every x0 in V there exists
an ε > 0 such that NE

ε (x0) ⊆ V . The collection of all E-open sets in M con-
stitutes the E-topology for M. When thinking of M as being endowed with
the Euclidean topology we will denote it ME . E’s will likewise be appended
to various other terms and symbols to emphasize that we are operating in the
Euclidean topology, e.g., maps will be referred to as “E-continuous”, “ClE A”
and “bdyE A” will designate the E-closure and E-boundary of A and so on.
ME is, of course, homeomorphic to R4 with its customary Euclidean topology
so that its basic topological properties are well-known,1 e.g., it is first count-
able, separable, locally compact, but not compact, pathwise connected, etc.

Notice that the definition of the E-metric dE on M is not invariant under
Lorentz transformations. That is, if dE(x0, x) is computed by the defining
formula from the coordinates of x0 and x relative to another admissible basis
{êa} for M the result will, in general, be different. The reason for this is clear
since the two bases are related by an element of L and elements of L preserve
the Lorentz inner product and not the Euclidean inner product (i.e., they
satisfy Λ−1 = ηΛT η rather than Λ−1 = ΛT ). Nevertheless, two such metrics,
while not equal, are equivalent in the sense that they determine the same
topology for M (because an element of L is a one-to-one linear map of M
onto M and so an E-homeomorphism).

A.2 E-Continuous Timelike Curves

In Section 1.4 we defined what it meant for a smooth curve in M to be
“timelike” and “future- (or past-) directed”. For the definition of the topology
we propose to describe in the next section it is essential to extend these
notions to the class of curves in M that are E-continuous, but need not
have a velocity vector at each point. Thus, we let I denote a (nondegenerate)
interval in R (open, closed, or half-open) and consider a curve α : I → M
that is E-continuous (i.e., α−1(V ) is open in I for every E-open set V in M).

1 Its not-so-basic topological properties are quite another matter, however. Indeed, in many
topological ways, R4 is unique among the Euclidean spaces Rn (see, for example, [FL]).
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Fix a t0 in I. We say that α is future-timelike at t0 if there exists a connected,
relatively open subset U of I containing t0 such that

t ∈ U and t < t0 =⇒ α(t) � α(t0)

and
t ∈ U and t0 < t =⇒ α(t0) � α(t).

(U is an interval which may contain one or both of the endpoints of I, if I
happens to have endpoints). Past-timelike at t0 is defined similarly. α is said
to be future-timelike (resp., past-timelike) if it is future-timelike (resp., past-
timelike) at every t0 in I. Finally, α is timelike if it is either future-timelike
or past-timelike.

Any curve α : I → M that is smooth has component functions rel-
ative to any admissible basis that are continuous as maps from I into R.
Since ME is homeomorphic to R4 with its product topology, such an α is
E-continuous (8.8 of [Wi]). According to Lemma 1.4.7, a smooth curve that
is timelike and future-directed in the sense of Section 1.4 is therefore also
future-timelike in our new sense. Of course, the same is true of smooth, time-
like and past-directed curves. However, any timelike polygon (which has no
velocity vector at its “joints”) can obviously be parametrized so as to become
either future-timelike or past-timelike, but is not “smooth-timelike”. Oddly
enough, an E-continuous curve can be timelike and smooth without being
smooth-timelike in the sense of Section 1.4. For example, if {ea} is an ad-
missible basis and if one defines α : R → M by α(t) = (sin t)e1 + te4, then
α is future-timelike and smooth, but α′(t) = (cos t)e1 + e4 which is null at
t = nπ, n = 0, ±1, ±2, . . . (see Figure A.2.1). This is unfortunate since
it complicates the physical interpretation of “E-continuous future-timelike”
somewhat. One would like to regard such a curve as the worldline of a mate-
rial particle which may be undergoing abrupt changes in speed and direction
(due, say, to collisions). Of course, having a null velocity vector at some point
would tend to indicate a particle momentarily attaining the speed of light and
this we prefer not to admit as a realistic possibility. One would seem forced
to accept a curve of the type just described as an acceptable model for the
worldline of a material particle only on the intervals between points at which
the tangent is null (notice that the situation cannot get much worse, i.e.,
the velocity vector of a smooth future-timelike curve cannot be null on an
interval, nor can it ever be spacelike).

We proceed now to derive a sequence of results that will be needed in the
next section.

Lemma A.2.1 Let {ea}4
a=1 be an admissible basis for M and α : I →

M an E-continuous timelike curve. If α is future-timelike, then x4(α(t)) is
increasing on I. If α is past-timelike, then x4(α(t)) is decreasing on I. In
particular, if α is timelike, it is one-to-one.
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Fig. A.2.1

Proof: Suppose α is future-timelike (the argument for α past-timelike is
similar). Let t0, t1 ∈ I with t0 < t1. We show that x4(α(t0)) < x4(α(t1)).
Suppose, to the contrary, that x4(α(t0)) ≥ x4(α(t1)). x4(α(t)) is a real-valued
continuous (8.8 of [Wi]) function on the closed bounded interval [t0, t1] and
so achieves a maximum value at some t2 ∈ [t0, t1]. Since α is future-timelike
at t0 and p � q implies x4(p) < x4(q), x4(α(t)) must increase immediately
to the right of t0 so t2 > t0. But x4(α(t2)) > x4(α(t0)) ≥ x4(α(t1)) implies
t2 < t1 so t2 ∈ (t0, t1). But α is future-timelike at t2 and so x4(α(t)) must
increase immediately to the right of t2 and this contradicts the fact that, on
[t0, t1], x4(α(t)) has a maximum at t2. �

Next we show that Theorem 1.4.6 remains true if “smooth future-directed
timelike” is replaced with “E-continuous future-timelike”.

Theorem A.2.2 Let p and q be two points in M. Then p � q if and only
if there exists an E-continuous future-timelike curve α : [a, b] → M such that
α(a) = p and α(b) = q.

Proof: The necessity is clear from Theorem 1.4.6. For the sufficiency we
assume α : [a, b] → M is E-continuous future-timelike with α(a) = p and
α(b) = q. For each t in [a, b] we select a connected, relatively open subset
Ut of [a, b] containing t as in the definition of future-timelike at t. Then
{Ut : t ∈ [a, b]} is an open cover of [a, b] so, by compactness (17.9 of [Wi]),
we may select a finite subcover U = {Ua, Ut1 , . . . , Utn}.
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By definition, a ∈ Ua. Moreover, if b ∈ Ua, then α(a) � α(b) and we are
done. If b /∈ Ua, then the right-hand endpoint s0 of Ua is less than or equal
to b and not in Ua.

Select a Uti in U such that s0 ∈ Uti . Then Uti �= Ua, but Ua ∩ Uti �= ∅.
Select a T0 ∈ Ua ∩ Uti such that a < T0 < ti. Now, if b ∈ Uti , then α(a) �
α(T0) � α(ti) � α(b) and we are done. Otherwise, the right-hand endpoint
s1 of Uti is less than b and not in Uti . Repeat the process, beginning at T0

rather than a. Select a Utj in U with s1 ∈ Utj . Observe that Utj �= Ua and
Utj �= Uti since s1 is in neither Ua nor Uti . However, Uti ∩Utj �= ∅. Select T1

as above and continue to repeat the process. Since U is finite and covers [a, b]
the procedure must terminate in a finite number of steps with α(a) � α(b)
as required. �

Next we prove that an E-continuous curve that is timelike at each point
in an interval must have the same causal character (future-timelike or past-
timelike) at each point. In fact, we prove more.

Lemma A.2.3 Let α : I → M be an E-continuous curve. If α is timelike
at each t0 in the interior Int I of I, then α is timelike.

Proof: We first show that α is either future-timelike at each t0 ∈ Int I or
past-timelike at each t0 ∈ Int I. The procedure will be to show that the set
S = {t0 ∈ Int I : α is future-timelike at t0} is both open and closed in Int
I and so, since Int I is connected, is either ∅ or all of Int I (26.1 of [Wi]).
Suppose then that S �= ∅. Let t0 ∈ S and select some U ⊆ Int I as in the
definition of “future-timelike at t0”. We show that α is future-timelike at
each t in U so t0 ∈ U ⊆ S and, since t0 ∈ S was arbitrary, conclude that S
is open. First suppose there were a t1 > t0 in U at which α is past-timelike.

Exercise A.2.1 Relative to an admissible basis consider x4(α(t)) on [t0, t1]
and argue as in the proof of Lemma A.2.1 to derive a contradiction.
A similar argument shows that there can be no t1 < t0 in U at which α is
past-timelike. Thus, U ⊆ S as required so S is open. The same argument
shows that {t0 ∈ Int I : α is past-timelike at t0}, which is the complement of
S in Int I, is open in Int I so S is open and closed in Int I as required. Thus,
either S = ∅ or S = Int I so α is either past-timelike at every t0 ∈ Int I or
future-timelike at every t0 ∈ Int I.

Now we show that if I has endpoints then α must be timelike and have the
same causal character at these points that it has on Int I. The arguments are
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similar in all cases so we suppose α is future-timelike on Int I and that t = a is
the left-hand endpoint of I. We show that α is future-timelike at a. Let U be
a connected, relatively open subset of I containing a, but not containing the
right-hand endpoint of I (should I happen to have a right-hand endpoint).
Let t1 > a be in U and set q = α(a) and r = α(t1). We show that q � r.
Since (a, t1) ⊆ IntI, it follows from Theorem A.2.2 that α(a, t1) ⊆ C−

T (r).
Since a is in the closure of (a, t1) in I and α is E-continuous, q = α(a) is
in ClEC−

T (r) (7.2 of [Wi]). But ClEC−
T (r) = C−

T (r) ∪ C−
N (r) ∪ {r} so q must

be in one of these sets. q = r is impossible since, for every t in Int I with
t < t1, x4(α(t)) < x4(r) so x4(q) ≤ x4(α(t)) < x4(r). We show now that q
must be in C−

T (r). Select a t2 ∈ (a, t1) and set s = α(t2). Then s ∈ C−
T (r)

and, as above, q ∈ ClEC−
T (s) and q = s is impossible so either q ∈ C−

T (s)
or q ∈ C−

N (s). But then r − s is timelike and future-directed and s − q is
either timelike or null and future-directed. Lemma 1.4.3 then implies that
r − q = (r − s) + (s − q) is timelike and future-directed, i.e., q ∈ C−

T (r), so
q � r. Since there are no points in U less than a, α is future-timelike at a.

�

A.3 The Path Topology

The E-topology on M has the following property: For any E-continuous
timelike curve α : I → M, the image α(I) inherits, as a subspace of ME ,
the ordinary Euclidean topology. The path topology (or P-topology) is the
finest topology on M that has this property (i.e., which gives the familiar
notion of “nearby” to events on a continuous timelike worldline). Specifically,
a subset V of M is P-open if and only if for every E-continuous timelike curve
α : I → M there exists an E-open subset U of M such that

α(I) ∩ V = α(I) ∩ U,

which we henceforth abbreviate α ∩ V = α ∩ U .

Exercise A.3.1 Show that the collection of all such sets V does, indeed,
form a topology for M (3.1 of [Wi]).
Obviously, any E-open set is P -open so that the P -topology is finer than (3.1
of [Wi]) the E-topology. It is strictly finer by virtue of:

Lemma A.3.1 For each x in M and ε > 0 let

C(x) = C−
T (x) ∪ C+

T (x) ∪ {x}

and
NP

ε (x) = C(x) ∩ NE
ε (x).

Then C(x) and NP
ε (x) are P-open, but not E-open (see Figure A.3.1).
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Fig. A.3.1

Proof: Neither set contains an NE
δ (x) so they both fail to be E-open. Now,

let α : I → M be an E-continuous timelike curve. If α goes through x, then
α(I) is entirely contained in C(x) by Theorem A.2.2 so α ∩ C(x) = α ∩M.
If α does not go through x, then α ∩ C(x) = α ∩

(
C−

T (x) ∪ C+
T (x)
)
. In either

case α ∩ C(x) = α ∩ U for some E-open set U in M so C(x) is P -open. But
then NP

ε (x) is the intersection of two P -open sets and so is P -open. �

M endowed with the P -topology is denoted MP and we now show that the
sets NP

ε (x) form a base (5.1 of [Wi]) for MP .

Theorem A.3.2 The sets NP
ε (x) for x ∈ M and ε > 0 form a base for the

open sets in MP .

Proof: Let V ⊆ M be P -open and x ∈ V . We must show that there exists
an ε > 0 such that NP

ε (x) ⊆ V . We assume that no such ε exists and produce
an E-continuous timelike curve α such that α∩V cannot be written as α∩U
for any E-open set U and this is, of course, a contradiction.

We begin with NP
1 (x) which, by assumption, is not contained in V . Since

no NP
ε (x) is contained in V one or the other of C+

T (x) ∩ NP
1 (x) or C−

T (x) ∩
NP

1 (x) (or both) must contain an infinite sequence {x1, x2, . . .} of points not
in V which E-converges to x. Since the proof is the same in both cases we
assume that this sequence is in C+

T (x) ∩ NP
1 (x). We select a subsequence

{xni}∞i=0 as follows: Let xn0 = x1. Since x ∈ C−
T (xn0 ) we may select a δ1 > 0

such that NE
δ1

(x) ⊆ C−
T (xn0) (see Figure A.3.2). Let ε1 = min{δ1, 1/2}. Select

an xn1 in the sequence which lies in NP
ε1

(x). Then x � xn1 � xn0 . Repeat
the procedure. Since x ∈ C−

T (xn1) there exists a δ2 > 0 such that NE
δ2

(x) ⊆
C−

T (xn1). Let ε2 = min{δ2, 1/22} and select an xn2 in the sequence which lies
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Fig. A.3.2

in NE
ε2

(x). Then x � xn2 � xn1 � xn0 . Continuing inductively we construct
a subsequence {xn0 , xn1 , xn2 , . . .} of {xn} such that

x � · · · � xni � · · · � xn2 � xn1 � xn0

and {xni}∞i=0 E-converges to x. Now define α̂ : (0, 1] → M as follows: On[
1
2 , 1
]
, α̂ is a linear parametrization of the future-timelike segment from

xn1 to xn0 . On
[

1
3 , 1

2

]
, α̂ is a linear parametrization of the future-timelike

segment from xn2 to xn1 , and so on. Then α̂ is obviously E-continuous and
future-timelike. Since the xni E-converge to x we can define an E-continuous
curve α : [0, 1] → M by

α(t) =
{

α̂(t), 0 < t ≤ 1
x, t = 0;

α is also future-timelike by Lemma A.2.3.
Now, suppose α∩V = α∩U for some E-open set U . Since the xni are not in

V, xni �∈α∩V for each i so xni �∈α∩U for each i. Thus, {xni} ⊆ M−(α∩U) =
(M−α)∪ (M−U). But xni ∈ α so we must have xni ∈ M−U . But M−U
is E-closed and {xni} E-converges to x so x ∈ M − U , i.e., x �∈U . Thus,
x �∈ α∩U = α∩V and this is a contradiction since x is in both α and V . �

A number of basic topological properties of MP follow immediately from
Theorem A.3.2. Since the NP

ε (x) with ε rational form a local base at x, MP is
first countable (4.4(b) of [Wi]). Since P -open sets have nonempty E-interior,
MP is separable (5F of [Wi]). If R is a light ray in M and x ∈ R, then
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any NP
ε (x) intersects R only at x so, as a subspace of MP , R is discrete

(4G of [Wi]). R is also P -closed since it is, in fact, E-closed and the P -
topology is finer than the E-topology. Being separable and containing such
large closed discrete subspaces prevents MP from being normal (15.1 of [Wi])
since the Tietze Extension Theorem (15.8 of [Wi]) would require that all the
continuous real-valued functions on any closed subspace extend to MP , but
an uncountable closed discrete subspace has too many. In fact, it follows
easily from our next lemma that MP is not even regular (14.1 of [Wi]) and
therefore certainly not normal (although it is Hausdorff since any two distinct
points are contained in disjoint basic open sets).

Lemma A.3.3 The closure in MP of NP
ε (x) is ClE

(
NP

ε (x)
)
− (bdyE(

NE
ε (x)

)
∩ bdyE(C(x))

)
(see Figure A.3.3).

Proof: Since P is finer than E, ClP (A) ⊆ ClE(A) for any subset A
of M. Moreover, the points in bdyE

(
NE

ε (x)
)
∩ bdyE(C(x)) are not in

ClP
(
NP

ε (x)
)

since, if y is such a point, NP
ε/2(y) does not intersect NP

ε (x)
(the null cone at y is tangent to the surface of the Euclidean ball NE

ε (x)
at such a y) (see Figure A.3.4.). Thus, ClP

(
NP

ε (x)
)

⊆ ClE
(
NP

ε (x)
)
−(

bdyE

(
NE

ε (x)
)
∩ bdyE(C(x))

)
. But the reverse containment is also clear

since, if y is in the set on the right-hand side, every NP
δ (y) intersects NP

ε (x).
�

From Lemma A.3.3 it is clear that MP is not regular since no NP
ε (x)

contains a ClP
(
NP

δ (x)
)
. Moreover, since any P -compact set is necessarily

E-compact and no ClP
(
NP

ε (x)
)

is E-compact (or even E-closed) we find
that no point in MP has a compact neighborhood. In particular, MP is not
locally compact (18.1 of [Wi]).

Fig. A.3.3

Exercise A.3.2 Show that MP is not countably compact (17.1 of [Wi]),
Lindelöf (16.5 of [Wi]), or second countable (16.1 of [Wi]).
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In order to investigate the connectivity properties of MP and for other pur-
poses as well we will need to determine the P -continuous curves in M.

Lemma A.3.4 Let I be a nondegenerate interval in R and α : I → M
a curve. Then:

1. If α is P-continuous, then it is E-continuous.
2. If α is timelike, then it is P-continuous.

Proof: (1) Let U be an E-open set in M. Then U is P -open. Since α is
P -continuous, α−1(U) is open in I so α is E-continuous.

(2) Assume α is timelike (and therefore E-continuous by definition).
Let V be a P -open set in M. We show that α−1(V ) is open in I. By definition
of the P -topology there exists an E-open set U in M such that α∩V = α∩U .
Thus, α−1(V ) = α−1(α ∩ V ) = α−1(α ∩ U) = α−1(U)
which is open in I since α is E-continuous. �

Fig. A.3.4

It is not quite true that a P -continuous curve must be timelike, but almost.
We define a Feynman path2 in M to be an E-continuous curve α : I → M
with the property that for each t0 in I there exists a connected relatively
open subset U of I containing t0 such that

α(U) ⊆ C(α(t0)).

Observe that, since C(α(t0)) is a P -open subset of M, any P -continuous curve
in M is necessarily a Feynman path. We show that the converse is also true.

2 Being essentially timelike, but zigzaging with respect to time orientation, they resemble
the Feynman track of an electron.
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Theorem A.3.5 A curve α : I → M is P-continuous if and only if it is a
Feynman path.

Proof: All that remains is to prove that a Feynman path α : I → M is
P -continuous. Fix a t0 ∈ I. We show that α is P -continuous at t0. For this
let NP

ε (α(t0)) be a basic P -neighborhood of α(t0). Now, α−1
(
NP

ε (α(t0))
)

=
α−1
(
NE

ε (α(t0)) ∩ C(α(t0))
)

= α−1
(
NE

ε (α(t0))
)
∩ α−1(C(α(t0))). Since α is

a Feynman path there exists a connected, relatively open subset U1 of I con-
taining t0 such that U1 is contained in α−1(C(α(t0))). Since α is E-continuous
by definition, there exists a connected, relatively open subset U2 of I con-
taining t0 such that U2 ⊆ α−1

(
NE

ε (α(t0))
)
. Thus, if U = U1 ∩ U2 we have

t0 ∈ U ⊆ α−1
(
NP

ε (α(t0))
)

so α(U) ⊆ NP
ε (α(t0)) and α is P -continuous at t0.

�

Since any two points in NP
ε (x) can be joined by a Feynman path (in fact,

by a timelike segment or two such segments “joined” at x), MP is locally
pathwise connected (27.4 of [Wi]). Moreover, since any straight line in M
can be approximated by a Feynman path, MP is also pathwise connected
(27.1 of [Wi]) and therefore connected (27.2 of [Wi]).

Our next objective is to show that a P -homeomorphism h : MP → MP

of MP onto itself carries timelike curves onto timelike curves, i.e., that α :
I → M is timelike if and only if h ◦ α : I → M is timelike. We prove
this by characterizing timelike curves entirely in terms of set-theoretic and
P -topological notions that are obviously preserved by P -homeomorphisms.

Theorem A.3.6 A curve α : I → M is timelike if and only if the following
two conditions are satisfied:

1. α is P-continuous and one-to-one
2. For every t0 in I there exists a connected, relatively open subset U of I

containing t0 and a P-open neighborhood V of α(t0) in M such that:

(a) α(U) ⊆ V
(b) Whenever t0 is in the interior of I and a and b are in U and satisfy

a < t0 < b, then every P-continuous curve in V joining α(a) and α(b)
passes through α(t0).

Proof: First assume α is timelike. Since the proofs are the same in the
two cases we will assume that α is future-timelike. Then α is P -continuous
by Lemma A.3.4(2) and one-to-one by Lemma A.2.1 so (1) is satisfied. Now
fix a t0 in I and select U ⊆ I as in the definition of future-timelike at t0.
Let V = C(α(t0)). Then V is a P -open neighborhood of α(t0) with α(U) ⊆
V so part (a) of (2) is satisfied. Next suppose t0 is in the interior of U
and let a and b be in U with a < t0 < b. Then α(a) ∈ C−

T (α(t0)) and
α(b) ∈ C+

T (α(t0)). Suppose γ : [c, d] → M is a P -continuous curve in V
with γ(c) = α(a) and γ(d) = α(b). By P -continuity, γ[c, d] is a connected
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subspace of MP (26.3 of [Wi]). But if α(t0) were not in the image of γ, then
γ[c, d] =

[
γ[c, d] ∩ C−

T (α(t0))
]
∪
[
γ[c, d] ∩ C+

T (α(t0))
]

would be a disconnection
(26.1 of [Wi]) of γ[c, d]. Thus, (b) of (2) is also satisfied.

Conversely, suppose α : I → M satisfies (1) and (2). Then α is E-
continuous by Lemma A.3.4. We show that α is timelike at each t0 in the
interior of I and appeal to Lemma A.2.3. Let U and V be as in (2). Assume
without loss of generality that V is a basic open neighborhood NP

ε (α(t0)).
Let U− = {t ∈ U : t < t0} and U+ = {t ∈ U : t > t0}. Select a ∈ U− and
b ∈ U+. Since α is one-to-one, α(a) �= α(t0) and α(b) �= α(t0) so α(a) and
α(b) both lie in C−

T (α(t0)) ∪ C+
T (α(t0)). Assuming that α(a) is in C−

T (α(t0))
we show that α is future-timelike at t0 (if α(a) ∈ C+

T (α(t0)) the same proof
shows that α is past-timelike at t0). If α(b) were also in C−

T (α(t0)) we could
construct a Feynman path from α(a) to α(b) that is contained entirely in
NP

ε (α(t0)) ∩ C−
T (α(t0)). But such a Feynman path would be a P -continuous

curve in V joining α(a) and α(b) which could not go through α(t0), thus
contradicting part (b) of (2). Thus, α(b) ∈ C+

T (α(t0)). We conclude that
α(U−) ∩ C−

T (α(t0)) �= ∅ and α(U+) ∩ C+
T (α(t0)) �= ∅. Since α is one-to-one,

α(t0) /∈ α(U−) and α(t0) /∈ α(U+). But α is P -continuous so α(U−) and
α(U+) are both connected subspaces of MP and so we must have α(U−) ⊆
C−

T (α(t0)) and α(U+) ⊆ C+
T (α(t0)), i.e., α is future-timelike at t0. �

Corollary A.3.7 If h : MP → MP is a P-homeomorphism of MP onto
itself, then a curve α : I → M is timelike if and only if h ◦ α : I → M is
timelike.

Proof: Conditions (1) and (2) of Theorem A.3.6 are both obviously pre-
served by P -homeomorphisms. �

Corollary A.3.8 If h : MP → MP is a P-homeomorphism of MP onto
itself, then h carries CT (x) bijectively onto CT (h(x)) for every x in M.

Exercise A.3.3 Prove Corollary A.3.8. �

We wish to show that a P -homeomorphism either preserves or reverses the
order �. First, the local version.

Lemma A.3.9 Let h : MP → MP be a P-homeomorphism and x a fixed
point in M. Then either

1. h
(
C−

T (x)
)

= C−
T (h(x)) and h

(
C+

T (x)
)

= C+
T (h(x)) or

2. h
(
C−

T (x)
)

= C+
T (h(x)) and h

(
C+

T (x)
)

= C−
T (h(x)).

Proof: Suppose there exists a p in C+
T (x) with h(p) ∈ C+

T (h(x)) (the argu-
ment is analogous if there exists a p in C+

T (x) with h(p) ∈ C−
T (h(x))).
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Fig. A.3.5

Exercise A.3.4 Show that h
(
C+

T (x)
)
⊆ C+

T (h(x)).

Now let q be in C−
T (x). We claim that h(q) is in C−

T (h(x)). Let α and
β be past-timelike curves from p to x and x to q respectively. Let γ be
the past-timelike curve from p to q consisting of α followed by β. Then, by
Corollary A.3.7, h ◦ α, h ◦ β and h ◦ γ are all time-like. By Lemma A.2.3,
h ◦ γ is either everywhere past-timelike or everywhere future-timelike. But
h◦α is past-timelike since h(x) � h(p) and h◦γ initially coincides with h◦α
so it too must be past-timelike. By Theorem A.2.2, h(q) � h(x), i.e., h(q) ∈
C−

T (h(x)). As in Exercise A.3.4 it follows that h
(
C−

T (x)
)
⊆ C−

T (h(x)). But
Corollary A.3.8 then gives h

(
C+

T (x)
)

= C+
T (h(x)) and h

(
C−

T (x)
)

= C−
T (h(x)).

�

With this we can now prove our major result.

Theorem A.3.10 If h : MP → MP is a P-homeomorphism of MP onto
itself, then h either preserves or reverses the order �, i.e., either

1. x � y if and only if h(x) � h(y) or
2. x � y if and only if h(y) � h(x).

Proof: Let S = {x ∈ M : h preserves � at x}. We will show that
S is open in MP . The proof that MP − S is open in MP is the same so
connectivity of MP implies that either S = ∅ or S = M. Suppose then that
S �= ∅ and select an arbitrary x ∈ S. Then C(x) is a P -open set containing
x. We show that C(x) ⊆ S and conclude that S is open. To see this suppose
p ∈ C+

T (x) ⊆ C(x) (the proof for p ∈ C−
T (x) is similar). Now, x ∈ S implies

h(p) ∈ C+
T (h(x)) (see Figure A.3.6.). By Lemma A.3.9, h

(
C+

T (p)
)

equals ei-
ther C+

T (h(p)) or C−
T (h(p)). But the latter is impossible since C+

T (p) ⊆ C+
T (x)

implies h
(
C+

T (p)
)
⊆ h
(
C+

T (x)
)

= C+
T (h(x)). Thus, h

(
C+

T (p)
)

= C+
T (h(p)) so p

is in S as required. �
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Fig. A.3.6

From Theorem A.3.10 and Exercise 1.6.3 we conclude that if h : MP → MP

is a P -homeomorphism, then either h or −h is a causal automorphism.

Exercise A.3.5 Show that if h : M → M is a causal automorphism, then
h and −h are both P -homeomorphisms. Hint : Zeeman’s Theorem 1.6.2.
Now, if X is an arbitrary topological space the set H(X) of all homeomor-
phisms of X onto itself is called the homeomorphism group of X (it is closed
under the formation of compositions and inverses and so is indeed a group
under the operation of composition). If G is a subset of H(X) we will say
that G generates H(X) if every homeomorphism of X onto itself can be writ-
ten as a composition of elements of G. We now know that H(MP ) consists
precisely of the maps ±h where h is a causal automorphism and Zeeman’s
Theorem 1.6.2 describes all of these.

Theorem A.3.11 The homeomorphism group H(MP ) of MP is gener-
ated by translations, dilations and (not necessarily orthochronous) orthogonal
transformations.

Modulo translations and nonzero scalar multiplications, H(MP ) is essentially
just the Lorentz group L.



Appendix B

Spinorial Objects

B.1 Introduction

Here we wish to examine in some detail the mathematical origin and physical
significance of the “essential 2-valuedness” of spinors, to which we alluded
in Section 3.5. A genuine understanding of this phenomenon depends on
topological considerations of a somewhat less elementary nature than those
involved in Appendix A. Thus, in Section B.3, we must assume a familiarity
with point-set topology through the construction of the fundamental group
and its calculation for the circle (see Sections 32–34 of [Wi] or Sections 1–4 of
[G]). The few additional homotopy-theoretic results to which we must appeal
can all be found in Sections 5–6 of [G].

As we left it in Chapter 3, Section 5, the situation was as follows: Each
nonzero spin vector ξA uniquely determines a future-directed null vector v
and a 2-dimensional plane F spanned by v and a spacelike vector w or-
thogonal to v. The pair (v, F) is called the null flag of ξA, with v the
flagpole and F the flag. A phase change (rotation) ξA → eiθξA(θ ∈ R) of
the spin vector ξA yields another spin vector with the same flagpole v as
ξA, but whose flag is rotated around this flag pole by 2θ relative to the flag
of ξA. The crucial observation is that if ξA undergoes a continuous rotation
ξA → eiθξA, 0 ≤ θ ≤ π, through π, then the end result of the rotation is a
new spin vector eiπξA = −ξA, but the same null flag. Let us reverse our point
of view. Regard the null flag (v,F) as a concrete geometrical representation
of the spin vector ξA in much the same way that a “directed line segment”
represents a vector in classical physics and Euclidean geometry. One then
finds oneself in the awkward position of having to concede that rotating this
geometrical object by 2π about some axis yields an object apparently indis-
tinguishable from the first, but representing, not ξA, but −ξA. One might
seek additional geometrical data to append to the null flag (as we added the
flag when we found that the flagpole itself did not uniquely determine ξA) in
order to distinguish the object representing ξA from that representing −ξA.

293
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It is clear, however, that if “geometrical data” is to be understood in the
usual sense, then any such data would also be returned to its original value
after a rotation of 2π. The sign ambiguity in our geometrical representation
of spin vectors seems unavoidable, i.e., “essential”. Perhaps even more curi-
ous is the fact that a further rotation of the flag by 2π (i.e., a total rotation
of 4π) corresponds to θ = 2π and so returns to us the original spin vector
ξA = ei(2π)ξA and the original null flag.

This state of affairs is quite unlike anything encountered in classical physics
or geometry. By analogy, one would have to imagine a “vector” and its geo-
metrical representation as a directed line segment with the property that, by
rotating the arrow through 2π about some axis one obtained the geometri-
cal representation of some other “vector”. But, of course, classical Euclidean
vector (and, more generally, tensor) analysis is built on the premise that this
cannot be the case. Indeed, a vector (tensor) is just a carrier of some repre-
sentation of the rotation group and the element of the rotation group corre-
sponding to rotation by 2π about any axis is the identity. This is, of course,
just a mathematical reflection of the conventional wisdom that rotating an
isolated physical system through 2π yields a system that is indistinguishable
from the first.

B.2 The Spinning Electron and Dirac’s Demonstration

“Conventional wisdom” has not fared well in modern physics so it may come
as no surprise to learn that there are, in fact, physical systems at the sub-
atomic level whose state is altered by a rotation of the system through 2π
about some axis, but is returned to its orginal value by a rotation through
4π. Indeed, any of the elementary particles in nature classified as a Fermions
(electrons, protons, neutrons, neutrinos, etc.) possess what the physicists call
“half-integer spin” and, as a consequence, their quantum mechanical descrip-
tions (“wave functions”) behave in precisely this way (a beautifully lucid and
elementary account of the physics involved here is available in Volume III
of the Feynman Lectures on Physics [Fe]). That the spin state of an elec-
tron behaves in this rather bizarre way has been known for many years, but,
because of the way in which quantum mechanics decrees that physical infor-
mation be extracted from an object’s wave function, was generally thought
to have no observable consequences. More recently it has been argued that it
is possible, in principle, to construct devices in which this behavior under ro-
tation is exhibited on a macroscopic scale (see [[AS], [KO] and [M]). These
constructions, however, depend on a rather detailed understanding of how
electrons are described in quantum mechanics. Fortunately, Paul Dirac has
devised a remarkably ingenious demonstration involving a perfectly mundane
macroscopic physical system in which “something” in the system’s state is
altered by rotation through 2π, but returned to its original value by a 4π
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Fig. B.2.1

rotation. Next we describe the so-called “Dirac Scissors Problem” and, in the
next section, investigate the mathematics behind the phenomenon.

The demonstration involves a pair of scissors, a piece of (elastic) string
and a chair. Pass the string through one finger hole of the scissors, then
around one arm of the chair, then through the other fingerhole and around
the other arm of the chair and then tie the two ends of the string together (see
Figure B.2.1). The scissors is now rotated about its axis of symmetry through
2π (one complete revolution). The strings become entangled and the problem
is to disentangle them by moving only the string, holding the scissors and
chair fixed (the string needs to be elastic so it can be moved around these
objects, if desired). Try it! No amount of manuvering, simple or intricate,
will return the strings to their original, disentangled state. This, in itself, is
not particularly surprising perhaps, but now repeat the exercise, this time
rotating the scissors about its axis through two complete revolutions (4π).
The strings now appear even more hopelessly tangled, but looping the string
just once over the pointed end of the scissors (counterclockwise if that is the
way you turned the scissors) will return them to their original condition.

One is hard-pressed not to be taken aback by the result of this little
game, but, in fact, there are even more dramatic demonstrations of the same
phenomenon. Imagine a cube (with its faces numbered, or painted different
colors, so that one can keep track of the rotations it experiences). Connect
each corner of the cube to the corresponding corner of a room with elastic
string (see Figure B.2.2). Rotate the cube by 2π about any axis. The strings
become tangled and no manipulation of the strings that leaves the cube (and
the room) fixed will untangle them. Rotate by another 2π about the same axis
for a total rotation of 4π and the tangles apparently get worse, but a carefully
chosen motion of the strings (alone) will return them to their original state
(the appropriate sequence of manuvers is shown in Figure 41.6 of [MTW]).
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Fig. B.2.2

In each of these situations there is clearly “something different” about the
state of the system when it has undergone a rotation of 2π and when it has
been rotated by 4π. Observe also that, in each case, the “system” is more
than just an isolated pair of scissors or a cube, but includes, in some sense,
the way in which that object is “connected” to its surroundings. In the next
section we return to mathematics to show how all of this can be said precisely
and, indeed, how the mathematics itself might have suggested the possibility
of such phenomena and the relevance of spinors to their description.

B.3 Homotopy in the Rotation and Lorentz Groups

We begin by establishing some notation and terminology and briefly review-
ing some basic results related to the notion of “homotopy” in topology (a
good, concise source for all of the material we will need is [G], Sections 1–6).
Much of what we have to say will be true in an arbitrary topological space,
but this much generality is not required and tends to obscure fundamental
issues with tiresome technicalities. For this reason we shall restrict our at-
tention to the category of “connected topological manifolds”. A Hausdorff
topological space X is called an (n-dimensional) topological manifold if each
x ∈ X has an open neighborhood in X that is homeomorphic to an open
set in Rn (18.3 of [Wi] or (6.8) of [G]). A path in X is a continuous map
α : [0, 1] → X . If α(0) = x0 and α(1) = x1, then α is a path from x0 to x1

in X and X is path connected if such a path exists for every pair of points
x0, x1 ∈ X (27.1 of [Wi]).

Exercise B.3.1 Show that a topological manifold X that is connected (26.1
of [Wi]) is necessarily path connected. Hint : Fix an arbitrary x0 ∈ X and
show that the set of all x1 ∈ X for which there is a path in X from x0 to x1

is both open and closed.
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Henceforth, “space” will mean “connected topological manifold”.
Let α0 and α1 be two paths in X from x0 to x1. We say that α0 and α1

are (path) homotopic (with endpoints fixed) if there exists a continuous map
H : [0, 1] × [0, 1] → X , called a homotopy from α0 to α1, which satisfies

H(s, 0) = α0(s),
H(s, 1) = α1(s),
H(0, t) = x0,

H(1, t) = x1

for all s and t in [0, 1]. In this case we write α0 � α1. For each t in [0,
1], αt(s) = H(s, t) defines a path in X from x0 to x1 and, intuitively, one
regards H as providing a “continuous deformation” of α0 into α1 through the
family {αt : t ∈ [0, 1]} of paths. � is an equivalence relation on the set of all
paths from x0 to x1 and we denote the equivalence class of a path α by [α].
The inverse of a path α from x0 to x1 is the path α−1 from x1 to x0 defined
by α−1(s) = α(1 − s). One verifies that α0 � α1 implies α−1

0 � α−1
1 so one

may define the inverse of a homotopy equivalence class by [α]−1 = [α−1]. If
α is a path from x0 to x1 in X and β is a path from x1 to x2 in X , then the
product path βα from x0 to x2 is defined by

(βα)(s) =

{
α(2s), 0 ≤ s ≤ 1

2

β(2s − 1), 1
2 ≤ s ≤ 1.

Again, α0 � α1 and β0 � β1 imply β0α0 � β1α1 so one may define the
product of the homotopy equivalence classes [α] and [β] by [β][α] = [βα],
provided the initial point of all the paths in [β] coincides with the terminal
point of all the paths in [α]. A loop at x0 is a path from α(0) = x0 to
α(1) = x0. Then α−1 is also a loop at x0. Moreover, if β is another loop at
x0, then βα is defined and is also a loop at x0. Letting

π1(X, x0) = {[α] : α is a loop at x0},

one finds that the operations [α]−1 = [α−1] and [β][α] = [βα] give π1(X, x0)
the structure of a group with identity element [x0], where we are here using x0

to designate also the constant (or trivial) loop at x0 defined by x0(s) = x0 for
all s in [0, 1]. π1(X, x0) is called the fundamental group of X at x0. If x0 and
x1 are any two points in X and γ is a path in X from x1 to x0 (guaranteed to
exist by Exercise B.3.1), then [α] → [γ−1αγ] is an isomorphism of π1(X, x0)
onto π1(X, x1). For this reason one generally writes π1(X) for any one of the
isomorphic groups π1(X, x), x ∈ X , and calls π1(X) the fundamental group
of X. Obviously, homeomorphic spaces have the same (that is, isomorphic)
fundamental groups. More generally, any two homotopically equivalent ((3.6)
of [G]) spaces have the same fundamental groups.
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A space is said to be simply connected if its fundamental group is
isomorphic to the trivial group, i.e., if every loop is homotopic to the trivial
loop (somewhat loosely one says that “every closed curve can be shrunk to
a point”). Any Euclidean space Rn is simply connected ((3.2) of [G]), as is
the n-sphere Sn = {(x1, . . . , xn+1) ∈ Rn+1 : (x1)2 + · · · + (xn+1)2 = 1} for
any n ≥ 2 (see Exercise B.3.5 and (4.13) of [G]). For n = 1, however, the
situation is different. Indeed, the fundamental group of the circle, π1(S1), is
isomorphic to the additive group Z of integers ((4.4) of [G]). Essentially, a
loop in S1 is characterized homotopically by the (integer) number of times it
wraps around the circle (positive in one direction and negative in the other).

Exercise B.3.2 Let X and Y be two topological manifolds of dimensions n
and m respectively. Show that X × Y , provided with the product topology,
is a topological manifold of dimension n + m.

It is not difficult to show ((4.8) of [G]) that the fundamental group of a
product X×Y is isomorphic to the direct product of the fundamental groups
of X and Y , i.e., π1(X×Y ) ∼= π1(X)×π1(Y ). In particular, the fundamental
group of the torus S1 × S1 is Z×Z.

In order to calculate several less elementary examples and, in the process,
get to the heart of the connection between homotopy and spinorial objects,
we require the notion of a “universal covering manifold”. As motivation let
us consider again the circle S1. This time it is convenient to describe S1 as
the set of all complex numbers of modulus one, i.e., S1 = {z ∈ C : zz̄ = 1}.
Define a map p : R → S1 by p(θ) = e2πθi = cos(2πθ) + i sin(2πθ). Observe
that p is continuous, carries 0 ∈ R onto 1 ∈ S1 and, in effect, “wraps” the
real line around the circle. Notice also that each z ∈ S1 has a neighborhood
U in S1 with the property that p−1(U) is a disjoint union of open sets in R,
each of which is mapped homeomorphically by p onto U (this is illustrated
for z = 1 in Figure B.3.1). In particular, the “fiber” p−1(z) above each z ∈ S1

is discrete. Now let us consider a homeomorphism φ of R onto itself which
“preserves the fibers of p”, i.e., satisfies p ◦φ = p, so that r ∈ p−1(z) implies
φ(r) ∈ p−1(z). We claim that such a homeomorphism is uniquely determined
by its value at 0 ∈ R (or at any other single point in R), i.e., that if φ1 and φ2

are two p-fiber preserving homeomorphisms of R onto R and φ1(0) = φ2(0),
then φ1 = φ2. To see this let E = {e ∈ R : φ1(e) = φ2(e)}. Then E �= ∅
since 0 ∈ E and, by continuity of φ1 and φ2, E is closed in R. Since R is
connected the proof will be complete if we can show that E is open. Thus,
let e be a point in E so that φ1(e) = φ2(e) = r for some r ∈ R. Notice
that p(φ1(e)) = p(r) and p(φ1(e)) = p(e) imply that p(e) = p(r). Now select
open neighborhoods Ve and Vr of e and r which p maps homeomorphically
onto a neighborhood U of p(e) = p(r). Let V = Ve ∩ φ−1

1 (Vr) ∩ φ2
−1(Vr).

Then V is an open neighborhood of e contained in Ve and with φ1(V ) ⊆ Vr

and φ2(V ) ⊆ Vr. For each v ∈ V , p(φ1(v)) = p(φ2(v)) since both equal p(v).
But φ1(v), φ2(v) ∈ Vr and, on Vr, p is a homeomorphism so φ1(v) = φ2(v).
Thus, V ⊆ E so E is open. We find then that the homeomorphisms of R that
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preserve the fibers of p are completely determined by their values at 0. Since
the elements in a single fiber p−1(z) clearly differ by integers, the value of a
p-fiber preserving homeomorphism of R at 0 is an integer.

Fig. B.3.1

Exercise B.3.3 For each integer n let φn : R → R be the translation of R
by n, i.e., φn(y) = y + n for each y ∈ R. Show that the set C of p-fiber pre-
serving homeomorphisms of R is precisely {φn : n ∈ Z}. Observe, moreover,
that φn◦φm = φn+m so, as a group under the operation of composition, C is
isomorphic to the additive group Z of integers, i.e., to π1(S1).

Distilling the essential features out of this last example leads to the fol-
lowing definitions and results. Let X be a connected topological manifold.
A universal covering manifold for X consists of a pair (X̃, p), where X̃ is
a simply connected topological manifold and p : X̃ → X is a continuous
surjection (called the covering map) with the property that every x ∈ X has
an open neighborhood U such that p−1(U) is a disjoint union of open sets in
X̃, each of which is mapped homeomorphically onto U by p. Every connected
topological manifold has a universal covering manifold (X̃, p) ((6.8) of [G])
that is essentially unique in the sense that if (X̃ ′, p′) is another, then there
exists a homeomorphism ψ of X̃ ′ onto X̃ such that p◦ψ = p′ ((6.4) of [G]). A
homeomorphism φ of X̃ onto itself that preserves the fibers of p, i.e., satisfies
p◦φ = p, is called a covering transformation and the collection C of all such
is a group under composition. Moreover, C is isomorphic to π1(X) ((5.8) of
[G]). C is often easier to contend with than π1(X) and we will now use it to
compute the examples of real interest to us.

We shall construct these examples “backwards”, beginning with a space X̃
that will eventually be the universal covering manifold of the desired example
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X , which is defined as a quotient (9.1 of [Wi]) of X̃. First take X̃ to be the
2-sphere S2 = {(x1, x2, x3) ∈ R3 : (x1)2 + (x2)2 + (x3)2 = 1} with the
topology it inherits as a subspace of R3.

Exercise B.3.4 Show that S2 is a (Hausdorff, 2-dimensional, connected,
compact) topological manifold. Hint : Show, for example, that, on the upper
hemisphere {(x1, x2, x3) ∈ S2 : x3 > 0}, the projection map (x1, x2, x3) →
(x1, x2) is a homeomorphism onto the unit disc (x1)2 + (x2)2 < 1.

Exercise B.3.5 Show that Sn is a (Hausdorff, n-dimensional, connected,
compact) topological manifold for any n ≥ 1.

Now define an equivalence relation ∼ on S2 by identifying antipodal points,
i.e., if y, z ∈ S2, then y ∼ z if and only if z = ±y. Let [y] denote the
equivalence class of y, i.e., [y] = {y,−y}, and denote by RP 2 the set of all
equivalence classes. Define p : S2 → RP 2 by p(y) = [y] for every y ∈ S2

and provide RP 2 with the quotient topology determined by p (i.e., U ⊆ RP 2

is open if and only if p−1(U) is open in S2). RP 2 is then called the real
projective plane.

Exercise B.3.6 Show that RP 2 is a (Hausdorff, 2-dimensional, connected,
compact) topological manifold.

Now, since S2 is simply connected and p : S2 → RP 2 clearly satisfies the
defining condition for a covering map and since universal covering manifolds
are unique we conclude that

R̃P
2 ∼= S2.

But then π1(RP 2) is isomorphic to the group of p-fiber preserving home-
omorphisms φ : S2 → S2 of S2. We claim that this group contains pre-
cisely two elements, namely, the identity map (φ0(y) = y for every y ∈ S2)
and the antipodal map (φ1(y) = −y for every y ∈ S2). To see this ob-
serve that the fibers of p are just pairs of antipodal points {y,−y} so such
a φ must, for each y ∈ S2, satisfy either φ(y) = y or φ(y) = −y and so
S2 = {y ∈ S2 : φ(y) = y} ∪ {y ∈ S2 : φ(y) = −y}. Since both of these sets
are obviously closed, connectivity of S2 implies that one is ∅ and the other
is S2 as required. Thus, π1(RP 2) has precisely two elements and so must be
isomorphic to the group of integers mod 2, i.e.,

π1(RP 2) ∼= Z2.

It will be important to us momentarily to observe that there is another way
to construct RP 2. For this we carry out the identification of antipodal points
on S2 in two stages. First identify points on the lower hemisphere (x3 < 0)
with their antipodes on the upper hemisphere (x3 > 0), leaving the equator
(x3 = 0) fixed. At this point we have a copy of the closed upper hemisphere
(x3 ≥ 0) which, by projecting into the x1x2-plane, is homeomorphic to the
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closed disc (x1)2 + (x2)2 ≤ 1. To obtain RP 2 we now need only identify
antipodal points on the boundary circle (x1)2 + (x2)2 = 1. This particular
construction can be refined to yield a “visualization” of RP 2 (see Chapter 1,
Volume 1, of [Sp2]). Visualization here is not easy, however. Indeed, given a
little thought, π1(RP 2) = Z2 is rather disconcerting. Think about some loop
in RP 2 that is not homotopically trivial, i.e., cannot be “shrunk to a point in
RP 2” (presumably because it “surrounds a hole” in RP 2). Traverse the loop
twice and (because 1+1 = 0 in Z2) the resulting loop must be homotopically
trivial. What happened to “the hole”? Think about it (especially in light of
our second construction of RP 2).

Exercise B.3.7 Define real projective 3-space RP 3 by beginning with the
3-sphere S3 = {(x1, x2, x3, x4) ∈ R4 : (x1)2 + (x2)2 + (x3)2 + (x4)2 = 1}
in R4 and identifying antipodal points (y ∼ ±y). Note that R̃P

3
= S3 and

conclude that π1(RP 3) ∼= Z2. Also observe that RP 3 can be obtained by
identifying antipodal points on the boundary (x1)2 +(x2)2 +(x3)2 = 1 of the
closed 3-dimensional ball (x1)2 + (x2)2 + (x3)2 ≤ 1.

Fig. B.3.2

In an entirely analogous manner one defines RPn for any n ≥ 2 and shows
that π1(RPn) ∼= Z2.

Exercise B.3.8 What happens when n = 1?

Now let us return to the Dirac experiment. As with any good magic trick,
some of the paraphenalia is present only to divert the attention of the audi-
ence. Notice that none of the essential features of the apparatus are altered
if we imagine the strings glued (in an arbitrary manner) to the surface of an
elastic belt so that we may discard the strings altogether in favor of such a
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belt connecting the scissors and the chair (see Figure B.3.2). Rotate the scis-
sors through 2π and the belt acquires one twist which cannot be untwisted
by moving the belt alone. Rotate through 4π and the belt has two twists that
can be removed by looping the belt once around the scissors.

Regarding the scissors as a rigid, solid body in 3-space we now introduce
what the physicists would call its “configuration space”. Fix some position of
the scissors in space as its “original” configuration. Any continuous motion of
the scissors in space will terminate with the scissors in some new configuration
which can be completely described by giving a point in R3 (e.g., the location
of the scissors’ center of mass) and a rotation that would carry the original
orientation of the scissors onto its new orientation. This second element of
the description we specify by giving an element of the rotation group SO(3),
i.e., the set of all 3 × 3 unimodular orthogonal matrices (when viewed as a
subgroup of the Lorentz group we denoted SO(3) by R; see Section 1.3).
Thus, the configuration space of our scissors is taken to be R3 × SO(3).

In configuration space R3 × SO(3) a continuous motion of the scissors in
space is represented by a continuous curve. In particular, if the initial and fi-
nal configurations are the same, by a loop. Consider, for example, some point
x0 in R3×SO(3), i.e., some initial configuration of the scissors. A continuous
rotation of the scissors through 2π about some axis is represented by a loop
at x0 in R3 × SO(3). Dirac’s ingenious demonstration permits us to actually
“see” this loop. Indeed, let us visualize Dirac’s apparatus with the belt having
one “twist”. Now imagine the scissors free to slide along the belt toward the
chair. As it does so it completes a rotation through 2π. When it reaches the
chair, translate it (without rotation) back to its original location and one has
traversed a loop in configuration space. Similarly, for a rotation through 4π.
Indeed, it should now be clear that any position of the belt can be viewed as
representing a loop in R3×SO(3) (slide the scissors along the belt then trans-
late it back). Now imagine yourself manipulating the belt (without moving
scissors or chair) in an attempt to untwist it. At each instant the position of
the belt represents a loop in R3×SO(3) so the process itself may be thought
of as a continuous sequence of loops (parametrized, say, by time t). If you
succeed with such a sequence of loops to untwist the belt you have “created”
a homotopy from the loop corresponding to the belt’s initial configuration to
the trivial loop (no rotation, i.e., no twists, at all). What Dirac seems to be
telling us then is that the loop in R3 × SO(3) corresponding to a 2π rotation
is not homotopically trivial, but that corresponding to a rotation through 4π
is homotopic to the trivial loop.

It is clearly of some interest then to understand the “loop structure”, i.e.,
the fundamental group, of R3×SO(3). Notice that SO(3) does indeed have a
natural topology. The entries in a 3×3 matrix can be strung out into a column
matrix which can be viewed as a point in R9. Thus, SO(3) can be viewed as a
subset of R9 and therefore inherits a topology as a subspace of R9. A consid-
erably more informative “picture” of SO(3) can be obtained as follows: Every
rotation of R3 can be uniquely specified by an axis of rotation, an angle and a
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sense of rotation about the axis. We claim that all of this information can be
codified in a single object, namely, a vector

⇀
n in R3 of magnitude at most π.

Then the axis of rotation is the line along
⇀
n , the angle of rotation is |⇀n | and

the sense is determined by the “right-hand rule”. Notice that a rotation along
⇀
n through an angle θ with π ≤ θ ≤ 2π is equivalent to a rotation along –
⇀
n through 2π − θ so the restriction on |⇀n | is necessary (although not quite
sufficient) to ensure that the correspondence between rotations and vectors
be one-to-one. The set of vectors

⇀
n in R3 with |⇀n | ≤ π is just the closed ball

of radius π about the origin. However, a rotation about
⇀
n through π is the

same as a rotation about –
⇀
n through π so antipodal points on the bound-

ary of this ball represent the same rotation and therefore must be identified
in order that this correspondence with rotations be bijective. Carrying out
this identification yields, according to Exercise B.3.7, real projective 3-space
(topologically, the radius of the ball is irrelevant, of course). One can write out
analytically the one-to-one correspondence we have just described geometri-
cally to show that it is, in fact, continuous as a map from RP 3 to SO(3) ⊆ R9.
Since RP 3 is compact (being a continuous image of S3), we find that SO(3)
is homeomorphic to RP 3. In particular, π1(SO(3)) ∼= π1(RP 3) ∼= Z2. Thus,
π1(R3 × SO(3)) ∼= π1(R3) × π1(SO(3)) ∼= {0} ×Z2 so

π1(R3 × SO(3)) ∼= Z2

and our suspicions are fully confirmed. In quite a remarkable way, the topol-
ogy of the rotation group is reflected in the physical situation described
by Dirac.

Exercise B.3.9 In Z2, 1 + 1 + 1 = 1 and 1 + 1 + 1+ 1 = 0. More generally,
2n + 1 = 1 and 2n = 0. What does this have to say about the scissors
experiment?

But what has all of this to do with spinors? The connection is perhaps
best appreciated by way of a brief digression into semantics. We have called
R3 × SO(3) the “configuration space” of the object we have under consider-
ation (the scissors). In the classical study of rigid body dynamics, however,
it might equally well have been called its “state space” since, neglecting the
object’s (quite complicated) internal structure, it was (tacitly) assumed that
the physical state of the object was entirely determined by its configuration
in space. Suppressing the (topologically trivial and physically uninteresting)
translational part of the configuration (i.e., R3), the body’s “state” was com-
pletely specified by a point in SO(3). Based on our observations in Section 3.1,
we would phrase this somewhat more precisely by saying that all of the phys-
ically significant aspects of the object’s condition (as a rigid body) should be
describable as carriers of some representation of SO(3) (keep in mind that,
from our point of view, a rotated object is just the same object viewed from
a rotated frame of reference). We shall refer to such quantities (which depend
only on the object’s configuration and not on “how it got there”) as tensorial
objects.



304 B Spinorial Objects

But the conclusion we draw from the Dirac experiment is that there may
well be more to a system’s “state” than merely its “configuration”. This
additional element has been called (see [MTW]) the version or orientation-
entanglement relation of the system and its surroundings and at times it must
be taken into account, e.g., when describing the quantum mechanical state of
an electron with spin. Where is one to look for a mathematical model for such
a system’s “state” if now there are two, where we thought there was one?
The mathematics itself suggests an answer. Indeed, the universal covering
manifold of SO(3) (i.e., of RP 3) is S3 and is, in fact, a double cover, i.e.,
the covering map is precisely two-to-one, taking the same value at y and −y
for each y ∈ S3. Will S3 do as the “state space”? That this idea is not the
shot-in-the-dark it may at first appear will become apparent once it has been
pointed out that we have actually seen all of this before.

Recall that, in Section 1.7, we constructed a homomorphism, called the
spinor map, from SL(2,C) onto L that was also precisely two-to-one and
carried the unitary subgroup SU 2 of SL(2, C) onto the rotation subgroup R
(i.e., SO(3)) of L.

Exercise B.3.10 Let I =
[
1 0
0 1

]
, i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
and k =

[
0 i
i 0

]
.

Show that I, i, j and k are all in SU 2 and that, moreover, any A ∈ SU 2 is
uniquely expressible in the form

A = aI + bi + cj + dk,

where a, b, c, d ∈ R and a2 + b2 + c2 + d2 = 1. Regard SU 2 as a subset of R8

by identifying

A =

[
a + bi c + di

−c + di a − bi

]
with the column matrix col [a b c d − c d a − b] ∈ R8 and define a map
from SU 2 into R4 that carries this column matrix onto col [a b c d] ∈ R4.
Show that this map is a homeomorphism of SU 2 onto S3 ⊆ R4. Finally,
observe that the restriction of the spinor map to SU 2 is a continuous map
onto R (i.e., SO(3)) which satisfies the defining property of a covering map
for SO(3).

Thus we find that SU 2 and the restriction of the spinor map to it constitute
a concrete realization of the universal covering manifold for SO(3) and its
covering map. Old friends, in new attire. And now, how natural it all appears.
Identify a “state” of the system with some ỹ ∈ SU 2. This corresponds to some
“configuration” y ∈ SO(3) (the image of ỹ under the spinor map). Rotating
the system through 2π corresponds to a loop in SO(3) which, in turn, lifts
((5.2) of [G]) to a path in SU 2 from ỹ to −ỹ (a different “state”). Further
rotation of the system through 2π traverses the loop in SO(3) again, but,
in SU 2, corresponds to a path from −ỹ to ỹ and so a rotation through 4π
returns the original “state”.
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Exercise B.3.11 For each t ∈ R define a matrix A(t) by

A(t) =
[
e

t
2 i 0
0 e−

t
2 i

]
.

Show that A(t) ∈ SU 2 and that its image under the spinor map is the rotation

R(t) =

⎡⎢⎢⎣
cos t − sin t 0 0
sin t cos t 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .

Hint : Take θ = φ2 = 0 and φ1 = t in Exercise 1.7.7.

Exercise B.3.12 Show that α : [0, 2π] → SU 2 defined by α(t) = A(t) for
0 ≤ t ≤ 2π is a path in SU 2 from the identity I2×2 to −I2×2 whose image
under the spinor map is a loop Spin ◦ α at I4×4 (which is not nullhomotopic
in R). On the other hand, β : [0, 4π] → SU 2 defined by β(t) = A(t) for
0 ≤ t ≤ 4π is a loop at I2×2 in SU 2 and its image Spin ◦ β is also a loop at
I4×4 (which is nullhomotopic in R).

Mathematical quantities used to describe various aspects of the system’s
condition are still determined by the state of the system, but now we take this
to mean that they should be expressible as carriers of some representation
of SU 2. (Incidentally, any discomfort one might feel about the apparently
miraculous appearance at this point of a group structure for the covering
space should be assuaged by a theorem to the effect that this too is “essen-
tially unique”; see (6.11) of [G].) Although we shall not go into the details
here, it should come as no surprise to learn that the universal cover of the
entire Lorentz group L consists of SL(2, C) and the spinor map so that to
obtain a relativistically invariant description of, say, the state of an electron,
one looks to the representations of SL(2, C), that is, to the 2-valued repre-
sentations of L (see Section 1.7). Quantities such as the wave function of an
electron (which depend not only on the object’s configuration, but also on
“how it got there”) we call spinorial objects and are described mathematically
by carriers of the representations of SL(2, C), i.e., by spinors.
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Symbols

M Minkowski spacetime, 9
O, Ô, . . . observers, 2
Σ, Σ̂, . . . spatial coordinate systems, 2
c speed of light, 3
S, Ŝ, . . . frames of reference, 3
xa, x̂a, . . . spacetime coordinates, 3
ΛT transpose of Λ
η 10
g(v, w) = v · w value of the inner product g on (v, w), 7
W⊥ orthogonal complement of W , 7
Q quadratic form determined by g, 7
v2 = Q(v) = v · v 7
{ea}, {êa}, . . . orthonormal bases, 8
δab = δab = δa

b = δa
b 4 × 4 Kronecker delta

ηab = ηab entries of η, 10
CN (x0) null cone at x0, 11
Rx0,x null worldline through x0 and x, 11
Λ = [Λa

b] matrix of an orthogonal transformation, 13
[Λa

b] inverse of [Λa
b]

LGH general homogeneous Lorentz group, 14
CT (x0) time cone at x0, 16
C±

T (x0) future and past time cones at x0, 16
C±

N (x0) future and past null cones at x0, 17
L Lorentz group, 19
R rotation subgroup of L, 20
⇀
u,

⇀

û , . . . velocity 3-vectors, 21
β relative speed of S and Ŝ, 21, 26
γ (1 − β2)−

1
2 , 21

311



312 Symbols

⇀

d ,
⇀

d̂ , . . . direction 3-vectors, 22
Λ(β) boost, 26
θ velocity parameter, 27
L(θ) hyperbolic form of Λ(β), 27
τ(v) duration of v, 43
Δτ = τ(x − x0) 43
α′(t) velocity vector of the curve α, 47
L(α) proper time length of α, 47
τ = τ(t) proper time parameter, 50
U = α′(τ) world velocity of α, 50
A = α′′(τ) world acceleration of α, 51
γ(

⇀
u, 1) = U 52

S(x − x0) proper spatial separation, 56
� chronological precedence, 58
< causal precedence, 58
ACT conjugate transpose of A
C2×2 set of complex 2 × 2 matrices
H2 Hermitian elements of C2×2, 69
σa Pauli spin matrices, 69
SL(2, C) special linear group, 69
ΛA image of A under spinor map, 71
A(θ) maps onto L(θ) under spinor map, 72
SU 2 special unitary group, 72
R−

x past null direction through x, 74
S− celestial sphere, 74
(α, m) material particle, 81
m proper mass of (α, m), 81
P = mU world momentum of (α, m), 81
⇀
p relative 3-momentum, 81
(
⇀
p , mγ) = P 81

E total relativistic energy, 82
(α, N) photon, 84
⇀
e ,

⇀

ê , . . . direction 3-vectors of (α, N), 84
N world momentum of (α, N), 84
ε, ε̂, . . . energies of (α, N), 84
ν, ν̂, . . . frequencies of (α, N), 84
λ, λ̂, . . . wavelengths of (α, N), 84
h Planck’s constant, 84
(A, x, Ã) contact interaction, 87
me mass of the electron
≈ is approximately equal to
(α, m, e) charged particle, 93
e charge of (α, m, e), 93
⇀

E electric field 3-vector, 95
⇀

B magnetic field 3-vector, 95
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rng T range of T , 97
ker T kernel of T , 97
tr T trace of T
NE

ε (x0) open Euclidean ε-ball about x0, 117

f,α = ∂f
∂xα 118

p
F→F (p) assignment of a linear transformation to p, 118

div F divergence of p
F→F (p), 118

F̃ bilinear form associated with F , 119
dF̃ exterior derivative of F̃ , 120
εabcd Levi-Civita symbol, 121
∗F̃ dual of F̃ , 121
Lab = L(ea, eb) components of the bilinear form L, 136
GL(n,R) real general linear group of order n, 138
GL(n,C) complex general linear group of order n, 138
D a group representation, 138
DΛ = D(Λ) image of Λ under D, 138
M∗ dual of the vector space M, 139
{ea} basis for M∗ dual to {ea}, 139
v∗ element u → v · u of M∗ for v ∈ M, 139
va = ηaαvα components of v∗ in {ea}, 139
⊗ tensor (or outer) product, 140
T r

s vector space of world tensors on M, 140
La1···ar

b1···bs components of L ∈ T r
s , 141

M∗∗ = (M∗)∗ second dual of M, 141
x∗∗ element f → f(x) of M∗∗ for x ∈ M, 141
Spin the spinor map, 142
Pmn space of polynomials in z and z̄, 144
D(m

2 , n
2 ) spinor representation of type (m,n), 144

A, B, C, . . . spinor indices taking the values 1, 0
Ẋ, Ẏ , Ż, . . . conjugated spinor indices taking the values 1̇, 0̇
G =

[
GA

B
]

element of SL(2, C), 148

Ḡ =
[
Ḡ Ẏ

Ẋ

]
conjugate of G, 148

ß spin space, 153
<, > skew-symmetric “inner product” on ß, 153
{sA}, {ŝA}, . . . spin frames, 153
φA, φ̂A, . . . components of φ ∈ ß, 153
ß∗ dual of ß, 155
{sA}, {ŝA}, . . . dual spin frames, 155
δA
B 2 × 2 Kronecker delta

φ∗ element ψ →< φ, ψ > of ß∗ for φ ∈ ß, 155
φA, φ̂A, . . . components of φ∗ ∈ ß∗, 156[
GA

B

]
transposed inverse of

[
GA

B
]
, 156

φ∗∗ element f → f(φ) of ß∗∗ for φ ∈ ß, 157
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ß̄ = ß × {1} “conjugate” of ß, 157
φ̄ (φ, 1) ∈ ß̄ for φ ∈ ß, 157
{s̄Ẋ}, {¯̂sẊ}, . . . conjugate spin frames, 158
φ̄Ẋ ,

¯̂
φẊ , . . . components of φ̄, 158

Ḡ =
[
ḠẊ

Ẏ

]
conjugate of G =

[
GA

B

]
, 158

ß̄∗ dual of ß̄, 158
{s̄Ẋ}, {¯̂sẊ}, . . . dual conjugate spin frames, 158
φ̄∗ element of ß̄∗ conjugate to φ∗ ∈ ß∗, 159
φ̄Ẋ ,

¯̂
φẊ , . . . components of φ̄∗, 159(

r s
m n

)
valence of a spinor, 159

ξA1···ArẊ1···Ẋs
B1···BmẎ1···Ẏn

spinor components, 159

ε =
[
0 −1
1 0

]
=
[
ε11 ε10
ε01 ε00

]
= [εAB] = [ε̄ẊẎ ] = ε̄ẊẎ , 161

ßrs
mn space of spinors of valence

(
r s
m n

)
, 164

Ckl(ξ), Ck̇l̇(ξ), . . . contractions of ξ, 166, 167
ξ̄ spinor conjugate of ξ, 167
ξ(AB) symmetrization of ξAB , 168
ξ[AB ] skew-symmetrization of ξAB , 169
α(AβB) symmetrization of αAβB, 169
σa

AẊ , σa
AẊ Infeld-van der Waerden symbols, 169

V AẊ spinor equivalent of v ∈ M, 170
VAẊ spinor equivalent of v∗ ∈ M∗, 175
FAẊBẎ spinor equivalent of the bilinear form F , 179
φAB symmetric spinor determined by FAẊBẎ , 180
ξA → eiθξA phase change, 185
∇AẊ spinor differential operator, 197
Rn real n-space, 202
〈p, q〉 Euclidean inner product on Rn, 202
‖p‖ Euclidean norm on Rn, 202
Uε(p) open ball of radius ε about p in Rn, 203
C∞ smooth, 203
Sn n-sphere, 203
(U, ϕ) chart, 206
χ : U → M coordinate patch, 211
χi coordinate velocity vector, 218
Tp(M) tangent space to M at p, 218
(p, q) Minkowski inner product on R5, 221
M5 5-dimensional Minkowski space, 221
Γr

ij Christoffel symbols, 230
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H3(r) hyperbolic 3-space, 240
R Riemann curvature tensor, 246
Rij Ricci tensor, 249
R scalar curvature, 249
Gij Einstein tensor, 249
Tij energy-momentum tensor, 250
F∗p derivative of F at p, 252
E Einstein static universe, 255
F ∗g pullback metric, 260
I− past null infinity, 266
I+ future null infinity, 266
i− past timelike infinity, 273
i+ future timelike infinity, 273
i0 spacelike infinity, 274
dE E-distance, 279
NE

ε (x0) open Euclidean ε-ball about x0, 280
ME M with the Euclidean topology, 280
ClEA, bdyE A, . . . Euclidean closure, boundary,. . . of A ⊆ M
C(x) C−

T (x) ∪ C+
T (x) ∪ {x}, 284

NP
ε (x0) P -open ε-ball about x0, 284

MP M with the path topology, 285
ClP A, bdyP A, . . . path closure, boundary, . . . of A ⊆ M
H(X) homeomorphism group of X , 292
[α] homotopy class of the path α, 297
α−1 inverse of the path α, 297
βα product of the paths α and β, 297
π1(X, x0) fundamental group of X at x0, 297
π1(X) fundamental group of X , 297
(X̃, p) universal covering manifold of X , 299
RP 2 real projective plane, 300
Z2 group of integers mod 2
RP 3 real projective 3-space, 301
RPn real projective n-space, 301
SO(3) rotation group, 302



Index

A

aberration formula, 86

accelerations, 38, 48, 49, 82, 201, 228, 230

active transformations, 73, 77, 80

addition of velocities formula, 26

admissible basis, 19

admissible frame of reference, 19

local, 201

nonexistence of, 6

advanced null coordinates, 270

affine parametrization, 262

α-emission, 87

anti-isomorphism, 158

B

barn paradox, 41

bilinear form, 7

components of, 120

matrix of, 120

nondegenerate, 7

skew-symmetric, 119

spinor equivalent of, 192

symmetric, 7

binding energy, 88

binomial expansion, 82, 85, 91

Biot-Savart Law, 127

bivector, 120

spinor equivalent of, 180

boost, 26

C

canonical basis, 107

canonical forms, 107, 109, 195

carriers of a representation, 138

Cartan, E., 135

catenary, 117

causal automorphism, 59, 60, 223, 292

causal precedence, 58

causality assumption, 4

causality relations, 58, 222, 227

Cayley-Hamilton Theorem, 103

change of basis formula, 119

characteristic equation, 99

charge, 93

charge-to-mass ratio, 116

charged particle, 93

Christoffel symbols, 230

chronological precedence, 58

Clock Hypothesis, 48

clocks, 2, 36, 48

atomic, 2

synchronization of, 3

closed

in R
n, 203

in X, 203

commutation relations, 169

Compton effect, 88

Compton wavelength, 90

cone, 4

null, 11, 221, 268

time, 16, 49, 221

configuration space, 302

conformal diffeomorphism, 259

conformal embedding, 260

conformally related metrics, 260
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conjugate isomorphism, 158

conjugate spin covector, 158

conjugate spin vector, 158

conjugate spinor, 158, 168

conjugate transpose, 69

conjugation representation, 146

connectible by a light ray, 14

conservation of energy, 87, 90

conservation of momentum, 81, 87

conservation of 4-momentum, 87

conservation laws, 81, 88

constant curvature, 248, 253

constant electromagnetic fields, 123

constant loop, 297

contact interaction, 87

continuous, 203

contraction, 166

contravariant rank, 141

contravariant vector, 141

coordinate curve, 218

coordinate functions, 50, 202, 203

coordinate patch, 211

coordinate transformation, 219

coordinates

spatial, 2, 10, 29, 253

time, 3, 10, 253

cosmic rays, 23

cosmological constant, 250

cosmological model, 252

Coulomb field, 123

total energy of, 125

covariant rank, 141

covariant vector, 141

covector, 141

covering map, 299

covering transformation, 299

curve, 47, 217

component functions, 47

E-continuous future- (past-) timelike,
280

null, 47, 226

reparametrization of, 47

smooth, 47, 217

spacelike, 47, 226

timelike, 47, 226

cylinder, 242

locally flat, 242

D

decay, 87

derivative of a smooth map, 252

de Sitter spacetime, 224

Christoffel symbols for, 231

conformal coordinates, 215

constant curvature, 249

Einstein tensor, 249

geodesics of, 240

global coordinates, 214

hyperbolic coordinates, 217

line element for, 226

Lorentz metric for, 224

null infinity, 266

planar coordinates, 215

Ricci tensor, 249

Riemann curvature tensor, 247

and Robertson-Walker metrics, 254

scalar curvature, 249

diffeomorphism, 203

dilation, 60

time, 22

Dirac

equation, 135, 136

Scissors Problem, 295

direct sum, 43

direction 3-vector, 22

of a photon, 84

of a reference frame, 22

disintegration, 87

displacement vector, 10

null, 10

spacelike, 12

timelike, 12

distance, 57

measured with clocks, 57

divergence, 118

dominant energy condition, 113, 123, 195

Doppler effect, 85

transverse, 85

double cover, 304

dual

basis, 139, 157

of a bivector, 122

duration, 43

E

E-continuous curve, 280

future-timelike, 281

future-timelike at t0, 281

past-timelike, 281

past timelike at t0, 281
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timelike, 281

timelike vs smooth timelike, 281

E-continuous map, 280

E-distance, 279

E-open ball, 280

E-open set, 280

E-topology, 280

eigenspace, 98

eigenspinor, 190

eigenvalue

of a linear transformation, 98

of a spinor, 190

eigenvector, 98

Einstein field equations, 250

empty space solutions, 250

Einstein static universe, 255

geodesics, 258

line element, 256

Einstein summation convention, xi

electric 3-vector, 95

electromagnetic field, 94, 120

constant, 113, 123

null, 99

regular, 99

spinor, 186

electromagnetic spinor, 186

electromagnetic wave

simple plane, 129

spherical, 3, 17, 35

electron, 88

spin, 135, 294

elevator experiment, 200

energy, 82

Coulomb field, 125

density, 111

of a photon, 84

total relativistic, 82

energy-momentum tensor, 250

energy-momentum transformation, 109

spinor form of, 195

equation of motion, 93

Euler angles, 72

event horizon, 268

events, 1, 9

expanding universe, 255

extended complex plane, 73, 76, 79

exterior derivative, 120

F

Feynman path, 288

Feynman track of an electron, 288

field equations, 198, 250, 255, 277

field of vision, 79

Fizeau procedure, 3

flag pole of a spin vector, 179

4-acceleration, 51

4-momentum

of a material particle, 81

of a photon, 84

4-tensor, 141

4-vector, 169

contravariant, 141

covariant, 141

4-velocity, 50

fractional linear transformation, 73, 77

frame of reference, 3, 10

admissible, 4, 19

free charged particle, 93

free particle, 87

frequency of a photon, 84

fundamental group, 297

of a product, 298

of real projective space, 300, 301

of the rotation group, 303

future-directed

null curve, 47

null vector, 17

timelike curve, 47

timelike vector, 16

future null cone, 17

future null direction, 74

future null infinity, 266, 274

future time cone, 16

future timelike infinity, 273

G

Gaussian curvature, 243

of cylinder, 243

of S2, 243

general linear group, 138

general theory of relativity, 202

geodesic, 230

affine parametrization, 262

causal character, 234

constant speed, 233

degenerate, 230

existence and uniqueness, 232

of de Sitter spacetime, 235

of Minkowski spacetime, 234

of S2, 234

of S3, 235

reparametrization of, 232
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geodesic hypothesis, 250

gravitation, 6, 199, 249

group representation, 138

H

Hermitian matrix, 170

homeomorphism, 203, 292

homeomorphism group, 292

homomorphism, 14, 138

homotopic paths, 297

homotopy, 297

hyperbolic form of special Lorentz
transformations, 27

hyperbolic motion, 55

I

identity representation, 138, 141, 146

index of an inner product, 9

inelastic collision, 90

inertial mass, 81

Infeld-van der Waerden symbols, 173

initial point on a worldline, 87

inner product, 7

indefinite, 7

index of, 9

Lorentz, 9

negative definite, 7

positive definite, 7

instantaneous rest frame, 53

invariant subspace

of a linear transformation, 99

of a representation, 143

Inverse Function Theorem, 208

isometry, 252

K

Kennedy-Thorndike experiment, 3

kernel, 68, 97

L

length, 39
contraction, 40

Levi-Civita symbols, 121

spinor equivalent of, 196
light cone, 11

future and past, 17

light ray, 11
as an intersection of null cones, 11

light signals, 3, 17

light travel time, 3
lightlike vector, 10

line element, 225
loop, 297

constant (trivial), 297

Lorentz contraction, 40
invisibility of, 79

Lorentz 4-Force Law, 93

Lorentz group, 19
general homogeneous, 14

inhomogeneous, 19

2-valued representations of, 142, 144
Lorentz inner product, 9

spinor equivalent of, 192

Lorentz invariant, 99, 136, 141
Lorentz transformations, 14, 19

boost, 26

decomposition of, 28
determined by three past null directions,

79

effect on past null directions, 79
general homogeneous, 14

hyperbolic form, 27

improper, 19
invariant null directions, 79

nonorthochronous, 15

orthochronous, 15
proper, 19

special, 25

vs fractional linear transformations, 77
Lorentz World Force Law, 93

lowering indices, 162

M

magnetic 3-vector, 95

manifold, 206

complete, 238
n-dimensional, 206

smooth, 206



Index 321

mass

inertial, 81

proper, 81

relativistic, 82
mass-energy equivalence, 83

massless free-field equations, 198, 277

material particle, 81

worldline of, 47
free, 81

matrix group, 137

order of, 137

representation of, 138
matrix of a bilinear form, 120

Maxwell’s equations, 118, 122

solutions of, 123, 124, 129, 130

spinor form of, 197
measuring rods, 39, 40

metric, 219

component functions, 219

Lorentzian, 220
Riemannian, 219

Michelson-Morley experiment, 3

Minkowski diagram, 32, 266

Minkowski spacetime, 9
multilinear functional, 140, 159

N

neutrino equation, 198

null basis, 10

null cone, 11
future, 17

past, 17

null direction, 61

future, 74
past, 74

null electromagnetic field, 99

null flag, 185

null vector, 10
future-directed, 17

parallel, 10

past-directed, 17

orthogonal, 10
null worldline, 11

O

observer, 1

admissible, 1

open

in Minkowski spacetime, 117

in R
n, 203

in X, 203

orientation-entanglement relation, 304

orthochronous, 15

orthogonal complement, 7

orthogonal transformation, 12, 222

and causal automorphisms, 60, 227

and fractional linear transformations, 77

and homeomorphisms, 292

associated matrices, 13

invariant null directions, 79

orthochronous, 60

orthogonality, 7

of null vectors, 10

of spacelike and null vectors, 58

of spacelike vectors, 57

with timelike vectors, 15

orthonormal basis, 8

outer product, 165

P

P-continuous curve, 289

characterized as Feynman paths, 289

vs E-continuous curves, 288

vs timelike curves, 288

P-open set, 284

not E-open, 284

paradox

barn, 41

twin, 36

parallel postulate, 235

parity nonconservation, 198

particle

charged, 93

free, 87

free charged, 93

horizon, 268

material, 81

passive transformation, 73

past-directed

null curve, 47

null vector, 17

timelike curve, 47

timelike vector, 16

past null cone, 17

past null direction, 74

past null infinity, 266, 274

past time cone, 16

past timelike infinity, 273
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path, 296

inverse of, 297

products of, 297

path connected, 296

path topology, 284

basis for, 285

homeomorphisms of, 292

topological properties, 286

Pauli spin matrices, 69

Penrose diagram, 266

phase factor, 182

photon, 84

direction 3-vector of, 84

energy, 84

4-momentum of, 84

frequency, 84

propagation of, 2

wavelength, 84

worldline, 4, 11

world momentum of, 84

pions, 36

Planck’s constant, 84

Poincaré group, 19

point event, 1

Poynting 3-vector, 111

principal null directions, 108, 109

product path, 297

proper mass, 81

proper spatial separation, 56

proper time function, 50

proper time parameter, 227

proper time separation, 44

pullback, 260

Pythagorean Theorem, 58

Q

quadratic form, 7

quantum mechanics, 88, 142, 198, 294

R

raising indices, 162

range, 97

rank

contravariant, 141

covariant, 141

real projective n-space, 301

fundamental group of, 301

regular electromagnetic field, 99

relative 3-momentum, 81

relativistic electron, 137

relativistic energy, 82

relativistic mass, 82

relativity

of simultaneity, 23

principle, 5

representations, 138

carriers of, 138

equivalent, 143

irreducible, 143

reducible, 143

spinor, 145

two-valued, 144

retarded null coordinates, 270

reversed Schwartz inequality, 44

reversed triangle inequality, 44

Ricci flat, 250

Ricci tensor, 249

Riemann curvature tensor, 246

Riemann sphere, 73

rigidity, 40

Robb’s theorem, 57

Robertson-Walker metrics, 254

rocket twin, 37, 55

rotation group, 302

rotation in the Lorentz group, 20

rotation subgroup, 20

S

Schur’s lemma, 143

Schwartz inequality

for R
3, 10

reversed, 44

signals, 3, 33, 57, 268

simply connected, 298

simultaneity, 23

relativity of, 23

simultaneous, 23

skew-symmetric bilinear form, 119

skew-symmetric linear transformation, 94

null, 99

regular, 99

skew-symmetrization, 169

smooth

assignment, 118

map, 203

real-valued function, 203

vector field, 118
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spacelike displacement, 57

spacelike infinity, 274
spacelike vector, 12

spacetime, 220

spatially homogeneous and isotropic, 252
spatial coordinates, 29, 254

special linear group, 69
special Lorentz transformation, 25

hyperbolic form, 27
speed

of light, 3
of material particles, 82

spin, 88, 135, 137

spin covector, 155
spin frame, 153

spin space, 153
spin transformation, 69

spin vector, 153
spinor, 135

components of, 159

conjugate, 158, 168
contravariant indices, 159

covariant indices, 159
dotted indices, 159

electromagnetic field, 186
equivalents (See spinor equivalent)

essential two- valuedness of, 185, 293
form of Maxwell’s equations, 198

Hermitian, 168

lower indices, 159
skew-symmetric, 168

symmetric, 168
undotted indices, 159

upper indices, 159
valence of, 159

spinor-covector, 172

spinor equivalent
of a bilinear form, 192

of a bivector, 180
of a covector, 176

of differential operators, 197
of the dual of a bivector, 196

of a 4-vector, 172
of Levi-Civita symbols, 196

of the Lorentz inner product, 192

of a vector, 172
of a world vector, 172

spinor map, 71
spinor representation, 145

type of, 145
spinorial object, 142, 293, 305

standard configuration, 25

stereographic projection, 75
stress tensor, 111

subgroup

of the Lorentz group, 19, 20, 24

of transformations, 72, 138

summation convention, xi

symmetric linear transformation, 110

symmetrization, 168

synchronization, 2

lack of, 36

T

tangent space, 218, 219

tangent vector, 47, 217

temporal order, 2, 4, 34, 56

tensor product, 140

tensorial objects, 303

terminal point of a worldline, 87

3-vector

direction, 22

relative momentum, 81

velocity, 21, 52, 85

time

axis, 43

cone, 16

coordinates, 3

dilation, 22, 36

orientation, 16

in units of distance, 3

timelike curve

E-continuous, 281

smooth, 47

timelike straight line, 43

timelike vector, 12

future-directed, 16

past-directed, 16

timelike worldline, 47

topological manifold, 296

products of, 298

topology

Euclidean (or E-), 280

fine, 279

path (or P-), 284

total 4-momentum, 87

total relativistic energy, 82

total world momentum, 87

trace, 109

trace free, 110

transformation equations, 40, 206, 246

transformation matrix, 13, 137

translation, 4, 60
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translation of a light ray, 61
lifts of, 62

twin paradox, 36
2-form, 120

U

uniformly moving charge, 125

unit vector, 8
unitary matrix, 72
universal covering manifold, 299

V

vector field, 118
components of, 118
smooth, 118

velocity parameter, 27
velocity 3-vector, 21, 52, 85
velocity vector, 47, 217
version, 304

W

wave equation, 132

wave function, 142, 294, 305

wavelength of a photon, 84

weak interaction, 198

Weyl, 1

neutrino equation, 198

world acceleration, 51

world momentum

of a material particle, 81

of a photon, 84

world tensor, 136, 141

world vector, 169

worldline, 1

of a material particle, 47

of a photon, 4, 11

Z

Zeeman’s Theorem, 60, 227, 292
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