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Chapter 1

Introduction

1.1 Overview

In this book we propose a novel approach to two important problems in the theory
of functional calculus: the construction of a general functional calculus for not
necessarily commuting n-tuples of operators, and the construction of a functional
calculus for quaternionic operators. The approach we suggest is made possible by
a series of recent advances in Clifford analysis, and in the theory of quaternion-
valued functions (see, e.g., [26] and [49]).

After the success, and recognized importance, of the classical Riesz—Dunford
functional calculus, it became apparent that there was a need for a functional
calculus for several operators. The necessity of such a calculus was pointed out by
Weyl already in the 1930s, see [103], and this issue was first addressed by Anderson
in [4] using the Fourier transform and n-tuples of self-adjoint operators satisfying
suitable Paley-Wiener estimates.

In his early and seminal work [99], Taylor introduces a new approach which
works successfully for n-tuples of commuting operators, while in [100] he considers
the Weyl calculus for noncommuting, self-adjoint operators. These works have set
the stage for different possible outgrowth of this research.

A promising and successful idea was to address the noncommutativity by
exploiting the setting of Clifford algebra-valued functions. This idea has been
fruitfully followed in the works of Jefferies, McIntosh and their coworkers, see, e.g.,
[60], [61], [65], [77], and the book [62] with the references therein for a complete
overview of this setting. Note that, despite the noncommutative setting which is
useful in the case of several operators, one may still have restriction on the n-tuples
of operators and on their spectrum.

Of course, for the sake of generality, one would like to abandon these restric-
tions. To this purpose we have come to understand that one could attempt the
development of a functional calculus based on the use of slice monogenic functions.

F. Colombo et al., Noncommutative Functional Calculus: Theory and Applications of Slice 1
Hyperholomorphic Functions, Progress in Mathematics 289, DOI 10.1007/978-3-0348-0110-2_1,
© Springer Basel AG 2011



2 Chapter 1. Introduction

These functions were first introduced by the authors in [26], but their theory is by
now very well developed, as made evident by the rich literature which is available
(see, e.g., [15], [18], [24], [26], [27], [28], [29], [30] and [53], [55]).

As it is well known, in order to construct a functional calculus associated to
a class of functions, one of the crucial results is the existence of a suitable integral
formula which, for the case of slice monogenic functions, we state and prove in
Chapter 2. Such a formula was originally proved by Colombo and Sabadini in
[15] (for more details see [18]). It is worth noticing that this integral formula
is computed over a path which lies in a complex plane. Moreover, despite what
happens with the classical monogenic functions, [7], in the slice monogenic case
the analog of the Cauchy kernel is a function which is left or right slice monogenic
in a given variable. For this reason, we will need two different kernels when dealing
with left or right slice monogenic functions. The Cauchy formula we obtain in the
case of slice monogenic functions turns out to be perfectly suited to the definition
of a functional calculus for bounded or unbounded n-tuples of not necessarily
commuting operators, see Chapter 3.

In the first part of this book therefore, we will develop the main results of the
theory of slice monogenic functions and the associated functional calculus for n-
tuples of not necessarily commuting operators. This calculus has been introduced
in the paper [25] for a particular class of functions and then extended to the general
case in [18].

In the second part of the book we deal with a related, and yet independent,
problem which has been of interest for many years and which, so far, has proved to
be rather difficult to tackle. Specifically, we are interested in attempting to define
a function of a single quaternionic linear operator. It is clear that, at least in
some sense, there are similarities with the problems discussed above: the setting is
noncommutative, and the space of quaternions is a Clifford algebra. Nevertheless,
the actual problem is different from the case analyzed before.

When dealing with the functional calculus for n-tuples of operators, our ap-
proach is to embed the n-tuple of linear operators (over the real field) into the
Clifford algebra setting; in this second case, however, we are given an operator
which is quaternionic linear. Since the setting is noncommutative, the operator is
either left or right linear, and we shall see that our approach differentiates these
two cases. The study of this type of operators is needed to deal, for example, with
quaternionic quantum mechanics, see [1].

The first natural issue, of course, is to define the space of functions for which
we can construct such a functional calculus. Traditionally, the best understood
space of functions defined on quaternions is the space of regular functions as
defined by Fueter in his fundamental works [43], [44]. Those functions are differ-
entiable on the space of quaternions and they satisfy a system of first-order linear
partial differential equations known as the Cauchy—Fueter system. Note that the
Cauchy-Fueter system deals with functions defined in R* and hence in R? as well.
Historically, this last case was introduced before the former one, see [79], by G.
Moisil and N. Theodorescu. One may therefore attempt to define a functional
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calculus in which the functions are regular in the sense of Fueter (and the authors
have outlined how this would work in [11]). It turns out, however, that such a
functional calculus does not perform as well as one would hope, for a variety of
reasons that are described in [11] but that can be easily surmised by noticing, for
example, that even the simple function f(q) = ¢? is not regular in the sense of
Fueter.

However, in a recent series of papers, see, e.g., [9], [12], [48], [49] the authors
and some of their collaborators have introduced a completely different notion of
regularity, the so-called slice regularity, which was in fact the inspiration for the
notion of slice monogenicity. This notion is different from the original one of Fueter,
and therefore the second part of this book will show how a functional calculus for
quaternionic linear operators over the quaternions can be obtained through the
use of slice regular functions. The quaternionic functional calculus, at least for
functions admitting a power series expansion, was first introduced in [10], [13] and
[14], however the exposition in Chapter 4 is inspired by the more recent papers [16]
and [17] which are based on a new Cauchy formula, which becomes the natural
tool to define the quaternionic functional calculus for quaternionic bounded or
unbounded operators (with components that do not necessarily commute). As an
application of the quaternionic functional calculus we define and we study the
properties of the quaternionic evolution operator, limiting ourselves to the case
of bounded linear operators. The evolution operator is studied in [21] where it is
proved that the Hille-Phillips—Yosida theory can be extended to the quaternionic
setting. This, it seems to us, is the first step in demonstrating the importance, in
physics, of this new functional calculus.

It is worth pointing out that while the definitions and some of the properties
of slice monogenic and of slice regular functions appear to be quite similar, there
are in fact several important differences, that force an independent treatment for
the two cases. Those differences are mainly due to the different algebraic nature
of quaternions and of Clifford numbers in higher dimensions, when the number of
imaginary units which generate the Clifford algebra is greater than two.

1.2 Plan of the book

Almost all the material presented in this book comes from the recent research of
the authors. The only exceptions are the basic notions on Clifford algebras, the
Appendix, in which we provide some basic facts on the classical Riesz—Dunford
functional calculus, and a few results appearing in some of the notes. To illustrate
the central results of this book we provide a quick description.

Slice monogenic functions. Consider the universal Clifford algebra R,, generated
by n imaginary units {e1,...,e,} satisfying e;e; + eje; = —20;; and a function
f defined on the Euclidean space R"*!, identified with the set of paravectors in
R,,, with values in R,,. The notion of slice monogenic function is based on the
requirement that all the restrictions of the function f to suitable complex planes
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be holomorphic functions. To describe the complex planes we will consider the
sphere of the unit 1-vectors, i.e.,

S:{Z:€1$1++€nxn€Rn+1‘l’%++xi:1}

From a geometric point of view, S is an (n — 1)-sphere in R"*!. Note that an
element I € S is again an imaginary unit since I? = —1. If we take any element
I € S we can construct the plane R 4+ IR passing through 1 and I: it is a two-
dimensional real subspace of R”*! isomorphic to the complex plane and for this
reason, we will denote it by C;. This isomorphism is an algebra isomorphism, thus
we will refer to a plane C; as a “complex plane” and an element in C; will be
often denoted by x = u + Iv.

Any element in R"*! belongs to a complex plane so, in other words, the
Euclidean space R"*! is the union of all the complex planes C; as above when I
varies in S. Let U € R™"! be an open set and let f : U — R"*! be a function
differentiable in the real sense. Let I € S and let f; be the restriction of f to the
complex plane C;. We say that f is a left slice monogenic function if, for every
I €8S, we have

1/0 0
9 <au+Iav)f1(u+Iv)0.

Because of the noncommutativity we also have the right version of this notion and
we say that f is a right slice monogenic function if, for every I € S, we have

1

9 (aaufl(u-i-lv)—&- ;}ff(u—I—Iv)I) =0.

From the definition, it immediately appears that a slice monogenic function
is not necessarily harmonic (but its restrictions to any complex plane C; are
harmonic) and this is a major difference between this theory and the theory of
classical monogenic functions, see [7]. However, with this definition of monogenicity
we gain the good property that all convergent power series ) ., x"a, are left
slice monogenic in their domain of convergence and this property will be crucial
to construct a functional calculus.

To better understand the nature of slice monogenic functions, it is necessary
to consider them on axially symmetric slice domains which turn out to be their
natural domains of definition. We say that a domain U in R"*! is a slice domain
(s-domain for short) if U N R is nonempty and if U N Cy is a domain in C; for all
I €S. We say that U € R**! is an axially symmetric domain if, for all u+Iv € U,
the whole (n — 1)-sphere u + vS is contained in U.

The class of slice monogenic functions over axially symmetric s-domains is
characterized by the following Representation Formula proved in [15] (which in
some papers is referred to as the Structure Formula):
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Representation Formula. Let U C R"! be an axially symmetric s-domain and let
[ be a left slice monogenic function on U. For any vector x = xg + Ix|x| € U and
for all I €S, we have

700 = 5 [F(o + Tlal) + F(zo — Tlal) + Ll [F(wo — Tla)) — Flao + Tla]]] - (L)

The Representation Formula states that if we know the value of a slice mono-
genic function on the intersection of an axially symmetric s-domain U with a plane
Cy, then we can reconstruct the function on all of U.

An analogous formula, with suitable modifications, holds for right slice mono-
genic functions. The first step, in constructing a functional calculus, is to prove
a Cauchy integral formula with a slice monogenic kernel. Note that it is possible
to prove an integral representation formula, see [26], using the standard Cauchy
kernel (x — xg)~!. This approach, however, is limited by the fact that the kernel
is not slice monogenic. Thus, let us consider the Cauchy kernel series for left slice
monogenic functions: take x, s € R®*! (which, in general, do not commute). We
say that

Sy (s, x) = Zx"sfl*”
n>0
is the left noncommutative Cauchy kernel series; note that this series is convergent
for |x| < |s| and that it is slice monogenic in x. It is actually possible to compute
the sum of the Cauchy kernel series, and it turns out that

D x"sTI = —(x — 2Refs]x + [s]”) (x —s), for [x|<]s|,
n>0

where Re[s] is the real part of the paravector s and |s| denotes its Euclidean norm.
The function —(x? — 2 Re[s] x + |s|?) ! (x — s), which we still denote by S; ' (s, x)
is therefore a good candidate to be the Cauchy kernel for a Cauchy formula for
left slice monogenic functions because when we restrict it to the plane C; where
the variables x and s now commute, we get the usual Cauchy kernel of complex
analysis. Note that the function S~!(s, x) is left slice monogenic in the variable x
and right slice monogenic in the variable s in its domain of definition. Analogous
considerations can be repeated for right slice monogenic functions. In this case,

we call
Spl(s,x) = E s ixn
n>0

a right noncommutative Cauchy kernel series; it is convergent for |x| < [s|. The
sum of the series this time is given by the function

>8R = —(x = 8)(x® — 2Refsx + [s]*) 7!, for x| < s].
n>0

Moreover, S;'(s,x) is right (resp. left) slice monogenic in the variable x (resp.
s). We will call —(x — §)(x? — 2Re[s]x + |s|?) ! the Cauchy kernel for right slice
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monogenic functions and we will use the same symbol Sgl(s,x) to denote such
kernel. Even though S} ' (s,x) and Sy (s, x) are different they satisfy a remarkable
relation:

S;pl(x,s) = —Sg'(s,x), for x*—2Re[s]x+ |s|* # 0.
Using these kernels it is possible to prove the following result:

The Cauchy formulas with slice monogenic kernel. Let U C R™! be an azially
symmetric s-domain. Suppose that O(U N Cy) is a finite union of continuously
differentiable Jordan curves for every I € S. Set ds; = —dsI for I € S. If f is a
(left) slice monogenic function on a set that contains U, then

1

:27T

£(x) / S7l(s,x)ds f(s), x€U. (1.2)
a(UNCy)

Similarly, if f is a right slice monogenic function on a set that contains U, then

1
o

0=y [ redsisex, xel

B(UQCI)
and the integrals above do not depend on the choice of the imaginary unit I € S
nor on U.

The fact that the integrals are independent of the choice of the plane C;
seems surprising, but if one keeps in mind the Representation Formula and the
fact that the two quantities appearing in it,

1 1

of (o +I1z]) + f(zo — Ilz])] and I [f(zo —I|z]) = f(wo + I]al)],

do not depend on I € S, the independence from the plane C; becomes clear.
These results are the basic tools to introduce the functional calculus for n-

tuples of operators.

The functional calculus for n-tuples of (not necessarily commuting) operators.
The operators we will consider act on a Banach space V' over R with norm || -||. In
general, it is possible to endow V' with an operation of multiplication by elements
of R,, which gives a two-sided module over R,,. By V,, we indicate the two-sided
Banach module over R,, corresponding to V ® R,,. Since we want to construct a
functional calculus for n-tuples of not necessarily commuting operators, we will
consider the auxiliary operator

T = T() + Z SjTj,
j=1

where T, € B(V) for £ =0,1,...,n, and where B(V) is the space of all bounded
R-linear operators acting on V. By considering the operator T as above we have a
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theory which will be slightly more general than we need; in fact, to study n-tuples
of operators it is sufficient to consider operators T' of the form T = 2?21 e; 1.
Since our theory allows us to treat also this more general case, suitable for example
if one wishes to consider linear operators T acting on modules over R,,, which are
not necessarily constructed from linear operators acting on V', we will study this
case. When dealing with n-tuples of operators we always mean that Ty = 0. The
set of bounded operators of the form Ty +>-"_, e;7; will be denoted by BYL(V,).
Let T4 € B(V) and define the operator

T = ZeATA
A

and its action on
v = E vgep € V,,
as

T(’U) = Z TA(’UB)GABB.
A,B

The operator ) ,eaT4 is a right-module homomorphism which is a bounded
linear map on V;,: the set of all such bounded operators is denoted by 5,,(V;,) and
is endowed with the norm

1Tl 5, (v) = Z 1Tallsv)-
A

We obviously have the inclusion BY(V,,) C B,(V,,). To construct a functional
calculus for n-tuples of noncommuting operators using the theory of left slice
monogenic functions, we define the left S-resolvent operator series for T € B%1(V;,)
as
S7Hs,T) =Y _T"s™' 7", for ||T < |s|.
n>0

In the Cauchy formula for slice monogenic functions it is always possible to replace,
at least formally, the variable x by an operator T'= Ty + They + ...+ The,. This
substitution is not always possible in other function theories. In our case, we have
proved that the sum of the left S-resolvent operator series

> TnsTITM = —(T% — 2Rels] T+ [s[’Z) (T — sI),

n>0

for || T|| < |s| is exactly equal to the left Cauchy kernel in which we have replaced
the paravector x by the operator T = Ty 4+ 1Ty + ... + e, T,,. This replacement
can be done even when the components of T' do not commute. This observation
is the main reason why our functional calculus can be developed in a natural way
starting from the Cauchy formula (1.2). The sum of the series in which we have
replaced x by operator T' suggests the notions of S-spectrum set, of S-resolvent
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set and of S-resolvent operator. Taking T € BY1(V,,) we define: the S-spectrum
os(T) of T as

0s(T)={s € R"™ . T? —2Re[s|T + |s|*Z is not invertible},

the S-resolvent set as
ps(T) =R\ 05(T),

and the S-resolvent operator as
S7(s,T) := —(T?% — 2Re[s|T + [s|*Z) (T — sI).

Observe that if T's = sT, then we have S~1(s,T) = (sZ —T) ™!, i.e., we obtain the
classical resolvent operator. To define the functional calculus, we have to introduce
the set of admissible functions that are defined on the S-spectrum, as in the
classical case of the Riesz—Dunford functional calculus.

Let U C R"! be an axially symmetric s-domain that contains the S-
spectrum og(7T') of T and such that (U N Cy) is a finite union of continuously
differentiable Jordan curves for every I € S. Suppose that U is contained in a
domain of slice monogenicity of a function f. Then such a function f is said to be
locally slice monogenic on og(T).

For those functions, setting ds; = —dsI for I € S, we define

_ 1 -1
=, /(‘3 oy ST 1 S(9)

The functional calculus is well defined because we can prove that the integral does
not depend on the open set U and on the choice of the imaginary unit I € S.

With all these new definitions, one may wonder which classical properties
on the spectrum can be proved also in this case. An important result is that the
S-spectrum of bounded operators is a compact nonempty set contained in {s €
R ¢ |s| < ||T'|| } just as in the classical Riesz-Dunford case. The S-spectrum
has a particular structure: if T € B%1(V,,) and p = Re[p] + p € o5(T), then all
the elements of the sphere s = Re[s] + s with Re[s] = Re[p] and |s| = |p| belong
to the S-spectrum of T'. In other words, the S-spectrum is made of real points or
entire (n — 1)-spheres. The structure of the spectrum allows us to explain, from an
intuitive point of view, why the integral fa(UmCI) S=1(s,T) ds; f(s) is independent
of I: observe that the structure of the S-spectrum of 7" has a symmetry such that
on each plane Cy, for every I € S, we see the “same set” of points og(7T") () Cr,
and that the functions f satisfy the Representation Formula.

With our definition of functional calculus we can prove several results, among
which the algebraic rules on the sum, product, composition of functions (when de-
fined). Moreover, it is possible to prove that the spectral radius theorem, the spec-
tral mapping theorem, the theorem of bounded perturbations of the S-resolvent
operators hold. Thus the theory we obtain is quite rich.
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The functional calculus can also be extended to linear closed densely defined
operators T : D(T) — V,, with ps(T) NR # @ and for slice monogenic functions
f defined on the extended S-spectrum og(T") := 05(T") U {oo}. The function of
operator f(T') can be defined as follows: take & € R and define the homeomorphism

n+1 n+1
o R — R as

pi=0(s)=(s—k)', ®(x)=0, @(k)=oc0.

Let T : D(T) — V;, be a linear closed densely defined operator and suppose that
f is slice monogenic on an open set with “suitable properties” over og(T). Let us
set ¢(p) := f(®1(p)) and A := (T — kZ)~!, for some k € ps(T) NR # 0. Note
that A is now a bounded operator for which we have a functional calculus. The
operator f(T) is then defined as follows:

f(T) = o(A).

We have proved that the operator f(7') is independent of k € ps(T) NR and we
have the representation

1

F(T) = foo)To+

/ S;l(S,T)dSIf(S)U, S Vna
o(UNCy)

where U need not be connected and contains og(T).

Slice regular functions. In this book we do not dwell on the theory of slice regular
functions over the algebra H of quaternions whose results are similar to those
obtained for slice monogenic functions. We introduce its main results only in order
to develop the quaternionic functional calculus.

Let U C H be an open set and let f : U — H be a real differentiable function.
Denote by S the sphere of purely imaginary quaternions, i.e.,

S={xyi+x2j+ a3k : 22422 +22=1).

Let I € S and let f; be the restriction of f to the complex plane C; := R + IR
passing through 1 and I and denote by = 4+ Iy an element on C;. We say that f
is a left slice regular function if, for every I € S, we have

1/0 0
) (ax+lay)fz(x+ly)_o.

An analogous definition can be given for right slice regular functions. Functions
left (resp. right) slice regular on U form a set denoted by RX(U) (resp. RE(U)).
The advantage of dealing with quaternions, instead of general Clifford algebras, is
that H has a richer algebraic structure. For example, H is helpful when we want
to determine the sum of the Cauchy kernel series, which is defined, for ¢ and s
quaternions, by

S (s, q) = Z q st

n>0
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One can prove that the inverse Sr,(s, q) of S} ' (s, q) is the nontrivial solution
to the equation
S% + Srq—sSp =0.

In particular, an application of Niven’s algorithm [82] gives
S1(s,q) = —(q—5)""(¢* — 2qRe[s] + |s]?).

Note that this approach would not be possible in the Clifford algebra setting, where
no analog of the Niven’s algorithm is known (in fact, in the Clifford algebras
setting, one cannot even guarantee the existence of solutions to a polynomial
equation). Also note that in the case of quaternions the term ¢"s~'~™ in the
Cauchy kernel series is a quaternion for every n € N while in the Clifford algebra
setting one starts with paravectors x and s but the terms x"s~'~" do not contain
only paravectors but also terms of the form e;e;.

These preliminaries allow us to find the left and right Cauchy formulas in the
quaternionic setting as follows. Let U C W be an axially symmetric s-domain (the
definition is as in the Clifford algebras case), and let (U N Cr) be a finite union
of continuously differentiable Jordan curves for every I € S. Set ds; = —dsI. Let
f be a left slice regular function on W C H. Then, if ¢ € U, we have

1
$@= g [ S

Let f be a right slice regular function on W C H. Then, if ¢ € U, we have

_ 1 -1
$@ = g [ Sz )

and the integrals do not depend on the choice of the imaginary unit I € S nor on
U. The left and the right slice regular kernels are defined by

Sp'(s,9) = —(¢* — 2Re[s] g+ |s]*) "' (g — ),

and
S'(s,q) = —(q—s)(¢* — 2Re[s] g+ |s|*) "

These Cauchy formulas will be the basis to define a quaternionic functional cal-
culus.

The quaternionic functional calculus. The work of Adler [1] suggests the impor-
tance of the development of functional calculus for quaternionic operators. The
fundamental question, pointed out in [1], is what function theory should be used
to develop such a functional calculus if we are to obtain a calculus which shares
the basic properties of the Riesz—Dunford functional calculus. In order to be able
to do so, one needs a function theory simple enough to include polynomials and
yet developed enough to allow a Cauchy like formula. The theory of slice regular
functions that we develop in Chapter 4 satisfies both requirements.
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When dealing with quaternionic operators there is a major difference with
respect to the case treated in Chapter 3 for n-tuples of R-linear operators. In
fact, there are four cases of interest for a functional calculus: left and right linear
quaternionic operators and left and right slice regular functions. Even though the
majority of our results will be stated and proved in the case of right linear operators
and for left slice monogenic functions, it is worth describing the differences among
the various cases, since they have to be taken into account, especially when dealing
with the case of unbounded operators.

Let V' be a right vector space on H. An operator 7' : V' — V is said to be
a right linear operator if T'(u +v) = T'(u) + T (v), T'(us) = T'(u)s, for all s € H
and for all u,v € V. In the sequel, we will consider only two-sided vector spaces
V', otherwise the set of right linear operators is not a (left or right) vector space.
With this assumption, the set of right linear operators End*(V') on V is both a
left and a right vector space on H with respect to the operations (sT)(v) := sT'(v),
(T's)(v) := T'(sv), for all s € H, and for all v € V. Similarly, amap T': V — V is
said to be a left linear operator if T'(u +v) = T'(u) + T'(v), T'(su) = sT(u), for all
s € H and for all u,v € V. The set End% (V) of left linear operators on V is both a
left and a right vector space on H with respect to the operations (T's)(v) := T'(v)s,
(sT)(v) :=T(vs), for all s € H and for all v € V.

A crucial fact is that the composition of left and right linear operators acts
in an opposite way with respect to the composition of maps. In fact the two rings
End®(V) and End® (V) with respect to the addition and composition of operators
are opposite rings of each other. This fact has important consequences in the
definition of the S-resolvent operators for unbounded operators. Similarly, we will
have the two-sided vector space B(V) of all right linear bounded operators on V'
and the two-sided vector space BL (V) of all left linear bounded operators on V.
When it is not necessary to specify if a bounded operator is left or right linear on
V, we use the symbol B(V) and we call an element in B(V) a “linear operator”.
As before, we introduce, for T' € B(V) the left Cauchy kernel operator series, or
S-resolvent operator series, as

S71 (1) = S s

n>0

and the right Cauchy kernel operator series as

SEI(S,T) _ Zs—l—nTn’

n>0

for || T|| < |s|. The fundamental point of this theory and its importance for physical
applications is the fact that we can replace the variable ¢, whose components are
commuting real numbers, with a linear quaternionic operator T' whose components
are, in general, noncommuting operators. It is also important to note that the
action of the S-resolvent operators series S} '(s,T) and S;'(s,T) in the case of
left linear operators T is on the right, i.e., for every v € V we have v — vSEl(s, T)
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and v — ngl(s,T). For example for the left Cauchy kernel operator series we
have v = > o T™(v)s™" 1 = Y _,vT™s "L Thus, even though S;'(s,7T)
is formally the same operator used for right linear operators, Sgl(s,T ) acts in
a different way. Note that the following important results hold for both left and
right linear quaternionic operators.

Let T € B(V). Then, for ||T|| < |s|, we have

> T = —(T% = 2Rels] T+ |s]?Z) (T — sT),

n>0

and

D s = (T — sT)(T? — 2Rels] T + [s[°Z) "

n>0
Observe that the quaternionic operators treated in Section 4 act on a quater-
nionic Banach space while the n-tuples of noncommuting operators act on Banach
modules over a Clifford algebra.

We point out that, when T is a quaternionic operator, the Cauchy operator
series Y T ng—1=7" ig a quaternionic operator because T™ are quaternionic op-
erators. In the Clifford setting when we consider T' = Ty +e Ty +. . .4+ e, Th, n > 3,
then T contains not only the terms with the units eq, ..., e, but also those with
€i€j,...,e1eze3,... and so on. Thus the powers 7™ are not anymore operators in
the form Ag +e1 A1 +... + e, A.

The S-spectrum and the S-resolvent sets can be defined as for the case of
n-tuples of noncommuting operators. Let T' € B(V), then the S-spectrum og(T')
of T € B(V) is

os(T)={s€H : T?—-2Re[s]T +|s|*Z is not invertible}.
The S-resolvent set pg(T) is defined by
ps(T) = H\ o5(T).

For s € pg(T') we define the left S-resolvent operator as

S (s, T) := —(T% — 2Re[s|T + |s|*T) (T — sI),
and the right S-resolvent operator as

Sp'(s,T) := —(T — sI)(T? — 2Re[s|T + |s|*°Z) "
They satisfy the equations:

S; (s, T)s —TS; ' (s,T) = I,

and
sSp (s, T) — Sx'(s,T)T =T.
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To define a functional calculus we need to introduce the admissible domains on
which it can be formulated.

Let T € B(V) and let U C H be an axially symmetric s-domain that contains
the S-spectrum og(7T') and such that (U N Cy) is a finite union of continuously
differentiable Jordan curves for every I € S. Let W be an open set in H. A function
f € RE(W) is said to be locally left regular on og(T) if there exists a domain
U C H, as above and such that U C W, on which f is left regular. A function
f € RE(W) is said to be locally right regular on og(7T) if there exists a domain
U C H, as above and such that U C W, on which f is right regular.

The quaternionic functional calculus can now be defined as follows. Let U C

H be a domain as above and set ds; = —dsI. We define
1
(1) = / S;N(s,T) dsr f(s), for feRE (1)
2r Jawner) s
and )
(1) = / f(s) dsy S;cl(s,T), for fe€ Rf (1)
27 Jawner) s

The definitions are well posed because the integrals do not depend on the open
set U and on the imaginary unit I € S. Note that when T € BL(V) we have
f(T)(v) = vf(T) while if T € BE(V) we have f(T)(v) = f(T)v.

One can also define a quaternionic functional calculus for closed densely
defined linear quaternionic operators. Here we must pay attention to the differences
between the cases of left and right linear operators. Denote by K&(V) (KL(V)
resp.) the set of right (left resp.) linear closed operators T': D(T) C V — V, such
that: D(T') is dense in V, D(T?) C D(T) is dense in V, T — s is densely defined in
V. We will use the symbol (V') when we do not distinguish between X (V') and
ICE(V). Since T is a closed operator, then T2 —2Re[s] T+ [s|*Z : D(T?) CcV =V
is a closed operator. In analogy with the case of bounded operators, we denote by
ps(T) the S-resolvent set of T, i.e., the set

ps(T)={s €H : (T? —2Re[s]T + |s|*T)"" € B(V)},
and, as a consequence, we define the S-spectrum og(T) of T as
os(T) = H\ ps(T).
For any T' € K(V) and s € pg(T), we denote by Qs(T') the operator
Qs(T) == (T? —2Re[s] T + [s|?Z)"' : V — D(T?). (1.3)

The definition of the S-resolvent operators SL_I, S;cl relies on a deep difference
between the case of left and right linear operators. To start with, consider the left
S-resolvent operator used in the bounded case, that is

S; (s, T) = —Qs(T)(T — sI). (1.4)
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Note that in the case of right linear unbounded operators, Sgl(s,T) turns out
to be defined only on D(T'), while in the case of left linear unbounded operators
it is defined on V. This is a striking difference between the two cases due to
the presence of the term Q4(7T)7T. However, for T € KZ(V), observe that the
operator Q4(T")T is the restriction to the dense subspace D(T) of V of a bounded
linear operator defined on V. This fact follows from the commutation relation
Qs(T)Tv = TQs(T)v which holds for all v € D(T') since the polynomial operator
T%—2Re[s] T+|s|>Z : D(T?) — V has real coefficients. Since TQ4(T) : V — D(T)
and it is continuous for s € pg(T), the left S-resolvent operators for unbounded
right linear operators is defined as

S (s, T := —Q4(T)(T — sT)v, forall ve D(T),
and we will call
S (s, T)v = Q4(T)sv — TQs(T)v, forall veV,
the extended left S-resolvent operator. The right S-resolvent operator is
Spt(s, T)v = —(T — Is)Qs(T)v,

and it is already defined for all v € V. Observe also that for the right S-resolvent
operator Sy '(s,T) we have that for s € pg(T) the operator Q4(T) : V — D(T?)
is bounded so also (T — Zs)Qs(T) : V. — D(T) is bounded.

The discussion of this case shows that, in the case of unbounded linear op-
erators, the S-resolvent operators (left and right) have to be defined in a different
way for left and right linear operators and motivates the following definition.

Let A be an operator containing the term Qs(T)T (resp. TQs(T')). We define
A to be the operator obtained from A by substituting each occurrence of Q4(T)T
(resp. TQs(T)) by TQs(T) (resp. Qs(T)T).

In the case of a left linear operator, i.e., T € KX (V) and s € pg(T), we define
the left S-resolvent operator as (compare with the case T € K (V))

vS; (s, T) = —vQs(T)(T — sI), forall veV,
and the right S-resolvent operator as
vSR' (s, T) := —v(T — Is)Qs(T), forall ve D(T).
To have an operator defined on the whole V' we introduce
0S5 (5, T) = vQ4(T)s — vQ(T)T, forall veV,

which is called the extended right S-resolvent operator.
A second difference between the functional calculus for left linear operators
and for right linear operators is given by the S-resolvent equations which, to hold
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on V, need different extensions of the operators involved. Specifically, we have
that: if T € K®(V) and s € ps(T), then the left S-resolvent operator satisfies the
equation

SZI(S,T)SU - TSZI(S,T)U =Zv, forall veV,

while the right S-resolvent operator satisfies the equation
sSH (s, T)v — (Sgl(ﬁT)v =Zv, forall veV.

If T € KE(V) and s € pg(T), then the left S-resolvent operator satisfies the
equation

vS7 (s, T)s —vT'S; (s, T) =vZ, forall veV.

Finally, the right S-resolvent operator satisfies the equation
vsSE (s, T) —v(Sg'(s, T)T) = vZ, forall veV.

Another issue which requires the use of extended operators is the treatment of
unbounded operators. In the classical case of a complex unbounded linear operator
B:D(B) C X — X, where X is a complex Banach space, the resolvent operator

R\, B) := (\Z — B)™*, for X\ € p(B),
satisfies the relations
(M — B)R(\,B)x =z, forall e X,

R(A\,B)(\Z — B)x =z, forall € D(B).

It is then natural to ask what happens in the quaternionic case for unbounded
operators. Again, one has to use suitable extensions and the results, in the case
T € KE(V), are:

Sp(s,T)S; (s, T)v = Tv, forall veV,

SEI(S,T)SL(S,T)”U =TZv, for all ve D(T),

and
Sr(s,T)SE' (s, T)v =Tv, forall veV,

Sp'(s,T)Sr(s,T)v =Tv, forall veD(T).

The corresponding results, with suitable modifications, are proved also for
T € KE(V).

We are now ready to present the functional calculus in the four cases of
unbounded operators. Let 7' € K®(V) and let W be an open set as defined above
such that og(T) C W and let f be a regular function on W UOW. Let I € S and
W N C; be such that its boundary d(W N Cy) is positively oriented and consists
of a finite number of rectifiable Jordan curves. If T € KF(V) with ps(T) N R # 0,
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then the operator f(T'), defined in an analogous way as we did for the case of an
n-tuple of noncommuting operators, is independent of the real number k € pg(7T),
and, for f € RgS(T) and v € V, we have

_ 1 G—1
f(T)v = f(oo)Zv + o /E)(Wﬂ(CI) ST (s, T) dsr f(s)v,

and for f € Rfs(:r) and v € V, we have

F(T)o = f(o0)Tv + 21 / F(s) dss S5\ (s, T)o.
™ Jo(WnCr)

If T € KE(V) we can define two analogous functional calculi, according to the use
of left or right regular functions.

We conclude the overview of the book with an important application of the
quaternionic functional calculus to the theory of quaternionic semigroups. A sur-
prising result is the remarkable relation of the semigroup e*” with the S-resolvent
operator: let T € B(V) and let sg > ||T||. Then the right S-resolvent operator
Sp'(s,T) is given by

+o0
Spt(s,T) = / et et T dt.
0

Let T € B(V) and let sy > || T||. Then the left S-resolvent operator Sy '(s,T) is
given by

+oo
S (s, T) = / el et dt.
0

Note that, as in the classical case, we have a characterization result: if U(t) is
a quaternionic semigroup on a quaternionic Banach space V, then U(t) has a
bounded infinitesimal quaternionic generator if and only if it is uniformly contin-
uous.



Chapter 2

Slice monogenic functions

2.1 Clifford algebras

Clifford algebras will be the setting in which we will work throughout this book.
They were introduced under the name of geometric algebras by Clifford in 1878.
Since then, several people have extensively studied them and nowadays there are,
in the literature, several possible ways to introduce Clifford algebras: for example
one can use exterior algebras, or present them as a quotient of a tensor algebra or
by means of a universal property (see [23], [31], [34], or [75] for a survey on the
various possible definitions). In this book, we will adopt an equivalent but more
direct approach, using generators and relations.

Definition 2.1.1. Given n elements e1,...,en, n = p+q, p,q > 0, which will be
called imaginary units, together with the defining relations

6?:‘1'17 fO’I" izla-"ap7
ef:fl, for i=p+1,...,n,

€i€j + €€, = 0, ) # ]
Assume that
erea...en #+1 if p—q=1(mod4). (2.1)

We will call (universal) Clifford algebra the algebra over R generated by ey, ..., e,
and we will denote it by Ry, 4.

Remark 2.1.2. It is immediate that R, ;, as a real vector space and has dimension
2", n=p+q.

An element in Ry, 4, called a Clifford number, can be written as

a=agp+ae; +...+aney +azer1e2 + ...+ ajoze1e2e3 + ...+ a12. . n€1€2...€n.

F. Colombo et al., Noncommutative Functional Calculus: Theory and Applications of Slice 17
Hyperholomorphic Functions, Progress in Mathematics 289, DOI 10.1007/978-3-0348-0110-2_2,
© Springer Basel AG 2011
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Denote by A an element in the power set o(1,...,n). If A = iy...4,, then the
element e;, ...e; can be written as e;, ;. or, in short, e 4. Thus, in a more compact
form, we can write a Clifford number as

a = E AQAEA.
A

Possibly using the defining relations, we will order the indices in A as iy < ... < i,.
When A = () we set ey = 1.

We now give some examples of real Clifford algebras R,, of low dimension.

Example 2.1.3. First of all, we point out that the index n = 0 is allowed in the
definition, and in this case we obtain the real numbers. For n = 1 we have that
Ro.;1 is the algebra generated by e; over R with the relation e = —1. Hence there
is an R-algebra isomorphism Rp ; = C where C denotes, as customary, the algebra

of complex numbers.

Example 2.1.4. For n = 2, the Clifford algebra Ry > is generated by e; and e3. This
real algebra is the so-called algebra of quaternions and it is usually denoted by
the symbol H. A quaternion ¢ is traditionally written as ¢ = x¢ + iz1 + jaxo + kx3
where the imaginary units 4, j, k anti-commute among them and satisfy 2 = j2 =
k? = —1. With the identification

er —>1, ey —7,
(and the consequent ejes — k), it is immediate to identify Rg o with H.

Example 2.1.5. We now compare the two Clifford algebras R; ; generated by the
elements e; and €; such that e% = —1 and 6% = +1, and Ry generated by
the elements €; and e5 both having square +1. These two Clifford algebras are
isomorphic. In fact, let us consider the matrices

10 To0 1
T/O_Ol 771_10

0 -1 1 0
N2 = 1 0 n3 = 0 -1 |-
They form a basis for the vector space M (2,R) of 2 x 2 real matrices. The map
@ : Rl,l g M(Q,R)
defined by ¢(e1) = n2, p(e2) = 11 can be extended to an isomorphism for which
©(1) = no, and ¢(eze1) = n3. The map
P Roor— M(2,R)

defined by ¥ (e1) = m, ¥(e2) = n3 can be extended to an isomorphism for which
P(1) = no, P(e1e2) = 2. Thus the Clifford algebras Ry ; and Ry ¢ are isomorphic
but, as the reader can verify, they are not isomorphic to Ry ».
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The case of Ry ,, will be the only case we will use in this book. For this reason,
we will write R,, instead of Ry j,.

Definition 2.1.6. Let k € N and 0 < k < n. The linear subspace of R,, generated
by the (Z) elements of the formea =e;, ...e;, 0 € {1,...,n}, i1 < ... <ig, will
be denoted by RE. The elements in RE are called k-vectors.

For k = 0, the subspace R is identified with the space of scalars R; for k = 1
we have the subspace R}, of 1-vectors, also called vectors for short and denoted by
x, with basis {e1,...,e,}; an element (1,22, ...,2,) € R™ can be identified with
a vector x € R} in the Clifford algebra using the map:

(x1,22,...,Tp) > T =161 + ... + Tpey,.

The subspace R2 consists of 2-vectors or bivectors, and has basis {e;; =
eiej, i < j}. In general, for any subset A = {i1,...,ix} of N = {1,...,n} of
cardinality |A| = k, the elements eq = e;, ...€;,, i1 < ... < i}, form a basis for
the (Z)-dimensional vector space RY of the k-vectors. Every element belonging to
RO @ R is a sum of a scalar and a vector. It is called paravector. An element
(0, 21,...,2,) € R can be identified with a paravector x € R% @ R} by the
map:

(X, @1,y oy Tn) P X =20 + 2161 + ... + Tpep.

Note also that every element a € R,, may also be uniquely written as
a=lalo+ a1 +...+ [a]x + ...+ [a]n

where []r : R, — R¥ denotes the projection of R,, onto the space of k-vectors.
Finally, a can be written in the form

a=ay t+a_

where [a]4+ = [alo+[a]2 + ..., and [a]— = [a]1 + [a]s + . ... We hence have a direct
sum decomposition
Ry, =Ry 4 &R, _

where R,, ; is the even subalgebra generated by the bivectors e;;, while R,, _
contains all the elements a that may be written in the form a = —e;(eja), e1a €
R, +. Note that R, _ is not an algebra while R,, | is an algebra isomorphic to
R,_1.

Among the elements in the Clifford algebra R,,, we can consider the product
of all the imaginary units e;:

Definition 2.1.7. The product en := €1 ...ey, is called pseudoscalar.
Remark 2.1.8. If n is odd the pseudoscalar commutes with any element of the

Clifford algebra R,, since it can be verified that

€jEN = ENEj,
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while when n is even ey anticommutes with any imaginary unit in the Clifford
algebra:

€jEN = —ENE;.
As a consequence of the remark, we immediately have the following result:

Proposition 2.1.9. The center of a Clifford algebra R,, is R for n even, while it is
R@enR={x+eny | z,y R} forn odd.

Proposition 2.1.10. The Clifford algebra R,,, n > 3, contains zero divisors.

Proof. Since n > 3, R,, contains the element e123. We have
(1 — e123)(1 + e123) = 1 — €123 + €123 — €123€123 = 1 — €73 = 0. O

In a Clifford algebra it is possible to introduce several involutions, but for
our purposes we will simply consider the so-called conjugation:

Definition 2.1.11. Let a,b € R,,. The conjugation is defined by

ej=—ej, j=1,...,n, ab = ba.
As a consequence of the definition, for any a € R,,, a = asea, we have
a=Y aaéa=[ao—[a]1 —[alz +[a]s + [als — ...
i.e., for any a € R¥ we have the 4-periodicity

a=a for k=0,3 mod 4,
a=—a for k=1,2 mod 4.

The following properties of the conjugation can be easily verified by direct com-
putation:

Proposition 2.1.12. The conjugation of Clifford numbers satisfies:
(1) a=a for alla € Ry;
(2) a+b=a+b for all a,b € Ry,;
(3) a+a=2[a)o for all paravectors a.

The conjugation allows us to introduce an inner product defined on the real
linear space of Clifford numbers:

Proposition 2.1.13. Let a,b € R,,. Then
{a,b) = [ablo = [ba]o = [ba]o,

1s a positive definite inner product on R,,.
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Proof. Let a =73 ,aaea, b=>_ 5 bpep. We have

ab = (Z aAeA)(Z bpep) = ZaAbBéAeB
A B

A,B

and since eqe4 = (—1>|A|(|A|+1)/2€A6A =1 we obtain

ab = ZaAbA + Z asbpéasep
A A#£B

and so [ablg = >, aaba. Thus [ab]p coincides with the scalar product of the
vectors in R2" corresponding to the real components of a and b and it defines a
scalar product. The fact that it coincides with [ba]o and [ba]y can be proved by
similar computations. d

We note that the inner product defined by Proposition 2.1.13 behaves like a
scalar product on the space of vectors and, if x and y are two vectors we have

1
(zy + y).

<.’L‘,y> = 9

The wedge product of two vectors  and y is defined by

1
Ay =, (zy —ya).

Note that the wedge product represents the directed and oriented surface measure
of the parallelogram individuated by x and y. It is also immediate that the product
of two vectors can be written as

1

(ey -+ o) ) (g — o) = (w9) + 2 Ay, (2:2)

Note also that, in the case of vectors, the scalar product can be written as

n
<.’L', ZU> = Zx1y17
j=1
and, if by |z| we denote the Euclidean norm of a vector x, we have

| = /{2, z) (2.3)

which is the length of the vector x.

We will say that two nonzero vectors x, y are orthogonal if (z,y) = 0. As
customary, a basis {u,...us} of a subspace U of the Euclidean space R" is said
to be orthonormal if |u;| = 1 and (u,,u;) = 0 for every u;, uj, such that u; # ;.
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In general, given an element a = ) 4, asea € R,, we can define its modulus

lal = (3 a%)z.
A

The proof of Proposition 2.1.13 shows that

as

\ot|2 = [aa]o = (a, a),

thus generalizing formula (2.3) to the case of a general Clifford number. We have
the following properties:

Proposition 2.1.14. The modulus of Clifford numbers satisfies:
(1) |Aa] = |Al|a| for all X € R, a € Ry;
(2) llal = Iyll < o — yl < lal + lyl;
However, the modulus is not multiplicative, as shown in the next result.

Proposition 2.1.15. For any two elements a,b € R,, we have
|ab| < Cilal [b]

where C,, is a constant depending only on the dimension of the Clifford algebra
R,,. Moreover, we have C,, < 2™/2.

Remark 2.1.16. The modulus is multiplicative in the case of complex numbers
and quaternions. To have a multiplicative modulus when enlarging the field of
real numbers one has to abandon the notion of order to get C and then the
notion of commutativity to get H. There is another possibility to enlarge further
the dimension: by abandoning associativity one obtains the (division) algebra of
octonions. In fact, Hurwitz’ theorem shows that the only algebras over the real
field with multiplicative modulus are the field of real numbers, the field of complex
numbers, the quaternion skew field and the alternative algebra of octonions.

Inside a Clifford algebra there is the possibility, in some special cases, to
have that the modulus is multiplicative. These cases are described in the following
result:

Proposition 2.1.17. Let b € R,, be such that bb = |b|?. Then
|ab| = |a][b].
Proof. Consider |ab|. We have:
lab|? = [abably = [abba)y = [a|b|?@]o = [ad]o|b|® = |a|?|b|?. O

Note that the result holds, in particular, when a is paravector x. Moreover
any nonzero paravector x admits an inverse, the so-called Kelvin inverse, defined
by

1 X

X = |X‘2.
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2.2 Slice monogenic functions: definition and properties

As mentioned in Section 2.1, an element (x1,2,...,2,) € R™ can be identified
with a vector x = x1e1+...+xpe, € RL while an element (zq, 21, ..., z,) € R**!
can be identified with the paravector

x:x0+x161+...+xnen:onrxGR?LEBR:L.

In the sequel, with an abuse of notation, we will write z € R™ and x € R"*!. Thus,
if U € R™*! is an open set, a function f: U C R™*! — R,, can be interpreted as
a function of the paravector x. Note also that an element x will be often denoted
as

x = Re[x] + z,

to emphasize its real and vector part, respectively.

The theory of slice monogenic functions was first developed in [26] where the
authors study a new notion of monogenicity for functions from R"*! to R,,. It is
worth noting, however, that the exposition we propose here offers a significantly
improved theory, and reorganizes the ideas of [26] in a new more powerful fashion
as in [15], [18], [27], [28], [29], [53].

To introduce the theory of slice monogenic functions, we need some definitions
and notation.

Definition 2.2.1. We will denote by S the set of unit vectors:
S={z=ez1+...+epzn eR" |2l + .. 2] =1}.

From a geometric point of view, S is an (n— 1)-sphere in the Euclidean space
of vectors R and if I € S, then I? = —1.

The two-dimensional real subspace of R"*! generated by 1 and I is the plane
R + IR. It will be denoted by Cj, in fact it is isomorphic to the complex plane.
Note that the isomorphism between the vector space C; and C is also an algebra
isomorphism, thus C; will be referred to as a “complex plane”.

An element in C; will be denoted by u + Iv. Conversely, given a paravector
X, it will be possible to write it as an element in a suitable complex pxlane C;. In
|z

is a unit vector, we have written the given

fact, either x is a real number, or we can write it as x = Re[x] + = |z|. Since

Re[x]|, |z| are real numbers and ‘m|

x
paravector as x = u + Ixv, with u = Re[x], v = |z] and Ix = ‘m‘

x

Definition 2.2.2. Let U C R™*! be an open set and let f : U — R,, be a real
differentiable function. Let I € S and let f; be the restriction of f to the complex
plane C; and denote by u + Iv an element on Cr. We say that f is a left slice
monogenic (for short ss-monogenic) function if, for every I € S, we have

1/0 0 1/0 0
9 <8u+18v> fr(u+Iv) = 5 (8uf1(u+1v)+favf1(u+1v)) =0
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on UNCy. We will denote by M(U) the set of left s-monogenic functions on the
open set U or by ML (U) when confusion may arise. We say that f is a right slice
monogenic (for short right s-monogenic) function if, for every I € S, we have

! (a + 51) f](u+1v);<aauf1(u+fv)+

0
2 \Ou v fI(u+Iv)I>O,

v
on UNCy. We will denote by MT(U) the set of right s-monogenic functions on
the open set U.

Remark 2.2.3. The theory of right s-monogenic functions is equivalent to the
theory of (left) s-monogenic functions. In the sequel, we will mainly consider
s-monogenicity on the left, but we will introduce some basic tools for right s-
monogenic functions in order to treat the functional calculus for n-tuples of non-
commuting operators.

Definition 2.2.4. We define the notion of I-derivative by means of the operator:

1/0 0
Or ':2(au_fav)'

For consistency, we will denote by O the operator % (aEL + Iaav)'

Using the notation we have just introduced, the condition of left s-mono-
genicity will be expressed, in short, by

orf=0.
Right s-monogenicity will be expressed, with an abuse of notation, by
for=0.

Remark 2.2.5. Tt is easy to verify that the (left) s-monogenic functions on U C
R™*! form a right R,-module. In fact it is trivial that if f,g € M(U), then
for every I € S one has 9;f; = drgr = 0, thus 9;(f + ¢g)1 = 0. Moreover, for
any a € R,, we have 9;(fra) = (9rf)a = 0. Analogously, the right s-monogenic
functions on U C R**! form a left R,,-module.

Definition 2.2.6. Let U be an open set in R"! and let f : U — R, be an s-

monogenic function. Its s-derivative Oy is defined as

o ={ G0 ATt 2

Note that the definition of s-derivative is well posed because it is applied
only to s-monogenic functions. Moreover, for such functions, it coincides with the
partial derivative with respect to the scalar component u, in fact we have:

95 (f)(u + Iv) = 01 (f1)(u+ Iv) = Ou(f1)(u+ Iv). (2.5)
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Note incidentally that
Ou(fr)(u+ Iv) = 0u(f)(u+ Iv).

Proposition 2.2.7. Let U be an open set in R"™! and let f : U — R, be an s-
monogenic function. The s-derivative Osf of f is an s-monogenic function, more-
over

amf
ou™
Proof. The first part of the statement follows from

O flu+Iv) = (u+ Iv).

Or(0sf(u+Iv)) = 0s(0rf(u+ Iv)) = 0. (2.6)
The second part follows from (2.5). O

We now provide some examples of s-monogenic functions. It is interesting to
note that in the classical theory of monogenic functions (see [7], [34]) the mono-
mials, and thus the polynomials, in the paravector variable are not monogenic
functions. However polynomials (and also converging power series) in the paravec-
tor variable turn out to be s-monogenic functions, provided that the coefficients
are written on the right.

Example 2.2.8. The monomials x"a,,, a,, € R, are s-monogenic, thus also the
polynomials 22[:0 x"a, are s-monogenic. Note that these polynomials have co-
efficients written on the right: indeed, polynomials with left coefficients are not,
in ]%eneral, s-monogenic. To avoid confusion, we will call polynomials of the form
Y no X" ay s-monogenic polynomials. Moreover, as we will see in the sequel, any
power series ) -, X"a, is s-monogenic in its domain of convergence.

Remark 2.2.9. Note that the complex plane C = R; can be seen both as R? and as
R;. It is immediate, from Definition 2.2.2, that the space of holomorphic functions
f: C — C coincides with the space of s-monogenic functions from R? to R;. For
this reason we will consider the case n > 1 (obviously, all the results that we will
prove are valid also in the case n = 1).

Proposition 2.2.10. Let I = I; € S. It is possible to choose Is, ..., I, € S such that
Ii,..., I, form an orthonormal basis for the Clifford algebra R,, i.e., they satisfy
the defining relations I.1s + I, = —20,.

Proof. First of all, note that since z Ay = —y A x, formula (2.2) gives
zy+ya=2xy).

Then it sufficient to select the vectors I, in a way such that (I, I,) = —1 and
(Is,I,) =0, for s=1,...,n, 7 =2,...,n. Since I, = Zzzl z,¢ep the two condi-
tions translate into

n
<IY'7 Ir> = - Z l‘,%g
£=1
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and

Is , I Z Lselre-
By identifying each vector I, with its components (1,...,25) € R™ we conclude
using the Gram—Schmidt algorithm. O

A simple and yet extremely important feature of s-monogenic functions is
that their restrictions to a complex plane C; can be written as a suitable linear
combination of 27! holomorphic functions, as proved in the following:

Lemma 2.2.11 (Splitting Lemma). Let U C R™*! be an open set. Let f: U — R,
be an s-monogenic function. For every I =1, € S let I, ..., I, be a completion to
a basis of R, satisfying the defining relations I.1s+ 131, = —26,5. Then there exist
2"~ holomorphic functions Fy : U NCr — Cr such that for every z = u + Iv,

n—1
fr(z) =Y Fa(z)la, Ian=1I; ... I,
|A|=0

where A =1y .. .15 is a subset of {2,...,n}, with i; < ... <1, or, when |A] =0,
Iy =1.

Proof. Let z = u+ Iv. Since f is R,,-valued, there are functions Fy : UNC; — C;
such that

n—1

9= Y B@L= Y (atoaDla.

|A|=0 |A|=0
We now need to show that the functions F4 are holomorphic. Since f is s-
monogenic we have that its restriction to Cj satisfies

(aau—l-léi)f](u—l—lv):o

and so

0 0
$(2012) 52t
0 0 0 0
N (’9quJrI(’9UfA+ ou (%gA =0

Since the imaginary units commute with any real-valued function, we obtain the
system:

gal —

0 0
8qu ~ A= 0,
0 0
(%fA + udA = 0

for all multi-indices A. Therefore all the functions Fa = fa + gal satisfy the
standard Cauchy—Riemann system and so they are holomorphic. O
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Example 2.2.12. To clarify our result, we consider explicitly the case of Ry-valued
functions. A function f: U C R5 — R, can be written as

f=fo+ fili + fala + f3ls + fals + fi2lio + fis3lis + fialia + foslos
+ foaloa + f3alza + fr23l123 + fr2al124 + fi3al13a + fo34l234 + f123411234

and grouping as prescribed in the statement of the Lemma, we obtain

f= o+ filh)+ (fo+ fioh) o + (fs + fish)Is + (fa + fral1)1s
+ (foz + frasli)Ios + (foa + fioali)Ioa + (fsa + fi3ali) 134
+ (faza + fi23a11)]234.

To develop a meaningful theory of s-monogenic functions we need some ad-
ditional hypotheses on the open sets on which they are defined. For example, the
natural class of open sets in which we can prove the Identity Principle is given
by the domains whose intersection with any complex plane C; is connected. We
introduce these domains in the following definition:

Definition 2.2.13. Let U C R™*! be a domain. We say that U is a slice domain
(s-domain for short) if UNR is nonempty and if U NCy is a domain in Cy for all
Ies.

In this class of domains it is possible to prove the following Identity Principle:

Theorem 2.2.14 (Identity Principle). Let U be an s-domain in R, Let f : U —
R, be an s-monogenic function, and let Z be its zero set. If there is an imaginary
unit I such that C; N Z has an accumulation point, then f =0 on U.

Proof. Let us consider the restriction f; of f to the plane Cy, for I € S. By the
Splitting Lemma we have

f](z) = i: FA(Z)IA

|A|=0

with F4 : UNC; — C; holomorphic for every multi-index A and z = u+ Iv. Since
C; N Z has an accumulation point, we deduce that all the functions F4 vanish
identically on U N C; and thus f; = 0 on U N C;. In particular f; vanishes in
the points of U on the real axis. Any other plane C;/ is such that f;, vanishes on
U N R which has an accumulation point. If we apply the Splitting Lemma to fj/,
we can write fr = > 4, FasIa and thus its components F4, vanish on U NR and
thus they vanish identically on U N Cy/. This fact implies that also f;» vanish on
Cyr, thus f=0o0n U. O

Analogously to what happens in the complex case, we can prove the following
consequence of the Identity Principle.
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Corollary 2.2.15. Let U be an s-domain in R"*'. Let f,g : U — R, be s-
monogenic functions. If there is an imaginary unit I such that f = g on a subset
of C; having an accumulation point, then f =g on U.

Among the domains in R™*! there is a special subclass which is useful to
provide a Representation Formula for s-monogenic functions. In order to define
them, it is useful to suitably denote the (n — 1)-sphere associated to a paravector.

Let s = so+ s = so + Is|s| € R"™! be a paravector; we denote by [s] the set

[s] ={x e R"™ | x =59+ 1|s], I €S}.

The set [s] is either reduced to a real point or it is the (n — 1)-sphere defined by
s, i.e., the (n — 1)-dimensional sphere with center at the real point sy and radius
|s].

Remark 2.2.16. Observe that the relation: “x ~ s if and only if o = s¢ and
|x| = |s|” is an equivalence relation. Given a paravector s, its equivalence class
contains only the element s when s is a real number, while it contains infinitely
many elements when s is not real and corresponds to the (n — 1)-dimensional
sphere [s].

Definition 2.2.17. Let U C R"*'. We say that U is axially symmetric if, for all
s=u+ Iv € U, the whole (n — 1)-sphere [s] is contained in U.

Observe that axially symmetric sets are invariant under rotations that fix
the real axis.

In order to state the next result we need some notation. Given an element
x =x0+x € R let us set

if x#0,
I, ={ l=l
any element of S otherwise.

We have the following:

Theorem 2.2.18 (Representation Formula). Let U C R™*! be an azially symmetric
s-domain and let f be an s-monogenic function on U.

(1) For any vector x = u+ Ixv € U the following formulas hold:

Flx) = ; {1 - IXI} Flu+ Iv) + ; [1 + le} Fu— Iv) (2.7)

7 = o [t 1)+ Flu— 1) 4 B {fw— o) — flat To)]]. - (28)



2.2. Slice monogenic functions: definition and properties 29

(2) Moreover, the two quantities

afu,v) = | [F(u-+ I) + f(u— )] (2.9)

and
1
Blu,v) ::IQ[f(quv)ff(quIv)] (2.10)
do not depend on I € S.
Proof. The result is trivial for real paravectors, in fact we have the identity

1

@)=, [1 f Ixf} Flu) + ; [1 + Ixf}f(u)

for any Ix € S. If x € R and if we write x = u 4 Ixv we can set
$(u+ Tow) = ; [F(ut To) + f(u— To) + LI [f(u — o) — f(u+ o),
and observe that if I = I, we have
P(u+ Ixv) = f(x).

Let us show that (E?u + Iy ;v)qb(u + Ixv) =0 for all x € U NCy. Indeed we have:

(8 —I—ngy)qb(u-i-lxv)

ou
- ; [1 - J,J} aauf(u + Iv) + ; {1 + IXI} aauf(u ~ Iv)
n ;Ix [1 - J,J} aavf(u + Iv) + ;IX {1 n IXI} Ei}f(u ~ Iv).

Using the fact that f is s-monogenic, we can write

(ai +Ix§))¢(u+1xv)
1 ) 1 )
-, [1 - I,J] (=1) 5 Fu+To)+ [1 + Ixf}favf(u ~ Iv)
+ ;Ix [1 - IXI} gvf(u—i- Iv) + ;IX {1 + IXI} éif(u — Iv) = 0.

Since the function ¢ is s-monogenic and ¢ = f on C;, then ¢ coincides with f
on U by the Identity Principle. The second part of the proof follows directly from
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(2.8). In fact we have

;[f(quIv) + f(u— Iv)]
_ ;{; [F(u+ o) + flu— 0)] +I; 71— o)~ f(ut T0)]
+ ; (£t T0) + flu—0)] - 1; [T~ o) = f(ut T0)]]}
. ; [Fut T0) + f(u—Tv)]
and so «, and similarly 3, depend on u, v only. O

Remark 2.2.19. Note that the operator 5 is not a constant coefficients differential
operator since the imaginary unit I changes with the point w4+ Iv. This shows that
f per se does not satisfy a system of constant coefficients differential equations;
however, as the next corollary shows, its components « and § do, and they give
an s-monogenic function if they satisfy some additional conditions, see [87].

Corollary 2.2.20. Let U C R™"! be an azially symmetric s-domain, and D C R?
be such that uw + Iv € U whenever (u,v) € D and let f : U — R,,. The function
f is an s-monogenic function if and only if there exist two differentiable functions
a,B: D CR? = R, satisfying a(u,v) = a(u, —v), B(u,v) = —B(u, —v) and the
Cauchy—Riemann system

Ouax — 0,8 =0,
(2.11)
Ouf + Ovar =0,
and such that
flu+1Iv) = a(u,v) + I (u,v). (2.12)

Proof. If f is s-monogenic, then we can apply Theorem 2.2.18 and we can set
a(u,v) and B(u,v) asin (2.9) and (2.10). Then f(u+Iv) = afu,v)+I15(u,v), and
a(u,v) = a(u,—v), f(u,v) = B(u, —v) by their definitions. The proof of Theorem
2.2.18 shows that the pair «, [3 satisfies the Cauchy—Riemann system. The converse
is immediate: any function of the form f(u+1Iv) = a(u,v)+18(u,v) is well defined
on an axially symmetric open set. In fact,

flu—1Iv) = a(u, —v) + IB(u, —v) = a(u,v) — I (u,v).

The fact that o and g satisfy the Cauchy-Riemann system guarantees that f is
an s-monogenic function. O

The Representation Formula has several interesting consequences.

Corollary 2.2.21. Let U C R"*! be an azially symmetric s-domain and let f : U —
R™ be an s-monogenic function. For any choice of u,v € R such that u+Iv € U
there exist a,b € R,, such that

flu+Iv) =a+ Ib, (2.13)
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for all I € S. In particular, the image of the (n — 1)-sphere [u + Iv] is the set
{a+1b: I €S}

Proof. 1t is a direct application of Theorem 2.2.18. O

Another consequence of the Representation Formula is the fact that any
holomorphic map defined on a suitable domain can be uniquely extended to an
s-monogenic function:

Lemma 2.2.22 (Extension Lemma). Let J € S and let D be a domain in Cy,
symmetric with respect to the real axis and such that D NR # (. Let Up be the
axially symmetric s-domain defined by

Up = U (u—i—[u).
u+JveD, I€S

If f: D — Cjy is holomorphic, then the function ext(f): Up — R,, defined by
ext(F)(utTv) = | [Flut o)+ fu—Jo)| 41, [T (w—Tv) = flut )] (214

is the unique s-monogenic extension of f to Up.
Similarly, let Js, ..., J, be a completion of J to an orthonormal basis of R,
and let

f: D>R,

defined by f = Zﬁ;llzo Fada, AC{2,....,n}, Fa: D — C; holomorphic. Then,

Oy f(u+ Jv) =0 and the function obtained by extending each of its holomorphic
components F4 is the unique s-monogenic extension of f to Up.

Proof. The fact that ext(f) is ss-monogenic follows by the proof of Theorem 2.2.18.
When I = J in (2.14) we have that ext(f)(u + Jv) = f(u + Jv), and hence
ext(f) is the unique extension of f by the Identity Principle. The second part is
immediate. (]

The second part of Theorem 2.2.18 shows that for every I, K € S we have
flu+1Iv) = a(u,v) + I8(u,v) and flu+ Kv) = a(u,v) + KB(u,v).
By subtracting the two expressions and assuming that I # K, we have
a(u,v) = (I — K)"MIf(u+ Iv) — K f(u+ Kv)]

and
Blu,v) = (I = K)7'[f(u+ Iv) = f(u+ Kv)].

Thus the Representation Formula admits the following generalization:
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Theorem 2.2.23 (Representation Formula, IT). Let U C R™*! be an axially sym-
metric s-domain and let f be an s-monogenic function on U. For any vector
u+ Jv € U the following formula holds:

flutJv) =T - K) 'If(u+Iv) — Kf(u+ Kv)] (2.15)
+J(I = K) 'f(u+ Iv) — f(u+ Kv)).

As a consequence we have that the values of an s-monogenic function f on
an axially symmetric set U are uniquely determined by its values on the two half-
planes U N (C}F, Un (CJ[( through formula (2.15). Moreover we have the following
generalization of the extension lemma:

Lemma 2.2.24 (Extension Lemma, II). Let U be an s-domain in R and let
f:U—= R, be an s-monogenic function. Let U be the azially symmetric s-domain
defined by

U= U (u+ Iv)

u+t+Jvel, T€S
There exists a unique s-monogenic extension of f to the whole U.

Proof. By construction, it is immediate that U is an axially symmetric s-domain.
Observing that U is an open set, we consider another axially symmetric s-domain
W obtained as the union of all the open balls B(x,r,) C U with center at a point
on the real axis x € U, i.e.,

W = UJEGUQRB('T, T'a:)-

The restriction of f to W is an s-monogenic function which can be uniquely ex-
tended to a function f defined on a maximal, axially symmetric, s-domain set
Unax such that W C Uy € U. Our goal is now to show that Up,ax coincides with
U. Assume the contrary, and suppose that there exists y = yo + [y1 € U N OUpax.
Since y € U, there exists J € S such that yo + Jy; € U and since U is open,
there is an open ball with center at y contained in U. So there exist K € S and
Y = yo + Ky such that the two discs Ay and Ak of radius € with center at y

and y on the plane C;, Cg, respectively, are contained in U. Let us define

glu+ Jv) == (I = K) I f(u+ Iv) = K f(u+ Kv)]
+J(I — K) 'f(u+Tv) — fu+ Kv)]

on the set D = {x = u+ Jv | (u—y0)*> + (v —y1)® < €}. Then the function
g coincides with f on D N Upax. The function h defined by h(x) = f(x) for
X € Upax and h(x) = g(x) for x € D is the s-monogenic extension of f to the
axially symmetric open set D U Upax contradicting the maximality of Upax. This

completes the proof. O
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2.3 Power series

As we have already observed in the previous section, polynomials in the paravector
variable x are s-monogenic. However, it is no longer true that a polynomial f(x)
of the form f(x) = (x —a)”, where ¢ € R,, is s-monogenic, in general. If a € R,
however, then f(x) is s-monogenic and so are power series centered at a point on
the real axis, where they converge. In this section we will provide a detailed study
of s-monogenic functions which can be expanded into power series.

Proposition 2.3.1. If B = B(0,R) C R"™! is a ball centered in 0 with radius
R >0, then f: B — R, is an s-monogenic function if and only if f has a series
expansion of the form

Sy L) 2.16)

m! oum
m>0

converging on B.

Proof. Tf a function admits a series expansion as in (2.16) it is obviously s-mono-
genic where the series converges. The converse requires the Splitting Lemma. Con-
sider an element I = I; € S and the corresponding plane C;. Let A C C; be a
disc with center in the origin and radius r < R and let us set z = u + Iv. The
restriction of f to the plane C; can be written as fr(z) = > Fa(z)I4. Since every
function F4(z) is holomorphic, it admits an integral representation via the Cauchy

formula, i.e.,
1 Fa(¢)
Fal: / ) dc,
(z) = 271 Jono,ry € —
for any z € A and therefore
n—1
1 Fa(¢)
f1(z) = / ¢ | I
(2) AZ_:O 27l Jon(o,r) € — 2

Now observe that ¢ and z commute because they lie on the same plane C;, so we
can expand the denominator in each integral in power series, as in the classical

case:
1 z m FA(C)
F = d
)= gnp /BA(o,r)g;O (C) ¢ ‘

Fa0)

¢
m>0 /dA(O ™) m>0 ¢t

N N
o Zz ml 9zm (0).

m>0
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Plugging this expression into fr(z) = > Fa(2)Ia we obtain

! 1 0mF amf
B Z ZZ m! 8zmA IA*ZZ m! 9zm (0),

|A|=0m>0 ’ m>0

and using the definition of s-derivative together with Proposition 2.2.7, we get

1 o™
m -1 m 7(0).
Z m' 2 ( ) Z m! Ou™ 1)
m>0
Finally observe that the coefficients of the power series do not depend on the

choice of the unit I, thus f7(z) is the restriction to C; of the function defined in
(2.16) and the statement follows. O

The following two results can be proved as in the complex case:

Proposition 2.3.2. The s-derivative of a power series

Z x"a,, a, €R,

n>0

equals

g nx""ta,

n>0
and has the same radius of convergence of the original series.

Corollary 2.3.3. Let f: B — R,, be an s-monogenic function. Then f =0 on B
if and only if 97 f(0) =0 for all n € N.

The next proposition shows that s-monogenic functions whose power series
expansion have real coefficients play a privileged role.

Proposition 2.3.4. The product of two functions f,g: B(0,R) — R,, such that the
series expansion of f has real coefficients is an s-monogenic function. Moreover,
the composition of f with an s-monogenic function h : B(0,R') — R,, is an s-
monogenic function whenever the composition is defined.

Proof. Let
-3

m>0

X) = Z X" by,

m>0

X) = Z X" e,

m>0
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be s-monogenic functions with a,, € R, b,,, ¢, € R,,. Since real coefficients com-
mute with the variable x we have

(fg)(x) = sz(aﬂbs + albsfl +...+ ast)~
s>0

Now consider (h o f)(x) = h(f(x)); we have

h(f(x) =Y x"ar) e

m>0 r>0

Since the coefficients a, commute with the variables we can group them on the
right and the statement follows. O

Corollary 2.3.5. Let f: U — R, be an s-monogenic function. Then the function
f(x—190), yo € R, is an s-monogenic function in the open set U' = {x' = x —
Yo, x € U}.

Proposition 2.3.6. Let B = B(yo, R) C Rt be the ball centered in yo € R with
radius R > 0, then f: B — R,, is an s-monogenic function if and only if it has
a series expansion of the form

1 omf

m! Qu™

Fe) =) (x—yo)" (yo)- (2.17)

Proof. Consider the transformation of coordinates z = x — yg. Since the function
f(z) is s-monogenic in a ball centered in the origin with radius R > 0, we can
apply Proposition 2.3.1. Using the inverse transformation x = z + yg, we obtain
the statement. O

The result extends to s-domains as follows:

Corollary 2.3.7. Let f be an s-monogenic function on an s-domain U C R" 1,
Then for any point on the real azis yo in U, the function f can be represented in
power series

1omf
n! oun

Fe0) = S — o)

n>0

(o)

on the ball B(yo, R), where R = Ry, is the largest positive real number such that
B(yo, R) is contained in U.

Proof. Since f is s-monogenic in yg, then, for every I € S, f can be expanded in
power series on the disc A; = B(yo, Ry) of radius R; on the plane C;. The radius
R turns out to be minscs Ry which is nonzero because g is an internal point in
U. O
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Corollary 2.3.8. Let [ : B(yo, R) — R,, be an s-monogenic function. If there exists
I €S such that f(Cr) C Cy, then the series expansion of f,

10mf

n! oun

760 = 3~ yo)”

n>0

(%0),

has all its coefficients in Cy. Consequently, if there are two different units I, J € S
such that f(Cy;) C Cy and f(Cy) C Cy, then the coefficients are real.

Proof. If I € S is such that f(C;) C Cy, then for any real number yo we have

n

a
flyo) = fr(yo) € Cy. Therefore 8u£ (yo) € Cy for any n € N, yg € R, and the

conclusion follows. The second part is immediate. O

We now introduce a product among s-monogenic polynomials which preserves
the s-monogenicity:

Definition 2.3.9. Let f(x) = > i x'a; and g(x) = > -, x'b;, for a;,b; € R,,. We
define the s-monogenic product of f and g as

n+m

frg(x):= Z xJ¢;
j=0

with ¢; = Zszj a;bi. We will denote by f*™ the product f * ... f, n-times.

This product is computed by taking the coefficients of the polynomials on
the right, as in the case in which the variables and the coefficients commute and
coincides with the standard product of polynomials with coefficients in a division
algebra (see [71]). We adopt this definition also in this setting and we extend it to
the case of the product of series. If f(x) = >_,5,x"a; and g(x) = >, x'b; are
s-monogenic series, we define their s-monogenic product as

fxg(x):= ijcj

Jj=0

with ¢; = ZiJrk:j a;bi. Note that when the coefficients of a polynomial or a series
f are real numbers, the s-monogenic product coincides with the usual product,
ie., f*g = fg (see Proposition 2.3.4). This product will be generalized in the
sequel to s-monogenic functions which are not necessarily power series.

We conclude this section by showing that s-monogenic functions are infinitely
differentiable:

Proposition 2.3.10. An s-monogenic function f : U — R, on an axially symmetric
s-domain U C R"*! s infinitely differentiable on U.

Proof. The differentiability of f on the real axis follows from Corollary 2.3.7 since
for any point of the real axis there is a ball in which the function f can be expressed
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in power series. To prove differentiability outside the real axis consider formula

(2.7) and write x as x = xo + ¢ = g + ‘x|x
x

100 = [#(@o -+ Tla) + fao = e + | 1o = Tha) = Fao + 1lel]

2 x|

The function f is s-monogenic and hence, by definition, its restriction f; to Cj is
infinitely differentiable on U N C; for any I € S. It is therefore obvious that f can
be obtained as a composition of the functions fr, zo, x =), esxs, and |x|, which
are all infinitely differentiable outside the real axis with respect to the variables
x¢, £ =0,...,n. This concludes the proof. O

2.4 Cauchy integral formula, I

A main result in the theory of s-monogenic functions is an analog of the Cauchy
integral formula. We will present two versions of such a Cauchy formula: the one
discussed in this section is less general than the second version, but it is enough
to prove several properties of s-monogenic functions.

Theorem 2.4.1. Let U C R™*! be an azially symmetric s-domain and let f : U —
R,, be an s-monogenic function. If x € U, then

1
o

) /a oo T )

where d(r,, := —d(Ix and a € R, r > 0 are such that
Ax(a,7) = {u+ Lo | (u—a)®+v* <r*} CCy,

contains x and is contained in U.
Proof. With no loss of generality, we will assume a = 0. Consider the integral

1

—x)"ld .
o (6707 T O

Set Iy := Iy, complete to a basis I1,..., I, of the Clifford algebra R,,, satisfying
the defining relations I,.1s + I;I, = —20,s. Using the Splitting Lemma, we can
write the restriction of f to Cr_ as fr, =) 4 Fala. We have

1 -1
e () (0

1 —1
= — d I
o /an(O’r)(f x)" dér, §A Fa(€)1a
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1 _
=2 g oy R AL

= f(x). O

Remark 2.4.2. Let By = B(0,Ry), Bo = B(0, R2) be two balls centered at the
origin and with radii 0 < Ry < Rs. The same argument used in the previous proof
shows that if a function f is s-monogenic in a neighborhood of the annular domain
By \ By, then for any x € By \ By, it satisfies

— 1 _ )1
160 = | e (€72 GO
o | e, (€7 H T A,

Remark 2.4.3. The function Zy(x) := (x —y)~ ' corresponding to the Cauchy
kernel in Theorem 2.4.1 is not s-monogenic on R™*1\ {y}, unless y = yo € R. In
particular, the function -

To(x) =x1 = x

xP

(2.18)
is s-monogenic in R"*1\ {0}.
Theorem 2.4.4 (Cauchy formula outside a ball). Let B = B(0, R) and let B¢ =
R\ B. Let f: B¢ — R, be an s-monogenic function with limy_,. f(x) = a.
If x € B€, then

1

fx)=a—

[ -nd s

OA(0,1)

where 0 < R < r < |x| and the complement of the set Ax(0,r) is contained in B°
and contains X.

Proof. The proof is based on the Splitting Lemma and on the analogous result for
holomorphic functions of a complex variable. Let x € R"*1\ B and let I be the
corresponding imaginary unit. Consider ' > r > R, and the discs A = A4 (0,r),
A" = Ax(0,7") on the plane C;, having radius r and ’ respectively and such that
x € A’. Since f is s-monogenic on A"\ A we can apply the Cauchy formula to the
set A’ \ A to compute f(x). We obtain
1 _
0=y [ (e-x7 e s©)
T Joanoa
1 -1
- —x)"ld
o |, (€= %7 dE 1O
1

— g | (=0 (6.
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Let us set I := Ix and complete to an orthonormal basis I, ..., I, of the Clifford
algebra R,,. The Splitting Lemma gives f; =" , Fala and we can write

1
o |, (€= %) e 1O

1 1
- /8 (6= e, £(©

= EA: /BA/ —x) "' dér, Fa(é)1a
3 [ e A

Let us now consider a single component F4 at a time. By computing the integral
on A’ in spherical coordinates, and by letting 7’ — oo, we obtain that the integral
equals a4 = lim,s_,~ Fx, and therefore:

fx) =

Fa) =aa =, | (=307 Fae)

Taking the sum of the various components multiplied with the corresponding units
I4 we get the statement with a = , aala. O

Theorem 2.4.5 (Cauchy estimates). Let U C R™"! be an avially symmetric s-
domain and let f : U — R,, be an s-monogenic function. Let yo c UNR, I € §,
and r > 0 be such that Ar(yo,r) = {(u+1v) : (u—1yo)? +v* < r?} is contained in
UNCy. If My = max{|f(x)| : x € 0A1(yo,7)} and if M =inf{M; : I € S}, then

1 M
n > 0.

_7‘”7 -

Jun (%0)

Proof. For any I € S, it is possible to write

1 anf B 1 dC
n! dun (w0) = 2l /am(yo,r) (¢ —yo)ntt 1.

Therefore, for any I € S we can write the following sequence of inequalities:

o f 1 |£(Ol
<
T 27 /5A1(y077“) el a

Jun (%0)
1 M M
< / I1 ac =M1,
2 A1 (yo,r) rnt rn

By taking the infimum, for I € S, of the right-hand side of the inequality we prove
the assertion. d

Using the previous result it is immediate to show the following
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Theorem 2.4.6 (Liouville). Let f : R™™1 — R,, be an entire s-monogenic function.
If f is bounded, then f is constant on R"1.

Proof. Suppose that |f| < M on R"*L. By the previous theorem we have:

1
n!

onf
oun

(0)’§ n >0,

rn’

and by letting » — +o00 we obtain

du™ (0)=0

for any n > 0, which implies f(x) = ¢, with ¢ € R,,. O

Corollary 2.4.7. Let f : R"*l — R, be an entire s-monogenic function. If
limy_oo f exists, then f is constant on R™H1.

Theorem 2.4.8. Let U be an open set in R* T, If f: U — R, is an s-monogenic
function, then

dxf(x) =0
oA

for any disc A C U N Cy with center in a point on the real azis.

Proof. This result is an easy consequence of the analogous result for holomorphic
functions of one complex variable and of the Splitting Lemma. d

Conversely, we have the following result:

Theorem 2.4.9. Let U be an axially symmetric s-domain and let f : U — R,, be
a real differentiable function. Assume that

dxf(x) =0

I

for any closed, piecewise C' curve ~y; contained in U N C; and homotopic to a
point. Then f is an s-monogenic function.

Proof. This is a consequence of the classical Morera’s theorem and of the definition
of s-monogenic function. O

Proposition 2.4.10. Let f: B(0,R) — R, be the s-monogenic function expressed
by the series > x™a,, converging on B. Then the composition of the functions f
and Iy = x~ 1 is s-monogenic on R"*1\ B(0,1/R) and it can be expressed by the
series > x " "™a,, converging on R"*1\ B(0,1/R).

Proof. Proposition 2.3.4 implies that f o Zy is an s-monogenic function on R™* 1\
B(0,1/R). The statement follows from the analogous result for holomorphic func-
tions in one complex variable. [
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Theorem 2.4.11 (Laurent series). Let f be an s-monogenic function in a spherical
shell A = {x € R""! | Ry < |x| < R2}, 0 < Ry < Ra. Then f admits the unique
Laurent expansion

flx) = Z x"ay, + Z X by, (2.19)

m2>0 m>1
where

1 1

am = 0™ f(0), bm:2 / ¢ e, £(©).
T Jo(B(0,R}))NCr,)

m! °

The two series in (2.19) converge in the open ball B(0, Ry) and in R"*1\ B(0, Ry),
respectively.

Proof. Let x € A, then there exist two positive real numbers R}, R/ such that
A ={xeR"™ | Rl < |x| < Ry} C A, and x € A’. Using the Cauchy integral
formula, we can write

0=y [ €= Q) = Fi6) + fa(x)
T Jo(A'NCy,)
where )
= —x)1d

0=y [ 07 S ©

and )
X) = — — X -1 d .
RO =y [ €T G

The first integral is associated to the first series in the Laurent expansion, by
Proposition 2.3.1. Let us consider the second integral, set Iy = Ix and let us use
the Splitting Lemma and write fy as ) 4, Fala. Now we can reason as in the case
of functions in one complex variable, and consider the single components of f2(x).
In R*™1\ B(0, R}), we have

/

2“ a(B(O,R/]) (Clx)
/

2; a(B(O,R'])ﬁ(Clx) m>0

Fa(x) = (¢ —x)~" dCr, Fa(¢)

x "M, Fa(C)

where we have used the fact that on the plane Cy, the variables ¢ and x commute.
Now, using the uniform convergence of the series we can write

Fa(x) = Z Xﬁm*l;ﬂ/ ¢"d¢r, Fa(¢) = Z X" 14

m>0 6(B(O,R'1)0C1x) m>0
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where
1

/ G, Fa(C).
27 Ja(B(0,R;)NCry)

bm+1,A = bm+1,IX;A =

Finally, we obtain:

fQ(X) - ZFA(X)IA = Z Zx_m_lbvrz+1,AIA~

A m>0 A

Note that fo(x) coincides with fo(x) on the plane C;_, thus they coincide every-
where and the coefficients b, 41,4 do not depend on the choice of the imaginary
unit Iy. The statement follows. O

2.5 Zeros of slice monogenic functions

As it is well known, the Fundamental Theorem of Algebra does not hold in R,, for
n > 3, thus we cannot guarantee that a polynomial in the paravector variable x
has a zero, not even if it is a degree-one polynomial. The following examples are
instructive to show what can happen in a Clifford algebra.

Example 2.5.1. Consider the Clifford algebra R,,, n > 2 and the polynomial p(x) =
xe; — es € R, [x]. The only zero of p is ejes which does not belong to R7H1,

Example 2.5.2. Consider the Clifford algebra R,,, n > 2 and the polynomial p(x) =
x% — x(ejez — 2e1) + 2e5 € R, [x]. It can be easily verified that p vanishes for

X = —2e; and x = 7é(4€1 + 3eie2). However, only x = —2e; is a zero of p in
Rn-&-l.

Example 2.5.3. Consider the Clifford algebra R,,, n > 2 and the polynomial p(x) =
x2 — x(e1 + 2e2) + 2e1e2 € R, [x]. It can be easily verified that both x = e; and
x = ;(8e1 + 6ez) are zeros of p in R+,

It is nevertheless interesting to attempt to characterize the set of zeros for
those polynomials for which such a set is not empty. Let us start by showing that
each (n — 1)-sphere [s] is characterized by a second degree equation.

Proposition 2.5.4. Let s = 5o + s € R*L. Consider the equation
x? — 2Re[s]x + s |* = 0. (2.20)

Then, x = o +x € R"*L is a solution if and only if x € [s].

Proof. The result is immediate when s = sy € R. Let us suppose that s ¢ R.
It is immediate that x € [s] is a solution. Conversely, let x be a solution, i.e.,
(ro + 2)? — 2Re[s](wo + ) + |s|?> = 0. A direct computation shows that this is
possible if and only if x = 0 or &g = so. The first possibility does not give any
solution, while the second gives |x| = |s|, i.e., the equivalence class of s. O



2.5. Zeros of slice monogenic functions 43

An obvious consequence of the proposition, which will be useful in the sequel,
is that any paravector s satisfies the identity

s? — 2Rels]s + |s|? = 0. (2.21)

As a consequence of the Representation Formula II, we obtain the following
immediate result on the zeros of an s-monogenic function:

Proposition 2.5.5. Let U C R"t! be an azially symmetric s-domain and let f :
U — R"™ be an s-monogenic function. If f(u+ Iv) = f(u+ Kv) = 0 for some
I,K €S, I+# K, then f vanishes on the entire (n — 1)-sphere [u + Iv].

In particular, we have

Corollary 2.5.6. Let U C R**! be an azially symmetric s-domain and let f : U —
R be an s-monogenic function. If f(u + Iv) = f(u— Iv) = 0 for some I € S,
then f vanishes on the entire (n — 1)-sphere [u + Iv].

In other words, the zero set of an s-monogenic function having two zeros on a
certain (n — 1)-sphere contains the entire sphere. There are s-monogenic functions
whose zero set is made only by the union of isolated (n — 1)-spheres (in particular,
points on the real axis). Among these functions there are power series with real
coefficient, as proved in the following:

Proposition 2.5.7. Let U C R™"*! be an azially symmetric s-domain and let f :
U — R,, be an s-monogenic function. If f has a series representation

f(x) = Z (x —y0)" am

m>0

with real coefficients a,,, at some point on the real azris yo € U, then every real
zero is isolated. If ug 4+ voly, for some Iy € S, is a nonreal zero, then ug + vol is
a zero for any I € S. In particular, if f £ 0, the zero set of f is either empty or
it is the union of isolated points (belonging to R) and isolated (n — 1)-spheres.

Proof. We will first prove that for all I € S we have f(UNC;) C UNC;. This fact is
true in a suitable disc BNC; C C; containing yo, since the series f(x) = >, < (x—
Yo) ™ an, converging on B, has real coefficients by hypothesis. The Splitting Lemma
on the plane C; implies that f;(u+Iv) = F(u-+Iv) in that disc on C;. Therefore,
Fqo = 0for A # 0 on BN C; and by the Identity Principle for holomorphic
functions we obtain that all the holomorphic functions F4 are identically zero
on UNCy for A # (. Hence f(UNC;) CUNCy for all I € S from which it
follows that f(u) € R for all w € U NR. By the Identity Principle we get that
fu+Ipv) = F(u+ Iyv) on UNCy, and, being F(u) real-valued for all u € UNTR,
we have that F(u+ Ipv) = F(u — Ipv) on U N Cy,. Since

0= f(”LLo + Io”t)o) = F(UO + I()U()) = F(UO — I()U())
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it turns out that
F(UO — IoUo) = f(uo — IoUo) =0.

The statement follows from Corollary 2.5.6. The fact that the real zeros and the
spheres are isolated follows from the Identity Principle. O

As a consequence, we get a description of the zero set of a polynomial with
real coefficients in the paravector variable:

Corollary 2.5.8. Let p be a polynomial in the paravector variable x with real coef-
ficients. Then the zero set of p is the union of isolated points (belonging to R) and
isolated (n — 1)-spheres.

Remark 2.5.9. As we have already pointed out, in the case n = 1 the set of
s-monogenic functions coincide with the set of holomorphic functions in one com-
plex variable (by identifying R? with C). Proposition 2.5.7 corresponds to the
well-known result saying that the zeros of a holomorphic function whose series
expansion has real coefficients has isolated zeros which are either real or complex
conjugates.

To show that any s-monogenic function has zero set consisting of a union of
isolated (n — 1)-spheres (which might be reduced to a point on the real axis) and
isolated points, we associate to each s-monogenic function defined on an axially
symmetric s-domain U, an auxiliary function defined on U and denoted by f?.
The function f? has two main properties: on one hand it vanishes on the zero set
of f, on the other hand, it defines a holomorphic function which takes elements
from UNCy to Cy for all I € S.

The idea used to construct the function f7 is based on the observation that,
given a vector with 2"~ complex components wy, the vector with components
wAwW4 is zero if and only if wa = 0 for all A. Now note that the Splitting Lemma
allows to write the restriction f; of an s-monogenic function f in terms of a vector
of 27! holomorphic functions Fy : UNC; — Cy as

fi(z) = Fa(2)la.
A

Consider the vector with components F4(z)F4(Z). The components are obviously
holomorphic and if Fa(z9) = 0 also Fia(z0)Fa(Zo) = 0. We then define the function
fe: UNC;— Cy by

17(:) = 3. Faz)Fa(2).
A
Using the Extension Lemma 2.2.22, we can extend the function f{ to an s-
monogenic function defined on U:

Definition 2.5.10. Let U C R™*! be an azially symmetric s-domain and let f :
U — R, be an s-monogenic function. Let I € S and let

[7(2) = Y Fa(z)Fa(2).
A
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We define f7: U — R, by:

f7(x) = ext(f7)(x).
We have the following property:

Lemma 2.5.11. Let U C R**! be an azially symmetric s-domain and let f : U —
R,, be an s-monogenic function. Then f vanishes identically on U if and only if
f? wvanishes identically on U.

Proof. When f = 0, it is immediate that f° = 0. Conversely, consider the re-
striction fr of f to a plane Cj;, which, by the Splitting Lemma, can be written
as fr(z) = > 4 Fa(z)Ia where Fy : U NC; — C; are holomorphic functions.
Then the functions F4 admit series expansion at any point of U N C;. Consider
yo € U N Cy belonging to the real axis and the series expansion of F4 at a point
Yo:

FA(Z) = Z (Z - yo)maAm, aAAm € (CI
m>0

which holds in a suitable disc A(yp, R) € U N Cy of radius R and centered in
yo € R. Then, on A(yg, R), we have

Fa(z) = Z (z = o)™ aam.

m>0

Moreover on A(yg, R) we can write

f7(z) =Y Fa(2)Fa(?)
A
= Z Z (z—yo)"cam = Z (z — yo)m(z CAm),
A

A m>0 m>0
where
m
CAm = E AAQA m—i-
i=0

Now, if f7 = 0, then f7 = 0. So, in the disc A(yo, R) we have that ) , cao =
>4 laaol* =050 aap = 0 for all multi-indices A. Now, by induction, assume that
ap; =0fori=0,1,...,k—1, k > 1 for all multi-indices A. Consider the coefficient

2k
E CA2k:§ g QA QA2%—i
A

A i=0
which is zero because ff = 0. By assumption we have aa;G4 2k—; = 0 when
1 =20,...,k—1since ay; =0 and ag;a42r_; = 0 when i = k + 1,...,2k since

aa 2k—i = 0. Thus, > 4 caok = Y 4 |aax|® is zero if and only if as, = 0 for all
multi-indices A. We conclude that f¢ = 0 in the disc A(yo, R) N C; implies that
all the coeflicients a 4; vanish, thus also f; vanishes identically on the same disc.
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By the Identity Principle f vanishes identically. O

The zero set of f7 is described in the following result:

Lemma 2.5.12. Let U C R™! be an azially symmetric s-domain, let f : U —
R,, be an s-monogenic function, and let f #Z 0. If there exists I € S for which
f7(ug 4+ Tvg) =0, then f7(ug + Jvg) = 0 for all J € S. Moreover, the zero set of
17 consists of isolated (n — 1)-spheres (which might reduce to points on the real
axis).

Proof. Consider the restriction f7 of f to the plane C;. We have:
f7(2) =Y Fa(®)Fa(z) = Y _Fa(2)Fa(z) = f7(2),
A A

thus f7(uo + ITup) = 0 if and only if f7(uo — Tup) = 0. So, if f7(uo + Ivg) = 0,
then, by the Representation Formula, f7(ug + Jug) = 0 for all J € S. The second
part of the statement follows by the Identity Principle: if the (n — 1)-spheres of
zeros were not isolated, on each plane we would get accumulation points of zeros
and thus f7 would be identically zero by the Identity Principle which contradicts
the fact that f¢ £ 0 by Lemma 2.5.11. d

Lemma 2.5.13. Let U C R, be an azially symmetric s-domain and let f: U — R,
be an s-monogenic function. If uw+ Iv is a zero of f, then it is also a zero of f°.

Proof. The restriction of f to the plane C; can be written, by the Splitting Lemma,
as fr(z) = > 4 Fa(z)la. The condition f(u+ Iv) = 0 implies that, on the plane
Cy it is also Fa(u + Iv) = 0 for all A. Thus f7(u + Iv) = 0 and the statement
follows. O

We are now in a position to prove the following theorem which describes the
zero set of an s-monogenic function defined on an axially symmetric s-domain.

Theorem 2.5.14 (Structure of the Zero Set). Let U C R™" ™! be an azially symmetric
s-domain and let f : U — R, be an s-monogenic function. Suppose that f does
not vanish identically. Then if the zero set of f is nonempty, it consists of the
union of isolated (n — 1)-spheres and/or isolated points.

Proof. Suppose that the zero set of f is nonempty and that f does not vanish
identically, thus also f? does not vanish identically by Lemma 2.5.11. By Lemma
2.5.13 any zero of f is a zero of f7, i.e., denoting by Z;- and Z; the zero set of
f7 and f respectively, we have Z; C Zyo. If Z; contains two points on an (n —1)-
sphere [s], then Z; contains the whole sphere. Indeed, suppose that ug + Tvg, ug +
Jug € [8], I # J, and f(ug+ ITvg) = f(up+ Jvg) = 0. Then by the Representation
Formula we get

f(uo +J”U0) = ;[1 +JI]f(u0 7[1)0) = 0.
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The element 1+ JI = (—I + J)I is invertible since it is product of two invertible
elements, thus f(ug — Ivg) = 0 and the statement follows from Proposition 2.5.6.

When a sphere belongs to Z, then it is isolated. Indeed, let x¢ be a point
on this sphere. If there were a sequence {x,} of zeros, x, & [ug + Iovg], such
that x,, — X, then the corresponding spheres [x,] would belong to Z ., which is
absurd by Lemma 2.5.12.

Similarly, suppose that Z; contains a point xo = u¢+Jvo, without containing
the sphere ug + Ivg, I € S generated by it. Then we have to show that the point
uo+ Iovp is isolated. Indeed, if there were a sequence {x,,} of zeros, x,, & [uo+ Jvg]
(otherwise the whole sphere [ug 4+ Jvg] would belong to Z), such that x,, — xq,
then the corresponding spheres would belong to Zy- which is absurd by Lemma
2.5.12. O

Remark 2.5.15. The result already obtained in Proposition 2.5.5 can be obtained
also as a consequence of the previous theorem. In fact, given a converging power
series Y oo X, Gm € Ry, if there are two different elements in a given equiv-
alence class [s], which are solutions to the equation

Z X"y, =0,

m>0
then all the elements in the equivalence class are solutions.

We close this section with an immediate corollary of the previous theorem,
which yields a nice description of the zero set of a polynomial:

Corollary 2.5.16. Let p(x) be a polynomial in R, [x], with right coefficients, which
does not vanish identically. Then, if the zero set of p is nonempty, it consists of
isolated points or isolated (n — 1)-spheres.

2.6 The slice monogenic product

It is immediate to see that the product of two s-monogenic functions is not, in
general, s-monogenic. Nevertheless, as we indicated in Section 2.3, it is possible to
define a product among s-monogenic power series by mimicking the process used
to define a product of polynomials in skew fields. We can extend this idea to the
case of s-monogenic functions defined on axially symmetric s-domains, to define
an s-monogenic product. Let U € R**! be an axially symmetric s-domain and let
f,9: U — R, be ssmonogenic functions. For any I € S set I = I; and consider a
completion to a basis {I, ..., I, } of R, such that I;I;+1I;I; = —26;;. The Splitting
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Lemma guarantees the existence of holomorphic functions Fa,G4: UNC; — Cy
such that, for all z =u + Iv € UNCy,

fr(2) =Y Fal2)la,  gi(2) =) Gp(2)Ip,
A B

where A, B are subsets of {2,...,n} and, by definition, Iy = 1. We define the
function fyxg;: UNC; — R, as

fregiz) = S (-1 5 Faz)Gaz)+ Y (1) 2 Fa(2)Galz)  (2:22)

|Aleven |Alodd
+ Z FA(Z)GB(Z)IAIB + Z FA(Z)GB(E)IAIB.
|Aleven,B#A |Alodd,B#A

Then f;*g;(2) is obviously a holomorphic map on Cy, i.e., 9;(fr*gr)(z) =0, and
hence its unique s-monogenic extension to U, according to the Extension Lemma
2.2.22, is given by

[xg(x) = ext(f1 * g1)(x).

Definition 2.6.1. Let U C R"*! be an azially symmetric s-domain and let f,g :
U — R,, be s-monogenic functions. The function

[ g(x) =ext(fr+gr)(x)

defined as the extension of (2.22) is called the s-monogenic product of f and g.
This product is also called the x-product of f and g.

Remark 2.6.2. It is immediate to verify that the %-product is associative, distribu-
tive but, in general, not commutative.

The following example shows the dramatic difference between polynomials in
a division algebra and polynomials in a Clifford algebra. Even a simple result such
as deg(p1 * p2) = deg(p1) + deg(p2) fails (we can only conclude that deg(p; * p2) <
deg(p1) + deg(p2)) and it is impossible to deduce the zeros of the product from
the zeros of the factors. This is in stark contrast with the case of polynomials in
division algebras, where it is possible to obtain explicit formulas to deduce the
zeros of f * g from the zeros of f and g (see, e.g., [T1]).

Example 2.6.3. Consider the two polynomials p;(x) = 1+x(1—ejezes) and pa(x) =
1+x(1+e1eze3) € R3[x]. None of them has roots in R? because (14eje2e3) are zero
divisors. Their product p; *p2(x) = (1+x(1—ejeze3))* (1+x(1+ere2e3)) = 1+2x
is a degree-one polynomial and has the real number —1/2 as its root.

The s-monogenic product is however an important tool to obtain s-monogenic
functions. In particular, it allows us to define the inverse of an s-monogenic function
with respect to the x-product. As we have already mentioned, not all the Clifford
numbers admit an inverse with respect to the product in the Clifford algebra
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R,,. Those Clifford numbers a € R,, for which aa is a real nonzero number admit
inverse a~! = a(aa)~'. In particular the existence of the inverse can be guaranteed
for all nonzero vectors. Similarly, for s-monogenic functions we can guarantee
the existence of an inverse with respect to the *-product, if we suitably restrict
their codomains. To introduce the notion of inverse we need some preliminary
definitions.

Let U C R™*! be an axially symmetric s-domain and let f : U — R,, be an
s-monogenic function. Let us consider the restriction f;(z) of f to the plane C;
and it usual representation (given by the Splitting Lemma)

fi(z) = Fa(2)la.
A

Let us define the function ff: UNCy — Cy as

fi(z) = Fi(2)Ia (2.23)
A
= Z FA(E)IAf Z FA(Z)IA - Z FA(Z)IA+ Z FA(Z)IA,
|A|=0 |A|=1 |A|=2 |A|=3

where the equivalence = is intended as = (mod4), i.e., the congruence modulo 4.
Since any function Fy is obviously holomorphic it can be uniquely extended to an
s-monogenic function on U, according to the Extension Lemma 2.2.22. Thus we
can give the following definition:

Definition 2.6.4. Let U C R"! be an axially symmetric s-domain and let f : U —
R,, be an s-monogenic function. The function

fe(x) = ext(f7)(x)
1s called the s-monogenic conjugate of f.

This definition of conjugate behaves, for power series and thus for polynomi-
als, as the conjugation on the coefficients as proven in the next result:

Proposition 2.6.5. Let [ : B(yo, R) — R,, be an s-monogenic function on an open
ball in R"1 centered at a point on the real azis yo. If

F6) =3 (x = yo) ",

m>0

then, for a, € R,, we have

Fx) =)0 (k= yo)"am
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Proof. We will suppose without loss of generality that yo = 0. By Corollary 2.3.7,
given any I € S, the coeflicients of the power series expansion of f can be obtained
as the coefficients of the power series of f;. By the Splitting Lemma with respect to
an orthonormal completion of I to a basis of R,,, for all z =u+Iv € B(0,R)NC;
we have

I CLED D SEL ()= Y L ar o)

A m>0 m>0

and hence the relation

ZFA _[A, ZFA _[A, ZFA IA+ ZFA Ia (2.24)

|A]=0 |[A[=1 |A[=2 |A]=3
- o™ FA O™MEF'y O F 'y 5mFA
z; m'( Z Z ou™ (0)72 oum™ (O)Jr ou™ )IA
m>0 |Al= 0 |A|=1 |A|=2 |A|=3
(2.25)
= 8mf 0), (2.26)

m>0

where the equivalence = is intended as the congruence modulo 4, proves the as-
sertion. 0

Using the notion of x-multiplication of s-monogenic functions, it is possible to
associate to any s-monogenic function f its “symmetrization” or “normal form”,
denoted by f*. We will show that all the zeros of f* are (n — 1)-spheres (possibly
reduced to a point on the real axis) and that if x is a zero of f (isolated or not),
then the (n — 1)-sphere [x] is a zero of f*.

Let U C R**! be an axially symmetric s-domain and let f : U — R,, be an
s-monogenic function. As usual, using the Splitting Lemma we can write

ZFA IAa

here we will use the notation [f]p to denote the “scalar” part of the function
fr, i.e., the part whose coeflicient in the Splitting Lemma is Iy = 1. With this
notation, we define the function f*: UNC; — Cy as

It = 1fr=frlo (2.27)

- [(Z Fp(2)Ip)( Y Fa()Ia— Y. Fa(2)la

|A|=0 |A|=1

- Eaea+ Y FA(z)IA)}O.

|Al=2 |A|=3
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We have
frsfi= Y.  Fp(2)Fa(®Ipla— Y Fp(2)Fa(2)Ipla

| Bleven,|A|=0 |Bleven,|A|=1

— Z FB(Z)FA(Z)IBIA—F Z FB(Z)FA(Z)IBIA
|Bleven,|A|=2 |Bleven,|A|=3

+ Z FB(Z)FA(Z)IBIA — Z FB(Z)FA(E)IBIA
|Blodd, | A|=0 |Blodd, | A|=1

— Z FB(Z)FA(Z)IBIA—l— Z FB(Z)FA(E)IBIA.
|Blodd, | A|=2 |Blodd,|A|=3

The terms from which the scalar part arises are the ones with A = B, i.e.,

1+ fflo= ) Fa(z)Fa(2)I3 — > Fal(2)Fa(®)I;

|A|=0 |A|=2

— Y Fal2)Fa(D)I3 + Y Fa(2)Fa(®)I3 =Y Fa(2)Fa(2).

|A|=1 |A|=3 A

Then f; is obviously holomorphic and hence its unique s-monogenic extension to
U defined by

f7(x) = ext(f7)(x)
is s-monogenic.
Definition 2.6.6. Let U C R" ! be an axially symmetric s-domain and let f: U —
R,, be an s-monogenic function. The function

[ (x) = ext(f7)(x)
defined by the extension of fi = [fr * fflo from U NCy to the whole U is called
the symmetrization of f.

Remark 2.6.7. Notice that formula (2.27) yields that, for all I € S, f(UNCy) C
Cr.

Remark 2.6.8. Note that the function f? introduced in Definition 2.5.10 to study
the zero set of an s-monogenic function coincides with f° for all s-monogenic
functions f.

It is now easy to verify the following facts.

Proposition 2.6.9. Let U C R"*! be an azially symmetric s-domain and let f,g €
M(U). Then

fPag=1"xg=gx["
Moreover, if Zss 1is the zero set of f*, then

(f)lg=(f)"xg=gx(f)7" onU\Zp.
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Proof. Since f*(UNCy) C Cy, the series expansion of f7 in a small ball with center
at a real point has real coefficients so, in that ball, we have f{gr = f/*gr = gr*f;.
By the Identity Principle f} * gr = ffgr = gr = f; on U N C; and so, by the
Extension Lemma, f°* g = g * f°. Reasoning in the same way with the function
(f*)~', whose restriction to Cy takes (U \ Zy<) N Cy to Cy, we get the final part
of the statement. g

Definition 2.6.10. Let U C R™! be an azially symmetric s-domain. Let f : U —
R,, be an s-monogenic function such, that for some I € S its restriction f; to the
complex plane Cy satisfies the condition

fr = fi has values in Cj.

We define the function:

F7r=ext((f7) )
where 7 = [fr* fflo = fr = ff, and we will call it s-monogenic inverse of the
function f.

The next proposition shows that the function f~* is the inverse of f with
respect to the x-product:

Proposition 2.6.11. Let U C R"*! be an azially symmetric s-domain. Let f : U —
R,, be an s-monogenic function such that for some I € S we have fr* ff has values
in Cr. Then on U \ Zy= we have:

fef=fefT =1

Proof. To prove the statement it is sufficient to show that on the plane C; we
have:

o (D) =" i fr=1

Using associativity and Proposition 2.6.9, we easily compute:

Frs (D) # 0 = (D frx fi = fi7 1+ (f) = 1,
and
(D) fD) s fr=(D) s fixfr= ()= fi = 1.
The result now follows from the Extension Lemma 2.2.22. O

Example 2.6.12. Consider the function f(x) = x —s defined on R"*!. As it is well
known, the inverse (x —s)~! is not an s-monogenic function, unless s € R. Since
the function

(f1 * f7)(2) = (2 = 5)(z — 8) = 2% — 2Re[s]2 + [s|*

has real coefficients and thus has values in C;, we can consider the s-monogenic
inverse of f. According to Definition 2.6.10, f~* is defined for x ¢ [s], and it is
the function

(%) = (x* — 2Re[s]x + [s|*) "' (x — ).
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As we will see in the next section, the expression (x? — 2Re[s]x + |s[?)"1(x — s)
cannot be simplified, unless s € R and in this case it coincides with (x —s)71, i.e.,
the standard inverse of f.

Example 2.6.13. The notions of s-monogenic inverse and s-monogenic multiplica-
tion allow us to introduce s-monogenic quotients (left and right) of s-monogenic
functions. Let f,g : U C R"™ — R,, be two s-monogenic functions. On U \ Zys
we can define the functions

g xf and f*xg ™.

Let us consider the function g—* * f (the other case can be treated in a similar
way): by definition it is the extension of

91" fr=(91) " 9f * f1,
which is an R,-valued function satisfying
Or((97) " g5 = f1) =0

and such that Zgs N C; consists of isolated points.

2.7 Slice monogenic Cauchy kernel

We begin this section with the following crucial definition, which is the starting
point to find a Cauchy formula with s-monogenic kernel.

Definition 2.7.1. Let x, s € R™!. We call
X) 1= Zx"s_l_"
n>0

the noncommutative Cauchy kernel series.

Remark 2.7.2. The noncommutative Cauchy kernel series is convergent for |x| <
sl

Theorem 2.7.3. Let x, s € R™t! be such that xs # sx. Then, the function
S(s,x) = —(x —s) 1 (x? — 2Re[s]x + [|s|?),

1s the inverse of the noncommutative Cauchy kernel series.

Proof. Let us verify that

—(x —s) 7' (x?* — 2Re[s]x + |s[?) Zx" =g
n>0
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We therefore obtain

(—|s]* — x* 4 2Re[s]x) Z x"s7!17" = s 4+ x — 2 Refs]. (2.28)
n>0

Observing that —|s|? — x? + 2Re[s]x commutes with x" we can rewrite this last
equation as

S x"(—[sf* — x* + 2Refs]x)s " =5 +x — 2 Rels.
n>0

Now the left-hand side can be written as

Z x"(—s|? — x* 4 2Re[s]x)s 1"
n>0

= (—Js|? — x* + 2Re[s]x)s ' + x'(—|s|? — x* + 2Re]s]x)s >
+ x%(—|s|? — x* 4 2Re[s]x)s > + ...

= —(|s\gs_1 + x(—2Re[s]s + [s|?)s ™2 + x?(s® — 2Re[s]s + |s|*)s
+x3(s? — 2Re[s]s + |s[})s ™ + ... )

Using the identity (2.20)
s? — 2Re[s]s + [s|* = 0

we get
Z x"(—[s|* — x% + 2Re[s|x)s 7" = —[s|®s ! + xs%s7?2
n>0
= —|s’s '+ x=—-sss ' +x=-s+x=5—-2Re[s] +x
which equals the right-hand side of (2.28). O

When x, s commute, the function S(s,x) becomes
S(s,x) = —(x —s) ! (x? — 2xRe[s] + [s|?) = —(x —s) '(x —s)(x —s) =s —x

which is, trivially, the inverse of the standard sum of the Cauchy kernel series
S7s,x) =3, 50X s = (s —x)" L.

As a direct consequence of this observation and of the previous result, we
can explicitly write the sum of the noncommutative Cauchy kernel series:

Theorem 2.7.4. Let x, s € R"*! be such that xs # sx. Then

Z x"s 717" = —(x? — 2Re[s]x + [s|?) "' (x — s),
n>0
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for |x| < |s|. If xs = sx, then
s = (s—x)
n>0
for |x| < s|.
Definition 2.7.5. We will call the expression
S7(s,x) = —(x* — 2Re[s|x + [s]*) ' (x — s), (2.29)
defined for x> — 2Rel[s|x + [s|? # 0, the noncommutative Cauchy kernel.

Remark 2.7.6. With an abuse of notation we have used the same symbol S~ (s, x)
to denote the noncommutative Cauchy kernel series and the noncommutative
Cauchy kernel. This notation will not create confusion in the following since from
the context it will be clear which object we are considering.

Note that the noncommutative Cauchy kernel is defined on a set which is
larger than the set {(x,s) : |x| < |s|} where the noncommutative Cauchy kernel
series is convergent.

Remark 2.7.7. We now observe that the expression
(x* — 2Re[s]x + [s|*) ! (x — )

involves an inverse which does not exist if we set x = s; indeed, in this case we
have

2 2

s* — 2Rel[s]s + |s|* = 0.

One may wonder if the factor (x — §) can be simplified. The next theorem shows
that this is not possible and the function

(x? — 2Re[s]x + |s|?) ! (x —s)
cannot be extended to a continuous function in x = s.

Theorem 2.7.8. Let S~'(s,x) be the noncommutative Cauchy kernel and let xs #
sx. Then S™Y(s,x) is irreducible and limy_,s S™1(s,x) does not ewist.

Proof. We prove that we cannot find a degree-one polynomial Q(x) such that
x? — 2Re[s]x + |s|? = (s + x — 2Re[s])Q(x).
The existence of Q(x) would allow the simplification
S~ (s, x) = Q1 (x)(s + x — 2Re[s]) ' (s + x — 2Re[s]) = Q! (x).

We proceed as follows: first of all note that Q(x) has to be a monic polynomial of
degree one, so we set

Rx)=x-r



56 Chapter 2. Slice monogenic functions

where r = 7o + 37, rje;. The equality
(s +x — 2 Re[s])(x — r) = x? — 2Re[s|x + |s|?

gives
sx — st — xr + 2Re[s|r — [s|> =0

Solving for r, we get
r=(s+x— 2 Refs]) ! (sx — |s|?),

which depends on x. Let us now prove that the limit does not exist. Let ¢ =
€0 + Z;;l gje;, and consider

S l(s,s+¢) = ((s+¢)* —2(s+e¢)Re[s] + |s|*) "
(s+¢)? — 2(s+ ¢)Re[s] + \s|2)*1e

se + es + ¢? — 2¢Rels]) !

¢ !(se +es + ¢ — 2¢eRes }))

¢ 'se+s+e—2Refs])

(
= (
(e”
(e”

If we now let ¢ — 0, we obtain that the term ¢ 'se does not have a limit because

the element
1 ¢
¢ se= se
¢

€iE48
has scalar components of the type Z‘ ‘]2 ‘ with i,j,¢ € {0,1,2,3}, which do not
e

have limit. m

Proposition 2.7.9. The function S™1(s,x) is left s-monogenic in the variable x and
right s-momnogenic in the variable s in its domain of definition.

Proof. The proof follows by direct computations. Consider any I € S and set
x = u + Iv. We have:

9 o1
8uS (s,u+ Iv)

= ((u+ Iv)® — 2Re[s](u + Iv) + [s|?)"2(2u + 2Iv — 2Re]s]) (u + [v —§)
— ((u+ Iv)* — 2Re[s](u + Iv) +[s[*) 1,

9 o1
I
(%S (s,u+ Iv)

= ((u+ Iv)? = 2Re[s](u + Iv) + |s|*) "2 (2ul — 2v — 2Re[s]I)(u + v — §)
— ((u+ Iv)* = 2Re[s](u + Iv) + [s|*) !
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so we obtain:

8isfl(s,u+1fu) +IaavS*1(s,u+Ifu)
= ((u + Iv)* — 2Rels](u + Iv) + |s|*) 2(2u + 2Iv — 2Re][s])(u + Tv — §)
— ((u 4+ Iv)* — 2Re[s](u + Iv) + |s[*)~*
+ ((u + Tv)* — 2Re[s](u + Tv) + |s|*) "2(—2u — 20T + 2Re[s])(u + v — §)
+ ((u + Iv)* = 2Re[s](u + Tv) + |s|*) "' = 0.
Let us now set s = u + Iv. Then S™!(u + [v,x) = F(u,v,x)(x — u + Iv) where

F(u,v,x) is a function involving x, the real variables u, v but not the imaginary
unit I. Then we have:

5 S (u+ Iv,x) = (x? — 2xu + u? + v*) 72 (—2x + 2u)(x — u + Iv)
u
+ (x% = 2xu + u? +0?) 7L,

0
5 ST u+Iv,x) = (x* —2xu+u® +0?) " 220(x —u+ Iv) — (x* = 2xu+u?+0?) 71,
v
It follows that
0 0
5uS_1(u + Iv,x) + ayS—l(u + Iv,x)I
= (x? — 2xu + u? + v?) "2 (=2x + 2u) (x — u + Iv) — (x* — 2xu + u? +v?) !
+ (x% = 2xu + u? 4+ v?) " 220(x — u + Tv)I — (x* — 2xu + u? + v?) 7!
= 2(x? — 2xu + u? +0?) 72 (x? — 2xu + u? +v?) — 2(x* — 2xu 4+ u? +0v*) 7!
=0. O
This result is obviously trivial when S~1(s,x) coincides with the Cauchy
kernel series. However, as we have pointed out after Definition 2.29, the function
S~1(s, x) is defined on a set which is larger than the domain of convergence of the
series and therefore the direct argument in the preceding proof is necessary.

We now state some equalities which are important to prove further properties
of the Cauchy kernel function.

Proposition 2.7.10. Letx, s € R™*! be such that x # 5. Then the following identity
holds:

(x—s)!s(x—8) —x=—(s —X)x(s — )" +s,
or, equivalently,
—(x —s) 7 (x? — 2xRe[s] + [s]?) = (s* — 2Re[x]s + |x|?)(s — %)} (2.30)
finally, if x & [s] we have

—(x? = 2Re[s]x + [s|?) ' (x — 8) = (s — x)(s* — 2Re[x]s + |x|?) " (2.31)
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Proof. One may prove the identities by direct computations. Let us prove (2.31).
To show that the formula is an identity, we multiply by (x? — 2Re[s]x + |s|?) on
the left and by (s? — Re[x]s + |x|?) on the right. We obtain:

x?s — 2Re[s]xs + 2Re[s]|x|* — x|s|? = —xs? + 2Re[x|xs — 2Re[x]|s|*> + s|x|?
which becomes
(x? — Re[x] + [x]*)s = —x(s? — Re[s] + |s|?)

that is an identity by (2.21). Note that (2.31) holds for x ¢ [s], which is equivalent
to s & [x]. The identity (2.30) can be proven by taking the inverse of (2.31) and it
holds for x # s. Easy computations show the validity of the remaining identity. O

We now consider the function S~!(s,x) = S;!(x) as a function of x. Clearly,
its singularities are the entire (n — 1)-sphere [s] which reduces to the point {s}
when s is real. The next result analyzes in detail the singularities of S5 !(x) on
each plane C; when s ¢ R.

Proposition 2.7.11. Let s € R*""\R. If I # I, then the function S™1(s,x) =
S.1(x) has two singularities Re[s] &+ I|s| on the plane Cr. On the plane Cyp,, the
restriction of Sg1(x), i.e., (x —s)™!, has only one singularity at the point s.
Proof. Suppose s € R""!\R and consider S5 !(x) = (s? —2Re[x|s + |x[?) (s — x).
The singularities of S;1(x) corresponds to the roots of s? — 2Re[x]s + |x|> = 0.
This equation can be written by splitting real and imaginary parts as

Re[s]? — |s]? — 2Re[s]Re[x] + |x|* = 0,
(Re[s] — Re[x])s = 0.

The assumption s # 0 implies Re[x] = Re[s] and so |x| = [s], i.e., the roots
correspond to the (n — 1)-sphere [s]. Consider now the plane C;. When I # I,
Cr intersect the (n — 1)-sphere [s] in Re[s] & I|s| while, when I = I, x and s
commute, so

Se ()= —(x—s5)"(x—5) " (x~8) = —(x—s)""
and x is the only singularity of the restriction of S5 !(x) to the plane Cy,. d

Remark 2.7.12. The previous proposition states that the restriction of S~!(s,x)
to the plane Cy_, has a removable singularity at the point x = 5. However, equality
(2.31) and the proof of Theorem 2.7.8 show that the function S~!(s, x) still has a
singularity at the point x = s.

The kernel S™!(s,x) is a left s-monogenic function in x and a right s-
monogenic function in s so, in principle, it cannot be used in both the Cauchy
formulas for left and for right s-monogenic functions. Thus one has to establish
which kernel has to be used for a Cauchy formula for right s-monogenic functions.
Note that the series expansion of a kernel which is right (resp. left) s-monogenic
in the variable x (resp. s) is of the following form
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Definition 2.7.13. Let x, s € R™!. We call
Spt(s,x) = Z s Ixn, (2.32)
n>0
the right noncommutative Cauchy kernel series.

Remark 2.7.14. The right noncommutative Cauchy kernel series is convergent for
x| < sl

We have the following:
Proposition 2.7.15. The sum of the series (2.32) is given by the function
Spl(s,x) = —(x — 8)(x* — 2Re[s]x + [s[*) !, (2.33)
which is defined for x & [s]. Moreover, Sgl(s,x) is right (resp. left) s-monogenic
in the variable x (resp. s).

Proof. 1t follows the same lines of the proof of Theorem 2.7.4. We just sketch some
of the computations. The statement is proved if we show that, for |x| < |s|, we
have

(D07 X" (" — 2Refsx + |sf*) = ~(x —5). (2:34)
n>0

By computing the product at the left-hand side of (2.34), we obtain:
s !x? — 257 'Res]x + s ![s|? + 57 2x® — 25 ?Re[s]x? + s ?x|s|* + ...

_ —QS_IRB[S]X + s_l\s|2 + S_2X|S‘2 + Z S—(n+1)(52 _ 2Re[s]s + ‘S|2)Xn
n>2

= 25 'Re[s]x +s7!|s|? + s *x]s|?
=5 %(—2Re[s] + s)sx +s 's§ = —x + 5.
The fact that function Sj'(s,x), which is defined for x ¢ [s], is left s-monogenic

in the variable s and right s-monogenic in the variable x can be proved by a direct
computation. This concludes the proof. O

Definition 2.7.16. We will call the expression
Spl(s,x) = —(x — 8)(x* — 2Re[s]x + [s[*) !, (2.35)
defined for x> — 2xRe[s] + [s|? # 0, the right noncommutative Cauchy kernel.

Remark 2.7.17. Analogous considerations as in Remarks 2.7.6 and 2.7.7 and in
Theorem 2.7.8 can be done for the right noncommutative Cauchy kernel Sj (s, x).

Proposition 2.7.18. Suppose that x and s € R""! are such that x ¢ [s]. The
following identity holds:

Spt(s,x) = (s*—2Re[x]s+|x[*) ! (s—%) = —(x—8)(x*—2Re[s]x+[s|*) "'. (2.36)
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Proof. One may prove the identity by direct computations (compare with the
proof of Proposition 2.7.10). O

Remark 2.7.19. The identities (2.31) and (2.36) can be proved not only by direct
computation but also in a longer way which can be of some interest. We sketch the
lines of this alternative proof. Consider the function f(x) =s — x. It is such that
fr=f§ has values in C; thus it admits an s-monogenic inverse (see Example 2.6.12).
One may construct its s-monogenic inverse with respect to the two variables x and
s on the left and on the right. If one constructs, e.g., the left inverse with respect
to x, see Definition 2.6.10, one gets

(x* — 2Rels]x + [s|*) (5 — x).

By direct computation it follows that this function is right s-monogenic with re-
spect to s, thus it must coincide, by the Identity Principle, with the right s-
monogenic inverse of (s — x) with respect to s, i.e.,

(s — %)(s* — 2Re[x]s + |x|?) !

thus relation (2.31) holds. Note that we have not provided the construction of the
right s-monogenic inverse of a function f, but it is not difficult to check that, when
it exists, it coincides with the extension of the function f¢(fr * f¢)~'. Similarly,
one can construct the left s-monogenic inverse of s — x with respect to s, then one
shows that it is right s-monogenic with respect to x and so it follows that it must
coincide with the right s-monogenic inverse with respect to x, thus equality (2.36)
holds.

By comparing the Cauchy kernel functions S~!(s,x) and Sgl(s, X), we con-
clude that the two functions are different, thus the kernel to be used for the Cauchy
formula for right s-monogenic functions is not the kernel S~!(s,x) used for left
s-monogenic functions. However we have the following relation.

Proposition 2.7.20. Let 2, s € R™*L. The following identity holds:
S1(x,8) = —Spl(s,%),  for x¢s]

Proof. The identities (2.31) and (2.36) show that by exchanging the role of the
variables x and s we get S™!(x,s) = —S5'(s,x). O

2.8 Cauchy integral formula, II

In this section we prove a Cauchy formula for an s-monogenic function with s-
monogenic kernel which is more general than the one proved in Section 2.4. In
fact, the formula does not depend on the plane in which the integration path is
chosen.

Let us recall the well-known Stokes’ theorem in the complex plane (see for
example [2]).
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Theorem 2.8.1. Let C' be a bounded open set in C such that its boundary 0C is a
finite union of continuously differentiable Jordan curves. If f € C*(C), then

fdz:/df/\dz:%/ a{dw/\dy.
ac c c 0z

When considering R,,-valued functions, the Stokes’ theorem can be rephrased
as follows:

Lemma 2.8.2. Let Dy be a bounded open set on a plane Cy such that its boundary
0Dy is a finite union of continuously differentiable Jordan curves. Let f, g €
CY(Dy) be R, -valued functions. Then

| ss)isifs) =2 | ((9(9101)1(5) + o(6)(01 ()i
0Dy Dy
where s = u + Iv is the variable on Cy, ds; = —Ids, do = du A dv.

Proof. Let us choose n — 1 imaginary units Io,..., I, such that I, I5,..., I, form
an orthonormal basis of R,, satisfying the defining relations I,.Is + I3, = —20,5.
Then it is possible to write

75)= 3 Fa@)la,

|A|=0
9= 3 14Gals),
|A[=0

where s € Cy, Iy = I, ... I;,, A = iy...1is is a subset of {2,...,n} and Fa(s),
G A(s) have values in the complex plane C;. We have

n—1

/aDIg(s)dsjf(s) - /ap, (X 1aGals) s nf Fi(s)In)

|A|=0 |B|=0
n—1
= Z IA(/ GA(S)dS]FB(S))IB.
|A|=0,| B|=0 D1

We now use the usual Stokes’ theorem in the complex plane C; and we write

n—1

0 _
/BDI g(s)ds f(s) = lAl_Oz’l;B_OIA( . ag(GA(S)FB(S))ds A dsI)IB

n—1

—2 Y 1 /D (@ 10,)(Ga(5)Fi (s))do ) T

|A|=0,|B|=0
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we recall that I commutes with F4 and G which have values in C;, and that do
is real, thus we obtain

n—1

/BDIQ(S)CZSIJC(S) =2 Z (/D I14(0u(Ga) + 0,(Ga)I)Fplpdo

|Al,|B|=0

+ / 14GA(8uFp +I&JFB)IBda>
Dy

n—1
:2/ Z IA(GA81>FBIBdU
Draj1B1=0

n—1
+2/ > I.Ga(01Fp)Ipdo
D

" |Al,|B|=0
:2/ ((9(s)0r) f(s) + g(s)(D1 f(s)))do
Dy

and we get the statement. O
An immediate consequence of the above lemma is the following:

Corollary 2.8.3. Let f and g be left s-monogenic and right s-monogenic functions,
respectively, defined on an open set U. For any I € S and any open bounded set Dy
in U N Cy whose boundary is a finite union of continuously differentiable Jordan
curves, we have

/ g(s)ds1 £(s) = 0.
oDy

Theorem 2.8.4 (The Cauchy formula with s-monogenic kernel). Let U C R™*!
be an azially symmetric s-domain. Suppose that (U N Cy) is a finite union of

continuously differentiable Jordan curves for every I € S. Set ds; = —dsI for
I €S. If fis a (left) s-monogenic function on a set that contains U, then
1
o=, [ S s xdsif(s) (237)
21 Jowner)

where S71(s,x) is defined in (2.29) and the integral does not depend on U and on
the imaginary unit I € S.
If f is a right s-monogenic function on a set that contains U, then

X) = ! s, x
$09= 5 [ Sssi s (2.35)
_ _217T /d s F(s)dsrS~(x, 8) (2.39)

where Sp' (s,x) is defined in (2.35) and the integral (2.38) does not depend on the
choice of the imaginary unit I € S and on U.
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Proof. First of all, the integral at the right-hand side of (2.37) does not depend on
the open set U: this follows from the fact that S~!(s,x) is right s-monogenic in s,
and Corollary 2.8.3. Let us show that the integral (2.37) does not depend on the
choice of the imaginary unit I € S. The zeros of the function x? — 2sox + [s]? = 0
consist either of a real point x or a 2-sphere [x]. On Cy, we find only the point x
as a singularity and the result follows from the Cauchy formula on the plane Cy, .
When the singularity is a real number, the integral reduces again to the Cauchy
integral of complex analysis. If the zero is not real, on any complex plane C; we
find the two zeros s12 = xo & I|z|. In this case, we calculate the residues in the
points s; and sy on the plane C; for I # Ix. Let us start with s; by setting the
positions

s =z + I|x| + eel?,

So = xg + e cosb,
s =9 — I|z| + e 19,
ds; = —[ele"’|1d0 = ee™’dp,
and
|s|? = 22 + 220e cos O + 2 + || + 2e sin x|

We have

27
QWIIE:/ —(—2xe cosf + 2xpe cos § + 2 + 2esin f|z|)
0

S(x = [wo — I|x| + e 10))eeldO f (xo + I|z| + ce’?),
and for e — 0 we get
2rI)

2m
:/ (2x cos @ — 2z cos O — 2sinb|z|) " (z + I|z|)e!?dof (zo + I|z])
0

= ; /0%(900059 —sinf|z|) " (z + I|z|)edof (zo + I|z|)
1

T 2P
1

2P

+ sin f|x|*I][cos @ + I'sin 0)dO f (zo + I|z]).

2m
/ (xcosf + sinb|z|)(x + I|z|)[cos O + I sinb]do f (xo + I|x|)
0

2m
/ [(x)? cos O + sin O|x|z + xT|z| cos O
0

With some calculations we obtain

1 2m
20 = ol / {(33)2 + 2I|x| cos? 6 + sin® 9|x\m]} dOf(xo + I|x|)
0

1
= a2 [277(33)2 + mxl|z| + 7T|x‘l‘]}f($o + I)z|)
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= |7;| [\x\ —xf}f(fo + Ilzl).

Recalling that z/|z| = Ix we get the first residue

o= ; (1~ 1] f(wo + Ila).

With analogous calculations we prove that the residue in s is
o 1
=, [1 + IxI}f(xO ~ Ila)).

So by the residues theorem we get

1

/ S~ (s, x)dsf(s) = IV + I).
27 Jowner)

The statement now follows from the Representation Formula. Formula (2.38) can
be deduced with similar arguments while formula (2.39) is a consequence of Propo-
sition 2.7.20. O

We conclude this section with the formula for the derivatives of an s-mono-
genic function using the s-monogenic Cauchy kernel.

Theorem 2.8.5 (Derivatives using the s-monogenic Cauchy kernel). Let U C R™*!
be an azially symmetric s-domain. Suppose that (U N Cy) is a finite union of
continuously differentiable Jordan curves for every I € S. Set ds; = —dsI for
I €S. Let f be an s-monogenic function on an open set that contains U and set
X=x9+x,8s=5y+s. Then

|
O, f(x) = " / (x* = 2s0x + [s[*) 7" (x — 5)* (" ds; f(s)
0 27 Jowner)
|
_ " / [S7Y(s, x)(x — )" (x — s)* (™D ds; f(s) (2.40)
21 Jawney)

where
n

. n! ek

(x —8)" = Z (n— k)!k:!x 1hgk, (2.41)
k=0

and S71(s,x) is defined in (2.29). Moreover, the integral does not depend on U

and on the imaginary unit I € S.

Proof. First of all, we recall that the s-derivative defined in (2.4) coincides, for
s-monogenic functions, with the partial derivative with respect to the scalar coor-
dinate xq. To compute J} f(x), we can compute the derivative of the integrand,
since f and its derivatives with respect to xy are continuous functions on d(UNC;y).

Thus we get
1
0 i) =y [ oS s s f(s)
™ Jo(UNCr)
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To prove the statement, it is sufficient to compute 92, [S~*(s,x)] by recurrence.
Consider the derivative of 9,57 (s, x):
Oag ™" (5,%)
—(x% — 2s0x + [s]?) 7%(2x — 250)(x — 8) — (x? — 2s50x + |s|?)7?
= (x* — 2s0x + [s|*) ?[2x? — 2xs — 250X + 2508 — X° + 250X — |s]?]

= (x? — 2s0x + |s]?) 7?2[x? — 2xs + s%] = (x? — 2s0x + |s]?) % (x —8)*2
We now assume
o, 575, %) = (—1)"Hl(x? — 280 + [s[2) ") (x — )7 (D)
and we compute 9:F1 S~ (s, x). We have

LS (5,%) = Oy [(—1)" T nl(x? — 2s0x + [s]?) =TV (x — )" (" H )]
= ()" DI — 2s0x 4 [s]*) 7 (2 — 2s0) (x — 5"
+ (=) (n 4+ D2 = 2s0x + [s[2) "D (x — )"
= (=1)""2(n + 1)I(x* — 2s0x + |s|?)~ (”+2)[(2x — 250)(x — §)
— (o = 25+ [sf2)]  (x — 5"

here we have used the fact that the s-monogenic product coincides with the usual
one when the coefficients are real numbers, so

95187 (s, %)
= (=1)""2(n + 1)!(x® — 2s0x + [s]?) "D [x? — 2x5 + 5% * (x — §)*".

We get the last equality in (2.40) by recalling that
S (s, x)(x —s) 7! = (x* — 2s0x + [s|*) L. O

Theorem 2.8.6 (Cauchy formula II outside an axially symmetric s-domain). Let
U c R be a bounded avially symmetric s-domain and assume that U° =
R\ U is connected. Let f : U® — R, be a left s-monogenic function with
limy oo f(2) = a. If x € U, then

1 / .
S7H(s,x)dsrf(s),
2 Jovrcs, (s,x)dssf(s)

where V is an azially symmetric s-domain containing U such that O(V N Cy) is
a union of a finite number of continuously differentiable Jordan curves for every

I € S. Moreover, the integral does not depend on V and on the imaginary unit
Ies.

fx) = a-
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Proof. Let x € U°. Then there exists r > 0 and a real point a such that the ball
B = B(a,r) satisfies B D U and x € B. Let V be an axially symmetric s-domain
containing U such that 9(V N Cy) is a union of a finite number of continuously
differentiable Jordan curves for every I € S. Then f is s-monogenic on B\ V and
we can apply the Cauchy formula to compute f(x). We obtain

| S (s, x)ds 1 £(5)
21 Ja(B\v)nCr)

« Jyome ™ « Jovee ™
= S7 (s, x)dsrf(s) — ST (s, x)dsf(s).
2 Josres) (s, x)dsrf(s) =, e (s,x)dsr f(s)

By setting the positions

f)

s:aJrrew

we can compute the integral on 9(BNCy) in the standard way, and letting r — oo
we obtain that the integral equals a = lim, _ f, therefore,

1 / .
ST (s, x)dsf(s).
27 Jywec (s,x)dsr f(s)

The integral does not depend on V' and on the imaginary unit I € S, thanks to
the Cauchy formula on bounded axially symmetric s-domains. O

Jx) = a-

We finally obtain a version of the Borel-Pompeiu formula.

Theorem 2.8.7 (Borel-Pompeiu formula). Let U C R"™! be an azially symmetric
open bounded set such that (UNCy) is a union of a finite number of continuously
differentiable Jordan curves for every I € S. Let f : U — R"*L be a function of
class C' and set ds; = —Ids. For everyx € U, x = u+ Iyv and I € S, we have

;{1 *Ixf}f(twlv) + ; [1+Ixf}f(uflv) (2.42)
- 2;(/6([]% )5‘1(S7X)dsIf(s) + /Umc S™Y(s,x)0; f(s)dsr /\d§).

In particular, when I = I, we have

1 -1
=, /(‘3 e, S0 1) (2.43)

+ / S™(s,x)0r, f(s)dsr, A d§).
Uﬁ((:jx

Proof. Let us set x = u + Ixv and let us define
c={s=u+I €U ||(u+Iv)— (W +IV)|>e VIeS}

where ¢ is a positive number less than the distance from the (n — 1)-sphere u + Sv
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defined by x to the complement of U. The zeros of the function x2—2Re[s|x+[s|? =
0 consist either of a point on the real axis, or an (n — 1)-sphere u + Iv. On Cy,
we find only the point x as a singularity and the result follows from the Pompeiu
formula on the complex plane C;_. When the singularity is a real number, S—!
is the standard Cauchy kernel and again the statement follows from the Pompeiu
formula on the complex plane C; for every I € S. If the zero is not real, on any
complex plane C; we find two zeros s1 9 = o £ I|z|. Thus OU. = OU — 0B, — 0B,
where JB; is the boundary of ball B; with center s; and radius ¢.

From Lemma 2.8.2 applied to the functions S (s, x), f(s) and since S~!(s, x)
is right s-monogenic in the variable s, we obtain

1 1
/ S~Y(s,x)0rf(s)ds; A ds + / S~(s,x)ds; f(s)
27 Ju.nc, 21 Jowner)

=71(%) +33(x)

where
1
% (x) ::2/ §71 (s, x)ds1 (),
s a(Blﬁ(C[)
1
% (x) ::2/ $71(s,x)ds: ().
T J&(B2NCr)

With similar computations as in the proof of Theorem 2.8.4, by letting ¢ — 0 and
after some computations we get

1
M) =, [1 - Ixf} Flzo + Iz)).
Similarly, the integral related to s, turns out to be

9900) =, [1 + Il ] f o — Tlal).

So we get
906) +39x) =, [1 = Lo2] (o + Tal) + , [1+ Ll | flwo — Tla),
and this concludes the proof. O

Remark 2.8.8. Note that formula (2.43) is not surprising and in fact is the exact
analog of the Borel-Pompeiu formula in the complex case. Formula (2.42) on the
other hand, highlights a new phenomenon: given a point x and an imaginary unit
I € S there are exactly two points in C; on the same sphere of x and formula
(2.42) shows how to obtain an integral representation of f at those points.

Remark 2.8.9. The Cauchy formula in Theorem 2.8.4 follows as an immediate
consequence of the Borel-Pompeiu formula and of the Representation Formula.
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2.9 Duality Theorems

In this section we prove the algebraic isomorphism between the R,-module of
functionals acting on G(K) := indlimy M (U) where K is a connected axially
symmetric compact set such that its intersection with every complex plane Cr
remains connected, and the R,-module of s-monogenic functions defined in the
complement of K and vanishing at infinity. The results we obtain are the analogs,
in this setting, of those obtained by Kothe in [67] and generalized by Grothendieck,
see [57].

Consider the set C>°(U,R,,) of infinitely differentiable functions defined on
an open set U C R™*! with values in R,,. This set is an R,,-bimodule with respect
to the standard sum of functions and multiplication of a function by a Clifford
number. To endow C>(U,R,,) with a locally convex topology, we follow [7] and
consider an increasing sequence of compact sets {K;}jen, K; C R", such that

KieKie..., U:U;?.;OKJ',
and we introduce the family of seminorms {p;,, j, € N} defined by

pj,r(f) ‘= sup sup ‘aaf(x)" fe Coo(Ua Rn)a

la|<rx€eKj;

where

8a0 aa" n
o — .
0% = 200 " D \a\—;az.
This topology coincides with the product topology [[,C*°(U,R) where A is a
multi-index which can be identified with an element in the power set of {1,...,n}.
Thus we have the following result:

Theorem 2.9.1. The set C*°(U,R,,) is a Fréchet R,,-bimodule.

Proposition 2.9.2. Let U be an open set in R"*1. The sets ME(U) (resp. ME(U))
are Fréchet left (resp. right) R, -modules with respect to the topology of uniform
convergence over compact sets.

Proof. The set C*°(U) with the topology of uniform convergence on compact sets
is a Fréchet bimodule. The sets ME(U) and ML (U) are closed submodules of
C>(U). Indeed, if we choose a sequence { f, }men € MP(U), then, by definition,
for every I € S we have that the function f,, satisfies 01 fyn, 1 (u+Iv) = 0on UNC;y.
Let f be the limit function of {f,, }men in C°(U). The restriction of f € C>(U)
to a plane Cy is the limit of the restrictions fy, ; thus, by the uniform convergence
of the derivatives of { fi, 1}, it satisfies Oy fr(u + Iv) = 0 on U N Cy. This proves
that M®(U) is a Fréchet module with the topology induced by the topology of
C>(U). The same argument applies to ME(U). O
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Remark 2.9.3. The same argument used in the proof shows also that MZ(U) and
ME(U) are Montel modules, since they are closed submodules of C>°(U) which is
a Montel R,,-bimodule.

Definition 2.9.4. Let K C R"*! be a compact set. We define a set of germs of
functions defined by

G(K):=ind lim M™U).
UopenD K

In the sequel, we will use the same letter ¢ both to denote an element ¢ €
G(K) and an s-monogenic extension of ¢ to some neighborhood U C R™ ™! of K.
Because of Proposition 2.9.2, G(K) is a limit of Fréchet R,-modules, and it is
naturally endowed with an LF-topology: a seminorm on G(K) is every seminorm
that is continuous on every MY (U). Even though G(K) is not a Fréchet R,,-
module itself, it is possible to characterize its topology in terms of convergence of
sequences as in the following result:

Proposition 2.9.5. Let K C R""! be a compact set. A sequence {p;} of germs in
G(K) converges to a germ ¢ € G(K), if ¢;(x) converges uniformly to ¢(x) in a
neighborhood U C R" of K.

Proof. Tt is a consequence of the definition of inductive limit topology of G(K). O

Definition 2.9.6. We call a connected compact set K such that K "R # () and its
intersection K N Cy is connected for all I € S an s-compact set.

Let K be an s-compact set in R"" " := R"*1 U {co}.

We denote by M&(R”H \ K) the right R,,-module of left s-monogenic func-
tions on R"" \ K which vanish at infinity.

Theorem 2.9.7. Let K be an azially symmetric s-compact set in Rt There is
an R, -module isomorphism

(G(K)) = MLR"\K)

where (G(K))' is the set of left R,,~linear continuous functionals on G(K).

Proof. Let us define a map T : M&(RNH\K) — (G(K))'. For any function

fe M&(RnH\K) we construct a functional p = py. Let g € G(K) and let
us denote by the same symbol g also its s-monogenic extension to an axially
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symmetric s-domain U D K. Let us fix an element [ € S and define

<ww%:/ o(s)dsrf(s). (2.44)
a(UNCr)

We have to show that the definition does not depend on the choice of U and on the
extension g. If we replace U by another axially symmetric s-domain V' containing
K we have

/‘ g@ﬂwﬂ@—/ o(s)ds1 £(s)
a(UNCr) a(VNCr)

:/' g(s)ds f(s) = 0
o((U\V)NCy)

by Lemma 2.8.2; indeed f,g are s-monogenic functions on the left and on the
right, respectively, on U \ V. If we replace g by another extension, the value of
integral (2.44) is not affected since all the extensions of g coincide on small open
sets containing K. The map puy is left R,-linear and continuous on G(K) by its
definition. Thus the map 7' defined by

T(f) = uy,

is well defined and right R,,-linear. Let us now show that there is a map 7" which
is the inverse of T'. Let us consider any u € (G(K)), and define the function

1 _
30 1=~ (157} (5,%). (2.45)
0
Note that p acts on the variable s and S~!(s, x) is right s-monogenic with respect
to it. Since p is a linear functional, we have

_ 1 -
or81(x) = —27r81<u75_1(s7u + Iv))
1

= {p, 1S~ (s, u + Iv)) = 0, VI €S.
7r

Thus the function F(x) is left s-monogenic for x ¢ [s], s € K so, by the hypothesis
on K, it is s-monogenic on the complement of K and vanishes at infinity, i.e.,

S e M&(RN—H \ K). Define now
T (G(K)) - MLR™NK),  T'(n) =3

The map T" is well defined and right R,-linear. Let us show that 7”7 is a right
inverse of T, i.e., that T'-T" = id(g(x)y - Let p € (G(K))" and consider T"(p) = §.
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The functional T'(T"(u)) acts on right s-monogenic functions as follows:

@@m»mzwwm:/ 9(x)dxr§()

a(Uﬂ(C[)

1 _
— [ a0 (57 s,
™ Jo(UnCr)

1 / 1
— g(x)dx; S~ (s, x
27 Jowner) ) (5 )

1 _
(g [ gy () = (.9),
T Jouncy)

= (u,

so we get T'(T'(u)) = p. Let us now show that 77 is a left inverse of T, i.e., that
T-T = idM;(RnJrl\K). Consider f € M&(RHH\K), the functional T'(f) = uy
defined in (2.44) and T"(uy). By Theorem 2.8.6 and the fact that f vanishes at
infinity, we have

TT() = T'(ag) = =g, 874 (5%)
1

— g [ S s xdsif ) = )
21 Jawner)
that is T'(T'(f)) = f. This concludes the proof. O
In analogy with the complex case, we give the following definition.

Definition 2.9.8. The function

500 =~ {157 (5:%)

is called the Fantappié indicatriz of the functional u € (G(K))'.

One could be tempted to dualize Theorem 2.9.7 by simply taking the dual
of the sets in its statement. Since

~ n+1
(G(K)) = MEL(R™\K),
one could take the dual on both sides and obtain
~ n+1
(G(K))" = (ML R"\K)),
and attempt to conclude that
~ n+1
G(K) = (ML (R"T\K))

by using some reflexivity property of G. This approach, however, is premature,
and at this stage we need to give a direct proof of such an isomorphism. In the
next section, we will show how to make such an attempt rigorous.
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Theorem 2.9.9. Let K be an azially symmetric s-compact set in R*T1. Then there
1s an R, -module isomorphism

(MERTNK)) = G(K).

Proof. Fix any g € G(K) and consider, for every f € Mf,’O(RnH\K), the integral

(60, f) = /a e SISO (2.46)

where U denotes an axially symmetric s-domain containing K and where we have
fixed I € S. For any g € G(K), the integral (2.46) defines a continuous right linear

R,,~functional ¢, on M&(RnH\K). Therefore we have a map
T G(K) — (MLE"\K)),

defined by setting 7 (g) = ¢4 for any fixed g € G(K). The map is injective:
if g1 # g2, then the functionals ¢g4,, ¢4, (defined by g1 and go) are different.
Indeed, let x € K and consider the action of the two functionals on the function

Spl(s,x) = S};;(s) € M&(RnH\K); then we have

1 —1 _ 1 —1 _
o O S0 = 5 [ (oS 6,30 = gu(x),
and . )
—1 _ d —1 _
o S50 =y [l 5.5) = 200,

hence we have a one-to-one mapping:
T G(K) — (MLR"T\K)).
To conclude the proof it is sufficient to show that 7 admits a right inverse. Let
6: MER"N\EK) > R,

be a continuous right R,,—linear map, acting continuously on M&(RNH\K ) with
its natural topology. It allows us to define

V) = (6,55 (5,)) (247)

where the functional ¢ acts on the variable s. The function (x) is right s-
monogenic, as one can check directly, hence ¢ € G(K). Let

T (MELR\K)) — G(K)
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be the map defined by

T'(6) = (6,55 (5:%)) = ¥(x).

Now we have to show that 7 -7’ = id(Mé(Rnﬂ\K)),. Since
1
(T(T' @), ) = (TW), f) = ,_(T (6,57 (5,%))). /)

1

= (s, x))dxy f(x
SE RRRCE e

1
— S7(x,s)dx; f(x
o ey 8O0 SN ),

(9,

by Theorem 2.8.6 we get

1 _
Oy [ ST (0) = (1),
T Jo(UnCr)
which concludes the proof. O

Corollary 2.9.10. Let B = B(0,7) be the closed ball in R+ centered at the origin

and with radius v > 0. The dual of./\/lfo(RnH\B) is the set of all right s-monogenic
functions defined in a neighborhood of B.

2.10 Topological Duality Theorems

In the previous sections we have proved the two R,-modules isomorphisms:
~ n+1
(G(K)) = MLR™ \K)

and
G(K) = (MEL®R"\K)).

We now want to show that those isomorphisms are actually topological isomor-
phisms. To this end we need to introduce a special class of infinite-order differential
operators which is of independent interest. We recall that for s-monogenic func-
tions, the s-derivatives coincide with the partial derivative 9, with respect to the
scalar part u of a paravector, so

F(0) =F(0) =Y 0'am.
m>0

Proposition 2.10.1. Let F(0s) be defined as above and let [ be a left s-monogenic
function in an azially symmetric s-domain U C R"™1. The function F(ds)f is a
left s-monogenic function in U if and only if

lim 3/ |am|m! = 0. (2.48)

m——+oo



74 Chapter 2. Slice monogenic functions

Proof. Suppose that condition (2.48) holds, choose I € S, and consider the re-
striction of f to the plane C;. By the Splitting Lemma, f; can be written as
fr(z) =>4 Fa(2)Ia, 2 = u+ Iv and each holomorphic function F4 can be ex-
panded into a power series at a point zo € C;. Thus fr(z) can be expanded into
a power series with center at zg and, by the usual Cauchy estimates on the plane
Cr, we also deduce that
m

! ’6 / m >0, for|x—z| <.

Since |a,m!| < € for all m € N, we deduce that the series ) 07" f(x)a, converges
locally uniformly on Cj. It is immediate to verify that

O1[F(0s) fr(2)] = 011 ) O fr(z)am] = Y 9701 fr(z)am =0,

m=>0 m>0

and since the choice of I is arbitrary we get that > 00 f(X)a, is an s-
monogenic function.

Conversely, suppose by an absurdity that ) -, 00" f(x)an, is s-monogenic
but (2.48) does not hold. The result follows as in the complex case, see [63], Lemma
1.8.1. Indeed, suppose we negate (2.48). Then for some € > 0 there is a subsequence
ag, such that

k</|akj |k;! > 2e for all kj, kj — +o0.

We now apply F(9s) to the s-monogenic function (x — yo)~ !, with yo € U N R,
and we obtain

F(O)(x—yo) ' =) ( ak(=1 => Fi(x) (2.49)

— yo — )b+l
x €)
k>0 Yo k>0

Consider |x — yo| < ¢, and assume, by taking if necessary a subsequence x;, that
x; — yo. Then we get

(2¢)k 1

Fy. >

‘ k(X]>| = |Xj Yo *€|k3‘+1 = 257

thus for |x — yo| < e the series (2.49) does not converge locally uniformly which
contradicts the hypothesis. O
Proposition 2.10.2. Let U C R""! be an azially symmetric s-domain. An operator
of the type F(0s) acts continuously on ME(U), for any U.

Proof. If f € M¥(U) we know that the estimate for F(ds)f depends only on the

maximum norm of f, so continuity follows. U

Theorem 2.10.3. Let K C R be an azially symmetric s-compact set. The se-
quence {gr} converges to g € G(K) if and only if the sequence {F(0s)gr(x)}
converges pointwise on K for all F(0s).



2.10. Topological Duality Theorems 75

Proof. Let g be defined in an axially symmetric s-domain U containing K and
let gr,r = > 4 Fr,a(2)I4a be the restriction of g;, to a plane C; obtained using the
Splitting Lemma 2.2.11. The convergence of gj to ¢ in the topology of M (U) is
equivalent to the convergence, for every multi-index A, of {Fy a4} to some func-
tion F4 which is holomorphic in U N C;. Theorem 4.1.10 in [63] shows that the
convergence of Fj 4 is equivalent, for every A, to the pointwise convergence of
{F(0s)Fy,a} for every F(0s). This in turn is equivalent to the convergence of gy, 1
on the plane C;. We conclude the proof by applying the Representation Formula
(2.7). O

Theorem 2.10.4. Let K C R"*! be an azially symmetric s-compact set. The iso-

morphism

MER"N\EK)) = G(K).
1s topological.
Proof. If g, — ¢ in G(K) it means that gr — ¢ uniformly in a neighborhood
of K. With respect to the duality defined by (2.46), we have (¢, , f) — (&g, f)
uniformly when f varies in a bounded subset of M&(RnH\K ), thus ¢4, — ¢g.

Conversely, suppose that ¢ — ¢ in (/\/lfo(RnJrl\K))’, with its natural topol-

ogy. Then the functions

9h(3) = o (61,571 (5,)

defined by (2.47) are right s-monogenic in a neighborhood U of K which can be
chosen to be an axially symmetric s-domain. Now we have to show that the se-
quence {gi } converges uniformly in some suitable neighborhood of K. By Theorem
2.10.3 it is enough to prove that {F(d,)gr} converges pointwise for all infinite-
order differential operators F'(9,,) satisfying condition (2.48). From the continuity
of ¢y, fixing any x € K, we have

" (6, F(0.)551(,%))

F@)9k(0) = 5 (00 F(0.)S5'(53) =
= F(au> <¢a

|
) S (5:%)

and the statement follows by setting g(x) = .. (¢, S;" (s, x)). O
Corollary 2.10.5. Let K C R™™! be an axially symmetric s-compact set. The iso-

morphism
(G(K)) = ME®R"\K)
1s topological.

Proof. We have pointed out that M&(RNH\K ) is a Montel module thus it is

reflexive. So, by Theorem 2.10.4, the dual of G(K) is Mﬁo(RnH\K) itself. O
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We conclude this section by looking at a very special case of a compact set,
namely K = {0}. Recall that s-monogenic functions outside the origin can be
represented by a Laurent-type series of the form

f(x)= Z XM + Z X by, (2.50)

m2>0 m>1

converging in a spherical shell
A={xeR"™ | R <|x| <Ry}, 0<Ri<R,.

This formula contains two series: one with positive powers of the variable, and
one with negative powers of the variable. It is clear that, in order for the Laurent
series to give a function which vanishes at infinity, the portion with positive powers
must vanish. Thus, we can say that s-monogenic functions outside the origin, which
vanish at infinity, are represented by Laurent series where only negative powers of
the variable appear. An additional condition is the consequence of the fact that
we are requiring the Laurent series to converge everywhere. For this to be true,
we need to ask that the series has radius of convergence equal to infinity, and this
yields, once again, condition (2.48). We can therefore state the following result:

Corollary 2.10.6. The R,,-module (G({0}))" is isomorphic to the R, -module of
infinite-order differential operators acting on s-monogenic functions.

2.11 Notes

Note 2.11.1. On the kernel S~!(s,x). Unlike the case of regular or monogenic
functions which are defined as the elements of the kernel of first-order differential
operators (the Cauchy Fueter operator for the case of regular functions and the
Dirac operator for the case of monogenic functions), it is not possible to consider
s-regular and s-monogenic functions as solutions of a globally defined operator.
Specifically, these functions are defined as those functions whose restrictions to
a family of planes satisfy a family of first-order operators on those planes. The
Cauchy kernel that we have constructed is, on each of those planes, the funda-
mental solution for the relevant operator; this justifies our choice of nomenclature,
even though strictly speaking this is somewhat of an abuse of notation because
the kernel is not the solution on R* or R"*! of a globally-defined operator.
In fact, the fundamental solution to the equation

1/0 0
) (8u +I§v) frlu+1Tv) =6(u+1Iv), T€S, (2.51)

on the plane Cy, where 6(u + Iv) is the Dirac delta distribution, is (see [59])

1 1
Iv) = I . 2.52
fr(u+ Iv) rout Iy es (2.52)
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By the Extension Lemma, we uniquely extend the function in (2.52) to the entire
space R\ {0} to get

11 1
= =— S7H0,x).

™ X m

f()

If the delta distribution is not centered at the origin but at a point o on the real
axis, the solution becomes
1 1 1
fx—a)= =—_ S Ha,x).

T X — m

1 is not s-monogenic, thus we have to

which is precisely

If « is not real, then the function (x — «)~
consider its s-monogenic inverse (x — a)~*

(x—a) =-S5 (a,x%).

Let us now consider another feature of the Cauchy kernel series. Let x, s €
R™*! such that xs # sx and denote by S(s,x) the inverse of the noncommutative
Cauchy kernel series S™!(s,x). Our next goal is to show that the function S(s, x),
satisfying the equation

5%(s,x) + S(s,x)x —sS(s,x) =0 (2.53)
is the inverse of the noncommutative Cauchy kernel series.

Lemma 2.11.2. Let x, s € R, Then S(s,x) :=s —x is a solution of equation
(2.53) if and only if sx = xs.

In general, when s, x do not commute, the equation (2.53) has another non-
trivial solution:

Theorem 2.11.3. Let x, s € R" ™! be such that xs # sx. The equation (2.53) has
the nontrivial solution

S(s,x) = —(x —s) 1 (x? — 2Re[s]x + [s|?).
Proof. Let us plug —(x —s)~(x? — 2Re[s]x + |s|?) into (2.53) and show that
(x —s) 7 (x? — 2Re[s|x + |s|?)(x — s) "' (x? — 2Re[s]x + |s|?)
— (x —s) "t (x* — 2Re[s]x + [s]*)x
+s(x —s) "1 (x? — 2Re[s]x + [s|?) = 0
is an identity. We multiply on the left by (x —s) and we get
(x? — 2Re[s]x + |s|?)(x — s) 1 (x? — 2Re[s]x + |s|?) (2.54)
— (x* — 2Re[s]x + |s|?)x
+ (x — 8)s(x —s) ! (x? — 2Re[s]x + |s|*) = 0.
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We observe that x and (x> — 2Re[s]x + |s|?) commute and that the element
(2 2
u = (x° — 2Re[s]x + [s|*)
is invertible where it is nonzero. Indeed

ut = (x? — 2Re[s]x + |s|?)(x? — 2Re[s]x + |s|?)
= |x|* — 2x|x|?Re[s] + x?*[s|* — 2%|x|*Re[s] + 4|x|*Re[s]?
— 2xRels||s|* + x*|s|® — 2xRe][s]|s|> + |s|*
= |x|* — 2Re[x]|x|*Re]s]
+ (Re[s])? — [s]?)[s|* + 4|x|*Re[s]* — 2Re[x|Re]s]|s|* + |s|*

therefore ui € R, thus the inverse of u is @/|u|?. By multiplying equality (2.54)
by u~! on the right, we obtain:

(x? — 2Re[s]x + [s|?)(x —s) ' —x + (x —s)s(x —s) "' = 0.
We multiply by x — s on the right and we get the identity
—2Re[s]x +xs + xs = 0. O

Note 2.11.4. Historical notes and further readings. The study of s-monogenic
functions is a relatively new field of research: they were introduced in 2007 in [26]
(published two years later), in an effort to generalize the notion of slice regularity
(see [48], [49]) to the setting of Clifford algebras. Further properties of s-monogenic
functions which are collected in this book are treated in [18], [27], [28], [29]. The
Runge theorem is proved in [30] for a slightly different class of functions that,
however, coincide with the class of s-monogenic functions over axially symmetric
s-domains.

The most studied and well-known generalization of holomorphic functions to
the Clifford algebras setting is Clifford analysis, intended as the study of functions
in the kernel of the Dirac operator. It is nowadays a widely developed topic which
the reader can approach in the classical references [7] and [34]. More recent books,
which address in a less detailed way the topic of monogenic functions but give
some insights to further developments of the theory, are [23] and [31]. Finally, a
very friendly introduction to classical complex analysis and its higher-dimensional
generalizations containing also historical remarks is given in the textbook [58].
Clifford analysis is a very rich and well-developed theory which, however, does
not allow one to treat power series in the paravector variable and for this reason
other theories have been introduced. With no claim of completeness, we mention
for example the hyperholomorphic functions studied by Eriksson and Leutwiler
in [74], [38], [39], [40] and Cliffordian holomorphic functions introduced by Laville
and Ramadanoff [72], [73]. Slice monogenic functions admit power series expansion
in terms of the paravector variable, at least on discs centered at points on the real



2.11. Notes 79

axis, and this property will allow us to deal with a functional calculus for n-tuples
of linear operators (see the next chapter).

It is worth noticing, however, that the theory of s-monogenic functions is
not, strictly speaking, a generalization of the theory of holomorphic functions
of a complex variable: holomorphic functions, can be obtained as s-monogenic
functions for n = 1, see Remark 2.2.9, but given an s-monogenic function there is
no possibility to restrict its domain or codomain in order to obtain a holomorphic
function.

The s-monogenic functions, as well as s-regular functions in one quaternionic
variable, have several forerunners in the literature. Fueter in his paper [43], but
see also [33], [98], considered the problem of constructing regular functions (in the
sense of Cauchy—Fueter) starting from holomorphic functions. Thus he introduced
functions of the form

Im(q)
Im(q)|

where «, 3 are defined on the upper complex plane C*, have real values and o,
B satisfy the Cauchy—Riemann system. The function Af, now called the Fueter
transform of f, is Cauchy—Fueter regular. Note that, in light of this result, the
function Y Aq¢"a, is (Cauchy—Fueter) regular in ¢ where it converges. This ap-
proach was generalized to functions of a paravector variable: it is sufficient to
rewrite (2.55) by replacing the quaternion ¢ by a paravector x € R"*! and Im(q)
by the vector . If n is odd, it is possible to show that A™~1/2f is a monogenic
function in the sense of [7]. This result, known as Fueter’s mapping theorem, has
been proved by Sce in [94] and then generalized by Qian, see [87], when n is an even
number. Later on, Fueter’s theorem was generalized to the case in which a func-
tion f as above is multiplied by a monogenic homogeneous polynomial of degree
k, see [68], [83], [96] and to the case in which the function f is defined on an open
set U, not necessarily chosen in the upper complex plane, see [88]. This last result
is important because in this case a function of the form (2.55), with ¢ replaced
by x, is s-monogenic in the sense of our definition, even though we are allowed to
consider « and 8 with values in the Clifford algebra R,,. Fueter’s mapping theorem
allows us to construct monogenic functions starting from s-monogenic functions,
moreover it allows us to show that the class of monogenic functions which comes
from s-monogenic ones corresponds to the axially monogenic functions (see [24]).

The class of functions (2.55), whose importance for Fueter’s mapping theorem
is clear, is also known in the literature as the class of radially holomorphic func-
tions, see for example [58]. They are also related to the so-called standard intrinsic
functions studied by Rinehart and then by Cullen, see [89], [32] respectively. These
studies were the starting point for a deep generalization carried out by Ghiloni and
Perotti in their paper [53]. In this paper, the authors study functions with values
in a real alternative algebra A which are slice functions, i.e., they are of the form
flu,v) = a(u,v) + 15(u,v) where a(u, —v) = a(u,v) and B(u, —v) = —F(u,v), I
is an element chosen in a suitable subset of the algebra such that 12 = —1, (u,v)

f(q) = alqo, Tm(q)|) + | B(qo, [Tm(q)|) (2.55)
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are real numbers which correspond to the “real part” and to the modulus of the
“imaginary part” of a variable chosen in a suitable subset of the algebra A. Then
by requiring that the pair of functions («, ) satisfy the Cauchy-Riemann system,
one obtains the so-called slice regular functions according to [53] (compare with
Corollary 2.2.20). We do not enter into the details of this interesting construction:
it is sufficient to observe that the treatment is general enough to include, when
we consider open sets that are axially symmetric and which properly intersect the
real axis, the case of s-monogenic and s-regular functions treated in this book.

Finally, we point out that the study of zeros of polynomials of a paravector
variable, which we started in our work as a byproduct of the study of s-monogenic
functions, has been the topic of the researches of Qian and Yang, see [104]. More-
over, polynomials with coefficients in a Clifford algebra can also be treated with
the techniques developed by Ghiloni and Perotti, see the aforementioned papers
and [54].



Chapter 3

Functional calculus for n-tuples
of operators

The goal of this chapter is to construct a functional calculus for n-tuples of not
necessarily commuting operators on a Banach space V' over the real numbers. We
start by introducing the basic notions which will allow us, given an n-tuple of
linear operators acting on V', to construct a new operator acting on a suitable
module over a real Clifford algebra. The idea to use a Clifford algebra approach is
not new and goes back to Coifman and Murray, see [80] and also to the works of
McIntosh, Pryde and Jefferies (see [62] and the references therein).

Let then V be a Banach space over R with norm || - [|y. It is possible to
embed V into a wider set V,, which possesses the structure of a Clifford module
and to endow V' with an operation of multiplication by elements of R,, which gives
a two-sided module over R,,.

Specifically, by V,, we denote the two-sided Banach module over R,, corre-
sponding to V ® R,,. An element in V,, is of the type

ZUA®€A
A

A=iy..dp i€ {1,2,...,n}, 41 <...<i,is a multi-index, vy € V, and e4 is a
basis element in the Clifford algebra R,,. The multiplications of an element v € V,,
with a scalar a € R,, are defined as

va = Z’UA ® (eaa)

A
and
av = ZUA ® (aea).
A
F. Colombo et al., Noncommutative Functional Calculus: Theory and Applications of Slice 81
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We will write ) , vaea instead of )~ , va ® e4 and we define
v, = lvallv.
A

Remark 3.0.1. A two-sided module V,, over R,, is called a Banach module over
R,,, if there exists a constant C' > 1 such that

[l

[vallv,, < Cllvllv,lal and |lav]v, < Clal|jv]v,

for all v € V,, and a € R,,. In general, the constant C' can be chosen equal to 2".
The importance of Banach modules is well known and for a thorough discussion
we refer the reader to [5].

We denote by B(V) the space of all bounded R-homomorphisms from the
Banach space V' into itself endowed with the natural norm denoted by || - [[5(v)-
Let T4 € B(V). We define the operator

T = ZTAeA
A

and its action on the generic element of V,,,

U= g UBeB,
B

as
Tw) = Z Ta(vg)eaen.
AB

The operator T' is a right-module homomorphism which is a bounded linear map
on V;,. The set of all such bounded operators is denoted by B,,(V,,). We define a
norm in B, (V;,) by setting

1]

B.v) = O ITallsw)-
A

It can be proved that
TS|

S|

Bo(vi) SN T8, v 15118, (v,0)-

From now on we will omit the subscripts V;, and B,,(V;,) when dealing with the
norms. The context will clarify which norm we will be using.

3.1 The S-resolvent operator and the S-spectrum

Given an n-tuple (T1,...,T),) of not necessarily commuting operators, we can
construct the operator in B, (V;,) given by

> e Ty, Ty e B(V). (3.1)
j=1
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As we will show in the sequel, when n = 1, i.e., in the case of a single operator,
this approach is consistent with the standard Riesz—Dunford calculus. However,
our methods allow us to treat a more general situation and therefore we can also
consider an operator of the form

T=To+Y eT;, T,eBV), p=01,..n, (3.2)

j=1
which is slightly more general than the form (3.1).

Warning. We will develop our theory for these more general operators even though,
when dealing with n-tuples of operators, we always consider them as in the form
(3.1) or, in other words, in the form (3.2) with To = 0. With an abuse of language
we will always refer to them as n-tuples of operators. Note that our construction
embeds an n-tuple of operators into B,,(V,,) as a right linear operator acting on
V-

The set of bounded operators of the form (3.1) or (3.2) will be denoted by
BL(V,,) or B%1(V,,), respectively. We obviously have the inclusions
BL(V,) € BY(V,,) € B, (Vi).

We now give a definition and a theorem which are of crucial importance to
construct a functional calculus for n-tuples of noncommuting operators using the
theory of s-monogenic functions. In this section we consider left s-monogenic func-
tions, but it is possible to develop this theory using right s-monogenic functions.

Definition 3.1.1 (S-resolvent operator series). Let T € B21(V,) and s € R"*1.
We define the Cauchy kernel operator series or S-resolvent operator series as
SN, T):=> Ts™! " (3.3)
n>0
Jor [T <s|.

Remark 3.1.2. Note that ||[T"s~17"| < C|T||"|s|"'~™ since s is a paravector
(compare with the definition of a Banach module). Thus we have

H Z Tns—n—ln < Z ||Tns—n—1H

n>0 n>0
<CY ITMllsT M < oY IIT s
n>0 n>0

Theorem 3.1.3. Let T € B%Y(V,,) and s € R"* 1. Then

> TrsTI = (T = 2Re[s|T + [s|*Z) (T — sT), (3.4)
n>0

for [T <s].
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Proof. In Theorem 2.7.4 the components of p and s are real numbers and therefore
such components obviously commute. When we formally replace p by the operator
T we do not want to assume that necessarily 7,7, = 1,1},, and so we need to verify
independently that (3.4) still holds. In what follows, we assume the convergence
of the series to be in the norm of B,,(V;,). We need to prove that

—(T? = 2Re[s|T + [s]°Z) Y T"s™'"" = (T —sI),
n>0
i.e., that
(=T? + 2Re[s|T — [s]°Z) Y T"s™'"" = T + (s — 2Re[s])L.
n>0
Observing that —T? + 2Re[s]T — [s|*Z commutes with T™ we can rewrite the
assertion as
> T™(—|s|> = T? 4+ 2Re[s|T)s ™'~ = T + (s — 2Re[s])Z.
n>0
We can rewrite the left-hand side of this equality by expanding the series
> T (—|s|’T = T + 2Re[s|T)s ™"
n>0
= (—[s|’Z — T? + 2Re[s]T)s ! + T*(—[s|*Z — T? + 2Re[s|T)s >
+ T?(—|s|*T — T? + 2Re[s]T)s > + ...
= —<|s\25_1 + T(—2sRe[s] + [s|?)s ™2 + T?%(s? — 2sRe[s] + |s[*)s > + .. .),
and using the identity s? — 2sRels] + |s|? = 0, we get
Z T™(—|s|* = T? + 2Re[s]T)s ' ™" = —|s|*s " 'T + T's’s ™2
n>0
= s’ 1T+ T =-sss'T+T=-sT+T=(s—2Re[s))T+T,

which concludes the proof. O

The S-resolvent operator series is the analog for operators of the noncom-
mutative Cauchy series for s-monogenic functions. Theorem 3.1.3 shows that a
functional calculus for n-tuples of noncommuting operators can be constructed
using the Cauchy formula II, simply by replacing in the s-monogenic Cauchy ker-
nel,

S71(s,x) = —(x* — 2xRe[s] + [s]?) "' (x — s),
the paravector x by an operator T of the form (3.2), even though the components
of T' do not commute.

Theorem 3.1.3 shows that the sum of the S-resolvent series exists in a set
larger than the ball || T'|| < |s| and, given an operator of the form (3.2), it is possible
to associate to it a new notion of spectrum.
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Definition 3.1.4 (The S-spectrum and the S-resolvent set). Let T' € BYL(V,,) and
s € R"T. We define the S-spectrum os(T) of T as

os(T) ={s € R"™ : T? —2 Re[s|T + [s|*Z is not invertible}.
The S-resolvent set ps(T) is defined by
ps(T) = R™1\ og(T).

Definition 3.1.5 (The S-resolvent operator). Let T € BY1(V,,) and s € ps(T). We
define the S-resolvent operator as

S7(s,T) := —(T? — 2Re[s|T + |s|*T) (T — sI). (3.5)

Note that we are using the same symbol for both the S-resolvent operator
series and the S-resolvent operator: no confusion can arise since it will always be
clear which object we will be considering.

Proposition 3.1.6. Let T € BY%1(V,,) and s € ps(T). Then if T's = sT, we have
S (s, T)= (s —T) "
Proof. Tt follows by the commutativity since we have
(T? — 2Re[s]T + [s|*Z) (T —sI) = (T —sZ) (T —sI) " X(T — sI). O

Example 3.1.7 (Pauli matrices). As an example, we compute the S-spectrum of
two Pauli matrices o3, 01 (compare with example 4.10 in [62]):

{10 101
= -1 7|1 oo
Let us consider the matrix T' = o3e;+01e2 and let us compute 72 —2Re[s]T +|s|*Z.
We obtain the matrix

{s|2 — 2 — 2Rels]ex 2(e; — Re[s])es }
—2(e1 + Rels])ez s|?> — 2 + 2Re[s]e;

whose S-spectrum is og(T) = {0} U {s € R® : Re[s] =0, |s| = 2}.

Remark 3.1.8. Note that if we embed the pair (o3,01) as o1e1 + oszeq, the S-
spectrum does not change. In general, when we embed an n-tuple of operators
using a different order of the imaginary units, the S-spectrum will not be affected,
as we will see in the next section.

Theorem 3.1.9. Let T € BY1(V,,) and s € ps(T). Let S~1(s,T) be the S-resolvent
operator defined in (3.5). Then S™(s,T) satisfies the (S-resolvent) equation

S s, T)s — TS (s, T) = T. (3.6)
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Proof. Replacing (3.5) in the above equation we have

T =—(T? - 2Re[s|T + [s|*Z) (T — sI)s
+ T(T? — 2Re[s|T + |s|*Z) 1T — sI) (3.7)

and applying (T? — 2Rels|T + [s|>Z) to both sides of (3.7), we get

T? — 2Re[s|T + [s|*ZT = —(T — sI)s
+ (T? — 2Re[s|T + [s|*T)T(T? — 2Re[s|T + |s|*Z) (T — sI).

Since T and T? — 2Re[s]T + |s|?>Z commute, we obtain the identity
T? — 2Re[s|T + |s|*Z = —(T — sT)s + T(T — sT)

which proves the statement. O

3.2 Properties of the S-spectrum

We state here some properties of the S-spectrum. In particular, we show that
the S-spectrum consists of (n — 1)-spheres (which, in particular, may reduce to
points on the real axis) and therefore it has a structure that is compatible with the
admissible domain for s-monogenic functions. We also show that the S-spectrum
for n-tuples of bounded operators is compact.

A

L m. *—0—>
v,

Figure 3.1: Structure of the S-spectrum in R?

Theorem 3.2.1 (Structure of the S-spectrum). Let T € BYY(V,,). Then its S-
spectrum consists of the union of (n — 1)-spheres of the form [p], p € R**1.
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Proof. Let p = Relp] + p € os(T). If p is not real, then p # 0 and all the
elements of the sphere s = Re[s] + s with Re[s] = Re[p] and |s| = |p| belong to
the S-spectrum of 7. O

Definition 3.2.2. Let T =Ty + .7, ¢;T; € BY''(Vy,). Let U C R™ be an azially
symmetric s-domain that contains the S-spectrum og(T) of T and such that O(UN
Cy) is the union of a finite number of continuously differentiable Jordan curves
for every I € S. Then U is said to be a T-admissible open set.

Definition 3.2.3. Let T = Ty + >7_ ;T € Bp'(Vy,). Let U C R™™ be a T-
admissible open set. Suppose that U is contained in a domain of s-monogenicity of

a function f. Then such a function f is said to be locally s-monogenic on og(T).
We will denote by M,y the set of locally s-monogenic functions on os(T).

Remark 3.2.4. Let W be an open set in R"*! and let f € M(W). In the Cauchy
formula (2.37) the open set U C W need not be necessarily connected. Indeed
formula (2.37) obviously holds when U = Ul_,U;, U;NU; = () for i # j, where U;
are axially symmetric s-domains for all ¢ = 1,...,r and the boundaries of U; N Cy
consist of a finite number of continuously differentiable Jordan curves for I € S for
all i =1,...,r. So when we choose f € M, (1) the associated open set U need
not be connected. With an abuse of language, we will call T-admissible such an
open set U.

We now give a result that motivates the functional calculus.

Theorem 3.2.5. Let s € R"™ a € R,,, m € NU {0} and consider the monomial
s™a. Consider T € BYY(V,,), let U C R™"™ be a T-admissible open set. Then, for
every choice of I € S, we have

1
T"a = / S~1(s,T) ds; s™a. (3.8)
21 Jawner)

Proof. Let us consider the power series expansion of the S-resolvent operator
S~Y(s,T) and a circle C,. centered in the origin and of radius r > ||T'||. We have

1
/ S~(s,T) ds; s™a (3.9)
27 Jowner)

1 / i
= T" s dgia.
27 Z a(UNCy)

n>0

Since

/ dsps™" T = 0 if n #£ m, / dsps™" M =21 if p = m, (3.10)
C, Cr

and since, by the Cauchy theorem, the above integrals are not affected if we replace
Cy by O(UNCy) for any I € S, we have

1 ZTn/ S—1—7z+7n dsja = 1 ZTn/ S—1—7z+7n ds;a:Tma. 0
= e, 2m = Jawncr
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As it is well known, when we consider a single operator 1" acting on a Banach
space (real or complex) we know that its spectrum is a compact set contained in
the ball with center at the origin and radius ||T||. In our case, we have that a
similar property holds for the S-spectrum:

Theorem 3.2.6 (Compactness of S-spectrum). Let T € B%1(V,). Then the S-
spectrum og(T') is a compact nonempty set. Moreover og(T) is contained in {s €
R s < 1T }-

Proof. Let U C R™*! be a T-admissible open set and let I € S. Then

1

/ S~U(s,T) ds; s™ =T™.
27 Jowner)

In particular, for m = 0, we have

1
/ SUs,T) ds; =1,
21 Jowner)

where Z denotes the identity operator. This shows that og(7T) is a nonempty
set, otherwise the integral would be zero by the vector-valued version of Cauchy’s
theorem. We now show that the S-spectrum is bounded. The series Y o, 7"s~ ™"
converges if and only if |T']| < |s| so the S-spectrum is contained in the set
{s e R**! . |s| < ||T||}, which is bounded and closed because the complement of
os(T), i.e., ps(T), is open. Indeed, the function

g:s+ T? — 2Re[s|T + |s|°Z

is trivially continuous and, by Theorem 10.12 in [91], the set U(V},) of all invertible
elements of B,,(V;,) is an open set in B,,(V;,). Therefore g=1(U(V,,)) = ps(T) is an
open set in R™*1, O

3.3 The functional calculus

The following result is an immediate consequence of the Hahn-Banach theorem
for Banach modules over R,, (see [7], §2.10) and it will be used in the proof of the
next result.

Corollary 3.3.1. Let V,, be a right module over R,, and let v € V,,. If (¢, v) =0 for
every linear and continuous functional ¢ in V., then v = 0.

We now state and prove a crucial result that will allow us to define the func-
tional calculus for n-tuples of not necessarily commuting operators. More precisely,
when we replace in the Cauchy formula (2.37) the variable x with an operator
T € B%(V,,), we have to verify that the integral remains independent of U and
of I €8S.
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Theorem 3.3.2. Let T € BY'(Vy) and f € Mygry. Let U C R™ ! be a T-
admissible open set and set ds; = —dslI for I € S. Then the integral

1

-1 d; .
o D, 8716 T d 1) (3.11)

does not depend on the open set U and on the choice of the imaginary unit I € S .

Proof. We first observe that we can replace x by an operator T € B%1(V,,) in the
Cauchy formula (2.37); in fact Theorem 3.1.3 allows us to replace x by T in the
function S~1(s,x), thus we can do the same substitution in the Cauchy formula
(2.37) and write

1

S~1(s,T) ds; f(s).
27 /B(UOCI) (5.T) dsr £(5)

For every linear and continuous functional ¢ € V!, consider the duality
(¢, 5~ Y(s, T)v), for v € V;, and define the function

g(s) = (¢, 87 (s, T)v), for veEV,, ¢ecV.. (3.12)

We observe that the function S~!(s,x) is right s-monogenic in the variable s in
its domain of definition, thanks to Proposition 2.7.9. The function g is right s-
monogenic in the variable s on pg(T'), and since g(s) — 0 as s — oo we have that
g is s-monogenic also at infinity. The independence of the integral (3.11) from the
choice of the T-admissible open set U, as long as (U N Cy) does not cross the
S-spectrum of T for every I € S, is a consequence of the Hahn-Banach theorem
and of the Cauchy formula. Indeed, for any fixed I € S, the integral

1

Y OO0 (3.13)

does not depend on U, by the Cauchy theorem. As a consequence, also the integral
(3.11) does not depend on U, by Corollary 3.3.1. We now prove that the integral
(3.13) does not depend on I € S. Since g is a right s-monogenic function on pg(T),
we can consider a domain U’ in pg(T') such that U’ satisfies the hypothesis of
Theorem 2.8.4 and such that QU’ C U. We now choose J # I, J € S and we write
the function g(s) using the Cauchy integral formula (2.39):

g(s) = — ! / g(t) dty; S~ (s, t) (3.14)
2T Jowrne,)-
where the Jordan curve 9(U' N Cj)~ is oriented clockwise. Observe that the
orientation is chosen in order to include the singular points of S™1(s,t), i.e.,
[s]NCy € 9(UNCy) and to exclude the points belonging to the S-spectrum of
T. Taking into account the orientation of (U’ NC )~ we can rewrite the integral
(3.14) as
1

g(s) = .

/ g(t) dty S~ (s, t). (3.15)
a(U'NCy)
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Let us now substitute the expression of g(s) in (3.15) into the integral (3.13) so
that we obtain

1
o e, 96 51 19 (3.16)

1 / 1 / B

= t)dt; S™ (s, t)| ds S
27 Jawney) {QW a(U/ch)g( ) dis ( >] 1 )
1 / 1 »

= g(t) dt / ST (s, t) dsy f(s)
21 Jowrne,) ®) J{ 21 Jowner) ) dsr J( }

-,
= g(t) dtyf(t),
27 Jowmes, (t) dt;f(t)

where we have used the Fubini theorem and Theorem 2.8.4. Since d(U' N Cy) is
positively oriented and surrounds the S-spectrum of 7', by the first part of the
statement, we can substitute it by (U N C ), because of the independence of the
integral on the open set U, and we get

1 1
2 /8(Umc,) 9(s) dsr f(s) = o /B(UOCJ) g(t) dt; f(t). (3.17)

Since g(t) = (¢, S~1(s,T)v) and the formula (3.17) holds for every v € V,,, ¢ €
V!, and for I, J € S, by Corollary 3.3.1 the integral (3.11) does not depend on
Ies. O

We can now define our functional calculus.

Definition 3.3.3. Let T € BYY(Vy,) and f € Mygry. Let U C R™™ be a T-
admissible open set and set ds; = —dsI for I € S. We define

)=

"~ on

/ S~Y(s,T) ds; f(s). (3.18)
a(UNCy)

3.4 Algebraic rules

We recall that in general it is not true that the product of two s-monogenic func-
tions is still s-monogenic. However this is true for a subset of s-monogenic func-
tions, as we will show in the next proposition.

Let U be an open set in R"™! and let f € M(U). Choose I = I; € S and let
I5,..., I, be a completion to a basis of R,, such that I;I; + I;I; = —2;;. Denote
by fr the restriction of f to C;. By the Splitting Lemma we have

n—1
filz) =Y Fa()la, Ian=1, ... I, z=u+1Iv
|A]=0
where F)y : UNC; — C; are holomorphic functions. The multi-index A =iy ...,
is such that i, € {2,...,n}, with ¢; < ... <, or, when |A| =0, [y = 1.
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Definition 3.4.1. Let U be an open set in R™™ and let f € M(U). We denote by

M(U) the subclass of M(U) consisting of those functions f such that for all the
possible choices of I € S there is a completion Is, ..., I, to an orthonormal basis
of R,, such that

filz)="Y_ Fa(2)la, Ia=1, ... L, z=u+Iv.

|Aleven

Proposition 3.4.2. Let U be an open set in R" 1. Let f € M(U), g € M(U), then
fge MU).

Proof. Let I € S and set z = u + Iv, then we have

(o0 o0 ) Ui(2)

= Y1) + 1)

ofr
ov

g1

o (Jor(2) + 1) 0 (2),

S (2)+1

Since f € M(U), the components F4 of fr(z) commute with I and with all the
14 since |A] is even so f commutes with I, thus we obtain

(g To0 ) Gi(2)

(e (B o) 0

(z2)+1
Remark 3.4.3. The condition f € M (U) is not only sufficient but also necessary
to have that fg € M(U), when f,g € M(U) and g is nonconstant. Indeed, for
every choice of I € S we have that

(o + T ) U10) = 1)t )+ 15161 0 ) = .

Since g is s-monogenic we can write:

g1

W1 (2) = (1 + 1i2(2) P () =0,

ov

g1

A ov

(2) + 1f1(z)

Since %gv’ (2) # 0 in view of the fact that g is s-monogenic and nonconstant, the
last equality implies that f;(z)I = I f;(z) for all I € S. Using the Splitting Lemma
on each plane C; we obtain that the only possibility is that only the indices such

that |A] is even can appear.

Example 3.4.4. Let us consider a function f defined by the power series

f(X) = Z X" am € [Rn]%

m>0
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converging on a suitable ball B. Assume, for simplicity, that the coefficients a,,, are
the product of two imaginary units e;. Consider I € S and a completion I, ..., I,
to an orthonormal basis of R,,, n > 2. Then any a,, is the product of two linear
combinations of the imaginary units I;. Thus

frlu+Iv) = Z(u+[v)mam = Z Z (u+ITv)"al, 414

m>0 m>0|A|=0,2
= Z (Z(u—i_lv)ma;nA)IA: Z Fa(u+Iv)la,
|A[=0,2  m>0 |A|=0,2

where a!, € R, belongs to M(B).

Definition 3.4.5. In Definition 3.2.3 consider instead of s-monogenic functions, the
subset of functions in M. This subclass of Mgy will be denoted by Mgq (1.

Theorem 3.4.6. Let T € B2L(V,,).
(a) Let f and g € Myg(r). Then we have

(f+9)(T)=Ff(T)+g(T), (fAN(T)=Ff(T)\, for all \ER,.

(b) Let ¢ € MVUS(T) and g € Mygr). Then we have
(09)(T) = ¢(T)g(T).
(c) Let f(8) = > 508" Pm where py, € Ry, be such that f € Myg(). Then we

have
[T =3 T

m>0

Proof. Part (a) is a direct consequence of Definition 3.3.3.

Part (b): Denote by U a T-admissible open set on which g is s-monogenic and
let ¢ € MV(U) By Proposition 3.4.2 the product ¢g belongs to M(U). Let G; and
G5 be two T-admissible open sets such that G; U9G1 C Go and Gy UGy C U.
Take s € 0G1 and t € 0G4 and observe that, for I € S, we have

1
o) =y [ ST dt gl
T Jo(GanCr)

Now consider

@) =y [ ST dsr 965) o9

™

1 / —1 1 / —1
= S7 (s, T) dsr ¢(s STH(t,s) dtr g(t)].
21 Jaaincy) ( ) dsr 6(5) {QW 8(G2NCy) (t,8) bz 5(t)
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By the vectorial version of the Fubini theorem we have

1 1 -1
@O0 = o [ ST s 0t 879 | e g0

Observe that S71(t,s) is left s-monogenic in the variable s € dG; for t € G,
by Proposition 2.7.9, and since ¢ € M, () by Proposition 3.4.2 it follows that
#(s)S~1(t,s) is ssmonogenic in the variable s. So we obtain

1
o

(69)(T) /a oo, ADSTET) s (1)

— 1 ~1
=om),, /a ey 5T e )

= o(T)g(T).

Part (c): For a suitable R > 0 the series > ., s"py, converges in a ball
B(0, R) that contains og(T"). So we can choose another ball B, := {s : |s| <
IT|| + ¢}, for sufficiently small € > 0, such that B. C B(0, R). Since the series
converges uniformly on 0B, we have

1
f(T) = / S~(s,T) ds; s"'p,

21 Ja(s.ner) mzzjo "
1 / )

= S™(s,T) dsy s"p,
2 7%:0 8(B-NCr) !
1 / PR AT

= Z T"s dslsmpm:ZTmpm. O
2m m>0"9(BeNCr) >¢ m>0

In the next section we study some further important properties of our func-
tional calculus.

3.5 The spectral mapping and the S-spectral radius
theorems

As we have already pointed out, the composition of two s-monogenic functions is
not, in general, s-monogenic. When we deal with s-monogenic functions f, g which
can be expanded into power series, the composition f(g(x)) is defined when g has
real coefficients and its range is contained in the ball on which f is defined. Here
we prove a sufficient condition in order for the composition of two s-monogenic
functions to be s-monogenic.

Definition 3.5.1. Let f : U — R,, be an s-monogenic function where U is an open
set in R" T, We define

NU)={fe MU) : f(UNC;)CC;, VIeS}
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Lemma 3.5.2. Let U be an open set in R"+1. We have N(U) C M(U).
Proof. By definition, a function f € N (U) has a splitting of the type f(z) = F(z)
with F': C; — C; holomorphic, thus f € M(U). O

Remark 3.5.3. Example 3.4.4 shows that, for n > 3,£@ere are functions in MV(U)
not belonging to N'(U), thus the inclusion N'(U) € M(U) is proper.
Let us first study the behavior of the product of functions in N (U).
Lemma 3.5.4. Let U be an open set in R™H1.
(a) Let f and g € N(U), then fg and g f belong to N(U).

(b) Let P, Q € N(U) with Q(x) # 0 in U. Then Q~'P and PQ™" belong to
N(U).

Proof. Tt follows by restricting the functions in (a), (b) to the complex plane C;
and observing that the functions we are considering are holomorphic from C; to
Cy for every I € S. O

Remark 3.5.5. Using the same proof of Lemma 3.5.4 we have that if f(x) =
> mez(X = po)™am, with po,an € R is a series converging in a suitable set U,

then f e N(U).

Lemma 3.5.6. Let U, U’ be two open sets in R"™ and let f € N(U'), g € N(U)
with g(U) CU'. Then f(g(x)) is s-monogenic for x € U.

Proof. Set x = u + Iv. By hypothesis, g(u + Iv) = a(u,v) + If(u,v), where a, 8
are real-valued functions and

flg(u+1Iv)) = fla(u,v) +15(u,v)) € C;.

The function f(g(u + Iv)) is holomorphic on each plane C; since it satisfies the
condition

01 f(g(u+Iv)) =0
for all I € S and so f(g(x)) is an s-monogenic function in x. O
The following lemma will be used in the sequel.

Lemma 3.5.7. Let U be an open set in R" ™! and assume f € N(U). For v € R**!
define Uy = {x e U : f(x) ¢ [v]}. Define:

(a) ho(x) = f?(x) — 2Re[f (V)] f(x) + |f ()|

(b) R(x) = (f*(x) = 2Re[v]f(x) + )",

(¢) hi(x) = (f(x)? = 2Re[V]f(x) + [v*) "1 (f(x) — ).
Then: ho € N(U), h € N(Up,)), hi € M(Up).
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Proof. To prove that hy € N (U), observe that since f € N (U), by Lemma 3.5.4
we have that f? belongs to N(U) so also hg belongs to N(U). The fact that
h € N(Up)) follows from the previous result and Lemma 3.5.4. Finally, since

ho € N(Up,)) C MV(U[V]) thanks to Lemma 3.5.2, and f — v € M(U), the function
hi(x) = ho(x)(f(x) —v) € M(Up,)) by Proposition 3.4.2. O

Definition 3.5.8. In Definition 3.2.3 consider instead of the set of s-monogenic
functions M(U), the subset of functions in N'(U). This subclass of M) will
be denoted by Ny (r).

Theorem 3.5.9 (Spectral Mapping Theorem). Let T € B3 (V,), f € Nyg(r), and
A€ og(T). Then

os(f(T)) = flos(T)) = {f(s) : s € 05(T)}.

Proof. Since f € N, (1) there exists a T-admissible open set U C R™ ! such that
feNU). Let us fix A € 05(T). For x &€ [A], let us define the function g(x) by

(%) = (x* = 2Re[Nx + [A*) 71 (f*(x) — 2Re[f(N)]f (x) + [F(V)[*).

Observe that f € N'(U) implies that f2(x) — 2Re[f(A\)]f(x) + |f(N)[? € N(U) by
Lemma 3.5.7. The function (x? — 2Re[AJx + |A|?)~! € N(U \ {[A]}), by Lemma
3.5.4, thus g(x) € N(U \ {[\]}) by the same Lemma.

We can extend g(x) to an s-monogenic function whose domain is U. We have
to consider two cases. Suppose first that the (n — 1)-sphere [A] does not reduce to
a point on the real axis. Then we define

g(x) if x¢& )\,
9(x) =9 0f(u) f(p) — f(w) fx=p=XN+IN\€eN, T€S
ou W= , .

Given the (n — 1)-sphere [A], on each plane C;, I € S, the function g has two
singularities A\g £ I\1 € [A]. If we set z = u+ v, we can compute the limit of g on
the plane C; for z — pu = Ao + I\ and for z — pu = A\g — I'\;. The restriction of f
to the plane C; is a holomorphic function from U NC; with values in the complex
plane C;, and, by Theorem 2.2.18 (ii),

Fo+IA) =1 (Ao, M) + 10k (X, A1).

However, nk,0x : UNCg — Cg for all K € S, see Theorem 2.2.18 (ii), so
nkg = 1,0k = 0 are real-valued functions depending only on Ag, A\;. We can write

o+ IA1) =n(No, A1) +10(Xo, A1)
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and we deduce that Re[f()\)] = Re[f(u)] and |f(\)|> = |f(u)|? for any choice of p
and A on the same (n — 1)-sphere. We have:

lim g7(2) = lim (2* — 2Re[p]2 + [f*) 7 (f*(2) — 2Re[F ()] f(2) + [ F (1))

i O = FTE = 1) _ 10 = 1)
P (z—p)(z—p) i

and similarly for the limit when z — p. Note that the derivative f’(u) coincides
with E?uf(u) since f is s-monogenic. In the second case, assume that A € R. We

define
G0 it x £,
glx) = ((,fuf(A))2 if x =\ eR.

Consider any J € S and the restriction of f to the plane C;. Then f : UNC; — C;
is a holomorphic function and f(A\) € R, indeed f(A) € C; for all J € S. Let us
set z = u + Jv. We have

lim g (2) = lim (22 = 2Re[Az + %) (2(2) — 2Relf VI (2) + [FV) )
i ) = 7OV

Z—A (Z — )\)2

= f/()‘)2a

so the value of the limit is independent of the plane C ;. The function g; : UNC; —

Cy is extended by continuity to U N Cy, so it is holomorphic on U N C; for all

I € S. We conclude that the function g : U — R,, is an s-monogenic function.
Thanks to Theorem 3.4.6, we can write

FAT) = Re[f(N]F(T) + [f (NPT = (T* — 2Re[NT + [APL)g(T).
If f2(T) — 2Re[f(N)]f(T) + |f(N)|?*Z admits a bounded inverse
B = (f*(T) = 2Re[f(N](T) + [fNPT) ™" € Bu(Va),

then
(T? — 2Re[NT + |\*T)g(T)B =T,

i.e., g(T)B is the inverse of 7% — 2Re[A|]T + |A\|?Z. Thus f(os(T)) C os(f(T)).
Now we take v € og(f(T)) such that v & f(os(T)). The function

h(x) == (f*(x) — 2Re[v] f(x) + [v[*) "
is s-monogenic on og(7T) by Lemma 3.5.7. By Theorem 3.4.6 we get
BT (FA(T) — 2Relp] () + [0°T) = T

this means that v ¢ og(f(T)), but this contradicts the assumption. So v €
flos(T)). 0
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Theorem 3.5.10. Let T € BY'(Vy), f € Nogry, & € Nyg(p(ry) and let F(s) =
#(f(s)). Then F' € Mgy ry and F(T) = ¢(f(T)).

Proof. The statement F' € M, () follows from Lemma 3.5.6 and the Spectral
Mapping Theorem. Let U D og(f(T)) be an f(T)-admissible open bounded set
whose boundary is denoted by QU . Suppose that UUOU is contained in the domain
in which ¢ is s-monogenic. Let W be another T-admissible neighborhood of og(T")
and let OW be its boundary. Suppose that W U OW is contained in the domain
where f is s-monogenic and that f(W UOW) C U. Let I € S and define the

operator
1

:277

ST\ F(T)) /8 oy SN T s SO S(9)

where
STHA f(8)) = —(f(s)” = 2Re[Af(s) + [AP*) T (f(s) — M)
Observe that S™1(), f(s)), where it is defined, is left s-monogenic in the variable s

by Lemma 3.5.7 and it is right s-monogenic in the variable A by Proposition 2.7.9.
In particular, if A is a real number the function

SO\ f(8) = (f(s) = N 7H(f(s)” — 2Re[AIf(s) + [A)
is ssmonogenic in the variable s. Since
STHF(8)S(N f(8)) = SN fF(8)STH f(8))
is the identity function, by Theorem 3.4.6, the operator S~1(\, f(T')) satisfies the
equation:
[(f(T) = AD) "I X(F(T) = AZ) = F(D)STHA F(T)) (3.19)
= ST F)IF(T) = AD)TEA(F(T) = AT) = f(T)] = 1.

Tt is immediate to observe that if A is not necessarily real, the relation (3.19) still
holds. In fact, replacing the explicit expression for S~H(\, f(T)) we get:

STHF(T)) = —(f(T)? = 2Re[N f(T) + [AP)"H(F(T) = N);
in (3.19) we get an identity. As a consequence, we have

S(f(T) = /8 oy ST SDN D00

:277

_1 1 B »
o /E)(WO(CI) (271' /B(UO(CI) S (S,T) dsr S ()\, f(s))) d\1 ¢()\)
1 —1 1 .
27 /(,}(UQCI)S (s,T) ds’(% /(j(wm(c[) ST, f(s)) dA; ¢()\))

1

- /d oS (s, T) dsr $(f(s))

1

= / S™(s,T)dsy F(s) = F(T). 0
27 Jowner)
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Theorem 3.5.11. Let T € BY'(Vy), fim € Mog(ry, m €N, and let W D o5(T) be
a T-admissible domain. Then if f,, converges uniformly to f on WNCy, for some
I €S, then fi(T) converges to f(T) in By, (V).

Proof. Let U be an axially symmetric s-domain such that U C W and assume
that (U N Cy) consists of a finite number of continuously differentiable Jordan
arcs. Then f,, — f converges uniformly on 9(U N Cy) and consequently

1

Fm(T) = 2

/ S(s,T) dst fs)
a(UNCr)

converges, in the uniform topology of operators, to

1
o

f(T) / S~Y(s,T) ds; f(s). O
a(UNCr)

Definition 3.5.12 (The S-spectral radius of T'). For any T € B%1(V,) we define
the S-spectral radius of T' to be the nonnegative real number

rs(T) :=sup {|s| : s€os(T) }.

Theorem 3.5.13 (The S-spectral radius theorem). Let T € BY(V,,) and let r5(T)
be the S-spectral radius of T'. Then

re(T) = lim | T™|Y™.

m—o0

Proof. For every s € R"™! such that [s| > rg(T) the series Y., _,T™s =™ con-

verges in B,,(V,,) to the S-resolvent operator S~1(s,T'). So the sequence T s~1~™
is bounded in the norm of B,,(V,,) and
limsup |77 |*™ < rg(T). (3.20)

m—r o0

The Spectral Mapping Theorem implies that og(T™) = (0s(T))™, so we have
(rs(T))™ = rs(T™) < [T,

from which we get
rs(T) < liminf ||77|Y/™. (3.21)

From (3.20), (3.21) we have

rg(T) < liminf HTmHl/m < lim sup ||TmH1/m <rs(T). O
m—00 m—o00
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3.6 Projectors

We begin this section by proving a technical lemma that generalizes the S-resolvent
equation (3.6).

Lemma 3.6.1. Let T € BY(V,,). Set
Qun (s, T) := Tslm U+ 4 pglm=2v  p2glm=3le 1 pm=1 ;>
where s+ = s* if k>0, slFl+ =0 otherwise, and Qo(s,T) := 0. Then
TS (s, T) = S s, T)s™ — Quu(s,T), for all m=0,1,2,.... (3.22)

Proof. Formula (3.22) holds trivially for m = 0 and holds for m = 1 because it
follows from the S-resolvent equation (3.6).

We now suppose that (3.22) holds for the natural numbers less than or equal
m and we show that it holds for m + 1. By the induction step, we have

TS (s, T) = S (s, T)s™ — Quu(s,T),
so we can write:
TS s, T) =TS (s, T)s™ — TQun(s, T)
=TS (s, T)s™ — (Ts™ U+ 4.+ 1™)
=TS8 s, T)s™ 4+ Is™ — (Zs™ + Tsm U+ 4. 4+ 1™)
and, using the S-resolvent equation (3.6), we have
TS (s, T) = S (s, T)s™ ™ — Quia (s, T),

which is the formula we had to prove. O
Keeping in mind Remark 3.2.4, we can now prove the following theorem.

Theorem 3.6.2. Let T € BN (V,,), f € My 1y and assume that os(T) = o15(T)U
o9s(T) with dist(o15(T),025(T)) > 0. Let U be a T-admissible open set and let Uy,
Us open sets such that U = Uy UUs with Uy NUy = () and such that o15(T) C Uy
and o25(T) C Us. For I € S set ds; = —dsI and define

1
= / S~(s,T)dsr,
271 Jow,ncy)

/ S~ s, T)dsrs™, m=1,2,3,..., j=1,2
a(Ujﬁ(C[)

by
1
Tm =
J 2
Then P; are projectors and

(a) P+ Py =1,
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(b) ij :1}} Jj=12,
() T =T+ 19", m > 1.
Proof. Observe that P; = T]O and note that equation (3.22) for m = 0 is trivially
0g—1 _ g-1 0. g-1
1757 (s,T) = S™ (s, T)s” = S7(s,T). So we have
1 1
P? =P, / S~(s, T)ds; = / PjS™(s,T)dsy
J ’ 27T a(Ujﬁ(C[) 27T a(Ujﬂ(C[) !
1
= / S™(s,T)ds; = Pj.
271— a(Ujﬁ(C[)
To prove (a) we use the Cauchy integral theorem. Since U; U Uy = U, we have
1 1
/ S~Y(s, T)dss + / S~Y(s, T)dsy
271— B(Ulﬂ(C[) 27T B(UQQ(C[)
1

= / S_l(s7T) dsj.
21 Jowner)

1
/ S_l(s,T)dsI:I
27 Jowner)
this gives Py + P, =1 .

To prove (b) we recall the resolvent relation, T'S™(s,T) = S~!(s,T)s — Z,

Since

SO
1

1
tr=, [ rssmydsi— ) [ s T)s-Tds:
27 Jow;ncr) 27 Jow,ncr)
1
= / S~(s,T)dsrs =Tj.
27 Jow;ncr)
Now adding the relations T; = T'P; we get, using (a),
Ty +To=TPi+ TP, =T(P,+ P) =T,

which is part (¢) in the case m = 1.
To prove (c¢) for m > 2 observe that by Lemma 3.6.1 we get

S™Hs, T)s™ — T™S ™ (s, T) = Zsm U+ 4 pslm=2l+ 4 =1,

Now, for m > 2, consider

1
T™P; = / TS \(s,T) ds;

27 a(U,;NCr)
1

B / [Sil(s’T)sm o (Is[mﬂH +Tsm= 2+ 4+ Tmfl)} dsy
27 Jow,ncy)
1

= / Sil(s,T)dsIsm:ij.
27 a(U;NCr)

So adding T™P; = T{" and T™ P, = T4 and recalling (a) we get (c). O
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3.7 Functional calculus for unbounded operators and
algebraic properties

Let V be a real Banach space and T' = T + Z;”:l e;T; where T}, : D(T),) = V are
linear operators for ¢ = 0,1,...,n where at least one of the 7},’s is an unbounded
operator. Then we will say that the operator T is unbounded.

Definition 3.7.1. Let V' be a Banach space and let V,, be the two-sided Banach
module over R,, corresponding to V@ R,,. Let T, : D(T,) C V. — V be linear
closed densely defined operators for p =0,1,...,n. Let

DIT)={veV, : TveV,} (3.23)

be the domain of the operator T = Ty + Z;l:l e;T;. We denote by K(V,,) the set
of all operators T such that:

(1) D(T) == D(T,,) is dense in Vy,
(2) T — sZT is densely defined in V,,,
(3) D(T?) C D(T) is dense in V.
Observe that, when T' € KC(V},), the operator
—(T? — 2Re[s]T + [s|*T) 1 (T — sI)

is the restriction to the dense subspace D(T') of V,, of a bounded linear operator
defined on V,,. This fact follows by the commutation relation

(T? — 2TRe[s] + |s|?Z) " 'Tv = T(T? — 2TRe[s] + |s|*Z) 1w
which holds for all v € D(T) and for all s € R"*! such that
(T? — 2TRe[s] + [s|?Z) ! € B, (V,.), (3.24)
since the polynomial operator
T? — 2TRe[s] + s|*Z : D(T?) - V
has real coefficients. The operator
T(T? — 2TRels] + [s|*Z) " : V, — D(T)

is continuous for those s € R"*! such that relation (3.24) holds. We introduce the
following auxiliary operator.

Definition 3.7.2. Let us set

Qs(T) := (T? — 2TRels] + |s|*T) . (3.25)
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The S-resolvent set ps(T') of T is defined as
ps(T) = {s € R"™ | Qs(T) € Bu(Van)}
and the S-spectrum og(T) of T is defined by
os(T) =R\ ps(T).

Let us consider R"" = R*1 U {o0} endowed with the natural topology.

Definition 3.7.3. We define the extended S-spectrum as
os(T) :=o0s(T) U {c0}.

Definition 3.7.4. We say that f is an s-monogenic function at co if f(x) is an
s-monogenic function in a set D'(co,r) = {x € R*"*! : |x| > r}, for some r > 0,
and limy 00 f(X) exists and it is finite. We set f(00) to be the value of this limit.

Remark 3.7.5. We know that if T is a linear and bounded operator, then og(7T')
is a compact nonempty set, but for unbounded operators, as in the classical case,
the S-spectrum can be bounded (and even empty) or unbounded (and even all of
R"™*1). In the sequel we will assume that pg(T) # 0.

Observe that the operator
—(T? — 2T Re[s] + |s|*Z) (T — sI). (3.26)
is bounded from D(T) — D(T?) for all s € pg(T). We will consider the operator
in (3.26) extended to all V,, as in the following definition.
Definition 3.7.6. The S-resolvent operator for, s € ps(T), is defined by

S™Ys, T) == Qs(T)s — TQs(T) : V,, — D(T). (3.27)

Remark 3.7.7. Observe that for the unbounded case the S-spectrum is not neces-
sarily compact and nonempty, but the theorem on the structure still holds.

Theorem 3.7.8 (Structure of the spectrum). Let T € K(V},) such that ps(T) # 0.
If p € R belongs to os(T), then all the elements of the sphere [p] belong to
os(T). The S-spectrum os(T') is a union of points on the real axis and/or (n—1)-
spheres.

Proof. The proof is analogous to the one of the bounded case. It immediately
follows from the structure of the operator Qs(T). O

Theorem 3.7.9. Let T € K(V,,) such that ps(T) # 0. Then, for s € ps(T), the
S-resolvent operator defined in (3.27) satisfies the equation

S s, T)sv — TS s, T)v=Tv, for all v €& V. (3.28)
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Proof. Tt follows by direct computation. For s € pg(T') replace the S-resolvent
operator in the equation (3.28) we get

[Qs(T)s — TQs(T)]sv — T[Qs(T)s — TQs(T)|v = Zv, for allv e V,.

Observe that T[Qs(T)s — TQs(T)Jv € V,, since Qs(T') : V,, — D(T?) and by trivial
computations we get the identity

(T? — 2TRels] + [s|?*7)Qs(T)v = v, for all v € V,,,
which proves the statement. O

Definition 3.7.10. Let s € ps(T) # 0. The equation
S s, T)s =TS (s,T) =T (3.29)

will be called the S-resolvent equation.

Recalling the notion of T-admissible open set given in Definition 3.2.2; we
now give the following definition:

Definition 3.7.11. Let T € K(V,,). A function f is said to be locally s-monogenic
on os(T) if there exists a T-admissible open set U such that f is s-monogenic
on U and at infinity. We will denote by M, (1) the set of locally s-monogenic
functions on og(T).

Remark 3.7.12. As we have pointed out in Remark 3.2.4, the open set U related
to f € M,z (1) need not be connected. Moreover, as in the classical functional
calculus, U can depend on f and can be unbounded.

Definition 3.7.13. Let k € R and define the homeomorphism
3R SR

p=>&(s)=(s— k) !, ®(0)=0, ®&(k)=oc0.

Definition 3.7.14. Let T : D(T) € K(V;,) with ps(T) NR # 0 and suppose that
f € Moy (r). Let us consider

and the operator
A:= (T —kI)™', for some ke ps(T)NR.

We define
F(T) = 6(A), (3.30)
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Remark 3.7.15. Observe that, since k € R, we have that:
i) the function ¢ is s-monogenic because it is the composition of the function
f which is s-monogenic and ®~!(p) = p~! + k which is s-monogenic with real

coeflicients;
ii) if k € ps(T) NR we have that (T — kZ)~' = —S~1(k,T).

We now need a lemma.

Lemma 3.7.16. Let s, p € R"*! and k € R such that p = (s — k)~*. Then the
following identities hold

solp[* = k[p[* + po, (3.31)
pl?[s|* = k*|p|* + 2pok + 1, (3.32)
1
(2kp — 2sop + 1) pl? = —p~ 2 (3.33)
k2 o 2 k
polslpth oy (3.34)
p|?

Proof. Identity (3.31) follows from
Re[s — k] = Re[p™'] = Re[p|p| 2]
from which we have
s0 — k = po|p| 2.
Identity (3.32) follows from the chain of identities

sP?=ss=(k+p )(k+p~!)=(k+p )k+p")
2 1
=Kk Ap ) p P =Rk
p*  Ip|
To prove (3.33) we consider the chain of identities

P
Ip|?

-1

(2k —2s0+p~ 1) 5, =(2k—2s0+p Hp

= (2k—2s0+s—k)(s—k)=—(s—k)?=—-p 2

Finally we verify that (3.34) reduces to (3.32). Multiply (3.34) by p? on the right
to get
(k* = |s]*)[p*p + kp* _
Ip|?

and now multiply by p on the right to get

3
(k* —[s[*)pp + |p|2p2p = —sp (3.35)
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and from p = (s — k)~! we get that
sp=1+kp (3.36)
so from (3.35) and (3.36) we have
(k* = Is*)[p|* +kp+ 1+ kp =0

which is identity (3.32). O
We can now prove a crucial result.

Theorem 3.7.17. If k € ps(T)NR # () and @, ¢ are as above, then ®(o5(T)) =
os(A) and the relation ¢(p) := f(®~1(p)) determines a one-to-one correspon-
dence between f € Mgz )y and ¢ € My (a)-

Proof. From the definition of A we also have, for k € ps(T) NR # 0,
A= (T -kI)":V, = D(T),

A =T —kI:D(T) -V,

and
A= (T = 2kT + K°Z)"" : V,, > D(T?),

A2 =T? —2kT + k*T : D(T?) — V.
Observe that for p € ps(A)
Qp(A) == (A2 = 2pgA + |p|*T) ™" € B (Vi)

and
S7Hp, A) = Qp(A)p — AQp(A).
Let us consider the relation
—1
Qp(4) = [(T = k7)== 2po(T — KT) ™" + |p|*T ]

= (2= 2p0(T = kT) + [p (T ~ KTP)(T - k7))
= (T — kI)*[T — 2po(T — kI) + |p|*(T — kI)?] !
= IpI (7' = KZ)[1* = 2(k + po/[P*)T + (k2|p|? + 2pok + 1)/ IpZ) "

Using (3.31) and (3.32) we get
Qp(A) = [p| (T — kI)*[T? — 20T + |s]*Z] ' : Vi, = Vi,

that is
Qp(A) = |p| (T — kI)*Qs(T). (3.37)
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Since A is a bounded operator S7(p, A) = Qp(A)p — AQs(A) : V,, — V,,, we
have

S7p, A) = |p| AT = kI)*Qs(T)p — [p|~*(T — KT)Qs(T)
= |p| 2 [(T2 = 26T + K*T)Qu(T)p — (T — k)Qs(T)]

= |p|2[ (12 = 25T + |S2T)Qs(T)p

+ (<2KT + K + 250T — [s[)Qs(T)p — (T ~ KT)Qs(T)]

= |p|™?|Zp + Qs(T)[k*p — |s|’P + K]

— TQu(T)[2kp — 250p + 1]

k*p — [s]’p + &

X R R YoM R

Ip|?
Now we use the identities (3.33) and (3.34) to get

S p,A)=TIp ' — Qs(T)sp 2+ TQs(T)p 2

and finally
S7'(p,A)=Ip ' =S (s, T)p " (3.38)

So p € ps(A), p # 0, then s € pg(T).
Now take s € pg(T'). We verify that

S7Hs,T) = —AS™ (p, A)p
holds. Indeed, by (3.37) we get the qualities:

—AS™Hp, A)p = —A[Qp(A)p — AQp(A)]p
= —(T — kD)~ |[lp| (T — kI)*Qs(T)]p

— (T = kD)~ [[p| (T = K2)*Qs(T)] P

— —TQ4(T) + Qs(T)( |1§’|2 + k) =5"1(s,T).

So if s € ps(T), then p € ps(A4), p # 0.
The point p = 0 belongs to og(A) since S71(0,4) = A~ = T — kT is
unbounded. The last part of the statement is evident from the definition of ®. [

Bearing in mind Definition 3.7.14, we can state the following result:

Theorem 3.7.18. Let T € K(V;,) with ps(T)NR # 0 and suppose that f € My (1.
Then the operator f(T) = ¢(A) is independent of k € ps(T) NR. Let W be a T-
admissible open set and let f be an s-monogenic function such that its domain of
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s-monogenicity contains W. Set ds; = —dsI for I € S, then we have
1
F(T) = f(0) T+, / S™(s, T)dsyf(s). (3.39)
T Jo(wncCr)

Proof. The first part of the statement follows from the validity of formula (3.39)
since the integral is independent of k.

Given k € pg(T) NR and the set W we can assume that &k ¢ WNCy, VI € S
since otherwise, by the Cauchy theorem, we can replace W by W', on which f
is ss-monogenic, such that k ¢ w'nc 1, without altering the value of the integral
(3.39). Moreover, the integral (3.39) is independent of the choice of T € S, thanks
to the structure of the spectrum (see Theorem 3.2.1) and an argument similar to
the one used to prove Theorem 3.3.2.

We have that V N Cy := & (W N Cy) is an open set that contains og(T")
and its boundary (VN Cy) = ®~1(9(W NCy)) is positively oriented and consists
of a finite number of continuously differentiable Jordan curves. Using the relation
(3.38) we have

1 -1
d
27 /a(WmCI)S (s, T)ds1f(s)
1
= 7T — S (p. Ap? )\ p2d
2 /(,,(WCI) (P S (p,A)p )p pr¢(p)
1 -1 1 o
o d S~1(p, A)d
o oy o) [ s Aot
= —Z¢(0) + ¢(A).
Now by definition ¢(4) = £(T) and 6(0) = f(sc) we obtain
1 B o
o /0(Wnc,) S (s, T)dsrf(s) = =Zf(o0) + f(T). O

Theorem 3.7.19. Let f and g € M, 1y . Then
(f +9)(T) = f(T) + 9(T).
Let g € My 1y and let f € MUS(T). Then
(fo)(T) = f(T)g(T).

Proof. Observe that fg € M, ) thanks to Proposition 3.4.2. Let ¢(u) =
f(@ 1 (n)) and ¥(u) = g(®~*(p)). Thanks to Proposition 3.4.2 and Lemma 3.5.6
the product ¢ is s-monogenic. By definition we have



108 Chapter 3. Functional calculus for n-tuples of operators

By Theorem 3.4.6 we have
(@ +¢)(A) = o(A) +9(4),  (¢9)(A) = ¢(A)P(A)

so we get the statement. O

Theorem 3.7.20. Let T' € KK(V,,) with ps(T) "R # 0 and let f € N, (r). Then

os(f(T)) = flos(T)).

Proof. Let ¢(u) = f(® (n)). By the Spectral Mapping Theorem we have
d(o0s(A)) = 05(¢4(A)) and by Theorem 3.7.17 we also have ®(og(T) U {o0}) =
os(A). So we obtain

P(P(os(T) U{oc})) = ¢(os(A)) = os(d(A4)) = os(f(T)).
On the other hand

¢(D(0s(T)U{oo})) = (@1 (@(0s(T) U{oc}))) = flos(T)). O
We conclude the section with an example.

Example 3.7.21. Let 7' € K(V,,) such that T~! is a bounded operator. From the
definition of S-resolvent operator we get S~1(0,7) = —T ! so ps(T) contains 0.
Moreover the function f(x) = x~! is s-monogenic in a T-admissible open set U
such that 0 € U. Since f(x) =x~! — 0 as x — oo, by Theorem 3.7.18, we have

1
7' = / S~(s, T)dsrs™*
21 Jowner)

and thanks to Theorem 3.7.20 we obtain:

os(T™H ={\"1 . Neos(T) }.

3.8 Notes

Note 3.8.1. Further readings. The material in this chapter covers the contents of
[25], where the authors started the study of this functional calculus, and its further
developments due to Colombo and Sabadini, [15] and [18]. For further readings
see also [19], [22] and [20].

Note 3.8.2. Monogenic functions. A functional calculus based on the classical
notion of monogenic functions was extensively studied by Jefferies, McIntosh and
their coworkers. We mention here, with no claim of completeness, the works [60],
[61], [65], [66], [77], the book [62] and the references therein. In this note we
mention some of their ideas. To start with, we will quickly recall the basic notions
on monogenic functions.
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The well-known notion of monogenic functions with values in a Clifford al-
gebra (see [7]) is based on the so-called Dirac operator

Or = €j0n,. (3.40)
j=1

Remark 3.8.3. A variation of the Dirac operator is the Cauchy—Riemann operator:
8x = 8300 + 8307

whose nullsolutions f : U C R"™! — R,, on an open set U are still called (left)
monogenic. Moreover, in the literature, the Cauchy—Riemann operator is often
called a Dirac operator since it is possible to obtain it from the Dirac operator
in (3.40) by grouping the imaginary units and making some identifications in a
suitable way:.

In the sequel we will consider functions which are monogenic according to
the following definition:

Definition 3.8.4. A real differentiable function f : U C R*™' — R,, on an open set
U is called (left) monogenic in U if it satisfies Oxf(x) =0 on U.

Monogenic functions can be expanded into power series in terms of the build-
ing blocks z; = e;jzg — epxj, 1 < j < n: one has to consider these symmetric
polynomials and the sum of all their possible permutations for any given degree k
according to the following definition:

Definition 3.8.5. Homogeneous monogenic polynomials of degree k are defined as
1
Vit (x) = N DT (3.41)
Tl

where z; = xje0 — xoe; and the sum is taken over all different permutation of
Oy, Uy

Definition 3.8.6. Denote by X,, the surface area of the unit sphere in R" ™1 and by

X = x9 — 2 the conjugate of x = xo + x. For each x € R™"t!, define the function

G(-,x) as

1 w—X

¥, jw — x|t
Note that G(w,x), for w # x, is both left and right monogenic as a function

of w. Tt plays the role of the Cauchy kernel as shown in the following result (see

[7])-

Theorem 3.8.7. Let Q C R"™! be a bounded open set with smooth boundary OS)

and exterior unit normal n(w) defined for all w € Q. For any left monogenic
function f defined in a neighborhood of U of 2, we have the Cauchy formula

_ ), if xeq,
[ Gt = { 160 xS (349

G(w,x) = (3.42)
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where 1 is the surface measure of 0S).

Note 3.8.8. The monogenic functional calculus. The Cauchy formula (3.43) is the
starting point for the monogenic functional calculus. To this purpose, it is useful
to consider a suitable series expansion of the kernel G(w,x) = G, (x):

Gw(X) = Z Z Vel W[l g (w)

k20 \ (€1, 0x)
in the region |x| > |w| (see [7]) where, for each w € R" ™1 w # 0,
We, o (W) = (=1)*8,,, - . O, Gu(0)

and V%% (x) are defined in (3.41).

Keeping in mind the definition of Banach modules, see the beginning of this
chapter, consider now an n-tuple T' = (T3,...,T},) of bounded linear operator
acting on a Banach space X and let

L+ V21 Tyes]l. (3.44)
j=1
Let us formally replace z; by T; and 1 by the identity operator Z in the Cauchy
kernel series. It can be shown (see [65] Lemma 3.12, [62], Lemma 4.7) that

> Z vfl’ S (TYWy, e (W) (3.45)

k=0 \ ({1,..

7

where

1
VZ1,...,€k(T) = ol Z Tf1 .. 'Tfk’
T i,k

converges uniformly for all w € R™*! such that |w| > R, where R is given in
(3.44). We set the sum of the series (3.45) equal to G,,(T") which turns out to be
a bounded operator.

Remark 3.8.9. In [65] the so-called resolvent set is the set of w € R™ such that
the series (3.45) converges. The spectral set oc(T") of T is defined as the set
complement of the resolvent set.

An important result is the following (see [65]):

Theorem 3.8.10. Let (T4,...,T,) be an n-tuple of bounded self-adjoint operators.
Let Q) be a domain with piecewise smooth boundary whose complement is connected,
and suppose that oc(T) C Q. Then, for every f € M(Q) the mapping

f) = f(T) = | Gu(T)n(w)f(w)du(w)

oQ

defines a functional calculus.
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Remark 3.8.11. Assume that T is an n-tuple of bounded self adjoint operators,
and € is an open set with piecewise smooth boundary with connected complement
containing the spectral set oc(T'). Then, see [65], the map in Theorem 3.8.10
defines a functional calculus for functions which are monogenic on 2. This fact is
guaranteed by a Runge type approximation theorem.

In [62] the definition of spectrum is different:

Definition 3.8.12. The monogenic spectrum ~v(T') of the n-tuple T is the comple-
ment of the largest connected open set U in R™* 1 in which the function G (T)
defined by the series above is the restriction of a monogenic function with domain
U.

Let (T,¢) := Z?Zl T;¢; and suppose that o((T,€)) is real for all £ € R”
(here o denotes the spectrum in the classical sense, i.e., the set of singularities of
(AZ — (T,€))~1). Then we have the following result (see [62]):

Theorem 3.8.13. Let T = (T1,...,T,) be an n-tuple of noncommuting bounded
linear operator acting on a Banach space X and suppose that o((T,£)) C R for all
& € R™. Then the B, (X,,)-valued function G, (T) defined in (3.45) is the restriction
to the region

D= {weR™ : |w|>1+v2)|Y Tiell}

j=1
of a left and right monogenic function on R"F1\R".

This result guarantees that G, (T) is monogenic outside a ball. However,
G,(T) can be monogenic in a larger set containing I'. Denote with the same
symbol G, (T) its maximal monogenic extension and let € be the union of all
open sets containing the open set I' on which is defined a two-sided monogenic
function whose restriction on I' equals the series G, (7). Then the extension is
unique because the domain 2 is connected, contains I' and the spectrum is a
subset of R” and hence it cannot disconnect a set in R*+1.

Let T = (T4,...,T,) be an n-tuple of noncommuting bounded linear oper-
ators acting on a Banach space X and £ € R™. Suppose that o((T,¢)) is real for
all £ € R™. Let Q C R™"*! be a bounded open neighborhood of «(7") with smooth
boundary and exterior normal n(w), for all w € Q. Let f be a monogenic function
defined in an open neighborhood of Q. Define the operator f(7T) by

f(T) = | Gu(T)n(w)f(w)du(w)- (3.46)
o

Denote by M(~(T),R,,) the right module of monogenic functions defined in a
neighborhood of v(T) in R™*1,

Definition 3.8.14. The map [ — f(T), f € M(v(T),R,,) is called monogenic
functional calculus.
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The map defined above is a right-module homomorphism.

Remark 3.8.15. Let p¢ be a complex-valued polynomial, £ € R™ and consider

pg($1§1 +...+ xngn)~

Then we define
pe(Ti, ..., Ty) == pe(Ti&i + ...+ Tn&p).

Note that the function G, (T") admits a plane wave expansion as follows

Proposition 3.8.16. Let w € R™"!, w = wg+w, wo # 0. Then
(=)t sgn(wo)" / (I+is)((WwZ —T,8) —wps)~ " ds.
2 2 Sn—1
(3.47)

When the condition o((T,£)) € R is satisfied for all £ € R™, then v(T') C R"
is the complement in R™*! of the points w at which the function defined by the
integral above is continuous. In the case of commuting bounded linear operators

the spectrum can be determined directly as shown in the next result (see Theorem
3.3 and Corollary 3.4 in [77]).

Gy (T) =

Theorem 3.8.17. Let T = (T1,...,T,) be a n-tuple of commuting bounded linear
operator acting on a Banach space X and suppose that o(T;) C R for all j =
1,...,n. Then v(T) is the complement in R™ of the set of all A € R™ for which
the operator Z?zl()\jI — A;)? is invertible in B(X) (equivalently: (AN — T) is
invertible in End(X)).



Chapter 4

Quaternionic Functional
Calculus

The first section of this chapter collects the main results on the theory of slice
regular functions. Similarly to what happens in the theory of regular functions
in the sense of Cauchy—Fueter, whose results sometimes resemble the analogous
results for monogenic functions, also for slice regular functions we have that some
statements and their proofs mimic those we proved in Chapter 2. They are re-
peated here for the reader’s convenience, especially because the notation in the
quaternionic case might be simpler. Note that the richer structure of quaternions
allows results which are not necessarily true for s-monogenic functions. The re-
sults that are specific to the quaternionic case or those for which the proofs are
significantly different or simpler will be followed by their proofs.

4.1 Notation and definition of slice regular functions

The Clifford algebra over two units Ry is the algebra of quaternions. It is usually
denoted by H in honor of Hamilton who introduced them in 1843. Instead of the
imaginary units e, es and ejes, the imaginary units in H are denoted by i, j and
k respectively and an element in H is of the form ¢ = zg + ix1 + jzo + kaxs, for
zy € R. The real algebra H is a skew field and there are no higher-dimensional
Clifford algebras which are division algebras. The real part, imaginary part and
modulus of a quaternion are defined as

Re g = xo, Im q = iz + jao + kxs, |q\=\/x3+xf+x§+x§.
The conjugate of the quaternion ¢ = zg + ix1 + jxo + kxs is defined by
g=Req—Imqg=2x¢p—1ix1 — jorg — kxg
F. Colombo et al., Noncommutative Functional Calculus: Theory and Applications of Slice 113

Hyperholomorphic Functions, Progress in Mathematics 289, DOI 10.1007/978-3-0348-0110-2_4,
© Springer Basel AG 2011
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(compare with Definition 2.1.11) and it satisfies

lql = Va4 = Vg

The inverse of any nonzero element ¢ is given by

1 q
=,
lq|?

Notice that a generic element ¢ of H can be written as the linear combination of
two complex numbers:

q = (o + x17) + (22 + x37)]. (4.1)

By identifying an element in H with pairs of complex numbers, each in the complex
plane R+Ri, it is possible to define the algebra of quaternions using the well-known
Cayley—Dickson process, see [70]. From this point of view, a quaternion ¢ is a pair
of complex numbers (a,b) endowed with an operation of addition componentwise
and with the multiplication defined by

qp = (a,b)(c,d) = (ac — db, ad + bc)

where a denotes the complex conjugate of a.
Let us denote by S the unit sphere of purely imaginary quaternions, i.e.,

S = {q = i1 + jao + kas such that 2% + 22 + 22 = 1}.

Notice that if I € S, then I? = —1; for this reason the elements of S are also called
imaginary units. Note that S is a 2-dimensional sphere in R*. Given a nonreal
quaternion g = xg + Img = xo + I|Img|, I = Img/|Img| € S, we can associate to it
the 2-dimensional sphere defined by

[q] = {zo + I|Imgq] | I € S}.

This sphere has center at the real point xy and radius |Img|. In this chapter we
will denote an element in the complex plane R + IR by x + Iy.

Definition 4.1.1. Let U be an open set in H. A real differentiable function f: U —
H is said to be slice left reqular (or s-regular for short) if, for every I € S, its
restriction f; to the complex plane C; = R + IR passing through the origin and
containing 1 and I satisfies

Orf(x+Ty) = ; <8i+1(§y) frlx +1Ty) =0,

on UNCy. We will denote by R(U), or by R*(U) when confusion may arise, the
set of left s-reqular functions on the open set U.
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Analogously, a function is said to be right slice reqular (or right s-regular for
short) if

0 0
(F101) (@ + Iy) = | ( 2 frla+ 1)+ aymxuy)!) o,

2

on U N Cyr. We will denote by RE(U) the set of right s-regular functions on the
open set U.

Remark 4.1.2. Tt is easy to verify that the (left) s-regular functions on U C H
form a right H-vector space. The right s-regular functions on U C H form a left
H-vector space.

An immediate consequence of the definition of s-regularity is that the mono-
mial ¢"a, with a € H, is s-regular and so all polynomials with quaternionic coeffi-
cients on the right are s-regular. Obviously, polynomials with quaternionic coeffi-
cients on the left are right s-regular.

We define the I-derivative of f at ¢ by

Orfr(z + Iy) := ; (;ﬂcf[(erIy) Iaayfz(erIy)) ,

and the right I-derivative by

oo+ 19) =y (g fila 4 1) = ) e+ 1)1 ).

We are now ready to give the following definition:

Definition 4.1.3. Let U be an open set in H, and let f : U — H be an s-reqular
function. The slice derivative (in short s-derivative) of f, Osf, is defined as follows:

or(f)e) faq=x+1Iy, y#0,
(N =4 of
ox

Notice that the definition of s-derivative is well posed because it is applied
only to s-regular functions for which

(x) ifg=x €R.

af(erIy):—Ia

P ayf(:nJrIy) VI eSs,

and therefore, analogously to what happens in the complex case,

Os(f)(x + Iy) = 01(f)(x + Ty) = 0x(f)(z + Iy).

Note that if f is an s-regular function, then its s-derivative is still regular because

01(0s f(x + 1y)) = 0s(01f(x + Iy)) =0, (4.2)
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and therefore o f
Ol fla+1y) =, - (@ +1y).

We will now identify a class of domains that naturally qualify as domains of
definition of regular functions. Other reasons for this definition will appear in the
sequel.

Definition 4.1.4. Let U C H be a domain in H. We say that U is a slice domain
(s-domain for short) if UNR is nonempty and if UNCy is a domain in Cy for all
Ies.

In order to study s-regular functions, we will need a representation of the
restriction of an s-regular function as a pair of holomorphic functions. To do so,
we need a preliminary, simple result which is the quaternionic version of formula
(2.2):

Proposition 4.1.5. Let I and J be two elements in S. Then their quaternionic
product I.J can be computed through the following formula:

IJ=—(I,J)+1NJ.

Two elements I and J in S are orthogonal if and only if (1, J) = 0. The previ-
ous proposition shows, in particular, that the product of two orthogonal elements
of S lies in S as well. We will use this simple fact to build orthogonal bases in S.

Proposition 4.1.6. Let I and J be two orthogonal elements in S, and let K = I.J.
Then:

(1) K =1J=—JI is an element of S,
(2) K is orthogonal to both I and J,
(3) JK=1=-KJ and KI =J = —IK.

Proof. (1) Since I and J are orthogonal, and I A J = —J A I, the result is an
immediate consequence of the previous proposition.

(2) Using the arguments above, we obtain
(K. Iy = (IJ,I) = (I A J,I) = 0.
(3) By a repeated application of Proposition 4.1.5 we obtain
JK = J(IJ) = J(—(I,J) + T A J)
= (LY +INTY+ T A (=L, J) +IAJ).
The orthogonality of I and .J implies
JK = —(J,INJT)+JA(IAJ).

Now note that (J,I A J) = 0 because I A J is orthogonal to J, and that, by the
same reason, I.J = I A J. Thus to conclude the proof we only need to show that
JAK = I. This is an immediate consequence of the orthogonality of [ and J. O
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This result shows that we can use I, J, and K as a basis for S, and that,
given any element [ in S, we can always construct such a basis, though not in a
unique way. We now state the Splitting Lemma:

Lemma 4.1.7 (Splitting Lemma). If f is an s-regular function on an open set
U, then for every I € S, and every J € S, perpendicular to I, there are two
holomorphic functions F,G : U NCy — Cy such that for any z = x + 1y, it is

f1(z) =F(z) + G(2)J.

Proof. Let K € S be such that I, J, K is an orthogonal basis and write f;(z+1y) =
flea+1y)as f=fo+ 1f1+ Jfzs+ K fs. Since f is s-regular, we know that

0 0
(8:5 +Iay)f1(x+1y)f0.
This expression becomes
dfo  Of dfo , Oh df2  0fs fs  0f2
— 1 — K =0.
oz 8y+(8y+8x)+J(8x 8y)+ (8x+8y) 0

Therefore the functions fo+ I f1 and fo + I f5 satisfy the Cauchy—Riemann system
and thus they are both holomorphic. In particular, if we set fo + If1 = F, and
fo+ Ifs =G, we obtain that

fr(x + Iy) = F(x + Iy) + G(x + 1y)J,

and the lemma follows with z = = + Iy. O

4.2 Properties of slice regular functions

As we saw previously, polynomials in ¢ are s-regular. In this section we will show
that in fact power series are s-regular as well and that every s-regular function
defined on an s-domain can be expanded into power series into a small open ball
centered at a real point of the domain.

The Splitting Lemma 4.1.7 shows that every s-regular function f on an s-
domain U can be written on U NCy as f = F' + GJ, with J orthogonal to I and
F', G holomorphic on the plane Cy; it is therefore obvious that f admits, on that
plane, a series expansion in powers of z. Such an expansion can be used to provide
a series expansion for f in powers of ¢q. The next few results are stated for s-regular
functions on balls

B=B(0,R)={qeH]| |¢| <R},

centered at the origin with positive radius R. It is easy to see how the proofs can be
modified to account for the case of balls with center on any point on the real axis.
Unlike the complex case, however, it is not possible in general to extend the theory
to a ball centered in any point of the quaternionic space. Indeed, f(g) = (¢ — p)"
is not regular unless p is real.
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Theorem 4.2.1. A function f : B — H is s-reqular if, and only if, it has a series

expansion of the form 5
1 13
fo)=> ¢ T 0)

n! 0xn
n>0

converging on B. In particular if f is s-reqular, then it is infinitely differentiable
on B.

Corollary 4.2.2. Let f : B — H be s-reqular. If there exists I € S such that
f(Cyp) CCy, then the series expansion of f

floy=> q" A0

n! Qxn
n>0

has all its coefficients in Cy. If, in particular, there are two different units I, J € S
such that f(Cy) C Cy and f(Cy) C Cy, then the coefficients are real.

The previous results extend to the case of an s-domain as follows:

Corollary 4.2.3. Let f be s-reqgular on an s-domain U. Then for any real point pg
i U, the function f can be represented by power series

@) =3 (a—poy" o

(po)
!
= n! Ox™

on the ball B(po, R) where R = Ry, is the largest positive real number such that
B(po, R) is contained in U.

The power series expansion is the key ingredient in proving the analogs, for
s-regular functions, of many well-known results from the theory of holomorphic
functions in one variable.

Theorem 4.2.4 (Identity Principle). Let f : U — H be an s-regular function on an
s-domain U. Denote by Zy = {q € U : f(q) = 0} the zero set of f. If there exists
I €8S such that C; N Zy has an accumulation point, then f =0 on U.

This result immediately implies the following corollary.

Corollary 4.2.5. Let f and g be s-regular functions on an s-domain U. If there
exists I € S such that f = g on a subset of U N Cy having an accumulation point
m UNCy, then f =g everywhere on U.

We will now prove a natural analog, for s-regular functions, of the Cauchy
representation formula. In order to state it appropriately, we will adopt the fol-
lowing notation. If ¢ € H, we set

Im(q)
I, =< [Im(q)|

any element of S  otherwise.

€S if Im(q) # 0,
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It is immediate that for any nonreal quaternion ¢ € H\R, there exist, and are
unique, z,y € R with y > 0, and such that ¢ =z + I,;y.

We can now prove an integral representation formula, which is of limited
validity, but it is enough to prove several results.

Theorem 4.2.6 (Cauchy formula, I). Let U C H be an axially symmetric s-domain
and q € U. Let f : U — H be an s-regular function, and suppose v C Cy, be a
continuously differentiable Jordan curve surrounding q. Then

£a) = o, [ (€= a7 dG, £(0)

where d(r, = —d(ly.

Proof. Notice that for any ¢ belonging to the plane Cj, containing ¢, ¢ # q we
have the equality

C—q)td¢=d¢(¢C—q) "

The result now follows immediately from the Splitting Lemma and the classical
Cauchy formula, as indicated by the following equalities:

e [ 076,50 = [ (€0t 1,0

= 5 [ (€07 (FIO +60)) (43)

=g [0 O+ ([0 a0,60) 1
= Fg) +Glg)J = f(q)- O

As an immediate consequence we obtain:

Theorem 4.2.7 (Cauchy Estimates). Let U C H be an axially symmetric s-domain
and let f : U — H be an s-reqular function. Let po € U NR, I € S, and r > 0 be
such that
Ar(po,r) = {(z + Iy) : (x —po)* +y* < r?}

is contained in UNCy. If My = max{|f(q)| : ¢ € A1 (po,r)} and if M = inf{Mj :
I € S}, then

1

n!

M
, n > 0.

= n

8nf
9xn bo

We now have all the tools needed to prove the analog of the Liouville theorem.

Theorem 4.2.8 (Liouville). Let f : H — H be an entire regular function (i.e., an
s-reqular function defined and s-reqular everywhere on H). If f is bounded by a
positive constant M, then f is constant.
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We now show how to generalize the theory of Laurent series to the quater-
nionic case, and we show how the domain of convergence of such series ), ¢"ay,
is a four-dimensional spherical shell A(0, Ry, Ry) = {q € H: Ry < |q| < R2}. More
precisely one can prove, just as in the complex case, the following result.

Lemma 4.2.9. Let {ay tnez C H. There exist Ry, Ry with 0 < Ry < Ra < 00 such
that

(1) the series Y, cnq"an and Y g "a_, both converge absolutely and uni-
formly on compact subsets of A = A(0, Ry, R2);

(2) for all g € H\ A, either Y onend"n o1 Y cnq May, diverge.
As a consequence we have

Theorem 4.2.10. Let ) ., q"ay, be a series having domain of convergence A =
A(0, Ry, Ro) with Ry < Ry. Then f : A - H ¢ +— ZnEZ q"a, s an s-reqular
function.

Proof. The proof follows by direct computation from the definition of s-regularity.
O

We will now prove that all s-regular functions f : A(0, Ry, Re) — H admit
Laurent series expansions.

Theorem 4.2.11 (Laurent Series Expansion). Let A = A(0, Ry, R2) with 0 < Ry <
Ry < 400 and let f: A — H be an s-regular function. There exists {an tnecz C H

such that
fl))=> q"an (4.4)
nez

for all q € A.

Proof. Choose a complex plane C; and consider the annulus we get by intersecting
Cr with the shell A:

A = A[(O,R1,R2) = {Z cCr: R < |Z| < RQ}.

Consider the restriction f; = f|A1 and choose J € S,J L I. By the Splitting
Lemma there exist two holomorphic functions F,G : Ay — Cj such that f; =
F+4GJ. Let F(z) = ), cz 2" and G(2) = ), o7 2" B, be the Laurent series
expansions of the functions F' and G (which have coefficients av,, 8, € Cy). If we
let a, = au, + BpJ for all n € Z, then

fr(z) = Z "an

nez

for all z € A;. Now consider the quaternionic Laurent series ) ., ¢"ay, which
converges in A by Lemma 4.2.9 and which defines an s-regular function on A by
theorem 4.2.10. The statement now follows by the Identity Principle. O
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4.3 Representation Formula for slice regular functions

We begin by stating the analog of the representation formula in the case of quater-
nions.

Definition 4.3.1. Let U C H. We say that U is axially symmetric if, for all x+1y €
U, the whole 2-sphere [x + Iy] is contained in U.

Theorem 4.3.2 (Representation Formula). Let f be an s-reqular function on an
axially symmetric s-domain U C H. Choose any J € S. Then the following equality
holds for all q =2+ Iy € U:

Pt Ty) = ) [F+ Ty) + Flo = Ty)] + 1[0~ T9) — fa+ )] (45)

2
Moreover, for all x,y € R such that x +Sy C U, there exist o, 5 € H such that for
all K € S we have

o= 1{f(x+yK)+f(x7Ky)} and @ := !

2 [ KU = Ky)— flat Ky 4.6)

Remark 4.3.3. The proof of this result follows the same lines of the corresponding
result for s-monogenic functions, see Theorem 2.2.18; analogously, and with the
same technique one can prove the version of the representation theorem with two
different imaginary units.

Some immediate consequences are the following:

Corollary 4.3.4. Let U C H be an azially symmetric s-domain, D C R? such that
x+ Iy € U whenever (x,y) € D and let f : U — H. The function f is an s-regular
function if and only if there exist two differentiable functions a,3 : D C R? —
R,, satisfying a(z,y) = a(z, —y), B(z,y) = —B(x, —y) and the Cauchy—Riemann
system

Orov — 0y B =0,
{ 0.8 + 0ya =0, (47)
such that
flx+1y) = a(z,y) + 18(x,y). (4.8)

Corollary 4.3.5. An s-regular function f : U — H on an axially symmetric s-
domain is infinitely differentiable on U.

Corollary 4.3.6. Let U C H be an azially symmetric s-domain and let f : U — H
be an s-regular function. For all x,y € R such that x + Iy € U there exist a,b € H
such that

fle+1Iy)=a+Ib (4.9)

for all I € S. In particular, f is affine in I € S on each 2-sphere [x + Iy] and the
image of the 2-sphere [x + Iy] is the set [a + Ib].
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Proof. This is a direct application of Theorem 4.3.2. d

Corollary 4.3.7. Let U C H be an azially symmetric s-domain and let f : U — H
be an s-regular function. If f(z + Jy) = f(x + Ky) for I # K in' S, then f is
constant on [z + Iy|. In particular, if f(x+ Jy) = f(x+ Ky) =0 for [ # K in S,
then f vanishes on the entire 2-sphere [x + Iy].

Lemma 4.3.8 (Extension Lemma). Let J € S and let D; be a domain in Cy,
symmetric with respect to the real axis and such that Dy NR # (. Let Up, be the
axially symmetric s-domain defined by

Up, = U (x + Iy).

z+JyeD j,I€S

If f+ Dy — H satisfies 85 f = 0, then the function f : Up, — H defined by

flo+ 1y = [ £+ ay)+ fa = )] + 1, [0~ ) - fe+ Iy)] (@4.10)

is the unique s-reqular, infinitely differentiable extension of f to Up,. In partic-
ular any holomorphic function f : Dj — C; has a unique s-regular, infinitely
differentiable extension to Up,. The function f will be often denoted by ext(f).

If an s-regular function f is the extension of a holomorphic function of Cy,
for some I € S, then the following result holds:

Proposition 4.3.9. Let U C H be an azially symmetric s-domain and let f : U — H
be an s-regular function. Suppose that there exists an imaginary unit J € S such
that f(Cy) C Cy. If there exists an imaginary unit I € S such that I ¢ C; and
that f(xo + yol) =0, then f(xo+ Lyo) =0 for all L € S.

Proof. We only have to consider the case yo # 0. By formula (4.3.2) we have, on
UnCy,

)+ 1@ )] 1 [ ) fa )

f(erIy)z2

in particular f(zo + Iyo) = 0 implies that

1 1
0=, [Fwo +w0T) + Flzo = Jyo)| + 1 [J1F (20 = Tyo) = Flwo + Tuo)]
and since f(C;) C C; and 1 and I are linearly independent on C; we get

f(wo + Jyo) = —f(xo — Jyo), f(wo — Jyo) = f(xo + Jyo)

whence f(zo — Jyo) = f(xo+ Jyo) = 0. Again, the conclusion follows from Corol-
lary 4.3.7. g
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This result has an important consequence concerning the zeros of holomor-
phic functions defined on domains intersecting the real axis and symmetric with
respect to it. Since any such holomorphic function f can be uniquely extended
(see the Extension Lemma 4.3.8) to an s-regular function over quaternions, the
question of distinguishing which zeros of f will remain isolated after the extension,
and which will become “spherical”, naturally arises. The answer is in the following
proposition.

Proposition 4.3.10. Let J € S and let Dy be a domain in Cjy, symmetric with
respect to the real axis and such that DyNR # (). Let Up, be the axially symmetric
s-domain defined by

Up, = U (x + Sy).

z+JyeD s

Let f: Dj — C; be a holomorphic function and f: Up, — H be its s-regular
extension. If f(xo 4+ Jyo) = 0, for yo # 0, then the zero (xo + Jyo) of f is not

isolated, or equivalently f(xg 4+ Lyo) =0 for all L €S, if, and only if,
f(zo+ Jyo) = f(zo — Jyo) = 0.

Proof. The proof easily follows from Corollary 4.3.7. O

The first part of the following result can be proved as in Theorem 2.5.14, or
it can be given a much simpler and more intuitive proof which exploits the specific
nature of H and of s-regular functions.

Theorem 4.3.11 (Structure of the Zero Set). Let U C H be an azially symmetric
s-domain and let f: U — H be an s-regular function. Suppose that f does not
vanish identically. Then if the zero set of f is nonempty, it consists of the union
of isolated 2-spheres and/or isolated points.

Proof. Let qo = xo + Jyo be a zero of f. By Corollary 4.3.4 we know that f(x +
Iy) = oz, y) + 18(x,y), thus

f(q0) = f(zo + Jyo) = (w0, y0) + JB(x0,y0) = 0.

If B(z0,y0) = 0, then also a(xg,yo) = 0 so f(xzo + Iyo) = 0 for every choice of an
imaginary unit I € S thus the whole sphere defined by ¢o is a solution of f(g) = 0.
If 5(xo,y0) # 0, then it is an invertible element in H. In this case, a(zg,yo) # 0
otherwise we get JB(xo,y0) = 0 and so J = 0 which is absurd. Since the inverse
of B(xo,yo) is unique, the element J = —a(xo,y0)3(z0,%0) " is also unique. If
J €S, then ¢ is the only solution of f(g) = 0 on the sphere defined by ¢g. The
fact that the spheres are isolated can be proved as in Theorem 2.5.14, using the
notion of symmetrization of an s-regular function (see Definition 4.3.18). O

Let U C H be an axially symmetric s-domain and let f : U — H be an
s-regular function. For any I, J € S, with I L J, the Splitting Lemma guarantees
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the existence of two holomorphic functions F,G : U N C; — Cj such that, for all
z=a+1IyeUNCy,
f1(z) =F(z)+ G(2)J.

Let us define the function ff: UNC; — H as
fi(z) = F(z) — G(2)J. (4.11)

Then f£(z) is obviously a holomorphic map and hence its unique s-regular exten-
sion to U defined, according to the Extension Lemma 4.3.8, by

f9(q) = ext(f)(q),

is s-regular on U.

Definition 4.3.12. Let U C H be an azially symmetric s-domain and let f : U — H
be s-regular. The function

fq) = ext(f7)(q)
defined by the extension (4.11) is called the s-regular conjugate of f.

The s-regular conjugate of a function f, which in general does not coincide
with the conjugate f, has peculiar properties that will play a key role in the sequel.

Proposition 4.3.13. Let f : B(po, R) — H be an s-regular function on an open
ball in H centered at a real point pg. If

fl@) =" (q—po)"an,

n>0

then
£@) = (= po)"an.

n>0

Proof. We will suppose without loss of generality that po = 0. By Corollary 4.2.3,
given any I € S, the coefficients of the power series expansion of f are obtainable
as the coefficients of the power series of f;. For all z = x4 Iy € C; N B(0, R) and
J €S with J L I we get

fi:) = P+ 60 =3 7 (O 0+ 90 00) = 30 2 aur0)

n>0 n>0

and hence

fi(z) = F(2) = G(2)J =

which proves the assertion. O
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Remark 4.3.14. As it can be expected, the product of two s-regular functions is not,
in general, s-regular. In the case of s-regular polynomials, i.e., polynomials with
quaternionic coefficients on the right, one can exploit the standard multiplication
of polynomials in a skew field (see, e.g., [71]) to obtain an s-regular product. This
product extends naturally to s-regular power series as

(anan) * (Z q”bn> = Z q"aibn_i, (an, by, € H) (4.12)

n>0 n>0 ,n>0
and is extensively used when studying the properties of their zero sets.

In the case of s-regular functions defined on axially symmetric s-domains,
inspired by the case of power series, we will define an s-regular product as follows.
Let U C H be an axially symmetric s-domain and let f,g : U — H be s-regular
functions. For any I, J € S, with I 1 J, the Splitting Lemma guarantees now the
existence of four holomorphic functions F,G, H, K : U N C; — C; such that for
al z=x+IyecUNCy,

fi(z) =F(z)+G(z)J  g1(z) = H(z) + K(2)J.
We define the function f; *g;: UNC; — H as
frxg1(z) = [F(2)H(z) — G(2)K(2)] + [F(2)K(2) + G(2)H(2)]J. (4.13)

Then f; x gr(z) is obviously a holomorphic map and hence its unique s-regular
extension to U defined, according to the Extension Lemma 4.3.8, by

[ x9(q) = ext(f1 *gr)(q),

is s-regular on U.

Definition 4.3.15. Let U C H be an azially symmetric s-domain and let f,g: U —
H be s-reqular. The function

[ x9(q) = ext(fr xgr)(q)

defined as the extension of (4.13) is called the s-regular product of f and g. This
product is called the x-product or the s-reqular product.

Remark 4.3.16. It is immediate to verify that the s-product is associative, dis-
tributive but, in general, not commutative.

Remark 4.3.17. Let H(z) be a holomorphic function in the variable z € C; and
let J € S be orthogonal to I. Then by the definition of *-product we obtain
JxH(z)=H(z)J.

Using the notion of x-multiplication of s-regular functions, it is possible to
associate to any s-regular function f its ”symmetrization” also called ”normal
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form”, denoted by f°. We will show that all the zeros of f° are spheres of type
[x + Ty] (real points, in particular) and that, if 2 + Iy is a zero of f (isolated or
not), then [z + Iy] is a zero of f*.

Let U C H be an axially symmetric s-domain and let f : U — H be an
s-regular function. For any I,J € S, with I L J, the Splitting Lemma guarantees
the existence of two holomorphic functions F,G : U NC; — C; such that, for all
z=x+IyceUNCy,

fr(z) = F(z) + G(2)J.

We define the function f7 : UNC; — Cy as

Ii=fr*fi = (F(2) + G(2)J) * (F(2) — G(2)J) (4.14)
=[F(z2)F(2) + G(2)G2)]+ [-F(2)G(2) + G(2)F(2)]J
=F(2)F(z) + G(2)G(z) = fi = [1-

Then f7 is obviously holomorphic and hence its unique s-regular extension to U
defined by

fa) = ext(f7)(q)
is s-regular.

Definition 4.3.18. Let U C H be an axially symmetric s-domain and let f : U — H
be s-reqular. The function

f(q) = ext(f7)(q)

defined by the extension of (4.14) is called the symmetrization (or normal form)

of f.

Remark 4.3.19. Notice that formula (4.14) yields that, for all I € S, f5(UNCy) C
Cy.

The symmetrization process is well behaved with respect to the x-product,
conjugation and reciprocal:

Proposition 4.3.20. Let U C H be an azially symmetric s-domain and let f, g :
U — H be s-regular functions. Then

(F#9)" = g° % f©

and
(f*x9) = [f9"=g°f" (4.15)

Proof. Tt is sufficient to show that (f * ¢g)¢ = ¢° * f°. As customary, we can
use the Splitting Lemma to write on U N Cy that fr(z) = F(z) + G(z)J and
91(z) = H(z) + K(2)J. We have

frxg1(2) = [F(2)H(z) = G(2) K(2)] + [F(2) K (2) + G(2)H(2)]J
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and hence
(fr=g1)(z) = [F(2) H(2) = G(2)K(2)] - [F(2)K(2) + G(2)H(2)]J.
We now compute
95() % F5(=) = (H(2) = K(2)J) * (F(3) = G(2)J)
=H(Z)«F(z)— H(Z)*xG(2)J — K(2)J « F(z) + K(2)J « G(z)J

and conclude by Remark 4.3.17. O

Proposition 4.3.21. Let U C H be an axially symmetric s-domain and let f :
U — H be an s-regular function. The function (f*(q))~1 is s-reqular on U \ {q €

H | f*(q) = 0}.

Proof. The function f*® is such that f*(U NC;) C Cy for all I € S by Remark
4.3.19. Thus, for any given I € S the Splitting Lemma implies the existence of a
holomorphic function F': UNCy — Cy such that f7(z) = F(z) for all z € UNCy.
The inverse of the function F' is holomorphic on U N C; outside the zero set of F.
The conclusion follows by the equality (f7)~! = F~1. O

Proposition 4.3.22. Let U C H be an azially symmetric s-domain and let f, g :
U — H be s-regular functions. Then

fxg(q) = fla) 9(f(@) " "af(q)), (4.16)

forallqeU.

Proof. Let I be any element in S and let ¢ = « + Iy. If f(x + Iy) # 0, simple
computations show that

fla+Iy) Y@+ Iy) f(@+ Iy) =z +yf(z+ Ty) ' If(x+ Iy)

with f(z+ Iy) ' f(x + Iy) € S. Using now the representation formula (4.3.2) for
the function g, we get

9(f(@ " af(@) = gle+yf(z+ Iy) ' If(z + Iy))
= ;{g(af +1y) + g(x — Iy) — f(z + Iy) ' If(z + Iy)Ig(z + Iy) — Ig(z — Iy)]}
and

U(q) == f(@)g(f(a) " af(q))
= ;{f(x+fy)[g(rf+fy) +g(x —1y)| — I f(z + Iy)lg(z + Iy) — Ig(z — Iy)l}.

If we prove that the function f(q)g(f(q) tqf(q)) is s-regular, then our assertion
will follow by the Identity Principle since formula (4.16) holds on a small open ball
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of U centered at a point on the real axis (see Proposition 4.2.3). Let us compute,
with obvious notation for the derivatives:

B)
axw(“h’)

= Uela+ Iylg(e+Ty) + gla—Iy)] — Ifulo+ Ty) To(a +1y) — To(a—Ty)]}
b @ TY)lge(e+Ty) + ez —Ty)] L (a4 Iy)Tga(x+Ty) ~ Tgu (2~ Ty)])

and

0
Iayw(x + Iy)

= ;{Ify(ffﬂy)[g(xﬂy) +g(z—1Iy)| + fy(x+1y)[Ig(x+1y) — Ig(a—!1y)]}
+ ;{If(rvﬂy)[gy(ffﬂy) + gy(x—1y)| + f(z+1y)[lgy(x+1y) — Igy(x—1y)]}.
By using the three relations

felx+ Ty) + 1 fy(z + Iy) = go(x + Ty) + Lg,(z + Iy)
= go(x — Iy) — Igy(x — Ty) =0,
we obtain that

0 0
(896 + Iay)z/}(m +1Iy) = 0.

The fact that I is arbitrary proves the assertion. O

Theorem 4.3.23. Let U C H be an azially symmetric s-domain and let f,g: U —
H be s-regular functions. Then f x g(q) = 0 if and only if f(q) =0 or f(q) # 0
and g(f(a)~ af(q)) = 0.

Proof. Theorem 4.16 implies that

fg(q) = f(@) 9(f(9) " af(q)).

Therefore f * g(q) = 0 if and only if f(q)g(f(q)"tqf(q)) = 0 if and only if either
f(g) =0or f(q) # 0 but then g(f(q)~"'qf(q)) = 0. 0

In particular, if f % g has a zero in the sphere S := [z + Iy], then either f
or g have a zero in S. However, the zeros of g in S need not be in one-to-one
correspondence with the zeros of f * ¢ in S which are not zeros of f.

This theorem allows us to recover a well-known result for polynomials, see
[71]:

Theorem 4.3.24. Let p,r be polynomials in the quaternionic variable q with quater-
nionic coefficients. Assume that pxr(q) =0 and s = p(q) # 0. Then r(s~1gs) = 0.
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Remark 4.3.25. In the previous result, we implicitly assumed that the polynomials
are s-regular and thus their coefficients are written on the right. In the case of
polynomials with coefficients on the left (and so right s-regular) the statement
guarantees that if p* r(¢) = 0 and s = r(q) # 0, then p(sgs™') = 0.

The definitions we have introduced are useful to define an s-regular inverse
of a function. First of all, observe that, by Proposition 4.3.21, ()~ x f¢ is s-
regular for any s-regular function f. Since, again by Remark 4.3.19, the function
(f3)~': UNC; — Cy is holomorphic for all I € S, where f; # 0, then we can
write (f*)~1x f¢ = (f*)"1f¢. An easy computation shows that

(f7 % N)la) = (F5() " (f* f)la) =1
and justifies the following definition:

Definition 4.3.26. Let U C H be an azially symmetric s-domain and let f : U — H
be an s-reqular function. We define the function f~* as

F75 ) = (£ (@) ().

It is now immediate to verify the validity of the following:

Proposition 4.3.27. Let U C H be an azially symmetric s-domain and let f : U —
H be an s-reqular function. The function f~* is the inverse of f with respect to
the s-regular product.

4.4 The slice regular Cauchy kernel

The Cauchy kernel which we will define and study in this section was inspired
by the need to have a suitable Cauchy formula to develop a functional calculus
for quaternionic operators. This kernel, obtained in this section using algebraic
techniques which rely on the structure of quaternions (in particular on the fact
that the components of a quaternion are real numbers and therefore commute),
will later on be shown to remain valid even when the quaternions are replaced
by operators, whose components do not commute. Since in the complex case, the
kernel (¢ — z) 7! is the sum of the series Y, ., 2"¢" 17", for |z| < [¢], we introduce
the following definition:

Definition 4.4.1. Let q, s € H be such that sq # qs. We will call the series expansion
S_l(s,q) — Z qns—l—n,
n>0
forlg| < |s| a noncommutative Cauchy kernel series (shortly Cauchy kernel series).

Just as in the complex case, we will be looking for the sum of the Cauchy
kernel series which will be an s-regular function in a domain larger than the ball
in which the series converges.
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Theorem 4.4.2. Let q and s be two quaternions such that qs # sq and consider

S™(s,q) == Z q s

n>0
Then the inverse S(s,q) of S™(s,q) is the nontrivial solution to the equation
5?4+ 8¢ — sS =0. (4.17)
Proof. Observe that

S (s,)s = ansilins = Z s =14qs gt i 4

n>0 n>0
and
¢S (s q)=qY s =) s =gs T 4 s
n>0 n>0
so that

S Y(s,q)s —qS(s,q) = 1.
Keeping in mind that S718 = SS~! = 1 we get

S(S™ts—qS™HS =52
from which we obtain the proof. O

Remark 4.4.3. The polynomial R(s,q) := s — ¢ is a solution of equation (4.17) if
and only if sq = ¢gs (and in particular, for example, if s = s + s11, ¢ = qo + 11
for some I € S). Indeed the result follows immediately from the chain of equalities

(s—a)’+(s—qq—s(s—q)=5"—sq—qs+ ¢ — >+ s¢+ 50— ¢* = —qs + sq

whose last term vanishes if and only if sq = gs.

We now compute the nontrivial solution to the equation (4.17). To this pur-
pose, and unlike what we have done throughout this book, we will transform this
equation into a polynomial equation with coefficients on the left. This technical
detail is necessary in order to get a solution written in a form which will be suit-
able for the functional calculus. We will show in Note 4.18.3 how this solution was
originally computed using Niven’s algorithm.

Theorem 4.4.4. Let q, s € H be such that qs # sq. Then the nontrivial solution of
S?+8q—5S=0 (4.18)

1s given by
S(s,q) = —(q—5)"(¢* — 2Res] ¢ + |s[*). (4.19)
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Proof. We transform the equation S? + Sq — sS = 0 into another one having
coefficients on the left. Set
S =W —q

and replace it in the equation to get

W=gW =q)+ (W —q)qg —s(W —q) =0,
so the equation becomes

W2 —(s4+qQW +sqg=(W —5)*(W—-¢q)=0
where * denotes the s-regular product (on the left). One root is W = ¢, while the
second root is W = (¢ — 3) " 's(q — 5), thus

S=(¢-5""s(¢—3) —q

By grouping (¢ — 5)~! on the left we obtain (4.19). O
Definition 4.4.5. The function defined by

—(¢* — 2qRe[s] + [s]*) (¢ - 3). (4.20)

will be called the Cauchy kernel function and will be denoted again, with an abuse
of notation, by S~(s,q).

Note that we are using the same symbol S~! to denote both the Cauchy
kernel series and the Cauchy kernel function. In fact they coincide where they are
both defined by virtue of their s-regularity (see Proposition 4.4.9 below) and in
view of the identity principle, see Theorem 4.2.4. We have the following result
which shows that the Cauchy kernel function S~!(s,q) is s-regular in the two
variables s, q.

The proof can be obtained by direct computations, similarly to what we did
to prove Proposition 2.7.9, but here we prove such a result by solving a second-
degree equation.

Proposition 4.4.6. For any q,s € H such that q # § the following identity holds:
(@—3)""slg—s)—q=—(s—qals — ™" +s, (4.21)
or, equivalently,
—(q— )7 (¢* = 2qRe[s] + |s]*) = (s* = 2Re[g]s + [g/*)(s =)' (4.22)

Proof. Let us solve equation S? + Sq— sS = 0 by transforming it into an equation
with right coefficients by setting

S =W-+s
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and replacing it in the equation. We get
(W 4 8)(W +5)+ (W +8)g — s(W +5) = W2+ W(s+q) +sq=0.

This equation can be split as (W + s) « (W + ¢) = 0, where * denotes the (right)
s-regular product. It is immediate that one root is W = —s while the second
is W = (=G + s)(—q)q(—q + s)~!. These two roots correspond to S = 0 and
S=—(s—q)q(s — @)~ ' + s which coincides with (4.19) when written in the form
§ = (s — Relgls + lgP)(s — ). 0

Remark 4.4.7. By writing S(s, q) as S(s,q) = (¢—s) " 1s(q¢—s) — ¢ we immediately
see that S(s,q) = S(s —u,q—u) for any u € R.

The Cauchy kernel function can also be obtained by taking, in a suitable
way, the s-regular inverse of the function R(s,q) = Rs(¢) = s — ¢. In principle we
have four possibilities to construct an s-regular inverse: on the left (resp. on the
right) with respect to ¢ and on the left (resp. on the right) with respect to s. To
obtain the desired function S~!(s,q) we can proceed as in the following result:

Proposition 4.4.8. The right s-reqular inverse with respect to q of the function
R(s,q) = Rs(q) =s —q is

S74(s,9) = —(¢® — 2qRe[s] + [s]*) " (q - 5).
Proof. We have that R:(q) = (¢*> — 2Re[s|q + |s|?) and RS(q) = 5 — q. O
We also have:

Proposition 4.4.9. The function S=1(s,q) is left s-reqular in the variable q and
right s-reqular in the variable s in its domain of definition.

Proof. The s-regularity in g follows by construction. The right s-regularity in s
follows by direct computation using the identity (4.22). O

Remark 4.4.10. Since the function S~!(s,q) turns out to be right s-regular with
respect to s, it is also possible to construct it by taking the right s-regular inverse
of R(s,q) = Rq(s) = s — ¢. The right s-regular inverse of R(s,q) = Rs(¢) =s—¢q
in the variable ¢ turns out to be the function

Sr'(s,q) = —(q¢— 5)(q*> — 2Re[s]q + [s[*) " (4.23)

for ¢> — 2Re[s]q + |s|?> # 0. Note that when |q| < |s| we have

Sp'(s,9) =Y s "

n>0

We are now in a position to study the distribution of the singularities of the
s-regular Cauchy kernel:
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Proposition 4.4.11. Let ¢ € H\R. The singularities of the function S™(s,q) =

S, (s) = —(¢* — Rels]g + |s|*) (g — 5) lie on the 2-sphere S,. More precisely: on

the plane Cr, I # 1,, S™'(s,q) has the two singularities Re[q] & I|Im[q]| while on
the plane Cy, the only singularity is q. When q € R, then S;l(s) =—(¢g—s)!
and the only singularity is q.

Proof. Suppose ¢ € H\R. The singularities of S, *(s) corresponds to the roots of
|s|2—2Re[s]g+¢* = 0. This equation can be written by splitting real and imaginary
parts as |s|? — 2Re[s|Re[q] + Re[q]? — [Im[q]|* = 0, (Re[s] — Re[g])Im[q] = 0. The
assumption implies Re[s] = Re[q] and so |s| = |q|, i.e., the sphere [g]. Consider the
plane Cy, I # I,: it intersects the 2-sphere [¢] in Re[g] &+ I|Im[¢]|. When I = I,
then ¢ and s commute, so
Sy'(s)=—(a—9)"a=5) a8 =—(¢-5)"

and the statement follows. When ¢ is real the conclusion follows by the same
commutation argument. O

We conclude the section by proving two different explicit series expansions
of the regular Cauchy kernel.

Theorem 4.4.12. Let q and s =u+vl (I €S, v > 0) be two quaternions such that
lg —ul <w. (4.24)
Then the noncommutative Cauchy kernel admits the series expansion
S s,q) =Y (g —w) (D) (4.25)
n>0

Proof. Remark 4.4.7 shows that the inverse of the Cauchy kernel S(s, ) is such
that S(s,q) = S(s — u,q — u) for any u € R. As a consequence we have that
S7(s,q) = S™Y(s—u,q—u) for any u € R. By setting s = u+vI and considering
the series expansion

S M s—uq—u) =) (q—u)"(wl) """
n>0
we get the statement. O

To conclude, we now examine what happens on the complement of the closure
of the domain in which the series above converges. We will adopt a Laurent type
approach:

Theorem 4.4.13. Let g and s =u+vl (I €S, v > 0) be two quaternions such that
lg — u| > v. (4.26)

Then the noncommutative Cauchy kernel can be represented by the series

S~ l(s,q) = — Z(q —u) "D (4.27)

n>0
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Proof. Consider the equalities

)—1
21+v< —u)?)
2)71 (q—u)~?

e
((a-
(1+
Z n 2n u)72n72.

(¢® — 2qu + u* + v?)

We now multiply the last expression by —(¢ — u + vI) on the right-hand side and
obtain

S Hs,q) == (=)™ (g —u) " (g —u+ol)

n>0
_ 7(2(71)77,”271((] —2n—1 + Z n 2n u)72n72v1>
n>0 n>0

Since (—1)"v?" = (vI)?" is a real number we obtain

== (D a—w 2 wnP + Y (g - w) R )

n>0 n>0
from which the statement follows. O

Remark 4.4.14. Theorems 4.4.12 and 4.4.13 provide the analogue of the complex
series expansions _ ' =3 z"w~"~! which holds for z,w € C such that |z| < |w|
and ' = —3 27" lw" which holds for [z| > |w|. The function _'  is obviously
defined on the larger set consisting of complex numbers z such that z # w while
S~1(s,q) is defined outside its singularities.

4.5 The Cauchy integral formula IT

In this section we will present a new version of the Cauchy formula (4.2.6), in which
the integral expressing f(q) does not depend on the plane containing g. These
results are similar to the corresponding results in the case of slice s-monogenic
functions. We will repeat the statements that will be useful in the sequel in order
to adapt the notation to the quaternionic setting, but we will omit the proofs.

Lemma 4.5.1. Let f, g be quaternion-valued, continuously (real) differentiable func-
tions on an open set Uy of the plane Cy;. Then for every open Wi C Uj whose
boundary is a finite union of continuously differentiable Jordan curves, we have

/ gdsif =2 / ((901)f + 9(01f))do
oWy Wr

where s = x + 1y 1is the variable on Cy, ds; = —Ids and do = dx N dy.
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An immediate consequence of the lemma is the following:

Corollary 4.5.2. Let f and g be a left s-reqular and a Tight s-regular function,
respectively, on an open set U € H. For any I € S and every open W C U; whose
boundary is a finite union of continuously differentiable Jordan curves, we have

/ gdsrf = 0.
ow

We are now ready to prove the Cauchy formula II:

Theorem 4.5.3. Let U C H be an azially symmetric s-domain such that (U NCy)
1s the union of a finite number of continuously differentiable Jordan curves, for
every I € S. Let f be an s-reqular function on an open set containing U and, for
any I €8, set ds; = —Ids. Then for every ¢ = x + Iy, € U we have

1
o

f(@) / (® — 2Refslg + |s*) (g — s)ds1 f(s). (4.28)
a(UNCy)

Moreover the value of the integral depends neither on U nor on the imaginary unit
Ies.
If f is a right s-regular function on a set that contains U, then

1

=g [ FST 00 (129)
1 _

==, /B(UOCI)f(s)d.SIS Yq, s) (4.30)

and the integral (4.29) does not depend on the choice of the imaginary unit I € S
and on U.

An immediate consequence of the Cauchy formula is the following result:

Theorem 4.5.4 (Derivatives using the s-regular Cauchy kernel). Let U C H be an
azially symmetric s-domain. Suppose O(U N Cy) is a finite union of continuously
differentiable Jordan curves for every I € S. Let f be an s-reqular function on U
and set ds; = ds/I. Let q, s. Then

o) = 1" /a ) ) s ()
P B e e L C R

where § |
e kz:;) o (4.32)

s the n-th power with respect to the x-product. Moreover, the integral does not
depend on U and on the imaginary unit I € S.
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4.6 Linear bounded quaternionic operators

In this section, we collect the main properties of the quaternionic functional cal-
culus. Let V' be a right vector space on H. A map T : V' — V is said to be a right
linear operator if

Tu+v)=Tw)+T(v), T(us)=T(u)s, forall seH, uvel.

The multiplication of operators, and in particular the powers T of a quaternionic
operator, are defined inductively by the relations 7° = 7, where 7 denotes the
identity operator, and 7™ = TT"~1. By End®(V') we denote the set of right linear
operators acting on V. In the sequel, we will consider only two-sided vector spaces
V, otherwise the set Endf*(V) is neither a left nor a right vector space over H.
With this assumption, Endf*(V') becomes both a left and a right vector space on
H with respect to the operations

(sT)(v) :=sT(v), (Ts)(v):=T(sv), forallseH, veV. (4.33)

In particular (4.33) gives (sZ)(v) = (Zs)(v) = sv. Similarly, we can consider V as
a left vector space on H and a map 7' : V — V is said to be a left linear operator
if

Tu+v)=T(u)+T(v), T(su)=sT(u), forallseH, u,veV.

We denote by End” (V) the set of left linear operators on V. End*(V) is both a
left and a right vector space on H with respect to the operations:

(Ts)(v) :=T(v)s, (sT)(v):=T(vs), forall s € H, and for allve V. (4.34)

In particular (4.34) gives (Zs)(v) = (sZ)(v) = vs.

Definition 4.6.1. Given a ring (R,+,*) where +,* denote the addition and the
multiplication operations, respectively, the opposite ring (R°P,+°P x°P) has the
same underlying set as R, i.e, R°? = R and the same additive structure while the
multiplication x°P is defined by r *x°P s := s *r.

The following result can be found for example in [3], section 4:

Proposition 4.6.2. The two rings End®(V') and End® (V') with respect to the addi-
tion and composition of operators are opposite rings of each other.

Remark 4.6.3. The fact that End®(V) and End*(V) are opposite rings can be
efficiently illustrated by considering the multiplication by a scalar. Let us denote
by N the multiplication on the left by a scalar s € H. Obviously we have that
N; € End®(V). We can rewrite (4.33) as

(NsT)(v) = No(T(v)), (T'Ng)(v) =T(Ng(v)), forallseH, veV.
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Denoting by M, the operator that multiplies on the right a vector v by a scalar
s € H, ie.,, M(v) = vs, we have M, € End*(V) and the operations defined in
(4.34) for left linear operators can be written as

(TMy)(v) = My(T(v)), (MsT)(v)=T(Ms(v)), forallseH, veV.
It appears clearly that, according to (4.34), the composition of T" and M, has to
be taken in the reverse order.

Remark 4.6.4. We have that V' is a module on the left on the ring End®*(V') and it
is a module on the right on the ring End% (V) (see [3], section 4). For this reason,
the action of a right linear operator T on a vector v € V is often denoted in the
literature by T'v while if T is a left linear operator, its action on v is denoted by
vT'. In light of this notation, the properties (4.34) can be written as

v(Ts) = (vT)s, v(sT) = (vs)T, forall s € H, and for allve V.

In light of Remark 4.6.3 it is evident that this notation for left linear operators
is useful especially when dealing with the multiplication. In general, when we will
write T'(v) we will mean, unless otherwise specified, T'(v) = Tv and T right linear
operator.

Proposition 4.6.5. Let T € End™ (V). Then we have
(1) (sZ2)T'(v) = (sT)(v), for all veEV, s€H;
(2) T(sZ)(v) = (Ts)(v), for all veV, secH.

Let T € End™ (V). Then we have
(3) v((sT)T) = v(sT), for all veV, s€H;

(4) v(T(sT)) =v(Ts), forall veV, scH.

Proof. All the properties can be easily shown by using (4.33) and (4.34). In partic-
ular, if T € End” (V) we have v((sZ)T) = vsT = v(sT) and v(T(sT)) = vT(sT) =
vT's =v(T's). O

Remark 4.6.6. Let T be a right linear operator and let a € R. Then a1 = Ta, in
fact: (aT)(v) = aT(v) = T(v)a = T(va) = T(av) = (Ta)(v). A similar property
holds when T is left linear.

To deal with bounded operators we need an additional hypothesis on the
vector space V' and some more notations. Thus, in the sequel:

(i) V is a two-sided quaternionic Banach space with norm || - ||,

(ii) BE(V) is the two-sided vector space of all right linear bounded operators on
v,

(iii) BL(V) is the two-sided vector space of all left linear bounded operators on
v,
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(iv) when we do not differentiate between left or right linear bounded operators
on V we use the symbol B(V) and we call an element in B(V) a “linear
operator”.

It is easy to verify that B(V) and BX(V) are Banach spaces if they are endowed
with their natural norms: 17|
T(v
7] = sup TN

vev ol

4.7 The S-resolvent operator series

In this section we prove that in the Cauchy formula (4.28) we can formally replace
the quaternion ¢ by a quaternionic linear operator. In fact, for example, the kernel
—(q* — 2qRe[s] + |s|?)"1(g — s) has been obtained by summing the Cauchy kernel
series > o q"s~ '™ when the series converges. Here we prove that the sum of
the series Y o, T™s 1" equals —(T% — 2Re[s]T + |s|*Z) "' (T — sZ), that is, it is
formally obtained by replacing the quaternion ¢ by 7', also when the components of
T do not commute. This is the reason why our functional calculus can be developed
in a natural way starting from the Cauchy formula (4.28).

Definition 4.7.1. Let T € B(V'). We define the left Cauchy kernel operator series
or S-resolvent operator series as

S; (s, T) = Z Trs— i n, (4.35)

n>0

and the rTight Cauchy kernel operator series as

Spi(s,T) =Y s i1, (4.36)

n>0
Jor || T[] <{s].

Remark 4.7.2. It is important to note, one more time, that the action of the
S-resolvent operators series SZI(S, T) and S;Cl(s, T) in the case of left linear op-
erators T is on the right, i.e., for every v € V we have v — USZI(S,T) and
v vSEl(s, T). In particular, for the left Cauchy kernel operator series we have
v S wTsT T = 3 T (v)s~" 1. Thus, even though S} '(s,T) is formally
the same operator used for right linear operators, Sgl (s,T) acts in a different way.

Proposition 4.7.3. If | T|| < |s| the operator T — sZ is invertible.

Proof. When ||T|| < |s| the series Y - ,(s7'T)"s~'T is convergent in the operator
norm. As we shall see in Theorem 4.14.6, the series provides the inverse of the
operator T — sZ. O

Theorem 4.7.4. Let T € B(V) and let s € H. Then, for ||T|| < |s|:
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(1) the operator
Sp(s,T) = (T —sT) ' s(T —sI)—T (4.37)
is the inverse of 3, T™s™ '™ and

> T = —(T% = 2Re[s|T + |s]°Z) (T — sI), (4.38)
n>0

(2) the operator
Sr(s,T) = (T —sI)s(T —sZ)™* =T (4.39)

is the inverse of Y oo s 1 "T" and

> s = (T — ST)(T? — 2Rels|T + |s|*Z) . (4.40)
n>0

Proof. The proof that
Sp(s,T)S; (s, T) =1 (4.41)

can be done similarly to the proof of Theorem 3.1.3, so we show that
Sr(s,T) 'Sr(s,T) =1 (4.42)

where Sr(s,T) is given by (4.36) and the interpretation of the symbols is as in
Remark 4.7.2. We rewrite (4.42) by multiplying both hand side by 7' — sZ on the
right:

( Z 5*1*”T”> (T —sT)s — ( Z sil*”T”>T(T —sI)=T —sT

n>0 n>0

which, by Proposition 4.6.5, can be written as

(Z sil*”T”) (Ts— |s]*Z—T?+Ts)=T — sT

n>0

and then we get

(5 ) o ) =T o
n>0

Observe that —|s|2Z — T2 + 2Re[s]T has real coefficients and so it commutes with
T™. By writing explicitly the terms of the series

Z s (—|s|? — T? 4 2Re[s|T)
n>0
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and using the identity
52 —2sRe[s] + |s|> =0 forall s € H,

we get
> s (—|s|* — T% 4 2Re[s|T) = T — sI.
n>0

So we finally have the identity

T—sI=T-—5T.

The equality (4.40) follows directly by taking the inverse of

Sr(s,T) = [(T — sI)s — T(T — sT)|(T — sT)~*
~[T?% = 2Re[s]T + |s|*Z)(T — sT)~*

thus the operator Sg(s,T) is the inverse of (4.36) for ||T|| < |s|.

O

The S-resolvent operator admits another power series expansion which is

described in the next result:

Theorem 4.7.5. Let T € B(V) and s ¢ os(T) be such that
IT — Re[s|Z|| < |s — Re][s]|.

Then the S-resolvent operator admits the series expansion

S (s, T) = — Z(T — Re[s]T)"(s — Re[s]) """

Proof. Observe that
(T? — 2T Re[s] + |s]*Z) ™' = [(T — Re[s|T)? + |s|°T — (Re[s])*Z] "
= (|s|*> = (Re[s])?) !
B (T - Re[s]Z)2"
%:0 | |2 (Re[s])?)"+1°
Since [Im[s]|? = —(I'm[s])?, then by replacing (4.45) in (4.38) we get
Sp(s,T) = —(D(T = Rels|T)* (s — Re[s]) 22

n>0

+ 3 (T = Re[s]T)*" (s - Re[s})*%*l).

n>0

Adding the two terms we get (4.44) which converges when (4.43) holds.
R (7).

An analogous result, with obvious variations, can be proved for S

(4.43)

(4.44)

(T - Rels)! 1
2)

(4.45)

O
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4.8 The S-spectrum and the S-resolvent operators

Observe that equalities (4.38) and (4.40) hold only for ||T'|| < |s|, but the right-
hand sides are defined on a larger set. Thus, we give the following definitions which
are the main tools to define the quaternionic functional calculus.

Definition 4.8.1 (The S-spectrum and the S-resolvent set). Let T € B(V). We
define the S-spectrum og(T) of T as

os(T)={scH: T?—2 Re[s|T +|s|*Z is not invertible}.
The S-resolvent set ps(T) is defined by
ps(T) = H\ o5(T).

Remark 4.8.2. Observe that in the definition of o0g(T") we mean that the operator
T? — 2 Re[s]T + |s|*Z is not invertible in BE(V) if T is right linear. On the other
hand, if 7' is left linear we mean that 7% — 2 Re[s|T + |s|*Z is not invertible in
BL(V).

The notion of the S-spectrum of a linear quaternionic operator T is sug-
gested by the definition of the S-resolvent operator that is the kernel useful for
the quaternionic functional calculus.

Definition 4.8.3 (The S-resolvent operator). Let V be a two-sided quaternionic
Banach space, T € B(V) and s € ps(T). We define the left S-resolvent operator
as

S (s, T) := —(T? — 2Re[s|T + |s|*Z) 1T — sI), (4.46)

and the right S-resolvent operator as
Spl(s,T) := —(T — sI)(T? — 2Re[s]T + |s>T) . (4.47)

Theorem 4.8.4. Let T € B(V) and let s € ps(T). Then, the left S-resolvent oper-
ator satisfies the equation

S; (s, T)s —TS; (5, T) =T, (4.48)
and the Tight S-resolvent operator satisfies the equation
sSE (s, T) — Sx'(s,T)T =T. (4.49)

Proof. Tt follows by direct computation. Indeed, replacing the operator (4.46) in
the left-hand side of the equality (4.48) we have

—(T? = 2Re[s|T + |s]*7) "1 (T — sI)s
+ T(T? — 2Re[s|T + |s|*Z) (T — sI). (4.50)
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Since T' and T? — 2Re[s]T + |s|*Z commute, we can group on the right (7% —
2Re[s|T + |s|>Z)~! in the previous expression thus obtaining

(T? = 2Re[s|T + |s|*T) ' [~(T — sT)s + T(T — sI)
which becomes
(T? — 2Re[s|T + |s|*Z) Y (T? — 2Re[s]T + |s|?°T) =T

which proves the statement. With analogous computations we can prove (4.49).
O

Definition 4.8.5. Let T € B(V) and let s € ps(T). We call
S; (s, T)s —TS; (s, T) =1
left S-resolvent equation and
sSp'(s,T) — Sp' (s, )T =1

right S-resolvent equation.

Theorem 4.8.6 (Structure of the S-spectrum). Let T € B(V) and let p = po+p1l €
os(T). Then all the elements of the sphere [pog + Ip1] belong to os(T).

Proof. Consider the equation (1% — 2Re[p|T + |p|*Z)v = 0 for v # 0 and for
p = po + Ip1. The coefficients depend only on the real numbers pg, p1 and not on
I € S. Therefore all s = pg + Jp1 such that J € S are in the S-spectrum of T'. [

Definition 4.8.7. Let V' be a two-sided quaternionic Banach space, T € B(V), and
let U C H be an azxially symmetric s-domain that contains the S-spectrum og(T),
such that (U N Cy) is the union of a finite number of continuously differentiable
Jordan curves for every I € S. We say that U is a T-admissible open set.

We can now introduce the class of functions for which we can define the two
versions of the quaternionic functional calculus.

Definition 4.8.8. Let V' be a two-sided quaternionic Banach space, T € B(V) and
let W be an open set in H.

(i) A function f € RY(W) is said to be locally left regular on os(T) if there
exists a T-admissible domain U C H such that U C W. We will denote by
R(I;S(T) the set of locally left reqular functions on og(T).

(ii) A function f € RE(W) is said to be locally right reqular on os(T) if there
exists a T-admissible domain U C H such that U C W. We will denote by
Rf’s(T) the set of locally right reqular functions on og(T).
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Remark 4.8.9. Let W be an open set in H and let f € RY(W). In the Cauchy
formula (4.28) the open set U C W need not be necessarily connected. In fact,
formula (4.28) obviously holds when U = U;_,U;, U; N U; = () when i # j where
U; are T-admissible for all # = 1,...,r and the boundaries of U; N C; consists
of a finite number of continuously differentiable Jordan curves for I € S for all
i=1,...,7. So when we choose f € R{;S oy, the related open set U need not be
connected. In the sequel we will state our results relating them to a domain U but
our results obviously hold for open sets U = U;_,U; as above. We will call such

an open set U a T-admissible open set.

Using the left S-resolvent operator S;l, we now give a result that motivates
the functional calculus; analogous considerations can apply using Sgl with obvious
modifications.

Theorem 4.8.10. Let s,a € H, m € N, T € B(V) and let U C H be a T-admissible
open set. Set ds; = —dsI for I € S. Then

1
T"a = / S; (s, T) dsy s™ a. (4.51)
27 Jowner)

Proof. Consider the power series expansion for the operator SL_1 (s,T) and a circle
C, on Cy centered in the origin and of radius r > ||T'||. We have

1 / » 1 e
Sy (s, T) dsy s a= T”/ sTITEM gsia = T™ a,
21 Jowney) - 27 nzZ;J c

r

since

/ dsps "M =0 if n#m,
Cr

/ dsps "M =921 if n=m.

C,

The Cauchy theorem on C; shows that the above integrals are not affected if we
replace C,. by 9(U N Cy) independently of I € S. O

Theorem 4.8.11 (Compactness of S-spectrum). Let T € B(V). Then the S-spec-
trum og(T') is a compact nonempty set.

Proof. Let U C H be a T-admissible open set. Set ds; = —dsI for I € S. Then

1

/ S~Ys,T) dsy s™ =T™.
27 Jowner)

In particular, for m = 0, we have

1
/ S~Ys,T) ds; =1,
27 Jowner)
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which shows that og(7T') is a nonempty set (otherwise the integral would be zero by
the vector-valued version of Cauchy’s theorem). The S-spectrum is closed because
the complement of og(7T') is open. Indeed, the function

g:s+> T? —2Re[s|T + |s|*T

is trivially continuous and, by Theorem 10.12 in [91], the set U(V') of all invertible
elements of B(V') is an open set in B(V'). Therefore

g UV)) = ps(T)

is an open set in H. The S-spectrum is a bounded set because for [|T| < |s|
the series Y o T™s '~ and Y, ., s ' "T" converge. So we conclude that it is
compact. - a O

4.9 Examples of S-spectra

We now give some examples of the computation of the S-spectrum of some matri-
ces. In section 4.14 we will compare the S-spectrum with a more standard spec-
trum, the so-called left spectrum, showing that, in general, there is no relation
between them. In what follows s will always denote a quaternion.

Example 4.9.1. We determine the S-spectrum of the matrix

1 0
n-[10].
We consider

(EH e R PR

which gives
1—2s0+ |s]? 0 @ | _y
0 —1—2js0 + |s]? g |

Since ¢; and g2 € H cannot be simultaneously zero, we must have either
1—2s0+[s|*=0
or
—1—2jso+ |s|* = 0.
The first equation gives
1—2s0+ s> =0
& 1-250+s2+s7+s5+s2=0
& (sop— 1) +si+s2+s52=0
& so=1, s;=0, j=1,2,3;
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while the second equation gives

—1-2jso+|s]°=0 < s,=0 and |s]* =1
& si+s5+s3=1 and sy =0.

Therefore the S-spectrum is
os(Ty) = {1} US.

Example 4.9.2. We determine the S-spectrum of the matrix

i 0
n-li 0]
We have
—1 — 2isy + |s/? 0 I
0 —1— 2550 + |s|? g |
and therefore
ags (Tg) =S.
Example 4.9.3. We determine the S-spectrum of the real diagonal matrix
a 0
Is= { 0 b } ’
which gives
a® — 2asg + |s|? 0 @
2 2 =0
0 b* — 2bsg + |s| Q2

from which we have
(sofa)2+sf+s§+s§ =0

and
(50— b)* 4+ 57 + 52 + 52 = 0.

Therefore o5(T5) = {a, b}.
Example 4.9.4. We determine the S-spectrum of

0
=[]

We consider

) ) @ B 1+ |5|2 —2802 q1 —
(T7 — 2504 + 5| )[qz } = [ 2500 1+l | [ g | "

and get
(1+ \s\g)ql — 280ig2 = 0, 2s0iq1 + (1 + |s|2)q2 =0.
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Observe that 1+ |s|? # 0 for every s € H, so

250i

QQ:*1+|S

|2 ql b)
and replacing it in the first equation we obtain

2$0i
1 2 2501 =0.
(1 +[s]%)aq + 3011+‘8‘QQI

Since it must be g1 # 0, it is
(1+s]*)? —4s3 =0
whose solutions are
1+ |s|* +2s0 =0,
which gives
(1+50)%+ 87+ 52452 = 0.
The S-spectrum is therefore

o5(Ty) = {so = £1, s1 =82 =s3=0}.

4.10 The quaternionic functional calculus

We begin by recalling the quaternionic version of the Hahn-Banach theorem, orig-
inally proved in [97], and one of its corollaries which, with the Cauchy integral
formula II, are the main tools to prove that the definition of the quaternionic
functional calculus is well posed.

Theorem 4.10.1 (The quaternionic version of the Hahn-Banach theorem). Let Vj
be a right subspace of a right vector space V' on H. Suppose that p is a seminorm
on'V and let ¢ be a linear and continuous functional on Vi such that

(g, v)[ <p(v),  Vve. (4.52)

Then it is possible to extend ¢ to a linear and continuous functional ® on V
satisfying the estimate (4.52) for allv € V.

Proof. Note that, for any quaternion ¢ we have ¢ = qo + q1i + q2J + g3k = z1(q) +
22(q)j, where 21,29 € C = R+Ri and qj = —22(q) +21(q)J, so ¢ = z1(q) —z1(qj)j-
The functional ¢ can be written as ¢ = ¢g + ¢1i + Paj + dsk = ¥1(d) + a2(0)7,
with 11(¢) = ¢o + ¢1¢ and () = ¢2 + 3@ which are complex functionals. It is
immediate that

(¢, v) = (Y1,v) — (Y1,v])7, Vv e Vg
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where 1)1 is a C-linear functional. So we can apply the complex version of the
Hahn—Banach theorem to deduce the existence of a functional ¢, that extends v
to the whole of V' (as a complex vector space). The functional ¥ given by

(,0) = (1, 0) = (Y1, v);

is defined on V and it is the extension that satisfies estimate (4.52) for all v €
V. O

The following result is an immediate consequence of the quaternionic version
of the Hahn-Banach theorem. Its proof mimics the analog proof in the complex
case.

Corollary 4.10.2. Let V be a right vector space on H and let v € V. If (¢,v) =0
for every linear and continuous functional ¢ in V', then v = 0.

Theorem 4.10.3. Let V be a two-sided quaternionic Banach space and T € B(V).
Let U C H be a T-admissible domain and set ds; = —dsI. Then the integrals

1/ -1 L
S; (s, T) dsy f(s), feER, 4.53
o e, 52T ds1 ) @ (4.5
and
1/ -1 R
f(s) dsy Sp (s, T), feR; 4.54
o oy, T o1 S T) @ (454

do not depend on the choice of the imaginary unit I € S and on U.

Proof. Let us prove that (4.53) does not depend on the choice of the imaginary
unit 7 € S and on U. Let us consider T € BE(V) (the case T € B (V) works
with obvious different interpretations of the action of the operators involved). We
first observe that the function Sgl(s,q) is right s-regular in the variable s in its
domain of definition by Proposition 4.4.9. Now observe that we can replace ¢ with
an operator T € B(V) in the Cauchy formula (4.28), thanks to Theorem 4.7.4. For
every linear and continuous functional ¢ € V', consider the duality (¢, SL_1 (s, T)v),
for v € V and define the function

g(s) == (6, S; (5, T)v), for veV, V.

The function g remains right s-regular in the variable s on the complement of
os(T') and since g(s) — 0 as s — oo we have that g is s-regular also at infinity.
Suppose that U is a T-admissible open set such that 9(U NC;) does not cross the
S-spectrum of T for every I € S. The fact that, for fixed I € S, the integral

1

o e, 901 5 (1.55)

does not depend on U follows from the Cauchy theorem. By Corollary 4.10.2 also
the integral (4.53) does not depend on U. We now prove that the integral (4.55)
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does not depend on I € S. Since g is a right s-regular function on the complement
of the S-spectrum of T', we can consider an open set U’ such that U c ps(T),
U'NR # 0 and [q] C U’ whenever ¢ € U’. We assume that (U’ N Cy) consists
of a finite number of continuously differentiable Jordan curves VI € S and that
OU C U’ where U is an open set as above so, in particular, U contains [s] whenever
s € U. Choose J € S, J # I and represent g(s) by the Cauchy integral formula

(4.30) as
1

o) =, /a e 90 s S50 (4.56)

where the boundary (U’ N Cy)~ is oriented clockwise to include the points [s] €
A(UNCy) (recalling that the singularities of S} '(s,t) correspond to the 2-sphere
[s]) and to exclude the points belonging to the S-spectrum of T'.

Let us now plug the expression of g(s) in (4.56) into the integral (4.55) and
taking into account the orientation of (U’ N C;)~ we obtain

1
” /8 ey 9651 19 (4.57)

1 / 1 / »
= g(t) dty S; " (s,t)| dsy f(s
21 Jowncy) [QW a(U'NCy) (8) dis 81 )} 1 1)
1 / 1 »
= g(t) dt / S7 (s, t) dsy f(s
21 Jawrnce,) 0 J[ 27 Jowney - (s,8) dor J( )}

where we have used the Fubini theorem. Now observe that (U’ N C) consists of
a finite number of Jordan curves inside and outside U N C;, but the integral

1 / .
ST (s, t) dsr f(s)

27 Jowney -

equals f(t) for those t € (U’ N C ) belonging to U N C;. Thus we obtain:

1 / 1 »
glt) dt / St (s,t) dsr f(s 4.58
i
= g(t) dtsf(t).
2m a(U'NCy) (t) dts £ ()

So from (4.57) and (4.58) we can write
1 1
[ awdsie=, [ gmduse. @)
27 Jowner) 21 Jawrncy)

Now observe that 9(U’' NC) is positively oriented and surrounds the S-spectrum
of T. By the independence of the integral on the open set, we can substitute
O(U'NCy) by 0(UNCy) in (4.59) and we get:

1 1
2 /6([]0((:1) g(s) dsr f(s) = o /B(Umcj)g(t) dty f(t),
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that is

1 1
o /aam(CI) (9,5 (s, T)v)dsr f(s)

1

= / (¢, S;H(t, Tyv)dty f(t), forall veV, ¢V’ I,J€S.
21 Jawnce,)

Thus by Corollary 4.10.2 the integral (4.53) does not depend on I € S.

Let us prove with analogous arguments that the integral (4.54) does not
depend on the choice of U and I € S. Also in this case let us consider T' € BE(V)
(the case T' € BE(V) works with obvious different interpretations of the action of
the operators involved).

For every linear and continuous functional ¢ € V', consider the duality
(¢, Sp" (s, T)v), for v € V and define the function

g(s) == (¢, Sp' (5, T)v), for veV, eV

The function g is left regular in the variable s on the complement of og(T") — recall
that the S-spectrum of a bounded linear quaternionic operator 1" is a compact
nonempty set — and since g(s) — 0 as s — oo we have that g is regular also at
infinity. Suppose that U is a T-admissible open set such that 9(U N Cy) does not
cross the S-spectrum of T for every I € S. The fact that, for fixed I € S, the
integral

1

Y O (4.60)

does not depend on U follows from the Cauchy theorem and on Corollary 4.10.2,
so also the integral (4.54) does not depend on U. We now prove that the integral
(4.54) does not depend on I € S. Let € > 0 and set

W, ={qe U | dist(q,0U) > e}.

We have that W, C U, moreover W, is axially symmetric since U is axially sym-
metric. Let U’ be the complement of We. Then U’ is axially symmetric, U ' ps(T)
and OU’' = OW, C U. Note that (U’ N Cy) consists of a finite number of continu-
ously differentiable Jordan curves VI € S. Since g is a left regular function on the
complement of the S-spectrum of T, function g is regular on U’. Choose J € S,
J # I and represent g(s) by the Cauchy integral formula (4.29) as

1

9= g [ S ) diagl) (1.61)

1 / »
=— Se(s,t) dtyg(t
21 Jowrne,)- r )
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where the boundary (U’ N Cy)~ is oriented clockwise to include the points [s] €
A(UNCy) (recall that the singularities of S~!(s,t) correspond to the 2-sphere [s])
and to exclude the points belonging to the S-spectrum of T

Let us now plug the expression of ¢g(s) in (4.61) into the integral (4.60) and,
taking into account the orientation of (U’ N C )™, we obtain

1
” /6 ey, T dor 909 (4.62)

1 / 1 .
= f(s) ds / Sr7(s,t) dtyg(t
27 Jowner) (s) 1[277 awnc,) T (s,8) dt.s ()}

1 / 1 / .
= f(s) ds;Sp (s, t)| dtsg(t
21 Jowrney) 2T Jawner) [ () dsr S )} 79(t)

where we have used the Fubini theorem. Since (U’ N C;) C U N Cy, the integral

1/ 4
f(s) dsr S5 (s,t
Y S CETE

equals f(t). Thus we obtain:

1 1
2 /B(Uﬁ(CI) g(s) dsy f(s) = o /{)(U/OCJ)g(t) dtyf(t). (4.63)

Now observe that 9(U’ N C) is positively oriented and surrounds the S-spectrum
of T. By the independence of the integral on the open set, we can substitute
O(U'NCy) by 0(UNCy) in (4.63) and we get:

1 / 1

g(s) dsy f(s) = / g(t) dty f(1),
2 Jowmes (s) (s)=,_ e (t) (t)
that is

1

o ey, 5 0 Tdss S

1
_ / (6,S7M (L, TYoydty f(t), forall veV, pe V', IJES.
27 Jownce,)
Thus by Corollary 4.10.2 the integral (4.54) does not depend on I € S. O

Definition 4.10.4 (The quaternionic functional calculus). Let V' be a two-sided
quaternionic Banach space and T € B(V'). Let U C H be a T-admissible domain
and set ds; = —dsl. We define

1

:27r

f(T) / S (s, T) dsy f(s), for feRE (T)> (4.64)
aUNC) s
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and

1
o7

f(T) / f(s) dsr Sg'(s,T), for feRE p. (4.65)
a(UNCy)

Remark 4.10.5. By Remark 4.6.4, it follows that when T € B*(V) we have
f(T)(v) = vf(T) while if T € BE(V) we have f(T)(v) = f(T)v.

An immediate consequence is the following.

Theorem 4.10.6. Let V' be a quaternionic Banach space and let T € B(V). Assume
that f, € ’Rgs(T) (resp. fn € Rfs(:r))’ for all n € N and let U be a T-admissible

open set. If f, converges uniformly to f on UNCy, I €S, then f,(T) converges
to f(T) in B(V).

Proof. Let W be a T-admissible domain such that og(T) C W C U. Then f, — f
converges uniformly on (W N Cy) and consequently

1

:27T

fn(T) / Sgl(S,T) dsy fn(s)
A(WNCy)

converges in the uniform topology of operators to

1 _

The case f, € RfS(T) follows by the functional calculus in (4.65). O

4.11 Algebraic properties of the quaternionic functional
calculus

An immediate consequence of Definition 4.10.4 are the linearity properties of the
functional calculus.

Proposition4.11.1. Let V be a two-sided quaternionic Banach space and T € B(V).
(a) If f, g€ R{;S(T), then

(f+9)(T) = f(T) +g(T),  (fp)(T)=f(T)p,  for all pel
(b) If f, g € ng(T)’ then

(f+9)(T) = f(T)+9(T),  (p/)T)=pf(T),  for all peH.

For the definition of the product of s-regular functions we need the following
subclass of regular functions.



152 Chapter 4. Quaternionic Functional Calculus

Definition 4.11.2. Let U C H be an open set. We define
NI(U)={feR/(U) | f(UNC;)CCy, forall I €S}, for j=L,R.

Proposition 4.11.3. Let U C H be an open set. Then we have NL(U) = NE(U).

Proof. Since f; : C; — C; we have that f; commutes with I € S thus f is left
regular if and only if it is right regular. O

Thanks to Proposition 4.11.3 we set
NEU) = NR(U) = N(U).

Definition 4.11.4. Let V' be a two-sided quaternionic Banach space and let T &€
B(V). We will denote by N, (1) the set of slice reqular functions for which there

erists a T-admissible open set U C H such that f € N(U), and where U is
contained in the set of slice reqularity of f.

The following result on the s-regular functions will be useful to study some of
the properties of the quaternionic functional calculus for bounded linear operators.

Proposition 4.11.5. Let U C H be an open set.
(1) Let f e N(U), g € RE(U), then fg € RL(U).
(2) Let f e N(U), g € RE(U), then gf € RE(U).
(3) Let f,g € N(U), then fg=gf and fg € N(U).

Proof. Point (1): Consider I € S and set z = x + Iy. The restriction fr(z) of f
equals F(z) with F': U N C; — C; holomorphic and we have that

(6(1 " Ié?y) (F)z) = O ()g(e) + F2) 02 () + 15 99

and since I commutes with F(z) we obtain:

( O fy) U9 = (Gr @)+ 150 @)ae)+ FE (36 +157(:)) = .

Point (2) is analogous. Point (3) follows from the fact that both f and g take

Cy toitself for all T € S. O

Theorem 4.11.6. Let V be a two-sided quaternionic Banach space and T € B(V).
(1) 1f 6 € Noory and g € RE_ (7, then (69)(T) = 6(T)g(T).

(2) If 6 € Ny and g € RE, 1, then (g9)(T) = g(T)$(T).
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Proof. We prove point (1), since the proof of point (2) is analogous. Denote by
U a T-admissible open set on which both ¢ and g are s-regular. Observe that ¢g
is s-regular on U thanks to Lemma 4.11.5. Let G; and G2 be two T-admissible
open sets such that Gy UJG, C G2 and G2 U9G2 C U. Take s € 9(G; NCy) and
t € 9(G2 N Cy) and observe that, for I € S, we have

1 _
9(s) = / Syt s) dtr g(t).
T Jo(G2nCr)

Now consider

1

@) = 5 [ SET) dsr 005) )

1 / . 1 / »
= Sy (s,T) dsg ¢(s ST (t,s) dtr g(t)].
21 Joginen ¢ (,T) dsr 9(s) {QW a(Gancr) - () dir g()

By the vectorial version of the Fubini theorem we have

T)d d .
ot (2m)? /d(G'zﬁ(CI) /a(GmcI) (5:T) dsr 6(s)Sp " (8 5) dir g(t)

Finally observe that Sgl(t, s) is s-regular in the variable s on the S-spectrum of
T and ¢(s)S; ' (t,s) is s-regular in the variable s thanks to Lemma 4.11.5, so we

have
1

(@9)(T) =,

/ o(T)S; (1, T)dtrg(t) = H(T)g(T). 0
(G2nCy)

4.12 The S-spectral radius

In this section we give the definition of the S-spectral radius which is the analog
of the spectral radius for the Riesz—Dunford case. The main result of this section
is Theorem 4.12.6. This theorem is based on the S-spectral mapping theorem for
the powers T™, n € N, of a quaternionic bounded linear operator 7', and it can
be proved using some algebraic properties of quaternionic polynomials. In Section
4.13 we will generalize the S-spectral mapping theorem to a wider class of s-regular
functions.

Definition 4.12.1 (The S-spectral radius of T'). Let V' be a two-sided quaternionic
Banach space and T € B(V). We call S-spectral radius of T the nonnegative real
number

rs(T) :=sup{|s| : s€os(T)}.

Before we can state and prove the S-spectral radius theorem, we need two
preliminary lemmas on quaternionic polynomials. For the sequel, it is useful to
recall that any quaternion ¢ = Re[q] + I,|Im[¢]| is associated to the 2-sphere
defined by [¢] which reduces to ¢ only when ¢ is real.
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Remark 4.12.2. We recall that quaternionic polynomials with real coefficients are
both left and right s-regular functions.

Lemma 4.12.3. Let n € N and q, s € H. Let
Pgn(q) = q2n _ QRG[SN] qn + ‘Sn|2
Then

Pan(q) = Qan—2(q)(¢> — 2Re[s] g + |s[*) (4.66)
= (q2 - QRG[S} q + ‘3‘2)Q2n72(q)3

where Qan—2(q) is a polynomial of degree 2n — 2 in q.

Proof. First of all we observe that
Py, (s) = 52" — 2Re[s"]s™ + |s"|2 = 52" — (5" 4 5")s" + 55" = 0.

Moreover, the substitution of s by any s’ on the same 2-sphere leaves the coef-
ficients of the polynomial P, (¢g) unchanged, and Ps,(s’) = 0. We conclude that
the whole 2-sphere defined by s is a solution to the equation Ps,(q) = 0. The
statement follows from the factorization theorem, see [71], and the fact that the
second degree polynomial ¢* — 2Re[s]q + |s|? has real coefficients. O

Lemma 4.12.4. Letn € N and q, p € H. Let \j, 5 =0,1,...,n—1 be the solutions
of A" = p in the complex plane Cp,. Then

n—1

¢*" = 2Relp] ¢" + p* = [ [ (¢* — 2Re[N;] g + [X; ). (4.67)
j=0

Proof. The equation A" = p can be solved in the complex plane x4+ I,y containing
p = po + I,p1 where it admits n solutions A\; = Xjo + ,A\j1, 7 =0,1,...,n—1. By
reason of degree, these are the only solutions to the equation in the complex plane
Cr,. Note that if we take any p’ = po + Ip1, I € S in the 2-sphere of p, then the
solutions to the equation A" = p’ are A} = X\jo +IA\j1, 7 =0,1,...,n -1, T €S.
We consider the polynomial

Poy(q) = ¢°" = 2Re[p] ¢" + |p|?
and we observe that ¢ = \; is a root of P»,(¢) =0, in fact
P2a(Aj) = A" = 2Re[p] A} + |p|?> = p? — 2Rep] p + |p|*> = 0.

The substitution of p by p’ on the same 2-sphere leaves P,, unchanged and it
is immediate that %, (X)) = 0 when I varies in S. This proves that the roots of
P5,,(q) = 0 lie on the 2-spheres of A\j, j =0,...,n —1. The statement follows from
the factorization theorem. g
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Theorem 4.12.5 (A particular case of the S-spectral mapping theorem). Let V' be
a two-sided quaternionic Banach space and let T € B(V'). Then

os(T") = (os(T))" ={s"€H : se€og(T)}.
Proof. Recall that
os(T)={s€H : T?—2Re[s]T +|s/*Z is not invertible}
and
os(T")={peH™ : T?" —2Re[p]T" + |p|*Z is not invertible}.

Note that the operator 72" — 2Re[s"|T™ + |s"|>Z, thanks to Lemma 4.12.3 and
Theorem 4.11.6, can be factorized as

T?" — 2Re[s"|T™ + |s"|*T = Q2n_o(T)(T? — 2Re[s|T + |s|°T).

So we deduce that if T2 — 2Re[s]T + |s|Z is not injective also T?" — 2Re[s"]|T™ +
|s"|2Z is not injective. This proves that (os(T))" C og(T™). Let us now consider
p € 0s(T™). By Lemma 4.12.4 and Theorem 4.11.6 we can write

n—1
%" — 2Re[p|T™ + |pI*Z = [ (1% — 2Re[N]T + |X;°D).
j=0

Since if T2" — 2Re[p]T™ + |p|*Z is not invertible, then at least one of the operators
T? — 2Re[\;]T + |\;|>Z for some j is not invertible. This proves that og(7™) C
(os(T))" 0

We can now conclude this section with the S-spectral radius theorem.

Theorem 4.12.6 (The S-spectral radius theorem). Let V' be a two-sided quater-
nionic Banach space, let T € B(V), and let rs(T) be its S-spectral radius. Then

rs(T) = lim |[77V/".

Proof. For every s € H such that |s| > rg(T) the series > ,T™s '™ con-

verges in B(V) to the S-resolvent operator S;'(s,T) (we reason analogously for
> ons0 8 FMT™). So the sequence T"s~ !~ is bounded in the norm of B(V) and

lim sup || 77|/ < rg(T). (4.68)

n—oo

Theorem 4.12.5 implies og(T™) = (05(T))", so we have

(rs(T))" = rs(T7) < T,
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from which we get

rs(T) < liminf || 771/ (4.69)
From (4.68), (4.69) we obtain
rs(T) < liminf | 77)|Y/™ < limsup |T7||*/™ < rs(T). (4.70)
n—00 n—00
The chain of inequalities (4.70) also proves the existence of the limit. O

4.13 The S-spectral mapping and the composition
theorems

We collect in the following lemma some useful properties of s-regular functions

that will be used to prove the main results of this section.

Lemma 4.13.1. Let U C H be an open set.

(a) Suppose that P(q),Q(q) are polynomials in the quaternionic variable q with
real coefficients and assume that Q(q) has no zeros in U.

If F(q) = (Q(q))"P(q) (or F(q) = P(q)(Q(q))~"), then F € N(U).
(b) If f € N(U), then f? € N(U).

(¢) Let U, U’ be two open sets in H and f € N(U'), g € N(U) with g(U) CU’.
Then f(g(q)) is s-regular in U.

Proof. Part a) trivially follows by replacing ¢ by z = z + Iy and observing that

0 0
I F ly) =
<8x + 8y> (x4+1Iy) =0

for all I € S. To prove b), consider C; for any I € S and the restriction f;(z) =
F(z), where F : UNC; — Cj is a holomorphic function. This implies that also the
function f2 belongs to A'(U). Finally, to prove c) set ¢ = x + Iy. By hypothesis,
gz + Iy) = a(x,y) + I15(z,y), where a and [ are real-valued functions and

flg(x + Iy)) = fla(z,y) + 1B(z,y)) € Cr.

The function f(g(z + Iy)) is holomorphic on each plane C; thus it satisfies the
condition

ox dy
for all I € S and so f(g(q)) is s-regular. O

(‘9 +Ia)f(g(w+1y))=0

Theorem 4.13.2 (The S-spectral mapping theorem). Let V' be a two-sided quater-
nionic Banach space, T € B(V) and f € N,y (ry. Then

os(f(T)) = flos(T)) = {f(s) : s € 05(T)}.
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Proof. Since f € N, (1), there exists a T-admissible open set U C H containing
os(T), and such that f € N(U). Let us fix A € o5(T). For q € [A], let us define
the function g(q) by

9(q) = (¢ = 2Re[Nq + [A*) 7' (£*(a) — 2Re[f (V)] f (@) + [F(N)[?)-

Observe that the assumption f € A(U) implies that f? € N (U) by Lemma 4.13.1
(b), so also f2(q) — 2Re[f(N)]f(g) + |f(N)]?> € N(U). The function (¢* — 2Re[N ¢ +
IA2)~t e N(U\ {[\]}), by Lemma 4.13.1 (a), thus g(¢q) € N (U \ {[\]}) by Lemma
4.11.5. We can extend g(g) to an s-regular function whose domain is U: if the
2-sphere [)] is not reduced to a real point, then we define

9la) if ¢ & [N,
g(q): aaf(lu)f(/‘)ff(/‘) ifq:u:)\0+f)\1€[>\}aI€S'
i n— p

Now, the auxiliary function g, is defined on U and is s-regular, see the proof
of Theorem 3.5.9, with suitable variations. Thanks to Theorem 4.11.6 we can write

FAT) = 2Re[f(N]F(T) + [F(NPT = (T? = 2Re[NT + [APL)g(T).
If f2(T) — 2Re[f(N)]f(T) + |f(N)|?>Z admits a bounded inverse

B = (f*(T) = 2Re[f(NIF(T) + [FNPT) " € B(V),

then we have

(T? — 2Re[N|T + |\[*T)g(T)B =1,
i.e., g(T)B is the inverse of 7% — 2Re[A|T + |A\|?Z. Thus f(os(T)) C os(f(T)).
Now we take p € o5(f(T)) such that p &€ f(os(T)). We define the function

h(q) := (f*(q) — 2Relp] f(q) + [p|*) "

which is s-regular on og(T"). By Theorem 4.11.6 we obtain
W(T)(f*(T) = 2Re[p f(T) + |p]Z) =,

which means that p € og(f(T)), but this contradicts the assumption. So p €
fos(T)). -

Theorem 4.13.3. Let V be a two-sided quaternionic Banach space and let T €
B(V). Suppose that f € Nyg(ry, ¢ € Nyog(ry) and define F(s) = ¢(f(s)). Then
F € Ryg(r) and F(T) = ¢(f(T)).

Proof. The statement F' € R,q ) follows from Lemma 4.13.1 (c). Let U D
os(f(T)) be a T-admissible open set whose boundary is denoted by OU. Sup-
pose that U U QU is contained in the domain in which ¢ is s-regular. Let W be
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a T-admissible neighborhood of og(T) whose boundary is denoted by OW and
suppose that W U OW is contained in the domain where f is s-regular. Finally
suppose that f(WUOIOW) C U. Let I € S and define the operator

1
o

ST\ F(T)) /8 ey STV SO 1(5)

where
STHA f(5)) = =(f(5)* = 2Re[A f(s) + [AP) ' (f(s) = A). (4.71)

By applying Lemmas 4.13.1 and 4.11.5 and with some easy calculations it follows
that S71(\, f(s)) is s-regular in the variable s and it is right s-regular in the
variable \.

Take A € R, so that also S(A, f(s)) is an s-regular function and observe that

STHN F(s)S(N f(s) = SN f(s))STH, f(5)) = 1
so by Theorem 4.11.6 the operator S~1(), f(T')) satisfy the equation:
SOLF(T)STH f(T) = STHN F(T) SO f(T)) = T (4.72)

Observe now that also when A is not necessarily a real number, identity (4.72)
remains valid as it can be easily shown by replacing S=(\, f(T)) and S(\, f(T))
by their explicit expressions

STHN (D)) = =(F(T)? = 2Re[ALF(T) + [AP) T (F(T) = N)

and
SO F(T) = =(f(T) = N)Hf(T)? = 2Re[Nf(T) + |A]*)
in (4.72) and verifying that we get an identity. Consequently we obtain

ST = / S1 F(T)) dAr 6(N)

_ 1 1 ;) B
- /d(WmCI) /aamc,)s (5, 1) dsr S ()\,f(s))) dAr ¢(N)

2 2
_ ! 1 1 B
-1 /d ey S dsi /a oy ST )
1 —1
= d
2m /B(UOCI)S SRS
1

= / S~Y(s,T)dsr F(s) = F(T),
21 Jowner)

so this concludes the proof. O
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4.14 Bounded perturbations of the S-resolvent
operator

In this section we prove that, as in the case of the Riesz—Dunford functional calcu-
lus, bounded perturbations of the S-resolvent operator produce bounded pertur-
bations of the function f(7"). The main result of this section is Theorem 4.14.14.

To start with, we introduce the notions of left and right spectrum of a quater-
nionic linear operator. In the literature, these notions are usually introduced by
specifying the side on which the multiplication by a quaternion is done. Thus we
can state the following definition:

Definition 4.14.1. Let T : V. — V be a right linear quaternionic operator on a
quaternionic Banach space V.. We denote by o (T) the left spectrum of T related
to the resolvent operator (s — T)~1, that is

on(T)={s€H: sIT—T s not invertible in BT(V)},

where the notation sT in BE(V) means that (sI)(v) = sv. Let T : V — V be a
left linear quaternionic operator on a quaternionic Banach space V. We denote by
or(T) the right spectrum of T related to the resolvent operator (Zs—T)~!, that is

or(T)={se€H: Is—T is not invertible in B*(V)},

where in BL(V') the notation s means that (Is)(v) = vs.

We recall that the multiplication operator by an element s € H is not a left
(resp. right) linear operator unless the multiplication is performed on the right
(resp. left).

The S-spectrum and the left spectrum, called from now on, L-spectrum are
not, in general, related. To convince ourselves, we will rework the examples given
in Section 4.9 and compute their L-spectra.

Example 4.14.2. Consider the matrix

10
n-[10].
Recall that the S-spectrum was given by {1} US while an immediate computation
shows that o, (T1) = {1,5}.
Example 4.14.3. Consider the matrix

1 0
n-li 0]
Recall that og(T2) = S, while, with simple computations, we obtain that the
L-spectrum is o, (T2) = {4, j}.
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Example 4.14.4. When we consider a real diagonal matrix

0
T"H b}’

we obtain o, (T3) = 05(T3) = {a, b}.

Example 4.14.5. Consider the matrix

0
n-[ o 1],

Recall that the S-spectrum is og(Ty) = {so = £1, s1 = so = s3 = 0}. We now
determine the L-spectrum:

e[ 7][2]

S q2

which gives
5q1 — iqo = 0, 1q1 + sq2 = 0.

If we replace from the first equation sq; = ige into the second one, we get
(i—sis)qg1 =0
and therefore
1—s15=0.

Expanding s we obtain

i — (So + 151+ jsa + ]ng)i(So + 151+ jsa + ]ng) =0,
ie.,

i — i(So + 451 — jsg — k‘Sg)(So + 151+ jsa + ]ng) =0,
which gives the system

1—(3%—5%—&—5%—&—5%):0, s0s1 =0, 8189 =0, 5183 =0
so that
or(T)={s1 =0, s3+s5+s2=1}.

The notion of L-spectrum is related to the existence of the algebraic inverse
of the operator sZ — T. However, the operator (sZ — T)~! is not the analog of
the resolvent operator for the Riesz—Dunford functional calculus. We describe it
in the following result:
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Theorem 4.14.6. Let T € B(V) and let s € H be such that |T| < |s|. Then the
operator

Z(S_lT)”s_lI

n>0

1s the right and left algebraic inverse of sZ — T and the series converges in the
operator norm.

Proof. Let us directly compute

(sT-T)> (s7'T)"s'T

n>0

=sIY (s'T)"s 'T-TY (s7'T)"s™'T

n>0 n>0
=sIs "I+ Ts T+ T(s ' T)s ' T+ T(s'T)2s 1T+ ...
~Ts ' T —T(s'T)s ' T —T(s'T)*s T~ T(s'T)>s'T+...=1T.

Similarly, we can prove that

S (M) s T I(sT - T) =T,

n>0

Finally we consider

1D ()" Z) < N7 ) s T T

n>0 n>0
<D™ < Yo T
n>0 n>0
which converges for ||T'|| < |s|. This completes the proof. O

The L-spectrum o, (T') for bounded operators is bounded and, in particular,
is contained in the same ball as the S-spectrum og(7"), as shown in the next result:

Theorem 4.14.7. Let T € B(V). Then o(T) is contained in the set {s € H : |s| <
171}

Proof. Since the series

Z(S_lT)”s_lL

n>0

converges if and only if |s71|||T']| < 1, we get the statement. O

We now provide a simple relation between the L-spectrum and the S- spec-
trum.
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Proposition 4.14.8. Let T € B(V) and s € o.(T) and let v be the corresponding
L-eigenvector. Then s € og(T) and v is the corresponding S-eigenvector if and

only if
(T — sI)(sv) = 0.

Proof. Tt follows from the relations:
T?v — 2Re[s|Tv + ssTv = T(sv) — 2Re[s](sv) + s(sv)
= (T —sZ)(sv) =0. O

Lemma 4.14.9. The set U(V') of elements in B(V) which have inverse in B(V') is
an open set in the uniform topology of B(V'). If U(V') contains an element A, then
it contains the ball

S={BeB(V) : [|[A-B|| <A}
If B € X3, its inverse is given by the series

BT =AY [(A-B)AT" (4.73)

n>0

Furthermore, the map A — A=Y from U(V) onto U(V), is a homeomorphism in
the uniform operator topology.

Proof. Let | Z — B|| < 1, so the series

Q=) (Z-B)"

n>0

converges. Since

QB=BQ=[I—-(I-B)JQ=)Y (I-B)"-> (I-B)"=1,

n>0 n>1

it follows that
{BeB(V) : |Z-B|<1}cU(V).

Now let A € U(V) and let ||A — B|| < ||A7}|~!. Then
IZ - BAT!| = |l(A-B)A™"|| <1

hence BA™! has an inverse in B(V), given by the series

(T -BATHY =D [(A-B)AT".

n>0 n>0

Thus B has an inverse in B(V), given by formula (4.73):

B =AY [(A-B)AT"=AT+ AT Y [(A-B)AT

n>0 n>1
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so that

IA = B[l A~H|?

IB=H — AT < [JATH ) (A = B) A" < -
2 L—[lA=BfA=1]

n>1

from which it follows that the map B+ B~! from U(V) onto U (V) is a homeo-
morphism. O

Definition 4.14.10. Let W be a subset of H. We denote by EOWV,¢), for e > 0, the
e-neighborhood of W defined as

EW,e):={qeH : S1€n‘£}|sfq| <e}l

Let o1,(T) be the left spectrum of T. We will use the notation
or(T)={qeH : scor(T)}.

We now state and prove two lemmas in the case of right linear operators.
The results can be stated and proved also in the case of left linear operators, with
suitable modifications.

Lemma 4.14.11. Let T, Z € B®(V) and let s ¢ o,(T) Uor(Z) and consider
Sp(s,T)= (T —sZ) ' s(T —sI)—T, Sp(8,2)=(Z—5sL) ' 's(Z—~sI)—Z
and

Sr(s,T)=(T —ZIs)s(T —Zs)" ' —T, Sgr(s,2)=(Z~1Is)s(Z—Ts)"* —Z.

Then there exist positive constants K (s), K'(s) depending on the operators T and
Z, such that
1SL(s,T) = Si(s, Z)| < K(s)|T - Z], (4.74)

ISr(s,T) = Sr(s, Z)Il < K'(s)|T — Z]. (4.75)
Proof. Consider the following chain of inequalities:
1SL(s,T) = Si(s, Z)||
<IT =D sl 1T = Z]|
HIT =) N Z =TI (Z = sD)7 | [s] |12 = sZ]| + | T - Z]|
< {H(T* D)7l s| + (T = sD) M I(Z = sD) 7| [s] 12 = sZ]| + 1] 1T —Z|
< [Isl 1T = sD)~H (14112 = sT) 7112 = Tl ) + 1[I - Z].
We set
K(s)i=Is| (T = s (1412 = s 12 = sTl) 41, (4.76)

so we get the statement. The strategy to prove (4.75) follows the same lines. O
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Lemma 4.14.12. Let T, Z € BE(V), let s € ps(T), s ¢ or(T)Uo(Z) and suppose

that
1

(s)
where K (s) is defined in (4.76). Then s € ps(Z) and

IT =2 < o (1S DI, (4.77)

SpH(s.2) = Sp (s, T) = Sp (s, T) Y _[(Se(s,T) = Se(s,2))S, (s, 1)) (4.78)
n>1
Analogously, suppose that s € ps(T), s € or,(T)Uor(Z) and
1
'(s)

where K'(s) is obtained with analogous calculations as for K(s). Then s € ps(Z)
and

T =2 < 1) (ISR (DI

Sp'(s:Z2) = Sg'(s,T) = Sg'(5,T) Y _[(Sr(s,T) = Sr(s, 2))Sz' (s, T)]". (4.79)

n>1
Proof. Let us consider
Sp(s,T)= (T —sI) 's(T—sI)~T, Sp(s,2)=(Z—sI) 's(Z—sI)—Z.
Using the estimate (4.74) and hypothesis (4.77), we get
1SL(s,T) = Si(s, Z)|| < K(s)IT = Z|| < [|S;* (s, )7
If we apply Lemma 4.14.9 where we set
A:=S8p(s,T), B:=Si(s,7), At =87 1(s,T), (4.80)

we obtain that Sp(s,Z) is invertible, so we conclude that s € pg(T). Moreover,
its inverse S; ' (s, Z) is given by formula (4.73), i.e.,

S M5, Z2) = SN, T) > [(Su(s,T) = Si(s, 2)S; (s, 1)), (4.81)
n>0

and the series converges since
1(SL(s.T) = S(s, 2)Sp (5. T)|| < K(s)|T = Z|I|S (s, T)|| < 1.

To prove (4.79) we follow an analogous argument. O

Theorem 4.14.13. Let T, Z € BE(V), s € ps(T), s ¢ or,(T)Uor(Z) and let e > 0.
Then there exists 6 > 0 such that, for |T — Z|| < §, we have

05(Z) C E(os(T) Uor(T),e), (4.82)
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||Sgl(s,Z)ngl(s,T)||<s, for s&&(os(T)Uor(T),e), (4.83)

and
||S§1(S,Z) — Sgl(s,T)H <e, for s&&(os(T)Uor(T),e). (4.84)

A similar statement holds for T € BL(V') when s € ps(T), s € or(T) Uar(Z).
Proof. Recall that we have assumed T, Z € B®(V). Let ¢ > 0; thanks to Lemma
4.14.9 there exists n > 0 such that if

1T = 2|l <,

then o1, (Z) C E(or(T),€), where E(or(T),¢) is the e-neighborhood of or(T). So
we can always choose 1 such that o1 (Z) C E(os(T) U or(T),e). Consider the
function K (s) defined in (4.76) and observe that the constant K. defined by

K. = sup K(s) (4.85)
sZE(os(T)Uor(T),e)

is finite since s ¢ E(og(T) Uor(T),¢e), the set or(Z) is contained in E(os(T) U
or(T),e) and because

. IS AT =l —
Jim [[(sT ~ 2)"}]| = Jim [[(sT ~T)"| = 0.

Observe that s € pg(T) implies that the map s~ ||S; ' (s, T)|| is continuous and
lim [|S;'(s,T)| = lim |[(T?® — 2Re[s]T + |s|°Z) (T — sI)| =0,
§—00 §—00

and so, for s in the complement set of E(og(T),e), we have that there exists a
positive constant N. such that

1S, (s, T)|| < Ne.
From Lemma 4.14.12 if §; > 0 is such that

12 =T|l < o1,

1 Ppp—
K.N.
where K, is defined in (4.85), then s € ps(Z) and

s, T2 T) - Z
||SEI(S,Z)7521(S,T)H§ HSL (;i’ )H ||SL(S7 ) SL(S’ )H
L= ISz (s, D) [SL(s,T) = Sils, Z)||
NEKEHZ_TH

SI-NK|Z-T| =

if we take c

K (N2 +eN.)

To get the statement it suffices to set § = min{n, d1, d2}. So we have shown (4.82)
and (4.83). To prove (4.84) we reason in a similar way. O

HZ — TH < 09 1=
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Theorem 4.14.14. Let T, Z € B(V), f € R(I;S(T) and let € > 0. Then there exists
0 > 0 such that, for ||Z —T|| < §, we have f € Rc]ig(z) and

1£(2) = F(D)] <&,

where
1

_ / S71(s,T) dsr f(s)
2m a(UNLy)

and U C H is a T-admissible domain, ds; = ds/I for I € S.

f(T)

Proof. Suppose that U is an e-neighborhood of og(T)Uo(T) that is contained in
the domain in which f is left s-regular. By Lemma 4.14.13 there is a §; > 0 such
that 0g(Z) C U for ||Z — T|| < ;1. Consequently f € R(I;S(Z) for |Z —T| < 4.

By Lemma 4.14.13, the operator S;*(s,T) is uniformly near to S; '(s, Z) with
respect to s € J(UNLy) for I € Sif ||Z—T)| is small enough, so for some positive
6 <61 we get

IF(T) = F(2)ll = 217r|| - )[Sil(s,T) — 8. (s, 2)] dst f(s)] <. U

Remark 4.14.15. Theorem 4.14.14 can be stated and proved also when f € ng 1)
with minor changes in the proof.

4.15 Linear closed quaternionic operators

Let V be a two-sided quaternionic Banach space. In analogy with the complex
case, we say that a linear operator, whose domain is a linear manifold D(T), is
said to be closed if its graph is closed. For the powers of an operator T, we have

D(T™) ={v : veD(T" Y, T" veDTT)}.
A quaternionic linear operator T can be written in the form
T=Ty+ 1Ty + jT5 + kT5.

Recalling the definitions in Section 4.6, the operators Ty, for £ =0, ..., 3, are given
by the rules:

1

Ty =+, (T —iTi—jTj — kTk),
1

Ty = — (T +Ti— jTk +KT}),
1

Ty =, (T +Tj — kTi +iTk),

Ty (KT + Tk — iTj + jTi).

1
T4
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Moreover we have [Ty,iZ] = [1y,jI] = [Ty, kZ] = 0, £ = 0,...,3, where [, ]
denotes the commutator. These properties justify the fact that we will refer to T},
{=0,...,3, as the formal real components of the operator T. As we have already
pointed out, if we consider a right regular polynomial P,,(q) = Z;n:o ajq’, where
a; € Hfor j =0,...,n of degree m € N, the right (resp. left) linear quaternionic
operator

m
Pn(T) = a;T7 : D(IT™) -V
j=0

is obtained replacing ¢ by a right (resp. left) linear quaternionic operator T
Analogously, if we consider a left regular polynomial of degree m € N, P,,(¢q) =
Z?LZO ¢’a;, where a; € H for j =0,...,n the right (resp. left) linear quaternionic
operator

Ppn(T) =Y Tla; : D(IT™) -V
=0

is obtained replacing ¢ by a right (resp. left) linear quaternionic operator T'. Let
T =To+iTy + jTo + kT5 where Ty : D(Ty) — V, £ =0, 1,2, 3 are linear operators
and D(T;) denotes the domain of Ty. The domain of T is defined as D(T') =
m?:o D(Ty). When at least one of the Ty’s is an unbounded operator, we define
the extended S-spectrum of T" as

os(T) :=o0s(T) U {c0}.

Let us consider H = HU {co} endowed with the natural topology. Precisely, a set
is open if and only if it is the union of open discs D(gq,r) with center at points in
g € H and radius r, for some r, and /or the union of sets of the form D’ (oo, r)U{oco},
for some r, where D'(co,r) = {q € H | |q| > r}.

We recall that f(g) is an s-regular function at oo if f(g) is an s-regular
function in a set D'(oco,7) and lim, .~ f(g) exists and it is finite. We define f(c0)
to be the value of this limit.

Remark 4.15.1. If T is a right (resp. left) linear and bounded quaternionic oper-
ator, then og(T) is a compact nonempty set, but for unbounded operators, as in
the classical case, the S-spectrum og(7') can be empty, bounded or unbounded
and it can also be og(T") = H. In the sequel, we will assume that the S-resolvent
set ps(T) is nonempty.

Definition 4.15.2. Let V' be a two-sided quaternionic Banach space.

(1) We denote by KE(V') the set of right linear closed operators T : D(T) C V —
V, such that

(1) D(T) is dense in V,
(2) D(T?) C D(T) is dense in V,
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(3) T — sZT is densely defined in' V.

(ii) We denote by KL (V') the set of left linear closed operators satisfying (1) and
(2) and such that T — s is densely defined in V.

(iii) We use the symbol (V) when we do not distinguish between KX (V) and
KE(V).

Since T is a closed operator, then T? — 2TRe[s| + |s|>Z : D(T?) C V — V is
a closed operator. In analogy with the case of bounded operators, we define the
S-spectrum and the S-resolvent sets of T'.

Definition 4.15.3. Let V' be a two-sided quaternionic Banach space and let T €
K(V). We denote by ps(T) the S-resolvent set of T as

ps(T)={s €M : (T? —2TRe[s] + |s|’Z)" ' € B(V) }.
We define the S-spectrum os(T) of T as
os(T) =H\ ps(T).

In the sequel, we will use the notation introduced in the following definition:

Definition 4.15.4. Let T € K(V) and s € ps(T'). We denote by Qs(T') the operator:
Qs(T) := (T? — 2TRe[s] + [s|?°T)": V — D(T?). (4.86)

Remark 4.15.5. The S-resolvent operators 5517 S;cl present a deep difference when
considering the case of left or of right linear operators. Cousider, for s € pg(T),
the left S-resolvent operator used in the bounded case, that is:

S; (s, T) = =Qu(T)(T - sT), (4.87)

and observe that in the case of right linear unbounded operators, this resolvent
turns out to be defined only on D(T") while in the case of left linear unbounded
operators it is defined on all of V' . This fact is due to the presence of the term
Qs(T)T. However, for T € KF(V), observe that the operator Q4(T)T is the re-
striction to the dense subspace D(T') of V of a bounded linear operator defined
on V. This fact follows by the commutation relation Qs(7)Tv = TQ4(T)v which
holds for all v € D(T) since the polynomial operator

T? — 2Re[s|T + |s|*T: D([T?*) =V
has real coefficients. More precisely, for T € K%(V), we have
TQs(T): V —=D(T)

and this operator is continuous for s € pg(T).
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Definition 4.15.6 (The S-resolvent operators for unbounded right linear oper-
ators). Let V be a two-sided quaternionic Banach space, let T € KF(V) and
s € ps(T). We define the left S-resolvent operator as

S (s, T := —Q«(T)T — sT)v, for all v D(T),
and we will call
S8, T)v = Q4(T)sv — TQs(T)v, for all veV, (4.88)
the extended left S-resolvent operator. We define the right S-resolvent operator as
Spt(s, Ty = —(T —Is)Qs(T)v, for all ve V. (4.89)

Remark 4.15.7. Observe that for s € ps(T) the operator Q4(T) : V — D(T?) is
bounded and so also

Sp(s,T) = —(T —Zs)Qs(T) : V — D(T)

is bounded.

Definition 4.15.8 (The S-resolvent operators for unbounded left linear operators).
Let V be a two-sided quaternionic Banach space, let T € KX(V) and s € ps(T).
We define the left S-resolvent operator as

USEI(SaT) = —vQs(T)(T — sI), for all veV. (4.90)
We define the right S-resolvent operator as
vSR'(s,T) i= —v(T — Is)Qs(T), for all ve D(T), (4.91)
and we will call
v (s,T) = vQ4(T)s —vQs(T)T,  for all veV, (4.92)

the extended right S-resolvent operator.
This motivates the following definition.

Definition 4.15.9. Let A be an operator containing the term Qs(T)T (resp.
TQs(T)). We define A to be the operator obtained from A by substituting each

occurrence of Qs(T)T (resp. TQs(T)) by TQs(T) (resp. Qs(T)T).
A second difference between the left and the right functional calculus are the

S-resolvent equations which, in order to hold on V, need different extensions of
the operators involved.

Theorem 4.15.10 (The S-resolvent equations). Let V' be a two-sided quaternionic
Banach space.
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(i) If T € KB(V) and s € ps(T), then the left S-resolvent operator satisfies the

equations
S; (s, T)sv — TSy (s,T)v=Tv, for all ve D(T), (4.93)
S (s, T)sv — TS, (s, T)v =Tv, for all veV. (4.94)

Moreover, the right S-resolvent operator satisfies the equations

sSp' (s, T)v — Sg'(s,T)Tv=Tv, for all ve D(T), (4.95)
sSH (s, T)v — (Sgl(ﬁT)v =TZv, forall veV. (4.96)

(i) If T € KE(V) and s € ps(T), then the left S-resolvent operator satisfies the

equation
vS; (s, T)s —vTS; (s, T) =vZ, for all ve D(T), (4.97)
vS; (s, T)s —vTS; (s, T) =vI, for all veV. (4.98)

Moreover, the right S-resolvent operator satisfies the equations
vsSp (s, T) —vSE' (s, T)T =vZ, for all ve D(T), (4.99)
vsggl(s,T) - ’U(SEI(S,T)T) =vZ, for all veV. (4.100)
Proof. To prove (4.93) we consider its left-hand side where we replace S} *(s,T)
by —Qs(T)(T — 5Z) and we obtain, for v € D(T):
- Qs (T)TS”U + QS(T)ESU + TQS (T)TU - TQS (T)§U
= Q4(T)|s]?v — 250TQs(T)v + T?*Q4(T)v
= (|s]*T — 20T + T*)Qs(T)v = Tv.
Equation (4.94) can be verified as
Qs(T)s —TQs(T)]sv —T[Qs(T)s —TQs(T)]v =Tv, forallveV.

Observe that T[Qs(T)s — TQs(T)]v € V since Qs(T) : V. — D(T?) and by trivial
computations we get the identity

(T? — 2TRe[s] + |s|*T)Qs(T)v = v, forallv eV,

which proves the statement. Equations (4.95)—(4.100) can be verified in the same
way with obvious meaning of the symbols. O

In the classical case of a complex unbounded linear operator

B:D(B)C X — X,
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where X is a complex Banach space, the resolvent operator
R(\,B):= (\Z — B)™!, for € p(B),
satisfies the following relations:

(M — B)R(\,B)x =z, forall e X,
R(\, B)(MZ — B)x =z, forall x € D(B).

We study what happens in the quaternionic case for unbounded operators. The
analog of AZ — B, associated to the left S-resolvent operator, is defined by

Sp(s,T)= (T —sI) ' s(T —sI)—T

for those s € H such that (7' — sZ)~! is a bounded operator. Observe that for the
operator S,(s,T) the following identity

(T —sI) "t s(T —sI) —T = —(T — sT) "1 (T? — 25T + |s|*T) (4.101)

holds for bounded operators. Suppose now that 7' € K(V). It is easy to see that
the left-hand side of (4.101) is defined on D(T") while the right-hand side of (4.101)
is defined on D(T?). This fact motivates the following definition.

Definition 4.15.11. Let V' be a two-sided quaternionic Banach space. Take s € H
such that (T — sZ)~* is a bounded operator.

(i) Let T € K®(V). Then we define
Sp(s,T)v:= —(T — sT) 1 (T? — 25T + |s]*T)v: v € D(T?),
Sp(s, T :=[(T —sI)" ' s(T —sI)—Tlv: veDT),

where, with an abuse of notation, we have denoted by SL(S,T) the extension
of S.(s,T) on D(T). Moreover, we set

Sr(s, T :=[(T —Zs)s(T —Zs)" " — T
( = (T2 — 2507 + |s|*T)(T — sz>—1v), v e D(T).

(ii) Let T € KL(V). Then we define
vSL(s,T) :=v[(T — sZ)" ' s (T — sI) — T
( — (T — sT)" (T2 — 2s0T + \5\21)), v e D(T).
Moreover, we set
vSR(s,T) = —v(T? — 25T + |s|*I)(T — sT)™*, v e D(T?),
vSR(s,T) :==v[(T —TIs)s(T —Zs)"' =T], wveDT),

where, with an abuse of notation, we have denoted by S'R(S,T) the extension
of Sr(s,T) on D(T).
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The abuse of notation in the previous definition is motivated by the following

result:

Theorem 4.15.12. Let V' be a two-sided quaternionic Banach space. Take s € H
such that (T — sZ)~! is a bounded operator and s € ps(T).

(i) Let T € KE(V). Then we have
S'L(s, T)Sgl(s, T)v =Zv, for
S'El(s, T)SL(S, T)v =Zv, for
and
Sr(s,T)Sx' (s, T)v =Tv, for
Sz (s, T)Sr(s, T)v =Tv, for

vSL(s,T)S; ' (5,T) = vZ, for
vS; (s, T)SL(s,T) = vZ, for

and
v.SA'R(s,T)S';Cl(s,T) =L, for
v.SA'gl(s,T)S'R(s,T) =vZL, for

Proof. Let us verify that (4.102) holds, i.e.,

all vev,
all v e D(T),

all vevV,
all veD(T).

all vev,
all v e D(T),

all vev,
all veD(T).

(T — sT)~'s(T — sI) — T)S; ' (s, T)v = Tv, forallv eV,

from which we get

(T — sT)~Y[sTS7 (5, Yo — [s[287 (5, T)e]
= TS'El(s,T)v +Zv, for allv e V;

using (4.94) on the right-hand side we obtain

(T — sT)" [sS; (s, T)sv — sv — |s[25; 1 (s, T)v]

=57 s, T)sv, forallveV

and

(T — sT)"[sS; (s, T)sv — sv — S

=S (s, T)sv, forallveV

(s, T)ssv]

(T — sT)"sS; (s, T) — T — Sy (s,T)s]sv

= S; (s, T)sv, forallve V;

(4.102)
(4.103)

(4.104)
(4.105)

(4.106)
(4.107)

(4.108)
(4.109)
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by (4.94) we have:

(T — sZ)"Y[sS; (s, T) — (S (s, T)s — TS (s,T)) — S ' (s,T)s]sv

=S (s, T)sv, forallveV
from which we get

(T — sT) TS (s, T) — 857 (s, T)|sv = S; (s, T)sv, forallv eV,

that is

(T — sT)" YT — s7)S; (5, T)(sv) = S; (s, T)(sv), forallveV,
which proves (4.102). To verify (4.103) observe that from (4.102) we get

(S; (s, T)SL(s,T))S; (s, T)v = S; (s, T)v, forall weV,
but since S; (s, T)v € D(T) for v € V we have that
S7(s,T)SL(s, T)w = Tw for all w € D(T).

The proofs of (4.104)—(4.109) can be treated with analogous considerations. [

Remark 4.15.13. Let 7' € KF(V). Take s € H such that (T — sZ)~! is a bounded
operator and s € pg(T'). Then it is easy to show that

Sr(s,T)S; (s, T)v = Tv, for all ve D(T), (4.110)
S (s, T)St(s,T)v = Tv, forall ve D(T?). (4.111)

Similar considerations can be applied for (4.108)—(4.109).

4.16 The functional calculus for unbounded operators

Definition 4.16.1. Let T € K(V). A function f is said to be locally left (resp.
right) s-reqular on og(T) if there exists a T-admissible open set U such that f is
left (resp. right) s-regular on U and at infinity. We will denote by RgS(T) (resp.

RfS(T)) the set of locally left (resp. right) s-regular functions on og(T).
Remark 4.16.2. As we have pointed out in Remark 4.8.9, the open set U related

to f € R{;S (1) (resp. Rf’s (T)) need not be connected. Moreover, as in the classical
functional calculus, U in general depends on f and can be unbounded.

Definition 4.16.3. Consider k € R and the function ® : H — H defined by p =
B(s) = (s — k)L, (00) = 0, (k) = oco.
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Definition 4.16.4. Let T € K(V') with ps(T)NR # O and suppose that f € R(I;S(T)
(resp. f € RfS(T)). Let us consider

é(p) = f(2~' ()
and the bounded linear operator defined by
A= (T —kI)™ !, for some k€ ps(T)NR.
We define, in both cases, the operator f(T) as
107) = 6(4). (4.112)
Remark 4.16.5. Consider ®, ¢ and k as above. Then:

(1) The function ®1(p) = p~! + k has real coefficients so it is both left and
right regular. So if f is left reqular, then the function ¢ = f(®~1(p)) is left
reqular, while if f is right reqular, then the function ¢ = f(®~1(p)) is right
reqular by Theorem 4.13.1.

(2) Ifk € ps(T)NR and T € KE(V), then

(T —kI) Yo = =S (k, T)v = —Sg*(k, T)v, forall veV.

(3) If k € ps(T)NR and T € KL(V), then

o(T — KI)™' = —vSR'(k,T) = —vS; ' (k,T), forall veV.

Theorem 4.16.6. Let k € ps(T)NR # () and ®, ¢ are as above.

(i) Let T € KE(V), then ®(o5(T)) = 05(A) and ¢(p) = f(®~1(p)) determines
a one-to-one correspondence between f € Ryg () and ¢ € Ryga). Moreover
we have

SEI(S,T)U = pZv — Sgl(p, Ap*v, vev, (4.113)

and

Sp'(s,T)v = pTv —p*Sx'(p, A)v, veV. (4.114)

(i) Let T € KE(V), then ®(0s(T)) = 05(A) and ¢(p) = f(®~(p)) determines
a one-to-one correspondence between f € Ry () and ¢ € Rygay. Moreover
we have

vS; (s, T) = vpZ —vS; ' (p, A)p?, v eV, (4.115)

and
vSE' (s, T) = vpT —vp*S5' (p, A), veV. (4.116)
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Proof. Let s, p € H and k € R such that p = (s — k)~!. Then the identities

solp|* = klp|* + po, (4.117)
Ip?[s]* = k|p|* + 2pok + 1, (4.118)
1
(2kp — 2s0p + 1) o= —p2, (4.119)
kK2p — |s|%p + k
! ||s|2p+ =—sp? (4.120)
p

can be verified by direct calculations. Let us prove (4.113) in Point (i). We prove
that ®(og(T)) = 0s(A). We recall that

S7(s,T) = Qs(T)s — TQ.(T) : V — D(T) for all s € pg(T).
From the definition of A we also have, for k € ps(T) NR # 0,
A=(T—-kKI)"":V—=DT), and A '=T—-kI:D(T)—V,
A% = (T? = 2kT + K°7)"%: V — D(T?),

and
A2 =T? - 2kT + K*T : D(T?) — V.

Observe that, for p € pg(4),
QulA) 1= (A2 — 2pA + D) € BV)

and
St (p. A) = Qp(A)p — AQy(A).
Let us consider the relation
-1
Qp(A) = [(T = KT) 2 = 2po(T — KT) ™ + plZ]

= 1T = 2p0(T = KT) + |p (T = KT)P)(T — kT)~?]
= (T = kI)*[T — 2po(T — kI) + [p|*(T — kT)*)7"
= [p|"2(T — KD(T? — 2k + polp| )T + ([pl? + 2pok + 1)|p| 2] ;

for (4.117) and (4.118) we get
Qp(A) = |p|~2(T — kT)*[T? — 250T + |s|*Z] 1 : V =V,

that is
Qp(A) = [p| (T = kI)*Q.(T). (4.121)
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Since A is a bounded operator, then
S7Hp, A) = QplA)p — AQu(A) : V > V.
so we have
S7Hp, A) = [p| (T = kI)*Q«(T)p — |p| (T — kI)Q4(T)
= [p|72[(T? = 2T + K*1)Qu(T)p — (T — K)Qu(T)]
= p|72[(T? = 250T + |s"T) Q. (T)p
+ (=2KT + K + 250 — [s)Qu(T)p — (T — KT)Qu(T)]
= o2 [Zp+ Qu(T) k2P — |sI*p + k] = TQ.(T)[2kp — 250p + 1]]

k*p — |s]*p + k 2k‘p—230p—|—1}

- [Ip_l +Q:(T) p[? p[?

- TQS (T)
Now we use the identities (4.119) and (4.120) to get

Sptp, A)=TIp ' — Qs(T)sp 2 + TQs(T)p 2

and finally
Sy p A) =Tp ' = S (s, T)p 2. (4.122)

Sop € ps(A), p#0, then s € ps(T).
Now take s € pg(T). We verify that

SpH(s,T) = —AS; (b, A)p
holds. Indeed, by (4.121) we get the equalities
— AST (p, A)p = —AlQp(A)p — AQp(A)]p
= —(T = k)| []p| (T — k2)*Qs(T)lp — (T — kI)~{Ip|*(T — kI)*Qs(T))|p

= ~TQuT) +Qu(T)( 1, +F) = 5.'(. 7).
So if s € pg(T), then p € ps(A), p # 0.
The point p = 0 belongs to og(A) since S;*(0,4) = A™' = T — kT is
unbounded.
The fact that ¢(p) = f(® 1(p)) determines a one-to-one correspondence
between f € R, () and ¢ € R,4(a), as is evident from the definition of ®.

It remains to prove relation (4.114). We recall that

Sp(s,T) = —(T — sT)Qs(T) : V — D(T) for all s € ps(T).
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From the definition of A, which is a bounded operator, when k € ps(T)NR # 0
we have

A= (T—-kI) .V = D(T), A =T —kT:D(T) -V,
A% = (T? —2kT + K*7)"' . V = D(T?),

and
A2 =T? - 2kT +K*T: D(T? — V.

Observe that, for p € ps(A4),
Qp(A) := (A% = 2poA + p|’T)~" € BH(V).

By the relation between @,(A) and Q4(T) in (4.121) and since A is a bounded
operator, we get Sgl(p, A)=—(A—pI)Qs(A) : V — V; therefore, using (4.121),
we have

Sr'(p,A) = (T = kI)™! — pZ] |p| (T — kI)*Qs(T)
= —|p|~2 [T — KT —p(T — kZ)ﬂQs(T)
— ~lp|2p|p T~ p KT — T% 4 24T — KT Q(T)
= p (T2 = 20T + (/D) + (250 — 26— p )T+ (p 'k + K2 = [5)T] Qu(T)
=p T4 [p (250~ 26— p T = p M| — K2~ kp )T Qu(T),
By the identities
2s0 =2k —p Tt =p7, sk —kpTl=pls

we finally get
S (P, A) =p T —p 2SR (s, T), (4.123)

from which we obtain (4.114). So, if p € ps(A) and p # 0, then s € pg(T).
Now take s € pg(T). We verify that

Si'(s,T) = —pSp'(p, A)A
holds. In fact, by (4.121) we get the equalities

pSE'(p, A)A = —p(A — pT)Qp(A)A = —p(A — pI) AQ,(A)
= (—pA% + p|?A)|p|A(T — kI)*Q.(T)
= (=p(T = kI)> + [p|*(T — kZ)"")|p| (T — kI)*Qs(T)

= [r = (k+plp2)Z] Qo) = —S7 ', T).
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So if s € pg(T), then p € ps(A), p # 0. Thus p = 0 belongs to os(A) since
S51(0,A) = A~ =T — kZ is unbounded.

Point (ii): The fact that ¢(p) = f(®1(p)) determines a one-to-one corre-
spondence between f € R, () and ¢ € Ry4(a) follows from the definition of .
We can prove the equalities (4.115) and (4.116) with techniques similar to those
used to prove (4.113) and (4.114), with obvious different interpretation of the
symbols since T' € KE(V). O

Theorem 4.16.7. Let V' be a two-sided quaternionic Banach space and let W be a
T-admissible open set.

(i) Let T € KE(V) with ps(T) NR # (. Then the operator f(T) defined in
(4.112) is independent of k € ps(T)NR, and, for f € RgS(T) andv €V, we
have

1

F(T) = f()To+

/ S;Y(s,T) dsy f(s)v, (4.124)
A(WNCy)

and for f € RfS(T) and v €V, we have
1
f(T)v = f(oo)Zv + / f(s) dsr Sp'(s, T)v. (4.125)
21 Jawncer)

(i) Let T € KE(V) with ps(T) N R # 0. Then the operator f(T) defined in
(4.112) is independent of k € ps(T)NR, and, for f € RgS(T) andv €V, we
have

of(T) =vf(0)T + /B(Wmc ST ds 1), (@20

and for f € R?S(T) and v € V, we have

Vf(T) = vf(e)T+ /a(wmc 0 F6) dsr S 7). (4.127)

Proof. The fact that the operator f(T') defined in (4.112) is independent of k €
ps(T)NR follows from the validity of formulas (4.124)-(4.127) since the integrals
are independent of k.

Consider k € pg(T) N R, and assume that the set W is such that k &
(WnNCy), VI € S. Otherwise, by the Cauchy theorem, we can replace W by
W', on which f is regular, such that k ¢ (W’ N Cy), without altering the value of
the integral (4.125). Moreover, the integral (4.125) is independent of the choice of
IeSs.

We have that V N Cy := & }(W N Cy) is an open set that contains og(7T")
and its boundary (VN C;) = @~ 1(9(W NCy)) is positively oriented and consists
of a finite number of continuously differentiable Jordan curves.
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Let us prove formula (4.124) in Point (i). Using the relation (4.113) we have

! o—1
2 /a(WmCI) S (s, T)ds1f(s)
1
== T — S~ (p. A2 )24
2 /c’i(vaI) (p Sy (p, A)p )P pré(p)
1 —1 1 .
T d S71(p, A)d
2 /aoml)p pro(p) + ., /(.3 . (p, A)dp16(p)
= —Z¢(0) + ¢(A).
Now by definition ¢(A) = f(T) and ¢(0) = f(oo) we obtain
1

oy, 57 TS 8) = <Tf(00) 4 4(T),

so we get (4.124). Now, using the relation (4.114) we have

1
/ f(s) ds; Sg'(s,T)v
27 Jawner)
1 / —2 2¢ca—1
=— o(p) dpr p=2 (I —p°Sg (p, A) Jv
271 Javncy) ) < f )
1 _ 1 _
g [ e ety [ o) d S5 A)e
21 Jovnc) 21 Jovne)

= —Z¢(0)v + ¢p(A)v.
Now by definition ¢(A) = f(T') and ¢(0) = f(o0) we obtain

1

5 / f(s) dsr Sg'(s,T)v = —Zf(c0)v + f(T)v.
™ Jo(wncCr)

Formulas (4.126) and (4.127) in point (ii) can be proved following the same argu-
ments with suitable modifications and interpretations of the symbols. O

In the following theorem we show some algebraic properties that can be
deduced easily. We state the results for functions f € RL but analogous

os(T)
R
results hold for f € RUS(T).

Theorem 4.16.8. Let V' be a two-sided quaternionic Banach space and let T € K(V)
with ps(T)NR # Q. If f and g € RgS(T), then

(f +9)(T) = f(T) + g(T).
Ifg e RgS(T) and f € Nyg(r), then

(fo)(T) = F(T)g(T).
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Proof. Observe that fg € RES(T) thanks to Lemma 4.11.5. Let ¢(u) = f(®7(p))

and ¥(p) = g(®~(p)). Lemma 4.11.5 and Lemma 4.13.1 give that the product
¢ is s-regular. By definition we have

thus by Theorem 4.11.6 we get

(@ +9)(A) = o(A) +¢(4),  (9¥)(A) = d(A)p(A).
The statement follows. g
Theorem 4.16.9. Let V be a two-sided quaternionic Banach space and let T € K(V)
with ps(T) R # 0. If f € Nog(ry, then

os(f(T)) = flos(T)).

Proof. Let ¢(u) = f(®'(u)). For the S-spectral mapping theorem we have
d(os(A)) = os(¢(A)) and for Theorem 4.16.6 we also have ®(os(T)) = o5(A4).
So we obtain

P(P(05(T)) = ¢p(os(A)) = 05(¢(A)) = o5(f(T)).
On the other hand,

(@(0s(T)) = f(@ 1 (P(0s(T))) = flos(T)). O

4.17 An application: uniformly continuous quaternionic
semigroups

We generalize to the quaternionic setting the classical result that a semigroup
has a bounded infinitesimal generator if and only if it is uniformly continuous.
To start with, we recall the definition of uniformly continuous and of strongly
continuous semigroups and some preliminary results useful in the sequel. Note
that to develop our theory we will make use of the functional calculus based on
left regular functions.

Definition 4.17.1. Let V be a two-sided quaternionic Banach space and t € R. A
family {U(t)}i>0 of linear bounded quaternionic operators in V. will be called a
strongly continuous quaternionic semigroup if

L) Ut+71)=U)U(T), t, T>0,

(2) u(0) =1,

(3) for every v € V., U(t)v is continuous in t € [0, c0].
If, in addition,
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(4) the map t — U(t) is continuous in the uniform operator topology,

then the family {U(t)}+>0 is called a uniformly continuous quaternionic semigroup

in B(V).

From the functional calculus in Definition 4.10.4, it is clear that for any
operator T € B(V), e! T is a uniformly continuous quaternionic semigroup in B(V).
The following theorem shows that also the converse is true, i.e., every uniformly
continuous quaternionic semigroup is of this form.

Theorem 4.17.2. Let {U(t)}1>0 be a uniformly continuous quaternionic semigroup
in B(V). Then:

(1) there exists a bounded linear quaternionic operator T such that U(t) = e ;

(2) the quaternionic operator T is given by the formula

T = 1ig 4 —UO)
h—0 h

)

(3) we have the relation

d

T =TeT =TT,
dt

Proof. The proof follows the lines of the proof of the analogous result in the clas-
sical case. However, since we are working in a noncommutative setting, it is nec-
essary to check that all the computations can be performed over the quaternions.
We start by proving (1). Let us consider the logarithmic function In ¢ defined on
H\ {g € R : g <0} by extending the principal branch of the function In q. Since
U(0) = I whose S-spectrum is reduced to the real point 1, it follows that we can
apply the perturbation theorem of the S-resolvent operator, see Theorem 4.14.14,
to the operators U(0) = I, U() for a suitable § > 0, using the function In¢. Thus,
there exists € > 0 such that P(t) = Inl(t) is defined and continuous for ¢t € [0, ¢].
If nt < g, then, by the semigroup properties, we have

P(nt) =InU(nt) =In (U(t))" =n P(t)

thus
P(t) =nP(t/n) for every t € [0,¢].

As a consequence, for each rational number m/n such that m/n € [0, 1] and for
each t € [0, €], we have

7: Ut) = mU(t/n) = U(mt/n),

and so
m

U(e) =U(me/n).

n
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By continuity, we get

tP(e) = P(te) for every t € [0,1],

and
P(t) = P(e) foreveryt € [0,¢].
If we set )
T:= P
LPGe)
we obtain

Ut) =e'T for every t € [0,¢].

If t > 0 is arbitrary, then ¢/n < ¢ for sufficiently large n, and so we obtain
T = (WD) = [W(t/n)]" = U(H)

This proves the representation of the semigroup. To prove point (2) let A > 0
and observe that the limit lim;,_,o+ (e"9 —1)/h = ¢ and the sequence ("¢ —T)/h
converges uniformly in any bounded set of H. So, by Theorem 4.10.6, the limit
limy, o+ (e" T — T)/h converges to T. Point (3) can be deduced by the functional
calculus. In fact, taking h € R, we get

(t+h)T _ tT 1 (t+h)s _ ts
€ SR / S; (s, T)dsy (e c )Ss_l.
h 2 a(UNCy) h

Now comnsider the fact that for any ¢, h € R and for any quaternion s € H we have
that e’* and €™ commute between themselves and with s, moreover e(tth)s —
et*e"s holds. Thus we have

(t+h)T _ tT 1
¢ <= / S; (s, T)dsr se'* ¢ s
h 2 a(UNCy) h

Taking the limit for h — 0 we get

T T

i € T e, O

h—0 h
We now want to generalize the important result that the Laplace transform
of a semigroup e'? of a bounded linear complex operator B is the usual resol-
vent operator (Al — B)~!. The generalization we obtain is somewhat surprising.
Both the left and the right S-resolvent operators S; ' (s, T) and Sy’ (s, T) are the
Laplace transform of the semigroup according to two different possible definitions
of the Laplace transform according to the two possible integrands e!”e~* and

e—tsetT.
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Theorem 4.17.3. Let T € B(V') and let so > ||T||. Then the left S-resolvent oper-
ator S; (s, T) is given by

+oo
S; (s, T) = / T et qt. (4.128)
0
Proof. We have to prove that
oo
SL(S,T)/ eTe tdt =1,
0

where
Sp(s,T) = —(T — sT)" 1 (T? — 250T + |s*T).

Take 6 > 0 and consider
0 0
SL(s,T)/ Ut)e= dt = —(T — sT)~1(T% — 25T + \8\21)/ e!T =15 gt
0 0
Since every bounded linear operator commutes with the integral, we get
0 0
Sr(s, T)/ ele s dt = — / (T — sT) Y (T?% — 25T + |3|°T)e!T e~ dt. (4.129)
0 0

Thanks to Theorem 4.17.2 we obtain the identities
(T — sT)"H(T? — 25T + |s|*T)e! e
= (T — sT) '™ (T? = Ts — Ts + ssT)e **
=(T - sI)*l{etTT(T —sT)e " — (T — sI)s e*ts}

d d
_ o —1 tT _ —ts tT _ —ts
= (T —sI) {dte (T —sL)e 4" (T — sI) &t }
= jt[(T — sT) e (T — sT) e ™). (4.130)

So by the identity (4.130) we can write (4.129) as

Si(s,T) /09 e dt = - /09 jt[(T — sT) e T(T — sT) e~ **)dt
=7 — (T —sT) 2T (T — sT) e,
Observe that
(T — sT)"2e?T(T — sT) e ™|
< T = sT) TN = ST e
< T~ sT) (T — ST e 0

for # — +o00 because we have assumed sy > ||T']|. So we get the statement. O
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The case of Si'(s,T) is similar: it will be treated in Theorem 4.18.8 in the
Notes. In the sequel we will use the following result.

Proposition 4.17.4. Let V be a quaternionic Banach space. Let {U(t)} be a family
of bounded linear quaternionic operators defined on a finite closed interval [a, b
such that U(t)v is continuous in t for each v € V; then |U(-)|| is measurable
and bounded on [a,b]. Conversely, if {U(t)}i>0 is a semigroup of bounded linear
quaternionic operators in V. and if U(-)v is measurable on (0,00) for each v € V,
then U(-)v is continuous at every point in (0, 00).

Proof. The statement follows by adapting the arguments in the proof of Lemma
3 p. 616 in [35]. In fact, under the hypotheses in the first part of the statement,
the boundedness of [|U/(-)] follows from the Uniform Boundedness Principle and
the fact that ||/(-)|| is measurable follows from Theorem II1.6.10 in [35]. To show
the second part, we can assume at the beginning that ||U/(-)| is bounded over
each interval of the form [9,1/4], § > 0. Under this assumption, if one repeats the
computations in the proof of Lemma 3, p. 616 one gets that ||I/(-)] is continuous
at each point ¢ty > 0 for any v € V. Finally, it is sufficient to show that, if ||U/(-)]|v
is measurable on (0, c0) for all v € V, then it is bounded on [§,1/6], 6 > 0. O

Proposition 4.17.5. Let {U(t)}1>0 be a family of bounded linear quaternionic op-
erators on the quaternionic Banach space V. If

p(t) :==In[U@)|
is bounded from the above on the interval (0,a) for every positive a € R, then

. —1 o —1
i 7 ()] = inf e In U )

Proof. The proof is similar to the one of the analogous result in the complex case.
In fact, it is immediate to check that all the computations can be repeated over
the quaternions. For the sake of completeness we recall the main points. Observe
that

p(t+7) =nfU+7)| <WnfuU@[UI <pt) +p(r), t,7=0.

Set o := inf;~ot ! In|jU(t)| finite or —oo. Suppose « finite. We choose for any
€ > 0, a positive number a > 0 in such a way that p(a) < (o + €)a. Let t > a and
n = n(t) be an integer such that na <t < (n + 1)a. Then we have the chain of
inequalities

p(t) - p(na) . p(t — na) < ha p(a) . p(t — na)

a <
-t Tt t —t a t
na t—na
< t(a+€)+p( ; ).

By hypothesis p(t —na) is bounded from above as t — +o00. Thus letting ¢t — +00
in the above inequality we obtain lim; ¢t 'p(t) = . In a similar way we treat
the case a = —o0. O
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A direct consequence of Proposition 4.17.5 is the following important result.

Proposition 4.17.6. Let {U(t)}1>0 be a family of bounded linear quaternionic op-
erators on a quaternionic Banach space V. Then:

(1) the limit wo :=limy—y 4ot~ In |[U(L)|| exists;
(2) for each & > wo there exists a positive constant Ms such that ||U(t)] <
Mse®t, Vit > 0.

Proof. Point (1) is immediate from Proposition 4.17.5. To show point (2) define,
for ¢ > 0, the function p(¢) := In ||U(¢)|| and observe that p is subadditive since
p(t1 +1t2) < p(t1) +p(t2). So the result follows from Propositions 4.17.4 and 4.17.5
. O

Definition 4.17.7 (Quaternionic infinitesimal generator). Let {U(t)};>0 be a family
of bounded linear quaternionic operators on a quaternionic Banach space V.

(1) For each h > 0 define the linear quaternionic operator
U(h)v —v

Th”U = h s

veV.

(2) SetD(T) :={v eV : lim,_,o+ Thv exists in V} and define the quaternionic
operator T with domain D(T) by the formula

Tv= lim Tpv, veDT).
h—0+

The operator T, with domain D(T'), is called the infinitesimal quaternionic gener-
ator of the quaternionic semigroup U(t).

Proposition 4.17.8. Let T be the infinitesimal quaternionic generator of the quater-
nionic semigroup U(t) and let D(T') be its domain. Then:

(1) the set D(T) is a linear subspace of V' and T is linear on D(T);
(2) ifv eV, thenU(t)v € D(T) fort > 0. Moreover,

jtu(t)v = TU(t)w = UH)Tv, v e D(T);

(3) if v € D(T), then

t
U(t)v—bl(r)v:/ UO)Tvdd, 0<7<t<od;

T

(4) let g : [0,00] — H be a Lebesgue integrable function, continuous at t € [0, c0],
then

t+h
lim b /t UB) g(0)vdd =U(t) g(t)v.

h—0t
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Proof. Point (1) follows from the definition. Let us show point (2). Set h > 0,
t >0 and v € D(T). Then we can write

U(t)ThU = ThZ/{(t)”U.

Passing to the limit
lim U(t)Tpv = lm TpU(t)v
h—0+

h—0t

we have that U(t)v € D(T), so by definition

TU(t)v = hl_l)r})lJr Thld (t)v,

and thus
UH)Tv =TU(t)v, veDT).
This proves that U(t)v € D(T), for all t > 0. If ¢t > 0 and h > 0, then, considering

the limit
U)o —U(t —h)

h
by the semigroup properties and the definition of T}, we have

L= lim (

h—0t

! fZ/l(t)Tv),

Uty —U(t — h)v

h
:uafm”mf

=U(t —h)(Thv —Tv)+ Ut —h) —U®)]Tv.

U(h)v —v
h

Y Ut — )T+ Ut — h)Tv — U#)Tv

— U = Ut — h) —U(t)Tv

Taking the limit for h — 0% we get L = 0 since the semigroup is uniformly
continuous in B(V) and thanks to Proposition 4.17.4. On the other hand we have

that
U+ h)v —U(t)v

h
Taking the limit for A — 07 we get

= Z/{(t)Th”U.

d

dtU(t)v =TU(t)v =U(t)Tv, for all ve D(T).
We have thus proved that the derivation formula holds for all v € D(T'). Point (3):
observe that, for all linear and continuous functionals ¢ € V', from point (2) we

have
(o, S U(rIv) = (o, U(T)T0).

Now we integrate

[@&ymwmz[@ymnmf
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so we get
¢
(o, U(t)v —U(s)v) = <<p,/ U(T)Tvdr) forall peV’
S
from which we deduce (3). Finally point (4) follows from Theorem II1.12.8 in [35]

which holds also in this setting, with obvious modifications. O

Lemma 4.17.9. The linear subspace

DT):={veV : lim Thv exists in V}
h—07+

is dense in V and T is closed on D(T).

Proof. Let Ty, be as in Definition 4.17.7, take v € V and, for h > 0 and ¢ > 0,
consider

Th /OtZ/l(T)’UdT = }1L /Ot[lxl(thT)v —U(T)vldr
! /Htumvm ;L/Otu(f)v dr

h Jh
—h/tU(T)v T—l—h/h U(T)v T—h/OU(T)’U T_h/t U(T)vdr
1 [t

1 h
) L{(T)vdT—h/O U(T)v drT.

By Proposition 4.17.8 point (4) we get

h—01

t

lim Th/ U(T)vdT =U(t)v — v,
0

S0 f(f U(T)vdr € D(T) and since

1t

v= lim / U(T)vdr
t—0+ t 0

we conclude that D(T) is dense in V. We now prove that 7' is closed. Let us take

a sequence {vp fneny C D(T) such that lim, o0 v, = vo and lim, oo TV, = Yo.

Thanks to Proposition 4.17.8 point (3) we have

t

t
U(t)vg —vg = lim [U(t)v,, — vp] = lim U(T)T v, dr = / U(T)yo dr
0

n— 00 n— o0 0
where we have used the fact that

lim U(7)Tv, =U(T)yo, uniformly in [0,].

n— o0
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So we get, thanks to Proposition 4.17.8 point (4)
1 [t
i o=ty 1 [uomds =
This implies that vg € D(T) and Tvy = yo this means that T is closed. O
We can now prove the following characterization result.

Theorem 4.17.10. Let U(t) be a quaternionic semigroup on a quaternionic Banach
space V. Then U(t) has a bounded infinitesimal quaternionic generator if and only
if it is uniformly continuous.

Proof. TfU(t) is a uniformly continuous semigroup, then by Theorem 4.17.2 it has
a bounded infinitesimal quaternionic generator. To prove the other implication, we
suppose that U(t) has a bounded infinitesimal quaternionic generator 7T'. It follows
from Lemma 4.17.9 that T is defined everywhere. Applying Proposition 4.17.4 we
have that for every 7 > 0 there exists a positive constant C(7) such that

U <C(r), for 7>0, [t—7]<1
by the semigroup properties

Ut)-UT) =UDUt—T1)-Z] =t —-—7)U(T) T4—r, for t>7  (4.131)

UL —UT) = —UBUT —t) —T) = —(1 — ) U[A) Ty_y, for 7>t (4.132)

where T _; and T;_, are as in Definition 4.17.7. Using Proposition 4.17.4 and the
Principle of Uniform Boundedness we have

sup ITr—¢|| = K < 400,
>t | 7—t<1

so, taking the norm of (4.131) and (4.132), we get
lU@) —U)|| < C(r)K|t—7|, for t>0, [t—7| <1,

which proves that U(t) is a uniformly continuous quaternionic semigroup. (]

4.18 Notes

Note 4.18.1. Historical notes and further readings. The most successful theory
of quaternionic functions, which are the analog of the holomorphic functions in
one complex variable, is the one due to Fueter [44] and the one due to Moisil and
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Theodorescu [79]. The theory we will consider to our purposes is the one due to
Fueter, who introduced the differential operator

o 1/ 0 0 0 0
= ) j k 4.1
dqg 4 <(’9m0 Haxl +‘78962 - 81‘3) (13

and defined the space of regular functions as the space of its nullsolutions.

These functions are nowadays known as Cauchy—Fueter (or Fueter) regular
functions. It is interesting to note that one of the motivations for which Fueter
introduced this class of functions was the study of functions in two complex vari-
ables, in an attempt to find an integral representation for them. This function
theory is beautifully illustrated in the papers [33] and [98] and is successful in
replicating the most important properties of holomorphic functions (and not only
in one variable, see [23]). One of the reasons of the richness of results of this theory
is that the Cauchy—Fueter operator factorizes the 4-dimensional Laplacian (up to
a constant), in fact the nice behavior of the quaternionic conjugation gives

a0 90 1

8q8q:8q8q_ 6"

In this sense, the Fueter operator is the “nearest” generalization of the Cauchy—
Riemann operator and the theory of regular functions is the “nearest” generaliza-
tion of the theory of holomorphic functions in one complex variable. Exactly as
in the case of monogenic functions, Fueter regular functions can be expanded into
power series in terms of suitable monomials, see [43], [98]. This series expansion
serves perfectly to show the quaternionic analogs of the results for power series in
the complex variable. However, this series expansion is not suitable if one wishes
to formally substitute a quaternion with a linear operator 7. As we already ob-
served, the powers f(q) = ¢, n € N, in particular the identity function f(q) = ¢,
and therefore polynomials and series, fail to be regular in this sense so, given a
quaternionic linear operator 7T, it is not possible, for example, to obtain 7™ using
a function calculus (see Note 4.18.9).

For quaternion-valued functions, one can also study the functions regular in
the sense of Moisil-Theodorescu, see [79], the theory of monogenic functions, i.e.,
functions in the kernel of the Dirac operator i0,, + jO,, or the Weyl operator
Oy + 10y, + JOu,, see [7], [34], and [74]. This last class consists of all the solutions
of a generalized Cauchy—Riemann system of equations, it contains the natural
polynomials, and supports the series expansion of its elements as well.

There are other paths to define quaternionic-valued “holomorphic” functions
which has led to many attempts that, in a sense, have failed. For example, a
natural attempt to define a notion of quaternionic holomorphicity would be based
on the basis of the existence in H of the limit

lim (¢ — q0) ™" (f(¢) — f(a0)) (resp.  lim (f(q) — f(40))(q — q0)™")-

q—q0 q—q0



190 Chapter 4. Quaternionic Functional Calculus

It turns out that if the limit exists, then necessarily f(q) = ga + b (resp. f(q) =
aq + b) for some a,b € H and therefore this definition is not viable. In order to
obtain a meaningful theory, it is necessary to restrict to 3-dimensional increments
q — qo, as Mitelman and Shapiro did in [78] in order to develop their theory.

A second natural attempt could be to consider the class of functions which
admit (local) series expansions of the form

E ap-q-ay...as—1"q-as,

where they converge. However, writing ¢ = xg +ix1 + jro + ks, it is very easy to
verify that

1 N
xo:4(q71q%fyququ),
1 S
x1:4i(qf%q1+yqj+qu),
1 L
$2:4j(Q+qu—JC]J+qu)7
1 S
3= (q+iqi+ jqj — kqk),

4k

so that the class of maps considered coincides with the class of real analytic maps
of R* in R%.

Another definition was given by Cullen in [32] on the basis of the notion
of intrinsic functions as developed in [89]. This definition has the advantage that
polynomials and even power series of the form ) ., ¢"an, with real coefficients
an, are regular in this sense. This theory was already envisioned by Fueter who in
[43] used a subclass of these functions to construct nullsolutions of the Cauchy—
Fueter operator by applying the Laplacian to them.

The theory of s-regular functions arises with the works of Gentili and Struppa,
see [48], [49], and it is fully embedded in this field of research. The theory is inspired
by the work of Cullen, but it is slightly different since the definition of s-regular
function requires that a function be ”holomorphic” on each complex plane and,
as a consequence, it includes polynomials and even power series with quaternionic
coefficients. The theory developed allows us to recover several classical properties
of quaternionic polynomials. For example the fundamental theorem of algebra,
[37], [81] has been proved also in [52]. Moreover, some well-known properties of
zeros, see for example [6], [8], [56], [71], [84], [85], [86], [L02] can be proved in this
framework, see [51], and can be generalized to power series [45]. The description
which we have given in this chapter is the most up-to-date version and includes the
results in [9], [12], [49], but we recall also [30], [46]. Recently, Ghiloni and Perotti
[53], [55] proposed an approach which, in the spirit of Cullen, allows a general
treatment of s-regular (and s-monogenic functions) as we explained in Notes of
Chapter 2.
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We note that none of the various definitions of regularity on H leads to a
natural functional calculus for quaternionic linear operators (see for example, our
Note 4.18.9 that deals with the case of Fueter regularity). The case of s-regularity,
on the other hand, allows a very natural construction, because of the discovery
of a suitable Cauchy formula proved by Colombo and Sabadini, first developed in
connection with the theory of s-monogenicity [15] and [18], and then adapted to
the quaternionic case in [9].

Note 4.18.2. The construction of the quaternionic functional calculus offered in
this chapter is mainly based on some works by Colombo and Sabadini, see [16],
[17], and [21], which put in the necessary generality some ideas first introduced in
[10], [13], and [14].

Note 4.18.3. Niven’s Algorithm. Niven’s algorithm, see [81], gives a method to
determine the zeros of a quaternionic polynomial with coefficients on one side in
terms of the coefficients of the polynomial. The method is explicit in the case of
quadratic polynomials while for higher degrees it relies on the solution of a system
of two equations which may not be available in closed form. Even though in this
book we have treated the case of polynomials with coefficients on the right (and
thus are s-regular) we illustrate the algorithm in the case of polynomials with left
coefficients. In fact, the corresponding algorithm in the case of right coefficients
gives an expression for the Cauchy kernel which is not suitable for the functional
calculus of operators with noncommuting components.

Let us consider a monic quaternionic polynomial A,,(¢) with coefficients on
the left:

n—1
An(q) =q" — Z asq®, as € H.
s=0

It is always possible to divide A,,(q) by a second-degree polynomial Cy(q) = ¢* —
c1q — co, with real coefficients and to obtain a quotient B,,_2(¢q) and a degree-one
remainder D1 (q) given by

n—3
Bnooi=¢" 7 =) by’ Dilq) =dig+do, by, di, dg€H
s=0

such that
An(q) = Br—2(q)C2(q) — D1(q).

Now note that if p is a solution to the polynomial equation A, (p) = 0, if we choose
the coefficients of the polynomial C to be

Co = _|p‘2a C1 = QRB[p],
then p is also a root of Cy, i.e.,

Ca(p) = 0.
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This fact implies that p is also a root of Dy and so
Di(p) =0, e, dip+do=0 = p=—d ' dp.

The strategy behind Niven’s algorithm consists of two steps. First one deter-
mines dg and dy in terms of ¢y, ¢; and ag,...,a,_1; then one obtains two coupled
real equations which allow us to calculate ¢y and ¢;. To clarify how this works, we
consider the case in which the polynomial A,, is of second degree (this being the
case of interest for our applications):

As(q) = ¢* — a1q — ag, as € H.
In this case, by reason of degree, we have
Bo(q) =1

so we have

Bo(q)Ca(q) = Ca(q) = qg — €19 — Co

and
As(q) + Di(q) = ¢° — a1q — ag + dip + do.
Since
Az(q) + D1(q) = B(q)C2(q)
we get

¢* —aiqg—ag+dip+do=q¢* —c1g—co

from which we have
6131:a1—017 d():ao—Co.

The system to compute ¢g € R and ¢; € R, is given by

colar — e1)? + |ap — col® =0,
cilar — c1]? + 2Rel(a1 — ¢1)(ag — ¢)] = 0.

If we are able to solve the system we get ¢y and ¢; so that we determine
di=a1—¢, do=ag—c

and we finally get the solution p = fcfflcfo.

The solution to the equation S% + Sq— sS = 0. We now consider the specific
case of the equation S2 4+ Sq — 55 = 0. First of all, we write it with coefficients on
the left by setting S := W — ¢. We obtain the equation

W? — (s +q)W + sq = 0.

With the positions
ayr=s+q ap= —sq
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we get the system

{ cols+q—ci|>+|—sqg—co|> =0, (4.134)

cils+q—c1|*> + 2Re[(s + q — c1)(—sq — ¢co)] = 0.

If we can find real solutions ¢g and ¢; we have

Cil:SJrQ*él, &OZ*SQ*éOa
dAlW+dAO =0.
‘We obtain o
W =—d;'do= (s +q—¢é&)  (sq+ é)

from which we have
S:=W —q=(s+q—&) (sq+é) —q

We overcome the calculation for the solution of system (4.134) reasoning as follows:
we know that when sq = ¢s, then R = s — ¢ satisfies R?> + Rq — sR = 0. Thus in
the case ¢ € R and s € H, we must have

(s+q761)_1(5q+60) =3

that gives

s5q+¢co=(s+q—¢1)s
and

5q+¢g = 8% +qs — é15;
finally we have

s2 —¢18 —é9 = 0.

Using the identity
s> —2 sRe[s] + s> =0

we get
é1 =2 Rels], ¢ = —|s|?,

so we obtain the solution
S(s,q)=(s+q—2 Re[s])fl(sq — |s|2) —q=(q— 5)718(61 —-35) —gq.

Note 4.18.4. A simple proof of Theorem 4.10.3. We now provide a proof of The-
orem 4.10.3 which is of limited validity, but follows by a direct computation. It
applies only in the case the functions we consider admit power series expansions
on U. We recall that s-regular functions admit Taylor series expansions only on
balls centered at real points and they admit Laurent series expansions only on
spherical shells centered at real points.

Let us consider the case in which the domain U is contained in a ball
B(a,r) C H centered in a real point o and of radius r > 0 in which the s-regular
function f admits a power series expansion.
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Proposition 4.18.5. Let V' be a two-sided quaternionic Banach space, T € B(V).
Suppose that [ is an s-reqular function such that

f(s) = Z(s —a)"ay, Vse B(a,r), a€R, ancH, r>0 (4.135)

m>0
and assume that og(T) C U C B(a,r) where U is a T-admissible open set. Then

1

” /a oy ST A1 10 (4.136)

does not depend on the choice of the imaginary unit I € S and on U.

Proof. In B(a,r) the Taylor expansion of f has the form (4.135) where the ele-
ments a,, are fixed quaternions and do not depend on the particular plane Cj.
Now observe that

f(s):ngs_a m_g)z;() )" Tay,,

Consider the integral (4.136) and replace the power series expansion for f. By the
absolute and uniform convergence we get

217r /a(UmCI)S_l(S’T) dsy f(s) (4.137)
nz;ojz;) ( >(/a(zm<c1> S7H(s,T) dsy o7) (=)™ a.

Now consider the integral

/ S~Y(s,T) dsy &7
a(Uﬂ(C[)

and observe that s/ is s-regular everywhere so we can deform the integration path
in such a way that S~1(s, T') admits the power series expansion (3.3) in a suitable
ball B(0,r). We have:

Z / s dsp =T, (4.138)
0

T30 (B(0,r)NC;)

since
/ dsps "M =0 if n#j
a(B(0,r)NCy)

/ dsps " =21 if n=j. (4.139)
a(B(0,r)NCr)
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The standard Cauchy theorem on the complex plane C; shows that the above
integral (4.138) is not affected if we replace O(B(0,r) N Cy) by (U N Cy), so

1 ) )
/ S™Us,T) dsy 87 =T7.
21 Jowner)

We conclude that the integral (4.137) does not depend on U and on I € S because
the coefficients (—a)?~™a,, are independent of I € S. O

More in general, we can consider the open sets U C H that contain the
S-spectrum of 7', and such that

(a) O(UNCy) is the union of a finite number of continuously differentiable Jordan
curves for every I € S,

(b) o0s(T) is contained in a finite union of open balls B; C U with center in real
points and of spherical shells A; = {¢ e H | r; < |¢ — o;| < Rj, 7j,R; €
R*} C U with center in real points «;, and whose boundaries do not intersect
os(T).

Since an analog of Proposition 4.18.5 holds also for Laurent power series expan-
sions, we can prove that, for open sets U D og(T) satisfying (a) and (b), the
integral (4.136) does not depend on the choice of the imaginary unit 7 € S and on
U.

Note 4.18.6. Some comments on the evolution operator. Since the exponential
function is both left and right regular, the evolution operator can be introduced
and studied also using the right version of the quaternionic functional calculus.
For example, point (3) in Theorem 4.17.2 can also be proved as in the next result:

Theorem 4.18.7. Let {U(t)}1>0 be a uniformly continuous quaternionic semigroup

in B(V'). Then,

d T =TetT =TT,
dt

Proof.

ettt = ! / et ds; Sg'(s,T)
21 Jowney)

where U is a T-admissible open set containing the S-spectrum of the bounded
operator T', which is a closed and bounded set in H thanks to Theorem 5.4 in [13],

SO

(t+h)T _ tT 1 (t+h)s __ _ts

‘ R / (e e*)s s tdsr Sp'(s,T)
h 2w a(UNCy) h

and taking the limit we get

e(t+h) T _ otT

d tT . tT
dte hli% h ¢
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From the formula

(e(t-‘rh)s _ ets)ss_l _ 8_1 S(e(t+h)s _ ets)

h h

we also have that
TetT =etTT. O

Let us introduce the Laplace transform that gives the right S-resolvent op-
erator.

Theorem 4.18.8. Let T € B(V) and let so > ||T||. Then the right S-resolvent
operator Slgl(s,T) is given by

+o00o
Spt(s,T) = / et etT dt. (4.140)
0

Proof. Consider, for s & or(T),
e et TSR(s,T) = —e 15! T(T? — 25T + |s|*Z)(T — sT)™';
since T and e!'T commute we have

e et TSp(s, T) = —e ' (T? — 25oT + |s|°T)e! T (T — sT7) !

d —ts tT —1
=~ (T = D) (T — sT)

d —ts tT —1
== (T =D (T —sT) 7).

For 6 > 0 we have

dt
=T —e (T —sT)e?T(T — sT7)7 L.

0 0
/ e 15 et TSp(s, T)dt = 7/ d [e™"5(T — sT)e! T(T — sT)"Y]dt
0 0

Since we have assumed sg > ||T']], for § — +o00, we get

He_gs(T — SI)eQT(T — SI>_1H
< e P MTN(T — sT)|| (T = sT) 7| — 0

so we obtain the statement. O

Note 4.18.9. The Fueter regularity and its functional calculus. From now on, we
will consider only linear bounded operators and we will follow the ideas in [65].
We introduce a regular function which is related to the resolvent operator and
is regular where defined. The idea is to generalize what happens in the complex
setting: classically, one considers the Cauchy-Riemann kernel g(z) = (z — &)~*
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defined for z # ¢ and introduces R(z,T) = (2I — T)~! which is defined for z not
in the spectrum of 7. Let G(q) be the standard Cauchy—Fueter kernel
6= T =T =g
gt lql?

which is both left and right regular on H\{0}.
We have the following proposition:

Proposition 4.18.10. The expansions

Ga.p)=G(a—p)=>_ > P@G@ =D G.(a)P.(p)

n>0veoy, n>0veEoy,

hold for |p| < lq|.

Theorem 4.18.11. Let f : U C H — H, f Fueter reqular on U. Let qo € U and
0 < dist (qo,0U). Then there exists an open ball B = {q € H: |q¢ — qo| < 0} such
that f(q) can be represented by the uniformly convergent series

f(Q) = Z Z Py(q - C]0>am

n>0veoy,
where .
0= (00t =, [ e wDaf(o).
T Jlg—qo|=6
and
Gola) = o i 0 G(@)
B Oz Oxh? Oxy® @

Moreover we have

/S Gu(q) Dq P, (q) = 27% 6,0

where S is any sphere containing the origin, v = (n1,n2,n3), n1 +na +ng =n
and 6., denotes the Kronecker delta.

Let T be a bounded linear quaternionic operator with commuting compo-
nents on a two-sided quaternionic Banach space V. The set of such operators will
be denoted by BC(V). In this case, we consider the function G(q,p) written in
series expansion as (replacing p by T'):

G@.T)=>_ > P(D)G(0) =Y > Gula)P(T). (4.141)

n>0veo, n>0veo,

The expansions hold for ||T'|| < |g| (cfr. Proposition 4.18.10) and define a bounded
operator. It is natural to give the following definition:
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Definition 4.18.12. The mazimal open set p(T') in H on which the series (4.141)
converges in the operator norm topology to a bounded operator is called the resol-
vent set of T. The spectral set o(T') of T is defined as the complement set in H of
the resolvent set.

Definition 4.18.13. A function f :H — H is said to be locally right Fueter reqular
on the spectral set o(T) of an operator T € BC(V') if there is an open set U C H
containing o(T') whose boundary OU is a rectifiable 3-cell and such that f is regular
in every connected component of U. We will denote by R, ,r) the set of locally
right Fueter regular functions on o(T).

Definition 4.18.14. Let f € R, 5y and T € BC(V) and set

f(T) = 271r2 /aU f(@9)DqG(q,T),

where U is an open set in H containing o(T).

The definition is well posed since the integral does not depend on the open
set U. The following proposition holds.

Proposition 4.18.15. The map F' : R, ;) — BC(V') defined by F(f) = f(T') is a
left vector space homomorphism.

Theorem 4.18.16. Let T' € BC(V') and consider

to be a right Fueter regular polynomial. Let U be a ball with center in the origin
and radius v > ||T||. Then

N
)= aP(T)

n=0v€o,

Proof. Let U be an open set in H containing o(7"). We have

1 N
)=, /BU > Y aP(9)DeG(q,T)

n=0veEoy,

1 N
272 Z Z /EJU a,P,(q)DqG(q,T)

n=0v€o,

We have, by Proposition 4.141,

/E)U ayP,(q)DqG(q,T) = /E)U a,P,(q)Dq Z Z gH(Q)PH(T)

n>0 HEOTH

= Z Z a, /aU P,(q)DqG,(q) P, (T) = 27%a, P,(T)

n>0 pEoy
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which gives f(T) = 22[:0 > veo, Wb (T). O

Proposition 4.18.17. Let T € BC(V'). For any open set U with piecewise smooth
boundary which does not contain o(T) and for any f € R(U) we have

f(q9)DqG(q,T) = 0.
U

Thanks to this proposition, we can replace a ball with center in the origin and
suitable radius by any open set containing o(7) and, by the density of polynomials
P,(Q) in the set of regular functions, we obtain:

Theorem 4.18.18. Let T' € BC(V). If the right Fueter regular function

(¢) = Z Z a, P, (q)

n>0veEoy,

converges in a neighborhood Uy of o(T), then

=> Y aP(T)

n>0veEoy,

converges in the operator norm topology.

Proof. As Uy is an open set, it contains a circle
Us=A{q: lal <p(T)+6 }, 6>0

in its interior. Since the series f(q) = >_,>0 2., c,, @ Py (q), converges uniformly
in the circle Us for some § > 0, by the Cauchy integral formula we have

1
0= [

= 2711-2/8 Z Z a,P,(q) DgG(q,T)

Us n>0v€Eo,

2P0 9D O BERACIITIAY

n>0 pEoy

=Y Y aPr(D). O

n>0veon,

(@) DqG(q,T)

Note 4.18.19. Some further comments and open problems.

(1) The properties which can be proved for the functional calculus defined in
[65] and [66] can be demonstrated also in this case. One may also think to
generalize the functional calculus as in [62]. However, this functional calculus
possesses a strong limitation: even when considering the simplest case of a
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regular function, i.e., a regular (symmetric) polynomial, we have that this
function is formed by using the components of a given operator T, not the
operator T itself. For example, P(q) = xgi — x1 is a regular polynomial and
P(T) = iTy—T, for any bounded operator T' = Ty +iT1 +jT>+kT5. Note also
that this feature of the functional calculus does not seem to have physical
interest when considering a linear quaternionic operator T'.

equals — (¢ —

As we have shown, the sum of the series Y o q¢"s '™

2qRe[s] + |s|*)71(q — s) for |q| < |s| and it does not depend on the commu-
tativity of the components of ¢ so that, when one replaces ¢ by an operator
T with noncommuting components, the sum remains the same. In this case:
what is the sum G(q,T') of

G(g.p)=>_ > Pu(p)Gu(q) (4.142)

n>0veEoy,

when one replaces p by operator T with noncommuting components?

In the case in which the components of T' commute, the sum G(q,T) is
G(a.T) = (e ~T)*(¢Z ~T)"".

The knowledge of the sum G(q,T) in the general case would naturally lead

to a notion of spectrum of the operator 7" in the case of Fueter regularity.

When we consider unbounded operators, the series

> 3 PTG

n>0veon

does not converge. So it is crucial to manage the sum of such a series in order
to extend the functional calculus to the case of unbounded operators with
noncommuting components.



Chapter 5

Appendix: The Riesz—Dunford
functional calculus

In this Appendix we collect some basic material on the Riesz—Dunford functional
calculus useful for the readers who are not familiar with this subject. This back-
ground, with all the details, can be found in [35] and [91].

5.1 Vector-valued functions of a complex variable

We start by recalling some basic results in the theory of complex functions with
values in a Banach space.

Definition 5.1.1. Let X and Y be two complex Banach spaces.
(1) We will call a map T : X =Y such that

Tz + py) = NTax+ uTy, foral z,ye X, A\ucC,

a linear operator.

(2) A linear operator T : X —'Y is said to be bounded if there exists k > 0 such
that
IToll < kllall, ¥z e X.

(3) The set of all bounded linear operators T : X — Y with the norm

T
17 = sup 172
z#0 |||

is denoted by B(X,Y). We set B(X) = B(X,X).
F. Colombo et al., Noncommutative Functional Calculus: Theory and Applications of Slice 201
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Definition 5.1.2. Let X be a Banach space, f : C — X be a function and let
zo € C. We say that [ is holomorphic in zo if there exists an open disc D(zp,7),
r > 0 such that f admits the power series expansion

f(2) =) Tu(z—20)", Tn€B(X), neN,

n>0
converging in the norm of X in D(zg,r).

The classical Cauchy theorems can be generalized to functions with values
in a normed vector space X. To this purpose, we will make use of the following
result which is a corollary of the Hahn-Banach theorem:

Corollary 5.1.3 (Hahn-Banach Theorem). Let X be a normed vector space and let
x € X. If for any continuous linear functional ' acting on X it is {(x,2") = 0,
then z = 0.

We can now state and prove, for the sake of completeness, the vectorial
version of the Cauchy theorem and of the Cauchy integral formula:

Theorem 5.1.4. Let U be an open bounded set in C such that OU is a finite union of
continuously differentiable Jordan curves . Let f: U UOU — X be a holomorphic
function. Then

f(z)dz = 0.
U
Proof. First observe that for every bounded linear functional 2’ on X the crochet
(f, ") is holomorphic on U U 9U so by the Cauchy theorem

([ fdn,a'y = /8 A =0,

oUu

By Corollary 5.1.3 we get
fdn=0. O
U
Theorem 5.1.5. Let U be an open bounded set in C. Let f : U — X be holomorphic.
Suppose that V- C U such that OV UV C U such that OV is a finite union of
continuously differentiable Jordan curves. Then for each zg € V we have

flzo) =)

omi Jo f(2)(z — 20) " tdz.

Proof. For every bounded linear functional 2’ on X the function (f,2’) is holo-
morphic in U. So

)y = /a A = m)

27
= lyny [ 100 =) ).

By Corollary 5.1.3 we get the statement. O
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5.2 The functional calculus for linear bounded
operators

Definition 5.2.1. Let X be a complex Banach space and T € B(X). We give the
following definitions.

(1) The resolvent set p(T) of T is the set of complex numbers A for which (A —
T)~! exists as a linear bounded operator with domain X .

(2) The spectrum o(T) of T is the complement of p(T).

(3) The function R\, T) = (AL —T)~1, defined on p(T), is called the resolvent
of T.

(4) The number
r(T) =sup{|A| : A€ o(T)}
is called the spectral radius of T
We have the following properties:
Proposition 5.2.2. Let T' € B(X), where X # {0}.
(1) The resolvent set p(T) is open.
(2) The function R(N\,T) is analytic on p(T).
(3) The closed set o(T) is compact and nonempty.

Proof. Let A € p(T') and let 1 be any complex number with |u|||R(A, T)|| < 1. The
inverse of

AN+ —-T=pZ+ (N -T)
is given by the series

L(p) =) (=) RO, )"

n>0

which converges since, by assumption, |u||R(\, T)| < 1. Observe that I'(x) com-
mutes with 7" and

O+ )T — TI0() = T.
So we have that

A+ ep(T)
and this proves point (1).

To prove (2) it is enough to note that R(A+p, T) = I'(p) is analytic at u = 0.
Finally, we prove point (3). We consider the series

F(A)=>_T"A\"'"", F:D— B(X)
n>0
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whose domain of convergence is D = {A € C : |\ > |T||}. It is easy to verify
that
(AL —T)F(\) = FOAI —T)=1Z, €D,

so D C p(T). This proves that o(7T') is bounded. It is closed since p(T') is open,
so o(T) is compact. We prove that it is nonempty. Let us suppose the contrary.
If o(T) = (), then for every linear and continuous functional 2’ € X’ the function
0:C— C,

O(N) := (RN, Tz, 2'),

is entire Vo € X. Since 2’ is linear and continuous, we have

(RO Tz, 2’y = > AT, 2).
n>0

If A — oo, then (R(A\, T)xz,2’) — 0 so O(A) is also bounded thus, by the Liouville
theorem, it is constant and equal to zero. By Corollary 5.1.3 R(A\,T)x = 0, for
every x € X and for every A € C so R(\,T) is the zero operator. This contradicts
the fact that

RNT)YN -T)=1Z, X #{0}

so the spectrum is nonempty. U
Proposition 5.2.3. For every pair A\, pu € p(T') we have:

(1) ROLT)R(s, T) = R(u, T)R(\,T).

(2) (Resolvent equation) R(\,T) — R(u,T) = (u — \)R(A\, T)R(u, T).

Proof. Point (1) follows from the identity TR(A\,T) = R(A\,T)T and simple alge-
braic computation.
Point (2). It is immediate to verify that

ARNT)—TRANT)=Z, uRp,T)—TR(uT)=T

and also
RNT)R(1, T) = R(p, T)R(A, T).

Now multiply the first equality by R(u,T') and the second one by R(A,T') to get
and

By taking the difference of the two equations and, thanks to point (1), we obtain
the resolvent equation. O

Definition 5.2.4. Let T € B(X). By F(T) we denote the family of functions f
which are analytic on some neighborhood of o(T).
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Definition 5.2.5. Let f € F(T'), and let U be an open set whose boundary U is a
finite union of continuously differentiable Jordan curves, oriented in the positive
sense. Suppose that o(T) C U and that U U U is contained in the domain of
analyticity of f. Then the operator f(T) is defined by

1

= omi

F(T) /8 CROVT) FO) A (5.1)

Remark 5.2.6. The integral (5.1) depends only on f and does not depend on the
open set U.

Theorem 5.2.7. Let f, g € F(T), a1, as € C. Then
(1) a1f +aag € F(T) and (a1 f + a2g)(T) = a1 f(T) + aag(T).
(2) f-9geF(T) and f(T)g(T) = (f - 9)(T).

(3) If f(A) = 22,50 anA" converges in a neighborhood of o(T), then f(T) =
ano o, T,

Proof. Point (1) follows from the definition.

Let us prove point (2). Since f,g € F(T) it is obvious thatf - g € F(T'). Let
U; and Us be two neighborhoods of o(7T") whose boundaries OU; and 9Us are finite
unions of continuously differentiable Jordan curves . Let us assume that

(a) U1 U8U1 Q UQ.

(b) Uz UOUs is contained in a common region of analyticity of f and g.

We have
1
FTg(T)=~, » /aUl FOVR, T)dA /6[]2 g(w) R, T)dp

= *47172 /aU /w SN g(p) RN, T)R(p, T )dpdA

= /a ) /d o w)R(A’TZf(“’T)d i\
1 9()

T T yn2 /BU1 f()\)R(/\aT)(/aU2 . )\du)d)\

FA

: )
" o /QUZ g(M)R(M’T)( ou, M — )\d)\) dp
1
~ 2mi /(Z,Ul F)gNRA, T)dA

=(f-9)T).
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Point (3) follows from the fact that the series -, axAF converges uniformly
on the set C. = {\ € C : |\ <r(T)+ e} for suitable € > 0. We have

F(T) 2m/ > anA"R(A,T)dA

Ce n>0

1 n
o Zan /C X"R(A, T)dA

an )\—1 npT AT
211 Z / Z )

n>0 n>0

= ZanT”. O

n>0

We now show a particular case of an important result, the Spectral Mapping
Theorem, which is crucial to compute the spectral radius.

Proposition 5.2.8. Let T' € B(X), where X # {0}.
(1) o(T™) =[o(D)]* :={\* : X€o(T)}.
(2) 7(T) = lim,, 0 V/T™.
Proof. Point (1). Since we are in a commutative setting we can write
NI TV =N —T)A\" YT+ A" 2T+ ...+ T
=\ N 4 L T (AT - T).
So if AZ — T is not injective also A"Z — T™ is not injective. This proves o(T™) 2

[o(T)]™.
If v & [o(T)]™, then, by the Fundamental Theorem of Algebra, we get

(v=2A") = (="' A =N ... (A = A)

where A1, Ag,... A, are the roots of v and A; # A; if and only if 7 # j. Replacing
the operator T', thanks to Theorem 5.2.7 we get

(WL —-T") = (-1)" " \MZ -T)...(\Z —T);

since vZ —T™ is not invertible there exists an ¢ such that \;Z — T is not invertible.
So A; € o(T). This means o(T™) C [o(T)]™, i.e., our first assertion.

Point (2). For every A such that [A| > r(T') the series Y. -, 7" A~'~™ converges
in the norm of B(X) to R()\,T) so the sequence T"A~1~" is bounded. We have

lim sup | 77||*/™ < #(T).
n—oo
Using point (1) we get
r(T) < liminf || 77>/
n—roo
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As a consequence, we have

r(T) < liminf ||77(|*™ < limsup | T7]|Y/™ < r(T). O
n—00 n—o00

We now prove the general version of the Spectral Mapping Theorem:

Theorem 5.2.9 (The Spectral Mapping Theorem). If f € F(T), then f(o(T)) =
olf(T)].
Proof. Let A € o(T). Define the function

f) = 1)

v(§) = Aog

whose domain is the domain of definition of f. By point 2) of Theorem 5.2.7 we
get
fNT = f(T) = AL =Th(T).
If f(A\)Z — f(T) had a bounded everywhere defined inverse [f(\)Z — f(T)]~*, then
Y(T)[f(NZ — f(T)]~! would be a bounded everywhere inverse of \XZ — T. This
means that f(\) € o[f(T)].
Conversely let € o[f(T)], and suppose that p & o[f(T)]. Then the function

e F(T).

Applying again Theorem 5.2.7 we have

n(T)(f(T) —nI) =1
which contradicts the assumption p € o[f(T)]. O

Thanks to the Spectral Mapping Theorem we can prove the following theo-
rem.

Theorem 5.2.10. Let f € F(T), g € F(f(T)), and F(X) = g(f(N\)). Then we have
(1) F e F(T),

(2) F(T) = g(f(T)).
Proof. Point (1) follows from the Spectral Mapping Theorem.

To prove point (2) let us consider a set U which is a neighborhood of o[ f(T')].
Assume that the boundary QU of U is a finite union of continuously differentiable
Jordan curves and that the domain of analyticity of g contains U U QU. Next,
consider a neighborhood V' of ¢(T') such that the boundary OV of V is a finite
union of continuously differentiable Jordan curves. Suppose that the domain of
analyticity of f contains V U9V and that f(V U9V) C U. Thanks to Theorem
5.2.7 the operator

B = 1 R(,T)

= d
2mi Joy A= f(§) ¢
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satisfies the equation
(AL - fF(DEN) = EQN)M - f(T)] =T,
which implies that
E(X) = R(A, f(T)).

So we obtain

o) = oo [ gWROLFT)

o RET)

== 42 /aU /av 9N\ pie) A E

- / R(E.T)g(f(€)) dé = F(T)
T Jov

which proves the assertion. O

We conclude by giving an idea of the proof of the perturbation of the func-
tional calculus.

Theorem 5.2.11. Let T be a linear bounded operator, f € F(T) and € > 0. Then
there is a § > 0 such that if Ty is a bounded operator and ||Ty — T|| < 0, then
feF() and ||f(Th) — f(T)|| <e.

Proof. Let us introduce the notation. We denote by N (o(T),e), for e > 0, the
e-neighborhood of ¢(T), i.e., the set

N(o(T),e) :={AeC: inf |u—)<e}.
neos(T)

The proof is based on the following fact. Let T' € B(X), let & > 0. Then there
exists a § > 0 such that if 71 € B(X) and ||T} —T|| < §, then o(T1) C N (o(T),¢)
and

IR\ T1) — RNT)| <&, AgN(o(T),e).

We leave the details to the reader. O

5.3 The functional calculus for unbounded operators

In the case of unbounded operators the spectrum may be a bounded set, an un-
bounded set, the empty set, or even the whole plane. To our purposes, we suppose

p(T) # 0.

Definition 5.3.1. By Foo(T') we denote the family of functions f which are analytic
on some neighborhood of o(T') and at co.
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The neighborhood need not be connected and can depend on f. Let o € p(T')
and define
A=(T—-aI)™' = —-R(a,T).

The operator A defines a one-to-one mapping on X onto the domain D(T') of T
and
TAr =aAx+2x, z€X

and
ATz = Az +x, z€ D(T).

We can now define a functional calculus for the unbounded operator T in terms
of the bounded operator A.

Denote by K the complex sphere, with its usual topology, and define the
homeomorphism

p=dN)=A-a)', @(0)=0, &(a)=o0.

Theorem 5.3.2. Let o € p(T'). Then ®(o(T) U {oo}) = o(A) and the relation

determines a one-to-one correspondence between f € Foo(T) and ¢ € F(A).

Proof. Take A € p(T), 50 0 # p = ®(\) = (A — )~ ! and
(T —aZ) (T - M) ' =T +p Y (T - \T)~ L.
We can also write
(T — aZ)(T — AT)~' = A~ <(T —aT) - M—lz) = pu(uZ — A)~L.

So we obtain
(T-MD) ' =y (pT — A — I

which is the relation between the resolvent operators
R(\,T) = p® R(p, A) + pL. (5.2)

This implies that p € p(A). Now if pu € p(A) and pu # 0, then
1
(uT —A)tA = M(T VA

This shows that A\ € p(T). The point m = 0 is in o(A) since A™! = T — oZ is
unbounded. The last part of the theorem is trivial and follows from the definition
of . O

We can now define the functional calculus for an unbounded operator 7':
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Definition 5.3.3. Let f € Foo(T). We define

where ¢ € F(A) and 6(n) = F(©(1)).
The next two results describe the main properties of the functional calculus.

Theorem 5.3.4. Let [ € Foo(T). Then f(T) is independent of the choice of
a € p(T). Let VD o(T) be an open set whose boundary OV is a finite union
of continuously differentiable Jordan curves. Let f be analytic on V U OV and
suppose that OV has positive orientation with respect to the set V.. Then

F(T) = f(o0)T + 2; /d CROVT) F() A (5.3)

Proof. We just have to prove formula (5.3) since the integral is independent of
a. Take e € p(T'). Thanks to the analyticity of R(\,T') and the Cauchy theorem
we can assume o ¢ V U V. The set U = ®~1(V) is open and contains o (7).
The boundary U = ®~1(9V) is positively oriented and it is a finite union of
continuously differentiable Jordan curves . The function ¢(u) = f(®~(p)) is
analytic on U U 9U. Since ¢(0) = f(oo) and 0 € o(A) from relation (5.2) and
Definition 5.3.3 we get

27 211

1 1 B
[ sRO D= R A) - i T

= ¢(4) - ¢(0)
= f(T) = f(o0)Z.00
For unbounded operators the algebraic rules become as follows.
Theorem 5.3.5. Let f, g € Foo(T), a1, ag € C. Then:
(1) enf +azg € F(T) and (o1 f + a2g)(T') = ar f(T) + a2g(T).
(2) f-g9€F(T) and f(T)g(T) = (f - 9)(T).
(3) o(f(T)) = f(o(T) U{o0}).
(4)

4) Let f € Foo(T), g € Foo(f(T)), and F(X\) = g(f(N)). Then F € Foo(T) and
F(T) = g(f(T))-
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