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Chapter 1

Introduction

1.1 Overview

In this book we propose a novel approach to two important problems in the theory
of functional calculus: the construction of a general functional calculus for not
necessarily commuting n-tuples of operators, and the construction of a functional
calculus for quaternionic operators. The approach we suggest is made possible by
a series of recent advances in Clifford analysis, and in the theory of quaternion-
valued functions (see, e.g., [26] and [49]).

After the success, and recognized importance, of the classical Riesz–Dunford
functional calculus, it became apparent that there was a need for a functional
calculus for several operators. The necessity of such a calculus was pointed out by
Weyl already in the 1930s, see [103], and this issue was first addressed by Anderson
in [4] using the Fourier transform and n-tuples of self-adjoint operators satisfying
suitable Paley–Wiener estimates.

In his early and seminal work [99], Taylor introduces a new approach which
works successfully for n-tuples of commuting operators, while in [100] he considers
the Weyl calculus for noncommuting, self-adjoint operators. These works have set
the stage for different possible outgrowth of this research.

A promising and successful idea was to address the noncommutativity by
exploiting the setting of Clifford algebra-valued functions. This idea has been
fruitfully followed in the works of Jefferies, McIntosh and their coworkers, see, e.g.,
[60], [61], [65], [77], and the book [62] with the references therein for a complete
overview of this setting. Note that, despite the noncommutative setting which is
useful in the case of several operators, one may still have restriction on the n-tuples
of operators and on their spectrum.

Of course, for the sake of generality, one would like to abandon these restric-
tions. To this purpose we have come to understand that one could attempt the
development of a functional calculus based on the use of slice monogenic functions.

1 
Hyperholomorphic Functions, Progress in Mathematics 289, DOI 10.1007/978-3-0348-0110-2_1,  
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2 Chapter 1. Introduction

These functions were first introduced by the authors in [26], but their theory is by
now very well developed, as made evident by the rich literature which is available
(see, e.g., [15], [18], [24], [26], [27], [28], [29], [30] and [53], [55]).

As it is well known, in order to construct a functional calculus associated to
a class of functions, one of the crucial results is the existence of a suitable integral
formula which, for the case of slice monogenic functions, we state and prove in
Chapter 2. Such a formula was originally proved by Colombo and Sabadini in
[15] (for more details see [18]). It is worth noticing that this integral formula
is computed over a path which lies in a complex plane. Moreover, despite what
happens with the classical monogenic functions, [7], in the slice monogenic case
the analog of the Cauchy kernel is a function which is left or right slice monogenic
in a given variable. For this reason, we will need two different kernels when dealing
with left or right slice monogenic functions. The Cauchy formula we obtain in the
case of slice monogenic functions turns out to be perfectly suited to the definition
of a functional calculus for bounded or unbounded n-tuples of not necessarily
commuting operators, see Chapter 3.

In the first part of this book therefore, we will develop the main results of the
theory of slice monogenic functions and the associated functional calculus for n-
tuples of not necessarily commuting operators. This calculus has been introduced
in the paper [25] for a particular class of functions and then extended to the general
case in [18].

In the second part of the book we deal with a related, and yet independent,
problem which has been of interest for many years and which, so far, has proved to
be rather difficult to tackle. Specifically, we are interested in attempting to define
a function of a single quaternionic linear operator. It is clear that, at least in
some sense, there are similarities with the problems discussed above: the setting is
noncommutative, and the space of quaternions is a Clifford algebra. Nevertheless,
the actual problem is different from the case analyzed before.

When dealing with the functional calculus for n-tuples of operators, our ap-
proach is to embed the n-tuple of linear operators (over the real field) into the
Clifford algebra setting; in this second case, however, we are given an operator
which is quaternionic linear. Since the setting is noncommutative, the operator is
either left or right linear, and we shall see that our approach differentiates these
two cases. The study of this type of operators is needed to deal, for example, with
quaternionic quantum mechanics, see [1].

The first natural issue, of course, is to define the space of functions for which
we can construct such a functional calculus. Traditionally, the best understood
space of functions defined on quaternions is the space of regular functions as
defined by Fueter in his fundamental works [43], [44]. Those functions are differ-
entiable on the space of quaternions and they satisfy a system of first-order linear
partial differential equations known as the Cauchy–Fueter system. Note that the
Cauchy–Fueter system deals with functions defined in R4 and hence in R3 as well.
Historically, this last case was introduced before the former one, see [79], by G.
Moisil and N. Theodorescu. One may therefore attempt to define a functional
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calculus in which the functions are regular in the sense of Fueter (and the authors
have outlined how this would work in [11]). It turns out, however, that such a
functional calculus does not perform as well as one would hope, for a variety of
reasons that are described in [11] but that can be easily surmised by noticing, for
example, that even the simple function f(q) = q2 is not regular in the sense of
Fueter.

However, in a recent series of papers, see, e.g., [9], [12], [48], [49] the authors
and some of their collaborators have introduced a completely different notion of
regularity, the so-called slice regularity, which was in fact the inspiration for the
notion of slice monogenicity. This notion is different from the original one of Fueter,
and therefore the second part of this book will show how a functional calculus for
quaternionic linear operators over the quaternions can be obtained through the
use of slice regular functions. The quaternionic functional calculus, at least for
functions admitting a power series expansion, was first introduced in [10], [13] and
[14], however the exposition in Chapter 4 is inspired by the more recent papers [16]
and [17] which are based on a new Cauchy formula, which becomes the natural
tool to define the quaternionic functional calculus for quaternionic bounded or
unbounded operators (with components that do not necessarily commute). As an
application of the quaternionic functional calculus we define and we study the
properties of the quaternionic evolution operator, limiting ourselves to the case
of bounded linear operators. The evolution operator is studied in [21] where it is
proved that the Hille–Phillips–Yosida theory can be extended to the quaternionic
setting. This, it seems to us, is the first step in demonstrating the importance, in
physics, of this new functional calculus.

It is worth pointing out that while the definitions and some of the properties
of slice monogenic and of slice regular functions appear to be quite similar, there
are in fact several important differences, that force an independent treatment for
the two cases. Those differences are mainly due to the different algebraic nature
of quaternions and of Clifford numbers in higher dimensions, when the number of
imaginary units which generate the Clifford algebra is greater than two.

1.2 Plan of the book

Almost all the material presented in this book comes from the recent research of
the authors. The only exceptions are the basic notions on Clifford algebras, the
Appendix, in which we provide some basic facts on the classical Riesz–Dunford
functional calculus, and a few results appearing in some of the notes. To illustrate
the central results of this book we provide a quick description.

Slice monogenic functions. Consider the universal Clifford algebra Rn generated
by n imaginary units {e1, . . . , en} satisfying eiej + ejei = −2δij and a function
f defined on the Euclidean space Rn+1, identified with the set of paravectors in
Rn, with values in Rn. The notion of slice monogenic function is based on the
requirement that all the restrictions of the function f to suitable complex planes
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be holomorphic functions. To describe the complex planes we will consider the
sphere of the unit 1-vectors, i.e.,

S = {x = e1x1 + . . .+ enxn ∈ Rn+1 | x21 + . . .+ x2n = 1}.

From a geometric point of view, S is an (n − 1)-sphere in Rn+1. Note that an
element I ∈ S is again an imaginary unit since I2 = −1. If we take any element
I ∈ S we can construct the plane R + IR passing through 1 and I: it is a two-
dimensional real subspace of Rn+1 isomorphic to the complex plane and for this
reason, we will denote it by CI . This isomorphism is an algebra isomorphism, thus
we will refer to a plane CI as a “complex plane” and an element in CI will be
often denoted by x = u+ Iv.

Any element in Rn+1 belongs to a complex plane so, in other words, the
Euclidean space Rn+1 is the union of all the complex planes CI as above when I
varies in S. Let U ⊆ Rn+1 be an open set and let f : U → Rn+1 be a function
differentiable in the real sense. Let I ∈ S and let fI be the restriction of f to the
complex plane CI . We say that f is a left slice monogenic function if, for every
I ∈ S, we have

1

2

(
∂

∂u
+ I

∂

∂v

)
fI(u+ Iv) = 0.

Because of the noncommutativity we also have the right version of this notion and
we say that f is a right slice monogenic function if, for every I ∈ S, we have

1

2

(
∂

∂u
fI(u + Iv) +

∂

∂v
fI(u+ Iv)I

)
= 0.

From the definition, it immediately appears that a slice monogenic function
is not necessarily harmonic (but its restrictions to any complex plane CI are
harmonic) and this is a major difference between this theory and the theory of
classical monogenic functions, see [7]. However, with this definition of monogenicity
we gain the good property that all convergent power series

∑
n≥0 x

nan are left
slice monogenic in their domain of convergence and this property will be crucial
to construct a functional calculus.

To better understand the nature of slice monogenic functions, it is necessary
to consider them on axially symmetric slice domains which turn out to be their
natural domains of definition. We say that a domain U in Rn+1 is a slice domain
(s-domain for short) if U ∩R is nonempty and if U ∩CI is a domain in CI for all
I ∈ S. We say that U ⊆ Rn+1 is an axially symmetric domain if, for all u+Iv ∈ U ,
the whole (n− 1)-sphere u+ vS is contained in U .

The class of slice monogenic functions over axially symmetric s-domains is
characterized by the following Representation Formula proved in [15] (which in
some papers is referred to as the Structure Formula):
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Representation Formula. Let U ⊆ Rn+1 be an axially symmetric s-domain and let
f be a left slice monogenic function on U . For any vector x = x0 + Ix|x| ∈ U and
for all I ∈ S, we have

f(x) =
1

2

[
f(x0 + I|x|) + f(x0 − I|x|) + IxI[f(x0 − I|x|)− f(x0 + I|x|)]

]
. (1.1)

The Representation Formula states that if we know the value of a slice mono-
genic function on the intersection of an axially symmetric s-domain U with a plane
CI , then we can reconstruct the function on all of U .

An analogous formula, with suitable modifications, holds for right slice mono-
genic functions. The first step, in constructing a functional calculus, is to prove
a Cauchy integral formula with a slice monogenic kernel. Note that it is possible
to prove an integral representation formula, see [26], using the standard Cauchy
kernel (x − x0)

−1. This approach, however, is limited by the fact that the kernel
is not slice monogenic. Thus, let us consider the Cauchy kernel series for left slice
monogenic functions: take x, s ∈ Rn+1 (which, in general, do not commute). We
say that

S−1
L (s,x) :=

∑
n≥0

xns−1−n

is the left noncommutative Cauchy kernel series; note that this series is convergent
for |x| < |s| and that it is slice monogenic in x. It is actually possible to compute
the sum of the Cauchy kernel series, and it turns out that∑

n≥0

xns−1−n = −(x2 − 2Re[s]x+ |s|2)−1(x − s), for |x| < |s|,

where Re[s] is the real part of the paravector s and |s| denotes its Euclidean norm.
The function −(x2 − 2Re[s]x+ |s|2)−1(x− s), which we still denote by S−1

L (s,x)
is therefore a good candidate to be the Cauchy kernel for a Cauchy formula for
left slice monogenic functions because when we restrict it to the plane CI where
the variables x and s now commute, we get the usual Cauchy kernel of complex
analysis. Note that the function S−1(s,x) is left slice monogenic in the variable x
and right slice monogenic in the variable s in its domain of definition. Analogous
considerations can be repeated for right slice monogenic functions. In this case,
we call

S−1
R (s,x) :=

∑
n≥0

s−n−1xn

a right noncommutative Cauchy kernel series; it is convergent for |x| < |s|. The
sum of the series this time is given by the function∑

n≥0

s−n−1xn = −(x− s̄)(x2 − 2Re[s]x+ |s|2)−1, for |x| < |s|.

Moreover, S−1
R (s,x) is right (resp. left) slice monogenic in the variable x (resp.

s). We will call −(x − s̄)(x2 − 2Re[s]x + |s|2)−1 the Cauchy kernel for right slice
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monogenic functions and we will use the same symbol S−1
R (s,x) to denote such

kernel. Even though S−1
L (s,x) and S−1

R (s,x) are different they satisfy a remarkable
relation:

S−1
L (x, s) = −S−1

R (s,x), for x2 − 2Re[s]x+ |s|2 �= 0.

Using these kernels it is possible to prove the following result:

The Cauchy formulas with slice monogenic kernel. Let U ⊂ Rn+1 be an axially
symmetric s-domain. Suppose that ∂(U ∩ CI) is a finite union of continuously
differentiable Jordan curves for every I ∈ S. Set dsI = −dsI for I ∈ S. If f is a
(left) slice monogenic function on a set that contains U , then

f(x) =
1

2π

∫
∂(U∩CI )

S−1
L (s,x)dsIf(s), x ∈ U. (1.2)

Similarly, if f is a right slice monogenic function on a set that contains U , then

f(x) =
1

2π

∫
∂(U∩CI )

f(s)dsIS
−1
R (s,x), x ∈ U,

and the integrals above do not depend on the choice of the imaginary unit I ∈ S

nor on U .

The fact that the integrals are independent of the choice of the plane CI

seems surprising, but if one keeps in mind the Representation Formula and the
fact that the two quantities appearing in it,

1

2
[f(x0 + I|x|) + f(x0 − I|x|)] and I

1

2
[f(x0 − I|x|)− f(x0 + I|x|)],

do not depend on I ∈ S, the independence from the plane CI becomes clear.
These results are the basic tools to introduce the functional calculus for n-

tuples of operators.

The functional calculus for n-tuples of (not necessarily commuting) operators.
The operators we will consider act on a Banach space V over R with norm ‖ ·‖. In
general, it is possible to endow V with an operation of multiplication by elements
of Rn which gives a two-sided module over Rn. By Vn we indicate the two-sided
Banach module over Rn corresponding to V ⊗ Rn. Since we want to construct a
functional calculus for n-tuples of not necessarily commuting operators, we will
consider the auxiliary operator

T = T0 +

n∑
j=1

ejTj,

where Tμ ∈ B(V ) for μ = 0, 1, . . . , n, and where B(V ) is the space of all bounded
R-linear operators acting on V . By considering the operator T as above we have a
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theory which will be slightly more general than we need; in fact, to study n-tuples
of operators it is sufficient to consider operators T of the form T =

∑n
j=1 ejTj .

Since our theory allows us to treat also this more general case, suitable for example
if one wishes to consider linear operators T acting on modules over Rn, which are
not necessarily constructed from linear operators acting on V , we will study this
case. When dealing with n-tuples of operators we always mean that T0 = 0. The
set of bounded operators of the form T0+

∑n
j=1 ejTj will be denoted by B0,1

n (Vn).
Let TA ∈ B(V ) and define the operator

T =
∑
A

eATA

and its action on
v =
∑

vBeB ∈ Vn

as
T (v) =

∑
A,B

TA(vB)eAeB.

The operator
∑

A eATA is a right-module homomorphism which is a bounded
linear map on Vn: the set of all such bounded operators is denoted by Bn(Vn) and
is endowed with the norm

‖T ‖Bn(Vn) =
∑
A

‖TA‖B(V ).

We obviously have the inclusion B0,1
n (Vn) ⊂ Bn(Vn). To construct a functional

calculus for n-tuples of noncommuting operators using the theory of left slice
monogenic functions, we define the left S-resolvent operator series for T ∈ B0,1

n (Vn)
as

S−1(s, T ) :=
∑
n≥0

T ns−1−n, for ‖T ‖ < |s|.

In the Cauchy formula for slice monogenic functions it is always possible to replace,
at least formally, the variable x by an operator T = T0 + T1e1 + . . .+ Tnen. This
substitution is not always possible in other function theories. In our case, we have
proved that the sum of the left S-resolvent operator series∑

n≥0

T ns−1−n = −(T 2 − 2Re[s]T + |s|2I)−1(T − sI),

for ‖T ‖ < |s| is exactly equal to the left Cauchy kernel in which we have replaced
the paravector x by the operator T = T0 + e1T1 + . . . + enTn. This replacement
can be done even when the components of T do not commute. This observation
is the main reason why our functional calculus can be developed in a natural way
starting from the Cauchy formula (1.2). The sum of the series in which we have
replaced x by operator T suggests the notions of S-spectrum set, of S-resolvent
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set and of S-resolvent operator. Taking T ∈ B0,1
n (Vn) we define: the S-spectrum

σS(T ) of T as

σS(T ) = {s ∈ Rn+1 : T 2 − 2Re[s]T + |s|2I is not invertible},

the S-resolvent set as

ρS(T ) = Rn+1 \ σS(T ),

and the S-resolvent operator as

S−1(s, T ) := −(T 2 − 2Re[s]T + |s|2I)−1(T − sI).

Observe that if T s = sT , then we have S−1(s, T ) = (sI −T )−1, i.e., we obtain the
classical resolvent operator. To define the functional calculus, we have to introduce
the set of admissible functions that are defined on the S-spectrum, as in the
classical case of the Riesz–Dunford functional calculus.

Let U ⊂ Rn+1 be an axially symmetric s-domain that contains the S-
spectrum σS(T ) of T and such that ∂(U ∩ CI) is a finite union of continuously
differentiable Jordan curves for every I ∈ S. Suppose that U is contained in a
domain of slice monogenicity of a function f . Then such a function f is said to be
locally slice monogenic on σS(T ).

For those functions, setting dsI = −dsI for I ∈ S, we define

f(T ) =
1

2π

∫
∂(U∩CI)

S−1(s, T ) dsI f(s).

The functional calculus is well defined because we can prove that the integral does
not depend on the open set U and on the choice of the imaginary unit I ∈ S.

With all these new definitions, one may wonder which classical properties
on the spectrum can be proved also in this case. An important result is that the
S-spectrum of bounded operators is a compact nonempty set contained in {s ∈
Rn+1 : |s| ≤ ‖T ‖ } just as in the classical Riesz–Dunford case. The S-spectrum
has a particular structure: if T ∈ B0,1

n (Vn) and p = Re[p] + p ∈ σS(T ), then all
the elements of the sphere s = Re[s] + s with Re[s] = Re[p] and |s| = |p| belong
to the S-spectrum of T . In other words, the S-spectrum is made of real points or
entire (n−1)-spheres. The structure of the spectrum allows us to explain, from an
intuitive point of view, why the integral

∫
∂(U∩CI)

S−1(s, T ) dsI f(s) is independent

of I: observe that the structure of the S-spectrum of T has a symmetry such that
on each plane CI , for every I ∈ S, we see the “same set” of points σS(T )

⋂
CI ,

and that the functions f satisfy the Representation Formula.
With our definition of functional calculus we can prove several results, among

which the algebraic rules on the sum, product, composition of functions (when de-
fined). Moreover, it is possible to prove that the spectral radius theorem, the spec-
tral mapping theorem, the theorem of bounded perturbations of the S-resolvent
operators hold. Thus the theory we obtain is quite rich.



1.2. Plan of the book 9

The functional calculus can also be extended to linear closed densely defined
operators T : D(T ) → Vn with ρS(T ) ∩ R �= ∅ and for slice monogenic functions
f defined on the extended S-spectrum σS(T ) := σS(T ) ∪ {∞}. The function of
operator f(T ) can be defined as follows: take k ∈ R and define the homeomorphism

Φ : R
n+1 → R

n+1
as

p := Φ(s) = (s− k)−1, Φ(∞) = 0, Φ(k) = ∞.

Let T : D(T ) → Vn be a linear closed densely defined operator and suppose that
f is slice monogenic on an open set with “suitable properties” over σS(T ). Let us
set φ(p) := f(Φ−1(p)) and A := (T − kI)−1, for some k ∈ ρS(T ) ∩ R �= 0. Note
that A is now a bounded operator for which we have a functional calculus. The
operator f(T ) is then defined as follows:

f(T ) = φ(A).

We have proved that the operator f(T ) is independent of k ∈ ρS(T ) ∩ R and we
have the representation

f(T )v = f(∞)Iv + 1

2π

∫
∂(U∩CI)

S−1
L (s, T )dsIf(s)v, v ∈ Vn,

where U need not be connected and contains σS(T ).

Slice regular functions. In this book we do not dwell on the theory of slice regular
functions over the algebra H of quaternions whose results are similar to those
obtained for slice monogenic functions. We introduce its main results only in order
to develop the quaternionic functional calculus.

Let U ⊆ H be an open set and let f : U → H be a real differentiable function.
Denote by S the sphere of purely imaginary quaternions, i.e.,

S = {x1i+ x2j + x3k : x21 + x22 + x23 = 1}.

Let I ∈ S and let fI be the restriction of f to the complex plane CI := R + IR
passing through 1 and I and denote by x + Iy an element on CI . We say that f
is a left slice regular function if, for every I ∈ S, we have

1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ Iy) = 0.

An analogous definition can be given for right slice regular functions. Functions
left (resp. right) slice regular on U form a set denoted by RL(U) (resp. RR(U)).
The advantage of dealing with quaternions, instead of general Clifford algebras, is
that H has a richer algebraic structure. For example, H is helpful when we want
to determine the sum of the Cauchy kernel series, which is defined, for q and s
quaternions, by

S−1
L (s, q) :=

∑
n≥0

qns−1−n.
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One can prove that the inverse SL(s, q) of S
−1
L (s, q) is the nontrivial solution

to the equation
S2
L + SLq − sSL = 0.

In particular, an application of Niven’s algorithm [82] gives

SL(s, q) = −(q − s)−1(q2 − 2qRe[s] + |s|2).

Note that this approach would not be possible in the Clifford algebra setting, where
no analog of the Niven’s algorithm is known (in fact, in the Clifford algebras
setting, one cannot even guarantee the existence of solutions to a polynomial
equation). Also note that in the case of quaternions the term qns−1−n in the
Cauchy kernel series is a quaternion for every n ∈ N while in the Clifford algebra
setting one starts with paravectors x and s but the terms xns−1−n do not contain
only paravectors but also terms of the form eiej .

These preliminaries allow us to find the left and right Cauchy formulas in the
quaternionic setting as follows. Let U ⊂W be an axially symmetric s-domain (the
definition is as in the Clifford algebras case), and let ∂(U ∩ CI) be a finite union
of continuously differentiable Jordan curves for every I ∈ S. Set dsI = −dsI. Let
f be a left slice regular function on W ⊂ H. Then, if q ∈ U , we have

f(q) =
1

2π

∫
∂(U∩CI )

S−1
L (s, q)dsIf(s).

Let f be a right slice regular function on W ⊂ H. Then, if q ∈ U , we have

f(q) =
1

2π

∫
∂(U∩CI)

f(s)dsIS
−1
R (s, q)

and the integrals do not depend on the choice of the imaginary unit I ∈ S nor on
U . The left and the right slice regular kernels are defined by

S−1
L (s, q) := −(q2 − 2Re[s] q + |s|2)−1(q − s),

and
S−1
R (s, q) := −(q − s)(q2 − 2Re[s] q + |s|2)−1.

These Cauchy formulas will be the basis to define a quaternionic functional cal-
culus.

The quaternionic functional calculus. The work of Adler [1] suggests the impor-
tance of the development of functional calculus for quaternionic operators. The
fundamental question, pointed out in [1], is what function theory should be used
to develop such a functional calculus if we are to obtain a calculus which shares
the basic properties of the Riesz–Dunford functional calculus. In order to be able
to do so, one needs a function theory simple enough to include polynomials and
yet developed enough to allow a Cauchy like formula. The theory of slice regular
functions that we develop in Chapter 4 satisfies both requirements.
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When dealing with quaternionic operators there is a major difference with
respect to the case treated in Chapter 3 for n-tuples of R-linear operators. In
fact, there are four cases of interest for a functional calculus: left and right linear
quaternionic operators and left and right slice regular functions. Even though the
majority of our results will be stated and proved in the case of right linear operators
and for left slice monogenic functions, it is worth describing the differences among
the various cases, since they have to be taken into account, especially when dealing
with the case of unbounded operators.

Let V be a right vector space on H. An operator T : V → V is said to be
a right linear operator if T (u + v) = T (u) + T (v), T (us) = T (u)s, for all s ∈ H

and for all u, v ∈ V . In the sequel, we will consider only two-sided vector spaces
V , otherwise the set of right linear operators is not a (left or right) vector space.
With this assumption, the set of right linear operators EndR(V ) on V is both a
left and a right vector space on H with respect to the operations (sT )(v) := sT (v),
(Ts)(v) := T (sv), for all s ∈ H, and for all v ∈ V . Similarly, a map T : V → V is
said to be a left linear operator if T (u+ v) = T (u) + T (v), T (su) = sT (u), for all
s ∈ H and for all u, v ∈ V . The set EndL(V ) of left linear operators on V is both a
left and a right vector space on H with respect to the operations (Ts)(v) := T (v)s,
(sT )(v) := T (vs), for all s ∈ H and for all v ∈ V .

A crucial fact is that the composition of left and right linear operators acts
in an opposite way with respect to the composition of maps. In fact the two rings
EndR(V ) and EndL(V ) with respect to the addition and composition of operators
are opposite rings of each other. This fact has important consequences in the
definition of the S-resolvent operators for unbounded operators. Similarly, we will
have the two-sided vector space BR(V ) of all right linear bounded operators on V
and the two-sided vector space BL(V ) of all left linear bounded operators on V .
When it is not necessary to specify if a bounded operator is left or right linear on
V , we use the symbol B(V ) and we call an element in B(V ) a “linear operator”.
As before, we introduce, for T ∈ B(V ) the left Cauchy kernel operator series, or
S-resolvent operator series, as

S−1
L (s, T ) =

∑
n≥0

T ns−1−n,

and the right Cauchy kernel operator series as

S−1
R (s, T ) =

∑
n≥0

s−1−nT n,

for ‖T ‖ < |s|. The fundamental point of this theory and its importance for physical
applications is the fact that we can replace the variable q, whose components are
commuting real numbers, with a linear quaternionic operator T whose components
are, in general, noncommuting operators. It is also important to note that the
action of the S-resolvent operators series S−1

L (s, T ) and S−1
R (s, T ) in the case of

left linear operators T is on the right, i.e., for every v ∈ V we have v �→ vS−1
L (s, T )
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and v �→ vS−1
R (s, T ). For example for the left Cauchy kernel operator series we

have v �→
∑

n≥0 T
n(v)s−n−1 =

∑
n≥0 vT

ns−n−1. Thus, even though S−1
L (s, T )

is formally the same operator used for right linear operators, S−1
L (s, T ) acts in

a different way. Note that the following important results hold for both left and
right linear quaternionic operators.

Let T ∈ B(V ). Then, for ‖T ‖ < |s|, we have∑
n≥0

T ns−1−n = −(T 2 − 2Re[s]T + |s|2I)−1(T − sI),

and ∑
n≥0

s−1−nT n = −(T − sI)(T 2 − 2Re[s]T + |s|2I)−1.

Observe that the quaternionic operators treated in Section 4 act on a quater-
nionic Banach space while the n-tuples of noncommuting operators act on Banach
modules over a Clifford algebra.

We point out that, when T is a quaternionic operator, the Cauchy operator
series

∑
n≥0 T

ns−1−n is a quaternionic operator because T n are quaternionic op-
erators. In the Clifford setting when we consider T = T0+e1T1+ . . .+enTn, n ≥ 3,
then T n contains not only the terms with the units e1, . . . , en but also those with
eiej, . . . , e1e2e3, . . . and so on. Thus the powers T n are not anymore operators in
the form A0 + e1A1 + . . .+ enA.

The S-spectrum and the S-resolvent sets can be defined as for the case of
n-tuples of noncommuting operators. Let T ∈ B(V ), then the S-spectrum σS(T )
of T ∈ B(V ) is

σS(T ) = {s ∈ H : T 2 − 2 Re[s]T + |s|2I is not invertible}.

The S-resolvent set ρS(T ) is defined by

ρS(T ) = H \ σS(T ).

For s ∈ ρS(T ) we define the left S-resolvent operator as

S−1
L (s, T ) := −(T 2 − 2Re[s]T + |s|2I)−1(T − sI),

and the right S-resolvent operator as

S−1
R (s, T ) := −(T − sI)(T 2 − 2Re[s]T + |s|2I)−1.

They satisfy the equations:

S−1
L (s, T )s− TS−1

L (s, T ) = I,

and
sS−1

R (s, T )− S−1
R (s, T )T = I.
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To define a functional calculus we need to introduce the admissible domains on
which it can be formulated.

Let T ∈ B(V ) and let U ⊂ H be an axially symmetric s-domain that contains
the S-spectrum σS(T ) and such that ∂(U ∩ CI) is a finite union of continuously
differentiable Jordan curves for every I ∈ S. LetW be an open set in H. A function
f ∈ RL(W ) is said to be locally left regular on σS(T ) if there exists a domain
U ⊂ H, as above and such that U ⊂ W , on which f is left regular. A function
f ∈ RR(W ) is said to be locally right regular on σS(T ) if there exists a domain
U ⊂ H, as above and such that U ⊂W , on which f is right regular.

The quaternionic functional calculus can now be defined as follows. Let U ⊂
H be a domain as above and set dsI = −dsI. We define

f(T ) =
1

2π

∫
∂(U∩CI )

S−1
L (s, T ) dsI f(s), for f ∈ RL

σS(T ),

and

f(T ) =
1

2π

∫
∂(U∩CI )

f(s) dsI S
−1
R (s, T ), for f ∈ RR

σS(T ).

The definitions are well posed because the integrals do not depend on the open
set U and on the imaginary unit I ∈ S. Note that when T ∈ BL(V ) we have
f(T )(v) = vf(T ) while if T ∈ BR(V ) we have f(T )(v) = f(T )v.

One can also define a quaternionic functional calculus for closed densely
defined linear quaternionic operators. Here we must pay attention to the differences
between the cases of left and right linear operators. Denote by KR(V ) (KL(V )
resp.) the set of right (left resp.) linear closed operators T : D(T ) ⊂ V → V, such
that: D(T ) is dense in V , D(T 2) ⊂ D(T ) is dense in V , T −sI is densely defined in
V . We will use the symbol K(V ) when we do not distinguish between KL(V ) and
KR(V ). Since T is a closed operator, then T 2−2Re[s]T + |s|2I : D(T 2) ⊂ V → V
is a closed operator. In analogy with the case of bounded operators, we denote by
ρS(T ) the S-resolvent set of T , i.e., the set

ρS(T ) = {s ∈ H : (T 2 − 2Re[s]T + |s|2I)−1 ∈ B(V )},

and, as a consequence, we define the S-spectrum σS(T ) of T as

σS(T ) = H \ ρS(T ).

For any T ∈ K(V ) and s ∈ ρS(T ), we denote by Qs(T ) the operator

Qs(T ) := (T 2 − 2Re[s]T + |s|2I)−1 : V → D(T 2). (1.3)

The definition of the S-resolvent operators S−1
L , S−1

R relies on a deep difference
between the case of left and right linear operators. To start with, consider the left
S-resolvent operator used in the bounded case, that is

S−1
L (s, T ) = −Qs(T )(T − sI). (1.4)
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Note that in the case of right linear unbounded operators, S−1
L (s, T ) turns out

to be defined only on D(T ), while in the case of left linear unbounded operators
it is defined on V . This is a striking difference between the two cases due to
the presence of the term Qs(T )T . However, for T ∈ KR(V ), observe that the
operator Qs(T )T is the restriction to the dense subspace D(T ) of V of a bounded
linear operator defined on V . This fact follows from the commutation relation
Qs(T )Tv = TQs(T )v which holds for all v ∈ D(T ) since the polynomial operator
T 2−2Re[s]T+ |s|2I : D(T 2) → V has real coefficients. Since TQs(T ) : V → D(T )
and it is continuous for s ∈ ρS(T ), the left S-resolvent operators for unbounded
right linear operators is defined as

S−1
L (s, T )v := −Qs(T )(T − sI)v, for all v ∈ D(T ),

and we will call

Ŝ−1
L (s, T )v = Qs(T )sv − TQs(T )v, for all v ∈ V,

the extended left S-resolvent operator. The right S-resolvent operator is

S−1
R (s, T )v := −(T − Is)Qs(T )v,

and it is already defined for all v ∈ V . Observe also that for the right S-resolvent
operator S−1

R (s, T ) we have that for s ∈ ρS(T ) the operator Qs(T ) : V → D(T 2)
is bounded so also (T − Is)Qs(T ) : V → D(T ) is bounded.

The discussion of this case shows that, in the case of unbounded linear op-
erators, the S-resolvent operators (left and right) have to be defined in a different
way for left and right linear operators and motivates the following definition.

Let A be an operator containing the term Qs(T )T (resp. TQs(T )). We define
Â to be the operator obtained from A by substituting each occurrence of Qs(T )T
(resp. TQs(T )) by TQs(T ) (resp. Qs(T )T ).

In the case of a left linear operator, i.e., T ∈ KL(V ) and s ∈ ρS(T ), we define
the left S-resolvent operator as (compare with the case T ∈ KR(V ))

vS−1
L (s, T ) := −vQs(T )(T − sI), for all v ∈ V,

and the right S-resolvent operator as

vS−1
R (s, T ) := −v(T − Is)Qs(T ), for all v ∈ D(T ).

To have an operator defined on the whole V we introduce

vŜ−1
R (s, T ) = vQs(T )s− vQs(T )T, for all v ∈ V,

which is called the extended right S-resolvent operator.
A second difference between the functional calculus for left linear operators

and for right linear operators is given by the S-resolvent equations which, to hold
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on V , need different extensions of the operators involved. Specifically, we have
that: if T ∈ KR(V ) and s ∈ ρS(T ), then the left S-resolvent operator satisfies the
equation

Ŝ−1
L (s, T )sv − T Ŝ−1

L (s, T )v = Iv, for all v ∈ V,

while the right S-resolvent operator satisfies the equation

sS−1
R (s, T )v − (S−1

R
̂(s, T )T )v = Iv, for all v ∈ V.

If T ∈ KL(V ) and s ∈ ρS(T ), then the left S-resolvent operator satisfies the
equation

vŜ−1
L (s, T )s− vT̂ S−1

L (s, T ) = vI, for all v ∈ V.

Finally, the right S-resolvent operator satisfies the equation

vsŜ−1
R (s, T )− v(Ŝ−1

R (s, T )T ) = vI, for all v ∈ V.

Another issue which requires the use of extended operators is the treatment of
unbounded operators. In the classical case of a complex unbounded linear operator
B : D(B) ⊂ X → X , where X is a complex Banach space, the resolvent operator

R(λ,B) := (λI −B)−1, for λ ∈ ρ(B),

satisfies the relations

(λI −B)R(λ,B)x = x, for all x ∈ X,

R(λ,B)(λI −B)x = x, for all x ∈ D(B).

It is then natural to ask what happens in the quaternionic case for unbounded
operators. Again, one has to use suitable extensions and the results, in the case
T ∈ KR(V ), are:

ŜL(s, T )Ŝ
−1
L (s, T )v = Iv, for all v ∈ V,

Ŝ−1
L (s, T )ŜL(s, T )v = Iv, for all v ∈ D(T ),

and
SR(s, T )S

−1
R (s, T )v = Iv, for all v ∈ V,

S−1
R (s, T )SR(s, T )v = Iv, for all v ∈ D(T ).

The corresponding results, with suitable modifications, are proved also for
T ∈ KL(V ).

We are now ready to present the functional calculus in the four cases of
unbounded operators. Let T ∈ KR(V ) and let W be an open set as defined above
such that σS(T ) ⊂W and let f be a regular function on W ∪ ∂W . Let I ∈ S and
W ∩ CI be such that its boundary ∂(W ∩ CI) is positively oriented and consists
of a finite number of rectifiable Jordan curves. If T ∈ KR(V ) with ρS(T )∩R �= ∅,
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then the operator f(T ), defined in an analogous way as we did for the case of an
n-tuple of noncommuting operators, is independent of the real number k ∈ ρS(T ),
and, for f ∈ RL

σS(T ) and v ∈ V , we have

f(T )v = f(∞)Iv + 1

2π

∫
∂(W∩CI )

Ŝ−1
L (s, T ) dsI f(s)v,

and for f ∈ RR
σS(T ) and v ∈ V , we have

f(T )v = f(∞)Iv + 1

2π

∫
∂(W∩CI )

f(s) dsI S
−1
R (s, T )v.

If T ∈ KL(V ) we can define two analogous functional calculi, according to the use
of left or right regular functions.

We conclude the overview of the book with an important application of the
quaternionic functional calculus to the theory of quaternionic semigroups. A sur-
prising result is the remarkable relation of the semigroup et T with the S-resolvent
operator: let T ∈ B(V ) and let s0 > ‖T ‖. Then the right S-resolvent operator
S−1
R (s, T ) is given by

S−1
R (s, T ) =

∫ +∞

0

e−t s et T dt.

Let T ∈ B(V ) and let s0 > ‖T ‖. Then the left S-resolvent operator S−1
L (s, T ) is

given by

S−1
L (s, T ) =

∫ +∞

0

etT e−ts dt.

Note that, as in the classical case, we have a characterization result: if U(t) is
a quaternionic semigroup on a quaternionic Banach space V , then U(t) has a
bounded infinitesimal quaternionic generator if and only if it is uniformly contin-
uous.



Chapter 2

Slice monogenic functions

2.1 Clifford algebras

Clifford algebras will be the setting in which we will work throughout this book.
They were introduced under the name of geometric algebras by Clifford in 1878.
Since then, several people have extensively studied them and nowadays there are,
in the literature, several possible ways to introduce Clifford algebras: for example
one can use exterior algebras, or present them as a quotient of a tensor algebra or
by means of a universal property (see [23], [31], [34], or [75] for a survey on the
various possible definitions). In this book, we will adopt an equivalent but more
direct approach, using generators and relations.

Definition 2.1.1. Given n elements e1, . . . , en, n = p + q, p, q ≥ 0, which will be
called imaginary units, together with the defining relations

e2i = +1, for i = 1, . . . , p,

e2i = −1, for i = p+ 1, . . . , n,

eiej + ejei = 0, i �= j.

Assume that

e1e2 . . . en �= ±1 if p− q ≡ 1(mod4). (2.1)

We will call (universal) Clifford algebra the algebra over R generated by e1, . . . , en
and we will denote it by Rp,q.

Remark 2.1.2. It is immediate that Rp,q, as a real vector space and has dimension
2n, n = p+ q.

An element in Rp,q, called a Clifford number, can be written as

a = a0 + a1e1 + . . .+ anen + a12e1e2 + . . .+ a123e1e2e3 + . . .+ a12...ne1e2 . . . en.

F. Colombo et al., Noncommutative Functional Calculus: Theory and Applications of Slice 
Hyperholomorphic Functions, Progress in Mathematics 289, DOI 10.1007/978-3-0348-0110-2_2,  
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Denote by A an element in the power set ℘(1, . . . , n). If A = i1 . . . ir, then the
element ei1 . . . eir can be written as ei1...ir or, in short, eA. Thus, in a more compact
form, we can write a Clifford number as

a =
∑
A

aAeA.

Possibly using the defining relations, we will order the indices in A as i1 < . . . < ir.
When A = ∅ we set e∅ = 1.

We now give some examples of real Clifford algebras Rn of low dimension.

Example 2.1.3. First of all, we point out that the index n = 0 is allowed in the
definition, and in this case we obtain the real numbers. For n = 1 we have that
R0,1 is the algebra generated by e1 over R with the relation e21 = −1. Hence there
is an R-algebra isomorphism R0,1

∼= C where C denotes, as customary, the algebra
of complex numbers.

Example 2.1.4. For n = 2, the Clifford algebra R0,2 is generated by e1 and e2. This
real algebra is the so-called algebra of quaternions and it is usually denoted by
the symbol H. A quaternion q is traditionally written as q = x0 + ix1 + jx2 + kx3
where the imaginary units i, j, k anti-commute among them and satisfy i2 = j2 =
k2 = −1. With the identification

e1 → i, e2 → j,

(and the consequent e1e2 → k), it is immediate to identify R0,2 with H.

Example 2.1.5. We now compare the two Clifford algebras R1,1 generated by the
elements e1 and ε1 such that e21 = −1 and e22 = +1, and R2,0 generated by
the elements ε1 and ε2 both having square +1. These two Clifford algebras are
isomorphic. In fact, let us consider the matrices

η0 =

[
1 0
0 1

]
η1 =

[
0 1
1 0

]

η2 =

[
0 −1
1 0

]
η3 =

[
1 0
0 −1

]
.

They form a basis for the vector space M(2,R) of 2× 2 real matrices. The map

ϕ : R1,1 �→M(2,R)

defined by ϕ(e1) = η2, ϕ(e2) = η1 can be extended to an isomorphism for which
ϕ(1) = η0, and ϕ(e2e1) = η3. The map

ψ : R2,0 �→M(2,R)

defined by ψ(ε1) = η1, ψ(ε2) = η3 can be extended to an isomorphism for which
ψ(1) = η0, ψ(ε1ε2) = η2. Thus the Clifford algebras R1,1 and R2,0 are isomorphic
but, as the reader can verify, they are not isomorphic to R0,2.
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The case of R0,n will be the only case we will use in this book. For this reason,
we will write Rn instead of R0,n.

Definition 2.1.6. Let k ∈ N and 0 ≤ k ≤ n. The linear subspace of Rn generated
by the

(
n
k

)
elements of the form eA = ei1 . . . eik , i� ∈ {1, . . . , n}, i1 < . . . < ik, will

be denoted by Rk
n. The elements in Rk

n are called k-vectors.

For k = 0, the subspace R0
n is identified with the space of scalars R; for k = 1

we have the subspace R1
n of 1-vectors, also called vectors for short and denoted by

x, with basis {e1, . . . , en}; an element (x1, x2, . . . , xn) ∈ Rn can be identified with
a vector x ∈ R1

n in the Clifford algebra using the map:

(x1, x2, . . . , xn) �→ x = x1e1 + . . .+ xnen.

The subspace R2
n consists of 2-vectors or bivectors, and has basis {eij =

eiej, i < j}. In general, for any subset A = {i1, . . . , ik} of N = {1, . . . , n} of
cardinality |A| = k, the elements eA = ei1 . . . eik , i1 < . . . < ik, form a basis for
the
(
n
k

)
-dimensional vector space Rk

n of the k-vectors. Every element belonging to
R0

n ⊕ R1
n is a sum of a scalar and a vector. It is called paravector. An element

(x0, x1, . . . , xn) ∈ Rn+1 can be identified with a paravector x ∈ R0
n ⊕ R1

n by the
map:

(x0, x1, . . . , xn) �→ x = x0 + x1e1 + . . .+ xnen.

Note also that every element a ∈ Rn may also be uniquely written as

a = [a]0 + [a]1 + . . .+ [a]k + . . .+ [a]n

where [·]k : Rn → Rk
n denotes the projection of Rn onto the space of k-vectors.

Finally, a can be written in the form

a = a+ + a−

where [a]+ = [a]0 + [a]2 + . . . , and [a]− = [a]1 + [a]3 + . . . . We hence have a direct
sum decomposition

Rn = Rn,+ ⊕ Rn,−

where Rn,+ is the even subalgebra generated by the bivectors eij , while Rn,−
contains all the elements a that may be written in the form a = −e1(e1a), e1a ∈
Rn,+. Note that Rn,− is not an algebra while Rn,+ is an algebra isomorphic to
Rn−1.

Among the elements in the Clifford algebra Rn, we can consider the product
of all the imaginary units ei:

Definition 2.1.7. The product eN := e1 . . . en is called pseudoscalar.

Remark 2.1.8. If n is odd the pseudoscalar commutes with any element of the
Clifford algebra Rn since it can be verified that

ejeN = eNej,
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while when n is even eN anticommutes with any imaginary unit in the Clifford
algebra:

ejeN = −eNej .

As a consequence of the remark, we immediately have the following result:

Proposition 2.1.9. The center of a Clifford algebra Rn is R for n even, while it is
R⊕ eNR = {x+ eNy | x, y ∈ R} for n odd.

Proposition 2.1.10. The Clifford algebra Rn, n ≥ 3, contains zero divisors.

Proof. Since n ≥ 3, Rn contains the element e123. We have

(1 − e123)(1 + e123) = 1− e123 + e123 − e123e123 = 1− e2123 = 0. �

In a Clifford algebra it is possible to introduce several involutions, but for
our purposes we will simply consider the so-called conjugation:

Definition 2.1.11. Let a, b ∈ Rn. The conjugation is defined by

ēj = −ej, j = 1, . . . , n, ab = b̄ā.

As a consequence of the definition, for any a ∈ Rn, a =
∑
aAeA, we have

ā =
∑

aAēA = [a]0 − [a]1 − [a]2 + [a]3 + [a]4 − . . .

i.e., for any a ∈ Rk
n we have the 4-periodicity

ā = a for k ≡ 0, 3 mod 4,

ā = −a for k ≡ 1, 2 mod 4.

The following properties of the conjugation can be easily verified by direct com-
putation:

Proposition 2.1.12. The conjugation of Clifford numbers satisfies:

(1) ¯̄a = a for all a ∈ Rn;

(2) a+ b = ā+ b̄ for all a, b ∈ Rn;

(3) a+ ā = 2[a]0 for all paravectors a.

The conjugation allows us to introduce an inner product defined on the real
linear space of Clifford numbers:

Proposition 2.1.13. Let a, b ∈ Rn. Then

〈a, b〉 := [āb]0 = [bā]0 = [b̄a]0,

is a positive definite inner product on Rn.
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Proof. Let a =
∑

A aAeA, b =
∑

B bBeB. We have

āb = (
∑
A

aAeA)(
∑
B

bBeB) =
∑
A,B

aAbB ēAeB

and since ēAeA = (−1)|A|(|A|+1)/2eAeA = 1 we obtain

āb =
∑
A

aAbA +
∑
A �=B

aAbB ēAeB

and so [āb]0 =
∑

A aAbA. Thus [āb]0 coincides with the scalar product of the
vectors in R2n corresponding to the real components of a and b and it defines a
scalar product. The fact that it coincides with [bā]0 and [b̄a]0 can be proved by
similar computations. �

We note that the inner product defined by Proposition 2.1.13 behaves like a
scalar product on the space of vectors and, if x and y are two vectors we have

〈x, y〉 = 1

2
(xy + yx).

The wedge product of two vectors x and y is defined by

x ∧ y =
1

2
(xy − yx).

Note that the wedge product represents the directed and oriented surface measure
of the parallelogram individuated by x and y. It is also immediate that the product
of two vectors can be written as

x y =
1

2
(xy + yx) +

1

2
(xy − yx) = 〈x, y〉+ x ∧ y. (2.2)

Note also that, in the case of vectors, the scalar product can be written as

〈x, y〉 =
n∑

j=1

xiyi,

and, if by |x| we denote the Euclidean norm of a vector x, we have

|x| =
√
〈x, x〉 (2.3)

which is the length of the vector x.
We will say that two nonzero vectors x, y are orthogonal if 〈x, y〉 = 0. As

customary, a basis {u1, . . . us} of a subspace U of the Euclidean space Rn is said
to be orthonormal if |ui| = 1 and 〈ui, uj〉 = 0 for every ui, uj, such that ui �= uj.
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In general, given an element a =
∑

A aAeA ∈ Rn we can define its modulus
as

|a| = (
∑
A

a2A)
1
2 .

The proof of Proposition 2.1.13 shows that

|a|2 = [aā]0 = 〈a, a〉,

thus generalizing formula (2.3) to the case of a general Clifford number. We have
the following properties:

Proposition 2.1.14. The modulus of Clifford numbers satisfies:

(1) |λa| = |λ| |a| for all λ ∈ R, a ∈ Rn;

(2) ||x| − |y|| ≤ |x− y| ≤ |x|+ |y|;
However, the modulus is not multiplicative, as shown in the next result.

Proposition 2.1.15. For any two elements a, b ∈ Rn we have

|ab| ≤ Cn|a| |b|

where Cn is a constant depending only on the dimension of the Clifford algebra
Rn. Moreover, we have Cn ≤ 2n/2.

Remark 2.1.16. The modulus is multiplicative in the case of complex numbers
and quaternions. To have a multiplicative modulus when enlarging the field of
real numbers one has to abandon the notion of order to get C and then the
notion of commutativity to get H. There is another possibility to enlarge further
the dimension: by abandoning associativity one obtains the (division) algebra of
octonions. In fact, Hurwitz’ theorem shows that the only algebras over the real
field with multiplicative modulus are the field of real numbers, the field of complex
numbers, the quaternion skew field and the alternative algebra of octonions.

Inside a Clifford algebra there is the possibility, in some special cases, to
have that the modulus is multiplicative. These cases are described in the following
result:

Proposition 2.1.17. Let b ∈ Rn be such that bb̄ = |b|2. Then

|ab| = |a||b|.

Proof. Consider |ab|. We have:

|ab|2 = [abab]0 = [abb̄ā]0 = [a|b|2ā]0 = [aā]0|b|2 = |a|2|b|2. �

Note that the result holds, in particular, when a is paravector x. Moreover
any nonzero paravector x admits an inverse, the so-called Kelvin inverse, defined
by

x−1 =
x̄

|x|2 .
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2.2 Slice monogenic functions: definition and properties

As mentioned in Section 2.1, an element (x1, x2, . . . , xn) ∈ Rn can be identified
with a vector x = x1e1+ . . .+xnen ∈ R1

n while an element (x0, x1, . . . , xn) ∈ Rn+1

can be identified with the paravector

x = x0 + x1e1 + . . .+ xnen = x0 + x ∈ R0
n ⊕ R1

n.

In the sequel, with an abuse of notation, we will write x ∈ Rn and x ∈ Rn+1. Thus,
if U ⊆ Rn+1 is an open set, a function f : U ⊆ Rn+1 → Rn can be interpreted as
a function of the paravector x. Note also that an element x will be often denoted
as

x = Re[x] + x,

to emphasize its real and vector part, respectively.
The theory of slice monogenic functions was first developed in [26] where the

authors study a new notion of monogenicity for functions from Rn+1 to Rn. It is
worth noting, however, that the exposition we propose here offers a significantly
improved theory, and reorganizes the ideas of [26] in a new more powerful fashion
as in [15], [18], [27], [28], [29], [53].

To introduce the theory of slice monogenic functions, we need some definitions
and notation.

Definition 2.2.1. We will denote by S the set of unit vectors:

S = {x = e1x1 + . . .+ enxn ∈ Rn+1 | x21 + . . .+ x2n = 1}.

From a geometric point of view, S is an (n−1)-sphere in the Euclidean space
of vectors Rn and if I ∈ S, then I2 = −1.

The two-dimensional real subspace of Rn+1 generated by 1 and I is the plane
R + IR. It will be denoted by CI , in fact it is isomorphic to the complex plane.
Note that the isomorphism between the vector space CI and C is also an algebra
isomorphism, thus CI will be referred to as a “complex plane”.

An element in CI will be denoted by u + Iv. Conversely, given a paravector
x, it will be possible to write it as an element in a suitable complex plane CI . In

fact, either x is a real number, or we can write it as x = Re[x] +
x

|x| |x|. Since

Re[x], |x| are real numbers and
x

|x| is a unit vector, we have written the given

paravector as x = u+ Ixv, with u = Re[x], v = |x| and Ix =
x

|x| .

Definition 2.2.2. Let U ⊆ Rn+1 be an open set and let f : U → Rn be a real
differentiable function. Let I ∈ S and let fI be the restriction of f to the complex
plane CI and denote by u + Iv an element on CI . We say that f is a left slice
monogenic (for short s-monogenic) function if, for every I ∈ S, we have

1

2

(
∂

∂u
+ I

∂

∂v

)
fI(u+ Iv) =

1

2

(
∂

∂u
fI(u + Iv) + I

∂

∂v
fI(u+ Iv)

)
= 0
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on U ∩ CI . We will denote by M(U) the set of left s-monogenic functions on the
open set U or by ML(U) when confusion may arise. We say that f is a right slice
monogenic (for short right s-monogenic) function if, for every I ∈ S, we have

1

2

(
∂

∂u
+

∂

∂v
I

)
fI(u+ Iv) =

1

2

(
∂

∂u
fI(u+ Iv) +

∂

∂v
fI(u+ Iv)I

)
= 0,

on U ∩ CI . We will denote by MR(U) the set of right s-monogenic functions on
the open set U .

Remark 2.2.3. The theory of right s-monogenic functions is equivalent to the
theory of (left) s-monogenic functions. In the sequel, we will mainly consider
s-monogenicity on the left, but we will introduce some basic tools for right s-
monogenic functions in order to treat the functional calculus for n-tuples of non-
commuting operators.

Definition 2.2.4. We define the notion of I-derivative by means of the operator:

∂I :=
1

2

(
∂

∂u
− I

∂

∂v

)
.

For consistency, we will denote by ∂I the operator 1
2

(
∂
∂u + I ∂

∂v

)
.

Using the notation we have just introduced, the condition of left s-mono-
genicity will be expressed, in short, by

∂If = 0.

Right s-monogenicity will be expressed, with an abuse of notation, by

f∂I = 0.

Remark 2.2.5. It is easy to verify that the (left) s-monogenic functions on U ⊆
Rn+1 form a right Rn-module. In fact it is trivial that if f, g ∈ M(U), then
for every I ∈ S one has ∂IfI = ∂IgI = 0, thus ∂I(f + g)I = 0. Moreover, for
any a ∈ Rn we have ∂I(fIa) = (∂If)a = 0. Analogously, the right s-monogenic
functions on U ⊆ Rn+1 form a left Rn-module.

Definition 2.2.6. Let U be an open set in Rn+1 and let f : U → Rn be an s-
monogenic function. Its s-derivative ∂s is defined as

∂s(f) =

{
∂I(f)(x) x = u+ Iv, v �= 0,
∂uf(u) u ∈ R.

(2.4)

Note that the definition of s-derivative is well posed because it is applied
only to s-monogenic functions. Moreover, for such functions, it coincides with the
partial derivative with respect to the scalar component u, in fact we have:

∂s(f)(u+ Iv) = ∂I(fI)(u+ Iv) = ∂u(fI)(u+ Iv). (2.5)
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Note incidentally that

∂u(fI)(u+ Iv) = ∂u(f)(u+ Iv).

Proposition 2.2.7. Let U be an open set in Rn+1 and let f : U → Rn be an s-
monogenic function. The s-derivative ∂sf of f is an s-monogenic function, more-
over

∂ms f(u+ Iv) =
∂mf

∂um
(u + Iv).

Proof. The first part of the statement follows from

∂I(∂sf(u+ Iv)) = ∂s(∂If(u+ Iv)) = 0. (2.6)

The second part follows from (2.5). �
We now provide some examples of s-monogenic functions. It is interesting to

note that in the classical theory of monogenic functions (see [7], [34]) the mono-
mials, and thus the polynomials, in the paravector variable are not monogenic
functions. However polynomials (and also converging power series) in the paravec-
tor variable turn out to be s-monogenic functions, provided that the coefficients
are written on the right.

Example 2.2.8. The monomials xnan, an ∈ Rn are s-monogenic, thus also the
polynomials

∑N
n=0 x

nan are s-monogenic. Note that these polynomials have co-
efficients written on the right: indeed, polynomials with left coefficients are not,
in general, s-monogenic. To avoid confusion, we will call polynomials of the form∑N

n=0 x
nan s-monogenic polynomials. Moreover, as we will see in the sequel, any

power series
∑

n≥0 x
nan is s-monogenic in its domain of convergence.

Remark 2.2.9. Note that the complex plane C = R1 can be seen both as R2 and as
R1. It is immediate, from Definition 2.2.2, that the space of holomorphic functions
f : C → C coincides with the space of s-monogenic functions from R2 to R1. For
this reason we will consider the case n > 1 (obviously, all the results that we will
prove are valid also in the case n = 1).

Proposition 2.2.10. Let I = I1 ∈ S. It is possible to choose I2, . . . , In ∈ S such that
I1, . . . , In form an orthonormal basis for the Clifford algebra Rn i.e., they satisfy
the defining relations IrIs + IsIr = −2δrs.

Proof. First of all, note that since x ∧ y = −y ∧ x, formula (2.2) gives

x y + y x = 2〈x, y〉.

Then it sufficient to select the vectors Ir in a way such that 〈Ir , Ir〉 = −1 and
〈Is, Ir〉 = 0, for s = 1, . . . , n, r = 2, . . . , n. Since Ir =

∑n
�=1 xr�e� the two condi-

tions translate into

〈Ir, Ir〉 = −
n∑

�=1

x2r�
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and

〈Is, Ir〉 = −
n∑

�=1

xs�xr�.

By identifying each vector Ir with its components (x1, . . . , xn) ∈ Rn we conclude
using the Gram–Schmidt algorithm. �

A simple and yet extremely important feature of s-monogenic functions is
that their restrictions to a complex plane CI can be written as a suitable linear
combination of 2n−1 holomorphic functions, as proved in the following:

Lemma 2.2.11 (Splitting Lemma). Let U ⊆ Rn+1 be an open set. Let f : U → Rn

be an s-monogenic function. For every I = I1 ∈ S let I2, . . . , In be a completion to
a basis of Rn satisfying the defining relations IrIs+IsIr = −2δrs. Then there exist
2n−1 holomorphic functions FA : U ∩ CI → CI such that for every z = u+ Iv,

fI(z) =

n−1∑
|A|=0

FA(z)IA, IA = Ii1 . . . Iis ,

where A = i1 . . . is is a subset of {2, . . . , n}, with i1 < . . . < is, or, when |A| = 0,
I∅ = 1.

Proof. Let z = u+Iv. Since f is Rn-valued, there are functions FA : U ∩CI → CI

such that

fI(z) =

n−1∑
|A|=0

FA(z)IA =

n−1∑
|A|=0

(fA + gAI)IA.

We now need to show that the functions FA are holomorphic. Since f is s-
monogenic we have that its restriction to CI satisfies(

∂

∂u
+ I

∂

∂v

)
fI(u+ Iv) = 0

and so ∑(
∂

∂u
+ I

∂

∂v

)
(fA + gAI)IA

=
∂

∂u
fA + I

∂

∂v
fA +

∂

∂u
gAI −

∂

∂v
gA = 0.

Since the imaginary units commute with any real-valued function, we obtain the
system: ⎧⎪⎪⎨⎪⎪⎩

∂

∂u
fA − ∂

∂v
gA = 0,

∂

∂v
fA +

∂

∂u
gA = 0

for all multi-indices A. Therefore all the functions FA = fA + gAI satisfy the
standard Cauchy–Riemann system and so they are holomorphic. �



2.2. Slice monogenic functions: definition and properties 27

Example 2.2.12. To clarify our result, we consider explicitly the case of R4-valued
functions. A function f : U ⊆ R5 → R4 can be written as

f =f0 + f1I1 + f2I2 + f3I3 + f4I4 + f12I12 + f13I13 + f14I14 + f23I23

+ f24I24 + f34I34 + f123I123 + f124I124 + f134I134 + f234I234 + f1234I1234

and grouping as prescribed in the statement of the Lemma, we obtain

f = (f0 + f1I1) + (f2 + f12I1)I2 + (f3 + f13I1)I3 + (f4 + f14I1)I4

+ (f23 + f123I1)I23 + (f24 + f124I1)I24 + (f34 + f134I1)I34

+ (f234 + f1234I1)I234.

To develop a meaningful theory of s-monogenic functions we need some ad-
ditional hypotheses on the open sets on which they are defined. For example, the
natural class of open sets in which we can prove the Identity Principle is given
by the domains whose intersection with any complex plane CI is connected. We
introduce these domains in the following definition:

Definition 2.2.13. Let U ⊆ Rn+1 be a domain. We say that U is a slice domain
(s-domain for short) if U ∩R is nonempty and if U ∩CI is a domain in CI for all
I ∈ S.

In this class of domains it is possible to prove the following Identity Principle:

Theorem 2.2.14 (Identity Principle). Let U be an s-domain in Rn+1. Let f : U →
Rn be an s-monogenic function, and let Z be its zero set. If there is an imaginary
unit I such that CI ∩ Z has an accumulation point, then f ≡ 0 on U .

Proof. Let us consider the restriction fI of f to the plane CI , for I ∈ S. By the
Splitting Lemma we have

fI(z) =

n−1∑
|A|=0

FA(z)IA

with FA : U ∩CI → CI holomorphic for every multi-index A and z = u+Iv. Since
CI ∩ Z has an accumulation point, we deduce that all the functions FA vanish
identically on U ∩ CI and thus fI = 0 on U ∩ CI . In particular fI vanishes in
the points of U on the real axis. Any other plane CI′ is such that fI′ vanishes on
U ∩ R which has an accumulation point. If we apply the Splitting Lemma to fI′ ,
we can write fI′ =

∑
A′ FA′IA′ and thus its components FA′ vanish on U ∩R and

thus they vanish identically on U ∩ CI′ . This fact implies that also fI′ vanish on
CI′ , thus f ≡ 0 on U . �

Analogously to what happens in the complex case, we can prove the following
consequence of the Identity Principle.
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Corollary 2.2.15. Let U be an s-domain in Rn+1. Let f, g : U → Rn be s-
monogenic functions. If there is an imaginary unit I such that f = g on a subset
of CI having an accumulation point, then f ≡ g on U .

Among the domains in Rn+1 there is a special subclass which is useful to
provide a Representation Formula for s-monogenic functions. In order to define
them, it is useful to suitably denote the (n− 1)-sphere associated to a paravector.

Let s = s0 + s = s0 + Is|s| ∈ Rn+1 be a paravector; we denote by [s ] the set

[s ] = {x ∈ Rn+1 | x = s0 + I|s|, I ∈ S}.

The set [s ] is either reduced to a real point or it is the (n− 1)-sphere defined by
s, i.e., the (n− 1)-dimensional sphere with center at the real point s0 and radius
|s|.

Remark 2.2.16. Observe that the relation: “x ∼ s if and only if x0 = s0 and
|x| = |s|” is an equivalence relation. Given a paravector s, its equivalence class
contains only the element s when s is a real number, while it contains infinitely
many elements when s is not real and corresponds to the (n − 1)-dimensional
sphere [s ].

Definition 2.2.17. Let U ⊆ Rn+1. We say that U is axially symmetric if, for all
s = u+ Iv ∈ U , the whole (n− 1)-sphere [s ] is contained in U .

Observe that axially symmetric sets are invariant under rotations that fix
the real axis.

In order to state the next result we need some notation. Given an element
x = x0 + x ∈ Rn+1 let us set

Ix =

⎧⎨⎩
x

|x| if x �= 0,

any element of S otherwise.

We have the following:

Theorem 2.2.18 (Representation Formula). Let U ⊆ Rn+1 be an axially symmetric
s-domain and let f be an s-monogenic function on U .

(1) For any vector x = u+ Ixv ∈ U the following formulas hold:

f(x) =
1

2

[
1− IxI

]
f(u+ Iv) +

1

2

[
1 + IxI

]
f(u− Iv) (2.7)

and

f(x) =
1

2

[
f(u+ Iv) + f(u− Iv) + IxI[f(u− Iv)− f(u+ Iv)]

]
. (2.8)
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(2) Moreover, the two quantities

α(u, v) :=
1

2
[f(u+ Iv) + f(u− Iv)] (2.9)

and

β(u, v) := I
1

2
[f(u− Iv)− f(u+ Iv)] (2.10)

do not depend on I ∈ S.

Proof. The result is trivial for real paravectors, in fact we have the identity

f(u) =
1

2

[
1− IxI

]
f(u) +

1

2

[
1 + IxI

]
f(u)

for any Ix ∈ S. If x �∈ R and if we write x = u+ Ixv we can set

φ(u + Ixv) :=
1

2

[
f(u+ Iv) + f(u− Iv) + IxI[f(u− Iv)− f(u+ Iv)]

]
,

and observe that if I = Ix we have

φ(u+ Ixv) = f(x).

Let us show that
(

∂
∂u + Ix

∂
∂v

)
φ(u+ Ixv) = 0 for all x ∈ U ∩CI . Indeed we have:

( ∂
∂u

+ Ix
∂

∂v

)
φ(u + Ixv)

=
1

2

[
1− IxI

] ∂
∂u
f(u+ Iv) +

1

2

[
1 + IxI

] ∂
∂u
f(u− Iv)

+
1

2
Ix

[
1− IxI

] ∂
∂v
f(u+ Iv) +

1

2
Ix

[
1 + IxI

] ∂
∂v
f(u− Iv).

Using the fact that f is s-monogenic, we can write( ∂
∂u

+ Ix
∂

∂v

)
φ(u+ Ixv)

=
1

2

[
1− IxI

]
(−I) ∂

∂v
f(u+ Iv) +

1

2

[
1 + IxI

]
I
∂

∂v
f(u− Iv)

+
1

2
Ix

[
1− IxI

] ∂
∂v
f(u+ Iv) +

1

2
Ix

[
1 + IxI

] ∂
∂v
f(u− Iv) = 0.

Since the function φ is s-monogenic and φ ≡ f on CI , then φ coincides with f
on U by the Identity Principle. The second part of the proof follows directly from
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(2.8). In fact we have

1

2
[f(u+ Iv) + f(u− Iv)]

=
1

2

{1
2

[
f(u+ Jv) + f(u− Jv)

]
+ I

1

2

[
J [f(u− Jv)− f(u+ Jv)]

]
+

1

2

[
f(u+ Jv) + f(u− Jv)

]
− I

1

2

[
J [f(u− Jv)− f(u+ Jv)]

]}
=

1

2

[
f(u+ Jv) + f(u− Jv)

]
and so α, and similarly β, depend on u, v only. �
Remark 2.2.19. Note that the operator ∂I is not a constant coefficients differential
operator since the imaginary unit I changes with the point u+Iv. This shows that
f per se does not satisfy a system of constant coefficients differential equations;
however, as the next corollary shows, its components α and β do, and they give
an s-monogenic function if they satisfy some additional conditions, see [87].

Corollary 2.2.20. Let U ⊆ Rn+1 be an axially symmetric s-domain, and D ⊆ R2

be such that u + Iv ∈ U whenever (u, v) ∈ D and let f : U → Rn. The function
f is an s-monogenic function if and only if there exist two differentiable functions
α, β : D ⊆ R2 → Rn satisfying α(u, v) = α(u,−v), β(u, v) = −β(u,−v) and the
Cauchy–Riemann system {

∂uα− ∂vβ = 0,

∂uβ + ∂vα = 0,
(2.11)

and such that
f(u+ Iv) = α(u, v) + Iβ(u, v). (2.12)

Proof. If f is s-monogenic, then we can apply Theorem 2.2.18 and we can set
α(u, v) and β(u, v) as in (2.9) and (2.10). Then f(u+Iv) = α(u, v)+Iβ(u, v), and
α(u, v) = α(u,−v), β(u, v) = β(u,−v) by their definitions. The proof of Theorem
2.2.18 shows that the pair α, β satisfies the Cauchy–Riemann system. The converse
is immediate: any function of the form f(u+Iv) = α(u, v)+Iβ(u, v) is well defined
on an axially symmetric open set. In fact,

f(u− Iv) = α(u,−v) + Iβ(u,−v) = α(u, v)− Iβ(u, v).

The fact that α and β satisfy the Cauchy–Riemann system guarantees that f is
an s-monogenic function. �

The Representation Formula has several interesting consequences.

Corollary 2.2.21. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U →
Rn+1 be an s-monogenic function. For any choice of u, v ∈ R such that u+Iv ∈ U
there exist a, b ∈ Rn such that

f(u+ Iv) = a+ Ib, (2.13)
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for all I ∈ S. In particular, the image of the (n − 1)-sphere [u + Iv] is the set
{a+ Ib : I ∈ S}.

Proof. It is a direct application of Theorem 2.2.18. �

Another consequence of the Representation Formula is the fact that any
holomorphic map defined on a suitable domain can be uniquely extended to an
s-monogenic function:

Lemma 2.2.22 (Extension Lemma). Let J ∈ S and let D be a domain in CJ ,
symmetric with respect to the real axis and such that D ∩ R �= ∅. Let UD be the
axially symmetric s-domain defined by

UD =
⋃

u+Jv∈D, I∈S

(u+ Iv).

If f : D → CJ is holomorphic, then the function ext(f) : UD → Rn defined by

ext(f)(u+Iv) :=
1

2

[
f(u+Jv)+f(u−Jv)

]
+I

1

2

[
J [f(u−Jv)−f(u+Jv)]

]
(2.14)

is the unique s-monogenic extension of f to UD.
Similarly, let J2, . . . , Jn be a completion of J to an orthonormal basis of Rn

and let

f : D → Rn

defined by f =
∑n−1

|A|=0 FAJA, A ⊆ {2, . . . , n}, FA : D → CJ holomorphic. Then,

∂Jf(u + Jv) = 0 and the function obtained by extending each of its holomorphic
components FA is the unique s-monogenic extension of f to UD.

Proof. The fact that ext(f) is s-monogenic follows by the proof of Theorem 2.2.18.
When I = J in (2.14) we have that ext(f)(u + Jv) = f(u + Jv), and hence
ext(f) is the unique extension of f by the Identity Principle. The second part is
immediate. �

The second part of Theorem 2.2.18 shows that for every I,K ∈ S we have

f(u+ Iv) = α(u, v) + Iβ(u, v) and f(u+Kv) = α(u, v) +Kβ(u, v).

By subtracting the two expressions and assuming that I �= K, we have

α(u, v) = (I −K)−1[If(u+ Iv)−Kf(u+Kv)]

and

β(u, v) = (I −K)−1[f(u+ Iv)− f(u+Kv)].

Thus the Representation Formula admits the following generalization:
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Theorem 2.2.23 (Representation Formula, II). Let U ⊆ Rn+1 be an axially sym-
metric s-domain and let f be an s-monogenic function on U . For any vector
u+ Jv ∈ U the following formula holds:

f(u+ Jv) = (I −K)−1[If(u+ Iv)−Kf(u+Kv)] (2.15)

+ J(I −K)−1[f(u+ Iv)− f(u+Kv)].

As a consequence we have that the values of an s-monogenic function f on
an axially symmetric set U are uniquely determined by its values on the two half-
planes U ∩ C+

J , U ∩ C+
K through formula (2.15). Moreover we have the following

generalization of the extension lemma:

Lemma 2.2.24 (Extension Lemma, II). Let U be an s-domain in Rn+1 and let
f : U → Rn be an s-monogenic function. Let Ũ be the axially symmetric s-domain
defined by

Ũ =
⋃

u+Jv∈U, I∈S

(u+ Iv)

There exists a unique s-monogenic extension of f to the whole Ũ .

Proof. By construction, it is immediate that Ũ is an axially symmetric s-domain.
Observing that U is an open set, we consider another axially symmetric s-domain
W obtained as the union of all the open balls B(x, rx) ⊂ U with center at a point
on the real axis x ∈ U , i.e.,

W = ∪x∈U∩RB(x, rx).

The restriction of f to W is an s-monogenic function which can be uniquely ex-
tended to a function f̃ defined on a maximal, axially symmetric, s-domain set
Umax such that W ⊆ Umax ⊆ Ũ . Our goal is now to show that Umax coincides with
Ũ . Assume the contrary, and suppose that there exists y = y0 + Iy1 ∈ Ũ ∩ ∂Umax.
Since y ∈ Ũ , there exists J ∈ S such that y0 + Jy1 ∈ U and since U is open,
there is an open ball with center at y contained in U . So there exist K ∈ S and
ỹ = y0 + Ky1 such that the two discs ΔJ and ΔK of radius ε with center at y
and ỹ on the plane CJ , CK , respectively, are contained in U . Let us define

g̃(u+ Jv) := (I −K)−1[If(u+ Iv)−Kf(u+Kv)]

+ J(I −K)−1[f(u+ Iv)− f(u+Kv)]

on the set D = {x = u + Jv | (u − y0)
2 + (v − y1)

2 < ε}. Then the function
g̃ coincides with f̃ on D ∩ Umax. The function h defined by h(x) = f̃(x) for
x ∈ Umax and h(x) = g̃(x) for x ∈ D is the s-monogenic extension of f to the
axially symmetric open set D ∪ Umax contradicting the maximality of Umax. This
completes the proof. �
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2.3 Power series

As we have already observed in the previous section, polynomials in the paravector
variable x are s-monogenic. However, it is no longer true that a polynomial f(x)
of the form f(x) = (x − a)n, where a ∈ Rn is s-monogenic, in general. If a ∈ R,
however, then f(x) is s-monogenic and so are power series centered at a point on
the real axis, where they converge. In this section we will provide a detailed study
of s-monogenic functions which can be expanded into power series.

Proposition 2.3.1. If B = B(0, R) ⊆ Rn+1 is a ball centered in 0 with radius
R > 0, then f : B → Rn is an s-monogenic function if and only if f has a series
expansion of the form

f(x) =
∑
m≥0

xm 1

m!

∂mf

∂um
(0) (2.16)

converging on B.

Proof. If a function admits a series expansion as in (2.16) it is obviously s-mono-
genic where the series converges. The converse requires the Splitting Lemma. Con-
sider an element I = I1 ∈ S and the corresponding plane CI . Let Δ ⊂ CI be a
disc with center in the origin and radius r < R and let us set z = u + Iv. The
restriction of f to the plane CI can be written as fI(z) =

∑
FA(z)IA. Since every

function FA(z) is holomorphic, it admits an integral representation via the Cauchy
formula, i.e.,

FA(z) =
1

2πI

∫
∂Δ(0,r)

FA(ζ)

ζ − z
dζ,

for any z ∈ Δ and therefore

fI(z) =
n−1∑
|A|=0

(
1

2πI

∫
∂Δ(0,r)

FA(ζ)

ζ − z
dζ

)
IA.

Now observe that ζ and z commute because they lie on the same plane CI , so we
can expand the denominator in each integral in power series, as in the classical
case:

FA(z) =
1

2πI

∫
∂Δ(0,r)

∑
m≥0

(
z

ζ

)m
FA(ζ)

ζ
dζ

=
∑
m≥0

zm
∫
∂Δ(0,r)

∑
m≥0

FA(ζ)

ζm+1
dζ

=
∑
m≥0

zm
1

m!

∂mFA

∂zm
(0).
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Plugging this expression into fI(z) =
∑
FA(z)IA we obtain

fI(z) =

n−1∑
|A|=0

∑
m≥0

zm
1

m!

∂mFA

∂zm
(0)IA =

∑
m≥0

zm
1

m!

∂mf

∂zm
(0),

and using the definition of s-derivative together with Proposition 2.2.7, we get

∑
m≥0

zm
1

m!

1

2

(
∂

∂u
− I

∂

∂v

)m

f(0) =
∑
m≥0

zm
1

m!

∂m

∂um
f(0).

Finally observe that the coefficients of the power series do not depend on the
choice of the unit I, thus fI(z) is the restriction to CI of the function defined in
(2.16) and the statement follows. �

The following two results can be proved as in the complex case:

Proposition 2.3.2. The s-derivative of a power series∑
n≥0

xnan, an ∈ Rn

equals ∑
n≥0

nxn−1an

and has the same radius of convergence of the original series.

Corollary 2.3.3. Let f : B → Rn be an s-monogenic function. Then f ≡ 0 on B
if and only if ∂ns f(0) = 0 for all n ∈ N.

The next proposition shows that s-monogenic functions whose power series
expansion have real coefficients play a privileged role.

Proposition 2.3.4. The product of two functions f, g : B(0, R) → Rn such that the
series expansion of f has real coefficients is an s-monogenic function. Moreover,
the composition of f with an s-monogenic function h : B(0, R′) → Rn is an s-
monogenic function whenever the composition is defined.

Proof. Let

f(x) =
∑
m≥0

xmam,

g(x) =
∑
m≥0

xmbm,

h(x) =
∑
m≥0

xmcm,
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be s-monogenic functions with am ∈ R, bm, cm ∈ Rn. Since real coefficients com-
mute with the variable x we have

(fg)(x) =
∑
s≥0

xs(a0bs + a1bs−1 + . . .+ asb0).

Now consider (h ◦ f)(x) = h(f(x)); we have

h(f(x)) =
∑
m≥0

(
∑
r≥0

xrar)
mcm.

Since the coefficients ar commute with the variables we can group them on the
right and the statement follows. �

Corollary 2.3.5. Let f : U → Rn be an s-monogenic function. Then the function
f(x − y0), y0 ∈ R, is an s-monogenic function in the open set U ′ = {x′ = x −
y0, x ∈ U}.

Proposition 2.3.6. Let B = B(y0, R) ⊆ Rn+1 be the ball centered in y0 ∈ R with
radius R > 0, then f : B → Rn is an s-monogenic function if and only if it has
a series expansion of the form

f(x) =
∑
m≥0

(x− y0)
m 1

m!

∂mf

∂um
(y0). (2.17)

Proof. Consider the transformation of coordinates z = x− y0. Since the function
f(z) is s-monogenic in a ball centered in the origin with radius R > 0, we can
apply Proposition 2.3.1. Using the inverse transformation x = z + y0, we obtain
the statement. �

The result extends to s-domains as follows:

Corollary 2.3.7. Let f be an s-monogenic function on an s-domain U ⊆ Rn+1.
Then for any point on the real axis y0 in U , the function f can be represented in
power series

f(x) =
∑
n≥0

(x− y0)
n 1

n!

∂nf

∂un
(y0)

on the ball B(y0, R), where R = Ry0 is the largest positive real number such that
B(y0, R) is contained in U .

Proof. Since f is s-monogenic in y0, then, for every I ∈ S, f can be expanded in
power series on the disc ΔI = B(y0, RI) of radius RI on the plane CI . The radius
R turns out to be minI∈SRI which is nonzero because y0 is an internal point in
U . �
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Corollary 2.3.8. Let f : B(y0, R) → Rn be an s-monogenic function. If there exists
I ∈ S such that f(CI) ⊆ CI , then the series expansion of f ,

f(x) =
∑
n≥0

(x− y0)
n 1

n!

∂nf

∂un
(y0),

has all its coefficients in CI . Consequently, if there are two different units I, J ∈ S

such that f(CI) ⊆ CI and f(CJ) ⊆ CJ , then the coefficients are real.

Proof. If I ∈ S is such that f(CI) ⊆ CI , then for any real number y0 we have

f(y0) = fI(y0) ∈ CI . Therefore
∂nf

∂un
(y0) ∈ CI for any n ∈ N, y0 ∈ R, and the

conclusion follows. The second part is immediate. �

We now introduce a product among s-monogenic polynomials which preserves
the s-monogenicity:

Definition 2.3.9. Let f(x) =
∑n

i=0 x
iai and g(x) =

∑m
i=0 x

ibi, for ai, bi ∈ Rn. We
define the s-monogenic product of f and g as

f ∗ g(x) :=
n+m∑
j=0

xjcj

with cj =
∑

i+k=j aibk. We will denote by f∗n the product f ∗ . . . ∗ f , n-times.

This product is computed by taking the coefficients of the polynomials on
the right, as in the case in which the variables and the coefficients commute and
coincides with the standard product of polynomials with coefficients in a division
algebra (see [71]). We adopt this definition also in this setting and we extend it to
the case of the product of series. If f(x) =

∑
i≥0 x

iai and g(x) =
∑

i≥0 x
ibi are

s-monogenic series, we define their s-monogenic product as

f ∗ g(x) :=
∑
j≥0

xjcj

with cj =
∑

i+k=j aibk. Note that when the coefficients of a polynomial or a series
f are real numbers, the s-monogenic product coincides with the usual product,
i.e., f ∗ g = fg (see Proposition 2.3.4). This product will be generalized in the
sequel to s-monogenic functions which are not necessarily power series.

We conclude this section by showing that s-monogenic functions are infinitely
differentiable:

Proposition 2.3.10. An s-monogenic function f : U → Rn on an axially symmetric
s-domain U ⊆ Rn+1 is infinitely differentiable on U .

Proof. The differentiability of f on the real axis follows from Corollary 2.3.7 since
for any point of the real axis there is a ball in which the function f can be expressed
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in power series. To prove differentiability outside the real axis consider formula

(2.7) and write x as x = x0 + x = x0 +
x

|x|x:

f(x) =
1

2

[
f(x0 + I|x|) + f(x0 − I|x|) + x

|x|I[f(x0 − I|x|)− f(x0 + I|x|]
]
.

The function f is s-monogenic and hence, by definition, its restriction fI to CI is
infinitely differentiable on U ∩CI for any I ∈ S. It is therefore obvious that f can
be obtained as a composition of the functions fI , x0, x =

∑
� e�x�, and |x|, which

are all infinitely differentiable outside the real axis with respect to the variables
x�, � = 0, . . . , n. This concludes the proof. �

2.4 Cauchy integral formula, I

A main result in the theory of s-monogenic functions is an analog of the Cauchy
integral formula. We will present two versions of such a Cauchy formula: the one
discussed in this section is less general than the second version, but it is enough
to prove several properties of s-monogenic functions.

Theorem 2.4.1. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U →
Rn be an s-monogenic function. If x ∈ U , then

f(x) =
1

2π

∫
∂Δx(a,r)

(ζ − x)−1 dζIxf(ζ)

where dζIx := −dζIx and a ∈ R, r > 0 are such that

Δx(a, r) = {u+ Ixv | (u− a)2 + v2 ≤ r2} ⊂ CIx

contains x and is contained in U .

Proof. With no loss of generality, we will assume a = 0. Consider the integral

1

2π

∫
∂Δx(0,r)

(ξ − x)−1dξIxf(ξ).

Set Ix := I1, complete to a basis I1, . . . , In of the Clifford algebra Rn, satisfying
the defining relations IrIs + IsIr = −2δrs. Using the Splitting Lemma, we can
write the restriction of f to CIx as fIx =

∑
A FAIA. We have

1

2π

∫
∂Δx(0,r)

(ξ − x)−1dξIxfIx(ξ)

=
1

2π

∫
∂Δx(0,r)

(ξ − x)−1dξIx
∑
A

FA(ξ)IA
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=
∑
A

1

2π

∫
∂Δx(0,r)

(ξ − x)−1dξIxFA(ξ)IA

=
∑
A

FA(x)IA

= f(x). �
Remark 2.4.2. Let B1 = B(0, R1), B2 = B(0, R2) be two balls centered at the
origin and with radii 0 < R1 < R2. The same argument used in the previous proof
shows that if a function f is s-monogenic in a neighborhood of the annular domain
B2 \B1, then for any x ∈ B2 \B1, it satisfies

f(x) =
1

2π

∫
∂(B2∩CIx )

(ζ − x)−1 dζIxf(ζ)

− 1

2π

∫
∂(B1∩CIx )

(ζ − x)−1 dζIxf(ζ).

Remark 2.4.3. The function Iy(x) := (x − y)−1 corresponding to the Cauchy
kernel in Theorem 2.4.1 is not s-monogenic on Rn+1 \ {y}, unless y = y0 ∈ R. In
particular, the function

I0(x) = x−1 =
x̄

|x|2 (2.18)

is s-monogenic in Rn+1 \ {0}.
Theorem 2.4.4 (Cauchy formula outside a ball). Let B = B(0, R) and let Bc =
Rn+1 \ B. Let f : Bc → Rn be an s-monogenic function with limx→∞ f(x) = a.
If x ∈ Bc, then

f(x) = a− 1

2π

∫
∂Δx(0,r)

(ζ − x)−1 dζIxf(ζ)

where 0 < R < r < |x| and the complement of the set Δx(0, r) is contained in Bc

and contains x.

Proof. The proof is based on the Splitting Lemma and on the analogous result for
holomorphic functions of a complex variable. Let x ∈ Rn+1 \B and let Ix be the
corresponding imaginary unit. Consider r′ > r > R, and the discs Δ = Δx(0, r),
Δ′ = Δx(0, r

′) on the plane CIx having radius r and r′ respectively and such that
x ∈ Δ′. Since f is s-monogenic on Δ′ \Δ we can apply the Cauchy formula to the
set Δ′ \Δ to compute f(x). We obtain

f(x) =
1

2π

∫
∂Δ′\∂Δ

(ξ − x)−1dξIxf(ξ)

=
1

2π

∫
∂Δ′

(ξ − x)−1dξIxf(ξ)

− 1

2π

∫
∂Δ

(ξ − x)−1dξIxf(ξ).
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Let us set I1 := Ix and complete to an orthonormal basis I1, . . . , In of the Clifford
algebra Rn. The Splitting Lemma gives fIx =

∑
A FAIA and we can write

f(x) =
1

2π

∫
∂Δ′

(ξ − x)−1dξIxf(ξ)

− 1

2π

∫
∂Δ

(ξ − x)−1dξIxf(ξ)

=
∑
A

1

2π

∫
∂Δ′

(ξ − x)−1dξIxFA(ξ)IA

−
∑
A

1

2π

∫
∂Δ

(ξ − x)−1dξIxFA(ξ)IA.

Let us now consider a single component FA at a time. By computing the integral
on ∂Δ′ in spherical coordinates, and by letting r′ → ∞, we obtain that the integral
equals aA = limr′→∞ FA, and therefore:

FA(x) = aA − 1

2π

∫
∂Δ

(ξ − x)−1dξIxFA(ξ).

Taking the sum of the various components multiplied with the corresponding units
IA we get the statement with a =

∑
A aAIA. �

Theorem 2.4.5 (Cauchy estimates). Let U ⊆ Rn+1 be an axially symmetric s-
domain and let f : U → Rn be an s-monogenic function. Let y0 ∈ U ∩ R, I ∈ S,
and r > 0 be such that ΔI(y0, r) = {(u+ Iv) : (u− y0)

2 + v2 ≤ r2} is contained in
U ∩CI . If MI = max{|f(x)| : x ∈ ∂ΔI(y0, r)} and if M = inf{MI : I ∈ S}, then

1

n!

∣∣∣∣∂nf∂un
(y0)

∣∣∣∣ ≤ M

rn
, n ≥ 0.

Proof. For any I ∈ S, it is possible to write

1

n!

∂nf

∂un
(y0) =

1

2πI

∫
∂ΔI(y0,r)

dζ

(ζ − y0)n+1
f(ζ).

Therefore, for any I ∈ S we can write the following sequence of inequalities:

1

n!

∣∣∣∣∂nf∂un
(y0)

∣∣∣∣ ≤ 1

2π

∫
∂ΔI(y0,r)

|f(ζ)|
rn+1

dζ

≤ 1

2π

∫
∂ΔI(y0,r)

MI

rn+1
dζ =

MI

rn
.

By taking the infimum, for I ∈ S, of the right-hand side of the inequality we prove
the assertion. �

Using the previous result it is immediate to show the following
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Theorem 2.4.6 (Liouville). Let f : Rn+1 → Rn be an entire s-monogenic function.
If f is bounded, then f is constant on Rn+1.

Proof. Suppose that |f | ≤M on Rn+1. By the previous theorem we have:

1

n!

∣∣∣∣∂nf∂un
(0)

∣∣∣∣ ≤ M

rn
, n ≥ 0,

and by letting r → +∞ we obtain

∂nf

∂un
(0) = 0

for any n > 0, which implies f(x) = c, with c ∈ Rn. �

Corollary 2.4.7. Let f : Rn+1 → Rn be an entire s-monogenic function. If
limx→∞ f exists, then f is constant on Rn+1.

Theorem 2.4.8. Let U be an open set in Rn+1. If f : U → Rn is an s-monogenic
function, then ∫

∂Δ

dxf(x) = 0

for any disc Δ ⊂ U ∩ CI with center in a point on the real axis.

Proof. This result is an easy consequence of the analogous result for holomorphic
functions of one complex variable and of the Splitting Lemma. �

Conversely, we have the following result:

Theorem 2.4.9. Let U be an axially symmetric s-domain and let f : U → Rn be
a real differentiable function. Assume that∫

γI

dxf(x) = 0

for any closed, piecewise C1 curve γI contained in U ∩ CI and homotopic to a
point. Then f is an s-monogenic function.

Proof. This is a consequence of the classical Morera’s theorem and of the definition
of s-monogenic function. �

Proposition 2.4.10. Let f : B(0, R) → Rn be the s-monogenic function expressed
by the series

∑
xmam converging on B. Then the composition of the functions f

and I0 = x−1 is s-monogenic on Rn+1 \B(0, 1/R) and it can be expressed by the
series

∑
x−mam converging on Rn+1 \B(0, 1/R).

Proof. Proposition 2.3.4 implies that f ◦ I0 is an s-monogenic function on Rn+1 \
B(0, 1/R). The statement follows from the analogous result for holomorphic func-
tions in one complex variable. �
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Theorem 2.4.11 (Laurent series). Let f be an s-monogenic function in a spherical
shell A = {x ∈ Rn+1 | R1 < |x| < R2}, 0 < R1 < R2. Then f admits the unique
Laurent expansion

f(x) =
∑
m≥0

xmam +
∑
m≥1

x−mbm (2.19)

where

am =
1

m!
∂ms f(0), bm =

1

2π

∫
∂(B(0,R′

1)∩CIx )

ζm−1dζIxf(ζ).

The two series in (2.19) converge in the open ball B(0, R2) and in Rn+1\B(0, R1),
respectively.

Proof. Let x ∈ A, then there exist two positive real numbers R′
1, R

′
2 such that

A′ = {x ∈ Rn+1 | R′
1 < |x| < R′

2} ⊂ A, and x ∈ A′. Using the Cauchy integral
formula, we can write

f(x) =
1

2π

∫
∂(A′∩CIx )

(ζ − x)−1 dζIxf(ζ) = f1(x) + f2(x)

where

f1(x) =
1

2π

∫
∂(B(0,R′

2)∩CIx )

(ζ − x)−1 dζIxf(ζ)

and

f2(x) = − 1

2π

∫
∂(B(0,R′

1)∩CIx )

(ζ − x)−1 dζIxf(ζ).

The first integral is associated to the first series in the Laurent expansion, by
Proposition 2.3.1. Let us consider the second integral, set I1 = Ix and let us use
the Splitting Lemma and write f2 as

∑
A FAIA. Now we can reason as in the case

of functions in one complex variable, and consider the single components of f2(x).
In Rn+1 \B(0, R′

1), we have

FA(x) = − 1

2π

∫
∂(B(0,R′

1)∩CIx )

(ζ − x)−1 dζIxFA(ζ)

=
1

2π

∫
∂(B(0,R′

1)∩CIx )

∑
m≥0

x−m−1ζmdζIxFA(ζ)

where we have used the fact that on the plane CIx the variables ζ and x commute.
Now, using the uniform convergence of the series we can write

FA(x) =
∑
m≥0

x−m−1 1

2π

∫
∂(B(0,R′

1)∩CIx )

ζmdζIxFA(ζ) =
∑
m≥0

x−m−1bm+1,A



42 Chapter 2. Slice monogenic functions

where

bm+1,A := bm+1,Ix;A =
1

2π

∫
∂(B(0,R′

1)∩CIx )

ζmdζIxFA(ζ).

Finally, we obtain:

f̃2(x) =
∑
A

FA(x)IA =
∑
m≥0

∑
A

x−m−1bm+1,AIA.

Note that f̃2(x) coincides with f2(x) on the plane CIx , thus they coincide every-
where and the coefficients bm+1,A do not depend on the choice of the imaginary
unit Ix. The statement follows. �

2.5 Zeros of slice monogenic functions

As it is well known, the Fundamental Theorem of Algebra does not hold in Rn for
n ≥ 3, thus we cannot guarantee that a polynomial in the paravector variable x
has a zero, not even if it is a degree-one polynomial. The following examples are
instructive to show what can happen in a Clifford algebra.

Example 2.5.1. Consider the Clifford algebra Rn, n ≥ 2 and the polynomial p(x) =
xe1 − e2 ∈ Rn[x]. The only zero of p is e1e2 which does not belong to Rn+1.

Example 2.5.2. Consider the Clifford algebra Rn, n ≥ 2 and the polynomial p(x) =
x2 − x(e1e2 − 2e1) + 2e2 ∈ Rn[x]. It can be easily verified that p vanishes for
x = −2e1 and x = − 1

5 (4e1 + 3e1e2). However, only x = −2e1 is a zero of p in
Rn+1.

Example 2.5.3. Consider the Clifford algebra Rn, n ≥ 2 and the polynomial p(x) =
x2 − x(e1 + 2e2) + 2e1e2 ∈ Rn[x]. It can be easily verified that both x = e1 and
x = 1

5 (8e1 + 6e2) are zeros of p in Rn+1.

It is nevertheless interesting to attempt to characterize the set of zeros for
those polynomials for which such a set is not empty. Let us start by showing that
each (n− 1)-sphere [s] is characterized by a second degree equation.

Proposition 2.5.4. Let s = s0 + s ∈ Rn+1. Consider the equation

x2 − 2Re[s]x+ |s |2 = 0. (2.20)

Then, x = x0 + x ∈ Rn+1 is a solution if and only if x ∈ [s ].

Proof. The result is immediate when s = s0 ∈ R. Let us suppose that s �∈ R.
It is immediate that x ∈ [s] is a solution. Conversely, let x be a solution, i.e.,
(x0 + x)2 − 2Re[s](x0 + x) + |s |2 = 0. A direct computation shows that this is
possible if and only if x = 0 or x0 = s0. The first possibility does not give any
solution, while the second gives |x| = |s |, i.e., the equivalence class of s. �
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An obvious consequence of the proposition, which will be useful in the sequel,
is that any paravector s satisfies the identity

s2 − 2Re[s]s+ |s|2 = 0. (2.21)

As a consequence of the Representation Formula II, we obtain the following
immediate result on the zeros of an s-monogenic function:

Proposition 2.5.5. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f :
U → Rn+1 be an s-monogenic function. If f(u + Iv) = f(u +Kv) = 0 for some
I,K ∈ S, I �= K, then f vanishes on the entire (n− 1)-sphere [u+ Iv].

In particular, we have

Corollary 2.5.6. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U →
Rn+1 be an s-monogenic function. If f(u + Iv) = f(u − Iv) = 0 for some I ∈ S,
then f vanishes on the entire (n− 1)-sphere [u+ Iv].

In other words, the zero set of an s-monogenic function having two zeros on a
certain (n− 1)-sphere contains the entire sphere. There are s-monogenic functions
whose zero set is made only by the union of isolated (n−1)-spheres (in particular,
points on the real axis). Among these functions there are power series with real
coefficient, as proved in the following:

Proposition 2.5.7. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f :
U → Rn be an s-monogenic function. If f has a series representation

f(x) =
∑
m≥0

(x− y0)
mam

with real coefficients am, at some point on the real axis y0 ∈ U , then every real
zero is isolated. If u0 + v0I0, for some I0 ∈ S, is a nonreal zero, then u0 + v0I is
a zero for any I ∈ S. In particular, if f �≡ 0, the zero set of f is either empty or
it is the union of isolated points (belonging to R) and isolated (n− 1)-spheres.

Proof. We will first prove that for all I ∈ S we have f(U∩CI) ⊆ U∩CI . This fact is
true in a suitable disc B∩CI ⊂ CI containing y0, since the series f(x) =

∑
m≥0(x−

y0)
mam converging on B, has real coefficients by hypothesis. The Splitting Lemma

on the plane CI implies that fI(u+Iv) = F (u+Iv) in that disc on CI . Therefore,
FA = 0 for A �= ∅ on B ∩ CI and by the Identity Principle for holomorphic
functions we obtain that all the holomorphic functions FA are identically zero
on U ∩ CI for A �= ∅. Hence f(U ∩ CI) ⊆ U ∩ CI for all I ∈ S from which it
follows that f(u) ∈ R for all u ∈ U ∩ R. By the Identity Principle we get that
f(u+ I0v) ≡ F (u+ I0v) on U ∩CI0 and, being F (u) real-valued for all u ∈ U ∩R,
we have that F (u+ I0v) = F (u− I0v) on U ∩ CI0 . Since

0 = f(u0 + I0v0) = F (u0 + I0v0) = F (u0 − I0v0)
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it turns out that
F (u0 − I0v0) = f(u0 − I0v0) = 0.

The statement follows from Corollary 2.5.6. The fact that the real zeros and the
spheres are isolated follows from the Identity Principle. �

As a consequence, we get a description of the zero set of a polynomial with
real coefficients in the paravector variable:

Corollary 2.5.8. Let p be a polynomial in the paravector variable x with real coef-
ficients. Then the zero set of p is the union of isolated points (belonging to R) and
isolated (n− 1)-spheres.

Remark 2.5.9. As we have already pointed out, in the case n = 1 the set of
s-monogenic functions coincide with the set of holomorphic functions in one com-
plex variable (by identifying R2 with C). Proposition 2.5.7 corresponds to the
well-known result saying that the zeros of a holomorphic function whose series
expansion has real coefficients has isolated zeros which are either real or complex
conjugates.

To show that any s-monogenic function has zero set consisting of a union of
isolated (n− 1)-spheres (which might be reduced to a point on the real axis) and
isolated points, we associate to each s-monogenic function defined on an axially
symmetric s-domain U , an auxiliary function defined on U and denoted by fσ.
The function fσ has two main properties: on one hand it vanishes on the zero set
of f , on the other hand, it defines a holomorphic function which takes elements
from U ∩ CI to CI for all I ∈ S.

The idea used to construct the function fσ is based on the observation that,
given a vector with 2n−1 complex components wA, the vector with components
wAw̄A is zero if and only if wA = 0 for all A. Now note that the Splitting Lemma
allows to write the restriction fI of an s-monogenic function f in terms of a vector
of 2n−1 holomorphic functions FA : U ∩ CI → CI as

fI(z) =
∑
A

FA(z)IA.

Consider the vector with components FA(z)FA(z̄). The components are obviously
holomorphic and if FA(z0) = 0 also FA(z0)FA(z̄0) = 0. We then define the function
fσ
I : U ∩ CI → CI by

fσ
I (z) =

∑
A

FA(z)FA(z̄).

Using the Extension Lemma 2.2.22, we can extend the function fσI to an s-
monogenic function defined on U :

Definition 2.5.10. Let U ⊂ Rn+1 be an axially symmetric s-domain and let f :
U → Rn be an s-monogenic function. Let I ∈ S and let

fσ
I (z) =

∑
A

FA(z)FA(z̄).
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We define fσ : U → Rn by:

fσ(x) := ext(fσ
I )(x).

We have the following property:

Lemma 2.5.11. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U →
Rn be an s-monogenic function. Then f vanishes identically on U if and only if
fσ vanishes identically on U .

Proof. When f ≡ 0, it is immediate that fσ ≡ 0. Conversely, consider the re-
striction fI of f to a plane CI , which, by the Splitting Lemma, can be written
as fI(z) =

∑
A FA(z)IA where FA : U ∩ CI → CI are holomorphic functions.

Then the functions FA admit series expansion at any point of U ∩ CI . Consider
y0 ∈ U ∩ CI belonging to the real axis and the series expansion of FA at a point
y0:

FA(z) =
∑
m≥0

(z − y0)
maAm, aAm ∈ CI

which holds in a suitable disc Δ(y0, R) ⊆ U ∩ CI of radius R and centered in
y0 ∈ R. Then, on Δ(y0, R), we have

FA(z̄) =
∑
m≥0

(z − y0)
māAm.

Moreover on Δ(y0, R) we can write

fσ
I (z) =

∑
A

FA(z)FA(z̄)

=
∑
A

∑
m≥0

(z − y0)
mcAm =

∑
m≥0

(z − y0)
m(
∑
A

cAm),

where

cAm =

m∑
i=0

aAiāA m−i.

Now, if fσ ≡ 0, then fσ
I ≡ 0. So, in the disc Δ(y0, R) we have that

∑
A cA0 =∑

A |aA0|2 = 0 so aA0 = 0 for all multi-indices A. Now, by induction, assume that
aAi = 0 for i = 0, 1, . . . , k−1, k ≥ 1 for all multi-indices A. Consider the coefficient∑

A

cA 2k =
∑
A

2k∑
i=0

aAiāA 2k−i

which is zero because fσ
I ≡ 0. By assumption we have aAiāA 2k−i = 0 when

i = 0, . . . , k − 1 since aAi = 0 and aAiāA 2k−i = 0 when i = k + 1, . . . , 2k since
āA 2k−i = 0. Thus,

∑
A cA 2k =

∑
A |aAk|2 is zero if and only if aAk = 0 for all

multi-indices A. We conclude that fσ
I ≡ 0 in the disc Δ(y0, R) ∩ CI implies that

all the coefficients aAi vanish, thus also fI vanishes identically on the same disc.
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By the Identity Principle f vanishes identically. �

The zero set of fσ is described in the following result:

Lemma 2.5.12. Let U ⊆ Rn+1 be an axially symmetric s-domain, let f : U →
Rn be an s-monogenic function, and let f �≡ 0. If there exists I ∈ S for which
fσ(u0 + Iv0) = 0, then fσ(u0 + Jv0) = 0 for all J ∈ S. Moreover, the zero set of
fσ consists of isolated (n − 1)-spheres (which might reduce to points on the real
axis).

Proof. Consider the restriction fσ
I of fσ to the plane CI . We have:

fσ
I (z̄) =

∑
A

FA(z̄)FA(z) =
∑
A

FA(z̄)FA(z) = fσ
I (z),

thus fσ
I (u0 + Iu0) = 0 if and only if fσ

I (u0 − Iu0) = 0. So, if fσ(u0 + Iv0) = 0,
then, by the Representation Formula, fσ(u0 + Ju0) = 0 for all J ∈ S. The second
part of the statement follows by the Identity Principle: if the (n − 1)-spheres of
zeros were not isolated, on each plane we would get accumulation points of zeros
and thus fσ would be identically zero by the Identity Principle which contradicts
the fact that fσ �≡ 0 by Lemma 2.5.11. �

Lemma 2.5.13. Let U ⊆ Rn be an axially symmetric s-domain and let f : U → Rn

be an s-monogenic function. If u+ Iv is a zero of f , then it is also a zero of fσ.

Proof. The restriction of f to the plane CI can be written, by the Splitting Lemma,
as fI(z) =

∑
A FA(z)IA. The condition f(u + Iv) = 0 implies that, on the plane

CI it is also FA(u + Iv) = 0 for all A. Thus fσ
I (u + Iv) = 0 and the statement

follows. �

We are now in a position to prove the following theorem which describes the
zero set of an s-monogenic function defined on an axially symmetric s-domain.

Theorem 2.5.14 (Structure of the Zero Set). Let U ⊆ Rn+1 be an axially symmetric
s-domain and let f : U → Rn be an s-monogenic function. Suppose that f does
not vanish identically. Then if the zero set of f is nonempty, it consists of the
union of isolated (n− 1)-spheres and/or isolated points.

Proof. Suppose that the zero set of f is nonempty and that f does not vanish
identically, thus also fσ does not vanish identically by Lemma 2.5.11. By Lemma
2.5.13 any zero of f is a zero of fσ, i.e., denoting by Zfσ and Zf the zero set of
fσ and f respectively, we have Zf ⊆ Zfσ . If Zf contains two points on an (n−1)-
sphere [s], then Zf contains the whole sphere. Indeed, suppose that u0+ Iv0, u0+
Jv0 ∈ [s], I �= J , and f(u0 + Iv0) = f(u0 + Jv0) = 0. Then by the Representation
Formula we get

f(u0 + Jv0) =
1

2
[1 + JI]f(u0 − Iv0) = 0.
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The element 1 + JI = (−I + J)I is invertible since it is product of two invertible
elements, thus f(u0 − Iv0) = 0 and the statement follows from Proposition 2.5.6.

When a sphere belongs to Zf , then it is isolated. Indeed, let x0 be a point
on this sphere. If there were a sequence {xn} of zeros, xn �∈ [u0 + I0v0], such
that xn → x0, then the corresponding spheres [xn] would belong to Zfσ , which is
absurd by Lemma 2.5.12.

Similarly, suppose that Zf contains a point x0 = u0+Jv0, without containing
the sphere u0 + Iv0, I ∈ S generated by it. Then we have to show that the point
u0+I0v0 is isolated. Indeed, if there were a sequence {xn} of zeros, xn �∈ [u0+Jv0]
(otherwise the whole sphere [u0 + Jv0] would belong to Zf ), such that xn → x0,
then the corresponding spheres would belong to Zfσ which is absurd by Lemma
2.5.12. �

Remark 2.5.15. The result already obtained in Proposition 2.5.5 can be obtained
also as a consequence of the previous theorem. In fact, given a converging power
series

∑
m≥0 x

mam, am ∈ Rn, if there are two different elements in a given equiv-
alence class [s], which are solutions to the equation∑

m≥0

xmam = 0,

then all the elements in the equivalence class are solutions.

We close this section with an immediate corollary of the previous theorem,
which yields a nice description of the zero set of a polynomial:

Corollary 2.5.16. Let p(x) be a polynomial in Rn[x], with right coefficients, which
does not vanish identically. Then, if the zero set of p is nonempty, it consists of
isolated points or isolated (n− 1)-spheres.

2.6 The slice monogenic product

It is immediate to see that the product of two s-monogenic functions is not, in
general, s-monogenic. Nevertheless, as we indicated in Section 2.3, it is possible to
define a product among s-monogenic power series by mimicking the process used
to define a product of polynomials in skew fields. We can extend this idea to the
case of s-monogenic functions defined on axially symmetric s-domains, to define
an s-monogenic product. Let U ⊆ Rn+1 be an axially symmetric s-domain and let
f, g : U → Rn be s-monogenic functions. For any I ∈ S set I = I1 and consider a
completion to a basis {I1, . . . , In} of Rn such that IiIj+IjIi = −2δij. The Splitting
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Lemma guarantees the existence of holomorphic functions FA, GA : U ∩CI → CI

such that, for all z = u+ Iv ∈ U ∩ CI ,

fI(z) =
∑
A

FA(z)IA, gI(z) =
∑
B

GB(z)IB,

where A,B are subsets of {2, . . . , n} and, by definition, I∅ = 1. We define the
function fI ∗ gI : U ∩CI → Rn as

fI ∗ gI(z) =
∑

|A|even
(−1)

|A|
2 FA(z)GA(z) +

∑
|A|odd

(−1)
|A|+1

2 FA(z)GA(z̄) (2.22)

+
∑

|A|even,B �=A

FA(z)GB(z)IAIB +
∑

|A|odd,B �=A

FA(z)GB(z̄)IAIB .

Then fI ∗gI(z) is obviously a holomorphic map on CI , i.e., ∂I(fI ∗gI)(z) = 0, and
hence its unique s-monogenic extension to U , according to the Extension Lemma
2.2.22, is given by

f ∗ g(x) := ext(fI ∗ gI)(x).
Definition 2.6.1. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f, g :
U → Rn be s-monogenic functions. The function

f ∗ g(x) = ext(fI ∗ gI)(x)

defined as the extension of (2.22) is called the s-monogenic product of f and g.
This product is also called the ∗-product of f and g.

Remark 2.6.2. It is immediate to verify that the ∗-product is associative, distribu-
tive but, in general, not commutative.

The following example shows the dramatic difference between polynomials in
a division algebra and polynomials in a Clifford algebra. Even a simple result such
as deg(p1 ∗ p2) = deg(p1)+deg(p2) fails (we can only conclude that deg(p1 ∗ p2) ≤
deg(p1) + deg(p2)) and it is impossible to deduce the zeros of the product from
the zeros of the factors. This is in stark contrast with the case of polynomials in
division algebras, where it is possible to obtain explicit formulas to deduce the
zeros of f ∗ g from the zeros of f and g (see, e.g., [71]).

Example 2.6.3. Consider the two polynomials p1(x) = 1+x(1−e1e2e3) and p2(x) =
1+x(1+e1e2e3) ∈ R3[x]. None of them has roots in R4 because (1±e1e2e3) are zero
divisors. Their product p1∗p2(x) = (1+x(1−e1e2e3))∗(1+x(1+e1e2e3)) = 1+2x
is a degree-one polynomial and has the real number −1/2 as its root.

The s-monogenic product is however an important tool to obtain s-monogenic
functions. In particular, it allows us to define the inverse of an s-monogenic function
with respect to the ∗-product. As we have already mentioned, not all the Clifford
numbers admit an inverse with respect to the product in the Clifford algebra
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Rn. Those Clifford numbers a ∈ Rn for which aā is a real nonzero number admit
inverse a−1 = ā(aā)−1. In particular the existence of the inverse can be guaranteed
for all nonzero vectors. Similarly, for s-monogenic functions we can guarantee
the existence of an inverse with respect to the ∗-product, if we suitably restrict
their codomains. To introduce the notion of inverse we need some preliminary
definitions.

Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U → Rn be an
s-monogenic function. Let us consider the restriction fI(z) of f to the plane CI

and it usual representation (given by the Splitting Lemma)

fI(z) =
∑
A

FA(z)IA.

Let us define the function f c
I : U ∩ CI → CI as

f c
I (z) :=

∑
A

F c
A(z)IA (2.23)

=
∑
|A|≡0

FA(z̄)IA −
∑
|A|≡1

FA(z)IA −
∑
|A|≡2

FA(z̄)IA +
∑
|A|≡3

FA(z)IA,

where the equivalence ≡ is intended as ≡ (mod4), i.e., the congruence modulo 4.
Since any function FA is obviously holomorphic it can be uniquely extended to an
s-monogenic function on U , according to the Extension Lemma 2.2.22. Thus we
can give the following definition:

Definition 2.6.4. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U →
Rn be an s-monogenic function. The function

f c(x) = ext(f c
I )(x)

is called the s-monogenic conjugate of f .

This definition of conjugate behaves, for power series and thus for polynomi-
als, as the conjugation on the coefficients as proven in the next result:

Proposition 2.6.5. Let f : B(y0, R) → Rn be an s-monogenic function on an open
ball in Rn+1 centered at a point on the real axis y0. If

f(x) =
∑
m≥0

(x− y0)
mam,

then, for am ∈ Rn, we have

f c(x) =
∑
m≥0

(x− y0)
mām.
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Proof. We will suppose without loss of generality that y0 = 0. By Corollary 2.3.7,
given any I ∈ S, the coefficients of the power series expansion of f can be obtained
as the coefficients of the power series of fI . By the Splitting Lemma with respect to
an orthonormal completion of I to a basis of Rn, for all z = u+ Iv ∈ B(0, R)∩CI

we have

fI(z) =
∑
A

FA(z)IA =
∑
A

∑
m≥0

zm
1

m!

(∂mFA

∂um
(0)
)
IA =

∑
m≥0

zm
1

m!
∂ms f(0)

and hence the relation

f c
I (z) =

∑
|A|≡0

FA(z̄)IA −
∑
|A|≡1

FA(z)IA −
∑
|A|≡2

FA(z̄)IA +
∑
|A|≡3

FA(z)IA (2.24)

=
∑
m≥0

zm

m!

( ∑
|A|≡0

∂mFA

∂um
(0)−

∑
|A|≡1

∂mFA

∂um
(0)−

∑
|A|≡2

∂mFA

∂um
(0) +

∑
|A|≡3

∂mFA

∂um
(0)
)
IA

(2.25)

=
∑
m≥0

zm
1

m!
∂ms f(0), (2.26)

where the equivalence ≡ is intended as the congruence modulo 4, proves the as-
sertion. �

Using the notion of ∗-multiplication of s-monogenic functions, it is possible to
associate to any s-monogenic function f its “symmetrization” or “normal form”,
denoted by fs. We will show that all the zeros of f s are (n− 1)-spheres (possibly
reduced to a point on the real axis) and that if x is a zero of f (isolated or not),
then the (n− 1)-sphere [x] is a zero of fs.

Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U → Rn be an
s-monogenic function. As usual, using the Splitting Lemma we can write

fI(z) =
∑
A

FA(z)IA;

here we will use the notation [fI ]0 to denote the “scalar” part of the function
fI , i.e., the part whose coefficient in the Splitting Lemma is I∅ = 1. With this
notation, we define the function f s : U ∩ CI → CI as

f s
I := [fI ∗ f c

I ]0 (2.27)

=
[
(
∑
B

FB(z)IB)(
∑
|A|≡0

FA(z̄)IA −
∑
|A|≡1

FA(z)IA

−
∑
|A|≡2

FA(z̄)IA +
∑
|A|≡3

FA(z)IA)
]
0
.
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We have

fI ∗ f c
I =

∑
|B|even,|A|≡0

FB(z)FA(z̄)IBIA −
∑

|B|even,|A|≡1

FB(z)FA(z)IBIA

−
∑

|B|even,|A|≡2

FB(z)FA(z̄)IBIA +
∑

|B|even,|A|≡3

FB(z)FA(z)IBIA

+
∑

|B|odd,|A|≡0

FB(z)FA(z)IBIA −
∑

|B|odd,|A|≡1

FB(z)FA(z̄)IBIA

−
∑

|B|odd,|A|≡2

FB(z)FA(z)IBIA +
∑

|B|odd,|A|≡3

FB(z)FA(z̄)IBIA.

The terms from which the scalar part arises are the ones with A = B, i.e.,

[fI ∗ f c
I ]0 =

∑
|A|≡0

FA(z)FA(z̄)I
2
A −

∑
|A|≡2

FA(z)FA(z̄)I
2
A

−
∑
|A|≡1

FA(z)FA(z̄)I
2
A +

∑
|A|≡3

FA(z)FA(z̄)I
2
A =
∑
A

FA(z)FA(z̄).

Then fs
I is obviously holomorphic and hence its unique s-monogenic extension to

U defined by
f s(x) := ext(f s

I )(x)

is s-monogenic.

Definition 2.6.6. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f : U →
Rn be an s-monogenic function. The function

fs(x) = ext(f s
I )(x)

defined by the extension of fs
I = [fI ∗ f c

I ]0 from U ∩ CI to the whole U is called
the symmetrization of f .

Remark 2.6.7. Notice that formula (2.27) yields that, for all I ∈ S, f s(U ∩CI) ⊆
CI .

Remark 2.6.8. Note that the function fσ introduced in Definition 2.5.10 to study
the zero set of an s-monogenic function coincides with fs for all s-monogenic
functions f .

It is now easy to verify the following facts.

Proposition 2.6.9. Let U ⊆ Rn+1 be an axially symmetric s-domain and let f, g ∈
M(U). Then

f sg = fs ∗ g = g ∗ fs.

Moreover, if Zfs is the zero set of f s, then

(f s)−1g = (f s)−1 ∗ g = g ∗ (fs)−1 on U \ Zfs .
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Proof. Since fs(U∩CI) ⊆ CI , the series expansion of fs
I in a small ball with center

at a real point has real coefficients so, in that ball, we have fs
I gI = f s

I ∗gI = gI ∗f s
I .

By the Identity Principle f s
I ∗ gI = fs

I gI = gI ∗ f s
I on U ∩ CI and so, by the

Extension Lemma, fs ∗ g = g ∗ fs. Reasoning in the same way with the function
(f s)−1, whose restriction to CI takes (U \ Zfs) ∩ CI to CI , we get the final part
of the statement. �
Definition 2.6.10. Let U ⊆ Rn+1 be an axially symmetric s-domain. Let f : U →
Rn be an s-monogenic function such, that for some I ∈ S its restriction fI to the
complex plane CI satisfies the condition

fI ∗ f c
I has values in CI .

We define the function:
f−∗ := ext((f s

I )
−1f c

I )

where fs
I = [fI ∗ f c

I ]0 = fI ∗ f c
I , and we will call it s-monogenic inverse of the

function f .

The next proposition shows that the function f−∗ is the inverse of f with
respect to the ∗-product:
Proposition 2.6.11. Let U ⊆ Rn+1 be an axially symmetric s-domain. Let f : U →
Rn be an s-monogenic function such that for some I ∈ S we have fI ∗f c

I has values
in CI . Then on U \ Zfs we have:

f−∗ ∗ f = f ∗ f−∗ = 1.

Proof. To prove the statement it is sufficient to show that on the plane CI we
have:

fI ∗ (f s
I )

−1f c
I = (f s

I )
−1f c

I ∗ fI = 1.

Using associativity and Proposition 2.6.9, we easily compute:

fI ∗ ((fs
I )

−1 ∗ f c
I ) = (fs

I )
−1 ∗ fI ∗ f c

I = f s
I
−1 ∗ (f s

I ) = 1,

and
((f s

I )
−1 ∗ f c

I ) ∗ fI = (f s
I )

−1 ∗ f c
I ∗ fI = (f s

I )
−1 ∗ fs

I = 1.

The result now follows from the Extension Lemma 2.2.22. �
Example 2.6.12. Consider the function f(x) = x− s defined on Rn+1. As it is well
known, the inverse (x − s)−1 is not an s-monogenic function, unless s ∈ R. Since
the function

(fI ∗ f c
I )(z) = (z − s)(z − s) = z2 − 2Re[s]z + |s|2

has real coefficients and thus has values in CI , we can consider the s-monogenic
inverse of f . According to Definition 2.6.10, f−∗ is defined for x �∈ [s], and it is
the function

f−∗(x) = (x2 − 2Re[s]x+ |s|2)−1(x− s).
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As we will see in the next section, the expression (x2 − 2Re[s]x + |s|2)−1(x − s)
cannot be simplified, unless s ∈ R and in this case it coincides with (x− s)−1, i.e.,
the standard inverse of f .

Example 2.6.13. The notions of s-monogenic inverse and s-monogenic multiplica-
tion allow us to introduce s-monogenic quotients (left and right) of s-monogenic
functions. Let f, g : U ⊆ Rn+1 → Rn be two s-monogenic functions. On U \ Zgs

we can define the functions

g−∗ ∗ f and f ∗ g−∗.

Let us consider the function g−∗ ∗ f (the other case can be treated in a similar
way): by definition it is the extension of

g−∗
I ∗ fI = (gsI)

−1gcI ∗ fI ,

which is an Rn-valued function satisfying

∂I((g
s
I)

−1gcI ∗ fI) = 0

and such that Zgs ∩ CI consists of isolated points.

2.7 Slice monogenic Cauchy kernel

We begin this section with the following crucial definition, which is the starting
point to find a Cauchy formula with s-monogenic kernel.

Definition 2.7.1. Let x, s ∈ Rn+1. We call

S−1(s,x) :=
∑
n≥0

xns−1−n

the noncommutative Cauchy kernel series.

Remark 2.7.2. The noncommutative Cauchy kernel series is convergent for |x| <
|s|.

Theorem 2.7.3. Let x, s ∈ Rn+1 be such that xs �= sx. Then, the function

S(s,x) = −(x− s)−1(x2 − 2Re[s]x+ |s|2),

is the inverse of the noncommutative Cauchy kernel series.

Proof. Let us verify that

−(x− s)−1(x2 − 2Re[s]x+ |s|2)
∑
n≥0

xns−1−n = 1.
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We therefore obtain

(−|s|2 − x2 + 2Re[s]x)
∑
n≥0

xns−1−n = s+ x− 2 Re[s]. (2.28)

Observing that −|s|2 − x2 + 2Re[s]x commutes with xn we can rewrite this last
equation as ∑

n≥0

xn(−|s|2 − x2 + 2Re[s]x)s−1−n = s+ x− 2 Re[s].

Now the left-hand side can be written as∑
n≥0

xn(−|s|2 − x2 + 2Re[s]x)s−1−n

= (−|s|2 − x2 + 2Re[s]x)s−1 + x1(−|s|2 − x2 + 2Re[s]x)s−2

+ x2(−|s|2 − x2 + 2Re[s]x)s−3 + . . .

= −
(
|s|2s−1 + x(−2Re[s]s+ |s|2)s−2 + x2(s2 − 2Re[s]s+ |s|2)s−3

+ x3(s2 − 2Re[s]s+ |s|2)s−4 + . . .
)
.

Using the identity (2.20)

s2 − 2Re[s]s+ |s|2 = 0

we get ∑
n≥0

xn(−|s|2 − x2 + 2Re[s]x)s−1−n = −|s|2s−1 + xs2s−2

= −|s|2s−1 + x = −sss−1 + x = −s+ x = s− 2 Re[s] + x

which equals the right-hand side of (2.28). �

When x, s commute, the function S(s,x) becomes

S(s,x) = −(x− s)−1(x2 − 2xRe[s] + |s|2) = −(x− s)−1(x− s)(x− s) = s− x

which is, trivially, the inverse of the standard sum of the Cauchy kernel series
S−1(s,x) =

∑
n≥0 x

ns−1−n = (s − x)−1.
As a direct consequence of this observation and of the previous result, we

can explicitly write the sum of the noncommutative Cauchy kernel series:

Theorem 2.7.4. Let x, s ∈ Rn+1 be such that xs �= sx. Then∑
n≥0

xns−1−n = −(x2 − 2Re[s]x+ |s|2)−1(x− s),



2.7. Slice monogenic Cauchy kernel 55

for |x| < |s|. If xs = sx, then∑
n≥0

xns−1−n = (s− x)−1,

for |x| < |s|.
Definition 2.7.5. We will call the expression

S−1(s,x) = −(x2 − 2Re[s]x+ |s|2)−1(x− s), (2.29)

defined for x2 − 2Re[s]x+ |s|2 �= 0, the noncommutative Cauchy kernel.

Remark 2.7.6. With an abuse of notation we have used the same symbol S−1(s,x)
to denote the noncommutative Cauchy kernel series and the noncommutative
Cauchy kernel. This notation will not create confusion in the following since from
the context it will be clear which object we are considering.

Note that the noncommutative Cauchy kernel is defined on a set which is
larger than the set {(x, s) : |x| < |s|} where the noncommutative Cauchy kernel
series is convergent.

Remark 2.7.7. We now observe that the expression

(x2 − 2Re[s]x+ |s|2)−1(x− s)

involves an inverse which does not exist if we set x = s; indeed, in this case we
have

s2 − 2Re[s]s+ |s|2 = 0.

One may wonder if the factor (x− s̄) can be simplified. The next theorem shows
that this is not possible and the function

(x2 − 2Re[s]x+ |s|2)−1(x− s)

cannot be extended to a continuous function in x = s.

Theorem 2.7.8. Let S−1(s,x) be the noncommutative Cauchy kernel and let xs �=
sx. Then S−1(s,x) is irreducible and limx→s S

−1(s,x) does not exist.

Proof. We prove that we cannot find a degree-one polynomial Q(x) such that

x2 − 2Re[s]x+ |s|2 = (s+ x− 2Re[s])Q(x).

The existence of Q(x) would allow the simplification

S−1(s,x) = Q−1(x)(s + x− 2Re[s])−1(s + x− 2Re[s]) = Q−1(x).

We proceed as follows: first of all note that Q(x) has to be a monic polynomial of
degree one, so we set

Q(x) = x− r
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where r = r0 +
∑n

j=1 rjej. The equality

(s+ x− 2 Re[s])(x − r) = x2 − 2Re[s]x+ |s|2

gives
sx− sr− xr + 2Re[s]r− |s|2 = 0.

Solving for r, we get

r = (s + x− 2 Re[s])−1(sx− |s|2),

which depends on x. Let us now prove that the limit does not exist. Let e =
ε0 +

∑n
j=1 εjej , and consider

S−1(s, s+ e) = ((s + e)2 − 2(s+ e)Re[s] + |s|2)−1e

= ((s+ e)2 − 2(s+ e)Re[s] + |s|2)−1e

= (se+ es + e2 − 2eRe[s])−1e

= (e−1(se+ es+ e2 − 2eRe[s]))−1

= (e−1se+ s+ e− 2Re[s]))−1.

If we now let e → 0, we obtain that the term e−1se does not have a limit because
the element

e−1se =
e

|e|2 se

has scalar components of the type
εiεjs�
|e|2 with i, j, � ∈ {0, 1, 2, 3}, which do not

have limit. �
Proposition 2.7.9. The function S−1(s,x) is left s-monogenic in the variable x and
right s-monogenic in the variable s in its domain of definition.

Proof. The proof follows by direct computations. Consider any I ∈ S and set
x = u+ Iv. We have:

∂

∂u
S−1(s, u+ Iv)

= ((u + Iv)2 − 2Re[s](u+ Iv) + |s|2)−2(2u+ 2Iv − 2Re[s])(u+ Iv − s̄)

− ((u+ Iv)2 − 2Re[s](u+ Iv) + |s|2)−1,

∂

∂v
S−1(s, u+ Iv)

= ((u+ Iv)2 − 2Re[s](u+ Iv) + |s|2)−2(2uI − 2v − 2Re[s]I)(u + Iv − s̄)

− ((u+ Iv)2 − 2Re[s](u+ Iv) + |s|2)−1I,
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so we obtain:

∂

∂u
S−1(s, u+ Iv) + I

∂

∂v
S−1(s, u+ Iv)

= ((u + Iv)2 − 2Re[s](u+ Iv) + |s|2)−2(2u+ 2Iv − 2Re[s])(u + Iv − s̄)

− ((u+ Iv)2 − 2Re[s](u+ Iv) + |s|2)−1

+ ((u+ Iv)2 − 2Re[s](u+ Iv) + |s|2)−2(−2u− 2vI + 2Re[s])(u+ Iv − s̄)

+ ((u+ Iv)2 − 2Re[s](u+ Iv) + |s|2)−1 = 0.

Let us now set s = u + Iv. Then S−1(u + Iv,x) = F (u, v,x)(x − u + Iv) where
F (u, v,x) is a function involving x, the real variables u, v but not the imaginary
unit I. Then we have:

∂

∂u
S−1(u + Iv,x) = (x2 − 2xu+ u2 + v2)−2(−2x+ 2u)(x− u+ Iv)

+ (x2 − 2xu+ u2 + v2)−1,

∂

∂v
S−1(u+Iv,x) = (x2−2xu+u2+v2)−22v(x−u+Iv)−(x2−2xu+u2+v2)−1I.

It follows that

∂

∂u
S−1(u+ Iv,x) +

∂

∂y
S−1(u+ Iv,x)I

= (x2 − 2xu+ u2 + v2)−2(−2x+ 2u)(x− u+ Iv)− (x2 − 2xu+ u2 + v2)−1

+ (x2 − 2xu+ u2 + v2)−22v(x− u+ Iv)I − (x2 − 2xu+ u2 + v2)−1

= 2(x2 − 2xu+ u2 + v2)−2(x2 − 2xu+ u2 + v2)− 2(x2 − 2xu+ u2 + v2)−1

= 0. �

This result is obviously trivial when S−1(s,x) coincides with the Cauchy
kernel series. However, as we have pointed out after Definition 2.29, the function
S−1(s,x) is defined on a set which is larger than the domain of convergence of the
series and therefore the direct argument in the preceding proof is necessary.

We now state some equalities which are important to prove further properties
of the Cauchy kernel function.

Proposition 2.7.10. Let x, s ∈ Rn+1 be such that x �= s̄. Then the following identity
holds:

(x− s)−1s(x− s)− x = −(s− x̄)x(s − x̄)−1 + s,

or, equivalently,

−(x− s)−1(x2 − 2xRe[s] + |s|2) = (s2 − 2Re[x]s + |x|2)(s− x̄)−1; (2.30)

finally, if x �∈ [s] we have

−(x2 − 2Re[s]x+ |s|2)−1(x − s) = (s − x)(s2 − 2Re[x]s + |x|2)−1. (2.31)
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Proof. One may prove the identities by direct computations. Let us prove (2.31).
To show that the formula is an identity, we multiply by (x2 − 2Re[s]x + |s|2) on
the left and by (s2 − Re[x]s + |x|2) on the right. We obtain:

x2s− 2Re[s]xs + 2Re[s]|x|2 − x|s|2 = −xs2 + 2Re[x]xs − 2Re[x]|s|2 + s|x|2

which becomes

(x2 − Re[x] + |x|2)s = −x(s2 − Re[s] + |s|2)

that is an identity by (2.21). Note that (2.31) holds for x �∈ [s], which is equivalent
to s �∈ [x]. The identity (2.30) can be proven by taking the inverse of (2.31) and it
holds for x �= s. Easy computations show the validity of the remaining identity. �

We now consider the function S−1(s,x) = S−1
s (x) as a function of x. Clearly,

its singularities are the entire (n − 1)-sphere [s] which reduces to the point {s}
when s is real. The next result analyzes in detail the singularities of S−1

s (x) on
each plane CI when s �∈ R.

Proposition 2.7.11. Let s ∈ Rn+1\R. If I �= Is, then the function S−1(s,x) =
S−1
s (x) has two singularities Re[s]± I|s| on the plane CI . On the plane CIs , the

restriction of S−1
s (x), i.e., (x− s)−1, has only one singularity at the point s.

Proof. Suppose s ∈ Rn+1\R and consider S−1
s (x) = (s2−2Re[x]s+ |x|2)−1(s−x).

The singularities of S−1
s (x) corresponds to the roots of s2 − 2Re[x]s + |x|2 = 0.

This equation can be written by splitting real and imaginary parts as

Re[s]2 − |s|2 − 2Re[s]Re[x] + |x|2 = 0,

(Re[s]− Re[x])s = 0.

The assumption s �= 0 implies Re[x] = Re[s] and so |x| = |s|, i.e., the roots
correspond to the (n − 1)-sphere [s]. Consider now the plane CI . When I �= Is,
CI intersect the (n − 1)-sphere [s] in Re[s] ± I|s| while, when I = Is, x and s
commute, so

S−1
s (x) = −(x− s)−1(x − s̄)−1(x− s̄) = −(x− s)−1

and x is the only singularity of the restriction of S−1
s (x) to the plane CIs . �

Remark 2.7.12. The previous proposition states that the restriction of S−1(s,x)
to the plane CIs , has a removable singularity at the point x = s̄. However, equality
(2.31) and the proof of Theorem 2.7.8 show that the function S−1(s,x) still has a
singularity at the point x = s̄.

The kernel S−1(s,x) is a left s-monogenic function in x and a right s-
monogenic function in s so, in principle, it cannot be used in both the Cauchy
formulas for left and for right s-monogenic functions. Thus one has to establish
which kernel has to be used for a Cauchy formula for right s-monogenic functions.
Note that the series expansion of a kernel which is right (resp. left) s-monogenic
in the variable x (resp. s) is of the following form
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Definition 2.7.13. Let x, s ∈ Rn+1. We call

S−1
R (s,x) :=

∑
n≥0

s−n−1xn, (2.32)

the right noncommutative Cauchy kernel series.

Remark 2.7.14. The right noncommutative Cauchy kernel series is convergent for
|x| < |s|.

We have the following:

Proposition 2.7.15. The sum of the series (2.32) is given by the function

S−1
R (s,x) = −(x− s̄)(x2 − 2Re[s]x+ |s|2)−1, (2.33)

which is defined for x �∈ [s]. Moreover, S−1
R (s,x) is right (resp. left) s-monogenic

in the variable x (resp. s).

Proof. It follows the same lines of the proof of Theorem 2.7.4. We just sketch some
of the computations. The statement is proved if we show that, for |x| < |s|, we
have

(
∑
n≥0

s−n−1xn)(x2 − 2Re[s]x+ |s|2) = −(x− s̄). (2.34)

By computing the product at the left-hand side of (2.34), we obtain:

s−1x2 − 2s−1Re[s]x+ s−1|s|2 + s−2x3 − 2s−2Re[s]x2 + s−2x|s|2 + . . .

= −2s−1Re[s]x+ s−1|s|2 + s−2x|s|2 +
∑
n≥2

s−(n+1)(s2 − 2Re[s]s+ |s|2)xn

= −2s−1Re[s]x+ s−1|s|2 + s−2x|s|2

= s−2(−2Re[s] + s)sx+ s−1ss̄ = −x+ s̄.

The fact that function S−1
R (s,x), which is defined for x �∈ [s], is left s-monogenic

in the variable s and right s-monogenic in the variable x can be proved by a direct
computation. This concludes the proof. �
Definition 2.7.16. We will call the expression

S−1
R (s,x) = −(x− s̄)(x2 − 2Re[s]x+ |s|2)−1, (2.35)

defined for x2 − 2xRe[s] + |s|2 �= 0, the right noncommutative Cauchy kernel.

Remark 2.7.17. Analogous considerations as in Remarks 2.7.6 and 2.7.7 and in
Theorem 2.7.8 can be done for the right noncommutative Cauchy kernel S−1

R (s,x).

Proposition 2.7.18. Suppose that x and s ∈ Rn+1 are such that x �∈ [s]. The
following identity holds:

S−1
R (s,x) = (s2−2Re[x]s+|x|2)−1(s−x̄) = −(x−s̄)(x2−2Re[s]x+|s|2)−1. (2.36)
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Proof. One may prove the identity by direct computations (compare with the
proof of Proposition 2.7.10). �
Remark 2.7.19. The identities (2.31) and (2.36) can be proved not only by direct
computation but also in a longer way which can be of some interest. We sketch the
lines of this alternative proof. Consider the function f(x) = s− x. It is such that
fI ∗f c

I has values in CI thus it admits an s-monogenic inverse (see Example 2.6.12).
One may construct its s-monogenic inverse with respect to the two variables x and
s on the left and on the right. If one constructs, e.g., the left inverse with respect
to x, see Definition 2.6.10, one gets

(x2 − 2Re[s]x+ |s|2)−1(s̄− x).

By direct computation it follows that this function is right s-monogenic with re-
spect to s, thus it must coincide, by the Identity Principle, with the right s-
monogenic inverse of (s− x) with respect to s, i.e.,

(s− x̄)(s2 − 2Re[x]s+ |x|2)−1

thus relation (2.31) holds. Note that we have not provided the construction of the
right s-monogenic inverse of a function f , but it is not difficult to check that, when
it exists, it coincides with the extension of the function f c

I (fI ∗ f c
I )

−1. Similarly,
one can construct the left s-monogenic inverse of s−x with respect to s, then one
shows that it is right s-monogenic with respect to x and so it follows that it must
coincide with the right s-monogenic inverse with respect to x, thus equality (2.36)
holds.

By comparing the Cauchy kernel functions S−1(s,x) and S−1
R (s,x), we con-

clude that the two functions are different, thus the kernel to be used for the Cauchy
formula for right s-monogenic functions is not the kernel S−1(s,x) used for left
s-monogenic functions. However we have the following relation.

Proposition 2.7.20. Let x, s ∈ Rn+1. The following identity holds:

S−1(x, s) = −S−1
R (s,x), for x �∈ [s].

Proof. The identities (2.31) and (2.36) show that by exchanging the role of the
variables x and s we get S−1(x, s) = −S−1

R (s,x). �

2.8 Cauchy integral formula, II

In this section we prove a Cauchy formula for an s-monogenic function with s-
monogenic kernel which is more general than the one proved in Section 2.4. In
fact, the formula does not depend on the plane in which the integration path is
chosen.

Let us recall the well-known Stokes’ theorem in the complex plane (see for
example [2]).
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Theorem 2.8.1. Let C be a bounded open set in C such that its boundary ∂C is a
finite union of continuously differentiable Jordan curves. If f ∈ C1(C), then∫

∂C

fdz =

∫
C

df ∧ dz = 2i

∫
C

∂f

∂z̄
dx ∧ dy.

When considering Rn-valued functions, the Stokes’ theorem can be rephrased
as follows:

Lemma 2.8.2. Let DI be a bounded open set on a plane CI such that its boundary
∂DI is a finite union of continuously differentiable Jordan curves. Let f , g ∈
C1(DI) be Rn-valued functions. Then∫

∂DI

g(s)dsIf(s) = 2

∫
DI

((g(s)∂̄I)f(s) + g(s)(∂̄If(s)))dσ

where s = u+ Iv is the variable on CI , dsI = −Ids, dσ = du ∧ dv.
Proof. Let us choose n− 1 imaginary units I2, . . . , In such that I, I2, . . . , In form
an orthonormal basis of Rn satisfying the defining relations IrIs + IsIr = −2δrs.
Then it is possible to write

f(s) =

n−1∑
|A|=0

FA(s)IA,

g(s) =

n−1∑
|A|=0

IAGA(s),

where s ∈ CI , IA = Ii1 . . . Iis , A = i1 . . . is is a subset of {2, . . . , n} and FA(s),
GA(s) have values in the complex plane CI . We have∫

∂DI

g(s)dsIf(s) =

∫
∂DI

( n−1∑
|A|=0

IAGA(s)
)
dsI

( n−1∑
|B|=0

FB(s)IB

)

=

n−1∑
|A|=0,|B|=0

IA

(∫
∂DI

GA(s)dsIFB(s)
)
IB .

We now use the usual Stokes’ theorem in the complex plane CI and we write∫
∂DI

g(s)dsIf(s) =

n−1∑
|A|=0,|B|=0

IA

(∫
DI

∂

∂s̄
(GA(s)FB(s))ds̄ ∧ dsI

)
IB

= 2

n−1∑
|A|=0,|B|=0

IA

(∫
DI

(∂u + I∂v)(GA(s)FB(s))dσ
)
IB ;
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we recall that I commutes with FA and GB which have values in CI , and that dσ
is real, thus we obtain∫

∂DI

g(s)dsIf(s) = 2
n−1∑

|A|,|B|=0

( ∫
DI

IA(∂u(GA) + ∂v(GA)I)FBIBdσ

+

∫
DI

IAGA(∂uFB + I∂vFB)IBdσ
)

= 2

∫
DI

n−1∑
|A|,|B|=0

IA(GA∂I)FBIBdσ

+ 2

∫
DI

n−1∑
|A|,|B|=0

IAGA(∂IFB)IBdσ

= 2

∫
DI

((g(s)∂̄I)f(s) + g(s)(∂̄If(s)))dσ

and we get the statement. �
An immediate consequence of the above lemma is the following:

Corollary 2.8.3. Let f and g be left s-monogenic and right s-monogenic functions,
respectively, defined on an open set U . For any I ∈ S and any open bounded set DI

in U ∩ CI whose boundary is a finite union of continuously differentiable Jordan
curves, we have ∫

∂DI

g(s)dsIf(s) = 0.

Theorem 2.8.4 (The Cauchy formula with s-monogenic kernel). Let U ⊂ Rn+1

be an axially symmetric s-domain. Suppose that ∂(U ∩ CI) is a finite union of
continuously differentiable Jordan curves for every I ∈ S. Set dsI = −dsI for
I ∈ S. If f is a (left) s-monogenic function on a set that contains U , then

f(x) =
1

2π

∫
∂(U∩CI)

S−1(s,x)dsIf(s) (2.37)

where S−1(s,x) is defined in (2.29) and the integral does not depend on U and on
the imaginary unit I ∈ S.

If f is a right s-monogenic function on a set that contains U , then

f(x) =
1

2π

∫
∂(U∩CI)

f(s)dsIS
−1
R (s,x) (2.38)

= − 1

2π

∫
∂(U∩CI )

f(s)dsIS
−1(x, s) (2.39)

where S−1
R (s,x) is defined in (2.35) and the integral (2.38) does not depend on the

choice of the imaginary unit I ∈ S and on U .
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Proof. First of all, the integral at the right-hand side of (2.37) does not depend on
the open set U : this follows from the fact that S−1(s,x) is right s-monogenic in s,
and Corollary 2.8.3. Let us show that the integral (2.37) does not depend on the
choice of the imaginary unit I ∈ S. The zeros of the function x2 − 2s0x+ |s|2 = 0
consist either of a real point x or a 2-sphere [x]. On CIx we find only the point x
as a singularity and the result follows from the Cauchy formula on the plane CIx .
When the singularity is a real number, the integral reduces again to the Cauchy
integral of complex analysis. If the zero is not real, on any complex plane CI we
find the two zeros s1,2 = x0 ± I|x|. In this case, we calculate the residues in the
points s1 and s2 on the plane CI for I �= Ix. Let us start with s1 by setting the
positions

s = x0 + I|x|+ εeIθ,

s0 = x0 + ε cos θ,

s = x0 − I|x|+ εe−Iθ,

dsI = −[εIeIθ]Idθ = εeIθdθ,

and
|s|2 = x20 + 2x0ε cos θ + ε2 + |x|2 + 2ε sin θ|x|.

We have

2πIε1 =

∫ 2π

0

−(−2xε cosθ + 2x0ε cos θ + ε2 + 2ε sin θ|x|)−1

· (x− [x0 − I|x|+ εe−Iθ])εeIθdθf(x0 + I|x|+ εeIθ),

and for ε→ 0 we get

2πI01

=

∫ 2π

0

(2x cos θ − 2x0 cos θ − 2 sin θ|x|)−1(x+ I|x|)eIθdθf(x0 + I|x|)

=
1

2

∫ 2π

0

(x cos θ − sin θ|x|)−1(x+ I|x|)eIθdθf(x0 + I|x|)

= − 1

2|x|2
∫ 2π

0

(x cos θ + sin θ|x|)(x+ I|x|)[cos θ + I sin θ]dθf(x0 + I|x|)

= − 1

2|x|2
∫ 2π

0

[(x)2 cos θ + sin θ|x|x+ xI|x| cos θ

+ sin θ|x|2I][cos θ + I sin θ]dθf(x0 + I|x|).
With some calculations we obtain

2πI01 = − 1

2|x|2
∫ 2π

0

[
(x)2 + xI|x| cos2 θ + sin2 θ|x|xI

]
dθf(x0 + I|x|)

= − 1

2|x|2
[
2π(x)2 + πxI|x|+ π|x|xI

]
f(x0 + I|x|)
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=
π

|x|
[
|x| − xI

]
f(x0 + I|x|).

Recalling that x/|x| = Ix we get the first residue

I01 =
1

2

[
1− IxI

]
f(x0 + I|x|).

With analogous calculations we prove that the residue in s2 is

I02 =
1

2

[
1 + IxI

]
f(x0 − I|x|).

So by the residues theorem we get

1

2π

∫
∂(U∩CI )

S−1(s,x)dsIf(s) = I01 + I02 .

The statement now follows from the Representation Formula. Formula (2.38) can
be deduced with similar arguments while formula (2.39) is a consequence of Propo-
sition 2.7.20. �

We conclude this section with the formula for the derivatives of an s-mono-
genic function using the s-monogenic Cauchy kernel.

Theorem 2.8.5 (Derivatives using the s-monogenic Cauchy kernel). Let U ⊂ Rn+1

be an axially symmetric s-domain. Suppose that ∂(U ∩ CI) is a finite union of
continuously differentiable Jordan curves for every I ∈ S. Set dsI = −dsI for
I ∈ S. Let f be an s-monogenic function on an open set that contains U and set
x = x0 + x, s = s0 + s. Then

∂nx0
f(x) =

n!

2π

∫
∂(U∩CI )

(x2 − 2s0x+ |s|2)−n−1(x− s)∗(n+1)dsIf(s)

=
n!

2π

∫
∂(U∩CI )

[S−1(s,x)(x − s)−1]n+1(x− s)∗(n+1)dsIf(s) (2.40)

where

(x− s)∗n =

n∑
k=0

n!

(n− k)!k!
xn−ksk, (2.41)

and S−1(s,x) is defined in (2.29). Moreover, the integral does not depend on U
and on the imaginary unit I ∈ S.

Proof. First of all, we recall that the s-derivative defined in (2.4) coincides, for
s-monogenic functions, with the partial derivative with respect to the scalar coor-
dinate x0. To compute ∂nx0

f(x), we can compute the derivative of the integrand,
since f and its derivatives with respect to x0 are continuous functions on ∂(U∩CI).
Thus we get

∂nx0
f(x) =

1

2π

∫
∂(U∩CI )

∂nx0
[S−1(s,x)]dsIf(s).
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To prove the statement, it is sufficient to compute ∂nx0
[S−1(s,x)] by recurrence.

Consider the derivative of ∂x0S
−1(s,x):

∂x0S
−1(s,x)

= −(x2 − 2s0x+ |s|2)−2(2x− 2s0)(x − s)− (x2 − 2s0x+ |s|2)−1

= (x2 − 2s0x+ |s|2)−2[2x2 − 2xs− 2s0x+ 2s0s− x2 + 2s0x− |s|2]
= (x2 − 2s0x+ |s|2)−2[x2 − 2xs+ s2] = (x2 − 2s0x+ |s|2)−2(x− s)∗2.

We now assume

∂nx0
S−1(s,x) = (−1)n+1n!(x2 − 2s0x+ |s|2)−(n+1)(x− s)∗(n+1),

and we compute ∂n+1
x0

S−1(s,x). We have

∂n+1
x0

S−1(s,x) = ∂x0 [(−1)n+1n!(x2 − 2s0x+ |s|2)−(n+1)(x− s)∗(n+1)]

= (−1)n+2(n+ 1)!(x2 − 2s0x+ |s|2)−(n+2)(2x− 2s0)(x − s)∗(n+1)

+ (−1)n+1(n+ 1)!(x2 − 2s0x+ |s|2)−(n+1)(x− s)∗n

= (−1)n+2(n+ 1)!(x2 − 2s0x+ |s|2)−(n+2)[(2x− 2s0)(x− s̄)

− (x2 − 2s0x+ |s|2)] ∗ (x− s̄)∗n;

here we have used the fact that the s-monogenic product coincides with the usual
one when the coefficients are real numbers, so

∂n+1
x0

S−1(s,x)

= (−1)n+2(n+ 1)!(x2 − 2s0x+ |s|2)−(n+2)[x2 − 2xs̄+ s̄2] ∗ (x− s̄)∗n.

We get the last equality in (2.40) by recalling that

S−1(s,x)(x− s)−1 = (x2 − 2s0x+ |s|2)−1. �

Theorem 2.8.6 (Cauchy formula II outside an axially symmetric s-domain). Let
U ⊂ Rn+1 be a bounded axially symmetric s-domain and assume that U c =
Rn+1 \ U is connected. Let f : U c → Rn be a left s-monogenic function with
limx→∞ f(x) = a. If x ∈ U c, then

f(x) = a− 1

2π

∫
∂(V ∩CI)

S−1(s,x) dsIf(s),

where V is an axially symmetric s-domain containing U such that ∂(V ∩ CI) is
a union of a finite number of continuously differentiable Jordan curves for every
I ∈ S. Moreover, the integral does not depend on V and on the imaginary unit
I ∈ S.
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Proof. Let x ∈ U c. Then there exists r > 0 and a real point α such that the ball
B = B(α, r) satisfies B ⊃ U and x ∈ B. Let V be an axially symmetric s-domain
containing U such that ∂(V ∩ CI) is a union of a finite number of continuously
differentiable Jordan curves for every I ∈ S. Then f is s-monogenic on B \ V and
we can apply the Cauchy formula to compute f(x). We obtain

f(x) =
1

2π

∫
∂((B\V )∩CI)

S−1(s,x)dsIf(s)

=
1

2π

∫
∂(B∩CI)

S−1(s,x)dsIf(s)−
1

2π

∫
∂(V ∩CI)

S−1(s,x)dsIf(s).

By setting the positions
s = α+ reIθ

we can compute the integral on ∂(B∩CI) in the standard way, and letting r → ∞
we obtain that the integral equals a = limr→∞ f , therefore,

f(x) = a− 1

2π

∫
∂(V ∩CI )

S−1(s,x)dsIf(s).

The integral does not depend on V and on the imaginary unit I ∈ S, thanks to
the Cauchy formula on bounded axially symmetric s-domains. �

We finally obtain a version of the Borel-Pompeiu formula.

Theorem 2.8.7 (Borel-Pompeiu formula). Let U ⊂ Rn+1 be an axially symmetric
open bounded set such that ∂(U ∩CI) is a union of a finite number of continuously
differentiable Jordan curves for every I ∈ S. Let f : U → Rn+1 be a function of
class C1 and set dsI = −Ids. For every x ∈ U , x = u+ Ixv and I ∈ S, we have

1

2

[
1− IxI

]
f(u+ Iv) +

1

2

[
1 + IxI

]
f(u− Iv) (2.42)

=
1

2π

( ∫
∂(U∩CI)

S−1(s,x)dsIf(s) +

∫
U∩CI

S−1(s,x)∂If(s)dsI ∧ ds̄
)
.

In particular, when I = Ix we have

f(x) =
1

2π

(∫
∂(U∩CIx )

S−1(s,x)dsIxf(s) (2.43)

+

∫
U∩CIx

S−1(s,x)∂Ixf(s)dsIx ∧ ds̄
)
.

Proof. Let us set x = u+ Ixv and let us define

Uε = {s = u′ + Isv
′ ∈ U | |(u + Iv)− (u′ + Iv′)| > ε ∀I ∈ S}

where ε is a positive number less than the distance from the (n− 1)-sphere u+Sv
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defined by x to the complement of U . The zeros of the function x2−2Re[s]x+|s|2 =
0 consist either of a point on the real axis, or an (n − 1)-sphere u + Iv. On CIx

we find only the point x as a singularity and the result follows from the Pompeiu
formula on the complex plane CIx . When the singularity is a real number, S−1

is the standard Cauchy kernel and again the statement follows from the Pompeiu
formula on the complex plane CI for every I ∈ S. If the zero is not real, on any
complex plane CI we find two zeros s1,2 = x0± I|x|. Thus ∂Uε = ∂U −∂B1−∂B2

where ∂Bi is the boundary of ball Bi with center si and radius ε.
From Lemma 2.8.2 applied to the functions S−1(s,x), f(s) and since S−1(s,x)

is right s-monogenic in the variable s, we obtain

1

2π

∫
Uε∩CI

S−1(s,x)∂If(s)dsI ∧ ds̄+
1

2π

∫
∂(U∩CI )

S−1(s,x)dsIf(s)

= Iε1(x) + Iε2(x)

where

Iε1(x) :=
1

2π

∫
∂(B1∩CI)

S−1(s,x)dsIf(s),

Iε2(x) :=
1

2π

∫
∂(B2∩CI)

S−1(s,x)dsIf(s).

With similar computations as in the proof of Theorem 2.8.4, by letting ε→ 0 and
after some computations we get

I01(x) =
1

2

[
1− IxI

]
f(x0 + I|x|).

Similarly, the integral related to s2 turns out to be

I02(x) =
1

2

[
1 + IxI

]
f(x0 − I|x|).

So we get

I01(x) + I02(x) =
1

2

[
1− IqI

]
f(x0 + I|x|) + 1

2

[
1 + IxI

]
f(x0 − I|x|),

and this concludes the proof. �
Remark 2.8.8. Note that formula (2.43) is not surprising and in fact is the exact
analog of the Borel-Pompeiu formula in the complex case. Formula (2.42) on the
other hand, highlights a new phenomenon: given a point x and an imaginary unit
I ∈ S there are exactly two points in CI on the same sphere of x and formula
(2.42) shows how to obtain an integral representation of f at those points.

Remark 2.8.9. The Cauchy formula in Theorem 2.8.4 follows as an immediate
consequence of the Borel-Pompeiu formula and of the Representation Formula.
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2.9 Duality Theorems

In this section we prove the algebraic isomorphism between the Rn-module of
functionals acting on G(K) := ind limU MR(U) where K is a connected axially
symmetric compact set such that its intersection with every complex plane CI

remains connected, and the Rn-module of s-monogenic functions defined in the
complement of K and vanishing at infinity. The results we obtain are the analogs,
in this setting, of those obtained by Köthe in [67] and generalized by Grothendieck,
see [57].

Consider the set C∞(U,Rn) of infinitely differentiable functions defined on
an open set U ⊆ Rn+1 with values in Rn. This set is an Rn-bimodule with respect
to the standard sum of functions and multiplication of a function by a Clifford
number. To endow C∞(U,Rn) with a locally convex topology, we follow [7] and
consider an increasing sequence of compact sets {Kj}j∈N, Kj ⊂ Rn+1, such that

K0 � K1 � . . . , U = ∪∞
j=0Kj,

and we introduce the family of seminorms {pj,r, j, r ∈ N} defined by

pj,r(f) := sup
|α|≤r

sup
x∈Kj

|∂αf(x)|, f ∈ C∞(U,Rn),

where

∂α =
∂α0

∂xα0
0

. . .
∂αn

∂xαn
n
, |α| =

n∑
i=0

αi.

This topology coincides with the product topology
∏

A C∞(U,R) where A is a
multi-index which can be identified with an element in the power set of {1, . . . , n}.
Thus we have the following result:

Theorem 2.9.1. The set C∞(U,Rn) is a Fréchet Rn-bimodule.

Proposition 2.9.2. Let U be an open set in Rn+1. The sets MR(U) (resp. ML(U))
are Fréchet left (resp. right) Rn-modules with respect to the topology of uniform
convergence over compact sets.

Proof. The set C∞(U) with the topology of uniform convergence on compact sets
is a Fréchet bimodule. The sets MR(U) and ML(U) are closed submodules of
C∞(U). Indeed, if we choose a sequence {fm}m∈N ⊂ MR(U), then, by definition,
for every I ∈ S we have that the function fm satisfies ∂Ifm,I(u+Iv) = 0 on U∩CI .
Let f be the limit function of {fm}m∈N in C∞(U). The restriction of f ∈ C∞(U)
to a plane CI is the limit of the restrictions fm,I thus, by the uniform convergence
of the derivatives of {fm,I}, it satisfies ∂IfI(u + Iv) = 0 on U ∩ CI . This proves
that MR(U) is a Fréchet module with the topology induced by the topology of
C∞(U). The same argument applies to ML(U). �
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Remark 2.9.3. The same argument used in the proof shows also that MR(U) and
ML(U) are Montel modules, since they are closed submodules of C∞(U) which is
a Montel Rn-bimodule.

Definition 2.9.4. Let K ⊂ Rn+1 be a compact set. We define a set of germs of
functions defined by

G(K) := ind lim
Uopen⊃K

MR(U).

In the sequel, we will use the same letter ϕ both to denote an element ϕ ∈
G(K) and an s-monogenic extension of ϕ to some neighborhood U ⊆ Rn+1 of K.
Because of Proposition 2.9.2, G(K) is a limit of Fréchet Rn-modules, and it is
naturally endowed with an LF–topology: a seminorm on G(K) is every seminorm
that is continuous on every MR(U). Even though G(K) is not a Fréchet Rn-
module itself, it is possible to characterize its topology in terms of convergence of
sequences as in the following result:

Proposition 2.9.5. Let K ⊂ Rn+1 be a compact set. A sequence {ϕj} of germs in
G(K) converges to a germ ϕ ∈ G(K), if ϕj(x) converges uniformly to ϕ(x) in a
neighborhood U ⊂ Rn+1 of K.

Proof. It is a consequence of the definition of inductive limit topology of G(K). �

Definition 2.9.6. We call a connected compact set K such that K ∩ R �= ∅ and its
intersection K ∩ CI is connected for all I ∈ S an s-compact set.

Let K be an s-compact set in R
n+1

:= Rn+1 ∪ {∞}.
We denote by ML∞(R

n+1 \K) the right Rn-module of left s-monogenic func-

tions on R
n+1 \K which vanish at infinity.

Theorem 2.9.7. Let K be an axially symmetric s-compact set in Rn+1. There is
an Rn-module isomorphism

(G(K))′ ∼= ML
∞(R

n+1\K)

where (G(K))′ is the set of left Rn–linear continuous functionals on G(K).

Proof. Let us define a map T : ML
∞(R

n+1\K) → (G(K))′. For any function

f ∈ ML
∞(R

n+1\K) we construct a functional μ = μf . Let g ∈ G(K) and let
us denote by the same symbol g also its s-monogenic extension to an axially
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symmetric s-domain U ⊃ K. Let us fix an element I ∈ S and define

〈μf , g〉 :=
∫
∂(U∩CI )

g(s)dsIf(s). (2.44)

We have to show that the definition does not depend on the choice of U and on the
extension g. If we replace U by another axially symmetric s-domain V containing
K we have ∫

∂(U∩CI )

g(s)dsIf(s)−
∫
∂(V ∩CI)

g(s)dsIf(s)

=

∫
∂((U\V )∩CI)

g(s)dsIf(s) = 0

by Lemma 2.8.2; indeed f, g are s-monogenic functions on the left and on the
right, respectively, on U \ V . If we replace g by another extension, the value of
integral (2.44) is not affected since all the extensions of g coincide on small open
sets containing K. The map μf is left Rn-linear and continuous on G(K) by its
definition. Thus the map T defined by

T (f) = μf ,

is well defined and right Rn-linear. Let us now show that there is a map T ′ which
is the inverse of T . Let us consider any μ ∈ (G(K))′, and define the function

F(x) := − 1

2π
〈μ, S−1(s,x)〉. (2.45)

Note that μ acts on the variable s and S−1(s,x) is right s-monogenic with respect
to it. Since μ is a linear functional, we have

∂̄IFI(x) = − 1

2π
∂̄I〈μ, S−1(s, u+ Iv)〉

= − 1

2π
〈μ, ∂̄IS−1(s, u+ Iv)〉 = 0, ∀I ∈ S.

Thus the function F(x) is left s-monogenic for x �∈ [s], s ∈ K so, by the hypothesis
on K, it is s-monogenic on the complement of K and vanishes at infinity, i.e.,

F ∈ ML
∞(R

n+1 \K). Define now

T ′ : (G(K))′ → ML
∞(R

n+1\K), T ′(μ) = F.

The map T ′ is well defined and right Rn-linear. Let us show that T ′ is a right
inverse of T , i.e., that T · T ′ = id(G(K))′ . Let μ ∈ (G(K))′ and consider T ′(μ) = F.
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The functional T (T ′(μ)) acts on right s-monogenic functions as follows:

〈T (T ′(μ)), g〉 = 〈T (F), g〉 =
∫
∂(U∩CI)

g(x)dxIF(x)

= − 1

2π

∫
∂(U∩CI)

g(x)dxI〈μ, S−1(s,x)〉

= 〈μ,− 1

2π

∫
∂(U∩CI)

g(x)dxIS
−1(s,x)〉

= 〈μ, 1

2π

∫
∂(U∩CI )

g(x)dxIS
−1
R (x, s)〉 = 〈μ, g〉,

so we get T (T ′(μ)) = μ. Let us now show that T ′ is a left inverse of T , i.e., that

T ′ · T = idML∞(R
n+1\K)

. Consider f ∈ ML∞(R
n+1\K), the functional T (f) = μf

defined in (2.44) and T ′(μf ). By Theorem 2.8.6 and the fact that f vanishes at
infinity, we have

T ′(T (f)) = T ′(μf ) = − 1

2π
〈μf , S

−1(s,x)〉

= − 1

2π

∫
∂(U∩CI)

S−1(s,x)dsIf(s) = f(x),

that is T ′(T (f)) = f . This concludes the proof. �
In analogy with the complex case, we give the following definition.

Definition 2.9.8. The function

F(x) := − 1

2π
〈μ, S−1(s,x)〉

is called the Fantappié indicatrix of the functional μ ∈ (G(K))′.

One could be tempted to dualize Theorem 2.9.7 by simply taking the dual
of the sets in its statement. Since

(G(K))′ ∼= ML
∞(R

n+1\K),

one could take the dual on both sides and obtain

(G(K))′′ ∼= (ML
∞(R

n+1\K))′,

and attempt to conclude that

G(K) ∼= (ML
∞(R

n+1\K))′

by using some reflexivity property of G. This approach, however, is premature,
and at this stage we need to give a direct proof of such an isomorphism. In the
next section, we will show how to make such an attempt rigorous.
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Theorem 2.9.9. Let K be an axially symmetric s-compact set in Rn+1. Then there
is an Rn-module isomorphism

(ML
∞(R

n+1\K))′ ∼= G(K).

Proof. Fix any g ∈ G(K) and consider, for every f ∈ ML
∞(R

n+1\K), the integral

〈φg, f〉 :=
∫
∂(U∩CI)

g(s)dsIf(s) (2.46)

where U denotes an axially symmetric s-domain containing K and where we have
fixed I ∈ S. For any g ∈ G(K), the integral (2.46) defines a continuous right linear

Rn–functional φg on ML
∞(R

n+1\K). Therefore we have a map

T : G(K) −→ (ML
∞(R

n+1\K))′,

defined by setting T (g) = φg for any fixed g ∈ G(K). The map is injective:
if g1 �= g2, then the functionals φg1 , φg2 (defined by g1 and g2) are different.
Indeed, let x ∈ K and consider the action of the two functionals on the function

S−1
R (s,x) = S−1

R,x(s) ∈ ML∞(R
n+1\K); then we have

1

2π
〈φg1 , S−1

R (s,x)〉 = 1

2π

∫
∂(U∩CI )

g1(s)dsIS
−1
R (s,x) = g1(x),

and
1

2π
〈φg2 , S−1

R (s,x)〉 = 1

2π

∫
∂(U∩CI )

g2(s)dsIS
−1
R (s,x) = g2(x),

hence we have a one-to-one mapping:

T : G(K) −→ (ML
∞(R

n+1\K))′.

To conclude the proof it is sufficient to show that T admits a right inverse. Let

φ : ML
∞(R

n+1\K) → Rn

be a continuous right Rn–linear map, acting continuously on ML∞(R
n+1\K) with

its natural topology. It allows us to define

ψ(x) =
1

2π
〈φ, S−1

R (s,x)〉, (2.47)

where the functional φ acts on the variable s. The function ψ(x) is right s-
monogenic, as one can check directly, hence ψ ∈ G(K). Let

T ′ : (ML
∞(R

n+1\K))′ → G(K)
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be the map defined by

T ′(φ) =
1

2π
〈φ, S−1

R (s,x)〉 = ψ(x).

Now we have to show that T · T ′ = id
(ML∞(R

n+1\K))′ . Since

〈T (T ′(φ)), f〉 = 〈T (ψ), f〉 = 1

2π
〈T
(
〈φ, S−1

R (s,x)〉
)
, f〉

=
1

2π

∫
∂(U∩CI )

〈φ, S−1
R (s,x)〉dxIf(x)

= 〈φ,− 1

2π

∫
∂(U∩CI)

S−1(x, s)dxIf(x)〉,

by Theorem 2.8.6 we get

〈φ,− 1

2π

∫
∂(U∩CI)

S−1(x, s)dxIf(x)〉 = 〈φ, f〉,

which concludes the proof. �
Corollary 2.9.10. Let B = B(0, r) be the closed ball in Rn+1 centered at the origin

and with radius r > 0. The dual of ML
∞(R

n+1\B) is the set of all right s-monogenic
functions defined in a neighborhood of B.

2.10 Topological Duality Theorems

In the previous sections we have proved the two Rn-modules isomorphisms:

(G(K))′ ∼= ML
∞(R

n+1\K)

and
G(K) ∼= (ML

∞(R
n+1\K))′.

We now want to show that those isomorphisms are actually topological isomor-
phisms. To this end we need to introduce a special class of infinite-order differential
operators which is of independent interest. We recall that for s-monogenic func-
tions, the s-derivatives coincide with the partial derivative ∂u with respect to the
scalar part u of a paravector, so

F (∂s) = F (∂u) =
∑
m≥0

∂mu am.

Proposition 2.10.1. Let F (∂s) be defined as above and let f be a left s-monogenic
function in an axially symmetric s-domain U ⊆ Rn+1. The function F (∂s)f is a
left s-monogenic function in U if and only if

lim
m→+∞

m
√

|am|m! = 0. (2.48)
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Proof. Suppose that condition (2.48) holds, choose I ∈ S, and consider the re-
striction of f to the plane CI . By the Splitting Lemma, fI can be written as
fI(z) =

∑
A FA(z)IA, z = u + Iv and each holomorphic function FA can be ex-

panded into a power series at a point z0 ∈ CI . Thus fI(z) can be expanded into
a power series with center at z0 and, by the usual Cauchy estimates on the plane
CI , we also deduce that

1

m!

∣∣∣∣∂mf∂um
(z0)

∣∣∣∣ ≤ M

δm
, m ≥ 0, for |x− z0| ≤ δ.

Since |amm!| < ε for allm ∈ N, we deduce that the series
∑

m ∂ms f(x)am converges
locally uniformly on CI . It is immediate to verify that

∂I [F (∂s)fI(z)] = ∂I [
∑
m≥0

∂mu fI(z)am] =
∑
m≥0

∂mu ∂IfI(z)am = 0,

and since the choice of I is arbitrary we get that
∑

m≥0 ∂
m
u f(x)am is an s-

monogenic function.
Conversely, suppose by an absurdity that

∑
m≥0 ∂

m
s f(x)am is s-monogenic

but (2.48) does not hold. The result follows as in the complex case, see [63], Lemma
1.8.1. Indeed, suppose we negate (2.48). Then for some ε > 0 there is a subsequence
akj such that

kj

√
|akj |kj ! ≥ 2ε for all kj , kj → +∞.

We now apply F (∂s) to the s-monogenic function (x − y0)
−1, with y0 ∈ U ∩ R,

and we obtain

F (∂s)(x− y0)
−1 =

∑
k≥0

ak(−1)kk!

(x− y0 − ε)k+1
=
∑
k≥0

Fk(x). (2.49)

Consider |x− y0| ≤ ε, and assume, by taking if necessary a subsequence xj , that
xj → y0. Then we get

|Fk(xj)| ≥
(2ε)kj

|xj − y0 − ε|kj+1
≥ 1

2ε
,

thus for |x − y0| ≤ ε the series (2.49) does not converge locally uniformly which
contradicts the hypothesis. �
Proposition 2.10.2. Let U ⊆ Rn+1 be an axially symmetric s-domain. An operator
of the type F (∂s) acts continuously on ML(U), for any U .

Proof. If f ∈ ML(U) we know that the estimate for F (∂s)f depends only on the
maximum norm of f , so continuity follows. �
Theorem 2.10.3. Let K ⊆ Rn+1 be an axially symmetric s-compact set. The se-
quence {gk} converges to g ∈ G(K) if and only if the sequence {F (∂s)gk(x)}
converges pointwise on K for all F (∂s).
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Proof. Let gk be defined in an axially symmetric s-domain U containing K and
let gk,I =

∑
A Fk,A(z)IA be the restriction of gk to a plane CI obtained using the

Splitting Lemma 2.2.11. The convergence of gk to g in the topology of MR(U) is
equivalent to the convergence, for every multi-index A, of {Fk,A} to some func-
tion FA which is holomorphic in U ∩ CI . Theorem 4.1.10 in [63] shows that the
convergence of Fk,A is equivalent, for every A, to the pointwise convergence of
{F (∂s)Fk,A} for every F (∂s). This in turn is equivalent to the convergence of gk,I
on the plane CI . We conclude the proof by applying the Representation Formula
(2.7). �
Theorem 2.10.4. Let K ⊂ Rn+1 be an axially symmetric s-compact set. The iso-
morphism

(ML
∞(R

n+1\K))′ ∼= G(K).

is topological.

Proof. If gk → g in G(K) it means that gk → g uniformly in a neighborhood
of K. With respect to the duality defined by (2.46), we have 〈φgk , f〉 → 〈φg, f〉
uniformly when f varies in a bounded subset of ML∞(R

n+1\K), thus φgk → φg .

Conversely, suppose that φk → φ in (ML
∞(R

n+1\K))′, with its natural topol-
ogy. Then the functions

gk(x) =
1

2π
〈φk, S−1

R (s,x)〉

defined by (2.47) are right s-monogenic in a neighborhood U of K which can be
chosen to be an axially symmetric s-domain. Now we have to show that the se-
quence {gk} converges uniformly in some suitable neighborhood ofK. By Theorem
2.10.3 it is enough to prove that {F (∂u)gk} converges pointwise for all infinite-
order differential operators F (∂u) satisfying condition (2.48). From the continuity
of φk, fixing any x ∈ K, we have

F (∂u)gk(x) =
1

2π
〈φk, F (∂u)S−1

R (s,x)〉 → 1

2π
〈φ, F (∂u)S−1

R (s,x)〉

= F (∂u)〈φ,
1

2π
S−1
R (s,x)〉

and the statement follows by setting g(x) = 1
2π 〈φ, S

−1
R (s,x)〉. �

Corollary 2.10.5. Let K ⊂ Rn+1 be an axially symmetric s-compact set. The iso-
morphism

(G(K))′ ∼= ML
∞(R

n+1\K)

is topological.

Proof. We have pointed out that ML∞(R
n+1\K) is a Montel module thus it is

reflexive. So, by Theorem 2.10.4, the dual of G(K) is ML
∞(R

n+1\K) itself. �
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We conclude this section by looking at a very special case of a compact set,
namely K = {0}. Recall that s-monogenic functions outside the origin can be
represented by a Laurent-type series of the form

f(x) =
∑
m≥0

xmam +
∑
m≥1

x−mbm (2.50)

converging in a spherical shell

A = {x ∈ Rn+1 | R1 < |x| < R2}, 0 < R1 < R2.

This formula contains two series: one with positive powers of the variable, and
one with negative powers of the variable. It is clear that, in order for the Laurent
series to give a function which vanishes at infinity, the portion with positive powers
must vanish. Thus, we can say that s-monogenic functions outside the origin, which
vanish at infinity, are represented by Laurent series where only negative powers of
the variable appear. An additional condition is the consequence of the fact that
we are requiring the Laurent series to converge everywhere. For this to be true,
we need to ask that the series has radius of convergence equal to infinity, and this
yields, once again, condition (2.48). We can therefore state the following result:

Corollary 2.10.6. The Rn-module (G({0}))′ is isomorphic to the Rn-module of
infinite-order differential operators acting on s-monogenic functions.

2.11 Notes

Note 2.11.1. On the kernel S−1(s,x). Unlike the case of regular or monogenic
functions which are defined as the elements of the kernel of first-order differential
operators (the Cauchy Fueter operator for the case of regular functions and the
Dirac operator for the case of monogenic functions), it is not possible to consider
s-regular and s-monogenic functions as solutions of a globally defined operator.
Specifically, these functions are defined as those functions whose restrictions to
a family of planes satisfy a family of first-order operators on those planes. The
Cauchy kernel that we have constructed is, on each of those planes, the funda-
mental solution for the relevant operator; this justifies our choice of nomenclature,
even though strictly speaking this is somewhat of an abuse of notation because
the kernel is not the solution on R4 or Rn+1 of a globally-defined operator.

In fact, the fundamental solution to the equation

1

2

(
∂

∂u
+ I

∂

∂v

)
fI(u + Iv) = δ(u+ Iv), I ∈ S, (2.51)

on the plane CI , where δ(u+ Iv) is the Dirac delta distribution, is (see [59])

fI(u+ Iv) =
1

π

1

u+ Iv
, I ∈ S. (2.52)
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By the Extension Lemma, we uniquely extend the function in (2.52) to the entire
space Rn+1 \ {0} to get

f(x) =
1

π

1

x
= − 1

π
S−1(0,x).

If the delta distribution is not centered at the origin but at a point α on the real
axis, the solution becomes

f(x− α) =
1

π

1

x− α
= − 1

π
S−1(α,x).

If α is not real, then the function (x − α)−1 is not s-monogenic, thus we have to
consider its s-monogenic inverse (x− α)−∗ which is precisely

(x− α)−∗ = −S−1(α,x).

Let us now consider another feature of the Cauchy kernel series. Let x, s ∈
Rn+1 such that xs �= sx and denote by S(s,x) the inverse of the noncommutative
Cauchy kernel series S−1(s,x). Our next goal is to show that the function S(s,x),
satisfying the equation

S2(s,x) + S(s,x)x − sS(s,x) = 0 (2.53)

is the inverse of the noncommutative Cauchy kernel series.

Lemma 2.11.2. Let x, s ∈ Rn+1. Then S(s,x) := s − x is a solution of equation
(2.53) if and only if s x = x s .

In general, when s, x do not commute, the equation (2.53) has another non-
trivial solution:

Theorem 2.11.3. Let x, s ∈ Rn+1 be such that xs �= sx. The equation (2.53) has
the nontrivial solution

S(s,x) = −(x− s)−1(x2 − 2Re[s]x+ |s|2).

Proof. Let us plug −(x− s)−1(x2 − 2Re[s]x+ |s|2) into (2.53) and show that

(x− s)−1(x2 − 2Re[s]x+ |s|2)(x− s)−1(x2 − 2Re[s]x+ |s|2)
− (x− s)−1(x2 − 2Re[s]x+ |s|2)x
+ s(x− s)−1(x2 − 2Re[s]x+ |s|2) = 0

is an identity. We multiply on the left by (x− s) and we get

(x2 − 2Re[s]x+ |s|2)(x − s)−1(x2 − 2Re[s]x+ |s|2) (2.54)

− (x2 − 2Re[s]x+ |s|2)x
+ (x− s)s(x− s)−1(x2 − 2Re[s]x+ |s|2) = 0.



78 Chapter 2. Slice monogenic functions

We observe that x and (x2 − 2Re[s]x+ |s|2) commute and that the element

u := (x2 − 2Re[s]x+ |s|2)

is invertible where it is nonzero. Indeed

uū = (x2 − 2Re[s]x+ |s|2)(x̄2 − 2Re[s]x̄+ |s|2)
= |x|4 − 2x|x|2Re[s] + x2|s|2 − 2x̄|x|2Re[s] + 4|x|2Re[s]2

− 2xRe[s]|s|2 + x̄2|s|2 − 2x̄Re[s]|s|2 + |s|4

= |x|4 − 2Re[x]|x|2Re[s]
+ (Re[s]2 − |s|2)|s|2 + 4|x|2Re[s]2 − 2Re[x]Re[s]|s|2 + |s|4

therefore uū ∈ R, thus the inverse of u is ū/|u|2. By multiplying equality (2.54)
by u−1 on the right, we obtain:

(x2 − 2Re[s]x+ |s|2)(x − s)−1 − x+ (x− s)s(x− s)−1 = 0.

We multiply by x− s on the right and we get the identity

−2Re[s]x+ xs+ xs = 0. �

Note 2.11.4. Historical notes and further readings. The study of s-monogenic
functions is a relatively new field of research: they were introduced in 2007 in [26]
(published two years later), in an effort to generalize the notion of slice regularity
(see [48], [49]) to the setting of Clifford algebras. Further properties of s-monogenic
functions which are collected in this book are treated in [18], [27], [28], [29]. The
Runge theorem is proved in [30] for a slightly different class of functions that,
however, coincide with the class of s-monogenic functions over axially symmetric
s-domains.

The most studied and well-known generalization of holomorphic functions to
the Clifford algebras setting is Clifford analysis, intended as the study of functions
in the kernel of the Dirac operator. It is nowadays a widely developed topic which
the reader can approach in the classical references [7] and [34]. More recent books,
which address in a less detailed way the topic of monogenic functions but give
some insights to further developments of the theory, are [23] and [31]. Finally, a
very friendly introduction to classical complex analysis and its higher-dimensional
generalizations containing also historical remarks is given in the textbook [58].
Clifford analysis is a very rich and well-developed theory which, however, does
not allow one to treat power series in the paravector variable and for this reason
other theories have been introduced. With no claim of completeness, we mention
for example the hyperholomorphic functions studied by Eriksson and Leutwiler
in [74], [38], [39], [40] and Cliffordian holomorphic functions introduced by Laville
and Ramadanoff [72], [73]. Slice monogenic functions admit power series expansion
in terms of the paravector variable, at least on discs centered at points on the real
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axis, and this property will allow us to deal with a functional calculus for n-tuples
of linear operators (see the next chapter).

It is worth noticing, however, that the theory of s-monogenic functions is
not, strictly speaking, a generalization of the theory of holomorphic functions
of a complex variable: holomorphic functions, can be obtained as s-monogenic
functions for n = 1, see Remark 2.2.9, but given an s-monogenic function there is
no possibility to restrict its domain or codomain in order to obtain a holomorphic
function.

The s-monogenic functions, as well as s-regular functions in one quaternionic
variable, have several forerunners in the literature. Fueter in his paper [43], but
see also [33], [98], considered the problem of constructing regular functions (in the
sense of Cauchy–Fueter) starting from holomorphic functions. Thus he introduced
functions of the form

f(q) = α(q0, |Im(q)|) + Im(q)

|Im(q)|β(q0, |Im(q)|) (2.55)

where α, β are defined on the upper complex plane C+, have real values and α,
β satisfy the Cauchy–Riemann system. The function Δf , now called the Fueter
transform of f , is Cauchy–Fueter regular. Note that, in light of this result, the
function

∑
Δqnan is (Cauchy–Fueter) regular in q where it converges. This ap-

proach was generalized to functions of a paravector variable: it is sufficient to
rewrite (2.55) by replacing the quaternion q by a paravector x ∈ Rn+1 and Im(q)
by the vector x. If n is odd, it is possible to show that Δ(n−1)/2f is a monogenic
function in the sense of [7]. This result, known as Fueter’s mapping theorem, has
been proved by Sce in [94] and then generalized by Qian, see [87], when n is an even
number. Later on, Fueter’s theorem was generalized to the case in which a func-
tion f as above is multiplied by a monogenic homogeneous polynomial of degree
k, see [68], [83], [96] and to the case in which the function f is defined on an open
set U , not necessarily chosen in the upper complex plane, see [88]. This last result
is important because in this case a function of the form (2.55), with q replaced
by x, is s-monogenic in the sense of our definition, even though we are allowed to
consider α and β with values in the Clifford algebra Rn. Fueter’s mapping theorem
allows us to construct monogenic functions starting from s-monogenic functions,
moreover it allows us to show that the class of monogenic functions which comes
from s-monogenic ones corresponds to the axially monogenic functions (see [24]).

The class of functions (2.55), whose importance for Fueter’s mapping theorem
is clear, is also known in the literature as the class of radially holomorphic func-
tions, see for example [58]. They are also related to the so-called standard intrinsic
functions studied by Rinehart and then by Cullen, see [89], [32] respectively. These
studies were the starting point for a deep generalization carried out by Ghiloni and
Perotti in their paper [53]. In this paper, the authors study functions with values
in a real alternative algebra A which are slice functions, i.e., they are of the form
f(u, v) = α(u, v) + Iβ(u, v) where α(u,−v) = α(u, v) and β(u,−v) = −β(u, v), I
is an element chosen in a suitable subset of the algebra such that I2 = −1, (u, v)
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are real numbers which correspond to the “real part” and to the modulus of the
“imaginary part” of a variable chosen in a suitable subset of the algebra A. Then
by requiring that the pair of functions (α, β) satisfy the Cauchy–Riemann system,
one obtains the so-called slice regular functions according to [53] (compare with
Corollary 2.2.20). We do not enter into the details of this interesting construction:
it is sufficient to observe that the treatment is general enough to include, when
we consider open sets that are axially symmetric and which properly intersect the
real axis, the case of s-monogenic and s-regular functions treated in this book.

Finally, we point out that the study of zeros of polynomials of a paravector
variable, which we started in our work as a byproduct of the study of s-monogenic
functions, has been the topic of the researches of Qian and Yang, see [104]. More-
over, polynomials with coefficients in a Clifford algebra can also be treated with
the techniques developed by Ghiloni and Perotti, see the aforementioned papers
and [54].



Chapter 3

Functional calculus for n-tuples
of operators

The goal of this chapter is to construct a functional calculus for n-tuples of not
necessarily commuting operators on a Banach space V over the real numbers. We
start by introducing the basic notions which will allow us, given an n-tuple of
linear operators acting on V , to construct a new operator acting on a suitable
module over a real Clifford algebra. The idea to use a Clifford algebra approach is
not new and goes back to Coifman and Murray, see [80] and also to the works of
McIntosh, Pryde and Jefferies (see [62] and the references therein).

Let then V be a Banach space over R with norm ‖ · ‖V . It is possible to
embed V into a wider set Vn which possesses the structure of a Clifford module
and to endow V with an operation of multiplication by elements of Rn which gives
a two-sided module over Rn.

Specifically, by Vn we denote the two-sided Banach module over Rn corre-
sponding to V ⊗ Rn. An element in Vn is of the type∑

A

vA ⊗ eA

A = i1 . . . ir, i� ∈ {1, 2, . . . , n}, i1 < . . . < ir is a multi-index, vA ∈ V , and eA is a
basis element in the Clifford algebra Rn. The multiplications of an element v ∈ Vn
with a scalar a ∈ Rn are defined as

va =
∑
A

vA ⊗ (eAa)

and

av =
∑
A

vA ⊗ (aeA).
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We will write
∑

A vAeA instead of
∑

A vA ⊗ eA and we define

‖v‖Vn =
∑
A

‖vA‖V .

Remark 3.0.1. A two-sided module Vn over Rn is called a Banach module over
Rn, if there exists a constant C ≥ 1 such that

‖va‖Vn ≤ C‖v‖Vn |a| and ‖av‖Vn ≤ C|a|‖v‖Vn

for all v ∈ Vn and a ∈ Rn. In general, the constant C can be chosen equal to 2n.
The importance of Banach modules is well known and for a thorough discussion
we refer the reader to [5].

We denote by B(V ) the space of all bounded R-homomorphisms from the
Banach space V into itself endowed with the natural norm denoted by ‖ · ‖B(V ).
Let TA ∈ B(V ). We define the operator

T =
∑
A

TAeA

and its action on the generic element of Vn,

v =
∑
B

vBeB,

as
T (v) =

∑
A,B

TA(vB)eAeB.

The operator T is a right-module homomorphism which is a bounded linear map
on Vn. The set of all such bounded operators is denoted by Bn(Vn). We define a
norm in Bn(Vn) by setting

‖T ‖Bn(Vn) =
∑
A

‖TA‖B(V ).

It can be proved that

‖TS‖Bn(Vn) ≤ ‖T ‖Bn(Vn)‖S‖Bn(Vn).

From now on we will omit the subscripts Vn and Bn(Vn) when dealing with the
norms. The context will clarify which norm we will be using.

3.1 The S-resolvent operator and the S-spectrum

Given an n-tuple (T1, . . . , Tn) of not necessarily commuting operators, we can
construct the operator in Bn(Vn) given by

n∑
j=1

ejTj, Tj ∈ B(V ). (3.1)



3.1. The S-resolvent operator and the S-spectrum 83

As we will show in the sequel, when n = 1, i.e., in the case of a single operator,
this approach is consistent with the standard Riesz–Dunford calculus. However,
our methods allow us to treat a more general situation and therefore we can also
consider an operator of the form

T = T0 +

n∑
j=1

ejTj, Tμ ∈ B(V ), μ = 0, 1, . . . , n, (3.2)

which is slightly more general than the form (3.1).

Warning.We will develop our theory for these more general operators even though,
when dealing with n-tuples of operators, we always consider them as in the form
(3.1) or, in other words, in the form (3.2) with T0 ≡ 0. With an abuse of language
we will always refer to them as n-tuples of operators. Note that our construction
embeds an n-tuple of operators into Bn(Vn) as a right linear operator acting on
Vn.

The set of bounded operators of the form (3.1) or (3.2) will be denoted by
B1
n(Vn) or B0,1

n (Vn), respectively. We obviously have the inclusions

B1
n(Vn) ⊂ B0,1

n (Vn) ⊂ Bn(Vn).

We now give a definition and a theorem which are of crucial importance to
construct a functional calculus for n-tuples of noncommuting operators using the
theory of s-monogenic functions. In this section we consider left s-monogenic func-
tions, but it is possible to develop this theory using right s-monogenic functions.

Definition 3.1.1 (S-resolvent operator series). Let T ∈ B0,1
n (Vn) and s ∈ Rn+1.

We define the Cauchy kernel operator series or S-resolvent operator series as

S−1(s, T ) :=
∑
n≥0

T ns−1−n (3.3)

for ‖T ‖ < |s|.
Remark 3.1.2. Note that ‖T ns−1−n‖ < C‖T ‖n|s|−1−n since s is a paravector
(compare with the definition of a Banach module). Thus we have

‖
∑
n≥0

T ns−n−1‖ ≤
∑
n≥0

‖T ns−n−1‖

≤ C
∑
n≥0

‖T n‖|s−n−1| ≤ C
∑
n≥0

‖T n‖|s|−n−1.

Theorem 3.1.3. Let T ∈ B0,1
n (Vn) and s ∈ Rn+1. Then∑

n≥0

T ns−1−n = −(T 2 − 2Re[s]T + |s|2I)−1(T − sI), (3.4)

for ‖T ‖ < |s|.
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Proof. In Theorem 2.7.4 the components of p and s are real numbers and therefore
such components obviously commute. When we formally replace p by the operator
T we do not want to assume that necessarily TμTν = TνTμ, and so we need to verify
independently that (3.4) still holds. In what follows, we assume the convergence
of the series to be in the norm of Bn(Vn). We need to prove that

−(T 2 − 2Re[s]T + |s|2I)
∑
n≥0

T ns−1−n = (T − sI),

i.e., that

(−T 2 + 2Re[s]T − |s|2I)
∑
n≥0

T ns−1−n = T + (s − 2Re[s])I.

Observing that −T 2 + 2Re[s]T − |s|2I commutes with T n we can rewrite the
assertion as∑

n≥0

T n(−|s|2 − T 2 + 2Re[s]T )s−1−n = T + (s− 2Re[s])I.

We can rewrite the left-hand side of this equality by expanding the series∑
n≥0

T n(−|s|2I − T 2 + 2Re[s]T )s−1−n

= (−|s|2I − T 2 + 2Re[s]T )s−1 + T 1(−|s|2I − T 2 + 2Re[s]T )s−2

+ T 2(−|s|2I − T 2 + 2Re[s]T )s−3 + . . .

= −
(
|s|2s−1 + T (−2sRe[s] + |s|2)s−2 + T 2(s2 − 2sRe[s] + |s|2)s−3 + . . .

)
,

and using the identity s2 − 2sRe[s] + |s|2 = 0, we get∑
n≥0

T n(−|s|2 − T 2 + 2Re[s]T )s−1−n = −|s|2s−1I + T s2s−2

= −|s|2s−1I + T = −sss−1I + T = −sI + T = (s − 2 Re[s])I + T,

which concludes the proof. �
The S-resolvent operator series is the analog for operators of the noncom-

mutative Cauchy series for s-monogenic functions. Theorem 3.1.3 shows that a
functional calculus for n-tuples of noncommuting operators can be constructed
using the Cauchy formula II, simply by replacing in the s-monogenic Cauchy ker-
nel,

S−1(s,x) = −(x2 − 2xRe[s] + |s|2)−1(x− s),

the paravector x by an operator T of the form (3.2), even though the components
of T do not commute.

Theorem 3.1.3 shows that the sum of the S-resolvent series exists in a set
larger than the ball ‖T ‖ < |s| and, given an operator of the form (3.2), it is possible
to associate to it a new notion of spectrum.
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Definition 3.1.4 (The S-spectrum and the S-resolvent set). Let T ∈ B0,1
n (Vn) and

s ∈ Rn+1. We define the S-spectrum σS(T ) of T as

σS(T ) = {s ∈ Rn+1 : T 2 − 2 Re[s]T + |s|2I is not invertible}.

The S-resolvent set ρS(T ) is defined by

ρS(T ) = Rn+1 \ σS(T ).

Definition 3.1.5 (The S-resolvent operator). Let T ∈ B0,1
n (Vn) and s ∈ ρS(T ). We

define the S-resolvent operator as

S−1(s, T ) := −(T 2 − 2Re[s]T + |s|2I)−1(T − sI). (3.5)

Note that we are using the same symbol for both the S-resolvent operator
series and the S-resolvent operator: no confusion can arise since it will always be
clear which object we will be considering.

Proposition 3.1.6. Let T ∈ B0,1
n (Vn) and s ∈ ρS(T ). Then if T s = sT , we have

S−1(s, T ) = (sI − T )−1.

Proof. It follows by the commutativity since we have

(T 2 − 2Re[s]T + |s|2I)−1(T − sI) = (T − sI)−1(T − sI)−1(T − sI). �

Example 3.1.7 (Pauli matrices). As an example, we compute the S-spectrum of
two Pauli matrices σ3, σ1 (compare with example 4.10 in [62]):

σ3 =

[
1 0
0 −1

]
σ1 =

[
0 1
1 0

]
.

Let us consider the matrix T = σ3e1+σ1e2 and let us compute T 2−2Re[s]T+|s|2I.
We obtain the matrix[

|s|2 − 2− 2Re[s]e1 2(e1 − Re[s])e2
−2(e1 +Re[s])e2 |s|2 − 2 + 2Re[s]e1

]
whose S-spectrum is σS(T ) = {0} ∪ {s ∈ R3 : Re[s] = 0, |s| = 2}.
Remark 3.1.8. Note that if we embed the pair (σ3, σ1) as σ1e1 + σ3e2, the S-
spectrum does not change. In general, when we embed an n-tuple of operators
using a different order of the imaginary units, the S-spectrum will not be affected,
as we will see in the next section.

Theorem 3.1.9. Let T ∈ B0,1
n (Vn) and s ∈ ρS(T ). Let S

−1(s, T ) be the S-resolvent
operator defined in (3.5). Then S−1(s, T ) satisfies the (S-resolvent) equation

S−1(s, T )s− TS−1(s, T ) = I. (3.6)



86 Chapter 3. Functional calculus for n-tuples of operators

Proof. Replacing (3.5) in the above equation we have

I =− (T 2 − 2Re[s]T + |s|2I)−1(T − sI)s
+ T (T 2 − 2Re[s]T + |s|2I)−1(T − sI) (3.7)

and applying (T 2 − 2Re[s]T + |s|2I) to both sides of (3.7), we get

T 2 − 2Re[s]T + |s|2I = −(T − sI)s
+ (T 2 − 2Re[s]T + |s|2I)T (T 2 − 2Re[s]T + |s|2I)−1(T − sI).

Since T and T 2 − 2Re[s]T + |s|2I commute, we obtain the identity

T 2 − 2Re[s]T + |s|2I = −(T − sI)s+ T (T − sI)

which proves the statement. �

3.2 Properties of the S-spectrum

We state here some properties of the S-spectrum. In particular, we show that
the S-spectrum consists of (n − 1)-spheres (which, in particular, may reduce to
points on the real axis) and therefore it has a structure that is compatible with the
admissible domain for s-monogenic functions. We also show that the S-spectrum
for n-tuples of bounded operators is compact.

Figure 3.1: Structure of the S-spectrum in R3

Theorem 3.2.1 (Structure of the S-spectrum). Let T ∈ B0,1
n (Vn). Then its S-

spectrum consists of the union of (n− 1)-spheres of the form [p], p ∈ Rn+1.
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Proof. Let p = Re[p] + p ∈ σS(T ). If p is not real, then p �= 0 and all the
elements of the sphere s = Re[s] + s with Re[s] = Re[p] and |s| = |p| belong to
the S-spectrum of T . �
Definition 3.2.2. Let T = T0 +

∑n
j=1 ejTj ∈ B0,1

n (Vn). Let U ⊂ Rn+1 be an axially
symmetric s-domain that contains the S-spectrum σS(T ) of T and such that ∂(U ∩
CI) is the union of a finite number of continuously differentiable Jordan curves
for every I ∈ S. Then U is said to be a T -admissible open set.

Definition 3.2.3. Let T = T0 +
∑n

j=1 ejTj ∈ B0,1
n (Vn). Let U ⊂ Rn+1 be a T -

admissible open set. Suppose that U is contained in a domain of s-monogenicity of
a function f . Then such a function f is said to be locally s-monogenic on σS(T ).
We will denote by MσS(T ) the set of locally s-monogenic functions on σS(T ).

Remark 3.2.4. Let W be an open set in Rn+1 and let f ∈ M(W ). In the Cauchy
formula (2.37) the open set U ⊂ W need not be necessarily connected. Indeed
formula (2.37) obviously holds when U = ∪r

i=1Ui, U i ∩U j = ∅ for i �= j, where Ui

are axially symmetric s-domains for all i = 1, . . . , r and the boundaries of Ui ∩CI

consist of a finite number of continuously differentiable Jordan curves for I ∈ S for
all i = 1, . . . , r. So when we choose f ∈ MσS(T ) the associated open set U need
not be connected. With an abuse of language, we will call T -admissible such an
open set U .

We now give a result that motivates the functional calculus.

Theorem 3.2.5. Let s ∈ Rn+1, a ∈ Rn, m ∈ N ∪ {0} and consider the monomial
sma. Consider T ∈ B0,1

n (Vn), let U ⊂ Rn+1 be a T -admissible open set. Then, for
every choice of I ∈ S, we have

Tma =
1

2π

∫
∂(U∩CI)

S−1(s, T ) dsI sma. (3.8)

Proof. Let us consider the power series expansion of the S-resolvent operator
S−1(s, T ) and a circle Cr centered in the origin and of radius r > ‖T ‖. We have

1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI sma (3.9)

=
1

2π

∑
n≥0

T n

∫
∂(U∩CI )

s−1−n+m dsIa.

Since∫
Cr

dsIs
−n−1+m = 0 if n �= m,

∫
Cr

dsIs
−n−1+m = 2π if n = m, (3.10)

and since, by the Cauchy theorem, the above integrals are not affected if we replace
Cr by ∂(U ∩ CI) for any I ∈ S, we have

1

2π

∑
n≥0

T n

∫
Cr

s−1−n+m dsIa =
1

2π

∑
n≥0

T n

∫
∂(U∩CI )

s−1−n+m dsIa = Tma. �
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As it is well known, when we consider a single operator T acting on a Banach
space (real or complex) we know that its spectrum is a compact set contained in
the ball with center at the origin and radius ‖T ‖. In our case, we have that a
similar property holds for the S-spectrum:

Theorem 3.2.6 (Compactness of S-spectrum). Let T ∈ B0,1
n (Vn). Then the S-

spectrum σS(T ) is a compact nonempty set. Moreover σS(T ) is contained in {s ∈
Rn+1 : |s| ≤ ‖T ‖ }.

Proof. Let U ⊂ Rn+1 be a T -admissible open set and let I ∈ S. Then

1

2π

∫
∂(U∩CI)

S−1(s, T ) dsI sm = Tm.

In particular, for m = 0, we have

1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI = I,

where I denotes the identity operator. This shows that σS(T ) is a nonempty
set, otherwise the integral would be zero by the vector-valued version of Cauchy’s
theorem. We now show that the S-spectrum is bounded. The series

∑
n≥0 T

ns−1−n

converges if and only if ‖T ‖ < |s| so the S-spectrum is contained in the set
{s ∈ Rn+1 : |s| ≤ ‖T ‖}, which is bounded and closed because the complement of
σS(T ), i.e., ρS(T ), is open. Indeed, the function

g : s �→ T 2 − 2Re[s]T + |s|2I

is trivially continuous and, by Theorem 10.12 in [91], the set U(Vn) of all invertible
elements of Bn(Vn) is an open set in Bn(Vn). Therefore g

−1(U(Vn)) = ρS(T ) is an
open set in Rn+1. �

3.3 The functional calculus

The following result is an immediate consequence of the Hahn-Banach theorem
for Banach modules over Rn (see [7], §2.10) and it will be used in the proof of the
next result.

Corollary 3.3.1. Let Vn be a right module over Rn and let v ∈ Vn. If 〈φ, v〉 = 0 for
every linear and continuous functional φ in V ′

n, then v = 0.

We now state and prove a crucial result that will allow us to define the func-
tional calculus for n-tuples of not necessarily commuting operators. More precisely,
when we replace in the Cauchy formula (2.37) the variable x with an operator
T ∈ B0,1

n (Vn), we have to verify that the integral remains independent of U and
of I ∈ S.
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Theorem 3.3.2. Let T ∈ B0,1
n (Vn) and f ∈ MσS(T ). Let U ⊂ Rn+1 be a T -

admissible open set and set dsI = −dsI for I ∈ S. Then the integral

1

2π

∫
∂(U∩CI)

S−1(s, T ) dsI f(s) (3.11)

does not depend on the open set U and on the choice of the imaginary unit I ∈ S .

Proof. We first observe that we can replace x by an operator T ∈ B0,1
n (Vn) in the

Cauchy formula (2.37); in fact Theorem 3.1.3 allows us to replace x by T in the
function S−1(s,x), thus we can do the same substitution in the Cauchy formula
(2.37) and write

1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI f(s).

For every linear and continuous functional φ ∈ V ′
n, consider the duality

〈φ, S−1(s, T )v〉, for v ∈ Vn and define the function

g(s) := 〈φ, S−1(s, T )v〉, for v ∈ Vn, φ ∈ V ′
n. (3.12)

We observe that the function S−1(s,x) is right s-monogenic in the variable s in
its domain of definition, thanks to Proposition 2.7.9. The function g is right s-
monogenic in the variable s on ρS(T ), and since g(s) → 0 as s → ∞ we have that
g is s-monogenic also at infinity. The independence of the integral (3.11) from the
choice of the T -admissible open set U , as long as ∂(U ∩ CI) does not cross the
S-spectrum of T for every I ∈ S, is a consequence of the Hahn-Banach theorem
and of the Cauchy formula. Indeed, for any fixed I ∈ S, the integral

1

2π

∫
∂(U∩CI )

g(s)dsI f(s) (3.13)

does not depend on U , by the Cauchy theorem. As a consequence, also the integral
(3.11) does not depend on U , by Corollary 3.3.1. We now prove that the integral
(3.13) does not depend on I ∈ S. Since g is a right s-monogenic function on ρS(T ),
we can consider a domain U ′ in ρS(T ) such that U ′ satisfies the hypothesis of
Theorem 2.8.4 and such that ∂U ′ ⊂ U . We now choose J �= I, J ∈ S and we write
the function g(s) using the Cauchy integral formula (2.39):

g(s) = − 1

2π

∫
∂(U ′∩CJ )−

g(t) dtJ S
−1(s, t) (3.14)

where the Jordan curve ∂(U ′ ∩ CJ )
− is oriented clockwise. Observe that the

orientation is chosen in order to include the singular points of S−1(s, t), i.e.,
[s] ∩ CJ ∈ ∂(U ∩ CJ ) and to exclude the points belonging to the S-spectrum of
T . Taking into account the orientation of ∂(U ′ ∩CJ)

− we can rewrite the integral
(3.14) as

g(s) =
1

2π

∫
∂(U ′∩CJ)

g(t) dtJ S−1(s, t). (3.15)
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Let us now substitute the expression of g(s) in (3.15) into the integral (3.13) so
that we obtain

1

2π

∫
∂(U∩CI)

g(s) dsI f(s) (3.16)

=
1

2π

∫
∂(U∩CI)

[ 1

2π

∫
∂(U ′∩CJ)

g(t) dtJ S−1(s, t)
]
dsI f(s)

=
1

2π

∫
∂(U ′∩CJ )

g(t) dtJ

[ 1

2π

∫
∂(U∩CI)

S−1(s, t) dsI f(s)
]

=
1

2π

∫
∂(U ′∩CJ )

g(t) dtJf(t),

where we have used the Fubini theorem and Theorem 2.8.4. Since ∂(U ′ ∩ CJ ) is
positively oriented and surrounds the S-spectrum of T , by the first part of the
statement, we can substitute it by ∂(U ∩CJ), because of the independence of the
integral on the open set U , and we get

1

2π

∫
∂(U∩CI )

g(s) dsI f(s) =
1

2π

∫
∂(U∩CJ )

g(t) dtJ f(t). (3.17)

Since g(t) = 〈φ, S−1(s, T )v〉 and the formula (3.17) holds for every v ∈ Vn, φ ∈
V ′
n, and for I, J ∈ S, by Corollary 3.3.1 the integral (3.11) does not depend on
I ∈ S. �

We can now define our functional calculus.

Definition 3.3.3. Let T ∈ B0,1
n (Vn) and f ∈ MσS(T ). Let U ⊂ Rn+1 be a T -

admissible open set and set dsI = −dsI for I ∈ S. We define

f(T ) :=
1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI f(s). (3.18)

3.4 Algebraic rules

We recall that in general it is not true that the product of two s-monogenic func-
tions is still s-monogenic. However this is true for a subset of s-monogenic func-
tions, as we will show in the next proposition.

Let U be an open set in Rn+1 and let f ∈ M(U). Choose I = I1 ∈ S and let
I2, . . . , In be a completion to a basis of Rn such that IiIj + IjIi = −2δij. Denote
by fI the restriction of f to CI . By the Splitting Lemma we have

fI(z) =

n−1∑
|A|=0

FA(z)IA, IA = Ii1 . . . Iis , z = u+ Iv

where FA : U ∩CI → CI are holomorphic functions. The multi-index A = i1 . . . is
is such that i� ∈ {2, . . . , n}, with i1 < . . . < is, or, when |A| = 0, I∅ = 1.
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Definition 3.4.1. Let U be an open set in Rn+1 and let f ∈ M(U). We denote by

M̃(U) the subclass of M(U) consisting of those functions f such that for all the
possible choices of I ∈ S there is a completion I2, . . . , In to an orthonormal basis
of Rn such that

fI(z) =
∑

|A|even
FA(z)IA, IA = Ii1 . . . Iis , z = u+ Iv.

Proposition 3.4.2. Let U be an open set in Rn+1. Let f ∈ M̃(U), g ∈ M(U), then
fg ∈ M(U).

Proof. Let I ∈ S and set z = u+ Iv, then we have(
∂

∂u
+ I

∂

∂v

)
(fg)I(z)

=
∂fI
∂u

(z)gI(z) + fI(z)
∂gI
∂u

(z) + I
∂fI
∂v

(z)gI(z) + IfI(z)
∂gI
∂v

(z).

Since f ∈ M̃(U), the components FA of fI(z) commute with I and with all the
IA since |A| is even so f commutes with I, thus we obtain(

∂

∂u
+ I

∂

∂v

)
(fg)I(z)

=
(∂fI
∂u

(z) + I
∂fI
∂v

(z)
)
gI(z) + fI(z)

(∂gI
∂u

(z) + I
∂gI
∂v

(z)
)
= 0. �

Remark 3.4.3. The condition f ∈ M̃(U) is not only sufficient but also necessary
to have that fg ∈ M(U), when f, g ∈ M(U) and g is nonconstant. Indeed, for
every choice of I ∈ S we have that(

∂

∂u
+ I

∂

∂v

)
(fg)I(z) = fI(z)

∂gI
∂u

(z) + IfI(z)
∂gI
∂v

(z) = 0.

Since g is s-monogenic we can write:

−fI(z)I
∂gI
∂v

(z) + IfI(z)
∂gI
∂v

(z) = (−fI(z)I + IfI(z))
∂gI
∂v

(z) = 0.

Since ∂gI
∂v (z) �= 0 in view of the fact that g is s-monogenic and nonconstant, the

last equality implies that fI(z)I = IfI(z) for all I ∈ S. Using the Splitting Lemma
on each plane CI we obtain that the only possibility is that only the indices such
that |A| is even can appear.

Example 3.4.4. Let us consider a function f defined by the power series

f(x) =
∑
m≥0

xmam am ∈ [Rn]2,
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converging on a suitable ball B. Assume, for simplicity, that the coefficients am are
the product of two imaginary units ei. Consider I ∈ S and a completion I2, . . . , In
to an orthonormal basis of Rn, n ≥ 2. Then any am is the product of two linear
combinations of the imaginary units Ij . Thus

fI(u+ Iv) =
∑
m≥0

(u+ Iv)mam =
∑
m≥0

∑
|A|=0,2

(u+ Iv)ma′mAIA

=
∑

|A|=0,2

( ∑
m≥0

(u+ Iv)ma′mA

)
IA =

∑
|A|=0,2

FA(u+ Iv)IA,

where a′m ∈ R, belongs to M̃(B).

Definition 3.4.5. In Definition 3.2.3 consider instead of s-monogenic functions, the
subset of functions in M̃. This subclass of MσS(T ) will be denoted by M̃σS(T ).

Theorem 3.4.6. Let T ∈ B0,1
n (Vn).

(a) Let f and g ∈ MσS(T ). Then we have

(f + g)(T ) = f(T ) + g(T ), (fλ)(T ) = f(T )λ, for all λ ∈ Rn.

(b) Let φ ∈ M̃σS(T ) and g ∈ MσS(T ). Then we have

(φg)(T ) = φ(T )g(T ).

(c) Let f(s) =
∑

m≥0 s
mpm where pm ∈ Rn be such that f ∈ MσS(T ). Then we

have
f(T ) =

∑
m≥0

Tmpm.

Proof. Part (a) is a direct consequence of Definition 3.3.3.
Part (b): Denote by U a T -admissible open set on which g is s-monogenic and

let φ ∈ M̃(U). By Proposition 3.4.2 the product φg belongs to M(U). Let G1 and
G2 be two T -admissible open sets such that G1 ∪ ∂G1 ⊂ G2 and G2 ∪ ∂G2 ⊂ U .
Take s ∈ ∂G1 and t ∈ ∂G2 and observe that, for I ∈ S, we have

g(s) =
1

2π

∫
∂(G2∩CI)

S−1(t, s) dtI g(t).

Now consider

(φg)(T ) =
1

2π

∫
∂(G1∩CI)

S−1(s, T ) dsI φ(s) g(s)

=
1

2π

∫
∂(G1∩CI)

S−1(s, T ) dsI φ(s)
[ 1

2π

∫
∂(G2∩CI)

S−1(t, s) dtI g(t)
]
.
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By the vectorial version of the Fubini theorem we have

(φg)(T ) =
1

(2π)2

∫
∂(G2∩CI)

[ ∫
∂(G1∩CI)

S−1(s, T ) dsI φ(s) S
−1(t, s)

]
dtI g(t).

Observe that S−1(t, s) is left s-monogenic in the variable s ∈ ∂G1 for t ∈ ∂G2

by Proposition 2.7.9, and since φ ∈ M̃σS(T ) by Proposition 3.4.2 it follows that
φ(s)S−1(t, s) is s-monogenic in the variable s. So we obtain

(φg)(T ) =
1

2π

∫
∂(G2∩CI)

φ(T )S−1(t, T ) dtI g(t)

= φ(T )
1

2π

∫
∂(G2∩CI)

S−1(t, T ) dtI g(t)

= φ(T )g(T ).

Part (c): For a suitable R > 0 the series
∑

m≥0 s
mpm converges in a ball

B(0, R) that contains σS(T ). So we can choose another ball Bε := { s : |s| ≤
‖T ‖ + ε }, for sufficiently small ε > 0, such that Bε ⊂ B(0, R). Since the series
converges uniformly on ∂Bε we have

f(T ) =
1

2π

∫
∂(Bε∩CI)

S−1(s, T ) dsI
∑
m≥0

smpm

=
1

2π

∑
m≥0

∫
∂(Bε∩CI)

S−1(s, T ) dsI smpm

=
1

2π

∑
m≥0

∫
∂(Bε∩CI)

∑
k≥0

T ks−1−k dsI sm pm =
∑
m≥0

Tm pm. �

In the next section we study some further important properties of our func-
tional calculus.

3.5 The spectral mapping and the S-spectral radius
theorems

As we have already pointed out, the composition of two s-monogenic functions is
not, in general, s-monogenic. When we deal with s-monogenic functions f , g which
can be expanded into power series, the composition f(g(x)) is defined when g has
real coefficients and its range is contained in the ball on which f is defined. Here
we prove a sufficient condition in order for the composition of two s-monogenic
functions to be s-monogenic.

Definition 3.5.1. Let f : U → Rn be an s-monogenic function where U is an open
set in Rn+1. We define

N (U) = {f ∈ M(U) : f(U ∩ CI) ⊆ CI , ∀I ∈ S}.
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Lemma 3.5.2. Let U be an open set in Rn+1. We have N (U) ⊂ M̃(U).

Proof. By definition, a function f ∈ N (U) has a splitting of the type f(z) = F (z)

with F : CI → CI holomorphic, thus f ∈ M̃(U). �

Remark 3.5.3. Example 3.4.4 shows that, for n ≥ 3, there are functions in M̃(U)

not belonging to N (U), thus the inclusion N (U) ⊂ M̃(U) is proper.

Let us first study the behavior of the product of functions in N (U).

Lemma 3.5.4. Let U be an open set in Rn+1.

(a) Let f and g ∈ N (U), then f g and g f belong to N (U).

(b) Let P , Q ∈ N (U) with Q(x) �= 0 in U . Then Q−1P and PQ−1 belong to
N (U).

Proof. It follows by restricting the functions in (a), (b) to the complex plane CI

and observing that the functions we are considering are holomorphic from CI to
CI for every I ∈ S. �

Remark 3.5.5. Using the same proof of Lemma 3.5.4 we have that if f(x) =∑
m∈Z

(x − p0)
mam, with p0, am ∈ R is a series converging in a suitable set U ,

then f ∈ N (U).

Lemma 3.5.6. Let U , U ′ be two open sets in Rn+1 and let f ∈ N (U ′), g ∈ N (U)
with g(U) ⊆ U ′. Then f(g(x)) is s-monogenic for x ∈ U .

Proof. Set x = u+ Iv. By hypothesis, g(u + Iv) = α(u, v) + Iβ(u, v), where α, β
are real-valued functions and

f(g(u+ Iv)) = f(α(u, v) + Iβ(u, v)) ⊆ CI .

The function f(g(u + Iv)) is holomorphic on each plane CI since it satisfies the
condition

∂̄If(g(u+ Iv)) = 0

for all I ∈ S and so f(g(x)) is an s-monogenic function in x. �

The following lemma will be used in the sequel.

Lemma 3.5.7. Let U be an open set in Rn+1 and assume f ∈ N (U). For ν ∈ Rn+1

define U[ν] = {x ∈ U : f(x) �∈ [ν]}. Define:

(a) h0(x) = f2(x)− 2Re[f(ν)]f(x) + |f(ν)|2 ,

(b) h(x) = (f2(x)− 2Re[ν]f(x) + |ν|2)−1,

(c) h1(x) = (f(x)2 − 2Re[ν]f(x) + |ν|2)−1(f(x)− ν).

Then: h0 ∈ N (U), h ∈ N (U[ν]), h1 ∈ M(U[ν]).
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Proof. To prove that h0 ∈ N (U), observe that since f ∈ N (U), by Lemma 3.5.4
we have that f2 belongs to N (U) so also h0 belongs to N (U). The fact that
h ∈ N (U[ν]) follows from the previous result and Lemma 3.5.4. Finally, since

h0 ∈ N (U[ν]) ⊂ M̃(U[ν]) thanks to Lemma 3.5.2, and f − ν ∈ M(U), the function
h1(x) = h0(x)(f(x) − ν) ∈ M(U[ν]) by Proposition 3.4.2. �

Definition 3.5.8. In Definition 3.2.3 consider instead of the set of s-monogenic
functions M(U), the subset of functions in N (U). This subclass of MσS(T ) will
be denoted by NσS(T ).

Theorem 3.5.9 (Spectral Mapping Theorem). Let T ∈ B0,1
n (Vn), f ∈ NσS(T ), and

λ ∈ σS(T ). Then

σS(f(T )) = f(σS(T )) = {f(s) : s ∈ σS(T )}.

Proof. Since f ∈ NσS(T ) there exists a T -admissible open set U ⊂ Rn+1 such that
f ∈ N (U). Let us fix λ ∈ σS(T ). For x �∈ [λ], let us define the function g̃(x) by

g̃(x) = (x2 − 2Re[λ]x + |λ|2)−1(f2(x) − 2Re[f(λ)]f(x) + |f(λ)|2).

Observe that f ∈ N (U) implies that f2(x)− 2Re[f(λ)]f(x) + |f(λ)|2 ∈ N (U) by
Lemma 3.5.7. The function (x2 − 2Re[λ]x + |λ|2)−1 ∈ N (U \ {[λ]}), by Lemma
3.5.4, thus g̃(x) ∈ N (U \ {[λ]}) by the same Lemma.

We can extend g̃(x) to an s-monogenic function whose domain is U . We have
to consider two cases. Suppose first that the (n− 1)-sphere [λ] does not reduce to
a point on the real axis. Then we define

g(x) =

⎧⎪⎨⎪⎩
g̃(x) if x �∈ [λ],

∂f(μ)

∂u

f(μ)− f(μ)

μ− μ
if x = μ = λ0 + Iλ1 ∈ [λ], I ∈ S.

Given the (n − 1)-sphere [λ], on each plane CI , I ∈ S, the function g̃ has two
singularities λ0 ± Iλ1 ∈ [λ]. If we set z = u+ Iv, we can compute the limit of g̃ on
the plane CI for z → μ = λ0 + Iλ1 and for z → μ = λ0 − Iλ1. The restriction of f
to the plane CI is a holomorphic function from U ∩CI with values in the complex
plane CI , and, by Theorem 2.2.18 (ii),

f(λ0 + Iλ1) = ηK(λ0, λ1) + IθK(λ0, λ1).

However, ηK , θK : U ∩ CK → CK for all K ∈ S, see Theorem 2.2.18 (ii), so
ηK = η, θK = θ are real-valued functions depending only on λ0, λ1. We can write

f(λ0 + Iλ1) = η(λ0, λ1) + Iθ(λ0, λ1)
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and we deduce that Re[f(λ)] = Re[f(μ)] and |f(λ)|2 = |f(μ)|2 for any choice of μ
and λ on the same (n− 1)-sphere. We have:

lim
z→μ

gI(z) = lim
z→μ

(z2 − 2Re[μ]z + |μ|2)−1(f2(z)− 2Re[f(μ)]f(z) + |f(μ)|2)

= lim
z→μ

(f(z)− f(μ))(f(z)− f(μ))

(z − μ)(z − μ)
= f ′(μ)

f(μ)− f(μ)

μ− μ
,

and similarly for the limit when z → μ. Note that the derivative f ′(μ) coincides
with ∂

∂uf(μ) since f is s-monogenic. In the second case, assume that λ ∈ R. We
define

g(x) =

⎧⎨⎩ g̃(x) if x �= λ,( ∂
∂u
f(λ)
)2

if x = λ ∈ R.

Consider any J ∈ S and the restriction of f to the plane CJ . Then f : U∩CJ → CJ

is a holomorphic function and f(λ) ∈ R, indeed f(λ) ∈ CJ for all J ∈ S. Let us
set z = u+ Jv. We have

lim
z→λ

gJ(z) = lim
z→λ

(z2 − 2Re[λ]z + |λ|2)−1(f2(z)− 2Re[f(λ)]f(z) + |f(λ)|2)

= lim
z→λ

(f(z)− f(λ))2

(z − λ)2
= f ′(λ)2,

so the value of the limit is independent of the plane CJ . The function gI : U∩CI →
CI is extended by continuity to U ∩ CI , so it is holomorphic on U ∩ CI for all
I ∈ S. We conclude that the function g : U → Rn is an s-monogenic function.

Thanks to Theorem 3.4.6, we can write

f2(T )− 2Re[f(λ)]f(T ) + |f(λ)|2I = (T 2 − 2Re[λ]T + |λ|2I)g(T ).

If f2(T )− 2Re[f(λ)]f(T ) + |f(λ)|2I admits a bounded inverse

B := (f2(T )− 2Re[f(λ)]f(T ) + |f(λ)|2I)−1 ∈ Bn(Vn),

then
(T 2 − 2Re[λ]T + |λ|2I)g(T )B = I,

i.e., g(T )B is the inverse of T 2 − 2Re[λ]T + |λ|2I. Thus f(σS(T )) ⊂ σS(f(T )).
Now we take ν ∈ σS(f(T )) such that ν �∈ f(σS(T )). The function

h(x) := (f2(x) − 2Re[ν]f(x) + |ν|2)−1

is s-monogenic on σS(T ) by Lemma 3.5.7. By Theorem 3.4.6 we get

h(T )(f2(T )− 2Re[ν]f(T ) + |ν|2I) = I

this means that ν �∈ σS(f(T )), but this contradicts the assumption. So ν ∈
f(σS(T )). �
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Theorem 3.5.10. Let T ∈ B0,1
n (Vn), f ∈ NσS(T ), φ ∈ NσS(f(T )) and let F (s) =

φ(f(s)). Then F ∈ MσS(T ) and F (T ) = φ(f(T )).

Proof. The statement F ∈ MσS(T ) follows from Lemma 3.5.6 and the Spectral
Mapping Theorem. Let U ⊃ σS(f(T )) be an f(T )-admissible open bounded set
whose boundary is denoted by ∂U . Suppose that U∪∂U is contained in the domain
in which φ is s-monogenic. LetW be another T -admissible neighborhood of σS(T )
and let ∂W be its boundary. Suppose that W ∪ ∂W is contained in the domain
where f is s-monogenic and that f(W ∪ ∂W ) ⊆ U . Let I ∈ S and define the
operator

S−1(λ, f(T )) =
1

2π

∫
∂(W∩CI)

S−1(s, T ) dsI S
−1(λ, f(s))

where
S−1(λ, f(s)) = −(f(s)2 − 2Re[λ]f(s) + |λ|2)−1(f(s)− λ).

Observe that S−1(λ, f(s)), where it is defined, is left s-monogenic in the variable s
by Lemma 3.5.7 and it is right s-monogenic in the variable λ by Proposition 2.7.9.
In particular, if λ is a real number the function

S(λ, f(s)) = (f(s)− λ)−1(f(s)2 − 2Re[λ]f(s) + |λ|2)
is s-monogenic in the variable s. Since

S−1(λ, f(s))S(λ, f(s)) = S(λ, f(s))S−1(λ, f(s))

is the identity function, by Theorem 3.4.6, the operator S−1(λ, f(T )) satisfies the
equation:

[(f(T )− λI)−1 λ (f(T )− λI)− f(T )]S−1(λ, f(T )) (3.19)

= S−1(λ, f(T ))[(f(T )− λI)−1 λ (f(T )− λI)− f(T )] = I.
It is immediate to observe that if λ is not necessarily real, the relation (3.19) still
holds. In fact, replacing the explicit expression for S−1(λ, f(T )) we get:

S−1(λ, f(T )) = −(f(T )2 − 2Re[λ]f(T ) + |λ|2)−1(f(T )− λ);

in (3.19) we get an identity. As a consequence, we have

φ(f(T )) =
1

2π

∫
∂(W∩CI )

S−1(λ, f(T )) dλI φ(λ)

=
1

2π

∫
∂(W∩CI )

( 1

2π

∫
∂(U∩CI)

S−1(s, T ) dsI S
−1(λ, f(s))

)
dλI φ(λ)

=
1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI

( 1

2π

∫
∂(W∩CI)

S−1(λ, f(s)) dλI φ(λ)
)

=
1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI φ(f(s))

=
1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI F (s) = F (T ). �
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Theorem 3.5.11. Let T ∈ B0,1
n (Vn), fm ∈ MσS(T ), m ∈ N, and let W ⊃ σS(T ) be

a T -admissible domain. Then if fm converges uniformly to f on W ∩CI , for some
I ∈ S, then fm(T ) converges to f(T ) in Bn(Vn).

Proof. Let U be an axially symmetric s-domain such that U ⊂ W and assume
that ∂(U ∩ CI) consists of a finite number of continuously differentiable Jordan
arcs. Then fm → f converges uniformly on ∂(U ∩ CI) and consequently

fm(T ) =
1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI fm(s)

converges, in the uniform topology of operators, to

f(T ) =
1

2π

∫
∂(U∩CI)

S−1(s, T ) dsI f(s). �

Definition 3.5.12 (The S-spectral radius of T ). For any T ∈ B0,1
n (Vn) we define

the S-spectral radius of T to be the nonnegative real number

rS(T ) := sup { |s| : s ∈ σS(T ) }.

Theorem 3.5.13 (The S-spectral radius theorem). Let T ∈ B0,1
n (Vn) and let rS(T )

be the S-spectral radius of T . Then

rS(T ) = lim
m→∞ ‖Tm‖1/m.

Proof. For every s ∈ Rn+1 such that |s| > rS(T ) the series
∑

m≥0 T
m s−1−m con-

verges in Bn(Vn) to the S-resolvent operator S−1(s, T ). So the sequence Tm s−1−m

is bounded in the norm of Bn(Vn) and

lim sup
m→∞

‖Tm‖1/m ≤ rS(T ). (3.20)

The Spectral Mapping Theorem implies that σS(T
m) = (σS(T ))

m, so we have

(rS(T ))
m = rS(T

m) ≤ ‖Tm‖,

from which we get

rS(T ) ≤ lim inf ‖Tm‖1/m. (3.21)

From (3.20), (3.21) we have

rS(T ) ≤ lim inf
m→∞ ‖Tm‖1/m ≤ lim sup

m→∞
‖Tm‖1/m ≤ rS(T ). �
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3.6 Projectors

We begin this section by proving a technical lemma that generalizes the S-resolvent
equation (3.6).

Lemma 3.6.1. Let T ∈ B0,1
n (Vn). Set

Qm(s, T ) := Is[m−1]+ + T s[m−2]+ + T 2s[m−3]+ + . . .+ Tm−1, m ≥ 1

where s[k]+ = sk if k ≥ 0 , s[k]+ = 0 otherwise, and Q0(s, T ) := 0. Then

TmS−1(s, T ) = S−1(s, T )sm −Qm(s, T ), for all m = 0, 1, 2, . . . . (3.22)

Proof. Formula (3.22) holds trivially for m = 0 and holds for m = 1 because it
follows from the S-resolvent equation (3.6).

We now suppose that (3.22) holds for the natural numbers less than or equal
m and we show that it holds for m+ 1. By the induction step, we have

TmS−1(s, T ) = S−1(s, T )sm −Qm(s, T ),

so we can write:

Tm+1S−1(s, T ) = TS−1(s, T )sm − TQm(s, T )

= TS−1(s, T )sm − (T s[m−1]+ + . . .+ Tm)

= TS−1(s, T )sm + Ism − (Ism + T s[m−1]+ + . . .+ Tm)

and, using the S-resolvent equation (3.6), we have

Tm+1S−1(s, T ) = S−1(s, T )sm+1 −Qm+1(s, T ),

which is the formula we had to prove. �
Keeping in mind Remark 3.2.4, we can now prove the following theorem.

Theorem 3.6.2. Let T ∈ B0,1
n (Vn), f ∈ MσS(T ) and assume that σS(T ) = σ1S(T )∪

σ2S(T ) with dist(σ1S(T ), σ2S(T )) > 0. Let U be a T -admissible open set and let U1,
U2 open sets such that U = U1 ∪U2 with U1 ∩U2 = ∅ and such that σ1S(T ) ⊂ U1

and σ2S(T ) ⊂ U2. For I ∈ S set dsI = −dsI and define

Pj :=
1

2π

∫
∂(Uj∩CI)

S−1(s, T ) dsI ,

Tm
j :=

1

2π

∫
∂(Uj∩CI)

S−1(s, T ) dsI s
m , m = 1, 2, 3, . . . , j = 1, 2.

Then Pj are projectors and

(a) P1 + P2 = I,
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(b) TPj = Tj, j = 1, 2,

(c) Tm = Tm
1 + Tm

2 , m ≥ 1.

Proof. Observe that Pj = T 0
j and note that equation (3.22) for m = 0 is trivially

T 0
j S

−1(s, T ) = S−1(s, T )s0 = S−1(s, T ). So we have

P 2
j = Pj

1

2π

∫
∂(Uj∩CI )

S−1(s, T ) dsI =
1

2π

∫
∂(Uj∩CI)

PjS
−1(s, T ) dsI

=
1

2π

∫
∂(Uj∩CI)

S−1(s, T ) dsI = Pj .

To prove (a) we use the Cauchy integral theorem. Since U1 ∪ U2 = U , we have

1

2π

∫
∂(U1∩CI)

S−1(s, T ) dsI +
1

2π

∫
∂(U2∩CI)

S−1(s, T ) dsI

=
1

2π

∫
∂(U∩CI)

S−1(s, T ) dsI .

Since
1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI = I

this gives P1 + P2 = I .
To prove (b) we recall the resolvent relation, TS−1(s, T ) = S−1(s, T )s − I,

so

TPj =
1

2π

∫
∂(Uj∩CI)

TS−1(s, T ) dsI =
1

2π

∫
∂(Uj∩CI)

[S−1(s, T )s− I] dsI

=
1

2π

∫
∂(Uj∩CI)

S−1(s, T ) dsI s = Tj.

Now adding the relations Tj = TPj we get, using (a),

T1 + T2 = TP1 + TP2 = T (P1 + P2) = T,

which is part (c) in the case m = 1.
To prove (c) for m ≥ 2 observe that by Lemma 3.6.1 we get

S−1(s, T )sm − TmS−1(s, T ) = Is[m−1]+ + T s[m−2]+ + . . .+ Tm−1.

Now, for m ≥ 2, consider

TmPj =
1

2π

∫
∂(Uj∩CI)

TmS−1(s, T ) dsI

=
1

2π

∫
∂(Uj∩CI)

[S−1(s, T )sm − (Is[m−1]+ + T s[m−2]+ + . . .+ Tm−1)] dsI

=
1

2π

∫
∂(Uj∩CI)

S−1(s, T ) dsI s
m = Tm

j .

So adding TmP1 = Tm
1 and TmP2 = Tm

2 and recalling (a) we get (c). �
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3.7 Functional calculus for unbounded operators and
algebraic properties

Let V be a real Banach space and T = T0+
∑m

j=1 ejTj where Tμ : D(Tμ) → V are
linear operators for μ = 0, 1, . . . , n where at least one of the Tμ’s is an unbounded
operator. Then we will say that the operator T is unbounded.

Definition 3.7.1. Let V be a Banach space and let Vn be the two-sided Banach
module over Rn corresponding to V ⊗ Rn. Let Tμ : D(Tμ) ⊂ V → V be linear
closed densely defined operators for μ = 0, 1, . . . , n. Let

D(T ) = {v ∈ Vn : Tv ∈ Vn } (3.23)

be the domain of the operator T = T0 +
∑n

j=1 ejTj . We denote by K(Vn) the set
of all operators T such that:

(1) D(T ) =
⋂n

μ=0 D(Tμ) is dense in Vn,

(2) T − sI is densely defined in Vn,

(3) D(T 2) ⊂ D(T ) is dense in Vn.

Observe that, when T ∈ K(Vn), the operator

−(T 2 − 2Re[s]T + |s|2I)−1(T − sI)

is the restriction to the dense subspace D(T ) of Vn of a bounded linear operator
defined on Vn. This fact follows by the commutation relation

(T 2 − 2TRe[s] + |s|2I)−1Tv = T (T 2 − 2TRe[s] + |s|2I)−1v

which holds for all v ∈ D(T ) and for all s ∈ Rn+1 such that

(T 2 − 2TRe[s] + |s|2I)−1 ∈ Bn(Vn), (3.24)

since the polynomial operator

T 2 − 2TRe[s] + |s|2I : D(T 2) → V

has real coefficients. The operator

T (T 2 − 2TRe[s] + |s|2I)−1 : Vn → D(T )

is continuous for those s ∈ Rn+1 such that relation (3.24) holds. We introduce the
following auxiliary operator.

Definition 3.7.2. Let us set

Qs(T ) := (T 2 − 2TRe[s] + |s|2I)−1. (3.25)
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The S-resolvent set ρS(T ) of T is defined as

ρS(T ) := {s ∈ Rn+1 | Qs(T ) ∈ Bn(Vn)}

and the S-spectrum σS(T ) of T is defined by

σS(T ) = Rn+1 \ ρS(T ).

Let us consider R
n+1

= Rn+1 ∪ {∞} endowed with the natural topology.

Definition 3.7.3. We define the extended S-spectrum as

σS(T ) := σS(T ) ∪ {∞}.

Definition 3.7.4. We say that f is an s-monogenic function at ∞ if f(x) is an
s-monogenic function in a set D′(∞, r) = {x ∈ Rn+1 : |x| > r}, for some r > 0,
and limx→∞ f(x) exists and it is finite. We set f(∞) to be the value of this limit.

Remark 3.7.5. We know that if T is a linear and bounded operator, then σS(T )
is a compact nonempty set, but for unbounded operators, as in the classical case,
the S-spectrum can be bounded (and even empty) or unbounded (and even all of
Rn+1). In the sequel we will assume that ρS(T ) �= ∅.

Observe that the operator

−(T 2 − 2TRe[s] + |s|2I)−1(T − sI). (3.26)

is bounded from D(T ) → D(T 2) for all s ∈ ρS(T ). We will consider the operator
in (3.26) extended to all Vn as in the following definition.

Definition 3.7.6. The S-resolvent operator for, s ∈ ρS(T ), is defined by

S−1(s, T ) := Qs(T )s− TQs(T ) : Vn → D(T ). (3.27)

Remark 3.7.7. Observe that for the unbounded case the S-spectrum is not neces-
sarily compact and nonempty, but the theorem on the structure still holds.

Theorem 3.7.8 (Structure of the spectrum). Let T ∈ K(Vn) such that ρS(T ) �= ∅.
If p ∈ Rn+1 belongs to σS(T ), then all the elements of the sphere [p] belong to
σS(T ). The S-spectrum σS(T ) is a union of points on the real axis and/or (n−1)-
spheres.

Proof. The proof is analogous to the one of the bounded case. It immediately
follows from the structure of the operator Qs(T ). �
Theorem 3.7.9. Let T ∈ K(Vn) such that ρS(T ) �= ∅. Then, for s ∈ ρS(T ), the
S-resolvent operator defined in (3.27) satisfies the equation

S−1(s, T )sv − TS−1(s, T )v = Iv, for all v ∈ Vn. (3.28)
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Proof. It follows by direct computation. For s ∈ ρS(T ) replace the S-resolvent
operator in the equation (3.28) we get

[Qs(T )s− TQs(T )]sv − T [Qs(T )s− TQs(T )]v = Iv, for all v ∈ Vn.

Observe that T [Qs(T )s−TQs(T )]v ∈ Vn since Qs(T ) : Vn → D(T 2) and by trivial
computations we get the identity

(T 2 − 2TRe[s] + |s|2I)Qs(T )v = v, for all v ∈ Vn,

which proves the statement. �

Definition 3.7.10. Let s ∈ ρS(T ) �= ∅. The equation

S−1(s, T )s− TS−1(s, T ) = I (3.29)

will be called the S-resolvent equation.

Recalling the notion of T -admissible open set given in Definition 3.2.2, we
now give the following definition:

Definition 3.7.11. Let T ∈ K(Vn). A function f is said to be locally s-monogenic
on σS(T ) if there exists a T -admissible open set U such that f is s-monogenic
on U and at infinity. We will denote by MσS(T ) the set of locally s-monogenic
functions on σS(T ).

Remark 3.7.12. As we have pointed out in Remark 3.2.4, the open set U related
to f ∈ MσS(T ) need not be connected. Moreover, as in the classical functional
calculus, U can depend on f and can be unbounded.

Definition 3.7.13. Let k ∈ R and define the homeomorphism

Φ : R
n+1 → R

n+1
,

p = Φ(s) = (s− k)−1, Φ(∞) = 0, Φ(k) = ∞.

Definition 3.7.14. Let T : D(T ) ∈ K(Vn) with ρS(T ) ∩ R �= ∅ and suppose that
f ∈ MσS(T ). Let us consider

φ(p) := f(Φ−1(p))

and the operator

A := (T − kI)−1, for some k ∈ ρS(T ) ∩R.

We define

f(T ) := φ(A). (3.30)
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Remark 3.7.15. Observe that, since k ∈ R, we have that:
i) the function φ is s-monogenic because it is the composition of the function

f which is s-monogenic and Φ−1(p) = p−1 + k which is s-monogenic with real
coefficients;

ii) if k ∈ ρS(T ) ∩ R we have that (T − kI)−1 = −S−1(k, T ).

We now need a lemma.

Lemma 3.7.16. Let s, p ∈ Rn+1 and k ∈ R such that p = (s − k)−1. Then the
following identities hold

s0|p|2 = k|p|2 + p0, (3.31)

|p|2|s|2 = k2|p|2 + 2p0k + 1, (3.32)

(2kp− 2s0p+ 1)
1

|p|2 = −p−2, (3.33)

k2p− |s|2p+ k

|p|2 = −sp−2 (3.34)

Proof. Identity (3.31) follows from

Re[s− k] = Re[p−1] = Re[p|p|−2]

from which we have

s0 − k = p0|p|−2.

Identity (3.32) follows from the chain of identities

|s|2 = ss = (k + p−1)(k + p−1) = (k + p−1)(k + p−1)

= k2 + k(p−1 + p−1) + p−1p−1 = k2 + k
2p0
|p|2 +

1

|p|2 .

To prove (3.33) we consider the chain of identities

(2k − 2s0 + p−1)
p

|p|2 = (2k − 2s0 + p−1)p−1

= (2k − 2s0 + s − k)(s− k) = −(s− k)2 = −p−2.

Finally we verify that (3.34) reduces to (3.32). Multiply (3.34) by p2 on the right
to get

(k2 − |s|2)|p|2p+ kp2

|p|2 = −s

and now multiply by p on the right to get

(k2 − |s|2)pp+
k

|p|2p
2p = −sp (3.35)
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and from p = (s− k)−1 we get that

sp = 1 + kp (3.36)

so from (3.35) and (3.36) we have

(k2 − |s|2)|p|2 + kp+ 1 + kp = 0

which is identity (3.32). �

We can now prove a crucial result.

Theorem 3.7.17. If k ∈ ρS(T ) ∩ R �= ∅ and Φ, φ are as above, then Φ(σS(T )) =
σS(A) and the relation φ(p) := f(Φ−1(p)) determines a one-to-one correspon-
dence between f ∈ MσS(T ) and φ ∈ MσS(A).

Proof. From the definition of A we also have, for k ∈ ρS(T ) ∩ R �= 0,

A := (T − kI)−1 : Vn → D(T ),

A−1 = T − kI : D(T ) → Vn

and
A2 := (T 2 − 2kT + k2I)−1 : Vn → D(T 2),

A−2 = T 2 − 2kT + k2I : D(T 2) → Vn.

Observe that for p ∈ ρS(A)

Qp(A) := (A2 − 2p0A+ |p|2I)−1 ∈ Bn(Vn)

and
S−1(p, A) = Qp(A)p−AQp(A).

Let us consider the relation

Qp(A) =
[
(T − kI)−2 − 2p0(T − kI)−1 + |p|2I

]−1

=
[
[I − 2p0(T − kI) + |p|2(T − kI)2](T − kI)−2

]−1

= (T − kI)2[I − 2p0(T − kI) + |p|2(T − kI)2]−1

= |p|−2(T − kI)2[T 2 − 2(k + p0/|p|2)T + (k2|p|2 + 2p0k + 1)/|p|2I]−1.

Using (3.31) and (3.32) we get

Qp(A) = |p|−2(T − kI)2[T 2 − 2s0T + |s|2I]−1 : Vn → Vn,

that is
Qp(A) = |p|−2(T − kI)2Qs(T ). (3.37)
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Since A is a bounded operator S−1(p, A) = Qp(A)p − AQs(A) : Vn → Vn, we
have

S−1(p, A) = |p|−2(T − kI)2Qs(T )p− |p|−2(T − kI)Qs(T )

= |p|−2
[
(T 2 − 2kT + k2I)Qs(T )p− (T − k)Qs(T )

]
= |p|−2

[
(T 2 − 2s0T + |s|2I)Qs(T )p

+ (−2kT + k2 + 2s0T − |s|2)Qs(T )p− (T − kI)Qs(T )
]

= |p|−2
[
Ip+Qs(T )[k

2p− |s|2p+ k]

− TQs(T )[2kp− 2s0p+ 1]
]

=
[
Ip−1 +Qs(T )

k2p− |s|2p+ k

|p|2 − TQs(T )
2kp− 2s0p+ 1

|p|2 .
]

Now we use the identities (3.33) and (3.34) to get

S−1(p, A) = Ip−1 −Qs(T )sp
−2 + TQs(T )p

−2

and finally
S−1(p, A) = Ip−1 − S−1(s, T )p−2. (3.38)

So p ∈ ρS(A), p �= 0, then s ∈ ρS(T ).
Now take s ∈ ρS(T ). We verify that

S−1(s, T ) = −AS−1(p, A)p

holds. Indeed, by (3.37) we get the qualities:

−AS−1(p, A)p = −A[Qp(A)p −AQp(A)]p

= −(T − kI)−1
[
[|p|−2(T − kI)2Qs(T )]p

− (T − kI)−1[|p|−2(T − kI)2Qs(T )]
]
p

= −TQs(T ) +Qs(T )(
p

|p|2 + k) = S−1(s, T ).

So if s ∈ ρS(T ), then p ∈ ρS(A), p �= 0.
The point p = 0 belongs to σS(A) since S−1(0, A) = A−1 = T − kI is

unbounded. The last part of the statement is evident from the definition of Φ. �
Bearing in mind Definition 3.7.14, we can state the following result:

Theorem 3.7.18. Let T ∈ K(Vn) with ρS(T )∩R �= ∅ and suppose that f ∈ MσS(T ).
Then the operator f(T ) = φ(A) is independent of k ∈ ρS(T ) ∩ R. Let W be a T-
admissible open set and let f be an s-monogenic function such that its domain of
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s-monogenicity contains W . Set dsI = −dsI for I ∈ S, then we have

f(T ) = f(∞)I +
1

2π

∫
∂(W∩CI )

S−1(s, T )dsIf(s). (3.39)

Proof. The first part of the statement follows from the validity of formula (3.39)
since the integral is independent of k.

Given k ∈ ρS(T )∩R and the set W we can assume that k �∈ W ∩CI , ∀I ∈ S

since otherwise, by the Cauchy theorem, we can replace W by W ′, on which f

is s-monogenic, such that k �∈ W
′ ∩ CI , without altering the value of the integral

(3.39). Moreover, the integral (3.39) is independent of the choice of I ∈ S, thanks
to the structure of the spectrum (see Theorem 3.2.1) and an argument similar to
the one used to prove Theorem 3.3.2.

We have that V ∩ CI := Φ−1(W ∩ CI) is an open set that contains σS(T )
and its boundary ∂(V ∩CI) = Φ−1(∂(W ∩CI)) is positively oriented and consists
of a finite number of continuously differentiable Jordan curves. Using the relation
(3.38) we have

1

2π

∫
∂(W∩CI)

S−1(s, T )dsIf(s)

= − 1

2π

∫
∂(V∩CI)

(
pI − S−1(p, A)p2

)
p−2dpIφ(p)

= − 1

2π

∫
∂(V∩CI)

p−1dpIφ(p) +
1

2π

∫
∂(V∩CI)

S−1(p, A)dpIφ(p)

= −Iφ(0) + φ(A).

Now by definition φ(A) = f(T ) and φ(0) = f(∞) we obtain

1

2π

∫
∂(W∩CI )

S−1(s, T )dsIf(s) = −If(∞) + f(T ). �

Theorem 3.7.19. Let f and g ∈ MσS(T ) . Then

(f + g)(T ) = f(T ) + g(T ).

Let g ∈ MσS(T ) and let f ∈ M̃σS(T ). Then

(fg)(T ) = f(T )g(T ).

Proof. Observe that fg ∈ MσS(T ) thanks to Proposition 3.4.2. Let φ(μ) =
f(Φ−1(μ)) and ψ(μ) = g(Φ−1(μ)). Thanks to Proposition 3.4.2 and Lemma 3.5.6
the product φψ is s-monogenic. By definition we have

f(T ) = φ(A), g(T ) = ψ(A)
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By Theorem 3.4.6 we have

(φ+ ψ)(A) = φ(A) + ψ(A), (φψ)(A) = φ(A)ψ(A)

so we get the statement. �
Theorem 3.7.20. Let T ∈ K(Vn) with ρS(T ) ∩ R �= ∅ and let f ∈ NσS(T ). Then

σS(f(T )) = f(σS(T )).

Proof. Let φ(μ) = f(Φ−1(μ)). By the Spectral Mapping Theorem we have
φ(σS(A)) = σS(φ(A)) and by Theorem 3.7.17 we also have Φ(σS(T ) ∪ {∞}) =
σS(A). So we obtain

φ(Φ(σS(T ) ∪ {∞})) = φ(σS(A)) = σS(φ(A)) = σS(f(T )).

On the other hand

φ(Φ(σS(T ) ∪ {∞})) = f(Φ−1(Φ(σS(T ) ∪ {∞}))
)
= f(σS(T )). �

We conclude the section with an example.

Example 3.7.21. Let T ∈ K(Vn) such that T−1 is a bounded operator. From the
definition of S-resolvent operator we get S−1(0, T ) = −T−1 so ρS(T ) contains 0.
Moreover the function f(x) = x−1 is s-monogenic in a T -admissible open set U
such that 0 �∈ U . Since f(x) = x−1 → 0 as x → ∞, by Theorem 3.7.18, we have

T−1 =
1

2π

∫
∂(U∩CI)

S−1(s, T )dsIs
−1

and thanks to Theorem 3.7.20 we obtain:

σS(T
−1) = {λ−1 : λ ∈ σS(T ) }.

3.8 Notes

Note 3.8.1. Further readings. The material in this chapter covers the contents of
[25], where the authors started the study of this functional calculus, and its further
developments due to Colombo and Sabadini, [15] and [18]. For further readings
see also [19], [22] and [20].

Note 3.8.2. Monogenic functions. A functional calculus based on the classical
notion of monogenic functions was extensively studied by Jefferies, McIntosh and
their coworkers. We mention here, with no claim of completeness, the works [60],
[61], [65], [66], [77], the book [62] and the references therein. In this note we
mention some of their ideas. To start with, we will quickly recall the basic notions
on monogenic functions.
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The well-known notion of monogenic functions with values in a Clifford al-
gebra (see [7]) is based on the so-called Dirac operator

∂x =

n∑
j=1

ej∂xj . (3.40)

Remark 3.8.3. A variation of the Dirac operator is the Cauchy–Riemann operator:

∂x = ∂x0 + ∂x,

whose nullsolutions f : U ⊆ Rn+1 → Rn on an open set U are still called (left)
monogenic. Moreover, in the literature, the Cauchy–Riemann operator is often
called a Dirac operator since it is possible to obtain it from the Dirac operator
in (3.40) by grouping the imaginary units and making some identifications in a
suitable way.

In the sequel we will consider functions which are monogenic according to
the following definition:

Definition 3.8.4. A real differentiable function f : U ⊆ Rn+1 → Rn on an open set
U is called (left) monogenic in U if it satisfies ∂xf(x) = 0 on U .

Monogenic functions can be expanded into power series in terms of the build-
ing blocks zj = ejx0 − e0xj , 1 ≤ j ≤ n: one has to consider these symmetric
polynomials and the sum of all their possible permutations for any given degree k
according to the following definition:

Definition 3.8.5. Homogeneous monogenic polynomials of degree k are defined as

V �1,...,�k(x) =
1

k!

∑
�1,...,�k

z�1 . . . z�k , (3.41)

where zj = xje0 − x0ej and the sum is taken over all different permutation of
�1, . . . , �k.

Definition 3.8.6. Denote by Σn the surface area of the unit sphere in Rn+1 and by
x̄ = x0 − x the conjugate of x = x0 + x. For each x ∈ Rn+1, define the function
G(·,x) as

G(ω,x) =
1

Σn

ω̄ − x̄

|ω − x|n+1
. (3.42)

Note that G(ω,x), for ω �= x, is both left and right monogenic as a function
of ω. It plays the role of the Cauchy kernel as shown in the following result (see
[7]).

Theorem 3.8.7. Let Ω ⊂ Rn+1 be a bounded open set with smooth boundary ∂Ω
and exterior unit normal n(ω) defined for all ω ∈ ∂Ω. For any left monogenic
function f defined in a neighborhood of U of Ω, we have the Cauchy formula∫

∂Ω

G(ω,x)n(ω)f(ω)dμ(ω) =

{
f(x), if x ∈ Ω,
0, if x �∈ Ω,

(3.43)
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where μ is the surface measure of ∂Ω.

Note 3.8.8. The monogenic functional calculus. The Cauchy formula (3.43) is the
starting point for the monogenic functional calculus. To this purpose, it is useful
to consider a suitable series expansion of the kernel G(ω, x) = Gω(x):

Gω(x) =
∑
k≥0

⎛⎝ ∑
(�1,...,�k)

V �1,...,�k(x)W�1,...,�k(ω)

⎞⎠
in the region |x| > |ω| (see [7]) where, for each ω ∈ Rn+1, ω �= 0,

W�1,...,�k(ω) = (−1)k∂ω�1
. . . ∂ω�k

Gω(0)

and V �1,...,�k(x) are defined in (3.41).
Keeping in mind the definition of Banach modules, see the beginning of this

chapter, consider now an n-tuple T = (T1, . . . , Tn) of bounded linear operator
acting on a Banach space X and let

R > (1 +
√
2)‖

n∑
j=1

Tjej‖. (3.44)

Let us formally replace zj by Tj and 1 by the identity operator I in the Cauchy
kernel series. It can be shown (see [65] Lemma 3.12, [62], Lemma 4.7) that

∑
k≥0

⎛⎝ ∑
(�1,...,�k)

V �1,...,�k(T )W�1,...,�k(ω)

⎞⎠ (3.45)

where

V �1,...,�k(T ) =
1

k!

∑
�1,...,�k

T�1 . . . T�k ,

converges uniformly for all ω ∈ Rn+1 such that |ω| ≥ R, where R is given in
(3.44). We set the sum of the series (3.45) equal to Gω(T ) which turns out to be
a bounded operator.

Remark 3.8.9. In [65] the so-called resolvent set is the set of ω ∈ Rn such that
the series (3.45) converges. The spectral set σC(T ) of T is defined as the set
complement of the resolvent set.

An important result is the following (see [65]):

Theorem 3.8.10. Let (T1, . . . , Tn) be an n-tuple of bounded self-adjoint operators.
Let Ω be a domain with piecewise smooth boundary whose complement is connected,
and suppose that σC(T ) ⊆ Ω. Then, for every f ∈ M(Ω) the mapping

f(x) �→ f(T ) =

∫
∂Ω

Gω(T )n(ω)f(ω)dμ(ω)

defines a functional calculus.
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Remark 3.8.11. Assume that T is an n-tuple of bounded self adjoint operators,
and Ω is an open set with piecewise smooth boundary with connected complement
containing the spectral set σC(T ). Then, see [65], the map in Theorem 3.8.10
defines a functional calculus for functions which are monogenic on Ω. This fact is
guaranteed by a Runge type approximation theorem.

In [62] the definition of spectrum is different:

Definition 3.8.12. The monogenic spectrum γ(T ) of the n-tuple T is the comple-
ment of the largest connected open set U in Rn+1 in which the function Gω(T )
defined by the series above is the restriction of a monogenic function with domain
U .

Let 〈T, ξ〉 :=
∑n

j=1 Tjξj and suppose that σ(〈T, ξ〉) is real for all ξ ∈ Rn

(here σ denotes the spectrum in the classical sense, i.e., the set of singularities of
(λI − 〈T, ξ〉)−1). Then we have the following result (see [62]):

Theorem 3.8.13. Let T = (T1, . . . , Tn) be an n-tuple of noncommuting bounded
linear operator acting on a Banach space X and suppose that σ(〈T, ξ〉) ⊆ R for all
ξ ∈ Rn. Then the Bn(Xn)-valued function Gω(T ) defined in (3.45) is the restriction
to the region

Γ = {ω ∈ Rn+1 : |ω| > (1 +
√
2)‖

n∑
j=1

Tjej‖}

of a left and right monogenic function on Rn+1\Rn.

This result guarantees that Gω(T ) is monogenic outside a ball. However,
Gω(T ) can be monogenic in a larger set containing Γ. Denote with the same
symbol Gω(T ) its maximal monogenic extension and let Ω be the union of all
open sets containing the open set Γ on which is defined a two-sided monogenic
function whose restriction on Γ equals the series Gω(T ). Then the extension is
unique because the domain Ω is connected, contains Γ and the spectrum is a
subset of Rn and hence it cannot disconnect a set in Rn+1.

Let T = (T1, . . . , Tn) be an n-tuple of noncommuting bounded linear oper-
ators acting on a Banach space X and ξ ∈ Rn. Suppose that σ(〈T, ξ〉) is real for

all ξ ∈ Rn. Let Ω ⊆ Rn+1 be a bounded open neighborhood of γ(T ) with smooth
boundary and exterior normal n(ω), for all ω ∈ ∂Ω. Let f be a monogenic function
defined in an open neighborhood of Ω. Define the operator f(T ) by

f(T ) =

∫
∂Ω

Gω(T )n(ω)f(ω)dμ(ω). (3.46)

Denote by M(γ(T ),Rn) the right module of monogenic functions defined in a
neighborhood of γ(T ) in Rn+1.

Definition 3.8.14. The map f �→ f(T ), f ∈ M(γ(T ),Rn) is called monogenic
functional calculus.
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The map defined above is a right-module homomorphism.

Remark 3.8.15. Let pξ be a complex-valued polynomial, ξ ∈ Rn and consider

pξ(x1ξ1 + . . .+ xnξn).

Then we define
pξ(T1, . . . , Tn) := pξ(T1ξ1 + . . .+ Tnξn).

Note that the function Gω(T ) admits a plane wave expansion as follows

Proposition 3.8.16. Let ω ∈ Rn+1, ω = ω0 + ω, ω0 �= 0. Then

Gω(T ) =
(n− 1)!

2

(
i

2π

)n

sgn(ω0)
n−1

∫
Sn−1

(1 + is)(〈ωI − T, s〉 − ω0s)
−n ds.

(3.47)

When the condition σ(〈T, ξ〉) ∈ R is satisfied for all ξ ∈ Rn, then γ(T ) ⊂ Rn

is the complement in Rn+1 of the points ω at which the function defined by the
integral above is continuous. In the case of commuting bounded linear operators
the spectrum can be determined directly as shown in the next result (see Theorem
3.3 and Corollary 3.4 in [77]).

Theorem 3.8.17. Let T = (T1, . . . , Tn) be a n-tuple of commuting bounded linear
operator acting on a Banach space X and suppose that σ(Tj) ⊆ R for all j =
1, . . . , n. Then γ(T ) is the complement in Rn of the set of all λ ∈ Rn for which
the operator

∑n
j=1(λjI − Aj)

2 is invertible in B(X) (equivalently: (λI − T ) is
invertible in End(X)).



Chapter 4

Quaternionic Functional
Calculus

The first section of this chapter collects the main results on the theory of slice
regular functions. Similarly to what happens in the theory of regular functions
in the sense of Cauchy–Fueter, whose results sometimes resemble the analogous
results for monogenic functions, also for slice regular functions we have that some
statements and their proofs mimic those we proved in Chapter 2. They are re-
peated here for the reader’s convenience, especially because the notation in the
quaternionic case might be simpler. Note that the richer structure of quaternions
allows results which are not necessarily true for s-monogenic functions. The re-
sults that are specific to the quaternionic case or those for which the proofs are
significantly different or simpler will be followed by their proofs.

4.1 Notation and definition of slice regular functions

The Clifford algebra over two units R2 is the algebra of quaternions. It is usually
denoted by H in honor of Hamilton who introduced them in 1843. Instead of the
imaginary units e1, e2 and e1e2, the imaginary units in H are denoted by i, j and
k respectively and an element in H is of the form q = x0 + ix1 + jx2 + kx3, for
x� ∈ R. The real algebra H is a skew field and there are no higher-dimensional
Clifford algebras which are division algebras. The real part, imaginary part and
modulus of a quaternion are defined as

Re q = x0, Im q = ix1 + jx2 + kx3, |q| =
√
x20 + x21 + x22 + x23.

The conjugate of the quaternion q = x0 + ix1 + jx2 + kx3 is defined by

q̄ = Re q − Im q = x0 − ix1 − jx2 − kx3

F. Colombo et al., Noncommutative Functional Calculus: Theory and Applications of Slice 
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(compare with Definition 2.1.11) and it satisfies

|q| =
√
qq̄ =

√
q̄q.

The inverse of any nonzero element q is given by

q−1 =
q̄

|q|2 .

Notice that a generic element q of H can be written as the linear combination of
two complex numbers:

q = (x0 + x1i) + (x2 + x3i)j. (4.1)

By identifying an element in H with pairs of complex numbers, each in the complex
plane R+Ri, it is possible to define the algebra of quaternions using the well-known
Cayley–Dickson process, see [70]. From this point of view, a quaternion q is a pair
of complex numbers (a, b) endowed with an operation of addition componentwise
and with the multiplication defined by

qp = (a, b)(c, d) = (ac− db̄, ad+ bc̄)

where ā denotes the complex conjugate of a.
Let us denote by S the unit sphere of purely imaginary quaternions, i.e.,

S = {q = ix1 + jx2 + kx3 such that x21 + x22 + x23 = 1}.

Notice that if I ∈ S, then I2 = −1; for this reason the elements of S are also called
imaginary units. Note that S is a 2-dimensional sphere in R4. Given a nonreal
quaternion q = x0 + Imq = x0 + I|Imq|, I = Imq/|Imq| ∈ S, we can associate to it
the 2-dimensional sphere defined by

[q] = {x0 + I|Imq| | I ∈ S}.

This sphere has center at the real point x0 and radius |Imq|. In this chapter we
will denote an element in the complex plane R+ IR by x+ Iy.

Definition 4.1.1. Let U be an open set in H. A real differentiable function f : U →
H is said to be slice left regular (or s-regular for short) if, for every I ∈ S, its
restriction fI to the complex plane CI = R + IR passing through the origin and
containing 1 and I satisfies

∂If(x+ Iy) :=
1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ Iy) = 0,

on U ∩CI . We will denote by R(U), or by RL(U) when confusion may arise, the
set of left s-regular functions on the open set U .
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Analogously, a function is said to be right slice regular (or right s-regular for
short) if

(fI∂I)(x + Iy) :=
1

2

(
∂

∂x
fI(x+ Iy) +

∂

∂y
fI(x + Iy)I

)
= 0,

on U ∩ CI . We will denote by RR(U) the set of right s-regular functions on the
open set U .

Remark 4.1.2. It is easy to verify that the (left) s-regular functions on U ⊆ H

form a right H-vector space. The right s-regular functions on U ⊆ H form a left
H-vector space.

An immediate consequence of the definition of s-regularity is that the mono-
mial qna, with a ∈ H, is s-regular and so all polynomials with quaternionic coeffi-
cients on the right are s-regular. Obviously, polynomials with quaternionic coeffi-
cients on the left are right s-regular.

We define the I-derivative of f at q by

∂IfI(x+ Iy) :=
1

2

(
∂

∂x
fI(x+ Iy)− I

∂

∂y
fI(x+ Iy)

)
,

and the right I-derivative by

(fI∂I)(x + Iy) :=
1

2

(
∂

∂x
fI(x+ Iy)− ∂

∂y
fI(x+ Iy)I

)
.

We are now ready to give the following definition:

Definition 4.1.3. Let U be an open set in H, and let f : U → H be an s-regular
function. The slice derivative (in short s-derivative) of f , ∂sf , is defined as follows:

∂s(f)(q) =

⎧⎨⎩
∂I(f)(q) if q = x+ Iy, y �= 0,

∂f

∂x
(x) if q = x ∈ R.

Notice that the definition of s-derivative is well posed because it is applied
only to s-regular functions for which

∂

∂x
f(x+ Iy) = −I ∂

∂y
f(x+ Iy) ∀I ∈ S,

and therefore, analogously to what happens in the complex case,

∂s(f)(x + Iy) = ∂I(f)(x + Iy) = ∂x(f)(x + Iy).

Note that if f is an s-regular function, then its s-derivative is still regular because

∂I(∂sf(x+ Iy)) = ∂s(∂If(x+ Iy)) = 0, (4.2)
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and therefore

∂ns f(x+ Iy) =
∂nf

∂xn
(x + Iy).

We will now identify a class of domains that naturally qualify as domains of
definition of regular functions. Other reasons for this definition will appear in the
sequel.

Definition 4.1.4. Let U ⊆ H be a domain in H. We say that U is a slice domain
(s-domain for short) if U ∩R is nonempty and if U ∩CI is a domain in CI for all
I ∈ S.

In order to study s-regular functions, we will need a representation of the
restriction of an s-regular function as a pair of holomorphic functions. To do so,
we need a preliminary, simple result which is the quaternionic version of formula
(2.2):

Proposition 4.1.5. Let I and J be two elements in S. Then their quaternionic
product IJ can be computed through the following formula:

IJ = −〈I, J〉+ I ∧ J.

Two elements I and J in S are orthogonal if and only if 〈I, J〉 = 0. The previ-
ous proposition shows, in particular, that the product of two orthogonal elements
of S lies in S as well. We will use this simple fact to build orthogonal bases in S.

Proposition 4.1.6. Let I and J be two orthogonal elements in S, and let K = IJ.
Then:

(1) K = IJ = −JI is an element of S,

(2) K is orthogonal to both I and J,

(3) JK = I = −KJ and KI = J = −IK.
Proof. (1) Since I and J are orthogonal, and I ∧ J = −J ∧ I, the result is an
immediate consequence of the previous proposition.

(2) Using the arguments above, we obtain

〈K, I〉 = 〈IJ, I〉 = 〈I ∧ J, I〉 = 0.

(3) By a repeated application of Proposition 4.1.5 we obtain

JK = J(IJ) = J(−〈I, J〉+ I ∧ J)
= −〈J,−〈I, J〉+ I ∧ J〉+ J ∧ (−〈I, J〉+ I ∧ J).

The orthogonality of I and J implies

JK = −〈J, I ∧ J〉+ J ∧ (I ∧ J).

Now note that 〈J, I ∧ J〉 = 0 because I ∧ J is orthogonal to J , and that, by the
same reason, IJ = I ∧ J. Thus to conclude the proof we only need to show that
J ∧K = I. This is an immediate consequence of the orthogonality of I and J . �
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This result shows that we can use I, J , and K as a basis for S, and that,
given any element I in S, we can always construct such a basis, though not in a
unique way. We now state the Splitting Lemma:

Lemma 4.1.7 (Splitting Lemma). If f is an s-regular function on an open set
U , then for every I ∈ S, and every J ∈ S, perpendicular to I, there are two
holomorphic functions F,G : U ∩ CI → CI such that for any z = x+ Iy, it is

fI(z) = F (z) +G(z)J.

Proof. LetK ∈ S be such that I, J,K is an orthogonal basis and write fI(x+Iy) =
f(x+ Iy) as f = f0 + If1 + Jf2 +Kf3. Since f is s-regular, we know that

(
∂

∂x
+ I

∂

∂y
)fI(x + Iy) = 0.

This expression becomes

∂f0
∂x

− ∂f1
∂y

+ I(
∂f0
∂y

+
∂f1
∂x

) + J(
∂f2
∂x

− ∂f3
∂y

) +K(
∂f3
∂x

+
∂f2
∂y

) = 0.

Therefore the functions f0+ If1 and f2+ If3 satisfy the Cauchy–Riemann system
and thus they are both holomorphic. In particular, if we set f0 + If1 = F , and
f2 + If3 = G, we obtain that

fI(x+ Iy) = F (x+ Iy) +G(x+ Iy)J,

and the lemma follows with z = x+ Iy. �

4.2 Properties of slice regular functions

As we saw previously, polynomials in q are s-regular. In this section we will show
that in fact power series are s-regular as well and that every s-regular function
defined on an s-domain can be expanded into power series into a small open ball
centered at a real point of the domain.

The Splitting Lemma 4.1.7 shows that every s-regular function f on an s-
domain U can be written on U ∩ CI as f = F +GJ , with J orthogonal to I and
F , G holomorphic on the plane CI ; it is therefore obvious that f admits, on that
plane, a series expansion in powers of z. Such an expansion can be used to provide
a series expansion for f in powers of q. The next few results are stated for s-regular
functions on balls

B = B(0, R) = {q ∈ H | |q| < R},
centered at the origin with positive radius R. It is easy to see how the proofs can be
modified to account for the case of balls with center on any point on the real axis.
Unlike the complex case, however, it is not possible in general to extend the theory
to a ball centered in any point of the quaternionic space. Indeed, f(q) = (q − p)n

is not regular unless p is real.
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Theorem 4.2.1. A function f : B → H is s-regular if, and only if, it has a series
expansion of the form

f(q) =
∑
n≥0

qn
1

n!

∂nf

∂xn
(0)

converging on B. In particular if f is s-regular, then it is infinitely differentiable
on B.

Corollary 4.2.2. Let f : B → H be s-regular. If there exists I ∈ S such that
f(CI) ⊆ CI , then the series expansion of f

f(q) =
∑
n≥0

qn
1

n!

∂nf

∂xn
(0)

has all its coefficients in CI . If, in particular, there are two different units I, J ∈ S

such that f(CI) ⊆ CI and f(CJ) ⊆ CJ , then the coefficients are real.

The previous results extend to the case of an s-domain as follows:

Corollary 4.2.3. Let f be s-regular on an s-domain U . Then for any real point p0
in U , the function f can be represented by power series

f(q) =
∑
n≥0

(q − p0)
n 1

n!

∂nf

∂xn
(p0)

on the ball B(p0, R) where R = Rp0 is the largest positive real number such that
B(p0, R) is contained in U .

The power series expansion is the key ingredient in proving the analogs, for
s-regular functions, of many well-known results from the theory of holomorphic
functions in one variable.

Theorem 4.2.4 (Identity Principle). Let f : U → H be an s-regular function on an
s-domain U . Denote by Zf = {q ∈ U : f(q) = 0} the zero set of f . If there exists
I ∈ S such that CI ∩ Zf has an accumulation point, then f ≡ 0 on U .

This result immediately implies the following corollary.

Corollary 4.2.5. Let f and g be s-regular functions on an s-domain U . If there
exists I ∈ S such that f ≡ g on a subset of U ∩ CI having an accumulation point
in U ∩CI , then f ≡ g everywhere on U .

We will now prove a natural analog, for s-regular functions, of the Cauchy
representation formula. In order to state it appropriately, we will adopt the fol-
lowing notation. If q ∈ H, we set

Iq =

⎧⎪⎨⎪⎩
Im(q)

|Im(q)| ∈ S if Im(q) �= 0,

any element of S otherwise.
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It is immediate that for any nonreal quaternion q ∈ H\R, there exist, and are
unique, x, y ∈ R with y > 0, and such that q = x+ Iqy.

We can now prove an integral representation formula, which is of limited
validity, but it is enough to prove several results.

Theorem 4.2.6 (Cauchy formula, I). Let U ⊂ H be an axially symmetric s-domain
and q ∈ U . Let f : U → H be an s-regular function, and suppose γ ⊂ CIq be a
continuously differentiable Jordan curve surrounding q. Then

f(q) =
1

2π

∫
γ

(ζ − q)−1dζIqf(ζ),

where dζIq = −dζIq.

Proof. Notice that for any ζ belonging to the plane CIq containing q, ζ �= q we
have the equality

(ζ − q)−1dζ = dζ(ζ − q)−1.

The result now follows immediately from the Splitting Lemma and the classical
Cauchy formula, as indicated by the following equalities:

1

2π

∫
γ

(ζ − q)−1dζIqf(ζ) =
1

2π

∫
γ

(ζ − q)−1dζIqfIq (ζ)

=
1

2π

∫
γ

(ζ − q)−1dζIq (F (ζ) +G(ζ)J) (4.3)

=
1

2π

∫
γ

(ζ − q)−1dζIqF (ζ) +

(
1

2π

∫
γ

(ζ − q)−1dζIqG(ζ)

)
J

= F (q) +G(q)J = f(q). �

As an immediate consequence we obtain:

Theorem 4.2.7 (Cauchy Estimates). Let U ⊂ H be an axially symmetric s-domain
and let f : U → H be an s-regular function. Let p0 ∈ U ∩ R, I ∈ S, and r > 0 be
such that

ΔI(p0, r) = {(x+ Iy) : (x− p0)
2 + y2 ≤ r2}

is contained in U ∩CI . If MI = max{|f(q)| : q ∈ ∂ΔI(p0, r)} and if M = inf{MI :
I ∈ S}, then

1

n!

∣∣∣∣∂nf∂xn
(p0)

∣∣∣∣ ≤ M

rn
, n ≥ 0.

We now have all the tools needed to prove the analog of the Liouville theorem.

Theorem 4.2.8 (Liouville). Let f : H → H be an entire regular function (i.e., an
s-regular function defined and s-regular everywhere on H). If f is bounded by a
positive constant M , then f is constant.
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We now show how to generalize the theory of Laurent series to the quater-
nionic case, and we show how the domain of convergence of such series

∑
n∈Z

qnan
is a four-dimensional spherical shell A(0, R1, R2) = {q ∈ H : R1 < |q| < R2}. More
precisely one can prove, just as in the complex case, the following result.

Lemma 4.2.9. Let {an}n∈Z ⊂ H. There exist R1, R2 with 0 ≤ R1 < R2 ≤ ∞ such
that

(1) the series
∑

n∈N
qnan and

∑
n∈N

q−na−n both converge absolutely and uni-
formly on compact subsets of A = A(0, R1, R2);

(2) for all q ∈ H \ Ā, either
∑

n∈N
qnan or

∑
n∈N

q−na−n diverge.

As a consequence we have

Theorem 4.2.10. Let
∑

n∈Z
qnan be a series having domain of convergence A =

A(0, R1, R2) with R1 < R2. Then f : A → H q �→
∑

n∈Z
qnan is an s-regular

function.

Proof. The proof follows by direct computation from the definition of s-regularity.
�

We will now prove that all s-regular functions f : A(0, R1, R2) → H admit
Laurent series expansions.

Theorem 4.2.11 (Laurent Series Expansion). Let A = A(0, R1, R2) with 0 ≤ R1 <
R2 ≤ +∞ and let f : A → H be an s-regular function. There exists {an}n∈Z ⊂ H

such that
f(q) =

∑
n∈Z

qnan (4.4)

for all q ∈ A.

Proof. Choose a complex plane CI and consider the annulus we get by intersecting
CI with the shell A:

AI = AI(0, R1, R2) = {z ∈ CI : R1 < |z| < R2}.

Consider the restriction fI = f|AI
and choose J ∈ S, J ⊥ I. By the Splitting

Lemma there exist two holomorphic functions F,G : AI → CI such that fI =
F + GJ . Let F (z) =

∑
n∈Z

znαn and G(z) =
∑

n∈Z
znβn be the Laurent series

expansions of the functions F and G (which have coefficients αn, βn ∈ CI). If we
let an = αn + βnJ for all n ∈ Z, then

fI(z) =
∑
n∈Z

znan

for all z ∈ AI . Now consider the quaternionic Laurent series
∑

n∈Z
qnan, which

converges in A by Lemma 4.2.9 and which defines an s-regular function on A by
theorem 4.2.10. The statement now follows by the Identity Principle. �
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4.3 Representation Formula for slice regular functions

We begin by stating the analog of the representation formula in the case of quater-
nions.

Definition 4.3.1. Let U ⊆ H. We say that U is axially symmetric if, for all x+Iy ∈
U , the whole 2-sphere [x+ Iy] is contained in U .

Theorem 4.3.2 (Representation Formula). Let f be an s-regular function on an
axially symmetric s-domain U ⊆ H. Choose any J ∈ S. Then the following equality
holds for all q = x+ Iy ∈ U :

f(x+ Iy) =
1

2

[
f(x+ Jy) + f(x− Jy)

]
+ I

1

2

[
J [f(x− Jy)− f(x+ Jy)]

]
. (4.5)

Moreover, for all x, y ∈ R such that x+Sy ⊆ U , there exist α, β ∈ H such that for
all K ∈ S we have

α :=
1

2

[
f(x+ yK)+ f(x−Ky)

]
and β :=

1

2

[
K[f(x−Ky)− f(x+Ky)]

]
. (4.6)

Remark 4.3.3. The proof of this result follows the same lines of the corresponding
result for s-monogenic functions, see Theorem 2.2.18; analogously, and with the
same technique one can prove the version of the representation theorem with two
different imaginary units.

Some immediate consequences are the following:

Corollary 4.3.4. Let U ⊆ H be an axially symmetric s-domain, D ⊆ R2 such that
x+ Iy ∈ U whenever (x, y) ∈ D and let f : U → H. The function f is an s-regular
function if and only if there exist two differentiable functions α, β : D ⊆ R2 →
Rn satisfying α(x, y) = α(x,−y), β(x, y) = −β(x,−y) and the Cauchy–Riemann
system {

∂xα− ∂yβ = 0,

∂xβ + ∂yα = 0,
(4.7)

such that
f(x+ Iy) = α(x, y) + Iβ(x, y). (4.8)

Corollary 4.3.5. An s-regular function f : U → H on an axially symmetric s-
domain is infinitely differentiable on U .

Corollary 4.3.6. Let U ⊆ H be an axially symmetric s-domain and let f : U → H

be an s-regular function. For all x, y ∈ R such that x+ Iy ∈ U there exist a, b ∈ H

such that
f(x+ Iy) = a+ Ib (4.9)

for all I ∈ S. In particular, f is affine in I ∈ S on each 2-sphere [x+ Iy] and the
image of the 2-sphere [x+ Iy] is the set [a+ Ib].
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Proof. This is a direct application of Theorem 4.3.2. �

Corollary 4.3.7. Let U ⊆ H be an axially symmetric s-domain and let f : U → H

be an s-regular function. If f(x + Jy) = f(x + Ky) for I �= K in S, then f is
constant on [x+ Iy]. In particular, if f(x+ Jy) = f(x+Ky) = 0 for I �= K in S,
then f vanishes on the entire 2-sphere [x+ Iy].

Lemma 4.3.8 (Extension Lemma). Let J ∈ S and let DJ be a domain in CJ ,
symmetric with respect to the real axis and such that DJ ∩R �= ∅. Let UDJ be the
axially symmetric s-domain defined by

UDJ =
⋃

x+Jy∈DJ ,I∈S

(x+ Iy).

If f : DJ → H satisfies ∂Jf = 0, then the function f̃ : UDJ → H defined by

f̃(x+ Iy) =
1

2

[
f(x+ Jy) + f(x− Jy)

]
+ I

1

2

[
J [f(x− Jy)− f(x+ Jy)]

]
(4.10)

is the unique s-regular, infinitely differentiable extension of f to UDJ . In partic-
ular any holomorphic function f : DJ → CJ has a unique s-regular, infinitely
differentiable extension to UDJ . The function f̃ will be often denoted by ext(f).

If an s-regular function f is the extension of a holomorphic function of CI ,
for some I ∈ S, then the following result holds:

Proposition 4.3.9. Let U ⊆ H be an axially symmetric s-domain and let f : U → H

be an s-regular function. Suppose that there exists an imaginary unit J ∈ S such
that f(CJ) ⊂ CJ . If there exists an imaginary unit I ∈ S such that I /∈ CJ and
that f(x0 + y0I) = 0, then f(x0 + Ly0) = 0 for all L ∈ S.

Proof. We only have to consider the case y0 �= 0. By formula (4.3.2) we have, on
U ∩CI ,

f(x+ Iy) =
1

2

[
f(x+ Jy) + f(x− Jy)

]
+ I

1

2

[
J [f(x− Jy)− f(x+ Jy)]

]
;

in particular f(x0 + Iy0) = 0 implies that

0 =
1

2

[
f(x0 + y0J) + f(x0 − Jy0)

]
+ I

1

2

[
J [f(x0 − Jy0)− f(x0 + Jy0)]

]
,

and since f(CJ ) ⊂ CJ and 1 and I are linearly independent on CJ we get

f(x0 + Jy0) = −f(x0 − Jy0), f(x0 − Jy0) = f(x0 + Jy0)

whence f(x0 − Jy0) = f(x0 + Jy0) = 0. Again, the conclusion follows from Corol-
lary 4.3.7. �
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This result has an important consequence concerning the zeros of holomor-
phic functions defined on domains intersecting the real axis and symmetric with
respect to it. Since any such holomorphic function f can be uniquely extended
(see the Extension Lemma 4.3.8) to an s-regular function over quaternions, the
question of distinguishing which zeros of f will remain isolated after the extension,
and which will become “spherical”, naturally arises. The answer is in the following
proposition.

Proposition 4.3.10. Let J ∈ S and let DJ be a domain in CJ , symmetric with
respect to the real axis and such that DJ∩R �= ∅. Let UDJ be the axially symmetric
s-domain defined by

UDJ =
⋃

x+Jy∈DJ

(x+ Sy).

Let f : DJ → CJ be a holomorphic function and f̃ : UDJ → H be its s-regular
extension. If f̃(x0 + Jy0) = 0, for y0 �= 0, then the zero (x0 + Jy0) of f̃ is not
isolated, or equivalently f̃(x0 + Ly0) = 0 for all L ∈ S, if, and only if,

f(x0 + Jy0) = f(x0 − Jy0) = 0.

Proof. The proof easily follows from Corollary 4.3.7. �

The first part of the following result can be proved as in Theorem 2.5.14, or
it can be given a much simpler and more intuitive proof which exploits the specific
nature of H and of s-regular functions.

Theorem 4.3.11 (Structure of the Zero Set). Let U ⊆ H be an axially symmetric
s-domain and let f : U → H be an s-regular function. Suppose that f does not
vanish identically. Then if the zero set of f is nonempty, it consists of the union
of isolated 2-spheres and/or isolated points.

Proof. Let q0 = x0 + Jy0 be a zero of f . By Corollary 4.3.4 we know that f(x +
Iy) = α(x, y) + Iβ(x, y), thus

f(q0) = f(x0 + Jy0) = α(x0, y0) + Jβ(x0, y0) = 0.

If β(x0, y0) = 0, then also α(x0, y0) = 0 so f(x0 + Iy0) = 0 for every choice of an
imaginary unit I ∈ S thus the whole sphere defined by q0 is a solution of f(q) = 0.
If β(x0, y0) �= 0, then it is an invertible element in H. In this case, α(x0, y0) �= 0
otherwise we get Jβ(x0, y0) = 0 and so J = 0 which is absurd. Since the inverse
of β(x0, y0) is unique, the element J = −α(x0, y0)β(x0, y0)−1 is also unique. If
J ∈ S, then q0 is the only solution of f(q) = 0 on the sphere defined by q0. The
fact that the spheres are isolated can be proved as in Theorem 2.5.14, using the
notion of symmetrization of an s-regular function (see Definition 4.3.18). �

Let U ⊆ H be an axially symmetric s-domain and let f : U → H be an
s-regular function. For any I, J ∈ S, with I ⊥ J , the Splitting Lemma guarantees
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the existence of two holomorphic functions F,G : U ∩CI → CI such that, for all
z = x+ Iy ∈ U ∩ CI ,

fI(z) = F (z) +G(z)J.

Let us define the function f c
I : U ∩ CI → H as

f c
I (z) = F (z̄)−G(z)J. (4.11)

Then f c
I (z) is obviously a holomorphic map and hence its unique s-regular exten-

sion to U defined, according to the Extension Lemma 4.3.8, by

f c(q) = ext(f c
I )(q),

is s-regular on U .

Definition 4.3.12. Let U ⊆ H be an axially symmetric s-domain and let f : U → H

be s-regular. The function
f c(q) = ext(f c

I )(q)

defined by the extension (4.11) is called the s-regular conjugate of f .

The s-regular conjugate of a function f , which in general does not coincide
with the conjugate f̄ , has peculiar properties that will play a key role in the sequel.

Proposition 4.3.13. Let f : B(p0, R) → H be an s-regular function on an open
ball in H centered at a real point p0. If

f(q) =
∑
n≥0

(q − p0)
nan,

then
f c(q) =

∑
n≥0

(q − p0)
nān.

Proof. We will suppose without loss of generality that p0 = 0. By Corollary 4.2.3,
given any I ∈ S, the coefficients of the power series expansion of f are obtainable
as the coefficients of the power series of fI . For all z = x+ Iy ∈ CI ∩B(0, R) and
J ∈ S with J ⊥ I we get

fI(z) = F (z) +G(z)J =
∑
n≥0

zn

n!

(∂F
∂x

(0) +
∂G

∂x
(0)J
)
=
∑
n≥0

zn

n!
∂sf(0)

and hence

f c
I (z) = F (z̄)−G(z)J =

∑
n≥0

zn

n!

(∂F
∂x

(0)− ∂G

∂x
(0)J
)
=
∑
n≥0

zn

n!
∂sf(0)

which proves the assertion. �
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Remark 4.3.14. As it can be expected, the product of two s-regular functions is not,
in general, s-regular. In the case of s-regular polynomials, i.e., polynomials with
quaternionic coefficients on the right, one can exploit the standard multiplication
of polynomials in a skew field (see, e.g., [71]) to obtain an s-regular product. This
product extends naturally to s-regular power series as(∑

n≥0

qnan

)
∗
(∑

n≥0

qnbn

)
=
∑
i,n≥0

qnaibn−i, (an, bn ∈ H) (4.12)

and is extensively used when studying the properties of their zero sets.

In the case of s-regular functions defined on axially symmetric s-domains,
inspired by the case of power series, we will define an s-regular product as follows.
Let U ⊆ H be an axially symmetric s-domain and let f, g : U → H be s-regular
functions. For any I, J ∈ S, with I ⊥ J , the Splitting Lemma guarantees now the
existence of four holomorphic functions F,G,H,K : U ∩ CI → CI such that for
all z = x+ Iy ∈ U ∩ CI ,

fI(z) = F (z) +G(z)J gI(z) = H(z) +K(z)J.

We define the function fI ∗ gI : U ∩ CI → H as

fI ∗ gI(z) = [F (z)H(z)−G(z)K(z̄)] + [F (z)K(z) +G(z)H(z̄)]J. (4.13)

Then fI ∗ gI(z) is obviously a holomorphic map and hence its unique s-regular
extension to U defined, according to the Extension Lemma 4.3.8, by

f ∗ g(q) = ext(fI ∗ gI)(q),

is s-regular on U .

Definition 4.3.15. Let U ⊆ H be an axially symmetric s-domain and let f, g : U →
H be s-regular. The function

f ∗ g(q) = ext(fI ∗ gI)(q)

defined as the extension of (4.13) is called the s-regular product of f and g. This
product is called the ∗-product or the s-regular product.

Remark 4.3.16. It is immediate to verify that the ∗-product is associative, dis-
tributive but, in general, not commutative.

Remark 4.3.17. Let H(z) be a holomorphic function in the variable z ∈ CI and
let J ∈ S be orthogonal to I. Then by the definition of ∗-product we obtain
J ∗H(z) = H(z̄)J .

Using the notion of ∗-multiplication of s-regular functions, it is possible to
associate to any s-regular function f its ”symmetrization” also called ”normal
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form”, denoted by fs. We will show that all the zeros of f s are spheres of type
[x + Iy] (real points, in particular) and that, if x + Iy is a zero of f (isolated or
not), then [x+ Iy] is a zero of fs.

Let U ⊆ H be an axially symmetric s-domain and let f : U → H be an
s-regular function. For any I, J ∈ S, with I ⊥ J , the Splitting Lemma guarantees
the existence of two holomorphic functions F,G : U ∩CI → CI such that, for all
z = x+ Iy ∈ U ∩ CI ,

fI(z) = F (z) +G(z)J.

We define the function f s
I : U ∩CI → CI as

fs
I = fI ∗ f c

I = (F (z) +G(z)J) ∗ (F (z̄)−G(z)J) (4.14)

= [F (z)F (z̄) +G(z)G(z̄)] + [−F (z)G(z) +G(z)F (z)]J

= F (z)F (z̄) +G(z)G(z̄) = f c
I ∗ fI .

Then fs
I is obviously holomorphic and hence its unique s-regular extension to U

defined by

f s(q) = ext(f s
I )(q)

is s-regular.

Definition 4.3.18. Let U ⊆ H be an axially symmetric s-domain and let f : U → H

be s-regular. The function

f s(q) = ext(f s
I )(q)

defined by the extension of (4.14) is called the symmetrization (or normal form)
of f .

Remark 4.3.19. Notice that formula (4.14) yields that, for all I ∈ S, f s(U ∩CI) ⊆
CI .

The symmetrization process is well behaved with respect to the ∗-product,
conjugation and reciprocal:

Proposition 4.3.20. Let U ⊆ H be an axially symmetric s-domain and let f, g :
U → H be s-regular functions. Then

(f ∗ g)c = gc ∗ f c

and

(f ∗ g)s = f sgs = gsf s. (4.15)

Proof. It is sufficient to show that (f ∗ g)c = gc ∗ f c. As customary, we can
use the Splitting Lemma to write on U ∩ CI that fI(z) = F (z) + G(z)J and
gI(z) = H(z) +K(z)J . We have

fI ∗ gI(z) = [F (z)H(z)−G(z)K(z̄)] + [F (z)K(z) +G(z)H(z̄)]J
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and hence

(fI ∗ gI)c(z) = [F (z̄) H(z̄)−G(z̄)K(z)]− [F (z)K(z) +G(z)H(z̄)]J.

We now compute

gcI(z) ∗ f c
I (z) = (H(z̄)−K(z)J) ∗ (F (z̄)−G(z)J)

= H(z̄) ∗ F (z̄)−H(z̄) ∗G(z)J −K(z)J ∗ F (z̄) +K(z)J ∗G(z)J

and conclude by Remark 4.3.17. �
Proposition 4.3.21. Let U ⊆ H be an axially symmetric s-domain and let f :
U → H be an s-regular function. The function (f s(q))−1 is s-regular on U \ {q ∈
H | fs(q) = 0}.
Proof. The function f s is such that f s(U ∩ CI) ⊆ CI for all I ∈ S by Remark
4.3.19. Thus, for any given I ∈ S the Splitting Lemma implies the existence of a
holomorphic function F : U ∩CI → CI such that f s

I (z) = F (z) for all z ∈ U ∩CI .
The inverse of the function F is holomorphic on U ∩CI outside the zero set of F .
The conclusion follows by the equality (f s

I )
−1 = F−1. �

Proposition 4.3.22. Let U ⊆ H be an axially symmetric s-domain and let f, g :
U → H be s-regular functions. Then

f ∗ g(q) = f(q) g(f(q)−1qf(q)), (4.16)

for all q ∈ U .

Proof. Let I be any element in S and let q = x + Iy. If f(x + Iy) �= 0, simple
computations show that

f(x+ Iy)−1(x+ Iy)f(x+ Iy) = x+ yf(x+ Iy)−1If(x+ Iy)

with f(x+ Iy)−1If(x+ Iy) ∈ S. Using now the representation formula (4.3.2) for
the function g, we get

g(f(q)−1qf(q)) = g(x+ yf(x+ Iy)−1If(x+ Iy))

=
1

2
{g(x+ Iy) + g(x− Iy)− f(x+ Iy)−1If(x+ Iy)[Ig(x+ Iy)− Ig(x− Iy)]}

and

ψ(q) := f(q)g(f(q)−1qf(q))

=
1

2
{f(x+ Iy)[g(x+ Iy) + g(x− Iy)]− If(x+ Iy)[Ig(x+ Iy)− Ig(x− Iy)]}.

If we prove that the function f(q)g(f(q)−1qf(q)) is s-regular, then our assertion
will follow by the Identity Principle since formula (4.16) holds on a small open ball
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of U centered at a point on the real axis (see Proposition 4.2.3). Let us compute,
with obvious notation for the derivatives:

∂

∂x
ψ(x+ Iy)

=
1

2
{fx(x+Iy)[g(x+Iy) + g(x−Iy)]− Ifx(x+Iy)[Ig(x+Iy)− Ig(x−Iy)]}

+
1

2
{f(x+Iy)[gx(x+Iy) + gx(x−Iy)]− If(x+Iy)[Igx(x+Iy)− Igx(x−Iy)]}

and

I
∂

∂y
ψ(x + Iy)

=
1

2
{Ify(x+Iy)[g(x+Iy) + g(x−Iy)] + fy(x+Iy)[Ig(x+Iy)− Ig(x−!Iy)]}

+
1

2
{If(x+Iy)[gy(x+Iy) + gy(x−Iy)] + f(x+Iy)[Igy(x+Iy)− Igy(x−Iy)]}.

By using the three relations

fx(x+ Iy) + Ify(x+ Iy) = gx(x+ Iy) + Igy(x + Iy)

= gx(x− Iy)− Igy(x − Iy) = 0,

we obtain that

(
∂

∂x
+ I

∂

∂y
)ψ(x + Iy) = 0.

The fact that I is arbitrary proves the assertion. �
Theorem 4.3.23. Let U ⊆ H be an axially symmetric s-domain and let f, g : U →
H be s-regular functions. Then f ∗ g(q) = 0 if and only if f(q) = 0 or f(q) �= 0
and g(f(q)−1qf(q)) = 0.

Proof. Theorem 4.16 implies that

f ∗ g(q) = f(q) g(f(q)−1qf(q)).

Therefore f ∗ g(q) = 0 if and only if f(q)g(f(q)−1qf(q)) = 0 if and only if either
f(q) = 0 or f(q) �= 0 but then g(f(q)−1qf(q)) = 0. �

In particular, if f ∗ g has a zero in the sphere S := [x + Iy], then either f
or g have a zero in S. However, the zeros of g in S need not be in one-to-one
correspondence with the zeros of f ∗ g in S which are not zeros of f .

This theorem allows us to recover a well-known result for polynomials, see
[71]:

Theorem 4.3.24. Let p, r be polynomials in the quaternionic variable q with quater-
nionic coefficients. Assume that p∗r(q) = 0 and s = p(q) �= 0. Then r(s−1qs) = 0.
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Remark 4.3.25. In the previous result, we implicitly assumed that the polynomials
are s-regular and thus their coefficients are written on the right. In the case of
polynomials with coefficients on the left (and so right s-regular) the statement
guarantees that if p ∗ r(q) = 0 and s = r(q) �= 0, then p(sqs−1) = 0.

The definitions we have introduced are useful to define an s-regular inverse
of a function. First of all, observe that, by Proposition 4.3.21, (f s

I )
−1 ∗ f c is s-

regular for any s-regular function f . Since, again by Remark 4.3.19, the function
(f s

I )
−1 : U ∩ CI → CI is holomorphic for all I ∈ S, where fs

I �= 0, then we can
write (fs)−1 ∗ f c = (f s)−1f c. An easy computation shows that

(f−∗ ∗ f)(q) = (fs(q))−1(f c ∗ f)(q) = 1

and justifies the following definition:

Definition 4.3.26. Let U ⊆ H be an axially symmetric s-domain and let f : U → H

be an s-regular function. We define the function f−∗ as

f−∗(q) := (f s(q))−1f c(q).

It is now immediate to verify the validity of the following:

Proposition 4.3.27. Let U ⊆ H be an axially symmetric s-domain and let f : U →
H be an s-regular function. The function f−∗ is the inverse of f with respect to
the s-regular product.

4.4 The slice regular Cauchy kernel

The Cauchy kernel which we will define and study in this section was inspired
by the need to have a suitable Cauchy formula to develop a functional calculus
for quaternionic operators. This kernel, obtained in this section using algebraic
techniques which rely on the structure of quaternions (in particular on the fact
that the components of a quaternion are real numbers and therefore commute),
will later on be shown to remain valid even when the quaternions are replaced
by operators, whose components do not commute. Since in the complex case, the
kernel (ζ− z)−1 is the sum of the series

∑
n≥0 z

nζ−1−n, for |z| < |ζ|, we introduce
the following definition:

Definition 4.4.1. Let q, s ∈ H be such that sq �= qs. We will call the series expansion

S−1(s, q) :=
∑
n≥0

qns−1−n,

for |q| < |s| a noncommutative Cauchy kernel series (shortly Cauchy kernel series).

Just as in the complex case, we will be looking for the sum of the Cauchy
kernel series which will be an s-regular function in a domain larger than the ball
in which the series converges.
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Theorem 4.4.2. Let q and s be two quaternions such that qs �= sq and consider

S−1(s, q) :=
∑
n≥0

qns−1−n.

Then the inverse S(s, q) of S−1(s, q) is the nontrivial solution to the equation

S2 + Sq − sS = 0. (4.17)

Proof. Observe that

S−1(s, q)s =
∑
n≥0

qns−1−ns =
∑
n≥0

qns−n = 1 + qs−1 + q2s−2 + . . .

and

qS−1(s, q) = q
∑
n≥0

qns−1−n =
∑
n≥0

q1+ns−1−n = qs−1 + q2s−2 + . . .

so that
S−1(s, q)s− qS−1(s, q) = 1.

Keeping in mind that S−1S = SS−1 = 1 we get

S(S−1s− qS−1)S = S2

from which we obtain the proof. �
Remark 4.4.3. The polynomial R(s, q) := s − q is a solution of equation (4.17) if
and only if sq = qs (and in particular, for example, if s = s0 + s1I, q = q0 + q1I
for some I ∈ S). Indeed the result follows immediately from the chain of equalities

(s− q)2 + (s− q)q − s(s− q) = s2 − sq − qs+ q2 − s2 + sq + sq − q2 = −qs+ sq

whose last term vanishes if and only if sq = qs.

We now compute the nontrivial solution to the equation (4.17). To this pur-
pose, and unlike what we have done throughout this book, we will transform this
equation into a polynomial equation with coefficients on the left. This technical
detail is necessary in order to get a solution written in a form which will be suit-
able for the functional calculus. We will show in Note 4.18.3 how this solution was
originally computed using Niven’s algorithm.

Theorem 4.4.4. Let q, s ∈ H be such that qs �= sq. Then the nontrivial solution of

S2 + Sq − sS = 0 (4.18)

is given by
S(s, q) = −(q − s)−1(q2 − 2Re[s] q + |s|2). (4.19)
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Proof. We transform the equation S2 + Sq − sS = 0 into another one having
coefficients on the left. Set

S :=W − q

and replace it in the equation to get

(W − q)(W − q) + (W − q)q − s(W − q) = 0,

so the equation becomes

W 2 − (s+ q)W + sq = (W − s) ∗ (W − q) = 0

where ∗ denotes the s-regular product (on the left). One root is W = q, while the
second root is W = (q − s̄)−1s(q − s̄), thus

S = (q − s̄)−1s(q − s̄)− q.

By grouping (q − s̄)−1 on the left we obtain (4.19). �
Definition 4.4.5. The function defined by

−(q2 − 2qRe[s] + |s|2)−1(q − s̄). (4.20)

will be called the Cauchy kernel function and will be denoted again, with an abuse
of notation, by S−1(s, q).

Note that we are using the same symbol S−1 to denote both the Cauchy
kernel series and the Cauchy kernel function. In fact they coincide where they are
both defined by virtue of their s-regularity (see Proposition 4.4.9 below) and in
view of the identity principle, see Theorem 4.2.4. We have the following result
which shows that the Cauchy kernel function S−1(s, q) is s-regular in the two
variables s, q.

The proof can be obtained by direct computations, similarly to what we did
to prove Proposition 2.7.9, but here we prove such a result by solving a second-
degree equation.

Proposition 4.4.6. For any q, s ∈ H such that q �= s̄ the following identity holds:

(q − s)−1s(q − s)− q = −(s− q̄)q(s− q̄)−1 + s, (4.21)

or, equivalently,

−(q − s)−1(q2 − 2qRe[s] + |s|2) = (s2 − 2Re[q]s+ |q|2)(s− q̄)−1. (4.22)

Proof. Let us solve equation S2+Sq− sS = 0 by transforming it into an equation
with right coefficients by setting

S :=W + s
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and replacing it in the equation. We get

(W + s)(W + s) + (W + s)q − s(W + s) =W 2 +W (s+ q) + sq = 0.

This equation can be split as (W + s) ∗ (W + q) = 0, where ∗ denotes the (right)
s-regular product. It is immediate that one root is W = −s while the second
is W = (−q̄ + s)(−q)q(−q̄ + s)−1. These two roots correspond to S = 0 and
S = −(s− q̄)q(s− q̄)−1 + s which coincides with (4.19) when written in the form
S = (s2 − Re[q]s+ |q|2)(s− q̄)−1. �

Remark 4.4.7. By writing S(s, q) as S(s, q) = (q−s)−1s(q−s)−q we immediately
see that S(s, q) = S(s− u, q − u) for any u ∈ R.

The Cauchy kernel function can also be obtained by taking, in a suitable
way, the s-regular inverse of the function R(s, q) = Rs(q) = s− q. In principle we
have four possibilities to construct an s-regular inverse: on the left (resp. on the
right) with respect to q and on the left (resp. on the right) with respect to s. To
obtain the desired function S−1(s, q) we can proceed as in the following result:

Proposition 4.4.8. The right s-regular inverse with respect to q of the function
R(s, q) = Rs(q) = s− q is

S−1(s, q) = −(q2 − 2qRe[s] + |s|2)−1(q − s̄).

Proof. We have that Rs
s(q) = (q2 − 2Re[s]q + |s|2) and Rc

s(q) = s̄− q. �

We also have:

Proposition 4.4.9. The function S−1(s, q) is left s-regular in the variable q and
right s-regular in the variable s in its domain of definition.

Proof. The s-regularity in q follows by construction. The right s-regularity in s
follows by direct computation using the identity (4.22). �

Remark 4.4.10. Since the function S−1(s, q) turns out to be right s-regular with
respect to s, it is also possible to construct it by taking the right s-regular inverse
of R(s, q) = Rq(s) = s− q. The right s-regular inverse of R(s, q) = Rs(q) = s− q
in the variable q turns out to be the function

S−1
R (s, q) := −(q − s̄)(q2 − 2Re[s]q + |s|2)−1 (4.23)

for q2 − 2Re[s]q + |s|2 �= 0. Note that when |q| < |s| we have

S−1
R (s, q) =

∑
n≥0

s−n−1qn.

We are now in a position to study the distribution of the singularities of the
s-regular Cauchy kernel:
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Proposition 4.4.11. Let q ∈ H\R. The singularities of the function S−1(s, q) =
S−1
q (s) = −(q2 −Re[s]q+ |s|2)−1(q− s̄) lie on the 2-sphere Sq. More precisely: on

the plane CI , I �= Iq, S
−1(s, q) has the two singularities Re[q]± I|Im[q]| while on

the plane CIq the only singularity is q. When q ∈ R, then S−1
q (s) = −(q − s)−1

and the only singularity is q.

Proof. Suppose q ∈ H\R. The singularities of S−1
q (s) corresponds to the roots of

|s|2−2Re[s]q+q2 = 0. This equation can be written by splitting real and imaginary
parts as |s|2 − 2Re[s]Re[q] + Re[q]2 − |Im[q]|2 = 0, (Re[s] − Re[q])Im[q] = 0. The
assumption implies Re[s] = Re[q] and so |s| = |q|, i.e., the sphere [q]. Consider the
plane CI , I �= Iq: it intersects the 2-sphere [q] in Re[q] ± I|Im[q]|. When I = Iq,
then q and s commute, so

S−1
q (s) = −(q − s)−1(q − s̄)−1(q − s̄) = −(q − s)−1

and the statement follows. When q is real the conclusion follows by the same
commutation argument. �

We conclude the section by proving two different explicit series expansions
of the regular Cauchy kernel.

Theorem 4.4.12. Let q and s = u+ vI (I ∈ S, v > 0) be two quaternions such that

|q − u| < v. (4.24)

Then the noncommutative Cauchy kernel admits the series expansion

S−1(s, q) =
∑
n≥0

(q − u)n(vI)−n−1. (4.25)

Proof. Remark 4.4.7 shows that the inverse of the Cauchy kernel S(s, q) is such
that S(s, q) = S(s − u, q − u) for any u ∈ R. As a consequence we have that
S−1(s, q) = S−1(s−u, q−u) for any u ∈ R. By setting s = u+ vI and considering
the series expansion

S−1(s− u, q − u) =
∑
n≥0

(q − u)n(vI)−n−1

we get the statement. �
To conclude, we now examine what happens on the complement of the closure

of the domain in which the series above converges. We will adopt a Laurent type
approach:

Theorem 4.4.13. Let q and s = u+ vI (I ∈ S, v > 0) be two quaternions such that

|q − u| > v. (4.26)

Then the noncommutative Cauchy kernel can be represented by the series

S−1(s, q) = −
∑
n≥0

(q − u)−n−1(vI)n (4.27)
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Proof. Consider the equalities

(q2 − 2qu+ u2 + v2)−1 =
(
(q − u)2 + v2

)−1

=
(
(q − u)2(1 + v2(q − u)−2)

)−1

=
(
1 + v2(q − u)−2

)−1
(q − u)−2

=
∑
n≥0

(−1)nv2n(q − u)−2n−2.

We now multiply the last expression by −(q − u+ vI) on the right-hand side and
obtain

S−1(s, q) = −
∑
n≥0

(−1)nv2n(q − u)−2n−2(q − u+ vI)

= −
(∑

n≥0

(−1)nv2n(q − u)−2n−1 +
∑
n≥0

(−1)nv2n(q − u)−2n−2vI
)

Since (−1)nv2n = (vI)2n is a real number we obtain

= −
(∑

n≥0

(q − u)−2n−1(vI)2n +
∑
n≥0

(q − u)−2n−2(vI)2n+1
)

from which the statement follows. �
Remark 4.4.14. Theorems 4.4.12 and 4.4.13 provide the analogue of the complex
series expansions 1

z−w =
∑
znw−n−1 which holds for z, w ∈ C such that |z| < |w|

and 1
z−w = −

∑
z−n−1wn which holds for |z| > |w|. The function 1

z−w is obviously
defined on the larger set consisting of complex numbers z such that z �= w while
S−1(s, q) is defined outside its singularities.

4.5 The Cauchy integral formula II

In this section we will present a new version of the Cauchy formula (4.2.6), in which
the integral expressing f(q) does not depend on the plane containing q. These
results are similar to the corresponding results in the case of slice s-monogenic
functions. We will repeat the statements that will be useful in the sequel in order
to adapt the notation to the quaternionic setting, but we will omit the proofs.

Lemma 4.5.1. Let f , g be quaternion-valued, continuously (real) differentiable func-
tions on an open set UI of the plane CI . Then for every open WI ⊂ UI whose
boundary is a finite union of continuously differentiable Jordan curves, we have∫

∂WI

gdsIf = 2

∫
WI

((g∂I)f + g(∂If))dσ

where s = x+ Iy is the variable on CI , dsI = −Ids and dσ = dx ∧ dy.
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An immediate consequence of the lemma is the following:

Corollary 4.5.2. Let f and g be a left s-regular and a right s-regular function,
respectively, on an open set U ∈ H. For any I ∈ S and every open W ⊂ UI whose
boundary is a finite union of continuously differentiable Jordan curves, we have∫

∂W

gdsIf = 0.

We are now ready to prove the Cauchy formula II:

Theorem 4.5.3. Let U ⊆ H be an axially symmetric s-domain such that ∂(U ∩CI)
is the union of a finite number of continuously differentiable Jordan curves, for
every I ∈ S. Let f be an s-regular function on an open set containing Ū and, for
any I ∈ S, set dsI = −Ids. Then for every q = x+ Iyq ∈ U we have

f(q) =
1

2π

∫
∂(U∩CI)

−(q2 − 2Re[s]q + |s|2)−1(q − s)dsIf(s). (4.28)

Moreover the value of the integral depends neither on U nor on the imaginary unit
I ∈ S.

If f is a right s-regular function on a set that contains U , then

f(q) =
1

2π

∫
∂(U∩CI)

f(s)dsIS
−1
R (s, q) (4.29)

= − 1

2π

∫
∂(U∩CI )

f(s)dsIS
−1(q, s) (4.30)

and the integral (4.29) does not depend on the choice of the imaginary unit I ∈ S

and on U .

An immediate consequence of the Cauchy formula is the following result:

Theorem 4.5.4 (Derivatives using the s-regular Cauchy kernel). Let U ⊂ H be an
axially symmetric s-domain. Suppose ∂(U ∩ CI) is a finite union of continuously
differentiable Jordan curves for every I ∈ S. Let f be an s-regular function on U
and set dsI = ds/I. Let q, s. Then

∂nx f(x) =
n!

2π

∫
∂(U∩CI)

(q2 − 2s0q + |s|2)−n−1(q − s)(n+1)∗dsIf(s)

=
n!

2π

∫
∂(U∩CI)

[S−1(s, q)(q − s)−1]n+1(q − s)(n+1)∗dsIf(s) (4.31)

where

(q − s)n∗ =

n∑
k=0

n!

(n− k)!k!
qn−ksk, (4.32)

is the n-th power with respect to the ∗-product. Moreover, the integral does not
depend on U and on the imaginary unit I ∈ S.
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4.6 Linear bounded quaternionic operators

In this section, we collect the main properties of the quaternionic functional cal-
culus. Let V be a right vector space on H. A map T : V → V is said to be a right
linear operator if

T (u+ v) = T (u) + T (v), T (us) = T (u)s, for all s ∈ H, u, v ∈ V.

The multiplication of operators, and in particular the powers T n of a quaternionic
operator, are defined inductively by the relations T 0 = I, where I denotes the
identity operator, and T n = TT n−1. By EndR(V ) we denote the set of right linear
operators acting on V . In the sequel, we will consider only two-sided vector spaces
V , otherwise the set EndR(V ) is neither a left nor a right vector space over H.
With this assumption, EndR(V ) becomes both a left and a right vector space on
H with respect to the operations

(sT )(v) := sT (v), (Ts)(v) := T (sv), for all s ∈ H, v ∈ V. (4.33)

In particular (4.33) gives (sI)(v) = (Is)(v) = sv. Similarly, we can consider V as
a left vector space on H and a map T : V → V is said to be a left linear operator
if

T (u+ v) = T (u) + T (v), T (su) = sT (u), for all s ∈ H, u, v ∈ V.

We denote by EndL(V ) the set of left linear operators on V . EndL(V ) is both a
left and a right vector space on H with respect to the operations:

(Ts)(v) := T (v)s, (sT )(v) := T (vs), for all s ∈ H, and for all v ∈ V. (4.34)

In particular (4.34) gives (Is)(v) = (sI)(v) = vs.

Definition 4.6.1. Given a ring (R,+, ∗) where +, ∗ denote the addition and the
multiplication operations, respectively, the opposite ring (Rop,+op, ∗op) has the
same underlying set as R, i.e, Rop = R and the same additive structure while the
multiplication ∗op is defined by r ∗op s := s ∗ r.

The following result can be found for example in [3], section 4:

Proposition 4.6.2. The two rings EndR(V ) and EndL(V ) with respect to the addi-
tion and composition of operators are opposite rings of each other.

Remark 4.6.3. The fact that EndR(V ) and EndL(V ) are opposite rings can be
efficiently illustrated by considering the multiplication by a scalar. Let us denote
by Ns the multiplication on the left by a scalar s ∈ H. Obviously we have that
Ns ∈ EndR(V ). We can rewrite (4.33) as

(NsT )(v) = Ns(T (v)), (TNs)(v) = T (Ns(v)), for all s ∈ H, v ∈ V.
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Denoting by Ms the operator that multiplies on the right a vector v by a scalar
s ∈ H, i.e., Ms(v) = vs, we have Ms ∈ EndL(V ) and the operations defined in
(4.34) for left linear operators can be written as

(TMs)(v) =Ms(T (v)), (MsT )(v) = T (Ms(v)), for all s ∈ H, v ∈ V.

It appears clearly that, according to (4.34), the composition of T and Ms has to
be taken in the reverse order.

Remark 4.6.4. We have that V is a module on the left on the ring EndR(V ) and it
is a module on the right on the ring EndL(V ) (see [3], section 4). For this reason,
the action of a right linear operator T on a vector v ∈ V is often denoted in the
literature by Tv while if T is a left linear operator, its action on v is denoted by
vT . In light of this notation, the properties (4.34) can be written as

v(Ts) = (vT )s, v(sT ) = (vs)T, for all s ∈ H, and for all v ∈ V.

In light of Remark 4.6.3 it is evident that this notation for left linear operators
is useful especially when dealing with the multiplication. In general, when we will
write T (v) we will mean, unless otherwise specified, T (v) = Tv and T right linear
operator.

Proposition 4.6.5. Let T ∈ EndR(V ). Then we have

(1) (sI)T (v) = (sT )(v), for all v ∈ V, s ∈ H;

(2) T (sI)(v) = (Ts)(v), for all v ∈ V, s ∈ H.

Let T ∈ EndL(V ). Then we have

(3) v((sI)T ) = v(sT ), for all v ∈ V, s ∈ H;

(4) v(T (sI)) = v(Ts), for all v ∈ V, s ∈ H.

Proof. All the properties can be easily shown by using (4.33) and (4.34). In partic-
ular, if T ∈ EndL(V ) we have v((sI)T ) = vsT = v(sT ) and v(T (sI)) = vT (sI) =
vT s = v(Ts). �
Remark 4.6.6. Let T be a right linear operator and let a ∈ R. Then aT = Ta, in
fact: (aT )(v) = aT (v) = T (v)a = T (va) = T (av) = (Ta)(v). A similar property
holds when T is left linear.

To deal with bounded operators we need an additional hypothesis on the
vector space V and some more notations. Thus, in the sequel:

(i) V is a two-sided quaternionic Banach space with norm ‖ · ‖,
(ii) BR(V ) is the two-sided vector space of all right linear bounded operators on

V ,

(iii) BL(V ) is the two-sided vector space of all left linear bounded operators on
V ,
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(iv) when we do not differentiate between left or right linear bounded operators
on V we use the symbol B(V ) and we call an element in B(V ) a “linear
operator”.

It is easy to verify that BR(V ) and BL(V ) are Banach spaces if they are endowed
with their natural norms:

‖T ‖ := sup
v∈V

‖T (v)‖
‖v‖ .

4.7 The S-resolvent operator series

In this section we prove that in the Cauchy formula (4.28) we can formally replace
the quaternion q by a quaternionic linear operator. In fact, for example, the kernel
−(q2 − 2qRe[s] + |s|2)−1(q− s) has been obtained by summing the Cauchy kernel
series

∑
n≥0 q

ns−1−n when the series converges. Here we prove that the sum of

the series
∑

n≥0 T
ns−1−n equals −(T 2 − 2Re[s]T + |s|2I)−1(T − sI), that is, it is

formally obtained by replacing the quaternion q by T , also when the components of
T do not commute. This is the reason why our functional calculus can be developed
in a natural way starting from the Cauchy formula (4.28).

Definition 4.7.1. Let T ∈ B(V ). We define the left Cauchy kernel operator series
or S-resolvent operator series as

S−1
L (s, T ) =

∑
n≥0

T ns−1−n, (4.35)

and the right Cauchy kernel operator series as

S−1
R (s, T ) =

∑
n≥0

s−1−nT n, (4.36)

for ‖T ‖ < |s|.

Remark 4.7.2. It is important to note, one more time, that the action of the
S-resolvent operators series S−1

L (s, T ) and S−1
R (s, T ) in the case of left linear op-

erators T is on the right, i.e., for every v ∈ V we have v �→ vS−1
L (s, T ) and

v �→ vS−1
R (s, T ). In particular, for the left Cauchy kernel operator series we have

v �→
∑

n vT
ns−n−1 =

∑
n T

n(v)s−n−1. Thus, even though S−1
L (s, T ) is formally

the same operator used for right linear operators, S−1
L (s, T ) acts in a different way.

Proposition 4.7.3. If ‖T ‖ < |s| the operator T − sI is invertible.

Proof. When ‖T ‖ < |s| the series
∑

n≥0(s
−1T )ns−1I is convergent in the operator

norm. As we shall see in Theorem 4.14.6, the series provides the inverse of the
operator T − sI. �

Theorem 4.7.4. Let T ∈ B(V ) and let s ∈ H. Then, for ‖T ‖ < |s|:
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(1) the operator

SL(s, T ) = (T − sI)−1 s(T − sI)− T (4.37)

is the inverse of
∑

n≥0 T
ns−1−n and∑

n≥0

T ns−1−n = −(T 2 − 2Re[s]T + |s|2I)−1(T − sI), (4.38)

(2) the operator

SR(s, T ) = (T − sI) s(T − sI)−1 − T (4.39)

is the inverse of
∑

n≥0 s
−1−nT n and∑

n≥0

s−1−nT n = −(T − sI)(T 2 − 2Re[s]T + |s|2I)−1. (4.40)

Proof. The proof that

SL(s, T )S
−1
L (s, T ) = I (4.41)

can be done similarly to the proof of Theorem 3.1.3, so we show that

SR(s, T )
−1SR(s, T ) = I (4.42)

where SR(s, T ) is given by (4.36) and the interpretation of the symbols is as in
Remark 4.7.2. We rewrite (4.42) by multiplying both hand side by T − sI on the
right: (∑

n≥0

s−1−nT n
)
(T − sI)s−

(∑
n≥0

s−1−nT n
)
T (T − sI) = T − sI

which, by Proposition 4.6.5, can be written as(∑
n≥0

s−1−nT n
)
(Ts− |s|2I − T 2 + Ts) = T − sI

and then we get(∑
n≥0

s−1−nT n
)
(−|s|2I − T 2 + 2Re[s]T ) = T − sI.

Observe that −|s|2I −T 2 +2Re[s]T has real coefficients and so it commutes with
T n. By writing explicitly the terms of the series∑

n≥0

s−1−nT n(−|s|2 − T 2 + 2Re[s]T )
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and using the identity

s2 − 2sRe[s] + |s|2 = 0 for all s ∈ H,

we get ∑
n≥0

s−1−nT n(−|s|2 − T 2 + 2Re[s]T ) = T − sI.

So we finally have the identity

T − sI = T − sI.

The equality (4.40) follows directly by taking the inverse of

SR(s, T ) = [(T − sI) s− T (T − sI)](T − sI)−1

= −[T 2 − 2Re[s]T + |s|2I](T − sI)−1,

thus the operator SR(s, T ) is the inverse of (4.36) for ‖T ‖ < |s|. �
The S-resolvent operator admits another power series expansion which is

described in the next result:

Theorem 4.7.5. Let T ∈ B(V ) and s �∈ σS(T ) be such that

‖T −Re[s]I‖ < |s−Re[s]|. (4.43)

Then the S-resolvent operator admits the series expansion

S−1
L (s, T ) = −

∑
n≥0

(T −Re[s]I)n(s−Re[s])−n−1. (4.44)

Proof. Observe that

(T 2 − 2TRe[s] + |s|2I)−1 = [(T −Re[s]I)2 + |s|2I − (Re[s])2I]−1

= (|s|2 − (Re[s])2)−1
[
I +

(T −Re[s]I)2
(|s|2 − (Re[s])2)

]−1

=
∑
n≥0

(−1)n
(T −Re[s]I)2n

(|s|2 − (Re[s])2)n+1
. (4.45)

Since |Im[s]|2 = −(Im[s])2, then by replacing (4.45) in (4.38) we get

S−1
L (s, T ) = −

(∑
n≥0

(T −Re[s]I)2n+1(s−Re[s])−2n−2

+
∑
n≥0

(T −Re[s]I)2n(s−Re[s])−2n−1
)
.

Adding the two terms we get (4.44) which converges when (4.43) holds. �
An analogous result, with obvious variations, can be proved for S−1

R (s, T ).
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4.8 The S-spectrum and the S-resolvent operators

Observe that equalities (4.38) and (4.40) hold only for ‖T ‖ < |s|, but the right-
hand sides are defined on a larger set. Thus, we give the following definitions which
are the main tools to define the quaternionic functional calculus.

Definition 4.8.1 (The S-spectrum and the S-resolvent set). Let T ∈ B(V ). We
define the S-spectrum σS(T ) of T as

σS(T ) = {s ∈ H : T 2 − 2 Re[s]T + |s|2I is not invertible}.

The S-resolvent set ρS(T ) is defined by

ρS(T ) = H \ σS(T ).

Remark 4.8.2. Observe that in the definition of σS(T ) we mean that the operator
T 2 − 2 Re[s]T + |s|2I is not invertible in BR(V ) if T is right linear. On the other
hand, if T is left linear we mean that T 2 − 2 Re[s]T + |s|2I is not invertible in
BL(V ).

The notion of the S-spectrum of a linear quaternionic operator T is sug-
gested by the definition of the S-resolvent operator that is the kernel useful for
the quaternionic functional calculus.

Definition 4.8.3 (The S-resolvent operator). Let V be a two-sided quaternionic
Banach space, T ∈ B(V ) and s ∈ ρS(T ). We define the left S-resolvent operator
as

S−1
L (s, T ) := −(T 2 − 2Re[s]T + |s|2I)−1(T − sI), (4.46)

and the right S-resolvent operator as

S−1
R (s, T ) := −(T − sI)(T 2 − 2Re[s]T + |s|2I)−1. (4.47)

Theorem 4.8.4. Let T ∈ B(V ) and let s ∈ ρS(T ). Then, the left S-resolvent oper-
ator satisfies the equation

S−1
L (s, T )s− TS−1

L (s, T ) = I, (4.48)

and the right S-resolvent operator satisfies the equation

sS−1
R (s, T )− S−1

R (s, T )T = I. (4.49)

Proof. It follows by direct computation. Indeed, replacing the operator (4.46) in
the left-hand side of the equality (4.48) we have

− (T 2 − 2Re[s]T + |s|2I)−1(T − sI)s
+ T (T 2 − 2Re[s]T + |s|2I)−1(T − sI). (4.50)
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Since T and T 2 − 2Re[s]T + |s|2I commute, we can group on the right (T 2 −
2Re[s]T + |s|2I)−1 in the previous expression thus obtaining

(T 2 − 2Re[s]T + |s|2I)−1[−(T − sI)s+ T (T − sI)

which becomes

(T 2 − 2Re[s]T + |s|2I)−1(T 2 − 2Re[s]T + |s|2I) = I

which proves the statement. With analogous computations we can prove (4.49).
�

Definition 4.8.5. Let T ∈ B(V ) and let s ∈ ρS(T ). We call

S−1
L (s, T )s− TS−1

L (s, T ) = I

left S-resolvent equation and

sS−1
R (s, T )− S−1

R (s, T )T = I

right S-resolvent equation.

Theorem 4.8.6 (Structure of the S-spectrum). Let T ∈ B(V ) and let p = p0+p1I ∈
σS(T ). Then all the elements of the sphere [p0 + Ip1] belong to σS(T ).

Proof. Consider the equation (T 2 − 2Re[p]T + |p|2I)v = 0 for v �= 0 and for
p = p0 + Ip1. The coefficients depend only on the real numbers p0, p1 and not on
I ∈ S. Therefore all s = p0 + Jp1 such that J ∈ S are in the S-spectrum of T . �

Definition 4.8.7. Let V be a two-sided quaternionic Banach space, T ∈ B(V ), and
let U ⊂ H be an axially symmetric s-domain that contains the S-spectrum σS(T ),
such that ∂(U ∩ CI) is the union of a finite number of continuously differentiable
Jordan curves for every I ∈ S. We say that U is a T -admissible open set.

We can now introduce the class of functions for which we can define the two
versions of the quaternionic functional calculus.

Definition 4.8.8. Let V be a two-sided quaternionic Banach space, T ∈ B(V ) and
let W be an open set in H.

(i) A function f ∈ RL(W ) is said to be locally left regular on σS(T ) if there
exists a T -admissible domain U ⊂ H such that U ⊂ W . We will denote by
RL

σS(T ) the set of locally left regular functions on σS(T ).

(ii) A function f ∈ RR(W ) is said to be locally right regular on σS(T ) if there
exists a T -admissible domain U ⊂ H such that U ⊂ W . We will denote by
RR

σS(T ) the set of locally right regular functions on σS(T ).
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Remark 4.8.9. Let W be an open set in H and let f ∈ RL(W ). In the Cauchy
formula (4.28) the open set U ⊂ W need not be necessarily connected. In fact,
formula (4.28) obviously holds when U = ∪r

i=1Ui, U i ∩ U j = ∅ when i �= j where
Ui are T -admissible for all i = 1, . . . , r and the boundaries of Ui ∩ CI consists
of a finite number of continuously differentiable Jordan curves for I ∈ S for all
i = 1, . . . , r. So when we choose f ∈ RL

σS(T ), the related open set U need not be
connected. In the sequel we will state our results relating them to a domain U but
our results obviously hold for open sets U = ∪r

i=1Ui as above. We will call such
an open set U a T -admissible open set.

Using the left S-resolvent operator S−1
L , we now give a result that motivates

the functional calculus; analogous considerations can apply using S−1
R with obvious

modifications.

Theorem 4.8.10. Let s, a ∈ H, m ∈ N, T ∈ B(V ) and let U ⊂ H be a T -admissible
open set. Set dsI = −dsI for I ∈ S. Then

Tma =
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI s

m a. (4.51)

Proof. Consider the power series expansion for the operator S−1
L (s, T ) and a circle

Cr on CI centered in the origin and of radius r > ‖T ‖. We have

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI s

m a =
1

2π

∑
n≥0

T n

∫
Cr

s−1−n+m dsIa = Tm a,

since ∫
Cr

dsIs
−n−1+m = 0 if n �= m,∫

Cr

dsIs
−n−1+m = 2π if n = m.

The Cauchy theorem on CI shows that the above integrals are not affected if we
replace Cr by ∂(U ∩ CI) independently of I ∈ S. �

Theorem 4.8.11 (Compactness of S-spectrum). Let T ∈ B(V ). Then the S-spec-
trum σS(T ) is a compact nonempty set.

Proof. Let U ⊂ H be a T -admissible open set. Set dsI = −dsI for I ∈ S. Then

1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI s
m = Tm.

In particular, for m = 0, we have

1

2π

∫
∂(U∩CI)

S−1(s, T ) dsI = I,
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which shows that σS(T ) is a nonempty set (otherwise the integral would be zero by
the vector-valued version of Cauchy’s theorem). The S-spectrum is closed because
the complement of σS(T ) is open. Indeed, the function

g : s �→ T 2 − 2Re[s]T + |s|2I

is trivially continuous and, by Theorem 10.12 in [91], the set U(V ) of all invertible
elements of B(V ) is an open set in B(V ). Therefore

g−1(U(V )) = ρS(T )

is an open set in H. The S-spectrum is a bounded set because for ‖T ‖ < |s|
the series

∑
n≥0 T

ns−1−n and
∑

n≥0 s
−1−nT n converge. So we conclude that it is

compact. �

4.9 Examples of S-spectra

We now give some examples of the computation of the S-spectrum of some matri-
ces. In section 4.14 we will compare the S-spectrum with a more standard spec-
trum, the so-called left spectrum, showing that, in general, there is no relation
between them. In what follows s will always denote a quaternion.

Example 4.9.1. We determine the S-spectrum of the matrix

T1 =

[
1 0
0 j

]
.

We consider( [
1 0
0 j

]2
− 2s0

[
1 0
0 j

]
+ |s|2

[
1 0
0 1

]) [
q1
q2

]
= 0

which gives [
1− 2s0 + |s|2 0

0 −1− 2js0 + |s|2
] [

q1
q2

]
= 0.

Since q1 and q2 ∈ H cannot be simultaneously zero, we must have either

1− 2s0 + |s|2 = 0

or
−1− 2js0 + |s|2 = 0.

The first equation gives

1− 2s0 + |s|2 = 0

⇔ 1− 2s0 + s20 + s21 + s22 + s23 = 0

⇔ (s0 − 1)2 + s21 + s22 + s23 = 0

⇔ s0 = 1, sj = 0, j = 1, 2, 3;
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while the second equation gives

−1− 2js0 + |s|2 = 0 ⇔ s0 = 0 and |s|2 = 1

⇔ s21 + s22 + s23 = 1 and s0 = 0.

Therefore the S-spectrum is

σS(T1) = {1} ∪ S.

Example 4.9.2. We determine the S-spectrum of the matrix

T2 =

[
i 0
0 j

]
.

We have [
−1− 2is0 + |s|2 0

0 −1− 2js0 + |s|2
] [

q1
q2

]
= 0

and therefore
σS(T2) = S.

Example 4.9.3. We determine the S-spectrum of the real diagonal matrix

T3 =

[
a 0
0 b

]
,

which gives [
a2 − 2as0 + |s|2 0

0 b2 − 2bs0 + |s|2
] [

q1
q2

]
= 0

from which we have
(s0 − a)2 + s21 + s22 + s23 = 0

and
(s0 − b)2 + s21 + s22 + s23 = 0.

Therefore σS(T3) = {a, b}.
Example 4.9.4. We determine the S-spectrum of

T4 =

[
0 i
−i 0

]
.

We consider

(T 2
4 − 2s0T4 + |s|2)

[
q1
q2

]
=

[
1 + |s|2 −2s0i
2s0i 1 + |s|2

] [
q1
q2

]
= 0

and get
(1 + |s|2)q1 − 2s0iq2 = 0, 2s0iq1 + (1 + |s|2)q2 = 0.
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Observe that 1 + |s|2 �= 0 for every s ∈ H, so

q2 = − 2s0i

1 + |s|2 q1,

and replacing it in the first equation we obtain

(1 + |s|2)q1 + 2s0i
2s0i

1 + |s|2 q1 = 0.

Since it must be q1 �= 0, it is

(1 + |s|2)2 − 4s20 = 0

whose solutions are

1 + |s|2 ± 2s0 = 0,

which gives

(1± s0)
2 + s21 + s22 + s23 = 0.

The S-spectrum is therefore

σS(T4) = {s0 = ±1, s1 = s2 = s3 = 0}.

4.10 The quaternionic functional calculus

We begin by recalling the quaternionic version of the Hahn-Banach theorem, orig-
inally proved in [97], and one of its corollaries which, with the Cauchy integral
formula II, are the main tools to prove that the definition of the quaternionic
functional calculus is well posed.

Theorem 4.10.1 (The quaternionic version of the Hahn-Banach theorem). Let V0
be a right subspace of a right vector space V on H. Suppose that p is a seminorm
on V and let φ be a linear and continuous functional on V0 such that

|〈φ, v〉| ≤ p(v), ∀v ∈ V0. (4.52)

Then it is possible to extend φ to a linear and continuous functional Φ on V
satisfying the estimate (4.52) for all v ∈ V .

Proof. Note that, for any quaternion q we have q = q0 + q1i+ q2j + q3k = z1(q) +
z2(q)j, where z1, z2 ∈ C = R+Ri and qj = −z2(q)+z1(q)j, so q = z1(q)−z1(qj)j.
The functional φ can be written as φ = φ0 + φ1i + φ2j + φ3k = ψ1(φ) + ψ2(φ)j,
with ψ1(φ) = φ0 + φ1i and ψ2(φ) = φ2 + φ3i which are complex functionals. It is
immediate that

〈φ, v〉 = 〈ψ1, v〉 − 〈ψ1, vj〉j, ∀v ∈ V0
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where ψ1 is a C–linear functional. So we can apply the complex version of the
Hahn–Banach theorem to deduce the existence of a functional ψ̃1 that extends ψ1

to the whole of V (as a complex vector space). The functional Ψ given by

〈Ψ, v〉 = 〈ψ̃1, v〉 − 〈ψ̃1, vj〉j

is defined on V and it is the extension that satisfies estimate (4.52) for all v ∈
V . �

The following result is an immediate consequence of the quaternionic version
of the Hahn-Banach theorem. Its proof mimics the analog proof in the complex
case.

Corollary 4.10.2. Let V be a right vector space on H and let v ∈ V . If 〈φ, v〉 = 0
for every linear and continuous functional φ in V ′, then v = 0.

Theorem 4.10.3. Let V be a two-sided quaternionic Banach space and T ∈ B(V ).
Let U ⊂ H be a T -admissible domain and set dsI = −dsI. Then the integrals

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s), f ∈ RL

σS(T ) (4.53)

and
1

2π

∫
∂(U∩CI)

f(s) dsI S
−1
R (s, T ), f ∈ RR

σS(T ) (4.54)

do not depend on the choice of the imaginary unit I ∈ S and on U .

Proof. Let us prove that (4.53) does not depend on the choice of the imaginary
unit I ∈ S and on U . Let us consider T ∈ BR(V ) (the case T ∈ BL(V ) works
with obvious different interpretations of the action of the operators involved). We
first observe that the function S−1

L (s, q) is right s-regular in the variable s in its
domain of definition by Proposition 4.4.9. Now observe that we can replace q with
an operator T ∈ B(V ) in the Cauchy formula (4.28), thanks to Theorem 4.7.4. For
every linear and continuous functional φ ∈ V ′, consider the duality 〈φ, S−1

L (s, T )v〉,
for v ∈ V and define the function

g(s) := 〈φ, S−1
L (s, T )v〉, for v ∈ V, φ ∈ V ′.

The function g remains right s-regular in the variable s on the complement of
σS(T ) and since g(s) → 0 as s → ∞ we have that g is s-regular also at infinity.
Suppose that U is a T -admissible open set such that ∂(U ∩CI) does not cross the
S-spectrum of T for every I ∈ S. The fact that, for fixed I ∈ S, the integral

1

2π

∫
∂(U∩CI )

g(s)dsI f(s) (4.55)

does not depend on U follows from the Cauchy theorem. By Corollary 4.10.2 also
the integral (4.53) does not depend on U . We now prove that the integral (4.55)



148 Chapter 4. Quaternionic Functional Calculus

does not depend on I ∈ S. Since g is a right s-regular function on the complement

of the S-spectrum of T , we can consider an open set U ′ such that U
′ ⊂ ρS(T ),

U ′ ∩ R �= ∅ and [q] ⊂ U ′ whenever q ∈ U ′. We assume that ∂(U ′ ∩ CI) consists
of a finite number of continuously differentiable Jordan curves ∀I ∈ S and that
∂U ⊂ U ′ where U is an open set as above so, in particular, U contains [s] whenever
s ∈ U . Choose J ∈ S, J �= I and represent g(s) by the Cauchy integral formula
(4.30) as

g(s) = − 1

2π

∫
∂(U ′∩CJ)−

g(t) dtJ S−1
L (s, t) (4.56)

where the boundary ∂(U ′ ∩ CJ)
− is oriented clockwise to include the points [s] ∈

∂(U ∩CJ) (recalling that the singularities of S−1
L (s, t) correspond to the 2-sphere

[s]) and to exclude the points belonging to the S-spectrum of T .
Let us now plug the expression of g(s) in (4.56) into the integral (4.55) and

taking into account the orientation of ∂(U ′ ∩ CJ)
− we obtain

1

2π

∫
∂(U∩CI)

g(s) dsI f(s) (4.57)

=
1

2π

∫
∂(U∩CI )

[ 1

2π

∫
∂(U ′∩CJ )

g(t) dtJ S
−1
L (s, t)

]
dsI f(s)

=
1

2π

∫
∂(U ′∩CJ )

g(t) dtJ

[ 1

2π

∫
∂(U∩CI )

S−1
L (s, t) dsI f(s)

]
where we have used the Fubini theorem. Now observe that ∂(U ′ ∩CJ) consists of
a finite number of Jordan curves inside and outside U ∩ CJ , but the integral

1

2π

∫
∂(U∩CI )

S−1
L (s, t) dsI f(s)

equals f(t) for those t ∈ ∂(U ′ ∩ CJ) belonging to U ∩ CJ . Thus we obtain:

1

2π

∫
∂(U ′∩CJ )

g(t) dtJ

[ 1

2π

∫
∂(U∩CI)

S−1
L (s, t) dsI f(s)

]
(4.58)

=
1

2π

∫
∂(U ′∩CJ )

g(t) dtJf(t).

So from (4.57) and (4.58) we can write

1

2π

∫
∂(U∩CI)

g(s) dsI f(s) =
1

2π

∫
∂(U ′∩CJ )

g(t) dtJf(t). (4.59)

Now observe that ∂(U ′ ∩CJ) is positively oriented and surrounds the S-spectrum
of T . By the independence of the integral on the open set, we can substitute
∂(U ′ ∩ CJ) by ∂(U ∩CJ ) in (4.59) and we get:

1

2π

∫
∂(U∩CI )

g(s) dsI f(s) =
1

2π

∫
∂(U∩CJ )

g(t) dtJ f(t),
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that is

1

2π

∫
∂(U∩CI )

〈φ, S−1
L (s, T )v〉dsI f(s)

=
1

2π

∫
∂(U∩CJ )

〈φ, S−1
L (t, T )v〉dtJ f(t), for all v ∈ V, φ ∈ V ′, I, J ∈ S.

Thus by Corollary 4.10.2 the integral (4.53) does not depend on I ∈ S.

Let us prove with analogous arguments that the integral (4.54) does not
depend on the choice of U and I ∈ S. Also in this case let us consider T ∈ BR(V )
(the case T ∈ BL(V ) works with obvious different interpretations of the action of
the operators involved).

For every linear and continuous functional φ ∈ V ′, consider the duality
〈φ, S−1

R (s, T )v〉, for v ∈ V and define the function

g(s) := 〈φ, S−1
R (s, T )v〉, for v ∈ V, φ ∈ V ′.

The function g is left regular in the variable s on the complement of σS(T ) – recall
that the S-spectrum of a bounded linear quaternionic operator T is a compact
nonempty set – and since g(s) → 0 as s → ∞ we have that g is regular also at
infinity. Suppose that U is a T -admissible open set such that ∂(U ∩ CI) does not
cross the S-spectrum of T for every I ∈ S. The fact that, for fixed I ∈ S, the
integral

1

2π

∫
∂(U∩CI )

f(s)dsI g(s) (4.60)

does not depend on U follows from the Cauchy theorem and on Corollary 4.10.2,
so also the integral (4.54) does not depend on U . We now prove that the integral
(4.54) does not depend on I ∈ S. Let ε > 0 and set

Wε = {q ∈ U | dist(q, ∂U) > ε}.

We have that Wε ⊂ U , moreover Wε is axially symmetric since U is axially sym-

metric. Let U ′ be the complement ofWε. Then U
′ is axially symmetric, U

′ ⊂ ρS(T )
and ∂U ′ = ∂Wε ⊂ U . Note that ∂(U ′ ∩CI) consists of a finite number of continu-
ously differentiable Jordan curves ∀I ∈ S. Since g is a left regular function on the
complement of the S-spectrum of T , function g is regular on U ′. Choose J ∈ S,
J �= I and represent g(s) by the Cauchy integral formula (4.29) as

g(s) =
1

2π

∫
∂(U ′∩CJ )−

S−1
L (t, s) dtJg(t) (4.61)

= − 1

2π

∫
∂(U ′∩CJ )−

S−1
R (s, t) dtJg(t)
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where the boundary ∂(U ′ ∩ CJ)
− is oriented clockwise to include the points [s] ∈

∂(U ∩CJ ) (recall that the singularities of S
−1(s, t) correspond to the 2-sphere [s])

and to exclude the points belonging to the S-spectrum of T .
Let us now plug the expression of g(s) in (4.61) into the integral (4.60) and,

taking into account the orientation of ∂(U ′ ∩ CJ)
−, we obtain

1

2π

∫
∂(U∩CI )

f(s) dsI g(s) (4.62)

=
1

2π

∫
∂(U∩CI )

f(s) dsI

[ 1

2π

∫
∂(U ′∩CJ )

S−1
R (s, t) dtJg(t)

]
=

1

2π

∫
∂(U ′∩CJ )

1

2π

∫
∂(U∩CI)

[
f(s) dsIS

−1
R (s, t)

]
dtJg(t)

where we have used the Fubini theorem. Since ∂(U ′ ∩ CJ) ⊂ U ∩CJ , the integral

1

2π

∫
∂(U∩CI )

f(s) dsI S
−1
R (s, t)

equals f(t). Thus we obtain:

1

2π

∫
∂(U∩CI)

g(s) dsI f(s) =
1

2π

∫
∂(U ′∩CJ )

g(t) dtJf(t). (4.63)

Now observe that ∂(U ′ ∩CJ) is positively oriented and surrounds the S-spectrum
of T . By the independence of the integral on the open set, we can substitute
∂(U ′ ∩ CJ) by ∂(U ∩CJ ) in (4.63) and we get:

1

2π

∫
∂(U∩CI )

g(s) dsI f(s) =
1

2π

∫
∂(U∩CJ )

g(t) dtJ f(t),

that is

1

2π

∫
∂(U∩CI )

〈φ, S−1
L (s, T )v〉dsI f(s)

=
1

2π

∫
∂(U∩CJ )

〈φ, S−1
L (t, T )v〉dtJ f(t), for all v ∈ V, φ ∈ V ′, I, J ∈ S.

Thus by Corollary 4.10.2 the integral (4.54) does not depend on I ∈ S. �

Definition 4.10.4 (The quaternionic functional calculus). Let V be a two-sided
quaternionic Banach space and T ∈ B(V ). Let U ⊂ H be a T -admissible domain
and set dsI = −dsI. We define

f(T ) =
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s), for f ∈ RL

σS(T ), (4.64)
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and

f(T ) =
1

2π

∫
∂(U∩CI )

f(s) dsI S
−1
R (s, T ), for f ∈ RR

σS(T ). (4.65)

Remark 4.10.5. By Remark 4.6.4, it follows that when T ∈ BL(V ) we have
f(T )(v) = vf(T ) while if T ∈ BR(V ) we have f(T )(v) = f(T )v.

An immediate consequence is the following.

Theorem 4.10.6. Let V be a quaternionic Banach space and let T ∈ B(V ). Assume
that fn ∈ RL

σS(T ) (resp. fn ∈ RR
σS(T )), for all n ∈ N and let U be a T -admissible

open set. If fn converges uniformly to f on U ∩ CI , I ∈ S, then fn(T ) converges
to f(T ) in B(V ).

Proof. LetW be a T -admissible domain such that σS(T ) ⊂ W ⊂ U . Then fn → f
converges uniformly on ∂(W ∩CI) and consequently

fn(T ) =
1

2π

∫
∂(W∩CI )

S−1
L (s, T ) dsI fn(s)

converges in the uniform topology of operators to

f(T ) =
1

2π

∫
∂(W∩CI)

S−1
L (s, T ) dsI f(s).

The case fn ∈ RR
σS(T ) follows by the functional calculus in (4.65). �

4.11 Algebraic properties of the quaternionic functional

calculus

An immediate consequence of Definition 4.10.4 are the linearity properties of the
functional calculus.

Proposition 4.11.1. Let V be a two-sided quaternionic Banach space and T ∈ B(V ).

(a) If f , g ∈ RL
σS(T ), then

(f + g)(T ) = f(T ) + g(T ), (fp)(T ) = f(T )p, for all p ∈ H.

(b) If f , g ∈ RR
σS(T ), then

(f + g)(T ) = f(T ) + g(T ), (pf)(T ) = pf(T ), for all p ∈ H.

For the definition of the product of s-regular functions we need the following
subclass of regular functions.
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Definition 4.11.2. Let U ⊂ H be an open set. We define

N j(U) = {f ∈ Rj(U) | f(U ∩ CI) ⊆ CI , for all I ∈ S}, for j = L,R.

Proposition 4.11.3. Let U ⊂ H be an open set. Then we have NL(U) = NR(U).

Proof. Since fI : CI → CI we have that fI commutes with I ∈ S thus f is left
regular if and only if it is right regular. �

Thanks to Proposition 4.11.3 we set

NL(U) = NR(U) := N (U).

Definition 4.11.4. Let V be a two-sided quaternionic Banach space and let T ∈
B(V ). We will denote by NσS(T ) the set of slice regular functions for which there

exists a T -admissible open set U ⊂ H such that f ∈ N (U), and where U is
contained in the set of slice regularity of f .

The following result on the s-regular functions will be useful to study some of
the properties of the quaternionic functional calculus for bounded linear operators.

Proposition 4.11.5. Let U ⊂ H be an open set.

(1) Let f ∈ N (U), g ∈ RL(U), then fg ∈ RL(U).

(2) Let f ∈ N (U), g ∈ RR(U), then gf ∈ RR(U).

(3) Let f, g ∈ N (U), then fg = gf and fg ∈ N (U).

Proof. Point (1): Consider I ∈ S and set z = x + Iy. The restriction fI(z) of f
equals F (z) with F : U ∩ CI → CI holomorphic and we have that(

∂

∂x
+ I

∂

∂y

)
(fg)(z) =

∂F

∂x
(z)g(z) + F (z)

∂g

∂x
(z) + I

∂F

∂y
(z)g(z) + IF (z)

∂g

∂y
(z)

and since I commutes with F (z) we obtain:(
∂

∂x
+ I

∂

∂y

)
(fg)(z) =

(∂F
∂x

(z) + I
∂F

∂y
(z)
)
g(z) + F (z)

(∂g
∂x

(z) + I
∂g

∂y
(z)
)
= 0.

Point (2) is analogous. Point (3) follows from the fact that both f and g take
CI to itself for all I ∈ S. �

Theorem 4.11.6. Let V be a two-sided quaternionic Banach space and T ∈ B(V ).

(1) If φ ∈ NσS(T ) and g ∈ RL
σS(T ), then (φg)(T ) = φ(T )g(T ).

(2) If φ ∈ NσS(T ) and g ∈ RR
σS(T ), then (gφ)(T ) = g(T )φ(T ).
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Proof. We prove point (1), since the proof of point (2) is analogous. Denote by
U a T -admissible open set on which both φ and g are s-regular. Observe that φg
is s-regular on U thanks to Lemma 4.11.5. Let G1 and G2 be two T -admissible
open sets such that G1 ∪ ∂G1 ⊂ G2 and G2 ∪ ∂G2 ⊂ U . Take s ∈ ∂(G1 ∩CI) and
t ∈ ∂(G2 ∩ CI) and observe that, for I ∈ S, we have

g(s) =
1

2π

∫
∂(G2∩CI)

S−1
L (t, s) dtI g(t).

Now consider

(φg)(T ) =
1

2π

∫
∂(G1∩CI)

S−1
L (s, T ) dsI φ(s) g(s)

=
1

2π

∫
∂(G1∩CI)

S−1
L (s, T ) dsI φ(s)

[ 1

2π

∫
∂(G2∩CI)

S−1
L (t, s) dtI g(t)

]
.

By the vectorial version of the Fubini theorem we have

(φg)(T ) =
1

(2π)2

∫
∂(G2∩CI)

∫
∂(G1∩CI)

S−1
L (s, T ) dsI φ(s)S

−1
L (t, s) dtI g(t).

Finally observe that S−1
L (t, s) is s-regular in the variable s on the S-spectrum of

T and φ(s)S−1
L (t, s) is s-regular in the variable s thanks to Lemma 4.11.5, so we

have

(φg)(T ) =
1

2π

∫
∂(G2∩CI)

φ(T )S−1
L (t, T )dtIg(t) = φ(T )g(T ). �

4.12 The S-spectral radius

In this section we give the definition of the S-spectral radius which is the analog
of the spectral radius for the Riesz–Dunford case. The main result of this section
is Theorem 4.12.6. This theorem is based on the S-spectral mapping theorem for
the powers T n, n ∈ N, of a quaternionic bounded linear operator T , and it can
be proved using some algebraic properties of quaternionic polynomials. In Section
4.13 we will generalize the S-spectral mapping theorem to a wider class of s-regular
functions.

Definition 4.12.1 (The S-spectral radius of T ). Let V be a two-sided quaternionic
Banach space and T ∈ B(V ). We call S-spectral radius of T the nonnegative real
number

rS(T ) := sup{ |s| : s ∈ σS(T ) }.
Before we can state and prove the S-spectral radius theorem, we need two

preliminary lemmas on quaternionic polynomials. For the sequel, it is useful to
recall that any quaternion q = Re[q] + Iq|Im[q]| is associated to the 2-sphere
defined by [q] which reduces to q only when q is real.
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Remark 4.12.2. We recall that quaternionic polynomials with real coefficients are
both left and right s-regular functions.

Lemma 4.12.3. Let n ∈ N and q, s ∈ H. Let

P2n(q) := q2n − 2Re[sn] qn + |sn|2.

Then

P2n(q) = Q2n−2(q)(q
2 − 2Re[s] q + |s|2) (4.66)

= (q2 − 2Re[s] q + |s|2)Q2n−2(q),

where Q2n−2(q) is a polynomial of degree 2n− 2 in q.

Proof. First of all we observe that

P2n(s) = s2n − 2Re[sn]sn + |sn|2 = s2n − (sn + s̄n)sn + snsn = 0.

Moreover, the substitution of s by any s′ on the same 2-sphere leaves the coef-
ficients of the polynomial P2n(q) unchanged, and P2n(s

′) = 0. We conclude that
the whole 2-sphere defined by s is a solution to the equation P2n(q) = 0. The
statement follows from the factorization theorem, see [71], and the fact that the
second degree polynomial q2 − 2Re[s]q + |s|2 has real coefficients. �
Lemma 4.12.4. Let n ∈ N and q, p ∈ H. Let λj , j = 0, 1, . . . , n− 1 be the solutions
of λn = p in the complex plane CIp . Then

q2n − 2Re[p] qn + |p|2 =

n−1∏
j=0

(q2 − 2Re[λj ] q + |λj |2). (4.67)

Proof. The equation λn = p can be solved in the complex plane x+Ipy containing
p = p0 + Ipp1 where it admits n solutions λj = λj0 + Ipλj1, j = 0, 1, . . . , n− 1. By
reason of degree, these are the only solutions to the equation in the complex plane
CIp . Note that if we take any p′ = p0 + Ip1, I ∈ S in the 2-sphere of p, then the
solutions to the equation λn = p′ are λ′j = λj0 + Iλj1, j = 0, 1, . . . , n − 1, I ∈ S.
We consider the polynomial

P2n(q) = q2n − 2Re[p] qn + |p|2

and we observe that q = λj is a root of P2n(q) = 0, in fact

P2n(λj) = λ2nj − 2Re[p]λnj + |p|2 = p2 − 2Re[p] p+ |p|2 = 0.

The substitution of p by p′ on the same 2-sphere leaves P2n unchanged and it
is immediate that P2n(λ

′
j) = 0 when I varies in S. This proves that the roots of

P2n(q) = 0 lie on the 2-spheres of λj , j = 0, . . . , n− 1. The statement follows from
the factorization theorem. �
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Theorem 4.12.5 (A particular case of the S-spectral mapping theorem). Let V be
a two-sided quaternionic Banach space and let T ∈ B(V ). Then

σS(T
n) = (σS(T ))

n = {sn ∈ H : s ∈ σS(T )}.

Proof. Recall that

σS(T ) = {s ∈ H : T 2 − 2 Re[s]T + |s|2I is not invertible}

and

σS(T
n) = {p ∈ H : T 2n − 2 Re[p]T n + |p|2I is not invertible}.

Note that the operator T 2n − 2Re[sn]T n + |sn|2I, thanks to Lemma 4.12.3 and
Theorem 4.11.6, can be factorized as

T 2n − 2Re[sn]T n + |sn|2I = Q2n−2(T )(T
2 − 2Re[s]T + |s|2I).

So we deduce that if T 2 − 2Re[s]T + |s|2I is not injective also T 2n − 2Re[sn]T n +
|sn|2I is not injective. This proves that (σS(T ))

n ⊆ σS(T
n). Let us now consider

p ∈ σS(T
n). By Lemma 4.12.4 and Theorem 4.11.6 we can write

T 2n − 2Re[p]T n + |p|2I =

n−1∏
j=0

(T 2 − 2Re[λj ]T + |λj |2I).

Since if T 2n− 2Re[p]T n+ |p|2I is not invertible, then at least one of the operators
T 2 − 2Re[λj ]T + |λj |2I for some j is not invertible. This proves that σS(T

n) ⊆
(σS(T ))

n. �

We can now conclude this section with the S-spectral radius theorem.

Theorem 4.12.6 (The S-spectral radius theorem). Let V be a two-sided quater-
nionic Banach space, let T ∈ B(V ), and let rS(T ) be its S-spectral radius. Then

rS(T ) = lim
n→∞ ‖T n‖1/n.

Proof. For every s ∈ H such that |s| > rS(T ) the series
∑

n≥0 T
ns−1−n con-

verges in B(V ) to the S-resolvent operator S−1
L (s, T ) (we reason analogously for∑

n≥0 s
−1−nT n). So the sequence T ns−1−n is bounded in the norm of B(V ) and

lim sup
n→∞

‖T n‖1/n ≤ rS(T ). (4.68)

Theorem 4.12.5 implies σS(T
n) = (σS(T ))

n, so we have

(rS(T ))
n = rS(T

n) ≤ ‖T n‖,
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from which we get
rS(T ) ≤ lim inf ‖T n‖1/n. (4.69)

From (4.68), (4.69) we obtain

rS(T ) ≤ lim inf
n→∞ ‖T n‖1/n ≤ lim sup

n→∞
‖T n‖1/n ≤ rS(T ). (4.70)

The chain of inequalities (4.70) also proves the existence of the limit. �

4.13 The S-spectral mapping and the composition

theorems

We collect in the following lemma some useful properties of s-regular functions
that will be used to prove the main results of this section.

Lemma 4.13.1. Let U ⊂ H be an open set.

(a) Suppose that P (q), Q(q) are polynomials in the quaternionic variable q with
real coefficients and assume that Q(q) has no zeros in U .
If F (q) = (Q(q))−1P (q) (or F (q) = P (q)(Q(q))−1), then F ∈ N (U).

(b) If f ∈ N (U), then f2 ∈ N (U).

(c) Let U , U ′ be two open sets in H and f ∈ N (U ′), g ∈ N (U) with g(U) ⊆ U ′.
Then f(g(q)) is s-regular in U .

Proof. Part a) trivially follows by replacing q by z = x+ Iy and observing that(
∂

∂x
+ I

∂

∂y

)
F (x+ Iy) = 0

for all I ∈ S. To prove b), consider CI for any I ∈ S and the restriction fI(z) =
F (z), where F : U ∩CI → CI is a holomorphic function. This implies that also the
function f2 belongs to N (U). Finally, to prove c) set q = x + Iy. By hypothesis,
g(x+ Iy) = α(x, y) + Iβ(x, y), where α and β are real-valued functions and

f(g(x+ Iy)) = f(α(x, y) + Iβ(x, y)) ⊆ CI .

The function f(g(x + Iy)) is holomorphic on each plane CI thus it satisfies the
condition (

∂

∂x
+ I

∂

∂y

)
f(g(x+ Iy)) = 0

for all I ∈ S and so f(g(q)) is s-regular. �
Theorem 4.13.2 (The S-spectral mapping theorem). Let V be a two-sided quater-
nionic Banach space, T ∈ B(V ) and f ∈ NσS(T ). Then

σS(f(T )) = f(σS(T )) = {f(s) : s ∈ σS(T )}.
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Proof. Since f ∈ NσS(T ), there exists a T -admissible open set U ⊂ H containing
σS(T ), and such that f ∈ N (U). Let us fix λ ∈ σS(T ). For q �∈ [λ], let us define
the function g̃(q) by

g̃(q) = (q2 − 2Re[λ]q + |λ|2)−1(f2(q)− 2Re[f(λ)]f(q) + |f(λ)|2).

Observe that the assumption f ∈ N (U) implies that f2 ∈ N (U) by Lemma 4.13.1
(b), so also f2(q)− 2Re[f(λ)]f(q)+ |f(λ)|2 ∈ N (U). The function (q2 − 2Re[λ]q+
|λ|2)−1 ∈ N (U \ {[λ]}), by Lemma 4.13.1 (a), thus g̃(q) ∈ N (U \ {[λ]}) by Lemma
4.11.5. We can extend g̃(q) to an s-regular function whose domain is U : if the
2-sphere [λ] is not reduced to a real point, then we define

g(q) =

⎧⎪⎨⎪⎩
g̃(q) if q �∈ [λ],

∂

∂x
f(μ)

f(μ)− f(μ)

μ− μ
if q = μ = λ0 + Iλ1 ∈ [λ], I ∈ S.

Now, the auxiliary function g, is defined on U and is s-regular, see the proof
of Theorem 3.5.9, with suitable variations. Thanks to Theorem 4.11.6 we can write

f2(T )− 2Re[f(λ)]f(T ) + |f(λ)|2I = (T 2 − 2Re[λ]T + |λ|2I)g(T ).

If f2(T )− 2Re[f(λ)]f(T ) + |f(λ)|2I admits a bounded inverse

B := (f2(T )− 2Re[f(λ)]f(T ) + |f(λ)|2I)−1 ∈ B(V ),

then we have
(T 2 − 2Re[λ]T + |λ|2I)g(T )B = I,

i.e., g(T )B is the inverse of T 2 − 2Re[λ]T + |λ|2I. Thus f(σS(T )) ⊆ σS(f(T )).
Now we take p ∈ σS(f(T )) such that p �∈ f(σS(T )). We define the function

h(q) := (f2(q)− 2Re[p]f(q) + |p|2)−1

which is s-regular on σS(T ). By Theorem 4.11.6 we obtain

h(T )(f2(T )− 2Re[p]f(T ) + |p|2I) = I,

which means that p �∈ σS(f(T )), but this contradicts the assumption. So p ∈
f(σS(T )). �
Theorem 4.13.3. Let V be a two-sided quaternionic Banach space and let T ∈
B(V ). Suppose that f ∈ NσS(T ), φ ∈ Nf(σS(T )) and define F (s) = φ(f(s)). Then
F ∈ RσS(T ) and F (T ) = φ(f(T )).

Proof. The statement F ∈ RσS(T ) follows from Lemma 4.13.1 (c). Let U ⊃
σS(f(T )) be a T -admissible open set whose boundary is denoted by ∂U . Sup-
pose that U ∪ ∂U is contained in the domain in which φ is s-regular. Let W be
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a T -admissible neighborhood of σS(T ) whose boundary is denoted by ∂W and
suppose that W ∪ ∂W is contained in the domain where f is s-regular. Finally
suppose that f(W ∪ ∂W ) ⊂ U . Let I ∈ S and define the operator

S−1(λ, f(T )) =
1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI S
−1(λ, f(s))

where

S−1(λ, f(s)) = −(f(s)2 − 2Re[λ]f(s) + |λ|2)−1(f(s)− λ). (4.71)

By applying Lemmas 4.13.1 and 4.11.5 and with some easy calculations it follows
that S−1(λ, f(s)) is s-regular in the variable s and it is right s-regular in the
variable λ.

Take λ ∈ R, so that also S(λ, f(s)) is an s-regular function and observe that

S−1(λ, f(s))S(λ, f(s)) = S(λ, f(s))S−1(λ, f(s)) = 1

so by Theorem 4.11.6 the operator S−1(λ, f(T )) satisfy the equation:

S(λ, f(T ))S−1(λ, f(T )) = S−1(λ, f(T ))S(λ, f(T )) = I. (4.72)

Observe now that also when λ is not necessarily a real number, identity (4.72)
remains valid as it can be easily shown by replacing S−1(λ, f(T )) and S(λ, f(T ))
by their explicit expressions

S−1(λ, f(T )) = −(f(T )2 − 2Re[λ]f(T ) + |λ|2)−1(f(T )− λ)

and

S(λ, f(T )) = −(f(T )− λ)−1(f(T )2 − 2Re[λ]f(T ) + |λ|2)

in (4.72) and verifying that we get an identity. Consequently we obtain

φ(f(T )) =
1

2π

∫
∂(W∩CI )

S−1(λ, f(T )) dλI φ(λ)

=
1

2π

∫
∂(W∩CI )

( 1

2π

∫
∂(U∩CI)

S−1(s, T ) dsI S
−1(λ, f(s))

)
dλI φ(λ)

=
1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI

( 1

2π

∫
∂(W∩CI )

S−1(λ, f(s)) dλI φ(λ)
)

=
1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI φ(f(s))

=
1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI F (s) = F (T ),

so this concludes the proof. �
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4.14 Bounded perturbations of the S-resolvent
operator

In this section we prove that, as in the case of the Riesz–Dunford functional calcu-
lus, bounded perturbations of the S-resolvent operator produce bounded pertur-
bations of the function f(T ). The main result of this section is Theorem 4.14.14.

To start with, we introduce the notions of left and right spectrum of a quater-
nionic linear operator. In the literature, these notions are usually introduced by
specifying the side on which the multiplication by a quaternion is done. Thus we
can state the following definition:

Definition 4.14.1. Let T : V → V be a right linear quaternionic operator on a
quaternionic Banach space V . We denote by σL(T ) the left spectrum of T related
to the resolvent operator (sI − T )−1, that is

σL(T ) = {s ∈ H : sI − T is not invertible in BR(V )},

where the notation sI in BR(V ) means that (sI)(v) = sv. Let T : V → V be a
left linear quaternionic operator on a quaternionic Banach space V . We denote by
σR(T ) the right spectrum of T related to the resolvent operator (Is−T )−1, that is

σR(T ) = {s ∈ H : Is− T is not invertible in BL(V )},

where in BL(V ) the notation Is means that (Is)(v) = vs.

We recall that the multiplication operator by an element s ∈ H is not a left
(resp. right) linear operator unless the multiplication is performed on the right
(resp. left).

The S-spectrum and the left spectrum, called from now on, L-spectrum are
not, in general, related. To convince ourselves, we will rework the examples given
in Section 4.9 and compute their L-spectra.

Example 4.14.2. Consider the matrix

T1 =

[
1 0
0 j

]
.

Recall that the S-spectrum was given by {1}∪S while an immediate computation
shows that σL(T1) = {1, j}.
Example 4.14.3. Consider the matrix

T2 =

[
i 0
0 j

]
.

Recall that σS(T2) = S, while, with simple computations, we obtain that the
L-spectrum is σL(T2) = {i, j}.
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Example 4.14.4. When we consider a real diagonal matrix

T3 =

[
a 0
0 b

]
,

we obtain σL(T3) = σS(T3) = {a, b}.

Example 4.14.5. Consider the matrix

T4 =

[
0 i
−i 0

]
.

Recall that the S-spectrum is σS(T4) = {s0 = ±1, s1 = s2 = s3 = 0}. We now
determine the L-spectrum:

(sI − T4)q =

[
s −i
i s

] [
q1
q2

]
= 0,

which gives

sq1 − iq2 = 0, iq1 + sq2 = 0.

If we replace from the first equation sq1 = iq2 into the second one, we get

(i− s i s)q1 = 0

and therefore

i− s i s = 0.

Expanding s we obtain

i− (s0 + is1 + js2 + ks3)i(s0 + is1 + js2 + ks3) = 0,

i.e.,

i− i(s0 + is1 − js2 − ks3)(s0 + is1 + js2 + ks3) = 0,

which gives the system

1− (s20 − s21 + s22 + s23) = 0, s0s1 = 0, s1s2 = 0, s1s3 = 0

so that

σL(T ) = {s1 = 0, s20 + s22 + s23 = 1}.

The notion of L-spectrum is related to the existence of the algebraic inverse
of the operator sI − T . However, the operator (sI − T )−1 is not the analog of
the resolvent operator for the Riesz–Dunford functional calculus. We describe it
in the following result:
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Theorem 4.14.6. Let T ∈ B(V ) and let s ∈ H be such that ‖T ‖ < |s|. Then the
operator ∑

n≥0

(s−1T )ns−1I

is the right and left algebraic inverse of sI − T and the series converges in the
operator norm.

Proof. Let us directly compute

(sI − T )
∑
n≥0

(s−1T )ns−1I

= sI
∑
n≥0

(s−1T )ns−1I − T
∑
n≥0

(s−1T )ns−1I

= sIs−1I + Ts−1I + T (s−1T )s−1I + T (s−1T )2s−1I + . . .

− Ts−1I − T (s−1T )s−1I − T (s−1T )2s−1I − T (s−1T )3s−1I + . . . = I.

Similarly, we can prove that∑
n≥0

(s−1T )ns−1I(sI − T ) = I.

Finally we consider

‖
∑
n≥0

(s−1T )ns−1I‖ ≤
∑
n≥0

‖(s−1T )ns−1I‖

≤
∑
n≥0

‖(s−1T )‖n|s−1| ≤
∑
n≥0

‖T ‖n|s−1|n+1

which converges for ‖T ‖ < |s|. This completes the proof. �

The L-spectrum σL(T ) for bounded operators is bounded and, in particular,
is contained in the same ball as the S-spectrum σS(T ), as shown in the next result:

Theorem 4.14.7. Let T ∈ B(V ). Then σL(T ) is contained in the set {s ∈ H : |s| ≤
‖T ‖}.

Proof. Since the series ∑
n≥0

(s−1T )ns−1I,

converges if and only if |s−1|‖T ‖ < 1, we get the statement. �

We now provide a simple relation between the L-spectrum and the S- spec-
trum.
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Proposition 4.14.8. Let T ∈ B(V ) and s ∈ σL(T ) and let v be the corresponding
L-eigenvector. Then s ∈ σS(T ) and v is the corresponding S-eigenvector if and
only if

(T − sI)(sv) = 0.

Proof. It follows from the relations:

T 2v − 2Re[s]Tv + ssIv = T (sv)− 2Re[s](sv) + s(sv)

= (T − sI)(sv) = 0. �

Lemma 4.14.9. The set U(V ) of elements in B(V ) which have inverse in B(V ) is
an open set in the uniform topology of B(V ). If U(V ) contains an element A, then
it contains the ball

Σ = {B ∈ B(V ) : ‖A−B‖ < ‖A−1‖−1}.

If B ∈ Σ, its inverse is given by the series

B−1 = A−1
∑
n≥0

[(A−B)A−1]n. (4.73)

Furthermore, the map A �→ A−1 from U(V ) onto U(V ), is a homeomorphism in
the uniform operator topology.

Proof. Let ‖I −B‖ < 1, so the series

Q =
∑
n≥0

(I −B)n

converges. Since

QB = BQ = [I − (I −B)]Q =
∑
n≥0

(I −B)n −
∑
n≥1

(I −B)n = I,

it follows that
{B ∈ B(V ) : ‖I −B‖ < 1} ⊂ U(V ).

Now let A ∈ U(V ) and let ‖A−B‖ < ‖A−1‖−1. Then

‖I −BA−1‖ = ‖(A−B)A−1‖ < 1

hence BA−1 has an inverse in B(V ), given by the series∑
n≥0

(I −BA−1)n =
∑
n≥0

[(A −B)A−1]n.

Thus B has an inverse in B(V ), given by formula (4.73):

B−1 = A−1
∑
n≥0

[(A−B)A−1]n = A−1 +A−1
∑
n≥1

[(A−B)A−1]n
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so that

‖B−1 −A−1‖ ≤ ‖A−1‖
∑
n≥1

‖[(A−B)A−1]‖n ≤ ‖A−B‖‖A−1‖2
1− ‖A−B‖‖A−1‖

from which it follows that the map B �→ B−1 from U(V ) onto U(V ) is a homeo-
morphism. �
Definition 4.14.10. Let W be a subset of H. We denote by E(W , ε), for ε > 0, the
ε-neighborhood of W defined as

E(W , ε) := {q ∈ H : inf
s∈W

|s− q| < ε}.

Let σL(T ) be the left spectrum of T . We will use the notation

σL(T ) = {q ∈ H : s ∈ σL(T )}.

We now state and prove two lemmas in the case of right linear operators.
The results can be stated and proved also in the case of left linear operators, with
suitable modifications.

Lemma 4.14.11. Let T , Z ∈ BR(V ) and let s �∈ σL(T ) ∪ σL(Z) and consider

SL(s, T ) = (T − sI)−1 s (T − sI) − T, SL(s, Z) = (Z − sI)−1 s (Z − sI)− Z

and

SR(s, T ) = (T − Is) s (T − Is)−1 − T, SR(s, Z) = (Z − Is) s (Z − Is)−1 − Z.

Then there exist positive constants K(s), K ′(s) depending on the operators T and
Z, such that

‖SL(s, T )− SL(s, Z)‖ ≤ K(s)‖T − Z‖, (4.74)

‖SR(s, T )− SR(s, Z)‖ ≤ K ′(s)‖T − Z‖. (4.75)

Proof. Consider the following chain of inequalities:

‖SL(s, T )− SL(s, Z)‖
≤ ‖(T − sI)−1‖ |s| ‖T − Z‖
+ ‖(T − sI)−1‖ ‖Z − T ‖ ‖(Z − sI)−1‖ |s| ‖Z − sI‖ + ‖T − Z‖

≤
[
‖(T − sI)−1‖ |s| + ‖(T − sI)−1‖ ‖(Z − sI)−1‖ |s| ‖Z − sI‖ + 1

]
‖T − Z‖

≤
[
|s| ‖(T − sI)−1‖

(
1 + ‖(Z − sI)−1‖ ‖Z − sI‖

)
+ 1
]
‖T − Z‖.

We set

K(s) := |s| ‖(T − sI)−1‖
(
1 + ‖(Z − sI)−1‖ ‖Z − sI‖

)
+ 1, (4.76)

so we get the statement. The strategy to prove (4.75) follows the same lines. �
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Lemma 4.14.12. Let T , Z ∈ BR(V ), let s ∈ ρS(T ), s �∈ σL(T )∪σL(Z) and suppose
that

‖T − Z‖ < 1

K(s)
‖S−1

L (s, T )‖−1, (4.77)

where K(s) is defined in (4.76). Then s ∈ ρS(Z) and

S−1
L (s, Z)− S−1

L (s, T ) = S−1
L (s, T )

∑
n≥1

[(SL(s, T )− SL(s, Z))S
−1
L (s, T )]n. (4.78)

Analogously, suppose that s ∈ ρS(T ), s �∈ σL(T ) ∪ σL(Z) and

‖T − Z‖ < 1

K ′(s)
‖S−1

R (s, T )‖−1,

where K ′(s) is obtained with analogous calculations as for K(s). Then s ∈ ρS(Z)
and

S−1
R (s, Z)− S−1

R (s, T ) = S−1
R (s, T )

∑
n≥1

[(SR(s, T )− SR(s, Z))S
−1
R (s, T )]n. (4.79)

Proof. Let us consider

SL(s, T ) = (T − sI)−1 s (T − sI)− T, SL(s, Z) = (Z − sI)−1 s (Z − sI)− Z.

Using the estimate (4.74) and hypothesis (4.77), we get

‖SL(s, T )− SL(s, Z)‖ ≤ K(s)‖T − Z‖ < ‖S−1
L (s, T )‖−1.

If we apply Lemma 4.14.9 where we set

A := SL(s, T ), B := SL(s, Z), A−1 = S−1
L (s, T ), (4.80)

we obtain that SL(s, Z) is invertible, so we conclude that s ∈ ρS(T ). Moreover,
its inverse S−1

L (s, Z) is given by formula (4.73), i.e.,

S−1
L (s, Z) = S−1

L (s, T )
∑
n≥0

[(SL(s, T )− SL(s, Z))S
−1
L (s, T )]n, (4.81)

and the series converges since

‖(SL(s, T )− SL(s, Z))S
−1
L (s, T )‖ ≤ K(s)‖T − Z‖‖S−1

L (s, T )‖ < 1.

To prove (4.79) we follow an analogous argument. �
Theorem 4.14.13. Let T, Z ∈ BR(V ), s ∈ ρS(T ), s �∈ σL(T )∪σL(Z) and let ε > 0.
Then there exists δ > 0 such that, for ‖T − Z‖ < δ, we have

σS(Z) ⊆ E(σS(T ) ∪ σL(T ), ε), (4.82)
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‖S−1
L (s, Z)− S−1

L (s, T )‖ < ε, for s �∈ E(σS(T ) ∪ σL(T ), ε), (4.83)

and

‖S−1
R (s, Z)− S−1

R (s, T )‖ < ε, for s �∈ E(σS(T ) ∪ σL(T ), ε). (4.84)

A similar statement holds for T ∈ BL(V ) when s ∈ ρS(T ), s �∈ σR(T ) ∪ σR(Z).
Proof. Recall that we have assumed T, Z ∈ BR(V ). Let ε > 0; thanks to Lemma
4.14.9 there exists η > 0 such that if

‖T − Z‖ < η,

then σL(Z) ⊂ E(σL(T ), ε), where E(σL(T ), ε) is the ε-neighborhood of σL(T ). So
we can always choose η such that σL(Z) ⊂ E(σS(T ) ∪ σL(T ), ε). Consider the
function K(s) defined in (4.76) and observe that the constant Kε defined by

Kε = sup
s�∈E(σS(T )∪σL(T ),ε)

K(s) (4.85)

is finite since s �∈ E(σS(T ) ∪ σL(T ), ε), the set σL(Z) is contained in E(σS(T ) ∪
σL(T ), ε) and because

lim
s→∞ ‖(sI − Z)−1‖ = lim

s→∞ ‖(sI − T )−1‖ = 0.

Observe that s ∈ ρS(T ) implies that the map s �→ ‖S−1
L (s, T )‖ is continuous and

lim
s→∞ ‖S−1

L (s, T )‖ = lim
s→∞ ‖(T 2 − 2Re[s]T + |s|2I)−1(T − sI)‖ = 0,

and so, for s in the complement set of E(σS(T ), ε), we have that there exists a
positive constant Nε such that

‖S−1
L (s, T )‖ ≤ Nε.

From Lemma 4.14.12 if δ1 > 0 is such that

‖Z − T ‖ < 1

KεNε
:= δ1,

where Kε is defined in (4.85), then s ∈ ρS(Z) and

‖S−1
L (s, Z)− S−1

L (s, T )‖ ≤ ‖S−1
L (s, T )‖2 ‖SL(s, T )− SL(s, Z)‖

1− ‖S−1
L (s, T )‖ ‖SL(s, T )− SL(s, Z)‖

≤ N2
εKε‖Z − T ‖

1−NεK‖Z − T ‖ < ε

if we take
‖Z − T ‖ < δ2 :=

ε

Kε(N2
ε + εNε)

.

To get the statement it suffices to set δ = min{η, δ1, δ2}. So we have shown (4.82)
and (4.83). To prove (4.84) we reason in a similar way. �
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Theorem 4.14.14. Let T, Z ∈ B(V ), f ∈ RL
σS(T ) and let ε > 0. Then there exists

δ > 0 such that, for ‖Z − T ‖ < δ, we have f ∈ RL
σS(Z) and

‖f(Z)− f(T )‖ < ε,

where

f(T ) =
1

2π

∫
∂(U∩LI )

S−1
L (s, T ) dsI f(s)

and U ⊂ H is a T -admissible domain, dsI = ds/I for I ∈ S.

Proof. Suppose that U is an ε-neighborhood of σS(T )∪σL(T ) that is contained in
the domain in which f is left s-regular. By Lemma 4.14.13 there is a δ1 > 0 such
that σS(Z) ⊂ U for ‖Z − T ‖ < δ1. Consequently f ∈ RL

σS(Z) for ‖Z − T ‖ < δ1.

By Lemma 4.14.13, the operator S−1
L (s, T ) is uniformly near to S−1

L (s, Z) with
respect to s ∈ ∂(U ∩LI) for I ∈ S if ‖Z−T ‖ is small enough, so for some positive
δ ≤ δ1 we get

‖f(T )− f(Z)‖ =
1

2π
‖
∫
∂(U∩LI)

[S−1
L (s, T )− S−1

L (s, Z)] dsI f(s)‖ < ε. �

Remark 4.14.15. Theorem 4.14.14 can be stated and proved also when f ∈ RR
σS(T )

with minor changes in the proof.

4.15 Linear closed quaternionic operators

Let V be a two-sided quaternionic Banach space. In analogy with the complex
case, we say that a linear operator, whose domain is a linear manifold D(T ), is
said to be closed if its graph is closed. For the powers of an operator T , we have

D(T n) = {v : v ∈ D(T n−1), T n−1v ∈ D(T ) }.

A quaternionic linear operator T can be written in the form

T = T0 + iT1 + jT2 + kT3.

Recalling the definitions in Section 4.6, the operators T�, for � = 0, . . . , 3, are given
by the rules:

T0 = +
1

4
(T − iT i− jT j − kTk),

T1 = −1

4
(iT + T i− jTk + kT j),

T2 = −1

4
(jT + T j − kT i+ iT k),

T3 = −1

4
(kT + Tk − iT j + jT i).
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Moreover we have [T�, iI] = [T�, jI] = [T�, kI] = 0, � = 0, . . . , 3, where [·, ·]
denotes the commutator. These properties justify the fact that we will refer to T�,
� = 0, . . . , 3, as the formal real components of the operator T . As we have already
pointed out, if we consider a right regular polynomial Pm(q) =

∑m
j=0 ajq

j , where
aj ∈ H for j = 0, . . . , n of degree m ∈ N, the right (resp. left) linear quaternionic
operator

Pm(T ) =

m∑
j=0

ajT
j : D(Tm) → V

is obtained replacing q by a right (resp. left) linear quaternionic operator T .
Analogously, if we consider a left regular polynomial of degree m ∈ N, Pm(q) =∑m

j=0 q
jaj , where aj ∈ H for j = 0, . . . , n the right (resp. left) linear quaternionic

operator

Pm(T ) =
m∑
j=0

T jaj : D(Tm) → V

is obtained replacing q by a right (resp. left) linear quaternionic operator T . Let
T = T0 + iT1 + jT2 + kT3 where T� : D(T�) → V , � = 0, 1, 2, 3 are linear operators
and D(T�) denotes the domain of T�. The domain of T is defined as D(T ) =⋂3

�=0 D(T�). When at least one of the T�’s is an unbounded operator, we define
the extended S-spectrum of T as

σS(T ) := σS(T ) ∪ {∞}.

Let us consider H = H ∪ {∞} endowed with the natural topology. Precisely, a set
is open if and only if it is the union of open discs D(q, r) with center at points in
q ∈ H and radius r, for some r, and/or the union of sets of the formD′(∞, r)∪{∞},
for some r, where D′(∞, r) = {q ∈ H | |q| > r}.

We recall that f(q) is an s-regular function at ∞ if f(q) is an s-regular
function in a set D′(∞, r) and limq→∞ f(q) exists and it is finite. We define f(∞)
to be the value of this limit.

Remark 4.15.1. If T is a right (resp. left) linear and bounded quaternionic oper-
ator, then σS(T ) is a compact nonempty set, but for unbounded operators, as in
the classical case, the S-spectrum σS(T ) can be empty, bounded or unbounded
and it can also be σS(T ) = H. In the sequel, we will assume that the S-resolvent
set ρS(T ) is nonempty.

Definition 4.15.2. Let V be a two-sided quaternionic Banach space.

(i) We denote by KR(V ) the set of right linear closed operators T : D(T ) ⊂ V →
V, such that

(1) D(T ) is dense in V ,

(2) D(T 2) ⊂ D(T ) is dense in V ,
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(3) T − sI is densely defined in V .

(ii) We denote by KL(V ) the set of left linear closed operators satisfying (1) and
(2) and such that T − Is is densely defined in V .

(iii) We use the symbol K(V ) when we do not distinguish between KL(V ) and
KR(V ).

Since T is a closed operator, then T 2 − 2TRe[s] + |s|2I : D(T 2) ⊂ V → V is
a closed operator. In analogy with the case of bounded operators, we define the
S-spectrum and the S-resolvent sets of T .

Definition 4.15.3. Let V be a two-sided quaternionic Banach space and let T ∈
K(V ). We denote by ρS(T ) the S-resolvent set of T as

ρS(T ) = {s ∈ H : (T 2 − 2TRe[s] + |s|2I)−1 ∈ B(V ) }.

We define the S-spectrum σS(T ) of T as

σS(T ) = H \ ρS(T ).

In the sequel, we will use the notation introduced in the following definition:

Definition 4.15.4. Let T ∈ K(V ) and s ∈ ρS(T ). We denote by Qs(T ) the operator:

Qs(T ) := (T 2 − 2TRe[s] + |s|2I)−1 : V → D(T 2). (4.86)

Remark 4.15.5. The S-resolvent operators S−1
L , S−1

R present a deep difference when
considering the case of left or of right linear operators. Consider, for s ∈ ρS(T ),
the left S-resolvent operator used in the bounded case, that is:

S−1
L (s, T ) = −Qs(T )(T − sI), (4.87)

and observe that in the case of right linear unbounded operators, this resolvent
turns out to be defined only on D(T ) while in the case of left linear unbounded
operators it is defined on all of V . This fact is due to the presence of the term
Qs(T )T . However, for T ∈ KR(V ), observe that the operator Qs(T )T is the re-
striction to the dense subspace D(T ) of V of a bounded linear operator defined
on V . This fact follows by the commutation relation Qs(T )Tv = TQs(T )v which
holds for all v ∈ D(T ) since the polynomial operator

T 2 − 2Re[s]T + |s|2I : D(T 2) → V

has real coefficients. More precisely, for T ∈ KR(V ), we have

TQs(T ) : V → D(T )

and this operator is continuous for s ∈ ρS(T ).



4.15. Linear closed quaternionic operators 169

Definition 4.15.6 (The S-resolvent operators for unbounded right linear oper-
ators). Let V be a two-sided quaternionic Banach space, let T ∈ KR(V ) and
s ∈ ρS(T ). We define the left S-resolvent operator as

S−1
L (s, T )v := −Qs(T )(T − sI)v, for all v ∈ D(T ),

and we will call

Ŝ−1
L (s, T )v = Qs(T )sv − TQs(T )v, for all v ∈ V, (4.88)

the extended left S-resolvent operator. We define the right S-resolvent operator as

S−1
R (s, T )v := −(T − Is)Qs(T )v, for all v ∈ V. (4.89)

Remark 4.15.7. Observe that for s ∈ ρS(T ) the operator Qs(T ) : V → D(T 2) is
bounded and so also

S−1
R (s, T ) = −(T − Is)Qs(T ) : V → D(T )

is bounded.

Definition 4.15.8 (The S-resolvent operators for unbounded left linear operators).
Let V be a two-sided quaternionic Banach space, let T ∈ KL(V ) and s ∈ ρS(T ).
We define the left S-resolvent operator as

vS−1
L (s, T ) := −vQs(T )(T − sI), for all v ∈ V. (4.90)

We define the right S-resolvent operator as

vS−1
R (s, T ) := −v(T − Is)Qs(T ), for all v ∈ D(T ), (4.91)

and we will call

vŜ−1
R (s, T ) = vQs(T )s− vQs(T )T, for all v ∈ V, (4.92)

the extended right S-resolvent operator.

This motivates the following definition.

Definition 4.15.9. Let A be an operator containing the term Qs(T )T (resp.
TQs(T )). We define Â to be the operator obtained from A by substituting each
occurrence of Qs(T )T (resp. TQs(T )) by TQs(T ) (resp. Qs(T )T ).

A second difference between the left and the right functional calculus are the
S-resolvent equations which, in order to hold on V , need different extensions of
the operators involved.

Theorem 4.15.10 (The S-resolvent equations). Let V be a two-sided quaternionic
Banach space.
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(i) If T ∈ KR(V ) and s ∈ ρS(T ), then the left S-resolvent operator satisfies the
equations

S−1
L (s, T )sv − TS−1

L (s, T )v = Iv, for all v ∈ D(T ), (4.93)

Ŝ−1
L (s, T )sv − T Ŝ−1

L (s, T )v = Iv, for all v ∈ V. (4.94)

Moreover, the right S-resolvent operator satisfies the equations

sS−1
R (s, T )v − S−1

R (s, T )Tv = Iv, for all v ∈ D(T ), (4.95)

sS−1
R (s, T )v − (S−1

R
̂(s, T )T )v = Iv, for all v ∈ V. (4.96)

(ii) If T ∈ KL(V ) and s ∈ ρS(T ), then the left S-resolvent operator satisfies the
equation

vS−1
L (s, T )s− vTS−1

L (s, T ) = vI, for all v ∈ D(T ), (4.97)

vŜ−1
L (s, T )s− vT̂ S−1

L (s, T ) = vI, for all v ∈ V. (4.98)

Moreover, the right S-resolvent operator satisfies the equations

vsS−1
R (s, T )− vS−1

R (s, T )T = vI, for all v ∈ D(T ), (4.99)

vsŜ−1
R (s, T )− v(Ŝ−1

R (s, T )T ) = vI, for all v ∈ V. (4.100)

Proof. To prove (4.93) we consider its left-hand side where we replace S−1
L (s, T )

by −Qs(T )(T − s̄I) and we obtain, for v ∈ D(T ):

−Qs(T )Tsv +Qs(T )s̄sv + TQs(T )Tv − TQs(T )s̄v

= Qs(T )|s|2v − 2s0TQs(T )v + T 2Qs(T )v

= (|s|2I − 2s0T + T 2)Qs(T )v = Iv.

Equation (4.94) can be verified as

[Qs(T )s− TQs(T )]sv − T [Qs(T )s− TQs(T )]v = Iv, for all v ∈ V.

Observe that T [Qs(T )s− TQs(T )]v ∈ V since Qs(T ) : V → D(T 2) and by trivial
computations we get the identity

(T 2 − 2TRe[s] + |s|2I)Qs(T )v = v, for all v ∈ V,

which proves the statement. Equations (4.95)–(4.100) can be verified in the same
way with obvious meaning of the symbols. �

In the classical case of a complex unbounded linear operator

B : D(B) ⊂ X → X,
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where X is a complex Banach space, the resolvent operator

R(λ,B) := (λI −B)−1, for λ ∈ ρ(B),

satisfies the following relations:

(λI −B)R(λ,B)x = x, for all x ∈ X,

R(λ,B)(λI −B)x = x, for all x ∈ D(B).

We study what happens in the quaternionic case for unbounded operators. The
analog of λI −B, associated to the left S-resolvent operator, is defined by

SL(s, T ) = (T − sI)−1 s (T − sI)− T

for those s ∈ H such that (T − sI)−1 is a bounded operator. Observe that for the
operator SL(s, T ) the following identity

(T − sI)−1 s (T − sI)− T = −(T − sI)−1(T 2 − 2s0T + |s|2I) (4.101)

holds for bounded operators. Suppose now that T ∈ KR(V ). It is easy to see that
the left-hand side of (4.101) is defined on D(T ) while the right-hand side of (4.101)
is defined on D(T 2). This fact motivates the following definition.

Definition 4.15.11. Let V be a two-sided quaternionic Banach space. Take s ∈ H

such that (T − sI)−1 is a bounded operator.

(i) Let T ∈ KR(V ). Then we define

SL(s, T )v := −(T − sI)−1(T 2 − 2s0T + |s|2I)v : v ∈ D(T 2),

ŜL(s, T )v := [(T − sI)−1 s (T − sI)− T ]v : v ∈ D(T ),

where, with an abuse of notation, we have denoted by ŜL(s, T ) the extension
of SL(s, T ) on D(T ). Moreover, we set

SR(s, T )v := [(T − Is) s (T − Is)−1 − T ]v(
= −(T 2 − 2s0T + |s|2I)(T − sI)−1v

)
, v ∈ D(T ).

(ii) Let T ∈ KL(V ). Then we define

vSL(s, T ) := v[(T − sI)−1 s (T − sI)− T ](
= −v(T − sI)−1(T 2 − 2s0T + |s|2I)

)
, v ∈ D(T ).

Moreover, we set

vSR(s, T ) := −v(T 2 − 2s0T + |s|2I)(T − sI)−1, v ∈ D(T 2),

vŜR(s, T ) := v[(T − Is) s (T − Is)−1 − T ], v ∈ D(T ),

where, with an abuse of notation, we have denoted by ŜR(s, T ) the extension
of SR(s, T ) on D(T ).
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The abuse of notation in the previous definition is motivated by the following
result:

Theorem 4.15.12. Let V be a two-sided quaternionic Banach space. Take s ∈ H

such that (T − sI)−1 is a bounded operator and s ∈ ρS(T ).

(i) Let T ∈ KR(V ). Then we have

ŜL(s, T )Ŝ
−1
L (s, T )v = Iv, for all v ∈ V, (4.102)

Ŝ−1
L (s, T )ŜL(s, T )v = Iv, for all v ∈ D(T ), (4.103)

and

SR(s, T )S
−1
R (s, T )v = Iv, for all v ∈ V, (4.104)

S−1
R (s, T )SR(s, T )v = Iv, for all v ∈ D(T ). (4.105)

(ii) Let T ∈ KL(V ). Then we have

vSL(s, T )S
−1
L (s, T ) = vI, for all v ∈ V, (4.106)

vS−1
L (s, T )SL(s, T ) = vI, for all v ∈ D(T ), (4.107)

and

vŜR(s, T )Ŝ
−1
R (s, T ) = vI, for all v ∈ V, (4.108)

vŜ−1
R (s, T )ŜR(s, T ) = vI, for all v ∈ D(T ). (4.109)

Proof. Let us verify that (4.102) holds, i.e.,

[(T − sI)−1s(T − sI)− T ]Ŝ−1
L (s, T )v = Iv, for all v ∈ V,

from which we get

(T − sI)−1[sT Ŝ−1
L (s, T )v − |s|2Ŝ−1

L (s, T )v]

= T Ŝ−1
L (s, T )v + Iv, for all v ∈ V ;

using (4.94) on the right-hand side we obtain

(T − sI)−1[sŜ−1
L (s, T )sv − sv − |s|2Ŝ−1

L (s, T )v]

= Ŝ−1
L (s, T )sv, for all v ∈ V

and

(T − sI)−1[sŜ−1
L (s, T )sv − sv − Ŝ−1

L (s, T )ssv]

= Ŝ−1
L (s, T )sv, for all v ∈ V

(T − sI)−1[sŜ−1
L (s, T )− I − Ŝ−1

L (s, T )s]sv

= Ŝ−1
L (s, T )sv, for all v ∈ V ;
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by (4.94) we have:

(T − sI)−1[sŜ−1
L (s, T )− (Ŝ−1

L (s, T )s− T Ŝ−1
L (s, T ))− Ŝ−1

L (s, T )s]sv

= Ŝ−1
L (s, T )sv, for all v ∈ V

from which we get

(T − sI)−1[T Ŝ−1
L (s, T )− sŜ−1

L (s, T )]sv = Ŝ−1
L (s, T )sv, for all v ∈ V,

that is

(T − sI)−1(T − sI)Ŝ−1
L (s, T )(sv) = Ŝ−1

L (s, T )(sv), for all v ∈ V,

which proves (4.102). To verify (4.103) observe that from (4.102) we get

(Ŝ−1
L (s, T )SL(s, T ))Ŝ

−1
L (s, T )v = Ŝ−1

L (s, T )v, for all v ∈ V,

but since Ŝ−1
L (s, T )v ∈ D(T ) for v ∈ V we have that

Ŝ−1
L (s, T )SL(s, T )w = Iw for all w ∈ D(T ).

The proofs of (4.104)–(4.109) can be treated with analogous considerations. �

Remark 4.15.13. Let T ∈ KR(V ). Take s ∈ H such that (T − sI)−1 is a bounded
operator and s ∈ ρS(T ). Then it is easy to show that

SL(s, T )S
−1
L (s, T )v = Iv, for all v ∈ D(T ), (4.110)

S−1
L (s, T )SL(s, T )v = Iv, for all v ∈ D(T 2). (4.111)

Similar considerations can be applied for (4.108)–(4.109).

4.16 The functional calculus for unbounded operators

Definition 4.16.1. Let T ∈ K(V ). A function f is said to be locally left (resp.
right) s-regular on σS(T ) if there exists a T -admissible open set U such that f is
left (resp. right) s-regular on U and at infinity. We will denote by RL

σS(T ) (resp.

RR
σS(T )) the set of locally left (resp. right) s-regular functions on σS(T ).

Remark 4.16.2. As we have pointed out in Remark 4.8.9, the open set U related
to f ∈ RL

σS(T ) (resp. RR
σS(T )) need not be connected. Moreover, as in the classical

functional calculus, U in general depends on f and can be unbounded.

Definition 4.16.3. Consider k ∈ R and the function Φ : H → H defined by p =
Φ(s) = (s− k)−1, Φ(∞) = 0, Φ(k) = ∞.
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Definition 4.16.4. Let T ∈ K(V ) with ρS(T )∩R �= ∅ and suppose that f ∈ RL
σS(T )

(resp. f ∈ RR
σS(T )). Let us consider

φ(p) := f(Φ−1(p))

and the bounded linear operator defined by

A := (T − kI)−1, for some k ∈ ρS(T ) ∩R.

We define, in both cases, the operator f(T ) as

f(T ) = φ(A). (4.112)

Remark 4.16.5. Consider Φ, φ and k as above. Then:

(1) The function Φ−1(p) = p−1 + k has real coefficients so it is both left and
right regular. So if f is left regular, then the function φ = f(Φ−1(p)) is left
regular, while if f is right regular, then the function φ = f(Φ−1(p)) is right
regular by Theorem 4.13.1.

(2) If k ∈ ρS(T ) ∩ R and T ∈ KR(V ), then

(T − kI)−1v = −Ŝ−1
L (k, T )v = −S−1

R (k, T )v, for all v ∈ V.

(3) If k ∈ ρS(T ) ∩ R and T ∈ KL(V ), then

v(T − kI)−1 = −vŜ−1
R (k, T ) = −vS−1

L (k, T ), for all v ∈ V.

Theorem 4.16.6. Let k ∈ ρS(T ) ∩ R �= ∅ and Φ, φ are as above.

(i) Let T ∈ KR(V ), then Φ(σS(T )) = σS(A) and φ(p) = f(Φ−1(p)) determines
a one-to-one correspondence between f ∈ RσS(T ) and φ ∈ RσS(A). Moreover
we have

Ŝ−1
L (s, T )v = pIv − S−1

L (p,A)p2v, v ∈ V, (4.113)

and

S−1
R (s, T )v = pIv − p2S−1

R (p,A)v, v ∈ V. (4.114)

(ii) Let T ∈ KL(V ), then Φ(σS(T )) = σS(A) and φ(p) = f(Φ−1(p)) determines
a one-to-one correspondence between f ∈ RσS(T ) and φ ∈ RσS(A). Moreover
we have

vS−1
L (s, T ) = vpI − vS−1

L (p,A)p2, v ∈ V, (4.115)

and

vŜ−1
R (s, T ) = vpI − vp2S−1

R (p,A), v ∈ V. (4.116)
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Proof. Let s, p ∈ H and k ∈ R such that p = (s− k)−1. Then the identities

s0|p|2 = k|p|2 + p0, (4.117)

|p|2|s|2 = k2|p|2 + 2p0k + 1, (4.118)

(2kp− 2s0p+ 1)
1

|p|2 = −p−2, (4.119)

k2p− |s|2p+ k

|p|2 = −sp−2 (4.120)

can be verified by direct calculations. Let us prove (4.113) in Point (i). We prove
that Φ(σS(T )) = σS(A). We recall that

Ŝ−1
L (s, T ) = Qs(T )s− TQs(T ) : V → D(T ) for all s ∈ ρS(T ).

From the definition of A we also have, for k ∈ ρS(T ) ∩ R �= 0,

A := (T − kI)−1 : V → D(T ), and A−1 = T − kI : D(T ) → V,

A2 := (T 2 − 2kT + k2I)−2 : V → D(T 2),

and

A−2 = T 2 − 2kT + k2I : D(T 2) → V.

Observe that, for p ∈ ρS(A),

Qp(A) := (A2 − 2p0A+ |p|2I)−1 ∈ B(V )

and

S−1
L (p,A) = Qp(A)p−AQp(A).

Let us consider the relation

Qp(A) =
[
(T − kI)−2 − 2p0(T − kI)−1 + |p|2I

]−1

=
[
[I − 2p0(T − kI) + |p|2(T − kI)2](T − kI)−2

]−1

= (T − kI)2[I − 2p0(T − kI) + |p|2(T − kI)2]−1

= |p|−2(T − kI)2[T 2 − 2(k + p0|p|−2)T + (k2|p|2 + 2p0k + 1)|p|−2I]−1;

for (4.117) and (4.118) we get

Qp(A) = |p|−2(T − kI)2[T 2 − 2s0T + |s|2I]−1 : V → V,

that is

Qp(A) = |p|−2(T − kI)2Qs(T ). (4.121)
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Since A is a bounded operator, then

S−1(p,A) = Qp(A)p−AQs(A) : V → V,

so we have

S−1(p,A) = |p|−2(T − kI)2Qs(T )p− |p|−2(T − kI)Qs(T )

= |p|−2
[
(T 2 − 2kT + k2I)Qs(T )p− (T − k)Qs(T )

]
= |p|−2

[
(T 2 − 2s0T + |s|2I)Qs(T )p

+ (−2kT + k2 + 2s0T − |s|2)Qs(T )p− (T − kI)Qs(T )
]

= |p|−2
[
Ip+Qs(T )[k

2p− |s|2p+ k]− TQs(T )[2kp− 2s0p+ 1]
]

=
[
Ip−1 +Qs(T )

k2p− |s|2p+ k

|p|2 − TQs(T )
2kp− 2s0p+ 1

|p|2
]
.

Now we use the identities (4.119) and (4.120) to get

S−1
L (p,A) = Ip−1 −Qs(T )sp

−2 + TQs(T )p
−2

and finally
S−1
L (p,A) = Ip−1 − Ŝ−1

L (s, T )p−2. (4.122)

So p ∈ ρS(A), p �= 0, then s ∈ ρS(T ).
Now take s ∈ ρS(T ). We verify that

Ŝ−1
L (s, T ) = −AS−1

L (p,A)p

holds. Indeed, by (4.121) we get the equalities

−AS−1
L (p,A)p = −A[Qp(A)p −AQp(A)]p

= −(T − kI)−1
[
[|p|−2(T − kI)2Qs(T )]p− (T − kI)−1[|p|−2(T − kI)2Qs(T )]

]
p

= −TQs(T ) +Qs(T )(
p

|p|2 + k) = Ŝ−1
L (s, T ).

So if s ∈ ρS(T ), then p ∈ ρS(A), p �= 0.
The point p = 0 belongs to σS(A) since S−1

L (0, A) = A−1 = T − kI is
unbounded.

The fact that φ(p) = f(Φ−1(p)) determines a one-to-one correspondence
between f ∈ RσS(T ) and φ ∈ RσS(A), as is evident from the definition of Φ.

It remains to prove relation (4.114). We recall that

S−1
R (s, T ) = −(T − sI)Qs(T ) : V → D(T ) for all s ∈ ρS(T ).
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From the definition of A, which is a bounded operator, when k ∈ ρS(T ) ∩ R �= 0
we have

A := (T − kI)−1 : V → D(T ), A−1 = T − kI : D(T ) → V,

A2 := (T 2 − 2kT + k2I)−1 : V → D(T 2),

and
A−2 = T 2 − 2kT + k2I : D(T 2) → V.

Observe that, for p ∈ ρS(A),

Qp(A) := (A2 − 2p0A+ |p|2I)−1 ∈ BR(V ).

By the relation between Qp(A) and Qs(T ) in (4.121) and since A is a bounded
operator, we get S−1

R (p,A) = −(A− pI)Qs(A) : V → V ; therefore, using (4.121),
we have

S−1
R (p,A) = −[(T − kI)−1 − pI] |p|−2 (T − kI)2Qs(T )

= −|p|−2
[
T − kI − p(T − kI)2

]
Qs(T )

= −|p|−2p
[
p−1T − p−1kI − T 2 + 2kT − k2I

]
Qs(T )

= p−1
[
(T 2 − 2s0T + |s|2I) + (2s0 − 2k − p−1)T + (p−1k + k2 − |s|2)I

]
Qs(T )

= p−1I +
[
p−1(2s0 − 2k − p−1)T − p−1(|s|2 − k2 − kp−1)I

]
Qs(T ).

By the identities

2s0 − 2k − p−1 = p−1, |s|2 − k2 − kp−1 = p−1s

we finally get
S−1
R (p,A) = p−1I − p−2S−1

R (s, T ), (4.123)

from which we obtain (4.114). So, if p ∈ ρS(A) and p �= 0, then s ∈ ρS(T ).
Now take s ∈ ρS(T ). We verify that

S−1
R (s, T ) = −pS−1

R (p,A)A

holds. In fact, by (4.121) we get the equalities

pS−1
R (p,A)A = −p(A− pI)Qp(A)A = −p(A− pI)AQp(A)

= (−pA2 + |p|2A)|p|−2(T − kI)2Qs(T )

= (−p(T − kI)−2 + |p|2(T − kI)−1)|p|−2(T − kI)2Qs(T )

=
[
T −
(
k + p|p|−2

)
I
]
Qs(T ) = −S−1

R (s, T ).
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So if s ∈ ρS(T ), then p ∈ ρS(A), p �= 0. Thus p = 0 belongs to σS(A) since
S−1
R (0, A) = A−1 = T − kI is unbounded.

Point (ii): The fact that φ(p) = f(Φ−1(p)) determines a one-to-one corre-
spondence between f ∈ RσS(T ) and φ ∈ RσS(A) follows from the definition of Φ.
We can prove the equalities (4.115) and (4.116) with techniques similar to those
used to prove (4.113) and (4.114), with obvious different interpretation of the
symbols since T ∈ KL(V ). �
Theorem 4.16.7. Let V be a two-sided quaternionic Banach space and let W be a
T -admissible open set.

(i) Let T ∈ KR(V ) with ρS(T ) ∩ R �= ∅. Then the operator f(T ) defined in
(4.112) is independent of k ∈ ρS(T )∩R, and, for f ∈ RL

σS(T ) and v ∈ V , we
have

f(T )v = f(∞)Iv + 1

2π

∫
∂(W∩CI)

Ŝ−1
L (s, T ) dsI f(s)v, (4.124)

and for f ∈ RR
σS(T ) and v ∈ V , we have

f(T )v = f(∞)Iv + 1

2π

∫
∂(W∩CI)

f(s) dsI S
−1
R (s, T )v. (4.125)

(ii) Let T ∈ KL(V ) with ρS(T ) ∩ R �= ∅. Then the operator f(T ) defined in
(4.112) is independent of k ∈ ρS(T )∩R, and, for f ∈ RL

σS(T ) and v ∈ V , we
have

vf(T ) = vf(∞)I +
1

2π

∫
∂(W∩CI )

v S−1
L (s, T ) dsI f(s), (4.126)

and for f ∈ RR
σS(T ) and v ∈ V , we have

vf(T ) = vf(∞)I +
1

2π

∫
∂(W∩CI )

v f(s) dsI Ŝ
−1
R (s, T ). (4.127)

Proof. The fact that the operator f(T ) defined in (4.112) is independent of k ∈
ρS(T ) ∩R follows from the validity of formulas (4.124)-(4.127) since the integrals
are independent of k.

Consider k ∈ ρS(T ) ∩ R, and assume that the set W is such that k �∈
(W ∩ CI), ∀I ∈ S. Otherwise, by the Cauchy theorem, we can replace W by
W ′, on which f is regular, such that k �∈ (W ′ ∩ CI), without altering the value of
the integral (4.125). Moreover, the integral (4.125) is independent of the choice of
I ∈ S.

We have that V ∩ CI := Φ−1(W ∩ CI) is an open set that contains σS(T )
and its boundary ∂(V ∩CI) = Φ−1(∂(W ∩CI)) is positively oriented and consists
of a finite number of continuously differentiable Jordan curves.
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Let us prove formula (4.124) in Point (i). Using the relation (4.113) we have

1

2π

∫
∂(W∩CI)

Ŝ−1
L (s, T )dsIf(s)

= − 1

2π

∫
∂(V∩CI)

(
pI − S−1

L (p,A)p2
)
p−2dpIφ(p)

= − 1

2π

∫
∂(V∩CI)

p−1dpIφ(p) +
1

2π

∫
∂(V∩CI)

S−1
L (p,A)dpIφ(p)

= −Iφ(0) + φ(A).

Now by definition φ(A) = f(T ) and φ(0) = f(∞) we obtain

1

2π

∫
∂(W∩CI )

S−1(s, T )dsIf(s) = −If(∞) + f(T ),

so we get (4.124). Now, using the relation (4.114) we have

1

2π

∫
∂(W∩CI )

f(s) dsI S
−1
R (s, T )v

= − 1

2π

∫
∂(V∩CI)

φ(p) dpI p
−2
(
pI − p2S−1

R (p,A)
)
v

= − 1

2π

∫
∂(V∩CI)

φ(p) dpI p
−1v +

1

2π

∫
∂(V∩CI)

φ(p) dpI S
−1
R (p,A)v

= −Iφ(0)v + φ(A)v.

Now by definition φ(A) = f(T ) and φ(0) = f(∞) we obtain

1

2π

∫
∂(W∩CI)

f(s) dsI S
−1
R (s, T )v = −If(∞)v + f(T )v.

Formulas (4.126) and (4.127) in point (ii) can be proved following the same argu-
ments with suitable modifications and interpretations of the symbols. �

In the following theorem we show some algebraic properties that can be
deduced easily. We state the results for functions f ∈ RL

σS(T ), but analogous

results hold for f ∈ RR
σS(T ).

Theorem 4.16.8. Let V be a two-sided quaternionic Banach space and let T ∈ K(V )
with ρS(T ) ∩ R �= ∅. If f and g ∈ RL

σS(T ), then

(f + g)(T ) = f(T ) + g(T ).

If g ∈ RL
σS(T ) and f ∈ NσS(T ), then

(fg)(T ) = f(T )g(T ).
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Proof. Observe that fg ∈ RR
σS(T ) thanks to Lemma 4.11.5. Let φ(μ) = f(Φ−1(μ))

and ψ(μ) = g(Φ−1(μ)). Lemma 4.11.5 and Lemma 4.13.1 give that the product
φψ is s-regular. By definition we have

f(T ) = φ(A), g(T ) = ψ(A),

thus by Theorem 4.11.6 we get

(φ+ ψ)(A) = φ(A) + ψ(A), (φψ)(A) = φ(A)ψ(A).

The statement follows. �
Theorem 4.16.9. Let V be a two-sided quaternionic Banach space and let T ∈ K(V )
with ρS(T ) ∩ R �= ∅. If f ∈ NσS(T ), then

σS(f(T )) = f(σS(T )).

Proof. Let φ(μ) = f(Φ−1(μ)). For the S-spectral mapping theorem we have
φ(σS(A)) = σS(φ(A)) and for Theorem 4.16.6 we also have Φ(σS(T )) = σS(A).
So we obtain

φ(Φ(σS(T )) = φ(σS(A)) = σS(φ(A)) = σS(f(T )).

On the other hand,

φ(Φ(σS(T )) = f(Φ−1(Φ(σS(T ))
)
= f(σS(T )). �

4.17 An application: uniformly continuous quaternionic

semigroups

We generalize to the quaternionic setting the classical result that a semigroup
has a bounded infinitesimal generator if and only if it is uniformly continuous.
To start with, we recall the definition of uniformly continuous and of strongly
continuous semigroups and some preliminary results useful in the sequel. Note
that to develop our theory we will make use of the functional calculus based on
left regular functions.

Definition 4.17.1. Let V be a two-sided quaternionic Banach space and t ∈ R. A
family {U(t)}t≥0 of linear bounded quaternionic operators in V will be called a
strongly continuous quaternionic semigroup if

(1) U(t+ τ) = U(t)U(τ), t, τ ≥ 0,

(2) U(0) = I,
(3) for every v ∈ V , U(t)v is continuous in t ∈ [0,∞].

If, in addition,
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(4) the map t→ U(t) is continuous in the uniform operator topology,

then the family {U(t)}t≥0 is called a uniformly continuous quaternionic semigroup
in B(V ).

From the functional calculus in Definition 4.10.4, it is clear that for any
operator T ∈ B(V ), et T is a uniformly continuous quaternionic semigroup in B(V ).
The following theorem shows that also the converse is true, i.e., every uniformly
continuous quaternionic semigroup is of this form.

Theorem 4.17.2. Let {U(t)}t≥0 be a uniformly continuous quaternionic semigroup
in B(V ). Then:

(1) there exists a bounded linear quaternionic operator T such that U(t) = et T ;

(2) the quaternionic operator T is given by the formula

T = lim
h→0

U(h)− U(0)
h

;

(3) we have the relation
d

dt
et T = T et T = et T T.

Proof. The proof follows the lines of the proof of the analogous result in the clas-
sical case. However, since we are working in a noncommutative setting, it is nec-
essary to check that all the computations can be performed over the quaternions.
We start by proving (1). Let us consider the logarithmic function ln q defined on
H \ {q ∈ R : q ≤ 0} by extending the principal branch of the function ln q. Since
U(0) = I whose S-spectrum is reduced to the real point 1, it follows that we can
apply the perturbation theorem of the S-resolvent operator, see Theorem 4.14.14,
to the operators U(0) = I, U(δ) for a suitable δ > 0, using the function ln q. Thus,
there exists ε > 0 such that P (t) = lnU(t) is defined and continuous for t ∈ [0, ε].
If nt ≤ ε, then, by the semigroup properties, we have

P (nt) = ln U(nt) = ln (U(t))n = nP (t)

thus
P (t) = nP (t/n) for every t ∈ [0, ε].

As a consequence, for each rational number m/n such that m/n ∈ [0, 1] and for
each t ∈ [0, ε], we have

m

n
U(t) = mU(t/n) = U(mt/n),

and so
m

n
U(ε) = U(mε/n).
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By continuity, we get

tP (ε) = P (tε) for every t ∈ [0, 1],

and

P (t) =
t

ε
P (ε) for every t ∈ [0, ε].

If we set

T :=
1

ε
P (ε),

we obtain

U(t) = et T for every t ∈ [0, ε].

If t > 0 is arbitrary, then t/n < ε for sufficiently large n, and so we obtain

et T = (e(t/n)T )n = [U(t/n)]n = U(t).

This proves the representation of the semigroup. To prove point (2) let h > 0
and observe that the limit limh→0+(e

h q − 1)/h = q and the sequence (eh q − I)/h
converges uniformly in any bounded set of H. So, by Theorem 4.10.6, the limit
limh→0+(e

hT − I)/h converges to T . Point (3) can be deduced by the functional
calculus. In fact, taking h ∈ R, we get

e(t+h)T − etT

h
=

1

2π

∫
∂(U∩CI)

S−1
L (s, T )dsI

(e(t+h)s − ets)s

h
s−1.

Now consider the fact that for any t, h ∈ R and for any quaternion s ∈ H we have
that ets and ehs commute between themselves and with s, moreover e(t+h)s =
etsehs holds. Thus we have

e(t+h)T − etT

h
=

1

2π

∫
∂(U∩CI)

S−1
L (s, T )dsI s e

ts (ehs − 1)

h
s−1.

Taking the limit for h→ 0 we get

lim
h→0

e(t+h)T − etT

h
= TetT . �

We now want to generalize the important result that the Laplace transform
of a semigroup etB of a bounded linear complex operator B is the usual resol-
vent operator (λI − B)−1. The generalization we obtain is somewhat surprising.
Both the left and the right S-resolvent operators S−1

L (s, T ) and S−1
R (s, T ) are the

Laplace transform of the semigroup according to two different possible definitions
of the Laplace transform according to the two possible integrands etT e−ts and
e−tsetT .
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Theorem 4.17.3. Let T ∈ B(V ) and let s0 > ‖T ‖. Then the left S-resolvent oper-
ator S−1

L (s, T ) is given by

S−1
L (s, T ) =

∫ +∞

0

etT e−ts dt. (4.128)

Proof. We have to prove that

SL(s, T )

∫ ∞

0

etT e−ts dt = I,

where
SL(s, T ) = −(T − sI)−1(T 2 − 2s0T + |s|2I).

Take θ > 0 and consider

SL(s, T )

∫ θ

0

U(t)e−ts dt = −(T − sI)−1(T 2 − 2s0T + |s|2I)
∫ θ

0

etT e−ts dt.

Since every bounded linear operator commutes with the integral, we get

SL(s, T )

∫ θ

0

etT e−ts dt = −
∫ θ

0

(T − sI)−1(T 2− 2s0T + |s|2I)etT e−ts dt. (4.129)

Thanks to Theorem 4.17.2 we obtain the identities

(T − sI)−1(T 2 − 2s0T + |s|2I)etT e−ts

= (T − sI)−1etT (T 2 − Ts− Ts+ ssI) e−ts

= (T − sI)−1
{
etTT (T − sI) e−ts − etT (T − sI)s e−ts

}
= (T − sI)−1

{ d
dt
etT (T − sI) e−ts + etT (T − sI) d

dt
e−ts
}

=
d

dt
[(T − sI)−1etT (T − sI) e−ts]. (4.130)

So by the identity (4.130) we can write (4.129) as

SL(s, T )

∫ θ

0

etT e−ts dt = −
∫ θ

0

d

dt
[(T − sI)−1etT (T − sI) e−ts]dt

= I − (T − sI)−1eθT (T − sI) e−sθ.

Observe that

‖(T − sI)−1eθT (T − sI) e−sθ‖
≤ ‖(T − sI)−1‖‖eθT‖‖(T − sI)‖ ‖e−sθ‖
≤ ‖(T − sI)−1‖‖(T − sI)‖ eθ‖T‖e−s0θ → 0

for θ → +∞ because we have assumed s0 > ‖T ‖. So we get the statement. �
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The case of S−1
R (s, T ) is similar: it will be treated in Theorem 4.18.8 in the

Notes. In the sequel we will use the following result.

Proposition 4.17.4. Let V be a quaternionic Banach space. Let {U(t)} be a family
of bounded linear quaternionic operators defined on a finite closed interval [a, b]
such that U(t)v is continuous in t for each v ∈ V ; then ‖U(·)‖ is measurable
and bounded on [a, b]. Conversely, if {U(t)}t≥0 is a semigroup of bounded linear
quaternionic operators in V and if U(·)v is measurable on (0,∞) for each v ∈ V ,
then U(·)v is continuous at every point in (0,∞).

Proof. The statement follows by adapting the arguments in the proof of Lemma
3 p. 616 in [35]. In fact, under the hypotheses in the first part of the statement,
the boundedness of ‖U(·)‖ follows from the Uniform Boundedness Principle and
the fact that ‖U(·)‖ is measurable follows from Theorem III.6.10 in [35]. To show
the second part, we can assume at the beginning that ‖U(·)‖ is bounded over
each interval of the form [δ, 1/δ], δ > 0. Under this assumption, if one repeats the
computations in the proof of Lemma 3, p. 616 one gets that ‖U(·)‖ is continuous
at each point t0 > 0 for any v ∈ V . Finally, it is sufficient to show that, if ‖U(·)‖v
is measurable on (0,∞) for all v ∈ V , then it is bounded on [δ, 1/δ], δ > 0. �
Proposition 4.17.5. Let {U(t)}t≥0 be a family of bounded linear quaternionic op-
erators on the quaternionic Banach space V . If

p(t) := ln ‖U(t)‖

is bounded from the above on the interval (0, a) for every positive a ∈ R, then

lim
t→+∞ t−1 ln ‖U(t)‖ = inf

t>0
t−1 ln ‖U(t)‖.

Proof. The proof is similar to the one of the analogous result in the complex case.
In fact, it is immediate to check that all the computations can be repeated over
the quaternions. For the sake of completeness we recall the main points. Observe
that

p(t+ τ) = ln ‖U(t+ τ)‖ ≤ ln ‖U(t)‖‖U(τ)‖ ≤ p(t) + p(τ), t, τ ≥ 0.

Set α := inft>0 t
−1 ln ‖U(t)‖ finite or −∞. Suppose α finite. We choose for any

ε > 0, a positive number a > 0 in such a way that p(a) ≤ (α+ ε)a. Let t > a and
n = n(t) be an integer such that na ≤ t < (n + 1)a. Then we have the chain of
inequalities

α ≤ p(t)

t
≤ p(na)

t
+
p(t− na)

t
≤ na

t

p(a)

a
+
p(t− na)

t

≤ na

t
(α+ ε) +

p(t− na)

t
.

By hypothesis p(t−na) is bounded from above as t→ +∞. Thus letting t→ +∞
in the above inequality we obtain limt→+∞ t−1p(t) = α. In a similar way we treat
the case α = −∞. �
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A direct consequence of Proposition 4.17.5 is the following important result.

Proposition 4.17.6. Let {U(t)}t≥0 be a family of bounded linear quaternionic op-
erators on a quaternionic Banach space V . Then:

(1) the limit ω0 := limt→+∞ t−1 ln ‖U(t)‖ exists;

(2) for each δ > ω0 there exists a positive constant Mδ such that ‖U(t)‖ ≤
Mδe

δt, ∀t ≥ 0.

Proof. Point (1) is immediate from Proposition 4.17.5. To show point (2) define,
for t ≥ 0, the function p(t) := ln ‖U(t)‖ and observe that p is subadditive since
p(t1+ t2) ≤ p(t1)+ p(t2). So the result follows from Propositions 4.17.4 and 4.17.5
. �
Definition 4.17.7 (Quaternionic infinitesimal generator). Let {U(t)}t≥0 be a family
of bounded linear quaternionic operators on a quaternionic Banach space V .

(1) For each h > 0 define the linear quaternionic operator

Thv =
U(h)v − v

h
, v ∈ V.

(2) Set D(T ) := {v ∈ V : limh→0+ Thv exists in V } and define the quaternionic
operator T with domain D(T ) by the formula

Tv = lim
h→0+

Thv, v ∈ D(T ).

The operator T , with domain D(T ), is called the infinitesimal quaternionic gener-
ator of the quaternionic semigroup U(t).
Proposition 4.17.8. Let T be the infinitesimal quaternionic generator of the quater-
nionic semigroup U(t) and let D(T ) be its domain. Then:

(1) the set D(T ) is a linear subspace of V and T is linear on D(T );

(2) if v ∈ V , then U(t)v ∈ D(T ) for t ≥ 0. Moreover,

d

dt
U(t)v = TU(t)v = U(t)Tv, v ∈ D(T );

(3) if v ∈ D(T ), then

U(t)v − U(τ)v =

∫ t

τ

U(θ)T v dθ, 0 ≤ τ < t <∞;

(4) let g : [0,∞] → H be a Lebesgue integrable function, continuous at t ∈ [0,∞],
then

lim
h→0+

1

h

∫ t+h

t

U(θ) g(θ) v dθ = U(t) g(t) v.
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Proof. Point (1) follows from the definition. Let us show point (2). Set h > 0,
t ≥ 0 and v ∈ D(T ). Then we can write

U(t)Thv = ThU(t)v.

Passing to the limit
lim

h→0+
U(t)Thv = lim

h→0+
ThU(t)v

we have that U(t)v ∈ D(T ), so by definition

TU(t)v = lim
h→0+

ThU(t)v,

and thus
U(t)Tv = TU(t)v, v ∈ D(T ).

This proves that U(t)v ∈ D(T ), for all t ≥ 0. If t > 0 and h > 0, then, considering
the limit

L = lim
h→0+

(U(t)v − U(t− h)v

h
− U(t)Tv

)
,

by the semigroup properties and the definition of Th we have

U(t)v − U(t− h)v

h
− U(t)Tv = U(t− h)

U(h)v − v

h
− U(t)Tv

= U(t− h)
U(h)v − v

h
− U(t− h)Tv + U(t− h)Tv − U(t)Tv

= U(t− h)(Thv − Tv) + [U(t− h)− U(t)]Tv.

Taking the limit for h → 0+ we get L = 0 since the semigroup is uniformly
continuous in B(V ) and thanks to Proposition 4.17.4. On the other hand we have
that

U(t+ h)v − U(t)v
h

= U(t)Thv.

Taking the limit for h→ 0+ we get

d

dt
U(t)v = TU(t)v = U(t)Tv, for all v ∈ D(T ).

We have thus proved that the derivation formula holds for all v ∈ D(T ). Point (3):
observe that, for all linear and continuous functionals ϕ ∈ V ′, from point (2) we
have

〈ϕ, d
dτ

U(τ)v〉 = 〈ϕ,U(τ)Tv〉.

Now we integrate ∫ t

s

〈ϕ, d
dτ

U(τ) v〉 dτ =

∫ t

s

〈ϕ,U(τ)Tv〉 dτ
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so we get

〈ϕ,U(t)v − U(s)v〉 = 〈ϕ,
∫ t

s

U(τ)Tv dτ〉 for all ϕ ∈ V ′

from which we deduce (3). Finally point (4) follows from Theorem III.12.8 in [35]
which holds also in this setting, with obvious modifications. �
Lemma 4.17.9. The linear subspace

D(T ) := {v ∈ V : lim
h→0+

Thv exists in V }

is dense in V and T is closed on D(T ).

Proof. Let Th be as in Definition 4.17.7, take v ∈ V and, for h > 0 and t > 0,
consider

Th

∫ t

0

U(τ)vdτ =
1

h

∫ t

0

[U(h+ τ)v − U(τ)v]dτ

=
1

h

∫ h+t

h

U(τ)v dτ − 1

h

∫ t

0

U(τ)v dτ

=
1

h

∫ h

t

U(τ)v dτ + 1

h

∫ h+t

h

U(τ)v dτ − 1

h

∫ t

0

U(τ)v dτ − 1

h

∫ h

t

U(τ)v dτ

=
1

h

∫ h+t

t

U(τ)v dτ − 1

h

∫ h

0

U(τ)v dτ.

By Proposition 4.17.8 point (4) we get

lim
h→0+

Th

∫ t

0

U(τ)vdτ = U(t)v − v,

so
∫ t
0
U(τ)vdτ ∈ D(T ) and since

v = lim
t→0+

1

t

∫ t

0

U(τ)vdτ

we conclude that D(T ) is dense in V . We now prove that T is closed. Let us take
a sequence {vn}n∈N ⊂ D(T ) such that limn→∞ vn = v0 and limn→∞ Tvn = y0.
Thanks to Proposition 4.17.8 point (3) we have

U(t)v0 − v0 = lim
n→∞ [U(t)vn − vn] = lim

n→∞

∫ t

0

U(τ)Tvn dτ =

∫ t

0

U(τ)y0 dτ

where we have used the fact that

lim
n→∞ U(τ)Tvn = U(τ)y0, uniformly in [0, t].
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So we get, thanks to Proposition 4.17.8 point (4)

lim
t→0+

Ttv0 = lim
t→0+

1

t

∫ t

0

U(τ)y0 dτ = y0.

This implies that v0 ∈ D(T ) and Tv0 = y0 this means that T is closed. �

We can now prove the following characterization result.

Theorem 4.17.10. Let U(t) be a quaternionic semigroup on a quaternionic Banach
space V . Then U(t) has a bounded infinitesimal quaternionic generator if and only
if it is uniformly continuous.

Proof. If U(t) is a uniformly continuous semigroup, then by Theorem 4.17.2 it has
a bounded infinitesimal quaternionic generator. To prove the other implication, we
suppose that U(t) has a bounded infinitesimal quaternionic generator T . It follows
from Lemma 4.17.9 that T is defined everywhere. Applying Proposition 4.17.4 we
have that for every τ ≥ 0 there exists a positive constant C(τ) such that

‖U(t)‖ ≤ C(τ), for τ ≥ 0, |t− τ | ≤ 1

by the semigroup properties

U(t)− U(τ) = U(τ)[U(t − τ)− I] = (t− τ)U(τ)Tt−τ , for t > τ (4.131)

and

U(t)− U(τ) = −U(t)[U(τ − t)− I] = −(τ − t)U(t)Tτ−t, for τ > t, (4.132)

where Tτ−t and Tt−τ are as in Definition 4.17.7. Using Proposition 4.17.4 and the
Principle of Uniform Boundedness we have

sup
τ>t | τ−t≤1

‖Tτ−t‖ = K < +∞,

so, taking the norm of (4.131) and (4.132), we get

‖U(t)− U(τ)‖ ≤ C(τ)K|t− τ |, for t ≥ 0, |t− τ | ≤ 1,

which proves that U(t) is a uniformly continuous quaternionic semigroup. �

4.18 Notes

Note 4.18.1. Historical notes and further readings. The most successful theory
of quaternionic functions, which are the analog of the holomorphic functions in
one complex variable, is the one due to Fueter [44] and the one due to Moisil and
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Theodorescu [79]. The theory we will consider to our purposes is the one due to
Fueter, who introduced the differential operator

∂

∂q
=

1

4

(
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)
(4.133)

and defined the space of regular functions as the space of its nullsolutions.

These functions are nowadays known as Cauchy–Fueter (or Fueter) regular
functions. It is interesting to note that one of the motivations for which Fueter
introduced this class of functions was the study of functions in two complex vari-
ables, in an attempt to find an integral representation for them. This function
theory is beautifully illustrated in the papers [33] and [98] and is successful in
replicating the most important properties of holomorphic functions (and not only
in one variable, see [23]). One of the reasons of the richness of results of this theory
is that the Cauchy–Fueter operator factorizes the 4-dimensional Laplacian (up to
a constant), in fact the nice behavior of the quaternionic conjugation gives

∂

∂q

∂

∂q
=

∂

∂q

∂

∂q
=

1

16
Δ4.

In this sense, the Fueter operator is the “nearest” generalization of the Cauchy–
Riemann operator and the theory of regular functions is the “nearest” generaliza-
tion of the theory of holomorphic functions in one complex variable. Exactly as
in the case of monogenic functions, Fueter regular functions can be expanded into
power series in terms of suitable monomials, see [43], [98]. This series expansion
serves perfectly to show the quaternionic analogs of the results for power series in
the complex variable. However, this series expansion is not suitable if one wishes
to formally substitute a quaternion with a linear operator T . As we already ob-
served, the powers f(q) = qn, n ∈ N, in particular the identity function f(q) = q,
and therefore polynomials and series, fail to be regular in this sense so, given a
quaternionic linear operator T , it is not possible, for example, to obtain T n using
a function calculus (see Note 4.18.9).

For quaternion-valued functions, one can also study the functions regular in
the sense of Moisil-Theodorescu, see [79], the theory of monogenic functions, i.e.,
functions in the kernel of the Dirac operator i∂x1 + j∂x2 or the Weyl operator
∂x0 + i∂x1 + j∂x2 , see [7], [34], and [74]. This last class consists of all the solutions
of a generalized Cauchy–Riemann system of equations, it contains the natural
polynomials, and supports the series expansion of its elements as well.

There are other paths to define quaternionic-valued “holomorphic” functions
which has led to many attempts that, in a sense, have failed. For example, a
natural attempt to define a notion of quaternionic holomorphicity would be based
on the basis of the existence in H of the limit

lim
q→q0

(q − q0)
−1(f(q)− f(q0)) (resp. lim

q→q0
(f(q)− f(q0))(q − q0)

−1).



190 Chapter 4. Quaternionic Functional Calculus

It turns out that if the limit exists, then necessarily f(q) = qa + b (resp. f(q) =
aq + b) for some a, b ∈ H and therefore this definition is not viable. In order to
obtain a meaningful theory, it is necessary to restrict to 3-dimensional increments
q − q0, as Mitelman and Shapiro did in [78] in order to develop their theory.

A second natural attempt could be to consider the class of functions which
admit (local) series expansions of the form∑

a0 · q · a1 . . . as−1 · q · as,

where they converge. However, writing q = x0 + ix1 + jx2 + kx3, it is very easy to
verify that

x0 =
1

4
(q − iqi− jqj − kqk),

x1 =
1

4i
(q − iqi+ jqj + kqk),

x2 =
1

4j
(q + iqi− jqj + kqk),

x3 =
1

4k
(q + iqi+ jqj − kqk),

so that the class of maps considered coincides with the class of real analytic maps
of R4 in R4.

Another definition was given by Cullen in [32] on the basis of the notion
of intrinsic functions as developed in [89]. This definition has the advantage that
polynomials and even power series of the form

∑
n≥0 q

nan, with real coefficients
an, are regular in this sense. This theory was already envisioned by Fueter who in
[43] used a subclass of these functions to construct nullsolutions of the Cauchy–
Fueter operator by applying the Laplacian to them.

The theory of s-regular functions arises with the works of Gentili and Struppa,
see [48], [49], and it is fully embedded in this field of research. The theory is inspired
by the work of Cullen, but it is slightly different since the definition of s-regular
function requires that a function be ”holomorphic” on each complex plane and,
as a consequence, it includes polynomials and even power series with quaternionic
coefficients. The theory developed allows us to recover several classical properties
of quaternionic polynomials. For example the fundamental theorem of algebra,
[37], [81] has been proved also in [52]. Moreover, some well-known properties of
zeros, see for example [6], [8], [56], [71], [84], [85], [86], [102] can be proved in this
framework, see [51], and can be generalized to power series [45]. The description
which we have given in this chapter is the most up-to-date version and includes the
results in [9], [12], [49], but we recall also [30], [46]. Recently, Ghiloni and Perotti
[53], [55] proposed an approach which, in the spirit of Cullen, allows a general
treatment of s-regular (and s-monogenic functions) as we explained in Notes of
Chapter 2.
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We note that none of the various definitions of regularity on H leads to a
natural functional calculus for quaternionic linear operators (see for example, our
Note 4.18.9 that deals with the case of Fueter regularity). The case of s-regularity,
on the other hand, allows a very natural construction, because of the discovery
of a suitable Cauchy formula proved by Colombo and Sabadini, first developed in
connection with the theory of s-monogenicity [15] and [18], and then adapted to
the quaternionic case in [9].

Note 4.18.2. The construction of the quaternionic functional calculus offered in
this chapter is mainly based on some works by Colombo and Sabadini, see [16],
[17], and [21], which put in the necessary generality some ideas first introduced in
[10], [13], and [14].

Note 4.18.3. Niven’s Algorithm. Niven’s algorithm, see [81], gives a method to
determine the zeros of a quaternionic polynomial with coefficients on one side in
terms of the coefficients of the polynomial. The method is explicit in the case of
quadratic polynomials while for higher degrees it relies on the solution of a system
of two equations which may not be available in closed form. Even though in this
book we have treated the case of polynomials with coefficients on the right (and
thus are s-regular) we illustrate the algorithm in the case of polynomials with left
coefficients. In fact, the corresponding algorithm in the case of right coefficients
gives an expression for the Cauchy kernel which is not suitable for the functional
calculus of operators with noncommuting components.

Let us consider a monic quaternionic polynomial An(q) with coefficients on
the left:

An(q) = qn −
n−1∑
s=0

asq
s, as ∈ H.

It is always possible to divide An(q) by a second-degree polynomial C2(q) = q2 −
c1q− c0, with real coefficients and to obtain a quotient Bn−2(q) and a degree-one
remainder D1(q) given by

Bn−2 := qn−2 −
n−3∑
s=0

bsq
s, D1(q) = d1q + d0, bs, d1, d0 ∈ H

such that
An(q) = Bn−2(q)C2(q)−D1(q).

Now note that if p is a solution to the polynomial equation An(p) = 0, if we choose
the coefficients of the polynomial C2 to be

c0 = −|p|2, c1 = 2Re[p],

then p is also a root of C2, i.e.,

C2(p) = 0.
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This fact implies that p is also a root of D1 and so

D1(p) = 0, i.e., d1p+ d0 = 0 ⇒ p = −d−1
1 d0.

The strategy behind Niven’s algorithm consists of two steps. First one deter-
mines d0 and d1 in terms of c0, c1 and a0,. . . ,an−1; then one obtains two coupled
real equations which allow us to calculate c0 and c1. To clarify how this works, we
consider the case in which the polynomial An is of second degree (this being the
case of interest for our applications):

A2(q) = q2 − a1q − a0, as ∈ H.

In this case, by reason of degree, we have

B0(q) = 1

so we have
B0(q)C2(q) = C2(q) = q2 − c1q − c0

and
A2(q) +D1(q) = q2 − a1q − a0 + d1p+ d0.

Since
A2(q) +D1(q) = B(q)C2(q)

we get
q2 − a1q − a0 + d1p+ d0 = q2 − c1q − c0

from which we have
d1 = a1 − c1, d0 = a0 − c0.

The system to compute c0 ∈ R and c1 ∈ R, is given by{
c0|a1 − c1|2 + |a0 − c0|2 = 0,

c1|a1 − c1|2 + 2Re[(a1 − c1)(a0 − c0)] = 0.

If we are able to solve the system we get ĉ0 and ĉ1 so that we determine

d̂1 = a1 − ĉ1, d̂0 = a0 − ĉ0

and we finally get the solution p = −d̂−1
1 d̂0.

The solution to the equation S2+Sq− sS = 0. We now consider the specific
case of the equation S2 +Sq− sS = 0. First of all, we write it with coefficients on
the left by setting S :=W − q. We obtain the equation

W 2 − (s+ q)W + sq = 0.

With the positions
a1 = s+ q a0 = −sq
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we get the system{
c0|s+ q − c1|2 + | − sq − c0|2 = 0,

c1|s+ q − c1|2 + 2Re[(s+ q − c1)(−sq − c0)] = 0.
(4.134)

If we can find real solutions ĉ0 and ĉ1 we have

d̂1 = s+ q − ĉ1, d̂0 = −sq − ĉ0,

d̂1W + d̂0 = 0.

We obtain
W = −d̂−1

1 d̂0 = (s+ q − ĉ1)
−1(sq + ĉ0)

from which we have

S :=W − q = (s+ q − ĉ1)
−1(sq + ĉ0)− q.

We overcome the calculation for the solution of system (4.134) reasoning as follows:
we know that when sq = qs, then R = s− q satisfies R2 +Rq − sR = 0. Thus in
the case q ∈ R and s ∈ H, we must have

(s+ q − ĉ1)
−1(sq + ĉ0) = s

that gives
sq + ĉ0 = (s+ q − ĉ1)s

and
sq + ĉ0 = s2 + qs− ĉ1s;

finally we have
s2 − ĉ1s− ĉ0 = 0.

Using the identity
s2 − 2 sRe[s] + |s|2 = 0

we get
ĉ1 = 2 Re[s], ĉ0 = −|s|2,

so we obtain the solution

S(s, q) = (s+ q − 2 Re[s])−1(sq − |s|2)− q = (q − s̄)−1s(q − s̄)− q.

Note 4.18.4. A simple proof of Theorem 4.10.3. We now provide a proof of The-
orem 4.10.3 which is of limited validity, but follows by a direct computation. It
applies only in the case the functions we consider admit power series expansions
on U . We recall that s-regular functions admit Taylor series expansions only on
balls centered at real points and they admit Laurent series expansions only on
spherical shells centered at real points.

Let us consider the case in which the domain U is contained in a ball
B(α, r) ⊂ H centered in a real point α and of radius r > 0 in which the s-regular
function f admits a power series expansion.
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Proposition 4.18.5. Let V be a two-sided quaternionic Banach space, T ∈ B(V ).
Suppose that f is an s-regular function such that

f(s) =
∑
m≥0

(s− α)mam, ∀s ∈ B(α, r), α ∈ R, am ∈ H, r > 0 (4.135)

and assume that σS(T ) ⊂ U ⊂ B(α, r) where U is a T -admissible open set. Then

1

2π

∫
∂(U∩CI)

S−1(s, T ) dsI f(s) (4.136)

does not depend on the choice of the imaginary unit I ∈ S and on U .

Proof. In B(α, r) the Taylor expansion of f has the form (4.135) where the ele-
ments am are fixed quaternions and do not depend on the particular plane CI .
Now observe that

f(s) =
∑
m≥0

(s− α)mam =
∑
m≥0

m∑
j=0

(
m

j

)
sj(−α)m−jam.

Consider the integral (4.136) and replace the power series expansion for f . By the
absolute and uniform convergence we get

1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI f(s) (4.137)

=
1

2π

∑
m≥0

m∑
j=0

(
m

j

)(∫
∂(U∩CI)

S−1(s, T ) dsI s
j
)
(−α)m−jam.

Now consider the integral ∫
∂(U∩CI)

S−1(s, T ) dsI s
j

and observe that sj is s-regular everywhere so we can deform the integration path
in such a way that S−1(s, T ) admits the power series expansion (3.3) in a suitable
ball B(0, r). We have:

1

2π

∑
n≥0

T n

∫
∂(B(0,r)∩CI)

s−1−n+j dsI = T j, (4.138)

since ∫
∂(B(0,r)∩CI)

dsIs
−n−1+j = 0 if n �= j,∫

∂(B(0,r)∩CI)

dsIs
−n−1+j = 2π if n = j. (4.139)
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The standard Cauchy theorem on the complex plane CI shows that the above
integral (4.138) is not affected if we replace ∂(B(0, r) ∩ CI) by ∂(U ∩ CI), so

1

2π

∫
∂(U∩CI )

S−1(s, T ) dsI s
j = T j.

We conclude that the integral (4.137) does not depend on U and on I ∈ S because
the coefficients (−α)j−mam are independent of I ∈ S. �

More in general, we can consider the open sets U ⊂ H that contain the
S-spectrum of T , and such that

(a) ∂(U∩CI) is the union of a finite number of continuously differentiable Jordan
curves for every I ∈ S,

(b) σS(T ) is contained in a finite union of open balls Bi ⊂ U with center in real
points and of spherical shells Aj = {q ∈ H | rj < |q − αj | < Rj , rj , Rj ∈
R+} ⊂ U with center in real points αj , and whose boundaries do not intersect
σS(T ).

Since an analog of Proposition 4.18.5 holds also for Laurent power series expan-
sions, we can prove that, for open sets U ⊃ σS(T ) satisfying (a) and (b), the
integral (4.136) does not depend on the choice of the imaginary unit I ∈ S and on
U .

Note 4.18.6. Some comments on the evolution operator. Since the exponential
function is both left and right regular, the evolution operator can be introduced
and studied also using the right version of the quaternionic functional calculus.
For example, point (3) in Theorem 4.17.2 can also be proved as in the next result:

Theorem 4.18.7. Let {U(t)}t≥0 be a uniformly continuous quaternionic semigroup
in B(V ). Then,

d

dt
et T = T et T = et T T.

Proof.

et T =
1

2π

∫
∂(U∩CI )

et s dsI S
−1
R (s, T )

where U is a T -admissible open set containing the S-spectrum of the bounded
operator T , which is a closed and bounded set in H thanks to Theorem 5.4 in [13],
so

e(t+h)T − et T

h
=

1

2π

∫
∂(U∩CI )

(e(t+h)s − ets) s

h
s−1 dsI S

−1
R (s, T )

and taking the limit we get

d

dt
et T = lim

h→0

e(t+h)T − et T

h
= Tet T .
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From the formula

(e(t+h)s − ets)s

h
s−1 = s−1 s(e

(t+h)s − ets)

h

we also have that
T et T = et T T. �

Let us introduce the Laplace transform that gives the right S-resolvent op-
erator.

Theorem 4.18.8. Let T ∈ B(V ) and let s0 > ‖T ‖. Then the right S-resolvent
operator S−1

R (s, T ) is given by

S−1
R (s, T ) =

∫ +∞

0

e−t s et T dt. (4.140)

Proof. Consider, for s �∈ σL(T ),

e−t s et TSR(s, T ) = −e−t s et T (T 2 − 2s0T + |s|2I)(T − sI)−1;

since T and et T commute we have

e−t s et TSR(s, T ) = −e−t s (T 2 − 2s0T + |s|2I)et T (T − sI)−1

= − d

dt
[e−t s(T − sI)et T ](T − sI)−1

= − d

dt
[e−t s(T − sI)et T (T − sI)−1].

For θ > 0 we have∫ θ

0

e−t s et TSR(s, T )dt = −
∫ θ

0

d

dt
[e−t s(T − sI)et T (T − sI)−1]dt

= I − e−θs(T − sI)eθ T (T − sI)−1.

Since we have assumed s0 > ‖T ‖, for θ → +∞, we get

‖e−θ s(T − sI)eθ T (T − sI)−1‖
≤ e−θ s0eθ‖T‖‖(T − sI)‖ ‖(T − sI)−1‖ → 0

so we obtain the statement. �
Note 4.18.9. The Fueter regularity and its functional calculus. From now on, we
will consider only linear bounded operators and we will follow the ideas in [65].
We introduce a regular function which is related to the resolvent operator and
is regular where defined. The idea is to generalize what happens in the complex
setting: classically, one considers the Cauchy–Riemann kernel g(z) = (z − ξ)−1
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defined for z �= ξ and introduces R(z, T ) = (zI − T )−1 which is defined for z not
in the spectrum of T . Let G(q) be the standard Cauchy–Fueter kernel

G(q) = q̄

|q|4 =
q−1

|q|2 = q−2q−1

which is both left and right regular on H\{0}.
We have the following proposition:

Proposition 4.18.10. The expansions

G(q, p) := G(q − p) =
∑
n≥0

∑
ν∈σn

Pν(p)Gν(q) =
∑
n≥0

∑
ν∈σn

Gν(q)Pν(p)

hold for |p| < |q|.

Theorem 4.18.11. Let f : U ⊆ H → H, f Fueter regular on U . Let q0 ∈ U and
δ < dist (q0, ∂U). Then there exists an open ball B = {q ∈ H : |q − q0| < δ} such
that f(q) can be represented by the uniformly convergent series

f(q) =
∑
n≥0

∑
ν∈σn

Pν(q − q0)aν ,

where

aν = (−1)n∂νf(q0) =
1

2π2

∫
|q−q0|=δ

Gν(q − q0)Dqf(q),

and

Gν(q) :=
∂n

∂xn1
1 ∂xn2

2 ∂xn3
3

G(q).

Moreover we have ∫
S

Gμ(q)Dq Pν(q) = 2π2 δμν

where S is any sphere containing the origin, ν = (n1, n2, n3), n1 + n2 + n3 = n
and δμν denotes the Kronecker delta.

Let T be a bounded linear quaternionic operator with commuting compo-
nents on a two-sided quaternionic Banach space V . The set of such operators will
be denoted by BC(V ). In this case, we consider the function G(q, p) written in
series expansion as (replacing p by T ):

G(q, T ) =
∑
n≥0

∑
ν∈σn

Pν(T )Gν(q) =
∑
n≥0

∑
ν∈σn

Gν(q)Pν(T ). (4.141)

The expansions hold for ‖T ‖ < |q| (cfr. Proposition 4.18.10) and define a bounded
operator. It is natural to give the following definition:
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Definition 4.18.12. The maximal open set ρ(T ) in H on which the series (4.141)
converges in the operator norm topology to a bounded operator is called the resol-
vent set of T . The spectral set σ(T ) of T is defined as the complement set in H of
the resolvent set.

Definition 4.18.13. A function f : H → H is said to be locally right Fueter regular
on the spectral set σ(T ) of an operator T ∈ BC(V ) if there is an open set U ⊂ H

containing σ(T ) whose boundary ∂U is a rectifiable 3-cell and such that f is regular
in every connected component of U . We will denote by Rr,σ(T ) the set of locally
right Fueter regular functions on σ(T ).

Definition 4.18.14. Let f ∈ Rr,σ(T ) and T ∈ BC(V ) and set

f(T ) :=
1

2π2

∫
∂U

f(q)DqG(q, T ),

where U is an open set in H containing σ(T ).

The definition is well posed since the integral does not depend on the open
set U . The following proposition holds.

Proposition 4.18.15. The map F : Rr,σ(T ) → BC(V ) defined by F (f) = f(T ) is a
left vector space homomorphism.

Theorem 4.18.16. Let T ∈ BC(V ) and consider

f(q) =
N∑

n=0

∑
ν∈σn

aνPν(q)

to be a right Fueter regular polynomial. Let U be a ball with center in the origin
and radius r > ‖T ‖. Then

f(T ) =

N∑
n=0

∑
ν∈σn

aνPν(T ).

Proof. Let U be an open set in H containing σ(T ). We have

f(T ) =
1

2π2

∫
∂U

N∑
n=0

∑
ν∈σn

aνPν(q)DqG(q, T )

=
1

2π2

N∑
n=0

∑
ν∈σn

∫
∂U

aνPν(q)DqG(q, T )

We have, by Proposition 4.141,∫
∂U

aνPν(q)DqG(q, T ) =
∫
∂U

aνPν(q)Dq
∑
n≥0

∑
μ∈σn

Gμ(q)Pμ(T )

=
∑
n≥0

∑
μ∈σn

aν

∫
∂U

Pν(q)DqGμ(q)Pμ(T ) = 2π2aνPν(T )
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which gives f(T ) =
∑N

n=0

∑
ν∈σn

aνPν(T ). �
Proposition 4.18.17. Let T ∈ BC(V ). For any open set U with piecewise smooth
boundary which does not contain σ(T ) and for any f ∈ R(U) we have∫

∂U

f(q)DqG(q, T ) = 0.

Thanks to this proposition, we can replace a ball with center in the origin and
suitable radius by any open set containing σ(T ) and, by the density of polynomials
Pν(Q) in the set of regular functions, we obtain:

Theorem 4.18.18. Let T ∈ BC(V ). If the right Fueter regular function

f(q) =
∑
n≥0

∑
ν∈σn

ανPν(q),

converges in a neighborhood U0 of σ(T ), then

f(T ) =
∑
n≥0

∑
ν∈σn

ανPν(T ),

converges in the operator norm topology.

Proof. As U0 is an open set, it contains a circle

Uδ = {q : |q| ≤ ρ(T ) + δ }, δ > 0

in its interior. Since the series f(q) =
∑

n≥0

∑
ν∈σn

ανPν(q), converges uniformly
in the circle Uδ for some δ > 0, by the Cauchy integral formula we have

f(T ) =
1

2π2

∫
∂Uδ

f(q)Dq G(q, T )

=
1

2π2

∫
∂Uδ

∑
n≥0

∑
ν∈σn

ανPν(q)Dq G(q, T )

=
1

2π2

∑
n≥0

∑
μ∈σn

∫
∂Uδ

ανPν(q)Dq G(q, T )

=
∑
n≥0

∑
ν∈σn

ανPν(T ). �

Note 4.18.19. Some further comments and open problems.

(1) The properties which can be proved for the functional calculus defined in
[65] and [66] can be demonstrated also in this case. One may also think to
generalize the functional calculus as in [62]. However, this functional calculus
possesses a strong limitation: even when considering the simplest case of a
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regular function, i.e., a regular (symmetric) polynomial, we have that this
function is formed by using the components of a given operator T , not the
operator T itself. For example, P (q) = x0i− x1 is a regular polynomial and
P (T ) = iT0−T1 for any bounded operator T = T0+iT1+jT2+kT3. Note also
that this feature of the functional calculus does not seem to have physical
interest when considering a linear quaternionic operator T .

(2) As we have shown, the sum of the series
∑

n≥0 q
ns−1−n equals −(q2 −

2qRe[s] + |s|2)−1(q − s) for |q| < |s| and it does not depend on the commu-
tativity of the components of q so that, when one replaces q by an operator
T with noncommuting components, the sum remains the same. In this case:
what is the sum G(q, T ) of

G(q, p) =
∑
n≥0

∑
ν∈σn

Pν(p)Gν(q) (4.142)

when one replaces p by operator T with noncommuting components?

(3) In the case in which the components of T commute, the sum G(q, T ) is

G(q, T ) = (qI − T )−2(qI − T )−1.

The knowledge of the sum G(q, T ) in the general case would naturally lead
to a notion of spectrum of the operator T in the case of Fueter regularity.

(4) When we consider unbounded operators, the series∑
n≥0

∑
ν∈σn

Pν(T )Gν(q)

does not converge. So it is crucial to manage the sum of such a series in order
to extend the functional calculus to the case of unbounded operators with
noncommuting components.



Chapter 5

Appendix: The Riesz–Dunford
functional calculus

In this Appendix we collect some basic material on the Riesz–Dunford functional
calculus useful for the readers who are not familiar with this subject. This back-
ground, with all the details, can be found in [35] and [91].

5.1 Vector-valued functions of a complex variable

We start by recalling some basic results in the theory of complex functions with
values in a Banach space.

Definition 5.1.1. Let X and Y be two complex Banach spaces.

(1) We will call a map T : X → Y such that

T (λx+ μy) = λTx+ μTy, for all x, y ∈ X, λ, μ ∈ C,

a linear operator.

(2) A linear operator T : X → Y is said to be bounded if there exists k ≥ 0 such
that

‖Tx‖ ≤ k‖x‖, ∀x ∈ X.

(3) The set of all bounded linear operators T : X → Y with the norm

‖T ‖ := sup
x �=0

‖Tx‖
‖x‖

is denoted by B(X,Y ). We set B(X) = B(X,X).
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Definition 5.1.2. Let X be a Banach space, f : C → X be a function and let
z0 ∈ C. We say that f is holomorphic in z0 if there exists an open disc D(z0, r),
r > 0 such that f admits the power series expansion

f(z) =
∑
n≥0

Tn(z − z0)
n, Tn ∈ B(X), n ∈ N,

converging in the norm of X in D(z0, r).

The classical Cauchy theorems can be generalized to functions with values
in a normed vector space X . To this purpose, we will make use of the following
result which is a corollary of the Hahn-Banach theorem:

Corollary 5.1.3 (Hahn-Banach Theorem). Let X be a normed vector space and let
x ∈ X. If for any continuous linear functional x′ acting on X it is 〈x, x′〉 = 0,
then x = 0.

We can now state and prove, for the sake of completeness, the vectorial
version of the Cauchy theorem and of the Cauchy integral formula:

Theorem 5.1.4. Let U be an open bounded set in C such that ∂U is a finite union of
continuously differentiable Jordan curves . Let f : U ∪ ∂U → X be a holomorphic
function. Then ∫

∂U

f(z)dz = 0.

Proof. First observe that for every bounded linear functional x′ on X the crochet
〈f, x′〉 is holomorphic on U ∪ ∂U so by the Cauchy theorem

〈
∫
∂U

fdη, x′〉 =
∫
∂U

〈f, x′〉dη = 0.

By Corollary 5.1.3 we get ∫
∂U

fdη = 0. �

Theorem 5.1.5. Let U be an open bounded set in C. Let f : U → X be holomorphic.
Suppose that V ⊂ U such that ∂V ∪ V ⊆ U such that ∂V is a finite union of
continuously differentiable Jordan curves. Then for each z0 ∈ V we have

f(z0) =
1

2πi

∫
∂V

f(z)(z − z0)
−1dz.

Proof. For every bounded linear functional x′ on X the function 〈f, x′〉 is holo-
morphic in U . So

〈f(η0), x′〉 =
1

2πi

∫
∂UV

〈f(η), x′〉(η − η0)
−1dη

= 〈 1

2πi

∫
∂V

f(η)(η − η0)
−1dη, x′〉.

By Corollary 5.1.3 we get the statement. �
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5.2 The functional calculus for linear bounded
operators

Definition 5.2.1. Let X be a complex Banach space and T ∈ B(X). We give the
following definitions.

(1) The resolvent set ρ(T ) of T is the set of complex numbers λ for which (λI −
T )−1 exists as a linear bounded operator with domain X.

(2) The spectrum σ(T ) of T is the complement of ρ(T ).

(3) The function R(λ, T ) = (λI − T )−1, defined on ρ(T ), is called the resolvent
of T .

(4) The number

r(T ) = sup{|λ| : λ ∈ σ(T )}

is called the spectral radius of T .

We have the following properties:

Proposition 5.2.2. Let T ∈ B(X), where X �= {0}.

(1) The resolvent set ρ(T ) is open.

(2) The function R(λ, T ) is analytic on ρ(T ).

(3) The closed set σ(T ) is compact and nonempty.

Proof. Let λ ∈ ρ(T ) and let μ be any complex number with |μ|‖R(λ, T )‖ < 1. The
inverse of

(λ+ μ)I − T = μI + (λI − T )

is given by the series

Γ(μ) =
∑
n≥0

(−μ)n[R(λ, T )]n+1

which converges since, by assumption, |μ|‖R(λ, T )‖ < 1. Observe that Γ(μ) com-
mutes with T and

[(λ+ μ)I − T ]Γ(μ) = I.

So we have that

λ+ μ ∈ ρ(T )

and this proves point (1).
To prove (2) it is enough to note that R(λ+μ, T ) = Γ(μ) is analytic at μ = 0.
Finally, we prove point (3). We consider the series

F (λ) =
∑
n≥0

T nλ−1−n, F : D → B(X)
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whose domain of convergence is D = {λ ∈ C : |λ| > ‖T ‖}. It is easy to verify
that

(λI − T )F (λ) = F (λ)(λI − T ) = I, λ ∈ D,

so D ⊆ ρ(T ). This proves that σ(T ) is bounded. It is closed since ρ(T ) is open,
so σ(T ) is compact. We prove that it is nonempty. Let us suppose the contrary.
If σ(T ) = ∅, then for every linear and continuous functional x′ ∈ X ′ the function
θ : C → C,

θ(λ) := 〈R(λ, T )x, x′〉,
is entire ∀x ∈ X . Since x′ is linear and continuous, we have

〈R(λ, T )x, x′〉 =
∑
n≥0

λ−1−n〈T nx, x′〉.

If λ → ∞, then 〈R(λ, T )x, x′〉 → 0 so θ(λ) is also bounded thus, by the Liouville
theorem, it is constant and equal to zero. By Corollary 5.1.3 R(λ, T )x = 0, for
every x ∈ X and for every λ ∈ C so R(λ, T ) is the zero operator. This contradicts
the fact that

R(λ, T )(λI − T ) = I, X �= {0}
so the spectrum is nonempty. �
Proposition 5.2.3. For every pair λ, μ ∈ ρ(T ) we have:

(1) R(λ, T )R(μ, T ) = R(μ, T )R(λ, T ).

(2) (Resolvent equation) R(λ, T )−R(μ, T ) = (μ− λ)R(λ, T )R(μ, T ).

Proof. Point (1) follows from the identity TR(λ, T ) = R(λ, T )T and simple alge-
braic computation.

Point (2). It is immediate to verify that

λR(λ, T )− TR(λ, T ) = I, μR(μ, T )− TR(μ, T ) = I

and also
R(λ, T )R(μ, T ) = R(μ, T )R(λ, T ).

Now multiply the first equality by R(μ, T ) and the second one by R(λ, T ) to get

λR(λ, T )R(μ, T )− TR(λ, T )R(μ, T ) = R(μ, T )

and
μR(μ, T )R(λ, T )− TR(μ, T )R(λ, T ) = R(λ, T ).

By taking the difference of the two equations and, thanks to point (1), we obtain
the resolvent equation. �
Definition 5.2.4. Let T ∈ B(X). By F(T ) we denote the family of functions f
which are analytic on some neighborhood of σ(T ).
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Definition 5.2.5. Let f ∈ F(T ), and let U be an open set whose boundary ∂U is a
finite union of continuously differentiable Jordan curves, oriented in the positive
sense. Suppose that σ(T ) ⊆ U and that U ∪ ∂U is contained in the domain of
analyticity of f . Then the operator f(T ) is defined by

f(T ) =
1

2πi

∫
∂U

R(λ, T ) f(λ) dλ. (5.1)

Remark 5.2.6. The integral (5.1) depends only on f and does not depend on the
open set U .

Theorem 5.2.7. Let f , g ∈ F(T ), α1, α2 ∈ C. Then

(1) α1f + α2g ∈ F(T ) and (α1f + α2g)(T ) = α1f(T ) + α2g(T ).

(2) f · g ∈ F(T ) and f(T )g(T ) = (f · g)(T ).

(3) If f(λ) =
∑

n≥0 αnλ
n converges in a neighborhood of σ(T ), then f(T ) =∑

n≥0 αnT
n.

Proof. Point (1) follows from the definition.

Let us prove point (2). Since f, g ∈ F(T ) it is obvious thatf · g ∈ F(T ). Let
U1 and U2 be two neighborhoods of σ(T ) whose boundaries ∂U1 and ∂U2 are finite
unions of continuously differentiable Jordan curves . Let us assume that

(a) U1 ∪ ∂U1 ⊆ U2.

(b) U2 ∪ ∂U2 is contained in a common region of analyticity of f and g.

We have

f(T )g(T ) = − 1

4π2

∫
∂U1

f(λ)R(λ, T )dλ

∫
∂U2

g(μ)R(μ, T )dμ

= − 1

4π2

∫
∂U1

∫
∂U2

f(λ)g(μ)R(λ, T )R(μ, T )dμdλ

= − 1

4π2

∫
∂U1

∫
∂U2

f(λ)g(μ)
R(λ, T )−R(μ, T )

μ− λ
dμdλ

= − 1

4π2

∫
∂U1

f(λ)R(λ, T )
( ∫

∂U2

g(μ)

μ− λ
dμ
)
dλ

+
1

4π2

∫
∂U2

g(μ)R(μ, T )
(∫

∂U1

f(λ)

μ− λ
dλ
)
dμ

=
1

2πi

∫
∂U1

f(λ)g(λ)R(λ, T )dλ

= (f · g)(T ).
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Point (3) follows from the fact that the series
∑

n≥0 αkλ
k converges uniformly

on the set Cε = {λ ∈ C : |λ| ≤ r(T ) + ε} for suitable ε > 0. We have

f(T ) =
1

2πi

∫
Cε

∑
n≥0

αnλ
nR(λ, T )dλ

=
1

2πi

∑
n≥0

αn

∫
Cε

λnR(λ, T )dλ

=
1

2πi

∑
n≥0

αn

∫
Cε

(∑
n≥0

λ−1−nT n
)
λndλ

=
∑
n≥0

αnT
n. �

We now show a particular case of an important result, the Spectral Mapping
Theorem, which is crucial to compute the spectral radius.

Proposition 5.2.8. Let T ∈ B(X), where X �= {0}.
(1) σ(T n) = [σ(T )]n := {λn : λ ∈ σ(T )}.
(2) r(T ) = limn→∞

n
√
T n.

Proof. Point (1). Since we are in a commutative setting we can write

λnI − T n = (λI − T )(λn−1I + λn−2T + . . .+ T n−1)

= (λn−1I + λn−2T + . . .+ T n−1)(λI − T ).

So if λI − T is not injective also λnI − T n is not injective. This proves σ(T n) ⊇
[σ(T )]n.

If ν �∈ [σ(T )]n, then, by the Fundamental Theorem of Algebra, we get

(ν − λn) = (−1)n+1(λ1 − λ) . . . (λn − λ)

where λ1, λ2,. . . ,λn are the roots of ν and λi �= λj if and only if i �= j. Replacing
the operator T , thanks to Theorem 5.2.7 we get

(νI − T n) = (−1)n+1(λ1I − T ) . . . (λnI − T );

since νI −T n is not invertible there exists an i such that λiI −T is not invertible.
So λi ∈ σ(T ). This means σ(T n) ⊆ [σ(T )]n, i.e., our first assertion.
Point (2). For every λ such that |λ| > r(T ) the series

∑
n≥0 T

nλ−1−n converges

in the norm of B(X) to R(λ, T ) so the sequence T nλ−1−n is bounded. We have

lim sup
n→∞

‖T n‖1/n ≤ r(T ).

Using point (1) we get
r(T ) ≤ lim inf

n→∞ ‖T n‖1/n.



5.2. The functional calculus for linear bounded operators 207

As a consequence, we have

r(T ) ≤ lim inf
n→∞ ‖T n‖1/n ≤ lim sup

n→∞
‖T n‖1/n ≤ r(T ). �

We now prove the general version of the Spectral Mapping Theorem:

Theorem 5.2.9 (The Spectral Mapping Theorem). If f ∈ F(T ), then f(σ(T )) =
σ[f(T )].

Proof. Let λ ∈ σ(T ). Define the function

γ(ξ) =
f(λ)− f(ξ)

λ− ξ
,

whose domain is the domain of definition of f . By point 2) of Theorem 5.2.7 we
get

f(λ)I − f(T ) = (λI − T )γ(T ).

If f(λ)I − f(T ) had a bounded everywhere defined inverse [f(λ)I − f(T )]−1, then
γ(T )[f(λ)I − f(T )]−1 would be a bounded everywhere inverse of λI − T . This
means that f(λ) ∈ σ[f(T )].

Conversely let μ ∈ σ[f(T )], and suppose that μ �∈ σ[f(T )]. Then the function

η(ξ) =
1

f(ξ)− μ
∈ F(T ).

Applying again Theorem 5.2.7 we have

η(T )(f(T )− μI) = I

which contradicts the assumption μ ∈ σ[f(T )]. �
Thanks to the Spectral Mapping Theorem we can prove the following theo-

rem.

Theorem 5.2.10. Let f ∈ F(T ), g ∈ F(f(T )), and F (λ) = g(f(λ)). Then we have

(1) F ∈ F(T ),

(2) F (T ) = g(f(T )).

Proof. Point (1) follows from the Spectral Mapping Theorem.
To prove point (2) let us consider a set U which is a neighborhood of σ[f(T )].

Assume that the boundary ∂U of U is a finite union of continuously differentiable
Jordan curves and that the domain of analyticity of g contains U ∪ ∂U . Next,
consider a neighborhood V of σ(T ) such that the boundary ∂V of V is a finite
union of continuously differentiable Jordan curves. Suppose that the domain of
analyticity of f contains V ∪ ∂V and that f(V ∪ ∂V ) ⊆ U. Thanks to Theorem
5.2.7 the operator

E(λ) =
1

2πi

∫
∂V

R(ξ, T )

λ− f(ξ)
dξ
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satisfies the equation

[λI − f(T )]E(λ) = E(λ)[λI − f(T )] = I,

which implies that

E(λ) = R(λ, f(T )).

So we obtain

g(f(T )) =
1

2πi

∫
∂U

g(λ)R(λ, f(T )) dλ

= − 1

4π2

∫
∂U

∫
∂V

g(λ)
R(ξ, T )

λ − f(ξ)
dλ dξ

=
1

2πi

∫
∂V

R(ξ, T )g(f(ξ)) dξ = F (T )

which proves the assertion. �

We conclude by giving an idea of the proof of the perturbation of the func-
tional calculus.

Theorem 5.2.11. Let T be a linear bounded operator, f ∈ F(T ) and ε > 0. Then
there is a δ > 0 such that if T1 is a bounded operator and ‖T1 − T ‖ < δ, then
f ∈ F(T1) and ‖f(T1)− f(T )‖ < ε.

Proof. Let us introduce the notation. We denote by N (σ(T ), ε), for ε > 0, the
ε-neighborhood of σ(T ), i.e., the set

N (σ(T ), ε) := {λ ∈ C : inf
μ∈σS(T )

|μ− λ| < ε}.

The proof is based on the following fact. Let T ∈ B(X), let ε > 0. Then there
exists a δ > 0 such that if T1 ∈ B(X) and ‖T1 −T ‖ < δ, then σ(T1) ⊆ N (σ(T ), ε)
and

‖R(λ, T1)−R(λ, T )‖ < ε, λ �∈ N (σ(T ), ε).

We leave the details to the reader. �

5.3 The functional calculus for unbounded operators

In the case of unbounded operators the spectrum may be a bounded set, an un-
bounded set, the empty set, or even the whole plane. To our purposes, we suppose
ρ(T ) �= ∅.

Definition 5.3.1. By F∞(T ) we denote the family of functions f which are analytic
on some neighborhood of σ(T ) and at ∞.
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The neighborhood need not be connected and can depend on f . Let α ∈ ρ(T )
and define

A = (T − αI)−1 = −R(α, T ).
The operator A defines a one-to-one mapping on X onto the domain D(T ) of T
and

TAx = αAx + x, x ∈ X

and
ATx = αAx+ x, x ∈ D(T ).

We can now define a functional calculus for the unbounded operator T in terms
of the bounded operator A.

Denote by K the complex sphere, with its usual topology, and define the
homeomorphism

μ = Φ(λ) = (λ− α)−1, Φ(∞) = 0, Φ(α) = ∞.

Theorem 5.3.2. Let α ∈ ρ(T ). Then Φ(σ(T ) ∪ {∞}) = σ(A) and the relation

φ(μ) = f(Φ−1(μ))

determines a one-to-one correspondence between f ∈ F∞(T ) and φ ∈ F(A).

Proof. Take λ ∈ ρ(T ), so 0 �= μ = Φ(λ) = (λ− α)−1 and

(T − αI)(T − λI)−1 = I + μ−1(T − λI)−1.

We can also write

(T − αI)(T − λI)−1 = A−1
(
(T − αI) − μ−1I

)
= μ(μI −A)−1.

So we obtain
(T − λI)−1 = μ2(μI −A)−1 − μI

which is the relation between the resolvent operators

R(λ, T ) = μ2R(μ,A) + μI. (5.2)

This implies that μ ∈ ρ(A). Now if μ ∈ ρ(A) and μ �= 0, then

(μI −A)−1A =
1

μ
(T − λI)−1.

This shows that λ ∈ ρ(T ). The point m = 0 is in σ(A) since A−1 = T − αI is
unbounded. The last part of the theorem is trivial and follows from the definition
of Φ. �

We can now define the functional calculus for an unbounded operator T :
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Definition 5.3.3. Let f ∈ F∞(T ). We define

f(T ) = φ(A),

where φ ∈ F(A) and φ(μ) = f(Φ−1(μ)).

The next two results describe the main properties of the functional calculus.

Theorem 5.3.4. Let f ∈ F∞(T ). Then f(T ) is independent of the choice of
α ∈ ρ(T ). Let V ⊃ σ(T ) be an open set whose boundary ∂V is a finite union
of continuously differentiable Jordan curves. Let f be analytic on V ∪ ∂V and
suppose that ∂V has positive orientation with respect to the set V . Then

f(T ) = f(∞)I +
1

2πi

∫
∂V

R(λ, T ) f(λ) dλ. (5.3)

Proof. We just have to prove formula (5.3) since the integral is independent of
α. Take α ∈ ρ(T ). Thanks to the analyticity of R(λ, T ) and the Cauchy theorem
we can assume α �∈ V ∪ ∂V . The set U = Φ−1(V ) is open and contains σ(T ).
The boundary ∂U = Φ−1(∂V ) is positively oriented and it is a finite union of
continuously differentiable Jordan curves . The function φ(μ) = f(Φ−1(μ)) is
analytic on U ∪ ∂U . Since φ(0) = f(∞) and 0 ∈ σ(A) from relation (5.2) and
Definition 5.3.3 we get

1

2πi

∫
∂V

f(λ)R(λ, T ) dλ =
1

2πi

∫
∂U

φ(μ)[R(μ,A) − μ−1I]dμ

= φ(A) − φ(0)I
= f(T )− f(∞)I.�

For unbounded operators the algebraic rules become as follows.

Theorem 5.3.5. Let f , g ∈ F∞(T ), α1, α2 ∈ C. Then:

(1) α1f + α2g ∈ F(T ) and (α1f + α2g)(T ) = α1f(T ) + α2g(T ).

(2) f · g ∈ F(T ) and f(T )g(T ) = (f · g)(T ).
(3) σ(f(T )) = f(σ(T ) ∪ {∞}).

(4) Let f ∈ F∞(T ), g ∈ F∞(f(T )), and F (λ) = g(f(λ)). Then F ∈ F∞(T ) and
F (T ) = g(f(T )).



Bibliography

[1] S. Adler, Quaternionic Quantum Field Theory, Oxford University Press,
1995.

[2] L. Alhfors, Complex Analysis, McGraw-Hill, New York, 1966.

[3] F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, 2nd edition,
Springer Verlag, New York, 1992.

[4] R.F.V. Anderson, The Weyl functional calculus, J. Funct. Anal., 4 (1969),
240–267.

[5] M. F. Atiyah, R. Bott, A. Shapiro, Clifford modules, Topology, 3 (1964),
3–38.
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