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Preface

One of the basic aims of theory of probability and statistics is to build stochastic
models which explain the phenomenon under investigation and explore the depen-
dence among various covariates which influence this phenomenon. Classic examples
are the concepts of Markov dependence or of mixing for random processes. Esary,
Proschan and Walkup introduced the concept of association for random variables.
In several situations, for example, in reliability and survival analysis, the random
variables of lifetimes for components are not independent but associated. Newman
and Wright introduced the notion of a demimartingale whose properties extend
those of a martingale. It can be shown that the partial sums of mean zero associ-
ated random variables form a demimartingale. The study of demimartingales and
related concepts is the subject matter of this book. Along with a discussion on
demimartingales and related concepts, we review some recent results on proba-
bilistic inequalities for sequences of associated random variables and methods of
nonparametric inference for such sequences.

The idea to write this book occurred following the invitation of Professor
Tasos Christofides to me to visit the University of Cyprus, Nicosia in October
2010. Professor Tasos Christofides has contributed extensively to the subject mat-
ter of this book. It is a pleasure to thank him for his invitation. Professor Isha
Dewan of the Indian Statistical Institute and I have been involved in the study of
probabilistic properties of associated sequences and in developing nonparametric
inference for such processes during the years 1990-2004 while I was at the Indian
Statistical Institute. This book is a culmination of those efforts and I would like
to thank Professor Isha Dewan for her collaboration over the years.

Thanks are due to my wife Vasanta Bhagavatula for her continued support
to pursue my academic interests even after my retirement.

B.L.S. Prakasa Rao
Hyderabad, July 1, 2011
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Chapter 1

Associated Random Variables
and Related Concepts

1.1 Introduction

In classical statistical inference, the observed random variables of interest are gen-
erally assumed to be independent and identically distributed. However in some real
life situations, the random variables need not be independent. In reliability studies,
there are structures in which the components share the load, so that failure of one
component results in increased load on each of the remaining components. Mini-
mal path structures of a coherent system having components in common behave in
a ‘similar’ manner. Failure of a component will adversely effect the performance of
all the minimal path structures containing it. In both the examples given above,
the random variables of interest are not independent but are “associated” , a
concept we will define soon. This book is concerned with the study of properties
of stochastic processes termed as demimartingales and N -demimartingales and
related concepts. As we will see in the next chapter, an important example of
a demimartingale is the sequence of partial sums of mean zero associated ran-
dom variables. We will now briefly review some properties of associated random
variables. We will come back to the study of these sequences again in Chapter 6.

We assume that all the expectations involved in the following discussions
exist.

Hoeffding (1940) (cf. Lehmann (1966)) proved the following result.

Theorem 1.1.1. Let (X,Y ) be a bivariate random vector such that E(X2) < ∞
and E(Y 2) < ∞. Then

Cov(X,Y ) =

∞∫
−∞

∞∫
−∞

H(x, y)dxdy (1.1.1)

B.L.S. Prakasa Rao, Associated Sequences, Demimartingales
and Nonparametric Inference, Probability and its Applications,
DOI 10.1007/978-3-0348-0240-6_1, © Springer Basel AG 2012
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Chapter 1. Associated Random Variables and Related Concepts

where,

H(x, y) = P [X > x, Y > y]− P [X > x]P [Y > y]

= P [X ≤ x, Y ≤ y]− P [X ≤ x]P [Y ≤ y]. (1.1.2)

Proof. Let (X1, Y1) and (X2, Y2) be independent and identically distributed ran-
dom vectors. Then,

2[E(X1Y1)− E(X1)E(Y1)]

= E[(X1 −X2)(Y1 − Y2)]

= E[

∫ ∞

−∞

∫ ∞

−∞
[I(u,X1)− I(u,X2)][I(v, Y1)− I(v, Y2)]dudv]

=

∫ ∞

−∞

∫ ∞

−∞
E([I(u,X1)− I(u,X2)][I(v, Y1)− I(v, Y2)])dudv

where I(u, a) = 1 if u ≤ a and 0 otherwise. The last equality follows as an
application of Fubini’s theorem. �

Relation (1.1.1) is known as the Hoeffding identity . A generalized Hoeffding
identity has been proved by Block and Fang (1983) for multidimensional random
vectors. Newman (1980) showed that for any two functions h(·) and g(·) with
E[h(X)]2<∞ and E[g(Y )]2< ∞ and finite derivatives h′(·) and g′(·),

Cov(h(X), g(Y )) =

∞∫
−∞

∞∫
−∞

h′(x)g′(y)H(x, y)dx dy (1.1.3)

hereinafter called Newman’s identity. Yu (1993) extended the relation (1.1.3) to
even-dimensional random vectors. Prakasa Rao (1998) further extended this iden-
tity following Queseda-Molina (1992).

As a departure from independence, a bivariate notion of positive quadrant
dependence was introduced by Lehmann (1966).

Definition. A pair of random variables (X,Y ) is said to be positively quadrant
dependent (PQD) if

P [X ≤ x, Y ≤ y] ≥ P [X ≤ x]P [Y ≤ y] ∀ x, y (1.1.4)

or equivalently
H(x, y) ≥ 0, x, y ∈ R. (1.1.5)

It can be shown that the condition (1.1.5) is equivalent to the following: for
any pair of nondecreasing functions h and g on R,

Cov(h(X), g(Y )) ≥ 0. (1.1.6)

2



1.1. Introduction

A stronger condition is that, for a pair of random variables (X,Y ) and for
any two real componentwise nondecreasing functions h and g on R2,

Cov(h(X,Y ), g(X,Y )) ≥ 0. (1.1.7)

As a natural multivariate extension of (1.1.7), the following concept of asso-
ciation was introduced by Esary, Proschan and Walkup (1967).

Definition. A finite collection of random variables {Xj , 1 ≤ j ≤ n} is said to be
associated if for every every choice of componentwise nondecreasing functions h
and g from Rn to R,

Cov(h(X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0 (1.1.8)

whenever it exists; an infinite collection of random variables {Xn, n ≥ 1} is said
to be associated if every finite sub-collection is associated.

It is easy to see that any set of independent random variables is associated (cf.
Esary, Proschan and Walkup (1967)). Associated random variables arise in widely
different areas such as reliability, statistical mechanics, percolation theory etc. The
basic concept of association has appeared in the context of percolation models (cf.
Harris (1960)) and later applied to the Ising models in statistical mechanics in
Fortuin et al. (1971) and Lebowitz (1972).

Examples. (i) Let {X ′
i, i ≥ 1} be independent random variables and Y be an-

other random variable independent of {X ′
i, i ≥ 1}.Then the random variables

{Xi = X ′
i + Y , i ≥ 1} are associated. Thus, independent random variables

subject to the same stress are associated (cf. Barlow and Proschan (1975)).
For an application of this observation to modelling dependent competing
risks, see Bagai and Prakasa Rao (1992).

(ii) Order statistics corresponding to a finite set of independent random variables
are associated.

(iii) Let {Xi, 1 ≤ i ≤ n} be associated random variables. Let Si = X1+ · · ·+Xi,
1 ≤ i ≤ n. Then the set {Si, 1 ≤ i ≤ n} is associated.

(iv) Positively correlated normal random variables are associated (cf. Pitt (1982)).

(v) Suppose a random vector (X1, . . . , Xm) has a multivariate exponential dis-
tribution F (x1, . . . , xm)( cf. Marshall and Olkin (1967)) with

1− F (x1, . . . , xm)

= exp[−
m∑
i=1

λixi −
∑
i<j

λij max(xi, xj)

−
∑

i<j<k

λijkmax(xi, xj , xk)− . . .− λ12...mmax(x1, . . . , xm)],

3



Chapter 1. Associated Random Variables and Related Concepts

xi > 0, 1 ≤ i ≤ m.

Then the components X1, . . . , Xm are associated.

(vi) Let {X1, . . . , Xn} be jointly α-stable random variables, 0 < α < 2. Then
Lee, Rachev and Samorodnitsky (1990) discussed necessary and sufficient
conditions under which {X1, . . . , Xn} are associated.

(vii) Let {ek : k = . . . ,−1, 0, 1, . . .} be a sequence of independent random variables
with zero mean and unit variance. Let {wj : j = 0, 1, . . .} be a sequence of
nonnegative real numbers such that

∞∑
j=0

wj < ∞. Define Xk =

∞∑
j=0

wjek−j .

Then the sequence {Xk} is associated. (Nagaraj and Reddy (1993)).
(viii) Let the process {Xk} be a stationary autoregressive process of order p given

by Xn = φ1Xn−1+. . .+φpXn−p+en where {en} is a sequence of independent
random variables with zero mean and unit variance.Then {Xk} is associated
if φi ≥ 0, 1 ≤ i ≤ p. Suppose p = 1 and φ1 < 0. Then {X2k} and {X2k+1}
are associated sequences (Nagaraj and Reddy (1993)).

(ix) Consider the following network. Suppose customers arrive according to a
Poisson process with rate λ and all the customers enter the node 1 initially.
Further suppose that the service times at the nodes are mutually independent
and exponentially distributed and customers choose either the route r1 : 1→
2 → 3 or r2 : 1 → 3 according to a Bernoulli process with probability p of
choosing r1. The arrival and the service processes are mutually independent.
Let S1 and S3 be the sojourn times at the nodes 1 and 3 of a customer
that follows route r1. Foley and Kiessler (1989) showed that S1 and S3 are
associated.

(x) Let the process {Xn} be a discrete time homogeneous Markov chain. It is said
to be a monotone Markov chain if Pr[Xn+1 ≥ y|Xn = x] is nondecreasing
in x for each fixed y. Daley (1968) showed that a monotone Markov chain is
associated.

(xi) Consider a system of k components 1, . . . , k, all new at time 0 with life lengths
T1, . . . , Tk. Arjas and Norros (1984) discussed a set of conditions under which
the life lengths are associated.

(xii) Consider a system of N non-renewable components in parallel. Let Ti denote
the life length of a component i, i = 1, . . . , N . Suppose the environment is
represented by a real-valued stochastic process Y = {Yt, t ≥ 0} which is
external to the failure mechanism. Assume that given Y , the life lengths Ti

are independent and let

lim
τ→0

1

τ
Pr[t ≤ Ti ≤ t+ τ |Ti > t, Y ] = ηi(t, Yt), i = 1, . . . , N

4



1.2. Some Probabilistic Properties of Associated Sequences

where each ηi(t, y) is a positive continuous function of t > 0 and real y.
Assume that ηi(t, y) are all increasing (or decreasing ) in y. Further, let

Qi(ti) =

∫ ti

0

ηi(u, Yu)du, ti ≥ 0, i = 1, . . . , N.

Thus Qi(ti) is the total risk incurred by the component i from the starting
time to time ti. Then Lefevre and Milhaud (1990) showed that, if Y is asso-
ciated , then the life lengths T1, . . . , Tn, are associated as well as the random
variables Q1(t1), . . . , QN (tN ) are associated.

Remarks. The concept of FKG inequalities, which is connected with statistical me-
chanics and percolation theory, is related to the concept of association. It started
from the works of Harris (1960), Fortuin, Kastelyn and Ginibre (1971), Holley
(1974), Preston (1974), Batty (1976), Kemperman (1977) and Newman (1983).
For the relationship between the two concepts, see Karlin and Rinott (1980) and
Newman (1984). They observed the following - a version of the FKG inequality is
equivalent to

∂2

∂xi∂xj
log f ≥ 0 for i �= j 1 ≤ i, j ≤ n (1.1.9)

when f(x1, . . . , xn), the joint density of X1, . . . , Xn, is strictly positive on R
n. This

is a sufficient but not a necessary condition for association of (X1, X2, . . . , Xn).
For example, if (X1, X2) is a bivariate normal vector whose covariance matrix Σ
is not the inverse of a matrix with non-positive off diagonal entries, then the pair
(X1, X2) is associated (Pitt (1982)) but the density of (X1, X2) does not satisfy
the condition (1.1.9).

1.2 Some Probabilistic Properties of Associated
Sequences

Esary, Proschan and Walkup (1967) studied the fundamental properties of associ-
ation. They showed that the association of a set of random variables is preserved
under some operations, for instance,

(i) any subset of associated random variables is associated;

(ii) union of two independent sets of associated random variables is a set of
associated random variables;

(iii) a set consisting of a single random variable is associated;

(iv) nondecreasing functions of associated random variables are associated; and

(v) if X
(k)
1 , . . . , X

(k)
n are associated for each k, and if X(k) = (X

(k)
1 , . . . , X

(k)
n )→

X = (X1, . . . , Xn) in distribution as k → ∞, then the set of random variables
{X1, . . . , Xn} is associated.

5



Chapter 1. Associated Random Variables and Related Concepts

(vi) A sequence of random variables {Xn, n ≥ 1} is said to be stochastically
increasing if, for each n > 1 and every x, the sequence

P (Xn ≤ x|X1 = x1, . . . , Xn−1 = xn−1)

is nonincreasing in x1, . . . , xn−1. It can be shown that, if a sequence {Xn,
n ≥ 1} is stochastically increasing, then it is associated.

(vii) Let the set {Xi, i = 1, . . . , n} be a set of associated random variables and
{X∗

i , i = 1, . . . , n} be independent random variables such that X∗
i and Xi

have the same distribution for each i = 1, . . . , n. Let X(1) ≤ X(2) ≤ . . . ,≤
X(n) and X∗

(1) ≤ X∗
(2) ≤ . . . ,≤ X∗

(n). Let F(i)(x) and F ∗(i)(x) denote the
distribution functions of X(i) and X∗

(i), respectively. Then Hu and Hu (1998)
showed that

(F(1)(t), F(2)(t), . . . , F(n)(t))
m
> (F ∗(1)(t), F

∗
(2)(t), . . . , F

∗
(n)(t)), for all t ∈ R,

and for a monotone function h,

(Eh(X(1)), Eh(X(2)), . . . , Eh(X(n)))
m
> (Eh(X∗

(1)), Eh(X∗
(2)), . . . , Eh(X∗

(n))),

where, for a = (a1, . . . , an) and b = (b1, . . . , bn), we say b
m
> a if

∑n
i=1 ai =∑n

i=1 bi and
∑k

i=1 a(i) ≥
∑k

i=1 b(i) for k = 1, . . . , n and a(1) ≤ a(2) ≤ . . . ≤
a(n) and b(1) ≤ b(2) ≤ . . . ≤ b(n) denote the ordered values of a

′
is and b′is.

For example, in an animal genetic selection problem where X1, . . . , Xn

are the phenotypes of animals, the best k of n animals (with scores
(X(n−k+1), . . . , X(n))) are kept for breeding (Shaked and Tong (1985)). The
partial sum of

∑n
i=n−k+1 X(i) is the selection differential used by geneticists.

If the X ′
is have the same mean μ, then the total expected gain of the genetic

selection project,
∑n

i=n−k+1 X(i) is less significant for associated samples
when compared with independent samples. For other applications, see Szekli
(1995).

Esary et al. (1967) have also developed a simple criterion for establishing
association. Instead of checking the condition (1.1.8) for arbitrary nondecreasing
functions h and g, one can restrict to nondecreasing test functions h and g which
are binary or functions h and g which are nondecreasing, bounded and continuous.
In addition, they obtained bounds for the joint distribution function of associated
random variables in terms of the joint distribution function of the components
under independence.

Some Probability Inequalities

Theorem 1.2.1. If the random variables X1, . . . , Xn are associated, then

P [Xi > xi, i = 1, . . . , n] ≥
n∏

i=1

P [Xi > xi],

6



1.2. Some Probabilistic Properties of Associated Sequences

and

P [Xi ≤ xi, i = 1, . . . , n] ≥
n∏

i=1

P [Xi ≤ xi]. (1.2.1)

The concept of association is useful in the study of approximate indepen-
dence. This follows from a basic distribution function inequality due to Lebowitz
(1972).

Define, for A and B, subsets of {1, 2, . . . , n} and real xj ’s,

HA,B(xj , j ∈ A ∪B) = P [Xj > xj ; j ∈ A ∪B]

− P [Xk > xk, k ∈ A]P [X� > x�, � ∈ B]. (1.2.2)

Observe that the function H(x, y) in (1.1.2) is a special case of this definition.

Theorem 1.2.2 (Lebowitz (1972)). If the random variables Xj , 1 ≤ j ≤ n, are
associated, then

0 ≤ HA,B ≤
∑
i∈A

∑
j∈B

H{i},{j}. (1.2.3)

Proof. Let Zi = I(Xi ≥ xi) where I(G) denote the indicator function of a set G.
Define

U(A) =
∏
i∈A

Zi, and V (A) =
∑
i∈A

Zi.

Then

HA,B = Cov (U(A), U(B)),

and

Cov(V (A), V (B)) =
∑
i∈A

∑
j∈B

H{i},{j}.

Observe that V (A)−U(A) and V (B) are nondecreasing functions of Zi, 1 ≤ i ≤ n.
Since Zi’s are associated, it follows that

Cov(V (A)− U(A), V (B)) ≥ 0.

Similarly, V (B) − U(B) and U(A) are nondecreasing functions of Zi, 1 ≤ i ≤ n
and

Cov(V (B)− U(B), U(A)) ≥ 0.
Hence

Cov(U(A), U(B)) ≤ Cov(U(A), V (B)) ≤ Cov(V (A), V (B)). �

As an immediate consequence of the above theorem we have the following
result.

7



Chapter 1. Associated Random Variables and Related Concepts

Theorem 1.2.3 (Joag-Dev (1983), Newman (1984)). Suppose the random variables
X1, . . . , Xn are associated. Then, the set {Xk, k ∈ A} is independent of the set
{Xj, j ∈ B} if and only if Cov(Xk, Xj) = 0 for all k ∈ A, j ∈ B and the set
Xj, 1 ≤ j ≤ n’s are jointly independent if and only if Cov(Xk, Xj) = 0 for all
k �= j, 1 ≤ k, j ≤ n. Thus, a set of uncorrelated associated random variables are
independent.

A fundamental inequality, known as Newman’s inequality, which is useful
in proving several probabilistic results involving associated random variables, is
given below.

Theorem 1.2.4 (Newman (1980)). Let the pair (X,Y ) be associated random vari-
ables with E(X2) < ∞ and E(Y 2) < ∞. Then, for any two differentiable functions
h and g,

|Cov(h(X), g(Y ))| ≤ sup
x
|h′(x)| sup

y
|g′(y)|Cov(X,Y ) (1.2.4)

where h′ and g′ denote the derivatives of h and g, respectively.

This result is an immediate consequence of the Hoeffding identity given by
(1.1.3).

Using the above inequality, we get

|Cov(exp(irX), exp(isY ))| ≤ |r||s|Cov(X,Y ) (1.2.5)

for −∞ < r, s < ∞. This leads to the following inequality for characteristic func-
tions.

Theorem 1.2.5 (Newman and Wright (1981)). Suppose X1, . . . , Xn are associ-
ated random variables with the joint and the marginal characteristic functions
φ(r1, . . . , rn) and φj(rj), 1 ≤ j ≤ n, respectively. Then

|φ(r1, . . . , rn)−
n∏

j=1

φj(rj)| ≤ 1

2

∑
j �=k

∑
|rj | |rk|Cov(Xj , Xk). (1.2.6)

The theorem gives an alternate method to show that a set of associated
random variables which are uncorrelated are jointly independent.

The following inequality is due to Bagai and Prakasa Rao (1991) and it
is a consequence of a result due to Sadikova (1966). Sadikova’s result is a two-
dimensional analogue of an inequality due to Esseen. We will discuss Sadikova’s
result in more detail in Chapter 6. The inequality in Theorem 1.2.6 given below has
been used by Matula (1996) and Dewan and Prakasa Rao (1997b) for proving their
results dealing with probabilistic and statistical inferential aspects for associated
random variables.
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1.2. Some Probabilistic Properties of Associated Sequences

Theorem 1.2.6 (Bagai and Prakasa Rao (1991)). Suppose the pair X and Y are
associated random variables with bounded continuous densities fX and fY , respec-
tively. Then there exists an absolute constant c > 0 such that

sup
x,y

|P [X ≤ x, Y ≤ y]− P [X ≤ x]P [Y ≤ y]|

≤ c{max(sup
x

fX(x), sup
x

fY (x))}2/3(Cov(X,Y ))1/3. (1.2.7)

The covariance structure of an associated sequence {Xn, n ≥ 1} plays a
significant role in studying the probabilistic properties of the associated sequence
{Xn, n ≥ 1}. Let

u(n) = sup
k≥1

∑
j:|j−k|≥n

Cov(Xj , Xk), n ≥ 0. (1.2.8)

Then, for any stationary associated sequence {Xj}, the sequence u(n) is given by

u(n) = 2

∞∑
j=n+1

Cov(X1, Xj).

Moment Bounds

Birkel (1988a) observed that moment bounds for partial sums of associated se-
quences also depend on the rate of decrease of u(n).

Theorem 1.2.7 (Birkel (1988a)). Let the sequence {Xn, n ≥ 1} be a sequence of
associated random variables with EXj = 0, j ≥ 1 and suppose that

sup
j≥1

E|Xj |r+δ < ∞ for some r > 2, δ > 0.

Assume that
u(n) = O(n−(r−2)(r+δ)/2δ).

Then, there is a constant B > 0 not depending on n such that for all n ≥ 1,
sup
m≥0

E|Sn+m − Sm|r ≤ Bnr/2 (1.2.9)

where Sn =

n∑
j=1

Xj .

If the Xj ’s are uniformly bounded, then the following result holds.

Theorem 1.2.8 (Birkel(1988a)). Let the sequence {Xn, n ≥ 1} be a sequence of
associated random variables satisfying EXj = 0 and |Xj | ≤ c < ∞ for j ≥ 1.
Assume that

u(n) = O(n−(r−2)/2)).

Then (1.2.9) holds.

9



Chapter 1. Associated Random Variables and Related Concepts

The result stated above can easily be generalized to obtain the following
result by methods in Birkel (1988a).

Theorem 1.2.9 (Bagai and Prakasa Rao (1991)). For every α ∈ I, an index set,
let {Xn(α), n ≥ 1} be an associated sequence with EXn(α) = 0 and

sup
α∈I

sup
n≥1

|Xn(α)| ≤ A < ∞.

Let

Sn(α) =
n∑

j=1

Xj(α),

and
u(n, α) = sup

k≥1

∑
j:|j−k|≥n

Cov(Xj(α), Xk(α)).

Suppose there exists b > 0, independent of α ∈ I and n ≥ 1, such that for some
r > 2, and all α ∈ I and n ≥ 1,

u(n, α) ≤ bn−(r−2)/2.

Then, there exists a constant C, not depending on n and α, such that for all n ≥ 1,
sup
α∈I

sup
m≥0

E|Sn+m(α)− Sn(α)|r ≤ Cnr/2.

The result stated above is useful in the nonparametric estimation of the sur-
vival function for associated random variables (cf. Bagai and Prakasa Rao (1991)).

Bagai and Prakasa Rao (1995) generalized Theorem 1.2.7 and Theorem 1.2.8
to functions of associated random variables when the functions are of bounded
variation and then used the results in the study of nonparametric density estima-
tion for stationary associated sequences.

Theorem 1.2.10 (Bagai and Prakasa Rao (1995)). For every α ∈ J , an index set, let
{Xj(α), j ≥ 1} be an associated sequence. Let {fn, n ≥ 1} be functions of bounded
variation which are differentiable and suppose that sup

n≥1
sup
x
|f ′n(x)| ≤ c < ∞. Let

E(fn(Xj(α))) = 0 for every n ≥ 1, j ≥ 1 and α ∈ J . Suppose there exist r > 2
and δ > 0 (independent of α, j and n) such that

sup
n≥1

sup
α∈J

sup
j≥1

E|fn(Xj(α))|r+δ < ∞. (1.2.10)

Let
u(n, α) = sup

k≥1

∑
j:|j−k|≥n

Cov(Xj(α), Xk(α)). (1.2.11)

Suppose that there exists c > 0 independent of α ∈ J such that

u(n, α) ≤ cn−(r−2)(r+δ)/2δ.

10



1.2. Some Probabilistic Properties of Associated Sequences

Then there exists a constant B not depending on n,m and α, such that

sup
m≥1

sup
α∈J

sup
k≥0

E|Sn+k,m(α)− Sk,m(α)|r ≤ Bnr/2 (1.2.12)

where

Smn,n(α) =

mn∑
j=1

fn(Xj(α)).

Theorem 1.2.11 (Bagai and Prakasa Rao (1995)). For any α ∈ J , an index
set, let the sequence {Xj(α), j ≥ 1} be an associated sequence. Let {fn, n ≥
1} be functions of bounded variation which are differentiable and suppose that
sup
n≥1

sup
x
|fn(x)| < ∞, and sup

n≥1
sup
x
|f ′n(x)| ≤ c < ∞. Let E(fn(Xj(α)) = 0,

n ≥ 1, α ∈ J and j ≥ 1. Assume that there exists r > 2 such that

u(n, α) = O(n−(r−2)/2).

Then there exists a constant B not depending on n,m and α, such that

sup
m≥1

sup
α∈J

sup
k≥0

E|Sn+k,m(α)− Sk,m(α)|r ≤ Bnr/2 (1.2.13)

where u(n, α) is defined by (1.2.11).

Bulinski (1993) generalized Birkel’s results to random fields of associated vari-
ables. Bulinski and Shaskin (2007) give a comprehensive survey of limit theorems
for associated random fields and related systems. Shao and Yu (1996) obtained
some Rosenthal-type moment inequalities for associated sequences useful in their
study of empirical processes for associated sequences.

Theorem 1.2.12 (Shao and Yu (1996)). Let 2 < p < r ≤ ∞. Let f be an ab-
solutely continuous function satisfying supx∈R |f ′| ≤ B and let {Xn, n ≥ 1} be
a sequence of associated random variables with Ef(Xn) = 0 and ‖f(Xn)‖r =
(E|f(Xn)|r)1/r < ∞. Let

u(n) = sup
i≥1

∑
j:|j−i|≥n

Cov(Xi, Xj) < ∞, n ≥ 0.

Suppose that
u(n) ≤ Cn−θ (1.2.14)

for some C > 0 and θ > 0. Then, for any ε > 0, there exists K = K(ε, r, p, θ) < ∞
such that

E|
n∑

i=1

f(Xi)|p ≤ K

(
n1+εmax

i≤n
E|f(Xi)|p

+ (nmax
i≤n

(

n∑
j=1

|Cov(f(Xi), f(Xj))|)p/2

11
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+ n(r(p−1)−p+θ(p−r)/(r−2)∨(1+ε)

×max
i≤n

‖f(Xi)‖r(p−2)/(r−2)
r (B2C)(r−p)/(r−2)

)
. (1.2.15)

Bernstein-type Inequality

Prakasa Rao (1993) obtained a Bernstein-type inequality applicable for sums of
finite sequences of associated random variables.

Theorem 1.2.13 (Prakasa Rao (1993)). For every n ≥ 1, let {Z(n)
i , 1 ≤ i ≤ ln} be

associated random variables such that E(Z
(n)
i ) = 0, |Z(n)

i | ≤ dn ≤ ∞. Define

ψ(n)(m) = sup
1≤i1,i2≤ln

∑
i1≤j,k≤i2
0<|j−k|≤m

Cov(Z
(n)
j , Z

(n)
k ). (1.2.16)

Let

Sn =

ln∑
i=1

Z
(n)
i . (1.2.17)

Define 1 ≤ mn ≤ ln and α by the relation

α mn dn ≤ 1

4
. (1.2.18)

Then, for any ε > 0,

P (|Sn| ≥ ε) ≤ 2 exp{6α2lnCn +
3

4

√
eα−2lnm

−2
n C−1

n − αε} (1.2.19)

where
Cn = (d

2
n + ψ(n)(mn)). (1.2.20)

Strong Laws of Large Numbers

Strong laws of large numbers for associated sequences have been obtained by
Newman (1984) and Birkel (1989), the former for the stationary case and the
latter for the non-stationary case.

Theorem 1.2.14 (Newman (1984)). Let the sequence {Xn, n ≥ 1} be a stationary
sequence of associated random variables with E(X2

1 ] < ∞. If

1

n

n∑
j=1

Cov(X1, Xj)→ 0 as n → ∞,

then
1

n
(Sn − E(Sn))→ 0 a.s. as n → ∞. (1.2.21)

12



1.2. Some Probabilistic Properties of Associated Sequences

Theorem 1.2.15 (Birkel (1989)). Let the sequence {Xn, n ≥ 1} be a sequence of
associated random variables with E(X2

n) < ∞, n ≥ 1. Assume that

∞∑
j=1

1

j2
Cov(Xj , Sj) < ∞.

Then (1.2.21) holds.

This theorem has been generalized in Bagai and Prakasa Rao (1995) to func-
tions of associated random variables.

Theorem 1.2.16 (Bagai and Prakasa Rao (1995)). Let the sequence {Xn, n ≥ 1}

be a stationary sequence of associated random variables. Let Sk,n =

k∑
j=1

fn(Xj)

where fn is differentiable with supn supx |f ′n(x)| < ∞. Suppose E[fn(X1)] = 0,
Var[fn(X1)] < ∞ and

∞∑
j=1

Cov(X1, Xj) < ∞.

Then,
Sn,n

n
→ 0 a.s. as n → ∞.

Remarks. Theorem 1.2.16 can be used to prove the pointwise strong consistency of
kernel type nonparametric density estimators for density estimation for stationary
associated sequences (cf. Bagai and Prakasa Rao (1995)).

The following result is a strong law of large numbers for a triangular array of
associated random variables which is useful in nonparametric density estimation.

Theorem 1.2.17 (Dewan and Prakasa Rao (1997a)). Let the set {Xnj, 1 ≤ j ≤ kn,
n ≥ 1} be a triangular array of random variables such that the sequence {Xnj,
1 ≤ j ≤ kn} is strictly stationary and associated for every n ≥ 1 with E[Xn1] = 0
and Var(Xn1) < ∞ for all n ≥ 1. Suppose that kn = O(nγ) for some 0 ≤ γ < 3

2
and the following condition holds:

kn∑
j=1

Cov(Xn1, Xnj) < ∞. (1.2.22)

Let Sn,l =

l∑
j=1

Xnj. Further suppose that

E[ max
n2<j≤(n+1)2

|Sj,kj
− Sn2,kn2

|]2 = O(n4−δ) (1.2.23)

for some δ > 1.Then,
Sn,kn

n
→ 0 a.s. as n → ∞. (1.2.24)
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Chapter 1. Associated Random Variables and Related Concepts

The following result, due to Lebowitz (1972), deals with a necessary and
sufficient condition for erogodicity of a stationary sequence of associated random
variables.

Theorem 1.2.18 (Lebowitz (1972), Newman (1980)). Let the sequence {Xn, n ≥ 1}
be a stationary sequence of associated random variables. Then the process {Xn,
n ≥ 1} is ergodic if and only if

lim
n→∞n−1

n∑
j=1

Cov(X1, Xj) = 0. (1.2.25)

In particular, if (1.2.25) holds, then, for any real-valued function f(.) such that
E|f(X1)| < ∞,

lim
n→∞n−1

n∑
j=1

f(Xj) = E[f(X1)] a.s. (1.2.26)

Central Limit Theorems

The next theorem was the original application (and motivation) of the character-
istic function inequality given in Theorem 1.2.5. It gives the central limit theorem
for partial sums of stationary associated random variables.

Theorem 1.2.19 (Newman (1980, 1984)). Let the sequence {Xn, n ≥ 1} be a
stationary associated sequence of random variables with E[X2

1 ] < ∞ and 0 <

σ2 = Var(X1) + 2

∞∑
j=2

Cov(X1, Xj) < ∞. Then, n−1/2(Sn −E(Sn))
L→ N(0, σ2) as

n → ∞.

Since σ is not known in practice, it needs to be estimated. Peligrad and
Suresh (1995) obtained a consistent estimator of σ . Let the sequence {ln, n ≥ 1}
be a sequence of positive integers with 1 ≤ ln ≤ n. Set Sj(k) =

∑j+k
i=j+1 Xi,

X̄n = 1
n

∑n
i=1 Xi, and Bn = 1

n−l [
∑n−l

j=0
|Sj(l)−lX̄n|√

l
] where we write l = ln for

convenience.

Theorem 1.2.20. Let the sequence {Xn, n ≥ 1} be a stationary associated sequence
of random variables satisfying E(X1) = μ, E(X2

1 ) < ∞. Let ln = o(n) as n → ∞.
Assume that

∑∞
i=2 Cov(X1, Xi) < ∞. Then

Bn → σ
√
2/π in L2 as n → ∞.

In addition, if ln = O(n/ log n)2) as n → ∞, then the convergence above is almost
sure.

A local limit theorem of the type due to Shepp (1964) was proved for sta-
tionary associated sequences by Wood (1985). We do not discuss these results
here.
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1.2. Some Probabilistic Properties of Associated Sequences

Cox and Grimmett (1984) proved a central limit theorem for double sequences
and used it in percolation theory and the voter model. It generalizes the central
limit theorem due to Newman (1984) discussed earlier.

Theorem 1.2.21 (Cox and Grimmett (1984)). Let the set {Xnj, 1 ≤ j ≤ n, n ≥
1} be a triangular array of random variables associated row-wise satisfying the
following conditions:

(i) there are strictly positive, finite constants c1, c2 such that

Var(Xnj) ≥ c1, E[|Xnj |3] ≤ c2 ∀ j and n.

(ii) there is a function u : {0, 1, 2, . . . , } → R such that u(r)→ 0 as r → ∞ and∑
j:|k−j|≥r

Cov(Xnj , Xnk) ≤ u(r) for all k, n and r ≥ 0.

Let Sn,n =

n∑
j=1

Xnj. Then the sequence {Sn,n, n ≥ 1} satisfies the central limit

theorem.

Roussas (1994) established asymptotic normality of random fields of partial
sums of positively (as well as negatively) associated processes. We will discuss
concepts of positive and negative association later in this chapter.

Berry-Esseen Type Bound

The next, natural, question is the rate of convergence in the central limit theo-
rem. We have the following versions of the Berry-Esseen theorem for associated
sequences. Hereafter we denote the standard normal distribution function by Φ(x).

Theorem 1.2.22 (Wood (1983)). Suppose the sequence {Xn, n ≥ 1} is a station-
ary sequence of associated random variables satisfying E[Xn] = 0, E(X2

n) < ∞,

E[|Xn|3] < ∞ for all n and 0 < σ2 = Var(X1) + 2

∞∑
j=2

Cov(X1, Xj) < ∞. Then,

for n = mk,

|Fn(x)− Φ(x
σ
)| ≤ 16σ̄4

km(σ
2 − σ̄2

k)

9πρ2k
+

3ρk
σk3

√
m
,

where S̄n =
n∑

i=1

Xi√
n
, σ̄2

n = E(S̄2
n), ρn = E[|S̄n|3] and Fn(x) = P [S̄n ≤ x].

The rate obtained above by Wood (1983) at its best is of O(n−1/5) which
is far from the optimal Berry-Esseen rate O(n−1/2) in the classical Berry-Esseen
bound for sums of independent and identically distributed random variables. An
improvement of the same is given below.
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Theorem 1.2.23 (Birkel (1988b)). Let the sequence {Xn, n ≥ 1} be an associated
sequence with E[Xn] = 0, satisfying

(i) u(n) = O(e−λn), λ ≥ 0,

(ii) inf
n≥1

σ2
n

n
> 0, σ2

n = E[S2
n], and

(iii) sup
n≥1

E[|Xn|3] < ∞. where u(n) is as defined by (1.2.8).

Then there exists a constant B not depending on n such that, for all n ≥ 1,

Δn ≡ sup
x∈R

|P{σ−1
n Sn ≤ x} − Φ(x)| ≤ Bn−1/2 log2 n.

If, instead of (iii) in Theorem 1.2.23, we assume that

(iii)′ sup
j≥1

E|Xj |3+δ < ∞ for some δ > 0,

then there exists a constant B not depending on n such that, for all n ≥ 1,

Δn ≤ Bn−1/2 log n.

Even though Birkel (1988b) obtained an improved rate of O(n−1/2log2n), yet
it is not clear how the constant B involved in the bound depends on the moments
of the random variables {Xn}. The following result is an attempt in this direction.
Theorem 1.2.24 (Dewan and Prakasa Rao (1997b)). Let the set {Xi, 1 ≤ i ≤ n} be
a set of stationary associated random variables with E[X1] = 0, Var[X1] = σ2

0 > 0
and E[|X1|3] < ∞. Suppose the distribution of X1 is absolutely continuous. Let

Sn =

n∑
i=1

Xi and σ2
n = Var(Sn). Suppose that

σ2
n

n → σ2
0 as n → ∞. Let Fn(x) be

the distribution function of Sn

σn
and F ∗n(.) be the distribution function of

∑n
i=1 Zi

σn

where Zi, 1 ≤ i ≤ n are i.i.d. with distribution function the same as that of X1.
Let mn be a bound on the derivative of F ∗n . Then there exist absolute constants
Bi > 0, 1 ≤ i ≤ 3, such that

sup
x

|Fn(x)− Φ(x)| ≤ B1
dn

1/3mn
2/3

σn
2/3

+B2
E|X1|3√
n σ3

0

+B3 (
σn

σ0
√
n
− 1) (1.2.27)

where

dn =

n∑
j=2

(n− j + 1)Cov(X1, Xj).
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Remarks. The bound given above can be made more explicit by bounding mn in
(1.2.27) if we assume that the characteristic function of X1 is absolutely integrable.
Then, for large n,

mn ≤ ( σn

σ0
√
n
− 1) sup

x
gn(

σn x

σ0
√
n
) + sup

x
gn(

σn x

σ0
√
n
)

≤ 2√
2 π

(
σn

σ0
√
n
− 1) + 2√

2 π
(1.2.28)

Bulinski (1995) established the rate of convergence of standardized sums of
associated random variables to the normal law for a random field of associated
random variables.

Invariance Principle

Let the sequence {Xn, n ≥ 1} be a sequence of random variables with EXn = 0,
EX2

n < ∞, n ≥ 1. Let

S0 = 0, Sn =
n∑

k=1

Xk, σ2
n = ES2

n, n ≥ 1.

Assume that σ2
n > 0, n ≥ 1. Let {kn, n ≥ 0} be an increasing sequence of real

numbers such that
0 = k0 < k1 < k2 < . . . (1.2.29)

and
lim
n→∞ max

1≤i≤n
(ki − ki−1)/kn = 0. (1.2.30)

Define m(t) = max{i : ki ≤ t}, t ≥ 0, and
Wn(t) = Smn(t)/σn, t ∈ [0, 1], n ≥ 1, (1.2.31)

where mn(t) = m(tkn). Consider the process

W ∗
n(t) =

S[nt]

σn
, t ∈ [0, 1]. (1.2.32)

When kn = n, n ≥ 1 the processes defined by (1.2.31) and (1.2.32) are equivalent.
Theorem 1.2.25 (Newman and Wright (1981)). Let the sequence {Xn, n ≥ 1} be
a strictly stationary sequence of associated random variables with EX1 = 0 and

EX2
1 < ∞. If 0 < σ2 = Var(X1) + 2

∞∑
n=2

Cov(X1, Xn) < ∞, then, W ∗
n
L→ W as

n → ∞, where W is a standard Wiener process.

An invariance principle for a non-stationary associated process has been stud-
ied by Birkel (1988c).
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Theorem 1.2.26 (Birkel (1988c)). Let the sequence {Xn, n ≥ 1} be a sequence of
associated random variables with E(Xn) = 0, E(X2

n) < ∞ for n ≥ 1 . Assume
that

(i) lim
n→∞σ−2

n E(UnkUn�) = min(k, �) for k, � ≥ 1 and Um,n = Sm+n − Sm; and

(ii) σ−2
n (Sn+m − Sn)

2, m ≥ 0, n ≥ 1 is uniformly integrable.

Then
W ∗

n
L→ W as n → ∞.

Birkel’s result was generalized by Matula and Rychlik (1990). They observed

that if W ∗
n
L→ W as n → ∞, then

σ2
n = nh(n), (1.2.33)

where h : R+ → R+ is slowly varying. They proved an invariance principle for
sequences {Xn, n ≥ 1} which do not satisfy the condition (1.2.33).
Theorem 1.2.27 (Matula and Rychlik (1990)). Let the sequence {Xn, n ≥ 1} be a
sequence of associated random variables with E(Xn) = 0, E(X

2
n) < ∞ for n ≥ 1.

Let {kn, n ≥ 1} be a sequence of real numbers satisfying (1.2.29) and (1.2.30).
Assume that

(i) lim
n→∞σ−2

n E(Smn(p)Smn(q)) = min(p, q) , for p, q ≥ 1,
(ii) (σ2

n+m − σ2
m)
−1(Sn+m − Sn)

2, m ≥ 0, n ≥ 1 is uniformly integrable.

Then
Wn

L→ W as n → ∞.

Strong Invariance Principle

Yu (1996) proved a strong invariance principle for associated sequences. We now
briefly discuss this result.

Let the sequence {Xn, n ≥ 1} be an associated sequence with E(Xn) = 0
and define

u(n) = sup
k≥1

∑
j:|j−k|>n

Cov(Xj , Xk).

Define blocks Hk and Ik of consecutive positive integers leaving no gaps between
the blocks. The order is H1, I1, H2, I2, . . . . The lengths of the blocks are defined
by

card{Hk} = [kα], card{Ik} = [kβ ]
for some suitably chosen real numbers α > β > 0 with card{K} denoting the
number of integers in K. Let

Uk =
∑
i∈Hk

Xi, λk = E(U2
k )
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and
Vk =

∑
i∈Ik

Xi, τk = E(V 2
k )

for k ≥ 1. Let the sequence {Wk, k ≥ 1} be a sequence of independent N(0, τ2
k

2 )
distributed random variables independent of the sequence {Uk, k ≥ 1}. Define

ξk = (Uk +Wk)/(λ
2
k +

τ2k
2
)1/2, k ≥ 1.

Let Fk be the distribution function of ξk. Note that the function Fk is continuous.
Let

ηk = Φ
−1(Fk(ξk)), k ≥ 1,

where Φ−1 denotes the inverse of the standard normal distribution function Φ.
Note that each ηk has a standard normal distribution and the sequence {ηk, k ≥ 1}
is an associated sequence. Furthermore the covariances of the sequences {ηk, k ≥ 1}
are controlled by the sequence {Xn, n ≥ 1}. The following theorem is due to Yu
(1996).

Theorem 1.2.28. Let the sequence {Xn, n ≥ 1} be an associated sequence satisfying
E(Xn) = 0, infn≥1 E(X

2
n) > 0, and

sup
n≥1

|Xn|2+r+δ < ∞ (1.2.34)

for some r, δ > 0. Further suppose that

u(n) = O(n−γ), γ =
r(2 + r + δ)

2δ
> 1. (1.2.35)

If moreover 5β/3 > α > β > 0, then for any 0 < θ < (1/2) and for all i �= j,

0 ≤ Eηiηj ≤ C((ij)−α/2E(UiUj))
θ/(1+θ) (1.2.36)

for some constant C not depending on i, j. Furthermore there exists real numbers
α > β > 1 and some ε > 0 such that, for k satisfying Nk < N ≤ Nk+1,

|
N∑
j=1

Xj −
k∑

i=1

(λ2
i +

τ2i
2
)1/2ηi| ≤ C1N

(1/2)−ε a.s., (1.2.37)

for some constant C1 not depending on N.

Based on this theorem, Yu (1996) established the following strong invariance
principle for associated sequences.

Theorem 1.2.29. Let the sequence {Xn, n ≥ 1} be an associated sequence satisfying
E(Xn) = 0, infn≥1 E(X

2
n) > 0, and

sup
n≥1

|Xn|2+r+δ < ∞ (1.2.38)
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Chapter 1. Associated Random Variables and Related Concepts

for some r, δ > 0. Further suppose that

u(n) = O(e−λn) (1.2.39)

for some λ > 0. Then without changing its distribution we can redefine the sequence
{Xn, n ≥ 1} on another probability space with a standard Wiener process {W (t),
t ≥ 0} such that , for some ε > 0,

N∑
j=1

Xj −W (σ2
N ) = O(N (1/2)−ε) a.s., (1.2.40)

where σ2
N = Var(

∑N
j=1 Xj).

As a special case of the above theorem, it follows that

lim inf
n→∞ [

8 log logn

π2σ2
n

]1/2 sup
1≤i≤n

|Sn| = 1 a.s., (1.2.41)

where Sn =
∑n

i=1 Xi, under the conditions stated above.

Law of the Iterated Logarithm

Dabrowski (1985) proved the law of the iterated logarithm for stationary associated
sequences.

Theorem 1.2.30 (Dabrowski (1985)). Let the sequence {Xn, n ≥ 1} be a sequence of
stationary associated random variables with E(X1) = 0, σ

2 = 1, sup(E|Sk/k
1/2|3 :

k ≥ 1) < ∞, and

1− E(S2
n/n) = O(n−δ) for some δ > 0. (1.2.42)

Then the sequence {Xn, n ≥ 1} satisfies the functional law of the iterated loga-
rithm, that is, let

χn(t) =

{
Sk(2n log log n)

−1/2 if 0 ≤ k ≤ n and t = k/n,

linear otherwise for 0 ≤ t ≤ 1.

Then, with probability 1, χn is equicontinuous and the set of its limit points (in
the supremum norm on C[0, 1]) coincides with the set

{k ∈ C[0, 1] : k is absolutely continuous in [0, 1], k(0) = 0 and

∫ 1

0

(k(t))2dt ≤ 1}.

In particular,

P
[
lim

n→∞ sup(Sn/
√
2n log log n) = 1

]
= 1.
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1.2. Some Probabilistic Properties of Associated Sequences

Bounds on Expectations of Partial Sums

We will now discuss some inequalities which are useful in finding bounds for ex-
pectations of partial sums of functions of associated random variables.

Theorem 1.2.31 (Bakhtin’s lemma)). Let (X,Y ) be an associated bivariate random
vector with E(X) = 0. Suppose that f(.) is a convex function such that E[f(X+Y )]
exists. Then

E[f(Y )] ≤ E[f(X + Y )].

Proof. We will sketch the proof assuming that the function f is bounded below,
nondecreasing and has a continuous derivative f ′ and Y is a bounded random
variable. For the general case, see Bulinski and Shaskin (2007). Without loss of
generality, we assume that f ≥ 0. Let

g(x, y) =

⎧⎨
⎩

f(x+ y)− f(y)

x
if x �= 0

f ′(y) if x = 0
.

Then g is a continuous and componentwise nondecreasing function on R2. Fur-
thermore, for x �= 0,

∂g(x, y)

∂y
=

f ′(x+ y)− f ′(y)
x

≥ 0

and
∂g(x, y)

∂x
=

f(x+ y)− f(y)− xf ′(y)
x2

≥ 0.
Note that f ′ is a nondecreasing function since f is convex. Furthermore

E|g(X,Y )| = E(|g(X,Y )I[|X|≤1]) + E(|g(X,Y )I[|X|>1])

≤ E( sup
|x|≤1

f ′(Y + x)) + E|f(X + Y )|+ E|f(Y )| < ∞

since the random variable Y is bounded and hence the random variable
sup|x|≤1 f

′(Y + x) is also bounded. By the association property of the random
vector (X,Y ), it follows that

Cov(g(X,Y ), X) ≥ 0.

Since E(X) = 0, it follows that

Cov(g(X,Y ), X) = E[g(X,Y )X]− E[g(X,Y )] E(X) = E[g(X,Y )X]

= E[f(X + Y )− f(Y )].

Hence
E[f(X + Y )]− E[f(Y )] ≥ 0. �
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Chapter 1. Associated Random Variables and Related Concepts

Definition. A function f : Rn → R is called supermodular if is bounded on any
bounded subset of Rn and

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y), x,y ∈ Rn

where

x ∨ y = (max(x1, yi), . . . ,max(xn, yn))

and

x ∧ y = (min(x1, yi), . . . ,min(xn, yn)).

Here x = (x1, . . . , xn) and y = (y1, . . . , yn). A function f is called submodular if
the reverse inequality holds.

A function f is supermodular if and only if the function −f is submodular.
If f is twice differentiable, then f is supermodular if and only if

∂2f(x)

∂xi∂xj
≥ 0

for all 1 ≤ i �= j ≤ n and x ∈ Rn (cf. Marshall and Olkin (1979)).

It is easy to check that the following functions f : Rn → R are supermodular.

(i)
∑n

i=1 xi;

(ii) maxk=1,...,n

∑k
i=1 xi;

(iii) −maxk=1,...,n xk;

(iv) −∑n
k=1(xk − x̄)2 where x̄ = n−1

∑n
i=1 xi.

Furthermore, if g : Rn → R is supermodular and hi : R → R are nondecreas-
ing for i = 1, . . . , n, then the function f(x) = g(h1(x), . . . , hn(x)) is supermod-
ular and if h : Rn → R is supermodular and componentwise nondecreasing and
g : R → R is a nondecreasing convex function, then f(x) = g(h(x)) is supermod-
ular.

Definition. A random vector X = (X1, . . . , Xn) is said to be smaller than another
random vectorY = (Y1, . . . , Yn) in the supermodular order, denoted byX �sm Y,
if E[f(X)] ≤ E[f(Y)] for all supermodular functions f for which the expectations
exist.

The following results are due to Christofides and Vaggelatou (2004).

Theorem 1.2.32. Let X and Y be two n-dimensional random vectors with the
same marginal distributions. If E[f(x)] ≤ E[f(Y)] for all f twice differentiable
increasing supermodular functions, then X �sm Y.

22



1.3. Related Concepts of Association

Theorem 1.2.33. Let the set {Xi, 1 ≤ i ≤ n} be a set of associated random variables
and {X∗

i , 1 ≤ i ≤ n} be another set of independent random variables independent
of the sequence {Xi, 1 ≤ i ≤ n} such that the distributions of Xi and X∗

i are the
same for i = 1, . . . , n. Then

(Xi, . . . Xn)�sm (X∗
1 , . . . , X

∗
m).

Remarks. The result stated above also holds if the set of random variables {Xi,
1 ≤ i ≤ n} is positively associated and the reverse inequality holds if the set {Xi,
1 ≤ i ≤ n} is negatively associated. For the definition of negative association, see
the next section. A set {Xi, 1 ≤ i ≤ n} is said to be positively associated if, for
every pair of disjoint subsets A1, A2 of {1, . . . , n},

Cov(f(Xi, i ∈ A1), g(Xi, i ∈ A2)) ≥ 0,

for every pair of componentwise nondecreasing functions f, g of {xi, i ∈ A1} and
{xi, i ∈ A2} respectively.

We have given a brief review of probability inequalities and limit theorems
connected with associated random variables. We will come back to the more recent
results in this area later in Chapter 6 of this book. We now discuss some other
concepts related to the concept of associated random variables.

1.3 Related Concepts of Association

Negative Association

The concept of negative association as introduced by Joag-Dev and Proschan
(1983) is not a dual of the theory and applications of association, but differs in
several aspects.

Definition. A finite set of random variables {X1, . . . , Xn} is said to be negatively
associated (NA) if, for every pair of disjoint subsets A1, A2 of {1, 2, . . . , n},

Cov(h(Xi, i ∈ A1), g(Xj , j ∈ A2)) ≤ 0, (1.3.1)

whenever h and g are nondecreasing componentwise; an infinite collection is said
to be negatively associated if every finite sub-collection is negatively associated.

Examples. A set of independent random variables is negatively associated. Other
examples of negatively associated random variables are sets of components of ran-
dom vectors whose distributions are (a)multinomial (b) multivariate hypergeomet-
ric (c) Dirichlet and (d) Dirichlet compound multinomial distributions. However,
the most interesting case is that of models of categorical data analysis where
negative association (NA) and association exist side by side. Consider a model
where the individuals are classified according to two characteristics. Suppose the
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Chapter 1. Associated Random Variables and Related Concepts

marginal totals are fixed. Then, the marginal distributions of row (column) vectors
possess NA property, and the marginal distribution of a set of cell frequencies such
that no pair of cells is in the same row or in the same column (for example, the
diagonal cells) are associated. It will be shown that the partial sums of mean zero
negatively associated random variables form an N -demimartingale . Properties of
N -demimartingales will be studied later in this book but we will not discuss other
probabilistic properties of negatively associated random variables in any detail.

Remarks. There are other related concepts of weak association for a finite collec-
tion of random variables such as weak association and associated measures. We
will discuss these concepts briefly.

Weak Association

Burton, Dabrowski and Dehling (1986) defined weak association of random vectors.

Definition. Let the set X1, X2, . . . , Xm be Rd-valued random vectors. They are
said to be weakly associated if whenever π is a permutation of {1, 2, . . . ,m}, 1 ≤
k < m, and h : Rkd → R, g : R(m−k)d → R are componentwise nondecreasing,
then

Cov(h(Xπ(1), . . . , Xπ(k)), g(Xπ(k+1), . . . , Xπ(m)) ≥ 0
whenever it is defined. An infinite family of Rd-valued random vectors is weakly
associated if every finite subfamily is weakly associated.

Weak association defines a strictly larger class of random variables than does
association. Burton et al. (1986) proved a functional central limit theorem for such
sequences. Dabrowski and Dehling (1988) proved a Berry-Esseen theorem and a
functional Law of iterated logarithm for weakly associated sequences.

Processes with Associated Increments

Glasserman (1992) defined a class of processes with associated increments. Recall
that a stochastic process X = {Xt, t ≥ 0} is said to have independent increments
if, for all n > 0 and all 0 ≤ t0 < t1 < . . . < tn, the random variable Δ0 = X0 and
the increments

Δ1 = Xt1 −Xt0 , . . . ,Δn = Xtn −Xtn−1

are independent.

Definition. A process {Xt, t ≥ 0} is said to have associated increments if the ran-
dom variables {Δi, i = 0, . . . , n} are associated, that is, for all bounded functions
f and g nondecreasing componentwise,

Cov[f(Δ0, . . . ,Δn), g(Δ0, . . . ,Δn)] ≥ 0,

for all n > 0 and all 0 ≤ t0 < t1 < . . . < tn.
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1.3. Related Concepts of Association

Glasserman (1992) derives sufficient conditions under which a process has
associated increments and describes transformations under which this property is
preserved. He derives sufficient conditions, for a Markov process with a generator
Q and initial distribution p0, to have associated increments. It is clear that all
processes with independent increments have associated increments trivially from
the definition of association. Suppose we consider a pure birth process where the
birth rate is λn when the population is of size n and further suppose that λn is
increasing in n and bounded with an arbitrary initial distribution on {0, 1, 2, . . .}.
Then this process has associated increments.

If {Nt, t ≥ 0} is a Poisson process, then the process {eNt , t ≥ 0} has asso-
ciated increments. In general if {Xt, t ≥ 0} is nondecreasing and has associated
increments and that g is nondecreasing and directionally convex, then {g(Xt),
t ≥ 0} has associated increments (cf. Glasserman (1992)). For the definition of di-
rectional convexity of a function g : Rd → R, d ≥ 1 see Shaked and Shantikumar
(1990). If d = 1, then this property coincides with the usual convexity.

Associated Measures

Burton and Waymire (1985) defined associated measures. A random measure X
is associated if and only if the family of random variables F = {X(B) : B a Borel
set } is associated. They discussed some basic properties of associated measures.
Lindqvist (1988) defined a notion of association of probability measures on par-
tially ordered spaces and discussed its applications to stochastic processes with
both discrete and continuous time parameters on partially ordered state spaces,
and to mixtures of statistical experiments. Evans (1990) showed that each infinitely
divisible random measure is associated. However, there are random measures which
are not infinitely divisible but are associated. For instance, if μ is a fixed Radon
measure and Y is a nonnegative random variable, then it can be shown that the
random measure Y μ is associated.

Association in Time

Hjort, Natvig and Funnemark (1985) considered a multi-state system with states
S = {0, 1, . . . ,m}. Here m indicates perfect functioning and 0 indicates complete
failure . Let C = {1, 2, . . . , n} denote the set of components of the system.
Definition. The performance process of the i-th component is a stochastic process
{Xi(t), t ∈ τ} where for each fixed t ∈ τ , Xi(t) denotes the state of component
i at time t. The joint performance process of the components is given by {X(t),
t ∈ τ} = {(X1(t), . . . , Xn(t)), t ∈ τ}.

Let I = [tA, tB ] ⊂ [0,∞), τ(I) = τ ∩ I.

Definition. The joint performance process {X(t), t ∈ τ} of the components is said
to be associated in time interval I if, for any integer m and {t1, . . . , tm} ⊂ τ(I),
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Chapter 1. Associated Random Variables and Related Concepts

the random variables in the array

X1(t1) . . . X1(tm)
...

...
...

Xn(t1) . . . Xn(tm)

are associated.

Let X = {X(t), t ∈ τ} be a Markov process with state space {0, 1, . . . ,m}.
Define the transition probabilities as

Pij(s, t) = P (X(t) = j|X(s) = i), s ≤ t, (1.3.2)

and the transition probability matrix as

P (s, t) = {Pij(s, t)} i=0,1,...,m.
j=0,1,...,m.

. (1.3.3)

Let
τ(I) = (0,∞). (1.3.4)

The transition intensity is defined as

μij(s) = lim
h→0+

Pij(s, s+ h)

h
, i �= j. (1.3.5)

Let

Pi,≥j(s, t) =

k∑
v=j

Pi,v(s, t)

= P [X(t) ≥ j|X(s) = i], (1.3.6)

μi,≥j(s) =

k∑
v=j

μiv(s), i < j, (1.3.7)

and

μi,<j(s) =

j−1∑
v=0

μiv(s), i ≥ j. (1.3.8)

Theorem 1.3.1. Let X be a continuous time Markov process with state space
{0, 1, . . . ,m} and transition probability matrix P (s, t). Assume the transition in-
tensities to be continuous. Consider the following statements about X :

(i) X is associated in time,

(ii) X is conditionally, stochastically, nondecreasing in time, that is,

P [X(t) ≥ j|X(s1) = i1, . . . , X(sn) = in]

is nondecreasing in i1, . . . , in for each j and for each choice of s1 < s2 <
. . . < sn < t, n ≥ 1,
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1.3. Related Concepts of Association

(iii) Pi,≥j(s, t) is nondecreasing in i for each j and for each s < t,

(iv) for each j and s,

μi,≥j(s) is nondecreasing in i ∈ {0, 1, . . . , j − 1}

and
μi,<j(s) is nondecreasing in i ∈ {j, j + 1, . . . ,m}.

Then (ii), (iii) and (iv) are equivalent and each of them implies (i).

For the binary case (m = 1) it is easily seen that the statement (iii) of the
above theorem is equivalent to

P1,1(s, t) + P0,0(s, t) ≥ 1, for each s < t. (1.3.9)

This was the sufficient condition given by Esary and Proschan (1970) for X to
be associated in time. Furthermore when μ1,0(s) and μ0,1(s) are continuous, then
the statement (iv) of the above theorem is always satisfied and the corresponding
Markov Process is always associated in time. It is also true for a general birth and
death process (cf. Keilson and Kester (1977) and Kirstein (1976)).

Kuber and Dharmadikari (1996) discussed association in time for semi-Mar-
kov processes. Let (Ω,F ,P) be a probability space and E = {0, 1, . . . , k}. Define
measurable functions Xn : Ω → E, Tn : Ω → R+, n ∈ N, so that 0 = T0 ≤ T1 ≤
T2 ≤ . . . . Then the sequence {(Xn, Tn), n ≥ 1} is said to form a Markov renewal
process with state space E if for all n ∈ N , j ∈ E, t ∈ R+, we have

P [Xn+1 = j, Tn+1 − Tn ≤ t|X0, . . . , Xn;T0, . . . , Tn]

= P [Xn+1 = j, Tn+1 − Tn ≤ t|Xn].

Assume that P [Xn+1 = j, Tn+1 − Tn ≤ t|Xn = i] = Qij(t) is independent of n.

Definition. The semi-Markov Process (SMP) {Y (t), t ≥ 0} corresponding to a
Markov renewal process (X,T ) is defined as Y (t) = Xn for t ∈ [Tn, Tn+1], n ≥ 0.
Define, for i, j ∈ E and 0 ≤ u < s < t,

Pij(u, (s, t)) = P [Y (t) = j|Y (u) = i, Zi > s− u],

where Zi is the waiting time in state i. Suppose the transition intensity

μij(u, s) = lim
h→0+

Pij(u, (s, s+ h))

h
, i �= j (1.3.10)

is finite. Let

Pi,≥j(u, (s, t)) =

k∑
v=j

Pi,v(u, (s, t)), (1.3.11)
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μi,≥j(u, s) =

k∑
v=j

μiv(u, s), i < j, (1.3.12)

and

μi,<j(s) =

j−1∑
v=0

μiv(u, s), i ≥ j. (1.3.13)

Theorem 1.3.2. Let {Y (t), t ≥ 0} be a semi-Markov process with state space E,
waiting times Zi having bounded transition intensities μij(s), i, j ∈ E which are
continuous in s uniformly in u for each u > 0. Consider the following statements.

(i) Y (t) is associated in time.

(ii) Pi,≥j(u, (s, t)) is increasing in i and decreasing in u on (0, s].

(iii) For each j and s,

μi,≥j(u, s) is increasing in i ∈ {0, 1, . . . , j − 1} and decreasing in u on (0, s],

and

μi,<j(u, s) is decreasing in i ∈ {j, j+1, . . . ,m} and increasing in u on (0, s].

(iv) For fixed j and each choice of t1 < . . . < tn < t, n ≥ 1,
P [Y (t) > j|Zin > tn − u, Y (u) = in, Y (t1) = i1, . . . , Y (t�) = i�]

is increasing in i1, . . . , in and decreasing in u ∈ (t�, tn], � ∈ {0, . . . , n− 1}.
Then (ii), (iii) and (iv) are equivalent and each of them implies (i).

If Y (t) is a Markov Process with state space E = {0, . . . , k}, the statements
(ii) and (iii) in Theorem 1.3.2 simplify to statements (iii) and (iv) in Theorem
1.3.1.

Association for Jointly Stable Laws

Pitt (1982) proved the following result.

Theorem 1.3.3 (Pitt (1982)). Let X = (X1, . . . , Xk) be Nk(0,Σ), Σ = ((σij)) where
Cov(Xi, Xj) = σij. Then a necessary and sufficient condition for (X1, . . . , Xk) to
be associated is that σij ≥ 0, 1 ≤ i, j ≤ k.

Definition (Weron (1984)). Let X = (X1, . . . , Xk). Then X is said to be jointly
stable with index α, 0 < α < 2, if the characteristic function of X is of the form

φX(t) = E[ei(X,t)]

= exp{−
∫
Sk

|(s, t)|α(1− i sgn((s, t)Q(α; s, t))Γ(ds) + i(μ, t)}, (1.3.14)
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where t = (t1, . . . , tk) ∈ Rk, Sk is the unit sphere in Rk, s = (s1, . . . , sk) ∈ Sk, Γ
is a finite measure on Sk, μ = (μ1, . . . , μk) ∈ Rk and

Q(α; s, t) =

{
tan πα

2 if α �= 1,
− 2

π log |(s, t)| if α = 1.

Remarks. There is a one to one correspondence between the distributions of jointly
α-stable random vectors X = (X1, . . . , Xk) and the finite Borel measures Γ in
(1.3.14). Γ is called the spectral measure of the α-stable vector X.

Theorem 1.3.4 (Lee, Rachev and Samorodnitsky (1990)). Let X = (X1, . . . , Xk) be
jointly α-stable with 0 < α < 2 with the characteristic function given by (1.3.14).
Then (X1, . . . , Xk) is associated if and only if the spectral measure Γ satisfies the
condition

Γ(Sk−) = 0, (1.3.15)

where Sk− = {s = (s1, . . . , sk) ∈ Sk : for some i and j {1, . . . , k}, si > 0 and
sj < 0}.

Let X = (X1, . . . , Xk) be an infinitely divisible random vector with the
characteristic function

φX(t) = exp{
∫
Rk−{0}

(ei(t,x) − 1− i I(||x|| ≤ 1)(t, x))ν(dx) + i(t, μ)}. (1.3.16)

Here ν is called the Levy measure of X and μ = (μ1, . . . , μk) ∈ Rk. Resnick (1988)
has proved that a sufficient condition for (X1, . . . , Xk) to be associated is that

ν{x = (x1, . . . , xk) : xixj < 0 for some i �= j, 1 ≤ i, j ≤ k} = 0. (1.3.17)

In other words, the Levy measure is concentrated on the positive (Rk
+) and the

negative (Rk
−) quadrants of R

k. The result given above in Theorem 1.3.4 due to
Lee et al. (1990) proves that for α-stable random vectors, the condition (1.3.15) is
necessary and sufficient for association. Samorodnitsky (1995) showed that there
is an infinitely divisible random vector X taking values in R2 which is associated
with a Levy measure ν such that

ν{x = (x1, x2) : x1x2 < 0} > 0

leading to the fact that condition (1.3.17) is not necessary for the association of
an infinitely divisible random vector.

Note that if X is infinitely divisible with the characteristic function φX(t),
then, for every γ > 0, φX(t)

γ is also a characteristic function in Rk. Let X∗γ be
an infinitely divisible random vector with this characteristic function. It is clear
that X and X∗1 have the same distribution. Samorodnitsky (1995) proved that
the condition (1.3.15) is equivalent to the fact X∗γ is associated for every γ > 0.
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An infinitely divisible random vector X is said to be r-semistable index α,
0 < r < 1, 0 < α < 2, if for every n ≥ 1, there is a non-random vector dn ∈ Rk

such that
X∗rn L

= rn/αX + dn

where X
L
= Y indicates that X and Y have the same distribution. If X is r-

semistable index α for all 0 < r < 1, then it is jointly stable with index α (cf.
Chung et al (1982)). The following result extends Theorem 1.3.4 from stable to
semistable random vectors.

Theorem 1.3.5. A random vector X = (X1, . . . , Xk) which is r-semistable index α,
0 < r < 1, 0 < α < 2 is associated if and only if its Levy measure is concentrated
on Rk

+ ∪Rk
−.
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Chapter 2

Demimartingales

2.1 Introduction

Let (Ω,F , P ) be a probability space and suppose that a set of random variables
X1, . . . , Xn defined on the probability space (Ω,F , P ) have mean zero and are
associated. Let S0 = 0 and Sj = X1+ . . .+Xj , j = 1, . . . , n. Then it follows that,
for any componentwise nondecreasing function g,

E((Sj+1 − Sj)g(S1, . . . , Sj)) ≥ 0, j = 1, . . . , n (2.1.1)

provided the expectation exists.

Throughout this chapter, we assume that all the relevant expectations exist
unless otherwise specified. Recall that a sequence of random variables {Sn, n ≥
1} defined on a probability space (Ω,F , P ) is a martingale with respect to the
natural sequence Fn = σ{S1, . . . , Sn} of σ-algebras if E(Sn+1|S1, . . . , Sn) = Sn

a.s. for n ≥ 1. Here σ{S1, . . . , Sn} denotes the σ-algebra generated by the random
sequence S1, . . . , Sn. An alternate way of defining the martingale property of the
sequence {Sn, n ≥ 1} is that

E((Sn+1 − Sn)g(S1, . . . , Sn)) = 0, n ≥ 1
for all measurable functions g(x1, . . . , xn) assuming that the expectations exist.

Newman and Wright (1982) introduced the notion of demimartingales.

Definition. A sequence of random variables {Sn, n ≥ 1} in L1(Ω,F , P ) is called a
demimartingale if, for every componentwise nondecreasing function g,

E((Sj+1 − Sj)g(S1, . . . , Sj)) ≥ 0, j ≥ 1 (2.1.2)

Remarks. If the sequence {Xn, n ≥ 1} is an L1, mean zero sequence of associated
random variables and Sj = X1 + . . . + Xj with S0 = 0, then the sequence {Sn,
n ≥ 1} is a demimartingale.

B.L.S. Prakasa Rao, Associated Sequences, Demimartingales
and Nonparametric Inference, Probability and its Applications,
DOI 10.1007/978-3-0348-0240-6_2, © Springer Basel AG 2012
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Chapter 2. Demimartingales

If the function g is required to be nonnegative (resp., non-positive ) and
nondecreasing in (2.1.2), then the sequence will be called a demisubmartingale
(resp., demisupermartingale ).

A martingale {Sn,Fn, n ≥ 1} with the natural choice of σ-algebras {Fn,
n ≥ 1}, Fn = σ{S1, . . . , Sn} is a demimartingale. This can be seen by noting that

E((Sj+1 − Sj)g(S1, . . . , Sj)) = E[E((Sj+1 − Sj)g(S1, . . . , Sj)|Fj)] (2.1.3)

= E[g(S1, . . . , Sj)E((Sj+1 − Sj)|Fj)]

= 0

by the martingale property of the process {Sn,Fn, n ≥ 1}. Similarly it can be
seen that every submartingale {Sn,Fn, n ≥ 1} with the natural choice of σ-
algebras {Fn, n ≥ 1}, Fn = σ(S1, . . . , Sn) is a demisubmartingale. However a
demisubmartingale need not be a submartingale. This can be seen by the following
example (cf. Hadjikyriakou (2010)).

Example 2.1.1. Let the random variables {X1, X2} be such that
P (X1 = −1, X2 = −2) = p and P (X1 = 1, X2 = 2) = 1− p

where 0 ≤ p ≤ 1
2 . Then the finite sequence {X1, X2} is a demisubmartingale since

for every nonnegative nondecreasing function g(.),

E[(X2 −X1)g(X1)] = −pg(−1) + (1− p)g(1) (2.1.4)

≥ −pg(−1) + pg(1) (since p ≤ 1

2
)

= p(g(1)− g(−1)) ≥ 0.
However the sequence {X1, X2} is not a submartingale since

E(X2|X1 = −1) =
∑

x2=−2,2

x2P (X2 = x2|X1 = −1) = −2 < −1.

As remarked earlier, the sequence of partial sums of mean zero associated
random variables is a demimartingale. However the converse need not hold. In
other words, there exist demimartingales such that the demimartingale differences
are not associated. This can be seen again by the following example (cf. Hadjikyr-
iakou (2010)).

Example 2.1.2. Let X1 and X2 be random variables such that

P (X1 = 5, X2 = 7) =
3

8
, P (X1 = −3, X2 = 7) =

1

8

and

P (X1 = −3, X2 = 7) =
4

8
.
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Let g be a nondecreasing function. Then the finite sequence {X1, X2} is a demi-
martingale since

E[(X2 −X1)g(X1)] =
6

8
[g(5)− g(−3)] ≥ 0.

Let f be a nondecreasing function such that

f(x) = 0 for x < 0, f(2) = 2, f(5) = 5 and f(10) = 20.

It can be checked that

Cov(f(X1), f(X2 −X1)) = −75
32

< 0

and hence X1 and X2 −X1 are not associated.

Christofides (2004) constructed another example of a demimartingale. We
now discuss his example.

Example 2.1.3. Let X1, . . . , Xn be associated random variables, let h(x1, . . . , xm)
be a “kernel” mapping Rm to R where 1 ≤ m ≤ n. Without loss of generality, we
assume that h is a symmetric function. Define the U -statistic

Un =

(
n

m

)−1 ∑
1≤i1<...<im≤n

h(Xi1 , . . . , Xim) (2.1.5)

where
∑

1≤i1<...<im≤n h(Xi1 , . . . , Xim) denotes the summation over the
(
n
m

)
com-

binations of m distinct elements {i1, . . . , im} from {1, . . . , n}. Suppose that the
function h is componentwise nondecreasing and E(h) = 0. Then the sequence
{Sn =

(
n
m

)
Un, n ≥ m} is a demimartingale. This can be checked in the following

way.
Note that

Sn+1 − Sn =
∑

1≤i1<...<im≤n+1

h(Xi1 , . . . , Xim)−
∑

1≤i1<...<im≤n

h(Xi1 , . . . , Xim)

=
∑

1≤i1<...<im−1≤n

h(Xi1 , . . . , Xim−1
, Xn+1) (2.1.6)

Then, for any componentwise nondecreasing function g, and for n ≥ m,

E[(Sn+1 − Sn)g(Sm, . . . , Sn)] (2.1.7)

= E[
∑

1≤i1<...<im−1≤n

h(Xi1 , . . . , Xim−1 , Xn+1)g(Sm, . . . , Sn)]

=
∑

1≤i1<...<im−1≤n

E[h(Xi1 , . . . , Xim−1 , Xn+1)g(Sm, . . . , Sn)]
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=
∑

1≤i1<...<im−1≤n

E[h(Xi1 , . . . , Xim−1
, Xn+1)v(X1, . . . , Xn)]

≥ 0
where, for n ≥ m,

v(x1, . . . , xn) = g
(
h(x1, . . . , xm),

∑
1≤i1<...<im≤m+1

h(xi1 , . . . , xim), . . . ,

∑
1≤i1<...<im≤n

h(xi1 , . . . , xim)
)
.

Note that the function v(x1, . . . , xn) is componentwise nondecreasing. The last
inequality in equation (2.1.7) follows from the fact that the sequence {Xi, i ≥ 1}
is an associated random sequence and the function v(x1, . . . , xn) is componentwise
nondecreasing. Hence the sequence {Sn, n ≥ m} is a demimartingale.
Example 2.1.4 (Hadjikyriakou (2010)). Suppose the random sequence {Xn, n ≥ 1}
is a sequence of associated identically distributed random variables such that the
probability density function of X1 is f(x, θ) with respect to a σ-finite measure μ
and the support of the density function f(x, θ) does not depend on θ. Suppose the
function

h(x) =
f(x, θ1)

f(x, θ0)

is nondecreasing in x for any fixed θ0 and θ1. Define

Ln =

n∏
k=1

f(Xk, θ1)

f(Xk, θ0)
.

Then, under the hypothesis H0 : θ = θ0, the sequence {Ln, n ≥ 1} is a demisub-
martingale. This can be checked in the following manner. Observe that

Ln+1 − Ln = [
f(Xn+1, θ1)

f(Xn+1, θ0)
− 1]Ln

and, for any componentwise nonnegative nondecreasing function g,

E[(Ln+1 − Ln)g(L1, . . . , Ln)] = E([
f(Xn+1, θ1)

f(Xn+1, θ0)
− 1]Lng(L1, . . . , Ln)) (2.1.8)

≥ E([
f(Xn+1, θ1)

f(Xn+1, θ0)
− 1])E(Lng(L1, . . . , Ln))

= 0.

Note that the inequality in the above relations is a consequence of the fact that
the random sequence {Xn, n ≥ 1} is associated and the last equality follows from
the observation that

E([
f(Xn+1, θ1)

f(Xn+1, θ0)
] = 1
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under H0; θ = θ0. Observe that Ln is the likelihood ratio when the random se-
quence {Xn, n ≥ 1} is an independent sequence of random variables.

The following result, due to Christofides (2000), shows that if the random se-
quence {Sn, n ≥ 1} is a demisubmartingale or a demimartingale, then the random
sequence {g(Sn), n ≥ 1} is a demisubmartingale if g is a nondecreasing convex
function.

Theorem 2.1.1. Let the random sequence {Sn, n ≥ 1} be a demisubmartingale (or
a demimartingale) and g be a nondecreasing convex function. Then the random
sequence {g(Sn), n ≥ 1} is a demisubmartingale.

Proof. Define

h(x) = lim
x→y−0

g(x)− g(y)

x− y
.

From the convexity of the function g, it follows that the function h is a nonnegative
nondecreasing function. Furthermore

g(y) ≥ g(x) + (y − x)h(x).

Suppose that f is a nonnegative componentwise nondecreasing function. Then

E[(g(Sn+1)− g(Sn))f(g(S1), . . . , g(Sn))]

≥ E[(Sn+1 − Sn)h(Sn)f(g(S1), . . . , g(Sn))]

= E[(Sn+1 − Sn)f
∗(S1, . . . , Sn)] (2.1.9)

where f∗(x1, . . . , xn) = h(xn)f(g(x1), . . . , g(xn)). Note that f
∗ is a componentwise

nondecreasing and nonnegative function. Since the sequence {Sn, n ≥ 1} is a
demimartingale, it follows that the last term is nonnegative and hence the sequence
{g(Sn), n ≥ 1} is a demimartingale. �

As an application of the above theorem, we have the following result.

Theorem 2.1.2. If the sequence {Sn, n ≥ 1} is a demimartingale, then the sequence
{S+

n , n ≥ 1} is a demisubmartingale and the sequence {S−n , n ≥ 1} is also a
demisubmartingale.

Proof. Since the function g(x) ≡ x+ = max(0, x) is nondecreasing and convex, it
follows that the sequence {S+

n , n ≥ 1} is a demisubmartingale from the previous
theorem. Let Yn = −Sn, n ≥ 1. It is easy to see that the sequence {Yn, n ≥ 1}
is also a demimartingale and Y +

n = S−n where x− = max(0,−x). Hence, as an
application of the first part of the theorem, it follows that the sequence {S−n ,
n ≥ 1} is a demisubmartingale. �

Suppose the sequence {Sn, n ≥ 1} is a demimartingale. The following result
due to Hu et al. (2010) gives sufficient conditions for a stopped demisubmartingale
to be a demisubmartingale.
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Theorem 2.1.3. Let the sequence {Sn, n ≥ 1} be a demisubmartingale, S0 =
0, and τ be a positive integer-valued random variable. Furthermore suppose that
the indicator function I[τ≤j] = hj(S1, . . . , Sj) is a componentwise nonincreasing
function of S1, . . . , Sj for j ≥ 1. Then the random sequence {S∗j = Smin(τ,j), j ≥ 1}
is a demisubmartingale.

Proof. Note that

S∗j = Smin(τ,j) =

j∑
i=1

(Si − Si−1)I[τ≥i].

We have to show that

E[(S∗j+1 − S∗j )f(S
∗
1 , . . . , S

∗
j )] ≥ 0, j ≥ 1

for any f which is componentwise nondecreasing and nonnegative. Since

gj(S1, . . . , Sj) ≡ 1− I[τ≤j] = 1− hj(S1, . . . , Sj)

is a componentwise nondecreasing and and nonnegative function, we get that

uj(S1, . . . , Sj) ≡ gj(S1, . . . , Sj)f(S1, . . . , Sj)

is a componentwise nondecreasing nonnegative function. By the demisubmartin-
gale property, we get that

E[(S∗j+1 − S∗j )f(S
∗
1 , . . . , S

∗
j )] = E[(Sj+1 − Sj)I[τ≥j+1]f(S

∗
1 , . . . , S

∗
j )]

= E[(Sj+1 − Sj)I[τ≥j+1]f(S1, . . . , Sj)]

= E[(Sj+1 − Sj)uj(S1, . . . , Sj)] ≥ 0 (2.1.10)

for j ≥ 1. Hence the sequence {S∗j , j ≥ 1} is a demisubmartingale. �

We now obtain some consequences of this theorem.

Theorem 2.1.4. Let the sequence {Sn, n ≥ 1} be a demisubmartingale. and τ be
a positive integer-valued random variable. Furthermore suppose that the indicator
function I[τ≤j] = hj(S1, . . . , Sj) is a componentwise nonincreasing function of
S1, . . . , Sj for j ≥ 1. Then, for any 1 ≤ n ≤ m,

E(Smin(τ,m)) ≥ E(Smin(τ,n)) ≥ E(S1), (2.1.11)

Suppose the sequence {Sn, n ≥ 1} is a demimartingale and the indicator function
I[τ≤j] = hj(S1, . . . , Sj) is a componentwise nondecreasing function of S1, . . . , Sj

for j ≥ 1. Then, for any 1 ≤ n ≤ m,

E(Smin(τ,m)) ≤ E(Smin(τ,n)) ≤ E(S1). (2.1.12)
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Proof. Suppose that the sequence {Sn, n ≥ 1} is a demisubmartingale and the in-
dicator function I[τ≤j] = hj(S1, . . . , Sj) is a componentwise nonincreasing function
of S1, . . . , Sj for j ≥ 1. Then the sequence {S∗n, n ≥ 1} is a demisubmartingale
by Theorem 2.1.3. The inequalities stated in equation (2.1.11) follow from the
demisubmartingale property by choosing f ≡ 1 in equation (2.1.10).

Suppose the sequence {Sn, n ≥ 1} is a demimartingale and that the indicator
function I[τ≤j] = hj(S1, . . . , Sj) is a componentwise nondecreasing function of
S1, . . . , Sj for j ≥ 1. Since the sequence {Sn, n ≥ 1} is a demimartingale, we note
that

−E(S∗j+1 − S∗j ) = −E[(Sj+1 − Sj)I[τ≥j+1]]

= E[(Sj+1 − Sj)(hj(S1, . . . , Sj)− 1)]
≥ 0 (2.1.13)

for j ≥ 1 from the demimartingale property. This in turn proves (2.1.12). �

2.2 Characteristic Function Inequalities

For any two complex-valued functions f(x1, . . . , xm) and f1(x1, . . . , xm) defined
on Rm, define f � f1 if f1−Re(eiαf) is componentwise nondecreasing for all real
α. Note that

f1 =
(f1 −Re(f)) + (f1 −Re(−f))

2
and hence f1 is real-valued and nondecreasing. Furthermore f � f1 for real f if
and only if f1+f and f1−f are both nondecreasing. We write f �A f1 if f � f1
and both the functions f and f1 depend only on xj , j ∈ A. The following results
are due to Newman (1984).

Lemma 2.2.1. Suppose h is real and h � h1 and φ is a complex-valued function
on R such that

|φ(t)− φ(s)| ≤ |t− s|, −∞ < t, s < ∞.

Then φ(h)� h1. In particular, this property holds for the function φ(h) = eih.

Proof. For any function g(x1, . . . , xm), defined on R
m, let Δg denote the increment

in the function whenever one or more of the components xj , 1 ≤ j ≤ m is increased.
We have to prove that

Δ[h1 −Re(eiαφ(h))] ≥ 0 (2.2.1)

for any real α. Note that

|ΔRe(eiαφ(h))| ≤ |Δ(eiαφ(h))| = |Δφ(h)| ≤ |Δh|
from the property of the function φ and

|Δh| ≤ Δh1

since h � h1. �
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Lemma 2.2.2. Suppose f �A f1 and g �B g1. Define

〈f, g〉 = Cov(f(X1, X2, . . .), g(X1, X2, . . .))

where the Xj’s are either associated or negatively associated. In the negatively
associated case, assume in addition that the sets A and B are disjoint. Then

|〈f, g〉| ≤ 〈f1, g1〉 if f and/or g real

and
|〈f, g〉| ≤ 2〈f1, g1〉 otherwise.

Proof. Suppose that f is real. Since |〈f, g〉| = supα∈R Re(eiα〈f, g〉), it is sufficient
to show that Re(eiα〈f, g〉) ≤ 〈f1, g1〉 for every α ∈ R. This can be seen from the
observation that h ≡ Re(eiαg)� g1 and f � f1 and the identities

〈f1, g1〉 − 〈f, h〉 = 1

2
[〈f1 + f, g1 − h〉+ 〈f1 − f, g1 + h〉] ≥ 0 (2.2.2)

in the associated case and

−〈f1, g1〉 − 〈f, h〉 = 1

2
[〈f1 + f, g1 + h〉+ 〈f1 − f, g1 − h〉] ≥ 0 (2.2.3)

in the negatively associated case. If g is real, the arguments are the same. If neither
f nor g is real, then

|〈f, g〉| = |〈Re f, h〉+ i〈Im f, g〉| ≤ |〈Re f, g〉|+ |〈Im f, g〉| (2.2.4)

and the required inequality follows from the inequality for the real f case discussed
above. �

As a consequence of Lemma 2.2.1 and arguments similar to those given in
the proof of Lemma 2.2.2, Newman (1984) proved the following theorem.

Theorem 2.2.3. Let {Sn, n ≥ 1} be a demimartingale, S0 = 0, and f and f1 be
complex-valued functions on Rj such that f � f1. Then

|E((Sj+1 − Sj)f(S1, . . . , Sj))| ≤ E((Sj+1 − Sj)f1(S1, . . . , Sj)). (2.2.5)

In particular, this is the case for the function f(x1, . . . , xj) = exp{i∑j
k=1 rkxk}

and f1(x1, . . . , xj) =
∑j

k=1 |rk|xk.

The next result due to Newman (1984) gives sufficient conditions for a demi-
martingale to be a martingale with respect to the natural sequence of sub-σ-
algebras.

Theorem 2.2.4. Let S0 = 0, and the sequence {Sn, n ≥ 1} be an L2-demimartin-
gale. Let Fn be the σ-algebra generated by the sequence {S1, . . . , Sn}. If the random
sequence {Sn, n ≥ 1} has uncorrelated increments, that is, if

Cov((Sj+1 − Sj), (Sk+1 − Sk)) = 0, 0 ≤ k ≤ j,

then the sequence {Sn,Fn, n ≥ 1} is a martingale.
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Proof. For any 0 ≤ k ≤ j,

Cov(Sj+1 − Sj , Sk) = E[(Sj+1 − Sj)Sk]− E[(Sj+1 − Sj)]E[Sk]

= E[(Sj+1 − Sj)Sk] (2.2.6)

since E(Sj)] = E[Sj+1] by the demimartingale property of the sequence {Sn,
n ≥ 1}. From the uncorrelated increment hypothesis, we get that

E[(Sj+1 − Sj)Sk] = 0, 1 ≤ k ≤ j.

Applying Theorem 2.2.3, we get that

E[(Sj+1 − Sj) exp(i

j∑
k=1

rkSk)] = 0

for r1, . . . , rk ∈ R. This in turn proves that

E[Sj+1 − Sj |Fj ] = 0 a.s j ≥ 1.
Hence the random sequence {Sn,Fn, n ≥ 1} is a martingale. �
Remarks. Suppose S0 ≡ 0 and Sn = X1 + . . . + Xn where {Xn, n ≥ 1} is a
Gaussian process. Then the sequence {Sn, n ≥ 1} is a martingale if and only if
Cov(Xk, Xj) = 0 for all k > j and E[Xj ] = 0 for all j ≥ 1. It is the partial sum
sequence of associated random variables if Cov(Xk, Xj) ≥ 0 for all k > j and the
sequence {Sn, n ≥ 1} is a demimartingale if and only if

∑n
j=1 Cov(Xk, Xj) ≥ 0

for all k > n and E[Xj ] = 0 for all j ≥ 1.

2.3 Doob Type Maximal Inequality

We will now discuss a Doob type maximal inequality for demisubmartingales due
to Newman and Wright (1982). Let

S∗n = max(S1, . . . , Sn). (2.3.1)

Define the rank orders Rn,j by

Rn,j =

{
j-th largest of (S1, . . . , Sn), if j ≤ n,

min(S1, . . . , Sn) = Rn,n, if j > n.

The following theorem is due to Newman and Wright (1982).

Theorem 2.3.1. Suppose S1, S2, . . . is a demimartingale (resp., demisubmartin-
gale) and m is a nondecreasing (resp., nonnegative and nondecreasing) function
on (−∞,∞) with m(0) = 0; then, for any n and j,

E(

∫ Rn,j

0

u dm(u)) ≤ E(Snm(Rn,j)); (2.3.2)
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and, for any λ > 0,

λ P (Rn,j ≥ λ) ≤
∫
[Rn,j≥λ]

SndP. (2.3.3)

Proof. For fixed n and j, let Yk = Rk,j and Y0 = 0. Then

Snm(Yn) =

n−1∑
k=0

Sk+1(m(Yk+1)−m(Yk)) +

n−1∑
k=1

(Sk+1 − Sk)m(Yk). (2.3.4)

From the definition of Rn,j , it follows that

for k < j, either Yk = Yk+1 or Sk+1 = Yk+1;

and

for k ≥ j, either Yk = Yk+1 or Sk+1 ≥ Yk+1.

Hence, for any k,

Sk+1(m(Yk+1 −m(Yk)) ≥ Yk+1(m(Yk+1 −m(Yk)) ≥
∫ Yk+1

Yk

u dm(u). (2.3.5)

Combining the inequalities in equations (2.3.4) and (2.3.5), we get that

Snm(Yn) ≥
∫ Yn

0

u dm(u) +

n−1∑
k=1

(Sk+1 − Sk)m(Yk). (2.3.6)

Note that

E[(Sk+1 − Sk)m(Yk)] ≥ 0, 1 ≤ k ≤ n− 1 (2.3.7)

by the definition of demimartingale (resp., demisubmartingale) since the func-
tion m(Yk) is a nondecreasing (resp., nonnegative and nondecreasing) function of
S1, . . . , Sk. Taking the expectations on both sides of the inequality (2.3.6) and
applying the inequality (2.3.7), we obtain the inequality (2.3.2) stated in the the-
orem by observing that Yn = Rn,j . . The inequality (2.3.3) is an easy consequence
of (2.3.2) by choosing the function m(u) to be the indicator function I[u≥λ]. �

We obtain some corollaries to the theorem stated above.

Theorem 2.3.2. If the sequence {Sn, n ≥ 1} is an L2-demimartingale, then

E((Rn,j − Sn)
2) ≤ E(S2

n) (2.3.8)

and if the sequence {Sn, n ≥ 1} is an L2-demisubmartingale, then

E((R+
n,j − Sn)

2) ≤ E(S2
n). (2.3.9)
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Proof. In the demimartingale case, the corollary is proved by choosing m(u) = u
to obtain the inequality

E(R2
n,j/2) ≤ E(SnRn,j)

which is equivalent to the inequality stated in (2.3.8). In the demisubmartingale
case, we prove (2.3.9) by choosing m(u) = uI[u≥0]. �

The following result gives a maximal inequality for the sequence of partial
sums of mean zero associated random variables. This can be derived as a corollary
to the theorem proved earlier. We omit the proof of this result. For details, see
Newman and Wright (1982).

Theorem 2.3.3. Suppose the sequence {Xn, n ≥ 1} is a mean zero associated
sequence of random variables and Sn = X1 + . . . + Xn with S0 = 0. Then the
sequence {Sn, n ≥ 1} is a demimartingale and

E(R2
n,j) ≤ E(S2

n) = σ2
n, (2.3.10)

and, for λ1 < λ2,

(1− σ2
n/(λ2 − λ1)

2)P (S∗n ≥ λ2) ≤ P (Sn ≥ λ1), (2.3.11)

so that for α1 < α2 with α2 − α1 > 1,

P (max(|S1|, . . . , |Sn|) ≥ α2σn) ≤ (α2 − α1)
2

(α2 − α1)2 − 1P (|Sn| ≥ α1σn). (2.3.12)

Note that Theorem 2.3.3 holds for partial sums of mean zero associated
random variables which form a demimartingale. However the following maximal
inequality is valid for any demimartingale.

Theorem 2.3.4. Suppose the sequence {Sn, n ≥ 1} is an L2-demisubmartingale.
Let E(S2

n) = σ2
n. Then, for 0 ≤ λ1 < λ2,

P (S∗n ≥ λ2) ≤ (σn/(λ2 − λ1))(P (Sn ≥ λ1))
1/2. (2.3.13)

If S1, S2, . . . is an L2 demimartingale, then for 0 ≤ α1 < α2,

P (max(|S1|, . . . , |Sn|) ≥ α2σn) ≤
√
2(α2 − α1)

−1(P (|Sn| ≥ α1σn))
1/2. (2.3.14)

Proof. Let λ = λ2 and j = 1 in the inequality proved in (2.3.3). Then, it follows
that

λ2 P (S∗n ≥ λ2) ≤
∫
[S∗n≥λ2]

Sn dP

≤
∫
[Sn≥λ1]

Sn dP +

∫
[S∗n≥λ2,Sn<λ1]

Sn dP
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≤
∫
[Sn≥λ1]

Sn dP + λ1P (S
∗
n ≥ λ2) (2.3.15)

which implies that

P (S∗n ≥ λ2) ≤ (λ2 − λ1)
−1E(SnI[Sn≥λ1]). (2.3.16)

Applying the Cauchy-Schwartz inequality to the term on the right-hand side of
the above inequality, we get the inequality (2.3.13). In order to derive inequality
(2.3.14), we take λi = αiσn and add to (2.3.13) the corresponding inequality with
all the Si’s replaced by −Si’s which also forms a demimartingale. �

Chow (1960) proved a maximal inequality for submartingales. Christofides
(2000) obtained an analogue of this inequality for demisubmartingales. Prakasa
Rao (2002, 2007) andWang (2004) derived other maximal inequalities for demisub-
martingales. We will discuss these results later in this chapter.

2.4 An Upcrossing Inequality

The following theorem, due to Newman and Wright (1982), extends Doob’s up-
crossing inequality for submartingales to demisubmartingales. Given a set of ran-
dom variables S1, S2, . . . , Sn and a < b, we define a sequence of stopping times
J0 = 0, J1, J2, . . . as follows (for k = 1, 2, . . .):

J2k−1 =

{
n+ 1 if {j : J2k−2 < j ≤ n and Sj ≤ a} is empty,
min{j : J2k−2 < j ≤ n and Sj ≤ a}, otherwise,

and

J2k−1 =

{
n+ 1 if {j : J2k−2 < j ≤ n and Sj ≥ b} is empty,
min{j : J2k−2 < j ≤ n and Sj ≥ b}, otherwise.

The number of complete upcrossings of the interval [a, b] by S1, . . . , Sn is denoted
by Ua,b where

Ua,b = max{k : J2k < n+ 1}. (2.4.1)

Theorem 2.4.1. If the finite sequence S1, S2, . . . , Sn is a demisubmartingale, then
for a < b,

E(Ua,b) ≤ E((Sn − a)+)− E((S1 − a)+)

b− a
. (2.4.2)

The following theorem gives sufficient conditions for the almost sure conver-
gence of a demimartingale. It is a consequence of the upcrossing inequality stated
in Theorem 2.4.1 as in the case of martingales.

Theorem 2.4.2. If the sequence {Sn, n ≥ 1} is a demimartingale and

lim sup
n→∞

E|Sn| < ∞,

then the Sn converge a.s. to a random variable X such that E|X| < ∞.
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We now prove the upcrossing inequality.

Proof of Theorem 2.4.1. For 1 ≤ j ≤ n− 1, define

εj =

{
1 if for some k = 1, 2, . . . , J2k−2 ≤ j < J2k−1

0 if for some k = 1, 2, . . . , J2k−1 ≤ j < J2k
(2.4.3)

so that 1− εj is the indicator function of the event that the time interval [j, j+1)
is a part of an upcrossing possibly incomplete; equivalently

εj =

⎧⎪⎨
⎪⎩
1 if either Si > a for i = 1, . . . , j or

for some i = 1, . . . , j, Si ≥ b and Sk > a for k = i+ 1, . . . , j

= 0 otherwise.

(2.4.4)

Let Λ be the event that the sequence S1, . . . , Sn ends with an incomplete upcross-
ing, that is, J̃ ≡ J2Ua,b+1 < n. Note that

(Sn − a)+ − (S1 − a)+ =

n−1∑
j=1

[(Sj+1 − a)+ − (Sj − a)+] =Mu +Md (2.4.5)

where

Md =

n−1∑
j=1

εj [(Sj+1 − a)+ − (Sj − a)+] ≥
n−1∑
j=1

εj(Sj+1 − Sj). (2.4.6)

This inequality follows from the observation that

(Sj+1 − a)+ ≥ Sj+1 − a

and
εj(Sj − a)+ = εj(Sj − a)

since εj = 1 implies that Sj > a from the definition of εj . Observe that

Mu =

n−1∑
j=1

(1− εj)[(Sj+1 − a)+ − (Sj − a)+] (2.4.7)

=

Ua,b∑
k=1

J2k−1∑
j=J2k−1

[(Sj+1 − a)+ − (Sj − a)+] +
n−1∑
j=J̃

[(Sj+1 − a)+ − (Sj − a)+]

=

Ua,b∑
k=1

[(SJ2k
− a)+ − (SJ2k−1

− a)+] + [(Sn − a)+ − (SJ̃ − a)+]IΛ

=

Ua,b∑
k=1

(SJ2k
− a)+ + (Sn − a)+]IΛ

≥ (b− a)Ua,b.
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Combining equations (2.4.5), (2.4.6) and (2.4.7) and taking expectations, we get
that

E[(Sn − a)+ − (S1 − a)+] ≥ (b− a)E[Ua,b] +

n−1∑
j=1

E[εj(Sj+1 − Sj)]. (2.4.8)

Note that εj is a nonnegative nondecreasing function of S1, . . . , Sn from the defi-
nition of εj . Since {Sj , j = 1, . . . , n} is a demisubmartingale, it follows that

E[εj(Sj+1 − Sj)] ≥ 0, j = 1, . . . , n− 1.

Hence

E[(Sn − a)+ − (S1 − a)+] ≥ (b− a)E[Ua,b] (2.4.9)

which implies the upcrossing inequality stated in the theorem. �

2.5 Chow Type Maximal Inequality

We now derive some more maximal inequalities for demimartingales which can be
used to derive strong laws of large numbers for demimartingales. The following
result, due to Christofides (2000), is an analogue of the maximal inequality for
submartingales proved by Chow (1960).

Theorem 2.5.1. Let the sequence {Sn, n ≥ 1} be a demisubmartingale with S0 = 0.
Let {cn, n ≥ 0} be a nonincreasing sequence of positive numbers, Then, for any
ε > 0,

ε P [ max
1≤k≤n

ckSk ≥ ε] ≤
n∑

j=1

cj E[S
+
j − S+

j−1] (2.5.1)

where x+ = max{0, x}.
Proof. Let ε > 0. Let A = [max1≤k≤n ckSk ≥ ε] and

Aj = [ max
1≤i<j

ciSi < ε, cj Sj ≥ ε], j = 1, . . . , n.

Let Ec denote the complement of a set E. Let I[E] denote the indicator function
of a set E. Note that the events Aj , j = 1, . . . , n are disjoint and A = ∪n

j=1Aj .
Hence

ε P (A) = ε

n∑
j=1

P (Aj) (2.5.2)

=
n∑

j=1

E[εI[Aj ]]
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≤
n∑

j=1

E[cj SjI[Aj ]]

≤
n∑

j=1

E[cj S
+
j I[Aj ]]

= c1E[S
+
1 ]− c1E[S

+
1 I[Ac

1]
] +

n∑
j=2

E[cj S
+
j I[Aj ]]

≤ c1E[S
+
1 ]− c2E[S

+
1 I[Ac

1]
] + c2E[S

+
2 I[A2]] +

n∑
j=3

E[cj S
+
j I[Aj ]]

= c1E[S
+
1 ] + c2E[(S

+
2 − S+

1 )I[Ac
1]
]− c2E[S

+
2 I[Ac

1∩Ac
2]
] +

n∑
j=3

E[cj S
+
j I[Aj ]].

The last equality follows from the fact that I[A2] = I[Ac
1]
− I[Ac

1∩Ac
2]
which in turn

holds since A2 ⊂ Ac
1. The expression on the right-hand side of the last equality

can be written in the form

c1E[S
+
1 ]+c2E[S

+
2 −S+

1 ]−c2E[(S
+
2 −S+

1 )I[A1]]−c2E[S
+
2 I[Ac

1∩Ac
2]
]+

n∑
j=3

E[cj S
+
j I[Aj ]].

Let h(y) = limx→y−o
x+−y+

x−y . Then h(.) is a nonnegative nondecreasing function

by the convexity of the function x+ = max{0, x} and we have
S+
2 − S+

1 ≥ (S2 − S1)h(S1).

Therefore
E[(S+

2 − S+
1 )I[A1]] ≥ E[(S2 − S1)h(S1)I[A1]].

Since h(S1)I[A1] is a nonnegative nondecreasing function of S1, it follows that

E[(S2 − S1)h(S1)I[A1]] ≥ 0
by the demisubmartingale property of the sequence {Sn, n ≥ 1} which in turn
shows that

E[(S+
2 − S+

1 )I[A1]] ≥ 0.
Hence the expression on the right-hand side of the last inequality in (2.5.2) is
bounded above by J where

J = c1E[S
+
1 ] + c2E[S

+
2 − S+

1 ]− c2E[S
+
2 I[Ac

1∩Ac
2]
] +

n∑
j=3

E[cj S
+
j I[Aj ]].

Since the sequence ck is a nondecreasing sequence,

J ≤ c1E[S
+
1 ] + c2E[S

+
2 − S+

1 ]− c3E[S
+
2 I[Ac

1∩Ac
2]
] +

n∑
j=3

E[cj S
+
j I[Aj ]] (2.5.3)
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= c1E[S
+
1 ] + c2E[S

+
2 − S+

1 ] + c3E[(S
+
3 − S+

2 )I[Ac
1∩Ac

2]
]

− c3E[S
+
3 I[Ac

1∩Ac
2∩Ac

3]
] +

n∑
j=4

E[cj S
+
j I[Aj ]]

and the last equality follows from the fact that I[A3] = I[Ac
1∩Ac

2]
− I[Ac

1∩Ac
2∩Ac

3]

which in turn holds since A3 ⊂ Ac
1 ∩Ac

2. The expression on the right-hand side of
the last equality can be written in the form

3∑
j=1

cjE[S
+
j − S+

j−1]− c3E[(S
+
3 − S+

2 )I[A1∪A2]]− c3E[S
+
3 I[Ac

1∩Ac
2∩Ac

3]
]

+
n∑

j=4

E[cj S
+
j I[Aj ]]. (2.5.4)

Applying the convexity of the function x+ again, we get that

E[(S+
3 − S+

2 )I[A1∪A2]] ≥ E[(S3 − S2)h(S2)I[A1∪A2]].

Since the function h(S2)I[A1∪A2] is a nonnegative componentwise nondecreasing
function of (S1, S2), it follows that

E[(S3 − S2)h(S2)I[A1∪A2]] ≥ 0
by the demisubmartingale property of the sequence {Sn, n ≥ 1}. Hence the quan-
tity defined by (2.5.4) is bounded above by

3∑
j=1

cjE[S
+
j − S+

j−1]− c3E[S
+
3 I[Ac

1∩Ac
2∩Ac

3]
] +

n∑
j=4

E[cj S
+
j I[Aj ]]. (2.5.5)

Proceeding in this way, we get that

εP (A) ≤
n∑

j=1

cjE[S
+
j − S+

j−1]− cnE[S
+
n I[Ac]] (2.5.6)

≤
n∑

j=1

cjE[S
+
j − S+

j−1]

since cn > 0. �
A corollary to the Chow type maximal inequality is the following Doob type

maximal inequality which was derived earlier by other methods.

Theorem 2.5.2. Suppose the sequence {Sn, n ≥ 1} is a demisubmartingale. Then,
for any ε > 0,

ε P [ max
1≤k≤n

Sk ≥ ε] ≤
∫
[max1≤k≤n Sk≥ε]

SndP.
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Applications of Chow Type Maximal Inequality

As an application of the Chow type maximal inequality, we can obtain the following
results.

Theorem 2.5.3. Let the sequence {Sn, n ≥ 1} be a demimartingale with S0 = 0.
Suppose that {ck, k ≥ 1} is a positive nonincreasing sequence of numbers such
that limk→0 ck = 0. Suppose there exists ν ≥ 1 such that E[|Sk|ν ] < ∞ for every
k ≥ 1. Assume that

∞∑
k=1

cνkE(|Sk|ν − |Sk−1|ν) < ∞. (2.5.7)

Then

cnSn
a.s→ 0 as n → ∞.

Proof. Let ε > 0. Note that

P [sup
k≥n

ck|Sk| ≥ ε] = P [sup
k≥n

cνk|Sk|ν ≥ εν ]

≤ P [sup
k≥n

cνk(S
+
k )

ν ≥ εν/2] + P [sup
k≥n

cνk(S
−
k )

ν ≥ εν/2].

Since the function xν , x ≥ 0 is a nondecreasing convex function for any ν ≥
1, it follows that the sequences {(S+

k )
ν , k ≥ 1} and {(S−k )ν , k ≥ 1} are both

demisubmartingales. Applying the Chow type maximal inequality proved earlier,
we get that

P [sup
k≥n

cνk(S
+
k )

ν ≥ εν/2] + P [sup
k≥n

cνk(S
−
k )

ν ≥ εν/2] (2.5.8)

≤ 2ε−ν(cνnE[(S
+
n )

ν ] +

∞∑
k=n+1

cνk E[(S+
k )

ν − (S+
k−1)

ν ]

+ cνnE[(S
−
n )

ν ] +
∞∑

k=n+1

cνk E[(S−k )
ν − (S−k−1)

ν ])

= 2ε−ν(cνnE[|Sn|ν ] +
∞∑

k=n+1

cνk E[|Sk|ν − |Sk−1|ν ])

from the fact that |Sn|ν = (S+
n )

ν+(S−n )
ν . The Kronecker lemma and the condition

(2.5.7) imply that limn→∞ cνnE|Sn|ν = 0. From the inequality derived above, we
get that

lim
n→∞P [sup

k≥n
ck|Sk| ≥ ε] = 0, (2.5.9)

equivalently

cnSn
a.s→ 0 as n → ∞. (2.5.10)

�
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Strong Law of Large Numbers for Associated Sequences

Consider a sequence of mean zero associated random variables. The following
Kolmogorov type of strong law of large numbers can be proved for such a sequence
as a consequence of Theorem 2.5.3.

Theorem 2.5.4. Let the sequence {Xn, n ≥ 1} be a sequence of L2-mean zero
associated random variables. Let Sn = X1 + . . .+Xn and S0 = 0. Suppose that

∞∑
n=1

n−2 Cov(Xn, Sn) < ∞.

Then
Sn

n

a.s→ 0 as n → ∞. (2.5.11)

Proof. Since the sequence {Xn, n ≥ 1} is mean zero associated, it follows that
{Sn, n ≥ 1} is a demimartingale. Applying Theorem 2.5.3 with ν = 2 and cn =

1
n ,

it follows that
Sn

n

a.s→ 0 as n → ∞
provided

∞∑
n=1

n−2E(S2
n − S2

n−1) < ∞.

Observe that
E(S2

n − S2
n−1) = 2E(XnSn−1) + E(X2

n)

and

2
∞∑

n=1

n−2E(XnSn−1) +

∞∑
n=1

n−2E(X2
n) ≤ 2

∞∑
n=1

n−2E(XnSn) (2.5.12)

= 2
∞∑

n=1

n−2 Cov(Xn, Sn) < ∞. �

This strong law of large numbers for associated sequences was also proved
by Birkel (1989). Wang (2004) generalized Theorem 2.5.1 to obtain a maximal
inequality for nonnegative convex functions of a demimartingale.

Theorem 2.5.5. Let S0 = 0 and the sequence {Sn, n ≥ 1} be a demimartingale.
Let g(.) be a nonnegative convex function on R with g(0) = 0. Suppose that the
sequence {ci, 1 ≤ i ≤ n} is a non-increasing sequence of positive numbers. Let
S∗n = max1≤i≤n cig(Si). Then, for any λ > 0,

λP (S∗n ≥ λ) ≤
n∑

i=1

ciE[g(Si)− g(Si−1)]− cnE[g(Sn)I[S∗n<λ]] (2.5.13)
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≤
n∑

i=1

ciE[g(Si)− g(Si−1)].

We now give a sketch of proof of this theorem following the ideas in Hadji-
kyriakou (2010) and Wang (2004).

Proof. Define the functions

u(x) = g(x)I[x≥0] and v(x) = g(x)I[x<0].

Note that the function u(x) is a nonnegative nondecreasing convex function and
the function v(x) is a nonnegative nonincreasing convex function. It is obvious
that

g(x) = u(x) + v(x) = max{u(x), v(x)}.
Furthermore

P [ max
1≤i≤n

cig(Si) ≥ λ) = P [ max
1≤i≤n

cimax{u(Si), v(Si)} ≥ λ] (2.5.14)

≤ P [ max
1≤i≤n

ciu(Si) ≥ λ] + P [ max
1≤i≤n

civ(Si) ≥ λ].

Applying Theorem 2.5.1, we get that

λP [ max
1≤i≤n

ciu(Si) ≥ λ] ≤
n∑

i=1

ciE[u(Si)− u(Si−1)]. (2.5.15)

Let
Ai = {ckv(Sk) < λ, 1 ≤ k < i, civ(Si) ≥ λ}, i = 1, . . . , n.

Following the method in the proof of Theorem 2.5.1, we get that

λP [ max
1≤i≤n

civ(Si) ≥ λ] ≤
n∑

i=3

ciE[v(si)IAi
] + c1E[v(S1)] + c2E[v(S2)− v(S1)]

− c2E[v(S2)IAc
1∩Ac

2
]− c2E[(v(S2)− v(S1))IA1 ].

(2.5.16)

Let h(.) be the left derivative of the function v(.) Then h(.) is a non-positive
nondecreasing function and

v(x)− v(y) ≥ (x− y)h(y).

Hence
v(S2)− v(S1) ≥ (S2 − S1)h(S1)

and
E[(v(S2 − v(S1))IA1

] ≥ E[(S2 − S1)h(S1)IA1
].
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Since IA1
is a nonincreasing function of S1 and h(.) is a non-positive nondecreas-

ing function, it follows that h(S1)IA1
is a nondecreasing function of S1. By the

demimartingale property, we get that

E[(S2 − S1)h(S1)IA1
] ≥ 0.

Applying arguments similar to those in the proof of Theorem 2.5.1, we get that

λP [ max
1≤i≤n

civ(Si) ≥ λ] ≤
n∑

i=1

ciE[v(Si)− v(Si−1)]. (2.5.17)

Combining the inequalities (2.5.14), (2.5.15) and (2.5.17), we obtain the inequality
(2.5.13). �

Suppose the sequence {Sn, n ≥ 1} is a nonnegative demimartingale. As a
corollary to this theorem, it can be proved that

E( max
1≤i≤n

Si) ≤ e

e− 1 [1 + E(Sn log
+ Sn)].

For a proof of this inequality , see Corollary 2.1 in Wang (2004).

2.6 Whittle Type Maximal Inequality

We now discuss a Whittle type maximal inequality for demisubmartingales due
to Prakasa Rao (2002). This result generalizes the Kolmogorov inequality and the
Hajek-Renyi inequality for independent random variables (Whittle (1969)) and is
an extension of the results in Christofides (2000) for demisubmartingales.

Let the sequence {Sn, n ≥ 1} be a demisubmartingale. Suppose φ(.) is a
nondecreasing convex function. Then the sequence {φ(Sn), n ≥ 1} is a demisub-
martingale by Theorem 2.1.1 (cf. Christofides (2000)).

Theorem 2.6.1. Let S0 = 0 and suppose the sequence of random variables {Sn, n ≥
1} is a demisubmartingale. Let φ(.) be nonnegative nondecreasing convex function
such that φ(0) = 0. Let ψ(u) be a positive nondecreasing function for u > 0. Let
An be the event that φ(Sk) ≤ ψ(uk), 1 ≤ k ≤ n, where 0 = u0 < u1 ≤ . . . ≤ un.
Then

P (An) ≥ 1−
n∑

k=1

E[φ(Sk)]− E[φ(Sk−1)]

ψ(uk)
. (2.6.1)

If, in addition, there exist nonnegative real numbers Δk, 1 ≤ k ≤ n such that

0 ≤ E[(φ(Sk)− φ(Sk−1))f(φ(S1), . . . , φ(Sk−1))] ≤ ΔkE[f(φ(S1), . . . , φ(Sk−1))]

for 1 ≤ k ≤ n for all componentwise nonnegative nondecreasing functions f such
that the expectation is defined and

ψ(uk) ≥ ψ(uk−1) + Δk, 1 ≤ k ≤ n,
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then

P (An) ≥
n∏

k=1

(1− Δk

ψ(uk)
). (2.6.2)

Proof. Since the sequence {Sn, n ≥ 1} is a demisubmartingale by hypothesis and
the function φ(.) is a nondecreasing convex function, it follows that the sequence
{φ(Sn), n ≥ 1} forms a demisubmartingale by Theorem 2.1.1. Hence

E{(φ(Sn+1)− φ(Sn))f(φ(S1), . . . , φ(Sn))} ≥ 0, n ≥ 1 (2.6.3)

for every nonnegative componentwise nondecreasing function f such that the ex-
pectation is defined. Let χj be the indicator function of the event [φ(Sj) ≤ ψ(uj)]
for 1 ≤ j ≤ n. Note that

χn ≥ (1− φ(Sn)

ψ(un)
)

and hence

P (An) = E(

n∏
i=1

χi) = E({
n−1∏
i=1

χi}χn)

≥ E({
n−1∏
i=1

χi}(1− φ(Sn)

ψ(un)
)).

Note that

E[{
n−1∏
i=1

χi}{(1− φ(Sn)

ψ(un)
)− (1− φ(Sn−1)

ψ(un)
)}+ φ(Sn)− φ(Sn−1)

ψ(un)
]

= E[(1−
n−1∏
i=1

χi)(
φ(Sn)− φ(Sn−1)

ψ(un)
)] ≥ 0

since the function 1 − ∏n−1
i=1 χi is a nonnegative componentwise nondecreasing

function of φ(Si), 1 ≤ i ≤ n− 1. Hence

P (An) ≥ E({
n−1∏
i=1

χi}(1− φ(Sn−1)

ψ(un)
))− E{φ(Sn)} − E{φ(Sn−1)}

ψ(un)

≥ E({
n−2∏
i=1

χi}(1− φ(Sn−1)

ψ(un−1)
))− E{φ(Sn)} − E{φ(Sn−1)}

ψ(un)
.

The last inequality follows from the observation that the sequence ψ(un), n ≥ 1 is
positive and nondecreasing.

Applying this inequality repeatedly, we get that

P (An) ≥ 1−
n∑

k=1

E[φ(Sk)]− E[φ(Sk−1)]

ψ(uk)
(2.6.4)
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completing the proof of the first part of the theorem. Note that

E{
n−1∏
i=1

χi(1− φ(Sn)

ψ(un)
)− (1− Δn

ψ(un)
)(1− φ(Sn−1)

ψ(un−1)
)
n−1∏
i=1

χi}

≥ E{ φ(Sn−1)

ψ(un)ψ(un−1)
[ψ(un)− ψ(un−1)−Δn]

n−1∏
i=1

χi}

and the last term is nonnegative by hypothesis. Hence

P (An) ≥ (1− Δn

ψ(un)
)E({

n−2∏
i=1

χi}(1− φ(Sn−1)

ψ(un−1)
)). (2.6.5)

Applying this inequality repeatedly, we obtain that

P (An) ≥
n∏

k=1

(1− Δk

ψ(uk)
). (2.6.6)

�

Applications

As applications of the Whittle type maximal inequality derived above, the follow-
ing results can be obtained.

Suppose the sequence {Sn, n ≥ 1} is a demisubmartingale. Then the se-
quences {(S+

n )
p, n ≥ 1} and {(S−n )p, n ≥ 1} are demisubmartingales for p ≥ 1 by

Theorem 2.1.1. Furthermore |Sn|p = (S+
n )

p + (S−n )
p for all p ≥ 1.

(1) Let ψ(u) = up, p ≥ 1 in Theorem 2.6.1. Applying Theorem 2.6.1, we get
that

P (S+
j ≤ uj , 1 ≤ j ≤ n) ≥ 1−

n∑
j=1

E(S+
j )

p − E(S+
j−1)

p

up
j

(2.6.7)

and

P (S−j ≤ uj , 1 ≤ j ≤ n) ≥ 1−
n∑

j=1

E(S−j )
p − E(S−j−1)

p

up
j

. (2.6.8)

Hence , for every ε > 0,

P ( sup
1≤j≤n

|Sj |
uj

≥ ε) = P ( sup
1≤j≤n

|Sj |p
up
j

≥ εp)

= P ( sup
1≤j≤n

(S+
j )

p + (S−j )
p

up
j

≥ εp)

= P ( sup
1≤j≤n

(S+
j )

p

up
j

≥ 1

2
εp) + P ( sup

1≤j≤n

(S−j )
p

up
j

≥ 1

2
εp)
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≤ 2ε−p
n∑

j=1

E(S+
j )

p − E(S+
j−1)

p

up
j

+ 2ε−p
n∑

j=1

E(S−j )
p − E(S−j−1)

p

up
j

= 2ε−p
n∑

j=1

E|Sj |p − E|Sj−1|p
up
j

.

In particular, for p = 2, we have

P ( sup
1≤j≤n

|Sj |
uj

≥ ε) ≤ 2ε−2
n∑

j=1

ES2
j − ES2

j−1

u2
j

. (2.6.9)

which is the Hajek-Renyi type inequality for associated sequences derived in the
Corollary 2.3 of Christofides (2000).

Suppose p = 1. Let φ(x) = max(0, x). Then the function φ(x) is a nonnegative
nondecreasing convex function and it is clear that Sn ≤ S+

n = φ(Sn) for every
n ≥ 1. Let ψ(u) = u in Theorem 2.6.1. Then

P ( sup
1≤j≤n

Sj

uj
≥ ε) ≤ P ( sup

1≤j≤n

S+
j

uj
≥ ε) ≤ ε−1

n∑
j=1

ES+
j − ES+

j−1

uj

by Theorem 2.6.1 which is the Chow type maximal inequality derived in Theorem
2.5.1 (cf. Christofides (2000)).

(2) Let p = 2 again in the above discussion. If

E(S2
j − S2

j−1) ≤ u2
j − u2

j−1,

for 1 ≤ j ≤ n, then

P (An) ≥
n∏

j=1

(1− E(S2
j )− E(S2

j−1)

u2
j

)

which is an analogue of the Dufresnoy type maximal inequality for martingales
(cf. Dufresnoy (1967)).

(3) Let the sequence {Sn, n ≥ 1} be a demisubmartingale and the function
φ(.) be a nonnegative nondecreasing convex function such that φ(S0) = 0. Let
ψ(u) be a positive nondecreasing function for u > 0. Then, for any nondecreasing
sequence un, n ≥ 1 with u0 = 0,

P ( sup
1≤j≤n

φ(Sj)

ψ(uj)
≥ ε) ≤ ε−1

n∑
k=1

E[φ(Sk)]− E[φ(Sk−1)]

ψ(uk)
. (2.6.10)
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In particular, for any fixed n ≥ 1,

P (sup
k≥n

φ(Sk)

ψ(uk)
≥ ε) ≤ ε−1[E(

φ(Sn)

ψ(un)
) +

∞∑
k=n+1

E[φ(Sk)]− E[φ(Sk−1)]

ψ(uk)
]. (2.6.11)

As a consequence of this inequality, we get the following strong law of large
numbers for demisubmartingales (cf. Prakasa Rao (2002)).

Theorem 2.6.2. Let S0 = 0 and let the sequence {Sn, n ≥ 1} be a demisubmartin-
gale. Let φ(.) be a nonnegative nondecreasing convex function such that φ(0) = 0.
Let ψ(u) be a positive nondecreasing function for u > 0 such that ψ(u) → ∞ as
u → ∞. Further suppose that

∞∑
k=1

E[φ(Sk)]− E[φ(Sk−1)]

ψ(uk)
< ∞

for a nondecreasing sequence un → ∞ as n → ∞. Then

φ(Sn)

ψ(un)

a.s→ 0 as n → ∞.

2.7 More on Maximal Inequalities

Suppose the sequence {Sn, n ≥ 1} is a demisubmartingale. Let Smax
n = max

1≤i≤n
Si

and Smin
n = min

1≤i≤n
Si. As special cases of Theorem 2.3.1, we get that

λ P [Smax
n ≥ λ] ≤

∫
[Smax

n ≥λ]

SndP (2.7.1)

and

λ P [Smin
n ≥ λ] ≤

∫
[Smin

n ≥λ]

SndP (2.7.2)

for any λ > 0.

The inequality (2.7.1) can also be obtained directly without using Theorem
2.3.1 by the standard methods used to prove the Kolomogorov inequality. We now
prove a variant of the inequality (2.7.2).

Suppose the sequence {Sn, n ≥ 1} is a demisubmartingale. Let λ > 0. Let

A = [ min
1≤k≤n

Sk < λ], A1 = [S1 < λ]

and
Ak = [Sk < λ, Sj ≥ λ, 1 ≤ j ≤ k − 1], k > 1.
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Observe that

A =
n⋃

k=1

Ak

and Ak ∈ Fk = σ{S1, . . . , Sk}. Furthermore the sets Ak, 1 ≤ k ≤ n are disjoint
and

Ak ⊂ (
k−1⋃
i=1

Ai)
c

where Ac denotes the complement of the set A in Ω. Note that

E(S1) =

∫
A1

S1dP +

∫
Ac

1

S1dP ≤ λ

∫
A1

dP +

∫
Ac

1

S2dP.

The last inequality follows by observing that∫
Ac

1

S1dP −
∫
Ac

1

S2dP =

∫
Ac

1

(S1 − S2)dP = E((S1 − S2)I[Ac
1]
).

Since the indicator function of the set Ac
1 = [S1 ≥ λ] is a nonnegative nondecreas-

ing function of S1 and the fact that {Sk, 1 ≤ k ≤ n} is a demisubmartingale, it
follows that

E((S2 − S1)I[Ac
1]
) ≥ 0.

Therefore
E((S1 − S2)I[Ac

1]
) ≤ 0

which implies that ∫
Ac

1

S1dP ≤
∫
Ac

1

S2dP.

This proves the inequality

E(S1) ≤ λ

∫
A1

dP +

∫
Ac

1

S2dP = λP (A1) +

∫
Ac

1

S2dP.

Observe that A2 ⊂ Ac
1. Hence∫

Ac
1

S2dP =

∫
A2

S2dP +

∫
Ac

2∩Ac
1

S2dP

≤
∫
A2

S2dP +

∫
Ac

2∩Ac
1

S3dP

≤ λ P (A2) +

∫
Ac

2∩Ac
1

S3dP.

The second inequality in the above chain follows from the observation that the
indicator function of the set Ac

2∩Ac
1 = I[S1≥λ,S2≥λ] is a nonnegative nondecreasing
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function of S1, S2 and the fact that the sequence {Sk, 1 ≤ k ≤ n} is a demisub-
martingale. By repeated application of these arguments, we get that

E(S1) ≤ λ

n∑
i=1

P (Ai) +

∫
∩n

i=1A
c
i

SndP

= λ P (A) +

∫
Ω

SndP −
∫
A

SndP.

Hence

λ P (A) ≥
∫
A

SndP −
∫
Ω

(Sn − S1)dP

and we have the following result.

Theorem 2.7.1 (Wood (1984)). Suppose that the sequence {Sn, n ≥ 1} is a demi-
submartingale. Let

A = [ min
1≤k≤n

Sk < λ]

for any λ > 0. Then

λ P (A) ≥
∫
A

SndP −
∫
Ω

(Sn − S1)dP. (2.7.3)

In particular, if the sequence {Sn, n ≥ 1} is a demimartingale, then it is easy
to check that E(Sn) = E(S1) for all n ≥ 1 and hence we have the following result
as a corollary to Theorem 2.7.1.

Theorem 2.7.2. Suppose that the sequence {Sn, n ≥ 1} is a demimartingale. Let
A = [min1≤k≤n Sk < λ] for any λ > 0. Then

λ P (A) ≥
∫
A

SndP. (2.7.4)

We now prove some inequalities for E(Smax
n ) and E(Smin

n ) for nonnegative
demisubmartingales {Sn, n ≥ 1}. The following results are from Prakasa Rao
(2007).

Theorem 2.7.3. Suppose that the sequence {Sn, n ≥ 1} is a positive demimartingale
with S1 = 1. Let γ(x) = x− 1− log x for x > 0. Then

γ(E(Smax
n )) ≤ E(Sn logSn) (2.7.5)

and

γ(E(Smin
n )) ≤ E(Sn logSn). (2.7.6)

Proof. Note that the function γ(x) is a convex function with minimum γ(1) = 0.
Observe that Smax

n ≥ S1 = 1 and hence
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E(Smax
n )− 1 =

∫ ∞

0

P [Smax
n ≥ λ]dλ− 1

=

∫ 1

0

P [Smax
n ≥ λ]dλ+

∫ ∞

1

P [Smax
n ≥ λ]dλ− 1

=

∫ ∞

1

P [Smax
n ≥ λ]dλ (since S1 = 1)

≤
∫ ∞

1

{ 1
λ

∫
[Smax

n ≥λ]

SndP}dλ (by (2.7.2))

= E(

∫ ∞

1

SnI[Smax
n ≥λ]

λ
dλ)

= E(Sn

∫ Smax
n

1

1

λ
dλ)

= E(Sn log(S
max
n )).

Using the fact that γ(x) ≥ 0 for all x > 0, we get that

E(Smax
n )− 1 ≤ E[Sn(log(S

max
n ) + γ(

Smax
n

SnE(Smax
n )

))]

= E[Sn(log(S
max
n ) +

Smax
n

SnE(Smax
n )

− 1− log( Smax
n

SnE(Smax
n )

))]

= 1− E(Sn) + E(Sn logSn) + E(Sn) logE(S
max
n ).

Rearranging the terms in the above inequality, we get that

γ(E(Smax
n )) = E(Smax

n )− 1− logE(Smax
n ) (2.7.7)

≤ 1− E(Sn) + E(Sn logSn) + E(Sn) logE(S
max
n )− logE(Smax

n )

= E(Sn logSn) + (E(Sn)− 1)(logE(S(max)
n )− 1)

= E(Sn logSn)

since E(Sn) = E(S1) = 1 for all n ≥ 1. This proves the inequality (2.7.5).
Observe that 0 ≤ Smin

n ≤ S1 = 1 which implies that

E(Smin
n ) =

∫ 1

0

P [Smin
n ≥ λ]dλ (2.7.8)

= 1−
∫ 1

0

P [Smin
n < λ]dλ (2.7.9)

≤ 1−
∫ 1

0

{ 1
λ

∫
[Smin

n <λ]

SndP}dλ (by Theorem 2.7.2) (2.7.10)

= 1− E(

∫ 1

0

SnI[Smin
n <λ]

λ
dλ) (2.7.11)
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= 1− E(Sn

∫ 1

Smin
n

1

λ
dλ) (2.7.12)

= 1 + E(Sn log(S
min
n )). (2.7.13)

Applying arguments similar to those given above to prove the inequality (2.7.5),
we get that

γ(E(Smin
n )) ≤ E(Sn logSn) (2.7.14)

which proves the inequality (2.7.6). �

The above inequalities for positive demimartingales are analogues of maximal
inequalities for nonnegative martingales proved in Harremoës (2008).

2.8 Maximal φ-Inequalities for Nonnegative
Demisubmartingales

Let C denote the class of Orlicz functions that is, unbounded, nondecreasing convex
functions φ : [0,∞)→ [0,∞) with φ(0) = 0. If the right derivative φ′ is unbounded,
then the function φ is called a Young function and we denote the subclass of such
functions by C′. Since

φ(x) =

∫ x

0

φ′(s)ds ≤ xφ′(x)

by convexity, it follows that

pφ = inf
x>0

xφ′(x)
φ(x)

and

p∗φ = sup
x>0

xφ′(x)
φ(x)

are in [1,∞]. The function φ is called moderate if p∗φ < ∞, or equivalently, if for
some λ > 1, there exists a finite constant cλ such that

φ(λx) ≤ cλφ(x), x ≥ 0.

An example of such a function is φ(x) = xα for α ∈ [1,∞). Example of a non-
moderate Orlicz function is φ(x) = exp(xα)− 1 for α ≥ 1.

Let C∗ denote the set of all differentiable φ ∈ C whose derivative is concave
or convex and C′ denote the set of φ ∈ C such that φ′(x)/x is integrable at 0, and
thus, in particular φ′(0) = 0. Let C∗0 = C′ ∩ C∗.

Given φ ∈ C and a ≥ 0, define

Φa(x) =

∫ x

a

∫ s

a

φ′(r)
r

drds, x > 0.
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It can be seen that the function ΦaI[a,∞) ∈ C for any a > 0 where IA denotes the
indicator function of the set A. If φ ∈ C′, the same holds for Φ ≡ Φ0. If φ ∈ C∗0 ,
then Φ ∈ C∗0 . Furthermore, if φ′ is concave or convex, the same holds for

Φ′(x) =
∫ x

0

φ′(r)
r

dr,

and hence φ ∈ C∗0 implies that Φ ∈ C∗0 . It can be checked that φ and Φ are related
through the differential equation

xΦ′(x)− Φ(x) = φ(x), x ≥ 0

under the initial conditions φ(0) = φ′(0) = Φ(0) = Φ′(0) = 0. If φ(x) = xp for
some p > 1, then Φ(x) = xp/(p − 1). For instance, if φ(x) = x2, then Φ(x) = x2.
If φ(x) = x, then Φ(x) ≡ ∞ but Φ1(x) = x log x−x+1. It is known that if φ ∈ C′
with pφ > 1, then the function φ satisfies the inequalities

Φ(x) ≤ 1

pφ − 1φ(x), x ≥ 0.

Furthermore, if φ is moderate, that is p∗φ < ∞, then

Φ(x) ≥ 1

p∗φ − 1φ(x), x ≥ 0.

The brief introduction for properties of Orlicz functions given here is based
on Alsmeyer and Rosler (2006).

We now prove some maximal φ-inequalities for nonnegative demisubmartin-
gales following the techniques in Alsmeyer and Rosler (2006).

Theorem 2.8.1. Let the sequence {Sn, n ≥ 1} be a nonnegative demisubmartingale
and let φ ∈ C. Then

P (Smax
n ≥ t) ≤ λ

(1− λ)t

∫ ∞

t

P (Sn > λs)ds (2.8.1)

=
λ

(1− λ)t
E(

Sn

λ
− t)+

for all n ≥ 1, t > 0 and 0 < λ < 1. Furthermore,

E[φ(Smax
n )] ≤ φ(b) +

λ

1− λ

∫
[Sn>λb]

(Φa(
Sn

λ
)−Φa(b)−Φ′a(b)(

Sn

λ
− b))dP (2.8.2)

for all n ≥ 1, a > 0, b > 0 and 0 < λ < 1. If φ′(x)/x is integrable at 0, that is,
φ ∈ C′, then the inequality (2.8.2) holds for b = 0.
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Proof. Let t > 0 and 0 < λ < 1. The inequality (2.7.1) implies that

P (Smax
n ≥ t) ≤ 1

t

∫
[Smax

n ≥t]

SndP (2.8.3)

=
1

t

∫ ∞

0

P [Smax
n ≥ t, Sn > s]ds

≤ 1

t

∫ λt

0

P [Smax
n ≥ t]ds+

1

t

∫ ∞

λt

P [Sn > s]ds

≤ λP [Smax
n ≥ t]ds+

λ

t

∫ ∞

t

P [Sn > λs]ds.

Rearranging the last inequality, we get that

P (Smax
n ≥ t) ≤ λ

(1− λ)t

∫ ∞

t

P (Sn > λs)ds =
λ

(1− λ)t
E(

Sn

λ
− t)+

for all n ≥ 1, t > 0 and 0 < λ < 1 proving the inequality (2.8.1). Let b > 0. Then

E[φ(Smax
n )] =

∫ ∞

0

φ′(t)P (Smax
n > t)dt

=

∫ b

0

φ′(t)P (Smax
n > t)dt+

∫ ∞

b

φ′(t)P (Smax
n > t)dt

≤ φ(b) +

∫ ∞

b

φ′(t)P (Smax
n > t)dt

≤ φ(b) +
λ

1− λ

∫ ∞

b

φ′(t)
t
[

∫ ∞

t

P (Sn > λs)ds]dt (by (2.7.1))

= φ(b) +
λ

1− λ

∫ ∞

b

(

∫ s

b

φ′(t)
t

dt)P (Sn > λs)ds

= φ(b) +
λ

1− λ

∫ ∞

b

(Φ′a(s)− Φ′a(b))P (Sn > λs)ds

= φ(b) +
λ

1− λ

∫
[Sn>λb]

(Φa(
Sn

λ
)− Φa(b)− Φ′a(b)(

Sn

λ
− b))dP

for all n ≥ 1, b > 0, t > 0, 0 < λ < 1 and a > 0. The value of a can be chosen to
be 0 if φ′(x)/x is integrable at 0. �

As special cases of the above result, we obtain the following inequalities by
choosing b = a in (2.8.2). Observe that Φa(a) = Φ

′
a(a) = 0.

Theorem 2.8.2. Let the sequence {Sn, n ≥ 1} be a nonnegative demisubmartingale
and let φ ∈ C. Then

E[φ(Smax
n )] ≤ φ(a) +

λ

1− λ
E[Φa(

Sn

λ
)] (2.8.4)
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for all a ≥ 0, 0 < λ < 1 and n ≥ 1. Let λ = 1
2 in (2.8.4). Then

E[φ(Smax
n )] ≤ φ(a) + E[Φa(2Sn)] (2.8.5)

for all a ≥ 0 and n ≥ 1.
The following lemma is due to Alsmeyer and Rosler (2006).

Lemma 2.8.3. Let X and Y be nonnegative random variables satisfying the in-
equality

t P (Y ≥ t) ≤ E(XI[Y≥t])

for all t ≥ 0. Then
E[φ(Y )] ≤ E[φ(qφX)] (2.8.6)

for any Orlicz function φ where qφ =
pφ

pφ−1 and pφ = infx>0
xφ′(x)
φ(x) .

This lemma follows as an application of the Choquet decomposition

φ(x) =

∫
[0,∞)

(x− t)+φ′(dt), x ≥ 0.

In view of the inequality (2.8.2), we can apply the above lemma to the random
variables X = Sn and Y = Smax

n to obtain the following result.

Theorem 2.8.4. Let the sequence {Sn, n ≥ 1} be a nonnegative demisubmartingale
and let φ ∈ C with pφ > 1. Then

E[φ(Smax
n )] ≤ E[φ(qφSn)] (2.8.7)

for all n ≥ 1.
Theorem 2.8.5. Let the sequence {Sn, n ≥ 1} be a nonnegative demisubmartingale.
Suppose that the function φ ∈ C is moderate. Then

E[φ(Smax
n )] ≤ E[φ(qφSn)] ≤ q

p∗φ
Φ E[φ(Sn)]. (2.8.8)

The first part of the inequality (2.8.8) of Theorem 2.8.5 follows from Theorem
2.8.4. The last part of the inequality follows from the observation that if φ ∈ C is
moderate, that is,

p∗φ = sup
x>0

xφ′(x)
φ(x)

< ∞,

then

φ(λx) ≤ λp∗φφ(x)

for all λ > 1 and x > 0 (see equation (1.10) of Alsmeyer and Rosler (2006)).
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Theorem 2.8.6. Let the sequence {Sn, n ≥ 1} be a nonnegative demisubmartingale.
Suppose φ is a nonnegative nondecreasing function on [0,∞) such that φ1/γ is also
nondecreasing and convex for some γ > 1. Then

E[φ(Smax
n )] ≤ ( γ

γ − 1)
γE[φ(Sn)]. (2.8.9)

Proof. The inequality

λP (Smax
n ≥ λ) ≤

∫
[Smax

n ≥λ]

SndP

given in (2.7.1) implies that

E[(Smax
n )p] ≤ ( p

p− 1)
pE(Sp

n), p > 1 (2.8.10)

by an application of Hölder’s inequality (cf. Chow and Teicher (1997), p. 255).
Note that the sequence {[φ(Sn)]

1/γ , n ≥ 1} is a nonnegative demisubmartingale
by Theorem 2.1.1. Applying the inequality (2.8.10) for the sequence {[φ(Sn)]

1/γ ,
n ≥ 1} and choosing p = γ in that inequality, we get that

E[φ(Smax
n )] ≤ ( γ

γ − 1)
γE[φ(Sn)]. (2.8.11)

for all γ > 1. �

Examples of functions φ satisfying the conditions stated in Theorem 2.8.6 are
φ(x) = xp[log(1+x)]r for p > 1 and r ≥ 0 and φ(x) = erx for r > 0. Applying the
result in Theorem 2.8.6 for the function φ(x) = erx, r > 0, we obtain the following
inequality.

Theorem 2.8.7. Let the sequence {Sn, n ≥ 1} be a nonnegative demisubmartingale.
Then

E[erS
max
n ] ≤ eE[erSn ], r > 0. (2.8.12)

Proof. Applying the result stated in Theorem 2.8.6 to the function φ(x) = erx, we
get that

E[erS
max
n ] ≤ ( γ

γ − 1)
γE[erSn ] (2.8.13)

for any γ > 1. Let γ → ∞. Then

(
γ

γ − 1)
γ ↓ e

and we get that

E[erS
max
n ] ≤ eE[erSn ], r > 0. (2.8.14)

�
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The next result deals with maximal inequalities for functions φ ∈ C which
are k times differentiable with the k-th derivative φ(k) ∈ C for some k ≥ 1.
Theorem 2.8.8. Let the sequence {Sn, n ≥ 1} be a nonnegative demisubmartingale.
Let φ ∈ C which is differentiable k times with the k-th derivative φ(k) ∈ C for some
k ≥ 1. Then

E[φ(Smax
n )] ≤ (k + 1

k
)k+1E[φ(Sn)]. (2.8.15)

Proof. The proof follows the arguments given in Alsmeyer and Rosler (2006) fol-
lowing the inequality (2.8.9). We present the proof here for completeness. Note
that

φ(x) =

∫
[0,∞)

(x− t)+Qφ(dt)

where
Qφ(dt) = φ′(0)δ0 + φ′(dt)

and δ0 is the Kronecker delta function. Hence, if φ
′ ∈ C, then

φ(x) =

∫ x

0

φ′(y)dy (2.8.16)

=

∫ x

0

∫
[0,∞)

(y − t)+Qφ′(dt)dy

=

∫
[0,∞)

∫ x

0

(y − t)+dyQφ′(dt)

=

∫
[0,∞)

((x− t)+)2

2
Qφ′(dt).

An inductive argument shows that

φ(x) =

∫
[0,∞)

((x− t)+)k+1

(k + 1)!
Qφ(k)(dt) (2.8.17)

for any φ ∈ C such that φ(k) ∈ C. Let

φk,t(x) =
((x− t)+)k+1

(k + 1)!

for any k ≥ 1 and t ≥ 0. Note that the function [φk,t(x)]
1/(k+1) is nonnegative,

convex and nondecreasing in x for any k ≥ 1 and t ≥ 0. Hence the process
{[φk,t(Sn)]

1/(k+1), n ≥ 1} is a nonnegative demisubmartingale by Theorem 2.1.1.
Following the arguments given to prove (2.8.10), we obtain that

E(([φk,t(S
max
n )]1/(k+1))k+1) ≤ (k + 1

k
)k+1E(([φk,t(Sn)]

1/(k+1))k+1)
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which implies that

E[φk,t(S
max
n )] ≤ (k + 1

k
)k+1E[φk,t(Sn)]. (2.8.18)

Hence

E[φ(Smax
n ))] =

∫
[0,∞)

E[φk,t(S
max
n )]Qφ(k)(dt) (by (2.8.17)) (2.8.19)

≤ (k + 1
k

)k+1

∫
[0,∞)

E[φk,t(Sn)]Qφ(k)(dt) (by (2.8.18))

= (
k + 1

k
)k+1E[φ(Sn)]

which proves the theorem. �
We now consider a special case of the maximal inequality derived in (2.8.2)

of Theorem 2.8.1. Let φ(x) = x. Then Φ1(x) = x log x− x+ 1 and Φ′1(x) = log x.
The inequality (2.8.2) reduces to

E[Smax
n ] ≤ b+

λ

1− λ

∫
[Sn>λb]

(
Sn

λ
log

Sn

λ
− Sn

λ
+ b− (log b)Sn

λ
)dP

= b+
λ

1− λ

∫
[Sn>λb]

(Sn logSn − Sn(log λ+ log b+ 1) + λb)dP

for all b > 0 and 0 < λ < 1. Let b > 1 and λ = 1
b . Then we obtain the inequality

E(Smax
n ) ≤ b+

b

b− 1E(
∫ max(Sn,1)

1

log x dx), b > 1, n ≥ 1. (2.8.20)

The value of b which minimizes the term on the right-hand side of equation (2.8.20)
is

b∗ = 1 + (E(
∫ max(Sn,1)

1

log x dx))1/2

and hence

E(Smax
n ) ≤ (1 + (E(

∫ max(Sn,1)

1

log x dx))1/2)2. (2.8.21)

Since ∫ x

1

log y dy = x log+ x− (x− 1), x ≥ 1,

the inequality (2.8.20) can be written in the form

E(Smax
n ) ≤ b+

b

b− 1(E(Sn log
+ Sn)− E(Sn − 1)+), b > 1, n ≥ 1. (2.8.22)
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Let b = E(Sn − 1)+ in equation (2.8.22). Then we get the maximal inequality

E(Smax
n ) ≤ 1 + E(Sn − 1)+

E(Sn − 1)+ E(Sn log
+ Sn). (2.8.23)

If we choose b = e in equation (2.8.22), then we get the maximal inequality

E(Smax
n ) ≤ e+

e

e− 1(E(Sn log
+ Sn)− E(Sn − 1)+), b > 1, n ≥ 1. (2.8.24)

Results discussed in this section are due to Prakasa Rao (2007).

2.9 Maximal Inequalities for Functions of
Demisubmartingales

We now derive some maximal inequalities due to Wang and Hu (2009) and Wang
et al. (2010) for functions of demimartingales and demisubmartingales.

Theorem 2.9.1. Let the sequence {Sn, n ≥ 1} be a demisubmartingale with S0 = 0
and g(.) be a nondecreasing convex function on R with g(0) = 0. Suppose that
E|g(Si)| < ∞, i ≥ 1. Let the sequence {cn, n ≥ 1} be a nonincreasing sequence of
positive numbers. Then, for any ε > 0,

ε P [ max
1≤k≤n]

ckg(Sk) ≥ ε] ≤
n∑

k=1

ckE[g
+(Sk)− g+(Sk−1)]. (2.9.1)

Proof. This result follows from the fact that {g(Sn), n ≥ 1} is a demisubmartingale
and applying Theorem 5.1 on Chow type maximal inequality for demisubmartin-
gales (cf. Christofides (2000)). �

The following theorem is due to Wang (2004). We omit the proof.

Theorem 2.9.2. Let the sequence {Sn, n ≥ 1} be a demimartingale, S0 = 0, and g(.)
be a nonnegative convex function on R with g(0) = 0. Suppose that E|g(Si)| < ∞,
i ≥ 1. Let {cn, n ≥ 1} be a nonincreasing sequence of positive numbers. Then, for
any ε > 0,

ε P [ max
1≤k≤n]

ckg(Sk) ≥ ε] ≤
n∑

k=1

ckE[(g(Sk)− g(Sk−1))I[max1≤j≤n cjg(Sj)≥ε]]

≤
n∑

k=1

ckE[g(Sk)− g(Sk−1)]. (2.9.2)

As an application of the above theorem, we obtain the following result by
choosing the function g(x) = |x|. For any ε > 0,

ε P [ max
1≤k≤n]

ck|Sk| ≥ ε] ≤
n∑

k=1

ckE[|Sk| − |Sk−1|]. (2.9.3)
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The following inequality gives a Doob type maximal inequality for functions
of demisubmartingales.

Theorem 2.9.3. Let the sequence {Sn, n ≥ 1} be a demisubmartingale, S0 = 0,
and g(.) be a nondecreasing convex function on R with g(0) = 0. Suppose that
E|g(Si)| < ∞, i ≥ 1. Then, for any ε > 0,

ε P [ max
1≤k≤n

g(Sk) ≥ ε] ≤
∫
[max1≤k≤n g(Sk)≥ε]

g(Sn)] dP. (2.9.4)

Proof. This result follows from the fact that the sequence {g(Sn), n ≥ 1} is a
demisubmartingale and applying Theorem 2.1 on Doob type maximal inequality
for demisubmartingales. �

The following inequality gives a Doob type maximal inequality for nonnega-
tive convex functions of demimartingales.

Theorem 2.9.4. Let the sequence {Sn, n ≥ 1} be a demimartingale and g(.) be a
nonnegative convex function on R with g(0) = 0. Suppose that the random variables
g(Si), i ≥ 1 are integrable. Then, for any ε > 0,

ε P [ max
1≤k≤n

g(Sk) ≥ ε] ≤
∫
[max1≤k≤n g(Sk)≥ε]

g(Sn) dP. (2.9.5)

For a proof, see Wang and Hu (2009). In particular, by choosing g(x) = |x|r,
r ≥ 1, we obtain the following result.
Theorem 2.9.5. Let the sequence {Sn, n ≥ 1} be a demimartingale, S0 = 0, and
suppose that E|Sn|r < ∞, n ≥ 1 for some r ≥ 1. Then, for any ε > 0,

P [ max
1≤k≤n

|Sk| ≥ ε] ≤ 1

εr

∫
[max1≤k≤n |Sk|r≥εr]

|Sn|r dP ≤ 1

εr
E|Sn|r. (2.9.6)

Wang et al. (2010) derived some inequalities for expectations of maxima of
functions of demisubmartingales. We now discuss some of these results.

Theorem 2.9.6. Let the sequence {Sn, n ≥ 1} be a demimartingale and g(.) be a
nonnegative convex function on R with g(0) = 0. Suppose that E|g(Sk)|p < ∞,
k ≥ 1, for some p > 1. Let {cn, n ≥ 1} be a nonincreasing sequence of positive
numbers. Then

E[ max
1≤k≤n

ckg(Sk)]
p ≤ ( p

p− 1)
pE[

n∑
k=1

ck(g(Sk)− g(Sk−1))]
p. (2.9.7)

If p = 1, then

E[ max
1≤k≤n

ckg(Sk)] (2.9.8)

≤ e

e− 1(1 + E[(
n∑

k=1

ck(g(Sk)− g(Sk−1)) log
+(

n∑
k=1

ck(g(Sk)− g(Sk−1)))]).
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Proof. Let p > 1. Then, by Theorem 2.9.2 due to Wang (2004) and Hölder’s
inequality, we have

E[ max
1≤k≤n]

ckg(Sk)]
p (2.9.9)

= p

∫ ∞

0

xp−1P [ max
1≤k≤n

ckg(Sk) ≥ x] dx

≤ p

∫ ∞

0

xp−2E[
n∑

j=1

cj(g(Sj)− g(Sj−1))I[max1≤k≤n ckg(Sk)≥x]] dx

=
p

p− 1E([
n∑

j=1

cj(g(Sj)− g(Sj−1))( max
1≤k≤n

ckg(Sk))
p−1)

≤ p

p− 1(E([
n∑

j=1

cj(g(Sj)− g(Sj−1))]
p)1/p(E( max

1≤k≤n
ckg(Sk))

p)1/q

where q is such that 1/p+ 1/q = 1. Rearranging the last inequality, we get that

(E[ max
1≤k≤n]

ckg(Sk)]
p)1/p ≤ p

p− 1(E[
n∑

j=1

cj(g(Sj)− g(Sj−1))]
p)1/p (2.9.10)

which implies that

E[ max
1≤k≤n]

ckg(Sk)]
p ≤ ( p

p− 1)
pE[

n∑
j=1

cj(g(Sj)− g(Sj−1))]
p. (2.9.11)

Let us now consider the case p = 1. Then

E[ max
1≤k≤n]

ckg(Sk)] (2.9.12)

≤ 1 +
∫ ∞

1

P [ max
1≤k≤n

ckg(Sk) ≥ x] dx

≤1 +
∫ ∞

1

x−1E[

n∑
j=1

cj(g(Sj)− g(Sj−1))I[max1≤k≤n ckg(Sk)≥x]] dx

≤ 1 + E[(
n∑

j=1

cj(g(Sj)− g(Sj−1))) log
+( max

1≤k≤n
ckg(Sk))].

Note that, for any a ≥ 0 and b > 0,

a log+ b ≤ a log+ a+ be−1.

Applying this inequality, we get that
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E[ max
1≤k≤n

ckg(Sk)] (2.9.13)

≤ 1 + E[(

n∑
j=1

cj(g(Sj)− g(Sj−1))) log
+(

n∑
j=1

cj(g(Sj)− g(Sj−1))]

+ e−1E[ max
1≤k≤n

ckg(Sk)].

Hence

E[ max
1≤k≤n

ckg(Sk)] (2.9.14)

≤ e

e− 1(1 + E[(
n∑

j=1

cj(g(Sj)− g(Sj−1)) log
+(

n∑
j=1

cj(g(Sj)− g(Sj−1)))]). �

As a corollary to the above result, we get the following bound on the ex-
pectations for maximum of a nonnegative convex function of a demimartingale.
Choose ck = 1, k ≥ 1.
Theorem 2.9.7. Let the sequence {Sn, n ≥ 1} be a demimartingale and g(.) be
a nonnegative convex function on R with g(0) = 0. Suppose that E|g(Sk|p < ∞,
k ≥ 1, for some p ≥ 1. If p > 1, then

E[ max
1≤k≤n

g(Sk)]
p ≤ ( p

p− 1)
pE[g(Sn)]

p (2.9.15)

and

E[ max
1≤k≤n

g(Sk)] ≤ e

e− 1 [1 + E(g(Sn) log
+ g(Sn))]. (2.9.16)

As an additional corollary, we obtain the following Doob type maximal in-
equality for demimartingales.

Theorem 2.9.8. Let the sequence {Sn, n ≥ 1} be a demimartingale and p ≥ 1.
Suppose that E|Sk|p < ∞, k ≥ 1. Then, for every n ≥ 1,

E[ max
1≤k≤n

|Sk|]p ≤ ( p

p− 1)
pE[|Sn|p], p > 1 (2.9.17)

and

E[ max
1≤k≤n

|Sk|] ≤ e

e− 1 [1 + E(|Sn| log+ |Sn|)]. (2.9.18)

Remarks. As corollaries to the above results, one can obtain a strong law of large
numbers for functions of demimartingales and partial sums of mean zero associated
random variables using conditions developed in Fazekas and Klesov (2001) and Hu
and Hu (2006). For related results, see Hu et al. (2008). We will not discuss these
results.
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2.10 Central Limit Theorems

As was mentioned in Chapter 1, Newman (1980,1984) obtained the central limit
theorem for partial sums of mean zero stationary associated random variables
which form a demimartingale This result also holds for weakly associated random
sequences as defined below. This was pointed out by Sethuraman (2000). However
it is not known whether the central limit theorem holds for any demimartingale
in general.

Let {v(t) = (v1(t), . . . , vm(t)), t ≥ 0} be an m-dimensional L2-process with
stationary increments. This process is said to have weakly positive associated in-
crements if

E[φ(v(t+ s)− v(s))ψ(v(s1), . . . ,v(sn))] ≥ E[φ(v(t))]E[ψ(v(s1), . . . ,v(sn)]

for all componentwise nondecreasing functions φ and ψ, for all s, t ≥ 0 and for
0 ≤ s1 < . . . , sn = s, n ≥ 1.

Sethuraman (2000, 2006) proved the following invariance principle for pro-
cesses which have weakly positive associated increments. This theorem is a con-
sequence of the central limit theorem due to Newman (1980) and the maximal
inequalities for demimartingales discussed earlier in this chapter (cf. Newman and
Wright (1982)). Let d denote a column vector in Rm and d′ the corresponding
row vector.

Theorem 2.10.1. Let {v′(t) = (v1(t), . . . , vm(t)), t ≥ 0} be an m-dimensional L2-
process in C[0,∞) with stationary and weakly positive associated increments such
that E[vi(t)] = 0 for 1 ≤ i ≤ m and t ≥ 0. Further suppose that

lim
t→∞ t−1E[vi(t)vj(t)] = σij < ∞. (2.10.1)

Then
α−1/2v′(αt)d → W (d′Σdt) as α → ∞ (2.10.2)

weakly in the uniform topology where Σ = ((σij)m×m is the covariance matrix,
d ∈ Rm and W is the standard Brownian motion.

Newman (1984) conjectured the following result: Let S0 ≡ 0 and the sequence
{Sn, n ≥ 1} be an L2- demimartingale whose difference sequence {Xn = Sn−Sn−1,
n ≥ 1} is strictly stationary and ergodic with

0 < σ2 = V ar(X1) + 2

∞∑
j=2

Cov(X1, Xj) < ∞.

Then
n−1/2Sn

L→ σZ as n → ∞
where Z is a standard normal random variable. It is not known whether the above
conjecture is true. The problem remains open. We will come back to the discussion
on Newman’s conjecture in Chapter 6.
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Chapter 2. Demimartingales

2.11 Dominated Demisubmartingales

LetM0 = N0 = 0 and the sequence {Mn, n ≥ 0} be a sequence of random variables
defined on a probability space (Ω,F , P ). Suppose that

E[(Mn+1 −Mn)f(M0, . . . ,Mn)|ζn] ≥ 0

for any nonnegative componentwise nondecreasing function f given a filtration
{ζn, n ≥ 0} contained in F . Then the sequence {Mn, n ≥ 0} is said to be a strong
demisubmartingale with respect to the filtration {ζn, n ≥ 0}. It is obvious that a
strong demisubmartingale is a demisubmartingale in the sense discussed earlier.

Definition. LetM0 = 0 = N0. Suppose {Mn, n ≥ 0} is a strong demisubmartingale
with respect to the filtration generated by a demisubmartingale {Nn, n ≥ 0}.
The strong demisubmartingale {Mn, n ≥ 0} is said to be weakly dominated by
the demisubmartingale {Nn, n ≥ 0} if for every nondecreasing convex function
φ : R+ → R, and for any nonnegative componentwise nondecreasing function
f : R2n → R,

E[(φ(|en|)− φ(|dn|)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)|N0, . . . , Nn−1] ≥ 0 a.s.,
(2.11.1)

for all n ≥ 1 where dn =Mn −Mn−1 and en = Nn −Nn−1. We write M � N in
such a case.

In analogy with the inequalities for dominated martingales developed in Os-
ekowski (2007), we will now prove an inequality for domination between a strong
demisubmartingale and a demisubmartingale.

Following Osekowski (2007), define the functions u<2(x, y) and u>2(x, y) as
given below. Let

u<2(x, y) =

{
9|y|2 − 9|x|2 if (x, y) ∈ D,

2|y| − 1 + 8|y|2I[|y|≤1] + (16|y| − 8)I[|y|>1] if (x, y) ∈ Dc
(2.11.2)

and

u>2(x, y) =

{
0 if (x, y) ∈ E,

9|y|2 − (|x| − 1)2 − 8(|x| − 1)2I[|x|≥1] if (x, y) ∈ Ec,
(2.11.3)

where

D = {(x, y) ∈ R2 : |y|+ 3|x| ≤ 1} and E = {(x, y) ∈ R2 : 3|y|+ |x| ≤ 1}.

We now state a weak-type inequality between dominated demisubmartin-
gales.
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Theorem 2.11.1. Suppose the sequence {Mn, n ≥ 0} is a strong demisubmartingale
with respect to the filtration generated by the sequence {Nn, n ≥ 0} which is a
demisubmartingale . Further suppose that M � N. Then, for any λ > 0,

λ P (|Mn| ≥ λ) ≤ 6E|Nn|, n ≥ 0. (2.11.4)

We will first state and sketch the proof of a lemma which will be used to prove
Theorem 2.11.1. The method of proof is the same as that in Osekowski (2007).

Lemma 2.11.2. Suppose the sequence {Mn, n ≥ 0} is a strong demisubmartingale
with respect to the filtration generated by the sequence {Nn, n ≥ 0} which is a
demisubmartingale. Further suppose that M � N. Then

E[u<2(Mn, Nn)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)] (2.11.5)

≥ E[u<2(Mn−1, Nn−1)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)]

and

E[u>2(Mn, Nn)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)] (2.11.6)

≥ E[u>2(Mn−1, Nn−1)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)]

for any nonnegative componentwise nondecreasing function f : R2n → R, n ≥ 1.
Proof. Define u(x, y) where u = u<2 or u = u>2. From the arguments given
in Osekowski (2007), it follows that there exist a nonnegative function A(x, y)
nondecreasing in x and a nonnegative function B(x, y) nondecreasing in y and a
convex nondecreasing function φx,y(.) : R+ → R, such that, for any h and k,

u(x, y) +A(x, y)h+B(x, y)k + φx,y(|k|)− φx,y(|h|) ≤ u(x+ h, y + k). (2.11.7)

Let x =Mn−1, y = Nn−1, h = dn and k = en. Then, it follows that

u(Mn−1, Nn−1) +A(Mn−1, Nn−1)dn +B(Mn−1, Nn−1)en (2.11.8)

+ φMn−1,Nn−1(|en|)− φMn−1,Nn−1(|dn|)
≤ u(Mn−1 + dn, Nn−1 + en) = u(Mn, Nn).

Note that,

E[A(Mn−1, Nn−1)dnf(M0, . . . ,Mn−1;N0, . . . , Nn−1)|N0, . . . , Nn−1] ≥ 0 a.s.
from the fact that {Mn, n ≥ 0} is a strong demisubmartingale with respect to the
filtration generated by the process {Nn, n ≥ 0} and that the function

A(xn−1, yn−1)f(x0, . . . , xn−1; y0, . . . , yn−1)

is a nonnegative componentwise nondecreasing function in x0, . . . , xn−1 for any
fixed y0, . . . , yn−1. Taking expectation on both sides of the above inequality, we
get that

E[A(Mn−1, Nn−1)dnf(M0, . . . ,Mn−1;N0, . . . , Nn−1)] ≥ 0. (2.11.9)
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Similarly we get that

E[B(Mn−1, Nn−1)dnf(M0, . . . ,Mn−1;N0, . . . , Nn−1)] ≥ 0. (2.11.10)

Since the sequence {Mn, n ≥ 0} is dominated by the sequence {Nn, n ≥ 0}, it
follows that

E[(φMn−1,Nn−1(|en|)− φMn−1,Nn−1(|dn|)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)] ≥ 0
(2.11.11)

by taking the expectations on both sides of (2.11.1). Combining the relations
(2.11.7) to (2.11.11), we get that

E[u(Mn, Nn)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)] (2.11.12)

≥ E[u(Mn−1, Nn−1)f(M0, . . . ,Mn−1;N0, . . . , Nn−1)]. �

Remarks. Let f ≡ 1. Repeated application of the inequality obtained in Lemma
2.11.2 shows that

E[u(Mn, Nn)] ≥ E[u(M0, N0)] = 0. (2.11.13)

Proof of Theorem 2.11.1. Let

v(x, y) = 18 |y| − I[|x| ≥ 1

3
].

It can be checked that (cf. Osekowski (2007))

v(x, y) ≥ u<2(x, y). (2.11.14)

Let λ > 0. It is easy to see that the strong demisubmartingale {Mn

3λ , n ≥ 0} is
weakly dominated by the demisubmartingale {Nn

3λ , n ≥ 0}. In view of the inequal-
ities (2.11.7) and (2.11.8), we get that

6 E|Nn| − λ P (|Mn| ≥ λ) = λE[v(
Mn

3λ
,
Nn

3λ
)] ≥ λE[u<2(

Mn

3λ
,
Nn

3λ
)] ≥ 0
(2.11.15)

which proves the inequality

λ P (|Mn| ≥ λ) ≤ 6 E|Nn|, n ≥ 0. (2.11.16)

�
Results discussed in this section are from Prakasa Rao (2007).
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Chapter 3

N -Demimartingales

3.1 Introduction

We have already introduced the concept of a demimartingale extending the notion
of a martingale and studied some of its properties. The class of demimartingales
contains the sequences of partial sums of mean zero associated random variables as
a special case. Motivated by the theory of demimartingales developed in Chapter
2, we now define (cf. Prakasa Rao (2002a) and Christofides (2003)) the class of
N -demimartingales. We will see later that the sequence of partial sums of mean
zero negatively associated (NA) random variables form an N -demimartingale .
Throughout this chapter, we assume that the expectations of random variables
under consideration exist.

Definition. Let the sequence {Sn, n ≥ 1} be an L1-sequence of random variables
such that

E[(Sj+1 − Sj)f(S1, . . . , Sj)] ≤ 0, j ≥ 1 (3.1.1)

for every componentwise nondecreasing function f such that the expectation is
defined. Then the sequence {Sn, n ≥ 1} is called an N -demimartingale. If, in
addition, f is assumed to be nonnegative, then the sequence {Sn, n ≥ 1} is called
an N -demisupermartingale.

Observe that, if the sequence {Sn, n ≥ 1} is an N -demimartingale, then
E(Sn) = E(S1), n ≥ 1. This can be seen from equation (3.1.1) by applying the
inequality for the functions f ≡ 1 and for f ≡ −1.

Suppose the sequence {Sn, n ≥ 1} is an N -demimartingale. It is easy to see
that

E[(Sj+k − Sj)f(S1, . . . , Sj)] ≤ 0, k ≥ 1 (3.1.2)

if f is componentwise nondecreasing. If the sequence {Sn, n ≥ 1} is an N -demi-
supermartingale, then (3.1.2) holds for any function f which is componentwise
nondecreasing and nonnegative.

B.L.S. Prakasa Rao, Associated Sequences, Demimartingales
and Nonparametric Inference, Probability and its Applications,
DOI 10.1007/978-3-0348-0240-6_3, © Springer Basel AG 2012
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Chapter 3. N -Demimartingales

Theorem 3.1.1. Suppose the sequence {Xi, i ≥ 1} is a sequence of mean zero
negatively associated random variables. Let Sj = X1+ . . .+Xj, j ≥ 1 with S0 = 0.
Then the sequence {Sn, n ≥ 1} is an N -demimartingale.

Proof. Let f be a componentwise nondecreasing function. Then

E[(Sj+1 − Sj)f(S1, . . . , Sj)] = E[Xj+1f(S1, . . . , Sj)] ≤ 0
by the property of negatively associated random variables {Xi, i ≥ 1} (cf. Joag-
Dev and Proschan (1983)). �

We now describe another type of a random sequence which is also an N -
demimartingale.

Suppose that X1, . . . , Xn are negatively associated random variables. For any
fixed integer m such that 1 ≤ m ≤ n, let h(x1, . . . , xm) be a kernel mapping Rm

into R. Assume that the function h(.) is symmetric. Define the U -statistic

Un =

(
n

m

)−1 ∑
1≤i1<...<im≤n

h(Xi1 , . . . , Xim)

where
∑

1≤i1<...<im≤n denotes the summation over the
(
n
m

)
combinations of m

distinct elements {i1, . . . , im} from {1, . . . , n}.
Theorem 3.1.2. Let Un be a U -statistic based on a sequence of negatively associ-
ated random variables {Xn, n ≥ 1} and on the kernel h where h(x1, . . . , xm) =
h̃(x1)h̃(x2) . . . h̃(xm) for some nondecreasing function h̃(.) with E[h̃(X1)] = 0.
Then the sequence {Sn =

(
n
m

)
Un, n ≥ m} is an N -demimartingale.

Proof. Observe that

Sn+1 − Sn =
∑

1≤i1<...<im≤n+1

h(Xi1 , . . . , Xim)−
∑

1≤i1<...<im≤n

h(Xi1 , . . . , Xim)

=
∑

1≤i1<...<im−1≤n

h(Xi1 , . . . , Xim−1
, Xn+1) (3.1.3)

Then, for any componentwise nondecreasing function g,

E[(Sn+1 − Sn)g(Sm, . . . , Sn)] (3.1.4)

= E[
∑

1≤i1<...<im−1≤n

h(Xi1 , . . . , Xim−1 , Xn+1)g(Sm, . . . , Sn)]

= E[
∑

1≤i1<...<im−1≤n

m−1∏
j=1

h̃(Xij )h̃(Xn+1)g(Sm, . . . , Sn)]

= E[h̃(Xn+1)v(X1, . . . , Xn)]

≤ 0
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where the function v is defined as

v(x1, . . . , xn) (3.1.5)

= g(h(x1, . . . , xm),
∑

1≤i1<...<im≤m+1

h(xi1 , . . . , xim), . . . ,

∑
1≤i1<...<im≤n

h(xi1 , . . . , xim))
∑

1≤i1<...<im≤n

m−1∏
j=1

h̃(xij ).

Note that the function v(x1, . . . , xn) is componentwise nondecreasing. The last
inequality in (3.1.4) follows from the nondecreasing property of the functions v
and h̃ and the fact that the sequence {Xi, i ≥ 1} is a negatively associated
random sequence. Hence the sequence {Sn, n ≥ m} is an N -demimartingale. �

Remarks. It is easy to see that a martingale, with the natural choice of σ-algebras,
is a demimartingale as well as an N -demimartingale.

Theorem 3.1.3. Let the random sequence {Sj, j ≥ 1} be a supermartingale with
respect to the natural choice of σ-algebras Fj = σ{Si, 1 ≤ i ≤ j}. Then the random
sequence {Sj, j ≥ 1} is an N -demisupermartingale.

Proof. Let f be a nonnegative function defined on Rj .. Then

E[(Sj+1 − Sj)f(S1, . . . , Sj)] = E[E((Sj+1 − Sj)f(S1, . . . , Sj)|Fj)]

= E[f(S1, . . . , Sj)E((Sj+1 − Sj)|Fj)]

≤ 0

where the last inequality is a consequence of the nonnegativity of f and the fact
that E((Sj+1−Sj)|Fj)] ≤ 0 since the process {Sj ,Fj , j ≥ 1} is a supermartingale.

�

The following results are easy to check.

Theorem 3.1.4. Suppose the process {Sj, j ≥ 1} is an N -demimartingale and
Yi = aSi + b, i ≥ 1 where a and b are real numbers. Then the process {Yj, j ≥ 1}
is also an N -demimartingale.

Proof. Let f be a componentwise nondecreasing function. Note that

E[(Yj+1 − Yj)f(Y1, . . . , Yj)] = E[(Sj+1 − Sj)af(aS1 + b, . . . , aSj + b)] ≤ 0

since the sequence {Sj , j ≥ 1} is an N -demimartingale and the function
g(x1, . . . , xn) = af(ax1 + b, . . . , axm + b) is componentwise nondecreasing. �

Following the same arguments, one can obtain the following result for N -
demisupermartingales.
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Theorem 3.1.5. Suppose the process {Sj, j ≥ 1} is an N -demisupermartingale and
Yi = aSi + b, i ≥ 1 where a ≥ 0 and b are real numbers. Then the process {Yj,
j ≥ 1} is also an N -demisupermartingale.

The result stated in Theorem 3.1.4 indicates that the linear functions of N -
demimartingales are also N -demimartingales. It would be interesting to identify
a large class of functions g(.) such that, if the sequence {Sj , j ≥ 1} is an N -
demimartingale, then the sequence {g(Sj), j ≥ 1} is also an N -demimartingale.
Results discussed in Theorems 3.1.2 to 3.1.5 are due to Christofides (2003).

We have seen earlier that the sequence of partial sums of mean zero negatively
associated random variables is an N -demimartingale. However it is not necessary
that every N -demimartingale is generated by such a process as shown by the
following example due to Hadjikyriakou (2010).

Example 3.1.1. Let (X1, X2, X3) be a random vector such that

P (X1 = 5, X2 = 5, X3 = −2) = 1

12
= P (X1 = 5, X2 = −3, X3 = −2),

P (X1 = −3, X2 = 5, X3 = −2) = 1

12
= P (X1 = −3, X2 = −3, X3 = −2),

P (X1 = 5, X2 = 5, X3 = 1) =
1

24
; P (X1 = 5, X2 = −3, X3 = 1) =

4

24
,

and

P (X1 = −3, X2 = 5, X3 = 1) =
4

24
; P (X1 = −3, X2 = −3, X3 = 1) =

7

24
.

It can be checked that E(X1) = E(X2) = E(X3) = 0 and for any nondecreasing
function f,

E[(X2 −X1)f(X1)] = 2[f(−3)− f(5)] ≤ 0.
Furthermore, for any componentwise nondecreasing function g(x1, x2),

E[(X3 −X2)g(X1, X2)] ≤ 0.
Therefore the random sequence {X1, X2, X3} is an N -demimartingale. Let h(.)
be a nondecreasing function such that h(−7) = h(−4) = h(−3) = 0, h(1) = 4,
h(4) = 8 and h(5) = 16. Check that

Cov(h(X1), h(X3 −X2)) =
2

3
> 0

which shows that the random variables X1, X3−X2 are not negatively associated.

Another remark that was made earlier is that every supermartingale is an
N -demisupermartingale. We will now present an example, due to Hadjikyriakou
(2010), which shows the converse statement is not true.
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Example 3.1.2. Let (X1, X2) be a random vector such that

P (X1 = 1, X2 = 0) = p and P (X1 = 0, X2 = 1) = 1− p

where 1
2 ≤ p ≤ 1. Then the pair {X1, X2} is an N -demisupermartingale since, for

every nonnegative nondecreasing function f,

E[(X2 −X1)f(X1)] = (1− p)f(0)− pf(1) ≤ p(f(0)− f(1) ≤ 0.

However the random sequence {X1, X2} is not a supermartingale since

E[X2|X1 = 0] =
∑

x2=0,1

x2P (X2 = x2|X1 = 0) =
P (X2 = 1, X1 = 0)

P (X1 = 0)
= 1.

We will now describe another method of generating N -demimartingales fol-
lowing Hadjikyriakou (2010).

Example 3.1.3. Suppose the sequence {Xn, n ≥ 1} is a sequence of negatively
associated identically distributed random variables with ψ(t) = E[etX1 ] < ∞ for
some t ≥ 0. Let Sn =

∑n
k=1 Xk and

Yn =
etSn

[ψ(t)]n
, n ≥ 1.

Then the sequence {Yn, n ≥ 1} is an N -demimartingale. This can be seen by
the following arguments. Let f be a componentwise nonnegative nondecreasing
function on Rn. Note that

E[(Yn+1 − Yn)f(Y1, . . . , Yn)] = E[(
etXn+1

ψ(t)
− 1)Ynf(Y1, . . . , Yn)] (3.1.6)

= E[g(Xn+1)Ynf(Y1, . . . , Yn]

= E[g(Xn+1)h(X1, . . . , Xn)]

where the function g(x) = etx

ψ(t) is a nondecreasing function of x and h(x1, . . . xn)

is a componentwise nondecreasing function of x1, . . . , xn. Since the sequence {Xn,
n ≥ 1} is negatively associated, it follows that

Cov[g(Xn+1), h(X1, . . . , Xn)] ≤ 0

and hence

E[g(Xn+1)h(X1, . . . , Xn)] ≤ E[g(Xn+1)]E(h(X1, . . . , Xn)) = 0.

The last equality holds since E[g(Xn+1] = 0. This proves that the sequence
{Yn, n ≥ 1} is an N -demisupermartingale.
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The following theorem, due to Hu et al. (2010), gives sufficient conditions for
a stopped N -demisupermartingale to be a N -demisupermartingale.

Theorem 3.1.6. Let the sequence {Sn, n ≥ 1} be an N -demisupermartingale
and τ be a positive integer-valued random variable. Suppose that the function
I[τ≤j] = hj(S1, . . . , Sj) is a componentwise nonincreasing function of S1, . . . , Sj

for j ≥ 1. Let S∗j = Smin(τ,j), j ≥ 1. Then the sequence {S∗j , j ≥ 1} is an
N -demisupermartingale.

Proof. Note that

S∗j = Smin(τ,j) =

j∑
i=1

(Si − Si−1)I[τ≥i].

We have to show that

E[(S∗j+1 − S∗j )f(S
∗
1 , . . . , S

∗
j )] ≤ 0, j ≥ 1

for any f which is componentwise nondecreasing and nonnegative. Since

gj(S1, . . . , Sj) ≡ 1− I[τ≤j] = 1− hj(S1, . . . , Sj)

is a componentwise nondecreasing and nonnegative function, we get that

uj(S1, . . . , Sj) ≡ gj(S1, . . . , Sj)f(S1, . . . , Sj)

is a componentwise nondecreasing and nonnegative function. By the N -demisu-
permartingale property, we get that

E[(S∗j+1 − S∗j )f(S
∗
1 , . . . , S

∗
j )] = E[(Sj+1 − Sj)I[τ≥j+1]f(S

∗
1 , . . . , S

∗
j )] (3.1.7)

= E[(Sj+1 − Sj)I[τ≥j+1]f(S1, . . . , Sj)]

= E[(Sj+1 − Sj)uj(S1, . . . , Sj)] ≤ 0
for j ≥ 1. Hence the sequence {S∗j , j ≥ 1} is an N -demisupermartingale. �

We now obtain some consequences of this theorem.

Theorem 3.1.7. Let the sequence {Sn, n ≥ 1} be an N -demisupermartingale and
τ be a positive integer-valued random variable. Furthermore suppose that the indi-
cator function I[τ≤j] = hj(S1, . . . , Sj) is a componentwise nonincreasing function
of S1, . . . , Sj for j ≥ 1. Then, for any 1 ≤ n ≤ m,

E(Smin(τ,m)) ≤ E(Smin(τ,n)) ≤ E(S1). (3.1.8)

Suppose the sequence {Sn, n ≥ 1} is a N -demimartingale and the indicator func-
tion I[τ≤j] = hj(S1, . . . , Sj) is a componentwise nondecreasing function of S1, . . .,
Sj for j ≥ 1. Then, for any 1 ≤ n ≤ m,

E(Smin(τ,m)) ≥ E(Smin(τ,n)) ≥ E(S1). (3.1.9)
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Proof. Suppose that the random sequence {Sn, n ≥ 1} is an N -demisupermartin-
gale and the indicator function I[τ≤j] = hj(S1, . . . , Sj) is a componentwise non-
increasing function of S1, . . . , Sj for j ≥ 1. Then the sequence {S∗n, n ≥ 1} is
an N -demisupermartingale. The inequalities in equation (3.1.8) follow from the
N -demisupermartingale property by choosing the function f ≡ 1.

Suppose that the random sequence {Sn, n ≥ 1} is an N -demimartingale
and that the indicator function I[τ≤j] = hj(S1, . . . , Sj) is a componentwise non-
decreasing function of S1, . . . , Sj for j ≥ 1. Since the sequence {Sn, n ≥ 1} is an
N -demimartingale, we note that

−E(S∗j+1 − S∗j ) = −E[(Sj+1 − Sj)I[τ≥j+1]]

= E[(Sj+1 − Sj)(hj(S1, . . . , Sj)− 1)]
≤ 0

for j ≥ 1 from the N -demimartingale property. This in turn proves the inequalities
given in (3.1.9). �

3.2 Maximal Inequalities

As an application of Theorem 3.1.7, we can obtain the following maximal inequality
for N -demisupermartingales due to Christofides (2003).

Theorem 3.2.1. Let the sequence {Sj, j ≥ 1} be an N -demimartingale . Then, for
any λ > 0,

λ P [ max
1≤k≤n

Sk ≥ λ] ≤ E(S1)− E(SnI[max1≤k≤n Sk<λ]) (3.2.1)

≤ E(S1) + E(S−n ). (3.2.2)

Proof. Let τ = inf{k : k ≤ n and Sk ≤ λ} and τ = n if min1≤k≤n Sk ≥ λ. Then,
by the results derived above,

E(S1) ≥ E(Smin(τ,n)) (3.2.3)

= E(Sτ )

= E(SτI[max1≤k≤n Sk≥λ]) + E(SτI[max1≤k≤n Sk<λ])

≥ λP ( max
1≤k≤n

Sk ≥ λ) + E(SnI[max1≤k≤n Sk<λ]).

Rearranging the above inequality, we get the inequality (3.2.1). The inequality
(3.2.2) is an easy consequence of the inequality (3.2.1). �

As a corollary to the above inequality, we get the following result.
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Theorem 3.2.2. Let the sequence {Sj, j ≥ 1} be a nonnegative N -demimartingale.
Then, for any λ > 0,

(i) λ P [ max
1≤k≤n

Sk ≥ λ] ≤ E(S1)

and

(ii) λ P [sup
k≥n

Sk ≥ λ] ≤ E(Sn).

Proof. The first inequality follows immediately from the inequality (3.2.1). We
now prove the second inequality. Let τ = inf{k : k ≤ n and Sk ≥ λ} and τ =∞ if
supk≥n < λ. Let m ≥ n. Then, from the results derived earlier, it follows that

E(Sn) = E[Smin(τ,n)]

≥ E[Smin(τ,m)]

≥ E[Smin(τ,m)I[τ≤m])

≥ λ P (τ ≤ m).

Let m → ∞. Then, we have

E(Sn) ≥ λ P (τ < ∞) = λ P (sup
k≥n

Sk ≥ λ). (3.2.4)

�

Suppose φ is a right continuous nonincreasing function on (0,∞) satisfying
the condition

lim
t→∞φ(t) = 0.

Further suppose that φ is also integrable on any finite interval (0, x). Let

Φ(x) =

∫ x

0

φ(t)dt, x ≥ 0.

Then the function Φ(x) is a nonnegative nondecreasing function such that Φ(0) =
0. Further suppose that Φ(∞) = ∞. Such a function is called a concave Young
function. Properties of such functions are given in Agbeko (1986). An example
of such a function is Φ(x) = xp, 0 < p < 1. As a consequence of the inequality
(3.2.3), Christofides (2003) obtained the following maximal inequality following
the arguments in Agbeko (1986) to derive a maximal inequality for nonnegative
supermartingales. We omit the details.

Theorem 3.2.3. Let the sequence {Sn, n ≥ 1} be a nonnegative N -demisuper-
martingale. Let Φ(x) be a concave Young function and define ψ(x) = Φ(x)−xφ(x).
Then

E[ψ(Smax
n )] ≤ E[Φ(S1)]. (3.2.5)
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Furthermore, if

lim sup
x→∞

xφ(x)

Φ(x)
< 1,

then
E[Φ(Smax

n )] ≤ cΦ(1 + E[Φ(S1)]) (3.2.6)

for some constant cΦ depending only on the function Φ.

Following the ideas of Agbeko (1986) and Christofides (2003), Wang et al.
(2011a) obtained more general maximal inequalities for demimartingales and N -
demimartingales based on concave Young functions.

3.3 More on Maximal Inequalities

We now derive some additional maximal inequalities for N -demisupermartingales
following the ideas of Newman and Wright (1982) for demisubmartingales as dis-
cussed in Chapter 2. The results in this section are due to Prakasa Rao (2002a).

Let the random sequence {Sn, n ≥ 1} with S0 = 0 be an N -demimartingale
and

Snj =

{
j-th smallest of (S1, . . . , Sn) if j ≤ n

max(S1, . . . , Sn) = Snn if j > n.

Let
S∗n = min(S1, . . . , Sn).

Note that
Sn1 = S∗n.

In other words (Sn1, . . . , Snn) is the set of order statistics corresponding to the
set of random variables (S1, . . . , Sn). Let m(.) be a nondecreasing function with
m(0) = 0. For fixed n and j, let Yk = Skj and Y0 = 0. Then

Snm(Yn) =

n−1∑
k=0

Sk+1(m(Yk+1)−m(Yk)) +

n−1∑
k=1

(Sk+1 − Sk)m(Yk)

and

E[Snm(Yn)] = E{
n−1∑
k=0

Sk+1(m(Yk+1)−m(Yk))}+
n−1∑
k=1

E[(Sk+1 − Sk)m(Yk)]

≤ E{
n−1∑
k=0

Sk+1(m(Yk+1)−m(Yk))}

since the finite sequence {Sk, 1 ≤ k ≤ n} is an N -demimartingale. Note that, for
any k,

(m(Yk+1)−m(Yk))Sk+1 ≤ Yk [m(Yk+1)−m(Yk)].
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This follows from the observation that, for instance, if αk = min(x1, . . . , xk) and
αk+1 = min(x1, . . . , xk+1), then either the minimum remains the same or the
minimum is decreased, that is either αk = αk+1 or xk+1 < αk. Hence

E[Snm(Yn)] ≤ E{
n−1∑
k=0

Yk(m(Yk+1)−m(Yk))} (3.3.1)

≤ E{
n−1∑
k=0

∫ Yk+1

Yk

u dm(u)}

= E{
∫ Yn

0

u dm(u)}

Hence we have the following theorem.

Theorem 3.3.1. Let the sequence {Sn, n ≥ 1} be an N -demimartingale and m(.)
be a nondecreasing function with m(0) = 0. Then, for any n and j,

E

(∫ Snj

0

u dm(u)

)
≥ E(Snm(Snj)).

By analogous arguments, we can prove the following theorem for N -demisu-
permartingales.

Theorem 3.3.2. Let the sequence {Sn, n ≥ 1} be an N -demisupermartingale and
m(.) be a nonnegative nondecreasing function with m(0) = 0. Then, for any n and
j,

E

(∫ Snj

0

u dm(u)

)
≥ E(Snm(Snj)).

Let the sequence {Sn, n ≥ 1} be an N -demimartingale.

We now give some applications of Theorem 3.3.1.
(i) Let m(u) = −I[u≤λ]. Note that Yn = Snj . Then, for any λ > 0,

−λ P (Snj ≤ λ) ≥ −
∫
[Snj≤λ]

SndP

or equivalently

λ P (Snj ≤ λ) ≤
∫
[Snj≤λ]

SndP.

(ii) (a) In particular, let j = 1 in (i). Then, for any λ > 0,

λ P ( min
1≤i≤n

Si ≤ λ) ≤
∫
[min1≤i≤n Si≤λ]

SndP. (3.3.2)
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(ii) (b) Let j = n in (i). Then, for any λ > 0,

λ P ( max
1≤i≤n

Si ≤ λ) ≤
∫
[max1≤i≤n Si≤λ]

SndP.

(iii) Suppose the sequence {Sn, n ≥ 1} is an L2 N -demimartingale. Then

E((Snj − Sn)
2) ≥ E(S2

n). (3.3.3)

This can be seen by the following arguments. Choose m(u) = u. Then

E[SnYn] ≤ E[

∫ Yn

0

u du] = E

[
Y 2
n

2

]
.

Hence

E[SnSnj ] ≤ E

(
S2
nj

2

)
(3.3.4)

which holds if and only if

E((Snj − Sn)
2) ≥ E(S2

n)

since

E[(Snj − Sn)
2] = E[S2

nj ]− 2E[SnSnj ] + E[S2
n]

≥ E(S2
nj)− E[S2

nj ] + E[S2
n]

= E(S2
n).

(iv) Suppose the sequence {Xn, n ≥ 1} forms an integrable mean zero neg-
atively associated (NA) sequence of random variables. Let Sj = X1 + . . . + Xj ,
j ≥ 1 and S0 = 0. Let T1 = 0 and

Tk =

n∑
i=n−k+2

Xi, k = 2, 3, . . . , n+ 1.

Let f be a componentwise nondecreasing function. Then

E((Tk+1 − Tk)f(T2, . . . , Tk))

= E[(Sn−k+1 − Sn−k)g(Xn−k+2, . . . , Xn)] ≤ 0
since the sequence {Xk, 1 ≤ k ≤ n} is negatively associated and g is a componen-
twise nondecreasing function. Hence {Tk, 2 ≤ k ≤ n+1} is an N -demimartingale.
For, j ≤ n, applying the inequality of type (3.3.4) to the sequence {Tk}, we have

E(TnTn,n−j+1) ≤ E

(
T 2
n,n−j+1

2

)
. (3.3.5)
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But
E(TnTn,n−j+1) ≥ E(Tn+1Tn,n−j+1)

since {Tn} is an N -demimartingale. Note that Tn,n−j+1 is the (n− j+1)-th order
statistic corresponding to T2, . . . , Tn. Therefore

E

(
T 2
n,n−j+1

2

)
≥ E(Tn+1Tn,n−j+1)

which implies that
E[(Tn+1 − Tn,n−j+1)

2] ≥ E(T 2
n+1). (3.3.6)

Note that
Tn+1 = Sn

and

Tn+1 − Tn,n−j+1 = j-th smallest of (Tn+1 − Tn, . . . , Tn+1 − T2, Tn+1 − T1)

= Snj .

Hence (3.3.6) implies that
E(S2

n) ≤ E(S2
nj). (3.3.7)

(v) Define Tn as given in (iv). Consider S
∗
n = min(S1, . . . , Sn) and Sn−S∗n =

Tnn. Note that S
∗
n and Tnn are increasing functions of theXi’s which are negatively

associated. Hence S∗n and Tnn are themselves negatively associated (cf. Matula
(1996)). Note that, if X and Y are negatively associated, then

P (X ≥ x)P (Y ≤ y)− P (X ≥ x, Y ≤ y) = Cov(I[X≥x],−I[Y≤y]) ≤ 0.

Hence
P (X ≥ x)P (Y ≤ y) ≤ P (X ≥ x, Y ≤ y)

for all x and y. Let Y = S∗n and X = Sn − S∗n = Tn. Then

P (Sn − S∗n ≥ x)P (S∗n ≤ y) ≤ P (Sn − S∗n ≥ x, S∗n ≤ y) (3.3.8)

for all x and y. Similarly

P (S∗n ≥ x)P (Sn − S∗n ≤ y) ≤ P (S∗n ≥ x, Sn − S∗n ≤ y)

for all x and y. Note that, for λ2 < λ1,

P (S∗n ≤ λ2) = P (S∗n ≤ λ2, Sn ≥ λ1) + P (S∗n ≤ λ2, Sn < λ1)

≥ P (S∗n ≤ λ2, S
∗
n − Sn ≤ λ2 − λ1) + P (Sn ≤ λ2)

= P (S∗n ≤ λ2, Sn − S∗n ≥ λ1 − λ2) + P (Sn ≤ λ2)

= P (S∗n ≤ λ2, Tn,n ≥ λ1 − λ2) + P (Sn ≤ λ2)
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≥ P (S∗n ≤ λ2)P (Tnn ≥ λ1 − λ2) + P (Sn ≤ λ2)

by (3.3.8). Note that Tnn ≥ 0 and

P (Tnn ≥ λ1 − λ2) ≥ E(T 2
nn)− (λ1 − λ2)

2

a.s. supT 2
nn

(by Loev̀e (1977), p. 159).

Hence, for λ2 < λ1,

P (S∗n ≤ λ2) ≥ P (Sn ≤ λ2) + P (S∗n ≤ λ2)

{
E((S∗n − Sn)

2)− (λ1 − λ2)
2

a.s. sup T 2
nn

}

≥ P (Sn ≤ λ2) + P (S∗n ≤ λ2)

{
E(S2

n)− (λ1 − λ2)
2

a.s. sup T 2
nn

}
(by (3.3.7)).

Let E(S2
n) = s2n. Then, for all λ2 < λ1,{

1− E(S2
n)− (λ1 − λ2)

2

a.s. sup T 2
nn

}
P (S∗n ≤ λ2) ≥ P (Sn ≤ λ2). (3.3.9)

Furthermore
P (S∗n ≥ λ2) ≤ P (Sn ≥ λ2)

since S∗n ≤ Sn. Hence P (S
∗
n ≤ λ2) ≥ P (Sn ≤ λ2) and we have the inequality

P (Sn ≤ λ2) ≤ P (S∗n ≤ λ2) ≤ P (Sn ≤ λ2) +
E(S2

n)− (λ1 − λ2)
2

a.s. sup T 2
nn

from (3.3.9).
(vi) Note that the random variables −X1,−X2, . . . ,−Xn are negatively as-

sociated if the random variables X1, . . . , Xn are negatively associated (cf. Mat-
ula (1996)). Suppose E(Xi) = 0, 1 ≤ i ≤ n. Let Yi = −Xi, 1 ≤ i ≤ n and
Jn = Y1 + . . .+ Yn with J0 = 0. Applying the result in (3.3.9), we get that, for all
λ2 < λ1, {

1− E(T 2
n)− (λ1 − λ2)

2

a.s. sup(Tn − T ∗n)2

}
P (J∗n ≤ λ2) ≥ P (Jn ≤ λ2)

where T ∗n = min(J1, . . . , Jn). Observe the Jn = −Sn, n ≥ 1 and

J∗n = min(J1, . . . , Jn)
= min(−S1, . . . ,−Sn)

= −max(S1, . . . , Sn)

= −Snn.

Furthermore E(J2
n) = E(S2

n) = s2n. Note that Jnn = Jn − J∗n = −Sn+Snn. Hence

P (J∗n ≤ λ2) = P (−Snn ≤ λ2)
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and [
1−

{
s2n − (λ1 − λ2)

2

a.s. sup (−Sn + Snn)2

}]
P (−Snn ≤ λ2) ≥ P (−Sn ≤ λ2).

Therefore[
1−

{
s2n − (λ1 − λ2)

2

a.s. sup (−Sn + Snn)2

}]
P (Snn ≥ −λ2) ≥ P (Sn ≥ −λ2),

or equivalently for any ν1 < ν2,[
1−

{
s2n − (ν1 − ν2)

2

a.s. sup (Snn − Sn)2

}]
P (Snn ≥ ν2) ≥ P (Sn ≥ ν2). (3.3.10)

(vii) Let the sequence {Sn, n ≥ 1} be an L2 N -demimartingale. Then, for
λ1 < λ2,

λ2 P (S∗n ≤ λ2) ≤
∫
[S∗n≤λ2]

SndP (by (3.3.2))

=

∫
[S∗n≤λ2,Sn>λ1]

SndP +

∫
[S∗n≤λ2,Sn≤λ1]

SndP

≤
∫
[Sn≥λ1]

SndP + λ1 P (S∗n ≤ λ2).

Hence

P (S∗n ≤ λ2) ≤ 1

λ2 − λ1
E[SnI(Sn > λ1)] (3.3.11)

≤ 1

λ2 − λ1
(E[S2

n]P (Sn > λ1))
1/2.

Special Case. Applying the above result to the random variables −X1, . . . ,−Xn,
which are NA with mean zero, we have, for λ1 < λ2,

P (−Snn ≤ λ2) ≤ 1

λ2 − λ1
(E[S2

n]P (−Sn > λ1))
1/2

or equivalently, for ν1 > ν2.

P (Snn ≥ ν2) ≤ 1

ν2 − ν1
(E(S2

n)P (Sn < ν1))
1/2. (3.3.12)

3.4 Downcrossing Inequality

Let the finite set ξ1, ξ2, . . . , ξn be any real numbers and a < b. The numbers of
downcrossings Da,b of the interval [a, b] by ξ1, . . . , ξn is defined as the number of
times the sequence ξ1, . . . , ξn passes from above b to below a. Let ξν1

be the first
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ξi, if any, for which ξi ≥ b and in general let ξνj
be the first ξi, if any, after ξνj−1

for which
ξi ≤ a (if j is even)

and
ξi ≥ b (if j is odd)

so that
ξν1

≥ b, ξν2
≤ a, ξν3

≥ b, . . .

Then the number of downcrossings is β where 2β is the largest integer j for which
ξνj

is defined and β = 0 if ξν2
is not defined. Let ν0 ≡ 0. Here

ν2k−1 =

{
n+ 1 if {j : ν2k−2 < j ≤ n and ξj ≥ b} is empty
min{j : ν2k−2 < j ≤ n and ξj ≥ b} otherwise,

and

ν2k =

{
n+ 1 if {j : ν2k−1 < j ≤ n and ξj ≤ a} is empty
min{j : ν2k−2 < j ≤ n and ξj ≤ a} otherwise.

Define

εj =

{
1 if for some k = 1, 2, . . . , ν2k−1 ≤ j < ν2k

0 if for some k = 1, 2, . . . , ν2k ≤ j < ν2k+1

so that εj is the indicator function of the event that the time interval [j, j + 1] is
a part of a downcrossing (possibly incomplete). Let

Λ = {ν̃ ≡ ν2Da,b+1 < n}.

Note that Λ is the event that the sequence ends with an incomplete downcrossing.
Note that

εj =

⎧⎪⎨
⎪⎩
1 if either ξi ≥ b for i = 1, . . . , j or else

for some i = 1, . . . , j, ξi ≥ a and ξk ≥ b for k = i+ 1, . . . , j

0 otherwise.

Furthermore

(b− ξn)
+ − (b− ξ1)

+ =

n−1∑
j=1

[(b− ξj+1)
+ − (b− ξj)

+]

= Hu +Hd

where

Hd =

n−1∑
j=1

(1− εj)[(b− ξj+1)
+ − (b− ξj)

+].
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Note that
(b− ξj+1)

+ ≥ b− ξj+1

and
(1− εj)(b− ξj)

+ = (1− εj)(b− ξj) since εj = 0 implies ξj < b.

Therefore

Hd ≥
n−1∑
j=1

(1− εj)[(b− ξj+1)− (b− ξj)] (3.4.1)

=
n∑

j=1

(1− εj)[ξj − ξj+1]

and

Hu =

n−1∑
j=1

εj [(b− ξ+j+1)− (b− ξj)
+]

=

Da,b∑
k=1

ν2k−1∑
j=ν2k−1

[(b− ξj+1)
+ − (b− ξj)

+] +

n−1∑
j=ν̃

[(b− ξ+j+1 − (b− ξj)
+]

=

Da,b∑
k=1

[(b− ξν2k
)+ − (b− ξν2k−1

)+] + [(b− ξn)
+ − (b− ξν̃)

+]IΛ

=

Da,b∑
k=1

(b− ξν2k
)+ + (b− ξn)

+IΛ

≥ (b− a)Da,b

where Da,b is the number of completed downcrossings. Combining the above in-
equalities and taking expectations, we get that

E[(b− ξn)
+ − (b− ξ1)

+] ≥ (b− a)E[Da,b] +

n−1∑
j=1

E[(1− εj)(ξj − ξj+1)].

Suppose the sequence {ξn} is an N -demisupermartingale. Since (1− εj) is a non-
negative nondecreasing function of ξ1, . . . , ξj , it follows that

E((1− εj)(ξj+1 − ξj)) ≤ 0, 1 ≤ j ≤ n

which implies that

E(Da,b) ≤ 1

b− a
[E(b− ξn)

+ − E(b− ξ1)
+]

and we have the following theorem.
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Theorem 3.4.1. Suppose the sequence {ξn, n ≥ 1} is an N -demisupermartingale.
Then, for any a < b,

E(Da,b) ≤ 1

b− a
[E(b− ξn)

+ − E(b− ξ1)
+]

where Da,b denotes the number of complete downcrossings of the interval [a, b] by
the sequence {ξn, n ≥ 1}.

Almost Sure Convergence for N -demisupermartingales

If E|ξ1| < ∞, then it follows, from Theorem 3.4.1, that ξn converges a.s. to a finite
limit by standard arguments and we have the following theorem.

Theorem 3.4.2. If the sequence {ξn, n ≥ 1} is a N -demisupermartingale with
supn E|ξn| < ∞, then ξn converges a.s. to a finite limit as n → ∞.

As a corollary to the above theorem, we obtain that, if {Xn, n ≥ 1} is a zero
mean sequence of negatively associated random variables such that supn E|ξn| <
∞ where ξn = X1 + . . .+Xn, then ξn converges a.s. to a finite limit as n → ∞.

Results in this section are from Prakasa Rao (2002a).

3.5 Chow Type Maximal Inequality

We now discuss a Chow type maximal inequality for N -demimartingales due to
Prakasa Rao (2004).

Theorem 3.5.1. Let the sequence {Sn, n ≥ 1} be an N -demimartingale with S0 = 0.
Let m(.) be a nonnegative nondecreasing function on R with m(0) = 0. Let g(.) be
a function such that g(0) = 0 and suppose that

g(x)− g(y) ≥ (y − x)h(y) (3.5.1)

for all x, y where h(.) is a nonnegative nondecreasing function. Further suppose
that {ck, 1 ≤ k ≤ n} is a sequence of positive numbers such that (ck−ck+1)g(Sk) ≥
0, 1 ≤ k ≤ n− 1. Define

Yk = max{c1g(S1), . . . , ckg(Sk)}, k ≥ 1, Y0 = 0.

Then

E(

∫ Yn

0

u dm(u)) ≤
n∑

k=1

ckE([g(Sk)− g(Sk−1)]m(Yn)). (3.5.2)

Proof. Let Y0 = 0. Observe that

E(

∫ Yn

0

u dm(u)) =
n∑

k=1

E(

∫ Yk

Yk−1

udm(u)) (3.5.3)
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≤
n∑

k=1

E[Yk(m(Yk)−m(Yk+1))].

From the definition of Yk, it follows that m(Y1) = 0 for Y1 < 0. Furthermore
Yk ≥ Yk−1 and either Yk = ckg(Sk) or m(Yk) = m(Yk−1). Hence

E(

∫ Yn

0

u dm(u)) ≤
n∑

k=1

ckE[g(Sk)(m(Yk)−m(Yk−1))] (3.5.4)

since m(.) is a nondecreasing function and Yk−1 ≤ Yk. Note that

n∑
k=1

ckE[g(Sk)(m(Yk)−m(Yk−1))] =

n∑
k=1

ckE[(g(Sk)− g(Sk−1))m(Yn)] (3.5.5)

− {
n−1∑
k=1

E[(ck+1g(Sk+1)− ckg(Sk))m(Yk)]

+
n−1∑
k=1

E[(ck − ck+1)g(Sk)m(Yn)]}

Let

A =
n−1∑
k=1

E[(ck+1g(Sk+1)− ckg(Sk))m(Yk)] +

n−1∑
k=1

E[(ck − ck+1)g(Sk)m(Yn)].

(3.5.6)
Since (ck − ck+1)g(Sk) ≥ 0, 1 ≤ k ≤ n− 1, it follows that

A ≥
n−1∑
k=1

E[(ck+1g(Sk+1)− ckg(Sk))m(Yk)] +
n−1∑
k=1

E[(ck − ck+1)g(Sk)m(Yk)]

=

n−1∑
k=1

E[(ck+1g(Sk+1)− ck+1g(Sk))m(Yk)] (3.5.7)

=
n−1∑
k=1

ck+1E[(g(Sk+1)− g(Sk))m(Yk)]

≥
n−1∑
k=1

ck+1E[(Sk − Sk+1)h(Sk)m(Yk)]

from the property of the function g(.) given by (3.5.1). Note that h(Si)m(Yi) is a
nondecreasing function of S1, . . . , Si. Since {Si, i ≥ 1} forms anN -demimartingale,
it follows that

E[(Sk+1 − Sk)h(Sk)m(Yk)] ≤ 0, 1 ≤ k ≤ n− 1
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and hence
n−1∑
k=1

ck+1E[(Sk − Sk+1)h(Sk)m(Yk)] ≥ 0 (3.5.8)

by the nonnegativity of the sequence ci, i ≥ 1. Hence A ≥ 0. Therefore

E(

∫ Yn

0

u dm(u)) ≤
n∑

k=1

ckE([g(Sk)− g(Sk−1)]m(Yn)). (3.5.9)

�

Remarks. Let ε > 0 and define m(t) = 1 if t ≥ ε and m(t) = 0 if t < ε. Applying
the previous theorem, we get that

ε P (Yn ≥ ε) ≤
n∑

k=1

ckE([g(Sk)− g(Sk−1)]I[Yn≥ε]). (3.5.10)

Examples of functions g satisfying (3.5.1) are g(x) = −αx where α ≥ 0 and
g(x) = −αx+ where α ≥ 0. Here x+ = x if x ≥ 0 and x+ = 0 if x < 0.

As a corollary to the Chow type maximal inequality derived above, the fol-
lowing result can be obtained (cf. Wang et al. (2011)) as an easy consequence.

Theorem 3.5.2. Let the sequence {Sn, n ≥ 1} be an N -demimartingale with S0 = 0.
Let g(.) be a nonnegative function such that g(0) = 0 and suppose that

g(x)− g(y) ≥ (y − x)h(y) (3.5.11)

for all x, y where h(.) is a nonnegative nondecreasing function. Further suppose
that the sequence {ck, 1 ≤ k ≤ n} is a nonincreasing sequence of positive numbers.
Then, for any ε > 0,

ε P ( max
1≤k≤n

ckg(Sk) ≥ ε) ≤
n∑

k=1

ckE([g(Sk)− g(Sk−1)]I[max1≤k≤n ckg(Sk)≥ε]).

(3.5.12)

Theorem 3.5.3. Suppose the conditions in Theorem 3.5.1 hold and E(g(Sk) < ∞,
for every k ≥ 1. Then, for any ε > 0 and n ≥ 1,

ε P ( max
1≤k≤n

ckg(Sk) ≥ ε) ≤ c1E[g(S1)] +

n∑
k=2

ckE([g(Sk)− g(Sk−1)] (3.5.13)

and, for 1 ≤ n < N,

ε P ( max
n≤k≤n

ckg(Sk) ≥ ε) ≤ cnE[g(Sn)] +

n∑
k=n+1

ckE([g(Sk)− g(Sk−1)]. (3.5.14)
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Proof. Theorem 3.5.1 implies that

ε P ( max
1≤k≤n

ckg(Sk) ≥ ε) (3.5.15)

≤
n∑

j=2

cjE([g(Sj)− g(Sj−1)I[max1≤k≤n ckg(Sk)≥ε]])

=
n−1∑
i=1

(ci − ci+1)E[g(Si)]I[max1≤k≤n ckg(Sk)≥ε]]

+ cnE([g(Sn)]I[max1≤k≤n ckg(Sk)≥ε])

≤
n−1∑
i=1

(ci − ci+1)E[g(Si)] + cnE[g(Sn)]

= c1E[g(S1)] +

n∑
k=2

ckE([g(Sk)− g(Sk−1)].

This proves the inequality (3.5.13). By the definition of N -demimartingale, it is
easily seen that the sequence {Sk, k ≥ n} is also an N -demimartingale for any
fixed n. Applying the inequality (3.5.13), we can obtain the inequality (3.5.14). �

3.6 Functions of N -Demimartingales

We now obtain bounds on the moments for maxima of functions of N -demimartin-
gales following Wang et al. (2010).

Theorem 3.6.1. Let the sequence {Sn, n ≥ 1} be an N -demimartingale with S0 = 0.
Let g(.) be a nonnegative function such that g(0) = 0 and suppose that

g(x)− g(y) ≥ (y − x)h(y) (3.6.1)

for all x, y where h(.) is a nonnegative nondecreasing function. Further suppose
that {ck, 1 ≤ k ≤ n} is a non-increasing sequence of positive numbers and
E(g(Sk))

p < ∞, for every k ≥ 1 for some p > 1. Then, for every n ≥ 1,

E[ max
1≤k≤n

ckg(Sk)]
p ≤ ( p

p− 1)
p E[

n∑
j=1

cj(g(Sj)− g(Sj−1))]
p (3.6.2)

and

E[ max
1≤k≤n

ckg(Sk)] (3.6.3)

≤ ( e

e− 1)(1 + E[(
n∑

j=1

cj(g(Sj)− g(Sj−1)) log
+(

n∑
j=1

cj(g(Sj)− g(Sj−1))]).
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Proof. Theorem 3.5.2 and Hölder’s inequality imply that

E[ max
1≤k≤n

ckg(Sk)]
p (3.6.4)

≤ p

∫ ∞

0

xp−1P [ max
1≤k≤n

ckg(Sk) ≥ x] dx

≤ p

∫ ∞

0

xp−2E[

n∑
k=1

ck(g(Sk)− g(Sk−1))I[max1≤k≤n ckg(Sk)≥x]] dx

=
p

p− 1E([
n∑

k=1

ck(g(Sk)− g(Sk−1))][ max
1≤k≤n

ckg(Sk)]
p−1)

≤ p

p− 1{E[
n∑

k=1

ck(g(Sk)− g(Sk−1))]
p}1/p{E[ max

1≤k≤n
ckg(Sk)]

p}1/q

where q is a real number such that 1
p +

1
q = 1. Since E(g(Sk))

p < ∞, for every
k ≥ 1, we get that

(E[ max
1≤k≤n

ckg(Sk)]
p)1/p ≤ p

p− 1{E[
n∑

k=1

ck(g(Sk)− g(Sk−1))]
p}1/p, (3.6.5)

and therefore

E[ max
1≤k≤n

ckg(Sk)]
p ≤ ( p

p− 1)
pE[

n∑
k=1

ck(g(Sk)− g(Sk−1))]
p. (3.6.6)

Following arguments similar to those given above, we get that

E[ max
1≤k≤n

ckg(Sk)] (3.6.7)

≤ 1 +
∫ ∞

1

P [ max
1≤k≤n

ckg(Sk) ≥ x] dx

≤ 1 +
∫ ∞

1

x−1E[

n∑
k=1

ck(g(Sk)− g(Sk−1))I[max1≤k≤n ckg(Sk)≥x]] dx

= 1 + E[(
n∑

k=1

ck(g(Sk)− g(Sk−1))) log
+( max

1≤k≤n
ckg(Sk))].

For any a ≥ 0 and b > 0, it is easy to see that

a log+ b ≤ a log+ be−1.

Applying the above inequality, we get that
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E[ max
1≤k≤n

ckg(Sk)] (3.6.8)

≤ (1 + E[(

n∑
j=1

cj(g(Sj)− g(Sj−1)) log
+(

n∑
j=1

cj(g(Sj)− g(Sj−1)))])

+ e−1E[ max
1≤k≤n

ckg(Sk)].

Rearranging the above inequality, we get that

E[ max
1≤k≤n

ckg(Sk)] (3.6.9)

≤ ( e

e− 1)(1 + E[(
n∑

j=1

cj(g(Sj)− g(Sj−1)) log
+(

n∑
j=1

cj(g(Sj)− g(Sj−1)))]). �

As an application of Theorem 3.6.1, choosing ck = 1 for every k ≥ 1, we get
that

E[ max
1≤k≤n

g(Sk)]
p ≤ ( p

p− 1)
p E[g(Sn)]

p (3.6.10)

and
E[ max

1≤k≤n
ckg(Sk)] ≤ ( e

e− 1)(1 + E[g(Sn) log
+ g(Sn)]). (3.6.11)

Remarks. Additional inequalities of the above type and their applications to derive
sufficient conditions for strong laws of large numbers for N -demimartingales and
their rates of convergence are given in Wang et al. (2010) following the methods
in Fazekas and Klesov (2001) and Hu et al. (2008). We now discuss a result of this
type.

3.7 Strong Law of Large Numbers

The following lemma is due to Fazekos and Klesov (2001).

Lemma 3.7.1. Let the sequence {Xn, n ≥ 1} be a sequence of random variables
and let Sn =

∑n
i=1 Xi, n ≥ 1 and bn be a nondecreasing sequence of positive num-

bers tending to infinity as n → ∞. Suppose that αn is a sequence of nonnegative
numbers such that, for some p > 0 and c > 0,

E[ max
1≤i≤n

|Si|]p ≤ c

n∑
i=1

αi, (3.7.1)

and ∞∑
i=1

αi

bpi
< ∞. (3.7.2)

Then

lim
n→∞

Sn

bn
= 0 a.s. (3.7.3)
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Remarks. Hu et al. (2008) obtained the rate of convergence in (3.7.3) under some
additional conditions.

Theorem 3.7.2. Let the random sequence {Sn, n ≥ 1} be an N -demimartingale
and g(.) be a nonnegative function such that g(0) = 0 and

g(x)− g(y) ≥ (y − x)h(y) (3.7.4)

for all x, y where h(.) is a nonnegative nondecreasing function. Further suppose
that bn is a nondecreasing sequence of positive numbers tending to infinity as
n → ∞. In addition, suppose there exists p > 1 such that E[g(Sk−1)]

p ≤ E[g(Sk)]
p

for every k ≥ 1, and
∞∑

n=1

E[g(Sn)]
p − E[g(Sn−1)]

p

bpn
< ∞. (3.7.5)

Then

lim
n→∞

g(Sn)

bn
= 0 a.s. (3.7.6)

Proof. Choose

αn = (
p

p− 1)
p[E(g(Sn))

p − E(g(Sn−1))
p], n ≥ 1. (3.7.7)

By hypothesis, the sequence αn ≥ 0 for n ≥ 1. Furthermore

E[ max
1≤k≤n

g(Sk)]
p ≤ ( p

p− 1)
pE(g(Sn))

p =
n∑

k=1

αk (3.7.8)

and ∞∑
n=1

αn

bpn
= (

p

p− 1)
p
∞∑

n=1

[E(g(Sn))
p − E(g(Sn−1))

p

bpn
< ∞. (3.7.9)

Applying Lemma 3.7.1 stated above, we get that

lim
n→∞

g(Sn)

bn
= 0 a.s. (3.7.10)

�

3.8 Azuma Type Inequality

Suppose {Xn, n≥1} is a sequence of martingale differences such that supi≥1 |Xi|≤
α < ∞. Let Sn =

∑n
i=1 Xi. Azuma (1967) proved that

P (Sn ≥ nε) ≤ exp(− nε2

2α2
).

Christofides and Hadjikyriakou (2009) obtained a similar inequality for N -demi-
martingales. We now discuss their result.
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Theorem 3.8.1. Let the random sequence {Sn, n ≥ 1} with S0 = 0 be an N -
demimartingale with E(S1) ≤ 0. Further suppose that |Si − Si−1| ≤ ci < ∞, i ≥ 1
where ci > 0, i ≥ 1. Then, for every ε > 0,

P (Sn ≥ nε) ≤ exp(− n2ε2

2
∑n

i=1 c
2
i

) (3.8.1)

and, if in addition E(S1) = 0, then

P (|Sn| ≥ nε) ≤ 2 exp(− n2ε2

2
∑n

i=1 c
2
i

). (3.8.2)

Proof. For any t real and x ∈ [−ci, ci],

tx =
1

2
(1 +

x

ci
)(cit) +

1

2
(1− x

ci
)(−cit).

From the convexity of the function etx, it follows that

etx ≤ cosh(cit) + x

ci
sinh(cit).

Hence

E[etSn ] = E[

n∏
i=1

et(Si−Si−1)] (3.8.3)

≤ E[
n∏

i=1

(cosh(cit) +
Si − Si−1

ci
sinh(cit))].

Observe that, for any t > 0,

E[etS2 ] = E[etS1et(S2−S1)] (3.8.4)

≤ E[(cosh(c1t) +
S1

c1
sinh(c1t))(cosh(c2t) +

S2 − S1

c2
sinh(c2t))]

= cosh(c1t) cosh(c2t) +
sinh(c1t) sinh(c2t)

c1c2
E[S1(S2 − S1)]

+
cosh(c1t) sinh(c2t)

c2
E(S2 − S1) +

cosh(c2t) sinh(c1t)

c1
E(S1)

= cosh(c1t) cosh(c2t) +
sinh(c1t) sinh(c2t)

c1c2
E[S1(S2 − S1)]

≤ cosh(c1t) cosh(c2t).
The second equality in the above list of inequalities follows from the fact that
E(S1) ≤ 0 and the fact that E(S2) = E(S1) from the N -demimartingale property
of the sequence {Sn, n ≥ 1}. The last inequality is a consequence of the fact that
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E((S1)(S2 − S1)) ≤ 0 again from the N -demimartingale property of the sequence
{Sn, n ≥ 1}. Hence

E[etS2 ] ≤
2∏

i=1

cosh(cit), t > 0. (3.8.5)

We will now show that

E[etSn ] ≤
n∏

i=1

cosh(cit), t > 0 (3.8.6)

for all n ≥ 2 by the method of induction. We have proved that the inequality
(3.8.6) holds for n = 2. Suppose the inequality (3.8.6) holds for n = k. We will
show that it holds for n = k + 1. Note that

E[etSk+1 ] = E[et(Sk+1−Sk)etSk ] (3.8.7)

≤ E[(cosh(ck+1t) + (Sk+1 − Sk)
sinh(ck+1t)

ck+1
)etSk ]

= cosh(ck+1t)E[e
tSk ] +

sinh(ck+1t)

ck+1
E[(Sk+1 − Sk)e

tSk ]

≤ πk+1
i=1 cosh(cit).

The last inequality follows from the N -demimartingale property and the induction
hypothesis.

Since cosh(ct) ≤ exp(c2t2/2), the inequality (3.8.6) implies that

E[etSn ] ≤ exp( t
2
∑n

i=1 c
2
i

2
), n ≥ 1, t > 0. (3.8.8)

For any ε > 0 and t > 0,

P (Sn ≥ nε) = P (tSn ≥ tnε) (3.8.9)

= P (etSn ≥ etnε)

≤ e−tnεE[etSn ]

≤ exp[−tnε+
t2
∑n

i=1 c
2
i

2
].

The upper bound given above is minimized by choosing t = nε/
∑n

i=1 c
2
i and we

obtain the inequality (3.8.1).

In addition, suppose that E(S1) = 0. Note that the sequence {−Sn, n ≥ 1}
is an N -demimartingale with E(−S1) = 0. Applying the inequality (3.8.1) derived
earlier for the sequence {−Sn, n ≥ 1}, we get that, for any ε > 0,

P (−Sn ≥ nε) ≤ exp[−tnε+
t2
∑n

i=1 c
2
i

2
]. (3.8.10)
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Inequalities (3.8.9) and (3.8.10) show that

P (|Sn| ≥ nε) ≤ P (Sn ≥ nε) + P (−Sn ≥ nε) (3.8.11)

≤ 2 exp[−tnε+
t2
∑n

i=1 c
2
i

2
].

The upper bound given above is again minimized by choosing t = nε/
∑n

i=1 c
2
i and

we obtain the inequality (3.8.2). �
As applications of the inequality derived above, the following results can be

obtained.

Theorem 3.8.2. Let the sequence {Xn, n ≥ 1} be mean zero negatively associated
random variables with |Xk| ≤ ck, k ≥ 1 where ck > 0, k ≥ 1. Let Sn =

∑n
k=1 Xk.

Then, for every ε > 0,

P (Sn ≥ nε) ≤ exp(− n2ε2

2
∑n

i=1 c
2
i

) (3.8.12)

and

P (|Sn| ≥ nε) ≤ 2 exp(− n2ε2

2
∑n

i=1 c
2
i

). (3.8.13)

The next result gives sufficient conditions for complete convergence for a class
of N -demimartingales.

Theorem 3.8.3. Let the sequence {Sn, n ≥ 1} be a mean zero N -demimartingale
such that |Si − Si−1| ≤ α, i ≥ 1. Then, for r > 1

2 ,

n−rSn → 0 completely as n → ∞. (3.8.14)

Proof. Observe that

∞∑
n=1

P (|Sn| ≥ nrε) ≤ 2
∞∑
i=1

exp[−n2r−1ε2

2α2
] (3.8.15)

= 2
∞∑
i=1

exp[−n2r−1d]

where d = ε2/2α2 and the infinite series in the last equality is convergent for every
ε > 0. �

3.9 Marcinkiewicz-Zygmund Type inequality

Let the sequence {Sn, n ≥ 1} be a nonnegative N -demimartingale. We now derive
a Marcinkiewicz-Zygmund type inequality for nonnegative N -demimartingales due
to Hadjikyriakou (2011). Let ||f ||p denote the Lp norm of a function f ∈ Lp. The
following result provides an upper bound for ||Sn||p when p ≥ 1 in terms of the
N -demimartingale differences dj = Sj − Sj−1.
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3.9. Marcinkiewicz-Zygmund Type inequality

Theorem 3.9.1. Let the sequence {Sn, n ≥ 1} be a nonnegative N -demimartingale
with S0 = 0. Then

(i) for 1 < p ≤ 2,

||Sn||pp ≤ ||d1||pp + 22−p
n−1∑
j=1

||dj+1||pp ≤ 22−p
n∑

j=1

|dj ||pp;

(ii) for p > 2,

||Sn||2p ≤ ||d1||2p + (p− 1)
n−1∑
j=1

||dj+1||2p ≤ (p− 1)
n∑

j=1

|dj ||2p.

We first state a couple of lemmas which will be used in the proof of Theorem
3.9.1.

Lemma 3.9.2. Let a, b be real and let p ∈ (1, 2]. Then

|a+ b|p ≤ |a|p + p|a|p−1sgn(a)b+ 22−p|b|p.

Lemma 3.9.3. Let p > 2. Then, for x ≥ c > 0,

[x2− 2
p − c2−

2
p ]1/2 ≤ x1− 2

p [(p− 1)(x2/p − c2/p)]1/2.

The proof of Lemma 3.9.2 follows by standard methods. Lemma 3.9.3 is a
consequence of Lemma 2.1 in Rio (2009). We omit the details.

Proof of Theorem 3.9.1. (i) Let p ∈ (1, 2]. Applying Lemma 3.9.2, we get that

E[Sp
j+1] ≤ E[Sp

j ] + pE[Sp−1
j (Sj+1 − Sj)] + 2

2−pE[dj+1|p]
≤ E[Sp

j ] + 2
2−pE|dj+1|p]

and the last inequality follows by the N -demimartingale property of the sequence
{Sn, n ≥ 1}. Applying the inequality recursively, we get that

E[Sp
n] ≤ E[dp1] + 2

2−p
n∑

j=2

E[|dj |p]

= ||d1||pp + 22−p
n∑

j=2

||dj ||pp

≤ 22−p
n∑

j=1

||dj ||pp.
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(ii) Suppose p > 2. We assume that ||Sj ||p > 0 for all j as otherwise, the
result holds trivially. Let

φ(t) = E([Sj + t(Sj+1 − Sj)]
p) (3.9.1)

be defined on the interval [0,∞). Applying Taylor’s expansion of order 2 with
integral form of the remainder for the function φ(t), we get that

||Sj + t(Sj+1 − Sj)||pp = ||Sj ||pp + pt E[(Sj+1 − Sj)S
p−1
j ]

+ p(p− 1)
∫ t

0

(t− s)E[(Sj+1 − Sj)
2|Sj + s(Sj+1 − Sj)|p−2]ds. (3.9.2)

Applying Hölder’s inequality and the N -demimartingale property, it follows that

φ(t) ≤ ||Sj ||pp + p(p− 1)||dj+1||pp
∫ t

0

(t− s)[φ(s)]1−
2
p ds

= ψ(t) (say).

It can be checked that the first and second derivatives of the function ψ(t) exist
and are given by

ψ′(t) = p(p− 1)||dj+1||2p
∫ t

0

[φ(s)]1−
2
p ds

and
ψ′′(t) = p(p− 1)||dj+1||2p[φ(t)]1−

2
p ≤ p(p− 1)||dj+1||2p[ψ(t)]1−

2
p .

Multiplying both sides of the inequality given above by the function 2ψ′ and
integrating between 0 and x, we have∫ x

0

2ψ′(t)ψ′′(t)dt ≤ 2p(p− 1)||dj+1||2p
∫ x

0

ψ′(t)[ψ(t)]1−
2
p dt.

Therefore

ψ′(x) ≤ p||dj+1||p[(ψ(x))2− 2
p − c2−

2
p ]1/2

where c = ||Sj ||pp. Applying Lemma 3.9.3, we get that

ψ′(t) ≤ p(p− 1)1/2||dj+1||p[ψ(t)]1− 2
p [(ψ(t))

2
p − c

2
p ]1/2. (3.9.3)

Let z(t) = [ψ(t)]2/p. Then the inequality (3.9.3) can be written as

z′(t)[z(t)− c2/p]−
1
2 ≤ 2(p− 1)1/2||dj+1||p. (3.9.4)

Solving this differential inequality for z(t), we get that

z(t) ≤ (p− 1)|dj+1||2pt2 + c2/p. (3.9.5)
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3.9. Marcinkiewicz-Zygmund Type inequality

Since φ(t) ≤ ψ(t), it follows that [φ(t)]2/p ≤ z(t), and we get the inequality

[φ(t)]2/p ≤ ||Sj ||2p + (p− 1)||Sj+1 − Sj ||2pt2. (3.9.6)

Since φ(1) = ||Sj+1||pp, the result follows by induction. �
As a consequence of Theorem 3.9.1, we obtain the following large deviation

inequalities for nonnegative N -demimartingales.

Theorem 3.9.4. Let the sequence {Sn, n ≥ 1} be a nonnegative N -demimartingale
such that

||Sj+1 − Sj ||p < Mj+1 < ∞, j ≥ 1 (3.9.7)

for some p > 1. Let ε > 0. Then

P (Sn > nε) ≤ 4

(2nε)p

n∑
j=1

Mp
j

if 1 < p ≤ 2 and

P (Sn > nε) ≤ (p− 1)p/2
(nε)p

(

n∑
j=1

M2
j )

p/2

if p > 2.

Proof. Suppose p ∈ (1, 2]. Applying Theorem 3.9.1, we get that

E[Sp
n] ≤ 22−p

n∑
j=1

||dj ||pp ≤ 22−p
n∑

j=1

Mp
j

under the condition given in (3.9.7). Hence, for every ε > 0,

P (Sn > nε) ≤ E[Sp
n]

npεp
≤ 4

(2nε)p

n∑
j=1

Mp
j .

Suppose p > 2. Applying Theorem 3.9.1 again, we get that

E[Sp
n] ≤ (p− 1)p/2(

n∑
j=1

M2
j )

p/2.

Hence, for every ε > 0,

P (Sn > nε) ≤ E[Sp
n]

npεp
≤ (p− 1)p/2

(nε)p
(

n∑
j=1

M2
j )

p/2. �

Complete convergence results for nonnegative N -demimartingales can be
proved by using the large deviation inequalities derived above. For details, see
Hadjikyriakou (2011).
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Chapter 3. N -Demimartingales

3.10 Comparison Theorem on Moment Inequalities

We now introduce a stronger condition on an N -demimartingale to derive a com-
parison theorem.

Definition. A random sequence {Sn, n ≥ 1} is said to be a strong N -demimartin-
gale if, for any two componentwise nondecreasing functions f and g,

Cov[g(Sj+1 − Sj), f(S1, . . . , Sj)] ≤ 0, j ≥ 1 (3.10.1)

whenever the expectation is defined.

It is easy to see that if a sequence {Xj , j ≥ 1} is a negatively associated
sequence of random variables, then the corresponding partial sums form a strong
N -demimartingale.

Theorem 3.10.1. Let the random sequence {Sj, 1 ≤ j ≤ n} be a strong N -
demimartingale. Define Xj = Sj − Sj−1, j ≥ 1 with S0 = 0. Let X

∗
j , 1 ≤ j ≤ n

be independent random variables such that Xj and X∗
j have the same distribution.

Let S∗n = X∗
1 + . . .+X∗

n. Then, for any convex function h,

E(h(Sn)) ≤ E(h(S∗n)) (3.10.2)

whenever the expectations exist. Furthermore, if h(.) is a nondecreasing convex
function, then

E( max
1≤j≤n

h(Sj)) ≤ E( max
1≤j≤n

h(S∗j )) (3.10.3)

whenever the expectations exist.

Proof. Let a random vector (Y1, Y2) be independent and identically distributed as
the random vector (X1, X2). It is well known that for any convex function h on
the real line, there exists a nondecreasing function g(.) such that for all a < b,

h(b)− h(a) =

∫ b

a

g(t)dt.

(cf. Roberts and Verberg (1973)). Hence

h(X1 +X2) + h(Y1 + Y2)− h(X1 + Y2)− h(Y1 +X2)

=

∫ X1

X2

[g(Y1 + t)− g(X1 + t)] dt

=

∫ ∞

−∞
[g(Y1 + t)− g(X1 + t)](I[Y2>t] − I[X2>t]) dt.

Therefore
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2E[h(S2)]− 2E[h(S∗2 )]
= 2(E[h(X1 +X2)− E[h(X∗

1 +X∗
2 )])

= E[h(X1 +X2) + h(Y1 + Y2)− h(X1 + Y2)− h(Y1 +X2)]

=

∫ ∞

−∞
Cov(g(X1 + t), I[X2>t]) dt.

Observe that the functions g(x+ t) and I[x>t] are nondecreasing functions in x for
each t. Since Si, 1 ≤ i ≤ n forms a strong N -demimartingale, it follows that

Cov(g(X1 + t), I[X2>t]) ≤ 0

for each t which in turn implies that

E[h(S2)]− E[h(S∗2 )] ≤ 0. (3.10.4)

This proves the theorem for the case n = 2.We now prove the result by induction
on n. Suppose the result holds for the case of n− 1 random variables. Let

k(x) = E(h(x+ Sn−1)).

Since the function h(x+ .) is a convex function for any fixed x, it follows that

k(x) ≤ E(h(x+ S∗n−1)). (3.10.5)

Since {Sj , 1 ≤ j ≤ n} forms a strong N -demimartingale, it follows that{Sn−1, Sn}
also forms a strong N -demimartingale which reduces to negative association of the
two random variables Sn−1 and Xn. Therefore

E[h(Sn)] ≤ E[h(X∗
n + S∗n−1)] (by induction hypothesis)

= E(k(X∗
n))

≤ E(h(X∗
n + S∗n−1)) (by (3.9.5))

= E[h(S∗n)].

This proves the result for the case of n random variables completing the proof by
induction. The second part of the theorem can be proved by arguments analogous
to those given in Shao (2002). We omit the details. �
Remarks. The proofs given above hinge on the fact that two random variables
Z1, Z2 are negatively associated if and only if Z1, Z1 + Z2 forms a strong N -
demimartingale. This is obvious from the definition of a strong N -demimartingale.
As a consequence of the comparison theorem, the Rosenthal maximal inequality
and the Kolomogorov exponential inequality hold for strong N -demimartingales.

Results presented here are from Prakasa Rao (2004).
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Chapter 4

Conditional Demimartingales

4.1 Introduction

We will discuss the properties of conditional demimartingales in this chapter.
Chow and Teicher (1988) and more recently Majerek et al. (2005) discussed the
concept of conditional independence in detail and we introduced the notions of
conditional strong mixing and conditional association for sequences of random
variables as found in Prakasa Rao (2009). Properties of such random sequences
were investigated in Prakasa Rao (2009) and Roussas (2008). Based on these ideas,
Hydjikyriakou (2010) introduced the notion of conditional demimartingales.

4.2 Conditional Independence

Let (Ω,A, P ) be a probability space. Members of a set of events A1, A2, . . . , An

are said to be independent if

P (

k⋂
j=1

Aij ) =

k∏
j=1

P (Aij ) (4.2.1)

for all 1 ≤ i1 < i2 < . . . < ik ≤ n, 2 ≤ k ≤ n.

Definition. The members of the set of events A1, A2, . . . , An are said to be condi-
tionally independent given an event B with P (B) > 0 if

P (
k⋂

j=1

Aij |B) =
k∏

j=1

P (Aij |B) (4.2.2)

for all 1 ≤ i1 < i2 < . . . < ik ≤ n, 2 ≤ k ≤ n.

B.L.S. Prakasa Rao, Associated Sequences, Demimartingales
and Nonparametric Inference, Probability and its Applications,
DOI 10.1007/978-3-0348-0240-6_4, © Springer Basel AG 2012
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Chapter 4. Conditional Demimartingales

The following examples (cf. Majerak et al. (2005)) show that the indepen-
dence of events does not imply conditional independence and that the conditional
independence of events does not imply their independence.

Example 4.2.1. Let Ω = {1, 2, 3, 4, 5, 6, 7, 8} and pi = 1/8 be the probability as-
signed to the event {i} for 1 ≤ i ≤ 8. Let A1 = {1, 2, 3, 4}, A2 = {3, 4, 5, 6} and
B = {2, 3, 4, 5}. It is easy to see that the events A1 and A2 are independent but
not conditionally independent given the event B.

Example 4.2.2. Consider an experiment of choosing a coin numbered {i} with
probability pi =

1
n , 1 ≤ i ≤ n from a set of n coins and suppose it is tossed twice.

Let pi0 =
1
2i be the probability for tails for the i-th coin. Let A1 be the event that

tails appears in the first toss, A2 be the event that tails appears in the second toss
and Hi be the event that the i-th coin is selected. It can be checked that the events
A1 and A2 are conditionally independent given Hi but they are not independent
as long as the number of coins n ≥ 2.

Let (Ω,A, P ) be a probability space. Let F be a sub-σ-algebra of A and let
IA denote the indicator function of an event A.

Definition. The members of the set of events A1, A2, . . . , An are said to be condi-
tionally independent given F or F-independent if

E(
k∏

j=1

IAij
|F) =

k∏
j=1

E(IAij
)|F) a.s. (4.2.3)

for all 1 ≤ i1 < i2 < . . . < ik ≤ n, 2 ≤ k ≤ n.

For the definition of conditional expectation of a measurable functionX given
a σ-algebra F , see Doob (1953).
Remarks. If F = {Φ,Ω}, then the above definition reduces to the usual definition
of stochastic independence for random variables. If F = A, then equation (4.2.3)
reduces to the product of indicator A-measurable functions on both sides.

Let {ζn, n ≥ 1} be a sequence of classes of events. The sequence is said to
be conditionally independent given F if for all choices Am ∈ ζkm

where ki �= kj
for i �= j, m = 1, 2, . . . , n and n ≥ 2,

E(
k∏

j=1

IAj |F) =
k∏

j=1

E(IAj |F) a.s. (4.2.4)

For any set of real-valued random variables X1, X2, . . . , Xn defined on
(Ω,A, P ), let

σ(X1, X2, . . . , Xn)

denote the smallest σ-algebra with respect to which it is measurable.
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4.2. Conditional Independence

Definition. A sequence of random variables {Xn, n ≥ 1} defined on a probability
space (Ω,A, P ) is said to be conditionally independent given a sub-σ-algebra F
or F-independent if the sequence of classes of events ζn = σ(Xn), n ≥ 1 are
conditionally independent given F .

It can be checked that a set of random variables X1, X2, . . . , Xn defined on
a probability space (Ω,A, P ) are conditionally independent given a sub-σ-algebra
F if and only if for all (x1, x2, . . . , xn) ∈ Rn,

E(
n∏

i=1

I[Xi≤xi]|F) =
n∏

i=1

E(I[Xi≤xi]|F) a.s.

Remarks. Independent random variables {Xn, n ≥ 1}may lose their independence
under conditioning. For instance, let {X1, X2} be Bernoulli trials with probability
of success p with 0 < p < 1. Let S2 = X1 + X2. Then P (Xi = 1|S2 = 1) > 0,
i = 1, 2 but P (X1 = 1, X2 = 1|S2 = 1) = 0. On the other hand, dependent ran-
dom variables may become independent under conditioning, that is, they become
conditionally independent. This can be seen from the following discussion.

Let the sequence {Xi, i ≥ 1} be independent positive integer-valued random
variables. Then the sequence {Sn, n ≥ 1} is a dependent sequence where Sn =
X1 + . . . + Xn. Let us consider the event [S2 = k] with positive probability for
some positive integer k. Check that

P (S1 = i, S3 = j|S2 = k) = P (S1 = i|S2 = k)P (S3 = j|S2 = k).

Hence the random variables S1 and S3 are conditionally independent given S2. If
we interpret the subscript n of Sn as “time”, “past and future are conditionally
independent given the present”. This property holds not only for partial sums Sn

of independent random variables but also when the random sequence {Sn, n ≥ 1}
forms a time homogeneous Markov chain (cf. Chow and Teicher (1988)).

Remarks. (i) A sequence of random variables {Xn, n ≥ 1} defined on a proba-
bility space (Ω,A, P ) is said to be exchangeable if the joint distribution of every
finite subset of k of these random variables depends only upon k and not on the
particular subset. It can be proved that the sequence of random variables {Xn,
n ≥ 1} is exchangeable if and only if the random variables are conditionally inde-
pendent and identically distributed for a suitably chosen sub-σ-algebra F of A (cf.
Chow and Teicher (1988)). If a random variable Z is independent of a sequence
of independent and identically distributed random variables {Xn, n ≥ 1}, then
the sequence {Yn, n ≥ 1} where Yn = Z +Xn forms an exchangeable sequence of
random variables and hence conditionally independent.

(ii) Another example of a conditionally independent sequence is discussed in
Prakasa Rao (1987) (cf. Gyires (1981)). This model can be described as follows. Let

θ
(k)
h,j , 1 ≤ h, j ≤ p, 1 ≤ k ≤ n be independent real-valued random variables defined
on a probability space (Ω,A, P ). Let {ηj , j ≥ 0} be a homogeneous Markov chain
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defined on the same space with state space {1, . . . , p} and a nonsingular transition
matrix A = ((ahj)). We denote this Markov chain by {A}. Define ψk = θ

(k)
ηk−1,ηk

for 1 ≤ k ≤ n. The sequence of random variables {ψk, 1 ≤ k ≤ n} is said to
be defined on the homogeneous Markov chain {A}. Let F be the sub-σ-algebra
generated by the sequence {ηj , j ≥ 0}. It is easy to check that the random variables
{ψk, 1 ≤ k ≤ n} are conditionally independent, in fact, F-independent.

4.3 Conditional Association

The concept of conditional association was introduced in Prakasa Rao (2009).
Let X and Y be random variables defined on a probability space (Ω,A, P ) with
E(X2) < ∞ and E(Y 2) < ∞. Let F- be a sub-σ-algebra of A. We define the
conditional covariance of X and Y given F or F-covariance as

CovF (X,Y ) = EF [(X − EFX)(Y − EFY )]

(cf. Prakasa Rao (2009)). It easy to see that the F-covariance reduces to the
ordinary concept of covariance when F = {Φ,Ω}. A set of random variables {Xk,
1 ≤ k ≤ n} is said to be F-associated if, for any componentwise nondecreasing
functions h, g defined on Rn,

CovF (h(X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0 a.s.
A sequence of random variables {Xn, n ≥ 1} is said to be F-associated if every
finite subset of the sequence {Xn, n ≥ 1} is F-associated.

An example of an F-associated sequence {Xn, n ≥ 1} is obtained by defining
Xn = Z + Yn, n ≥ 1 where Z and Yn, n ≥ 1 are F-independent random variables
as defined in Section 4.2. It can be shown by standard arguments that

CovF (X,Y ) =

∫ ∞

−∞

∫ ∞

−∞
HF (x, y) dxdy a.s.

where
HF (x, y) = EF [I(X≤x,Y≤y)]− EF [I[X≤x]]E

F [I[Y≤y]].

Let X and Y be F-associated random variables. Suppose that f and g
are almost everywhere differentiable functions such that ess supx |f ′(x)| < ∞,
ess supx |g′(x)| < ∞, EF [f2(X)] < ∞ a.s. and EF [g2(Y )] < ∞ a.s. where f ′ and
g′ denote the derivatives of f and g respectively whenever they exist. Then it can
be shown that

CovF (f(X), g(Y )) =
∫ ∞

−∞

∫ ∞

−∞
f ′(x)g′(y)HF (x, y) dxdy a.s. (4.3.1)

and hence

|CovF (f(X), g(Y ))| ≤ ess sup
x

|f ′(x)|ess sup
y

|g′(y)|CovF (X,Y )| a.s.. (4.3.2)
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Proofs of these results can be obtained following the methods used for the study of
associated random variables. As a consequence of these covariance inequalities, one
can obtain a central limit theorem for conditionally associated sequences of ran-
dom variables following the methods in Newman (1984). Note that F-association
does not imply association and vice versa (cf. Roussas (2008)). For an extensive
discussion on conditionally associated random variables, see Roussas (2008). Yuan
et al. (2011) obtained limit theorems for conditionally associated random vari-
ables. A related notion of conditionally negatively associated random variables
was introduced and their limiting properties were studied in Yuan et al. (2010).

4.4 Conditional Demimartingales

Following the concept of the conditional association discussed above, Hadjikyria-
kou (2010) introduced the notion of conditional demimartingales and studied their
properties. We will now discuss these results.

Definition. Let the random sequence {Sn, n ≥ 1} be a sequence of random vari-
ables defined on a probability space (Ω,A, P ). Let F be a sub-σ-algebra of A. The
sequence {Sn, n ≥ 1} is called an F-demimartingale if for every componentwise
nondecreasing function f : Rj → R,

E[(Sj − Si)f(S1, S2, . . . , Si)|F ] ≥ 0, 1 ≤ i < j < ∞.

If the above condition holds only for nonnegative and nondecreasing functions f,
then the sequence {Sn, n ≥ 1} is called an F-demisubmartingale.

From the property of conditional expectations that E(E(Z|F)) = E(Z) for
any random variable Z with E|Z| < ∞, it follows that any F-demimartingale
defined on a probability space (Ω,A, P ) is a demimartingale on the probability
space (Ω,A, P ) and any F-demisubmartingale defined on the probability space
(Ω,A, P ) is a demisubmartingale on the probability space (Ω,A, P ). We will now
give an example to show that the converse is not true. This example is due to
Hadjikyriakou (2010).

Example 4.4.1. Let (X1, X2) be a bivariate random vector such that

P (X1 = 5, X2 = 7) =
3

8
, P (X1 = −3, X2 = 7) =

1

8

and

P (X1 = −3, X2 = −7) = 4

8
.

Let F be the σ-algebra generated by the event [|X1X2| = 21]. It can be checked
that the sequence {X1, X2} is a demimartingale (cf. Example 2.1.2) but it is not
an F-demisubmartingale since

E[(X2 −X1)||X1X2| = 21] = −6
8
f(−3) < 0

109



Chapter 4. Conditional Demimartingales

for a nonnegative function f.

For convenience, we denote the conditional probability P (A|F) = E(IA|F)
of an event A by PF (A) and the conditional expectation E(Z|F) of a random
variable Z with respect to a σ-algebra F by EF (Z).

Let {Xn, n ≥ 1} be a sequence of F-associated random variables such that
EF (Xn) = 0 a.s., n ≥ 1. Let Sn =

∑n
i=1 Xi, n ≥ 1. Then it is easy to check that

the sequence {Sn, n ≥ 1} is an F-demimartingale. Hadjikyriakou (2010) proved
the following result for conditional demimartingales. We omit the proof as it is
similar to the corresponding result for demimartingales given in Chapter 2.

Theorem 4.4.1. Let a random sequence {Sn, n ≥ 1} be an F-demimartingale or
an F-demisubmartingale and g(.) be a nondecreasing convex function. Then the
random sequence {g(Sn), n ≥ 1} is an F-demisubmartingale.

The following inequality is a Chow type maximal inequality for conditional
demimartingales.

Theorem 4.4.2. Let the random sequence {Sn, n ≥ 1} be an F-demimartingale
with S0 = 0 and let g(.) be a nonnegative convex function such that g(0) = 0. Let

A = [ max
1≤i≤n

cig(Si) ≥ ε]

where {cn, n ≥ 1} is a positive nonincreasing sequence of F-measurable random
variables and ε is an F-measurable random variable such that ε > 0 a.s. Then

εPF (A) ≤
n∑

i=1

ciE
F [g(Si)− g(Si−1)]− cnE

F [g(Sn)IAc ] a.s (4.4.1)

≤
n∑

i=1

ciE
F [g(Si)− g(Si−1)] a.s.

We omit the proof of this result as it is similar to that of the Chow type
maximal inequality for demisubmartingales given in Chapter 2.

As an application of the above results, we can obtain a strong law of large
numbers for F-demimartingales. We will first discuss a Kronecker type lemma
which will be used to obtain the strong law of large numbers.

Lemma 4.4.3. Let the sequence {Sn, n ≥ 1} be a random sequence with S0 = 0
and {cn, n ≥ 1} be a nonincreasing sequence of F-measurable random variables
such that cn → 0 a.s. as n → ∞. Further suppose that

∞∑
k=1

ckE
F [g(Sk)− g(Sk−1)] < ∞ a.s.

where g(.) is a function such that g(0) = 0. Then

cnE
F [g(Sn)]→ 0 a.s. as n → ∞.
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Proof. Let

A = {ω ∈ Ω :
∞∑
k=1

ckE
F [g(Sk)− g(Sk−1)](ω) < ∞}.

Note that P (A) = 1 by hypothesis. Let ω0 ∈ A. Then

∞∑
k=1

ck(ω0)E
F [g(Sk)− g(Sk−1)](ω0) < ∞.

Hence, by a Kronecker type lemma, we get that

n∑
k=1

cn(ω0)E
F [g(Sk)− g(Sk−1)](ω0)→ 0 as n → ∞

or equivalently
cn(ω0)E

F [g(Sn)](ω0)→ 0 as n → ∞.

Since this holds for every ω0 ∈ A and P (A) = 1, we get that

cnE
F [g(Sn)]→ 0 a.s. as n → ∞. �

We now prove a strong law of large numbers for F-demimartingales.
Theorem 4.4.4. Let the random sequence {Sn, n ≥ 1} be an F-demimartingale
with S0 ≡ 0 and let g(.) be a nonnegative convex function such that g(0) = 0.
Suppose that the sequence {cn, n ≥ 1} is a positive nonincreasing sequence of F-
measurable random variables such that cn → 0 a.s. as n → ∞. Further suppose
that ∞∑

k=1

ckE
F [g(Sk)− g(Sk−1)] < ∞ a.s. (4.4.2)

and
EF [g(Sn)] < ∞ a.s., n ≥ 1.

Then, conditionally on F ,

cng(Sn)→ 0 a.s. as n → ∞.

Proof. Let ε be an F-measurable random variable such that ε > 0 a.s. By the
Chow type inequality derived earlier, it follows that

εPF [sup
k≥n

ckg(Sk) ≥ ε] ≤
∞∑

k=n

ckE
F [g(Sk)− g(Sk−1)] (4.4.3)

≤ cnE
F [g(Sn)] +

∞∑
k=n+1

ckE
F [g(Sk)− g(Sk−1)] a.s.
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Condition (4.4.2) implies that

∞∑
k=n+1

ckE
F [g(Sk)− g(Sk−1)]→ 0 a.s. as n → ∞. (4.4.4)

Applying the conditional version of the Kronecker type lemma derived above, we
get that

cnE
F [g(Sn)]→ 0 a.s. as n → ∞. (4.4.5)

Combining equations (4.4.3),(4.4.4) and (4.4.5), we obtain the result. �
Remarks. Following the notion of conditionally negatively associated random vari-
ables introduced in Yuan et al. (2010), it is possible to define conditional N -
demimartingales in an obvious manner. An example of such a sequence is the
sequence of partial sums of conditionally negatively associated random variables
with conditional mean zero. We do not go into the details on results for such
random sequences.
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Chapter 5

Multidimensionally Indexed
Demimartingales and
Continuous Parameter
Demimartingales

5.1 Introduction

We have studied demimartingales, N -demimartingales and conditional demimar-
tingales in the last three chapters. These are all discrete parameter stochastic pro-
cesses with index in one-dimension. We now introduce more general demimartin-
gales such as multidimensionally indexed demimartingales and continuous param-
eter demisubmartingales and discuss maximal inequalities for such processes.

5.2 Multidimensionally Indexed Demimartingales

Christofides and Hadjikyriakou (2010) introduced multidimensionally indexed de-
mimartingales and demisubmartingales. We now describe these random fields.

Let Nd denote the d-dimensional positive integer lattice. For n,m,∈ Nd with
n = (n1, . . . , nd) and m = (m1, . . . ,md), we write n ≤ m if ni ≤ mi, i = 1, . . . , d
and write n < m if ni ≤ mi, i = 1, . . . , d with at least one strict inequality. We
say that k → ∞ if min1≤j≤d kj → ∞.

Definition. A collection of multidimensionally indexed random variables {Xi, i ≤
n} is said to be associated if for any two componentwise nondecreasing functions

B.L.S. Prakasa Rao, Associated Sequences, Demimartingales
and Nonparametric Inference, Probability and its Applications,
DOI 10.1007/978-3-0348-0240-6_5, © Springer Basel AG 2012
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f and g,

Cov(f(Xi, i ≤ n), g(Xi, i ≤ n)) ≥ 0
provided that the covariance exists. An infinite collection is said to be associated if
every finite sub-collection is associated. Such a family of random variables is also
called an associated random field.

Properties of associated random fields are investigated extensively in Bulinski
and Shaskin (2007).

Definition. A collection of multidimensionally indexed random variables {Xn, n ∈
Nd} is called a multidimensionally indexed demimartingale if

E[(Xj −Xi)f(Xk, k ≤ i)] ≥ 0

for all i, j ∈ Nd with i ≤ j and for all componentwise nondecreasing functions f.
If, in addition f is required to be nonnegative, then the collection {Xn, n ∈ Nd}
is said to be a multidimensionally indexed demisubmartingale.

Remarks. It is easy to see that the partial sums of mean zero associated multi-
dimensionally indexed random variables form a multidimensionally indexed demi-
martingale.

Hereafter we discuss the case when d = 2 for convenience and call such
two-dimensional indexed demimartingales as two-parameter demimartingales. For
some discussion on two-parameter martingales, see Cairoli and Walsh (1975) and
more recently in Amirdjanova and Linn (2007) and Prakasa Rao (2010).

5.3 Chow Type Maximal Inequality for Two-Parameter
Demimartingales

The following result is a Chow type maximal inequality, due to Christofides and
Hadjikyriakou (2010), for the random field {g(Yn), n ∈ N2} where {Yn, n ∈ N2}
is a two-parameter demimartingale with Yk = 0 whenever k1k2 = 0.

Theorem 5.3.1. Let the array {Yn, n ∈ N2} be a two-parameter demimartingale
with Yk = 0 whenever k1k2 = 0. Further suppose that {cn, n ∈ N2} is a nonin-
creasing array of positive numbers and g(.) be a nonnegative nondecreasing convex
function on R with g(0) = 0. Then, for every ε > 0,

εP [ max
(i,j)≤(n1,n2)

cijg(Yij) ≥ ε] (5.3.1)

≤ min(
n1∑
i=1

n2∑
j=1

cijE[g(Yij)− g(Yi−1,j)],

n1∑
i=1

n2∑
j=1

cijE[g(Yij)− g(Yi,j−1)]).
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Proof. Let

A = [ max
(i,j)≤(n1,n2)

cijg(Yij) ≥ ε], (5.3.2)

B1j = [c1jg(Y1j) ≥ ε], 1 ≤ j ≤ n2, (5.3.3)

and

Bij = [crjg(Yrj) < ε, 1 ≤ r < i; cijg(Yij) ≥ ε], 2 ≤ i ≤ n1, 1 ≤ j ≤ n2. (5.3.4)

From the definition of the sets A and Bij , we note that A = ∪i,jBij . Hence

ε P (A) = ε P (∪(i,j)≤(n1,n2)Bij) (5.3.5)

≤ ε

n2∑
j=1

n1∑
i=1

P (Bij)

=

n2∑
j=1

n1∑
i=1

E(εIBij
)

≤
n2∑
j=1

n1∑
i=1

E(cijg(Yij)IBij
)

=

n2∑
j=1

E(c1jg(Y1j)IB1j
) +

n2∑
j=1

n1∑
i=2

E(cijg(Yij)IBij
)

=

n2∑
j=1

E(c1jg(Y1j))−
n2∑
j=1

E(c1jg(Y1j)IBc
1j
) +

n2∑
j=1

E(c2jg(Y2j)IB2j
)

+

n2∑
j=1

n1∑
i=3

E(cijg(Yij)IBij )

≤
n2∑
j=1

E(c1jg(Y1j)) +

n2∑
j=1

c2jE[g(Y2j)IB2j − g(Y1j)IBc
1j
]

+

n2∑
j=1

n1∑
i=3

E(cijg(Yij)IBij ),

where the last inequality follows from the nonincreasing property of the array {cij ,
i ≥ 1, j ≥ 1}. Since B2j ⊂ Bc

1j , it follows that IB2j
= IBc

1j
− IBc

1j∩Bc
2j
. Therefore

ε P (A) ≤
n2∑
j=1

E(c1jg(Y1j)) +

n2∑
j=1

E[c2j(g(Y2j)− g(Y1j))IBc
1j
] (5.3.6)

−
n2∑
j=1

c2jE[g(Y2j)IBc
1j∩Bc

2j
] +

n2∑
j=1

n1∑
i=3

E(cijg(Yij)IBij )

115



Chapter 5. Multidimensionally Indexed Demimartingales

=

n2∑
j=1

E(c1jg(Y1j)) +

n2∑
j=1

E[c2j(g(Y2j)− g(Y1j))]

−
n2∑
j=1

E[c2j(g(Y2j)− g(Y1j))IB1j
]−

n2∑
j=1

c2jE[g(Y2j)IBc
1j∩Bc

2j
]

+

n2∑
j=1

n1∑
i=3

E(cijg(Yij)IBij
).

Since the function g(.) is nondecreasing and convex, it follows that

g(x)− g(y) ≥ h(x)

where

h(y) = lim
x→y−0

g(x)− g(y)

x− y

is the left derivative of g(.) Note that the function IB1j
h(Y1j) is a nonnegative

nondecreasing function of Y1j . Hence, by the demimartingale property of the array
{Yij , i ≥ 1, j ≥ 1}, we get that

E[(g(Y2j)− g(Y1j))IB1j
] ≥ E[(Y2j − Y1j)h(Y1j)IB1j

] ≥ 0, j = 1, 2, . . . , n2.
(5.3.7)

Therefore

ε P (A) ≤
n2∑
j=1

E(c1jg(Y1j)) +

n2∑
j=1

E[c2j(g(Y2j)− g(Y1j))] (5.3.8)

−
n2∑
j=1

c2jE[g(Y2j)IBc
1j∩Bc

2j
] +

n2∑
j=1

E[c3jg(Y3j)IB3j ]

+

n2∑
j=1

n1∑
i=4

E(cijg(Yij)IBij )

≤
n2∑
j=1

E(c1jg(Y1j)) +

n2∑
j=1

E[c2j(g(Y2j)− g(Y1j))]

+

n2∑
j=1

c3jE[g(Y3j)IB3j
− g(Y2j)IBc

1j∩Bc
2j
]

+

n2∑
j=1

n1∑
i=4

E(cijg(Yij)IBij
),

where the last inequality follows from the nonincreasing property of the array {cij ,
i ≥ 1, j ≥ 1}. Since B3j ⊂ Bc

1j∩Bc
2j , it follows that IB3j

= IBc
1j∩Bc

2j
−IBc

1j∩Bc
2j∩Bc

3j
.
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Hence

ε P (A) ≤
n2∑
j=1

E(c1jg(Y1j)) +

n2∑
j=1

E[c2j(g(Y2j)− g(Y1j))] (5.3.9)

+

n2∑
j=1

c3jE[(g(Y3j)− g(Y2j))IBc
1j∩Bc

2j
]

−
n2∑
j=1

c3jE[g(Y3j)IBc
1j∩Bc

2j∩Bc
3j
] +

n2∑
j=1

n1∑
i=4

E(cijg(Yij)IBij )

=

n2∑
j=1

E(c1jg(Y1j)) +

n2∑
j=1

E[c2j(g(Y2j)− g(Y1j))]

−
n2∑
j=1

c3jE[g(Y3j)− g(Y2j)] +

n2∑
j=1

c3jE[(g(Y3j)− g(Y2j))IB1j∪B2j
]

−
n2∑
j=1

c3jE[g(Y3j)IBc
1j∩Bc

2j∩Bc
3j
] +

n2∑
j=1

n1∑
i=4

E(cijg(Yij)IBij
).

Using the demimartingale property of the array {Yij , i ≥ 1, j ≥ 1}, it can be
shown that

E[(g(Y2j)− g(Y1j))IB1j∪B2j
] ≥ 0, j = 1, 2, . . . , n2 (5.3.10)

by observing that the function IB1j∪B2j
is a nonnegative nondecreasing function

of Y1j and Y2j . Therefore

ε P (A) ≤
n2∑
j=1

E(c1jg(Y1j)) +

n2∑
j=1

E[c2j(g(Y2j)− g(Y1j))] (5.3.11)

+

n2∑
j=1

c3jE[g(Y3j)− g(Y2j)]−
n2∑
j=1

c3jE[g(Y3j)IBc
1j∩Bc

2j∩Bc
3j
]

+

n2∑
j=1

n1∑
i=4

E(cijg(Yij)IBij ).

Proceeding in the same way and using the fact that Y0j = 0, we get that

ε P (A) ≤
n1∑
i=1

n2∑
j=1

E[cij(g(Yij)− g(Yi−1,j))]−
n2∑
j=1

cn1jE[g(Yn1j)I∩n1
i=1B

c
ij
]

≤
n1∑
i=1

n2∑
j=1

E[cij(g(Yij)− g(Yi−1,j))]. (5.3.12)
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Similarly one can show that

ε P (A) ≤
n1∑
i=1

n2∑
j=1

E[cij(g(Yij)− g(Yi,j−1))]−
n1∑
i=1

cin2E[g(Yin2)I∩n2
j=1B

c
ij
]

≤
n1∑
i=1

n2∑
j=1

E[cij(g(Yij)− g(Yi,j−1))]. (5.3.13)

Combining the inequalities (5.3.12) and (5.3.13), we get the result stated in the
theorem. �

The condition that the function g is nondecreasing in the above theorem can
be removed and the following theorem can be proved by methods analogous to
those given in Chapter 2. We omit the proof. For details, see Christofides and
Hadjikyriakou (2010).

Theorem 5.3.2. Let the array {Yn, n ∈ N2} be a two-parameter demimartingale
with Yk = 0 whenever k1k2 = 0. Further suppose that {cn, n ∈ N2} is a nonin-
creasing array of positive numbers and g(.) be a nonnegative convex function on
R with g(0) = 0. Then, for every ε > 0,

εP [ max
(i,j)≤(n1,n2)

cijg(Yij) ≥ ε] (5.3.14)

≤ min(
n1∑
i=1

n2∑
j=1

cijE[g(Yij)− g(Yi−1,j)],

n1∑
i=1

n2∑
j=1

cijE[g(Yij)− g(Yi,j−1)]).

For an application of the above maximal inequality to derive Hajek-Renyi
type inequality for multidimensionally indexed associated random variables, see
Christofides and Hadjikyriakou (2010). Wang (2004) has also derived a Hajek-
Renyi type inequality for multidimensionally indexed associated random variables.

5.4 Continuous Parameter Demisubmartingales

We have studied different classes of discrete parameter demisubmartingales, N -
demisupermartingales with index in one-dimension in the previous chapters and
multidimensionally indexed demimartingales in the previous sections in this chap-
ter. We will now describe how some of these concepts can be extended to the
continuous parameter case. Our discussion here is based on Wood (1984).

Recall that an L1-sequence of random variables {Sn, n ≥ 1} defined on
a complete probability space (Ω,F , P ) is called a demimartingale if for every
componentwise nondecreasing function f(.),

E[(Sn+1 − Sn)f(S1, . . . , Sn)] ≥ 0.
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It is called a demisubmartingale if, for every componentwise nonnegative nonde-
creasing function f(.),

E[(Sn+1 − Sn)f(S1, . . . , Sn)] ≥ 0.
Definition. Let the process {St, t ∈ [0, T ]} be a stochastic process defined on a
complete probability space (Ω,F , P ). It is called a demisubmartingale if for every
0 = t0 < t1 < . . . , tk = T , k ≥ 1 the sequence {Stj , j = 0, . . . , k − 1} is a
demisubmartingale.

A process {St, t ∈ [0, T ]} is said to be separable if there is a measurable set
B with P (B) = 0 and a countable subset τ ⊂ [0, T ] such that for every closed
interval A ⊂ R and any open interval (a, b) ⊂ [0, T ], the sets

{ω : St(ω) ∈ A, t ∈ (a, b)}
and

{ω : St(ω) ∈ A, t ∈ (a, b) ∩ τ}
differ at most by a subset of B. It is known that every real-valued stochastic
process indexed by the parameter t ∈ [0, T ] ⊂ R has a separable version (cf. Doob
(1953), p. 57).

5.5 Maximal Inequality for Continuous Parameter
Demisubmartingales

We now obtain a maximal inequality for continuous parameter demisubmartin-
gales. Recall the following inequalities derived earlier for discrete parameter demi-
submartingales. We now give alternate proofs of these inequalities due to Wood
(1984).

Theorem 5.5.1. Let the sequence {Sn, n ≥ 1} be a discrete parameter demisub-
martingale with Mk = max1≤i≤k Si and mk = min1≤i≤k Si for 1 ≤ i ≤ k. Then,
for any λ ∈ R,

λ P (Mk > λ) ≤
∫
[Mk>λ]

Sk dP (5.5.1)

and

λ P (mk ≤ λ) ≥ E[S1]−
∫
[mk>λ]

Sk dP ≥ E[S1]− E|Sk|. (5.5.2)

Proof. Let i be the smallest index such that Si > λ, that is, i = n if Sk ≤ λ,
1 ≤ k ≤ n− 1 but Sn > λ. Let Ak = [Mk > λ]. Then∫

Ak

Sk dP =

k∑
n=1

∫
[i=n]

Sk dP (5.5.3)

=

k∑
n=1

[

∫
[i=n]

Sn dP +

∫
[i=n]

(Sk − Sn) dP ]
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=

k∑
n=1

∫
[i=n]

Sn dP +

k−1∑
n=1

∫
[i=n]

(Sk − Sn) dP

≥ λ P (Ak) +

k−1∑
n=1

∫
Ω

I[An](Sn+1 − Sn) dP.

Note that the function I[An] is nonnegative and nondecreasing in the variables
S1, . . . , Sn.Hence, by the demisubmartingale property of the sequence {Sn, n ≥ 1},
it follows that ∫

Ω

I[An](Sn+1 − Sn) dP ≥ 0.

Applying this inequality, we get that∫
Ak

Sk dP ≥ λ P (Mk > λ) (5.5.4)

This proves the inequality (5.5.1).

Let Bk = [mk > λ]. In order to prove (5.5.2), let i be the smallest index for
which Si ≤ λ. From the arguments given above, it follows that

∫
Bc

k

Sk dP ≤ λP (Bc
k) +

k−1∑
n=1

∫
Bc

n

(Sn+1 − Sn) dP. (5.5.5)

Hence

λ P (Bc
k) ≥

∫
Bc

k

Sk dP −
k−1∑
n=1

∫
Bc

n

(Sn+1 − Sn) dP (5.5.6)

≥
∫
Bc

k

Sk dP −
k−1∑
n=1

∫
Bc

n

(Sn+1 − Sn) dP −
k−1∑
n=1

∫
Bn

(Sn+1 − Sn) dP

=

∫
Bc

k

Sk dP −
k−1∑
n=1

E[Sn+1 − Sn]

=

∫
Bc

k

Sk dP − E[Sk] + E[S1]

= E[S1]−
∫
Bk

Sk dP

≥ E[S1]− E|Sk|.

Note that the second inequality, in the chain of inequalities given above, is a
consequence of the demisubmartingale property of the sequence {Sn, n ≥ 1}. This
proves the inequality (5.5.2). �
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Theorem 5.5.2. Let the process {St, 0 ≤ t ≤ T} be a demisubmartingale. Then,
E[Sα] ≤ E[Sβ ] for any 0 ≤ α < β ≤ T.

Proof. Since the function f ≡ 1 is positive and nondecreasing and the sequence
{S0, Sα, Sβ , ST } forms a discrete parameter demisubmartingale by definition, we
get that

E[1.(Sβ − Sα)] ≥ 0
which implies that

E[Sα] ≤ E[Sβ ], 0 ≤ α < β ≤ T. �
Theorem 5.5.3. Let the process {St, 0 ≤ t ≤ T} be a separable demisubmartingale.
For any λ ∈ R, let

AT = [ω ∈ Ω : sup
0≤t≤T

St > λ]

and
BT = [ω ∈ Ω : inf

0≤t≤T
St ≤ λ].

Then

λ P (AT ) ≤
∫
AT

ST dP (5.5.7)

and
λ P (BT ) ≥ E[S0]− E|ST |. (5.5.8)

Proof. By Theorem 5.5.1 and the fact that {St, 0 ≤ t ≤ T} is a demisubmartingale,
we observe that the inequalities (5.5.7) and (5.5.8) hold if the supremum and
infimum are restricted to a finite subset of parameter values including 0 and T.
Since

lim
n→∞P (

n⋃
k=1

Dk) = P (

∞⋃
k=1

Dk)

for any sequence Dk ∈ F , it follows that the inequalities (5.5.7) and (5.5.8) hold
if the parameter in the supremum and infimum is allowed to run over the interval
[0, T ]. By the separability of the process, the sets AT and BT differ from the
corresponding sets where the parameter t takes values in the interval [0, T ] by a
set of probability measure zero. This proves the theorem. �

As a corollary to Theorem 5.5.3, we get the following result by methods used
in Chapter 2 (cf. Theorem 3.4 in Doob (1953), p. 317). We omit the details.

Theorem 5.5.4. Let the process {St, 0 ≤ t ≤ T} be a nonnegative separable demi-
martingale. Suppose that E|St|p < ∞, 0 ≤ t ≤ T for some p ≥ 1. Then, for
p > 1,

E[ sup
0≤t≤T

Sp
t ] ≤ (

p

p− 1)
pE[Sp

T ] (5.5.9)

and, for p = 1,

E[ sup
0≤t≤T

St] ≤ ( e

e− 1)(1 + E[ST log
+ ST ]). (5.5.10)
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5.6 Upcrossing Inequality

Let the finite random sequence {Sj , 1 ≤ j ≤ m} be a discrete parameter demisub-
martingale and [a, b] be an interval. Define a sequence of stopping times τk by

τ1 = min{j : Sj ≤ a},
τk = min{j : τk−1 < j ≤ m; Sj ≥ b} for k even

and
τk = min{j : τk−1 < j ≤ m; Sj ≤ a} for k odd.

We make the convention that the minimum of the empty set is m. The number of
upcrossings of the interval [a, b] by the sequence S1(ω), . . . , Sm(ω) is the number
of times the sequence crosses from below a to above b.

Theorem 5.6.1. Let the finite random sequence {Sj, 1 ≤ j ≤ m} be a discrete
parameter demisubmartingale. If a < 0, then

E[Um] ≤ (b− a)−1E[S+
m] + 1

where S+
m = max(Sm, 0). If a ≥ 0, then

E[Um] ≤ (b− a)−1(b+ E[S+
m]).

Proof. Let us first discuss the case S1 ≡ 0, 0 ≤ a < b and replace Sm with a new
random variable (still to be denoted by Sm for convenience), that is, Sm = S+

m+b.
Define

Z = (Sτ3 − Sτ2) + (Sτ5 − Sτ4) + . . . . (5.6.1)

If Ak = {ω : τ2n ≤ k < τ2n+1, n = 1, 2, . . .}, then the function I[Ak] is a nonde-
creasing function of the variables S1, . . . , Sk (we use the fact that S1 ≡ 0 here).
Hence

E[Z] =
n−1∑
k=2

∫
Ak

(Sk+1 − Sk) dP =

n−1∑
k=2

∫
Ω

I[Ak](Sk+1 − Sk) dP ≥ 0.

Note that

Sm − S1 = Sτm − Sτ1 (5.6.2)

=
m∑

n=1

[Sτn+1
− Sτn ]

=
∑1

[Sτn+1
− Sτn ] +

∑2
[Sτn+1

− Sτn ]

where
∑1

adds terms over n odd and
∑2

adds terms over n even. Furthermore

∑1
[Sτn+1

− Sτn ] ≥ Um(b− a)
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and

E[Z] = E(
∑2

[Sτn+1
− Sτn ]) ≥ 0.

Therefore

E[Sm − S1] = E[S+
m + b− 0] = E[S+

m + b] ≥ E[Um](b− a).

The last inequality proves the theorem in the special case.

We will now remove the assumption that S1 ≡ 0. Let Y1 = S2, Y2 =
S3, . . ., Ym = Sm+1. Then the number of upcrossings Ũm of the interval [a, b]
by Y1, Y2, . . . , Ym satisfies

Ũm(ω) ≤ Um+1(ω) ≤ Ũm(ω) + 1 (5.6.3)

and

E[Ũm] ≤ E[Um+1] ≤ (b− a)−1(b+ ES+
m+1) = (b− a)−1(b+ E[Y +

m ]).

We will now relax the assumption that a ≥ 0. Note that, if a > 0, then the
finite sequence S1 − a, S2, . . . , Sm forms a demisubmartingale with possibly one
more upcrossing over the interval [0, b − a) than the sequence S1, . . . , Sm makes
over [a, b]. Finally, we note that changing Sm to S+

m + b increases Sm, so the
number of upcrossings by S1, . . . , Sm−1, Sm is less than or equal to the number of
upcrossings by S1, . . . , Sm−1, S

+
m + b. This completes the proof. �

As a consequence of the upcrossing inequality, the following convergence
theorem holds which we have stated in Chapter 2.

Theorem 5.6.2. Let the sequence {Sn, n ≥ 1} be a demisubmartingale with
lim supn E|Sn| < ∞. Then there exists a random variable X such that E|X| < ∞
and Sn → X a.s. as n → ∞.

Proof. Define the stopping times τk as before but we now define the minimum of
the empty set as +∞. Let B = ∩∞n=1[ω : τn(ω) < ∞]. Then

P (B) = P (Either Sn ≤ a infinitely often or Sn ≥ b infinitely often).

If Um is the number of upcrossings of the interval [a, b] by the sequence {Sj , 1 ≤
j ≤ m}, then, on the event B, the sequence Um → ∞ as m → ∞. Since E[Um] is
bounded by the inequalities obtained in Theorem 5.6.1 and since lim supn→∞E|Sn|
< ∞, it follows that P (B) = 0. Hence

P (
⋃
[lim inf Sn ≤ a < b ≤ lim supSn]) = 0

where the union is taken over all a and b rational with a < b. Hence, either
the sequence Sn converges almost surely, or |Sn| → ∞ with positive probability.
However the second case cannot occur, since, by Fatou’s lemma,

E[lim sup
n→∞

|Sn|) ≤ lim sup
n→∞

E|Sn|.

Hence the result as stated holds. �
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Remarks. If, in addition to the hypothesis of Theorem 5.6.2, the demisubmartin-
gale is uniformly integrable, then E|Sn − X| → 0 as n → ∞. This follows from
the standard results in measure theory.

The upcrossing inequality in Theorem 5.6.1 and the almost sure convergence
theorem in Theorem 5.6.2 can be easily extended to the case of a continuous
parameter separable demisubmartingale. By taking limit as λ → ∞ in (5.5.7) and
λ → −∞ in (5.5.8), we get that the sample paths of the process {St, 0 ≤ t ≤ T}
are almost surely bounded. We will now show that the sample paths of the process
have no discontinuities of the second kind with probability 1.

Theorem 5.6.3. Suppose the process {St, 0 ≤ t ≤ T} is a separable demisub-
martingale defined on a complete probability space (|Ω,F , P ). Then there exists a
measurable set D with P (D) = 0 such that , for any fixed ω ∈ Dc, the function
S(t, ω) defined over t ∈ [0, T ], is bounded and has no discontinuities of the second
kind.

Proof. It was shown earlier that there exists a measurable set A1 with P (A1) = 0
such that, if ω ∈ Ac

1, then the function f(t) = S(t, ω) is bounded.

From the separability of the process {St, 0 ≤ t ≤ T}, there exists a countable
set J = {tn, n ≥ 1} contained in the interval [0, T ], and a measurable set A2 with
P (A2) = 0, such that, for ω ∈ Ac

2,

inf{S(t, ω) : t ∈ J} = inf{S(t, ω) : t ∈ [0, T ]}
and

sup{S(t, ω) : t ∈ J} = sup{S(t, ω) : t ∈ [0, T ]}.
Let 0 = ti1 < ti2 < . . . , < tin = T be a finite subset of J. Let [r1, r2] be an
interval in R and Un(ω) be the number of upcrossings of the interval [r1, r2] by
the sequence S(ti1 , ω), . . . , S(tin , ω). Let Mnk be the event [Un ≥ k]. Then, by the
upcrossings theorem, we get that

P [∪nMnk] ≤ c+ ES+
T

k(r2 − r1)
(5.6.4)

for some constant c > 0. Suppose that, for some ω ∈ Ac
2, the function S(t, ω) has

a discontinuity of the second kind at some point s ∈ [0, T ] with either
lim sup

t↑s
S(t, ω) > r2 > r1 > lim sup

t↑s
S(t, ω)

or
lim sup

t↓s
S(t, ω) > r2 > r1 > lim sup

t↓s
S(t, ω).

Then this inequality also holds if t tends to s in the set J, which implies that the
number of upcrossings of the interval [r1, r2] by the sequence S(ti1 , ω), . . . , S(tin , ω)
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tends to infinity as n tends to infinity. Observe that the set of ω ∈ Ac
2 for which

this occurs is contained in the set ∪Mnk for every k. But

P (
⋂
k

⋃
n

Mnk) = lim
n→∞P (

⋃
n

Mnk) = 0.

Let B(r1, r2) = ∩k∪nMnk and A3 = ∪B(r1, r2) where the union is over all rational
numbers r1 < r2. Then P (A3) = 0. Therefore, for any ω ∈ [A1 ∪ A2 ∪ A3]

c,
the sample path f(t) = S(t, ω) has finite left and right limits at any point of
discontinuity and is bounded. Let D = A1∪A2∪A3. Note that P (D) = 0 and the
theorem is proved. �
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Chapter 6

Limit Theorems for Associated
Random Variables

6.1 Introduction

A sequence of partial sums of mean zero associated random variables forms a demi-
martingale. We have discussed properties of demimartingales in Chapter 2 and
some probabilistic properties of associated sequences in Chapter 1. Let {Ω,F ,P}
be a probability space and {Xn, n ≥ 1} be a sequence of associated random vari-
ables defined on it. Recall that a finite collection {X1, X2, . . . , Xn} is said to be
associated if for every pair of functions h(x) and g(x) from Rn to R, which are
nondecreasing componentwise,

Cov(h(X),g(X)) ≥ 0,

whenever it is finite, where X = (X1, X2, . . . , Xn) and an infinite sequence {Xn,
n ≥ 1} is said to be associated if every finite subfamily is associated. As we have
mentioned in Chapter 1, associated random variables are of considerable interest
in reliability studies (cf. Esary, Proschan and Walkup (1967), Barlow and Proschan
(1975)), statistical physics (cf. Newman (1980, 1983)) and percolation theory (cf.
Cox and Grimmet (1984)). We have given an extensive review of several proba-
bilistic results for associated sequences in Chapter 1 (cf. Prakasa Rao and Dewan
(2001), Roussas (1999)). We now discuss some recent advances in limit theorems
for associated random variables. Covariance inequalities of different types play a
major role in deriving limit theorems for partial sums of associated random vari-
ables. The next section gives some covariance inequalities and their applications.

B.L.S. Prakasa Rao, Associated Sequences, Demimartingales
and Nonparametric Inference, Probability and its Applications,
DOI 10.1007/978-3-0348-0240-6_6, © Springer Basel AG 2012
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6.2 Covariance Inequalities

Generalized Hoeffding Identity

We have discussed the Hoeffding identity in Chapter 1. We now discuss a gener-
alized Hoeffding identity due to Khoshnevisan and Lewis (1998).

Let C2
b (R

2) denote the set of all functions f(x, y) from R2 to R with bounded

and continuous mixed second-order partial derivatives fxy(x, y) =
∂2f
∂x∂y . For f ∈

C2
b (R

2), let M(f) = sup(s,t)∈R2 |fxy(s, t)|.
Theorem 6.2.1. Let X,Y, U and Z be random variables with bounded second mo-
ments defined on a common probability space. Suppose that X and U are identically
distributed and Y and Z are identically distributed. Further suppose that U and Z
are independent. Then, for any f ∈ C2

b (R
2),

E[f(X,Y )]− E[f(U,Z)] =

∫ ∞

−∞

∫ ∞

−∞
fxy(u, v)HX,Y (u, v) dudv

where
HX,Y (x, y) = P (X ≥ x, Y ≥ y)− P (X ≥ x)P (Y ≥ y).

If, in addition X and Y are associated, then

|E[f(X,Y )]− E[f(U,Z)]| ≤ M(f) Cov(X,Y ).

Proof. Without loss of generality, we assume that the random vectors (X,Y ) and
(U,Z) are independent. Let

I(u, x) =

{
1 if u ≤ x

0 if u > x.

Then

|X − U ||Y − Z| =
∫ ∞

−∞

∫ ∞

−∞
|I(s,X)− I(s, U)||I(t, Y )− I(t, Z)| dsdt

and hence

E[|X−U ||Y −Z|] = E[

∫ ∞

−∞

∫ ∞

−∞
|I(s,X)−I(s, U)||I(t, Y )−I(t, Z)| dsdt]. (6.2.1)

Observe that

E[f(X,Y )− f(U, Y ) + f(U,Z)− f(X,Z)] (6.2.2)

= E[

∫ ∞

−∞

∫ ∞

−∞
fxy(s, t)(I(s,X)− I(s, U))(I(t, Y )− I(t, Z)) dsdt.
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The integrand on the right-hand side of the equation is bounded by

M(f)|I(s,X)− I(s, U)||I(t, Y )− I(t, Z)|
and, by (6.2.1), we can interchange the order of integration by Fubini’s theorem.
This gives the identity

E[f(X,Y )]− E[f(U,Z)] =

∫ ∞

−∞

∫ ∞

−∞
fxy(u, v)HX,Y (u, v) dudv. (6.2.3)

If X and Y are associated, then HX,Y (x, y) ≥ 0 and it follows that
|E[f(X,Y )]− E[f(U,Z)]| ≤ M(f) Cov(X,Y )

by using the Hoeffding identity

Cov(X,Y ) =

∫ ∞

−∞

∫ ∞

−∞
HX,Y (u, v)dudv. �

A slight variation of this result is the following result from Bulinski and
Shaskin (2007).

Theorem 6.2.2. Let g(x, y) be a real-valued function with continuous second partial

derivative gxy(x, y) =
∂2g
∂x∂y . Suppose that X,Y and Z are random variables such

that the Z is independent of X and the distributions of Y and Z are the same.
Then

E[g(X,Y )]− E[g(X,Z)] =

∫ ∞

−∞

∫ ∞

−∞

∂2g

∂x∂y
HX,Y (x, y) dxdy (6.2.4)

where
HX,Y (x, y) = P (X ≥ x, Y ≥ y)− P (X ≥ x)P (Y ≥ y)

provided the expectations and the double integral exist.

Proof. Without loss of generality, we can assume that Z is independent of X as
well as Y by enlarging the probability space. Let U be a random variable such
that the random vector (U,Z) is independent of the random vector (X,Y ) and
has the same distribution as that of (X,Y ). Note that∫

R2

gx,y(x, y)HX,Y (x, y)dxdy

=

∫
R2

∫
R2

gx,y(t, w)Cov(I[X≥t], I[Y≥w]) dtdw

=
1

2

∫
R2

gx,y(t, w)E{[I[X≥t] − I[U≥t]][I[Y≥w] − I[Z≥w]]} dtdw
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=
1

2
E{

∫
R2

gx,y(t, w)([I[X≥t] − I[U≥t]][I[Y≥w] − I[Z≥w])] dtdw}

=
1

2
E[

∫ X

U

∫ Y

Z

gx,y(t, w)dtdw]

=
1

2
E[

∫ X

U

(
∂g(t, Y )

∂t
− ∂g(t, Z)

∂t
)dt]

=
1

2
E[g(X,Y )− g(U, Y )− g(X,Z) + g(U,Z)]

= E[g(X,Y )]− E[g(X,Z)]. �

Suppose f and g are real-valued functions with continuous derivatives. Let
X and Y be random variables such that E|f(X)|, E|g(Y )| and E|f(X)G(Y )| are
finite. As a special case of the above result, it follows that

Cov(f(X), g(Y )) =

∫
R2

f ′(x)g′(y)HX,Y (x, y) dxdy.

It is easy to see that the above result can be extended to complex-valued
functions f and g with obvious interpretations in the notations.

Newman (1980, 1984) proved the following covariance inequality for a random
vector (X,Y ) which is associated. Note that Cov(X,Y ) ≥ 0.
Theorem 6.2.3 (Newman’s inequality). Suppose (X,Y ) is a random vector which
is associated. Let f and g be differentiable functions with supx |f ′(x)| < ∞ and
supx |g′(x)| < ∞. Then

|Cov(f(X), g(Y ))| ≤ sup
x

|f ′(x)| sup
y

|g′(y)|Cov(X,Y ). (6.2.5)

This result follows from the Newman’s identity discussed in Chapter 1, see
equation (1.1.3). Bulinski (1996) generalized this result.

Theorem 6.2.4. Suppose (X,Y ) is a random vector which is associated. Let f and
g be Lipschitz functions. Then

|Cov(f(X), g(Y ))| ≤ Lip(f) Lip(g) Cov(X,Y ) (6.2.6)

where

Lip(f) = sup
x �=y

|f(x)− f(y)|
|x− y| .

A more general version of the above inequality is the following due to Bulinski
(1996).

Let g(.) be a continuous function from Rn → R such that for any x ∈ Rn

and any k = 1, . . . , n there exist finite left and right partial derivatives ∂+g(x)
∂xk
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and ∂−g(x)
∂xk

. Further suppose that, for each k = 1, . . . , n, there are at most a finite

number of x at which ∂+g(x)
∂xk

�= ∂−g(x)
∂xk

. Let

Lk(g) = max[||∂
+g(x)

∂xk
||∞, ||∂

−g(x)
∂xk

||∞].

Theorem 6.2.5 (Bulinski’s inequality; Bulinski (1996)). Let X1, . . . , Xn be associ-
ated random variables. Let h(x) be a continuous function from Rn to R such that

for any x ∈ Rn and any k = 1, . . . , n, there exist finite derivatives ∂+h(x)
∂xk

and
∂−h(x)
∂xk

. Further suppose that for each k = 1, . . . , n , there are at most a finite

number of points x at which ∂+h(x)
∂xk

�= ∂−h(x)
∂xk

. Let

Lk(h) = max{‖∂
+h(x)

∂xk
‖∞, ‖∂

−h(x)
∂xk

‖∞}

where ‖.‖ stands for the norm in L∞. Further suppose that similar assumptions
hold for another function g. Then, for any two disjoint subsets I and J of
{1, . . . , n},

|Cov(h(Xi, i ∈ I), g(Xj , j ∈ J))| ≤
∑
i∈I

∑
j∈J

Li(h)Lj(g) Cov(Xi, Xj). (6.2.7)

The following result is due to Bulinski and Shabanovich (1998).

Theorem 6.2.6. Let X = {Xj, j ∈ Zd} be an associated (or negatively associated)
random field such that E[X2

j ] < ∞ for any j ∈ Zd. Let A and B be two finite

subsets of Zd. In addition, suppose that they are disjoint if the random field X =
{Xj, j ∈ Zd} is negatively associated. Let |A| denote the cardinality of the set A.
Let XA denote the random vector with components Xj for j ∈ A. Then, for any
Lipschitzian functions f : R|A| → R and g : R|B| → R,

|Cov(f(XA), g(XB))| ≤
∑

i∈A,j∈B
Lipi(f) Lipj(g)|Cov(Xi, Xj)|.

Proof. Define

f+(XA) = f(XA) +
∑
i∈A

Lipi(f) Xi

and
f−(XA) = f(XA)−

∑
i∈A

Lipi(f) Xi.

Observe that the function f+ is componentwise nondecreasing and the function
f− is componentwise nonincreasing. In the associated case, it follows that

Cov(f+(XA), g+(XB)) ≥ 0,
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Cov(f−(XA), g−(XB)) ≥ 0,
Cov(−f+(XA), g−(XB)) ≥ 0,

and
Cov(f−(XA),−g+(XA)) ≥ 0.

Addition of the first two inequalities gives the upper bound for Cov(f(XA), g(XB))
and addition of third and fourth give the lower bound for Cov(f(XA), g(XB)). The
result in the negatively associated case is proved by reversing the four inequalities
given above. �
Remarks. It is possible to extend the result to the composition of functions of
bounded variation instead of Lipschitzian functions. Then the upper bound has to
be replaced by the covariance of monotone functions of Xi multiplied by the total
variation of f and g (cf. Zhang (2001)).

The following inequality is a consequence of Bulinski’s inequality.

Theorem 6.2.7. Let the set {Xi, 1 ≤ i ≤ n} be a finite sequence of associated
random variables. Let gj, j = 1, . . . , n be functions as defined above. Then

|E[exp(it
n∑

j=1

gj(Xj))]−
n∏

j=1

E[exp(itgj(Xj))]| (6.2.8)

≤ t2
∑

1≤j<k≤n

Lj(gj)Lk(gk) Cov(Xj , Xk).

Proof. The proof is by induction. For n = 2, using Newman’s inequality, it follows
that

|E[exp{it(g1(X1) + g2(X2))}]−
2∏

j=1

E[exp(itgj(Xj))]| (6.2.9)

= |Cov(exp(itg1(X1), exp(itg2(X2))|
≤ t2L1(g1)L2(g2) Cov(X1, X2).

Suppose the result holds for n = m. Then, for n = m+1, using Bulinski’s inequality
(1996) and the induction hypothesis, we get that

|E[exp(it
m+1∑
j=1

gj(Xj))]−
m+1∏
j=1

E[exp(itgj(Xj))]| (6.2.10)

= |Cov(exp{it
m∑
j=1

gj(Xj)}, exp(itgm+1(Xm+1)))|

+ |E[exp(itgm+1(Xm+1))||E[exp(it
m∑
j=1

gj(Xj))]−
m∏
j=1

E[exp(itgj(Xj))]|
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≤ t2
m∑
j=1

Lj(gj)Lm+1(gm+1) Cov(Xj , Xm+1)

+ t2
∑

1≤j<k≤m

Lj(gj)Lk(gk) Cov(Xj , Xk)

= t2
∑

1≤j<k≤m+1

Lj(gj)Lk(gk) Cov(Xj , Xk)

which proves the theorem. �

As a special case of the above theorem, we get the following inequality.

Theorem 6.2.8. Suppose the set of random variables {X1, . . . , Xn} is associated
(or negatively associated) such that E|Xi|2 < ∞, 1 ≤ i ≤ n. Then, for any ti ∈ R,
1 ≤ i ≤ n,

|E(eit1X1+...+itnXn)−
n∏

j=1

E(eitjXj )| ≤ 4
∑

1≤j �=k≤n

|tjtk||Cov(Xj , Xk)|.

Remarks. Newman (1980) proved the above result with factor “4” replaced by
“1”. Another important inequality which will be used later in this chapter is the
following result proved in Dewan and Prakasa Rao (1999).

Theorem 6.2.9. Let X1, . . . , Xn be associated random variables bounded by a con-
stant M. Then, for any λ > 0,

|E(eλ
∑n

i=1 Xi)−
n∏

i=1

E[eλXi ]| ≤ λ2enλM
∑

1≤i<j≤n

Cov(Xi, Xj). (6.2.11)

Proof. Using Newman’s (1980) inequality, we get that , for n = 2, and any λ > 0,

|Cov(eλX1 , eλX2)| ≤ λ2e2λM |Cov(X1, X2)|. (6.2.12)

The result follows by induction and using the fact that, if X,Y, and Z are associ-
ated, so are X and Y + Z as they are increasing functions of associated random
variables. �

The following result due to Shaskin (2007) is useful in approximating par-
tial sums of associated random variables by partial sums of independent random
variables.

Theorem 6.2.10. Let the random vector Y = (Y1, . . . , Ym) be a vector with as-
sociated components and let E[Y 2

i ] < ∞, i = 1, . . . ,m. Then the random vec-
tor Y can be redefined on a new probability space on which independent random
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variables Z1, . . . , Zm exist such that Zk and Yk are identically distributed and
P (|Yk − Zk| > ak) ≤ ak for k = 1, . . . ,m where

ak = A

m∑
v=k

v1/3(

v−1∑
j=1

Cov(Yj , Yv))
1/3

and A > 0 is an absolute constant.

Another related result is due to Lewis (1998).

Theorem 6.2.11. Let the set of random variables {X1, . . . , Xn} be associated (or
negatively associated) with second moments. Let the set {Y1, . . . , Yn} be indepen-
dent random variables independent of {X1, . . . , Xn} such that Xi and Yi are iden-
tically distributed for 1 ≤ i ≤ n. Suppose that f is a function twice differentiable
with a continuous and bounded second derivative f ′′. Then

|E[f(X1 + . . .+Xn)]− E[f(Y1 + . . .+ Yn)]| ≤ sup
x

|f ′′(x)|
∑

1≤i�=j≤n

Cov(Xi, Xj)|.

(6.2.13)

Proof. The theorem is proved by induction on n. For n = 1, the result is obvious
since E[f(X1)] = E[(f(Y1)]. Suppose that the result holds for a set of n−1 random
variables. Note that

E[f(X1 + . . .+Xn)]− E[f(Y1 + . . .+ Yn)]| (6.2.14)

≤ |E[f(X1 + . . .+Xn)]− E[f(X1 + . . .+Xn−1 + Yn)]|
+ |E[f(X1 + . . .+Xn−1 + Yn)]− E[f(Y1 + . . .+ Yn)]|

= J1 + J2 (say).

It can be shown that the function g(y) ≡ E[f(y+ Yn)] is twice differentiable with
bounded continuous second derivative. Hence, by the induction hypothesis,

J2 ≤ sup
x

|f ′′(x)|
∑

1≤i�=j<n

Cov(Xi, Xj)|. (6.2.15)

Let S = X1 + . . . + Xn−1 and T = Y1 + . . . + Yn−1. Then the bivariate vector
(S,Xn is associated (or negatively associated), the vector (T, Yn) has independent
components independent of (S,Xn) and the random variables Xn and Yn are iden-
tically distributed. Applying the second version of generalized Hoeffding identity,
we get that

J1 = |E[f(S + Yn)]− E[f(T + Yn)]| (6.2.16)

= |
∫ 2

R

f ′′(t+ w)HS,T (t, w)dtdw|
≤ sup

x
|f ′′(x)||Cov(S,Xn)|
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≤ sup
x

|f ′′(x)
n−1∑
j=1

||Cov(Xj , Xn)|.

The result follows from equations (6.2.14)–(6.2.16). �

A more general version of the inequality is given by the following result which
follows from results due to Christofides and Vaggelatou (2004).

Theorem 6.2.12. Let the random vector (Y1, . . . , Ym) have associated components
with E[Y 2

j ] < ∞, j = 1, . . . ,m. Suppose that a random variable Z is independent
of the vector (Y1, . . . , Ym−1) and the random variables Z and Ym are identically
distributed. Let f : Rm → R with bounded second-order partial derivatives. Then

|E[f(Y1, . . . , Ym−1, Ym)]− E[f(Y1, . . . , Ym−1, Z)]| (6.2.17)

≤
m−1∑
k=1

sup
xk,xm

| ∂2f

∂xk∂xm
]|Cov(Yk, Ym)|.

An important inequality which has been found useful in applications for
deriving limit properties of estimators and test statistics for associated sequences
of random variables, due to Bagai and Prakasa Rao (1991), is given in Theorem
6.2.14 and it is a consequence of the following probabilistic inequality Sadikova’s
inequality due to Sadikova (1966).

Theorem 6.2.13 (Sadikova’s inequality). Let F (x, y) and G(x, y) be two bivariate
distribution functions with characteristic functions f(s, t) and g(s, t) respectively.
Define

f̂(s, t) = f(s, t)− f(s, 0) f(0, t)

and

ĝ(s, t) = g(s, t)− g(s, 0) g(0, t).

Suppose that the partial derivatives of G with respect to x and y exist. Let

A1 = sup
x,y

∂G(x, y)

∂x
and A2 = sup

x,y

∂G(x, y)

∂y
.

Suppose A1 and A2 are finite. Then, for any T > 0,

sup
x,y

|F (x, y)−G(x, y)| (6.2.18)

≤ 1

4π2

∫ T

−T

∫ T

−T

| f̂(s, t)− ĝ(s, t)

st
|dsdt+ 2 sup

x
|F (x,∞)−G(x,∞)|

+ 2 sup
y

|F (∞, y)−G(∞, y)|+ 2A1 +A2

T
(3
√
2 + 4

√
3).
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Theorem 6.2.14 (Bagai and Prakasa Rao (1991)). Suppose X and Y are associated
random variables with bounded continuous densities. Then there exists a constant
C > 0, such that for any T > 0,

sup
x,y

|P (X ≤ x, Y ≤ y)− P (X ≤ x) P (Y ≤ y)| ≤ C[T 2 Cov(X,Y ) +
1

T
]. (6.2.19)

In particular, choosing the optimum T = [Cov(X,Y )]−1/3, the following inequality
holds: there exists a constant C > 0, such that

sup
x,y

|P (X ≤ x, Y ≤ y)− P (X ≤ x) P (Y ≤ y)| ≤ C[Cov(X,Y )]1/3. (6.2.20)

Proof. Let F (x, y) = P (X ≤ x, Y ≤ y) and G(x, y) = P (X ≤ x) P (Y ≤ y). It is
easy to note that the function G(x, y) satisfies the conditions stated in Theorem
6.2.13. Applying the inequality

|f(s, t)− f(s, 0) f(0, t)| ≤ |t|s|Cov(X,Y )

due to Newman (1980), we obtain the result stated in (6.2.20). Note that
Cov(X,Y ) ≥ 0 since the random variables X and Y are associated. �

A minor variant of the theorem stated above is the following result from Yu
(1993).

Theorem 6.2.15. Let the bivariate random vector (X,Y ) be an associated (or neg-
atively associated) random vector such that E(X2) and E(Y 2) are finite. Further
suppose that X and Y have bounded probability density functions bounded by a
constant M. Then

sup
x,y

|P (X ≥ x, Y ≥ y)− P (X ≥ x)P (Y ≥ y)| ≤ 3.22/3M2/3|Cov(X,Y |1/3.

Proof. If Cov(X,Y ) = 0, the X and Y are independent since the random vector
(X,Y ) is associated (or negatively associated). Then the result holds trivially.
Suppose that |Cov(X,Y )| > 0. Let δ > 0 and define

hδ,x(s) =

⎧⎪⎨
⎪⎩
0 if ≤ x− δ

δ−1(s− x) if x− δ < s ≤ x

1 if s > x.

Observe that, for every s ∈ R and every δ > 0,

I[s≥x] ≤ hδ,x(s)

and
I[s≥x]| ≥ hδ,x+δ(s).
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Hence

|P (X ≥ x, Y ≥ y)− P (X ≥ x)P (Y ≥ y)|
= |Cov(I[X≥x], I[Y≥y]|
≤ |Cov(hδ,x(X), hδ,y(Y ))|+ |Cov(I[X≥x] − hδ,x(X), hδ,y(Y ))|
+ |Cov(I[X≥x], I[Y≥y] − hδ,y(Y ))|

≤ δ−2|Cov(X,Y )|+ 4Mδ

from the result given in the theorem stated below. The upper bound stated in the
theorem is now a consequence of optimization of the last term in δ > 0. �
Theorem 6.2.16. Suppose (X,Y ) is an associated random vector. Then, for any
a > 0,

λ{(x, y) ∈ R2 : P (X ≥ x, Y ≥ y)− P (X ≥ x)P (Y ≥ y)} ≤ 1

a
Cov(X,Y )

where λ(.) is the Lebesgue measure on R2.

This result follows from Chebyshev’s inequality and Hoeffding identity.

6.3 Hajek-Renyi Type Inequalities

Prakasa Rao (2002) obtained Hajek-Renyi type inequality for associated random
variables.

Theorem 6.3.1. Let the sequence {Xn, n ≥ 1} be an associated sequence of random
variables with Var(Xi) = σ2

i < ∞ and {bn, n ≥ 1} be a positive nondecreasing
sequence. Then, for any ε > 0,

P ( max
1≤k≤n

| 1
bk

k∑
i=1

(Xi − E[Xi])| ≥ ε) ≤ 8ε−2[

n∑
i=1

Var(Xi)

b2i
+

∑
1≤j �=k≤n

Cov(Xj , Xk)

bjbk
].

(6.3.1)

An improved version of this result is due to Sung (2008). Christofides (2000)
obtained a slightly different version of the Hajek-Renyi type inequality as a corol-
lary to the Hajek-Renyi inequality for demimartingales.

Theorem 6.3.2. Let the sequence {Xn, n ≥ 1} be an associated sequence of random
variables with Var(Xi) = σ2

i < ∞ and the sequence {bn, n ≥ 1} be a positive
nondecreasing sequence. Let Sj = X1 + . . .+Xj, 1 ≤ j ≤ n. Then, for any ε > 0,

P ( max
1≤k≤n

| 1
bk

k∑
i=1

(Xi − E[Xi])| ≥ ε) ≤ 2ε−2[

n∑
i=1

Var(Xi)

b2i
+

∑
1≤j≤n

!
Cov(Xj , Sj−1)

b2j
].

(6.3.2)
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Esary et al. (1967) proved that monotonic functions of associated random
variables are associated. Hence one can easily extend the above inequalities to
monotonic functions of associated random variables. We now generalize the above
results to some non-monotonic functions of associated random variables following
the work in Dewan and Prakasa Rao (2006). As an application, a strong law of large
numbers is derived for non-monotonic functions of associated random variables.
Let us recall some definitions and results which will be useful in proving our main
results.

Definition (Newman (1984)). Let f and f1 be two real-valued functions defined on
Rn.We say that f � f1 if f1+f and f1−f are both nondecreasing componentwise.

In particular, if f � f1, then f1 will be nondecreasing componentwise.

Dewan and Prakasa Rao (2001) observed the following.

Suppose that f is a real-valued function defined on R.. Then f � f1 for some
real-valued function defined f1 on R if and only if, for x < y,

f(y)− f(x) ≤ f1(y)− f1(x) (6.3.3)

and
f(x)− f(y) ≤ f1(y)− f1(x). (6.3.4)

It is clear that these relations hold if and only if, for x < y,

|f(y)− f(x)| ≤ f1(y)− f1(x). (6.3.5)

If f is a Lipschitzian function defined on R , that is, there exists a positive
constant c � such that

|f(x)− f(y)| ≤ c|x− y|,
then

f � f̃ , with f̃(x) = cx. (6.3.6)

In general, if f is a Lipschitzian function defined on Rn, then f � f̃ where

f̃(x1, . . . , xn) = Lip(f)

n∑
i=1

xi

and

Lip(f) = sup
x �=y

|f(x1, . . . , xn)− f(y1, . . . , yn)|∑n
i=1 |xi − yi| < ∞.

Let the sequence {Xn, n ≥ 1} be a sequence of associated random variables.
Let

(i) Yn = fn(X1, X2, . . .),

(ii) Ỹn = f̃n(X1, X2, . . .),
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(iii) fn � f̃n, and

(iv) E(Y 2
n ) < ∞, E(Ỹ 2

n ) < ∞, for n ≥ 1. (6.3.7)

For convenience, we write that Yn � Ỹn if the conditions stated in (i)–(iv) hold.
The functions fn, f̃n are assumed to be real-valued and depend only on a finite
number of X ′

ns. Let Sn =
∑n

k=1 Yk, S̃n =
∑n

k=1 Ỹk. Matula (2001) proved the
following result which will be useful in proving our results. He used them to prove
the strong law of large numbers and the central limit theorem for non-monotonic
functions of associated random variables.

Lemma 6.3.3 (Matula (2001)). Suppose the conditions stated above in (6.3.7) hold.
Then

(i) Var(fn) ≤ Var(f̃n),
(ii) |Cov(fn, f̃n)| ≤ Var(f̃n),
(iii) Var(Sn) ≤ Var(S̃n),

(iv) f1 + f2 + . . .+ fn � f̃1 + f̃2 + . . .+ f̃n,

(v) Cov(f1 + f̃1, f2 + f̃2) ≤ 4Cov(f̃1, f̃2), and

(vi) Cov(f̃1 − f1, f̃2 − f2) ≤ 4Cov(f̃1, f̃2). (6.3.8)

The following maximal inequality is due to Newman and Wright (1981) for
associated random variables.

Lemma 6.3.4 (Newman and Wright (1981)). Suppose X1, X2, . . . , Xm are associ-
ated, mean zero, finite variance random variables and M∗

m = max(S∗1 , S
∗
2 , . . . , S

∗
m),

where S∗n =
∑n

i=1 Xi. Then

E((M∗
m)

2) ≤ Var(S∗m). (6.3.9)

Remarks. Note that if X1, X2, . . . , Xm are associated random variables, then
−X1,−X2, . . . ,−Xm also form a set of associated random variables. Let
M∗∗

m = max(−S∗1 ,−S∗2 , . . . ,−S∗m) and M̃∗
m = max(|S∗1 |, |S∗2 |, . . . , |S∗m|). Then

M̃∗
m = max(M∗

m,M∗∗
m ) and (M̃

∗
m)

2 ≤ (M∗
m)

2 + (M∗∗
m )

2 so that

E((M̃∗
m)

2) ≤ 2Var(S∗m). (6.3.10)

We now extend Newman and Wright’s (1981) result to non-monotonic func-
tions of associated random variables satisfying conditions (6.3.7).

Theorem 6.3.5. Let Y1, Y2, . . . , Ym be as defined in (6.3.7) with zero mean and
finite variances . Let Mm = max(|S1|, |S2|, . . . , |Sm|). Then

E(M2
m) ≤ (20)Var(S̃m). (6.3.11)
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Proof. Observe that

max
1≤k≤m

|Sk| = max
1≤k≤m

|S̃k − Sk − E(S̃k)− S̃k + E(S̃k)| (6.3.12)

≤ max
1≤k≤m

|S̃k − Sk − E(S̃k)|+ max
1≤k≤m

|S̃k − E(S̃k)|.

Note that S̃k −E(S̃k) and S̃k −Sk −E(S̃k) are partial sums of associated random
variables each with mean zero. Hence, using the results of Newman and Wright
(1981), we get that

E(M2
m) ≤ E( max

1≤k≤m
|Sk|)2 (6.3.13)

≤ 2[E( max
1≤k≤m

|S̃k − Sk − E(S̃k)|)2 + E( max
1≤k≤m

|S̃k − E(S̃k)|)2]

≤ 4[Var(S̃m − Sm) + Var(S̃m)]

≤ 4[Var(2S̃m) + Var(S̃m)]

= (20)Var(S̃m). �

We have used the fact that

Var(2S̃n) = Var(S̃n − Sn + S̃n + Sn) (6.3.14)

= Var(S̃n − Sn) + Var(S̃n + Sn) + 2Cov(S̃n + Sn, S̃n − Sn).

Since S̃n + Sn and S̃n − Sn are nondecreasing functions of associated random
variables, it follows that Cov(S̃n+Sn, S̃n−Sn) ≥ 0. Hence Var(2S̃n) ≥ V ar(S̃n−
Sn).

We now prove a Hajek-Renyi type inequality for some non-monotonic func-
tions of associated random variables satisfying conditions (6.3.7).

Theorem 6.3.6. Let the sequence {Yn, n ≥ 1} be a sequence of non-monotonic
functions of associated random variables as defined in (6.3.7). Suppose that Yn �
Ỹn, n ≥ 1. Let the sequence {bn, n ≥ 1} be a positive nondecreasing sequence of
real numbers. Then, for any ε > 0,

P ( max
1≤k≤n

| 1
bn

k∑
i=1

(Yi − E(Yi))| ≥ ε) ≤ 80ε−2[

n∑
j=1

Var(Ỹj)

b2j
+

∑
1≤j �=k≤n

Cov(Ỹj , Ỹk)

bjbk
].

(6.3.15)

Proof. Let Tn =
∑n

j=1(Yj − E(Yj)). Note that

P [ max
1≤k≤n

|Tk

bk
| ≥ ε] (6.3.16)

= P [ max
1≤k≤n

| T̃k − Tk − E(T̃k)− T̃k + E(T̃k)|
bk

| ≥ ε]
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≤ P [ max
1≤k≤n

| T̃k − Tk − E(T̃k)

bk
| ≥ ε

2
] + P [ max

1≤k≤n
| T̃k − E(T̃k)|

bk
| ≥ ε

2
]

≤ 16ε−2[

n∑
j=1

Var(Ỹj − Yj)

b2j
+

∑
1≤j �=k≤n

Cov(Ỹj − Yj , Ỹk − Yk)

bjbk
]

+ 16ε−2[
n∑

j=1

Var(Ỹj)

b2j
+

∑
1≤j �=k≤n

Cov(Ỹj , Ỹk)

bjbk
].

The result follows by applying the inequalities

Var(Ỹj − Yj) ≤ 4Var(Ỹj)

Cov(Ỹj − Yj , Ỹk − Yk) ≤ 4Cov(Ỹj , Ỹk). �

Applications

Corollary 6.3.7. Let the sequence {Yn, n ≥ 1} be a sequence of non-monotonic
functions of associated random variables satisfying the conditions in (6.3.7). As-
sume that

∞∑
j=1

Var(Ỹj) +
∑

1≤j �=k<∞
Cov(Ỹj , Ỹk) < ∞. (6.3.17)

Then
∑∞

j=1(Yj − EYj) converges almost surely.

Proof. Without loss of generality, assume that EYj = 0 for all j ≥ 1. Let Tn =∑n
j=1 Yj and ε > 0. Using Theorem 6.3.2, it is easy to see that there exists a

constant C > 0, such that

P (supk,m≥n|Tk − Tm| ≥ ε) (6.3.18)

≤ P (supk≥n|Tk − Tn| ≥ ε

2
) + P (supm≥n|Tm − Tn| ≥ ε

2
)

≤ C lim sup
N→∞

P (supn≤k≤N |Tk − Tn| ≥ ε

2
)

≤ C ε−2[

∞∑
j=n

Var(Ỹj) +
∑

n≤j �=k<∞
Cov(Ỹj , Ỹk)].

The last term tends to zero as n → ∞ because of (6.3.17). Hence the sequence
of random variables {Tn, n ≥ 1} is Cauchy almost surely which implies that Tn

converges almost surely. �

The following corollary proves the strong law of large numbers for non-
monotonic functions of associated random variables.
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Corollary 6.3.8. Let the sequence {Yn, n ≥ 1} be a sequence of non-monotonic
functions of associated random variables satisfying the conditions in (6.3.7). Sup-
pose that

∞∑
j=1

Var(Ỹj)

b2j
+

∑
1≤j �=k<∞

Cov(Ỹj , Ỹk)

bjbk
< ∞.

Then 1
bn

∑n
j=1(Yj − EYj) converges to zero almost surely as n → ∞.

Proof. The proof is an immediate consequence of Theorem 6.3.2 and the Kronecker
lemma (Chung (1974)). �

Remarks. Birkel (1989) proved a strong law of large numbers for positively depen-
dent random variables. Prakasa Rao (2002) proved a strong law of large numbers
for associated sequences as a consequence of the Hajek-Renyi type inequality.
Marcinkiewicz-Zygmund type strong law of large numbers for associated random
variables, for which the second moment is not necessarily finite, was studied in
Louhichi (2000). A strong law of large numbers for monotone functions of associ-
ated sequences follows from these results since monotone functions of associated
sequences are associated. However the corollary given above gives sufficient con-
ditions for the strong law of large numbers to hold for possibly non-monotonic
functions of associated sequences whose second moments are finite.

For any random variable X and any constant k > 0 , define

Xk =

⎧⎪⎨
⎪⎩
X if |X| ≤ k

−k if X < −k

k if X > k.

The following theorem is an analogue of the three series theorem for non-monotonic
functions of associated random variables.

Corollary 6.3.9. Let the sequence {Yn, n ≥ 1} be a sequence of non-monotonic
functions of associated random variables. Further suppose that there exists a con-
stant k > 0 such that Y k

n � Ỹ k
n satisfying the conditions in (6.3.7) and

∞∑
n=1

P [|Yn| ≥ k] < ∞, (6.3.19)

∞∑
n=1

E(Y k
n ) < ∞, (6.3.20)

∞∑
j=1

Var(Ỹ k
j ) +

∑
1≤j �=j′<∞

Cov(Ỹ k
j , Ỹ k

j′ ) < ∞. (6.3.21)

Then
∑∞

n=1 Yn converges almost surely.
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Corollary 6.3.10. Let the sequence {Yn, n ≥ 1} be a sequence of non-monotonic
functions of associated random variables satisfying the conditions in (6.3.7). Sup-
pose

∞∑
j=1

Var(Ỹj)

b2j
+

∑
1≤j �=k<∞

Cov(Ỹj , Ỹk)

bjbk
< ∞. (6.3.22)

Let Tn =
∑n

j=1(Yj − E(Yj)). Then, for any 0 < r < 2,

E[supn(
|Tn|
bn
)r] < ∞. (6.3.23)

Proof. Note that

E[supn(
|Tn|
bn
)r] < ∞

if and only if ∫ ∞

1

P (supn(
|Tn|
bn
)r > t1/r)dt < ∞.

The last inequality holds because of Theorem 6.3.2 and the condition (6.3.22).
Hence the result stated in equation (6.3.23) holds. �

6.4 Exponential Inequality

We have discussed an exponential inequality for partial sums of associated random
variables in Chapter 1. We will now discuss another variation of the exponential
inequality for bounded stationary associated sequences due to Douge (2007).

Theorem 6.4.1. Let the sequence {Xn, n ≥ 1} be a stationary associated sequence
of random variables such that |Xn| ≤ M < ∞, n ≥ 1 and

ck = Cov(X1, Xk+1) ≤ α0 exp{−αk}, k ≥ 0 (6.4.1)

for some α > 0 and α0 > 0. Then, for every n ≥ 2 and every ε > 6M√
n
,

P [
1

n
|

n∑
i=1

(Xi − E(Xi))| ≥ ε] ≤ 8c0 exp[−min(α, 1)
12M

√
nε] (6.4.2)

where c0 = exp[α0/(4M
2(1− e−α))].

We will now sketch a proof of this theorem.

Proof. For n ≥ 2, let p = p(n) and r = r(n) such that 2pr ≤ n. Let Yi =
Xi − E(Xi), 1 ≤ i ≤ n and S̄n =

1
n

∑n
i=1 Yi. Define the random variables Ui, Vi,

i = 1, . . . , n and Wn by the equations

Ui = Y2(i−1)p+1 + . . .+ Y(2i−1)p, (6.4.3)
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Vi = Y(2i−1)p+1 + . . .+ Y2ip, (6.4.4)

and

Wn = Y2pr+1 + . . .+ Yn. (6.4.5)

Let Ūn =
1
n

∑r
i=1 Ui, V̄n =

1
n

∑r
i=1 Vi and W̄n =

Wn

n . Let ε > 0. Then

P (Ūn ≥ ε) ≤ e−λεE[eλŪn ] (6.4.6)

≤ e−λε(|E(e λ
n

∑r
i=1 Ui −

r∏
i=1

E[e
λ
nUi ]|+

r∏
i=1

E[e
λ
nUi ]).

Applying the inequality

ex ≤ 1 + x+ x2 if |x| ≤ 1

2

for x = λ
nUn where λ =

min(α,1)
4M

n
p , we obtain that

r∏
i=1

E[e
λ
nUi ] ≤

r∏
i=1

E(1 +
λ

n
Ui +

λ2

n2
U2
i ) ≤ exp(

α0

1− e−α

λ2

n
). (6.4.7)

Note that the random variables U1, . . . , Un are associated. This follows from the
properties of associated random variables (cf. Property (4) of Esary et al. (1967)).
Applying Theorem 6.2.9, it can be shown that

|E(e λ
n

∑r
i=1 Ui −

r∏
i=1

E[e
λ
nUi ]| ≤ λ2α0

2n(1− e−α)
eλM−αp. (6.4.8)

The inequalities (6.4.7) and (6.4.8) also hold if Ui is replaced by −Ui. Choosing
p = [

√
n], and using inequality (6.4.6), we get that

P (|Ūn| ≥ ε) = P (Ūn ≥ ε) + P (−Ūn ≥ ε) ≤ 4c0 exp[−min(α, 1)
4M

√
nε] (6.4.9)

where c0 = exp[α0/(4M
2(1−e−α))]. It can be seen that V̄n satisfies the inequality

(6.4.9) and furthermore P (W̄n ≥ ε) = 0 for every ε > 2M√
n
. The result now follows

from the fact that S̄n = Ūn + V̄n + W̄n. �

Remarks. As a consequence of the inequality (6.4.2), it follows that

1

n
|

n∑
i=1

(Xi − E(Xi))| = O(
log n√

n
) a.s. (6.4.10)

under the conditions stated in Theorem 6.4.1.
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6.5 Non-uniform and Uniform Berry-Esseen Type
Bounds

We have stated some results on uniform Berry-Esseen type bounds for partial
sums of stationary associated sequences in Chapter 1. We now derive uniform and
non-uniform type bounds for such sequences following Dewan and Prakasa Rao
(2005a).

Uniform Bound

Let the set of random variables {Xi, 1 ≤ i ≤ n} be a finite set of stationary asso-
ciated random variables. We obtain an explicit Berry-Esseen type bound Berry-
Esseen type bound for the distribution function of Sn = X1+ . . .+Xn. The bound
is in terms of the moments of random variables {Xi, 1 ≤ i ≤ n} and bounds on
the density function of the partial sums of n independent copies of the random
variable X1 assuming that it exists.

Theorem 6.5.1. Let the set {Xi, 1 ≤ i ≤ n} be a finite set of stationary associated
random variables with E(X1) = 0, Var(X1) = σ2 > 0 and E[|X1|3] < ∞. Suppose
the random variable X1 has an absolutely continuous distribution function. Let
s2n = Var(Sn). Suppose that

s2n
n

→ σ2 as n → ∞. (6.5.1)

Let Fn be the distribution function of Sn

sn
and F ∗n be the distribution function of

∑n
i=1 Zi

sn
where Zi, 1 ≤ i ≤ n are independent and identically distributed random

variables with the distribution function the same as that of the random variable
X1. Let mn be a bound on the derivative of F ∗n . Then there exists an absolute
constant C > 0, such that

sup
x

|Fn(x)− Φ(x)| ≤ C [
d
1/3
n m

2/3
n

s
2/3
n

+
E|X1|3√

nσ3
+ (

sn
σ
√
n
− 1)] (6.5.2)

where Φ(x) is the distribution function of a standard Gaussian random variable
and

dn =
n∑

j=2

(n− j + 1)Cov(X1, Xj). (6.5.3)

Proof. Let ψn(t) and ψ∗n(t) be the characteristic functions corresponding to the
distribution functions Fn and F ∗n respectively. Note that, for T > 0,

sup
x

|Fn(x)− F ∗n(x)| ≤
1

π

∫ T

−T

|ψn(t)− ψ∗n(t)
t

| dt+ 24
mn

πT
(6.5.4)
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by the smoothing inequality (cf. Feller (1977), Vol. II, p. 512). Applying Newman’s
inequality to the sequence of stationary associated random variables {Xi, 1 ≤ i ≤
n}, we get that

|ψn(t)− ψ∗n(t)| ≤
∑

1≤i<j≤n

t2

s2n
Cov(Xi, Xj) (6.5.5)

=
t2

s2n

n−1∑
i=1

n∑
j=i+1

Cov(Xi, Xj)

=
t2

s2n

n∑
j=2

(n− j + 1)Cov(Xi, Xj)

=
t2

s2n
dn.

From equations (6.5.4) and (6.5.5), it follows that

sup
x

|Fn(x)− F ∗n(x)| ≤
dn
πs2n

T 2 + 24
mn

πT
. (6.5.6)

Choosing T = (
(24)mns

2
n

dn
)1/3, we get that

sup
x

|Fn(x)− F ∗n(x)| ≤
2(24)2/3

π

d
1/3
n m

2/3
n

s
2/3
n

. (6.5.7)

Applying the classical Berry-Esseen bound for independent and identically dis-
tributed random variables {Zi, 1 ≤ i ≤ n} (cf. Feller (1977), Vol.II, p. 515), we
have

sup
x

|F ∗n(x)− Φ(
snx

σ
√
n
)| ≤ C

E|Z1|3√
nσ3

(6.5.8)

where C is an absolute positive constant such that
√
10+3

6
√
2π

≤ C ≤ 0.7975 (cf. Esseen
(1956), Van Beek (1972)). Furthermore, applying an inequality from Petrov (1975,
p.114), we get that

sup
x

|Φ( snx
σ
√
n
)− Φ(x)| ≤

( sn
σ
√
n
− 1)

√
2πe

(6.5.9)

since s2n ≥ nσ2 by the associativity property of the sequence {Xi, 1 ≤ i ≤ n}.
Combining the inequalities (6.5.7) to (6.5.9), we get the bound in equation (6.5.2).

�

For further comments on the uniform bounds, see Dewan and Prakasa Rao
(2005a).
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Non-uniform Bound

We now derive non-uniform Berry-Esseen type bounds for sums of stationary
associated random variables following the techniques in Petrov (1975) and Hall
(1982) for sums of independent random variables. These results are due to Dewan
and Prakasa Rao (2005a).

Let G1 and G2 be two distribution functions. If the distributions have mo-
ments of order p > 0, then Petrov (1975, p. 120) proved that

|G1(x)−G2(x)| ≤ β

|x|p , x �= 0,

where β = max(β1, β2), βk =
∫∞
−∞ |x|pdGk(x), k = 1, 2. Furthermore

|G1(x)−G2(x)| ≤ [ (1 + β)sΔr
1

(1 + |x|p)s ]
1/(r+s) (6.5.10)

for all x, for r > 0, s > 0 and Δ1 = supx |G1(x)−G2(x)|.
Lemma 6.5.2 (Petrov (1975)). Let F (x) be an arbitrary distribution function with
finite p-th absolute moment for some p > 0. Let

Δ = sup
x

|F (x)− Φ(x)|. (6.5.11)

Suppose that 0 ≤ Δ ≤ e−1/2. Then

|F (x)− Φ(x)| ≤ CpΔ(log(1/Δ))
p/2 + λp

1 + |x|p (6.5.12)

for all x, where Cp is a positive constant depending only on p, and

λp = |
∫ ∞

−∞
|x|p dF (x)−

∫ ∞

−∞
|x|p dΦ(x)|. (6.5.13)

We now derive a non-uniform Berry-Esseen type bound for sums of stationary
associated random variables using the lemma stated above. Following the notation
used in Theorem 6.5.1, let Fn(x) and F ∗n(x) be the distribution functions of

Sn

sn

and
S∗n
sn
respectively where Sn =

∑n
i=1 Xi and S∗n =

∑n
i=1 Zi. Then Var[

Sn

sn
] = 1

and Var[
S∗n
sn
] ≤ 1 by the associative property of the random variables X1, . . . , Xn.

Hence

|Fn(x)− F ∗n(x)| ≤ [
2Δ1n

1 + x2
]1/2 (6.5.14)

from equation (6.5.10) by choosing p = 2, r = 1 and s = 1 where

Δ1n = sup
x

|Fn(x)− F ∗n(x)| ≤ C
d
1/3
n m

2/3
n

s
2/3
n

(6.5.15)
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from equation (6.5.7). Let

Δ2n = sup
x

|F ∗n(x)− Φ(x)|. (6.5.16)

Suppose that 0 < Δ2n < e−1/2. Then, it follows from the above lemma that there
exists an absolute constant c2 > 0 such that

|F ∗n(x)− Φ(x)| ≤
c2Δ2n log(1/Δ2n) + λ2n

1 + x2
(6.5.17)

where

λ2n = |
∫ ∞

−∞
x2dF ∗n(x)− 1| = |V ar(S∗n/sn)− 1| = |(nσ2/s2n)− 1|. (6.5.18)

Note that Δ2n is the Berry-Esseen bound obtained from equations (6.5.8) and
(6.5.9).

The bounds derived above lead to the following result giving a non-uniform
Berry-Esseen type bound for sums of stationary associated sequence of random
variables.

Theorem 6.5.3. Let the sequence {Xi, 1 ≤ i ≤ n} be a sequence of stationary asso-
ciated random variables satisfying the conditions stated in Theorem 6.5.1. Suppose
that 0 < Δ2n < e−1/2. Then there exists absolute positive constants c1 and c2 such
that

|Fn(x)− Φ(x)| ≤ c1[
2Δ1n

1 + x2
]1/2 +

c2Δ2n log(1/Δ2n) + λ2n

1 + x2
. (6.5.19)

Hall (1982) proved the following result for real-valued functions.

Theorem 6.5.4. Let F (x) be a nondecreasing function and G(x) be a differen-
tiable function of bounded variation. Suppose that F (−∞) = G(−∞) and F (∞) =
G(∞). Assume that ∫ ∞

−∞
x2|d{F (x)−G(x)}| < ∞ (6.5.20)

and
sup
x
(1 + x2)|G′(x)| ≤ k < ∞. (6.5.21)

Let

χ(t) =

∫ ∞

−∞
exp(itx)d[x2{F (x)−G(x)}] (6.5.22)

and f(t) and g(t) denote the Fourier-Stieltjes transforms of F and G respectively.
Then there exists an absolute constant C > 0 such that

sup
x
(1 + x2)|F (x)−G(x)| ≤ C[

∫ T

0

|f(t)− g(t)|
t

dt+

∫ T

0

|χ(t)|
t

dt+
k

T
] (6.5.23)

for T ≥ 1.
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As an application of this result, Dewan and Prakasa Rao (2005a) derived
another class of non-uniform bounds for partial sums of random variables which
can be dependent. We do not go into the details here.

Newman’s Conjecture

Recall the central limit theorem for stationary associated sequences stated in The-
orem 1.2.19. It is not known whether the central limit theorem holds for stationary
demimartingales. Newman (1980) conjectured that, for a strictly stationary asso-
ciated random field X = {Xj , j ∈ Rd}, it is sufficient, for the central limit theorem
to hold (when partial sums are taken over growing sets), if the function

uX(n) =
∑
|j|≤n

Cov(X0, Xj), n ≥ 1

is slowly varying. Herrndorf (1984) showed that this conjecture is not true, even in
the case d = 1, by constructing an example. He showed that there exists a strictly
stationary associated sequence of real-valued random variables {Xn, n ≥ 1} with
uX(n) � log n as n → ∞ such that the sequence of normalized partial sums

X1 + . . .+Xn√
nuX(n)

does not have any non-degenerate limiting distribution as n → ∞. Shaskin (2005)
obtained a result generalizing the example of Herrndorf (1984).

Recall that a function L : R+ → R − {0} is called slowly varying in the
Karamata sense at infinity, if for any a > 0,

L(ax)

L(x)
→ 1 as x → ∞.

A sequence L : N → R − {0} is slowly varying at infinity if the above relation
holds for any a ∈ N as x → ∞, x ∈ N.

Let L be a nondecreasing slowly varying function such that L(n) → ∞ as
n → ∞. Shaskin (2005) proved that, for any positive unbounded sequence b(n),
n ≥ 1, there exists a strictly stationary associated sequence {Xn, n ≥ 1} such that
E(X1) = 0, E(X2

1 ) = 1, uX(n) � L(n) as n → ∞, and the normalized partial
sums

X1 + . . .+Xn√
nb(n)

do not have any non-degenerate limit distribution as n → ∞.
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6.6 Limit Theorems for U -Statistics

Some limit theorems for U -statistics were discussed earlier in Chapter 2 as corollar-
ies to inequalities for demimartingales. The concept of U -statistic was introduced
by Hoeffding (1948). It generalizes the notion of sample mean and includes many
important test statistics as special cases. Limit theorems for U -statistics of inde-
pendent random variables are presented in Serfling (1980) and Lee (1990). The
study of U -statistics for dependent random variables is made in Sen (1963), Nandi
and Sen (1963), Serfling (1968), Denker and Keller (1983) and Becker and Utev
(2001) among others. We now discuss results on limit theorems for U -statistics
for associated random variables from Dewan and Prakasa Rao (2001, 2002) and
Christofides (2004).

Suppose the random sequences {Xj , j ≥ 1} and {Yj , j ≥ 1} are indepen-
dent stationary sequences of associated random variables with one-dimensional
marginal distribution functions F and G respectively and the problem is to test
the hypothesis H0 : F = G based on the two samples {Xi, 1 ≤ i ≤ n} and {Yj ,
1 ≤ j ≤ m}. A test statistic for testing the hypothesis H0 is the two-sample
U -statistic

Unm =
1

nm

n∑
i=1

m∑
j=1

I[Xi≤Yj ].

Hence it is of interest to study the asymptotic behaviour of the statistic Unm under
the hypothesis H0.

Let

Un =
1(
n
m

) ∑
1≤i1<...<im≤n

h(Xi1 , . . . , Xim) (6.6.1)

be a U -statistic based on associated random variables and the kernel h(x1, . . . , xm)
of degree m. Without loss of generality, we assume that h is symmetric in its
arguments. Further suppose that h is componentwise nondecreasing and E(h) = 0.
Then the process {Sn =

(
n
m

)
Un, n ≥ m} is a demimartingale as shown in Chapter

2. Christofides (2000) proved the following result for demimartingales.

Theorem 6.6.1. Let the sequence {Sn, n ≥ 0} be a demimartingale and the sequence
{ck, k ≥ 1} be a nonincreasing sequence of positive numbers such that limk→∞ ck =
0. Suppose that E|Sk|ν < ∞, k ≥ 1 for some ν ≥ 1. If

∞∑
k=1

cνkE(|Sk|ν − |Sk−1|ν) < ∞, (6.6.2)

then
cnSn

a.s.→ 0 as n → ∞. (6.6.3)

Applying the above lemma, we get the following strong law of large numbers
for U -statistics based on associated random variables.
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Strong Law of Large Numbers

Theorem 6.6.2 (Christofides (2004)). Let Un be a U -statistic based on a family of
associated random variables and on the kernel h of degree m. Suppose that, for
some ν ≥ 1, E|Sk|ν < ∞ for all k ≥ m. Further suppose that the function h is
componentwise nondecreasing. If

∞∑
k=m

(k + 1)−1E|Uk|ν < ∞, (6.6.4)

then
Un − E(Un)

a.s→ 0 as → ∞. (6.6.5)

Proof. Let Sn =
(
n
m

)
Un for n ≥ m and Sn = 0 for n < m. Since h is nondecreas-

ing, it follows that the sequence {Sn, n ≥ m} is a demimartingale. Furthermore
the sequence cn =

(
n
m

)−1
, n ≥ m is a decreasing sequence of positive numbers.

Applying Theorem 6.6.1, we get that(
n

m

)−1

(Sn − E(Sn))
a.s→ 0 as → ∞ (6.6.6)

provided
∞∑

k=m

(
k

m

)−ν

E(|Sk|ν − |Sk−1|ν) < ∞. (6.6.7)

Note that
∞∑

k=m

(
k

m

)−ν

E(|Sk|ν − |Sk−1|ν) (6.6.8)

=
∞∑

k=m

[

(
k

m

)−ν

−
(
k + 1

m

)−ν

]E|Sk|ν

< ν

∞∑
k=m

(
k

m

)−ν+1

[

(
k

m

)−1

−
(
k + 1

m

)−1

]E|Sk|ν

= νm
∞∑

k=m

(
k

m

)−ν+1(
k

m

)−1

(k + 1)−1E|Sk|ν

= νm

∞∑
k=m

(k + 1)−1E|Uk|ν

< ∞.

We have used the inequality

xr − yr < rxr−1(x− y)

for x ≥ y ≥ 0 and r ≥ 1 in the above estimates. �

151



Chapter 6. Limit Theorems for Associated Random Variables

The following lemma is useful in checking the condition (6.6.4).

Lemma 6.6.3. Let

u(n) (6.6.9)

= sup
k;i1,...,im−1

∑
j:|k−j|≥n

k,j �=i1,...,im−1

Cov(h(Xi1 , . . . , Xim−1
, Xj), h(Xi1 , . . . , Xim−1

, Xk)).

Suppose that E(h) = 0 and for some ν > 2, δ > 0,

sup
i1,...,im

E|h(Xi1 , . . . , Xim)|2+δ < ∞ (6.6.10)

and
u(n) = O(n−(ν−2)(ν+δ)). (6.6.11)

Then
E|Un|ν = O(n−ν/2). (6.6.12)

For a detailed proof of this lemma, see Christofides (2004). The lemma stated
above is a consequence of the inequality that, for arbitrary random variables
X1, . . . , Xk, with finite r-th absolute moment, r ≥ 1,

E|X1 + . . .+Xk|r ≤ kr−1
k∑

i=1

E|Xi|r.

Since nondecreasing functions of associated random variables are associated, it
follows, by results from Birkel (1988) (see Chapter 1), that

E|
n∑

im=im−1+1

h(Xi1 , . . . , Xim)|ν ≤ cnν/2 (6.6.13)

where c is a constant not depending on n.

Note that a U-statistic based on associated random variables is a demimartin-
gale if the kernel h is componentwise nondecreasing. However there are kernels such
as the function h(x, y) = |x − y| which does not satisfy this requirement and the
corresponding U -statistic for associated random variables is not a demimartingale.
Christofides (2004) considers kernels h of bounded variation in R2 and obtains the
strong law of large numbers for the corresponding U -statistics.

Central Limit Theorem

Let the sequence {Xn, n ≥ 1} be a stationary sequence of associated random
variables. Let F be the distribution function of X1 and f be its density function
assuming that the random variable X1 has a probability density function.
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Let ψ(x, y) be a real-valued function symmetric in its arguments. Define the
U-statistic by

Un =

(
n

2

)−1 ∑
1≤i<j≤n

ψ(Xi, Xj). (6.6.14)

Let

θ =

∫ ∞

−∞

∫ ∞

−∞
ψ(x, y)dF (x)dF (y), (6.6.15)

ψ1(x1) = Eψ(x1, X2)

=

∫ ∞

−∞
ψ(x1, x2)dF (x2), (6.6.16)

h(1)(x1) = ψ1(x1)− θ, (6.6.17)

h(2)(x1, x2) = ψ(x1, x2)− ψ1(x1)− ψ1(x2) + θ. (6.6.18)

Then, the Hoeffding-decomposition (H-decomposition) for Un is given by (see Lee
(1990))

Un = θ + 2H(1)
n +H(2)

n (6.6.19)

where H
(j)
n is the U-statistic of degree j based on the kernel h(j), j = 1, 2, that is,

H(j)
n =

1(
n
j

) ∑h(j) (6.6.20)

where summation is taken over all subsets 1 ≤ i1 < . . . < ij ≤ n of {1, . . . , n}.
Many authors have studied the limiting properties of Un under various de-

pendence conditions. Sen (1972) and Qiying (1995) have studied U -statistics for
mixing sequences and Yoshihara (1976, 1984) has studied U-statistics for abso-
lutely regular processes. Dewan and Prakasa Rao (2001) established a central
limit theorem for Un using an orthogonal expansion for the kernel associated with
Un. We now establish the central limit theorem for U-statistics based on associ-
ated random variables using Hoeffding’s decomposition (cf. Dewan and Prakasa
Rao (2002)).

We use the following central limit theorem for stationary associated sequences
due to Newman (1980) discussed in Chapter 1.

Lemma 6.6.4 (Newman (1980)). Let the sequence {Xn, n ≥ 1} be a strictly sta-
tionary sequence of associated random variables . Let

σ2 = Var(X1) + 2

∞∑
j=2

Cov(X1, Xj)

with 0 < σ2 < ∞. Then

n−1/2

∑n
j=1(Xj − E(Xj))

σ

L→ N(0, 1) as n → ∞.
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The next lemma is due to Serfling (1968).

Lemma 6.6.5 (Serfling (1968)). Let X1, . . . , Xm and Y1, . . . , Yn be independent
samples. Let

Δ =

m∑
i=1

n∑
j=1

m∑
k=1

n∑
�=1

Δ(i, j, k, �), (6.6.21)

where

Δ(i, j, k, �) = Cov(h(2)(Xi, Yj), h
(2)(Xk, Y�)). (6.6.22)

Suppose that for some nonnegative function r(k) satisfying

∞∑
k=0

r(k) < ∞, (6.6.23)

we have, for all (i, j, k, �),

|Δ(i, j, k, �)| ≤ r(max[|i− k|, |j − �|]). (6.6.24)

Then Δ = o(mn2) , as m and n → ∞ such that m
n → c > 0.

Let

σ2
1 = Var(ψ1(X1)) , (6.6.25)

σ2
1j = Cov(ψ1(X1), ψ1(X1+j)) , (6.6.26)

and

σ2
U = σ2

1 + 2

∞∑
j=1

σ2
1j . (6.6.27)

We now state and prove a result concerning Var(Un).

Lemma 6.6.6. Let the sequence {Xj, 1 ≤ j ≤ n} be a sequence of stationary
associated random variables. Suppose the function ψ(x1, x2) is continuous in x1

and satisfies the conditions in Theorem 6.2.5. Further suppose that

max(L1(ψ), L2(ψ)) < ∞. (6.6.28)

Further assume that
∞∑
j=1

σ2
1j < ∞. (6.6.29)

Then

Var(Un) = 4σ
2
U + o(

1

n
). (6.6.30)
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Proof. Let c denote a generic positive constant in the sequel. In view of the H-
decomposition, we have

Var(Un) = 4Var(H
(1)
n ) + Var(H(2)

n ) + 4Cov(H(1)
n , H(2)

n ). (6.6.31)

Since H
(1)
n = 1

n

∑n
j=1 h

(1)(Xj), we get

Var(H(1)
n ) =

σ2
1

n
+
2

n2

n−1∑
j=1

(n− j) Cov(h(1)(X1), h
(1)(X1+j))

=
1

n
(σ2

1 + 2

∞∑
j=1

σ2
1j)−

2

n

∞∑
j=n

σ2
1j −

2

n2

n−1∑
j=1

jσ2
1j . (6.6.32)

Note that
2

n

∞∑
j=n

σ2
1j = o(

1

n
) (6.6.33)

since
∑∞

j=1 σ
2
1j < ∞. Take an integer-valued function g(n) which satisfies g(n)→

∞ and g(n) = o(n) as n → ∞. Then
n−1∑
j=1

jσ2
1j =

g∑
j=1

jσ2
1j +

n−1∑
j=g+1

jσ2
1j

≤ g

∞∑
j=1

σ2
1j + (n− 1)

∞∑
j=g+1

σ2
1j

= O(g) + (n− 1)o(1)
= o(n). (6.6.34)

Therefore, we get

Var(H(1)
n ) =

1

n
(σ2

1 + 2

∞∑
j=1

σ2
1j) + o(

1

n
). (6.6.35)

Furthermore
E(H(2)

n ) = 0, (6.6.36)

and

E(H(2)
n )2 =

(
n

2

)−2 ∑
1≤i<j≤n

∑
1≤k<�≤n

E{h(2)(Xi, Xj)h
(2)(Xk, X�)}

=

(
n

2

)−2 ∑
1≤i<j≤n

∑
1≤k<l≤n

Δ(i, j, k, �) (say). (6.6.37)
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Using Bulinski’s inequality ( see Theorem 6.2.5), we get that

Δ(i, j, k, �) ≤ C[Cov(Xi, Xk) + Cov(Xi, X�) + Cov(Xj , Xk) + Cov(Xj , X�)].
(6.6.38)

From Serfling (1968) (see Lemma 6.6.5), it follows that∑
1≤i<j≤n

∑
1≤k<l≤n

Δ(i, j, k, �) = o(n3). (6.6.39)

Hence, from (6.6.37) we get that

E(H(2)
n

2
) = o(

1

n
) (6.6.40)

and, from (6.6.36) , it follows that

Var(H(2)
n ) = o(

1

n
). (6.6.41)

Finally

|Cov(H(1)
n , H(2)

n )| ≤ (Var(H(1)
n )Var(H(2)

n ))1/2

= (O(n−1)o(
1

n
))

1
2

= o(n−1). (6.6.42)

The main result follows from equations (6.6.35), (6.6.41) and (6.6.42). �

The following theorem is due to Dewan and Prakasa Rao (2002).

Theorem 6.6.7. Let the sequence {Xn, n ≥ 1} be a stationary associated sequence.
Let Un be a U -statistic based on a symmetric kernel ψ(x, y) of degree 2. Suppose
the conditions of Theorem 6.6.6 hold. Further assume that ψ(x, y) is monotonic
in x with 0 < σ2

U < ∞. Then

n1/2(Un − θ)

2σU

L→ N(0, 1) as n → ∞

where σ2
U is as defined by (6.6.27).

Proof. From (6.6.19), we know that

Un = θ + 2H(1)
n +H(2)

n .

Then
n1/2(Un − θ)

2σU
= n−1/2

n∑
j=1

h(1)(Xj)

σU
+ n1/2H

(2)
n

2σU
. (6.6.43)
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6.7. More Limit Theorems for U -Statistics

In addition,
E(n1/2H(2)

n ) = 0, (6.6.44)

and
n VarH(2)

n → 0 as n → ∞ (6.6.45)

from (6.6.41). Hence

n1/2H
(2)
n

2σU

p→ 0 as n → ∞. (6.6.46)

Since ψ is monotonic in its arguments, the sequence {h(1)(Xj), j ≥ 1} constitutes
a stationary associated sequence. Then, using Lemma 6.6.4, it follows that

n−1/2
n∑

j=1

h(1)(Xj)

σU

L→ N(0, 1) as n → ∞. (6.6.47)

Relations (6.6.43), (6.6.46) and (6.6.47) prove the theorem following the represen-
tation (6.6.19). �

6.7 More Limit Theorems for U -Statistics

Let the sequence {Xn, n ≥ 1} be a stationary sequence of associated random
variables and let F be the distribution function of X1. Let ψ(x, y) be a real-valued
function symmetric in its arguments. Define a U-statistic by

Un =

∑
1≤i<j≤n

ψ(Xi, Xj)

(
n
2

) . (6.7.1)

Suppose that ∫ ∞

−∞

∫ ∞

−∞
ψ2(x, y)dF (x)dF (y) < ∞. (6.7.2)

Let us consider an orthonormal basis {ek(x), k ≥ 0}, with e0(x) = 1, such
that

ψ(x, y) =
∞∑
k=0

λkek(x)ek(y). (6.7.3)

Then ∫ ∞

−∞
ek(x)ψ(x, y)dF (x) = λkek(y) (6.7.4)

and ∞∑
k=0

λ2
k < ∞. (6.7.5)
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Chapter 6. Limit Theorems for Associated Random Variables

Definition (Gregory (1977)). The U -statistic Un and its kernel ψ are called degen-
erate if ∫ ∞

−∞
ψ(x, y)dF (y) = 0 (6.7.6)

for all x.

Gregory (1977) discussed the central limit theorem for degenerate U -statistics
based on i.i.d. sequences and its applications to the Cramer-Von Mises test. Hall
(1979) made a unified study of the invariance principle of degenerate and non-
degenerate U-statistics in the i.i.d. case. Eagleson (1979) extended the above meth-
ods to derive the limiting distribution of U -statistics based on stationary mixing
samples. We now obtain obtain similar results for stationary associated random
sequences.

We now recall a few definitions and results (cf. Section 3) from Newman
(1984) which will be used later in this section.

Let f and f1 be two complex-valued functions on Rn. Then we say that
f � f1 if f1 − Re(eiαf) is componentwise nondecreasing for all real α. If f and
f1 are two real-valued functions, then f � f1 if and only if f1 + f and f1 − f are
both nondecreasing. In particular, if f � f1 and f, f1 are functions of a single

variable, then f1 will be nondecreasing. We say that f
A� f1 if f � f1 and both

f1 and f depend only on x′js with j ∈ A.

Suppose that f is a real-valued function. Then f � f1 for f1 real if and only
if for x < y,

f(y)− f(x) ≤ f1(y)− f1(x) (6.7.7)

and
f(x)− f(y) ≤ f1(y)− f1(x). (6.7.8)

These relations hold if and only if , for x < y,

|f(y)− f(x)| ≤ f1(y)− f1(x). (6.7.9)

Theorem 6.7.1 (Newman (1984)). Let the sequence {Xn, n ≥ 1} be a stationary
sequence of associated random variables. For each j, let Yj = fj(X1, X2, . . .), and

Ỹj = f̃j(X1, X2, . . .). Suppose that fj
A� f̃j for each j where A = {k : k ≥ 1}.

Then

|φ−
n∏

j=1

φj | ≤ 2
∑

1≤k<�≤n

|rkr� Cov(Ỹk, Ỹ�)|, (6.7.10)

where φ and φj are given by

φ = E(exp[i

n∑
j=1

rjYj ]) and φj = E(exp[irjYj ]).
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Theorem 6.7.2 (Newman (1984)). Let the sequence {Xn, n ≥ 1} be a stationary
sequence of associated random variables. For each j, let Yj = f(Xj) and Ỹj =

f̃(Xj). Suppose that f � f̃ . Let

∞∑
j=2

Cov(Ỹ1, Ỹj) < ∞. (6.7.11)

Then

n−
1
2

n∑
j=1

(Yj − EYj)
L→ σZ as n → ∞ (6.7.12)

where Z is a standard normal random variable and

σ2 = Var(Y1) + 2

∞∑
j=2

Cov(Y1, Yj). (6.7.13)

Remarks. Note that if f̃ is differentiable and supx |f ′(x)| is finite, then, using
Newman’s inequality implies that the inequality in (6.7.11) holds provided

∞∑
j=2

Cov(X1, Xj) < ∞. (6.7.14)

Suppose f � f̃ . Following equations (6.7.7) to (6.7.9), we get that

|f(y)− f(x)| ≤ f̃(y)− f̃(x) (6.7.15)

for x < y. Let f̃(x) = cx for some constant c > 0. Then f � f̃ if and only if, for
x < y,

|f(y)− f(x)| ≤ c(y − x) (6.7.16)

which indicates that f is Lipschitzian. A sufficient condition for (6.7.16) is that

sup
x

|f ′(x)| < ∞. (6.7.17)

Limit Theorem for U -Statistics for Kernels of Degree 2

Let C denote a generic positive constant in the following discussion.

Theorem 6.7.3. Let the sequence {Xn, n ≥ 1} be a stationary sequence of as-
sociated random variables. Let Un be a degenerate U -statistic where the kernel
ψ(., .) satisfies (6.7.2). Assume that the eigenfunctions ek(x) given by (6.7.4) are
differentiable and

sup
j
sup
x

|e′j(x)| < ∞. (6.7.18)
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Furthermore, assume that,

∞∑
j=1

Cov(X1, Xj) < ∞ (6.7.19)

and ∞∑
k=1

|λk| < ∞. (6.7.20)

Then

nUn
L→

∞∑
k=1

λk(Z̃
2
k − 1) as n → ∞ (6.7.21)

where {Z̃k} is a sequence of correlated jointly normal random variables with mean
zero and

Cov(Z̃k, Z̃j) = Cov(ek(X1), ej(X1)) + 2

∞∑
i=1

Cov(ek(X1), ej(X1+i))

for k �= j.

Proof. Since the kernel ψ satisfies (6.7.2) and it is degenerate, we have

ψ(x, y) =
∞∑
k=1

λk ek(x)ek(y). (6.7.22)

Given ε > 0, there exists a positive integer N such that if

ψN (x, y) =
N∑

k=1

λk ek(x)ek(y), (6.7.23)

then ∫ ∞

−∞

∫ ∞

−∞
|ψ(x, y)− ψN (x, y)|2dF (x)dF (y) =

∞∑
k=N+1

λ2
k < ε. (6.7.24)

Let Un,N be the U-statistic based on the kernel ψN (x, y). Then

Un,N =
1(
n
2

) ∑
1≤i<j≤n

ψN (Xi, Xj)

=
1(
n
2

) N∑
k=1

(
∑

1≤i<j≤n

λkek(Xi)ek(Xj))

=
1

n(n− 1)
N∑

k=1

λk(

n∑
i=1

n∑
j=1

ek(Xi)ek(Xj)−
n∑

i=1

e2k(Xi))
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=
1

n(n− 1)
N∑

k=1

λk((

n∑
i=1

ek(Xi))
2 −

n∑
i=1

e2k(Xi)) (6.7.25)

and

nUn,N =
n

n− 1
N∑

k=1

λk((

∑n
i=1 ek(Xi)√

n
)2 − 1

n

n∑
i=1

e2k(Xi)). (6.7.26)

Because of (6.7.18), (6.7.19) and using the strong law of large numbers for differ-
entiable functions of associated random variables (Bagai and Prakasa Rao (1995)),
we get that

1

n

n∑
i=1

e2k(Xi)→ 1 a.s. as n → ∞. (6.7.27)

Next we consider the joint distribution of

(
1√
n

n∑
i=1

e1(Xi), . . . ,
1√
n

n∑
i=1

eN (Xi)). (6.7.28)

Consider a linear combination

T =

N∑
k=1

ak√
n

n∑
i=1

ek(Xi)

=
n∑

i=1

1√
n

N∑
k=1

akek(Xi)

=
n∑

i=1

1√
n
BN (Xi) (6.7.29)

where

BN (Xi) =

N∑
k=1

akek(Xi). (6.7.30)

Then, under the condition (6.7.18), BN satisfies the conditions of Theorem 6.7.2
for every vector (a1, . . . , aN ) ∈ RN . Note that

ET = 0,

VarT = σ2
N

=

N∑
k=1

a2k +
2

n

n−1∑
j=1

(n− j) Cov(BN (X1), BN (X1+j)). (6.7.31)

Hence, by Theorem 6.7.2,

n−
1
2

n∑
i=1

BN (Xi)
L→ N(0, σ2

N ) as n → ∞. (6.7.32)
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Therefore, using (6.7.26), (6.7.27) and (6.7.32), we get that

nUn,N
L→

N∑
k=1

λk(Z̃
2
k − 1) as n → ∞ (6.7.33)

where {Z̃k, 1 ≤ k ≤ N} are jointly normal random variables with mean zero and

Cov(Z̃k, Z̃j) = Cov(ek(X1), ej(X1)) + 2

∞∑
i=1

Cov(ek(X1), ej(X1+i)) (6.7.34)

for k �= j. Note that

E(Z̃2
k) = Var(ek(X1)) + 2

∞∑
i=1

Cov(ek(X1), ek(X1+i))

≤ 1 + C
∞∑
i=1

Cov(X1, X1+i) (by using (6.7.18) and Newman’s inequality)

≤ C (by using (6.7.19) ) (6.7.35)

uniformly in k ≥ 1.
Let ηn(t), φ(t), φN (t) and ηn,N (t) be the characteristic functions of nUn,∑∞

k=1 λk(Z̃
2
k − 1), ∑N

k=1 λk(Z̃
2
k − 1) and nUn,N respectively. Then

|ηn(t)− φ(t)| ≤ |ηn(t)− ηn,N (t)|+ |ηn,N (t)− φN (t)|+ |φN (t)− φ(t)|. (6.7.36)

Relation (6.7.33) implies that, given ε > 0, for large n depending on N , ε and t,

|ηn,N (t)− φN (t)| ≤ ε

3
. (6.7.37)

Since

E|
∞∑

k=N+1

λk(Z̃
2
k−1)| ≤ E{

∞∑
k=N+1

|λk||Z̃2
k−1|} ≤ (C+1)

∞∑
k=N+1

|λk| < ε, (6.7.38)

it follows that, for large N , depending on t,

|φN (t)− φ(t)| = |E(eit
∑N

k=1 λk(Z̃
2
k−1) − eit

∑∞
k=1 λk(Z̃

2
k−1))|

≤ E|eit
∑∞

k=N+1 λk(Z̃
2
k−1) − 1|

≤ |t|E|
∞∑

k=N+1

λk(Z̃
2
k − 1)|

≤ |t|
∞∑

k=N+1

|λk|(EZ̃2
k + 1)

162



6.7. More Limit Theorems for U -Statistics

≤ C|t|
∞∑

k=N+1

|λk|

≤ ε

3
(by (6.7.20) and (6.7.35) ). (6.7.39)

Observe that

E(n−
1
2

n∑
i=1

ek(Xi))
2 = E

1

n
(

n∑
i=1

n∑
j=1

ek(Xi)ek(Xj))

=
1

n
E(

n∑
i=1

e2k(Xi) +
∑

1≤i�=j≤n

ek(Xi)ek(Xj))

= 1 +
1

n

∑
1≤i�=j≤n

E(ek(Xi)ek(Xj))

≤ 1 + 1

n

∑
1≤i�=j≤n

(sup
x

|e′k(x)|)2 Cov(Xi, Xj)

≤ 1 + C

n

n∑
j=2

(n− j) Cov(X1, Xj) (using stationarity)

≤ C (using (6.7.19)). (6.7.40)

Hence,

E|nUn − nUn,N |

= E| n

n− 1
∞∑

k=N+1

λk{(
∑n

i=1 ek(Xi)√
n

)2 − 1

n

n∑
i=1

e2k(Xi)}|

≤ n

n− 1
∞∑

k=N+1

|λk|E|{(
∑n

i=1 ek(Xi)√
n

)2 − 1

n

n∑
i=1

e2k(Xi)}|

≤ n

n− 1
∞∑

k=N+1

|λk|{E(
∑n

i=1 ek(Xi)√
n

)2 +
1

n

n∑
i=1

E(e2k(Xi))}

≤ n

n− 1(C + 1)
∞∑

k=N+1

|λk|. (6.7.41)

Hence, we have

|ηn(t)− ηn,N (t)| = |E(eitnUn − eitnUn,N )|
≤ E|eitn(Un−Un,N ) − 1|
≤ |t|E|nUn − nUn,N |
<

ε

3
(6.7.42)
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for large n,N depending on t. The result now follows by combining (6.7.36),
(6.7.37), (6.7.39) and (6.7.42). �
Theorem 6.7.4. Let the sequence {Xn, n ≥ 1} be a stationary sequence of associ-
ated random variables. Suppose Un is a non-degenerate U-statistic corresponding
to the kernel ψ with the eigenfunction expansion (6.7.3). Assume that

sup
j
sup
x

|e′j(x)| < ∞, (6.7.43)

and ∞∑
j=1

Cov(X1, Xj) < ∞. (6.7.44)

Further assume that ∞∑
k=0

|λk| < ∞. (6.7.45)

If Un has a finite variance, then

n
1
2 (Un − EUn)

L→ N(0, 4σ2) as n → ∞. (6.7.46)

where

σ2 = Var(g(X1)) + 2

∞∑
j=1

Cov(g(X1), g(Xj+1)), (6.7.47)

and

g(x) =

∫ ∞

−∞
ψ(x, y)dF (y), (6.7.48)

provided g(.) is monotone or g is Lipschitzian, that is,

|g(x)− g(y)| ≤ C|x− y|, x, y ∈ R (6.7.49)

and
∑∞

k=0 |a∗k| < ∞, where a∗k = E(ek(X1)).

Proof. Note that

g(x) =

∫ ∞

−∞
ψ(x, y)dF (y)

=

∫ ∞

−∞
{
∞∑
k=0

λk ek(x)ek(y)}dF (y)

=
∞∑
k=0

λk ek(x)a
∗
k. (6.7.50)

Then
|a∗k| ≤ E|ek(X1)| ≤ {E(e2k(X1))} 1

2 = 1, (6.7.51)
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and

Eg(X1) =

∞∑
k=0

λka
∗
k
2. (6.7.52)

Using (6.7.52) and the fact that the functions {ek(x), k ≥ 0} form an orthonormal
basis, we get

E(g2(X1)) =

∞∑
k=0

λ2
ka
∗
k
2 ≤

∞∑
k=0

λ2
k < ∞. (6.7.53)

Define
ψ̂(x, y) = ψ(x, y)− g(x)− g(y) + Eg(X1). (6.7.54)

It is easy to see that
∫∞
−∞ ψ̂(x, y)dF (y) is zero. Thus ψ̂ is symmetric, square inte-

grable and degenerate. Let Ûn be the U -statistic corresponding to ψ̂. Note that

Ûn =
1(
n
2

) ∞∑
k=0

λk{
∑

1≤i<j≤n

(ek(Xi)− a∗k)(ek(Xj)− a∗k)}. (6.7.55)

Using equations (6.7.54) and (6.7.55), we have

Un −
∞∑
k=0

λka
∗
k
2 = Ûn +

2

n

n∑
i=1

g(Xi)− 2
∞∑
k=0

λka
∗
k
2

= Ûn +
2

n

n∑
i=1

(g(Xi)− Eg(Xi)). (6.7.56)

Now,

E(ek(X1)− a∗k) = 0,

E(ek(X1)− a∗k)
2 = 1− a∗k

2. (6.7.57)

Then, by (6.7.18) to (6.7.20) and an application of Theorem 6.7.3 with ek(x)
replaced by ek(X)− a∗k , we get that

nÛn
L→

∞∑
k=0

λk(Ẑ
2
k − 1 + a∗k

2) as n → ∞ (6.7.58)

where {Ẑk} is a sequence of jointly normal random variables. In view of equation
(6.7.58), we have

n
1
2 Ûn

p→ 0 as n → ∞. (6.7.59)

Furthermore

|E(Un)−
∞∑
k=0

λka
∗
k
2|

=
2

n(n− 1) |
∞∑
k=0

λk

∑
1≤i<j≤n

{E(ek(Xi)ek(Xj))− a∗k
2}|
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≤ 2

n(n− 1) |
∞∑
k=0

λk

∑
1≤i<j≤n

{E(ek(Xi)− a∗k)(ek(Xj))− a∗k)}|

≤ 2

n(n− 1)
∞∑
k=0

|λk|
∑

1≤i<j≤n

|Cov(ek(Xi), ek(Xj))|

≤ 2

n(n− 1)
∞∑
k=0

|λk| sup
k
sup
x
(e′k(x))

2
∑

1≤i<j≤n

Cov(Xi, Xj)

≤ C

n

∞∑
k=0

|λk|
n∑

i=2

Cov(X1, Xi). (6.7.60)

Therefore

n
1
2 |E(Un)−

∞∑
k=0

λka
∗
k
2| → 0 as n → ∞ (6.7.61)

from equations (6.7.44) and (6.7.45). If g(x) is monotone, then following Newman
(1980) we have, as n → ∞,

2√
n

n∑
i=1

(g(Xi)− Eg(Xi))
L→ N(0, 4σ2), as n → ∞. (6.7.62)

If g(x) is not monotone, then let g̃(x) = Cx . Since

∞∑
k=0

|a∗k| < C < ∞, (6.7.63)

it follows from equations (6.7.16) and (6.7.43) that g � g̃. Therefore the result
given in equation (6.7.62) follows from Theorem 6.7.2. The result follows by com-
bining equations (6.7.59), (6.7.61) and (6.7.62). �

Limit Theorem for U -Statistics of Kernels of Degree 3

Suppose that ψ(x, y, z) is a symmetric function from R3 to R which is square
integrable in the sense that∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ2(x, y, z)dF (x)dF (y)dF (z) < ∞. (6.7.64)

Assume that ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ(x, y, z)dF (x)dF (y)dF (z) = 0. (6.7.65)

Suppose there exists an orthonormal basis {ek(x), k ≥ 0} with e0(x) = 1 such
that

ψ(x, y, z) =
∑

k,l,m≥0

λklmek(x)el(y)em(z), (6.7.66)
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where ∑
k,l,m≥0

λ2
klm < ∞. (6.7.67)

Note that∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ(x, y, z)ek(x)e�(y)em(z)dF (x)dF (y)dF (z) = λklm. (6.7.68)

Then the U -statistic corresponding to the kernel ψ of degree 3 is

Un =
1(
n
3

) ∑
1≤i1<i2<i3≤n

ψ(Xi1 , Xi2 , Xi3). (6.7.69)

Since e0(x) = 1, we get that λ000 = 0 from equation (6.7.68) . Then,

ψ(x, y, z) =
∑
k>0

λk00ek(x) +
∑
�>0

λ0�0e�(y)

+
∑
m>0

λ00mem(z) +
∑
k,�>0

λk�0ek(x)e�(y)

+
∑

k,m>0

λk0mek(x)em(z) +
∑

m,�>0

λ0�mem(z)e�(y)

+
∑

k,�,m>0

λk,�,mek(x)e�(y)em(z). (6.7.70)

Definition. The kernel ψ is said to be first-order degenerate if∫ ∞

−∞

∫ ∞

−∞
ψ(x, y, z)dF (x)dF (y) = 0. (6.7.71)

Remarks. If the kernel is first-order degenerate, then

λk00 = λ0�0 = λ00m = 0 for all k, �,m.

Hence

ψ(x, y, z) =
∑
k,�>0

λk�0ek(x)e�(y) +
∑

k,m>0

λk0mek(x)em(z)

+
∑

m,�>0

λ0�mem(z)e�(y) +
∑

k,�,m>0

λk,�,mek(x)e�(y)em(z). (6.7.72)

Definition. A kernel ψ is said to be second-order degenerate if∫ ∞

−∞
ψ(x, y, z)dF (x) = 0. (6.7.73)
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Remarks. If the kernel ψ is second-order degenerate , then

λk�0 = λ0�m = λk0m = 0 for all k, �,m

and

ψ(x, y, z) =
∞∑

k,�,m=1

λk�mek(x)e�(y)em(z). (6.7.74)

Theorem 6.7.5. Let the sequence {Xn, n ≥ 1} be a stationary sequence of asso-
ciated random variables. Let Un be a U -statistic of degree three where the kernel
ψ(., ., .) is second-order degenerate and satisfies equation (6.7.64). Assume that the
eigenfunctions ek(x) are differentiable and

sup
j
sup
x

|ej(x)| < ∞, (6.7.75)

and

sup
j
sup
x

|e′j(x)| < ∞. (6.7.76)

Furthermore, assume that

∞∑
j=n+1

Cov(X1, Xj) = O(n−θ) for θ > 1 (6.7.77)

and assume that ∞∑
k,�,m=1

|λk�m| < ∞.

Then

n
3
2Un

L→
∞∑

k,�,m=1

λk�mZ̃kZ̃�Z̃m as n → ∞

where {Z̃k} is a sequence of mean zero correlated jointly normal random variables
with covariances given by equation (6.7.34).

Proof. Since the kernel ψ satisfies equation (6.7.64) and it is second-order degen-
erate, we have

ψ(x, y, z) =

∞∑
k,�,m=1

λk�mek(x)e�(y)em(z). (6.7.78)

Let A be the set {1 ≤ k, �,m ≤ N}. Let BN denote the complement of set A .
Given ε > 0, there exists a positive integer N such that if

ψN (x, y, z) =
∑

1≤k,�,m≤N

λk�mek(x)e�(y)em(z), (6.7.79)
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then∫ ∫
|ψ(x, y, z)− ψN (x, y, z)|2dF (x)dF (y)dF (z) =

∑
BN

λ2
k�m < ε. (6.7.80)

Let Un,N be the U-statistic based on the kernel ψN (x, y, z). Then

Un,N =
1(
n
3

) ∑
1≤i<j<r≤n

ψN (Xi, Xj , Xr) (6.7.81)

=
1(
n
3

) ∑
1≤k,�,m≤N

(
∑

1≤i<j<r≤n

λk�mek(Xi)e�(Xj)em(Xr))

=
1

n(n− 1)(n− 2)
∑

1≤k,�,m≤N

λk�m{
n∑

i=1

n∑
j=1

n∑
r=1

ek(Xi)e�(Xj)em(Xr)

−
n∑

i=1

n∑
j=1

ek(Xi)e�(Xi)em(Xj)−
n∑

i=1

n∑
j=1

ek(Xi)e�(Xj)em(Xi)

−
n∑

i=1

n∑
j=1

ek(Xj)e�(Xi)em(Xi) + 2

n∑
i=1

ek(Xi)e�(Xi)em(Xi)}.

Therefore

n
3
2Un,N =

n3

n(n− 1)(n− 2)
∑

1≤k,�,m≤N

λk�m{
n∑

i=1

n∑
j=1

n∑
r=1

ek(Xi)√
n

e�(Xj)√
n

em(Xr))√
n

−
n∑

i=1

n∑
j=1

ek(Xi)e�(Xi)

n

em(Xj))√
n

−
n∑

i=1

n∑
j=1

ek(Xi)em(Xi)

n

e�(Xj)√
n

−
n∑

i=1

n∑
j=1

ek(Xj)√
n

e�(Xi)em(Xi)

n
+
2

n
3
2

n∑
i=1

ek(Xi)e�(Xi)em(Xi))}.

(6.7.82)

Following the assumptions stated in equations (6.7.75), (6.7.76) and the strong law
of large numbers for associated random variables (Bagai and Prakasa Rao (1995)),
we get that

1

n

n∑
i=1

ek(Xi)em(Xi)→ 0 a.s. as n → ∞, for all k,m, (6.7.83)

and

1

n
3
2

n∑
i=1

ek(Xi)e�(Xi)em(Xi)→ 0 a.s. as n → ∞, for all k, �,m. (6.7.84)
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From equations (6.7.28) to (6.7.32) , (6.7.82) and the discussion for deriving the
convergence in (6.7.32), we get that

n
3
2Un,N

L→
∑

1≤k,�,m≤N

λk�mZ̃kZ̃�Z̃m as n → ∞. (6.7.85)

Let η∗n(t), η(t), ηN (t) and η∗n,N (t) be the characteristic functions of

n
3
2Un,

∞∑
k,�,m=1

λk�mZ̃kZ̃�Z̃m,
∑

1≤k,�,m≤N

λk�mZ̃kZ̃�Z̃m and n
3
2Un,N

respectively. Then

|η∗n(t)− η(t)| ≤ |η∗n(t)− η∗n,N (t)|+ |η∗n,N (t)− ηN (t)|+ |ηN (t)− η(t)|. (6.7.86)

Relation (6.7.85) implies that , given ε > 0, for large n depending on N , ε and t,

|η∗n,N (t)− ηN (t)| ≤ ε

3
. (6.7.87)

Using Cauchy-Schwartz inequality and the fact that Z̃k has normal distribution
with mean zero , we get that

(E|Z̃kZ̃�Z̃m|)2 ≤ E(Z̃k)
2E|Z̃�Z̃m|2

≤ E(Z̃k)
2{E(Z̃�)

4E(Z̃m)
4} 1

2

≤ 3E(Z̃k)
2{(E(Z̃�)

2)2(E(Z̃m)
2)2} 1

2

≤ C (by using (6.7.35)) (6.7.88)

uniformly in k, �,m. Hence

E|
∑
BN

λk�mZ̃kZ̃�Z̃m| ≤ C
∑
BN

|λk�m|

< ε, (6.7.89)

for large N . It follows that, for large N , depending on t,

|ηN (t)− η(t)| = |E(eit
∑

1≤k,�,m≤N λk�mZ̃kZ̃�Z̃m − eit
∑∞

k,�,m=1 λk�mZ̃kZ̃�Z̃m)|
≤ E|eit

∑
BN

λk�mZ̃kZ̃�Z̃m − 1|
≤ |t|E|

∑
BN

λk�mZ̃kZ̃�Z̃m|

≤ ε

3
(by using (6.7.67) and (6.7.88)). (6.7.90)
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Let us now consider

E|n 3
2Un − n

3
2Un,N | (6.7.91)

= E| n3

n(n− 1)(n− 2)
∑

1≤k,�,m≤N

λk�m{
n∑

i=1

n∑
j=1

n∑
r=1

ek(Xi)√
n

e�(Xj)√
n

em(Xr))√
n

−
n∑

i=1

n∑
j=1

ek(Xi)e�(Xi)

n

em(Xj))√
n

−
n∑

i=1

n∑
j=1

ek(Xi)em(Xi)

n

e�(Xj)√
n

−
n∑

i=1

n∑
j=1

ek(Xj)√
n

e�(Xi)em(Xi)

n
+
2

n
3
2

n∑
i=1

ek(Xi)e�(Xi)em(Xi))}|.

In view of of (6.7.75), observe that

1

n
3
2

E|
n∑

i=1

ek(Xi)e�(Xi)em(Xi)| ≤ C. (6.7.92)

Using the Cauchy-Schwartz inequality, equations (6.7.40), (6.7.75)–(6.7.77) and
the stationarity of the random variables, we get that

E|( 1
n

n∑
i=1

ek(Xi)e�(Xi))(
1√
n

n∑
j=1

em(Xj))|

≤ {E( 1
n

n∑
i=1

ek(Xi)e�(Xi))
2} 1

2 {E( 1√
n

n∑
j=1

em(Xj))
2} 1

2

≤ CE(
1

n2

n∑
i=1

e2k(Xi)e
2
�(Xi) +

1

n2

∑
1≤i�=j≤n

ek(Xi)e�(Xi)ek(Xj)e�(Xj))

≤ C{ 1
n
+
1

n2

∑
1≤i�=j≤n

Cov(ek(Xi)e�(Xi), ek(Xj)e�(Xj))}

≤ C{ 1
n
+
1

n2

∑
1≤i�=j≤n

Cov(Xi, Xj)}

≤ C{ 1
n
+
1

n2

n∑
j=1

(n− j) Cov(Xi, Xj)}

≤ C. (6.7.93)

Furthermore, using equations (6.7.75)–(6.7.77) and the Rosenthal type inequality
for associated sequences (Shao and Yu (1996)), we get that

E|
n∑

i=1

ek(Xi)

n
1
2

|4 ≤ C. (6.7.94)
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Finally, using Cauchy-Schwartz inequality, (6.7.40) and (6.7.94), we get that

E|
n∑

i=1

ek(Xi)

n
1
2

n∑
j=1

e�(Xj)

n
1
2

n∑
r=1

em(Xr)

n
1
2

|

≤ E{(
n∑

i=1

ek(Xi)

n
1
2

)2(

n∑
j=1

e�(Xj)

n
1
2

)2} 1
2 {E(

n∑
r=1

em(Xr)

n
1
2

)2} 1
2

≤ C{E(
n∑

i=1

ek(Xi)

n
1
2

)4E(

n∑
j=1

e�(Xj)

n
1
2

)4} 1
4

≤ C. (6.7.95)

Hence, by using equations (6.7.67), (6.7.93) and (6.7.95), we get that

E|n 3
2Un − n

3
2Un,N | ≤ C. (6.7.96)

Hence, we have

|η∗n(t)− η∗n,N (t)| = |E(eitn
3
2 Un − eitn

3
2 Un,N )|

≤ E|eitn
3
2 (Un−Un,N ) − 1|

≤ |t|E|n 3
2Un − n

3
2Un,N |

<
ε

3
(6.7.97)

for large n,N , depending on t. The result follows by combining equations (6.7.86),
(6.7.90) and (6.7.97). �

Results in this section are due to Dewan and Prakasa Rao (2001) and can be
extended to kernels of arbitrary degree by similar methods.

6.8 Application to a Two-Sample Problem

Let the sequence {Xm, m ≥ 1} be a stationary sequence of associated random
variables with one-dimensional marginal distribution function F and the sequence
{Yn, n ≥ 1} be another stationary sequence of associated random variables with
one-dimensional marginal distribution function G. The problem of interest is to
test the hypothesis H : F = G.We now discuss a limit theorem useful in the study
of such problems.

Let φ(x, y) be a function of two variables which is square integrable in the
sense that ∫

R2

φ2(x, y)dF (x)dG(y) < ∞. (6.8.1)
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Define

Um,n =
1

mn

m∑
i=1

n∑
j=1

φ(Xi, Yj). (6.8.2)

Under the condition stated in equation (6.8.1), there exist systems of functions
{fk(x)} and {gk(y)} (with f0(x) = g0(x) = 1) which are complete and orthonormal
on the spaces of square integrable functions of X and Y respectively such that

φ(x, y) =
∞∑
k=0

λkfk(x)gk(y), (6.8.3)

where ∞∑
k=0

λ2
k < ∞, (6.8.4)

and the series in (6.8.3) converges in mean square with respect to the product
measure generated by the joint distribution function F (x)G(y).

The functions {fk(x)} and {gk(y)} are eigenfunctions and {λk} are the eigen-
values of φ in the sense that, for all k ≥ 0,∫ ∞

−∞
fk(x)φ(x, y)dF (x) = λkgk(y), (6.8.5)

and ∫ ∞

−∞
gk(y)φ(x, y)dG(y) = λkfk(x). (6.8.6)

Definition. The statistic Umn and its kernel φ are called degenerate if∫
φ(x, y)dF (x) = 0 (6.8.7)

for all y and ∫
φ(x, y)dG(y) = 0 (6.8.8)

for all x.

Theorem 6.8.1. Let Umn be a degenerate two-sample U -statistic based on two in-
dependent stationary sequences of associated random variables. Suppose that the
corresponding kernel φ is square integrable. Assume that the eigenfunctions fk(x)
and gk(y) given by equation (6.8.3) are differentiable,

sup
k
sup
x

|f ′k(x)| < ∞, (6.8.9)

and
sup
k
sup
y

|g′k(y)| < ∞. (6.8.10)
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Furthermore, assume that,

∞∑
j=1

Cov(X1, Xj) < ∞, (6.8.11)

∞∑
j=1

Cov(Y1, Yj) < ∞ (6.8.12)

and ∞∑
k=1

|λk| < ∞. (6.8.13)

Let

δm =
1

m

m−1∑
i=1

Cov(X1, Xi+1), (6.8.14)

and

ηn =
1

n

n−1∑
j=1

Cov(Y1, Yj+1). (6.8.15)

Assume that
mn{δm + ηn} → 0 as m,n → ∞. (6.8.16)

Then

(mn)
1
2Umn

L→
∞∑
k=1

λkUkVk as m → ∞ and n → ∞ (6.8.17)

where {Uk} and {Vk} are sequences of correlated zero mean normal random vari-
ables, and are independent of each other with

Cov(Uk, Uk′) = Cov(fk(X1), fk′(X1)) + 2

∞∑
i=1

Cov(fk(X1), fk′(X1+i)),

and

Cov(Vk, Vk′) = Cov(gk(Y1), gk′(Y1)) + 2

∞∑
i=1

Cov(gk(Y1), gk′(Y1+i)).

Proof. Given ε > 0, there exists N such that if

φN (x, y) =

N∑
k=1

λkfk(x)gk(y), (6.8.18)

then ∫
R2

|φ(x, y)− φN (x, y)|2dF (x)dG(y) =
∞∑

k=N+1

λ2
k < ε. (6.8.19)
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Let U
(N)
mn be the U -statistic generated from the kernel φN (x, y) . Then

U (N)
mn =

1

mn

m∑
i=1

n∑
j=1

φN (Xi, Yj)

=
1

mn

m∑
i=1

n∑
j=1

N∑
k=1

λkfk(Xi)gk(Yj)

=
1

mn

N∑
k=1

λk{
m∑
i=1

fk(Xi)}{
n∑

j=1

gk(Yj)}. (6.8.20)

Note that for k ≥ 1,
Efk(X) = Egk(Y ) = 0, (6.8.21)

Ef2
k (X) = Eg2k(Y ) = 1, (6.8.22)

and
Efk(X)gk(Y ) = 0. (6.8.23)

Consider two linear combinations

T1 =

N∑
k=1

ck√
m

m∑
i=1

fk(Xi), (6.8.24)

and

T2 =

N∑
k=1

dk√
n

n∑
j=1

gk(Yj). (6.8.25)

In view of equations (6.8.9)–(6.8.12) and following the arguments in Theorem
6.7.3, we have

T1
L→ N(0, σ2

1,N ) as n → ∞, (6.8.26)

and
T2

L→ N(0, σ2
2,N ) as n → ∞, (6.8.27)

where

σ2
1,N =

N∑
k=1

c2k +
2

m

m−1∑
i=1

(m− i) Cov(B1N (X1), B1N (X1+i)),

σ2
2,N =

N∑
k=1

d2k +
2

n

n−1∑
j=1

(n− j) Cov(B2N (X1), B2N (X1+j)), (6.8.28)

and

B1N (Xi) =
N∑

k=1

ckfk(Xi),
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B2N (Yj) =

N∑
k=1

dkgk(Yj). (6.8.29)

Therefore,

(mn)
1
2U (N)

mn
L→

N∑
k=1

λkUkVk as m,n → ∞. (6.8.30)

Note that

Cov(Uk, Uk′) = Cov(fk(X1), fk′(X1)) + 2

∞∑
i=1

Cov(fk(X1), fk′(X1+i)), (6.8.31)

and

Cov(Vk, Vk′) = Cov(gk(Y1), gk′(Y1)) + 2

∞∑
i=1

Cov(gk(Y1), gk′(Y1+i)). (6.8.32)

Let φm,n(t), φ
∗(t), φ∗N (t) and φm,n,N (t) be the characteristic functions of

(mn)
1
2Umn,

∑∞
k=1 λkUkVk,

∑N
k=1 λkUkVk and nUN

mn , respectively. In view of
equation (6.8.30), for any ε > 0, there exists m0(N, ε, t) and n0(N, ε, t) such that
for m ≥ m0 and n ≥ n0,

|φm,n,N (t)− φ∗N (t)| ≤
ε

3
. (6.8.33)

As in the proof of equation (6.7.35),

E(U2
k ) < C, (6.8.34)

uniformly for k ≥ 1, and
E(V 2

k ) < C, (6.8.35)

uniformly for k ≥ 1. In view of equations (6.8.34), (6.8.35) and the Cauchy-
Schwartz inequality,

E(

∞∑
k=N+1

λkUkVk)
2 ≤

∞∑
k=N+1

λ2
kE(U

2
k )E(V

2
k )

+
∑

N+1≤k �=k′<∞
|λk||λk′ |E|UkUk′ |E|VkVk′ |

≤ C{
∞∑

k=N+1

|λk|}2

→ 0 as N → ∞. (6.8.36)
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Therefore, for large N , depending on t,

|φ∗N (t)− φ∗(t)| ≤ |t|E(
∞∑

k=N+1

λkUkVk)
2

≤ ε

3
. (6.8.37)

Let

φ̄(x, y) = φ(x, y)− φN (x, y). (6.8.38)

Then, from Birkel (1986), it follows that

mnE|Um,n − U (N)
m,n|2

=
1

mn
E(

m∑
i=1

n∑
j=1

φ̄(Xi, Yj))
2

=
1

mn

∑
1≤i�=i′≤m

∑
1≤j �=j′≤n

E(φ̄(Xi, Yj)φ̄(X
′
i, Y

′
j ))

≤ C
1

mn

∑
1≤i�=i′≤m

∑
1≤j �=j′≤n

{Cov(Xi, X
′
i) + Cov(Yj , Y

′
j )}

≤ C
1

mn
{n2m

m−1∑
i=1

Cov(X1, Xi+1) +m2n

n−1∑
j=1

Cov(Y1, Yj+1)}

= Cmn{ 1
m

m−1∑
i=1

Cov(X1, Xi+1) +
1

n

n−1∑
j=1

Cov(Y1, Yj+1)}

= mn{δm + ηn}
→ 0 as m,n → ∞. (6.8.39)

Hence , for large m ≥ m0 and n ≥ n0,m0 and n0 depending on N, t and ε

|φm,n(t)− φm,n,N (t)| ≤ ε

3
. (6.8.40)

The result follows by combining equations (6.8.33), (6.8.37) and (6.8.40). �

Theorem 6.8.2. Let Umn be a non-degenerate two-sample U -statistic based on sta-
tionary sequences of associated random variables. Let φ be the corresponding ker-
nel. Assume that the eigenfunctions fk(x) and gk(y) given by (6.8.3) are differen-
tiable and

sup
k
sup
x

|f ′k(x)| < ∞, (6.8.41)

sup
k
sup
y

|g′k(y)| < ∞. (6.8.42)
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Furthermore, assume that

∞∑
j=1

Cov(X1, Xj) < ∞ (6.8.43)

and ∞∑
k=1

|λk| < ∞. (6.8.44)

Let

δm =
1

m

m−1∑
i=1

Cov(X1, Xi+1), (6.8.45)

and

ηn =
1

n

n−1∑
j=1

Cov(Y1, Yj+1). (6.8.46)

Assume that
mn{δm + ηn} → 0 as m,n → ∞. (6.8.47)

Let

g∗(x) =
∫ ∞

−∞
φ(x, y)dG(y),

f∗(y) =
∫ ∞

−∞
φ(x, y)dF (x). (6.8.48)

Suppose that g∗(.) is monotone or g∗ is Lipschitzian, and

∞∑
k=0

|Eg∗k(X1)| < ∞, (6.8.49)

and similar conditions fold for f∗ with

∞∑
k=0

|Ef∗k (Y1)| < ∞. (6.8.50)

If Umn has finite variance and m
n → λ as m,n → ∞, then

(m)
1
2 (Umn − EUmn)

L→ N(0, σ2
1 + λσ2

2), (6.8.51)

where

σ2
1 = Var(g

∗(X1)) + 2

∞∑
j=1

Cov(g∗(X1), g
∗(Xj+1)), (6.8.52)

σ2
2 = Var(f

∗(Y1)) + 2

∞∑
j=1

Cov(f∗(Y1), f
∗(Yj+1)), (6.8.53)
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Proof. Note that

EUm,n = Eφ(X1, Y1) = Eg∗(X) = Ef∗(Y ). (6.8.54)

Since Um,n has finite variance, we have

Eg∗2(X1) = E[φ(X1, Y1)φ(X1, Y2)] < ∞, (6.8.55)

and
Ef∗2(Y1) = E[φ(X1, Y1)φ(X2, Y1)] < ∞. (6.8.56)

Let
φ̂(x, y) = φ(x, y)− g∗(x)− f∗(y) + Eg∗(X1). (6.8.57)

Then φ̂ is square integrable and degenerate. Let Ûm,n be the U-statistic based on

φ̂. Then, from Theorem 6.8.1, it follows that (mn)
1
2 Ûm,n converges in distribution.

Furthermore using equations (6.8.54) and (6.8.57), we get that

Um,n − EUm,n =
1

mn

m∑
i=1

n∑
j=1

{φ(Xi, Yj)− Eφ(Xi, Yj)}

= Ûm,n +
1

m

m∑
i=1

{g∗(Xi)− Eg∗(Xi)}

+
1

n

n∑
j=1

{f∗(Yj)− Ef∗(Yj)}. (6.8.58)

Therefore,

m
1
2 {Um,n − EUm,n} = m

1
2 Ûm,n +

1√
m

m∑
i=1

{g∗(Xi)− Eg∗(Xi)}

+ (
m

n
)

1
2
1√
n

n∑
j=1

{f∗(Yj)− Ef∗(Yj)}. (6.8.59)

Therefore, from Theorem 6.8.1, we get that

m
1
2 Ûm,n

p→ 0 as m,n → ∞, (6.8.60)

1√
m

m∑
i=1

{g∗(Xi)− Eg∗(Xi)} L→ N(0, σ2
1) as n → ∞, (6.8.61)

and
1√
n

n∑
j=1

{f∗(Yj)− Ef∗(Yj)} L→ N(0, σ2
2) as n → ∞. (6.8.62)

The result now follows from the relation (6.8.59). �
Results in this section are from Dewan and Prakasa Rao (2001).
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6.9 Limit Theorems for V -Statistics

Let ψ(x1, . . . , xk) be a real-valued function symmetric in its arguments. Let
E|ψ(xi1 , . . . , xik)|r < ∞ for some positive integer r. Then, the U -statistic of degree
k based on the kernel ψ is defined as

Un =
1(
n
k

) ∑
(c)

ψ(xi1 , . . . , xik), (6.9.1)

where
∑

(c) denotes the summation over all subsets 1 ≤ i1 < . . . < ik ≤ n of

{1, . . . , n}.
A V -statistic (Von Mises (1947)) based on the symmetric kernel ψ of degree

k is defined by

Vn = n−k
n∑

i1=1

. . .

n∑
i1=1

ψ(Xi1 , . . . , Xik). (6.9.2)

Then, one can express Vn as follows (see Lee (1990, p. 183)):

Vn = n−k
k∑

j=1

j!S
(j)
k

(
n

j

)
U (j)
n , (6.9.3)

where U
(j)
n is a U -statistic of degree j, S

(j)
k are Stirling numbers of the second

kind (see, e.g., Abramowitz and Stegun (1965)). Also note that

nk =

k∑
j=1

j!S
(j)
k

(
n

j

)
, (6.9.4)

so that

nk(Vn − θ) =

k∑
j=1

j!S
(j)
k

(
n

j

)
(U (j)

n − θ). (6.9.5)

The following theorem proves the asymptotic equivalence of the U -statistics and
the V -statistics.

Theorem 6.9.1. Let the sequence {Xn, n ≥ 1} be a stationary associated sequence.
Let Un and Vn be the U -statistic and the V -statistic respectively based on a sym-
metric kernel ψ(x1, . . . , xk) of degree k. Assume that ψ(x1, . . . , xk) is monotonic
in x1. Further suppose that

E[|ψ(X1, . . . , Xk)|r+δ] < ∞ for r > 2, δ > 0, (6.9.6)

and

u∗n = 2
∞∑

j=n+1

Cov(ψ(X1, . . . , Xk), ψ(X(j−1)k+1, . . . , Xjk) = O(n−
(r−2)(r+δ)

2δ ).

(6.9.7)
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Then
E|Un − Vn|r = O(n−

r
2 ). (6.9.8)

Proof. Let k ≥ 1 and p = [nk ], the greatest integer ≤ n
k . Define

W (x1, . . . , xn)=
1

p
{ψ(x1, . . . , xk)+ψ(xk+1, . . . , x2k)+ . . .+ψ(x(p−1)k+1, . . . , xpk)}

(6.9.9)
Then ∑

(n)

W (xv1 , . . . , xvn) = k!(n− k)!
∑
(n,k)

ψ(xi1 , . . . , xik) , (6.9.10)

where
∑
(n)

is summation over all the n! permutations (v1, . . . , vn) of {1, . . . , n} and
∑
(n,k)

is summation over all the
(
n
k

)
subsets (i1, . . . , ik) of {1, . . . , n}. Then, it is

easy to see that

Un − θ =
1

n!

∑
(n)

{W (Xv1
, . . . , Xvn)− θ}. (6.9.11)

By Minkowski’s inequality and the symmetry property of W , we have

E[|Un − θ|r] ≤ E[|W (X1, . . . , Xn)− θ|r]. (6.9.12)

Since ψ is monotone component-wise, W (X1, . . . , Xn) is an average of p associ-
ated random variables. Then, using equations (6.9.6), (6.9.7) and the moment
inequalities in Birkel (1988a), we have

E[|Un − θ|r] = O(p−
r
2 ) = O(n−

r
2 ). (6.9.13)

From (6.9.5), we get that

(Vn − θ) =
k∑

j=1

aj(U
(j)
n − θ),

where

aj =
j!S

(j)
k

(
n
j

)
nk

.

Using Minkowski’s inequality, and (6.9.13), we have

E|Vn − θ|r ≤ {
k∑

j=1

aj(E|Un − θ|r) 1
r }r (6.9.14)

≤ C{
k∑

j=1

ajn
− 1

2 }r}
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= Cn−
r
2 {

k∑
j=1

aj}r.

It is easy to see that

aj = S
(j)
k O(nj−k).

Therefore,

k∑
j=1

aj ≤ max
1≤j≤k

S
(j)
k O(

k∑
j=1

nj−k) (6.9.15)

≤ C max
1≤j≤k

S
(j)
k . (6.9.16)

Hence
E|Vn − θ|r = O(n−

r
2 ). (6.9.17)

The result follows using equations (6.9.13) and (6.9.15) by the cr-inequality (Loeve
(1977)). �
Remarks. If the function ψ is partially differentiable with bounded partial deriva-
tives, then following Birkel (1988a), the condition, given by equation (6.9.7), can
be written as

∞∑
j=n+1

k∑
i=1

jk∑
�=(j−1)k+1

Cov(Xi, X�) = O(n−
(r−2)(r+δ)

2δ ). (6.9.18)

Remarks. The condition on componentwise monotonicity of ψ can possibly be
dropped by extending the results of Shao and Yu (1996) to functions of random
vectors of associated random variables.

6.10 Limit Theorems for Associated Random Fields

Limit theorems for associated random fields have been discussed extensively by
Bulinski and Shaskin (2007). We give a brief discussion of some recent results on
the law of iterated logarithm and strong Gaussian approximation due to Shaskin
(2006, 2007).

Recall that a random field X = {Xj , j ∈ Zd} is called associated if
Cov(f(Xi1 , . . . , Xin), g(Xi1 , . . . , Xin)) ≥ 0

for any n ≥ 1 an arbitrary collection {i1, . . . , in} ⊂ Zd of pairwise distinct indices
and any bounded componentwise nondecreasing functions f, g : Rn → R.

Let
u(r) = sup

j∈Zd

∑
k∈Zd:|k−j|≥r

Cov(Xj , Xk), r ≥ 0 (6.10.1)
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where |j| = maxi=1,...,d ji for j ∈ Zd. Suppose that u(1) < ∞ and u(r) → 0 as
r → ∞. The function u(r) is called the Cox-Grimmet coefficient.

By an integer parallelpiped, we mean a set (a, b] = ((a1, b1]×. . .×(ad, bd])∩Zd,
where ai, bi ∈ Zd and ai < bi for i = 1, . . . , d. Let S(U) =

∑
j∈U Xj where U is

an integer parallelpiped and Sn = S((0, n]) for n ∈ Nd. For an index n ∈ Nd

and c ∈ N , c > 1, we write [n] = n1 . . . nd, c
n = (cn1 , . . . , cnd) ∈ Nd, cn−1 =

(cn1−1, . . . , cnd−1) ∈ Nd. Further log x = ln(max(x, e)), x > 0 and we say that
n → ∞, where n ∈ Nd, if n1 → ∞, . . . , nd → ∞.

Shaskin (2006) derived the following law of iterated logarithm for an associ-
ated random field.

Theorem 6.10.1. Suppose that a wide sense stationary random field X is associated
and supj∈Zd E|Xj |2+δ < ∞ for some δ > 0. Further suppose that there is a λ > 0

such that u(r) = O(r−λ) as r → ∞. Then

lim sup
n→∞

=
Sn√

2d[n] log log[n]
= − lim inf

n→∞
Sn√

2d[n] log log[n]
= σ a.s. (6.10.2)

where σ2 = Σj∈Zd Cov(X0, Xj).

For τ > 0, let Gτ = {n ∈ Nd : nk ≥ (
∏

j �=k nj)
τ , k = 1, . . . , d}. Shaskin

(2007) obtained the following result which gives a strong approximation for an
associated random field.

Theorem 6.10.2. Suppose that a wide sense stationary random field X is associated
and supj∈Zd E|Xj |2+δ < ∞ for some δ > 0. Further suppose that there is a λ > 0

such that u(r) = O(r−λ) as r → ∞. Then, for each τ > 0, it is possible to construct
a version of the associated random field X on a new probability space equipped with
a d-parameter Wiener process {Wt, t ∈ R+

d } and there exists an ε > 0 such that

[n]ε−
1
2 (Sn − σWn)→ 0 as n → ∞, n ∈ Gτ a.s. (6.10.3)

We omit the proofs.

Bulinski (2011) obtained a central limit theorem for a positively associ-
ated stationary random field X = {Xj , j ∈ Zd} defined on an integer-valued
d-dimensional lattice Zd. The uniform integrability of the squares of normalized
partial sums, taken over growing parallelpipeds in Zd, is the main condition that
is used for proving the asymptotic normality of the standardized partial sum. It
extends results in Lewis (1998).

6.11 Remarks

We have not been able to discuss some other important probabilistic results for
associated or negatively associated random variables due to paucity of space in the
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book as well as due to the fact that these results are akin to those derived for inde-
pendent random variables and the proofs are similar to those in the independent
case. We now point out some of these results.

Exponential inequalities for associated or positively associated random vari-
ables and their application to study rates of convergence of the strong law of large
numbers were investigated in Ioannides and Roussas (1999), Oliveira (2005), Yang
and Chen (2007), Sung (2007), Xing and Yang (2008), Xing et al. (2008) and
Xing and Yang (2010). Exact rate in the log law for positively associated random
variables was obtained in Fu (2009). Large deviation for the empirical mean for
associated random variables was studied in Henriques and Oliveira (2008). Con-
vergence rates in the strong law for associated sequences was studied in Louhichi
(2000). Precise asymptotics in the law of large numbers for associated random
variables were obtained by Baek et al. (2008). A non-classical law of iterated
logarithm for functions of positively associated random variables was proved in
Wang and Zhang (2006). Almost sure central limit theorems for associated ran-
dom variables were studied by Matula (1998) and Gonchigdanzan (2002) and for
positively associated random variables by Matula (2005). Weak convergence for
partial sums of associated random variables was investigated in Matula (1996a).
Convergence of weighted averages of associated random variables was studied in
Matula (1996b). Matula and Rychlik (1990) obtained the invariance principle for
non-stationary sequences of associated random variables. Limit theorems for sums
of non-monotonic functions of associated random variables were discussed by Mat-
ula (2001). A bound for the distribution of the sum of discrete associated or nega-
tively associated random variables is given in Boutsikas and Koutras (2000). Balan
(2003) discussed a strong invariance principle for associated fields.

Applications of negatively associated random variables can seen in Joag-Dev
and Proschan (1983). The law of iterated logarithm for negatively associated ran-
dom variables was derived in Shao and Su (1999), Liu and Mei (2004)and Wang
and Zhang (2007). Strong laws of large numbers for negatively associated sequences
were studied by Dong and Yang (2002), Nezakati (2005) and Liu et al. (2009). Ex-
ponential inequality for negatively associated sequences was obtained by Xing et
al. (2009). Kim and Ko (2003) studied almost sure convergence of averages of
associated and negatively associated random variables. Probability and moment
bounds for sums of negatively associated random variables were obtained by Mat-
ula (1996c). A comparison theorem on maximal inequalities between negatively
associated random variables and independent random variables with the same
marginal distributions was obtained by Shao (2000). Marcinkiewicz-Zygmund-
Burkhoder type inequality for negatively associated sequences was proved by
Zhang (2000)(cf. Lin and Bai (2010). Precise rates in the law of the logarithm for
negatively associated random variables were discussed in Fu and Zhang (2007).
Moment convergence rates of the law of iterated logarithm for negatively asso-
ciated sequences were obtained by Fu and Hu (2010). Complete convergence for
negatively associated sequences was studied in Mikusheva (2000), Liang (2000),
Huang and (2002), Kuczmaszmu (2009), Zhao et al. (2010) and Liang et al. (2010).

184



6.11. Remarks

Exponential and almost sure convergence for negatively associated random vari-
ables was studied by Han (2007), Sung (2009), Xing (2010), Jabbari et al. (2009).
Complete convergence for weighted sums of row-wise negatively associated ran-
dom variables was investigated in Qiu (2010). Strong laws for certain types of
U -statistics based on negatively associated random variables were discussed by
Budsaba et al. (2009). Convergence rates in the law of iterated logarithm for neg-
atively associated random variables with multidimensional indices were studied
in Li (2009). Strong limit theorems for weighted sums of negatively associated
random variables were derived by Jing and Liang (2008). Liu (2007) and Wang
et al. (2006) derived precise large deviations for negatively associated sequences.
Asymptotic normality for U -statistics of negatively associated random variables
was investigated in Huang and Zhang (2006). Limiting behaviour of weighted sums
of negatively associated random variables was given in Baek et al. (2005). Maxima
of sums and random sums of negatively associated random variables was studied
in Wang et al. (2004). A non-classical law of iterated logarithm for functions of
negatively associated random variables was proved in Jiang (2003) and Huang
(2004). Weak convergence for functions of negatively associated random variables
was discussed in Zhang (2001). An invariance principle for negatively associated
sequences was obtained by Lin (1997). Huang (2003) obtained the law of iter-
ated logarithm for geometrically weighted series of negatively associated random
variables.
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Chapter 7

Nonparametric Estimation for
Associated Sequences

7.1 Introduction

In classical statistical inference, the observed random variables of interest are gen-
erally assumed to be independent and identically distributed. However, as was
mentioned in Chapter 1, in some real life situations, the random variables need
not be independent. Study of inference problems for dependent sequences of ran-
dom variables is of importance due to their applications in fields such as reliability
theory, finance and in time series with applications in economics. Statistical in-
ference for stochastic processes was developed for Markov processes by Billingsley
(1961) and for stochastic processes in general in Basawa and Prakasa Rao (1980)
and Prakasa Rao (1983). Inference for special classes of processes, such as branch-
ing processes (cf. Guttorp (1991)), point processes (cf. Karr (1991)), diffusion
type processes (cf. Prakasa Rao (1999b), Kutoyants (1984, 2004)), spatial Pois-
son processes (cf. Kutoyants (1998)), counting processes (cf. Jacobsen (1882)),
Semimartingales (cf. Prakasa Rao (1999c)), and fractional diffusion processes (cf.
Prakasa Rao (2010)) have been studied extensively. In the examples discussed
in Chapter 1, the random variables of interest are not independent but are ‘as-
sociated’, a concept we discussed extensively in this book. We gave a review of
probabilistic properties of associated sequences of random variables in Chapter
1 and in Chapter 6. One of the important problems of statistical inference is
stochastic modelling. In order to understand the evolution of the observed data,
it is important to estimate the probabilities of various events in the underlying
mechanism which in turn leads to the problem of estimation of the distribution
function or the probability density estimation whenever it exists.

We will now discuss some methods of nonparametric estimation of distri-
bution functions or survival functions and estimation of a density function when

B.L.S. Prakasa Rao, Associated Sequences, Demimartingales
and Nonparametric Inference, Probability and its Applications,
DOI 10.1007/978-3-0348-0240-6_7, © Springer Basel AG 2012
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Chapter 7. Nonparametric Estimation for Associated Sequences

the underlying process forms a strictly stationary sequence of associated random
variables. Recall that the sequence of partial sums of mean zero sequence of asso-
ciated random variables forms a demimartingale which is the topic of this book in
Chapter 2.

It is assumed that all the expectations involved in the following discussions
exist.

The following examples due to Matula (1996) discuss some methods for gen-
erating associated sequences.

(i) Let the sequence {Yn, n ≥ 1} be a sequence of independent and identically
distributed standard normal random variables . Let I(−∞,u)(x) be the indicator
function of the interval (−∞, u) for any fixed u ∈ R. Fix u ∈ R. Let

Xn = I(−∞,u)(
Y1 + Y2 + . . .+ Yn√

n
).

Then the sequence {Xn, n ≥ 1} is a sequence of associated random variables with

Cov(Xj , Xn) =
1√
2π

∫ u

−∞
exp[−x2

2
](Φ(

√
nu−√

jx√
n− j

)− Φ(u))dx,

for j < n, where Φ denotes the standard normal distribution function.

(ii) Let the sequence {Yn, n ≥ 1} be a sequence of independent and identically
distributed random variables with E(Y1) = 1 and E(Y 2

1 ) = 2. For n ≥ 1, let

Xn =
1

2n−1
Y1 + . . .+

1

2n−1
Yn−1 + nYn.

Then the sequence {Xn, n ≥ 1} is a sequence of associated random variables with

Cov(Xj , Xn) =
1

2n−1
(j +

j − 1
2j−1

)

for j < n .

7.2 Nonparametric Estimation for Survival Function

Let the sequence {Xn ,n ≥ 1} be a stationary sequence of associated random
variables with distribution function F (x), or equivalently, survival function F̄ (x) =
1 − F (x), and density function f(x). The empirical survival function F̄n(x) is
defined by

F̄n(x) =
1

n

n∑
j=1

Yj(x), (7.2.1)
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where

Yj(x) =

{
1 if Xj > x

0 otherwise.
(7.2.2)

It is interesting to note that, for fixed x, Y ′j s are increasing functions of X
′
js and

hence are associated.

Bagai and Prakasa Rao (1991) proposed F̄n(x) as an estimator for F̄ (x) and
discussed its asymptotic properties.

Theorem 7.2.1 (Bagai and Prakasa Rao (1991)). Let the sequence {Xn, n ≥ 1}
be a stationary sequence of associated random variables with bounded continuous
density for X1. Assume that, for some r > 1,

∞∑
j=n+1

{Cov(X1, Xj)}1/3 = O(n−(r−1)). (7.2.3)

Then there exists a constant C > 0 such that, for every ε > 0,

sup
x

P [|F̄n(x)− F̄ (x)| > ε] ≤ Cε−2rn−r

for every n ≥ 1. In particular, for every x,

F̄n(x)→ F̄ (x) a.s. as n → ∞.

Proof. Observe that

Cov(Yi(x), Yj(x)) = P (X1 > x, Xj > x)− P (X1 > x)P (Xj > x)

= P (X1 ≤ x, Xj ≤ x)− P (X1 ≤ x)P (Xj ≤ x)

which is nonnegative since the random variables Y1(x) and Yj(x) are associated.
Then there exists a constant C > 0 such that

∞∑
j=n+1

Cov(Y1(x), Yj(x))

≤
∞∑

j+n+1

[P (X1 ≤ x, Xj ≤ x)− P (X1 ≤ x)P (Xj ≤ x)]

≤ C
∞∑

j=n+1

[Cov(X1, Xj)]
1/3

by choosing T = [Cov(X1, Xj)]
−1/3 in Theorem 6.2.14 whenever Cov(X1, Xj) > 0.

If Cov(X1, Xj) = 0, then X1 and Xj are independent as they are associated and

Cov(Y1(x), Yj(x)) = P (X1 ≤ x, Xj ≤ x)− P (X1 ≤ x)P (Xj ≤ x) = 0
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≤ [Cov(X1, Xj)]
1/3.

Furthermore
sup
x
sup
j

|Yj(x)− E[Yj(x)]| ≤ 2

and

u(n, x) = 2
∞∑

j=n+1

Cov(Y1(x), Yj(x)) ≤ C
∞∑

j=n+1

[Cov(X1, Xj)]
1/3

for all x where C is independent of n and x. Hence, by Theorem 1.2.9, it follows
that

sup
x

E|
n∑

j=1

(Yj(x)− E[Yj(x)])|2r ≤ Cnr

for some C > 0, independent of n and x. Applying the Chebyshev inequality, we
get that

sup
x

P [|F̄n(x)− F̄ (x)| > ε] = sup
x

P [|F̄n(x)− F̄ (x)|2r > ε2r]

≤ sup
x
{n−2rε−2rE(|

n∑
j=1

(Yj(x)− E[Yj(x)])|2r)}

≤ Cε−2rn−r.

This proves the first part of the result. Observe that

∞∑
n=1

P [|F̄n(x)− F̄ (x)| > ε] ≤ Cn−2rε−2r
∞∑

n=1

n−r < ∞

since r > 1 by hypothesis. Hence, it follows that

F̄n(x)→ F̄ (x)a.s. as n → ∞
by the Borel-Cantelli lemma. �

The following theorem gives an exponential inequality for the deviation of
the estimator F̄n(x) from F̄ (x).

Theorem 7.2.2. Let the sequence {Xn, n ≥ 1} be a stationary sequence of associ-
ated random variables with one-dimensional survival function F̄ (x). Let

γn =
n∑

j=1

Cov(X1, Xj). (7.2.4)

Then, for any ε > 0,

sup
x

P [|F̄n(x)− F̄ (x)| > ε] ≤ 2[eλ2
n
n −λnε + n−1/3λ2

ne
(2−ε)λnγ1/3

n ] (7.2.5)

for any sequence {λn} such that λn ≤ n
4 .
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Proof. For all λn > 0,

E[eλn(F̄n(x)−F̄ (x))] = E[e

λn
n

n∑
j=1

(Yj(x)− EYj(x))

]

= E[e

λn
n

n∑
j=1

(Yj(x)− EYj(x))

]−
n∏

j=1

E[e
λn
n (Yj(x)−EYj(x))]

+
n∏

j=1

E[e
λn
n (Yj(x)−EYj(x))]. (7.2.6)

Note that for large n,

0 < λn ≤ n

4
and |λn

n
(Yj(x)− EYj(x))| ≤ 1

2
.

Furthermore, eu ≤ 1 + u+ u2 for |u| ≤ 1
2 . Hence

n∏
j=1

E[e
λn
n (Yj(x)−EYj(x))] ≤

n∏
j=1

E[1 +
λn

n
(Yj(x)− EYj(x)) (7.2.7)

+
λ2
n

n2
(Yj(x)− EYj(x))

2]

≤
n∏

j=1

(1 +
λ2
n

n2
) (since Var(Yj(x)) ≤ 1)

≤ e
λ2
n
n . (7.2.8)

Using Theorems 6.2.9 and 6.2.14, for T > 0, we get that

|E[e
λn
n

n∑
j=1

(Yj(x)− EYj(x))

]−
n∏

j=1

E[e
λn
n (Yj(x)−EYj(x))]|

≤ λ2
ne

2λn

n2

∑
1≤i<j≤n

Cov(Yi(x), Yj(x))

≤ λ2
ne

2λn

n2

∑
1≤i<j≤n

{P (Xi > x,Xj > x)− P (Xi > x)P (Xj > x)}

≤ λ2
ne

2λn

n2
{T 2

∑
1≤i<j≤n

Cov(Xi, Xj) +
n(n− 1)

T
}

=
λ2
ne

2λn

n2
{T 2

n−1∑
j=1

(n− j) Cov(X1, Xj) +
n(n− 1)

T
}
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≤ λ2
ne

2λn

n
{T 2γ1/3

n +
n

T
}

= n−1/3λ2
ne

2λn (choosing T = n1/3γ−1/3
n ). (7.2.9)

Using Chebyshev’s inequality and combining the relations (7.2.6) to (7.2.9), we
get that

P [F̄n(x)− F̄ (x) > ε] ≤ e
λ2
n
n −λnε + n−1/3λ2

ne
(2−ε)λnγ1/3

n (7.2.10)

for any ε > 0. The result stated in the theorem follows from the fact that if the
members of the set of random variables {Yj(x), 1 ≤ j ≤ n} are associated, for
fixed x then so are {−Yj(x), 1 ≤ j ≤ n}. �

The following results are Glivenko-Cantelli type theorems for associated ran-
dom variables. We do not give detailed proofs of these results.

Theorem 7.2.3 (Bagai and Prakasa Rao (1991)). Let {Xn, n ≥ 1} be a stationary
sequence of associated random variables satisfying the conditions of Theorem 7.2.1.
Then for any compact subset J ⊂ R,

sup[|F̄n(x)− F̄ (x)| : x ∈ J | → 0 a.s. as n → ∞.

Theorem 7.2.4 (Yu (1993)). Let the sequence {Xn, n ≥ 1} be a sequence of asso-
ciated random variables having the same marginal distribution function F (x) for
Xn, n ≥ 1. If F (x) is continuous and

∞∑
n=1

1

n2
Cov(Xn, Sn−1) < ∞, (7.2.11)

then, as n → ∞,
sup

−∞<x<∞
|Fn(x)− F (x)| → 0 a.s. (7.2.12)

If the sequence in the above theorem is stationary, then the condition (7.2.11)
can be weakened to

1

n

n∑
i=1

Cov(Xn, Xi)→ 0. (7.2.13)

From the central limit theorem for stationary associated random variables,
the following theorem can be obtained.

Theorem 7.2.5 (Bagai and Prakasa Rao (1991)). Let the sequence {Xn, n ≥ 1}
be a stationary associated sequence of random variables with bounded continuous
density for X1 and survival function F̄ (x). Suppose that

∞∑
j=2

{Cov(X1, Xj)}1/3 < ∞.
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Define,

σ2(x) = F̄ (x)[1− F̄ (x)] + 2
∞∑
j=2

{P [X1 > x,Xj > x]− F̄ 2(x)}.

Then, for all x such that 0 < F (x) < 1,

n1/2[(F̄n(x)− F̄ (x))/σ(x)]
L→ Φ(x) as n → ∞.

Consider the empirical process

βn(x) = n1/2(Fn(x)− F (x)), x ∈ R. (7.2.14)

Weak convergence for empirical processes has been discussed by Yu (1993).

Theorem 7.2.6 (Yu (1993)). Let the sequence {Xn, n ≥ 1} be a stationary associ-
ated sequence of random variables with bounded density for X1 and suppose that
there exists a positive constant v such that

∞∑
n=1

n
13
2 +v Cov(X1, Xn) < ∞. (7.2.15)

Then
βn(.)

L→ B(F (.)) in D[0, 1], (7.2.16)

where B(.) is a zero-mean Gaussian process on [0,1] with covariance defined by

EB(s)B(t) = s ∧ t− st+ 2

∞∑
k=2

(P (X1 ≤ s, Xk ≤ t)− st) (7.2.17)

with P{B(.) ∈ C[0, 1]} = 1.
The above result has been improved by Oliveira and Suquet (1995) and by

Shao and Yu (1996).

Theorem 7.2.7 (Oliveira and Suquet (1995)). Let the sequence {Xn, n ≥ 1} be
strictly stationary associated random variables with continuous distribution. Let
γ(s, t) be defined as

γ(s, t) = F (s ∧ t)− F (s)F (t) (7.2.18)

+ 2
∞∑
k=2

[P (X1 ≤ s, Xk ≤ t)− P (X1 ≤ s)P (Xk ≤ t)].

Suppose the series in (7.2.18) converges uniformly on [0, 1]2. Then the empiri-
cal process βn converges weakly on L2(0, 1) to a centered Gaussian process with
covariance function γ(s, t).

In the case of uniform variables Xi, the uniform convergence of the series in
(7.2.18) follows from the fact that∑

n≥2

Cov1/3(X1, Xn) < ∞. (7.2.19)
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7.3 Nonparametric Density Estimation

Density estimation in the classical i.i.d. case has been extensively discussed. For
comprehensive surveys, see Prakasa Rao (1983, 1999), Silverman (1986) and Efro-
movich (2000) among others. These results have been extended to estimation of
marginal density for stationary processes which are either Markov or mixing in
some sense (cf. Prakasa Rao (1983, 1999)). As has been pointed out earlier, it
is of interest to study density estimation when the observations form an associ-
ated sequence, for instance, in the context of study of lifetimes of components in
reliability.

Kernel Type Density Estimator

Bagai and Prakasa Rao (1995) proposed a kernel-type estimator for the unknown
density function f for X1 when the sequence {Xn, n ≥ 1} is a stationary sequence
of associated random variables.

Assume that the support of f is a closed interval I = [a, b] on the real line.
Consider

fn(x) =
1

nhn

n∑
j=1

K

(
x−Xj

hn

)
, x ∈ I (7.3.1)

as an estimator for f(x), where K(·) is a suitable kernel and hn is a bandwidth
sequence.

The asymptotic behaviour of fn(x) is discussed later under the assumptions
(A) listed below:

(A1) K(·) is a bounded density function and of bounded variation on R satisfying

(i) lim
|u|→∞

|u|K(u) = 0,

(ii)

∫ ∞

−∞
u2K(u)du < ∞.

(A2) K(x) is differentiable and sup
x
|K ′(x)| ≤ c < ∞.

Remarks. Note that standard normal density satisfies the above conditions.

In addition to the conditions (A1) and (A2), it is assumed that the covariance
structure of {Xn} satisfies the following condition.
(B) For all � and r,

∑
j:|�−j|≥r

Cov(Xj , X�) ≤ u(r), where u(r) = e−αr for some

α > 0.

In addition to the conditions on the kernel K(.) and the sequence {Xn,
n ≥ 1}:
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7.3. Nonparametric Density Estimation

(C) Suppose that the one-dimensional marginal density function f is thrice dif-
ferentiable and the third derivative is bounded.

Let

γj =

∫ ∞

−∞
xjK(x)dx, j = 1, 2

and

βj =

∫ ∞

−∞
xjK2(x)dx, j = 0, 1, 2.

Under the conditions (A) and (B) given above, it can be checked that

Bn(x) ≡ E[fn(x)]− f(x)]

= −hnf
′(x)γ1 +

h2
n

2
f ′′(x)γ2 +O(h3

n)

and

Var[fn(x)] =
1

nhn
[f(x)β0 +O(hn)] +O(

1

nh4
n

).

As a consequence of the above results, it follows that the density estimator fn(x) is
an asymptotically unbiased and consistent estimator of f(x) at continuity points
x of f under the conditions (A), (B) and (C) provided hn → 0 and nh4

n → ∞ as
n → ∞. It is sufficient if u(0) < ∞ in condition (B) for the weak consistency of
the density estimator fn(x). The following result on the strong consistency of the
estimator fn(x) can be proved using Theorem 1.2.16.

Theorem 7.3.1 (Bagai and Prakasa Rao (1995)). Let the sequence {Xn, n ≥ 1}
be a stationary sequence of associated random variables. Suppose that (A1), (A2),
and (B) hold. Then,

fn(x)→ f(x) a.s. as n → ∞
at continuity points x of f(·).

Uniform strong consistency of fn(x) follows from the following theorem.

Theorem 7.3.2 (Bagai and Prakasa Rao (1995)). Let the sequence {Xn, n ≥ 1} be
a stationary sequence of associated random variables satisfying the conditions (A)
and (B). Suppose there exists γ > 0 such that

h−4
n = O(nγ). (7.3.2)

Further, suppose that the following condition holds:

(C) |f(x1)− f(x2)| ≤ c|x1 − x2|, x1, x2 ∈ I,

Then
sup[|fn(x)− f(x)|;xεI]→ 0 a.s. as n → ∞.
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Roussas (1991) showed that for θ > 0 and for any compact interval [a, b],

sup
x∈[a,b]

nθ|fn(x)− f(x)| → 0 a.s. as n → ∞,

under some conditions. Douge (2007) obtained the rate of convergence of kernel
type density estimator. We will now discuss these results from Douge (2007).

Let the sequence {Xn, n ≥ 0} be a stationary sequence of associated random
variables such that X0 and (X0, Xj) have densities f and f0,j respectively. Let
K(.) be a probability density function and hn be a sequence of positive numbers
such that hn → 0 and nhn → ∞ as n → ∞. Let

fn(x) =
1

nhn

n∑
i=0

K(
x−Xi

hn
) (7.3.3)

be a kernel type density estimator of f(x). Suppose the following conditions hold:

(H1) sup
j≥1

sup
x,y

|f0,j(x, y)− f(x)f(y)| ≤ C < ∞ and sup
x

|f(x)| ≤ C < ∞;

(H2) the kernelK(.) is bounded, differentiable and the derivativeK ′(.) is bounded;

(H3) (i)
n−1∑
k=0

(k + 1)�α
1/4
k = O(nγ�/2) for all � > 0, 0 < γ < 1,

(ii)

∞∑
k=0

α
1/4
k < ∞ where αk = sup

|i−j|≥k

Cov(Xi, Xj) and α0 = 1.

Theorem 7.3.3. Under the conditions (H1)–(H3), if h−1
n = O(n1−γ), then there

exists a positive constant D > 0, such that for every λ > 0, and for every x,

P (|fn(x)− E[fn(x)]| > λ) ≤
√
2e2 exp(−Dλ

√
nhn). (7.3.4)

Theorem 7.3.4. Suppose the probability density function is Lipschitzian of or-
der ρ and the conditions (H1)–(H3) hold for γ < 1 − 1

2ρ+1 . Furthermore, if

limn→∞( nhn

log logn ) =∞, hn = (
log logn

n )1/(2ρ+1) and if
∫∞
−∞ |u|pK(u)du < ∞, then,

for every compact set I in R,

sup
x∈I

|fn(x)− f(x)| = O(
log log n

n
)ρ/(2ρ+1) a.s. (7.3.5)

We omit the proofs of these results.

The following theorem due to Dewan and Prakasa Rao (2005), extending
the work in Devroye and Gyorfi (1985), gives a bound on the integrated mean
deviation of the kernel type density estimator fn from the density function f.
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Theorem 7.3.5. Let the sequence {Xi, i ≥ 1} be a stationary sequence of associated
random variables with f as the probability density function of X1. Suppose K(.)
is a symmetric bounded differentiable density function with compact support such
that lim|u|→∞ |u|K(u) = 0,

∫∞
−∞ u2K(u)du < ∞ and supx |K ′(x)| ≤ C < ∞.

Further suppose that limhn = 0, limn nhn = ∞ as n → ∞. Let F be the class of
density functions f with compact support such that f ′′ exists and is bounded. In
addition, suppose that

n∑
j=1

Cov(X1, Xj) = o(nh4
n). (7.3.6)

Then

E[

∫ ∞

−∞
|fn(x)− f(x)|dx] = J(n, hn) + o(h2

n + (nhn)
−1/2) + o(

√
dn

nh2
n

) (7.3.7)

where

J(n, hn) =

∫ ∞

−∞

α
√

f(x)√
nhn

ψ(
√

nh5
n

β|f ′′(x)|
2α

√
f(x)

) dx. (7.3.8)

Here

ψ(|a|) = |a|P (|Z| ≤ |a|) +
√
2

π
e−a2/2; α = (

∫ ∞

−∞
K2(x)dx)1/2 (7.3.9)

and

β =

∫ ∞

−∞
x2K(x) dx. (7.3.10)

The proof of this theorem uses the non-uniform bound for the distribution
function of partial sums of associated random variables discussed in Chapter 6.
For the proof of the above theorem, see Dewan and Prakasa Rao (2005a).

Wavelet Linear Density Estimator

We now discuss a wavelet based linear density estimator for estimating the den-
sity function for a sequence of associated random variables with a common one-
dimensional probability density function. Results discussed here are from Prakasa
Rao (2003).

Suppose that {Xn, n ≥ 1} is a sequence of associated random variables with
a common one-dimensional marginal probability density function f. The problem
of interest is the estimation of probability density function f based on the observa-
tions {X1, . . . , XN}. We now propose an estimator based on wavelets and obtain
upper bounds on the Lp-losses for the proposed estimator.

The advantages and disadvantages of the use of a wavelet based probability
density estimator are discussed in Walter and Ghorai (1992) in the case of inde-
pendent and identically distributed observations. The same comments continue to
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hold in this case. However it was shown in Prakasa Rao (1996, 1999) that one can
obtain precise limits on the asymptotic mean squared error for a wavelet based
linear estimator for the density function and its derivatives as well as some other
functionals of the density. A short review of wavelet based estimation of density
and its derivatives in the i.i.d.case is given in Prakasa Rao (1999).

Let the sequence {Xi, i ≥ 1} be a sequence of associated random variables
with common one-dimensional marginal probability density function f. Suppose f
is bounded and compactly supported. The problem is to estimate the probability
density function f based on the observations X1, . . . , XN .

Any function f ∈ L2(R) can be expanded in the form

f =
∞∑

k=−∞
αj0,kφj0,k +

∞∑
j=j0

∞∑
k=−∞

βj,kψj,k

= Pj0f +

∞∑
j=j0

Djf

for any integer j0 ≥ 1 where the functions
φj0,k(x) = 2

j0/2φ(2j0x− k)

and
ψj0,k(x) = 2

j0/2ψ(2j0x− k)

constitute an orthonormal basis of L2(R) (Daubechies (1988)). The functions φ(x)
and ψ(x) are the scale function and the orthogonal wavelet function respectively.
Observe that

αj0,k =

∫ ∞

−∞
f(x)φj0,k(x)dx

and

βj,k =

∫ ∞

−∞
f(x)ψj,k(x)dx.

We suppose that the function φ and ψ belong to Cr+1 for some r ≥ 1 and have
compact support contained in an interval [−δ, δ]. It follows from Corollary 5.5.2
in Daubechies (1988) that the function ψ is orthogonal to a polynomial of degree
less than or equal to r. In particular∫ ∞

−∞
ψ(x)x�dx = 0, � = 0, 1, . . . , r.

We assume that the following conditions hold.

(A1) The sequence {Xn, n ≥ 1} is a sequence of associated random variables with

u(n) = sup
i≥1

∑
|j−i|≥n

Cov(Xi, Xj) ≤ Cn−α

for some C > 0 and α > 0.
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(A2) Suppose the density function f belongs to the Besov class (cf. Meyer (1990))

Fs,p,q = {f ∈ Bs
p,q, ||f ||Bs

p,q
≤ M}

for some 0 < s < r + 1, p ≥ 1 and q ≥ 1, where

||f ||Bs
p,q
= ||P0f ||p + [

∑
j≥0

(||Djf ||p2js)q]1/q.

(For properties of Besov spaces, see Triebel (1992) (cf. Leblanc (1996)).

Define
f̂N =

∑
k∈Kj0

α̂j0,kφj0,k (7.3.11)

where

α̂j0,k =
1

N

N∑
i=1

φj0,k(Xi) (7.3.12)

and Kj0 is the set of all k such that the the intersection of the support of f and
the support of φj0,k is nonempty. Since the function φ has a compact support by
assumption, it follows that the cardinality of the set Kj0 is O(2

j0).

We now discuss the properties of the estimator f̂N as an estimator of the
probability density function f.

Let p′ ≥ max(2, p). We will now obtain bounds on Ef ||f̂N − f ||2p′ . Observe
that

Ef ||f̂N − f ||2p′ ≤ 2(||f − Pj0f ||2p′ + Ef ||f̂N − Pj0f ||2p′). (7.3.13)

We now estimate the terms on the right-hand side of the above equation.

Lemma 7.3.6. For any f ∈ Fs,p,q, s ≥ 1
p , there exists a constant C1 such that

||f − Pj0f ||2p′ ≤ C12
−2s′j0 (7.3.14)

where

s′ = s+
1

p′
− 1

p
. (7.3.15)

Proof. See Leblanc (1996), p. 83. �

We will now estimate the second term in equation (7.3.13). Note that

Ef ||f̂N − Pj0f ||2p′ = Ef ||
∑

k∈Kj0

(α̂j0,k − αj0,k)φj0,k||2p′

≤ C2Ef{||α̂j0,. − αj0,.||2�p′ (Z)}22j0(
1
2− 1

p′ )
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for some constant C2 > 0 by Lemma 1 in Leblanc (1996), p. 82 (cf. Meyer (1990)).
Here Z is the set of all integers −∞ < k < ∞ and the norm

||λ||�p(Z) = (
∑
k∈Z

|λk|p)1/p.

Hence

Ef ||f̂N − Pj0f ||2p′ ≤ C22
2j0(

1
2− 1

p′ ){
∑

k∈Kj0

Ef |α̂j0,k − αj0,k|p
′}2/p′ . (7.3.16)

Let
Wi = η(Xi) = φj0,k(Xi)− Ef (φj0,k(Xi)), 1 ≤ i ≤ N.

Then

α̂j0,k − αj0,k =
1

N

N∑
i=1

Wi

and

Ef |α̂j0,k − αj0,k|p
′
= N−p′Ef |

N∑
i=1

Wi|p′ . (7.3.17)

Observe that the random variables Wi, 1 ≤ i ≤ N are functions of associated
random variables Xi, 1 ≤ i ≤ N. We will now estimate the term

Ef |α̂j0,k − αj0,k|p
′

by applying a Rosenthal type inequality for functions of associated random vari-
ables due to Shao and Yu (1996), p. 210. Note that the sequence of random vari-
ables η(Xi), 1 ≤ i ≤ N are identically distributed with mean zero. Furthermore
the function η(x) is differentiable with

sup
−∞<x<∞

|η′(x)| = sup
−∞<x<∞

|φ′j0,k(x)| (7.3.18)

≤ 23j0/2 sup
−∞<x<∞

|φ′(2j0x− k)|

≤ 23j0/2 sup
−∞<x<∞

|φ′(x)|

≤ B02
3j0/2

for some constant B0 > 0 since φ ∈ Cr+1 for some r ≥ 1. In addition, for any
d ≥ 0,

Ef [|η(X1)|d] ≤ 2d(Ef |φj0,k(X1)|d +Bd
1 ) (7.3.19)

≤ 2d2j0d/2(Ef [|φ(2j0X1 − k)|d] +Bd
1 )

≤ 2d+12j0d/2Bd
1
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= B22
j0d/2

where B1 is a bound on φ following the assumption that it has a compact support
and that φ ∈ Cr+1 and B2 is a positive constant independent of j0.

(A3) Suppose that max(2, p) ≤ p′ < d < ∞.

Applying Theorem 1.2.12 due to Shao and Yu (1996), it follows that for any ε > 0,
there exists a constant D0 depending only on ε, d, p′ and α such that

Ef |
N∑
i=1

Wi|p′ ≤ D0(N
1+εE|η(X1)|p′ (7.3.20)

+ (N max
1≤i≤N

N∑
�=1

|Cov(η(Xi), η(X�))|)p′/2

+N (d(p′−1)−p′+α(p′−d))/(d−2)∨(1+ε)

× ||η(X1)||d(p
′−2)/(d−2)

d (B2
02

3j0C)(d−p′)/(d−2))

where B0 is as defined above. Note that the constants D0 and B0 are independent
of k ∈ Kj0 and j0. Applying Newman’s inequality (Newman (1984)), we obtain
that

|Cov(η(Xi), η(X�)| ≤ { sup
−∞<x<∞

|η′(x)|}2 Cov(Xi, X�) (7.3.21)

≤ B2
02

3j0 Cov(Xi, X�).

Combining the above estimates, we get that

Ef |
N∑
i=1

Wi|p′ ≤ D0(N
1+ε2(j0/2)p

′
B2 (7.3.22)

+ (N [ max
1≤i≤N

N∑
�=1

Cov(Xi, X�)]B
2
02

3j0)p
′/2

+N (d(p′−1)−p′+α(p′−d))/(d−2)∨(1+ε)

× (B1/d
0 2j0/2)d(p

′−2)/(d−2)(B2
02

3j0C)(d−p′)/(d−2)).

Since the above estimate holds for all k ∈ Kj0 and the cardinality of K is
O(2j0), it follows that

Ef ||f̂N − Pj0f ||2p′ ≤ C22
2j0(

1
2− 1

p′ )2
2j0
p′ N−2{D0(N

1+ε2(j0/2)p
′
B2 (7.3.23)

+ (N [ max
1≤i≤N

N∑
�=1

Cov(Xi, X�)]B
2
02

3j0)p
′/2
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+N (d(p′−1)−p′+α(p′−d))/(d−2)∨(1+ε)

× (B1/d
0 2j0/2)d(p

′−2)/(d−2)(B2
02

3j0C)(d−p′)/(d−2))}2/p′

from (7.3.16) and (7.3.17). Hence there exists a constant C3 > 0 such that

Ef ||f̂N − f ||2p′ ≤ C3[2
j0N−2{D0(N

1+ε2(j0/2)p
′
B2 (7.3.24)

+ (N [ max
1≤i≤N

N∑
�=1

Cov(Xi, X�)]B
2
02

3j0)p
′/2

+N (d(p′−1)−p′+α(p′−d))/(d−2)∨(1+ε)

× (B1/d
0 2j0/2)d(p

′−2)/(d−2)(B2
02

3j0C)(d−p′)/(d−2))}2/p′ + 2−2s′j0 ]

and we have the following main result.

Theorem 7.3.7. Suppose the conditions (A1)–(A3) hold. Let max(2, p) ≤ p′ < d <

∞. Define the wavelet linear density estimator f̂N by the relation (7.3.11). Then,
for every ε > 0, there corresponds a constant C > 0 such that

Ef ||f̂N − f ||2p′ ≤ C[2j0N−2{(N1+ε2(j0/2)p
′

(7.3.25)

+ (N [ max
1≤i≤N

N∑
�=1

Cov(Xi, X�)]2
3j0)p

′/2

+N (d(p′−1)−p′+α(p′−d))/(d−2)∨(1+ε)

× 2(j0/2)d(p′−2)/(d−2)23j0(d−p′)/(d−2))}2/p′ + 2−2s′j0 ].

Remarks. (i) If one chooses j0 such that 2
j0 = Nγ , then it can be shown that the

upper bound in Theorem 7.3.2 is of the order

O(N−2+γa+b +N−1+γaζN +N−2γs′)

where a depends on d and p′ and b depends on d, p′, α and ε and

ζN = max
1≤i≤N

N∑
�=1

Cov(Xi, X�).

(ii) Suppose 1 ≤ p′ ≤ 2. One can get upper bounds similar to those as in the
Theorem 7.3.2 for the expected loss

Ef ||f̂N − f ||p′p′
observing that

Ef ||f̂N − f ||p′p′ ≤ 2p
′−1(||f − Pj0f ||p

′
p′ + Ef ||f̂N − Pj0f ||p

′
p′), (7.3.26)

202



7.3. Nonparametric Density Estimation

||f − Pj0f ||p
′

p′ ≤ C42
−p′s′j0 , (7.3.27)

and

Ef ||f̂N − Pj0f ||p
′

p′ ≤ C ′22j0(
p′
2 −1)

∑
k∈Kj0

Ef |α̂j0,k − αj0,k|p
′

(7.3.28)

for some positive constants C4 and C ′. We will not discuss the details here.

Chaubey et al. (2006) discussed wavelet based estimation of the derivatives
of a density for associated sequences with the same one-dimensional marginal
distributions. Similar results were obtained for negatively associated sequences in
Chaubey et al. (2008).

Density Estimator Through Delta Sequences

Suppose the sequence {Xn, n ≥ 1} is a stationary sequence of associated random
variables and the marginal density f of X1 exists. We now consider the problem of
estimation of f based on (X1, . . . , Xn). Let φn(x, y), n = 1, 2, . . . , be a sequence
of Borel-measurable functions defined on R2. Then the empirical density function
is defined as follows :

f∗n(x) =
1

n

n∑
k=1

φn(x,Xk). (7.3.29)

This function can be considered as an estimator of f . This estimator is a general-
ization of the histogram type density estimator, the kernel type density estimators
and the density estimator obtained by the method of orthogonal series. Properties
of the empirical density function or a variation of it were considered by Foldes and
Revesz (1974) and Walter and Blum (1979) in the case of independent and iden-
tically distributed random variables, by Foldes (1974) for the case of stationary
φ-mixing sequences and by Prakasa Rao (1978) for stationary Markov processes,
among others (cf. Prakasa Rao (1983)).

We now study conditions leading to the exponential rate of convergence for
the uniform consistency in probability of the estimator f∗n(x) , that is, the condi-
tions under which

Pr( sup
a+δ≤x≤b−δ

|f∗n(x)− f(x)| > ε)→ 0 as n → ∞, (7.3.30)

at an exponential rate. Sufficient conditions for the asymptotic property (7.3.30) to
hold have been studied earlier for the case of a sequence of independent and iden-
tically distributed random variables (Foldes and Revesz (1974)), for a φ-mixing
sequence of random variables (Foldes (1974)) and for an absolutely regular se-
quence of identically distributed random variables (Yoshihara (1984)).

We now derive an exponential type bound for the rate of uniform consistency
for a larger class of estimators which include the kernel-type estimator as a special
case.
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Theorem 7.3.8. Let the sequence {Xn, n ≥ 1} be a stationary sequence of associ-
ated random variables with the common one-dimensional marginal density function
f for which

|f(x1)− f(x2)| ≤ k|x1 − x2| if x1, x2 ∈ [a, b], (7.3.31)∫ ∞

−∞
|x|γf(x)dx < ∞ for some γ > 0. (7.3.32)

Let the sequence {φn(x, y)} be a sequence of Borel measurable functions which are
of bounded variation in y for a fixed x. Then,

φn(x, y) = φ1n(x, y)− φ2n(x, y), (7.3.33)

where φin(x, y), i = 1, 2 is monotone in y for fixed x. Suppose that there exist two
positive numbers α and τ and an interval [c, d] containing [a, b] such that for each n

the interval [c, d] can be divided into disjoint left-closed intervals I
(n)
s , s = 1, 2, . . . ,

for which

|I(n)s | ≥ 1

nα
,

n⋃
s=1

I(n)s = [c, d] , (7.3.34)

|φn(x1, y)− φn(x2, y)| ≤ nτ |x1 − x2| (7.3.35)

provided that x1 and x2 belong to the same interval I
(n)
s . Further suppose that

∫ b

a

φn(x, y)f(y)dy → f(x) as n → ∞ (7.3.36)

uniformly in [a+ δ, b− δ] for some δ > 0. Suppose that for each n,

Var(φin(x,X1)) ≤ hn, i = 1, 2 (7.3.37)

hn ≤ n

w(n) log n
, (7.3.38)

where w(n) = O(nβ′) for some β′ > 0 and w(n) → ∞ as n → ∞, and for a
positive constant C,

|φin(x, y)| ≤ Chn, i = 1, 2. (7.3.39)

Further suppose that there exists a v > 0 and a sequence of positive numbers
εn → 0 such that

|φn(xn, yn)| ≤ εn (7.3.40)

whenever

|xn − yn| > nv, (7.3.41)

and

n > n0(ε). (7.3.42)
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Suppose that for i = 1, 2, φin(x, y) is differentiable with respect to y and

|φ′in(x, y)| ≤ bn (7.3.43)

where φ′in(x, y) denotes the partial derivative of φin(x, y) with respect to y and
there exists β > 0 such that

bn
hn

= O(nβ). (7.3.44)

Finally assume that

1

n

n∑
j=1

Cov(X1, Xj) = O(e−nθ) (7.3.45)

for some θ > 3
2 .Then

Pr( sup
a+δ≤x≤b−δ

|f∗n(x)− f(x)| ≥ ε) ≤ e−
k1n
hn (7.3.46)

as n → ∞ , where k1 is a positive constant depending on ε, δ, and f .

Remarks. The list of conditions assumed above on φn(x, y) is long and they are
similar to those of Foldes and Revesz (1974) in the i.i.d. case to include a histogram
type density estimator, a kernel type density estimator and the density estimator
obtained by the method of orthogonal series etc. In addition, we have assumed
here that φn(x, y) is a function of bounded variation in y for a fixed x to deal
with the dependence of association type. Covariance structure of an associated
sequence plays an important role in the study of limit theorems for associated
random variables. Our condition (7.3.45) on the covariance structure is of this
type. The inequality (7.3.46) gives an exponential bound for uniform convergence
of the density estimator fn.

The proof of Theorem 7.3.8 is based on the following lemma which is discussed
in Chapter 6.

Lemma 7.3.9. Let X1, X2, . . . , Xn be associated random variables that are bounded
by a constant δ′. Then, for any λ > 0,

|E[eλ
∑n

i=1 Xi ]−
n∏

i=1

E[eλXi ]| ≤ λ2kn
∑

1≤i<j≤n

Cov(Xi, Xj), (7.3.47)

where
k = eλδ

′
. (7.3.48)

In view of equation (7.3.33),

f∗n(x) =
1

n

n∑
k=1

φn(x,Xk)

=
1

n

n∑
k=1

{φ1n(x,Xk)− φ2n(x,Xk)}
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= f1n(x)− f2n(x) (say). (7.3.49)

Lemma 7.3.10. Under the conditions stated in the hypothesis of Theorem 7.3.8,
there exists α′ > 0 such that for any x ∈ [a, b] ,

E[eλn(f1n(x)−E(f1n(x))] ≤ e
λ2
nhn
n + cn2 b

2
n

h2
n

e−α′n, (7.3.50)

provided that

0 < λn <
n

4Chn
, (7.3.51)

where C is the constant in the condition (7.3.39) and c denotes a positive constant.

Proof. Note that

E[eλn(f1n(x)−E(f1n(x))] = E[e
λn
n

∑n
j=1(φ1n(x,Xj)−Eφ1n(x,Xj))]

= E[e
λn
n

∑n
j=1 Ynj(x)], (7.3.52)

where
Ynj(x) = φ1n(x,Xj)− Eφ1n(x,Xj). (7.3.53)

Observe that Ynj(x), j = 1, 2 . . . , n, are increasing functions of associated random
variables and hence are associated. Then

|E[eλn(f1n(x)−E(f1n(x))]|

≤ |E[eλn
n

∑n
j=1 Ynj(x)]−

n∏
j=1

E[e
λn
n Ynj(x)]|+

n∏
j=1

E[e
λn
n Ynj(x)]|. (7.3.54)

Thus, by using the inequality eu ≤ 1 + u+ u2 for |u| ≤ 1
2 , we get

n∏
j=1

E[e
λn
n Ynj(x)] ≤

n∏
j=1

E[1 +
λn

n
Ynj(x) +

λ2
n

n2
Y 2
nj(x)]

≤
n∏

j=1

(1 +
λ2
n

n2
hn) (by (7.3.37))

≤ e
λ2
n
n hn . (7.3.55)

Further using Lemma 7.3.9 and (7.3.39) and the fact that 0 < λn < n
4Chn

, we get
that

|E[eλn
n

∑n
j=1 Ynj(x)]−

n∏
j=1

E[e
λn
n Ynj(x)]|

≤ λ2
n

n2
e

n
2

∑
1≤i<j≤n

Cov(Yni(x), Ynj(x)) (by Lemma 7.3.9)
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≤ λ2
n

n2
e

n
2 b2n

∑
1≤i<j≤n

Cov(Xi, Xj) (by Newman’s (1980) inequality)

≤ λ2
n

n2
e

n
2 b2nn

n∑
j=1

Cov(X1, Xj) (by stationarity of Xj)

≤ λ2
n

n2
e

n
2 b2nn

2e−nθ (using (7.3.45))

≤ n2 b
2
n

h2
n

e−α′n, α′ > 0. (7.3.56)

The result follows by combining (7.3.55) and (7.3.56). �

A similar estimate holds for f2n(x).

Lemma 7.3.11. Under the conditions of Theorem 7.3.8, for any x ∈ [a, b] and for
every ε > 0,

Pr(|fn(x)− Efn(x)| ≥ ε) ≤ 2[e− k1(ε)n
hn + n2 b

2
n

h2
n

e−
k1(ε)n

hn ], (7.3.57)

where the constant k1(ε) does not depend on n and x.

Proof. Using (7.3.49), we get that

Pr(|fn(x)− Efn(x)| ≥ ε) ≤ Pr(|f1n(x)− Ef1n(x)| ≥ ε

2
) (7.3.58)

+ Pr(|f2n(x)− Ef2n(x)| ≥ ε

2
)

Note that 0 < λn < n
4Chn

and suppose that λnhn

n → 0 as n → ∞. Then, by
the Markov inequality and Lemma 7.3.9, we get that, for i = 1, 2, there exists a
positive constant k2(ε) such that

Pr(fin(x)− Efin(x) ≥ ε

2
) ≤ E[eλn(fin(x)−E(fin(x))]/eλnε/2

=
e

λ2
nhn
n + cn2 b2n

h2
n
e−α′n

eλnε/2

≤ e−
k2(ε)n

hn + cn2 b
2
n

h2
n

e−
k2(ε)n

hn . (7.3.59)

One can choose k2(ε) =
ε

16C . The result now follows from the fact that if Wj ’s are
associated, then so are −Wj ’s. �

Proof of Theorem 7.3.8. The proof will be along the same lines as that given in
Foldes and Revesz (1974) and Foldes (1974) in the i.i.d. case.
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Let, for each positive integer n,

−nT = z
(n)
0 < z

(n)
1 < . . . < z

(n)
l(n) = nT

(the number T will be determined later on) be a partitioning of the interval
[−nT , nT ] having the following properties:

(a)
c1

nα+2τ
≤ z

(n)
i − z

(n)
i−1 ≤ c2

nα+2τ
, 0 < c1 < c2 < ∞, i = 1, . . . , l(n),

(b) those end points of the interval I
(n)
s which belong to [−nT , nT ] are elements

of the sequence z
(n)
0 , z

(n)
1 , . . . , z

(n)
l(n).

By (a), (7.3.29) and (7.3.35), we get that

|fn(x)− fn(y)| ≤ c
1

nα+τ
if x, y ∈ [z(n)i−1, z

(n)
i ], (7.3.60)

and

|Efn(x)− Efn(y)| ≤ c
1

nα+τ
if x, y ∈ [z(n)i−1, z

(n)
i ]. (7.3.61)

Note that

|fn(x)− Efn(x)| ≤ |fn(x)− fn(z
(n)
i−1)|+ |fn(z(n)i−1)− Efn(z

(n)
i−1)|

+ |Efn(z
(n)
i−1)− Efn(x)|. (7.3.62)

Therefore, using (7.3.60) and (7.3.61) we have

sup
z
(n)
i−1≤x≤z

(n)
i

|fn(x)−Efn(x)| ≤ c

nα+τ
+ sup

z
(n)
i−1≤x≤z

(n)
i

|fn(z(n)i−1)−Efn(z
(n)
i−1)|+

c

nα+τ
.

Hence,

Pr( sup
z
(n)
i−1≤x≤z

(n)
i

|fn(x)− Efn(x)| ≥ ε)

≤ Pr(2 c

nα+τ
≥ ε

2
) + Pr(|fn(z(n)i−1)− Efn(z

(n)
i−1| ≥

ε

2
). (7.3.63)

But, for large n, Pr(2 c
nα+τ ≥ ε

2 ) is zero. Therefore, using (7.3.62), we have

Pr( sup
−nT≤x≤nT

|fn(x)− Efn(x)| ≥ ε)

≤
l(n)∑
i=1

Pr( sup
z
(n)
i−1≤x≤z

(n)
i

|fn(x)− Efn(x)| ≥ ε)}

≤ l(n)max
i

{Pr( sup
z
(n)
i−1≤x≤z

(n)
i

|fn(x)− Efn(x)| ≥ ε)}
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≤ l(n)max
i

{Pr(|fn(z(n)i−1)− Efn(z
(n)
i−1)| ≥

ε

2
)}

≤ 2l(n)e− k1(ε)n
hn + 2l(n)n2 b

2
n

h2
n

e−
k1(ε)n

hn (using (7.3.57))

≤ e−
k4(ε)n

hn (using (7.3.59)) (7.3.64)

for large n. Note that l(n) is the number of partitioning intervals of an interval of
length 2nT . Therefore l(n) � 2nα+2τ+T . Furthermore, Efn(x)→ f(x) as n → ∞
by (7.3.36). Therefore

Pr( sup
|x|≥nT

x∈[a+δ,b−δ]

|fn(x)− Efn(x)| ≥ ε)

≤ Pr( sup
|x|≥nT

x∈[a+δ,b−δ]

|fn(x)| ≥ ε

2
) + Pr( sup

|x|≥nT

x∈[a+δ,b−δ]

|Efn(x)| ≥ ε

2
)

= Pr( sup
|x|≥nT

x∈[a+δ,b−δ]

|fn(x)| ≥ ε

2
) (7.3.65)

for large n, since Pr(sup |f(x)| ≥ ε
2 ) is zero. Now

Pr( sup
|x|≥nT

|fn(x)| ≥ ε

2
) (7.3.66)

≤ Pr( sup
|x|≥nT

1

n

∑
k:|Xk−x|≤δ

|φn(x,Xk)| ≥ ε

4
)

+ Pr( sup
|x|≥nT

1

n

∑
k:|Xk−x|>δ

Xk∈S(x, n
T
2

)

|φn(x,Xk)| ≥ ε

8
)

+ Pr( sup
|x|≥nT

1

n

∑
k:|Xk−x|>δ

Xk /∈S(x, n
T
2

)

|φn(x,Xk)| ≥ ε

8
)

≤ 2 Pr( 1
n
Chn

∑
k:|Xk|≥nT

2

1 ≥ ε

8
) (7.3.67)

+ Pr( sup
|x|≥nT

1

n

∑
k:|Xk−x|>δ

Xk /∈S(x, n
T
2

)

|φn(x,Xk)| ≥ ε

8
)

where S(x, nT

2 ) denotes the interval [x − nT

2 , x + nT

2 ]. This inequality is a conse-
quence of (7.3.39) and the fact that, for large n,

|x| ≥ nT , |X − x| ≤ δ ⇒ |X| ≥ nT

2
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and

|x| ≥ nT , |X − x| > δ, X ∈ S(x,
nT

2
)⇒ |X| ≥ nT

2
.

Denote by Jn(u) the following indicator function

Jn(u) =

{
1 if |u| ≥ nT

2

0 otherwise.
(7.3.68)

Note that Jn can be expressed as the sum of two monotone functions In and I ′n ,
where

In(u) =

{
1 if u ≥ nT

2 ,

0 otherwise,

and

I ′n(u) =

{
1 if u ≤ −nT

2 ,

0 otherwise.

Then we have to estimate the probability

Pr(
n∑

k=1

Jn(Xk) ≥ cnε

hn
) ≤ Pr(

n∑
k=1

In(Xk) ≥ cnε

2hn
) + Pr(

n∑
k=1

I ′n(Xk) ≥ cnε

2hn
)

(7.3.69)
for some positive constant c. Since Xk’s are associated , Yk = In(Xk), k = 1, . . . , n
are associated and so are Zk = I ′n(Xk), k = 1, . . . , n. Therefore, we will estimate
(7.3.67) using Lemma 7.3.10 for the associated random variables Y1, . . . , Yn and
Z1, . . . , Zn. Now

Pr(
n∑

k=1

In(Xk) ≥ cnε

2hn
) ≤ Pr(

n∑
k=1

(In(Xk)− EIn(Xk)) ≥ cnε

4hn
)

+ Pr(
n∑

k=1

EIn(Xk) ≥ cnε

4hn
). (7.3.70)

Note that

E(In(Xk)) = Pr(Xk >
nT

2
)

≤ Pr(|Xk| > nT

2
)

= Pr(|Xk|γ >
nTγ

2γ
)

≤ E(|Xk|γ)2γ
nTγ

≤ c(γ)

nTγ
(using (7.3.32)) (7.3.71)
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where c(γ) is a constant depending on γ and f . Choose T to be so large that
Tγ − 1 > 0. The sequence cnε

4hn
tends to infinity by (7.3.38). Therefore

Pr(
n∑

k=1

EIn(Xk) ≥ cnε

4hn
) = 0 (7.3.72)

for large n. Furthermore,

Var(In(Xk)) ≤ c(γ)

nTγ
. (7.3.73)

For 0 < λ∗n ≤ 1
4 ,

Pr(

n∑
k=1

(In(Xk)− EIn(Xk)) ≥ cnε

4hn
) ≤ E(eλ

∗
n

∑n
k=1(In(Xk)−EIn(Xk)))

e
λ∗ncnε

4hn

. (7.3.74)

Now

E(eλ
∗
n

∑n
k=1(In(Xk)−EIn(Xk)))

= E(eλ
∗
n

∑n
k=1(In(Xk)−EIn(Xk)))−

n∏
k=1

E(eλ
∗
n(In(Xk)−EIn(Xk)))

+
n∏

k=1

E(eλ
∗
n(In(Xk)−EIn(Xk))). (7.3.75)

Therefore, for 0 < λ∗n ≤ 1
4 , and using the inequality eu ≤ 1 + u + u2 for |u| ≤ 1

2 ,
we get that

n∏
k=1

E(eλ
∗
n(In(Xk)−EIn(Xk)))

≤
n∏

k=1

E[1 + λ∗n(In(Xk)− EIn(Xk)) + (λ
∗
n)

2(In(Xk)− EIn(Xk))
2]

=
n∏

k=1

[1 + (λ∗n)
2Var(In(Xk)]

≤ [1 + (λ
∗
n)

2c(γ)

nTγ
]n

≤ e
(λ∗n)2c(γ)

nTγ−1 (7.3.76)

since (1 + xn)
n = (1 + nxn

n )n ≈ enxn . Applying Lemma 7.3.9 for the associated
random variables Y1, . . . , Yn, we get

|E(eλ∗n
∑n

k=1(In(Xk)−EIn(Xk)))−
n∏

k=1

E(eλ
∗
n(In(Xk)−EIn(Xk)))|

≤ (λ∗n)2e2nλ
∗
n

∑
1≤i<j≤n

Cov(In(Xi), In(Xj)). (7.3.77)
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Then, for 0 < λ∗n ≤ 1
4 , and any t > 0, we get that

|E(eλ∗n
∑n

k=1(In(Xk)−EIn(Xk)))−
n∏

k=1

E(eλ
∗
n(In(Xk)−EIn(Xk)))|

≤ c(λ∗n)
2e2nλ

∗
n

∑
1≤i<j≤n

(t2 Cov(Xi, Xj) +
1

t
)

≤ c(λ∗n)
2e2nλ

∗
n(t2n

n∑
j=1

Cov(X1, Xj) +
n2

t
) (by using the stationarity of {Xj})

≤ c(λ∗n)
2e2nλ

∗
nn2(t2e−nθ +

1

t
) (by using (7.3.45))

≤ c(λ∗n)
2n2e2nλ

∗
ne−

nθ
3 (by choosing t = e

nθ
3 ). (7.3.78)

Using (7.3.74) and (7.3.76) in (7.3.72), we get that for 0 < λ∗n ≤ 1
4 ,

Pr(
n∑

k=1

(In(Xk)− EIn(Xk)) ≥ cnε

4hn
)

≤ e
(λ∗n)2c(γ)

nTγ−1 − cnλ∗nε

2hn + c(λ∗n)
2n2e2nλ

∗
ne−

nθ
3 e−

cnλ∗nε

2hn

≤ e−
k3(ε)n

hn + e−
k4(ε)n

hn (by using (7.3.38))

≤ e−
k(ε)n
hn . (7.3.79)

Substituting (7.3.72) and (7.3.77) in (7.3.68) we get an estimate for

Pr(
n∑

k=1

In(Xk) ≥ cnε

2hn
).

Similarly, we can get an estimate for

Pr(
n∑

k=1

I ′n(Xk) ≥ cnε

2hn
).

Combining the two estimates, we can get an estimate for the expression on the
left-hand side of (7.3.67). Finally, for T > v and by (7.3.40) and (7.3.41), we get
that

Pr( sup
|x|≥nT

1

n

∑
k:|Xk−x|>δ

Xk /∈S(x, n
T
2

)

|φn(x,Xk)| ≥ ε

8
) ≤ Pr(εn >

ε

8
) = 0 (7.3.80)

for large n. Using the inequalities (7.3.67) and (7.3.78) in (7.3.65), we get an es-
timate for (7.3.64). Choose T > max(v, 1

γ ). Then, for large n, and from (7.3.36),
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(7.3.63) and the estimate of (7.3.64) given by (7.3.78) we have the following in-
equality proving the theorem:

Pr( sup
a+δ≤x≤b−δ

|fn(x)− f(x)| ≥ ε) ≤ Pr( sup
a+δ≤x≤b−δ

|fn(x)− Efn(x)| ≥ ε

2
)

+ Pr( sup
a+δ≤x≤b−δ

|Efn(x)− f(x)| ≥ ε

2
)

= Pr( sup
a+δ≤x≤b−δ

|fn(x)− Efn(x)| ≥ ε

2
)

≤ e−
k1n
hn . (7.3.81)

�
Remarks. Various examples of the estimator f∗n(x) have been discussed by Foldes
and Revesz (1974) in the i.i.d. case. Similar examples can be given for the associ-
ated case. For instance the standard normal density is a kernel which is a function
of bounded variation and it can be checked that it satisfies all the conditions of
Theorem 7.3.8 and we obtain the exponential rate for uniform convergence of the
kernel type density estimator.

7.4 Nonparametric Failure Rate Estimation

The failure rate r(x) is defined as

r(x) =
f(x)

F̄ (x)
, F̄ > 0. (7.4.1)

An obvious estimate of r(x) is rn(x) given by

rn(x) =
fn(x)

F̄n(x)
(7.4.2)

where fn(x) is the kernel type estimator defined in (7.3.1) and F̄n(x) is as defined
in (7.2.1). It is easy to see that

rn(x)− r(x) =
F̄ (x)[fn(x)− f(x)]− f(x)[F̄n(x)− F̄ (x)]

F̄ (x)F̄n(x)
. (7.4.3)

The following theorems give pointwise as well as uniform consistency for the esti-
mator rn(x). For proofs, see Bagai and Prakasa Rao (1995).

Theorem 7.4.1. Let the sequence {Xn, n ≥ 1} be a stationary sequence of asso-
ciated random variables satisfying the conditions (A) and (B) in Section 7.3 and
suppose that for some r > 1,

∞∑
j=n+1

{Cov(X1, Xj)}1/3 = O(n−(r−1)).
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Then, for all x ∈ S which are continuity points of f ,

rn(x)→ r(x) a.s. as n → ∞.

Theorem 7.4.2. Let the sequence {Xn, n ≥ 1} be a stationary sequence of associated
random variables satisfying the conditions of Theorem 7.2.1 and Theorem 7.3.2.
Then

sup{|rn(x)− r(x)| : x ∈ J} → 0 a.s. as n → ∞.

Roussas (1991) has discussed strong uniform consistency of kernel type es-
timates of f(.) and f (k)(.), the k-th order derivatives of f , and the hazard rate
r(.) for strictly stationary associated sequences and has obtained the rates of
convergence. Roussas (1993) studied curve estimation for random fields of associ-
ated processes. Roussas (1995) investigated conditions for asymptotic normality
of smooth estimate of the distribution function for associated random fields.

7.5 Nonparametric Mean Residual Life Function
Estimation

The mean residual life function MF (x) is defined as

MF (x) = E[X − x|X > x] =
1

F̄ (x)

∫ ∞

x

F̄ (t)dt. (7.5.1)

An obvious estimate of MF (x) is Mn(x) given by

Mn(x) =
1

F̄n(x)

∫ ∞

x

F̄n(t)dt, (7.5.2)

where F̄n(x) is as defined in (7.2.1). Let TF = inf{x : F (x) = 1}.
Theorem 7.5.1 (Shao and Yu (1996)). Let the sequence {Xn, n ≥ 1} be a stationary
sequence of associated random variables with distribution function F for X1. If
T < TF and

∞∑
n=1

1

n2
Cov(Xn,

n∑
i=1

Xi) < ∞,

then

sup
0≤x≤T

|Mn(x)−MF (x)| → 0 a.s. as n → ∞. (7.5.3)

This result follows from the fact that the mean residual life function MF (x)
can be written as a weighted function of the empirical distribution function (Shao
and Yu (1996)). We omit the proof.
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7.6 Remarks

Matula (1997a) derived the Glivenko-Cantelli lemma for a class of discrete associ-
ated random variables. Large deviation results for the empirical mean of associated
random variables were studied in Henriques and Oliveira (2008). Kernel-type esti-
mation of the bivariate distribution function for associated random variables was
discussed in Azevedo and Oliveira (2000).

Asymptotic normality of the empirical distribution function for negatively
associated random variables and its applications were discussed in Li and Yang
(2006). A general method of density estimation for negatively associated random
variables was investigated in Zarei et al. (2008). Asymptotic properties of nonpara-
metric estimators for regression models based on negatively associated sequences
were obtained in Liang and Zing (2007). Gu et al.(2007) studied convergence rates
of fixed design regression estimators for negatively associated random variables.

215



Chapter 8

Nonparametric Tests for
Associated Sequences

8.1 Introduction

We have studied the problem of nonparametric functional estimation, in particular
density estimation, for stationary associated sequences in the last chapter. We will
now discuss some nonparametric tests for comparing the one-dimensional marginal
distributions for two strictly stationary associated sequences. We term such prob-
lems of comparing two populations as two-sample problems. A limit theorem for
obtaining the asymptotic distribution of a test statistic, which is a U -statistic in
a two-sample problem, is discussed in Chapter 6.

8.2 More on Covariance Inequalities

We have discussed generalized Hoeffding identity and some covariance inequalities
in Chapter 1 and Chapter 6. We now discuss another result in this area due to
Cuadras (2002). Of particular interest to us is the case when the random variables
X and Y are associated. We discuss an application of this result to obtain tests
for location for associated sequences.

Let (X,Y ) be a bivariate random vector and suppose that E(X2) < ∞ and
E(Y 2) < ∞. Further let

H(x, y) = P (X ≤ x, Y ≤ y)− P (X ≤ x)P (Y ≤ y). (8.2.1)

Recall the Hoeffding identity (cf. Hoeffding (1940))

Cov(X,Y ) =

∫
R2

H(x, y) dxdy, (8.2.2)

B.L.S. Prakasa Rao, Associated Sequences, Demimartingales
and Nonparametric Inference, Probability and its Applications,
DOI 10.1007/978-3-0348-0240-6_8, © Springer Basel AG 2012
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discussed in Chapter 1. Multivariate versions of this identity were studied by
Block and Fang (1988) using the concept of a cumulant of a random vector X =
(X1, . . . , Xk). Yu (1993) obtained a generalization of the covariance identity (8.2.2)
to absolutely continuous functions of the components of the random vector X
extending the earlier work of Newman (1984). Quesada-Molina (1992) generalized
the Hoeffding identity to quasi-monotone functions K(., .) in the sense that

K(x, y)−K(x′, y)−K(x, y′) +K(x′, y′) ≥ 0 (8.2.3)

whenever x ≤ x′ and y ≤ y′. It was proved that

E[K(X,Y )−K(X∗, Y ∗)] =
∫
R2

H(x, y)K(dx, dy) (8.2.4)

where X∗ and Y ∗are independent random variables independent of the random
vector (X,Y ) but with X∗ and Y ∗ having the same marginal distributions as
those of X and Y respectively. The results in Yu (1993) and Quesada-Molina
(1992) were generalized to the multidimensional case in Prakasa Rao (1998).
Cuadras (2002) proved that if α(x) and β(y) are functions of bounded variation
on the support of the probability distribution of the random vector (X,Y ) with
E|α(X)β(Y )|, E|α(X)| and E|β(Y )| finite, then

Cov(α(X), β(Y )) =

∫
R2

H(x, y) α(dx)β(dy). (8.2.5)

It is clear that this result also follows as a special case of (8.2.4). For a multi-
dimensional version of this identity, see Prakasa Rao (1998).

Suppose that α(x) and β(y) are functions of bounded variation which are
mixtures of absolutely continuous component and discrete component only. Let
α(c)(x) and α(d)(x) denote the absolutely continuous component and the discrete
component of α(x) respectively. Let xi, i ≥ 1 be the jumps of α(x) with jump
sizes α(xi + 0)− α(xi − 0) = pi �= 0. Similarly let yj , j ≥ 1 be the jumps of β(y)

with jump sizes β(yj + 0) − β(yj − 0) = qj �= 0. Furthermore let α(c)′(x) denote
the derivative of α(c)(x) whenever it exists. Observe that the derivative of α(c)(x)
exists almost everywhere. Suppose that

sup
x

|α(c)′(x)| < ∞, sup
i

|pi| < ∞ (8.2.6)

and
sup
y

|β(c)′(y)| < ∞, sup
j

|qj | < ∞. (8.2.7)

Then

Cov(α(X), β(Y )) =

∫
R2

H(x, y)α(dx)β(dy)

=

∫
R2

H(x, y) α(c)(dx)β(c)(dy)
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+

∫
R2

H(x, y) α(c)(dx)β(d)(dy)

+

∫
R2

H(x, y) α(d)(dx)β(c)(dy)

+

∫
R2

H(x, y) α(d)(dx)β(d)(dy) (8.2.8)

and hence

|Cov(α(X), β(Y ))| ≤ sup
x

|α(c)′(x)| sup
y

|β(c)′(y)|
∫
R2

|H(x, y)| dxdy

+ sup
x

|α(c)′(x)| sup
j

|qj |
∞∑
j=1

∫ ∞

−∞
|H(x, yj)| dx

+ sup
y

|β(c)′(y)| sup
i

|pi|
∞∑
i=1

∫ ∞

−∞
|H(xi, y)| dy

+ sup
i

|pi| sup
j

|qj |
∞∑
i=1

∞∑
j=1

|H(xi, yj)|. (8.2.9)

Suppose the functions α(x) and β(y) are purely discrete. Let xi, i ≥ 1 be
the jumps of α(x) with jump sizes α(xi + 0) − α(xi − 0) = pi �= 0 and α(x) be
a constant between different jumps. Similarly let yj , j ≥ 1 be the jumps of β(y)
with jump sizes β(yj + 0) − β(yj − 0) = qj �= 0 and β(y) be a constant between
different jumps. Then

Cov(α(X), β(Y )) =

∫
R2

H(x, y) α(d)(dx)β(d)(dy)

=

∞∑
i=1

∞∑
j=1

H(xi, yj)piqj . (8.2.10)

For instance, suppose that α(x) = sgn(x) and β(y) = sgn(y) where

sgn(x) =

⎧⎪⎨
⎪⎩
1 if x > 0,

−1 if x < 0

0 if x = 0

.

Then, for any x0 and y0,

Cov(sgn(X − x0), sgn(Y − y0)) = 4 H(x0, y0) (8.2.11)

since the jump at x0 is of size 2 for the function α(x) and for the function β(y)
(cf. Cuadras (2002)).
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Suppose we choose α(x) = F (x) and β(y) = G(y) where F (.) and G(.) are
continuous marginal distribution functions of the components X and Y respec-
tively of a bivariate random vector (X,Y ). Following the result given in (8.2.5),
we get that

Cov(F (X), G(Y )) =

∫
R2

H(x, y) F (dx)G(dy). (8.2.12)

It is easy to see that the Spearman’s rank correlation coefficient ρ between X and
Y is given by

ρ = Corr(F (X), G(Y )) = 12 Cov(F (X), G(Y )) = 12

∫
R2

H(x, y) F (dx)G(dy).

(8.2.13)
Note that the random variables F (X) and G(Y ) have the standard uniform dis-
tribution.

Remarks. Suppose thatX and Y are associated. Then it follows that the function
H(x, y) ≥ 0 for all x and y. Newman (1980) showed that if X and Y have finite
variances, then, for any two differentiable functions h and g,

|Cov(h(X), g(Y ))| ≤ sup
x
|h′(x)| sup

y
|g′(y)| Cov(X,Y ) (8.2.14)

where h′ and g′ denote the derivatives of h and g, respectively. Inequality (8.2.9)
extends this result to include functions of bounded variations which are mixtures
of absolutely continuous component and discrete component only. We discuss an
application of the inequality (8.2.14) to associated sequences in the next section.

8.3 Tests for Location

Let the sequence {Xn, n ≥ 1} be a stationary sequence of associated random
variables. Let F (x, θ) = F (x− θ), F ∈ Ωs, where Ωs = {F : F (x) = 1− F (−x)},
be the distribution function of X1 and suppose that the distribution function F
is absolutely continuous with a bounded density function f .

Suppose a finite sequence of stationary associated random variables {Xi,
1 ≤ i ≤ n} is observed. We wish to test the null hypothesis

H0 : θ = 0 (8.3.1)

against the alternative hypothesis

H1 : θ > 0. (8.3.2)

The most commonly used tests for this problem are the sign test and the Wilcoxon-
signed rank test when the observations are independent and identically distributed.
We now study the properties of these tests when the observations are on a sta-
tionary associated sequence of random variables.

220



8.3. Tests for Location

Let C denote a generic positive constant in the sequel. Assume that

sup
x

f(x) < ∞. (8.3.3)

Further assume that ∞∑
j=2

Cov
1
3 (X1, Xj) < ∞. (8.3.4)

This would imply that Cov(X1, Xn)→ 0 as n → ∞. In particular, it follows that
supn |Cov(X1, Xn)| < ∞. Observing that Cov(X1, Xn) > 0; by the associative
property of X1, . . . , Xn, we obtain that

0 ≤ Cov(X1, Xj)

= [Cov(X1, Xj)]
2
3 [Cov(X1, Xj)]

1
3

≤ [sup
n
Cov(X1, Xn)]

2
3 [Cov(X1, Xj)]

1
3 .

Hence

∞∑
j=2

Cov(X1, Xj) ≤ [sup
n
Cov(X1, Xn)]

2
3

∞∑
j=2

[Cov(X1, Xj)]
1
3 < ∞. (8.3.5)

Sign Test

For testing the hypothesis H0 : θ = 0 against H1 : θ > 0, the sign test is based on
the statistic

U (1)
n =

1

n

n∑
i=1

φ(Xi), (8.3.6)

where

φ(x) = I(x > 0), (8.3.7)

and I(A) denotes the indicator function of the set A. Observe that

E(φ(X1)) = 1− F (0) = p (say),

Var(φ(X1)) = p− p2,

and

Cov(φ(X1), φ(Xj)) = P [X1 > 0, Xj > 0]− p2. (8.3.8)

Since the density function f of the random variable X1 is bounded, it follows from
Theorem 6.2.14 (cf. Bagai and Prakasa Rao (1991)), that

sup
x,y

|P [X1 > x, Y1 > y]− P [X1 > x]P [Y1 > y]| ≤ C Cov1/3(X,Y ). (8.3.9)
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From (8.2.10), (8.3.3) and (8.3.7) it follows that

σ2 = Varφ(X1) + 2

∞∑
j=2

Cov(φ(X1), φ(Xj)) < ∞. (8.3.10)

Since φ(x) is an increasing function of x, we note that φ(X1), φ(X2), . . .,
φ(Xn) are stationary associated random variables. The following theorem is an
immediate consequence of the central limit theorem for associated random vari-
ables (Newman (1980)).

Theorem 8.3.1. Let the sequence {Xn, n ≥ 1} be a sequence of stationary associ-
ated random variables with bounded density function. Then

n−1/2
∑n

j=1[φ(Xj)− E(φ(Xj))]

σ

L→ N(0, 1) as n → ∞. (8.3.11)

The test procedure consists in rejecting the null hypothesisH0 for large values

of the statistic U
(1)
n which is the proportion of positive observations.

Wilcoxon-Signed Rank Test

Let R1, R2, . . . , Rn be the ranks of X1, X2, . . . , Xn. The Wilcoxon-signed rank
statistic is defined by

T =

n∑
j=1

Rj φ(Xj). (8.3.12)

We can write T as a linear combination of two U-statistics (Hettmansperger
(1984))

T = nU (1)
n +

(
n

2

)
U (2)
n , (8.3.13)

where nU
(1)
n =

∑n
i=1 φ(Xi),(

n

2

)
U (2)
n =

∑
1≤i<j≤n

ψ(X1, Xj), (8.3.14)

and
ψ(x, y) = I(x+ y > 0). (8.3.15)

Since the random variables {Xn, n ≥ 1} form a stationary sequence, it follows
that

E(U (2)
n ) =

1(
n
2

) ∑
1≤i<j≤n

pij

=
1(
n
2

) n∑
j=2

(n− j + 1)p1j (8.3.16)
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where pij = P [Xi +Xj > 0]. Let

θ =

∫ ∞

−∞

∫ ∞

−∞
ψ(x, y) dF (x)dF (y),

= 1−
∫ ∞

−∞
F (−x) dF (x), (8.3.17)

ψ1(x1) = E(ψ(x1, X2))

=

∫ ∞

−∞
ψ(x1, x2) dF (x2)

= 1− F (−x1). (8.3.18)

h(1)(x1) = ψ1(x1)− θ , (8.3.19)

and

h(2)(x1, x2) = ψ(x1, x2)− ψ1(x1)− ψ1(x2) + θ

= ψ(x1, x2) + F (−x1) + F (−x2)− 2 + θ. (8.3.20)

Then the Hoeffding-decomposition (H-decomposition) for U
(2)
n is given by (see Lee

(1990))
U (2)
n = θ + 2H(1)

n +H(2)
n (8.3.21)

where H
(j)
n is a U-statistic of degree j based on the kernel h(j), j = 1, 2 , that is,

H(j)
n =

1(
n
j

) ∑h(j)(Xi1 , . . . , Xij ) (8.3.22)

where summation is taken over all subsets 1 ≤ i1 < . . . < ij ≤ n of {1, . . . , n}.
In view of the H-decomposition , we have

Var(U (2)
n ) = 4 Var(H(1)

n ) + Var(H(2)
n ) + 4 Cov(H(1)

n , H(2)
n ). (8.3.23)

From the results discussed in Chapter 6 (cf. Dewan and Prakasa Rao (2001)),
we get that

Var(H(1)
n ) =

1

n
(σ2

1 + 2

∞∑
j=2

σ2
1j) + o(

1

n
), (8.3.24)

where

σ2
1 = Var(F (−X1)),

σ2
1j = Cov(F (−X1), F (−X1+j)). (8.3.25)

Using Newman’s inequality and the inequality (8.3.5), we get

∞∑
j=2

σ2
1j =

∞∑
j=2

Cov(F (−X1), F (−X1+j)) < ∞. (8.3.26)
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Furthermore

Var(H(2)
n ) =

(
n

2

)−2 ∑
1≤i<j≤n

∑
1≤k<�≤n

Cov{h(2)(Xi, Xj), h
(2)(Xk, X�)} (8.3.27)

where

Cov{h(2)(Xi, Xj), h
(2)(Xk, X�)} (8.3.28)

= Cov(ψ(Xi, Xj), ψ(Xk, X�))

+ Cov(ψ(Xi, Xj), F (−Xk)) + Cov(ψ(Xi, Xj), F (−X�))

+ Cov(ψ(Xk, X�), F (−Xi)) + Cov(ψ(Xk, X�), F (−Xj))

+ Cov(F (−Xi), F (−Xk)) + Cov(F (−Xi), F (−X�))

+ Cov(F (−Xj), F (−Xk)) + Cov(F (−Xj), F (−X�)). (8.3.29)

Using Newman’s (1980) inequality, we get that

|Cov(F (−Xi), F (−Xk))| ≤ sup
x
(f(x))2 Cov(Xi, Xk). (8.3.30)

Since the density function is bounded, it follows from Theorem 6.2.14 (cf. Bagai
and Prakasa Rao (1991)) that

|Cov(ψ(Xi, Xj), ψ(Xk, X�))|
= |P [Xi +Xj > 0, X� +Xk > 0]− P [Xi +Xj > 0]P [X� +Xk > 0]|
≤ C[Cov(Xi +Xj , Xk +X�)]

1/3

= C[Cov(Xi, Xk) + Cov(Xj , Xk) + Cov(Xi, X�) + Cov(Xj , X�)]
1/3. (8.3.31)

Let Z = Xi+Xj . Note that the function ψ(xi, xj) = I(xi+xj > 0) = I(z > 0)
has a jump of size 1 at z = 0. Then, from equation (8.2.5), it follows that

|Cov(ψ(Xi, Xj), F (−Xk))|

= |
∫ ∞

−∞
P [Xi +Xj ≤ 0, Xk ≤ x]− P [Xi +Xj ≤ 0]P [Xk ≤ x]) dF (x)|

≤
∫ ∞

−∞
|P [Xi +Xj ≤ 0, Xk ≤ x]− P [Xi +Xj ≤ 0]P [Xk ≤ x]| dF (x)

≤ C

∫ ∞

−∞
[Cov(Xi +Xj , Xk)]

1/3dF (x)

= C[Cov(Xi +Xj , Xk)]
1/3

= C[Cov(Xi, Xk) + Cov(Xj , Xk)]
1/3. (8.3.32)

Using equations (8.3.30), (8.3.31) and (8.3.32) in equation (8.3.29), we get
that
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|Cov{h(2)(Xi, Xj), h
(2)(Xk, X�)}|

≤ C[Cov(Xi, Xk) + Cov(Xj , Xk) + Cov(Xi, X�) + Cov(Xj , X�)]
1/3

+ [Cov(Xi, Xk) + Cov(Xj , Xk)]
1/3 + [Cov(Xi, X�) + Cov(Xj , X�)]

1/3

+ [Cov(Xk, Xi) + Cov(X�, Xi)]
1/3 + [Cov(Xk, Xj) + Cov(X�, Xj)]

1/3

+Cov(Xi, Xk) + Cov(Xj , Xk) + Cov(Xi, X�) + Cov(Xj , X�)

≤ C[Cov(Xi, Xk) + Cov(Xj , Xk) + Cov(Xi, X�) + Cov(Xj , X�)]

+ C[Cov(Xi, Xk)
1/3 +Cov(Xj , Xk)

1/3 +Cov(Xi, X�)
1/3 +Cov(Xj , X�)

1/3]

= C[(Cov(Xi, Xk) + Cov(Xi, Xk)
1/3) + (Cov(Xj , Xk) + Cov(Xj , Xk)

1/3)

+ (Cov(Xi, X�) + Cov(Xi, X�)
1/3) + (Cov(Xj , X�) + Cov(Xj , X�)

1/3)

= r(|i− k|) + r(|j − k|) + r(|i− �|) + r(|j − �|) (say). (8.3.33)

From equations (8.3.4) and (8.3.5) it follows that

∞∑
k=1

r(k) < ∞. (8.3.34)

Hence, following Serfling (1968), we have, as n → ∞,

Var(H(2)
n ) = o(

1

n
). (8.3.35)

Using the Cauchy-Schwartz inequality, it follows that

Cov(H(1)
n , H(2)

n ) = o(
1

n
). (8.3.36)

From equations (8.3.23), (8.3.24), (8.3.35) and (8.3.36), we get that

Var(U (2)
n ) = 4[σ2

1 + 2

∞∑
j=1

σ2
1j ] + o(

1

n
). (8.3.37)

Then using the same techniques as in the results discussed in Chapter 6 (cf.
Theorem 3.2, Dewan and Prakasa Rao (2002)) for obtaining the limiting distribu-
tion of U-statistics , we get the following theorem.

Theorem 8.3.2. Let the sequence {Xn, n ≥ 1} be an associated sequence . Suppose
equation (8.3.4) holds. Then

n1/2(U
(2)
n − θ)

2σU

L→ N(0, 1) as n → ∞ (8.3.38)

where σ2
U = σ2

1 + 2
∑∞

j=1 σ
2
1j .
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Proof. From (8.3.21), we have

U (2)
n = θ + 2H(1)

n +H(2)
n .

Then
n1/2(Un − θ)

2σU
= n−1/2

n∑
j=1

h(1)(Xj)

σU
+ n1/2H

(2)
n

2σU
. (8.3.39)

It is easy to see from (8.3.35) that

E(n1/2H(2)
n ) = 0 and nVarH(2)

n → 0 as n → ∞.

Hence

n1/2H
(2)
n

2σU

p→ 0 as n → ∞. (8.3.40)

Since ψ is monotonic in its arguments, {h(1)(Xj), j ≥ 1} constitute a stationary
associated sequence. Then, using the results from Newman (1980), it follows that

n−1/2
n∑

j=1

h(1)(Xj)

σU

L→ N(0, 1) as n → ∞. (8.3.41)

Combining the relations (8.3.40) and (8.3.41), we get the result stated in Theorem
8.3.2. �

Define

T ∗ =
T − γ(

n
2

) , (8.3.42)

where

γ = nP [X > 0] +

(
n

2

)
θ. (8.3.43)

The following theorem gives the limiting distribution of the Wilcoxon signed
rank statistic.

Theorem 8.3.3. Let the sequence {Xn, n ≥ 1} be a stationary associated sequence
with a bounded density function. Suppose equation (8.3.4) holds. Then

n1/2T ∗

2σU

L→ N(0, 1) as n → ∞. (8.3.44)

Proof. Note that
E[U (1)

n ] = P [X > 0], (8.3.45)

and from equation (8.3.10)

1

n
Var[U (1)

n ]→ 0 as n → ∞. (8.3.46)

The result now follows using Theorem 8.3.2 and Slutsky’s theorem. �
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Note that the Wilcoxon signed rank statistic T is the sum of ranks of positive
observations. The test procedure consists in rejecting the null hypothesis H0 for
large values of the statistic T . The quantity σ2

U depends on the unknown distri-
bution F even under the null hypothesis. It can be estimated using the estimators
given by Peligrad and Suresh (1995) and the result of Roussas (1993) (cf. Dewan
and Prakasa Rao (2005)) for estimating the variance of Wilcoxon Mann-Whitney
statistic for associated sequences as discussed later in this chapter. A consistent
estimator of σ2

U is given by

J2
n =

π

2
B̂2

n, (8.3.47)

where, for � = �n,

B̂2
n =

1

n− �

n−�∑
j=0

|Ŝj(�)− � ˆ̄ψn|√
�

, (8.3.48)

and Ŝj(k) =
∑j+k

i=j+1 ψ̂1(Xi),
ˆ̄ψn =

1
n

∑n
i=1 ψ̂1(Xi), ψ̂1(x) = 1 − Fn(−x), where

Fn is the empirical distribution function corresponding to F based on associated
random variables X1, X2, . . . , Xn. Note that under the null hypothesis X and −X
are identically distributed.

8.4 Mann-Whitney Test

Let the random variables {X1, . . . , Xm} and {Y1, . . . , Yn} be two samples indepen-
dent of each other, but the random variables within each sample are stationary
associated with one-dimensional marginal distribution functions F and G respec-
tively. We study the properties of the classical Wilcoxon-Mann-Whitney statistic
for testing for stochastic dominance in the above setup.

Assume that the density functions f and g of F and G respectively exist
. We wish to test for the equality of the two marginal distribution functions F
and G. A commonly used statistic for this nonparametric testing problem is the
Wilcoxon- Mann-Whitney statistic when the observations Xi, 1 ≤ i ≤ m are
independent and identically distributed (i.i.d.) and Yj , 1 ≤ j ≤ n are i.i.d. We now
study the asymptotic properties of the Wilcoxon-Mann-Whitney statistic when
the two samples {X1, . . . , Xm} and {Y1, . . . , Yn} are from independent stationary
associated stochastic processes.

We wish to test the hypothesis that

H0 : F (x) = G(x) for all x, (8.4.1)

against the alternative

H1 : F (x) ≥ G(x) for all x, (8.4.2)
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with strict inequality for some x. We can test the above hypothesis conservatively
by testing

H ′
0 : γ = 0, (8.4.3)

against the alternative
H ′

1 : γ > 0, (8.4.4)

where
γ = 2P (Y > X)− 1 = P (Y > X)− P (Y < X). (8.4.5)

Serfling (1980) studied the properties of the Wilcoxon statistic when the
samples are from independent stationary mixing processes. Louhichi (2000) gave
an example of a sequence of random variables which is associated but not mixing.

We now state some results that are used to study the properties of Wilcoxon
statistic for associated random variables and discuss the asymptotic normality of
the Wilcoxon statistic based on independent sequences of stationary associated
variables.

Assume that

sup
x

f(x) < c < ∞ and sup
x

g(x) < c < ∞. (8.4.6)

Further assume that ∞∑
j=2

Cov
1
3 (X1, Xj) < ∞, (8.4.7)

and ∞∑
j=2

Cov
1
3 (Y1, Yj) < ∞. (8.4.8)

This would imply
∞∑
j=2

Cov(X1, Xj) < ∞, (8.4.9)

and ∞∑
j=2

Cov(Y1, Yj) < ∞. (8.4.10)

Wilcoxon Statistic

The Wilcoxon two-sample statistic is the U-statistic given by

U =
1

mn

m∑
i=1

n∑
j=1

φ(Yj −Xi), (8.4.11)
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8.4. Mann-Whitney Test

where

φ(u) =

⎧⎨
⎩
1 if u > 0,
0 if u = 0,
−1 if u < 0.

Note that φ is a kernel of degree (1, 1) with Eφ(Y −X) = γ. We now obtain the
limiting distribution of the statistic U under some conditions. Let

σ2
X = 4

∫ ∞

−∞
G2(x) dF (x)− 4

∫ ∞

−∞
G(x) dF (x) + 1 (8.4.12)

+ 8

∞∑
j=2

Cov(G(X1), G(Xj)),

σ2
Y = 4

∫ ∞

−∞
F 2(x) dG(x)− 4

∫ ∞

−∞
F (x) dG(x) + 1 (8.4.13)

+ 8

∞∑
j=2

Cov(F (Y1), F (Yj))

and

A2 = σ2
X + cσ2

Y . (8.4.14)

Theorem 8.4.1. Let the sequences {Xi, i ≥ 1} and {Yj, j ≥ 1} be independent
stationary associated sequences of random variables with one-dimensional distri-
bution functions F and G, respectively satisfying the conditions given in equations
(8.4.6) to (8.4.8). Then

√
m(U − γ)

L→ N(0, A2) as n → ∞,

as m,n → ∞ such that m
n → c ∈ (0,∞) where A2 is as given by equation (8.4.16).

If F = G, then

σ2
X = σ2

Y

= 4(
1

12
+ 2

∞∑
j=2

Cov(F (X1), F (Xj))), (8.4.15)

so that

A2 = 4(1 + c)(
1

12
+ 2

∞∑
j=2

Cov(F (X1), F (Xj))). (8.4.16)

Proof. Following Hoeffding’s decomposition (Lee (1980)), we can write U as

U = γ +H(1,0)
m,n +H(0,1)

m,n +H(1,1)
m,n , (8.4.17)
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where

H(1,0)
m,n =

1

m

m∑
i=1

h(1,0)(Xi),

h(1,0)(x) = φ10(x)− γ, φ10(x) = 1− 2G(x),

H(0,1)
m,n =

1

n

n∑
j=1

h(0,1)(Yj),

h(0,1)(y) = φ01(y)− γ, φ01(y) = 2F (y)− 1,
and

H(1,1)
m,n =

1

mn

m∑
i=1

n∑
j=1

h(1,1)(Xi, Yj),

where

h(1,1)(x, y) = φ(x− y)− φ10(x)− φ01(y) + γ.

It is easy to see that

E(φ10(X)) = γ,

E(φ2
10(X)) = 4

∫ ∞

−∞
G2(x) dF (x)− 4

∫ ∞

−∞
G(x) dF (x) + 1,

and

Cov(φ10(Xi), φ01(Xj)) = 4 Cov(G(Xi), G(Xj)). (8.4.18)

Since the random variables X1, . . . , Xm are associated, so are φ10(X1), . . .,
φ10(Xm) since φ is monotone (see, Esary, Proschan and Walkup (1967)). Further-
more conditions given by equations (8.4.6), (8.4.9) and (8.4.10) imply that

∞∑
j=2

Cov(G(X1), G(Xj)) < ∞,

and ∞∑
j=2

Cov(F (Y1), F (Yj) < ∞,

since

|Cov(G(X1), G(Xj))| < (sup
x

g) Cov(X1, Xj),

and

|Cov(F (Y1), F (Yj))| < (sup
x

f) Cov(Y1, Yj),

230



8.4. Mann-Whitney Test

by Newman’s inequality (1980). Following Newman (1980,1984), we get that

m−1/2
m∑
i=1

(φ10(Xi)− γ)
L→ N(0, σ2

X) as n → ∞, (8.4.19)

where

σ2
X = 4

∫ ∞

−∞
G2(x) dF (x)− 4

∫ ∞

−∞
G(x) dF (x) + 1 + 8

∞∑
j=2

Cov(G(X1), G(Xj)).

(8.4.20)
Similarly, we see that

n−1/2
n∑

j=1

(φ01(Yj)− γ)
L→ N(0, σ2

Y ) as n → ∞, (8.4.21)

where

σ2
Y = 4

∫ ∞

−∞
F 2(x) dG(x)− 4

∫ ∞

−∞
F (x) dG(x) + 1 + 8

∞∑
j=2

Cov(F (Yi), F (Yj)).

(8.4.22)

Note that E(H
(1,1)
m,n ) = 0. Consider

Var(H(1,1)
m,n ) = E(H(1,1)

m,n )
2

=
Δ

m2n2
, (8.4.23)

where

Δ =
m∑
i=1

n∑
j=1

m∑
i′=1

n∑
j′=1

Δ(i, j; i′, j′), (8.4.24)

and
Δ(i, j; i′, j′) = Cov(h(1,1)(Xi, Yj), h

(1,1)(Xi′ , Yj′)). (8.4.25)

Following Serfling (1980),

Δ(i, j; i′, j′) = 4 (E(Fi,i′(Yj , Yj′)− F (Yj)F (Yj′))− Cov(G(Xi, Xi′)))

= 4 (E(Gj,j′(Xi, Xi′)−G(Xi)G(Xi′))− Cov(F (Yj , Yj′)), (8.4.26)

where Fi,i′ is the joint distribution function of (Xi, Xi′) and Gj,j′ is the joint
distribution function of (Yj , Yj′).

Then, by Theorem 6.2.14 in Chapter 6, we get that there exists a constant
C > 0 such that

Δ(i, j; i′, j′) ≤ C[Cov
1
3 (Xi, Xi′) + Cov(Xi, Xi′)]

= r1(|i− i′|) (say), (8.4.27)
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by stationarity and

Δ(i, j; i′, j′) ≤ C[Cov
1
3 (Yj , Yj′) + Cov(Yj , Yj′)]

= r2(|j − j′|) (say), (8.4.28)

by stationarity. Note that

∞∑
k=1

r1(k) < ∞,

∞∑
k=1

r2(k) < ∞. (8.4.29)

by equations (8.4.7)–(8.4.10). Then, following Serfling (1980), we have

Δ = o(mn2) (8.4.30)

as m and n → ∞ such that m
n has a limit c ∈ (0,∞).

Hence, from (8.4.17), we have

√
m(U − γ) =

√
m
1

m

m∑
i=1

h(1,0)(Xi) +

√
m

n

1√
n

n∑
j=1

h(0,1)(Yj) +
√
mH(1,1)

m,n

L→ N(0, A2), (8.4.31)

where
A2 = σ2

X + cσ2
Y , (8.4.32)

since E(H
(1,1)
m,n ) = 0 and Var(

√
mH

(1,1)
m,n ) → 0 as m,n → ∞ such that m

n → c ∈
(0,∞). This completes the proof of the theorem. �

Estimation of the Limiting Variance

Note that the limiting variance A2 depends on the unknown distribution F even
under the null hypothesis. We need to estimate it so that the proposed test statistic
can be used for testing purposes. The unknown variance A2 can be estimated using
the estimators given by Peligard and Suresh (1995).

Theorem 8.4.2 (Peligard and Suresh (1995)). Let {Xn, n ≥ 1} be a stationary
associated sequence of random variables with E(X1) = μ, E(X2

1 ) < ∞. Let {�n,
n ≥ 1} be a sequence of positive integers with 1 ≤ �n ≤ n. Let Sj(k) =

∑j+k
i=j+1 Xi,

X̄n =
1
n

∑n
i=1 Xi. Let �n = o(n) as n → ∞. Assume that equation (8.4.9) holds.

Then, with � = �n,

Bn =
1

n− �
(
n−�∑
j=0

|Sj(�)− �X̄n|√
�

)

→ (Var(X1) + 2

∞∑
i=2

Cov(X1, Xi))

√
2

π
in L2-mean as n → ∞. (8.4.33)
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In addition, if we assume that �n = O(n/(log n)2) as n → ∞, then the
convergence stated above holds in the almost sure sense (cf. Peligrad and Suresh
(1995)).

Theorem 8.4.3 (Roussas (1993)). Let the sequence {Xn, n ≥ 1} be a stationary
associated sequence of random variables with bounded one-dimensional probability
density function. Suppose

u(n) = 2

∞∑
j=n+1

Cov(X1, Xj)

= O(n−(s−2)/2) for some s > 2. (8.4.34)

Let ψn be any positive norming factor. Then, for any bounded interval IM =
[−M,M ], we have

sup
x∈IM

ψn|Fn(x)− F (x)| → 0, (8.4.35)

almost surely as n → ∞, provided

∞∑
n=1

n−s/2ψs+2
n < ∞. (8.4.36)

We now give a consistent estimator of the unknown variance A2 under some
conditions. Let N = m + n. Under the hypothesis F = G, the random variables
X1, . . . , Xm, Y1, . . . , Yn are associated with the one-dimensional marginal distri-
bution function F . Denote Y1, . . . , Yn as Xm+1, . . . , XN . Then X1, . . . , XN are
associated as independent sets of associated random variables are associated (cf.
Esary, Proschan and Walkup (1967)). Let {�N , N ≥ 1} be a sequence of positive
integers with 1 ≤ �N ≤ N . Let Sj(k) =

∑j+k
i=j+1 φ10(Xi), φ̄N = 1

N

∑N
i=1 φ10(Xi).

Define � = �N and

BN =
1

N − �
[
N−�∑
j=0

|Sj(�)− �φ̄N |√
�

]. (8.4.37)

Note that BN depends on the unknown function F . Let φ̂10(x) = 1 − 2FN (x)
where FN is the empirical distribution function corresponding to F based on the

associated random variables X1, . . . , XN . Let Ŝj(k),
ˆ̄φN and B̂N be expressions

analogous to Sj(k), φ̄N and BN with φ10 replaced by φ̂10. Let Zi = φ10(Xi) −
φ̂10(Xi). Then

|BN − B̂N | = | 1

N − �

∞∑
j=1

|Sj(�)− �φ̄|√
�

− 1

N − �

∞∑
j=1

|Ŝj(�)− � ˆ̄φ|√
�

|

≤ 1

(N − �)
√
�

∞∑
j=1

|Sj(�)− Ŝj(�)− �(φ̄− ˆ̄φ)|
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=
1

(N − �)
√
�

∞∑
j=1

|
j+�∑

i=j+1

Zi − �
1

N

N∑
i=1

Zi|

≤ 1

(N − �)
√
�

∞∑
j=1

{
j+�∑

i=j+1

|Zi|+ �
1

N

N∑
i=1

|Zi|}. (8.4.38)

Note that
|Zi| = 2|FN (Xi)− F (Xi)|.

Suppose that the density function corresponding to F has a bounded support.
Then, for sufficiently large M > 0, with probability 1,

sup
x∈R

|FN (x)− F (x)| = max{ sup
x∈[−M,M ]

|FN (x)− F (x)|, sup
x∈[−M,M ]c

|FN (x)− F (x)|}

= sup
x∈[−M,M ]

|FN (x)− F (x)|. (8.4.39)

Hence, from (8.4.39) and Theorem 8.4.3 we get

|BN − B̂N | ≤ 2

(N − �)
√
�
(N − �) � sup

x
|FN (x)− F (x)|

= 2
√
� ψ−1

N sup
x

ψN |FN (x)− F (x)|
→ 0 as N → ∞ (8.4.40)

provided
√
� ψ−1

N = O(1) or �N = O(ψ2
N ). Therefore we get,

|BN − B̂N | → 0 a.s. as n → ∞. (8.4.41)

Hence, from Theorem 8.4.2, it follows that

π

2
B̂2

N → 4(
1

12
+ 2

∞∑
j=2

Cov(F (X1), F (Xj))) (8.4.42)

as n → ∞. Define J2
N = (1+c)π2 B̂

2
N . Then

√
N(U−γ)
JN

L→ N(0, 1) as m,n → ∞ such

that m
n → c ∈ (0,∞) as n → ∞. Hence the statistic

√
N(U−γ)
JN

can be used as a
test statistic for testing H ′

0 : γ = 0 against H
′
1 = γ > 0.

On the other hand, by using Newman’s inequality, one could obtain an upper
bound on A2 given by

4(1 + c)(
1

12
+ 2

∞∑
j=2

Cov(X1, Xj)) (8.4.43)

and we can have conservative tests and estimates of power based on the bound
given in equation (8.4.43).

Results on tests discussed in this chapter are due to Dewan and Prakasa Rao
(2005, 2006).
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Chapter 9

Nonparametric Tests for
Change in Marginal Density
Function for Associated
Sequences

9.1 Introduction

Consider a finite sequence of random variables X1, . . . , Xn. A change point is an
integer k between 1 and n such that the distribution of the first k observations is
different from the distribution of the last n − k observations. An example is the
case when the location parameter of the initial distribution has shifted for the last
n− k observations. Economic time series or financial time series are often affected
by changes in monetary policies or forces induced by external or internal events
beyond their control. Hence it is of interest to consider tests for change of the
one-dimensional probability density function in a time series or for a stationary
stochastic process in general. Inference problems for change point k as well as the
shift in the independent case have been investigated starting with Page (1954).
Chernoff and Zacks (1964) and Gardner (1969) adopted a Bayesian approach to
the problem. They discussed tests and the corresponding null distributions for
the null hypothesis of no shift in the mean. In the Bayesian approach, a prior
distribution is assumed for the change point parameter k. Nagaraj (1990) derived
locally optimal tests for the hypothesis of no change in mean assuming a prior for
the change point k under the assumption of normality and independence. Nagaraj
and Reddy (1993) extended these results and derived asymptotic null distribution
of some test statistics for detecting a change in the mean of a process at unknown
change point when the observations are strictly stationary and associated. We now

B.L.S. Prakasa Rao, Associated Sequences, Demimartingales
and Nonparametric Inference, Probability and its Applications,
DOI 10.1007/978-3-0348-0240-6_9, © Springer Basel AG 2012
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Chapter 9. Nonparametric Tests for Associated Sequences

discuss their results leading to locally optimal tests for change for an associated
sequence with common one-dimensional probability density function under null
hypothesis.

9.2 Tests for Change Point

Let the set X1, X2, . . . , Xn be independent Gaussian random variables with com-
mon variance σ2 and

E[Xi] =

{
μ i = 1, . . . , k

μ+ δ i = k + 1, . . . , n.

where 1 ≤ k < n. The constant k is known as the change point. We assume that k is
a realization of a random variable K such that P (K = k) = 1

n−1 , k = 1, . . . , n−1.
The null hypothesis of no change can be specified as H0 : δ = 0. The alternate
hypotheses of interest are H1 : δ �= 0 and H2 : δ > 0. Let

gk =

n∑
j=k+1

Xj , T1 =

n−1∑
k=1

gk, T4 =

n−1∑
k=1

g2k;

ĝk =
n∑

j=k+1

(Xj − X̄), T2 =
n−1∑
k=1

ĝk, T5 =
n−1∑
k=1

ĝ2k;

and

g̃k = [(n− 1)−1
n∑

j=1

(Xj − X̄)2]−1/2ĝk, T3 =

n−1∑
k=1

g̃k, T6 =

n−1∑
k=1

g̃2k.

Nagaraj (1990) proved the following:

(i) if μ = 0 and σ2 = 1, then the locally most powerful test for testing H0 against
H2 rejects H0 for large values of T1;

(ii) if μ = 0 and σ2 = 1, then the locally most powerful test for testing H0 against
H1 rejects H0 for large values of T4;

(iii) if μ is unknown and σ2 = 1, then the locally most powerful invariant test for
testing H0 against H2 rejects H0 for large values of T2;

(iv) if μ is unknown and σ2 = 1, then the locally most powerful invariant test for
testing H0 against H1 rejects H0 for large values of T5;

(v) if μ is unknown and σ2 is unknown, then the locally most powerful invariant
test for testing H0 against H2 rejects H0 for large values of T3; and

(vi) if μ is unknown and σ2 is unknown, then the locally most powerful invariant
test for testing H0 against H1 rejects H0 for large values of T6.
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Let the sequence {Xk, k ≥ 0} be a stationary associated sequence. Let
μ = E[Xk] and the auto-covariance function and the autocorrelation function
of the process {Xk, k ≥ 0} be denoted by γ(h) = Cov(Xt, Xt+h) and ρ(h) =
Cov(Xt, Xt+h) = (γ(0))−1γ(h) respectively. Since the process is stationary and
associated, we get that γ(h) ≥ 0. We assume that

0 < σ2 =

∞∑
h=−∞

γ(h) < ∞. (9.2.1)

This condition implies that the process {Xk, k ≥ 1} is ergodic from results in
Lebowitz (1972) (cf. Theorem 7, Newman (1984)). In fact, the stationary associ-
ated sequence {Xk, k ≥ 1} is ergodic if and only if

lim
n→∞n−1

n∑
j=1

Cov(X1, Xj) = 0 (9.2.2)

from Lebowitz (1972). In particular, it follows that, for h ≥ 0,

1

n− h

n−h∑
i=1

(Xk − μ)(Xk+h − μ)
a.s.→ γ(h) as n → ∞. (9.2.3)

Applying again the ergodicity and stationarity of the process {Xk}, it follows that

1

n− h

n−h∑
i=1

Xk
a.s→ μ as n → ∞. (9.2.4)

These observations imply that, for fixed h ≥ 0,

γn(h) ≡ 1

n− h

n−h∑
t=1

(Xt − X̄)(Xt+h − X̄)→ γ(h) (9.2.5)

with probability 1 where X̄ is the sample mean. Thus the first-order sample auto-
covariance is a consistent estimator for γ(h).

Let S0 = 0 and Sn = X1 + · · ·+Xn − nμ. Let

Wn(t) =
1

σ
√
n
(S[nt] + (nt− [nt])X[nt]+1), 0 ≤ t ≤ 1. (9.2.6)

It follows, from Newman and Wright (1981), that

Wn
L→ W as n → ∞ (9.2.7)

where W is the standard Wiener process. This is the analogue of Donsker’s invari-
ance principle for stationary associated sequences.
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Nagaraj and Reddy (1993) derived the asymptotic null distribution of the
test statistics T1 to T6 under the assumption that the observations are generated
by a stationary associated process. We now discuss these results.

Theorem 9.2.1. Suppose μ = 0. Then

σ−1n−3/2T1
L→ W (1)−

∫ 1

0

W (t)dt as n → ∞.

Proof. Note that

σ−1n−3/2T1 =
1

σn3/2

n∑
k=1

kXk − 1

σn3/2

n∑
k=1

Xk

=
1

n

n∑
k=1

k[Wn(
k

n
)−Wn(

k − 1
n

)]− 1

σn3/2

n∑
k=1

Xk

=Wn(1)− 1

n

n∑
k=1

Wn(
k − 1
n

)− 1

σn3/2

n∑
k=1

Xk

where Wn(.) is as defined by equation (9.2.6). Let

Rn =Wn(1)−
∫ 1

0

Wn(t)dt. (9.2.8)

Since the process Wn
L→ W and the functional h : C[0, 1]→ R given by h(x(.)) =

x(1) − ∫ 1

0
x(t)dt is continuous on C[0, 1] endowed with uniform norm, it follows

that

Rn
L→ W (1)−

∫ 1

0

W (t)dt (9.2.9)

by the continuous mapping theorem (cf. Billingsley (1968)). Furthermore

E|Rn − σ−1n−3/2T1| ≤ E|
∫ 1

0

Wn(t)dt− 1

n

n∑
k=1

Wn(
k − 1
n

)|+ 1

σn3/2

n∑
k=1

E|Xk|

≤
n∑

k=1

∫ k/n

(k−1)/n

E|Wn(t)−Wn(
k − 1
n

)|dt+ 1

σn3/2

n∑
k=1

E|Xk|

≤
n∑

k=1

∫ k/n

(k−1)/n

2E|X1|
σ
√
n

dt+
1

σn3/2

n∑
k=1

E|X1|

= 3
E|X1|
σ
√
n

and the last term tends to zero as n → ∞. This observation, along with (9.2.9),
proves the result. �
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Remarks. Suppose the sequence {Xk, k ≥ 0} is a stationary autoregressive process
of order 1, that is,

Xk = ρXk−1 + εk, k ≥ 1
where {εk, k ≥ 1} are independent standard normal random variables. Further
suppose that 0 ≤ ρ < 1. Then it follows that the sequence {Xk, k ≥ 1} is stationary
and associated. Applying Theorem 9.2.1, we get that

n−3/2
n∑

k=0

kXk
L→ σ[W (1)−

∫ 1

0

W (t)dt]

as n → ∞. Note that the random variable W (1) − ∫ 1

0
W (t)dt has the Gaussian

distribution with mean zero and variance 1
3 . Hence

n−3/2
n∑

k=0

kXk
L→ N(0,

σ2

3
)

as n → ∞ where σ2 = (1− ρ)−2.

Suppose μ is unknown. Then the test statistic T2 can be used to test change
in the mean. It can be checked that

σ−1n−3/2T2
L→ 1

2
W (1)−

∫ 1

0

W (t)dt

as n → ∞. From the ergodic property of the sequence {Xk, k ≥ 1}, it follows that

1

n

n∑
k=1

(Xk − μ)2 → E(X1 − μ)2 a.s. as n → ∞.

Applying this, we can obtain the limiting distribution of the test statistic T3 when
the variance is unknown. It can be shown that

n−3/2T3
L→ γ[

1

2
W (1)−

∫ 1

0

W (t)dt]

as n → ∞ where γ2 =
∑∞

h=−∞ ρ(h) and ρ(h) is the autocorrelation function of
the process {Xk, k ≥ 0}.

We now study the asymptotic null distributions of the test statistics T4, T5

and T6 which give locally optimal invariant tests for testing H0 versus H1 depend-
ing on the fact whether μ and/or σ2 are known or unknown.

Theorem 9.2.2. Suppose μ = 0. Then

n−2σ−2T4
L→

∫ 1

0

(W (t)−W (1))2dt as n → ∞. (9.2.10)
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Proof. Observe that

n−2σ−2T4 = n−2σ−2
n−1∑
k=1

(

n∑
j=k+1

Xj)
2

= n−2σ−2
n∑

k=1

(Sn − Sk)
2

=
1

n

n∑
k=1

[Wn(1)−Wn(
k

n
)]2.

Let

Rn =

∫ 1

0

[Wn(t)−Wn(1)]
2dt. (9.2.11)

Then

E|Rn − n−2σ−2T4| (9.2.12)

= E|
∫ 1

0

[Wn(t)−Wn(1)]
2dt− 1

n

n∑
k=1

[Wn(1)−Wn(
k

n
)]2|

= E| − 2Wn(1)[

∫ 1

0

Wn(t)dt−
n∑

k=1

∫ k
n

k−1
n

W (
k

n
)dt]

+ (

∫ 1

0

W 2
n(t)dt−

n∑
k=1

∫ k
n

k−1
n

W 2
n(

k

n
)dt).

Applying Hölder’s inequality and the triangle inequality, we get that

E|Rn − n−2σ−2T4| (9.2.13)

= E| − 2Wn(1)(

n∑
k=1

∫ k
n

k−1
n

[Wn(t)−Wn(
k

n
)]dt)

+

n∑
k=1

∫ k
n

k−1
n

[W 2
n(t)−W 2

n(
k

n
)]dt|

≤ 2[E(W 2
n(1)]

1/2
n∑

k=1

∫ k
n

k−1
n

[E|Wn(t)−Wn(
k

n
)|2]1/2dt

+

n∑
k=1

∫ k
n

k−1
n

[E|W 2
n(t)−W 2

n(
k

n
)|dt.

Since

Var[Wn(t)] ≤ Var(S[nt]+1) ≤ ([nt] + 1)2σ2
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for all n ≥ 1, we get that

[E|Wn(t) +Wn(
k

n
)|2]1/2 ≤ [E(W 2

n(t))]
1/2 + [E(W 2

n(
k

n
)]1/2 ≤ 2.

Hence

E|Rn − n−2σ−2T4| (9.2.14)

≤ 2[E(W 2
n(1)]

1/2
n∑

k=1

∫ k
n

k−1
n

[E|Wn(t)−Wn(
k

n
)|2]1/2dt

+

n∑
k=1

∫ k
n

k−1
n

[E|Wn(t) +Wn(
k

n
)|2]1/2[E|Wn(t)−Wn(

k

n
)|2]1/2dt

≤ 2[E(W 2
n(1))]

1/2
n∑

k=1

∫ k
n

k−1
n

[E|Wn(t)−Wn(
k

n
)|2]1/2dt

+ 2

n∑
k=1

∫ k
n

k−1
n

[E|Wn(t)−Wn(
k

n
)|2]1/2dt

≤ 4
n∑

k=1

∫ k
n

k−1
n

[E|Wn(t)−Wn(
k

n
)|2]1/2dt.

Therefore

E|Rn − n−2σ−2T4| ≤ 4
n∑

k=1

∫ k
n

k−1
n

[E|Wn(t)−Wn(
k

n
)|2]1/2dt (9.2.15)

= 4

n∑
k=1

∫ k
n

k−1
n

n−1/2(EX2
1 )

1/2dt

≤ 4
n∑

k=1

∫ k
n

k−1
n

σ−1n−1/2E|X1|dt

=
E|X1|
σ
√
n

and the last term tends to zero as n → ∞. Consider the continuous functional

h(x(.)) =

∫ 1

0

[x(t)− x(1)]2dt

on the space C[0, 1]. Applying arguments similar to those given earlier in the
previous theorem, we prove the result stated in this theorem. �
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Remarks. The asymptotic null distribution of the test statistic T5 in the unknown
mean case and the test statistic T6 in the unknown mean and variance cases can
be worked out similarly. It can be proved that

n−2σ−2T5
L→

∫ 1

0

(W (t)− tW (1))2dt as n → ∞ (9.2.16)

and

n−2T6
L→ γ2

∫ 1

0

(W (t)− tW (1))2dt as n → ∞ (9.2.17)

where γ2 =
∑∞
−∞ ρ(h) and ρ(h) is the auto-correlation of the process {Xk, k ≥ 0}.

Remarks. Suppose the sequence {Xk, k ≥ 0} is a stationary autoregressive process
of order 1, that is,

Xk = ρXk−1 + εk, k ≥ 1
where {εk, k ≥ 1} are independent standard normal random variables. Further
suppose that 0 ≤ ρ < 1. Then it follows that the sequence {Xk, k ≥ 0} is stationary
and associated. In this case, it can be checked that

γ2 =
1 + ρ

1− ρ

and

γ̂2 =
1 + ρ̂

1− ρ̂

is a consistent estimator of γ2 where ρ̂ is the sample first-order autocorrelation.
Hence the two-sided test statistic corrected for autocorrelation is [γ̂]−1T6.

9.3 Test for Change in Marginal Density Function

Following Li and Lin (2007), we now consider the problem of testing for a change of
one-dimensional marginal density of a stationary associated sequence {Xn, n ≥ 1}
with E[X2

1 ] < ∞. Let H0 denote the hypothesis that the sequence X1, . . . , Xn has
a common one-dimensional marginal density function f(.) and H1 denote the
hypothesis that for some 0 < θ < 1,

(i) the sequence X1, . . . , X[nθ] has a common one-dimensional marginal density
function f1(.) and

(ii) the sequence X[nθ]+1, . . . , Xn has a common one-dimensional marginal den-
sity function f2(.) with f1 �= f2.

We now develop a nonparametric test for testing the hypothesis H0 against the
hypothesis H1. Here [x] denotes the greatest integer less than or equal to x.
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9.3. Test for Change in Marginal Density Function

For any function g(.) of bounded variation, let V b
a (g) denote the total varia-

tion of the function g(.) over the closed interval [a, b]. Let

Vg(x) =

{
V x
0 (g) for x ≥ 0

−V 0
x (g) for x < 0.

(A1) Let K(.) be a kernel function which is a probability density function of
bounded variation such that K(0) = 0,

0 < cK ≡
∫ ∞

−∞
K2(x)dx < ∞

and ∫ ∞

−∞
|VK(x)|dx < ∞.

(A2) Suppose the sequence {Xn, n ≥ 1} is a stationary associated sequence of
random variables. Let φ(.) be the characteristic function and f be the prob-
ability density function of X1 and let φ1j(., .) be the characteristic function
and f1j(., .) be the joint probability density function of (X1, Xj).

(i) Suppose that the density function f is bounded and Lipshitzian of order
1, that is, there exists a constant C > 0 such that

|f(x1)− f(x2)| ≤ C|x1 − x2|, x1, x2 ∈ R

and the function φ(.) is absolutely integrable.

(ii) Suppose that the joint density function fij is uniformly Lipshitzian of
order 1, that is, there exists a constant C > 0 such that

sup
j≥1;x,y

|f1j(x+ u, y + v))− f1j(x, y)| ≤ C(|u|+ |v|), u, v ∈ R

and the function φ1j(., .) is absolutely integrable.

(A3) Let hn be a sequence of positive numbers tending to zero as n → ∞ such
that nhn → ∞ as n → ∞ and

n∑
j=1

[Cov(X1, Xn)]
1/5 = o(h−1

n ).

Define

f[nθ](x) =
1

[nθ]hn

[nθ]∑
j=1

K(
x−Xj

hn
), (9.3.1)
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and

f∗n−[nθ](x) =
1

(n− [nθ])hn

n∑
j=[nθ]+1

K(
x−Xj

hn
). (9.3.2)

Note that f[nθ](x) is a kernel type density estimator of f(x) based on the
observations X1, . . . , X[nθ] and f∗n−[nθ](x) is a kernel type density estimator

of f(x) based on the observations X[nθ]+1, . . . , Xn under the hypothesis H0.
Furthermore f[nθ](x)− f∗n−[nθ](x) is an estimator of f1(x)− f2(x) under the
hypothesis H1. Let

fn(x) =
1

nhn

n∑
j=1

K(
x−Xj

hn
). (9.3.3)

The function fn(x) can be considered as an estimator of the density function
f(x) under H0, that is, if θ = 1. Define the function

dn(θ, x) =

{
[ nhn

cKfn(x)
]1/2 [nθ]

n
n−[nθ]

n (f[nθ](x)− f∗n−[nθ](x)) if fn(x) �= 0
0 if fn(x) = 0.

(9.3.4)
Let

Tn(x) = sup
0≤θ≤1

|dn(θ, x)|. (9.3.5)

It is clear that large values of Tn(x) indicate that the densities f1(x) andf2(x)
are different which implies that the hypothesis H1 is likely to hold. However,
small values of Tn(x) indicate that f1(x) and f2(x) might be close at the
particular value of x but it will not imply that the densities f1 and f2 coincide.
Hence we compute the value of Tn(x) for different values of x = xi, 1 ≤ i ≤ m.
Let

Tn,m = max
1≤i≤m

Tn(xi). (9.3.6)

Let

K+(x) =
1

2
[VK(x) +K(x)] (9.3.7)

and

K−(x) =
1

2
[Vk(x)−K(x)]. (9.3.8)

The functions K+(x) and K−(x) are nondecreasing and furthermore K(x) =
K+(x)−K−(x). Since the functionsK+(x) andK−(x) are nondecreasing and
the sequence X1, . . . , Xn are associated, it follows that the random variables
{K+(

x−Xi

hn
), 1 ≤ i ≤ n} and {K−(x−Xi

hn
), 1 ≤ i ≤ n} form associated

sequences for every n ≥ 1.

We will now derive the asymptotic distribution of the statistic Tn,m under some
additional conditions on the kernel K(.) which ensure the following.
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9.3. Test for Change in Marginal Density Function

(A4) There exist positive constants c1 and c2 such that

Var[K+(
x−X1

hn
)] ≥ c1nhn and Var[K−(

x−X1

hn
)] ≥ c1nhn, (9.3.9)

E|K+(
x−X1

hn
)|3 ≤ c2(nhn)

3/2 and E|K−(x−X1

hn
)|3 ≤ c2(nhn)

3/2

(9.3.10)
and there exists a function u(r)→ 0 as r → ∞ such that

∑
j:|k−j|≥r

Cov(K+(
x−Xj

hn
),K+(

x−Xk

hn
)) ≤ nhnu(r) for all k, n and r,

(9.3.11)
and

∑
j:|k−j|≥r

Cov(K−(
x−Xj

hn
,K−(

x−Xk

hn
)) ≤ nhnu(r) for all k, n and r.

(9.3.12)

From the definition of the estimator fn(x), we have

(nhn)
1/2(fn(x)− E[fn(x)]) (9.3.13)

= (nhn)
−1/2

n∑
j=1

[K(
x−Xj

hn
)− E(K(

x−Xj

hn
))]

= (nhn)
−1/2

n∑
j=1

[K+(
x−Xj

hn
)− E(K+(

x−Xj

hn
))]

− (nhn)
−1/2

n∑
j=1

[K−(
x−Xj

hn
)− E(K−(

x−Xj

hn
))]

= (nhn)
1/2(fn+(x)− E[fn+(x)])

− (nhn)
1/2(fn−(x)− E[fn−(x)]) (say).

Under the condition (A4), the central limit theorem for a double array of associated
random variables due to Cox and Grimmet (1984) (see Theorem 1.2.21) implies
that

Jn+ ≡ (nhn)
1/2(fn+(x)− E[fn+(x)])

L→ N(0, σ2
+) (9.3.14)

and
Jn− ≡ (nhn)

1/2(fn−(x)− E[fn−(x)])
L→ N(0, σ2

−) (9.3.15)

as n → ∞ where σ2
+ = f(x)cK+

and σ2
− = f(x)cK− .

In addition to the conditions (A1)–(A4), we assume that the following con-
dition holds.
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(A5) The sequences {J2
n+, n ≥ 1} and {J2

n−, n ≥ 1} are uniformly integrable.
Define the partial sum process, for 0 < θ ≤ 1, by the equation

f̂[nθ](x) =
1

(nhn)1/2

[nθ]∑
j=1

(K(
x−Xj

hn
)− E(K(

x−Xj

hn
))) (9.3.16)

=
[nθ]hn

(nhn)1/2
[f[nθ](x)− E(f[nθ](x))]

and f̂0(x) = 0.

Lemma 9.3.1. Under the conditions (A1)–(A5), the collection of stochastic pro-

cesses {f̂[nθ](x), 0 ≤ θ ≤ 1}, n ≥ 1 is tight.

Proof. In order to prove the tightness of the family {f̂[nθ](x), 0 ≤ θ ≤ 1}, n ≥ 1,
it is sufficient to prove that

lim
λ→∞

lim sup
n→∞

λ2 P [ max
1≤r≤n

|
r∑

j=1

[K(
x−Xj

hn
)− E(K(

x−Xj

hn
))]| ≥ λ(nhn)

1/2] = 0

(9.3.17)
from the remarks following Theorem 8.4 in Billingsley (1968). Applying the maxi-
mal inequality for demimartingales derived in Chapter 2 (cf. Newman and Wright
(1981)), we get that

λ2 P [ max
1≤r≤n

|
r∑

j=1

[K+(
x−Xj

hn
)− E(K+(

x−Xj

hn
))]| ≥ λ(nhn)

1/2] (9.3.18)

≤ 2λ2 P [

n∑
j=1

[K+(
x−Xj

hn
)− E(K+(

x−Xj

hn
))]| ≥ (λ−

√
2)(nhn)

1/2]

≤ λ2

(λ−√
2)2

E[J2
n+I[|Jn+|≥(λ−√2)]].

Hence, condition (A5) implies that

lim
λ→∞

lim sup
n→∞

λ2 P [ max
1≤r≤n

|
r∑

j=1

[K+(
x−Xj

hn
)− E(K+(

x−Xj

hn
))]| ≥ λ(nhn)

1/2] = 0.

(9.3.19)
Similarly we get that

lim
λ→∞

lim sup
n→∞

λ2 P [ max
1≤r≤n

|
r∑

j=1

[K−(
x−Xj

hn
)− E(K−(

x−Xj

hn
))]| ≥ λ(nhn)

1/2] = 0.

(9.3.20)
Note that K(x) = K+(x)−K−(x). In view of equations (9.3.19) and (9.3.20), we
obtain the relation (9.3.17) which implies tightness stated in the lemma. �
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The following two results describe the asymptotic behaviour of the test statis-
tic Tn,m as n → ∞ under the hypotheses H0 and H1.

Theorem 9.3.2. Let x1, . . . , xm, m ≥ 1 be distinct continuity points of the proba-
bility density function f. Suppose that the conditions (A1)–(A5) hold. Then, under
the hypothesis H0,

(dn(θ, x1), . . . , dn(θ, xm))
L→ (B1(θ), . . . , Bm(θ)) as n → ∞ (9.3.21)

where B1(.), . . . , Bm(.) are independent Brownian bridges. Furthermore, under the
hypothesis H0,

Tn,m
L→ max

1≤i≤m
sup

0≤θ≤1
|Bi(θ)| as n → ∞. (9.3.22)

Theorem 9.3.3. Let x1, . . . , xm, m ≥ 1 be distinct continuity points of the probabil-
ity density function f1 and f2. Suppose that the conditions (A1)–(A5) hold. Then,
under the hypothesis H1,

Tn,m
p→ ∞ as n → ∞. (9.3.23)

We now state two lemmas which will be used to prove Theorems 9.3.2 and
9.3.3.

Lemma 9.3.4. Under the condition (A2), for any T > 0, j ≥ 2,

sup
x,y

|f1j(x, y)− f(x)f(y)| ≤ 1

4π2

∫ T

−T

∫ T

−T

|φ1j(s, t)− φ(s)φ(t)|dsdt+ 6
√
2C(1 +A)

T
(9.3.24)

where A = supx f(x) and C is as defined in (A2).

For a proof of this lemma, see Lin (2003). It is related to the inequality due
to Sadikova (1966) discussed in Chapter 6. The next lemma is a consequence of
the Bochner’s theorem (cf. Prakasa Rao (1983)) and the arguments given in Bagai
and Prakasa Rao (1991).

Lemma 9.3.5. Under the conditions (A1) and (A2),

fn(x)
p→ f(x) as n → ∞ (9.3.25)

for any continuity point x of f.

Proof of Theorem 9.3.2. Suppose the hypothesis H0 holds. Define the partial sum
process, for 0 ≤ θ ≤ 1,

gn(θ, x) =
1

(nhnfn(x)cK)1/2

[nθ]∑
j=1

(K(
x−Xj

hn
)− E(K(

x−Xj

hn
))) (9.3.26)

= [
nhn

fn(x)cK
]1/2

[nθ]

n
[f[nθ](x)− E(f[nθ](x))]
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if fn(x) > 0 and gn(θ, x) = 0 if fn(x) = 0. Observe that

dn(θ, x) = gn(θ, x)− [nθ]

n
gn(1, x). (9.3.27)

Hence, in order to prove (9.3.21), it is sufficient to prove that

(gn(θ, x1), . . . , gn(θ, xm))
L→ (W1(θ), . . . ,Wm(θ)) as n → ∞ (9.3.28)

where W1(.), . . . ,Wm(.) are independent standard Wiener processes. This follows
from the Skorokhod construction (cf. Billingsley (1968)). By the Cramer-Wold
technique, it is sufficient to prove that for any λ1, . . . , λm ∈ R,

m∑
i=1

λi gn(θ, xi)
L→

m∑
i=1

λiWi(θ) (9.3.29)

as n → ∞. Let g∗n(θ, x) be defined in the same way as gn(θ, x) with f(x) replacing
fn(x) in (9.3.26). In order to prove (9.3.29), it is sufficient to prove that

m∑
i=1

λi g
∗
n(θ, xi)

L→
m∑
i=1

Wi(θ) (9.3.30)

in view of Lemma 9.3.5. Let

σ2
n ≡ Var[

m∑
i=1

λi g
∗
n(θ, xi)] (9.3.31)

=
1

nhncK
([nθ] Var(Z1) + 2

[nθ]∑
j=1

([nθ]− j + 1)Cov(Z1, Zj))

where

Zj =

m∑
i=1

(
λi

f(xi)
)1/2K(

xi −Xj

hn
). (9.3.32)

The first term on the right-hand side of equation (9.3.31) is equal to

1

hncK

[nθ]

n
[
m∑
i=1

λ2
i

f(xi)
Var(K(

xi −X1

hn
)) (9.3.33)

+
∑

1≤i�=k≤m

λiλkJ

(f(xi)f(xk))1/2
Cov(K(

xi −X1

hn
),K(

xk −X1

hn
))].

The limit of the first term on the right-hand side of equation (9.3.33) is (
∑m

i=1 λ
2
i )θ.

This can be shown by using Bochner’s theorem (cf. Prakasa Rao (1983)). We will
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now show that the second term on the right-hand side of equation (9.3.33) goes
to zero as n → ∞. Let ε > 0. Choose M > 0 such that∫

[|x|≥M ]

K(x)dx ≤ ε.

Since hn → 0 as n → ∞, we can choose n0 such that, for n ≥ n0,

min
1≤i�=k≤m

|xk − xi

hn
| > 2M

and hn ≤ ε. Then there exists a constant C > 0 such that, for n ≥ n0,

|Cov(K(xi −X1

hn
),K(

xk −X1

hn
))| (9.3.34)

≤
∫ ∞

−∞
K(

xi − x

hn
)K(

xk − x

hn
)f(x)dx

+

∫ ∞

−∞
K(

xi − x

hn
)f(x)dx

∫ ∞

−∞
K(

xk − x

hn
)f(x)dx

≤ Chn

∫ ∞

−∞
K(u)K(

xk − xi

hn
+ u) du+ Ch2

nf(xi)f(xk)(

∫ ∞

−∞
K(u) du)2

≤ Chn[

∫
[|u|≥M ]

K(u)du+

∫
[|u|<M ]

K(
xk − xi

hn
+ u)du] + Ch2

n

≤ Cεhn.

Therefore the second term on the right-hand side of equation (9.3.33) tends to
zero as n → ∞. We will now get a bound on Cov(Z1, Zj) using Lemma 9.3.4 and
the characteristic function inequality in Newman and Wright (1981) (see Chapter
1). Observe that

|Cov(Z1, Zj)| (9.3.35)

≤ (
m∑
i=1

| λi

(f(xi))1/2
|)2max

i,k
|Cov(K(xi −X1

hn
),K(

xk −X1

hn
))|

≤ Cmax
i,k

∫ ∞

−∞

∫ ∞

−∞
|K(xi − y1

hn
)K(

xk − y2
hn

)(f1j(y1, y2)− f(y1)f(y2))| dy1dy2

≤ Ch2
n

1

4π2
[

∫ T

−T

∫ T

−T

|φ1j(s, t)− φ(s)φ(t)| dsdt+ 6
√
2C(1 +A)

T
]

≤ Ch2
n[

T 4

4π2
Cov(X1, Xj) +

6
√
2C(1 +A)

T
]

≤ Ch2
n[Cov(X1, Xj)]

1/5

by choosing T = [Cov(X1, Xj)]
1/5. Note that Cov(X1, Xj) ≥ 0 since X1 and Xj

are associated random variables. Therefore the second term on the right-hand side
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of equation (9.3.31) given by

2

nhncK

[nθ]∑
j=1

([nθ]− j + 1)Cov(Z1, Zj)) ≤ 2Chn

n∑
j=2

[Cov(X1, Xj)]
1/5. (9.3.36)

Note that the term on the right-hand side of equation (9.3.36) tends to zero as
n → ∞ by the condition (A3). Combining the above results, we get that

σ2
n → (

n∑
i=1

λ2
i )θ as n → ∞. (9.3.37)

Note that

m∑
i=1

λi g
∗
n(θ, xi) (9.3.38)

=
1

(nhncK)1/2

m∑
i=1

λi

[nθ]∑
j=1

1√
f(xi)

(K(
xi −Xj

hn
)− E[K(

xi −Xj

hn
)])

=

[nθ]∑
j=1

1

(nhncK)1/2

m∑
i=1

λi√
f(xi)

(K(
xi −Xj

hn
)− E[K(

xi −Xj

hn
)])

=

[nθ]∑
j=1

ηnj (say)

where

ηnj =
1

(nhncK)1/2

m∑
i=1

λi√
f(xi)

(K(
xi −Xj

hn
)− E[K(

xi −Xj

hn
)]). (9.3.39)

We will now prove that

[nθ]∑
j=1

ηnj
L→ N(0, (

n∑
i=1

λ2
i )θ) as n → ∞. (9.3.40)

Let

H(x) =
m∑
i=1

λi√
f(xi)

(K(
xi −Xj

hn
)− E[K(

xi −Xj

hn
)]). (9.3.41)

It is easy to see that the function H(x) is a function of bounded variation. Fur-
thermore

|E[exp{it
k∑

j=1

ηnj}]− E[exp{it
k−1∑
j=1

ηnj}]E[it exp{ηnk}]| (9.3.42)
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≤ 4t2

nhncK

k−1∑
j=1

|Cov(TH(X1), TH(Xj))|.

By repeated application of this inequality, it follows that

|E[exp{it
[nθ]∑
j=1

ηnj}]−Π[nθ]
j=1E[it exp{ηnj}]| (9.3.43)

≤ 4t2

nhncK

k−1∑
1≤i�=j≤[nθ]

|Cov(TH(Xi), TH(Xj))|

≤ 4t2

hncK

[nθ]∑
j=2

|Cov(TH(X1), TH(Xj))|

≤ 4t2hn

cK
[

m∑
i=1

|λi|√
f(xi)

]2(

∫ ∞

−∞
|TK(x)|dx)

[nθ]∑
j=2

[Cov(X1), Xj)]
1/5

≤ Chn

[nθ]∑
j=2

[Cov(X1, Xj)]
1/5

by noting that

TH(x) ≤
m∑
i=1

| λi√
f(xi

TK(
xi − x

hn
)| (9.3.44)

and ∫ ∞

−∞
|TK(x)|dx < ∞.

The last term in equation (9.3.43) tends to zero as n → ∞ by condition (A3).
Hence

|E[exp{it
[nθ]∑
j=1

ηnj}]−Π[nθ]
j=1E[it exp{ηnj}]| → 0 as n → ∞. (9.3.45)

As a consequence of the central limit theorem for a double array of sums of inde-
pendent random variables (cf. Loeve (1963)), it follows that

[nθ]∑
j=1

ηnj
L→ N(0, (

m∑
i=1

λ2
i )θ) as n → ∞. (9.3.46)

This in turn proves (9.3.29). This result can also be seen as a consequence of
the central limit theorem for double array of associated random variables due
to Cox and Grimmet (1984) stated in Chapter 1. The tightness of the sequence
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of processes {(g∗n(θ, x1), . . . , g
∗
n(θ, xm)), 0 ≤ θ ≤ 1}, n ≥ 1 follows from Lemma

9.3.1. From the comments made earlier, it follows that the sequence of processes
{(gn(θ, x1), . . . , gn(θ, xm)), 0 ≤ θ ≤ 1}, n ≥ 1 converge in distribution to the m-
dimensional process {W1(θ), . . . ,Wm(θ)), 0 ≤ θ ≤ 1} from the results in Billingsley
(1968). The results stated in Theorem 9.3.2 follow by an application of the con-
tinuous mapping theorem (cf. Billingsley (1968)). �
Proof of Theorem 9.3.3. Suppose the hypothesis H1 holds. Without loss of gener-
ality, suppose that f1(x1) �= f2(x1) for some x1 ∈ R. Let 0 < θ < 1. Since

f[nθ](x1)
p→ f1(x1) as n → ∞ (9.3.47)

and
f∗n−[nθ](x1)

p→ f2(x1) as n → ∞, (9.3.48)

under the conditions (A1) and (A2), and since nhn → ∞ by hypothesis, it follows
that

dn(θ, x1)
p→ ∞ as n → ∞. (9.3.49)

Furthermore observe that
Tnm ≥ dn(θ, x1). (9.3.50)

Hence
Tnm

p→ ∞ as n → ∞ (9.3.51)

under the hypothesis H1. �
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