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Preface

This book is intended to be an advanced look at the basic theory of groups,
suitable for a graduate class in group theory, part of a graduate class in abstract
algebra or for independent study. It can also be read by advanced
undergraduates. Indeed, I assume no specific background in group theory, but
do assume some level of mathematical sophistication on the part of the reader.

A look at the table of contents will reveal that the overall topic selection is more
or less standard for a book on this subject. Let me at least mention a few of the
perhaps less standard topics covered in the book:

1)
2)

3)

4)

5)

6)

An historical look at how Galois viewed groups.

The problem of whether the commutator subgroup of a group is the same as
the set of commutators of the group, including an example of when this is
not the case.

A discussion of xY-groups, in particular,

a) groups in which all subgroups have a complement

b) groups in which all normal subgroups have a complement

¢) groups in which all subgroups are direct summands

d) groups in which all normal subgroups are direct summands.

The subnormal join property, that is, the property that the join of two
subnormal subgroups is subnormal.

Cancellation in direct sums: A group G is cancellable in direct sums if

ABHBG~BHH, Gr=H = A=xB
(The symbol H represents the external direct sum.) We include a proof
that any finite group is cancellable in direct sums.

A complete proof of the theorem of Baer that a nonabelian group G has the
property that all of its subgroups are normal if and only if

G=QMANXDB

where () is a quaternion group, A is an elementary abelian group of
exponent 2 and B is an abelian group all of whose elements have odd order.

vii



viii Preface

7) A somewhat more in-depth discussion of the structure of p-groups,
including the nature of conjugates in a p-group, a proof that a p-group with
a unique subgroup of any order must be either cyclic (for p > 2) or else
cyclic or generalized quaternion (for p = 2) and the nature of groups of
order p” that have elements of order p" .

8) A discussion of the Sylow subgroups of the symmetric group (in terms of
wreath products).

9) An introduction to the techniques used to characterize finite simple groups.

10) Birkhoff's theorem on equational classes and relative freeness.

Here are a few other remarks concerning the nature of this book.

1) I have tried to emphasize universality when discussing the isomorphism
theorems, quotient groups and free groups.

2) 1 have introduced certain concepts, such as subnormality and chain
conditions perhaps a bit earlier than in some other texts at this level, in the
hopes that the reader would acclimate to these concepts earlier.

3) I have also introduced group actions early in the text (Chapter 4), before
giving a more thorough discussion in Chapter 7.

4) 1 have emphasized the role of applying certain operations, namely
intersection, lifting, quotient and unquotient to a “group extension” H < G.

A couple of random notes: Unless otherwise indicated, any theorem not proved
in the text is an invitation to the reader to supply a proof. Also, sections marked
with an asterisk are optional, meaning that they can be skipped without missing
information that will be required later.

Let me conclude by thanking my graduate students of the past five years, who
not only put up with this material in manuscript form but also put up with the
many last-minute changes that I made to the manuscript during those years. In
any case, if the reader should find any errors, I would appreciate a heads-up. |
can be contacted through my web site www.romanpress.com.

Steven Roman


http://www.romanpress.com
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Chapter 1
Preliminaries

In this chapter, we gather together some basic facts that will be useful in the
text. Much of this material may already be familiar to the reader, so a light skim
to set the notation may be all that is required. The chapter then can be used as a
reference.

Multisets

The following simple concept is much more useful than its infrequent
appearance would indicate.

Definition Let S be a nonempty set. A multiset M with underlying set S is a
set of ordered pairs

M = {(si,n;) | si € S,n; € ¥, s; # s; fori # j}

where 0 = {1,2,... }. The positive integer n; is referred to as the multiplicity
of the element s; in M. A multiset is finite if the underlying set is finite. The size
of a finite multiset M is the sum of the multiplicities of its elements. [J

For example, M = {(a,2),(b,3),(c,1)} is a multiset with underlying set
S ={a,b,c}. The element a has multiplicity 2. One often writes out the
elements of a multiset according to their multiplicities, as in

M ={a,a,b,b,b,c}

Two multisets are equal if their underlying sets are equal and if the multiplicities
of each element in the multisets are equal.

Words
We will have considerable use for the following concept.
Definition Let X be a nonempty set. A finite sequence w = (x1,...,2,) of

elements of X is called a word or string over X and is usually written in the
form

S. Roman, Fundamentals of Group Theory: An Advanced Approach, 1
DOI 10.1007/978-0-8176-8301-6_1, © Springer Science+Business Media, LLC 2012



2 Fundamentals of Group Theory

w = :[/'l...xn

The number of elements in w is the length of w, denoted by len(w). There is a
unique word of length 0, called the empty word and denoted by €. The set of all
words over X is denoted by X* and X is called the alphabet for X*. A
subword or substring of a word w is a subsequence of w consisting of

consecutive elements of w. The empty word is considered a subword of all
words.[]

The set X* of words over X has an algebraic structure. In particular, the
operation of juxtaposition (also called concatenation) is associative and has
identity e. Any nonempty set with an associative operation that has an identity is
called a monoid. Thus, X™* is a monoid under juxtaposition.

It is customary to allow the use of exponents other than 1 when writing words,
where

n
' =g
-
n factors

for n > 0. Note, however, that this is merely a shorthand notation. Also, it does
not affect the length of a word; for example, the length of 2233 is 6.

Partially Ordered Sets

We will need some basic facts about partially ordered sets.

Definition 4 partially ordered set is a pair (P, <) where P is a nonempty set
and < is a binary relation called a partial order, read “less than or equal to,”

with the following properties:
1) (Reflexivity) Forall a € P,

a<a
2) (Antisymmetry) For all a,b € P,
a<b, b<a = a=0b
3) (Transitivity) Forall a,b,c € P,
a<b, b<e = a<ec

Partially ordered sets are also called posets. [

Sometimes partially ordered sets are more easily defined using strict order
relations.

Definition A4 strict order < on a nonempty set P is a binary relation that
satisfies the following properties:



Preliminaries 3

1) (Asymmetry) Forall a,b € P,
a<b = bda

2) (Transitivity) Forall a,b,c € P,

a<b, b<c = a<c O
Theorem 1.1 [f (P, <) is a partially ordered set, then the relation
a<b if a<ba#b
is a strict order on P. Conversely, if < is a strict order on P, then the relation
a<b if a<bora=1b

is a partial order on P.OJ

It is customary to use a phrase such as “Let P be a partially ordered set” when
the partial order is understood. Also, it is very convenient to extend the notation
a bit and define S < a for any subset S of P to mean that s < @ for all s € S.
Similarly, @ < S means that a < s forall s € S and S < T means that s < t for
alls € Sandt € T.

Note that in a partially ordered set, it is possible that not all elements are
comparable. In other words, it is possible to have =,y € P with the property
thatz €L yandy § =.

Here are some special kinds of partially ordered sets.

Definition Let (P, <) be a partially ordered set.

1) The order < is called a total order or linear order if every two elements
of P are comparable. In this case, (P, <) is called a totally ordered set
or linearly ordered set.

2) A nonempty subset of P that is totally ordered is called a chain in P. The
family of chains of P is ordered by set inclusion.

3) A nonempty subset of P for which no two elements are comparable is
called an antichain in P.

4) A nonempty subset D of a partially ordered set P is directed if every two
elements of D have an upper bound in D.[]

Definition Let (P, <) be a poset and let a,b € P.
1) The closed interval [a, ] is defined by
[a,0] ={p€ Pla<p<b}
2) The open interval (a,b) is defined by
(a,b)={pePla<p<b}
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3) The half open intervals are defined by
(a,b] ={pePla<p<b} and [a,b)={peP|la<p<bd} O

Here are some key terms related to partially ordered sets.

Definition (Covering) Let (P, <) be a partially ordered set. If a,b € P, then

b covers a, written a < b, if a < b and if there are no elements of P between a
and b, that is, if

a<x<b = x=aorxz=0» O
Definition (Maximum and minimum elements) Let (P, <) be a partially
ordered set.

1) A maximal element is an element m € P with the property that there is no
larger element in P, that is

pePm<p = m=p
A maximum (largest or top) element m € P is an element for which
P<m
2) A minimal element is an element n € P with the property that there is no
smaller element in P, that is
peP,p<n = p=n
A minimum (smallest or bottom) element n in P is an element for which
n<P O
Definition (Upper and lower bounds) Let (P, <) be a partially ordered set.

Let S be a subset of P.
1) An element uw € P is an upper bound for S if

S<u

The smallest upper bound w for S, if it exists, is called the least upper
bound or join of S and is denoted by lub(S) or \/S. Thus, u has the
property that S <wu and if S <z then u < x. The join of a finite set
S ={ay,...,s,} is also denoted by lub{ay, ... ,a,} ora; V---V a,.

2) Anelement { € P is a lower bound for S if

<SS

The largest lower bound { for S, if it exists, is called the greatest lower
bound or meet of S and is denoted by glb(S) or N\S. Thus, { has the
property that £ < S and if © < S then x < /(. The meet of a finite set
S ={a,...,a,} is also denoted by glb{ay,...,a,} ora; A--- A a,.0
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Note that the join of the empty set () is, by definition, the least upper bound of
the elements of (). But every element of P is an upper bound for the elements of
() and so the least upper bound is the minimum element of P, if it exists.
Otherwise () has no join. Similarly, the meet of the empty set is the greatest
lower bound of () and since all elements of P are lower bounds for (), the meet
of () is the maximum element of P, if it exists.

Now we can state Zorn's lemma, which gives a condition under which a
partially ordered set has a maximal element.

Theorem 1.2 (Zorn's lemma) If P is a partially ordered set in which every
chain has an upper bound, then P has a maximal element.[]

Zorn's lemma is equivalent to the axiom of choice. As such, it is not subject to
proof from the axioms of ZF set theory. Also, Zorn's lemma is equivalent to the
well-ordering principle. A well ordering on a nonempty set X is a total order
on X with the property that every nonempty subset of X has a least element.

Theorem 1.3 (Well-ordering principle) Every nonempty set has a well
ordering..c]
Order-Preserving and Order-Reversing Maps

A function f: P — @ between partially ordered sets is order preserving (also
called monotone or isotone) if

r<y = fr<fy
and an order embedding if
r<y < fr<fy
Note that an order embedding is injective, since fx = fy implies both fz < fy
and fy < fx, which implies that < y and y < z, that is, z = y. A surjective
order-embedding is called an order isomorphism.
Similarly, a function f: P — (@ is order reversing (also called antitone) if
r<y = frzfy
and an order anti-embedding if
r<y < fr=fy

An order anti-embedding is injective and if it is surjective, then it is called an
order anti-isomorphism.

Chain Conditions and Finiteness

The chain conditions are a form of finiteness condition on a poset.
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Definition Let P be a poset.
1) P has the ascending chain condition (ACC) if it has no infinite strictly
ascending sequences, that is, for any ascending sequence

pr<p<p3<---

there is an index n such that p,.;, = py for all k > 0.
2) P has the descending chain condition (DCC) if it has no infinite strictly
descending sequences, that is, for any descending sequence

pL=>p=p3 >

there is an index n such that p,, = py, for all k > 0.
3) P has both chain conditions (BCC) if P has the ACC and the DCC.]

The following characterizations of ACC and DCC are very useful.

Definition Let P be a poset.

1) P has the maximal condition if every nonempty subset of P has a maximal
element.

2) P has the minimal condition if every nonempty subset of P has a minimal
element..c]

Theorem 1.4 Let P be a poset.

1) P has the ACC if and only if it has the maximal condition.

2) P has the DCC if and only if it has the minimal condition.

Proof. Suppose P has the ACC and let S C P be nonempty. Let s; € S. If s is
maximal we are done. If not, then we can pick sy € S such that sy > s;.
Continuing in this way, we either arrive at a maximal element in S or we get a
strictly increasing ascending chain that does not become constant, which
contradicts the ACC. Hence, P has the maximal condition. Conversely, if P has
the maximal condition then any ascending sequence in P has a maximal
element, at which point the sequence becomes constant. The proof of part 2) is
similar.[J

A poset can express “infinitness” by spreading vertically, via an infinite chain or
by spreading horizontally, via an infinite antichain. The next theorem shows that
these are the only two ways that a poset can express infiniteness. It also says
that if a poset has an infinite chain, then it has either an infinite ascending chain
or an infinite descending chain. This theorem will prove very useful to us as we
explore chain conditions on subgroups of a group.

Theorem 1.5 Let P be a poset.
1) The following are equivalent:
a) P has no infinite chains.
b) P has both chain conditions.
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If these conditions hold, then for any a < b in P, there is a maximal finite

chain from a to b.
2) The following are equivalent:

a) P has no infinite chains and no infinite antichains.

b) P is finite.
Proof. It is clear that 1a) implies 1b). For the converse, suppose that P has BCC
and let C be an infinite chain. The ACC implies that C has a maximal element
x1, which must be maximum in C since C is totally ordered. Then C \ {x;} is an
infinite chain and we may select its maximum element 25 < x;. Continuing in
this way gives an infinite strictly descending chain, a contradiction to the DCC.
Hence, 1a) and 1b) are equivalent.

If 1a) and 1b) hold, then since (a, b] is nonempty, it has a minimal member a4,
whence a < a; is a maximal chain from a to ay. If a; < b, then (aq,b] has a
minimal member a, and so a < a; < as is a maximal chain from a to as. This
cannot continue forever and so must produce a maximal finite chain from a to b.

For part 2), assume that P has no infinite chains or infinite antichains but that P
is infinite. Using the ACC, we will create an infinite descending chain, in
contradiction to the DCC. Since P has the maximal condition, it has a maximal
element. Let

M={m;|iel}
be the set of all maximal elements of P. Denote by |z the set of all elements of

P that are less than or equal to z. (This is read: down x.) Since M 1is a
nonempty antichain, it must be finite. Moreover, the ACC implies that

P = U(lmi)
and so one of the sets, say | m;,, must be infinite. The infinite poset
P = (lmll) \ {mll}

also has no infinite antichains and no infinite chains. Thus, we may repeat the
above process and select an element m;, € P; such that

Py = (lmlz) \ {miz}

is infinite. Note that m; > m;,. Continuing in this way, we get an infinite
strictly descending chain.[d

The presence of a chain condition on a poset P has consequences for meets and
joins.

Theorem 1.6
1) Let P be a poset in which every nonempty finite subset has a meet. If P has
the DCC, then every nonempty subset of P has a meet.
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2) Let P be a poset in which every nonempty finite subset has a join. If P has
the ACC, then every nonempty subset of P has a join.

Proof. For part 1), let S C P be nonempty. The family of all meets of finite

subsets of S has a minimal member m in P and the minimality of m implies

that m A a = m for all @ € P, thatis, m < a forall « € P. Hence,

/\aesa:mEP

We leave proof of part 2) to the reader.[]

Lattices

Many of the partially ordered sets that we will encounter have a bit more
structure.

Definition

1) A partially ordered set (P, <) is a lattice if every two elements of P have
a meet and a join.

2) A partially ordered set (P, <) is a complete lattice if every subset of P
has a meet and a join.(]

Thus, a complete lattice has a maximum element (the join of P) and a minimum
element (the meet of P).

Note that if f: P — () is an order isomorphism of the lattices P and @), then f
preserves meets and joins, that is,

F(Aw) = Ntweand 1 (\/wi) =\ fw

However, an order embedding need not preserve these operations.

We will often encounter partially ordered sets P for which every subset of
elements has a meet. In this case, joins also exist and P is a complete lattice.

Theorem 1.7 Suppose that (P, <) is a partially ordered set for which every
subset of P has a meet. Then (P, <) is a complete lattice, where the join of a
subset S of P is the meet of all upper bounds for S.

Proof. First, note that the meet of the empty set is the maximum element of P
and the meet of P is the minimum element of P and so P is bounded. In
particular, the join of () exists.

Let S be a nonempty subset of P. The family U of upper bounds for S is
nonempty, since it contains the maximum element. We need only show that the
meet m = AU is the join of S. Since s < U for any s € S, that is, any s € S is
a lower bound for U, it follows that s < m, that is, m > S. Moreover, if n > S
then n € U and so m < n. Hence, m is the least upper bound of S.[]
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The previous theorem is very useful in many algebraic contexts. In particular,
suppose that X is a nonempty set and that F is a family of subsets of X that
contains both () and X and is closed under intersection. (Examples are the
subspaces of a vector space, the subgroups of a group, the ideals in a ring, the
subfields of a field, the sublattices of a latttice and so on.) Then F is a complete
lattice where the join of any subfamily G of F is the intersection of all members
of F containing the members of G. Note that this join need not be the union of
g, since the union may not be a member of F. However, if the union of G is a
member of F, then it will be the join of G.

Example 1.8

1) The set R of real numbers, with the usual binary relation <, is a partially
ordered set. It is also a totally ordered set. It has no maximal elements.

2) The set N={0,1,...} of natural numbers, together with the binary
relation of divides, is a partially ordered set. It is customary to write n | m
to indicate that n divides m. The subset .S of N consisting of all powers of 2
is a totally ordered subset of N, that is, it is a chain in N. The set
P ={2,4,8,3,9,27} is a partially ordered set under | . It has two maximal
elements, namely 8 and 27. The subset Q@ = {2,3,5,7,11} is a partially
ordered set in which every element is both maximal and minimal. The
partially ordered set N is a complete lattice but the set of all positive
integers under division is a lattice that is not complete.

3) Let S be any set and let P(S) be the power set of S, that is, the set of all
subsets of S. Then P(S), together with the subset relation C, is a
complete lattice.[]

Sublattices

The subject of sublattices requires a bit of care, since a nonempty subset S of a
lattice L inherits the order of L but not necessarily the meets and joins of L.
That is, the meet of a subset 1" of S may be different when 7' is viewed as a
subset of S than when T is viewed as a subset of L.

For example, let L = {1,2,3,6, 12} under division and let S = L \ {6}. Then
L and S are both lattices under the same partial order. However, in L we have
2V 3 =6 and in S we have 2V 3 = 12. Let us use the term L-meet to refer to
the meet in L, and similarly for join.

Definition Let L be a lattice and let M C L be a nonempty subset of L.
1) M is a sublattice of L if the M-meet of any finite nonempty subset S C M
exists and is the same as the L-meet of S, and similarly for join, that is, if

/\MS = /\LS and \/MS = \/LS

2) If L is a complete lattice, then M is a complete sublattice of L if theM -
meet of any subset S C M exists and is the same as the L-meet of S, and
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similarly for join, that is, if

/\MSZ /\LS and \/MSZ \/LS O
Theorem 1.9

1) A nonempty subset P of a lattice L is a sublattice of L if and only if the L-
meet and the L-join of any finite nonempty subset A C P are in P.

2) A nonempty subset P of a complete lattice L is a complete sublattice of L if
and only if the L-meet and the L-join of any subset A C P are in P.CJ

Equivalence Relations

The concept of an equivalence relation plays a major role in mathematics.

Definition Let S be a nonempty set. A binary relation ~ on S is called an
equivalence relation on S if it satisfies the following conditions:
1) (Reflexivity) Foralla € S,

2) (Symmetry) Forall a,b € S,
a~b = b~a
3) (Transitivity) For all a,b,c € S,
a~bb~c = a~c O

Definition Let ~ be an equivalence relation on S. For a € S, the set of all
elements equivalent to a is denoted by

[al] ={be S|b~a}

and is called the equivalence class of a.[]

Theorem 1.10 Let ~ be an equivalence relation on S. Then
1) belal < acb] < [a]l =[b]
2) Forany a,b € S, we have either [a] = [b] or [a] N [b] = 0.00

Definition A4 partition of a nonempty set S is a collection P = {A; | i € I} of
nonempty subsets of S, called the blocks of the partition, for which

]) AiﬂAjz(Z)foralli#j

2) S =Uieri

A system of distinct representatives, abbreviated SDR, for a partition P is a
set consisting of exactly one element from each block of 'P. In various contexts,
a system of distinct representatives is also called a transversal for P or a set of
canonical forms for P.01

The following theorem sheds considerable light on the concept of an
equivalence relation.
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Theorem 1.11

1) Let ~ be an equivalence relation on a nonempty set S. Then the set of
distinct equivalence classes with respect to ~ are the blocks of a partition
of S.

2) Conversely, if P is a partition of S, the binary relation ~ defined by

a ~ bifaandb lie in the same block of P

is an equivalence relation on S, whose equivalence classes are the blocks
of P.
This establishes a one-to-one correspondence between equivalence relations on
S and partitions of S.OJ

The most important problem related to equivalence relations is that of finding an
efficient way to determine when two elements are equivalent. Unfortunately, in
most cases, the definition does not provide an efficient test for equivalence and
so we are led to the following concepts.

Definition Let ~ be an equivalence relation on a nonempty set S. A function
f:S — T, where T is any set, is called an invariant of the equivalence relation
if it is constant on the equivalence classes, that is, if

ar~b = f(a)=f(b)

A function f: S — T is called a complete invariant if it is constant and distinct
on the equivalence classes, that is, if

ar~b < fla)=f(b)

A collection {fi,...,fn} of invariants is called a complete system of
invariants if’

a~b & fila)=fi(b) foralli=1,...,n O

Definition Let ~ be an equivalence relation on a nonempty set S. A subset
C C S is said to be a set of canonical forms for the equivalence relation if C' is
a system of distinct representatives for the partition consisting of the
equivalence classes, that is, if for every s € S, there is exactly one ¢ € C' such
that ¢ ~ s.0

A set of canonical forms determines equivalence since a,b € S are equivalent if
and only if their corresponding canonical forms are equal. Of course, this will
be a practical solution to the problem of equivalence only if there is a practical
way to identify the canonical form associated with each element of S. Often,
canonical forms provide more of a theoretical tool than a practical one.
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Cardinality

Two sets S and 7" have the same cardinality, written
S| = |T|

if there is a bijective function (a one-to-one correspondence) between the sets. If
S is in one-to-one correspondence with a subset of T', we write |S| < |T'|. If S
is in one-to-one correspondence with a proper subset of T" but not with T itself,
then we write |S| < |T'|. The second condition is necessary, since, for instance,
N is in one-to-one correspondence with a proper subset of Z and yet N is also in
one-to-one correspondence with Z itself. Hence, |N| = |Z].

This is not the place to enter into a detailed discussion of cardinal numbers. The
intention here is that the cardinality of a set, whatever that is, represents the
“size” of the set. It is actually easier to talk about two sets having the same, or
different, cardinality than it is to define explicitly the cardinality of a given set
(a cardinal number is a special kind of ordinal number).

For us, it is sufficient simply to associate with each set S a special kind of set
known as a cardinal number, denoted by |S| or card(S), that is intended to
measure the size of the set. In the case of finite sets, the cardinality is the integer
that equals the number of elements in the set.

Definition
1) A set is finite if it can be put in one-to-one correspondence with a set of the
Sform Z,, = {0,1,... ,n — 1}, for some nonnegative integer n. A set that is

not finite is infinite.
2) The cardinal number of the set N of natural numbers is ¥ (read “aleph
nought”), where X is the first letter of the Hebrew alphabet. Hence,

IN| = |Z] = Q] = R

3)  Any set with cardinality N is called a countably infinite set and any finite
or countably infinite set is called a countable set. An infinite set that is not
countable is said to be uncountable. (]

Theorem 1.12
1) (Schréder—Bernstein Theorem) For any sets S and T,
S| < [T[and |T| < |S| = |S] = [T
2) (Cantor's theorem) [f 'P(S) denotes the power set of S then
S| < [P(5)]
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3) If Po(S) denotes the set of all finite subsets of S and if S is an infinite set,
then

ST = Po(5)] O

Cardinal Arithmetic
If S and T are sets, the cartesian product S x 7' is the set of all ordered pairs
SxT={(st)|s€S,teT}
If two sets X and Y are disjoint, their union is called a disjoint union and is
denoted by
xXuy
More generally, the disjoint union of two arbitrary sets S and 7" is the set
SUT=A{(s,0)|se StU{(t,1)|teT}

This is just a scheme for taking the union of S and 7" while at the same time
assuring that there is no “collapse” due to the fact that the intersection of S and
T may not be empty.

Definition Let k and \ denote cardinal numbers. Let S and T be sets for which

|S| =k and |T| = A\

1) The sum k + X is the cardinal number of the disjoint union S U T.

2) The product k\ is the cardinal number of S x T.

3) The power x* is the cardinal number of the set of all functions from T to
s.0

We will not go into the details of why these definitions make sense. (For
instance, they seem to depend on the sets .S and 7, but in fact they do not.) It
can be shown, using these definitions, that cardinal addition and multiplication
are associative and commutative and that multiplication distributes over
addition.

Theorem 1.13 Let x, A and i be cardinal numbers. Then the following
properties hold:
1) (Associativity)

E+A+p) =K+ +pand c(Ap) = (kA)p
2) (Commutativity)
K+ A=A+ kKand kA = Ak
3) (Distributivity)
KA+ 1) = KA+ kp
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4) (Properties of Exponents)
a) KM= RrMRH
b) (K/)\)/L — K:)\/I
) (kRANF =rtAO

On the other hand, the arithmetic of cardinal numbers can seem a bit strange, as
the next theorem shows.

Theorem 1.14 Let x and \ be cardinal numbers, at least one of which is
infinite. Then

K+ A =r\ =max{k,\} O

It is not hard to see that there is a one-to-one correspondence between the power
set P(S) of a set S and the set of all functions from S to {0, 1}. This leads to
the following theorem.

Theorem 1.15 For any cardinal k
1) If|S| = k then |P(S)| = 2"
2) k<20

We have already observed that |N| = 8. It can be shown that ¥, is the smallest
infinite cardinal, that is,

Kk <Ny = Kk isanatural number

It can also be shown that the set R of real numbers is in one-to-one
correspondence with the power set P(N) of the natural numbers. Therefore,

R = 2%

The set of all points on the real line is sometimes called the continuum and so
2% is sometimes called the power of the continuum and denoted by c.

The previous theorem shows that cardinal addition and multiplication have a
kind of “absorption” quality, which makes it hard to produce larger cardinals
from smaller ones. The next theorem demonstrates this more dramatically.

Theorem 1.16

1) Addition applied a positive countable number of times or multiplication
applied a finite number of times to the cardinal number W, yields N.
Specifically, for any nonzero n € N, we have

Ny - Ry =Ny and Ng =Ny
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2) Addition and multiplication applied a positive countable number of times to
the cardinal number 2% yields 2. Specifically,

Ry - N0 — 9N (2N<))No — 9% O
Using this theorem, we can establish other relationships, such as
Mo < (NO)ND < (2N0)N0 — 9%
which, by the Schréder—Bernstein theorem, implies that
(NO)NU — 9%

We mention that the problem of evaluating x” in general is a very difficult one
and would take us far beyond the scope of this book.

We conclude with the following reasonable-sounding result, whose proof is
omitted.

Theorem 1.17 Let {Ay | k € K} be a collection of sets with an index set of
cardinality |K| = k. If |Ar| < Aforallk € K, then

U

keK

< Ak O

Miscellanea

The following section need not be read until it is referenced much later in the
book. 1f p is prime, then we will have occasion to write an integer « satisfying

o = 1mod p

in the form a =1+ bp' where pfb. However, the case where p =2 and
a=1+2d with d odd is exceptional. In this case, we will need to write
a = —1+b2!, where b is odd and ¢ > 2. This will ensure that ¢ > 2 when
p = 2. Accordingly, it will be useful to introduce the following terminology.

Definition Let o« = 1 mod p.
1) Ifp=2and a =1+ 2d where d is odd, that is, if « = 3mod 4, then the p-
standard form of « is

a=—1+0bp", pfbandt>2
2) Inall other cases, the p-standard form of « is
a=1+bp", pfb O

Theorem 1.18 Let p be a prime and let d > 1. Let 0,(n) denote the largest
exponent e for which p® divides n.
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1) Forl<k<yp,

In particular,

andifp>2andk > 2orifp=2andk > 3, then
pd
k

a=e+bp

d—k+2

2) If'the p-standard form of « is

then for any d > 0,
apd _ epd + wdert

where p f w.
Proof. For part 1), write

<pd>_ﬁ(pd—1)...(pd—u)mpd—(k—1)
k) k1 u k—1

where 1 <u < k — 1. Now, if 1 <i < d, then p | u if and only if p’ | p? — u
and so

T

(f) & n<d-—oyk)

The rest follows from the fact that p¥ | k implies v < k — 1 and if p > 2 and
k>2orif p=2andk > 3, then p* | k implies v < k — 2.

For part 2), if the p-standard form for o is o = e + bp', then

d

P 1
apd _ (e + bpt)pd _ epd + epd_lbpd-H% + Z (;l;C )epd_kbkptk
k=2

where the terms in the final sum are 0 if d = 0. If p > 2, then part 1) implies
that the kth term in the final sum is divisible by p to the power

d—k+2+th=d+t+1+[1+t(k—1)—k>d+t+1

If p =2, then ¢t > 2 and so the kth term in the final sum is divisible by p to the
power
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d—k+1+th=d+t+1+[t(k—1) -k >d+t+1

d+t+1 and so

Hence, in both cases, the final sum is divisible by p
ol = et 4 eV lppttt 4 optttl = ob' g (e 1 )

where p f (e”' b + vp).0

17



Chapter 2
Groups and Subgroups

Operations on Sets

We begin with some preliminary definitions before defining our principal object
of study. For a nonemtpy set X, the n-fold cartesian product is denoted by
X'=Xx---xX
~
n factors
Definition Let X be a nonempty set and let n be a natural number.
1) Forn > 1, an n-ary operation on X is a function

X=X

2) A l-ary operation f: X — X is called a unary operation on X.

3) A 2-ary operation f: X x X — X is called a binary operation on X.

4) A nullary operation on X is an element of X.

An m-ary operation, for any natural number n, is referred to as a finitary
operation. ]

It is often the case that the result of applying a binary operation is denoted by
juxtaposition, writing ab in place of f(a,b).

Definition I/ f: X" — X is an n-ary operation on X and if Y is a nonempty
subset of X, then the restriction of f to Y™ is a map f|y»:Y" — X. We say that
Y is closed under the operation f if f|ly» maps Y™ into Y. For a nullary
operation v € X, this means that x € Y.[J

Groups
We are now ready to define our principal object of study.
Definition A4 group is a nonempty set G, called the underlying set of the

group, together with a binary operation on G, generally denoted by
Juxtaposition, with the following properties:

S. Roman, Fundamentals of Group Theory: An Advanced Approach, 19
DOI 10.1007/978-0-8176-8301-6_2, © Springer Science+Business Media, LLC 2012
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1) (Associativity) Forall a, b, ¢ € G,
(ab)c = a(bc)

2) (Identity) There exists an element 1 € G, called the identity element of the
group, for which

la=al =a

foralla € G.
3) (Inverses) For each a € G, there is an element o~ € G, called the inverse
of a, for which

Two elements a,b € G commute if
ab = ba

A group is abelian, or commutative, if' every pair of elements commute. A
group is finite if the underlying set G is a finite set; otherwise, it is infinite. The
order of a group is the cardinality of the underlying set G, denoted by o(G) or
|G|.O

It is customary to use the phrase “G is a group” where G is the underlying set
when the group operation under consideration is understood.

We leave it to the reader to show that the identity element in a group G is
unique, as is the inverse of each element. Moreover, for a,b € G,

(@) '=a and (ab)'=b"la!
In a group G, exponentiation is defined for integral exponents as follows:

1 ifn=0
n_ ) a--a ifn >0

n factors

(@)™t ifn<0

When G is abelian, the group operation is often (but not always) denoted by +
and is called addition, the identity is denoted by 0 and called the zero element
of the group and the inverse of an element a € G is denoted by —a and is called
the negative of a. In this case, exponents are replaced by multiples:

0 ifn=20

a+---+a ifn>0
na = %/_/
n terms

—(—na) ifn <0
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The Order of an Element

Definition Let G be a group.
1) Ifa € G, then any integer n for which

a" =1

is called an exponent of a.

2) The smallest positive exponent of a € G, if it exists, is called the order of a
and is denoted by o(a). If a has no exponents, then a is said to have infinite
order. An element of finite order is said to be periodic or torsion.

3) An element of order 2 is called an invelution.[]

Theorem 2.1 Let G be a group. If a € G has finite order o(a), then the
exponents of a are precisely the integral multiples of o(a).

Proof. Let n = o(a). Any integral multiple of n is clearly an exponent of a.
Conversely, if a™ = 1, then m = gn + r where 0 < r < n. Hence,

1= am — aqTHrr — aqnar — ar
and so the minimality of n implies that » = 0, whence m = ¢n is an integral

multiple of n.CJ

Involutions arise often in the theory of groups. Proof of the following result is
left as an exercise.

Theorem 2.2 A group in which every nonidentity element is an involution is
abelian.]

As we will see in a moment, a group may have elements of finite order and
elements of infinite order.

Definition A group G is said to be periodic or torsion if every element of G is
periodic. A group that has no periodic elements other than the identity is said to
be aperiodic or torsion free.[]

It is not hard to see that every finite group is periodic. On the other hand, as we
will see, there are infinite periodic groups, that is, an infinite group need not
have any elements of infinite order.

Examples
Here are some examples of groups.

Example 2.3 The simplest group is the trivial group G = {1}, which contains
only the identity element. All other groups are said to be nontrivial.(]
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Example 2.4 The integers Z form an abelian group under addition. The identity
is 0. The rational numbers QQ form an abelian group under addition and the
nonzero rational numbers Q* form an abelian group under multiplication. A
similar statement holds for the real numbers R and the complex numbers C (and
indeed for any field F').OJ

Example 2.5 (Cyclic groups) If a is a formal symbol, we can define a group G
to be the set of all integral powers of a:

Cux(a) = {a' | i€ Z}

where the product is defined by the formal rules of exponents:

a'a’ =a™
This group is also denoted by C, or (a) and is called the cyclic group
generated by a. The identity of (a) is 1 = a°.

We can also create a finite group C),(a) of positive order n by setting
Co(a)={1=d"a,a® ...,a" '}

where the product is defined by addition of exponents, followed by reduction
modulo n:

aiaj _ a(i+j) modn

This defines a group of order n, called a cyelic group of order n. The inverse
of a* is a{~¥)m°d" The group C,,(a) is also denoted by C, or (a). Note that for
any integer k, the symbol a* refers to the element of C,(a) obtained by
multiplying together &k copies of a. Hence,

ak _ akmod n

and so for any integers k and 7,

k kmodn ,jmodn ak mod n+jmodn

a“d’ = a a — k+j)modn __ ak+]

= a(
Thus, we can feel free to represent the elements of C,(a) using all integral
powers of a and the rules of exponents will hold, although we must remember
that a single element of C),(a) has many representations as powers of a. The
groups C,(a) or Cy(a) are called cyclic groups.Od

Example 2.6 The set
Z,={0,...,n—1}

of integers modulo a positive integer n is a cyclic group of order n under
addition modulo n, generated by the element 1, since k € Z,, is the sum of k
ones. The notation Z/nZ is preferred by some mathematicians since when p is a
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prime, the notation Z, is also used for the p-adic integers. However, we will not
use it in this way.

If p is a prime, then the set
Z,=A{1,...,p—1}

of nonzero elements of Z, is an abelian group under multiplication modulo p.
Indeed, by definition, the set F™* of nonzero elements of any field F' is a group
under multiplication. It is possible to prove (and we leave it as an exercise) that
F* is cyclic if and only if F' is a finite field.

More generally, the set R* of units of a commutative ring R with identity is a
multiplicative group. In the case of the ring Z,, this group is

Z,={a€Z,|(a,n)=1}

To see directly that this is a group, note that for each a € Z}, there exists
integers x and y such that za + yn = 1. Hence, xa = 1 modn, thatis, z € Z; is
the inverse of a in Z;. The group Z; is abelian and it is possible to prove
(although with some work; see Theorem 4.43) that Z; is cyclic if and only if

n = 2,4, p° or 2p°, where p is an odd prime.[]

Example 2.7 (Matrix groups) The set M,, ,(F') of all n x m matrices over a
field F' is an abelian group under addition of matrices. The set GL(n, F') of all
nonsingular n X n matrices over F' is a nonabelian (for n > 1) group under
multiplication, known as the general linear group. The set SL(n, F') of all
n X n matrices over F with determinant equal to 1 is a group under
multiplication, called the special linear group.[]

Example 2.8 (Functions) Let G be a group and let X be a nonempty set. The
set GX of all functions from X to G is a group under product of functions,
defined by

(fo)(z) = f(x)g(x)

for all € X. The identity in G is the function that sends all elements of X to
the identity element 1 € G. This map is often referred to as the zero map. (We
cannot call it the identity map!) Also, the set F of all bijective functions on G is
a group under composition.]

Example 2.9 The set
G={(erez,...) | e € Zy}

of all infinite binary sequences, with componentwise addition modulo 2, is an
infinite abelian group that is periodic, since
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2(61,62,...) = (0,0,)
and so every nonidentity element has order 2.1

The External Direct Product of Groups

One important method for creating a new group from existing groups is as
follows. If Gy, ... , G}, are groups, then the cartesian product

P=G x---xG@G,
is a group under componentwise product defined by
(a1, a,)(b1,...,by) = (a1by, ..., apby)

where a;,b; € G;. The group P is called the external direct product of the

groups G, ...,G,. Although the notation X is often used for the external
direct product of groups, we will use the notation
G X---XG,

to distinguish it from the cartesian product as a set.

As an example, the direct product
V = Cy(a) W COy(b) = {(1,1),(a,1),(1,0), (a,b)}

of two cyclic groups of order 2 is called the (Klein) 4-group (and was called
the Vierergruppe by Felix Klein in 1884). We will generalize the direct
product construction to arbitrary (finite or infinite) families of groups in a later
chapter.

Symmetric Groups

Let X be a nonempty set. A bijective function from X to itself is called a
permutation of X. The set Sy of all permutations of X is a group under
composition, with order | X|! when X is finite. Also, Sx is nonabelian for
| X| > 3. The group Sy is called the symmetric group or permutation group
on the set X. The group of permutations of the set I,, = {1,...,n} is denoted
by S, and has order n!.

We will study permutation groups in detail in a later chapter, but we want to
make a few remarks here for use in subsequent examples. (Proofs will be given

later.) If ay, ..., a; are distinct elements of X, the expression
(al' . '(lk)
denotes the permutation that sends a; to a;41 fori =1,...,k — 1 and sends the

last element ay. to the first element a;. All other elements of X are held fixed.
This permutation is called a k-cycle in Sy. For example, in Sy 234 the
permutation (134) sends 1 to 3, 3 to 4, 4 to 1 and 2 to itself. A 2-cycle (ab) is
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called a transpeosition, since it simply transposes a and b, leaving all other
elements of X fixed. We can now see why a permutation group with at least
three elements a, b and ¢ is nonabelian, since for example

(ab)(ac) # (ac)(ab)

(Composition is generally denoted by juxtaposition as above.)

The support of a permutation o € Sy is the set of elements of X that are
moved by o, that is,

supp(0) = {zx € X | ox # =}

Two permutations o,7 € Sx are disjoint if their supports are disjoint. In
particular, two cycles (a;---ax) and (by---b,,) are disjoint if the underlying sets
{ai,...,ar} and {by,...,b,} are disjoint. It is not hard to see that disjoint
permutations commute, that is, if o and 7 are disjoint, then o7 = 70.

It is also not hard to see that every permutation o is a product (composition) of
pairwise disjoint cycles, the product being unique except for the order of factors
and the inclusion of 1-cycles. In fact, this is a direct result of the fact that the
relation

k

r=y if oz =yforsomek € Z

is an equivalence relation and thereby induces a partition on I,,. (The reader is
invited to write a complete proof at this time or to refer to Theorem 6.1.) This
factorization is called the cycle decomposition of o. The cycle structure of o is
the number of cycles of each length in the cycle decomposition of ¢. For
example, the permutation

o =(123)(456)(78)(9)

has cycle structure consisting of two cycles of length 3, one cycle of length 2
and one cycle of length 1.

It is easy to see that for | X| > 2, any cycle in Sx is a product of transpositions,
since

(a1---a,) = (a1 ay)(ay ap—1)---(ay az)(ay az)
and
(a) = (ab)(ab)

Hence, the cycle decomposition implies that every permutation is a product of
(not necessarily disjoint) transpositions. Although such a factorization is far
from unique, we will show that the parity of the number of transpositions in the
factorization is unique. In other words, if a permutation can be written as a
product of an even number of transpositions, then all factorizations into a
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product of transpositions have an even number of transpositions. Such a
permutation is called an even permutation. For example, since

(134) = (14)(13)

the permutation (134) is even. Similarly, a permutation is odd if it can be
written as a product of an odd number of transpositions. For example, the
equation above for (ai---a,) shows that a cycle of odd length is an even
permutation and a cycle of even length is an odd permutation.

One of the most remarkable facts about the permutation groups is that every
group has a “copy” that sits inside (is isomorphic to a subgroup of) some
permutation group. For example, the Klein 4-group sits inside Sy as follows:

V = {1, (12)(34), (13)(24), (14)(23)}

This is the content of Cayley's theorem, which we will discuss later. Thus, if we
knew “everything” about permutation groups, we would know “everything”
about all groups!

The Order of a Product

One must be very careful not to jump to false conclusions about the order of the
product of elements in a group. For example, consider the general linear group
G L(2,C) of all nonsingular 2 x 2 matrices over the complex numbers. Let

0 -1 0 1
A—<1 0) and B—(_1 _1>

We leave it to the reader to show that A and B have finite order but that their
product AB has infinite order. On the other extreme, we have o(aa™') =1
regardless of the value of o(a). Thus, the order of a product of two nonidentity
elements can be as small as 1 or as large as infinity.

On the other hand, the following key theorem relates the order of a power a* of
an element a € G to the order of a. It also tells us something quite specific
about the order of the product of commuting elements.

Theorem 2.10 Let G be a group and a,b € G.
1) Ifo(a) =n, thenforl <k <n,

o(ak)

- n
 ged(n, k)

In particular,

(a) = {a") & ged(o(a),k) =1
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2) Ifo(a) =nandd|n, then

ody=d & k= 7’% where ged(r,d) =1

3) Ifaand b commute, then
lem(o(a),o(B)) [
wedlofa) o)) | 2@ [Tem(o(a). o)

In particular,

ged(o(a),o(b)) =1 = o(ab) = o(a)o(b)

27

Proof. For part 1), Theorem 2.1 implies that (a*)™ = 1 if and only if n | km.

But

km n

n
nlkm < ged(n, k) | ged(n, k) < gcd(n, k) "

and so the smallest positive exponent m of a* is n/ged(n, k). For part 2),

according to part 1), the equation o(a*) = d is equivalent to

n p—
ged(n, k)
which is equivalent to ged(n, k) = n/d, or
n n
god(d . k) = &

But this holds if and only if k& = r(n/d) with ged(d,r) = 1.

For part 3), let o(a) = o and o(b) = 3. Then (ab)” = a” has order
oY

N =o(a") = ————
of(ab)’) = ofa) = gt

But o((ab)?) divides o(ab) and so
a

ged(a, 9)

A symmetric argument shows that

‘ o(abd)

B
ged(a, B)

and since these divisors are relatively prime, we have

‘ o(ab)
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of
ged(a, o | 1)

But a3/(a, 8)% = lem(a, 3)/ged(a, 3).0

Corollary 2.11 Let G be a group and let a € G. If o(a) = uv, where (u,v) =1,
then

a = a1a9

where ay,as € (a) and o(a1) = w and o(az) = v.
Proof. Since (u,v) =1, there exist integers s and ¢ for which su + tv = 1.
Hence,

a = aqurtv — asuatv

Then (su,v) = 1 implies that o(a*") = v and similarly, o(a'’) = «.0
Orders and Exponents

Let G be a group. We have defined an exponent of a € GG to be any integer k
for which a* = 1. Here is the corresponding concept for subsets of a group.

Definition I S C G is nonempty, then an integer k for which s* =1 for all
s € S is called an exponent of S. If S has an exponent, we say that S has finite
exponent.[]

Note that many authors reserve the term exponent for the smallest such positive
integer k. As with individual elements, if the subset S has an exponent, then all
exponents of S are multiples of the smallest positive exponent of S

Theorem 2.12 Let G be a group. If a nonempty set S of G has finite exponent,
then the set of all exponents of S is the set of all integer multiples of the smallest
positive exponent of S.O

For a finite group G, the smallest exponent minexp(G) is equal to the least
common multiple lemorders(G) of the orders of the elements of G. Thus, if
maxorder(G) denotes the maximum order among the elements of GG, then

maxorder(G) | minexp(G)

and there are simple examples to show that equality may or may not hold. (The
reader is invited to find such examples.) However, in a finite abelian group,
equality does hold.
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Theorem 2.13
1) If G is a finite group, then

maxorder(G) | minexp(G) = lemorders(G)

2) If G is a finite abelian group, then all orders divide the maximum order and
s0

maxorder(G) = minexp(G) = lemorders(G)

and G is cyclic if and only if minexp(G) = o(G).
Proof. For the proof of part 2), let @ € G have maximum order m. Suppose to
the contrary that there is a b € G for which o(b) J m. We will find an element of
G of order greater than m, which is a contradiction. Since o(b) / m, there is a
prime p for which

o(a)=m=7pv and o(b) = pu
where p fu, pfvandi > j. Then

o(a”i) = g and o(b") = p'

Since G is abelian and these orders are relatively prime, we have
o(a’/b“) =mpl >m

as promised. The last statement of the theorem follows from the fact that a finite
group G is cyclic if and only if it has an element of order o(G').Od

Conjugation
Let G be a group. If a, b € G, then the element
b = aba !

is called the conjugate of b by a. The conjugacy relation is the binary relation
on G defined by

a=0b if b=a"forsomex € G

and if a = b, we say that a and b are conjugate. Conjugacy is an equivalence
relation on G, since an element is conjugate to itself and if a = b” then b = ar
and finally, if b = a” and ¢ = 1Y, then

c="b"=a"

Note that some authors define the conjugate of b by a as a~'ba, so care must be
taken when reading other literature.

The function 7,: G — G defined by

,yax — 33{1'
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is called conjugation by a. Conjugation is very well-behaved: It is a bijection
and preserves the group operation, in the sense that

Ya(ry) = (Vo) (VoY)

Thus, in the language of a later chapter, v, is a group automorphism. The maps
v, are called inner automorphisms and the set of inner automorphisms is
denoted by Inn(G). We will have more to say about Inn(G) in later chapters.

Theorem 2.14 Let G be a group and let a,b,x € G. Then
1) Conjugation is a bijection that preserves the group operation, that is,
@)= ) and (ay) =y
forall z,y € G.
2) The conjugation map satisfies
(xb>a, _ ma,b
forallz € G.
3) Conjugacy is an equivalence relation on G. The equivalence classes under
conjugacy are called conjugacy classes.[]
We can also apply conjugation to subsets of G. If S C G and a € G, we write
VS =84={s"|se S}

The previous rules generalize to conjugation of sets. In fact, for any 5,7 C G
and a,b € G, we have

(8 =8 and S*=T"<S=T

Conjugation in the Symmetric Group
In general, it is not always easy to tell when two elements of a group are

conjugate. However, in the symmetric group, it is surprisingly easy.

Theorem 2.15 Let S, be the symmetric group.
1) Leto € S,. Forany k-cycle (a;---ay,), we have

(ar-a)" = (cay---oay)

Hence, if T = c;---c; is a cycle decomposition of T, then
77 =cf--cf
is a cycle decomposition of 7°.
2) Two permutations are conjugate if and only if they have the same cycle
structure.
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Proof. For part 1), we have

- oa; 1<k

Also, if b # oa; for any i, then 0~ 'b # a; and so
(ar---ar)°b = o(ar---ap) (o 'b) = a(c ') = b
Hence, (a;---ay)? is the cycle (oa;---oay). For part 2), if 7 = ¢+ ¢, is a cycle
decomposition of 7, then
T =CpCy
and since ¢ is a cycle of the same length as ¢;, the cycle structure of 77 is the
same as that of 7.
For the converse, suppose that o and 7 have the same cycle structure. If ¢ and
are cycles, say
oc=(a---ay,) and 7= (by---by)
then any permutation \ that sends a; to b; satisfies c* = 7. More generally, if
oc=c¢, and T=dy -d,,

are the cycle decompositions of ¢ and 7, ordered so that ¢; has the same length
as dj. for all k, we can define a permutation A that sends the element in the ith
position of ¢, to the element in the ith position of dj,. Then o* = 7.00

The Set Product

It is convenient to extend the group operation on a group GG from elements of G
to subsets of G. In particular, if S and 7" are subsets of GG, then the set product
ST (also called the complex product, since subsets of a group are called
complexes in some contexts) is defined by

ST ={st|seS,teT}
As a special case, we write {a}S as a5, that is,
aS ={as|se S}

The set product is associative and distributes over union, but not over
intersection. Specifically, for S,T,U C G,
S(TU) = (ST)U
S(ruvU)=8TUSU and (TUU)S=TSUUS
S(IrNU)CSTNSU and (TNU)SCTSNUS

Also,
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aS=adl & S=T

Of course, we may generalize the set product to any nonempty finite collection
S1,...,.5, of subsets of G by setting

S1++:Sp = {518, | 8; € Si}
On the other hand, if k is a positive integer, then it is customary to let
Sh={s"|se€ S}
Thus, in general, S? is a proper subset of the set product SS.
Subgroups
The substructures of a group are defined as follows.
Definition 4 nonempty subset H of a group G is a subgroup of GG, denoted by
H < G, if H is a group under the restricted product on G. If H < G and

H # G, we write H < G and say that H is a proper subgroup of G. If
Hy,..., H, are subgroups of G, we write H1, ..., H, < G.OI

For example, Z < Q, since Z is an abelian group under addition. However, Z,
is not a subgroup of Z, although it is a subset of Z and it is a group as well: The
issue is that Z,, is not a group under ordinary addition of integers.

However, if H is a subgroup under the first definition above, then H satisfies
the second definition. To see this, multiplying the equation 151y = 1y by the
inverse of 1y in G gives 1y = 1¢. Thus, for all h € H, we have hhy' =
1 = hhg' andso hy' = hil.

There is another criterion for subgroups that involves checking only closure.
Proofis left to the reader.

Theorem 2.16
1) A nonempty subset X of a group G is a subgroup of G if and only if X is
closed under the operations of taking inverses and products, that is, if and

only if
reX = z'leX
and

z,yeX = xzyeX

2) A nonempty finite subset X of a group G is a subgroup of G if and only if it
is closed under the taking of products.C]
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Theorem 2.17 The intersection of any nonempty family of subgroups of a group
G is a subgroup of G.OO0

Example 2.18 The set A, of all even permutations in .S,, is a subgroup of 5.
To see that A,, is closed under the product, if o and 7 are even, then they can
each be written as a product of an even number of transpositions. Hence, o7 is
also a product of an even number of transpositions and so is in A,. The
subgroup A, is called the alternating subgroup of 5,.

For n > 2, the alternating subgroup A,, has order n!/2, that is, A4, is exactly
half the size of S,,. To see this, note that o € S,, is odd if and only if (12)0 is
even and T is even if and only if (12)7 is odd. Hence, the map o — (12)c is a
self-inverse bijection between A,, and the set of odd permutations.[]

A group has many important subgroups. One of the most important is the
following.

Definition The center Z(G) of a group G is the set of all elements of G that
commute with all elements of G, that is,

Z(G)={a € G|ab=baforalb c G}
A group G is centerless if Z(G) = {1}. A subgroup H of G is central if H is

contained in the center of G.J

Two subgroups of a group G can never be disjoint as sets, since each contains
the identity of G. However, it will be very convenient to introduce the following
terminology and notation.
Definition 7wo subgroups H and K of a group G are essentially disjoint if
HnNK={1}

We introduce the notation

Heoe K
to denote the set product of two essentially disjoint subgroups and refer to this
as the essentially disjoint product of H and K.[1
Note that if o(H) = n and o(K) = m, then

o(H e K)=nm

The Dedekind Law

The following formula involving the intersection and set product is very handy
and we will use it often. The simple proof is left to the reader.
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Theorem 2.19 Let G be a group and let A, B,C < G with A < B.
1) (Dedekind law)

A(BNC)=BNAC
2)
AnNnC=BnNCand AC=BC = A=B8B
Proof. We leave proof of the Dedekind law to the reader. For part 2),
A=AANC)=ABNC)=BNAC=BNBC =8B d

We leave it to the reader to find an example to show that the condition that
A < B is necessary in Dedekind's law, that is, A(BNC) is not necessarily
equalto ABN AC unless A < B.

Subgroup Generated by a Subset

If G is a group and a € G, then the cyclic subgroup generated by a is the
subgroup

(a) = {a" | k e Z}
Ifo(a) = n < oo, then a* = a*™" and so
(a) ={1,a,...,a" "}

Note that (a) is the smallest subgroup of G containing a, since any subgroup of
G containing ¢ must contain all powers of a.

More generally, if X is a nonempty subset of GG, then the subgroup generated
by X, denoted by (X), is defined to be the smallest subgroup of G containing
X and X is called a generating set for (X). Such a subgroup must exist; in fact,
Theorem 2.17 implies that (X) is the intersection of all subgroups of G

containing X. The following theorem gives a very useful look at the elements of
(X).

Theorem 2.20 Let X be a nonempty subset of a group G and let X' =
{a7t |z € X}. Let
W= (XuXx1

be the set of all words over the alphabet X U X 1.
1) If we interpret juxtaposition in W as the group product in G and the empty
word as the identity in G, then (X) =W and so

(X) ={af" -y |z € X,e; € Z,n >0} U{1}

n
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2) If G is abelian, then we can collect like factors and so

(X) =A{af" oy | x € X,z # xjfori# j,e; € Z,n >0} U{1l}

n

Proof. It is clear that W C (X). It is also clear that W is closed under product.
As to inverses, if w =z 2% € W then w! =z, % 2" € W. Hence,
W < (X). However, since X C W, it follows that (X) <W and so
W =(X).0

Although the previous description of (X) is very useful, it does have one
drawback: Distinct formal words in the set W may be the same element of the
group (X), when juxtaposition in W is interpreted as the group product. For
instance, the distinct words 2%z ! and z are the same group element of (X). We
will discuss this issue in detail when we discuss free groups later in the book:
The matter need not concern us further until then.

Finitely-Generated Groups

A group G is finitely generated if G = (X) for some finite set X. If G has a
generating set of size n, then G is said to be n-generated or to be an 7-
generator group.

The Burnside Problem

There is a fascinating set of problems revolving around the following question.
A finite group G is obviously finitely generated and periodic. In 1902, Burnside
[39] asked about the converse: Is a finitely-generated periodic group finite? This
is the general Burnside problem.

A negative answer to the general Burnside problem took 62 years, when Golod
[40] showed in 1964 that there are infinite groups that are 3-generated and
whose elements each have order a power of a fixed prime p (the power
depending upon the element). However, this still leaves open some refinements
of the general Burnside problem. For example, the Golod groups have elements
of arbitrarily large order p", that is, they do not have finite exponent, as do finite
groups.

The Burnside problem is the problem of deciding, for finite integers n and m,
whether every n-generated group of exponent m is finite. This problem has
been the subject of a great deal of research since Burnside first formulated it in
1902. For example, it has been shown that there are infinite, finitely-generated
groups of every odd exponent m > 665 (Adjan [38], 1979) and of every
exponent of the form 2#m, where k > 48 (Ivanov [42], 1992).

The restricted Burnside problem, formulated in the 1930's, asks whether or
not, for integers n and m, there are a finite number (up to isomorphism) of finite
n-generated groups of exponent m. In 1994, Zelmanov answered this question
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in the affirmative. For more on the Burnside problem, we refer the reader to the
references located at the back of the book.

Subgroups of Finitely-Generated Groups

A far simpler question related to finitely-generated groups is whether every
subgroup of a finitely-generated group is finitely generated. We will show when
we discuss free groups that for arbitrary groups this is false: There are finitely-
generated groups with subgroups that are not finitely generated. However, in the
abelian case, this cannot happen.

Theorem 2.21 Any subgroup of an n-generated abelian group A is also n-
generated. In particular, a subgroup of a cyclic group is cyclic.

Proof. Let H < A. The proof is by induction on n. If n =1, then A = (a) is
cyclic. Let k& be the smallest positive exponent for which a* € H. Then
<a""’> < H.However, if o € H, then m = gk + r where 0 < r < k and so

a"=a" " =a"d") e H
which can only happen if r = 0, whence a™ = (a*)? € (a*). Thus, H = (a*) is

also cyclic and so the result holds for n = 1.

Assume the result is true for any group generated by fewer than n > 2 elements.
Let A= (x1,...,x,) and let A, 1 = (x1,...,2,-1). By assumption, every
subgroup of A, ; is (n — 1)-generated, in particular, there exist h; € H for
which

HNO A1 = (h,... hoy)

Now, every h € H has the form h = az{, wherea € A, ; ande € Z. If e =0
forall h € H, then H < A,,_; and the inductive hypothesis implies that H is at
most (n — 1)-generated. So let us assume that e # 0 for some h € H and let s
be the smallest positive integer for which h, = bz} € H andb € A,_;.

For an arbitrary h = azf € H, where a € A,_, write e = gs+r where
0 <r < s. Then

h,%h = (bx)) (axt) = ab 12t = ab™a,

Since h;%h € H and ab™? € A,,_;, the minimality of s implies that » = 0 and
so h, %h € A, 1, thatis, h € (A,_1, h,). Hence,

H g <Anfla hn> = <h13 ceey hnfly hn> g H
and so
H = <h1; ceey hnfly hn>

is n-generated.[d
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The Lattice of Subgroups of a Group
Let G be a group. The collection sub(G) of all subgroups of G is ordered by set

inclusion. Moreover, sub(G) is closed under arbitrary intersection and has
maximum element G. Hence, Theorem 1.7 implies that sub(G) is a complete
lattice, where the meet of a family F = {H; | i € I} is the intersection

NF = \H=()H

i€l el

and the join of F is the smallest subgroup of G that contains all of the
subgroups in F, that is,
\/F=VH = {S<G|H <S8 foralli}

icl

It is also clear that the join of F is the subgroup generated by the union of the
H;'s. Specifically, since H; ' = H;, it follows that the subgroup generated by F
is the set of all words over the union | JH;:

\/Hi = (UH,) = {ail---ain

il il

a;, € Hik,n > 0}

The join of F is also denoted by (F) and (H; | i € I).

Note that, in general, the union of subgroups is not a subgroup. (The reader may
find an example in the group of integers.) However, if

Hy <H)<--
is an increasing sequence of subgroups of G (generally referred to as an
ascending chain of subgroups), then it is easy to see that the union (JH; is a
subgroup of G. More generally, the union of any directed family of subgroups is

a subgroup. (A family D of subgroups of G is directed if for every A, B € D,
there is a C' € D for which A < C'and B < C'.)

Theorem 2.22 Let G be a group. Then sub(G) is a complete lattice, where meet
is intersection and join is given by

\/ H, = <U Hi>

iel icl
Also, sub(Q) is closed under directed unions.[]
Hasse Diagrams

For a finite group of small order, we can sometimes describe the subgroup
lattice structure using a Hasse diagram, which is a diagram of a partially
ordered set that shows the covering relation.
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Example 2.23 The Hasse diagrams for the subgroup lattices of the group
Cy; ={1,a,a®a®} and the 4-group V = {1,a,b,ab} are shown in Figure
2.1.0

C, V.
TN
{1,a% (1.8} {1b} {1,ab}
) \{1}/
S(C,) S(V)
Figure 2.1

Maximal and Minimal Subgroups of a Group

The maximal and minimal subgroups of a group play an important role in the
theory. At this point, we simply give the definitions.

Definition Let G be a group and let H < G.

1) H is minimal if it is minimal in the partially ordered set of all nontrivial
subgroups of G' (under set inclusion).

2) H is maximal if it is maximal in the partially ordered set of all proper
subgroups of G (under set inclusion)..]

We emphasize that the term maximal subgroup means maximal proper
subgroup. Without the restriction to proper subgroups, G would be the only
“maximal” subgroup of G. A similar statement can be made for minimal
subgroups.

Subgroups and Conjugation
Since the conjugate of a subgroup is also a subgroup, conjugation sends sub(G)

to sub(G). In fact, it is an order isomorphism of sub(G).

Theorem 2.24 Let G be a group and let a € G. The conjugation map
Ya: SUb(G) — sub(G) defined by ~,H = H® is an order isomorphism on
sub(QG). Hence, v, preserves meet and join, that is,

Nm] =N

and

Va] =V
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Proof. It is clear that
A<B & A*<B®

and so 7, is an order embedding of G into itself. But any subgroup A of G has
the form A = 7,(,-1A) and so 7, is also surjective.[]

The Set Product of Subgroups
If H and K are subgroups of a group G, then the set product H K is not
necessarily a subgroup of GG, as the next example shows.
Example 2.25 In the symmetric group S3, let
H=1{,,(12)} and K ={:,(13)}

Then

HK ={,(12),(13),(132)}
However, (132)? = (123) is notin HK and so HK is not a subgroup of S5.0J
If HK 1is a subgroup of G, then since HK contains both H and K, we have
KH C HK. Conversely, if KH C HK, then HK < G, since

(hk) ' =k 'h' e KHC HK
and
(hiky)(hoks) = hi(k1ho)ks = hy(hgks)ks € HK

where h; € H and k; € K. Thus,

HK<G < KHCHK

Moreover, if KH C HK, then equality must hold, since every z € H K has the
form

r=(hk)'=k'h'CKH
forsome h € Hand k € K. Thus HK = KH.

Theorem 2.26 If H, K < G, then the following are equivalent:
) HK <@

2) KHCHK

3) KH = HK, thatis, H and K permute.

In this case, HK = H V K is the join of H and K in sub(G).O

The Size of HK

There is a very handy formula for the size of the set product HK of two
subgroups of a group G, which holds even if HK is not a subgroup of G.
Consider the surjective map f: H x K — H K defined by
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F(h, k) = hk

The inverse map f~! induces a partition P on H x K whose blocks are the sets
f!(z) for x € HK. Hence, there are | H K| blocks.

To detemine the size of these blocks, let x = hk. Then any element of H x K
can be written in the form (hd, ek) ford € H and e € K and

f(hd,ek) =2 & hdek=hk & de=1 & e=d"

and so
fHz)={(hd,d""k) |d € HN K}
Hence,
|f (@) = H N K]
and so

[H||K| = |H x K| = [HK|[H N K]

as cardinal numbers.

Theorem 2.27 If G is a group and H, K < G then
|H||K| = |HK|[H N K]|
as cardinal numbers. If H and K are finite subgroups, then

[H||K]

HK| = —+
| | |H N K|

O

The largest proper subgroups of a finite group G are the subgroups of order
0(G)/2. The formula in Theorem 2.26 tells us something about how these large
subgroups interact with other subgroups of G.

Theorem 2.28 Let G be a finite group and let H < G have order o(G) /2. Then
any subgroup S of G is either a subgroup of H or else
SN H|=|S]/2

In words, S lies either completely in H or half-in and half-out of H. Also, if
a€ S\ H, then

S=(SNH)Ua(SNH)
Proof. If S is not contained in H, then there isan a € S\ H and so
SH D HUaH
But the latter has size o(G) and so SH = G. Then
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[H||S| = |G||H N S|
implies that |S| = 2|H N S|. The rest follows easily.[d

Cosets and Lagrange's Theorem

Let H < G. For a € G, the set aH is called a left coset of H in GG. Similarly,
the set Ha is called a right coset of H in G. The set of all left cosets of H in G
is denoted by G/ H and the set of all right cosets is denoted H\G. We will refer
to left cosets simply as cosets, using the adjectives “left” and “right” only to
avoid ambiguity.

The map f:G/H — H\G defined by f(aH) = Ha ! is casily seen to be a
bijection and so
|G/H| = [H\G]
Since the multiplication map p,: H — aH defined by p,h = ah is a bijection,
all cosets of a subgroup H have the same cardinality:
aH| = |H]
To see that the distinct left cosets of H form a partition of GG, we define an
equivalence relation on G by
a=0b if aH=0H

Now, aH = bH implies that b € aH. Conversely, if b € aH, then b = ah for
some h € H and so bH = ahH = aH. Hence,

a=b & aH=bH <& beaH

and so the equivalence class containing a is precisely the coset af{. Thus, the
distinct cosets G/ H form a partition of G. In particular,

G| = |H]-|G/H]

as cardinal numbers. When G is finite, this is the content of Lagrange's
theorem.

Theorem 2.29 Let G be a group and let H < G.
1) The set G/H of distinct left cosets of H in G forms a partition of G, with
associated equivalence relation satisfying

a=b & aH=0H & beaH
This equivalence relation is called equivalence modulo H and is denoted
by
a =bmod H
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or just a = b when the subgroup is clear. Each element b € aH is called a
coset representative for the coset aH, since bH = aH.
2) All cosets have the same cardinality and

G| = [H|-|G/H]

as cardinal numbers.
3) (Lagrange's theorem) If G is finite, then

_ 6l
and so
o(H) [ o(G)

In particular, the order of an element a € G divides the order of G.O0

The converse of Lagrange's theorem fails: We will show later in the book that
the alternating group A, has order 12 but has no subgroup of order 6.

Note also that
a=bmodH <« blaceH

and so, in particular,

a=bmodH and a=bmodK = a=bmod(HNK)

Lagrange's Theorem and the Order of a Product
Lagrange's theorem tells us something about the order of certain products hk in

a group even when h and £ do not commute.

Theorem 2.30 Let G be a group and let H and K be finite subgroups of G,
with HK < G.
1) Ifhe Handk € K, then

o(hk) | o(H)o(K)
In particular, if (h)(k) < G is finite, then
o(hk) | o(h)o(k)
2) If N < G and o(N) is relatively prime to both o(H ) and o(K), then
HN=KN = H=K
Proof. For part 1), Lagrange's theorem implies that
o(hk) | o(HK) | o(H)o(K)
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For part 2), if h€ H then h=ka where k€ K and a € N. Hence
k7'h =a € N and so o(a) | o(K)o(H) and o(a) | o(N), whence a = 1, that
is, h=ke K. Hence, H <K and a symmetric argument shows that
H=K.O

Euler's Formula

The Euler phi function ¢ is defined, for positive integers n, by letting ¢(n) be
the number of positive integers less than n and relatively prime to n. The Euler
phi function is important in group theory since the cyclic group C), of order n
has exactly ¢(n) generators.

Theorem 2.31 (Properties of Euler's phi function)
1) The Euler phi function is multiplicative, that is, if m and n are relatively
prime, then

¢(mn) = ¢(m)d(n)
2) Ifpisaprimeandn > 1, then
(") =p"(p—1)

These two properties completely determine .
Proof. For part 1), consider the m x n matrix

(1 m+1 2m+1 -~ (n—1)m+1]

2 m+2 2m+2 - (n—1)m+2
A= 1

r m4r 2m+4+r - (n—1)m+r

|m 2m 3m mn |

Note that the entries in the rth row of A are relatively prime to m if and only if
(r,m) = 1. Thus, in looking for the entries that are relatively prime to both n
and m, we need consider only the ¢(m) rows in which (r,m) = 1. Note also
that the difference of any two distinct entries in the same row has the form

(km+7) = (jm +7) = (k = j)m

which is not divisible by n. Hence, the entries in any row form a complete set of
distinct representatives for the residue classes modulo n. Hence, modulo n, the
elements of the row are 0,1,...,n — 1, of which exactly ¢(n) are relatively
prime to n. In other words, each of the ¢(m) rows contains ¢(n) elements that
are relatively prime to mn.

For part 2), ¢(p") is the number of positive integers less than or equal to p™ that
are not divisible by p. The positive integers less than or equal to p” that are
divisible by p are
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{p’lap'2a"'ap'pn71}

which is a set of size p"~!. Hence, ¢(p") = p" — p"~1.00
Some simple group theory yields two famous old theorems from number theory.

Theorem 2.32 (Euler's theorem) Let n be a positive integer. If a is an integer
relatively prime to n, then

a®™ =1 modn

This formula is called Euler's formula.
Proof. Since Z! is a multiplicative group of order ¢(n), Lagrange's theorem
implies that Euler's formula holds for a € Z and since

(a+kn)®™ = o™ =1 modn

Euler's formula holds for all integers that are relatively prime to n.[]

Corollary 2.33 (Fermat's little theorem) If p is a prime and (a, p) = 1, then

a’ =amodp O

Cyclic Groups

Let us gather some facts about cyclic groups.

Theorem 2.34 (Properties of cyclic groups)
1) (Prime order implies cyclic) Every group of prime order is cyclic.
2) (Smallest positive exponent) A finite abelian group G is cyclic if and only

if minexp(G) = o(G).

3) (Subgroups) Every subgroup of a cyclic group is cyclic.

a) (Lattice of subgroups: infinite case) If (a) is infinite, then each power
a® with k > 0 generates a distinct subgroup (a*) and this accounts for
all subgroups of {(a).

b) (Lattice of subgroups: finite case) If o(a) = n then for each d | n, the
group (a) has exactly one subgroup S = (a™'*) of order d and exactly
o(d) elements of order d, all of which lie in S. This accounts for all
subgroups of (a). It follows that for any positive integer n,

n=>_ o

dln

4) (Characterization by subgroups) If a finite group G of order n has the
property that it has at most one subgroup of each order d | n, then G is
cyclic (and therefore has exactly one subgroup of each order d | n).



Groups and Subgroups 45

5) (Direct products) 4 direct product
G=GX---KG,
of finite order is cyclic if and only if each G, is cyclic and the orders of the
factors G; are pairwise relatively prime. Moreover, if di,...,d, are

pairwise relatively prime positive integers, then the following hold:
a) (Composition) If (a;) is cyclic of order d;, then

(a)® - K {a,) = {(a1,...,a,))
b) (Decomposition) [f G = (a) has order d = d;---d,, then
(@) = {a1)---(an)
where o(a;) = d; and
(i) 0 TT(as) = {1}
J#

forall i.
Proof. Part 2) follows from Theorem 2.12. For part 3b), the generators of the
cyclic groups of order d are the elements of order d. However, Theorem 2.9
implies that the elements of G of order d are

{7 | (r,d) = 1}

and these all lie in the one cyclic subgroup (a™/%) of order d. Hence, there can
be no other cyclic subgroups of order d. For the final statement, the sum de

¢(d) simply counts the elements of G by their order.

To prove 4), let D be the set of all orders of elements of G. If « € G has order
o(a) = d, then (a) is the unique subgroup in G of order d and so all elements of
order d must be in (a). It follows that there are exactly ¢(d) elements in G of

order d € D. Hence,
n=> o(d) <> ¢d)=n
deD dln

and so equality holds, whence D is the set of all divisors of n. In particular,
n € D and so G is cyclic.

For part 5), if each G; = (a;) is cyclic of order d;, where the d;'s are pairwise
relatively prime, then

o((a1,...,a,)) =lem(dy,...,d,) = [ [di = o(G)

and so G = {(ay,...,a,)) is cyclic. (This also proves part 5a).) Conversely,
suppose that GG is cyclic and for each a; € G}, let
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ai = (1,...71,012',1,...,1)
where a; is in the ith position. The subgroups
GV ={1}K-- R{I}KRGKR{1} K- K {1}

where G; is in the ith position are cyclic and if Gl = (@;) has order d;, then
G; = (a;) is also cyclic of order d;. Moreover,

Hdi = o(G) = minexp(G) = lem(dy, ..., d,)
and so the orders d; are pairwise relatively prime.
For part 5b), since G = (a) is abelian, the product P = (ai)---(a,) is a
subgroup of GG and since a;- - -a,, € P has order
o(ay-+-a,) =lem(dy,...,d,) = d = o({(a))

it follows that P = G. Finally, if

a € (a)n]](a)

J#

then o(«) divides d; as well as the product [],;d;, which are relatively prime
and so a = 1.0J

Homomorphisms of Groups

We will discuss the structure-preserving maps between groups in detail in a later
chapter, but we wish to introduce a few definitions here for immediate use.

Definition Let G and H be groups. A function 0:G — H is called a group
homomorphism (or just homomorphism) if’

o(ab) = (ca)(ob)

for all a,b € G. A bijective homomorphism is an isomorphism. When
0:G — H is an isomorphism, we write 0:G ~ H or simply G ~ H and say
that G and H are isomorphic.[]

A property of a group is isomorphism invariant if whenever a group G has this
property, then so do all groups isomorphic to GG. For example, the properties of
being finite, abelian and cyclic are isomorphism invariant.

More Groups

Let us look at a few classes of groups. As we have seen, some groups are given
names, for example, the cyclic groups, the symmetric groups, the quaternion
group and the dihedral groups (to be defined below). Actually, these are really
isomorphism classes of groups. For instance, if G '~ S,, then we might
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reasonably refer to G as a symmetric group as well. After all, it is the algebraic
structure that is important and not the labeling of the elements of the underlying
set.

Cyclic Groups

Theorem 2.33 describes the subgroup lattice structure of a cyclic group. Let us
take a somewhat closer look at this structure.

Let C,,(a) be cyclic of finite order n and let D,, be the lattice (under division) of
positive integers less than or equal to n that divide n. Then the map
o: D,, — sub(C,(a)) defined by od = Cy = (a™/?) is an order isomorphism
from D, to sub(C,,(a)), since ¢ is surjective and

d1 | dQ =4 (n/dg) | (’I’L/dl) =4 Cdl < Cdz

Thus, sub(C),(a)) is order isomorphic to D,,. For example, Figure 2.2 shows the
lattices D2y and sub(Cay(a)).

24 G

N 7N
T
LT
2 3 C C
N, Nl

1 {1}

Figure 2.2

For the infinite case, we must settle for an order anti-isomorphism. Let Z* be
the lattice of nonnegative integers under division. If G = (a) is an infinite cyclic
group, then the map o:Z" — sub(G) defined by ok = (a*) is an order anti-
isomorphism, since o is surjective and

Eln < (a") < (d")
Thus, sub((G) is order anti-isomorphic to Z™.
The Quaternion Group

Let GL(2,C) be the general linear group of all nonsingular 2 x 2 matrices over
the complex numbers. Let

=5 1)a=(p &)e=(5 0)e=(13)

Then it is easy to see that

A>=B>=(C%?= ABC = -1
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and
(- X=X(-I)=-X

for X = A, B or C. These equations are sufficient to determine all products in
the set

S={+1,+A +B, £C}
In particular,
AB=C, BC=A, AC=AAB=-B
and

BA=BBC =-C
CB=ABB=-A
CA=ABBC =—-AC =8B

Thus, S is a subgroup of GL(2,C) of order 8. Any group isomorphic to S is
called a quaternion group.

Note that we have defined the quaternion group in such a way that it is clearly a
group, since we have defined it as a subgroup S of the known group GL(2,C).
However, the quaternion group is often defined without mention of matrices. In
this case, it becomes necessary to verify that the definition does indeed
constitute a group.

On the other hand, we can leverage our knowledge of existing groups (in
particular S) by the following simple device: A bijection f:G — X from a
group GG to a set X can be used to transfer the group product from G to X by
setting

fla)f() = f(e) if ab=c
This makes X a group and f an isomorphism from G to X.

Now, the quaternion group is often defined as the set
Q = {17i7.ja ka _17 _ia _ja _k}
with multiplication defined so that 1 is the identity and
P=F =k =ik=-1 (2.35)
(-Dz=2(-1)= -z
for x =i, j,k. As with the set S defined above, these rules are sufficient to
define all products of elements of (). Rather than show directly that this forms a

group, that is, rather than verifying directly the associative, identity and inverse
properties, we can simply observe that the map f: .S — () defined by
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f) =1 f=1=-1
fA) =i, f(=A)=—i
f(B)=3j, f(=B)=-j
f(C) =k, f(=C)=—k

is a bijection and that
fXfY)=f(2) & XY=Z

for all X,Y,Z € S. Hence, the product in @ is the image of the product in .S
and so () is a group because S is a group. Note that the main savings here is in
the fact that we do not need to verify that the product in @ is associative. Of
course, someone had to verify that matrix multiplication is associative, and we
do appreciate that effort very much.

Equations (2.35) are equivalent to

2= P k=1
=k, jk =i ki=j
(-Dz=a(-1)=—=z

for =1, 7, k and many authors use these equations to define the quaternion
group.

In order to describe the quaternion group, it is not necessary to mention
explicitly all four elements —1, ¢, j and k, since —1 = i? and k = ij. In fact, Q
can also be defined as the group satisfying the following conditions:

Q=(i,j), o@Q)=8, i'=1 =75 ji=ij
To see this, if
—1:=14, k=ij and —z:=(-1)z

for x = 1,1, j, k, then

Q ={1,4,i%,4,4,i5,i%j,i°5}

={1,i,—1,—i,j, k,—j, —k}
Moreover, since ji = %7, it follows that
K =ijij=ii*jj = —1

and

ijk =ijij =ii%jj = j* = —1

Note that the conditions
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Q=1{(,j), i#j o(i)=4, =5, dji=j
imply that o(G) = 8 and so they provide perhaps the most succinct definition of

the quaternion group.

Subgroups of the Quaternion Group

The quaternion group has a simple subgroup lattice. We leave it as an exercise
to verify that the Hasse diagram for sub(Q)) is given by Figure 2.3. The
subgroup (—1) has order 2 and the other nontrivial proper subgroups have order

4.
/ Q\
<> <j> <k>
<-1>
{1}
Figure 2.3
The Dihedral Groups

Many groups come from geometry. Here is one of the most famous. First, we
need a bit of terminology. A rigid metion of the plane is a bijective distance-
preserving map of the plane. If P is a nonempty subset of the plane, then a
symmetry of P is a rigid motion of the plane that sends P onto itself.

Now, for n > 2, let P be a regular n-gon in the plane, whose center passes
through the origin. Figure 2.4 shows the cases n = 4 and n = 5.

1 1
5 2
4 2 LJ
3 4 3
Figure 2.4
(For n = 2, P is a line segment.) Label the vertices 1, ..., n in clockwise order,

with vertex 1 on the positive vertical axis. Let V' be the set of vertices of P.
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The symmetry group G,, of P consists of all symmetries of P. It is possible to
prove that the symmetries of P are the same as the symmetries of the vertex set
V and so we may regard GG, as the set of all symmetries of V.

In fact, each symmetry of V' is a permutation of V' and is uniquely determined
by that permutation. Indeed, it is customary to think of the elements of G,, as
permutations of the labeling set I,, = {1,...,n}, that is, as elements of S,,. Here
are a few simple facts concerning G,,, for n > 2.

1)

2)

Since any 6 € G, preserves adjacency, if éz =y then §(z +1) =y + 1 or
6(x + 1) = y — 1. We denote this by writing

b: (v, x4+ 1) = (yy+1)
or

(53(]},33+ 1) = (yvy_ 1)
In the former case, we say that § preserves orientation in the pair
(z,x + 1) and in the latter case, § reverses orientation. Note that addition
and subtraction are performed modulo n, but then O is replaced by n.
Hence, for example, 1 — 1 = n and so 1 and n are adjacent.
Any 6 € G, is uniquely determined by its value on two adjacent elements

(x,2+ 1) of I,. To see this, we may assume that n > 3. If § preserves
orientation on (z,z + 1), that is, if

bi(z,x+1) = (y,y +1)

then since 6(z + 2) is adjacent to 6(z + 1) =y + 1, we have §(z +2) =y
oré(z+2) =y + 2. But§(x +2) # §z = y and so

b:(x+1z+2)— (y+1,y+2)
Repeating this argument gives
S:(x+kae+k+1)— (y+ky+k+1)
for all k. A similar argument holds if 6 reverses orientation, showing that
b:(x+ke+k+1)— (y—ky—k—1)

Note also that if ¢ preserves orientation for one adjacent pair, then it
preserves orientation for all adjacent pairs and so we can simply say that ¢
either preserves orientation or reverses orientation.

The group G, contains both the n-cycle

p=(12-n)

which represents a clockwise rotation through 360/n degrees, and the
permutation o that represents a reflection across the vertical axis. If n is even,
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then

o= (2n)(3n—1)---(

|3
|3

+ 2)
and if n is odd then

o:(2n)(3n—1)---<

n+1n+1
— +1
2 2 +>

To see that (&, is generated by the rotation p and the reflection o, let 6 € G,,. If
0 preserves orientation, then

6:(n,1) — (k,k+1)
and so § = p¥ € (p, ). On the other hand, if § reverses orientation, then
6:(n,1) — (k,k—1)

and so the following hold:

To examine the group structure of G,,, we have
o(p)=n and o(o) =2
Also,
opop:(1,n) — (1,n)
and so op is an involution, which gives the commutativity rule
po =op~t = gp!

and so every element of G,, can be written in the form ¢°p*. Thus, G,, can be
described succinctly by

G, = {(o,p), o(p)=n, o(oc)=o0(op)=2
It is easy to see that the 2n elements
{L7p7 7pn7170'70-pa "'aopnil}
are distinct and so o(G,,) = 2n.
Another description of G, can be gleaned from the fact that (o, p) = (o, 0p)

and so G, is generated by a pair of involutions whose product has finite order,
that is, if 7 = op, then
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G, = (o,m), o(o)=o0(r)=2, olom)=n

Without reference to geometry, a finite group G is a dihedral group if G is
isomorphic to the symmetry group G, for some n > 2. Thus, a group G is a
dihedral group if any of the following equivalent descriptions hold (here p and
o are just symbols):

1) (Common description)

T

G:{l :p07p7"‘7p 71,0’,0’p"",0'pn71}

has order 2n and
p"=1, o*=1 and po=op" !
2) (Succinct description 1)
G={(o,p), o(lp)=n>2 and o(o)=o0(op) =
3) (Succinct description 2)
G={(o,m), o(o)=o0(r)=2, ofom)=n>2
Note that
(0p")(op") = oop~Fpt =1

and so all elements of the form op* are involutions.

Unfortunately, the dihedral group G of order 2n is denoted by D,, by some
authors (reflecting the fact that G consists of symmetries of n vertices) and by
Dy, by other authors (reflecting the fact that G is a group of order 2n). We will
use the notation Ds,. Also, in view of the development of D,,,, we will often
refer to p as a rotation and o as a reflection, even if p and o are not actually
maps.

For n = 1, the reflection o is the identity and the rotation p is the transposition
(12) and so Dy = {¢,(12)} is the cyclic group Cs. For n = 2, the dihedral
group Dy is Cy X Cy. For n > 3, we have proved that the dihedral groups exist,
namely, as certain subgroups of S,. Note that D, is nonabelian for n > 3.

Ubiquity of the Dihedral Group

Succinct description 2 of the dihedral group shows that dihedral groups occurs
quite often and reinforces the idea that a dihedral group need not consist
specifically of symmetries of the plane.

Theorem 2.36 Let G be a group. If a,b € G are distinct involutions for which
o(ab) = n < oo, then the subgroup {(a,b) is dihedral of order 2n.0]
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Subgroups of the Dihedral Groups

Let us determine the subgroups of Ds,,. If S < Ds,,, then Theorem 2.28 implies
that there are two possibilities. If S < (p), then S = (p"/?) for some d | n.
Otherwise, S N (p) = (p"/?) for some d | n and if k is the smallest positive
integer for which op* € S, then

S=(Sn{p))Uop*(SN(p))
_ <pn/d> L O_pk<pn/d>
_ <0’pk,pn/d>

Note that since op* and op*p™/¢ = p**+"/¢ are involutions and o(p™/?) = d, it

follows that S is dihedral of order 2d, generated by the “reflection” op* and the
“rotation” p™/?. Thus, the subgroups of Ds, fall into two categories: subgroups
of (p), which are cyclic and the rest, which are dihedral.

Also, for distinct values of k in the range 0 < k < n/d, the sets
Sag = ap™(p" )y L (p") = (op, p'1)

are distinct subgroups of Ds,, and this accounts for all of the dihedral subgroups
of Ds,,. We can now summarize.

Theorem 2.37 The subgroups of the dihedral group Ds,, are of two types. For
each d | n, we have

1) the cyclic subgroup (p"') of order d and

2) foreach 0 < k < n/d, the dihedral subgroup

Sd,k = <0-pk7p"/d> — O.pk<pn/d> L <pn/d>
of order 2d.00

The Symmetric Groups

The lattice of subgroups of the symmetric group S, is rather complicated.
Indeed, a famous theorem of Arthur Cayley [7] from 1854 (to be discussed in
detail later), says that for any group G, the symmetric group Sg contains a
subgroup that is an “exact copy” of G. Thus, a complete description of the
subgroup lattice of the symmetric groups would constitute a complete
description of all groups, which does not yet exist!

The Additive Rationals

Let us examine the subgroup lattice of the additive group Q of rational numbers.
Let Z" denote the set of positive integers. We say that a/b € Q is reduced if a
and b are relatively prime and b > 0. Let H < QQ be nontrivial. Let I be the set
of integers in H, let N be the set of numerators of the reduced elements of H
and let D be the set of positive denominators of the reduced elements of H.
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If a € N, then a/b € H for some integer b and so a € I. Thus, I = N.
Moreover, if ¢ is the smallest positive integer in I, then every a € I is an
integral multiple of ¢, for if a = qi +r where 0 <r <, thenr=a—qi €[l
and the minimality of ¢ implies that » = 0. Thus, N = I = Zi.

If ai/b € H is reduced, then there exist integers u and v for which ua + vb = 1,
whence

i (ua+vb)i wuai )
-_= — = — H
b b b + v e

Thus,

fora,b € Z,b > 0. Thus,
H:{—"aez,beD}

It follows that D is closed under products, since if /b and i /c in H are reduced,
then 7% /bc is also reduced and in H. Also, ifd € D and e | d, then e € D. Thus,
D is closed under factors as well. It follows that we can describe D by
describing which prime powers lie in D.

If p is prime, let D), be the set of all powers of p that lie in D. Then D, has one
of three forms.

1) If pli, then D, = {1} since if pe D then i/p € H is an integer,
contradicting the fact that ¢ is the smallest positive integer in H.
2) If p/fiand there is a largest integer m(p) for which p() € D, then

D,={1,...,p"®}
3) If p /i and there is no largest integer m(p) for which p”(?) € D, then
D, = {1,p,p% ...}

In case 1) we set m(p) = 0 and in case 3) we set m(p) = oo and so m(p) is
defined for all primes. Let py, ps, ... be the sequence of all primes and let

m(H) = (m(pl)vm(pQ)a e )

For convenience, we say that a sequence (a1, az, ... ) where a; is a nonnegative
integer or a; = oo is acceptable for i if p;, | ¢ implies that a;, = 0. Thus, m(H)
is acceptable for 7.
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Let us adopt the notation (ay, as,...) < (b1, b, ...) to mean that a;, < by, for all
k.If b € D, we may write

(SN

b:p1p2 .

with the understanding that all but a finite number of exponents ¢y, are zero. Let
e(b) = (e1,e2,...)
Then for any positive integer b,
beD < e(b) <m(H)

and so the pair (i, m(H)) completely determines H since

ar
H=<—
{3

On the other hand, let i € Z" and let

a€Z,beZ" ed) §m(H)}

s=(my,ma,...)

be acceptable for <. Then the set

ai
Hs = {3

is a nontrivial subgroup of Q for which m(H) = s. It is clear that H is closed
under negatives. Also, if ai/b € H and ci/d € H are reduced, then

a€Zbel" el) Ss}

at ¢t ut
L0 o
b T d T lem(b,d) ©

is reduced and since
e(lem(b,d)) <'s

it follows that H is closed under addition. Thus, the subgroups H; ) of Q
correspond bijectively to the pairs (i, s), where ¢ € Z* and where

s=(my,ma,...)
is acceptable for :.

*An Historical Perspective: Galois-Style Groups

Let us conclude this chapter with a brief historical look at groups. Evariste
Galois (1811-1832) was the first to develop the concept of a group, in
connection with his research into the solutions of polynomial equations.
However, Galois' version of a group is quite different from the modern version
we see today. Here is a brief look at groups as Galois saw them (using a bit
more modern terminology than Galois used).
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Consider a table in which each row contains an ordered arrangement of a set X
of distinct symbols (such as the roots of a polynomial), for example

a b c d e
c a b d e
b ¢ a d e
a b ¢ e d
c a b e d
b ¢ a e d

where X = {a,b,c,d,e}. Then each pair of rows defines a permutation of X,
that is, a bijective function on X. Galois considered tables of ordered
arrangements with the property that the set A; of permutations that transform a
given row r; into the other rows (or into itself) is the same for all rows 7;, that
is, A; = A; for all 4,j. Let us refer to this type of table, or list of ordered
arrangements, as a Galois-style group.

In modern terms, it is not hard to show that a list of ordered arrangements is a
Galois-style group if and only if the corresponding set A (= A;) of
permutations is a subgroup of the symmetric group Sy. To see this, let the
permutation that transforms row r; to row 7; be 7; ;. Then Galois' assumption is
that the sets

A = {771',17 cee 77Ti7n}

are the same for all <. This implies that for each ¢, u and j, there is a v for which
T = Tj,. Hence,

TiuTij = TjuTij = Tip € Aj

and so A; is closed under composition and is therefore a group.

Conversely, if A; is a permutation group, then since
-1
Tij = MM = mi(m) 0 € Ay

it follows that A; = A; for all 7 and so the ordered arrangement that corresponds
to A; is a Galois-style group.

Galois appears not to be entirely clear about a precise meaning of the term
group, but for the most part, he uses the term for what we are calling a Galois-
style group. Galois also worked with subgroups and recognized the importance
of what we now call normal subgroups (defined in the next chapter), although
his definition is quite different from what we would see today.

When Galois' work was finally published in 1846, fourteen years after he met
his untimely death in a duel at the age of 21, the theory of finite permutation
groups had already been formalized by Augustin Louis Cauchy (1789-1857),
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who likewise required only closure under product, but who clearly recognized
the importance of the other axioms by introducing notations for the identity and
for inverses.

Arthur Cayley (1821-1895) was the first to consider, in 1854, the possibility of
more abstract groups and the need to axiomatize associativity. He also
axiomatized the identity property, but still assumed that each group was a finite
set and so had no need to axiomatize inverses (only the validity of cancellation).
It was not until 1883 that Walther Franz Anton von Dyck (1856-1934), in
studying the relationship between groups and geometry, made explicit mention
of inverses.

It is also interesting to note that Cayley's famous theorem (to be discussed in
Chapter 4), to the effect that every group is isomorphic to a permutation group,
completes a full circle back to Galois (at least for finite groups)!

Exercises

1. Let G be a group.
a) Prove that G has exactly one identity.
b) Prove that each element has exactly one inverse.

2. Prove that any group G in which every nonidentity element has order 2 is
abelian.

3. Let H < G and let g € G have order n. Show that if g* € H for (k,n) = 1
then g € H.

4. Show that a finite subset S of a group G is a subgroup if and only if it is
closed under products.

5. Show thatifa,b € G then o(ab) = o(ba).

6. Let G be a group with center Z < . Prove that if every element of G that
is not in Z has finite order, then G is periodic.

7. Show that the center of () is equal to {1, —1}.

8. Show that in a group of even order, there is an element of order 2. (Do not
use Cauchy's theorem, if you know it.) Hint: such an element is equal to its
own inverse.

9. Find an example of a group G and three distinct primes p, ¢ and r for which
G has elements a and b satisfying o(a) = p, o(b) = ¢ and o(ab) = r.

10. Prove that a group with only finitely many subgroups must be finite.

11. Let G be a finite group of order m and let (n,m) = 1. Show that every
element g of G has a unique nth root h, where A" = g.

12. Prove that the group Q of rational number has no minimal subgroups.

13. a) Find a group G and subgroups H and K for which HK is not a

subgroup of G.
b) If G = HKL where H, K and L are subgroups of G, does it follow
that H, K and L commute (under set product)?

14. Let F' be a field and let F™* be the multiplicative group of nonzero elements
of F.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
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a) If F'is a finite field, show that F'* is cyclic. Hint: Use the fact that a
polynomial equation of degree n has at most n distinct solutions in F'.

b) Prove that if F' is an infinite field, then F™* is not cyclic. Hint: What are
the orders of the nonidentity elements?

Let S be a nonempty set that has an associative binary operation, denoted

by juxtaposition. Show that S is a group if and only if

aS=S5=_Sa

foralla € S.

Let G be a nonempty set with an associative binary operation. Assume that
there is a left identity 1, that is, 1a = a for all @ € G and that each
element a has a left inverse ay, that is, aa = 1;,. Prove that G is a group
under this operation and that 1;, = 1 and a;, = a~ .

Let G be a finite abelian group of order n. Show that the product of all of
the elements of GG is equal to the product of all involutions in G (or 1 if G
has no involutions). Apply this to the multiplicative group Z;, where p is

prime to deduce that
(p—1!'=—-1modp

which is known as Wilson's theorem.

Draw a Hasse diagram of the subgroup lattice of

a) the symmetric group S

b) the dihedral group Ds.

(Dihedral group) Show that opo is the same as counterclockwise rotation

p .

(Dihedral group) Let P be a regular 2n-gon. Show that we get the same

dihedral group if we use an axis of symmetry that goes through two vertices

or through the midpoint of opposite sides of P.

(Dihedral group) Find the center of the dihedral group Ds,,.

Let G be a group and suppose that a,b € G satisfy a®> = 1 and ab’a = b>.

Prove that b° = 1.

Let Q be the additive group of rational numbers. Let (i, (ng)) describe

H < Qand let (4, (my,)) describe K < Q.

a) Under what conditions is K < H?

b) Under what conditions is H cyclic?

Let G be a finite group and S and 7" be subsets of GG. Prove that either

S|+ |7 < |G| orG = ST.

A group G is locally finite if every finitely-generated subgroup is finite.

a) Prove that a locally finite group is periodic.

b) Prove that if G is abelian and periodic, then it is locally finite.

A group G is said to be locally cyclic if every finitely-generated subgroup

of G is cyclic.

a) Prove that G is locally cyclic if and only if every pair of elements of G
generates a cyclic subgroup.

b) Prove that a locally cyclic group is abelian.
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¢)
d)

e)

2)

h)

i)
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Prove that any subgroup of a locally cyclic group is locally cyclic.
Prove that a finitely-generated locally cyclic group is cyclic.

Find an example of a finitely-generated group that is not locally cyclic.
Show that the subgroup GG of the nonzero complex numbers (under
multiplication) defined by

G = {ehin/pk | n, k€ Z}

where p is a fixed prime is locally cyclic but not cyclic.

Prove that if G is locally cyclic, then all nonidentity elements have
infinite order or else all elements have finite order.

Prove that the additive group of rational numbers is locally cyclic.
Show that any locally cyclic group whose nonidentity elements have
infinite order is isomorphic to a subgroup of the additive group Q.

The distributive laws are

AV (BNC)=(AVB)N(AVCO)
AN(BVC)=(ANB)V(ANC)

for A, B,C < G. Prove that each distributive law implies the other. A
lattice that satisfies the distributive laws is said to be a distributive
lattice. (It is possible to prove that sub(G) is a distributive lattice if and
only if GG is locally cyclic. This is difficult. A complete solution can be
found in Marshall Hall's book The Theory of Groups [16].)

Ascending Chain Condition

A group G satisfies the ascending chain condition (ACC) on subgroups if
every ascending sequence

Hy < Hy <--

of subgroups must eventually be constant, that is, if there is an 7 > 0 such that
H,,. = H,forall k > 0.

27. A

group G satisfies the maximal condition on subgroups if every

nonempty collection of subgroups has a maximal member. Prove that a
group G satisfies the maximal condition on subgroups if and only if it
satisfies the ascending chain condition on subgroups.

28. A group G satisfies the ACC on subgroups if and only if every subgroup of
G is finitely generated.



Chapter 3
Cosets, Index and Normal Subgroups

We begin this chapter with a more careful look at subgroups, cosets and indices.

Cosets and Index

The number of cosets of a subgroup plays an important role in group theory.

Definition Let G be a group. The index of H < G, denoted by (G : H), is the
cardinality of the set G/ H of all distinct left cosets of H in G, that is,

(G: H)=|G/H| O

Recall that |H\G| = |G/ H| and so the index is also the cardinality of the set of
right cosets of H in G.

It is convenient to extend the quotient and index notation as follows: If H < G
and if X is any nonempty subset of GG, then we write

X/H ={zH |z € X}

and denote the cardinality of X/H by (X : H). This is not entirely standard
notation, but it is useful. For example, if K is a subgroup of GG, but H K is not a
subgroup, we may still want to consider the set H/K = HK /K and the index
(HK : K). We will also have use for the following concept.

Definition Let H < G.

1) A set consisting of exactly one element from each coset in G /H is called a
left transversal for H in G (or for G/ H).

2) A set consisting of exactly one element from each right coset in H\G is
called a right transversal for H in G (or for H\G).O

Now we can give some important properties of the index.

S. Roman, Fundamentals of Group Theory: An Advanced Approach, 61
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Theorem 3.1 Let G be a group.
1) IfH < @, then

(G:H)=1 < G=H
2) If X C G is aunion of cosets of K < G, then

X] = |K] - (X : K)

Hence, if H, K < G, then
[HEK| = |K]|- (HE : K)

In particular,

Gl = K| - (G: K)
and so if G is finite, then

5y = Gl
(G K) =

3) (Multiplicativity) If H < K < G then

(G H) = (G: K)(K : H)
as cardinal numbers. Hence,
H<K and (G:H)=(G:K)<oco = H=K
4) Let H K < G.IfGis finite or if HK < G, then
(G:K)=(HK:K)<o0o = G=HK

5) IfH,K < G, then

(HK : K)=(H : HNK)

6) (Poincaré's theorem) Let Hy, ..., H, < G and (G : H;) < oo for all i and
let I, = Hy N --- N Hy. Then Poincaré's inequality solds:
(G:Hin---NH,) <(G:H)-(G:H,)
and so, in particular, (G : Hy N --- N H,) is also finite.
a) The inequality above can be replaced by division if
LiHp <G (3.2

forallk=1,....n—1
b) Equality holds in Poincaré's inequality if and only if

(IkaH : Hk+1) = (G : ch+1)

forallk =1,...,n — 1. Hence, if G is finite or if (3.2) holds for all k,
then equality holds in Poincaré's inequality if and only if
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LiHp =G

forallk=1,....n— 1
7) If a finite group G has subgroups H and K for which (G : H) and
(G : K) are relatively prime, then G = HK and equality holds in
Poincaré's inequality, that is,

(G:HNK)=(G:H)(G:K)

Proof. We leave proof of part 1) and part 2) to the reader. For part 3), let I be a
left transversal for G/K and let J be a left transversal for K'/H. If a € G, then
a = ik for some k € K and k = jh for some j € J, whence

aH = ikH = ijhH = ijH
Moreover,
ijH=14ijH = iKNiK#0 = i=4
and so jH = j H, whence j=j. Thus, the set {ij|i€1,j€ J} is a left
transversal for G/ H. We leave proof of part 4) for the reader.

For part 5), let [ = HNK and consider the function f:H/I — HK/K
defined by f(hI)=hK. This map is well defined and injective since if
hi,hy € H, then hy'h; € H implies that

hMI=hyl < hy'hiel & h'heK & mhK=hK
Also, f is surjective since forany h € H and k € K,
f(hI)=hK = hkK
Hence, (H: HNK) = (HK : K).

For part 6), we proceed by induction on n. For n = 2, we have
(G : Hy ﬂHg) = (G : Hl)(Hl : Hy ﬁHQ)
= (G : Hl)(HlHQ : HQ)
< (G:H)(G: Hy)
and the last inequality can be replaced by division if H;Hs < G. Moreover,

equality holds if and only if (H1H, : Hy) = (G : Hs). Assume the result is true
for Hy,...,H, yandletl, 1 = HyN---N H, 1. Then

(G : Infl N Hn) (G : Infl)(Infl : In,fl N Hn)

; (G : Hl)(G : anl)<[nfl : I7L71 N Hn)
= (G . Hl)(G . anl)(Inlen N Hn)
<(G: Hy)(G: Hy)

and both inequalities can be replaced with division signs if
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IHy <G
forall k =1,...,n — 1. Moreover, equality holds if and only if
(I Hy : Hy) = (G : Hy,)

for all k.
For part 7), since each of (G : H) and (G : K) divides (G : H N K) and since
these factors are relatively prime, we have

(G:H)(G:K)|(G:HNK)
Hence, Poincaré's inequality is an equality:

(G:HNK)=(G:H)(G:K)
and so the finiteness of G implies that G = H K.[1
We have seen (Theorem 2.21) that any subgroup of a finitely-generated abelian

group is finitely generated. We can now prove that if GG is a finitely-generated
group, then any subgroup of finite index is also finitely generated.

Theorem 3.3 Let G be a finitely-generated group. If H is a subgroup of G of
finite index, then H is also finitely generated.
Proof. Let T'= {t,...,t,,} be a left transversal for G/H, with t; = 1. Let
{1,...,2,} be a generating set for G and let

W= {x,...,z, ) U{z ... )"

) n

Thus, if a € G, then
a = wp. < W1
for some w; € W. Butwy; = ts; forsome t € T and s; € H and so

a = wpy: - -watsy

We are now prompted to consider how the ¢'s and w's commute. For each t € T’
and w € W, there exist unique ¢’ € T and h € H for which

wt =th

Let S C H be the finite set of all such h's, as w varies over W and ¢ varies over
T. Note that s; € S since wyt; = wy = ts;. By continually moving the element
belonging to T" forward in the product expression for a, we get

a=1t's, s €t(S)

for some ¢’ € T and s; € S. But if a € H, then a € t/(S) C t'H implies that
t' = 1. Hence, H < (S) and since S C H, we have H = (5).00
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Quotient Groups and Normal Subgroups

Let G be a group and let H < G. We have seen that the equivalence relation
corresponding to the partition G/ H is equivalence modulo H:

a=bmodH if aH =0bH

Now, there seems to be a natural way to “raise” the group operation from G to
G/ H by defining

aH «bH = abH 3.4)

Of course, for this operation to make sense, it must be well defined, that is, we
must have for all a, a1, b,b; € G,

aftfac H and b'be H = (ayby) (ab) € H

Taking a; = 1 and b; = b gives the necessary condition

acH = blabcH (3.5)
However, this condition is also sufficient, since if it holds, then

bitartab = (b7 ta; b)) (b taby ) (b D) € H
Note that (3.5) is equivalent to each of the following conditions:
1) aHa ' C H foralla € G
2) aHa!'=Hforalla € G
3) aH =Haforalla € G.
Definition 4 subgroup H of G is normal in G, written H < G, if
aH = Ha

foralla € G. If H G and H # G, we write H < G. The family of all normal
subgroups of a group G is denoted by nor(G).I
Thus, the product (3.4) is well defined if and only if H < G. Moreover, if
H < G, then for any a,b € G,

abH = abHH = aHVH
that is,

aH «bH =aHbH

In particular, the set product of two cosets of H is a coset of H. Moreover, if the
set product of cosets is a coset, that is, if

aHbH = cH
for some ¢ € GG, then ab € cH and so cH = abH, that is,
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aHbH = abH

Let us refer to this as the coset product rule. Finally, if the coset product rule
holds, then H < @, since

aHa ' CaHa 'H=H

for all @ € G. Thus, the following are equivalent:

1) The binary operation
aH «bH = abH

is well defined on G/ H.
2) HJAQG.
3) The set product of cosets is a coset.
4) The coset product rule holds.

Moreover, if these conditions hold, then G/H is actually a group under the set
product, for it is easy to verify that the set product is associative, G/H has
identity element H and that the inverse of aH is a ' H. Thus, we can add a fifth
equivalent condition to the list above:

5) G/H is a group under set product.

Before summarizing, let us note that the following are equivalent:

H<G
aH C Haforalla € G
beaH = b€ Haforalla,be G
beaH=>b'ca 'Hforalla,be G
a=bmodH = a '=b"'modH foralla,b € G

Also, the following are equivalent:

The coset product rule holds
aHbH C abH foralla,b € G
a €aH,b € bH = a't/ € abH foralla,b € H
a =amod H,b' =bmod H = a'b’ = abmod H

Now we can summarize.
Theorem 3.6 Let H < . The following are equivalent:

1) The set product on G /H is a well-defined binary operation on G /H.
2) The coset product rule

aHVH = abH
holds for all a,b € H.
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3) H is a normal subgroup of G.

4) G/H is a group under set product, called the quotient group or factor
group of G by H.

5) The inverse preserves equivalence modulo H, that is,

a=bmodH = a'=b'modH

foralla,b € G.
6) The product preserves equivalence modulo H, that is,

ad =amodH, b =bmodH = a'b'=abmodH
Sforalla,ad’,b,b € G.OI

When we use a phrase such as “the group G/H” it is the with the tacit
understanding that H is normal in G. Note finally that statements 5) and 6) say
that equivalence modulo H is a congruence relation on G. A congruence
relation 0 on an algebraic structure, such as a group, is an equivalence relation
that preserves the (nonnullary) algebraic operations. Thus, a congruence relation
0 on a group GG must satisfy the conditions

abb = alop!
and
abb, cOd = (ac)0(bd)
Theorem 3.6 shows that these two conditions are actually equivalent for groups.
More on Normal Subgroups

There are several slight variations on the definition of normality that are often
useful. We leave proof of the following to the reader.

Theorem 3.7 Let H < G. The following are equivalent:

1)y HLG

2) H*CH forallaeG

3) H“DHforallaeG

4)  Every right coset of H is a left coset, that is, for all a € G, thereisab € G
such that Ha = bH

5) Every left coset is a right coset.

6) Foralla,b e G,

abe H = bacH
7) Ifa€ Gandh € H, then ah = h'a _for some h' € H.OO
Theorem 3.7 implies that a normal subgroup permutes with all subgroups of G.

Hence, the normality of either factor guarantees that the set product H K is a
subgroup.
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Theorem 3.8 Let H, K < G.
1) Ifeither H or K is normal in G, then H and K permute and

HK=HVK

In this case, we refer to HK as the seminormal join of H and K.

2) If both H and K are normal in G, then HK is also normal in G and we
refer to HK as the normal join of H and K.

3) The fact that HK < G does not imply that either subgroup need be
normal.

Proof. For part 3), let G = Sy. Let

H = {1, (12)(34), (13)(24), (14)(23), (24), (13),(1234), (1432) }
and
K =S5 =1{,(12),(13),(23),(123), (132)}

Then HNK = {,(13)} has size 2 and so |[HK|= (8 x 6)/2 =24 = |54,
which implies that H K = S4. But neither subgroup is normal: H is not normal
since (14)(13)(14) = (43) ¢ H and K is not normal since (14)(12)(14) =
(42) ¢ S5.0

Example 3.9 (The normal subgroups of D5,) We have seen that for d | n, the
subgroups of the dihedral group D>, are

1) the cyclic subgroup (p™¢) of order d,
2) foreach 0 < k < n/d, the dihedral subgroup

S = ap"(p" )y L (p"?) = (op", p"')

of order 2d.

Subgroups of type 1) are normal, since conjugation gives
O’pi(pm/d)piid _ pfrn/d c <pn/d>
Let
S = (ap", p"")

be a subgroup of type 2). Then since (p™/4) < S, it follows that S is normal if
and only if the conjugates of the other generator op* are in S. Conjugation by p
gives

,O(O'pk>p71 _ O_p72+k:

which is in S if and only if p~2** = pF+m7/d for some integer m, that is, if and
only if
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-2 = mgmodn

Multiplying both sides of this by d gives —2d = O modn, that is, n | 2d and
since d | n, we must have n = d or n = 2d. Conversely, if n =d or n = 2d,
then the congruence holds and S is closed under conjugation by p.

If n=d, then S = Dy,. If n=2d, then 0o(S)=n and k=0 or k=1. If
k=0, then S = (o,p?) and if k=1, then S = (op,p*). Moreover, since
(Ds,, : S) = 2, both subgroups are normal, as we will prove in Theorem 3.17.
Thus, the proper normal subgroups of Dy, are the subgroups of (p) and, for n
even, the two subgroups (o, p?) and (op, p*) of order n.0]

Special Classes of Normal Subgroups

There are two very important special classes of normal subgroups. Note that
H < G if and only if H is invariant under all inner automorphisms -y, of G.

Definition Let G be a group.

1) A subgroup H of G is characteristic in G if it is invariant under all
automorphisms of G. If H is characteristic in G, we write H C G. (This is
not a standard notation, there being none.) We also write H C G if H C G
and H # G.

2) A subgroup H of G is fully invariant in G if it is invariant under all
endomorphisms of G..J

Some of the most important subgroups of a group are characteristic. For
example, the center Z (@) of a group G is characteristic in G.

The Lattice of Normal Subgroups of a Group

If G is a group, then nor(G) is a subfamily of sub(G) and is partially ordered by
set inclusion as well. Moreover, the intersection of any family F of normal
subgroups of G is normal in G and so the meet of F in nor(G) is the same as
the meet of F in sub(G).

As to join, if F = {N; | i € I} is a nonempty family of normal subgroups of G,
then the join of F in the lattice sub(G) is the subgroup

\/iGINi = {ail‘“ain ‘ (7 € Nyk, n Z O}
Actually, Theorem 3.7 implies that we can collect factors from the same
subgroup NNV, and so
o Vi = {ai--ai, | ai, € N, iy # 15 for k # j,n > 0}

In particular, if F = {Ny,...,N,,} is a finite family, then the join takes the
particularly simple form
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\/.F: {a1~~~am ‘ a; € Ni}

Now, if a € GG, then

a
(\/‘ Nl-) =\/_ Ne=\/ N,
el el iel

and so the join of F in sub(G) is normal in G. It follows that the join of F in
sub(G) is equal to the join of F in nor(G). Thus,

nnor(G)]: = msub(G)]: and \/nor(G)]: - \/sub(G)]:

which holds also when F is the empty family. Hence, nor(G) is a complete
sublattice of sub(G).

Theorem 3.10 Let G be a group.
1) The subgroups {1} and G are normal in G.
2) If{N; |i € I} is afamily of normal subgroups of G, then

mieINi and \/v',eINi

are normal subgroups of G. Hence, nor(G) is a complete sublattice of

sub(G).O

The maximal and minimal normal subgroups of a group play an important role
in the theory. We state the definitions here for future use.

Definition Let G be a group and let H < G.

1) H is minimal normal if it is minimal in the partially ordered set of all
nontrivial normal subgroups of G (under set inclusion).

2) H is maximal normal if it is maximal in the partially ordered set of all
proper normal subgroups of G (under set inclusion)..]

The Quasicyclic Groups

For each prime p, we can now describe an infinite abelian group Z(p™), called
the p-quasicyclic group that has a very interesting subgroup lattice.
Specifically, the lattice of proper subgroups of Z(p™) consists entirely of a
single ascending chain of finite cyclic subgroups

{1} < {a) < (a2) < ---
We begin by looking at the quotient group
Q

—={"Z|mneZ0<m<n (mn) =1}

The set
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Sz{%‘m,neZ,0§m<n,(m,n):1}

is a left transversal for Q/Z and so we can simply identify Q/Z with S, under
addition modulo 1. Note that the order of m/n € S is n.

Let p be a prime and let Z(p™) be the subgroup of S consisting of those
elements of order a power of p, that is,

Z(p™) = {ﬁk ‘m,k EZ,0§m<p’“,pXm}
P
If H < Z(p™®) and m/p* € H for m > 0, then there are integers a and b for

which am + bp* = 1 and so in Z(p>),

1 am + bpF am
S == eH
p p p

Hence,
0#m/p € H « 1/pPeH < 1/pcHforallj<k

Thus, since H is proper, there must be a largest integer n for which 1/p" € H.
Then

1/pPeH & k<n < 1/p"c1/p"

and so H = (1/p") is cyclic of order p™. Hence, the proper subgroups of Z(p>)
are the subgroups

{0} < (1/p) < (1/p%) < -

In a later chapter, we will ask the reader to prove that the quasicyclic groups
Z(p™) are the only infinite groups (up to isomorphism) with the property that
their proper subgroups consist entirely of a single ascending chain

{0} <51 <8y < -

The Normal Closure of a Set

If X is a subset of a group G, then the smallest normal subgroup of G that
contains X is the intersection of all normal subgroups of GG that contain X. This
subgroup is called the normal closure of X in G and we will find it useful to
use the following notations for this subgroup:

X% (X)por and nc(X,G)

The normal closure has a simple characterization as follows.
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Theorem 3.11 If X is a nonempty subset of a group G, then the normal closure
of X is the subgroup

nc(X,G)=(z" |z € X,a €G)
generated by the conjugates of X in G.[J

We can extend the notation and define for any X, Y C G,
X =@ |reX,yeY)

This allows us to describe the join of two subgroups as a set product.

Theorem 3.12 [f H, K < G, then
(H,K)=H'K

Proof. Since H* and K permute, it follows that HX K < G. Since H < H¥K
and K < HXK, it follows that (H, K) < HXK. The reverse inclusion is
clear.[]

Internal Direct Products

Strong Disjointness of a Family of Normal Subgroups

If F={H; |i€ I} is a nonempty family of normal subgroups of a group G,
we write

Hy = \/{H;|iel,j#i}

for the join of all members of F except H;. The members of such a family F
can enjoy two levels of disjointness. The members of F can be pairwise
essentially disjoint, that is,

H;NH; ={1}

for all ¢ # j. Note that F is pairwise essentially disjoint if and only if h;h; = 1
for h; € H; and h; € Hj; with ¢ # j imply that h; = h; = 1. Also, the members
of a pairwise essentially disjoint family 7 commute elementwise, that is,
hihj = th, for all h; € H; and hj S Hj, where ¢ 7é 7.

A stronger level of disjointness comes when each H; is essentially disjoint from
the join of the other members of the family. The following useful definition is
not standard in the literature.

Definition We will say that a nonempty family F = {H; | i € I} of normal
subgroups of a group G is strongly disjoint if
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H; N H(i) = {1}
Sforallie 1.Od
The property of being strongly disjoint can be characterized as follows.

Theorem 3.13 Let F = {H; | i € I} be a nonempty family of normal subgroups
of a group G. Then the following are equivalent:

1) Fis strongly disjoint

2) I

hiy--hi, = 1

where h;; € H;, and ij # iy, for j # k, then h;; = 1 for all j.
3) Every nonidentity a € \| F can be written, in a unique way except for the
order of the factors, as a product
a = hil' . 'hin

where 1 # h;, € H; and i; # iy, for j # k. The element h;, is called the i jth

component of a. Fori € I'\ {iy,...,i,}, the ith component of a is 1.
Proof. If F is strongly disjoint and h;,---h;, = 1, where the factors are from
different subgroups and n > 2, then

hil = (hiQ...hin)71 € Hil mH(ﬁ) = {1}

and so h;, = 1. Repeating this argument gives h;, = 1 for all j and so 1) implies
2).

If 2) holds, then the H;'s commute elementwise. To see that 3) holds, it is clear
that every nonidentity @ € \/F has such a product representation. Moreover, if
a has two such product representations, then we may include additional factors
equal to 1 so that

a=hi--hi, = ki--k;

n

where h; , k;; € H;; and i; # i), for j # k and at least one factor on each side is
not equal to the identity. Then

(ki hiy)- (K thay) = 1

n

and so 2) implies that h;, = k;; for all j. Hence 2) implies 3). Finally if 3) holds
and

a € HiﬂHm

for some 4, then the uniqueness condition implies that ¢ = 1.00
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The next theorem says that strong disjointness is a finitary condition and that if
F is strongly disjoint, then it is relatively easy to check that F LI {K} is also
strongly disjoint.

Theorem 3.14 Let F = {H; | i € I} be a nonempty family of normal subgroups

of a group G.

1) F is strongly disjoint if and only if every nonempty finite subset of F is
strongly disjoint.

2) Let K € nor(G)\ F. If F is strongly disjoint, then F U {K} is strongly
disjoint if and only if

(\/]—') NK = {1} O
The following result can be quite useful.

Theorem 3.15 Let F = {H; | i € I} be a nonempty family of normal subgroups
of a group G. For any K < G, there is a J C I that is maximal with respect to
the property that the family

Fr={H;|je J}U{K}

is strongly disjoint.
Proof. Write

T ={J C I| Fyisstrongly disjoint}

Then Z is nonempty and the union of any chain in Z is in Z. Hence, Zorn's
lemma implies that Z has a maximal member.[]

Internal Direct Products
We have already discussed the external direct product G X H of two groups G

and H. The internal direct product is defined as follows.

Definition 4 group G is the (internal) direct product of two normal subgroups
H and K if G=H e K. We use the notation G = H X K to denote the
internal direct product.]

The internal direct product G = H X K is a decomposition of G into an
essentially disjoint product of normal subgroups. Since the factors H and K
commute elementwise, the product in G takes the form

(h1k1)(hake) = (hiha)(kik2)

where h; € H and k; € K. Thus, the groups H and K have the same level of
independence as the factors in an external direct product. Indeed, the map

hk — (h, k)
is an isomorphism from H X K to H H K.
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Definition 4 nontrivial group G is said to be indecomposable if G cannot be
written as an internal direct product of two proper subgroups, that is,

G=HXK = H=GorK=G O
The internal direct product can easily be generalized to arbitrary nonempty

families of normal subgroups.

Definition A group G is the (internal) direct sum or (internal) direct product
of a family F = {H; | i € I} of normal subgroups if F is strongly disjoint and
G = \/F. We denote the internal direct product of F by

XH; or NXF
orwhen F = {Hy, ..., H,} is a finite family,

H{ X .- X H,
Each factor H; is called a direct summand or direct factor of G. We denote
the family of all direct summands of G by DS(G).O

Theorem 3.13 implies the following.

Theorem 3.16 Let F = {H; | i € I} be a nonempty family of normal subgroups
of a group G. Then the following are equivalent:
) G=NXF
2) Every nonidentity a € G can be written, in a unique way except for the
order of the factors, as a product
a = hil' . 'hin

where 1 # h;, € H;, and ij # iy, for j # k.0
A note on terminology is also in order. If F = {H;|i € I} is a family of
normal subgroups of a group G, to say that the join \/ H; is direct in G or to say

that the direct sum X H; exists in G is the same as saying that F is strongly
disjoint and that the join is the direct sum.

Projection Maps
Associated with an internal direct product
G=NX{H;|iel}

is a family of projection maps. Specifically, the ith projection map p;: G — H;
is defined by setting p;(a) to be the ith component of a. In this case, p; can be
thought of as an endomorphism of GG and then the following hold:

D (pi)

H; = UH;
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2) pip; = 0if i # j, where 0 is the zero map
3) p; is idempotent, that is, p? = p;.

Note also that if ¢ # j, then the images H; = im(p;) and H; = im(p;) commute
elementwise.

We will have much more to say about the direct product in a later chapter.

Chain Conditions and Subnormality

Sequences of Subgroups and the Chain Conditions

Ordered sequences of subgroups play a key role in group theory. For infinite
ascending and descending sequences of subgroups, the issue centers around the
chain conditions. Generally speaking, chain conditions are considered a form of
finiteness condition on a group and we will study the consequences of the chain
conditions on various families of subgroups, such as the family of all subgroups,
all normal subgroups or all subnormal subgroups throughout the book. For the
record, here is the definition, which will be repeated later.

Definition Let G be a group and let S be a family of subgroups of G.
1) A group G satisfies the ascending chain condition (ACC) on S if every
ascending sequence

H < Hy<---

of subgroups in S must eventually be constant, that is, if there is an n > 0
such that H, ., = H, for all k > 0. In this case, we also say that S has the
ACC.

2) A group G satisfies the descending chain condition (DCC) on S if every
descending sequence

Hy >Hy > -

of subgroups in S must eventually be constant, that is, if there is an n > 0
such that H, ., = H,, for all k > 0. In this case, we also say that S has the
DCC.

3) A group G satisfies both chain conditions (BCC) on S if G has the ACC
and the DCC on S. In this case, we also say that S has BCC.[J

Finite Series and Subnormality

Finite ordered sequences of subgroups of a group are just as important as
infinite sequences, but rather than conveying any finiteness condition about a
group, they convey structural information about the group and are used to
classify groups via this structure. For example, a group G that has a finite
sequence

{1} =HydH; Q---<4H, =G



Cosets, Index and Normal Subgroups 77

of subgroups for which each quotient Hy1/H}, is abelian is called a solvable
group. Solvable groups play a key role in the Galois theory of fields and we will
study them in detail later in the book.

Unfortunately, the terminology surrounding finite ordered sequences of
subgroups is not at all standardized. For example, consider the following types
of finite sequences of subgroups of a group G-

1) An arbitrary nondecreasing sequence of subgroups of G:
Go<Gi <--- <G,

2) A sequence of subgroups of G of the form
GodGy 9--- 4G,

in which each subgroup is normal in its immediate successor.
3) A sequence of subgroups of G of the form

Gy <G < <G,

in which each subgroup is normal in the parent group G.

Some authors refer to 1) as a series, 2) as a subnormal series and 3) as a normal
series. Some authors refer to 2) as a series and 3) as a normal series. Some
authors refer to 2) as a normal series and 3) as an invariant series.

Since arbitrary finite nondecreasing sequences of subgroups are a bit too general
to be really useful, it seems reasonable not to give them a special name and
simply refer to them as sequences, thus reserving the term series for more useful
types of sequences. Accordingly, we choose the following terminology.

Definition Let G be a group and let Gy, G, < G. A series in G from G to G,
is a sequence of subgroups of G of the form

Gy<dGi < 4G,

where G, is normal in Gy for each k. Each group Gy, is a term in the series,

Gy is the lower endpoint of the series and G, is the upper endpoint. Each

extension Gy, < Gy1 is a step in the series. A series is proper if each inclusion

is proper. The length of a series is the number of proper inclusions.

1) A nmormal series in G is a series in G in which each term is normal in the
parent group G.

2) A characteristic series in G is a series in G in which each term is
characteristic in the parent group G.

3) A fully-invariant series in G is a series in G in which each term is fully
invariant in the parent group G.[J
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The following generalization of normality is extremely important and we shall
have much to say about it in this book.

Definition 4 subgroup H < G is subnormal in G, written H < < G, if there is
a series

H<H <---<H,=G

from H to G. If H <G and H < G, we write H <<« G. The family of
subnormal subgroups of G is denoted by subn(G).O

Thus, H < < G if there is a sequence of “normal steps” from H to G.
Subgroups of Index 2

The largest proper subgroups of a group are the subgroups of index 2. We can
now improve upon Theorem 2.28.

Theorem 3.17 Let H be a subgroup of GG of index 2.

) HJAG.

2) Ifa €@, thena® € H.

3) If G is finite, then any subgroup S of G is either a subgroup of H or else

S H| = |S]/2

In words, S lies completely in H or else S lies half-in and half-out of H.
Also, if a € S\ H, then

S=(SNH)Ua(SNH)

where U is the disjoint union.
Proof. For part 1), if a ¢ H, then {H,aH} and { H, Ha} are both partitions of
G and so aH = Ha for all « € G. Hence, H < G. For part 2), if a ¢ H then
aH # H has order 2 in G/H and so a?H = (aH)? = H, which implies that
a®> € H. For part 3), if S is not contained in H, the normality of H implies that
SH = G and so

(S:HNS)=(HS:H)=(G:H)=2 O
Example 3.18 For n > 2, the alternating group A,, has index 2 in the symmetric
group S, and so 4, < 5,.00

We can now show that the converse of Lagrange's theorem fails.

Example 3.19 The alternating group A, has order 4!/2 = 12, but has no
subgroups of order 6. For if H < A, has order 6, then H has index 2 and so
o? € H for all o € Ay. But there are eight 3-cycles o in A, and each one is a
square:
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oc=0'= (%)’ cH

Since these 8 elements cannot fit into a subgroup of size 6, there can be no such
subgroup.]

Cauchy's Theorem

We have seen that the converse of Lagrange's theorem fails to hold. However,
there are some partial converses to Lagrange's theorem. For example, there are
certain classes of groups for which the converse of Lagrange's theorem does
hold. In particular, we will see later in the book that if G is a finite abelian
group or if o(G) = p" where p is prime, then the converse of Lagrange's
theorem holds, that is, G’ has a subgroup of any order & that divides o(G).

On the other hand, it is true that if a prime p divides o(G), then G has an
element of order p and hence a subgroup of order p. This key theorem is called
Cauchy's theorem.

Cauchy's theorem has a very colorful history, beginning with its discovery by
Cauchy in 1845 as the main conclusion of a 101-page paper ([6]). Here is a
quotation from the abstract of an article on the history of Cauchy's theorem by
M. Meo [24]:

The initial proof by Cauchy, however, was unprecedented in its
complex computations involving permutational group theory and
contained an egregious error. A direct inspiration to Sylow’s
theorem, Cauchy’s theorem was reworked by R. Dedekind, G. F.
Frobenius, C. Jordan, and J. H. McKay in ever more natural,
concise terms.

The proof we give below is essentially the proof of J. H. McKay [23], which
first appeared in 1959 and reminds us that we should never stop looking for
“better” proofs of even the most basic results.

Theorem 3.20 (Cauchy's theorem) Let G be a finite group. If p is a prime
dividing o(G), then G has an element of order p.
Proof. The key to the proof is to examine the set

X ={(a1,...,ap) | a; € G,a1---a, = 1}

which is nonempty, since (1,...,1) € X. In fact, the size of X is easily
computed by observing that the first p — 1 coordinates any =z € X can be
assigned arbitrarily and this uniquely determines the final coordinate. Hence,

x| =G

which is divisible by p.
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Now, if we can find a constant p-tuple (a, ...,a) in X where a # 1, then a? = 1
and so o(a) = p, which proves the theorem. Note that a p-tuple z = (ay, ..., ap)
is constant if and only if rotation one position to the right (with wrap around)
has no effect, that is, if and only if

(apa Aty .- 7ap71) = (ala [ ap)

We can put this in group-theoretic language as follows. Let each o € S, act on
X by permuting the coordinates. Thus, if o is the p-cycle (12 --- p), then

olar,...,ap) = (ap, a1, ...,ap-1)
and so x is constant if and only if & = x, that is, if and only if o fixes x.
Let us consider how the powers of o act on an element 2 € X. The p-tuple o*x
comes from z by a k-fold rotation. The orbit of z € X is the collection
O(z) = {z,0x,...,0" 'z}

of the various rotated versions of x. Now, the primeness of p implies that the
elements of O(x) are either all distinct or all the same. For if o'z = o'z for
i>j, then o' Vo =2 where 0 <i—j<p. If k=i—3 then (k,p)=1
implies that uk + vp = 1 for some u, v € Z and so

o = 0_uk+vpx _ (TUk(TuPZL' _ (Uk)ulL' =

whence o'z = x for all 7. Thus, O(z) has size 1 or p forall z € X.

Now, the orbits O(z) are the equivalence classes of the equivalence relation on
X defined by

r=y if y=c"zforsomek € Z

and so the distinct orbits form a partition of X. If b is the number of blocks of
size 1 and c is the number of blocks of size p, then

| X|=b+cp

where b > 1, since {(1,...,1)} is a block of size 1. Hence, p divides |X|
implies that p | b and so, in particular, b > p, which implies that there are at
least p — 1 constant p-tuples (a,...,a) witha # 1.0

Application to p-Groups

The following types of groups play a key role in the study of the structure of
finite groups.

Definition Let G be a nontrivial group and let p be a prime.
1) Anelement a € G is called a p-element if o(a) = p* for some k > 0.
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2) G is a p-group if every element of G is a p-element.
3) A nontrivial subgroup S of G is called a p-subgroup of G if S is a p-
group.]

Lagrange's theorem and Cauchy's theorem combine to describe finite p-groups
quite succinctly.

Theorem 3.21 A finite group G is a p-group if and only if the order of G is a

power of p.

Proof. If o(G) = p*, then Lagrange's theorem implies that every element of G
is a p-element and so G is a p-group. Conversely, if G is a finite p-group but
q | o(G) where q # p is prime, then Cauchy's theorem implies that G has an
element of order ¢, which is false. Hence, o(G) = p* for some k > 1.0J

The Center of a Group; Centralizers
We briefly mentioned the following concept earlier.
Definition 7The center Z(G) of a group G is the set of all elements of G that
commute with all elements of G, that is,

Z(G)={a € G|ab=baforallbec G}
A group G is centerless if Z(G) = {1}. A subgroup H of G is central if H is
contained in the center of G..O

It is easy to see that the center of GG is a normal subgroup of G.

Example 3.22
a) The center of the quaternion group @ is Z(Q) = {1, —1}.
b) Forn > 3 odd, the dihedral group D5, is centerless and for n > 3 even,

Z(Day) = {v, Pn/Q}

¢) Forn > 3, the symmetric group S, is rather large and it should come as no
surprise that S, is centerless. To see this, suppose that o € .S,, is not the
identity. If the cycle decomposition of ¢ contains a k-cycle with k > 3, that
is, if
g = ...(abc...)...

then o) # o and so (ab)o # o(ab). On the other hand, if the cycle
decomposition of ¢ is a product of disjoint transpositions:

o= (ab)---

then 09 #£ 0o and so (bc)o # a(be) for ¢ ¢ {a,b}. In either case,
o ¢ Z(S,) and so S, is centerless.
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d) We will prove in a later chapter that for n # 4, the alternating group A, is
simple, that is, A,, has no nontrivial proper normal subgroups. Hence, A,, is
centerless for n > 4.0

The Number of Conjugates of an Element

Definition Let G be a group. The centralizer of an element b € G is the set of
all elements of G that commute with b:

Cq(b) ={a € G|ab=ba}
The centralizer of a subgroup H < G is the set
CG(H) - ﬂaeHCG(a)
of all elements of G that commute with every element of H.[(J

It is easy to see that centralizers are subgroups of the parent group.

Let G be a group and let a € G. Then
@ =a' & o' T=a o y'zvelsla) & 2Cs(a) =yCq(a)

and so the element a has precisely (G : Cg(a)) distinct conjugates. This
formula is of considerable importance in the study of finite groups.
Theorem 3.23 Let G be a group and let a € G. Let conjg(a) denote the set of
conjugates of a in G. Then

lconjg(a)| = (G : Cg(a))

which divides o(G) when G is finite. The set conji(a) is called a conjugacy
class in G.OO

The Normalizer of a Subgroup
Suppose that H < G. Then of course H is normal in itself. But it may also be
normal in a larger subgroup of G

Definition Let G be a group and let H < G. The largest subgroup Ng(H) of G

for which H < N¢(H) is called the normalizer of H in G. A subset X C G is

said to normalize H if X C Ng(H).O

Theorem 3.24 Let G be a group. The normalizer of H < G is
Ng(H)={a€eG|H"=H} O

Will see in the chapter on free groups (Theorem 12.21) that it is possible to have
H® C H,in which case a ¢ N¢(H). However, since
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H'—H < H°CH and H® CH

if a subset S C G is closed under inverses and has the property that H* C H for
all s € S, then S C N¢(H). In particular, since

S={aeG|H*CH}

is closed under products, if S is finite then S is a subgroup of G and so S is
closed under inverses, whence S = Ng(H). In particular, if G is finite, then
S = Nqg(H).

The normalizer of H should not be confused with the normal closure of H,
which is the smallest normal subgroup of G that contains H. Note that if
K < G normalizes H < (G, then H K is also a subgroup of G.

Theorem 3.25 If G is a group and H < G, then

Cq(H) 9 Ne(H) a

Elementwise Commutativity
It is clear that H and K commute elementwise if and only if

HSCG(K) and KSCG(H)

For essentially disjoint subgroups, we need only check that each subgroup is
contained in the normalizer of the other. Proof of the following is left to the
reader.

Theorem 3.26 Let H and K be essentially disjoint subgroups of a group G.
1) Then H and K commute elementwise if and only if each subgroup is
contained in the normalizer of the other, that is,

H < Ng(K) and K < Ng(H)

In particular, if H, K < G, then H and K commute elementwise.
2) If G=He K, then H and K commute elementwise if and only if
H,K<1G.O

The Number of Conjugates of a Subgroup
Let G be a group and let H < G. Then

H*=HY & H' *=H & y 'z € Ng(H) & xNg(H) = yNg(H)

Thus, we obtain a count of the number of conjugates of a subgroup (the analog
of Theorem 3.23).

Theorem 3.27 Let G be a group and let H < G. Let conji(H) denote the set of
conjugates of H in G. Then
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conj (H)| = (G : Ng(H))

which divides o(G) when G is finite. The set conj(H) is called a conjugacy
class in sub(G).OO

Simple Groups

Nontrivial groups with no nontrivial proper normal subgroups are, in some
sense, simple.

Definition 4 nontrivial group G is simple if it has no normal subgroups other
than {1} and G.O

Of course, if GG is an abelian group, then all of its subgroups are normal and so
an abelian group is simple if and only if its only subgroups are {1} and G. This
is not easy for a group.

Theorem 3.28 An abelian group G is simple if and only if it is a cyclic group of
prime order.

Proof. If GG is cyclic of prime order, then Lagrange's theorem implies that G has
no subgroups of order different from 1 and o(G) and so G is simple.
Conversely, if G is simple, then every nonidentity element g of G must generate
G, that is, G = (g) is cyclic. However, if G is infinite, then (¢?) is a nontrivial
proper subgroup of G, a contradiction. Hence, GG is finite and cyclic. But if
p | o(G) where p is prime, then Cauchy's theorem implies that G has a subgroup
S of order p and so G = S has prime order.[]

We will show later in the book that the alternating group A, is simple for all
n # 4. Also, a famous result of Feit-Thompson (1963, [11]), whose proof runs
255 pages, says that every nonabelian finite simple group has even order. Thus:

1) The abelian simple groups are the cyclic groups of prime order.
2) All nonabelian finite simple groups have even order.

Commutators of Elements

The elements of a group of the form aba'b~! play a special role.

Definition Let G be a group. The commutator of a,b € G is the element
[a,b] = aba~'b~"

We denote the set of commutators of G by C(G). The subgroup generated by all
commutators of G is usually denoted (unfortunately) by G' and is called the
commutator subgroup, or derived subgroup of G. 4 group G is perfect if
G=G.0O
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We should note that authors who define the conjugate of two elements by
a® = b~'ab also define the commutator by [a,b] = a~ b~ ab.

It is easy to see that G’ is fully invariant in G; in particular, G' C G. Also, we
leave it as an exercise to prove that if N < G, then

G\ _GN
N) N

Commutators have some very nice algebraic properties. Here are the most basic
of these properties.

Theorem 3.29 Let G be a group and let a, b, c € G.
I [a,b]=1< ab=ba

2) [a,b]"" =[b,d]

3) [t = [a",b]

4) IfH QG, thenin G/H,

[aH,bH]| = [a,b]H
5) Ifa,b € G commute with c,d € G and vice versa, then
[a,b][c,d] = [ca, db] O

Note that since [a,b] ™! = [b,a], every element of G’ is a product of
commutators. The following characterization of commutator subgroups explains
why these subgroups are so important.

Theorem 3.30 (R. Dedekind, c. 1880) Let G be a group. Then for any
subgroup H < G,
H < G and G/H is abelian < G < H

In particular, G' is the smallest normal subgroup of G whose quotient is
abelian.
Proof. If H < G and G/ H is abelian, then in G/ H, we have

[a,b]H = [aH,bH]| = H

and so [a,b] € H, whence G’ < H. Conversely, if G’ < H, then H is normal in
G, since forany h € H and a € G,

h* =la,hlh € H
Also, G/H is abelian since
[aH,bH] = [a,b]H = H O

Example 3.31 We leave it to the reader to show that the commutator subgroup
of the quaternion group @ is @ = {1,—1}, which is also the set of
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commutators, that is,
Q' =C(Q)

Similarly, the commutator subgroup of the dihedral group Dy, is D}, = (p?)
and so again the commutator subgroup of Dy, is also the sef of commutators:

D5, = C(Dyy,) O
Example 3.32 For the symmetric group .S,, on n > 3 symbols, we have

Sy, = Ay = C(Sh)
Since all commutators are even permutations, we have S/, < A,,.

Now we make a few observations. First the product of any finite number of
disjoint commutators is a commutator, since if o;3; and a3, are disjoint, then

[057',7 67] [Oé]', 6]] = [ajah ﬂ]ﬁ?]
Second, if o, i € S,,, then
oot = [u,0]

and so if o and 7 have the same cycle structure, then the product 7o is a
commutator.

Hence, we need only show that any o € A,, can be written as a product of
disjoint permutations, each of which is a product «;3; where «; and 3; have the
same cycle structure.

But since a cycle of odd length is even and a cycle of even length is odd, the
cycle decomposition of o must have an even number of cycles of even length. In
other words, the cycle decomposition of ¢ is a product of odd cycles and pairs
of even cycles.

Now, every odd cycle o = (ay-+-agn+1) can be written as a product of two
equal-length cycles as follows:

g = (al' : 'a2m+1) = (al' : 'a7rL+1>(am+1' . 'a2m+1>

Similarly, every pair of disjoint even cycles can be written as a product of two
equal-length cycles as follows (where k > m):

o = (ar---am) (b1 -bax) = (a1---a2mb1- - -bp—ms1)(@2m bp—ms1- - -bai)
Hence, o can be written in the form

o= (Oélﬂl)' : '(amﬂm)
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where a; and 3; are equal-length cycles for each i and a;/3; and o;3; are disjoint
for i # j. Hence, o € C(S,,).00

When is C(G) = G'?
We have seen that for the quaternion, dihedral and symmetric groups,
G =C(G)

Despite these examples, however, this is not always true. In fact, the question of
precisely when G’ = C(G) is an active area of current research. We give an
example of a group for which G’ # C(G) and then discuss a few results in this
area. Readers interested in more details may wish to consult the survey article of
Kappe and Morse [19].

Example 3.33 (Cassidy [5]) Let GG be the set of all matrices of the form

1 f(x) h(x,y)
m(f,g,h) =10 1 9(y)
0 0 1

where f(z), g(z) and h(z,y) are polynomials with rational coefficients. A
straightforward calculation shows that

m(fi, 91, hi)m(fa, g2, ha) = m(f1 + f2, 91 + g2, h1 + ha + f192)
and
m(f:.ga h)71 = m(_fa -9, _h + fg)

from which it follows that G is a group. Another computation shows that the
commutators are given by

[m(f1, 91, h1), m(f2, g2, h2)] = m(0,0, fig2 — fag1)

Thus, the commutator subgroup G’ is contained in the subgroup of all matrices
in G of the form m(0,0, k) where h € Q[z,y]. Moreover, any such matrix is a
product of commutators, since

m<0, 0, Zai,jyyﬂ) = [[[m(a:;a',0,0),m(0,4’,0)]
i,j i,j
which shows that
G"={m(0,0,h) | h € Qz,y]}
Thus, the matrix
A=m(0,0,1+ 2y + 2%y

is in G’. However, it is not a commutator, for if
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L+ 2y + 2%y* = f1(2)g2(y) — fo(x)g1(v)

for some fi, fo € Q[z] and g1, g2 € Q[y], then equating coefficients of x' shows
that

Y = frig2(y) — f2i91(y)

for i = 0,1 and 2, where f,; is the coefficient of 2 in f,(z). But this implies
that the two-dimensional vector subspace of Q[y] spanned by g;(y) and g2(y)
contains the three independent vectors 1, y and 3, which is not possible. Hence,
not all members of G’ are commutators.[]

Here is a small sampling of known results concerning the issue of when
G' = C(G). Many more results are contained in Kappe and Morse [19].

Theorem 3.34 (Speigel [31], 1976) If a group G contains a normal abelian
subgroup A whose quotient G | A is cyclic, then G' = C(QG).

Proof. If we can find a normal subgroup B < G for which B C C(G) and G/B
is abelian, then

G'<BCC(CG)Cd
whence G’ = C(G). To this end, let G/A = (xA) and let
B={[z,a]|a€ A} ={a"a"|a € A} CC(G)
To see that B < (G, we have
(a"a M) (b)) = a"b a b = (ab)"(ab) ' € B

and

and for normality,
(axaq)xfa _ (axaq)wi = (@) (a") ' e B
To see that G/ B is abelian, we have
[zB,aB] = [x,a]B= B

and so 2B and aB commute for all a € A, which implies that z'aB and /b B
commute for all a,b € A.(J

For small groups, we also have G’ = C(G).
Theorem 3.35 Let G be a group. The following conditions imply that

G' =C(Q).
1) (Guralnick [15], 1980)
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a) G'is abelian and either o(G) < 128 or o(G’) < 16.

b) G’ is nonabelian and either o(G) < 96 or o(G') < 24.
2) (Kappe and Morse [20], 2005)

a) o(G) = p", where p is an odd prime and n < 5.

b) o(G) = 2", wheren < 6.00

On the other hand, if the center of G is large compared to the size of G’, then
there will be elements of G’ that are not commutators.

Theorem 3.36 (MacDonald [22], 1986) Let G be a group with Z = Z(G). If
(G:2)? < o(G")

then G' # C(QG).
Proof. Since z, w € Z implies that

laz, bu] = [a,b]

it follows that the number of distinct commutators is at most the number of
commutators of G/ Z and that is certainly at most (G: Z)*.00

Additional Properties of Commutators

Here are some additional properties of commutators. The reader may wish
simply to read the statement of the theorem and move on, referring to the
theorem as needed at later times. (The proof is not particularly enlightening.)

Theorem 3.37 Let G be a group and let a, b, c € G.

1)
[b,a] = [a~',0]" = [a,b_l]b
[a’ b} — [ail, bfl]ba,
2)
[a,bc] = [a,b][a,c]b
[ab, c] = [b, c]?[a, c]

3) Letay,...,an,b1,...,b, € G. Then

nom

[al' ey, by .bm] — HH [ai) bj]m.j

i=1j=1

where v j € (a1, ..., G, b1,...,by). Also, the order of the factors on the
right can be chosen arbitrarily, although the exponents depend on that
order. In particular, if m and n are positive integers, then
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[@",0™] = UH [a, b]“

where «; j € (a,b).

4) If [a, b] commutes with both a and b, then for any integers m and n,
a) [am’ b'ﬂ] — [a7 b]mn
b) (ab)™ = a™b™[b,a])
Hence, if o([a, b)) divides ("} ), then

(ab)’HL — aTTLb"L
Proof. The proofs of part 1) and part 2) are straightforward calculations. Part 3)

is proved by a double induction. For m = 1, we induct on n. If n = 1, then the
result is clear. If the result holds for n — 1, then part 2) implies that

[al' ey, bl] — [an, bl]m..-a,,q [al' 1, bl]

and the inductive hypothesis completes the proof for m = 1. Assume the result
is true for m — 1 and let a = a;---a,,. Then

[a, bl' . 'bm] = [Cl, bl' . 'bm—l] [Cl, bn]blmbm"

and the inductive hypothesis completes the proof. As to the statement about the
order, we can rearrange the factors using the identity xy = y"x.

Part 4a) follows from part 3) when m,n > 0. The result then follows for
negative exponents using part 1). For part 4b), note first that ¢ = [b, a] also
commutes with a and b and that

ba = cab = abc
Now,
(ab)™ = (ab)---(ab)(ab)
N———
m factors
and if we move the rightmost a all the way to the left, the result is
ab)™ = a (ab)--- bbm71
(ab) (ab)---(ab) be
m—1 factors
Repeating this process gives
(ab)™ = a® (ab)---(ab) b*c™ 2™ !
———
m—2 factors

Continuing until all of the as are on the left gives

(ab)™ = amfl(ab)bmflcl+2+~-~+(mfl) — ampme(s)
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which proves the result for m > 0. For m < 0 we have, using part 4b) for
positive exponents along with part 4a) and part 1),
(ab) ™ = (bt )"
=b"a "a b ](m)
=a """, 0™ [ail b1
“HTM b, a]™ [a” ]

]

][
7777,67777,[[)701]777 [CL ] )

" [b

] o

m

m

m

7777,6*777, [b a m
)

7

a
a
a ,a)™
a

777Lb777L [b a

Here is one application of Theorem 3.37 that will be useful later in the book.

Theorem 3.38 If G is a nonabelian group with the property that all cyclic
subgroups are normal, then

1) G is periodic

2)  Any nonabelian subgroup of G contains a quaternion subgroup

3) Ifa,b e Gando(a)+ o(b) <8, then ab = ba.

Proof. To see that G is periodic, we first show that any = ¢ Z(G) has finite
order. Let y € G satisfy

ci=[x,yl #1
Then the normality of (x) and (y) imply that ¢ € (z) N (y) and so
c = CC" — yTIY,

for some n, m # 0. Thus, ¢ commutes with = and y and so

nm 7LTTL

1=fe, o =[a",y"] = [z, y]"" =

77L}

Hence, ¢ has finite order and therefore so does z. Now let z € Z(G). If
y ¢ Z(QG), then xy ¢ Z(G) and so zy has finite order and therefore so does .
Hence, G is periodic.

Now suppose that D is a nonabelian subgroup of G. Let x,y € D be chosen so
that o(x) + o(y) is minimal among all pairs of noncommuting elements in D.
We will show that @ = (z,y) is a quaternion subgroup of D. To see that = and
y have order 4, let p be a prime dividing o(x) and let

c = [x’y] — xn — y"l

as shown above. Since o(z?) < o(z), it follows that 2P and y commute and so
Theorem 3.37 implies that

1= [z, y] = [z,y]"

whence o(c) = p. Hence, p is the only prime dividing o(x) and similarly o(y)



92 Fundamentals of Group Theory

and so

ofz) =p"" and ofy) =p
for some 7, 7 > 0. Moreover,
Pt

= C)=o0 {L‘n =
p=ole) = o) = T
which shows that n = p'u where p J u. A similar argument for y gives

; j
2P = = yP"

where p fuand p fv.

To eliminate u and v from the equation above, if o =wu"'modp and
3 = v~ mod p, then taking the o3 power gives

5

xpzi; 5]

= (/'Dé’ = yp704
and so
(@) = [,y = (y*)”

where o(z”) = p'*! and o(y®) = p/*!. Thus, replacing 2 by = and y* by y
gives

2 =c=y” (3.39)
where 1 # ¢ = [z,y] and
o(x) =p™, o(y)=p"" and o(c)=p

We may also assume that ¢ > j > 1, for if j = 0, then y = ¢ = [z, y|, which is
false.

The next step is to show that p = 2 and that ¢+ = j = 1. The key observation
here is that for any integer k, the elements x¥y and = do not commute and so
o(x*y) > o(y) = p’*!. But, if pis odd or if p = 2 and j > 1, then

0(6)=p‘ (1;])

and so Theorem 3.37 implies that
1 # (aFy)? = 2"y? = 2M'e
and taking k = —p’~/ gives 1 # 1. Hence, p = 2 and i = j = 1. Thus,

o(r)=o(y) =4, o(c)=2 and 2°=c=1"
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where ¢ commutes with x and y and since
zy(zy) = cyz(zy) = c
it follows that Q = (x,y) is quaternion.[]

Commutators of Subgroups

Commutators can be defined for subsets as well as for elements.

93

Definition 7he commutator [X,Y] of two subsets X,Y C G is the subgroup

generated by the commutators:
(X, Y] =([z,9] [z € X,yeY)
Note that, by definition,
G =[G,G|

for any group G. Here are some of the basic properties of these commutators.

Theorem 3.40 Let H, K < G.
1)
[H7K] = [KaH]

O

2) H and K commute elementwise if and only if |[H, K| = {1}, in particular,

H<Z(G) < |[H,G={1}
3)

HAG & |[H,G]<H
4) IfH,K <G, then

[H,K|<HNK and [H K] <G

Also,

HKCG = [HK|CG

5) H normalizes [H, K| and so
[H, K] < (H, K)

H[H,K]=H" < HXK = (H,K)
In particular,

nc(H,G) = H[H,G]|
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Proof. We prove only part 5). Theorem 3.37 implies that if h; € H, then
[h, k)" = [hih, k[hi, k]! € [H, K]

Hence, H normalizes [H, K|]. Similarly, K normalizes [H, K] and so (H, K)
also normalizes [H, K|.O0

Here are some additional properties of commutators of subgroups.

Theorem 3.41 Let A, H, K < G.
1)
A, HK] = [A, H|[A, K"
where
[A, K" = {[a,k]" |a€ A,k € K,h € H)

2) If A< G andif F ={H;|ié€ I} is a family of normal subgroups of G,
then

1A, \/Hi] = \/[A, H)]

This equation still holds even if one member of F is not normal. In
particular, if A, H < G and K < G, then

[A,HK] = [A, H|[A, K]
3) IfN <G, then
[HN,KN| < [H,K|N
and so
[HN,KN|N = [H,K|N
4) IfN <G, then

HN KN| [H,K|N
N’ N| N
Proof. For part 1), ifa € A, h € H and k € K, then
[a, hk] = [a, h][a, k)" € [A, H][A, K]"

and so [A,HK]<[A,H|[A, K]. For the reverse inclusion, we have
[A, H] < [A, HK] and since

la, k1" = [, h]'[a, hk] € [A, HK]
we also have [A, K] < [A, HK].
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For part 2), note that part 1) and the fact that [A, H] < G imply that
(4, HE] < [A, H][A, K]

and the reverse inclusion is evident. For the general case, since
[A, Hy;] < [A,\VH;] for all k, it follows that

\/AHA A\/H

For the reverse inclusion, each generator of [A,\/H;] belongs to a commutator
subgroup of the form [A, H; ---H; ], which is equal to \/[A, H; ], which in turn
is contained in \/[A, H;] and so

[A, \/HJ < \/[AyHi]
Part 3) follows from the fact that

[HN,KN]=[HN,K]HN, N|¥
= [K,H]|K,NJ#[HN,N)¥
< [K,H|N

Part 4) follows from part 3).[1

*Multivariable Commutators

We can extend the definition of commutators as follows. If a, b, ¢ € G, then

la,b,c] = [a,[b,c]]
and in general, if ay, ..., a, € G, then
[alv 7a'n] = [ah [a27 cees an]]

with [a] := a. Note that some authors define [a,b,c] to be [[a,b],c] and, in
general, these are not the same.

Theorem 3.42 Let G be a group. The following are equivalent:
1) (Associativity) For all a,b,c € G,

[[a,b], ¢] = [a, [b,c]]
2) (Distributivity) For all a,b,c € G,

[a,bc] = [a,b][a, c]
3) (Commutator subgroup is central)

G < Z(Q)
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Proof. Since
[a,bc] = [a,b][a, c]b

it follows that 2) holds if and only if [a,c]’ = [a,c] for all a,b,c € G, which
holds if and only if [a,c] € Z(G) for all a,c € G, that is, if and only if
G’ < Z(G). Hence, 2) and 3) are equivalent.

It is clear that 3) implies 1). Conversely, 1) is
[a,b]cla,b] et = alb,cla[b,c] !
which is equivalent to
[a,b]cb,alc™! = alb,cla™'[b,c]
Now, as to the last factor [b, ¢| !, note that 1) with b = ¢ implies that
[[a,b],b] =1
forall a,b € G. Hence,
[b,c] ™ =e,b] =bb )b =, ]
and so 1) is equivalent to
[a,b]cb,alc™ = alb,cla b, c]
Expanding the commutators gives
aba b tebabta e = abeb et b ebe !
and cancelling gives
a o tebab ot = cb e ta b e

Moving the first factor on the right side to the left side and the last factor on the
left side to the right side gives

cta b ebab = b e la T b eba
which is equivalent to
[Cil, a*lbfl}bfl _ b*l[cflyaflbfl]

which shows that [c™!, a~'b~!] commutes with b=, but ¢~ !,a vt and b}
represent arbitrary elements of G and so [r,y] commutes with z for all
x,y,z € G, thatis, G’ < Z(G).0

Theorem 3.43 (Hall-Witt Identity) Let a,b,c € G. Then

[a,b7" ]’ b, et alle,a” B)" =1
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Proof. For the first factor we have
[a, 071, c]’ = bla,[b71, ]|t
=balb ", cla b7, ¢] o
= bab tebetaeb e hb !
= bab 'ebera e et
_ abbcail(bil)c
By cycling a, b and ¢, we get
[b,Cil, a]c — bccabfl(cfl)a
and
[07 ail, b]a _ caabcfl(afl)b

The product is easily seen to self-destruct.[]

If H, K and L are subgroups of GG, then we define
H,K, L) = [H,[K, L]
and more generally, if Hy, ..., H, < G, then
[Hy,...,H,] = [Hy,[Ha, ..., Hy)]
with [H] = H.
The subgroup [H,[K,L]] is generated by elements of the form [h,cy---¢,),

where h € H and ¢; = [k;,¢;] for k; € K and ¢; € L. Hence, Theorem 3.37
implies that

[hv Cl"'cn] = H [h)ci}ai
where «; € (h,cy,...,c,) < (H,K,L).

Corollary 3.44 (Three subgroups lemma) Let G be a group. Let H, K and L
be subgroups of G. Then if any two of the commutators [H, K, L], [L, H, K] or
[K, L, H] are contained in a normal subgroup N of G, then so is the third
commutator.

Proof. We assume that [H, K,L] < N and [L, H, K] < N and use the Hall-
Witt Identity. Since [h,k™',¢] € [H,K,L] and [(,h ' k] € [L,H, K] for
he€ H,k e Kand? € L, it follows from the Hall-Witt identity that

e, 0 0] = ([, OF[e,h K] e N

and since N is normal in G, we deduce that [k,/~' h] € N. Hence,
[K,L,H < N.O
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Exercises

1.

2.

10.

11.

12.

13.
14.

15.

16.

Let G be a group and let H < G. Prove that if H and G/H are centerless,
then G is centerless.

Let G = S5 X (5. Show that G has two subgroups H and K of order 6 that
are centerless but that G = H K is not centerless. Thus, the set product of
centerless subgroups may be a group that is not centerless. What about the
direct product of centerless groups?

If a group G has the property that all of its subgroups are normal, must G
be abelian?

Let G be a finite group and let Ny,..., N, be normal subgroups of G.
Show that | Ny---NN,,| divides | Ny]|-- | Ny, |.

A subgroup H of a group G is permutable if HK = KH for all
subgroups K of G. Prove that a maximal subgroup that is permutable is
normal.

Show that if a normal subgroup H of a group GG contains no nonidentity
commutators, then H is central in G.

Use the Feit-Thompson Theorem to prove that a nontrivial group G of odd
order is not perfect, that is, G’ < G.

Suppose that G is a finite group and that G’ < G. Prove that G has a
normal subgroup K of prime index.

Show that the set product of subnormal subgroups need not be a subgroup.
Hint: Check the dihedral group Ds.

Let G be a finite group and let H be a subgroup for which (G : H) is
prime. Show that if there is at least one left coset aH of H other than H
itself that is also equal to some right coset Hb, then H < G.

a) Prove that the commutator subgroup of the quaternion group is

{1,-1}.
b) Prove that the commutator subgroup of the dihedral group D-, is
/ 2

For which values of n is it true that the dihedral group Ds, has a pair of
proper normal subgroups H and K for which

Dy, =HK and HNK={1}

Let G be a group and let H < G. Prove that C(H) < Ng(H).

Prove that S], = A,, for n > 4 in the following manner. Use the fact that A,
is simple for all n#4. Show that S/ N A, <A, Deduce that
S/ NA,={t}orS, NA, =A,. Show that S;, N A, = {+} is impossible.

Prove that if N < G, then
G\ G'N
N) N

a) Find an infinite group that is periodic. Hint: Look at the quotient
groups of the additive group of rationals.
b) Prove thatif H < G and H and G/ H are periodic, then so is G.
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18.
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Let N < Z(G), the center of G. Show that N < G and that if G/N is
cyclic, then G is abelian.

Prove that a maximal subgroup M of a group G is normal if and only if
G'< M.

Let H<G have prime index. Let x € H have the property that
Ch(xz) < Cg(x). Prove that an element y € H is conjugate to x in G if and
only if it is conjugate to x in H.

Let m = {pi,...,pm} be a nonempty set of primes. A 7w-group is a group
whose order 7 has the property that all primes dividing n lie in the set 7.
For example, a group of order 2% - 572 is a {2,5,7}-group. Let G be a
finite group and let Hy,..., H,, be normal subgroups such that G/H; is a
m-group for all i. Prove that G /(" H, is also a 7-group.

A subgroup H of a group G is abnormal if

a€c (H,H)

for all @ € G. Prove that H is abnormal if and only if it satisfies the

following conditions:

a) IfH < K <G, then Ng(K) =K.

b) H is not contained in distinct conjugate subgroups, that is, if K < G
and K # K% then H € K N K*“.

Let H, K <G.

a) Prove that

H® = H[H,K| < (H,K) = H'K
b) If G = (X) for some subset X of G, show that
G =(lz,y]| 7,y € X)nor
Let S be a nonempty subset of a group G and let H, K < G. Show that
SHE — (§K\H
Let A, H, K < GG. Prove that
[AH,AK]| = [AH, A][AH, K]

Let H,K,L <Q(@.

a) Show that if [H,K,L|={1} and [L,H,K]={1}, then
K. L,H] = {1}.

b) Show thatif H, K and L are normal in G, then

[H,K,L|<|[L,H,K]K,L,H|

Let G be a group and let N be a normal subgroup. Let x,y € G and
suppose that 2"y ™ € N and yxy Ftx~'"" c N. Prove that
yry 'z~ € N.

Let G be a group and let H < (. Prove that if H has finite index in G, then
(G:H)=(G:H")foranyz € G.
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28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.
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Let G be a nonabelian group. Show that Z(G) is a proper subgroup of any

centralizer C¢(g).

Let H < G. Prove that C(H) < Ng(H).

Let G beagroup and let H < G.

a) Prove that N < G is normal in G if and only if all subsets of GG
normalize N.

b) Prove that if S normalizes the subgroups H and K of G, then S
normalizes their join H V K, that is,

Ne(H)N Ng(K) < No(HV K)

¢) Prove that if S and 7" normalize H, then the set product S7" normalizes
H.

d) Prove that a subgroup H < G normalizes all supergroups of itself.

Prove that if H < G, then Ng(H®) = Ng(H)®. In particular, Cg(h)* =

Ca(h).

Let G be a group and let H < K < G with H < (. Prove that

(f)-42

a) Show that the subgroup H = {¢,(12)(34), (13)(24),(14)(23)} of
S, is normal. Hint: Show that the conjugate of any transposition is
another transposition, in fact, (ab)” = (ca ob).

b) Show that the subgroup K = {i,(12)(34)} is normal in H but not
normal in Sy.

¢) Conclude that normality is not transitive.

Let G be a group.

a) Let M be the intersection of all subgroups of G that have finite index
in G. Show that M is normal in G.

b) Let H < G with finite index. Show that there is a normal subgroup
N < G for which N < H < G where N also has finite index in G.

Let GG be a group generated by two involutions = and y. Show that G has a

normal subgroup of index 2.

Let G be a finite group of odd order. Show that the product of all of the

elements of GG, taken in any order, is in the commutator subgroup G'.

(P. Hall) Let A, B < G. Show that if [4, A, B] = {1}, then [A, B] is an

abelian group. Hint: One possible proof is as follows: Show that A

commutes with [4, B] and with [B, A] and that B commutes with A’. Then

use a direct computation to show that [a,b][z,y] = [y,z !][a,b] where

a,r € Aand b,y € B. Finally, use Theorem 3.37.

Let p # 2 be prime and consider the group

G = Z(p™) B Zy

where Z(p>) is the p-quasicyclic group. Show that G has a unique
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maximal subgroup M, but that M is not maximum in the lattice of all
proper subgroups of G.

A group G is said to be metabelian if its commutator subgroup G’ is
abelian. (Some authors define a group G to be metabelian if G’ is central in
G, which is stronger than our definition.)

a)

b)
¢)

d)

Prove that GG is metabelian if and only if G’ has a normal abelian
subgroup A for which G/ A is also abelian.

Prove that the dihedral group D, is metabelian.

Let F' be a finite field, such as Z, where p is prime. Let a,b € F’ where
a # 0. The map o, F' — F defined by

Oap:T—ax +b

is called an affine transformation of F'. Show that the set aff(F') of all
affine transformations of F' is a subgroup of F'". Show that aff(F) is
metabelian.

Prove that if G = AB where A and B are abelian, then G is
metabelian. Hint: Show that [a,b]"® = [a,b]%" for a,a; € A and
b,b; € B. Use the fact that AB = BA.

Let G be a group of order p”, where p is prime. Suppose that for each
a € G, the centralizer C, = C¢(a) has index 1 or p.

a)

b)

Prove that C, < G. Hint: Assume (G : C,;) = p. Let
I=(\Cci<c,

geG

Show that [ is normal in G. Then show that the elements of G /I are
actually permutations of G/C,, where gI(zC,) = gxC,. Show that
G /I is a subgroup of S¢/p.

Prove that G’ < Z(G).

We have seen that the family sub(G) of all subgroups of G is a complete
lattice. Let nor(G) be the family of normal subgroups of G.

a)

b)
¢)

d)

Show that the join of two normal subgroups A and B is the set product
AB.

Show that nor(G) is a complete sublattice of sub(G).

Prove that the distributive laws

AV (BNC)=(AVB)N(Av ()
AN(BvC)=(ANB)V(ANC)

for A, B,C <G imply the modular law: For A, B,C < G with
A<B,

AV(BNC)=BN(AVO)

A lattice that satisfies the modular law is said to be a modular lattice.
Prove that nor(G) is a modular lattice.
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e) Is nor(G) necessarily distributive, that is, do the distributive laws
necessarily hold? Hint: Consider the 4-group V' = {1, a, b, ab}.

f) Prove that sub(G) need not be modular. Hint: Consider the alternating
group Ay of order 12. Let A = ((12)(34)),B = ((12)(34),(13)(2
4)yand C' = ((123)).

g) Prove the Dedekind law: For A, B,C' < G with A < B,

A(BNC) = BN (AC)

Find an example to show that for arbitrary subgroups A, B,C of G,
A(BNC) is not necessarily equal to AB N AC and so the condition
that A < B is necessary.

h) Let A, B and C' be subgroups of G’ with A < B. Prove that if

ANC=BNC and AC = BC

then A = B.

Let G be a group with subgroups N and H and suppose that NH < G.

Prove that if (G : H) and |N| are finite and relatively prime, then N < H.

Let G be a group and H < G.

a) Let H C X C @. Show that the relation x =y if 7'y € H is an
equivalence relation on X. What do the equivalence classes of this
relation look like? Let (X : H) be the cardinality of the set of
equivalence classes.

b) If HCXCY CG, where XH C X. Show that if (X:H) =
(Y:H)<oo,thenX =Y.

Prove that N < G and GG/ N both have the ACC on subgroups if and only

if G has the ACC on subgroups.

Sometimes it is useful to relate the commutator subgroup [H,K] of

subgroups H and K to the commutator subgroup [X, Y] of generating sets

for H and K. Let X and Y be nonempty subsets of a group G.

a) Show that

(X, (V)] = [X, (V)Y =[x, Y]V
b) Show that
[(X), (V)] = [X, Y]HW = [x, ]V

Complex Groups

Let

G be a group. Let G be a nonempty family of subsets of GG that forms a

group under set product. Such a group has been called a complex group based
on G (see Allen [1]). Let | JG be the union of the subsets in G. We denote the
identity of G by E. Also, we denote the inverse of A € G by A~!. In the
following exercises, let G be an arbitrary complex group based on the group G.
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Let N < G. Show that G/N is a complex group in which the members
form a partition of G. Thus, quotient groups are complex groups.

Show that if Q* is the multiplicative group of all positive rational numbers
and if

Q ={(r,o) |reR}

then Q is a complex group. Do the members of Q form a partition of Q*?
What is the identity of Q? Does it contain the identity 1 € Q*? Compare
the sizes of Q1 and Q. Could Q be a quotient group of Q*?

Let Z be the additive group of integers and let k£ be a positive integer. Show
that the set

Zr={{n}Un+k,00)|nelZ}
is a complex group. What is the identity of Z;? What is the negative of the
element A = {1} U[l + k,00)? Is this the set of negatives in Z of the
elements of A?

Show that all members of G have the same cardinality.
Show that for A, B € G,

ACB = B'lcal
Show that for A, B € G,
E<G,AB=E = AUBCE or (AUB)NE=0
Show that for A, B € G,
e€c AB'nBA' = A=B
and
AB'UBA'CE = A=B

Suppose that the members of G form a partition of G. Prove that G is a
quotient group of G, that is, G is the set of cosets of some normal subgroup
of G. Hint: Show that 1 € E and that £ < G.

Prove that G is a quotient group of G if and only if £ < G. Hint: Prove that
E < G if and only if the members of G are pairwise disjoint and | JG < G.
Prove that

A#BeG = ANB=0 or AN Bisinfinite



Chapter 4
Homomorphisms, Chain Conditions and
Subnormality

Homomorphisms

The structure-preserving functions between two groups are referred to as
homomorphisms. Before giving a formal definition, let us make a few remarks
about functions.

We denote the action of a function f:S — T on s € S by either fs or f(s),
depending on readability. If o denotes the power set, then the induced map
fro(S) — p(T) is defined by

fU)={f(u) |ueU}
and the induced inverse map f~': o(T) — p(S) is defined by
FiV)={seS|f(s)eV}

If f: 5 — S, then a subset A C S is invariant under f, or f-invariant, if
f(A) C A If F is a family of functions from S to S, then a subset A C S is F-
invariant if A is f-invariant for all f € F.

Now we can define homomorphisms.

Definition Let G and H be groups. A function 0: G — H is called a group
homomorphism (or just homomorphism) if’

o(ab) = (ca)(ob)

The set of all homomorphisms from G to H is denoted by hom(G, H). The
following terminology is employed:

1) A surjective homomorphism is an epimorphism, which we denote by
o:G—» H.

S. Roman, Fundamentals of Group Theory: An Advanced Approach, 105
DOI 10.1007/978-0-8176-8301-6_4, © Springer Science+Business Media, LLC 2012
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2) An injective homomorphism is a monomorphism or embedding, which we
denote by 0: G — H. If there is an embedding from G to H, we say that G
can be embedded in H and write G — H.

3) A bijective homomorphism is an isomorphism, which we denote by
0:G =~ H. If there is an isomorphism from G to H, we say that G and H
are isomorphic and write G ~ H.

4) A homomorphism of G into itself is an endomorphism. The set of all
endomorphisms of G is denoted by End(G).

5) An isomorphism of G onto itself is an automorphism. The set of all
automorphisms of G is denoted by Aut(G).O

If 0: G — H is a homomorphism, then it is easy to see that
ol=1 and o(a ') = (ca)™!

for any a € G. Also, if 0:G ~ H, then the inverse map o ': H ~ G is an
isomorphism from H to . The map that sends every element of G to the
identity 1 € H is called the zero map. (We cannot call it the identity map!)

In general, induced inverse maps are more well behaved than induced direct
maps. Here is an example.

Theorem 4.1 Let 0: G — H be a group homomorphism.
1) a) (Image preserves subgroups)
S<G = oS<H
b) (Surjective image preserves normality) If o is surjective, then
S4G = oSJH
2) (Inverse image preserves subgroups and normality)
T<H = o¢'T<G
and
T<H = o¢'T<@G O

While it is true that isomorphic groups have essentially the same group—
theoretic structure, one must be careful in applying this notion to the subgroup
structure of a group. For example, in the group Z of integers, the subgroups
2Z ={2n|n€Z} and 3Z = {3n | n € Z} are isomorphic but the quotients
7./27 and 7 /37 have different sizes. Thus, isomorphic subgroups need not
have the same index.

Example 4.2 Let Dg = (p,0) be the dihedral group, where o(p) =3 and
o(0) = 2. Let S3 be the symmetric group of order 6. The map f:Dg — S3
defined by
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fle'ph) = (23)'(123)"
is an isomorphism and so Dg ~ S3. This tells us that the group of symmetries of
the triangle is the group of permutations of the vertices.[d
Definition Let G be a group and let o: G — G be an endomorphism of G.
1) o is nilpotent if’
" =0

for some n > 0, where 0 is the zero map.
2) o is idempotent if’

=0 O

We leave it as an exercise to show that the zero map is the only endomorphism
that is both nilpotent and idempotent.

Sums of Homomorphisms
If o,7: G — H are homomorphisms, then the map o + 7: G — H defined by
(0 +7)(a) = (0a)(Ta)

is a homomorphism if and only if the images im(c) and im(7) commute
elementwise.

Definition Let G and H be groups. The sum of a family oy, ...,0,:G — H of
homomorphisms is the function defined by

(0-1 4+ 4 gn)(a) = (O’la)"'(ana)
foralla € G.O

If the images im(o;) commute elementwise, then the sum oy + --- + 0, is a
homomorphism and in this case, the sum itself is commutative, that is,

o1t t 0 =0+ +0m
for any w € S,,. Moreover, composition distributes over addition,
olor+ - +0,) =001+ + 00,
and
(o14+--+o,)0 =010+ 40,0

Hence, if the images im(c;) commute elementwise, then the binomial formula
holds,
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m . .
JisesIn

JiteHin=m
for any m > 0.

Theorem 4.3 Let 04, ..., 0, € End(G) have the property that the images im(o;)
commute elementwise. If each o; is nilpotent, then so is the sum

T=01+ " +0,
Proof. For any m > 0,
nm ; .
e 5 (™ Yook
j1+“‘+jn:"”n ]17 M 7.771

But if each o; is nilpotent, then there is a positive integer m for which o* = 0
for all ¢ and so each term in the sum above is the zero map, since one of the
exponents j; is greater than or equal to m.[

Kernels and the Natural Projection
The kernel of a homomorphism o: G — H is the subgroup
ker(o) ={a € G |oa=1}

consisting of all elements of GG that are sent to the identity of H. This is easily
seen to be a normal subgroup of . Conversely, any normal subgroup is a
kernel.

Theorem 4.4 Let N < G. The map wn: G — G/ N defined by

my(a) =alN
is an epimorphism with kernel N and is called the natural projection or
canonical projection modulo N.[J
It is possible to tell whether a homomorphism is injective from its kernel.
Theorem 4.5 A group homomorphism o:G — H is injective if and only if
ker(o) = {1}.00
Groups of Small Order

One of the most important outstanding problems of group theory is the problem
of classifying various types of groups up to isomorphism. This problem is called
the classification problem and is, in general, very difficult. The classification
problem for all groups is unsolved. The classification problem for finitely-
generated abelian groups is solved (see Theorem 13.4). The classification
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problem for finite simple groups seems to have been solved, and we discuss this
in more detail in a later chapter.

Groups of relatively small order have been fully classified up to isomorphism.
For example, one can find such a classification of groups of order 50 or less in
Weinstein [36]. Of course, Lagrange's theorem gives a simple solution to the
classification problem for groups of prime order, since all such groups are
cyclic.

A bit later in the book, we will solve the classification problem for groups of
order 15 or less. For now, we can solve the classification problem for groups of
order 8 or less, which are easily analyzed by looking at the possible orders of
the elements. In fact, since groups of prime order are cyclic, we need only look
at groups of order 4, 6 and 8.

Groups of Order 4

Let G be a group of order 4. If G has an element of order 4, then G is cyclic and
G =~ Cj. Otherwise, all nonidentity elements have order 2, which implies that G
is abelian. In this case, if a,b € G are distinct nonidentity elements, then
G ={1,a,b,ab} is the Klein 4-group. Thus, the groups of order 4 are (up to
isomorphism):

1) Cy, the cyclic group
2) V = (5 K (Y, the Klein 4-group.

Groups of Order 6

If o(G) =6, then Cauchy's theorem implies that there exist a,b € G with
o(a) =3 and o(b) = 2. Since (a) has index 2, it is normal in G and since
conjugation preserves order, we have

abza or ab:ClQ

If a’ = a, then G is abelian. In this case, since o(a) and o(b) are relatively
prime,

o(ab) = o(a)o(b) =6

2= a7, then

G = (a,b),0(a) = 3,0(b) = 2,ba = a'b

and so G is cyclic. If a’ = a

and so G is the dihedral group Dg. Also, since Dg =~ S3, the group G is also a
symmetric group. Thus, the groups of order 6 are (up to isomorphism):

1) s, the cyclic group
2) Dg = Ss, the nonabelian dihedral (and symmetric) group.
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Groups of Order 8

Let o(G) = 8. If G has an element of order 8, it is cyclic and G ~ Cj. If every
nonidentity element of G has order 2, then G is abelian. In this case, let a, b and
¢ be distinct elements of G' with ¢ # ab. It is easy to see that

G ={1,a,b,c,ab,ac,bc,abc}
and that G ~ Cy X Cy X (.

Now suppose that G has an element a of order 4 but no elements of order 8.
Then (a) < G. For any b ¢ (a), we have G = (a,b) and since a’ € {a) has
order 4, we must have

bab'=a or bab ' =d’

If bab~' = a, then G is abelian. Moveover, G has an element ¢ of order 2 that is
not in (a). To see this, note that if b ¢ (a) and o(b) = 4, then b* € (a) has order
2 and so b? = a?. Hence, (ab)? = a®b? = a* = 1 and so ¢ = ab. Thus,

G ={a)e{c) = CyK(Cy

On the other hand, suppose that bab~! = a® = a~!. If there is a involution

b ¢ (a), then ab is also an involution and so Theorem 2.36 implies that (b, ab) is
dihedral of order 20(a) = 8, thatis, G = (b, ab) =~ Ds.

Finally, if all elements b ¢ (a) have order 4, then b € (a) and so
G = <a7b>’a 7& b,O(CI,) = 47b2 = a2,bab71 = a3

which is the quaternion group. Thus, the groups of order 8 are (up to
isomorphism):

1) Cs, the cyclic group

2) (4 (Y, abelian but not cyclic

3) (3 XK C5 K Oy, abelian but not cyclic
4) Dg, the (nonabelian) dihedral group
5) @, the (nonabelian) quaternion group.

A Universal Property and the Isomorphism Theorems

The following property is key to many other properties of group
homomorphisms.

Definition Let G be a group and let K < G. Let F(G; K) be the family of all
pairs (H,0:G — H), where 0:G — H is a group homomorphism and
K Cker(o).
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I<--—----»

Figure 4.1

Referring to Figure 4.1, a pair (S,u:G — S) € F(G;K) is universal in
F(G; K) if for any pair (H,0:G — H) € F(G; K), there is a unique group
homomorphism 7: S — H for which the diagram in Figure 4.1 commutes, that
is, for which

Tou=o
The map T is called the mediating morphism for o and we say that o can be
factored uniquely through u or that o can be lifted uniquely to S.CJ

Existence and uniqueness (up to isomorphism) of universal pairs is given by the
following theorem.

Theorem 4.6 (Universal pairs) Let G be a group and let K < G.
1) (Existence) The pair
(G/K,m:G — G/K)

where m is the canonical projection modulo K is universal in F(G; K).
The mediating morphism for o: G — H is the map 7:G/K — H defined
by

T(9K) = ag
Also,
im(7) =im(o) and ker(t) =ker(c)/K

2) (Uniqueness) Referring to Figure 4.2

T

G

Figure 4.2
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if (S,u:G — 8) is also universal in F(G;K), then the mediating
morphisms o and T are inverse isomorphisms, whence S ~ G/ K.
Proof. For part 1), a mediating morphism for o: G — H, if it exists, must
satisfy

T(9K) = og

for all g € G and so must be unique. But the condition K C ker(c) implies that
7 is a well defined map and it is easy to see that it is a homomorphism. Finally,

im(7) = 7(G/K) = 1o g (G) = 0(G) = im(0)
and
T(aK)=0 <& 71omkg(a)=0 & o0ca=0 < acker(o)
and so ker(7) = ker(o)/K.

For part 2), since (G/K,m) and (S,u: G — S) are both universal, u can be
factored uniquely through 7z, that is,

TOTK =1
and 7 can be factored uniquely through w, that is,
ogou =Tk
Hence,
(tToo)ou=u
But u can be factored uniquely through itself and since ¢ o u = w, it follows that

7 o0 = (. Similarly, o o 7 = ¢ and so ¢ and T are inverse isomorphisms.[]

The following well-known results are direct consequences of the universal
property of the pair (G/H, my).

Theorem 4.7 (The isomorphism theorems) Let G be a group.
1) (First isomorphism theorem) Every group homomorphism o:G — H
induces an embedding &: G /ker(c) — H of G [ker (o) defined by

a(gker(o)) = og
and so

G
ker(o)

~ im(o)
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2) (Second isomorphism theorem) /f H K <G with K JG, then
HNK < H and

HK _ H
K ~ HNK

3) (Third isomorphism theorem) [f H < K <G with H,K <G, then
K/H < G/H and

G /K G
H/ H K
Hence
(G K) = (G/H : K/H)
Proof. For part 1), since (G/K,mx) is universal, there is a unique

homomorphism 7: G/K — im(o) for which 7 o 7 = o. The rest follows from
the fact that im(7) = im(c¢) and ker(7) = ker(o)/K = {1}.

For part 2), the map o: H — HK /K defined by o(h) = hK is clearly an
epimorphism with kernel H N K and the first isomorphism theorem completes
the proof. Proof of part 3) is left to the reader..]

Theorem 4.8 Let G and G5 be groups and let H; < G; for 1 =1,2. Then

GlﬁGz NG1&G2

HXRH, H H
Proof. Let 7: G1 X Gy — (G1/H;) K (G2/ H>) be defined by
T(ai,az) = (a1 Hy, asHs)

We leave it to the reader to show that 7 is an epimorphism with kernel
H, X H,. The first isomorphism theorem then completes the proof.[]

The Correspondence Theorem

The following correspondence theorem has a great many uses. We use the
notation sub(V; G) to denote the lattice of all subgroups of G that contain N.

Theorem 4.9 (Correspondence theorem) Let G be a group, let N < G and let
m: G — G /N be the natural projection. Referring to Figure 4.3,
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% ‘

K/N

G_x
\\G/N
K —
-
N

H/N
% ‘
{N}
Figure 4.3
let T: sub(N; G) — sub(G/N) be the map defined by
w(H)=H/N
1) T is an order isomorphism, that is, T is a bijection for which
H<K < H/N<K/N

for all H, K € sub(N; G). In particular, every subgroup of G/N has the
form H /N for a unique H € sub(N; G).
2) Normality is preserved in both directions, that is,

H<K < H/N<K/N

for all H, K € sub(N; G). Moreover, the corresponding factor groups are
isomorphic, that is,

K. E/H

H N/ N
and so T also preserves index:

(K:H)=(K/N:H/N)
1t follows that subnormality is also preserved in both directions:
H<J<dK < H/NA<4QK/N
3) If N C G, then the property of being characteristic is preserved in only one

direction, specifically,

= HCG

zlx
=l Q

C

forany H € sub(N; G), but the converse fails.
Proof. For the surjectivity of 7, any subgroup of G/N has the form

S={zN|ze X}
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for some index set X. The set H = | J(zN) is a subgroup of G since z,y € H
implies that *N,yN € S and so z !N and xyN are in S, whence
x~ 1 xy € H. Also,

FH=H/N={zN|zecH} =5

and so 7 is surjective.

For part 3), if o € Aut(G), then 7y 0 0: G — G/N is an epimorphism with
kernel o !N =N. Hence, the map 7:G/N — G/N defined by
7(aN) = (ca)N is an automorphism of G/N and so 7(H/N) < H/N. Thus,
forh € H,

(ch)N =7(hN) € H/N

and so ch € H, which shows that H T G. As to the converse, let G = K =
Ds, H = (p) and N = Z(G) = {p*). Then H and N are characteristic in Dy
but H/Z(G) ~ C5 is not characteristic in Ds/Z(G) ~ Cy X Cs. The rest of the
proofis left to the reader.[d

Group Extensions

It will be convenient to make the following definition.

Definition Let G be a group. We refer to subgroups H and K of G for which
H < K as an extension. We also refer to H <4 G' as a normal extension. The
index of an extension H < K is (K : H).OO

This use of the term extension is consistent with its use in field theory, where if
F C K are fields, then K is referred to as an extension of F. The term
extension has another meaning in group theory, which we will encounter later in
the book: An extension of a pair (N, Q) of groups is a group G that has a
normal subgroup N’ isomorphic to N and for which G/N’ =~ Q. However,
since H < G is an extension whereas (N, Q) has an extension, there should be
no ambiguity in adopting the current definition.

Various operations can be performed on a group extension to yield another
extension.

Definition Let G be a group. Let A < B < G and C < G.
1) The intersection of A < B with C' is
AnC <BNC
2) IfC < @G, the normal lifting of A < B by C is
AC < BC
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3) If N < A< Bwith N 4 B, then the quotient of A < B by N is

A B

< =

N - N
and (for want of a better term) the unquotient of A/N < B/N is
A< BO

Inheritance of Group Properties

Let P be a property of groups, such as being cyclic, being finite or being
abelian. (Technically, P can be thought of as a subclass of the class of all
groups.) We write G € P to denote the fact that the group G has property P. A
group property P is isomorphism invariant if

GeP, H~G = HeP

We will say that a normal extension A < B has property P if the quotient B/A
has property P. For example, to say that A < B is cyclic is to say that B/ A is
cyclic. A property P of groups is inherited by subgroups if

GeP, H<G = HeP
and P is inherited by quotients if
GeP, HJIG = G/HeP

Preservation of Group Properties

The second isomorphism theorem implies that intersection preserves normality,
that is,

AdB, C<G = AnCc<IBnNnC
and that the quotient satisfies

BnC  BnC  ABNO)
AnC  An(BnC)~ A

B
< =
- A

Hence, any isomorphism-invariant property of A < B that is inherited by
subgroups, such as being finite, abelian or cyclic, is inherited by intersections.
For example, if A < B is cyclic, then so is AN C < BN C. Similar statements
can be made about normal liftings, quotients and unquotients, as follows.

Theorem 4.10 Let G be a group with A < B < G. Let P be an isomorphism-
invariant property of groups.
1) (Intersection) Normality is preserved by intersection, that is, for C < G,

AdB = ANnC<LBNC

Also, if P is inherited by subgroups, then P is preserved by intersection.
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2) (Normal lifting) Normality is preserved by normal lifting, that is, for
N 4G,

A<B = AN<BN

Also, if P is inherited by quotients, then P is preserved by normal lifting.
3) (Quotient and unquotient) Normality is preserved by quotient and
unquotient, that is, for N < Band N < A< B,

A<dB & A/N<B/N

Also, P is preserved by quotient and unquotient.
Proof. For part 2), to see that AN < BN, note that B normalizes both A and N
and so B normalizes AN. Also, N < AN implies that N normalizes AN and
so BN normalizes AN, that is, AN < BN. Since BN = ABN = ANB, it
follows that

BN ANB B B NE/A(BQN)
AN~ AN T BNAN ABNN) A A

O

Centrality

Another very important property of extensions A < B in a group G that
involves more than just the quotient B/ A alone is centrality.

Definition Let A < G. The extension A < B in G is central in G if

B G
<zl 2 O
A~ ( A >

Note that centrality is not a property of B/A alone, since it depends on G/ A as

well, which is why we use the phrase central in G. Theorem 3.40 implies that an
extension A < B is central in G if and only if

[B,G] < A
Thus, for N < Gand N < A,
A B
A< BcentralinG & N < N central in %
and so centrality is preserved by quotient and unquotient. Also, for any H < G,
[BNH,H<ANH

and so
A< BecentralinG = ANH < BN H central in H
Finally, forany N < G,
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[BN,G] = [B,G][N,G] < AN
and so
A< BcentralinG = AN < BN central in G
Thus, centrality is preserved by intersection and normal lifting as well.
Theorem 4.11 Let G be a group. The property of an extension being central in
G is preserved by intersection, normal lifting, quotient and unquotient.[]
Projections and the Zassenhaus Lemma

Combining intersection with lifting allows us to project one normal extension in
G into another. Specifically to project A < B into H < K, we first intersect
A < B with K to get

(ANK) < (BNK)
and then lift by H to get
H(ANK)<H(BNK)
This extension is the projection of A < B into H < K and is denoted by
(AdB)— (H LK)
We leave it to the reader to show that the same extension is obtained by first
lifting A < B by H and then intersecting with K.

As to the factor group of the projection, the isomorphism theorems give

H(BNK) HANK)BNK)

HANK) HANK)
BNK
(BNK)NH(ANK)
BNK
(ANK)[(BNK) N H]
BNK
(ANK)(BNH)

~
~

But the last quotient remains unchanged if we reverse the roles of the two
extensions A < B and H < K. Hence, the reverse projection

(H4K)— (A<B)
has an isomorphic quotient, that is,

H(BNK) A(KNB)
H(ANK) ~ A(HNB)
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This result was proved by Zassenhaus in 1934 and was given the name
butterfly lemma by Serge Lang because of the shape of a certain figure
associated with an alternate proof.
Theorem 4.12 (Zassenhaus lemma [37], 1934) Let G be a group and let
A<B and H<K

be normal extensions in G. Then the reverse projections

(AdB)—- (HLK) and (H<K)— (A<4B)
have isomorphic factor groups, that is,

H(BNK) AKNDB)
H(ANK) ~ A(HNB)

Let us make a few very simple observations about projections:
1) If A< B <C, then the projections of the contiguous extensions A < B
and B < C into H < K are also contiguous, that is,
HANK)<dH(BNK)<H(CNK)

2) If A < B is projected into H < K where B > K, then the projection has
top group subgroup K.

3) If A< B is projected into H < K where A < H, then the projection has
bottom subgroup H.

Thus, we can project a series

Al S‘A2 g ﬂAn
in G into an extension H < K to get a new series
HANK)<HA;NK)<---<H(A,NK)
In particular, if A; < H and K < A,, then the series runs from H to K.

Inner Automorphisms
If G is a group, then the map v: G — Aut(G) defined by
74 = Ya

is a group homomorphism, since v,7, = Ya- The kernel of v is Z(G) and the
image of v is Inn(G'), which is normal in Aut(G) since for any o € Aut(G) and
geGq,

(07.0")g = ola(c™"g)a"] = (sa)g(0a) ™ = Yoag

and so
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’YZ = Yoa
An automorphism of G that is not an inner automorphism is called an outer
automorphism of GG and the factor group Aut(G)/Inn(G) is called the outer
automorphism group of GG, even though its elements are not automorphisms.

Theorem 4.13 Let G be a group.
1) The map v: G — Aut(G) defined by

Y4 = Ya
is a group homomorphism with image Inn(G) < Aut(G) and kernel Z(G).
Hence,
G
Inn(G) = ——~
nn(G) 7

In particular, if G is centerless, then G ~ Inn(G).
2) IfH <G, then

a € Ng(H) < ~,€ Aut(H)

Moreover, the restricted map ~y: Ng(H) — Aut(H) has kernel Cq(H) and
so Ce(H) 9 Ng(H) and

Ng(H)
Cq(H)

In particular, if H < G, then Cq(H) < G and

— Aut(H)

Co(l) — Aut(H) O

Characteristic Subgroups

Normality is not transitive: If V < G, then the normal subgroups of N are not
necessarily normal in G. Examples can be found in the symmetric group .S;.
However, the property of being characteristic is transitive. Here are some of the
basic properties associated with characteristic subgroups.

Theorem 4.14 Let G be a group.

1) HCGifandonlyifoH = H forall 0 € Aut(G).
2) (Transitivity)

and
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3)  Any subgroup of a cyclic group is characteristic and so
H<(a) G = HJLG
4) (Extension property) Forany N < H <G,

H G
N C G, ¥ C N = HCG

Proof. For part 3), a finite cyclic group GG has only one subgroup of each size
and so it must be invariant under any automorphism of G. On the other hand, if
G = (a) is infinite cyclic and o € Aut(G), then oca must be a generator of G
and so oa = a or ca = a~'. Hence, o is either the identity map or the map that
sends any element to its inverse. In either case, any subgroup of G is o-
invariant.[]

Definition A nontrivial group G is characteristically simple if" it has no
nontrivial proper characteristic subgroups.[]

As an example, the 4-group V' = {1, a, b, ab} is characteristically simple but not
simple.

Elementary Abelian Groups

The simplest type of abelian group is a cyclic group of prime order. Perhaps the
next simplest type of abelian group is an external direct product of cyclic groups
of the same prime order.

Definition An elementary abelian group G is an abelian group in which every
nonidentity element has the same finite order..]

Theorem 4.15 Let G be an elementary abelian group.

1) Every nonidentity element of G has prime order p.

2) Writing the group product additively, G is a vector space over Z,,where if
o € Zy and a € G, then aa is the sum of o copies of a. The subgroups of G
are the same as the subspaces of G and the group endomorphisms of G are

the same as linear operators on G.
3) If G is finite, then

Gr7Z,K---KZ,

(This also holds when G is infinite, but we have not yet defined infinite
direct products.)
Proof. We use additive notation for G. For part 1), if o(a) = mn where m > 1,
then o(na) = m and so mn = m, that is, n = 1. Thus, o(a) = p is prime for all
nonidentity a € G. For part 2), let & and © denote addition and multiplication
in Z,, respectively. If n € Z is nonnegative, let n * a be the sum of n copies of
a. Then for «, 8 € Z,, there exists an integer n for which
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a®f=(a+p)+np
and so
(a®Ba=[(a+B)+npl*xa=(a+p)xa=aa+ b
Similarily,
(a® B)a=[af+np]*xa=(af) *a=ca(fa)

The other requirements of scalar multiplication are also met, namely, la = a
and

ala+b) =aa+ ab

We leave proof of the remaining part of part 2) to the reader. For part 3), G is
vector-space isomorphic to a direct sum of a certain number of one-dimensional
subspaces of G, that is, subspaces of the form Z,a = (a) for a € G. These
subspaces are cyclic subgroups of GG and the vector space isomorphism is also a
group isomorphism.]

Theorem 4.16 The following are equivalent for an abelian group G':

1) G is elementary abelian

2) G is characteristically simple and has at least one nonidentity torsion
element.

Proof. If G is an elementary abelian group, then the automorphisms of G are

the linear automorphisms of G It follows that if S < G is nontrivial and proper,

then for any nonzero a € S and nonzero x € G \ S, there is an automorphism

sending a to « and so S is not characteristic in G. Hence, G is characteristically

simple. Of course, G has a nonidentity torsion element.

For the converse, assume that GG is characteristically simple and let p be a prime
dividing the order of some element a € A. Then (using additive notation)
Ay={a€A|pa=0}

is nontrivial and characteristic in A, whence A = A, is an elementary abelian
group.d

Note that the p-quasicyclic group Z(p>), which has proper subgroup lattice
{0} < (1/p) < (1/p%) < -

is characteristically simple, since there is at most one subgroup of any given
size. However, it is not an elementary abelian group since it has no nonzero
torsion elements.
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Multiplication as a Permutation

If G is a group, then multiplication by a € G is a permutation of G specifically,
the multiplication map p,: G — G defined by

T = ax

is bijective. In this context, multiplication is also referred to as (left)
translation.

The map pu: G — S that sends a to pu, provides a representation of the
elements of the group G as permutations of the set G. Moreover, the
representation i is a group homomorphism, since

Hap = Hally

This is not the only way to represent the elements of a group as permutations of
some set. For example, if H < G, then the clements of G can also be
represented as permutations of a quotient set G/H via the multiplication map
04.:G — G/H defined by

o.(gH) = agH

It is clear that o, is a permutation of G'/H and that the map 0:G — Sg /i
sending a to o, is a group homomorphism.

The representation map p: G — S¢ is described by saying that G acts on itself
by (left) translation and the representation map o: G — G/H is described by
saying that G acts on G/H by (left) translation. Both of these representations
fit the pattern of the following definition.

Definition An action of a group G on a nonempty set X is a group
homomorphism A\:G — Sx, called the representation map for the action.
Thus,

A1) =1, Ma ) =Na)" and Aab) = A(a)\(D)

forall a,b € G. When X is a group action, we say that G acts on X by \. The
permutation \a is usually denoted by \,, or simply by a itself..]

We should mention that translation is not the only important action of a group
on a set. We will see in a later chapter that conjugation is also an important
group action.

Since a representation map is assumed only to be a homomorphism, it is
possible for two distinct elements of GG to have the same representation in S.
Although it may seem at first that this is not a particularly desirable quality, we
will see that such representations can yield important results. An injective
representation, that is, an embedding \: G — S is said to be faithful. In this
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case, G is isomorphic to a subgroup of Sx. The action of G on itself by
translation is faithful but the action of G on G/H by translation need not be
faithful.

Here is one interesting application of left translation.

Theorem 4.17 Let H be a proper subgroup of a group G. Then there are
distinct group homomorphisms o,7: G — K into some group K that agree on
H.

Proof. For = ¢ G/ H, we construct two distinct group actions of G on the set

X =G/HU{z}
that agree on H. Let 0: G — Sx be left translation on G/H that also leaves z
fixed, that is, for any a € G,
04(bH) =abH and o,z ==x
and let 7: G — Sy be defined by
T, = (H x)o,(H z)
If h € H, then o, fixes both H and z and so o0;, and (H x) are disjoint

permutations, whence o, = 7, for all h € H. On the other hand, 7 and o are
distinct since if a ¢ H, then

wH=H but o,H#H O

The Left Regular Representation: Cayley's Theorem

The action pi: G — S¢ of G on itself by left translation is called the left regular
representation of GG. Since the left regular representation is faithful, it follows
that every group is isomorphic to a subgroup of some symmetric group!

Theorem 4.18 (Cayley's theorem [7], 1854) Every group G is isomorphic to a
subgroup of the symmetric group Sg, via the action of G on itself by left
translation.O]

Multiplication by G on G /| H; the Normal Interior

If H <G has finite index, the action 0:G — Sg/y of G on G/H by left
translation yields a variety of remarkable consequences, mainly due to the

nature of the kernel of this action, which is the intersection of all conjugates of
H:
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ker(o) ={z € G| o, =1}
={z €G|zaH = aH forall a € G}
={x € G |xa€aH foralla € G}
={reG|zeca'Haforalac G}

= H"

aeG

Thus,

K= maEGHa

is both normal in G and contained in H. Moreover, if N is any normal subgroup
of (G that is contained in H, then

N=N"<H"

for all « € G and so N < K. In other words, K is the largest subgroup of H
that is normal in G.

Theorem 4.19 Let H < G. The largest subgroup of H that is normal in G is
called the normal interior or core of H, which we denote by H°. The core of

H is the kernel
H° = (H"

aeG

of the action of G on G/ H by left translation.]

Thus, left translation o: G — Sg,y induces an embedding

e — SG/H

of G/H* into S and so
(G:H°)|(G:H)!
In particular, if G is simple, then H° is trivial and so
o(G) | (G : H)!

These facts have some rather interesting consequences relating to the existence
of normal subgroups and subgroups of small index of a group.

Theorem 4.20 Let G be a group and let H < G have finite index. Then
G/HO — Sg/H

and so
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(G:H°) | (G:H)!
In particular, (G : H®) is also finite and
(H:H°)|(G:H)-1)!

1) Any of the following imply that H < G
a) H is periodic and (G : H) = p is equal to the smallest order among
the nonidentity elements of H.
b) G is finite and o(H) and ((G : H) — 1)! are relatively prime, that is,
for all primes p,

plo(H) = p>(G:H)

which happens, in particular, if (G : H) is equal to the smallest prime
dividing o(G).
2) If G is finitely generated, then G has at most a finite number of subgroups
of any finite index m.
3) If G is simple, then

o(G) | (G : H)!

a) 1If G is infinite, then G has no proper subgroups of finite index.
b) If G is finite and o(G) | m! for some integer m, then G has no
subgroups of index m or less.
Proof. For part 1), first note that p is a prime. If ¢ is a prime dividing (H : H®),
then Cauchy's theorem implies that there is an h € H for which
q=o0(hH®) | o(h), whence ¢ > p, a contradiction to the fact that

q|(H:H) | (p—1)!
Hence, (H: H°) =1and H = H° < G.

For part 2), (H : H°) divides both ((G : H) — 1)! and o(H) and so must equal
1

(H:H°) | (m - 1)!

But (H : H®) also divides o(H ), which is relatively prime to (p — 1)! and so
(H:H°)=1.

For part 3), suppose that the result is true for all normal subgroups. Then there
are only finitely many possibilities for normal interiors of subgroups of index
m, since such a normal interior must have index dividing m/!. But each normal
subgroup N of finite index can be the normal interior for only finitely many
subgroups, since there are only finitely many subgroups containing V.

Now, normal subgroups correspond to kernels of homomorphisms. In particular,
if (G : N) = k, then the homomorphism
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comy:G— G/N < S

where o is the left regular representation of G/N in Sy, has kernel N. Thus,
distinct normal subgroups N of index k yield distinct homomorphisms from G
into Sj. However, since G is finitely generated, there are only a finite number of
such homomorphisms and so there are only a finite number of normal subgroups
of G of index k.00

Example 4.21 If o(G) = p"u with p prime and p > u, then we will prove in a
later chapter that G has a subgroup H of order p" (a Sylow p-subgroup of G).
Since p" and (u — 1)! are relatively prime, it follows that H < G.[O

The Frattini Subgroup of a Group

The following subgroup of a group is most interesting.

Definition 7/e Frattini subgroup ®(G) of a finite group G is the intersection
of the maximal subgroups of G.TJ

Definition Let G be a group. An element a € G is called a nongenerator of G
if whenever the subset S C G generates G, then so does the set S\ {a}. Thus, a
nongenerator is an element that is not needed in any generating set.[]

Here are the basic properties of the Frattini subgroup of a finite group. But first
a definition.

Definition Let G be a group and let K < G. A subgroup H of G is called a
supplement of K if G = HK.O

Theorem 4.22 Let G be a finite group.
1) ®(G) is the set of all nongenerators of G.
2) ®(G)CG.
3) The following are equivalent:

a) Every maximal subgroup of G is normal.

b) G/®(G) is abelian.
4) IfK <G, then K < ®(G) if and only if K has no proper supplements.
Proof. For part 1), if S C G does not generate GG, then S is contained in a
maximal subgroup M, which also contains ®(G) and so S U ®(G) C M does
not generate GG. Hence, the elements of ®(G) are nongenerators. Conversely, if
x is a nongenerator of G and = ¢ M for some maximal subgroup M, then
M U{z} generates G and so M generates (&, which is false. Thus, all
nongenerators of G are in ®(G).

For part 2), if o € Aut(G), then the induced map is a bijection on the family M
of maximal subgroups of G and so
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o(@(@) = o (M) = oM = (M = &(G)

For part 3), assume that every maximal subgroup M of G is normal. Then
G /M has no proper nontrivial subgroups and so is abelian. Hence, G’ < M and
so G’ < ®(G). Conversely, if G’ < ®(G) and M is a maximal subgroup of G,
then G’ < M andso M < G.

For part 4), assume first that K < ®(G). If H < G, then H < M for some
maximal subgroup M of G and so HK < M < G. Conversely, if K has no
proper supplements, then every maximal subgroup M satisfies M < MK < G
and so M = MK, whence K < M andso K < ®(G).00

Subnormal Subgroups

We wish now to take a closer look at the concept of subnormality. As to the
existence of subnormal subgroups, we have the following examples to show that
all possibilities may occur, and that a subnormal subgroup need not be normal.

Example 4.23
1) A simple group has no nontrivial proper subnormal subgroups.
2) In the dihedral group Ds = (o, p), we have

(o) a (o, p?) @ Dy

and so (o) is subnormal in Dg but not normal in Ds. In fact, all subgroups
of Dg are subnormal.

3) In the symmetric group Ss, the subgroup H = ((12)) is maximal and so the
only sequence of subgroups from H to S3 is H < S3. Since H is not
normal in S, it follows that H is not subnormal in S5. Of course, ((12 3))
is subnormal in S3, being normal in S5.01

The following theorem outlines the simplest properties of subnormality and is a
direct consequence of Theorem 4.10.

Theorem 4.24 Let G be a group. Let H, K < G.
1) (Transitivity)
H<A<LK and K<<LG = HJAG
2) (Intersection) If L < G, then
HA<IK = HNLI<KIKNL
In particular,

H<K<G, H<<G = H<J<K
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and
H<L4G, KI4G = HNKJIKG
3) (Normal lifting) If N < G, then
H<I<IK = HNJIJIKN
4) (Quotient/unquotient) [f N < H and N < K, then
H<A<AK & H/NLJK/N O

Intersections and Subnormality
While the intersection of two, and hence any finite number, of subnormal
subgroups is subnormal, this is not the case for an arbitrary family of subnormal
subgroups.
Example 4.25 Let G be the infinite dihedral group,
G={p,op'|icl}

where o(c) = 2, 0(p) = co and po = op L. If

H; = (0,p”)
then H;,1 < H; and so H; << G. But, (H; = (o) is self-normalizing (equal

to its own normalizer) and so is not subnormal in G.[J

However, since the family subn(G) is closed under finite intersection, Theorem
1.6 does imply the following.

Theorem 4.26 If a group G has the DCC on subn(G), then the intersection of
any family of subnormal subgroups is subnormal.(]
The Sequence of Normal Closures of a Subgroup

If H < < G, then the first step down in a series for H is an extension H; < G.
Moreover, since nc(H, G) < Hy, the largest possible first step down in a series
from H to G is

nc(H,G) <G

By repeatedly taking normal closures of H, we get a series from H to G that
descends more rapidly than any other series from H to G.

Definition Let G be a group and let H < G. The sequence of normal closures
of H in G is defined by
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H(U) = G, H(l) S IlC(.[{7 H(O)) and H(i+1) = HC(H, H(7))
fori>0.0

To see that the sequence of normal closures descends more rapidly than any
other proper series

H=H,<H, 1<---<Hy=G
it is clear that H ) < Hy and if H;) < H;, then
Hiyy =nc(H, Hi)) <nc(H, H;) < Hiyy
Hence, H(;) < H; for all 1.
Theorem 4.27 A subgroup H of G is subnormal in G if and only if the
sequence of normal closures of H in G reaches H, in which case this sequence
is a series of shortest length from H to G. If H < < G, then the length of the

sequence of normal closures is called the subnormal index of H in G, which
we denote by s(H,G).0

We gather a few facts about subnormal indices.

Theorem 4.28 Let G be a group and let H < < G have sequence of normal
closures

H=Hh<Hy )< <Hp=G
1) (Triangle inequality)
H<A<AK<ILG = s(H,G)<s(H,K)+s(K,G)
2) Ifo € Aut(G), then
o(Hg) = (oH)g
foralli > 0.
a) IfoH = H, then oH ;) = H; for alli. In particular,
Ng(H) C ﬁNG(H(i))
i=0

and so if K < G normalizes H, then K normalizes every H ;.
b) The sequence of normal closures for cH in G is

ocH = O’(H(S)) <10'(H(3,1>) J---d O'(H(O)> =G

and so s(H,G) = s(cH,G).
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Proof. For part 2), we have o(H(y)) = (0 H ) () and if o(H;)) = (0 H);, then
O'(H(qul)) = nc(aH, O'(Hm)) = nc(oH, (O’H)(Z)) = (O’H)(Z—Jrl) O

*Joins and Subnormality

The question of whether the join of subnormal subgroups is subnormal is much
more involved than the same question for intersection. Of course, if K is
subnormal in G and if H is normal in G, then we may lift the sequence of
normal closures of K in G

K=KyaKy<a--<aKqp =G (4.29)
by H to get a series for the join H K. Thus,
HAG, KJIIG = HKJIJLG
Actually, the process of lifting by H is the same as projecting the sequence
(4.29) into the extension H < G.

If neither factor H or K is normal, we are tempted to project (4.29) into each
extension H ;) < H(;_;) and concatenate the resulting series. This almost works,
the problem being that it produces a series from

Hio (K@ N H1y) = HK N Hg )

to G, rather than from H K to G. So a slight modification is in order. Note that
the unwanted H(,_;) comes from the upper endpoint of the extension
Hs) < Hs-1).-

Thus, if we assume that K normalizes H, then K normalizes H; for all 7 and
so H; K is a subgroup of GG and H; < H(;_)K. If we now project (4.29) into
the extension H ;) < H(;_1)K, the result is a series H; with lower endpoint

Hiy (K@ NWH 1) K) = Hiy K
and upper endpoint H(; 1)K, that is,
Hi:HpyK 4--- S H; K
Moreover, since H ;1) and H ;) are contiguous, the concatenation
R His—1y My
is a series from HK to G andso HK I < G.

Note also that each of the series H; has length at most ¢ and so

s(HK,G) < s(H,G)s(K,QG)
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Theorem 4.30 [f H, K < < G and if K normalizes H, then
HK = (H,K) 94 G
and

s((H,K),G) < s(H,G)s(K,G) d

*The Subnormal Join Property
Theorem 4.30 implies the following useful characterization of the join question.

Theorem 4.31 Let G be a group and let H,K << G. The following are
equivalent:

I (H,K)<<d

2y HfY <9< @G

3) [H,K]<<LG.

Proof. Recall from Theorem 3.40 that

[H,K|< H|H,K|=H" <« H'K = (H,K)

Thus, 1) = 2) = 3). On the other hand, if 3) holds, then since H < < G and
[H, K] < < @ and H normalizes [H, K], Theorem 4.30 implies that

HY = H[H,K] << G

and so 2) holds. If 2) holds, then 1) holds since K normalizes H% .01

Definition /f' a group G has the property that the join of any two subnormal
subgroups is subnormal, then G is said to have the subnormal join property,
or SJP.OI

Theorem 4.31 gives us one simple criterion for the SJP. If the commutator
subgroup G’ of G has the property that all of its subgroups are subnormal, then
[H, K] is subnormal in G’ and therefore also in G, for all H, K < G and so
Theorem 4.31 implies that G has the SJP. In particular, this occurs when G’ is
abelian, that is, when G is metabelian.

Theorem 4.32 If the commutator subgroup G' of G has the property that all of
its subgroups are subnormal, in particular, if G is metabelian, then G has the
subnormal join property..]

On a different line, if G’ has the ACC on subnormal subgroups (a finiteness
condition), then GG has the subnormal join property.

Theorem 4.33 (Robinson) Let G be a group for which G' has the ACC on
subnormal subgroups. Then G has the subnormal join property.
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Proof. Let H and K be subnormal in G. The proof is by induction on
s =s(H,G).If s < 1, the result is clear, so assume that s > 2. If @ € G then

H{,) =nc(H",G) =nc(H,G) = Hg,)
and so H and H“ are subnormal subgroups of H(). But H(;, also has the

property that its commutator subgroup has the ACC on subnormal subgroups.
To see this, note that H(;) C H(;) < G implies that H{;) < G and so subn(H,,)

is contained in subn(G’). Thus, since s(H,H(;))=s—1, the inductive
hypothesis implies that (i, H*) << H(;yand so (H,H") 44 G.

Moreover, this can be extended to more than one conjugate of H. For example,
if b € G, then (H, H*)* = (H", H"*) and so the join of (H, H®) and (H, H*)"
is the subnormal subgroup (H,H®, H"). Note also that we can replace H by
any conjugate of H and so

(H,H",...,H"™) 144G
forall ay,...,a, € G.
Next, we show that
((H,ai],... [H,a,]) 92 G
forall ay,...,a, € G. First, note that
(H,[H,a]) = (H,H")
and so
(H,H,a1],...,[H,a,]) =(H,H",... ,H") <4 G
But Theorem 3.37 implies that H normalizes each [H, a;] and so
(H,a1],...,[H,a.]) Q(H,[H,a1],...,[H,a,]) <G

Now we can complete the proof. The ACC on subn(G’) implies that there is a
finite subset I = {a4,...,a,} C K for which

[HvK] =M = <[H7a1]7'~~7[Haaﬂ]>
for if not, then there is a strictly increasing sequence

]\4]1 <J\4[2 < -

of subnormal subgroups of G’. Hence, [H, K] < < G.OI

We refer the reader to Robinson [26], page 389, for an example of a group that
does not have the SJP.
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*The Generalized Subnormal Join Property

It is not necessarily the case that a group with the SJP also has the property that
the join of any family of subnormal subgroups of G is subnormal. This is called
the generalized subnormal join property or GSJP.

Theorem 4.34 (Wielandt [35], 1939) Let G be a group.

1) If G has the ACC on subn(G), then G has the GSJP.

2) If G has BCC on subn(G), in particular, if G is finite, then subn(G) is a
complete sublattice of sub(G).O]

Proof. For part 1), since G’ also has the ACC on subnormal subgroups, G has

the SJP. Hence, subn(G) is closed under finite join and so Theorem 1.6 implies

that G has the GSJP.O0

Robinson has provided the following characterization of the GSJP, whose proof
uses ordinal numbers.

Theorem 4.35 (Robinson) 4 group G has the generalized subnormal join
property if and only if the union of every chain of subnormal subgroups is
subnormal.

Proof. If G has the GSJP, then the union of a chain of subnormal subgroups is
the join of that chain and so is subnormal. For the converse, we first show that
G has the SJP by induction on the smaller of the two subnormal indices. Let
H, K << G and let

s=min{s(H,G),s(K,G)}

If s <1, then (H, K) < < G. Assume that s > 2 and that the result holds when
the subnormal index is less than s.

Well order the set K so that

K ={k, | a< 6}
where § is an ordinal number and ky = 1. Let

Ly = (H" |a<f)

be the join of the first 3 conjugates of H by elements of K. Then

Lz <Hy and Ls=H" =H[H, K]
To show that L is subnormal in (&, we use transfinite induction on 3.
If =0, then Lg = H < < G. For successor ordinals, if Lg << G, then Lg
and H" are contained in H(;y and s(H*, H;)) = s — 1. Also, Hy;) has the

property that the union of any chain of subnormal subgroups is subnormal.
Hence, the induction hypothesis implies that
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Lgw1 = (Lg, H") A< Hyy <G
Finally, if A is a limit ordinal, then
Ly=|J{La|a <)}

is the union of a chain of subnormal subgroups, which is subnormal in G by
hypothesis. Hence, the transfinite induction is complete and Ly < < G, whence
(H,K) << G by Theorem 4.31. Thus, G has the SJP.

Now, let S C subn(G). The join is not affected by including in S the join of
every finite subset of S, so we may assume that S is closed under finite joins.
For convenience, we refer to a family P C subn(G) as good if P contains S and
is closed under finite joins and chain joins. Then subn(G) is good and the
intersection &’ of all good families is the smallest good family containing S. Let

J=\/§ and J' =\/&
Then J C J’. Butif J C J’, then there is an S’ € &' for which S’  J and so if
T={SeS|SCJ}

it follows that S C7 C &'. But 7 is also good and so the minimality of &’
implies that J = J'. Finally, since S’ is closed under chain join, Zorn's lemma
implies that &’ has a maximal member M. If M C J’, then there is an N € &
for which N & M and so M V N € &', which contradicts the maximality of M,
whence M = J’ and

\/§=\/8'=M eS8 Csubn(G)
Thus, G has the GSJP.[O
When All Subgroups Are Subnormal

There are a variety of ways to characterize finite groups in which all subgroups
are subnormal. (We will characterize groups in which all subgroups are normal
in Theorem 5.20.) To explore this further, we need some additional terminology.

By definition, the normalizer Ng(H) of a subgroup H of G is the largest
subgroup of G in which H is normal. Thus, a subgroup that is equal to its own
normalizer is as “unnormal” as possible, since it is normal on/y in itself.

Definition Let G be a group.

1) A subgroup H < G is self-normalizing if H = N (H).

2) A group G has the normalizer condition i’ G has no proper self-
normalizing subgroups, that is, if

H<G = H<NgH) O
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Note that the term self-normalizing is a bit misleading, since every subgroup
normalizes itself. (We would prefer the term unnormal.)

A proper subnormal subgroup H cannot be self-normalizing, since the first step
in a series shows that H is normal in some subgroup larger than itself. Hence, if
all subgroups of GG are subnormal, then G has the normalizer condition. The
converse is also true if GG is finite (or more generally, if G has the ACC on
subgroups), since the proper series of normalizers

HaNg(H)a<Ng(Ne(H)) <

must eventually reach G.

Theorem 4.36 The following are equivalent for a finite group G':
1) Every subgroup of G is subnormal
2) G has the normalizer condition..]

If G has the normalizer condition, then any maximal subgroup M must be
normal in G, for we have M < N (M) and the maximality of M implies that
N¢(M) = G. Thus, with respect to the following conditions on a finite group

G:

1) Every subgroup of G is subnormal

2) G has the normalizer condition

3) Every maximal subgroup of GG is normal
4) G/®(G) is abelian

we have proved (see Theorem 4.22) that
H&e2)=3)s4)

For finite groups, it is our eventual goal to prove not only that these four
conditions are equivalent, but that they are equivalent to several other
conditions, one of which is that GG satisfy a strong converse of Lagrange's
theorem, namely, if n | o(G), then G has a normal subgroup of order n.

Chain Conditions

Let us take a closer look at chain conditions for groups, beginning with the
definition.

Definition Let G be a group and let S be a family of subgroups of G.
1) A group G satisfies the ascending chain condition (ACC) on S if every
ascending sequence

H <Hy <

of subgroups in S must eventually be constant, that is, if there is an n > 0
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such that H, ., = H,, for all k > 0. In this case, we also say that S has the
ACC.

2) A group G satisfies the descending chain condition (DCC) on S if every
descending sequence

Hy >Hy > ---

of subgroups in S must eventually be constant, that is, if there is an n > 0
such that H, ., = H,, for all k > 0. In this case, we also say that S has the
DCC.

3) A group G satisfies both chain condition (BCC) on S if G has the ACC
and the DCC on S. In this case, we also say that S has the BCC.[I

Theorem 1.5 implies that G has the BCC on § if and only if S has no infinite
chains.

Our main interest will center on the case where G is a group, N < G and S is
one of the following families:

sub(N;G), mor(N;G), subn(N;G)

of all subgroups, normal subgroups and subnormal subgroups, respectively, of
G that contain V.

The ACC and DCC are, in general, independent of each other, that is, all four
combinations are possible. For example, a finite group has both chain conditions
on subgroups. An infinite cyclic group (such as the integers) has the ACC on
subgroups but not the DCC on subgroups. The p-quasicyclic group Z(p™) has
the DCC on subgroups but not the ACC. Finally, the group of rational numbers
@ has neither chain condition on subgroups.

The chain conditions can be characterized as follows.

Definition Let G be a group and let S C sub(G).

1) G has the maximal condition on S if every nonempty subfamily of S
contains a maximal element.

2) G has the minimal condition on S if every nonempty subfamily of S
contains a minimal element.]

Theorem 4.37 Let G be a group and let S C sub(G).

1) G has the maximal condition on S if and only if G has the ACC on S.
2) G has the minimal condition on S if and only if G has the DCC on S.
Proof. Suppose G satisfies the maximal condition on S and that

H < Hy <--

is an ascending sequence of members of S. Then the subgroups Hj have a
maximal member H,,, which implies that H,,;;, < H,, for all £ > 0. Conversely,
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suppose G satisfies the ACC on S and let M be a nonempty subfamily of S. If
H, € M is not maximal, then there is an Hy € M for which H; < H». If Hy is
not maximal, then there is an H3 for which H; < Hy < Hj. This must stop after
a finite number of steps and so M must have a maximal member. The proof of
part 2) is analogous.[]

In certain cases, the ACC can be characterized in another important way. If
S C sub(G) is closed under arbitrary intersections, then every subset X of G is
contained in a smallest element of S, called the S-closure of X, which is

(X)s=(WHeS|XCH}

Note that the set on the right is nonempty, since the assumption that S is closed
under arbitrary intersections implies that S contains the empty intersection,
which is G itself. We say that (X)s is S-generated by X and if X is a finite
set, we say that (X)s is finitely S-generated by X.

Theorem 4.38 Let G be a group and let S C sub(G) be closed under arbitrary
intersections and closed under unions of ascending sequences. Then G has the
ACC on S if and only if every H € S is finitely S-generated.

Proof. Suppose G satisfies the ACC on S and let H € S. If H is not finitely S-
generated, then for any h; € H, we have

<h1>5 < H
Hence, there is an hy € H \ (h;)s for which
<h1>$ < <h1,h2>$ < H

We can continue to choose elements to produce an infinite strictly ascending
sequence, in contradiction to the ACC on S. Hence, H is finitely S-generated.

Conversely, suppose every element of S is finitely S-generated and let
H <Hy < -
be an ascending sequence of subgroups in S. Then H =|J H; € S and so

H = (X)s for some finite set X. Hence, there is an index m for which
X CH,,andso H = H,,. Butthen H,,,,, = H forall £ > 0.00

Note that in the preceeding theorem, S can be sub(G), nor(G), the family of all
characteristic subgroups of G or the family of all fully-invariant subgroups of
G.

We next describe how the chain conditions are inherited.

Theorem 4.39 Let G be a group and let N < G. Let F(N;G) be one of the
Sfollowing families of subgroups of G
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sub(N;G), nor(N;G), subn(N;G)

and let F(G) = F({1}, G). Write F € ACC to denote the fact that F has the
ACC, and similarly for the DCC.
1) (Quotients)

F(N;G)e ACC < F(G/N)e ACC
2) (Extension)
F(N),F(G/N)e ACC = F(G)e ACC
3) (Direct products)
F(G1),F(Ge) e ACC & F(G1KG,y) € ACC
Similar statements hold for the DCC in place of the ACC.

Proof. Part 1) follows from the correspondence theorem. For part 2), let
G <Gy <
be an ascending chain in 7 (). The sequences
GiNN<GNN<---
and
GIN <GyN < ---
are ascending chains in F(N) and F(N; G), respectively. Since part 1) implies

that 7(N; G) has the ACC, each sequence is eventually constant and so there is
an index m for which

Gm-&-i NN = Gm NN and G7n+iN = GmN

for all 7 > 0. Hence, Theorem 2.18 implies that G,,,; = G, for all i > 0 and so
F(G) € ACC. A similar argument holds for the DCC.

For part 3), let F(G1), F(Gs) € ACC and let
P=GiKGy, Ni=G R{l}, No={1}BG,

Then F(G;) € ACC implies that F(N;) € ACC fori = 1,2. Also, P/N; =~ N
and so F(P/N;) € ACC. Hence, F(P) € ACC by the extension property.
Conversely, if F(P) € ACC, then F(N;) C F(P) implies that F(N;) € ACC
and so F(G;) € ACC fori = 1,2.00

Chain Conditions and Homomorphisms

The presence of a chain condition can have a significant impact on
homomorphisms. For example, if G has the ACC on normal subgroups, then
any surjective endomomorphism o:G — G is also injective. To see this,
consider the kernel sequence of o:
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ker(o) < ker(o?) < ker(c®) < -
Since this must eventually be constant, we have ker(c") = ker(¢"**) for all
k > 0. Now, if a € ker(o), then a = ¢™b for some b € G and so

1=ca=0c""b

and so b € ker(o"™) = ker(0™), whence a = 0"b = 1. Thus, ker(o) is trivial.

Let us refer to the subgroups
{0G,0°G,0%G...}
as the higher images of GG and the sequence
G>0G>d’G>---

as the image sequence of ¢. If G has the DCC on all subgroups, then any
injective endomomorphism ¢:G — G is also surjective, since the image
sequence of o must eventually be constant and so ¢"G = ¢"*'G for some n.
Hence, the injectivity of ¢ implies that G = oG, whence o is surjective. Of
course, if G has the DCC on normal subgroups only, then we can draw the same
conclusion provided that o has normal higher images.

Theorem 4.40 Let G be a group and let o € End(G).
1) If G has the ACC on normal subgroups, then

o surjective = 0O injective

2) If G has the DCC on all subgroups or if G has the DCC on normal
subgroups and o has normal higher images, then

o injective = o surjective O

Note that o has normal higher images if o preserves normality in general.
Definition Let G be a group. A homomorphism o:G — H is normality
preserving if

NIG = oNJH O

The composition of two normality-preserving homomorphisms is normality
preserving. For endomorphisms, a stronger condition than that of preserving
normality is the following.

Definition An endomorphism o: G — G of a group G is normal if o commutes
with all inner automorphisms vy, of G, that is, for any a € G,

o(a?) = (ca)?

forall g € G.O
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Of course, the composition of normal maps is normal. Also, it is easy to see that
a normal endomorphism is normality preserving. One of the advantages of
normal maps over other normality-preserving maps is that if 0:G — G is
normal and if H < G is o-invariant, then o|y: H — H is also normal.

Fitting's Lemma

If G has both chain conditions on normal subgroups and if ¢ € End(G) has
normal higher images, then both the kernel and image sequences of o must
eventually be constant and so there is an m > 0 for which

K =ker(c™) = ker(a’””) and H = oG = "M@

for all ¢ > 0. There is much that can be said about the subgroups H and K.

First, cH = H and 0K < K and so H and K are co-invariant. Also, if
ac HNK, then a=0"b and ¢"a=1. Hence, ¢*"b=1 and so
b € ker(0?™) = ker(c™), whence a = 1. Thus, HN K = {1}. To show that
G=HWXK, if a € G, then there is a b € G for which ¢™a = ¢*"b and so
a(e™(b~1)) € ker(c™), whence

a=lac™ (b ")]o"(b) € HK
Thus,
G = im(c™) X ker(c™)

Finally, since 0™ (K') = {1}, the map o|x is nilpotent and since o(H) = H, the
map ol|y is surjective. We have just proved the important Fitting's lemma,
which we can make a bit more general than the previous argument.

Theorem 4.41 (Fitting's lemma, 1934) Let G be a group with the BCC on
normal subgroups and let o € End(G) have normal higher images.
1) Thereis an m > 0 for which

G = im(c™) X ker(c™)

where
a) H =im(o™) and K = ker(o™) are o-invariant
b) ol|g is surjective and 0| is nilpotent.
2) In particular, if G is indecomposable, then o is either nilpotent or an
automorphism of G.OJ

Automorphisms of Cyclic Groups

Let us examine the automorphism group of the cyclic groups. It is clear that an
automorphism of a cyclic group is completely determined by its value on a
generator and that this value also generates the group.
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The only generators of an infinite cyclic group C,(a) are a and a~' and so
Aut(Cy) = {¢, 7}

where 7z = 2! for all x € C,. Now suppose that C,, = (a) is cyclic of order
n. If 7 € Aut(C,,), then

ra = a*

for some 1 < k < n. But o(a) = o(a*) and so we must have k € Z. Moreover,
this condition uniquely determines an automorphism 7, defined by

m.(a") = at
for 0 < ¢ < n. Hence, there is precisely one automorphism 7, for each k € Z.
Moreover, the map o:Z! — Aut(C,,) defined by ok = 7 is an isomorphism,

since it is clear that o is bijective and if j, k € Z; and jk = qn + r withr € Z;,
then

7.(a') = a" = a"* = 1,(aV) = Tp7j(a’)

Thus, Aut(C),) ~ Z.

Theorem 4.42 For the cyclic groups, we have
Aut(Cy(a)) = {1,720 — a™'}
and
Awt(Cp(a)) ={m |k €L} =7}

where T, is defined by T(a) = a*. In particular, the automorphism group of a
cyclic group is abelian..]

A Closer Look at Z;,

The previous theorem prompts us to take a closer look at the groups Z;.

Theorem 4.43 If n = pi'---pi» where the p; are distinct primes and e; > 1, then
Moreover, 7}, is cyclic if and only if n =2,4,p° or 2p° where p is an odd
prime.

Proof. Let r; = p;". For the direct product decomposition, consider the map
0:Z;, — XZ; defined by

o(u) = (umodry,...,umodry,)

This map is a group homomorphism and if cu = (1,...,1), then w = 1 mod r;,
that is, r; | (u — 1) for all i. Since the r;'s are pairwise relatively prime, it
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follows that n | (u — 1), that is, w = 1 in Z. Thus, o is a monomorphism and
since the domain and the range of ¢ have the same size (see Theorem 2.30), o is
an isomorphism.

Now, Theorem 2.33 implies that Z; is cyclic if and only if each factor Z;,;, is

cyclic and the orders
o(Zi) = 1 (pi — 1)
are relatively prime. So let us take a look at Z,, for p prime.

Let p > 2. To see that Z,, is cyclic, first note that if e =1, then Z is cyclic
since Zy, is a field. Assume that e > 1. It is sufficient to find elements in Z;, of
the relatively prime orders p — 1 and p*~'.

To find an element of order p—1, let a € Z,, have order pFm, where
m | p— 1. Then

a”™ = 1modp* ! (p—1)
and e > 1 implies that
a’™ = 1mod P

But if a is chosen so that (a,p) = 1, then Fermat's little theorem implies that
a? = amodp and so a” =1modp, whence m =p—1. Thus,
o(a) = pF(p— 1) and so o(a”") = p — 1, as desired.

Moreover, since p > 2, the expression 3 = 1+ p is in p-standard form and so
Theorem 1.18 implies that

(1+p)" = 1+wp'

where p [ w. Hence, 1 + p has order p°~* in Zj,.

Now consider the case p = 2. It is easy to see that Z3 and Z} are cyclic. For
e > 3, the elements of Zj. are odd integers. For 1 + 2a € ZJ., it is easy to see
by induction that

(1+2a)% =1+ 282,
In particular,
(142a)* " =1+ 2, 5= 1mod2°

which implies that Zj. has exponent 2°~2 and so cannot be cyclic.
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In summary, we can say that Z;, is cyclic if and only if p > 2 or p® =2 or
p¢ = 4. We can now piece together our facts. As mentioned earlier, Z;, is cyclic
if and only if each factor Z;‘:,‘ is cyclic and the orders

o(Zyy:) = B = 1)

are relatively prime. Since pg"'fl(p,» — 1) is even unless p; = 2 and e; = 1, there
can be at most one factor involving an odd prime or Z;. Thus, Z; is cyclic if and
only if n = 2,4, p° or 2p° where p > 2 is prime.[]

Exercises

1. Leto:G — H be a group homomorphism.
a) Provethatif S < G,thencS < H.
b) Prove that if o is surjective and S < G, then 05 < H.
¢) Provethatif 7' < H, theno'T < G.
d) Provethat if T < H,theno'T < G.

2. Let G and K be groups and let H < (G. Show that it is not always possible
to extend a homomorphism o: H — K to G.

3. Show that the p-quasicyclic group Z(p™) is isomorphic to the subgroup of
all complex p"th roots of unity.

4. Show that if G has a unique maximal subgroup M, then G /M is cyclic of
prime order.

5. Let G be a finite group with normal subgroups H and K. If G/H ~ G /K,
does it follow that H ~ K?

6. a) Find a property of groups that is inherited by quotient groups but not

by subgroups.
b) Find a property of groups that is inherited by subgroups but not by
quotient groups.

7. Show that a group G is abelian if and only if the map a +— a~
automorphism of G.

8. Let G be a group.
a) Determine all homomorphisms o: C,(a) — G.
b) Determine all homomorphisms o: Cy(a) — G.

9. Are all normality-preserving homomorphisms normal? Hint: Use the fact
that S5 is simple.

10. Let G be a group and let N be a normal cyclic subgroup of GG. Prove that
G' < Cs(N).

11. Let G be a group. Prove that G’ is central if and only if Inn(G) is abelian.

12. An endomorphism o € End(G) is central if

atoa € Z(Q)

1'is an

for all @ € G. This is equivalent to caZ(G) = aZ(G), that is, o acts like
the identity on G/Z(G). Prove that

a) A normal surjective endomorphism is central.

b) A central endomorphism is normal.
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14.

15.
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26.
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An abelian group A (written additively) is divisible if for any a € A and

any positive integer n, there is a b € A for which nb = a. Prove that a

characteristically simple abelian group A is divisible.

Let G be a group and let a € G. Is the map o:G — G defined by

ob = [b, a] an endomorphism of G? If not, under what conditions on G is &

an endomorphism?

Let G be a group of order p? where p is a prime.

a) Prove that if GG is abelian, then G is either cyclic or isomorphic to the
direct product of two cyclic groups of order p.

b) Show that the distinct sets {a“} of conjugates of elements in G form a
partition of G. Show that Z(G) # {1}. Show that G must be abelian.

Prove that S3 =~ Dg, where S is the symmetric group of order 6 and Dy is

the dihedral group of order 6.

Prove that if G has a periodic subgroup H of finite index, then G is

periodic. (In loose terms, if “most” of the elements of G have finite order,

then all elements of GG have finite order.)

Let G be a finite group. Let K < G. A subgroup H of G is called a

supplement of K if G = HK. Let H be a minimal supplement of K.

Prove that H N K < ®(H).

Let F be a family of groups with the following properties:

1) IfG e Fand H~ G, then H € F.

2) IfGeFand N <G, then G/N € F.

3) f N <dGandif N € Fand G/N € F,thenG € F.

Prove that if N € F and K € F are subgroups of G with K < G, then

NK ¢ F.

If G is a finite group and o is an automorphism of G that fixes only the

identity element, that is, g # 1 implies og # g, show that

G={g'og|geG}

Prove that if H << G and K < < @G, then it does not necessarily follow

that the set product HK is a subgroup of G. Hint: Look at the dihedral

group Ds.

Let G be a finite group. Suppose that A < G is minimal among all normal

subgroups of GG and that A is abelian. Prove that A is an elementary abelian

group.

Show that a subgroup H of a group G is characteristic if and only if

oH = H for all automorphisms o € Aut(G).

Find an example of a normal subgroup H of a group G for which H is not

characteristic in G.

Let G be a group. Prove the following:

a) The property of being characteristic is transitive: If A C Band B C C,
then A C C.

b) fAC Band B<C,then A <C.

Show that Z (G) C G.
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Let G be a finite group and let H# < G. Show that if (|H|,(G : H)) =1,

then H C G.

Let G be a group and let H < G. Prove that H C G implies [H,G] C G.

Let G be a finitely-generated group and let H < G with (G : H) < 0.

Show that there is a subgroup K < H that is characteristic in G and has

finite index in G.

Let G be a group and let N < G. Let H < G. Show that N < ®(H) implies

N < 9(G).

Let GG be a group. Let G’ be the commutator subgroup of G. Let G” be the

commutator subgroup of G’. In general, we can continue to take

commutator subgroups and G = (G*~1Y' is called the nth commutator

subgroup of G Prove that G C G.

Let G be a group. Prove that if Inn(G) is cyclic, then G is abelian.

a) Show that the commutator subgroup of a group is fully invariant.

b) Show that the center of a group need not be fully invariant. Hint:
consider C(a) X Ss.

Let G be a finite abelian group of order n = pi'---pim where the p;'s are

distinct primes. For each prime p;, let

Gy = {a € G | ais a pi-element}

a) Show that Gm) CG.
b) Show that

G = \/G(n‘) and G(Pi) N Vj9éiG(Pi) = {1}

(Chinese remainder theorem) Let mg,...,my; be pairwise relatively
prime integers greater than 1. Let fi,..., f, be integers. Prove that the
system of congruences

r = fy modmy

Tr = f'h, mOdmk

has a unique solution modulo the product m---my,. : Hint: Use Zy,,.

Let G be a group of order p" where p is a prime. Show that a subgroup H
of index p must be normal in G. Hint: Consider the map \:G' — Sg,p,
where  Sg/y is the symmetric group on G/H, defined by
A(g)(aH) = gaH.

Find the subgroup lattice of (). Which subgroups are normal? Is ) abelian?
What is the center of Q? What is Q'?

Prove that the quasicyclic groups Z(p™) are the only infinite groups with
the property that their proper subgroups consist entirely of a single
ascending chain

{1} < S < Sy < -+
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Let G be a group and let n > 1 be an integer.

a) When is the nth power map f,:G — G defined by f,(a) =a" a
homomorphism? Must G be abelian?

b) When is the nth power map a homomorphism for all n?

¢) Let G"={a"|a€ G} and let G = {a € G | a" = 1}. Show that
both of these sets are normal subgroups of G. What is the relationship
between these subgroups?

Find the automorphism group Aut(V") of the 4-group V.

Let 0:G—» K be an epimorphism. Show that if H <<, then

ocH 44 Kand s(cH,K) < s(H,G).

Prove that the subgroup (o) of the dihedral group

Dyt = (o, p | 0® =1=p*)

has subnormal index n.

If F ={H; | i€ I} is a family of subnormal subgroups of a group G and if

there is an integer s for which s(H;, G) < s for all i € I, show that (F is

subnormal in G.

Prove that any finitely-generated metabelian group has the generalized SJP.

A group G is Hopfian if G is not isomorphic to any proper quotient group

of itself. A group G is co-Hopfian if GG is not isomorphic to any proper

subgroup of itself.

a) Prove that G is Hopfian if and only if every endomorphism of G is an
automorphism of G.

b) Prove that G is co-Hopfian if and only if every monomorphism of G is
an automorphism.

¢) Show that Q is both Hopfian and co-Hopfian. Hint: To show that Q is
Hopfian, show that Q/H is not torsion free unless H = {1}. To show
that QQ is co-Hopfian, show that any proper subgroup H of Q is not
divisible. An abelian group G is divisible if « € G and n € Z imply
that there is a b € G for which a = nb.

d) Show that Z is Hopfian but not co-Hopfian.

e) Show that the quasicyclic group Z(p>) is co-Hopfian but not Hopfian.

f) Show that the additive group of all polynomials in infinitely many
variables is neither Hopfian nor co-Hopfian.

Find two nonisomorphic groups with isomorphic automorphism groups.

Prove that the multiplicative group QT of positive rational numbers is

isomorphic to the additive group Z[z] of polynomials over the integers.

Hint: Use the fundamental theorem of arithmetic.

Let G be a group. Show that if G is centerless, then

Cau(e)(Inn(G)) = {¢}

Show that Aut(S3) = Inn(S3) =~ 5.
Prove that if G is a group in which every nonidentity element is an
involution, then G has a nontrivial automorphism.
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Consider a series for G
{1}=Gy9G1 4G, <+ 4G, =G
for which each factor group G;1/G; is abelian. Show that if H is a
subgroup of G, then there is a series of subgroups
{1}=Hy<H,<H,<.---<H,=H
of H whose factor groups are also abelian.
(Robinson) Let N < G and suppose that N has the GSJP and G/ N has the
ACC on subnormal subgroups. Show that G also has the GSJP. Hint: Apply

Theorem 4.35. Let C = {H, | i € I} be an arbitrary chain in subn(G) and
let U = [JC. To show that U < < G, consider the chains

CN={H;N|iel}
and
CN/N ={H;N/N |iel}

in G and G/N, respectively. Let HgN/N be a maximal member of
CN/N. Show that U = Hy(U N N).



Chapter 5
Direct and Semidirect Products

In this chapter, we will explore the issue of the decomposition of groups into
“products” of subgroups. To say simply that a group GG can be decomposed into
a set product of two proper subgroups

G=HK

leaves something to be desired. The first problem is that the representation of an
element of G as a product hk for h € H and k € K need not be unique. The
second problem is that, in general, we have no information about how the
elements of H and K interact, for example, what is kh as a member of H K?
The first problem is easily addressed. The second is not as simple.

Complements and Essentially Disjoint Products

Uniqueness in a set product decomposition is easily characterized.

Theorem 5.1 Let H, K < (.

1) Every element a € HK has a unique representation as a product a = hk
forh € H and k € K if and only if H and K are essentially disjoint.

2) Every element a € G can be uniquely represented as an element of HK if
and only if G = H e K, that is, if and only if

G=HK and HNK ={1}

In this case, K is said to be a complement of H in G. A subgroup H of G
is complemented if it has a complement in G.CJ

Note that since G = HK implies G = K H, the concept of complement is
symmetric in H and K. Also, if G = H e K, then

G| = |H o K| = [H||K]|

as cardinal numbers.

S. Roman, Fundamentals of Group Theory: An Advanced Approach, 149
DOI 10.1007/978-0-8176-8301-6_5, © Springer Science+Business Media, LLC 2012
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We pause for a small clarification of terminology. In the more specialized
literature of group theory, devoted to the study of the subgroup lattice sub(G) of
a group G, such as appears in the book Subgroup Lattices of Groups, by
Schmidt [30], the term complement of H € sub(G) refers to a subgroup K for
which

G=HVK and HNK={1}

This terminology is consistent with the terminology of lattice theory. Indeed,
Schmidt uses the term permutable complement for the concept given in our
definition. However, our definition follows the trend in general treatments of
group theory (including most textbooks).

Even for normal subgroups, complements need not exist. For example, no
nontrivial proper subgroup of 7Z has a complement. Moreover, when
complements do exist, they need not be unique; for example, in S3 every
subgroup of order 2 is a complement of the alternating subgroup A and so, for
example,

S3=Aze((12)) = A3 e ((13))
are two essentially disjoint product representations of Sj.
On the other hand, any complement K of a normal subgroup N is isomorphic to
the quotient G/ N, for we have
G NeK K K _
N N T NnkK {1}~

Theorem 5.2 Let G be a group. If a normal subgroup N of G is complemented,
then all complements of N are isomorphic to G /N and hence to each other.x]

Complements and Transversals

Another way to characterize complements is through the notion of a transversal.
Let us recall the following definition.

Definition Let H < G.

1) A set consisting of exactly one element from each left coset in G/H is
called a left transversal for H in G (or for G/H).

2) A set consisting of exactly one element from each right coset in H\G is
called a right transversal for H in G (or for H\G).O

It is of interest to know which subgroups of G are left transversals for H. The
simple answer is that these are precisely the complements of H .

Theorem 5.3 Let H < G. The following are equivalent for a subgroup K < G.
1) K is a complement of H in G.
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2) K is aleft transversal for H in G.

3) K is aright transversal for H in G.

Proof. Suppose that K is a complement of H in G. If kyH = kyH, then
k;lkl € KNH = {1} and so k; = k». Also, since G = KH, every a € G has
the form a = kh € kH for some k € K. Thus, the cosets kH for k € K form a
left transversal for H in G. Conversely, suppose that K < G is a left transversal
for G/H. Since H contains a single member of K, it follows that
H N K = {1}. Also, since the cosets G /H partition G, any @ € G has the form
a=kh, for some k€ K and h€ H and so G=KH. Thus, K is a
complement of H in G. A similar argument can be made for the right cosets.[d

Product Decompositions

If G =H e K, then every clement of G has a unique representation as a
product Ak with h € H and k € K. The problem, however, is that we have no
information about how the elements of H and K interact. Without a
commutativity rule that expresses a product kh in the form h'k’, where
h,h' € H and k, k' € K, we have no way to simply a product of the form

(hak1)(hoks)

The simplest commutativity rule, that is, elementwise commutativity hk = kh
holds if and only if both factors H and K are normal in G and this essentially
reflects the fact that there is no interaction between H and K. Weaker forms of
decomposition come by weakening the requirement that both factors be normal.
Here are the relevant definitions in one place for comparison purposes.

Definition Let G be a group and let H, K < G.
Iy If
G=HeK

then G is called the essentially disjoint product of H and K. In this case,
H is called a complement of K in G.

2) If
G=HeK, H<G

then G is called the semidirect product of H with K. In this case, H is
called a normal complement of K in G. The semidirect product is denoted

by
G=HxK
3 I
G=HeK, H<GK<G

then G is called the direct product of H and K. In this case, H is called a
direct complement of K in G (and vice versa). The direct product is
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denoted by
G=HNXK

Any of these products is nontrivial if both factors are proper..]

The direct product decomposition of a group is a very strong form of
decomposition and so is rather specialized. However, the semidirect product is
one of the most useful constructions in group theory. For example, for
n # 2mod4, the dihedral groups Dy, have no direct product decompositions,
but they do have a semidirect product decomposition

D2n = <P> A <0>

Nevertheless, all three types of product decompositions are special. To illustrate
the point, an infinite cyclic group has no nontrivial essentially disjoint product
decompositions at all.

Direct Sums and Direct Products

External Direct Sums and Products

We have already defined the external direct product of a finite number of
groups. The generalization of this product to arbitrary families of groups leads
to two important variations. Intuitively speaking, if x is an arbitrary (finite or
infinite) cardinal number, we can consider the set of all ordered “k-tuples” as
well as the set of all ordered x-tuples that have only a finite number of nonzero
coordinates. The notion of an ordered x-tuple is generally described by a
function.

Definition Let 7 = {G, | i € I} be a family of groups.
1) The external direct product of the family F is the group

1) € Gi}

of all functions f from the index set I to the union of F for which the ith
coordinate f(i) of f belongs to G; for all i. The group operation is
componentwise product:

RF = &Gi:{f:IHUGi

(f9)(@) = f(i)g(i)
The support of f € XG| is the set
supp(f) = {i e I'| f(i) #1}
2) The external direct sum of the family F is the group
BF = BG, = {f € KF | [ has finite support}

also under componentwise product.[]
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Of course, when F is a finite family, the direct product and direct sum coincide.
Note that authors vary on their use of the terms direct sum and direct product.
For example, some authors reserve the term sum for abelian groups and some
authors use the term cartesian product for direct product.

Internal Direct Products
For convenience, we repeat the definition of the internal direct product.
Definition A group G is the (internal) direct sum or (internal) direct product

of a family F = {H; | i € I} of normal subgroups if F is strongly disjoint and
G = \/F. We denote the internal direct product of F by

XH;, or NXF
orwhen F = {Hy, ..., H,} is a finite family,
HiX---XH,
Each factor H; is called a direct summand or direct factor of G. We denote

the family of all direct summands of G by DS(G).O

We should mention that the notation for direct sums and products varies
considerably among authors. For example, some authors use the notation
G = H x K for both the internal and external direct sum (as well as the
cartesian product), justifying this on the grounds that the two types of direct
sums are isomorphic. While this may be reasonable, in an effort to avoid any
ambiguity, we have adopted the following notations:

1) Set product

HK
2) Essentially disjoint set product
Heoe K
3) Cartesian product of sets
Hx K

4) External direct product
HXK and XH;

5) External direct sum

HHBK and HH;

6) Internal direct product (sum)

HXK and XH;
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7) Semidirect product
HxK

Note that our notation for the internal direct product emphasizes the fact that the
two subgroups are normal (a juxtaposition of the symbols > and < used to
indicate normality) and is similar to the established notation X for the
semidirect product.

To see that internal and external direct sums are isomorphic, suppose that
G = HG,. Foreach k, let

Hy = {f € BG; | f(i) = 1fori # k}

We leave it as an exercise to show that H;, < G and that G = X Hj. On the
other hand, if G = X, then the map o: HG; — X G, defined by

of =[[{r@) i el fi) #1}

is an isomorphism. For this reason, many authors drop the adjectives “internal”
and “external” when discussing direct sums.

The Universal Property of Direct Products and Direct Sums

Direct products and direct sums can each be characterized by a universal
property.

Projection and Injection Maps

If

G:g{Hl|’L€I} or G:E{H1|ZEI}

is an external direct product or external direct sum, we define the ith projection
map p;: G — H; by

Note that p; is an epimorphism and that an element f &€ G is uniquely
determined by the values p;(f), which can be specified arbitrarily, as long as
pi(f) € H; for all i.

The ith injection map r;: H; — G is defined by

~_Jh ifj=i
Ki(h)(])_{l otherwise

for all h € H;. These maps are injective. Note also that

ok = v ifi=y
7o 0 otherwise

For an internal direct sum
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G=W{H|iel}

we have already defined the projection p;: G — H; by setting p;(a) to be the ith
component of a. For the internal direct sum, the injection maps «;: H; — G are
just the inclusion maps, defined by x;(h) = h forall h € H;.

Universality of Direct Products
Let {H; | i € I} be a family of groups and let

P = X {H;}
iel

with projection maps p;. Then the ordered pair
P = (P, {pi}tier)

has a universal property that characterizes the direct product up to isomorphism.

Figure 5.1
Definition Referring to Figure 5.1, let F be the family of all ordered pairs
G = (G, {fi:G — Hi}ier)

where G is a group and {f;: G — H;}icqr is a family of homomorphisms. We
refer to G as the vertex of the pair G. A pair

U= (U,{UlU — Hi}ie])

in F is universal for F if for any pair G € F, there is a unique homomorphism
7:G — U between the vertices, called the mediating morphism for G, for
which

wor=f

SJorallie 1.0

Theorem 5.4 Let {H; | i € I} be a family of groups.
1) The pair

P = (P,{pi: P — H;}icr)
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where P is the direct product of the family { H;} and p; is the ith projection
map, is universal for F.
2) If the pair (G,{fi}ic1) is also universal for F, then the mediating
morphism 7: G — P is an isomorphism and so G ~ P.
Proof. For part 1), for any pair G € F, there must exist a unique mediating
morphism 7: G — P satisfying
pioT=fi
But this is equivalent to

pi(ra) = fi(a)

for all @ € G and this does uniquely define a homomorphism 7. The proof of
part 2) is also to the proof of Theorem 4.5 and we leave the details to the
reader.[]

Universality of Direct Sums
Let {H; | i € I} be a family of groups and let

S=HW{H |iel}
with injections x;. The ordered pair
S = (S, {kitier)

also has a universal property that characterizes the direct sum up to
isomorphism.

Figure 5.2

Definition Referring to Figure 5.2, let F be the family of all ordered pairs
G = (G {fi: Hi — G}icr)
where G is a group and { f;: H; — G}icr is a family of homomorphisms. We
refer to G as the vertex of the pair. A pair
U= U,{u;:H; - Ulics) € F
is universal for F if for any pair G € F, there is a unique homomorphism

7:U — G between the vertices, called the mediating morphism for G, for
which
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Tou; = f;
Sforallie 1.0
Theorem 5.5 Let {H; | i € 1} be a family of groups.
1) The pair
S = (S,{FEZ‘ZHZ' — S}iEI)

where S is the direct sum of the family { H;} and k; is the ith injection map,
is universal for F. That is, for any pair

G = (G, {fi:H; — G}ier)
where G is a group and {f;: H; — G}icr is a family of homomorphisms,
there is a uniqgue homomorphism 7: S — G for which
Tok; = [i
foralli € I, or equivalently,
T, = fi

for all i € 1. In other words, a homomorphism 1:5 — K is uniquely
determined by its restrictions T|g, to the factors H;, which may be any
homomorphisms from H; to G.

2) If the pair (G,{fi}ic1) is also universal for F, then the mediating
morphism T: S — G is an isomorphism and so G = S.

Proof. For part 1), for any pair (K,{k;: H; — K },c;) in F, there must be a

unique mediating morphism 7: .S — G satisfying

To R = f;

But this specifies how 7 is defined on any element of .S that has support of size
1 and therefore on any element of \S' that has finite support, that is, on all of S.
We leave the details of this and the proof of part 2) to the reader..d

Cancellation in Direct Sums
A group G is cancellable in direct sums (or cancellable for short) if
AXG~BXH, G~H = A=B

We follow a line similar to Hirshon [18] to prove that any finite group is
cancellable in direct sums. On the other hand, Hirshon shows that even infinite
cyclic groups are not cancellable in direct sums.

Theorem 5.6 Any finite group G is cancellable in direct sums.
Proof. It is sufficient to show that

AXG=BXH, G~H = A=B
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and we prove this by induction on o(G). If o(G) =1, the result is clear.
Assume that any group of order less than o(() is cancellable and let

W=AXG=BXH, GrH
First, we observe that if BN G = {1}, then W = B X G, for we have

BXdE
B

w
~G~H~ —
G B

and since these groups are finite, they have the same size and so they are equal,
whence B X G = W. It follows that A and B are both direct complements of G
in W and so are isomorphic. A similar argument holds if AN H = {1}.

Thus, we may assume that B N G and A N H are nontrivial. Then
ANXG HXB

(ANH)X (BNG) (AnH)X(BNG)

and Theorem 5.19 implies that

A o G H o B
ANH BnNnG AnH BNG

Since H ~ (G, we have

HA&G igHgB

X — —  ~ - -
{1} AnH BnG {1} AnH BnNnG
and Theorem 4.8 implies that

HXAXG - HXGXB
(IR(ANH)X(BNG) ~ {1} K(ANH)X(BNG)

Splitting this in a different way gives
A H G B H G
il LI NN - L - P
{1} AnH BnNnG {1} AnH BNG
Since o(G/(BNG)) < o(G), the induction hypothesis implies that G /(B N G)
is cancellable. Similarly, H/(A N H) is cancellable and so A =~ B.0

The Classification of Finite Abelian Groups

We are now in a position to solve the classification problem for finite abelian
groups, that is, we can identify a system of distinct representatives for the
isomorphism classes of finite abelian groups.

Theorem 5.7 Let A be a finite abelian group. If w € A has maximum order
among all elements of A, then M = (u) has a direct complement, that is, there
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is a subgroup V. for which
A=MNXV

Proof. The proof is by induction on the order of A. If o(A) = 1, the result is
clear. Assume the result holds for all abelian groups of order less than that of A.
We may also assume that M < A. If we find a subgroup X < A for which
X N M = {0}, since then o(u + X) = o(u), the inductive hypothesis applied to
the quotient G/ X gives

A_M+X V. _M+V
X~ X X X

for some V' < A. Hence, A = M + V and since (M + X) NV = X, it follows
that M NV C MNX = {0}, whence A=MNXV.

To this end, let X be a minimal subgroup of A that is not contained in M. If
x € X, then (z) is not contained in M and so X = (z). If o(z) = ab with a and
b relatively prime and greater than 1, then (ax) < (x) and so (az) < M.
Similarly, (bxz) < M and so z € (ax) + (bxz) < M, a contradiction. Hence,
o(x) = pisprime and so X N M = {0}.00
Thus, if A is a finite abelian group and if «; has maximum order in A, then

A= (u) XMW
for some Vi < A.If V; # {0} and uy has maximum order in V}, then

where o(uz) | o(uy). Since A is finite, this process must eventually result in a
cyclic decomposition

A = <u1> X ... X <’LL”>
of A, where if o, = o(uy), then
anlop | |ay

Moreover, if o has the prime factorization

ay = pitpn”
then vy, | oy implies that
an = it
where ey ; < ej41,; forall i = 1,...,m. Then Theorem 2.33 implies that

(ur) = (vg,1) M- X (Vg )

where o(vy,;) = pf“ for all 4. A subgroup of order a power of a prime p is called
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a p-primary (or just primary) subgroup. It is customary when writing A as a
direct sum of primary cyclic subgroups to collect the terms associated with each
prime.

Theorem 5.8 (The cyclic decomposition of a finite abelian group) Let A be a

finite abelian group.

1) (Invariant factor decomposition) A is the direct sum of a finite number of
nontrivial cyclic subgroups

A= (uy) M- X {uy,)
where if oy, = o(uy,), then
(079 | Q1 | | aq

The orders o are called the invariant factors of A.
2) (Primary cyclic decomposition) /f

a = p(lfk,l . ‘pfrkzv.m
where e, ; < epy1 foralli=1,...,m, then A is the direct sum of primary

cyclic subgroups:
A= [(ur) M D Cug g )] X M (1) X X ()]

where o(u; ;) = p;"’. The numbers p;" are called the elementary divisors

of A.O0
We note the following:

1) The product of the invariant factors is equal to the product of the
elementary divisors and is the order of the group.

2) The invariant factor «y; is equal to the maximum order of the elements of
the group

() M- M )

In particular, the largest invariant factor «; is equal to the maximum order
of the elements of A.

3) The multiset of invariant factors of A uniquely determine the multiset of
elementary divisors of A and vice versa. In particular, the elementary
divisors are determined by factoring the invariant factors and the invariant
factors are determined by multiplying together appropriate elementary
divisors.

Uniqueness

Although the invariant factor decomposition and the primary cyclic
decomposition are not unique, the multiset of invariant factors and the multiset
of elementary divisors are uniquely determined by A. Actually, the proof is
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quite easy if we use the cancellation property of Theorem 5.6. Suppose that
A= (up) M- X (uy,)
where o, = o(uy) and
o, | Qo1 | | oy

and that

where 3 = o(v,) and
ﬂm | ﬂm*l | | /61

Then oy and [3; are both equal to the maximum order of the elements of A and
so a; = (1. Hence (u;) =~ (v1) and Theorem 5.6 implies that

(ug) M-+ M (uy) &2 (v2) M-+ X ()

Now, ap and [ are equal to the maximum orders in the two isomorphic groups
above and so oy = (3, and we may cancel again. Hence, m = n and ay, = 0, for
all k.

Theorem 5.9 (Uniqueness) Let A be a finite abelian group. The multiset of

invariant factors (and elementary divisors) for A is uniquely determined by
AO

Properties of Direct Summands

Let us explore some of the properties of direct summands. The following simple
facts are worth explicit mention:

1) The direct summand property is transitive:
HeDS(K), KeDSG) = HeDSG)
2) The property of being a direct summand in inherited by subgroups:
HeDSG), H<K<G = HeDSK)
In fact,
G=HNXJ, H<K<G = K=HMNX(JNK)
3) Normal subgroups of direct summands are normal in the group:

N<H, HeDS(G) = N9G
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4) The property of being characteristic is preserved by intersection with a
direct summand:

NCG, HeDS(G) = NNHCH

Good Order
Let G be a group and suppose that
G=AXA =BXDB

If A C B, then it does not necessarily follow that A’ O B’, as is easily seen in
the Klein 4-group, for example. For convenience, let us say that an equation of
the form

G=AXA=BXB, ACB

is in good order if A’ D B’.

Theorem 5.10 Let G be a group. If
G=AXA'=BXB, ACB
then we can replace either A’ or B' by another subgroup to get an equation in
good order. Specifically, the following are in good order:
G=AX[B'X(ANB)]=BXB
and
G=AXA =BX (A NAB)
Proof. The first equation follows directly from Dedekind's law. For the second
equation,
BN(ANAB)=A"n(BNAB)
=A'NA(BNHB)
=AnA
={1}
and

B(A'NAB') = BA(A'NAB') = BAA'NAB)=BAB' =G 0O

Chain Conditions on Direct Summands and Remak Decompositions

Direct summands are also special with respect to chain conditions. We have
seen that for the families sub(G) and nor(G), the two chain conditions (ACC
and DCC) are independent. However, for the family DS(G) of direct summands
of G, the two chain conditions are equivalent.
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Theorem 5.11 4 group G has the ACC on DS(QG) if and only if it has the DCC
on DS(G).
Proof. Suppose that GG has the DCC on direct summands and let

Dy <Dy <--
be an ascending sequence in DS(G). Theorem 5.10 implies that there is a
descending sequence

E>Ey>---

where G = D; X E; for all i. This descending sequence must eventually
become constant, at which time so does the original sequence of D;'s.[]

A group with the the BCC on direct summands can be decomposed into a finite
direct sum of indecomposable factors.

Definition [/ G is a group, then any decomposition
G=RM--XR,

where each Ry, is indecomposible is called a Remak decomposition of G.[1

A minimal direct summand is a minimal member of the family DS(G) \ {1}
of all nontrivial direct summands of G. A direct summand is minimal if and
only if it is indecomposable.

Theorem 5.12 (Remak) If a group G has either (and therefore both) chain
condition on direct summands, then G has a Remak decomposition

G=R/ X.---XR,

Proof. Let R; be a minimal direct summand of G. If Ry = G, then G is
indecomposable and we are done. Otherwise,

G:R1NE1

where Ey # {1} also has BCC on direct summands. Let R, be a minimal direct
summand of F, which is also a minimal direct summand of G. If Ry = E, we
are done. If not, then

G =Ry X Ry X Ey
Since the sequence

Ry <Ry MRy <---
is a strictly increasing sequence of direct summands of G, it must become
constant and so this construction must terminate after a finite number of steps,

resulting in a decomposition of G into a finite direct sum of minimal direct
summands.]
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A Maximality Property
We paraphrase Theorem 3.15.

Theorem 5.13 Let F = {H; | i € I} be a nonempty family of normal subgroups
of a group G. For any K < G, there is a J C I that is maximal with respect to
the property that the direct sum

KX <_l>4 Hj)
jedJ
exists.[]

One consequence of Theorem 5.13 is the following.

Theorem 5.14 Suppose that G is the join of a family F ={H;|i € I} of
minimal normal subgroups. For any K < G, there is a J C I for which

G = K X (4[><] H]>
jeJ
and so
nor(G) = DS(G)

Proof. Let J C I be maximal with respect to the fact that the direct sum
= X X N
M;=K <'7€JN ]>

exists. If ¢ ¢ J, then M; N N; < G implies that M; N N; = {1} or N; < M.
But if M; N N; = {1}, then the direct sum M y;, exists, contradicting the
maximality of J. Hence, N; < M foralli € I and so G = M ;.00

xY-Groups

It is natural to ask the following types of questions. Let X'(G) be a class of
subgroups of a group G, such as the class of all subgroups, all normal
subgroups or all characteristic subgroups.

1) For which groups G is it true that all subgroups in X(G) are

complemented?

2) For which groups G is it true that all subgroups in X(G) have normal
complements?

3) For which groups G is it true that all subgroups in X(G) are direct
summands?

There has been much research done on these and related questions and it has
become customary to make the following types of definitions in this regard.
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Definition

1) An aC-group is a group in which all subgroups are complemented.

2) AnnC-group is a group in which all normal subgroups are complemented.

3) An aD-group is a group in which all subgroups are direct summands.

4) An nD-group is a group in which all normal subgroups are direct
summands.

5) An aNC-group is a group in which all subgroups have normal
complements..]

Note that an nNC-group is the same as an nD-group. We will characterize aD-
groups, nD-groups and aNC-groups. We will also describe (without proof) the
characterization of aC-groups. The theory of the least restrictive of these
conditions—the nC-groups—appears to be much more complicated and we refer
the reader to Christensen [8] and [9] for more details.

aD-Groups

Groups in which all subgroups are direct summands were characterized by
Kertész in 1952. This is the strongest of the xY-conditions and is indeed very
restrictive.

Theorem 5.15 (aD-groups: Kertész [21], 1952) 4 group G is an aD-group if
and only if it is the direct product of cyclic groups of prime order.

Proof. If G is a direct sum of cyclic subgroups C; of prime order, then since
each C; is minimal normal, Theorem 5.14 implies that

sub(G) = nor(G) = DS(G)

and so G is an aD-group.

For the converse, suppose that GG is an aD-group. Then any subgroup of G is
also an aD-group. However, the only cyclic aD-groups (a) are those of square-
free order (that is, order a product of distinct primes). For it is clear that (a)
cannot have infinite order and if p* | o(a) for any prime p, then (a) has an
element x of order p and so

(a) =(x) X K

where p | o(K). Hence, K has an element of order p as well, which is too many
elements of order p for a cyclic group. Hence, every element of G has square-
free order.

Now, consider the family F of all cyclic subgroups of prime order in G. If
a € G has order o(a) = p;---py, where the factors are distinct primes, then
Theorem 2.33 implies that there are subgroups (a;) of order p; for which

(@) = {ar) M- M {am)
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and so G = \/F. But since each member of F is minimal normal, Theorem 5.14
implies that G is the direct sum of a subfamily of F.[1

nD-Groups

The nD-condition is not as strong as the aD-condition, but is still very
restrictive. One reason is that normality is a finitary condition, involving
individual elements and so the condition DS(G) = nor(G) imparts finitary
properties to the otherwise global condition of being a direct summand.

In particular, the union of any ascending sequence of normal subgroups is
normal and so in an nD-group, the union of any ascending sequence of direct
summands is a direct summand. This condition implies a certain measure of
finiteness for nD-groups. Specifically, if G is a nontrivial nD-group and

Dy <Dy <

is an ascending chain of direct summands in IV, then

G = (UDi) W E=|J(D; X E)

for some E < G. Hence, if G =nc(S,G) is the normal closure of a finite
subset S C (G, then S C D,, X E for some n > 1 and so G = D,, X E, which
implies that D,,,; = D,, for all ¢ > 0. Thus, G has the ACC on direct summands
and so G has a Remak decomposition.

Note also that any normal subgroup (direct summand) D of an nD-group G is
an nD-group, since

DS (D) = DS(G) Nsub(D) = nor(G) Nsub(D) = nor(D)

It follows that any nontrivial nD-group contains an indecomposable direct
summand.

We can now characterize nD-groups. Suppose that G is a nontrivial nD-group
and consider the family F ={S;|i€ I} of all indecomposable direct
summands of G, along with the trivial subgroup. Theorem 5.13 implies that
there is a subset J C [ that is maximal with respect to the fact that the direct
sum

S= XS
jedJ

exists in G and so the nD-condition implies that
G=SXH

for some H < G. But if H is not trivial, then it contains an indecomposable
direct summand of G, which contradicts the maximality of .J. Hence, H is
trivial and
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G = M5
=
is a direct sum of indecomposable subgroups. In particular, each S; is minimal
normal in G and so G is the direct sum of minimal normal subgroups.

Conversely, if G is the direct sum of minimal normal subgroups, then Theorem
5.14 implies that nor(G) = DS(G), that is, G is an nD-group.

Theorem 5.16 The following are equivalent for a group G:
1) G is an nD-group

2) G is the direct sum of minimal normal subgroups

3) G is the direct sum of simple subgroups.C]

aNC-Groups

We next show that aNC-groups are the same as aD-groups, by showing that an
aNC-group is abelian.

Theorem 5.17 (aNC-groups: Weigold [34], 1960) A group is an aNC-group if
and only if it is an aD-group, that is, if and only if it is a direct sum of cyclic
subgroups of prime order.

Proof. An aD-group is an aNC-group. For the converse, we show that an aNC-
group G has trivial commutator subgroup and so is abelian. If A < @ is abelian,
then G = N x A for some N < (G and so

G'=[NA,NA <N

Hence, G’ is in the normal complement of any abelian subgroup of G, including
all cyclic subgroups (a) of G. Hence, G’ is trivial.(]

aC-Groups

Finally, we state without proof the following theorem on aC-groups.

Theorem 5.18 (aC-groups)

1) (Hall, P. [17], 1937; see also Schmidt [30], p. 122) 4 finite group G is an
aC-group if and only if G is a direct sum of groups of square-free order.

2) (See Schmidt [30], p. 123) 4 group G is an aC-group if and only if

o= (%) = (1)

where each N; and each H; is cyclic of prime order and N; < G for all 1.0

Behavior Under Direct Sum

The following theorem describes how some basic constructions behave with
respect to direct sums and emphasizes the fact that the summands in a direct
sum have a great deal of independence.
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Theorem 5.19 Let

Then the following hold:
1) (Center of G)

2) (Commutator of G)

G/ — M H/
iel
3) IfN; < H; forall i, then
zquH ~ @\ E
X N; el N;
iel

4) IfH; C G, then
Aut(G) = X Aut(H;)

iel

Proof. For part 1), since the H;'s commute elementwise, it is clear that
XZ(H;) < Z(G). But if z € Z(G), then let z = hy---h,, with each h; in a
different factor Hj. Then z € Z(H;) and hy € Z(H;) for k#1i and so
h; € Z(H;), whencez € XZ(H;).

For part 2), Theorem 3.41 implies that

G' = [XH;, XHj] = X [H;, Hj] = X[H;, H] = XH,
? J 2, i i
For part 3), the function

o: X H; — Bﬂ—
el iel

defined by
o(a)(k) = ri(a) Ny = 7y, o ri(a)

where 7y, is the canonical projection map and ry, is the kth injection map is an
epimorphism. Moreover, ca = 1 if and only if x;(a) € N, for all k and so
ker(o) = XN;.

As to part 4), since H; C G, if 0 € Aut(G), then o|g, € Aut(H;) and so we can
define a map f: Aut(G) — X ;c;Aut(H;) by
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f(o)(i) = olu,
This is a group homomorphism since
f(om)(@) = (a0 7)|m, = (o]a) o (T1m) = f(0)(@) o f(T)(i) = [f(0) f(7)](D)

for all i € I and so f(oo7)= f(o)f(r). Furthermore, f is injective since
o|g, = ¢ for all ¢ implies o = ¢.

To see that f is surjective, if 7 € X ;c;Aut(H;), then the universality of the
direct sum implies that there is a unique homomorphism o: G — G satisfying
o|g, = 7, the ith coordinate of 7. But the bijectivity of each 7; implies that
o € Aut(G) and so f(o) = 7.00

When All Subgroups Are Normal

All subgroups of an abelian group are normal, but all subgroups of the
quaternion group () are normal and yet () is not abelian. A Hamiltonian group
is a nonabelian group all of whose subgroups are normal. In 1933, Baer [3]
published a characterization of Hamiltonian groups. Baer's theorem says that the
Hamiltonian groups are actually a special type of abelian group with an
additional quaternion direct summand.

Theorem 5.20 (Baer [3], 1933) 4 group G is Hamiltonian if and only if
G=QXANXB

where @ is a quaternion group, A is an elementary abelian group of exponent 2
and B is an abelian group all of whose elements have odd order.

Proof. First suppose that G = Q XM ANX Bandlet H < G.If H < A X B, then
H < @G. Note that if —1 € H, then G’ = {+1} < H and so H < G. Every
h € H has the form

h = qab
where ¢ € Q, a € A and b € B has odd order, then
h20(h) — q20(b) — q2
and so ¢> € H. If o(q) = 4 for some h € H, then —1 € H and so H < G. On

the other hand, if o(¢) <2 for all h € H, then H < {£1} X AX B = Z(G)
and so H < (. Thus, G is Hamiltonian.

For the converse, let G be Hamiltonian. Theorem 3.38 shows that GG is periodic
and that any nonabelian subgroup of G contains a quaternion subgroup.

If B is the set of odd-order elements of G and M is the set of elements of order
a power of 2, then BN M = {1}. Moreover, for any x,y € G, the normality of
(x) and (y) imply that (z,y) = (x)(y) and so o(zy) | o(z)o(y). It follows that
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B and M are (normal) subgroups of . Finally, every a € G has order
o(a) = 2"m where m is odd and so Corollary 2.11 implies that a = bm for
some b € Band m € M. Thus,

G=BXM

Since B does not contain a quaternion subgroup, it must be abelian and since M
is therefore nonabelian (since G is nonabelian), M contains a quaternion

subgroup @ = (z,y).

We are left with showing that M = @ X A, where A is an elementary abelian
group of exponent 2. The centralizer

C=Cu(Q)
of Q = (z,y) in M has exponent 2. To see this, note that if z € C' has order 4,
then (zz) < M has order 4 and so

3

228 = (22)Y = zz or z2® = (22)! =2°

333

and since the former is false, we have 2> = 1. Thus, C is an elementary abelian
group of exponent 2. Moreover, since C' is a vector space over Zs, every
subgroup (i.e., subspace) has a direct complement and so

C = <x2> X A
where A is also an elementary abelian group of exponent 2.
Consider the quotient M /C, which contains the four distinct cosets C, zC', yC

and xyC'. Poincaré's theorem gives

(M : C) = (M : CM(x) n C]\[(y))
< (M : Cy(z)(M : Culy))
M|

= [2"|ly
=4
and so
M/C ={C,zC,yC,zyC}
which implies that
M = QC = Q((z*) M A) = QA

But the only involution in @ is 2%, which is not in A and so @ N A = {1}. Thus,
M =Q X Aand

G=MMB=QMANMB O
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Semidirect Products

We now turn to semidirect products.

Definition Let G be a group. If
G=NeH, NG

then N is called a normal complement of H in G and G is called the
semidirect product of N by H, denoted by

G=NxH

A semidirect product is nontrivial if both factors are proper.]

Example 5.21 The dihedral group Ds,, is a nontrivial semidirect product:
Do = (p) % ()
The symmetric group is also a nontrivial semidirect product:

Sp = A, x((12))

On the other hand, the quaternion group is not a nontrivial semidirect product,
since the orders of the factors must be 2 and 4 but the only subgroup of ) of
order 2 is contained in every subgroup of order 4.1

For an arbitrary semidirect product G = N x H, the commutativity rule is
hn = (hnh™Y)h = n"h
for h € H and n € N and this yields the multiplication rule
(n1hy)(nghy) = nmglhlhg

for h; € H and n; € N. Thus, for the semidirect product, the multiplication rule
shows that “cross products” are involved, in the form of conjugates n}f'. This
has some perhaps unexpected consequences.

For example, if A; =~ Ay and By = Bs, then A; X By ~ Ay X B,. On the other
hand, if (a) is cyclic of order 6, then

(a) = (a®) x (a®) = {1,d*, 0"} X {1,0”}
But we also have
Sy =1((123)) x ((12)) ={¢,(123),(132)} x {¢,(12)}

and so the nonisomorphic groups (a) and S5 can be written as a semidirect
product, where corresponding factors are isomorphic! The reason that this is not
a contradiction is that the values of the conjugates are different in each group.
For instance,
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but

(123)1% =(213) # (123)

Semidirect Products and Extensions of Epimorphisms

Let G and G be groups with H < G and let o: H —» G} be an epimorphism.
The key to describing the possible extensions of o to G is to consider the
possible kernels for such an extension.

Suppose that G is a group and that H, K < G contain a normal subgroup
J < G.Then H/J and K/J are complements in G/.J if and only if

HNK=J and G=HK

It will be convenient to make the following nonstandard definition.

Definition Let G be a group and let J < G. If H, K < G satisfy
HNK=J and G=HK

we will say that H and K are complements modulo J. If K is a normal
complement of H modulo J, we will write

G =K x H [mod J] O
Now, if 7: G —» (7 is an extension of o: H —» (31, then
H Nker(c) = ker(o)

To see that G = Hker(7), since o is surjective, for any a € G, there is an
h € H for which 5a = oh = 5h and so h'a € ker(7), whence

a = h(h'a) € Hker(7)
and so ker (@) is a normal complement of H modulo ker(o):
G = ker(7) x H [modker(o)] (5.22)
It follows that every extension & of ¢ is uniquely determined by its kernel
ker(a).
On the other hand, suppose that
G = K x H [modker(o)]

Then the ignore-K map 7: G — G defined by
a(hk) = o(h)
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for h € H and k € K is well defined since if hk = hyk; for h; € H and
k1 € K, then

hi'h =kik™' € HN K = ker(o)

and so a(hl‘lh) =1, that is, ch = oh;. The normality of K implies that 7 is a
group homomorphism, since

G(khkihy) = a(kk!hhi) = o(hhy) = o(h)o(hi) = F(kh)T(ki1hy)
The kernel of 7 is
ker(c) = {hk | ch =0} =ker(o)K = K
and so & is the unique extension of o with kernel K.
Theorem 5.23 Let G and G, be groups, let H < G and let o: H—» G be an

epimorphism.
1)  Given any normal complement K of H modulo ker(o),

G = K x H [modker(o)]
the ignore-K map 7 : G — G defined by
a(hk) =ch

for all h € H and k € K is the unique extension of o with kernel K.
Moreover, every extension @ of o is an ignore-K map, where K = ker(c).
2) IfG =K x H, then ¢ has a unique extension 7: G — G for which

ker(7) = Kker(o)
Proof. For part 2), the Dedekind law implies that
H N Kker(o) = ker(o)(H N K) = ker(o)
and so Kker(o) is a normal complement of H modulo ker(c).00
Semidirect Products and One-Sided Invertibility
Semidirect products are related to one-sided invertibility.
Definition Let 0: G — H be a group homomorphism.
1) A leftinverse of o is a homomorphism or: H — G for which o, 0 0 = 1. If
o has a left inverse, then o is said to be left invertible.

2) A right inverse of o is a homomorphism op: G — H for which o o op = t.
If 0 has a right inverse, then o is said to be right invertible.[]

Unlike the two-sided inverse, one-sided inverses need not be unique. A left-
invertible homomorphism ¢ is injective, since
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ca=0b = opoca=ocp0o0b = a=2b
and a right-invertible homomorphism ¢ is surjective, since if b € H, then
b= o(ogb) € im(0)

For set functions, the converses of these statements hold: o is left-invertible if
and only if it is injective and o is right-invertible if and only if it is surjective.
However, this is not the case for group homomorphisms.

Let 0: G — G be injective. Referring to Figure 5.3,

K
ofm
)—>{ im(c)
(ol
G G,
Figure 5.3

the map o[™@): G ~ im(c) obtained from ¢ by restricting its range to im(o) is
an isomorphism and the left inverses of o are precisely the extensions of
or = (o))~ im(0) = G to G,. Hence, Theorem 5.23 implies that there is
one left inverse o, for o for each normal complement K of im(c) and
ker(or) = K. Moreover, this accounts for all left inverses of o. In particular, &
is left-invertible if and only if im(c) has a normal complement.

Now let o: G —» G be surjective. Referring to Figure 5.4,

ker(c)

ErE—
oly

= 1
G or=(olw) G,

Figure 5.4

If G = ker(o) x H for some H < G, then o|y: H ~ G and (o|y) ! is a right
inverse of o, with image H. Conversely, if oz: G; <— G is a right inverse of o,
then

G = ker(o) x im(op)

For if a € ker(o) Nim(oR), then a = opb and oa = 1, whence b = 1 and so



Direct and Semidirect Products 175

a = 1. Also, for any a € G, we have
a= (a[(croo)a] ") ((or o 0)a) € ker(o) x im(og)

Theorem 5.24 Let 0: G — G4 be a group homomorphism.
1) If o is injective, then o has a unique left inverse oy, with kernel K for each
normal complement K of im(o). Hence,

G = ker(o) x im(o)
This accounts for all left inverses of o.

2) If o is surjective, then o has a unique right inverse o = (o|y) "Gy — G
for each complement H of ker(o). Hence, H = im(op) and

G = ker(o) x im(oR)
This accounts for all of the right inverses of o.[]

Here is a nice application of this theorem.

Theorem 5.25 Let H and K be indecomposable groups. Let a: K — H and
B: H — K be homomorphisms for which a5 € Aut(H) and im(3) < K. Then
« and 3 are isomorphisms.

Proof. The map

Br=(aB) o K — H
is a left inverse of 3 and so /3 is injective and
H = ker(51) M im(5)

But since (3}, is not the zero map, J must be surjective as well. Hence, 5 and
therefore also « are isomorphisms.[]

The External Semidirect Product

To see how to externalize the semidirect product, let us review the internal
version. If we write the multiplication rule for the semidirect product N x H in
the form

(n1h1)(naha) = ni[yn, (n2)|hihe

where +;, is conjugation by h, then N x H is completely described by the
subgroups N and H, along with the family Z ={v, |h € H} of inner
automorphisms. Moreover, since the map y: b — -, is a homomorphism, -y is a
representation of H in Aut(N).

In the spirit of externalization, we separate the components by writing hk as
(h, k) to get
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(n1, ha)(n2, ha) = (n1yp, (n2), hihe)

But if the factors N and H are to be arbitrary groups, then the inner
automorphisms ~;, make no sense. However, any representation of
0: H — Aut(N) of H in Aut(N) can play the role of conjugation and define a
group, as we now show.

Theorem 5.26 Let N and H be groups and let 0: H — Aut(N) be a
homomorphism. We denote 0(h) by 0),. Let N xgH be the cartesian product
N x H together with the binary operation defined by

(@, 2)(b,y) = (aby(b), zy)
Then G = N xgH is a group, in fact, it is a semidirect product
N xgH = (N x {1}) x ({1} x H)
Also,
(a,x) = (a,1)(1,z)
and
(a, ) = (6.(a), 1)

which shows that 6 does define the inner automorphisms of elements of
N x {1} by elements of {1} x H. The group N xgH is called the external
semidirect product of N by H defined by 6.

Proof. To see that multiplication is associative, we have

[(a, 2)(b, 9)l(c, 2) = (abz(b), 2y)(c, 2)
= (b (0)0ry(c), y2)

and
(a,2)[(b,y)(c, 2)] = (a,)(b0y(c), y2)
= (af, (b0,(c)), zy2)
= (a0:(b)0sy(c)), zyz)

It is easy to check that (1, 1) is the identity and
(a,2)7" = (01,27
Thus, N x¢H is a group. For the rest, routine calculation gives
(a,1)(b,1) = (ab,1) and (a,1)' = (a"',1)
and

(Lz)(1,y) = (L,zy) and (1,2)"' =(1,27")
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and so N x {1} and {1} x H are subgroups of N xyH. To see that N x {1} is
normal, since

(a,2) = (a,1)(1,z)
we need only check that
(a, 1)) = (1,2)(a,1)(1,z7Y) = (1,2)(a, 27 ") = (A.(a),1) € N x {1}
and
(a,1)"V = (b,1)(a,1)(b~",1) = (bab™',1) € N x {1}
Clearly, (N x {1})N ({1} x H) = {(1,1)} and so N xyH is the (internal)
semidirect product of N x {1} by {1} x H.OI

Note that the zero representation 6: H — Aut(G) defined by 6(h) = v defines
the external direct product G X H.

It is common to write the external version of the semidirect product using the
notation of the internal version. Thus, if G and H are groups, we can specify a
semidirect product S = G x¢H by taking the set of formal products

S={gh|ge G heH}
in place of ordered pairs and specifying the commutativity rule
hg = 0(9)h
where 0: H — Aut(G) is a homomorphism.
Example 5.27 Given a group G, there is one rather obvious way to create an

external semidirect product G xy¢H, namely, by taking H = Aut(G) and
0: H — H to be the identity. The group product in this case is

(ao)(bT) = ao(b)oT
The group G xyAut(G) is called the holomorph of G.
We may generalize this by taking H to be any subgroup of Aut(G) and 6 to be

the inclusion map from H to Aut(G). The group G x¢H is called the relative
holomorph of G with respect to H.

Finally, if o € Aut(G), then the relative holomorph G xg(c) is called the
extension of G by ¢. The group product in this case is
(ac’)(bo?) = ac’(b)o'™

As an example, let G = Cyi(a) be cyclic of order 2", where n > 3. If
m = 2"~!, then the power map defined by pia = ! is an automorphism of G
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of order 2, since m — 1 is relatively prime to 2" and
(m—1)=(2""2-1)2"4+ 1= 1mod2"

Thus, the extension of G by p is just SD,, = Co(a) x4Cs(x) and has group
product

(a’,1)(a’,1) = (a",1)
(a',z)(a’,1) = (a1 1)
(a',1)(a?,x) = (a', 2)
(a',x)(a?, z) = (a™Hm=Di 1)

for all 0 <4,j < 2" — 1. Since (a’,27) = (a,1)(1, )7, setting o = (a, 1) and
&= (1,z) gives

SDu = (@,8), ol@)=2', of§)=2 Ea=a’ e

The group S D,, is called the semidihedral group of order ortl O

Example 5.28 Recall that if C' is an infinite cyclic group, then Aut(C) = {¢, 7}
where 7:a +— a1 and if C is cyclic of order n, then Aut(C) ~ Z!. Let C(a)
and C'.(b) be infinite cyclic groups. Then a homomorphism

0: Coo(b) — Aut(Co(a)) = {¢, 7}

is completely determined by the value 6;,, which can be either ¢ or 7. If 6, = ¢,
then 6 is the zero map and Cy(a) XpCx(b) is direct. If 6, = 7, then the
commutativity rule in the group Cio(a) X 9Cx (D) is

ba =1(a)b=a""b
The automorphisms of a finite cyclic group C,(a) are the kth power

homomorphisms oy, defined by

or(a) = a*

where k € Z;. Thus, the representations 6: C(b) — Aut(Cy(a)) are the
homomorphisms defined by 6;(b) = o} and so the possible semidirect products
are

Cp(a) x9,Coo(b) = {a'b? |0 < i <n—1,j € Z,ba = a"b}
where k € Z.[0
Example 5.29 To define a semidirect product C5(a) » ¢C4(b), we must specify
a homomorphism
0: C4(b) — Allt(Cg) = {L, 02}

2

where o02(a) = a®. The zero homomorphism defines the direct product
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C3(a) X Cy(b). If 0, = 09, then the semidirect product T = Cs3(a) x19Cy(b)
defined by @ is

T = {(a,b), o(a)=3, o(b)=4, ba=a’

We have not yet encountered this group of order 12. In particular, T' % A, since
o(ab®) = 6 and T % D1 since o(b) = 4. We will show later that A, D5 and T
are the only nonabelian groups of order 12 (up to isomorphism).]

Example 5.30 Let us examine the possibilities for an external semidirect
product of the form

G (@) 26Cyn (D)
where p is prime. The automorphisms of Cpn(a) are the kth power maps
orp:a ab for k€ Z;,. The function 6:Cp(b) — Aut(Cpn(a)) satisfying
0, = o}, defines a homomorphism if and only if o(o},) | o(b), that is, if and only
if O’Z” =y, 0r

ak(v") —a

or finally

kP = 1mod p™ (5.31)
As an example, for m = 1, Fermat's theorem implies that (5.31) is equivalent to

k =1modp

and since 1 < k < p, it follows that £ = 1. Hence, the only semidirect product
of the form

Cp(a) x9Cp (b)
is the direct product.
If n = 1, then (5.31) is equivalent to
kP = 1mod p™
Any k of the form k = 1 + up™ ! where u < p satisfies this congruence, since
EP = (1 +up™ )P =14 wp™
Thus, for each u < p, there is a semidirect product
Oy () 40, (b)
where

m—1
ba = o't} O
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Example 5.32 Let D be a group and let G = D? :== DX DX D. Then each
permutation ¢ € S5 defines an automorphism 6, of G by permuting the
coordinates in GG. For example,

9(13)(337:[/7 Z) = (Z’ya x)

Moreover, the map 6: S5 — Aut(G) sending o to 0, is a homomorphism, since
0,0, = 0,,. Thus, the semidirect product

G ><1953 = l)3 ><1@Sg
exists. To illustrate the product, if o = (1 3), then

)
((a;b,¢),0))((z,y,2),7)) = ((a,b,¢)0s(2,y, 2),07)
((a,b,c)(z,y,2),07)

= ((az,by, cx),0T) O

We will generalize this example in the next section.

*The Wreath Product
To generalize Example 5.32, let D be a group, let €2 be a nonempty set and let
G=XD
we

be the external direct product of || copies of D, indexed by (). Each
permutation o of €2 defines an automorphism 6, of G by permuting the
coordinate positions of any f € G. Specifically, the wth coordinate of f
becomes the (ow)-th coordinate of 6,(f), that is, 6,(f)(ow)= f(w), or
equivalently,

(0o f)(w) = f(o™'w)
Thus,

6,(f) = foo

The map 6,: G — G is casily seen to be an automorphism of G, since it is
clearly bijective and

0,(f9) = (fg) oo™ =(foo ") (goo™) =0,(f)bs(g)

Moreover, if @ < Sgq, then the map 0: Q — Aut(G) defined by 0o =6, is a
homomorphism, since

Oorf =folom) ' =Ffo(r oo ) =0:(f) oo™ = 0,0:(f)

Hence, the semidirect product G x4y exists. It is easy to describe the
commutativity rule in words: To place the factors in the product of in the
reverse order, simply permute the coordinate positions of f using o.
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Note that it is not essential that the second coordinates in the ordered pairs
(f,0) € G xyQ be actual permutations of {2 as long as they act like
permutations, that is, as long as there is a homomorphism \: ) — Sg. As is
customary, we denote the permutation Aq of €2 by ¢ itself.

Thus, if Q acts on €2, then for each ¢ € (), the map 0,: G — G defined by
0yf =foq

is an automorphism of G and the map 0: Q — Aut(G) defined by 0¢ = 0, is a
homomorphism.

The semidirect product G x»Q of G by ) defined by 6 is one version of the
wreath product of G by (). The other version comes by replacing the external
direct product G = XD by the external direct sum G = HD.

Definition Let D be a group, let 2 be a nonempty set and let () be a group
acting on ). We denote the action of ¢ € QQ on w € Q by qu.
1) Let

G=KD

we

Define a homomorphism 6: () — Aut(G) by 0q = 0, where
Ouf =foq

Then the semidirect product G x¢Q is called the complete wreath
product of D by () with index set ) and base G.
2) Ifwe replace G by the external direct sum

G=HD

we)
the resulting semidirect product G x¢Q is called the restricted wreath
product of G by ) with index set 2 and base G.

A common notation for the wreath product is D1 Q. To emphasize the index set,
we will write D 1gQ. There does not seem to be a standard notion to distinguish
the two wreath products, so we use D! Q) for the restricted wreath product and
D2 Q for the complete wreath product.[]

Note that if D and () are finite groups and {2 is a finite set, then
IDa@l = D" % Q| = [D°]|Q| = D[]

Example 5.33 (Regular wreath product) Let D and () be groups and let

G=KXD
q€Q
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be the direct product of D indexed by the group Q. Let @ act on itself by left
translation, that is, 0,7 = ¢r, that is, the action of ) is the left regular
representation. In this case, the complete wreath product D2 () is called a
regular wreath product, which we denote by D @,Q. Thus, the product has the
form

(f,a)(g,m) = (flgoq ). qr) O

Wreath Products as Permutations

Under certain reasonable conditions, the elements of a wreath product can be
thought of as permutations. Specifically, let

W = DaQ
Let G = K ,ecqD and assume that ) acts faithfully on €2.
Now suppose that the group D acts faithfully on a nonempty set A. Then the
elements of W act on the set A x (2. In particular, for (f,q) € W define
(fi)"AxQ = AxQ
by
(f,0)" (N w) = (f(qw)A, qw)
The map (f, ¢)* is injective since (f,q)* (A, w) = (f, ¢)* (N, ') implies that
(f(qu)A; qw) = (f(qw) N, q)

and so & =w and XN =\ Also, (f,q)" is surjective since for any
(A, w) € A x Q, we have

(f,0)" (f@) X ¢ w) = (\,w)

Hence, (f,q)* is a permutation of A x 2.

Moreover, the map o:W — Sy.q defined by o(f,q)=(f,q)* is a
homomorphism, since

[(f;0)(g;m)]" (N w) = (f(goq ) )" (A w)
[flgoq™ )(qrw)]/\ qrw)
1f

(arw)(go ¢~ ") (grw)A, grw)

flgrw)g(rw)A, grw)
fra) (g(rw) A, rw)
fa)7(gr) (A w)

As to the kernel of o, if (f, q)* = ¢, then

(
(
= (
= (
= (
= (
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(f(qw)A, qw) = (N, w)

for all A € D and w € 2. Since the actions of () on 2 and D on A are faithful,
we deduce that ¢ =1 and f(w) =1 for all w. Thus, o: W — Sy is an
embedding of W into Sy «q.

When W = D oQ is the restricted wreath product, we can describe the image
of the embedding explicitly. For each d € D and « € (), let d, € G be defined
by

d ifw=«

da(w) = {1 ifw#«

Let X be the subgroup of Sy« generated by the permutations (d,,1)* and
(1,q)*, that is,

X ={((ds, 1)",(1,9)" |d € D, € Q,q € Q)

Certainly, X C im(o).

To see that the reverse inclusion holds, we observe that
(f,0" =[£, D@9 = (f, 1)1, q)"
and so it is sufficient to show that (f,1) € X forall f € G. Since
(fo, )" =[(f;1)(g, D] = (f,1)"(g,1)"
we have
(frefu@)” = (f, )7 )7 (1,9)7
Now, any f € G has finite support supp(f) = {wy,...,w,} and so
f=Fwiaflwn),
Hence,
(f, )" = (flww - f(Wn),, )" = (f@)w, D™ (f(Wi)a,, 1) € X
Thus, im(o) = X.
Theorem 5.34 Let W = D 2 oQ be a wreath product and suppose that Q) acts

faithfully on 2. Suppose also that D acts faithfully on A. Then the map
0: W — Shxq defined by

o(f,q)=(f.a)
where (f,q)*: A x Q — A x Q is defined by

(f;0)" (A w) = (f(qw)A, qw)
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is an embedding of W into Sxwq. When W = D1 qQ is the restricted wreath
product, the image of o is

im(o) = ((do, 1), (1,9)" | d € D,a € Q,q € Q) O

It is convenient to drop the * notation and to think of elements of a wreath
product D 2 Q) as permutations of A x 2.

Example 5.35 A permutation matrix P is an n X n matrix with entries from
the set {0, 1} with the property that each row contains exactly one 1 and each
column contains exactly one 1. Multiplication of a matrix A on the left by a
permutation matrix P permutes the rows of A. Similarly, multiplication on the
right by P permutes the columns of A. Let P, be the multiplicative group of all
n X n permutation matrices.

For P € P, let P; denote the ith row of P and let PY) denote the Jth column.
The rows of P also define a permutation 7p of Q = {1,...,n}, in particular,
mp(i) is the column number of the 1 in row P;. In this way, P, is isomorphic to
the symmetric group S,. Clearly, the map f: P — 7p is bijective. If Q € P,
then (QP);,; = Q;PY =1 if and only if the column number k of the 1 in Q; is
the same as the row number % of the 1 in column PV, that is, if and only if
k =mg(i) implies that wp(k)=j. Hence, mop(i) =7 implies that
mp(mg(i)) = j, that is, mgp = mpmg. Hence, f is an anti-isomorphism from P,
to S,. Since the transpose map 7: P, — P, is an anti-automorphism of P,,, it
follows that the composite map f o 7 is an isomorphism from P, to S,,.

We can generalize the notion of a permutation matrix as follows. If H is an
abelian multiplicative group, define P,,(H) to be the set of n x n matrices with
the property that each row and each column has exactly one entry from H, all
other entries being 0. Matrix multiplication is defined using the product in H
along with 0-0=0-a=0 and 0+a=a+0=a for a € H. This makes
P.(H) a group. Note that P, is a subgroup of P, (H), with the identity of H
playing the role of 1.

We can describe P,,(H) in terms of wreath products as follows. Let .S,, act on
= {1,...,n} by the usual evaluation and let P, act on 2 by P(k) = 7p(k).

Let D be the set of all diagonal matrices in P,,(H ). Then every matrix in P, (H)
is a product DP where D € D and P € P,. Also, D is a normal subgroup of
P.(H). Hence, P,,(H) = D x P,.

Now, any D € D can be identified with the ordered n-tuple of diagonal
elements of D and, in fact, D is isomorphic to H", since matrix multiplication in
D is elementwise product in H". Hence,

Pn(H) ~ H" % Pn =H ZQPn ~H ZQSn
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When H is the group of mth roots of unity in C, the group P, (H) is called a
generalized symmetric group or monomial group.[]

Exercises

1.

11.

Prove that the external direct product is commutative and associative, up to
isomorphism, that is,

HXK~KXH
and

(HRK)NL~HK(KKL)

Is there an identity for the external direct product?
a) Suppose that G = H G;. For each k, let

Hy={f€ BG,| f(i)=1fori+k}

Show that H;, < G and that G = X Hj,.
b) IfG = X G, showthat G =~ BHG;.
Let H, H; and K be groups and let

H=H KX -XH,
Suppose that o: H ~ K. For each i, let
H={}XR- - -R{}XHXR{1} K- -K{1}
where H; is in the 7th component. Prove that
K=0cH X---XoH,

Let G = H;---H, be a finite group, where H; < G and (o(H;),0(H;)) =1
for ¢ # j. Prove that the join \/H; is a direct product, that is,
G:H1N~~~MHn.

Suppose that G = H X K and that N < G. Prove that if N N H = {1} =
NNK,then N < Z(G).

Let o(G) = mn where m and n are relatively prime. Let H < G with
o(H) = m. Show that a subgroup K < G is a complement of H if and
only if o(K) = n.

Prove that all nonabelian groups of order p?®, p prime are indecomposable.
You may assume that all groups of order p? are abelian (which is true).
Prove that the group Q of rational numbers is indecomposible.

Prove that Dy, is indecomposable if and only if n #Z 2 mod 4.

. Let G = (a) be a cyclic group.

a) If G is infinite, show that G = H ¢ K implies that H = {1} or
K ={1}.
b) If o(G) = n, describe precisely the conditions under which a nontrivial

essentially disjoint product representation G = H e K exists.
LetG = X ;c;H; and let K < G.
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12.

13.

14.
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a) Show that it is not necessarily true that
?
K= X(H;NK)
iel

even if K < @.
b) Recall that a group that is equal to its own commutator subgroup is
called perfect. Prove that if K is normal and perfect, then

K= X(H;NK)
el

¢) Prove that if G is periodic and if for all

xr e NHJ
J#EL

and y € H;, the orders o(x) and o(y) are relatively prime, then
K= X(H;NK)
iel

This holds in particular for finite families if the factors H; have
relatively prime exponents.
Let G be a group and let H be a simple subgroup of G with index 2. What
can you say about any other nontrivial proper normal subgroup of G? Must
such a subgroup exist? (For the latter, you may assume that the alternating
group Aj; is simple and that S,, is centerless for n > 3.)
(Chinese remainder theorem for groups) Let G be a group and let
Hy,...,H, be normal subgroups. Consider the map o:G — XG/H;
defined by

oa = (aHy,...,aH,)

a) Show that ¢ is a homomorphism with ker(c) = H; N --- N H,,.

b) Show that if the indices (G : H;) are finite and pairwise relatively
prime, then o is surjective and so for any aq,...,a, € G, there is a
g € G for which g € (Na;H;. This can also be written

g =al modH1

g = a, mod H,

c) Discuss the uniqueness of the solution g in part b).

Let G be a group and let NV be minimal normal in G.

a) Prove that if G is characteristically simple, then there is a A C Aut(G)
such that

GZNN(NUN)

€A
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16.

17.

18.

19.
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Also, N is simple, as is every term in the sum above and so G is the

direct sum of isomorphic simple subgroups.
b) Prove that if G has the DCC on normal subgroups, then [V is the direct

sum of isomorphic simple groups.
To see that infinite groups are not, in general, cancellable in direct products,
prove that Z[z] X Z K Z ~ Z[x] K Z, where Z[z] is the abelian group of
polynomials over Z but Z X Z # 7.
Let G = X.S;, where S; is simple for all 7. Prove that the center Z(G) is
the direct sum of those factors S; that are abelian. Hence, GG is centerless if
and only if all of the factors \S; are nonabelian.
Let

G=MNXS§S;
el
be centerless, where each .S; is simple. Prove that the only minimal normal
subgroups of G are the summands 5;.
Let
G=MXS§S;
iel

be centerless, where each S; is simple. Prove that the normal subgroups of
G are precisely the direct sums of the .S;'s taken over the subsets of I.
Let G = W;crH; where H; are simple subgroups and H; ~ H; for all
i,7 € I. Prove that G is characteristically simple. Hint: Consider the centers
of the H,.

Minimal Normal Subgroups

20. Let G be a group. Show that if H and K are distinct minimal normal
subgroups of GG, then H and K commute elementwse.

21. Let A be an abelian minimal normal subgroup of a group G. Show that if
G = AH where H < G,then AN H = {1}.

22. Let Ny, ..., N, be minimal normal subgroups of G, let M = N;---N,, and
let K < G. Prove that there is a subset of Ny, ..., N, say after reindexing
Ni,..., N, such that

KM =KX N; X---X N,

23. Let A < B < @ and assume that A is a minimal normal subgroup of B and
B is a minimal normal subgroup of G. Assume further that the set
{A} = {gAg~' | g € G} of conjugates of A is finite. Show that A is simple
and that B is the direct product of conjugates of A.

24. Prove that the epimorphic image of a minimal normal subgroup is either
trivial or minimal normal.

Semidirect Products

25. Let G = H x K. Show that if o(H) = 2, then G = H X K.

26. Let G = H x¢K. Show that if K is simple, then o(K) | o(Aut(H)).
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27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
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Show that for every positive integer of the form n = 2(2k + 1) there is a
centerless group of order n.

Prove that if G = H x K, then G = H x K* for any a € G. Hence, if K
is a complement of a normal subgroup, then so is any conjugate of K.

Show that it is not always possible to extend a homomorphism o: H — G’
from a subgroup H < G to G.

Show that if G = H x K is an internal semidirect product, then G is
isomorphic to an external semidirect product G ~ H xyK for some
0: K — Aut(H).

Prove that

Z¢=AXxDB and S3=CxD

where A =~ Z3 ~ C and B = Zy =~ D, but clearly Zg % S;.

Prove that S, = A, x {¢,(12)}.

a) Prove that Dg ~ A x By, where A ~ Z, and By =~ Z,.

b) Prove that Dg ~ C' x By, where C' = V and By ~ Zj.

What does this say about semidirect product decompositions?

Prove that D, =~ A x B, where A =~ Z,, and B ~ Z>.

What is wrong, if anything, with the following argument? Let G = H x K.

Then the projection maps ps:G — H and pr:G — K defined by

pr(hk) = h and pg(hk) = k have kernel K and H, respectively, whence

both H and K are normal subgroups of G andso G = H X K.

Recall that G = GL(n,F) is the general linear group of all invertible

n X n matrices over the field F' and S = SL(n, K) is the subgroup of

matrices with determinant equal to 1.

a) Prove that SL(n,K) < GL(n, F).

b) Find a complement of SL(n, F) in GL(n, F'). Hint: How does one get
a special matrix from a general one?

Let G be a group. For any a € (G, denote left translation by a by ¢,. Thus,

l,:G — G is defined by {,(z)=ax. Let L={l,|acG}. Let

A = Aut(G). Finally, let H = (L, A) be the subgroup of the symmetric

group S¢ generated by £ and A.

a) Provethat H =L x A.

b) Prove that Cy(L) =R, the subgroup of all right translations
Ta: X > IT.

In this exercise, we describe all groups of order pg where p < ¢ are primes.

We will assume a fact to be proved later in the book: If GG is a finite group

and if p is the smallest prime dividing o(G), then any subgroup of index p

is normal in G.

a) Describe the automorphism group Aut(C),), where C), = (a) is cyclic
of order a prime p.

b) Show that any group of order pq is a semidirect product of a group of
order ¢ by a group of order p.

c) Describe the possible external direct products of C, by C), where p
and q are distinct primes.
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d) “Internalize” the external semidirect products in the previous part to
show that up to isomorphism, the groups of order pq are the direct
product C;, X C), and for each m # 1 satisfying m” = 1 mod ¢, a group
described by

G = (o, ),0(a) = p,0(B) = q,a = "

Let A ={m2" | m,n € Z} be the additive subgroup of Q and let B = Zz
be an additive infinite cyclic group. Prove that the group G = A xyB,
where 6, (a) = 2a, has the ACC on normal subgroups but that the normal
subgroup A of G does not have the ACC on normal subgroups.

Wreath Products

40.

41.

42.

43.

One must be cautious in working with the action of ¢ € S, on the product
D". Recall that o permutes the coordinates of an element of D". Suppose
that (dy,...,d,) € D". Then

o(dy,...,dy) = (ds1y...,don)

For r € S, compute (70)(dy,...,d,). Are you sure?
In this exercise, we take a combinatorial look at the wreath product
W = S5 1S5, with the help of Figure 5.5.

Figure 5.5

Informally speaking, a graph is a set of vertices (or nodes) together with a
set of edges connecting pairs of vertices. Figure 5.6 is an example of a
graph G. Two vertices are said to be adjacent if there is an edge between
them. A bijection of the vertices of a graph that preserves adjacency is
called an isomorphism. Show that the automorphisms of G are isomorphic
to the wreath product W = 551 .55.

Show that the wreath product is associative. Specifically, let G act on A, H
act on 2 and K act on A, all actions being faithful. Show that
(GUoH) U\ K ~ G o(HUA\K).

Show that the regular wreath product is not associative. Specifically, if G,
H and K are nontrivial finite groups, explain why (G, H)!,K cannot
possibly be isomorphic to G 1 .(H 1 . K).
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44,

45.

46.

47.
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Show that the restricted wreath product C51C5 is isomorphic to the
dihedral group Ds.

Let X be a nonempty set of size nk and let P ={By,...,B,} be a
partition of X into equal-sized blocks of size k. Call a permutation o € Sx
nice if it also permutes the blocks, that is, for all ¢, there is a j such that
oB; = B;. Show that the set NV of nice permutations is a group isomorphic
to Sk, l SIL~

Referring to Example 5.35, let H = {£1} be the multiplicative group of
square roots of unity. The group P,(H) is called the hyperoctahedral
group. Show that P, (H) is isomorphic to the subgroup G < Sy, of all
permutations of X ={-n,...,—1,1,...,n} with the property that
w(—=k) = —m(k).

Let W =DugQ be a wreath product where D act faithfully on A.
Suppose that both actions are transitive, that is, for any w,w’ € € there is a
q € Q for which qw = &' and similarly for the other action. Prove that the
permutation representation of W is also transitive, that is, for any pair
(A w),(N,w') € A x Qthereisan (f,q) € W for which

(f, )" (A w) = (N, )



Chapter 6
Permutation Groups

Permutations are fundamental to many branches of mathematics. In this chapter,
we examine permutations from a group-theoretic perspective.

The Definition and Cycle Representation

A permutation of a nonempty set X is a bijective function on X. The set of all
permutations of X is denoted by Sx. As is customary, when

X=1I,={1,...,n}
we write Sy as .5,,. As we have seen, the set Sx of permutations of a nonempty

set X forms a group under composition of functions. For the record, we have:

Definition Let X be a nonempty set. The symmetric group Sx on the set X is
the group of all permutations of X, under composition of functions.]

There are various notations for permutations. The notation

_ a a2 ERRN 70}
o=
Qi iy, @,

is sometimes used to denote the permutation that sends a; in the top row to a;, in
the bottom row. This notation is a bit combersome and we prefer the cycle
notation described in an earlier chapter. In particular, if a; # a; € X for i # j,
then

o= (ay---ag)
denotes the permutation o € Sy defined, for 0 < i < n, by

o — i1 forlgz’gk—l
Tl o fori =k

and sending all other elements of X to themselves. Such a permutation o is
called a k-cycle in Sx. A 2-cycle

S. Roman, Fundamentals of Group Theory: An Advanced Approach, 191
DOI 10.1007/978-0-8176-8301-6_6, © Springer Science+Business Media, LLC 2012
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o= (ab)

is called a transposition. Two cycles (a;---ay) and (bi---b,,) are disjoint if
a; # bj for all 7, j.

When X is an infinite set containing the elements {qa; | i € Z}, then we can
define the infinite cycle

O'Z(...,Cl_l,ao,al,...)

where a; # a; for i # j as the permutation ¢ sending ay, to aj. for all k € Z
and leaving all other elements of X fixed.

Theorem 6.1 For a permutation group Sx, the following hold.

1) Disjoint cycles in Sx commute.

2) Every permutation in Sx is a product of disjoint cycles, the product being
unique except for the order of factors. A representation of o as a product of
disjoint cycles (with or without 1-cycles) is called a cycle representation
or cycle decomposition of 0. The cycle structure of a permutation o is the
sequence of cycle lengths in a cycle decomposition of o, or equivalently, the
number of cycles of each length in a cycle decomposition of o.

Proof. Part 1) we leave to the reader. For part 2), let 0 € Sx and define an

equivalence relation on X by x = y if y = oz for some integer k. For z € X,

the equivalence class containing x is

[z] = {o'z | i€ Z}
Note that the restriction o[, is a permutation of [z]. In fact, if the elements o'z
are distinct for all i € Z, then o}, is the infinite cycle
ol = (.-, o r 0,2, 0n, 0%, ...
On the other hand, if o'z = o/z for i < j, then 0/ 'z = x and if m is the
smallest positive integer for which 0™z = w, then 0|, is the m-cycle

ol = (=, ox,0%x,..., 0" x)

The distinct equivalence classes form a partition of X and o is a product of the
disjoint cycles o|p as B varies over these equivalence classes.[]

A cycle of length k has order k in Sx. Thus, a transposition is an involution, as
is any product of disjoint transpositions. A power of a cycle need not be a cycle;
for example

(1234)% = (13)(24)

Since disjoint cycles commute, if 0 = ¢;---¢,, is a cycle representation of o,
then for any integer k,
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k _ k k
0 =C1Cp

k

Moreover, 0¥ = ¢ if and only if ¢} = ¢ for each .

Theorem 6.2 The order of o0 € Sx is the least common multiple of the lengths
(orders) of the disjoint cycles in a cycle decomposition of 0.1

The group properties of Sy do not depend upon the nature of the set X, but only
upon its cardinality. More formally put, if |X| = |Y|, then the groups Sx and
Sy are isomorphic. Accordingly, we will feel free to state theorems in terms of
either Sx or S, (when X is finite).

A Fundamental Formula Involving Conjugation

When a permutation 7 € Sx is written as a product of disjoint cycles, it is very
easy to describe the conjugates 77 of 7. It is also remarkably easy to tell when
two permutations are conjugate.

Theorem 6.3
1) Leto € S,. Forany k-cycle (a;---ay,),

(ar-a)" = (cay---oay)

Hence, if T = c;---c;, is a cycle decomposition of T, then
77 =c{--cf
is a cycle decomposition of 7°.
2) Two permutations are conjugate if and only if they have the same cycle
structure.
Proof. For part 1), we have

- oa; 1<k

Also, if b # oa; for any i, then 0~ 'b # a; and so
(ay---ar)°b = o(ar---ap) (o 'b) = a(c ') = b

Hence, (a;---ay)? is the cycle (oa;---cay). For part 2), if 7 = ¢+ -¢;, is a cycle
decomposition of 7, then

77 = Cf' ’ 'sz
and since ¢ is a cycle of the same length as ¢;, the cycle structure of 77 is the
same as that of 7.

For the converse, suppose that o and 7 have the same cycle structure. If ¢ and
are cycles, say
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oc=(a---ay,) and 7= (by---by)
then any permutation A that sends a; to b; satisfies 0* = 7. More generally, if
oc=c¢, and T=dy -d,,

are the cycle decompositions of ¢ and 7, ordered so that c; has the same length
as dy, then we can define a permutation A\ that sends the element in the ith
position of ¢, to the element in the ith position of dj,. Then o* = 7.00

The previous theorem implies that it is easy to tell when a subgroup H of the
symmetric group S is normal.

Theorem 6.4 A subgroup H < Sy is normal if and only if whenever o € H,
then so are all permutations in Sx with the same cycle structure as 0.0

Parity
Every cycle is a product of transpositions, to wit
(ar1a2:-am) = (a1am)(a1am-1) - -(a1a3)(ara2)

and so every permutation is a product of transpositions. While this
representation is far from unique, the parity of the number of transpositions is
unique.

Theorem 6.5 Let o € S,,.
1) Exactly one of the following holds:
a) o can be written as a product of an even number of transpositions, in
which case we say that o is even (or has even parity).
b) o can be written as a product of an odd number of transpositions, in
which case we say that o is odd (or has odd parity).
2)  The symbol (—1)7 or sg(o), called the sign or signum of o, is equal to 1 if
o is even and —1 if o is odd. We have

(1) = ()

where k is the number of cycles in the cycle decomposition of o (including
1-cycles).
Proof. For part 1), if o can be written as a product of an even number of
transpositions and an odd number of transpositions, say

0 = pP1 P20 = T1" " T2u+1
then the identity can be written as a product of an odd number of transpositions
L= T " Tout+1P20" " *P1

To show that this is not possible, we choose a representation of ¢ as a product of
an odd number of transpositions as follows:
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1) Find the smallest odd integer m > 1 for which ¢ is the product of m
transpositions.

2) Choose an integer k that appears in at least one such representation of ¢.

3) Among all representations of ¢ as a product of m transpositions that contain
k, let T be the one whose rightmost appearence of k is as far to the left as
possible, say

T="010;1(xk)Oi1---0p,
where 0, 1---0,, does not involve k.
Note that ¢ > 2, since otherwise the only appearance of k is in ¢; and so T # ¢.
However, we can easily move this rightmost occurrence of k one transposition
to the left by using the following substitutions. Suppose that 6; 1 = (ab). Note
that (ab) # (x k) since otherwise the two transpositions would cancel,
contradicting the definition of m.
1) If(ab) and (x k) are disjoint, then they commute
(ab)(zk) = (xk)(ab)
2) If(ab) = (xb) for b # k, then
(xb)(xk)=(zkb)=(bxk)=(bk)(bx)
3) If(ab) = (kb) where a # k, then write
(kb)(xk)=(kaxb)=(zbk) = (xk)(x))
Thus, we can move the rightmost occurrence of k to the left, contradicting the
construction of 7 and proving part 1).
For part 2), a cycle of length m > 2 can be written as a product of m — 1
transpositions as above. Now suppose that the cycle decomposition of o is
g = cl. . .Crdl. . .ds

where len(¢;) = m; > 2 and len(d;) = 1. Then o can be written as a product of
the following number of transpositions:

T

Z(mi—l):(n—s)—r:n—k O
i=1
Generating Sets for S,, and A,

There are a variety of useful generating sets for the symmetric group .S,,. For
example, we have seen that the set of transpositions generates S,,.
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Theorem 6.6 The following sets generate S,.
1) The set of transpositions.
2) The “transpositions of 1”

(12),(13),...,(1n)
3) The “adjacent transpositions”

(12),(23),(34),...,(n — 1n)

4)  The n-cycle (1---n) and the transposition (12).
5)  The cycle (2---n) and a single transposition (1 k) for 2 < k < n.
Proof. For part 2) we have

(ab) = (1b)1)

and so the subgroup generated by the transpositions of 1 contains all
transpositions. For part 3), if A is the subgroup generated by the adjacent
transpositions, then (12) € A and if (1 k) € A, then so is

(Lk+1) = (1k)FFD

Hence, part 2) implies that A = S,,. For part 4), if P = ((2---n),(12)), then
(12) € Pandif (k —1k) € P, thensois

(k,k+1)=(k—1k)
forall k <mn — 1. Hence, P = S,,. For part 5), if 0 = (2---n), then
(1k)Y =(1k+1)
1k+1)=01k+2)
(1n—1)° = (1n)
and since pt = o~ = (n---2),
(1k)=(1k-1)
(1k—1)F=(1k-2)
(13)" = (12)
and so we get all transpositions of 1.1

As to the alternating group, we have the following.

Theorem 6.7 For n > 3, A, is generated by the 3-cycles.
Proof. Any even permutation is a product of pairs of distinct transpositions. For
“overlapping” transpositions, we have
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(ab)(ac) = (ach)
and for disjoint transpositions, we can arrange for overlaps as follows:
(ab)(cd) = (ab)(bc)(be)(ed) = (bca)(cdbd)
Hence, A, is generated by 3-cycles.[]
Subgroups of S, and A,

The alternating group A,, sits very comfortably inside .S,,.

Theorem 6.8

1)  The signum map ¢: 0 — (—1)7 is a group homomorphism from S,, onto the
multiplicative group {—1, 1}, with kernel A,,. Hence, A,, 1 S, has index 2.

2) A, is the only subgroup of S,, of index 2.

3) (Subgroups of S,,) If H < S, then either H < A,, or H contains an equal
number of even and odd permutations and so has even order.

4) (Subgroups of A,,) Forn > 3, A, has no subgroup of index 2.

Proof. For part 2), let H be a subgroup of S, of index 2. Theorem 3.17 implies

that 02 € H for any o € S, and so the squares of all 3-cycles are in H. But any

3-cycle is the square of another 3-cycle:

(abc) = (ach)?

and so H contains all 3-cycles, which generate A,, whence H = A,,. Part 3)
also follows from Theorem 3.17. For part 4), if (A4, : H) = 2, then 0> € H for
all o € A,, and so H contains all 3-cycles, a contradiction.[]

The Alternating Group Is Simple

We wish to show that the alternating group A,, is simple for n # 4, but not for
n = 4. We will leave proof of the cases n < 4 to the reader and assume that
n > 5.

Suppose that N < S, is nontrivial. We have seen that any two 3-cycles are
conjugate in S,,. However, it is also true that any two 3-cycles are conjugate in
A, for n > 5. To see this let « = (a1a2 a3) and = (by bo b3) be distinct 3-
cycles with a; # b; for all 4. If

g = (a1 bl)(a,g bg)(ag bg)
where (a; b;) is the identity when a; = b;, then a” = . Finally, if o is not even,

then we can take = ¢ {ay, b1, ba, b3}, in which case alar)e = 3,

Thus, since A, is generated by 3-cycles, we can prove that A, is simple by
showing that any nontrivial normal subgroup of A, contains at least one 3-
cycle.
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As is Simple

To see that A5 is simple, note that the possible cycle representations of elements
of Aj;, excluding 1-cycles, are

(«o - ), (+--) and (--)(--)

If N contains a 5-cycle, we may assume that o = (12345) € N. To shorten
the 5-cycle to a 3-cycle, we reverse the effects of o on 1 and 3 by taking the
product

T=(21435)(12345) = (254)
and since
(21435) = (1234512649 ¢ N

we deduce that NV contains the 3-cycle 7.

If N contains the product of two disjoint transpositions, we may assume that
(12)(34) e N

To get a 3-cycle, recall that the product of two distinct nondisjoint
transpositions is a 3-cycle. Thus,

(12)(34)(12)(45) = (34)(45) = (453)
and since
(12)(45) = [12)(34)]%4) e N
we see that [V contains a 3-cycle in this case as well.
A, is Simple forn > 5
We now examine the general case n > 5. Let N < A, and let o € N.

Case 1
Suppose that the cycle decomposition of ¢ contains a cycle of length k£ > 4, say

oc=m(ay - anxryz)
where m > 1. If
A=(zzya, a)
then A and 7 are disjoint and
T= "to=(x2yan--a)(ar - anry2) = (T a,2)

is a 3-cycle. Moreover,
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A =7(ar - amyzx) = [w(ar - amry 2)] @V = oY) € N
and so A7 ! € N, which implies that the 3-cycle 7 is in N.

Case 2
Suppose that the cycle decomposition of o contains two or more 3-cycles, say

oc=(abec)(lxyz)r
Then N contains the permutation
7=l = (ybe)(zza)m

and therefore also the 5-cycle

or ' =(abe)(zyz2)(azz)(cby) = (axbzy)

Hence, case 1) completes the proof.

Case 3

If the cycle decomposition of ¢ consists of a single 3-cycle, with possibly some
additional transpositions,

o= (abc)mm,
then NV contains the 3-cycle
o =(abc)? = (ach)

Case 4

If the cycle decomposition of o is a product of at least three disjoint
transpositions,

o= (ab)(zy)(zw)m - my
then V also contains
7= 0DV = (a2)(b2)(yw)m-- T
and therefore also
o1 = (ab)(zy)(zw)(az)(b2)(yw) = (ay2)(bwz)
and so case 2) completes the proof.

Case 5
Suppose that the cycle decomposition of ¢ has the form

o=(ab)(cd)
Ifz ¢ {a,b,c,d}, then N contains
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7= 0" = (bx)(cd)
and therefore also the 3-cycle
or = (ab)(cd)(bx)(cd) = (ab)(bz) = (bza)

Thus, in all cases NV contains a 3-cycle and so N = A,,.
Theorem 6.9 The alternating group A,, is simple if and only if n # 4.00
As to the normal subgroups of .S,,, we have the following.

Theorem 6.10 If n # 4, then S,, has no normal subgroups other than {1}, A,
and S,,.

Proof. This is easily checked for n < 2 so assume that n > 3. If N < 5, then
NNA, <A, Hence, NNA,={t} or NNA,=A, Butif NNA, ={},
then N = {¢, 0} where o is an odd involution and so has cycle decomposition

o= (a1 by) -(agby)

where the transpositions (a; b;) are disjoint. Since N is normal, it must contain
all permutations with the same cycle structure as o, which is not the case if
n > 3.Hence, A, < NandsoN = A, or N =5,.00

Example 6.11 (An infinite simple group) Using the fact that A,, is simple for
n # 4, we can construct an example of an infinite simple group. Let X be an
infinite set and let Sx be the symmetric group on X. Thus, o|spp(r) is a
permutation of supp(c) with no fixed points and o is the identity on
X \ supp(c). Let S(x) be the subgroup of Sy consisting of all elements of Sx
that have finite support. Let A x) be the subgroup of Sy consisting of those
permutations o € S x) for which o|spp(») is an even permutation. We leave it as
an exercise to show that Ay is an infinite simple group. Moreover, Ay, is the
smallest nontrivial normal subgroup in Sy.O

Some Counting

It is sometimes useful to know how many permutations there are with a
particular cycle structure.

Theorem 6.12
1) The number of cycles of length k in S, is
/”L'

(o)== 1=

In particular, the number of n-cycles in S, is (n — 1)\.
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2) The number of permutations in S, whose cycle structure consists of r;
cycles of length k;, fori =1,...,mis
n!
rileer kY Ry

3) Let s(n, k) be the number of permutations in S, whose cycle structure has
exactly k cycles (including 1-cycles). Then

s(n,1) = (n—1)!
and for k > 2
s(n,k)=s(n—1,k—1)+ (n—1)s(n —1,k)
Also,

n

Zs(n, k)at = 2™ = z(z +1)--(z +n—1)
k=1

The numbers s(n, k) are known as the Stirling numbers of the first kind.
The expression ™) is known as the nth upper factorial.
Proof. We leave proof of part 1) to the reader. For part 2), we write down a
template consisting of r; cycles of length k;, with dots in place of the elements
of I, ={1,...,n}. For example, if the cycle lengths are 3,3,2, 1, then the
template is

Now, the dots can be replaced by the elements of I, in n! different ways.
However, there are two ways in which the number n! is an overcount of the
desired number. First, for each of the r; cycle templates of length k;, a cycle can
start at any of its k; elements, so we must divide by n! by &, giving

n!
O

Second, for each cycle length k;, the r;! arrangements of the r; cycles of length
k; are counted separately in the number above, but give the same permutation,
so we must also divide by r{!---r,, L.

For part 3), it is easy to see that
s(n,1) =(n—1)!

In general, we group the permutations in .S,, with exactly k cycles into two
groups, depending on whether the permutation contains the 1-cycle (n). There
are s(n—1,k—1) permutations containing the 1-cycle (n). The other
permutations are formed by inserting n after any of the n — 1 elements in the
s(n — 1, k) permutations of n — 1 elements into k cycles. Thus, for k& > 2
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s(n,k)=s(n—1,k—1)+ (n—1)s(n — 1,k)

Now we can verify the formula for s(n, k) by induction. It is easy to see that the
formula holds for n = 1. Assume the formula is true for s(m, k) where m < n.
Then

Zs(n, k)axk
k=1

=(n-1lz+ Zs(n —1,k—1)z" 4+ (n— 1)25(11 —1,k)z"
k=2 k=2
n—1

=(n—-Dz+zy s(n—1k)a"
k=1

+(n—-1) Zs(n — 1,k —(n—2)
k=1
=(mn—-Dz+2@)" Y+ n-1D"Y - (n-2)]
z+n—1)z"Y
2

as desired.O]
Exercises
1. Let
o=(123)(45)(6)
and
T=(456)(13)(2)

be elements of Si. Find a permutation p € Sg for which ¢’ =7. Is p
unique?

2. Find the smallest normal subgroup of S, containing o = (12)(34). Is this
the smallest subgroup of S containing o?

3. Let 0 € S, have prime order p. Prove that ¢ is a product of disjoint p-
cycles. If o moves all elements of I,,, show that p | n.

4. Show that two even permutations may be conjugate in S5 but not in As.

5. Prove that A,, has no subgroup of index 2 without using the fact that A, is
simple for n # 4. How does this relate to Lagrange's theorem?

6. a) Find all subgroups of Ay.
b) Find all normal subgroups of A4. Is A4 the join of all of its proper

normal subgroups?

7. Prove that the 3-cycles (123), (124), ..., (12n) generate A,,.

8. Letn >3 and k > 1. Prove that A, is generated by the cycles of length
2k + 1.
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12.

13.

14.

15.
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Prove that for n > 5, A, is generated by the set of all products of pairs of
disjoint transpositions. Does this hold for n < 5?

Let n > 5. Prove that the only proper subgroup H of S,, with (S,, : H) <n
is A,.

Prove that S, is centerless for n > 3. Prove that A, is centerless. What
about A,, in general?

A subgroup H of S, is transitive if for any j, k € I,,, there is a 0 € H for
which oj = k. Prove that the order of a transitive subgroup H of S, is

divisible by n.
A subgroup H of S, is k-ply transitive if for any distinct i1,...,4; € I,
and distinct ji,...,J; € I, there is a permutation o € H for which

oty = ju. Prove that A, is (n — 2)-ply transitive. Is it (n — 1)-ply or n-ply

transitive?

Let X be an infinite set. Define the alternating group Ax is defined to be

the set of all permutations in S, that can be written as the product of an

even number of transpositions. Let Hx be the set of all permutations in Sx

that fix all but a finite number of elements of X.

a) What is the relationship between Ax, Hx and Sy (including normality
and index)?

b) Prove that Ay is simple.

In S, foreach k = 3,...,n, let

g = (Z k — Z)
i=1

for example,

g3 = (1 2)

04 = (1 3)

o5 = (14)(23)

o6 = (15)(24)

o7 =(16)(25)(34)

os = (17)(26)(35)
Show that the permutations o7, ..., o, generate S,_1.

What is the largest order of the elements of S1(?
(Determining the parity of a permutation) Let X = {z1,...,x,}. Let P be
the set of all polynomials in the x;'s with rational coefficients. Then we can
apply a 0 € S, to the elements of P by applying o to the variables
individually. For example, if

L 5

pPp=T1T3 — =T
9 2
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then
op =o(x1)o(xz) — %O’(l’g)g epr
a) Show that for p,q € P,
o(p+q) = a(p) +0(q),a(pg) = a(p)olq)
and for o, 7 € Sy,
o(rp) = (o7)p

b) Consider the polynomial

XT; — T4
p:p(xlw";:ﬁn) = H ._—,] epP
iy v
Show that if o = (2 x,) is a transposition, then
o(zi) — o(z;)
a'p = H - - J =
i) t=J
¢) Show that for any o € S,
op=(-1)"p
Hence, if 0 € S, then since p(1,2,...,7n) = 1, we have
o(i) —o(g o
op(1,2,...,n) = HM = (-1
= v

d) Let o€ S,. An inversion in o is a pair (j,i) of indices with
1 <, j < n satisfying j < i but o(j) > o(i). Prove that the sign of o
is the parity of the number of inversions in o.

e) Determine whether the permutation o € Sy is even or odd, where

o=(724938651)

18. For each 7 € Sy, we may associate the conjugation map A\, € Sx defined

by A (o) =0 .
a) Show that the map A:G — Sy defined by A(r)=A; is a
homomorphism.

b) Find the kernel of A.
¢) Suppose that () # A C X is invariant under conjugation, that is,
a € A implies that a” € A. Then we can restrict A, to a permutation of
A. Find the kernel of the map \': D — 5.
19. Let G be any normal subgroup of S, (such as A, or S,,itself).



20.

21.

Permutation Groups 205

a) Show thatifo, 7, p € G, then
o' =0’ 1€ pCq(o)

b) Find a one-to-one correspondence between the set o© of conjugates of
o and the set of cosets of Cz(0) in G. The set 0¥ is referred to as the
conjugacy class of o or the orbit of o under conjugation. The
centralizer C(o) is also referred to as the stabilizer of o under

conjugation.
c) Prove the orbit-stabilizer relationship for conjugation in G: For any
oe€@G,
G |G|
o =(G:Cq(0)) =
7 Colo)

d) Leta € S, be an n-cycle. Prove that Cg, (o) = (). Put another way, a
permutation o € S, commutes with « if and only if it is a power of «.

If o, 7 € A, are conjugate in .S, it does not necessarily follow that o and 7

are conjugate in A,. Suppose that o € A, commutes with an odd

permutation A € S,

a) Prove that if o and 7 are conjugate in .S, then they are also conjugate
inA4,.

b) Prove that the centralizers of ¢ are related as follows:

Cs,(0) = Cy,(0) UNCy, (o)
and, in particular,
|Cs,(0)] = 2|C4,(0)]

Note: Tt is not hard to find permutations o € A,, that commute with an odd
permutation. For instance, if o € A, does not move either a or b, then o
commutes with the transposition (a b). Thus, for instance, an (n — 2)-cycle
in A, commutes with a transposition. As another example, if o € A,
interchanges a and b, then o = p(ab)y’ where p and g/ fix a and b. It
follows that ¢ commutes with (a b).

Let X be a nonempty set. Define the support of a permutation ¢ € Sx to
be the set of elements of X that are moved by o

supp(o) = {x € X | ox # x}

Let S(x) be the set of all permutations in Sx with finite support, that is, for
which supp(c) is a finite set. This set is called the restricted symmetric
group on the set X and is used in defining the determinant of an infinite
matrix.

a) Show that supp(c) = supp(c1).

b) Show that supp(o7) C supp(co) U supp(7).

¢) Show that supp(7o7~1) = 7(supp()).

d) Show that supp(c) N supp(7) = 0 implies that o7 = T0.
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e) Show that S(x) < Sx and that S(y) = Sx if and only if X is finite.

f) Show that if X is infinite, then Sy, is an infinite group in which every
element has finite order and that S /.S x) is infinite.

g) Let X be infinite and let A x) be the subgroup of S(x) consisting of
those permutations o € S x) for which o) is an even permutation.
Show that A(x) is an infinite simple group. Moreover, A(x) is the
smallest normal subgroup in Sy.

For the Stirling numbers s(n, k) of the first kind, show that

Zs(n, k) =n!
k=1

(Stirling numbers of the second kind) For the curious, we present a brief
discussion of the “other” Stirling numbers. We have seen that the Stirling
numbers s(n, k) of the first kind count the number of ways to partition a set
of size n into k disjoint nonempty “cycles.” The Stirling numbers of the
second kind, denoted by S(n, k), count the number of ways to partition a
set of size n into k& nonempty disjoint subsets. It is clear that

S(n,1)=1

a) Find S(n,2).
b) Show that for n > 0,

S(n,k)=kSn—1,k)+S(n—1,k—1)

¢) Show that



Chapter 7
Group Actions; The Structure of p-Groups

Group Actions

We have had a few occasions to use group actions A\: G — Sx in the past and
we now wish to make a more systematic study of group actions, beginning with
the definition.

Definition An action of a group G on a nonempty set X is a group
homomorphism \: G — Sx, called the representation map for the action. The
permutation \a is often denoted by \,, or simply by a itself when no confision
can arise. Thus,

le =z and (ab)x = a(bx)

for all x € X. When X is a group action, we say that G acts on X by X or that

X is a G-set under \. An action is faithful if it is an embedding.

1) Anelement a € G is said to fix © € X if ax = x and move x if ax # .

2) An element x € X is stable if every element of G fixes x. We will denote
the set of all stable elements by Fixx (G) or just Fix(G).O

Let X~ denote the set of all functions from X to X. If X is a finite set, then any
function \: G — X% that satisfies A\; = ¢ and Ay, = A\, )\ is an action of G on
X, since

AT = A = A1 A = A1 Ay
= )\a—lal' = )\u—lay
= \jz = >\1y
=Sx=y

and so ), is injective and therefore a permutation of X. Thus, for finite sets, we
do not need to check explicitly that )\, is a permutation of X.

S. Roman, Fundamentals of Group Theory: An Advanced Approach, 207
DOI 10.1007/978-0-8176-8301-6_7, © Springer Science+Business Media, LLC 2012
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Orbits and Stabilizers

Two elements x,y € X are G-equivalent if there is an a € G for which
azx = y. Since A is a homomorphism, G-equivalence is an equivalence relation
on X. The equivalence classes

Gz ={azx|ae€ G}

are called the orbits of the action. We will use the notations Gz, orb(z) and
orbg (x) for the orbit of z under G. The distinct orbits form a partition of the set
X.

On the group side of an action, we can associate to each element x € X the set
of all element of G that fix z:

stab(z) = stabg(z) = {a € G | ax = z}

This subgroup of G is called the stabilizer of x.

Definition Let G be a group and X a nonempty set.

1) An action of G on X is transitive if every pair of elements of X are G-
equivalent, that is, if there is only one orbit in X. In this case, we also say
that G is transitive on X.

2)  An action of G on X is regular if it is transitive and if the stabilizer stab(x)

is trivial for every x € X. In this case, we also say that G is regular on
x.O0

The Kernel of the Representation Map
The kernel of the representation map \: G — Sy is
ker(A\) ={a e G|\, =}
As we have remarked, the action ) is faithful if ker(\) is trivial.

Theorem 7.1 The kernel of an action \: G — Sx is the intersection of the
stabilizers of all elements of X,

ker(A) = ﬂ stab(x) O

zeX

The importance of the kernel K = ker(\) of the representation map \: G — Sx
stems from two facts: K is a normal subgroup of GG and there is an embedding
of G/K into the symmetric group Sx. In particular, if | X| = n is finite, then
(G : K) | n!and if A is faithful, then o(G) | n!.

The Key Relationships

A set consisting of precisely one element from each orbit of G in X is a system
of distinct representatives, or SDR for the orbits in X.
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For a given SDR, we will have occasion to separate the representatives of the 1-
element orbits from the representatives of the orbits of size greater than 1.
Accordingly, we denote a system of distinct representatives for the orbits of size
greater than 1 by SDR.;.

Our immediate goal is to establish some key facts concerning group actions.
First, as the various elements of a group G act on an element x € X, the orbit of
x is described. Of course, different elements of G may have the same effect on
x. In fact,

ar =br << b lacstab(r) <  astab(x) = bstab(z)

Thus, ax = bz if and only if a and b are in the same coset of stab(z) in G' and
so we can think of the cosets themselves as acting on the elements =z € X,
describing each element of the orbit of x with no duplications, that is, distinct
cosets send = € X to distinct elements of X.

Put another way, there is a bijection between G /stab(x) and Gx. This gives the
orbit-stabilizer relationship

|Gx| = (G : stab(x))

It follows that

|X| = Z |Gx| = Z (G : stab(z))

re€SDR reSDR

We will refer to this equation as the class equation for the action of G on X.
(Actually, this term is traditionally reserved for a specific case of this equation,
arising from the specific action of G on itself by conjugation. We will encounter
this specific case a bit later in the chapter.)

Another key property of a group action is the following. If z,y € X are G-
equivalent, say y = ax for a € G, then the stabilizers of = and y are related as
follows:
stab(az) = {b € G | bar = az}
={beG|a 'baxr =z}
={be G |a"ba € stab(x)}
= stab(z)?

Finally, suppose that G acts on X and that the restriction of this action to a
subgroup H < G is transitive on X. Then the action of G is duplicated by the
action of H, that is, for any g € G and x € X, there exists an h € H for which
hx = gx or, equivalently, g € hstabg(z). Hence,

G = Hstabg (z)

Moreover, if H is regular on X, then
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H Nstabg(z) = staby (x) = {1}
and so
G = H e stabg ()

Now we summarize.
Theorem 7.2 Let the group G act on the set X.
1) (Orbit-stabilizer relationship) For any x € X,

|Gz| = (G : stab(z))

Thus, for a finite group G,

|G|

Gz|= 1 _
1G] = Tan (@]

and |Gz| divides |G|.
2) (The class equation)

|X| = Z (G : stab(x))

z€SDR

where the sum is taken over a system of distinct representatives SDR for the
orbits in X. We can also write this as

|X| = [Fixx(G)|+ Y (G :stab(x))

x€SDR-
3) (The stabilizer relationship) For any x € X and a € G,
stab(ax) = stab(x)*

Thus stabilizers of an orbit in X form a conjugacy class of G' and therefore
the stabilizers of G-equivalent elements have the same cardinality.
4) (The Frattini argument) If the action of H < G is transitive on X, then

G = Hstabg(z)
and if H is regular on X, then
G = H e stabg(x)

and so stabg () is a complement of H in G.OO

When the group action is transitive, the class equation and orbit-stabilizer
relationship become quite simple.

Theorem 7.3 If a group G acts transitively on a set X, then all stabilizers are
conjugate and the orbit-stabilizer relationship (and the class equation) is simply
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| X| = (G : stab(z))
forany x € X. Hence, if G is finite, then | X| divides |G|.00
Congruence Relations on a G-Set

If G acts on the elements of a set X, then there is a natural way in which G also
acts on the power set p(X) of X, namely,

aS ={as|se S}

for all S C X and a € (. Let us refer to this action as the induced action of G
on p(X).

Now, a G-set is a set X with some structure, namely, the group action of GG on
X and an equivalence relation = on X is compatible with this action if it
satisfies the following definition.

Definition An equivalence relation = on a G-set X is called a G-congruence
relation on X if it preserves the group action, that is, if

r=y = ar=ay foralla€eG

We denote the set of all congruence classes under = by X/ = and the
congruence class containing x € X by [z].00

Thus, if = is a G-congruence relation on X, then the induced action is an
action on the partition X/ = and

alz] = [ax]

for all € X. Conversely, suppose that the induced action of G on p(X) is an
action on a partition P = {B; | i € I} of X, that is, aB; € P for all a € G and
B; € P. Then the equivalence relation = associated to P is a G-congruence
relation on X.

In other words, the partitions of X that correspond to the (G-congruence
relations are the partitions P = {B; | i € I} that are closed under the induced
action of G on p(X).

Moreover, if G acts transitively on X and if = is a G-congruence relation on
X, then G also acts transitively on X/ = and so

X

=GS:={aS|aeqG}

is the orbit of any given conjugacy class S € X/ = . Hence, the partitions of X
that correspond to the G-congruence relations of a transitive group G are the
partitions of the form G.S, where S C X is nonempty.
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But if GS is a partition of X, then aS =S5 or aSNS = for all a € G.
Conversely, if aS = S or aS NS = for all a € G, then the distinct members
of GS form a partition of X. To see this, suppose that x € S NbS. Then
alzreSNa'bS and so a 'bS =S, whence bS = aS. Moreover, the
transitivity of G implies that GS = X.

Hence, if S C X is nonempty, then G'S is a partition of X if and only if
aS=S8 or aSNS =10
foralla € G.

Theorem 7.4 Let a group G act on a nonempty set X.

1) The partitions of X that correspond to the G-congruence relations on X
are the partitions of X that are closed under the induced action of G on
p(X).

2)  Suppose that G acts transitively on X.

a) The partitions of X that correspond to the G-congruence relations are
the partitions of the form

GS ={aS |a € G}

where S C X is nonempty.
b) A nonempty subset S of X is a congruence class under some G-
congruence if and only if S has the property that

aS=S or aSNS=1
Jorall a € G. Such a subset S of X is called a block of G.[1

Thus, S C X is a block of G if and only if GS is a partition of X. It follows
that if S is a block of G, then so is a5 forall a € G.

Now that we have established the basic properties of group actions, we can
examine a few of the most important examples of group actions. Then we will
use group actions to explore the structure of p-groups. In the next chapter, we
will use group actions to explore the structure of finite groups and to prove the
famous Sylow theorems.

Translation by G

Earlier in the book, we discussed two fruitful examples of the action of
translation by elements of a group GG, namely, on the elements of G and on the
elements of a quotient set G/H. The action of G on itself is the left regular
representation of GG as a subgroup of the symmetric group S¢, as described by
Cayley's theorem.
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Let us review the action of translation by G on G/ H:
N(aH) = gaH
This action is transitive and so all stabilizers are conjugate. Since
stab(aH) = stab(H)* = H*
the kernel of the action is the normal closure of H,

ker(\) = ﬂH”’ =H"
acG

which is the largest normal subgroup of G contained in H. If (G : H) =m,
then the embedding

G
Ho

— Sc:H) = Sm

implies that
(G:H°)|(G:H)!

The consequences of this action were recorded earlier in Theorem 4.20, but we
repeat them here for easy reference.

Theorem 7.5 Let G be a group and let H < G have finite index. Then
G/H® — Sg/u
and so
(G:H°) | (G:H)!
In particular, (G : H®) is also finite and
(H 1) | (G : H) —1)!

1) Any of the following imply that H < G
a) H is periodic and (G : H) = p is equal to the smallest order among
the nonidentity elements of H.
b) G is finite and o(H) and ((G : H) — 1)! are relatively prime, that is,
for all primes p,

plo(H) = p>(G:H)
This happens, in particular, if (G : H) is the smallest prime dividing
o(G).

2) If G is finitely generated, then G has at most a finite number of subgroups
of any finite index m.
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3) If G is simple, then
o(G) | (G : H)!

a) 1If G is infinite, then G has no proper subgroups of finite index.
b) If G is finite and o(G) | m! for some integer m, then G has no
subgroups of index m or less.[]

Conjugation by G on the Conjugates of a Subgroup
The elements of G act by conjugation on sub(G),
Mo(H) = H®

for all H < GG. The orbit of a subgroup H is the conjugacy class conji (H) and
the stable elements are

Fix(G) = nor(G)
The stabilizer of a subgroup H is its normalizer and so
Neg(H") = No(H)*

Also, the orbit-stabilizer relationship is

|conje(H)| = (G : No(H))
which we discussed earlier in the book (Theorem 3.27).
Conjugation by G on a Normal Subgroup
Let N < G and let G act on the elements of [NV by conjugation:

Ag(a) = a?

for all a € N. The orbits of this action

Ga=a% = {a" |z € G}

are called the conjugacy classes of N under G. The stabilizer of a € N is its
centralizer C;(a) and the kernel of the representation A is

ker(\) = m Ce(a) = Cg(N)

aeN
The orbit-stabilizer relationship is
|aG| = (G :Cg(a))

as we saw in Theorem 3.23.

The stable elements of N are the elements of N that commute with every
element of G and so
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Fixy(G) =Z(G)NN
Hence, the class equation is

INI=|Z(G)NN[+ ) (G:Ccla)

a€SDR .

When G acts on itself by conjugation, that is, when N = G, the class equation
is

Gl=12(@)+ Y (G:Cgla)

a€SDR-

This is the equation to which the name class equation is traditionally applied
and is one of the most useful tools in finite group theory.

The Structure of Finite p-Groups

We now wish to study the structure of a very special type of finite group.
Definition Let G be a nontrivial group and let p be a prime.

1) Anelement a € G is called a p-element if o(a) = p* for some k > 0.
2) G is a p-group if every element of G is a p-element.

3) A nontrivial subgroup S of G is called a p-subgroup of G if S is a p-
group.]

As we saw earlier in the book, Lagrange's theorem and Cauchy's theorem
conspire to give the following result.

Theorem 7.6 A finite group G is a p-group if and only if the order of G is a
power of p.O]

When a p-group G acts on a set X, the class equation has the property that all of
the terms (G : stab(x)) that are greater than 1 are divisible by p. This gives the
following simple but useful result.

Theorem 7.7 If a p-group G acts on a set X, then

| X| = |Fixx(G)| mod p O
We now turn to the key properties of finite p-groups.
The Center-Intersection Property

It will be convenient to make the following nonstandard definition.

Definition 4 group G has the center-intersection property if every nontrivial
normal subgroup of G intersects the center of G nontrivially.[]
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Note that a finite group G has the center-intersection property if and only if
every nontrivial normal subgroup of GG contains a central subgroup of prime
order. Any finite p-group G has the center-intersection property, for if N I G
is nontrivial, then GG acts on the elements of IV by conjugation and Theorem 7.7
implies that

|IN| =1Z(G) N N|modp
which shows that |Z(G) N N| > 1.

Theorem 7.8 A4 finite p-group G has the center-intersection property.
1) Z(G) is nontrivial.
2) G is simple if and only if o(G) = p.O

The fact that the center of a p-group is nontrivial tells us something very
significant about groups of order p?.

Corollary 7.9 If o(G) = p?, then G is abelian. In fact, G is either cyclic or is
the direct product of two cyclic subgroups of order p.

Proof. We must have |Z(G)| = p or p*. But if |Z(G)| = p, then G/Z(G) is
cyclic and so G is abelian, which is a contradiction. Hence, | Z(G)| = p* and G
is abelian. If G is not cyclic, then G is elementary abelian of exponent p and so
is the direct product of two cyclic subgroups of order p.[]

p-Series and Nilpotence

We next show that p-groups have normal subgroups of all possible orders. But
first a couple of definitions.

Definition (Central Series and p-Series) Let G be a group.

1) A normal series

HOSIHlﬁ"'SIHn

in G is central in G if each factor group Hy.1/Hy, is central in G | Hy, that
is,

Hyy1/Hy, < Z(G/Hy)
A group is nilpotent if it has a central series starting at the trivial

subgroup {1} and ending at G.
2) Ifpisaprime, then a p-series from H to G is a series

H=Hy<xH«---<H,=G

whose steps Hj, < Hy.1 have index p.[J

Definition Let p be a prime. If H < K is an extension in G of index p, we refer
to K as a p-cover of H. (K is a cover of H in the lattice sub(G).)O
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Theorem 7.5 implies that if K is a p-cover of H, then H < K.

Theorem 7.10 Let G be a finite p-group. Then every H < G has a p-cover K

and if H < G, then K can be chosen so that H < K is central in G.

1) Thereis a p-series from H to G.

2) If H <G, then there is a central p-series from H to G. In particular, G
has a normal subgroup containing H of every order between o(H) and
o(G) (under division).

3) G is nilpotent.

Proof. The proof is by induction on o(G). The theorem is true if o(G) = p.

Assume o(G) > p and that the theorem is true for all groups smaller than G Let

H < G and let N be central in G of order p. If H = {1}, then N is a p-cover of

H and H < N is central in G. Assume that H # {1}. We may also assume that

N < HifH<aG.Inanycase, N < Hor NN H = {1}.

If NN H = {1}, then NH is a p-cover of H and if N < H, then the induction
hypothesis implies that H/ /N has a p-cover K /N and so K is a p-cover of H.
Also, if H < G, the inductive hypothesis implies that H/N <« K /N is central in
G/N for some K < G and so Theorem 4.11 implies that H < K is central in
G.0O

The Normalizer Condition
Theorem 7.10 implies that a p-group has the normalizer condition, that is,

H<G = H<NgH)

and therefore several other nice properties (see the discussion following
Theorem 4.35).

Corollary 7.11 The following hold in a finite p-group G':
1) G has the normalizer condition

2)  Every subgroup of G is subnormal

3) Every maximal subgroup of G is normal

4 G/P(Q) is abelian.0

Maximal and Minimal Subgroups

Maximal and minimal subgroups play a key role in the study of finite p-groups.
For a finite p-group G, Cauchy's theorem implies that a subgroup H is minimal
if and only if o(H) = p and the center-intersection property implies that H is
minimal normal if and only if it is central of order p.

As to the maximal subgroups of G, Theorem 7.10 implies that a subgroup H is
maximal in GG if and only H has index p and that H is maximal normal in G if
and only if H has index p.
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Theorem 7.12 (Maximal and minimal subgroups) Let G be a finite p-group
and let H < G.
1) H is minimal if and only if it has order p.
2)  H is minimal normal if and only if it is central of order p.
3) The following are equivalent:
a) H is maximal
b) H is maximal normal
¢) (G:H)=p0O

The Frattini Subgroup of a p-Group; The Burnside Basis Theorem

The fact that any maximal subgroup M of a p-group G is normal and has index
p implies that if @ € G, then

(aM)? =M

and so a” € M. Thus, G? C ®(G), the Frattini subgroup of G. It follows that
G /®(G) is an elementary abelian group of exponent p.

Conversely, if G/K is elementary abelian, then it is characteristically simple
and so ®(G/K) = {K}. Hence,

oG < (| M<K
K<M<G
M maximal
We have shown that ®(G) is the smallest normal subgroup K of G for which
the quotient G/ K is elementary abelian.

Theorem 7.13 Let p be a prime. Let G be a group of order p", with Frattini

subgroup ®(G) of order p™.

1) ®(G) is the smallest normal subgroup of G for which G/®(G) is an
elementary abelian group. Moreover, G /®(G) has exponent p and so is a
vector space over Ly, of dimension n — m.

2) ®(G)=GG?

3) (The Burnside Basis Theorem) Any generating set for G contains a
generating set of size n — m.

Proof. Part 1) has been proved. For part 2), since {G'a? | a € G} is a subgroup

of G/G’, it follows that G'GP? is a normal subgroup of G. In fact, G/G'G? is

elementary abelian of exponent p and so part 1) implies that ®(G) < G'GP <
®(G). Hence, ®(G) = G'GP.

For part 3), write ® = ®(G). We show that
G={g,-...qr) = G/P={qD,...,9:P)

One direction is clear and since ® is the set of nongenerators of G, we have

G/®o=(q1®,....,q:®) = G={g1,--, 9} UP) =(g1,---,9n)
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Thus, since G/® is a Z,-space of dimension n — m, any generating set for G/
contains a generating set of size n — m. Hence, the same holds true for G.[J

Number of Subgroups of a p-Group

We now wish to inquire about the number of subgroups of a given size p? in a
p-group G of order p". Let suby(G) and nory(G) denote the families of
subgroups and normal subgroups, respectively, of G of size p?. Then G acts by
conjugation on suby(G) and the stable set is nory(G), whence

|subg(G)| = [nory(G)| mod p

Our plan is to show that |nory(G)| = 1 mod p.

Theorem 7.14 Let G be a nontrivial p-group of order p™.
1) The number of maximal subgroups of G is

n—m __ |
|sub,—1(G)| = |nor,—1(G)] = ppT = lmodp
2) Forany0<d<mn,
|suby(G)| = |noryg(G)| = 1 mod p
Proof. For part 1), if o(®(G)) =p™, then Theorem 7.13 implies that
A =G /®(G) is a vector space over Z,, of dimension n — m. In general, if V' is

a vector space over Z, of dimension k, then the number of subspaces of V' of
dimension d is

(r" = 1)" —p)--- (" —p")
(pd _ 1)(pd _ p)...(pd _ pdfl)

(We ask the reader to supply a proof in the exercises.) Hence, the number of
subgroups (subspaces) of V' of order p*~! is

k_l k_ oN.. . (nk _ k=2 k’_l
Vi k—1) = k(]f )(f1 p) (pklp l)c2 P
P =D =p) (P =) p—1
In particular, the number of maximal subgroups of G/®(G) is
pnfm_l
p—1

V(k,d) =

Vin—m,n—m-—1)=
and this is also the number of maximal subgroups of G.

For part 2), let u;(G) = |nory(G)| and let = stand for congruence modulo p.
Then part 1) implies that w,_1(G) = 1. We show that u,;(G) = 1 by induction
on o(G). If o(G) = p, the result is clear. Assume it is true for p-groups smaller
than G.
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If M € nor,,_;(G), then G acts on sub, (M) by conjugation. The stable set is
nory(G) N suby (M) and so the inductive hypothesis implies that

[nory(G) N'suby(M)| = |suby(M)| =1
Hence, the set
S={(N,M)| N < M,N €nory(G), M € nor,_1(G)}
has size |S| = u,-1(G) = 1.
On the other hand, for each N € nory(G), there is one M € nor, 1(G)

containing N for each maximal subgroup of G/N and since
Un—d—1(G/N) =1, we have |S| = uq(G). Thus, uq(G) = 1.0

*Conjugates in a p-Group
In the study of finite p-groups, it can be useful to examine the conjugates of an

element a by the powers of another element b.

Theorem 7.15 Let G be a finite p-group and let a € G have order o(a) = p™.

Let b € G and suppose that
ab = a®

for some integer o Z 1 mod p™. Let o'’ be the set of conjugates of a by the
elements of (b). Then

] = p"

where d > 1 and p® is the smallest power of p for which b?" commutes with a.
1) Ifp>2orifa# 3mod4, then

al = {aHk’p”H |k=1,...,p"}

wherem —d > 1landa™* ¢ a'®),
2) Ifp=2and o = 3mod4, then one of the following holds:
a) Ifd>1, then

a = {a " k=1, p1}

where m —d > 1, a™' ¢ a® and half of the ey's are 1 and half are
—1.
b) Ifd =0, then

a ={a,a "} or o ={a,a"}

3) a) Ifp> 2, then no element of G of order p can be conjugate to one of its
own powers other than the first power.
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b) If p=2, then no element a € G of order 2 can be conjugate to one of

its own powers other than a or a™'.

Proof. The conjugates of a by (b) are
brabF =

fork=1,...,r, where r = |a<b> | In fact, r is the smallest positive integer for
which b” commutes with a. Also, a'’) is the orbit of a under conjugation by (b)
and so r = p? for some d > 1.

Note that 7 is also the smallest positive integer for which a® = a, that is, the
smallest positive integer for which & = 1 mod p™ and so

3) p"| ' — 1
4 prfar -1

Furthermore, since o = 1mod p, Fermat's little theorem implies that
a = 1modp. Thus, if o =e +cp' is in p-standard form, then Lemma 1.18
implies that for any v > 0,

u U 1
ap — ep _|_wpu,+t

where p f w. In particular,

5) pd+t71 | aprl—l . epd—l

6) pd+t+1/{/apd _ epd _ apd _1
From 3) and 6), we see that m < d + ¢.

Now, if e’ ' =1 then 4) and 5) imply that d +t < m and so m =t + d. This
implies that m — d =t > 1. Also,

m—d

a=e+cp

and so for 1 < k < p¢,
Otk — (6 + Cpmfd)k _ ek _l_pmfdwk
Hence,

(l’]” elc

a —a +pm—dwk

where no two distinct wy's are congruent modulo p?, since otherwise we would
not get p? distinct conjugates. Thus, we can assume that wj, ranges over the set
{1,...,p"} and so

o = {ae”k”mid |k=1,...,p"}

Now, if p > 2 or @ Z 3mod 4, then ¢ = 1 and so ¢, = 1 for all k. If p = 2 and
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o = 3mod4 but d > 1, then we still have e? =1 but since e = —1, as k ranges
from 1 to p?, the term e* alternates between —1 and 1 and so half of the terms
e are 1 and half are —1.

Also, as k ranges from 1 to p?, the exponents e, + kp™~? range from £1 + p to
+1+ p™. But a is conjugate to itself and so one of these exponents must be
conjugate to 1 modulo p™. Therefore, the last exponent is 1 4+ p™ and since no
other exponent is conjugate to —1 modulo p™, it follows that a ! ¢ al,

The case e’ = —1 occurs precisely when p =2, « = 3mod4 and d = 1, in
which case a has exactly two conjugates and o = —1 + ¢2! with ¢ odd and
t>2.

If t>m, then a® =a "2 =4 ! and so a = {a,a™'}. If t < m, then
m < 1+t implies thatt = m — 1 and so a = —1 + ¢2™ ! where ¢ is odd, that
is, ¢ = 1. Hence, the two conjugates of a are a itself and

' _qom-1
a® =a 1+2

Note finally that the case ") = {a,a™'} does occur in the dihedral group
Daynit = (p, o) where o(p) = 2™ and o(c) = 2 and p° = p~L. Also, the case

't — {a,a*”?’"l}
occurs in the semidihedral group
SDp = (a,§), ola)=2", o(§) =2, La= aT’Hilg

For part 3), if o(a) = p, then the number of conjugates of a is both a power of p
and at most p — 1, whence it must equal 1.01

*Unique Subgroups in a p-Group

A cyclic p-group has a unique subgroup of order p. If p > 2, then the converse
of this is true: A p-group that has a unique subgroup of order p is cyclic. We
begin with a definition.

Definition 4 generalized quaternion group of order 2", n > 2 is a group Q,
with the following properties:

Qu = (a,b),0(a) = 2", 0(b) = 4,6> = a* ", bab " = a”!

Ifn = 3, then Q,, is a quaternion group.]

We will show later in the book that such a group exists: It is a special case of the
dicyclic group. We leave it as an exercise to show that (b?) is the only subgroup
of order 2 in @, but that for any 2 < 2° < 2", the group @, has at least two
subgroups of order 2°. Also, any = € Q,, \ (a) has the form z = a*b, where



Group Actions; The Structure of p-Groups 223

(a"b)? = a*(ba®)b = b* = a?’

and so o(a*b) = 4. Thus, any element of @, \ (a) has order 4. It follows that if
n >4, then (a) is the unique cyclic subgroup of @, of order 2"~ ! and so

(a) T Q.

We will prove that if a p-group G has a unique subgroup of order p, then G is
cyclic if p > 2 and G is either cyclic or generalized quaternion if p = 2. First,
let us show that if G has a unique subgroup H, of any order p°, where
p < p* < o(@G), then G must have a unique subgroup of order p.

Since a p-group has subgroups of all orders dividing the order of the group, we
have for any subgroup K < G,

o(Hy) <o(K) = H,<K

Also, since any subgroup K < GG of order less than p® is contained in some
subgroup of order p°®, we have

o(K)<o(Hy) = K<H,

Thus, all subgroups of G either contain H or are contained in H,. In this sense,
H forms a bottleneck in the lattice of subgroups of G. It follows that H; is
cyclic, for if a ¢ H, then (a) € Hy and so Hy < (a), whence Hy is cyclic.
Since H; is cyclic, the subgroup lattice of G has the form shown in Figure 7.1
and so G contains exactly one subgroup of each order p? with 0 < d < s. In
particular, G has a unique subgroup of order p. Thus, we have shown that G has
a unique subgroup of some order p°, where p < p® < o(G) if and only if G has
a unique subgroup of order p.

G

T

_ —— 00—

{1}
Figure 7.1
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Let G be a noncyclic group of order p™ > 1. To show that G has more than one
subgroup of order p, it suffices to show GG contains a nontrivial subgroup A as
well as an element of order p that is not in A. We first consider the case p > 2.

Theorem 7.16 Let p > 2 be prime and let o(G) = p" > 1.

1) If G is noncyclic and if a € G is an element of maximum order, then G has
an element of order p that is not contained in (a).

2) If G has a unique subgroup of order p° for some 1 < s <n, then G is
cyclic.

Proof. We have already seen that part 2) follows from part 1). To prove part 1),

assume that G is noncyclic. Let A = (a), where a € G has maximum order p™.

If m =1, then all nonidentity elements of G have order p and so we may
assume that 2 < m < n.

Let A< B where o(B) = p"*!. If b € B\ A4, then b” € A and so b* = a' for
some ¢t > 0. If t =0, then o(b) = p and we are done, so let us assume that
t > 0. Since a' = b? does not have maximum order in G, it follows that p | ¢
and so

b = a"?
for some 0 < u < p" L.
Now, if b commutes with a, then ba™" ¢ A has order p. Assume now that no
b € B\ A commutes with a. We wish to show that there is still an integer z for

which o(ba”) = p. If b € B\ A, then to get a formula for (ba”)P, we need a
commutativity rule for a and b. But since A < B, there is an o # 1 for which

ab = g
and since b” commutes with a, Theorem 7.15 implies that
a = {a"" T  k=1,...,p}

Moreover, b ¢ A implies that b’ € B\ A for all 1 <i < p and so we may
replace b by an appropriate power of b so that o = 1 + p™~ 1,
Now, ba = a®b and so

ba® = a®*b
Then an easy induction shows that for k > 1,

(bax)k _ az(a+a’~’+~-+a“')bk

and so

T z 24P T 24 4P
(baz)p _ aJL(quu +ota )bp _ aup+1(a+a +--FaP)

Hence, we want an integer = for which
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1—aPf

11—«

fite! =—up (modp™)

Since a = 1 + p™~ !, Theorem 1.18 implies that
ol = (1 + pmfl)p =14+ wpm
where p fw and so

1—a?
11—«

fite! =2(14+p" Hwp = zwp (modp™)

Hence, we want an integer  for which

rw=—u (modp™!)

But w is invertible in Ly and so we may take z = —uw .00

Now we turn to the case p = 2. (The reader may wish to skip the proof upon
first reading.)

Theorem 7.17 Let G be a nontrivial group of order 2.

1) G has a unique subgroup of order 2 if and only if G is cyclic or a
generalized quaternion group.

2) If G has a unique subgroup of order 2° for some 1 < s <mn, then G is
cyclic.

Proof. We have already seen that part 2) follows from part 1). Let G be a

noncyclic group of order 2" with a unique involution. We will show that G is a

generalized quaternion group. Let a € G be an element of maximum order 2™

and let A = (a). Clearly, we may assume that m > 2.

In one case we will need to be a bit more specific about the choice of the cyclic
subgroup A. Namely, if m = 2, then since the unique subgroup of order 2 is
normal in G, it has a 2-cover N of order 4, which is cyclic since the 4-group has
two involutions. In this case, we let A = N and so A < G. Thus, if m = 2, we
may assume that A < G.

If B = (b, A) is a 2-cover of A, then o(B/A) = 2 and so b* € A, which implies
that b2 = a* for some k > 0. But o(a*) = 0(b?) < o(b) < o(a) and so 2 | k,
that is,

b2 — a2’u
for t > 1 and u odd. Since (a") = A, we can rename a" to a to get
b2 = a?

for t > 1. Since 0(b?) = o(a*) = 2™, we also have
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O(b) _ 2m7t+1

where ¢t < m — 1 since o(b) > 2.

If b commutes with a, then ba =2 ¢ A is an involution, contrary to assumption.
Thus, b does not commute with a; in fact, A is not properly contained in any
abelian subgroup of G.

However, since A < B and b> € A, Theorem 7.15 implies that
1 oor a® ={a,a}
and so for any 2-cover B = (b, A) of A, there is an a € A for which
bab™' =a® and b’ =a”
where either« = =1 + 2" L ora = —1.
Conjugating the second equation by b and using the first equation gives
R
and so a¥ =a 2, that is, a® = 1. Hence, 2 | 2/*1, which implies that
m<t+1<m,thatis,t =m — 1.
Now, if for any 2-cover B = (b,A), we have a=—1+2""1 then
a = —1+2"and so
bab~! = ¢~ 142 — p24-1

which implies that ab™! ¢ A is an involution, a contradiction. Hence, for all 2-
covers B = (b, A) of A, we have « = —1 and

bab' =a' and b’ =d*"
It follows that o(b) = 4 and so B can be described as follows:
B = (a,b),0(a) = 2", 0(b) = 4,b* = a2m?l, bab™ ' =a!
that is, B = Q1 is generalized quaternion and so every element of B\ A has
order 4 and if m > 3, then A C B.
We want to show that B = G. If not, then B has a 2-cover C, that is,
A<xB«<C <G

where o(C') = p™*2. Recall that if m =2, then we have chosen A so that
A < G andif m > 3, then A C B and so in either case, A< C.
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The quotient group C'/A is either Cy(cA) or Cy(cA) X Cy(dA). In the latter
case, the subgroups (¢, A) and (d, A) are 2-covers of A and so

Hence,

which implies that < (A,cd) is abelian, a contradiction. Hence,
C'/A = Cy(cA). But then (c?, A) is a 2-cover of A and so

However, since A is not properly contained in an abelian subgroup of G, the
smallest power of ¢ that commutes with a is ¢* € A and so Theorem 7.0 (where
d = 2) implies that a' ¢ a'“), a contradiction.

Thus G = B = Q,,,_1 is generalized quaternion of order 2™.[]

*Groups of Order p™ With an Element of Order p™ !

We can use the previous result to take a close look at nonabelian groups G of
order p" that have an element of order p"~!. We will restrict attention to the
case p > 2.

Let o(a) = p" ! and A = (a). Theorem 7.16 implies that there is a b € G \ A
with o(b) = p. Then
G = (a) x (b)

and it remains to see how @ and b interact. Since A < G, we have b~ lab = a*

for some k > 1 and Theorem 7.15 implies that the conjugates of a by (b) are
o = {a"* T |k =1,...,p}
Since any nonidentity element of (b) generates (b), we can take k£ = 1 and write
bab~' = a7

Theorem 7.18 Let p > 2 be a prime. Let G be a nonabelian group of order p™
with an element a of order p"~'. Then

G = (a) % (b)
where o(b) = p and
bab~! = a7 O

To see that such a group exists, recall from Example 5.30 that there is a
semidirect product
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Cpi(a) 219Gy (D)

where

=2

Oy(a) = a'?

*Groups of Order p3

We have seen that groups of order p are cyclic and that groups of order p? are
either cyclic or the direct product of two cyclic subgroups of order p (Corollary
7.9). Theorem 7.18 gives us insight into groups of order p>.

If p = 2, we have seen that, up to isomorphism, the groups of order p* = 8 are

1) Cg

2) CyXCy

3) CoXC,RCy

4) @, the (nonabelian) quaternion group
5) Dsg, the (nonabelian) dihedral group

More generally, we will show that for any prime p, the groups of order p* are
(up to isomorphism):

) Cp
2) CprXC,

3)) C,XC,XC,

4) UT(3,Z,), the unitriangular matrix group (described below)
5) The group G = (a,b) where

G = (a, b>7 0(0’) = p27 O(b) =D bab~ =a'"?
Thus, there are only two nonabelian groups of order p* (up to isomorphism).

We will leave analysis of the abelian groups of order p* to a later chapter, where
we will prove that any finite abelian group is the direct product of cyclic groups.

So let p > 2 be prime and let G be a nonabelian group of order p*. If G' has an
element a of order p?, then Theorem 7.18 implies that

G = (a) 3 (b)
where o(b) = p and

b lab = a'tP

It remains to consider the case where GG has exponent p. The center Z = Z(G)
is nontrivial but cannot have order p?, since then G/Z is cyclic and so G is
abelian. Hence, o(Z) = p and so o(G/Z) = p*. Hence, G/Z is abelian with
exponent p and so
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G/Z = (aZ) ™ (bZ)

Moreover, since z := [b,a] € Z, we have Z = (z). Hence,

G = {(a,b,z),0(a) =0(b) =0(z) =1,z € Z(G),ba = zab

To see that this does describe a group, we have the following.

Definition Let R be a commutative ring with identity. A matrix M € GL(n, R)
is unitriangular if it is upper triangular (has 0's below the main diagonal) and
has 1's on the main diagonal. We denote the set of all unitriangular matrices by

UT(n,R).0

We will leave it as an exercise to show that

UT (n, Z,)| = p" /7

and that for p > 2, the group UT'(3,Z,) has order p? and exponent p. Also,
UT(3,Z:) = Q.

Exercises

1.

A left action of G on X is sometimes defined as a map from the cartesian

product G x X to X, sending (a, ) to an element ax € X, satisfying

a) lz=xforallz € X

b) (ab)x = a(bz) forallz € X, a,b € G.

A right action of G on X is a map from the cartesian product X x G to X,

sending (z, a) to an element za € X, satisfying

c) zl=zxforallz € X

d) x(ab) = (za)b for all x € X, a, b € G. Given a left action, show that

the map (x, g) = g 'a is a right action. What about (z, g) = gz?

Let A\: G — Sy be an action of G on X.

a) Prove that X is regular if and only if it is transitive and stab(z) = {1}
for some x € X.

b) Prove that A is regular if and only if it is transitive and for all distinct
g,h € G, we have gz # hx forall x € X.

¢) Prove that if A is faithful and transitive and if G is abelian, then the
action is regular.

Let G be a finite group and let p be the smallest prime dividing o(G). Prove

that any normal subgroup of order p is central.

Let GG be an infinite group. Use normal interiors (not Poincaré's theorem) to

prove that if H and K have finite index in GG, then so does H N K.

Show that the condition that G' be finitely generated cannot be removed

from the hypotheses of Theorem 7.5.

Let G be a finite simple group and let H < G have prime index

(G : H) = p. Prove that p must be the largest prime dividing o(G) and that

p* does not divide o(G).
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Let G be a finite group. Prove that a transitive action of G on X is regular

if and only if |G| = | X]|.

Let o(G) = 2n where n > 1 is odd. Let a € G have order 2. Show that

under the left regular representation of G on itself, the element a

corresponds to an odd permutation. Show that GG is not simple.

a) Prove that if G is a finitely generated infinite group and H is a
subgroup of finite index in G, then G has a characteristic subgroup K
of finite index for which K < H.

b) Show that the condition that GG be finitely generated is necessary.

The action of a group G' on a set X is 2-tramsitive if for any pairs

(z,7), (u,v) € X x X where x # y and u # v, there is an a € G for which

axr =u and ay = v. Prove that for a 2-transitive action, the stabilizer

stab(x) is a maximal subgroup of GG for all x € X.

Equivalence of Actions

Two group actions \: G — Sy and u: H — Sy are equivalent if there is a pair
(a, f) where a: G — H is a group isomorphism and f: X — Y is a bijection
satisfying the condition

fgz) = (ag)(fz)

In this case, we refer to (v, f) as an equivalence from A to p.

11.

12.

13.

a) Show that the inverse of an equivalence is an equivalence.

b) Show that the (coordinatewise) composition of two
equivalences is an equivalence.

Let \:G — Sx be a transitive action and let z € X. Show that \ is

equivalent to the action of left-translation by G on G/ /stab(x).

Suppose that \: G — Sy and u: H — Sy are equivalent transitive actions,

under the equivalence («, f). Prove that stab(x) ~ H, for any z € X,

where y = fz.

3

‘compatible”

Conjugacy

14.
15.

16.

17.

18.

Let G be a group and let g € G. Show that (¢©) is a normal subgroup of G.
Let G be a finite group and let g € G. Show that |C(g)| > |G/G'| where
G’ is the commutator subgroup of G.

Let G be a finite group and let H < G with [G : H] = 2. Suppose that
Ce(h) < H forall h € H. Prove that G \ H is a conjugacy class of G.

Let G be a p-group and let H < G be a nonnormal subgroup of G and let
a € (. Show that the number of conjugates of H that are fixed by every
element of H” is positive and divisible by p.

a) Let G be a finite group and let H < G. Show that

k(G/H) = k(G) — ke(H) + 1

where k¢ (H) is the number of G-conjugacy classes of H.



19.

20.

21.

22.

23.

24,

b)

a)
b)
©)
a)

b)

b)
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Let G be a finite nonabelian group such that G/Z(G) is abelian. Show
that

k(G) 2 |G/ Z2(G)] +12(G)| =1

Find all finite groups (up to isomorphism) that have exactly one
conjugacy class.

Find all finite groups (up to isomorphism) that have exactly two
conjugacy classes.

Find all finite groups (up to isomorphism) that have exactly three
conjugacy classes.

If g € Q and n > 0, show that there are only finitely many solutions

ki, ..., k, in positive integers to the equation
1 - 1

q e g— P R

kl kn

Hint: Use induction on n. Look at the smallest denominator first.

Show that for any integer n > 0, there are only finitely many finite
groups (up to isomorphism) that have exactly n conjugacy classes.
Hint: Use the class equation.

Let H be a proper subgroup of a finite group GG. Show that the set

S:UHg

geG

is a proper subset of G.
If H is a proper subgroup of a group G and (G : H) < oo, then the set

S:UHg

geG

is a proper subset of G.

Let X be a conjugacy class of G and let X ' = {z7! | z € X}.

a)
b)

c)

d)

Show that X! is also a conjugacy class of G.

Show that if G has odd order, then X = {1} is the only conjugacy
class for which X = X1,

Show that if G has even order, then there is a conjugacy class X other
than {1} for which X = X 1.

Show that if G is finite and k(G) is even, then o(G) is even. Show by
example that the converse does not hold.

Let GG be a group of order 2m. Suppose that G has a conjugacy class of size
m. Prove that m is odd, and that G has an abelian normal subgroup of size

m

Let H be normal in G and suppose that (G : H) = pis a prime. Let x € H
have the property that there is a g € G'\ H such that gz = xg.

a)
b)

Show that |C¢ ()| = p|Cr(x)|.
Show that 27 = 2.
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p-Groups and p-Subgroups

25. a) Let f:G — H be a group homomorphism. If G is a p-group, under
what conditions, if any, is H a p-group?
b) Let f: G — H be a group homomorphism. If H is a p-group, under
what conditions, if any, is H a p-group?
¢) Let H<G.If H and G/H are both p-groups, under what conditions,
if any, is G a p-group?
26. Let GG be a finite p-group.
a) Prove that any cover of H < G has index p.
b) Prove that a cover of the center Z(G) is abelian.

27. Let H < G. Prove that GG is a p-group if and only if H and G/H are p-
groups.

28. Let G be a finite simple nonabelian group. Show that o(G) is divisible by at
least two distinct prime numbers.

29. Prove that the derived group G’ of a p-group G is a proper subgroup of G.

30. Let G be a p-group. Show that if H < G and (G : H) < oo, then (G : H)
is a power of p.

31. Let G = XG), be a direct product of p-subgroups for distinct primes p.
Show that if H < G, then H = X(H N G,). What if the primes are not
distinct?

32. Show that the generalized quaternion group

Qm = (a,b),0(a) =2"" o(b) = 4,b> = a2m?2, bab™ ' =a7!

has only is single involution.

33. Prove that a finite p-group has the normalizer condition using the action of
N¢(H) on the conjugates conji (H) of H by conjugation.

34. Let G be a nonabelian group of order p*, where p is a prime. Determine the
number k(G) of conjugacy classes of G.

Additional Problems

35. Let p be a prime.
a) Show that

GL(n, Zy)| = (0" = (0" = p)--- (0" = p" )
b) Show that UT'(n,Z,) is a p-group, in fact,
UT(,2,)| = p* "

¢) Show that UT(n,Z,) is a Sylow p-subgroup of GL(n,Z,).
d) Forn=2orn—1 < p, show that UT(n, Z,) has exponent p.
e) Show that UT'(3,%Z;) ~ Q.
36. Let F be a finite field of size ¢ and let V' be an n-dimensional vector space
over F'. Show that the number of subspaces of V' of dimension £ is



37.
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/cfl)

(n) (" =D = q) (" —q
kg (¢"=1)(¢" — q)---(¢* — ¢")

The expressions (), are called Gaussian coefficients. /int: Show that the
number of k-tuples of linearly independent vectors in V' is

@ -1)(¢" =) (" —d"")

Let H, K <G.

a) Show that the distinct double cosets AgB, where a € G, form a
partition of G.

b) Show that |[AgB| = (A: BN A).



Chapter 8
Sylow Theory

In 1872, the Norwegian mathematician Peter Ludwig Mejdell Sylow [32]
published a set of theorems which are now known as the Sylow theorems. These
important theorems describe the nature of maximal p-subgroups of a finite
group, which are now called Sylow p-subgroups. (For convenience, we will
collect the Sylow theorems into a single theorem.)

Sylow Subgroups
We begin with the definition of a Sylow subgroup.

Definition Let G be a group and let p be a prime. A Sylow p-subgroup of G is
a maximal p-subgroup of G (under set inclusion). The set of all Sylow p-
subgroups of G is denoted by Syl,(G). The number of Sylow p-subgroups of a
group G is denoted by n,(QG), or just n,, when the context is clear.[]

Of course, if a prime p divides o(G), then G contains a Sylow p-subgroup; in
fact, every p-subgroup of GG is contained in a Sylow p-subgroup. Also, if G is
an infinite group and if H is a p-subgroup of G, then an appeal to Zorn's lemma
shows that G has a Sylow p-subgroup containing H.

Since conjugation is an order isomorphism and also preserves the group order of
elements, it follows that if S is a Sylow p-subgroup of G, then so is every
conjugate S of S.

Note also that if G is finite and o(G) = p"m where (p,m) =1, then any
subgroup of order p" is a Sylow p-subgroup. We will prove the converse of this
a bit later: Any Sylow subgroup of G has order p".

The Normalizer of a Sylow Subgroup

Let GG be a finite group. If a Sylow p-subgroup S' of G happens to be normal in
G, then G/S has no nonidentity p-elements. Hence, p (G : S) and so S is the

S. Roman, Fundamentals of Group Theory: An Advanced Approach, 235
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set of all p-elements of G. It also follows that S C (G, since automorphisms
preserve order.

Of course, S is always normal in its normalizer N¢(S).

Theorem 8.1 Let G be a finite group and let S € Syl,(G).
1) S is the set of all p-elements of N¢/(5).
2)  Any p-element a € G \ S moves S by conjugation, that is, S® # S.
3) S is the only Sylow p-subgroup of N¢(S).
9 pl(Na(8): 9).
5) S C Ng(S).O
If S € Syl,(G), then
S < Ng(S)"
for any a € G. Hence, if a normalizes N¢(.S), then

5% < Na(S)

and since S is also a Sylow p-subgroup of N¢(.S), Theorem 8.1 implies that
S% = S. In other words, if a normalizes N¢(S), then a also normalizes S and
s0

Na(Ng(S)) = Nea(S)

Theorem 8.2 The normalizer Ng(S) of a Sylow subgroup of G is self-
normalizing, that is,

Ne(Na(S5)) = Na(S) O

Soon we will be able to prove that not only is N¢/(.S) self-normalizing, but so is
any subgroup of G containing N¢(S).

The Sylow Theorems

Let G be a finite group and let S € Syl,(G). The fact that any p-element a ¢ S
moves S by conjugation prompts us to look at the action of a p-subgroup K of
G by conjugation on the set

conjg(S) = {5 | a € G}
of conjugates of S in GG. As to the stabilizer of S, we have
stab(S") = Ng(S)NK =S‘NK
and so
lorbg (S)| = (K : SN K)

which is divisible by p unless K < S% in which case the orbit has size 1.
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Hence,
FiXconj, (9 (K) = {5 [ K < 5%}
and so
[conja(S)| = [{S*| K < S*}|mod p

Now if K is a Sylow p-subgroup of G, then K < S if and only if K = S and
o)

. _ f[1modp ifK € conjg(S)
|conji (S)] = {Omodp if K ¢ conjg(9S)

It follows that K ¢ conj;(S) is impossible and so Syl,(G) = conjs(S) is a
conjugacy class and

n, = 1 modp
Note also that
ny = |eonjg ()| = (G : Ne(5)) | o(G)
Finally, we can determine the order of a Sylow p-subgroup S, since
(G :8)=(G: Na(9))(Na(S) : )

and neither of the factors on the right is divisible by p. Hence, the order of S is
the largest power of p dividing o(G). We have proved the Sylow theorems.

Theorem 8.3 (The Sylow theorems [32], 1872) Let G be a finite group and let
o(G) = p"m, where p is a prime and p | m.

1) The Sylow p-subgroups of G are the subgroups of G of order p".

2) Syl,(G) is a conjugacy class in sub(G).

3) The number ny, of Sylow p-subgroups satisfies

n,=1modp and n,= (G :Ng(S))|o(G)

where S € Syl,(G).
4) LetS € Syl,(G).
a) S is normal if and only if n, = 1.
b) S is self-normalizing if and only if n, = (G : S) = m, in which case
all Sylow p-subgroups of G are self-normalizing.
5) If K is a p-subgroup of G, then

{S € Syl,(G) | K <S}|=1modp O

We will prove later in the chapter that every normal Sylow p-subgroup of a
finite group is complemented. This is implied by the famous Schur—Zassenhaus
theorem. However, we also have the following simple consequence of Theorem
3.1 concerning supplements of Sylow subgroups.
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Theorem 8.4 Let G be a finite group. Then any Sylow p-subgroup of G and any
subgroup whose index is a power of p are supplements.[]

Sylow Subgroups of Subgroups

Let G be a finite group and let H < G. We wish to explore the relationship
between Syl,(G) and Syl,(H). On the one hand, every S € Syl,(H) is
contained in a T’ € Syl,(G) and so the set

Syl,(S;G) ={T € Syl,(G) | S <T}
is nonempty. Moreover, since A € Syl,(S;G) implies that ANH is a p-
subgroup of H containing S, we have

AeSyl,(S;G) = AnH=S
In particular, the families Syl,(S; G) are disjoint, that is,

S#£TeSyl,(H) = Syl,(S;G)NSyl,(T;G) =10
and so
ny(H) < n,(G)

On the other hand, if S € Syl,(G), then the intersection S N H need not be a
Sylow p-subgroup of H, as can be seen by taking H and S to be distinct Sylow

p-subgroups of G. However, if HS is a subgroup of G, then o(S) | o(HS) and
s0

e
HnNS =|H
[H S| = ]

where |H S|/|S| is not divisible by p. Hence, |H N S| and |H| are divisible by
the same powers of p and so H N S € Syl,(H).
Theorem 8.5 Let G be a finite group and let H < G.
1) IfS € Syl,(H), then
AesSyl,(S;G) = AnH=S
and
S#TeSyl,(H) = Syl,(S;G)NSyl,(T;G) =10
and so

np(H) < ny(G)
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2) IfS € Syl,(G)and HS < G, then
SNH eSyl,(H) O

Some Consequences of the Sylow Theorems

Let us consider some of the more-or-less direct consequences of the Sylow
theorems.

A Partial Converse of Lagrange's Theorem

A Sylow p-subgroup S of a group G has subgroups of all orders dividing o(S).

This gives a partial converse to Lagrange's theorem.

Theorem 8.6 Let G be a finite group and let p be a prime. If p* | o(G), then G

has a subgroup of order p*.0c1

More on the Normalizer of a Sylow Subgroup

Recall that the normalizer Ng(S) of a Sylow subgroup S of G is self-

normalizing. Now we can say more.

Theorem 8.7 Let G be a finite group and let S € Syl,(G). If
S<Ne(S)<H<G

then H is self-normalizing. In particular, if H < G, then H is not normal in G.
Proof. Conjugating by any a € N¢(H) gives

S*< Ng(S)"<H<LG

and so both S and S® are Sylow p-subgroups of H. It follows that S and S are
conjugate in H. Hence, there is an h € H for which S"* =S, that is,
ha € N¢(S) < H.Thus,a € H andso Ng(H) = H.O

The normalizer of a Sylow p-subgroup has a somewhat stronger property than is
expressed in Theorem 8.7. In the exercises, we ask the reader to prove that
N¢(9) is abnormal.

Counting Subgroups in a Finite Group

In an earlier chapter, we proved that if G is a p-group and p* | o(G), then the
number n,, (G of subgroups of G of order p* satisfies

n,;(G) = 1mod p (8.8)
We have just proved that for any finite group G for which p | o(G),
n,(G) = 1mod p

To see that (8.8) holds for all finite groups, we count the size of the set
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Fe={(H,S)| H<S,5 € Syl,(G),o(H) = p*}
modulo p. On the one hand, for each S € Syl,(G), there are n,;(S) =1
subgroups of S of order p* and so
Fil = (@) - 1=1

On the other hand, for each H < G of order p’C , Theorem 8.3 implies that

{S eSyl,(G) [ H < S} =1
and so

[Pl = npa(G) - 1= npp(G)
Hence, n,,;(G) = 1 and we have proved an important theorem of Frobenius.
Theorem 8.9 (Frobenius [13], 1895) Let G be a group with o(G) = p"m

where (m, p) = 1. Then for each 1 < k < n, the number n,;,(G) of subgroups
of G of order p satisfies

npk(G) = 1modp d

When All Sylow Subgroups Are Normal

Several good things happen when all of the Sylow subgroups of a group G are
normal. In particular, let G be a finite group. In an earlier chapter (see Theorem
4.22 and Theorem 4.35), we showed that among the conditions:

1) Every subgroup of G is subnormal

2) G has the normalizer condition

3) Every maximal subgroup of GG is normal
4) G/®(G) is abelian

the following implications hold:
e2)=3)s4)
We also promised to show that these four conditions are equivalent, which we

can do now, adding several additional equivalent conditions into the bargin.

First, let us speak about arbitrary (possibly infinite) groups. If GG is a group, let
G\or denote the set of all torsion (periodic) elements of G. If GG is abelian, then
Gior 18 a subgroup of GG. However, in the nonabelian general linear group
GL(2,C), the elements

0 -1 0 1
A—<1 0) and B—(_1 _1>
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are torsion but their product is not. Hence, Gy, is not always a subgroup of G.
Note that when G, is a subgroup of GG, then Gy, C G since automorphisms
preserve order.

Theorem 8.10 Let G be a group in which every Sylow subgroup is normal. Let
the Sylow subgroups of G be {Y, | p € P}. Then

Gir = XY
tor pEPp

and so Gior < G. Thus, the product of two elements of finite order has finite
order.

Proof. Since the Sylow p-subgroups are normal and pairwise essentially
disjoint, they commute elementwise. In particular, if a;,...,a, come from
distinct Sylow subgroups, then

o(ay---a,) = o(ay)---o(ay,)
and so the family of Sylow subgroups is strongly disjoint and

Y = pqu)/p C Gior
For the reverse inclusion, if a € Gy, has order n = p*---pS» where the primes
p; are distinct, then Corollary 2.11 implies that a = a;- - -a,,, where o(ay) = pi*
and so a;, € Y}, whence ¢ € Y.[O

Now we turn to finite groups in which all Sylow subgroups are normal.

Theorem 8.11 Let G be a finite group, with Sylow subgroups {Y, | p € P}.
The following are equivalent:

1) Every Sylow subgroup of G is normal.

2) G is the direct product of its Sylow p-subgroups

G= XY,
pEP

3) IfH <G, then

H= x(HNY))
4) G is the direct product of p-subgroups.
5) (Strong converse of Lagrange's theorem) I/ n | o(G), then G has a
normal subgroup of order n.
6) Every subgroup of G is subnormal.
7) G has the normalizer condition.
8)  Every maximal subgroup of G is normal.
9) G/®(G) is abelian.
If these conditions hold, then G has the center-intersection property. In
particular, Z(G) is nontrivial.
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Proof. Theorem 8.10 shows that 1) implies 2) and the converse is clear. If 1)
holds, then HY, <G and so the Sylow p-subgroups of H are
{H NY, | pe P} Moreover, since H NY, < H, it follows that H is the direct
product of its Sylow p-subgroups and so 3) holds. It is clear that 3) implies 2)
and so 1)-3) are equivalent. Also, it is clear that 2) = 4). If 4) holds and p is a
prime dividing o(G), then we can isolate the factors in the direct product of G
that have exponent p, say

G=PMXQ

where P is a direct product of p-subgroups and @ is a direct product of ¢-
subgroups for various primes ¢ # p. Then P is the set of all p-elements of G
and so P a Sylow p-subgroup of G. But P < G and so 1) holds. Thus, 1)-4) are
equivalent.

It is clear that 5) = 1). To see that 2) = 5), any divisor n of o(G) is a product
n = [[d, where d, | o(Y,) and since Y, has a normal subgroup of order d,, the
direct product of these subgroups is a normal subgroup of G of order n. Thus,
1)-5) are equivalent and we have already remarked that

6)<=7)=8)<9)

To see that 3) = 6), if H < G, then one of the factors H NY), is proper in Y,
and so there is a subgroup NV, for which

HNY,aN, <Y,
Hence,

H <« [><1(HﬂYq)l><le
q#p

Since H is an arbitrary proper subgroup of G, it follows that all subgroup of G
are subnormal. To see that 6) = 1), if Y}, is not normal in G, then since
N¢(Y,) <G is subnormal, there is a subgroup H, for which
N¢(Y,) < H, < G. But this contradicts the fact that N¢(Y}) is self-normalizing.
Hence, Y, < G. Thus, 1)-7) are equivalent and imply 8).

Similarly, if 8) holds but Y, is not normal in G, then there is a maximal
subgroup M < G for which

Y, < Na(Y,) < MaG
which contradicts Theorem 8.7. Hence, Y), < G and 1) holds.
Finally, if 3) holds and N < G is nontrivial, then N N'Y, <Y/ is nontrivial for
some ¢ € P and

NNZ(G)= plédp(N NZ(G)NY,)
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But NNZ(G)NY,=NnNZ(Y, is nontrivial and therefore so is
NNZ(G).O

The hypotheses of the previous theorems hold for all abelian groups.

Corollary 8.12 Let G be an abelian group.

1) (Primary decomposition) Then Gy is the direct product of its Sylow p-
subgroups.

2) (Converse of Lagrange's theorem) If G is finite and n | o(G), then G has
a subgroup of order n.[]

We will add one additional characterization (nilpotence) to Theorem 8.11 in a
later chapter (see Theorem 11.8).

When a Subgroup Acts Transitively; The Frattini Argument

The Frattini argument (Theorem 7.2) shows that if a group G acts on a
nonempty set X and if H < G is transitive on X, then

G = Hstabg ()
and if H is regular on X, then
G = H e stabg(x)

and so stabg () is a complement of H in G. To apply this idea, let G be a finite
group and let

S<HJdG

where S € Syl,(H). Let G act on conj;(S) by conjugation. Since
S® € Syl,(H) for any a € G, it follows that H acts transitively on conjg ().
Hence,

G = Hstabg(S) = HN¢(S)

This specific argument is also referred to as the Frattini argument.

Theorem 8.13 Let G be a finite group and let H < G. If'S € Syl,,(H), then
G = HNg(S)
and if the action of H by conjugation on conjg(S) is regular, then
G = H e Ng(S) O

This theorem can be used to show that the Frattini subgroup of a finite group G
has the property that all of its Sylow subgroups are normal in G.
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Theorem 8.14 (Frattini [12], 1885) If G is a finite group, then the Frattini
subgroup ®(G) has the property that all of its Sylow subgroups are normal in
G.

Proof. If S € Syl,,(®), then S < ® < G and the Frattini argument shows that

G = ONg(S)

But if Ng(S) < G, then there is a maximal subgroup M of G for which
Na(S) <M and so G <M, a contradiction. Hence, Ng(S)=G and
S<G.0O

The Search for Simplicity

The Sylow theorems, along with group actions and counting arguments, provide
powerful tools for the analysis of finite groups. A key issue with respect to finite
groups is the question of simplicity. As we will discuss in a later chapter, the
issue of which finite groups (up to isomorphism) are simple appears to be
resolved, but the resolution is so complex that some mathematicians may still
have questions regarding its completeness and its accuracy.

We have seen that a group of prime-power order p” has a normal subgroup of
each order p* | p". Accordingly, we will do no further direct analysis of p-
groups in this chapter.

Throughout our discussion, p will denote a prime, Y, will denote an arbitrary
Sylow p-subgroup and, as always, n,, denotes the number of Sylow p-subgroups
of GG. Recall that

1) n, =1+ kp for some integer k£ > 0.
2) ny=(G: No(Yy)) | o(G).

Note that if o(G) = p"m, where p f m, then n,, | o(G) if and only if n,, | m.

The following facts (among others) are useful in showing that a group is not
simple:

3) Y, isnormalif and only if n, = 1.

4) 1If (G : H) is equal to the smallest prime dividing o(G), then H < G.

5) The kernel of any action A\: G — Sx is a normal subgroup of G.

6) If H < G,then (G: H°)| (G : H)!. Hence, if o(G) f (G : H)!, then H® is
a nontrivial proper normal subgroup of G.

We will also have use for the fact that if p is prime and 1 < e < p, then ep is the
smallest integer for which p° | (ep)!.
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The ny,-Argument

It happens quite often that for some odd prime p | o(G), the integers 1 + kp do
not divide o(G) unless k = 0, in which case n, = 1and Y, < G. Let us refer to
the argument

n,=1+kp|lo(G) = k=0

as the ny-argument. Note that the n,-argument does not hold if p = 2, unless
o(G) is a power of 2, since 1 + 2k | o(G) for some k > 1.

Example 8.15 If o(G) = 9982 =2 - 7- 23 - 31, then routine calculation shows
that the n; argument holds:

147k |o(G) = k=0

and so Y7 < G and G is not simple.[]

Example 8.16 If o(G)=p"m for n>1, m>1 and pfm, then
n, = (14 kp) | m and so if m < p, then k = 0, whence Y}, < G. Thus, groups
of order

p",2p",...,(p—1)p"

for p prime and n > 1 have Y}, < G and so are not simple.[]

A little programming shows that among the orders up to 10000 (not including
prime powers) there are only 569 orders (less than 6%) that are not succeptible
to the n,-argument for some p. Thus, the vast majority of orders up to 10000 are
either prime powers or have the property that groups of that order have a normal
Sylow p-subgroup.

Counting Elements of Prime Order

If p is a prime and p | o(G) but p? f o(G), then each of the n,, distinct Sylow p-
subgroups of G has order p and so the subgroups are pairwise essentially
disjoint. Hence, G contains exactly n, - (p — 1) distinct elements of order p.
Sometimes this simple counting of elements (for different primes p) is enough
to show than one of the Sylow subgroups is normal.

Example 8.17 Let o(G) =30=2-3-5. Then based on the fact that
n, =14 kp | o(G), we can conclude only that ng € {1,10} and n; € {1,6}.
However, if ng = 10 and n; = 6, then GG contains at least ng - (3 — 1) = 20
elements of order 3 and 24 elements of order 5, totalling 44 elements. Hence,
one of Y3 or Y5 must be normal in G.[J
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Index Equal to Smallest Prime Divisor

If o(G) = pg* where p < q are primes, then Y, < G, because (G : Y;) = p is the
smallest prime dividing o(G). Moreover, it is clear that

G=Y,xY,
Example 8.18 If o(G) = 3 - 52 = 75, then Y5 < G and
G=Y;xY;

Also, 1 + 3k | 25 holds only for k = 0 or k£ = 8 and so ng = 1 or n3 = 25. Note
that if ng = 1, then G = Y3 X Yj is abelian.[]

When o(G) = pq, we can give a fairly complete analysis as follows.

Theorem 8.19 Let o(G) = pq, with p < q primes. Then
G = Cy(b) % C,y(a)

where

b =b*
for some 1 < k < q and kY = 1modq. Moreover, G is cyclic if and only if
pfa—1L

Proof. We have seen that
G =Y, xY, = Cy(b) x Cyla)
Thus, aba™" = b* for some 1 < k < ¢ and repeated conjugation by a gives
b=a’ba? =b"

which implies that k? = 1 mod ¢. Moreover, n, | ¢ and so n, =1 or n, = g.
But n, = 1 ifand only if Y, < G, that is, if and only if G is cyclic and n,, = q if
and only if 1 + kp = ¢, that is, ifand only if p /¢ — 1.00

Example 8.20 Let us return to the case o(G) =30=2-3-5. We saw in
Example 8.17 that one of Y3 or Y; must be normal in G. It follows that
Y53Y5 < G has order 15 and so is cyclic. Hence, Y3, Y; C Y3Y; < G and so both
Y3 and Y5 are normal in G.[J

Using the Kernel of an Action

The kernel of an action A\: G — Sx is normal in GG and this can be a useful
technique for finding normal subgroups, although they need not be Sylow
subgroups.

For example, if G acts on Syl,(G) by conjugation, then the representation map
A:G — Sjp+1 has kernel
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K= () Na®)
YeSyl,(G)

which is a normal subgroup of GG. The problem is that it may be either trivial or
equal to G.

Let o(G) = p™u and o(K) = p°v, where m > 1,u > 1 and pfu. Also, let
n, = kp+ 1. It is clear that K = G is equivalent to n, =1 and implies that
s = m. Conversely, if s = m, then K contains a Sylow p-subgroup S of G. But
the only Sylow p-subgroup of G in Ng(Y) is Y itself and so n, =1 and
K = G. Thus,

K=G & Y,aG & s=m

As to the nontriviality of K, the induced embedding of G/ K into Sy, implies
that

U
77'7,787 k 1 !
p" | (kp+1)
and so p™* | (kp)!. Hence, if k < p, then m — k < s. It follows that if & < m,
then s > 0 and K is nontrivial. Thus,
kE <min{m,p} = K #{1}

We note finally that K has a somewhat simpler form if n,, = u, since then each
Y, is self-normalizing and
K= (Y

Y eSyl,(G)

Theorem 8.21 Let o(G) = p™u where p is prime, m > 1, u > 1 and p J u. Let
ny, =1+ kp.

1) Ifk=0, thenY,<G.

2) If0 < k < min{m, p}, then

K= (] Na®)
YeSyl,(G)

is a nontrivial proper normal subgroup of G of order p°v, where
m—k<s<m-—1andv|w. Inaddition, if k = (u—1)/p, then

K= () VY

YeSyl,(G)

has order p*.]

Example 8.22 If o(G) =108 = 3% -4, then 1 + 3k |4 and so k =0 or k = 1.
Thus, this case is not amenable to the n,-argument. However, if k = 1 then
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Theorem 8.21 implies that

K= (Y

Yesyly(G)
is a nontrivial proper normal subgroup of G of order 9. Thus, G is not simple.

If o(G) =189 =3%-7,then 1 + 3k | 7 and so k = 0 or k = 2. If k = 2, then
Theorem 8.21 implies that
K= (Y

Yesyly(G)
is a nontrivial proper normal subgroup of G of order 3 or 9.

If o(G) =300=22-3-5% thenns =1+ 5k |12 and so k =0 or k = 1 (and
ns = 6). But if £ = 1, then Theorem 8.21 implies that G is not simple.[d

Even when K is trivial and the previous theorem does not apply, we learn that
G — Sip+1, which can sometimes be useful.

Example 823 If o(G) =p(p+1), where p is prime. Then n,=1 or
n, = p + 1. While the previous theorem does not apply, if n,, = p + 1, then

K= () v={1}

YeSyl,(G)

Hence, G — Spy1. As an example, if o(G) = 12 = 3 - 4, then either Y3 <G or
G — S;. But o(G) = 0(Ay) and so in the latter case, G ~ A,4. Thus, if G % A4
then Y3 < G. We will use this fact later to determine all groups of order 12.00

The Normal Interior
If H < (G, we have seen that
(G:H°)|(G:H)

and so if o(G) J (G : H)!, then H* is a nontrivial proper normal subgroup of G.
Hence, if

o(G) = pi'---pi
where p; < --- < p,, are primes and m > 2, then for any k,
e <pr,(G:H)<ewpr = plf(G:H)! = 0oG)[f(G:H)

and so H° < (G is nontrivial.

Theorem 8.24 Let o(G) = p{'---pir where py < --- < p,, are primes and
m > 2. Suppose that ey, < py, for some 1 < k < m.



Sylow Theory 249

1) IfH < G has index (G : H) < ey.py, then H° is a nontrivial proper normal
subgroup of G.

2) In particular, if 1 <n, < eyppy then Ng(Y,,)° is a nontrivial proper
normal subgroup of G.TJ

Example 8.25 Let o(G) = 6201 =32-13-53. Then ng =1+ 3k | 1353,
which implies that ng € {1,13}. If n3 = 1, then Y5 < G. If ng = 13 < 53, then
Theorem 8.24 implies that N¢(Y5)° is a nontrivial proper normal subgroup of
G. Thus G is not simple.[d

Using the Normalizer of a Sylow Subgroup
Let p # g be primes dividing o(G) and let Y, € Syl,(G). Under the assumption
that n, > 1 and so N¢(Y;) < G, suppose that p f n,, that is, p | o(Ng(Y,)) and
that P € Syl,(N¢(Y;)). There are various things we can say about o(N¢(P)).
First, if P < N (Y;), then Ng(Y;) < N¢(P) and so

o(Na(Yy)) | o(Nea(P))

On the other hand, even if P is not normal in Ng(Y;), the fact that
Y, < N¢(Y,) implies that PY; is a subgroup of G. Hence, if PYj is abelian,
then Y, < N¢/(P) and so

o(Yy) | o(Na(P))

In either case, if P is not a Sylow p-subgroup of G but P <« P* € Syl,(G), then
P* < Ng(P), whence

o(P") [ o(Na(P))

These conditions tend to make N¢ (P) large.

Example 8.26 If o(G)=3675=3-52-7% then it is easy to see that
ny € {1,15}. If n; =15, then o(Ng(Y7)) =5-72 Let P be a Sylow 5-
subgroup of Ng(Y7). The number of such subgroups is 1+ 5k | 72 and so
P < N¢(Y7). Hence,

5-7 | o(Ng(P))
Also, P has index 5 in P* € Syl5(G) and so P < P*, whence
5% | o(Ng(P))
and so
52.7%* | o(Ng(P))

Hence, either Ng(P) = G, in which case P <G or else Ng(P) has index 3 in
G and so is normal in G.[J
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Suppose that o(G) = pqu, where p # ¢ are primes that do not divide w. If
p ) ng, that is, if p | o(N(Y)), then Y, < N(Y;) and so Y,Y; < G has order pq.
Hence, if p) (¢ — 1), then Y, Y, is abelian (cyclic) and so Y, < N(Y}). Thus,
q|o(N(Y,)) and son, | o(G)/pg.

Theorem 8.27 If o(G) = pqu, where p < q are primes that do not divide u,
then

pf(¢g—1) and pfn, = n, olG) O
pq
Example 8.28 If o(G) = 1785 = 3 -5 - 7 - 17, then a routine calculation gives
ns € {1,7,85,595} and ;€ {1,35}
But

o(G)
HENTA

3<17, 3f(17—1), 3fni;y = n 35

and so n3 = 1 or ng = 7. Hence, Theorem 8.24 now implies that one of Y3 or
N(Y3)° is a proper nontrivial normal subgroup of G.[

Groups of Small Order

We have already examined the groups of order 4, 6 and 8. Let us now look at all
groups of order 15 or less. Of course, all groups of prime order are cyclic. We
will again denote an arbitrary Sylow p-subgroup of G by Y,.

Groups of Order 4

The groups of order 4 are (up to isomorphism):
1) (4, the cyclic group

2) V = (5 K (Cy, the Klein 4-group.

Groups of Order 6

The groups of order 6 are (up to isomorphism):
1) Cg, the cyclic group

2) Dg = Ss, the nonabelian dihedral (and symmetric) group.
Groups of Order 8

The groups of order 8 are (up to isomorphism):
1) C, the cyclic group

2) C, X (Y, abelian but not cyclic
3) (3 X5 X (Cy, abelian but not cyclic
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4) Dg, the (nonabelian) dihedral group
5) @, the (nonabelian) quaternion group.

Groups of Order 9

Theorem 7.9 implies that the groups of order 9 are (up to isomorphism):
1) Cy, the cyclic group

2) (53X (3, abelian but not cyclic.

Groups of Order 10

If o(G) = 10 = 2 - 5, then Theorem 8.19 implies that

G = <Cl, b>7 O(Cl) = 2,0(b) = 57a,ba71 = b]C

where k> = 1 mod 5, that is, k = 1 or 4. In the former case, ¢ and b commute
and G is cyclic. In the latter case, G = Dyg. Thus, the groups of order 10 are
(up to isomorphism):

1) Cyp =~ C5 K (s, the cyclic group
2) Dy, the nonabelian dihedral group.
Groups of Order 12

We have accounted for three nonabelian groups of order 12: the alternating
group Ay, the dihedral group Di» and the semidirect product
T = C3(a) x Cy(b), where

bab~! = a?
We wish to show that this completes the list of nonabelian groups of order 12.
Assume that G' % A4. Then Example 8.23 shows that Y3 = C3(a) < G and so
G = Cs3(a) x Y, where Yo = Cy(b) or Yy = Co(x) M Co(y).
If G = C3(a) x Cy(b), then
bab'=a or bab ! =d®
In the former case G is abelian and in the latter case G = T'. If
G = Cs(a) x (Ca(z) X Ca(y))

then

2 2

a*=aora” and aY=aora

We consider three cases. If a® = a and a¥ = a, then G is abelian. If ¢ = a and
a¥ = a?, then o(ax) = o(a)o(x) = 6 and

(azy)? = azyazy = ay(zax)y = ayay = a® = 1
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Hence, (axy,y) is generated by two distinct involutions whose product has
order 6 and so Theorem 2.36 implies that G' = Dyy. Finally, if a® = a* = a¥,
then (ar)? =azar =a®=1 and o = (a®)! = a’* =a and so o(axy) =
o(a)o(xy) = 6. Thus, (az,y) is dihedral and G = Dys.

Thus, the groups of order 12 are (up to isomorphism)

1) Cyo =~ CyK (5, the cyclic group

2) (5 X Cy K (5, abelian but not cyclic

3) A, the nonabelian alternating group

4) Do, the nonabelian dihedral group

5) T, the nonabelian group described above.

Groups of Order 14
If o(G) = 14 = 2 - 7, then Theorem 8.19 implies that

G = <a,b>,0(a) =2, O(b) =17, aba,71 = bk

where k> = 1 mod 7, that is, K = 1 or 6. In the former case, G is cyclic. In the
latter case, GG is dihedral. Thus, the groups of order 14 are (up to isomorphism):

1) Ciy =~ C7; X (s, the cyclic group
2) Dyy, the nonabelian dihedral group.

Groups of Order 15

Theorem 8.19 implies that all groups of order 15 are cyclic.

On the Existence of Complements: The Schur-Zassenhaus
Theorem

In this section, we use group actions to prove the Schur—Zassenhaus Theorem,
which gives a simple sufficient (but not necessary) condition under which a
normal subgroup H of a group G has a complement K, thus giving a semidirect
decomposition G = H x K.

Definition Let G be a finite group. A Hall subgroup H of G is a subgroup with
the property that its order o(H) and index (G : H) are relatively prime.(]

The Schur—Zassenhaus Theorem states that a normal Hall subgroup H has a
complement. The tool that we will use in proving the Schur—Zassenhaus
Theorem is the Frattini argument (Theorem 7.2). In particular, we consider the
action of left translation by G on the set R of all right transversals of H and
show that this action is regular, whence

G = H x stabg(R)

for any R € R. So let us take a closer look at transversals and their actions.
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Transversals and Their Actions

Let GG be a finite group and let H be a normal Hall subgroup of GG, with right
cosets

H\G ={H =H,,... H,}

Let R be the set of all right transversals of H. If R = {r,...,r,} € R where
r; € H; forall 7 and if a € GG, then

Har; = aHr;
and so the cosets Har; are distinct. Hence,
aR ={ary,...,ar,} €R
and it is clear that G acts on R by left translation.
Although H need not act transitively on R, we can raise the action of G to an

action on the congruence classes of an appropriate G-congruence on R so that
H does act transitively. The G'-congruence condition is

R=S = aR=aS
forall a € GG, that is,
{ri,cccormt={s1,-..,sm} = AHari,...,ary,} ={asi,...,as;,}

This leads us to try the following. Assuming that R and S are indexed so that r;
and s; are in the same right coset H;, define a binary relation = by

m

R=S if Hns;lzl
i=1

Letting

m

R|S = Hrisfl
i=1

the definition becomes
R=S if R|S=1

This relation is clearly reflexive. Also, since r;s; ! € H for all i, if H is abelian,
then for any R, S, T € R,

(R|S)'=S|R and (R|S)(S|T) = R|T

and so = 1is an equivalence relation on R. Let R/ = denote the set of
equivalence classes of R and let [R] denote the equivalence class containing R.
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Note that if b € H, then r;s; 1 € H implies that

(hR)|S = [[hris; ' = h™(R|S)

i=1

Moreover, since 7; and s; are in the same right coset of H, so are ar; and as;
and so for any a € G,

aR|aS = f[arZ Y(asi)™ —@(Hn ) = (R|9)*
i=1

Hence, aR = oS if and only if R = S. Thus, = is a G-congruence on R and
the induced action is

a[R] = [aR]

Now, H acts transitively if and only if for all R, S € R, there is an h € H for
which [hR] = [S], that is, for which

1= (hR)|S = h"™(R|S)
or equivalently,
h™™ = R|S
But this equation always has a solution in H since m = (G : H) and o(H) are
relatively prime.
The action of H on R/ = is also regular, since [hR] = [R)] if and only if
1= (hR)|R =h"(R|R) =

which implies that i = 1. Hence, if H is a normal abelian subgroup of G, the
Frattini argument implies that

G = H x stabg([R])
forany R € R.

As to the conjugacy statement, any conjugate of a complement of H is also a
complement of H. On the other hand, if

G=HxK
then Theorem 5.3 implies that K € R and so
H x K =G = H x stabg([K])
But K < stabg([K]) and so
K = stabg([K])
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Thus, the set of complements of H in G is precisely the set

{stab([R]) | R € R}

Also, since G acts transitively on R/ =, all stabilizers are conjugate and so all
complements of H are conjugate. We have proved the abelian version of the
Schur-Zassenhaus Theorem.

Theorem 8.29 (Schur—Zassenhaus Theorem—abelian version) I/ G is a finite
group, then any normal abelian Hall subgroup H of G has a complement in G.
Moreover, the complements of H in G form a conjugacy class of sub(G).O

The Schur—Zassenhaus Theorem

The condition of abelianness can be removed from the Schur—Zassenhaus
Theorem. The proof of the general Schur—Zassenhaus theorem uses the Frattini
argument as well, but also uses the Feit-Thompson theorem to establish the
conjugacy portion of the theorem. Let us isolate the portion that uses the Feit—
Thompson Theorem.

Theorem 8.30 Let G be a nontrivial group of odd order.

H G <@

2) G has a normal subgroup K of prime index.

Proof. Part 1) can be proved by induction on o(G). If o(G) = 3, then G is
abelian and G’ = {1} < G. Assume the result holds for groups of odd order
less than o(G) and let o(G) be odd. Then the Feit-Thompson theorem implies
that G is either abelian or nonsimple. If G is abelian, then G' = {1} < G. If G
is nonsimple, then there is a {1} < K <G and so G /K has odd order less than
o(G). Hence, the inductive hypothesis implies that (G/K) < G/K, which
implies that G’ < G. For part 2), since G’ < G, it follows that G has a maximal
normal subgroup K containing G'. Then G/ K is simple and abelian and so has
prime order.[]

Theorem 8.31 (Schur-Zassenhaus theorem) Any normal Hall subgroup H of
finite group G has a complement in G. Moreover, the complements of H in G
form a conjugacy class in G. In particular, any normal Sylow subgroup of G is
complemented.

Proof. We may assume that H is nontrivial and proper. The proof of the
existence of a complement is by induction on o(G). The result is true if
o(G) = 1. Assume it is true for all orders less than o(G). Let H <y, G denote
the fact that H is a normal Hall subgroup of G.

If H has a proper supplement K, that is, if
G=HK

for some K < G, then [ = HN K <y, K and so the inductive hypothesis
implies that K’ = I x J, whence
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G=HK=HIxJ)=HxJ

and so H is complemented.

But since H is a Hall subgroup, if p is a prime dividing o(H), then any
S € Syl,(H) is also a Sylow p-subgroup of G and the Frattini argument implies
that

G=HN

where N = Ng(S). Thus, if N < G, then H is complemented. On the other
hand, if N = G, then S is a normal Sylow p-subgroup of G and so S C G,
whence Z :=Z(S)C G. Since H/Z <y G/Z, the inductive hypothesis
implies that

NI Q
N[>

H
==X
Z

for some K < GG and so K is a supplement of H. But if K < G, then H is
complemented and if K =G, then H =27 is abelian and so H is
complemented in this case as well.

We now turn to the statement about conjugacy. Since any conjugate of a
complement of H is also a complement of H, we are left with showing that any
two complements K and K, of H are conjugate. The proof is by induction on
o(G). Of course, the result is true if o(G) = 1. Assume the result is true for
groups of order less than o(G).

If H contains a nontrivial proper subgroup N that is normal in G, then K;N/N
is a complement of H/N in G /N for each ¢ and so by the inductive hypothesis,

KN (KN\™ KN
N N N

for some a € GG. Hence,
N x Ky =N x K{

and so the inductive hypothesis applied to the group N x Ky < G implies that
K5 and K are conjugates, whence so are K5 and K.

If H does not contain a nontrivial proper subgroup that is normal in GG, then we
can easily dispatch the case o(H) odd with the help of Theorem 8.30, which
implies that H' C H <G and so H' <G, whence H' = {1}, that is, H is
abelian. Then the abelian version of the Schur—Zassenhaus Theorem completes
the proof. So we may assume that o( H) is even, which implies that o(G/H) is
odd.
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Then Theorem 8.30 implies that G has a normal subgroup A for which
H < A<Gand (G : A) = pis prime. Hence,

A=Hx(KiNA) and A=Hx(K;NA)
and the inductive hypothesis implies that
KonNA=(KinA)*
for some a € A. But
(Ki: KiNA) = (KA : A) = (G : A) = p

and so K; N A is a supplement of any Y; € Syl,,(K;), that is,

K; = (K;NA)Y;
Conjugating this for ¢ = 1 by a gives

K = (KynA)YY
and so it is clear that we need to relate Y,* to Y5. But K; N A < K implies that

Y1 <K < Ng(KinA)
and so
Y < Ng(K1NA)* = Ng(K,NA)

Hence, Y> and Y}" are Sylow p-subgroups of N¢ (K> N A), whence Ylba =Y,
for some b € N (K, N A). Conjugating by b gives

KV = (Ko NAY" = (KyNA)Y, = K,
as desired.[]

The Schur—Zassenhaus Theorem leads to the following important corollary.

Corollary 8.32 Let o(G) = nm where (n,m) = 1. If G has a normal (Hall)
subgroup N of order n, then any subgroup H of G that has order m’ dividing
m is contained in some complement of N.
Proof. The Schur-Zassenhaus Theorem implies that there is a K < G for which
G =N x K.Then [NH N K|=m'and

NxH=Nx(NHNK)

Hence, the Schur—Zassenhaus Theorem implies that there exists a € G for
which

H=(NHNK)"<K"

But K* is also a complement of N in G.[O
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*Sylow Subgroups of .S,

In this section, we determine the Sylow subgroups of the symmetric group .S, in
terms of wreath products. First, we need to compute the order of a Sylow p-
subgroup of S,,.

Theorem 8.33 Let p be a prime dividing n! and let
n=ag+ap+--+aup”

be the base-p representation of n, that is, 0 < ay, < p. The largest exponent e of
p for which p© | nlis

L(m) = zm: apM (k)
k=1

where

and so the order of a Sylow p-subgroup of S, is

m

pL(m) _ H pa;\‘lvf(k)
k=1

In particular, the order of a Sylow p-subgroup of S is

pM(k)

Proof. The number of factors in n! = 1 - 2---n that are multiples of p is [n/p]
where | 2] is the floor of z. Among these |n/p] factors, there are [n/p?] factors
that are multiples of p. Thus,

L(m) = [n/p] + [n/p*| + -+ [n/p"]
Using the base-p expansion of n, we can write this as

L<m) = (al + a2p+ st ampm71) + (a2 + aszp + ampm72) + - tap
=ar+as(p+ 1)+ +an(p" 4+ 1)
=ayM(1)+aM(2)+ -+ anM(m) 0O

Let us first determine the Sylow p-subgroups of the symmetric groups ..
Since the order of such a Sylow p-subgroup is p™*), all we need to do is find a
subgroup of S, of size

ko k-1, ...
MK — Pttt

Since
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Mk +1) = pM(k) + 1

it follows that

M(k+1) _ (pM(k))P p

and this puts us in mind of the wreath product, since if D is a finite group and
Q| = |€2| = p, then

p

[Dee@| = |D|"-p
Now, the cyclic group C), acts faithfully on itself by left translation and so
Wi=C, — Sc, =5,
and since the Sylow p-subgroups of S, have order p, they are isomorphic to C),.
Since C), acts faithfully on itself by left translation, the regular wreath product
Wy =C, .0,
acts faithfully on C,, x C}, = C?

p’

Wy — ch ~ sz

that is,

and since
o(Ws) =p" - p=p'tt = p"0
it follows that the Sylow p-subgroups of 5. are isomorphic to 5.
Now, W5 acts faithfully on C’g and C), acts faithfully on itself and so
W3 = (Cp,.Cp) 0,C,
acts faithfully on C?, that is,
W3 — Scs = Sps
and since
o(Ws) = (pt1)r - p=p/ 7t = pM®

it follows that the Sylow p-subgroups of S, are isomorphic to Wi.

In general, if W, _; acts faithfully on C;”l, then the n-fold regular wreath
product

Wy = Wit 0,C, = ((Cy 0,C,) 0,C,)- -+ 0,C,

acts faithfully on CI"} and so W,, < S,». Moreover, since
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O(Wn) = H/anﬂp p= p“w(”_l)p-H _ p]\j(n)

it follows that the Sylow p-subgroups of S are isomorphic to W,.

To determine the nature of the p-Sylow subgroups of S,,, note that if
P={Bi,...,Bn}

is a partition of I,, = {1,...,n} and if o; is a permutation of B;, then the map
O=01 X X 0opp

defined by o(k) = o(k) if k € By, is a permutation of I,,. It follows that if
|Bk| = ny, then

T=5,XK---KS,,
is isomorphic to a subgroup of S,,.
We would like to find a partition P of I, = {1,...,n} whose block sizes are
powers of p. We can do this from the base-p representation of n:
n=ay+ap+--+ a,p”
by letting
P={Byjlj=1,...,a;}

be any partition of I, consisting of a;. blocks of size p*. Each symmetric group
Sp,,; 1s isomorphic to a subgroup of S, where we simply let o € Sp, ; be the
identity on I, \ By ;. If Y ; is a Sylow p-subgroup of Sp, , then the direct
product

Y = Y,
k,j g

is isomorphic to a subgroup of S, of order

m

H pak.]w(k)
k=1

and since Y has the correct order, it is isomorphic to a Sylow p-subgroup of .S,,.

Theorem 8.34 Let p be a prime dividing n! and let
n=a +ap+- -+ ampm

be the base-p representation of n, thatis, 0 < aj, < p.
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1) The Sylow p-subgroups of S, are isomorphic to the n-fold regular wreath
product

W, = ((Cp0,Cp) 0, Cp)--- 0, C,y
2) The Sylow p-subgroups of S,, are isomorphic to a direct product
Y= (V)" B (Yp)" B B (Y )™
where Y is a Sylow p-subgroup of S,:.1
Exercises

1. Prove that if H is a normal p-subgroup of a finite group G, then H is
contained in every Sylow p-subgroup of G.

2. Let the order of G be a product pgr of three distinct primes, with

p < g < r. Show that if one of n, or n, is equal to 1, then G has a normal

subgroup of order gr.

Find all Sylow subgroups of .S5. What are n, and n3?

Find all Sylow subgroups of A;. What are no and n3?

Show that A5 has no subgroup of index 4.

Show that no group of order 56 is simple.

Let o(G) = p™(4p+ 1) for m > 1. Show that n, =1 or n, =4p+1 or

else p=2andn, = 3.

8. Show that there are no simple groups of order p?q, where p and ¢ are
primes.

9. Let n = p*m with (m, p) = 1. Show that if p* J (m — 1)!, then there is no
simple group of order n. This holds if %k is “sufficiently large” relative to
o(G)/p".

10. Show that there is no simple group of order 858.

11. Show that there is no simple group of order 324.

12. Show that there is no simple group of order 3393.

13. Show that there is no simple group of order 4095.

14. Show that any group of order 561 is abelian.

15. Let o(G) = 60. Prove that if ns; > 1, then G is simple. Hint: Use the fact
that groups of order 15, 20 and 30 have a normal subgroup of order 5.

16. Let k > 3 be an odd integer. Show that every Sylow p-subgroup of the
dihedral group Dy, is cyclic.

17. How many Sylow 2-subgroups does A; contain?

18. Let N < G and suppose that S < N is a normal Sylow p-subgroup of N.
Prove that S is normal in G.

19. Let G be a finite group. Prove that GG is the group generated by all of its
Sylow subgroups.

20. Let G be a finite group and let NV < G. Let S be a Sylow p-subgroup of G
not contained in N. Show that SN /N is a Sylow p-subgroup of G/ N.

21. Let H be a p-subgroup of a finite group G. Let a ¢ H be a p-element. Is
(H, a) necessarily a p-subgroup of G? Does it help to assume that H < G?

Nk w
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22.

23.

24,
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A subgroup H of a group G is abnormal if
a€ (H,H)

for all a € G. Prove that if K <G and S € Syl,(K), then Ng(S) is

abnormal in G. In particular, the normalizer of a Sylow p-subgroup of G is

abnormal.

Let G be a finite group and let H, K < G.

a) Suppose that H < G and K < G. Show that if S is a Sylow p-
subgroup of G, then S = (SN H)(SNK).

b) Show that if we drop the condition that both subgroups be normal, then
the conclusion of the previous part may fail.

¢) Assume that H < G. Show that for each prime p | o(G), there is some
Sylow p-subgroup S for which SN H is a Sylow p-subgroup of H,
SN K is a Sylow p-subgroup of K and SN H N K is a Sylow p-
subgroup of H N K.

d) Assume that H < G. Show that for each prime p | o(G), there is some
Sylow p-subgroup S for which S = (S N H)(S N K).

(S. Abhyankar) Let GG be a finite group and let p be a prime dividing o(G).

Let p(G) be the subgroup of G generated by the union of the Sylow p-

subgroups of G. Show that p(G) < G. A finite group G is a quasi p-group

if p(G) = G. Prove that the following are equivalent:

a) G is a quasi p-group.

b) G is generated by all of its p-elements.

¢) G has no nontrivial quotient group whose order is relatively prime to p.



Chapter 9
The Classification Problem for Groups

The Classification Problem for Groups

One of the most important outstanding problems of group theory is the problem
of classifying all groups up to isomorphism. This is the classification problem
for groups. More precisely, isomorphism of groups is an equivalence relation.
Therefore, a set of canonical forms or a complete invariant constitutes a
theoretical solution to the classification problem for groups. Of course, it may
not be a practical solution unless some form of “algorithm” is available for
determining the canonical form or invariant of any group.

The classification problem for groups is unsolved and seems to be exceedingly
difficult. It is even beyond present day ability to classify all finite groups. All
finite abelian groups have been classified. Indeed, we shall see in a later chapter
that a finite group is abelian if and only if it is the direct sum of cyclic groups of
prime power orders. Moreover, the multiset of prime powers (which need not be
distinct) is a complete invariant for isomorphism. All finite simple groups seem
to have been classified. We will elaborate on this in more detail below.

The Classification Problem for Finite Simple Groups

The classification problem for finite simple groups is generally believed by
experts in the field to have been solved. The classification theorem is the
following:

Up to isomorphism, a finite simple group is one of the following:

1) A cyclic group C), of prime order.

2) An alternating group A,, for n > 5.

3) A classical linear group.

4) An exceptional or twisted group of Lie type.

5) A sporadic simple group (these include Mathieu groups, Janko groups,
Conway groups, Fischer groups, Monster groups and more).

S. Roman, Fundamentals of Group Theory: An Advanced Approach, 263
DOI 10.1007/978-0-8176-8301-6_9, © Springer Science+Business Media, LLC 2012
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The effort to solve this problem spanned the years from roughly 1950 to 1980
and involves something on the order of 15,000 pages of mathematics produced
by a variety of researchers, some of which is as yet unpublished. As a result, a
second effort, led by three group theorists: Daniel Gorenstein, Richard Lyons,
and Ron Solomon has been underway to collect this massive effort into a single
source, which now spans five volumes and will, when finished, treat most (but
not all) of the overall project.

The shear massiveness of this work has prompted some to believe that it is too
soon to say categorically that the classification theorem as it is currently
formulated is indeed a theorem. This viewpoint is further supported by the fact
that, in the ensuing years since 1980 several gaps, some of which were quite
serious, have appeared. Fortunately, all of the known gaps have since been
filled.

As an example, Michael Aschbacher [2] writes in his 2004 article The Status of
the Classification of Finite Simple Groups as follows:

I have described the Classification as a theorem, and at this time I
believe that to be true. Twenty years ago I would also have
described the Classification as a theorem. On the other hand, ten
years ago, while I often referred to the Classification as a theorem, I
knew formally that that was not the case, since experts had by then
become aware that a significant part of the proof had not been
completely worked out and written down. More precisely, the so-
called “quasithin groups” were not dealt with adequately in the
original proof. Steve Smith and I worked for seven years,
eventually classifying the quasithin groups and closing this gap in
the proof of the Classification Theorem. We completed the write-up
of our theorem last year; it will be published (probably in 2004) by
the AMS.

Let us take a very broad look at the approach taken to solve the classification
problem for finite simple groups. The abelian case is easily settled, so we will
concentrate our remarks on finite nonabelian simple groups.

We have already mentioned the famous result of Feit-Thompson (whose proof
runs about 255 pages itself) that says that every nonabelian finite simple group
has even order. This implies that any nonabelian finite simple group G' contains
an involution b. Moreover, the centralizer C'(b) is a nontrivial proper subgroup
of (3, since the center of G is trivial.

Thus, every nonabelian finite simple group has a nontrivial proper involution
centralizer C'(b). At least this gives us a starting point for an investigation:
Perhaps one can relate the structure of the whole group G to that of C'(b).
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Indeed, we will show that if G is a nonabelian finite simple group with
involution centralizer C'(b), then

(@) (|C(b;| + 1>!

The significance of this result is that |C'(b)|, and therefore the right-hand side
above, does not depend on the structure of G nor on the nature of C'(b) beyond
its size. Thus, for a given even number ¢, there are only a finite number of
possible orders of groups that have an involution centralizer of size ¢. But for
each finite order, there are only finitely many isomorphism classes of groups of
that order, because there are only finitely many multiplication tables of that size.
It follows that there are only finitely many isomorphism classes of nonabelian
finite simple groups that have an involution centralizer of size q.

Thus, the size of an involution centralizer does at least restrict the number of
possible isomorphism classes of its parent groups. This raises the question of
whether more details about the structure of an involution centralizer (and related
substructures) might do more than just restrict the number of isomorphism
classes for its parent.

Indeed, in 1954, Richard Brauer proposed that for a finite nonabelian simple
group GG with involution centralizer C'(b), the possible isomorphism classes of
G are determined by the isomorphism class of C(b). Moreover, during the
period of 1950-1965, Brauer and others developed methods for determining the
isomorphism classes of all finite simple groups that have an involution
centralizer isomorphic to a given group H. However, involution centralizers
alone prove not to be sufficient to solve the classification problem for
nonabelian finite simple groups.

Note that an involution centralizer C'(b) is also the normalizer N¢ ((b)) of the 2-
subgroup (b). More generally, the normalizer N¢(H) of a p-subgroup H of a
group G is called a p-local subgroup of G. Thus, an involution centralizer is a
special type of 2-local subgroup of GG. The search for nonisomorphic nonabelian
finite simple groups involves looking at the entire p-local structure of a group
and can be roughly described as follows:

1) If the current list of nonisomorphic nonabelian finite simple groups is not
complete, let G be a minimal counterexample. Thus, any proper subgroup
of GG is on the list.

2) Show that the p-local structure of G resembles that of a simple group S that
is already on the list.

3) Use this resemblance to show that G is isomorphic to S. If not, then
perhaps G must be added to the list.

So let us proceed to the promised theorem.
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Involutions

Let G be an even-order group whose set Z of involutions has size n > 1 and let
I'=7TU{1}

If s is an involution, then for any involution ¢, we have
t = s(st) = sz

where x = st has the property that

This property of x is very important.

Definition Let G be a group.
1) Anelementx € Gisreal by a € G if

2t ="

Also, x is real if it is real by some element a. Let R be the set of real
elements of G.
2) Anelement x € G is strongly real by s if
rt =
where s is an involution. Also, x is strongly real if it is strongly real by
some involution s. Let S denote the set of strongly real elements of G.OJ

Thus, every pair of involutions is related by a strongly real element. It is not
hard to see that Z, S and R are each closed under conjugation and so each set is
a union of conjugacy classes. Associated with the equation

T =x

are some important sets.

Definition Let G be a group.
1) Forz € G, let

C'z)={acG|az*=z""}

be the set of all elements by which x is real. The extended centralizer of
reGis

C*(z) =C(x)UC'(2)

where C(x) is the centralizer of .
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2 a) ForxeS,let
Alx)={seT|z*=a""}

be the set of involutions by which x is strongly real.
b) Fors e T, let

Sis)={reG|z* ="}

be the set of strongly real elements by the involution s.[]

Let us take a look at these sets. Note first that € G is real if and only if C'(x)
is nonempty and = € G is strongly real if and only if A(z) is nonempty.
C*(z)
Ifx € Rand a,b € C'(z), then
RO R
and so a~ b € C(x). Thus, C'(x) is a coset of C'(z),
C'(z) = aC(x)
and so
|C'(@)] = |C ()]
Thus, forz € R and a € C'(x),

C*(z) =C(z)UaC(x) = { g(x) ifrel

(x)UaC(z) ifxeR\T
where if 2 € R\ 7', then
(C*(x): C(x)) = 2
A(=)
Ifx € S, then A(z) C C'(z) and so
[A(z)] < |C(2)|
But we can do a bit better in some cases. Since A(1) = Z, we have
[A)| =n
and if ¢ € 7, then A(z) C C(z) \ {1} and so
[A(z)] < [C(2)] -1
Also, for any g € G, it is easy to see that
A(z?) = A(z)?
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and so
[A(2%)] = [A(z)]
that is, | A(z)| is constant on conjugacy classes of G.
S(s)
If s € Z, then we have seen that
7' C s8(s)
Conversely, if z € S(s) for s € Z, then

lp=1

(sx)® = swsx = a~
andsot = sz € Z'. Hence,
' = 58(s)
and so

[S(s) = [sS(s)| =n +1

The Fundamental Relation
Now we can count the size of the set

U={(s,2) €T xS|z*=z""}
in two ways. From the point of view of an s € 7,

U= I8(s)| =n(n+1)

seT

From the point of view of an z € S,

U= A()]

zeS

Thus,
tn=3 |A@)

zeS

©.1)

To split up the sum on the right, we choose a system of distinct representatives

(SDR)
M =A{xo,z1,...,2+}

for the conjugacy classes of G, where

2) {x1,...,x,} is an SDR for the conjugacy classes in Z
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3) {@ui1,-..,2,} is an SDR for the conjugacy classes in S \ 7’

Then since |A(xz)| is constant on conjugacy classes and since
|2¢| = (G : C(x)), equation (9.1) can be written

4= 3 JA@)IG : Cla)

=0

Splitting this sum further gives

n+n—n+Z|Axl (G : C(xy)) Z|sz (G : C(x))

i=u+1
<n+z |C(z:)] — 1)(G : C(xy)) Z |C(z)|(G : C(x))
i=u+1
<n+ulGl = (G:Cz:) + (v—u)|G|
i=1
=n+v|G| - Z |2¢|
i=1
=[G
and so
n*+n < |G| 9.2)
To get further estimates, note that
n=|I|=> (G:C(x) 9.3)

i=1

Now, if we assume that the center Z(G) of G has odd order, then it contains no
involutions and so C'(z;) < G for x; € Z. Hence, if m is the smallest index
among all proper subgroups of G, we have

n=|Z|>mu 9.4
We can make a similar estimate for
[S|=1+n+ i (G :C(x))
i=utl
and since z; € S\ Z', the terms in the final sum satisfy
(G: C(zi) = (G : CT(@))(C7 (i) : Clai)) = 2(G : C7(4))

Therefore, if we assume that C*(x;) is also proper in G, then
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(G :C(z)) > 2m
and so
IS| > 14+ n+2m(v—u) 9.5)

The condition that C*(z;) is proper in G is a bit awkward, but is satisfied if we
assume that GG has no subgroups of index 2.

The inequalities (9.4) and (9.5) together imply that

Y < S| —1+n
- 2m

and so (9.2) implies that

IS|—1+n

2
n n <
tns 2m

G|

Some elementary algebra, using the fact that |S| < |G/, gives

() ) (")
2\ n n 2
We have proved a key theorem.

Theorem 9.6 (R. Brauer and K. A. Fowler [4], 1955) Let G be a group of
even order with exactly n > 1 involutions. Assume that Z(G) has odd order.
Then either G has a subgroup of index 2 (which must be normal) or G has a
proper subgroup H with

(G:H)§<G|/n—|—1> -

2

Equation (9.3) implies that for any involution b, which we can assume is z;, we
have

n u 1 1
ERR I ERE0]

that is,

G|
<|C(b
<o)
Hence, if G fails to have a (normal) subgroup of index 2, then it has a subgroup

H for which
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(G:H)§<C(b%|+1>

Since H is a proper subgroup of G, it follows that the normal interior H° is a
proper normal subgroup with (G : H°) | (G : H)!. In particular, if G is simple,
then o(G) | (G : H)! and so

oG) ‘ (|C(b;| - 1>!

Thus, we arrive at our final goal.

Theorem 9.7 Let G be a finite nonabelian simple group and let b € G be an
involution. Then the centralizer C'(b) is a proper subgroup of G and

O(G)‘(|C(b;|+1>! -

This is the result that we promised at the beginning of this section and is as far
as we propose to take our discussion of the classification problem for
nonabelian finite simple groups.

Exercises

1. Let G be a group.
a) Under what conditions does the set S = Z U {1} of elements of G of
exponent 2 form a subgroup of G'?
b) Under what conditions does the set .S’ form a normal subgroup of G?
c¢) If S is a subgroup of GG, what can you say about the strongly real
elements of the group?
2. Prove that S is closed under conjugation.
3. Prove that if a finite group G has a nontrivial real element, then G has even
order.
4. Find the real elements in the symmetric group S,. Find the strongly real
elements.
5. In the alternating group A,,, show that any permutation that is a product of
disjoint cycles of length congruent to 1 modulo 4 is real.
6. Find the real elements of the dihedral group Ds,. Find the strongly real
elements.
7. Find the real elements of the quaternion group (). Find the strongly real
elements.



Chapter 10
Finiteness Conditions

There are many forms of finiteness that a group can possess, the most obvious
of which is being a finite set. However, as we have observed, chain conditions
are also a form of finiteness condition. Another type of finiteness condition on a
group G is the condition that G has a finite direct sum decomposition

G=D{X...X D,

that cannot be further refined by decomposing any of the factors D; into a direct
sum; that is, for which each D; is indecomposable. In this chapter, we explore
these finiteness conditions. First, however, we generalize the notion of a group.

Groups with Operators

As we have seen, a group G has several important families of subgroups, in
particular, the families of all subgroups, all normal subgroups, all characteristic
subgroups and all fully-invariant subgroups. Each of these families can be
characterized as being the family of all subgroups that are invariant under a
certain subset of End(G). In particular, a subgroup H of G is

1) normal if and only if it is invariant under Inn(G),
2) characteristic if and only if it is invariant under Aut(G),
3) fully invariant if and only if it is invariant under End(G).

We can also say that the subgroups of GG are invariant under the empty subset of
End(G).

This point of view leads us to define the concept of groups with operators,
which will include all of these special cases. Intuitively speaking, a group with
operators is a group GG with a distinguished family £ of endomorphisms of G.
Rather than associate a subgroup of End(G) with G directly, we use a function
f:Q — End(G) from a set © into End(G). Here is the formal definition.

S. Roman, Fundamentals of Group Theory: An Advanced Approach, 273
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Definition Let €2 be a set. An Q2-group is a pair
(G, f:Q — End(Q))

where G is a group and f: Q) — End(G) is a function. It is customary to denote

the endomorphism f(w) simply by w and thus write f(w)a as wa (some authors

write a*). An Q-group is called a group with operators and ) is called the

operator domain. Let G be an ()-group.

1) An Q-subgroup H of G is an Q-invariant subgroup H of G. We use the
notations H <q G and H <q G to denote an Q)-subgroup and a normal §)-
subgroup of G, respectively. We also use the notations

Q-sub(G) and Q-nor(G)

to denote the set of all Q-subgroups of G and the set of all normal -
subgroups of G, respectively.

2) If G and H are Q-groups, an Q-homomorphism from G to H is a
homomorphism o:G — H that is compatible with the group operators,
that is,

o(wa) = w(oa)

for all a € G. A bijective Q-homomorphism is an -isomorphism, and
similarly for the other types of homomorphisms. We write 0: G ~q H to
denote an Q-isomorphism from G to H. The existence of an 2-isomorphism
from G to H is denoted by G ~q H.

3) If H € Q-nor(G), then the Q2-quotient group (or Q-factor group) is the
quotient group G/ H with operators w € ) defined by

w(aH) = (wa)H

for all a € G, that is, defined so that the canonical projection Ty is an -
homomorphism.]

Let (G, f:Q — End(G)) be an Q-group. Then a subgroup H < G is an Q-
subgroup of G if and only if the restricted operators

Q= {f(W)]a |w e}

are operators on H, that is, if and only if H is an Q|y-group. We will always
think of an Q-subgroup H of G as an 2| y-group, although we will use notation
such as K <q H in place of K <gq, H. Thus, Q-subgroupness is transitive,
that is,

H<qG, K<qoqH = K=<oG

Note that an 2-subgroup H of G may be an operator group in other related
ways. To illustrate, if = Inn(G), then H is an Q|y-group as well as an
operator group under its own family Inn(H) of inner automorphisms. But in
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general, Inn(H) is a proper subset of Inn(G)|y, since conjugation by
a € G\ H need not be an inner automorphism of H.

If © is the empty set, then an (2-group is nothing more than an ordinary group
and it is customary to drop the prefix “€2-". Also, in the most important cases, {2
is a subset of End(G) and f: Q2 — End(G) is the inclusion map, in which case f
is suppressed. This applies to the cases Q =Inn(G), Q= Aut(G) and
Q= End(G).

Example 10.1 Let V' be a vector space over a field F'. Each a € F' defines an
endomorphism of the abelian group V' by scalar multiplication. Thus, a vector
space over F' is a group with operators F'. An F'-subgroup is a subspace and an
F-homomorphism is a linear transformation.]

The Lattice of Q2-Subgroups of an Q2-Group

Let G be an -group. Then the intersection and the join of any family
F ={H; | i€ I} of Q-subgroups of G is also an §2-subgroup of G. Hence, the
meet and join in 2-sub(G) is the same as the meet and join in sub(G). In other
words, Q2-sub(G) is a complete sublattice of sub(G).

We leave it to the reader to show that the 2-subgroup (X)q generated by a
nonempty subset X of G is

(X)g=(wr|ze X,we)

An Q-subgroup H of an Q-group G is finitely €2-generated if H = (X)q for
some finite set X. This generalizes the normal closure of a subset X of G.

The Q2-Isomorphism and Q2-Correspondence Theorems

The concept of universality given in Theorem 4.5 and the consequent
isomorphism theorems have direct generalizations to groups with operators. Let
G be a Q-group and let K <oG. Let Fo(G; K) be the family of all pairs
(H,0:G — H), where 0:G — H is an -homomorphism and K C ker(c).
Then the pair

(G/K,m:G — G/K)

is universal in Fqo(G; K), in the sense that for any pair (H,0:G — H) in
Fa(G; K), there is a unique mediating {2-homomorphism 7: .S — H for which

TOTK =0

To see this, note that Theorem 4.5 guarantees the existence of a mediating
homomorphism 7. But if 7x and o are 2-homomorphisms, then for any w €
anda € G,

T(w(aK)) = 1((wa)K) = o(wa) = w(ca) = wr(aK)

and so 7 is also an 2-homomorphism. Also, (2-universality enjoys the same
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uniqueness up to isomorphism as ordinary universality (2 =()). The Q-
isomorphism theorems now follow in the same manner as before.

Theorem 10.2 (The Q-isomorphism theorems) Let G be an Q2-group.
1) (First Q-isomorphism theorem) Every 2-homomorphism o:G — H
induces an Q-embedding 7: G /ker(c) — H defined by

7 (gker(o)) = o(g)

and so

ker(o) ~aim(o)

2) (Second Q-isomorphism theorem) I/ H, K € Q-sub(G) with K <G,
then HN K € Q-nor(H) and
HK _ H
K "YHNK

3) (Third Q-isomorphism theorem) [f H < K < G with H, K € Q-nor(G),
then K /H € Q-nor(G/H) and

G /K&
H/ H 'K
4) (The S2-correspondence theorem) Let N € Q-nor(G). If Q-sub(N;G)

denotes the lattice of all Q-subgroups of G that contain N, then the map
T:sub(N; G) — sub(G/N) defined by

7(H) = H/N
preserves S-invariance in both directions and so maps Q-sub(N;G)
bijectively onto Q-sub(G/N).O
Q2-Series and 2-Subnormality

We can now generalize the notion of series and subnormality to groups with
operators. This will provide considerable time savings in our later work.

Definition Let G be an Q2-group.
1) An Q-series in G is a series

g:G()S]Gl Sl ﬂGn

in which every term is an Q)-subgroup of G.

2) A refinement of an Q-series G is an (-series H obtained from G by
including zero or more additional Q-subgroups between the endpoints. A
proper refinement is a refinement that includes at least one new
subgroup.]
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We review the usual suspects in the context of (2-series:
a) IfQ = (), an Q-series is just a series.

b) IfQ = Inn(G), an Q-series is a normal series.

¢) IfQ = Aut(G), an Q-series is a characteristic series.
d) IfQ = End(G), an Q-series is a fully invariant series.

Of course, if {G;} is a nonproper Q-series for G, we can dedup the series by
removing any duplicate subgroups to obtain a proper series.
Definition Let G be an Q-group. Two equal-length )-series
G:GoydGy 494G, 1 4G,
and
H:Hy<H, <---<H, 1 qH,

in G with common endpoints Gy = Hy and G,, = H,, are Q-isomorphic (also
called Q2-equivalent) if there is a bijection f of the index set {0,...,n — 1} for
which

Gin1/Gi =a Hygiy1 /Hy) -

As usual, when 2 = (), we use the term isomorphic. Thus, for example, the
series

{1}« C, < (C, X Cy)
and

{1}« Cy < (C, M Cy)
are isomorphic.
Q-Subnormality

Q)-subnormality of a subgroup H < G requires not just that H be subnormal
and Q-invariant, but that the entire series that witnesses subnormality be an 2-
series.

Definition Let G be an Q-group. An Q-subgroup H of G is 2-subnormal in G,
denoted by H I <G, if there is an Q-series from H to G. We use the
notations

subng(G) and subng(N;G)

to denote the family of all Q)-subnormal subgroups of G and the family of all -
subnormal subgroups of G that contain N, respectively.l]

We can now generalize Theorem 4.24.
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Theorem 10.3 Let G be an Q-group and let H, K € Q-sub(G).
1) (Transitivity)

H 4<9gK and K <G = H JdoG
2) (Intersection) If L € Q-sub(G), then
H<d<dgK = HNLJd<dgKNL
In particular,
H<K<G, H4doG = HJdgK
and
H<ddoG, KddoG = HNK 4G
3) (Normal lifting) I[f N € Q-nor(G), then
H<9<99K = HN<<gKN
4) (Quotient/unquotient) [f N € Q-nor(K) and N < H < K, then
H<9<90K <« H/N<<d9K/N O

Composition Series

If Gy, G, <q G, then refinement is a partial order on the set of all proper -
series from Gy to GG, (assuming that this set is nonempty). Maximal proper -
series are particularly important.

Definition Let G be an Q-group and let Gy, G, <qG. An Q-composition
series from G to G, is a proper )-series

GU<G1<]~~~<]G,,,

that is maximal in the family of all proper Q-series from Gy to G, under
refinement. If there is an Q)-composition series from Gy to G, we will write

dCompSerg(Gy; G,) or ICompSern(G,,) when Gy = {1}

The factor groups of an Sl-composition series are called S2-composition

factors.

1) A maximal series (2 = () is simply called a composition series and the
factor groups are called composition factors.

2) A maximal normal series (2 = Inn(G)) in G is called a chief series or
principal series and the factor groups are called chief factors or principal
factors.[]

When the endpoints of a series are clear from the description of the series, we
will drop the “from-to” terminology. To characterize maximal series, we use the
following concept.
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Definition 4 nontrivial Q-group G is Q-simple if G has no nontrivial proper
normal Q-subgroups.[]

The Q-correspondence theorem implies the following.

Theorem 10.4 A proper -series is an ()-composition series if and only if its
factor groups are Q-simple.[]

Thus, a series
G:Gog<Gra---<G,,

in G is a composition series if and only if its factor groups Gy.1 /G, are simple
and G is a chief series if and only if each factor group Gj1/Gj is a minimal
normal subgroup of G /G}..

It is clear from Theorem 10.4 that any 2-series that is 2-isomorphic to an 2-
composition series is also an {2-composition series. Also, if we remove an
endpoint from an {2-composition series, the result is also an {2-composition
series (with different endpoints, of course). Finally, if

Go<---<Gp and Gp<---<G,
are {2-composition series in (7, then so is their concatenation
G[) SURRERN Gn

The Extension Problem

An extension of a pair (N,Q) of groups is a group G that has a normal
subgroup N’ isomorphic to N and for which G/N’ is isomorphic to Q. The
extension problem for the pair (N, Q) is the problem of determining (up to
isomorphism) all possible extensions of (IV,Q). Note that any external
semidirect product G = N x4»() is an extension of (N,Q). However,
semidirect products alone do not solve the extension problem. For example, Z is
an extension of (2Z, Z,) but Z is not a semidirect of any of its nontrivial proper
subgroups.

The importance of the extension problem can be clearly seen in the light of
composition series. Suppose that we can solve the extension problem and that
we can determine (up to isomorphism) all simple groups. The simple groups are
precisely the groups that have a composition series of length 1:

{1} = Go 1Gy
Next, for each G, we solve the extension problem for all pairs of the form

(G4, Hy), where H, ranges over the simple groups. The solutions Go are
precisely the groups that have composition series of length 2:
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GUQGlﬂGQ

where G5/G; ~ H;. Continuing to extend by all possible simple groups
produces all possible groups that have composition series, and this includes all
finite groups. Thus, in particular, if we can solve the extension problem and if
we can determine all finite simple groups, we can determine all finite groups.
Unfortunately, a practical solution to the extension problem does not exist at this
time.

The Zassenhaus Lemma and the Schreier Refinement Theorem
Let G be an Q2-group. Our next goal is to show that any two (2-series in G' with
the same endpoints have refinements that are (2-isomorphic. This result is called
the Schreier refinement theorem and has two extremely important
consequences, as we will see.
First, let us recall that the projection
(AdB)— (H LK)

of A < Binto H < K is the extension

H(ANK)<H(BNK)
Moreover, when A, B, H and K are Q2-subgroups, then so are H(A N K') and
H(BNK) and the Zassenhaus lemma (Theorem 4.12) generalizes directly to
Q)-subgroups.
Theorem 10.5 (Zassenhaus lemma [37], 1934) Let G be an Q-group and let

A<B and H<K
where A, B, H, K € Q-sub(G). Then the reverse projections

(AdB)— (HLK) and (H<K)— (A<4B)

have Q-isomorphic factor groups, that is,

H(BNK) _ AKNB)

HANK) ®AHNB) =

Now we can prove the Schreier refinement theorem. Let H < K be (-
subgroups of an 2-group G and consider a pair of {2-series from H to K:

GH=G1G;4---4G,, =K
and
H:H:HOS]HISI"'SIHWLZK

Projecting each of the m steps of H into each of the n steps of G creates a new
-series with mn steps, some of which may be trivial. In view of the preceeding
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remarks, the new (2-series is a refinement of G. Similarly, projecting each of the
n steps of GG into each of the m steps of H creates a new (2-series with mn
steps. Moreover, since the two sets of projections consist of inverse pairs, the
Zassenhaus lemma implies that the resulting series are §2-isomorphic.

Theorem 10.6 (Schreier refinement theorem, Schreier [29], 1928) Let G be
an Q-group. Then any two $-series in G with the same endpoints have 2-
isomorphic refinements.[]

Consequences of the Schreier Refinement Theorem

The Schreier refinement theorem has two very important consequences. First,
suppose that there is an (2-composition series C in G' from H to K. Then any
proper €)-series

‘H:Hy< Hy< ---< H,

with -subnormal endpoints between H and K can be refined to an (-
composition series. To see this, note that since Hy and H,, are {2-subnormal, the
series H can be expanded to an (2-series K from H to K and the Schreier
refinement theorem implies that C and K have {2-isomorphic refinements to
proper series C' and K', respectively. But ' = C is an Q2-composition series and
therefore so is K, which contains a refinement of H.

The second consequence of the Schreier refinement theorem is that any two 2-
composition series with the same endpoints are 2-isomorphic.

Theorem 10.7 Let G be an Q-group and let H < K be Q-subgroups of G.

1) Suppose that there is an Q-composition series from H to K of length n. If
Hy < H, are Q-subnormal subgroups of G between H and K, then any €)-
series from Hy to H, can be refined to an Q)-composition series and so has
length at most n.

2) (The Jordan—-Hélder Theorem) Every two Q-composition series from H
to K are Q-isomorphic. In particular, they have the same length.(]

The Jordan—Holder Theorem allows us to make the following definition.

Definition Let G be an Q-group and let H and K be Q-subgroups of G. If
ICompSerq (H; K), then the 2-composition distance d(H, K) from H to K is
the length of any S-composition series from H to K. The distance
d(K) =d({1}, K) is called the S2-composition length of K. For chief series,
the terms chief distance and chief length are also employed.[]

Of course, the composition distance is positive definite (when it is defined), that
is, if 3CompSerq(H; K), then d(H, K) > 0 and

dH,K)=0 & H=K
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The Existence of Q2-Composition Series

Any finite group has an {2-composition series. For abelian groups, composition
series and chief series coincide and an abelian group has a composition series if
and only if it is finite, since each factor group must have prime order. Thus, not
all groups have composition or chief series.

The existence of an {2-composition series between 2-subnormal subgroups H
and K of an Q-group G can be characterized in terms of chain conditions on §2-
subnormal subgroups. If 3CompSerq(H; K), then any (2-series from H to K
has length at most d(H, K'). Hence, Theorem 1.5 gives the following.
Theorem 10.8 Let G be an Q-group and let H, K € subng(G). Then

dCompSerg(H; K) <« subng(H; K) has BCC O

Proof of the following is left to the reader.

Theorem 10.9 Let G be an Q)-group.
1) (Subgroup) If K € subng(G) and H < K, then

JCompSerg(H;G) = JCompSerg(H; K) and ICompSerqg(K; G)
and
d(H,G)=d(H,K)+d(K,G)
2) (Quotients) If N € Q-nor(G), then
JCompSerg(N;G) <« FCompSerg(G/N)
and
d(N,G)=d(G/N)
3) (Extensions) [/ N € Q-nor(G), then
JCompSerq(N), JCompSerg(G/N) =  ICompSerq(G)
4) (Direct products) I/ G and H are Q)-groups, then
JCompSerg(G) and I3CompSerg(H) <« FCompSerg(G X H)

and

d(GBH) = d(G) + d(H) O

The Remak Decomposition

Let us recall Theorem 5.12.
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Theorem 10.10 (Remak) If a group G has either (and therefore both) chain
condition on direct summands, then G has a Remak decomposition

G=R/ X.---XR,

that is, each Ry, is indecomposible.[]

The question of uniqueness of a Remak decomposition is rather more
complicated than the question of existence. Recall that if

G=H X..-XH,
then the kth projection map pp,: G — Hj, is defined by
PH, (a) = [a’}Hk

where [a]p, is the kth coordinate of a. Moreover, pg, is idempotent and normal
as an endomorphism of G. Note also that the sum pp, + -+ + pp, Is projection
onto H; X --- X H; and so is an endomorphism of G.

The Krull-Remak—Schmidt Theorem

Suppose now that

G=H/X---XH, (10.11)
with projection maps g, ..., 7H, and

G=K/ X---XK, (10.12)
with projection maps kg,,...,Kk,, where the factors Hj; and Kj are

indecomposable and n. < m.

In searching for possible isomorphisms between the H-factors and the K-
factors, we recall Theorem 5.25 as it applies to the restricted projection maps

7|k Kj— Hp and kg |g: Hy — K;

Namely, if (7#,|x,)(kx,|5) € Aut(H;) and im(kg,|g,) < K, then 7y |5, and
KK, | g, are isomorphisms.

Note however that im(kx;|g,) < K, since if h € H; and k € K, then

ik | g (W)E™" = ki (k) kr, (h) ki, (k) " = ki, (khk ™) € im(k| 1)

Thus, we have the following.

Theorem 10.13 Let
G=H/X.---XH, =K/ X---XK,,

where the factors Hy, and K}, are indecomposable. If the composition
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aij = (TulK;) o (kx |m): Hi — H;
of the restricted projection maps is an automorphism of H;, then the maps
7TH1|KJ: Kj ~ Hi and KK]|H,:H1' ~ K]'

are isomorphisms.[]

In attempting to show that a composition is an automorphism, we are reminded
of Fitting's lemma. We have assumed that H; is indecomposable. Also, since the
restriction and composition of normal maps is normal, «; ; is normal and so has
normal higher images. Thus, if we assume that G has BCC on normal

subgroups, then Fitting's lemma implies that «;; is either nilpotent or an
automorphism for all ¢, j.

To see that for each 7, not all of the maps «;; can be nilpotent, note that for
J# ks
Qi+ Qi = (WHIHK} + T k) |H = WH,(/ij + k) |a,

which is an endomorphism of H; and so the images im(c; ;) and im(cy ;)
commute elementwise. Also,

THAK, Tt kK, = T (kK o+ REK,) = T,
and so
a1+ Qg =T |H = L,

which is not nilpotent. Hence, Theorem 4.3 implies that o ; is not nilpotent for
some j. It follows from Fitting's lemma that for each ¢, there is a j for which
«;; € Aut(H;) and so

7TH,¢|K]5KJ‘ ~ Hi and KI{7|H¢:Hi ~ Kj

Now, we can make a significant improvement to this by noticing that if
K; = Hj, for some k # i, then

o j = (tu k) (kx|5) = (7| m,) (ke ) =0

and so if we delete from the sum ) ;a,; all terms indexed by a j for which
K; e {H,...,H,}\ {H;}, the sum remains unchanged and so is not nilpotent.
Hence,

7TH,|K7:K]' ~ IT[Z and "{K]|H1:Hi ~ Kj

for some j for which K; ¢ {Hy,..., H,} \ {H;}.

Now suppose that after possible reindexing of the K's, there is a k> 1 for
which
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G:Kl|><]~'[><]Kk,1|><|Hk|><l~~~|><|Hn (1014)
with projections 1, ..., it,, Where
N = ki | Hi = K;

forall 1 <i <k — 1. We may also assume that I}, # K; for all j > k or else
we can replace Hy by K (reindexed to Kj). This certainly holds for k = 1.
Then there is a j > k and we may assume that j = &, for which

7THk|KA.:KA:%Hk and /\A- ::KKk|Hk:Hk:%Kk-

Moreover, since 7wy, maps K isomorphically onto Hj; and maps the
complement

Hpy=H XX Hp g X Hpy X--- X H,
to {1}, it follows that
Hyy N Ky = {1}
Thus, if we replace Hy, by K in (10.14), the result is a direct sum
Gi=Ki X XK X Hypg XX H,
and our goal is to show that G; = G. To this end, if
Hky = H1 oot ppe1 =+ flepr + oo g
then py, + pg) = 1o and the map
0 = K, fte + pr)
is a normal endomorphism of G with im(¢) C K H(;). To show that 0 is
surjective and so G' = K} H(y,), it is sufficient to show that 6 is injective.
Now, any a € G has the form a = xh for v € H, and h € Hj. But for any
T € Hyy,
0(z) = K (T) iy (z) = ©
and any h € Hy,
0(h) = K, pe(h) iy (h) = ki, (h)
and so
O(zh) = xkk, (h)

and since Hgy N Ky = {1}, it follows that 6(xh) implies = =1 and
kK, (h) = 1. But kg, |m,: Hi =~ K} and so h = 1. Thus, 6 is injective.
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It follows that
G=K X XK, XHg. XX H,
for all 1<k<n and A\; = kg,|g,: Hr ~ K;; and so this holds for all
k=1,...,n.In particular, n = m.
Note also that since rr, (H;) = K;, the map
A=Nmy, + -+ T, = kg, T, + 0+ KK, TH,
is a surjective normal endomorphism of GG and so A € Aut(G). Moreover,
A Hy) = K,
We can now summarize.
Theorem 10.15 (The Krull-Remak—Schmidt Theorem) Let G be a group that
has BCC on normal subgroups. Suppose that
G=H X XH,=K X- XK,
where all factors H; and K; are indecomposable. Then n = m and there is a
reindexing of the K;'s and a normal automorphism X\ of G for which
N H, ~ K;
foralli=1,...,nandforeach1 <k <n,
G=K{X-- XK, XHj4™X---XH, O

True Uniqueness

The Krull-Remak—Schmidt Theorem gives uniqueness of the terms of a Remak
decomposition up to isomorphism. Let us now consider the question of when a
group G has an essentially unique Remak decomposition, that is, a Remak
decomposition that is unique up to the order of the factors. First suppose that

G=H X--XH,=K X--XK,

are Remak decompositions of G (where n > 1). Then the Krull-Remak—
Schmidt Theorem implies that there is a normal automorphism A: G — G for
which AH;, = K, (after reindexing). Hence, if Hj is invariant under every
normal automorphism of G, then K = AH;, < Hj, and so Kj; = Hy for all k&
and G has an essentially unique Remak decomposition.

By way of converse, suppose that G has an essentially unique Remak
decomposition

G=H X..-XH,

with projections {7y, ..., m,}, but that there is a normal endomorphism X\ of G
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for which AH; £ H;. Then there is a k£ > 1 for which w3 A # 0 on H, that is,
there is an © € H; for which 1 # m\(x) € Hj,.
The set
Ky ={h-mA(h) | h € H}
is easily seen to be a normal subgroup of G and K # H,, since
x-mpA(z) € Ky \ Hy
But it is easy to see that
G=K XHyX - -XH,

Moreover, if K is decomposable, then there would be a Remak decomposition
of GG consisting of more than n terms, which is false. Hence, this is a Remak
decomposition of G that is distinct from the previous decomposition. We have
proved the following.

Theorem 10.16 Let G have BCC on normal subgroups and let
G=H X.-.-XH,

be a Remak decomposition of G. The following are equivalent:

1) This Remak decomposition of G is essentially unique .

2) Hj, is invariant under all normal endomorphisms of G.
3)  Hy is invariant under all normal automorphisms of G.00

If a: H; — Z(G) is a nonzero homomorphism, then we can build a normal
endomorphism A\: G — G by specifying that

NP ifk =i
=0 ifk#4

The map A is normal since for any a € G, h; € H;, hy, € Hj, where k # 1,
A(RY) = Ah; = (Ah)® and  A(hE) =1= (Ahp)®

Thus, if H; is not A-invariant, then Theorem 10.16 implies that the Remak
decomposition of G is not unique.

Conversely, suppose that the Remak decomposition of GG is not unique and so
there is a normal endomorphism A of G for which 7|y # 0 for some j # 1.
Then for h; € H; and h; € Hj,

AR = M) = Alhi)

which shows that A|g,: H; — Z(G). Hence, mj\|p,: H; — Z(H;) is a nonzero
homomorphism.



288 Fundamentals of Group Theory

Theorem 10.17 Let G have BCC on normal subgroups and let
G=H X---XH,

be a Remak decomposition of G.
1) The following are equivalent:
a) This Remak decomposition of G is essentially unique.
b) Every homomorphism o: H; — Z(Q) satisfies o: H; — Z(H;).
¢) There are no nonzero homomorphisms \: H; — Z(H;) for i # j.
2) If G is either perfect or centerless, then G has an essentially unique Remak
decomposition.
Proof. For part 2), if G = G’, then H; = H/ for all i and so if \: H; — Z(H)
for j # i, then for a,b € H;,

A[a,b]) = [Aa, Ab] =1
and so |y, = 0. If G is centerless, the result is immediate.]

Exercises

1. Give an example of an infinite group with a composition series.
2. Find isomorphic refinements of the two series

{0}<pZ<«Z
and
{0} <qZ<Z

where p and ¢ are distinct primes.
3. Prove that if G and H are groups and if

G {1} =Gy<«Gy<--- <G, =G
and
H:{l}=Hy<H;<---<H, =H
are composition series for G and H, respectively, then the series

(B <«(GiB{1}) <
< (Gn H {1}) < (Gn & Hl) Q-4 (Gn H Hm,)

is a composition series for G H H.

4. How many composition series does a cyclic group of order p” have?

5. Prove that the multiset of composition factors of a group is an invariant
under isomorphism, but not a complete invariant.

6. Prove the uniqueness part of the fundamental theorem of arithmetic using
the Jordan—Hélder Theorem.

7. Let G = C} be the direct product of n cyclic groups of prime order p. How
many compositions series does G have? Hint: GG is a vector space.
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Prove that a subgroup of a group with a composition series need not have a
composition series as follows. Let I = {1,2,... } and let G = S be the
restricted symmetric group on . (Recall from an earlier exercise that this is
the set of all permutations of [ that have finite support.) For each n > 1, let

G,={0€G|ox=uxforz>n}
and let

Hn - {U S Gn | U|{1,...,n} is even}

a) Show that G = J,.,Gn.

b) Show that H = |J,,.,H, hasindex 2 in G andso H < G.

¢) Show that H is simple.

d) Show that H contains an infinite abelian subgroup A.

e) Show that A has no composition series but that H does.

Let P be an isomorphic-invariant property of finite groups. Let G be a
group that has P and for which if N < G, then G/N has P. Prove that the
following are equivalent:

a) G has a normal series

{1}:GOS]G1§]§]G7L:G

whose factor groups have P.

b) G has the property that any nontrivial quotient group of G has a
nontrivial normal subgroup that has P.

Such a group G is said to be hyper-P.

Prove the following facts:

a) Foranya,b € G,

[ab]u, = [a]n,[b]H,

and so the projection map pi: G — Hj is a homomorphism (and an
endomorphism of (7).
b) Foranya € G,

c) The projection map commutes with any inner automorphism ~, of G
and therefore preserves normality.

Let G have BCC on normal subgroups and suppose that H is a group for

which G X G ~ HX H. Show that G ~ H.



Chapter 11
Solvable and Nilpotent Groups

Classes of Groups

By a class K of groups, we mean a subclass of the class of all groups with the

following two properties:

1) K contains a trivial group
2) K is closed under isomorphism, that is,

GeK and H~G = HekK

For example, the abelian groups form a class of groups. A group of class K is
called a KC-group and K-group H that is a subgroup of a group G is called a KC-
subgroup of G. A class K is a trivial class if it contains only one-clement

groups.

Closure Properties

We will be interested in the following closure properties for a class C of groups:

1) (Subgroup)
Gek, HS<G = HeK

2) (Intersection and Cointersection) For H, K < G,

HKeK = HNKekKk

G G

E,KGK = HﬂKEK
3) (Quotient and Extension) For N < G,

GekK = G/NeK
N,G/NeK = GeKkK

S. Roman, Fundamentals of Group Theory: An Advanced Approach,
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4) (Seminormal Join, Normal Join and Cojoin) For H, K < G,

H,K € K,onenormalinG = HKEeK
H,K € K,bothnormalinG = HKecK
G G G
E, ? ek = —HK e
5) (Direct product)

HKeK = HXKEeK

These properties are not independent.

Theorem 11.1 The following implications hold for a class K of groups:
1) subgroup = intersection

2) quotient = cojoin

3) seminormal join = normal join = direct product

4) subgroup and direct product = cointersection

Thus, a class that is closed under

subgroup, quotient, seminormal join, extension

is closed under all nine properties above.
Proof. Part 1) is clear. For part 2), we have

G G /HK
HK ~ H/ H
For part 3), the direct product H B K is the seminormal join of H B {1} and

{1} B K, each of which is in K if H, K € K. For part 4), if G/H,G/K € K,
then

ek

G G _ G
A sl
HnNK H K
via the map o: g(H N K) — (gH, gK).O

ek

The following definition will prove very convenient.

Definition Let K be a class of groups.

1) A K-series is a series whose factor groups belong to the class K.

2) A Ks-group is a group that has a K-series and a K, -group is a group that
has a normal K-series.

3) The Ks-class is the class of all Ks-groups and the KC,,-class is the class of
all IC,,-groups.[]

Our main interest is in the /C; and /C,, classes in which K is either the class of
cyclic groups or the class of abelian groups. However, we are also interested in
a class of groups that is not a IC; or KC;, class, namely, the nilpotent groups.
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Definition

1) a) A cyclic series is a series that has cyclic factor groups.
b) An abelian series is a series that has abelian factor groups.
¢) A central series for a group G is a normal series

{1}:GOS]G1§]S]Gn:G
for which
Gri1/Gr < Z(G/Gy)

forall k.
2) As shown in the table below, we have the following definitions.

Series Normal Series
Abelian | Solvable = Solvable
Cyclic | Polycyclic | Supersolvable
Central Nilpotent

a) A group is solvable if it has an abelian series.

b) A group is polycyclic if it has a cyclic series.

¢) A group is supersolvable if it has a normal cyclic series.
d) A group G is nilpotent if it has a central series.[]

Note that in previous chapters (see Theorem 7.10), we have found it convenient
to use the term central series even when the series does not start at the trivial
group, which requires that we distinguish carefully between series in G and
series for G.

As the title of this chapter suggests, our primary interest is in nilpotent and
solvable groups. It is clear that nilpotent groups are solvable. Also, all abelian
groups are nilpotent and Theorem 7.10 shows that all finite p-groups are
nilpotent:

finite p-group
or } = nilpotent = solvable
abelian

Note, however, that S3 is solvable but not nilpotent. Also, the symmetric groups
S, are solvable if and only if n < 5. In fact, if n > 5, then S, has only one
nontrivial proper normal subgroup A,,, which is not abelian.

Operations on Series

In order to study the closure properties of series-based classes of groups and of
the nilpotent class, we must consider various operations on series. Indeed, the
operations of intersection, normal lifting, quotient and unquotient as defined in
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Theorem 4.10 can be applied to each step in a series. Specifically, we have the
following operations on series. Let

g:GOSI"'SIGn

be a series in G.

1) The intersection of G with H < G is
G6NH:GyNnHJL---4G,NH=H
2) The normal lifting of G by N < G is
GN:GyN & --- 4 G,N
3) The quotient of G by N < G is

GN GV 4 Gl
N N TSN

4) The unquotient of the series
G: % d---d %
where N < Gy is
GIN:Gpd---4G,
5) For H; < G, the concatenation of the series
H:Hy<---<Hp
and
K:Hp < Hpgn
is the series
H+«K:Hy<--<H, < dHpip
6) For the series
H:Hy <--- < H,
and
G:Gp<--- 4Gy

in G, the interleaved series " ~ G is formed as follows. First, if
s = max{n, m}, then we extend whichever series is shorter by repeating
the upper endpoint (H,, or GG,;,) an appropriate number of times to make the
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resulting series of equal length s. Then

HNg<H0EE|G()) Sl <H1EE|G()) S’ (H1EE|G1) Sl
(HyBGy) 4 (H,BG) D---  (H BG)

Note that the intersection, normal lifting, quotient, unquotient and interleave of
normal series is normal. However, the concatenation of two normal series need
not be normal.

These operations are used as follows.

Theorem 11.2 Let G be a group and let H < G and N < G. Let

a) G be a series for G

b) 'H be a series for H

¢) N be a series for N

d) Q be a series for G/N.

Then

1) (Subgroup) G N H is a series for H

2) (Seminormal join) N x HN is a series for HN

3) (Quotient) GN /N is a series for G/ N

4) (Extension) N x (Q 1 N) is a series for G

5) (Direct product) If' G; is a series for G; for i = 1,2, then G ~ Gy is a
series for G1 B G».00

Closure Properties of Groups Defined by Series

Theorem 4.10 and the previous theorems provide the following facts about
closure of Ks-classes and /C,,-classes.

Theorem 11.3 Let K be a class of groups.

1) (Subgroup) If K is closed under subgroup, then the KCs and IC,, classes are
closed under subgroup.

2) (Seminormal join) If K is closed under quotient, then the Ks-class is
closed under seminormal join.

3) (Quotient) If K is closed under quotient, then the ICs and IC,, classes are
closed under quotient.

4) (Extension) The K -class is closed under extension.

5) (Direct product) The K, and IC,, classes are closed under direct product.

In particular, if IC is closed under subgroup and quotient, then the K-class is
closed under the following eight operations:

6) subgroup

7) quotient

8) intersection

9) cointersection

10) cojoin

11) direct product
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12) seminormal join

13) extension

and the IC,,-class is closed under all of these operations except seminormal join
and extension.

Proof. For 1), if IC is closed under subgroup, then (normal) C-series are closed
under intersection and so the K and K, classes are closed under subgroup. For
2) and 3), if K is closed under quotient, then K-series are closed under normal
lifting. Hence, N« HNN and GN /N are C-series. It follows that the /Cs-class is
closed under seminormal join and the IC; and IC,, classes are closed under
quotient. For 5), if G; is a (normal) K-series for G;, then G; ~ G is a (normal)
K-series for G H G».O0

Thus, since the classes of cyclic groups and abelian groups are closed under
subgroup and quotient, we have the following.

Theorem 11.4 The polycyclic, solvable and supersolvable classes are closed
under the following eight operations (except where noted).

1) subgroup

2) quotient

3) intersection

4) cointersection

5) cojoin

6) direct product

7) seminormal join (except for supersolvable)

8) extension (except for supersolvable).(]

Let us now turn to the closure properties of nilpotent groups.

Theorem 11.5
1) Central series are closed under intersection, normal lifting, quotient and
unquotient.
2) The class of nilpotent groups has the following seven closure properties:
a) subgroup
b) quotient
¢) normal join (this is Fitting's theorem, to be proved a bit later)
d) direct product
e) intersection
/) cointersection
g) cojoin
but not extension.
Proof. Part 1) follows from Theorem 4.10 and Theorem 4.11. The statement
about extensions in part 3) can be verified by looking at S3.[1
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Nilpotent Groups

We now undertake a closer look at nilpotent groups. We will prove that a finite
group G is nilpotent if and only if it is the direct product of p-groups and so
Theorem 8.11 shows that finite nilpotent groups have many other interesting
characterizations.

Higher Centers

An extension H < K in G is central in GG if and only if

K¢
H — H
and so the largest subgroup K of G for which H < K is central in G is the

subgroup K for which
K G
S 72
w=(ir)

With this in mind, we define a function ¢ = (¢ on nor(G) by

2(§) - e

N N

for N < . Note also that

and so (¢(N) C G.

Writing ¢¥({1}) as ¢¥(1), the proper series
dHedmedme -

is called the upper central series for G and each (*(1) is called a higher
center of G. The first higher center is the center Z(G) of G.

To see that the upper central series ascends more rapidly than any other central
series of the form

{1} =Gy <G <Gy, D -+
we have ((Gy) > Gpy for all k and it is clear that
Gr < ¢M(1)

holds for k£ = 0. If this holds for a particular value of k, then the monotonicity
of ¢ implies that
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Gri1 < ((Gr) < C(¢F(D) = ¢ (1)
Hence, G}, < ¢*(1) for all k.

Theorem 11.6 Let G be a nilpotent group. The upper central series
dedmed®e -

for G is characteristic and ascends more rapidly than any other central series
for G, that is, if

(1} =Gy< Gy AGy <
is central in G, then
Gr < ¢t

Sforall k > 0.

1) G is nilpotent if and only if the upper central series reaches G.

2) If G is nilpotent, then all central series for G have length greater than or
equal to the length of the upper central series for G.TJ

The higher centers have some important applications.

Theorem 11.7 Let G be nilpotent, with higher centers (*(1).
1) IfH <G, then

H¢M1) < HEH(D)
2) IfN <G, then
Nt ={1y = N1 <2(6)

As a consequence,

3) G has the property that every subgroup is subnormal

4) G has the center-intersection property

5) Every chief'series for G is central.

Proof. For part 1), since [G, ¢*"1(1)] < ¢¥(1), Theorem 3.41 implies that

[H¢E (), HSH (1)) = [H¢ (1), HI[HG (1), ¢ )

But each factor on the right is contained in H¢*(1) and so H¢*(1) < HCF(1).
Part 3) follows from part 1), since we may lift the upper central series for G by
H to get a series from H to G, whence H is subnormal in G.

For part 2), since [¢¥*1(1), G] < ¢*(1) and [N, G] < N, it follows that
(NN ¢ (D), 6l < N (L) = {1}
and so N N¢*1(1) < Z(G). For part 4), there is a largest k for which
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N N¢k(1) = {1} and so N N ¢F*L(1) is a nontrivial subgroup of Z(G). For
part 5), the factor group Gj1/G); of a chief series G for G is a minimal normal
subgroup of the nilpotent group G/G. and so the center-intersection property
implies that G..1 /G, is central. Thus, G is central.[]

We can now augment Theorem 8.11 by adding the nilpotent condition.

Theorem 11.8 The following are equivalent for a finite group G':
1) G is nilpotent.

2)  Every Sylow subgroup of G is normal.

3) G is the direct product of its Sylow p-subgroups

G= XY,
peEP

4) IfH < G, then

H = p@»(H ny,)

5) (Strong converse of Lagrange's theorem) If n | o(G), then G has a
normal subgroup of order n.

6) G is the direct product of p-subgroups.

7)  Every subgroup of G is subnormal.

8) G has the normalizer condition.

9)  Every maximal subgroup of G is normal.

10) G/®(Q) is abelian.

Proof. Theorem 8.11 states that 2)—10) are equivalent. Moreover, Theorem 7.10

implies that a finite p-group is nilpotent and therefore so is any direct product of

finite p-groups. Hence, 6) implies 1). Theorem 11.7 shows that 1) implies 7).01

Lower Centers
In terms of commutators, an extension H < K in G is central in G if and only if
[K,G] <H

and so H = [K,G] is the smallest subgroup K of G for which H < K is
central in G; in fact, [, G] C K. Thus, if we define the “commutator with G”
function I = I'; on sub(G) by

lo(K) = [K,G]

then ' (K) is the smallest subgroup of G for which I'(K) < K is central in
G. The (possibly infinite) descending central series

L c@) (@) crG) =a

is called the lower central series for G and each T'*(G) is called a lower center
of G. The first lower center is the commutator subgroup I'(G) = G’.
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An induction argument shows that the lower central series descends more
rapidly than any other central series, in the sense that if

- dG 4G 4Gy =G
is central in GG, then
(@) < Gy
for all k > 0. For if I'*(G) < G}, then the monotonicity of " implies that
'“+4@) =1(T*G) < T(Gi) < G
Theorem 11.9 Let G be a group. The lower central series
T @) (@) crG) =a

for G is characteristic and descends more rapidly than any central series for G,
that is, if

4Gy 4G LGy =G
is central in G, then
Fk(G) < Gy

forall k > 0.

1) G is nilpotent if and only if the lower central series reaches {1}.

2) If G is nilpotent, then all central series for G have length greater than or
equal to the length of the lower central series for G.[J

The commutator function ' has some simple but useful properties that are
consequences of Theorems 3.40 and 3.41.

Theorem 11.10 Let G be a group and let H, K, L < G.

) T'p(K)2G

2) Th(K)=Tk(H)

3) Tu(KL) =Tu(K)'y(L) and Uk (L) =y (L)L (L)
4) Ty is deflationary, that is,

Iy(K)< H

In fact,

Hence, forall k > 1,
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5) IfN <Gand N < HNK, then forany k > 1,

o (HY RN

6) Fork>1,

T (HK) = 11 Lap--Ta(B)
Ay, Ap,BE{H K}

Proof. Part 5) holds for k£ = 1 since

FK/N<E> _ [%%] _[H,KIN _Tg(H)N

N N N N

and if it holds for a particular value of %, then
H H\ K
k41 _ k
i () = [ (7))

_ Ik (H)N K

N 'N
_ [Tk (), KIN

N
T (H)N

and so this holds for all &k > 1.

For part 6), we have

Tyi(HK) =Ty(H)Dx(H)Dy(K)Tx(K) = [ Ta(B)
ABETH K}

and an easy induction proves the general formula.[]
Nilpotency Class

Theorem 11.9 and Theorem 11.6 imply that for a nilpotent group, the upper and
lower central series have the same length.

Definition Let G be a nilpotent group. The common length of the upper and
lower central series is called the nilpotency class of G, which we denote by
nilclass(G).0O

Moreover, if G is nilpotent and
G: {1} =Gy<---<2G,,, =G

is a central series for G of length m, then
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g (G) < Gr < ¢G(1)
forall k = 0,...,m, where I'(G) = {1} and ¢'(1) = G if i > nilclass(G).
The nilpotent groups of class 0 are the trivial groups and the nilpotent groups of
class 1 have Z(G) = G or equivalently, G' = {1} and so are the nontrivial

abelian groups. A group G has nilpotency class 2 if and only if either of the
following conditions holds:

1) {1} < G' <G and[G',G] = {1}, or equivalently,
{1} <G <ZG) <G
2) {1} < Z(G) < G and

2(G V- G
Z(G))  Z(G)
or equivalently, G is not abelian but G/ Z (@) is abelian.

Theorem 3.42 implies that G’ < Z(G) if and only if

[[a,b], ¢] = [a, [b, c]]
for all a,b, ¢ € G. Hence, for nonabelian groups, this condition is equivalent to
being nilpotent of class 2.
Theorem 11.11 Let G be nilpotent.
1) IfH <@, then

nilclass(H) < nilclass(G)
2) IfN 4G, then

nilclass(G/N) < nilclass(G)

3) (Fitting's theorem) The join of two normal nilpotent subgroups of a group
G is nilpotent. In fact, if H, K < G, then

nilclass(H K) < nilclass(H ) + nilclass(K)

Proof. The first two parts follow from Theorem 11.10. For part 3), Theorem
11.10 implies that

Dhk(HK) = [I ra-Ta®
Al,”.,Ak,BE{H,K}

for all k£ > 1. Now, suppose that nilclass(H ) = ¢ and nilclass(K) = d and let
k = ¢ + d. Then each factor on the right above has the form
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L:FAI"'FA (B)

c+d

Among the subgroups Ay, ..., A. 4, B, suppose there are h H's and k K's,
where h + k =c+d+ 1. Then either h > c+1 or k> d+ 1 and we may
assume without loss of generality that h > ¢ + 1. Since I'x is deflationary,
removing all I'k's from the expression for L results in a possibly larger
subgroup

A (k) ifB=K
-\ YH) ifB=H

However, in the former case,
[y (K) =Dy Ty (K) = Ty T (H) < T ' (H)
and so
L<M<Ty'(H)<Ty(H)={1}
Hence,
Py (HK) = {1}
which implies that H K is nilpotent of class at most ¢ + d.[J

An Example

We now describe a family of groups showing that for any ¢ > 0, there are
nilpotent groups of nilpotency class c. Let M,,(R) be the family of all n x n
matrices over a commutative ring R with identity and let U = UT'(n, R) be the
unitriangular matrices over R. (Recall that a matrix is unitriangular if it is
upper triangular, with 1's on the main diagonal.) Denote the (i, j)th entry in M
by M, ;. For k>0, the kth superdiagonal )M (k) of a matrix M are the
elements of the form M; ;.

For 0 < k <n —1, let N, be the set of all n x n matrices over R with 0's on or
below the kth superdiagonal, that is, for A € M,,(R),
AeN, & A j=0forallj<i+k
It is routine to confirm that
NgNm C Nt
In particular,
NN, € N;,
For k > 0, let

Upg={I}+ Ny ={I+A| Ae N}
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To see that Uy, is a subgroup of U, we have
UpUe = ({1} + No)({I} + Ni) S {1} + Ni + Ni + Np Ny, € Uy,
and if A € Ny, then since A" = 0 for some u > 0, it follows that
(I+A) ' =T-A+A*— ... £ A €U,
As to commutators, if A € N, and B € N,,,, then

[[+AT+B=I+A)I+B)(I+B)I+A)"
=(I+A+B+AB)(I+B+ A+ BA)™!
=(I+X)T+Y)!
=I+(X-V)I+Y)!

where
X=A+B+AB and Y =B+ A+ BA
Moreover,
X—-Y =AB—BA € Nitms1

implies that [ + A, I + B] € Uj,+1 and so

Uk, Un] < Ukms1
Taking m = 0 gives

[Uk, U] < Upt1 < Uy

which shows both that U is normal in U and that Uj.; < Uy, is central in U.
Thus, the series

{I}:Un,1<1~~~<1U1<1U0:U

is central and so U is nilpotent of class at most n — 1.

On the other hand, let E; ; denote the matrix with all Os except for a 1 in the
(i, j)the position. Then for ¢ # j + 1, an easy calculation shows that

U+ Eij I+ Ejj] =1+ Eijn
In particular, if n > 3, then
I+ E 9, I+ Ey3]=I1+E3
and so I'(G) = [G, G] # {I}. Also, if n > 4, then
I+ E3,]1+Es4]=I1+EFE4
and so I'’(G) = [I'(G), G| # {I}. More generally,
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[I + El,nfla I+ Enfl,n] =1+ El,n 7é 1
and so I'""%(G) # {I}, which shows that U is nilpotent of class n — 1.
Solvability

We now turn to a discussion of solvable groups.
Perspective on Solvability

Solvable groups have played an extremely important role in the study of the
location of the roots of polynomials over a field F'. Let us pause to describe this
role in general terms. For more details, we refer to reader to Roman, Field
Theory [27].

If F is a subfield of a field £/, we say that ' < F is a field extension.
Associated to each field extension F' < E' is a group Gp(E), called the Galois
group of the extension and defined as the group of all (ring) automorphisms o
of F that fix the elements of F', that is, for which ca = a for all @ € F'. It turns
out that the properties of the “simpler” Galois group can often shed considerable
light on properties of the “more complex” field extension.

To illustrate, one of the principal motivations for the development of abstract
algebra since, oh say 3000 B.C., has been the desire (expressed in one form or
another) to find the roots of a polynomial p(x) with coefficients from a given
base field F'.

In fact, we now know that for any nonconstant polynomial p(x) of degree d,
there is an extension F of F, called an algebraic closure of I, that contains a
full set of d roots for p(x). Moreover, lying between the fields F' and F is the
smallest field F containing these roots of p(z), called a splitting field for p(z).
The desire to express the roots of p(z) by arithmetic formula (similar to the
quadratic formula) or to show that this could not be done is what motivated
Galois to first define some version of what we now know as a group.

The idea of expressing the roots of a polynomial p(x) by formula means that,
starting with the elements of the base field F', we can “capture” all of the roots
of p(x) through a finite number of special types of extensions of F. In
particular, for each extension, we are allowed to include an nth root of an
existing element and only whatever else is required in order to make a field.

Specifically, for the first extension, we may choose any uy € F' and any root
ro = \/uy of the polynomial 2™ — uy where ny > 1. Then the first extension is

F < F(Yu)

where F(%/ug) is the smallest subfield of F containing F and 7. Repeated



306 Fundamentals of Group Theory

extensions produce a tower of fields of the form

F < F(Y/uw) < F(Yuo, Vur) < -+ < F(Yug, ..., /ur)

where each u; is an element of the immediately preceeding field. This type of
tower of fields is called a radical series. If all of the roots of a polynomial p(z)
lie within a radical series over F’, then we say that the polynomial equation
p(z) =0 is solvable by radicals. (For simplicity, we assume that F' has
characteristic 0.)

It is not hard to show that a polynomial equation p(xz) =0 is solvable by
radicals if and only if the roots of p(x) can be captured within a finite tower of
fields

FSF(OQ) SF(QhQQ) < SF(alv"'vam)

where each field has prime degree over the previous field, that is, the dimension
of each field as a vector space over the previous field is a prime number.

Now let E be the splittting field for p(x) in F. If the radical series above does
capture the roots of p(x), that is, if F < F(ay,..., ), then taking Galois
groups (which reverses inclusion) gives the descending sequence

G:Gr(E) > Gp)(E) > -+ > Gpa,....an)(E)
But
GF(al,“.,a,”)(E) < GE(E) = {L}

and so the sequence G reaches the trivial group. Galois showed that (in modern
terminology) G is an abelian series and so Gp(FE) is solvable. Thus, Galois
proved that if p(z) = 0 is solvable by radicals, then its Galois group Gz (E) is
solvable. He also proved the converse.

Now, an element o € Gp(FE) of the Galois group fixes the coefficients of p(x),
since they lie in F'. Hence, o must send a root r of p(x) in E to another root of
p(x) in E, that is, the elements of Gy (E) are permutations of the set of roots of
p(z) in E. Moreover, since E is generated by these roots, each o € Gp(FE) is
uniquely determined by its behavior on these roots. Thus, one often thinks of
Gp(E) simply as a subgroup of the permutation group S,, where

n = deg(p(z)).

In fact, there are many cases in which Gz (FE), thought of as a subgroup of .S, is
actually S, itself. For example, it can be shown for any prime p, the Galois
group of the splitting field of any irreducible polynomial f(z) € Q[z] of degree
p with exactly two nonreal roots is .5,
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However, S,, is not solvable for n > 5, since A, is simple and so the only
nontrivial series for .S, is {¢} < A,, < S,,, which is not abelian. Thus, the roots of
the polynomials described above cannot be captured within a radical series, that
is, these polynomials are not solvable by radicals.

Note that this shows that there are individual polynomials that are not solvable
by radicals. Thus, not only is there no general formula, similar to the quadratic,
cubic and quartic formulas, for the solutions of arbitrary quintic equations, but
there are even individual quintic equations whose solutions are not obtainable
by formula!

Galois used his remarkable theory in his paper Memoir on the Conditions for
Solvability of Equations by Radicals of 1831 (but not published until 1846!), to
show that the general equation of degree 5 or larger is not solvable by radicals.
(Proofs that the 5th degree equation is not solvable by radicals were offered
earlier: An incomplete proof by Ruffini in 1799 and a complete proof by Abel in
1826.)

Thus, the notion of solvability arose through the desire to settle the question of
whether we could solve all polynomial equations by simple formula. Of course,
solvable groups are important for other reasons. In fact, we will see that the
class of solvable groups has a sort of super-Sylow theorem, to wit, if G is
solvable of order mn where (m,n) = 1, then G has a (Hall) subgroup of order
m and all subgroups of order m are conjugate.

The Derived Series

For any solvable group, there is an abelian series that descends more rapidly
than any other abelian series. Moreover, this series is also characteristic in G. A
series

{1}:GU§G1S‘§Gm:G
is abelian if and only if

!
k+1 < Gy

forallk =0,...,m — 1, where the prime denotes commutator subgroup.

Definition Let G be a group. The subgroups defined by
GV=qg aqV=¢g
and, in general forn > 1,
G(n) _ (G(nfl))/

are called the higher commutators of G. The group G\ is called the nth
commutator subgroup of G. The series of higher commutators:
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EG(S) EG(2> EG(l) C G

is called the derived series for G.[1

The monotonicity of the commutator operation implies that the derived series
descends from GG more rapidly than any other abelian series. Moreover, since
G* 1) = G®), the derived series is characteristic.

Theorem 11.12 Let G be a group.
1) The derived series

N e RN e NN el ON e,
is the abelian series of steepest descent, in the sense that if the series
Gy 4Gy 4G LGy =G
is abelian, then
el < Gy

forall k.

2) G is solvable if and only if its derived series reaches the trivial group, that
is, if and only if there is a k > 1 for which G*) = {1}. The smallest integer
n_for which G = {1} is called the derived length of G, which we denote
by derlen(G).

3) A group G is solvable if and only if it has a normal abelian series.

4)  The length of any abelian series for G is greater than or equal to the
derived length of G..J

We will have use for the following fact about higher commutators of quotient
groups.

Theorem 11.13 Let G be a group and let N < G. Then

G (n) G(n)N
(%) -5

foralln > 0.
Proof. Forany N < H < G, we have

(g)’ _ [%%] _[H,HIN _H'N

N N N

In particular, for H = G, we have

N
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and so the result holds for n = 1. Assuming that the result holds for an arbitrary
k, we have with H = G N,

G (n+1) G (n)
%) (&)

Finally, Theorem 3.41 implies that

!/ /
_[(GWNY)  (GWN)N
N N N

(GWNYN = [G"N,G"NIN = [G™,GWN = "IN

and so the result follows.[]

Theorem 11.14 [f G is solvable, A, B,H < G and N, K 1 G, then

1) derlen(H) < derlen(G)

2) derlen(G/N) < derlen(G)

3) derlen(G) < derlen(N) + derlen(G//N)

4) derlen(A X B) < max{derlen(A), derlen(B)}.

Proof. For part 1), since H*) < G for all k> 0, if n = derlen(G) then
H™ < G™ = {1}. Thus, derlen(H) < n. For part 2), Theorem 11.13 implies
that if G = {1}, then (G/N)™ = {N}. For part 3), if G/N has derived
length d, then G N /N = {N} and so G¥ < N.If the derived length of N is
e, then

Glte) < N(©) = {1}

and so the derived length of G is at most d + e. Part 4) follows from the fact
that (A X B) = A’ X B'.00

Properties of Solvable Groups
If N is a minimal normal subgroup of a group G and if
G{ll=Gy<--<Gy=G

is any normal series in G, then N < G; or else N N G; = {1} for all ¢ and so
there is an index £ for which

N < (@, and NﬁGk+1 = {1}
Therefore, if G is solvable and if G is the derived series for (G, then
N<G® and NnG*Y ={1}

andso N/ < NN G#+D = {1}, whence N is abelian.
Theorem 11.15 Let G be solvable. Any minimal normal subgroup N of G is

abelian. Moreover, if N contains a nontrivial element of finite order, then N is
elementary abelian.
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Proof. For the final statement, NV has an element of prime order p and since
N,={zeN|zP=1} <IN

it follows that N' = IV, is an elementary abelian group.[]

If G is solvable and has a composition series, then the factor groups of the
composition series are both simple and solvable and therefore cyclic of prime
order.

Theorem 11.16 The following are equivalent for a group G that has a
composition series.

1) G is solvable.

2)  Every composition series for G has prime order factor groups.

3) G has a cyclic series in which each factor group has prime order.

4) G has a cyclic series, that is, G is polycyclic.

5) Every chief series for G has factor groups that are elementary abelian.
Proof. We have seen that 1) implies 2) and it is clear that 2) implies 3), that 3)
implies 4) and that 4) implies 1). Thus, 1)-4) are equivalent.

It is clear that 5) implies 1). If G is solvable, the factor groups Gj.1/G) of a
chief series are minimal normal in the solvable group G/Gj and so are
elementary abelian by Theorem 11.15.00

The following theorem contains some sufficient (but not necessary) conditions
for solvability. The proof of the Feit-Thompson Theorem is quite involved,
running almost 300 pages. For a proof of the Burnside result, we refer the reader
to Robinson [26].

Theorem 11.17

1) (Feit-Thompson Theorem) Any group of odd order is solvable;
equivalently, every finite nonabelian simple group has even order.

2) (Burnside pg Theorem) Every group of order p™q" where p and q are
primes, is solvable.

Proof. The equivalence in part 1) is left as an exercise.[]

Hall's Theorem on Solvable Groups

Let G be a finite group. Recall that a Hall subgroup H of G is a subgroup with
the property that its order o(H) and index (G : H) are relatively prime. The
Schur—Zassenhaus Theorem tells us that every normal Hall subgroup has a
complement and that all such complements are conjugate.

As to the existence of Hall subgroups, the Sylow theorems tell us that if
o(G) = p*m with p prime and (pF,m) =1, then G has a Hall (Sylow)
subgroup of order p* and that all such subgroups are conjugate. In 1928, Philip
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Hall showed that for a finite so/vable group, this result applies not just to prime
power factors.

Theorem 11.18 (Hall's theorem, 1928) Let G be a finite solvable group with
o(G) = ab, where (a,b) = 1. Then G has a Hall subgroup of order a and all
subgroups of order a are conjugate.

Proof. We may assume that a,b > 1. The proof is by induction on o(G). If
o(G) = 1, the result holds trivially. Assume that it holds for all groups of order
less than o(G). If G does not have a minimal normal subgroup, then G is simple
and solvable and therefore cyclic of prime order and so a,b > 1 is false. Thus,
G has a minimal normal subgroup N, which as we have seen, is an elementary
abelian group of prime power order p™. There are cases to consider, based on
whether p™ | a or p™ | b.

Casel:o(N) =p™ =0b

In this case, N is a normal Hall subgroup of GG. Hence, the Schur—Zassenhaus
Theorem implies that N has a complement and all such complements are
conjugate. But the complements of NV are precisely the subgroups of order a.
Case2: o(N) =p™ |band p™ < b

If p|b but p" #b, then o(G/N)=a(b/p™) < ab and so the inductive
hypothesis implies that G/N has a subgroup K /N of order a. Hence,

o(K) = ap™ < ab and the inductive hypothesis applied to K shows that K
(and hence () has a subgroup H of order a.

As to conjugation, if o(H;)=o0(Hs)=a, then H;NN = {1} and so
o(H;N/N) = a. Hence, the inductive hypothesis implies that

H,N\"Y  H\N

N N

for some = € G and so
HYN = H|N
But o(HN) = 0o(G) and H, and HJ are Hall subgroups of H N of order a.

Hence, the induction hypothesis implies that /1, and H3 are conjugate in H; N,
whence in G.

Case3:o(N)=p" | a
If o(N) = p™ | a, then o(G/N) = (a/p™)b < ab and the inductive hypothesis
implies that G/ N has a subgroup K /N of order a/p™, whence o(K) = a.
As to conjugacy, if o(H) = a, then N < H, for if not, then
o(HN) | o(H)o(N) = ap”

and so NV H is a subgroup of G of order greater than a but relatively prime to b,
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which contradicts Lagrange's theorem. Therefore, if o(H;) = o(Hs) = a, then
H,/N and Hy/N are Hall subgroups of G/N of order a/p™ and so H;/N and
H, /N are conjugate in G/N, whence H; and H, are conjugate in G.OJ

A sort of converse of the previous theorem also holds. The proof uses the
Burnside pq theorem (Theorem 11.16).

Definition Let G be a finite group and let p be a prime for which n = p*m,
where (m,p) =1 and k > 1. Then a Hall p’-subgroup of G is a subgroup H
of order m.OJ

Theorem 11.19 [f a finite group G has a Hall p'-subgroup for every prime p
dividing o(G), then G is solvable.

Proof. Assume that the theorem is false and let G be a counterexample of
smallest order. If GG is not simple, then let N be a nontrivial proper normal
subgroup of GG. We leave it as an exercise to show that N N H is a Hall p'-
subgroup of N and HN /N is a Hall p’-subgroup of G/N. Hence, N and G/N
are solvable and therefore so is G, a contradiction. Hence, G is simple.

Now suppose that o(G) = p{'---pS, where the p;'s are distinct primes and
e; > 1. The Burnside pq theorem implies that & > 3. If G; is a Hall p}-subgroup
of G, then o(G;) = o(G)/p;" and the Poincaré theorem and the fact that the
indices (G : G;) are pairwise relatively prime imply that for any & of the groups
Gi,

(G:GN-NG;) = ijf]’f

and so
G
|Gy, N NGyl = of 6,)
ijv',j]
Also, for any i,
‘Gi. G‘ .‘: olG) o) _ e
i p HHéZpJ

and so
Gi ° ﬂj#iG‘j - G

If H=G3N---NG,, then o(H) = p{'py?, which is solvable by the Burnside
pq theorem. If H is simple, then H is abelian and so H is cyclic of prime order,
which is false. Hence, let NV be a minimal normal subgroup of H. Then N is
elementary abelian of exponent, say p; and so is contained in any Sylow p;-
subgroup of H. But GoN H has order p{' and so N <GyN H. Now,
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NG < N and so
NG S NGQ(GlﬂH) S NGQ S G2

and so the normal closure N is a proper nontrivial normal subgroup of G, a
contradiction.[]

Exercises

1. Show that the classes of cyclic groups, abelian groups and nilpotent groups
do not have the extension property.
2. Show that if A < B is abelian or cyclic, then any refinement

A<HALAB
is also abelian or cyclic.
Nilpotent Groups

3. Can a nontrivial centerless group be nilpotent?

4. a) Prove that any finite nilpotent group is supersolvable.

b) Find an example to show that not every finite supersolvable group is
nilpotent.

5. Let G be a finite group. Prove that G is nilpotent if and only if every
nontrivial quotient group of G has a nontrivial center.

6. Let G be nilpotent but not abelian. Let A < G be maximal with respect to
being normal in G and abelian. Prove that A = C(A). Hint: Show that
C/A<G/Aandthat Cs(A)/ANZ(G/A) # {1}.

7. For any even positive integer n, prove that every group of order n is
nilpotent if and only if n is a power of 2.

8. Prove that a nilpotent group is supersolvable if and only if it satisfies the
ascending chain condition on subgroups.

9. If H is nilpotent of class ¢ and K is nilpotent of class d, prove that H X K
is nilpotent of class max(c, d).

Solvable Groups

10. Prove that Sj is solvable but not supersolvable.

11. Prove that S, is solvable for n < 4.

12. Assuming that Ay is the smallest nonabelian simple group (which it is),
prove that every group of order less than 60 is solvable.

13. Let N be a nontrivial proper normal subgroup of a group G. Let p be a
prime and p | o(N). Let H be a Hall p'-subgroup of G. Prove that N N H
and N H /N are Hall p'-subgroups of N and G/ N, respectively.

14. Prove that the following are equivalent for a finite group G':

a) @ is solvable.

b) Every nontrivial normal subgroup of G has a nontrivial abelian
quotient group.

¢) Every nontrivial quotient group of GG has a nontrivial abelian normal
subgroup.
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15. Let G be a finite group of order n = p{'---pS». Prove that G is solvable if
and only if the composition length of G is ¢ = > e;.
16. Prove that a solvable group with a composition series must be finite.
17. Let G be a nontrivial finite solvable group.
a) Prove that O,(G) is nontrivial for some prime p, that is, G has a
nontrivial normal p-subgroup.
b) Prove that O9(G) is nontrivial for some prime g, that is, G has a
normal subgroup H for which G/ H is a nontrivial g-group.
18. Let G be a finite group. Prove directly that an abelian series can always be
refined into a cyclic series with prime order factor groups.
19. Prove that the following are equivalent:
a) Any finite group of odd order is solvable.
b) Any finite nonabelian simple group has even order.
20. a) Prove that a finite group G is solvable if and only if S’ # S for all
subgroups S # {1} of G.
b) Prove that if G contains a nonabelian simple subgroup S, then G is not
solvable.
¢) Show that S’ # S for all subgroups of the dihedral group Ds,,
showing that Ds, is solvable. Hint: Find an abelian subgroup N of
index 2. How do subgroups interact with N?
21. A subgroup H of a group G is abnormal if

a€(H,H")

for all @ € G. Prove that the normalizer of a Hall subgroup of a solvable
group is abnormal.

Polycyclic Groups

22. a) Let G be a polycyclic group with a cyclic series of length n. Prove that
G is n-generated.
b) Let A be an n-generated abelian group for n > 1. Prove that A is
polycyclic.
23. Prove that the following are equivalent:
a) G is polycyclic.
b) Every subgroup of G is finitely generated and solvable.
¢) Every normal subgroup of G is finitely generated and solvable.

24. Prove that a group G is polycyclic if and only if it is solvable and satisfies
the maximal condition on subgroups, that is, if and only if every nonempty
collection of subgroups of GG as a maximal member.

25. a) Let A < B have an infinite cyclic factor group. Let

A=Hy<H <---<H,=B

be a proper refinement of A < B. Describe the factor groups of this
refinement.
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b) Let G be polycyclic. Prove that the number of steps whose factor group
is infinite is the same for all cyclic series for GG. Hint: Any two cyclic
series have isomorphic refinements.

Supersolvable Groups

26. Prove that any supersolvable group is countable.

27. Prove that if G/N is supersolvable and N is cyclic, then G is
supersolvable.

28. Prove that a group is supersolvable if and only if it has a series in which
each factor group is cyclic of prime order or cyclic of infinite order. Hint:
Recall that A C B and B < G implies A < G.

29. Let GG be supersolvable. Prove that if H is a maximal subgroup of GG, then
(G : H) is prime. Hint: First assume that H <G and look at G/H. Then
assume that H is not normal in G and factor by the normal interior H°.
Conclude that it is sufficient to consider H° = {1}. Consider the subgroup
A in the first step {1} < A in a normal cyclic series and how it interacts
with H.

30. Prove that if G is supersolvable, then G’ is nilpotent. Hint: Let

{1} =Gy<-- <G, =G
be a normal cyclic series for G and consider the series
{1}=GynG <--- <G, NG =G

which is normal and cyclic as well. Let B = Gj;1 and A = G.. To show
that the series is central, it is sufficient to show that

! !
A A - A
But X/ A is cyclic and normal in G/ A. What can be said about (G/A)"?
Radicals and Residues

Definition Let KC be a class of groups. Let G be a group.
1) Ifthe partially ordered set

K(G)={H <G| HeK}
has a top element, it is called the K-radical for G and is denoted by

Ok (G).
2) If'the partially ordered set

G/K={H<G|G/HeK}

has a bottom element, it is called the IC-residue for G and is denoted by
or@).0
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31. Show that the K-radical Ox(G) and the K-residue O* (@) are characteristic
subgroups of G (if they exist).

32. Let K be a class of groups closed under subgroup, quotient and join if at
least one factor is normal. Let G be a group and let H < G. Assume that all
mentioned radicals and residues exist. Prove the following:

a) If H < Og(G), then
Ok (G) G
< —
H - OK(H)

and the inclusion may be proper.

b) If H < OX(G), then
G or(@)
K e =
*(57) -

33. Let K be a class with the extension property: N € K,G/N € K implies
G € K. Prove that the following hold for any group G:
a) The K-radical of G/Ox(G) is trivial, that is,

Oc(grg ) = 1Ox(©))

b) The K-residue of O*(G) is O%(G), that is,
o*(OM@) = 0X(a)

34. Let I be the class of finite groups.

a) Show that there are groups with no K-radical.

b) Show that there are groups with no K-residue.

35. Let G be a nontrivial finite group. Prove that the following are equivalent:

a) @ is solvable.

b) For every proper normal subgroup K < G, the factor group G/K has a
nontrivial p-radical O,(G/K) for some prime p, that is, G/K has a
nontrivial normal p-subgroup.

¢) For every nontrivial characteristic subgroup K of G, the g-residue
O K) of K is proper in K for some prime ¢, that is, there is a proper
normal subgroup A of K such that K/ A is a nontrivial a g-group.

Additional Problems

36. Let G be a group. Let I' = I';.
a) Prove that G < Tk (G).
b) Prove that derlen(G) < nilclass(G).
37. Let G be a group. Let I' = I';. Prove the following:
a) [M%(Q@),1(G)] < TF*HY(G) Hint: Use induction. Use the three
subgroups lemma on [I"**1(Q@), IV1(Q)] = [[I"*(G), G], T7(G)].
b) Fl’ij(m(G) < THHY(QG) for k,j > 1.



Solvable and Nilpotent Groups 317

0) [H(G), J(G)] < ¢FHH(G) forj > K+ 1.
d) G® <T%(G), where ¢, = 2¥ — 1. Hence, derlen(G) is less than or
equal to the smallest integer k for which £, > ¢ := nilclass(G) and so

derlen(G) < [loga(c + 1)]



Chapter 12
Free Groups and Presentations

Throughout this chapter, X denotes a nonempty set of formal symbols and X!
denotes the set of formal symbols {x~! | z € X}. Further, we assume that X
and X! are disjoint and write X’ = X LI X 1.

Free Groups

The idea of a free group F'x on a nonempty set X is that F'x should be the
“most general” possible group containing X, that is, the elements of X should
generate F'x but have no relationships within F'y. In this case, X is referred to
as a set of free generators or a basis for the free group Fy.

To draw an analogy, if V' is a vector space, then a subset 3 of V' is a basis for V'
if and only if for any vector space W and any assignment of vectors in W to the
vectors in B, there is a unique linear transformation from V' to W that extends
this assignment. This property and the analogous property that defines free
groups are best described using univerality.

Definition Let X be a nonempty set. A pair (F,k: X — F) where F is a group
has the universal mapping property for X (or is universal for X) if, as
pictured in Figure 12.1, for any function f: X — G from X to a group G, there
is a unique group homomorphism 7. F' — G for which

Trok=f

The map 7y is called the mediating morphism for f. In this case, we say that f
can be factored through x or that f can be lifted to F. The group F is called a
free group on X and X is called a set of free generators or a basis for F. The
map k is called the universal map for the pair (F, k). We use the notation Fx
to denote a free group on X.[1

S. Roman, Fundamentals of Group Theory: An Advanced Approach, 319
DOI 10.1007/978-0-8176-8301-6_12, © Springer Science+Business Media, LLC 2012
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Figure 12.1

It is clear that the universal map & is injective. Moreover, kX generates Fx, for
if (kX) < Fx, then Theorem 4.17 implies that there are distinct group
homomorphisms o, 7: Fx — G into some group G that agree on (kX).
Therefore, if f = o|x = 7|x, then the uniqueness condition of mediating
morphisms is violated. Hence, kX generates F'. For these reasons, it is common
to suppress the map « and think of X as a subset of F'x.

The following theorem says that the universal property characterizes groups up
to isomorphism.

Theorem 12.1 Let X be a nonempty set. If (F', k) and (G, \) are universal for
X, then there is an isomorphism o: F ~ G connecting the universal maps, that
is, for which

ook =AM\

Proof. There are unique mediating morphisms 7: F' — G and 7,: G — F for
which

mnok=A and T,0\N=K
and so
TZoT,0A=A and T,0T 0Kk =K
But the identity maps ¢ and ¢ are the unique mediating morphisms for which
tgoA=A and itpok =k
and so
WoT.=1tqg and T,o0T\=(p

which shows that the maps 7, and 7, are inverse isomorphisms.[]

Definition Let X be a nonempty set. A word w(xy,...,x,) over X' (or the
equation w(xy,...,x,) = 1) is a law of groups if
w(ag,...,a,) =1

for all groups G and all a; € G..OJ
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The following theorem says that what's true in a free group is true in all groups.

Theorem 12.2 Let X be a nonempty set and let w(xy,...,x,) be a word over
X' If (Kx, k) is universal on X, then the following are equivalent:
I w(kxy,...,kx,) =1in Fx

2) w(z,...,my) is alaw of groups.c

Proof. Let G be a group and let a; € G for i = 1,...,n. The function sending
x; to a; can be lifted to a unique homomorphism o: Fy — G for which
okx; = a; and so

w(ay,...,a,) = cow(kxy,...,KkT,) =0l = O

Cauchy's theorem says that any group is isomorphic to a subgroup of a
symmetric group. There is an analog for quotients of free groups, but first we
require a definition.

Definition Let F = {G; | i € I} be a family of groups. A subgroup K of the
direct product R F is called a subdirect product of the family F if the
restricted projection maps p;|: K — G; are surjective for all i € 1.0J

If G is a group, then the identity map ¢: G — G can be lifted to an epimorphism
0: Fg—» G and so G is isomorphic to a quotient of the free group F;. More
generally, if X is a set for which card(X) > card(G), then any surjection
f: X —» G can be lifted to an epimorphism o: Fx —» G and the induced map
7: Fx /K ~ G shows that G is isomorphic to a quotient group of the free group
Fx. Moreover, we have freedom to choose the values of 7(zK) for x € X
arbitrarily, but K depends on that choice.

More generally, if F = {G; | « € I'} is a nonempty family of groups and if X is
a set for which card(X) > card(G;) for all ¢ € I, then there are isomorphisms
7i: Fx/K; = G; for all i € I, where 7;(xK;) can be specified arbitrarily, but K;
depends on that choice. Now, the “Chinese” map

o Fy — _&IFX/K,;
1€

defined by o(w)(i) = wK; for w € Fx has kernel I = (K. Hence, if 7 is the
induced embedding, then the composition

@TiOEZFX/I‘;) IXiEIGi
shows that F'x/I is isomorphic to a subdirect product of the family F.

Moreover, we can specify that the element x/ be sent to any element of XG;,
for all z € X (again at the expense of K;).

Theorem 12.3 Let G be a group, let F = {G; | i € I} be a nonempty family of
groups and let X be a set.
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1) If card(X) > card(G), then there is an isomorphism 7: Fx /N ~ G where
we can choose the elements Tz for x € X arbitrarily, but N depends on
that choice.

2)  Suppose that card(X) > card(G;) and that we have specified isomorphisms
Ti:Gi = Fx/K; foralli € I. Let I = (\K;. Then Fx/I is isomorphic to a
subdirect product of the family F and the isomorphisms T; can be used to
specify the elements xI for x € X arbitrarily in WG, but I depends on
that choice..]

Construction of the Free Group

The notion of a free group can be defined constructively, without appeal to the
universal mapping property. When a constructive approach is taken, one usually
hastens to verify the universal mapping property, since this is arguably the most
useful property of free groups. On the other hand, since we have chosen to
define free groups via universality, we should hasten to give a construction for
free groups.

Let W = (X')* be the set of all words over the alphabet X'. As a shorthand, we
allow the use of exponents, writing

TT ifn >0
n factors
" =< g7l ifn<0
—n factors
€ ifn=0

where € is the empty word. It is important to keep in mind that this is only a
shorthand notation. Thus, for example, z*z? and 2° are both shorthand for
zxzrze and so z*z? = 28, However, z*z 2 is shorthand for zzazzz 'z ! but

22 is shorthand for zx and so zx 2 # 2.

Since the operation of juxtaposition on W is associative and since the empty
word e is the identity, the set W is a monoid under juxatpostion. In an effort to
form a group, we also want to require that o' =€ =z~ !z for all z € X.
More specifically, consider the following rules that can be applied to members
of W:

1) Removal rules: Forw, p € Wand x € X,

wxxil,u — Wt

wm’lxu — Wt

zr b > e

Tl —e

where one of w or i may be missing.
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2) Insertion rules: Forw, € W and z € X,

wp — wxxil,u
wp — wxila:,u
e —ar !
e—xlx
where one of w or p may be missing.

Let us refer to a finite sequence sy, ..., s; of applications of these rules as a
reduction of u to v of length % (even though v may have greater length than w).
The trivial reduction is an application of no rules and so w is obtained from
itself by the trivial reduction. Since the removal and insertion rules come in
inverse pairs, reduction defines an equivalence relation = on W. Let W/ =
denote the set of equivalence classes of W, with [w] denoting the equivalence
class containing w.

Since equivalent words must represent the same group element, it is really the
equivalence classes that are the candidates for the elements of the free group Fx
on X. Moreover, since

u=r, V=S = uv =18

the equivalence relation = is a monoid congruence relation on W and so we
may raise the operation of juxtaposition from W to W/ =, that is, the
operation

[u][v] = [uv]

is well-defined on W/ = and makes W/ = into a group, with identity [e] and
for which

= o)

[xil .. :L'Z)‘]
However, since it is easier to work with elements of W rather than equivalence
classes, we prefer to use a system of distinct representatives for W/ =. A
desirable choice would be the set consisting of the unique word of shortest
length from each equivalence class, and so we must prove that such words exist.

Let us say that a word w is reduced if it is not congruent to a word of shorter
length. It is clear that a removal rule can be applied to a word w € W if and
only if w contains a subword of the form zz~! or z ' for x € X. Further, a
reduced word w has no such subword and so no removal rules can be applied to
w. We want to prove that the converse also holds, that is, a word w is reduced if
and only if no removal rules can be applied to w. Then we can show that the set
of reduced words form a system of distinct representatives for W/ = .
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Theorem 12.4 Let r € W be a word that does not contain a subword of the
form xx~! or 7 x for x € X. If w = r, then there is a reduction from w to r
that involves only removal rules.
1) A word is reduced if and only if it does not contain a subword of the form
xxVoraz 'z for x € X.
2) A word is reduced if and only if it can be written in the form x'---xt with
x; # w1 and e; # 0 for all i.
3) The set of reduced words is a system of distinct representatives for W/ = .
Proof. Among all reductions from w to r, select a reduction with the fewest
number of steps and suppose that there is at least one insertion step. Denote the
steps by s1, S9, ..., S, and suppose that step s results in the word wuy. Let s be
the last insertion step, say
up-1 = af
up = o(TT )
where we have marked = with an overbar to distinguish it from any other
occurrences of the symbol . (A similar argument will work for the insertion of
xlz)
Since there are no further insertion steps, the pair zz ' is never separated
during the remaining steps, but must be altered at some point by a subsequent
removal rule. Suppose that Tz ' is unaltered until step szy; and so the
intermediate steps are

up— = af
up = a(zTT )3

Up+1 = al(ﬁil)ﬂl

Uprjo1 = a1 (TT ) Bj1
There are three possibilities for step s ;. First, if 7z ' is removed, that is, if
Upj = aj18j-1
then the insertion (and subsequent deletion) of Zz ! could have been omitted
from the reduction process, in which case steps s;, and s;,; do nothing can be

removed from the reduction, resulting in a shorter reduction, which is a
contradiction.

The other possibilities involve an interaction of ZZ ' with either «j_1 or 3; 1.
One possibility is that a; ; = o} ;2™ " and

U1 = G (TT ) B

Uy = o (T 1) B

But since uy.; = a;3;, step sj.; can be replaced by the removal of 7z,
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resulting in the same reduction as in the first case. Similarly, if 3; 1 = x3)_,
and

Ut jo1 = Oéjfl(mil)xﬁ;;l

upyj = o1 (T) 34

then since wj4; = «j—13j—1, again we can replace this reduction by the first
reduction. Hence, a shortest reduction of w to 7 cannot have any insertion steps.

For part 1), suppose that no removal rules can be applied to » € W and that
w = r. Then there is a reduction from w to r that involves only removal steps
and so len(r) < len(w). Hence, r is reduced. The converse is clear.

For part 2), if w = z{'---z{ is reduced but z; = x;41 where ¢; and e;1; have
opposite signs, then we can apply a removal rule to w to produce a shorter
equivalent word, which is not possible. Thus, if x; = x;,1, we may add the
corresponding exponents. Conversely, if w = z{'---z¢ is a word for which
x; # xi+1 and e; # 0, then no removal rule can be applied to w and so part 1)
implies that w is reduced.

For part 3), any w € W can be reduced using only removal rules to a word r for
which no removal rules apply and so 7 is reduced. Thus, every word is
congruent to a reduced word. Moreover, if u # v are congruent reduced words,
then there must be a reduction consisting of zero or more removal steps that
brings wu to v, but no removal steps can be applied to v and so v = v.[J

Thus, each word w € W is equivalent to a unique reduced word w" and we may
use the bijection [w] < w" to transfer the group structure from W/ = to the set
Fx of reduced words, specifically, if u,v € Fy, then

wv = (uv)"

It will be convenient to refer to the set Ry of reduced words on X’ by the
following name (which is not standard terminology).

Definition Let X be a nonempty set. The concrete free group Rx on X is the
set

Ry ={eyU{al" -z | v # zip1 € X, e; # 0}

of all reduced words over the alphabet X', under the operation of juxtaposition
Jollowed by reduction. The rank tk(Rx) of Ry is the cardinality of X.O

Note that the use of the term “concrete” is not standard. Most authors would
refer to Ry simply as the free group on X, which is justified by the following.
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Theorem 12.5 Let Fx be the concrete free group on a set X and let j: X — Fx
be the inclusion map. Then the pair (Fx, j) is universal for X and so Fy is a
free group on X.

Proof. Let f: X — G.If 7: Fx — G is defined by 7¢ = 1 and

(o eealr) = Fan) e f ()

for z{'---zé € Fyx, then 7o j = f on X. Also, it is clear that reduction can take
place before or after application of 7 without affecting the final result. However,
reduction has no effect in G and so if u * v denotes the operation of Fx, then

T(u*v) =7((uww)") = [r(w)]" = T(uwv) = 7(u)7(v)

which shows that 7 is a mediating morphism for f. As to uniqueness, if
7' 0 j = 70 j then 7'and T agree on X, which generates F'xy and so 7/ = 7.0J

Relatively Free Groups

Freedom can also come in the context of some restrictions. For example, the
free abelian group on a set X is the most “universal” abelian group generated
by X. More generally, if K is any class of groups, we can ask if there is a most
universal /C-group generated by a nonempty set X. If so, such a group is
referred to as a free K-group or a relatively free group. For the class K of
abelian groups, free K-groups do exist, but this is not the case for all classes of
groups, as we will see.

The definition of a free K-group generalizes that of a free group.

Definition Let K be a class of groups and let X be a nonempty set. A pair
(Kx,k: X — Kx) where Ky is a K-group generated by kX, has the K-
universal property mapping for X (or is K-universal for X) if for any
function f:X — G from X to a K-group G, there is a unique group
homomorphism 1y: Kx — G for which

Troj=1f

The map 7y is called the mediating morphism for f. The group Kx is called a
free IC-group on X with free generators or basis X and « is called the K-
universal map for the pair (Kx, x).0

Note that if (K x, ) is K-universal, then the KC-universal map  is injective. For
this reason, one often thinks of X as a subset of Kx. Proof of the following
theorems is left to the reader.

Theorem 12.6 Let X be a nonempty set. If (K, k) and (G, \) are K-universal
for X, then there is an isomorphism o: K ~ G for which

ook =AM\ O
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Definition Let IC be a class of groups and let X be a nonempty set. A word
w(xy,...,x,) over X' (or the equation w(xy,...,z,) =1) is a law of K-
groups if

w(ay,...,ay) =1

Jor all K-groups K and all a; € K. If {x1,x9,...} C X, then we denote the set
of all laws of K-groups in Fx by L(K) or Lx(K).0

Theorem 12.7 Let KC be a class of groups and let X be an infinite set. Then
Lx(K) is a fully invariant subgroup of the free group Fx.

Proof. It is clear that the product of two laws of KC-groups is a law of KC-groups,
as is the inverse of a law of KC-groups. Also, if o € End(FY), then for any
U}(.’El, cee 7‘/1:71) € E(’C)a

ow(ry,...,x,) = wloxy,...,on,) € LK)

and so £(K) is fully invariant in F'x.[J

Theorem 12.8 Let X be a nonempty set and let w(xy,...,x,) be a word over
X' If (Kx, k) is K-universal on X, then the following are equivalent:
D) w(kxy,...,kx,) =1in Kx

2) w(zy,...,zy,) is a law of K-groups.d

We have said that there are classes of groups for which relatively free groups do
not exist. For example, the class of all finite groups is such a class, as we will
see later. There is one very important type of class for which relatively free
groups do exist, however.

Definition Let X be a nonempty set and let L = {w; | i € I} be a subset of the
concrete free group Fx. The equational class (or variety) with laws L is the
class E(L) of all groups G for which each w; € L is identically 1 on G.O0

Note that an equational class is closed under subgroup, quotient and direct
product. For equational classes, we can construct relatively free groups using
our construction of the concrete free group.

Theorem 12.9 Let K = E(L) be an equational class of groups with laws L.
1) For any group G, the verbal subgroup
L(G) = (w(ay,...,ay) |weE L,a; € G)

is fully invariant in G.
2) If Fx is the concrete free group on X, then the pair

(KX:Fx/ﬁ(FX),H:WOj)
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where w is projection modulo L(Fx) and j: X — F is inclusion, is K-
universal for X. We refer to Kx as the concrete KC-free group.
Proof. Write F' = Fx. For part 1), if o € End(G), then for any a; € G,

ow(ay,...,a,) = w(oay,...,oa,) € L(G)

and so £(G) is fully invariant in G. For part 2), to see that K = Kx is a K-
group, if w(zy,...,x,) € L, then for any a; € F,

w(ar L(F),...,an L(F)) = w(ay,...,a,)L(F) = L(F)

and so K x satisfies the laws in L.

To see that (Kx, 7 o j) is K-universal, referring to Figure 12.2, let f: X — H,
where H is a C-group.

X / > F, r > K&FIL(F)
f o T
H
Figure 12.2

Then f can be lifted uniquely to a homomorphism o: F — H satisfying
coj= f.Butifw(xy,...,z,) € Land u; € Fyx, then

ow(uy, ..., uy) = w(ouy,...,ou,) =1

Hence, w(uy,...,u,) € ker(c) and so L(F') < ker(o). Thus, the universality of
quotients implies that o can be lifted uniquely to a homomorphism
7:F/L(F) — H for which 7 o m = ¢ and so

romoj=goj=f
As to uniqueness, if
!/ . " .
Towmoj=71 omoj=f

then the uniqueness of o implies that 7/ o m = 7 o w and the uniqueness of T
implies that 7/ = 7.0

More on Equational Classes

If K is a class of groups, then the equational class £(L(K)) is the class of all
groups that satisfy the laws of C-groups. Of course, a KC-group satisfies the laws
of KC-groups and so £ C £(L(K)). The interesting issue is that of equality, that
is, for which classes K is it true that the laws of K-groups hold only for K-
groups? The answer is that this happens if and only if X is an equational class.
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For if I = (M) is the equational class for a set M of laws over X', then
M C L(K) and so

E(L(K)) CTEM) =K CELKK))
whence £(L(K)) = K.

Theorem 12.10 4 class K of groups satisfies
K =&(L(K))

that is, the laws of K-groups hold only for K-groups, if and only if K is an
equational class.O]

Example 12.11 Let K be the class of all finitely-generated groups. If
w(xzy,...,x,) is a law of K, then w(xy,...,2,) =1 in all finitely-generated
groups and therefore in all groups. Hence, £(L(K)) is the class of all groups and
so K is not an equational class.[]

The following theorem makes it relatively easy to tell when a class K is an
equational class.

Theorem 12.12 (Birkhoff) The following are equivalent for a class I of
groups:

1) K is an equational class

2) K is closed under subgroup, quotient and direct product

3) K is closed under quotient and subdirect product.

Proof. It is clear that 1) implies 2), which implies 3). To show that 3) implies 1),
we show that £(L(K)) C K. Let G € £(L(K)), that is, G satisfies the laws of
K-groups. For the proof, we work with quotients of free groups.

Now, if card(Y) > card(G), there is an N < G for which G ~ Fy /N and so
Fy /N satisfies the laws of K-groups. Hence, if w(yi,...,y,) € Ly(K), then
w(yi,...,Yn) € N and so Ly(K) < N. Hence,

N Ly(K) /] Ly(K)
and the proof would be complete if we knew that Fy /Ly (K) was a K-group. In
fact, the same argument works for any I < Ly (K), since then I < N and so

Fy Fy /N
“ENETIT
Thus, we only need to find an I < Ly () for which Fy /I is a IC-group.

Now, if w € Fy is not a law of K-groups, then there is a K-group K, that
violates w, that is, for which
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w(kw,la (RN} kw,nu,) 7é 1

for some k,; € K,,. Moreover, if card(Y’) > card(K,), then there is an
isomorphism 7,: Fy /N,, ~ K,, for which 7,(y;Ny) = k,; for all i. Hence,
Fy /N, also violates w in the sense that

w(y17 s ’y7Lu,') ¢ Nu

and so

w¢ L(K)

But Theorem 12.3 implies that the quotient Fy-/I is isomorphic to a subdirect
product of F and is therefore a IC-group.Od

We can now relate equational classes and existence of relatively free groups.

Theorem 12.13 (Birkhoff) The following are equivalent for a nontrivial class

IC of groups:

1) K is an equational class, that is, E(L(K)) = K

2) K is closed under quotient and for every nonempty set X, there is a K-
universal pair (Kx, k).

Proof. We have seen that 1) implies 2). For the converse, we show that 2)

implies £(L(K)) C K. Let G € £(L(K)).

61 >F—% >c

Ny A

Figure 12.3

Referring to Figure 12.3, let j: G — Fg be the inclusion map into the concrete
free group F. We lift two maps. The K-universal map  can be lifted to a
unique homomorphism A: F; — K¢ for which Aj= k. Moreover, A is
surjective since kG generates K. Also, the identity map ¢: G — G can be
lifted to a unique epimorphism o: Fi; —» G for which j = ¢.

To see that ker(\) < ker(o), if w(zy,...,2,) is a word over X' and if
w(jai, ..., ja,) € ker(\) for a; € G, then

w(kay, ..., ka,) = Aw(jay, ..., ja,) =1

in K¢ and so Theorem 12.8 implies that w(z1,...,z,) € £(K). Hence in G,
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cw(jay, ..., ja,) = w(ojay,...,oja,) = w(a,...,a,) =1
and so w(jay, ..., ja,) € ker(c), whence ker(A) < ker(o).
Hence, o induces an epimorphism 7: K —» G defined for each k € K by

7k = oA"!(k) and so G ~ K¢ /ker() and since the latter is a K-group, so is
G.0O

Free Abelian Groups

The class of abelian groups is an equational class, with law [z,y] = 1. Thus,
free abelian groups exist. In fact, if G is a group, then the verbal subgroup is

L(G) = ([a,0] | a,b € G)
which is just the commutator subgroup G’ of G. Hence, Theorem 12.9 implies
that if Fx is the concrete free group on X, then the group

Ax = Fx/F%

is free abelian.
Definition Let X be a nonempty set. If Fx is the concrete free abelian group on
X, then Ax = Fx/FY% is the concrete free abelian group on X. It is
customary to think of Ax as the group Fx with the additonal condition that the
elements of X commute.l]
Theorem 12.14 If X is a nonempty set, then the free abelian group Ax satisfies

Ay~ B (x)~ BZ
reX reX

Proof. The function f: X — H(z) defined by
_Jx ify==x
s ={5 o

for all y € X can be lifted uniquely to a homomorphism 7: Ax — H(z) for
which

(o) = fa) S @)
and so

er - o
)t ify =

T(l‘?xff)(y): {1 ify ¢ {xy,...,z,}

Now, 7 is surjective, since if « € H(x) has support {zi,...,z,} and
a(ry) =)', then o =7(z}"---xf). Also, 7 is injective, since if
T(z{--xf) = 0, then z}* =1 for all k and so e; = 0 for all k. Thus, 7 is an

isomorphism.[]
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The following theorem explains the term basis used for the set X in the free
abelian group Ax.

Definition 4 subset S of the free abelian group Ax is independent in Ax if

5, €8, si'-sii=¢ s;#s; = e =0foralli O

n

Theorem 12.15 Let X be a nonempty subset of an abelian group A. The

following are equivalent:

1) Ais afree abelian group with basis X

2) X is independent in A and generates A

3) Except for the order of the factors, every nonidentity element a € A has a
unique expression of the form

a=ai'--azy forx; # xjep, #0,n>1
Proof. If 1) holds, we have seen that X generates A and if
w=a-r =€

for x; # x;, then e; = 0 for all 7, since otherwise w would be a reduced word
equivalent to the shorter word e. Hence, 2) holds. If 2) holds, then every element
of A has at least one such expression. But if a € A has two distinct expressions:

_ e en N1 f,
a4 =2 'g"nn =Y _yann

where we may assume that z,, # y,, (or we can cancel), then

€ eny—fm -fi _
Ty Ty Yy Yyt =€

violates independence. Hence, 3) holds.

Finally, to see that 3) implies 1), suppose that f: X — G, where G is an abelian
group. If a mediating morphism 7 does exist, then 7(z) = f(x) for all z € X
and so 7 is unique, since X generates A. Define a map 7: A — G by

T(‘Iil' ! 'fo”) = f(xl)E] o 'f('rﬂ,)en

which is well defined since the expressions x7'- -z are unique up to order but
G is abelian. The map 7 is easily seen to be a homomorphism.[]

The next theorem says that, up to isomorphism, there is only one free (or free
abelian) group of each cardinal rank.

Theorem 12.16 Let X and Y be nonempty sets.
) a) Ax=Ay < |X|=[Y|

b) If S generates Ay, then |S| > | X]|
2) a) Fy~Fy < |X|=|Y]
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b) If S generates Fx, then |S| > | X]|
Proof. Suppose first that | X| = |Y| and let f: X — Y be a bijection. Extend the
range of f so that f: X — Fy (or f: X — Ay). Then there is a unique
mediating morphism 7: F'x — Fy (or 7: Ay — Ay) for which

m(z) = f(x)
forall z € X. To see that 7 is injective, if w = 27"+ -zt and f(x;) = y;, then
) = 7o) = ) ) = i

Hence, 7(w) = € implies e; = 0 for all ¢ and so w = €. Also, 7 is surjective
since f: X — Y is surjective. Hence, F'y ~ Fy (and Ax ~ Ay).

For the converse of part 1), let A represent either Ay or Ay. We use additive
notation. The quotient A/2A is elementary abelian of exponent 2 and is
therefore a vector space over Z,. Moreover, if S generates the group A, then

S/2A={s+2A|se S}

generates the vector space A/2A over Z, and if S is independent in A, then
S/2A is linearly independent in A/2A, since an equation of the form

(s1+2A)+ -+ (s, +24) =24
forn > 0 and s; # s;in S implies that
S1+ -+ s, = 2(€1t1 + -+ emtm)

fort; € S and e; € Z, which is not possible.

It follows that X /2 Ay is a basis for Ax/2Ay and so

and similarly for Y. Thus, since Ax ~ Ay implies Ax/2Ax ~ Ay /2Ay, we
have

| X| = dim(Ax/2Ax) = dim(Ay /24y ) = Y]
and if S generates Ay, then
S| > 15/2Ax| > |X|
This completes the proof of part 1).
For part 2), if F'x =~ Fy, then
Ax ~ Fx/Fyx ~ Fy|F}, ~ Ay

and so part 1) implies that |X|=|Y|. Finally, if S generates Fx, then
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S/Fy = {sF% | s € S} generates Ax = Fx/F% and so
S| > |S/Fx| > | X/Fx| = | X]| O

Theorem 12.17 Let Ax be free abelian on X. Then all independent sets have
cardinality at most | X|.
Proof. It is sufficient to prove the result for A = H,cy Z, where Z, = 7Z for all
x. The set V = H,cx Q, is a vector space over the rational field Q and it is
easy to see that a subset

B={v|icl} CA

is dependent in A if and only if B is linearly dependent over Q. But in the vector
space V, all sets of cardinality greater than |X| are linearly dependent over Q
and therefore also over Z.OJ

The Nielsen—Schreier Theorem says that every subgroup of a free group is free
and so the subgroups of free groups are very restricted. (Nielsen proved this
result for finitely-generated groups in 1921 and Schreier generalized it to all
groups in 1927.)

Theorem 12.18

1) Any subgroup of a free group is free.

2) Any subgroup S of a free abelian group Ax is free abelian and
tk(S) < rk(A).

Proof. We omit the difficult proof of part 1) and refer the interested reader to

Robinson [26]. For part 2), we may assume that Ay = H ,cx(z) and that X is

well ordered. Since the elements of S have finite support, for f € S, we can let

i(f) be the largest index = for which f(x) # 1.

For each x € X, consider the set
L ={f(x)| fe€S if) <z}

Then I, < (z) and so I, = (f,(x)) for some f, € S,. We show that S is free
on the set

If B does not span .S, among those elements of .S not in the span of 3, choose an
element ¢ for which y=i(g) is the smallest possible. Since
9(y) € I, = (fy(y)), it follows that g(y) = f;“(y) for some nonzero k € Z.
Then

(9f, ") (@) = g(x) f, " (x) =1 forallz >y

and so i(gfy’k) < y, which implies that gfy’k is in the span of B. But then
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9= (9,1

is also in the span of B, a contradiction. Thus, B spans S.

Also, B is independent, since if

€1, .. fén —
Ty Tn

where x; < x; for i < j, then applying this to z,, gives
Cr(x,) =1

Tn

and so e, = 0. Similarly, e; =0 for all 7 and so B is independent. Hence,
Theorem 12.15 implies that S is free over B. Also, it is clear that |B] < | X| and
sork(S) <rk(A).O0

Applications of Free Groups

Sometimes free groups can help produce complements.

Theorem 12.19 If 0: G —» F'x is an epimorphism, where Fx is free on X, then
K = ker(o) is complemented in G.

Proof. Define a function 7: X — G by letting 7z be a fixed member of 0! (x).
Since Fx is free on X, there is a unique homomorphism 7: Fx — G that
extends 7 on X. Since for any z € X,

cot(x) ==

it follows that o o 7 = (. In other words, 7 is a right inverse of o and so
Theorem 5.23 implies that ker(¢) is complemented in G.

With the help of free groups, we can provide an example of a finitely-generated
nonabelian group with a subgroup that is not finitely generated. We have
already proved (Theorem 2.21) that if G is an n-generated abelian group, then
every subgroup of GG can be generated by n or fewer elements.

Theorem 12.20 Let X = {x,y} and let Fx be the 2-generated free group on
X. Let G = (S), where

S ={y'zy™" |k >0}

Then G is isomorphic to the free group F; on a countably infinite set
Z ={z,29,...} and so is not finitely generated.

Proof. Consider the function f: Z — G defined by f(z;) = y*xy~*. Then there
is a unique mediating morphism 7: F; — G for which 7(z;,) = y*zy~". It is
clear that 7 is surjective.



336 Fundamentals of Group Theory

In addition, if

Ciy . Cim

7'(zZl 2 )=¢
where i), # 4511, €, 7 0and m > 1, then
yilxelly_i1+i2xe[2y_i’2+i3x823. . .1-617"7]y_imfl"'imxeimy_im = ¢

in G < Fy. Since the left-hand side can be reduced to € using only removal
steps, it follows that i, = ix4 for all £ and so m = 1 and

yilxeilyfil =c

But the left-hand side of this equation reduces to € by removal steps if and only
if e; = 0, which is false. Hence, 7 is injective and therefore an isomorphism.[]

We can also provide an example of a group G with a subgroup H < G for
which aHa ! < H.

Theorem 12.21 Let Fx be the free group on X = {x,y}. Then Fx has a
subgroup H for which tHx™' < H.
Proof. Let H consist of the empty word e and the set of all words of the form

ny N2

W=z yklx yk2, . ,xﬂy‘yer”rﬂ

with r > 1, k; #0,n1 > 0,n,41 <0, n; #0 for 2 <i <rand ) n; = 0. Note
that y € H. We leave it to the reader to show that H is a subgroup of Fly. It is
clear that

-1 _ :rnﬁ-l

TWEL yklxngykg_ R yk,.er,H—l cH

and so v Hx~' < H. However, zwxz ! # y for all w € H since if w # ¢, then
rwz ! has length at least 3. Hence, rHz ! < H.O

Presentations of a Group

One way to define a group is to list all of the elements of the group and then
give the group's multiplication table, which shows explicitly how to multiply all
pairs of elements of the group. Then it is necessary to verify the defining axioms
of a group: associativity, identity and inverses. For example, the cyclic group
C’g((l) is

C(3 = {Laa a2}

with multiplication table
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2

[N

L]

a

a2

1 a
1 a
a 1
a a

el RSEI ST BS]

2

Of course, we generally abbreviate this description by writing
03 — {ai | 0<i< 2}7 az’aj — a(i+j)mod3
It is routine in this case to check the group axioms.

On the other hand, it is tempting to define a group by giving a set of generators
for the group along with some properties satisfied by these generators. The issue
then becomes one of deciding whether there is a group that has these generators
with these properties.

To illustrate, consider the following description of a group G-
G = (a,b),a* =1,b" = 1,abab = 1

This description gives a nonempty set X = {a,b} of generators for G and
certain relations on G, that is, equations of the form w = 1 where w is a word
over the generators and their inverses. Note that there is nothing in the
description above that precludes the possibility that a = b.

In order to guarantee that such a group exists, we require that all relations must
have the form w = 1. The left-hand side w is referred to as a relator.
Expressions such as w # 1 are not permitted. However, it is customary to take
the liberty of writing a relation in the form w = v as a more intuitive version of
wv~! = 1. For example, the last relation above can be written

ba=a"'b"" or ba=ab®

In view of the precise nature of relations, given any nonempty generating set X
and any set R of relations, there is always one group that is generated by X and
satisfies the relations R: It is the trivial group, where each generator is taken to
be the identity.

On the other hand, the best hope for getting a nontrivial group generated by X
and satisfying the relations R is to start with the concrete free group F'x and
factor out by the smallest normal subgroup N required in order to satisfy the
given relations, that is, the normal closure of the relators of R.
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With respect to the example above, the quotient group

Flayy

Gp= o
! <:L.27 y4’ :L'ywy>nor

has generators @ = N and b = yN, where N = (2%, y* xyzy)nor that satisfy
the relations given for a group G.

Thus, we are lead to the concept of a free presentation of a group, given in the
next definition.

Definition Let F'x be free on X. An epimorphism o: Fx —» G is called a free
presentation of G. The set X is called a set of generators for the presentation
and ifker(o) = (R)nor SO that

Fx

G~
<R> nor

the set R is called a set of relators of the presentation. In this case, we write
G=~(X|R)

If r € R is a relator, then the equation r = 1 is called a relation.(]

We will often refer to a free presentation of G simply as a presentation of G. It
is common to say that the group G itself has presentation (X | R) when

Fx
<R> nor

and that GG is defined by generators and relations. Note, however, that it is the
set 0 X that actually generates G. A presentation (X | R) is finite if X UR is a
finite set. Finally, we will often blur the distinction between a relator and the
corresponding relation, using whichever is more convenient at the time.

G~

We can form a more concrete version of the group defined by generators X and
relations R as follows. If G = (X) and if F is the concrete free group on X,
then a word over X' has two contexts: as an element of F'y and as an element of
G. Moreover, there is a unique epimorphism o: F'x —» G defined by specifying
that ox = x for all x € X. This map can be thought of simply as a change of
context and it is convenient to give it this name officially.

Definition Let G = (X) and let Fx be the concrete fiee group on X.

1) We call the unique epimorphism o: Fx —» G defined by ox = x for all
x € X the change of context map associated to G and X.

2) If the change of context map o: Fx —» G has kernel N = (R)uor, S0 that
the induced map 7: Fx /N — G defined by
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T(zN) ==z

is an isomorphism, we say that G has concrete presentation (X | R) and
write G = (X | R).00

It is clear that if G = (X | R) with N = (R)nor and if w(zy, ..., z,) is a word
over X', then
w(xy,...,x,) =1inG &  w@N,...,z,N)=Nin Fx/N
< w(zy,...,z,) € Nin Fx

Every Group Has a Presentation

The change of context map o: Fz —» G shows that every group has a concrete
presentation. Moreover, the kernel of this presentation is essentially the
multiplication table for GG. To be more specific, if a,b,c € G and ¢ = ab, then
abc™! = 1in G and so abc™! must be factored out of Fi;. So let

N = (abc™! | a,b,c € G,c =abinG) < Fg

It is easy to see that NV is a fully invariant subgroup of F; and that N < ker(o).
For the reverse inclusion, if w(ay, ..., a,) € ker(o), then w(ay,...,a,) =1 in
G and so w(ay,...,a,) € N. Thus, N = ker(o) and so G = (G | R), where

R = {abc™' | a,b,c € G,c = abin G}

Note also that if G is finite, then so is R.

Theorem 12.22 Every group G has concrete presentation (G | R), where
R = {abc™' | a,b,c € G,c = ab in G}
Moreover, if G is finite, then (G | R) is a finite presentation of G.[0

The concrete presentation (G | R) is rather large and we can improve upon it in
general.

Theorem 12.23 If G = (X |R), then G = (Y | S), where |Y| < |X| and
|R| < |S|. In particular, G has a finite presentation if and only if it has a finite
concrete presentation.

Proof. Let j: Fx—» G be a free presentation of G with kernel N = (R ).
Then the set Y = uX generates G. Let o: Fy —» G be the change of context
map. If S is the set of relators in Y obtained from R by replacing each
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occurrence of © € X by px, then the following are equivalent:

w(pxy, ..., pr,) € ker(o)
w(pxy, ..., px,) =1inG

w(T, ., Tn) € (R)nor
w(pxy, ..., p1xy) € (Shnor

and so ker(o) = (S)por and G = (Y | §).0
Finitely Presented Groups

A group is finitely presented if it has a finite presentation.

Theorem 12.24 [f' G has a finite presentation and if X is a generating set for G,
then G has a finite presentation of the form

<$1,...,33n | Tlv"'7r7n>

where z; € X.
Proof. Let (Y | S) be a finite concrete presentation of GG, with

Y={y,...,yn} and S={si(y1,...,0.) i =1,...,0}

Then there is a finite subset X = {z1,...,2,} C X for which Y C (X;) and
so Xy generates GG and we can write

=&Y, m); i=1,...,n
and
yi=Nj(x1,...,xn); j=1,...,u
Let
H={(x1,...,z, | R)
where R is the set of relators formed from the relations
siAM (1, ooy mn)y e ATy, x,)) =1 i=1,000,0
and
zj=&M (2, @), (T, ) d=1,000n
Since each of these relations holds in G, the subgroup (R ), is contained in the
kernel of the change of context epimorphism o: F'y,—» G and so o induces an
epimorphism ¢’: H —» G defined by ¢/ (z;) = ;.
To see that ¢’ is injective, if

o (w(zy,...,x,)) =1

then
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w(xy,...,z,) =1
in GG, whence
WY1, - Yu)s - &Y, h0) =1
in G and so
W& (Y153 Yu)s - EaYts oY) € (S)nor
in Fy. Replacing each y; by Aj(x1, ..., x,) implies that
w(xy, ..., xn) € (R)nor

in H, that is, w(xy,...,x,) = 1 in H. Hence, ¢’ is an isomorphism and so G
has presentation (x1, ..., x, | R).0

Theorem 12.25 Let G be a group and let N < G. If N and G/N are finitely
presented, then so is G.
Proof. Let

N = (x1,..., @ | "1,y T)
and let
G/N = (1N, ...,ynN | s1,...,80)

If X={zy,...,2,} and Y ={y1,...,yn} and A=XUY, then G is
generated by A. As to relators, we have

5i(y1N7---7y7LN):1 a4 Si(y17~~~7yn)sz($17~~~,$n,)

where w;(z1,...,z,) is a word in the z;'s and x; !'s. Also, N is normal if and
only if

1 -1
YTy, = vij(z1,...,2,) and Y, Ty = 2 (1, ..., @)

for words v; ; and z; ;. The following set R of relations captures the relations r;
and s; as well as the fact that N < G

ri(xy, ..., x,) =1fori=1,...,u

Si(Y1y ey yn) = wi(xy, ... xy) fori=1,... 0
yjaciyjfl =vj(x,...,xy) fori=1,...,n;5=1,...,m
y;lxiyj:zi,j(acl,...,xn) fori=1,...,n;5=1,...,m

Let X' = {z,...,2,},Y ={v|,...,y,and A" = X’ UY" and let
H = <Al | R/A*)AI>

If N' = (z},...,2)) < H, then the relators in R’ show that N < H.
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Let f: Fu — G be the unique epimorphism for which fx; = x; and fy; = y;.
Since (R )nor < ker(f), there is a unique epimorphism g: H —» G for which

gri = fo; ==z and gy = fy; =y
Moreover, the restriction g: N’ —» N is an isomorphism, since if
gw(al,...,2,)) =1
then
w(xy, ..., xy) =1

in N and so w(z1,...,2,) € (R )nor in Fy. It follows that

w(@h, ... 2),) € (R a)nor
in Fy and so w(x],...,z}) = 1in N'. Hence, if K’ = ker(g), then

KnN ={1}

Our goal is to show that K = {1}.
Since ¢g(N') = N, the epimorphism ¢: H—» G induces an epimorphism
¢:H/N'—»G/N for which

9 WiN') = g(p) N = y;N
for all j. Moreover, ¢ is an isomorphism, since if

JwN', ...y, N))) = wyN, ..., ynN)) = N
in G/N, then
W N, .. ymN)) € (s1( N, oo, YN, ooy Su(AN, oo YN ) nor
in the free group on {yy N, ...,y N }. Hence,
wAN' -y ND) € (st Ny N, su AN Y N ) Do
in the free group on {y} N, ..., 4/, N'}, which implies that
WYy s Ym) €N

that is,

wiy N, ...y, N')) = N

in H/N'. Thus, ¢ is an isomorphism. Finally, if 1 # k € K, then k ¢ N’ and
so kN’ # N’, whence

N =g(k)N =g (kN') # N



Free Groups and Presentations 343

It follows that K = {1}, that is, g: H ~ G is an isomorphism and so G is
finitely presented.[]

Combinatorial Group Theory

Before looking at other examples, let us return briefly to the question of whether
a given presentation (X | R) defines a nontrivial group. From one point of
view, this question has a rather surprising answer. It can be shown that no
algorithm can ever exist that determines whether or not an arbitrary set of
generators and relations defines a nontrivial group! Nor is there any algorithm
that determines whether the group defined by an arbitrary finite presentation is
finite or infinite.

Definition 4 decision problem is a problem that has a yes or no answer, such

as whether or not a given word in Fx is the identity in a group G.

1) A decision problem is decidable or solvable if there is an algorithm, called
a decision procedure, that stops after a finite number of steps and returns
“yes” when the answer is yes and “no” when the answer is no. A decision
problem is undecidable or unsolvable if it is not decidable.

2) A decision problem is semidecidable or semisolvable if there is an
algorithm that stops after a finite number of steps and returns “ves” when

the answer is yes. However, the algorithm need not stop if the answer is
no.O

The word problem for a group G with presentation (X | R), first formulated in
1911 by Max Dehn, is the problem of deciding whether or not an arbitrary word
over X’ is the identity element of G (or, equivalently, whether or not two
arbitrary words over X' are the same element of ). It has been shown that
there exist individual groups GG with finite presentations for which the word
problem is unsolvable.

On the other hand, there are large classes of groups for which the word problem
is solvable. For example, the word problem is solvable for all free groups (in
view of Theorem 12.4), for all finite groups and for all finitely-generated
abelian groups. In fact, it is an active area of current research in group theory to
study classes of groups for which the word problem can be solved.

On the other hand, the word problem for finitely-presented groups is
semidecidable. For if (X |R) is a finite presentation of a group G and if
w € G, then since R is a finite set, there is an algorithm that checks all of the
elements of (R ) one-by-one looking for w. If w = 1 in G, then this algorithm
will eventually encounter w. The problem is that the algorithm will not
terminate if w # 1 and so this is not a decision procedure. One way to mitigate
this problem is to intermix the steps of this algorithm with the steps of another
algorithm that stops if w # 1, assuming that such an algorithm exists.
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For example, the following defines a class of group for which such an algorithm
does exist.

Definition A4 group G is residually finite if for any 1 # a € G, there is a
normal subgroup N < G for which a ¢ N and G /N is finite..

Theorem 12.26 The word problem is solvable for the class of all finitely-
presented residually finite groups.

Proof. Let G = (X | R) be a finite presentation of a residually finite group G
and let w € G. It is possible to enumerate all finite groups by constructing
multiplication tables. Also, for a given finite group F, there are only a finite
number of group homomorphisms from G to F, since all such homomorphisms
are uniquely determined by the functions f: X — F. Consider the following
algorithm:

1) Compute the next finite group F'.
2) For each group homomorphism o: G — F, stop the algorithm if ow # 1.

Now, if w# 1 in G, then since G is residually finite, there is an N < G for
which w ¢ N and G/N is finite. Hence, the canonical projection m: G — G/ N,
which is encountered in step 2) above, satisfies mw # 1 and so the algorithm
will stop if w# 1. Thus, we can intermix this algorithm with the

aforementioned algorithm to get a decision procedure for the word problem for
G.0O

The issues discussed above fall under the auspicies of an area of algebra known
as combinatorial group theory.

On the Order of a Presented Group

Since a relation cannot be a nonequality, there is no way to specify the order of
an element or subgroup of a group by relations. Thus, for example, among the
following descriptions of a group, only the first description is a presentation:

1) G1=<a7b\a2=1,b4=1,abab:1>
2) Gy ={(a,b),0(Gy) =8,a®> =1,b* = 1,abab =1
3) Gs={(a,b),o(a) =2,0(b) =4,abab =1

Since the relation abab = 1 is equivalent to the commutativity relation
ba = ab®
each of the groups above has underlying set

S={ab|0<i<1,0<;j<3}
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and so o(G},) < 8 for k = 1,2, 3. Moreover, since o(G2) = 8 implies o(a) = 2
and o(b) = 4, any group satisfying 2) also satisfies 3). Conversely, o(G3) = 4
or 8, but if o(G3) =4, then G5 = (b) and a = b*, which does not satisfy
abab = 1. Hence, o(G3) = 8 and so 2) and 3) describe the same group.

Thus, if we show that a group G fitting description 2) or 3) exists, then G has
order 8 and satisfies the relations R given by 1). Hence, R is contained in the
kernel of the change of context map o: F,;, — G and so

8> (Flap) : (R)nor) = (Flapy : ker(o)) = |G| =8

It follows that ker(o) = (R )nor and so G has presentation (X | R).

Theorem 12.27 Suppose that a group with presentation (X | R) has order at
most n < co. Then any group G of order n generated by X and satisfying the
relations in R has presentation (X | R).

Proof. Let o:Fx—»G be the change of context epimorphism. Since
(R)nor < ker(o), we have

n> (Fx: (Rhnor) > (Fx : ker(o)) = |G| =n
from which it follows that ker(c) = (R )nor and so
Fx

G~ O
<R>nor

Referring to our previous example, since the dihedral group Dy fits description
2) and has order 8, we have

Dg ~ {(a,b | a®> = 1,b* = 1,abab = 1)

More generally, one of the simplest presentations with two generators is
H=(z,y|a"=1y" =1,yz = zy’)

for some 0 < t < m. The commutativity relation shows that
H={z'y|0<i<nand0<j<m}

and so o(H) < mn. Moreover, one can prove by induction that for 0 < k < m
and0 < j<mn,

yk'.l?j — m@’”‘”
and so
(@'y") (aly") = 2y (12:28)

However, we can define a group G whose underlying set consists of the mn
distinct formal symbols
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G={2'y|0<i<nand0<j<m}

with product defined by (12.28). This product is associative, since

[(xiyk)(xjyé)](l,uyv) _ (xi-&-jykt]-ké)(xuyv) _ xi+j+'uy(kt]+f)t“+v
and

(xzﬁyk:)[(mjyk)(xuyv)] _ miyk(ijruy(’,t“H;) _ $i+j+uykt«7+“+é/t“+v
and inverses exist, since

i k\—1 _ _n—i, m—kt"
(@'y") " =a2""y

Hence, G is a group of size nm that satisfies R and so GG has presentation
(X | R)and o(H) = mn.

Theorem 12.29
1) The presentation

(X|R)={(a,b|a"=1,b" = 1,ba = ab")
where 0 < t < m defines the group
G={adV|0<i<nand0<j<m}
where o(G) = mn, o(a) = n, o(b) = m and
(aibk)(ajbé) _ aiﬂ'bktﬂﬂ

Moreover, any group of order mn that is generated by X and satisfies the
relations R has presentation (X | R).
2) The presentation

Y |8 ={(c,d]|c"=1,d" =1,dc = c’d)
defines the group
H={cd|0<i<nand0<j<m}
where o(H) = mn, o(c) = n, o(d) = m and
(cidk)(cjdé) _ Cz‘+js*dk+/3

Moreover, any group of order mn that is generated by Y and satisfies the
relations S is defined by (Y | §).00

Let us now consider some examples of presentations.
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Dihedral Groups
Since the dihedral group Dy, = (o, p) of order 2n satisfies the relations
R={c>=1,p"=1,poc=0p" '}

Theorem 12.29 implies that D,, has presentation ({o,p}|R) and
multiplication table

i+j k(n—1)7+¢

(o' p*)(0p) = o't
We leave it as an exercise to show that D, is also presented by
(Y[8) =(z,y|a*=19"=1,(xy)" =1)

Thus, two rather different looking presentations can be equivalent, that is, can
present the same group.

Quaternion Group

To find a presentation for the quaternion group, note that QQ = (i, j) satisfies the
relations

R={i'=1i"=7"ji=7j}

and so we need only show that any group presented by (X | R) has order at
most 8. If G has presentation

(X|R) = (z,y| 2" =1,0" = 2*, yz = 2’y)
then
G ={z*y"|0<s,t <3}

2 we see that

However, since 3> =
G={z"y|0<s<3,0<t<1}

and so o(G) < 8. Thus, @ = (X | R).
Dicyclic Groups
Consider the presentation

(X|R)=(z,y|2™ = Ly* =a",yx =2 y)
If

H=(X|R)

then using the fact that 3> = ", we have
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H={z'y [0<i<2m—-1,0<j<1}
and so o(H) < 4n.

A double induction shows that for 0 < k < 4and 0 < j < 2n,

ik
kg (-0 k xly 4 k even
yese {x%—fyk k odd

and so
(') (@) = DTyt (12.30)

However, we can define a group G by choosing two distinct symbols x and y
and setting

G={z'y|0<i<2n,j=0,1}
with product defined by (12.30). This product is associative:
[("Elyk)(xjy[)}(l'uyb) _ (:EiJr(fl)“jykJré‘)(xuyw) _ xi+(71)*'j+(f1)"'”uyk+é‘+v
and
(xiyk)[(l,jyé)(muyv” _ :ciyk(mﬁ(*l)t“y“”) _ xi+(71)*‘(j+(71)fu)yk+é+v
and inverses exist:

(xz:yk)ﬂ _ m(fl)k(Qn—i)yifk

Hence, G' is a group of size 4n that satisfies the relations R and so
G~ (X | R) and o(H) = 4n. Any group with presentation (X | R) is called a
dicyclic group of order 4n.

A special case of the dicyclic group is when 2n has the form 2”1, in which case
the presentation is

n—1 7—2 —
(X|R)=(z,y|a® =1Ly =2 yz=2"y)

A group with this presentation is called a generalized quaternion group. When
n = 3, this is

(X|R)=(z,y|a' =1Ly =2’ yo=a""y)
which is the presentation for the quaternion group Q.
The Symmetric Group

Recall from Theorem 6.5 that the symmetric group S, is generated by the n — 1
adjacent transpositions ¢, = (kk + 1) for Kk =1,...,n — 1. Note also that the
ti's satisfy the relations
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=1, =t} tit;j=tit,forj—k#=*l
Now let
X={z1,...,xp1}
and let R be the relations
:cz =1, ZpaxpTp—1 = TpTp_1 T, TET; = T for j — K # 1

Let G = (X | R). Since S, is generated by the elements ¢, = (kk + 1) and
satisfies the relations R with zj replaced by ¢, Theorem 12.27 implies that if
o(G) < nl, then S, ~ (X | R). We prove the former by induction on n.

If n = 2, then G = (x1) where 7 = 1 and so G = {1, z;} has order 2. Assume
that the result holds for the subgroup H = (21, ..., 2, o) with relations R. We
show that every a ¢ H can be written in the form

a4 = TpTpy1  Tp (W

for 1 <k <n-—1, where w € H. Let us refer to a substring x;z;1---x,—1 as
being in proper order. Then

a = u(TiTiy1Tp1)v

for some ¢ <n — 1, where v € H. If w is the empty string, then we are done.
Otherwise, let u = u'z;. Here are the possibilities:

1) If j <i— 2, then x; commutes with all factors to its right and so
a = (TiTis1Tp_1)T0

where zv € H.
2) Ifj=14—1,then

a = U (Ti1TiTig1 - Tpo1)V
3) Ifj =1, then
a=u'wz;(TTig1 Tno1)v = U (Tip1 - Tp1)V

4) Ifj>i+ 1, then

u
W@ T T Ty)V
u'(

€Tiv- .x]-ilx]-. . 'xnfl)mjflv

where z; v € H.
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Thus, in all cases, we can reduce the length of the substring appearing to the left
of the substring in proper order by one symbol. Repeated application brings a to
the desired form

4 = TpTjt1 Tp-1W

It follows that o(G) = n - o(H) < nl.

Theorem 12.31 The symmetric group S, has presentation (X | R), where
X=A{x1,...,zp 1}
and let R consist of the relations
x% =1, XpTpTp_1 = TRTETh, TR = v forj—k#F 1 O
We close by noting that the relations above are equivalent to

=1, (zp_12p)° =1, (xkxj)2 =lforj<k-—2

Exercises

1. An equational class /C is abelian if all members of the class are abelian
groups. Characterize abelian equational classes.
2. Let G be the dicyclic group of order 4n, n > 1, with presentation

(X|R)=(z,y|a* =1, =a"yx =2y =2y

a) G has exactly one involution z.
b Z(G) = (2)

3. Let X be a nonempty set and let (Fy,x) be universal for X. Let
w(xy,...,x,) be aword over X’ and let f: {x1,...,x,} — {y1,...,yn} be
an injection, where y; € X. Prove that

W(KTy, ... kxy) =1 & w(ky,...,kYyy) =1

4. Let F be the free group on the set X = {z1,...,2,}. Show that F has a
subgroup of index m forall 1 < m < n.

5. Let F' be the free group on X = {z,y} and let G = (a) K (b) be the direct
product of two infinite cyclic groups. The function f: X — G defined by
fx=(a,1), fy = (1,b) induces a unique mediating morphism 7: F — G.
What is the kernel of 77

6. Let F'x be the free group on X. Prove the following:

a) IfY C X is nonempty, then Fy < F.
b) If Y C X is nonempty, then Fy N Fx\y = {1}. In particular, if
x € X\Y,thenx ¢ Fy.

7. Characterize the abelian groups that are free groups.

8. Let F' be a free group and let H < F' have finite index. Show that H
intersects every nontrivial subgroup of F' nontrivially.
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Let F' be free on the disjoint union X UY of nonempty sets. Prove that

F /(Y )nor is free on X.

Show that if N < G and G/ N is free, then G = N x H for some H < G.

Prove that if | X| > 1, then the free group Fl is centerless.

Let F be a free group. Suppose that o: A—» B is an epimorphism and that

7: F' — B is a homomorphism. Prove that there is a \: /' — A for which

o o A\ = 7. This is called the projective property of free groups.

If K is a class of groups, then a group G is residually /C or a residually /C-

group if for any 1 # a € G, there is a normal subgroup N, < G for which

a ¢ N, and G/N, is a KC-group.

a) Prove that a group G is residually /C if and only if it is isomorphic to a
subdirect product of C-groups.

b) Prove that if N = {N; |i € I} is a family of normal subgroups of a
group G and if G/N; is a K-group for all ¢ € I, then G/(N; is
residually /C.

Prove that the presentation

Y |8 =(c,d]|c"=1,d" =1,dc = c’d)
defines the group
H={cd|0<i<nand0<j<m}
where o(H) = mn, o(c) = n, o(d) = m and
(cidk)(cjdz) _ Ci+js"dk+é
Show that Ds,, is presented by
Y 18) = (ayy |02 = 1,97 = 1, (ay)" = 1)
Let 0 and p be distinct symbols. Let
D={p',op'|icZ}
with product defined by the properties 0> = 1, po = op~!. Thus,
pio = ap
a) Show that D is a group and that D is presented by
Pr=(zy|a*=1yz=ay")
b) Show that D is also presented by
Py=(z,y|a* =1y =1)

Any group presented by P, or P; is called an infinite dihedral group.

Let G = (X | R) be a finite presentation of G, where X = {z1,...,2,}
and R' ={ry,...,r} and m < n. Show that G is an infinite group as
follows.
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a) Reduce the problem to the abelian case as follows. Let Ay be the free
abelian group on X. Show that there is an epimorphism from
Fx /(R Ynor to Ax/(R').

b) Show that Ax/(R’) is infinite.



Chapter 13
Abelian Groups

In this chapter, we study abelian groups. We will write abelian groups using
additive notation. One of our main goals is to provide a complete solution to the
classification problem for finitely-generated abelian groups. That is, we will
describe all finitely-generated abelian groups up to isomorphism.

Perhaps the most natural place to begin is to observe that the elements of finite
order in an abelian group A form a subgroup of A, since

o(ab) = lem(o(a), o(b))

Let us remind the reader that this is not the case in a general group. For
example, in GL(2,C), let

0 -1 0 1
A—<1 0) and B—(_1 _1>
Then A and B have finite order but A B has infinite order.

Definition Let A be an abelian group. An element a € A that has finite order is
called a torsion element. The subgroup Ay of all torsion elements in A is
called the torsion subgroup of A. A group that has no nonzero torsion elements
is said to be torsion free and a group all of whose elements are torsion
elements is said to be torsion.[]

Of course, a finite group is a torsion group, but the converse is not true:
Consider the direct product Zg“ of an infinite number of copies of Zs.

The quotient A/ Ay, is easily seen to be torsion free and it would be nice if Ay,
was always a direct summand of A, that is, if

A:AtorNB

for some B, A, since then B &~ A/A, would be torsion free and we would
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have a nice decomposition of any abelian group. Unfortunately, this is not the
case. To show this, we require a definition.

Definition Let A be an abelian group. An element a € A is divisible by an
integer n if there is an element b € A for which a = nb. A group A is divisible
if every element is divisible by every nonzero integer.[]

Theorem 13.1 The torsion subgroup of an abelian group need not be
complemented.

Proof. Let A = X Z, be the external direct product of the abelian groups Z,,
taken over all primes p. For a € A, we use the notation a, in place of a(p). The
torsion subgroup Ay, is the subgroup of all elements with finite support. If
A=A X B, then B~ A/Aiyr, so this prompts us to look for an
isomorphism-invariant property that holds in A/ Ay, but not in B. This property
is divisibility.

Specifically, we will show the following:

1) No nonzero element of A (and hence B) is divisible by all primes p.
2) There are nonzero elements of A/ Ay, that are divisible by all primes p.

Since the only element of Z,, that is divisible by p is 0, if a € A is divisible by
p, then a), = 0. Hence, if a is divisible by all primes, it follows that a = 0.

Now let @ € A be the element for which a,, = 1 for all p. For a given prime p, to
say that a = pb for some b € A is to say that pb, = 1 for all primes ¢. But if
q # p, then p has an inverse r, in the field Z,. Hence, if b is defined by b, = 7,
and b, = 0, then

(a —pb), =a,—pb,=1
and for all g # p,

(a —pb)y = ag — pby =0
and so a — pb € Ay,

Despite the negative nature of the previous result, we will show that if A is a
finitely-generated abelian group, then Ay, is complemented. This is a key to the
structure theorem for finitely-generated abelian groups.
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An Abelian Group as a Z-Module

An abelian group A has a natural scalar multiplication defined upon it, namely,
multiplication by the integers: If & € Z and a € A, we set

0 ifa=0
aa={ et ta ifa>0 (13.2)
« terms
—(—a)a ifa<0

Under this operation, an abelian group A is a Z-module, as defined below.

Definition Let R be a commutative ring with identity. An R-module (or a
module over R) is an abelian group M, together with a scalar multiplication,
denoted by juxtaposition, that assigns to each pair (r,u) € R x M, an element
rv € M. Furthermore, the following properties must hold for all r,s € R and
u,v € M:

r(u+v) =ru+rv
(r+s)u=ru+ su
(rs)u = r(su)
lu=u

The ring R is called the base ring of M and the elements of R are called
scalars.[]

Note that an abelian group A is a Z-module and, conversely, a Z-module is
nothing more than an abelian group, since the scalar multiplication of a Z-
module M must be the operation defined in (13.2). Moreover, the subgroups of
the abelian group M are the submodules of the module M and the group
homomorphisms between the abelian groups M to N are the linear (module)
maps between the Z-modules M and N.

The Classification of Finitely-Generated Abelian Groups

We solved the classification problem for finite abelian groups in Theorem 5.7.
Also, Theorem 12.14 solves the classification problem for free abelian groups.
Using these theorems, we can now solve the classification problem for finitely-
generated abelian groups. The first step is to note the following.

Theorem 13.3 A4 finitely-generated abelian group A is torsion free if and only if

it is free.
Proof. We leave proof that if A is free, then it is torsion free as an exercise. For
the converse, let S = {vy,...,v,} be a generating set for the torsion-free

abelian group A. The proof is based on the fact that since A is torsion free, it is
a torsion-free Z-module. Moreover, for any a € A, the multiplication map
tq: A — A defined by p,x = ax is a Z-module automorphism of A.
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Let {uy,...,u;} be a maximal linearly independent subset of S. Of course, if
k = n, then S is a basis for A and so A is free. Assume otherwise and let
S = {ula ceey Uy ULy e avnfk}
For each v;, the set {uj,...,u;,v;} is linearly dependent and so there exist
a; € Z for which
a;v; € <U1, RN ,uk,>
Ifa =y -y, then
paA = aluy, ..., up,v1, .., g) C (ur, ..., up)

and since the latter is a free abelian group, Theorem 12.18 implies that p, A is
also free and therefore so is A.[J

If A is a finitely-generated abelian group A, then Ay is a subgroup of A and
the quotient A/ Ay, is torsion-free and finitely generated and so is free. Since
the canonical projection map m: A — A/ Ay, is an epimorphism, Theorem 12.19
implies that A, has a complement:

A=F X Ay

where F ~ A/A;y, is free and finitely-generated. Moreover, Theorem 12.16
implies that F' has finite rank and since Ay, is finitely generated (Theorem
2.21), torsion and abelian, it is finite.

As to uniqueness of this decomposition, if
A=F'XT

where F’ is free and T is torsion, then clearly, T' < Ay,. But if a € Ay, and
a=t+ f wheret €T and f € F' and so f = a — t is torsion, whence f =0
and a € T. Thus, T' = Ay,. It follows that F' and F’ are both complements of
Ayor and hence are isomorphic.

We can now state the fundamental theorem of finitely-generated abelian groups.

Theorem 13.4 (The fundamental theorem of finitely-generated abelian

groups) Let A be a finitely-generated abelian group, with torsion subgroup
At0r~
1) Then

A - F X Ator
where I is free of finite rank v and Ay, is finite. As to uniqueness, if

A=F'XT
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where F' is firee and T is torsion, then T = Ay and tk(F') = tk(F"). The
number r = tk(F) is called the free rank of A.

2) (Invariant factor decomposition) A is the direct sum of a finite number of
cyclic subgroups

A= () M M) ] (ug) M- X (un)
where o(x;) = oo and o(u;) = oy > 2 and
(079 | Qp—1 | | aq

The orders «; are called the invariant factors of A.
3) (Primary cyclic decomposition) /f
ap = p"-py”
then
A= (z) X X (x,)
DI [(,1) Mo (g )] e D [, 1) X X (i )]

where o(x;) = oo and o(u; ;) = p;” and

€1 > € > >¢eip > 1
The numbers p;” are called the elementary divisors of A.

3) The multiset {c;} of invariant factors and the multiset {p;"’} of elementary
divisors are uniquely determined by the group A.]

Projectivity and the Right-Inverse Property

A diagram of the form
AL B C

where A, B and C' are groups and ¢ and 7 are group homomorphisms is exact if
im(o) = ker(7)

It is customary to regard the figure
AL B—0

as exact and to omit the second homomorphism, since it must be the zero map.
Thus, this figure says precisely that o is surjective. Similarly, the figure

0—A-2 B

says precisely that o is injective.

According to Theorem 5.23, a group homomorphism ¢: G — G’ has a right
inverse o if and only if it is surjective and ker(c) is complemented:
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G =ker(o) x K
for some K < (G and in this case,
G =ker(o) x im(og)
Let us say that an abelian group P has the right-inverse property if every

epimorphism o: A—» P, where A is abelian, has a right inverse. This is
illustrated in Figure 13.1.

. P

oR
/// i
2

A—>P—>0
(&)

Figure 13.1

An apparently stronger property is given in the following definition.

A, i
// T
L

A—>B—>0
(&)

Figure 13.2

Definition An abelian group P is projective if, referring to Figure 13.2, for
any epimorphism o: A—» B of abelian groups and any homomorphism
7: P — B, there is a homomorphism \: P — A for which

goAN=T

In this case, we say that T can be range-lifted ro \.0J

While the projective property appears to be stronger than the right-inverse
property, the two properties are actually equivalent. The following theorem is
the main result on projective abelian groups.

Theorem 13.5 Let G be an abelian group. The following are equivalent:

1) G is afree abelian group.

2) G is projective.

3) G has the right-inverse property, that is, any surjection 7: A — G, where A
is abelian, has a right inverse.

4) Ifo: A—» G, where A is abelian, then ker(o) is a direct summand of A.

Proof. We have seen that 3) and 4) are equivalent. Assume that 1) holds and let

G = Fx be free on X. Let 0: A — B be surjective and let 7: F'xy — B. Then for
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each x € X, there is an a, € A for which ca, = 7x. Define a function
f: X — Aby f(x) =a,. Since Fy is free, there is a unique homomorphism
A: F'y — A for which Az = a,. Then

ocoMx)=o0a, =Tz

and so 0 o A = 7 on X and therefore on F'x. Hence, G = F'x is projective and
2) holds. It is clear that 2) implies 3).

Finally, suppose that 3) holds. The identity map ¢: G — G can be lifted to a
homomorphism o: F — G where Fg; is the free abelian group with basis G. Of
course, o is surjective and so 3) implies that o has a right inverse op: G — F.
Hence, ker(o) is complemented, that is,

Fe =ker(o) X S

But 0: S — G is an isomorphism and so G is isomorphic to a direct summand
of a free abelian group and is therefore free abelian by Theorem 12.18. Hence,
1) holds.d

Injectivity and the Left-Inverse Property

We have seen that a monomorphism o: A < B has a left-inverse o, if and only
if im(o) has a complement K in B, in which case K ~ ker(oy). Dual to the
right-inverse property is the left-inverse property: An abelian group E has the
left-inverse property if every monomorphism ¢: £ — B to an abelian group B
has a left inverse.

Dual to the projective property is the injective property.

Definition 4An abelian group FE is injective if, referring to Figure 13.3, for any
embedding o: A — B and any homomorphism 1:A — E there is a
homomorphism \: A — FE for which

Aoo =T

In this case, we say that 7: A — E can be domain-lifted to \: B — E by
0:A— B.O

Figure 13.3

Baer [3] proved that if this condition holds in the special case where B = Z is
the group of integers and A < Z and o: A — Z is the inclusion map, then the
condition holds in general and F is injective.
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Theorem 13.6 An abelian group E is injective if and only if it satisfies Baer's
criterion: Any homomorphism 7: I — E, where I is a subgroup of the integers
Z can be extended to a homomorphism \:Z — E on Z.

Proof. We wish to show that any homomorphism 7: A — E can be domain-
lifted to A\: B — E by any monomorphism o: A <— B. Note that 7 can be
domain-lifted by o to Too ':0A — E, since 0: A — oA is an isomorphism.
This is shown in Figure 13.4.

0 —>A—">0(A)>X—>B

T ol -

LL/’/

E

Figure 13.4

Suppose we have domain-lifted 7 by o to A\: X — B, where 0 A < X < B, that
is,

T=MAoo
If X < B, then for any a € X \ B, we can lift A by o to a map on X + (a) as

follows. We need only define A on (a) = Za. But A is already defined on
ZaN X = Iaforsome I < Z.Soif \;: I — FE is defined by

A1(a) = AMaa)

then Baer's criterion implies that \; can be extended to \y:Z — E. Then the
map \: X + (a) — E defined by

Mz +ra) = Mz) + Xa(r)a

for any r € Z is well defined since if © + ra =y + sa, then z —y = (s — 7)a
and so s — r € I, which implies that

A(s =) = A(s —r)a) = A(z —y)

and so

Az +ra) = M) + Xa(r)a = My) + Aa(s)a = Ay + sa)

Moreover, since A o 0 = 7 and im(c) < dom()\), it follows that A o o = 7.

This discussion prompts us to apply Zorn's lemma. Let S be the collection of all
pairs (X, A), where 0(A4) C X C B and A is a lifting of 7 by o to a map on X.
Then S is nonempty since we may take X =ocA. Order S by setting
(X, ) < (Y, \)if X CY and My = p.
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If C={(X;,p;)} isachainin S, let U = |YX;. If z € X; N X}, then one of g,
and p; is an extension of the other and so p;x = u;z. Hence, we may define p
by px = p;x for any ¢ satisfying « € X;. Then (U, p) is an upper bound for C
and so Zorn's lemma implies that S has a maximal element (M, \). But if
M < B, then there is a further lifting of A\, which contradicts the maximality of
(M,\)and so M = B.OO

We can now present our main theorem on injective groups.

Theorem 13.7 Let G be an abelian group. The following are equivalent:

1) G is injective.

2) G is divisible.

3) G has the left-inverse property, that is, every monomorphism o: G — B to
an abelian group B has a left inverse.

4) Ifo:G — A, where A is abelian, then im(o) is a direct summand of A.

Proof. We know that 3) and 4) are equivalent. Assume first that G is injective.

For g € G and n € Z we seek h € G for which g = nh. The map 7: (n) — FE

defined by 7(rn) = rg for all r € Z can be domain-lifted by the inclusion map

J:{n) — Z, that is,

Aoj=T
Hence,
g=7(n)=Xoj(n)=A(n) =nA(1)
and so h = A(1). Thus, G is divisible and 1) implies 2).
To see that 2) implies 1), we show that 2) implies the Baer criterion. Let
7:(k) — G where (k) <Z. To show that 7 can be extended to Z, define
Aa:Z — G by Ay(n) = na, for a € G. Then A\, extends 7 if A\, (k) = 7(k), that

is, if 7(k) = ka. But since G is divisible, there is an a € G for which this holds.
Hence, 2) implies 1).

It is clear that 1) implies 3). Finally, suppose that E has the left-inverse
property. We wish to show that E is injective. The story of the proof is shown
in Figure 13.5.
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Figure 13.5

We seek the map \: B — G for which A oo = 7. A first attempt might be to
consider the direct sum G X B, with canonical injections kg and kp. Since
kg:G — G X B is an injection, it has a left inverse (kg); and we can take
A = (k¢)L o kp. However, it may not be the case that Ao o = 7.

On the other hand, perhaps we can factor the direct sum G X B by a subgroup
S, with projection map 7g in such a way that the compositions
up =mgokp:B— (GXB)/S
and
ne =mgokg:G— (GXB)/S
satisfy
HB OO = pGoT
where 11 is left-invertible. In this case, if A = (u¢)z, o pp: B — G, then
Aok = (pa)roppoo = (pa)LopgoT ="
as desired. But the condition pip 0 0 = pug o 7 is
TgOKBOT =TgOKGOT
that is,
(0,0a) + S = (1a,0)+ S
for all a € A and so if
S =A{(ra,—oca) |a € A}

then this equation holds. Also, j is injective since g € ker(ug) implies that
(9,0) € S and so (g,0) = (Ta,—ca). Hence, ca =0 and so a = 0, whence
g=0.0
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Exercises

1. Let A be a torsion-free abelian group. Prove that if @ € A is divisible by
n € Z, then the “quotient” b € A is unique.

2. Prove that a subset B of an abelian group A is a basis if and only if for
every a € A, there are unique elements by, ...,b, € B and unique scalars
ai, ..., a, € Z for which

a=aby +--+ a,b,

3. Let A be a free abelian group. Show that it is not necessarily true that any
linearly independent set of size tk(A) is a basis for A.

4. Let A be a free abelian group of finite rank and let A = B X C'. Prove that
tk(A) = 1k(B) + rk(C).

5. Prove that any abelian group A is isomorphic to a quotient of a free abelian
group.

6. A subgroup H < G of an additive abelian group G is pure if for any
h € Handm € Z,

h=mgforge G = h=mh'forsomeh’ € H
a) Prove that if GG is an abelian group, then the set of periodic elements of
G is pure.
b) Prove that any direct summand of an abelian group is pure.
¢) Find a nonpure subgroup of the cyclic group Z,,2.

7. Prove that an abelian group A is finitely generated if and only if it is
isomorphic to a quotient of a free abelian group of finite rank.

8. Let A be a free abelian group of finite rank n. Let S = {s1,...,s,} be a
generating set for A. Prove that S is a basis for A. Hint: Let
X ={x1,...,2,} be a basis for A and define the map 7: A — A by
7(x;) = s; and extending to a surjective homomorphism. What about
ker(7)?

9. Let F' be a free abelian group of rank n. Let H be a subgroup of F' of rank
k < n. Prove that G/H contains an element of infinite order.

10. Show that, in general, a basis for a subgroup of a free abelian group cannot
be extended to a basis for the entire group.

11. Prove that any free abelian group is torsion free.

12. Let G be a torsion-free abelian group. Suppose that G has a subgroup F
that is free and has finite index. Prove that GG is free abelian.

13. Let A be a finite abelian group.

a) Prove that if pA = {0}, then A is a vector space over the field
Z, =1]pZL.
b) Prove that for any subgroup S of A the set

SV ={vesS|p=0}
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14.

15.

16.
17.
18.

19.

20.

21.
22.

23.

24,

25.

26.
27.
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is also a subgroup of A and if A = S X T, then
AW = g) pq @)

Let F be a free abelian group of rank n. Show that Aut(F") is isomorphic to

the group of all n X n matrices with determinant equal to +-1.

Let Q7 be the multiplicative group of positive rational numbers.

a) Show that Q" is isomorphic to the additive group Z[x] of polynomials
over the integers. Hint: Use the fundamental theorem of arithmetic.

b) Show that the multiplicative group QT of positive rationals is a free
abelian group of countably infinite rank.

Prove that the quasicyclic group Z(p*) is divisible.

Prove that a free abelian group is not divisible.

a) Show that the rational numbers Q are not finitely generated as an
abelian group under addition.

b) Show that Q is divisible and therefore not free by an earlier exercise.

¢) Show that Q is torsion free.

Thus, a torsion-free abelian group need not be free.

Prove that if A = X A;, where A and A; are abelian groups, then A is

injective if and only if A; is injective for all 7.

Let A be an abelian group. Show that the set Ag;, of all divisible elements is

a subgroup of A. Show that Ag;, is a direct summand of A.

Let D be a divisible group. Prove that Dy, is divisible.

Let A be a finitely generated abelian group. For any subgroup S of A let

Ay ={a € A|aisa p-element}

Show that A(,) C A. Describe the order of A, in terms of the elementary
divisors of A.

How can one tell from the elementary divisors of a finite abelian group
when that group is cyclic?

Use one of the decomposition theorems to prove that a finite abelian group
A has a subgroup of order k for every k | o(A).

Find, up to isomorphism, all finite abelian groups of order 1000. Which are
cyclic?

Prove that every abelian group of order 426 is cyclic.

Let p be a prime. Let

A= <U1> LSRR <um>
where o(u;) = p/ and let
B = {v) X - X (v,)

where o(v;) = p“. Assume that A < B.
a) Prove thatm < n.
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b) Prove that

fm < enafmfl < enflwuafl < €n—mt1
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List of Symbols

< : subgroup
< :a < b means that b covers a
:= the item on the left is defined by the item on the right
: the item on the right is defined by the item on the left
: disjoint union of sets
: cartesian product
: internal direct sum; @ in the abelian case
: external direct product
: external direct sum
% : semidirect product
KxHmodJ: KJIG,G=HK, HNK =J
C : H C G means that H is characteristic in GG
C : H C G means that H is characteristic and proper in G
— : denotes an embedding (injective map)
[u]: the equivalence class containing u
(k,n): If k and n are integers, this is gcd(k, n)
ACC: ascending chain condition
BCC: both chain conditions
DCC: descending chain condition
DS(G): the set of direct summands in G
C,(a): the cyclic group (a) of order n
nc(X, G): the normal closure of X in G
¢: identity map
I, ={1,...,n}
Y, for Sylows so we do not conflict with symmetric group.
®(G): the Frattini subgroup of G
(G : H):index of H in G
gcd(a, b): greatest common divisor of @ and b
lem(a, b): least common multiple of @ and b
[H, K]: the commutator subgroup of H and K
H°: the normal interior of H
H e K: The set product H K where H and K are essentially disjoint.

Hy: V{H; [ # i}

HX X XL |
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H )+ a term in the sequence of normal closures of H < G

aM — {am | m € M}
conji (H): the set of conjugates of H by G
Fixx(G): the set of elements of X fixed by the action of G

HE: the normal closure of H in G

Ce(H)= X where X/H = Z(G/H)
C[G]: the set of commutators of G
K(QG): the set of all normal subgroups of G that belong to class K
G/K: the set of all normal subgroups N of G for which G/N belongs to class

K

L(K): The set of laws of K groups

sub(G): the lattice of subgroups of a group G

sub,(G): the subgroups of a finite p-group G of order p?
Q-sub(G): the lattice of Q2-subgroups of a group G
nor(G): the lattice of normal subgroups of a group G
nor,(G): the normal subgroups of a finite p-group G of order p?
Q-nor(G): the lattice of normal Q-subgroups of a group G
sub(N; G): the family of all subgroup of G containing N
subng(H; G): the family of all Q-subnormal subgroups of an Q-group G that

contain H

subng(G): the family of all Q-subnormal subgroups of an Q-group G
Syl,(G): the Sylow p-subgroups of G

Syl,(S; G): the Sylow p-subgroups of G that contain S

supp(f): the support of f

s(H, G): the length of the sequence of normal closures of H in G
S4(G): for a p-group G, the set of subgroups of order p?
Ni(G): for a p-group G, the set of normal subgroups of order p?
©(S) : the power set of a set S

JCompSerq(G): G has an Q-composition series

JCompSerq (H; K): G has a composition series from H to K
Z::{a€Z,| (a,n)=1}

SDR: system of distinct representatives
hom(G, H): The set of all homomorphisms from G to H

! : the restricted wreath product

0 : the complete wreath product

U, the regular wreath product

< : normal

< : normal and proper

<1 < : subnormal

<< : subnormal and proper
X' = X U X!, where X is a nonempty set



Index

2-transitive, 230
4-group, 24

abelian series, 293
abelian, 20

abnormal, 99, 262, 314
ACC, 6, 60, 76, 136
acceptable, 55

aC-group, 165

action, 123, 207

acts, 123, 207

addition, 20

aD-group, 165

adjacent, 189

affine transformation, 101
algebraic closure, 305
alphabet, 2

alternating group, 33, 203
aNC-group, 165
antichain, 3
antisymmetry, 2

antitone, 5

aperiodic, 21
np-argument, 245
ascending chain condition, see
ACC

associativity, 13, 20
asymmetry, 3
automorphism, 106

Baer, 169

Baer's criterion, 360
base field, 305

base ring, 355

base, 181
basis, 319, 326
BCC, 6, 76, 137

Bernstein Theorem, 12
binary operation, 19
Birkhoff, 329, 330

block, 10, 212

both chain condition, see BCC
bottom, 4

Brauer, 270

Burnside Theorem, 310
Burnside Basis Theorem, 218
Burnside problem, 35
butterfly lemma, 119

cancellable 7, 157
canonical forms, 10, 11
canonical projection, 108
Cantor's theorem, 12
cardinal number, 12
cardinality, 12

cartesian product, 13
Cassidy, 87

Cauchy's theorem, 79, 124
center, 33, 81
center-intersection property, 215
centerless, 33, 81

central in, 117

central series, 293

central, 33, 81, 144, 216
centralizer, 82

chain, 3

change of context map, 338
characteristic series, 77
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characteristic, 69
characteristically simple, 121
chief distance, 281

chief factors, 278

chief length, 281

chief series, 278

Chinese remainder theorem, 146,
186

class equation, 209, 210

class, 291

Ks-class, 292

K,-class, 292

classification problem, 108, 263
closed interval, 3

closed, 19

closure, 138

co-Hopfian, 147

cointersection, 291

cojoin, 292

combinatorial group theory, 343,
344

commutative, 20

commutativity rule, 151
commutativity, 13

commutator subgroup, 84, 146, 307
commutator, 84, 93

commute elementwise, 72
commute, 20, 111

complement, 149, 151
complemented, 149
complements modulo, 172
complete invariant, 11
complete lattice, 8

complete sublattice, 9

complete system of invariants, 11
complete wreath product, 181
complex group, 102

complex product, 31
complexes, 31

component, 73

componentwise product, 24
Q-composition distance, 281
composition factors, 278
Q-composition factors, 278
-composition length, 281
composition series, 278

-composition series, 278
concatenation, 294

concrete free abelian group, 331
concrete free group, 325
concrete -free group, 328
concrete presentation, 339
G-congruence relation, 211
congruence relation, 67
conjugacy class, 30, 82, 84, 205,
214

conjugate, 29

conjugation by, 30

continuum, 14

coordinate, 152

core, 125

correspondence theorem, 113
Q-correspondence theorem, 276
coset product rule, 66

coset representative, 42
countable, 12

countably infinite, 12

p-cover, 216

covers, 4

cycle decomposition, 25, 192
cycle representation, 192

cycle structure, 25, 192

cycle, 24, 191

cyclic group, 22

cyclic series, 293

cyclic subgroup, 34

DCC, 6, 76, 137

decidable, 343

decision problem, 343

decision procedure, 343

Dedekind law, 34

Dedekind, 85

defined by generators and relations,
338

derived length, 308

derived series, 308

derived subgroup, 84

descending chain condition, see
DCC

dicyclic group, 53, 348, 351

direct complement, 151



direct factor, 75, 153
direct product, 74, 75, 151, 153
direct sum, 75, 153
direct summand, 75, 153
directed, 3, 37

disjoint union, 13
disjoint, 25, 192
distributive lattice, 60
distributive laws, 60
distributivity, 13
divisible, 145, 147, 354
domain-lifted, 359
double cosets, 233

edges, 189

p-element, 80, 215
elementary abelian group, 121
elementary divisors, 160, 357
embedded, 106

embedding, 106

empty word, 2
endomorphism, 106
endpoint, 77

epimorphism, 105
equational class, 327
equivalence class, 10
equivalence modulo, 41
equivalence relation, 10
equivalence, 230
G-equivalent, 208
Q-equivalent, 277
equivalent, 230, 347
essentially disjoint, 33
essentially disjoint product, 33, 151
essentially unique, 286

Euler phi function, 43

Euler's formula, 44

Euler's theorem, 44

even parity, 194

even permutation, 26

even, 194

exact, 357

exponent, 21, 28

extended centralizer, 266
extension problem, 279
extension, 115, 177, 279, 291
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external direct product, 24, 152
external direct sum, 152
external semidirect product, 176

Q-factor group, 274
factor group, 67
factored through, 319
factored uniquely, 111
faithful, 123, 207, 208
Feit, 310
Feit-Thompson, 84
Fermat's little theorem, 44
field extension, 305
finitary operation, 19
finite exponent, 28
finite, 1, 12, 20, 338
finitely S-generated, 138
finitely (2-generated, 275
finitely generated, 35
finitely presented, 340
first isomorphism theorem, 112
first 2-isomorphism theorem, 276
Fitting's Lemma, 141
Fitting's Theorem, 302
fix, 207
Fowler, 270
Frattini argument, 210
Frattini subgroup, 127
Frattini, 244
free generators, 319, 326
free group, 319
free C-group, 326
free presentation, 338
free rank, 357
Frobenius, 240
fully invariant, 69
fully-invariant series, 77
fundamental theorem of finitely-
generated abelian

groups, 356

G-congruence relation, 211
G-equivalent, 208

G-set, 207

Galois group, 305
Galois-style group, 57
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Gaussian coefficients, 233

general Burnside problem, 35
general linear group, 23
generalized quaternion group, 222,
348
generalized
property, 134
generalized symmetric group, 185
n-generated, 35

S-generated, 138

generating set, 34

n-generator group, 35

generators, 338

good order, 162

graph, 189

greatest lower bound, 4

group homomorphism, 46, 105
group with operators, 274

group, 19

K-group, 291

Ks-class, 292

K,,-group, 292

Q-group, 274

m-group, 99

p-group, 81, 215

4-group, 24

GSJP, 134

Guralnick, 88

subnormal join

half open intervals, 4
Hall subgroup, 252, 310
Hall p/-subgroup, 312
Hall, P., 167

Hall-Witt Identity, 96
Hall's theorem, 311
Hamiltonian group, 169
Hasse diagram, 37
higher center, 297
higher commutators, 307
higher images, 140
holomorph, 177
homomorphism, 46, 105
Q-homomorphism, 274
Hopfian, 147

hyper-P, 289
hyperoctahedral group, 190

idempotent, 76, 107
identity, 20

ignore-K map, 172

image sequence, 140
indecomposable, 75
independent, 332

index set, 152, 181

index, 61, 115

induced action, 211
induced inverse map, 105
induced map, 105

infinite cycle, 192

infinite dihedral group, 129
infinite order, 21

infinite, 12, 20

inherited, 116

injection map, 154
injective, 359

inner automorphisms, 30
insertion rules, 323
interleaved series, 294
intersection, 115, 294
invariant factor decomposition,
160, 357

invariant factors, 160
invariant factors, 357
invariant, 11, 105, 204
inverse, 20

inversion, 204

involution, 21

is direct, 75

isomorphic, 46, 106
Q-isomorphic, 277
isomorphism invariant, 46, 116
isomorphism theorems, 112
2-isomorphism theorems, 276
isomorphism, 46, 106, 189
Q-isomorphism, 274
isotone, 5

join, 4
Jordan—Holder Theorem, 281
K-group, 291

KC-radical, 315
K-residue, 315



IC-subgroup, 291

K-series, 292

K-universal property mapping, 326
K-universal, 326

K,.-class, 292

K,.-group, 292

Ks-class, 292

Ks-class, 292

Kappe, 89

kernel sequence, 139

kernel, 108

Kertész, 165

Klein, 24

Krull-Remak—Schmidt Theorem,
286

Lagrange's theorem, 42
largest, 4

lattice, 8

law, 320, 327

least upper bound, 4

left action, 229

left coset, 41

left inverse, 173

left invertible, 173

left regular representation, 124, 212
left-inverse property, 359
length, 2, 77, 323

lifted, 111, 319

linear order, 3

linearly ordered set, 3
p-local subgroup, 265
locally cyclic, 59
locally finite, 59

lower bound, 4

lower center, 299

lower central series, 299

MacDonald, 89

maximal condition on subgroups,
60

maximal condition, 6, 137

maximal element, 4

maximal normal, 70

maximal, 38

maximum, 4

Index

mediating morphism, 111,
156, 319, 326

meet, 4

metabelian, 101, 132
minimal condition, 6, 137
minimal direct summand, 163
minimal element, 4
minimal normal, 70
minimal, 38

minimum, 4

modular lattice, 101
modular law, 101
module, 355

R-module, 355

monoid, 2

monomial group, 185
monomorphism, 106
monotone, 5

Morse, 89

move, 207

multiplicative, 43
multiplicity, 1

multiset, 1

n-ary operation, 19
ny-argument, 245
n-generated, 35
n-generator group, 35
natural projection, 108
nC-group, 165
nD-group, 165
negative, 20

nilpotency class, 301
nilpotent, 107, 216, 293
nodes, 189
nongenerator, 127
nontrivial, 21

normal closure, 71
normal complement, 151, 171
normal extension, 115
normal interior, 125
normal join, 68

normal lifting, 115, 294
normal series, 77
normal, 65, 140
normality preserving, 140
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normalize, 82 p-standard form, 15
normalizer condition, 135 p-subgroup, 81, 215
normalizer, 82 pairwise essentially disjoint, 72
nullary operation, 19 partial order, 2

partially ordered set, 2
Q-composition distance, 281 partition, 10
Q-composition factors, 278 perfect, 84, 186
Q-composition length, 281 periodic, 21
Q-composition series, 278 permutable complement, 150
Q-correspondence theorem, 276 permutable, 98
Q-equivalent, 277 permutation group, 24
Q-factor group, 274 permutation matrix, 184
Q-group, 274 permutation, 24, 191
Q-homomorphism, 274 permute, 39
Q)-isomorphic, 277 ply transitive, 203
Q-isomorphism theorems, 276 Poincaré's inequality, 62
Q-isomorphism, 274 Poincaré's theorem, 62
-quotient group, 274 polycyclic, 293
()-series, 276 posets, 2
Q-simple, 279 positive, 54
Q-subgroup, 274 power of the continuum, 14
)-subnormal, 277 power, 13
odd parity, 194 preserves orientation, 51
odd, 26, 194 primary cyclic decomposition, 160,
open interval, 3 357
operator domain, 274 primary decomposition, 243
orbit, 80, 205, 208 primary, 160
orbit-stabilizer relationship, 205, p-primary, 160
209, 210 principal factors, 278
order anti-embedding, 5 principal series, 278
order anti-isomorphism, 5 product, 13
order embedding, 5 projection map, 75, 154
order isomorphism, 5 projection, 118
order preserving, 5 projective property, 351
order reversing, 5 projective, 358
order, 20, 21 proper refinement, 276
outer automorphism group, 120 proper subgroup, 32
outer automorphism, 120 proper, 77

pure, 363
m-group, 99
p-cover, 216 quasi -group, 262
p-element, 80, 215 p-quasicyclic group, 70
p-group, 81, 215 quaternion group, 48
p-local subgroup, 265 Q-quotient group, 274
p-quasicyclic group, 70 quotient group, 67

p-series, 216 quotient, 116, 294



R-module, 355

radical series, 306

K-radical, 315

range-lifted, 358

rank, 325

real, 266

reduced, 54, 323

reduction, 323

refinement, 276

reflexivity, 2, 10

regular wreath product, 182
regular, 208

relation, 338

relative holomorph, 177
relators, 338

Remak decomposition, 163
Remak, 163, 283

removal rules, 322
representation map, 123, 207
residually finite, 344
residually -group, 351
residually, 351

K-residue, 315

restricted Burnside problem, 35
restricted symmetric group, 205
restricted wreath product, 181
reverse projection, 118
reverses orientation, 51

right action, 229

right coset, 41

right inverse, 173

right invertible, 173
right-inverse property, 358
rigid motion, 50

Robinson, 132, 134, 148

S-generated, 138

scalars, 355

Schmidt, 167

Schreier refinement theorem, 281
Schreier, 281

Schréder—Bernstein, 12
Schur—Zassenhaus theorem, 255
SDR, 10, 208

second isomorphism theorem, 113
second 2-isomorphism theorem, 276
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self-normalizing, 135
semidecidable, 343
semidihedral group, 178
semidirect product, 151, 171
seminormal join, 68
semisolvable, 343
sequence of normal closures, 129
p-series, 216

(-series, 276

K-series, 292

series, 77

set product, 31

G-set, 207

sign, 194

signum, 194

Q-simple, 279

simple, 84

size, 1

SJP, 132

smallest, 4

solvable by radicals, 306
solvable, 77, 293, 343
special linear group, 23
Speigel, 88

splitting field, 305
stabilizer relationship, 210
stabilizer, 205, 208

stable, 207

p-standard form, 15

step, 77

Stirling numbers of the first kind,
201

Stirling numbers of the second
kind, 206

strict order, 2

string, 1

strongly disjoint, 72
strongly real, 266
subdirect product, 321
subgroup generated by, 34
K-subgroup, 291
p-subgroup, 81, 215
Q-subgroup, 274
subgroup, 32

sublattice, 9

subnormal index, 130
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subnormal join property, 132
()-subnormal, 277
subnormal, 78

substring, 2

subword, 2

sum, 13, 107

superdiagonal, 303
supersolvable, 293
supplement, 127, 145
support, 25, 152, 205

Sylow p-subgroup, 235
Sylow theorems, 237
symmetric group, 24, 191
symmetry group, 51
symmetry, 10, 50

system of distinct representatives,
10, 208

term, 77

third isomorphism theorem, 113,
276

Thompson Theorem, 310
Three subgroups lemma, 97
top, 4

torsion element, 353
torsion free, 21

torsion free, 353

torsion subgroup, 353
torsion, 21, 353

total order, 3

totally ordered set, 3
transitive, 203, 208, 230
2-transitive, 230
transitivity, 2, 3, 10
translation, 123
transposition, 25, 192
transversal, 10, 61, 150
triangle inequality, 130
trivial class, 291

trivial group, 21

trivial reduction, 323

unary operation, 19
uncountable, 12
undecidable, 343
underlying set, 1, 19

unitriangular, 229, 303
universal map, 319, 326
universal mapping property, 319
KC-universal property mapping, 326
universal, 111, 155, 156, 319
KC-universal, 326

unquotient, 116, 294
unsolvable, 343

upper bound, 4

upper central series, 297

upper factorial, 201

variety, 327

verbal subgroup, 327
vertex, 155, 156
vertices, 189
Vierergruppe, 24

Weigold, 167

well ordering, 5
well-ordering principle, 5
Wielandt, 134

Wilson's theorem, 59
word problem, 343

word, 1

Zassenhaus lemma, 119, 280
zero map, 23, 106

zero, 20

Zorn's lemma, 5
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